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Summary

The present study was under-taken to improve the performance of the alumina 

insulators used in Super-Klystron application. The intention was to develop a 

composition that would have physical characteristics similar to the existing alumina 

insulator but have lower electrical resistivity and could be incorporated into the 

insulator by preparing as a functional gradient material. The low resistivity 

compositions were successfully prepared by adding TiC>2, Cr2C>3 and V2O5 dopants to 

the original alumina insulator composition.

The experimental programme involved, a study of the reference commercial alumina 

insulator for its microstructure and chemical characteristics, evaluation of the sample 

preparation procedures for electron microscopy, development of a base composition 

in order to emulate the reference material, and finally doping this material with 

various percentages of TiC>2, V2O5 and Q 2O3. The samples when so prepared were 

tested for their electrical properties using an Impedance Spectroscopy technique. An 

explanation for the reduced resistivity was linked to the defect chemistry, the 

microstructural features and phases present.

The TiC>2 present in the compositions studied became more conductive when the 

densified samples were subsequently annealed in H2 atmosphere. The best results for 

reduced resistivity were obtained for a TiC>2 addition which, it is suggested, reached a 

threshold value so as to form a percolation path between conducting TiC>2 rich 

precipitates. Compositions containing both TiC>2 and V2O5 were more successful in 

reducing the resistivity in the as-fired state. However V2O5 had an opposite effect on 

annealing in H2, as it caused a marginal increase in the resistivity of the ceramic.

A preliminary investigation was carried out to study the feasibility for the processing 

of a functional gradient material. The sintering kinetics of the base composition was 

compared with each of the doped compositions by studying the sintering shrinkage by 

the means of dilatometry. Though the chosen compositions had large difference in 

shrinkage rates, the study has shown that a functional gradient material is practical 

and can be made by preparing a multi-layer compact.
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CHAPTER I 

INTRODUCTION

The chapter gives the introduction to the project 

and includes the motivation fo r  the work.
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1. INTRODUCTION
tliAlumina as an engineering ceramic material became popular in the first half of the 20 

century. Today it accounts for more than three quarters of the world engineering ceramics 

production. Its high popularity is a result of the remarkable range of properties it shows 

and the areas of applications it covers, which include mechanical, chemical, thermal, 

electrical and electronic devices. Its high resistivity, low tanS and low permitivity has 

made it a popular electrical insulator. Furthermore its high refractoriness, low out- 

gassing, chemical inertness and ease of metallizing, in comparison with the competing 

insulators such as porcelain, glass and polymers, has resulted in it being the choice for the 

most demanding application for electron insulation devices. The range of applications has 

grown from traditional support and stand off insulators at high temperature, to insulators 

in vacuum windows in RF environment and microwave heating systems in fusion 

applications. One such area is the use of alumina insulator in Super-klystron devices.

The Super-klystron device is used in physics laboratories as a source of radio frequency 

(RF) power and as a test bed for determining the electric stand off properties of various 

materials and geometric shapes. A typical super-klystron manufactured by Marconi 

Applied Technologies is shown in figure 1.1. In klystrons a high purity alumina window 

is used to separate the components under vacuum from those at atmospheric pressure. A 

94% alumina insulator is utilised to maintain a voltage stand-off between anode and 

cathode. Both these alumina parts are metallized with a molybdenum-manganese coating, 

which helps in forming a hermetic seal with the metal parts, cathodes, etc, and prevent 

vacuum leakage through the sealed joints. The high voltages, high frequencies and 

vacuum atmosphere put the components under a high electrical stress.

This work was undertaken on account of the problems associated with the alumina 

ceramic failure in the Super-klystron device and other electron insulation devices. There 

are two major problems faced by the insulators.

1) thermal breakdown under microwave conditions and

2) excessive charge build up on the alumina surface, which when unable to leak to 

ground, leads to voltage spikes (figure 1.2). These spikes interfere with the electronics



1. Introduction 3

of the device and the resulting over-voltage breakdown cascade can cause costly 

failure of the downline electronics system.

A possible solution to this problem is to use a lower resistivity (1011 to 5xl09Qcm) 

surface layer on the insulator that permits the leakage current to disperse the built up 

charge. Earlier attempts to use a low conductivity glaze layer on an alumina insulator 

were unsuccessful due to the interference of the glaze layer with the metallizing {1} and 

its unstable nature in reduced oxygen atmospheres. Similarly, the use of TiN coating on a 

surface has also been unsuccessful (discussed in section 2 .1). TiC>2 is known to be useful 

as an agent for dissipating the charge in alumina thread guides. This indicates its potential 

for use as a dopant for charge dissipation from an alumina surface in a klystron 

application.

The present work outlines studies on the additions of Ti02  and other dopants as a means 

of generating an alternate conducting mechanism for overcoming the electrical failure. 

The incorporation of dopants to the alumina insulator is achieved by preparing a 

functional gradient material, such that the doping results in the inner surface layer having 

reduced resistivity, in the range of 5xl09-10n Qcm, while the outer surface is the same as 

the original composition presently in use (> 1014Q-cm). The reference material used is a 

liquid phase sintered 94%Alumina insulator manufactured by Seagoe for English 

Electric Valves (now Marconi Applied Technologies). The work is such that the 

composition of the base insulator matches that of the Seagoe alumina and the shrinkage 

of the new composition matches the shrinkage of the base insulator. This is necessary to 

prevent the outgrowth of firing stresses in a functional gradient insulator while sintering 

takes place.

* -  There are three different forms o f alumina ceramic, single crystal, polycrystalline and liquid 
phase sintered. Single crystal alumina typically are the naturally occurring or synthetically 
grown corundum, sapphire and ruby crystals. Poly crystalline alumina (PCA) or solid state 
sintered alumina involves the coagulation o f active alumina particles by controlled grain 
growth through surface diffusion to produce very high purity alumina ceramic (>99%). 
Liquid phase sintered alumina (LPS Alumina) involves the use o f  glass in form o f a second 
phase at the grain boundary that helps in the bonding o f alumina particles to form a dense 
ceramic, typically <98% pure. This is commercially the most popular alumina type.
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(c) (d)

Figure 1.1: Klystrons (a) Super-klystron (b) RF window, containing alumina window  
(c) Pulsed klystron (d) another low pow er klystron
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Figure 1.2: Breakdown events in alumina insulator
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The research work undertaken involves the following steps:

1. Literature Review

2. A study of the Seagoe insulator sample for microstructure and composition

3. Preparation of 94% Alumina composition to match that of Seagoe material

4. Study effect of varying percentages of TiC>2 and on the electrical and physical 

properties and microstructure of Alumina.

5. Study other dopants which could have an effect on the resistivity of alumina

6 . Study the effect of dopants on the firing shrinkage of alumina.

7. Elucidate the conduction mechanism(s).

8 . Investigate the process for manufacture of functional gradient material.

Microstructural studies using optical and electron optical techniques, together with 

studies, electrical and physical characterisation are carried out at the various stages of 

research.
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CHAPTER II 

LITERATURE REVIEW

The review covers the discussion on the klystron 

failure, past work to solve the problem o f  the 

failure o f  AI2O3 insulator, fundamentals o f  

electrical conductivity, dielectric behaviour,

microstructure in AI2O3, and impedance

spectroscopy
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2. LITERATURE REVIEW

The Literature survey covers the following areas:

a) Alumina dielectric breakdown in klystrons: To understand the design and to study 

the problems faced by klystrons concerning alumina ceramic.

b) Electrical conductivity and the defect structure in alumina

i) This includes the effect of TiC>2 on electrical conductivity & transport 

properties of alumina

ii) Effect of other dopants on electrical and transport properties of alumina: 

Since the alumina under study is of 94% purity, glass forming additives 

other than TiC>2 will have an effect on the electrical properties of alumina. 

This study also includes the additions of other dopants, which may alter 

the defect structure and conductivity of alumina

c) Microstructure in alumina: liquid phase sintering in alumina: Since the alumina 

being studied is liquid phase sintered, for the better understanding of this process 

it has been discussed in greater detail.

d) Impedance spectroscopy has been used to study the electrical resistivity of 

alumina. The theory and applications of impedance spectroscopy pertinent to this 

project are included.

2.1. Alumina breakdown in Klystrons

Electron accelerator devices such as klystrons can generate peak RF power as high as 

200MW and operating frequency in the GHz range{2}. As a result several components in 

the device are under high electric stress. The extreme requirements of these devices 

necessitate that the insulating dielectric materials should have {3}

• high dielectric strength

• low tan5 and high thermal conductivity to avoid excessive heating

• low permittivity to match the impedance easily

• capability of metallizing and

• high thermal shock resistance and mechanical strength to face the thermal stresses 

posed by the multiple bake out process.
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Good quality alumina ceramic exhibits these characteristics and thus finds application in 

klystrons. There are two major areas where it is utilised {2}:

a) Gun Area: 94% pure alumina ceramic cylinder is used as a voltage stand-off between 

cathode (typically pulsed to a voltage of -350kV with a pulse repetition rate of 180/sec 

for pulse widths 5.Ops) and anode.

b) An alumina ceramic window is used as a low loss ceramic window to direct RF power 

generated at the output cavity to the external load with minimum attenuation whilst 

maintaining a 10' Pa vacuum between the inside of klystron to the external 

environment.

In spite of its generally good properties, the alumina insulator has not been very 

successful when exposed to electric fields of around 360kV/cm under microwave 

conditions. Its breakdown and the build up of surface charge in these conditions has been 

attributed to its high yield of “secondary electron emission”** (SEE) {3}. In an 

alternating RF field, the secondary electrons are accelerated and multiplied, leading to 

excessive build-up of charge on the inner insulator surface. The high resistivity of 

alumina, which is the significant property governing its use as an insulator here becomes 

responsible for restricting the surface charge from leaking to the ground {2}. The problem 

of localised charge accumulation is further aggravated due to the alumina being under a 

vacuum, as gas phase conduction, which could have been an alternative source of charge 

leakage, is now unavailable to redistribute the charge evenly over the ceramic surface 

{4}. These conditions can lead to a surface flashover {5} and more seriously to a 

‘multipactor breakdown (figure 2 .1), characterised by high intensity optical emission 

{6 } as a form of luminescence on the ceramic surface {7}. Primary electrons for this 

breakdown, might well be generated at the ‘triple junction due to field emission, or

Secondary Electron Emission: Emission o f electrons from the surface o f  a conducting material 
by the bombardment o f  the surface by electrons from another source(called primary electrons)

Multipactor-Electron multipactor effect-resonant multiplication, in the RF field, o f  secondary 
emitted electrons at the alumina surface

triple junction: interface where cathode meets the insulator and forms an interface o f  vacuum, 
cathode and insulator.
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perhaps are created at the insulator surface due to ionisation of adsorbed molecules such 

as contamination and water molecules {5}.

Mechanisms for the failure of alumina ceramics in the gun and window areas have been 

explained by Vlieks et al{2}. In the gun area, they found a failure arc through a high 

voltage ceramic seal resulting in punctures at the breakdown voltage («165-200kV), each 

time, at the same axial location in the ceramic. This breakdown phenomenon was 

explained by the following mechanism:

‘Emission of a small flow of charge from the cathode support structure to the ceramic 

causes the ceramic to acquire an excess charge density. This charge resides within the 

bulk of the ceramic. Additional charge accumulates from electrons arriving at the ceramic 

surface near the corona ring and enters the ceramic to a mean depth of approximately 

0.026cm. This results in a large accumulation of charge build up within the ceramic. The 

high bulk resistivity of alumina prevents this charge from rapidly bleeding off to ground 

or to the closest metallic surface (the inner or outer corona ring in this case). This results 

in the accumulation rate exceeding the discharge rate causing a surface charge build up to 

a level so as to cause a ceramic failure.’

Authors {2} advocated a solution to the problem of cracking in the stand-off insulator by 

eliminating the arcing due to the outer corona ring by reducing its size. This could 

eliminate the problem of puncturing in the ceramic seal. However the authors have not 

mentioned the problem of voltage spikes on the ceramic surface which is the main 

concern in this study.

For the case of the window failure, the authors {2} have defined three possible 

mechanisms. These are:

(i) Dielectric failure, due to one or more of the following reasons:

□ excessive electrical field across the window resulting from build up of negative 

charge on the upstream and positive charge on the opposite side of window

□ impurities or voids in the ceramic

□ multipactor phenomena.
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(ii)Thermal Failure: Radial cracking occurs due to the excessive heating of the ceramic 

surface as the RF fields are converted to heat energy.

(iii)Boundary Failure: Due to defects in the braze interface that may extend into the 

ceramic.

However the problem of a high secondary electron emission (SEE) coefficient remains 

the main cause of alumina failure in klystrons. The major cause of high SEE coefficients 

in alumina has been linked to the generation of F*-centre defects§ following electron 

irradiation (multipactor bombardment), from F-centres by the degradation reaction {9}:

F =» F+ + e"

Irradiation can excite impurities and defects present in the ceramic and transfer a trapped 

electron from an F+ centre into the alumina conduction band, thus turning the defect into 

an active trap {10}. Michizono et al {9} believe that more of these defects are produced 

in alumina with higher values of dielectric loss (tan5). F-centres, created by multipactor 

events, can further increase the value of tan5 at the surface from the conductive charges of 

free ions or electrons. This is accompanied by a rise in surface temperature {3} and leads 

to resultant runaway breakdown phenomena {11}. Thus keeping the value of tanS as low 

as possible is an important prerequisite for alumina used in this application {12}. Factors, 

which cause it to increase, are discussed later in section 2.3.1.

One method for making the alumina less liable to F centres is to have a dense structure 

and crystallised sintering additives {3}. A method of crystallising the grain boundary 

liquid phase has been discussed in section-2.4.4. However it needs to be mentioned here 

that a ceramic with a dense structure usually requires a small grain size (« l-2pm) and this 

is unsuitable for the klystron applications due to the difficulties involved in metallizing 

small grain size alumina. As an alternate, if a ceramic with a large grain size is used («20- 

50pm), the structure will have many voids. These voids plus the impurities also result in

§ F Centre defects - 0 2 vacancies with two electrons and F+ Centre defect- 0 2 vacancies with one
electron{8}
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high tan8 values for the ceramic. There thus is a need for a complex balance of additives 

and microstructures to optimise properties.

Another factor that contributes to the failure of ceramics in klystrons is the presence of 

mechanical defects and disorder. Dielectrically weak voids and grain boundary matrices 

can be the starting points for puncture, as well as the path for propagation of the initial 

failure {13}. More importantly they can be sources of high mobility electrons as well as 

trap sites under a high electrical field {14}. The excess mobile electrons can become re­

trapped in dislocations and microcracks and result in a localised charge accumulation 

{15}. The degree to which this charge accumulates will depend on the defect density in 

the bulk ceramics and on residual stresses at the surface {5,16}. Controlling the 

dislocation population {17} and annealing to reduce mechanical defects{18} can reduce 

the density of trap sites for mobile electrons under rf power. Annealing can also reduce 

the density of F+ centres due to the reverse conversion of F+ to F vacancies resulting in a 

electron detrapping {18}. However annealing is reported to have increased the SEE yield 

in alumina and is thus incapable of reducing the number of trap sites {19}. Additionally 

charge de-trapping and relaxation of the energy of polarisation can also be responsible for 

surface breakdown phenomena {2 0 }.

In order to lower the incidence of alumina ceramic failure it is believed that if the surface 

of alumina can be modified in such a way so as to have a low SEE coefficient, keeping 

the bulk unchanged, it should help in reducing multipactor breakdown. One method of 

modifying the surface is to apply a low SEE coefficient coating.

Sudarshan and Cros {21} have given a criterion for the choice of such coatings. They 

explained that the positive charging of a surface occurs when secondary electron yield per 

incident electron is greater than unity. For a material with this factor less than one, the 

surface could not acquire positive charge even under direct voltages resulting in a higher 

insulation strength than that of uncoated alumina. The secondary electron yield per 

incident electron for some materials vis a vis alumina is as given below.
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Insulator Secondary electron yield
A120 3 6.4
CU2O 1.25
Cr203 0.98

However a popular coating used in this application is titanium nitride (TiN) {13,22}. 

Though TiN coating is a lower resistivity coating, its lower SEE coefficient compensates 

by reducing the effect of multipactor events on the insulator {13,22}. Nevertheless even 

ceramics with TiN coatings have not been free from their problems. Saito et al {14} 

found occasional discharges on the surface of TiN coatings at RE voltages greater than 

200MV. These caused development of flashover tracks, evaporation of the TiN films and 

melting of alumina with a tree like pattern. Nyaiesh et al {23} found that TiN coating is 

effective only for lower power levels (<35MW peak power) and short pulses(2.5p.s). For 

higher power insulators (>50MW) and longer pulse lengths (5 j i s ), coating required 

extremely close control over deposition conditions and areal density* with special 

handling and baking provisions. Instead they found Cr coated windows to be more 

effective than TiN, as the former were capable of withstanding operation at 100 MW of 

RF power, 6 ps pulse length, without thermal or multipactor induced failure. The reason 

for the better performance of Cr coated windows vis a vis TiN coated windows was 

explained as:

“A thin layer of TiC>2 is formed on the surface of TiN during air exposure. Ti0 2  is subject 

to decomposition on heating from electron bombardment. Since its secondary emission 

coefficient is very different from that of TiN, there is a wide variation in the SEE 

coefficient under klystron processing conditions. On the other hand the surface corrosion 

layer on Cr (Cr2 0 3  ) is considerably thicker and relatively stable under heating. The high 

defect concentration on the Cr203  layer is responsible for the relatively low secondary 

yield (compared to other insulators) of coated windows”.

: weight o f deposited layer per unit area
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Miller and co-workers {24,25} who studied Mn and Ti based quasi-metallizing for 

reducing SEE also found that the coatings with a higher Ti content, though better at 

reducing the multipactor failure and consequently improving voltage hold off 

performance, are more prone to suffer permanent damage during high voltage breakdown. 

Further quasi-metallizing also has the additional advantage of decreasing the amount of 

gas desorbed from the insulator surface during electron bombardment {26}.

The effectiveness of a surface coating for insulating ceramics against the surface charge 

build up also depends on the source of the input energy. This was observed by Sudarshan 

and Cros{21} when Cr2C>3 coating was found to improve the insulation of alumina by a 

factor of 2.7 under dc, 1.8 at 60Hz ac and 1.4 at 2-5Ops impulse voltage. The reason for 

this difference under different sources of energy is accounted for by the concept that the 

coating draws a small leakage current and hence is used for suppressing flashover. At all 

energies the surface becomes negatively charged by electron collisions and will stabilise 

with a negative charge. Equilibrium will be established between charge deposition by 

bombardment and loss by leakage. This negative surface charge will reduce the field at 

the critical cathode insulator junction and thus increase withstand voltage. The short time 

available to develop surface charge was the cause for the smaller improvement in 

insulation under the impulse voltage test. Under ac conditions, as the junction fields 

alternately change polarity, both junctions become active rather than only the anode 

junction, leading to a lower withstand level. This concept of surface charging has also 

been explained by DeTourreil and Srivastava {27}. A further reason for the coatings 

being unsuccessful is the coating-ceramic interface becoming another potential trap site 

and aggravating the surface-charging problem {18}.

Although various techniques have been utilised to reduce the ceramic failure problem in 

the klystrons, the problem is still largely unsolved. Modifying the surface is one method. 

However since surface coatings can be potential trap sites, it is believed that any surface 

treatment may be effective provided that the insulator is produced with a permittivity 

gradient across its thickness, with a minimum SEE at the surface. This idea has been
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utilised in present work and a functional gradient material is proposed to be prepared to 

overcome insulator breakdown. However before proceeding there is a need to understand 

the conductivity mechanisms prevalent within alumina ceramics and how these can be 

altered by the presence of various extraneous factors. This is covered in subsequent 

sections. Also the charge build-up is due to the polarisation of various charge carrying 

species within the bulk of the ceramic. The capability of an insulator to store polarisation 

energy will depend on the extent of electrical degradation under RF fields, and the 

dielectric polarisation and relaxation processes prevalent within the insulator. The 

compositional and microstructural factors that affect the dielectric behaviour become 

significant and have been discussed in the following sections.

Figure 2.1: Multipactor breakdown in Alumina

Summary of section 2.1

Alumina insulators used in high-power klystrons face problems in the support insulator in 

the gun area and the RF window. Multipactor and surface charging due to high secondary 

electron emission of alumina with the development of excessive charge on its surface is 

considered to be the main reason for puncturing of the insulator. The reasons identified 

for the problem are surface and microstructural defects in alumina and the lack of a 

mechanism to release the surface charge build up. The same reasons are considered to be
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the cause of surface flashover which is more severe in vacuum than in air. Alumina with 

low tan6 and a lower tendency to form F-centre defects is likely to be more successful in 

high RF power environment. One of the methods used to reduce ceramic damage from 

multipactor events is the use of Ti based low SEE coefficient coating on the insulator 

surface. However it has had only a limited success. Cr based coatings though better, have 

also been of limited help.

2.2. Electrical Conductivity in Alumina

Alumina ceramic has been found to be a very good insulator due to its very high 

resistivity i.e it has a very large gap between the valence and conduction band (>10eV). In 

such large band gap materials, due to high energy of defect formation (>5eV), the 

intrinsic conduction becomes significant only above a certain temperature, depending on 

the level and type of dopant, and defect structure. For example in a pure polycrystalline 

alumina intrinsic conduction is insignificant below 1100°C {28}. Any conductivity at low 

temperatures is dominated by impurities or dopants {29}. The electrical conduction ‘a ’ in 

a solid is related to the carrier concentration 'ri (number per unit volume), charge ‘q’ and 

mobility ‘p ’ of major and minor inherent native defects, by means of the relationship {30}

a  = n.q.p.

For more than one operative charge carrier, the bulk conductivity is the sum of the 

conductivities ‘a x’ of all the individual types of charge carriers, i.e. electrons and holes 

(for electronic conductivity-cjei), cations and anions (for ionic conductivity < 7 i) .  Thus:

c  — Zdx — Snx qx px — (jj+CTei 

The relative magnitude of the factors nx qx px determines whether the conductivity is 

dominant in ionic or electronic species. The individual contributions that either 

component will make will depend on temperature and partial pressure of oxygen in which 

the insulator is in operation {31}. A division of the total conductivity (atot) into ionic and 

electronic components is done by measuring electromotive force (emf) in a concentration 

cell and evaluating the transfer number (tj or td) {32}. The conductivity due to the ionic 

component then becomes
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ti Otot

Furthermore the ionic conductivity is directly proportional to the diffusivity of the fastest 

diffusing ionic species. The diffusion in turn is affected by the partial pressure of oxygen 

(P02), temperature, grain size, impurity or dopant content, their segregation tendency and 

type of diffusion path. In the case of electronic charge carriers, the high mobility of 

electrons and electron holes can result in even a small concentration of carriers making an 

appreciable contribution to the conductivity. Common charged defects that may cause 

ionic conductivity in alumina {33} are:

V ai = Vacancy at an Al site with 3 free electrons

Ali**’ = Aluminium ion in an interstitial site with 3 excess holes.

V o ” = Oxygen vacancy minus of 2 electrons
11 9 ,Oj = O ' ion in interstitial site

The carriers for electronic conductivity may be the holes and electrons contributed by 

either the non-stoichiometry in alumina or from impurities. Non-stoichiometry resulting
n 1______ _

from an alternate ratio of Al to O ions may result in an added electron or hole to

maintain the electronic neutrality. Similarly, the presence of an impurity atom with a

valency different from Al3+ may result in quasi-free electrons due to unfilled d and f 

bands. Electronic carriers are of greater importance for their effect on the alumina in RF 

applications for their use in the discharge of excess surface charge from secondary 

electrons. An appreciation of the factors promoting the conduction by the electronic 

mechanism is thus apparent. Overall, the type of conductivity that alumina shows is a 

function of the disorder of its structure that in turn depends on the partial pressure of 

oxygen (P02), temperature, grain size, impurity or dopant content, their segregation 

tendency and type of diffusion path {34}. Impurities provide the excess charges through 

the formation of lattice defects, and the atmospheric conditions affect their mobility. 

Temperature may also affect the mobility of carriers by increasing lattice vibrations at 

high temperature and by altering the association between carrier and lattice in the case of 

small polaron hopping.
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2.2.1. Factors affecting the measurement of conductivity

Many authors have used emf measurement, as explained by Dutt et al {32}, for 

studying the conductivity in alumina. Volume resistivity determined by the dc 

method {35} and ac measurement by the Wayne-Kerr Bridge {36} have been 

carried out. A significant scatter has been seen in the conductivity values reported 

by various authors. The possible factors causing this variation are the uncertainty 

in the composition, impurities, measurement method used, size and design of 

sample and manufacture history. However the scatter due to these factors is within 

one order of magnitude. The major factor that has resulted in conductivity errors 

greater than 2 orders of magnitude is the gas phase conduction {37,38}. Especially 

at higher temperatures the surface conduction gets very close to the bulk value, 

resulting in the conductivity results being influenced by the characteristics of 

insulator surface rather than the bulk {39}. Many authors {38-44} have 

recognised this error and have used ways such as the blocking of surface 

conduction by the use of a volume guard to overcome the problem at high 

temperature measurements {42,44}. However, Will and Janora {45} believe that 

the use of a fully guarded three terminal technique is insufficient in eliminating 

surface and gas phase conduction unless the voltage between the guard and 

guarded electrode is typically below lOOpV. Another electrode system to 

overcome these effects has been designed by Ozkan and Moulson {40}, and the 

use of a three electrode system to eliminate shunting of volume conductance has 

been proposed by Moulson and Popper {41}. In addition the authors have also 

referred to the need to guard against the effect on conductivity measurements from 

surface contamination, especially from sodium salts which may result from 

handling. The authors {41} also raised a doubt concerning the possible effect of 

the electrode material on the measured conductance, but have left the question 

unanswered. A dopant such as Co can be another source of error, as in Co doped 

single crystal alumina, the Fermi level gets pinned close to a defect level of 

C o a i ' { 3 2 } .
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One of the errors in a.c. measurements is due to the conductivity becoming 

frequency dependent. As for polycrystalline alumina, increase in frequency results 

in an increase in conductivity in the temperature range of 1425° to 1725°C, due to 

space charge polarisation from the presence of the grain boundary as well as the 

electrode {46}. Kizilyalli and Mason {47} though believe the polarisation at the 

electrode is absent. Comparing the dc conductivity (crdc) v/s ac(aac), at 

temperatures above 1200°C, they found the ac conductivity to be higher than the 

value of dc conductivity with the difference becoming larger at lower 

temperatures and higher po2- At higher frequencies, the value of a ac increases 

significantly above the value of adC due to the increased random jumping of 

charge carriers between neighbouring sites till the frequency matches the highest 

jump frequency and saturates the value of a ac(f). Thus care should be taken to 

check the testing procedure used and the design and size of sample while 

interpreting any results from the alumina analysis.

Most of the work carried out on the conductivity in alumina has been carried out 

on samples in the form of either single crystal or polycrystalline. The study on 

liquid phase sintered alumina is very limited at present. Nevertheless the work on 

single crystal and polycrystalline samples can be used to understand the role 

played by the intra grain and grain boundary respectively, on the conductivity 

mechanisms and defect structure at different temperatures, atmospheres and 

dopants. The behaviour should be very similar for the grains in liquid phase 

sintered material. How these various factors will affect the mechanisms of 

conductivity within alumina has been set out below.

2.2.2. Factors affecting conductivity mechanisms in alumina

2.2.2.LEffect of P02 and temperature

The effect of atmosphere and temperature on conductivity in alumina was first 

discussed by Pappis and Kingery {46}. They reported conductivity at 1500°C 

increasing at both small and large partial pressures of oxygen (P02) with a 

minimum at intermediate pressures (10-6 to HT4 bar). The intermediate range of



2. Literature Review 20

conductivity became extended at lower temperatures and was same, irrespective 

of the type of dopant used, showing alumina to behave as a non-stoichiometric 

semiconductor {42}. Cohen {48} had earlier assumed alumina to be an electronic 

material though later authors found the conduction is mixed {46,49}, with the 

ratio of ionic and electronic carriers varying as a function of temperature and po2-
 n  i n

The dominant carriers are electronic at P02 >10 atm and ionic at po2 <10 atm 

{50}. For electronic carriers, the holes dominate at p o2> 10-5 atm, while electrons 

predominate at lower pressures {42}, the intermediate range being the zone of 

changeover from p to n type. However in a study on MgO crystals, Mitoff {43} 

claimed that a conductivity minimum in intermediate P02 is due to the intrinsic Fe 

impurity changing its valence state with oxygen pressure. As per Harrop and 

Creamer{51}, pure alumina, which has up to lOOppm of Fe{52}, might be 

exhibiting the same mechanism of Fe controlled conductivity. However there is 

no experimental evidence to prove this point. Lloyd et al{53} further believe this 

effect is due to the controlling impurity species changing from FeAix to SiAjx.

At higher temperatures, the ionic conductivity is evident even at po2 as high as 

HT4 atm{54}. Brook et al {38}, found the existence of high ionic conduction at 

all temperatures above 1400°C. However other authors {42,55-58} have reported 

ionic conduction below 1300°C and in the intermediate P02 range. This concept 

has been opposed by Will et al {59} and Miranzo et al {60}. The former believe
"3 i

that the ionic conductivity is negligible below 1200°C due to the low Al and O" 

diffusion coefficients. The reason for the error by earlier authors has been linked 

to the fundamentally incorrect use of temperature dependence of emf for the ionic 

transference test. They reported complete electronic conduction in the range 400- 

900°C and ambient air atmosphere, and negligible ionic conduction below 1200°C
3 i

due to very low Al and O" diffusion. Furthermore any ionic conduction above 

1200°C is only from the Al diffusion {61}, as it is significantly higher than the 

O" diffusion {62,63}. El-Aiat et al have reported the activation energy of ionic 

conduction around 5.1eV {64}. Yee and Kroger {54} determined the activation
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energy of conduction of alumina in air to be ~1.3eV which increased to 1.6eV at 

P02 ~10-4 atm and as a consequence of decrease in P02 resulted in the change in 

ratio of electronic to ionic conduction. His experiments showed an ionic 

transference number ~0.1 to 0.3 (for temperatures in the range 1216°C to 

1415°C) in the P02 range of 1 to 10 atm which increased to 0.9 when the P02 was 

lowered to 3x10^ atm. However a wide variation in the value of changeover from 

ionic to electronic conduction has been reported by various authors. Kizilyalli and 

Mason {47} believe that it is a result of the difference in the range of impurity 

content in crystals used by various authors and stray experimental factors such as 

contacts blocking ionic or electronic currents differently over different 

temperatures and P02 ranges.

The defects believed responsible for ionic conductivity at temperatures above 

1600°C are Vai at highP02 {46,49,65} and A l“* at P02 <10-5 atm {46,49}. Pappis 

and Kingery {46} and Brook et al {38} proposed Vo” as another possible defect 

at low po2? but this idea was opposed by Kroger {49} based on the faster self 

diffusion rates of Al3+ {61} compared to O" {62}. Also the higher charge on Al3+ 

results in a faster increase in its defect concentration due to any extraneous factors 

such as, an increase in impurity within AI2O3 {44}. The electronic component of 

conductivity that is dominant in the 400-1300°C range is believed by some 

authors to be due to electrons {55,66-67}, while domination by holes is proposed 

by others {68,69}. Nevertheless in the temperature range -173° to +600°C, most 

authors found the electrons are the dominant species {70,71}. This is in-spite of 

the fact that, as proposed by Mohapatra and Kroger {72}, the electronic defects 

are in a minority at temperatures below 900°C {72}. The higher electronic 

conductivity is due to the higher mobility of electrons and holes as compared to 

the ionic defects at these temperatures. Reduced electronic conduction at higher 

temperatures is considered to be due to the increased lattice vibrations that cause 

lattice scattering, which in turn reduces the mobility of free electrons {73} 

according to the relationship {59}:
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ne « r 3/2

where pe is the mobility of electrons and T is absolute temperature.

2.2.2.2.Effect of grain boundaries

The amount of grain boundary and the composition of the grain boundary phase 

have a significant effect on the electrical properties of pure and liquid phase 

sintered alumina. The presence of grain boundaries can cause an increase in the 

electronic component of conductivity {42} in alumina with the major carriers 

being electron holes {74}. Hole conduction increases with an increase in the grain 

size, till the grains reach 10pm, and thereafter it becomes independent of size. 

When both high and low energy boundaries are present, large grains are formed 

due to the high energy boundaries disappearing during crystallisation, to give only 

low energy boundaries at large grain sizes. This makes hole conductivity 

independent of grain size. Grain boundaries hinder the ionic conductivity {64} to 

such an extent that it becomes negligible in very high purity alumina {74}. It was 

found to be independent of grain size in alumina doped with Fe. The probable 

reason given by Hou et al {74} is due to the segregation of dopants at grain 

boundaries, which might affect the increase or decrease in conductivity with grain 

size, itself becoming ineffective at higher grain sizes. The absence of a decrease in 

ionic conductivity at higher grain diameter with Fe doping indicates that there is 

no fast grain boundary transport for either oxygen or aluminium ions in the 

acceptor dominated AI2O3 . However fast grain boundary diffusion by neutral 

oxygen is still possible. In the presence of such oxygen transport, aluminium 

transport through the bulk could possibly be by ambipolar diffusion of charged 

ionic and electronic species, specifically A l" ' and h \

Furthermore the total conductivity will increase with an increase in grain size 

{75} if the grain boundary represents a favourable current path, i.e. grain 

boundary conduction {76}, and will decrease with increase in grain size {40} if 

the grain boundary acts as a barrier {76}. Space charge polarisation at the grain
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boundary results in the conductivity becoming frequency dependent while making 

a.c. measurements {46}. Significantly higher values of a ac, at high frequencies, as 

compared with CTdC have been attributed to the increased random jump rates of 

charge carriers between the neighbouring sites till the frequency matches the 

highest jump frequency and saturates the value of crac(f) {47}. Thus polarisation at 

the grain boundary, at GHz frequency, has a major influence on the performance 

of alumina in klystron applications

2.2.23.Effect o f dopants

Dopants have the most significant influence on the electrical conductivity in 

alumina. Impurities as low as lppm can contribute donors, acceptors or other 

point defects at a concentration of the order of 1016 carriers/cc, which is much 

higher than the intrinsic carrier concentration of about 109carriers/cc present in 

undoped alumina at 1000°C {77}. Especially at low temperatures, when the 

number of charge carriers is very low, a small change in the dopant concentration 

can vary the conductivity values significantly. Further defects produced by the 

presence of donors or acceptors can act as electron liberating or trapping sites, 

depending on the energy difference between the level of the occupied state and the 

top of the valence band or the bottom of the conduction band.

Donor impurities in AI2O3 are the foreign ions more deficient in electrons than 

Al3+, e.g. Ti4+ and Si4+, promoting negatively charged Vai , Oi defects and quasi- 

free electrons to maintain local electrical neutrality and defect equilibria. 

Acceptors such as Fe2+ and Mg2+ are less deficient in electrons than Al3+, 

promoting the formation of positively charged defects such as A l"’, Vo" and 

electron holes {33}. Conduction is normally proportional to the concentration of 

charged point defects, which in turn is related to the concentration of the 

impurities {50}. However for the impurities with variable valency (Fe, Co, and 

Ti), the nature of the defect structure may also be affected by the valence state in 

which the impurity is present, especially when one valence state is iso-valent with
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Al . This is especially the case with the acceptors at high P02 when the 

concentration of their iso-valent state increases. For such dopants, an increase in 

concentration of dopant may not necessarily influence the concentration of native 

defects {74}. As an example, in Fe doping only a fraction of the Fe is present in 

the form of Fe to act as a acceptor dopant, most is in form of Fe which is iso- 

valent with Al. Thus an increase in concentration of Fe doping may not 

necessarily influence the concentration of native defects {74}. This however is not 

a valid reason for Y2O3 as an iso-electric donor {78}, where the large size of the
o 1

Y ion forces up the electronic energy level and contributes to an increase in 

conductivity {79}. Overall, doping increases the hole conductivity at high P02 and 

ionic conductivity at low P02 {32,80} with acceptors having a more dominating 

effect on Al3+ bulk diffusion rather than on O2- {81}.

Kroger{49} reported the dominant carriers in donor dominated crystals are 

electrons and in acceptor doped alumina are holes. Nevertheless due to the ionic 

nature of metal oxide dopants, an ionic component is present in the total 

conductivity of alumina {82}. The defect governing the ionic conductivity is the 

same as that governing the defect structure of the material. The type of defect 

formed can be determined by the knowledge of disorder mechanism, which in turn 

can be studied through a set of properties, in terms of the P02 and dopant 

concentration. This property could be ionic conductivity, self diffusion, rates of 

diffusional creep and sintering and is related to P02 and dopant concentration 

as{72}:

Property oc p02r [dopant]s 

Where r and s are calculated from the defect model

The dominant disorder in donor or acceptor doped AI2O3 is predicted as Frenkel 

by Hollenberg and Gordon {83}, and Schottky by Mohapatra and co-workers 

{72,84}. The latter’s claim was based on the higher value of the energy of
^ 1

Schottky defect formation as compared with Frenkel disorder {85}. Al moves
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through the bulk as either A l"’ or as V ai in acceptor and donor dominated 

material respectively {64,86-88}, while oxygen moves along grain boundaries, as 

a neutral species O* {62}. The presence of electronic defects prevents the 

development of an electrical field due to any charged species moving alone {64}.

An undoped alumina is an acceptor governed electronic material, since as even the
7 -4-  •purest of alumina contains Mg as an intrinsic impurity {64} and this keeps it 

acceptor dominant at small donor concentration {89}. Only when donors 

compensate for the acceptor concentration, does alumina start showing donor 

domination. When donors and acceptors are equal, the ionic conduction is at a 

minimum due to the pairing of the negative and the positive defects contributed by 

donors and acceptors respectively.

2.2.2.3.1 MgO as an acceptor dopant

Major carriers in Mg doped alumina are ionic at P02 < 10~5 atm and holes at P02 

>10-2 atm {90}. Mixed conduction has been reported in the intermediate range 

{91}. In a-alumina with 8ppm Mg, Wang et al{92} noticed electronic 

conductivity in the temperature range 1200-1600°C and at P02 above 10_I Pa. As 

discussed before, MgO is an acceptor in alumina, however when heated in H2 

atmosphere, Mg doped alumina can show donor domination due to the charged 

hydrogen species (Ho* and Hi) which, together with ionic and electronic species 

(V ai , A l"‘ and e,h’ ) contributes to the conductivity in this alumina {93}.

In the acceptor governed material, MgO promotes Al3+ ion diffusion by an 

interstitial mechanism {86} resulting in the dominant compensating defect for 

MgAi being A l"’{89}. MgO in alumina may be present as a spinel phase MgAh04  

segregated at the grain boundary. The AI2O3/ MgA^ 04  interface can act as deep 

traps {94} and can be contributors to the surface charge build up in radio 

frequency environments. Nevertheless MgO presence in alumina is important for
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improving its sintered microstructure and density and is thus an essential 

component of the ceramic body. This is discussed in section 2.4.

2.2.2.3.2 Fe and Si dopants

Fe and Si are other dominant impurities. Fe makes alumina dominant in electronic 

carriers at all po2- In samples doped wit both Fe and Si, when the dopant 

concentration is low (0.5-0.09 wt % Fe) holes dominate at high P02 due to the 

thermal ionisation of the ferric iron:

FeMX — FeAi* + h'

and electrons dominate at low P02 due to the thermal ionisation of S i :

SiAix ^  SiM + e'

In heavily doped samples (5 wt % Fe), when its limit of solubility in AI2O3 is 

exceeded, the opposite behaviour is found i.e. holes are dominant at low P02 and 

electrons at high po2- In the intermediate P02 range, when the controlling impurity 

species changes from FeAix to SiAix, the total conductivity is at a minimum {53}. 

Presence of iron oxide in the glassy phase decreases the conductivity of the 

ceramic while lime and silica increase it and decrease its temperature 

coefficient {95}.

Dutt and Kroger {96} reported that Fe containing a-alumina is rich in holes (h*) at 

high P02 and A l"’ ions at low po2- However the presence of pores can increase the 

hole conductivity while simultaneously reducing the ionic component {97}.

SiC>2 acts as a donor in alumina. It results in ionic carriers dominating at high P02 

and electronic at low P02 {88}. However when the Si concentration is too low to 

compensate for the intrinsic carriers, conduction at low P02, is ionic {98}. 

Schmalzried{98} found appreciable conduction from electrons at po2< 10-15 atm
 0

while holes dominating at po2> 10 atm.
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2.2.2.3.3 Other dopants

Cr3+ can substitute in the lattice as a trivalent ion without the need for 

compensation and thus should have little effect on conductivity {38} as it would 

form a neutral defect like CrMX rather than a charged defect like CrM. Hensler and 

Henry {99} have reported an increase limited to maximum 1%. However when 

added in conjunction with TiC>2, it increases the conductivity of alumina {100} 

with holes as the dominant carriers in an air atmosphere and at temperatures above 

1280°C {51}. The fall in resistivity at a po2 of 1 atm, with the addition of these 

two dopants, as reported by Watanabe et al {100} is in the table below:

Additives % Resistivity
T i02 Cr20 3 in Qcm

1 1.2 3.5 7x10"
2 1.5 16.5 1x 1 0 "
3 1.4 2 0 .8 5xl010
4 2 .8 0 5xl08
5 2.4 3.3 2 x l0 7

Addition of Ti0 2  and (> 2 0 3  is also believed to result in an increase of dielectric 

constant with decreasing frequency {4}. However TiC>2 ICxiO ,̂ doping is 

understood to have caused electrical inhomogeneity in AI2O3. The cause of this is 

believed to be the difference in resistivity of AI2O3 grains from that of the Si rich 

grain boundary phase, the latter containing greater amount of TiC>2 and having 

lower resistivity than the grain. This inhomogeneity results in a complicated 

potential distribution in the material when high voltage is applied, which may 

cause surface damage on the electrode { 1 0 0 }.

Similarly Co additions will also increase the conductivity of alumina, but only 

when present as Co2+, rather than Co3+, forming a C o a i '  defect. Co doped 

corundum crystal {32} shows ionic conductivity, due to Al"* , at low P02 (<10-3) 

and electronic, due to holes, at high po2- Nevertheless Alj**’ is dominant only in a 

heavily doped sample, while in a lightly doped sample Vo" is still the carrier as is 

the case for undoped material.
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In contrast, El-Aiat and Kroger {79} have reported yttrium as a special case of an 

iso-electric donor. Being iso-electric with alumina, Y will form a neutral Yaix, but 

it is known to act as a donor in polycrystalline AI2O3 when added in quantities of 

around 300ppm. The reason for a lowered electronic energy level has been 

attributed to 0 2~ next to Y3+, the level of the O2- being forced up as a result o f the 

large size of the yttrium ion. However practical difficulties are encountered since 

the AbC^iY system reduces the sintering rate due to the segregation of Y at the 

grain boundaries.

Addition of NiO and ZnO to AI2 O3 has also been found to increase the 

conductivity, though only by a small amount, at around 1 % addition { 1 0 1 }.

Activation energies for some of the acceptors as calculated by Hou et al {74} at
1 I

constant composition for Alj are:

AI2O3 : Mg = 4.60eV 

AI2O3 : Fe = 2.84eV 

AI2O3 : Co = 3.97eV

By far the most significant impurity for this project is TiC>2 . Its use as an agent for 

dissipating the charge in alumina thread guides gives it a potential to use as a 

dopant for charge dissipation in the insulator in klystron applications. In view of 

the significance of additions of TiC>2 it is discussed in greater detail below.

2.2.2.4.Effect o f HO2 dopant

Ti4+, a transition metal donor, has a significantly greater influence on conduction 

of alumina due to its tendency to become non-stoichiometric at high temperature 

(Ti0 2 -x) {102} and to change the alumina defect structure {4}. Even though the 

difference between the conduction band and the Ti band is similar to that of Si 

( 1 .6 6 eV) the addition of the former to alumina has a far greater influence on the 

resistivity. Further Ti addition to alumina results in it shifting to donor domination
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only above a concentration of 80ppm. This is because an undoped alumina has
1 0  1 0

about 2.5x10 acceptors/cc, and on addition of 20ppm of Ti, only 10 donors/cc 

are present, which is not enough to compensate the acceptors. At a concentration
152of 80ppm, the concentration increases to 4x10 donors/cc changing the alumina 

conductivity to a donor dominated mechanism.

Ti is an aliovalent ion and may be present as Ti3+ or Ti4+, depending on the po2-
1

Of these Ti being a smaller size ion, has greater solubility in A I 2 O 3  as compared 

with the latter, which has solubility only at the grain boundaries {50} and is 

limited to 500ppm in a-alumina crystals {103}. Most authors believe {80, 104- 

106} that, it is the valence state of Ti which determines the extent to which
i  1 o  1

conductivity increases. Normally Ti being iso-valent with Al , its higher 

solubility will not contribute to a greater concentration of native defects {104- 

105} and conductivity {80}, while Ti4+ will result in the formation of 

substitutional defects (H ai’) {107} that will be electrically compensated by
m 7  h i

[TIai ] =[Vai ] {80} and cause an increase m conductivity. On the other hand Tsuar 

and Kroger {50} reported that the Ti increases the alumina conductivity by the 

formation of aluminium titanate. Precipitation of A^TiOs to the grain boundary, 

at Ti02  concentration high enough to exceed its solubility limit in AI2O3, is 

reported to cause a steep increase in the value of conductivity {50}. A steep 

increase in conductivity with Ti02  addition at low oxygen pressures has been 

reported by Watanabe et al {106}. This has been linked to the decrease in the 

level of oxygen from TiC>2 causing an increased charge carrier concentration and
Q 1

making the Ti rich grain boundary semiconducting {108}. Ti on reduction from 

Ti4+, as occurs in rutile {108-110}, thus behaves as a semiconductor. However, 

conductivity is reduced if the Ti concentration is low enough to allow full 

dissolution into the alumina grain, or if the dissolution is increased by repeated 

heat treatment {106}.
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tit

The major carrier at small Ti concentration is V ai when po2 is above 1 atm {87}, 

and is electrons at P02 of 1(T8 atm {80,103}. At a Ti concentration high enough to 

precipitate at the grain boundary, the active ionic species changes to Al"* {87} 

and electrons are replaced by the holes as major carriers {64}. Furthermore the 

ionic conductivity seen at 1650°C, is a result of the V ai defect {80,103,107,111}. 

Measuring the conductivity of these samples under CO/CO2 atmosphere, resulted 

in the gas phase C dissolving into alumina {112-114} and forming titanium 

carbide or oxy-carbide precipitates, which increased the concentration of Ti3+ and 

reduced the ionic transference number from 0.74 to 0.05 at 1400°C {103}. Also 

the electronic component of the conductivity decreases with the increase in grain 

size {64}, due to the increased migration of oxygen along the boundary {62} as a 

neutral species {115}. Electronic conduction by electron hopping§ between Ti4+
"5 I

and Ti reported in the zirconia-titania system {116}, could be a further 

mechanism which could account for the high conductivity levels found in 

alumina, though this is yet to be discussed in the literature.

Thus TiC>2, if present in high concentrations at the insulator surface, can act as a 

charge carrier by reducing the surface conductivity. This can be of help in 

microwave applications since the ceramic is operating at low P02 that can cause 

Ti(>2 to become semiconducting. Also the dominance of electronic carriers in 

alumina with some impurities, at the operating conditions of microwave devices 

(low P02), gives the possibility of finding a solution by using their higher mobility 

to bleed the charge build-up to ground. However impurities that can provide 

additional charges for charge transfer from the surface can also provide sites for 

charge trapping and de-trapping.

§  Conduction due to electron hopping, called small polaron hopping conduction, is an 
exponential increase o f  mobility associated with the localisation o f  charge carriers at ions or 
vacant sites. Due to thermally activated lattice vibrations the ionic carriers are considered to hop 
from one site to another, thus leading to an exponential temperature dependence o f  conduction. 
As a result the mobility associated with carriers tends to increase exponentially with temperature. 
For example in ferrites hopping is visible between Fe2+ and Fe3+ {117}.
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Summary to section 2.2

Electrical conductivity in alumina can be ionic or electronic depending on the partial 

pressure of oxygen, temperature, grain size and type o f dopant. Alumina conductivity is 

lowest at a P0 2  o f KT6 to 1 0 - 4  atm and increases at lower and higher pressures. 

Conductivity is high in ionic component at low po2 and high in electronic at high po2 - The 

ionic region is rich in Vai at low P0 2  and high in Vo” and A l” at high P0 2 . The electronic 

part is n-type at lower po2 and p-type at higher po2 - With respect to temperature, alumina 

is an ionic conductor at lower temperatures and electronic at higher temperatures.

Measurement o f electrical conductivity values at high temperature is affected by the 

presence of surface conduction and the size of test specimen, which can lead to erroneous 

results unless suitable precautions are taken.

The grain size, if less than 1 Opm, has a significant effect on ionic and hole conductivity. 

At higher grain sizes it affects ionic conductivity in undoped alumina, but has no effect on 

the hole conductivity. Alumina conductivity also increases with increase in frequency of 

the energy source. Dopants affect the dominant charge carrier according to whether they 

are acceptors or donors.

Most of the dopants discussed here are acceptors (Fe, Mg, Co, Ni, etc), except Si which is 

a donor and Y which is an iso-electric donor. Acceptors will alter the Al bulk diffusion 

rate. Mg and Fe promote Al ion bulk diffusion by an interstitial mechanism. In Mg 

doping electronic conductivity is hole dominant. In Fe and Si, it is p-type at high P0 2  and 

n-type at low po2 - Si increases the concentration of negatively charged defects. The ionic 

conductivity for Si doping is constant at high P0 2  and increases with decreasing po2 -

TiC>2 doping has the most significant affect on the electrical properties and the 

microstructure o f AI2O3 . TiC^, a donor in AI2O3 , causes the change in dominant ionic 

defect from Vai to A l”*, with electrons as dominant electronic defects at the lower 

concentrations of TiC>2 and holes at the higher(>500ppm) concentrations. Ionic



2. Literature Review 32

conductivity dominates in the system at high po2 and electronic conductivity at lower 

pressures. The ionic conductivity is independent o f the grain size, but electronic 

conductivity decreases with an increase in grain size. Ti when present in AI2 O3 as the Ti 

ion (Ti2 0 3 ), has better solubility in the alumina grain as compared to Ti4+ (Ti0 2 ). 

However due to its iso-valent state with alumina, Ti is unable to affect AI2 O3 resistivity. 

The fall in resistivity is attributed to the presence o f Ti4+ alone. However a 

semiconducting Ti conflicts with this mechanism. A significantly greater decrease in 

resistivity is reported when TiC>2 is added in conjunction with Cr2 0 3  in AI2O3 .

2.3. Dielectric Properties in Alumina

Ceramics exposed to radiation and high voltages at radio frequencies undergo transient 

and permanent changes to their dielectric properties which results in a complex 

dependence on temperature and frequency of operation. Also the insulators operating in 

vacuum will have a lower surface dielectric strength when compared to properties in the 

ambient state {118}. Dielectric properties thus play an important role in the choice of 

alumina used in microwave frequency applications. Among the factors affecting these 

properties, the impurities present are most significant as they provide the electronic 

charges for polarisation events. The time required for polarisation shows up as a phase 

shift due to the time lag between applied voltage and induced current, causing loss 

currents and energy dissipation in ac circuits, and is qualified by the loss tangent tanS. 

The product o f tan§ and dielectric constant gives an estimate o f the energy loss in a 

dielectric, known as the “loss factor”. Loss is the primary criterion determining the 

usefulness o f alumina as an insulator. Power dissipated in the ceramic is proportional to 

it, and in terms o f the conductivity (a) is represented by the relationship {73}:

k' tanS = —  ----
27ifs0

where, k' is the dielectric constant, s0 is the dielectric constant o f a vacuum = 8.85 x 1014 

F/cm and f  is the frequency of applied voltage.
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Pure alumina has dielectric constant values in the range of 9.8-9.9 {119-120}. For liquid 

phase sintered alumina this value increases with increase in alumina content and decrease 

in glass phase. For example the dielectric constant of 85% pure alumina is ~ 8.2 {120} 

and increases to 9-9.1 for ceramics with 94% alumina {120}. At higher temperature this 

value increases. Both types of alumina have very low value of tan5 ^0.0002 {120-121}. 

The value is affected largely by extrinsic factors such as impurities, defects, grain 

boundaries etc, rather than the intrinsic factors such as the crystal structure. The manner 

in which these factors affect the value of tanS is discussed below.

2.3.1 Factors affecting tan5

The presence of grain boundaries in alumina tends to increase the value of loss 

tangent {122}. This is a result of the space charge polarisation arising due to 

differences between the conductivity of various phases and the phase boundary 

causing a build-up of charges at the interface. However various types of relaxation 

phenomena at different frequencies have been reported. Molla et al {123} 

identified the loss in alumina as being due only to intrinsic factors at Ghz 

frequency. However Atlas et al {124} reported interfacial polarisation as operative 

at low frequencies and Hippel {125} reported free electron conduction in the 

intermediate frequency range.

The presence of impurities normally increases the values of tan5 of alumina 

(figure 2.2). Gibbs {126} reported that impurities in a-alumina crystals cause 

dielectric loss peaks. The impurity ions penetrate the body of the crystal along 

dislocation lines and result in the formation of high conductivity tubes. These high 

conductivity regions along dislocation lines cause an increase in the loss. Heating 

the sample can volatilise the impurity atoms, and eliminate the loss peaks. A 

linear relationship between the impurity concentration and the tan5 has been 

reported by Atlas et al {124}. The maximum increase was caused by silicon ions 

with Mg, Ti and Ca causing progressively smaller increases and Cr and Fe ions 

causing only a relatively minor effect. However, Alfred and Penn {127} noticed



2. Literature Review 34

the addition of TiCh reduced the value of tan5. This was attributed to 

improvements in the sintering kinetics and reduced porosity. The reverse would 

have been expected as Ti02  leads to an increase in grain size, and according to 

Penn et al {121}, losses increase with the increase in grain size above 3pm. 

However, in the case of TiC>2 the increase in grain size does not increase the losses 

since it is not accompanied by an increase in porosity {122} which had happened 

in the samples studied by Penn et al {121}.

Similarly Mg, which is the most commonly used sintering aid and grain growth 

inhibitor in alumina {128,129}, should help in lowering the values of tan5 as a 

result of the improved microstructure. However Molla et al {91} reported an 

increase in the loss factor with the addition of Mg. This was found to occur up to a 

concentration of 400 ppm, in this case the solubility limit of magnesia in alumina.
^  I

The increase is due to the presence of substitutional Mg introducing a negative 

charge by the formation of a MgAi defect. This defect constitutes an orientational 

dipole causing a polarisation and resultant increase in loss factor. The dipole 

concentration increases with the increasing concentration of Mg up to its 

solubility limit. At higher concentrations, the excess Mg precipitates as a Mg- 

alumina spinel and causes a decrease in dissolved Mg , which then results in a 

decreased dipole concentration and a lower tan8 .

In conclusion, a medium-high purity alumina could have a lower tan8 than a very 

high purity one {130}. Nevertheless, tan8 and permittivity can improve even in 

very high purity alumina if it is prepared under well-controlled processing 

conditions and has a dense microstructure {131}.
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Figure 2.2: tanS v/s frequency for alumina with different dopants as studied by 
different authors (referred in the legend)

2.3.2 Factors affecting the Dielectric Constant

The dielectric constant, (the capacity of a material to absorb the charge) and the 

loss factor increase with increase in temperature, but becomes independent of the 

type and concentration of impurity, together with imperfections, at temperatures 

below 25-30°C {122}. The value of the dielectric constant increases with an 

increase in the volume fraction of alumina and with a decrease in volume fraction 

of grain boundary phase. Large amounts of grain boundary impurities cause an 

increase in permittivity {122} at frequencies below 70Hz {47}, a result of the 

space charge polarisation {73,132} and of free charge carriers at the grain 

boundary {73}. Similarly, differences in dielectric and magnetic properties of 

individual additives also influence its value {122}. The insignificant effect of
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space charge polarisation at high frequencies {73} results in the dielectric constant 

becoming frequency independent above 10kHz {47}. Penn et al {121} have 

reported porosity as another factor, that if increased, decreases the dielectric 

constant.

2.3,3 Dielectric Strength

The dielectric breakdown strength is a very important property for alumina used in 

high voltage applications. It is affected significantly by the temperature of 

measurement, as at high temperature, higher conduction through the grain 

boundary impurities can result in a decrease in breakdown strength. Overall, the 

decrease in strength is gradual till 900°C and very steep at higher temperatures. 

Wide variation in the tested values of dielectric breakdown strength are possible 

due to its inverse proportionality with the sample thickness, given by the 

relationship {133} between the electrical strength (Es) and sample thickness (d);

Es » l/dn where n=0.1-0.5.

This results from the larger samples having a higher probability of the presence of 

electrically weak defects. For example the strength for sapphire samples varied 

from a value of 7000kV/cm for 2.5pm thick sample to a value as low as 

1400KV/cm for 190pm thick sample {133}. Values were further improved for the 

samples with recession in the centre {133}. Thus the strength data must be 

interpreted meaningfully only in the light of testing conditions.

The mechanism of dc breakdown has been reported as avalanche at up to 450°C 

{134} and thermal runaway at higher temperatures (133,134} caused by localised 

joule heating {135}. Avalanche breakdown is the enormous increase in the 

reverse current in a dielectric due to the the generation of electron-hole pairs by 

impact ionisation of charged species. Thermal runaway breakdown has been found 

to leave a 100pm diameter circular track within the insulator, and occurs at the 

weakest point which may be at scratches, grain boundaries, second phase or pores 

{135}. Breakdown in ac circuitry due to a high density of secondary electrons, as
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in microwave applications, is due to the increased concentration of charge carriers 

in the defect regions which when unable to bleed to the ground results in an 

increase in the local field and temperature. This results in a temperature gradient 

across the material {136} and the formation of microcracks near the defect region 

{137}. Further propagation of these cracks takes place by an avalanche 

mechanism {137,138} as a result of the formation of local potential gradients 

across the pores and voids. This leads to a breakdown channel in any grain 

boundary glass phase nearest to the axis of the electric conduction path for 

dielectric breakdown, finally leading to the collapse of voltage, together with an 

explosion {136}. Neither the purity of alumina, nor the constituents of the glass 

phase, has an affect on the breakdown strength as much as do the microstructural 

defects. It is also apparent that the electrical strength can be improved if the 

surface or bulk defects are removed from the polycrystalline alumina.

From the discussion above, it is implicit that the impurities in general have a 

deleterious effect on all the dielectric properties. This might lead to the conclusion 

that the use of a very high purity alumina as a dielectric material would be 

beneficial. Theoretically the value of tan8 can be lowered by having a minimum 

level of impurities or sintering additives at the grain boundary {73}. However 

very high purity alumina ceramics are more difficult to process and have a greater 

tendency towards generating microstructural defects such as porosity, which is 

most undesirable. Also, the ceramic with higher alumina content will have a 

higher SEE yield {19}, especially since the common liquid forming additives, 

MgO and SiC>2 can be absorbers of secondary electrons {19}, and therefore this 

the high purity AI2O3 will not be useful in this application. On the other hand a 

controlled addition of impurities like Ti02  can reduce the microstructural defects 

and improve dielectric properties. It is for this reason, in addition to cost, that 

insulators with 94-96% alumina purity are the most popular for use in electron 

insulation elements. The type of additives that are introduced and the factors 

affecting the microstructure are reviewed in the following section.
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Summary of Section 2.3

Control of dielectric properties in alumina insulator becomes more significant under 

microwave conditions. The loss increases with increase in impurities. Since grain 

boundaries and porosity have even a greater effect on the increase in value of loss, 

impurities such as TiC>2 and MgO that improve alumina microstructures could on the 

other hand lower the loss. Impurities and porosity have a deleterious effect on the 

dielectric constant but not at frequencies above 10kHz. The values of breakdown strength 

decrease significantly with increase in temperature and microstructural defects. Impurities 

can be useful in reducing the breakdown by multipactor events as they can reduce the 

SEE yield of alumina.

2.4. Microstructure in Alumina

There are two accepted mechanisms for the consolidation of alumina. One is the solid 

state sintering and the other is the liquid phase assisted sintering (LPSA). The former 

involves the coagulation of active alumina particles by controlled grain growth through 

surface diffusion. The latter mechanism involves the generation of a glass in form of a 

second phase at the grain boundary, which helps in the bonding of alumina particles, 

resulting in a dense ceramic. Solid state sintering is utilised to produce very high purity 

alumina ceramics (>99%); it does not involve the presence of glass forming impurities 

and requires an alumina starting powder of sub-micron particle size. For production of 

alumina ceramic of lower purity (98% and below), glass forming additives are 

incorporated into a reasonably high purity alumina powder (>99.5%) to allow a liquid 

phase formed at the grain boundary to produce a dense ceramic. The ceramic under study 

in the present work is a liquid phase sintered 94% pure alumina and the literature study 

concentrates on the understanding of this sintering mechanism.

Bunag and Koenig {135} believe that liquid phase sintering is more successful in 

reducing the porosity, which could weaken the ceramic phase and facilitate mechanical 

vibration under an applied RF electrical field. They add that porosity can be lowered by
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increasing the liquid volume though the experimental evidence has shown that this is not 

true.

Some of the earliest work on solid state sintering in alumina was reported in the 1920’s. 

However, with respect to liquid phase sintering, earlier work concentrated only on the 

effect of the presence of liquid forming impurities at the grain boundaries in a solid state 

sintered material. It was during the late 1980’s when the first work on mechanisms 

involving liquid phase sintering in alumina was reported. This mechanism however is yet 

to be well understood. The sintering mechanisms proposed by some authors are as below.

2.4.1 Mechanism of liquid phase sintering in alumina

Among them, the most recent paper on this subject is by German {139}, who 

reported the driving force for microstructural coarsening in liquid phase sintering 

as being the decrease in interfacial energy of a solid-liquid interface. A measure of 

the microstructural coarsening has been given as the grain size. Smaller grains 

having a greater solubility in the liquid phase disappear with elapsed sintering 

time while the larger grains keep growing. The rate of grain growth for a 

particular grain has been found to depend on its relative difference from the size 

of its neighbours. The grains of size smaller than average shrink and those of a 

size larger than average grow, with grain size distribution, over time, converging 

to a steady state. This causes the mean grain size to increase resulting in a 

decrease of solid liquid interfacial area and a slowing down of the growth rate. 

The kinetics of grain growth are then given by the relation:

Gn = kt

where ‘t ’ is the isothermal time and n = 2-4 depending on the material and k is a 

constant. The author further added that if the initial grain growth is rapid, the 

sintered product has a wide grain size distribution.

Ives et al {140} proposed that the grain growth is due to the increased diffusion 

path length following an incorporation of the liquid by atom transport. Taruta et al
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{141} have described ‘Particle rearrangement’ and ‘solution re-precipitation’ as 

possible mechanisms for liquid phase sintering of bimodal distributed alumina 

particles. Particle rearrangement takes place using liquid forming additives. 

Material transfer for solution re-precipitation involves small particles dissolving 

into the liquid phase and then the solute re-precipitating on the larger particles. 

Kwon and Messing {142} believe the rate controlling mechanism for liquid phase
i

sintered alumina is ‘diffusion’ when the activation energy for diffusion of Al or 

O2' through glass is low, and is 'interface reaction' when the activation energy is 

high (say 400-500 kJ/mol). Further, with increasing liquid volume, the isothermal 

time required to achieve best possible density in alumina reduces. They believe 

the driving force for this is the interface area decrease with increase in liquid 

{142}.

2.4.2 Microstructural features

One of the major features of liquid phase sintered alumina is that it results in 

abnormal grain growth. The some abnormal grain growth is also visible in the 

undoped and doped polycrystalline alumina, the anisotropy is significantly greater 

in the liquid phase sintered alumina. Abnormal grains may be in form of platelike, 

equiaxed, elongated or platelet type {143}. Several reasons have been given for 

this. Park{144} reported the inhomogenous distribution of liquid phase as one of 

the causes for abnormal grain growth. The reason given for this was the lower 

mobility of boundaries wetted by the silicate liquid phase as compared with the 

mobility of un-wetted boundaries, causing a differential growth rate for different 

boundaries {145}. Seabaugh et al{ 146} explained the phenomenon of abnormal 

grain growth happening due to intrinsic and extrinsic factors. One intrinsic factor 

is the surface energy anisotropy which is a driving force for anisotropic grain 

growth both for liquid phase as well as for solid state sintering. The extrinsic 

factors are the grain and grain boundary interface free energy which in turn are 

affected by the microstructure formation during the intermediate sintering stage. 

The grain boundary liquid is associated with the increased rate of dissolution from
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the grain to the boundary causing anisotropic grain growth. The viscosity of the 

liquid and the solubility of the matrix grain become important rate controlling 

factors in this case.

Song and Coble {143} have reported reasons, other than the presence of liquid 

phase and alumina purity, that may result in the development of abnormal grains. 

These are:

a) Higher green density compacts result in a greater density of platelike grains on 

firing.

b) Fewer platelike grains are produced if the crystallite size of starting powder is 

increased.

c) Increase in isothermal sintering time above 1600°C increases the kinetics for the 

growth of platelike crystals.

d) Powders with a narrow particle size distribution give a more platelike morphology, 

and a broader particle size distribution produces more equiaxed and elongated 

grains.

e) Co-doping can be another cause when the dopants have two common factors, 

namely:
o  i

(i) one cation has a valency lower than and one higher than Al .

(ii) one cation has ionic radius smaller than and other larger than Al .

For example, in their experiments authors found platelike crystals appearing for 

doping combinations of Na2 0 , SrO, BaO and CaO with SiC>2 systems. Equiaxed 

were noted for the combination of MgO, CaO and Si0 2 ,and elongated for CaO 

and Ti02  systems.

The most important cause for the formation of abnormal grains has been found to 

be the presence of calcia in the liquid phase. The presence of excessive Ca in the 

platelike grains of alumina led Park {144} to infer that the anorthite liquid was 

responsible for increasing the interfacial anisotropy and initiating abnormality. In 

a study on alumina with anorthite liquid phase, Kaysser et al {147} found
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anisotropy, due to the basal facets with continuous liquid films having slow 

growth in the <0001> direction relative to other crystallographic directions. CaO 

causing a degradation in the mechanical properties of alumina as a result of the 

formation of Ca0 .6Al203 at the grain boundaries has been reported in many 

papers {148-150}. Ca0 .6Al203 is believed to have a layered structure which 

makes the grain boundary phase weaker than the bulk and reduces its mechanical 

strength{151}. However use of CaO as a glass forming additive in liquid phase 

alumina is a common commercial practice.

The degree to which either Si or Ca cause abnormal grain growth in alumina is 

dependent on their solubility limits. Bae and Baik{152} reported the solubility of 

CaO in AI2O3 to be lower than that of Si02  due to the larger ionic size of 

Ca2+(0.99A) as compared to that of A13+(0.53A) or Si4+(0.4lA). However 

impurities such as Na, K , Fe, Ga etc. are believed to reduce the solubility of Si 

and/or Ca and facilitate calcia-alumina-silica glass formation.

Techniques to prevent abnormal grain growth for solid state sintering have been 

discussed by many authors. The role of MgO in preventing abnormal grain growth 

in solid state sintered A I 2 O 3  is well accepted {128,129,153}. Some of the work 

carried out for solid state sintered alumina has importance in liquid phase 

sintering. Addition of MgO to promote stable microstructural development is 

considered to be a result of it segregating to the grain boundaries to control the 

rate of grain growth and reduce the anisotropy from Ca segregation {154}. A 

mechanism for prevention of CaO segregation at the grain boundary by MgO 

addition has been explained by Baik and Moon{155} They hypothesise that Ca2+ 

ions, being twice the size of Al3+, can be accommodated only at a grain boundary. 

When Ca and Mg compete for the site at the grain boundary, Mg is more likely to 

win due to its smaller ionic radius. Once at this site Mg ions repel the Ca ions 

from the boundary and modifies the microstructural evolution of alumina by



2. Literature Review 43

preventing anisotropic Ca segregation, in the process preventing any abnormal 

grain growth.

The role of MgO in preventing abnormal grain growth in liquid phase sintered 

alumina can be discussed on the same lines. However Kaysser et al {147} 

reported that MgO prevents the faceting in AI2O3 only when no liquid phase is 

present or when the liquid phase is below a critical percentage. MgO had no effect 

on faceting behaviour in the presence of a substantial amount of liquid phase. 

Song and Coble {143}, while supporting their claim, added that abnormal grain 

growth could be prevented by increasing the amount of MgO to a level where it 

becomes a dominant impurity in AI2O3. Park{144} further clarified that, even in 

the presence of liquid phase, MgO reduces the interfacial anisotropy though not 

sufficiently to completely eliminate anisotropic grain growth.

Another method used to prevent abnormal grain growth has been discussed by 

Steams and Harmer{156} who reported the pinning of AI2O3 grain boundaries by 

the addition of SiC. They found that the grain growth rate for alumina, at lOOhrs 

as a function of annealing time at 1700°C, reduces to lnm/hr from 5pm/hr when 

20vol.% SiC was added to pure AI2O3. Use of zirconia to inhibit grain growth in 

alumina was reported by Taruta et al{ 157}. In a study on alumina powder with 

bimodal size distribution they found zirconia improved the densification of 

compacts which had small amounts of coarse powder but showed no improvement 

in compacts with larger amounts of coarse fraction.

The presence of porosity in alumina used in klystrons will weaken the ceramic 

phase and facilitate mechanical vibration under an applied RF electrical field 

{135}. Liquid phase sintering is more successful in reducing the porosity than 

solid state sintering. The amount of porosity can be lowered by increasing the 

volume of liquid phase
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TiC>2 is another impurity that contributes to the grain growth control. Since it is an 

important feature for this work, its influence on the alumina microstructure has 

been reviewed in greater detail below.

2.4.3 Effect o f TiC>2 on AI2O3 Microstructure

The effect of HO 2 on the sintering kinetics of AI2O3 and the resultant 

microstructure, both for solid state and liquid phase sintered alumina, has been 

discussed in many papers. Both MgO and Ti02  are effective in controlling grain 

growth by a mechanism based on accelerated pore removal and increased 

aluminium ion diffusion, resulting in a more uniform grain size as compared with 

undoped AI2O3 {86}.

Ikegami et al {15 8 } found that Ti02  enhances densification of AI2O3 during both 

initial and intermediate stages(1200-1400°C), whereas MgO inhibits densification 

during the initial stage, but promotes it in the final stage. Furthermore the ultimate 

density of MgO doped alumina is higher than for the Ti02  doped after final 

sintering. Ti02  addition has been found to give a final relative density of 97-98% 

while an MgO addition can give >99% of theoretical density. This is because Ti02  

doping enhances the AI2O3 grain growth, that promotes the pore growth and 

suppresses the pore shrinkage resulting in a lower final density when compared 

with MgO doping. Grimes {107} has suggested that the co-solution of magnesia 

and titania is more favourable than for either oxide separately due to the lowering 

of the co-solution energy. Also, the presence of Ti02  assists the dissolution of 

CaO though the converse is not true.

The effect of Ti02  concentration on the sintering rate of alumina has been studied 

by Bagley et al{ 159}. They reported that the sintering rate increases till the 

maximum solubility of Ti02  in AI2O3 is reached and thereafter it levels off. A 

further increase in Ti02  may cause a slight decrease due to the formation of a 

second phase which may inhibit sintering. A solubility limit of 0.25 and
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0.3 mole% TiC>2 in AI2O3, for samples fired in air at 1300°C has been reported by 

Winkler et al{ 160}. A higher solubility of 1 mole % at 1600°C and 2.5 mole % at 

1700°C, has also been reported for samples fired in hydrogen rather than in 

air {104}. Similarly a solubility limit of 500ppm by weight of Ti has been 

reported by Petot-Ervas et al{103} at P02 of 10”4 atm and firing temperature of 

1530°C. The reason for improved solubility in reducing atmospheres is the 

reduction of Ti4+ to Ti3+, the latter having a higher solubility in alumina due to its 

smaller ionic radius. Nonetheless, higher dissolution of Ti3+ does not contribute to 

an improved density. Beyond the solubility limit, TiC>2 diffuses to the grain 

boundary to form a second phase. The diffusion at the grain boundary as well as 

lattice diffusion is proportional to Ti impurity level and relates to the diffusion 

rate of aluminium (D a i)  by the relationship {89}:

D a, * [Ti]3

Watanabe et al{106} have added that Ti, in addition to being dissolved in AI2O3, 

is present in places as rutile or as other Ti compounds such as spinel in the Mg 

rich portion, and is also dissolved in the SiC>2 glassy phase. Coarse needle shaped 

alumina grains have been associated with the dissolution of Ti in alumina grains 

and the quantity of this dissolution is proportional to the presence of TiC>2. They 

controlled the reduction in alumina density following TiC>2 addition, by the 

simultaneous increase of MgO in the composition. Sintered density was also 

improved by firing in a reducing atmosphere and further improvement by 

subsequently heat treating at 1580°C. This has also been linked to the increased 

dissolution of Ti into alumina under reducing atmosphere. Ti doped alumina when 

fired in vacuum gives a pink colour on the surface as a result of Ti02  reducing to 

Ti203. This causes a density gradient from the edge to the centre {161}, and this 

difference in microstructure between sample centre and edge driven by the 

impurity valence difference can help develop a graded microstructure.
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The TiC>2 content necessary to give the maximum sintering rate varies with the 

particle size of AI2O3 at any given temperature. This change could be a result of 

the changing mechanisms for diffusion of TiC>2 in AI2O3 grains. It was suggested 

to occur by volume diffusion for a particle size less than 1 pm, by grain boundary 

diffusion for particle size greater than 2pm and by both mechanisms when 

particles are l-2pm in size. Alternately it could be due to the increased grain 

boundary area of the finer grained material and the migration of Ti4+ to this region 

{104}. A subsequent study did show that Ti4+ segregates to the alumina grain 

boundary and forms a liquid phase in the presence of Na20  {162}. Furthermore 

McKee Jr. and Aleshin {104} found that TiC>2 affects densification and grain 

growth of AI2O3 by grain boundary action rather than by a defect mechanism 

involving substitutional Ti4+ ions in the corundum lattice.

An important facet of Ti02  doped AI2O3 has been a microstructure showing 

anisotropic grain growth. Kebbede et al{ 163} described a microstructure of 

elongated grains in a matrix of small equiaxed grains with average grain size of 

2.5 pm. Elongated grains formed about 50% of the matrix. They believe that the 

anisotropy is due to the non differential segregation of titanium at the grain 

boundaries. Results suggest that local interfacial energies promote wetting along 

grain boundaries that are parallel to the basal planes. Though liquid phase could 

also be one of the reason for anisotropic grain growth, it has been reported by 

Horn and Messing{164} that anisotropy in Ti doped alumina is not linked to the 

presence of a liquid phase. Furthermore studies {165-167} on the sintering of 

Si3N4 have found that the presence of anisotropic grains embedded in an equiaxed 

matrix can result in an improvement of mechanical properties. However no work 

is available to support this claim in alumina.

2.4.4 Recrystallisation ofAlumina ceramic for Klystron applications

It has been discussed in section 2.1 that, for greater durability of alumina in RF 

window applications {12}, one way of lowering tan5 and consequently, lowered
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generation of F centres, can be achieved by crystallising the grain boundary liquid 

phase and producing a dense structure {3,19}. Re-crystallisation of this glass 

phase can be facilitated by heating the ceramic to 1100°C for 42.5 hours @ 

10°C/min followed by cooling at 5°C/min. This allows the formation of multiple 

crystalline phases with varying coefficients of thermal expansion {168}. A dense 

structured ceramic, can be produced if the sintered grain size is kept small («1- 

2pm). However this grain size will be unsuitable for insulators in microwave 

applications due to the difficulties involved in metallizing1* the small grain size 

ceramic, since insulators undergo a metallizing operation for producing a hermetic 

sealing with the metal electrode. Though active metal brazing can be utilised for 

forming the hermetic seal, however it has been know to result in a brittle joint. 

Alternatively a ceramic with a large grain size («20-50pm), will invariably have 

many voids present that would result in high values of tan5. There thus is a need 

for a complex balance of additives and microstructures to optimise the desired 

properties.

The microstructure of alumina has been studied extensively in this work, using 

electron microscopy. Linking of microstructural features to the electrical 

properties and defect structure has been studied by electrochemical techniques 

such as frequency response analysis, using impedance spectroscopy. This 

technique has been discussed in the following section.

Summary of section 2.4
Liquid phase sintering is an important but poorly understood phenomenon. The possible 

controlling mechanisms have been described as being diffusion or interface reaction 

controlled. The kinetics and the extent of grain growth at any point during the sintering 

cycle is influenced by the size and distribution of grains present at that moment. Unlike

#  Operation involving application o f Molybdenum-manganese based metal coating on the alumina surface 
which is used to braze the ceramic to metal fo r applications requiring vacuum leak free joints called 
hermetic joints.
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solid state sintering this process is more forgiving to the presence of impurities and the 

particle size of the starting powder. However its major drawback is that it results in 

abnormal grain growth, especially when the quantity of liquid phase is low and its 

distribution is inhomogenous. The prime reason for the development of this 

microstructure is the function of the dopant present, CaO at the grain boundary is 

especially effective.

To prevent anisotropic grain growth, MgO additions, as in solid state sintering, have been 

useful, though by a different mechanism and to a lesser degree. Other techniques used are 

grain boundary pinning by SiC or by Zr02  additions to the starting powder.

Ti02  affects the microstructure as it enhances the sintering rate of A I 2 O 3  at the initial 

stage, but results in an anisotropic grain growth. It lowers the density of liquid phase 

sintered alumina, which could be avoided by the addition of higher amounts of MgO. It 

results in the development of a microstructure consisting of elongated grains, which is 

due to the enhanced grain boundary diffusion as a result of Ti4+ segregation to the 

boundaries.

2.5. Impedance Spectroscopy

Electrical conductivity in polycrystalline materials is sensitive to intergranular contacts 

and thus microstructure. Impedance spectroscopy is a technique used to characterise bulk 

electrical properties and is sensitive to interfaces such as grain boundaries. It is based on 

the concept that the properties of the electrode-material system are time variant. The 

purpose of impedance spectroscopy is to determine these time variant properties of 

materials, their interrelations, their dependence on such controllable variables as 

temperature, oxygen partial pressure, applied pressure, applied static voltage and current 

bias.

2.5.1 Theory of Impedance Spectroscopy {169}.

Impedance spectroscopy involves the use of alternating current impedance 

techniques and is a common method for investigation of electrochemical 

reactions. Impedance is an ac analogue of a dc resistance. Unlike resistance,
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impedance is a vector quantity having a magnitude and a phase angle associated 

with it. This can be explained based on ac circuit theory. A sinusoidal ac voltage 

can be represented as a vector rotating at an angular frequency of 

co rad /sec given by the equation:

V= Vo sincot

where Vo is the amplitude of the applied voltage.

When this voltage is applied across a linear resistor R, a sinusoidal output current 

having the same amplitude and angular frequency as the voltage is produced. This 

is represented by:

I=Io sincot

suggesting that the ac circuit follows ohms law Vo =  Io R.

Now if instead a capacitor is present in this circuit, current passing through it will 

be:

I = dQ/dt = CdV/dt.

The current then can be written as

I = coCVo coscot = coCVo sin(cot+90) 

i.e. it is now out of phase with the voltage and leads it by an angle of 90°. If a pure 

inductor is present then the relation will be

V = Ldl/dt

and current will lag voltage by 90°. In other words depending on the components 

present in an ac circuit, output current is given by :

I = Io cos(cot+<|))

where <|> is the phase angle.

Furthermore the alternating voltage V = Vosincot can also be represented by a 

complex exponential

V = V0 ei“‘ (1)
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such that d 051 = coscot + j sincot and j = V-T. ' (2)

Current I = Io cos(cot+<()) will be represented by

I = I0. d ®1 d* (3)

where Io gives magnitude information, d Mt is a rotating vector and d* contains the 

phase information.

Any component in a circuit, such as R,C or L, can be defined as having an 

impedance Z which can be represented as a complex number. Since Z is 

analogous to a resistor in a dc circuit, it is given by :

Z=V/I

From equation (1) and (3) impedance is

z = (Vo/Io). e** = |Z|.e** = ZZ<|> 

where |Z|.is the magnitude and <|> is the phase angle. In a complex plane Z can be 

represented as

Z = a + j b

such that a = |Z|cos<|> = 2! (real Z)

and b = |Z|sin<|) = Z" (Imaginary Z)

|Z| = Vz’2 + Z"2 

(j) = tan-1

Impedance can now be plotted in a complex plane as given below

Zcos<J)
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Impedance of various elements in an ac circuit will be given by:

for pure resistance Z = R+jO = R

for pure capacitor Z = 0-j/coC = -j/coC

and for inductor Z = 0+ jcoL = jcoL

Thus for a series RC network impedance is given by

Z = Zr + Zc = R — j/coC 

giving the plot as in figure 2.3 

Impedance for a parallel RC network will be

1/Z = 1/R + jcoC 

Z = R/(1+co2R2C2) -  coRC / (1+<o2R2C2), 

which is the equation of a circle and gives the plot as in figure 2.4

R C R

-Z ‘

1/RC

R Z'
Figure 2.3 Figure 2.4

In a parallel RC circuit plot, the diameter of semicircle achieved will give the 

value of resistance and the top point of semicircle is used to calculate the value of 

capacitance.

The manner in which this theory is useful in determining the properties of 

materials is explained as follows. In many materials, especially those which are 

not necessarily conductors of electricity, the impedance varies as the frequency of 

the applied voltage changes. The variation is a function of the physical or
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chemical properties of the material. Thus, if a measurement of impedance over a 

frequency range is made, and the results are plotted on an axes, it is possible to 

relate the results to the physical and chemical properties of the material. This is 

done by representing the electrochemical system in the form of an electrical 

equivalent circuit, where the manner in which various conducting elements of the 

circuit are connected will determine the physical nature and chemical processes 

within the electrochemical system. Considering an example of solid electrolyte 

{170} where the total conductivity will be a summation of the conductivity from 

intra grain, grain boundary and electrode-electrolyte interface. The three 

components can be represented in the form of an equivalent circuit as below:

— d ^ T ^ r d C r

Figure 2.5: Equivalent circuit for a solid electrolyte

where i, gb and e refer to the intragrain, grain boundary and electrode-electrolyte 

interface components respectively of the material. The impedance plot from such 

a material will then be as shown in figure 2 .6 .

Other representations used for displaying data are admittance, permittivity and 

modulus given by:

Admittance Y = 1/Z

Permittivity s  = Y/jcoCo = £ r  -  j£i

Co = Vacuum capacitance of measuring cell.

Modulus M = l/e

Y and Z spectra are used for analysing response for a solid electrolyte system 

where the time constants of various processes differ as a result of different 

capacitances.

8 and M spectra are used for analysing the dielectric response of systems.
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-Z "

Ri Rj+Rgb Rj+Rgb+Re

Figure 2.6: Impedance spectra for a solid electrolyte

2.5.2 Application o f Impedance Spectroscopy in Ceramics

Impedance spectroscopy as a technique for studying bulk electrical properties has 

been utilised for some ionic conductors such as ZrC>2, P-AI2O3 and other solid 

state materials. There is no significant work available on its use in high insulation 

and primarily electronic conducting materials such as AI2O3. Earlier Miranzo et 

al{60} have reported using impedance spectroscopy for studying the electrical 

properties of alumina. However due to the equipment limitations in respect to 

maximum resistance, these authors were unable to study alumina properties below 

800°C.

The explanation given by Bonanos et al {171} can be of use in studying the 

application of impedance spectroscopy to alumina. The authors explain how 

impedance spectroscopy and electron microscopy in unison can be utilised to 

understand the transport properties of materials. They considered a two phase 

material with one being a majority phase and the other a minority. In terms of 

complex conductivity \\f\ the electrical conductivity of a two phase mixture is 

given by

l|/j =  Gj +  jCDSj

where Gj is dc conductivity and £j is permittivity of phase i.
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An equivalent circuit for such a two phase mixture will be:

Ci C2

Figure 2.7: Equivalent circuit for a two phase mixture

where gj  is the conductive component and Cj is the capacitive component.

In a complex impedance plane, values of gj can be calculated from the semicircles. 

Cj-1 can be calculated from the semicircles in a modulus spectra.

This circuit is compared with a microstructure using an effective medium model 

where two phases are considered in such a way that:

Case I :- there is a dilute distribution of spheres of minor phase 2 in the major 

phase 1 (figure 2.8 (a))-similar to porosity in the ceramic.

Case II :- a small amount of minority phase surrounding majority phase 1 (figure 

2.8 (b))-similar to glassy phase around a grain.

o

(b)

2.8:Microstructure model

In case I the conductivity of porosity is very much lower than that of the grain 

interior or the grain boundary. The presence of pores will modify the impedance 

plots by altering the diameter of grain interior arc for intragranular pores and grain 

boundary arc for intergranular porosity. In niether case will the pores introduce an 

additional arc in an impedance plot. However they might introduce additional arcs

(a)
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in the modulus plot. Thus for case I, a complex modulus plot will give a better 

resolution rather than the impedance plot.

The grain boundary in case II will not introduce an additional semicircle to that of 

grain interior in a modulus plot. Thus an impedance plot will give better 

resolution for case II.

For a microstructure with ellipsoidal particles or anisotropic grains, a case similar 

to liquid phase sintered alumina, both Z and M spectra will give non ideal arcs,

i.e. a semicircle with centre below the axis.

Summary of section 2.5
Impedance spectroscopy as a technique to characterise the bulk electrical properties of 

materials has been discussed. It is based on the concept that if an electrochemical system 

is introduced in an ac circuit, its impedance varies with the change in frequency of the 

applied voltage. The variation depends on the physical or chemical properties of material. 

These properties can be analysed by representing the electrochemical system in the form 

of an AC equivalent circuit, consisting of resistors and capacitors joined in series or 

parallel depending on the processes prevalent within the system. As in the case of a solid 

electrolyte, the conductivity contribution to the bulk will be a summation of conductivity 

due to grain interior, grain boundary or electrode. The three components will result in 

three semicircles in a complex impedance plane which can be used to calculate the 

electric components and relate them to material properties. Other representations such as 

admittance, permittivity or modulus plots can be utilised depending on the microstructure 

of the material. Impedance plots are useful where grain interior-grain boundary effects are 

dominant and modulus plots result in a better resolution for other regions.
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CHAPTER III 

MATERIAL PREPARATION

This chapter gives the details on:

S  the characterisation procedures and results fo r  the 

reference material 

S  development o f  the base and the doped 

compositions

*  the procedures and the results o f  physical testing.
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3. MATERIAL PREPARATION

Material preparation involves following steps:

(1) Analysis of the reference material and preparation of the base composition

This involves the analysis of the reference insulator which is a 94% alumina ceramic 

manufactured by Seagoe. This information is used to prepare the composition that is 

the base composition, and would be used for the further work.

(2) Preparation of the TiC>2 doped compositions 

Controlled addition of TiC>2 to the base composition.

(3) Study of the effect of other dopants

The other dopants namely C r 2 C > 3  and V 2 O 5 ,  that could affect the conductivity of 

alumina have also been tried, in conjunction with TiC>2.

(4) Physical characterisation.

The physical testing is limited to testing density, porosity and fracture strength on 

some compositions. The electrical characterisation, shrinkage studies and 

microstructure evaluation, which are important for this study, have been described in 

subsequent chapters.

3.1. Study of Seagoe Alumina Insulator.

The reference ceramic for this study is the 94% pure alumina insulator used in 

klystrons. Seagoe is one of the manufacturers of these insulators. These insulators are 

to be emulated, as near as possible, in regard to the composition. With this aim in 

mind, the following studies have been carried out on the insulator.

3.1.1. Microstructure
A microstructural examination has been undertaken to characterise the grain size 

using SEM and a study of the glass phase in SEM and TEM.
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3.1.1.1. Grain Size

For the measurement of grain size, the samples were cut from the original insulator, 

polished and etched according to the following procedure:

3.1.1.1.1. Procedure 

Sample preparation involves

a) Cutting approximately 5mmx5mm pieces from the Seagoe ceramic insulator

using: 

Table 3.1
Equipm ent Buehler Isom et 2000
B lade type Bueller 15LC [15pm  d iam ond-low  concentration]
Cutting Speed 2900  rpm
Load 600 g
Cutting time approx. 1-2 m inutes
Post Cutting C leaning Ultrasonic in 50%  water, 50%  ethanol and detergent.

C leaned in running water
Dipped in alcohol for 15m inutes and
Dried

b) Mounting in cold setting resin using:

Table 3.2
Resin U sed 6 parts E poxide +  1 part Epoxide hardener(Requiring tw o parts per 

mount)
Procedure W eighed resin and reduced v iscosity  by keeping at 40°C  for 15 m inutes 

before m ixing with hardener.
Poured in to the mould and evacuated till the resin boils 
Kept in pressure cham ber for 2 hours to reduce resin shrinkage.
Cured at 40°C  overnight.
Stripped the mounts from the m ould

c) A suitable polishing procedure chosen to get a smooth and reflecting surface with 

no defects such as diamond inclusions and grain pull out is in table 3.3 below:

Table 3.3
W heel/C loth Polish ing M edium RPM Pressure

(lb /in2)
Tim e

G rinding W heel Resin bonded-45pm 120 5 3 0secs or 
till levelled

M etlap-10 15pm water based diam ond 120 5 4m in

Ultrapad 9pm  water base diam ond 120 5 5min

Texm at 3pm  water based diam ond 120 5 4min

Texm at 0.06pm  colloidal silica 120 10 5min
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In all cases the direction of polishing is same as the direction of the wheel. After 

each operation the surface of the sample is cleaned with detergent and water, 

followed by spraying with ethanol and drying with a hot air blower.

d) Etching is carried out to remove the glassy phase from the surface and till the 

grains are platy. To choose a suitable etching procedure such that sharp grain 

boundaries can be observed, three types of etching procedures have been tried. 

These are

i. Orthophosphoric Acid, 85ml+15ml distilled water—>boiling for 15 minutes 

(total time in acid -approx. 30mins)

ii. Thermal Etching at 1300-1450°C for 2hours

iii. 40% Hydrofluoric acid-110ml +10ml Distilled water —cheated in water bath to 

80°C forlOmins (total time in acid- 20mins)

SEM pictures showed sample etched in Orthophosphoric Acid as the optimum 

etching procedure.

e) Gold coating for SEM

Etched samples are cleaned with acetone to remove any surface grease to avoid 

the problem of surface charging and coated using an Edwards Sputter coater- 

S150B. Coating time is kept at 3 minutes.

f) Microstructural examination under SEM.

Microstructure is studied in secondary electron mode and back-scattered mode 

using a Scanning Electron Microscope, model JEOL-6310 and JEOL-T330.

3.1.1.1.2. Grain size analysis.

The grain size distribution in the Seagoe alumina insulator is shown in figure 3.1. 

SEM studies show that the samples have undergone abnormal grain growth with:

• Average grain size approx. 30pm.

• Smaller grains are ~ 10pm and larger are ~ 50pm
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Figure 3.1:
SEM micrograph of 
Seagoe alumina

Figure 3.2: TEM micrograph of 
Seagoe alumina
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Figure 3.3: EDX Spectrum of 
Seagoe alumina at the glass phase
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Two possible reasons can be identified for the abnormal grain growth:

1. the presence of liquid phase at the grain boundaries. {143}.

2. multiple firings for metallizing (in a reducing atmosphere) {172}.

3. large grains facilitate the metallizing process and could have been generated by 

the choice of an alumina powder of an appropriate starting particle size. {172}

3.1.1.2. Glass Phase

3.1.1.2.1. Procedure

The glassy phase has been studied by EDX in SEM and TEM.

a) Samples for SEM are those of section 3.1.1.1 before etching. The gold coating 

time is reduced to 1 minute in order to obtain a lower thickness coating so as to 

generate a higher intensity of X-rays. The EDX used is a ‘JEOL 5943’ attached to 

an ‘SEM JEOL 6310’. The glass phase is identified in the back-scattered mode 

and X-rays were generated at spot size ‘12’ ensuring that dead time* X-rays do 

not exceed 50%.

b) The TEM sample is prepared using the following procedure

i. A thin section is cut from the insulator using a ‘Buehler Isomet 2000’ and 

‘Buehler 15LC’ low concentration diamond saw.

ii. The thickness of the section is further reduced to less than 0.1mm by grinding 

on emery paper.

iii. A 3mm diameter section is cut from the sample using a ‘Servo Drill-Model 

7110’.

iv. This section is stuck to the dimpling sample holder using a wax.

v. The actual thickness of sample is checked and the dimple diameter fixed so as 

to give a centre of less than 10pm thickness when dimpled on both sides, 

using the ‘Dimpler-Model D500’.

Dead Time: If the intensity o f X-rays approaching the detector are too high then it is unable to 
process an X-ray before the new one arises leading to dead time.
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vi. The sample is then mounted on an ion milling holder and milled in a ‘Gatan 

600DIF Ion Thinner’ at a voltage of 4kV and current of 1mA. Milling is 

carried out at a gun angle of 14° for sufficient time so as to produce a hole in 

the centre. After this, the gun angle is reduced to 11° and milling carried out 

for one more hour.

vii. The sample is carbon coated using an ‘Edwards Speedivac 1226’.

viii.The TEM used was a ‘JEOL 2000FX’. An area is identified and a X-ray 

spectrum generated using the EDX JEOL 5943.

3.1.1.2.2. Analysis o f glassy phase

Insulators contain 94% alumina nominal, and ~ 8-10% by weight (~12% by 

volume) glass phase. A TEM showing grains and glass is shown in figure 3.2.

The EDX spectra is shown in figure 3.3. The spectrum gives a qualitative analysis 

of the possible components present. These components are discussed below:

> A large Si and small A1 peak shows the glass to be rich in Si02 with a small 

quantity of dissolved AI2O3. Si02 is a glass former. The presence of an A1 peak 

smaller than Si0 2  will mean it is present in a lower concentration and the absence 

of any visible crystals indicates it is dissolved in glass. There could be two 

alternate sources of dissolved AI2O3, one could be dissolution from the main grain 

in the body, and secondly it might have come from a raw material such as clay, 

which is often used in 94% alumina compositions.

>  The presence of a Ca peak shows CaO to be a major additive. CaO is one of the 

major causes of abnormal grain growth in alumina ceramics {144,147}. However 

it is added to most of the alumina compositions. The reason for its addition may 

be attributed to the theory of glass forming additives, where CaO is used to aid the 

chemical stability of glass.

>  A minor peak for Mg may be interpreted as indicating a presence of MgO in small 

quantities in the glassy phase. However it is well known that MgO is added to 

most alumina compositions for control of grain growth and sintering rate, to allow 

a high sintered density {147}. It is also known that it is normally added in



3. Material Preparation 63

quantities if not higher, at least equal to that of CaO {155}. The possible reason 

for the presence of the small Mg peak may be the absorption of low energy X- 

rays, since Mg peak lies in the low energy area due to its low atomic number. A 

counter argument may be raised stating that the presence of platelike abnormal 

grains may support the fact that only a small quantity of MgO is present in the 

Seagoe composition. This argument can be explained by Park’s{ 144} report that, 

in the presence of a liquid phase, MgO is unable to eliminate completely the 

anisotropy in the alumina grains.

>  A small K peak may hint at the presence of minor amounts of K2O. This may have 

come about due to the possible addition of KOH to alumina slurry in order to 

control the pH of the slurry. This is a normal industrial practice.

>  The Mn peak has been noticed in the spectrum. Normally MnO, if present in a 

glass composition, is known to give a red colour to alumina. The pure white 

colour of Seagoe insulator shows it is not present in the glass phase but could 

have been deposited during metallizing firing as it is the part of the moly- 

manganese metallizing composition.

>  The Au peak is from the gold coating. A carbon coating could not be used as the 

back scattered or secondary electron image could not differentiate the glassy phase 

from alumina due to the small difference in their average atomic numbers.

3.2. Preparation of Base Composition

The objective here is to prepare a 94% alumina composition that may be close to the

composition of the Seagoe alumina insulator. From the discussion in Section 3.1.1.1.4

it can be interpreted that the base composition should have:

a) 94% alumina grains

b) SiC>2 as the major glass former.

c) Approximately equal quantities of CaO and MgO.

d) A very small quantity of K2O present in Seagoe insulator, due to the processing 

requirements can be ignored, especially since its only and accidental impurity.
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3.2.1. Composition

Based on the above analysis the following composition has been proposed:

a i2o 3 94%
Si02 4%
MgO 1%
CaO 1%

3.2.2. Raw Materials

The raw materials used are all high purity grades to prevent the unknown 

complication that may arise from the presence of impurities. For the major raw 

material A I 2 O 3 ,  three alternate grades are tried. These are Alcoa’s CT3000SG and 

Alcan’s RA45 and LS2. All these three grades are of low soda alumina. 

CT3000SG and RA45 are reactive powders and LS2 has a larger crystallite size. 

For choosing the appropriate grade, the attainable degree of densification is 

chosen as a simple test. The following density values are achieved:

CT3000SG 99% of theoretical
RA45 98.5% of theoretical
LS2 94% of theoretical

CT3000SG is thus chosen for use in these experiments. The SEM micrograph of 

powder is shown in figure 3.4 and the particle size distribution measured using the 

'Malvern particle size analyser' is given in Appendix A. The average particle size 

of this alumina is around 0 .8 pm.

Figure 3.4: Particle size distribution o f CT300SG
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A complete list of raw materials used is given below:

Table 3.4
Compound Supplier Grade Purity

a i2o 3

Si02

MgO

CaO

Alcoa 

BDH Ltd 

BDH Chemicals 

Rectapure

CT3000SG 

Silica precipitated 

MgO heavy 

CaC03 precipitated

>99.5

>99.99%

LR-Grade; LOI=5% 

>99%

The organic adc itives used are:

Dispex A40 by Allied Colloids as a dispersant

Polyethelene Glycol(PEG) of molecular weight 1500 as a binder.

Mixing medium is water.

3.2.3. Fabrication Procedure

3.2.3.1. Formulation

a) A lOOg mix containing the following raw materials is weighed within an accuracy 

of 0.00lg  on a Sumitomo electronic balance (0.000lg  accuracy).

CT3000SG 94g
Si02 4 g
MgO 1 0 2 g
CaC03 1 .8 0 k

Dispex 1.5g o f  dry mix
Water 80ml o f  dry mix

b) Raw materials are mixed for 24 hours in a plastic jar using zirconia grinding 

media followed by the addition of 2g PEG-1500 dissolved in 2ml water by heating 

and then mixed for 2  more hours.

c) The mix is discharged into a glass bowl, filtering through a 125 mesh brass 

screen.

d) It is then dried under the IR Lamp for ~ 6  hours.

e) The dried mix is ground in a mortar and pestle and passed through a 15mesh 

screen for granulation.
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3.2.3.2. Pressing

a) The mix is dry pressed in a uniaxial hand press into a cylinder using a 20mm 

diameter die with the following parameters:

Powder weight = 7.5gm(to achieve a height of ~12mm at a green density of 

2.3g/cc)

Dry pressing pressure = 20 bars for 1 minute to give enough strength for ejection 

and handling.

b) Iso pressing:

Uniaxial pressed samples are inserted into a latex tube keeping a distance of at 

least 20mm between samples. The tube is sealed from one end and evacuated 

using a rotary pump from the other end and then sealed.

The pellet is iso-pressed in ‘Iso Lab’ manufactured by Standard Fluid Power Ltd 

at different pressures to determine the optimum iso-pressing pressure.

Green Density values (dimension method) from the powder prepared as in section

3.2.3.1 at different pressing pressures are:

Uniaxial pressing: 1.73g/cc

Iso-Pressing:

50 MPa 2 .0 1g/cc
100 MPa 2 .10g/cc
120MPa 2.16g/cc
150 MPa 2.17g/cc

Based on green density values, 130MPa is considered as the right pressing 

pressure.

3.2.3.3. Firing

Samples are fired in a 'Vecstar' Super Kanthal furnace, in an air atmosphere heated 

with molybdenum disilicide elements. The following firing schedule is used:

Firing Schedule- A____________________
RT to 650°C @ 120°C/hr
Soak at 650°C for 0.5 hr
650 to 1450°C @ 180°C/hr
1450 to 1500°C @ 120°C/hr
Soak at 1500°C for 2 hr
1500 to 1200°C @ 300°C/hr
1200 to RT Natural Cooling
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This composition will be henceforth referred to as the ‘Base Composition’.

3,23.4. Characterisation

a) Sintered samples are tested for bulk density and apparent porosity by the water 

absorption method. The procedure followed is as given by the British Standard 

number EN 623-2 : 1993 {173}

b) Microstructural analysis is carried out using procedure 3.1.1 for samples 

chemically etched in ortho-phosphoric acid ( procedure 3.1.1.1 (d) (i)).

However SEM micrographs showed that this was not the best etching procedure in 

this case. Instead, thermal etching, was tried at temperatures 1350°C, 1400°C and 

1450°C. It was found that etching at 1450°C is ideal.

3.2.4. Analysis of Base Composition

a) Bulk Density = 3.67g/cc 

Apparent porosity = nil

Bulk density of Seagoe alumina insulator by same method = 3.64g/cc

b) Microstructure: The SEM micrograph for this composition is shown in figure 3.5. 

Comparing it with the microstructure of Seagoe alumina, the following inferences 

have been made:

i) The average grain size of the base composition is approximately 3pm, with the 

smallest grain being of about 1pm and largest ~ 5pm. This size is significantly 

smaller than that of Seagoe alumina described in section 3.1.1.1. This may be 

due to the choice of starting powder, lower firing temperature or lack of 

multiple firing as occurs in metallizing, as would have happened with Seagoe 

alumina.

ii) A fair degree of anisotropy results from grain growth. The reason for this is 

also same as explained in section 3.1.1.1.4.

Overall the structure of the base composition is a fully dense ceramic with a few 

scattered inter-granular pores. Most of the hollow portions visible in the 

micrograph are due to etching out of the glass from the grain boundaries. To get a
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microstructure with a larger grain size so as to resemble the Seagoe grain size, 

another set of samples was prepared using a higher firing temperature. The new 

firing schedule is:

Firing Schedule - B____________________
RT to 650°C @ 120°C/hr
Soak at 650°C for 0.5 hr
650 to 1550°C @ 180°C/hr
1550 to 1600°C @ 120°C/hr
Soak at 1600°C for 2  hr
1600 to 1200°C @ 300°C/hr
1200 to RT Natural Cooling

The microstructure for this firing is shown in figure 3.6. Though the grain size has 

increased but this firing caused a decrease in density. The decrease in density 

could be due to the exaggerated grain growth and expansion of internal pores as a 

result of over-firing. Thus only the 1500°C fired samples are to be used for further 

work. Also since the electrical conductivity studies are to be carried out relative to 

this composition, the effect of difference in grain size can be ignored.

3.3. Doping the Base Composition

TiC>2 is being used to alter the resistivity of alumina. Watanabe et al {100} 

reported that Cr2 03  in combination with TiC>2 had a significantly greater influence 

on the resistivity of alumina, as explained in section 2.2.2.4 of literature review. 

Based on this information compositions doped with both TiC>2 and Cr2C>3, have 

also been prepared. Also V2O5 has been tried as an alternative dopant that may 

contribute to the fall in resistivity of alumina.

3.3.1. Composition

TiC>2 is doped to levels ranging from 0.25% to 1 0 % by weight of base 

composition. Preliminary trials and literature has suggested that and V2O5

are other dopants that together with TiC>2 can affect alumina conductivity. Thus 

compositions containing TiC>2 and Q 2O3, TiC>2 and V2O5 and TiC>2, and

V2O5 have been fabricated and tested.
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Figure 3.5: Grain size distribution in Base Composition fired at 1500°C

Figure 3.6: Grain size distribution in Base Composition fired at 1600%!
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3.3.2. Raw Materials

As was done for the base composition, pure sources of the raw materials have 

been utilised.

Table 3.5

Compound Supplier Grade Purity

T i0 2 SCM TiONA >99.9

Cr2C>3 BDH Chemicals AR >99.99%

v 2o 5 BDH Chemicals LR >98.5%

The V2O5 powder was coarse and was ground using zirconia grinding media, then 

dried and ground again. This has been done to improve the distribution of V2O5 in 

the composition.

3.3.3. Fabrication Procedure

Formulation, pressing and firing procedures are the same as described in section 

3.2.3.1 to 3.2.3.3. Additional samples fired at 1600°C, according to the schedule 

in section 3.2.4 were also prepared for some of the compositions. However this 

was discontinued since in addition to the problem of decrease in density, they 

showed inconsistent results during electrical characterisation. The TiC>2 doped 

formulations produced are given in Table 3.6 and formulations containing TiC>2 

with other and V2O5 dopants are shown in Table 3.7.



Table 3.6
Raw

Material
BC T01 T02 T05 T07 T1 T2 T2.5 T3 T4 T5 T10

a i2o 3 94 94 94 94 94 94 94 94 94 94 94 94

S i0 2 4 4 4 4 4 4 4 4 4 4 4 4

MgO 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

C aC 03 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

T i0 2 - 0.1 0.25 0.5 0.75 1 2 2.5 3 4 5 10

BC: Base Composition

Table 3.7
Raw

Material
BC TCI TC2 TC3 TC4 TV1 TV2 TV3 TV4 TV 5 TCV1 TCV2

a i2o 3 94 94 94 94 94 94 94 94 94 94 94 94

S i0 2 4 4 4 4 4 4 4 4 4 4 4 4

MgO 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

C aC 03 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

T i0 2 - 0.5 1 2 1 0.25 1 1 1 3 0.25 1

Cr20 3 - 0.5 1 1 2 - - - - - 0.5 0.5

v 2o 5 - - - - - 0.5 0.25g 0.5 0.75 0.5 0.5 0.5

3. M
aterial Preparation
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Further compositions were prepared by altering the percentage of glass forming 

additives, namely MgO, CaO and Si0 2 . These compositions are also necessary 

for shrinkage control, as will be explained in Chapter 7 on shrinkage studies.

Table 3.8
Raw

Material
M l M2 M3 M4

A120 3 94 94 94 94

S i0 2 4 4 4 2.7

MgO - 0.1 0.1 0.7

C aC 03 - - 0.1 1.2

T i0 2 2 2 2 2

3.3.4. Characterisation

The green density of isostatically pressed samples is determined by the dimension 

measurement method and the fired bulk density is checked using procedure given 

by BS EN 623-2 : 1993. Linear shrinkage is calculated using green and fired 

dimensions and the formula

d B -  d f
%Shrinkage in lateral direction Sl = — -̂------x l oo

lg - L%Shrinkage in perpendicular direction St = ---------- * 100
1 r

where dg is green diameter; tg is green thickness

and df is fired diameter; tf is the fired thickness of the solid cylinders.

Shrinkage data is of paramount importance for the development of functional 

gradient material. To get a complete temperature v/s shrinkage curve, a 

dilatometer has been utilised. The details are in chapter 7.

Fracture strength is measured using polished circular disc samples and the 

procedure defined by ASTM F394-78 {174} and rig design similar to that used by 

Shetty et al for the piston-on-3-ball test {175}.
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3.3.5. Results

Green, fired density, apparent porosity and shrinkage values achieved for these 

compositions are given below in table 3.9:

Table 3.9

Composition
Green

Density
(g/cc)

Fired
Density
(g/cc)

Apparent
Porosity

(%)

Linear Shrinkage (%)
SL s,

BC 2.15 3.59 0.11 20 .68 19.96

T01 2.15 3.60 0.06 20.32 20.11

T02 2.14 3.59 0.03 19.91 20.38

T05 2.13 3.55 0.02 20 .10 19.94

T07 2.16 3.57 0.08 20.34 18.75

T1 2.14 3.53 0.03 19.52 20.23

T2 2.14 3.56 0.31 20.13 20.65

T2.5 2.10 3.46 0.00 19.72 20.18

T3 2.14 3.47 0.07 19.41 19.36

T4 2.11 3.53 0.02 19.91 19.18

T5 2.08 3.38 0.06 18.91 17.69

T10 2.09 3.40 0.00 19.21 19.29

Table 3.10

Composition
Green

Density
(g/cc)

Fired
Density
^ .1

Apparent
Porosity

(%)

Linear Shrinkage(%)
SL s,

TCI 2.15 3.53 0.14 20.68 19.96

TC2 2.15 3.55 0.07 20.32 20.11

TC3 2.14 3.53 0.11 19.91 20.38

TC4 2.13 3.53 0.01 20 .10 19.94

TV1 2.16 3.47 2.78 20.34 18.75

TV2 2.14 3.52 0.09 19.52 20.23

TV3 2.14 3.43 0.60 20.13 20.65

TV4 2 .10 3.40 3.47 18.69 17.64

TV5 2.14 3.36 0.03 19.41 19.36

TCV1 2.13 3.48 0.86 20 .20 20.43

TCV2 2.14 3.39 0.53 20.76 20.29
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Table 3.11

74

Composition
Green

Density
Fired

Density
(g/cc)

Apparent
Porosity

(%)

Linear Shrinkage(%)
SL s t

M l 2.24 3.47 0.08 17.90 18.41

M2 2.18 3.44 0.03 17.12 17.81

M3 2.19 3.44 0.08 17.25 18.36

M4 2.13 3.61 0.08 19.04 19.50

Figures 3.7 (a), (b) and (c) show the variation of fired density and apparent 

porosity for various compositions.

From the tables 3.9-3.11, it can be seen that the green density values for all the 

compositions, iso-pressed at same pressure, are the same within experimental 

error. The only deviation is in the case of composition M l, M2 and M3. This can 

be attributed to the absence of MgO or presence of an MgO content significantly 

lower than other compositions. This follows from the work of Ferreira et al {176} 

on slip cast bodies, who noticed lower green densities with higher amounts of 

MgO due to a higher volume of pores and pore size distribution in the green body 

as an increase in critical moisture content and drying shrinkage.

Addition of Ti0 2  reduces the fired density. This was expected as has been 

discussed by Ikegami et al {158}, in that MgO doping gave a final density of 99% 

while Ti0 2  doping gave a density up to 97-98% of true density. Nevertheless 

more importantly the open porosity is nearly zero. Addition of CT2O3 to Ti0 2  

doped compositions does not alter the density or porosity significantly. However 

addition of V2O5 caused a substantial lowering in density and increase in porosity. 

In composition TV5, containing 3 %TiC>2, and 0.5% V2O5, additional TiC>2 offsets 

the deleterious effect of V2O5 resulting in a very low porosity, though still lower 

density. Similarly comparing composition TV1 (0.25%TiO2 + 0 .5 %V2O5),
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Figure 3. 7 Density v/s porosity for(a) HO2 doped compositions (b) HO2 plus Cr2 C>3 

&/or V2 O5 doped compositions (c) with reduced glass content

TC1:0. 5%TiO2+0.5%Cr20 3 

TC4: 1 %T i0 2+2%Cr20 3 

TV 3:1 %TiO2+0.5 % V 20 5 

TV5:3%TiO2+0.5%V2O5

TC2:l%Ti02+l%Cr20 3 TC3:2%Ti02+l%Cr20 3

TV1:0.25%Ti02+0.5%V20 5 TV2: l%TiO2+0.25%V2O5

TV3:1 %TiO2+0.5 % V20 5 TV4:1 %TiO2+0.75%V2O5

TCV1:0.25%TiO2 +0.5%Cr20 3+0.5%V20 5

TCV1 :l% Ti02 +0.5%Cr20 3+0.5%V20 5
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TV2 (l% Ti02 + 0.25%V2O5), TV3 (l% Ti02 + 0.5%V2O5) and TV4 (l% Ti02 +

0 .7 5 %V2O5) there seems to be a balance of the addition of T i02 and V2Os that 

will give the best possible density and porosity. Better porosity values for 

compositions TCV1 and TCV2 show that the addition of Cr20 3  to the V20 5  and 

T i02 compositions helps in reducing porosity. High density values for the 

compositions with lowered glass content i.e. total alumina content equal to that in 

base composition, gives a density equal to that of the base composition. This can 

be used to deduce that addition of T i02 does not reduce the density but it is rather 

the decreased percentage of total alumina in the composition that causes a fall in 

density.

The shrinkage values show that the final shrinkage for all the compositions is 

very close except for compositions with lowered MgO and CaO. (Ml, M2 and 

M3). However in order to determine the shrinkage profile during the heating 

cycle, dilatometer studies were necessary. These are discussed in chapter 6 .

Fracture strength is measured on base composition and some T i02 doped 

compositions are shown in figure 3.8. The flexural strength of the base 

composition is within the acceptable limits. However the value reduces on doping 

with T i02 and for compositions with no MgO and CaO additives. The reasons for 

this will be discussed later in chapter 5.

CO
^  400

cn
P 300

M1 fired 
1600oC

Sample

Figure 3.8 Flexural Strength for some compositions
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CHAPTER IV 

ELECTRICAL CHARACTERISATION

This chapter explains the testing procedure, and 

discusses the results from  testing the resistivity o f  

various compositions using impedance 

spectroscopy.
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4. ELECTRICAL CHARACTERISATION

Most of the earlier studies on electrical conductivity of alumina were carried out using dc 

techniques, by measuring electrochemical-cell emf, and high voltage impulse breakdown. 

The former technique was popular for measuring the transport properties and the latter 

was used for studying the dielectric breakdown strength of alumina. Both the techniques 

require the use of a high voltage input to generate the results from high resistivity 

alumina. Electrical properties in this project have been studied mainly by using the 

impedance spectroscopy technique.

4.1. Impedance spectroscopy

Impedance spectroscopy uses a small ac voltage impulse (<2-3volts) to measure 

the bulk conductivity of material by frequency response analysis. Since a very 

small voltage is applied, there is no chance of an error arising due to flashover 

breakdown or diffusion of any species under high voltages. However this 

technique has been used for studying materials showing ionic conductivity and 

has not been very popular for material such as AI2O3, where the largest 

contribution to bulk conductivity is from electronic carriers. Also, earlier 

impedance measurement equipment did not have the capability to measure the 

conductivity of high resistivity materials such as alumina. The maximum possible 

resistivity material that could be measured was 108Qcm. The equipment used for 

present study is the Solartron Dielectric Test System. This consists of a Frequency 

Response Analyser Solartron FRA model 1260 coupled with Solartron Dielectric 

Interface 1296 and a PC running ‘Solartron Impedance Measurement Software 

Version 2.0.0’. With such equipment it is possible to measure the resistivity as 

high as 1014 Qcm. The figure 4.1 gives the assembly of the Dielectric Test System 

{177}.

The 1296 Dielectric Interface is an ultra high sensitivity multi-range current to 

voltage converter, has an attenuator for noise free low level stimulus of the
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sample, DC rejection circuit, and high precision reference capacitors. The 1296 

software automatically controls range and reference switching, if required by the 

test.

The current to voltage converter is able to resolve femto amp signals and operates 

over a wide bandwidth from lOpHz to 10MHz. This allows extremely high 

impedance sample to be measured (>100Tohms), which in turn allows meaningful 

measurements to be made on insulators. The 1296 contain a number of high 

precision reference capacitors which are used to make the high accuracy 

measurements of the sample (particularly at high frequency). Figure 4.2 shows the 

accuracy range of this system {178}

4.2. High Temperature Testing

The high temperature measurements are carried out using a high temperature rig 

similar to that shown in figure 4.3 based on the design by Bonanos et al {171}. 

The rig is place in a Pyrotherm 1200°C tubular furnace. The sample is connected 

to the sample port of system 1296 using the prescribed cables and platinum wires. 

Platinum wires were used towards the sample end of connection, to enable the 

system to make measurements at high temperature. The platinum wires are held to 

the surface of sample using a spring loaded device.

Testing was also carried out on a second set of samples from the same batch that 

were annealed in H2 atmosphere. This was done in a metallising furnace at the 

Marconi Applied Technologies. The annealing temperature was 1460°C for 

40minutes in 10:90 mixture of H2 and N2, bubbled through water at 25°C.

4.3. Electroding

For the connection between the platinum wire and sample, it is necessary to apply 

a conducting electrode to the sample surfaces, which are electroded using 

platinum paste. The discs are cleaned using a solution of 50% distilled water, 50% 

ethanol and detergent, using ultrasonic for 5 minutes. This is followed by dipping 

the specimens in ethanol and drying at 80°C for lOminutes. A thin layer of



4. Electrical Characterisation 80

platinum paste is painted on one face of the disc and dried in an oven at 120°C for 

8 hours. Similarly a second face of the disc is painted and dried. The coated disc 

is then fired to 1000°C using the following schedule:

RT to 1000°C @ 300°C/hour

soak at 1000°C for 0.5 hour, followed by

natural cooling to room temperature.

For the samples annealed in H2 atmosphere, a silver paint manufactured by 

Electrolube Ltd* is used, to prevent oxidation of the alumina samples during 

electroding firing. This paint requires drying at 50°C for 2 hours. However these 

samples were tested only up to a temperature of 600°C to avoid oxidation during 

testing. This is because the test rig is designed to take the measurements only 

under ambient conditions. It was confirmed that there is no visible difference 

between the resistivity values for sample coated with platinum from those coated 

with silver. This was done by using the samples from same batch, one electroded 

with platinum and other with silver, and tested for electrical resistivity from room 

temperature to 600°C.

4.4. Overcoming Gas Phase Conduction

It is known that the conductivity measurement in high resistivity materials can 

result in an error, especially at high temperatures, due to the gas phase conduction 

{37,38}. Various techniques were applied to get over this problem.

Three different sample morphologies and experiment set ups were tried. The first 

sample shown in figure 4.4 (a) is 12mm dia and 3-3.5 mm thickness with opposite 

surfaces electroded. The resistivity values seemed very low. Probably the gas 

phase conduction effects resulted in a significant reduction in resistivity. The 

sample shown in figure 4.4 (b) is 20mm diameter and about 0.8 to 1mm thick, 

with 7x7mm electrode in the middle of each face. The sample in 

figure 4.4 (c) is similar to the former but with a surface guard to earth the surface

Silver Conductive Paint, Catalogue no. 101-5621, Manufacturer: Electrolube Ltd, Berkshire
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conduction. The resistivity values were similar for both these morphologies 

(figure 4.4(b) and (c)), for temperatures 100 to 900°C, confirming that the latter 

sample results are not affected by the gas phase conduction. Thus the morphology 

used for further electrical studies is same as that shown in figure 4.4 (b).

4.5. Im pedance m easurem ents

The frequency analyser 1260, the dielectric interface 1296 and a PC were 

connected as recommended by the manufacturers operating manual.

The sample was loaded in the sample holder ensuring that both the platinum leads 

have made a good contact with the electroded surfaces. The fixture is inserted in 

the furnace. Measurements are to be made at 40° and 100 to 900°C at 100°C 

intervals. For samples annealed in H2 atmosphere, the maximum measurement 

temperature is 600°C.

Once the fixture is set and connections are complete, ‘Solartron Impedance 

Measurement Software Version 2.0.0’ on Microsoft Windows is used to perform 

the experiment in the following steps:

1. Instrument Set-up : The instrument set-up and the communications test is 

carried out as specified by Solartrons 1296 Operating Manual. The 

communication addresses are as given below:

Impedance Interface
Type 1296

Address 2
Frequency Response Analyser

Type ISI1260
Address 12
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2. Experiment and Measurement Setup: After the communications test is passed 

the experiment set-up is carried out as explained by the operating manual. The 

following set-up is utilised:

Constants
Parameter Value Settling Delay

Temperature (°C) 40 0
DC Bias (Vdc) 0 0

AC Level (Vrms) 2 0

Measument Sequence
Parameter Start End Steps
Frequency(Hz) le7 0.005 29
Frequency Sweep Steps/decade: 5

Measurement Setup 
Method

Reference none
Analyser

Auto Integration off
Integration Period 0 seconds

The program automatically runs the frequency sweep and collects the impedance 

values. The sweep is repeated at each of the temperatures, after giving a 

temperature stabilisation time of one hour.

4.6. Analysing Data

The data received from the instrument is exported to ‘Z-View Version 2.1a’ 

software of Scribner Associates, Inc. Data is utilised to plot complex plane 

impedance plots (imaginary v/s real impedance) and bode plots (magnitude 

impedance and phase angle v/s frequency). The curve fitting software of Z-View 

is utilised for defining an equivalent circuit and determining the resistance values 

of the ceramic. The choice of frequency range is based on a dummy test carried 

out on the base composition for a range of 10MHz to lOOpHz . The results 

showed material behaving as a near pure capacitor at the very low frequency 

range. Overall the range of 10MHz to 0.005Hz is found most suitable.
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Typical as received complex and Bode plane plots for one of the compositions is 

shown in the figure 4.5.

4.6.1. Calculation of Sample Resistance

Calculation of resistance from the complex impedance graphs has been done using 

the following two steps :

1. Identifying an equivalent circuit

2. Fitting the complex plane graph to this circuit and identifying the values of 

resistance and capacitance using the circle fit option in the Z-View program.

4.6.2. Identifying an equivalent circuit

It was difficult to identify an appropriate equivalent circuit using the room 

temperature graph. Thus a high temperature graph such as the plot at 700°C for the 

base composition was used to study the equivalent circuit. The plot showed a 

single semi-circle which originates at a value slightly higher than zero on the Y - 

axis, indicating a capacitance effect. However this capacitance could be a result of 

the capacitative effect shown by an AC circuit at high frequencies.

Two conductivity mechanisms are possible:

(a) the ionic conductivity as shown by a solid electrolyte and

(b) the electronic conductivity probably by electron hopping.

There could be four components in glass phase sintered alumina contributing to the 

conductivity. These have been represented in figure 4.6. These are grain interior, 

glass interior, grain boundary and electrode interface components.

First assumption: If we assume that ionic conductivity is the primary mechanism 

of conductivity, an equivalent circuit similar to that of solid electrolyte {170} but 

with 4 components, can be used (figure 4.7). The four components are alumina 

grain interior, grain boundary, glass interior and platinum-alumina ceramic 

interface. However a single semi-circle in the complex plot (figure 4.5 (a)) 

indicates that four components have either very similar R and C values or the RxC 

product for two components is too close to resolve into separate curves for each
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component. Nevertheless we know that the platinum-ceramic interface resistance 

has a very high capacitance and very low resistance when compared with the other 

three components, hence it can be ignored. Thus the complex curve gives the value 

of bulk resistance, i.e. alumina grain interior plus grain boundary plus glass 

interior. The new equivalent circuit now can be defined as shown in figure 4.8.

There is a flaw in this assumption. For ionic carriers grain boundary capacitance 

would be significantly higher than the grain or glass interior capacitance, a feature 

which is not visible in the complex curve received (figure 4.5 (a)). This gives a 

doubt as to whether ionic carrier contribute to the conductivity. This observation is 

also in line with the published literature so far. However the existence of ionic 

conductivity cannot be ruled out for the case of doped ceramics, which will be 

discussed later. In the meantime, a second assumption, that of the electronic 

conductivity being responsible for this curve, is worthy of discussion.

Second assumption: If the electronic carriers are dominating the conductivity in 

alumina, then:

S  Capacitance due to the electronic carriers is low for grain and glass interior and 

grain boundary.

S  The electrode interface will have a high capacitance but the resistance is very 

low

S  In such a situation carriers will take the path of minimum resistance and the 

total resistivity will be equal to the lower resistance element in the material.

S  The equivalent circuit will then be as shown in figure 4.9.

Once again the interface resistance can be ignored, and the bulk resistance this 

time will be the minimum of Ra, Rgb and Rgi, giving an equivalent circuit similar to 

figure 4.8. Here Rb will be the minimum of three values.
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4.6.3. Fitting the complex plane graph to circuit in figure 4.8

Circle fit from the Z-View program can be used to fit the graph employing the 

circuit of figure 4.8. This resistance could either be the bulk resistance, as in 

assumption 1, or could be that of the lowest resistivity component in the alumina. 

The fitting results are as shown in figure 4.10.

However for low temperature results, it has been assumed that this curve is a part 

of larger semi-circle and the curve is extrapolated, to get the resistance values. 

There is a possibility that some of these values may not be very accurate. However 

it may be possible to use them for comparative purposes. In most of the cases it 

was found that high frequency data (> 1000Hz) could be ignored when carrying 

out the curve fitting.

Furthermore the resistance values thus estimated may not be ideal for comparative 

purposes, since resistance in addition to material characteristics, is also a function 

of the thickness and the area of cross-section of specimen. Instead resistivity being 

a fundamental property of a material, is used when comparing doped and undoped 

compositions. It is calculated using the formula:

a
p = r 7

where p=  Resistivity in ohm-cm, R= Resistance calculated from the fitting in 

ohms, a = area of cross-section and t  = thickness of specimen without electrode.

4.7. Results

As discussed before all the room temperature resistance results have been ignored 

due to the possibility of adsorbed surface moisture. The resistivity with various 

doping percent of Ti02  has been compared at different temperatures in fig 4.11. 

For the samples subsequently annealed in an H2 atmosphere the resistivity is 

shown in figure 4.15. Similarly the resistivity at various temperatures for 

compositions doped with Ti02  plus Cr203 and or V2O5 has been shown in figure 

4.12-4.14 and figure 4.16.
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4.7.1. Electrical Properties for samples fired in air

The resistivity values of alumina with various percentages of TiC>2 have been 

compared in figure 4.11. No specific trend is visible for all the temperatures. 

However 0.25%TiC>2 shows a fall in resistivity by 2 orders of magnitude at 

temperatures of 300°C and above. A similar trend is also visible for 3%TiC>2 

composition for temperatures above 500°C.

TiC>2 doped compositions, with Cr2C>3 added have been compared in figure 4.12. It 

can be safely confirmed that, in the as fired condition, doping the TiC>2 

composition with C^Cb, does not have any significant change in the resistivity.

The effect of the addition of V2O5 to the 1% TiC>2 doped composition is shown in 

figure 4.13. With the addition of V2O5, resistivity falls, up to 2 orders of 

magnitude, for 0.5% V2O5. Resistivity increases again on increasing V2O5 above 

this level. Addition of 0 .5%V2O5 to the 0.25%TiC>2, and 3%TiC>2 composition also 

results in a resistivity drop of about 2 orders of magnitude (figure 4.14). Adding 

Cr2C>3 to TiC>2 + V2O5 compositions was not useful.

A larger drop in resistivity (about 3 orders of magnitude) is seen in composition 

M l, which has 2%TiC>2 with no MgO and CaO (figure 4.14).

Thus none of the as fired samples were successful in reducing the conductivity to 

the extent required for the application of klystrons, which is at least 5 orders of 

magnitude. The samples from these compositions were annealed in reducing 

atmosphere in the continuous metallising furnace at Marconi Applied 

Technologies (formerly EEV Ltd). The conditions of firing were:

Temperature: 1460°C

Soak Time: 40minutes

Atmosphere: 10%H2 and 90%N2 bubbled through water at 25°C.
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4.7.2. Effect of H2 Annealing

The result of H2  annealing on compositions with various percentages o f TiC>2 are 

shown in figure 4.15. The fall in resistivity, as compared with base composition, is 

steeper than for the as fired composition. The best results are achieved in 3%TiC>2 

composition, which has a drop in resistivity of 9 orders o f magnitude. It shows a 

low temperature resistivity of lx l0 5Qcm as compared to base composition 

resistivity o f 2 x l0 14. At 300°C it drops to 7000Q-cm, against base composition 

value o f 7xlOn -cm. Above this temperature the resistivity o f the base composition 

falls to 3xl09Q-cm, while that for the 3 % TiC>2 composition drops marginally to 

2000Q-cm. Overall the fall in resistivity is much higher than the minimum 

required value of 109Q-cm. This trend is confirmed on three different samples of 

3%Ti02 annealed at Marconi for two different times.

An increase in Ti0 2  doping by just 1% above the 3% level, resulted in a steep 

increase in resistivity. The decrease in resistivity took place again only at the 

1 0 %TiO2 composition but still only to 2 xlO?Q-cm, about 2  orders of magnitude 

above the 3 %Ti0 2  composition. The reason for this unusual trend has been studied 

in detail and the results discussed in the following chapters.

Ti0 2  + Cr2 0 3  compositions show some improvement in resistivity drop results on 

annealing in H2 . However this effect may be more due to the TiC>2 rather than due 

to Cr2 C>3 . The presence of V2 O5 in the Ti02 doped composition is not of help in 

this case, as the resistivity drop is to the same level as in the TiC>2 +V2O5 as-fired 

compositions. 3%TiC>2 composition with V2 O5 also shows steep fall in resistivity, 

but the drop is nearly 2 orders less than the composition with only 3%TiC>2. This 

may suggest that the presence of V2 O5 reduces the extent of the drop in resistivity 

of TiC>2 doped compositions in the case off H2 annealed samples. This will be 

discussed later.
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4.7.3. Activation Energy

Activation energy gives an indication of the barrier a charge carrier has to overcome to 

move to the next site and thus take part in conduction. The material with a lower 

activation energy will thus conduct easily. Activation energy can be calculated using the 

equation below.

For dilute solid solutions (low dopant concentration), activation energy is related to 

conductivity by the following expression {73}:

ctT = [V JN (Z e ) 2 exp(ASm / k) exp[-AH /(kT)] 
k

Where a  is conductivity, V0 the concentration of vacancies, No the number of anion sites 

per unit volume, Ze is charge per particle, Jd is the particle density, fo is a factor 

signifying number of equivalent sites between which a charge particle jumps, y is lattice 

vibrational frequency, ASm is the entropy for jump and AHm is the enthalpy for 

conduction, also called activation energy for conduction.

This expression can be simplified into

aT = A exp[-AH /(kT)] where A is a constant

this is equal to

ln(aT) = In A + [-AH / k](l / T) 

and matches the equation for a straight line: 

y = c + mx

Thus a plot of ln(aT) vs. 1/T is linear, and the slope is equal to AH/k. Where k is the 

Boltzman constant and is equal of 1.38x10' Joules/Kelvin, and AH is the activation 

energy. AH can be calculated in eV using the conversion, 

lJoule=6.24xl018 eV

The activation energy for various samples has been calculated from the Arrhenius plots in 

figures 4.17-4.18 for as fired and H2 annealed samples.
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The activation energy for each sample in the range of 200-600°C is calculated from the 

slope of the linear trendline. The values have been compared in figure 4.19. A possible 

scatter in these values was calculated by approximately determining the experimental 

uncertainity at various measuring stages (-5%) and adding “1-correlation coefficient” of 

the best fit data on straight line.

For the as fired TiC>2 doped compositions the activation energy is the same within a 

reasonable error, except for the 3% and 10% TiC>2 composition, where slightly higher 

values are attained. Compositions containing Cr203 with TiC>2 also do not show any 

definite trend. 3%TiC>2 composition containing 0 .5%V2Os did have a lower activation 

energy, indicating V2O5 playing some role in reducing the resistivity of alumina.

For the H2 annealed case, significantly lower activation energy resulted in the 3%TiC>2 

composition (sample T3) showing a steep fall in resistivity. Similar activation energy 

values were found for the 3%TiC>2 + 0 .5%V2C>5 (sample TV5) composition, though 

having 2 orders higher resistivity than 3%TiC>2 composition. This might indicate 

similarity of mechanisms of conductivity in both these composition. Further the large 

difference between the activation energy for the T3 and TV5 compositions compared 

with other compositions indicates different current carriers to be operative in the former 

compositions relative to the latter. Increased activation energy is noticed in samples with 

higher or lower percentages of TiC>2 than the 3% composition. The activation energy of 

the 10%TiO2 composition (sample T 10) showed a very high error in measurement due to 

the non-linear trend of resistivity v/s temperature. This could be due to too many different 

factors/charge carriers contributing to the conductivity of the 10%TiO2 composition.

The results of electrical characterisation have been discussed in detail, in light of the

microstructure of these comp'ositions set out in the following chapters.



Ac
tiv

at
io

n 
En

er
gy

 
(eV

) 
A

ct
iv

at
io

n 
En

er
gy

 
(e

V
)

BC TC1 TC3 TC4 TV1 TV2 TV3 TV4 TV5 TCV1 TCV2 M1 M4

Figure 4.19: Activation Energy for various samples
"Ov©

4. E
lectrical C

haracterisation



5. Microstructure Evaluation 100

CHAPTER V 

MICROSTRUCTURE EVALUATION

Chapter covers the results from  SEM, TEM, 

EPMA and XRD studies on the compositions 

that have shown interesting characteristics in 

the electrical testing.
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5. MICROSTRUCTURE EVALUATION

The previous chapter has described how TiC>2 V2O5 and Cr203 have influenced the 

electrical properties of alumina. Some of the results are also unusual. In this chapter a 

study has been done to identify where these additives are located in the alumina 

network, what phases they are forming and then relate the results to the electrical 

characteristics shown by alumina. This will help determine the reasons for the 

electrical behaviour shown by alumina under the influence of these additives. The 

microstructure of exaggerated grain growth in liquid phase sintered alumina is well 

known, and has been shown in figure 3.1. The literature has suggested that TiC>2 

addition increases the grain size of alumina. This will be discussed in the section 

following the phase distribution.

5.1.Phase Distribution

The distribution of various phases in Ti02  and Cr203 /V2O5 doped alumina have 

been studied using SEM, TEM and Electron Probe Micro Analysis (EPMA) in 

conjunction with X-ray Diffraction and Energy Dispersive X-rays (EDX). The 

glass forming additives i.e. SiC>2, MgO, and CaO will also influence the alumina 

microstructure and will affect the distribution of TiC>2. Their distribution also 

holds importance for a complete understanding. The study has been carried out in 

3 steps. These are:

(a) Study the distribution of various additives within the alumina network using 

qualitative analysis with EPMA, and SEM in the back scattered mode

(b) Identification of various phases being formed using XRD and TEM

(c) Carry out the quantitative analysis for the distribution of TiC>2 in the alumina 

network.

5.1.1. Distribution of Additives

Sample preparation for SEM and TEM studies is the same as explained in 

chapter 3. The samples used for EPMA were the same as those used for SEM. The 

EPMA instrument was a ‘JEOL JXA-8600 Superprobe’. The standards used for 

setting the crystal positions to identify various materials are as listed in table 5.1:
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Table 5.1

Material Element Standard
AI2O3 A1 pure aluminium metal
S i0 2 Si pure silicon metal
MgO Mg MgAl204

CaO Ca CaC03
Ti02 Ti pure titanium metal
V2O5 V pure vanadium metal
Q2O3 Cr pure chromium metal

0 MgAl204

It is well know that Si02 is a glass forming oxide and is located mainly in the 

glass phase. Other additives have been mapped for composition TCV2, which 

contains all the three dopants, Ti02, V2O5 and Cr203. Figure 5.1 shows the 

microstructure o f the composition with mapped additives. The microstructure 

consists o f abnormal alumina grains with intermediate glass (marked G). This 

mapping shows CaO is present primarily in the glass region. The bright area in the 

microstructure is Ti02 rich. The Ti02 rich area is near some o f the grain 

boundaries, and V2O5 is also present in the same place. O2O3 is distributed 

uniformly over the entire area. From this mapping, it is difficult to predict the 

specific position o f the MgO, although it can be said that the areas where MgO is 

present in excess, a cluster o f small grains is evident.

The distribution o f TiC>2 and V2O5 is clearer from the mapping in the 

3%TiO2+0.5%V2C>5 composition (figure 5.2). Again both are present in the same 

location in alumina microstructure.

5.1.1.1. HO2  Distribution in Alumina Microstructure

In a composition containing only 0.25% TiC>2, a slightly higher concentration o f  

TiC>2 seems to exist within the glassy area, than exists in the alumina (figure 5.3). 

This suggests that TiC>2 even at very small concentrations has a tendency to 

dissolve into the glass. Nevertheless it is known that its solubility in AI2O3 is 

limited to 500ppm { 103} and most o f it is retained in the grain boundary {50}.
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Figure 5 .1: Mapped additives, showing their position in the alumina network 
composition TCV2, containing \% T\Oi +0.5%V2O5 +0.5%Cr2(>3
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Figure 5 .2: Mapped TiC>2 and V2O5 in 

3%TiC>2+0.5%V2O5 composition

Figure 5 .3: Ti map in composition containing 0 .25%TiC>2
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What happens if the TiC>2 concentration is increased significantly as in 3%TiC>2? 

Figure 5.4 (a) shows the secondary electron image and figure 5.4 (b) shows the 

back scattered image for same area. The alumina grains are very clear (marked by 

black arrow). The darker portions, marked CD is the glass area as shown by the 

EDX spectrum in figure 5.5 (a). The bright portion marked (D is the Ti rich area as 

shown in the EDX spectrum in figure 5.5 (b). The excess Ti forms a Ti rich 

precipitate at the grain boundary. The composition of this phase and the 

compounds therein will be discussed later in this chapter. As the Ti02  percentage 

is reduced the distinct Ti precipitates reduce considerably in 2.5% composition 

(figure 5.6(a)), are around same level for 2% (figure 5.6(b)), and are nearly 

eliminated at l%TiC>2 (figure 5.6(c)). Thus below l%Ti02  it can be assumed that 

all the TiC>2 present is either in glass phase or dissolved in the AI2O3 grains. No 

visible difference existed between the back scattered images of the as fired and the 

H2 annealed sample.

5.1.1.2. V2 O5  Distribution in Alumina Microstructure

As discussed earlier, V2O5 is present at the same place as TiC>2 exists. Thus the 

V2O5 is present in Ti rich precipitates (white bright areas). The TiC>2 is also 

dissolved in alumina and glass even in very small percentage compositions. To 

study if V2O5 also goes into the alumina and glass the TV1 composition, 

containing just 0.25%TiO2 and 0 .5%V2O5 has been studied. No Ti rich 

precipitates, as were present in high TiC>2 compositions, are present here. In 

contrast to the statement in the previous section regarding the non-existence of Ti 

precipitates in low percentage TiC>2 compositions, TiC>2 +V2O5 precipitates have 

been seen in the TV1 composition. The bright area at the edge of the grain marked 

(D in figure 5.7 has a fairly high TiC>2 and V2O5 content (EDX- figure 5.8(a)) 

while another glass area marked <D has none (EDX-figure 5.8(b)), as also is the 

case for the alumina grain. At a different point in this sample (figure 5.9) the EDX 

at glass, point ©, did have small amount of V2O5 (figure 5.10) but TiC>2 could not 

be detected. A small amount of TiC>2 and V2O5 in the glass is visible in the 

l%TiC>2 + 0 .7%V2O5 sample (EDX figure 5.12 at point © in figure 5.11). The 

high alumina peak in glass is due to the stray X-rays from surrounding alumina 

grains, which could not be isolated, due to the small size of glass area. This
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(a) (b)

Figure 5.4: 3%Ti02 sample in (a) secondary electron mode (b) Back scattered mode

FS= 1M 
MEM1 :

X-RflV: 0 - 2 0  keV
L i v e !  1 0 0 s  P r e s e t !  1 0 0 s  R e mai ni ng:
R e a l !  1 5 8 s  3 7V. Dead

X-RflV: 0 -  20 keU
L i v e :  1 0 0 s  P r e s e t :  1 0 0 s  Remai ni ng:
R e a l :  1 5 6s  3 6^  Dead

(a) (b)

Figure 5.5: EDX spectrum for 3%T\02 sample at (a) point © (b) point ©

c



5. Microstructure Evaluation 107

(a) 2.5%Ti02

(b) 2%Ti02

(c) l%TiQ2

Figure 5.6: Back scattered images showing the Ti rich precipitates (white bright spots)
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Figure 5.7: Back scattered image for 0.25%TiC>2 +0 .5%V2C>5 sample

X-RRV: 0 -  20 keU
L i v e :  1 2 9 s  P r e s e t :  1 0 0 0 s  Re ma i n i ng :  8 7 1 s
R e a l :  1 6 5 s  2 2 *  Dead

X - K f i v :  t )  -  2 0  k e V
L i v e :  1 3 7 s  P r e s e t :  1 0 0 0 s  Remaining*  8 6 3 s
R e a l :  1 7 3s  2 1 *  Dead

(a) (b)
Figure 5.8: EDX spectrum for 0.25%TiO2 +0 .5%V2C>5 sample at (a) point (D

(b) point ©
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X-Rflv: 0 -  20  keU
L i v e :  2 0 0 s  P r e s e t :  2 0 0 s  R e ma i ni ng :  Os
Re a l :  2H5s  185; Dead

Figure 5.9: Back scattered image Figure 5.10: EDX image at point
for 0.25%TiC>2 +0 .5%V2C>5 sample

X-RflV: 0 -  20 keU
L i v e :  1 0 9 s  P r e s e t :  2 0 0 s  Re mai ni ng:  9 1 s
R e a l :  1 3 3 s  185; Dead

< .1 5 . 2 2 0  keU 1 0 . 3  >
FS=128K LOG ch 27 1=  77  c t s
MEM1:_________________________________________________

Figure 5.11: Back scattered image 
for l%Ti02  +0 .7%V2O5 sample

Figure 5.12: EDX image at point (D
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discussion suggests that V 2 O 5  is more soluble than Ti02 in the glass and can be 

present, apart from inTi rich precipitates, in glass even if Ti02 is absent. The V 2 O 5  

in glass might be responsible for marginally reducing the resistivity of alumina 

(figure 4.13). Looking at the phase diagrams of A I 2 O 3  -  V 2 O 5  ,  Ca0 -Ti0 2 -V2C>5 

and Ca0-Mg0-Si02 - V 2 O 5  , no high temperature phase was found forming 

between any of V 2 O 5  and any of the other additives. Most compounds of V 2 O 5  

existed as liquid above 900°C. In fact it is known to vaporise to an extent of 5.5% 

above 1450°C (as described in the explanation for the phase diagram. This 

indicates the V 2 O 5  should exist only in the glass, or as recrystallised form in the 

alumina microstructure. Nevertheless its preferential presence along with TiC>2 

indicates the formation of some TiC>2 - V 2 O 5  compound which could not be 

identified due to lack of any more published information in this area.

Cr2<I>3 is distributed uniformly over the entire alumina microstructure (figure 5.1), 

and the distribution is independent of the presence of TiC>2. Thus Cr2C>3 which 

together with TiC>2 could have reduced the conductivity of A I 2 O 3 ,  as was reported 

by Watanabe et al {100}, forms no specific phase or compound with TiC>2 and has 

no influence on the conductivity of alumina (figure 4.12). The Cr203-Ti0 2  -Fe2C>3 

phase diagram, indicates the formation of Ti-Cr compounds like Ti7Cr20n, 

Ti6Cr2 0 i5, Ti2Cr207 , however most of these compounds are unstable above 

1300°C. This could be the reason why the Cr203 does not form a phase with TiC>2 

in this work.

5.1.1.3. TiC>2 dissolution in AI2 O3

Earlier studies have shown the dissolution of TiC>2 in the alumina grain occurs up 

to 500ppm {103} and have observed that the dissolution goes up in low P02 due to 

the higher dissolution of Ti3+ {50}. Also, higher dissolution of Ti in AI2O3 should 

reduce the conductivity, based on the theory of Tsaur and Kroger {50}. However 

in the present study, the annealing at low P02 has led to a steep increase in 

conductivity. To study the amount of Ti02  that dissolves into AI2O3, quantitative 

analysis on EPMA was carried out on samples fired in air and compared with the 

results from samples annealed in H2. The standards used were same as shown in 

table 5.1. The crystal and peak positions used for each element and the weight
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percent of each element in the standard, as detected by the probe, are as in 

table 5.2. The voltage used was lOkV to prevent detecting X-rays from deeper 

levels in the sample, i.e. to determine only the surface information {179}.

Table 5.2
Element Standard Wt% Crystal Peak

Al Al 100.00 TAP’ 90.650
Si Si 100.00 LIF’ 77.440
O MgAl20 4 44.95 LDE’ 110.225
Ti Ti 100.00 LIF 191.115

Mg MgAl20 4 17.09 TAP 107.490
Ca CaC03 40.04 p e t ’ 107.435
Cr Cr 100.00 LIF 159.260
V V 100.00 LIF 174.105

* TAP =  Thallium Acid Phthalate LIF  =  Lithium Fluoride PET  =  Pentaerythritol (CsH i20 4) 
LDE  =  Tungsten-Silicon combination with 2d=60.9

The atomic percent ratio of Ti/Al elements for 3%TiC>2 composition in as-fired 

samples and H2 annealed samples is shown in figure 5.13. The chart might be 

interpreted as showing a marginally higher dissolution of titanium oxide in AI2O3 

for the H2 annealed sample. However, looking at the degree of scatter over 5 

different readings, it may be safer to predict that there is no significant increase in 

the dissolution of Ti02  in AI2O3 with H2 annealing in this sample. Thus, the 

results from these samples disagree with the argument of Tsaur and Kroger {50} 

and also Watanabe et al {106} regarding increased dissolution of titanium oxide in 

alumina grain on annealing in H2. In other words most of the TiC>2 in >1% 

compositions is forming the Ti rich precipitates irrespective of whether the 

samples are as fired or H2 annealed. Identification of components formed on TiC>2 

doping has been carried out using XRD and TEM.

5.1.2. Identification o f Phases

Individual phases have been identified using X-ray diffraction (XRD). The XRD 

equipment used is 'Philips Analytical model PW1720/00' with 'Philips PW1877 

PC-APD' version 3.5b diffraction software. The anode is Cu and the scan rate 1 

degree per minute. The X-ray data for 3%TiC>2 composition shows (figure 5.14) 

mainly AI2O3 peaks. To identify the lower concentration phases such as the Ti 

based compounds, a batch a scan set up with scan rate of 0.02 degree per minute
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Figure 5.13: Ti dissolution in AI2O3 grain
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Figure 5.14: X-ray Diffraction pattern for 3%TiC>2 composition - short scan
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Figure 5.15: X-ray Diffraction pattern for 3%TiC>2 composition - long scan
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was tried. The 20 ranges were chosen to include mainly non-alumina peaks. This 

was carried out based on a set of x-ray data taken in a short scan, on base 

composition and Ti02  doped compositions, and identifying the 20 values in which 

Ti based phases could have been detected. The new data for 3%TiC>2 is as seen in 

figure 5.15. This is a combined graph of five different 20 ranges, 17.5-19.5, 26-29, 

33-34.7, 41-43.5, 46-48.5, 50-52.5 and 62-63.5. To compare the type and content 

of each phase formed for the different compositions, quantitative analysis is 

necessary.

For quantitative analysis the ‘Direct Comparison Method’, as explained by 

Cullity {180}, has been utilised. The peaks from each phase are normalised 

against the AI2O3 peak at d= 1.601, for each sample, by taking a ratio of the counts 

on the specified peak to the counts on AI2O3 peak. This ratio is represented in 

form of a percent peak height relative to the height of AI2O3 peak, on the Y-axis, 

such that higher the number, the higher the intensity of X-rays and the greater the 

quantity of that phase. This factor will be called as the quantity factor (QF). The 

possible degree of scatter was calculated by taking 4 scans from two different 

3%TiC>2 samples. The approximate error in the peak height is - 12%.

5.1.2.1.Phases in as fired composition

The possible phases formed and their concentration, have been compared for 

different TiC>2 concentration (figure 5.16), taking the XRD from the base 

composition as the reference. Due to large number of elements present in the 

composition, many different phases may be present and the peaks from one phase 

may be interfering with other phases. To avoid the complexities from such a 

situation, only a few major peaks comprising of Ti4+ phases are compared and 

discussed.

In the base composition (figure 5.16(a)), the major peak at 20 = 28.02° is the 

CaAl2Si2 0 g (anorthite) peak. With the addition of 3%TiC>2 to this composition, 

A^TiOs is formed (figure 5.16(c)). With a further increase in TiC>2 added to the 

sample, the concentration of A^TiOs increases considerably and additional 

titanium oxide peaks are formed. From d values this peak can be construed as 

from Ti20  and TisOs, a form of Ti2C>3!Ti0 2 . Although it is unlikely that the
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reduced state of TiC>2, Ti2C>3 can form in an as fired material, for the time being 

we can call them as the titanium oxide phases. The concentration of these A^TiOs 

and titanium oxide increases considerably at 10%TiO2. Thus on addition of 

3%TiC>2 to the base composition, the A^TiOs peak increase by a factor of 1. With 

increase in TiC>2 by another 1%, the A^TiOs peak increases by a factor of 4 and 

other titanium oxide peak increase by 1.5. When the TiC>2 concentration increases 

a further 6 percent, at 10% TiC>2, the A^TiOs concentration has increased by a 

factor of 12. This indicates that above 3%Ti02  there is an exponential increase in 

Ti containing phases with increase in TiC>2 content.

5.1.2.2.Phases in H2  annealed composition

Figure 5.17 shows the XRD patterns for the 3%, 4% and 10%TiC>2 compositions. 

The A^TiOs peak for 3%TiC>2 sample (figure 5.17(a)), seems to have become 

shorter as compared with the as fired peak (figure 5.16(b)). However within the 

degree of error ( - 12%) we can safely say that it has stayed unchanged, except that 

it has shifted marginally. The fall in A^TiOs peak is more obvious in 4% and 

10%TiC>2 patterns (figures 5.17 (b) and (c)). Notably, the 10%TiC>2 peak height 

has decreased by 50%. Surprisingly, the 20 = 28° (d=3.18) peak has increased. 

Though it was stated earlier (for base composition) that this is an anorthite peak, 

here it may well be due to a Ti based phase having d values close to anorthite, for 

example, Ti02  -rutile (d=3.25,1=100). Furthermore the Ti20  peak seems to have 

been eliminated, though there is a greater likelihood of this phase being formed in 

H2 annealed sample. Possibly it might have just shifted.

Nevertheless one clear conclusion that can come out of this study is that the 

concentration of A^TiOs reduces on annealing in H2. The compound might be 

converting into TiC>2 +AI2O3. However theoretically it is known that the 

conductivity increases with the Ti reducing from the 4+ state to the 3+ state, 

resulting in the formation of ^ 0 3 . The exclusive Ti2C>3 peaks are mainly at d 

=1.7 (20 = 53.8) which might be masked by the 45%Al2(>3 peak at d = 1.74. A 

60%Ti2C>3 peak is at d = 2.57 (20 = 34.85) which might combine with the 60%
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Figure 5.16: Normalised XRD patterns for as fired samples
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Figure 5.17: XRD patterns for H2 annealed samples
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A^TiOs peak at d = 2.65 or is more probably masked by the 90% AI2O3 peak (d = 

2.55). However the existence of a Ti2C>3-Ti02  as a TisOs peak was observed in 4% 

and 10%TiC>2 composition X-ray diffraction patterns. A closer look at the 

formation of these phases is possible in the TEM study.

5.1.2.3. TEM studies on as fired samples

The TEM sections studied were mainly the as fired T3 and T10 sample 

composition. In the T3 sample, few grains were pure AI2O3, as shown in figure 

5.18. The diffraction pattern (figure 5.19) was indexed for corundum. However 

most of the grains contained a small amount of dissolved Ti. AI2O3 grains in the 

10%TiO2 composition had similar EDX traces, a typical example is shown in 

figure 5.20. The diffraction pattern in figure 5.21, from this grain could not be 

indexed directly for (X-AI2O3. This might be due to the changes to the AI2O3 lattice 

on dissolution of TiC>2.

A very few grains in the 3% TiC>2 sample and a large number of grains in the 

10%TiC>2 composition have nearly equal intensity of Al and Ti peaks. 

Figure 5.22(a) shows an example for one such crystal from the 3%Ti02  sample 

with the EDX pattern in figure 5.22(b). This could be some form of aluminium 

titanate crystal. The diffraction pattern from this sample is shown in figure 5.23 

(a). The d values calculated are shown in figure 5.23(b). The d values resemble 

those for AbTivOis, but, these could not be indexed. An aluminium titanate crystal 

in the 10%TiC>2 sample, shown in figure 5.24(a) with its associated EDX trace in 

figure 5.24(b) had a diffraction pattern as shown in figure 5.25(a). This was 

indexed to the A^TiOs -orthorhombic form with unit cell parameters as : 

a = 9.439, b = 9.647 and c = 3.593

The pattern was indexed to this crystal as shown in figure 5.25(b). At a different 

orientation for the same sample, the diffraction pattern (figure 5.25(c)) with d 

values as in figure 5.25(d), could not be easily indexed.
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Figure 5.18: (a) Marked AI2O3 grain giving the (b)EDX pattern
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(a) (b)
Figure 5.19: (a) Diffraction pattern from AI2O3 grain and (b) indexing for corundum
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Figure 5.20: EDX at an AI2O3 grain in 10%TiO2 sample

(a) (b)
Figure 5.21: (a) Diffraction pattern at an A I 2 O 3  grain in 10%TiO2 sample and

(b) d values
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Figure 5.22: (a) Marked Al-Ti grain giving the (b)EDX pattern

d = 1.54 d = 1.74 d = 1.49
•  •  •

0 0 0  d = 4.17

(a) (b)
Figure 5.23: (a) Diffraction pattern for an Al-Ti grain in the 3%TiC>2 sample and

(b) d values
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Figure 5.24: (a) Marked Al-Ti grain in 10%TiC>2 sample giving the (b)EDX pattern
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d = 2.20 d = 2.65 d = 2.23
•  •  •
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(c) (d)
Figure 5.25: (a) Diffraction pattern from A^TiOs grain for 10%TiC>2, (b) indexing for 

A^TiOs (c) Diffraction pattern for different orientation and (d) d values



5. Microstructure Evaluation 122

A few grains with high Ti content were seen in both the 3% and 10% TiC>2 

samples. These are probably titanium oxide grains. Figure 5.26(a) shows the Ti 

rich grain (figure 5.26(b)) in 3%TiC>2 sample. The diffraction pattern for this 

sample is as shown in figure 5.27(a). The calculated d values, shown in figure 

5.27(b) are close to TiC>2 - Brookite structure. However this could not be indexed 

and thus this structure of TiC>2 could not be confirmed.

The Ti rich crystal in the 10%TiO2 sample is shown in figure 5.28. The d values 

calculated from the diffraction pattern from this crystal (figure 5.29(a)) matched 

TisOs a form of Ti203!Ti0 2 , but could not be indexed to this. However it could be 

indexed to Ti203 -Rhombohedral (figure 5.29(b)) with unit cell dimensions: 

a = 4.758 = b , c =  12.991

The formation of this reduced form of TiCh, in as fired sample is really doubtful, 

even though some peaks of this material were visible in X-ray diffraction data as
^ I

well. (Section 5.1.2.2). Perhaps the Ti is formed in the high vacuum atmosphere 

during ion beam thinning operation. The formation of TiC>2 -Brookite structure, 

low temperature form of TiC>2, is also doubtful. The starting powder is TiC>2 - 

anatase (XRD values in appendix B) which on heating normally will be expected 

to convert to TiC>2 -rutile. However here under the influence of various other 

materials it might be stabilising into the Brookite structure of TiC>2.

5.1.2.4. Form ation o f  Glass and other compounds from  additives

The three components of the microstructure are the AI2O3 grains, TiC>2 rich areas, 

which have been discussed earlier, and the intermediate glass between the grains. 

The distribution of these phases in the 10%TiO2 composition can be seen from 

figure 5.30. The glass forming additives are SiC>2, CaO and MgO. The objective of 

this section is to identify the distribution of these additives and the components of 

the glass. Glass in its base composition and EDX pattern are shown in figure 5.31 

(a) and (b) respectively. It is known that in liquid phase sintered alumina, the 

calcium aluminate glass is amorphous {181}.)
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Figure 5.26: (a) Marked Ti-rich grain in 3%TiC>2 sample giving the (b)EDX pattern

(a) (b)
Figure 5.27: (a) Diffraction pattern at Ti-rich grain in 3%TiC>2 sample and (b) d values
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Figure 5.28: (a) Marked Ti-rich grain in 10%TiO2 sample giving the (b)EDX pattern
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(b)
Figure 5.29: (a) Diffraction pattern from Ti-rich grain in 10%TiC>2

(b) indexing for Ti2C>3
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A TEM micrograph taken from the glass in the as fired 3%TiC>2 sample is shown 

in figure 5.32(a). The EDX trace is shown in figure 5.32 (b) and the diffraction 

pattern in figure 5.33. Another TEM picture from glass shows its rough surface 

(figure 5.34). This might be due to the preferential ion milling. A similar EDX for 

glass, figure 5.35(b) in the 10%TiC>2 composition (figure 5.35(a) also shows a 

similar degree of dissolution of Ti in the glass. From the diffraction pattern of 

3%Ti(>2 its is clear that in TiC>2 doping, there is no secondary crystalline phase in 

the glass and it remains amorphous. Thus Ti02  is dissolving into the glass and 

becoming a part of the liquid. The question as to whether the TiC>2 in the glass 

increases its conductivity will be discussed in the next chapter. The Al peak in 

glass would be due to dissolved AI2O3. This has been reported by Brydson et al 

{181}.

From the results discussed above, it is clear that the SiC>2 is present exclusively in 

glass. However CaO and MgO were found at other places as well, as explained 

below. A Ca rich area was found within the AI2O3 grain in the 3%TiC>2 

composition (figure 5.36). Also the diffraction pattern (figure 5.38 (a)) from a 

similar Ca rich area (figure 5.37) shows a ring pattern. The d values calculated 

(figure 5.38(b)) could not be matched with any calcium aluminate compound. The 

EDX pattern taken from a grain boundary in the 10%TiO2 sample (figure 5.39), 

indicates the presence of a compound containing mainly calcium and titanium. 

The diffraction pattern (figure 5.40) showed it to be amorphous. Some weak rings 

on the outside of this pattern are evidence of the presence of very fine precipitates.

Magnesium aluminium titanate crystals were observed in the 10%TiO2 sample. 

All the crystals marked 0  in figure 5.41 (a) had very similar EDX pattern 

(figure 5.41(b)). The glass nearby marked 0  had negligible Mg (figure 5.41(c)). 

Individual crystals showed relatively high amounts of Mg along with Al and Ti. 

The diffraction pattern in figure 5.42 did match some of the Mg-Al-Ti compounds 

namely Mgo.3Al1.4Ti1.3O5 and Mgo.6Alo.8Ti1.6O5, but could not be confidently 

indexed. Nevertheless the first compound could be formed from a solid solution of 

A^TiOs and MgTiOs {182}. This crystal may be a mixture of both these 

compounds. The surrounding grains were aluminium titanate (marked 'x') or pure 

AI2O3 (marked'+').
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Figure 5.30: Distribution of glass and other grains in 10%TiO2 sample
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Figure 5.33: Diffraction pattern of glass in the 3%TiC>2 sample

Figure 5.34: Glass in the 3%TiC>2 sample
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Figure 5.40: Diffraction pattern at Ca-Ti rich area in 10%TiO2 sample
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5.1.3. Quantitative Analysis fo r  Distribution o f  TiC> 2 in AI2 O3 .

The objective of this study was to identify the percentage of Ti rich precipitates 

formed in the network. For this the image analysis on the 1000-X magnification 

back-scattered images has be carried out. The image is assumed as consisting of 

two phases, the bright Ti rich phase and the dark phase that includes alumina, 

glass and porosity. The software used was developed by Optimas Corporation 

‘Version 6.1*.

The analysis involved the following steps:

(a) Area identification: Area on which image analysis is carried out is shown 

within the dotted line box in figure 5.43 (2%TiC>2 picture) The area chosen for 

all other images was similar, i.e. not including the marker.

(b) Binarise: The image is converted into two-colour format by converting into 

8bit grey. Thus the image is now converted into two phases, the bright phase 

as the Ti rich precipitates and the dark as all other phases.

(c) Filter: Some images show a very high number of white spots due to the noise 

in the back-scattered picture, the 4%Ti02 picture is special example. A filter 

“Gaussian 5x5” was found to be the most appropriate method to isolate this 

noise and measure only the genuine Ti rich precipitates.

(d) Area measurement: The area of each of these phases is measured 

automatically and the percent of each calculated. The values for various TiC>2 

compositions is shown against their picture in figure 5.43.

The percent area of Ti rich phases shows an increase from 2% to 3%Ti02 and this 

then decreases in the 4% and 5% Ti02 and increases again in the 10%TiO2 image. 

The trend is similar to that of the activation energy (figures 4.19) and resistivity 

(figure 4.15) for these compositions.

The Ti rich area in the 3%TiC>2 + 0.5%V2C>5 composition is:

Ti rich area = 28%

Dark Area = 82%

which is similar to that of the 3% Ti02 as is also the trend for its resistivity, i.e. 

dropping sharply (figure 4.16). However the reasons for the difference between 

the resistivity values of the two compositions, are discussed in the next chapter.
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Ti Rich Area = 24%
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Figure 5.43: Results of image analysis
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At a first stage a simplistic explanation could be that the percent Ti rich area and 

the activation energy of the sample are related. However, a more clear reasoning 

may arise from describing the structure in terms of two-dimensional Voronoi 

networks.

The microstructure in figure 5.43 has been modelled using the Voronoi network 

model as was done by Bartkowiak et al {183} for ZnO varistors. The Ti rich 

bright spots in l%Ti02  are assumed to be the randomly distributed Ti sites, which 

grow with the addition of TiC>2 to the network. The steep fall in resistivity can be 

related to these Ti sites reaching a level and becoming connected in the 3%TiC>2 

sample i.e. reaching a near percolation threshold. The percolation threshold in 2D 

as discussed by Jerauld et al {184} was 33%. In a 3D network the average number 

of neighbours in the lattice increases and the bond percolation threshold varies 

from 10% to 17% depending on the structure of the network {185}. Though the 

values for 2D do not agree with the percentages calculated from image analysis in 

figure 5.43, previous works have shown that the factors that govern this value are 

many and were calculated for a specific network under the appropriate 

assumptions.

From an examination of the microstructures, the transition in the growth of Ti 

sites from 1% to 3%TiC>2 can be considered to reach a state of percolation 

threshold. In 4% TiC>2 though, the growth of Ti rich area is still fairly high but the 

number of Ti sites has reduced resulting in a pre-percolation threshold. Again at 

10%TiO2 the number of these sites has increased to reach a percolation threshold. 

Thus for Ti in AI2O3 the percolation threshold can be considered to be -25% in a 

2D network.

5.2.Grain Size

The grain size of the base composition, as discussed earlier, is one of exaggerated 

grain growth (figure 5.44). With the addition of l%Ti02  the grain size nearly 

doubles (figure 5.45) and increases further at 3%TiC>2 with greater numbers of 

abnormally large grains (figure 5.46). Exaggerated grain growth may be the 

reason for the lowering of the density (figure 3.7(a)) and flexural strength (figure 

3.8) with increase in TiC>2 content. The grain size in 4% (figure 5.47) and 10% 

TiC>2 (figure 5.48) is similar to the 1% composition. This could be due to the
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reduced distribution of Ti02 in the compositions above the 3%TiC>2 compositions 

(section 5.1.3). The TiC>2 agglomeration is visible in figure 5.49 in a 4%TiC>2 

sample.

The composition Ml containing no MgO and CaO in the glass, shows a structure 

of fairly uniform and small grain size, ~ 2-3pm (figure 5.50). This seems contrary 

to the accepted wisdom that MgO addition to alumina is responsible for a 

controlled grain growth and small grain size, while Ti02  causes exaggerated 

growth. However the reason for the small grain size here is the lack of formation 

of glass at the sintering temperature due to the absence of glass forming aids such 

as CaO and MgO. This is obvious from the lower density, high porosity (figure 

3.7 (c)) and lowered flexural strength (figure 3.8). The steep fall in resistivity of 

this composition in the as-fired condition could be related to the small grain size. 

The alumina grain being a very high resistivity material, most of the conduction 

would be expected to take place through the grain boundaries, that are now larger 

in number.

It has been concluded by many authors that CaO is responsible for exaggerated 

grain growth in alumina {147-150}. The small grain size in the Ml composition 

could be the cause of the absence of CaO. This is apparent through the example of 

3%Ti02 +0.5%V2O5 sample (figure 5.51(a)), where a larger grain had some Ca 

dissolved in it (figure 5.51(b)) while the smaller grain had none (figure 5.51(c)). 

Thus removal of CaO might help in reducing the grain size and consequently the 

resistivity. However this would have an effect on the physical properties 

particularly the density (figure 3.7 (c)). Thus this method of reducing the 

resistivity is not recommended.

The grains in the base composition showed hexagonal arrays of dislocations 

defects in form of sub-boundaries (figure 5.52). The dislocations in the grain were 

also seen in the 3%Ti02 composition (figure 5.53). Dislocations can affect 

electrical properties as they can be potential barriers for current carriers, or can be 

charge traps. Nevertheless they may not influence the conductivity if  the major 

conductivity path is the grain boundary rather than the grain interior. The 

predominant type of conductivity in alumina will become clear from the 

discussion in next chapter.
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Figure 5.44: Grain size distribution in base composition sample

Figure 5.45: Grain size distribution in l%TiC>2 sample

Figure 5.46: Grain size distribution in 3%Ti02 sample
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Figure 5.47: Grain size distribution in 4%TiC>2 sample

Figure 5.48: Grain size distribution in 10%TiO2 sample

Figure 5.49: 4%Ti02 grain structure showing Ti agglomeration
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Figure 5.50: Grain size distribution in Ml sample
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Figure 5.51: (a)3%Ti02 +0.5%V2O5 sample with

(b) X-ray-1 at large grain and (c) X-ray-2 at small grain
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200nm

Figure 5.52: Dislocations in the grains in Base composition

200nm

Figure 5.53: Dislocations in the grains in 3%TiC>2 sample
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CHAPTER VI 

DISCUSSION

This chapter covers

S  the interpretation o f  electrical resistivity 

results in the light o f  microstructure 

V discusses the probable charge carriers in T3, 

TV5 and T10 samples
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6. D I S C U S S I O N

The summary of the results of electrical characterisation is as follows.

The compositions used were made up of the base composition, which is 94% AI2O3 

containing no TiC>2, and compositions with 0 .1% to 10%TiC>2 added. Two sets of 

samples for each composition were tested, these were as-fired and annealing the fired 

samples in H2. In the as-fired sample, addition of TiC>2, even as low as 0 .1%, resulted 

in a drop of up to 2 orders of magnitude in resistivity and stayed unchanged with 

further increase in TiC>2 addition. The resistivity dropped further, up to 2 orders with 

the addition of V 2 O 5  to the TiC>2 doped composition. Annealing in H2 resulted in no 

major change in resistivity for the samples up to 2%Ti(>2. However, on increasing the 

Ti02  doping to 3% (sample T3) the resistivity decreased by nearly 9 orders of
n

magnitude. A similar steep drop of ~10 was also visible in 3%Ti(>2 +0.5%V2Os 

composition (sample TV5). The resistivity increased again by 106 at 4% TiC>2 (sample 

T4 and T5)) and decreased again at a Ti(>2 concentration of 10% (sample T10).

It is apparent that the trend of change in resistivity, especially the steep decrease for 

sample T3, TV5 and T10) is affected by the distribution of Ti(>2 and V2O5 in the 

AI2O3 network. This has been studied in the following section. Furthermore the wide 

difference in the results of as-fired and H2 annealed samples is due to the different 

charge carriers operative in the two samples. The nature of the possible charge 

carriers have also been discussed.

6.1. Decrease in resistivity with the addition of TiC>2

On addition of a small amount of Ti02  to the base composition, it was found to 

dissolve into the A I 2 O 3  grain, dissolve in the glass and also precipitate in the form 

of isolated pockets in the A I 2 O 3  matrix. In the base composition, it can be safely 

assumed that the conduction is through the glass phase and not through the high 

resistivity A I 2 O 3  grain. With the addition of TiC>2 to the glass, the conduction 

increases marginally and remains unchanged with a further increase in TiC>2 

concentration (figure 4.11). This is in line with the discussion in section 5.1.2.4 

where the dissolution of TiC>2 in the glass remains constant with increase in TiC>2 

addition to the base composition.
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A similar reasoning is possible if AI2O3 is the conducting medium. Though AI2O3 

in the base composition would have carried no current, in a doped composition, 

the modified lattice, due to Ti incorporation, can become another charge carrying 

medium. It might be possible that the conductive medium has changed from the 

glass to alumina grains in the doped compositions. This is more likely because the 

glass is isolated to some extent, unlike the AI2O3 grains which are all 

interconnected. This could be the reason for the sudden fall in resistivity at 

0.25%TiO2 shown in figure 4.11. Nevertheless, since the dissolution in AI2O3 

reaches a saturation limit even at this low concentration of TiC>2, any additional 

TiC>2 forms precipitates at the grain boundary and this does not contribute to the 

conductivity of the alumina. As a result the resistivity remains unchanged. At 3% 

TiC>2 the Ti precipitates have become numerous and are now blocking the 

conduction through AI2O3 resulting in a marginal increase in resistivity.

However, this trend takes place only in the as-fired compositions. The H2 

annealed samples have shown an interesting trend in the change in their 

resistivity. Especially of interest are the 3%Ti0 2 , 3%TiC>2 + 0 .5%V2Os and 

10%TiO2 compositions, which have shown very low resistivity compared to other 

compositions. The first assumption made here is that the Ti rich precipitate has 

now become conductive. This transition of the Ti rich precipitate from being 

insulating to conducting will be discussed later in this chapter. In the meantime 

the fall in resistivity in the 3%Ti02  composition is considered to be related to the 

Voronoi network discussed in the last chapter.

6.1.1. The Percolation Effect

A steep increase in the Ti rich white area in the 3% TiC>2 has been discussed as 

demonstrating a percolation effect* (section 5.1.3). The steep fall in resistivity 

(figure 4.15) is considered a result of this percolation. The trend can be explained 

based on Stauffer's {187} theory that the current now flows only through the

t  Percolation theory deals with clusters o f  neighbouring sites such that each site o f  a very large 
lattice is occupied randomly with probability p, independent o f  its neighbours. A concentration p  
when an infinite network gets form ed in an infinite lattice, such that the cluster extends from one 
side o f  the system to other, is defined as a percolation threshold. Below this threshold the 
connectivity in the lattice does not exist. {186}
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conducting Ti rich phases rather than through the insulating alumina or glass. 

Thus the conductivity network in the 3%TiC>2 has changed to the Ti rich regions, 

from the alumina/glass regions in <2%TiC>2 compositions. This can explain the 

fall in activation energy from ~0.9eV to 0.3eV, i.e. the former is the activation 

energy of alumina/glass network while the latter is that of the Ti network. Similar 

activation energy values (figure 4.19) and microstructure of the 

3%TiO2+0.5%V2O5 system, indicates that the conducting species is similar to the 

3%TiC>2 composition.

Furthermore, in a percolating network, one would expect that the conductivity of 

the system would be proportional to the volume fraction of conducting Ti rich 

phases. However earlier experiments on metal conductors have shown that this is 

not the case {188}. This is because the “dead end” clusters* formed due to the 

additional volume fraction, contribute to the additional mass of the percolating 

network, but not to the electrical current carrying capacity of the system. Thus we 

can expect that any additional TiC>2 added to this system should result in the 

conductivity being no more than the threshold value seen for 3%TiC>2. However 

the results for 4%Ti02 (figure 4.15) unexpectedly show that the resistivity has 

increased steeply to the level it was at in the 2%TiC>2 composition.

6,1,2, Increased Resistivity at High Ti02 Percentage

Looking at the microstructure of the 4%Ti02 sample in figure 5.43, we can see 

that the percolating network has broken down and the Ti rich phases have 

agglomerated. Similar agglomeration is also visible in the 5% and 10%TiO2 

compositions, although in the 10% composition the Ti rich agglomerates have 

become more numerous and formed a near percolation path again resulting in a 

steep drop in resistivity, though to a lesser extent than for the 3%TiC>2. It can be 

interpreted that in compositions containing >4%TiC>2, the agglomeration of the Ti 

is the reason for its lack of dispersion in the alumina network, and the conducting 

phase reverting to the A^CL/glass. This is suggested as the reason for the 

increased activation energy, resulting in an increase in the resistivity.

)K D ead end clusters are the conducting areas not attached to the percolation/conducting path.
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The possible explanation for this agglomeration could be inadequate mixing 

leading to improper distribution of Ti02. To overcome this the material was again 

prepared and the mixing time doubled and subsequently tripled. An adequate 

quantity of dispersant (Dispex) was also used. The processing and firing 

conditions were kept exactly the same. The resulting microstructure for the double 

(figure 6.1(b)) and triple (figure 6.1(c)) mixing time showed no improvement with 

the agglomeration of Ti phases when compared with the original 4%TiC>2 sample 

(figure 6.1(a)). Additionally the electrical resistivity values for as-fired and H2 

annealed samples were similar for all the three cases. This led to the conclusion 

that there was a deeper explanation for this difference.

6.1.2.1. Reasons for agglomeration ofTiC>2 rich phases

6.1.2.1.1. Role o f  MgO

The composition of Ti rich phases was studied using EPMA. Typical chemical 

composition data, as-received from the EPMA for the 3%TiC>2 mixture are:-

Element Peak Net (cps) Atom %

Mg 107.450 1543.3 1.6263

Al 90.585 43678.6 29.6891

0 109.510 6467.8 23.765

Ti 191.080 1159.5 10.6039

Si 77.375 181.1 0.1254

Ca 107.420 61.9 0.0436

A ratio of Mg/Ti and Al/Ti for each result was calculated and the average for each 

composition plotted as in figure 6.2. It is clear that the T3 sample with 3%Ti02 

has a higher percentage of Mg at bright sites as compared to those with 4%, 5% 

and 10%. With increase in Ti, it is expected that the Mg/Ti ratio will decrease 

slightly, but the drop in the ratio from 3% to 4% TiC>2 in T3 to T4 sample is steep. 

Furthermore the ratio is similar with an increase in TiC>2 from 4% to 10%. This is 

sufficient reason to suggest the formation of a different phase in the >4% 

compositions as compared with the 3%TiC>2 composition. However no Mg-Ti 

compounds were seen in the XRD results in figure 5.16. This may not be 

sufficient explanation for the absence of Mg-Ti compounds, as most of the peaks
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Figure 6.1: 4%Ti(>2 composition (a) normal mixing time 
(b) double mixing time and (c) triple mixing time
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Figure 6.2: Ratio of atomic percent (a) Mg/Ti (b) Al/Ti calculated from EPMA results
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of Mg-Ti or Mg-Al-Ti compounds coincide with AI2O3 peaks (figure 6.3). The 

latter being strong peaks will tend to mask the Mg-Ti peaks.

Since it was not possible to confirm the presence of Mg-Ti compounds from the 

XRD results directly, an indirect method was tried. A sample was prepared with 

3%TiC>2 dopants but without the other glass forming additives. This composition 

is called ‘pure alumina-3%Ti0 2 ’ composition and designated as PAT3. This 

composition will have negligible* Mg-Ti compounds as there is no MgO added to 

the composition. The peaks were normalised for the quantitative analysis of XRD 

data. Now the height of the peak, as discussed in section 5.1.2, is a quantity factor 

(QF) equal to the ratio of phase peak to the 80%Al2O3 peak from the same sample. 

The number on the y- axis is an arbitrary value signifying the quantity of a phase 

for relative comparison purpose only.

The quantity of AI2DO 5 in PAT3 sample composition is compared with the T3 

and T4 samples in figure 6.4. It is clear that the pure alumina composition PAT3 

shows a higher AI2D O 5 concentration than the T3 composition. This shows that 

absence of MgO in PAT3 has resulted in a higher concentration of AI2D O 5 while 

in the T3 sample the presence of MgO results in some Ti02  going into the 

formation of Mg-Ti containing compounds and with a resultant decrease in 

AI2D O 5 concentration. Furthermore in the T4 composition the AI2D O 5 

concentration increases to the same level as in the pure alumina (PAT3) 

composition. Based on the argument above the reason for Ti agglomeration could 

be explained as follows:

1% MgO presence in up to 3% TiC>2 may shift the kinetics towards the formation 

of Mg-Ti compounds rather than Ti rich compounds such as A^TiOs. The 

formation of the former compounds will require a lesser amount of Ti0 2 , 

producing a greater distribution of Ti rich area. In this composition the ratio of 

Mg/Ti may be a threshold limit to promote the formation of Mg-Ti compounds. 

These compounds are present in sufficient quantity to form an interconnecting 

network when reaching the percolation threshold.

* Even the pure alumina composition will have traces o f  MgO present, which might form a very 
small peak o f  Mg-Ti, that can be ignored when comparing with the peaks o f  samples where 
!%MgO has been added i.e. T3 sample.
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At the 4% Ti0 2  level, the Mg/Ti ratio is lower than the threshold and the kinetics 

o f reaction shift towards the formation of a greater quantity o f the Ti rich 

compounds. These compounds then require a higher quantity of TiC>2 causing a 

shortage o f TiC>2 for wider distribution to form an interconnection and thus 

breaking the percolation network.

The importance o f MgO for the wider distribution of Ti4+ compounds can be 

further supported from observations on the microstructure o f the pure alumina 

compositions. The lack of Mg in pure Al2 0 3 -Ti0 2  compositions also results in the 

agglomeration of Ti rich areas in the 3 & 5 %Ti0 2 , resulting in a microstructure 

(figure 6.5) similar to the T4 sample (figure 6.1).

The type of Mg-Ti compound formed may be same in all the TiC>2 doped 

compositions. As was shown by the TEM for the T10 sample, discussed in section 

5.1.2.4, this may be a A^TiOs + MgTiOs phase.

6.1.2.1.2. Colloidal coagulation

Another explanation for the agglomeration o f the Ti rich area in the T4 can be 

made based on colloidal theory. It is known that in colloids the collision between 

two similar particles can lead to a permanent contact between the colliding 

particles resulting in coagulation {189}. With increase in particle concentration 

the probability o f collision increases and the probability of coagulation increases. 

Furthermore in the case of polymer adsorption on particles, if  the polymer 

concentration is sufficiently low, such that the rate o f particle collisions is faster 

than the rate o f polymer adsorption, polymer chains can be co-adsorbed on more 

than one particle, forming polymer bridges. At a higher concentration, the bridges 

formed may be disrupted as polymer adsorption continues and bridging 

flocculation occurs, leading to open floes {190}. A similar explanation may be 

relevant in the present system. If we assume TiC>2 is being absorbed on the surface 

of AI2 O3 particles and forming a solid solution of Al2 0 3 -Ti0 2 , then bridges are 

formed at the TiC>2 concentration o f 3% which get disrupted at 4%, leading to 

coagulation of Ti rich agglomerates. Also the “Theory of sedimentation process” 

suggests that the rate o f flocculation is directly proportional to the particle size and 

the concentration o f particles {191}. This can be used to explain the possible
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(a) (b)
Figure 6.5: Back scattered pictures from pure alumina compositions 

(a) 3 %Ti0 2  and (b) 5 %TiC>2
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Figure 6 .6 : Conductivity map in TiC>2 doped AI2O3
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flocculation with increased concentration o f Ti02 in the 4%TiC>2 composition. The 

likelihood o f this happening during the mixing stage can be ruled out due to the 

presence of sufficient quantity of dispersant. In summary, at 4%Ti02, the 

concentration has crossed a threshold to stay distributed and thus forms Ti rich 

agglomerates.

In conclusion, 3%Ti02 is a threshold limit to form a percolation network of Ti rich 

compounds which lower the resistivity of AI2O3. At 4% the TiC>2 rich compounds 

have coagulated resulting in increased resistivity. The coagulation is possibly a 

result o f TiC>2 concentration becoming too high either to stay distributed or due to 

the shift of kinetics towards the formation of compounds requiring a larger 

quantity o f Ti02. These coagulates again become interconnected at 10% TiC>2 

concentration to reduce the resistivity. A map of conductivity, and the relevant 

microstructures on which the discussion above is based is shown in figure 6.6.

The formation o f a percolation network of TiC>2 rich compounds has resulted in 

>106 reduction of resistivity only for samples annealed in a low P02 (H2) and not 

those fired in high P02 (as-fired in air). The reasons for the transition in Ti rich 

compounds from being non-conducting in the as-fired state to conducting in the 

H2 annealed state can be due to a change in charge carrying species. The possible 

charge carriers in various compositions are thus worthy of discussion. Also, the 

similar activation energy of the 3%TiC>2 composition and the 

3%TiC>2 + 0.5%V2C>5 composition could be explained based on the nature of the 

charge carriers.

6.2. Possible charge carrier

Possible charge carriers for the various compositions can be proposed based on 

the results in this study and on previous work on other TiC>2 based materials.

6.2.1. Charge Carrier in as-fired Samples

6.2.1.1. In base composition

In pure alumina, the conductivity as given by Endl and Hausner { 192} could be
■51

due to Al ions at low temperature, supplemented by a stronger electronic 

conductivity at high temperature. Additionally the presence o f oxygen vacancies
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in alumina has been reported by many authors {9,18}. However the occurrence of 

any ionic conduction below 1200°C has been opposed by some authors {50,60}. 

Nevertheless Vo** could be a carrier for ionic conductivity at low temperatures in 

alumina. Thus the high mobility electronic carriers are in a minority and the low 

mobility ionic carriers are the major current carriers at ambient conditions (room 

temperature and po2= latm), that is why AI2O3 is such a good insulator at room 

temperature. Similarly in the presence of MgO, AI2O3 conductivity is governed by 

the MgAi1 defect.

6.2.1.2. In sample with 3%Ti02

In the case of AI2O3 doped with Ti02, a proportion of the Ti02 dissolves into the 

AI2O3, as was determined by the EPMA results (section 5.1.1.3). It has been 

postulated earlier that in the as-fired samples, the resistivity o f the 3%Ti02 sample 

is high. The conduction is mainly through the alumina grains as the Ti02 rich 

areas are insulating in as fired samples. Based on the earlier publications, 

discussed in section 2.2.2, it is possible to assume that at the test temperatures o f  

the samples in this project (100-900°C) the conduction through alumina is 

electronic. Furthermore, the conductivity will be governed by the electrons 

generated in AI2O3 by the incorporation reactions {193}:

AI2O3 ^  2AlTi' + V0“ +3 0 0

A I2 O 3 -2A i r + f 0 2 +6 e'

2A120 3 ^  3 AlTi 1 + A lf  +6 Oo

The majority o f ionic carriers produced from the above reactions will have too low 

a mobility to cause any steep increase in the conduction through the alumina 

grains, thus resulting in a high resistivity ceramic.

The reason why the TiC>2 rich areas do not contribute to the conductivity under
19these conditions is the high resistivity of rutile (10 Q-cm) at room temperature 

and high P02 (=latm). However TiC>2 has a near semi-conduction band gap o f 3- 

3.5eV {73, 194} against a band gap 9eV for AI2O3 { 10}. The conduction is still
O i l

through alumina, because though TiC>2 has 10-10 charges/cm { 195} their 

mobility is only 0.2cm2/V.sec { 196}, while AI2O3, which has a charge density o f
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*X 9only lelectron/cm has a higher mobility of 200cm /V sec {59}. Ti02  which is 

also known to influence the conductivity of AI2O3 due to its tendency to become 

non-stoichiometric {102} has the nonstoichiometry of oxygen deficiency of only 

~ 10“3at% at these pressures even at temperatures of 1000°C {197}. That is why 

TiC>2 rich areas will have a higher resistivity than AI2O3, making them insulators 

and potential barriers to the conduction through alumina. Thus this material will 

have higher resistivity than the 2%TiC>2 sample. Thus in the as-fired T2 sample 

the activation energy is from the conduction through AI2O3 and in the as-fired T3 

sample the activation energy is higher (figure 4.19) due the conduction through 

the high resistivity AI2O3 grains being further blocked by the TiC>2 rich 

precipitates. It is only in the H2 annealed state that TiC>2 rich area is conducting. 

The charge carriers in this sample are discussed later in this chapter.

6.2.1.3. In sample with 3%Ti02 + 0.5%V2Os (TV5)

The TiC>2 in this sample formed a percolation path similar to that in the T3 sample. 

However unlike the T3 sample this composition had a lower activation energy and 

lower resistivity than 3%TiC>2 alone in the as-fired samples. It is suggested that his 

difference can be attributed to the presence of V2O5 in the composition.

Studies have shown that V2O5 dissolves into TiC>2 {198}, as was seen in the TV5 

sample where TiC>2 and V2O5 are present at the same position, i.e. in the Ti rich 

bright areas (figure 5.2). Herrmann et al {199} have shown that the resistivity of 

TiC>2 is reduced when the concentration of V2O5 impurity in it is above the level of 

4wt%, which coincides with the concentration level in this composition. This can 

be used to suggest that unlike in the T3 sample, the Ti rich area has now become 

more conducting than the AI2O3 grain. Thus the lower activation energy in the 

TV5 sample is due to the conducting species changing to the Ti rich bright phase 

rather than the AI2O3 grain in T3 sample (figure 4.19).

The importance of V2O5 causing this effect can be explained based on the results 

of the studies of the addition of a pentavalent oxide such as Nb5+ to Ti02 -rutile. 

On Nb5+ doping in rutile, the photocurrent density doubles {200} and electrical 

conductivity increases significantly {201}. Ti02  shows n-type semiconduction
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<1 i

with the predominant lattice defects present as Ti . Similarly work on catalysts 

has shown that the addition of V5+ cations to TiC>2-anatase results in increased 

conductivity with an n-type doping effect {202}. Based on these studies it is 

possible to propose that on addition of a pentavalent oxide such as V2O5 to TiC>2, a 

similar increase in n-type conduction can result. This explanation also applies for 

the other Ti02-V20s compositions (TV1 and TV3) which show a decrease in 

resistivity over the samples containing only Ti02 (figure 4 .13) even-though the 

existence o f similar effects in Al203-Ti02 system have not been reported.

Thus in conclusion, for the as-fired T3 sample (3%TiC>2 ) the activation energy 

increases over and above that o f the 2%TiC>2 sample due to highly insulating Ti 

rich phases blocking the charge carriers through AI2O3 grains. On V2O5 

dissolution into the percolating Ti phase, it becomes conducting and becomes the 

charge carrying path, resulting in a decrease in activation energy.

6.2.2. Charge Carrier in H2 Annealed Samples

On annealing the T3 sample in H2, the sharp fall in activation energy (figure 4 .19) 

and resultant resistivity (figure 4 .15) has been noticed. A similar sharp decrease in 

activation energy is also observed in the TV5 sample (figure 4 .19). Though the 

latter sample has higher resistivity than the former (figure 4.16). The reasons for 

the overall decrease in activation energy and the difference in the resistivity o f 

these two compositions can also be attributed to the change in charge carriers. 

This will be discussed further.

6.2.2.1. In 3%Ti02 sample

The works published linking the P02 with the change in conductivity of Ti02 

doped alumina have been of two types. Most of the publications cover the change 

in conductivity when the sample is processed in air and tested at low po2- Very 

few publications have studied the effect o f firing the sample in low P02 and then 

testing in air, as is the case in this project. However the conductivity behaviour at 

low P02 has been found to be similar for both the cases i.e. increase in 

conductivity on testing in low P02 or firing at low po2- Though no work exists on 

firing the sample in air and then annealing at low P02, previous work is useful in 

proposing the nature o f the charge carriers in TiC>2 doped samples.
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For TiC>2 doped A I 2 O 3 ,  a resistivity decrease in an argon atmosphere was noticed 

by Endl and Hausner {192}. They believe that this was due to the defect 

conductivity at low P02 as a result of Ti3+Ai3+ substitution following the reaction: 

Ti4+ + e '->  Ti3+

However Mohapatra and Kroger believe {80}, that Ti3+ being iso-valent with Al3+, 

should not contribute to an increase in conductivity while Ti4+ should result in the 

formation of substitutional defects (TiAi’) {107} and in this way cause an increase 

in conductivity. On the other hand Tsuar and Kroger {50} reported that the 

addition of Ti02  increases the alumina conductivity only by the formation of
o  1

aluminium titanate precipitates at the grain boundary. They also believe that Ti 

has greater solubility in AI2O3 and will reduce the quantity of A^TiOs and would 

be less effective in increasing the conductivity than Ti4+. Formation of some 

A^TiOs in the T3 sample has been discussed previously and if the latter statement 

were to be true, we should have seen a higher conductivity in the as-fired state as 

compared to the H2 annealed state. Thus these latter analogies do not fit the results 

in this study. Also the greater solubility of TiC>2 in the AI2O3 grain is not apparent 

from the EPMA results in figure 5.13. Thus the explanation of Mohapatra and 

Kroger {80} and Tsaur and Kroger {50} do not agree with the results in this 

study. The explanation of Endl and Hausner {192} is more in line with the results 

seen here.

Nevertheless, a more accurate explanation for the steep fall in resistivity on H2 

annealing is possible from the work of Gruber and Krautz {108}. They reported 

that TiC>2, when annealed in a reducing atmosphere and when in contact with other 

metal oxides, readily reduces to lower valence oxides, such as Ti2C>3, TiO and 

Magneli phases, T i n C > 2 n -i (n = 4-10) {194}. On oxygen depletion, when the T i 0 2  

composition approaches TiOo.3-0.5, the crystal structure changes from hep to fee 

and there is an increase in the number of d-electrons in the d-band. This results in 

a sharp increase in its conductivity and titanium oxide becomes semiconducting 

{108}. The same mechanism may be responsible for reducing the resistivity of Ti 

rich phase in T3 material. Thus the “bright” area is now becoming conducting due 

to Ti02  reduction and now is the main current carrying phase, rather than the



6. Discussion 157

AI2O3 present in the as-fired material, making the T3 alumina composition nearly 

semiconducting on annealing in an oxygen depleted environment.

Defects operative in DO2 rich precipitate:

Predominant defects responsible for the Ti02 conductivity have been identified as 

Vo” with both n-type or p-type conductivity possible, depending on the 

temperature. {203}. Kim et al {204} added the possibility o f the Tij4+ ion 

conducting, but only at temperatures above 1000°C. They agreed with Vo” being 

the major defect below 1000°C. The mechanism of conductivity within TiC>2 has 

been reported as the small polaron hopping for both electrons and electron holes 

{203} with an activation energy of ~ 0.2eV {205} which is very close to the 

activation energy o f 0.3eV for the T3 composition in this study.

The XRD and TEM studies discussed previously have shown the TiC>2 to be 

present in the form of A^TiOs and Mg-Ti compounds. It can be added that TiC>2 

present as A^TiOs or as magnesium titanate will also have similar defect structure 

to that discussed in the previous paragraph. Furthermore it has been reported that 

magnesium titanate is also semiconducting at room temperature with an activation 

energy o f 0.34eV {206}. This value is also similar to the activation energy value 

o f 0.3eV for the 3%TiC>2 composition.

Additional charge carriers in H2 annealed T3:

The discussion so far entails a single charge carrying species that is responsible 

for the conductivity in H2 annealed 3%Ti02 sample. However the complex 

impedance results show two separable curves (figure 6.7), unlike all other 

compositions that produce only single curve. This indicates that there is a 

possibility that a different species is also contributing to the conduction, especially 

because the activation energy is similar for both. One species is the 

semiconducting Ti3+, as discussed above. The other could be an ionic species. This 

belief is based on the lower DC conductivity value (figure 6.8) as compared with 

the ac conductivity. The possible ionic carrier could be the hydrogen radical (Hi*) 

which could form as a result o f heating in an H2 atmosphere. Generation of
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hydrogen donors following the H2 injection into acceptor dominated AI2O3 {93} 

and Ti(>2 film {208} has been reported. An increase in the ac conductivity as a 

result of H2 donating an electron to the conduction band of Ti0 2 , as reported by 

Pyun and Kim {208}, might be taking place. To further support this contention, 

samples were annealed in low P02 using helium rather than H2. A marginal 

increase in conductivity on annealing in an He atmosphere, as compared with a 

steep increase after H2 annealing (figure 6.9 (a)), could support this argument. As 

an alternate argument the two conducting species could be the Ti3+ at the grain 

boundary and in the grain interior.

To summarise this section, the increase in conductivity of T3 is due to the Ti4+,
1 1

becoming a semiconducting Ti , or other reduced forms, and probably a 

hydrogen radical Hi* both of which have similar activation energy of 0.3eV. This 

is irrespective of whether TiC>2 is present in free form or as A^TiOs or Mg-Ti 

phases.

6.2.2.2.Charge Carriers In 3%Ti02 +0.5%V2Oj sample

The microstructure of the percolating bright TiC>2 rich areas is similar for the 

3%TiC>2 + 0 .5%V2C>5 composition, which also has a low activation energy. Inspite 

of the similar activation energies of T3 and TV5 samples, the latter has higher 

resistivity. The similar activation energy indicates that the dominant effect on 

conductivity of this composition is the same as in the T3 composition i.e. the
o 1

reduced form, semiconducting Ti in the Ti rich bright area in figure 5.44. It is 

the vanadia which is playing the significant role in this change in resistivity from 

the 3%TiC>2 composition. Thus the operative mechanism here is based on a 

different reasoning.

Vanadium oxide is more easily reduced than TiC>2 {208}, and it may 

spontaneously transfer an electron to TiC>2, {202}.

e” (V2O5 )=>d~ (Ti02)

Thus V 2 O 5  will increase the electrons available for conduction in the Ti rich 

phase. The increase in the electrons from V 2 O 5  on reducing this composition in He
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annealing is the reason for its steeper increase in conductivity than the T3 sample 

(figure 6.9).

However on reducing this composition in the H2, the opposite trend of higher 

resistivity of the TV5 sample than the T3 sample is observed. This can be 

explained based on the work reported by Viparelli et al {202} and Sasaki et 

al{209}. The former found that vanadium oxide has a lesser effect on TiC>2 

conductivity {202} when it reduces from V5+ to V3+ {209}. The trivalent state 

(V3+) no longer has the same effect on TiC>2 as it had in the pentavalent state 

(V5+){202}. In other words it does not transfer the electron, to the TiC>2 .The phase 

now acts as a barrier to the movement of charges. Thus even though Ti3+ will be 

the main species responsible for conduction, V3+ will be the barrier to this 

movement thus resulting in the lower conductivity.

In conclusion, in the TV5 sample, the Ti rich area, similar to that in T3 sample, is 

the charge carrying component. However it shows relatively higher conductivity 

in the He annealed sample due to the generation of access electrons from reduced 

V5+, whereas it shows lower relative conductivity on H2 annealing, due to the
-5 . 1  1

reduced V acting as a barrier to the movement of Ti carriers.

6 .2.2.3. Charge Carriers in T10 composition

Conductivity in the 10%TiO2 composition (figure 4.15) can be attributed to the 

reduced Ti3+, present in A^TiOs agglomerates. Furthermore above 300°C the 

conductivity of the T10 sample starts decreasing rather than increasing. This 

might be due to the temperature coefficient of conductivity for titanium oxide 

becoming negative due to various factors of the experimental conditions {108}. 

This would explain the non-linear change in conductivity with increase in 

temperature above 300°C.

A map summarising the charge carriers in TiC>2 and TiC>2 -V 2 O 5  composition is 

shown in figure 6 .10.
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Figure 6.10: Charge carrier map in T3 and TV5 compositions

It is possible to relate the microstructures with conductivity v/s frequency 

response using a network of resistors and capacitors. This has been carried out 

the following section.
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6.3. RC Network Analysis for Impedance results

The electrical response of a material can be related mathematically to a 

combination of resistors and capacitors, arranged in an array of parallel and series 

connected components (figure 6.11), taken from the R-C network model as 

explained by Almond and Vainas {210}. The real (Z ')  and imaginary (Z " ) 

components of impedance are converted into conductivity ( a )  and relative 

permitivity ( e r ) for the 200°C measurements, using the equations:

Z' i
a  =  —  ----------

Z '2 + Z *2 A

Zff 1 1 t
£ f ~ Z '2 + Z "2 coe0 A

where t  -  thickness of sample, A = Area of cross-section, co = angular frequency 

= 27cf, and e0= permitivity of vacuum

The derivation for this equation is explained in Appendix C.

The conductivity and permitivity v/s frequency response for the base composition 

and 2%TiC>2 composition is shown in figure 6.12 and 6.13 respectively.

The plots can be explained in terms of microstructure and RC network shown in 

figure 6.11. We can assume that the resistors act as the conducting phase, which in 

this case is the Ti rich phase, and capacitors signify the dielectric, which in this 

microstructure is the alumina grain or glass, whichever has the lower conductivity. 

As discussed previously glass has a higher conductivity than alumina in the base 

composition.

It is clear from figure 6.14, that the 2%TiC>2 composition will have a very large 

number of capacitors and few resistors. Such a situation has been described by 

Vainas et al {211} as analogous to a non-percolating conducting phase consisting 

of 60% capacitors and 40% resistors. The conductivity response from the sample 

(figure 6.13) shows the pure resistive component of impedance at frequencies
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Figure 6 .11: RC network model of Almond and Vainas {211}
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Figure 6.14: 2%TiC>2 microstructure with few conductive and many dielectric parts

Figure 6.15: 3%Ti02  microstructure with large number of conductive parts
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below 1Hz. These are the glass resistors Rg. At frequencies of 1Hz to 500kHz, the 

resistance of the alumina capacitance (Cai) reduces to contribute towards the 

increasing conductivity of the system. The increase here follows a power law",

n ^  0.5. The same reasoning could be valid for the 0%TiC>2 composition. 

However due to no TiC>2 present in the glass, it has much lower conductivity. Thus 

the pure resistive region would be visible at a much lower frequency, as compared 

with 2%TiC>2. The small Ti(>2 inclusions (bright areas) are the resistors (R xi) in 

series with the large glass resistors. Their conductivity will be much higher than 

that of alumina or glass. As a result the contribution of these resistors to the total 

resistivity of the system will be insignificant.

The > 5 orders of magnitude increase in conductivity at 3%TiC>2 is due to the 

change in mechanism of conductivity and activation energy. A microstructure 

consisting of percolating Ti rich area, resulting in high conductivity has been 

discussed in section 6.1.1. This microstructure now represents a large number of 

high conductivity resistors (Rxi) and fewer high resistivity capacitors (Cai for 

alumina and Cg for glass) (figure 6.15). This situation is analogous to a percolating 

conducting phase equivalent to a network consisting to 60% resistors and 40% 

capacitors, as analysed by Almond and Vainas {210}. The new path for 

conduction is a Ti rich path due to the Rj\ « Rai and R g. The percolating path is 

indicated by the Rxi at low frequency connected in series across both the 

electrodes resulting in the resistive region, at a frequency below 1kHz (figure 

6.16). Furthermore, there may be other Ti rich areas which are not connected with 

the main percolating paths. Glass/alumina present here, are capacitors that are 

isolated and do not contribute to the conductivity at frequencies below 10kHz. At 

a frequency of 10kHz, the alumina/glass capacitors now start conducting and 

connect the unconnected TiC>2 rich paths with the main percolating path. This 

increases the strength of percolation and the overall conductivity. Due to the 

higher conductivity of the system, the alumina capacitors connect the conductivity 

networks at a higher frequency (5kHz) than in the 2%TiC>2 case (1kHz).

H Power law: It is widely found that {210} the ac conductivity (o) increases as a power o f
frequency (co) at high frequency i.e. croc a?
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The new network, now formed, also has a significantly lower capacitance than the 

percolating Ti rich network. This is reasoned on the basis that at the highest 

frequencies, the ooC conductance of the alumina/glass is far greater than the 

conductivity of the Ti rich islands. The high frequency conductance is dominated 

by a percolation path of capacitive AI2O3 regions while the resistive Ti islands are 

effective open circuits. As the frequency is reduced, the relative conductivities of 

the 2 regions converge and unconnected capacitive regions become bound by 

resistive regions to the percolation path of capacitors to result in an effective rise 

in network capacitance, shown by the high permitivity in figure 6.16.

In the case of the 4%Ti02  composition (figure 6.17), the pure resistive component 

of impedance (at a frequency <lHz) is due to the same resistor as was the case in 

the 2%TiC>2 composition i.e. glass. Also at a higher frequency the power law of

n 0.5 is due the alumina capacitors joining in. However in this case a new 

power law (n>l) is apparent at a frequency higher than 10kHz. This may be due to 

the high conductivity TiC>2 islands now joining in the circuit of glass resistors and 

alumina capacitors. These Ti rich islands, having a higher conductivity, now join 

the conducting network and cause a sharper increase in conductivity.

At 10%TiC>2 the Ti rich islands have become significantly larger in number, 

reaching a near percolation state (figure 5.43). Here the higher conductivity is 

again due to the Ti rich resistors. The percolation is weaker, i.e fewer percolation 

paths, resulting in the conductivity being lower than the percolation conductivity 

of 3%Ti0 2 . Also, as for the case of the 4 %TiC>2 composition, when the capacitors 

from the Ti rich areas join the capacitors from alumina/glass, the second power 

(>1) is valid, again above 10kHz (figure 6.18).
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CHAPTER VII 

FUNCTIONAL GRADIENT MATERIAL
An Investigation

This chapter covers a preliminary analysis 

regarding the feasibility o f  manufacturing a 

functional gradient material between the base 

composition and Ti0 2  doped composition
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7. FUNCTIONAL GRADIENT MATERIAL  

An Investigation

The primary objective of this project was to identify an appropriate ceramic dielectric 

having a range of compositions with a lower resistivity than the base alumina 

composition. For the operational usefulness of this study, a detailed programme will be 

necessary to investigate the incorporation of this composition into the base composition. 

The method suggested for this to be successful is the preparation of a functional gradient 

material. The concept involves a monolithic material, with a property variation across the 

thickness of the component, the property in question here being the resistivity. The 

functional gradient insulator will have one surface at a lower resistivity, to use for 

bleeding excess charge to earth, and other surface high resistivity, to keep the voltage 

stand-off property. A brief introduction to the preparation of this material is given here. 

Two possible methods could be involved:-

(a) Pressing one layer base composition and second layer lower resistivity 

composition together in a mould so that they form a monolith 2 layered green 

compact. On firing the compact will have at one end the base composition and at 

the other end the lower resistivity composition with the resistivity variation across 

the thickness, thus forming a functional gradient material.

(b) Surface impregnation of Ti02  into a base composition green compact. The idea 

here is that on firing, the Ti02  will enter the compact and form a microstructure 

similar to that of the 3%TiC>2 composition. The surface will then have a lower 

resistivity due to the incorporation of TiC>2 yet the bulk still retaining the higher 

value.

The feasibility of each of these two methods has been studied.

7.1.Pressing the two compositions together

On pressing the two different compositions and firing, the first possible problem 

could be the development of differential stresses in the functional gradient compact 

due to different sintering kinetics of two compositions. The sintering kinetics have
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been studied by measuring the shrinkage of the compacts as a function of 

temperature. For a compact to be free of firing stresses it is necessary for the doped 

compositions to have a shrinkage curve very similar to that of base composition. 

Therefore it is necessary to obtain a complete shrinkage v/s temperature curve. This 

has been measured by firing the green sample in a ‘Netsch Dilatometer’.

7.1.1. Measurement Method

A ‘green’ cylinder was prepared by using the procedure described in section 

3.2.3.2 using a 10mm pressing die. Conditions of test were:

Atmosphere: ambient

Maximum temperature at the sample: 1480°C

Firing schedule for furnace: RT to 1500°C @ 5°C/min

soaking 60 minutes 

1500 to RT @5°C/min

Shrinkage data was collected automatically by a computer. The output was a 

graph of v/s temperature, where L is the green dimension of sample and AL

is the change in dimension. This value is of shrinkage with respect to the green 

dimension. It was multiplied by the green dimension and then divided by the fired 

dimension to obtain a shrinkage value with respect to the fired dimension. This 

value was then plotted against temperature to generate a shrinkage curve

7.1.2. Shrinkage Data

The as received plot from the dilatometer data is shown in figure 7.1. The 

reference state is at the room temperature (point ‘A’). As the temperature is 

raised, to ~ 1100°C, the compact expands, indicated by the negative shrinkage at 

point ‘B’. This is due to the presence of the organic additives and air pockets in 

the compact which expand due to increase in temperature. Above this temperature 

the compact starts to sinter, and coagulation indicated by the increase in shrinkage 

is noticed (point ‘C’ onwards). The compact continues to shrink with increase in 

temperature, at a faster rate, till it reaches the ultimate possible density (point
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‘D’). Any increase in shrinkage with temperature beyond this will be reversible. 

The temperature at point ‘D’ is the sintering temperature of the compact. As the 

body is cooled from this state the shrinkage stays nearly the same reducing only 

marginally due to contraction on cooling (‘F’), reaching the ultimate shrinkage at 

room temperature (at ‘G’).

A sudden drop in temperature by 100°C is noticed between 1425 to 1450°C (point 

'H'). The data shows that exactly at 1426°C temperature drops to around 1350- 

1360°C and within a couple of minutes it rises back to original temperature. This 

temperature drop was noticed even when ZrC>2 was heated to above 1450°C in the 

dilatometer. This phenomenon does not seem to be taking place in most of the 

TiC>2 doped compositions (figure 7.2). However this is not the case since 

examination of the raw data in table 7.1 confirms that temperature does fall but 

since the graph has reached maximum shrinkage at this temperature, it is not 

visible in the plot. The phenomenon thus can be attributed to a dilatometer error.

Table 7.1

Base composition 1 %Ti02 3%Ti02
Temperature Linear Temperature Linear Temperature Linear

(°C) Shrinkage (°C) Shrinkage (°C) Shrinkage
% % %

1421 12.55 1427 18.72 1418 19.46
1425 13.15 1427 18.77 1422 19.49
1429 13.74 1384 18.82 1426 19.53
1406 14.37 1352 18.86 1428 19.56
1366 14.98 1401 18.80 1389 19.63
1376 15.51 1447 18.74 1349 19.71
1419 15.94 1451 18.74 1396 19.68
1448 16.32 1454 18.74 1446 19.63
1451 16.67 1458 18.73 1451 19.65

The shrinkage plots, showing a comparison between the base composition and the 

TiC>2 doped compositions is shown in the figure 7.2. The final shrinkage for all 

the doped compositions is similar to that of the base composition. However the 

kinetics of sintering appear to be faster in most of the TiC>2 doped compositions
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when compared with the base composition. This can be explained on the basis of  

the work of Ikegami et al { 158}, who reported that TiC>2 enhances densification in 

the initial and intermediate sintering stages of sintering. Addition of V2O5 to the 

composition makes the matters worse, as this composition has even higher 

kinetics than the composition doped with TiC>2 alone (figure 7.3). Addition of  

Cr2C>3 does not have any affect on the sintering kinetics.

At this point an assumption is made that the increased kinetics is also a result of 

the increased volume fraction of glass phase in the doped composition as, unlike 

the base composition, the total percentage o f alumina in the doped compositions 

has been reduced to less than 94%. On this basis, two compositions Ml and M4 

are prepared where the percentage o f alumina is held at 94% and compensation 

made for the Ti02 addition by eliminating the MgO and CaO (Ml) and reducing 

each component of the glass phase proportionately (M4). The sintering kinetics of 

the Ml composition is nearer to the base composition (figure 7.7), probably due to 

the increase in glass forming temperature in the absence of fluxes such as MgO 

and CaO. However this composition has a significantly lower density and also has 

a lower ultimate shrinkage, so is not useful. The proportionate decrease in glass 

volume fraction, i.e. maintaining the percent AI2O3 to 94, does not slow the 

sintering kinetics (figure 7.4).

The majority of these compositions could not form a direct gradient material with 

the base composition due to their very different sintering kinetics. The closest that 

could be obtained to successfully form the functional gradient material is the 

0.25%TiO2 composition. The effect is clearer on studying a compact of base 

composition with l%TiC>2 + 0.5%V2Os, made by pressing and firing together the 

powders. From figure 7.5 its clear that this compact will have a difference in 

dimension from base composition end (A) to the doped end (B). More importantly 

cracks will be developed at the interface ‘C’ due to differential shrinkage. Radial 

cracks are seen on the surface (figure 7.6 (a)). On closer examination the crack is
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fairly deep (figure 7.6(b)). However when this sample was sliced to look at the 

interface in the bulk, no such crack was visible ( figure 7.7 (a)). The dark lines 

(figure 7.7 (b)) are the cutting marks. After cutting the samples were not polished 

as this removes any micro cracking. The crack free inner surface indicates that 

there is good compatibility between the two materials and if  the shrinkage 

difference problem can be overcome, it would be possible to form a satisfactory 

functional gradient material.

To conclude this discussion it can be deduced that a single step pressed functional 

gradient material as in figure 7.4 is not practicable. Instead a multilayer compact 

may be worth trying. This will involve the first layer next to the base composition 

being 0.25%TiC>2, which may not develop stresses due to the small difference in 

its shrinkage to the BC. The next layer can be o f l%Ti02 that has a shrinkage not 

very different from 0.25%TiO2 and thus may not develop the stresses with the 

former. Similarly a layer o f higher percentage TiC>2 can be build up successively 

till the required composition, say 3%TiC>2 is reached on the other surface. Thus 

though the total shrinkage difference between 3% TiC>2 and BC is large the 

relative difference between the individual layers is small enough not to cause any 

firing stresses and or cracking. However the dimensional difference will still exist 

between these layers, and a detailed programme of work will be necessary to find 

the solution. An alternate solution to the multilayer method could be incorporating 

TiC>2 at the surface. This should solve the problem of dimension difference 

between the base composition and TiC>2 rich end. Trials designed for this 

approach are discussed as follows.

7.2.Surface impregnation of TiC>2

The objective here was to impregnate sufficient TiCh into the surface to form a 

percolation path similar to the 3%TiC>2 composition, to get a lower resistivity 

surface. The first requirement for this was to prepare a solution of Ti based 

compound that could be painted on to the surface. The “paint” was prepared using
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(a) (b)
Figure 7.6 : Cracks at the interface ‘C’ of figure 7.5-on surface

(a) (b)
Figure 7.7 (a): Interface ‘C’ of figure 7.5-in the bulk

(a) (b)
Figune 7.8: Back Scattered image for surface impregnation of titanium ethoxide

(a) normal (b) vacuum impreganted
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(a) titanium ethoxide ( Ti(OC2Hs)4 )

(b) titanium oxide in water

(c) titanium nitride in alcohol

The semi-fluid paint was coated on to a green compact. The compacts were fired 

as per the firing schedule of the base composition described in section 3.2.3.3. 

The compacts were cut along the thickness and polished to study the extent of Ti 

penetration into alumina. For the options (b) and (c), no Ti penetration was 

visible. However for titanium ethoxide a small amount of Ti did penetrate into the 

compact as shown in figure 7.8 (a). However the concentration of Ti02  absorbed 

into the AI2O3 was too low to give the percolation effect of a 3%Ti02  

composition.

To improve the concentration, vacuum impregnation was tried. The green samples 

were evacuated (using rotary pump) for half an hour to remove any trapped air in 

the open pores. Then, with samples in vacuum, titanium ethoxide solution was 

poured into the petri-dish in which the green compact were lying. The samples 

were left in the solution with the vacuum running for about 15 minutes. They 

were then taken out and allowed to dry at room temperature for 24 hours. They 

were then fired and cut and polished as before. The result is as shown in figure 

7.8(b). The quantity of TiC>2 absorbed has improved, though still not adequate 

enough to result in a percolation effect. Improvement in the absorption of TiC>2 

into AI2O3 may be possible by using a pressure impregnation method. This would 

require design of an appropriate fixture and further detailed experiments.

For this part of the project the study is limited to this preliminary investigation. It 

is left to a future investigator to carry out more detailed work on development of a 

practical functional gradient material, its incorporation into the manufacturing 

process, and development of a method to test the resistivity across the 

composition gradient.
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CHAPTER VIII 

CONCLUSIONS

Suggestions fo r  further work and conclusions to 

this project
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8 . C O N C L U S I O N S

8.1. Introduction

The main objective of taking up this work is to improve the performance of alumina 

insulators in the Super-Klystron environment. It has been established that alumina is 

the most popular material for applications involving high power, radio frequency and 

vacuum environment. Most of the competing materials used in high voltage 

applications do not have physical properties as good as aiumina (Table 8.1). 

Furthermore, alumina with purity lower than 99% is a better choice due to its lower 

SEE coefficient (SEE = 4-5 at IkeV) than the ultra high purity or single crystal 

alumina (SEE = 6-8 at IkeV).

Table 8.1

Property

Material

Tensile
strength
(MPa)

Thermal
Conductivity
(W/m°K)

Volume
Resistivity
(Qcm)

Permittivity
tan5
(50-
60hz)

Dielectric
Strength
(kV/mm)

Alumina 190-300 22-39 >1014 8-10 0.0001 25-35

Porcelain 30-100 1-4 1011-1013 5-7.5 0.02-
0.04 10-20

Toughened
Glass 100-120 1 1012 7 0.015-

0.05 >25

Polymer** 20-35 0.17-0.9 >1014 2.3-5.5 0.0001-
0.005 >25

RBGF*** 2.1-2.2 0.2-1.2 1011-1014 2.5-6.5 0.005-
0.02 3.0-20

* -  94-99.9%pure A l20 3
* * -  PTFE, silica filled epoxy and Silicon Elastomers, ethylene propylene diene monomer, and 
polyolefine filled with alumina trihydrate 
* * * -  Resin bonded Glass fibre

However even the SEE yield of 4-5 is unacceptable for this application. Ways have 

been studied by various authors to reduce the SEE without affecting any of the 

physical properties. To enable this the first and foremost suggestion has been to lower 

the value of tanb. This would require further studies into the improvement of 

microstructure, lowering of impurities especially the alkali metals and reduction in 

dislocation and point defects. The microstructure of alumina has been widely 

researched except for the liquid phase sintered, which has problems of abnormal grain 

growth and porosity. No one has yet been able to report a solution for improving the 

microstructure of liquid phase sintered alumina. A good microstructure will consist
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small size uniformly distributed alumina grains. However the insulators in the Super- 

Klystron application need to be metallized for formation of a hermetic bond with 

metal. The metallizing operation requires the alumina insulator to have a relatively 

large grain size. There is a need to carry out a modification to the metallizing process 

so that it can be carried out on a small grain ceramic.

The effect of additives such as TiC>2, which can help reduce the value of tan5, have 

been studied and the past work needs to be integrated with the alumina used in this 

application. Reduction of defects would require linking the dislocation engineering to 

the charge localisation phenomena. The point defects that can cause an electron 

trapping and instant detrapping need further investigation.

However the proposed solution on which this project was undertaken is the 

modification of the insulator surface, provided there is the property gradient from the 

surface to the bulk, in order to prevent the development of an interface that might 

cause electron trapping. The idea was to have an additive at the surface that can 

generate a higher number of electrons, so as to increase the surface conductivity 

without affecting the bulk. A mechanism to bleed the increased charge to ground can 

be developed thereby reducing the change of electrical breakdown.

8.2. Conclusion to this Project
The dopants identified for this purpose were the TiC>2, V2O5 and Cr2C>3. The 

controlled addition of these dopants to the base composition was carried out and their 

affect on the resistivity and the reasons thereof were studied. The base composition 

was designed based on the study on a sample of the 94%Al203 insulator from Seagoe. 

It can be said that the base composition was very close to the Seagoe insulator in 

terms of its density, porosity and grain structure. The flexural strength was very close 

to the values reported in literature for this material. The difference between their grain 

size however can be ignored in this project, as the study involves the relative 

difference in the resistivity values of various compositions with doping to the same 

base composition. Much of the variation in composition is taken up in the glass phase.

The effect of dopants on the resistivity of the base composition is as given below:
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As-Fired Sample

• The base composition had a resistivity of >1014 Q-cm, due to the high 

resistivity of alumina grains.

• Addition of 0.25%TiC>2 resulted in a resistivity decrease o f -10 Q-cm, due to 

the TiC>2 dissolving into the AI2O3 grains. However this was the saturation 

limit for the resistivity as also for the limit for the dissolution of TiC>2 in the 

AI2O3 grain.

• 3%TiC>2 had a slightly higher resistivity than other TiC>2 doped compositions.

This was considered due to the Ti02  precipitates becoming inter-connected 

and probably breaking a conduction path between the AI2O3 grains.

• TiC>2 ICtiOi doping does not significantly affect the electrical resistivity

• Adding 0 .5%V2O5 to TiC>2 doped alumina does reduce resistivity by 103 Q- 

cm. This is in line with earlier work on resistivity increase in Ti4+ due to V5+, 

as the microstructural investigation in this work had shown both the additives 

present at the same spot in the AI2O3 network.

• Removal of MgO and CaO from the glass phase also reduces the resistivity by 

3 orders of magnitude due to the generation of a small grain size. However 

this composition is not suitable due to its poor physical properties

H2 Annealing the Fired Samples

• 3%Ti02  composition had a significant decrease in resistivity reaching a value

of ~105 Q-cm at room temperature and 1000 Q-cm at 300°C. This was due to 

the TiC>2 reducing to semiconducting Ti3+ and the conduction path shifting 

from AI2O3 grains to the interconnected Ti rich precipitates. It is suggested 

that this was because the Ti precipitates reaching a percolation threshold, a 

value of 24% in 2D, in this study. The DC and AC conductivity tests indicated 

that the conductivity is due to mixed conduction i.e. both ionic and electronic 

carriers are operative.

• Similar results were also obtained for the 3%TiC>2 + 0 .5%V2Os composition. 

However, probably due to reduced V5+ to V3+, it had slightly higher resistivity 

than the 3%Ti02  composition.

• At 4%TiC>2 this percolation is broken due to the agglomeration of TiC>2 rich 

areas. The reasons for the agglomeration have been suggested as:
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(a) the coagulation of TiC>2 at higher concentration

(b) the formation of compounds, such as A^TiOs and rutile, that require larger 

quantity of TiC>2 than the compounds in 3%Ti02 composition, such as 

MgTiOs, that require lesser concentration of TiC>2 and promoting greater 

distribution of Ti02  rich phase.

• Re-percolation of Ti02 agglomerates at 10%TiO2 addition again resulted in a
7 csharp decrease in resistivity, to reach 10 Q-cm at room temperature and ~10 

Q-cm at 300°C.

Thus to achieve the desired results of low resistivity, the fired alumina ceramic 

sample will have to go through annealing in H2 atmosphere. Nevertheless H2 

annealing would not necessarily have to be introduced as an additional step in the 

insulator manufacture. This is because as a part of normal manufacturing operation, 

H2 firing is carried out on these insulators for metallizing purpose. This operation is 

necessary for any insulator used in the Klystron or other microwave applications and 

the reduction in resistance would take place accordingly.

The only additional process involved is the preparation of a functional gradient 

material. A preliminary investigation on the feasibility of making a bond between the 

base composition and TiC>2 doped composition has been carried out in this project. It 

has been demonstrated that it is feasible to form a functional gradient material.
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Appendix A
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Appendix B

XRD Data for Titanium Oxide Powder

Philips Analytical PC-APD, Diffraction software

Start angle [°20] : 
End angle [°20] : 
Step size [°20] : 

Maximum intensity: 
Time per step [s]: 

Type of scan:

5 .005 
89.985 

0 . 01 0  
812.2500 

0.400 
CONTINUOUS

Peak positions defined by: Top of smoothed peak
Minimum peak tip width: 0.10
Maximum peak tip width: 1.00

Peak base width: 2.00
Minimum significance: 1.00

Number of peaks: 29

Angle d-value d-value Peak width Peak int Back, int Rel. int Signif.
(°28) orl [A] o2 [A] [°20] [counts] [counts] [%]

16.895 5.2436 5.2565 0.480 1 3 0.1 1.10
25.275 3.5209 3 .5295 0 .100 590 3 72 .7 1.96
25.405 3.5031 3.5118 0.180 812 3 100.0 18.52
27.510 3.2397 3 .2476 0 .200 22 3 2.7 2 .46
36.160 2.4821 2 .4882 0.240 10 3 1.3 2.39
37.025 2.4261 2 .4320 0.120 61 2 7.5 1.77
37.895 2.3723 2 .3782 0 .140 234 2 28.8 4.93
38.655 2.3274 2 .3331 0 .280 74 2 9.1 9.21
41.285 2.1850 2.1904 0 .240 6 2 0.8 2.36
43.265 2.0895 2.0946 0 .240 2 2 0.3 1 .64
44.685 2.0263 2.0313 0 .240 12 2 1.5 2 .18
48.125 1.8892 1.8939 0.200 372 3 45.9 14.76
53.955 1.6980 1.7022 0.100 237 3 29.2 2.79
55 .145 1.6642 1.6683 0.160 216 3 26.6 6.99
56.675 1.6228 1.6268 0.160 6 3 0.8 1.66
62.170 1.4919 1.4956 0.120 38 2 4.7 5.25
62.755 1.4794 1.4831 0.140 169 2 20.8 4 .23
64 .145 1.4507 1.4542 0.240 3 2 0.4 1.16
65.070 1.4323 1.4358 0 .480 2 2 0.2 1.07
68 .815 1.3632 1.3665 0.180 74 2 9.1 4 .88
69.025 1.3595 1.3629 0.120 44 2 5.4 1.44
70.335 1.3374 1.3407 0.140 81 2 10.0 3.91
70.545 1.3339 1.3372 0.100 44 2 “ 5.4 1.24
74 .175 1.2774 1.2805 0.320 6 2 0.7 1.24
75.100 1.2639 1.2670 0.200 114 2 14.1 9.44
75.335 1.2606 1.2637 0.120 58 2 7.1 2.35
76.090 1.2499 1.2530 0.160 30 2 3.7 1.83
80.820 1.1883 1.1912 0.240 4 2 0.5 1.80
82.715 1.1658 1.1687 0.140 53 2 6.6 2 .97
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Appendix C

Calculation of Conductivity and Permitivity from Impedance results

Assume a fitting an impedance result into a simple RC network as below.

2*  _  X RX C _  R 
X R+ X C icoCR +1 

R(l-icoCR) 
l + co2C2R2

co = 2 n f, f  = ac frequency

Z* is a complex impedance function and in terms o f real (Z')  and imaginary ( Z w) 

impedance is given by the equation:

Xr = R

For impedance semi-circle

X c = —  
icoC

Z' + iZ" =
R . coCR

1 + co2C 2R 2 11 + co2C 2R

Thus

Then

Z,2 +Z"2 A 
'• P = -----------------

Z’ t
where p is the resistivity, A is the area o f crossection o f sample

and t  is the thickness.
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Conductivity then is given by:
Z' £

a  =  -   —
Z'2 +Z"2 A

Since capacitance:

c _ e ,e0A
i

where c r is the relative permitivity and s 0 is the permitivity o f vacuum

C £ 
E0 A

Z'2 +Z"2 =
1 + oo2C2R 2 

Z" 1 + o)2C2R 2 -coCR
Z'2 + Z ’ 2 R 2 1 + cd2C2R 2

Z' 1
c  = -

Z'2 +Z*2 CO

Z' 1
Z' ~  Z'2 +Z"2 CO e 0 A
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