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ABSTRACT

An investigation into the elastic behaviour and 
anharmonic characteristics of three materials, namely, 
uranium nitride (UN), binary Y -Mn-Ni alloys and ternary 
alloys of Y-Mn-Ni-C which can be antiferromagnetic has 
been carried out. The effect of hydrostatic pressure on 
ultrasonic wave velocities have been measured and used to 
determine the pressure derivatives of the elastic 
stiffness of single crystal uranium nitride (UN) at room 
temperature in the paramagnetic state. dC+JdP , and hence 
the Griineisen parameter for the transverse mode 
propagating down an <001> axis, was found to be negative. 
This behaviour of C 44 with pressure is often observed in 
rocksalt structure crystals. The Gruneisen parameters 
Y(/), N) of the acoustic modes obtained in the long 
wavelength limit, have a pronounced anisotropy which 
accrues largely from the presence or absence of nearest 
neighbour repulsive forces.

The temperature dependences of the second order 
elastic stiffness constants (SOEC) of single crystals of 
the antiferromagnetic binary alloys Y-Mn-Ni and ternary 
alloys Y “Mn“Ni“c have been determined both in the 
antiferromagnetic and the paramagnetic states. The 
magnetic contribution stiffens the longitudinal acoustic 
modes but softens the shear modes associated with C 44 
and C'(= (Cn-Cia)/2). Mode softening has been observed 
for (Cn-Ci2)/2 over a wide range of temperatures in the 
antiferromagnetic phase for the ternary alloys (Mn-Ni-C). 
Measurement of ultrasound velocities under hydrostatic



pressure, over the temperature range 20°C to 170°C, show 
that the binary alloy Mn7 3Ni2 7 has a linear dependence of 
hydrostatic pressure derivatives of the SOEC on 
temperature. In the antiferromagnetic state dCxx/dP and 
bCjdP increase linearly with temperature whilst dC<Jdl> 

decreases. These are the first measurements of 
hydrostatic pressure derivatives of the elastic constants 
on both sides of the Neel temperature made for any 
antiferromagnetic material. The most noteable behaviour 
observed in Mn7 3Ni2 7 was a marked reduction in 
di (C11+C12+2C 44 )/2]/<?.P and tlCtl/dP at the magnetic phase 
transition temperature, T h . Above T h both of these 
pressure derivatives decrease with increasing 
temperature. The magnetic disordering showed a small 
effect on the pressure derivatives of the shear elastic 
constant with only a small variation at T h . A nonlinear 
relationship was observed between <?C, Jdp and temperature 
in the ternary alloy Mn-Ni-C; dCxl/dP has a minimum at 
approximately 140°C. Positive Gruneisen parameters were 
obtained in both Mn-Ni and Mn-Ni-C alloys with the 
longitudinal mode gamma Yl being the largest as a result 
of the contribution from nearest neighbour repulsive 
forces.
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CHAPTER 1 

INTRODUCTION

If the interatomic potential U in a crystal is 
represented by a quadratic function of interatomic
displacement r, such a crystal is said to be purely 
harmonic (Fig.1.1). Any lattice vibration can be 
described as the superposition of normal vibrational 
modes. For a crystal to be stable against any small 
displacement from equilibrium, the frequency of all
normal modes must be non-zero. The frequency of a normal 
lattice vibration is proportional to d 2U/dr2; in the
harmonic solid the frequencies of such vibrations are
independent of vibrational amplitude. Since the effect of 
temperature is to increase the vibrational amplitude, the 
mode frequency should be independent of temperature.

In real crystals the interatomic potential is 
anharmonic in character; i.e. terms higher . than second 
order with respect to interatomic displacement are 
required for a more exact representation (Fig.1.1). The 
derivative d2U/dr2 is no longer independent of r and 
consequently the frequency of the normal lattice 
vibration is temperature dependent.

The second order elastic stiffness constants 
(SOEC) of a crystal are simply related to the velocities 
of ultrasound waves propagating in the solid and provide 
a measure of the stiffness of the crystal lattice.
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According to the standing wave condition of the Debye model, 
the frequencies of vibrational modes are proportional to their 
wave velocities; the stiffer the crystal the higher the 
frequencies and wave velocities of the normal mode of 
vibrations. The lattice strain dependences of these wave 
velocities then characterise the way in which lattice 
stiffness and mode frequencies vary with interatomic 
displacement, and consequently give a measure of 
anharmonicity. Such strain dependences of SOEC define the 
third order elastic stiffness constants (TOEC) and can be 
determined experimentally from the stress derivatives of 
ultrasound velocities.

The main theme of this thesis is to investigate the 
elastic behaviour of antiferromagnetic crystals when 
subjected to stress. The destinations are approached by the 
measurements of the pressure and temperature dependences of 
the ultrasonic wave velocities. This work begins with the 
measurement of the effect of hydrostatic pressure on the 
second order elastic constants for a single crystal uranium 
nitride at room temperature. Uranium nitride (UN) is one of 
the group of metallic uranium pnictide compounds which 
crystallize in the rocksalt structure. In the actinide 
metals and compounds both 6d and 5f electrons are involved 
in the chemical bond. This compound is an antiferromagnetic 
below its Neel point at about 53K. Results from the 
measurements of the second order elastic stiffness constants 
and their hydrostatic pressure derivatives have been 
compared with those of NaCl and SmS crystals which
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have the same structure. The measurements of the
hydrostatic pressure dependences of the second order
elastic stiffness constants enable the Gruneisen gamma of 
the acoustic modes in the long wavelength limit to be 
calculated in uranium nitride. These results are
discussed in chapter 5.

As an antiferromagnetic crystal is taken through 
its Neel temperature (Th ), changes in the relative
alignment of the magnetic moments alter the contribution 
to the total energy which arise from interatomic magnetic 
interactions. Since the elastic constants are strain
derivatives of the total energy, an intrinsic magnetic 
contribution to the elastic constants should appear when 
an antiferromagnetic material is cooled through T h . To 
understand the lattice dynamic behaviour of 
antiferromagnetic materials at elevated temperature,
measurements of the elastic constants up to and through 
the Neel temperature have been carried out on single 
crystals of the binary alloys Mn-Ni and the ternary 
alloys Mn-Ni-C. Using ultrasonic pulse echo overlap, 
extensive studies have been made on the binary alloys and 
ternary alloys Mn2 7Ni2 7 and Mns5Ni9C6. A complete set of 
data on temperature dependences of the second order 
elastic constants in both the antiferromagnetic and the 
paramagnetic states have been obtained. This data has 
been used to determine the magnetic contribution to the 
second order elastic stiffness constants. The magnetic 
contribution is the difference between the elastic
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constants in the antiferromagnetic state and those in the 
paramagnetic state. This difference can be obtained by 
taking the difference between the measured values at some 
temperature below Neel temperature and the values 
extrapolated to that temperature from the paramagnetic 
region. These values characterise the elastic stiffness 
constants in the antiferromagnetic state for the alloy. 
To extend the understanding of the behaviour of the 
interatomic forces in these alloys, particularly when 
subject to homogeneous strains, the hydrostatic pressure 
dependences of the SOEC have been measured up to 1.5KBar 
at several different temperatures. This gives the first 
and only complete set of data obtained on both sides of 
the Neel temperature on any antiferromagnetic material. 
The results provide information on the Gruneisen 
parameters and the anharmonic behaviour of the lattice 
vibrations and the phonon dispersion curve near the 
Brillouin zone centre on both sides of the magnetic 
transition temperature. Previously there a set of 
hydrostatic pressure data has been obtained in a similar 
way on a ferromagnetic material (Fe-32at.%Ni) by Renaud 
and Steinemann (1984). There is however some discrepancy 
in their method of computation of Gruneisen parameters. 
This has been resolved by consideration of the correct 
equation to use; it is interesting to note that the 
magnetic Gruneisen parameters of our samples (Mn73Ni2 7 )

are of a similar magnitude to those of Fe-32at.%Ni.
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A study on the effect of carbon on the SOEC of 
binary alloys Y -Mn-Ni has been carried out here on the 
ternary alloy Mns5Ni9C6. In the ternary alloys of 
Mna5Ni9C6 soft modes have been observed through the small 
shear elastic stiffness ((Ci1-C1 2 )/2). This existence of 
soft modes in Mn-Ni-C alloys is instructive in the 
understanding of lattice instability in the Mn-Ni-C 
alloys. The soft mode is associated with decreasing the 
lattice vibrational frequency. The vibrational mode with 
zero frequency corresponds to a displacement which never 
returns to the equilibrium position and would lead to a 
change in the equilibrium crystal structure. The 
temperature where this change will take place is called 
the transformation temperature and a mode whose frequency 
decrease as the transition temperature is approached is 
called a soft mode. Hence measurements have been made on 
the SOEC and their hydrostatic pressure derivatives to 
examine further mode softening in these manganese alloys.
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CHAPTER 2

THE ELASTIC PROPERTIES OF MONOCRYSTALLINE 
ANTIFERROMAGNETIC Mn-Ni BINARY 

ALLOYS AND Mn-Ni-C TERNARY ALLOYS.

2.1 Manganese.
Manganese is one of the 3d-transition elements of 

group (Vila) of the periodic table. The stable phase (a) 
at room temperature has the face centred tetragonal 
structure (a= 3.77A , b=3.56A and c/a = 0.094) (Truell
1969). Over the temperature range between 1100 to 1133°C, 
manganese exists in the y  -phase which has the face 
centred cubic structure (Zwicker 1951). The electronic 
configuration of manganese is [Ar]3d54s2 so there is a 
partially filled 3d subshell: these electrons give rise 
to a spontaneous spin and orbital alignment which give a 
single atom an atomic magnetic moment and in crystals 
produce long range magnetic ordering. For this particular 
eLement, spontaneous antiparallel alignment occurs 
between the spins of nearest neighbours; in its ordered 
state a crystal possesses no net magnetization. Cade and 
Young (1980) have calculated the band structure of cubic 
V-Mn and concluded that the <111> antiferromagnetic 
structure has the lowest energy and have suggested that a 
cvbic alloy based on y -Mn should support the <111> spins
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alignment structure illustrated in Fig 2.1b. At the Neel 
temperature a phase transition takes place from the 
antiferromagnetically ordered state to one which is 
magnetically disordered, the ordered state being below 
the transition temperature. Zimmerman et al.(1964) have 
made specific heat measurements in a series of Y-Mn-Cu 
alloys up to and through the Neel temperature T h . 

Extrapolation of the results back to the value that pure 
Y  -Mn would have given value of T h for y  -Mn of 540K. 
However, *Y -Mn is unstable at this temperature; this 
structure is only stable in alloys containing elements 
such as copper, nickel, iron or zinc.

The Neel temperature of y  -Mn, as for other 
transition elements, is determined by the strength of the 
interaction which is purely electrostatic in origin 
between electrons in the partially filled 3d-band, for 
manganese, the electron-electron interaction is 
sufficiently strong to retain ordering at room 
temperature. The disordered state is developed when the 
thermal energy is just sufficient to destroy the magnetic 
ordering, and in the case of y-Mn alloys this occurs 
when the temperature is of the order of 500 K.

The other element which is included in the binary 
alloys studied here is nickel. Its electronic 
configuration is [Ar]3d84s2. Pure nickel has a face 
centred cubic structure with a lattice parameter 3.52 A. 
It is ferromagnetic, possessing spontaneous 
magnetization below the Curie temperature of 627K..
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When alloyed with manganese, antiferromagnetic binary 
alloys y -Mn-Ni can be made which are stable at room 
temperature.

2.2 Mn-Ni Solid Solution.
The binary Mn-Ni alloys are solid solutions. In 

a chemical compound the elements combine
stoichiometrically (or nearly so), that is in fixed 
proportions according to the chemical formula. In 
contrast in a solid solution the chemical combination of 
the elements is non-stoichiometric; for example y 
structure Mn-Ni alloys can be formed over a quite a wide 
range of nickel content. In the present work solid 
solutions with composition Mn7 3Ni2 7 and Mns4Nii6 have 
been used. In such solid solutions, manganese can be
thought of as the parent element or solvent, whilst
nickel having the smaller percentage in the alloy can be 
considered as a solute. One of the conditions to form a 
solid solution is that the crystal structure of the
parent element (Mn) does not change when the solute atoms 
(Ni) are introduced into the structure. The solute atoms 
are incorporated into the structure substitutionally, and 
the process is governed by two major conditions 
(Hume-Rothery rules): (i) the size of the parent atom and 
that of the solute atom should not differ by more than 
about 15% in their atomic radii, ii) both elements must 
have the same crystal structures. In the case of the
Mn-Ni alloy system, the atomic radii of y-Mn and Ni are
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1.24A and 1.243A respectively which differ by less than 
1% and so comply with this first criterion. The effect of 
atomic radii in the formations of solid solutions is 
observed in Cu-Zn and Cu-Cd alloys systems. Only 1.7 
atomic percent cadmium (Cd) is soluble in copper (Cu), 
while for zinc (Zn), up to 38 atomic percent dissolve in 
copper. The atomic radius for copper is 1.275A and close 
to zinc (1.375A), but for cadmium (1.48A) it is less 
favourable. Manganese and nickel are transition metals 
with similar electronic configurations and can have the 
same crystal structures (face centred cubic), features 
which are therefore favourable to formation of 
substitutional solid solutions. A consequence of the 
substitutional process is that the allocation of the 
nickel sites in the manganese crystal is not regular - it 
occurs at random; thus to describe the concentration of 
the alloy formed, the average concentration of the whole 
solid is considered.

2.3 The Phase Diagram of Manganese-Nickel Alloys.
In principle all the face centred cubic Mn-Ni 

alloys which contain less than 22at.%Ni are subject to 
structural transformation (Honda et al.1976) and are all 
unstable below a phase boundary line that runs entirely 
above 1000C (Tsiuplakis and Kneller 1969). However alloys 
having the f.c.c. structure can be produced at room 
temperature and below by quenching; such alloys, exhibit 
itinerant-electron antiferromagnetism (Asano and
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Yamashita 1971; Cade and Young 1980).
A phase diagram has been given by Honda et 

al.(1976) (Fig 2.2). For nickel concentrations up to 
about 10at.% the paramagnetic to the antiferromagnetic 
transition is accompanied by a cubic-to-tetragonal 
structural transition, just as in Mn-Cu and other alloys. 
Between 15 and 22at.%Ni the two types of transition occur 
at different temperatures: the material becomes
antiferromagnetic at the Neel temperature T h , then at 
some martensitic temperature T» below T h transforms to 
the tetragonal structure with c>a. Lowde et al.(1981) 
have made an extensive study on the martensitic 
transformation in Mn-Ni-C alloys below room temperature 
(down to approximately 100K) and have suggested that the 
structural transformation that occurs in ternary alloys 
Mn8 5Ni9Ce at T«(= 174+ 2K) is nearly second order.
However, the same kind of transformation has not been 
studied at temperatures higher than room temperature. 
Thus, the phase diagram shown in Fig 2.2 suggests that 
above room temperature the martensitic transformation 
should occur in those Mn-Ni alloys which contain less 
than 15at.%Ni. Therefore the alloys which are studied 
here (MnstNiis and MnssNisCs) are expected to undergo 
both the martensitic and antiferromagnetic 
transformations first at T* and then at T h respectively 
as these alloys are taken up to and through the Neel 
temperature. It is found that the magnetip moment of 
these alloys varies essentially continuously across the
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structural transition (Yamaoka et al.1974). Therefore to 
observe the magnetic contribution to the elastic 
properties of these particular alloys it is only 
necessary to look into the transformation that occurs at 
the Neel temperature. It is considered that the magnetic 
spin structure of Mn-Ni alloys is of the f.c.c. type I 
(Fig 2.3a) (Hicks, Pepper and Smith 1968), that is the 
magnetic moments have their z-components organised so 
that there are sheets of parallel M z perpendicular to one 
selected fourfold axis, the value of Mz alternating in 
sign from sheet to sheet. On this assumption, any 
martensitic transition should strictly be called 
orthorhombic-to-tetragonal; but in practice it is found 
that (within an accuracy approaching 10*4 of lattice 
dimension) the unit cells of the two phases actually are 
tetragonal and cubic respectively (Honda et al.1976; 
Hicks, Pepper and Smith 1968); on this basis any 
structural transformation can be referred to as 
tetragonal-to-cubic. However for these particular alloys, 
the martensitic transformation from tetragonal (c>a) to 
cubic takes place at much lower temperature than the Neel 
temperature; therefore the magnetic transformation takes 
place in the cubic structure.
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2.4 The Introduction of Carbon into Mn-Ni Alloys.
The introduction of carbon atoms in replacing

some at.%Ni in the Mn-Ni binary alloys has been used as 
an alternative approach to studying the magnetic and
elastic behaviours of the binary alloy single crystal 
(Lowde et al.1981). The main idea of adding carbon into 
the Mn-Ni alloys was to assist the crystallization of 
alloys containing a minimum amount of nickel. For the 
ternary Mn-Ni-C alloy system in the present work emphasis 
has been placed on single crystal of composition
Mn8sNi9C6. One specific reason for employing 9at.% rather 
than 21at.%Ni is that short-range order based on the 
CusAu structure tends to be rather pronounced in the 
binary Mn-Ni alloys, and therefore the hazard of
developing uncontrolled effects which are perhaps 
characteristic of that structural ordering is much more 
serious in the high-percentage case nickel alloys (Lowde 
et al.1981). Many of the effects found in binary alloys 
can also be seen in the ternary alloy Mn8sNi9C6 single 
crystal; particularly important are the antiferromagnetic 
transition above room temperature and the martensitic 
transformation at T» at about 174K to a tetragonal 
structure with c>a. The distribution of carbon atoms in 
this Mn-Ni-C system has not yet been established: it is
not known whether they are located substitutionally or 
interstitially in the crystal structure. The presence of 
carbon has a marked influence on the elastic properties
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of the alloys; for example in the present work it will 
be seen that the elastic behaviour of MnssNi9C6 differ 
substantially from that measured by Hausch (1977) in 
MnssNiis. Koh (1978) has shown that the presence of 
carbon is responsible for altering the phase diagram even 
when the amount of carbon added is almost negligible 
(Fig.2.4). Due to carbon content, the structural 
transformation temperature ofan alloy containing 
approximately 88at.%Mn is enormously reduced from about 
450°K to about 120°K.

2.5 Softening of Phonon Modes in Mn-Ni Alloys.
Understanding of structural phase transitions in 

solids has been greatly enriched by the idea that they 
can originate with a soft mode of lattice vibration, the 
amplitude of which induces a deformation against which 
the crystal is unstable. This concept was introduced for 
optic phonons by Anderson (1960) and Cochran (1960) to 
account for certain ferroelectric transitions. The 
stability of a material may also be reflected in its 
elastic constants. A crystal is thermodynamically stable 
if its elastic energy increases when it is subjected to 
an infinitesimal strain; work must be expended in order 
to strain the crystal, otherwise it may undergo a 
structure transformation which is normally to a lower 
symmetry structure. Should certain elastic moduli 
approach zero for any reason for instance aa the pressure 
or temperature is varied, the crystal may become unstable
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to the corresponding strain and deform spontaneously. 
Thus elastic constant measurements can provide 
fundamental information about a whole class of lattice 
instabilities via acoustic phonon mode softening that 
lead to structural transformation. Such transformation 
can include some of those of the martensitic type. Lowde 
et al.(1981) have reported this type of transformation on 
Mns5Ni9C 6 in which structure transformation occurs from 
cubic-to-tetragonal at transformation temperature o*f 
174K.

The mode softening is only related to the 
acoustic phonons with energies restricted to a small 
volume of wave-vector (k) space near the zone centre to 
about k»«x/10 around the Brillouin zone centre (Lowde et 
al.1981). Group-theoretical considerations require that a 
structural transformation of the kind considered should 
be accompanied by reduction of the stiffness parameter 
(Cn-Ci2)/2, and by softening of the long wavelength 
transverse phonons propagating with [110] polarization in 
the [110] direction (Folk et al.1976). These phenomena 
were observed by Lowde et al.(1981). This type of 
transformation has been described by Folk et al.(1976) 
and Cowley (1976) as second order and they have examined 
the constraints on such a transformation. Being a second 
order transformation the limitations are quite severe. 
However for the structural transformation from a cubic 
lattice to tetragonal one, there is a cubic invariant in 
the order parameter so that this type of ferroelastic
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phase transition should be first order (Brassington and 
Saunders 1982). Such a transition occurs via softening of 
the [110]Ti acoustic phonon which has the vibrational 
polarization direction [110]. The corresponding elastic 
stiffness constant is (Cn-Ci2)/2, and in a 
nearly-second-order transition (Cn-Ci2)/2 would go 
critically soft. Lowde et al.(1981) have found that C n  
also softens for HnssNi9C6 although the structural 
transformation through the softening of the <100> 
longitudinal acoustic phonon does not occur for the 
following reason: before C n  can reach zero and the
transition take place, (Cn-Ci2)/2 becomes very small and 
the crystal is obliged to suffer shear distortions in the 
(110) plane in the [110] direction. The free energy 
requires that the crystal becomes tetragonal; it can do 
so because two [110] shears can always be found that 
superpose to produce a tetragonal end product. Gunton and 
Saunders (1973) have observed softening of long 
wavelength acoustic phonons having a wavevector N[110] 
and polarised U[110] in In-Tl alloys as these alloys are 
taken towards the cubic tetragonal phase transition. The 
second order elastic constant associated with this 
vibrational mode is (Cn-Ci2)/2 and is a measure of the 
resistance to deformation of the crystal lattice when a 
shear stress is applied across a (110) plane in a [110] 
direction. For indium itself, the small value of this 
elastic constant and its rapid decrease with increasing 
temperature strongly suggests that this element should
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undergo a transformation to a face-centred cubic from a 
face centred tetragonal structure at some high 
temperature. Chung, Gunton and Saunders (1976) have urged 
that this transformation would occur were it not for the 
fact that indium melts before the transition temperature 
is reached. The phonon dispersion curve at room 
temperature for MnasNisCe is shown in Fig.2.5 (Lowde et 
al.1981). An unusual feature of these alloys is that in 
the [100] direction low energy longitudinal vibrations 
propagate more slowly than transverse ones. This feature 
has been observed in the experimental SOEC data measured 
by Lowde et al.(1981). Ultrasonic measurements show that 
the [110] direction the Ti phonon mode, while behaving in 
a normal way over the greater part of the wave vector 
range, approaches the origin anomalously. The abrupt 
change of slope near Tc is associated to the soft 
acoustic shear mode (Cn-Ci2)/2 which has been discussed 
earlier.

2.6 Invar Properties of Transition Metal Alloys.
The Invar effect was first discovered by 

Guillaume (1897) who detected that the f.c.c. FeNi alloy 
at concentration of about FessNias shows an almost 
constant- that is "invariant" - thermal expansion as a 
function of temperature in a broad range centred about 
room temperature. Since then many workers have discovered 
other properties of magnetic alloys which have been 
associated with Invar properties. Some of the physical

V i  I •
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Fig. 2.5a The first Brillouin zone for the f.c.c. 
crystal structure.

Lr x r(Coo) (CCO] I«C1
Fig 2.5b Phonon dispersion curve of Y -Mn«5N*»c« a* room tem perature  

(Lowde etal1981). Note in particular: at the left, the low 
energy associated with [110] longtldunal sound; at the T point 
on the right-hand side the manner In which the Ti mode along
[110] decends towards the origin. ---------- j Ultrasonics;

—  neutrons; , transverse mode; .longitudinal mode.



23

properties which shown Invar related effect are listed in 
Table 2.1. The first two relate directly to this present 
work on Mn-Ni and Mn-Ni-C alloys system. The objective of 
this section is to discuss the origin of the Invar 
properties that lead to the anomalies in the elastic 
constants, bulk modulus and Young's modulus of crystals. 
For a Mn-Ni alloy the magnetic transition at the Neel 
temperature is associated with the transformation of this 
alloy from the antiferromagnetic to the paramagnetic 
phase. An assessment of the magnetic contribution to the 
bulk modulus has been made using a linear extrapolation 
down to room temperature of the bulk modulus data BP 
measured in the paramagnetic phase down to room 
temperature (Hausch 1977) based on the following 
equation:

B(T)=B0-DTexp(-Il), (2.!)

where B and Bo are the bulk modulus at temperature T and 
OK respectively, D is a constant and To is approximately 
one half of the Debye temperature. Then subtraction of 
the value of Bp at any temperature from the measured 
value B» at the same temperature in the antiferromagnetic 
state gives the magnetic contribution to the bulk 
modulus, ab* (= B«-Bp). Hausch (1977) measured the 
magnetic induced effects on C n ,  C 12 and bulk modulus of 
a binary alloy MnssNiis when the temperature was taken to 
and through the Neel temperature. By substracting the 
measured elastic constants and bulk modulus from the
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TABLE 2.1

List of physical properties in which Invar anomalies are
observed

Elastic constants c L (T) ' C 4 4 (T) ' c ‘ <T >

Youngs and Bulk modulus E(T); B (T)

Negative pressure dependence 
of Curie temperature (dTc/dp)

Thermal expansion 
Lattice constant

(Al/1)(T); a(T) 
a(T)

Spontaneous volume magnetostriction
Spontaneous volume 
magnetostriction at T = 0
Excess specific heat at high T, 
Linear specific heat with 
large y~values at low T
Deviation from Brillouin- 
function in magnetization
Forced volume magnetostriction
Large high field ' susceptibility
Negative pressure dependence 
of magnetization

ws= (AV/V)(T)

<os (T=0) = <uso

CV (T)

(M/MQ) (T) 
(6(0/6H) (T)

XHF(T)

-(dM/dp)T H
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corresponding paramagnetic values, the magnetic part of 
elasticity at 77K were obtained as:

ABm A C 44
t £ =+12% c £  = -4.8*

The positive sign of AB»/B shows that there is a 
magnetic stiffening of the bulk modulus while the 
negative sign of AC 44/(A 4 shows that magnetic 
contribution softens this elastic constant. The sign is 
in agreement with the prediction of the itinerant 
electron theory (Wohlfarth 1976, Hausch 1977) which gives

^ = ( 5 ) ( 3 _ 2lL)W m  (2.2)

where w« is spontaneous volume magnetization; I and lb 
are the effective and bare-atomic interactions 
respectively. The measured value of the bulk modulus 
should include the effects of volume change result from 
the spontaneous magnetization. For ferromagnetic 
materials, Doring (1938) has estimated the correction for 
the volume change effects of the magnetization as

1 _  1 w 2
bT B ^  ( dl_) (2’3>

where w is the volume magnetostriction dV/dH, 
measurements of which would be very instructive. To
extend our knowledge of the magnetic interaction,■*»
measurement of the spontaneous volume magnetization would
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be invaluable.
Honda, Tanji and Nagasawa (1976) using a similar 

extrapolation procedure to that used by Hausch (1977) 
have determined the magnetic contribution to bulk moduli 
from compressibility data of polycrystalline Mn-Ni 
alloys. From the temperature dependences of Young's 
modulus of y -Mn-Ni alloy of difference concentrations of 
nickel, Honda et al.(1976) obtained a step-like change at 
the Neel points. The size of the steps becomes smaller as 
the nickel concentration in the alloys is increased: the 
lower the nickel content of the alloy, the larger the 
ae/Eo becomes. This implies an increased magnetic 
interaction strength in the alloys as the manganese 
concentration is increased. The values of AE( = E*-Ep) 
obtained at Neel temperature plotted as a function of 
temperature and a smooth curve obtained shows a decrease 
in AE as the at.%Ni is increased (Fig.2.6).

A property of relevance to the present work is 
the magnitude of the change of Neel temperature with 
pressure of Y-MnssCus (Sawaoka et al.1971). As the 
pressure is increased from atmospheric pressure to 
approximately 40 Kbar, the Neel temperature was observed 
to decrease at the rate dTn/dP = -3.25 deg/kbar
(Fig.2.7).
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Figure 2.6

Figure 2.7

at 7. Ni

Change in Young’s modulus at Neel point, AE, as a function 
of alloy composition (Honda, Tanji and Nagasawa (1976)).

350

300

pressure (kbor! — -
Pressure dependence of Neel temperature of Y-MnssCus 
alloy (Sawaoka et al, (1971)).
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CHAPTER 3

THE DEFINITION AND MEASUREMENTS OF THE SECOND ORDER 
ELASTIC STIFFNESS CONSTANTS AND ACOUSTIC VIBRATIONAL

ANHARMONICITY.

3.1 Introduction
Elastic constants of solids were introduced 

originally to describe the linear relation observed 
between stress and strain. This relation is usually 
written as the generalised Hooke's Law [Nye (1957), 
Huntington (1958)],

CTij=Cijkl€k, (3.1)
G.jXl= 1.2,3)

where ai j and (ki are second rank stress and strain
tensors respectively while Cijki is a fourth rank elastic 
stiffness tensor, the components of which at constant 
temperature are assumed to be invariant. The components 
of this fourth rank tensor are termed, for reasons which 
will be described later, second order elastic stiffness 
constants (SOEC). It is found that Hooke's Law is only 
valid for infinitesimal strains, linearity being lost for 
finite strains. The specification of strain without the 
simplifying infinitesimal assumption has been considered 
in detail by Murnaghan (1951) and Wallace (1972). Elastic 
constants are not inherent properties of a'particular 
material but are dependent on its physical state and on
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the conditions under which they are considered. For this 
reason the definitions of elastic constants are best 
expressed in thermodynamic terms. These definitions allow 
for elastic constants of any order. The higher order
elastic constants are required to describe the non-linear 
stress-strain relation observed for finite strains. It is 
this thermodynamic definition of elastic constants which 
is described in this chapter and which provides the
theoretical basis for their evaluation from experimental 
ultrasonic data.

3.2 Homogeneous strain
Throughout the following arguments a crystal is

considered as a homogeneous anisotropic elastic medium, 
which when subjected to a uniform stress suffers a 
homogeneous strain.

Consider a body occupying a space, with every 
particle referenced to a rectangular Cartesian frame. The 
position P of a particle in the unstrained state is 
located at (Xi,X2 ,X3 ) with its position described by the 
vector X« On straining the body this particle moves to a 
new position Q with coordinates (xi,X2 ,xs) described by 
the vector x. The deformation of the body is known if 
xi,X2,X3 are known functions of Xi,X2,X3,

xi = xi(Xi,X2 ,Xs) (3.2)

It is assumed that the deformation is continuous, a
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neighbourhood is transferred into a neighbourhood and 
that the transformation is one-to-one; ie the functions 
in 3.2 are singled-valued, continuous and have a unique 
inverse for every point in the body

Xi = Xi(Xl,X2,X3) (3.3)

As the strain is homogeneous the vectors X and x are
related by a linear transformation according to

xi = CKi jX j (3.4)

where (Xij is the deformation gradient from the unstrained 
configuration to the strained configuration. It also 
follows from the definition of the transformation that

c h j = &» /  axj

The stress induced displacement from X to x is described 
by the displacement vector u, defined by

ui= xi- Xi (3.6)

with displacement gradients given by

Ui j= dm/ dXj (3.7)
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Differentiation of equation 3.6 with respect.to 
Xj, and comparison of the result with equation 3.5 leads 
to the relation between the transformation coefficients 
and the displacement gradients,

a ij= 6ij + uij (3.8)

where Sij is the Kronecker delta.
Our aim is to look particularly into the

homogeneous deformation of the solid, ie to exclude body 
translations and rotations since these do not alter the 
internal energy of the material. Therefore we require a 
strain parameter which is zero for a body rotation or 
translation. By squaring equation 3.4 we obtain

Xi* = J  j CXiicXjXk i ijk
which may be rewritten as

£ x i 2» £ x i * + £  VnXiX)
i i >i

where Vi j are the elements of Lagrangian strain and are
defined as

i f j( &ij) (3.11)

and are symmetric, 7ij = From equation 3.11 it is
clear that ^ij= 0 if (Xij represents a bddy rotation 
only. In this way the strained state of a crystal may be

(3.9)

(3.10)
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completely specified in terms of the initial unstrained 
state and either the transformation coefficients or
the displacement gradients uij.

3.3 The Thermodynamic Definition of Elastic Constants.
In this discussion the definition of higher order 

elastic constants will follow the thermodynamic 
definition introduced by Brugger (1964). The four main 
thermodynamic potentials are the internal energy U, the 
Helmholtz free energy F, the enthalpy H and the Gibbs 
free energy G. Each of these is considered to be a 
function of two pairs of conjugate thermodynamic 
variables, one of which is the entropy S and the 
temperature T. The second pair, analogous to pressure and 
volume, comprises of the set of thermodynamic tension 
components tij, and a set of reduced Lagrangian strain 
components (Vii)/po, where p 0 is the density of the 
unstrained solid. Assuming that the solid is free from 
magnetic and electric fields that may contribute to the 
potentials, and that the material is not piezoelectric 
then by the first and second law thermodynamics

(3.12)
dU =  T d S + ( ± V nijro

. (3.13)
dF = —SdT + (— Jtjjdnij

(3.14)
dH = TdS - (̂ OifydtqrO

(3.15)

dG = —SdT — (i-)j)ijdt|j»o
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The potentials and all other expansion variables are 
taken per unit mass and all the above are summed over 
repeated indices i and j. The thermodynamic tensions tij 
are then given by

*ij ““ Pc dU dF
dTJij Po

s.i' dVr, T.iJ-
(3.16)

where rj' indicates that all other components of rj are 
held constant.

The state functions U and F must be invariant 
with respect to a body translation or rotation, without 
deformation. This rotational invariance suggests that U 
and F depend on the strained configuration x only through 
the initial unstrained configuration X and 
rotational-independent strains *7i j. Therefore, the 
functional dependences may be written as

and
U(x,S) = U(X,r)Vj, S) 

F(x,T) = FCX.Tjjj, T)

(3.17)

(3.18)

Although the strains concerned are finite, they are 
nevertheless very small, and it is therefore possible to 
express the strain dependence of the thermodynamic 
potentials in the form of Taylor series expensions about 
the state of zero strain. For example,
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U(S)=U(S. i| )-u (s .o )

QU(S.lj)
any + _L * 21 TpO

a2u(s,T))

+  3T

an ij aii ki 

a3u(s.rj)

ij kl

anij â ki a*imn

T)=0

*Hij ̂ kl Hmn -j. . • • • . 
Is0 (3.19.)

but for unstrained crystal in thermodynamic equilibrium,

au(s.n)
dvu >1=0 Po

(3.20)

Elastic coefficients of order n (n>2) are defined 
thermodynamically as the n th partial derivatives of the 
appropriate thermodynamic potential with respect to the 
Lagrangian strains, evaluated at zero strain, or with 
respect to tensions, evaluated at zero tension. Therefore 
we have the following relations for adiabatic 
(isentropic) and isothermal cases:

csijkl. = Pc 0nu
0T)ij 0T)kl. S.TpO (3.21)

CTijki.

SSijki

sT,ijkl...

=  Pc

=  “Po

0nF
0T)ij d l k l .

0nH

=  -Po

0tjj d*kl.
a'K}

T.tj=0

S. 1=0

.. T,l=0

(3.22)

(3.23)

(3.24)

The C ®ij kl and CTij ki ... are adiabatic and
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isothermal elastic constants respectively and S8i jki. . 
and STijki.... are their corresponding elastic
compliances. The energy density of the material can then 
be written as

1PoU(S) ( 2 ̂ ijkl̂ ij k̂l +  ('g-)CSjj|l,innT7ij TJk, TJmn +  ..

(3.25)

where

and
C ijkl Po 

^  ijklmn Po

a2u
ar?ij dVki rj=0

a3u
â lij dVki dv mn tj=0

The first two terms in the above energy expansion are 
the second and third order contributions of the strain to 
the elastic energy density. The form of this expansion is 
similar to the expansion of potential energy in terms of 
interatomic displacement, and thus it is ultimately 
possible to relate the elastic constants to the 
interatomic forces in a solid. Since the strains Vi j are 
symmetric we may employ the Voigt contracted suffix 
notation; suffices are then allocated according to the 
scheme,

11=1;22=2;33=3;23=4;31=5;12=6,

In this contracted notation the strains >T?ij may be 
written as Vi. The magnitudes of the Vi are related to
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the magnitudes of the V a  by

h i  = ll + «ij )*/x (3.26)

Also, from Brugger (1964),

tij = ti

In all cases, lower case suffices run from 1 to 3, while 
upper case run from 1 to 6. Applying this contracted 
notation to the elastic constants gives

C u . . . = Cjik| ... (3.27)

Thus the thermodynamic definitions become, for example

a3u
C S|JK — d*)i drjj 6Vk

(3.28)
S,TJ=0

The thermodynamic potentials U, F, H and G are 
extensive properties of the system, and so their n th 
partial derivatives of the thermodynamic parameters are 
independent of the order of differentation; ie the strain 
energy must be independent of the path by which the state 
of strain is attained. Thus all permutations of the 
contracted suffices lead to the same constant, so that 
for second order,

C i j  = C j i
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and for the third order,

Cij k = Cik J = Ckji = C kij = C jik = C jki (3.29)

Therefore the maximum numbers of independent SOEC and 
TOEC are 21 and 56 respectively. These numbers are 
further reduced by crystal symmetry . The details of the 
independent SOEC and TOEC are given by Brugger (1965a) 
for all of the seven crystallographic systems. For cubic 
symmetry, there are three independent adiabatic (or 
isothermal) SOEC and six TOEC. These are 

C n  = C 2 2 = C 3 3
Cl 2 = C 2 3 = Cl 3
C 4 4 = Css = C 6 6

and
Cl11 = C2 2 2 = C3 3 3
C 112 = C 3 2 2 = C13 3 = C 311 = Cl22 = C233
Cl 2 3
C 1 1 4 = C 2 5 5 = C 3 6 6
C 16 6 = ClSS = C 2 6 € = C2 4 4 = C3 4 4 = C355
C4 5 6

All others, except those obtained by the permutation of 
the suffices in the above, are zero.
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3.4 Propagation of Elastic Waves in Crystals.
The second order elastic stiffness constants of a 

crystal can be determined from the measurements of 
ultrasonic wave velocities propagating in the solid. The 
wave motion is assumed to be adiabatic and to cause only 
infinitesimal displacements of volume elements in the 
crystal. By Thurston (1964) the equation of motion of 
such wave can be written as

62xi 0C7j:p u i = u_!i
at2 dxj

For the wave propagating in an initially unstressed 
medium this equation becomes, by equation 3.6

d2U| _  acrSj
at2 dXjP°-^T =  W  (3.31)

since p= po for infinitesimal strain. Now by equation 
3.8 and 3.11 the Lagrangian strain parameter is

*?ij= (Ul J+UJ 1 + UklUk i ) . (3.31a)

but for infinitesimal strains the product term can be 
ignored, thus leading to the usual infinitesimal strain 
definition

€ij = ( Uij + uji )/2 (3.32)

By differentating eq (3.1) with respect to.X equation 
3.31 becomes,
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(3.33)

The ultrasonic techniques employed in the present study 
were designed to generate nearly plane wave pulses which 
may be described by the equation,

where N is a vector in the direction of propagation, Uo 
is particle displacement amplitude and V is the magnitude 
of wave velocity. Imposing this into equation (3.33) 
gives (Brugger 1965a)

where U is a unit vector in the direction of 
polarisation. Equation 3.35 is then solved for V, and 
there are found to be in general three solutions for each 
direction of propagation. For certain combinations of N 
and U, it may be shown (Brugger 1965a) that the 
propagation modes of the elastic waves are either purely 
transverse or purely longitudinal. In a cubic crystal, 
the pure mode directions are of [001], [110] and [111] 
form and each of these directions is associated with one 
longitudinal and two transverse modes (although these may 
be degenerate in velocity). The acoustic mode velocities 
(vi, v 2 , va) can been calculated as the eigenvalues of

(3.34)

PoV2Um = Csmnop N„ N„ U„ (3.35)



the Christoffel equations

(A * -  pv'&tk) u0* = 0 (i,k= 1,2.3),
(3.36)

where Lik is the Christoffel matrix, uoi, uoa and uos are 
the Cartesian components of the unit polarization vector, 
p is the density and v the desired velocity. These 
equations have a non-trivial solution only when the 
determinant of the coefficients is zero. For a cubic 
crystal this condition leads to the determinantal 
equation

(Cn -  C44) n\ +  C44- pv1 ri! nt(Clt +  C44) nxn jfC ,,  +  C44)

n1n2(C12 + C44) n\(C\\ —Cu) + ̂44 ntn3(C11 + C44)
Uin3(C,2 + C744) n*n3(̂ l* + C«4) +

(3.37)
where m ,  r\2 , na are direction cosines for the 
propagation direction.
The three wave velocities were obtained from propagation 
directions at 1° intervals around the [001] and [110] 
planes by determining the eigenvalues of the Christoffel 
equations; at the same time, particle displacement 
vectors were derived by calculating the eigenvectors. 
Pure modes solutions, of course, are obtained only for 
propagation in the crystallographic directions <100>, 
<110> and <111>.

To obtain a complete set of the SOEC of a cubic 
crystal it is desirable that the specimen to be cut with 
two opposed (100) faces and two pairs of faces 
perpendicular to the [110] direction. The” expansions 
linking the wave velocities and the SOEC for f.c.c. are
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listed in Table 3.1. As the elastic stiffness constants
obtained from ultrasonic measurements are adiabatic, they
may be transformed into isothermal second order elastic
constants using the following process. The first step is 
to transform compliances to stiffnesses:

S n  = (Cn + Ci2 )/(Cn - C 1 2 H C 11 ♦ 2Ci 2 ) (3.38)

S12 = - Ci2/(Cn -C1 2 H C 11 ♦ 2Ci 2 ) (3.39)
(3.40)S 44 = I/C44

and the bulk modulus of the solid is given by

B = (C11 + 2Ci2 )/3 (3.41)

The general relation between isothermal and adiabatic 
compliance(Nye 1957) is

Of j jOf ̂ jTT
STijki=SV l + - ^ -  (3.42)

where T is the absolute temperature, po is the density 
in the unstressed state, CP is the specific heat per unit 
mass at constant pressure and a i j and «ki are the 
thermal expansion coefficients. Using STijki obtained 
from equation (3.42) and substituting into equations
(3.38) to (3.40), the isothermal SOEC can be determined. 
For cubic crystal equation (3.42) becomes



Table 3.1:: Expression for poV2 in face centred cubic crystals.
Mode No Propagation

direction
Polarization
direction

PoV2= ( poW2)

1. [001] [001] C n
2. [001] in (001) plane
3. [110] [110] (Cll+Cl2+2C44)/2
4. [110] [110] (Cn-Ci2)/2
5. [110] [001] C 4 4

Table 3.2 Thurston and Brugger Relations for Selected Modes in fee 
Crystals.

Mode
No

Prop 
Dir.

Polar
Dir.

w = (p0v 2)P:0 ( pcv/2 ) ' p s 0

1 [110] [100] C n -l-2w/3B-(Ciii+2Cii2)/3B
2 [100] in plane C 4 4 -l“2w/3B-(Ci44+2Ci6s)/3B
3 [110] [110] (Cll+Cl2+2C44)/2 -l-2w/3B-(Cin/2 + 2Cii2+Ci4 4 + 2Ci6«+Ci2 3/2)/3B
4 [110] [110] (C11-C12)/2 -1-2w/3B-(Ciii/2-C123/2 )/3B
5 [110] [001] C 44 -l-2w/3B-(Ci4 4 + 2Ci6 6)/3B

B = (Cii+2Ci2)/3



Table 3.1: Expression for pQV 2 in face centred cubic crystals.
Mode No Propogation

direction
Polarization
direction

PoV2 = ( poW2)

1 . [001] [001] Ci i
2. [001] in (001) plane C 4 4
3. [110] [110] (Cll+Cl2+2C44)/2
4. [110] [110] (Cn-Ci2)/2
5. [110] [001] C 4 4

Table 3.2 Thurston and Brugger Relations for Selected Modes in fee t̂o
Crystals.

Mode Prop Polar w=(p0v 2)p=o (pcv/2)'p = o
No Dir. Dir.
1 [110]
2 [100]
3 [110]
¥

4 [110]
5 [110]

B = (Cii+2Ci2)/3

[100] 
in plane 
[110] 
[lTO] 
[001]

C n  
C 4 4
(Cl 1+Cl 2 + 2C4 4 )/2 
(Cn-Ci2)/2
C 4 4

-l-2w/3B“(Ciii+2Cii2)/3B 
-l-2w/3B-(Ci4 4+2Ci6 6)/3B
-l-2w/3B-(Cm/2+2Cii2+Ci4 4 + 2Ci6 6+Ci2 3/2)/3B
-l-2w/3B-(Ciii/2-Ci23/2)/3B
-1-2w /3B-(Cw i  + 2Cik«W3R



The expressions for cubic crystal (Table 3.2) under 
hydrostatic pressure imply that the cubic symmetry is 
retained and from hydrostatic pressure measurements, the 
three independent combinations of the third order elastic 
constants ( C m +  2C 112 ), (C144 + 2Ci6«) and (C123 +
2C 1 1 2 ) can be determined.

Elastic constant measurements enable the acoustic
phonon density of states to be modelled by a Debye
distribution function; the excluded optic modes can then
be treated separately. The Debye temperature has
been obtained as an integral over velocity surface 
(Saunders et.al.1986)

where N/V is the number of atoms per unit volume V.and 
Vi is the velocity of mode i at low temperature.
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3.5 Hydrostatic Pressure Derivatives of the Effective 
SOEC and of the Bulk Modulus 

Thurston and Brugger (1964) defined a 'natural 
velocity' W as lo/T where lo is the length of the 
unstressed crystal and T is the experimentally measured 
transit time of ultrasonic waves across the specimen. The 
product of A>W2 is then evaluated, where Po is the 
original unstressed density, and the dependence of this 
product on a single scalar stress parameter P is 
measured. The parameter P is defined as the force applied 
to the specimen divided by the unstressed area; thus all 
experimental parameters are referred back to the original 
dimensions of the unstressed specimen. The stress 
derivative is then given by

(PoW 2)' o = d(p0W 2)
dP (3.45)

p=o

The quantity ( A>W2)'p*o does not represent the actual 
pressure derivative of the SOEC involved since no account 
is taken of the changes in sample length due to applied 
pressure. The natural velocity W measured at a pressure P 
is not equal to the actual sound velocity V in the 
material at that pressure. Furthermore the density of the 
solid is also a function of the applied pressure. However 
Thurston (1965) has shown that the first pressure 
derivative of 'effective' elastic constants ( pV2), 
evaluated at zero pressure, can be calculated* from the 
pressure derivative (poW2 )'p«o without the need to
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calculate the path length and density at any elevated 
pressure. The equation required (Thurston 1965) is

where W is the natural velocity, defined as the path 
length at zero pressure divided by the wave transit time 
at a pressure P. Wo is the natural velocity at P=0 (Wo=V 

at P=0). The term in the parentheses on the right is the 
volume compressibility X T minus twice the linear 
compressibility in the propagation direction N. These 
terms correspond to the effects of changes of density and 
path length respectively. It is the isothermal compliance 
constants which appear here since pressure derivatives 
are measured at constant temperature. For cubic crystals, 
the linear compressibility N k N « S Tn*ii is equal to XT/3>*or 
all propagation directions N. Thus

since BT = 1/XT. Thurston (1965) has shown that the bulk 
modulus at any pressure is related to the effective 
elastic coefficients for wave propagation at that 
pressure by the same formula as at zero pressure. Hence 
the correct derivative of the bulk modulus B is obtained 
by differentiating the appropriate relationship, 
interpreting the derivatives as derivatives of the 
effective elastic coefficients. Therefore,

(3.47)
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0 B 1 <3c n , d c i2
(3.48)0 P 3p=o ° 0 P a p  jP=0

The pressure derivative of the thermodynamic 
second order elastic stiffness constants (SOEC), Bij is 
defined as

r» flCslk mn _U ^ ijhhQkmnij (3.49)

The difference between the two sets of pressure 
derivatives has been discussed by Thurston (1964). He 
then concludes that the difference is expressible in 
terms of the second order elastic stiffness constants and 
the second order elastic compliances as shown in Table 
3.3 which refers to each of the crystal symmetries 
except for those belonging to monoclinic and triclinic 
systems. In the analyses of the ultrasonic data in 
conjunction with other thermodynamic data, the dCfJ/jp 

used most commonly can be deduced from two channels: by
the use of equation (3.47) or indirectly by first finding 
the B u ' s  and then applying the relations in Table 2.3 to 
obtain the pressure derivatives of the effective SOEC. 
These dimensionless parameters Bij and dCu/dI* have the 
values in the range ^ 10"2 to 0.5 x 102; negative 
pressure derivatives often imply the softening of 
acoustic vibrational modes.
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Table 3.3 Pressure derivatives of thermodynamic and 
effective elastic constants.

Bu  *  ♦ 1 -  (S2 + Sj -  j s ^ c h

B12 " â 2- -  1 -  (S3 -  Si -  S2)C12

B13 " 3jp3 -  1 -  <s2 -  Si -  S3)C13

B14 " ' ’sp4' ' slc14

B1S “ - (S2 - 2Sl)Ci5

B16 “ -if“ - * <s3 * 2S!>C16

b22 ’ ~ ^ 2“ + 1 - <S3 + Si - 3S2)C22

B23 m - 1 - (Si - S2 - S3)C23

»c?4 .JpB24 “ - ;f- - (Si - 2S2)C24

B2S ■ + S2C25

B26 - (S3 - 2S2)C26

B33 “ ~3^p3 + 1 - (Si + S'2 - 3S3)C33

B44 '^p4- + 1 * (Si - S2 - S3)C44

B«  “ - r f - + S3C«

B46 + S2c46

85S “ ~ jp5 ' + I - (S2 - Si - S3)Css

BS6 * - ^ - S lC56

B66 = - ♦ 1 - {S3 - Si - S2,C66
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3.6 Compression of the Crystalline Solids
An important quantity in theoretical and 

experimental studies of the physical properties of 
magnetic materials under pressure is the compression 
V(P)/Vo, the ratio of the volume V(P) at pressure P to 
that Vo at atmospheric pressure. Although the dependence 
of ultrasonic wave velocity upon pressure can be measured 
with precision, the pressure range is limited. The 
compression at high pressure can be evaluated from the 
elastic constants and their hydrostatic pressure 
derivatives by using an equation-of-state such as that of 
Murnaghan (1944). This rests upon the assumption that the 
isothermal and adiabatic bulk moduli depend linearly upon 
pressure

(3.51)

(3.50)

Then integration leads to the Murnaghan
equation-of-state:

P i F  W 7
(3.52)

or in the more easily used form
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in " Vo ~ I r T/ p  \ i
[_ v(P)_ (3.53)

which describes compression of many solids well (Anderson 
1966).

Ultrasonic pulse echo measurements lead to 
adiabatic moduli, so to use this equation-of-state it is 
necessary to transform the data to isothermal moduli. The 
adiabatic and the isothermal bulk moduli are related by

f£=BoT(l+ayT) 0.54)
y is the thermal Gruneisen parameter.

TThe isothermal hydrostatic pressure derivatives (£/£/£P)
TT(= ) can be obtained from (Overton 1962, Anderson

1966).

(3.55)

where (dBl/dT)r can be obtained from

( dJ ±  \ ( dE^  I -  . ~ *5 Tay f■ •
(dTjr [dTjr + ay) r [ I  + roy]J( ot/7 J

(3.56)



50

The compression up to the theoretical hydrostatic 
pressure of about lOOKBar has been obtained in this work.

3.7 Temperature Dependences of the SOEC
The temperature dependences of the SOEC have been 

discussed in great details by Tu Hailing (1982). The 
thermal variations of the SOEC for most crystals which 
can be regarded as normally behaved are characterised by 
two general features:

i) linear decreases with increasing 
temperature.

ii) as temperature approaching zero Kelvin (OK) 
the SOEC-temperature curve will have a zero 
slope region.

Thurston (1974) deduced a general relation for the 
temperature dependences of the SOEC and obtained an 
equation for cubic crystal as

[  ac,j/dr 1 = c °  h / u  at,ST  -  “ */3 ]
L J r«o t

(3.57)
where is the volume thermal expansion coefficient, f
is overlapping frequency, Cij are the SOEC at ambient 
condition and subscript 0 indicates that quantities are 
evaluated at some fixed temperature T and at zero 
pressure. dCtJldT comprises two contributions: one from 
elastic anharmonicity and the other from -the volume 
expansion. In order to discuss the pure anharmonic
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lattice contribution which has the physical significance 
to temperature dependence of the SOEC, (d^u/dT)*» the 
volume effect must be separated from the measured value 
of (dC/j/dT)? from a fundamental thermodynamic relation 
(Fritz 1974),

[ain0/ar]^ = - [k/«] [<?iner/d/>] + \din<xm-1 (3.58)

one arrives at an approximation formula:

£ dCtj/dT J = u/dT J £ dC(j/dP J (3.59)
V r  T

where K and a  are the volume compressibility and volume 
thermal expansion coefficient respectively.

The temperature derivatives of the SOEC are also 
useful for an estimation of the magnitude of the fourth 
order elastic constants (FOEC) if one considers that the 
central force model may be reasonable for the higher 
order repulsive interactions in rocksalt and zincblende 
structure crystals in which case the eleven FOEC would 
reduce to C u n ,  C 1112 and C 1113 .
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3.8 Gruneisen Parameters
One important application of the measured 

hydrostatic pressure derivatives of the SOEC is that they 
can be used to determine the mode Gruneisen parameters of 
the long wavelength acoustic phonon modes alone, and 
hence enable a separate assessment of the influence of 
the vibrational anharmonicity of these particular modes 
on the physical properties of solids. In the Gruneisen 
approach to anharmonicity the thermal expansion a is 
used to obtained a thermal Gruneisen parameter y 1*1

y,h= aVBJ/Cv = xVB̂ C..
(3.60)

where a is the coefficient of volume thermal expansion, 
V is the volume, BT is isothermal bulk modulus and Cv and 
C p are specific heats at constant volume and constant 
pressure respectively. This parameter comprises a
weighted average of the individual mode (i) Gruneisen 
gammas

,h _y (3.6D
and

 dlno>i (3.62)
yi_ dlnV

where Ci and c*>j are the Einstein heat capacity and 
lattice frequency of the ith vibrational mode. At high
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temperature (T>0d ) the thermal expansion and specific 
heat include contributions from phonons having 
wavevectors which span the whole Brillouin zone. A link 
between thermal properties and the stress dependence of 
the acoustic mode velocities can be forged by calculating 
the long wavelength acoustic mode Gruneisen parameters 
and then obtaining a weighted average for these alone. 
Knowledge of the ^Cu/dP allows the calculation of the 
mode Gruneisen gamma Yi of the acoustic branch in the 
long wavelength limit. These particular ^i, especially 
those for the lower-lying transverse vibrations, are 
expected to dominate the thermal Gruneisen parameter at 
low temperatures where only the lowest energy modes are 
excited so that optic modes and modes well away from the
Brillouin zone centre can be neglected. In the
anisotropic continuum model only the acoustic modes are
considered and their dispersion is ignored. Then the 
volume dependence of the individual mode frequencies for 
the acoustic modes in the long wavelength limit can be 
related to the measured pressure dependences of the
elastic constants. The mode Gruneisen parameters Y(p,N) 

where p denotes the branch and N is the unit vector in 
the propagation direction, are given for a cubic crystal 
by (Brugger and Fritz 1967):

yCp.N)=-(-ĝ ) [3B+2w+k]
w(p,N)=CnKi+C44K2+C12K3,
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K p . N ^ C ^ + C i K j + C j K j  
K,(p.N)=N2 U2 +N2 U2 +N2 U2 
K2(p,N)=(N2U3+N3U2)2+(N3UI+N1U3)2+(N1U2+N2U1)2 
K3(p.N)=2(N2N3U2U 3+ N 3N 1U3U,+N1N 2U 1U 2)
Cj=Cj]i+2Cn2
C 2= Cl44+ 2C 166 (3.63)
C3= C 123+2C112

Here N,- and Uj are the direction cosines for the 
propagation and polarization directions. The mode 
Gruneisen gammas for any chosen propagation direction N 
have been computed by solving the Christoffel equations 
(equation 3.36) to obtain the polarisation directions Ui 
as the eigenvectors and the mode velocities as the 
eigenvalues.

A high temperature and low temperature average
acoustic Gruneisen gamma can be obtained from the mode 

• •Gruneisen gammas. At low temperature each acoustic mode 
will be excited by an amount proportional to the specific 
heat C(p,N) of that mode, which in turn is proportional 
to the inverse cube of the mode Debye temperature. Hence 
to obtain the low temperature acoustic Gruneisen
parameter it is only necessary to weight y(p%N)

by y'V./vj
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^  _ z/y(p,N)^"3(p.N)d a
L j v~3( P.N)dn (3.64)

--elTo calculate the high temperature acoustic gamma, Y ,
to,

a Debye sphere is assumed, and at T>>0d all modes are 
excited classically; the weighted factors become equal 
and the high temperature gamma can be calculated as an 
unweighted mean of (̂/j,/V)* that is

t (3-65)

_C]y  is a measure only of the contribution of the 
zone-centre acoustic mode to the anharmonicity, whereas 
y f,‘ takes into account contribution from all modes on 
both acoustic and optic branches. At low temperatures 
only the zone centre acoustic phonons corresponding to 
the long wavelength limit are excited; of these modes, 
the transverse branches are characteristically the lowest 
in energy.
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CHAPTER 4

EXPERIMENTAL METHODS

4.1 Introduction
Measurement of the temperature dependences of the

hydrostatic pressure derivatives of wave velocity and
hence the temperature and pressure dependences of the
elastic vibrational modes is the major interest of this
work. One method of making measurement of the second
order elastic stiffness constants (SOEC) of a crystal is
by measuring the absolute pulse transit time of a
specified ultrasonic wave propagating through the solid.
In this chapter the ultrasonic pulse echo overlap
technique applied to measure the velocities and their
pressure dependences for elastic waves propagated in
single crystals of binary and ternary alloys of MnNi and
MnNiC will be described. Techniques for controlling,
measuring and varying the sample temperature and pressure
throughout the experimental programme will also be
described. To obtain the temperature dependences of the
SOEC of these alloys, measurements have been made from
room temperature up to about 50 degrees above the Neel
point so that the elastic behaviour of these materials in
both the antiferromagnetic and paramagnetic states can be
observed within this temperature range. The hydrostatic
pressure derivatives have been obtained at fixed

•>
temperatures in this range.
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4.2 Measurements of Ultrasonic Wave Velocities in the 
Single Crystals.

The pulse echo overlap method is one of the basic 
techniques for measuring ultrasonic wave velocity. It is 
particularly useful for determining changes induced in 
velocity by the application of pressure or variation of 
temperature. The technique employed here is the single 
ended configuration by which a pulse propagates into a 
crystal and then the reflected pulse is detected from the 
same side as the incident pulse. A piezoelectric 
transducer is used both as a transmitter and a receiver; 
it converts the high voltage radio frequency pulses into 
mechanical vibrations. On reaching the other side of the 
sample this is reflected back towards the transducer. As 
a result a series of reflected echoes of equal distances 
appears as an echo train on the screen of an
oscilloscope. The echo train show an exponential decay 
due to a sum of all the attenuation mechanism. The
interval between any two successive echoes represents the 
transit time in the unit of the time base scale of the
oscilloscope. As the propagation of this wave is
essentially a plane wave, the uniform propagation 
velocity is determined by the distance between the two
sample faces and by the transit time of the two
successive chosen echoes.
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4.3 Sample Preparation.
A plane wave with a uniform propagation velocity 

can only be obtained from a sample which has a high 
degree of parallelism of the two end faces. In normal 
practice most of the crystals employed have been cut with 
a typical values of non-parallelism and misorientation of 
less than 10"4 and 0.5° respectively. Non-parallelism 
would effect the measurement of thickness and the 
acoustic path length; hence the accuracy of the velocity 
measurement also depends on the parallelism of the two 
faces. For a sample with larger values of misorientation 
and non-parallelism the following effects could occur:

i) Interference Effect
Non-parallelism would result in the path of an 

ultrasonic wave being diverted away from its original 
direction after repeated reflections causing an 
interference effect as a result of the transducer 
receiving different phases of the wave across its 
diameter. The echo train would then suffer 
non-exponential loss affecting the accuracy of the 
transit time measurements.

ii) Diffraction effect and acoustic mode 
conversion.

These effects can arise from the misorientation 
of the sample direction from the required 
crystallographic direction. In this circumstance the wave
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propagated in the crystal will not be pure. Then two or 
more waves of allowable polarizations can be created. 
These waves will interfere to produce a velocity 
different from that of the pure mode.

Several processes are needed to prepare sample 
for ultrasonic wave velocity and SOEC measurements which 
are discussed below.

i) Determination of Crystal Orientation.
When the crystal is cut so that wave propagation 

is along the [110] direction, it is possible to measure 
three combinations of elastic constants using each of the 
three possible modes of propagation: (Ci1+C12+2C44), C 44 
and (Cn-Ci2)/2. When cut along the [001] direction , it 
is possible to measure just C 11 and C4 4 . The advantages 
of having both cuts are that: (i) the measurements on C 44 
can be compared, (ii) C 11 can be measured by itself on 
the four fold sample.

Crystal orientations have been determined using 
Laue back reflection X-ray photographs. The crystals are 
mounted on a three arc goniometer (Fig 4.1) which is 
placed onto the X-ray set where the Laue photograph is 
taken. The first experiment is to take a series of Laue 
photographs at different points on the crystal to 
determine whether the sample is a single crystal and does 
not have polycrystalline regions in the area to be cut 
out for the sample. Any twinning within the crystal can 
be observed as split diffraction spots on the
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photographs. Then the desired symmetry axis can be 
located and centred. The exact crystal orientation is 
established after a series of Laue photographs, from each 
photograph the orientation is improved with the use of a 
Greniger net. In normal practice the process is repeated 
three or four times before the orientation to within 
+0.5° can be obtained.

ii) Sample Cutting and Polishing
When the desired crystal orientation has been 

established, the goniometer with the crystal mounted on 
it are transferred onto a spark machine (type SMD, Metal 
Research Limited, Cambridge.) for cutting. The cutting 
process is carried out under paraffin, it is a strain 
free cutting procedure. The crystal and the goniometer 
are located directly under a spark erosion metal blade 
and a high tension voltage is applied between the metal 
blade and the crystal. By setting a suitable voltage 
between the two, sparks are produced and the crystal is 
cut so as to have a pair of parallel faces perpendicular 
to the symmetry axis.

The orientation of each crystal is rechecked 
after cutting. To do this the crystal is mounted on a 
spring loaded goniometer with the cut faces held 
perpendicular to the X-ray beam (Fig 4.2). An X-ray 
photograph is taken and examined. When the final 
alignment is satisfactory, the whole process is repeated 
for the next pair of cuts. With this process pairs of
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Fig.4.1 THREE ARC GONIOMETER

Flg.4.2 SPRING LOADED GONIOMETER
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parallel faces perpendicular to the [110] and in some 
cases [001] directions have been obtained. Using a 
digital micrometer the thickness of the crystal has been 
measured at different points; from this the parallelism 
has been found to be better than 10"4 rad.

4.4 Piezeoelectric Quartz Transducers
A transducer is a device used for converting

t.energy from one form to another. In this work a quartz 
transducer is used which acts as a piston source for 
generating a wave which is essentially planar in nature 
with a width equal to the diameter of the piston up to a 
distance r given by

r = a2 / \ (4.1)

where a is the transducer radius and \ is the wave 
length of the plane wave. The fundamental frequency of 
the transducers used here is 10MHz. Transducers are 
designed with the thickness being half of the wavelength 
of the sound wave in quartz at the resonance frequency 
(Bateman 1966).

Two types of quartz transducers have been 
employed. X-cut transducers having a thickness of 0.29+ 
0.02 mm have been used for generating longitudinal waves, 
while Y-cut transducers have a thickness of 0.19+ 0.02 mm 
have been used for generating shear waves. Transducers of 
different diameters (4mm, 6mm and 10mm) are available. To
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ensure that the vibration produced is a plane wave, the 
diameter of the transducer should be at least ten times 
the wavelength of sound wave in the crystal. To avoid 
side wall reflections, the diameter of the transducer 
needs to be somewhat smaller than the sample diameter 
(Fig. 4.3). These criteria have been obeyed.

4.5 Bonding Materials for High Temperature Velocity
Measurements

To attach a transducer to a specimen, a bonding 
material is required so that the acoustic energy 
generated by the quartz transducer can be coupled into 
the specimen.

The following two bonding materials have been
used:

i) Dow Resin 276-V9 (Dow-Corning Corp) which is 
used particularly for ultrasonic velocities measurements 
at room temperature. With this bonding material, a good 
echo train can be produced for the longitudinal mode up 
to 350°C

ii) Du Pont Thick Film Conductor Composition 9770 
(Du Pont UK Ltd) is usually employed for coupling of both 
shear and longitudinal waves for high temperature 
measurements. Before bonding, the specimen and transducer 
faces are freed from grease and dirt by washing them with 
acetone. A suitable quantity of bonding agent is then put 
onto the surface of the specimen: the transducer is then 
placed on this bond and gently rotated. By this rotation
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a uniform and thin bond to about 3 jjm can be produced 
(Fig.4.3). It is desirable to obtain a thin and uniform 
layer of bonding agent that adheres to both transducer 
and specimen and gives a clear, large amplitude and 
exponential echo train over a wide temperature range. For 
an X-cut transducer, a bond of this material can produce 
a reasonably good echo train at room temperature without 
heating. However to propagate a shear wave through a 
crystal, the bond needs to be dry; to ensure this, the 
orientation of the transducer is first determined by 
Dow-resin 276-V9 and then reattached with the Dupont 
material. The specimen is then put into a sample holder 
and transferred to a furnace (see sections 4.7). The 
temperature of the furnace is gradually increased to 
about 90°C and then left for 12 hours before it is 
brought back to room temperature. The sample is now ready 
for the ultrasonic wave velocity measurements.

Both bonding agents are stable and resisted 
erosion when immersed in the silicone fluid used in 
hydrostatic pressure experiments. After the completion of 
the experiment the transducer is removed by immersing the 
specimen into a small quantity of acetone for about 10 
minute to dissolve the bond.

4.6 The Pulse Echo Overlap Technique.
Fig 4.4 shows the block diagram of the pulse echo 

overlap technique employed here. The details of the 
circuit connections and the electronic networks are not
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discussed here but the function of each component {Fig 
4.5) is. The pulse echo unit consists of a radio 
frequency (r.f.) pulse generator (Matec 6600) which 
generates the 10MHz r.f. pulse. The repetition rate 
of this pulse is controlled by a master synchroniser 
(Matec 122A). This master synchroniser produces a trigger 
source (in this case it is a square wave) with a 
frequency similar to the frequency of the sine wave 
produced by a signal generator (Matec 110). The frequency 
of the square wave is reduced by dividing by a factor of 
10 and is used to trigger the pulse generator. With this 
triggering process only the pulse with this final 
repetition frequency will propagate into the crystal. 
Each triggered pulse consists of an r.f. burst which is 
in turn transformed by the quartz transducer into a 
mechanical vibration within the crystal.

After a series of reflections within the crystal, 
the successive echoes are detected by the transducer and 
amplified by a receiver. The r.f. echoes are displayed on 
the oscilloscope in their entirety (Fig 4.6). The Matec 
122A also functions as a double delay strobe generator 
ie to generate two square wave pulses when linked to 
Z-mode of an oscilloscope it intensifies any two echoes 
of the same echo train. The intensity of the oscilloscope 
is then reduced until only these two intensified echoes 
are observed on the screen. The oscilloscope is then 
triggered with the master synchroniser at a rate 
equivalent to the delay between the chosen echoes, and
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the intensified echoes can now be overlapped and
visualised. By fine adjustment of the master synchroniser 
frequency, cycle-to-cycle matching can be achieved. The 
waveforms associated with this operation are illustrated 
in Fig 4.7.

4.7 High Temperature Ultrasonic Wave Velocity
Measurements.

The temperature dependences of the second order
elastic stiffness constants measurements for MnNi and 
MnNiC alloys have been measured up to and through their 
Neel temperatures (above about 50°C) by means of a
suitable high temperature sample holder located in a 
electrically heated furnace (Fig 4.8b).

A brass sample holder (Fig 4.8a) which can
sustain temperature up to 400°C has been constructed for 
this work. It is mounted on one end of an aluminium tube 
of 45cm length and 1cm in diameter. A spring is attached 
to the sample holder so that the gap where the specimen 
is to be placed can be varied according to the specimen 
thickness. To the opposite end of the aluminium tube is 
attached a cylindrical brass support 2cm thick and 2.5cm 
in diameter used to hold an r.f. socket. Inside the 
aluminium tube two identical ceramic pipes run parallel 
from the brass support to the sample holder: one is to
lead a thermocouple wire from specimen to a digital 
thermometer for recording temperature of the sample and 
the other holds the r.f. wire used to transmit and
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receive r.f pulses. The two ceramic pipes have also been 
used to protect both the r.f. wire and thermocouple wire 
from damage and to insulate them.

A stainless steel cylinder of 0.75cm thick and 
closed at on end is introduced into the furnace to reduce 
temperature fluctuation. After the sample has been 
inserted into the holder and connected to the pulse echo 
system, it is then transferred into this steel cylinder 
(Fig 4.8b): a variac is employed for supplying a suitable 
current to the furnace. By varying the output voltage 
from the variac the desired temperature of the specimen 
can be obtained at the required rate of heating. The 
specimen temperature is recorded by a digitron digital 
thermometer having an accuracy of 0.1°C. The schematic 
diagram of the apparatus used for the temperature 
dependences of the SOEC experiments is shown in Fig.4.9.
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4.8 Hydrostatic Pressure System
The hydrostatic pressure system employed in this 

v/ork has already been described in detail by Yogurtcu 
(1980) and Brassington (1982). With this system a 
pressure up to lOKbar can be generated. It consists of a 
metal cylinder made of EN26 nickel alloy carbon steel 
(the specifications are given in Table 4.1) having 
dimensions 115mm high and 127mm in diameter. A bore of 
2 5.4mm in diameter is made along the axis of the 
cylinder. Two pistons of the same material as the 
cylinder are inserted from opposite sides of the bore 
(Fig 4.10) so that they can move in opposite directions 
to each other. The lower piston is fixed while the upper 
piston is allowed to move freely (Fig 4.11).

To prevent any leakage from the cavity between 
the two pistons at high pressure, a PTFE ring and a 
neoprene 0-ring are attached to the leading section of 
each piston. The maximum operating temperature of these 
rings is 200°C. The cavity between these two pistons is 
filled with fluid which acts as the pressure transmitting 
medium. Several different fluids have been employed in 
this work:

i) Castor oil for pressures less than 3kbar,
ii) Plexol-244 oil for higher pressures (from 3 

Kbar to 10 Kbar) and
iii) Silicone fluid (Dow Corning 200/1000 CS 

produced by Dow Corning Coop. Michigan USA) for combined 
higher pressures and temperatures. Unlike Castor oil and
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TABLE 4.1 SPECI FICATION OF EN26 NICKEL CARBON STEEL

Principal Alloying Elements (%)

Q Si Mn Ni Cr Mo UTS
D.26-0.M+ 0.10-0.35 O.Zf-0.7 2.3-2.8 .0.5-0.8 O.k-O.? 1.2 GPa

Young's Modulus 195 GPa.
Linear Thermal Expansion Coefficient 12-13 x 10  ̂ C



Fig.4.10 PISTON-CYLINDER HYDROSTATIC PRESSURE CELL 
AMD ITS COnPOflEMTS
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Plexol-244 oil, silicone fluid has a higher boiling point 

and does not contain carbon molecules; the other oils 

cause a black stain on the cylinder and the pistons.

There are several conical holes through the upper

piston. These holes are filled with beryllium copper

plugs insulated with ceramic to avoid any metal contact

between the plugs and the sample holder. On top of the 

upper piston is mounted a sample holder and a manganin 

coil resistance. The resistance of this coil is used as a 

gauge to measure the hydrostatic pressure exerted on the 

sample (Fig 4.11). To avoid any damage caused by the 

fluid at high temperature, PTFE covered thermocouples and 

wires are employed. The electrical connections for the 

manganin coil resistance, thermocouple and r.f. wire from 

the sample holder to their respective meters and the 

pulse echo system are made through the beryllium copper

plugs. All the electrical connections to the beryllium 

copper plugs are made with a high temperature soldering 

material. The external pressure is exerted by a 50 tons 

hydraulic press made by Bishop Lifting Services, Bristol, 

England. For safety reasons the pressure cell and the 

press are enclosed in a 6mm steel cabinet having a 

dimension 82mm x 79mm x 32mm; the door of the cabinet is 

always locked shut whenever the pressure unit is in 

operation.

The quality of the transducer-specimen bond and

leakage at the seal are examined by gradually increasing*»

the pressure to the maximum required and holding it for
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30 minutes. Any leakage can be detected from the external 

pressure gauge. The pressure is then released and the 

system is left for 30 minutes to regain thermal 

equilibrium. This hydrostatic pressure system is now 

ready for data acquisition.

When the pressure is changed, the temperature 

inside the cavity alters: an increase in applied pressure 

by 0.1-0.2kbar results in a significant increase (1°) in 

temperature. A period of approximately ten minutes is 

required to allow the cell to return to its thermal 

equilibrium temperature before ultrasonic measurements 

can be made.

4.9 Techniques Used to Make Hydrostatic Pressure

Measurements of Ultrasonic Wave Velocities at 

High Temperatures.

The pressure cylinder, which is made of EN26 

Nickel Alloy Carbon Steel, has been used up to 

approximately 180°C. At a higher temperature ( oo 200°C) 

this steel undergoes a phase transition which can weaken 

it. The basic set-up used for the high temperature 

measurements is similar to that used at room temperature 

described in section 4.8. Sound velocity pressure 

dependences of all the three modes of propagation along 

the [110] direction of Mn-Ni and Mn-Ni-C alloys are first 

measured at room temperature. The temperature of the 

cylinder is then increased gradually in steps of
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approximately 20°C . This is done by using a temperature 

controller (Eurotherm Ether type 17-19B) connected to a 

cylindrical heating element which is tightly clamped 

around the external wall of the pressure cylinder [Fig 

4.12(b)]. A NiCr/NiAl thermocouple is inserted between 

the external wall of the cylinder and the heating element 

and used to sense the temperature. If the temperature 

recorded by the thermocouple is lower than the preset 

value, the controller will supply current to the heater 

until the cylinder reaches the preset temperature. When 

the cylinder cavity reaches the temperature required, the 

current from the controller is reduced automatically 

since only the heat losses need to be overcome. Fig 4.13 

shows the schematic diagram of the temperature controller 

for experiments made at elevated temperatures. The 

temperature of the external wall of the cylinder is held 

steady to within a few degrees Celsius by this control 

system but the temperature oscillates about 3°C 

throughout an experiment. Due to the thermal mass of the 

cylinder, the oscillation amplitude within the centre of 

the cell is reduced to about 0.3°C. The temperature 

oscillations within the centre of the cylinder have to be 

reduced as far as possible because the ultrasonic wave 

velocity and hence the echo transit time is sensitive to 

temperature changes of 0.3°C. The temperature of the 

internal cell is a few degrees lower than the external 

value and is empirically related to the preset 

temperature by:
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50 TOM HYDRAULIC PRESS CELL ASSEMBLY WITH TEMPERATURE 
Fig.4.12a CONTROLLER FOR ELEUATED TEMPERATURE

Fig.4.12b CLOSE-UP OF THE HYDROSTATIC PRESSURE CELL
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Fig.4.13 TEMPERATURE COMTROLLER O F  HYDROSTATIC PRESSURE CELL 

FOR ELEUATED TEMPERATURES.
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Ti = 0.9T® + 1.3 (4.2)

where Ti is the temperature inside the cavity and Te is 

the temperature of the external wall. The calibration 

curve is shown in Fig.4.14: this is useful for setting 

the temperature at which the measurements are to be made.

4.10 Manganin Coil as a Pressure Gauge

Manganin is a Cu-Mn-Ni alloy which is used in

high pressure experiments as a pressure gauge to allow

accurate and continuous pressure measurements up to about

lOOkbar at both room and elevated temperatures (Samara

and Giardini 1964). The principle of its operation is

based on the nearly linear dependence of resistance of

manganin on pressure (Bridgman 1911). The electrical

resistivity of this alloy is highly sensitive to pressure

but less sensitive to temperature. Its use to measure

hydrostatic pressure depends on the fact that application

of a small pressure can produce a measurable change in

the resistance of a manganin wire gauge; as an example,

for an applied pressure of O.lkbar the resistance changes

by about 0.04%. The gauge is particularly useful in

piston-cylinder, multianvil and other relatively large

volume pressure apparatus. The gauge used here consists

of 0.1mm diameter manganin wire wound non-inductively on>
a pyrophyllite core. Pyrophyllite is a soft natural
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material which after heat treatment is transformed into a 

hard ceramic-like substance with good insulating 

properties. Each manganin gauge is put through a Bridgman 

cycle of pressure-temperature seasoning before it is 

used; the coil is heated to about 200°C for several hours 

followed by quenching in liquid nitrogen. This process is 

repeated several times before the final seasoning by 

pressurising the gauge to the highest operating pressure 

(3kbar) for several hours. The thermal treatment

eliminates localised strain regions and hence improves

uniformity, while the pressure treatment stabilises the 

pressure coefficient of resistance (Bridgman 1911).

The pressure coefficient of resistance used to

obtain the hydrostatic pressure in these experiments is 

2.4X10"3 k b a r -1 (Samara and Giardini 1964), thus the 

pressure P inside the cell is given by:

P = ( AR/Rat» )/2.4xl0-3 kbar (4.3)

where AR/Rat» is equal to (Rp - Rat> )/ Rat* and RP and 

Rat» are resistances at pressure P and atmospheric 

pressure respectively. The typical resistance of a gauge 

at atmospheric pressure is about 100 to 120 Ohms.

Using a digital multimeter, resistance is measured with a 

sensitivity of 1 part in 1 0 " 5 ohm which in turn leads to 

the measurement of hydrostatic pressure to a sensitivity 

of 0.5%.
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4.11 Experimental Errors and Corrections.
The precision to which the hydrostatic pressure 

and the SOEC can be determined depends predominantly on 

the accuracy to which basic quantities such as crystal 

density and its dimension can be estabilished. The errors 

of the density and sample thickness make a direct 

contributions to the error at the SOEC whilst the errors 

in the resistance measured on the manganin coil give a 

direct contribution to the error in the hydrostatic 

pressure. Some of these errors can be corrected (at least 

in part) and some can only be estimated.

4.11.a Measurements of Crystal Density and 

Thickness.

Crystal densities are needed to determine the 

SOEC. The densities have been measured using Archimedes' 

principle. The mass of the sample is measured with an

accuracy 1 part in 1 0 4 whilst the density of water is

taken from The International Bureau of Weight and 

Measures 1910. For this work the room temperature 

densities have been used for the measurements at at

higher temperatures. Hausch (1977) and Honda et al.(1976) 

have measured the change in lattice spacing of Mn-18.5% 

Ni between 23°C to 250°C by x-ray method. They found a 

change of only 0.021A in 230°, which gives a 0.5% 

(0.001A) increase from the room temperature value of 

3.695A. This change of 5 parts in 1 0 3 in lattice
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parameter leads to a decrease in the density of 1.5%. 
Hence the use of the room temperature density, and the 
sample thickness, are reasonable approximations to use in 
the determination of the high temperature SOEC. It can be 
seen that the effects of increasing the sample thickness 
and decreasing the density on the elastic constant 
(Cij= pv2) serve to balance each other out. The net 
result is that the elastic constant is underestimated by 
about 0.5% between room temperature and the Neel 
temperature.

4.11.b Transit Time Errors.

The accuracy to which the time interval can be 
measured is limited by factors such as the quality of the 
bond and the transducer thickness. The time interval 
between successive echoes increases with transducer 
thickness. The accuracy can be improved if either a thin 
transducer or a long sample are used. These two 
prerequisites cannot be satisfactorily fulfilled since 
the samples used in this work are only several mm. thick 
and quartz transducers with higher fundamental 
frequencies than 10MHz are thin and are fragile. Acoustic 
impedances of both the sample ( p,Vi) and the transducer 
( tyJz) where p is density and V is sound velocity, are 
the characteristics that determine the amount of 
reflection of the ultrasonic wave at the 
sample-transducer interface. Due to the difference in the
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densities and also the velocities of ultrasonic wave in 
both media, their acoustic impedances are different; this 
result in an acoustic impedance mismatch between the
transducer and the sample. The internal reflections 
between the two parallel faces of the transducer lead to 
a considerable distortion of the pulse envelope which 
develops further with an increasing number of echoes 
(Kittinger 1977). Eventually the received echo will be 
delayed by a certain amount of time. Errors introduced by 
this effect in the measured echo transit time are
particularly large for a sample having low acoustic
impedance.

The reflection coefficient at the sample-quartz 
transducer interface can be defined by

ri2 = ( P2V 2 - piVi)/ ( P 2V 2 + piVi) (4.4)

where piVi is the acoustic impedance of the sample, and 
P2V 2 is the acoustic impedence of the transducer. This 
equation has been used by Kittinger (1977) to plot a 
curve of transit time error (in the unit of reciprocal 
fundamental transducer frequency) versus reflection
coefficient for X-cut quartz transducers of various 
fundamental frequencies (Fig 4.15). From this curve 
Brassington (1982) generated an equation for transit time 
error as a function of reflection coefficient ri2 of the 
following form:
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tc = [ 0.1602 exp(1.831 (rf +1))] /fc (4.5)

where rf is the reflection coefficient of the 
sample-transducer boundary, and fc is the carrier 
frequency (the resonance frequency of the transducer). 
Taking the acoustic impedances of the transducer for 
longitudinal and shear waves as 15.2x10"6Nm~1s and 
10.3x10“6Nm_*s respectively, the transit time errors have 
been estimated, and by subtracting from the measured transit 
! times (t)^ the amount of the corresponding transit time 
errors, corrections on the ultrasonic wave velocities 
have been made. This equation is found to represent well 
the results of Kittinger (1977) for -0.6< rf> +0.6. On 
this basis the transit time corrections obtained for our 
particular experimental results lie between -0.5% to 
+2 .0%.

4.11.C Diffraction and Non-Parallelism.
Any non-parallelism of the transducer faces can 

cause interference in the echo pattern. This effect has 
been discussed by Taylor and Pointon (1969) on the basis 
of the piezeoelectric properties of the transducer: the 
reflected ultrasonic wave front (from the
transducer-specimen interface) when it returns to the 
free face of the transducer, will in general, be at an 
angle to this free end surface. Thus as the wave is 
reflected to and fro between the slightly non-parallel
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end faces of a transducer, the angle of incidence of the 
wavefront increases and the echo pattern envelope
exhibits a number of maximum and minimum. Thus to avoid 
this effect and obtain an exponential echo train, the end 
of the quartz transducer faces must be polished flat to 
about one-fifth of the wavelength at the resonance
frequency of the quartz transducer and must be parallel 
to within only a few seconds of arc.

When this ultrasonic energy reaches the sample, 
the beam, which is being diverged by the diffraction
field in the transducer can eventually touch the side 
walls of the sample and then be reflected from this side 
wall and returned to the main beam. There is always some 
mode conversion at the side walls which produce
intermediate echoes. Truell et al.(1969) have suggested 
that when the ulrasonic waves are propagated along two- 
or four-fold crystallographic symmetry directions of a 
specimen, the transit time errors due to diffraction are 
of the order of 0.01%, provided that the misalignment of 
the crystal orientation is not more than 0.5° and the 
area of the transducer is smaller than the area of the 
sample.

4.11.d Errors in Temperature Fluctuations.
From the measurements of the pulse echo

overlapping frequency as a function of temperature it can
be seen that a change by 0.3°C in specimen temperature

•>

will lead to the significant change in the ultrasonic
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wave velocity. Since this frequency is the major factor 
in the measurement of the SOEC (and the density and 
thickness changes are negligible), a constant temperature 
is required for accurate measurement of ultrasonic wave 
velocities and their pressure derivatives. In these 
experiments the temperature of the sample is recorded by 
a thermocouple in contact with it. The dimensions of the 
sample are normally much larger than the dimensions of 
the thermocouple; therefore for temperature dependences 
of elastic constant experiments, the overlapping 
frequency at a particular temperature is taken at a time 
long enough for the sample and thermocouple junction to 
have reached the same equilibrium temperatures. In 
pressure work, when external stress is applied to the 
sample, due to friction and energy convertion, heat is 
generated inside the cell of the cylinder and temperature 
of the cell increases. Data acquisition can only be 
carried out when the system has returned to its 
equilibrium temperature.
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CHAPTER 5

HYDROSTATIC PRESSURE MEASUREMENTS OF SECOND ORDER 
ELASTIC STIFFNESS CONSTANTS AND VIBRATIONAL ANHARMONICITY

OF URANIUM NITRIDE

5.1 Introduction
This chapter presents the experimental results of 

the second order elastic stiffness constants and their 
hydrostatic pressure derivatives for single crystal 
uranium nitride (UN). These measurements of the second 
order elastic stiffness constants at room temperature 
under hydrostatic pressure lead to further understanding 
of the elastic behaviour of UN: knowledge of the elastic 
constants and their hydrostatic pressure derivatives 
enable the Gruneisen parameters of the acoustic modes in 
the long wavelength limit to be calculated. The 
compression of UN has been determined using the 
Murnaghan equation-of-state and the results are compared 
with those of alkali halides and group IV-VI compounds. 
The results have shed some light on the problem of the 
interatomic binding forces in uranium compounds.

5.2 Physical Properties of UN
The actinide compound uranium nitride (UN) 

crystallizes in the f.c.c. rocksalt structure with a 
lattice constant of 4.89A (Muromura and Tagawa 1979). £>e]ovo
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*tVk£'W«e,l temperature it is antiferromagnetic of\ a group I 
configuration (Fig 5.1) w U h  a Neel temperature (Tn) of 
53.1+0.2K (Muromura and Tagawa 1979). The pressure 
dependence of the N6el temperature of UN is given in
Fig.5.2. It was observed that Tn decreased rapidly under 
pressure in the manner expected for a band 
antiferromagnetic (Fournier et al.1979). In UN, and 
related compounds, both 6d and 5f electrons are involved 
in chemical bonding leading to mixed-ionic covalent (or 
perhaps metal-like binding). At the Neel temperature 
there is a small distortion from f.c.c. to face centred 
tetragonal giving c/a as 0.99935 at 4K (van Doorn et 
al.1977). The temperature dependences of the SOEC of UN
have been measured by earlier workers (van Doorn et 
al.1977 and Yoshizawa 1985). These measurements showed 
that, in the vicinity of Tn, all the elastic stiffness 
constants exhibited steplike discontinuities which are 
reminiscent of those which can occur at a structural
phase transition (Fig 5.3). van Doorn et al.(1977) have 
measured all the three vibrational mode velocities in the 
[110] direction but could not obtain a complete curve for 
the temperature dependence of the shear mode (Cn-Ci2)/2 
(Fig 5.3). This problem has been overcome by Yoshizawa et 
al.(1985) who also measured all the three mode velocities 
in the [110] direction in UN from room temperature to
approximately 4K, and observed a pronounced attenuation 
for the [110] mode at T=180K. For the [110] longitudinal 
mode there is simultaneous occurrence of large
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Fig 5.1 Types of magnetic ordering In NaCI-type actinide compound. 

Full circle: magnetic actinide ion. Empty circle: anion.
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Fig 5.2 Pressure dependences of Neel Temperature (bottom and 
left scales, full line) Qf UN (Harpies et al. 1975)
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attenuation and large velocity changes just below T n .

5.3 Experimental Procedure
Ultrasonic wave velocities have been measured by 

the ultrasonic pulse echo overlap technique at room 
temperature on a single crystal specimen having a pair of 
(110) faces polished flat and parallel to better than 1 
part in 104. To establish the hydrostatic pressure 
dependence of the ultrasonic wave velocities, 
measurements have been made for pressures up to about 
2xl08Pa in the piston and cylinder apparatus using 
Plexol 201 as the pressure transmitting medium.

5.4 Experimental Results
The elastic stiffness constants obtained from

these measurements are in reasonable agreement with those
measured previously (van Doorn and du Plessis 1977,
Yoshizawa et al.1985). The SOEC of UN are much greater

s sthan those of alkali halides [for NaCl C n  = 4.93, C 12
s s s= 1.3, C 44 = 1.28, C ’ = 1.82 and bulk modulus Bos =

2.51 in units of 1010Nm-2 (Hart 1968)], the mixed
covalent-ionic bonded lead and tin chalcogenide [for PbTe
CSn  = 10.53, CSi2 = 0.72, CS4 4 = 1.322 , C' = 4.91, B$o
= 3.976 in units of 1010Nm-2 (Miller et al.1981)], or
even for the rare earth chalcogenide SmS, which like UN

Scontains a strong element of d- and f-binding [ C n s = 
12.7, c\2 = 1.2, C4 4 = 2.69, C' = 5.75, Bo = 5.03 in
units of 1010Nm-2 (Tu Hailing et al.1984)], refer also to
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Table 5.1. Since the SOEC of a solid are a measure of the 
samples' resistance to strain, which is in turn related
to the bond strength, large values of the SOEC indicate
that the interatomic bonding forces in UN are
particularly strong. In common with that of other
rocksalt-structure crystals, Cn ,  which includes large 
contributions from the nearest-neighbour forces, is 
several times larger than C 4 4 . For nearly ideal ionic 
crystals (such as NaCl) the forces are central so that 
the Cauchy relation (Ci2=C4 4 ) holds. The deviation, 
traditionally associated with covalency or a metal-like 
binding, using this relation, is not particularly large 
in the case of UN.

The acoustic mode velocities, found by solution 
of Christoffel equations (equation 3.36) are plotted as a 
function of mode propagation direction in Fig 5.4. These 
provide a visual indication of the anisotropy of the 
elastic properties of UN.

5.5 Hydrostatic Pressure Derivatives of the SOEC of UN.
To study the vibrational anharmonicity in this 

mixed ionic-covalent bonded solid, the pressure 
dependences of the elastic stiffness constants of UN have 
been measured. The velocities of the longitudinal and the 
two shear modes that are polarized in the [001] and the 
[110] directions and propagated in the [110] direction 
are found to be linearly dependent upon the applied 
hydrostatic pressure (up to about 2xl08Pa). The
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Table 5.1 The second order elastic stiffness constants (SOEC) 
of single crystal UN at 290K in comparison 
with NaCI, PbTe and SmS.

UN NaC* PbTc** SmS###

Density qq (kgm"’) 14 333
Lattice parameter Oq ( x IO",0m) 4.89
Elastic stiffness constants
CM (x 10'°Nm"2) 42.39 ± 0.06 4.93 10.53 12.7
C,2 9.81 ± 0.09 1.30. 0.70 1.2

7.57 ± 0.02 1.28 1.322 2.69
C [  =  \ (C tl -  C12)] 16.29 ± 0.01 1.82 4.91 5.75

Anisotropy ratio C"ICU 2.15
Bulk modulus Bs (x IO,0Nm"2) 20.67 ± 0.08 2.51 3.976 5.03
Volume compressibility ys (x IO~,2m 2N~') 4.82 ± 0.02
Linear compressibility ( x 1012 m 2 N "1) 1.61
Elastic compliance constants

Su (x IO",2m ,N"1) 2.34
s» -0.72

1.32

• HART (1968)
••MILLER, SAUNDERS and YOGURTCU (1981) 
•••Tu HAILING, SAUNDERS and BACH (1984)

Table 5.2 The hydrostatic pressure derivatives of the SOEC
and bulk modulus of UN at room tem perature (290K) 
and atmospheric pressure.

dCf, fdP
dCn/dP
dC JdP
dC/dP
dB/dP

Bn
Bn

1̂2)
C |  *4

2 CMJ 
2Cltl 
2 Cl64

Debye temperature
Mean Gruneiscn parameter ŷJ
Thermal Gruneiscn parameter y,h

9.97
3.81

± 0.11 
± 0.14 

(0.74 ± 0.05) 
3.08 ± 0.25 

±0.135.86 
11.35 
2.90 
0.33 

-72.3 x 
-53.9 x 
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0.71 
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hydrostatic pressure derivatives of the elastic stiffness 
constants Cij are given in Table 5.2. These were 
calculated from the experimental data in the form of 
"natural" velocities W (Thurston and Brugger 1964), using 
equation 3.47. Also given in Table 5.2 are the 
hydrostatic pressure derivatives Bij of the thermodynamic 
second order elastic stiffness constants. general 
for the rocksalt structure compounds (the alkali halides 
and IV-VI compounds) the pressure derivatives 
( dC,jfdP ) t , p = o follow the trend
JCt l/dP > dC/dP> dC]2fdP> dC4A/dP' (Miller, Saunders 

and Yogurtcu 1981). For UN as for other crystals with 
this crystallographic structure, ^Cu/dP is by far the 
largest pressure derivative; this is because it is 
dominated by a large contribution of nearest neighbour 
repulsive terms and attractive terms including that from 
the Madelung energy. The normal trend is not followed in 
that dCl2/dP > 'dC’fdP. However in all rocksalt structure 
compounds, including UN, dC4JdP is the smallest pressure 
derivative. The negative values of dCAJdP for UN is 
not an anomaly - it is also negative for RbBr, KC1 and 
KBr (but positive for NaCl, NaF and LiF). A negative 
t)C4J0P' reflects the negative sign for the Gruneisen 

parameter of the transverse mode propagated in the [001] 
direction, which can be accounted for structurally (see 
later).

To determine the effect of pressure on the 
volume, lattice parameter and nearest U-U distance, the
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Murnaghan (1944) equation-of-state has been used in the 
logarithmic form given in equation 3.53. Since 
ultrasonic measurements give adiabatic moduli, the data 
need to be transformed into isothermal moduli. The 
isothermal bulk modulus Bd has been obtained from the 
adiabatic bulk modulus using equation 3.54. Here V'1’ 
is taken as 1.98 (Homin et al.1979), and linear thermal 
expansion coefficient c*i is given by (Momin et al.1979)

= 8.695X 10-* + 12.343x10" 10 (T-298), (5.1)

so that the volume thermal expansion at 290K is 
26.06xl0“*K“1 (Table 5.3). Using these values, the 
isothermal bulk modulus BJ has been obtained as 
20.36x1010 Nnr2. The temperature derivative {dB̂ /dT),* 

and the hydrostatic pressure derivative (dBj/dP)j ( =  B'J) 

of the isothermal bulk modulus have been calculated using 
equations 3.55 and 3.56 respectively. These results are 
shown in Table 5.3. The isothermal compression of UN 
calculated using the Murnaghan (1944) equation-of-state 
(3.53) is plotted in Fig.5.5. Previously the band 
structure and electronic properties for UN have been 
computed in the lattice parameter range 4.75 x 10“10 to 
4.90 x 10“10m (Overton 1962 and Brooks and Glotzel 
1980); using the compression obtained here, it is now 
possible to convert those results to the more 
experimentally direct effect of pressure on the uranium f 
and d, the nitrogen valence p electrons and the Madelung
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Table 5.3 Prim ary thermodynamic data fo r UN at 290K used 
fo r adiabatic (S ) to isothermal (T ) transformations

Bulk modulus = 20.67 x lO^Nm’2; B* = 20.36 x IO,0Nm'2

= -5.47 x I07 N m -2 K “'; = -6.47 x lO'Nm^K*1

(= B f ) = 5.86; ^  ( = t% ) = 6.06

Volume thermal expansion coefficient a = 2.61 x I0*5K _I 

Thermal Gruneiscn parameter y'h = 1.98

da-- = 3.70 x 10'* 
dT

• MOMIN and KARKHANAVALA (1979)
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the basis of the Murnaghan equation-of-state.
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energy contributions to the band structure energy.
In accord with its much stronger interatomic 

binding as evidenced by its much greater stiffness Cij, 
UN ( AK/K0 s 1.84% at 40 x 108 Pa) has a much smaller 
compression than the mixed covalent-ionic lead 
chalcogenides ( A V/V0 = 8% at 40 x 108 Pa for PbTe).

From the hydrostatic pressure derivatives of 
SOEC, the three combinations ( C m  + C 112 ), (C123 +
2Cii2 ) and (C144 + 2Ci66 ) of the third order elastic 
constants (TOEC) are obtained (Table 5.2). The values 
show the same trends as the rocksalt structure alkali 
halides and IV-VI compounds (Table 5.2) (Miller 1981) 
indicating that for UN, as for the other isostructural 
materials, C 111 by far the largest third order elastic 
constant. For an ionic Born-Mayer model with interaction 
potential between ions

4>m(r) = ( — Z2e2/r) + A exp ( — r/g). ( 5 . 2 )

the forces would be central and the third order Cauchy 
relation (Cousins 1971) would be obtained giving 

C 1 23 = C 456 = -10.4 x 1011 Nm-2 
Cii2 = C 1 6 6 = -4.0 X 1011 Nm-2

Although an ionic model cannot hold strictly for 
UN, it gives a useful indication of the relative 
magnitudes of the third order constants: C m  would be
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about -64 X 1011 Nm-2 . Including the contributions of 
repulsive terms up to second nearest neighbours, the TOEC 
C,jK at OK are (Thakur 1980)

C-IJK ( ̂IJK )aliraci»vc 4” (̂ IJK )rcpulsivc

C',’M = 10.2639 ^ - - ^ ^

<A(2 Vp)
2e

3(2) 6— 5—  + —  +
r„ er„

3 3 I~  +   + “
/« L>r o Q'j

2(2)*2
(5.3)

2 ..2
Cl,i: = CL = -1.2086

Zle
116 »(2 ,/2r0)

4q

3(2) 6 2(2)_LZ_ + —  + — _
n Qr u

<7m = = C m  = 0.6784
z-v

where ^(r0 ) is the repulsive potential between two ions 
Qf distance r0 .
In the case of C° the second term, due to nearestin
neighbour repulsion, is about two orders of magnitude 
greater than the third term, which results from repulsion 
between next nearest neighbours, and can be neglected. 
Hence C m  has a large and negative value because it is 
dominated by the nearest-neighbour repulsion. In the 
ionic model the nearest-neighbour term does not 
contribute to the other third order elastic constants, so 
that these are much smaller than C m  .
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5.6 Long Wavelength Acoustic Mode Gruneisen Parameter 
of UN.
The acoustic mode Gruneisen parameters y(py yV) 

have been computed as a function of mode propagation 
direction using equation 3.63. y(p, /V) in directions in 
the symmetry planes normal to the two-fold and four-fold 
symmetries are plotted in Fig.5.6. These Gruneisen
parameters quantify the first order anharmonicity of the 
acoustic modes at the Brillouin zone centre for UN. The 
marked anisotropy Qf these y(p% yŷ  can be understood in 
term of the acoustic modes which can propagate 
in the rocksalt structure and their relationship to the 
interionic forces, in particular when the
nearest-neighbour repulsion plays a role. Consider for 
example the y(^ yv) for modes propagating along a 
four-fold <001> direction. Inspection of the mode gamma 
equations show that the longitudinal mode y(p* /V) has a 
comparatively large positive value (+2.2) because the 
third order elastic constant combination ( C m  + 2C 112 ) 
= Ci = -72.3 x 1011 Nm-2 (Table 5.2) is large and
negative. Hence CiKi = -72.3 x 1011 Nm-2 (Ki being for 
the longitudinal mode) is much greater than w(= C 11K 1 = 
+4.239 x 1011 Nm-2), and so dominates y(p, yV) . Now (C111 + 
2C1 1 2) is in turn largely determined by C m :  

nearest-neighbour repulsion is responsible for the 
substantial value of y(p% /V) for the longitudinal q[001] 
acoustic mode. In contrast C m  is not involved in the 
Gruneisen gamma for the shear acoustic wave propagated

.j ^
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Figure 5.6 The acoustic mode Gruneisen parameter V(p,N) in the long 
wavelength limit as a function of mode propagation 
directions in single crystal UN.
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along an [001] direction - for this mode
nearest-neighbour forces do not come into play. This mode
comprises a vibration in which the (001) planes of atoms
vibrate almost as a unit perpendicular to the direction
of the nearest-neighbour bonds, and since all the
changing bond lengths increase, the Gruneisen parameter
is negative (Fig.5.6). The thermodynamic properties of
the crystal at low temperature (including the thermal
expansion) should be determined by the dominance of the
phonon population in this transverse low lying branch. In
general application of the principle that when C m  is
involved then the nearest-neighbour repulsion will be
important in determining the vibrational anharmonicity
accounts for the marked anisotropy of the acoustic mode
Gruneisen parameter of UN.

To obtain a mean high temperature acoustic mode 
— elGruneisen parameter Y  , the expression00

? el = ^y(p,N) (5.4)oo 3/v

has been summed over a grid of 10288 points in velocity
space for equal elements of solid angle centered on each
propagation vector N. At room temperature UN nears the
high temperature limit [T > © d = 282K (Table 5.2)] so
equation 5.4 is a reasonable approximation. The value of 

_e!y  (=0.71) obtained (Table 5.2) is substantiallyCO
smaller than the thermal Gruneisen parameter yth 
(=0.98), which indicates that the mean of the Gruneisen



Ill

parameter for optic mode and for acoustic modes away from 
Brillouin zone centre is much larger than that for the 
zone centre acoustic modes.

Thus the measurements of the hydrostatic pressure 
dependences of the SOEC in UN have provided further 
understanding on the interatomic repulsive forces in 
rocksalt structure materials in general and in the 
uranium compounds in particular. The pressure dependence 
of C 44 has been found to be negative, this is reflected 
in the value of the Gruneisen parameter N) 
associated with C 44 which is also negative. A large value 
of Gruneisen parameter of this material is for the 
longitudinal acoustic mode vibrational frequency, and 
this is largely determined by C m ;  nearest-neighbour 
repulsive forces are responsible for the substantial 
value of of this mode.
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CHAPTER 6

RESULTS OBTAINED FROM ULTRASONIC VELOCITY EXPERIMENTS 
MADE ON BINARY ALLOYS Mn-Ni AND 

TERNARY ALLOYS Mn-Ni-C.

6.1 Introduction
In this chapter the results of the ultrasonic 

wave velocity measurements performed on single crystal 
Mn-Ni and Mn-Ni-C alloys by means of the pulse echo 
overlap technique are presented both as a function of 
temperature and hydrostatic pressure. The central 
objective of these experiments has been to obtain all the 
elastic constants and their pressure derivatives in both 
the antiferromagnetic and the paramagnetic states of 
these alloys. The results obtained for two binary alloys 
Mn-Ni (Mn7 3Ni2 7 and Mns4Nii6) and two ternary alloys 
Mn-Ni-C (Mnss Ni9C6 - sample C2 and Mn85Ni9C6- sample F) 
form the major original contributions given in this 
thesis. The experimental results are presented in two 
separate sections: Section 6A for the measurements made 
on the binary alloys Mn7 3Ni2 7 and Mns4Nii6, Section 6B 
for the measurements made on ternary alloys Mn-Ni-C 
(Mn8 5Ni9Ce).

6.2 Crystal Dimensions and Orientations.
The single crystals of Mn-Ni and Mn-Ni-C alloys
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were grown commercially by the Bridgman method. Samples 
have bfeen obtained by spark cutting and have parallel and 
flat faces normal to the ultrasonic wave propagation 
direction. The crystallographic orientation has been 
obtained using a conventional Laue back reflection 
technique with molybdenum as an x-ray source. Other 
available sources [copper (Cu), nickel (Ni) and cobalt 
(Co)] are not suitable for x-ray work on Mn-Ni alloy 
because Mn-Ni fluoresces which then raises the 
background intensity and may obscure weak reflections. 
This problem in general arises if the source and the 
target are in the same row in the periodic table (Azaroff 
1971). The final orientation of the crystals has been 
obtained to an accuracy of +0.5° (section 4.3). The 
samples were cut normal to the [110] direction (for 
Mn7 3Ni2 7 and Mns5Ni9C6 both samples C2 and F) and the 
[001] direction (for Mns4Nii6 and Mns5Ni9C6 - sample F) 
(details of the crystal orientations used are given in 
Table 6.1a and 6.1b). The final surfaces of the samples 
were flat and parallel to 1 part in 104 (see section 
4.3).

6.3 Experimental Data

6.3.1 Velocity Measurements
The results of the measurements made on sample 

dimensions and densities are given in Table 6.1a 
and 6.1b. Using these results and the measured overlap
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frequency, the ultrasonic wave velocities at room 
temperature can be obtained. Velocity corrections, 
required due to multiple internal reflections at the 
transducer specimen boundary, are determined as the delay 
transit time tc given by equation 4.6. The corresponding 
corrected ultrasonic wave velocity Vc is then determined 
using

Vc = (21)/[(1/ f )- t c )]
(6.1 )

where 1 is sample thickness, f is the measured overlap 
frequency and tc is the delay transit time in unit of 
reciprocal transducer frequency. The errors have been 
calculated on this basis using a computer program 
"TRANS-CORR" which is given in appendix A. The corrected 
ultrasonic wave velocities for each mode at room 
temperature are presented in Table 6.2a and 6.2b.

6.3.2 The Second Order Elastic Stiffness 
Constants(SOEC)

The SOEC for each mode of propagation at room 
temperature have been obtained and given in Table 6.2a 
and 6.2b. The elastic constants determined for each mode 
from room temperature to approximately 50 degrees above 
the Neel temperature are plotted in the following 
chapter.
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The adiabatic compliances Ssi j of these samples 
can be’ determined from second order elastic constants 
using equations 3.36 to 3.38. These adiabatic compliances
can then be converted into the isothermal elastic
compliances using equations 3.40 and 3.41. For the
conversion purposes of the adiabatic SOEC into the
isothermal SOEC, the values of the specific heat CP and
linear thermal expansion have been obtained from other 
work on binary Mn-Ni alloys: the value of the specific
heat is taken as that for Mn8oNi2 o single crystal
measured by Uchishiba (1971) and the coefficient of 
linear thermal expansion a is taken as that measured for 
MnssNiis single crystal by Hausch (1977). The results of 
the measurements of the SOEC and the data derived from 
the SOEC measurements for both the binary and ternary 
alloys at selected temperatures are shown in Tables 6.3a 

6.12a and 6.3b - 6.14b respectively. These data are
also presented graphically in Figs.6.1a - 6.14a for
binary alloys Mn-Ni and Figs.6.lb - 6.15b (sample C2) and 
Figs.6.lc-6.10c (sample F) of ternary alloys Mn-Ni-C 
respectively.

6.3.3. Pressure Derivatives of the SOEC and some 
of the TOEC Combinations.

The change of ultrasonic wave velocity under 
hydrostatic pressure in these alloys has been measured 
using the pulse echo ultrasonic system to a maximum 
pressure 1.5 kbar. The measurements have been carried out
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in step of about 20°C up to the maximum temperature of
approximately 170°C. In the interests of clarity the data *
taken on increasing pressure is plotted except in cases 
where hysteresis is apparent and in this case the average 
gradient is taken from data obtained both on increasing 
and on decreasing pressure. The change of ultrasonic wave 
frequency with respect to hydrostatic pressure is given 
by

AW/Wo = (W (p > -Wo)/ Wo (6.2)

where W(p> is velocity at pressure P and Wo the 
ultrasonic wave velocity at zero pressure. The pressure 
derivatives of the SOEC are obtained using equation 3.44 
taking BT as

BT= (C » + 2C* )/3. (6.3)

At each fixed temperature a complete set of ultrasonic 
data has been obtained. The results of hydrostatic 
pressure measurements versus temperature on the SOEC and 
the data derived from the SOEC are given in Table 6.13a 
to 6.18a and Table 6.15b to 6.18b respectively. These 
data are presented graphically in Fig 6.15a to 6.42a for 
binary alloys Mn-Ni and Figs.6.16b-6.39b (sample C2) and 
Figs.llc-13c (sample F) for ternary alloys Mn-Ni-C 
respectively.

Discussions on experimental results are given in



Chapter 7.



SECTION A. EXPERIMENTAL RESULTS OBTAINED ON BINARY ALLOYS
Mn73Ni27 AND Mns4Nii6.



Table 6.1a. The basic parameters and crystal orientations of binary Mn-Ni alloy 
single crystals on which ultrasonic velocity measurements have been made.

Thickness density Neel Associated Mode(N) Polarisation
(mm) (kgm~3) Temp.(C) SOEC Direction Vector(U)

M n 7 3 N i 2 7 4.03 7453 140 C l

C'
C 4 4

[110]
[110]
[110]

[110]
[110]
[001]

Mn8 4Niie 4.43 7314 170 C n  
C 4 4

[001]
[001]

[001] 
in (100) 
plane

Mns sNii5 
(Hausch 1977)

7285 192 C l

C'
C 4 4

[110]

[110]
[110]

[110]

[110]
[001]
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Table 6.2a. The room temperature second order elastic 
stiffness constants of binary alloy Mn-Ni 
single crystals.

N U Ci j f(khz) observed 
velocity 
(ms-1)

corrected pV2 
velocity (1010Nm-2) 
(ms-1)

Mn7 aNi2 7
[110] [110] C l 644 5190 5250 20.1
[110] [110] C' 235 1894 1920 2.7
[110] [001] C 4 4 449 3626 3640 9.8

Mns 4Nil 6
[001] [001] Cii 367 3245 3256 7.8
[001] in (110) C 4 4 444 3947 3965 11.4

plane
Mns 5Nil 5
[110] [110] Cl 18.0
[110] [001] C 4 4 11.1

(Hausch 1977)
Mne o.5Nil 9 .5
[110] [110] Cl 19.1
[110] [110] C' 3.3
[110] [001] C 4 4 11.0

(Saunders 1985)
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41Table 6.3a. Temperature dependences of the second order 
elastic stiffness constants and elastic compliances 
of binary alloy Mn73Ni27 single crystal. C' is (C11-C1 2 )/2

Temp.
(°C)

C 11 C 12 

(1010 Nm~
C 44

2)
C' Si 1 Si 2 

(10“11m 2N"1)
S 44

20 12.9 7.73 9.80 2.61 1.37 -0.51 1.02
35 12.9 7.52 9.76 2.67 1.37 -0.50 1.02
50 12.7 7.49 9.67 2.60 1.40 -0.52 1.03
65 12.6 7.43 9.63 2.59 1.41 -0.52 1.04
80 12.6 7.43 9.58 2.56 1.42 -0.53 1.04
95 12.5 7.43 9.50 2.52 1.44 -0.54 1.05
105 12.5 7.42 9.45 2.51 1.45 -0.54 1.06
130 12.3 7.35 9.37 2.49 1.46 -0.55 1.07
140 12.5 7.17 9.33 2.65 1.38 -0.50 1.07
150 12.5 7.11 9.24 2.68 1.37 -0.50 1.08
160 12.4 7.05 9.20 2.65 1.38 -0.50 1.09
170 12.3 7.04 9.12 2.63 1.40 -0.51 1.10
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Table 6.4a, Temperature dependences of the second 
order elastic stiffness constants of binary alloy 
Hns4Nii6 single crystal.

Temp.
(°C)

C n
(101°Nm~ 2)

C 4 4

20 7.75 11.4
40 7.68 11.3
55 7.60 11.2
70 7.51 11.1
90 7.25 11.0
120 7.25 10.8
155 7.13 10.5
175 7.06 10.4
190 7.27 10.2
200 7.31 10.1
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Table 6.5a. Temperature dependences of bulk modulus 
and compressibilities of binary alloy Mn7 3Ni2 7 
single crystal.

Temp. Anistropic Bulk Volume Linear
(°C) ratio Modulus compress. compress.

(101°Nm_ 2) (lO-iOmZN-1)

20 0.27 9.38 0.107 0.036
35 0.27 9.30 0.108 0.036
50 0.27 9.22 0.108 0.036
65 0.27 9.15 0.109 0.036
80 0.27 9.14 0.109 0.036
95 0.27 9.11 0.110 0.037
105 0.27 9.10 0.110 0.037
130 0.27 9.01 0.111 0.037
140 0.28 8.94 0.112 0.037
150 0.29 8.89 0.112 0.037
160 0.29 8.82 0.113 0.038
170 0.29 8.79 0.114 0.038
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Table 6.6a The second order elastic stiffness at 20°C 
in both the antiferromagnetic and the paramagnetic* states 
of binary alloy Mna4Nii6 single crystal. (* from the back 
extrapolation of the paramagnetic data)

C 11 C 44

(1010 Nm-2 )
Magnetically 7.78 11.3
ordered
Paramagnetic 7.62 11.9

Table 6.7a. The second order elastic stiffness and bulk 
modulus at 20°C in both the antiferromagnetic and the 
paramagnetic* states of binary alloy Mn7 3Ni2 7 single 
crystal.

(* the back extrapolation of the paramagnetic data)

Cl C' C44 Ci1 C 12 Bulk
Modulus

(101°Nm-2 ) (101°Nm~ 2)

Magnetically 20.1 2.67 9.80 12.9 7.60 9.38
ordered
Paramagnetic 19.8 2.66 9.92 12.5 7.38 9.05
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Table 6.8a. Temperature derivatives of the SOEC in the 
antiferromagnetic and the paramagnetic states of 
binary alloys Mn-Ni.

Antiferromagnetic Paramagnetic
(xlO7 Nm-2 K*1) (xlO7 Nm"2K -1)

Mn7 3Ni2 7 
bCh/ dT 

bC'I b T 
bC4*/b T 
be 11/ 6T 
bCn/ b T

-7.91 

-1.63 

-3.92 

-5. 55 

-2.3

-6.87

-2.64

-5.37

- 2.00
-2.13

Mns sNii5

&Cl/ 6t 
be**/b T

-7.31

-3.84

-6.94

-5.68

Mna4Ni.1t 
d C n /  6 T 
bC44/b T

-4.9

-5.3

-4.67

- 8.01
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Table 6.9a. Temperature dependence 
of Mn-Ni alloys.

of bulk modulus B

(&B/6T) 1/B(dB/dT)
(Nm_2K _1) (K_1)

Single crystal -3.93xl07 -4.2x10"4
Mn73Ni27
Polycrystalline -5.10xl07 -7.4x10_ 4
Mn7 4 . 9Ni2 5 . 1
(Honda et al 1976)

Table 6.9al. The dependence of the magnetic contribution
to the nickel concentration of the bulk modulus of
y  -Mn-Ni alloys. (The polycrystalline data is obtained
from Honda (1976) and Hausch (1977))

Alloy ( ABa/B)2 0
Single crystal 27 at.%Ni 3.6%
Polycrystalline 25.1 at.%Ni 3.7% *
Polycrystalline 22.6 at.%Ni 5.4% *
Polycrystalline 20.4 at.%Ni 6.4% *
Polycrystalline 15 at.%Ni 12% (at 77K)**
* Honda et al.(1976)

** Hausch (1977)
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Table 6.10a. The Young's modulus and their temperature 
dependences in both the antiferromagnetic and the 
paramagnetic states of Mn7 3Ni2 7 single crystal.

[111]
direction

[110]
direction

[001]
direction

Young's Mod. 
E ( 1010 Nm"2)

Ea n t i 19.4 14.5 7.32
Ep a r a 19.5 15.0 7.73

a e ./e -0.5% -3.9% -5.6%

( bE/b T )a n t i

(107Nm“2K “1)
-8.61 -5.93 -4.96

( bE/ b T )p a r a

(107Nm”2K"1)

i 00 VO o -7.27 oCOTt*1

(1 / E ) ( bE/ b T )a n t i 

(10“3K“1)
-0.44 -0.49 -0.68

(l / E )( 6 e / 6 T )p a r a -0.46 -0.48 -0.62
(10 ~ 3K“1)



127

Table 6.11a. Magnetic contribution to the second order 
elastic stiffness constant and bulk modulus at 20°C of 
binary alloy Mn-Ni single crystals.

Mn73Ni27 Mns4Nii6 MnasNiis

+1 .0% **AC l /Cl +1.3% -
AC'/C' -3.9% -
AC4 4/C4 4 -4.2% -5.3%
A C n / C n + 3.6% + 2.1%
ACl2/Cl 2 + 4.6%
AB/B + 4.1%

-4.8% (at 77K)**

+12% (at 77K)**

** Hausch (1977)
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Table 6.12a. Debye temperatures of Mn7 3Ni2 7 single 
crystal:
1) At several experimental temperatures

Temp. ^
(°C) (K)

20 383
35 382
50 379
65 378
80 377
95 375
105 374
130 372
140 378
150 377
160 376
170 374

11) At absolute zero
Extrapolated Calculated 

_______________________________ <k(K)_____________ ft,(K)
Magnetically ordered 410 396
(antiferromagnetic)
Paramagnetic 413 415



Table 6.13a. Temperature dependences of pressure derivatives 
of the SOEC of Mn73Ni27 single crystal. C' is (Cn-Ci 2)/2

Temp
(°C)

&C11/&P 6C 12/6P 6C 44/&P 6c’/6p &B/&P B 11 B 1 2 B 44

20 5.19 3.24 3.48 0.97 3.89 6.65 2.51 4.83
35 6.65 3.99 3.23 1.33 4.67 7.51 3.26 4.63
50 8.64 6.55 3.15 1.05 7.25 10.1 5.82 4.50
65 11.5 9.37 2.95 1.05 10.1 12.9 8.64 4.30
80 13.2 11.0 2.88 1.09 11.7 14.7 10.3 4.23
95 15.1 12.8 2.68 1.13 13.6 16.6 12.1 4.03
105 16.7 14.4 2.62 1.16 15.2 18.2 13.7 3.96
130 21.9 19.5 2.27 1.2 20.3 23.4 18.8 3.61
140 6.26 3.58 4.25 1.34 4.47 7.72 2.85 5.60
150 5.62 2.94 4.32 1.34 3.83 7.09 2.20 5.67
160 5.15 2.50 4.49 1.34 3.38 6.61 1.76 5.84
170 4.55 1.93 4.59 1.31 2.81 6.02 1.20 5.94

L

129
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Table 6.13al. The hydrostatic pressure derivatives of the 
second order elastic stiffness constants of f.c.c. 
transition metals in comparison with Mn7 3Ni2 7 single 
crystal at room temperature. C' is (Cn-Ci 2)/2

d C n / 6 P 6 C 12/6 P 6C 44/6P bC'/bP

Cu* 6.19 5.15 2.37 0.52
Pd** 6.05 5.19 1.86 0.86

Ni*** 5.92 4.74 2.44 1.18
Mn 7 3 N i 2 7 5.19 3.24 3.48 0.98

* Daniels and Smith (1958)
** Weinmann and Steiemann (1974)
*** Salama and Alers (1968)
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Table 6.14a. Temperature dependences of the TOEC 
combinations measured at several different temperatures of 
Mn7 3Ni2 7 single crystal. Also included is the Y*««n 
acoustic mode Gruneisen parameter.

Temp. C m  +2C112 C i 44 +2C i 66 C123+2C112 an

(°C) (10 9N m " 2 )

20 -1871 -1360 -706 1.55
35 -2095 -1291 -908 1.58
50 -2795 -1246 -1611 1.8

65 -3552 -1180 -2372 2.00

80 -4016 -1159 -2821 2.16
95 -4529 -1102 -3312 2.31
105 -4958 -1081 -3727 2.45
130 -6318 -977 -5079 2.85
140 -2070 -1500 -763 1.94
150 -1892 -1512 -588 1.90
160 -1750 -1544 -467 1.90
170 -1587 -1566 -316 1.88
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Table 6.15a. The mode Gruneisen parameters at 
the long wave length limit for V-Mn-Ni alloys at 20°C

f 1 ill? ? y

Mn-19.5at.%Ni 0.78 1.12 0.72

Mn-27at.%Ni 0.65 0.87 0.97



T a b le  6 . 1 6 a . M agnet ic  c o n t r i b u t i o n  t o  a c o u s t ic  mode Gruneisen  param eters  in  th e  long  

w ave length  l i m i t  f o r  th e  Mn73Ni27 and FeeeNi32 s i n g l e  c r y s t a l s .

Mode Gruneisen param eter

M n 7  3Ni 2 7 Fee eNi 3 2 *
( Yft ) 2 0C ( Y ' ) 2 0 C ( 7 A ) 2 0 c ( ^ ) 2  0C y«i

Cl 1 .13 3 .11  - 1 . 9 8 3 . 8 6 .0 - 2 . 2

C ’ 1 .54 2 .3 8  - 0 . 8 4 7 .7 4 .7 + 2 .8

C 4 4 1 .50 1 .1 2  + 0 .3 8 3 .0 0 1 .8 + 1 .2

* Renauld and Steinemann ( 1 9 8 4 ) .

( 7 * ) 2 o c  = Gruneisen  pa ra m e te r  o b ta in e d  from u l t r a s o n i c  v e l o c i t y  measurements  

a t  20°C th e s e  d a ta  correspond t o  th e  a n t i  f e r r o m a g n e t i c  s t a t e .

( 7  p ) 2 o = Gruneisen  pa ra m e te r  o b ta in e d  from e x t r a p o l a t i o n  t o  20°C o f  measurements

made in  th e  pa ra m a gn et ic  s t a t e .

7  ■*= ( 7  a )2 o c~ ( 7  p )2 o c is  th e  magnetic  c o n t r i b u t i o n  t o  th e  Gruneisen param eter  a t  20°C.
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Table 6.17a. Mode Gruneisen parameter for the Mn7 3Ni2 7 single crystal 
of the three mode of propagations.

Temp. 20 35 45 65 95 105 130 140 150 160 170

(°C)________________________________ ___________________________________________________

C l 1.08 1.62 2.02 2.94 3.73 4.11 5.27 1.97 1.85 1.78 1.67

C' 1.54 1.60 1.73 1.86 1.90 2.01 2.07 2.06 2.05 2.04 2.03

C 4 4 1.46 1.37 1.31 1.21 1.09 1.05 0.90 1.85 1.88 1.95 2.04

* Cl = (Cii+Ci2 + 2C4 4)/2 

C' = (Cii-Ci2 )/2
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Table 6.18a. The elastic stiffness constants and 
their hydrostatic pressure derivatives of Mneo.sNiia.s 
and Mn7 3Ni2 7 at 20°C.
Unit of C ij and CuxiGPa

Mnao.sNii9.5 Mn 7 3 N i 2 7
CS11 113 129
C?12 48 77
CS4 4 110 98
C' 32 26
G 70 94
d C n  / 4 . 2 5.2
^Cl2 / 3 . 8 3.2
dC4 4 / d P 4 . 9 3.5
d e w  d p 0 . 2 0.9
b B /  bp 3 . 9 3.9
Ci 11 +2Ci12 -1200 -1870
Cl 4 4 +2Cl6 6 -1300 -1360
Ci 2 3 + 2Ci12 -600 -706
Ci 11 -2100
Ci 1 2 + 460
Ci 2 3 -1600
Cl 4 4 -170
Cl 6 6 -500
C* 5 6 0

(Saunders,G.A. private communication 1985)
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SECTION B. EXPERIMENTAL RESULTS OBTAINED ON TWO TERNARY 

ALLOYS Mn-Ni-C (MnesNi9C 6-SAMPLE C2 AND 

M n 8 5 N i 9 C 6-SAMPLE F).



Table 6.1b. The basic parameter and crystal orientations of ternary Mns5Ni9C6 
alloy single crystals on which ultrasonic velocity measurements have been made

Thickness
(mm)

density 
(kgnr3)

Neel 
Temp.(C)

Associated
SOEC

Mode(N)
Direction

Polarisation
Vector(U.)

Mns5Ni9C6 3.78 6970 320 Cl [110] [110]
sample C2

C'
C 4 4

[110]
[110]

[110]
[001]

Mn 8 5 N i 9 C 6 3.22 7055 274 Cii [001] [001]
sample F

C 4 4 [001] in (100) 
plane

7.47 Cl

C'
[110]
[110]

[110]
[110]

181
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Table_6J!_2b. The room temperature second order elastic 
stiffness constants of ternary alloy Mns5Ni9C6 single 

crystals.

N U C i j f(khz) Observed Corrected p v 2
velocity velocity (1010Nm-2)
(ms-1) (ms-1)

Mne sNigCa 
(sample C2)
[110] [110] C l 675 5103 5150 18.4
[110] [110] C' 201 1520 1528 1.7
[110] [001] C 44 515 3893 3927 10.6

Mna 5Ni9C6 
(sample F) 
[001] [001] Ci 1 549 3537 3585 8.8
[001]in (001) C 44 595 3833 3870 10.4
plane
[110] [110] C l 342 5109 5173 18.4
[110] [110] C' 71 1060 1065 0.8
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Table 6 .3b. Temperature dependence of the second order 
elastic stiffness constants and elastic compliances 
of ternary alloy Mns5Ni9C 6 single crystal (sample C2). 
C' is (Cn-Ci2)/2

Temp.
(°C)

C n C 1 2
(101°Nm

C 4 4
-2)

C' S n
(10

S 1 2 
■11m 2N‘

S 4
1 )

20 8.70 6.03 10.57 1.34 2.74 -1.13 0.
35 8.68 5.96 10. 51 1.36 2.61 -1.06 0.
50 8.64 5.92 10.49 1.36 2.61 -1.06 0.
75 8.62 5.90 10.34 1.36 2.61 -1.06 0.
90 8.60 5.87 10.32 1.37 2.61 -1.06 0.
115 8.59 5.85 10.24 1.37 2.59 -1.05 0.
125 8.58 5.80 10.21 1.39 2.59 -1.04 0.
140 8.57 5.78 10.05 1.40 2.55 -1.03 0.
165 8.55 5.68 9.98 1.44 2.53 -1.01 1.
280 8.47 5.32 9.40 1.56 2.29 -0.88 1.
300 8.25 5.10 9.30 1.58 2.29 -0.88 1.
325 8.07 4.98 9.24 1.55 2.35 -0.89 1.
340 7.95 4.90 9.03 1.53 2.37 -0.91 1.

4

95
95
95
97
97
98
98
99
00
06
07
08
11
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Table 6.4b. Temperature dependence of the second order 
elastic stiffness constants and elastic compliances of 
binary alloy Mns5Ni9C6 single crystal (sample F).
C' is (Cii-Ci2 )/2

Temp.
(°C)

C n C 1 2 
(1010

C 4 4
Nm-2)

C' Sll S 12
(10"11m 2N _

S 4
1 )

20 8.81 7.22 10.40 0.80 4.34 -1.96 0.
60 8.42 6.76 9.90 0.83 4.16 m00rl1 1.
80 8.12 6 . 50 9.60 0.81 4.29 -1.9 1.
125 7. 53 5.80 9.22 0.87 4.02 -1.8 1.
145 7.28 5.60 9.01 0.84 4.16 -1.81 1.
155 7.12 5.41 8.88 0.88 4.09 -1.76 1.
170 7.67 5.32 8.72 1.18 3.02 -1.23 1.
190 7.09 5.33 8 . 58 0.88 3.98 -1.71 1.
255 7.32 5. 50 7.95 0.91 3.84 -1.64 1.
275 7.30 5.41 7.80 0.95 3.78 -1.61 1.
295 7.21 5.33 7.79 0.94 3.75 -1.60 1.
310 7.11 5.20 7.06 0.96 3.80 -2.20 1.

4

96
01
04
08
10
12
13
17
30
28
28
32
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Table 6.5b. Temperature dependence of bulk modulus 
and compressibilities of ternary alloy MnesNisCs 
single crystal (sample C2).

Temp. Anistropic Bulk Volume Linear
ratio Modulus compress. compress.

(°C) (1010 Nm-2) (lO-iOm2*!-1)

20 0.13 6.92 0.15 0.048
35 0.13 6.86 0.15 0.049
50 0.13 6.83 0.15 0.049
75 0.13 6.78 0.15 0.049
90 0.13 6.76 0.15 0.049
115 0.13 6.75 0.15 0.048
125 0.13 6.73 0.15 0.049
140 0.14 6.71 0.15 0.050
165 0.14 6.64 0.15 0.050
280 1.67 6.37 0.16 0.052
300 1.69 6.12 0.16 0.054
324 1.67 6.01 0.17 0.055
340 1.69 5.91 0.17 0.056
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Table 6,6b. Temperature dependence of bulk modulus 
and compressibilities of ternary alloy MnesNi9C 6 

single crystal (sample F).

Temp. Anistropic Bulk Volume Linear
ratio Modulus compress. compress.

(°C) (1010 Nm-2) (lO-10!!!2!*-1)

20 0.076 7.75 0.12 0.043
60 0.084 7.31 0.137 0.046
80 0.084 7.04 0.142 0.047
125 0.094 6.38 0.157 0.052
145 0.093 6.16 0.162 0.054
155 0.096 5.98 0.167 0.056
170 0.135 6.10 0.164 0.055
190 0.103 5.92 0.169 0.056
255 0.114 6.11 0.164 0.055
275 0.121 6.041 0.166 0.055
293 0.121 5.96 0.168 0.056
310 0.135 5.84 0.171 0.056
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Table 6.7b The second order elastic stiffness constants 
and bulk modulus in the antiferromagnetic and the 
paramagnetic* phases at 20° C of ternary alloy 
MnasNisCs single crystal (sample C2).

Cl C* C*4 Cii Ci2 Bulk
Modulus

(1010 Nm-2) (101°Nm~ 2)

Magnetically 18.4 1.7 10.6 8.70 6.03 7.23
ordered
Paramagnetic 18.0 2.21 11.0 8.57 5.48 6.85
* the back extrapolation of the paramagnetic data.

Table 6.8b The second order elastic stiffness constants 
and bulk modulus in the antiferromagnetic and the 
paramagnetic* phases at 20° C of ternary alloy 
MnasNi9C 6 single crystal (sample F).

Cl C' C 4 4 C n  C i 2 Bulk
Modulus

(101°Nm-2 ) (10loNm~2)

Magnetically 18.4 0.80 10.4 8.81 7.22 7.75
ordered
Paramagnetic 18.3 1.03 10.8 8.49 6.57 7.37

ft

* The back extrapolation of the paramagnetic data.



188

Table 6.9b. Temperature derivatives of the second order 

elastic stiffness constants in the antiferromagnetic 

and the paramagnetic states of ternary alloys MnesNisCs.

Antiferromagnetic 
(xlO 7N m - 2K ~ 1 )

Paramagnetic 
(x l O 7N m _ 2K _1 )

Mns sNi 9C 6 (sample C 2 )

0 C l /6T -5.4 -4.82

OC' /6 'f + 1.12 -1.40

6C 44/6 T -4.85 -6.17

6c h / 6 t -2.26 -4.62

6c 12/6 t -1.60 -3.50

6b /6 t -2.74 -3.08

Mns sNi 9C 6 (sample F)

6 cl/6 t -5.36 -5.43

6c  /6 t +0.60 -0.35

6 c 44/6t -11. 3 -9.89

6c h / 6 t -7.50 - 6.10

6C 12/6 T -8.29 -5.12

6b /6 t -7.30 -5.60
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Table 6 .10b. The Young's modulus and their temperature
dependences in both 
paramagnetic states

the antiferromagnetic and 
of Mn8sNi9C6 (sample C2)

the

[111] [110] [001]
direction direction direction

Young's Hod. 
E ( 1010 Nm-2) 
Ea n t i 20.7 11.1 4.48

Ep a r a 20.9 11.8 5.41

A E . / E -0.8% -6% -20%

( <)E/ d T ) a n t i -8.88 -2.04 -1.75
(107Nm~2K_1)
( ^E/ d T ) p a r a -9.29 -5.34 +2.3
(10 7Nm-2K~1)
(1/E) ( d E / i  T ) a n t i -0.43 -0.18 -0.39
(10-3R-»)
(1/E)( dJE/ d T ) p * r a -0.44 -0.45 +0.42
(10”3K”1)
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Table 6.11b. The Young's modulus and their temperature 
dependences in both the antiferromagnetic and the
paramagnetic states of Mne5Ni9C6 (sample F)

[111] [110] [001]
direction direction direction

Young's Mod. 
E ( 1010 Nm-2)
Ea n t i 21.3 6.98 2.26

E p t r a 22.3 7.61 3.14

A E . / E -2.2% -8.6% -37%

( ()E/ ̂  T ) » n t i -22.2 -0.19 +1.3
(107Nm_2K _1)

( &E/ &T )P a r a -22.1 -1.86 -1.8
(107Nm“2K-1)

( 1 / E ) ( & E /  & T ) . n t i -1.03 -0.26 +0.58
(10"3K"1)

( 1 / E ) ( d E / d T ) P .ra -0.99 -0.02 -0.57
(10"3K~1)
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Table 6.12b. Magnetic contribution to the second order 
elastic stiffness constants and bulk modulus at 20°C 
of ternary alloys Mn-Ni-C.

MnasNisCs MnesNi^s
(sample C2) (sample F)

ACt /Cl +2.2% +3.0%

AC'/C* -30% -28%

AC44/C44 -3.5% -4.1%

AC11/C11 +1.5% +3.6%

AC12/C12 +9.1% +9.0%

AB/B +5.2% +4.9%
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Table 6.13b. Debye temperatures of Mn8sNi9C6 
(sample C2):

I) At several experimental temperatures:
Temp.(C) 20 35 90 125 165 280 300 327 340
$n (K) 337 338 337 337 337 340 338 336 333

II) At absolute zero (K ) Q

Magnetically ordered 335
(Antiferromagnetic)
Paramagnetic 381

Table 6.14b. Debye temperatures of MnesNi9C6 
(sample F ):

1) At several experimental temperatures:
Temp.(C) 20 60 125 155 170 190 255 275 295
0p(K) 300 298 293 289 289 285 287 288 287

11) At absolute zero (K) ^

Magnetically ordered 319
(Antiferromagnetic)

310
282

Paramagnetic 379



Table 6.15b. Temperature dependence of pressure derivatives 
of the SOEC of Mn85Ni9C6 (sample C2). C' is (Cn-Ci2)/2

Temp. 
(°C)

dcn/fcp dCi2/&.P ?>C4A/d-P be' /b P dB/dP B11 B 1 2 B 4 4

20 8.07 4.89 5.79 1.59 5.95 9. 60 4.13 7.29
35 8.74 5.61 5.54 1.57 6.65 10.3 4.84 7.04
50 9.51 6.25 5.07 1.63 7.34 11.0 5.49 6. 56
75 10.3 6.42 4.83 1.95 7.71 11.8 5.65 6.32
90 10.8 6.28 4.49 2.26 7.78 12.3 5. 51 5.98
115 10.2 5. 62 3.57 2.28 7.14 11.7 4.85 5.06
*125 9.28 4.64 3.2 2.30 6.19 10.8 3.87 4.69
140 6.72 1.65 4.67 2. 53 3.34 8.26 0.88 6.16
165 13.0 7.64 4.64 2.67 9.42 14.5 6.86 6.13
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Table 6.16b. Temperature dependence of the TOEC 
combinations and the mean Gruneisen parameters of 
Mns5Ni9C6 single crystal (sample C2).

Temp.
(°C)

Ciii +2Cii2 Cl 4 4 +2Cl6 6 
(10 9Nm_ 2)

Cl 2 3+2Cl12 Vaean

20 -2035 -1545 -876 1.89
35 -2179 -1493 -1028 1.89
50 -2336 -1389 -1161 1.86
75 -2510 -1340 -1198 1.95
90 -2611 -1266 -1167 1.97
115 -2434 -1050 -1006 1.71
125 -2223 -964 -795 1.56
140 -1692 -1262 -180 1.70
165 -2963 -1251 -1400 2.18



Table 6.17b. Mode Gruneisen parameter for the Mn8sNi9C6 single crystal (sample C2).

Temperature 20 35 50 75 90 115 125 140 165

^CL 2.17 2.26 2.30 2.38 2.34 2.01 1.74 1.52 2.70

y  C  A A 1.78 1.71 1.55 1.49 1.38 1.03 0.89 1.43 1.41

•y c ■ 1.66 1.63 1.68 2.04 2.40 2.35 2.37 2.58 2.67

1.48

I
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Table 6.18b. The elastic stiffness and their hydrostatic 
presure derivatives of ternary alloys Mne5Ni9C6 
(sample C2) and Mns5Ni9C6 (sample F) at 20°C.
Unit of C ij and C i j k : GPa

M n 8 5 N i 9 C 6 - C 2  M n s 5 N i 9 C 6 - F

sCii* 87 88
sC 1 2 8 60 72
CS4*8 106 104
C' 13 8.0
B 69 78

d C n  /dp 8.1 8.4
bciz /dP 4.9 7.6
dC 4 4 /dP 5.8 3.4
be'/bp 1.6 1.7

6.0 7.5
Ci 11 +2Cii2 -2035 -2035
Cl 4 4 +2Cl6 6 -1545 -908
Cl 2 3 +2Cl 12 -877 -1011
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CHAPTER 7

DISCUSSION OF EXPERIMENTAL RESULTS OBTAINED ON
7 -Mn-Ni ALLOYS

7.1 Introduction
In this chapter the experimental results which 

have been described in chapter 6 will be discussed under 
the following headings:

i) The second order elastic stiffness constants of 
Mn7 3Ni2 7 and Mne4Nii6 obtained as a function of 
temperature up to and through the Neel 
temperatures. 

ii) The hydrostatic pressure derivatives of the 
second order elastic stiffness constants of 
Mn7 3Ni2 7 up to and through the Neel 
temperature.

iii) These results are then used to determine the
acoustic mode Grilneisen parameters of Mn7 3Ni2 7 
on both the antiferromagnetic and the 
paramagnetic states, 

iv) The elastic stiffness constants as a function 
of temperature of the ternary manganese nickel 
carbon alloys Mns5Ni9C6 (sample C2) and 
Mn8 5Ni9C6 (sample F) up to and through the Neel 
temperatures, 

v) The hydrostatic pressure derivatives of the 
SOEC of the two Mn8sNi9C6 alloys.
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vi) The Gruneisen parameter of Mn8sNi9C6
(sample C2) in the antiferromagnetic state.

7.2 The Second Order Elastic Stiffness Constants as a 
Function of Temperature of Mn7 3Ni2 7 and Mns4Nii6 

up to and through the Neel Temperatures.
A binary -Mn-Ni alloy with a composition 

Mn7 3Ni2 7 was chosen to make a complete study of the 
elastic constants as a function of temperature up to and 
through the Nfeel point Tn primarily because this 
particular crystal has a low Neel temperature(<*410K) 
compared with those of alloys which are richer in 
manganese. Hence it was possible to measure the 
hydrostatic pressure effects on the elastic constants in 
the paramagnetic state above Tn . An important 
consideration is that this alloy composition is 
definitively in the range in which the crystal is f.c.c. 
both above and below T n and at room temperature 
(Fig.2.2). It is important to make this first study of 
the magnetic effects on elastic behaviour on a crystal in 
which there is no martensitic transition to influence the 
physical properties in a different way. This provides the 
platform for understanding the behaviour of alloys which 
are richer in manganese and whose crystallography is more 
complex.
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The elastic constants Cl (=(Ci1+C12+2C44)/2), 
C' ( = (Cn-Ci 2 )/2) and C 44 have been obtained from the 
measurements of transit times of ultrasonic waves 
corresponding to these modes. These data enable the 
individual elastic stiffness tensor components C 1 1 , C 12 

and C 44 to be determined. The elastic constants Cl, C 4 4 , 
(C11 - Ci2)/2, C 11 and C 12 of Mn7jNi27 are shown as a
function of temperature in Fig.6.la to 6.5a. This is the 
first complete set of elastic constants of a Mn-Ni alloy 
measured up to and through the Neel point. However, there 
have been earlier related studies (see section 2.6) of 
the elastic behaviour of Mn-Ni alloys. Hicks, Pepper and 
Smith (1968) observed that Young's modulus for a 
Mn-18.7at.%Ni alloy decreased considerably when a 
polycrystalline sample was cooled through T n . Both the 
Young's modulus and shear moduli, measured by Honda, 
Tanji and Nakagawa (1976) on polycrystalline Y-Mn alloys 
over the composition range 12 to 40at.%Ni, show a 
step-like increase as the temperature was taken up 
through T n . Young's modulus by itself is difficult to 
interpret in terms of an atomic interaction model. Hausch 
and Torok (1977) reported the elastic constants 
(Cij+Ch+2C 44 )/2 and C44in MnasNii 9 single crystal as a 
function of temperature but were unable to measure 
(Cn-Ci2)/2 because the [110] polarised shear mode could 
not be propagated in the [110] direction. Their results 
for Cl show a small dip near T n and a magnetically
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induced stiffness compared with that of the paramagnetic 
state. For our Mn7sNi2 7 crystal, C l shows features 
(Fig.6.1a) which are similar to those found by Hausch and 
Torok (1977) for C l in MnssNiis. There is a sharp 
step-like decrease in C n ;  this modulus then rises again 
to give a pronounced kink at Tn( = 140°C) (Fig.6.4a). If 
the data obtained in the paramagnetic phase are 
extrapolated well below Tn, it can be seen that at room 
temperature (ie.20°C ), C n  is larger when the crystal is 
in the antiferromagnetic than in the paramagnetic state: 
at 20°C ACii/Cn is about +3.6% (Table 6.11a). The 
temperature dependence of C n  is much greater when the 
crystal is in the antiferromagnetic state than when it is 
in the paramagnetic state (Fig.6.4a and Table 6.8a):
( SC„/dT )ant i =-0.55 x 10* (1/Ci 1 ) ( dCn /37|), nt d
= -4.23 x 10'4 K'1, (. dC,,/dT )par.=-0.20 x 10® Nm-2K J
(1/Cii) ( SCu/dT )para 5-1.6 x 10-4K-*. C 44 is smaller

but Ci2 is also larger in the antiferromagnetic than in 
the paramagnetic state. AC4 4 /C44 wo-4.2%, ACi2/Ci2 ^ 
4.6% at 20°C. The softening of C4 4* in the 
antiferromagnetic state for this Mn7 3Ni2 7 crystal is 
quite close to that found by Hausch and Torok (1977) for 
their MnssNiis crystal ( AC44/C44=-4.8%) which should 
have become fct c/a <1 at a temperature not far below Tn. 
For Mn7 3Ni2 7 , C 44 shows only a very small upward kink at 
Tn (Fig.6.3a), but C 12 shows a pronounced peak 
(Fig.6.5a). The shear elastic constant C ‘ [ = ( C n  

-Ci2)/2] goes through a pronounced downward step at Tn
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(Fig.6.2a). The AC'/C' measured at room temperature, 
shows that the magnetic contribution softens this shear 
constant C'( AC'/C'=-3.9%) (Table 6.11a). With the 
exception of C' and C44 the elastic constants are greater 
in the antiferromagnetic than in the paramagnetic state: 
the magnetic interaction stiffens most of the elastic 
modes.

A distinctive and well-established elastic effect 
of the polycrystalline alloys as they are taken through 
T n is the step-like behaviour of Young's modulus (Hicks, 
Pepper and Hausch 1986, Honda, Tanji and Nakagawa 1976, 
Hausch and Torok 1977). For a single crystal Young's 
modulus is an anisotropic property, and is plotted here 
as as a function of temperature for stress applied along 
the fourfold, threefold and twofold axes of rotation 
respectively (Fig 6.7a to 6.9a). it can be seen that the 
step-like behaviour is a characteristic feature of the 
single crystalline a well as polycrystalline alloys. The 
step at T n is more pronounced for this property along the 
[001] and [110] axes while being barely discernible along 
the [111] axis. The Young's modulus of Mn7 3Ni2 7 is large 
along the [111] direction and shows the smallest value 
along the [001] direction (Table 6.10a). However the 
difference in Young's modulus between the 
antiferromagnetic and the paramagnetic states AE/E is 
the largest along the [001] direction (-5.6%). Except for 
the [110] direction where the temperature dependence of
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Young's modulus is larger in the paramagnetic state, the 
other directions of Young's modulus show an almost 
similar temperature dependence for both the 
antiferromagnetic and the paramagnetic states.

To visualize the effect on temperature on the 
velocities of ultrasonic modes propagated in different 
directions in a crystal, the mode velocities obtained by 
solution of the Christoffel equations (equation 3.36) are 
plotted at 20°C, 130°C (in the antiferromagnetic phase) 
and at 150°C, and at 170°C (in the paramagnetic phase) 
(Fig.6.11a to 6.14a).

The effect of temperature on the adiabatic bulk 
modulus Bs for this Mn7 3Ni2 7 single crystal is shown in 
Fig.6.6a. Previously Honda, Tanji and Nakagawa (1976) 
have reported compressibility measurements as a function 
of temperature on polycrystalline Mn-Ni alloys (see 
section 2.6). Those workers did not obtain the 
compressibility in the vicinity of T n , whereas in the 
present work we have been able to do so. The bulk modulus 
Bs of the single crystal has a peak at Tn (so the 
compressibility dips) (Fig.6.6a). The slope of the 
temperature dependence of the bulk modulus ( dBfdT ) with 
temperature is listed in Table 6.9a. The results show 
that in the antiferromagnetic phase, the bulk modulus of 
the single crystal Mn73Ni27 (= -3.93xl07Nm-2K“1) is less 
temperature dependent than that of the polycrystalline 
25.1 at.%Ni alloy (= -5.10x107Nirr2 ) (refer to TableJ6.9a).

An assessment of the magnetic contribution to the
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bulk modulus has been made by a linear extrapolation down 
to room temperature of the data (Bp) obtained in the 
paramagnetic phase (Fig.6.6a). Substraction of the value 
of Bp at 20 °C from the measured value B* in the 
antiferromagnetic state at 20° gives AB* (= Bm- Bp). The 
value determined for ( aB») 2 oc (= +3.6%) for the Mn73Ni27 
single crystal is compared in Table 6.9a with those for 
polycrystalline Mn-Ni alloys obtained from the 
compressibilities given by Honda, Tanji and Nagasawa
(1976) using the same extrapolation procedure. The 
polycrystalline 25.1at.%Ni alloy has a closely 
similar (AB*)2oc to that of single crystal Mn7aNi27. In 
all alloys the magnetic contribution to the bulk modulus 
AB» is positive. In these polycrystalline Mn-Ni alloys, 
as the nickel concentration is increased, AB* increases 
linearly (Fig.6.6al) with the following equation:

( AB»/B) = -0.72Ch + 22 (7.1)

where AB*/B is the magnetic contribution to the bulk 
modulus and C n is nickel concentration in the units of 
at.%. This implies that the magnetic contributions to the 
bulk modulus of polycrystalline Mn-Ni alloys increase as 
the nickel concentration is decreased. The results also 
suggest that the magnetic contribution to the bulk 
modulus AB*/B of pure Y-manganese in this 
antiferromagnetic state would be about +22%. There does 
not seem to be a theoretical prediction of the sign of
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the magnetic contribution to the bulk modulus in the 
antiferromagnetic materials. However, in the case of 
ferromagnetism the itinerant electron model of Hausch
(1977) indicates that the bulk modulus in the magnetic 
state should be greater than that in the non-magnetic 
state. The results obtained here for the difference in 
bulk modulus between the antiferromagnetic and the 
paramagnetic states of Mn-Ni alloys agree with this 
trend. In general the increased bulk modulus in the 
antiferromagnetic phase shows that the interatomic forces 
are strengthened by the antiferromagnetic ordering. 
Alers, Neighbours and Sato (1960) have suggested the 
following formula to separate the ferromagnetic 
contribution from the non-magnetic contribution to the
bulk modulus of a f .c .c .structure material:

B = Bo - (2N/3)(I/Io )2rQ2 (d2j/dr*) (7.2)

where J is the exchange interaction energy, I/Io is the
relative magnetization, r0 is interatomic distance and N 
is the number of atoms per unit volume. The term Bo 
represents the value that the bulk modulus would have if 
ferromagnetism did not occur. The second term is the 
intrinsic magnetic contribution to the bulk modulus and 
exhibits a dependence upon the magnitude of the 
spontaneous magnetization. From this model, Alers, 
Neighbours and Sato (1960) obtained for pure nickel the
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second term of equation (7.2) as +12x109dyne/cm2 so that 
a negative contribution is obtained for that 
ferromagnetic material. However these workers observed 
experimentally a small positive magnetic contribution to 
the bulk modulus ( AB» ) in pure nickel as it is taken 
down from the paramagnetic to the ferromagnetic states 
(Alers, Neighbours and Sato 1960). Hence even in the 
ferromagnetic case there is a contradiction between the 
experimental result and the predicted sign of the 
magnetic contribution to the bulk modulus. For the Mn-Ni 
antifertomagnetic alloys the positive sign of AB»/B 
shows that there is a magnetic stiffening of the bulk 
modulus. A positive value of AB» has also been observed 
in some ferromagnetic invar alloys: Fe-28.2at.%Pt single 
crystal gives AB»/B approximately +13% at OK (Hausch 
1977). A ferromagnetic Fe-Cr-Ni-Mn polycrystal showed a 
zero slope above Tc while having normal behaviour 
(positive slope) below the transition temperature (335K): 
when the line from paramagnetic data is extrapolated 
downwards to about 70K the paramagnetic bulk modulus 
falls below the ferromagnetic bulk modulus (Ledbetter 
1983).

A binary alloy of Mn-Ni [001] crystal with a 
lower nickel concentration (Mns4Nii6 ) has also been 
investigated here. C n  and C 44 have been measured up to 
and through the Neel temperature (170°C) and the results 
are shown in Table 6.4a, Fig.6.3al and 6.4al. These 
results show that C 11 and C 44 follow a similar trend to
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those for Mn73Ni27; namely C n  is stiffened while C*4 is 
softened. dClt/dT of Mns4Nii6 (=-4.9) is smaller than 
that of Mn7 3Ni2 7 (-5.55) whilst >3C4JdT *s larger than 
that of the Mn7 3Ni2 7 (Table 6.8a).
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7.3 Hydrostatic Pressure Derivatives of the Second 
Order Elastic Stiffnesses Constants of 

the Mn7 3Ni2 7 alloy.
The hydrostatic pressure dependences of the 

elastic stiffness constants of all the three modes of 
propagation in the [110] direction of Mn7 3Ni2 7 have been 
measured at several different temperatures. The results 
have been shown in Table 6.13a. Those are the first data 
for the effect of pressure on the elastic behaviour of 
the binary alloy Mn-Ni alloys, and as they refer to both 
the antiferromagnetic and the paramagnetic phases are 
singularly instructive, ultrasonic velocity measurements 
under pressure in both phases of an antiferromagnetic 
material being absent from the literature. The pressure 
derivatives ( d^u/dP ) of Mn7 3Ni2 7 are sensitive to 
temperature as can be seen from the temperature 
dependences of the pressure derivatives of the second 
order elastic stiffness constants of Mn7 3Ni2 7 plotted in 
Fig 6.18a to Fig 6.22a. To understand the effect of 
pressure on the interatomic forces one approach is to 
look at this behaviour of 'dCtj/dl* of Mn7 3Ni2 7. At 
every temperature in which this pressure experiment has 
been carried out, all the three pressure derivatives of 
the elastic constants have been found to have positive 
values. This shows normal behaviour of this crystal under 
applied pressure; that is, the elastic stiffness 
constants increase with pressure. This increase in 
elastic constants gives an indication of the change in
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interatomic forces as a result of reducing the atomic 
spacing in this alloy. At every experimental temperature, 
Cii shows the largest pressure dependence of elastic 
constants (Table 6.13a). The significance of this can be 
seen by considering the relation between &Cn /df> with 
the third order elastic stiffness constants (TOEC):

Usually C m  is the largest TOEC for a cubic crystal 
because it is the one dominated by repulsive forces 
between the nearest neighbour atoms. C m  is the largest 
TOEC for the Mnso.5Nii9.5 at 20°C (Table 6.18a) (Saunders 
1985): C m  is -2100 GPa while C 112 is +640 GPa, so the
contribution to ( C m  + 2C 112) is dominated largely by 
C m .  A similar dominance of C m  for the Mn7 3Ni2 7 alloy 
is suggested by inspection of the TOEC combinations 
measured at several temperatures (Table 6.14a). Thus the 
large increase in elastic constant C 11 when pressure is 
increased implies that the interatomic repulsive forces 
Mn7 3Ni2 7, which increase as the atoms are brought closer 
together, dominate dCxx/dP.

towards the Neel temperature, dCxxfdP increases rapidly 
and reaches a maximum in the vicinity of Th (Fig 6.21a). 
On passing through the Neel temperature, &Cxl/dP 
undergoes a marked change which must be associated with 
the magnetic phase change from the antiferromagnetic to

(7.3)

As the temperature of the Mn7 3Ni2 7 alloy is taken
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the paramagnetic state. oCxx/i)P decreases linearly 
towards higher temperature as the temperature is raised 
further in the paramagnetic state. In the 
antiferromagnetic state the increase of ( dClx/dP ) as Tn 
is approached corresponds to a marked increase in the 
TOEC combination ( C m  + 2Cnz) (Table 6.14a.) and 
therefore indicates that C m  increases as Tn is neared. 
In turn this suggests that there is an increase in the 
interatomic repulsive forces in the vicinity of the Neel 
temperature. The only work on the pressure dependence of 
second order elastic constants in any other magnetic 
material on both sides of transition temperature is that 
reported by Renaud and Steinemann (1984) who measured the 
hydrostatic pressure derivatives of the ferromagnetic 
FeNi alloys in both the ferromagnetic and the 
paramagnetic phases. They did not measure .dCxx/()P

directly. The values measured for the pressure derivative 
of the modulus corresponding to longitudinal wave 
propagation down the [110] direction, d C L/dP of these 
alloys (Fe-31.5at.%Ni, Fe-32at.%Ni and Fe-36at.%Ni) 
(Renaud and Steinemann 1984) go through a peak at the 
Curie point Tc. shows a similar trend with
temperature to that found here for the antiferromagnetic 
alloy Mn73Ni27 (Fig 6.18a). The results of Renaud and 
Steinemann (1984) show that dC.h JdP decreases with 
temperature in the paramagnetic state of iron-nickel 
alloys as it does in the paramagnetic state in the 
Mn73Ni27 (Fig 6.18a).
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The data given in Table 6.13a shows that oCjdP

is the smallest hydrostatic pressure derivative of the 
SOEC. This is true up to and into the paramagnetic state 
of Mn7 3Ni2 7. Many f.c.c. materials, particularly 
transition metals, show a similar trend of the SOEC under

smallest pressure derivative: for example, for pure
nickel [ aCx JM* =5. 93, dCAJtH\ =2.44 and dC/dp-1.19 
(Salama and Alers 1968)] and for the pure palladium 
[-f'C, xfdP = $ . 05, dCAJdP =1.86 and dC'ldP=0.86 (Weinmann and 
Steinemann 1974)], and pure copper [<?C, t/dp =5.86, 
dCAJdP'=5.15 and 5CIBP = 0.24 (Daniels and Smith 1958)] 
(refer also Fig 6.13al). For these transition metals, as 
well as Mn7 3Ni2 7 , the shear pressure derivatives dCtJdl* 

and dC/dP each are smaller than <'Cu /pp . To understand 
this physical interpretations of C44 and C' are needed. 
Take for example OC^JOP; the shear involved in C 44 is 
cr*( = dv/dz-f dw/dz) ̂  where v is a displacement in the
fourfold y direction and w is one in the z-direction, and 
corresponds to sliding of planes of constant z over each 
other in the y-direction: there is no change in
nearest-neighbour distance to first order in strain and 
no nearest-neighbour repulsive contribution to C 4 4 . The 
pressure derivatives of the two shears, ( dCAJdP. ‘) 0 and

hydrostatic pressure: namely that SCfdP is the

( dCxljdP ) p s 0

are given by

( ^ 1 1  2 ^ 4 4  C  \ 4 4  2 C j 6 h )

(C ,, + 2C, 2)
(7.4)
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and
(d§ ~ )  = - — 121 + 2C‘11 ~ C| 1 j (7.5)V Sp /r-o (C,,+2C12) !

Nearest-neighbour repulsive forces do not contribute to 
either of these pressure derivatives for cubic crystals 
(Miller, Saunders and Yogurtcu *1981), so that
{ dC4JdPl)ps0 and ( dCl2/dP )p-o tend to be small, as

they are for the Mn7 3Ni2 7 alloy (Table 6.14a). The 
temperature dependences of dC44ldP and dCl2/dP are
shown in Fig 6.20a and Fig 6.22a respectively. For the 
ferromagnetic FeNi alloys (Fe-31.5at.%Ni, Fe-32at.%Ni and 
Fe-36at.%Ni) the curve for dC44/rfP falls below the curves 
for (}̂ l m P  (Fig.l of Renaud and Steinemann 1984) which is 
similar to the results obtained here for the Mn7 3Ni2 7 
alloy (Fig 6.18a to Fig 6.20a).

A large dCxx/dP represents a pronounced
pressure-induced stiffening against compression and thus 
corresponds to an enhanced magnitude of dB /dP which is 
also large in this alloy (Fig 6.23a). The behaviour of 
the spontaneous magnetization in an antiferromagnetic 
material is shown in Fig 2.3b of section 2.3. The 
spontaneous magnetization decreases towards zero at Th in 
both the antiparallel and parallel lattices. The 
considerable increase of <?C, ,/<?/» with temperature can be 
associated with an increase in the interatomic repulsive 
forces as the temperature is increased up to the Neel 
point. To separate the magnetic and the nonmagnetic 
elastic constants in their ferromagnetic Fe-Ni alloys,
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Renaud and Steinemann (1984) wrote the free energy (F) as 
F(= F(la) + F(ma)); thus the elastic stiffness constants 
can then in turn can be separated into magnetic and 
nonmagnetic contributions:

C = C1a + C.a (7.6)

where Cia is the elastic stiffness constant due to the 
lattice alone and Cma is the magnetic contribution to the 
elastic stiffness constants when an alloy is in the 
magnetic state. Since equation 7.6 is a linear relation 
between the elastic stiffness constants, the same 
situation can also be applied to the hydrostatic pressure 
derivatives of the elastic stiffness constants, hence

dCn/^P = i(Ci,)i./JP + d(Cn).,/ap (7-7)

Thus in the paramagnetic phase, where there is no 
contribution from the intrinsic magnetic moments, the 
elastic constants and their pressure derivatives should 
only include the lattice contribution. As a result there 
is a marked reduction in i at the transition
temperature. This reduction can be seen in Fig.6.21a as a 
data in the paramagnetic state fall far below those in 
the antiferromagnetic state. In the paramagnetic state 
^ ii/dp decreases further with increasing temperature.

To evaluate the compression at higher pressure,
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the Murnaghan (1944) equation-of-state has been employed 
(equation 3.53). The compressibility of Mn7 3Ni2 7 has been 
calculated up to about lOOKBar pressure in both the 
antiferromagnetic and the paramagnetic states. To convert 
the bulk modulus from adiabatic to isothermal values, 
(equation 3.54) the thermal Gruneisen parameter has been 
used, which has a value of +0.97 (Table 6.15a). In the 
absence of thermal expansion data for our crystals the 
values of the coefficient of thermal expansion and its 
temperature derivative up to temperature of 400°C given
by (Hausch 1977) have been used. Fig 6.24a and Fig 6.25a
show the compression at several selected temperatures of 
Mn7 3Ni2 7 in the antiferromagnetic and the paramagnetic 
states respectively. At room temperature Mn7 3Ni2 7 has a 
smaller compression than the transition metal cobalt 
(Yogurtcu, Saunders and Riede 1985) but is larger than UN 
(Chapter 5). Uranium nitride is an ionic compound having 
a rocksalt structure, thus interatomic bonding is strong
and hence it has quite a small compression. For a Mn-Ni
alloy, the small compression can be associated with 
strong bonding in this transition metal alloy due to the 
d-electron contribution to the interatomic bonding. The 
effect of the magnetic contribution can be seen by 
comparing Fig 6.24a and Fig 6.25a; the compression is 
smaller in the antiferromagnetic state than in the 
paramagnetic state.
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7.4 Gruneisen Parameters of the Binary Alloy Mn7 3Ni2 7
Single Crystal 

The acoustic mode Gruneisen parameters in 
directions in the symmetry planes normal to the twofold 
and fourfold directions have been computed as a function 
of propagation direction using equation 3.63. The results 
are plotted in Figs.6.29a to 6.40a in both the 
antiferromagnetic and the paramagnetic states. The mean 
long wavelength acoustic mode Gruneisen parameters 
are given in Table 6.14a. The Y(p,N) for Mn7aNi2 7 for 
all the three modes of propagations are greater than 
unity. Y(p,N) for the longitudinal mode of propagation 
in the [001] direction ranges from +1.7 to +8 in the 
antiferromagnetic state and ranges from +1.45 to +2.1 in 
the paramagnetic state. The two shear modes are also 
positive and larger than unity (ranging from +1.0 to 
+ 1.96) Application of hydrostatic pressure causes an 
increase in mode frequency (or energy) in the normal way 
expected for a crystal: all acoustic modes in the long 
wavelength limit stiffen under pressure. These positive 
values of these Y{p,N) in excess of unity show that 
there is no pressure induced acoustic mode softening even 
in the vicinity of transition temperature Tn. The data 
presented in these figures 6.29 to 6.36 show the 
temperature dependences of Y{p*N)'r as temperature is 
taken towards Tn: Yip, N) increases. These Gruneisen
parameters quantify the first order anharmonicity of the 
acoustic modes at the Brillouin zone centre. The marked
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anisotropy of these y(p%N\ can be understood in terms of
the types of acoustic mode which can propagate in the
f.c.c. structure and their relationship to the
interatomic forces especially the nearest neighbour 
repulsive forces. Consider for example the Y{P*N) of
modes propagating along a four-fold <001> direction. At 
room temperature the longitudinal mode V(p, N) has a 
larger value (+1.7) than those of the degenerate shear 
modes (Fig.6.29a). This can be thought of in terms Of the 
third order elastic constant contribution ( C m  + 2Cii2 = 
Ci = - 18.71 x 1011 Nm_2)(Table 6.14a) which is large and 
negative (refer to equation 3.63). Hence CiKi = - 18.71 
xl011Nm-2 (Ki being for the longitudinal mode) is much 
greater than w (CuKi = 1.294 x 1011 Nm~2 ), and this 
term CiKi mainly determines y(p, N) (refer equation 3.63 
and Table 6.14a). Now ( C m  + 2C 1 1 2) is in turn largely 
determined by C m :  the nearest neighbour repulsion is
responsible for the substantial value of y{p,N) f°r the 
longitudinal g[001] acoustic mode. In contrast C m  is 
not involved in the Gruneisen gamma for shear acoustic 
waves propagated along an <001> direction - for these 
modes the nearest neighbour forces do not come into play 
and hence the corresponding pressure derivative dC44/dp. 

is smaller than dC%l/dP} (Table 6.13a). In general 
application of the principle that when C m  is involved 
then the nearest neighbour repulsion will be important in 
determining the vibrational anharmonicity accounts for 
the marked anisotropy of the acoustic mode Gruneisen 
parameter of Mn-Ni alloys.
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The Debye temperatures ( 0 d ) calculated using
equation (3.44) are given in Table 6.12a. The value of 0 d

obtained at room temperature is about 383K. The
calculation was performed by numerical integration,
taking advantage of the cubic symmetry by only
integrating over one half of an octant using a total 135
directions. Through back extrapolation of the Debye
temperature curve in the antiferromagnetic state to zero
K, the value obtained for 0 d at zero K is about 395K.

At high temperature ( T > 0 d ) phonons exist in
states in the acoustic branches throughout the Brillouin
zone. Above Q d all phonon modes are excited. can be
obtained using equation (3.60). The room temperature
specific heat (35J/mole K) and coefficient of thermal
expansion (16xlO-6K~1) are taken from data given by
Hausch (1977) and Ushishiba (1971) respectively. Using
these gives y*1’ for Mn7 3Ni2 7 alloy as +0.97.

The thermodynamic properties of a crystal at low
temperature (including the thermal expansion) should be
determined by the dominance of the phonon population in

clthe low lying transverse branch. To calculate y  ,
Y(p,N) and v(/>, /V)' were obtained from the SOEC
extrapolation to OK using the pressure derivatives of the
SOEC listed in Table 6.13a. The room temperature pressure
derivatives of the SOEC were used, even though the SOEC

clthemselves were extrapolated to absolute zero. V7o
(Table 6.15a) is dominated by the behaviour of the low
energy shear acoustic modes. The positive sign of

cllow-temperature y  is also an indication that the* /i
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thermal expansion of Mn7 3Ni2 7 is positive. The high 
temperature Yw was calculated using equation (3.65) and 
is given in Table 6.15a together with those of y**1 and
r-Cl
Y  In the high temperature limit, the thermal
Gruneisen gamma of Mn-Ni is larger than at low 
temperatures, acoustic phonons closer to the zone 
boundary must be involved in the thermal properties. At 
room temperature most of the modes have a positive 
Gruneisen parameter of the order of unity associated with 
them in order to produce the observed anharmonic effects. 
From Table 6.15a y'*' is larger than • which

oo.

indicates that the mean of the Gruneisen parameter for 
all acoustic modes away from the Brillouin zone centre 
taken together are larger than that for the zone-centre 
acoustic modes.

Fig. 6.41a shows the variation of mode Gruneisen 
parameters Y(p^N) of the longitudinal and shear modes 
propagated in the [110] direction in Mn7 3Ni2 7. These 
gamma have been obtained using (Renaud and Steinemann 
1985)

Y ij = -(1/6) - (dlnCij/dlnV) (7.8)

where dlnCi j/dlnV = (-B/Ci j) (dCi j/dP). Y i« (Y(P,N)
due to lattice) and Y m a (magnetic contribution to the 

Y{p,N)) of three modes at 20°C are then obtained by an 
extrapolation procedure of the Y(p*N) data in the 
paramagnetic state to the room temperature. The results
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are given in Table 6.16a. Table 6.16a shows that the 
Gruneisen parameters Vlp, N) of the longitudinal mode and 
the slow shear mode ((Ci1-C1 2 )/2) which propagate along 
[110] direction at 20°C are larger in the paramagnetic 
state than those in the antiferromagnetic state at the 
same temperature. The implication of this method of 
finding Y a -  Yp is that the Ym* for these two modes have 
negative values. In contrast for C 4 4* Y(pyN) is smaller 
in the paramagnetic state than in the antiferromagnetic 
state. A large negative Y ■« of the two shear modes (C ’ 
and C 4 4 ) can be seen in the work of Renauld and 
Steinemann (1984) of the Fe-32at.%Ni alloy. In fact the 
large negative values of observed by these workers
were determined using equation 3.61 but they took Ci 
incorrectly as an elastic constant instead of specific 
heat of the ith mode. For this reason the values of Yma 
obtained for their sample (Fe-32at.%Ni) using our 
extrapolation method (Table 6.16a) show a marked 
difference from Y ■« given in table 1 of Renauld and 
Steinemann (1984). It is interesting to note that our 
method shows the of Mn7 3Ni2 7 and that of
Fe-32at.%Ni have some similarity (Table 6.16a). Renauld 
and Steinemann (1984) came to the conclusion that the 
negative value of V ■« come about as a result of the fact 
that the magnetic contribution to the elastic stiffness 
Cl is negative. In a similar way it seems that in 

1 Mn7 3Ni2 7, the negative ^»a is evidence that the magnetic



272

contribution to the mode Grilneisen parameter associated 
with Cl and ( C n - C i 2 ) / 2  is negative but positive for C 44 .
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7.5 Temperature Dependences of the Elastic Stiffness
Constants of Ternary Alloys of Composition

Mne 5N19C 6 .
Two ternary alloys Mn-Ni-C of the same 

composition have been examined in this work. These are 
the Mna5Ni9C6 sample C2 (Th ^ 320°C) and sample F (Th^ 
273°C) respectively. The difference in the Neel 
temperature for samples having the same nominal 
composition illustrates the difficulty of making 
homogeneous specimen of these ternary alloys. The three 
modes which have been propagated along the [110] 
direction of sample C2 enable the determination of the 
set of three independent elastic stiffness constants of 
this material. Sample F has been studied previously 
extensively at higher temperatures using neutron 
scattering techniques (Lowde et al. 1981). This sample F 
has been prepared in the form of flat plate with the 
fourfold and twofold axes directed normal to the plate 
surfaces. A complete set of temperature dependences of 
both the second order elastic stiffness constants of 
these ternary alloys samples up to and through their Neel 
temperatures have been determined. The temperature 
dependences of the longitudinal mode and the two shear 
modes, one polarised [001] and the other [110] directions 
are shown in the form of elastic constants (Cij = pV2 ) 
in Figs.6.lb to 6.5b and Figs.6.1c to 6.5c for sample C2 
and sample F respectively. In looking at this ultrasonic 
data, and attempting to estimate the degree to which they
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indicate special effects due to the presence of carbon in 
the alloys, it may be well to recall the characteristics 
of simple materials. If only central forces are present 
in a f.c.c. crystal, C 12 equals C 44; and if the forces 
extend only between nearest neighbour atoms then 
furthermore C 11 = 2Ci2 = 2C4 4. With a longer range of 
forces, C 11/ C 44 can take a range of value, but C 11 can 
not go below C 44 unless interatomic forces are 
non-central. If the restoring forces are harmonic, the 
elastic constants will be independent of temperature; in 
practice, with a normal degree of anharmonicity there is 
a moderate decrease of the elastic constants as the 
temperature is increased _ in the case of nickel, the 
largest downward slope is that of C 44 - about 3% per 100K 
(Alers et al. 1960). As for iron-nickel alloys, whose 
behaviour in some respects resembles that of our 
manganese-nickel ones, the result of introducing 
substantial quantities of iron into nickel is to lower 
all the three elastic stiffness constants; C 12 and C 44 

slightly, C 11 by a factor that eventually attains about 
1.7, although at room temperature when the amount of iron 
is increased, C 11 is still about 1.3C4 4 when the 
martensitic transformation supervenes (Hausch and 
Warlimont 1973).

Consider first Mn8sNi9C 6 sample C2, the elastic 
constants of which are displayed in Figs.6.lb to 6.5b. 
The temperature dependences of (Ci1+C12+2C 4 4 )/2 and C 44 

are qualitatively normal, as far as the derivatives are
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concerned. C n  (= 8.7) is smaller than C«4(10.6), while 
Ci2 is about 6 in units of 1010Nm~2 (Table 6.3b). This 
anomaly (Cn< C 4 4) is observed throughout this range of 
temperature (20°C to 380°C). This highly exceptional 
effect produces a situation where, in this temperature 
region when C11 < C 4 4, a longitudinal sound wave
travelling in a direction near [100] is actually slower 
than transverse sound. Going together with this, Fig.6.2b 
shows that the transverse mode propagated along [110] and 
polarised [110] undergoes acoustic phonon softening but 
the slope changes sign at approximately 70° below T m . 

This softening of C'( = (Cn- Ci2)/2) in this alloy is 
related to the phase transformation from a cubic to a 
tetragonal structure which occurs at much lower 
temperature (t*174K) (Lowde et al.1981). For the 
structural transformation from a cubic lattice to a 
tetragonal one there is a cubic invariant in the order 
parameter so that this type of structural transformation 
should be first order. Such a transition occurs via 
softening of the [110] acoustic phonon which has the 
vibrational polarization direction [110]. The 
corresponding elastic stiffness constant is C', and in a 
nearly-second-order transition C' would go critically 
sof t .

Figs.6.1c to 6.5c show the temperature 
dependences of the SOEC for Mn8sNi9C 6 sample F. Mode 
softening of C' of sample F has been observed: C f 
increases with temperature from room temperature up to
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the Neel temperature (Fig.6.2c). The temperature 
dependence of C 44 (Fig.6.3c) is qualitatively the same as 
that of sample C2 in Fig. 6.3b; it decreases with 
temperature. With increasing temperature C 11 at 145°C 
changes sign to a positive slope as shown by a dip in 
Fig.6.4c. One possible interpretation of this dip is that 
there is a lattice instability just before the magnetic 
phase transition from the antiferromagnetic to the 
paramagnetic phase. There is a change in slope found here 
(Fig.6.4c) in the vicinity of Tn which occur at the 
magnetic phase transition from the antiferromagnetic to 
the paramagetic state. C12 of sample F exhibits a similar 
behaviour qualitatively to C 11 throughout the 
experimental range of temperatures (Fig.6.5c). 
Extrapolation of the three elastic stiffness constants 
back from the paramagnetic region to room temperature 
shows that C 44 is softened but C11 and C 12 are stiffened 
by the magnetic contributions in this alloy.

The Young's Moduli for the fourfold, threefold 
and twofold axes of rotation are plotted as a function of 
temperature in Figs.6.7b to 6.9b and Figs.6.7c to 6.9c 
of both samples C2 and F respectively. For the [111] 
direction Young's modulus of both samples do not differ 
greatly between the paramagnetic and the 
antiferromagnetic phases. However large differences 
between the paramagnetic and the antiferromagnetic phases 
are found for this property along the [001] and [110] 
axes. Along the [001] direction the Young's Modulus is
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much smaller in the antiferromagnetic phase than in the 
paramagnetic phase for both samples in a temperature 
range between 20°C to T n (Fig.6.7b and Fig.6.7c).

To visualize the effect of temperature on the 
velocities of ultrasonic modes propagated in different 
directions in these crystals, the mode velocities 
calculated using the Christoffel equations are plotted at 
several different temperatures in the antiferromagnetic 
phase of sample C2 (Figs.6.lib to 6.15b) and at 20°C for 
sample F (Fig.6.10c). The cross sections of the velocity 
surface do not show any pronounced changes with 
temperature.

From the linear extrapolation of the bulk modulus 
data in the paramagnetic phase down to room temperature 
it can be seen that there is a positive magnetic 
contribution to the bulk modulus (Figs.6.6b and 6.6c for 
samples C2 and F respectively).

7.6 Hydrostatic Pressure Derivatives of the Elastic 
Stiffness Moduli of Ternary Alloys Mn8sNi9C6

The set of data on the hydrostatic pressure 
derivatives of the second order elastic stiffness 
constants of the ternary alloy Mn8sNi9C6 sample C2 at 
several different temperatures have been shown in Table 
6.15b. These are the first measurements of the 
hydrostatic pressure dependences on the elastic stiffness 
constants of a ternary alloy Mn-Ni-C single crystal and 
have been measured at several different temperatures.
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These hydrostatic pressure derivatives ( dCtJ/dP)p =0 
provide useful physical insight into the interatomic 
repulsive forces in this material. Consider first 
( K n / S P  )p> o: as for the binary Mn-Ni alloys, this is 
the largest pressure derivative of elastic stiffness 
constants (Table 6.15b). Using equation 7.3, uCxJdP 

can be written in terms of the second and the third order 
elastic stiffness constants; the third order elastic 
stiffness constant combination ( C m  + 2C 1 1 2) is given in 
Table 6.16b. This result suggests that C m  is the 
largest third order elastic stiffness; this parameter 
C m  is dominated by nearest neighbour repulsive forces. 
Therefore (C111+2C 1 1 2) and in turn ( dCxx/dp )p = o are 
dominated by C m  which is large and negative owing to 
the overriding contribution from nearest neighbour 
repulsive forces. C 112 is small because it is largely 
determined by the next-nearest-neighbour repulsive 
forces.

The temperature dependences of hydrostatic 
pressure derivatives dCtJ/dP of sample C2 are plotted in 
Fig.6.16b to 6.23b. According to Long et al.(1988), the 
major influence of carbon in this ternary alloy is in 
collapsing the phase diagram of Fig.2.2 by a factor of 
about 7/16 and they suggest that the behaviour of 
Hna5Ni9C6 can be considered to be roughly comparable with 
that of the binary alloy Mn7sNi2 2 . Since this nickel 
concentration in Mn7 8Ni2 2 is quite close to Mn7 3Ni2 7, we 
can expect quite a close resemblance in elastic behaviour
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between ternary alloy Mna5Ni9C6 and binary alloy 
Mn7 3Ni2 7. Some similarity of behaviour can be seen in 
tdCAJdP and d C f d P Thus dCfdP increases linearly with 
temperature (Fig.6.20b) while dC4JdP decreases linearly 
with temperature (Fig.6.21b) v (refer to Fig.6*l9a and 
6.20a of Mn7 3Ni2 7 for comparison). The introduction of 
carbon into the MnssNisCs interstitially does not seem 
to produce a significant effect on the pressure 
derivatives of the shear elastic stiffness constants. 
However, the dip in the longitudinal mode pressure 
derivative aCxx/dP at 140°C is possibly due to effects of 
carbon on the nearest neighbour repulsive force, in this 
case to decrease the interatomic repulsive force as the 
temperature is taken towards 140°C. With further increase 
in temperature above 140°C, dCxx/dP increases and shows a 
similar behaviour to that of the binary alloy Mn7 3Ni2 7 
(Fig.6.22b). Since no nearest neighbour interatomic 
repulsive forces are involved in the pressure derivatives 
of shear elastic constants, the temperature dependences 
of dC/dP. and dC4JdP tend to be small for the ternary 
alloys Mn-Ni-C sample C2. This behaviour has been 
observed in HnasNi9C 6 from the data given in Table 6.15b.

7.7 Compression in Mna5Ni9C6 Sample C2
Fig.6.25b shows the compression at several 

temperatures of sample C2 of Mn 8sNi9C 6 alloy obtained up 
to about 165°C in the antiferromagnetic state. A decrease 
in compressibility with increasing temperature is
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observed between room temperature to about 75°C. This 
behaviour has also been observed in the binary alloy 
Mn73Ni27 single crystal (Fig.6.24a). In the ternary alloy 
there is a marked increase of compressibility above 75°C 
which continues up to 140°C. Higher in temperature (about 
165°C) the compressibility returns to the normal 
behaviour of showing a decrease with temperature. The 
reduction of compressibility particularly at 140°C may 
be related to the structural transformation which occurs 
at approximately 410°K (^140°C) according to Fig.2.2. for 
an alloy containing 85at.% Mn.

7.8 Gruneisen parameters of Ternary Alloy MnasNi9C 6 

(sample C2)
The values of y(/>, /V) have been computed as a 

function of mode propagation directions. The acoustic 
mode Gruneisen parameters in directions in the symmetry 
plane normal to the twofold and fourfold directions are 
plotted in Figs.6.31b to 6.36b. At 20°C these mode 
Gruneisen parameters show a similar behaviour to those of 
the Mn73Ni2 7 alloy particularly in the [001] direction.
Yl (gamma longitudinal) is the largest parameter 

(Fig.6.31b) probably as a result of nearest neighbour 
repulsive forces which dominate this gamma. As the 
temperature is increased towards approximately 75°C, 
'ih increases from +2.3 at room temperature to +3.8 

(Fig.6.33b) which indicates that there is an increase in 
interatomic repulsive forces. On further increase in
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temperature there is a marked reduction in Yl (see 
Fig.6.34b) and it reaches a minimum at approximately 
140°C (Fig.6.35b). This reduction in Yl is associated 
with the corresponding reduction in dCn/dP , To 
understand this behaviour, inspection of the phase 
digaram Fig.2.2 is instructive. According to this figure 
there will be a structural transition at approximately 
140°C for a crystal having a composition of 85at.%Mn. 
Since this structural phase transition is related to mode 
softening (Lowde et al.1981), the short range interatomic 
repulsive forces could be expected to decrease, and 
because they provide a direct contribution to dCxx/dP and 
hence to Vl, therefore dCx x/dP and Vl decrease in this 
temperature region. A set of mode Gruneisen parameters 
obtained for each mode which propagates along the [110] 
direction has been plotted as a function of temperature 
in Fig.6.37b; both ^ c *4 and Y c. show a similar 
behaviour to those of Mn7 3Ni2 7 alloy: Yc4 4 decreases
with temperature whilst Y c ■ increases with temperature. 
Y l along the [110] direction shows a marked reduction at 
140°C. The reduction in Y l may be due to the following 
factors: i) the presence of carbon atoms reduces the
interatomic repulsive forces at this particular
temperature, ii) lattice instability which result from
the structural transition as shown in Fig.2.2. for Mn-Ni 
alloy having a composition of 85at.%Mn. The mean gamma 
Gruneisen parameter Y»®»n for several different 
temperatures has ' also been calculated and results are
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given in Table 6.16b. There is a minimum Y»**n at 140°C.
Y l provides a direct contribution to Therefore

the minimum Y»«*n is related to the reduction in Y l at 
140°C as shown in Fig.6.37b.
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7.9 Conclusions
A complete set of temperature dependences of the 

SOEC of the binary alloys Mn7 3Ni2 7 and the ternary alloys 
Mna5Ni9C6 sample C2 and sample F have been determined. 
These measurements have been carried out in both.the 
antiferrromagnetic and the paramagnetic phases. The 
hydrostatic pressure derivatives of the second order 
elastic stiffness constants have been measured for these 
alloys at several different temperatures. A complete set 
of data of dCu/dl* for the Mn7 3Ni2 7 has been obtained in 
both the antiferromagnetic and the paramagnetic phases. 
This is the first measurement of the hydrostatic pressure 
derivatives of the elastic stiffness constants on both 
sides of the Neel temperature obtained in any material.

The following behaviour of the SOEC of the 
Mn7 3Ni2 7 alloy as the temperature is taken to and through 
the Neel point has been observed ; Cl and C 44 decrease 
linearly with temperature both in the antiferromagnetic 
and the paramagnetic states. For (Cn-Ci2)/2, there is a 
dip in the vicinity of Tn. From the extrapolation of the 
paramagnetic data of the SOEC to room temperature, it has 
been found that the magnetic contribution stiffens Cl but 
softens C 44 and (Cn-Ci 2 ) /2. For the ternary alloys 
MnasNi9C6, mode softening has been observed through 
(Cn-Ci2)/2 in both alloy samples (C2 and F) as 
temperature is taken towards Tn. Sample F shows this mode 
softening from room temperature up to the Neel 
temperature whilst in sample C2 this soft mode disappears
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at approximately 70° below Th . These mode softenings are 
probably related to the structural transition that occurs 
at 174K for these particular ternary alloys (Lowde et 
al.1981). This f.c.c.-f.c.t elastic phase transition is 
associated with an instability of the crystal lattice (in 
either phase) to a soft, long wavelength, acoustic phonon 
(N<110> U<110>). This SOEC is a measure of the crystal 
lattice resistance to the strain imposed by the soft 
phonon; as (Cn-Ci2)/2 decreases the amplitude of this 
vibration would be expected to increase. In order to 
restore equilibrium the crystal is obliged to take a new 
structure.

The hydrostatic pressure dependences of all the 
three mode velocities of Mn7aNi2 7 have been measured at 
several different temperatures and the temperature 
dependences of dCi */dP, • dOfdP' and dCAJdP determined.
Then the individual pressure derivatives <?Cxx/p,pdCAJdP. 
and dCX2/dP have been obtained. There is a rapid linear
increase of with temperature up to the Neel
point and a marked decrease in ^£\|A?P above it. The 
increase in oCxx/dP as the temperature is taken towards 
Th is associated with the reduction in magnetic 
contribution to the interatomic repulsive forces. ,dCjdP 
increases slightly with temperature while dCAJdl 

decreases with temperature. Since there is no 
contribution from interatomic repulsive forces to both 
shears C' and C 4 4 , the pressure dependence dC'/dP and 
dCufiP are smaller than aCxx/dP at all temperatures.
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With the introduction of carbon into the Mn-Ni 
alloy, a change in the behaviour of the interatomic 
repulsive forces has been observed. Through our 
investigation on sample C2, dCll/(')p initially increased 
with temperature and then decreased to a minimum at 
approximately 140°C. The existence of carbon seems to 
weaken the interatomic repulsive forces: this can be seen 
as a decrease in ^ n / d P  at 140° C. Above 140°C there is 
a similar trend to that observed in the Mn7 3Ni2 7 alloy 
over the whole temperature range (ie dCfdP an(j dCAJdP 
show a similar pattern as for those in the Mn7 3Ni2 7; 
dCjdP increases with temperature while dCAJdP decreases 

with temperature in the antiferromagnetic state).
The measurements made on the hydrostatic pressure 

derivatives of the SOEC on both sides of the Neel point 
shed further light on the elastic behaviour of the Mn-Ni 
binary alloy in both the antiferromagnetic and the 
paramagnetic phases. As the temperature is increased 
towards Th , dCiX/(iP of Mn7 3Ni2 7 increases rapidly in a 
linear fashion. Since the magnetic contribution to the 
elasticity decreases with temperature, increases in 
^Cit/dP result from the reduction in the magnetic 
contribution. The maximum values of ^C, ,//>/> and hence the 
mode Gruneisen parameter are observed near the transition 
temperature T h . The hydrostatic pressure dependence gives 
an indication of the shift of the phonon dispersion curve 
at long wavelengths for the sample under pressure. In 
normal behaviour the phonon states increase in energy as
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a result of increasing the frequency of the phonon modes 
and consequently Ow/^k will then increase. This behaviour 
has been observed in the Mn7 3Ni2 7 single crystal. The 
most noteable behaviour observed in ,/<?/* with
temperature is its rapid reduction at the transition 
temperature. Although the magnetic effect is diminishing 
as Tn is approached, its effect on the elastic constant 
is still significant. Once the paramagnetic state is 
reached C n  is no longer influenced by the magnetic 
interaction with the elastic constant, thus dCxxfdP 

decreases and the value of mode Gruneisen parameter 
y{p.N) of the Cii is smaller. This implies that phonon 
states reduce in energy as the material is transformed 
from a magnetic to a non-magnetic state. In this new 
phase dw/&k then decreases with increasing temperature.

In conclusion it can be seen that the interatomic 
repulsive forces of a binary alloy of Mn-Ni can be 
altered in the following ways;

i) By varying the temperature of the sample 
which usually decreases these forces with increasing 
temperature,

ii) By the application of pressure (in this case 
hydrostatic pressure) to the sample. For Mn7aNi2 7 the 
interatomic repulsive forces have been found to increase 
linearly with temperature in the antiferromagnetic state, 
and decrease linearly in the paramagnetic state, and

iii) By the introduction of carbon to the binary
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alloy which for Mns5Ni9C 6 , the interatomic repulsive 
forces are reduced at 140°C.
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Publications

In order to develop the experimental methods and 
apparatus described in this work, experiments were
performed on a variety of solid compounds and alloy. The 
measurements of the temperature dependences of the SOEC 
and their hydrostatic pressure derivatives of some 
crystalline solids used led to the following publications:

"Hydrostatic Pressure Dependences of Elastic Constants
and Vibrational Anharmonicity of Uranium Nitride".
Salleh,M.D., Macdonald,J .E . and Saunders,G.A. (1986) J. 
Mat Sc. 21, pp 2577-2580

"Elastic Behaviour and Vibrational Anharmonicity of 
the Cluster Compound (Ag6Sn4Pi2 )Ge6".
Comins,J.D., Heremans,C., Salleh,M.D., Saunders,G.A. and
Honle,W. 1986. J. Mat. Sc. Lett. 5 pp 1195-1197

"Interatomic Repulsive Interaction and Vibrational 
Anharmonicity of Euo.8Bao.2S".
Salleh,M.D., Saunders,G.A. and Sullivan,R.A.L. 1987. Phil. 
Mag. Lett. 55, 2, pp 81-86
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APPENDIX A: The Program "TRANS-CORR"

From the input of mode type, sample density and 
thickness, echo overlap frequency and carrier frequency, 
the program computes the acoustic impedance of the 
sample, the reflection coefficient of the sample 
transducer boundary, the estimated echo delay caused by 
multiple internal reflections within the transducer and 
corrects the observed echo transit time accordingly. The 
transducer is assumed to be of quartz.

The computation is made on the basis of the 
results of calculations made by Kittinger (1977) who gave 
the estimated echo delay as a function of the reflection 
coefficient, see Fig.4.15. Here the estimated echo delay 
(tc) is calculated from the equation

(tc) = (0.1602 exp(1.831(rf+ l)))/fc 
where (rf)= reflection coefficient coefficient of the 
sample-transducer boundrary and (fc)= carrier frequency 
(usually equal to the fundamental frequency of the 
transducer). This equation is found to represent well 
the results of Kittinger for -0.6<rf>+0.6

The Program

Language - Microsoft Basic.
Machine - CBM PET.
Variable - q$...mode type; Ml"=longitudinal, "s"=shear. 

ro...sample density 
1...sample thickness in cm.
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f...echo overlap frequency in Khz 
fc...carrier frequency in Mhz 
v ... uncorrected sound velocity in ms-1, 
z...acoustic impedence of transducer in 

units of 106kgm_2s"1. 
ai... acoustic impedence of sample in 

units of 106kgm~2s-i. 
rf... reflection coefficient, 
tc... estimated echo delay, 
vc... corrected sound velocity in ms-1, 
er... correction as a percentage of 

uncorrected velocity.
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10 rem program to calculate corrected velocities 
15 rem (c) m.d.m salleh (1985) bath university 
20 print"Program to calculate wave velocities"
30 print"corrected for transducer delays."
40 print"MODE TYPE?:1!* for longitudinal"
50 print"*s' for shear."
60 get q$:if q$="" goto 60 
70 print"TRANSDUCER CORRECTION."
80 if q$="l" then print"MODE TYPE:-longitudinal.":goto 100 
90 print"MODE TYPE:-shear."
100 input"Density in Kg/m3";ro
110 input"Sample thickness in cm.";l
120 input"Overlap frequency in KHz";f
130 input"Carrier frequency in MHz.";fc
140 I=*l*le-2:f=f*le3:fc=fc*le6
150 v=*2*l*f:ai=ro*v*le-6
160 i£ q$="s" then z=10.3:goto 180
170 z=15.2
180 rf=(z-ai)/(z+ai):tc=(.1602*exp(l,831*(rf+l)))/fc
185 if rf>=-.6 and rf<=.6 then goto 190
186 print"WARNING: Reflection Coeff. out of range.
190 vc=2*1/((1/f)-tc):er=vc*100/v-100
200 pr int"Uncorrected velocity35" ;v; "m/s"
210 print"Acoustic impedence=";ai 
220 print"Reflection coeff icient35" ;r f 
230 pr int"Estimated echo delay35'1; tc; "sec"
240 pr int"Corrected velocity55" ;vc; "m/s"
250 print"ie. a correction of";er;"%"
260 get q$:ifq$="" goto 260
265 if q$=" " goto 20
270 print"":poke59468,12:end
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