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1

Chapter 1

Introduction

Augmented linear systems of the form

A B X b

B t 0 _ y  _ 0

arise frequently in the numerical solution of problems in applied mathematics. For 

the purpose of this thesis, the matrices A  G Rnxn and B  G Rnxm (typically n > m) 

are assumed to be large and sparse, and further it is assumed that the m atrix A  is 

symmetric positive-definite and B  is of full column rank. Throughout, the notation

A B I B
A  = > ^4ls —

B t 0 B t 0

may be used. Systems of the type (1.1) occur in many applications, for example in 

optimisation, discretisation of electrical networks and computational fluid dynamics. 

For a review of how these systems can arise in practise, and properties of the matrices 

A  and B  in each case see [16].

One way in which a system of the form (1.1) can occur in optimisation is in the 

constrained minimisation

1 rT~' rJ~] rT̂
minimise - x  A x  — x b subject to B  x = 0,

the variables y in (1.1) being the Lagrange multipliers in the associated saddle point 

problem. In optimisation applications the matrix A  is often diagonal, most obviously
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in the context of weighted least-squares problems, and also when solving linear pro

gramming problems by interior point methods [43] where systems of the form (1.1) 

arise at each stage of an outer iteration, with the diagonal matrix A  changing at each 

step and becoming increasingly badly scaled.

In discretisations of electrical network problems, the matrix A  in (1.1) is typically 

diagonal and contains non-zero entries corresponding to resistances at nodes in the 

system. The m atrix B  in this case is a connectivity matrix which describes the geometry 

of the system, y is a vector of current and x  a vector of potential values at the nodes, 

and b is a vector of external potentials applied to the system. For more details see for 

example [76].

Two classic examples from computational fluid dynamics in which systems of the 

form (1.1) can arise are Stokes’ equations for incompressible flow,

—p A u  -I- Vp — / ,  V • u — 0,

and Darcy’s law for incompressible groundwater flow in a saturated porous medium,

pk~ lu +  Vp =  0, V • u = 0,

both in 2 or 3D  together with some appropriate boundary conditions. Here the variables 

x  of (1.1) represent the discretised velocity u, and y represent the discretised pressure 

p. The constant p  is the fluid viscosity and k is a permeability function. The equations 

are usually discretised with a mixed finite element or finite difference method, and A  

is, in general, not a diagonal matrix.

Although the solution methods for (1.1) will be applicable to any of the physical 

problems mentioned above, in this thesis the main emphasis is to construct solution 

methods for the case that (1.1) represents discretisations of groundwater flow problems, 

and so this problem will be described in more detail.

1.1 D a rcy ’s groundw ater flow m od el

Steady state groundwater flow of an incompressible fluid in a saturated porous medium 

is modelled in terms of the pressure p and Darcy velocity (or specific discharge) u. The 

Darcy velocity is the volume rate of flow per unit area. These two fluid properties

1.1. DARCY’S GROUNDWATER FLOW MODEL
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are related by Darcy’s law, and the incompressibility constraint is enforced with the 

continuity equation,

uk~ lu + Vp  =  0,
(1.2)

V • u =  0,

together with a mixture of Dirichlet and Neumann boundary conditions. Again, p  is 

the (constant) fluid viscosity and & is a permeability function. In an isotropic medium, 

k is taken to be a piecewise constant function, and in an anisotropic medium where the 

permeability is dependent on direction as well as position, k is represented by a tensor. 

For more details see [80], For the purpose of this thesis all experiments are performed 

in isotropic media, since some of the preconditioning results presented in Chapter 4 

are only applicable for this type of domain, although the iterative methods tha t are 

constructed will apply equally to discretisations of anisotropic media.

The Darcy velocity can be eliminated from (1.2) to form the pressure equation,

V • (kVp) = 0, (1.3)

which, when discretised with a finite element method forms the stiffness equations

K y  = b,

where K  is a scaled stiffness matrix. The vector y represents the discretised pressure 

and will not usually be equal to y in (1.1), although it is possible to form a system 

of form (1.1) which corresponds to a discretisation of (1.3) and has the property that 

y = y, as will be seen in Chapter 4.

1.2 Itera tive  so lu tion  m eth o d s for sym m etr ic  linear sy s

tem s

All of the solution methods which are described in this thesis are iterative, rather than 

direct methods for which there is already a considerable amount of literature available. 

Iterative linear solvers became popular when computer speeds and storage became suf

ficiently great that partial differential equations could be solved to a useful level of ac

1.2. ITERATIVE SOLUTION METHODS FOR SYMMETRIC LINEAR SYSTEMS
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curacy. Although the existing direct methods could be adapted to these new problems, 

realistic discretisation sizes resulted in systems that became so large that the storage 

requirements and solution time of the direct methods made them impractical. Luckily 

the types of matrices that arose, although very large, were also typically very sparse 

so that matrix-vector product operations could be performed cheaply, and often had 

nice properties such as being diagonally dominant or M-matrices, for which extensive 

theory was already known. Iterative methods that involved the coefficient matrix only 

in terms of matrix-vector operations, or also involved simple solves with components 

of the coefficient matrix (e.g. its diagonal or lower triangular part) quickly became 

popular. Although the conjugate gradient method of Hestenes and Stiefel [36] and 

Lanczos’ algorithm [46] were introduced at an early stage, their initial interpretation 

as exact projection methods led to them falling out of favour since their finite precision 

behaviour did not reproduce the qualitative behaviour that was expected of them. In

stead the successive overrelaxation methods (SOR) and their variants [77] became the 

standard tools for tackling these problems. W ith the later interpretation of the conju

gate gradient and Lanczos methods as iterative methods by Reid [62], the tide began to 

tu rn  as these methods began to be adopted for large symmetric positive-definite prob

lems. As preconditioners became better understood the conjugate gradient methods 

became even more efficient. The solution of arbitrary symmetric systems, not purely 

positive-definite systems, became practical with the development of the SYMMLQ and 

MINRES algorithms of Paige and Saunders [56]. Since the introduction of these meth

ods, few new algorithms for the solution of symmetric linear systems were proposed, 

one exception being the LSQR algorithm, also due to Paige and Saunders. This algo

rithm  is mainly interpreted as a least squares solver for overdetermined systems, but 

can be interpreted variously as a solver for arbitrary square linear systems, and a solver 

for symmetric linear systems with a specific form of coefficient matrix, which will be 

particularly applicable to this thesis.

Where possible, the approach taken in this thesis has been to attem pt to develop 

new iterative methods for (1.1) which exploit the structure of the coefficient matrix, 

rather than to seek preconditioners for (1.1) (that exploit structure) tha t lead existing 

methods of solution to perform well. There is a great deal of literature on the subject 

of preconditioning for general matrices, see [10] and the references therein, and precon

ditioners for specific augmented systems of the form (1.1) have also received attention,

1.2. ITERATIVE SOLUTION METHODS FOR SYMMETRIC LINEAR SYSTEMS
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although this is mostly restricted to the case that (1.1) represents a discretisation of 

a Stokes operator, see for example [85, 72, 64]. The assumption tha t (1.1) arises in a 

groundwater flow application, and the conditions that this imposes on the matrices A  

and B  (especially A), allows a little more flexibility when making assumptions on the 

matrices A  and B  than might be allowable (or realistic) in the case that (1.1) arises 

from a Stokes problem.

1.3 C hap ter d escrip tion s

As has been mentioned, the main goal of this thesis is to attem pt to solve the m atrix 

problems arising in groundwater flow applications in an efficient way which exploits the 

structure and properties of the coefficient matrix. The first part of the thesis, Chap

ter 2, approaches the problem by considering the spectrum of the coefficient matrix. 

In Theorem 2.3.1, a new eigenvalue result for the coefficient matrix is presented, which 

is a refinement of a theorem of Rusten and Winther in [64], and defines three intervals 

on the real line which contain the eigenvalues of A.  Theorem 2.3.2 goes on to describe 

how many eigenvalues can be expected in each of the three intervals. In an effort to 

explore whether this new eigenvalue information can be used in a practical way in an 

iterative solver, algorithm LS(3), for solving linear systems with coefficient m atrix A  

is developed. LS(3) is an extension of the ideas that Saad described in [66], where an 

iterative solver for the solution of symmetric systems with spectrum contained in two 

intervals is derived. This is achieved firstly by devising a scheme to generate orthogonal 

polynomials over three intervals, and then using the orthogonal polynomials to calcu

late the least squares polynomials of increasing order on the three intervals. The LS(3) 

algorithm takes these least squares polynomials to be its residual polynomials at each 

step, and hence minimises the residual in a relevant norm as the iteration number in

creases. As opposed to the use of Chebyshev inner product in [66], the LS(3) algorithm 

makes use of Legendre inner product (the L2 inner product on the three intervals), 

since experience indicates tha t this provides a better uniform minimisation property 

on the whole of the spectrum, rather than simply minimising the maximum value of 

the residual polynomial on the spectrum. Since LS(3) uses orthogonal polynomials, 

as opposed to orthogonal vectors as in most Krylov methods, the inner products in 

the algorithm are inner products of polynomials and are extremely cheap to perform.

1.3. CHAPTER DESCRIPTIONS
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They can be expressed as a sum of k scalars, where k is the degree of the lowest degree 

polynomial in the inner product, rather than resorting to numerical integration tech

niques. These inner products are much cheaper than the corresponding vector inner 

products in the standard Krylov methods for large indefinite systems, and hence the 

LS(3) algorithm has a much shorter iteration time than the Krylov methods CGNR 

and SYMMLQ with which it is compared. The fact that there are no vector inner 

products makes the use of algorithms which use polynomial inner products attractive 

for parallel machines where vector inner products are well known to cause bottlenecks 

in computation. The overall convergence of LS(3) is seen to be be similar to CGNR 

in terms of error/residual reduction per iteration, but the shorter iteration time makes 

LS(3) the fastest converging of the algorithms considered. The work in the chapter goes 

on to explain how inexact eigenvalue information can be used in the LS(3) algorithm 

and a condition on eigenvalue bounds for the matrices A  and B  which describes a three 

interval bound on the eigenvalues of A  is given in Lemma 2.9.1. The final numerical 

results in Chapter 2 are performed in an effort to gauge how useful the residual poly

nomial iterations can be as a preconditioning step in the standard Krylov methods. It 

is seen tha t the SYMMLQ algorithm with a low degree LS(3) preconditioner is much 

faster than any of the unpreconditioned algorithms. Hence the conclusion of Chapter 

2 is that the new eigenvalue information can be used effectively when solving systems 

whose eigenvalues are contained in three intervals.

A rule of thumb for coefficient matrices of the type A  to have its eigenvalues con

tained in the three intervals described in Theorem 2.3.1, is that the eigenvalues of A  

must be a lot smaller than the singular values of B.  This is not a typical feature of 

groundwater flow problems and so in order for LS(3) to be effectively applied to such 

problems, the matrix A  would need to first be preconditioned in a way which scales 

down the eigenvalues of A. W hether any practical problems satisfy the eigenvalue crite

rion in Theorem 2.3.1 is unknown. One possibility is that of a discretisation of a Stokes 

flow operator for a low viscosity fluid, since here the matrix A is a discretisation of v A  

(where v is the fluid viscosity), although no numerical experiments on such problems 

have been performed in this thesis.

In Chapter 3, an iterative method for solving systems of the form (1.1) is de

scribed which is more suitable for discretisations of groundwater flow problems than 

the method of Chapter 2 which, as is mentioned above, would require preconditioning

1.3. CHAPTER DESCRIPTIONS
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if it were to be applied. Again the aim is to discover a solution method which exploits 

the structure of the problem. It is demonstrated tha t the system (1.1) is equivalent to 

a generalised least squares problem in the A ~ l norm, in the sense tha t the solution of 

the generalised least squares problem is equal to the y component of the solution of

(1.1), the x  component being simple to be recover once y is known. Hence a method 

of solution which is based on a generalised least squares reformulation of the problem 

is devised. The first step taken is to examine standard least squares solvers in the 

Euclidean norm, and in particular the LSQR method of Paige and Saunders [58]. The 

LSQR method is seen to be a stable implementation of the conjugate gradient algorithm 

for the indefinite system (1.1) which solves subproblems involving small least squares 

problems (this approach does not require that the coefficient matrix is positive definite 

as is the case for the standard conjugate gradient method). Where the conjugate gra

dient method is based on a Lanczos process on the coefficient matrix, which reduces 

the symmetric m atrix to tridiagonal form, the LSQR method is based on the Golub- 

Kahan bidiagonalisation process which reduces a (usually overdetermined) m atrix to 

bidiagonal form. The Golub-Kahan process is equivalent to a Lanczos process on the 

m atrix A hS but has the novel feature that, for a suitable starting vector, it requires half 

the number of matrix-vector multiplications that a standard Lanczos process would, 

and hence can perform approximately two Lanczos steps for the price of one. It will 

be seen tha t standard iterative methods for the coefficient matrix which ignore this 

fact have a redundant step at every second Lanczos iteration. By first supposing that 

the Cholesky decomposition of the positive definite, symmetric m atrix A  is available, 

so that the A  in the (1,1) block of A  can be eliminated, algorithms LSQR(A-1 ) and 

LSQR(A) for the solution of the generalised least squares problem are devised. It will 

be seen tha t these algorithms can be performed using A ~ l operations, as opposed to 

backsolves with the Cholesky factors of A, by altering the inner product with respect 

to which one of the sets of orthonormal vectors in the Golub-Kahan bidiagonalisation 

process is orthonormal. Both algorithms can be viewed as stable implementations of 

the conjugate gradient algorithm on the Schur complement equations. The algorithms 

are compared with another iterative method for the solution of (1.1) which also as

sumes tha t A ~ l operations are possible, specifically the MINRES algorithm applied to

(1.1) with a block diagonal preconditioner containing A  in the (1,1) block. It has been 

shown by Fischer et. al. [22] that if MINRES is applied in this way, there is a redun

1.3. CHAPTER DESCRIPTIONS
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dancy in every second step of the algorithm of the type mentioned above. Since the 

LSQR(A-1 ) (and LSQR(A) ) algorithm inherits the property of being able to perform 

two Lanczos steps at the cost of approximately one, the redundancies in the MINRES 

approach are stepped over by LSQR(A_1) , so that the LSQR(A-1 ) approach requires 

approximately half the amount of work. A similar trick to the change of inner product 

above, on the second set of orthonormal vectors generated by the Golub-Kahan pro

cess, allows preconditioning of LSQR (and LSQR(A-1 ) ) to be viewed in a different 

light from that in [58]. Paige and Saunders originally only considered right precon

ditioners in their least squares problems. W ith this second change of inner product, 

central preconditioners for the Schur complement equations (normal equations in the 

case of LSQR) can be applied, in a similar way that central preconditioners are applied 

in the conjugate gradient algorithm. This allows more exotic types of preconditioners 

to be used. For example in the LSQR algorithm, preconditioners for the symmetric 

positive definite m atrix B TB  become available, rather than only right preconditioners 

for the overdetermined matrix B.  Since the operator defined in the Schur comple

ment equations is a discretisation of a scaled Laplace operator for the case tha t (1.1) 

represents a discretisation of (1.2), many standard preconditioning strategies such as 

additive Schwarz [12, 34, 33] and incomplete factorisations [51, 48] become available 

in the LSQR(A-1 ) algorithm. If only right preconditioning were possible it would be 

necessary to form the Cholesky factorisation of the preconditioners mentioned above in 

order to apply them to the problem. The toolbox of preconditioners for the m atrix B  

(or A ~ ^B )  in the groundwater flow applications is not so diverse as tha t for B TA ~ 1B, 

and so the new preconditioning approach is a far more practical one. The work in this 

chapter is summarised in the preprint [5].

Since the LSQR(A-1 ) method developed in Chapter 3 requires a solve with A  at 

every iteration, it is essential tha t these solves can be performed quickly and easily. 

In Chapter 4 a finite element method for scaled Laplacian problems of the form (1.3) 

due to Vavasis [79] is described. This finite element method can be considered to be a 

‘semi-mixed’ finite element method for the groundwater flow equations since it provides 

an approximation to both the pressure and velocity components of the solution. The 

linear system arising in this method has the form (1.1) with the matrix A  diagonal, 

and hence is ideally suited to the LSQR(A_1) algorithm, as the solves with A  in this 

case are trivial. This finite element method is not a truly mixed finite element method

1.3. CHAPTER DESCRIPTIONS
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since there is no choice available for the velocity space, it must be taken to be the 

space spanned by the derivatives of the pressure basis functions (hence the term  ‘semi

mixed’), and hence the velocity approximation is one order lower than the pressure 

approximation. This is in contrast to the usual mixed finite element approach where 

accurate approximations of velocity are more desirable. Vavasis’ finite element method 

is equivalent to the usual finite element method for the scaled Laplace equation, which is 

typically solved with the conjugate gradient algorithm, in the sense that it produces the 

same pressure approximation. The stiffness matrix system that arises in the standard 

approach is actually the Schur complement equations of Vavasis’ discretisation and 

hence is more poorly conditioned. Experiments on groundwater flow problems show 

the Vavasis and LSQR(A-1 ) discretisation and solution approach to be more stable 

than the usual finite element and conjugate gradient approach, for regions in which the 

permeability function varies by many orders of magnitude.

The Vavasis-discretised system is taken as a template in which to test precondition

ers, i f ,  in the preconditioned version of LSQR(A-1) , called LSQR(A-1 , i f -1 ) , in the 

last half of Chapter 4. Two main types of preconditioners are considered, incomplete 

factorisations and additive Schwarz. Incomplete factorisations have been a popular 

choice of preconditioner for sparse systems since the early work of Stone [75] and Mei- 

jerink and van der Vorst [51]. W atts [86] and Kuiper [45] were early proponents of the 

use of incomplete factorisation preconditioners for the stiffness matrix systems arising in 

the pressure equation and found tha t the performance of the standard algorithms could 

be greatly improved with their use. A second type of preconditioner which is often used 

for the scaled Laplacian type problems are domain decomposition preconditioners and, 

in particular, additive Schwarz preconditioners. These preconditioners take advantage 

of knowledge of the geometry of the domain Q and are effectively a sum of restrictions 

of the operator to subsets of the domain which are easily solved. Recently Graham and 

Hagger [34, 33] have produced some elegant results describing the spectrum of the ad

ditive Schwarz preconditioned stiffness matrix system in domains with highly varying 

permeabilities. They have shown tha t although the preconditioned systems tend to be 

badly conditioned (which leads to the assumption tha t iterative methods will perform 

badly) in fact only a few small eigenvalues are usually present so tha t iterative methods 

tend to perform rather better than anticipated. Graham and Hagger’s results are made 

possible by the fact tha t the eigenvalues of the additive Schwarz preconditioned-scaled
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Laplacian system can be bounded by the eigenvalues of the diagonally preconditioned 

system. In [48], Manteuffel showed that a similar result can be found which relates 

the eigenvalues of suitable incomplete Cholesky preconditioned systems to the eigen

values of related diagonally preconditioned systems for any symmetric positive definite 

problem. This theorem is reviewed in §4.7 and its application to scaled Laplacian type 

systems is described in Theorem 4.7.2.

Traditional mixed finite element discretisations of the groundwater flow equations 

are treated in Chapter 5. Great care must be taken so that the chosen discrete velocity 

and pressure spaces give rise to stable discretisations. One of the most widely used (sta

ble) mixed finite elements for groundwater flow type problems is the Raviart-Thomas 

mixed finite element [61]. These elements are designed so that the velocity approxima

tion satisfies a continuity condition across element boundaries and their construction 

is described in §5.5. For a mixed finite element discretisation, the m atrix A  will no 

longer be diagonal, as was the case for the Vavasis elements in Chapter 4, and hence 

for the LSQR(A_1) method to be an appropriate method of solution it must be the 

case tha t the A- Operations at each step can be performed efficiently. The m atrix A  is 

a mass matrix of velocity basis functions which are scaled by the permeability function 

k, and two factors hinder iterative solution methods for such systems. The first is that 

the matrix A  can be extremely badly conditioned because of the bad scaling in the 

permeability function, the values of which can vary by many orders of magnitude over 

the domain. The second factor is that, due to the nature of the typical domains upon 

which groundwater flow is modelled (generally regions that are wide and long but of 

much smaller depth), finite element cells with large aspect ratios will be present in the 

discretisation. This can again lead to mass matrices which are very badly conditioned. 

The first point above can be annulled completely however, due to a theorem of Wathen 

[82], all the effects of the permeability function can be removed by preconditioning A  by 

its diagonal. The second point is not so easy to address, however experiments with the 

Raviart-Thomas elements are given in §5.5.1 which tend to suggest that the diagonally 

preconditioned Raviart-Thomas mass matrices are not so badly conditioned as might 

be expected form the theory. The preconditioners developed for the Vavasis finite ele

ments are applied to the mixed finite element discretised problems in §5.6. In an effort 

to reduce the number of A ~ l operations, which is the most time-consuming part of 

the LSQR(A-1 ) iteration, a method is described in §5.7 whereby first a system with
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A  replaced by its diagonal is solved (an easy task for LSQR(A-1 ) ) and then a system 

with A  as coefficient matrix is solved for the correction which is required to update the 

first solution to a solution of the mixed problem. Numerical results for the MAC finite 

element /  finite difference scheme [26] (another standard element for groundwater flow 

problems) indicate that this is an appropriate method for large systems.

The two appendices A and B contain work relating to the main chapters in the 

thesis, and other ideas that have yet to be fully explored. Appendix A contains further 

results based on the eigenvalue result Theorem 2.3.1, in particular the effect of scaling 

the m atrix A  to optimise the condition of A  is considered, and its effects on the three 

intervals is seen. In Appendix B, another algorithm, called IICG , is described which is 

another method of solving (1.1) which exploits the structure of the system. It can be 

seen tha t the velocity component of the discretised solution lies in the nullspace of B T 

(which is simply the discrete interpretation of the fact that the velocity component of

(1.2) is divergence free). Methods which make use of this property are called nullspace 

methods. It is usual in nullspace methods to have to compute a basis for the nullspace 

of B t , a very expensive task in terms of time and storage when (1.1) is large. The 

IICG algorithm avoids the need to compute such a basis by instead solving a system 

with B  as coefficient matrix at each step of an outer iteration. The outer iteration is 

of conjugate gradient type, which cannot be directly applied to the matrix A  since it 

is indefinite. However the solves with the matrix B  force the iteration vectors to lie in 

a subspace of the domain of A  with respect to which the matrix A  is positive definite. 

The nC G  algorithm can be viewed as an analogue of LSQR(A-1 ) in the sense that 

LSQR(A-1 ) solves a (generalised) least squares problem in B  at the expense of several 

solves with A, whereas the reverse is true of nC G  . For groundwater flow problems 

the solves with the mass matrix A  are easy compared to solves on the least squares 

problem, and so LSQR(A-1 ) is the more competitive of the two algorithms. In the case 

of a discretisation of a Stokes flow however, it may be the case tha t nC G  is the more 

competitive since then A  represents a large Laplacian problem, and the solves with B  

are equivalent to a smaller Laplacian problem, and so it may be reasonable to perform 

a number of solves with least squares systems in B  in order to solve the larger problem 

with A  as coefficient matrix. Since both of the solves with A  and B  are Laplacian 

type problems, nC G  can be viewed as a multilevel solver for the Stokes problem. The 

nC G  algorithm needs further exploration before it can be presented fully and is hence
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confined to Appendix B.
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Chapter 2

Polynom ial based m ethods based  

on new eigenvalue information

In this chapter, a method which assumes a priori information about the distribution 

of the eigenvalues of the symmetric indefinite coefficient matrix in the equation

M z  = / ,

is explored. The search for such a method is motivated by the eigenvalue result in §2.3. 

It is shown tha t three intervals on the real line can be identified which contain all of 

the eigenvalues of A  where

A  =
A B  

B t  0
(2 .1)

Here A  G Rnxn is symmetric positive-definite and B  G IRnxm is of full column rank 

(so that in particular n > m). A  is symmetric and indefinite hence its eigenvalues 

are contained in two intervals on the real line, one entirely negative and one entirely 

positive, and bounds for these intervals are known (see [64]). It is shown th a t the 

positive interval given by the standard bounds can contain a redundant subinterval 

which is devoid of eigenvalues of A,  thus a more descriptive representation of the 

eigenvalue distribution of A  would be the union one negative and two positive intervals.

It would seem appropriate to examine methods which can take advantage of this 

eigenvalue structure. Before attem pting this some background is given on iterative
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methods which use eigenvalue information to achieve convergence. In §§2.1 and 2.2 

an introduction to the classical Chebyshev semi-iterative method and a generalisation 

are given, in order that similarities in the approach of this method with tha t of the 

generalised-Legendre approach given can be seen. The new eigenvalue results axe pre

sented in §2.3 and in §2.4 a residual reduction property which can easily be enforced 

over the three eigenvalue intervals is described, together with some elementary results 

concerning orthogonal polynomials on one interval. In §2.5 the task of generating or

thogonal polynomials over three intervals is approached and in §2.6 an iterative solver 

based on this theory is introduced. §2.7 contains results pertaining to the convergence

of the solver and in §2.8 some numerical results axe presented. Finally in §2.9 the run

ning assumption tha t the three eigenvalue intervals can be found exactly is loosened, 

and conditions such that Gershgorin eigenvalue information for the matrices A  and B  

defines three intervals which bound the three eigenvalue intervals are found. Results 

based on inexact eigenvalue intervals and polynomial preconditioning axe given which 

show that methods based on three inexact eigenvalue intervals axe still effective.

2.1 T h e classical C h eb ysh ev  sem i-itera tive  m eth o d

Suppose that it is required to solve the symmetric linear system,

M z  = / ,  (2.2)

where M  G W.N xN . Consider the splitting M  =  F  — G of the matrix M  where F  is 

nonsingular, and an iteration of the form

Fyk+i = Gyk +  /• (2.3)

Clearly, if yi is a stationary point of this iteration for some value I, then Myi = f  

so that z = yi is the solution of (2.2). As may be suspected, arbitrary splittings of 

the matrix M  will not necessarily lead to converging iterations of the form (2.3). A 

necessary and sufficient condition for the splitting to lead to a converging method for 

all choices of yo is that p(F~1G) <  1 where p denotes the spectral radius. This can be 

seen as follows. Defining the error at the kfi1 step by &k = yk — z, and using the fact

2.1. THE CLASSICAL CHEBYSHEV SEMI-ITERATIVE METHOD
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tha t z solves (2.2), it can be seen that Fek =  Gek-i and so

ek = {F~xG )k e 0. (2.4)

Hence the error will tend to zero provided that (F~l G)k — > 0. Varga [77] defines such 

matrices F ~ l G to be convergent and shows that a necessary and sufficient condition 

that (F~l G)k — ► 0 is that p(F~l G) < 1.

Thus the iteration (2.3) will converge to the solution of (2.2) provided tha t p(F~1G) < 

1, and the smaller the spectral radius of F ~ l G, the faster the asymptotic convergence 

will be. Of course it is also assumed that the system (2.3) is easily solvable for Zk+u 

for example, when the matrix F  is diagonal or triangular. Taking F  = D := diag(M) 

realises the Jacobi iteration (see [77]),

Dzk+i =  —(L + U)zk +  /,

where L  and U axe the below and above diagonal paxt of M . Then strict diagonal 

dominance of M  is enough to ensure that p(D~1(L +  U)) <  1 (see [77, Theorem 3.4]).

It may be the case that the convergence of the iterative method (2.3) can be ac

celerated by forming, at the k 4- l*'*1 step , a new solution estimate Zk+i which is a 

linear combination of the solution estimates yo, . . .  , yk+i rather than simply taking the 

approximation of the solution of (2.2) to be the new solution estimate. Then

fc+i
Zk+\ =  (2.5)

i=0

for some method defined by (2.3) and (2.5) is called a semi-iterative

method, since it comprises an iterative step (2.3) and an algebraic step (2.5). A con

straint on can be found upon noticing that if the initial estimate yo =  z,

then the error recurrence (2.4) implies that yk = z Vfc > 0. Then as Zk+i is designed to 

be an improvement on yk+i, Zk = z  VA; > 0. This observation leads to the constraint

fc+i

£ * (‘+1) =  l- (2-6)
2=0

Defining the error in terms of the new solution estimate Zk+\ by e^+i =  Zk+\ — z , it

2.1. THE CLASSICAL CHEBYSHEV SEMI-ITERATIVE METHOD
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can be seen that ek+i = /4fc+1̂ e*> therefore

e*+‘ =  ( | > i ‘+V -1 G A e  o,

and so

l l e t + i l l ^ l l p t + i ^ - ' G J l H N I ,  (2.7)

where P k + i { t ) =  S S t*ik+1^t%. Notice that (2.6) implies that pfc+i(l) =  1. If it 

is assumed tha t F ~ l G is symmetric (or normal - see [29]) then ||pjt+i(ir~1G ) ||2 =  

p(pk+i(F~l G)) = m axi<i<N |pfc+i(Ai)| where {Ai}£i is the set of eigenvalues of F ~ l G. 

Therefore in order to ensure that the quantities ||ejt+i|| reduce quickly it would be wise 

to choose Pk+i to be the solution of the minimax problem

min I max |p(Aj)| I , 
pen+i,P(i)=i \i<i<Nl n )

where Pk+i denotes the set of polynomials of degree less than or equal to k +  1. It is 

not realistic to expect that all of the eigenvalues Ai, . . .  , Ajv will be known. However 

since F ~ l G is assumed to be convergent it is certainly known that 3Arain, Amax such 

tha t — 1 <  Amin < Ai < Amax < 1 Vi =  1 , . . .  , iV, and it is not quite so unrealistic to 

expect to be able to bound the values Amin and Amax below and above respectively (for 

example by an application of the Gershgorin theorem - see [77, Theorem 1.5]). The 

interval [Amin , Amax] is said to be an inclusion set (superset) for the set of eigenvalues 

of F ~ l G. If Q, is defined by Q = [Amin , Amax] then the above minimax problem can be 

relaxed to

min ( m ax \ p( t ) \  I . 

p€Pfc+i,p(i)=i \ t e n  w 7

Since the constraint point 1 ^  the solution of this problem is simply the degree 

k +  1 Chebyshev polynomial on f2 (see [63]), scaled so as to satisfy the interpolatory
f Viconstraint, i.e. if Tk+i(t,Q.) denotes the k +  1 Chebyshev polynomial on then

Pfc+l() w i . n ) ’

2.1. THE CLASSICAL CHEBYSHEV SEMI-ITERATIVE METHOD
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see for example [20].

Hence the solution estimate zk+\ =  Y l iH  is found by setting to be

the coefficient of t l in the k  + 1 ^  scaled Chebyshev polynomial on f2. The resulting 

method is known as the Chebyshev semi-iterative method. It is not necessary to perform 

this whole summation at each step, it can be avoided by exploiting the three term  

recurrence property of the Chebyshev polynomials. For a detailed analysis of this and 

other related iterative methods see [30, 31].

2.2 A  m ore general C h eb ysh ev  m eth od

The classical Chebyshev semi-iterative method has the attractive property th a t it re

duces the norm of the error at each iteration. However it is let down by the fact that 

general splittings of the matrix M  axe not known to be convergent, except in specific 

cases such as Jacobi iteration for strictly diagonally dominant systems. Another, more 

general, Chebyshev method is to apply the iteration so as to reduce the residual at 

each step. This approach entirely bypasses the necessity for splitting M  at the cost of 

losing the error reducing property for the weaker residual reduction property. Consider 

now the semi-iterative method

zk =  zk -i  +  dfc, (2.8)

for (2.2), where again zk is an approximation to the solution of (2.2) and the update 

direction dk is a linear combination of the previous residuals r* =  f  — M zi, i =  

0 , . . .  , k — 1, i.e.

dk = J 2 ^ i k)ri'
i = 0

Then the residual at the hfi1 step can be seen to satisfy

fc-i
rk =  rjb_i -  ^ 2  *i>ik)M ri, (2.9)

t = 0

so tha t rk — pk(M)ro for some pk £ Pk. Equation (2.9) implies that pk(t) = pk- \ ( t ) — 

t and since po(0) =  1, the residual polynomials are subject to the

2.2. A MORE GENERAL CHEBYSHEV METHOD
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restriction

p*(0) =  1 Vfc. (2.10)

An obvious choice then for k >  N  is

_ (4\ -  CN{t)
5 “  Cjv(0) ’

where Cw(t) = det ( t l  — M )  is the characteristic polynomial for M .  Then the Cayley- 

Hamilton theorem ([49, Theorem 3.28.2]) would imply that rk = 0, k > N .  This 

would of course require a priori knowledge of all of the eigenvalues of M  which again, 

for all but very small systems is an unrealistic assumption, and further it would be 

hoped that a sufficient level of accuracy is achieved in far fewer than N iterations. A 

more realistic assumption arises if optimal polynomials are considered.

D efin ition  2.2.1 The polynomial of degree k which solves

min (m ax lp ( t ) l ) ,  (2.11)
pep*, p (o ) = i  \ t e n  /

where is a compact subset of R, is called the optimal polynomial of degree k on Q.

jv
The norm of the residual at the step in (2.9) is bounded by

I N I  <  | | p j t (M ) | | | | r 0| | ,

(c.f. (2.7)) and so by the same reasoning as in §2.1, if Q is an inclusion set for the 

eigenvalues of M  it would be wise to set pk to be the optimal polynomial of degree k 

on fh If M  were symmetric positive-definite, can be taken to be the interval [Ai, Xn \ 

where 0 <  Ai < . . .  <  A# are the eigenvalues of M . Notice that the constraint point 

(0) lies outside of this interval. The solution of (2.11) in this case can again be written 

in terms of the scaled Chebyshev polynomials on Q,

/j.\ _  Tjfc(t, f2)
P k T k ( o , s i y

and a simple iterative process can be derived, using the three-term recurrence of 

the Chebyshev polynomials, which updates solution approximations without explic-

2.2. A MORE GENERAL CHEBYSHEV METHOD
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itly forming the action of the residual polynomials on M.

In the case tha t M  is a symmetric indefinite matrix, the inclusion set £2 for the 

eigenvalues of M  must be taken to be the union of two intervals on the real line, 

one entirely negative and the other entirely positive, so as to exclude the possibility 

tha t 0 6 £2. Denoting the negative and positive intervals by Z~  and Z + respectively, 

£1 = Z~ U Z + and the minimax problem (2.11) becomes

min ( max b ( t ) l ) .  (2.12)
peP*., p (o) = i  \tex-u i+  /

It is not immediately possible to characterise the solution of (2.12) in terms of 

scaled Chebyshev polynomials, unless the domain £2 is of a specific form, see [20]. Such 

a domain £2 will be referred to as a conforming domain, and not all choices of Z~  and 

Z + will give rise to conforming domains 12. Lebedev [47] treated the case when Z~  and 

Z + are located symmetrically about the origin, in this case 12 is a conforming domain, 

and showed tha t the optimal polynomials of even degree on £2 are of the form

P 2k ( t )  = Tk{q2{t), f2')/Tfc(g2(0), £2'),

with <72 £ P2 , and where <72 • — ► £2' and <72 : Z + — > £2' are both bijections

onto the interval £2'. This result is described in §2.2.1 since it is useful for proving 

convergence results for the generalised Legendre method presented in §2.6, and the 

basic ideas presented generalise to provide convergence bounds on standard iterative 

methods for symmetric definite and indefinite systems like CG, CGNR, and MINRES. 

The general two interval case is treated in [20], and conditions on the upper bound 

on the interval Z~  and lower bound on the interval Z + are found which characterise 

conforming domains £2. Then the residual polynomial is again a scaled Chebyshev 

polynomial on £2. In the case that £2 does not satisfy this property it can be embedded 

in a larger set £2 = Z  U Z + where the lower bound on Z  is the same as that for Z~ 

and the upper bound on Z + is the same as that for Z +. A scaled Chebyshev polynomial 

on £2 can then be used to define the residual polynomial on £2. These considerations 

will not be taken further, since the results given in theorems 2.3.1 and 2.3.2 of §2.3 will 

motivate the search for an iterative method which minimises the residual polynomial 

over three eigenvalue intervals. Finding the optimal polynomial in this case is more

2.2. A MORE GENERAL CHEBYSHEV METHOD
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difficult, this problem necessitates an alternative characterisation of polynomials which 

are small in some sense and which still provides a residual reduction property.

2.2.1 O ptim al polynom ials over two intervals which are sym m etric  

about the origin

Lebedev [47] considered the case when =  X~ UZ+ =  [—6, —a] U [a, b] where b > a >  0. 

Suppose there exists a degree 2 monic polynomial q2 £ P2 with the property tha t

92 (-&) =  92(&) =  M,

9 2  (—a) =  q2 (a) =  r a ,

where m, M  € R, m  < M ,  and q2 is monotonic on each of X~ and X+. i.e. q2 maps each 

of the intervals which comprise monotonically onto the interval [m, M]. Obviously 

the choice q2 ( t )  =  t 2 will suffice here, the technical approach given here is taken since 

it is easy to extend to the case when Q is comprised of more than two intervals (not 

necessarily of the same diameter and not necessarily symmetric about the origin). If 

such a q2 exists,

Q2(t) -  m  + M )

is a monic polynomial on Q and deviates least from zero among monic polynomials of 

degree 2 since it attains its maximum absolute value on Q ( | ( M —m)) on the alternating 

set of (three) points —6, —a, and b (see for example [63]). Now consider the degree 2j  

polynomial

P 2 j ( t )  =  S j ( q 2 ( t ) ) ,

where Sj is the optimal polynomial of degree j  on [m,M] and Tj(t) = cos (j arccos (t)). 

Obviously

. . m /  2z — (m  4- M ) \  . .
si(z) =Ti ( m_ M ) /Ti(zo),

where zo = — (m  +  M )/(m  — M ). W ith this choice of q2 and sj the following lemma 

holds.

2.2. A MORE GENERAL CHEBYSHEV METHOD
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L em m a 2.2.2 (L eb ed ev  [47]) The optimal polynomial of degree 2j  on f2 is P2j ,  and

I M L H T j W r 1. (2.13)

P ro o f  See [47] □

It will be useful to uniformly bound P2j  on f2 with respect to j , which by (2.13) is 

equivalent to uniformly bounding \Tj(zo)\~l . Recalling that q2 (t) =  t2 for the symmet

ric interval case, it can be seen that

zo = 1 + 2 ^ ~ [ '  

where k  =  b/a >  1, so that z q  > 1. Now suppose that

^M^o) =  zq.

Then, using the Chebyshev identity T2k(t) =  2Tk(t ) 2 — 1, and the fact tha t T\(t) = t ,

*§ =4 ( 1  +  *o) =  ( l  -  ^ )  ,

so that t% > 1. Now using the semigroup property of the Chebyshev polynomials [63, 

p. 45],

Tj(zo) =  Tj(T2(<0)) =  T2j(tQ).

Using induction and the fact that To(t) = 1, Ti(t) = t it can be shown that

=  \  { [l +  (t2 -  1)5] 23 +  [f -  («2 -  l ) 5 ]2j

and as (to ±  (̂ o — l ) ^ ) 2 =  (« ±  l) / («  T  1 )?

m m - 1 =  2 { ( g ± i ) J +  ( s t t ) j } \

<  2 (k T t)^ ’

2.2. A MORE GENERAL CHEBYSHEV METHOD
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for a ±  b, since the first term is the dominant one. (In the case that a = b the problem 

reduces to finding the optimal polynomial over a set of two points, which is trivial, 

even in the unsymmetric case!). Hence the following lemma has been proved.

L em m a 2.2.3 The optimal polynomial p 2j on Q, satisfies

where k, = b/a.

The derivation of this result is similar to that for convergence of the conjugate 

gradient algorithm, see [29, Theorem 10.2.5]. Comparing Lemma 2.2.3 with this bound 

on convergence of the conjugate gradient algorithm it can be seen tha t 2 j  steps of an 

algorithm based upon the optimal polynomial on two intervals above will yield a similar 

reduction to th a t given by j  steps of the conjugate gradient algorithm on a system 

with spectrum contained in [a2 ,b2], that is the conjugate gradient method applied to 

the normal equations (CGNR) for a system with a coefficient m atrix whose spectrum 

is contained on Q. This sounds unfavourable but since CGNR requires two matrix- 

vector operations per iteration, Lemma 2.2.3 indicates tha t the number of matrix-vector 

operations required by each method to achieve a specified error /  residual reduction 

tolerance can be predicted to be similar. It should also be noted that by embedding 

any two intervals about the origin inside two symmetrically placed intervals about the 

origin, bounds on the convergence of the MINRES and SYMMLQ algorithms applied 

to symmetric indefinite systems can be obtained. As is usually the case with results of 

this type, the bounds presented tend to be rather pessimistic and provide only a rough 

guide to the convergence of the underlying iterative method.

The above approach to constructing the optimal polynomial over two intervals will 

generalise to the case when the two intervals are not of the same size or symmetrically 

placed about the origin. The difficulty in this case however is tha t the monic polynomial 

q2 is not guaranteed to exist, it will only exist for conforming domains Q. Conditions 

which specify domains which satisfy this property are given in [20]. The case of k 

intervals spaced about the origin is also covered by the above ideas. In this case a 

degree k  polynomial qk must be found which is a bijection from each of the k intervals 

to an interval [m, M). The optimal polynomials are then of the form pjk(t) = Sj(qk{t)).

m ax|p2j(*)| < 2

2.2. A MORE GENERAL CHEBYSHEV METHOD
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Existence of these qk polynomials is a more difficult question.

2.3  D istr ib u tio n  o f eigenvalues o f  au gm ented  sy stem s

In this section the eigenvalues of matrices of the form

A  =
A  B  

B t  0

are investigated. Here A  E MnXn is symmetric and positive-definite and B  E M.nxm 

(n >  m) is of full column rank so as to ensure that A  is nonsingular. A  is clearly 

symmetric, but is not positive definite as can be seen by taking x  = a B y , where a  <  0 

and |a | is small, in the identity

[ x T yT ]
T A B X

B t 0 y
=  x TA x  +  2 xT By.

Hence A  is indefinite and so its spectrum is contained in two intervals in the real line, 

one interval being entirely negative, the other entirely positive. It is well known [64] 

that if the eigenvalues of A  are denoted 0 < Ai <  A2 <  . . .  <  An and the singular 

values of B  are denoted c^, i =  1 , . . .  ,m  where 0 < a \ 2 < a 2 < . . .  <  crm 2 then 

A(«4) C T~ U X+ where the intervals X~ and T + are defined by

A l  X2 2 A n  / A n  , 2

T  _  V  T  ’ T  _  V T

Notice that X~ is entirely negative and X + is entirely positive.

In the special case that A  — I  even more can be said about the eigenvalues of A , 

indeed it is easy to show that

A  { A a = i ) =
_ j  h± \J\ + a'i * = 771

1 n — m  times.

The interval corresponding to X+ in the case that A = I  can be seen to contain the

2.3. DISTRIBUTION OF EIGENVALUES OF AUGMENTED SYSTEMS
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subinterval (1 , \  +  \ J \  + o \2) which, by the explicit representation of A (A a - i ) above, 

is known to contain no eigenvalues. Hence the representation X~ U X^=I where

\  +  v \ + a ' 2 -  ̂+ v i + cr'" 2

gives a better description of the eigenvalue distribution of A a = i  than X~ U l + .

The following theorem shows tha t a more descriptive representation of the eigen

value distribution of A  is possible in the general case A  ^  I.  The positive eigenvalues 

of A  are shown to be contained in the union of two intervals.

T h eo re m  2.3.1 I f  A  G Rnxn is symmetric, positive-definite and B  G Rnxm is of full 

column rank then A (.A) C X~ U X± U where

X~

n

X+

2  V 4

[Ai  j An ] ,

An / An
T “  u T

+  crm 2 ,

2 X n M J  A n 2
T  VT" ’ T  + V ~ T“m+  <7, 2

Here 0  < A i  < . . .  <  A n  are the eigenvalues of A  and ai, i = 1 , . . .  ,m  are the singular 

values of B  with 0  < a \ 2 < . . .  < am2.

P roof If A  is an eigenvalue of A  with associated eigenvector  ̂x T yT j  then

A x  +  B y  =  Xx 

B t x  = X y

(2.14)

(2.15)

Since A  is positive-definite and B  is of full column rank, A  is nonsingular and so A ^  0 . 

Clearly if y = 0, A G A (A) and hence A G Ij*\ Now assume y /  0. First the bound on 

negative eigenvalues of A  will be found.

Suppose A < 0. Defining (p = — A, A  +  (pi is positive definite and invertible, hence 

(2.15) can be used to eliminate x  from (2.14) to form

B t  (A + (pl)~l B y  = py.  (2.16)
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Defining 2  =  By, zT (A  4 - ipl) 1 2: =  </? ||y | | 2 by (2.16). Since the spectrum of A  +  <pl is 

given by A (A +  ipl) =  {A; -1- <p | A j G A(.A)},

1 " ■ 12 , . . n - i  „ ^  1 11 112z|| < z  (A  + (pI)----z <   -------- ||z || .
An +  <p Ai +  (p

Hence, using the fact that a\ 2 <  I S t  <  ^m2, the inequality

An +  Ai +  ip

is obtained. Solving (2.17) for cp >  0 ,

o\ < (p < T “— Orr? (2.17)

A n  IA  n  2 ^  ^  A i  /  A i  2

■ y  +  V T  1 ^  t  V ”^  m 1

and hence A G Z~ VA €E A(,4) with A <  0.

The result tha t the positive eigenvalues of .A are contained in UZ^" is now shown, 

first by demonstrating that all the positive eigenvalues of A  lie in the interval Z+ = 

Ai , Tf- +  \ j +  (7m2 5 and then tha t if the interval Xy = ^An , 4^ +  + ^ l2^

is well-defined, Tv ft A(A) =  0.

Suppose 0 <  A < Ai. Then (A — A/ ) - 1  exists and with z defined above,

z 1 ( A - X I ) - 1z = - X \ \ y \ \ \  (2.18)

A contradiction to (2.18) is obtained upon observing that (A — A/ ) - 1  is positive-definite 

for 0  <  A < Ai. Hence all positive eigenvalues of A  satisfy A >  Ai.

Now suppose that A > An. Then (2.18) holds without contradiction since (A — A/ ) - 1  

is negative-definite and the inequality

V  <  A < 1 crm 2 (2.19)
A Aj A Xji

in A can be obtained in the same way tha t (2.17) was obtained for <p. The rightmost 

inequality in (2.19) together with the fact that A > Ai implies tha t A 6 l + VA £ X(A) 

with A > 0, whilst the leftmost inequality yields the result that

if A > An then A > ^  +  J
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i.e. tha t the interval l v (if well-defined) can contain no eigenvalues of A.  Noticing that 

1 + \ Z V = i f  U i f  completes the proof. □

The next result gives an indication of how many eigenvalues of A  can be expected 

to lie in each of the intervals found in Theorem 2.3.1.

T h e o re m  2.3.2 With the same notation as Theorem 2.3.1, if  i f  C \ l f  =  0 then

3 m eigenvalues of A  in 1 ~ ,

3 n — 77i eigenvalues of A  in i f ,

3 m  eigenvalues of A  in i f .

Further if  i f  n i f  ^  0 then 3m eigenvalues of A  i n l ~  and 3 at least n — m  eigenvalues 

of A  i n l f ,  with the remaining eigenvalues being contained in i + \ i + .

P ro o f  Notice that

A B A  0

B t 0 ■

h
1

A - 1  0

0 - B t A ~ 1B

A B  

0 I

Since A~ l is positive definite and —B TA ~ l B  is negative definite, Sylvester’s law of 

inertia (see for example [29]) states that A  has exactly m  negative and n  positive eigen

values. Since T~  contains all of the negative eigenvalues (and no others) 3771 eigenvalues 

of A. in I - . A similar approach will yield the rest of the eigenvalue information.

Consider S(fi) = A  — i l l  where fi > 0. The eigenvalues of S{fi) are simply those of 

A  shifted negatively by fi. A similar decomposition of S(fi) to that of A  can be found 

if A  — ji l  is nonsingular, namely

S(fi) =

Suppose fi > Xn, then (A  — /i/ ) - 1  exists and is negative definite. Again Sylvester’s law 

of inertia states that <S(/i) will have at least n  negative eigenvalues, and will have exactly 

n  negative eigenvalues if the lower-right block of the central matrix in the decomposition 

is positive definite. Since n >  \ n, —B T (A — /x/ ) _ 1  B  is positive definite, the eigenvalues

---
--

1

1 *c o
1

{ A - f i i y 1 0 A - i l l  B

B t  I 0  —B t  (A — t i l ) - 1  B  — f i l 0 I
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of — B t  (A  -  /x/) 1 B  being bounded below by —Amax (A — fil) 1 Amin (B TB ). Hence

t ~— (̂ 2 -  Ai// -  ai2)Ai -  /i

is a lower bound on the eigenvalues of the lower-right block of the central m atrix 

in the decomposition. Since /x > An > Ai, this lower bound is positive whenever 

/i2 — Ain — (ji 2 <  0 , specifically when

M < y  + +

Hence provided 3/x such that An < /x <  +  y  ^  + &i2 the lower-right block will be

positive-definite and <S(/x) will possess n  negative and m  positive eigenvalues. This 

condition on /x is equivalent to insisting that the intervals and be disjoint. 

Hence whenever X f  D X^ — 0, X ^  contains m  eigenvalues and so X f  must contain the 

remaining n — m  positive eigenvalues of A.

If Xi fl X% A  0 then the lower-right block will be indefinite with, say, m* positive 

eigenvalues. Appealing to Sylvester’s law of inertia once more, X^  \  X f  will contain 

m* < m  positive eigenvalues of A  with the remaining n  — m* > n — m  eigenvalues 

being contained in X^ . □

The results of theorems 2.3.1 and 2.3.2 are demonstrated in Figure 2.3. Here the 

matrix A  is that in a MAC finite element discretisation (see §5.7.1) of a groundwater 

flow problem for an incompressible fluid, so that the matrix A is a mass matrix and 

B  is a discretisation of grad. Here n  =  32 and m  = 16 and a careful count shows 

tha t each of the eigenvalue intervals J - , contains 16 eigenvalues as predicted

by Theorem 2.3.2.

Following this new eigenvalue information, an iterative approach to solving systems 

with A  as coefficient matrix is explored in the remaining sections of this chapter.

2.3. DISTRIBUTION OF EIGENVALUES OF AUGMENTED SYSTEMS



C h a p t e r  2 28
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Figure 2-1: Bounding the eigenvalues of a groundwater flow matrix. Vertical lines 
indicate the bounds obtained from Theorem 2.3.1

2.4  L east-squares ch aracterisation  o f residual p o lyn om ia ls

Recall from §2.2 tha t iterative methods of the form

=  zk- i  +  dk, (2 .2 0 )

where

d k =

i= 0

for the solution of M z  = / ,  can be formed by defining the associated residual polyno

mials. The residuals satisfy rk = pk{M)ro so that ||r*;|| <  ||pfc(M)|| ||ro||. In order to 

quickly reduce the norm of the residual, the quantity ||pfc(M)|| needs to be made small 

in some sense and an obvious characterisation of this property is to set the residual 

polynomial to be the optimal polynomial on an inclusion set of the eigenvalues of M. 

In §2.2 this approach was seen to run into difficulty when the inclusion set fi for the 

eigenvalues of M  was anything other than a simple connected interval on the real line 

not containing the origin. In this section an alternative characterisation which follows 

the treatment in [6 6 ] is proposed. The interpolatory constraint (2.10) of the residual 

polynomial implies tha t Pk(t) can be expressed as

P f c W  =  l - t e f c - i ( t )  ( 2 . 2 1 )
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where Sk-i(t)  E P k - i ■ The polynomial Sk-i  will be referred to as the solution polyno

mial since it is easy to show that

Zk = z  o +  sfc_ i(M )r0. (2 .2 2 )

The minimax representation of pk could be expressed by setting Sk~i to be the solution

of the minimisation

min 111 ts(t) | Iqq j (2.23)
sePk-1

where IHIoq denotes the uniform norm on fh As remarked in §2.2 the uniform norm 

is difficult to work with in general, and the minimisation (2.23) could be made easier

if a different norm were used. Notice that changing the norm results in a loss of the

optimal polynomial property of pk but this will be replaced by a similar condition as 

is explained below.

Consider the inner product

( /  > 9)w = [  dt , (2.24)
Jn

where w : Q — > Kg' is a non-negative (and non-zero) weight function. Denote the 

norm associated with the inner product (2.24) by

l l / I L  =  ( / >  f ) w >

and instead of (2.23) consider the minimisation

min ||1 - t s { t ) \ \w . (2.25)
sePk-1

This type of minimisation problem is considered in [6 6 ] for linear systems whose 

eigenvalues lie in two intervals. It will be seen that the approach generalises to systems 

whose eigenvalues are contained in three intervals. The weight function taken in [6 6 ] 

is a ‘Chebyshev weight’ on each of the two intervals and is zero elsewhere. Here the 

weight will be taken to be piecewise constant over Q, the weight will be constant when 

restricted to one interval and zero outside of the three eigenvalue intervals. This type 

of weight has been found by the author to provide better numerical results than one of
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Chebyshev type.

It is clear from (2.25) that t s k - \ ( t ) is the least-squares approximation to 1 from 

the space Pk =  {ts ( t ) | s 6  P k- 1} with respect to the u>-norm, and hence (see [63, 

Theorem 2.1]) the residual 1 — tsk-i{t)  is orthogonal to the space P'k with respect to 

the w-inner product, i.e.

(1 -  tsk-i{t)  , tq{t))w = 0, Vtq(t) G P'k,

so that

, tq(t))w =  (1 , tq(t))w , Vtg(i) 6  (2.26)

Equation (2.26) provides a mechanism for calculating the tu-inner product of any mem

ber of Pk with tsk-i ( t)  without explicitly requiring tsk-i(t) .

Suppose tha t {£<?»(£)ifiTo1 *s a f°r P'k- Here qi G P{. Then the solution to (2.25) 

can be written as

k- 1

tsk-i{t)  =
i=0

for some scalar coefficients <#, i =  0 , . . .  , k — 1. Using this expression and putting 

q(t) = qi(t), i = 0 , . . .  , k — 1 in (2.26) it can be seen that

k- i
^   ̂9 ij^Pj ® 0, • .. , k 1 , (2.27)
3=0

where gij = (tqi(t) , tqj(t))w and c* =  (1 , tqi(t))w. The matrix G = (gij) is called 

the moment matrix of order k (see [39]) and (2.27) are the normal equations for 

<£o, • • • ,<Pk-1 - Solving (2.27) (and hence (2.25)) is easy for small values of k bu t the 

cost of solution increases rapidly with k since the matrix G is, in general, full. The 

goal is to make the normal equations (2.27) easy to solve. This can be achieved if the 

set W } ^ 1 is taken to be orthonormal, that is

(tqi(t) , tqj(t))w = Sij, (2.28)

i.e. Jn tqi(t)tqj{t)w(t)dt = Sij. This choice of { ^ ( t ) } ^ 1 uncouples the normal equa
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tions (2.27) (the moment matrix becomes the identity) to give

(fi = { l , t qi(t))w . (2.29)

The (fi are called modified moments. Therefore, provided tha t an orthonormal basis, 

{frftM}i=o i can found for P'k and provided (2.29) is easily calculated, the expansion 

of the solution polynomial Sk-i  in terms of can be formed. In the following

sections it will be shown tha t such a set of orthonormal polynomials can be generated 

using three-term recurrences and an algorithm for calculating the recurrence coeffi

cients will be presented. The key to being able to perform the calculation (2.29) is 

tha t the polynomials {tqi(t)}^~Q will themselves be expressed in terms of orthonormal 

polynomials over each of the eigenvalue intervals so that only the 0 ^  degree term  in 

the expansion of each tqi(t) in terms of these orthonormal polynomials will contribute 

to the inner product (2.29).

2.4.1 Orthogonal polynom ials on one interval

Here a brief discussion of the properties of orthogonal polynomials on one interval is 

presented. Suppose that I  = [—1,1] and that w : I  — ► Rq", and consider the inner 

product

( f , 9 ) w  =  f  d t -

Then there is a set of polynomials {pk}kLo, where pk E Pk, which are orthogonal with 

respect to this inner product and further, the set of polynomials satisfies a three term 

recurrence, i.e. 3 anc* { M k L v  {7fc}j£o suc^ ^ at

lk+iPk+i{t) = ( t ~  a k)pk(t) -  PkPk-i(t).

The proof of this result is constructive, first set 7oPo(^) =  1 and jiPi{t)  = (t — o;o)po 

where a 0 = {tp0 , po)w /  {po , Po)w- Then clearly (pi(t) , p o M L  =  0. Inductively 

suppose that {pi} ^ = 0  is orthogonal and set

=  jtPkjt) , Pk{t))w 
k {Pk{t) , Pk{t))w ’
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a n d

( t P k ( t )  ,  P k - i W ) ,
Pk =

and define 7 jt+ipjfc+i using the three-term recurrence formula. Then clearly Pk+i is 

orthogonal to {pOfco using the orthogonality of pk and pk- 1 , and (pk+i , pk)w = 

(pk+1 > Pk-i )w =  0 by construction. As can be seen the choice of 7 /t+i serves only to 

normalise p k+i in some way. For example 7 ^ + 1  could be chosen to scale the coefficient of 

the leading term i n p k+i to unity (to makepfc+i monic), in which case 7 ^ + 1  =  1 VA; >  0. 

Choosing 7  to make the set of polynomials orthonormal implies that 7 ^ + 1  =  @k+i.

An im portant set of orthogonal polynomials are the Jacobi polynomials on J, which 

have a weight function defined by w(t) =  (1 — t)0(l + 1)^, where 0 ,0  >  —1 . The choice 

0  = (j) = 0 implies that w(t) =  1. The set of orthogonal polynomials with respect to 

the constant weight 1 axe the Legendre polynomials on I.  In this case the subscript w 

on the inner product will be dropped. Taking 0 =  0 = 1  gives w(t) = (1 — t2)~% which 

produces the familiar set of Chebyshev polynomials.

Since constant weights are to be assumed on each of the eigenvalue intervals of A  

found in Theorem 2.3.1 it will be useful to study the Legendre polynomials a little 

further. The set of orthonormal Legendre polynomials on I  will be denoted by {1}t}^ -0- 

It is easy to prove by induction that lk is an odd function for odd k and is an even 

function for even k. (This result is actually true for any set of Jacobi polynomials with 

0  =  0 , and is due to the fact that in this case the weight w(t) is an even function 

- see [63]). Defining the recurrence coefficients by a k and fik it is then clear tha t 

a k =  ( t l k (t) , lk(t)^ = 0  VA; since the inner product is the usual I/2 (—1,1) inner product 

of an odd function and an even function. Hence the recurrence formula for these 

polynomials is of the form

Pk+ih+i(t) = tlk{t) -  {3kTk-i( t) ,

where lo(t) = (1/2) K It can also be shown that fik =  k/{^k 2 — 1 )^, and hence no 

integrations are required to form this set of polynomials. The first few Legendre poly

nomials are depicted in Figure 2-2.

It will later be necessary to express the polynomials tsk-i ( t )  in terms of constant-
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2

1

0

1

1 -0.5 0 0.5 1

Figure 2-2: The first few orthonormal Legendre polynomials

weighted Legendre polynomials on arbitrary intervals [a,b\. Let the constant weight 

on [a, b] be w, and denote these polynomials by determine a recurrence for

these polynomials notice that

21 — (6 +  cl) 
b — a

is a bijection from [a, b] to [—1 , 1] (it is the same bijection used in §2 .2 .1 ) and t = c +  d£ 

where c — (b +  a)/2 is the centre of the interval and d = (b — a)/2 is its radius. Then

/
I
^(wd)hi(c + d£){wd)Uj(c + d£)

and so the required orthonormality condition can be achieved by setting (wd)^lk(c + 

d£) =  i e-

Using the recurrence relation for {lk}kL0  it can then be seen that

Ak+ifc+iW = (t ~  <>Mt) -  Pkh-i(t),  (2.30)

where pk =  dpk =  dk/(4k2 — 1)5 and lo(t) =  lo(t)/(wd)5. Again no actual numerical 

integrations are required.

The next section discusses using these shifted Legendre polynomials to devise an 

algorithm for computing orthonormal polynomials over three intervals.
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2.5 G en eratin g  orthonorm al p o lynom ia ls over th ree  in

tervals

Now the problem of generating orthonormal polynomials with respect to an inner prod

uct defined by (2.24) is treated where the weight function takes the form

w(t) = <

Wi t e z~,
U>2 * € i t ,
Ws t e l } ,

0 cftBL

(2.31)

where wi,W2 ,u>3 are positive constants and fi =  Z~ LIZ* U i s  the inclusion set for 

the eigenvalues of A  given by Theorem 2.3.1. This weight differs to that taken in [6 6 ], 

there

w(t) = <

w\(t) t e l ~ ,

W2 (t) t e l +,
0 t £ Z - UZ+,

where Z~ =  [c\ — di, c\ +  c?i], Z* =  [c2 -  d2, C2 +  d2\ and Wi(t) = (2 / 7t)[g^ — {t — q ) 2]-  ̂

are shifted Chebyshev weights. The reason for taking Legendre type weights of form 

(2.31) here is tha t a simple constant weighting on each interval can be used, and it has 

been observed by the author that such a weight gives better numerical performance 

on the problems attem pted in this section than a weight of Chebyshev type. Varying 

constant weights on each interval have been allowed so that varying significance can be 

attached to specific intervals.

Several authors have treated the problem of generating orthogonal polynomials over 

disjoint intervals (see for example [21, 27, 87]) although the motivation in these cases 

is usually that of determination of Gaussian quadrature formulae rather than solution 

of linear systems. Few authors other than Saad [6 6 ] appear to have used orthogonal 

polynomial methods in connection with solution methods other than when forming 

preconditioning strategies (which is discussed in §2.9).

The standard approaches to generating orthonormal polynomials (on more than  one 

interval) are those of Stieltjes procedure type or methods of modified moments. In a
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INTERVALS



C h a p t e r  2 35

Stieltjes procedure, the recurrence coefficients {ajk} ^ - 0 and {bk} ^ = 1  for the orthonormal 

polynomials {pk}kLo with respect to the weight w(t), where

h+iPk+i(t) = { t -  ak)pk{t) -  bkpk- i( t) ,

are generated by determining the recurrence coefficients ak and bk with the inner prod

ucts ak =  (tpk(t) , pk(t))w and bk = (tpk{t) , See [25, 21] for more details.

It is usually the case that the inner products can be performed at little cost without 

resorting to numerical integration.

Methods of modified moments axe discussed extensively in [21]. The modified mo

ments approach has the advantage that, provided the modified moments,

n  = (1  , Qk)w =  /  qk(t)w(t) dt ,
Jn

are known explicitly for some set of polynomials {qk}k- o> where L  is the number of 

iteration steps, the complexity of the procedure does not grow with the number of 

intervals considered. The method dates back to one first devised by Chebyshev who 

took qk{t) =  t k . The resulting algorithm requires the computation of the Cholesky 

factorisation of the associated moment matrix G = (gij) = ((qi , qj)) of order k  a t the 

kkh step, and competitive algorithms use fast methods to compute this factorisation. 

The results given in [21] suggest that the modified moment approaches axe less stable 

than the standard Stieltjes approaches and since stability is paramount in iterative 

solvers the Stieltjes procedure is favoured here. Since only three intervals are being 

considered, the complexity saving of the modified moment approach is not of great 

advantage.

Although an orthonormal basis for P'k is sought, the problem of generating an 

orthonormal basis for Pk will first be considered since it is a more natural problem and 

the extension to the Pk case is simple.

2.5.1 Generalisation of Saad’s Stieltjes procedure to  the generation  

of orthonorm al polynom ials over three intervals

Let i i , / 2 , h  C R be three intervals (specifically, I \  = 1 ~ , I 2 = and I 3 =  the 

change of notation is to aid simplicity) defined by U = [c* — di Ci +  dj\. Here Ci is the
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centre of the interval I{ and di is its radius. Consider the weight (2.31). On defining

{/ > 9 )Wi = [  f ( t ) 9 (t)wi dt, 
J Iit

(2.32)

it is clear that

3

( /  , 9)w =  ’ 9)Wi • (2.33)

Now suppose that {pk}kLo an orthonormal sequence of polynomials with respect 

to (2.31). The Stieltjes procedure is required to determine the recurrence coefficients

where L  is finite and corresponds to the number of iteration steps.

Since any linearly independent set of polynomials of degree L  forms a basis for Pl , 

and since the shifted Legendre polynomials defined by (2.30) are obviously linearly

1,2,3, corresponding to the shifted Legendre polynomials on the intervals Ji, J2 and 

/ 3. It will actually be convenient to express pk in terms of each of these bases since 

this will provide a simple method for calculating the Stieltjes inner products without 

integration. Write

Notice that as (2.35) provides three alternative expansions of pk{t), two of the ex

pansions are redundant since they could be obtained from the first. However each 

expansion will be specifically required to calculate the Stieltjes inner products, and it 

will be cheaper to update each expansion rather than calculate it through a change of 

basis from the first.

Using (2.33) and the fact that the pk s are orthonormal, the recurrence coefficients

{ M L o ’ ( M a i l 1 such th a t

h+iPk+i{t) = { t ~  ak)pk(t) -  bkpk-i{t)  = : Pk+iW , fc =  0 , . . .  L, (2.34)

independent, pk can be expressed in terms of either of the three bases {4 ^}jLo> h —

(2.35)
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are given by the inner products

ak = (tPkit) , Pk{t))w , (tPkit) > PfeW>Wi j > (2.36)

bk+i = ffib+iW , Pk+i(t))w - (2.37)

The component contributed by I \  to the sum (2.36) is

(tpk{t) , Pk(t))wi = ’
, i= 0  1=0 W\

and using the recurrence formulae (2.30) for {Z^J-fLg to remove from the first

entry in the inner product, it can be seen that

( t Pk { t )  ,  P k { t ) ) Wl =  4 1 }  +  2

where = ci Yli=o i =  S?=o A '+ i^ M + i and is the set of recur

rence coefficients for the Legendre polynomials on the interval I \.  Similarly defining 

a i2̂  °{3̂  r fc2̂  r fc3' in terms °f c2 ,c3,/?|2\/? (3\  and using (2.33), gives the for

mula

3

“* =  £ <7*) +  27ifc)- (2-38)
1 = 1

Equation (2.38) provides a method for calculating the recurrence coefficients ak without 

performing any numerical integrations. Using (2.34) and the recurrence relation (2.30), 

Pk+i can be expressed in terms of {Ẑ } ^ 1

f t+ iW  =  Ef=oTf ( f l & O * )  +  c i ^ ' w  +  flP’J & M )

- « i  E t o # ; ' 1’ w  -  bi E?=o 7 f '■1)4 1) (*)•

Hence if the expansion of pk+1 in terms of {Z^ }£+* is written as pk+1 (t ) = 7 ?+1^  W »

using the orthogonality of the shifted Legendre polynomials it can be seen that

7 ? +1) =  +  (ci ~  a * b ?  -  bk7 f - 1), (2.39)

(where any undefined terms are set to zero). Then using orthonormality of the shifted
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Legendre polynomials again,

k-\-1

( P k + i ,  P k + i ) wi  =
(k+1)

I
i=0

Defining 7 f +1)2, ^ i+ i =  E iS )  ^ fc+1)2» and where

and rfek+1  ̂ are the coefficients of Pk+i in terms of the shifted Legendre polyno

mials on I 2 and I 3 respectively and are defined by an analogous recurrence to (2.39), 

it can be seen tha t

bk+l = (4 +1+ 4 +1+ 4 +1) 2 . (2-40)

and so again this Stieltjes inner product can be performed without any numerical 

integration. Once bk+i is determined, setting

Pk+i(t) = 1(0» (2.41)

(i.e. setting 7 t-fc+1̂  =  7 l-fe+1V&ik+i> i =  0 , . . .  , k + 1 ) completes the inductive step.

It is not difficult to show that the initial polynomial po is defined by the coefficients

J °) —  hi  j(°) =  hi r J°) —  hi___
^  ( / i l  + / 1 2 + / 1 3 )  ^  {hi+h2 +hs)^ (hi+h2 +h.3 )y

where hi = ( l / (widi))*. The steps (2.38), (2.39), (2.40) and (2.41) then comprise the 

required algorithm for computing the orthonormal polynomials on I \  U I 2 U I 3 with 

respect to the weight (2.31). It is stressed that at no point is a polynomial specifically 

formed, instead only the recurrence coefficients ak and 6^+1 and the coefficients of the 

polynomials in terms of the shifted Legendre bases axe known. One simplification can 

be made since it is not actually necessary to form the sum for <7fc+i, instead

JO  -  -E i-JO  • -  1 2  3ak+l — l2 k+1’ * ”
° j + 1

should be used.

The Stieltjes procedure can be seen to proceed at a cost which depends on the 

iteration number since the elements which make up the new recurrence coefficients ak 

and 6 fc+i are sums of k or k +  1 terms. The cost per interval of the iteration
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is approximately 8 k multiplications and 5k additions, which, for modest k , is small

The whole process will parallelise well, if three processors are available it would be wise 

to assign the calculations on one interval (i.e. all the 7 , 8  or 77 calculations) to each 

processor, and the combining operations are small. Obviously if more processors were 

available the work could be shared accordingly. Possibly more importantly, the process 

is also particularly suited to vector machines since operations (2.39) and (2.41) are easy 

to  implement with vector multiplications and additions, and the sums for the a, r  and 

v  term s can be implemented as pointwise vector multiplications.

2.5.2 A n orthonorm al polynom ial basis for P£

Recall (equation (2.28)), that a set of polynomials { ^ ( f ) } ^ 1 is required such that

i.e. the set is an orthonormal basis for the set P'k = (fs(£) | s (E Pk- i } .  Then the

compared to an inner product of the size of the linear systems that are being considered.

solution polynomial sk- i( t )  can be expressed as the linear combination

fc-i
(2.42)

where the coefficients, (p, are calculated using (2.29),

Again using {ai}£_g and to denote recurrence coefficients, the three term re

currence of these polynomials is written

bk+itqk+i{t) = ( t -  ak)tqk{t) -  bktqk- i ( t ) =: tqk+i(t). (2.43)

Here

ak = (t ( tqk {t)) , tqk(t))w , (2.44)

(2.45)
1

h+ l  = {tqk+i{t) , tqk+i(t ))$,.
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Notice that (2.43) can be divided by t to show that the polynomials {^IJLq1 also satisfy 

a three term recurrence,

h+iqk+i(t) = { t -  ak)qk(t) -  bkqk- i( t ) ,  (2.46)

with the same recurrence coefficients, although this set is not necessarily orthogonal. 

This property will be useful later when forming an iterative solver.

It is clear that on setting

1

(with notation similar to that in §2.5.1) the algorithmic details of computing these 

orthonormal polynomials will be exactly the same as is that in §2.5.1 except that 

summations are altered to include k +  1 terms. The detail is omitted here. The in

terpolation property (that each tqk(t) must pass through zero at the origin) is inherited 

from the recurrence (2.43) and so causes no additional problems.

Again it is not difficult to calculate the initial polynomial tqo(t) to initialise the 

iteration. If its coefficients are 7 ^ ,  7 ^ ,  5^ ,  <5^, rĵ  and in terms of the shifted 

Legendre polynomials on Ji, J2 and I 3 respectively. It can be shown that

(0) _  SIcrjwMh  (0) _  d, (0)
7 o  -  K  ’  7 1  ’

s (0 ) =  i l c 2( w 2d2) i   ̂ (̂0 ) =  _rf2_ <s(0); (2 .4 8 )
32 C2

(0) _  3Z c 3( w 3d3 ) ?  (0) _  d, (0)0̂ -  K > Vl ~ 7f~rl0 >3 2 C3

where K  =  (dt  +  3 ci) (widi)) 2 •

As an example, this algorithm has been used to generate the orthonormal polyno

mial basis for P'k with respect to Q =  [—10, —5] U [1,3] U [10,20], with unit weights on 

each interval. The first few polynomials are depicted in Figure 2-3.

Notice that the interpolation property holds true as mentioned above. The u;-inner 

products of the first few generalised Legendre polynomials are represented in the (upper
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Figure 2-3: The first four orthonormal basis polynomials for with Q =  [—10, —5] U 
[1,3] U [10,20] and = 1, i = 1,2,3

triangular part of the) moment matrix,

- 4  x 10“ 16 -  

1

9 x 10- 1 6  1 x 10- 15 - 3  x 10~ 16 - 1  x 10“ 15

4 x 10" 16 --3 x 10" 15 6 x 10- 1 6  -

1 - 1  x 10“ 15 - 3  x 10~ 15 1

1

2  x 1 0 - 1 5  

x 1 0 “ 15 

8 x 10“ 16 - 4  x 10“ 15

1 - 1  x 1 0 “ 15 

1

In accordance with the conclusions of [21] the Stieltjes procedure is seen to be very 

stable. For this choice of and w the maximum value of (tqi{t) , tqj(t))w (for i ^  j ) 

after 1 0 0  iterations is 1.18 x 1 0 -1 3  and the greatest deviation from 1 of (tqi(t) , tqi{t))w 

is of size 4.44 x 10-16.

2.5 .3  C a lcu la tion  o f th e  m od ified  m om en ts Wi

The final hurdle that stands in the way of being able to compute the solution polynomial 

Sk~i{t) = PiQiit) is the calculation of the modified moments cpi where

Pi — (1 i tQi{t))w j

and using (2.33),

3

Pi = ^  ; (1  ) tQi(t))wj ’ 
j = 0
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Expanding tqi(t) in terms of the shifted Legendre polynomials on Ij  it is clear th a t the 

only contribution the the inner product with 1 (a 0 ^  degree polynomial) will come 

from the I^  term  for j  = 1,2,3. Then using the fact that

2 2  (yjjdj) 2 =  1 ,

and the orthonormality of the shifted Legendre polynomials it can be seen that

cpi =  25 +  (w2 d2 ) U ^  +  (w3d3 )5r/{f^ , (2.49)

is a formula for the ^  modified moment.

2.6 Itera tiv e  so lu tion  o f  au gm ented  sy stem s v ia  least-sq uares  

residual p o lynom ia ls

Recall (equation (2.22)) that the approximation Zk to the solution of M z  =  /  when 

rk = Pk(M)r 0 is given by

Zk = z0 + Sfc_i(M)r0,

and tha t Sk-i( t)  = X^=o PiQiit)- It is n° t desirable to have to form the solution 

polynomial at each step. Instead, Saad [6 6 ] shows that it is possible to update the 

solution approximations using a three term  recurrence similar to tha t of qk-i- Notice 

that

$k—l(t) ”  (Pk—lQk—l{t) “h Sfc—2(^)5

and hence

Zk ~  Zk—1 “1“ (Pk—l'U'k—Xi 

f Viwhere Uk-1 , the update direction at the krn step, is given by

Ufc-i =  f t - i (M ) r 0.
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Using the three-term recurrence, (2.46), of the (nonorthogonal) polynomials qk~\ it is 

clear that

bk-lUk-l = (M  ~  dk- 2 l)Uk- 2  ~  bk—2uk—3’ (2.50)

Here uq = qo(M)ro = (3/2)5 ( l /K)ro  (using the expression for tqo(t) in (2.48)). The 

residuals rk can be updated in a similar fashion,

pk{t) = 1 -  tsk- i ( t )  =  Pk-i(t) ~  Vk-i tqk-\{t),

and hence

rk = r k~i - ( f k - i V k - i ,  

where Vk-i =  M u k - i  (=  Mqk~i{M)ro).  W ith this definition, (2.50) becomes

bk-lUk-l — Vk- 2  — 0>k-2Uk-2 ~  (2.51)

and

Zk =  zk- i  +  (fik-iUk-u (2.52)

rk =  rk- i  -  ipk-iVk-i,  (2.53)

are the update formulae for the solution approximation and residual. This method 

based on the least-squares polynomials over three intervals will be referred to as the 

generalised Legendre method and the corresponding algorithm is denoted LS(3). The 

cost per iteration at the kfi1 step of LS(3) can be seen to be

•  Matrix-vector products l ( n  +  m x n +  m),

• Scalar-vector products 4 (n +  m),

• Vector additions 3 (n + m),

•  Additional operations 3x8A; mult., 3x5k add. ,

where the additional operations are those required to calculate the next basis polyno

mial (§2.5.1). Here n is the dimension of the (square) matrix A  and B  G WlXm. Only
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three vector additions are needed since it is not necessary to update the residual as 

will be explained shortly. If it is decided to update the residual then an additional 

scalar-vector product and vector addition must be performed. This operation count 

should be compared with th a t of CGNR (an implementation of the conjugate gradient 

algorithm on the normal equations),

•  Matrix-vector products 2 (n +  m  x n + m),

• Scalar-vector products 3 (n +  m),

• Vector additions 3 (n +  m ) ,

•  Vector inner products 2 (n +  m),

and SYMMLQ,

• Matrix-vector products l ( n  +  m x n +  m),

• Scalar-vector products 7 (n + m),

• Vector additions 5 (n +  m),

• Vector inner products 2 (n +  m).

It is im portant to notice that no vector inner products are performed in the generalised 

Legendre algorithm, which are a usual feature of standard Krylov subspace methods. 

This feature makes the approach attractive to parallel machines where vector inner 

products are avoided where possible as they can cause bottlenecks in computation. 

However the cost per iteration of the generalised Legendre algorithm does depend on 

the iteration number but since the relative size of the iteration number compared to 

the size of the system is assumed to be small, this additional cost is small in relation 

to a vector inner product of size n  +  m.

An obvious stopping criterion for the iteration is that ||rfc|| becomes sufficiently 

small. However as mentioned above, choosing not to update the residual can result 

in a saving in computation. In this case new stopping criteria must be found. In the 

following section it will be seen that an estimate of the current residual (in a special 

norm) is available at each step, which is more appropriate for use in a stopping criterion.
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2.6.1 A m inim isation property

When considering iterative methods for solving linear systems it is im portant to under

stand what function is being performed by the iteration. For example if the iterative 

method is a minimisation method, such as the conjugate gradient method for positive- 

definite systems, [36], it is im portant to understand what quantity is actually being 

minimised (in the case of CG it is the M-norm of the error). As may be expected from 

(2.25), the generalised Legendre approach considered here will minimise some general

isation of the u>-norm of the residual vector. To understand this consider the following 

definition of the w-norm of a vector. Suppose that v G /Cfc(M, ro), where ICk(M,ro)  

denotes the Krylov subspace span{ro,Mro , . . .  ,M fc_1ro}, has the representation

k-1
v =

i= 0

Define the polynomial kv{t) by

k—1
kv{t) =  ^ 2  t*iti .

i=0

Then the function g(v) = ||fcv|L  defines a norm on /Cfc(M ,ro), denoted by I H ^ .  Now 

consider ||rfc||w. Since rk =  pk(M)r0,

and expanding Sfc-i(f) using (2.42) it can be seen that

=  (2.54)

where (p2k_ x is known ((2.49) and | |mlL =  ||1 |L  =  J n w (t ) dt =  2 (widi + w2 d2 +  ̂ 3^3 )- 

w(t) dt is called the first moment  As the quantity ||1 — fsjt_ i(i)||u; is minimised at 

each step over the span of the basis for P'k by construction, Hr^H^ is minimised over 

tCk(M,ro)  at each step. The cost of the calculation of Hr^H^ from (2.54) is negligible 

and hence provides a cheap stopping criterion for the iteration.
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2 .7  C onvergence o f th e  generalised  L egendre m eth o d

Before proceeding to present numerical results it must first be shown tha t the gen-

necessarily implied by (2.54). Since the least-squares polynomials are calculated in a 

Legendre-sense, the results given here axe subtly different to those in [6 6 ] where the 

least-squares polynomials are calculated in a Chebyshev sense. Since all norms on fi

nite dimensional spaces are equivalent, the first task is to calculate the ‘equivalence 

coefficients’ for the w and uniform norms. This is summarised in Lemma 2.7.1. Be

fore proceeding to the lemma a preliminary result concerning the uniform norm of the 

Legendre polynomials is required.

It is customary to normalise the Jacobi polynomials with weight w(t) =  (1 — t )e{ 1 +  

t)^ by insisting tha t the j ^ 1 Jacobi polynomial takes the value (0+1)(0+1) • ■. (0 + j ) / j !  

at 1 (see [63]). Hence the Legendre polynomials are customarily scaled to take the value 

1 at 1. Denoting these Legendre polynomials by ^  can be seen that

eralised Legendre method actually converges to a solution of (2.2), since this is not

H a l l o o  =  £ i ( l )  =  1 >

(see [1]), and that

(see [63]). Since the orthonormal Legendre polynomials satisfy li(t)2 dt =  1 ,

and hence

with the maximum value being taken at the ends of the interval [—1,1]. The lemma 

can now be stated.
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L em m a  2.7.1 I f  hn E Pn,

l l ^ n l l u ;  5 :  ^ 2  Widi'j ~  l l / l n l l o o  >

l l ^ n l l o o  <  ^(w  +  l J H / l n l L ,

where IHIoq denotes the uniform norm on Q and C is a constant which is independent 

o fn .

P ro o f  The first result is simple. Since ||hn||^  =  ||hn||^ ., it is clear that

3

H ^ n l l m  <  2  Widi  11h n | | o o  ,

i=i

and the first result follows.

Now, writing f2 =  X\ U Z2 U X3 ,

11 I loo =  max  ̂ max E ^ m
i= 0

,max 
te i 2 i= 0

, max 
teis i= 0

(2.55)

where {7 i}”=o» {^i}r=o anc  ̂ 3X6 coefficients in the expansion of hn in terms

of the orthonormal Legendre polynomials on Zi, I 2 and X3 respectively. Using the 

Cauchy-Schwartz inequality,

E ^ ’m
i= 0 . i= 0  /  \ i = 0

(2.56)

Recall

hence

n

m a x y g / S fc)(i )2 < max l \k\ t ) 2-  teI t w
*=o

1 n
< —  YHit. ft.t. * ^

2i + \
wkdk 2

1 (n +  1 ):
lOfcdfc 2

(2.57)
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using the result above and standard formulae for sums arithmetic progressions. Com

bining (2.55), (2.56) and (2.57),

II hn\ t  =

<  ^ ^ E ? = o 7 ?  +  «S.2 +  ^2.

where w*d* = m in{u;idi, 102^2 , 103^3 }. Since the sum here is equal to ||hn ||^ , the 

second result now follows with C = l/(2w*d*)^. □

Using the scaled Chebyshev polynomials with non-varying weights the (n+1) in Lemma

2.7.1 can be replaced by (n +  1)5, however since the result is only useful to prove 

convergence, and is far from being a tight bound, this is not of concern. Lemma 2.7.1 

together w ith the results of §2 .2 .1  can be used to prove the following convergence result 

for the generalised Legendre method. The method of proof is the same as that given 

by Saad [6 6 ] although the result is again subtly different.

T h e o re m  2.7.2 Let C € = [—6 , —a] U [a, 6] where b > a > 0. Then the generalised 

Legendre method converges and the residuals, rn, satisfy

IN I  (w*d* ) 2 \ i=o /  V^ +  l /

where w*d* is defined in C, the constant from Lemma 2.7.1, k = b/a and n' is the 

largest even integer less than or equal to n.

P ro o f  Since rn = pn{A)ro,

I M
I N I

— llPnlloo 5: C(n  +  1) ||Pn|L  ,

using Lemma 2.7.1, and since pn minimises ||pu,|| over degree n  polynomials satisfying 

the interpolatory constraint p(0 ) =  1 ,

Iknll N U I i
i=0

| |ro || -  C [ 2 ^ 2 widi ] (n +  1 )lblloo> V̂ G P n, P(0) =  1, (2.58)

using Lemma 2.7.1 again. Now let S be an inclusion set for comprising of two 

intervals spaced symmetrically about the origin as above and let n' be the largest even
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integer less than or equal to n. The define

pM  =  s » i te ( 0 )>
2

where s ̂  and q2 are as defined in §2.2.1. Then by Lemma 2.2.3,

K +  1

where « =  6 /a . W ith this choice of p  in (2.58),

i
3

(n +  1 ) g _ L ) \  ( 2 .5 9 )

The bound on the residual then follows from the definition of C  in Lemma 2.7.1. Since 

k > 1, the right hand side of (2.59) can be made arbitrarily small for sufficiently large 

n, so tha t the generalised Legendre method converges as stated. □

Comparing with the remarks of §2.2.1 it would appear that 2k steps of the generalised 

Legendre method would give a similar residual reduction to that of k  steps of CGNR 

applied to (2 .2 ), multiplied by a factor of 2k. Again it is stressed tha t the the con

vergence result is merely intended to be a means of demonstrating convergence of the 

generalised Legendre method and is not designed to be a tight bound on convergence 

or a method for predicting the minimum number of iterations required to achieve a re

quired residual reduction. Indeed results presented in §2.8 suggest that, per iteration, 

the performance of the generalised Legendre method and CGNR are similar although 

the smaller iteration cost of the Legendre method makes it far more favourable (c.f. 

figures 2-12 and 2-13).

2.8 N u m erica l resu lts

In this section the results of some numerical experiments with the generalised Legendre 

method are presented. All the numerical experiments were performed on a Sun SPARC 

server 1000 with 4 processors.
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E x a m p le  1

As a first test of the effectiveness of the generalised Legendre method as an iterative 

solution method, a matrix whose eigenvalues lie in three intervals which are ‘very’ dis

joint is considered. The matrix A  in (2.1) is chosen to be diagonal with n eigenvalues 

spaced evenly in[Ai, An], and B  is chosen to have diagonal upper-square part and zero 

lower part with m  singular values spaced evenly in [<7i,<rm]. Similar eigenvalue distri

butions are considered in [6 6 ] except that the eigenvalues of A  are taken to be evenly 

distributed instead of those of A  and B. The values Ai =  10, An =  20, o\ =  200 and 

<7m =  300 are taken with n = 200 and m  =  50, and /  is a constant vector of ones in 

the top n terms and a vector of zeros in the bottom m  terms. This results in the three 

eigenvalue intervals, Q, C Z-  UTj1’ UZ^ «  [—295, —190]U[10,20] U[205,310], The weight 

w(t) =  1 Vt G O is taken. The generalised Legendre method on three intervals, LS(3), 

is compared with the generalised Legendre method on two intervals, LS(2), (where 

the positive interval is the smallest inclusion interval for the two positive intervals in 

Q), and the SYMMLQ iterative method [56] for symmetric linear systems. Since each 

method performs a different minimisation, the Euclidean norm of the residual is taken 

to be the measure in the comparison. Numerical results comparing the residual from 

the three methods at each iteration are shown in Figure 2-4.

10a

iteration

Figure 2-4: Example 1 : Comparing the residual reduction at each iteration of the
LS(3) (— ), SYMMLQ (---- ) and LS(2) (••■) methods on a system with spectrum
contained in three disjoint intervals

As can be seen, after approximately 25 iterations both LS(3) and SYMMLQ surpass 

the LS(2) residual reduction and the LS(3) method is slightly better than SYMMLQ. 

Plotting the norm of the residual against time is more revealing however since it is 

expected that the Legendre-based methods have a much faster iteration time for small
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iteration numbers. Figure 2-5 shows a plot of the results in Figure 2-4 on this new scale. 

It can be seen that the Legendre-based methods are indeed faster than the SYMMLQ 

method in terms of iteration time. It is clear that the residual reduction of the LS(2) 

method is competitive with SYMMLQ in time. The LS(3) method comprehensively 

beats both the other methods to achieve a far greater residual reduction than LS(2) 

in an almost equal iteration time, and a similar residual reduction to SYMMLQ in a 

much smaller time.

102

10°

3
=

10~*

time

Figure 2-5: Example 1 : A plot of residual reduction against time for 50 iterations of
the LS(3) (—  line), SYMMLQ ( line) and LS(2) (• • • line) methods on a system
with spectrum contained in three disjoint intervals.

The advantage in using LS(3) over LS(2) can be explained by analysing the three-
13) • • 12)interval residual polynomials, r t , and the two-interval residual polynomials, r\ The

13) 12)polynomials rj and rj for i = 6 , 8 , . . .  ,14 are plotted in figures 2-6 through 2-10.

1.5 -

I f o o  -200  -100  O 100 200 300 400

Figure 2-6: Example 1 : degree 6  residual polynomials. Solid (—) and dashed (— ) 
portions indicate r ^ \o , )  and respectively on Z~ UZ+ U

13)In allowing the r) polynomials to grow in the space between the two positive 

intervals, better approximation of zero is obtained over Q, and since the spectrum of
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2  -

100

Figure 2-7: Example 1 : degree 8 residual polynomials. Solid (—) and dashed (---- )
portions indicate rg3^(fi) and rg2^(Q) respectively on X~ Ul{*" U l^ .

,(2)
10

, ( 3 )
10

Figure 2-8: Example 1 : degree 10 residual polynomials. Solid (—) and dashed ( 
portions indicate r ^ ( ^ )  and respectively on X UZ*  U

, (2)
12

,(3)
12

Figure 2-9: Example 1 : degree 12 residual polynomials. Solid (—) and dashed ( 
portions indicate r ^ ( ^ )  and r ^ ( ^ )  respectively on X U l + UX£-
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-§ 0 0  -200  -10 0  O 100 200 300 400

Figure 2-10: Example 1 : degree 14 residual polynomials. Solid (—) and dashed (— ) 
portions indicate and respectively on X UX^ U X j.

I f r (2)" Jn i f r (3)" J n ri
1 241.251 220.069
2 33.323 21.429
3 40.026 21.344
4 21.064 10.510

"5 12.409 9.837
6 14.411 9.346
7 7.869 4.048
8 7.030 4.038
9 5.967 .620

10 3.714 .618
11 3.845 .386
12 2.542 .173

Table 2.1: Example 1 : The squares of the X2 (fi) norms of the residual polynomials 
based in two ( r ^ )  and three (r • )  intervals.

M  is contained in Q better convergence is obtained. The ^ 2 (0 ) norms of the and 

r |2  ̂ polynomials axe shown in Table 2.1 and it is obvious from the entries that the 

polynomials are smaller on Q.

E x a m p le  2

The next example is similar to the first. Again the eigenvalues of A  are taken to 

lie between Ai =  10 and \ n = 20 and the singular values of B  are taken between 

<ji =  200 and a m =  300, but now instead of being spaced evenly they are distributed 

randomly. The matrices are no longer diagonal, they have a density of 0.2 (i.e. 20% 

of the entries are non-zero). This was achieved using the matlab routines sprandsym 

and sprandn. The eigenvalue distribution of A  is shown in Figure 2 -1 1 . As can be seen
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there is some clustering of the eigenvalues in the outer intervals although the inner 

interval containing the majority of the eigenvalues still contains a fairly even spread. 

The eigenvalue clustering is favourable to the Lanczos based solvers like SYMMLQ and 

CGNR. Figure 2-12 shows the performance of these algorithms and the two generalised 

Legendre methods on this system.

XX X X  X X  X X  *X«CX XXXXK X XX

-290 280 -27 0  -260  -2 5 0  -24 0  -23 0  -220  -210  -20 0  -190

10 11 12 13 14 15 16 17 18 19 20

X X XKXK XX XX X XXX X XK X  1C X X

200 220 240 260 280 300 320

Figure 2-11: Example 2 :The three eigenvalue intervals of A .

io2
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LS(2)

SYMMLQ

10"4

LS<3)

10 5

time

Figure 2-12: Example 2 : Solution-time plots - 50 iterations.

In this example 50 iterations of each method were performed. SYMMLQ beats 

LS(2) although again LS(3) exhibits the fastest residual reduction of these three meth

ods. The poor performance of CGNR should lay to rest any fears from Theorem 2.7.2 

which only promised that the residual reduction of LS(3) would be at most a constant 

multiple of n T 1 times as bad as CGNR applied to the system with half as many steps. 

It was however stressed that Theorem 2.7.2 was far from being a tight bound on conver

gence! In fact the reduction per iteration of both methods is approximately the same 

for this example, as can be seen in Figure 2-13. The reason that LS(3) beats CGNR 

so comprehensively in Figure 2-12 is that CGNR requires twice as many matrix-vector
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operations per iteration and since this is the most time consuming operation (since the 

matrices A  and B  are fairly dense), CGNR is slower than all of the other methods.

J£10'

LS(3)

Iteration

Figure 2-13: Example 2 : Comparing the residual reduction per iteration of CGNR 
and LS(3) on the second example.

E xa m p le  3

As a final example of this sort, eigenvalues of A and B  were taken to lie randomly 

between Ai =  1 0 , An =  20 and ai =  100, crm =  300. The values of n and m  are 1000 

and 500, and a density of 0.005 was chosen for both A and B. This resulted in an 

average of approximately 4.8 entries per row in A  and 2.4 entries per row in B. The 

results of applying 1 0 0  iterations the four algorithms to this system (again /  was taken 

to be a constant vector of ones in the top n terms and a column of zeros in the bottom 

m  terms) can be seen in Figure 2-14.

io 1

SYMMLQ

LS(2)

LS(3)

1°‘“
time

Figure 2-14: Example 3 : 100 iterations

Again it can be seen that LS(3) is the quickest to reduce the residual and this 

time LS(2) comprehensively beats SYMMLQ. In terms of iterations, SYMMLQ has
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the worst performance of any of the algorithms and is only competitive with CGNR on 

this example due to its shorter iteration time. Since the matrices in this example are 

very sparse, the extra matrix-vector product per iteration in CGNR slows the algorithm 

to a lesser extent, and the main time saving in using the LS algorithms is due to the 

lack of vector inner products compared to the Lanczos based methods.

From these last examples it seems sensible to conclude that the generalised Legendre 

algorithm gives a larger reduction in the residual for a fixed number of iterations than  

both SYMMLQ and CGNR provided tha t the gap between X+ and Z^ is approximately 

an order of magnitude wide or more, and that the eigenvalues of A  are not separated 

into a small number of clusters (which the Lanczos based algorithms will be quick to 

find). Such systems may arise in discretisations of p.d.e.s where the dependence on 

the spatial term  is 0 (h ~ k) in A  and 0(h~^k~ ^)  in B.  The LS(3) iterations axe also 

significantly faster when the matrices A  and B  are large and very sparse so tha t vector 

inner product costs are large factor in the cost of one iteration step of SYMMLQ and 

CGNR. This can be seen in Figures 2-5 and 2-14. Figure 2-12 shows that when the 

matrices A  and B  are relatively full the saving in iteration time when using LS(3) 

instead of SYMMLQ is small as the iteration cost of both algorithms is dominated 

by the matrix-vector product, and vector inner products are small by comparison, 

although the greater residual reduction is given by LS(3). In every instance discussed 

LS(3) is superior to LS(2) and it can be seen that the extra computational cost of 

performing LS(3) is negligible and is not dependent on the size of the system to be 

solved. Since both LS(2) and LS(3) will perform similarly when the gap between T*  

and becomes small, no experiments of this type are displayed. It can also be 

seen th a t choosing between LS(2) and SYMMLQ is not easy since both methods give 

approximately the same reduction in Figure 2-5. In Figure 2-12, SYMMLQ is the 

winner, and LS(2) wins in Figure 2-14. As would probably be expected, CGNR is the 

poor relation in nearly all of these experiments although it performs surprisingly well 

in Figure 2-14 with better results than SYMMLQ for most of the iteration time, since 

the matrices considered are very sparse so that vector inner products dominate the 

iteration cost.

All of the experiments so far have used exact bounds for the eigenvalue intervals 

in Theorem 2.3.1. This is in fact not necessary, any bounds which can be obtained 

on the intervals X ~ ,I *  and can be used in the algorithm, provided that the upper
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bound on X~ is negative and the lower bound on X+ is positive (so tha t the constraint 

point a t 0 lies outside). The closer these approximate bounds are to the actual bounds 

will lead to faster convergence. This is discussed in more detail in the next section. It 

may still be the case tha t the Lanczos based algorithms can outperform the generalised 

Legendre algorithms for these types of coefficient matrices when they are suitably 

preconditioned. One method of preconditioning (which is again attractive for parallel 

architectures) is tha t of polynomial preconditioning. This approach is also discussed in 

the following section.

2.9  In exact eigenvalue b ou n d s and least-sq uares p o ly n o 

m ial p recond ition ers for au gm ented  sy stem s

Polynomial preconditioning is a popular strategy for solving symmetric linear systems 

and was introduced in [65]. Here, instead of solving the system M z  =  / ,  the (left) 

preconditioned system

V  (M ) M z  = V (M) / ,  (2.60)

is solved where ^  is a polynomial (of small degree). In the case tha t M  is a symmetric 

positive definite matrix, the motivation for preconditioning is that the conjugate gradi

ent algorithm applied to (2.60) (notice tha t Vt (M) M  can be made symmetric positive 

definite for suitable choices of \I/, e.g. take ^  to have all coefficients positive) is likely 

to converge more quickly than if it were applied to the original system if the condition 

number of ^  (M ) M  is less than that of M .  This is a due to the fact the the standard 

bound on the M -norms of the errors associated with the conjugate gradient algorithm 

[29, Theorem 10.2.5] is made smaller on reducing the condition number of the system. 

The motivation behind the more general case when M  is a symmetric matrix is tha t 

vp (M ) is an approximation to M ~ l . Some more adventurous preconditionings attem pt 

to cluster the eigenvalues of the preconditioned system so that iterative methods will 

converge in a small number of steps (see [52] and §B.l). A detailed discussion on the 

motivation behind polynomial preconditioning is given in [2 ].

It is im portant to appreciate that polynomial preconditioning is only a practical 

method of preconditioning on parallel or vector machines and is not suitable for scalar
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machines since, for symmetric positive definite problems, the conjugate gradient algo

rithm  is an optimal algorithm with respect to the number of matrix-vector operations 

required. A polynomial preconditioned conjugate gradient algorithm will require more 

matrix-vector operations than the conjugate gradient algorithm on the unprecondi

tioned system. For very large and sparse systems, the small number of vector inner 

products required for the polynomial preconditioned conjugate gradient algorithm may 

occasionally make this approach attractive on a scalar machine but the saving made is 

likely to be small.

One of the first methods suggested for approximating the inverse of a m atrix using 

polynomials was to use the truncated Neumann series,

F  (M) = ( j  + F ^ G  +  (.F~l G f  +  . . .  +  (F ^ G )* "1) F ~ \

where M  = F  — G is a splitting of M . See [15]. This method will only be applicable 

if the splitting satisfies | |F - 1G || <  1 (as was the case for the Chebyshev semi-iterative 

method in §2.1) and will be more effective for smaller values of | |F - 1G ||.

Another method of defining a polynomial which satisfies F  (M) «  M - 1  and which 

doesn’t rely on a splitting of M  is to set F  to be the solution of

Here Z — 1 is the maximum permissible degree of F  and, for the moment, the norm ||| '| | | 

is unspecified. It is clear that such a F  will satisfy F  (M) M  «  I .  This definition of 

F  could be reinterpreted by insisting tha t F(£)t should be the closest approximation 

to 1 on the spectrum of M  which, as usual, can be loosened to insisting that F(£)£ is 

the closest approximation of 1 on some inclusion set of cr(M). The above minimisation 

then becomes

min 11|1 -F (£ )£ |||,  (2.61)
*fcn-i

where intuitively the minimisation must be focussed on some inclusion set of the eigen

values of M  by choosing an appropriate norm. Following equations (2.23) and (2.25) 

it would seem appropriate to choose |||-||| to be either the uniform or w-norm. Saad 

[67] considers solving symmetric positive definite problems using a polynomial precon
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ditioned conjugate gradient method, and takes |||-||| to be the it;-norm (where it; is a 

Chebyshev weight). He shows that it is unnecessary to find a good approximation to 

the smallest eigenvalue of M  in this case and uses the least-squares polynomial on [0, b], 

where b is the Gershgorin estimate of the largest eigenvalue of M , to precondition the 

system. In [3], M  is again assumed to be symmetric positive definite and a comparison 

of least squares and optimal polynomial preconditionings is discussed, which results 

in the conclusion that each polynomial preconditioner is suited to a particular type of 

eigenvalue distribution.

Since A  is indefinite, following the remarks in §2 .2  it is only realistic to consider 

least-squares polynomial preconditioners. Then it would seem obvious to choose \I/(t ) =  

s/_ i(t), where is the solution polynomial of degree I — 1 for A  on three intervals,

and can be calculated using the LS(3) algorithm described in sections 2.5.2 and 2.5.3. 

Then it is very easy to calculate \&(Z) with the (negligible) cost of calculating the 

preconditioner being independent of the size of the system. If unit weight is attached 

to each interval,

Iln-ilL = i -  * 1-1

where the values are essentially free as was described in §2 .6 .1 , and so the

norm |||-||| above is taken to be the usual L 2 {£L) norm. If different constant weights are 

attached to each interval, | | |’||| is simply a weighted £ 2 ^ )  norm.

The effectiveness of the LS(3) solution polynomial as a preconditioner will be com

pared with tha t of the solution polynomial on two intervals, the I — 1 ^  degree solution 

polynomials on two and three intervals being denoted and respectively. Since 

^ ( M ) M  is indefinite the polynomials will be used to precondition the SYMMLQ algo

rithm. Before presenting any numerical results the assumption of the previous section, 

tha t the eigenvalue intervals are known exactly, will be loosened.

2 .9 .1  G ersh g o r in  b ou n d s on  th r e e  in terva ls

In this section it will not be assumed that the exact values of the bounds on the three 

eigenvalue intervals of A  are known (which is equivalent to knowing the largest and 

smallest eigenvalues /  singular values of A  and B  respectively). Instead it will be 

assumed that it is possible to find a set f2 =  X~ U X f  U X% with the property that
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Z~  C X- , X+ C X{*~ and Z% C X̂ -. Least squares polynomials on Q, can then be used in 

the iteration. Figure 2-15 shows that it is not possible to apply Gershgorin’s theorem 

directly to the matrix A,  with f2 «  [-292, -199] U [14,20] U [216,310], to find such a 

set ft, since there are no three disconnected unions of Gershgorin disks (see [49, Ch. 

I l l  2.2.5]), in fact the largest Gershgorin disk contains all of the others. (The plot was 

generated using the gersh routine of [37]). Hence a different method must be found.

100

—200

■300 —200 O1 OO 1 OO 200 3 0 0

Figure 2-15: The Gershgorin disks of A. 

Notice that if £i, en , <̂ i, dm > 0 and if X+ and X^ are defined by

X+ — [Ai — £i, An +  en] ,

^  +  N/ ^ ± £ 1ii  +  (<rm +  ,5m)2

then XT+ C X+ and Z^ C and the lower bound on both intervals is positive for 

ei < Ai. The two intervals are not necessarily non-overlapping, see §A.2 for a discussion 

of this phenomenon. Now consider the functions

Then it is easy to show that < 0 for 0 < e < Ai and ^  < 0  for £ > 0 . Similarly

> 0 for e > 0  and | |  > 0 for 0 < <5 <  a i. Since the functions /  and g define 

the upper and lower bounds on an interval Z~ corresponding to the same perturbation 

above, the following lemma has been proven.

L em m a 2.9.1 I f  0 < X\ < \ \  < Xn < Xn and 0 < o\ < o\ < <jm < om, then the
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eigenvalue intervals T ~ ,Z ^ ,Z £  of A  where p(A) C [Ai, An] and a (B ) C [cri,crm] satisfy

Z~ C Z ~ , Z * C Z±, andZ% C Z^,

where Z~,Z^ , and Z ^  are the eigenvalue intervals found by replacing Ai, An, o\ and am 

by Ai, Am,&i, and <rm in Theorem 2.3.1.

This result implies that, provided positive lower bounds can be found on the smallest 

eigenvalue of A  and singular value of B  and any upper bound can be found for the 

largest eigenvalue of A  and singular value of B,  the intervals found by substituting 

the eigenvalue /  singular value bounds in Theorem 2.3.1 will contain the eigenvalue 

intervals of A. Hence the Gershgorin estimates of the largest and smallest eigenvalues 

of A  and singular values of B  can be used to generate the three intervals provided 

tha t the estimates of the small eigenvalues and singular values are positive. Then the 

intervals Z~,Z^~ and Z% will be called the Gershgorin intervals. It will automatically 

be the case tha t the lower bounds obtained from Gershgorin’s theorem on the smallest 

eigenvalue and singular values are positive if the matrices A  and B TB  are strictly 

diagonally dominant. The Gershgorin intervals for the matrix A  with Gershgorin disks 

in Figure 2-15 are ~  [—331,183] U [14,23] U [216,309], and are shown in Figure 2-16. 

Hereinafter all numerical experiments are performed on the Gershgorin intervals unless 

otherwise stated. It should be noted that Gershgorin eigenvalue bounds are rarely tight 

and many improved results exist, see for example [8 8 , 40]. As will be seen however the 

Gershgorin bounds give fair numerical performance for their simplicity and the use of 

tighter bounds is only expected to improve on these results.

Figure 2-16: The three interval bounds (crosses) calculated from the Gershgorin bounds 
on the eigenvalues of A  and singular values of B  for the matrix A  shown in Figure 2-15.
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The Gershgorin intervals can be used in the algorithm LS(3), the resulting algo

rithm  will be denoted G-LS(3). Since the least-squares residual polynomials of G-LS(3) 

are calculated over a larger set than is actually required, the performance G-LS(3) is 

expected to be slower than LS(3) on the exact intervals. In Figure 2-17, the difference 

between using exact eigenvalue bounds and the Gershgorin estimates can be seen. For 

small iteration numbers, which correspond to small degree residual polynomials, the 

difference is not large, although for some ‘unfortunate’ choices of degree of polynomial 

the difference can be larger, for example the 18tn  degree residual polynomial on the 

exact intervals gives a residual reduction of approximately one order of magnitude bet

ter than tha t on the Gershgorin intervals. Since only low order polynomials are being 

considered as preconditioners the difference is not too worrying.

lO2

io1

io°

LS<3)

10 1

ite ra tio n

Figure 2-17: Comparing LS(3) and G-LS(3) where G-LS(3) uses the Gershgorin bound 
on the eigenvalue intervals of A.

2 .9 .2  P o ly n o m ia l p reco n d itio n in g  resu lts

Since it has not been possible to perform experiments on a parallel machine, the time 

effect of the polynomial preconditioning has been simulated by dividing the time taken 

for any matrix-vector multiplications by the number of processors assumed. This will 

hopefully give a qualitative (but possibly optimistic and probably not a quantitative), 

representation of the actual performance that might be expected on a parallel machine, 

since these matrix-vector multiplications contribute the majority of the operations re

quired in the algorithms. Effects such as increasing the degree of the solution polyno

mial on a fixed number of processors will not be greatly affected by this assumption, 

only when varying numbers of processors are being considered will results be affected. 

Graphs corresponding to time calculations on this basis will carry the label pseudo-time
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and the corresponding computer will be said to have n pseudo-processors.

10a
SYMMLQ10°

LS(3)

Figure 2-18: A comparison of preconditioned and unpreconditioned methods for A  
on 10 pseudo processors. SYMMLQ and LS(3) denote the unpreconditioned algo
rithms. SYMMLQ[LS(3)] denotes SYMMLQ preconditioned by the degree 10 solution 
polynomial on the actual eigenvalue intervals, SYMMLQ[G-LS(3)] denotes SYMMLQ 
preconditioned by the degree 1 0  solution polynomial on the Gershgorin intervals.

The LS(3) and G-LS(3) residual polynomials of degree 10 have been used to pre

condition SYMMLQ in Figure 2-18. The algorithms are applied to a variant of the 

matrix described in Example 3 of §2.8 where A and B TB  are diagonally dominant so 

that the Gershgorin bounds on the eigenvalues of A and singular values of B  satisfy 

the assumptions of Lemma 2.9.1. It is assumed that the machine being used has 10 

pseudo-processors, and the unpreconditioned SYMMLQ and LS(3) residuals have been 

plotted for comparison. Again the LS(3) algorithm is faster than SYMMLQ although 

both of the preconditioned algorithms are considerably quicker. As would be expected 

the LS(3) preconditioned algorithm, SYMMLQ[LS(3)], is the fastest of the four, with 

the G-LS(3) preconditioned algorithm, SYMMLQ[G-LS(3)], being not quite as fast. 

The improvement of SYMMLQ[G-LS(3)] over both SYMMLQ and LS(3) is consider* 

able, and proves the point made at the end of §2 .8 , that the Lanczos based algorithms 

can outperform the LS(3) algorithm when suitably preconditioned.

Figure 2-19 demonstrates the effect altering the number of pseudo-processors as

sumed when preconditioning SYMMLQ by the degree 10 G-LS (3) polynomial. It can 

be seen that there is little improvement over unpreconditioned SYMMLQ when only 

two pseudo-processors are used, since the amount of computing time taken to apply 

the preconditioner almost outweighs any gain in performance made by iterating on 

the preconditioned system. By increasing the number of pseudo-processors to five and 

large increase in performance is made, the gain in increasing to ten pseudo-processors
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is not so large since with this many processors, the effects of operations other than 

matrix-vector products begin to be noticed.

SYMMLQ

10"7

Figure 2-19: SYMMLQ preconditioned by the degree 10 Gershgorin solution polynomial 
on a range of pseudo processors.

102

10~7
10 B

pseudo—time

Figure 2-20: SYMMLQ preconditioned by degree 5,7 and 10 Gershgorin polynomials 
on a 4 pseudo processors.

The effect of increasing the degree of the preconditioner is demonstrated in Fig

ure 2 -2 0 , here 4 pseudo-processors are assumed. Here it can be seen that the de

gree 5 preconditioner gives a slight improvement over the unpreconditioned algorithm, 

with degree 7 and 10 preconditioners performing faster. Increasing the degree of the 

preconditioner past 10  does not greatly increase the speed of solution since the non 

matrix-vector operations become more dominant.

Finally, Figure 2-21 compares using the G-LS(3) and G-LS(2) polynomials as pre

conditioners for a range of degrees. Here the number of processors is irrelevant as the 

time to apply the preconditioner is independent of whether it was calculated on two 

intervals or three. It is surprising to see that the degree 5 G-LS (3) preconditioner 

performs worse than the corresponding G-LS(2) preconditioner for most of the itera-
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tion time, although the difference is small. The result is doubly surprising when it is 

considered that the matrix residual from two intervals is larger than that from three, 

I  — \&52 (̂.4 )*4 | | =  1.2826 whereas I  — (̂ 4)̂ 4.| | =  1.0672. Hence matrix residuals

by themselves are not enough to determine whether a given preconditioner is a good 

one, indeed it is true that the matrix residual using the degree 5 solution polynomial 

from the exact eigenvalue intervals has value ||J  — fy(M)M\\ = 1.1795 which is larger 

than that from the Gershgorin intervals, but Figure 2-17 shows that both G-LS(3) 

and LS(3) give approximately the same residual reduction at the 5 ^  iteration. With 

slightly higher degree preconditioners the clear conclusion is that the G-LS(3 ) poly

nomials perform better than the G-LS(2) polynomials by a considerable margin for 

preconditioning SYMMLQ on these problems, indeed the degree 10 G-LS (3) precondi

tioner on 10 pseudo-processors performs as well as the degree 15 G-LS(2) preconditioner 

on 15 pseudo-processors.

''V

'x

—  ©

Figure 2-21: Comparing LS(3) and LS(2) preconditioners of degree 5, 10, and 15 on
5, 10 and 15 pseudo processors respectively. (--------) indicates LS(3), (• • •) indicates
LS(2) polynomials of degree 5. (o) indicates degree 10 and (x) degree 15.

The poor performance of the degree 5 G-LS(3) polynomial may be explained by 

considering the residual polynomials calculated on two and three intervals which are 

plotted in Figure 2-22. Although the G-LS(3) polynomial is smaller than G-LS(2) on 

most of the domain Q, it is larger on the interval X*, and this may be causing the 

poorer performance. This is where the variable Legendre weight allowed in the LS(3) 

algorithm can be applied, if a greater weight is attached to this interval then it might 

be expected that better performance could be obtained from SYMMLQ [G-LS (3)] as 

this will act to improve the approximation of 0  on I p

Figure 2-23 shows the effect of increasing the weight on the central interval from
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Figure 2 -2 2 : The polynomials 1 — and 1 — Solid and dashed sections
indicate the intervals which define the domain fh

i -  t ^
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Figure 2-23: Altering the weight on X* from 1 to 20. The upper graph shows the
G-LS(3) (—) and G-LS(2) (--------) residual polynomials. With greater weight on X+
the G-LS(3) polynomial is smaller on this interval (c.f. Figure 2-22). The lower graph 
shows the performance of SYMMLQ[G-LS(3)] and SYMMLQ[G-LS(2)] with the same 
notation.

1 to 20. Then the value of ^ ( t )  on X+ is then slightly smaller than that of r ^ \ t )  

on the same interval. Almost equal performance is displayed by SYMMLQ[G-LS(3)] 

and SYMMLQ[G-LS(2)]. It may be expected that, because of this result, only the 

eigenvectors corresponding to eigenvalues in X* have components in the direction of 

the right hand side vector. However, increasing the value of the weight on X* further 

does not increase performance as the better approximation of zero by r ^  (t ) on X+ is 

at the expense of a loss in accuracy on the remaining two intervals, and the residual 

improvement is lost. For very large weights (O(103)) on X f ,  the solution diverges, so 

that care needs to be taken when choosing appropriate weights. Choosing an optimal 

weighting strategy is an interesting problem, but ultimately the best choice of weights 

will depend on the eigencomponents of the right hand side vector which are very unlikely
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to be known a priori, and if they were, far better solution strategies could be found.

2 .10  Sum m ary

The main point of this chapter was to explore the eigenvalue result in Theorem 2.3.1, 

and see if the extra information it gives about the spectrum of the coefficient matrices 

considered here, could be used in a numerical solver. The method for generating or

thogonal polynomials over three intervals is a generalisation of Saad’s work in [6 6 ]. The 

devised iterative method, LS(3), which has a residual polynomial which is minimal in 

an appropriate norm, and is constructed from a basis of orthogonal polynomials over 

the three intervals compares favourably with the standard iterative methods CGNR 

and SYMMLQ for indefinite symmetric systems in terms of the number of operations 

required. LS(3) needs one less matrix-vector multiply per iteration than CGNR and two 

fewer scalar-vector multiplications and vector additions than SYMMLQ per iteration. 

Furthermore the LS(3) algorithm requires no vector inner products since the orthog

onality conditions are on polynomials, as opposed to vectors as is the case for most 

Krylov methods, and are enforced using polynomial inner products which axe much 

cheaper than vector inner products. This lack of vector inner products makes the ap

proach attractive for parallel computers where inner products can cause bottlenecks in 

computation.

Numerical experiments comparing LS(3) with SYMMLQ, CGNR and LS(2), the 

algorithm based on two eigenvalue intervals from [6 6 ], showed LS(3) to behave similarly 

to CGNR in terms of residual reduction per iteration and better than SYMMLQ. 

However with a much shorter time per iterate than both SYMMLQ and CGNR, the 

LS(3) algorithm converged much more quickly. The algorithm was also considerably 

faster than LS(2) and the cost of calculating orthogonal polynomials on three intervals 

rather than two was negligible.

In §2.9 it was seen that the exact eigenvalue intervals bounds assumed previously 

were not necessary, and conditions such that approximate eigenvalue intervals based 

on Gershgorin type estimates of the individual spectra of the matrices A  and B  defined 

three intervals which contained the three eigenvalue intervals were given in Lemma 

2.9.1. It was seen that the algorithm G-LS(3) based on the approximate eigenvalue 

information compared well with the LS(3) algorithm (based on exact eigenvalue in
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formation). The G-LS(3) algorithm was seen to be a good preconditioner for the 

SYMMLQ algorithm, and final numerical experiments were performed in an attem pt 

to examine the type of performance which might be expected if the algorithms were 

implemented on a parallel machine.

W hether the LS(3) algorithm is an effective method of solving discretisations of 

groundwater flow problems remains to be seen. For the algorithm LS(3) to be effective 

it is imperative tha t the three eigenvalue intervals defined in Theorem 2.3.1 are disjoint, 

otherwise it would be more sensible to apply the LS(2) algorithm, or any of the other 

methods mentioned here which do not rely on the coefficient matrix having a spectrum 

contained in three intervals. In order that the three intervals axe disjoint, a simple rule 

is that the eigenvalues of the matrix A  must be a lot smaller than the singular values of 

the matrix B.  This will not be the case for a general mixed finite element discretisation 

of a groundwater flow problem, since typically the matrix A  will have large and small 

eigenvalues, depending on the geometry of the underlying problem. However it may be 

the case that with a suitable preconditioning, the coefficient m atrix may be made to 

have a spectrum of the required form (for example by scaling A  by a small param eter 

- see Appendix A), and then the LS(3) algorithm will become competitive.

2.10. SUMMARY
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Chapter 3

A generalised least squares 

approach to solving augm ented  

system s

3.1 In trod u ction

It can be seen (§3.2) that the y component of the solution of

A B X b

B t 0 . y 0

is the solution of the generalised least-squares (see for example [42]) problem

minimise ||By — b\\A- 1 , (3.2)

where |M |^_ i =  vTA ~ lv . The LSQR algorithm [58] introduced in §3.3 is a method for 

solving least-squares problems of the form minimise y^Rm || Cy  — c|| and hence could 

be used naively to solve the generalised least-squares problem above, if the Cholesky 

factorisation A = L L T were known, upon setting C = L ~ lB  and c =  L~ l b. This 

approach would require one multiplication with each of L - 1  and L~T per iteration step. 

In §3.4 it is shown that a variation of the LSQR algorithm exists tha t can be applied to 

the generalised least-squares problem in which the solves with L  and LT are replaced 

with a single solve with A. In cases where the level of fill-in in L  is high, operations
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involving L  can be expensive whereas an iterative method which calculates the effect 

of A - 1  using only operations involving A  can be relatively inexpensive, especially if a 

good preconditioner for A  is known. It is essential that L  be computed accurately if 

it is to be used to form a linear-least squares problem as described above. This can 

be impractical if A  is large. However if a good preconditioner for A  is available it may 

still be reasonable to expect to be able to operate with A-1 . For example consider the 

case when A  is the mass matrix associated with a piecewise linear basis on an arbitrary 

triangular grid. Wathen [82] (see also §5.4) has shown that if H p = diag(A) then 

k =  k{Hq 1 A) =  4 so that the parameter

( l - K * \
a  = —. * i i ’

\ 1  +  « 2  J

which is a (pessimistic) upper bound on the convergence rate of the preconditioned 

conjugate gradient method, is small and more importantly is independent of the mesh 

parameter. The conjugate gradient iterates satisfy

\ \ z -  zk\\A < a k \ \ z -  z0\\A ,

see [29], so tha t the preconditioned conjugate gradient method will be fast to solve large 

systems of this form. For example, the conjugate gradient method on the diagonally 

scaled mass matrix above would require at most k /  log 9 steps to reduce the energy 

norm of the error by a factor of 1 0 fc.

Assuming that it is possible to calculate the effect of A - 1  is equivalent to assuming 

that it is possible to precondition (3.1) with a preconditioner that contains A-1 . This 

assumption is made in [2 2 ] where the authors conclude that if it is feasible to operate 

with A - 1  then an efficient way to solve (3.1) using a minimum residual approach (see 

for example [56, 69]) is to solve the Schur complement equations

B TA ~ 1B y  = B TA ~ 1b. (3.3)

using the MINRES algorithm [56] (and then recover x ). In §3.5 this approach is com

pared with the generalised least-squares approach outlined above, and it is noted that 

since the Schur complement system is simply the normal equations for the generalised

3.1. INTRODUCTION
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least-squares problem it is more favourable to solve (3.1) using a least-squares approach.

3.2 T h e  generalised  least-squares con n ection

Notice th a t x  can be eliminated from (3.1) to form (3.3), an equation in y only. The 

m atrix B T A ~ l B  is often referred to as the Schur complement. If y solves (3.3) the 

solution (x T yT )T of (3.1) can be recovered using x  =  A-1 (b — By).  From (3.3),

pTB TA ~ l B y  = pTB T A ~ l b VpGRm,

so tha t, on defining the inner-product (• , •) on Rn by (u , v) = v!FA~1v , (3.3) can be 

reformulated as

Find y G Rm such that (Bp  , By) = (Bp  , 6) Vp G Rm. (3.4)

Setting r = b — B y  implies that if y solves (3.4), (Bp  , r) =  0 Vp G Rm, so tha t the 

residual r  is orthogonal to the span of the columns of £?, denoted span(B), with respect 

to (• , •). This condition implies that B y  is the closest representation of b in span(B)

with respect to the norm induced by (• , •), i.e. that y is determined by the generalised

least-squares problem,

Find y G Rm such that min ||fr — Bp\\A-i  =  \\b — By\\A-i  , (3.5)

where =  (u > u)* = (uT A~l u ) 2 . The reverse argument, that (3.5) is equivalent

to (3.3), can be seen by minimising the functional F(jp) =  5  ||b — I?p||^_i.

3.3 G olu b -K ah an  b id iagonalisation  and L SQ R

As is the case for many iterative solution methods for symmetric systems (for example 

CG [36], SYMMLQ and MINRES [56]), the LSQR algorithm [58] for the solution of 

least-squares problems can be seen to have its roots buried in the Lanczos process [46] 

for reducing a symmetric matrix to tridiagonal form. In §3.3.1 the Lanczos process 

is reintroduced and in §3.3.2 it is explained how Golub and Kahan used the Lanczos 

process to reduce a given matrix to bidiagonal form, and then how Paige and Saunders

3.2. THE GENERALISED LEAST-SQUARES CONNECTION



C h a p t e r  3 72

extended this bidiagonalisation process to form an iterative solution method for least- 

squares problems.

3 .3 .1  T h e  L anczos p rocess

Given a symmetric matrix M  and a starting vector 6 , the Lanczos process [46] reduces 

M  to  tridiagonal form as follows.

T he Lanczos process

Set PiV\ = b,

For z =  1 ,2 ,...
W i

f i i + l V i + l  = W i -  OiiVi,

where 6 o := 0  and fa > 0  is chosen so tha t ||0 i|| =  1 , i = 1 , 2 , 

the Lanczos process can be written more succinctly as

. The recurrences of

M V j t  =  V f c T f c  4 -  f ik + iV k + iC k  =  V k + i H k , (3.6)

where V* =  [t>i,. . .  , Vk] and

Tk =

a  l P2 

p2 P$
and Hk =

Tk

P k + ieT
■ ■ Pk

Pk Oik

The set {■0i} £ _ 1 can be shown to be constructed so that v f v j  =  Sij (in the absence 

of rounding error) so that Vk Vk = I k. Further, since vk+i C span{vk- i , v k , M v k}, 

inductively it can be seen that {'0i}^:==1 is an orthonormal basis for the Krylov subspace 

JCk(b, M )  =  span{b, M b ,. . .  , M k~l b}.

As mentioned above, many iterative solution methods for the system M z  =  b can

3.3. GOLUB-KAHAN BIDIAGONALISATION AND LSQR
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be derived from the Lanczos process. For example if p k  is the solution of the system

TkPk = Piei, (3.7)

and if Zk '= Vkfik then (3.6) gives

M z k = b + /3k+ifjkvk+u

where p k is the last entry in p k . Hence zk will solve M z  = b whenever (3k+iVk is 

negligible. Defining rk =  b — M zk  implies rk =  Pk+i{^kPk)vk+i and hence

V ? rk = 0.

T hat is, the residual rk is orthogonal to the span of the vectors Vi, i = 1, . . .  , k  and 

hence is orthogonal to the span of the Krylov subspace /Cfc(6 , M ). This is often referred 

to as a Ritz-Galerkin condition. When M  (and therefore Tfc) is positive definite, using 

the Cholesky decomposition of Tk  to solve (3.7) (which is easily obtained from the 

Cholesky decomposition of T*_i a t trivial cost) is the foundation of the conjugate 

gradient method.

Subproblems involving H k  give rise to the related SYMMLQ and MINRES algo

rithms. Consider the subproblem

minimise ||ijt+i|| subject to H^tk+i = Pie\. (3.8)

Then defining Zk = Vfc+i f̂c+i implies that

v?Mzh = if? (y?+lvk+l) t k+l
=  P\e\

=  V ? h

Hence it is clear that

v?n  =  o,

and so again the residual is orthogonal to the Krylov subspace JCb(k ,M ).  Using LQ

3.3. GOLUB-KAHAN BIDIAGONALISATION AND LSQR
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factorisations of Hf. to solve (3.8) is the idea behind the SYMMLQ algorithm. 

The subproblem

m i n i m i s e Hktk — (3\e\ (3.9)

is tha t of the MINRES algorithm, so called because setting Zk =  Vktk implies

\\Mzk -b \ \  = Vk+1 ( H ^ k  -  A ei )  11 >

Hktk J

and hence at each step of the algorithm the norm of the residual over the Krylov 

subspace /Cfc(6 , M )  is minimised. The minimisation (3.9) is performed using the QR 

decomposition of i/*.

Since the LQ and QR factorisations do not require that the m atrix M  is positive 

definite, the SYMMLQ and MINRES algorithms can be applied to arbitrary symmetric 

linear systems, whereas the CG algorithm can only be applied to symmetric positive- 

definite systems. The SYMMLQ and MINRES iterative methods are discussed in detail 

in [56] and [70].

3 .3 .2  G o lu b -K a h a n  b id ia g o n a lisa tio n  and  L S Q R

The singular value decomposition of a matrix B  is B  = UT,Vt  where E is a rectangular, 

diagonal matrix having the same dimensions as B  with non-negative entries, and U, V  

are unitary matrices of appropriate size. In [28] Golub and Kahan suggest an iterative 

procedure for generating a bidiagonal matrix, E , having the same singular values as 

B.  The m atrix E  can be seen to be the result of applying the Lanczos process to the 

m atrix

I  B  

B t  0

as follows.

If the Lanczos process is applied to *4LS with starting vector |  bT 0T j  it can be

3.3. GOLUB-KAHAN BIDIAGONALISATION AND LSQR
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seen tha t the orthonormal vectors Vi are of the form

Vi

f

U j

<

0

...
...

.. 
1

0
1

< 1 I

i =  2 j  — 1, j  €  N

i =  2j ,  j  e  N

and tha t

oci =:
1 i =  2j  -  1, j  € N

0 i =  2j, j  e  N

, [ fc+ii r i i
Notice tha t since {'Oi}f_1 is an orthonormal set, both { u j } - ^  and (where [•]

denotes ‘integer part of’) are orthonormal sets. It can also be verified tha t {u j} lj = 1  

spans the Krylov space JCl ( B B T,b) whilst {vj}lj = 1  spans the space JCl (BTB, B Tb). 

Renaming the /V s as

Pi = ' <
pj  i =  2j — 1, j  e  N

otj i =  2j ,  j  e  N

allows the tridiagonal m atrix T21+1 at the 21 +  1st step of the Lanczos process on ^4LS 

to be w ritten as

1 Q!l

OL\ 0 P2

p 2  1 OL2

^2f+l —

<*i 0 P1 + 1

Pl+1 1

The unit entries in T21+ 1 can be grouped together into the top-left block by operating 

on T2Z+ 1  with a permutation matrix P21+1 • If P21+1 is designed to keep the entries ai
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and f3{ in order then

P 2 1 + 1 T 21+ 1P 21+ 1  =
h + 1 El

H f  0
(3.10)

where / ( + 1 €  and E\ G ]R*+ lx* has the form

B| =

ai  

0 2  <*2

ai

Pl+i

Hence the m atrix A LS can be reduced to the form in (3.10) by a Lanczos process and 

a perm utation. In comparison with the standard Lanczos process which is usually 

thought of as a  tridiagonalisation procedure, this process on *ALS can be considered as 

a reduction of B  to the bidiagonal form Ei, a bidiagonalisation process. These obser

vations allow the Lanczos process for A LS to be expressed in the following form, to be 

referred to as the Golub-Kahan lower-bidiagonalisation procedure (GKLB). (The orig

inal derivation was not based on a Lanczos process, see [28], although the equivalence 

was noted).

T he G olub-K ahan low er-bidiagonalisation procedure (G K LB)

Set P\U\ = 6, a\V\ — B Tui,

For j  = 1 ,2 ,. . .

Pj+l^j + l —  P^j OtjUj,

U j + i V j + 1  =  B T U j + i  -  P j + i V j ,

where a j , (33 > 0 are chosen so that ||u j|| =  ||vj|| =  1 respectively.

The original motivation for reduction to bidiagonal form was that the singular 

values of Ei can be used to approximate the singular values of B, in much the same 

way tha t the Lanczos process can be used to approximate eigenvalues of symmetric 

matrices. See for example [59, 68].

Notice tha t one step of GKLB is equivalent to performing two Lanczos steps on 

^4ls (since two Lanczos vectors axe found at each step of GKLB) but requires only

3.3. GOLUB-KAHAN BIDIAGONALISATION AND LSQR
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two multiplications involving B  as opposed to four. Defining Ui = [iii,. . .  , it*], Vi = 

[i>i, . . .  , vi] allows the recurrence relations of GKLB to be expressed as

Ui+i(Piei)

BVi

B T U,+1 —

Ui+iEi,

V iE f  +  ai+ivt+ief+1.

The m atrix Ei represents the restriction of B  to the space spanned by the columns of 

Vi w ith respect to the basis formed by the columns of t/j+i.

The algorithm GKLB owes the special lower-bidiagonal form of the m atrix Ei to the 

starting vector | bT 0 T  j  - In fact if the starting vector 0 T  B Tb j  was instead 

used to start the Lanczos process for A LS a similar algorithm to GKLB would result 

which reduces B  to upper-bidiagonal form. This algorithm will be referred to as Golub- 

Kahan upper-bidiagonalisation (GKUB), the detail of its derivation is omitted since it 

is essentially the same as that above. The recurrences of GKUB axe as follows.

T he G olub-K ahan upper-bidiagonalisation procedure (G K U B )

Set 0\V\ =  B Tb, pipi = B t vi,

For j  =  1 ,2 ,. . .
0 j + i v j + i  =  B Tp j  — p j v j ,

P j + i P j + i  =  B v j + i  — Q j + i p j ,  

with 9 j , P j  > 0 chosen so that ||uj|| =  ||p j|| =  1. If Pi  = [p i,. . .  ,p/] and

pi 6 2

P2 03

Ri =

01

Pi
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then

V i(^ci) =  B Tb, 

PUZ =  PtR h 

B TPi =  ViRf  +  flz+ivj+ief,

hold and P jTP j =  I/.

There is an im portant connection between the matrices Ei and Ri. Using the 

orthogonality properties of GKLB and GKUB it is simple to deduce that

e T e , =  r T r ,.

Now suppose tha t QiEi =
Ri

oT
is the QR decomposition of Ei where Ri has positive

diagonal entries (so that Ri is unique [73]). Then R [R i = R fR i .  Further since the 

Cholesky decomposition of a positive definite matrix is unique upon insisting tha t the 

diagonal entries of the Cholesky factor axe positive [73], it follows tha t Ri = Ri. Hence 

the the matrix Ri of GKUB applied to «4LS is the upper-bidiagonal matrix obtained in 

the QR decomposition of Ei. It will be shown in §3.3.3 that the entries of Ri can be 

obtained trivially from the entries of Ei without requiring GKUB to be carried out.

3.3.3 The LSQR algorithm

The solution of the system

(3.11)
I B X b

b t 0 . y  . 0
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is now considered. Since the Lanczos vectors satisfy V^M Vk = Tfc, the GKLB vectors 

have the property that

tu[

T
u l2

0 J
TVf

T
v 2

uf+ 1 0r

I  B ui 0 . . .  m + 1

B t

-----1
0i-HO

1

1 ai 

a i  0 @2

P2 1 <*2

on 0 (3i+ 1

P1 + 1  1

and by permuting rows and columns the above can be rewritten in the form

1

H

b1

I  B Ul+1 I  Et

^ T . B t Vl . . E T

so that the Lanczos subproblem (3.7) with k = 21 +  1 corresponds to

1•

Sl+l
=  Pi

ei

0 ti 0
(3.12)

where s [+ 1  t f  j is the permutation of p2 i+i- Hence ti is the solution of the least- 

squares problem

minimise teRi \ \E(t -  A e i | | , (3.13)
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and yi = Viti, xi = Ui+\Si+i are approximations to y and x  from the spans of V* 

and Ui+i respectively. Solving the minimisation (3.13) is equivalent to solving (3.12) 

and hence equivalent to the subproblem (3.7) associated with the CG algorithm. The 

resulting algorithm will be an implementation of CG for the system (3.11), in the sense 

tha t the standard CG algorithm cannot be applied directly to this non-positive-definite 

system as Tk will not necessarily be a positive definite matrix for all k , and hence will 

not necessarily perm it a Cholesky decomposition for all k , but the solutions of the 

subproblem (3.7) of CG and subproblem (3.13) of LSQR are equal.

The connection between the matrix Ri of GKUB and the QR decomposition of Ei 

provided Paige and Saunders with an attractive method for the solution of (3.13). First 

define fi = (<pi,. . .  , ipi)T and Jpl+l by

Q i(P iel) = fi

Vi+i
(3.14)

where Qi is the orthonormal matrix in the QR decomposition of Ei . Then 

\ \E , t -P ie i \ \  =  | |Q i(£ (* -A e i) | | ,

Ri f  _ fl
oT _  Vi + i  _

and so upon noticing f i G span(Ri), ti is defined by

RiU — fu

and it is trivial to show that

s/+i — Q j
0

<Pi+i

Since ti changes elementwise it would appear tha t yi = Viti needs to be recalculated 

at every step. This is not desirable, it is more convenient to rewrite the above method 

in such a way tha t solution estimates can be updated. To this end notice that

[Ri fi] =
R i - i  - fi-
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where the dots indicate the inclusion of a new row and column, so that

y, = Vit, = (V ,R p ) f ,  = : D‘fl>

where Di = [d i,. . .  , d{[. Defining do := 0, the rule

di = ~ (v i  -  0fd|-i),
Pi

is obtained for developing D[, whence if yo :=  0,

Vi =  yi-i+<pidi,

is the update rule for solution approximations.

The final observation before the LSQR algorithm of Paige and Saunders can be 

presented is the following. The matrix Qi in the QR decomposition of Ei can be 

expressed as a product of plane rotations, Qi =  Qi,i+1 . . .  Q2.3Q 1.21 where each Q jj+i 

operates on the transformed Ei to destroy the sub-diagonal fij+i term. Hence c/ and 

sj, the non-trivial entries in Q 1,1+1 must satisfy

(3.15)
Cl si Pi

1

+
1

Si -Cl _ Pl+l <*l+l Pl+l

where pt = (Ri)u . Notice also that (3.14) implies that

Cl Si <PI Vi

. Sl -Cl 0 . ^ + 1  .
(3.16)

Using (3.15) , (3.16) and the fact that the c/, si matrix is unitary it is easy to verify 

that given aii+i, A+i, Pi an^ <Pi> new coefficients pi,ci,si, 0z+i,pi+1, <pi and <Pi+i can 

be calculated at trivial cost by the rules given in algorithm LSQR below.
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T h e  L S Q R  a lg o rith m

Set y0 =  0, /?i«i =  b, a m  =  B Tu i , dY = zq, Tpx -  p i ,  px =  a i

For j= l,2 , . . .

(Bidiagonalisation step)

P j + i U j + i  — B v j  — o t j U j

a j + i v j + i  =  B T U j +1 — P j + \ V j

(Orthogonal transformation step)

Pi = y
Cj = p j/p j

Sj = Pj+i/ Pj

6 j +1 = sj°Lj +1

Pj+1 = — CjCXj+l

Cfj = CjTpj

Vj+i = 
(Solution

SjTpj
update)

Vj = Vj-1 4" {<Pj / Pj)dj

dj+1 — vj +1 i@j+i/Pj)dj

After each solution update a convergence test needs to be carried out and the iter

ation term inated if some stopping criteria is satisfied. An analysis of suitable stopping 

criteria can be found in [58].

It should be noted that it is also possible to reduce the system (3.11) to a bidiagonal 

problem by using GKUB instead of GKLB. The resulting algorithm for the solution 

of (3.11) is then the LSCG algorithm of Paige [54]. This algorithm corresponds to 

solving a version of the normal equations associated with (3.11) and is therefore not as 

computationally attractive as the LSQR algorithm above.

3.4  S o lu tion  o f  generalised  least-squares prob lem s

In this section the bidiagonalisation procedure GKLB will be applied to a particular 

matrix associated with the generalised least-squares problem (3.5) to obtain a bidiag

onalisation procedure for B  with different orthogonality properties. In the same way 

that LSQR was constructed from GKLB, an iterative solution method for generalised 

least-squares problems will then be derived from the new bidiagonalisation procedure.

3.4. SOLUTION OF GENERALISED LEAST-SQUARES PROBLEMS
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3 .4 .1  A  b id ia g o n a lisa tio n  p ro ced u re  w ith  a  d ifferen t in n er-p ro d u ct

Recall from §3.2 tha t solving the system (3.1) is equivalent to solving the generalised 

least-squares problem (3.5),

Find y  G Mm such that mm ||6 — Bp\\A-i = ||6 — By\\A-i  .

Typically to solve such problems it is first assumed that the Cholesky factorisation 

A  = L L t , where L  is lower-triangular, is available. Then the problem (3.5) can be 

recast as the linear least-squaxes problem,

Find y G Rm such that mm ||-L_1 (b — B p ) || =  (& — B y ) | | , (3.17)

which is then solved using any favourite method for linear least-squares. An example 

of solving (3.5) in this way is given in [55],

From §3.2 it is obvious that (3.17) is equivalent to the linear system

---
--

1

■-1 t-1 1 I-1 to
1

z L ~ l b

B t L~t  0
.  y  .

0

and clearly LSQR could be the method used to solve (3.17). The solution y x T yT j 

of (3.1) is then recovered by evaluating z = L ~ l {b — By), x  = L~Tz. However there 

is another way in which an LSQR type method can be applied to solve (3.5) which 

avoids using the Cholesky factor of A, and which sacrifices some of the Euclidean 

orthonormality properties of the LSQR vectors for a similar orthonormality condition.

Defining the vectors Wi := Mu{, where the choice of the matrix M  will be discussed 

shortly, the GKLB procedure can be applied to the matrix L ~ l B  as follows

GKLB applied to  L ~ l B  w ith  transform ed uj

Set /3\Wi =  M L ~ 1 b, =  B TL~T

For j  = 1 ,2 ,...
Pj+iWj+i = M L ~ lBvj — OijWj, 

atj+iVj+i = B TL~TM ~ 1Wj+i -  Pj+iVj,

where again ctj > 0 is chosen so that ||v j|| =  1 and now (3j >  0 is chosen such that

3.4. SOLUTION OF GENERALISED LEAST-SQUARES PROBLEMS
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11 wj 11 (MMT) - 1 =  11% 11 =  1- Since the vectors Uj form an orthonormal set it is true that

w f  (M M t ) 1 Wj = 8 ij. (3.19)

It is clear th a t judicious choices for M  are M  G {L, L~T }. Choosing M  =  L  will cancel 

all applications of L ~ l and all occurrences of L~TM ~ l become applications of A-1 

Similarly choosing M  = L~T cancels all L~T operations and M L ~ l becomes A-1 . In 

both cases the Cholesky factor L  is completely removed from the picture. The lower- 

bidiagonalisation procedure resulting from the choice M  = L  will be referred to as 

GKLB(A-1 ) (since the vectors Wj are A-1-orthonormal by (3.19)) and tha t resulting 

from the choice M  = L~T will be referred to as GKLB (A) (since then the Wj are 

A-orthonormal). These two algorithms axe presented below.

GKLB(A- 1 )

Set (S\w\ — 6, ativi =  B TA~1w i,

For j  = 1 ,2 ,. . .
Pj+ iwj+ i =  Bvj  -  ajwj,  

a j+ ivj+ i =  BTA~1wj + 1 -  Pj+iVj,

GKLB ( A)

Set Piwi =  A_16, a\V\ =  B Tw it

For .7 =  1 ,2 ,. . .
Pj+iWj+i =  A~lBvj — ajWj,

&j+ivj+i  =

where in both  algorithms otj > 0 is chosen so that ||uj|| =  1 and with (3j >  0 chosen so 

that =  1 in GKLB(A_1) and =  1 in GKLB(A) . The recurrences of

GKLB (A-1 ) are more nicely expressed as

t W f t e O  =  b,

BVk — Wfc+iEjfc,

B TA~1Wk+1 =  VkEk +  a k+ivk+iel+ l ,
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and those of GKLB (A) ,

Wi+ i(/?iei) =  A - 'b ,

A ~ l BVk = W k+1E k, 

B T Wk+\ =  V kE j  +

The procedure for carrying out the calculation of Pj+iWj+i in GKLB (A-1 ) is

w j + i  =  B v j  — ot-jWj 

t =  A ~ l Wj+ 1  

#7+1 =  (wj+lT t)*
W j + i  =  Wj+ i / (3j + i

A ~ lWj+\ = t/P j+1

so th a t A ~ 1W j + 1 is already known before it is required in the calculation of Vj+ \ .  The 

similar calculation for GKLB (A) is

t =  Bvj  — otjAwj

Wj + 1 = a ~H

# 7 + 1 = { W j + iT t)%

W j + 1 = W j + i / P j + 1

Awj+1 =  V  # 7  + 1

where Aw\  =  b/P\. Since both bidiagonalisation procedures are computationally equiv

alent, only GKLB (A-1 ) will be considered further, although all the results given axe 

equally true of both methods. The last note on GKLB (A) is the following. At each 

iteration step, one solve of the form A / = g is required. If fk  =  Wkhk is an approxi

mation to /  from span(Wk), then it may be hoped that AWkhk ~  g (in some sense). 

If the m atrix Wk is that obtained from GKLB (A) , hk = W ^ g  and so fk  = (WkW^)g.  

This observation has not proved useful so far.
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3 .4 .2  E x te n s io n  o f  th e  b id ia g o n a lisa tio n  p ro ced u re  to  an  ite r a tiv e  so 

lu t io n  m e th o d

In exactly the same way that LSQR was derived from GKLB, GKLB(A-1 ) forms 

the basis for an iterative solution method for generalised least-squares problems. Let 

yk = VkZk be an approximation to the solution of (3.5). The optimal Zk is then the 

solution of

min \\b -  BVkz\\A- i ,
z&Rk

and using the recurrences of GKLB (A-1 ) ,

||6 -  BVkz\\A-i  =  ||6 -  W k+1E kz\\A^  .

Defining F(z)  =  5  | |6  — Wk+iE kz\\\~i it can be seen that ^ F ( z k) =  0 implies

E l  (Ekzk - W ? +1A - 1b )=  0,

so tha t zk is the solution of min3eKt | \Ekz — W£+lA ~ lb\|. Further since W f+1 A - 'b  = 

zk is the least squares solution of

m inH E fcZ -^ ie ill,

which is exactly the same subproblem which is solved by LSQR (c.f. (3.13)) so that 

only the bidiagonalisation step of LSQR needs to be swapped for GKLB(A_1) in order 

to apply an LSQR-type algorithm to the generalised least squares problem (3.5). The 

algorithm described above will be referred to as LSQR(A-1 ) and is given below for 

completeness.

T h e  L SQ R (A -1 ) a lg o rith m

Set y0 = 0, Piwi = b, a m  =  B TA ~ 1w i, dx = vi, Tpx =  pl = a>i

For j= l,2 , . . .

(Bidiagonalisation step)
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/3j+iWj+i = B vj  — otjWj with (3j+\ chosen so that ||w j+ i||A_i =  1

aj+iVj+i = B TA ~ 1wj + 1 -  /3j+iVj 
(Orthogonal transformation step)

Pi -  ( P) +  P]+1)  2

C3 =  Pj/P3

s j =  Pj+i/pj

Qj+1 — SjOij-j-l

Pj+i =  —CjQtj+1

W = cjVj

Vj+i =  S j t f j

(Solution update)

Vj — Vj-i (Vj/Pj)dj

dj+i = vj+i ~~ (@j+i/Pj)dj

3 .4 .3  P re c o n d itio n in g

When solving systems of the form

M z  = b,

where M  € Rnxn, it is usual to  introduce a nonsingular preconditioning matrix IV, or 

if N  is positive definite its Cholesky factor L, and instead solve one of the systems

N ~ l M z i  =  N ~ l b (left preconditioning)

M N ~ 1zr = b (right preconditioning)

L ~ lM L ~ Tzc  =  L ~ l b (central preconditioning)

where z i  = z, zr = N z  and zc  = L Tz\ the idea in all cases being tha t the matrix 

N ~ l M  should have better condition than M ,  or that N ~ l M  «  I  in some sense.

It is clear that of these preconditioning strategies only right preconditioning is ap

plicable to (generalised) least-squares problems since any other form of preconditioning 

affects the norm in which the minimisation is taking place. Hence preconditioned gen

eralised least-squares problems,

min | \B N ~ Tp — b\ , (3.20)
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can be considered when solving (3.1), where p = N Ty. Analogous to the extension from 

least-squares to generalised least-squares, an iterative method for (3.20) can be devised 

from the Golub-Kahan bidiagonalisation procedures by altering the inner product in 

which the m -vectors, {vi}, are orthonormal. GKLB can be applied to the matrix B N ~ T 

with Zi := Svi as follows.

T he G olub-K ahan low er-bidiagonalisation procedure for B N ~ T w ith  trans

form ed Vj

Set j3\Wi = 6 , ol\Z\ =  S N ~ l B TA ~ lw\,

For j  = 1 ,2 ,. . .
(3j+ 1  Wj+1  =  B N ~ t S~  1 Zj — otj Wj,

(Pj+i chosen so that =  1 )

otj+iZj+i = S N ~ 1B TA ~ 1Wj+ 1 -  fij+iZj

(aij+i chosen so that Ilfj+ill^sT)-! =  1 .)

If S  = N  is chosen with H  = N N T, the resulting algorithm, to be referred to as 

GKLB(A-1 , i? -1 ), is

GK LB (A-1 , i f -1 )

Set P\W\ =  b, ot\Z\ =  B T

For j  = 1 ,2 ,. . .
f3j+\Wj+i = B H ~ lZj — OLj Wj,

((3j+ 1  chosen so tha t | 1 1^—i =  1)

Oij+iZj+i = B TA ~ 1 wj + 1 -  Pj+iZj

(aj+ 1 chosen so that ||z j+i||^ _ i =  1 ).

The procedure for carrying out the calculation of a j + i Z j + i ,  similar to tha t given for 

calculating (3j+ \ W j + i  in GKLB (A-1 ) , is

zj + 1 =  B TA ~ 1wj + 1 -  f3j+iZj

t  =  H ~ l Zj+1

<*j+i =  ( z j+ ir f

zj +1  =  zj+ i /aj+i

H ~ l Z j + i  =  t / a j + 1
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where H ~ l Z j + i  is used in the next iteration step in the calculation of W j + 2 -

A similar algorithm, GKLB(A-1 , H), to GKLB[A~l ,H ~ l ) can be obtained on tak

ing S  = N ~ T above. Algorithms GKLB(A, H ~ l ) and GKLB (A, if )  are also defined. 

Any of these bidiagonalisation procedures can be inserted into the bidiagonalisation 

step of LSQR(A-1 ) to form an algorithm for the preconditioned system (3.20), the one 

corresponding to GKLB(A- 1 , H ~ l ) being denoted LSQR(A- 1, H ~ l ) e.t.c. .

R em arks

The only other reference to preconditioning LSQR that the author is aware of is that 

in [57]. Here it is noted tha t of the three preconditioning strategies, left, central and 

right, only right preconditioning is suitable when using LSQR but no further discus

sion is given other than saying that the effect of AT- 1  must be easy to calculate. Here, 

preconditioners of the form H  =  N N T are being proposed for use in the LSQR al

gorithm, where H  is a preconditioner for B TB, together with an appropriate change 

of inner product. I t is obvious that this approach requires only one operation with 

the preconditioner per iteration, compared with two operations per iteration for the 

standard LSQR preconditioning approach. It is suggested that such preconditioners 

may be also easier to find since the matrix B TB  is symmetric and positive definite 

and so open to several possible types of preconditioning strategies such as those of 

domain decomposition, additive Schwartz type. Whereas, to form a preconditioner for 

the (rectangular) m atrix B , the only obvious options appear to be to diagonally scale 

B  or form a Cholesky factorisation of a preconditioner for B TB  and use this as the 

preconditioner N .  Also, the incomplete factorisations of rectangular matrices discussed 

in [4, Section 7.1] may also be appropriate. Whilst such an approach is probably an 

effective preconditioner for R, being limited to these preconditioning strategies is not 

ideal. If an additive Schwartz type preconditioner were to be used to precondition in 

the manner proposed in [57], not only would the preconditioner need to be calculated, 

but so would its (complete) Cholesky factorisation. Since additive Schwartz precon

ditioners are rarely formed in practise, this makes the approach extremely expensive, 

whereas the approach outlined in this section is no more expensive than precondition

ing an equivalent conjugate gradient algorithm. For a more detailed discussion on 

preconditioning LSQR(A-1 ) see §4.4.
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3.5 C om paring L SQ R (A  x) w ith  p recon d ition ed  K rylov  

m eth o d s

The main factor influencing whether the LSQR(A-1 ) method is applicable to a partic

ular system of form (3.1) is that the action of A- 1  must be easy to perform. In effect 

this is equivalent to assuming that a specific preconditioning of (3.1) is possible, and 

hence it would make sense to compare the LSQR(A-1 ) method with preconditioned 

Krylov methods, where the preconditioner for the full system contains the m atrix A. 

In [22] preconditioners of the form

0

0

± H
tj e (3.21)

are considered, where H  is symmetric positive definite and is typically an approximation 

to the Schur complement B TA ~ lB. The preconditioner (3.21) can be applied centrally 

to (3.1) to form the preconditioned system

(3.22)

where B  =  L ~ lB Q ~T, x = }jLTx, y = QTy and b = L ~ l b. Here L  and Q are the 

Cholesky factors of A  and H  respectively. The choice of ± H  in (3.21) can impose 

different conditions on A±,  the matrix in (3.22). It is easy to see that choosing -\-H 

ensures tha t A+ is symmetric, whilst the identity

7]I B X b

± b t 0 . $
0

j uT vT j  A . = 7]U u > 0 , u /  0 ,

shows tha t choosing —H  gives rise to a positive semi-definite matrix. The dilemma of 

selecting symmetric or positive semi-definite preconditioners is addressed in [2 2 ] and 

some elegant results are presented, the most relevant being that if MINRES (§3.3.1, 

[56]) is used to solve the symmetrically preconditioned version of (3.1) with A+  as 

coefficient matrix and GMRES [69] is used to solve the positive semi-definite problem 

with A -  as coefficient matrix, then the two resulting solution methods for (3.1) are
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equivalent in the sense that

l k r RESll =  lk ? MRESll ,

and further convergence is independent of the choice of rj, and

l l « r i l  =  i h T R ES n  ( =  i i r2T RESn  =  i h T + r i i ) ,

so tha t both methods make no progress every second step. These observations make 

MINRES the most attractive of the two methods since it is cheaper to implement than 

GMRES.

The system (3.22) is equivalent to the preconditioned generalised least-squares prob

lem

mm B Q ~ t x -  b
A-i

(c.f. (3.20)) and hence LSQR(A-1 , H ~ l ) can be applied. The matrix H  will certainly 

affect the convergence of both the least-squares and the MINRES methods of solution, 

but since only a comparison of these two approaches is required the m atrix H  plays 

no part, as will hopefully become clear. Therefore it will be assumed tha t H  = I  (and 

hence Q — I). The MINRES approach then corresponds to solving the system

(3.23)

Recall now (§3.3.1) that the MINRES algorithm is a development of the Lanczos pro

cess, and consider the 21 +  1 ^  step of this Lanczos process. W ith starting vector 

f i iV! =  ( L ~ l b )T  0T j this Lanczos process will have generated I + 1 orthonormal

I  L ~ l B LT x L ~ l b

B t L~t  0 v 0

vectors of the form u f  0 T and I orthonormal vectors of the form 0 T v f  j • 

At the 21 +  l ^*1 step of MINRES on (3.23), the approximation to y is from the

span of Vi = [u i. . .  u/], whereas an approximation to y from the span of Vi is available 

from LSQR(A-1 ) at only the Ith step. i.e. the Lanczos minimisation-subproblems used

to generate ytLSQR(A- 1 ) and ES are performed on subspaces of equal dimension, so

that LSQR(A x) takes half the number of iterations of MINRES on (3.23) to produce
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an approximation to y  from a subspace of the same size. Obviously the two approx

imations ykSQR(A ) an(j ^minres wjq not necessarily be the same since each method 

uses a different minimisation subproblem. It could be argued that MINRES also pro

vides an approximation to x  at each step whereas LSQR(A-1 ) does not. However once 

yLSQR(A ) deemed sufficiently accurate, a^SQR(A } can be recovered at a cost of less 

than one LSQR(A_1) step using the rule a:['SQR(A * — A ~ l (b — B y^SQR̂ A *), or by 

forming an approximation to x  from span(Wi). Hence the LSQR(A-1 ) method pro

vides a way of stepping over the redundant MINRES iterations found in [22], by using 

the GKLB process to step over the redundancies in the Lanczos process on the matrix 

in (3.23).

It can be seen ([20]) tha t MINRES on the preconditioned system (3.22) requires

• Matrix-vector products 2 (n x m)

• A ~ l operations 1

• Vector inner products 2 (n) , 2 (m)

• Additional flops 1 2 n -I- 1 2 m

• Stored vectors 7 (n) , 7 (m)

per step, where (■) indicates the dimension of the operation, whereas the operation

count for one step of LSQR(A_1) is

• Matrix-vector products 2 (n x m)

• A ~ l operations 1

• Vector inner products 1 (n) , 1 (m)

• Additional flops 4n +  8 m

•  Stored vectors 1 (n) , 4 (m)

so that the LSQR(A-1 ) method seems to be more attractive than either of the precon

ditioned MINRES or GMRES approaches.

In [22], the authors also note that applying MINRES to the matrix

B B t  0
A + (A + -r] I )  =

0  b t b

generates the same iterates as MINRES applied the the matrix A+. Notice tha t if an
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initial vector of the form 0 T  j  were used to generate a Krylov subspace together 

with the matrix above then each Krylov vector would retain the zero component in its 

upper part. Therefore applying MINRES to A+(A+ — ijl) is equivalent to applying 

MINRES to B t B  = B TA ~ l B  (when H  = I,  the case H  ^  I  being similar), that is 

applying MINRES to the Schur complement matrix. Obviously when B  is of full column 

rank the cheaper conjugate gradient method may be preferred. This observation led to 

the conclusion tha t the most efficient way to solve (3.1) (if the preconditioner (3.21) 

is viable) is to apply MINRES to the Schur complement system. However, notice that 

MINRES applied to the Schur complement system satisfies (at the kth step)

min IIB TA ~ l B y  -  B TA ~ 1b\ \ =  \\BT A~'By%™KES -  B TA ~ 1
ye/C*

whereas at the k th step of LSQR(A-1 ),

min \ \By  — b\\A-i  =
yElC 2

B  LSQR(A-q _  b

where K,\ and Kk 3X6 ^ e  Krylov subspaces associated with MINRES and LSQR(A-1 ) 

respectively. It can be verified that with the same choice of ^ in re s  an(j y^SQR(A ) ? 

the two Krylov subspaces are the same indeed, K,\ = /C§ =  lCk(B TA ~ 1B , B TA ~ 1b). 

Hence both LSQR(A-1 ) and MINRES on the Schur complement system return an 

approximation to y from the same subspace. Notice further that the Schur complement 

system

B TA ~ l B y  = B T A ~ l b

is simply the normal equations corresponding to the generalised least-squares problem 

(3.5). This observation leads to the conclusion that in inexact arithmetic, MINRES 

on the Schur complement system will be numerically inferior to LSQR(A_1) on ill- 

conditioned problems since the Schur complement matrix can have worse condition 

than the coefficient matrix L ~ lB  of the generalised least-squares problem, the condition 

of the Schur complement being cond(L- 1B )2.
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3 .6  N u m erica l exp erim en ts and im p lem en ta tion

Following from the final comments of §3.5, little difference between applying MINRES 

to the Schur complement and LSQR(A-1 ) to the generalised least-squares problems is 

to be expected when the Schur complement matrix is well conditioned. Experiments 

have shown this to be the case, with LSQR(A-1 ) proving slightly better at minimis

ing \\y — yk\\ and \\Byk — 6 ||A_i. All experiments were performed on machines with 

precision e sa 1 0 ~16.

E x a m p le  1 : A n  in co m p a tib le  p ro b lem

The advantage of LSQR(A-1 ) over the MINRES approach is more obvious when 

considering more ill-conditioned problems. Figure 3-1 illustrates the performance of 

LSQR(A_1) and MINRES at minimising the error, \\y -  yk ||, and residual, ||rjfc||A-i =  

I IByk  — 6 | 1̂4—i , for a finite element discretisation of flow in a porous region contain

ing non-porous ‘fingers’, as governed by Darcy’s law. The resulting generalised least- 

squares problem is obviously incompatible (the solution y satisfies B y  /  b) since x  = 0 

would correspond to a flow with zero velocity. Similar performance is displayed initially 

by each method. However after approximately 10 iterations LSQR(A_1) can be seen 

to reduce the error faster than MINRES. Both methods perform similarly in reducing 

the residual, with LSQR(A-1 ) being only slightly faster. The fact that the generalised 

least-squares problem is so incompatible (in this case || B y  — b\\A-i  « 6 x 10_1) and that 

Uroll^-i is small makes a more precise comparison of each method’s residual reducing 

properties difficult.

For the purpose of these experiments the A_1-norm of the LSQR(A-1 ) residual has 

been calculated exactly using an A - 1  solve at each step of the iteration. In practise, 

however, the estimate

I W L - 1 =  JP k + 1 =  P l s k S k - l  • • • S i

should be used since it is virtually free and has been observed to agree closely with the 

calculated value of This bound is analogous to tha t given in [58] for ||rfc|| in
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Figure 3-1: Example 1 : Graphs comparing the performance of MINRES on the Schur 
complement system and LSQR(A-1) on the generalised least-squares problem for a 
groundwater flow system with k{Bt A ~ lB) =  7.5 x 102. The (two) crossed lines show 
the errors, \\y — yk\\, for both methods. The (uncrossed) lines representing the residuals, 
llrfclU-i, are also plotted. Solid lines (—) show the performance of MINRES against 
iteration and dashed lines (— ) represent LSQR(A-1) . LSQR(A_1) is faster to reduce 
the error and slightly faster at reducing the residual norms.

LSQR and its derivation is the same. From the comments following (3.13),

ri = b -  Byi

= Ui+i(piei) -  BViti 

= Ui+i(p\ei) -  Ui+\EiU

= Ui+isi+i where sj+i is the residual of the minimisation subproblem 

0

<Pl+1
v?\

=  um q T

= vi+i^i+iQi  e i+ i •

The estimate now follows upon exploiting the orthogonality properties of [ / / + 1 and Qi. 

E xam p le 2 : A  com p atib le  p rob lem

The system described in Example 1 was used to construct a more compatible problem 

by altering b so that \\By — b\\ < 6  x 10~3. Since the system is more compatible, 

comparison of the abilities of LSQR(A-1) and MINRES at reducing the residual is 

possible. Figure 3-2 shows the performance of both methods on this system. Again the 

advantage of LSQR(A-1) is clear after only a small number of iterations.

A similar estimate to that above for HrjbH^-i is available for the residual of the
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Figure 3-2: Example 2 : Graphs comparing the performance of MINRES on the Schur 
complement system and LSQR(A-1 ) for the ‘almost compatible’ generalised least- 
squares problem (||By — 6 || < 6  x 10-3 ), k(B t A ~ l B) = 7.5 x 102 in example 2. The 
(two) crossed lines show the errors, \\y — yk\\, for both methods. The (uncrossed) lines 
representing the residuals, ||r’*;||i4- i ,  axe also plotted. Solid lines (—) show the per
formance of MINRES against iteration and dashed lines (— ) represent LSQR(A_1) . 
LSQR(A-1) is noticeably faster at reducing the error and residual norms.

Schur complement equations (the normal equations for the generalised-least squares 

problem),

B TA  Vfell =  (pk+la k+i\ck\-

This estimate is a useful stopping criterion since | \BTA~lrk\ | should be small for good 

approximations, yk, to the solution. It is to be expected that MINRES will be the supe

rior of the two methods at minimising ||jBTA- 1rfc|| since this is precisely the quantity 

minimised at each step when MINRES is applied to the Schur complement system. This 

can be observed in Figure 3-3, which shows ||B TA_ 1rjt|| for the problem considered 

in Figure 3-2. As expected, | |£ TA- 1r£fINRBS|| is monotonically decreasing, whereas 

B t A_ 1r £ SQR(/1 } exhibits oscillations. Hence care should be taken when using the 

residual of the Schur complement equations as a stopping criterion (as MINRES was 

seen to be inferior when minimising the error in Figure 3-2).

E x a m p le  3 : A  m o d e ra te ly  ill c o n d itio n e d  p ro b le m

As a final example it is shown that LSQR(A-1) can succeed in solving a moderately 

ill-conditioned problem upon which MINRES fails. Figure 3-4 depicts what happens 

when both methods are applied to a system with B  E ]R32x16  and with k(B t A ~ l B) =

5.3 x 104. Although LSQR(A_1) requires a greater number of iterates than expected,
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Figure 3-3: Example 2 : Graphs showing ||JBTA_1rjt|| for the generalised least-squares 
problem in Figure 3-2. Solid lines (—) show the performance of MINRES against
iteration and dashed lines (---- ) represent LSQR(A-1) . MINRES performs better at
minimising | |F?TA- 1rfc| | as expected from its minimisation property.

it successfully minimises \\y — yk\\, whereas the MINRES approach fails to noticeably 

reduce the error. This trend was observed to continue up to 200 iterations, at which 

point the computation was terminated.

 10° !
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Figure 3-4: Example 3 : Graphs showing ||y — y*|| for the moderately ill-conditioned 
problem, k (B t A ~ 1B) = 5.3 x 104 in example 3. Solid lines (—) show the performance 
of MINRES against iteration and dashed lines (— ) represent LSQR(A-1 ) . MINRES 
fails to reduce the norm of the error, LSQR(A-1 ) succeeds eventually.

3.7 The case A  =  D

In the case that A = D, a diagonal positive definite matrix, it is obvious that (3.1) is 

equivalent to the weighted least-squares problem,

Find y G Rm such that min ||Bp -  &||D-i =  ||By -  &||D_i , (3.24)
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which could be solved by applying the LSQR algorithm to the least-squares problem

mm D  2 Bp — D  2 b

Notice however tha t this method of solution would first require calculation of the entries 

of D ~ s, and requires two operations involving D~% per iteration, compared with one 

operation involving D ~ l per iteration if (3.24) were to be solved using LSQR(-D-1 ). As 

was noted in Chapter 1, systems with badly scaled weight matrices D  occur frequently. 

An interesting result due to Stewart [74] is that regardless of how badly scaled the 

weight matrix becomes, the solution of (3.24) can be bounded independently of D. 

The solution can be bounded by

| |y | |< | | ( B TD - 1B ) - 1B r Z)-1 | | | | 6 | | .

Stewart’s theorem provides a bound on \\(BTD ~ 1B )~ 1B TD ~ 1\ | which is independent 

of D.

T h eo re m  3.7.1 (S te w a rt [74]) Let B  be of full column rank and D  €E X>+, the set of 

diagonal matrices with positive diagonal entries. Then 3 constants x  and x  which are 

independent of D such that

| |(b t d - 1b ) - 1b t d ~ 1\\ < x  

and | |B {B t D - 1 B ) - 1 B t D ~ 1\\ < x-

This theorem does not extend to the generalised least squares case when A  is non

diagonal positive definite.

To bound \\y\\ independently of D  it is sufficient to bound x independently of D  

since ||?/|| <  ||(-RT-R)- 1-RT || 116|| X- A second theorem due to Stewart [74] provides a 

lower bound on x which O’Leary [53] later proved to be tight.

T h eo re m  3.7.2 (O ’L eary  [53]) Let the columns o fU  form an orthonormal basis for 

span(B) and let Ui denote any submatrix formed from a set of rows of U. Then

X = (mma^nin(UI ) ) - 1,

where a+ ■ (Ut) denotes the smallest non-zero sinqular value ofUr.  m m ' ’ J

3.7. THE CASE A = D



C h a p t e r  3 99

It would seem consistent to expect that the solutions of the weighted least-squares 

subproblems of LSQR(-D-1) can also be bounded independently of D  since they corre

spond to solving (3.24) over a subspace of Rm. The extension of Theorem 3.7.1 to this 

result would be obvious were it not for the fact that the subspace of Rm in question is 

itself dependent on D, namely it is the Krylov subspace K,k(BTD ~ 1 B , B TD ~ 1 b). The 

next theorem shows that despite of this, Theorem 3.7.1 does hold for the LSQR(Z)-1 ) 

subproblems.

T h eo re m  3.7.3 The solutions of the weighted least-squares subproblems of 

LSQR(D~l ) can be bounded independently of D in exact arithmetic.

P ro o f  At the hfi1 step of LSQR(£)-1 ) the subproblem

min||BVfc2 - 6 | |D_ i ,
z£Rk

is solved (see §3.4.2). Hence the solution Zk satisfies

l k l l < | | ( ( W , ) r D - 1 (BV*))- 1 (BKfc)r £>-1 | | | | 6 | |.  (3.25)

Writing S 1 = ((BVk)TD - l (BVk))~ l (BVk)TD ~ \  S 2  = (BVk)Sk and

S3 =  {fBVk)T (BVk)) 1 (BVk)T it is clear that

I |5 i | |< | |B 2 | | | |5 3|| (3.26)

and hence bounding both US2 II and 11 ̂ 3 11 independently of D  provides a bound on ||z*.|| 

which is independent of D.

Consider S 3 . Clearly 11̂ 3 11 < ||((BVjfc)r (J5V)b)) 1 ||(BVjfc)r ||. Now since 

W(BVk)T \\ = \\(BVk)\\ (see [73]) and

|i/nT7 \ 11 \\(BVk)z\\

IKBVjfcWI=  max
^ 0  IIV^II ’

<  m a r c M ,  
i/l

since V?Vk = I ,
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||(i?Vfc)T || can be bounded by

(3.27)

Now let u = (BVk)T (BVk)z ±  0, then

> m in ---------- o—
“  *3«> II M l

>  ( ^ ( B ) ) 2 11*11

and since \zTu\ <  ||z || ||u ||, ||z || <  (-B)) 2 ||u || and hence

I K t S n f t B F , ) ) - 1!! <  (cr+in(B))~2. (3.28)

Combining (3.27) and (3.28) gives a bound on 11S3 11 which is independent of D,

It remains to bound H^H, this can be achieved by an analogous proof of that given 

by Stewart ([74, Theorem 1]). First define

S  = {z G span(BVk) | ||z || =  1}

and T  =  {z \ 3D  G T>+ such tha t (BVk)TD z = 0}.

Then S  fl T  =  0, for if this is not the case 3{zj}  C T  and {Dj}  C V + such that

Zj —► z G S  and (BVk)TDjZj = 0. Since zG<S, ZliLi zi^ii but as Zj —> z it

must be the case that for sufficiently large Z{z\^ > 0  (whenever Z{ > 0 ) which is a 

contradiction. Hence S  D T  =  0 and since 5  is closed and bounded it follows that

||S3|| <  ( ^ ( 3 ) ) - ^ max(B). (3.29)

P(BVk)-=  jpf _l lzl — zl\\ >  0 .Zl£S,Z2ET

Using another result of Stewart ([74, Theorem 2]), if the columns of U^BVk  ̂ form an 

orthonormal basis for span(BVk) and if Jj\BVk  ̂ is any submatrix formed from a set of

3.7. THE CASE A = D
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rows of U(BVk  ̂ then

P(BVk) ^

and further by O’Leary’s result [53],

Now extend U^BVk  ̂ to form an orthonormal basis, 77, for span(B). Then U  =  [U^BVk\ U E ] 

for some orthonormal m atrix U E  and any submatrix formed from a set of rows of U  is 

of the form U i  =  \u \BVk\  U E ]. Then

(CM m m v 1' mm 
x i  

X2

+

[u\BVk), u f ]
Xi

.  X 2

XI

X2

< min+
x i  

0
7̂0

[ u \ BVk) ,UjE ]
Xi

0

Xl

0

=  mm
u \ BV^ Xl

xit Ô ||X]J|

=  a + . ( U ™ )  m inv 1 ’

where min+ denotes smallest positive value. Hence defining pb  = min CT̂n[n (^ i) i

Pb  <  P{BVk)- (3.30)

Using Stewart’s proof [74, Theorem 1] and O’Leary’s result,

Pb  — inf | | z i - z 2| | > 0 ,
•ziGS )Z2€7-

where S' = {z  E span(B) | ||z || =  1}, T* = {z \ 3D  E V + such that B TD z  — 0}, 

and pb is independent of D.

3.7. THE CASE A = D
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Lastly suppose tha t x  = {BVk)({BVk)T D ~ l {BVk))~l (BVk)T D ~ l z. Then z -  x  

satisfies (BVk)TD ~ l (z — x) = 0 so that z  — x  6E T . Writing v = z  — x  and t = I f  ||a;|| 

implies tv +  tx  =  tz  and since tv G T  and tx  € S,

P(BVk) <  1 1 ^  “ ( “ t o )  11 =  I N | ,

and so

INI < P ( B Vk) INI-

Hence

I N I  =  | \ ( B V k) ( ( B V k)T D - \ B V k) ) - l ( B V k)T D ~ l \\ < < p J  (3.31)

by (3.30). Combining (3.25), (3.26), (3.29) and (3.31) results in the bound

I N I  <  P B 1( ^ i n (B))'2crm ax(B)  | | b | |

on the solution of the kfi1 LSQR(D-1 ) subproblem which is independent of D  els 

required.

□

This result implies that every solution approximation yi given by LSQR(D_1) 

should be bounded independently of D. Such a result may be useful when the sys

tem (3.1) is not needed to be solved exactly, perhaps when only a small reduction in 

the residual is required. Then Theorem 3.7.3 implies that even a very poor approxi

mate solution is still bounded independently of D,  and hence this particular quality of 

the solution is not lost by a poor approximation.

3.8 Sum m ary

It has been demonstrated tha t considering augmented systems of the form (3.1) as gen

eralised least-squares problems of the form (3.2) can be advantageous when constructing 

iterative solution methods. In §3.4 it was seen that the standard LSQR algorithm for 

least-squares problem could be extended to algorithm LSQR(A-1 ) for generalised least-
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squares problems without assuming availability of the Cholesky decomposition of the 

m atrix A,  which would be required if the LSQR algorithm were to be applied naively 

to the problem. This fact also results in a saving when the weight m atrix is diagonal, 

the LSQR(A_1) method requiring one less diagonal matrix multiplication per iteration 

than the LSQR approach. The results of §3.5 show that the LSQR(A-1 ) method for

(3.2) is essentially twice as fast as the corresponding preconditioned MINRES method 

for (3.1) as it is able to step over the redundant steps in the MINRES approach. Since 

the condition of the generalised least-squares problem is better than tha t of the equiv

alent Schur complement system, it has been seen (§3.6) that the LSQR(A-1 ) method 

also has nicer numerical properties than MINRES applied to the Schur complement 

system.

In conclusion, if it is reasonable to precondition (3.1) using the m atrix A,  algo

rithm  LSQR(A-1 ) should be used to solve (3.2) in favour of MINRES on the Schur 

complement equations since it is more reliable in practise.

Further, the preconditioning strategy described in §3.4.3 is far more effective than 

tha t originally given in [57], since it requires only one matrix-vector operation per 

iteration as opposed to two, and it allows many preconditioners which were impractical 

under the original preconditioning approach to be applied to the problem. Hence this 

strategy is suggested as the correct way to precondition not just LSQR(A-1 ) , but also 

the original LSQR algorithm.

3.8. SUMMARY
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Chapter 4

Vavasis type finite elem ents, 

LSQ R (D _ ) and preconditioning

In this chapter, a low order finite element method for partial differential equations of 

the form of the groundwater flow equations will be described which gives rise to dis

cretisations whose m atrix equations are ideally suited for solution with the LSQR(A-1 ) 

method introduced in Chapter 3.

First recall tha t systems of the form

A B X b

B t 0 . y 0

where A  is symmetric positive definite, are (generalised) least-squares problems in 

disguise. Namely, (4.1) is equivalent to

Find y £ Rm such that mm ||Bp — 6 |l^-x =  ||By — b\\A- 1 , (4.2)

in the sense tha t the unique minimiser, y : of (4.2) is the same as the component y of 

the solution of (4.1). The LSQR(A-1 ) method, introduced in Chapter 3, is a method 

for solving (4.2) (and hence (4.1)) which relies on the fact that the operation of A ~ l 

is easy to compute. When this is true, the LSQR(A-1 ) method is a fast and stable 

method of solving (4.2) (it is stable since it is effectively an implementation of the 

Lanczos algorithm applied to (4.1) with a change of variables, see Chapter 3).

The question naturally arises, which types of problems in applied mathematics give
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rise to systems of the form (4.1) where the operation of A ~ l is easy to compute, and 

taking this question to extremes, which types of problems can give rise to linear systems 

of the form (4.1) where the matrix A  is diagonal? In this case the change of notation 

D  :=  A  will be preferred. It is well known that weighted least-squares problems can 

generate systems (4.1) with A  diagonal, also interior point methods in minimisation 

and discretisations of electrical networks, see for example [16].

The goal here however is to solve the groundwater flow equations, and it will not, 

in general, be possible to choose a mixed finite element approximation that generates a 

linear system with diagonal A,  since this would imply that an L2 (Q)-orthogonal basis 

for the velocity trial space is known.

Vavasis [79] has described a finite element method for the pressure equation which 

gives rise to linear systems of the form (4.1) with A  diagonal. This is achieved by 

introducing dummy variables in the finite element method for the pressure equation, 

and it will be seen that these dummy variables can be taken to be an approximation 

to the Darcy velocity. This formulation is not a true mixed formulation since there is 

essentially no choice in the selection of the velocity space, it is always taken to be the 

space spanned by the derivatives of the pressure basis functions and therefore doesn’t 

necessarily satisfy any continuity conditions. This velocity approximation is of lower 

order than the pressure approximation, which is in contrast to the usual mixed finite 

element approximations of the groundwater flow equations which axe usually more 

concerned with an accurate velocity approximation which satisfies some continuity 

requirement (see Chapter 5).

The Vavasis formulation is used as a template for analysing preconditioners, H , in 

the LSQR{A~l , H ~ l ) algorithm (with diagonal A) since the formulation makes stan

dard preconditioners for the conjugate gradient algorithm applied to the discretised 

pressure equation, such as additive Schwarz and incomplete factorisations, an obvious 

choice.

In §4.1, the standard finite element method for the pressure equation is reviewed 

together with some results on the accuracy of piecewise polynomial approximations. 

Vavasis’ approach to discretising the pressure equation is described in §4.2 and it is 

shown how a Darcy velocity approximation can also be obtained. Piecewise-lineax 

pressure approximations are considered throughout this chapter, although possible ex

tensions to higher order approximations are discussed in §4.3. A brief review of pre
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conditioning the LSQR(A-1) algorithm is given in §4.4, and then additive Schwarz 

and incomplete factorisation preconditioners are described in §§4.5,4.6 . Graham and 

Hagger [34, 33] have examined the effects of the permeability function k when using 

additive Schwarz preconditioners in the conjugate gradient solution of the finite ele

ment discretised pressure equation, and their results are presented in §4.5.3. These 

results are shown to also apply for additive Schwarz preconditioned LSQR(D- 1 , i f _1) 

applied to the Vavasis-discretised problem. Numerical results presented in §4.7 tend 

to indicate tha t the results of Graham and Hagger also hold for suitable incomplete 

Cholesky preconditioned solvers. This result is shown to hold for Manteuffel’s shifted 

incomplete Cholesky factorisation (see §4.6) in theorems 4.7.1 and 4.7.2, which is an 

analogue of the result [33, Theorem 4.4] for additive Schwarz preconditinoers.

4.1 F in ite  elem ent m eth o d s for e llip tic  prob lem s

Notice tha t the variable u in the groundwater flow equations (1.2) (with /x =  1)

u +  k Vp =  0 in Q C Rn ,
(4.3)

V • u = 0 in £2,

with boundary conditions

p = f  on T i,
F (4.4)

u • n = 0  on T2 ,

where dQ, = Ti U T2 , is not empty and /  is the restriction of an H1^ )  function to 

Ti, can be eliminated by operating with div , to give

V . (fcVp) =  0. (4.5)

Here, without loss of generality, the (constant) viscosity term  is taken to be 1.

Throughout this chapter it will be assumed that Q, is a convex subset of Rn (n =  2, 

or 3), and tha t

N

T i =  ( J  Hj,
i=l

4.1. FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
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where each Qi is open, Qi D Qj =  0  for i ^  j  and

1̂ cii = ki->

where ki is a constant. It will also be assumed tha t the boundaries of Q ,Q i,. . .  , Qjv 

are piecewise polygonal (piecewise-linear in two dimensions). The set Qi fl Qj (where 

Qi n  Qj 7  ̂ 0) may be referred to as the interface between Q{ and Qj. It is immediately 

obvious from (4.5) tha t p  E Hl (Q). The above geometrical description allows a little 

more information about the derivative of p to be obtained. Suppose for simplicity tha t 

N = 2, so th a t Q = Qi U  Q2 , denote by S  the interface between Q\ and Q2 , and let

Pi =  P\fU' i = 1’Z

Then obviously,

V ■ (kiVpi) = 0  in

furthermore p i |s  =  P2 \y, anc  ̂ = P\dQi• Now using Green’s formula, if q £  H 1 (Q),

[  qki^ p Ld'y = f  qV  • (fcjVpi) dx +  f  k iVpi-Vqdx ,  i = 1 , 2 , (4.6)
Jdfli dn i JSli JSli

where rii is the unit outward normal to Qi and 7  is the unit of arclength along dQi. 

Summing (4.6) with i = 1,2,

T  [  qki^^-d'y = [  qV  • (&Vp) dx +  [  k V p - V q d x
Jdsii dn i Jn Jo,

using Green’s formula again. Here n  is the unit outward normal to Q. Noticing that 

the integral on the right hand side is contained in the integral on the left hand side it 

immediately follows that

i q ( k i i + k 2 £ ) d i = o ’ v«€Hi(n)’

4.1. FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
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and hence

. dp dp _  . .
k \ - -----k2- — =  0 a.e. on E. (4.7)

o n i on 2

Equation (4.7) provides a condition on the continuity of the derivatives of p  along 

normals to the interface between and £22 5 and can be interpreted as [kdp/dn] = 0 

on all interfaces in 0 , where [•] is a jum p function. Hence (4.5) on the domain £2 is 

equivalent to,

V • (kiVpi) =  0, i = 1,2,

P ils  =  P2ls>

+ =  0 .

The case N  > 2 is similar.

A standard finite element for method (4.5) with boundary conditions

p = f  on IV
(4.8)

Vp • n  =  0 on T2 ,

then proceeds as follows. Let n  and n °  denote the test and trial spaces,

n = {(jr 6 H 1̂ ) I 9|r, = /},
n° = {g€H'(n) k h  =0}.

Then p can be expressed as p =  p° + p? where € II is any extension of /  from T i 

onto n  (i.e. p f  L =  / )  cind p° € II0. A similar analysis to that above yields,

0 = In 9V ' (fcVP) dx

=  /anui.«.rf„„ ? (fcvP) •"  rfT -  In k v P ’ v 9 dx>

where d j  is the element of arclength along dO and n  is the unit outward normal to dQ, 

and to each interface. Hence, using the boundary conditions, the interface condition

(4.7) and the fact that q E n°,

I  kVp° ■ Vg dx = — k V p f  • Vg dx , 
Jn Jn

4.1. FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
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and so the following variational form of (4.5) and (4.8) is obtained,

Find p° E II0 such that a(p°,q) = L(q) Vq E II0. (4-9)

Here a(p,q) =  (kV p  , Vg)L2(n)n and L(q) = — f Qk V p f  • Vq dx. A simple application 

of the Cauchy-Schwartz inequality on L2(Q)n shows that the symmetric, bilinear form 

a(-,-) is continuous,

\a(P,q)\ <  Ci  | b | | Hi (n) IMIHi(n) n °>

whilst the coercivity condition,

a(q,q) > C 2 ||g| |^ (n) V9 € II0,

follows from an application of the Poincare inequality. Lastly the linear form L(-) is 

also continuous,

\ L { q)\ <  I W l o o  I P ^ l H ^ n j k i H ^ n )  <  C3  | | <7| | H i ( n ) ,

when H a l l o o  is assumed to be finite. The constants C\ and C 3  can be seen to depend

on the maximum of k on f2 whilst C2 depends on the minimum of k on Q. As a

consequence of the Lax-Milgram lemma [13, Theorem 1.1.3], the solution p of (4.9) is 

unique and standard variational theory states that p satisfies the stability estimate

I l - Pl Ih1 (n )  -  ^ T -

Furthermore, if T  is a conforming triangulation of Q with triangles of maximum 

radius h , S h  C  H1 (f2) is a finite dimensional subspace, and

n& =  {q £ Sh | q interpolates /  at all nodes on Ti},

n£  =  { q e s h | q is zero at all nodes on Ti},

then ph £ can be expressed as ph = Ph+  Ph where pQh E n° and E is any 

function in (typically p*h is the function which interpolates /  at nodes on Ti and is

4.1. FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
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zero at all other nodes). The discrete analogue of (4.9) is then

Find p \  £ n® such that a{p\,q) =  L{q) \/q £ 11 .̂ (4-10)

If {ipi}r[Ll is a basis for II® then (4.10) becomes

Find p® £ II® such that a(p®, ipi) = L(q) i = 1 ,.. .  , m,

and if ipo is a function which interpolates /  on Ti and is zero at all other nodes then, 

with p̂ h = (po(^)j Ph can be expressed as

m

Ph{x) = ipo(x) +  ^  yi/ipi(x).
i=1

The discrete variational form can be expressed as the linear system to be solved for the 

unknown nodal values y =  [y\ . . .  ym]T,

K y  = b,

where i f  =  [ify] =  [aO/^V’j)] and b = [6*] =  [a(^i,^o)]. i f  will be referred to as a 

scaled stiffness matrix since the bilinear form a is an inner product of and Vtfjj 

terms which are scaled by the permeability term k.

It can be shown that the error estimate

Wp-PhWu\n) ^  § r l b - 0 l l Hi(n) V̂ n h, (4.11)

holds, and in the energy norm, ||g ||e =  a(q,q) 2 , p^ can be shown to be the optimal 

approximation to p, i.e.

\\p ~Ph\\e < \\p ~  q\\e V g £ l lh. (4.12)

See [13, 41] for more details.

Error estimates such as (4.11) and (4.12) are useful theoretical tools, but give little 

indication of what types of errors can be expected in practise. Instead, some idea of 

how the choice of 11̂  and the mesh size affects the error is needed.

Here it will be assumed that 9 c M 2 although the results presented will generalise
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to higher dimensions. Suppose =  1JTg7-T  is a triangulation of Q, tha t resolves the 

discontinuities in k (i.e. the discontinuities in k lie along triangle edges only so tha t k 

is constant within each triangle in T  G T), that

11̂  =  {q | q is continuous on Q, and q\x is linear VT G T  and q interpolates /  on Ti},

and tha t are the hat functions centred on the interior nodes and nodes on the

Neumann boundary, T2 , of the triangulation. Clearly 11̂  C II, and if 0o is the piecewise 

linear interpolant of /  on the Dirichlet boundary I \  and is zero at all other nodes of 

the triangulation, then {0i}™o a basis for 11 .̂ In [17] it is shown that if q G H2(T) 

and 7cq is the linear interpolation of q on the triangle T  (which coincides with q at the 

vertices of T), then

I k  -  ^ l l La(T) ^  C h T \ Q \ n 2(T) ,  (4.13)
H2

\q — 7r<7|Hi(T) <  C — |g|H2(T), (4-14)
Tx

where | • |h>(t) denotes the HJ (T) seminorm, hx  is the length of the longest side of T, 

and rx  is the diameter of the greatest circle in T. If irhq is used to denote the piecewise 

linear interpolation of q on the triangulation T  (so tha t 7 coincides with q at all 

nodes in the triangulation) then, summing (4.13) over all triangles in T ,

l k - ^ l l ? a (n) =  E r e r l k - ^ I I ^ T ) *

^  E r e T ^ ^ T k l i 2̂ ) ’

<  C 2 m a x T G T  * 4  E r e r  k l l ^ Ty

Hence, writing h = m axreT the interpolation error on the whole of the triangula

tion,

lk -* 7 ig |lL’(n) ^  Ch2( ^ 2  I^Ih2( t) )^  (4*15)
t g t

is obtained. If it is also assumed that the triangles T  axe not allowed to become too

thin as the mesh size decreases, that is there exists a constant j3 which is independent
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of the triangulation and which satisfies

> 0  VT € T ,  (4.16)
rlT

then the error estimate in the H1(f2) seminorm,

C7
P\q-*hq\H\n) < ̂ r (Y  I ^ I h ( 4 -17)

t e t

can be found by summing (4.14) over T  in the same way that (4.15) was obtained from 

(4.13). Notice that (4.17) is equivalent to

||Vg -  V (7Tfc<7)||L2(n) <  ^ r r ( Y  (4-!8)
P TeT

so that a bound on the gradient of the interpolation error in L2 (12) is known. Hence the 

interpolation error and the interpolation error of the gradient in the L2(12) norm when 

interpolating a function which lies in H2(T)VT € T  with piecewise linear functions on 

T  are 0 (h2) and 0 (h) respectively.

Now consider (4.11) with q =  nh,p. Then (4.15) and (4.17) imply

Ib -P /illnqn) < C h ( Y  Mh2( t) )^  (4-19)
t g t

(since k is constant in each T  G T , it is known tha t p  G H2(T) for each T  G T) and 

hence

IIVp-  V p k l l^ ,  <  C h ( Y ,  Ip l^ m )1- (4-20)
T e T

Here the constants C  depend on (3, which is independent of k and independent of the 

mesh size. Equation (4.15) suggests that an 0 ( h 2) error of p — ph in the L2(fi) norm 

may be possible. Indeed the following theorem, which is described in [14, Ch. VII §3],

shows this to be true, but only in the case that k G C°°(fi).

T h eo re m  4.1.1 Provided that the domain Q, is smooth or is polygonal and convex,
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and k G C°°(f2), then

\\p-Ph\\L2(n) < Ch 2 \p\H2{a). (4.21)

P ro o f  See [14]. □

Hence the finite element method applied to (4.5) with boundary conditions (4.8) 

with piecewise linear elements on the triangulation T  gives errors of the form

l |V p - V p fc||La(n) =  0(h),  (4.22)

\\P ~  Ph\\h2{n) = 0 ( h 2), (4.23)

when k is smooth, i.e. setting = Vph gives an O(h) approximation to the solution 

variable u, whilst the approximation to p  is 0 ( h 2). In the case that k  is piecewise 

constant, the solution p  of (4.5), (4.8) will not generally be an H2(Q) function and 

so the theory above will cease to apply. However it is obvious from (4.19) tha t at 

least an O(h) bound on ||p — P/i||L2(n) exists. Since (4.19) is actually an O(h) bound on 

lb  — Ph11h1 (n)5 ft may be expected that ||p — P/i||L2(n) satisfies a better bound than 0 (h). 

Fraenkel [24] has shown that if S  C Q  and S  contains only linear interface sections (not 

piecewise-linear interface sections) then p G HS(«S) for s <  §. A further result of [17] 

then informs that

l b - ^ 1 1 ^ ( 5 )  ^  Chs\p\H*{s).

Therefore the error in the piecewise-linear interpolant of p on any subset S  of f2, of 

the form described above, is 0 ( h s) where s < | .  Hence it might be suspected that the 

approximation ph to p  may actually be a higher order approximation in L2(f2) than
3

0 ( h ) (possibly close to 0 ( h 2 )). The numerical results following §4.2 appear to agree 

with this supposition. Clearly (4.19) still implies that ||u — Uh\\h2 in) = 0 ( h ) in the case 

that k is piecewise constant.

A drawback to using the approach described in this section is that the assembled 

stiffness m atrix K  = [K{j] =  ^ j)) , in the equation

K y  = b, (4.24)
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which is to be solved for the unknown nodal values y of p, can be extremely ill- 

conditioned. The condition number of K  is bounded below by the maximum ratio 

of any two diagonal entries of K  so that,

c maxlg n fc(s) 
mmxGn k[x)

and hence the conjugate gradient algorithm applied to (4.24) is not expected to be 

numerically stable for large ratios of maxxGn k(x ) / mina:en k(x).  The matrix K  can be 

badly scaled throughout, with no entries being independent of k(x).

In the following section a method which simultaneously discretises (4.3), (4.4) to 

provide an approximation to both p  and u will be described which addresses the draw

back of the above method, the bad scaling will be confined to a diagonal portion D = A  

of the coefficient m atrix (4.1) which can be handled independently of the unsealed part. 

The resulting system can be solved using the LSQR(_D_1) algorithm which is seen to 

be more stable than  the conjugate gradient algorithm applied to (4.24) in numerical 

experiments. If required, the approximation Uh can be calculated during the iteration 

thus rectifying the first point. The approximations ph and Uh will satisfy the same 

error bounds found above.

4.2 M ix ed  e lem en ts based  on u nm ixed  ap proxim ation s

The analysis of the previous section implies that any discretisation of (4.5) and (4.8), 

which is based on piecewise linear elements on a triangulation of Q (which resolves 

discontinuities in fc), will satisfy the error bounds (4.19) and (4.20). Such a piecewise 

linear approximation to (4.5) (with purely Dirichlet boundary conditions) is given in 

[79], where (4.5) is not considered as a reduced form of (4.3) and (4.4), instead it is taken 

to be a model of the heat equation in a composite material with known temperature 

distribution on the boundary, where only an approximation to p (the temperature) is 

required. The method of discretisation used is still applicable in the case of mixed 

boundary conditions, and introduces an artificial variable which can be taken to be an 

approximation of u , in the case of (4.5) describing a reduced form of the groundwater 

flow equations. The linear system which arises from this discretisation is of the form 

(1.1) with the matrix A  being diagonal.

4.2. MIXED ELEMENTS BASED ON UNMIXED APPROXIMATIONS



C h a p t e r  4 115

Suppose again that {tpi}‘̂l=l are the hat functions on the interior and Neumann 

boundary nodes of the triangulation Q =  U tgT -^ which resolves the discontinuities 

in k. Here C l d is assumed, although for simplicity the practical implementation 

described is given for the case f i d 2. The extension to ft C is obvious. In terms 

of these basis functions the solution ph of (4.10) can be expressed as

m
Ph(x) ='lpo(x) +  '£2  0*05 (4 -25)

t = l

where yi is the value of ph at the node upon which ipi is centred, and -00 is a piecewise 

linear interpolation of /  on the Dirichlet boundary nodes and is zero a t all other nodes. 

The approach to solving (4.5) given in [79] is to introduce artificial variables x T G 

where x T represents the gradient of ph on T, multiplied by the factor

I k(x) dx.
Jt

Since the triangulation is assumed to resolve discontinuities in the piecewise-constant 

function k this calculation is trivial. An extra scale factor is also used in [79] so 

tha t error analysis for the NSHI algorithm, presented there, is possible. The NSHI 

algorithm is an extension of the NSH algorithm [78] for solving augmented systems of 

the form (4.1) where the matrix A = D  is extremely ill-conditioned, and its derivation 

is motivated by Stewart’s result [74] which was discussed in §3.7. The variables x T are 

truly artificial since they are not required to be recovered and they axe not considered 

to have any physical relevance. As is mentioned above, in the case tha t (4.5) represents 

the reduced form of the groundwater flow equations with velocity terms eliminated, 

the variables x T, being the scaled gradients of the pressures, provide an approximation 

to the Darcy velocity and are no longer truly artificial variables since they have some 

physical relevance.

Since ph is linear on each T, T  G T , the scaled gradient x T is simple to determine 

by interpolation at the nodal values (for higher order elements a similar argument 

will follow and is outlined in §4.3). Ordering {xT}reT  int°  the vector x , the linear 

relationship between x T and ph\r implies that there exist matrices D , B  and a vector

4.2. MIXED ELEMENTS BASED ON UNMIXED APPROXIMATIONS



C h a p t e r  4 116

b such that

D x = —B y  +  b. (4.26)

Here the matrix D  is a diagonal scaling matrix whose entries have the form

- l
k{x) dx

UT
J r k(x) (4.27)

and are ordered corresponding to the position of x T in x. The vector —B y  4* b has to 

represent the (unsealed) gradients of ph on each triangle T. The procedure given for 

assembling B  and b in [79] is as follows. If yT = ( y ^ \ y 2 ^ \ y ^ ^ j  denotes the values 

of ph at the nodes of T  then an element gradient matrix G can be formed so that 

the gradient of the interpolating plane is given by G ^ y T. To form G ^  first write

G =
1 0 - 1

0 1 - 1

Then G°yT is a 2—vector containing the pressure differences between nodes y ^  and 

y ^ \  and y ^  and y ^ .  Now if and are the corresponding vertices of T

and

then Vp is a change of basis from the usual Cartesian coordinates in R2 to the coor

dinates with basis Hence if t is a vector written in terms of the

basis then

s = VT Tt,

is its Cartesian representation. The element gradient matrix G^  is then formed as

G<t > =  Vt TG°,

i.e. G° calculates the pressure difference along two edges of T  and VT T transforms this 

into the gradient in Cartesian coordinates.
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For example suppose tha t T  has vertices (0,0), (1,0), (^, ^ )  and that the pressure 

at nodes (0,0) and (^, ^ )  is 0 and the pressure at (1,0) is 1. Then the interpolated 

pressure on T  is actually given by q{x) = x\  — X2 / V 3  and it is clear tha t Vq(x) — 

(1, —l/y /3 ). Here

VT =
\/3  y/3
2 2

and so

\/3  \/3
2 2 1 0 - 1

0 1 - 1 1
V3

The m atrix B  can be formed block row-wise (with blocks of size d) where the entries 

in each block correspond to the relevant, non Dirichlet boundary, elements in each 

with the columns of B  arranged in keeping with the global node ordering. The Dirichlet 

boundary entries of each G^  are multiplied by the corresponding nodal values on the 

boundary to form the vector b.

W ith D, B  and b defined above, (4.26) holds. However it still remains to enforce 

(4.10). To do this it suffices that, since ph solves (4.10),

a(ph, 4 >i) = 0  i =  l , . . . m . (4.28)

(4.28) can be rewritten as

^  I k(x)Vph  • V'l/’i dx = 0, « =  l , . . . m ,
T e T  T

and since V ph |T =  dx) 1 x T, which is constant, and Vipi is constant on T,

y :  vipi\T = 0 , 2 = 1 ,.
T e T

771. (4.29)

Notice now tha t if 'ipi ^  0 on T  then tpi takes the value 1 at one node of T  and 

so Vifti = G ^ e Ti on T, where eTi is a vector of zeros except for a 1 in position 

corresponding to node i. On the other hand if ipi = 0 on T  then Vipi — 0 on T. Hence
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x^Vtpi = ( G ^ e Ti)Tx r , which is the inner product of the column of B  with x , 

when 0  ^  0 on T  and x^Vipi = 0 otherwise. Thus *s equivalent to the

inner product of the i*'*1 column of B  with x, and so (4.29) becomes

B t x  = 0. (4.30)

Combining (4.26) and (4.30), the linear equations for the nodal values of y, and the

scaled gradients, x, are then

D B X b

B t 0 . y 0

Since both (4.24) and (4.31) derive from (4.10), it is clear tha t the solution y of 

(4.24) and y of (4.31) (which are obviously unique from considerations in §4.1) are 

equal. Hence both systems give the same solution ph- Considering (4.22) and the fact 

tha t Uh obtained from (4.31) is simply the scaled gradient of ph it is clear that

\\u ~  uh\\L2(n) = ° (h ) ,

where the constant in the 0(h)  term is dependent on minxen k ( x ) / maxxen k(x).  The 

pressure approximation ph obtained from (4.31) will possibly satisfy a higher order 

error bound in L2(f2) following comments made at the end of §4.1, possibly close to
3

0 (/i2 ), but certainly no worse than 0{h).  Indeed the following results seem to agree 

with this hypothesis.

R e su lts

Figure 4-1 shows the velocity approximation Uh and contours of the pressure approxi

mation ph of the solution to the groundwater flow equations for flow in a rectangular 

region O c M 2. The flow direction is indicated by arrows. Shaded regions in the domain 

indicate areas where k(x)  =  10-3 , whilst white areas have k(x) =  1. The pressure is 

fixed at 100 on the top of the domain and 10 on the bottom. A 3d plot of the pressure 

Ph  is also shown. Taking the solution with nodal values (x* ,y*) on a 256 x 256 grid 

(65,535 pressure and 262,144 velocity unknowns) to be close to exact, the order of 

approximation as the mesh size is refined (by halving) from an 8 x 8 grid to a 64 x 64
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 l j i r  .saaaaaF

u ■ n = 0

p =  10

w • n =  0

Figure 4-1: Groundwater flow in a 2d region
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grid is shown in the following table. The number of velocity and pressure unknowns 

are denoted by n  and m  respectively.

h (n,m) \ \y* - V h \ \ 2
_ l|y*-»fc||?

I y'-Vh/i 2 I<>g2 iTh)

1/8 (256,63) 352.8540 2.3749 1.2479

1/16 (1024,255) 148.5783 2.4014 1.2639

1/32 (4096,1023) 61.8707 2.5645 1.3587

1/64 (16384,4095) 24.1258

The norm ||p — Ph||L2(n) is not calculated, rather the I2 norm of the nodal values 

is used. Since ||p — P/i||L2(n) =  ((y — yh)TM{y  — y/J) * where M  is the pressure mass 

matrix, and

ch2 | | y  -  y h I I I  < ( y ~  y h ) T M ( y  -  y h) < Ch2 ||y  -  yh\\\

(see [41, (7.46)]) where c and C  are constants, the I2 norm is acceptable for the task. 

It is clear from the last column that the order of convergence is better than 0(/i), but 

smaller than O(hi )  as was suggested in the comments made at the end of §4.1.

4.3 Higher order Vavasis type elements

Figure 4-2: A typical element Tk
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Taking higher degree finite element spaces for the pressure variable in the standard 

finite element method for the elliptic equation (§4.1) obviously leads to higher degrees of 

precision of the approximation. If continuous piecewise polynomial functions of degree 

s are used on triangulations obeying (4.16) then it can be shown that

\ \p -*hP\\h2m  <  C7i5+1|p|H.+i(T),

\ \ V p -  V7rfcp||La(T) < Chs\p\H*+i(T),

provided tha t p is sufficiently smooth. (See [17]). These interpolation errors can be 

used in an analogous way as in §4.1 to prove approximation errors of the form

I Ip — Ph\\i?(n) = 0 { h s+1), (4.32)

Ilu — 11 l2(o) =  0 ( h  ), (4.33)

where Uh = —kVph , for the case tha t k G C'°°(f2).

Again, Vavasis type elements can be used to discretise the elliptic problem and still 

retain the structure (4.31). To give some idea of how this may be achieved in the 

case of piecewise quadratic functions consider figure 4-2. The crosses at the vertices 

of the triangle and midpoints indicate nodes of the pressure discretisation, and the 

circles indicate points where the gradient of the pressure must be calculated. These 

three gradient nodal values can be used to determine the linear velocity planes. Such 

a discretisation will satisfy an 0 ( h 3) L2(T) error in the pressure variable and an 0 ( h 2) 

L2(T) error in the velocity variable, in the case that k is smooth, however the velocity 

approximation will still not necessarily be continuous on f2.

4.4  P recon d ition in g  L S Q R (D~l)

It is well known that iterative methods based on a Lanczos process work well on matrices

tha t are well conditioned or have only a few distinct eigenvalues. The eigenvalue

distribution of the coefficient matrix in

A B X b

B t 0 .  y  .
0
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was described in §2.3, specifically in Theorems 2.3.1 and 2.3.2, and a polynomial pre- 

conditioner for (4.34) based on its eigenvalue distribution was discussed in §2.9. The 

spectrum of a preconditioned version of (4.34) will be considered in §B.l.

Since the (diagonal) entries in the symmetric positive definite matrix A  can become 

arbitrarily ill conditioned when (4.34) represents a discretisation of an elliptic operator 

with variable scaling (and when triangular elements become long and thin, see §5.3), it 

is obvious from Theorem 2.3.1 that (4.34) can be made arbitrarily ill conditioned and so 

some form of preconditioning is appropriate. Here attention is restricted to the case that 

(4.34) represents a discretisation of the elliptic equation (4.3) with boundary conditions

(4.4) by Vavasis type finite elements (§4.2) so tha t A  =  D.  Then the preconditioned 

algorithm LSQR(D~l , H ~ l ) can be applied to (4.34) as outlined in §3.4.3. The case in 

which (4.34) arises from more general discretisations is left until §5.2.

The preconditioned algorithm, LSQR(£>-1 , H ~ l ) , solves

pI§jS.IIB7V‘ TP _ 6 llD-‘ ’ <4'35)

where H  =  N N T and the solution of (4.34) (with A = D), is given by y — N ~ Tp. Here 

by ‘the solution’, the y component in (4.34) is being referred to. Since D  is diagonal 

the x  component is easy to recover. Of course it is never actually necessary to form the 

Cholesky factor N  of H , since the L S Q R a l g o r i t h m  operates in the D ~ l 

and H ~ l inner products as opposed to the standard Euclidean inner products of LSQR. 

The solution y is obtained naturally from the algorithm with only one H ~ l operation 

and a normalisation step per iteration extra to the cost of the LSQR(J9-1 ) algorithm. 

The normal equations of (4.35) are

N ~ lB T D ~ l B N ~ Tp = N ~ 1 B t D ~ %  (4.36)

and so the preconditioner H  in LSQR(Z)-1 , H ~ l ) can be any preconditioner which can 

be used to centrally precondition the unpreconditioned normal equations. Now since

x  =  £ > - * ( & - B y ) ,

the unpreconditioned normal equations are equivalent to B Tx  =  0 and hence by (4.30), 

equivalent to (4.28). Therefore the preconditioner H  that is required is any (good)
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preconditioner for the stiffness matrix K  that arises from the usual primal form of 

the finite element method for (4.5),(4.8). Three such preconditioners, diagonal scal

ing, additive Schwarz preconditioning and incomplete Cholesky preconditioning will be 

considered. Since the stiffness matrix arising in Vavasis finite element discretisation of

(4.5) is equal to the Schur complement of (4.34) the notation K  = B TD ~ l B  will be 

assumed throughout.

4.5  D iagon a l scaling  and ad d itive  Schwarz p recon d ition 

ers

4 .5 .1  D ia g o n a l sca lin g

Diagonal scaling is the simplest form of preconditioning possible, here H  =  H d is 

defined by

H d = diag (K),

so th a t the coefficient matrix in the preconditioned normal equations (4.36) has unit 

diagonal elements. This approach was introduced in [23], where it was shown that if K  

has ‘property-A’ (K  can be partitioned into 2-by-2 block form with diagonal matrices 

in the (1,1) and (2,2) block), then diagonal scaling is the best scaling in terms of 

minimising k{H ~ 1K )  over all diagonal matrices H.  In [10] it is observed tha t for a 

variety of matrices, diagonal scaling typically has the effect of scaling large eigenvalues 

to near unity but often leaves small eigenvalues which cause poor convergence, this 

phenomenon will be discussed shortly for the case that K  is a scaled stiffness matrix. 

Hence diagonal scaling is not expected to be a particularly effective preconditioner for 

discretisations of elliptic operators. In the case of preconditioning mass matrices the 

story is different however, diagonal scaling is particularly effective (see [82]) and is 

discussed in §5.4.

4 .5 .2  A d d it iv e  Schw arz p r eco n d itio n in g

Additive Schwarz preconditioning is a type of domain decomposition preconditioning, 

see [29, 10.3.4]. Suppose that T  is a triangulation of Q, which resolves the discontinuities 

in fc, and tha t the set }J=i is a partition of into s (non-overlapping) subsets and
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th a t each f l j  C O'- where d t l ' j  coincides with the edges of the triangulation. The 

assumption that T  resolves the discontinuities in k is not actually necessary as is 

explained in [34], although the simple case suffices here since it is assumed tha t the 

discontinuities in k lie along the edges of polyhedra and not curved surfaces. If N ( S )  

is used to denote the subset of nodes of the triangulation tha t are contained in S  then 

the inclusion operator

R j

is defined to transform the global vector y j  in A f ( Q j )  to the vector y  G A f ( Q )  which 

takes the value of y j  on J \ f ( £ l j )  and is zero elsewhere. The restriction of the action of 

K  to J \ f ( S l j )  is then defined to be the matrix Kj : — > N(Q,) where

Kj =  R j K R Tj .

The classical additive Schwarz preconditioner also includes a solve on a coarse grid. 

It is assumed that a coarse triangulation of the domain is also available and that 

K q = RqK R q is a restriction of K  to the coarse mesh. Here Rq is a projection 

from the fine mesh to the coarse mesh and is usually taken to be the piecewise linear 

interpolant on the coarse mesh. Finally the additive Schwarz preconditioner is then 

defined by

s

H as  = Y , R J K i lR >’
3=0

and it is shown in [12] that the condition of H ^ K  can be bounded by

/  h* \ 2
k (H^ s K ) < c I i  + t ) ,

where h* is the maximum diameter in the coarse triangulation and S is the minimum 

distance between d S l j  and dfI' - .  C  is a constant which is independent of the triangula

tion diameters but depends on k and grows as the ratio of the maximum and minimum 

values of k grows. Additive Schwarz methods for other types of finite elements for (4.5),

(4.8) with k = 1 throughout the domain (Laplace’s equation) are discussed in [35] and 

similar bounds on the condition number of the preconditioned system are found. The

4.5. DIAGONAL SCALING AND ADDITIVE SCHWARZ PRECONDITIONERS



C h a p t e r  4 125

analysis in [33] shows that the condition of H ^ K  does not really tell the full story 

however, and that H ^ s  ls a more effective preconditioner than k ( H ^ K )  suggests. This 

is the subject of the next section.

4 .5 .3  S p e c t r a l  d e p e n d e n c e  o n  k

The dependence of the spectrum of H ^ K  on k is explained in [33] and some of the 

results therein are presented below. The results axe found by comparing the spectrum 

of H ^ \ K  with that of H ^ lK .  Such a comparison is possible since diagonal scaling is 

an extreme form of additive Schwarz preconditioning corresponding to a partition of 

the domain into subsets containing only one node, and no multilevel step. Hence the 

diagonal scaling operator can be expressed as a sum of inverses of K ~ l restricted to 

subdomains containing only one node. It is shown in [33] that the eigenvalues of H ~ ^ K  

satisfy

< C i X j ( H ^ K )  < C 2, j  = (4.37)

where C\ and C2 are independent of k (in 2 dimensions C\ can be taken to be 4, see 

[11]) so that any lower bounds for Aj ( H p XK)  will also be lower bounds for X j ( H ^ K )  

(up to multiplication by a constant). It is then shown that the eigenvalues of H ^ l K  

can be bounded below, independently of k provided that, if k is piecewise constant 

on a finite number of open, disjoint polyhedral regions then the closure each of these 

regions has a non-empty intersection with the Dirichlet boundary. In this case, equation 

(4.37) implies that the eigenvalues of H ^ K  are also bounded independently of k. In 

practice the Dirichlet boundary often doesn’t intersect each of the level sets of k  in 

the way described above, the domain depicted in Figure 4-3 is a typical case. Here 

k(x) = 10c in the dark region and k(x) = 1 in the light region. For large values of c the 

condition of H p lK  grows as a single eigenvalue approaches zero. The reason for this 

is tha t in the limit as c — > 0 0 , the nodes on the boundary of the dark region and their 

neighbouring nodes in the light region become disconnected due to the large jum p in k. 

This results in an interior Dirichlet type boundary in the light region and a Neumann 

type boundary on the dark region. In [33] it is proved that if j  corresponds to a node 

in the dark region and i corresponds to a node in the interior of the light region then
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the i j ^ 1 entry of H DlK  satisfies

=  0 (1 0 " i)  as c — > oo.

Otherwise H ^ lK  acts like a scaled stiffness matrix when both i and j  correspond to 

nodes in the same region. As there is no connection between the two regions as c — t oo, 

(H p l K)ij  — > 0 for i j  corresponding to nodes in different regions, and so H p lK  tends 

to a block diagonal structure (for a suitable nodal ordering) of two blocks corresponding 

to the light and dark regions. The block corresponding to the dark region is essentially 

a stiffness matrix for a purely Neumann problem which is known to have a single zero 

eigenvalue. This result generalises so that the number of eigenvalues approaching zero 

is equal to the number of dark regions which fail the boundary criterion above. To 

state the results of [33] in detail is technical but the main idea can be summed up by 

the following theorem.
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Figure 4-3: A triangulated domain with k = 10c in the central region and k  =  1 
elsewhere

Theorem  4.5.1 (Graham and Hagger) Suppose that the domain is subdivided 

into light and dark regions, and k  is allowed to tend to oo in the dark regions. Then

200 400 600 800
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with K  and H d defined as above, the number of eigenvalues of H j ^ K  which approach 

zero as k — ► oo is equal to the number of disjoint dark regions which have empty 

intersection with the Dirichlet boundary of Q. The remaining eigenvalues of H j ^ K  

can be bounded independently of k.

Theorem 4.5.1 may explain the comment made in [10], that diagonal scaling typ

ically has the effect of leaving small eigenvalues for the types of coefficient matrix 

considered. The same theory indicates that for values of k approaching zero in the 

dark region, no eigenvalues will approach zero since, as k — > 0 in the dark region, the 

disconnected dark region will correspond to a purely Dirichlet problem with no bad 

eigenvalues. This eigenvalue behaviour will also be true of H j ^ K  because of (4.37).

Small values of k are typical in groundwater flow applications where regions of low 

permeability are present in the interior of the domain. Such regions tend to act like 

obstacles in the domain which the fluid must flow around. The results in [33] are 

useful since they imply that the number of iterations required by LSQR 

should be independent of the number of such regions. Large interior values of k arise in 

highly permeable regions which act as a conduit for the flow. Here LSQR 

will obviously not perform independently of the number of these regions (or the value 

of k ), although the performance will certainly not be as bad as k (H~^K)  suggests 

since Theorem 4.5.1 implies that only a small number of eigenvalues are approaching 

zero, the rest remain bounded independently of k.

As was described in §2.2.1, estimates on the convergence of iterative methods, and 

hence a lower bound on the number of iterations required to reduce an error estimate 

by a given tolerance, are usually found by choosing an inclusion set for the eigenvalues 

upon which a suitably chosen polynomial can be made small. Then using the minimisa

tion property of the algorithm in question, the error estimate can be bounded in terms 

of the uniform norm of the chosen polynomial on the inclusion set. By inserting the 

eigenvalues of H ^ K  in an inclusion set of the union of points corresponding to eigen

values approaching zero and an interval containing the remaining eigenvalues, such a 

polynomial argument will give a bound on, for example, the number of conjugate gra

dient iterations on H ^ K  required to reduce the energy norm of the error to a given 

tolerance. This number is shown in [33] to grow linearly with log(fcmax/A;min). Since 

the LSQR(D-1 ,i7 -1 ) algorithm is equivalent to the preconditioned conjugate gradient
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c Ai ( H ^ K ) A 2( H^ K) k ( H ^ K ) LSQR(D-1) LSQRTD-1,# ^ 1) CG PCG (H-1)
12 1.1 x 10"13 0.102 2.8 x 1013 345 63 >400 64
11 1.1 x 1 0 '12 0.102 2.8 x 1012 321 60 >400 60
10 1.1 x 10"11 0.102 2.8 x 1011 289 58 >400 58
9 1.1 x 10"10 0.102 2.8 x 101U 266 55 361 55
8 1.1 x 10-y 0.102 2.8 x 109 238 52 305 52
7 1.1 x 10-* 0.102 2.8 x 108 211 48 244 48
6 1.1 x 10~7 0.102 2.8 x 107 184 46 206 46
5 1.1 x 10"6 0.102 2.8 x 10^ 157 42 169 42
4 1.1 x 10"5 0.102 2.8 x 105 131 40 135 40
3 1.1 x 10"4 0.101 2.8 x 104 105 37 104 37
2 1.1 x IQ- ' 6 0.101 2.8 x 103 76 33 76 33
1 9.2 x 10~3 0.095 2.8 x 102 43 29 43 29

- 1 0.042 0.067 50.1 35 28 35 28
- 2 0.043 0.065 50.3 63 29 63 29
- 3 0.043 0.065 50.5 79 29 79 29
- 4 0.043 0.065 50.5 91 29 91 29
- 5 0.043 0.065 50.5 106 29 103 29
- 6 0.043 0.065 50.5 122 29 122 29
- 7 0.043 0.065 50.5 136 29 136 29
- 8 0.043 0.065 50.5 149 29 149 29
- 9 0.043 0.065 50.5 162 29 165 29

-1 0 0.043 0.065 50.5 181 29 181 29
-1 1 0.043 0.065 50.5 193 29 193 29
-1 2 0.043 0.065 50.5 209 29 208 29

Table 4.1: Iteration counts for the unpreconditioned and diagonally preconditioned 
LSQR(JD_1) and CG methods for the problem described in Figure 4-3

method for K  in exact arithmetic, this bound on the iteration number will also hold 

for LSQR(D~l , H ~ l ) . A bound of this type will also hold for the Euclidean norm of 

the error, see [33] for more details.

By way of demonstration, the domain shown in Figure 4-3 has been discretised us

ing Vavasis type elements on an unstructured grid. The value of k =  10c is taken in the 

central region, k = 1 is taken elsewhere and Dirichlet boundary conditions are assumed 

on the whole of d£l. There are 153 pressure unknowns and 716 velocity unknowns. The 

number of LSQR(D_1, H p 1) and preconditioned conjugate gradient iterations required 

to reduce the norm of the Euclidean norm of the error by a factor of 104 are displayed 

in Table 4.1 together with the number of iterations required by unpreconditioned ver

sions of both algorithms. Also shown are the two smallest eigenvalues of H ^ K .  Since 

there is only one level set of k which does not intersect the Dirichlet boundary, only 

one eigenvalue approaches zero as c grows, as predicted in the theory above. Notice
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th a t for values of c >  5, the LSQR(D-1 ) algorithm begins to take fewer iterations 

than the conjugate gradient algorithm to converge, with a discrepancy of over one hun

dred iterations for larger values of c. This would tend to suggest tha t the LSQR(D-1 ) 

approach with Vavasis type elements is more stable than the standard primal formu

lation - conjugate gradient approach to solving the problem when k is large (although 

both  methods require more steps than the number of pressure unknowns which is not 

desirable). This discrepancy is not as evident in the preconditioned versions of both 

algorithms since both algorithms are ‘stabilised’, to an extent, by the diagonal scaling. 

Only for large values of c is the LSQR(Z)-1 , H ^ 1) more competitive, for smaller values 

the convergence of both algorithms is the same. For values of c larger than 13 both al

gorithms cease to converge to the solution of (4.34), with PCG(17^1) failing to converge 

to anything. The LSQR(D-1 , H ^ 1) algorithm has however been observed to converge 

to solutions which are close to the actual solution, for example in the case c =  13,

| \BTD ~ 1(b — B y hS)\| =  O(lf)1), which should be compared to a residual of O(1013) 

after 400 preconditioned conjugate gradient iterations. This is disappointing but not 

entirely unexpected as the conjugate gradient algorithm is well known to fail to con

verge for problems with large ratios of k  and a ‘stable approach’ to solving the system 

must be taken. Such stable approaches are discussed in [78, 79, 38]. These algorithms, 

although attractive for their stability properties, are not particularly appropriate for 

the large systems which arise in CFD applications since their first step invariably is to 

calculate a basis for the nullspace of B TD ~s (usually via a QR factorisation of B TD~  s 

or a related matrix) which, for anything but small systems, is unrealistic in terms of 

computation time and storage requirements (c.f. the IICG algorithm of Appendix B). 

The iteration count for LSQR(D-1 , H ^ 1) is plotted against log(fcmax//cmin) in Figure 

4-4. The linear relationship between log(A;max/A;min) and iteration number expected can 

be clearly seen.

4 .6  In com p lete  LU  p recond itioners

If it were possible to compute the LU decomposition of the coefficient m atrix K  then, 

setting H  — K  and performing the LU  decomposition to enable the action of H  to 

be computed would clearly be an effective method of preconditioning in terms of the 

number of preconditioned iterations. This approach is not practical for large sparse
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C50

log (A:max

Figure 4-4: Iteration count of LSQR(D 1, H d 1) against ratio of k values

matrices K,  since the cost of the LU factorisation is prohibitive and since the LU 

factors are, in general, less sparse than K  (L and U are usually full in the bandwidth 

of K  - see Figure 4-5) so that the backward and forward solves when applying the 

preconditioner are expensive. Instead, if it were possible to calculate approximations 

L and U to L and U , which have a similar sparsity structure to If , in a cheap and 

efficient manner, then solves with L and U would be cheap to perform and it might be 

hoped that H  = LU  would be a good preconditioner for K.  The factorisation H  = LU 

alluded to above is referred to as an incomplete factorisation since it is assumed that

LU  «  LU = K.

Hereafter it will be assumed that all factorisation matrices are incomplete and the tilde 

notation will be dropped.

Stone [75] was one of the first people to consider incomplete factorisations of ma

trices. Here matrices L and U are found which are almost as sparse as K  and which 

approximate the LU factorisation as outlined above. In [75] the matrices are used in 

an iteration called the strongly implicit procedure (SIP) which is similar to the Gauss- 

Seidel iterative method. A generalisation of the SIP method using the incomplete LU 

factorisation ILU(p) of Watts [86] is given in [50]. ILU(p) denotes the incomplete LU 

factorisation with p levels of fill in, higher values of p lead to less sparsity in L, see
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figures 4-6 and 4-7. (The factorisations of the matrix K  represented in figure 4-5 were 

generated using the ILU(p) code in [50], the sparsity pattern of the full Cholesky decom

position is also shown in Figure 4-5). Using ILU(p), the sparsity pattern of L and U is 

not easy to predict (unless p =  0) and the amount of work required to perform the fac

torisation usually grows with p. This unpredictability makes the use of fill in methods 

impractical. A comparison of SIP and incomplete Cholesky preconditioned conjugate 

gradient (ICCG) methods for groundwater flow problems is given in [45]. Here it is 

found that the ICCG iterations are cheaper to perform than the SIP iterations and 

that ICCG converges faster than SIP on most of the test problems presented.

30
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Figure 4-5: Sparsity pattern of K  (left) and the full Cholesky factorisation of K  (right)
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Figure 4-6: L computed with ILU(O)

Incomplete LU factorisations are not guaranteed to exist for all matrices and so care
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Figure 4-7: L  computed with ILU( 1000) (left) and ILU( 100000) (right)

must be taken when using the ILU(p) algorithm. One situation in which incomplete 

LU factorisations always exist is that when the matrix K  is an M-matrix, this case is 

presented in [51].

D efinition 4.6.1 A m atrix A  is said to be an M-matrix i f  A  =  (a^) where aij < 

0 Vi ^  j  and

A x  = y  and y  > 0 =£■ x  > 0. (4.38)

(In the case that (4-38) holds the notation A ~ 1 > 0 is used).

The approach taken in [51] is to define the desired sparsity pattern for L  and U 

a-priori, which is different to ILU(p) where the final sparsity pattern is unknown until 

the factorisation is completed. This is achieved by first choosing the set Ps C P , where

p  =  { ( h j )  I *7- j } ,  (4.39)

to contain the required sparsity pattern, i.e. entries (i , j ) G Ps will denote positions in 

which zero entries are desired in the matrices L  and U. It is shown in [51] that for any 

M-matrix A  and any subset Ps of P , there are unique matrices L, U  and R  such that

A  = L U  + R ,

where L  and U are lower and upper triangular respectively and have zeros at all entries
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contained in Ps,  and the residual matrix R  = (rij) satisfies =  0 for ( i, j )  Ps- 

Furthermore the splitting is convergent (in the sense of §2.1), that is [(LU)~1 R]k — > 0 

sis k — > oo. Therefore an iteration of the form

LUy i + 1 =  - R y i  +  6, (4.40)

is guaranteed to converge to the solution of Ay = b for any choice of y$. See [77] 

for more details. Of course when A  is a symmetric, positive definite M-matrix the 

notion of an incomplete Cholesky factorisation arises naturally from the incomplete 

LU factorisation.

An incomplete LU factorisation can be constructed in many ways, the approach 

given in [51] is by performing Gaussian elimination on A  and subtracting away terms 

which lie in Ps  in the row and column of the current pivot after each column elimination. 

These subtracted terms are accumulated in the matrix R  and U is the result upon 

completion of the process. As usual, L  is the inverse of the product of the column 

elimination matrices. Using some elementary M-matrix results (see [77, Section 3.5]) 

it is possible to show that this process of generating L  and U is at least as stable 

as standard Gaussian elimination applied to A  (see [51]). The approach taken in the 

ILU(p) algorithm is to fill in the ILU(O) Cholesky factor from top-left to bottom- 

right until the fill in tolerance is exceeded. Here ILU(O) denotes the incomplete LU 

factorisation of K  where L  and U have the same sparsity pattern as K .  This is referred 

to in [51] as the incomplete LU factorisation of K  with no extra diagonals. Algorithms 

for ILU(O) and incomplete LU with three extra diagonals are given in [51] for matrices 

K  arising in discretisations on uniform grids.

Although the application to standard iterative methods of the form (4.40) is useful, 

incomplete factorisations have been more widely used as preconditioners for iterative 

methods, especially the incomplete Cholesky factors together with the conjugate gra

dient iteration. This is because, for highly sparse choices of L, the incomplete factor is 

cheap to operate with and compute. Also, no assumptions are made on the geometry 

of the underlying problem to be solved, the coefficient matrix A  is simply fed to the 

incomplete factorisation algorithm. This is both an advantage and a drawback, the 

approach is simple to use but the lack of dependence on the initial problem often leads 

to poor numerical performance.
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It should be noted that M-matrices are not the only class of matrices for which 

incomplete factorisations exist. Classes of positive definite matrices for which incom

plete LU factorisations exist are described in [48]. Here incomplete factorisations of 

H-matrices (K  = (kij) is an H-matrix if K  = (kij) is an M-matrix where ku = ku 

and kij =  —\kij\) axe discussed, and it is shown that incomplete factorisations exist 

for H-matrices with positive diagonal. This motivates ManteuffePs shifted incomplete 

Cholesky factorisation (SIC). Since any diagonally dominant m atrix is an H-matrix, 

and since any positive definite matrix can be transformed into a diagonally dominant 

m atrix by scaling its off-diagonal terms until they are suitably small, the SIC approach 

is to apply an incomplete factorisation to

Jf(a) =  D  +  - l - ( F  +  G))
1 +  a

where F  is the strictly lower and G the strictly upper triangular parts of K.  As K (a)  

is diagonally dominant for a  sufficiently large, an incomplete LU factorisation of K (a) 

is guaranteed to exist. The idea of SIC is then to use the incomplete factor of K(a)  

to precondition K .  This allows any positive definite matrix to be preconditioned by 

an incomplete factor of a matrix which is close to the original matrix (provided tha t 

a  is not too large), and hence is applicable to most matrices arising in the application 

of the finite element methods. The choice of a  is obviously im portant and can greatly 

affect the number of iterations required see [48, Section 6(c)].

Another area of current interest is the choice of the sparsity pattern Ps,  since this 

can be a deciding factor in whether an incomplete factorisation exists. Some necessary 

and sufficient conditions on Ps  for the existence of incomplete Cholesky factors of 

symmetric positive definite matrices can be found in [81] and the references therein.

Since it is assumed here that the matrix K  =  B TD ~ 1B  arises in the discretisation 

of (4.3) using Vavasis type elements, and K  = (kij) where

kij = I k(x)V(f i • Vipj dx < 0 for i ^  j,
J n

provided that no triangle contains an angle greater than 90°, since Vipi is always 

decreasing (increasing) in a direction in which Vipj is increasing (decreasing) when 

i ^  j  and Vpi-Vipj  ^  0, for the piecewise linear elements considered. This observation
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leads to the conclusion [77, §3.5 Cor. 3.5] that the symmetric positive definite matrix 

K  is an M-matrix so that an incomplete Cholesky factorisation of K  exists and the 

straightforward procedure in [51] for computing the factorisation is stable. For more 

general finite elements and meshes the approach of Manteuffel [48] is more suitable.

4 .7  N u m erica l resu lts and a n ote  on  in com p lete  precon

d itioners

Here some problems arising from discretisations of the groundwater flow problem (4.3), 

with boundary conditions (4.4) in 2 dimensional domains by Vavasis type elements 

are examined, and the performance of the three preconditioning strategies outlined 

in §§4.5,4.6 is compared.

E x a m p le  1

The first example concerns the domain shown in figure 4-1. Here k (x ) =  10c in the dark 

regions and k (x ) =  1 elsewhere. The vertical sides of comprise the no-flow boundary 

1?2, and the pressure is prescribed on the Dirichlet boundaries on the top and bottom  

of the domain. Discretisations on 8 x 8 grids (63 pressure and 256 velocity unknowns), 

16 x 16 grids (255 pressure and 1024 velocity unknowns) and 64 x 64 grids (4095 

pressure and 16384 velocity unknowns) were performed. The resulting systems were 

solved using unpreconditioned, diagonally scaled, additive Schwarz preconditioned and 

ILU(O) (calculated using the algorithm in [51]) preconditioned versions of LSQR(Z)-1 ). 

The Schwarz preconditioners use the subdivision of Q, shown in figure 4-8 for the 8 x 8  

and 16 x 16 problems. On the 64 x 64 grid problems, the cost of calculating each K J 1 

on each of the four subdomains in figure 4-8 becomes prohibitive and so the division 

of £1 into fifteen smaller regions as shown in figure 4-9 was used. The additive Schwarz 

preconditioner was calculated without a coarse grid solve, the improvement which could 

be expected with the addition of a coarse grid solve can be guessed by comparison with 

the results in [34, 33]. In the case that the coarse grid is designed to replicate some of 

the geometry of the domain (rather than being simply a coarse uniform mesh) the best 

results would be expected and in this case only a weak dependence on the coefficient 

ratios is expected (see the conjecture in the results of [34], and the following remarks), 

i.e. the number of iterations taken for large values of c are likely to be only slightly
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Figure 4-8: Decomposition of the domain f2
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Figure 4-9: Finer decomposition of the domain Q,
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larger than the number of iterations for the case c =  1. No coarse mesh was used here 

since this work seeks only to compare the three preconditioning techniques mentioned 

and the result is clear without needing the coarse grid solve.

Each of the solution methods outlined above was carried out until the stopping 

criterion

l l y  — y o l l  ^  , „ 4
llv-wll" ’

where y is the exact solution of (4.34) (obtained by Gaussian elimination), was obtained. 

Iteration counts for each of the methods are shown in Table 4.2. As was previously 

mentioned, positive values of c are typical of problems in which a highly permeable 

conduit is present, and negative values of c are usual when the dark regions represent 

obstacles of low permeability (which is the case shown in Figure 4-1).

For negative values of c it is clear that the unpreconditioned LSQR(D_1) algo

rithm  struggles to solve the problems as k tends to zero. This is as expected since the 

unpreconditioned system has several eigenvalues which tend to infinity as k decreases 

(this is obvious by consideration of (4.27) and Theorem 2.3.1). The behaviour of 

the preconditioned algorithms is much nicer, each of the three preconditioning strate

gies have iteration counts which are much smaller than those of LSQR(Z)-1 ) . The 

number of iterations required by L S Q R g r o w s  slightly as as k decreases, 

whereas L S Q R r e q u i r e s  the same number of iterations for all values of 

k between —2 and —10 on both of the two smaller systems. The ILU(O) precon

ditioner also performs independently of k (for small values of k) on the two small 

systems, and LSQR(D_1, H J ^ )  requires fewer iterations than L S Q R o n  

the two smaller systems. The story is different for the 64 x 64 system however, here 

the L S Q R a l g o r i t h m  is the fastest although again LSQR(L>-1 , H j ^ )  has 

iteration counts which are independent of k for c <  — 2. The growth in the number of 

iterations required as h is reduced also indicates that these preconditioning strategies 

are dependent on mesh size.

For positive values of c the expected growth in iteration numbers can be seen for 

the diagonally preconditioned system. For the small systems the preconditioned 

system appears to have iteration number independent of k although on the larger system 

the expected behaviour can be seen. The independence of k of LSQR(D- 1 , H^s)
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c LSQR(D - 1) LSQR ( I T 1, H » l ) L S Q R (D -\ L S Q R (L T \ H T h , )
8 X 8 16 X 16 64 X 64 8 X 8 16 X 16 64 X 64 8 x 8 16 X 16 64 x  64 8 X 8 16 X 16 64 X 64

10 376 >1000 >1000 49 108 500 7 13 102 20 35 134
9 342 >1000 >1000 49 104 429 7 13 98 20 34 118
8 306 >1000 >1000 47 100 416 7 13 95 19 32 113
7 269 >1000 >1000 45 95 397 7 13 89 18 30 107
6 234 >1000 >1000 44 92 382 7 13 84 16 29 103
5 196 863 >1000 42 88 367 7 13 81 14 27 98
4 150 649 >1000 39 82 339 7 13 77 13 25 90
3 120 443 >1000 37 77 317 7 13 71 12 23 83
2 82 247 >1000 35 70 291 8 14 65 11 20 77
1 48 122 554 31 62 256 11 17 58 10 17 69

- 1 43 94 383 33 69 283 20 27 59 11 20 76
-2 65 117 778 35 73 301 21 29 64 11 20 81
-3 72 277 >1000 36 74 313 21 29 65 11 20 82
-4 78 395 >1000 38 74 316 21 29 65 11 20 82
-5 112 507 >1000 38 78 316 21 29 65 11 20 82
-6 127 604 >1000 38 79 316 21 29 66 11 20 82
-7 136 722 >1000 38 80 318 21 29 66 11 20 82
- 8 150 831 >1000 38 80 328 21 29 66 11 20 82
-9 175 938 >1000 38 80 334 21 29 66 11 20 82

-10 189 >1000 >1000 38 80 336 21 29 66 11 20 82

Table 4.2: Iteration counts for Example 1
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on the small systems is probably due to the fact that the Schwarz preconditioner 

used on the small systems is fairly ‘strong’, in the sense that Q, is partitioned into 

only four subdomains which closely replicate the geometry of fi, and so it might be 

expected that is a very good approximation to K ~ l , whereas the splitting of Q 

into 15 subdomains for the large problem leads to a poorer approximation of K _1. This 

behaviour is in agreement with the conjecture at the end of [34] mentioned previously, 

namely that for a well designed mesh which resembles the geometry of the original 

problem, the number of additive Schwarz preconditioned steps is only very mildly 

dependent on k. It can also be seen that LSQR(D-1 , H^lu ) exhibits the same type of 

growth as is expected of LSQR(D~l , H p l ) and LSQR(D~x, H ^s )  > which would tend 

to suggest that the eigenvalue distribution of H J ^ K  is similar to tha t of H ^ l K.  This 

observation is partially explained by Theorem 4.7.2, but first a preliminary result due 

to Manteuffel is required.

Suppose M  is a symmetric positive definite matrix with splitting

M  = D - B ,

where D  is the diagonal part of M  and B  is the off-diagonal, and let

M ia )  = D — —i — 
v ' 1 -I- a

Recall (§4.6) that for sufficiently large a , M(a)  is diagonally dominant and hence is 

an H-matrix with positive diagonal, so that an incomplete Cholesky factorisation is 

guaranteed to exist [48]. This incomplete factorisation is called a shifted incomplete 

factorisation of M  and is denoted H s i c ( a ) (so tha t Hsic(&) = L L T for some L  with 

the desired sparsity pattern), and so

M(a)  = H s ic {a ) +  R{cx)

where non-zero entries in R  only occur in some non-zero set Ps- It will be assumed 

hereonin that Ps  has empty intersection with the non-zero set of M.  Notice that,

lim Hsic{oi) = D.
a — >00
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We are now in a position to state [48, Theorem 5.1].

T h e o re m  4.7.1 (M an teu ffe l) With the above notation, 3 a min >  0 such that 

Vcn >  CX-mim

K(HSIC(ot)~l M ) < k{D~ 1 M).

Further if X ^ H s i c M ^ M )  is the eigenvalue of Hsic(&)~l M  and Xi(D~l M )  the 

corresponding i ^ 1 eigenvalue of D ~ l M ,  then for a  sufficiently large either

1 < Ai{HSic{<x)-l M )  < Xi{D~l M),

or

Ai (D~l M )  <  A i(J/s/c(a)_1M ) < 1.

The following theorem then follows naturally

T h e o re m  4.7.2 I f  K  is the stiffness matrix arising in (4-%4) then for sufficiently large 

a, either

1 < Aj(Hsiciar'M)  <  C2,

or

A < A;(HSi c W ) ~ l M )  < 1,

where C2 is a constant.

P ro o f  Trivial consequence of Theorem 4.7.1 and [11, Theorem 12]. □

C o ro lla ry  4.7.3 The number of eigenvalues of that approach zero is no

greater than the number of eigenvalues of H p l K  and H ^ K  that approach zero (which 

can be predicted by the theory in [33]) whenever a  is sufficiently large. Further the 

remaining eigenvalues that are bounded away from zero can be bounded above by a 

constant.
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Using Theorem 4.7.2 and Corollary 4.7.3 it is now obvious that the shifted incom

plete Cholesky factorisation preconditioners should exhibit similar behaviour to the 

diagonal and additive Schwarz preconditioners for a sufficiently large shift parameter. 

However, no lower bound on the value of the shift parameter is known. For the results 

in this section, the (non-shifted) incomplete Cholesky factorisation has been used, so 

that a = 0. The experiments have tended to indicate strongly that the results of The

orem 4.7.2 still hold, but no analytical justification why this should be true has been 

found. For example Figure 4-10 shows the spectrum of H p [K  and H J ^ K  for the 

domain shown in Figure 4-11 with k(x) = 1010 in the dark region and k(x) = 1 in 

the light region. The spectrum of the incomplete Cholesky preconditioned system can 

be seen to be very similar to that of H ^ lK  with only one small eigenvalue and the 

remainder bounded away from zero.

j> 10

5  10 '

2fcuO

Figure 4-10: Eigenvalues of H Dl K  (points joined by solid line) and H j ^ K  (crosses). 

E x a m p le  2

The next example relates to the domain shown in figures 4-11 and 4-12. The domain 

is similar to that of the previous example, except for the fact that the dark region 

intersecting with the Dirichlet boundary is removed and the remaining dark region no 

longer intersects the (Neumann) boundary of Q. Figure 4-11 indicates the type of flow 

expected for large values of k in the dark region. Here flow tends to be through the 

dark region which is highly permeable. Figure 4-12 shows a typical groundwater flow
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around a region which has a small value of k.

The same size meshes used in Example 1 were used to discretise the domain 

and the resulting systems were again solved by LSQR(D-1) , L S Q R , 

LSQR(D~l ,H ^ s )  and LSQR(D_1, H j l v ) . The same subdomains as in Example 

1 were used to form the additive Schwarz preconditioners, and the same stopping cri

terion was used to terminate the iteration. The iteration counts for each method are 

shown in Table 4.3.
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Figure 4-11: Flow and pressure contour plots for k large in the dark region
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Figure 4-12: Flow and pressure contour plots for k small in the dark region
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c LSQR (D - 1) LSQR { D ~ \ * d ) LSQR ( D ~ \ H j k ) L S Q R ( D - M ^ / )
8 x 8 16 x  16 64 X 64 8 X 8 16 x 16 64 X 64 8 X 8 16 X 16 64 x  64 8 X 8 16 X 16 64 X 64

10 219 >1000 >1000 50 101 419 13 18 95 18 33 117
9 198 980 >1000 48 98 402 13 18 90 17 31 113
8 183 871 >1000 46 95 385 13 18 86 16 29 108
7 159 759 >1000 44 90 368 13 18 82 15 28 102
6 142 652 >1000 41 85 346 13 18 77 14 26 98
5 120 552 >1000 39 80 327 13 18 73 13 25 92
4 102 444 >1000 36 74 299 13 18 68 12 23 85
3 82 330 >1000 33 67 276 13 18 62 11 21 79
2 62 210 >1000 31 61 253 13 18 59 10 19 73
1 36 102 558 30 60 241 14 18 53 10 18 70

- 1 34 71 287 29 55 228 17 24 56 10 19 70
-2 41 125 509 30 57 241 18 25 56 10 19 70
-3 46 196 >1000 31 57 243 18 25 56 10 19 70
-4 50 274 >1000 31 57 243 18 25 56 10 19 70
-5 54 312 >1000 31 57 243 18 25 56 10 19 70
-6 58 383 >1000 31 57 243 18 25 56 10 19 70
-7 61 442 >1000 31 57 243 18 25 56 10 19 70
-8 64 509 >1000 31 57 243 18 25 56 10 19 70
-9 67 576 >1000 31 57 243 18 25 56 10 19 70

-10 68 623 >1000 31 57 243 18 25 56 10 19 70

Table 4.3: Iteration counts for Example 2

4.7. NUMERICAL RESULTS AND A NOTE ON INCOMPLETE
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The unpreconditioned algorithm doesn’t struggle so much to solve these problems 

as in Example 1. This is probably due to the fact that fewer eigenvalues are tending to 

zero when k is large, and infinity when k is small, since the area of the dark region is 

smaller than in Example 1. However it is still the case that for very large and very small 

values of k  in the dark region, the number of iterations is greater than the size of the 

system. The expected growth in iteration number for positive c in the diagonally scaled 

algorithm can be seen. For k >  1, the number of iterations of LSQR(Z)-1 , H ^ 1) is 

approximately the same as those for Example 1 which is as expected since the number 

of eigenvalues approaching zero is the same. For small values of k this problem is 

easier to solve than Example 1 (in terms of iterations). This is most likely due to 

the clustering of the eigenvalues in the diagonally scaled systems since the number of 

bad eigenvalues for both examples is zero when k is small. This is also true of the 

additive Schwarz preconditioned system for small k, although for large k Example 2 

appears harder to solve than Example 1 for the small system sizes. This is perhaps 

because the subdomains for the small problems more closely resemble the geometry 

of Example 1 than Example 2. Further evidence for this is that for the large system 

where the subdomains better represent the geometry of Example 2, Example 2 appears 

easier to solve. Hence the choice of subdomains can make a considerable difference 

when using the additive Schwarz preconditioners. For the small systems, the ILU(O) 

preconditioned system behaves almost exactly the same as for Example 1, although for 

the large system, Example 1 appears a slightly harder problem.

The iteration counts for each of the three preconditioned systems are plotted against 

log(Armax/A:min) in figure 4-13. A linear relation is clearly visible for each of the three 

preconditioned systems which agrees with the remarks made at the end of Example 1.

4.8  Sum m ary

The clear conclusion of this section is that the additive Schwarz preconditioner is the 

most effective of the three methods tried here in terms of the number of iterations 

required by LSQR(D-1 ) applied to the system (4.34) where the system arises from 

discretisations of groundwater flow type problems by Vavasis type finite elements. The 

condition number of the preconditioned systems was observed to be a poor indicator 

of the numerical performance which could be expected, since only a small number of

4.8. SUMMARY
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Figure 4-13: Iteration count of LSQR(D 1 , H Dl ) , LSQR(D l , H Ag) and
LSQR(D_1, HJlu) against ratio of k values.

eigenvalues approach zero for the case when k is large in regions in f2 which have 

empty intersection with the Dirichlet boundary, although in the case that k is small 

the condition number of the system is a more reliable bound since in this case there are 

no isolated eigenvalues. The eigenvalue distribution of the shifted incomplete Cholesky 

preconditioned system was shown to have similar dependence on k to that of the diago

nally preconditioned system (and hence to that of the additive Schwarz preconditioned 

system) in Theorem 4.7.1, and similar properties were observed for the (non shifted) 

incomplete Cholesky preconditioner. Depending on the machine architecture it may 

well be the case that the ILU preconditioner is the more effective of the two in terms 

of time taken, since the cost of applying the preconditioner may be smaller. The ILU 

preconditioner requires two sparse triangular backsolves whereas the additive Schwarz 

requires several solves on smaller subdomains. It is impossible to predict which pre

conditioner will be more effective in a general setting, but on the serial machine used 

for the examples in this chapter the ILU iteration was usually the fastest.

It should be mentioned that at no time has the expense of calculating the precondi

tioner been considered. Obviously the diagonal preconditioner is the easiest to compute, 

but the distinction between calculating the additive Schwarz and ILU preconditioners 

is not clear. An advantage of calculating the additive Schwarz preconditioner is that 

it is not actually necessary to form the matrix K,  whereas in computation of the ILU

4.8. SUMMARY



C h a p t e r  4 146

preconditioner specific elements of K  need to be accessed. Experimentally it has been 

found that, provided the subdomains of Q are suitably small there is little difference in 

the time taken to form each of the preconditioners. Another advantage of the additive 

Schwarz preconditioner is that the procedure parallelises naturally, whereas parallel 

implementations of ILU are not so simple or well understood. ILU has the advantage 

however when the geometry of the underlying problem is unknown since then it is more 

difficult to design an effective additive Schwarz preconditioner. The ILU preconditioner 

should give similar performance to tha t of an additive Schwarz preconditioner which 

replicates the geometry of the underlying problem if the behaviour observed in the 

experiments of this section is typical.

In [83, 84], element by element (EBE) preconditioners for discretisations of Laplace’s 

equation using piecewise bilinear (2-dimensions) and piecewise trilinear (3-dimensions) 

elements are discussed and it is shown that EBE preconditioned systems are spec

trally equivalent to H p 1 preconditioned systems. Hence it is expected that the EBE 

preconditioners would exhibit similar behaviour to the three preconditioners discussed 

above. For 2-dimensional problems [83] advocates the use of incomplete factorisation 

preconditioners since they have a more rapid convergence rate, but for 3-dimensional 

problems the EBE method is more competitive. The fact that the incomplete factori

sations have more rapid convergence than the EBE method indicates tha t the additive 

Schwarz method should also be more competitive than the EBE method in 2 dimen

sions. In three dimensions it may be the case that the EBE method will be the more 

competitive.

4.8. SUMMARY



Chapter 5

M ixed finite elem ents for the  

groundwater flow equations

In this chapter the theory of mixed finite element methods for the groundwater flow 

equations is reviewed. It was seen in Chapter 4 that the velocity variable in the ground

water flow equations could be eliminated, so that standard finite element methods ap

plied to the scaled Laplace equation could be used to provide an approximation to the 

pressure component of the solution of the groundwater flow equations. An approxi

mation to the Darcy velocity component of the solution could then be obtained using 

some numerical differentiation, since the Darcy velocity is simply the scaled derivative 

of the pressure. The velocity approximation obtained in this way will always be of 

lower order than the pressure approximation, and no control over the continuity of 

the approximate velocity approximation was possible. Mixed finite element methods 

address this shortcoming by using more than one approximation space. In the case of 

the groundwater flow equations two approximation spaces are used, one for the veloc

ity component of the solution and the other for the pressure component. Typically, 

accurate approximations to velocity are more desirable than accurate approximations 

to pressure, and so the velocity approximation space is usually chosen to be larger than 

the pressure approximation space. These spaces have to be chosen carefully so that the 

solution approximation converges to the actual solution as the mesh size decreases to 

zero.

In §5.1 the abstract mixed variational form of the groundwater flow equations is 

studied, and in §5.2 the discretised variational form is considered. One popular choice
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of mixed finite element for the groundwater flow equations is the Raviart-Thomas el

ement, and this is the subject of §5.3. Since the LSQR(A-1 ) method requires a solve 

with A-1 at each step, a good preconditioner for A  is required so tha t the inner solves 

can be performed effectively. For mixed finite element approximations to the ground

water flow equations, A is a scaled mass matrix of velocity basis functions. Wathen 

[82] has considered preconditioning A by its diagonal, and in §5.4 it will be seen that 

the resulting preconditioned matrix is independent of the bad scaling due to the per

meability function in the groundwater flow equations. In §5.5, attention returns to the 

computation of the Raviart-Thomas mixed finite element matrices and in particular, 

computation of velocity mass matrices. Following §5.4 the diagonally preconditioned 

scaled mass matrix will have condition which is independent of the permeability scaling. 

However due to the geometry of typical groundwater flow domains, it can be expected 

that domain elements with large aspect ratios will be present, the effects of which are 

discussed in §5.5.1 for the particular choice of the Raviart-Thomas elements. It is seen 

that although existing theory predicts that large aspect ratios will give rise to poorly 

conditioned mass matrices, the situation for Raviart-Thomas elements is not nearly 

as bad as expected. In §5.6 the choice of preconditioner H  in the LSQR(A-1 , l f _1) 

algorithm is considered. This draws on ideas from Chapter 4 and §5.4, and the precon

ditioned algorithm is applied to one of the Harwell test problems. A disadvantage with 

the LSQR(A-1 ) algorithms is that they require an A-1 operation at every iteration. A 

method which cuts down the number of A-1 operations by first solving a system with 

A replaced by its diagonal is considered in §5.7, and some surprising results for a MAC 

finite element discretised groundwater flow problem are given.

5.1 A b stract m ixed  variational form ulation  o f th e  ground

w ater flow eq u ation s

The analysis of the variational form of groundwater flow type partial differential equa

tions is abundant in the literature, and a similar treatment to tha t in the following 

sections can be found in any of [7, 9, 60, 61], all of which cite the original work of

5.1. ABSTRACT MIXED VARIATIONAL FORMULATION OF THE

GROUNDWATER FLOW EQUATIONS
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Brezzi [8] on the subject. Again consider the groundwater flow equations,

(5.1)
^ u  +  Vp = 0 in Q,

V • u = 0 in Q, 

with the boundary conditions

P =  f  °n F l’ (5.2)
u • n  =  0 on T2

where f2 C Kn , £1 is convex, Q contains only piecewise-linear interfaces (see §4.1),

/  G L2(fl) and dQ =  Ti U T2 - The variational formulation of (5.1) and (5.2) uses two

Hilbert spaces, one for velocity and one for pressure. The pressure space is simply 

L2(f2). That for velocity is a subset of the space Hdiv(Q), where

Hdiv(tl) =  {t> 6 L2(fi)" | V • v 6 L2(fi)},

which satisfies the boundary condition on T2 , denoted by H°iv(fi), i.e.

H°div(ft) = { v e  Hdiv(Q) \ v n  = 0 o n  T2}.

The inner product

(u > w>Hdiv(n) =  (v > w )lHn r  +  (V • u , V ■ tu)L3(n), 

is defined on Hdiv(fl) and induces the norm

IH I„div(n) = (lM I2L W  + l lv - t-|l2L2(n, ) i .

For simplicity the notation V  = H°iv(f2) and n  =  L2(Q) will be used where appropriate. 

The variational formulation of (5.1) and (5.2) is then obtained by multiplying the first 

equation in (5.1) by an arbitrary function v G V,  and the second equation in (5.1) by 

an arbitrary function g E h ,  and integrating. Hence suppose v G V  and g G f i  Then,

I ' v dx +  /  v • Vp dx =  0 Vv G V, 
J n  k  Jn

5.1. ABSTRACT MIXED VARIATIONAL FORMULATION OF THE

GROUNDWATER FLOW EQUATIONS
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and so

I j-u • v dx — /  p V  • v dx = /  f v - n d ' y ' i v E V ,
Jn * Jet JTi

using the boundary conditions (5.2) and the fact that v-n  =  0 on V2 - Here n  is the unit 

outward normal to dQ, and 7  is the unit of arclength along Hence the variational 

formulation of (5.1), (5.2) is,

Find (u ,p )e V  x n  such that

JQ % u - v d x - J n p V - v d x  =  f dQ f v  - nd'y  Vu E V, (5.3) 

— ■ u dx =  0 v<? e  n ,

which can be rewritten in the abstract form,

Find {u,p)e V  x n  such that

a(u,v) +b(v,p)  = F(v) V v € V ,  (5.4)

6(it, q) =  0 Vg e  n .

It is easy to show tha t both the bilinear forms a(-, •) and &(•, •) (and the linear function 

F ( ‘)) are continuous, i.e. 3 constants Ci and C2 such that

a(u,v) < Ci ||u ||v \\v\\v , 

b(v,p) < C2 \\v\\v \\p\\u .

Here C\ =  p / k min and C2 = 1.

Notice that a(-, •) is not coercive on the whole of V  = Hdiv(fi), since

a(v,v)  >  7r - | H | La(n),
^max

and the space Hdiv(fi) cannot be embedded in L2 (Q). However, a(-, •) is coercive on an 

im portant subspace of Hdiv(f2). Define

V § =  {v e  Hdiv(ft) I 6 (t>, q ) =  0 Vg E n}.

Then clearly V 1 = {v e  Hdiv(f2) | V • v = 0}, i.e. V ’ is the subspace of V  containing

5.1. ABSTRACT MIXED VARIATIONAL FORMULATION OF THE

GROUNDWATER FLOW EQUATIONS
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divergence-free functions. Suppose now that v 6 V ' . Then

a(v,v) > |M |L2(n) =  ||v ||v Vv 6 V',  (5.5)
^max '"max

so tha t a(-, •) is coercive on V ' . Now since 6(u, q) = 0 Vq G II, u G V'  and

a(u,v)  =  F(v) Vv G V ' . (5.6)

Consequently, the Lax-Milgram lemma [13, Theorem 1.1.3] can be applied to obtain 

tha t (5.6) has a unique solution u G V ' . Of course it has yet to be shown that the set 

V'  ^  {0}. This will follow from a coercivity condition for &(•, •).

The coercivity condition on a(-, •),

3 a  >  0 such that a(v, v) > a  |M |y Vv G V', (5.7)

which holds by (5.5), implies that 3 a  >  0 such tha t aHvH^ < a (v ,v ) / | |v ||v Vv G V 1 

and since v / ||v ||v is a unit vector and V'  C V y

a(v,v) a(w,v)
"Ti Ti sup -r; r; .
Il l̂lv w&V  IHIv

Therefore the coercivity condition (5.7) can be rewritten as,

3 a  >  0 such that a  I M L  < sup Vv G V ' .
w e v  IWIv

The similar coercivity condition for &(•, •),

3(3 > 0 such that /3 ||d |n < sup V# G n , (5.8)
v t v  IMIV

provides an existence and uniqueness result for the solution of the equation

b(v,p) = F(v ) Vv G V, (5.9)

where F(v) = F(v)  — a(u,v)  and u is the solution of (5.6), via another application

of the Lax-Milgram lemma. In addition to the existence and uniqueness theory, (5.8)

is also a sufficient condition for the space V'  to be nontrivial (i.e. if (5.8) holds then

5.1. ABSTRACT MIXED VARIATIONAL FORMULATION OF THE

GROUNDWATER FLOW EQUATIONS
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V'  ^  {0}), and hence the solution u  of (5.6) is nontrivial. Hence the following theorem 

of Brezzi [8, Theorem 2.1] holds.

T h e o re m  5.1.1 (B rezzi) I f  the bilinear forms a (•, •) and b(•, •) and linear function 

F(-) are continuous and (5.7) and (5.8) hold, then the problem (5.4) has a unique. 

solution (u ,p ) E V  x n .

P ro o f  See Brezzi [8]. □

The coercivity conditions (5.7), (5.8) (together with the continuity requirement 

on a(-, •) and &(•, •)) are therefore sufficient conditions for the existence of a unique 

solution to (5.4). The condition (5.8) is often referred to as the Babuska-Brezzi or 

inf-sup condition, since it can be rewritten in the form

3 (3 > 0 such that (3 <  inf sup ,, . (5.10)
~~ ?envey ||u ||v

Inequality (5.7) has already been verified for (5.1), it only remains to be shown tha t 

(5.8) holds. Inequality (5.8) becomes,

fr, Q V • v dx o
0  I M U n )  ^  SUP -jj77]  v 9 G L (f i )'

v € H div(fi )  l lu UHdiv(n)

So, suppose tha t q E L2(0) and let 0 solve the Dirichlet problem,

—A 6  = q in ft,

0  = 0 on dft.

Then defining v := —V0, v E Hdiv(f2) since 6  E H2(f2) and V • v — q E L2(f2). Using 

the regularity result,

Ih2(o) — ^  ll^llL2(n) ’ 

where C  is a constant, it follows that

MlL2(fi) — ^  n^HL2(n)

5.1. ABSTRACT MIXED VARIATIONAL FORMULATION OF THE

GROUNDWATER FLOW EQUATIONS
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and hence

Ii< iv<n,<(i + c2)ll9l&(nr

W ith this choice of v ,

f Qq V - v  dx =  Ikll^(n)

I M l H div(n) HV HHdiv (o)

> ( i + c 2r ^ i M i L2(n),

and hence (5.8) holds with /? >  (1 4- C2)~K

Thus both (5.7) and (5.8) hold, so that a unique solution (u,p) G Hdiv(fi) x L2(f2) 

of the variational form (5.4) of the groundwater flow equations exists. However the 

existence and uniqueness of mixed finite element approximations to (5.4) does not 

follow immediately, as is explained in the following section.

5.2 A b stra ct m ixed  fin ite  e lem en t ap proxim ation

Finite dimensional analogues of the coercivity conditions (5.7), (5.8) give an existence 

and uniqueness result for mixed finite element approximations of (5.4). Suppose tha t T  

is a triangulation of the domain f2 and that Vh and are finite dimensional subspaces 

of V  and n  respectively. Here h denotes the dependence of Vh and on some dis

cretisation parameter which tends to zero. Then the finite dimensional approximation 

to (5.4) is

Find (uh,Ph)€ Vh x such that

a{uh,v) +  b(v,ph) =  F ( v ) V v e V h, (5 .11)

b(uh,q) = 0 Vg G n^.

Proceeding in a similar fashion to tha t in the previous section for the variational for

mulation (5.4), existence and uniqueness of solutions to (5.11) will depend on the finite 

dimensional, divergence free subset of Vh,

Vh = {v G Vh | b(v, q) = 0 \/q G n h}.

5.2. ABSTRACT MIXED FINITE ELEMENT APPROXIMATION
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Provided that finite dimensional analogues of (5.7) and (5.8) hold, namely that

3a > 0 such tha t a(v,v) > a  |M |^  Vv £ (5.12)

and

3(3 > 0 such that (3 < inf sup » (5.13)
~  IM|V Iklln

then (5.11) has a unique solution (Uh,Ph) £ Vh x 11 .̂ This follows from Theorem 5.1.1 

with V  and II replaced by Vh and 11 .̂ A further result from Brezzi [8, Theorem 2.1] 

shows that this approximation to the solution (u,p) 6 V  x II of (5.4) satisfies the error 

bound,

\\u ~  Uh\\v  +  \\P ~ P h\\n  < C (  inf | | u - t ; | | v +  inf | b - g | | n V\vevh qeuh j

W ith assumptions on the interpolation of the boundary of Q by the triangulation 7”, 

more useful error bounds in other Sobolev norms, and bounds on purely pressure errors, 

can be found. See for example [7, §10.6].

Since (5.12) is not necessarily implied by (5.7), as gl V'  in general, and (5.13) 

is obviously not necessarily implied by (5.8), the discrete coercivity conditions are not 

implied by their non-discrete counterparts and so (5.12) and (5.13) must be checked 

for the choice of mixed finite elements taken. The mixed finite element approximation 

of (5.4) will only be stable if (5.12) and (5.13) both hold with constants a  and (3 

independent of h. Otherwise it may be possible to find a sequence {hi} and/or a 

sequence {hj}  with hi — > 0 and hj — > 0 such that a(vi,Vi) — > 0 for some sequence of 

vectors {w;} and/or m fqjenh. suPVjevh. K vjiQj)/ lbj llv lkjlln — y 0 f°r some sequences 

{vj} and {qj}i and so in the limit as h — > 0, the existence and uniqueness of a solution 

to (5.11) cannot be verified.

Inequality (5.13) is easy to verify by simply taking Vh to be a sufficiently large space 

with respect to 11 .̂ The difficulty with this however is that such a space Vh will have 

a large basis set and hence this approach will lead to a very large matrix equation. 

Instead, the general idea is to attem pt to find a space Vh which is as small as possible 

with respect to 11̂  (but which provides a sufficiently accurate approximation) and is

5.2. ABSTRACT MIXED FINITE ELEMENT APPROXIMATION
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compatible with 11̂  in the sense that (5.13) holds.

One popular choice of mixed finite element for the groundwater flow equations for 

which (5.12) and (5.13) can be verified is the Raviart-Thomas mixed finite element. 

This is the topic of the following section.

5.3 R aviart-T h om as m ixed  fin ite  elem en ts

In order to construct a stable mixed finite element approximation to (5.4), the aim is to 

find subspaces Vh C V  and 11̂  C II such that the discrete coercivity conditions (5.12) 

and (5.13) hold. Suppose for simplicity that 17 C M2 is a polygonal domain and tha t T  

is a triangulation of 17 with maximum triangle diameter h and interior angles bounded 

below by 9o- Let T  € T  and let n T denote the outward unit normal to T. Further 

suppose that v is smooth when restricted to each T  G T . If v 6 Hdiv(f2) then it must 

be the case tha t v • n T is continuous along the edge of each triangle T  £ T . For if not, 

suppose tha t T\ and T 2 are two adjacent triangles with a common edge which is parallel 

to the X2 axis along which x\  =  0 (without loss of generality), and tha t the component 

v\ (x) of v in the direction normal to the common edge is discontinuous. Then, on the 

common edge, dv i /dx \ (x )  is <5( î) up to multiplication by a nonzero function of ^ 2 ,

ands% |^ - ( x)| dxis

J  J  |<5(xi)|2 dx2 dx\  =  C J  |<5(m)|2 dx\  =  oo,

(since the delta function is not in L2(!7)) so that v 0  Hdiv(17). Hence v € Hdiv(!7) ==> 

v • n T is continuous for each T  G T . Conversely suppose that v • n T is continuous on 

the common edge. Then it is clear tha t dv2 f d x 2 is bounded along the common edge, 

since V2 is smooth in each triangle. Now if f ( x )  and g{x) are the components of v in 

the direction x\  in T\ and T2 respectively, then the Taylor expansions of v\ in each 

triangle are

f ( x )  = /o +  x / q +  h.o.t. for x  on the common edge,

5.3. RAVIART-THOMAS MIXED FINITE ELEMENTS
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and

g(x ) =  /o +  xg'o + h.o.t. for x  on the common edge,

since the normal component of v is continuous across the common edge, and so on the 

common edge

dvi  =  Um f W - g ( - h )  
dx\  h—>o 2 h ’

t i  + d'o 
2 ’

<  oo,

and hence d v \ /d x \  is also bounded and so v E Hdiv(Q). Therefore v E Hdiv(fi) u-nT 

is continuous for each T  E T.

The Raviart-Thomas (R-T) mixed finite element spaces [61] are designed to ensure 

tha t the normal components of the functions in the space Vh are continuous across 

triangle edges. This is achieved as follows. Suppose that the restriction of v to T  is a 

polynomial of degree k  +  1 for each T  E T, i.e. i/|T E Pfc+i(T)n. Then i/|T is smooth 

and V • v 6  -Pfc(T). Then also v • n T E Pk{dT) VT E T , so that v • n T is a k ^ 1 degree 

polynomial on each triangle edge. If Vh is the set of all such functions, then it is clear 

from previous remarks that Vh C V. A natural choice for the set 11̂  is then

n h = {9 e  l 2(Q) I 9|t  € p k(T) VT e T}.

Now if

V^ = { v € V h | V - t> =  0},

then V̂  C V' and so inherits the coercivity property (5.12) from (5.7). In order 

to show that the R-T element is stable it only remains to be shown that (5.13) holds. 

This is a result of [61, Lemma 4] where it is shown that, given q E 11 ,̂ 3v E Vh such 

that

V • v =  q,

5.3. RAVIART-THOMAS MIXED FINITE ELEMENTS
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and

I M l H d i v ( n )  —  C  I l ^ i I I 2 (fi)  5

so tha t

In  • v dx ^  11̂1 liL,2(ri)

IMlHdiv(n) HvllHdiv(n)

and so the discrete coercivity condition (5.13) for &(•, •) holds with (3 > C ~ l . Thus the 

R-T element is stable.

The computation of the basis functions associated with the Raviart-Thomas is 

explained in §5.5, but first a preliminary result on diagonal scaling of mass matrices 

due to Wathen is described which will be applied to the mass matrices generated in §5.5.

5.4  D iagon a l scaling o f scaled  m ass m atrices

The result explained in this section is due to Wathen and is found in [82]. Essentially 

the result is that the maximum and minimum eigenvalues of an arbitrary mass ma

trix which is preconditioned by its diagonal can be bounded by the largest maximum 

eigenvalue and smallest minimum eigenvalue of the diagonally preconditioned element 

mass matrices associated with the triangulation. This result also holds for the scaled 

mass matrices which arise in groundwater flow applications, and it will be seen that 

the diagonally preconditioned scaled mass matrix has condition which is independent 

of the scaling parameter k in the groundwater flow equations. Hence iterative methods 

for solving mass matrix systems (specifically the mass matrix system arising in the 

LSQR(A-1 ) subproblems) can be made to converge independently of the scaling pa

rameter k , c.f. Chapter 4 where it was seen that iterative methods for scaled stiffness 

m atrix systems could not be made to perform independently of k.

As before, let T  be a triangulation of the domain £1 (or any polygonal division 

of S7 into convex non-overlapping elements) which resolves the discontinuities in the 

piecewise constant function k , and let {V>j}”=1 be a set of basis functions on the n  

unconstrained nodes in the triangulation (i.e. non-Dirichlet boundary nodes) for the
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velocity trial space Vh- Then any function v 6 Vh (restricted to the non-Dirichlet part 

of Q) can be expressed as

n

v(x ) = ' 5 2 yj'iPj(x )-
i=i

The scaled mass matrix associated with T  and Vh is then

M  =  [rriij] = [{k^ipi  , ipj)], (5.14)

where (• , •) denotes the L2(f2) inner product, so tha t (k~ l v , v) = (VTM V )  2 , and ki 

is the restriction of k to the relevant triangle.

The motivation in [82] is as follows. If the element scaled mass m atrix on triangle Tj 

is denoted by M j , then the scaled mass matrix M  can be assembled from the element 

scaled mass matrices as

M  = Y , LJ M>Li ’ (5-15)

where the summation is performed over all T  G T  and Lj  6 {0, l} ni Xn is a restric

tion from the global nodal ordering to the local nodal ordering on element j  with rij

unknowns. Defining LT =  [L\  . . .  ], (5.15) can be rewritten as

M  =  L T (diagMj)L,

where (diagMj) is a block diagonal matrix with the scaled element mass matrices on 

its diagonal. W ith the above notation, the diagonal matrix of M  can be expressed as

D = L T (diagDj)L ,

where Dj  is the diagonal matrix of Mj.

Now if A is an eigenvalue of D ~ l M  then A is bounded by the Rayleigh quotients,

x t M x  . x t M x
mm ^  ^  <  A < max ,
x^o x 1 D x  x^o x 1 D x

since M  is a symmetric positive definite matrix. Using the substitution y =  L x , and
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recognising that span(L) C span(diagMj) the above bound implies

yT {diagMj)y ^  x ^  yT (diagMj)y , r ^
min 7^ / 1- j-v \ S ^ _  max t 1 / ». n  \ j (5.16)y?o y 1 (diagDj)y y? 0 y 1 (diagDj)y

and so A is bounded by the largest maximum eigenvalue and smallest minimum eigen

value of D J l Mj  over all triangles in T.

To see that the maximum and minimum eigenvalues of each D ~ l Mj  are independent 

of k , notice that

Mi =  [mzj  =  , v O i =  [fcr 1[(v,/t , VO],

with obvious notation, because k is constant on each triangle, and so

Mi = fcf'M i,

where M i is the (unsealed) element mass matrix on triangle I. Similarly D i =  k 7 1 Di

so that

D f l M, = k i D ^ k ^ M i  = D J xMi

and D 7 l Mi is independent of k. These results are summed up in the following theorem.

T heorem  5.4.1 (W athen) The maximum and minimum eigenvalues of the diago

nally preconditioned mass matrix (5.14) are independent of k and are bounded by the 

largest maximum eigenvalue and smallest minimum eigenvalue of the diagonally scaled 

element mass matrices.

To illustrate this result, a scaled mass matrix of linear elements on a square region 

in which k takes values of 1, 10, 100 and 1000 in four layers and p  =  1 has been formed. 

Here there axe 128 unknowns and k(M)  ps 2.6 x 106. The eigenvalue distribution of M  

is shown in Figure 5-1.

Due to the difficult scaling in Figure 5-1, each cross indicates the presence of a 

cluster of eigenvalues, for example the rightmost cross hides a cluster of 9 distinct 

eigenvalues. The eigenvalue distribution of D ~ l M  can be seen in Figure 5-2. The 

condition number of the preconditioned matrix is k{D~ 1 M)  «  2.7 which agrees with
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10'4

Figure 5-1: Eigenvalue distribution of the scaled mass-matrix M  with 128 unknowns.

the bound of 3 for k(D~1M)  given by Wathen in [82] where bounds on the condition 

of diagonally preconditioned mass matrices are given for some popular choices of finite 

elements.

Figure 5-2: Eigenvalue distribution of the preconditioned matrix D l M.

5.5 Computation of Raviart-Thomas basis functions

The usage of the Raviart-Thomas mixed finite element is easiest to visualise in 3 di

mensions, and a description of the basis functions is given below for the lowest order

R-T element. So, suppose that Vh is the set of functions v satisfying

v • nT is constant on each face of T  VT G T, (5-17)

V • v is constant in each tetrahedron T  G T , (5.18)
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4

Figure 5-3: A general tetrahedron T g T

and that

n „  =  {? e  l 2(«) | g|T is constant for each T  € T  }.

Since v • n T is specified to be constant on each face, there will be four basis functions 

with non-empty support in each tetrahedron. Hence let T  be an arbitrary tetrahedron 

with corners and normals to each face numbered as in Figure 5-3 and suppose that 

, ^ 4 (x) are the restrictions to T  of the four basis functions with non-empty 

support in T. Given x  6  T , let (A i,... , A4 ) =  (A i(x ),... , A4 (a;)) be its barycentric 

coordinates (where A; =  1 at node i). Then =  ^ i(x )  can be written as

— Aio +  A2b +  A3 C -f- X4 d,

where a,b,c,d  are constant vectors. Since the normal component of each v G Vh is 

specified to be continuous along normals to each face, it would be wise to set

^ i -r ij  = Sij on each face,

in order to satisfy (5.17). Using the fact that Ai =  0 on the face with normal n*, the
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four equations

A2(ni • 6 ) -t- A; 

Ai (n2 - a) +  A;

Ai(n3 • a) +  A2 (n3 • b) 

Ai(n4 • a) +  A2 (n4 • b) +  A

hold. Since the sum of the barycentric coc 

the previous equalities can be seen to hold 

\Eq has representation

\tf2 ,\I/3, and ^ 4  are defined similarly. 

(®i,®2 ,®3 ) by the mapping,

a n <212 <213 <214

0-21 <222 <223 <224

^31 <232 <233 <234

1 1 1 1

where node i has coordinates (a^ , a2j, a3;), 

tetrahedron so tha t (5.18) holds.

The scaled mass matrices arising from t 

are analysed in the following subsection. Al 

of the scaling k could be removed by diago 

the condition of mass matrix systems can 

ratios are present in the triangulation.

q • c) +  A4(ni • d) = 1, 

i2 • c) +  A4(n2 • d) =  0,

+  A4(n3 • d) = 0, 

i 4 • c) =  0,

.inates is always equal to 1 (for x  G T), 

r a = 0 and 6, c, and d chosen such that

x n 4 +  n 2 x n 3 
i2 x n 4) 7ii • (n2 x n 3) '

(A i,... ,A4) is related linearly to x =

’  Ai " Xi

a2

a3 X3

. A* .
1

it is clear that V • \Eq is constant on the

lie lowest order Raviart-Thomas elements 

hough it was shown in §5.4 that the effect 

rally preconditioning, it will be seen that 

ie expected to be bad when large aspect
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5 .5 .1  L arge a sp e c t  ra tio s  and  ill c o n d itio n in g

5 - 1 - 1
18 1 8 18

- 1 5 - 1
18 18 18

- 1 - 1 5
18 1 8 18

The element mass matrix for the lowest order Raviart-Thomas mixed finite element on 

an equilateral triangle is

Af„ =

Since the diagonal of M e is constant, preconditioning M e by its diagonal will have no 

effect on the condition number. The eigenvalues of M e are

1 1 1  
6 ’ 3 ’ 3 ’

and so K,{D~l M e) = K,(Me) = 2. Therefore, by Theorem 5.4.1, any uniform triangu

lation of equilateral triangles of the domain with arbitrary permeability function k 

will have a condition number of 2. If the LSQR(A_1) method were used to solve the 

resulting mixed finite element matrix problem, this would suggest tha t the conjugate 

gradient method would be an effective method of performing the inner solves since its 

iterates would satisfy

l l Z ~ Z * I L  <  -  t y / 2  -  l ) 2 *  <  ( —  )
\ \ z - z 0\\A - \ ^  + l )  " (V2 " ( l o j  ’

and so an error reduction by a factor of 10-p is guaranteed after only approximately 

7p/5 iterations.

The case of a uniform triangulation of equilateral triangles is obviously an ideal 

case and will not often arise in practise. In most groundwater flow applications it is 

reasonable to expect that triangles with very large aspect ratios will be present since the 

typical domains which are modelled are perhaps only 50m deep but can be many miles

wide. This geometry dictates that the types of triangulation used must be very long

and thin and this can greatly affect the condition of the element mass matrices. For 

example consider an isosceles triangle with vertices (—1,0), (1,0), (0, L). The element
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mass m atrix for this triangle is

M„ =
1/1,8 l2 

-l/24<I,3- 1Hf + 1)
- 1 / 2 4  +  - l / 2 4 ^ 2 - XM f  +  1) ^

(Z,2-5)̂ l + Z.2)1/4 8

1 /4 8

(1< T- 1 /4 87)(i+z.a)

l52£±^ i/48^2+7̂ 1+l<a>

and its eigenvalues are

1 1 + L 2 ( l 2 + 3 ) ( 1  +  L 2 )

6  ’ 4 L 2 ’ 2 4 l 2

The diagonally preconditioned element matrix is then

^ /(3 L 2 + l ) ( i 2 + 7 )  

I»2 — 1 J Z/2 —5
n/(3Z ,2 +  1)(Z ,2+ 7 ) Z ^ + 7

L2-!
v/(3£-2 +  1 )(Z ,2+ 7)

L —51,2 + 7 1

whose eigenvalue behaviour is described in the following table.

eigenvalues 

of D ~ l M e

behaviour 

as L  — > oo

behaviour 

as L  — y 0
12 

L2+7 =  0 (L - 2)

- 4 ( 3 - ^ )

__. 12
t 7

__V 9
7 7

=  0 (L2)

I 9 l 4 + 3 0 l 2 + 9 + v / ( 3 l 2 + 1 ) ( l 2 + 3 ) ( 1 1 l 4 - 2 2 l 2 - | -27)

2  ( l 2 + 7 ) ( 3 l 2 + 1 )

I 9 l 4 + 3 0 z , 2 + 9 —•v/ ( 3 i 2 + l ) ( L 2 + 3 ) ( l l L 4 —2 2 l 2 + 2 7 )

2  ( l 2 + 7 ) ( 3 l 2 + 1 )

Obviously Z)“ 1Me has a single eigenvalue which grows or decays quadratically as 

the aspect ratio becomes large, and so by Theorem 5.4.1 any triangulation containing 

such a triangle will have D ~ lM  with condition bounded by order 0 ( L 2). This is not 

especially promising. The behaviour of the eigenvalues is plotted in Figure 5-4. If 

the triangulation is quasi-uniform (all triangles are of roughly the same size), then the 

condition of M  is actually 0(1) for any piecewise polynomial approximation, see [41], 

so tha t Theorem 5.4.1 should only be considered in the case of non-uniform grids.

The bound given in Theorem 5.4.1 is tight for many choices of velocity basis. For 

the Raviart-Thomas element however, the bound can be extremely pessimistic as can 

be seen in the following example. Consider the domain depicted in Figure 5-5. Then 

the condition of the element mass matrices in the isosceles triangles is 0 ( L ~2) for small
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10“*

10-4

10“®

10 "*
10"1 10° 10*

Figure 5-4: Variation of eigenvalues with L

L

Figure 5-5: Example domain

L  and 0 ( L 2) for large L  by the remarks above, and that in the equilateral triangles 

is 2. By an analogous argument to that used to prove Theorem 5.4.1, the condition 

of the assembled mass matrix on the nodes marked with crosses is expected to be 

0 ( L ~ 2) for L «  1 and 0 ( L 2) for L »  1. This is seen to be the case in Figure 

5-6. The bound in Theorem 5.4.1 suggests that the diagonally preconditioned mass 

matrix still has condition of 0 ( L ~ 2) for L «  1 and 0 ( L 2) for L »  1, since the 

minimum eigenvalue in the isosceles diagonally preconditioned element mass matrices 

is 0 ( L 2) for L «  1 and 0 ( L ~ 2) for L »  1 and the maximum eigenvalue in both  the 

equilateral and isosceles diagonally preconditioned element mass matrices is 0(1). In 

fact though, the eigenvalues of the diagonally preconditioned mass matrix have been 

found to be bounded for all values of L  as is shown in Figure 5-7, and k{D~ 1M )  is 

bounded by approximately 4.5. W ith the inclusion of the Dirichlet nodes indicated by 

O’s in Figure 5-5 the situation is slightly worse, with k(D ~ 1M ) seen to be bounded 

by 18 in Figure 5-8, although the situation is nothing like that predicted by Theorem
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10*

10*

10*

10*

10°
10"1 10* 10*

Figure 5-6: /c(M) for varying L  for the domain shown in Figure 5-5

10“1 10° 10* 104

Figure 5-7: k(D l M )  for varying L  on the Neumann domain

5.4.1. It is noted tha t in each of Figures 5-6 - 5-8 the minimum is obtained for the 

value L = \/3  when all triangles are equilateral.

Hence, as well making the condition of the scaled mass matrix independent of k, 

it might also be expected that diagonal scaling for Raviart-Thomas mass matrices on 

general non-uniform triangulations may lead to well conditioned matrices which have 

condition independent of the large aspect ratios present. Since convergence bounds 

for the conjugate gradient algorithm in terms of condition number are notoriously 

pessimistic, the above remarks lead to the conclusion that the diagonally preconditioned 

conjugate gradient method may be an effective method for performing the mass-matrix 

solves at each step of the LSQR(A_1) algorithm for the Raviart-Thomas discretised 

groundwater flow problem. A preconditioner for the LSQR(A-1 ) algorithm itself is 

discussed in the following section.
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kr1 10*

Figure 5-8: xM) for varying L  on the domain with Dirichlet nodes included

5.6 P reco n d itio n in g  o f  L SQ R (A -1) applied  to  m ixed  d is

cretisa tio n s o f  th e  groundw ater flow eq u ation s

The preconditioner H  which is used in the LSQR(A-1 , H ~ l ) iteration can be considered 

to be of the form N N T where the matrix N ~ 1B TA ~ 1B N ~ T has better condition than 

the Schur complement B TA ~ 1B,  although the matrix N  is never explicitly formed. 

See §3.4.3. Hence the matrix H  is ideally a matrix which is spectrally equivalent to 

B T A ~ l B.  For the case when the coefficient matrix

A B  

B t  0
(5.19)

represents a stable discretisation of a Stokes operator (in the Babuska-Brezzi sense 

of §5.1), it is not so difficult to find a matrix H  which is spectrally equivalent to the 

Schur complement. In this case A  is a discretisation of the Laplace operator and B  is a 

discretisation of grad and so, it can be naively concluded that the Schur complement is 

a discretisation of the identity function from a set of m  basis functions where B  E Rnxm. 

Such an identity discretisation is provided by the pressure mass matrix Mp, and in [85] 

it is shown that

yTB TA ~ l B y
yTMpy

< 7 2, V y e® m, y ^ 0 ,

5.6. PRECONDITIONING OF LSQR(A"1) APPLIED TO MIXED
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where (3 is the Babuska-Brezzi constant (in (5.10)) and 7  is a continuity bound for B  

in terms of the Mp and A  norms,

x TB y  < 7 ( x t A x ) 2 (yTMpy) 2 Wx G Kn , y 6  .

Both the constants (3 and 7  are assumed to be independent of h and so the matrix 

Mp is spectrally equivalent to the Schur complement, and hence is a natural choice of 

preconditioner.

The case is not so simple for discretisations of the groundwater flow equations. Here 

the Schur complement can be thought of as a scaled Laplacian operator and finding a 

spectrally equivalent matrix is not so simple. Recall that for the case of groundwater 

flow discretisations with coefficient matrices of the form

D B

B t  0 J
(see Chapter 4), the preconditioner H  was chosen to be an approximation to B TD ~ l B  

and in §4.4 good choices were seen to be incomplete LU  and additive Schwarz decom

positions of B TD ~ l B.  A similar approach is required here, however it is now the case 

that B t A ~ l B  cannot be formed explicitly (unlike B TD ~ 1B)  since this would involve 

too many operations with A ~ l and in general, B TA ~ lB  would be a full matrix. This 

also implies tha t the incomplete factorisations are not applicable decompositions and 

that the additive Schwarz approach would be expensive. The first step towards forming 

a preconditioner for B TA ~ l B  will therefore be to find a sparse matrix which approx

imates B t A ~ l B.  Then any approximation for the sparse approximation to B TA ~ l B  

will hopefully be a fair preconditioner for B TA ~ 1B  itself. Hence consider the matrix 

B TD ~ l B  where now, D  =  diag(A). It is already known from Theorem 5.4.1 that 

k (D ~ 1 A) can be bounded, and the examples of the previous section would tend to 

suggest that the bound may be independent of h for suitable elements, although this 

is not implied by the existing theory. It might be hoped that a similar relation holds 

between B TD ~ l B  and B TA ~ l B,  indeed this is true by the following lemma.

L em m a 5.6.1 I f  (5.19) is the coefficient matrix of a groundwater flow discretisation
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(so that A  is a mass matrix) and D = diag(A), then

^ S ^ S a ) < k (D - 'A ) ,

where Sd  =  B TD ~ l B  and Sa = B TA ~ l B,  and the bound k{D~ 1A) can be calculated 

using Theorem 5-4-1-

Proof The largest eigenvalue of S ^ S q  is given by the Rayleigh quotient,

yTB TD ~ l B y  zTD ~ l z
max =  max T ,
yeKm y 1 B 1 A ~ YB y  zespan(B) z 1 A ~ Yz

z t D ~ 1z 
< max T , 

zeKn z 1 A ~ lz

= K ^ D - ' A ) .

An analogous relation holds for the minimum eigenvalue of (BTA ~ l B ) ~ l B TD ~ l B  so 

that

A"'»(Z rlA ) ^  Vy T & DA - \ BB Vy ^

and the result follows. □

Using the result (and notation) of Theorem 5.4.1 the above result could be rewritten

rnin(Am\n{D- A j )) < y T j^ T j^ - i ^ y  — Aj).

Lemma 5.6.1 implies that (in terms of condition number) B TD ~ 1B  is at least as good 

a preconditioner for B TA ~ lB  as D  is for A. However it is not realistic to expect 

to be able to use the preconditioner B TD ~ l B  in practice since every action of the 

preconditioner would require a solve of a system with coefficient matrix

D B  

B t  0

Instead, good preconditioners for B TD ~ l B  (i.e. any good preconditioner H  which 

could be used in LSQR(D-1 , H ~ l ) ) will be used to precondition B TA ~ l B.  The matrix 

B TD ~ l B  is typically sparse, so that following §3.4.3, preconditioners such as (shifted) 

incomplete LU and additive Schwarz could be used. It is easy to show that if H  is such

5.6. PRECONDITIONING OF LSQR(A- 1) APPLIED TO MIXED
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a  preconditioner then

K( H - ' S a ) <kI S ^ S a M H - ' S d ),

however this bound is far from tight. For example, the Harwell test problem TTMX2 

with Raviart-Thomas elements has k(Sa) = 288.9. Preconditioning A  by D  for this 

example gives k{D~ 1 A ) =  21.1 and so Lemma 5.6.1 predicts that k { S ^ S a )  to be 

smaller, indeed k ( S q 1 Sa) = 17.7. If H = i / jLU (where the ILU denotes the ILU(O) 

factorisation) then k (H ~ 1 Sd) = 194.4 and so the above bound does not predict that H  

should be a good preconditioner for Sa at all. However k (H ~ 1 Sa ) =  81.3 which is a fair 

reduction in the condition number, and is a smaller condition number than /c(i7-1 Sp).  

It must be said that a condition number of k (H ~ 1 Sa) =  81.3 is not particularly small, 

although again it is also true that convergence bounds based on condition number 

estimates are notoriously pessimistic, especially for preconditioners that give rise to 

significant eigenvalue clustering.

10*

I t e r a t i o n

Figure 5-9: Comparison of preconditioned and unpreconditioned iterations

Figure 5-9 shows the unpreconditioned LSQR(A_1) and preconditioned LSQR(A~l , H  

algorithms applied to the TTMX2 problem with H — HlLV(BTD ~ lB). For the major

ity of the iteration time the preconditioned algorithm displays the better performance 

of the two, although for a short time the unpreconditioned algorithm is better when 

there is a sharp drop in error, probably due to the underlying Lanczos process discov

ering an important eigenvalue. It is stressed that TTMX2 is not a typical groundwater 

flow problem, since it is very small (B  E R752x512), and the region considered is homo

geneous, and it is not expected that the unpreconditioned algorithm will outperform 

the preconditioned one at any time on a more realistic problem.
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A B X b

B t 0 . y 0

5 .7  R ed u cin g  th e  num ber o f A 1 op eration s w ith  a good  

in itia l gu ess

The main cost when using LSQR(A_1) to solve generalised least-squares problems of 

the form

(5.20)

are the A ~ l operations at each step. In this section, a method of reducing the number 

of A ~ l operations is considered. The approach is to first obtain a good initial guess to 

the solution of (5.20), by performing a solve with LSQR(D-1 ) in which the solve-step 

(a diagonal backsolve) is cheap.

Suppose that

where D = diag(A). Then

(5.21)
D B xd b

B t 0 Vd 0

so that

-  x D) + B { y - yD) = (D —

B t  ( x - x d ) = 0

A B Xu bD

B t  0 yu 0
(5.22)

where xjj =  x — x d , y u  = U ~  Vd  are the solution updates and bp = (D — A ) x d -  It is 

clear that the update |  xjj j  satisfies

X x d Xu
= +

. y . y D . yu  .

Hence the solution of the generalised least squares problem (5.20) can be written as the 

sum of the solution to the weighted least squares problem (5.21) and the generalised

5.7. REDUCING THE NUMBER OF A~l OPERATIONS WITH A GOOD
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least squares problem (5.22). Clearly if D = A  the right hand side of (5.22) will be 

zero so that the update J xjj j will also be zero, otherwise (5.22) can be solved 

to find the solution update required to correct the solution of (5.21) to the solution of

(5.20).

The system (5.21) is ideally suited to solution by LSQR(Z)-1 ) since inverse opera

tions involving the diagonal matrix D  axe trivial. Now

r (fc) = B TA ~ 1 ( b - B y W ) ,

is a  measure of orthogonality of residual b — B y W  to the span of B  (recall tha t 

this value will be zero if yW  solves (5.20)), and suppose tha t given an initial guess, 

[ :r(°)T j =  [ 0T 0 T ] , it is required that iteration should term inate when

| | B ^ - i r(0)|j < C  (5-23)

for some constant C.

Now if the initial guess is taken to be zero for both of the systems (5.20) and (5.22) 

it is simple to observe that

B t A ~ 1A 0) =  B TA ~ 1b

for the initial residual on (5.20), whereas

B r A - 1 r ^ ) =  B t A ~ 1 ( ( D - A ) x d )

=  B TA ~ l (Dx d ) using (5.21)

=  B TA ~ l (b — B y u ) ,

where denotes the initial residual in the least-squares formulation of (5.22) for a

zero initial guess. Hence it could be expected that, since B y o  is the best approximation 

to b from the span of B  with respect to the D ~ l inner-product (see [5]),

i.e. taking a zero initial guess in (5.22) gives a smaller initial residual than taking a

5.7. REDUCING THE NUMBER OF A~l OPERATIONS WITH A GOOD

INITIAL GUESS



C h a p t e r  5 173

zero initial guess in (5.20) directly, so that the solution of the weighted least squares 

problem (5.21) should provide a good initial approximation to the solution of the gen

eralised least-squares problem (5.20). It is easy to check that the requirement that 

11B TA ~ l r ^  11 /  11B t A ~ 1A 0̂  11 <  C  can be replaced by

bta- ir(fc)
B TA - ' r f

< C
b t a ~1A  0)

in the iteration for (5.22), and provided that B T A ~ xrffi <  it is seen

th a t the residual reduction which is required in the update step (5.22) is C  reduced by 

a factor ||J3TA- M 0)|| B TA ~ 1r ^

5 .7 .1  N u m e r ic a l re su lts  

T est problem

Discretisations of the 2d groundwater flow problem depicted in Figure 5-11 are con

sidered here. The domain is square with a specified high pressure on the top and low 

pressure on the bottom, and u • n  =  0 on each of the vertical sides. The discretisation 

is based on the lowest order MAC finite element, a history and analysis of which is 

given in [26]. A typical element is shown in Figure 5-10. The velocity is broken into 

the piecewise linear horizontal (iq) and vertical (1/2 ) components, and the pressure is 

constant on each cell. The normal component of velocity to each cell edge is therefore 

continuous across cell boundaries so that the velocity space is certainly a subspace of 

Hdiv(fi) following remarks in §5.3. Four discretisations in which the mesh size halves 

each time have been made, starting with an 8 x 8 grid (MAC(8)) and ending with a 

64 x 64 grid (MAC (64)).

R esu lts

It is clear that the method described in §5.7 only requires A ~ l operations when solving 

the system (5.22), and so it might be expected that the overall iteration time in solving

(5.21) and (5.22) will be smaller than solving (5.20) directly. This is indeed the case as 

can be seen in Table 5.1. Here the mesh sizes, linear system sizes and iteration times 

are shown. Convergence curves for each of the systems MAC(8)-MAC(64) are shown

5.7. REDUCING THE NUMBER OF A~l OPERATIONS WITH A GOOD

INITIAL GUESS
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Figure 5-10: Typical MAC element

Figure 5-11: Domain, flow and pressure contours

in Figure 5-12. In each case a residual reduction,

<  10-4

was taken to be the stopping criterion.

For the small system, MAC(8), there is no advantage in performing the two solves 

on (5.21) and (5.22) since it is quicker to perform a single solve on the system (5.20). 

Notice however that the number of A-1 operations required in the diagonal system and 

update approach is fewer, 15 as opposed to 33 for the single solve. Hence the number 

of A-1 operations has reduced as was expected.

For the larger systems, MAC(16) - MAC(64), the behaviour is more unusual. The 

number of A-1 operations required for the update approach is far smaller than the 

number of A-1 operations on (5.20) as was expected. However the number of A-1

5.7. REDUCING THE NUMBER OF A-1 OPERATIONS WITH A GOOD

INITIAL GUESS
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Figure 5-12: | | # T-A 1r/b|| against iteration for the MAC(8) (top-left), MAC(16) (top- 
right), MAC(32) (bottom-left) and MAC(64) (bottom-right) systems. Solid line (—) : 
LSQR(A-1) on (5.20), dotted line ( • • • ) : LSQR(A_1) on (5.22).
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Dimensions 
of B

full LSQR(A_1) 
(A-1 ops.)

LSQR(D-1 ) 
(D -1 ops.)

LSQR(D x)-fupdate 
(A-1 ops.)

MAC(8) 128 x 64 1.52 (33) 1.19 (38) 2.01 (15)
MAC(16) 512 x 256 10.15 (74) 5.28 (75) 7.41 (15)
MAC(32) 2048 x 1024 194.62 (212) 64.70 (135) 68.97 (11)
MAC (64) 8192 x 4096 1924.3 (406) 1044.5 (317) 1057.7 (8)

Table 5.1: Total iteration times and counts for LSQR(A *) on (5.20) and LSQR(A-1 ) 
on (5.22) with initial guess from the weighted least-squares system (5.21).

operations required for the update solve on (5.22) actually decreases as the system size 

increases, from 15 A-1 operations on MAC(16) to 8 A-1 operations on MAC(64). Of 

course, the time taken for the solve on (5.21) increases as the mesh size decreases so tha t 

the total time taken for the update approach does not decrease, however the total time 

taken in the update approach is a great deal smaller than that for the solve on (5.20). 

For the systems MAC (32) and MAC(64) the total time taken was approximately a half 

of tha t required for the solve on (5.20).

The reason as to why the number of LSQR(A-1 ) iterations on (5.22) decreases 

with the decrease in mesh size is unclear. It is certainly not true tha t the norm 

approximates the norm ll 'l l^ - i with better accuracy as the system size increases. This 

is obvious because in each of the graphs in Figure 5-12, after performing the solve on

(5.21) there is still a residual reduction of approximately O(102) required in each case. 

If it were true tha t ||- | |^ _ i  was becoming a better approximation to then the

required residual reduction in the update solve would become smaller. One possible 

explanation is tha t the right hand side in the system to be solved for the update,

A B X u (D -  A ) x d

B t  0 yu 0

is a good right hand side in the sense that it quickly generates a Krylov subspace 

which the solution [xjj y^]T lies close to. It is certainly the case tha t if the right hand 

side is spanned by only a few eigenvectors of the coefficient matrix then the number 

of Lanczos iterations required to solve the system will be equal to this number of 

eigenvectors. However it is not clear that the right hand side above is of this form, and 

further analysis is necessary.

5.7. REDUCING THE NUMBER OF A-1 OPERATIONS WITH A GOOD
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5.8  S um m ary

It has been seen in this chapter tha t the LSQR(A_1) algorithm with suitable pre

conditioning is an effective method for solving groundwater flow problems arising from 

mixed finite element discretisations. Two popular choices of finite element, the Raviart- 

Thomas and MAC elements were introduced. For the Raviart-Thomas discretised prob

lems it was seen tha t the A ~ l operations in LSQR(A_1) were easy to perform with the 

conjugate gradient algorithm since the diagonally preconditioned mass matrix, D _1A, 

has condition which is independent of the bad scaling in the permeability function k 

(for all choices of finite elements) and is apparently independent of large aspect ratios 

present in the discretisation.

The problem of choosing a preconditioner H  in LSQR(A-1 , H ~ l ) was discussed. It 

was seen tha t B TD ~ l B  (where D = diag(A)) was at least as good a preconditioner 

for B TA ~ lB  as D  is for A  which lead to the idea tha t incomplete factorisation or 

additive Schwarz preconditioners for B TD ~ 1B  could be used as preconditioners in 

LSQR(A-1 , i J _1) . Further numerical experiments are required for the effectiveness of 

these preconditioners to be fully understood.

A method of reducing the number of A-1 operations in LSQR(A-1 ) by first solving 

a system with A  replaced with D  in the coefficient matrix, using LSQR(Z>_1) , was 

described. This approach was seen to be very effective for a groundwater flow discreti

sation on MAC finite elements, and had the unusual property that the number of A-1 

operations required in the update solve reduces as the mesh size decreases. Again, 

further experimentation with other types of finite element is required before this result 

can be said to hold in general.

5.8. SUMMARY
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A ppendix A : Further 

three-interval results

In this section, some further results based on Theorem 2.3.1 are presented. In §A.l, The

orem 2.3.1 is applied to a discretisation of an unsteady Stokes operator to reveal the 

three eigenvalue intervals in this case. Simple scaling of the matrix A  is considered 

in §A.2 and an optimal scaling value for improving k (A) is found.

A . l  U n stea d y  S tokes operators

Matrices of the form

A ' :=
v A + &  B  

B t  0
(A.l)

can arise in the discretisation of the unsteady Stokes equations. The following corollary 

of Theorem 2.3.1 defines the three eigenvalue intervals associated with this matrix.

C o ro lla ry  A .1.1 The eigenvalues, of the matrix A 1 are contained in three intervals,

• ^ _ sj( j^ ± L  + a2m < A < i i s + i  _  ^ /feis+i)! + ai

+  2£t — ^ "t" zh’
^ 1+ i  +  + < x  < ! ^ ± i L  +  i  +

where Ai < . . .  <  Xn are the eigenvalues of A  and < . . .  < crm are the singular values 

of B.

P ro o f  Trivial consequence of Theorem 2.3.1.

A.l. UNSTEADY STOKES OPERATORS
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Notice tha t for very small time steps the three eigenvalue intervals will approach 

the sets

z ~  — ►

Z+ — ► v \ i  +  -

Z+ — > v \ i  +" Al +  s  +

A .2 S im ple scaling

Since A (A.) C  Z~  UZ+ UX^, where the intervals Z~, Z+ and Z j  are defined in Theorem

2.3.1, an upper bound for k(A) is simply

max{c2,|a i |}
K [ A )~  min{|a2|, ’

where Z~ =  [0 1 , 0 2 ], Z+ =  [6 1 , 62] and — [ci,c2] and a i , 0 2 , 6 1 , 6 2 , 0 1 ,0 2  axe defined 

in Theorem 2.3.1. It is known that the condition of A  can be improved by scaling the 

m atrix A by a constant v,

A(v)  =
vA  B  

B t  0

Hence if it is desired to solve A x  = 6 using a direct method, it is better to first solve 

the improved-condition system A(v)z{y)  =  /  and then rescale the upper component in 

x(v)  to recover x. The next theorem provides an optimal scaling value which minimises 

the value of the bound on the condition number.

T h e o re m  A .2.1 I fZ~{v) = [ai(v)1 a2 (i')]}Z i ( v )  = [6 1 (1/ ) , 6 2 (1̂ )] andZ^iy )  =  [ci(i'),C2 ( 

are the eigenvalue intervals for A(v)  provided by Theorem 2.3.1, then the bound

k (a (»)) <  / ( „ )  =
min{|a2 M |, 6 i(^)}

is minimised at the value uopt where

Vopt Ai V 1 A- ka

are as defined in Theorem 2.3.1, and ka = k(A).

A.2. SIMPLE SCALING
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P ro o f  Notice first that max{c2 (i/), |fliM |}  =  c2 M , so that f ( v )  = minflaffilUfr))’ 

Let 7  >  0 be such tha t —0 2 (7 ) =  61(7 ). Then

x 7 An , /7^An 2
7Ai =  - —  +  V —  + ° l

so tha t

7  =
Al(Ai +  An)

Hence

61 (v ) = v \ \  when v < 7

- 0 2 (1/) =  when 1/ >  7

Suppose now tha t <  7 . Then

2  A  V  4  ^ 2 A i ’

and it is easy to show that ^ A { v )  is negative so tha t f {v )  is monotonically decreasing 

for v < 7 . Now suppose v  >  7 . Then

^ -  c2 (^) _  An +  \/An2 +  7 ^

- A n  +

^ A n +  y jv2\ n2 + ^ A n +  \ f v 2An2 +  4/ii)

4crf

and so /(i/) is clearly monotonically increasing for 1/ >  7 . These two observations 

combined with the fact that /  is continuous at 7  imply that min f {v)  =  7 (7 ) so tha t

07,4 ^ V Ai(Ai +  An) Ai V 1 + «a
□

Hence the bound / ( v) on A{v)  is minimised for the scaling vopt, so if the eigenvalue 

intervals are ‘tight fitting intervals’, A(v)  will be minimised in a small

A.2. SIMPLE SCALING
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neighbourhood of uopt. An example of this can be seen in Figure A-l.

Figure A-l: Bounding A(v).  Solid line - k(A(u)), dotted line - f (v) .  ‘x’ marks
K(A(vopt))

Loose upper bounds on the improvement to be expected upon scaling by can 

be obtained as follows. If 7  > 1

1
f W ~ 2 KA + U i KA + J ? '

and if 7  < 1 ,

+  \ / +  4<Jm

—A„ -I- Xn2 + 4cr2

Notice also that 7 (7 ) =  \ ka +  \ J \  + «#(! +  ka ) where kb =  Hence the improve

ment factor rj~ obtained when 7  > 1 is

7] = /(I)
\ kA +  \ J \ k2A +  (1 + « a )

< 2 y 4 A^2

and so the best improvement to be hoped for when 7  > 1 is roughly of order <rm/An. 

When 7  < 1, using the alternative expression / ( 7 ) =  C2 (^)/&i(r/) it can be shown that

A.2. SIMPLE SCALING
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the improvement in A(u),  t)+ satisfies

j)+< i  V * ■ A .- ?

It should be noted tha t both of these bounds could be tightened considerably.

The last question addressed is what happens to the eigenvalue ‘void’ after the scaling 

of A.  Clearly I * (v) f l/^ (i/)  =  0 whenever A = a l  (a € R) and so it is only necessary to 

consider the case when A a l  (or specifically the case when not all of the eigenvalues 

of A  are 1, so that ka > !)• Suppose that i ’i ’(i') H I ^ i v )  7̂  0 when v > vt . Then

\ _ vtX 1 , . I ^ t x l 2 , _2 v t K  -  +  \ —  +  o x,

and so

vt =

Recall tha t vopt =  hence

2 _  2 _  2 ~~ ^ ka ~  1
<V V‘ - ^ A j A n t / C A - l K ^  + l ) ’

so tha t i/opt > vf  whenever k 2a  — 2 ka  — 1 > 0  (since the denominator is always positive). 

This is satisfied whenever

ka > 1 +  \ / 2  and ka >  1 — \ / 2 ,

or

ka  <  1 +  V 2  and ka  <  1 — n/2 .

The second case is not possible since ka > 1, and by the same observation the second 

condition in the first case is satisfied trivially. Hence v%pt > î 2, and therefore vopt > vt 

when ka >  1 T  \/2, and so the eigenvalue void is destroyed by optimal velocity scaling 

for all but very well conditioned A. However the results of Theorem 2.3.2 will obviously

A.2. SIMPLE SCALING
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still apply.

A .3 C onclu sion

Since the scaling parameter vopt is trivial to calculate (provided tha t estimates to the 

extremal eigenvalues of A  and the smallest singular value of B  are known), it would 

seem natural to scale A  by vopt if a direct solution method were being used to solve 

the system. The scaling would not be expected to make a significant difference if an 

iterative solution method were to be used, since the condition number of the system is 

only relevant to convergence for positive definite systems (since the condition number is 

then directly related to an interval containing the eigenvalues of the coefficient matrix, 

see §2 .2 .1 ).

A.3. CONCLUSION
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A ppendix B : The IICG 

algorithm

In this appendix another algorithm for the solution of augmented systems with coef

ficient matrix A  is presented. The algorithm can be considered a stablemate of the 

LSQR(A-1 ) algorithm of Chapter 3 since it also reduces the size of the n +  ra dimen

sional problem to one of smaller dimension by the use of repeated solves of a subsystem 

associated with A . Whereas the LSQR(A-1 ) algorithm employs repeated solves with 

A, the algorithm presented here, IICG , uses repeated solves of a system with coefficient 

m atrix

B =
I  B  

B t  0

The algorithm is motivated firstly by considering B as a preconditioner for A . The 

preconditioned system B~lA  is unsymmetric so it may appear unwise to consider this 

type of preconditioner, since unsymmetric solvers like GMRES [69] are typically far 

more expensive the the symmetric system solvers which have the advantage of being 

able to use three term  recurrences to perform vector orthogonalisation rather than 

a Gram-Schmidt process. However the spectrum of B~lA  is attractive for iterative 

methods (§B.l), and it will be seen tha t the special form of the preconditioned matrix 

allows the conjugate gradient method to be used as a solver. Several authors have 

considered the use of solves with matrices of the form B to speed up an iteration for 

A . In [18], B is used in a splitting of A  to construct standard iterative methods for 

solving systems with A  as coefficient matrix. A similar preconditioner to B where I  

is replaced by a diagonal matrix D  and the zero-blocks in A  and B are replaced by a 

stabilisation matrix is considered in [32] for stabilised approximations to the Navier-

A.3. CONCLUSION
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Stokes operator (so tha t A  is unsymmetric). There, the splitting A  = B —C is used in an

iterative method and the iteration is shown to be convergent if I  — D ~^A D ~^  <  1 ,
2

and eigenvalue results for the preconditioned system are given. B is also used as a 

preconditioner in the GMRES algorithm [69] for A  and numerical results for varying 

choices of D  are given. In [6 ], B is seen to be an effective smoother for the multigrid 

method applied to the Stokes problem.

Eigenvalue results for the preconditioned system B~lA  are presented in §B.l, and a 

brief review of nullspace methods and their relevance is given in §B.2. The action of B 

is described in §B.3 and the derivation of the algorithm IICG is then motivated in §B.4 

by restricting a conjugate gradient iteration for A  to a subspace of RnXm. Convergence 

results for IICG are given in §B.5 and a generalisation of IICG for the groundwater 

flow equations which combines naturally with the LSQR(Z)-1 ) algorithm is discussed 

in §B.6 .

B . l  P reco n d itio n in g  au gm ented  sy stem s by p ro jectio n  m a

trices

In this section, preconditioning the matrix A  by B where

B =
I  a B  

a B T 0
, a >  0. (B.l)

is considered. This corresponds to preconditioning using a pressure correction method 

(to be explained in §B.3). Taking a = 1 corresponds to the standard pressure correction 

idea, the general case with 1 is considered here so tha t the effect of letting a  —>• 0  

can be analysed.

T h eo re m  B .1.1 Let

A  =
A B  

B t  0

where A  G Rnxn is symmetric, positive-definite and B  G RnXm is of full column rank, 

and let B be defined as in (B .l). Assuming that A  has no eigenvectors in the nullspace 

of B T , that no columns of B  are eigenvectors of A, and that the eigenvalues of A  are

B.l. PRECONDITIONING AUGMENTED SYSTEMS BY PROJECTION

MATRICES
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0 < Ai <  . . .  <  An; then the eigenvalues, p, of A  B are

p = a  with algebraic multiplicity 2 m  and geometric multiplicity m ,

and j -  < p < -^ n  — m  times,

unless a  = ^  for some k, in which case p = a  is an eigenvalue of algebraic and 

geometric multiplicity 2m +  1 (when Ajt is simple as an eigenvalue of A). The result 

generalises when Ajt is not simple to 2m  + j  where j  is the geometric multiplicity of Afc.

P ro o f Suppose

A  1Bz = p z , (B.2)

where 2  =
y

. Since A  1B is nonsingular there will be n  +  m (not necessarily

distinct) eigenvalues. Then

x  +  a B y  = pA x  +  p B y  

a B Tx = p B Tx

Notice that (B.4) implies either p = a  or B Tx  =  0.

First consider the case p  =  a. By (B.3)

(B.3)

(B.4)

x = otAx,

and so either x  =  0  or a  = for some Ajt an eigenvalue of A  (with assumed algebraic 

multiplicity is 1), and x  = Xk, the associated eigenvector. Solutions to the eigenvalue 

problem (B.2) corresponding to p = a  are then

2 =

Xk Xk

0 ±ei

z =  l , . . .  , m

i = 1 , . . .  , m.

Notice that p = a  = -^  is an eigenvalue of geometric multiplicity 2m +  1, whilst 

p = a  /  is an eigenvalue of geometric multiplicity m. To establish the algebraic

B .l. PRECONDITIONING AUGMENTED SYSTEMS BY PROJECTION
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multiplicities of these eigenvalues, the generalised eigenvalue problem

( A ' 13  -  olL) (B.5)

then

u 0
=  A

V
.  e * .

is examined. If /x = a  ^  and z =

(3 -  aA)

Hence (I — aA) u = Bei  and so

u =  (I — aiA)-1 Bei.

(The inverse is well-defined since a  ^  jj-). Hence the problem (B.5) has solution

i =  , m.

Therefore the eigenvalue /x = a  ^  has algebraic multiplicity 2m  and geometric 

multiplicity m.

Xk
( 7  E {0,1}) and (B.5) reduces to

± 7  a

u (I  — aA ) - 1  B ei

V 0

Now suppose = a  = Then x  =

I - a A  0 u Axk 4- 7 Bei

0  0 V B Tx k

Hence solutions to (B.5) only exist in this case if

u — aA u  = XkXk +  7  B e^

Notice that u  — aA u = u — j^ A u  has no component in the Xk direction so tha t (B.5) 

has no solution provided that Bei is not a multiple of Xk (which is assumed). Therefore 

the eigenvalue /x =  a  = ^  has algebraic multiplicity 2 m + 1  and geometric multiplicity 

2 m +  1 .

B .l. PRECONDITIONING AUGMENTED SYSTEMS BY PROJECTION
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Now suppose tha t B Tx = 0 and / i ^ a .  Recall that either 2m  or 2m  + 1  eigenvalues 

are known so that n - m o r n - m - 1  eigenvalues are left to locate. By (B.3),

(pA — I )x  + {p — ot)By =  0.

(n -  a )B ‘ (p,A - 1) l B y  =  0,

and since / i ^ a ,

yTB T (pA -  I )~ l B y  = 0 (B.6)

If /i >  (pA — I)  1 is positive definite and if p < (pA — I)  1 is negative definite 

and so in both these cases (B.6) implies y = 0, and so by (B.3),

pA x = x.

If x  ^  Xk (a case that has already been discussed), the only solution is the trivial 

solution x = 0. Hence there are no eigenvalues outside (^ -, ^-), and so the remaining 

n - m o r n - m - 1  eigenvalues must all lie in this interval.

This accounts for all of the eigenvalues of A ~ l B since if B Tx  =  0 and fj, = a  it 

must be the case tha t aA x  = x , whence A  has an eigenvector in the nullspace of B T , 

a contradiction. □

C o ro lla ry  B .1 .2  I f  A  has k eigenvectors lying in the nullspace of B T then the eigen

values of A ~ l B are
fi = a  with algebraic multiplicity 2 m  +  k and geometric multiplicity m  + k

and -£- < p < n — m  — k times 
unless a  — in which case p = a  is an eigenvalue of algebraic and geometric multi

plicity 2m  +  k +  1 (when Xi is simple as an eigenvalue of A ). The result generalises 

when Xi is not simple to 2 m  +  k +  j  where j  is the geometric multiplicity of Xi ).

P ro o f  Trivial extension of Theorem B.1.1. □

B .l. PRECONDITIONING AUGMENTED SYSTEMS BY PROJECTION
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C o ro lla ry  B .1 .3  I f  A  has no eigenvectors lying in the nullspace of B T , the eigenvalues 

of the generalised eigenvalue problem

A B X
= X

I cx.B X

B t 0 y olB t 0 _ y

are
\  =  L with algebraic multiplicity 2 m  and geometric multiplicity m

or A € [Ai, An] n — m  times 
unless a  = in which case X = ^  is an eigenvalue of algebraic and geometric multi

plicity 2ra +  1. (When Xk is simple as an eigenvalue of A . The result generalises when 

Xk is not simple to 2 m  +  j  where j  is the geometric multiplicity of Xk )■

P ro o f  Immediate consequence of Theorem B.1.1. □

Corollary B.1.3 generalises trivially to the case when A  has eigenvectors in the 

nullspace of B T.

Notice the similarity between the eigenvalue intervals of A  and those of B ~lA.

Preconditioning by the pressure correction /  projection matrix B ~ 1 has the effect of

squeezing the intervals I ~  and onto the set {A}.

If standard iterative method such as GMRES were being used on the preconditioned

system B _ 1A , it would be wise to choose a  so that ^ 6 [Ai, An], this would remove the

possibility of there being an isolated eigenvalue outside the interval which may hamper

convergence, especially if a  were very large, so that ^ is close to zero. Then k(B ~ 1A) <
«

k (A) so tha t an iterative method used to solve the positive-definite but unsymmetric 

preconditioned system B~lA  should display a similar (or better) convergence rate than 

the conjugate gradient algorithm applied to a system with A  as coefficient matrix, 

although this will obviously be dependent on the clustering of the eigenvalues of A.

B .2  N u llsp a ce  m eth od s

Since the solution [ x T yT 1 °f

A B X b

B t 0 . y 0

B.2. NULLSPACE METHODS



A p p e n d i x  B 190

satisfies B Tx — 0, it is known that x  lies in the nullspace of B T , denoted A f(B T ). 

Methods of solution of (B.7) which make use of this fact are known as nullspace meth

ods. If Zi, i = 1, . . .  , n  — m  is a basis for A f(B T) and Z  = [z\ Z2 . . .  zn- m] then x  can 

be written as a linear combination of these basis vectors and so 3s E Rn-m such that 

x = Zs. Then

A Z s  +  B y  =  b 

and so Z TA Z s  =  Z Tb, (B.8)

since Z TB  =  0. The coefficient matrix in (B.8) is called the projected (or reduced) 

Hessian. Notice that the system (B.8) is n — m  dimensional, i.e. tha t the dimension 

of the original problem has been reduced by 2m, and tha t (B.8) is independent of 

y. Although this approach to solving (B.7) may appear attractive, finding a basis for 

Af{BT ) is difficult for all but very small problems, and the projected Hessian lacks 

the sparsity of the original problem. For this reason nullspace methods are usually 

neglected for large systems.

It has been remarked that the coefficient m atrix A  in (B.7) is symmetric bu t in

definite, however A  can be considered positive definite when restricted to a special 

subspace of RnXTn. Let

T  T  x x y [

<5 -  A f(B T ) \{ 0 } x

then for zT = xT yT £ S,

A B  

B t  0
=  x A x  +  2y (B x) ,

=  x TA x  since x  E A f(B T), 

> 0.

Therefore the coefficient matrix in (B.7) is a positive definite self-adjoint operator with 

respect to the usual Euclidean inner product when restricted to <5, and so solution 

methods which rely on the coefficient matrix being symmetric positive definite, such as 

the conjugate gradient algorithm, will be applicable provided that the iteration vectors

B.2. NULLSPACE METHODS
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I B V V

b t 0 _ Q 0

can be constrained to lie S . Notice that if z j  = xT y j  j and z j  = [ xT y% ] 

then z j A z J  = z ^ A z ^  and hence the inner product is independent of the y  component.

B .3  T h e action  o f B

Notice tha t the matrix B can be considered to be a projection matrix, since if

(B.9)
3 J L q J L 0

then B t v = 0, and if B Tw =  0 then

wT (v — v )=  wT Bq  =  0,

so tha t the residual v — v is orthogonal to the span of J\f(BT ). Hence x  is the orthogonal 

projection of v onto M {B T).

If A  represents a groundwater flow matrix with a Dirichlet boundary condition then 

(B.9) could arise as a discretisation of the problem

u — Vp = u in fi 

V • u =  0 in 17 

p = 0 on d£l.

Similarly to above, if v E Hg(f2) satisfies V • v = 0 then

(v , u -  u )L 2(n) = J ^ v V p d x ,

= I pv • n  dy — I p V  ■ v dx ,
Jdfl Jfl

= 0,

and hence u is the orthogonal L2(f2) projection from u onto the space of divergence 

free functions, p  can be recovered as the solution of a Poisson equation and so if a fast 

Poisson solver is available, the action of B~l can be computed implicitly.
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A p p e n d i x  B 192

It is not difficult to show that | yT q j in (B.9) satisfies

III;

(B t B )~ 1 B t v

where II =  I  — B (B TB )~ 1B T is the orthogonal projection matrix [29] onto J\f(BT ), and 

hence the update from v to v can be calculated at a cost of one projection evaluation. 

The preconditioned system B~lA z  = B~l f  can then be written as

IL4 +  ( /  -  n) 0 

(B t B )~ 1B t (A — I) I

Therefore, preconditioning with the projection matrix B has the effect of removing the 

dependence on y  in the first equation (c.f. LSQR(A_1) which eliminates x  dependence). 

Since B Tx = 0, the equation can be formulated as a problem in x  only,

IlAIIx =  116,

(since x  — Ila:). The coefficient matrix IIAII is similar to the projected Hessian in 

(B.8), however unlike Z TA Z , HAH is an n x n  singular matrix, and comparing with 

the theorems of §B.l it is easy to see that the the nullspace of n A n  is m  dimensional. 

Hence, the projection matrix n  allows the dimension of the problem to be reduced from 

n  +  m  to n — m  (although the y solution has not been obtained).

B .4  T h e IICG algorithm

In this section a nullspace algorithm, nCG  , for (B.7) is derived by first considering the 

Conjugate Gradient algorithm applied to the system (B.7) on the space S . The Con

jugate Gradient algorithm for the solution of A z  = f  where A  E Rnxn is a symmetric 

positive definite matrix is given by,

x Ub

y (B TB )~ 1B Tb

B.4. THE nC G  ALGORITHM
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CG algorithm  for sym m etric, positive defin ite system s

Pick zq G W 1 . Set ro =  A z  — / ,  do = —ro and iterate,

1. Z i + 1 — +  CXi di ,  Oti  (di , d i ) ^  ’

2- ^i+1 =  •^^z+1 / j

3. di+1 =  - r i+i + f t f t ,  ft =

where (• , •) denotes the usual Euclidean inner product in Rn and (• , -)A denotes 

the A  inner product. The vectors r* are the residual, d{ the search direction, and 

Zi the approximate solution at the ith step. Note that this is by no means the most 

efficient implementation of the CG algorithm, it is however simple to observe well 

known orthogonality properties of the iteration vectors (see [44]) from this version.

Now let A  be the coefficient matrix in (B.7). The IICG algorithm can be derived 

from the CG algorithm as follows. Any iteration vector in the CG algorithm has an

x  component and a y component. Given an iteration vector g let gx , gy denote the x

and y components of g respectively. Then the IICG algorithm will only be stable if all 

x  components of the iteration vectors lie in Af (B T). Therefore the first requirement 

is tha t Zq G J\f(BT). This can be achieved either by projecting Zq onto A f(B T ) by 

premultiplying by the matrix II from §B.3 or simply by setting Zq =  0. For simplicity 

the second option will be used. Next it must be ensured that rff G M {B T ) so let 

r 0 =  U ^A U ^ o  -  / ) ,  where

n 7 =
n  o

o I

Since do = —ro, no projection of the initial search direction vector is required.

Suppose that at step i +  1 of the iteration, z f , r f , d x G J\f(BT ) and consider the 

update for the x  component of the solution from step 1,

zf+i =  Zi +  <*»<?•

Since z f ,d x G M (B T) it follows that zf+ 1  G M {B T ). Step 2 doesn’t necessarily ensure 

that rf+ 1  G N { B T) and so an extra iteration step

2.5 rf+ 1 = I I r f+1
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needs to be inserted between steps 2 and 3. Step 3 then updates the search direction. 

Since df £ M {B T ) and r f  £ M (B T ) (after step 2.5), df+ 1  is automatically lies in 

J\f{BT). Therefore after each iteration of the algorithm new approximate solution, 

residual and search direction vectors axe found which all have x  components which are 

elements of J\f(BT ). Since ^o>r o>^o ^ N ( B T) all iteration vectors will have discretely 

divergence free x  components if the extra projection step described above is included in 

the CG algorithm for A. Notice that one projection needs to be done before iteration 

can commence, then only one projection step is required per iteration. (Two initial 

projections are required if zq is chosen such that zft  /  0).

As shall be seen there are some redundant operations in this algorithm. To identify 

them write

Zi =
Xi

Vi

and iterate

Then, renumbering the steps, the algorithm becomes,

C om ponentw ise CG algorithm  w ith  projections

T
Choose J Xq y l  ] G K.n . Set xq = ILro, ^0  =  n (A x0 +  Byo — 5), Tq =  B Tx o and

[ d f  ] =  ~  [ *oT rf

1 . x i + i = X i  +  a i d * ,

Vi+1  =  Vi  +  a i B T X i ,

2 - r f + 1  =  A x i + 1 +  B y i + i  -  6 ,  

r i + 1  =  B T x i + 1>

3. rf+1= n rf+1,

4. d*+l =  -r?+l +  (3id*,

^ + i =  “ r f + i + ^ -

a- =  5 ) + W  ’ d*) .
{d? , * t ) A+2{BTd!  , d V ) ’

(rf ,df)A + (BTrf ,dy) + (BTdf , r f )  

idi >di ) A+2{BTdi >di)

Notice that since it is guaranteed that Xi,r*,d* £ M {B T), B TXi =  B Tr f  = B Tdf = 

0 and so all calculations involving these terms vanish. Then step 1 implies that

Vi+i = Vi +  B TXi = yi,

so that the y  approximation never gets updated, i.e. the algorithm (as it stands) doesn’t
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A p p e n d i x  B 195

solve (B.7) for y (c.f. the LSQR(A_1) algorithm which only solves for y). Therefore 

it is sensible to take yo = 0 which results in all y terms in the algorithm becoming

redundant (including r f  and df). It will be shown tha t it is still possible to update a

pressure approximation without these terms and at negligible extra cost.

The refined algorithm which results from these simplifications will be referred to as 

the nC G  algorithm for velocity and acts as follows.

IICG algorithm  for velocity

Choose xo 6 Mn . Set xq = ILro,ro =  II(Aro — b), do = —tq and iterate

1. X i -\.i — X{  4" o^d^, ati =  (dj , di)A ’

2. AXi-^.\ 6,

3. r̂ -i-i — n rj+ i,

4. df+i =  — r»+i +  (3idi, Pi =  > *

Notice tha t all residuals and search directions involve only x  components terms 

so tha t the superscript x ’s have been dropped. Once again this is not the most cost

effective implementation of the algorithm but merely a ‘nice’ version, and note that

taking xo =  0 simplifies the first steps of the algorithm.

Attention is now turned to finding an approximation for the pressure at each iter

ation step. First observe that by steps 1 and 2 of the algorithm,

r i+i =  A(xi +  aidi) -  b 

= (Axi -  b) +  aiAdi

=  ri +  aiAdi (B.10)

thus only one A x  vector is required at each step of IICG and so step 2 of the algorithm 

is replaced by (B.10). (Calculation of both ai and Pi only require Adi). Step 3 then 

becomes

f»+i =  n  +  aiUAdi, (B . l l )

since Ilr; =  at step i +  1 of the iteration. Hence the projection operation has been 

shifted to act on Adi in place of r*+1-

Notice that if Xk is the approximation to x  at step k of the nC G  algorithm, a
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corresponding y approximation can be obtained by setting

yk = (BTB ) - 1B T ( b - A x k),

and so

yk + 1  = (B TB ) - 1B T ( b - A x k+l).

Therefore

Vk+i ~Vk = ~ (B TB )~ 1B TA (x k + 1 -  x k),

and hence

Vk+1 =  Vk ~  a k(B TB )~ 1B TAdk, by step 1 of IICG ,

=: Vk ~  oilkh- (B.12)

Recall now that the projection step has been shifted to act on Adk at the kth step and

UAdk =  ( /  -  B (B TB )~ 1 B T)Adk,

= Adk — B tk, (B.13)

hence the pressure can be updated as a preliminary step to forming IIAdk. Notice that 

the extra cost of the pressure update is just one VAXPY operation (of dimension m).

Combining all of the above ideas an efficient version of the algorithm for solving

(B.7) is obtained which will be referred to as the IICG algorithm.
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T h e  n C G  a lg o rith m

Choose xq G Rn . Set xq = IIxo, to =  (B TB )~ 1B Tb, yo = to, ro =  HAxq — b +  

Bto, do — —ro and iterate
1 . 3 ? f+ l =  X i  OLid{ Oti =  , d i ) A

2. t i = (B TB ) - 1B T (Adi)

3. Vj,-|-i — V{ Oii(Adi Bt{)

Vi+1 = Vi

5. =  — n + i +  fadi Pi =

Prom the above development and §B.3 it is clear tha t the following lemma holds.

L em m a  B .4.1 IICC applied to the system (B.7) is equivalent to preconditioning (B.7) 

with

I  B  

B t  0

and solving the equation in velocity only by CG, with pressure updates being performed 

using the coupled pressure and velocity equation.

Notice that taking xo =  0 makes the projection of zo and Axo redundant and 

tha t the only extra cost of this algorithm over an efficient implementation of IICG for 

velocities is the one VAXPY operation to update pressure per iteration. Also notice 

tha t the number of matrix-vector multiplications per iteration is consistent with CG 

applied to (B.7), i.e. one Ax vector, one B x  vector and one B T x  vector per iteration. 

Also observe that the n + m  dimensional inner products of CG have been replaced 

by n  dimensional ones and that the two n +  m  dimensional VAXPY operations of 

CG (in updating residuals and search directions) have been replaced by n  dimensional 

operations. Hence the only extra operation of nC G  applied to (B.7) over CG applied 

to (B.7) is a solve of the form

(B TB )v = w

at each step of the iteration, (c.f. LSQR(A-1 ) which requires a solve with the matrix 

A at each step of the iteration).
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B .5  C onvergence o f th e  IICG algorith m

It is well known tha t when the CG algorithm is applied to symmetric positive definite 

systems, the residual vectors are conjugate in the usual Euclidean inner product space 

and the search directions are conjugate in the A —inner product space (in exact arith

metic). i.e. if gi = A zi — f  is the residual and hi is the search direction at step i of the 

CG algorithm then after k iterations

(9 i •> 9 j)  =  {h{ , h j)A =  0 Vi j  <  k.

This behaviour leads to the theoretical result that, for exact arithmetic, the CG algo

rithm  should converge to the exact solution in at most I steps, where I is the dimension 

of the problem (or less if A  has repeated eigenvalues).

The IICG algorithm acts on the system

IL4.ILr =  II b, (B.14)

and since span(IIAII) is n — m  dimensional, similar results to those for gi and hi above 

should lead to the conclusion that, again for exact arithmetic, the IICG algorithm 

applied to (B.14) should converge to the exact solution in at most n — m  steps. Notice 

that since the IICG algorithm algorithm also updates pressure vectors, the n  +  m 

dimensional system (B.7) is solved in at most n — m  steps, compared to n  +  m  steps if 

the CG algorithm were applied directly to (B.7) (and if it converged). The analogous 

results for and di, the residual and search directions of the IICG algorithm follow by 

some standard CG type analysis and are now given.

L em m a B .5.1 After I iterations of the IICG algorithm,

span {do, . . .  , d{\ =  span{r0, . . .  , r/} =  span{r0, Ar 0, , a V 0),

where A  = IIAII, and

(а) {di , dj)A = 0 V« ^  j  < I,

(б) {n , rj) =  0 Vz #  j  < I.

P ro o f  Trivial. □
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C o ro lla ry  B .5 .2 The I ICG algorithm for (B.7) converges in at most n  — m  steps in 

exact arithmetic.

P ro o f  Immediate consequence of Lemma B.5.1 and tha t dim {M (BT )) = dim (span(A) 

n  — m. □

It can be shown that the error at the kth iterate of CG for the symmetric positive 

definite system A z  = f  is of the form

II* ~ ZfclU ^  2 II* ~ *olU ( ^ | + i )  ’ (B-15)

where k is the condition number of A  (see [29] and §2.2.1). Similarly, the IICG algo

rithm  satisfies an error bound of the form

\ u - u k \ \ A  <  2 \ \ u - u q \ \ a  , (B.16)

where

« =  t ^ 4 = t < k(a ), (B.17)
^n—m\A)

and Ai(A), An_m(A) denote the non-zero eigenvalues of smallest and largest modulus 

of A  (it is assumed that the eigenvalues of A  are ordered so the An_m+ i , . . .  , An =  0). 

As is the case for similar error bounds for the CG algorithm, this error bound is 

generally pessimistic in practice. Note that the zero eigenvalues of A  can be ignored 

since directions with coefficients in directions of eigenvectors corresponding to zero 

eigenvalues never occur within IICG since all iteration vectors are elements of J\f(BT ). 

Hence the convergence of the nC G  algorithm is completely determined by A  and is 

independent of B. Compare this, for example, with the error estimate for the pressure 

terms of the Uzawa algorithm (see [19]),

IIV -  Vk||2 <  W  ~ olB t A ~ l B )]k ||y -  </0||2 , (B.18)

and the optimal value of p(I — a B TA ~ 1B) = .
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B .6  G eneralisation  o f IICG and a con n ection  w ith  L SQ R (D - l

Since k (A) governs the convergence of IICG it would be wise to make k (A) as small 

as possible by preconditioning A, since k(A ) < k (A). In §5.4 it was seen that diagonal 

preconditioners are effective for the mass matrix A, hence consider the preconditioned 

system

D  2 AD  2 D  2 1?

B t D' 0

D 2 x D ~ h

y 0
(B.19)

Then k (D ~ iA D ~ 2 ) is independent of k (and h for some choices of finite elements), 

where k is the permeability function in the groundwater flow equations, and so IICG 

for (B.19) should converge faster than IICG for A  and furthermore should converge 

independently of k. If IICG on A  is called ‘IICG with projection m atrix IT and IICG 

on (B.19) is denoted ‘IICG(D) with projection matrix IID’ then II is given by

and its action can be computed with LSQR solve on B. On the other hand, the 

projection matrix IID is given by

UD = I -  D ~ 5B (B TD ~ lB )~ 1B TD

and it’s action is equivalent to that of the inverse of

D B  

B t  0

which can be computed using the LSQR(D-1) algorithm. Saunders has considered the 

intricacies of using LSQR to compute projections in [71], and analogous results to all 

those presented there will hold for LSQR(D_1) .

B .7  N um erica l resu lts

The IICG algorithm was applied to the Harwell problem TTMX2 described in §5.6, 

the error ||x — Xk\ \ 2 can be seen in Figure B-l. To compare convergence, the MINRES

B.6. GENERALISATION OF nCG  AND A CONNECTION WITH LSQR(Z)-1 )
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algorithm has also been used to solve TTMX2. Clearly the IICG algorithm is much 

faster in terms of iterations, the error (in the x  component) after 3 iterations of IICG 

is in fact smaller than the error (in the x  component) after 300 iterations of MINRES, 

although it must be remembered that each IICG iteration is much more expensive 

than each MINRES iteration, since it requires a Poisson solve at each step. For this 

example the time taken for 10 steps of IICG was equivalent to approximately 300 steps 

of MINRES, although the error after this time is of order 10-3 for MINRES whereas 

the error for IICG is of order 10-8 .

M IN RES

 ICf*

10 '
20 40 70 80 90 100Iteration

Figure B-l: Comparison of IICG and MINRES iterations for the x-error

In order to make IICG a realistic algorithm it needs to be combined with an efficient 

method of solving the Poisson subproblem, for example a multigrid solver.

B.8 Conclusions

The nCG algorithm will not be competitive with LSQR(A_1) for the groundwater flow 

problems, since its inner solves are far too expensive compared with the (relatively) 

simple mass matrix subproblems involved at each step of LSQR(A_1) . IICG has the 

property of performing a minimisation of velocity solution error, whilst LSQR(A_1) 

minimises the pressure error norm. For solving Stokes problems it may be the case 

that nCG  is more realistic than LSQR(A_1) since there the inner Poisson solves can 

be thought of as a coarse grid solve compared to the Laplacian matrix A, and so IICG

B.8. CONCLUSIONS
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can be thought of as a multigrid type algorithm in this case, whereas the LSQR(A-1 ) 

inner solves will be of a large Poisson problem. This remains to be investigated.
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