
        

University of Bath

PHD

Some topics in statistical image analysis

Stander, Julian

Award date:
1992

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



Some Topics in Statistical Image 
Analysis

Submitted by

Julian Stander
for the degree of PhD 

of the

University of Bath 
1992

COPYRIGHT: Attention is drawn to the fact that copyright of this thesis rests with its author. 

This copy of the thesis has been supplied on the condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation from the 

thesis and no information derived from it may be published without the prior written consent 

of the author.

This thesis may be made available for consultation within the University Library and may be 

photocopied or lent to other libraries for the purposes of consultation.

J. Stander



UMI Number: U601477

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601477
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



I



Abstract

In image analysis we aim to find a description of an image from observed data. In Chapters 1 

to 4 we consider the reconstruction of an image observed directly, but with noise, on a grid of 

pixels as the description. In Chapter 1 we introduce statistical models both for the set of possible 

images via a prior distribution, and for the noise via a likelihood. These models are combined 

by Bayes’s theorem to produce a posterior distribution. The reconstruction maximizes this 

posterior distribution, or, equivalently, minimizes a penalty function representing a trade off 

between the infidelity of a given image to the data and its roughness, controlled by an unknown 

smoothing parameter.

In Chapter 2 we investigate a modification to the usual penalty function that introduces an 

edge process to model the boundaries of the image.

Direct calculation of the global minimum of the penalty function is computationally 

prohibitive, except in one special case when the image comprises two colours and a fluid flow 

algorithm is employed. In Chapter 3 we exploit a special feature of this algorithm to estimate 

the smoothing parameter.

Simulated annealing is often used to attempt to find the global minimum. This algorithm is 

controlled by a temperature schedule, the effect of which we examine in Chapter 4.

In PET (positron emission tomography) the image represents the metabolic activity of a 

cross-section of an organ in the body and can be thought of as a density / .  The image is 

observed indirectly by a detector ring. The description of the image is now provided by a 

linear functional of / ,  the estimation of which we consider in Chapter 5, both when the ring is 

continuous and when it comprises a finite number of detectors. In Chapter 6 we illustrate this 

theory with some numerical examples.
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Chapter 1

Statistical Image Reconstruction: 

Introduction to the Direct Problem

The first part of this thesis comprises this chapter and Chapters 2, 3 and 4, and considers 

some topics in statistical image reconstruction when the data have been observed directly, but 

imperfectly, on a grid of picture elements known as pixels. In these chapters we define image 

reconstruction as the removal of noise from the observed data to reveal the image which would 

have been viewed under ideal conditions. The techniques associated with image reconstruction 

have many applications in subjects such as astronomy, remote sensing, industrial inspection, 

biological taxonomy, stereology and satellite imaging to name but a few.

We consider a two dimensional region partitioned into pixels. In this chapter we assume 

for simplicity that the region and the pixels are square (or possibly rectangular), but almost 

all the techniques can be easily generalized to irregular and uneven pixel arrays. Such arrays 

are discussed, for example, in Silverman, Jennison, Stander and Brown[39], where an edge 

process is introduced to approximate the boundaries that are present in the underlying real image 

regardless of the pixellation (see also Chapter 2) and Silverman, Jones, Wilson and Nychka[40], 

where a pixellation is introduced in the context of positron emission tomography (PET) that 

exploits circular symmetries and leads to substantial computational savings in both storage and 

time (see also Section 5.2.3).

Let us assume that the image comprises n pixels, indexed by i, and that the true value at 

pixel i is x*. The image is, however, observed imperfectly and at pixel i a degraded record (or 

signal) y,, related to x*, is observed. In the main, we shall assume that the records y \ , ... ,  yn are
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conditionally independent given the image, and that

yt ~ Af(x*, k),

where the variance k > 0 is assumed known. We shall refer to this type of degradation 

mechanism as ‘normal noise’. In Section 1.9 we briefly discuss the estimation of the variance 

of the noise in the case when k is unknown. In Chapter 3, where we consider images whose 

pixels can take only two colours (0 and 1, corresponding to white and black), we introduce 

a different type of degradation mechanism, in which each pixel switches colour with known 

probability. There we refer to this type of degradation mechanism as the ‘binary channel’.

If we define x* to be the n x 1 vector with entries x*, and y to be the n x  1 vector with 

entries y„ then in the case of normal noise we can write

where £ is an nx  1 vector with multivariate normal distribution A/̂ O, k T) and /  is the nxn  identity 

matrix. Many authors work with a much more complicated set-up. For example, Geman and 

Reynolds [14] consider

where nowy and e are m x 1 vectors, and H is a known m x n  matrix, w ithm< n, representing 

the point spread function by means of which blur is modelled. In general m < n due to the 

nature of optical blurring. We do not study blurring in this part of the thesis, but restrict our 

attention to the model given in equation (1.1). Our aim is to deduce the true image given the 

record y.

1.1 The role of statistics and the Bayesian paradigm

A very good introduction to the role of statistics in image reconstruction is given by Jubb[24]. 

Although image reconstruction has a long history, it is only since the 1980’s that statisticians 

have begun to regard it as a legitimate part of their subject. But what have statisticians to add 

to what has been done by physicists, electronic engineers and computer scientists? A possible 

answer can be obtained from the recognition that statistics can offer a good treatment of the

y = x* +£, ( 1. 1)

y = Hx* +£, (1.2)
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degradation mechanism and good models for the true image. The general Bayesian paradigm 

can be applied directly to the image problem. Let the set of all possible images be X . Assume 

for the moment that we can write down a prior distribution Pr (x) for all x  e  X  that in some

the image should take similar values. We shall formalize this notion in Section 1.3 where we 

discuss the concept of neighbourhood. From our knowledge of the noise we can write down the 

likelihood of the record y given an image x, as l(y | x). The prior distribution and the likelihood 

can be combined by means of Bayes’s theorem to give us the posterior distribution of an image x 

given the (fixed) record y:

where the constant of proportionality does not depend upon x. In general, the idea is now to 

try to summarize this posterior distribution by giving a single estimate of x  and we discuss 

possible summaries of the posterior distribution in Section 1.4. However, before we can make 

any further progress we must discuss the form of the likelihood and the prior distributions. 

From the assumptions that we have stated above it is quite easy to write down the likelihood, 

and we briefly discuss it in Section 1.2. The prior distribution is much more difficult and is 

discussed in detail in Section 1.3.

1.2 The likelihood, and simulating the noise distribution

We have already stated that we make the assumptions that given any image x, the records 

y i , ... ,yn are conditionally independent, and that each y, has the same known conditional 

density function /(y, | jq), dependent only on (In Section 3.3 we shall discuss the possibility

of relaxing the second assumption.) Thus, the conditional density of the observed image y given 

an image x  is simply

way reflects our beliefs about images. A very commonly held belief is that nearby pixels of

Pr(x|y) ~  l(y\x) Pr(x), (1.3)

n
(1.4)

i= 1
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If we assume that the distribution of the record yt at pixel i given x, is normal with mean x,- and 

known variance k  > 0, we have

upon x and that this log-likelihood form will be useful when we consider the penalty function 

approach in Section 1.5.

1.2.1 The noise distribution

We have seen that the records y \ , ... ,yn are conditionally independent given the image and 

that yi ~ N{x*, a :), where the true value at pixel i is x* and the variance k  > 0 is assumed 

known. For most of the experiments that are described in this part of the thesis, we add pseudo 

white noise of known variance k  to a known true scene. To generate this pseudo white noise 

numbers uniformly distributed between 0 and 1 are produced, and these are then transformed 

into standard normal variates. We find numbers that are uniformly distributed useful in their 

own right: for example, we use them with the Gibbs sampler (see Section 1.4.1), in performing 

simulated annealing (see Section 1.6.1) and in simulating the degradation mechanism known 

as the binary channel (see Chapter 3).

An algorithm due to Wichmann and Hill[45] was used to produce numbers uniformly 

distributed between 0 and 1, excluding the end points. Three simple congruential generators 

(see Ripley[32]) of the form

are used, where the a s and M  s are specified by the authors. Each generator has a prime number 

for its modulus M  and a primitive root for its multiplier a, that is, a *0  and ?  1 mod M

for each prime factor p  of M  -  1. This ensures that each generator has a full period or cycle- 

length. At each stage, the numbers produced by these three generators are combined in such

and from equation (1.4)

i
log l(y | x) = ~  log (2x k) -  —  (yi ~ *i)2-

i=i
(1.5)

We remark here that the first term of the right hand side of equation (1.5) does not depend

Xi = aXi-i mod M
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a way as to generate realizations from the U(0,1) distribution. The whole system is set-up in 

such a way as to ensure that the cycle length of this generator is the product of the individual 

cycle lengths, and is thus very long.

Each pair, f/t and t/i+i say, of independent U(0,1) realizations produced are transformed 

into independent realizations, V, and V,+i say, from a U (-1,1) variate. Next the following 

algorithm is employed to produce two independent normal variates from the two independent 

U (-\, 1) variates.

Algorithm 1 (Ripley[32], Algorithm 3.6 (polar))

1. Repeat: Generate Vi, Vi+1 ~U{— 1,1), until W  = V,2 + Vj+i2 < 1

2. Let C = \J -2  W~l log W

3. Return X=  CV\, Y = C V 2

Step 1 is a rejection method leaving (Vi, V2) uniformly distributed in the unit disc. The X  and 

Y so produced can be shown to be standard normal variates.

This algorithm performs well in as much as unwanted structure seemed not to be present. 

Other algorithms that we tried seemed to demonstrate such structure. For example, when we 

generated independent M (0,1) variates by means of the congruential generator

Xi = (69069 X ^  + 1) mod 232, Ut = 2"32 Xt

(see Ripley [32], page 46), and transformed these into pairs of standard normal variates by means 

of the following algorithm

Algorithm 2 (Ripley[32], Algorithm 3.1 (Box-Muller))

1. Generate U\ ~ U{0,1), set Q = 2jcU\

2. Generate U2 ~ M{0,1), set E  = -  log U2, R = y/2E

3. X  = R cos 0 , Y = R sin 0  are independent standard normal variates

we found that, if we displayed 65536 such standard normal variates on a 256 x 256 pixel grid 

by defining a pixel to be white if the appropriate variate was less than 0.0 and black otherwise, 

streaks appeared across the resulting image. Such problems did not occur with the uniform
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variates of Wichmann and Hill[45] and Algorithm 1. Moreover, Algorithm 1 does not require 

the calculation of the two trigonometric functions used by Algorithm 2 and is thus substantially 

faster, at the expense of a little extra complexity.

1.3 The prior distribution

Besag[4] points out that whereas the specification of l(y\x) is in general relatively easy, 

being governed by physical considerations concerned with the sensing device for example, 

the specification of the prior is more of an art, and hence more difficult. The general aim 

is not to model the global features of the true image, but to try to capture some of the local 

characteristics. In this section we attempt to model the very commonly held belief that nearby 

pixels take similar values. First we must formalize the notion of ‘nearby’, and we do this by 

means of the concept of neighbourhood in Section 1.3.1. This concept of neighbourhood allows 

us to introduce locally dependent Markov random fields (or Gibbs distributions) in Section 1.3.2 

as a way of modelling probabilistically the above mentioned commonly held belief about the 

set of images.

1.3.1 Neighbourhood systems

In this section we attempt to formalize the notion of ‘nearby’ by introducing the concept of 

neighbourhood system. We have seen that the true scene is observed on a grid of square pixels 

as illustrated in Figure 1.1. We can think of each pixel as a node of a finite graph, and we 

represent these nodes in Figure 1.1 by circles. Two pixels are said to be neighbours if and 

only if they are joined by an arc of the graph. In Figure 1.1 we illustrate both the first-order 

neighbourhood system (in the top left comer) and the second-order neighbourhood system (in 

the bottom right comer); the solid lines joining the pixels are the arcs of the graph, and thus 

represent the neighbourhood relationships. We can see from Figure 1.1 how the concept of 

neighbourhood relates to the notion of ‘nearby’. A clique c is defined to be a set of pixels 

all of whose elements are neighbours. In Figure 1.2 we illustrate all the possible cliques 

corresponding to the neighbourhood systems illustrated in Figure 1.1. We denote the set of all 

pixel cliques in the image by C. Our definition has imposed symmetry in naming neighbours: 

that is, if pixel j  is a neighbour of pixel i, pixel i must be a neighbour of pixel j. As a further 

piece of notation, we introduce di to represent the set of neighbours of pixel i.
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1.3.2 Markov random fields, the Hammersley-Clifford theorem and Gibbs 

distributions

To define the prior distribution Pr (x) we make the usual assumption that the true image x* 

is a realization of a locally dependent Markov random field. Now that we have introduced 

the notion of neighbourhood we can define such a Markov random field. A locally dependent 

Markov random field, as defined by Besag[3], is a joint probability distribution on the set X  of 

all possible images subject to the condition

where S is the set of all pixels. The condition, although specified locally, implies a global

in their definition of a Markov random field; we shall do likewise throughout this thesis.

Even when each pixel has only a few neighbours, unobvious consistency conditions, 

given by the Hammersley-Clifford theorem (see, for example, Besag[2]), delimit the functions 

admissible as conditional probability distributions. The Hammersley-Clifford theorem also 

provides a connection between the purely graph-theoretic neighbourhood relationships on the 

lattice with the algebraic form of the distribution function. This theorem may be stated as 

follows:

Theorem 1 (Hammersley-Clifford) Any probability distribution on the set o f all possible 

images X  which is a locally dependent Markov random field (satisfying the positivity condition) 

is o f the form

where Z  is a constant o f proportionality and Vc(x) is a function only o f the x,- with i in clique c.

The distribution given by equation (1.6) is often referred to as a Gibbs distribution relative to 

the appropriate graph; see, for example, Geman and Geman[12]. The term Y^ceC Vc(x) is often 

referred to as the energy function, and the family |V c(x) | c e C} is called a potential. From

Pt f a  I * s \ i )  = Pr f a  | x^i),

pattern and is known as the Markov condition. Geman and Geman[12] and Jubb[24] include 

the so-called positivity condition, namely

Pr (x) > 0 for all x e X,

( 1.6)
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equation (1.6) it is easy to write down the conditional distribution of x, given the values at the 

other pixels:

where Q  is the set of all cliques that include pixel i. This conditional distribution can thus be 

seen to involve only the values at pixels that are neighbours of pixel i, and hence the so-called 

Markov condition in the definition of a Markov random field is satisfied.

The prior distribution that we use throughout this part of the thesis is of the form specified 

by equation (1.6) although not all the cliques shown in Figure 1.2 are involved:

where f3 > 0 can be thought of as a smoothing constant, Y [̂ij] indicates summation over 

horizontal and vertical neighbours, J2<i,j> indicates summation over diagonal neighbours and 

(f>{u) is a function that we shall discuss in Section 1.3.3. If D = 0 then the model is said to 

be first-order, as only horizontal and vertical neighbours are involved in the specification of

examples. Our experience is that, from the visual quality of reconstructions produced, little

despite the greater cost of computation and overall complexity. Accordingly, we concentrate 

almost entirely on the first-order model, although almost all our techniques apply equally well 

to the second-order model. One example using a second-order model can, however, be found 

in Section 1.9.

All that we now need to do to specify the prior distribution is to define the function (p. We 

discuss this function in Section 1.3.3.

1 3 J  Classes of images and the ^-function

We consider two classes of images. The first comprises images whose pixels can take any of 

a finite number c of unordered colours. These colours can be thought of as labels referring to 

attributes of the pixels. In this case we set (p (u) = I(u *0), where I  is the indicator function, and

(1.7)

Pr (*) ~  exp ](p (\xi -  xj\) + D^T<p (|xt -  xj\)
<ij>

( 1.8)

the prior, whereas if D * 0 diagonal neighbours are also involved and the model is said to be 

second-order. Jubb[24] presents a discussion about the choice of D with several illustrative

advantage is to be gained by using a second-order model as opposed to a first-order model
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the prior distribution takes the form

Pr (x) exp {-/? (v^(x) + D v̂ 2\x ) j  j , (1.9)

where v(1)(x) is the number of discrepant first-order pairs in the image and v(2)(x) is the number 

of discrepant second-order pairs. This prior is sensitive only to the existence of differences 

between the values taken by pixels, rather than to the size of the differences. If the colours 

have a natural ordering, usually ranging from black to white, they are referred to as grey-levels. 

Often we assume that each pixel can take one of g grey-levels, where g = 64 or g = 256. For 

grey-level images a different 0, and hence a different prior distribution, is employed that does 

take account of the size of the difference in intensities between neighbouring pixels. We follow 

the approach of Jubb[24] and Geman and McClure[13]. These authors in effect use a family of 

0 s, indexed by a parameter a  > 0. The function <pa is defined as

<j)a ( u )  = 1 ~ 1 2 = , 1 2 w . (1.10)
1 +auz 1 + (awz) 1

When u, = |x* -  x; |, this <pa  can be thought of as a penalty for the discrepancy of the grey-levels 

taken by pixel i and pixel j. The general idea behind this family is that for large discrepancies, 

and hence large values of u, the value of 0a(w) is about the same. Thus, the problem of 

‘over penalizing’ very large discrepancies which might occur as a result of a natural boundary 

between regions is avoided. In Chapter 2 for both classes of images we consider a modification 

to the prior distribution that employs an explicit edge process to model the boundary between 

regions. In Figure 1.3 we present a graph of 0a(w)> u>  0, for five different values of a. It can 

be seen from the graph that 0a(O) = 0 and 0<*(w) —> 1 as u —» °°, for all values of a. Moreover, 

it is clear that as a  increases the value of 0a(w) for fixed u increases. Jubb[24] explains that a  

determines the amount of variation that is permitted within regions; large values of a  restrict 

variation. He presents some analysis that leads to a suggestion about the choice of the value of a. 

However, in our experiment we choose a  (and p) by trial and error to give good reconstructions. 

In fact, in the reconstruction experiment that we present in Section 1.7 we set a  = 0.075 and 

p  = 2.5. With such a value of a, and small u (u < 3 for example), 0a(w) looks like a quadratic 

in u. We note that with both <j> (u) = 0a(«) and 0 (w) = f(« * 0) images x that maximize Pr (x) are 

of constant intensity.

Green[15], working in the context of single-photon emission computerized tomography

10
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(SPECT), sets

(p(u) = y/a(u) = ci log cosh(c2 a ll2u) (1 11)

where ci and C2 are chosen to match the prior o f Geman and McClure[13] in the sense that 

max (p\' = max y /i ' and (pi "  (0) = y/i "  (0). With this choice o f c\ and C2 , <pi («) and yq (u ) are 

very close for all u with |m| < 1. Again we have that y/a(0) = 0. Green[15] explains that the 

y/a s yield quite a flexible family o f prior distributions. In particular, if  f3 —> °° and a  —> 0 

in such a way that a/3 -> k, then [3 y/a(u) k u 2 for all u. The resulting prior is referred to 

as a Gaussian pixel prior by Besag[4]. He points out that such priors are unsatisfactory in the 

presence o f real discontinuities, which they will smear out in a reconstruction experiment. If 

/? -> 0 and a  -»  «> such that a  l/2/3 -> k, then f3 y/a(u) —» k \u\. The resulting prior is referred 

to as a median pixel prior by Besag[4]. He points out that the resulting conditional distribution 

o f xi, given all other values (i.e., given its neighbours), has its mode at the median rather than 

the mean o f the neighbouring Xj s and hence performs better than the Gaussian pixel prior for 

reconstructing surfaces with discontinuities. In fact, Green[15] sets a  = 1 / \/5 0  = 0.141 and

11



£ = 0.2.

Geman and Reynolds[14], working with blurred images, take

1 + (ecu)'m = . . d- 12)

up to an additive constant. This 0 shares many of the properties of Geman and McClure [ 13]’s 0, 

as given in equation (1.10), e.g. 0(0) = 0 and 0(u) —> 1 as u -» both priors belong to the 

general family

0(u)=  1
1 + (aur) l ’

indexed by y. Function (1.12) is concave, whereas the log cosh function (1.11) is convex 

for u e (0, °°). Geman and Reynolds[14] note that the function (1.12) has strictly positive 

derivative (from above) at the origin, and explain in their Section 1.2 that this property together 

with concavity discourages the interpolation of a reconstruction towards the data. This is 

shown to be especially useful for the recovery of discontinuities in the presence of blurring. 

Convex functions considerably simplify the computational problem (see Besag[4] Section 4.1, 

or Green[15] Section V), but often lack this non-interpolating property.

Finally, we should point our that although the prior distributions that we consider are widely 

used in the literature, they are relatively simple and only attempt to model the general features 

of an image. More sophisticated priors that attempt to model more specific knowledge of the 

class of images under consideration are sometimes employed.

1.4 Summaries of the posterior distribution

Now that we have defined the likelihood in equation (1.5) and the prior distribution in 

equation (1.8) we can use Bayes’s theorem, as expressed in equation (1.3), to combine our 

model for the noise with our prior knowledge of the true scene. Hence the posterior probability 

can be written as

Pr (x I y ) «  exp j - - ^  ^ ( y ,  -  Xif  -  £  0 ([*,• -  xj\) + 0 ^ 0  (I*/ -  */l) j j • (1-13)

Inspection of equation (1.6) reveals that this posterior distribution is a Gibbs distribution 

relative to the same neighbourhood graph as the prior distribution. Thus, as we have seen in

12



equation (1.7), the conditional distribution at each pixel, given the values at all the other pixels, 

can be computed easily from essentially local information. This fact is extremely useful when 

it comes to using the Gibbs sampler (Section 1.4.1), and the simulated annealing (Section 1.6.1) 

or ICM (Section 1.6.2) algorithms.

We try to summarize this posterior distribution by giving a single estimate of x. We discuss 

two possible summaries, the maximum a posteriori (MAP) estimate and the maximum posterior 

marginal (MPM) probability estimate, in Section 1.4.2. First, in Section 1.4.1 we discuss a way 

of sampling images x e X  from the posterior distribution Pr (x | y) known as the Gibbs sampler.

1.4.1 The Gibbs sampler

In this section we describe how samples can be generated from a given posterior distribution. 

The method that we shall describe was introduced in the context of image reconstruction by 

Geman and Geman[12]. It is, however, a special case of the method proposed and discussed 

by Hastings[19], which itself is a generalization of the famous Metropolis method. In fact, the 

Gibbs sampler can be used to generate images from any suitable distribution; in Section 3.4.3 

we employ it to generate binary images from the prior distribution (1.9) with various values of 

p. We saw above that the posterior distributions that we use in image reconstruction are Gibbs 

distributions as defined in Section 1.3.2, and this motivates the use of the term ‘Gibbs sampler’ 

by Geman and Geman[12].

The idea is to produce a Markov chain (see, for example, Stander, Farrington, Hill and 

Altham[42]), with state space X  and limit distribution Pr (x \ y). After an initial (perhaps long) 

period in which the process settles down, a simulation of this chain produces a sequence of 

(dependent) images sampled from Pr {x | y). The actual implementation is simple and proceeds 

according to the following algorithm:

Algorithm 3 (Gibbs sampler)

1. Produce an initial image (for example, assign a colour to each pixel at random)

2. Visit each pixel in the image by means o f a raster scan and replace the current value by 

one sampled from the conditional distribution o f the value at that pixel, given the current 

states o f all the other pixels

3. Repeat many times

13



Geman and Geman[ 12] show that asymptotically the choice of the initial image is not important. 

Of course, we must be able to compute the associated conditional distributionin Step 2. Because 

the distributions that we consider in image reconstruction are Gibbs distributions, this is an 

easy task. To sample from the conditional distribution in Step 2 we need to be able to generate 

numbers uniformly distributed between 0 and 1. We described an algorithm for doing this in 

Section 1.2.1.

1.4.2 The MAP and MPM summaries of the posterior distribution

In this part of the thesis we shall concentrate almost exclusively on the summary of the posterior 

distribution known as the maximum a posteriori (MAP) estimate. This is the image x e X  

that maximizes Pr (x  | y). In the context of decision theory, the MAP estimator corresponds to a 

zero-one loss function, according to whether the reconstruction is perfect or imperfect. Thus, all 

incorrect choices for the reconstruction are equally penalized. This has been cited as a criticism 

of the MAP estimate (see Besag[4]).

Another summary is the maximum posterior marginal (MPM) probability estimate. This 

is the image that maximizes the marginal posterior probability Pr (x, | y) at each pixel i. In the 

context of decision theory, the MPM estimate corresponds to a loss function that counts the 

number of misclassified pixels. The MPM estimate can be found by sampling repeatedly from 

Pr (x | y) by means of the Gibbs sampler, and at each pixel storing a histogram of the values of 

Xi taken. The MPM reconstruction at pixel i is then the value corresponding to the mode of this 

histogram. Other appropriate summaries of the histogram can also be considered. In addition, in 

reconstructing a grey-level image, we can attach an approximate Bayesian confidence interval 

to each pixel, and with colour images we can assign a probability estimate, rather than single 

colours. Of course, as Besag[4] points out, such confidence interval or probability estimates 

must not be interpreted too rigorously because of the known defects of the prior.

1.5 The Bayesian formulation and the penalty function approach

We have seen in Section 1.4 that we try to summarize the posterior distribution by giving a 

single estimate of x, and that in this part of the thesis we concentrate upon the MAP estimate, 

i.e. the image x  e  X  that maximizes the right hand side of the posterior distribution given
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in (1.13). Equivalently, we can attempt to find the image x  e X  that maximizes

”  5 7  Y l& i -  X*')2 "  P  I $ fo i -  Xj\) + D ' £ q -  x$  I • 1 4 )
i=\ \  M  <j> /

This is a penalized log-likelihood (see equation (1.5)): the logarithm of the likelihood of the 

image x  given the record y is penalized by a term that measures the roughness of x, namely

P  ( X] (l*‘ “ ■*/!)+ D  ” xj \) ] •
\  U,ji <i<J> J

It is more common, however, to consider the minimization of the following penalty function

( £ * ( t o - J j l )  +  o £ * ( l * / - * > l ) |  0 - 1 5 )
*=1 \ [i,j] <ij> /

over the set of all images X . This penalty function is often referred to as the (posterior) energy, 

and thus we shall also refer to it as E(x). It represents a trade off between infidelity of the 

reconstruction x to the data y, and the roughness of the image x. The balance of this trade off 

is in effect controlled by the unknown parameter /? > 0. If, on the one hand, /? = 0, the second 

or roughness term of (1.15) makes no contribution to the penalty function and the image that 

minimizes E(x) is the one in which every pixel i takes on a value that is closest to its record y:. 

This reconstruction, which uses no spatial information, will be referred to as the maximum 

likelihood estimate. If, on the other hand, /? is infinitely large, the contribution of the first term 

of (1.15) becomes unimportant and the image that minimizes (1.15) is such that every pixel 

has the same value. We shall refer to the parameter f} as the smoothing parameter. Often in 

reconstruction experiments in this part of the thesis we shall choose p  by eye so as to give 

reconstructions that appear good. This is how we proceed in Section 1.7. Much research has, 

however, been done concerning the estimation of the smoothing parameter. We present a brief 

review of some of this in Section 1.8. In Chapter 3 we discuss methods of estimating p  when 

the true image comprises only two colours.

From a philosophical point of view there is a difference between the p  that appears in the 

prior (and posterior) distribution, and the p  that appears in the penalty function. In the former p 

is a smoothing constant, whereas in the latter it is a smoothness parameter. We shall, however, 

not be rigorous in making this distinction in this thesis.

Our interest now turns to finding the global minimum of E(x). Of course, we have
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not presented any theory to suggest that this global minimum will necessarily be a good 

reconstruction, in terms of the percentage of misclassified pixels, for example. (For further 

comments on the percentage of misclassified pixels as a measure of the quality of a 

reconstruction see Section 1.7.) Indeed some researchers feel that the MAP estimate can often 

give too much emphasis to the global properties of the prior distribution (see Besag[4]). We 

feel, however, that this minimization problem is worthy of consideration in its own right. In 

essence, this is the subject of Chapter 4. The global minimization of the penalty function (1.15) 

can, in theory, be achieved by a direct search over all c" possible images, where c is the number 

of colours or grey-levels in the image, and n is the total number of pixels. In practice, however, 

for even moderate values of c and n such a search is not computationally feasible, and other 

techniques to minimize (1.15) have to be employed. We discuss these in Section 1.6.

1.6 Minimization techniques

We have seen that our aim is to find the image x e X  that corresponds to the global minimum 

of the penalty function E(x) given by expression (1.15). In theory, the global minimum of E(x) 

can be obtained by simulated annealing, as proposed by Geman and Geman[12]. We outline 

simulated annealing briefly in Section 1.6.1. It is not well known, however, how simulated 

annealing performs in practice. Accordingly, in Chapter 4 we present a thorough study of this 

stochastic optimization technique. Simulated annealing is very computationally expensive, and 

an alternative simple deterministic algorithm, known as iterated conditional modes (ICM) is 

often used. We outline this technique in Section 1.6.2. Both simulated annealing and ICM 

are iterative algorithms. In effect, at each iteration a new image is generated by visiting each 

pixel in turn and updating it in an appropriate fashion. The final image in this sequence is the 

reconstruction.

1.6.1 Simulated annealing

The basic idea behind simulated annealing is that, instead of sampling from the (posterior) 

distribution

Pr (x | y) exp {-£(*)}
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directly by means of the Gibbs sampler (Section 1.4.1) for example, we sample from a 

probability measure defined on X  by

nr{x) exp

where i  > 0 is a control parameter known as the temperature. In the limit, as t \  0, 

xr(x) assigns unit probability to the MAP image. Thus, it is credible that if r is decreased 

to zero sufficiently slowly during the sampling process, the MAP image should result. We 

discuss this in greater detail in Section 4.2.2. In essence the algorithm escapes from local 

minima by allowing changes that increase E(x), as well as decrease it. As we shall see in 

Section 1.6.2 ICM only allows images that decrease E(x) and so that technique does not permit 

an escape from a local minimum. The way in which t is changed is known as the temperature 

schedule. Geman and Geman[12] state and prove a theorem confirming this convergence for a 

temperature schedule in effect of the form z(t) > C! log(l + t), where C is some (possibly 

very large) constant that depends upon the function E(x) to be minimized and t -» «> is 

the number of iterations of the image that have been started. Geman and Geman[12] show 

that this convergence does not depend upon the initial image used by the algorithm. This 

theorem is, however, an asymptotic result. In practice the algorithm can only be run for a 

finite time, thus giving an approximation to the MAP image. (Greig et al. [17] show that 

when the image comprises only two colours the global minimum of E(x), sometimes referred 

to as the exact MAP estimate, can be found by means of a fluid flow algorithm. This is 

discussed further is Chapter 3.) In Chapter 4 we discuss the finite behaviour of the simulated 

annealing algorithm, suggest some modifications to the standard annealing algorithm, and 

examing different temperature schedules. We have already seen that simulated annealing is 

very computationally expensive. This is especially true when the number of possible values 

that can be taken at each pixel is high, such as is the case for grey-level images. Geman 

and Reynolds[14], working with these images, propose a slight modification to the standard 

annealing algorithm in order to reduce the computation required. They refer to this modification 

as the ‘truncated algorithm’. When updating the value of the estimate of the image at pixel i, 

instead of sampling from the actual conditional distribution of *,• that puts positive weight on 

all g grey-levels, the support of the distribution is reduced to the values obtained by taking the 

union of small intervals (of five grey-levels in our case) about the current value at site i, the 

current values at the neighbours of i, and the data value y, . We examine the truncated algorithm
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further in Section 4.5.

We finish this section by remarking that the x produced by the simulated annealing algorithm 

may not even correspond to a local minimum of the penalty function. In Section 1.6.2 we 

describe a simple modification that overcomes this defect. An example of the use of the 

truncated algorithm of simulated annealing with this simple modification is given in Section 1.7.

1.6.2 Iterated conditional modes

A very clear description of the ICM method can be found in Besag[3] or Besag[4], ICM is 

a simple deterministic algorithm closely related to the Gibbs sampler. However, instead of 

sampling randomly at each stage, ICM selects the mode of the relevant conditional distribution. 

In our case this is equivalent to selecting at pixel i the value of x,• that minimizes

^-(yi~xi)2+P < <P(\xi-Xj\) + D ^2 -■*/!) I* C1-16)
O eftW  j e d P )  J

where d i^  are the first-order neighbours of pixel i and are the second-order neighbours, 

with the appropriately chosen ^-function. It can be easily shown that this procedure cannot 

decrease Pr (x | y )—or increase E(x)—at any stage, and hence the method will converge to a 

local minimum of the penalty function E(x). ICM is computationally inexpensive, usually 

requiring less than 10 iterations for convergence. Moreover, only pixels whose neighbours 

have changed since they were last visited need be considered in any given iteration, and this 

reduces computation even further. The reason for this can be seen from expression (1.16). If 

the neighbours of pixel i have not been changed since that pixel was last considered, then the 

minimization problem is unchanged and thus the value that achieves the minimum will also 

be unchanged. Such computational savings are especially important when dealing with grey- 

level images. However, ICM is sensitive to the choice of the initial image. Besag[3] suggests 

the use of the maximum likelihood estimate as the initial estimate, and we shall follow his 

suggestion in all our experiments. Jubb[24] examines the effect of different initial estimates, 

such as images all of whose pixels take the same value. He shows that, when the value of 

the smoothing parameter p  is high, the ICM algorithm cannot move away from such initial 

estimates. We present an example of the ICM algorithm in action in Section 1.7.

We have seen that the ICM algorithm always converges to a reconstruction corresponding 

to a local minimum of the penalty function E(x), whereas the simulated annealing algorithm
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need not do so. If we apply the ICM algorithm with the reconstruction that is produced by 

the simulated annealing algorithm as initial image, we will obtain a new reconstruction that 

not only corresponds to a local minimium, but that has a lower value of the penalty function, 

as ICM can only decrease E{x). We shall see an example of such a procedure in Section 1.7. 

Our experience is that if a reasonable reconstruction is produced by the simulated annealing 

algorithm, the inclusion of ICM will have little effect from a visual point of view other than 

to remove speckle error. ICM can be thought of as zero-temperature simulated annealing to 

convergence. Thus, we can interpret the inclusion of ICM at the end of simulated annealing as 

the addition of some zero temperature steps to the temperature schedule.

1.7 A reconstruction experiment

We now attempt to illustrate simulated annealing and ICM by means of a reconstruction 

experiment. Although our main concern is with the value of the penalty function E(x), as given 

by (1.15), obtained by the algorithms, we also present the reconstructions produced. In order 

to provide some indication as to the quality of the reconstruction, we give the percentage of 

misclassified pixels. Unfortunately, this can be misleading for several reasons. Ripley[33] 

illustrates one of them by an example which shows two reconstructions of a binary scene both 

with error rate 3.5%. One reconstruction, however, is visually much more acceptable than the 

other. The example that we shall consider is based on a grey-level image. In this case, there 

is another reason why the number of misclassified pixels fails to provide us with an accurate 

assessment of the similarity of the reconstruction to the true image: a pixel in the reconstructed 

image that has only a slightly different grey-level from that in the original image would be 

considered to be misclassified. In an attempt to overcome this problem, we present histograms 

of the grey-levels taken by a reconstruction.

We present the true image in the top two pictures of Figure 1.4. We consider this image 

again in Section 2.5.3 and in Section 4.5. It comprises 32 x 32 pixels, and four distinct regions 

based on the three grey-levels, 15, 30 and 45. The histogram gives the numbers of pixels 

taking these grey-levels, and we assume that there are g = 64 possible grey-levels. In general, 

fluctuation within regions is allowed, but this example does not exhibit this phenomenon, as 

our main interest is with the minimization of the penalty function.

Next the true image is corrupted by the addition of independent normal noise with mean 0.0
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Figure 1.4: A reconstruction experiment on a grey-level image
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and known variance k = 20.0. Thus, if the grey-level of pixel i is the record at that pixel y, is 

a random variable with distribution M{xi, 20.0), independent of all other pixels. In the second 

two pictures of Figure 1.4 we present the maximum likelihood estimate of the true image: to 

each pixel i we assign the grey-level that is closest to the record y,-. The associated histogram 

shows how the number of grey-levels taken by the maximum likelihood estimate is greater 

that the number taken by the true image. In this maximum likelihood estimate there are 923 

(90.14%) misclassified pixels.

The penalty function E{x) that we now attempt to minimize is obtained from (1.15) by using 

the ^-function defined by equation (1.10). Accordingly, it takes the form

£ w =  T - 1 > - * ‘)2+/? I +  I) i ,  (1.17)
K  i= 1 I M  <ij>  J

where

Mu)  = - l  •1 + (ocu)

We take a  = 0.075 and p  = 2.5, and consider a first-order model by setting D = 0.0. The 

true image has a value of E(x) equal to 724.20, whereas the value of E(x) for the maximum 

likelihood estimate is much higher, at 2671.39. The third set of two pictures shows the 

reconstruction obtained by applying the ICM algorithm starting from the maximum likelihood 

estimate. The ICM algorithm requires 9 iterations for convergence (no pixels are changed on 

the final iteration) and yields a reconstruction with 644 (62.89%) misclassified pixels and a 

value of E(x) as given by (1.17) equal to 781.03. The appropriate histogram of Figure 1.4 

shows three distinct regions corresponding to the grey levels 15,30 and 45. Examination of the 

reconstruction itself shows basically the four regions of the true image but with some problems 

at the boundaries of the regions. Figure 1.5 shows how the penalty function E(x) behaves when 

the ICM algorithm is applied. The initial value of E(x) is given by the maximum likelihood 

estimate and is shown as the value at iteration 0. It can be seen that each iteration of ICM brings 

about a decrease in the penalty function. The horizontal line indicates the value of E(x) given 

by the true image.

The bottom pair of pictures of Figure 1.4 shows one reconstruction obtained by the 

stochastic simulated annealing algorithm followed by ICM to convergence. We used 64 

iterations of simulated annealing with a straight line temperature schedule as advocated by
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Geman and Reynolds[14] (for further details see Chapter 4). The temperature on the first 

iteration was 0.3, and the temperature on the final iteration was 0.05. Although for this 

reconstruction we used the truncated algorithm as described in Section 1.6.1, very similar results 

were obtained using the standard algorithm. The iteration of simulated annealing that yielded 

the lowest value of E{x) as given by (1.17) at 721.41 was the final iteration. At this stage there 

were 296 (28.91%) pixels misclassified. Convergence to a local minimum from this image 

was achieved after 3 iterations of ICM (no pixels were changed on the final iteration, and 24 

and 2 pixels were changed on the first and second iterations, respectively). The value of E(x) 

was then 718.93 and 287 (28.03%) pixels were misclassified. Thus, the use of ICM at the 

end of the simulated annealing algorithm has reduced the penalty function, but only by a very 

small amount. This value of E(x) is a little lower than the value of 724.20 achieved by the true 

image. Turning to the reconstruction itself, we see that the four regions are well reconstructed. 

The associated histogram is very similar to that of the true image. Figure 1.6 , which should 

be contrasted with Figure 1.5, shows how the penalty function E(x) behaves. The unbroken 

horizontal line again indicates the value of (1.17) achieved by the true image, while the broken 

horizontal line shows the value achieved by ICM alone. The left hand vertical line indicates 

the first iteration of simulated annealing, whereas the right hand vertical line indicates the first 

iteration of ICM. We note from Figure 1.6 the lack of monotonicity of the penalty function.

1.8 Estimation of the smoothing parameter

We have seen that the reconstruction process can be thought of as the minimization of a penalty 

function (1.15) that represents a trade off between infidelity of the reconstruction to the data 

and roughness controlled by a smoothing parameter p. This smoothness parameter p  originates 

from the prior distribution Pr (jc), which we shall write as Pr (x; y3) in this section where this 

makes the argument clearer. In Section 1.7 and elsewhere in this part of the thesis we chose P 

by eye to give reconstructions that appear good. This method is especially appropriate when 

the reconstruction method is computationally inexpensive. An excellent example of such an 

approach when the image comprises just two colours is shown in Section 3.6. There, for a 

sequence of increasing p  s, images that corresponds to the global minimum of (1.15) can be 

found relatively inexpensively. We refer to these images as exact MAP estimates. In the same 

chapter we go on to discuss automatic methods of estimating p  for binary images. Jubb[24]
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also studied the problem of specifying P when considering the exact MAP estimate of binary 

images, but from a different angle. He observed that the exact MAP estimation is sensitive to 

small changes in the choice of p  (see also Section 3.2), and thus in his Chapter 6  proposed a test 

for detecting oversmoothing. His method is based upon the difference, known as the residual, 

between the fitted value at pixel i and its record y,. The basic idea is that if an area of colour has 

been obliterated as a result of oversmoothing then the residuals at those pixels that have been 

misclassified are expected to be larger than those occurring at pixels that have been correctly 

classified. Such ‘informative’ residuals are identified and their groupings investigated. Frigessi 

and Piccioni[ll], again working with binary images, outlined a method for choosing ft when 

the degradation method is the binary channel. We describe that method in Section 3.7.

Besag[3] outlines a method for general images to estimate ft during ICM. We describe a 

slight modification of that method in Section 3.9. The method is based on maximizing the 

pseudo-likelihood

n
Pr (xi | Xdii p)

i= 1

over P, where for example x  is the current ICM reconstruction. (Sometimes the boundary pixels 

are not included in the product.) This pseudo-likelihood method is, according to Besag[3], a 

neater and more efficient variation of the ‘coding method’ (see Besag[2] or Cross and Jain[7]). 

The coding method is based on the product

n P r ( * ,U d,;/J)
i e M

where M  is a (maximal) set of pixels such that no two are neighbours. As Jubb[24] explains the 

idea is that, under the assumptions of the model, the colourings of each of the pixels in any such 

set, given the colouring of all the other pixels, are conditionally independent of one another, 

and thus maximum likelihood estimates can be obtained from the conditional likelihoods. The 

different coding estimates for p  are then combined in a suitable way.

In Section 1.8.1 we present a brief review of a recent paper by Thompson, Brown, Kay and 

Titterington[43]. This paper, although not concerning itself with simulated annealing or ICM, 

describes a thorough study of some other methods for choosing the smoothing parameter in 

image reconstruction.
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1.8.1 A review of Thompson et a l

Thompson et a l [43], working mainly with grey-level images, consider the model given in 

equation ( 1 .2 ) that includes symmetric blurring by means of an n x n known point-spread 

matrix H  (which may be the identity). The distribution of the noise vector e is again considered 

to be A/̂ O, k T) where /  is the n x n  identity matrix. The variance k  > 0 is possibly unknown in 

this case.

Thompson et a l [43] proceed as we do by considering the minimization of the penalty 

function

\\y -H x \\2 + XQ>(x),

where ||z | |2 = zTz and <h(x) = xfCx, C being a prescribed non-negative definite matrix. They 

think of the function 0(x) as a roughness penalty and X > 0 as a smoothing parameter. The 

estimate of x, denoted by x (X), is thus the solution of

min | | |y - i / ; t | |2 +XxTCx^, (1-18)

and therefore takes the form

x(X) = (Ht H + X C)~l HTy. (1.19)

Thompson et a l [43] discuss four basic ways of choosing the smoothing parameter X to be used 

in equation (1.18) which we now outline:

TPMSE The first approach is the minimization o f total predicted mean square error. The idea 

is to choose X in such a way that, on average, the mean of the observed data would have 

been most closely predicted. In algebraic terms, this involves choosing X to minimize

TPMSE(A) = E {||//(x-Jc(A ))||2},

where the expectation is taken with respect to the probability distribution of the error e. 

Unfortunately, there are drawbacks with this approach, not least of which is the fact that 

the optimal X in this sense, Xjp, is a function of the unknown x, and of k. The authors use 

Xjp and the estimate of x derived from it mainly for comparisons with the other, more 

practical methods.
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GCV The next approach is a version of Ajp that is completely data based and is referred to 

as the generalized cross-validatory choice o f A. The generalized cross-validatory choice 

X g c v  is the minimizer of

G C V (l)  = RSSW 2,
[trace { / -  K(A)}}

where

RSS(A) = \\y — Hx(A )\\2 (1.20)

and

K(X) = ( I+ X Q r l (1.21)

where

Q = (Ht T 1CH ~\

CHI The third approach is referred to as the x 2 choice o f A. In this, Xchi is the solution of

RSS(A) — uk.

The solution is not explicit and requires an estimate for k, or the true value itself.

EDF The final approach is the equivalent degrees o f freedom choice o f A. Here Xedf satisfies

RSS(A) 
trace{7-.K(A)}

where RSS(A) is defined in equation (1.20) and K(A) is defined in equation (1.21).

One of the measures often used to assess a reconstruction x (A), based on A, is the total 

mean-squared error, or any quantity proportional to it. The authors consider the quantity

n
£ ( * i ( A ) - x , f ,  (1.22)
1=1

where x, represents the true grey-level at pixel i. In fact, they use the A that minimizes the 

expression (1.22) as a mark against which to judge the As produced by the other methods that
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they examine. The values of (1.22) are presented and discussed for the various As.

After discussing some theoretical results about the above choices for A, the authors consider 

variations and computational short-cuts. For example, they show how the use of a preliminary 

eigen-analysis reduces the computation required for determining the choices of smoothing 

parameter and for reconstructing the image. Even so, some approximations have to be made 

for computational feasibility, but it is stated that little is lost by such approximations. These 

authors do not consider iterative algorithms such as simulated annealing and ICM. In addition, 

four estimators of k  are introduced. These may be needed in the CHI and EDF methods for 

choosing the smoothing parameter A. We do not discuss these estimators here. Thompson et 

al. [43] present an extensive simulation study based on four grey-level images, three different 

types of blurring of size 3 x 3,7 x 7 and 15x15 (see their Section VI for the precise definitions), 

and the addition of independent Gaussian noise having two different variances k  = 1 (low noise) 

and k  -  100 (high noise). The results presented are based on 1000 independent realizations of 

the noise process. The roughness penalty, d>(*) = xTCx, was taken as the quadratic

/re-1 /re-1

“ x i ~ l j ) 2 +  (*i, j  ~  x i, h  1 )2 }
/=2 j =2

throughout. Space does not allow us to discuss these results here, but the main conclusions are 

clearly stated and can be summarized as follows:

• The TPMSE method, not surprisingly, on average produced the best recovered image. 

However, it is totally impractical for any real situation as it requires a priori knowledge 

of the true image.

• The totally data based GCV method usually performs well. It can, however, fail 

catastrophically in some circumstances, producing a grossly underestimated smoothing 

parameter that may even be negative.

• The x 2 method tends to overestimate the value of the smoothing parameter, producing 

stable but distorted images.

• Provided a good estimator of k is available, the EDF method provides a good data-based 

choice of the smoothing parameter. Problems do, however, occur with this method in the 

presence of large blurring.
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1.9 Estimation of the variance

Often the variance k of the added noise is known from the physics of the set-up, or can be 

estimated accurately from training data. If this is not the case, the estimation of k can be 

included as part of the reconstruction procedure. This is generally an easier task than the 

estimation of the smoothing parameter p.

As stated in Section 1.8.1, Thompson et al. [43] propose some ways of estimating k, but they 

do not use iterative algorithms such as simulated annealing or ICM. We follow the approach 

outlined by Besag[3] in his Section 5.1.2. He suggests that k is estimated by maximizing the 

likelihood l(y\x) = l(y \x; k) over k at the start of each iteration of the algorithm, where x  is 

the current estimate of the image. We now illustrate this procedure, which we have found to 

work well, by an example. The true image comprises 64 x 64 pixels and has c = 3 unordered 

colours. We present the true image in the top left picture of Figure 1.7. This is the same image 

that we use in Section 2.5.2. We add independent Gaussian noise with variance k -  1.0 to the 

true image. The maximum likelihood estimate is shown in the top right picture of Figure 1.7. 

It is easy to see that the image has been heavily distorted. (In Section 2.5.2 the distortion is 

less as there k -  0.5; see Figure 2.5.) We now attempt to reconstruct the image using ICM 

alone. We use the appropriate prior distribution given in equation (1.9): on this occasion we 

use a second-order model, with downweight D = 1 / \/2, and we set p  = 1.5. In the bottom 

left hand picture of Figure 1.7 we see the reconstruction obtained under the assumption that the 

variance k of the noise is known. This reconstruction was obtained after 6  iterations of ICM 

(no pixels were changed on the final iteration), and 490 (11.96%) pixels were misclassified. 

In the bottom right hand picture of Figure 1.7 we see the reconstruction obtained under the 

assumption that the variance k of the noise is unknown. The variance is estimated at the start 

of each iteration by maximizing l(y | Jr, k) over k, where x  is the current estimate of the image, 

the initial estimate of the image being the maximum likelihood estimate shown in the top right 

picture of Figure 1.7. The ICM algorithm converged after 16 iterations (no pixels were changed 

on the final iteration), and 479 (11.69%) pixels were misclassified. Visually, there is little to 

choose between the two reconstructions, both of which are quite poor!

In Figure 1.8 we present a graph showing the estimate of the variance k used for each 

iteration of ICM. The estimate of k based on the maximum likelihood estimate of the image 

was 0.48. This rises quickly until about iteration 6  when it settles down (very few pixels are 

changed by further iterations) at around 1.0 , the value of the true variance which we indicate
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by the horizontal line. The final estimate of k  is slightly above 1.0.

We end this section by noting that the method we have illustrated for estimating k can 

be used in conjunction with the simulated annealing algorithm. For both ICM and simulated 

annealing little is known about the convergence properties of the resulting procedures. 

However, we have never come across a case when incorporating parameter estimation has 

affected the convergence of ICM.
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Chapter 2

Edge Processes in Statistical Image 

Reconstruction

2.1 Introduction

Our aim in statistical image reconstruction is to produce a reconstruction of a true image from 

a record or signal. We assume that the true image is a discretized version of an underlying real 

image according to a given pixel grid, upon which the signal is observed and the reconstruction 

is attempted. Generally in this chapter we assume that all the pixels in the grid are square and 

of equal size, but, as we shall see, it is not necessary to make this assumption. In Chapter 1 

we saw how the general Bayesian paradigm is used in statistical image reconstruction, and we 

review the basic idea here.

In Section 1.2 we explained how we can write down the likelihood of the record, given an 

image. The likelihood can be combined with a prior distribution on the set of all possible images 

by means of Bayes’s theorem to give a posterior distribution upon which the reconstruction is 

based. For the reconstruction we need to produce a summary of the posterior distribution. 

In this part of the thesis we shall concentrate almost exclusively on the summary known as 

the maximum a posteriori (MAP) estimate, namely the image that maximizes the posterior 

distribution. In Section 1.3 we discussed the form of possible prior distributions Pr (x), where x 

is a vector specifying the pixel process, namely the values taken by all pixels of the image. 

The aim was to model the commonly held belief that nearby pixels take similar values. We 

formalized the notion of ‘nearby’ by introducing the concept of neighbourhood; all pairs of 

horizontally or vertically adjacent pixels were defined to be first-order neighbours, and all pairs
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of diagonally adjacent pixels were defined to be second-order neighbours. This concept of 

neighbourhood enabled us to define prior distributions Pr {x) on the pixel process that are locally 

dependent Markov random fields, or Gibbs distributions. In this chapter we do not consider 

second-order neighbours.

The most probable images under Pr(x) are those of constant intensity; the rougher 

the image, the less probable it is, where roughness depends upon all pairs of discrepant 

neighbouring pixels (and, with grey-level images, the size of the discrepancy) in the image. 

However, it is not unreasonable to assume that the underlying real image (and hence the true 

image) is made up of regions over each of which its behaviour is not subject to abrupt change, 

but from one region to another large differences in behaviour may occur. Consider, for example, 

a satellite picture of an area of the earth’s surface. In the picture there are some sharp transitions 

{e.g. from one field to another) and some smooth changes {e.g. from one end of a field to 

another). Geman and Geman[12] use edges in their set-up to allow for images containing 

separate objects, but for which the objects are not completely uniform. Their modification 

attempts to model the boundaries in the real image by introducing edges that are either present 

or absent at each of a set of edge sites that are determined by the pixels. The state of all the 

edge sites defines the discretized edge process. Geman and Geman[12] think of an image as 

comprising both the pixel process and the edge process. In this chapter only we shall refer to 

the set of such images as X. In the presence of an edge process the neighbourhood structure 

of the pixel process is changed according to the rule that says if two pixels are separated by an 

edge they are no longer neighbours. Thus, by not including all pairs of horizontally or vertically 

adjacent pixels in the penalty term of the pixel process, we can attempt to model images that 

contain separate objects, but for which the objects are not completely uniform.

In Section 2.2 we outline in more detail the approach of Geman and Geman[12]. We discuss 

the edge process in detail. This can be completely specified by assigning penalties to the six 

possible ways (up to rotation) in which four edge sites meeting at a point can be occupied by 

edges. Many authors have assigned these penalties in an ad hoc fashion. Silverman, Jennison, 

Stander and Brown (Silverman et al.)[39] approach the problem in a more systematic way 

and use various geometrical insights to develop a method of penalizing the discretized edge 

process that has genuine meaning in terms of the properties of the underlying boundary pattern 

of the real image, namely the total edge length and the overall complexity of the boundary. 

In Section 2.3 we discuss this approach further and illustrate these two properties by means
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of simple examples. We show for these examples how the penalties of Silverman et al. [39] 

perform better than those suggested by other authors such as Geman and Geman[12]. In 

Section 2.4 we briefly outline the way in which Silverman et a l [39] derive their edge penalties 

and describe a minor modification that proves useful when image reconstruction is considered.

The present author was responsible for the majority of the work of Section VI of Silverman, 

Jennison, Stander and Brown[39] in which a reconstruction experiment on an image of c = 3 

colours on a 64 x 64 grid of square pixels is reported. Here, in Section 2.5, we present that 

experiment in greater detail, along with another based on an image with g = 64 grey-levels. 

These two experiments allow us to compare the edge penalties proposed by Silverman et 

a l [39] with those proposed by Geman and Geman[12]. We also discuss how reconstructions 

that employ edge processes compare with those that do not. In Section 2.6 we present our 

conclusions.

2.2 The approach of Geman and Geman

We have seen that Geman and Geman[12] use edges in their reconstruction algorithm to allow 

for images containing separate objects that are not completely uniform. We now describe the 

approach adopted in [1 2 ] in more detail; we use the notation of that paper as far as possible. 

We represent a possible true image by x  = (/, e), where f  is the vector of pixel values and thus 

defines the pixel process, and e denotes the vector giving the state of all the edge sites and thus 

defines the edge process. We shall write X= (F ,E) for the associated random variable. Geman 

and Geman[12] now represent the joint distribution for X =  (F, E) as

Pr(X = ^ ) « e x p { - ^ £)(/,e )} ,

where the energy lftF’ E\ f ,  e) is the sum of the two terms ®(J \ e) and lf®{e), both of which

can be computed using local information only. The term 1 e) takes the same form as

the energy function for the prior distribution used in Chapter 1, as defined in expression (1.8), 

except that the sum is over those cliques that remain, given the edge process. In other words, 

if d is the edge site between pixels r and s, the sum only includes the pixel cliques that involve 

pixels r and s if e* -  0, i.e. if no edge is present at d. If e j = 1, i.e. if an edge is present at d, 

then there is no contribution to the sum from the pixel clique that involves pixels r and s. The
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O edge clique 

#  pixel

Figure 2.1: An edge clique 

penalty for the edge process is such that

y ® ( e ) =  Y  y f ’W  (2-1)
ceC^

where is the set o f edge cliques, which is as yet unspecified. By definition an edge clique 

is a set o f edge sites all o f whose elements are neighbours. Therefore, to specify the set o f edge 

cliques C ^ ,  we need to define what it means for two edge sites to be neighbours. Two edge 

sites are said to be neighbours if  they meet at a point. Thus an edge clique comprises the four 

edge sites meeting at a point, or any subset thereof. We illustrate an edge clique in Figure 2.1.

As usual, each V$P(e) depends only on the elements of e that are in edge clique c.

We take V ^ ( e )  to be non-zero only when c is an edge clique comprising all four edge sites. 

Such a clique o f size four can be occupied by edges in six distinct ways up to rotation. We 

illustrate the six possible ways in Figure 2.21. We may think o f V ^ ( e )  as the penalty for 

the way in which edge clique c is occupied by edges. We shall write Vj for the penalty given 

to an edge configuration o f type j ,  as shown in Figure 2.2. Geman and Geman[12] assign the 

values o f V) as follows: if  no edges are present in a clique, Vo = 0; if one edge is present giving

'We are grateful to Dr Glenn Stone and Guy Nason for producing this figure.



no edges ending turn continuation branch crossing

Type 0 1 2 3 4 5

Figure 2.2: The six possible ways in which edge sites can be occupied

j Type

Geman and 

Geman 

Vj Rank

Murray 

Vj Rank

Marroquin 

Vj Rank

0 no edges 0 . 0 0 . 0 0 . 0

1 ending 2.7 1 2 . 2 1 2 . 0 1

2 turn 1 . 8 3 1 . 2 4 0 . 8 4

3 continuation 0.9 5 1 . 2 4 0.25 5

4 branch 1 . 8 3 1.4 3 1 . 2 3

5 crossing 2.7 1 2 . 2 1 2 . 0 1

Table 2.1: The edge penalties used by various authors

an ending, V\ = 2.7; if two edges are present in the form o f a turn, V2  = 1.8; if  two edges 

are present in the form of a continuation, V3 = 0.9; if three edges are present giving a branch, 

V4 = 1.8; if  all four edges are present giving a crossing, V5 = 2.7. These penalties seem to have 

been selected in a somewhat arbitrary fashion by reference to experiments. Other authors seem 

to select their penalties in a similar way. Wright[46] uses the penalties proposed by Murray, 

Kashko and Buxton[30]. These are said to work better than the penalties proposed by Geman 

and Geman[12], although both papers consider images comprising regions with boundaries 

that are only horizontal and vertical lines with respect to the pixel grid. Marroquin[29] uses 

different penalties again. We summarize all these penalties in Table 2.1. There seems to 

be general agreement that endings and crossings should receive the highest penalty, and that 

branches should receive the next highest penalty. Next come turns, and continuations are the 

least heavily penalized by all these authors. The fact that here turns always receive a penalty at 

least as large as continuations will be discussed further in Section 2.3 and Section 2.5. We note 

that with the penalties proposed by Geman and Geman[12] turns receive the same penalty as 

branches, whereas with the penalties proposed by Murray[30] turns receive the same penalties

37



as continuations. Silverman et al. [39] approach the problem of choosing these penalties in a 

more systematic way, and use various elementary geometrical insights to develop a method of 

penalizing the discretized edge process that has genuine meaning in terms of the properties of 

the underlying real boundary pattern. We shall discuss their approach in Section 2.3. Another 

relevant article, which complements Silverman et al. [39] by providing among other things more 

details of some of the arguments only outlined in that paper, is Jennison and Silverman[20].

2.3 The approach of Silverman et al. to the specification of edge 

penalties

In this section we discuss the approach of Silverman et al. [39] to the specification of edge 

penalties. Silverman et al. [39] think of the edge process as being a discretized version of the 

boundaries of a real image, and aim to select their edge penalties so that the overall edge penalty, 

namely Ylce cfR (e)> depends, as far as possible, upon the boundaries of the real image and 

not upon the discretization. Their approach is based on two criteria concerning the boundaries 

of the real image, the total edge length and overall complexity of the boundary. In Section 2.3.1 

we examine these two criteria further.

23.1 The two criteria of Silverman et al.

The first criterion is that the overall edge penalty should, as far as possible, be representative of 

the total edge length in the real image and, therefore, be independent of the discretization. In 

particular, the edge penalty should not depend upon the angle at which the pixel grid is placed 

on the real image. We illustrate this by means of an example given in Figure 2.3. We assume 

in this illustration that the real image is a square as shown in the first picture of Figure 2.3. In 

the second picture of Figure 2.3 we assume that the square has been observed in such a way 

that the pixel grid lies directly on top. The discretized edge process corresponding to this image 

is then exactly those pixel edges that correspond to the edges of the square. We shall refer to 

the edge process shown in the second picture of Figure 2.3 as (i). However, it may be the case 

that the square has been observed in such a way that the pixel grid does not lie directly on top 

but has been rotated through some angle. We show an example of this in the third picture of 

Figure 2.3. This time the edge process, discretized by consideration of the dual pixel process 

as described in Section 2.4.1, is shown in the fourth picture of Figure 2.3. We shall refer to that
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Figure 2.3: The overall penalty should not be affected by the rotation o f the pixel grid
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edge process as (ii). Edge process (i) comprises eight continuations and four turns and would 

receive a penalty of 14.4 (14.4, 5.2) if we were to use the penalties proposed by Geman and 

Geman[12] (Murray[30], Marroquin[29]). Edge process (ii) comprises twenty turns and would 

receive a penalty of 36.0 (24.0, 16.0). Thus, with these penalties the same real image receives 

very different overall penalties depending upon the discretization. We shall see below that the 

penalties proposed by Silverman et al. [39] give very similar penalties for the edge processes 

(i) and (ii).

The second criterion is that the overall edge penalty should, as far as possible, depend 

upon the complexity of the scene. Again, we illustrate this criterion with an example given in 

Figure 2.4. We see from Figure 2.4 that the first edge process comprises four regions and has 

total edge length equal to the length of 12 pixels. The second edge process also has total edge 

length equal to 12 pixels, but is far less complicated having only one region. The first edge 

process comprises four turns, four branches and a crossing and would receive a total penalty of 

17.1 (12.6, 10.0). The second edge process comprises four turns and eight continuations and 

would receive a total penalty of 14.4 (14.4,5.2). Although the overall penalty for the first edge 

process is greater than the overall penalty for the second edge process, the difference does not 

seem to reflect the far greater complexity of the first edge process in a systematic way. The 

penalties proposed by Silverman et a l [39] attempt to take into account the complexity of the 

scene by making $^c6 c<£) V ^(e) relate to the number of regions, as well as the length of the 

boundary in the real image before discretization. The aim is to have

y ;  (e) = (fix  total boundary length) + (p x r)  (2 .2 )

where fi is the desired penalty per unit length of edge, p  is the desired penalty per region of 

the pattern, and r is the number of regions in the underlying real image before it has been 

discretised. The penalties proposed by Silverman et al. [39] for square pixels of gauge h are 

given in Table 2.2. We set h = 1 from now on in this section. In Section 2.4.1 we shall review 

Silverman et al. [39] and briefly outline how these penalties are obtained. We note for now 

that continuations are more heavily penalized than turns, whereas with the other authors the 

contrary was true.

Finally in this section we return to our two examples. For the first example, as illustrated 

in Figure 2.3, the value of Y,ce c® Vc®(e) obtained using the penalties proposed by Silverman
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Total edge length = 12 

Number of regions = 4

Total edge length = 12 

Number of regions = 1

Figure 2.4: The overall penalty should depend upon the complexity o f  the image
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j  Type Vj
0  no lines

1 ending

2  turn

3 continuation

4 branch

5 crossing

0

0.412/2/7+0.5/? 

0.670/2/9 

0.948/2/9 

1.4/2/7+0.5p 

1.94/2/7+ p

Table 2.2: The edge penalties proposed by Silverman et al.

et al. [39] is 10.264/7 for edge process (i), whereas it is 13.400/7 for edge process (ii). These 

two values are similar. For the second example, as illustrated in Figure 2.4, the value of 

J2ce c® V ^ ( e) obtained using the penalties proposed by Silverman et a l [39] is 10.22/7+3p for 

the edge process that gives four regions, and 10.264/7 for the edge process that gives one region. 

Ideally, we would like these quantities to be 10.22)9+ 4p and 10.264/7+p, for, in this way, they 

would almost achieve the aim quantified in equation (2.2). We shall explain this short fall of p 

in Section 2.4.1, where we propose a slight modification to overcome it.

2.4 The edge penalties of Silverman et al.

In Section 2.4.1 we present a review of the paper by Silverman et a l [39] and outline how 

the penalties for the edge cliques proposed there and given here in Table 2.2 are obtained. In 

Section 2.4.2 we discuss a possible relationship between p and /?.

2.4.1 Review of Silverman et a l

We have seen in Section 2.3 that the general idea on which the work is based is that the edge 

process is a discretization of the boundaries of the real image. Accordingly, Silverman et a l [39] 

aim to have Ylce&v V ^ ( e) = (/?x total edge length)+(pxr), as given in equation (2.2). Hence, 

they assume that Vj -  (J3xbj) + (px rj), fory = 1 ,..., 5, where bj and rj are to be chosen so that 

equation (2 .2 ) holds, at least approximately.

Silverman et a l [39] first consider how to find fa and fa: turns and continuations have r2 

and 7*3 set equal to zero as such clique configurations are not involved with the production
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of regions. They approach the task of finding bz and b?, by looking at the penalty for a very

simple pattern consisting of an infinitely long straight line placed at an angle 9 to one of the 

edge directions of the lattice; without loss of generality 0 < 9 < it I A. The discretization of 

this line (by consideration of the dual pixel process, as we shall describe shortly) will give a 

stepped pattern. When 0 < 9 < it 12, over a long distance L in the x direction, the number 

nx of horizontal segments will be asymptotically L/T1, and the number ny of vertical segments 

will be asymptotically L/T1 tan 9. The number of continuations in the discretization of the line 

is nx -  ny and the number of turns is 2ny. The total length of the underlying boundary is L sec 9 

and hence the penalty for unit length of the underlying boundary is, for large L,

Unfortunately, it is impossible to make c(9) constant for all 6 ; this would be the ideal situation. 

A natural index of how far c(6) falls short of ideal is given by the ratio

where a  -  V2 /V 3 = b^lb^. We note that 1(a) > 1. The authors show that 1(a) is minimized 

by setting 2a -  1 = tan(;r/ 8 ), which implies that a  = (1  + tan(;r/ 8 )) 12 -  1 / y/2 , in which case 

1(a) = sec(;z7 8 ) = 1.082. Geman and Geman[12] used a -  2, giving 1(a) = 2.83. Silverman et 

al. [39] then set b z - k h l  y/2 and £3  = kh, where k takes the value 0.948. This ensures that

Hence, while c(9)//?is only exactly 1 for certain values of 9 , it will be the case that c(9) / /? lies 

between 0.948 and 1.027 for all 9 and furthermore that the average value of c(9) over uniformly 

distributed 9 is precisely p.

Next, the authors consider how to assign r\, r2 and r$. Assume that the original process is 

observed on a window W  in the plane and at least one boundary intersects the window edge. 

Let rif be the number of regions (faces), nv be the number of vertices and ne be the number 

of edges (sections between vertices) in the pattern. Assume that the pixel size is sufficiently 

small relative to the scale of the regions in the pattern that each region is represented by a single

c(9) = h~l {V3 + (2V2 -  V3) tan 9}.

maxo<0 < |  c(9) 
mino<0 < |  c(9) '

c(9)d9~p.
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connected set of pixels in the discretized image. The Euler-Poincare formula gives

rif = 1 +ne -  nv.

Now, both ne and nv can be found by counting the number of branches and crossings in the 

pattern, provided that points where an edge meets the border of W count as branches. It is 

immediate that

nv = #(branches) + #(crossings),

where #(branches) means the number of branches. Also

3 4
ne = -  #(branches) + - # (  crossings),

since each branch contributes 3 edge ends and each crossing contributes 4 edge ends, and each 

end is counted twice. Hence

rif = 1 + i  #(branches) + #(crossings), (2.3)

and so one should set r\ = 1 /2  and rs = 1. This gives a penalty of p !  2 for each branch point 

and p for each crossing. If the edge process gives rise to regions that are not simply connected, 

the right hand side of equation (2.3) must be increased by 1 for each connected set of edges that 

does not intersect the border of W. We saw an example of this in Figure 2.4 of Section 2.3.1. 

The two edge processes in that figure give rise to regions that are not simply connected. The 

penalties assigned to them by Silverman et al. [39] would be 10.22)5 + 3p  and 10.264p. If, 

however, the right hand side of equation (2.3) were increased by 1, then these penalties would 

be increased to 10.22)5 + 4p and 10.264)5+p, and would thus reflect properly the number of 

regions. This extra penalty of p for each isolated connected set of edges cannot be calculated 

from local properties, and thus cannot be included in a reconstruction algorithm that operates 

entirely by local updating. Such an algorithm might, however, be extended to investigate the 

complete removal of a small connected set of edges in the later stages of reconstruction. When 

we consider a reconstruction experiment in Section 2.5, we adopt such an extension to the 

algorithm. This extension leads us to an inequality between p and p, as we shall discuss in 

Section 2.4.2.
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Next, Silverman et al. [39] move on to discuss irregular and uneven pixel arrays. We shall 

not examine this section of the paper in detail here, except to state two important general 

definitions. First, given any pixellation, the dual of that pixellation is constructed by placing 

a point in each cell of the original pixel array, and joining points if their corresponding pixels 

have some edge in common; secondly, an edge segment is present in the edge process if and 

only if the corresponding dual edge is intersected by the boundary of the true image.

In the penultimate section of their paper Silverman et a l [39] obtain by,  b \  and bs.  

First, they re-derive £>2 and £3 . They do this by consideration of the projection penalty, as 

follows. First, note that the dual of a square lattice is a square lattice. Label a square in 

the dual lattice ABCD clockwise. For a straight continuation to be present in the original 

clique the line / must cross AD and BC, say, (see Fig. 9 of [39]). The projection penalty 

is E[(projection of AB and DC on to /) / 2] where the expectation is taken over random lines 

conditional on their crossing AD  and BC. The sense in which a line is random is given in 

Jennison and Silverman[20], page 111. The rationale behind this definition is that both AB and 

DC will be edges of the irregular strip formed by the union of those dual squares intersected 

by /, and that the total length of the two edges of this strip is approximately twice that of /. The 

authors compute the projection penalty for a continuation to be kh -  0.95h = £3 , as before. 

Similarly, the projection penalty for a turn configuration is shown to bekh I a /2  = 0.67h = &2 > 

as before. The authors now consider how to obtain b y , £>4 and bs.  Again they use the projection 

penalty appropriately defined. For by (ending) the projection penalty is modified appropriately 

(see page 227 of Jennison and Silverman[20]) and the expectation is taken over random lines 

that cross the side AD, say, of the dual square ABCD and terminate in the square itself. The 

end of the line is considered to be distributed uniformly along its length inside the square. For 

&4 (branch), note that a branch arises when three lines meet. Jennison and Silverman[20] show 

some examples in their Figure 16.17. They also explain the appropriate form of the projection 

penalty, which now comprises three terms. This time the expectation is with respect to a uniform 

distribution of the point of intersection of the three lines in the plane and of the orientation of 

these three lines, conditional on sides DA, AB and BC but not CD being intersected. However, 

if the lines do not meet at acute angles the associated edge process can be far more complex as 

is demonstrated in [20] by Figure 16.18. Accordingly, two special cases are considered: three 

angles of In  15 and angles of n i l ,  n i l  and ;r between the lines. The value b 4 = I Ah  gives a 

compromise between the two results that they obtained for these angles. For bs (crossing), the
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projection penalty is further modified, and this time comprises four terms. The expectation is 

with respect to a uniform distribution of the point of intersection over the interior of the dual 

square ABCD and a uniform distribution of the orientation of the set of four lines, conditional 

on actually producing a crossing in the edge process. In Figure 16.19(b) of Jennison and 

Silverman[20] we see an example of when the meeting of four lines produces two adjacent 

branches, rather than a crossing, in the edge process. Jennison and Silverman[20] consider the 

case of four lines meeting at right angles and producing a crossing in the edge process, and use 

numerical integration to obtain bs = 1.94h.

All that remains now is to assign r\ . Silverman et al. [39] set r\ = 1 / 2 for reasons described 

in their Section IIIc. There, these authors argue that a pattern made up of disjoint regions 

cannot have a configuration of edges containing any endings. This suggests that V\ should be 

infinite. However, such a penalty may lead to algorithmic difficulties in using the model in 

practice, violates the theory of Markov random fields which says that all configurations have 

strictly positive probability (see Section 1.3.2), and is excessively dogmatic. It seems more 

satisfactory to ascribe a relatively large value to Vi. However, there is no advantage in setting 

X much greater than/}/2 since a clever reconstruction algorithm can build a small loop of edges 

onto a loose end at a penalty p /  2  for the branch plus the penalty for the edge length involved.

The final section of the paper describes a reconstruction experiment performed to compare 

the proposed penalties to those suggested by Geman and Geman[12]. This experiment will be 

discussed in greater detail in Section 2.5.

2.4.2 A possible relationship between p  and p

Although there is no obvious connection between p and p, we may obtain a possible relationship 

between these two parameters, in the form of an inequality, by a simple geometric argument. 

Assume that the boundary of the real image comprises a circle of radius r -  m h>  0, where 

m is an integer, that does not intersect the border of the window W. If we use the penalties 

proposed by Silverman et a l [39], such a circle will receive a penalty approximately equal to 

2nrp. Hence, as the radius r decreases, the penalty decreases. Assume that our reconstruction 

algorithm is capable of assigning an extra penalty of p, as discussed in Section 2.4.1, to circles 

whose radius is equal to h, but not to bigger circles. Then circles of radius 2h would still have 

a penalty Ahjtfi, whereas circles of radius h would now have a penalty 21mft+ p. However, it 

seems reasonable in practice that circles of radius h should receive a higher penalty than circles
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of radius 2h, and hence we have the inequality

2hnp+p > 4Imp.

In other words, p  > 2lmp. We shall see that our choices of p and P is Section 2.5 obey this 

inequality.

2.5 Reconstruction experiments to compare Silverman et a l ’s edge 

penalties with Geman and Geman’s

In this section, we describe two reconstruction experiments performed to compare the edge 

penalties proposed by Silverman et al. [39] with those suggested by Geman and Geman[12]. 

We begin by setting up the reconstruction experiment as the minimization of a certain penalty 

function, which comprises three terms. The second of these in effect penalizes the roughness 

of the image within the regions defined by the edge process, and is proportional to a smoothing 

parameter y. In every other chapter we refer to this smoothing parameter as p. In this chapter, 

for consistency with Jennison and Silverman[20] and Silverman et al. [39], ft is used to refer 

to the desired penalty per unit length of edge. In Section 2.5.1 we use some insight about 

the behaviour of the edge process near the boundary of the window W to give an inequality 

involving y  and V i, V3 and V4. In Section 2.5.2 we describe an experiment based on an image 

of c = 3 unordered colours comprising 64 x 64 (4096 in total) pixels. In Section 2.5.3 we 

describe a second experiment based on an image of g = 64 ordered grey-level comprising 

32x32 (1024 in total) pixels. In both cases the record at pixel s, namely ys, can be thought of as 

an independent observation from a A f(fs, k) distribution, where f s is the colour or grey-level of 

the original image at pixel s and k is a known variance. We have seen that the prior distribution 

for X = (F,E) is defined as

P i ( F  = / ,  E  = e) -  exp { - ( / « « ( / ,  e ) } ,

where

= UiFlE)( f\e )  + UiE){e)
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= £  v f ' ■E)( / k ) +  £  Vf>(e).
c e C(f|£) ceC*^

This prior distribution can be combined by means of Bayes’s theorem with the likelihood of the 

record y given the pixels /  of an image x  (see equation (1.5)) to obtain the posterior probability

P r(* |y )~ e x p  j -  j ^ ( y ,  - / * ) 2 + V f lE)(f\e )+
(  seS cedfI*) ceC® /  J

where S is the set of pixels.

To be consistent wth the approach adopted by Geman and Geman[12] we attempt to find 

the MAP estimate of x. This is the image x  = (/, e) that maximizes Pr (x|y), or, equivalently, 

minimizes the following penalty function, over images x  = (/, e):

^ £ ( * - / » ) 2 + £  V f l® ( /k )+  £  Vf>(e). (2.4)
K s e S  c e d ^

The first term is a penalty for the infidelity between the record and the reconstruction. The 

second term penalizes the roughness of the reconstruction given the edge process; in other 

words it penalizes the roughness of the image within the regions defined by the edge process. 

The third term penalizes the edge process itself.

We have already discussed the term Ylce&v of the penalty function given in (2.4).

All that remains is to specify V£F^ ( / \e), where c is a pixel clique {r, 5 }, say. First, let us 

consider images comprising c unordered colours. Geman and Geman[12] set

V f |E)( / k )  = Vfnl f ( f r, f s \e)

0  if the edge between pixels r  and s is present,

-  y  / 2  if the edge between pixels r and s is absent and f r - f s  >

7 / 2  if  the edge between pixels r and s is absent and f r * f s-

Thus, they give a ‘reward’ for neighbouring pixels of the same colour. The definition that we 

adopt is more in keeping with the penalty philosophy:

VjF|£)( / |e )  = V fjsf ( f r,fs \e )
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y  if the edge between pixels r and s is absent and fr ^ fs*  

0  otherwise.

Our approach removes the anomaly that an isolated pixel with all its edges present in, for 

example, a region of constant background intensity can have its intensity changed to the 

background intensity and its edges removed simply by increasing the smoothing parameter y. 

In the absence of an edge process this gives exactly the same penalty (see equation (1.9)) as we 

used for images comprising unordered colours in Chapter 1.

We now consider images comprising g grey-levels. We set

V f|£)(/|e) = v£^>(/„/,|e)

y<pa(\fr -  /si) if the edge between pixels r and s is absent,
— (2.5)

0  otherwise,

where, from equation ( 1 .1 0 ),

M u )  = 1 _ T W  = i + ( « » ) - • ’

as employed by Geman and McClure[13] and discussed in Section 1.3.3.

We employ the method of simulated annealing followed by ICM (see Section 1.6.2) 

to minimize the penalty function (2.4). Although Geman and Geman rely upon simulated 

annealing only, ICM can only reduce the penalty function to a value corresponding to a local 

minimum and so we feel that it is legitimate to include it in our comparison. The maximum 

likelihood classifier was used as the initial estimate for the pixel process; the initial estimate for 

the edge process comprised no edges.

2.5.1 Guidelines for the choice of the parameter y

In our reconstruction experiments there are no edge sites on the border of the window W, 

although an edge meeting the border was penalized as a branch, as explained in Section 2.4 

here, or in Section IIIB of Silverman et al. [39]. It turns out that the behaviour of the edge 

process near the boundary can provide some guidance for the choice of the parameter y. It 

may happen that the edge process stops one edge site, between pixels r and s say, short of the 

boundary, although the pixel process has been suitably reconstructed in such a way that fr ^ fs -
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Thus, to change this unsatisfactory situation, we would like to extend the edge process by one 

edge site without changing the pixel process. This requires making the appropriate part of the 

penalty for the unsatisfactory situation (namely, the penalty for an ending plus the penalty due 

to the pixel process) greater than that for the satisfactory situation (namely, the penalty for a 

continuation plus the penalty for a branch, with no contribution due to the pixel process). This 

gives us the inequality

y h ( f r , f s )  +  Vi > V 3 +  V4,

where h (fr, f s) = 1 when the image comprises colours, and h (fr, f s) = <pa{\fr -  /$l) when the 

image comprises grey levels. Thus, in the former case we require y  > (V3 + V4 — Vi), whereas 

in the latter case we require y  > (V3 + V4 -  V\) (1 + (ad2)~l ), where d = \fr -  fs l  We note that 

for the edge penalties proposed by Geman and Geman[12] we have V3 + V4 — V\ = 0, while 

for those proposed by Silverman et al.[39] we have V3 + V4 - V 1 = 1.936/*//. So, since y > 0, 

our requirement is always satisfied when we use the edge penalties proposed by Geman and 

Geman[12]; with the penalties proposed by Silverman et a l  [39] we require y > 1.936/*/? in 

the case of colour images and y > 1.936/*/?(1 + (ad 2)~l) in the case of grey-level images. 

In the latter case we make the assumption that an edge should appear between two pixels 

whose grey-levels differ by at least 10. Under this assumption it is sufficient to require that 

y > 1.936/*0(1+ (100a)"1).

2.5.2 An experiment on a 64 x  64 image with c = 3 colours

In this section we discuss an experiment that we have performed on an image comprising 64x64 

pixels with c = 3 colours. This work has been published in slightly less detail as Section VI 

of Silverman, Jennison, Stander and Brown[39]. The present author was responsible for the 

majority of the work of that section. Here, we begin by showing the true image in the top 

picture of Figure 2.5. The image is made up of disjoint regions separated by edges, and we 

shall consider the reconstruction of edges as being of some interest in its own right. At each 

pixel s, a record ys was generated by adding white noise with variance k  = 0.5. We show 

the maximum likelihood estimate in the bottom picture of Figure 2.5; 1185 out of 4096 pixels 

(28.9%) are misclassified.

In order to be consistent with the work reported in Geman and Geman[12] we adopt
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Figure 2.5: An experiment on a ( A x  (A  image with c -  3 colours: the true image and the 

maximum likelihood estimate
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their temperature schedule for simulated annealing and perform 250 iterations at temperature 

z(t) = 3 / log (1 + t), where t is the number of the iteration, followed by ICM to convergence. 

At each pixel the algorithm updates the colour (or grey-level) of the pixel together with its 

four edges, and thus this updating mechanism is very computationally intensive. However, the 

only information required for such an update is available locally and so an array of processors, 

each with access only to this local information, can be employed. Other less computationally 

intensive ways of updating, such as dealing with the pixel process and the edge process 

separately, were also considered. These methods performed less well than the one eventually 

adopted. The basic reason for this was that, in general, in order to make a small change (often 

on the boundary of a region) to a reconstruction that reduces the penalty, such methods produce 

an intermediate reconstruction with a very much higher penalty, and thus a very much lower 

probability. Although simulated annealing allows increases in the penalty function as well as 

decreases, such intermediate reconstructions are often so improbable that the original desired 

small change very rarely takes place. Updating the colour (or grey-level) of the pixel together 

with its four edges allows such small changes to occur directly avoiding any intermediate step.

Two types of penalties V^P(e) were considered. The first type was that used by 

Geman and Geman[12], except that their penalties were allowed to be multiplied by a scale 

factor 8. Thus, if V represents the vector of penalties (Vo, V\, V2, V3, V4, V5), V now equals 

(0,2.7,1.8,0.9,1.8,2.7)<5. The second type of edge process penalties consisted of those 

penalties of Silverman et a l [39] given in Table 2.2, which depend upon the parameters /?, 

desired penalty per unit length of edge, and p , desired penalty per region of the pattern.

First, to assess the edge penalties proposed by Geman and Geman[12], experiments 

with many different values of the parameter 7  and the scale factor 8 were performed in an 

attempt to find the combination that performed best according to some criterion, such as pixel 

misclassification rate, based on the true image. (Of course, we could not proceed in this way in 

practice as the true image is unknown.) Reconstructions were only considered if they contained 

actual edges arranged in a reasonable way. We point out that as <5 —» in the case of the edge 

penalties proposed by Geman and Geman[12], or asp -» °° and in the case of the edge 

penalties proposed by Silverman et a l [39], the overall penalty for the edge process becomes 

so large that no edge process will appear in the reconstruction process.

The top picture of Figure 2.6 ( 7  = 2.0 and 8 = 1.0) shows the best reconstruction achieved 

in terms of pixel misclassification rate. There are 150 (3.7%) misclassified pixels; 263 out of
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445 edges have been correctly reconstructed, although there are 146 spurious edges. The best 

reconstruction in terms of edges (y = 3.0 and 5 = 1.0) had 152 (3.7%) misclassified pixels, with 

267 out o f445 edges correctly reconstructed, and only 141 spurious edges. The second picture 

of Figure 2.6 is the best reconstruction in terms of both pixel misclassification rate and edges 

obtained by using the edge penalties of Silverman et a l [39]. The implementation included 

the modification discussed in Section 2.4 of charging p  for identifiable small connected sets of 

edges. The parameter y  was set to 3.5, the desired penalty per region of the pattern p was set to 

10.0, and the penalty per unit length of edge /? was set to 1.5. The number of misclassified pixels 

is 110 (2.7%), the number of correctly reconstructed edges is 307, and the number of spurious 

edges is 141. Thus, there is a considerable improvement over the first picture of Figure 2.6. 

We note that the inequality presented in Section 2.4.2 is satisfied (10.0 = p > 2jtj3 = 9.4), as 

is the inequality presented in Section 2.5.1 (3.5 = y>  1.936/?= 2.9). Experiments conducted 

with different values of the parameters p  and /? indicated that here the improvement is not 

enormously sensitive to their precise choice. If we turn away from these fairly crude numerical 

summaries to examine the pictures themselves, we see that the second picture of Figure 2.6 

gives a better treatment of boundaries at orientations away from the horizontal and vertical 

than the first picture, although lines whose orientations are exactly horizontal or vertical are 

perhaps less well treated. Other experiments that we performed on different colour images 

with different noise confirmed these observations. Table 2.3 helps us to understand why this is 

the case. With Silverman et a/.[39]’s penalties V2 (turn) is less than V3 (continuation), whereas 

this is not so with Geman and Geman[12]’s.

We now make a comparison between the reconstruction obtained with the restriction that 

edges are present and the reconstruction obtained without this restriction. Again we employ 

250 iterations of simulated annealing at temperature r(t) = 3 / log(l + t), where t is the 

number of the iteration, followed by ICM to convergence. In this case in order to calculate 

the number of edges that could be said to have been correctly reconstructed, an edge was said 

to be present between a pixel and its horizontal or vertical neighbour if these two pixels were 

coloured differently. The best reconstruction in terms of pixel misclassification rate (again 

y  = 2.0) had 137 (3.3%) misclassified pixels, and 248 out o f445 edges correctly reconstructed, 

although there were 106 spurious edges. The best reconstruction in terms of edges (y = 3.0) 

had 229 (5.6%) misclassified pixels, and 282 out of 445 edges were correctly reconstructed, 

although there are 71 spurious edges. Accordingly, we see that if we remove the restriction that
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Figure 2.6: An experiment on a 64 x 64 image with c - 3  colours: the reconstruction using the 

edge penalties proposed by Geman and Geman and the reconstruction using the edge penalties 

proposed by Silverman et al.
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Geman and Silverman

Geman et al.

j Type Vj Rank Vj Rank

0 no edges 0 .0 0 .0

1 ending 2.7 1 5.6 3

2 turn 1 .8 3 1 .0 5

3 continuation 0.9 5 1.4 4

4 branch 1 .8 3 7.1 2

5 crossing 2.7 1 12.9 1

Table 2.3: A comparison between the two types o f edge penalties used

the reconstruction must contain actual edges, reconstructions can be obtained that are better in 

terms of pixel misclassification rate than obtained with the Geman and Geman[12] penalties, 

but not better than obtained with the Silverman et a l [39] penalties. As far as reconstructing the 

edge process is concerned, the reconstruction with y  = 3.0 is better than that achieved by using 

Geman and Geman[12]’s penalties. However, the y  = 3.0 reconstruction is not better than that 

achieved by using Silverman et a/.[39]’s penalties in terms of the number of correctly restored 

edges.

In conclusion, the results of this experiment on an image with c -  3 colours seem to suggest 

that the edge penalties proposed by Silverman etal.[39] perform considerably better that those 

proposed by Geman and Geman[12], It seems that from the results of this experiment and others 

on colour images that it may be advantageous to employ an edge process in the reconstruction 

algorithm with Silverman et a/.[39]’s edge penalties, but not with Geman and Geman[12]’s.

2.5.3 An experiment on an image with g = 64 grey-levels

We now report an experiment that we have performed on an image with g = 64 grey-levels. 

The true image is show in the top two pictures of Figure 2.7. We have considered the image 

before in Section 1.7. There are 32 x 32 = 1024 pixels, and four distinct regions based on the 

three grey-levels, 15, 30 and 45. The histogram gives the number of pixels taking these grey- 

levels. The true image is corrupted by the addition of independent normal noise with mean 0.0
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Figure 2.7: An experiment on a 32 x 32 image with g = 64 grey-levels
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and variance k = 20.0. We present the maximum likelihood estimate and associated histogram 

in the second of the two pictures; there are 923 (90.1%) misclassified pixels. (As explained in 

Section 1.7, with grey-level images the number of misclassified pixels does not provide us with 

an accurate assessment of the similarity of a given image to the true image. This is the reason 

that we also present histograms.)

Again we produce reconstructions by using the simulated annealing algorithm followed by 

ICM to convergence. This time 50 iterations are used with a straight line temperature schedule, 

as employed by Geman and Reynolds[14] in the context of grey-level images, with initial 

temperature 0.3 and final temperature 0.05. The same updating mechanism was employed 

here as in Section 2.5.2. We do not perform experiments with many different values of the 

parameters in order to find the ‘best’ reconstruction; we merely use parameters similar to those 

we employed before.

The third pair of pictures in Figure 2.7 shows a reconstruction using the edge penalties 

proposed by Geman and Geman[12] with 8 = 1.0, y -  2.5 and a  = 0.075. There are 286 

(27.9%) misclassified pixels; 71 out of 81 edges have been correctly reconstructed, although 

there are 1 2  spurious edges.

The fourth pair of pictures in Figure 2.7 shows a reconstruction using the edge penalties 

proposed by Silverman et a l  [39] with p -  10.0 and p = 1.5. Here y  -  3.5 and 

a  -  0.075. There are 267 (26.1%) misclassified pixels; 73 out of 81 edges have 

been correctly reconstructed, although this time there are 14 spurious edges. Examination 

of the histograms seems to suggest that the reconstruction using Silverman et a/.[39]’s 

penalties is slightly better than the reconstructions using Geman and Geman[12]’s penalties. 

However, there is little to choose between the two. We note that the inequality presented in 

Section 2.4.2 is satisfied (2.5 = p > 2k p  = 9.4), as is the inequality presented in Section 2.5.1 

(3.5 = y>  1.936/7(1 -l-(lOOa)-1) = 3.3).

A very good reconstruction was obtained without an edge process with y -  2.5 and 

a  -  0.075. The straight line temperature schedule employed above followed by ICM to 

convergence was used. In order to calculate the number of edges that could be said to have 

been correctly reconstructed, an edge was said to be present between a pixel and its horizontal 

and vertical neighbours if the grey-levels of these two pixels differ by at least 10. There were 

286 (27.9%) misclassified pixels; 73 out of 81 edges were correctly reconstructed, and there 

were only 10 spurious edges. This reconstruction gives a better treatment of the edge process,
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and nearly as good a treatment of the pixel process, as the reconstructions obtained using an 

explicit edge process.

Although we have not tried to select the parameters that define the edge process in an 

‘optimal’ way (impossible to do in practice anyway as the true image is unknown), it appears 

from this example, and other examples not reported here, that employing an explicit edge 

process with a grey-level image may not improve the reconstructions to a large degree, if at 

all. It seems likely that the reason for this is the fact that the function <f>a which defined the prior 

distribution on the pixel process (see equation (2.5)) is carefully designed to preserve edges that 

may occur between pixels while allowing small variations within regions (see Section 1.3.3). 

Thus, although in this case no attempt is made to model the boundaries of the real image 

explicitly, a type of implicit edge process is provided that works well.

2.6 Conclusions

In this chapter we have seen that we can assign a penalty to the edge process of the image by 

specifying penalties for the six possible ways (up to rotation) in which four edge sites meeting 

at a point can be occupied. We have described the systematic approach of Silverman et al. [39] 

to the specification of these edge penalties. In order to see whether these penalties lead to 

better reconstructions than can be obtained by employing those previously used by Geman and 

Geman[12] (or by employing no edge process), we perform two reconstruction experiments. 

These provide some evidence to suggest that the edge penalties proposed by Silverman et al. [39] 

will perform well (and should be used) in the case of images comprising unordered colours. 

However, it seems that with grey-level images little if anything is to be gained by employing 

an edge process no matter what penalties are used, provided a suitable prior distribution for the 

pixel process (without an explicit edge process) is employed.
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Chapter 3

On Choosing the Smoothing 

Parameter used in the Exact 

Maximum A Posteriori Estimation for 

Binary Images

3.1 Introduction

In the Bayesian approach to image analysis a prior distribution Pr (x) over allowable images x is 

specified, as we discussed in Chapter 1. If we let y denote the record or degraded version of the 

true image, we can combine the likelihood l(y | x) of any image x  with the prior Pr (x) to form a 

posterior or a posteriori distribution Pr (x \ y). The maximum a posteriori or MAP estimate of 

the true image is that x  that maximizes this posterior distribution. We shall often refer to this x 

as x in this chapter. For a general image it is not feasible to compute x exactly. However, for 

binary images (c = 2 colours), Greig, Porteous and Seheult show in [3] and [17] how x  may 

be found exactly by means of reformulating the problem as one of finding the maximum flow 

through a certain capacitated network. Jubb[24] expanded on their work to produce an efficient 

implementation of their algorithm. We are grateful to Mike Jubb for making available the basic 

FORTRAN programs for this implementation.

In this chapter we build on the above mentioned work of Greig et a l and Jubb. In 

Section 3.2 we review the general Bayesian set-up. After this we describe the work of Greig
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et al. and present their fluid flow formulation. In Section 3.3 we discuss the form of the record 

assumed by this fluid flow approach and introduce two types of degradation mechanism, the 

addition of normal noise and the binary channel. In Section 3.4 we show that the approach 

of maximizing the posterior distribution is equivalent to minimizing a certain penalty function. 

When the prior distribution and the likelihood take certain forms this penalty function represents 

a trade off between the infidelity of an image x  to the record y and the roughness of the image x, 

controlled by an unspecified smoothing parameter fi. We discuss the specific form of this 

penalty function in the case of the two degradation mechanisms of interest. Also in Section 3.4 

we introduce six binary images that we use for our experiments. In Section 3.5 we review the 

work of Jubb [24], We introduce the notion of partitioning the image and present some results 

about its effectiveness. In Section 3.6 we show how the fluid flow approach allows us to produce 

a sequence of MAP estimates for increasing values of the smoothing parameter fi.

The key result presented in Section 3.6  provides us with a method of choosing the smoothing 

parameter fi by eye. An automatic way of choosing fi would also be desirable, and we 

briefly described some such methods for general images in Section 1.8. In Section 3.7 we 

outline a method for choosing fi when the degradation mechanism is the binary channel due 

to Frigessi and Piccioni[ll]. In Section 3.8 we investigate another proposal for choosing fi 

due to Seheult[35] which we apply to the six images corrupted by both types of degradation 

mechanism. In Section 3.9 we comment upon two further ways of choosing fi in the case of 

binary images.

In Section 3.10 we attempt to motivate the work of Chapter 4 on simulated annealing by 

using the penalty function with fi chosen by means of the method described in Section 3.8 to 

compare quantitatively the exact MAP estimate for a binary image with estimates produced by 

simulated annealing. We also consider the performance of Besag[3]’s ICM algorithm. Finally, 

in Section 3.11 we present our conclusions.

3.2 Formulation and review of the paper by Greig, Porteous and 

Seheult

In this section we present a thorough review of the work of Greig et al. in [3] and [17]. We 

begin by outlining the general set-up.

In the binary image x, each pixel, i say, can be one of two unordered colours, called white
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and black, and coded as jc* = 0 and jc,- = 1, respectively. It is assumed that there are n pixels in 

the image, labelled 1 , ... ,n. The record at pixel i is denotedy,-, where again i = 1, . . .  ,n. Greig 

et al. [ 17] assume both that the records y i, . . . ,  yn are conditionally independent given x, and that 

each has known conditional density function /(y, | jc,-). Thus, the likelihood function for x  may 

be written as

n n

Ky i = n / ( *  i *■)=n / ( *  i 1 >*■/(>’'• i o)1" '.
j=i i=i

wherey = (y i,... ,y„) is the vector of records. A remark about the second part of this assumption 

is given in Section 3.3.

Next, they model the prior distribution Pr (x) as a pairwise interaction Markov random field 

of the form

PrW

where fa  = 0  and fa  = fa  > 0 ; in the case of strict inequality, pixels i and j  are said to be 

neighbours. Given the likelihood /(y | x) and the prior distribution Pr ( jc )  we may obtain the 

posterior distribution Pr (x \ y) in the usual way by means of Bayes’s theorem:

Pr(x|y)oc/(y |x)Pr(x), (3.2)

where the constant of proportionality does not depend upon x. Our interest in this chapter lies in 

finding that x, x say, that maximizes the posterior distribution Pr (x | y). This image x is referred 

to as the maximum a posteriori or MAP estimate. Instead of maximizing Pr {x \ y), we can 

equivalently maximize log Pr (x \ y), and, because of the form of /(y | jc )  and Pr ( x ) ,  this seems

a very sensible thing to do, computationally speaking. Thus, apart from an additive constant

independent of x, log Pr (x \ y) can be written as U x \ y) where

n -j n n

Ux\y) = Y. xfo + ? £  £  h  M  + (1 -  *)(! -  */)] (3.3)
1=1 /=1 j= \

and where

{ 1 ” " I
2 \.XiXJ + (1 “ xiK1 “ */)] | (3.1)



is a log-likelihood ratio at pixel i. Hence, our maximization problem may equivalently be 

viewed as the maximization of L(x |y), or the minimization of -L(x|y).

In Section 3.4 we shall see how the maximization of logPr(x|y) is equivalent to the 

minimization of a penalty function which differs from -lo g P r(x |y ) by an additive constant 

independent of x. Two examples are given in which the penalty function takes the form of a 

trade off between the infidelity of the image x  to the record y and the roughness of the image x. 

The balance of this trade off is controlled by a smoothing parameter p  which is related to the 

ptj s of the prior distribution given in expression (3.1) as follows. If pixels i and j  are first- 

order neighbours then fa  = p, whereas if pixels i and j  are second-order neighbours, pij = Dp, 

where D is a downweight. In this chapter we set D = 0 and so confine ourselves to first-order 

models. We have seen that the MAP estimate is that image x which maximizes L. Of course, 

x  could theoretically be found by direct search over all 2 ” possible values of L, but this is 

computationally infeasible even for quite small n.

In the discussion of Besag[3], Greig et a l  show that the maximum of L(x \ y) and hence the 

maximum a posteriori estimate of the binary image can be found using the labelling algorithm 

of Ford and Fulkerson[10] for finding the maximum fluid flow in a certain capacitated network. 

We now summarize the derivation of this fluid flow approach of Greig et a l [17], and briefly 

describe the results obtained there using this algorithm.

Consider a capacitated network comprising n + 2 vertices, one for the sink, s, another for 

the source, t, and the remaining n for each of the n pixels. There is a directed edge (5, i) from s 

to pixel i with capacity cSi = A,-, if A, > 0 ; otherwise, there is a directed edge (i, t) from i to t 

with capacity cit = -A, . Thus, initially pixel i is connected to the source if and only if its 

maximum likelihood classification is x, = 1 (black). There is an undirected edge ( i j )  between 

two internal vertices (pixels) i and j  with capacity cy = Pij as appropriate if the corresponding 

pixels are neighbours.

For any binary image x = (x i,... ,  x„), define the two sets B(x) and W(x) as

B(x) = {5 } u  { i : x, = 1}

W(x) = { i : x, = 0} u  {r}.
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These two sets give a partition of the network vertices. We now put

c(x)=  E  cu-
k € B(x) l e  W(x)

Here the set of edges with a vertex in B(x) and a vertex in W(x) is called a cut and C(x) is called 

the capacity of the cut.

It can easily be shown that

n n j  n n
C(x) = xi max(0, -A,) + ^ ( 1  -  Xi) max(0, Af) + -  ^  #,-(x,- -  xj)2.

1=1 1=1 i= l  7=1

Since

Xi max(0, -Xi) -  Xi max(0, A,-) = -x/Ai,

regardless of the sign of A/, and x,-2 = x, for all i, we have that C(x) differs from - l i x  | y) (see 

equation (3.3)) by a term which does not depend on x. As we noted above, -L(x | y) is, apart from 

an additive constant, the penalty function that we wish to minimize and that will be discussed 

further in Section 3.4. For consistency with other chapters, we present the value of the penalty 

function itself rather than the value of -L(x | y) when we compare the exact MAP estimate given 

by this fluid flow approach with that given by simulated annealing and ICM in Section 3.10.

The max-flow min-cut theorem (Ford and Fulkerson[10], Theorem 5.1) states that, for any 

network with a single source and sink, the maximum feasible flow from the source to the sink 

equals the minimum cut value for any of the cuts of the network. Let F denote the amount of 

flow from source to sink for any feasible flow pattern. The value of any cut provides an upper 

bound to F, and the smallest of the cut values is equal to the maximum value of F. Therefore, 

if a cut can be found in the original network equal to the value of F currently attained by the 

solution procedure, the current flow pattern must be optimal. Equivalently, optimality has been 

attained whenever there exists a cut in the current network whose value is zero with respect to 

the remaining flow capacities. Accordingly, the minimum of C(x) is the maximum flow through 

the network from source to sink subject to the edge capacities. A corresponding cut is called a 

minimum cut. Thus, in order to maximize L(x| y), all that is necessary is to find the minimum 

cut. In the MAP estimate pixels are black if they are on the source side of the minimum cut and 

white otherwise.
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In the experiments carried out by Greig et al. and reported in the discussion of Besag[3], 

fiij was taken to be p  for all internal connections between neighbours. These authors tentatively 

conclude that relative to ICM, a smaller value of ft may be more appropriate for MAP 

estimation, and that for a given noise level, simulated annealing ‘converges’ to MAP more 

rapidly for smaller values of p. In their 1989 paper, where each pixel is assumed to have eight 

neighbours and D = 1, Greig et al. [17] state that the availability of exact estimates allows the 

assessment of the performance of other algorithms. They conclude that MAP estimation is 

very sensitive to change in the specification of the prior (specification of P), whereas ICM is 

generally robust to any such change, presumably because it operates locally rather than globally. 

They also discuss different temperature schedules for simulated annealing, namely logarithmic 

schedules of the form r(t) = C! log (1 + 1) and geometric schedules of the form r(t) = A p {~1, 

where t is the number of the iteration. They state that the opportunity for the simulated annealing 

algorithm to get trapped in a local maximum of Pr (xl y) increases with increasing p, especially 

if the temperature is allowed to decrease too rapidly. Thus, they conclude that simulated 

annealing, applied with practical schedules, does not necessarily produce a good approximation 

to a MAP estimate. Experimental results suggest that good approximations are more likely for 

smaller values of p , and that, as P increases, the global properties of the prior distribution very 

rapidly dominate the likelihood contribution to the posterior distribution. We consider ICM and 

simulated annealing briefly in Section 3.10, and more thoroughly in Chapter 1 and Chapter 4.

Greig et al. [17] state that any attempt to incorporate edge processes (see Chapter 2), or to 

preserve certain global aspects of the true image will in general render the network method 

inapplicable. Moreover, although the multi-colour problem can be treated as a generalized 

minimum cut problem, there is no corresponding network formulation. Finally, they suggest 

a variant of the basic algorithm: partition the image into connected sub-images and then 

calculate the MAP estimate for each sub-image separately. This can be interpreted as finding the 

maximum flow through the network, but under the imposed constraints that no flow is allowed 

across sub-image boundaries. Next, relax some of these additional constraints to amalgamate 

sub-images and continue doing this until the MAP estimate of the complete image results. Such 

a modification was implemented by the authors and resulted in up to a twelve-fold reduction in 

CPU time. We discuss partitioning in detail in Section 3.5.
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3.3 The record

We have seen in Section 3.2 that, following the usual approach as discussed in Chapter 1, Greig 

et al. [17] assume b o t h  that the records y\, . . . ,y n are conditionally independent given jc , and 

that each has known conditional density function /(y,- | xi). The second of these assumptions 

is, however, not necessary for the fluid-flow formulation. For note that L(x \ y) depends on the 

record only through A,-, as defined in equation (3.4). Hence, all that is required regarding the 

distribution of the record is the ability to write down a likelihood ratio at each pixel. Knowledge 

of the explicit form of f  is not necessary. This also means that the situation where f  varies from 

pixel to pixel, or from colour to colour, is allowed.

In this chapter we assume that all the pixels have been affected in the same way. We consider 

two types of degradation mechanism: the first is the addition of normal noise of known variance 

k  to each pixel independent of all the other pixels so that the record at pixel i, y,-, has a Af(xi, k) 

distribution, where jc, is the true, but unknown colour of pixel /; the second is corruption by a 

binary channel, in which each pixel switches colour with known probability e. The first case, 

which we shall usually refer to as ‘normal noise’, is discussed here in Section 3.4.1. The second 

case, which we shall usually refer to as the ‘binary channel’, is discussed here in Section 3.4.2 

and Section 3.7.

In Figure 3.1 we give an example of the degradation due to normal noise. We consider a 

256 x 256 image of a part of Scotland 1. At each pixel i the record is

y,- ~ Af(xi, **).

We present the maximum likelihood based on y, the vector of records. This is the reconstruction 

that maximizes Pr (jc  | y) when /? = 0, i.e. when there is no spatial information. We shall refer 

to it as jc  (0). Hence, x  (0) is the reconstruction that maximizes the likelihood term l(y | j c ) ,  and 

it can be shown that in the case of normal noise

1 ify, > \
*,(0 ) = <  2 

0 if  y, <  J.

We also give in the figure the percentage of pixels in jc (0) that are different from the original

’We are grateful to Art Owen and Mike Jubb for supplying the image of a part of Scotland.
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0

original

k a p p a - 0  5. 2 4 2 %  d ffa ro n t ka p p a-1  0. 30 .7%  d ffa ra n l

k a p p a -1  5. 3 4 2 %  d ffa re n t

Figure 3.1: A part o f Scotland corrupted with normal noise of various variances, k
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image. For k  -  0.25 only 16.1 % of pixels in x (0) are different and the original image is clearly 

visible, whereas for k  -  2.0, 36.0% of the pixels are different and it is almost impossible to 

distinguish the original image.

In Figure 3.2 we present a similar example, but for the binary channel. This time we 

present the record y itself and the percentage of pixels that have changed, a figure that should 

be about lOOf. The image with e -  0.1 is very similar to the original image, whereas with the 

image with e = 0.4 it is almost impossible to distinguish the original image. The image with 

e = 0.5 is such that at each pixel the colour 0 or the colour 1 is chosen with probability 0.5 and 

hence has no dependence on the original image.

3.4 MAP estimation as the minimization of a penalty

We have seen that our interest lies in the maximum a posteriori estimate. This is the image x 

that maximizes the posterior probability Pr (x | y), where the record y is fixed. We have also 

seen that Pr (x | y) «= l(y | jc) Pr (x), where the multiplicative constant of proportionality does not 

depend upon x. Thus, maximizing Pr (x |y) is equivalent to maximizing l(y \ x) Pr (x). This, in 

turn, is equivalent to maximizing log l(y | x) + log Pr (x), or minimizing

-  log l(y \x)~  log Pr (x), (3.5)

or any quantity that differs from (3.5) by an additive constant that does not depend upon x. We 

shall refer to such a quantity as the penalty function, which we aim to minimize over images x. 

Throughout this chapter, we take

-  log Pr (x) =  /? (v^(x) + D v(2)(x)j , (3.6)

plus some additive constant that we may ignore, where v(1)(x) is the number of discrepant first- 

order pairs in the image, v(2)(x) is the number of discrepant second-order pairs, and D is a 

down weight. The quantity given in equation (3.6) can be thought of as a measure of roughness 

of the image x.

We now turn our attention to -log /(y  |x). Throughout, we make the same assumption as

67



ep&*on«0 3. 30 .0% c h a n g e d

epsilon  =0 4, 4 0 .0%  c h a n g e d

Figure 3.2: A part o f Scotland corrupted by the binary channel with various values ofe
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Greig et al. [17], as described in Section 3.2, and thus we obtain that

n
l(y\x) = Y[f(yi\xi).

i=i

In this chapter we consider two cases for / ,  that of normal noise and the binary channel. These 

are discussed below in Section 3.4.1 and Section 3.4.2, respectively. In these sections we show 

how -  log l(y | x) can be thought of as the quantity measuring the infidelity of the image to the 

record x.

3.4.1 Normal noise

We briefly review this common situation here, for the sake of completeness, and to enable 

comparison with the case of the binary channel discussed in Section 3.4.2. The distribution of 

the record y, at pixel i, coloured Xi, is assumed to be normal with mean x, and known variance 

k  > 0, independent of all other pixels. In other words

( 3 - 7 )

We saw an example of this type of degradation for various values of k  in Figure 3.1 of 

Section 3.3. From equation (3.7), we immediately obtain

1 1 o-  log fiy i | xt) = -  log(2 flx*) + — iyt -  x t f ,

and so

i n
-  log liy I *) = ^ log(2 x̂r) + —  ^ ( y t- -  *,)2.

i=i

The first term of this expression does not depend upon x (or y) and can be disregarded as far as 

the minimization is concerned leaving

(3.8)
L K  i = l

This is clearly a measure of the infidelity of the estimate x  to the record y. Moreover, as the

variance k  increases, this measure of infidelity decreases. Thus, the greater k  is known to be, 

the less weight is given to the infidelity term in the penalty function, which, in this case of
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independent, additive normal noise, is

^  X > - X i f  + p  (v(1>W  + D v (2)w )  .
1=1

(3.9)

Accordingly, this penalty function represents a trade off between the infidelity of the image x

to the record y on the one hand, and roughness of the image x  on the other. The balance of this 

trade off is controlled by the (unknown) smoothing parameter p  > 0 : the higher the value of 

P, the greater the weight given to the second term of (3.9), and the smoother the image x  that 

minimizes the penalty function (3.9).

For ease of comparison with expression (3.14) of Section 3.4.2 on the binary channel, we 

can multiply expression (3.9) by the known quantity 2 k  to obtain the new penalty function

where ||z | |2 = zTz = £ X i zf and O(x) is a quadratic in the vector x: i.e. <J>(x) = x?Cx. It is now 

not hard to establish that C is a non-negative definite matrix. The term <t>(x) may be thought 

of as a roughness penalty and Xj/ = 2 k  p  may be thought of as a smoothing parameter. This is 

the form of the penalty function considered in the recent paper by Thompson, Brown, Kay and 

Titterington[43], which we discussed in Section 1.8. We shall see this penalty function again 

in equation (3.15) of Section 3.4.2.

3.4.2 Binary channel

Our motivation for considering a binary channel is the paper by Frigessi and Piccionifll]. In 

that paper the authors assume that each pixel is wrongly recorded with some fixed probability 

0 < e < 1, independent of all other pixels. This model is known in communication theory as 

the memoryless binary symmetric channel. The likelihood at each pixel can be expressed as

n
(3.10)

It can be shown that this new penalty function takes the form

\\y -x \\2 +Xtf®(x) (3.11)

1 -  e if yt = Xi.
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In our work, unlike in [ 11 ], we assume that e is known. Immediately, we may disregard the two 

extreme cases of e = 0 and e = 1. Further, we may restrict £ to the interval (0,1/2], without any 

loss of generality. For say we know e > 1/2. We can replace y, by 1 -  y, and in effect replace e 

by e ' -  1 —£, where £ is in the interval (0,1/2). We saw an example of this type of degradation 

for various values of £in Figure 3.2 of Section 3.3.

Let us now consider the term — log Z(y | jc) in detail. Under our assumptions this negative 

log-likelihood equals -  £T"=1 log /(y, | *,). Now

-lo g e  if yt±Xi

- l o g ( l - £ )  ify* = Xi.

Let rid be the number of entries of y, that are different from and ns for the number of entries 

that are the same. The number rid can be thought of as the Hamming distance between x  and y, 

as it is the number of pixels at which the true image and the record differ, and ns = n-rid , when 

there are n pixels in total. This gives

n
i(y \*) = - £ i o g / ( y , U )

i=i

= -n s \ o g ( l - £ ) - n d \og£

= -{n -r id ) \o g { \-£ )-r id \o g £

( \  — £
-  - n lo g ( l -£■) + «<*log

the first term of which does not depend upon x  (or y) and can be disregarded as far as the 

minimization is concerned. This leaves

nd log ' (3.12)

which is again a measure of the infidelity of the estimate x  to the record y. For comparison with 

equation (3.8) in section 3.4.1, we can write rid as HLi(y/ -  *i)2 and change the order of the 

two terms in (3.12) to get

log ( ^ — ^ )
v E J i= l
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Since we have

£ log(iz£) = 

< o,

for e in the interval (0 , 1 ), we obtain that

is a decreasing function of e. Thus, the larger e is known to be, the less weight is given to the 

infidelity term in the penalty function, which, in this binary case, is

( 1 \  ^
E C y , - ^ ) 2 + ^ ( v(1)W  + Dv(2)w ) .  (3.13)

We again remark that this penalty function represents a trade off between infidelity and

roughness controlled by the (unknown) smoothing parameter /?.

Again, for ease of comparison with expression (3.10) of Section 3.4.1 we can multiply 

equation (3.13) by the known quantity

1

1°g(1f £)’
which hence forth we shall denote by 77, to obtain the new penalty function

n
Y ^ y t - * ?  +  nP ( v {l\ x )  +  D v Q \ x j ) .  (3.14)
i=l

We finish by remarking that, as in Section 3.4.1, the new penalty function (3.14) takes the 

same form as equation (3.11):

\\y -  x \\2 +  XbQ>{x). (3.15)

Here the smoothing parameter is Xb = tip.
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3.43  The images used

Throughout this chapter we base our experiments on six binary images. Four of these images, 

of size 64 x 64, were generated by means of 100 iterations of the Gibbs sampler as described 

in Section 1.4.1. Although for each case the initial image was produced by assigning a colour 

to each pixel at random, the theory given in Geman and Geman[12] (see Section 1.4.1) tells us 

that for a large (finite) number of iterations (raster scans) the realization obtained is (almost) 

independent of the initial image. These images had ft set to 0.2, 0.6, 1.0 and 1.2. For all four 

images we used a nearest neighbourhood structure (D = 0.0). Ripley[33] points out that in this 

case when we have two colours and the first-order neighbourhood graph, the probability model, 

whose conditional distribution is given by

Pr [value of pixel i is 0 1 neighbours] «= exp {ft #(neighbours coloured 0)}

Pr [value of pixel / is 1 1 neighbours] «= exp {ft #(neighbours coloured 1)},

reduces to the well-known Ising model of statistical physics. This is known to have a critical 

value of ft, ftc, where

ftc = sinh-1 1 ~ 0.88, (3.16)

such that, asymptotically as MN  —> «>, where M  and N  are the dimensions of the image, for 

ft < ftc there are no infinite patches of one type whereas for ft > ftc, there will always be such 

infinite patches. The four images are shown in Figure 3.3 and some details about them are 

given in Table 3.1.

We considered two further binary images: both are 64 x 64 and ‘hand-drawn’. These two 

images are also shown in Figure 3.3 and details of them are also presented in Table 3.1.

3.5 A review of the work of Jubb and some extensions

After describing the Ford Fulkerson labelling algorithm for maximizing the flow through a 

network, Jubb [24] formulates and implements some very clever and effective improvements in 

the algorithm when used for MAP estimation. We shall refer to Jubb’s algorithm as the modified 

algorithm. These modifications make use of the particular structure of the network used in the 

imaging problem.
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Figure 3.3: The six images used in our experiments
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Image Size Number of pixels

(Total) taking the value

0 (%) 1 (%)

Gibbs p  = 0.2 64 x 64(4096) 2007 (49) 2089(51)

Gibbs p  = 0.6 64 x 64(4096) 1984(48) 2112(52)

Gibbs p  = 1.0 64 x 64(4096) 2517(61) 1579 (39)

Gibbs p  = 1.2 64 x 64(4096) 3075 (75) 1021 (25)

(1) 64 x 64(4096) 1956 (48) 2140 (52)

(2 ) 64 x 64(4096) 1787 (44) 2309 (56)

Table 3.1: Details o f the images used

3.5.1 Partitioning

Greig et a l [17] report achieving a 12 fold reduction in CPU time from 3000 seconds to 250 

seconds by adopting the following scheme:

• partition the original image into sub-regions;

• employ the original algorithm to find the MAP estimate for each sub-region;

• employ the original algorithm to find the MAP estimate for an amalgamation of these 

sub-region reconstructions using the estimates already found as the starting point for the 

Ford-Fulkerson algorithm;

• repeat this until the original image is reached.

They state that this scheme can be interpreted as finding the maximum flow through the network, 

but under the imposed constraints that no flow is allowed across subimage boundaries. Next 

these constraints are relaxed. Corresponding subimages are then amalgamated to form a new 

set of larger subimages. This procedure continues until the MAP estimate for the complete 

image is obtained. Greig et al. [17] base their experiments on an image of size 8 8  x 100, and 

they consider a 16 x 16 array of roughly equal-sized rectangular subimages, followed by an 8 x 8 

array of subimages, a 4x4 array, a 2x2 array and finally the full image itself, as their partitioning. 

We shall refer to this partitioning as a (16,8,4,2) partition. Greig et al. [17] state that this choice 

of partitioning is unlikely to be optimal and that any sensible choice of partitioning will lead to a
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Partitioning used Partitioning not used

Modified algorithm used 19.6 15.1

Modified algorithm not used 73.0 770.0

Table 3.2: Seconds o f CPU time fo r a 64 x 64 binary image (Jubb, Table 3.1)

substantial reduction in CPU time. We investigate this claim in Section 3.5.2 below. However, 

there we consider the effect of partitioning on the modified algorithm. Another example of the 

reduction in CPU time that can be achieved in the case of the original algorithm can be seen 

in Table 3.2. This is Table 3.1 of Jubb[24]. The image under consideration has 64 x 64 pixels 

and is corrupted by independent, additive normal noise with variance k = 0.25. Jubb[24] sets 

p  = 1.0 and D -  1 / y /l, and uses a (16,4) partition: the flow is maximized first in separate 

regions each of size 4 pixels by 4 pixels, then in separate regions each of size 16 pixels by 16 

pixels, and finally in the whole image. He reports an 11 fold reduction in CPU time. However, 

that table indicates that partitioning has a detrimental effect in the case when Jubb’s modified 

algorithm is used. We shall discuss this further in Section 3.5.2.

3.5.2 Partitioning and the modified algorithm

Jubb[24] presents two numerical examples of the effectiveness of the modified algorithm and of 

partitioning. We have already met one of these examples in Section 3.5.1. Jubb[24] concludes 

from Table 3.2 and his other example that the faster reconstructions were obtained using 

the modified algorithm alone, and that combining the partitioned version with his modified 

algorithm has little effect on the CPU time. We attempted to investigate further the effect 

of partitioning on the modified algorithm. We consider using all possible combinations of 

these 4 partitions: 16, 8 , 4 and 2. There are 24 = 16 possibilities as outlined in Table 3.3.

In our investigation of partitioning we use only the ‘hand-drawn’ image, and we proceed by

considering the following four reconstruction problems:

1. Image (1), normal noise with variance k = 0.5, p  = 1.25;

2. Image (2), normal noise with variance k -  1.0, p  = 2.0;

3. Image (1), binary channel w ithe = 0.2, p  = 1.2;
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Partition

Sub-region

size Number Partition

Sub-region

size Number

(16,8,4,2) 4,8,16,32 (i) (8,4,2) 8,16,32 (ix)

(16,8,4) 4,8,16 (ii) (8,4) 8,16 (x)

(16,8,2) 4,8,32 (iii) (8 ,2 ) 8,32 (xi)

(16,8) 4,8 (iv) (8 ) 8 (xii)

(16,4,2) 4,16,32 (v) (4,2) 16,32 (xiii)

(16,4) 4,16 (vi) (4) 16 (xiv)

(16,2) 4,32 (vii) (2 ) 32 (xv)

(16) 4 (viii) None (64) (xvi)

Table 3.3: The possible partitions and their numbers

4. Image (2), binary channel with e = 0.4, p -  0.3.

We recall that both image (1) and image (2) are of size 64x64. They are reproduced in Figure 3.3 

and further details are given in Section 3.4.3.

Each image was corrupted and reconstructed 10 times. Sixteen different reconstruction 

algorithms, corresponding to the above 16 partitions, were considered. For each reconstruction 

algorithm the average time for the 10 reconstructions was found. This was done by placing the 

reconstruction part of the program in a separate subroutine RESTORE, compiling the FORTRAN 

program with the -p  flag, and then using the u n i x  command p r o f ,  standing for profile, to find 

exactly the time spent in the subroutine RESTORE. The results of this investigation are presented 

in Table 3.4. We point out that the times given in Table 3.2 and in Table 3.4 can not be directly 

compared as they were run on different Sun-4 machines. We now make some observations 

from Table 3.4.

First, the best two partitions to use seem to be number (viii), in which only a division into 

16x16 sub-images each of size 4 pixels by 4 pixels is employed, and number (xvi), in which 

no partitioning is employed and the complete image is processed without consideration of any 

sub-images. In three out of the four cases number (viii) is better than number (xvi) by at least 

half a second, whereas in the fourth case, that of image (1) and normal noise, number (xvi) is 

better, but this time the margin is only about 0.05 of a second.
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Time (rank)

Normal Binary

(1) (2 ) (1) (2 )

Partition (*•,$ = (0.5,1.25) (k,P) = (1.0,2.0) (e,P) = (0 .2 , 1.2 ) ( e / 0  = (0.4,0.3)

Number Xjj = 1.25

oll Xb = 0.87 Xb = 0.74

(i) 22.73 (13) 65.98 (9) 22.47 (14) 27.59 (16)

(ii) 19.84 (5) 62.96 (5) 19.61 (8 ) 25.94 (13)

(iii) 20.91 (7) 68.78 (14) 22.35 (1 2 ) 25.48 (1 2 )

(iv) 19.00 (3) 55.29 (3) 17.65 (4) 23.35 (7)

(v) 23.09 (14) 68.91 (15) 22.42 (13) 26.06 (14)

(vi) 20.82 (6 ) 64.79 (8 ) 19.14 (6 ) 24.34 (9)

(vii) 20.96 (8 ) 67.24 (1 2 ) 20.06 (9) 22.87 (6 )

(viii) 18.60 (2 ) 54.48 (1) 15.76 (1) 18.62 (1)

(ix) 23.63 (16) 6 6 .0 2 (1 0 ) 2 2 .8 8 (15) 27.48 (15)

(x) 21.44 (9) 64.71 (6 ) 17.86 (5) 23.76 (8 )

(xi) 22.19 ( 1 2 ) 66.92 (1 1 ) 2 2 .0 0 (1 1 ) 24.95 (11)

(xii) 19.74 (4) 58.29 (4) 17.54 (3) 2 2 .1 1 (4)

(xiii) 23.54 (15) 70.08 (16) 23.67 (16) 24.69 (1 0 )

(xiv) 21.94 (1 1 ) 64.78 (7) 19.45 (7) 22.79 (5)

( X V ) 2 1 .8 6 (1 0 ) 67.58 (13) 21.56 (1 0 ) 21.70 (3)

(xvi) 18.55 ( 1) 55.24 (2 ) 16.93 (2 ) 20.34 (2 )

Table 3.4: The average CPU times in seconds (and their ranks) fo r different types o f partitioning
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Secondly, the average CPU times for partitions that involve a 2 partition is almost always 

very large, these times usually having high ranks. A similar comment can be made for partitions 

involving a 4 partition. Thus it seems that considering these large subimages {i.e. here images 

of 32 pixels by 32 pixels, or 16 pixels by 16 pixels) has a detrimental effect on the average CPU 

time.

In conclusion, we recommend that either a partition dividing the image into 16x16  sub

images each of size 4 pixels by 4 pixels, or no partitioning at all should be used in the case of 

a 64 x 64 image. On balance, as any saving achieved by the partition just described is very 

small and as such a partitioning adds to the complexity of the program, we feel that partitioning 

should be avoided. We have not conducted such an investigation for images of other sizes, but 

we feel that the same general conclusions will apply: a partition that divides the image into 

many small sub-images may help to reduce CPU time although not by a large amount, whereas 

a partition that divides the image into a few large sub-images will not be helpful.

3.6 Getting reconstructions for increasing ft

Let x(p) be the reconstruction that minimizes the penalty function given in equation (3.9). If 

we use the MAP estimation technique of Greig et al. [17] described above to find x(fi), and if 

Pi > Pi, we can obtain Jc (#2) from x(fii) in a simple way, the reason for which is as follows. 

The smoothing parameter P only appears in the network formulation in the capacities of the arcs 

between the nodes that represent the n pixels, and only pixels that are neighbours have their 

nodes connected. Thus, an increase in p  from P\ to P2 only affects the network by increasing 

the capacities of these arcs. Accordingly, any feasible flow through the network when P - P \  

remains feasible whenP - P i> p \ .  Hence, givenx(Pi), we can obtainx(P2) by first increasing 

the pixel-to-pixel capacities in the network formulation by P2-P 1 (or D (P2-P 1) for second-order 

neighbours), and then running the Ford Fulkerson algorithm with the flows associated with 

x(P\) as the initial solution. In this way it is possible to get the reconstructions for a sequence 

of increasing p, say P = 0 .1 ,0 .2 ,..., 1.9,2.0, without having to do each minimization from the 

beginning separately. We shall make use of this very convenient observation in Section 3.8. 

Indeed, this observation is the key to our method of choosing the smoothing parameter p.

We now give an example produced by means of the feature that we have just described to 

show the effect of smoothing, and to motivate the work of Section 3.8. Again we consider the
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256 x 256 image of a part of Scotland. That image is corrupted by the addition of normal 

noise with variance k  = 1.5. The original image and the maximum likelihood estimator 

(P = 0) are shown in Figure 3.4. Figure 3.4 also shows, as examples of the effect of different 

amounts of smoothing, the results of the exact MAP reconstruction for some P s from the above 

sequence. For all /Is in the sequence a nearest neighbourhood system (D = 0.0) was used. 

The reconstruction with p  = 0.4 suffers from speckle error and is clearly undersmoothed. 

The reconstruction with p  = 0.7 is very good although some of the detail of the coastline is 

missing. The reconstructions with p = 1.1 and P = 1.6 are still good but they are clearly 

oversmoothed. Since the true image is known we can also consider the percentage of pixels that 

are misclassified. Figure 3.5 is a graph of the percentage of misclassified pixels for the above 

values of P that are at least 0.3. We exclude P < 0 3  from Figure 3.5 as the reconstructions 

for such p  s are very poor. It can be seen that the best P in terms of the number of misclassified 

pixels is indeed p  = 0.7!

In general, however, the original image is unknown. One way of selecting the best P may 

be to produce reconstructions for a large number of p  s and to choose the best image by eye. 

We have implemented a suite of programs which displays reconstructions for increasing p  in 

real time, provided that the image is not too big. With these programs the user can sit at the 

console and watch as the various reconstructions are produced. The reconstruction that appears 

best can then be selected.

The above way of (subjectively) selecting the best p  by eye may not be appropriate in all 

cases. Moreover, it is important to try to have an automatic method of (objectively) selecting 

the smoothing parameter p. Several such methods have been suggested. In Section 3.7 we 

briefly outline one of these due to Frigessi and Piccioni[ll]. In Section 3.8 we investigate a 

new method for choosing the smoothing parameter p  due to Seheult[35]. This method is seen 

to be relatively successful in certain cases. In Section 3.9 we discuss other methods that have 

been suggested, and we give examples to illustrate why we prefer the method of Section 3.8.

3.7 A review of the approach of Frigessi and Piccioni

Frigessi and Piccioni [11] consider the case of a binary channel, where each pixel changes colour 

with unknown probability e, independently of the others. They assume that e is unknown and 

they propose a method for finding estimates of both e and P which they show are consistent if
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various values o f f
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Figure 3.5: The percentage o f  misclassified pixels fo r  various values o f P

the region is regarded as having a free boundary, and easily computable. We briefly outline this 

method below. (The reader should note that Frigessi and Piccionif 11] set up the Ising model in 

such a way that their p  is half our p. For consistency we convert their p s  to our p  throughout.) 

They report numerical experiments which we describe in Section 3.7.1.

The method proposed by Frigessi and Piccioni[ll] is an extension o f one derived from 

the theory o f Time Series. First, for the one-dimensional case, they consider the finite lattice 

A„ = {-n , - ,n } . Next they derive estimators {pn{Yn\  £n(Yn)) for (p, e) which are based on 

the lag-1 and lag-2 sample correlations o f the data Yn. They show that this sequence (pn, £„) 

converges, P r ^  almost everywhere, to (fi, e) as n —» «», for all (p e )  e  0 ,  where 0  is the set

{ iP ,e ) :P > 0 ,0 < £ <  1/2}.

The authors now extend the above result to a two-dimensional lattice A. The formulae obtained 

in the two-dimensional case are similar to those obtained in the one-dimensional case, except 

that the expression for p \  involves the inverse o f a function that the authors call <j> and that 

is strictly decreasing for positive values o f its argument. A graph o f this function <p is given
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in [11]; in practice 0  is inverted numerically. We briefly describe the numerical experiments 

performed by the authors in Section 3.7.1.

3.7.1 Numerical experiments

Frigessi and Piccionif 11] investigate numerically the behaviour of their (ft, £). They consider 6  

images of 128 x 128 pixels synthesized by applying the Gibbs sampler algorithm, as described 

in Section 1.4.1, with 100 raster scans, with/? set to 0.2,0.6,1.0,1.2,1.6 and 2.0. Although they 

do not state what their initial image was, the theory tells us that asymptotically the realization 

obtained is independent of the initial image. The values of e considered for the binary channel 

are 0.25,0.1, 0.2,0.3 and 0.4, although they do not consider all values of e for all images.

The authors produce reconstructions by running the Gibbs sampler on the posterior 

distribution with both the estimated values (ft, e) and the true values (ft, e) for comparison, rather 

than by using the exact MAP technique of Greig et al. [17]. Again they use 100 raster scans. The 

authors present misclassification rates, fi and f t  i.e. the percentage of pixels wrongly assigned 

in each of the above two reconstructions.

The above results are presented in their Table 1. We reproduce a modified version of that 

table as our Table 3.5. We recall that for the model that we consider the critical value of ft is

ftc = sinh- 1 1 ~ 0 .8 8 .

The critical value is defined and discussed in Section 3.4.3: the basic idea is that for infinite 

images for ft < ftc there are no infinite patches of one type, whereas for ft > ftc there will 

always be such infinite patches. Frigessi and Piccioni[ll] remark that, whereas e shows a good 

precision for all values of the parameters considered, the quality of ft drastically decreases 

as ft increases. We find it curious that //, the misclassification rate for reconstructions obtained 

using the true parameter values ft and e, is always higher than f t  the misclassification rate 

for reconstructions obtained using the estimated parameters ft and e. We further remark that 

for images generated by the Gibbs sampler with ft less than the critical value (i.e. ft = 0.2 

and ft = 0 .6 ) the corresponding value of ft (and %b) is in all cases larger that ft (and 2 &), 

suggesting that better reconstructions are obtained in this region of ^-space by so-called 

oversmoothing, whereas for images generated by the Gibbs sampler with ft greater than the 

critical value (i.e. ft = 1.0 , 1 .2 , 1 .6  and 2 .0 ) the corresponding value of ft (and %b) is in all
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p e ii *5* P £ n Xx
)> V P

0 .2 0 .1 0.09 0.32 0.19 0 .2 2

0 .2 0.14 0.33 0.30 0.38

0 .6 0 .1 0.27 0.64 0.13 0.33 1 0 .1 1 10.09

0 .2 0.43 0.67 0.24 0.57 2 1 .0 0 20.03

0.3 0.71 0.64 0.34 0.93 32.00 30.30

1 .0 0 .1 0.46 0.89 0 .1 0 0.40 5.04 5.00

0 .2 0.72 0.89 0 .2 0 0.64 7.76 7.59

0.3 1.18 0.90 0.31 1.09 11.37 10.99

1 .2 0 .1 0.55 0.92 0 .1 0 0.41 3.23 2.84

0 .2 0.87 0.90 0.19 0.62 4.91 4.39

0.3 1.42 0.90 0.34 1.35 7.30 7.30

0.4 2.96 1.50 0.42 4.65 13.90 12.90

1 .6 0 .1 0.73 0.95 0.09 0.41 1.80 1.30

0 .2 1.15 0.95 0.19 0.65 3.10 2.60

0.3 1.89 0.92 0.30 1.06 4.86 4.56

2 .0 0.25 1.82 0.99 0.25 0.89 3.00 2.97

Table 3.5: Table 1 o f Frigessi and Piccioni (modified)
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cases but one less that p  (and A&), suggesting that here so-called undersmoothing yields better 

reconstructions. (An alternative explanation may be that the Gibbs sampler algorithm that 

generates the original image was not run long enough to produce a genuine realization from 

the appropriate distribution.) We shall see a similar situation occurring in our work in both the 

case when the degradation mechanism is the addition of normal noise (see Section 3.8.2) and 

the case when it is a binary channel (see Section 3.8.3). Other features that are common to our 

work and that are reported in [11] are that within each P, fi and p  increase with increasing e 

(as expected), and that, for each fixed e, fi and p  decrease with increasing p. The latter remark 

suggests that smoother images are easier to deal with than rougher ones.

The results of Table 3.5 are based on only one application of the degradation process and 

reconstruction. We proceed in a slightly different way, which we discuss in Section 3.7.2.

3.7.2 Our approach

In our work we consider 10 different degradations, the seed used for each case being different. 

Because of the increased computational burden that this imposes, we consider 64 x 64 images, 

and only 4 values of p, namely 0.2, 0.6, 1.0 and 1.2. In addition to the images generated by 

the Gibbs sampler, we consider two ‘hand-drawn’ images. Reproductions and details of the 

images are given in Section 3.4.3.

We consider two types of degradation mechanism. The first is the addition of independent 

Gaussian noise with variance k  set to 0.25,0.5 and 1.0; the second is the binary channel with e  

set to 0.1, 0.2, 0.3 and 0.4. Unlike in the work of Frigessi and Piccioni[ll], we assume that e 

for the binary channel, and k  for the Gaussian noise are known. In Section 3.8 we outline a 

different method for choosing the smoothing parameter p  that relies upon the key feature of the 

fluid flow approach to finding the exact MAP estimate outlined in Section 3.6, and we present 

the results of an investigation of this method.

3.8 A method for choosing the smoothing parameter p

In this section we investigate one of three suggestions of Seheult[35] for selecting the smoothing 

parameter p. (We briefly discuss the other two suggestions in Section 3.9.) The basic idea is to 

choose the reconstruction corresponding to the value of p  that maximizes a function, g, defined
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as

*W = I n  E  Pr(>’ilz.')P (3.17)
I U-€ {0,1}

where £ runs over all the pixels in the image and where x (fi) is the exact MAP reconstruction 

with smoothing parameter fi. The set of neighbours of pixel £ is denoted 3£, and, accordingly, 

xai (fi) represents the colours of the pixels that are the neighbours of pixel £ in the exact MAP 

reconstruction. We use the notation Pr (•; fi) to indicate that the distribution depends upon the 

unknown parameter fi.

Seheult[35] provided some justification for using the function given in equation (3.17). 

First, they reflect that the posterior distribution of an image x, given record y, is

They think of Pr (y; fi) as a likelihood for fi given the record y. Unfortunately, in this context 

Pr (y; fi) as given in equation (3.19) is computationally infeasible, and so a way of approximating 

it must be found.

The approximation suggested by Seheult[35] is based on a pseudo-likelihood approach, as 

advocated by Besag in [2] and [3]. We briefly outline the derivation of this approximation. 

Consider Pr (y; fi) and approximate it as follows:

Pr(x\y,fi) =
Pr (y | x) Pr (x\ fi) 

Pr (y\P)
(3.18)

where

P r ( y ; « = ^ P r (y| x )P r(x ;« (3.19)
X

PrCv;« = n ^ i  ; fi) (pseudo step)

m £ P r6 ' ' t e / 3 ) pr

= T7 Pr (yi | Xft (fi); /3) (approximate Pr (xa,; P) as 1 at xa, (JJ) and 0 otherwise)

n  e  Pr(yikt)Prfe|^09);^)
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= M .

as in equation (3.17).

Our aim now is to maximize g(fi) with isspect to p. Equivalently, we can minimize -h(P), 

where

h(P) = lo gg(P)

and indeed we do just this as the computation of log g(fi) is easier and more reliable than the 

direct computation of gift), as defined in (3.17). Moreover, if we judge the quality of the 

reconstruction of a degraded known image by the percentage of misclassified pixels, PxmsiP) 

say, our aim would be to find the value of the smoothing parameter p  that minimizes PnusiP) 

(which, of course, is not known in practice). Hence, it is the minimization of -h(P) that we 

consider.

To provide some further motivation for studying -h(fi), we produce in Figure 3.6 plots of 

Pmsifi) and ~h(p), as functions of p, for two examples: the ‘hand-drawn’ image (1) degraded by 

the addition of normal noise with variance 0.5, and the image generated by the Gibbs sampler 

with p  = 1.0 degraded by the binary channel with e -  0.3. The unbroken vertical line marks 

the value of p  that minimizes PmisiP) (in Section 3.8.1 we shall refer to thisp  as p 0), whereas the 

broken vertical line marks the value of P that minimizes -h(P) (in Section 3.8.1 we shall refer 

to this p  as Ph). For the plots we restrict the range of P to a neighbourhood of the minimizer of 

-h(P), and we plot the values of PmsiP) and -h(P) at every 0.01 in that range of p. It is clear that 

the graphs of (P, PmsiP)) and ifi, -h(JJ)) have a similar shape. To provide some quantification of 

this observation we computed the value of Spearman’s rank correlation coefficient r$ between 

Pmis(/0 and -h(P) for each example. (This nonparametric statistic is invariant to monotone 

transformations of the data.) For the case of additive normal noise r$ = 0.8373 based on the 

201 points displayed in the graphs, whereas for the case of the binary channel rs = 0.6013 based 

on the 151 points displayed. Both these values of r$ are certainly significant at the 1% level, 

one-tailed test: we do such a test as we are interested in testing the null hypothesis that there is 

no relationship between p ^ s and -h  against the alternative that pmis increases as -h  increases. 

We point out that the graphs oi-h{P) against p  are fairly typical examples of the behaviour of 

the function h, although larger images tend to produce smoother curves.
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Figure 3.6: How percentage o f misclassified pixels, Pmis(fi), and -h  depend on fi

3.8.1 Experiments

Our experiments are based on the six images that were described in Section 3.4.3 and 

presented in Figure 3.6. For each o f our six images we apply the degradation mechanisms, 

described in Section 3.7.2. Next we produce reconstructions for values of fi in the set 

{ 0 .0 ,0 .0 1 ,0 .0 2 ,..., 1.98, 1.99, 2.00} making use o f the key remarks we made in Section 3.6 

about obtaining reconstructions for increasing f i  We then record the value o f fi in this set 

that minimizes -h(fi). We shall refer to this /? as fih, and to the algorithm that produces a 

reconstruction using fih as algorithm-h.

We also record the value o f fi in this set that corresponds to the reconstruction with the 

smallest number o f misclassified pixels. This ‘optimal’ fi is denoted fi0, and we shall refer to 

the algorithm that produces a reconstruction using fiQ as algorithm-o. O f course, in practice fiQ 

is unavailable. Clearly the fi that minimizes - h  and the fi that minimizes the number of 

misclassified pixels need not lie in the set {0 .0 ,0 .01 ,0 .02 ,..., 1.98, 1.99,2.00}. However, we 

feel that this approach o f searching over increasing fi s is a reasonable one to adopt due to its 

computational feasibility, as outlined in Section 3.6. Moreover, the set that we have chosen is



K = 0.25

Variance 

k  -  0.5 K — 1.0

with with with

Image fio fih A% fio fih A% fio fih A%

fi = 0 .2 15.5 18.5 19 23.5 28.2 2 0 30.6 35.6 16

fi = 0 .6 1 2 .8 13.6 6 2 0 .0 2 1 .0 5 27.1 28.1 4

or-HII 4.6 4.9 5 6 .6 6.9 5 8.4 9.0 7

fi=  1 .2 2.4 2 .6 6 3.6 3.9 1 0 4,5 4.8 8

(1) 1 .0 1 .1 3 1.9 2 .0 7 3.9 4.3 11

(2 ) 0.3 0.4 2 2 1.3 1.5 1 2 2 .8 3.0 8

Table 3.6: Percentage o f misclassified pixels: normal noise (Xtf = 2k fi)

quite large, and the difference between consecutive fi s in it is small. Hence, for each image, 

with the particular record, we have produced fih a n d  fio- We repeat the procedure for 1 0  different 

records (each with the same value of the k  or e, as appropriate). Our hope, so far based on the 

approximation of Pr(y; fi) given by g(fi) and on experimental evidence such as that presented in 

Figure 3.6, is that (the reconstruction produced using) fih will be similar to (the reconstruction 

produced using) fi0. We now discuss the results obtained: we examine the normal noise case in 

Section 3.8.2 and the binary channel case in Section 3.8.3. In both cases we present the results 

averaged over the 1 0  different records.

3.8.2 Results: normal noise

To begin our description of the results for the normal noise case, we consider the performance 

of the two algorithms, algorithm- 0  and algorithm-h, in terms of the number of misclassified 

pixels. The results themselves are given in Table 3.6. We begin our analysis of Table 3.6 by 

making two obvious comments. First, for each value of considered, algorithm-o misclassified 

a smaller percentage of pixels than algorithm-h. Secondly, for each algorithm, the percentage 

of misclassified pixels increases with increasing variance k . For those images generated by the 

Gibbs sampler with values of fi below the critical value (see equation (3.16)), namely fi = 0.2 

and fi = 0 .6 , both algorithms perform quite badly: in all cases at least 1 2 % of pixels are
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misclassified, and that figure increases to well over 30% when k  -  1.0 and algorithm-h is used. 

However, for the images with y? greater than the critical value, namely p  = 1.0 and y? = 1.2, 

both algorithms perform very well: always less than 10% of the pixels are misclassified. We 

note that for both algorithms and for all values of k , the average number of misclassified pixels 

decreases with increasing p  for those images generated by the Gibbs sampler. This phenomenon 

was observed also in the case of the binary channel, see Section 3.8.3. Even better results are 

obtained for the ‘hand-drawn’ images: in all cases less than 5% of the pixels are misclassified. 

As we have stated in Section 3.8.1, algorithm-o is not applicable in practice. However, it seems 

that on average algorithm-h does not perform very much worse. To facilitate comparison we 

give the approximate value of A%, the increase in the average number of misclassified pixels 

when algorithm-h is used as opposed to algorithm-o, expressed as a percentage of the average 

number of pixels misclassified by algorithm-o. Although there is not a clear pattern, A% is only 

greater than 20% in one case, and it is often less than 10%. Accordingly, algorithm-h seems to 

perform well in the case of additive normal noise, at least for the values of k  considered.

We now move on to discuss the values of the smoothing parameter selected by the two 

algorithms. We recall that p o is the value of the smoothing parameter selected by algorithm-o, 

whereas ph is the value selected by algorithm-h. We present the values for the case of normal 

noise in Table 3.7. A discussion of the values found is, however, not easy as clear patterns do not 

emerge. First, for the images generated by the Gibbs sampler and for each value of the variance 

k , we consider how the behaviour of p 0 and Ph depends upon the value of P  used to generate the 

image. For each value of k , p Q (and 2K p 0 )  increases as they?used for the images generated by 

the Gibbs sampler increases. Similarly, for each k , Ph  (and 2k P h )  increase as that P  increases. 

Secondly, for a given image, we discuss how the behaviour of p 0 and 2K p 0 , and Ph and 2 k p h  

depends upon k . It can be observed that, for each image, p Q decreases as k  increases, whereas 

2 k Po increases as k  increases. The behaviour of Ph and 2 k Ph with k  is less clear. For the 

images generated by the Gibbs sampler withp  = 0.6 and p  = 1.0 and the ‘hand-drawn’ images, 

Ph decreases as k  increases, whereas for each image except the image generated withy? = 0.2, 

2 k p h  increases as k  increases. Thirdly, we turn our attention to the relationship between the P 

used for the images generated by the Gibbs sampler and p a . We observe a phenomenon similar 

to that described in Section 3.7.1, where we discussed the work of Frigessi and Piccioni[ll]. 

For values of y ?  less than the critical value p c, P o  >  P  (and 2 k p a > 2 k P )  for all values of k  

with one exception. That occurs when k  = 1.0 and with the image generated with y ?  = 0.6,
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Variance

k = 0.25 K  = 0.5

Image 2  kP P o 2k Po Ph 2k p h 8% 2  kP P o 2 kPo Ph 2 K p h 8%

13=0.2 0 .1 0.64 0.32 0 .1 2 0.06 -81 0 .2 0.60 0.60 0.14 0.14 -77

(3 = 0.6 0.3 0.80 0.40 0.56 0.28 -30 0 .6 0.65 0.65 0.44 0.44 -32

or—*II 0.5 0 .8 8 0.44 0.94 0.47 7 1 .0 0.76 0.76 0.80 0.80 5

r 'CO II to 0 .6 1.06 0.53 1 .1 0 0.55 4 1 .2 0.89 0.89 1.15 1.15 29

(1) 1.74 0.87 1.80 0.90 3 1.27 1.27 1 .2 1 1 .2 1 -5

(2 ) 1 .8 6 0.93 1.90 0.95 2 1.49 1.49 1.50 1.50 1

Variance 

K =  1.0

Image 2  kP P o 2 K p 0 Ph 2 K p h 8%

P = 0.2 0.4 0.48 0.96 0.06 0 .1 2 -8 8

P = 0.6 1 .2 0.52 1.04 0.34 0 .6 8 -35

P= 1.0 2 .0 0 .6 8 1.36 0.77 1.54 13

P= 1.2 2.4 0 .8 8 1.76 0.84 1 .6 8 -5

(1) 0 .8 8 1.76 0.90 1.80 2

(2 ) 1 .0 2 2.04 0.96 1.92 -6

Table 3.7: Values o f the smoothing parameter: normal noise (Ajj = 2k p, 8 = ( P h ~ P o ) f P o )
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when p Q is 0.52. As in Section 3.7.1, it seems that better reconstructions are obtained by so- 

called oversmoothing for values of P  less than p c . On the other hand, for values of P  greater 

than the critical value, p 0 < P  (and 2 K p 0 < 2k P )  for all values of k. Hence, it seems that 

better reconstructions are obtained by so-called undersmoothing for values of p  greater than p c . 

(Again, an alternative explanation may be that the Gibbs sampler algorithm that generates the 

original image was not run long enough to produce a genuine realization from the appropriate 

distribution.) We also point out that p h  is less than p  in all cases. Finally, we examine the 

relationship between p Q and p h .  To do this we present the value of 8  = (Ph -  P o ) f  Po as a 

percentage. It is difficult to say much about 8. However, 8 is always negative for the images 

generated with p  s that are less than the critical value, and positive for the images generated with 

p s that are greater than p c , except in the case when k -  1.0 and p  -  1.2. In brief, we can state 

that \8\ seems very large for all values of k  for the image generated with/? = 0 .2 , quite large for 

P = 0.6, and small (under 10%) for the images generated with p  = 1.0 and P -  1.2, with only a 

couple of exceptions. The value of |<5>| seems to be small for the ‘hand-drawn’ images, but there 

is no obvious pattern to the sign of 8.

3.83  Results: binary channel

Again we start by considering the performance of the two algorithms in terms of the number 

of misclassified pixels. Our results for the case of the binary channel are given in Table 3.8. 

Again we see immediately from Table 3.8 that, for each value of e, algorithm-o misclassified a 

smaller percentage of pixels than algorithm-h. We also see that for each algorithm, the number 

of misclassified pixels increases with increasing e. A more detailed examination of Table 3.8 

causes us to make comments that are very similar to those made in Section 3.8.2. For the images 

with p  = 0.2 and p  = 0.6, both algorithms again perform quite badly: in all cases at least about 

10% of pixels are misclassified and that figure increases to well over 40% when e  = 0.4 and 

algorithm-h is used. On the other hand, for the images withp  = 1.0 and P = 1.2, both algorithms 

perform well: when e  = 0 . 1 and e  = 0 .2  the average number of misclassified pixels is less than 

8 %, when e  = 0.3 the average number never exceeds 11%, and even when e  = 0.4 the average 

number is less than 21 %. Again for both algorithms and for all values of e, the average number 

of misclassified pixels decreases with increasing p  for those images generated by the Gibbs 

sampler. This phenomenon can also be observed for the binary case in the work of Frigessi and 

Piccioni[ll]. We also saw it in Section 3.8.2, forthe normal noise. Again, even better results are
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Probability of change

£= 0 .1, 77 = 0.46 £= 0 .2 , Tj = 0.72

with P with P
Image A A A% from [1 1 ] Po A A% from [1 1 ]

P = 0.2 1 0 .0 13.4 34 2 0 .1 29.3 46

P -  0.6 9.9 11.3 15 1 0 .1 1 0 .1 18.8 2 2 .6 2 0 2 1 .0 2 0 .0

"Co ll o 4.6 5.1 9 5.0 5.0 7.0 7.9 13 7.7 7.6

(Nr*HII 2.7 3.3 26 3.2 2 .8 3.6 4.6 30 4.9 4.4

( 1) 0.9 0.9 3 2.3 2.4 7

(2 ) 0 .6 0 .6 2 1.5 2 .0 32

e = 0.3,77 = 1.18 £ = 0.4, T) - 2.47

with P with P
A

Image Po Ph A% from [1 1 ] P o Ph A% from [1 1 ]

P = 0 .2 30.2 39.0 29 40.1 45.0 1 2

\obll 27.8 29.6 7 32.0 30.3 38.8 40.3 4

oII 9.7 10.7 11 11.4 1 1 .0 14.2 20.5 45

P=  1.2 4.9 5.7 16 7.3 7.3 8.7 15.9 83 13.9 12.9

(1) 5.0 5.3 6 11.5 13.3 16

(2 ) 4.4 5.1 16 1 2 .1 15.8 30

Table 3.8: Percentage o f misclassified pixels: binary channel (kb - r \P ,T ] - \ l  log ((1 -  e)! e))
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obtained for the ‘hand-drawn’ images: fors = 0 .1  the average number of misclassified pixels is 

less than 1%, and even when e = 0.4 this average number is still less than 16%. Unfortunately, 

algorithm-o is not applicable in practice. However, it seems that on average algorithm-h does 

not perform much worse, although perhaps here the performance of the latter algorithm is not 

as good as it was in the case of normal noise. Again there is not a clear pattern in the values 

of A%, but sometimes A% can be quite large, reaching 83% on one occasion. Nevertheless, 

algorithm-h seems to perform reasonably well, at least for the values of e considered. We 

include in Table 3.8, where possible, the percentage of misclassified pixels 11 and /1 obtained by 

Frigessi and Piccioni [11] and reproduced in our Table 3.5. We discuss /i and/z in Section 3.7. 

The results are not directly comparable for three reasons. First, Frigessi and Piccioni[ll] only 

consider one realization of the degradation process. Secondly, the images used in [11] are 

different from the images that we used. Indeed, their images are 128 x 128, whereas ours are 

64 x 64. Thirdly, our methodology is quite different. Frigessi and Piccioni [11] estimate both p 

and e as ft and e, and then use these values in order to reconstruct the true image by means of 

the Gibbs sampler. They simulate 100 images from the distribution Pr(jt|y; p, e) and select at 

each pixel the colour that occurs most often in these simulations. This method, known as MPM, 

was discussed in Section 1.4, where it was seen to be the preferred method (compared to MAP 

and ICM) when the quantity of interest is the number of misclassified pixels. Moreover, their 

method of reconstruction by means of the Gibbs sampler should yield good reconstructions 

for images produced initially by the Gibbs sampler. In our approach, we assume £ is known 

and estimate ft by Ph- Our reconstruction x(ph) is then that x that minimizes a certain penalty 

function, as given in equation (3.13), or equivalently any monotone transformation of it. Thus 

our problem can be thought of as only depending on one parameter. The same cannot be said 

for the approach of Frigessi and Piccioni[ll] because sampling from

P r(x |y ;#£)°cexp  | i | | y - x | |2 + ^ 0 ( x ) | 

is different from sampling from

Pr2(x |y ; /U ) ~ e x p { ||y - x | |2 + t\P <£(*)},

where f) = 1 / log((l -  £)/£), | |* - y | | 2 = Ya= i(*» ~ y d 2 ^  *&(*) = v(1)(x) + Dv(2)(r), as in 

Section 3.4. However, it is interesting to note that there is little difference between our results
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£ = 0.1,77 = 0.46

S’ 1 of change

£ = 0.2,77 = 0.72

Image nP P o nPo Ph i P h 8% tjP P o VPo Ph nPh 8%

P = 0.2 0.09 0.62 0.28 0.55 0.25 -1 1 0.14 0.65 0.47 0.35 0.25 -46

P = 0.6 0.27 0.81 0.37 0.55 0.25 -32 0.43 0.69 0.50 0.49 0.35 -29

P=  1.0 0.46 0.81 0.37 0 .8 8 0.40 9 0.72 0.73 0.53 0.85 0.61 16

P= 1.2 0.55 0.90 0.41 1 .1 0 0.50 2 2 0.87 0.80 0.58 1 .1 0 0.79 38

(1) 1.80 0.82 1.63 0.74 -9 1 .1 2 0.87 1.28 0.92 14

(2 ) 1.89 0 .8 6 1.82 0.83 -4 1.15 0.83 1.43 1.03 24

£ = 0.3,77= 1.18 £ = 0.4,77 = 2.47

Image v P P o VPo Ph nPh 8% tiP P o TlPo Ph i P h 8%

P = 0.2 0.24 0.44 0.52 0 .2 1 0.25 -52 0.49 0.24 0.59 0 .1 0 0.25 -58

ll p b\ 0.71 0.46 0.54 0.34 0.40 -26 1.48 0.25 0.62 0.19 0.47 -24

P= 1.0 1.18 0.54 0.64 0.70 0.83 30 2.47 0.28 0.69 0.42 1.04 50

'CO ll to 1.42 0.72 0.85 0.70 0.83 -3 2.96 0.30 0.74 0.40 0.99 33

(1) 0.76 0.90 0.73 0 .8 6 -4 0.39 0.96 0.37 0.91 -5

(2 ) 0.75 0.89 0.83 0.98 11 0.31 0.76 0.32 0.81 3

Table 3.9: Values o f the smoothing parameter: binary channel (kb -r\P, 8 - ( f ih ~  P o )  / P o )  

and those of [1 1 ].

As we did for additive normal noise in Section 3.8.2, we now discuss the values of the 

smoothing parameter selected by the two algorithms. We recall that po is the value of the 

smoothing parameter selected by algorithm-o, whereas Ph is the value selected by algorithm

ic and we present the values for the case of the binary channel in Table 3.9. A discussion 

of the values found is, however, even more difficult here than it was in the case of additive 

normal noise, although the conclusions that we reach are broadly similar. We do, however, try 

to follow the format that we used in Section 3.8.2. First, for the images generated by the Gibbs 

sampler and for each value of the probability of change £, we consider how the behaviour of 

P o  and Ph depends upon the value of P  used to generate the image. For each value of e, p o 

(and 7jpo) increases as the P used for the images generated by the Gibbs sampler increases.
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Similarly, for each e, Ph (and vPh) increase as that P increases, except in the case when e  = 0.4 

and p  = 1.2. Secondly, for a given image, we discuss how the behaviour of p0 and t?/?0, and 

ph and 7]ph depends upon e. It can be observed that, for each image except the one generated 

with p  = 0 .2 , Po decreases as e increases, whereas r\p0 increases as e increases for all images 

except the one generated with/? = 1.2 and image (2). For all images Ph decreases as ̂ increases, 

whereas for all image except the ‘hand-drawn’ images T}Ph increases (or remains the same) as e  

increases. In Section 3.7.1, where we discussed the work of Frigessi and Piccioni[ll], we saw 

that their estimate of /?, p, remained fairly constant over all values of e  causing ?)/?to increase 

as e increased. Thirdly, we turn our attention to the relationship between the /? used for the 

images generated by the Gibbs sampler and pQ. Again, we observe a phenomenon similar to 

that described in [11]. For values of p  less than pc, p0 > P (and i]p0 > tjP) for all values of e, 

except e = 0.3 and e = 0.4 with the image generated withy? = 0.6. As in Section 3.7.1, it seems 

that in general better reconstructions are obtained by so-called oversmoothing for values of p  

less than pc. On the other hand, for values of P greater than the critical value, Po < P (and 

riPo < 7]P) for all values of e. Hence, it seems that better reconstructions are obtained by so- 

called undersmoothing for values of p  greater than pc. (Again, an alternative explanation may 

be that the Gibbs sampler algorithm that generates the original image was not run long enough 

to produce a genuine realization from the appropriate distribution.) We also point out that Ph 

is less than /? in all cases except for the image generate by the Gibbs sampler with /? = 0.2 

when e = 0.1, e = 0.2 and e -  0.3. Finally, we examine the relationship between p Q and Ph by 

presenting the value of 8 = (Ph~ Po) I Po as a percentage. It is difficult to say much about 8. 

However, 8 is always negative for the images generated with p  s that are less than the critical 

value, and positive for the images generated with p s that are greater than pc, except in the case 

when e = 0.3 and p  = 1.2. There is no clear pattern about |<5|, although |<5j seems quite low for 

the ‘hand-drawn’ images, as it did for the normal noise. An exception to this statement occurs 

with image (2 ) and e = 0 .2 .

3.8.4 Conclusions

In this section we attempt to summarize as far as possible the results that we obtained from our 

experiments.

First, we present some conclusions about the behaviour of algorithm-h and algorithm-o 

based on the percentage of misclassified pixels. Algorithm-h seems to perform quite badly for
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those images generated by the Gibbs sampler that have p < p c . However, this algorithm seems 

to do well for those images generated by the Gibbs sampler that have P >  P c , and very well for 

the hand drawn images, (1) and (2). Thus, it seems that the smoother the original image, the 

better algorithm-h performs. These remarks apply in both the case of normal noise and the case 

of the binary channel. For normal noise, algorithm-h seems to perform only slightly worse that 

algorithm-o, whereas for the binary channel the difference between the two algorithms is more 

noticeable.

Secondly, we present some conclusions about the behaviour of the two algorithms based on 

the value of the smoothing parameter p ,  or X (where we mean X ^  in the case of normal noise and 

Xb in the case of the binary channel). Our conclusions here are general impressions, as there are 

some places where they do not hold. We found that p o and p h  increase as the parameter p  used 

for the Gibbs sampler increases. For the case of normal noise p 0 decreases as k  increases (and 

the corresponding Ajy increases as k  increases). There is no such pattern for ph. We can make 

a similar statement in the case of the binary channel, but here our conclusions apply to bothy?/, 

and P o , and the corresponding Xb s. We found that both Ph and p 0 decrease as ̂ increases (and the 

corresponding Xb increases as e  increases). We also saw that for both degradation mechanisms 

the images generated by the Gibbs sampler with parameter p  had p 0 >  P  when p  <  p c , and 

P o  <  P  when P >  p c . We also point out that Ph < P  in almost all cases: and very often we have 

that

P < P c  => p h < P < P o  

P > P C =» p 0 < P h < P -

Finally, although it is difficult to make any comparison between our results and those of 

Frigessi and Piccioni[ll] for the binary channel case, it seems that the results obtained are 

quite similar. However, a full comparison between our method and the method of [11] should 

be the subject of further work.

3.9 Other suggestions for choosing the smoothing parameter

Seheult[35] suggested two other methods for choosing the smoothing parameter p .  In 

Section 3.9.1 we outline these two methods and try to give some justification for them. We

97



also state some theoretical results of only limited value. In Section 3.9.2 we briefly present 

some problems that we have found with these two methods.

3.9.1 Two possible methods

Both of the other methods suggested by Seheult[35] are based on approximating the prior 

distribution Pr (x; (5) as follows:

n
(3.2°)

1=1

Next, under the assumption that, given x, the records are independent, we have

n

Plr (y I x) = n f t  (*!*)• (3.21)
1=1

We can combine expression (3.20) with expression (3.21) to give an approximation to the 

numerator of equation (3.18):

tt
Pr(y |* )P r(*;/?) « JJPrCy,!*,) Pr(xi\xdi;p).

i=i

Now replace the unknown x  by its MAP estimate x(J3) to get a new approximation of 

equation (3.18), which we shall call gzifl)'.

n
P r(y |*)Pr(r,0  = Pr(*.-(«I * * (0 ;0

1=1

= giifo (3.22)

We have seen that the denominator of equation (3.18), as defined in equation (3.19), can be 

approximated by g(fi), which is defined in equation (3.17). Accordingly, we now have

As before, take logs to get

logPr(x|y;/?) * h2{P)-h{p)

=  h(P)
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where h(J3) = log g(p), h2(fl) = loggiiP), and h2(P) = h2(P)-h(P). Seheult[35] suggests plotting 

h2{p) as a function of j.3 and choosing the p  that maximizes it.

Seheult[35] also suggests doing the same with g2(P) (or h2{P)). We offer a justification for 

doing this based upon the method of Section 5.1.2 of Besag[3]. This method applies to general 

images and not just binary images. First, we outline a modification of that method in which 

estimates of the image x are produced by the method of Iterated Conditional Modes (ICM), as 

described in Section 1.6.2.

1. For some value of p, call it p0\d, carry out a single cycle of ICM to produce an estimate 

of x , x  ) say, that maximizes (approximately)

n
n  Pr (y, | Xi )  Pr (*t-1 xdi; p Q id). (3.23)
i=i

2. Select /?new to maximize

n
I I  Pr (yt \ X i  Wold)) Pr (x, (fidd) I (fidd); P) (3.24)
/= 1

as a function of p.

3. Set y?oid to y?new •

4. Go to Step 1.

We make the following observations:

• In Step 1 we often take the initial value of /?0id to be 0. For both MAP and ICM the 

estimate x (0) that is produced by this value of p  maximizes Pr (y | x) and is sometimes 

referred to as the maximum likelihood estimate. It uses no spatial information.

• Expression (3.23) is in fact an approximation to what happens in ICM. For each cycle 

of ICM all the pixels are visited in turn (according to a raster scan, for example) and at 

pixel i we select x, to maximize

Pr (yi I xi) Pr (xi | xa,-; /fod).

We then update x before moving on to the next pixel.
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• The maximization of expression (3.24) as a function of p  in Step 2 is equivalent to the 

maximization of

n
n  ** (*i (A>ld) I xdi (Po\d)', A  
/=1

as advocated by Besag[3] in his Section 5.1.2, as the first term of (3.24) does not depend 

upon p.

The idea of Seheult[35] makes use of the similarity between expression (3.23) and 

expression (3.24). He combines Step 1 and Step 2 in such a way as to reduces the problem 

to that of a simple maximization over p  > 0 by replacing x(/?oid) in (3,24) by x  (/?), the MAP 

estimate for the parameter p, to get

f l  Pr O',-1 W ) Pr (xt < 0 1 i *  (0 ; 0 ,
1=1

our g2{P).

Because of their complexity it seems difficult, if not impossible, to perform any meaningful 

analysis on the quantities h(P), h2(P) and h2(P). We know from consideration of the penalty 

function (see equations (3.10) and (3.14)) that x(fi) becomes smoother as p  increases and 

eventually tends to an image of one colour, c say, which is either 0 or 1. In this case we can 

show that

*<0)->

*2(0) /
► -  ^ log {2k k ) -  ~ c)2 as p  oo, (3.25)

for normal noise, and

*(£)->

* 2 ( 0 ) /
► #(y, = c) log e + #(yt c) log (1 -  £) as p —> «>, (3.26)

for the binary channel, where #(y, = c) means the total number of pixels whose record takes the 

value c, and that

*3(0) / '0 a s /? -> o ° ,  (3.27)

for both normal noise and the binary channel.
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Figure 3.7: /1 2 (unbroken line) and hi (broken line) as a function o f 0

Since images o f one colour are o f no interest and occur for values of the smoothing 

parameter 0  that are much higher than would ever be considered for reconstructions, such 

analysis serves very little purpose except to provide some check o f the computer programs.

3.9.2 Some examples

We tried computing h2(0) and hi(0) for many examples and, in this section, we briefly describe 

some problems that we have found with using these two functions. We illustrate our claims with 

four examples: in the first we consider the image generated by the Gibbs sampler with 0  = 0.6, 

and corrupted by normal noise with variance k = 0.5; in the second we consider image (1) 

corrupted by normal noise with variance k = 1.0; in the third we consider the image generated 

by the Gibbs sampler with 0  = 1.0, and corrupted by the binary channel with e = 0.4; finally 

in the fourth we consider image (2) corrupted by the binary channel with e = 0.3. We present 

the graphs in Figure 3.7. In all four graphs the vertical line indicates the smallest value o f 0  

for which an image of one colour is achieved. The analysis o f Section 3.9.1 tells us that both 

curves are monotonically increasing after this value o f 0. In fact the increase is very slow and
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is hardly noticeable from the graphs. We use an unbroken line for fi2 and a broken line for h^.

The problem with hi(fi) is clearly illustrated in all four graphs: it is monotonically 

increasing in p. Indeed in our experience we have never found a case when hi(p) is not 

monotonic increasing. Thus, the curve hi cannot be used for choosing the smoothing parameter. 

In the examples the function h2(P) is seen to be monotonically increasing in the case of the 

binary channel: we have never found an example in the case of the binary channel when the 

function h2 is not monotonically increasing. Our experience with normal noise is almost the 

same in that for many cases the function /*2 is monotonically increasing. However, sometimes 

it does display a maximum, and the two examples with normal noise illustrate this. The value 

of p  at such a maximum tends to produce reconstructions that are oversmoothed. However, it 

is felt that further investigation of /12 may be fruitful. Moreover, in practice it may be worth 

checking to see whether /12 has a maximum. If it does, the exact MAP reconstruction at that 

maximum, x(Ph2) say, should be considered along with x(ph).

3.93  Further comments

There are of course many other ways of choosing the smoothing parameter. Some of these were 

described in Section 1.8. It is hoped that the comparison of some of these methods with our 

algorithm-h in the particular case of the binary image will be the subject of further research by 

the author.

3.10 Comparing the exact MAP estimate with the simulated 

annealing reconstruction

Finally in this chapter we motivate the work of Chapter 4 by comparing—in one example only— 

the exact MAP estimate of the image with estimates produced by simulated annealing and ICM. 

The example that we use is the image of a part of Scotland example that we first considered in 

Section 3.6.

Jubb[24] compares the approximate MAP reconstruction given by simulated annealing with 

the exact MAP estimate. He does not, however, give any values for the penalty function (3.9), 

but states the number of pixels that differ between the reconstructions. Here we give the value 

of the penalty function and show that for the Scotland example simulated annealing does not 

find the minimum of the penalty function (3.9), with D = 0.0 (i.e. first-order model for the prior
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Algorithm Misclassified pixels Penalty function

Type fi Number % Value % increase

Maximum likelihood estimate 0 22281 34.00

Exact MAP 0.7 2377 3.63 34284.70

Annealing: geometric 0.7 2363 3.61 34335.07 0.15

Annealing: logarithmic 0.7 2631 4.01 34495.37 0.61

ICM 0.7 7599 11.60 37752.50 10.11

Table 3.10: Reconstructions o f a part o f Scotland by different algorithms 

distribution).

Throughout this section we set f  = 0.7, as this is the value that minimized the function 

-hifi) over the set {0.0,0.1,0.2,..., 1.8,1.9,2.0}, and that gave the best reconstruction when 

the exact MAP algorithm was used from the point of view of both a subjective judgement and 

the number of misclassified pixels. In Table 3.10 we give the value of the penalty function (3.9) 

achieved by the exact MAP estimate. This value of 34284.70 is the global minimum of the 

penalty function. For the reconstructions obtained by simulated annealing we used 250 sweeps 

of simulated annealing followed by ICM to convergence. We considered two temperature 

schedules: a logarithmic schedule suggested by Geman and Geman[12] with

T(t) =
log (1 + 0 ’

where r(t) is the temperature used for the rth iteration, and a geometric schedule which takes 

the form

z ( t)= A p ‘ \

where the constants A and p are selected so that the initial temperature, r ( l) , is the same as the 

initial temperature for the logarithmic temperature schedule, namely 3 / log (2) = 4.32, while 

the final temperature, r(250), is 0.01. For comparison we point out the final temperature for 

the logarithmic schedule is considerably higher at 0.543. We also consider the reconstruction 

given by ICM alone. The value of the penalty function achieved and the number and percentage
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of misclassified pixels for both annealing examples and the ICM example are also given in 

Table 3.10. The number and percentage of misclassified pixels in the reconstruction that uses 

no spatial information, the maximum likelihood estimate, is also given. From Table 3.10 we see 

that both annealing examples fail to find the exact MAP estimate. The geometric temperature 

schedule does better than the logarithmic schedule producing a reconstruction that has only 

slightly fewer misclassified pixels and only a little higher penalty function than the exact MAP 

reconstruction. The ICM algorithm does substantially worse than both annealing algorithms, 

both in terms of the number of misclassified pixels and in terms of the value of the penalty 

function. To illustrate these points further we reproduce in Figure 3.8 the reconstructions 

themselves along with the original image and the maximum likelihood estimate. The two 

images produced by simulated annealing are not very different from that produced by exact 

MAP: the image produced by the geometric schedule is especially similar and provides us with 

a very satisfactory reconstruction; the image produced by the logarithmic schedule is not as 

good as that produced by the geometric schedule in that it has a high level of speckle error. 

The ICM reconstruction is clearly unsatisfactory for this example. We should point out that 

it is not always the case that for fixed p  as the penalty function decreases so the number of 

misclassified pixels decreases. The question of how to assess the quality of a reconstruction 

and how to represent this assessment mathematically are not of concern in this chapter, but is 

discussed briefly in Section 1.7.

3.11 Conclusions

In this chapter we have extended the work of Greig et al. in [2] and [17] and of Jubb in [24] 

on exact maximum a posteriori estimation for binary images. Throughout we considered two 

types of degradation mechanism, the addition of normal noise and the corruption by a binary 

channel. We showed that the approach of maximizing the posterior distribution is equivalent 

to minimizing a certain penalty function. This penalty function represents a trade off between 

the infidelity of an image x  to the record y and the roughness of the image x, controlled by an 

unspecified smoothing parameter p. After introducing the notion of partitioning, we showed 

that a partition that divides the image into many small sub-images may help to reduce CPU 

time although not by a large amount, whereas a partition that divides the image into a few large 

sub-images will not be helpful.
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simulated annealing and ICM with f  = 0.7
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We showed how a simple observation from the fluid flow formulation allows us to produce a 

sequence of MAP estimates for increasing values of the smoothing parameter /?. This provided 

us with a method of choosing /? by eye. We also described and investigated several automatic 

ways that have been suggested for choosing the smoothing parameter. One of these gave 

reasonably good results, both for normal noise and the binary channel in experiments conducted 

with six test images.

Finally, we demonstrated how the exact MAP estimate can be used to assess the 

performance of other approximate algorithms for finding x. In a very small experiment we 

saw that neither ICM nor simulated annealing succeeded in finding x.
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Chapter 4

Simulated Annealing and Image 

Reconstruction

4.1 Introduction

We have seen in Section 1.5 that the Bayesian approach to image reconstruction leads us to 

attempt to find the image x  e X y the set of all possible images, that minimizes the penalty 

function (1.15). This penalty function, which is often referred to as energy, takes the form

y - - x i f  + P  (l*i~* j \ )  +  D  ]C 4 A**' ” */'•)
*•=! \[ij] <ij>

where the first term is a measure of the fidelity of the reconstruction x  to the datay, the second 

term is a measure of roughness of x, P > 0 is a type of smoothing parameter, Y.[i,j] indicates 

summation over horizontal and vertical neighbours, indicates summation over diagonal 

neighbours, and D is a downweight. In this chapter we take D = 0.0, corresponding to a first- 

order model. Often the penalty function is referred to as the posterior energy, E(x), say.

We consider two classes of images: images made up of unordered colours and grey-level 

images (see Section 1.3.3). In the case when we are considering images made up of unordered 

colours we take 0 (n) = I(u *  0), where /  is the indicator function. In this way all discrepancies 

incur the same penalty. The resulting penalty function can be written as

~  X > ,  -  X if + p (v m (x) + D vm (x)) , (4.1)
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where v(1)(x) is the number of discrepant first-order pairs in the image and v(2)(jc) is the number 

of discrepant second-order pairs. For ordered grey-level images we take 0 = <pa, where the 

function <pa was defined as

(f>a(u) = 1 -
1 +om2 1 + (cat2) 1

in equation (1.10). When u = \xi - X j \  this <f>a can be thought of as a penalty for the discrepancy 

of the grey-levels taken by pixel i and pixel j. Further discussion about this family of functions 

can be found in Section 1.3.3. The resulting penalty function can be written as

2~ I ~*/'D + ^ Xi ~ ) • (4-2)
*'=i \  M  <j> J

The exact minimization of the appropriate penalty function can, in theory, be achieved by a 

direct search over all d 1 possible images, where c is the number of colours or grey-levels in the 

image and n is the number of pixels. In practice, however, for even moderate values of c and n 

such a search is not computationally feasible, and other techniques have to be employed.

Besag[3] advocates using the method of iterated conditional modes (ICM) to carry out the 

minimization. This algorithm requires an initial x  and produces a sequence of images such that 

the penalty function for these images decreases monotonically. It converges to an image that 

corresponds to a local minimum of the penalty functic and that depends upon the initial x. 

We discussed ICM in Section 1.6.2 and gave some examples of this deterministic algorithm 

in action in Section 1.7 and Section 1.8. In Figure 1.5 we presented a graph of the behaviour 

of the penalty function when the ICM algorithm is employed. This graph clearly showed the 

monotonicity.

Geman and Geman[12] advocate using a technique known as simulated annealing to 

perform the minimization of the penalty function. The aim of simulated annealing is to produce 

an image that corresponds to not a local, but a global minimum of the penalty function. Again 

a sequence of images is constructed, but this time the penalty function does not necessarily 

decrease monotonically; images that increase it are allowed. The idea is that in this way escapes 

from local minima can occur, and, under certain circumstances, this algorithm theoretically 

converges to an image which corresponds to a global minimum of the penalty function and 

which does not depend upon the initial x. In Section 1.6.1 we introduced the simulated annealing 

algorithm as it is used in image reconstruction. In Section 1.7 we gave an example of this
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stochastic algorithm in action. In that example we followed the simulated annealing algorithm 

by ICM. This could only result in a further reduction of the penalty function. Figure 1.6 showed 

a graph of the behaviour of the penalty function when simulated annealing followed by ICM is 

employed. There the penalty function was seen to be non-monotonic.

In Section 4.2 we discuss the simulated annealing algorithm in greater detail, describe how 

it is implemented by Geman and Geman[ 12] in the case of image reconstruction, and review the 

main theoretical results of [12]. We also consider an alternative, but very similar formulation 

and discuss some results due to Hajek[18].

The problem with such theoretical work on simulated annealing is that most of the results 

are of an asymptotic nature. In effect, this means that they hold provided that the number of 

iterations of simulated annealing is infinite. In practice, only a small finite number of iterations 

can be employed. Geman and Geman[12] show some examples of reconstructions that have 

been obtained in this way. Although the reconstructions presented are good in a qualitative 

sense, no indication of how good they are in a quantitative sense is given. In Chapter 3 

we saw that it is possible to find the exact minimum of the penalty function (4.1) for binary 

images (c = 2) using a fluid flow approach. In Section 3.10 we compared quantitatively—in 

one example only—the global (exact) minimum obtained using this approach with other local 

minima produced by the simulated annealing and ICM algorithms. We found for this example 

that neither simulated annealing nor ICM found the global minimum of the penalty function.

Variations on the basic simulated annealing algorithm may be expected to produce better 

results in a quantitative sense. In Section 4.3 we introduce three common sense variations 

of the algorithm outlined by Geman and Geman[12]. We show by means of a simulation 

experiment that one of the variations out-performs the others, especially when the number of 

iterations used in the annealing algorithm is large. In other sections we restrict our attention 

to this variation. In Section 4.4 we discuss some practical temperature schedules and show 

how the performance of the simulated annealing algorithm is sensitive to the first and last 

temperatures of the temperature schedule, but comparatively insensitive to the type of schedule 

used. The investigation up to the end of Section 4.4 is based upon images made up of colours 

whose reconstruction requires the minimization of the penalty function (4.1). In Section 4.5 we 

move on to grey-level images whose reconstruction requires the minimization of the penalty 

function (4.2). We consider a further variation on the simulated annealing algorithm, the aim of 

which is to reduce the heavy computation required when dealing with grey-level images. Using
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this further modification we examine practical schedules for the simulated annealing algorithm 

applied to such images. Finally, in Section 4.6 we present our conclusions and make some 

suggestions for further work.

4.2 The simulated annealing algorithm

In this section we discuss the simulated annealing algorithm itself. In Section 4.2.1 we outline 

the basic idea behind the algorithm. In Section 4.2.2 we describe how this idea is implemented 

by Geman and Geman[12] in the case of image analysis and we discuss their theoretical 

results. In Section 4.2.3 we consider another approach to simulated annealing and outline some 

associated theoretical results.

4.2.1 Basic idea

The idea behind simulated annealing is simple and is outlined in many places, e.g. Ripley[33]. 

It is based on an analogy with the chemical process of annealing. The general problem 

that the simulated annealing algorithm addresses is the minimization of a certain (positive) 

energy function E(x) over a large, but finite set of possible configurations X . Here, for the 

sake of simplicity, we shall assume that there is only one configuration, x, that achieves this 

minimization. If we define a probability measure P on the set of all x s  by

P(x) °c exp {-£(*)}

then our task becomes that of finding the x  that maximizes P(x). In essence we have returned to 

the Bayesian framework used in image reconstruction in which we try to find the image x that 

maximizes an appropriate posterior distribution. We saw in Section 1.4 that for the model that 

we consider this posterior distribution is a Gibbs distribution. Now define a further probability 

measure Px on X  by

Px(x) °= P (xf,

where A > 0, and note that as A -> Px increasingly concentrates on x. (We also point out that 

in general the maxima of P are the maxima of Px for all A > 0.) In particular, if we take a series 

of samples xx from Px as A —■> <*>, we would expect xx —> x  in some sense. If we set A = 1 I t we
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can talk of decreasing temperature t  to zero, instead of increasing A to «>. The basic problem 

with simulated annealing is, however, that the lower the value of t, the harder it is to sample 

from the corresponding probability measure. In Section 4.2.2 we begin to consider how we go 

about such sampling.

4.2.2 Simulated annealing and image reconstruction

First, we define the distribution Jtr(x) as

Xr(x) ~  P ( x f ' \

for fixed r. Since, in our approach to image reconstruction, P(x) is a Gibbs distribution, nr(x) 

is also a Gibbs distribution. Geman and Geman[12] propose a method for sampling from 

such a distribution that they refer to as the Gibbs sampler which we have already discussed 

in Section 1.4.1.

Geman and Geman[12] let {nt, t>  1 and t an integer} be a sequence of pixels of the image 

that contains every pixel infinitely often (e.g. we can consider the set of all pixels arranged 

in order according to a raster scan repeated an infinite number of times). They define a 

Markov chain X(t), indexed by discrete time t, whose values are images representing successive 

reconstructions (differing by only one pixel, as we shall see), by explaining its evolution at time t 

form X(t -  1) to X(t). First, X(t) may differ from X(t -  1) only at pixel nt, and we shall refer to 

the value of the random variable X(t) at pixel nt as Xni(t). Then

P r(Xni(t) = x„t) «  7tr(x 1, . . . ,x nt,...,x„ ), (4.3)

where {x\, , x„} \ {*„,} are fixed. In other words, in order to move from X ( t -  1) to X(t) we

visit pixel nt and select a value for Xni(t) according to the conditional distribution defined from 

jtT by (4.3). Since nx(x) is a Gibbs distribution, the conditional distribution (4.3) takes a very 

simple form depending on the record at pixel nt, namely y„t, and the value of the image at the 

pixels that belong to the cliques that involve pixel nt (i.e., in the case under consideration x ^ t, 

where dnt is the set of neighbours of pixel nt). Thus, the distribution Pr(JfB| = x„t) can be 

quickly computed and the value for Xnt(t) easily sampled. Essentially, Theorem A of Geman 

and Geman[12] tells us that the distribution of X(t) as t —̂ °° is itj, and is thus independent of
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the the initial value X(0). This can be expressed by stating that

lim P r(X(t) -  co\X(0) = 77) = Kr(co),
t~ * 0 0

for all possible images co, 77 e  X . The proof of this theorem requires a lemma. This lemma tells 

us that information about the starting configuration is lost approximately exponentially with the 

number of complete sweeps.

The idea of simulated annealing is to sample from jct  while reducing the temperature z  in 

the hope that eventually samples are drawn from the uniform distribution k* over the set

Q* = {co: co g X  and E(co) = min E(t})}.
r je X

Geman and Geman[12] quantify this idea in their Theorem B. They begin by making three 

definitions

E*max ~ max E(co)
toe X

f̂ min = min E(co)
toe X

A = E nua ~ m̂in-

Next they assume that there exists an integer t* > n such that for every t = 0 ,1 ,2 ,... the set of 

pixels that make up the image is contained in the set {nt+\, nt+2, . . . ,  nt+t*} (e.g. we can again 

consider the set of all pixels arranged in order according to a raster scan, and we can set f  = n). 

They then let z(t) be any sequence of temperatures for which

1. r (t) —> 0 as t -» 00 ;

2. z(t) > nA/ log t for all / > to for some integer to > 2.

Finally, they state the conclusion, namely that for any initial image 77 and for all images co,

lim Pr (.X(t) = co\X(0) = 77) = ic*(co). (4.4)
t-* c o

As condition 2 cannot be followed in practice, Geman and Geman [ 12] suggest using a schedule 

of the form C! log(l + k), where k is the number of full sweeps, and selecting C in such a 

way that z  decreases from approximately 4.0 to 0.5 over 300 to 1000 sweeps. Geman and
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Reynolds[14], working in the context of grey-level images, employ 200 sweeps and drop the 

temperature linearly from an initial value, which they set equal to 0.3, to a final value t = 0. 

With this faster schedule than the one dictated by the theory they obtain very good results. It is, 

however, clear that the simulated annealing algorithm is computationally demanding. However, 

in the image reconstruction case when all the appropriate distributions are Gibbs distributions, 

the algorithm can be seen to be highly parallelizable.

4.23 An alternative annealing algorithm

In this section we outline an alternative (and more common) approach to simulated annealing. 

We do not use this approach in our work on image reconstruction. Let us return to the 

general problem of minimizing a (non-convex) energy function E(x) over a large finite set of 

configurations X . The form of simulated annealing now under discussion again proceeds by 

defining a Markov chain X(t), indexed by discrete time t> whose values are configurations in the 

set X  and whose distribution theoretically converges to the uniform distribution over the set of 

global minima of the function E. Let us assume that X (r-l)  = x. At time t and temperature z(t) 

a candidate value for X(t), x '  say, is generated by means of some generation mechanism that 

we shall discuss below. The probability that this x '  is accepted as the value of X(t) is given by

Pr (X(t) = x ' | X ( t -  1) = x) = min {1, exp } • (4-5)

Thus, a generated configuration x '  is accepted with probability 1 if E(x') < E(x) (i.e. if a 

decrease in energy results from accepting x'), and with non-zero probability if E(x') > E(x). 

It can be seen that this acceptance probability depends only upon the difference between the 

energies E(x') and E(x). In many applications the candidate state x '  is generated in such a way 

that such a difference is easily calculable.

All that remains in this description is to define a possible generation mechanism. To do 

this, we need to write down a matrix G(t) = (Gx x'(t)), where x  and x '  are any two possible 

configurations in X . The usual assumptions made about this matrix are that G(t) is such 

that from any configuration in X  it is possible, in a finite number of steps, to visit any other 

configuration, and that G(t) is the same for all t.

We now make some remarks about this algorithm. First, if we run the above algorithm for

113



an infinite time with z(t) equal to a constant z for all t, then

limPr(X(r) = fi?|X(0) = 77) °c exp { - ^ ^ 1 ,  
t-** I z J

for all co, 77 e X . Secondly, if z(t) is reduced sufficiently slowly, again equation (4.4) holds 

where now X(t) is a Markov chain with transition probabilities given by equation (4.5) and co 

and 77 are arbitrary members of X . The rate at which z(t) has to be reduced has been the 

subject of many papers. The book by Laarhoven and Aarts[26] gives a thorough discussion of 

the relevant literature (as well as a general review of all the literature on simulated annealing). 

Many authors set z(t) = 17 log (1 + t) and produce a sufficient condition on T  for (4.4) to hold. 

Such a condition takes the form T > F \  where r* is some parameter depending on the structure 

of the optimization problem. In the discussion in [26] a number of successively smaller values 

for P  are presented. The paper by Hajek[18] presents a necessary and sufficient condition 

on z(t) for the convergence given by (4.4). To outline this result we need three definitions: 

first, a configuration x '  is said to be reachable at height L  from a configuration z, if there is a 

sequence of configurations

x '  = Xo,X\, . . . ,x p -  z

such that GXk, Xk+] > 0 for k = 0 ,1 ,... ,  p  -  1, and E(xk) ^  L  for k = 0 ,1 ,. .. ,  p\ secondly, state x 

is said to be a local minimum if no state x '  with E(x') < E(x) is reachable at height E{x)\ and 

thirdly, a local minimum x is said to have depth equal to plus infinity if x  is a global minimum, 

and equal to the smallest number E, E > 0, such that some state x '  with E(x') < E(x) can be 

reached at height E(x) + E. Hajek[18] makes the assumption that for any real number V  and 

any two states x ,x '  e X , x  is reachable at height V  from x '  if and only if x '  is reachable at 

height V  from x. He states that a necessary and sufficient condition for (4.4) to hold is that

S-KHs)-
where d* is the maximum of the depths of all states which are local but not global minima. 

If z(t) = T / log(/ + 1 ) then the necessary and sufficient condition (4.6) holds if and only if 

r > d*. Hajek[18] states that Geman and Geman[12] ‘considered a model which is nearly a 

special case’ of the model used in this section. As we have seen in Section 4.2.2, Geman and 

Geman[12] give a sufficient condition on T, namely that T > P ,  some F \  for (4.4) to hold.
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However, their value for P  is ‘substantially larger than d*\

4.2.4 Further comments

We have seen in this section that the asymptotic properties of the annealing algorithm are fairly 

well understood, even though the conditions on the temperature schedule z(t) that are stated 

for (4.4) to hold involve constants that depend upon the structure of the optimization problem 

and that are often of such a size that the temperature is still very high even after a large number 

of iterations. As Geman and Reynolds[14] say (in the context of grey-level images)

what is important is the finite-time behaviour. ... In particular, we have no 

guarantee of obtaining an actual minimum with a finite amount of computation; 

in fact it is highly doubtful that we ever achieve the minimum energy ....

The rest of this chapter is devoted to a small study of the finite-time behaviour of the simulated 

annealing algorithm, as applied to image analysis and described in Section 4.2.2. In Section 4.3 

we suggest and explore some variations on the original algorithm that seem appropriate in the 

finite-time case.

4.3 Four simulated annealing algorithms

In this section we introduce four simulated annealing algorithms in the context of image 

reconstruction. The second, third and fourth algorithms are variations on the first. We now 

present the four algorithms.

Original A total of M  iterations of simulated annealing are performed and the reconstruction 

is the image x  that results from the final iteration.

Lowest A total of M  iterations of simulated annealing are performed. The penalty function 

is computed after each iteration and the reconstruction is the image x  that yields the 

minimum value over all M  iterations.

Original plus ICM  The ICM algorithm is applied until convergence to the x  produced by the 

algorithm referred to as original. The reconstruction so produced is guaranteed to give 

a local minimum of the penalty function (see Section 1.6.2).
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Lowest plus ICM The ICM algorithm is applied until convergence to the x  produced by the 

algorithm referred to as lowest. Again the reconstruction so produced is guaranteed to 

give a local minimum of the penalty function (see Section 1.6.2).

To assess the performance of these four algorithms in terms of the penalty function (4.1) 

we conduct a simulation experiment. We base this experiment on a binary image (c = 2) 

of size 32 x 32 pixels (1024 pixels in total). The image is then corrupted by the addition to 

each pixel of independent normal noise of known variance k = 0.5. This corruption yields 

a record y. We attempt to recover the original image from the record y in the standard way 

by trying to find the x  that minimizes (4.1). For simplicity, and to reduce computations later, 

we set D = 0.0. The smoothing parameter /? is as yet unspecified. In Chapter 3 we presented 

a method for finding p  for binary images, such as the one used here. That method involved 

minimizing a certain function. We performed this minimization over values of P in the set 

{0.0,0.05,0.1,..., 1.4,1.45,1.5}, and found that the minimizing p  was equal to 1.0. This p  

also minimized over the above set the number of misclassified pixels at 40 (3.91%). As we 

saw in Chapter 3 it is possible in the case of binary images to find the image that gives the 

global minimum of the penalty function (4.1). This image is referred to as the exact MAP 

reconstruction. When P = 1.0 the exact MAP reconstruction gives the value of the global 

minimum of (4.1) to be 599.65. We shall refer to this quantity as E. (We point out that the value 

of (4.1) for the original image was 626.35, while for tue maximum likelihood estimate it was 

1115.26.) As a comparison, the reconstruction produced by the ICM technique of Besag[3], 

which we discussed in Section 1.6.2 yielded a value of the penalty function (4.1) of 623.73, 

when the initial image was the maximum likelihood estimate or closest mean classifier. We 

shall refer to this quantity as /. Henceforth, we transform the penalty function (4.1) to

old penalty function -  E ^  ^

where

1 n
old penalty function = —  ^ ( y ,  -  x,)2 + p  (v(1)(x) + Dv^2\x ) j  ,

i=i

as in expression (4.1). We shall refer to the transformed penalty function (4.7) as the TPF. The 

exact MAP reconstruction has a value of TPF as given by expression (4.7) of 0.0, whereas the 

ICM reconstruction has a value of 1.0.
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Figure 4.1: The logarithmic (unbroken like) and geometric (broken line) temperature schedules

We now attempt to see how well each of the above four algorithms perform. In Section 3.10 

we considered two temperature schedules. The first is based on the logarithmic schedule of 

Geman and Geman[12] in which

T(m) = -— -  — m = , M,
log (1 +m)

where M  is the total number o f iterations. The second is based on the geometric schedule

T ( m )  = A p nt- \  m =  1, , M,

where we select A and p  so that the initial temperature, r ( l ) ,  is the same as that used for the 

logarithmic schedule, namely 3 / log (2) = 4.33, while the final temperature, z(M),  is set to a 

quantity that is only just greater than zero, namely 0.01. We consider the following values o f M: 

32 = 25, 64 = 26, 128 = 27, 256 = 28 and 512 = 29. Graphs o f these temperature schedules are 

shown in Figure 4.1, for all M  except M  = 512. We note from the graphs that the logarithmic 

schedule does not change with M; it is merely truncated. The geometric schedule, on the other
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hand, varies with M in such a way that the final temperature, t (M), is 0.01.

Simulated annealing is a stochastic process and in practice the value of TPF produced varies 

with the seed used in the random number generator. Accordingly, we repeat each algorithm with 

100 different seeds.

43.1 Some results

We present our results by means of Figure 4.2. For clarity we plot the logarithm of the 

mean of TPF as given by expression (4.7) for the 100 different seeds. Thus, a value of 0.0 

represents an average value equal to that given by ICM alone, while if all 100 values of TPF 

were equal to its minimum value then a value of negative infinity would result! The area of the 

circles is proportional to the variance of TPF over the 100 repetitions. We make the following 

observations:

• For all four algorithms and both temperature schedules the mean value of TPF decreases 

as M, the number of iterations of simulated annealing, increases.

• For all four algorithms and both temperature schedules the variance of TPF decreases 

as M , the number of iterations of simulated annealing, increases.

• For all five values of M considered and the logarithmic schedule, the algorithm that 

performs worst in terms of the mean value of TPF is original, then comes lowest, 

followed by original plus ICM. The algorithm that performs best is lowest plus ICM. 

The improvement of lowest over original, and of lowest plus ICM over original plus 

ICM  is negligible for low values of M, but increases with M , as we might expect. The 

average increase in TPF due to not considering the lowest value produced by simulated 

annealing, for both schedules, is discussed in Section 4.3.3. The average increase in TPF 

due to not using ICM, for the logarithmic schedule, is discussed in Section 4.3.4.

•  For all five values of M  considered and the geometric schedule, the performance of 

original and original plus ICM, and the performance of lowest and lowest plus ICM 

were almost (see Section 4.3.4) identical. Thus, the geometric schedule always ended 

up with a reconstruction that corresponded to a local minimum of TPF, and ICM had 

no effect. The reason for this is that, in effect, ICM is zero temperature annealing, 

as explained in Section 1.6.2, and the final annealing temperature with the geometric
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schedule is very low. The algorithm original performed a little less well than the 

algorithm lowest, as we would expect.

• For M  equal to 32, 64 and 128 and the logarithmic schedule, the algorithm that gives the 

highest variance of TPF is original, then comes lowest, followed by original plus ICM. 

The algorithm that gives the lowest variance is lowest plus ICM. For higher values of M 

the situation is less clear, although original is always most variable and lowest plus ICM 

is always least variable.

• For all five values of M  considered and the geometric schedule, the variances of TPF 

when original is used and when lowest is used are almost identical.

43.2 Density estimates

To illustrate the effect of the four algorithms we present in Figure 4.3 density estimates of 

the logarithm of the 100 values of TPF. Of course, if the exact MAP is obtained the value of 

the TPF will be 0.0, and its logarithm is negative infinity. Such points are indicated by the 

numbers written on the left part of the graph. Assume that the exact MAP is obtained p  times 

out of 100. The number p  is printed at a height proportional to p  and a density estimate is 

produced from the remaining n -  100—p  points. This density estimate is scaled so that its total 

area is (100 — p) /100. The density estimate, f(x) say, is produced using the formula

where h is window width. In our case we take K  to be the standard normal kernel and we set

This h is the value recommended in Section 3.4.2 of Silverman[37], where it is said to work 

well for a wide range of densities. The interested reader is referred to that reference for further 

details. For each density estimate we mark the lower and upper quartiles of the data from which 

it is constructed, and shade the area between. The density estimates presented are for the case

h = 0.9 A rT115

where

A = min (standard deviation, interquartile range / 1.34).
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when M -  128. First, we consider the logarithmic temperature schedule. For original the 

density is concentrated around 0.0 (the value achieved by ICM), whereas for lowest the density 

is of approximately the same shape although moved to the left. The density for original plus 

ICM has a very different shape and again the mass is seen to have moved to the left. The density 

for lowest plus ICM is of similar shape to that for original plus ICM although a slight shift to 

the left is visible. These four densities suggest that the effect of using the lowest value found 

during the annealing when the logarithmic temperature schedule is used is small compared 

to the effect of employing ICM. We attempt to quantify this a little further in Section 4.3.3 

and Section 4.3.4. We now consider the density estimates for the geometric schedules. The 

first and third, and the second and fourth estimates are based on almost the same data and 

hence appear identical. Moreover there is very little noticeable difference between the first and 

second density estimates. If we compare the four density estimates produced for the logarithmic 

temperature schedule with those produced for the geometric temperature schedule, we notice 

that for original and lowest the shapes are very different, but when ICM is employed the shapes 

are quite similar.

4 3 3  Benefits of using the lowest value found during annealing

In this section we discuss briefly the benefits of using the lowest value found during simulated 

annealing for both temperature schedules considered. We summarize our results in Table 4.1, 

where we present the increase in the mean of TPF due to not considering the lowest value 

produced by simulated annealing, for both schedules, as a percentage. For example, a value of 

22% indicated that the average value of TPF produced by original is 1.22 times the average 

produced by lowest. In the columns headed ‘Without ICM’ we see how much worse algorithm 

original does compared to algorithm lowest, whereas in the columns headed ‘With ICM’ we 

see how much worse algorithm original plus ICM does compared to algorithm lowest plus 

ICM. (The addition of ICM did not affect the performance of original and lowest when the 

geometric schedule was employed for reasons that were explained in Section 4.3.1.) We note 

from Table 4.1 that the increase due to not considering the lowest value produced by simulated 

annealing is very much larger for the logarithmic schedule than for the geometric schedule. For 

the logarithmic schedule the increase is larger when ICM is not used than when it is used. For 

all four columns this increase seems to grow monotonically with Af, except in the case of the 

logarithmic schedule with ICM and low values of M. However, as we shall see in Section 4.3.4
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Without ICM With ICM

M Logarithmic Geometric Logarithmic (Geometric)

32 22 1 3 (1)

64 48 2 1 (2)

128 89 5 34 (5)
256 162 14 59 (14)

512 267 22 135 (22)

Table 4.1: Percentage increase in the transformed penalty function when the lowest value found 

during the annealing is not used (logarithmic and geometric temperature schedule)

the increase in TPF due to not considering the lowest value produced by simulated annealing 

is much less than the increase in TPF due to not employing ICM. Nevertheless, as using the 

lowest value found during the annealing resulted in benefits for both temperature schedules 

considered, and as the extra computational burden imposed by this modification is minimal, we 

recommend its adoption.

43.4 Benefits of using ICM

In this section we briefly discuss the benefits of using ICM when the logarithmic temperature 

schedule is employed. We have already seen in Section 4.3.1 that almost no advantage is gained 

by using ICM with the geometric temperature schedule. This is due to the extremely low 

temperature of the final iteration and to the fact that ICM can be thought of as zero temperature 

annealing (see Section 1.6.2 and Section 4.3.1). We summarize our results in Table 4.2, where 

we present the increase in the mean of TPF as given in expression (4.7) due to not employing 

ICM, as a percentage. In the columns headed ‘Without lowest value’ we see how much worse 

algorithm original does compared to algorithm original plus ICM, whereas in the columns 

headed ‘With lowest value’ we see how much worse algorithm lowest does compared to 

algorithm lowest plus ICM. We note from Table 4.2 that the increase due to not employing 

ICM after the M  iterations of annealing is very much larger when the starting image for ICM 

is the one that results from the Afth iteration of annealing than when the starting point is that 

image that gives the lowest value of TPF over all M  iterations. In both cases the increase seems
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M

Without lowest 

Value

With lowest 

Value

32 943 784

64 881 569

128 684 459

256 601 326

512 450 253

Table 4.2: Percentage increase in transformed penalty function when ICM is not employed after 

annealing (logarithmic temperature schedule)

to grow monotonically with M. As we stated in Section 4.3.3 the increase in TPF due to not 

considering the lowest value produced by simulated annealing is much less than the increase in 

TPF due to not employing ICM.

In Table 4.3 we present the mean and variance of the number of iterations of ICM required 

by each of the algorithms original plus ICM and lowest plus ICM. We remark that no pixels 

are changed during the final iteration of ICM. We can clearly see from Table 4.3 that for the 

geometric schedule very few iterations of ICM are required. In fact, in only very few of the 

100 replications does ICM have any effect with this schedule, and in those cases the effect is 

negligible. With the logarithmic schedule, however, the addition of ICM does have a noticeable 

effect, which we now consider. We see from Table 4.3 that for both original plus ICM and 

lowest plus ICM the number of iterations of ICM required for convergence decreases as M  

increases. Moreover, for each value of M, the number of iterations of ICM required by original 

plus ICM is greater than the number required by lowest plus ICM. We note the interesting fact 

that with the lowest plus ICM algorithm the variance decreases as M  increases. No such pattern 

exists with the original plus ICM algorithm. Finally, we remark that the average number of 

iterations of ICM is low compared with M, the number of iterations of simulated annealing. 

Thus, the addition of ICM to the annealing part of the algorithm does not substantially increase 

the overall amount of computation required. Hence we recommend its adoption.

In Table 4.4 we present for the logarithmic schedule the average decrease in TPF when ICM 

is used. In some sense we can regard this as a measure of how far the reconstruction produced 

by the annealing part of the algorithm is from a local minimum of TPF. Thus, as M  increases
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original plus ICM lowest plus ICM

Logarithmic Geometric Logarithmic Geometric

M Mean Variance Mean Variance Mean Variance Mean Variance

32 3.67 0.446 1.00 0.000 3.54 0.473 1.02 0.020

64 3.29 0.471 1.01 0.010 3.05 0.472 1.03 0.029

128 2.97 0.373 1.00 0.000 2.71 0.430 1.07 0.066

256 2.89 0.483 1.00 0.000 2.40 0.303 1.04 0.039

512 2.58 0.347 1.00 0.000 1.10 0.091 1.10 0.091

Table 4.3: Number o f iterations o f ICM required (logarithmic and geometric temperature 

schedule)

M original plus ICM lowest plus ICM

32 2.61 2.10

64 1.42 0.91

128 0.86 0.43

256 0.58 0.20

512 0.36 0.09

Table 4.4: Average decrease in transformed penalty function when ICM is used (logarithmic 

temperature schedule)
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Logarithmic Geometric

M Mean Variance Mean Variance

32 0.268 0.0159 0.137 0.0134

64 0.160 0.0097 0.056 0.0046

128 0.093 0.0033 0.022 0.0012

256 0.061 0.0014 0.014 0.0005

512 0.034 0.0008 0.009 0.0002

Table 4.5: Mean and variance o f the transformed penalty function for  lowest plus ICM 

(logarithmic and geometric temperature schedule)

on average the reconstruction produced by the annealing part gets nearer a local minimum, and 

for each M  on average the reconstruction produced by the annealing part of lowest plus ICM 

is nearer to a local minimum than the reconstruction produced by original plus ICM.

43.5 The effect of different values of M

The effect of different values of M  has already been illustrated in Figure 4.2 and discussed in 

Section 4.3.1. In this section we examine in more detail the effect of different values of M 

for the lowest plus ICM algorithm. In Table 4.5 we give the mean and the variance of TPF 

as given in expression (4.7) for the lowest plus ICM algorithm. We note again that for both 

temperature schedules the mean and variance decrease as M  increases.

We also present density estimates of the log of TPF in Figure 4.4. For the logarithmic 

temperature schedule we see that the density moves to the left as M  increases, although the 

exact MAP value is never attained. A similar phenomenon occurs for the geometric schedule. 

However, there the number of times the exact MAP value is attained increases with M, and 

becomes quite large (nearly one half of all the realizations in the M  = 512 case, for example).

4.4 Towards some practical temperature schedules

In this section we investigate further how the performance of the simulated annealing algorithm 

depends upon the temperature schedule. In the rest of this chapter we restrict our attention to 

the algorithm lowest plus ICM. In Section 4.4.1 we concentrate on the geometric temperature
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schedule. In particular we investigate how the first and last temperatures of the temperature 

schedule affect the performance of the algorithm. We discover that good performance requires 

both the first and last temperatures to be low. In Section 4.4.2 we consider a variety of other 

temperature schedules and discover that what is important is the choice of the first and last 

temperature, rather than the choice of the schedule itself. In Section 4.4.3 we turn our attention 

away from the case in which the image has c = 2 colours, to images with more than two colours; 

in particular we look at the case c -  5.

4.4.1 The choice of the first and last temperatures for geometric schedules

In this section we consider only geometric schedules, namely schedules of the form

From now on we set M  equal to 128. This schedule has two parameters, A and p, as yet 

unspecified. We prefer to reparametrize this schedule in terms of the first temperature r(l) , 

which we shall refer to as / ,  and the last temperature z(M), which we shall refer to as /. We 

assume that /  > 0 and / > 0 throughout. Thus, we may rewrite (4.8) as

We note that if /  = I we have the constant schedule z(m) = f  = 1, Vm.

We now investigate how the performance of the simulated annealing algorithm with this 

schedule depends on the temperatures f  and /. In our investigation we do not insist that f  > I. 

We proceed by computing the average value of TPF as given in expression (4.7) for 25 different 

seeds at each of 100 (i.e. 10 x 10) different values of f  and /. We present our results using the 

excellent C0NIC0N programs of Sibson[36]. In particular we use an interface to these programs 

written by Dr Glenn Stone. This interface requires gradient information to be supplied at every 

point. We compute the gradient information from the values at the points themselves and not 

separately. This seems to work well for interior points of the region, but to lead to minor 

problems on the boundaries. There the surfaces that we present may not be representative. 

This, however, affects substantially neither our investigation nor our conclusions. The axes 

and the labels are produced by means of a POSTSCRIPT program written by the author. We 

display f  along the horizontal axis and I along the vertical axis. The diagonal line marks the

z(m) = A p m~l, m = 1 ,..., M. (4.8)
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boundary between the schedules with f  > I (below the line) and the schedules with f  < I 

(above the line). Schedules that lie on this line have constant temperatures throughout. In 

all the plots we display the logarithm of the average of the transformed penalty function as 

this leads to a clearer presentation. We point out that the figures presented on these diagrams 

point uphill, as is conventional. We recall that for this transformation a value of 0.0 represent an 

average value equal to that produced by ICM, whereas a value of negative infinity represents 25 

reconstructions all of which attain the global minimum of the penalty function. In the first 

contour plot given in Figure 4.5 we consider 0.0 < f, I < 5.0. We note that for much of the plot 

the contour lines run parallel to either the f  axis or the I axis. In the region in which /  > I the 

mean value of the transformed penalty function seems to depend only on the lower I and not 

on / ,  whereas in the region in which /  < / the mean value of the transformed penalty function 

seems only to depend on the lower f  and not on I. Exceptions to these observations occur in two 

regions. The first is in the top right comer of the plot, where the algorithm seems to perform very 

badly indeed yielding average values greater than 0.0, thus indicating an average performance 

worse than would be achieved by ICM alone. The second is in the bottom left comer. It seems 

that the algorithm performs well in this region and that the quality of performance increases as 

the point (/, /) nears the origin. To investigate this region more fully we magnify the region 

with 0.0 < / ,  I < 2.5, as indicated by the box, and we present our results in the second contour 

plot. Again 100 points of (/, I) are used, and a similar situation seems to result. The main 

area of interest is once more the bottom right hand comer. This second plot suggests that we 

should continue the magnification process, and we do this as indicated for 0.0 < f, I < 1.0, 

0.0 < f,  I < 0.7 and 0.0 < / ,  I < 0.2. Clearly, the best plot is that for 0.0 < f, I < 0.7 which 

shows an area of values under -4.6; the 0.0 < f ,  I < 1.0 plot is lacking in detail, while the

0.0 < f,  I < 0.2 plot displays only a side of this area. The final plot that we present is the 

logarithm of the variance of the 25 realizations at each point 0.0 < f, I < 0.7. This graph has 

a very similar form to the one showing the logarithm of the average values. Returning to that 

contour plot, we remark that the area of values below -4.6 is for the most part in the /  < / 

region. We concentrate on the area of values below -4.6 in order to facilitate comparisons with 

the other schedules that we discuss in Section 4.4.2.
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4.4.2 Other schedules

We now investigate the behaviour of other schedules in the region 0.0 < f,  I < 0.7. We begin by 

introducing what we shall refer to as schedules of the second kind. Schedules of the second kind, 

h(m), say, are derived from schedules of the first kind, g(m), say, by means of the relationship 

h(m) = 1 + f  -  g(M + 1 -  m). Straight line schedules of the first kind are exactly the same as 

straight line schedules of the second kind. Examples of these schedules with f  = 0.28 and 

I = 0.16 are shown in Figure 4.6. These values of /  and / are chosen because they seem to 

give quite reasonable results for all the schedules. In general we consider both monotonically 

increasing and monotonically decreasing schedules. We now describe the schedules in detail:

1. Straight line schedules

2. Geometric schedules of the first kind

3. Geometric schedules of the second kind

M-m

4. Reciprocal schedules of the first kind

5. Reciprocal schedules of the second kind

6. Logarithmic schedules of the first kind

(/ log (Af + 1) -  f  log (2)) + ( / - / )  log (m + 1)5
i f  (log (Af + 1) -  log (2 ))
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7. Logarithmic schedules of the second kind

 ̂ (f2log(M + l ) - / 2 log(2)) + ( /2 -<2)lo g (M -m  + 2)
(/ log (A/ + 1) -  /  log (2)) + ( / - / )  log (M -m  + 2) ’

8. Constant schedules

g(w) = f  = l = h(m) > 0.

The fourth contour plot of Figure 4.5 shows the logarithm of TPF as given in expression (4.7) for 

0.0 < /, / < 0.7 when the geometric schedule is used. This range of first and last temperatures 

was considered to be the most appropriate. In Figure 4.7 we present similar contour plots for the 

following six schedules: geometric of the second kind, straight line, reciprocal, reciprocal of 

the second kind, logarithmic and logarithmic of the second kind. The six contour plots given 

in Figure 4.7 are in many senses very similar to the contour plot of the geometric schedule 

over the same region of (/, /) space given in Figure 4.5. If, for example, one considers taking a 

walk over the surface in the /  > / region along a line parallel and fairly close to the line /  = /, 

one first descends rapidly before reaching quite a broad area of value less than -4.6. After 

this ‘valley’ one ascends once more, but this ascent is less rapid than the previous descent. 

The line /  = I itself corresponds to schedules that have constant temperature. In Figure 4.8 we 

present the results of a walk along this line by plotting the logarithm of TPF against the constant 

temperature r > 0.0 that is used throughout the annealing. Again we see a sharp descent to the 

minimum followed by a less rapid ascent. A plot such as that shown in Figure 4.8 may provide 

a good way to find a bound b such that the region / ,  / < b is a good one for further examination.

The reader is now invited to concentrate on the area of each contour plot with values less 

than -4.6. The size of this region is about the same in all the seven plots just mentioned, 

although it seems bigger in the case of the straight line schedule and smaller in the case of 

the logarithmic schedules, although for the first kind of logarithmic schedule this area is long, 

but thin. The most important point to note from these contour plots is that there is very little 

effective variation between plots, but considerable variation within plots. In other words, it is 

the choice of f  and / that is important, rather than the choice of the temperature schedule itself. 

From a practical point of view we recommend the straight line schedule because it combines 

simplicity with good performance. We also reiterate that the best results seem to occur when f  

and I are relatively small (e.g. 0.0 < f, I < 0.7). Larger values seem to cause the algorithm to
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perform badly.

4.4.3 Images with more than two colours

So far we have only considered the case when the image has two colours. With such images 

we were able to make use o f the fluid flow approach o f Greig, Porteous and Seheult[17] to find 

the global minimum of the penalty function (4.1). In this section we consider the minimization 

o f (4.1) in the case when c = 5, c being the number o f (unordered) colours. The image of 

interest comprises 32 x 32 pixels. To each pixel we add independent normal noise o f variance 

k  = 1.0. The maximum likelihood estimate misclassifies 663 (64.75%) pixels. We consider 

the minimization o f (4.1) with the smoothing parameter /? equal to 0.5. With f  -  0.5 the 

value of (4.1) for the original image was 590.43, while for the maximum likelihood estimate 

it was 766.70. The reconstruction produced by the ICM algorithm starting from the maximum 

likelihood estimate misclassified 397 (38.77%) pixels and gave a value o f (4.1) equal to 554.23. 

Simulated annealing is now employed to reconstruct the image. We employ 64 iterations and 

again only consider the algorithm lowest plus ICM.
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In order to assess the effects o f the various schedules we begin with schedules that take the 

same value for all iterations, namely constant schedules. In Figure 4.9 we present a plot o f the 

mean value o f the penalty function (4.1) minus the value o f the penalty function achieved by 

ICM, for the range o f temperatures (0.0,0.7]. For computational reasons we take the average 

over 10 reconstructions at each temperature considered. The horizontal line indicates the value 

achieved by the ICM algorithm with initial image the maximum likelihood estimate. We see 

quite a rapid descent in penalty function to a minimum value that occurs around the temperature 

0.2, followed by a somewhat less rapid ascent. This suggests that we should investigate the 

other (two parameter) schedules in the range 0.0 < f , l <  0.4.

In Figure 4.10 we present contour plots o f the mean value o f the penalty function for 

0.0 < f ,  I < 0.4 for the geometric schedule, the straight line schedule, the reciprocal schedule 

and the logarithmic schedule. These contour plots are not dissimilar to those given in Figure 4.5 

and Figure 4.7 (and indeed, as we will see in Section 4.5.2, to those given in Figure 4.13). The 

minimum is achieved by values o f /  and I in the /  > I region. There does not seems to be much 

effective variation between the schedules: inspection o f the area o f values less than -32.0,
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say, reveals that this region is very similar in the case of the geometric schedule, straight line 

schedule and geometric schedule of the second kind, although for the logarithmic schedule 

it is much smaller and thinner. Of the four schedules presented in Figure 4.10, we judge the 

logarithmic schedule to be the least good. We recommend the straight line schedule in this case, 

as well as in the case of binary images, due to its good performance and simplicity. However, 

it is clear from Figure 4.10 that the most important consideration is again not the choice of 

schedule but the choice of the first temperature f  and the last temperature /.

4.5 Simulated annealing and grey-level images

In this section we discuss simulated annealing as applied to grey-level images. We use the 

example that we considered in detail in Chapter 1. The reader is referred to Figure 1.4 where 

the various images that we now discuss are presented. The original image comprises 32 x 32 

pixels. There are 64 possible grey levels and four distinct regions based on the three grey-levels, 

15,30 and 45. We corrupt the original image by the addition of independent normal noise with 

mean equal to 0.0 and variance k  equal to 20.0 to produce the record y .  We attempt to recover 

the original image from y  by the minimization of the penalty function given in (4.2). We take 

a  = 0.075 and /? = 2.5. To reduce computation again we only consider a first-order model 

(D = 0.0). The true image has a value of (4.2) equal to 724.20, whereas the value of (4.2) for 

the maximum likelihood estimate is much higher at 2671.39. The reconstruction produced by 

ICM has a value of (4.2) equal to 781.03. In Figure 1.4 we present the reconstruction obtained 

by applying the ICM algorithm to convergence to the reconstruction given by M = 64 sweeps 

of simulating annealing with a straight line temperature schedule with /  = 0.3 and I = 0.05. 

This reconstruction has a value of (4.2) equal to 718.93 We recall that the iteration of simulated 

annealing that yielded the lowest value of (4.2) at 721.41 was the final iteration. The version 

of simulated annealing employed for this example includes a slight modification due to Geman 

and Reynolds[14], The aim of this modification is to reduce the computation required. This is 

particularly important when we are dealing with grey-level images. When updating the value of 

the estimate of the image at pixel i, instead of sampling from the actual conditional distribution 

of Xi that puts positive weight on all the 64 grey-levels, the support of the distribution is reduced 

to the values obtained by taking the union of small intervals about the current value at site i, 

the current values at the neighbours of i and the data value y,. We consider an interval of
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radius five grey-levels about each of these six values. Geman and Reynolds[14] state that 

this modification yields no apparent change since the true distribution places virtually zero 

mass on the complement of the reduced support, and that it would be interesting to understand 

the behaviour of this ‘truncated’ algorithm from a theoretical viewpoint. In Section 4.5.1 we 

present a small simulation study to assess the effect of this modification on the value of the 

penalty function achieved by the simulated annealing algorithm. This study provides us with 

no evidence against using the truncated algorithm when dealing with grey-level images. In 

Section 4.5.2 we present an investigation into various temperature schedules similar to the one 

presented in Section 4.4.

4.5.1 A small simulation study to assess the performance of the truncated 

algorithm

Here we present the results of a small simulation study designed to compare the performance 

of the original annealing algorithm with that of the truncated algorithm, which has just been 

discussed in detail.

We repeat the reconstruction experiment described in Section 4.5 one hundred times for 

the original algorithm and one hundred times for the truncated algorithm. In Figure 4.11 we 

present histograms of the values of the penalty function (4.2) achieved. In Figure 4.11 the mean 

is indicated by the broken vertical line. The mean value of (4.2) for the original algorithm 

is 718.15 and the variance is 0.1383. The corresponding figures for the truncated version 

are 718.10 and 0.3542. Accordingly, the mean value achieved by the truncated algorithm 

is less than the mean value achieved by the original algorithm, although the variances have 

the opposite order. The range for the original algorithm is [717.88,720.40] and the range for 

the truncated algorithm is [717.76,720.03]. Examination of the two histograms allows us to 

remark that 72 realizations from the truncated algorithm take the minimum value obtained 

by that algorithm, namely 717.76, whereas only 31 realizations from the original algorithm 

take the minimum value obtained by that algorithm, the slightly higher 717.88. Further 

comments about Figure 4.11 are difficult to make. However, there is no evidence to suggest 

that the truncated algorithm performs substantially worse than the original, and certainly some 

evidence to suggest that it is to be preferred. Moreover, the average number of grey-levels 

considered at each pixel over the one hundred runs of the algorithm is 16.49, about one quarter 

of the 64 considered by the original algorithm. This clearly represents a substantial saving in

139



o00

Figure 4.11: 

algorithm

o
CO

>»oc
® o
O- ^G)
£

o  .
CM

O J
T T

717 718 719 720 721

Penalty 
Original annealing algorithm

oo o

oco
>»oc
® O  J
D- 
CD

O .  
CM

O J

717 718 719 720 721

Penalty
Truncated annealing algorithm

The penalty function achieved by the original algorithm and the truncated

140



o
'I t

5O

Q■?£a
a

a.

min

0.0 0.1 0.2 0.3 0.4 0.5

Constant temperature

Figure 4.12: Mean value o f  the penalty function relative to ICM, z (t) = constant, g = 64

computation. Accordingly, we see no reason not to adopt the truncated algorithm when dealing 

with grey-level images. Further work on the truncated algorithm would try to quantify the 

statement in [ 14] that the true distribution places virtually zero mass on the complement of the 

reduced support.

4.5.2 Practical temperature schedules for grey-level images

In this section we investigate the choice of the temperature schedule when we are dealing with a 

grey-level image. The approach taken is similar to that adopted in Section 4.4, and we consider 

only algorithm lowest plus ICM. We begin our investigation with schedules that take the same 

value for all iterations, namely constant schedules. In Figure 4.12 we present a plot o f the mean 

value o f the penalty function (4.2) minus the value o f the penalty function achieved by ICM, 

for the range o f temperatures (0.0,0.5]. For computational reasons we take the average over 10 

reconstructions at each temperature considered. Again we see quite a rapid descent in the 

penalty function to a minimum value that occurs around the temperature 0.1, followed by a less 

rapid ascent. This suggests that we should investigate the other (two parameter) schedules in

141



the range 0.0 < f,l<  0.25.

In Figure 4.13 we present contour plots of the mean value of the penalty function (relative 

to ICM) for 0.0 < f , l  < 0.25 for the geometric schedule, the straight line schedule, the 

reciprocal schedule and the logarithmic schedule. These contour plots are not dissimilar to 

those given in Figure 4.5 and Figure 4.7 for the case when c = 2, and Figure 4.10 for the case 

when c = 5. Again the minimum is achieved by values of f  and / in the f  > I region. There 

does not seems to be substantial variation between the schedules: inspection of the area of 

values less than -58.0, say, reveals that this region is very similar in the case of the geometric 

schedule, straight line schedule and geometric schedule of the second kind, although for the 

logarithmic schedule it is much smaller and thinner. Indeed, of the four schedules presented in 

Figure 4.13, the logarithmic schedule seems to be least good. Once more we recommend the 

straight line schedule due to its good performance and simplicity. However, the most important 

consideration is again not the choice of schedule but the choice of the first temperature f  and 

the last temperature /.

4.6 Conclusions

In this chapter we have conducted an investigation into the performance of the simulated 

annealing algorithm as used in the context of image analysis to minimize an appropriate penalty 

function. After introducing the algorithm and reviewing some of the asymptotic theory, we 

considered by means of simulations the finite time behaviour of the algorithm. We proposed 

three variations on the basic simulated annealing algorithm and produced evidence to suggest 

that one of these variations out-performs the others. We then concentrated on that variation. 

We discussed practical temperature schedules for binary and multi-colour images, and for grey- 

level images, by considering the performance in particular examples of many different families 

of temperature schedules, parameterized by two parameters, the first and the last temperatures. 

We saw that, while there was not much effective difference between schedules, there was 

considerable variation within schedules in the sense that performance depended heavily on the 

first and last temperatures. In particular, it seems that high values of these temperatures give 

poor results. In general we would recommend the use of a straight line schedule, and we note 

that the logarithmic schedule, as given by the asymptotic theory on simulated annealing, often 

performed disappointingly. In the context of grey-level images we examined a further variation
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on the basic simulated annealing algorithm, known as the truncated algorithm, that reduced the 

computation required, without noticeably affecting the results.

Further work would involve an attempt to produce some theoretical results along the lines 

of those given by Geman and Geman[12] for the algorithm lowest plus ICM and the truncated 

algorithm, both in the asymptotic case and the finite time case. We do not expect this task to 

be easy. A comparison of the performance of the simulated annealing algorithm applied to 

grey-level images with the approximate grey-level MAP technique described in Chapter 7 of 

Jubb[24] would be of interest, and it is hoped that this would be the subject of further research 

by the author.
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Chapter 5

Estimating Linear Functionals of a 

PET Image: Introduction and Theory

The second part of this thesis comprises this chapter and Chapter 6, and considers a topic in 

positron emission tomography (PET). In this case the image of interest represents the metabolic 

activity of a cross-section of the brain or other organ and can be thought of as a density f  

defined on the unit circle. The radioactive tagging of glucose gives rise to emissions of positrons 

distributed as a Poisson process on the unit circle with intensity / .  Each positron that is emitted 

annihilates with a nearby electron and yields two photons that fly off in opposite directions along 

a line with uniformly distributed orientation. Ideally, a continuous circular ring of detectors 

placed around the patient’s head makes it possible to detect the photon pair and to give a line / 

on which the point of emission must have occurred. Thus, the observed data are not drawn from 

the density f  of real interest, but rather from another derived from /  by the application of an 

integral operator. Much work has concentrated on estimating f  from these indirectly observed 

data. However, recently some interest has arisen in estimating linear frmctionals of the density, 

rather than /  itself. An added complication is that, in practice, the circular ring of detectors 

is not continuous but comprises a finite number of detectors. In this discrete case, only a tube 

within which the line I lies is known. In this chapter we consider the problem of estimating 

linear functionals of a PET image in both the continuous and discrete cases, and in Chapter 6 

we present some numerical examples that illustrate the theory developed here.
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5.1 Introduction

The main aim of this chapter is to describe in detail the theoretical aspects of the estimation 

of linear functionals of a PET image. This work relies heavily upon two recent papers by Iain 

M. Johnstone and Bernard W. Silverman, [21] and [22]. Thus, in this chapter we present a 

thorough review of these two papers and other related papers, as well as our work. In Chapter 6 

we describe some numerical experiments that we have undertaken and that relate directly to the 

theory reported in this chapter.

In Section 5.2 we outline the positron emission tomography problem in detail, and introduce 

much of the technical machinery and notation that we shall use later. In addition, we discuss 

the minimax approach which we shall employ for the estimation of linear functionals, and 

we review the main techniques and results from [21] and [22], and other relevant papers. In 

Section 5.3 we introduce the problem of estimating a linear function of the density f  both in 

the idealised case when the ring of detectors is considered to be continuous and in the more 

realistic discrete case when the ring comprises a finite number N  of detectors. We define 

the loss function, derive the minimax estimator, minimax risk and least favourable function, 

and establish the remarkable result that the minimax estimator can be found by applying the 

functional of interest T  to a function / ,  which does not depend on the functional T and which 

minimizes a certain penalized least squares form. We investigate the consequence of doubling 

the number of detectors N, and the effect on the minimax risk of letting n, a measure of the 

number of emissions, tend to infinity. We also discuss the least favourable function: that is, the 

function that yields the maximum risk. In Section 5.4, we review other work in this area and in 

Section 5.5 we discuss some generalizations due to Silverman[38] and other workers. Finally, 

in Section 5.6 we present our conclusions.

5.2 Background and setting up the model

There are many practical problems where the observed data are not drawn directly from the 

density f  of real interest, but rather from another derived from /  by the application of an integral 

operator. Two examples of this type of problem, those of stereology and positron emission 

tomography, are considered by Silverman, Jones, Wilson and Nychka[40]. In this chapter our 

main concern will be the PET case, although the results obtained are readily generalizable, as 

we shall see in Section 5.5.
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Tomography is a non-invasive technique for reconstructing the internal structure of an 

object of interest, often in a medical context. PET deals with the estimation of the amount 

and location of a radioactively labelled metabolite on the basis of particle decays indirectly 

observed outside the body. We follow the set-up of Vardi, Shepp and Kaufman[44], which we 

have already outlined. The brain, heart or liver is scanned by counting radioactive emissions 

from tagged glucose. The radioactive tagging of the glucose gives rise to emissions of positrons 

distributed as a Poisson process in space and time; the spatial intensity of emissions is the same 

as the distribution of giucose and gives an indication of the organ’s metabolic activity. It is 

convenient to renormalize the emission intensity to be a probability density function f(r, 6), 

say, with respect to a normalised Lebesgue measure/z, where d^i{r, 6) = K~xrdrdO and r and 9 

are polar coordinates. We discuss /z in detail in Section 5.2.2. Each positron that is emitted 

annihilates with a nearby electron and yields two photons that fly off in opposite directions 

along a line with uniformly distributed orientation. A circular ring of detectors placed around 

the patient’s head makes it possible to detect the photon pair and hence, for each emission that 

is detected, to give a line on which the point of emission must have occurred. We shall refer to 

this line as the detected line. It is, however, not possible to detect the position of the emission 

on the line. This set-up is in fact an idealization: in reality we can only identify a tube within 

which the detected line lies.

Throughout this work, we make the further idealization that the ring of detectors defines 

a slice of the patient’s head which is planar. In this way the problem under consideration is 

essentially two-dimensional. We make no attempt to extend our results to take into account 

this third dimension. In the whole of Section 5.2, our interest is in reproducing a picture of the 

metabolic activity of a cross-section of the brain from the detected lines (or tubes).

5.2.1 Single photon emission computed tomography

Another form of tomography that has received recent attention in the literature is SPECT, or 

single photon emission computed tomography (see, for example, Geman and McClure[13] and 

Green[ 15]). Again the aim is to determine the concentration of a pharmaceutical in a part of the 

body such as the brain, liver or heart. In both SPECT and PET this concentration is estimated 

by detecting photon emissions from a dose of the pharmaceutical that has been combined with a 

radioactive isotope. (The number of emissions observed in a typical experiment using SPECT 

seems to be smaller than the number observed in a typical experiment using PET.) However,
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unlike in PET where the detectors take the form of a ring around the organ of interest, in SPECT 

they are arranged in a linear array of L detectors. This array can be rotated about an axis through 

the patient to any orientation 6 relative to a fixed line. An excellent diagram of this set-up is 

given in Figure 1 of Geman and McClure[13]. These authors assume that the detector array is 

positioned at K  equally spaced angles 6k for duration T time units at each angle. Then at each 

of the K  angles, the number of single photons reaching each of the L detectors is recorded. This 

is the data from which the concentration of the pharmaceutical is estimated. In this thesis we 

do not consider SPECT any further but confine our attention to PET. We point out, however, 

that in practice SPECT is more widely used than PET, partly because the machines and the 

experiment are cheaper.

5.2.2 Setting up the model

Johnstone and Sil verman[21 ] introduce the notion of brain space B and detector space D. Brain 

space is the original disc in the plane enclosed by the detector ring, whereas detector space is 

the space of all possible unordered pairs of points on the detector circle.

Brain space B is considered to be the unit circle and is equipped with a dominating measure p  

which is defined to be proportional to Lebesgue measure as follows:

dp(r, 6) = n~x rdrdQ

for 0 < r < 1 and 0 < 6 < 2/r if polar coordinates are used, and

dp {x\, X2) = 7t~l dx\ dx2

for ||x|| < 1, where x  = (x\, X2) in Cartesian coordinates. Note that p  integrates to 1 over the 

unit circle. We stated in Section 5.2 that it is convenient to renormalize the emission intensity 

to be a probability density function with respect to p. This density of interest, / ,  say, associated 

with the fixed number n of unobserved independent random variables X \,X 2, X n, where X, 

is the position of the i th emission in the brain, is defined on brain space, B.

To parameterize detector space D, Johnstone and Silverman[21] let s be the length of the 

perpendicular from the origin to the detected line, and <p be the orientation of this perpendicular 

(see their Fig. 2). Thus D is { ( 5 , 0 ) : O < s < l , O < 0 <  2/r}. As was the case with brain space,
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detector space is equipped with a dominating measure A, defined by

dX(s,<fj) = 2/r 2(1 — s2)112dsd<p,

which also integrates to 1. Associated with the independent observations Y\, Y2, , Yn, where 

Yi corresponds to the i th observed pair (or line), is the density g -  g(s, <f>).

The density g on D is related to the density /  on B by the linear1 transformation P, where

g (s , 0) = P f ( s ,  <p)

J y V l-J 2
= -(1  - s 2)~112 f is c o s Q - tsin0, j s in^  + tcos0)dt. (5.1)

2

The integral is the so-called Radon transform of the density / ,  namely the line integral of f  

along the line I with coordinates (s, <p) in detector space. As the length of the intersection of this 

line with B is 2 (1 - s 2)1 /2, Pf(s, <p) represents the average of f  over the part of I that intersects B.

In any particular PET scan, not all the pairs of emitted photons are detected. Johnstone and 

Silverman[21] examine two reasons for this: the effect of the third dimension and attenuation. 

The effect of the third dimension is due to the fact that in reality the detectors form a ring of finite 

thickness d > 0, and the orientation of the line of flight of the photons is uniformly distributed 

in R3. Johnstone and Silverman[21] assume that the density is constant over the thickness 

of the cylindrical slab enclosed by the detector ring, and present a formula for a-sois, <t>)> the 

probability that an emission in the tube defined by (s, <p) is actually detected. This quantity 

increases as s increases, reflecting the fact that emissions in shorter tubes (large s) are more 

likely to be detected. Silverman, Jones, Wilson and Nychka[40] also discuss the effect of 

the third dimension and show that, in fact, the three dimensional problem does not tend, in 

the limit as d —> 0, to the two dimensional problem. Attenuation is defined as the loss of 

a detection caused by the absorption or scattering of one of the photons in flight. Johnstone 

and Silverman[21] show that the probability that neither photon due to an emission in the tube 

defined by ( 5 ,  <j>) will be lost is given by oa{s, <p). In both cases the probability that the emission 

will be detected depends only upon the tube (s,0) and not on the emission’s position within 

the tube. In general, if both effects are considered, the probability that any particular detection

’We use linear in the sense that P ( M f i  + ̂ 2/2) = + A2/ >Cf2)» where \ \  and X2 are scalars and f \  and / 2
are densities.
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will not be lost will be a^ois, <P) cia{s, (p)- Thus, the two effects can be combined into a single 

a(s, (p) e (0,1]. It follows that the observed detections form a biased sample with density in 

detector space with respect to dk (s, (p):

ga(s, (p) = Paf(s, (p) a(s, (p) Pf(s, <p). (5.2)

A further remark on the incompleteness of sampling will be found in Section 5.2.7.

Our interest throughout Section 5.2 is to produce an estimate of the density f  from the 

indirect observations Y\ , ..., Yn. Only in Section 5.3 do we start to consider the estimation of 

linear functionals of / .

5.23 Some proposals for the estimation of a PET image

A very important paper on this subject is Vardi et al. [44], the ideas of which we review briefly. 

These authors use a slightly different notation from the one that we generally use. However, in 

this section we shall adopt their notation; the connection with our work is clear.

It is assumed that the data arise in histogram form (see our discussion of ‘discretization’ 

in Section 5.2.9), so that detector space D is divided into bins (or tubes), indexed in [40] by 

t = 1,.. . ,  T, with an observed number of counts nt in the rth bin. Brain space B, which is 

assumed to be the unit circle, is also divided into S bins (or pixels), indexed by s. The pixellation 

used is arbitrary and will be discussed later in this section. The assumption of [44] is that events 

occur in pixel s according to a Poisson distribution with mean A (s). The aim is to estimate 

{A(s), 5=1 ,  . . . ,S} =A, say.

Let

p(s, t) = Pr [an event in pixel s gives rise to a count on tube t\,

and set

T

= ^ 2 p (s>
t=l

since an event in pixel s may not be recorded. We assume that the p(sf t) s are known from the 

geometry of the set-up. Next, define K(s, t) to be the number of events on pixel s counted on 

tube t, and note that the K(s, t) s are Poisson random variables with mean A ( 5 )  p(s, t) and are
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independent of each other. Unfortunately, we only observe the total counts on each tube as

5=1

These too are Poisson random variables with mean ^ (?) p(s, t) and are independent of each

other. A natural statistical approach to the estimation of A is maximum likelihood (ML). If we 

let

L(A) = Pr [N(t) = n(t), t = l , . . . ,  T \X \ ,  

where n(t) is the observed number of counts in tube t, it is easy to see that

m = n  exP{ -  j : ms)p(s, ,)} .
/=1 5=1

Vardi et al. [44] show that log (L(A)) is concave and propose the EM (E for expectation and 

M for maximization) algorithm, as described in Dempster, Laird and Rubin [8], for finding the 

maximizing A. We now briefly describe the EM algorithm in the context of PET. To begin, think 

of N(t), t -  1, . . . ,  7\ as incomplete (but observed)data, and K(s, t), s=  1, . . . ,  S and t = I , ... ,T , 

as complete (but unobserved) data. Now, if  we were to observe the K(s, t) s, we would be able

to consider i K(s, t), the total number of counts originating from pixel s, which are Poisson

random variables with mean A (5 ) 1 P(s> *) = ^(5) 4(s) are independent from each other.

In this case the maximum likelihood estimator o f A maximizes

S T
t ) logX(s) - l (s )p(s , t ) }  (5.3)

5=1 /=1

and is thus

X(s)= £ i ' f < s’ t)i S =  1 s. (5.4)
q(s)

However, as in practice the K(s, t) s are not observed, we proceed using the EM algorithm. We 

start with any estimate A > 0, and repeat iterations o f the following E and M steps.

E step. Estimate the complete data from the incomplete data by

K(s, t) = E[K(s,t)\N(t) = n(t),Xold]
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E J U i ^ W p f o f ) '  

since, for independent Poisson variables X and Y with means Xx and Xy,

E[X| X + r  = x+y] = (x+ y)— ^ — .
{X x + X y )

M step. Estimate Anew by maximum likelihood based on the estimated complete data K(s, t):

Xuew(s)=^ 1̂ S,‘),s= 1 S,
9(s)

as explained above through equations (5.3) and (5.4). We now make some remarks.

1. The E step and the M step can be combined into a single updating step.

2. X remains positive throughout.

3. General theorems about EM estimation tell us that the likelihood increases at each 

iteration, and, accordingly, the method will converge to a global maximum of L(X) since 

log L(A) is concave.

4. In practice this method works well. However, the reconstruction improves as the EM 

algorithm iterates up to a point, but then things get worse and the solution becomes spiky 

and inaccurate.

5. No attempt to model the true image has been made.

Remark 4 suggests that some form of smoothing may be appropriate. This may be introduced 

by incorporating a prior model for A, as suggested by Remark 5. Suppose that a prior model for 

X takes the form

p(X) oc exp{-R(A)},

where R(X) is some measure of the roughness of the image, then a standard argument shows 

that in this case the maximum likelihood approach requires the maximization of log L{X)-R{X), 

as opposed to log L(A). However, finding the maximum of log L(X) -  R(X) is not an easy task: 

one possible approach is to use the EM algorithm as described above, with an adapted M step:
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find X to maximize

s T

E  ')1°S M s)-U s)p (s ,  f)} -  R(A), (5.5)
s= l t= l

whereas before we did not have the roughness term R(X). Accordingly, this new M step 

is much harder, as it is essentially the same problem that arises in image reconstruction 

problems approached by maximum a posteriori estimation using a Markov random field or 

Gibbs distribution (see Section 1.3.2) and may require simulated annealing for its solution (see 

Section 1.6.1). There are of course many possibilities for the choice of R(X). For example, 

Geman and McClure[13] (working in the context of SPECT) propose

where [si, s^\ indicates that si and S2 are nearest horizontal or vertical neighbours in the square 

lattice that they employ, <S\,S2 > indicates diagonal neighbours, the (smoothing) parameter /?

a constant that can be interpreted as a scale parameter on the range of values of X ( 5 ) ,  and the 

function <f> (£) is even and minimized at £ = 0. Thus R itself is minimized by images of constant 

intensity. In [13] 0 is (up to an additive constant) defined as

We discussed the choice of the function <p in Section 1.3.3. There the set-up was slightly 

different: we set a  -  M S2 and took this parameter into the definition of <j> itself. We shall 

meet a different <f> later in this section in equation (5.11).

To overcome the computation problems caused by the modified M step (5.5), Silverman 

et a l [40] propose the EMS (S for smoothing) algorithm. In short, a smoothing step is added 

after the M step to produce a smoothed version of A, and in this way prior knowledge about 

the smoothness of the image is incorporated. In simulation experiments, these authors found 

that the EMS algorithm, with only a small amount of simple smoothing, always converged to 

good estimates of A, in a relatively small number of iterations. Moreover, the limit point was 

observed to be unique. However, attempts to prove both convergence and uniqueness have so 

far failed. Nevertheless, such attempts have helped to give understanding of the EMS algorithm

R(X) = J3 (5.6)

is positive and controls the strength of the interaction between a pixel and its neighbours, 8 is

(5.7)
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and are discussed in Section 5 of Silverman et a l [40] and in Nychka[31].

Another improvement provided by Silverman et a l [40] concerns the pixellation of brain 

space B. Vardi et al. [44], Geman and McClure[13] and many other workers in the field simply 

superimpose a square grid of pixels over B, but this approach has computational disadvantages 

compared with discretizations that take better account of the detector geometry. Silverman 

et al. [40] exploit circular symmetries to propose a discretization that leads to substantial 

computational savings in both storage and time.

Green, in the discussion to Silverman et a l  [40], proposes another way to overcome the 

problems caused by the modified M step (5.5). First, write (5.5) as

j2(A|Aold)-/?(A), (5.8)

and recall that the difficult part of our task is to maximize (5.8) over X. This can be done by 

solving

D l0Q(X | Aold) -  DR(X) = 0, (5.9)

for X, where D denotes the derivative operator and D^F{x | y) means F(x | y) / dxfdy1. Green, 

in the discussion to Silverman et a l [40], suggests solving

D l0Q(X | Xold) -  DR(Xold) = 0 (5.10)

in which the gradient of the penalty term is evaluated at the current estimate. He refers 

to this algorithm as ‘one-step-late’ (OSL) and points out that solving the system given by 

equation (5.10) is as trivial as for the unpenalized likelihood problem. In [16], Green states 

that (5.9) and (5.10) have the same fixed points and so, if the OSL algorithm converges, the 

limit is a maximum likelihood penalized estimate. What is lost in comparison with the true EM 

algorithm is the guarantee that the method converges, and in particular that the iteration always 

increases the penalized log-likelihood. In the context of PET, Green states in [40] that while 

OSL may not converge if a heavy degree of smoothing is applied (which is rarely necessary 

in the PET case), it otherwise converges more quickly than the impractical EM procedure. 

In [ 16], Green gives some examples of the use of the OSL algorithm: multinomial sample, ridge 

regression and Poisson additive regression. The latter example, which is relevant to emission 

tomography, is illustrated in the case of SPECT using real data in Green[15]. In this paper
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Green considers

yt ~ Poisson ats As^ independently,

where {A5} is a discretized version of isotope concentration as a function of pixel s in the 

body, {yt} are the recorded counts of particles detected in bins labelled t and {ate} form a 

matrix of coefficients encoding the physical circumstances under which the data were collected. 

Green[15] attempts to model the set {ate} in a sophisticated way. We do not concern ourselves 

with the details here; the interested reader is referred to that paper. Moreover, in that paper, 

Green gives some diagnostics by means of which he can modify the model. He gives an example 

of the OSL algorithm applied to real data. He adopts a conventional rectangular grid since, 

unlike the PET problem, SPECT offers no symmetries to be exploited. He proceeds by running 

the ordinary algorithm for 16 complete sweeps starting from a ‘flat’ image and using no prior 

term. He then calculates residuals and, noticing that they reveal a pronounced pattern, modifies 

his model by changing the {ate}. He runs the OSL algorithm for a further 128 iterations using 

the log cosh prior obtained by setting the <f> of equation (5.6) to

<f> (£) = c 1 log cosh (c2&  (5.11)

where c\ and ci are chosen to match Geman and McClure[13]’s prior (5.7) in the sense that 

max <p' and 0"(O) coincide for the two functions, with/? = 0.2 and 8 = 50.0. At this point no 

further changes were perceptible and the residuals give little cause for concern. The resulting 

reconstruction is considered to be both reasonable and useful.

There are many other ways to estimate a PET image. Vardi et al. [44] discuss moment 

estimates and convolution backprojection, least squares estimators and Stein-type estimators. 

Such estimates are not of concern to us in this work and we refer the interested reader to [44] for 

further details. Jones and Silverman[23], however, consider a technique that is closely related 

to our work. They consider an orthogonal series intensity (or density) estimation approach. For 

the case of directly observed data, the approach is discussed in Section 2.7 of Silverman[37]. 

We briefly review that approach. Suppose for the moment that we are trying to estimate a 

density, / ,  say, on the unit interval [0,1], from a directly observed sample X\, The basic

idea is to express /  as a Fourier series with respect to some orthonormal sequence <pv, where
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v > 0:

f  — V j vtv.
v>0

where, for each v,

fv  = [  f(x)<f>v{x)dx, (5.12)
Jo

and to estimate the coefficients f v. Now suppose that X  is a random variable with density / .  

Then (5.12) can be written

f v = E [*,(*)],

and may be estimated by

Silverman[37] shows that the sum ]Cv>o/v0v will not be a good estimate of / ,  but will 

‘converge’ to a sum of delta functions at the observations. Thus, in order to obtain a useful 

estimate of the density f  some smoothing is necessary. The easiest way to apply this is to 

truncate the expansion f v  Qv at some point. To do this, choose an integer K  and define the

density estimate f  by

K
} = ’E h t „  (5.13)

v=0

where the choice of the cutoff point K  determines the amount of smoothing, or, more generally, 

by

}  = ^ I v fv Q v ,
v>0

where the weights Xv satisfy Xv —> 0 as v —» the rate of this convergence controlling the 

amount of smoothing. Jones and Silverman[23] introduce an estimate of f  which defines the 

Poisson process of the PET set-up based on (5.13). Unfortunately, because of the indirect nature 

of the problem, the f vs can not be estimated directly. However, Jones and Silverman [23] set 

f v = b~xgv (compare equation (5.28) of Section 5.2.8), where the bvs are known and are defined
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in equation (5.17) of Section 5.2.4, and where the gvs are easily computable from the (indirectly 

observed) data. The reader should compare this estimator with the linear minimax estimator 

as derived and described in Section 5.2.8. Reconstructions for several different values of the 

smoothing parameter K  are presented in [23]. Moreover, an automatic choice of K  based upon 

the mean integrated square error is proposed and found to work well, at least in the example 

presented. One drawback of this method that emerges from the experiments presented is the 

presence of negative regions in the reconstructions. The EM and EMS approaches outlined 

above do not permit such negative regions (see Remark 2 of Section 5.2.3). However, Jones 

and Silverman [23] report that this orthogonal series intensity estimation approach to PET image 

reconstruction yields a 30-fold improvement in computer time in comparison with the best EMS 

procedure of Silverman et al. [40]. Another advantage of the approach of [23] is that there is no 

need to discretize brain space; the truely continuous nature of orthogonal series reconstruction 

is said to be most appealing. The disadvantage is, however, the difficult with generalizing the 

approach to cope with more realistic versions of the PET model.

5.2.4 The minimax approach and the singular value decomposition of the Radon 

transform

Johnstone and Silverman [21 ] adopt an approach that is somewhat different from those discussed 

in Section 5.2.3, namely a minimax approach. This is because the main thrust of their interest 

is not, directly, towards obtaining reconstruction methods but more towards giving a deeper 

understanding of indirect estimation methods in general. In particular they are concerned with 

quantifying the ill-posedness of the PET problem. To do so, they calculate theoretically the 

order of magnitude of the size of a sample of directly observed positron emissions that would 

be required to be equivalent to a given sample size of the indirectly observed data which is 

available in practice, in the sense of yielding equally accurate image reconstructions. We shall 

see examples of the result of such a calculation in Section 5.2.7. They conclude that the amount 

of information available is still substantial, but is by no means as great as if a sample of direct 

observations were available. However, before we discuss this in detail, we must set up some 

more machinery. We will discuss the minimax approach again in Section 5.2.7

The singular value decomposition (SVD) of the normalized Radon transform P defined 

in (5.1) is of crucial importance to this approach. First, let H  be the space of functions on B 

that are square-integrable with respect to the dominating measure ji and let K  be the space of
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functions on D that are square-integrable with respect to the dominating measure A. Suppose 

that the point X  = (Xi, X2) is drawn at random (according to p) from B. If a direction 0 is 

specified by = (cos <p, sin 0), then

Pf(s,<fi) = E { f(X ) \u t r X  = s}.

From this representation it follows at once that P isa  bounded operator from H toK  with norm 1, 

and is indeed one-to-one.

Next define the lattice AT as

A f'= { ( j,k ) \j> Q ,k >  0}.

It can be shown that the set of functions {<pv} is an orthonormal system on H  (in the sense that 

((f>v, (pv’)n -  J<f>v(x)<f>v'(x)d/i(x) = 8v>v' t for v and v ' e Af’) where

<pv(r, 6) = (f>{j,k)(r, 6)

= (j + k + \ ) xl22%£(r)ei{ĵ )e (5.14)

for v e Afr and (r, 6) e Bt and where Z* denotes the Zemike polynomial of degree m and 

order k, which will be discussed in Section 6.2.3. Similarly, { ^ }  is an orthonormal system on 

K  where

¥v(s, <f>) = YQ,k)(s, <p)

= UM ( s ) e ) ^ - ,  (5.15)

here v e Af', (s, <f>) g D, and Um(cosO) = sin(m + 1)6/ sin 6 are the Chebyshev polynomials

of the second kind. An arbitrary /  e H  and an arbitrary g e K  can be expressed in a way

analogous to a Fourier series as

f(x) = fv M x )
veAf'

six) =  S v  ¥ v ( x )
veAf'

where the coefficients f v and gv are given by the appropriate inner products: f v = (J, <pv)M =
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Ib fix ) f i i x) d{i(x) and g v = (g, y/v)x = fD giy) v tiy ) dMy), the star denoting the complex 

conjugate. It can be established that, with these inner products, H  and K  are Hilbert spaces.

It can also be shown that

P<pv = bv\j/v, (5.16)

with the singular values bv = b^k) specified by

bv = (j + k + i r 112. (5.17)

Thus P can be represented by a diagonal matrix B = diag (bv) with respect to the bases {<j)v}

and { y v}. It is easy to establish that gv = bvf v. We also remark that b(o,o) = 1.

In addition, because ̂ (o,o) = 1 and (̂o,o) = 1, /  <t>v(x) d̂ L (x) = f  <pv(x) 1 dfi(x) = <f>(o,o))fi =

Sv>(0'0) and, similarly /  y/v(x) dfi {x) -  SK(o,o)- Hence, the condition that f  fd / i  = 1 and 

f  g dX = 1 forces / ( o,o) = 1 and g(o,o) -  1. Therefore, we rewrite f  and g as

fix )  = 1+ 5Z fv tv ix )
wKO,o)

g(x) = 1 + 5 1  SvWvix).
vMP,0)

Accordingly, the function f  may be represented by the vector /  = (1, f v), v e  Af°, where Af0 

is the set AT' without the element (0,0), and the function g by the vector g which is defined 

similarly. We remark that if the function / (1) e H  is represented by the vector / (1) = (1, /?*), 

v e Af°, and if the function /*2) e H  is represented by the vector = (1, f f i ) ,  then 

( / (1), f ^ ) M = YlvejV' = /<i)T/<2)*, where the star denotes the complex conjugate. This

vector representation will be very important throughout this work. A similar remark holds for 

functions in K .

5.2.5 Real densities

Throughout this work, we consider real densities f .  We adopt where necessary the treatment 

of Johnstone and Silverman[21]. The complex bases (5.14) and (5.15) are identified with 

equivalent real orthonormal bases in a standard fashion. For example f  = Ylvetf' fv  <t>v =
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EveAT'/v where

4>v =  t o )  =  <

v ^ R e if ; > £

t o  if ;  = *

\/5lm(to)) if;< fc

Following the treatment given in [21], we suppress the tildes and use whichever basis is 

convenient. We shall discuss this again in Section 6.2.6 when we consider the actual 

computation of the least favourable function.

5.2.6 Linear estimators

An estimator /  based on observations Y \,... ,Y n is called linear i f  there exists a weight function 

w {x, y) such that /  w (x, y) dfi (x) = 1 for all y  in the space of observations, and

n
M  = n-i '£ i w (x,Yi) (5.18)

1=1

for all x  in B. Let Tuin) be the class of all linear estimators of f  based on the indirect 

observations Y \, ..., Yn, subject to the additional condition f f  w(x,y)2dfi(x)dZ(y) < «», 

and for comparison let Ti d {h) be the class of all linear estimators of f  based on the direct 

observations X i , . . . ,X n (these cannot be observed in practice), subject to the additional 

condition f f  w {x, x ')2 dfi {x) dp. (x') < °°. Finally, let T  be a class to which the densities on B 

are restricted. Johnstone and Silverman[21] define T  to be the set

{ / e  H : / (o,o) = 1, / TA /<  1 + C2} (5.19)

where the diagonal matrix A = diag(l, a2), v e Af°. In the PET case these authors set

av — d(j,k)

= ( j+ l)a (k+  I f ,  (5.20)

for some a > 1 /2 , and point out that the class consists of functions whose 2a th derivatives 

exist and satisfy a weighted square-integrability condition. This set is an ellipsoid in H  and it 

is assumed that the av and the C, the constant that governs the size of the ellipsoid, are chosen 

to ensure that all members of T  are nonnegative. In the PET case with av given by (5.20) this
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is achieved if

C < 2a-z. (5.21)

We now make two remarks. First, if a -  1.0 (1.5) the upper bound given in (5.21) is \/2X) (2.0). 

Secondly, equation (5.20) holds for v = (0,0): in this case a(o,o) = 1. Similarly, we write B

to be the diagonal matrix diag(l, bv), v e M °, where the bv s were defined above. The case

when bv -  1, W  e M °  corresponds to the direct observation case: that of having observations 

on brain space. Such a B is used in [21] to allow comparisons between the direct and indirect 

cases.

If we let v and n  e J\f' and write

HW = J J  w(x,y) <t>v{x) \ffn{y) dfL (x) dX (y),

then Johnstone and Silverman[21] explain that, because of the condition f f  w2 dfi dX < 

standard functional analysis gives that, in the I?  sense,

w (* y )=  ^ 2  (5.22)
ve Af' tee Af'

We shall make use of this form in Section 5.2.8.

5.2.7 Loss functions and equivalent sample size

Next, Johnstone and Silverman[21] define M(f] f) to be some measure of accuracy of an
A. A

estimator f  of f .  In particular they take M(/; f ) to be the mean integrated square error

M(h f) = El  [ C f - f f d u l  (5.23)
J b

By standard calculations M(}; f )  can be put in ‘variance + squared bias’ form as

M (h f )  = J [Var/tf(*)] + {E/tffcc)] -  /(x)}2] dfi (x) (5.24)

where the suffix f  indicates that the mean and variance are calculated for data drawn from f  in 

the direct case and P f  in the indirect case. The surrogate mean integrated square error f )

is obtained by replacing the variance term in (5.24) by the corresponding term calculated for
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the uniform density on brain space

M’Cf; f )=  j  [Var, [/(*)] + {E/tfWJ -  f(x)}2] dn (x) (5.25)

The surrogate mean integrated square error is used because of its simplicity compared to (5.24). 

Proposition 2.1 of [21] gives an important relation between the surrogate and the true mean 

integrated square error for linear estimators: if /  is bounded above and below away from zero, 

i.e. if

0 < inf /  < sup /  < °°, (5.26)
B B

then, for all /  in 7z,z)(«) or in Tu{n)

• M ( h f )  ^  x, ,
T / w -

This proposition means that the ratio of surrogate to true mean integrated square error will 

be bounded above and below away from zero uniformly on T ,  so that order of magnitude

statements made for one mean integrated square error will also be true for the other. We now

outline the proof of this proposition given in the Appendix of [21].

First, a standard argument establishes that

V a r ^
* Va^ [/(*)] b

in the direct case, and

. Vary [/(*)] ^

in the indirect case, where g = P f. We use a similar argument later in the proof of Proposition 3. 

It is easy to show that supB /  > 1, infB/  < 1, supDg > 1 and inf^g < 1. This immediately 

gives

• ^  xinf /  < ----- *—  < sup /
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in the direct case, and

.  *  ^  ^infg < -----—  < supg
D M '& f )  D

in the indirect case. Finally, since supD g < supB f  and inf# /  < inf# g, the proposition follows.

Suppose that one has a sample from a density f  and an estimator f  based on that sample. 

Then an assessment of the accuracy of /  that does not depend on a particular known f  is given 

by the maximum risk

R(}) = sup M (h f) .  (5.27)
/eJT

Because interest lies in the experiment itself rather than any particular estimator, the authors 

consider the minimum of R(f) over suitable classes of estimators / .  They set

ruin) = inf R(f)
ItTuifi)

and, for comparison,

rLD(n)= inf R(f).
3eTLD(n)

These minimax risks quantify the information about the unknown density inherent in indirect 

and direct data sets of size n, in a manner that is independent of the method of estimation. 

Comparing their relative values gives an indication of how much information is lost because 

data can only be observed indirectly in practice. Johnstone and Silverman[21] set p -  la  and 

present the following theorem in which estimators are not restricted to be linear:

Theorem 2 (Johnstone and Silverman[21], Theorem 3.1) For fixed p > 1 and

0 < C <2^~1)/2, we obtain

ro(rt) ~ (log n /n )p

and

rl(n) = (1 /  n)p/(p¥*\

where an ~ b„ means that the sequences {an} and {bn} satisfy infn(anlb n) > 0 and
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In effect this theorem tells us that the indirect nature reduces somewhat the rate at which the 

minimax risk converges to zero. For the case in which estimators are restricted to be linear 

the authors give a more precise version of their Theorem 3.1 in which the exact large sample 

behaviour of the minimax risks is stated. The proof of this more precise theorem starts by 

obtaining exact expressions for these minimax risks in terms of the constants av and bv (see, for 

example, Lemma 2). Then, for the PET case, it justifies integral approximations that make it 

possible to give the stated exact large sample behaviour. The constants in these expressions are 

complicated but tractable. It is then possible to derive the numerical equivalent direct sample 

size m(n) to a given indirect sample of size n, i.e. the size of the sample from f  itself that would 

give the same amount of information as the given indirect sample, under the given smoothness 

assumptions, so that, for linear estimators for example, r^nim) = ru{n). In fact for general 

estimators

m(n) ~ log n.

In the PET case with linear estimators, under the assumption that f  has square integrable first 

derivatives (p = 1) and using the surrogate mean integrated square error, the equivalent sample 

size to an indirect sample of size 107 is 193,000, whereas the equivalent sample size to an 

indirect sample of size 108 is 1,030,000. Other similar results are given in their Table 2, from 

which it can be concluded that the more smoothness that is assumed, the less information is lost. 

Johnstone and Silverman[21] also demonstrate, using Fano’s lemma of information theory as 

developed by Ibragimov and Hasminskii, that the restriction to linear minimax estimators does 

not affect the minimax rates, and hence derive their Theorem 3.1. They also show that, under 

mild assumptions, the incompleteness of sampling, as demonstrated in equation (5.2), has no 

effect on the minimax rates found in Theorem 3.1.

5.2.8 The linear minimax estimator

Recall that we observe Y \, ... ,  Yn, where Yt corresponds to the i th observed pair (i.e. straight 

line). From this fixed number n of observations, we define Zn for n  e M ' as



and we observe that Z(o,o) = 1. Hence, using equation (5.22), we obtain

v ltrnT ts ' Vw tT  I

= ^   ̂ 0v(-̂ ) I ^  1 WytfZtf
VG W  y T G  A T '

Since the coefficient of 0(o,o)(*) is 1, we must have

Y  w(0,0)nZtr ~ 1
ne Af'

and this can be achieved by setting vv̂ o.o)*- = S(o,o)n, for all k  g Af'. Therefore, we now focus 

on linear estimators of /  given by

} = w z

where /(o,o> = 1, W is the infinite matrix (wvn), whose first column is defined as above, and Z 

is the vector Zy, v and it belonging to the set Af'.

Johnstone and Silverman[21] present two lemmas: the first lemma gives a matrix form 

for (5.25), the surrogate mean integrated square error of the linear estimator }; the second 

lemma provides an expression for the surrogate linear minimax risk and gives the general form 

of the minimax estimator. We reproduce these lemmas. We require one further definition: the 

vector

ev = (8V„ : it e Af').

Lemma 1 (Johnstone and Silverman[21], Lemma 4.1) With the above definitions 

M \ h f )  = n -lt tW ( I - e 0e l ) W + f ( I -  W B )\l -W B )f.

Lemma 2 (Johnstone and Silverman[21], Lemma 4.2) With the above definitions

inf sup M*(}; f )  = n~l Y  ~ av7l l2)+> 
f e T LI( n ) fe F
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where y  is chosen to ensure that

v e A f 0

The minimax estimator is given by setting

W(0,0)* = £(0,0)*

as above, where it g  and

Wyn ~ £v* bv (1 — y ay)+

where v g  Af° and it g  N '.

We make a remark about these estimates. First, the matrix W is diagonal. This means that

f(x) = 1+ WvvZyfvix)
v e A f 0

= i +  Y  K \ i - r ' n <*v)+Z4v(.x)
v e A f 0

= 1+ ^ 2  }v4>v(X)>
v e A f 0

w h e r e = b~1( 1 —y 1/2av)+Zv, v g  M°. N o w  since

E [ Z v] = g v = by fv, (5.28)

a possible estimate for /„  would be b~lZy. However, this estimate includes the additional factor 

(1 -  y ll2av)+. It is by means of this factor that smoothing is introduced. Large values of av, 

which are brought about by large values of a, result in (1 -  y ll2av)+ being equal to zero and 

the removal of high frequency components in the density estimate $(x). We remark that f(x) 

is not necessarily positive. The reader should compare this minimax estimator of f  with the 

one employed in Jones and Silverman[23] and discussed in Section 5.2.3. In addition, the 

reader is invited to compare this discussion about smoothing with that given for the discrete 

case in 5.2.12.
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In essence our problem is that of estimating an array f v given observations

Zv = bvf v + error,

where the error has zero expected value, subject to the restriction that the f v fall in some 

ellipsoid T . In this case there is a single observation for each parameter to be estimated. Further 

work (from the point of view of not only estimating the density / ,  but also estimating a linear 

functional T(f), say) may consider the case when T  is a hyperrectangle. An important related 

paper here is Donoho, Liu and MacGibbon[9] in which the following problem is considered. 

Suppose we are given

y, = 0i+£i, i = 0, 1 ,2 , . . . ,

where the £, are iid A/̂ O, a) and 0, are unknown, but it is known that 6 = (0,) lies in 0 , a compact 

subset of h , i.e. Y,i Wi\2 < °°- Donoho et al.[9] consider the case when 0  is a hyperrectangle

0(r) = {0 : |0,| < ti),

where r, —> 0 as i —> °°, and also the case when 0  is an ellipsoid

{6 : 1},
i

or more generally an /p-body

e p(a) = {e : Z a . m r s i } .
i

They wish to estimate 0 with small squared error loss | |0 - 0 | |2 = £ (0 , -  0,)2, and they use the 

minimax principle to evaluate estimates.

5.2.9 Discretization

So far we have considered the idealized case where detector space D is assumed to be 

continuous. Under this assumption for PET it was possible to know the exact line along 

which an emission took place. However, in reality, the ring of detectors is divided into a finite 

number iV of separate detectors, as is depicted in Johnstone and Silverman[22]’s Fig. 1. These N
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detectors give rise to r(N) = N(N -  1) / 2 tubes, each tube being defined by a pair of distinct 

detectors. A detected emission is recorded by one of these tubes, and so the exact position of 

the line along which the emission took place is no longer known: only the tube is known.

To model this situation we shall refer to the discretized detector space as Dn , and assume 

that the detector space is divided into r (N) bins: D \, . .. ,  Dr^ .  Thus, if f  is the density on brain 

space fi, and g = P f  is the density on detector space D, then Qxg is the density (probabilities) 

on Dn where Qsg is defined as

where A is the dominating measure of D . In effect a continuous density is turned into a histogram 

with r(N) bins by the discretization map Qn : G —» Gs, where Gn is the finite dimensional 

space of vectors of length r{N). The vector Q ^g  gives the averages of g  over each of the bins 

Dj. We observe a Poisson number M  of observations, Y\, Y2, ..., Ytf. The mean of the random 

variable N  is n. Let n} be the number of these observations falling into bin D j. The nj are 

independent Poisson random variables with means «A(Dy) (QNg)j, j  -  1 , ,  r(N).

We remark that in this chapter n has two slightly different uses. In the continuous case 

it is the number of observations, whereas in the discrete case it is the expected number of 

observations. Johnstone and Silverman[22] refer to n as used in the discrete case as ‘an integer 

giving an index of the amount of data collected’.

5.2.10 Key assumptions

With the same orthonormal bases {0V} and {iffy) for B  and D  that we used above, we again have 

the singular value decomposition as stated in equation (5.16), namely that P<pv = bvy/v, where 

the singular values bv are defined in equation (5.17).

In addition, this time we make the matching SV D  assumption: given any v\ and V2 , the 

vectors Qn Yv\ and Qn Yv2 are either parallel or orthogonal on the space Gn .

Although this is a restrictive assumption, it holds exactly in the cases of density estimation 

from binned data ([22]: Section 1, Example 1, and Section 4.1) and of deconvolution ([22]: 

Section 1, Example 2, and Section 4.2), or approximately in the cases of The Wicksell 

‘unfolding'problem of stereology ([22]: Section 1, Example 3, and Section 5, especially 5.2 

and 5.4 where the approximate nature is discussed) and of PET ([22]: Section 1, Example 4,

(5.29)
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and Section 6, especially 6.2 and 6.3). (As far as surrogate risk behaviour is concerned 

condition (5.26) holds in the two former cases. However, the lower bound of (5.26) is not 

available for the Wicksell operator, although the ratio of surrogate to true mean integrated 

squared error can be bounded above and below away from zero uniformly over T  at least 

for diagonal linear estimators. In the PET case condition (5.26) holds provided that C satisfies 

condition (5.21), the condition for T  to contain only nonnegative densities.) We shall discuss 

this further for the PET case in Section 5.2.12.

Because of the matching SVD theorem, we can construct an orthonormal basis {%p} of Gn 

such that for each v there exists [v] for which, for certain constants yv,

Qn Yv = 7vZ[v]- (5.30)

Under the matching SVD assumption, for any fixed N  we define an equivalence relation on the 

set of subscripts { v} by

v\ ~ V2 if and only if [vi] = [V2]

where [v] is defined in equation (5.30) above, so that the equivalence classes correspond to 

sets of y/v that are mapped by Qn to multiples of the same basis vector in Gn - The [v] can be 

considered as being equivalence classes under ~, and in this way an infinite dimensional vector 

space is mapped to a finite dimensional vector space.

5.2.11 More notation and definitions

In Section 5.2.9 we assumed that we observed a Poisson number of observations AT with mean n. 

The number of observations falling into bin Dj was defined to be nj. The rij s were seen to be 

independent Poisson variables with means n X (Dj) (Qsg)j, for j  = 1 ,..., r(N). We assume now 

that the observed data consists of an r(N)-\cctor Z of normalised bin counts of Gn such that

z  = nL .
1 nX (Dj)

for j  = 1 ,..., r(N). The Zj are are independent Poisson counts with intensities (Qsg)j, for some 

g = T ,vgv¥v in G.

We now express the r(V)-vector of observations Z in terms of the r(N) ‘new’ basis 

vectors X[v\ : Z = £  Z\v\ X[v] • We let T be the matrix representation of Qn  relative to the basis
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{Y'V} and \x[v]} respectively: i.e. T^p = yp ifp  e [ v ]  and zero otherwise.

Consider now the equivalence class [v]. There are r(N) such classes: let us consider the 

fcth class. We order the vs in this class in some way (according to X or ^  say) and we write 

vf to be the i th value in the fcth class, k -  1 ,..., r(N). Thus we have vf ~ v§ ~ vf ~

[v*] = [v|] = [V3] = • • •, and \ \  < v| ■< v% ^  • • •. We take the first value \ \  to be the 

representative of the k th equivalence class. Johnstone and Silverman[22] construct a set of 

such representatives Cn -  {vf, k=  1 , ,  r (N)} of these equivalence classes by selecting from 

each [v] a v that maximises b vyv over this equivalence class. They state that this v essentially 

corresponds to the direction in which least energy is lost under the mapping QnP. Table 5.1 

may help to clarify the situation.

Equivalence class B , detector space, {g} Cn Gn

1 Vv\>Vv\>Yv\ , ’ " w X[V\]

2 V'v* » V'vf . IPv* » * ' * w X[^]

k Vd[’ YS2>Y>>:| , * " A X[^]

r(N) Yj (N) » Vvr(N) , y/rm , • • •
V1 2 3

v[m * [vrWj

Table 5.1: Table o f equivalence classes and corresponding basis vectors for Gn

Next Johnstone and Silverman[22] assume that 0 e  C n . Because of the restriction 

/ ( 0 , 0 )  = 1> this zero frequency plays a special role and so the set C% = £ a t \ { 0 }  is introduced. 

They now define

T l  -  span{0v : v e  

(L stands for low frequencies and this set depends on N) and

T H -  { f  = : fv  = 0 for v e  Cn }
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(H stands for high frequencies and again this set depends on N), so that

T  = span{0o} © T L © T H.

The ellipsoid T q is defined as T q -  (<po + T L) n  T q, where

^o = { / = E U : / o = l ,  ^ a 2vf v <C2},
V v e t f O

as in equation (5.19).

As with the case where there is no discretization, the aim of [22] is to estimate f .  

The approach taken in Johnstone and Silverman[22] is to consider only ‘low frequency’ 

functions T L. Let %  be the class of linear functions from Gn to T L, and write 7}* for the 

matrix representation of T in Tn relative to the bases {z [v]} and : v e f  J} . The estimator 

corresponding to T e Tn may be written as

T{x) — ^>o+ ^   ̂ (pvjx) Tv\n\ Zm , (5.31)
V6 c°N W

which should be compared to equation (5.28) above.

5.2.12 Some results for the discrete case

In this case, the form of the mean integrated square error corresponding to equation (5.24) is

M (T;f) = j  [Varpf [t(x)] + <Ef / [f(x)] -  /(x)}2] dfi(x).

If we define the surrogate mean integrated square error M *(T\f) as

M’(T-f) = J  [Varp i[7X.I:)] + {EP/[f(x)] - f ( x ) f ]  dfi(x),

where 1 is the uniform distribution on B (and hence P I = 1 is the uniform distribution on D) we 

can establish that, if f  (and hence g) is bounded above and away from zero, then for all linear 

estimators T,

M(T’, f )
f s - s w ) - sr
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This result follows easily from equation (9) of [22] which tells us that

Vars [f(x)] = 1 1 ?  (x,j(y))g(y)dA(y), (5.32)

where

t(x>j) = y !  <pv(*) Tv W X[iijj
ve C°N M

and j  (y) indicates the bin into which y  falls. Johnstone and Silverman[22] explain that the 

expression (5.32) is obtained by showing that

1 M
T(x) = <p0(x) + -  V  t(x, Ji),

where we have seen that M  = YljiT  nj is a Poisson random variable with mean n, and 

establishing that

AT

Varg[^2t(x,Ji)] = n J  t2,(x, j(y))g(y) dX(y).
i= 1

Again, as we saw in Section 5.2.7, order of magnitude statements made for one mean integrated 

square error will also be true for the other.

We can write down M*(T; f )  in matrix notation as

= /z_1t r r Tr  + / T(7 - T T  B)t( I - T T  B) f .  (5.33)

After defining

M ( T ; T 0)=  inf sup M*(T;f), 

the authors state a lemma, corresponding to the above Lemma 2:

Lemma 3 (Johnstone and Silverman[22], Lemma 1) With the above definitions, we have

M (TN; r f )  = n -1 £  b '2y;2 ( I - a va l/2)+,
v e  C°N
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where a  is chosen to ensure that

n 1 bv27v2al ll2(lvl -  1)+ = C2.

The minimax estimator is given by setting

Tvn =  8v„b~lYyl { \ - a l l 2 a v)+

for all v in C ^ and n in Cn-

We remark that T* is diagonal. The authors now state and prove the following theorem: 

Theorem 3 (Johnstone and Silverman[22], Theorem 1) Given any v in Cn, define

S n ( v )  =  ]T  a~2.
pe [v]\v

Then

sup M * (T ;f)<  {M (T n ;T q)1 +e(N)l n ] ,
feX o

where

e{N) = C2{max S n ( v ) +  max a~2}. 
ve c°N pe £n

In the theorem e(N), which also depends on n, can be thought of as a high frequency error 

caused by throwing away high frequency components.

We finish this section with a brief discussion about smoothing similar to the one made at 

the end of Section 5.2.8. First,

m  = i +  E  | E r v [/r] Z[n] J <Pv(x)
veC°N \ m  /

= 1+ X ) K l 7 v \ ^ - a l f 2 a y) + ^ [v ] M x)

= 1+ X I
veC°N
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where f v = bvlyv *(1 -  a 1 /2av)+ Z[v], v e C%. Now, it is not difficult to show that

E[ZM] = bv'Yv'fv', v e C%,
[v1=v

see equation (5) of [22]. (The analogous result for the continuous case is given in 

equation (5.28).) If we ignore all the terms in the sum except for the one with v ' e  C%, 

we have

E [Zfv,]] « bvyvf v, v e C%.

Hence, a possible estimator for f v would be b~ly~lZ[v]. However, as in Section 5.2.8, a 

smoothing factor (1 -  a l/2av)+ is introduced. This factor has the same effect here as it did 

in the continuous case in Section 5.2.8.

This time our problem is in essence that of estimating an array f v given observations

Z[V] = bv'7v'fvf + error
[v1=v

where the error has zero expected value, subject to the restriction that the / v  fall in some 

ellipsoid T . In this case there is a whole set of parameters to be estimated from a single 

observation. Setting f v to zero except for v e puts us back in the case when there is one 

parameter to be estimated from each observation. Further work would consider in detail ways in 

which the full set of possible estimators can be called into play, so that the information available 

can be used to give estimates of all the coefficients f v, not just the low-frequency ones. For now 

see Section 5.3.7, especially equations (5.49) and (5.50), where such an estimate is presented. 

This estimate minimizes a type of penalized least squares form given in equation (5.51).

5.2.13 Applying these results to the PET case

First, it is necessary to state the equivalence classes needed for the SVD property (5.16). The 

set A/am is defined to be {(j, k) : j,k>  0 J + k  < N - 2}. This set contains N(N - 1)/2 members, 

including (0,0), and is a possible set Cn defined in Section 5.2.11. Next, given any Vo = (jo, ko) 

in A/am, define j \  = N -  1 -  ko and k\ = N -  1 -  jo. Then the equivalence class of Vo consists 

of all indices of the form (jo + rj N,ko + n N ) or (ji + r;- N, ki + rkN) for nonnegative integers r;
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and r*. In addition, all pairs (j, k) with

j  + k = N  — I (mod N)

are added to the equivalence class of (0,0).

Finally (using [•] to denote integer part) we have

/

0
Y(jic) — <

- l [{i+k),N]smc{(2j+l)7r/2N}smc{(2k+l)7r/2N}

j  + k = N  — 1 (mod AO 

otherwise,

where sine 6 = sin 6! 0.

Johnstone and Silverman[22] investigate in a detailed fashion the minimax risk in the PET 

case. Their conclusions depend upon the relationship between N  and n, and there are three 

different cases to consider: the subcritical case, the critical case and the supercritical case. The 

interested reader is referred to Section (6.4) of [22] for further details.

5.3 The estimation of linear functionals

We now come to the important new work of this chapter, the estimation of linear functionals. 

Our treatment here is specific to the PET case. The results have, however, been generalized by 

using sophisticated techniques of functional analysis by Silverman[38] and others. We discuss 

such work in Section 5.5.

Let the density / ,  defined on brain space B, lie in the Hilbert space H. We now turn our 

attention to the estimation of linear functionals2 of f .  Let T be a linear functional. If

In vector notation this becomes 7(1) + £T/ ,  where £ = (T(<pv)) and f  = (f v), for v e Af°.

2 A l in e a r  f u n c t io n a l  is a linear operator T  with domain in a vector space X  and range in the scalar field K  of X \  

thus, T  : V (jT ) -»  K ,  where K  = R  if X  is real and K  = C  if X  is complex.

veJtf0

then the quantity of interest is

m = T ( D +  £  / „ m v).
v e A f 0
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5.3.1 Restriction on the linear functionals to be estimated

We shall see later, for example in Section 5.3.5 for the continuous case and Sections 5.3.7 

and 5.3.10 for the discrete case, that we need to impose some form of restriction on the class 

of linear functionals considered. In fact we insist that

(5-34)
V U V

where av was defined in equation (5.20) as

dy ~ #(/',£)

= (j+ X)a (k+ \)a 

for some a > 112. We now give two examples of such functionals.

Example 1. In this example we present a proposition that gives a sufficient, but not a necessary 

condition for a linear functional T to satisfy inequality (5.34). First, we state the definition of 

a bounded linear functional. A bounded linear functional T  is a bounded linear operator with 

range in the scalar field of the normed space X  in which the domain V(T) lies. That is, there 

exists a real number c such that for all /  e V(T), \T(f)\ < c ||/||. Furthermore, the norm ofT, 

||r ||,  is defined as

imi = sup sup |7X/)|.
f eV (T) \ {0 }  ll/ll feV(T),  ||/||=1

We shall henceforth refer to 11 * 11 as the supremum norm. Now, if T is a bounded linear functional 

it is not hard to show that

i m i = A > P < ~ -  (5-35)

Proposition 1 I f  T is a bounded linear functional, then T satisfies the inequality (5.34).

Proof. First, note that av = #(/,*) = (j+ l)a (k+ l)a > 1, Vv, with strict inequality for v*0. Thus, 

|£v|21 al < |£v|2, Vv. Immediately, we have

V V V
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from (5.35) since T is a bounded linear functional. □

Our second example shows that there are functionals satisfying (5.34) that are not bounded. 

Example 2. In this example we consider the case when a > 1. Let x be a fixed point in the 

unit circle. Consider the functional Tx(f)  = f(x), evaluation of the density f  at the point x. We 

shall establish in Section 6.2.2 that this is not a bounded linear functional with respect to the 

supremum norm. However, we have the following proposition.

Proposition 2 Fora > 1, the functional Tx(f)  = f(x) satisfies the inequality (5.34). In other 

words Ylv < °°-

Proof. We have that

kM*)l = I t o t e  0)1

= 1 0 '+ *+ 1)172^ 1̂ ) ^ * 8! 

=  0  +  * + l ) 1 / 2 l 4 + f ' ( r)l 

<  0  +  * + l ) 1/2

since |Z ^ '(r)l 2  1. Hence

Now

? 0 T
j  + k + 1

j u t  O + n ^ t t + l ) 2*

can be shown to converge if a > 1, and so

l^vWI2 ^
v

as required. □

We end this section by noting that

llvl2
v  “ I
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can itself be thought of as a norm for the functional T, \\T\\2 say.

5.3.2 The continuous case

First of all we are interested in the case when there is no discretization, i.e. the case when 

the ring of detectors is considered to be continuous and the line along which every emission 

occurs can be observed exactly. In Section 5.3.7 we consider the discrete case, and many of the 

techniques that we use in dealing with the continuous case are also employed there.

We now attempt to estimate the quantity T( 1 )+£T/  by the linear estimator/z+rTZ where the 

infinite dimensional vector (Z„), v e Af° is as defined in Section 5.2.8 above. In fact, we shall 

see in Section 5.3.4 below that the minimax estimator of n  is T(l)  and therefore the problem 

simplifies to the minimax estimation of %Tf  by rTZ. For now we shall refer to /z + t t Z as T(f).

5.3.3 Loss function

Here we follow the methodology and we use the notation of Section 5.2.7. Define the loss when 

T{f) is estimated by T(f), namely

M (T(jy,T(f))

to be the mean square error, specifically

ZpficnJ) -  T(f)f],

when the underlying density on brain space B is f  and the data upon which the calculation of 

the variance is based are drawn from Pf.  (On this occasion we do not integrate as T(f)  and 

T(f) are scalars.) This quantity can be shown, by a simple argument, to be equal to

Var^[7V)] + (EP/[7XJ)] -  T(f))2,

again ‘variance + squared bias’ . As a simplification we replace Vaipf[T(f)] by Vari|T(/)], 

where 1 = PI is the uniform density on D to get the surrogate mean square errorM*(T(f); T(J)). 

We now state a proposition
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Proposition 3 Suppose that f  (and hence g = P f) is bounded above and below away from zero. 

Then

inf f  < inf g <   < supg < sup j.
« M*(T(f)\ T(f)) D B

Proof. We need only establish the inner pair of inequalities as the outer pair follows immediately 

from the fact that supD g < sup# /  and inf# f  < inf# g, as we saw in Section 5.2.7. First recall 

the following two relationships:

M(T(jy,T(f))  = VmpflTW]  + (EPf[f(f)]  -  T(f ))2 

M ' d x f y  T(f)) = VxdT( f ) ]  + (EPfl f ( f ) ] - T ( f ) ) 2. (5.36)

In order to establish that info g -  M/M*  < sup# g, it is sufficient to show that

. ,  ^  Varp/[7X/)] ^
mf g < ----- - —  ■ < supg,
D VardrCf)] d

since the required inequalities follow from the fact that supD g > 1 and infog < 1.

It is easy to establish that

ntr

where K, corresponds to the i th observed pair and v(Y) = YneAf0 znVn(Y). Hence,

„  f'r7~c\ i Var [v(Y)]VaiPf[T(f)] = ------- ------ ,

where Y ~ Pf ,  and similarly

•» t pfTrn Var [v (H)]Vari[r(/)] = ------------- ,
n

where E ~ PI = 1. So we must show that

. r ^  Var[v(7)] ^ 
m fg < r < supg. 

d  Var [v (r.)] o
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We employ an argument similar to the one used in the Appendix of [21]. For the right hand 

inequality we argue as follows:

Var [v (I'M < E [(v (y )-E [v (S )])2]

= f  ( v (S -E [v (S )])2g(£)d\(Q  
J d

< supg f  ( v ( 0 - E [ v ( 3 )])2dX(Q 
d  Jd

= supg Var [v (H)], 
D

and, for the left hand inequality:

Var [v (H)] < E [(v (5) -  E [v (E)])2]

= f  (v (S -E [v (y )] )2<tt(|)
J d

= f (v(S-E[v(K)])2-i-«(S^(S
J d  g{%)

£ s u p f - )  f  (V(®-E{v(Y)]fg(Z)dA(Z)
d  \ g J  J d

1 Var [v (y)].
infDg

The divisions are valid since inf/) g > 0 by hypothesis. This completes the proof. □

The quantity V ar/[r(/)] = Vari[/z+rTZ] = Vari[rTZ] = rTVari[Z]r = (1 I n)zTz. Moreover, 

EPf[T(f)]-T(f)  = EPf\M+TTZ ) - (T ( l )+ ? f )  = Ul-T(l))+zTEf { Z \ - ? f  = =

(ji -  T(l)) +  (f  — 6 r)T/ ,  a measure of bias. If we combine these two results we find that the 

surrogate mean square error can be written as

M \fij)- ,T(S)) = i r Tr+  (O t-T (l)) +  ( | - B r ) T/ ) 2 (5.37)

where, for example, z  = (zv), v e N °.

As before we adopt a minimax approach. For clarity of notation we rewrite the loss function
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as

and we seek

inf sup 1), /),
/eJF

where T  is the ellipsoid defined in equation (5.19) above, viewed from the point of view of the 

vector /  where /  = ( / v), v e N°:

r = { f : f TA f < C 2}, 

where the matrix A is redefined accordingly.

53.4 Minimax estimation of T( 1) and resulting simplifications

In this section we show that the minimax estimator of il is T(l), as we would hope. First, we 

recall from equation (5.37) and the definition of M*(ji, x; 7(1), / )  above that the surrogate mean 

square error takes the form

M 'O i  t ; T ( 1 ) , / )  =  V t +  ( ( M - T ( l »  +  ( i - B T ) Tf ) 2 .

Now reparametrize by setting ( j i -T ( l) )  equal to K  to get

M \ K , r ; f ) = - r ' CT + (K + (4-B T )Tf ) 1. 
n

This gives

inf sup M*{K, x ; / )  = inf < -  xTx+ sup [(Jf + (g— Bx)Jf )2
K , r  f e j r  K , r  [ n  f e j r  L

We now show that the minimax estimator of K  is 0. First we remark that, because of the square 

and the fact that /  e T  if and only if - f  e T ,  we can restrict our attention to the infimum 

over K > 0. For arbitrary K  > 0 consider

sup [ ( t f + d - B r ) 7/ ) 2] = (5.38)
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say, where f* e T . Now if (%-Bz)Tf* < 0, we can replace f* in (5.38) by - /*  e T  to get

We note

( K - i g - B t f f ?  > (tf +  ( f - B r ) Tf  f

with strict equality in die case K > 0. This is a contradiction to the fact that the supremum is 

attained at f* for non-zero K. So we must have (£ -  Bz)Tf* > 0, except when K = 0.

Now assume that

M t { l A + (K + (! - Br)Tf f }  =

i r * V  + ( r  + ( |-B T *)T/*)2,n

where the infimum is achieved at K* > 0 and t*. If K* > 0, we have from the above argument 

that

( | - B r ' ) T/ - >0.

However, in this case it is easy to see that a lower value of the infimum could be achieved by 

taking AT* = 0. Thus, we conclude that K* = 0.

This argument allows us to conclude that the minimax estimator of [i, namely fi*, is T(l). 

Thus

M , U i ' , T - , T ( \ ) , f ) =  -  t t t +  ( ( {  -  B t )  t / ) 2, 
n

and so from now on we consider

M '(T - , f )= -T Tt+ ((Z -B x )Tf ) 2. (5.39)
n
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5.3.5 The minimax estimator and the minimax risk

We are now in a position to present the main theorem of this section.

(5.40)

(5.41)

sup M*(t ; / )  = - tt t +  sup ( ( | - B t ) t / ) 2
/ € J F  n  f :f A f < &

= - tt t + sup ((£-BT)Tf ) 2, 
n

the sup occurring on the boundary of T  because of the following argument. Say, for a 

contradiction that the supremum is achieved by a vector f* such that f*1 Af* = D2 < C2. 

The value of the supremum is, of course, ((£ - Bx)Tf*)2. Now consider the vector

and note that this vector lies on the boundary of the ellipsoid since

f W  =

Theorem 4 The minimax estimator t  is given by

( qlK £v \

T =

± +C2-X \ n + u n2 i \  av /

This yields a minimax risk of

E  I — '-
"  vzM°a' ' 1  + 0 ° *

n at

where f if  is the least favourable function and takes the form

f lf(t ) — —C
% /

\ \
52v'eAf° { ( av' ) /  ( n + ^1 I by'

Proof. First we consider the sup over /  e T .
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= c 2.

Note that

( ( Z - B r f f ' f  = ((« -B r)T| f ) 2

= g ( ( | - B 7)Tr ) 2

> (G?-Br)T/*)2,

since C2 / D2 > 1. This gives the required contradiction since the last expression is the value of 

the supremum. Next we set y  = A112 f  to obtain

supM *(r;/) = - r Tr+  sup ((£ - Br)TA_1/2y)2
f  €  T  n y:yTy=C2

= -  tt t +  sup (dTy)2
n y.y ŷ^C2

= -  tt t +  sup (dTy)2,
n )-:||>||2=<?

where d = A-1/2( |  -  Bt). N o w ,  by the Cauchy-Schwarz inequality for inner products ([1], 

page 294), (dTy)2 = (d * y)2 < ||d||2||y||2 = IMI^C2, with equality if and only if y = Xd, 

where X -  C! ||d|| to ensure that ||y||2 = C2. By substituting back for d in y -  Cdl\\d\\, 

we immediately get an expression for the least favourable / ,  / l f ,  as a function of (the as yet 

unknown) t  :

f  , , r t - + C A - \ S - B t)
TiA V  - | | A-1/2(^_B t)||-

Hence

sup M*(t ; / )  = -  t t t+  C2(£ -  Bt)t A~1 (g -  Bt) 
f e f  n

= -  t t t +  C2[£A-1£ -  2 tt BA_1|  + t t BA~1B t].  
n
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Next we consider the inf over x. First we differentiate with respect to x :

supM *(x;fLF) = - x + C 2l-2BA~l$+2BA-lB x l
dx

Now we set d / dx supy 6 ̂  M*(x; / l f )  = 0 to get (C?BA lB + I /n )x =  C2BA l%, and hence

x= (C 2BA-1B + I l n T lCzBA-l$- 1  n2 d / 4 - 1  j

which can easily be shown to yield a minimum. Fortunately, the matrix C?BA~lB + 1 In is 

diagonal and therefore its inverse is easy to find,

Substituting for the diagonal matrices A and B, and for the vector we get

X -

\ n 2 /lv f  ve AT0

Moreover, the least favourable function / lf(t) can now be easily evaluated as

/  \

f L F ( t ) = ± C

\ \ / /e Af°

(The symmetry of the least favourable function is discussed in Section 5.3.11.) Next, a long 

but standard calculation enables us to evaluate infT supy 6 jr M*(x; f ) = M*(x; f u )  as:

n *
n veAf°a'' i  + C1^  

n at

(5.42)

equation (5.40) above. Thus the proof is complete. □

In the above proof we must, however, check that ||d|| = ||J(r)|| is finite. From this, the finite 

nature of the minimax risk, for example, follows. An easy computation gives that

2 _

185



the expression which appears in the denominator of equation (5.41). Hence we have ||</|| is 

finite if and only if

is finite. Now

and hence

1 1
n at n

<n2.

Therefore,

a.

* ♦ < 4

^ m 2.

The finite nature of ||d|| now follows from (5.34).

Finally, we remark that the minimax risk is a decreasing function of n, the number of 

emissions, as we should hope. To see this just rewrite equation (5.40) for the minimax risk 

as

< * £  S — L -

a t

and note that M *(t ; / lf) decreases, as n increases.

53.6 An important observation

Our estimate T(f) -  t TZ  (we drop the T( 1) term) can easily be rewritten as

T ( f )  =

T

 ̂ r^-hv.7 ^V /

av

i  + c * ^  
V" a l l
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where

/  =

=  Vs  

= n h

(5.43)

Moreover, the vector ^  (and hence the function f )  can be seen not to depend upon the 

functional T. Also, the following lemma holds

Lemma 4 f  minimizes

where in fact B f  = E [Z].

Proof. First, recall that A and B are diagonal matrices. A simple calculation yields that

B Z - B 2f - - \ - A f  = Q.
J nC 2 J

Now set /  = /  + g.

Z  -  B f]  + ^ p f A f  =

{ Z -  B f - B g } J { Z - B f - B g }  + ~ ( t + g ) TA (f+ g)

{ Z - B } } t { Z - B } }  + ~ ' f A } + g TB2g+ - L g TAg 
nC* n Lr

2 ( B Z - B ^ f - ^ A f f g .n Cl

The last term disappears, leaving us with

{ Z - B f } T{ Z - B f }  + ^ p f A f  =

{ Z - B}}J { Z - B ) }  + - ^ F a }  +
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a quantity that is minimized by setting g = 0. This completes the proof. (An alternative proof 

can be obtained by differentiation with respect to / .)  □

We make two remarks about Lemma 4. First, }  can be seen to minimize a penalized least 

squares form. Secondly, the penalty term can be interpreted as follows. Because

av = d(j,k) = (/ + (k + l)a,

the high frequency terms in /  make a large contribution to the term f TA f,  and so this penalty 

term can be thought of as penalizing rough /s . Moreover, the higher the value of C1 the less the 

effect of the penalty term. This ties in with C2 controlling the size of the ellipsoid that defines 

the class T .

5.3.7 The discrete case

One difference between the continuous case and discrete case is the fact that the vector of data Z 

is no longer infinitely long, but has length r{N). We shall write it as Z. Again the idea is to 

estimate T(\)+%Jf  by where rthis time is a vector of length r(N). Almost exactly the

same analysis goes through as described in Section 5.3.5.

We use the same definitions here as we did in Section 5.3.3 for the mean square error. 

This definition leads to the two expressions given in equation (5.36) for M(T(f); T (f)) and 

T(f)), the surrogate mean square error. Again we can state a proposition that means 

that order of magnitude statements made about one error will also be true for the other. This 

proposition is identical in form to Proposition 3, although its proof is a little different.

Proposition 4 Suppose that f  (and hence g = Pf) is bounded above and below away from zero. 

Then

■ T(f)) ^  „  ,
inf f  < inf e s    s  sup? s  supf
* D T(f)) d  b

Proof. Again, we consider only the inner pair of inequalities. As we have seen in the proof of 

Proposition 3 for example, the result will follow if we can show

. r  ^  VarP/[7X?)] ^
mf g < _______   < supg.

V a r ^ / ) ]  d
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The idea of the proof comes from [22] and was outlined in Section 5.2.12. The estimator

T(f) =A+
M

can be shown to equal

t f

n i=i

where t(j) = t M X [ n ] j ,  h  = j(Yi)  is a random variable indicating the bin into 

which Yi falls, and M  = Y l j = T  n j  1S a random variable with mean n. Thus, Vaipf[T(f)] = 

(1 In2)Vaipf[T,¥\ *CA')L It can be shown that Var/>/[£^i r(7,)] = n fDf(j(y))  g(y)dA(y), 

where g = Pf. Immediately, we have

Varf / [7(/)] = X-  J?(j(y))g(y)dXI,y)

< supg -  f  i2 (j{y)) dX{y) 
d  n  J d

= supg Vari[T(/)].
D

Also,

Var, [r(/)] = i  /  t2(j(y))dX(y) 
n Jd

= - [ ?  (/(y)) -rr£(y) dx (y) n Jd giy)

< sup ( - }  -  f  t2 (j(y)) g(y)dl(y) 
d  \ g J  n J d

1 Var/[7X/)].
infDg

The divisions are valid since inf/> g > 0 by hypothesis. This completes the proof. □

We now recall a few definitions: A and B are the diagonal matrices

A = diag (aji ,a21, ..., aJ2, a2?, a \ ,  a2rW, a2rW, a2rw , ..•)2 ^ ^ 2 ^ 3  Vj V2 V3
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and

The matrix T, which was discussed in Section 5.2.11, has r(N) rows:

/ \

Since E [rTZ] = rTE [Z] = TTTB f  (see equation (5) of [22]), we can now formulate an 

expression for M*(z; /) ,  analogous to equation (5.37):

n 1 £[Vl ] [V2] • We now introduce three quantities which we will find very useful for writing down 

the results of this section. For k = 1........r(N), we let

In Section 5.3.10 we establish that these three quantities are finite. In the case of at  and % 

this involves using the inequality given in (5.34) that imposes a restriction on the class of 

linear functionals considered. We point out that I runs over 2 ,... when k = 1, and 1,2,... 

for k = 2 ,.. . ,  r(N).

An argument similar to the proof of the above theorem yields

A T (r;/)=  - r Tr + ( ( | - BrTr)T/)2. 
n

(5.44)

using the result given on page 7 of Johnstone and Silverman[22] that Vari[Z{Vl], Z[V2j] =

(5.45)

(5.46)
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This t  yields a minimax risk M *(t; f u )  of

C2£ rf _ * _ + c / f  ( ° j h z £ \  (547)
» k V n + o h ) '  ( 5 - 7 )

and a least favourable function f u  where

™  = ( 5 ' 4 8 )

the explicit form of which is quite complicated. (The symmetry of the least favourable function

is discussed in Section 5.3.11.)

The second term of equation (5.47) can be shown to be positive by means of the Cauchy- 

Schwartz inequality. Moreover, by writing equation (5.47) as

r(N) f  r 2 1

£ + c *a J

we can easily see that the minimax risk ) is a decreasing function of the expected

number of observations n, as we would hope. The reader is invited to compare the first term 

of expression (5.47) with the minimax risk for the continuous case given in (5.40). It can be 

shown that the expression given in (5.47) tends to the expression given in (5.40) from above as 

N —> ».

Again it is possible to write T(f) = T(f) where the function /  is independent of the 

functional T and is represented by the vector f .  First, we must define the quantity p(m\, m2) 

where m\ = 1 ,..., r(N). Here m2 = 2 ,... if mi = 1, and m2 = 1 ,2 ,... if mi > 1, and the 

definition is:

b y mi
rQ. m7 m2 rr

p(m h m2)=  — :— ^ ------- • (5.49)
n +

Then /  takes the following form

(p(l> 2),p(l, 3),... ,p(2, l ) , p(2, 2 ) , •  -,p(r(N), l),p(r(N), 2 ),...) . (5.50)
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We can now state a result about f  that is analogous to Lemma 4: /  minimizes

{ z -  ra/}T{ z -r a /}  + (5.51)

where in fact TBf = E [Z]. The proof, which follows the form of the one used above, relies on 

the fact that

which can be established by a simple, but tedious calculation. A similar remark can be made 

here as was made after the proof of Lemma 4 in Section 5.3.6 about the interpretation of this

estimate for all the coefficients f v, and not just the low frequency ones; see Section 5.2.12.

53.8 The limit of the minimax risks as n —> «>

It is interesting to consider the limit of the minimax risk as the expected number of observations 

n —> « . In the continuous case the minimax risk (5.40) clearly tends to zero as n —» In the 

case when N  is finite, the same is true for the first term of equation (5.47). However, the second 

term tends to

a constant which can be shown to be greater that 0 (again by using the Cauchy-Schwartz

53.9 Doubling the number of detectors

In this section we consider the effect of doubling the number of detectors N  from M  to 2M. We 

assume that the expected number of emissions n is fixed, although possibly infinite, throughout 

this section. First, however, we must introduce some further notation. Let Zr^  be the vector of

Zr(M) = Xr(M)Zr(M) where Xr(M) is the r(Af) x r(M ) orthogonal matrix (X-1 = XT) representing 

the r (M ) orthonormal vectors X[v] with respect to the standard basis of the space Rr(Af). Clearly, 

the vector of bin counts Zr(M) can be obtained from the vector of bin counts Zr^M) in a simple

b y t z  - B r Tr  b } -  - L a} = o,
n Cl

penalized least squares form and about the role of C2. We note also that this }  provides an

(5.52)

inequality). We shall discuss this further with the aid of a numerical example in Section 6.3.2.

normalized bin counts when there are M  detectors. We write Zr^  = £2[v] Zr(M)[v\X[v]- Hence
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way by multiplying Zr^M) by an r(M) x r(2M) matrix A:

Zr(M) = A Z r(2M)

since the vector Zr(2M) contains all the information of Zr(M) split up (and additional information 

that does not contribute to Zr(M)> as will become clear below). Consider, for example the 

case when M -  4. In this case we shall refer to the detectors as 1,2, 3,4. Now split each 

detector into two, giving the following 8 detectors: \\, I2,2i, 22, 3i, 32.. 4i, 42. When N  = 4 

there are N (N -  l ) /2  = 4 .3 /2  = 6 bins (or tubes) defined by these detectors, which we shall 

refer to as (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), whereas, when N  = 8 there are 8.7/2 = 28 

bins. Table 5.2, in which (i,j) denotes the bin defined by the detectors i and j, i *  j, shows the 

relationship between the (information given by the) bins in the N  = 8 case and the bins in the 

N = 4 case.

Bins when N  = 2M Bins when N  = M

(11,2 i )(1 i,2 2)(12, 20(12,22) (1,2)

( l i ,3 i ) ( l i ,  32)(12, 31) (12, 32) 0 ,3 )

(1i,4 i )(1 i,42)(12, 40(12,42) 0 ,4 )

(21,3 1)(21,3 2)(22,3 i)(22,32) (2,3)

(21,40(2!, 42) (22,40(22,42) (2,4)

(3i, 4 0  (3i, 40(32,40(32,42) (3,4)

Table 5.2: An example of the relationship between the bins when the number of detectors N  is 

doubled from M to 2M, M  = 4

The information in the following 4 (= AT) detectors is not used in reconstructing Zr(4) 

from Zr(8>: (li, I2). (2i, 22), (3i, 32), (4i, 4 2 ), each of these 4 tubes corresponding to a single 

detector in the N  = 4 case. This gives us that the r(8) x r(4) matrix A  has 4 (= M) completely 

zero columns. In general we have

Zr (M)  —  X f ( M )  Zr(M)
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-  X J(Af) ^  Z r (2M )

=  X J(Af)  - 4  X r  (2M )  % r (2M)

= D Z r(2M) (5.53)

where D is an r(M) x r(2M) matrix of rank r(M).

Let %{N) be the class of estimators that we consider in this chapter, where %(N) = 

(//)}. It is easy to see that

%(M) C %{2M)>

for

= {rr(M)Zr(M)} = {Tj(Af)DZr(2A/)} C {rJ(2A/)Zr(2M)}-

Hence,

_  inf sup M*(T(f); T (f)) < _ in f  sup M*(T(f); T(/)),
T(J)eTr(2 M ) f T i f ) e T r(M)f e J -

where JT is some set in which the function f  is restricted. Thus, the minimax risk for N  = 2M 

detectors is less than the minimax risk for N = M  detectors.

The above monotonicity property does not, however, hold in general, i.e. the minimax risk 

for N  -  mi detectors is not necessarily less than the minimax risk for N  = m2 detectors, if 

mi > m2 . We illustrate this feature by means of the Figure 5.1 which shows a graph of the 

logarithm of the limit of the minimax risk as n —» <*> (as discussed in Section 5.3.8) for the 

functional

T(f) = A fe c M ' (5 54)
JDisc ^

for various numbers of detectors N, where the disc that is considered has centre the origin of 

the unit circle and radius 0.1. We shall meet this functional again in detail in Chapter 6. In 

this work we consider only even values of N, as do Johnstone and Silverman in [22] (see page 

26). In the example presented in Figure 5.1 a = 1.0 and C = y/2. We indicate by dots on 

the graph the logarithm of limit of the minimax risk when N  = 4, 8,16,32,64,128. The overall

194



o

0 20 40 60 80 100 120

Number of detectors N (even) 
Dots placed at N=4,8,16,32.64,128

Figure 5.1: The limit o f the minimax error as n —> as a function o fN

appearance is o f a function that is not monotonic. However, examination of the dots only shows 

the monotonicity discussed in this section.

5.3.10 More on a k, f a  and %

The first part o f this section is devoted to an attempt to establish the finite nature o f the three

quantities defined in (5.45) o f Section 5.3.7: ak, fa  and yk, k = 1....... r(N).  The second part

outlines an attempt to consider the minimax risk as a power series in 1 In.  Unfortunately, this 

attempt is seen to be unsuccessful.

First, we establish the finiteness of or*, fa  and yk, k = , r (AO.

The quantity ak is easy to deal with. For

M  =

* £
2

/ “ v*
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~  ^  CL2v v

< 00

by inequality (5.34).

Before we can establish the finiteness of /?*, we must consider y2. From the definition we 

immediately have that

r t  = r<m

= sine2 {(2; + 1)mI2N}  sine2{(2* +1 / 22V}.

We can easily get an upper bound on sine2#, for real 6, by noting that

sinc20 = sin26Id 2 <1 Id2.

Hence,

yi  = yfa)

^  {IN)2 {2N)2
jc2{2j + 1)2 n2{2k + 1 )2 

\6Na

7t*{2j+ \)2{2k+ l)2’

Now

m  = pk

b \ y \
= E 4 1

/

*  E
b2vyv2

,2

z* ^  1) (2/ + 1)2 (2* + 1)2

(5.55)
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16N4
x* f a  (j + k + 1) (j +1)2“ (* ■+ I)2" (2y + 1)2 (2k+ I fE tI (5.56)

where the second inequality follows from inequality (5.55) and the last equality follows from 

the definitions (5.17) and (5.20). The final bound given in (5.56) is a quantity that certainly 

converges for positive values of a.

Finally, we consider %. We argue as follows:

\n\ = E - " 9

v fcy»ly^llgy*l

I

*  E l/vl llv

4N2 y ,

*2 m aw (2 j+ l){2k+ l)

since b^k) < 1

by inequality (5.55)

4JV2 ^  11^)1
It2  ̂ Q271 m  am

4A^ v l|v| 
*2 2 ^  „2at

Hence, if we can establish that

jlvj
V al

(5.57)

is finite, we have the desired result. To do this we split the sum given in expression (5.57) into 

two parts:

E llvi _  ^  isvi
/ j2 2  ^  / j2  2 —y /j2|£,|<1 v:|̂ v|>l “ v

E  E  * *
15

<  E 1 + E ' « v |2

l&l &
V
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the first term of which can be shown to be finite if a > 1 /2  and the second term of which is

finite by the assumption given in equation (5.34).

We now move on to the second part of this section in which we consider the minimax risk 

as a power series in I In. However, we shall see that the the power series that we produce 

are meaningless as the coefficients grow extremely rapidly. This analysis does, however, 

provide us with some confirmation that the limit as n —> °° of (5.47) is the expression given by 

equation (5.52). We proceed in a standard way using the fact that

k=0

First, we consider the power series for the minimax risk when there are a finite number N  of 

detectors, as given in equation (5.47).

We proceed by considering the expansion of

by means of (5.58). It is easy to see that the expansion is valid if n > 1 / C2/?*, k = 1 ,..., r(N). 

Hence, for fixed N, we only have a finite number of conditions to check, and we can easily 

ensure that they all hold by taking n > max{l / C?Pk> k = 1 ,..., r(N)}. The power series then 

becomes

It should be pointed out at this stage that, at least for the example considered in Section 6.3.2 

below, the coefficients of 11 nl+l in the square brackets of expression (5.59)

increase very rapidly (although remaining finite for fixed N , as the sum is of a finite number of 

terms) with I as Table 5.3 of approximate coefficients when the functional under consideration 

is given by equation (5.54) shows. The constant term, i.e. the term that is independent of n,

(1 +X)-1 = £ > ! ) * / ,  M < 1. (5.58)
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N constant
n

1
7

1
“In

32 6.8 x 10-6 250 -2.2 x 108 4.9 x 1014

64 4.4 xlO "7 260 -6.2 x 109 4.5 x 1017

128 1.9 xlO "8 270 -1.2 x lO 11 2.9 x lO 20

256 7.2 x lO "10 300 -2.4  x lO 12 1.4 x lO 23

512 2.3 x 10"11 350 -7.6 x lO 13 1.2 x 1026

1024 1.5 x 10"13 430 -5.7 x 1015 4.3 x 1029

Table 5.3: Coefficients for different values o fN

is the value of the minimax risk, when n = as given by equation (5.52) and discussed in 

Section 5.3.8.

The power series for the continuous case can be written as

£(-n'
1=0

v  & ( a2y V
^  b i X & b l )
a v „ v: —’2 l2

_J___ , s r  *
nl+l n ^

(5.60)
tt + C2^

ensuring convergence of the expansions used in the first term. The second term of equation 

(5.60) can be rewritten as

* £ I2 ai 1 + £ 2 ^ 5
_  < e !  y  l id !„2 •at

(5.61)

0V s 
C“ K

Since we assume that l̂ vl2 / a2 converges then the second term of equation (5.60) is bounded

above by the tail of a convergent series, and so can be made arbitrarily small by taking n 

sufficiently large. Hence, for large n, fur) may be thought of as the following power
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series, which has a zero constant term:

1—0

1

It should be noted that as n *»

£1 j  al  \
u2 I r2A,2 1

diverges, although the minimax risk itself (5.40) tends to zero. We shall consider these power 

series expansions again in Section 6.3.2.

53.11 Radial symmetry of the least favourable function

The least favourable function fu?(r, 0), represented by the vector fu>  takes the form

We say that this function is radially symmetric if it is independent of 0, and we state the 

following proposition:

Proposition 5 If(fu?)(j,k) = 0 whenever j *  1c then the least favourable function fur is radially 

symmetric.

Proof. It is easy to see that

fLF(n 9) = 5Z (/lf)v  0).
V

(j,k) e Af'

= </>(j,f)(r, 9)
J>0

if  (fLF)(j,k) = o  when; *  k. Since
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then

4Hlj>(r,8) = i2 j+ l )u 2 Z%j(r),

which is independent of 0. □
The next proposition gives us a sufficient condition for {fLF)(j,k) = 0 whenever j* k ,  in terms of 

all the Z(jik), j  *  k, where f a k) = T(<f>u>k)).

Proposition 6 In both the discrete case (N finite) and the continuous case (N infinite),

Proof. The proof in the continuous case is easy since (Judij .k)  x  4(j,k) by equation (5.41), and 

= 0 by hypothesis. The discrete case is, however, a little more difficult. Let j  and k , j  *  k, 

both be fixed and consider v = (j, k). Let £ be the equivalence class which contains v. A simple 

piece of algebra from equation (5.48) shows that

(compare equation (5.46)). By hypothesis £(/,*) = 0 since j  k. Hence (fudtj.k) x  7{j,k) /(£)• 

First, Y(j'k) = 0 i f  j  + k = N -  1 (mod N ), and so we can exclude this case from possible values 

of (j, k), leaving us with only two possibilities: Section 5.2.13 tells us that either j  = jo + rjN  

and k = &o + r* N  for some (jo, ko) e Afo-i and for some r}, r* >0, or j  = N -  l -  ko + rjN  

and k = N - l - j o  + ricN  again for some (jo, ko) € fifjq-1  and for some rj, r* > 0. Given the 

(jo, ko) that defines the equivalence class £, we must now show that it is not possible for any 

pair j ', k', such that ( j ', k ')  e £, to be equal. We proceed by contradiction. Again there are 

two cases to consider. First, assume that j ' = k ' where (j ',&') = (jo + r/N, ko + rik'N) for some 

rf, n  > 0. Then immediately jo and ko differ by a multiple of N  and so can not be in Mn-\ . 

Secondly, assume that j ' = k ' where ( j ', k ') = (N -  1 -  fco + r/N, N —l —jo + r^N) and observe 

that exactly the same reasoning applies. In both cases we obtain the required contradiction.

£(/,*) = 0 whenever j ^ k = $  (fLF)(j,k) = 0 whenever j  ±  k.

(flF)(j,k)  00 Z(j,k) ~  b(jtk) 7(j,k) f ( £ )

where

m  =
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Therefore, = 0, W  e S and so the proof is complete. □
We shall see in Sections 6.2.4 and 6.2.5 some general examples of when the least favourable 

function is symmetric. In Section 6.3.5 we give some particular examples of symmetric least 

favourable functions, as well as some asymmetric least favourable functions.

5.4 Other work on estimating linear functionals of a PET image

In this section we outline the work of Bickel and Ritov[5]. This is the only research known to 

us that addresses the problem of estimating linear functionals of a PET image, apart from our 

own work. We are very grateftil to the authors of the paper for many helpful discussions and 

communications.

5.4.1 The work of Bickel and Ritov

One of the main points of [5] is that, in order to estimate a bounded linear functional, one does 

not need to go through the intermediate step of estimating the image. This result is, in a certain 

sense, contrary to what we found (see Sections 5.3.6 and 5.3.7), although the approach of [5] 

is not a minimax one. Bickel and Ritov[5] claim that a good image is oversmoothed for the 

estimation of particular properties of the image. We discuss this further in Section 5.4.3 below.

The treatment given in the paper is very technical, and we do not attempt to reproduce the 

details here. Rather, we try to outline the general approach. The authors assume that there are D 

detectors and that is the number of counts in the (i, j ) th pair of detectors, where 1 < i < j  < D, 

and n is the expected number of counts. After a series of lemmas, which hold at least in the case 

when the image consists of a set of distinct uniform intensity discs and when the functional of 

interest satisfies certain smoothness assumptions, the authors arrive at what they refer to as the 

fundamental expression in which they establish the equality of

where VF(/) is the functional of interest and is defined in equation (5.62). The reader is referred

Y i N ij{ j ~ )  1. t)  dt d$

and
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to [5] for the precise definition of h: for the purposes of this discussion it suffices to say that h 

depends only upon the functional of interest.

The fundamental expression leads the authors to propose the estimator yr, which is defined

as

We note that these estimators are linear in the data.

The authors repeat the analysis outlined above under slightly stronger assumptions about

yr and yrc. They state that they expect the debiasing to increase the variance or the estimator,

estimators that they have developed. First we give their definition of a linear functional VF(/):

For the purposes of the simulation study the functional considered was the Gaussian

where (xp, yp) is the centre. In [34] it is stated that one reason for selecting this Gaussian 

functional is that, although it is smoother than the indicator of a circle, it is quite close to the 

indicator. The phantom used was made up of a main circle of radius 1.0 and density 1.0, and 4 

smaller circles of radius 0.1, positioned on the x  and y  axis, with centres at a distance 0.5 from 

centre of the main circle. The densities in these 4 smaller circles was 0.0,2.0,0.5 and 1.5.

The Gaussian functional given in equation (5.63) is applied at 9 points (xp, yp) over the unit 

circle, shown in Figure 2 of Bickel and Ritov[5], and 20 points equally spaced on the x  axis,

YlNij{j~) J  Kf, 4)dfdb

and to further propose a debiased yr, yrc\

the set of densities to produce yr and its debiased counterpart yrc, which are similar in form to

A A
and therefore study the behaviour of yr and yrc by simulation.

5.4.2 Simulation study

The authors conduct a small simulation study in order to check the actual behaviour of the

W )  = j j  f(x,y)'¥(x,y)dxdy. (5.62)

¥ g ( x , y; x p , y p )  =  ( 2k  o 2) 1 exp “  xp?  + O' -  » ) 2 )  * (5-63)
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namely (xp, yp) = 0.035 i, where i = 1,.. . ,  20. The results for the latter 20 points are presented 

by means of a graph, whereas the results for the former 9 are given in two tables. In both cases 

they consider 500 samples, each of 105 observations.

For the 20 points along the x axis the authors consider 256 detectors, and take o  -  0.01. The 

graph indicates that away from the centre of the unit circle both the original estimator and the 

bias-corrected estimator perform reasonably well. The bias-correction appears in all cases to 

reduce both variance and bias, and seems particularly effective at points away from the centre. 

However, near the centre of the unit circle (and indeed at the centre itself, which is one of the 9 

points mentioned above) the values of both estimators were far off. Indeed, they were always 

negative. In [34] it is stated that the authors do not understand why this occurs.

In their two tables, the authors present the results for 8 out of the 9 points that they 

considered: the point (0,0) is excluded from these tables as the estimate obtained there was 

always so bad. For the first table there are 256 detectors and o  -  0.008, whereas for the second 

table there are 64 detectors and o  = 0.08. In the former case, there is very little difference 

between the two estimators from the point of view of bias, although this time yrc seems to be 

better at points closer to the centre, whereas yr seems to be better at further points. Surprisingly, 

the standard deviation of the ‘debiased’ estimator is 70% lower than the standard deviation of ijr. 

In the latter case, the results are essentially the same. According to the authors, the difference 

between the two situations is that with 64 detectors we need a much lower sample size to make 

the bias and the standard deviation comparable.

5.43 Estimating the image density

The authors propose a method of estimating the overall density of the image. The general idea

is to divide the image up into square pixels of sides p  and to estimate the average intensity per
x *

pixel. As before this leads to an estimate /  and its debiased counterpart f c.

In order to make a comparison with the work of Johnstone and Silverman[21], the authors 

consider the case when p —» 0 and D = ©o (no discretization). They show that, under certain 

conditions on the smoothness of the density, if pn = 0(n~ll2p+3), then the mean integrated 

square error is 0(n~2pl2pVi). This rate is faster than the 0{n~plpJrl) of [21]. However, the 

authors point out that there are differences between their approach and that of [21 ]: for example, 

it appears that the densities in [5] are assumed to belong to a smoothness class that is a subspace 

of the smoothness class used in [21].
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Finally, the authors suppose that they have an estimate f Pn of the entire image and ask 

whether is a good estimate of the functional *F(/). (In [34] the definition of a good

estimator is given. It seems that a good estimator is one that achieves the rate bound.) The 

answer to this question is given as follows:

• l fp  = pn is chosen to obtain the optimal rate n~2p,2p+3, then the answer to the question is 

NO.

• If

i f < ~s/n

we can apply the functional to the reconstructed image without significantly increasing 

the bias. The image here is undersmoothed.

In [34] it is suggested that in order to obtain a good estimator of the picture as a whole, in the 

La sense, say, more smoothing than would be needed to estimate a functional is required (see 

Section 5.4.1 also). Thus, estimating the functional from a reasonable estimate of the whole 

image may introduce unnecessary bias.

5.5 Extensions by Silverman and others

Silverman[38] considers the following generalization of the problem we have discussed. 

Suppose that H  is a Hilbert space of functions. Write f * g  for the inner product of two functions 

in H,  and write ||/ || for the Hilbert norm 12. Suppose that Y\, Y2, . . . ,Y n are observations 

of bounded linear functionals r}i(f), V i i f ) , ... tj„(/), such that E [7,] = T]i{f) and Var[7,] = /. 

(Any other fixed covariance structure can be reduced to this case by applying an appropriate 

linear transformation to both the 7, and the 77,•(/).) Write 7  for the n-vector with elements 7, 

and 77 (/)  for the n-vector of functionals 77,-(/). Assume that the functional T  is a bounded linear 

functional with respect to the Hilbert space norm and consider linear estimators of T(f)  of the 

form wt 7 for weight vectors w. Define T  to be the unit ball in H:

T  = ll/ll S I} .

Silverman[38] explains that any class of the form ||/ | |2 < d 1 can be reduced to this form by 

rescaling the inner prduct by a factor of C~2, and, moreover, general ellipsoidal conditions on
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f  are coped with by working within the function space equipped with the norm generated by 

the quadratic form defining the ellipsoid. Silverman now makes two definitions. The first is 

that the estimator wTY will be said to be linear minimax for estimating T if and only if w is the 

minimiser over vectors w of

sup E {T(f) -  wJ Y}2 = sup {T(f) -  WTV(J)}2 + wTw. (5.64)
f e f  f e T

The second definition is that f  is a penalized least squares estimator o f f  if

f  minimises {Y -  q ( f ) }T{Y — tj(f ) }  + | | / | |2 over /  e H, (5.65)

where 11/| |2 can be thought of as a measure of the smoothness of the function / .  The main result 

of Silverman[38] is given in the following theorem:

Theorem 5 (SHverman[38], Theorem 1) Assume that T is a bounded linear functional with 

respect to the norm || • ||. The linear minimax estimator of T(f) will be T(f), where f  is the 

penalized least squares estimator o f f  as defined in (5.65).

We briefly outline the proof used by Silverman[38]. First, let T denote the element of H  that 

is the representer of the bounded linear functional T: i.e. T(f) = f  * /  for all /  in H.  Similarly 

let f)i g Ti be the representer of 77,, and let fj be the vector of such representers. Let H  be the 

matrix with elements 77, * fjj so that

H = q * f j J.

First, Silverman[38] established that the penalized least squares estimator defined in 

equation (5.65) is given by

7 = YT(i+H)-'n.

Next he shows that

w = (I + H)~l7i* T.
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Finally, he notes that

T(f) = wt Y = Yt w = YT(I + H)~1fl* T = f* T =  T(}).

Silverman[38] goes on to extend the results under mild assumptions to seminorms, motivating 

this by saying that the appropriate measure of smoothness is often not a norm on the function 

space but a seminorm. Consider, for example, functions of a single variable on an interval I. A 

very common measure of the smoothness of a function G is fjg "(t)2 dt, and this is zero for any 

linear function. Hence, if we define || • ||5 by

we have a seminorm. For this example rj i(g)  =  g { u )  for real points r, and the assumptions 

referred to hold if there are at least two distinct f,-s.

Other workers have independently produced similar results. Speckman[41] considers the 

problem in which Y = Tf+ e  is observed, where f  belongs to a Hilbert space and T is a bounded 

linear transformation into /z-dimensional Euclidean space, and £ is a mean-zero random vector. 

It is known that ||X/1| < a  for some bounded linear transformation X and constant a. Linear 

estimates of linear functionals of f  are then found which minimax the mean square error. In 

particular Speckman[41] supposes that the F, are observed with E[F,] = /(*,), where f  is 

assumed to have absolutely continuous first derivatives and square integrable second derivatives 

on an interval I  with

He considers the problem of estimating f(xo) for some fixed xq and establishes that the minimax

f  f ' w 2 dx -  ®2

estimate is a cubic smoothing spline, i.e. the function f  that minimizes

t=i

evaluated at x q . Also f'(xo) is the minimax estimate of f(xo). Li[27] states that ‘a minimax 

linear estimator for any bounded linear functional can be derived by ...operating the linear 

functional on the smoothing spline He refers to this as the method of regularization. 

His proof follows a variation of Speckman’s approach and is similar to that presented by
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Silverman[38], although not so immediate.

5.6 Conclusions

In this chapter we have considered the minimax estimation of linear functionals in the case 

of positron emission tomography, both in the idealised case when the ring of detectors is 

considered to be continuous, and in the more realistic case when the ring comprises a finite 

number N  of detectors.

We have derived minimax estimators for linear functionals, and given the form of the 

minimax risk and the least favourable function in both the continuous and discrete cases. We 

have derived a sufficient condition for radial symmetry of the least favourable function. We 

have shown that if we write the estimate of the functional as T(f), then T(f) = T{f) where /  

does not depend upon the functional T, but minimizes a penalized least squares expression. In 

Chapter 6 we illustrate the theory of this chapter by presenting some numerical examples.
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Chapter 6

Estimating Linear Functionals of a 

PET Image: Some Numerical 

Examples

6.1 Introduction

In this chapter we illustrate some of the theory we developed in Chapter 5. In Section 6.2 

we introduce two particular linear functionals, and discuss some relevant properties and 

computational issues. In Section 6.3 we present the results of a numerical investigation carried 

out on these two functionals. We discuss the minimax risks that we obtained, and introduce the 

notion of efficiency. After drawing some conclusions that are connected with the construction 

of PET machines and the design of the experiment, we present a few examples of the least 

favourable function. Finally, in Section 6.4 we outline our conclusions.

6.2 Numerical examples and calculations

In this section we introduce two linear functionals. After briefly discussing a few of their 

properties, we consider the implementation of some of the theory developed in Chapter 5. 

In particular, we concern ourselves with the computation of the minimax risks and the least 

favourable function.
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6.2.1 Two linear functionals

In this chapter we consider two types of linear functionals: the first type we denote as T(XtS), 

where

J(jc..t ( j ) -  — 7------- , (o. 1)
W )  4 “  O ’)

and D(x; s) represents a region of the plane which is the intersection of the disc centre x, radius s, 

with the unit circle; the second type we denote as Tx, where

Tx(f) = f(x). (6.2)

The functional s ) ( f ) represents the ‘average’ of f  over the above stated region, whereas Tx(f)  

is the value of f  at the point x. There is a relationship between these two functionals which we 

give in Proposition 7.

Proposition 7

\im T(XiS)(f) = Tx(f)
s-*0

Proof. The proof is straightforward.

T <f\  T ( f \  -  f l l ,TM (f)-TAD -  fo^ dM(y) - m

fp(Xys) f(y ) dll (y) -  f(x) fD(x;s) d{i (y)

Id m  ^ ( y )

f p j x s )  Cf(y)-/(*)) d v ( y )  
fp(x?) dyiy)

Hence,

Jota) C/O) -  /(*)) dv(y)
/d m  4“ 00

< sup I/O) -  /(x)|
yeP(x\ s)

—» 0, as 5 —̂ 0

since f  is assumed to be continuous.
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6.2.2 Norms

It is not difficult to show directly from the definition that, for the supremum norm 11 • 11 introduced 

in Section 5.3.1,

I* . j  _  1 1
* s)" ~  l o w  d(i(x)~  u(EKx;s)Y

Accordingly, for s > 0, T(XtS) is a bounded linear functional. Therefore, we can apply 

Proposition 1 and conclude that inequality (5.34), namely

holds. However, since l i n v ^  (D(x; 5)) = 0 and, by Proposition 7, linty-^ T(XiS)(f) = Tx(f), we 

have that Tx is unbounded with respect to || • ||. Nevertheless, inequality (5.34) still holds for 

a > 1, by Proposition 2.

6.2.3 Zernike polynomials

We have seen that the set of functions {0V} form an orthonormal system on H, where <pv is 

defined in equation (5.14) in terms of Zernike polynomials. These polynomials are discussed 

in detail in [6], which also presents a table showing some explicitly. In this study it is necessary 

to be able to calculate the value of any given Zernike polynomials, Z™(p), where m > 0 ,n > m  

and n - m  is even, at any given p ,0 < p <  1, both quickly and accurately. There are two cases 

to consider.

Case 1: m = 0. If we write n = 2/, we have

4 ( p )  = Z /2p2- l ) ,

where Z7 is the Legendre polynomial of order j  (see [25]). There are many poor ways to evaluate 

Legendre polynomials numerically. It seems that any method involving the computation of 

factorials is unsatisfactory. However, these polynomials can be computed easily and accurately 

by means of the following relationships:

Zo(t) = 1 

Zi(r) = t,
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and the recurrence relationship

(2/ + l)tZj(t) = (j+ l)Zj+ i(t)+jZj-i(t), 7 = 1 , 2 .......

Integrals of Zernike polynomials can also be computed recursively in several different ways. 

We give one example. It is a well known result that

d_
dt ( l - j 2)^ 'W ]+ y '( /- l)Z ;W  = 0 

where the prime ' denotes differentiation with respect to t. Hence

f  Zj(t)dt = - - ± — l(-l-? )% '« )}
Ja J J ( / “ I)

Fortunately,

(1 - ? )Z { ( t)= jZ h l (t)- jtZ j( t) ,

where Z7 and Zj-1  can be computed in the way described above.

Case 2: m *  0. This case is much more difficult. First, we derive recurrence relationships

between certain Zernike polynomials from recurrence relationships between polynomials

Q n M ’ where

as defined in equation (A.2) of [28], The recurrence relationships that we use for the Q 

polynomials are equations (A. 12) and (A. 13) of [28]:

Qo,k+\ -  2tQi'k — Qo,k (6.3)

k +1
Qn+l,k+l = Qn,k+1 + — 0 [Qn,k+1 ~ Qn+l,k\• (6.4)n + k + 2

It is easy to show that

^m+2y(P) ”  Qm,s(t)
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Hence, we obtain from equation (6.3)

2̂(A:+1)(P) -  2/?Zj+2jfc(P) -  Z%k(p)>

or

ZPn(p) = 2pZ 1n_l(p) -  Zj_2(p) n even,

and from equation (6.4)

k+  1
Zn+l+2(/:+l)(P) =  P Z ”+2(/fc+l)(P) +  ^  +  ^  +  2 IP ^ n + 2 { k + \ ) (P) “  Z ”+J+2jfc(p)],

or

2?(p) = p zr.1 <p)+^  ip zr/ (p) - z™n + m

Finally, observing that Z™(p) = p m, when m = n, we can compute the Zernike polynomials 

according to Table 6.1. To compute Z%{p) we adopt the following algorithm:

• Check that m + n is even;

• Set m + n = 2I\

• Compute, in the order of Table 6.1, Z%(p) , ..., )> Z/(p)>

• Compute, in the order of Table 6.1, up to Z%(p), if necessary.

6.2.4 The integral of <j)v over a disc

For the purposes of evaluating the minimax risk when estimating T(X>S), we must be able to 

calculate fD(x;sX 4>v = Jd(X̂ ) 00'.*)> where <j>v is defined in equation (5.14). We consider only 

points x  on the 0 = 0  axis. The reason for doing this is discussed in Section 6.3.1.

Let x  be the point on the 9 = 0 axis a distance R from the origin (in Cartesian coordinates x 

is the point (R, 0)). Let (xi, yi) be any point inside the disc. Let I be the line joining the point 

(R, 0) to the point (x\, y \ ). Set p to be the length of I and let <f» be the angle between I and the x 

axis. Thus, (p, <f>) are polar coordinates for the point (x\, yi) with respect to the the centre of the 

disc and the x  axis. The definitions of p  and <f> can be seen in Figure 6.1.

213



m n

0 0

1 1

0 2

2 2

1 3

0 4

3 3

2 4

1 5

0 6
: :

i i

i -  1 i +1

1 2 i -  1

0 2 i
*

:

Table 6.1: The order in which the Zernike polynomials were computed

Now we find the point (jci, yi) in the original coordinates {i.e. with respect to the centre of 

brain space B and the 9 = 0 axis) by some elementary trigonometry:

x\ -  R+ pcos0

yi = /?sin0. (6.5)

Let us now turn our attention to the integral fD̂  <p(j,k)• Since <p(j,k)(h 0) = /(r)g(0), where 

f(r) = (j + k+  1)1/2Z ^ '( r )  and g(9) = el W )9, then this integral can be written as

g (tan ^ i / x i ) )  dxidyi,
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Figure 6.1: Diagram of the trigonometry of the set-up

where the point {x\, yi) lies within the disc D(jc; 5). We shall refer to this integral as /. Using 

the relationships (6.5), we now transform the variables of integration form {x\, yi) to (p, 0) to 

get that

, = C [ f  ( \ / f t2+2pRcos^ + p 2 ) 5 m

a quantity that in general we compute by numerical integration.

However, in the case when the disc is centred at the origin, we have R = 0 and obtain the 

following equation

r2n

Now

= f  f  f(p)g(<p)pdpd<t>
Jo Jo

ra r2n
= /  f{p)pdp  /  g(<t>) d4>.

Jo Jo

I  g(0)d<p= f  eliHc)* d<f>, 
Jo Jo
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which is zero, unless j  = k, in which case

[ m p d p  = (2 j+ i) i n  £ z ° j ( p ) PdP

= (2/ + 1)1' 2 f z ^ - D p d p  
Jo

= (2j+£ -  l £ ' z jMd,

The evaluation of this last integral can be done recursively, as described above, and this can be 

used to check our numerical integration routines.

We emphasize that in the case when R = 0, £(/,*) = 0, unless j  = k. Thus, by Propositions 6 

and 5, the least favourable function will be radially symmetric in both the continuous and 

discrete case.

Finally in this section we state and prove a useful proposition that is employed in 

Section 6.2.6.

Proposition 8 The integral

ĵ ( ) /  ( y / x i + A )  8 (tan_1Cvi /*i)) dx\ dy\,

where f(r)  = (j + k + l )112 2 ^ ( r )  and g(6) = el ̂ ~k)e is real

Proof. The integral is clearly real when j  = k. Let j * k  and change the order of integration:

J  f  (>/«?+>?) 8 (tan_1(yi /* i)) dyi dxi.

For fixed x\ in the appropriate range the inner integral can be written as

j  ( ) /  { \JXi 8 (tan_1(yi /xi)) dyh

since the x  axis goes through the centre of the disc. Consider the imaginary part

/  ( }/  [ \ j A +y \ )  sin ( ( /“ k) tan_1(y i/x i)) dyh (6.6)

A simple argument shows that the function f{ \Jx \ + yf) is an even function of y\. On the other 

hand, if we now note that tan-1 (-z) = -  tan-1 (z), then we see that sin((/ -  k) tan-1 (y i / x i)) is an
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odd function of y i . Thus the integrand of the integral given in expression (6 .6 ) is an odd function 

of y\ and therefore that integral is 0. Since x\ was an arbitrary element of the appropriate range, 

we obtain the required result. □

The proposition tells us that T(X, a){(pv) = 4v is real for all v.

6.2.5 The evaluation of at a point

In this section we consider the evaluation of <f>v at a point which lies along the x  axis (see 

Section 6.3.1). Accordingly, we need to be able to evaluate <pv{r, 6), when 0 = 0 .  This quantity 

will be equal to (j+k+1)112 Z-j^(r), and is clearly real. Moreover, if the point of interest is the 

origin, then r = 0. Now

4 S ?(° )=
( - iy  if i  = k

0  otherwise.

Hence,

t o ) = <
(—iy (2j + 1)1/2 if j  = k

0  otherwise

at the origin. Again we emphasize that in the case when r  = 0, £(/,*) = 0* unless j  = k, and thus, 

by Propositions 6  and 5, the least favourable function will be radially symmetric in both the 

continuous and discrete case.

We can evaluate <pv at any other point using the recurrence relations discussed above.

6.2.6 The computation of the least favourable function

To find the least favourable function we need to compute

B / i r i v  <t>v{r, 6)
V

over an appropriate region of r  and 6 within the unit circle defined by B. In general <f)v is 

complex. However, we work with real densities / .  Accordingly, as we saw in Section 5.2.5, 

we may identify this complex basis with an equivalent real orthonormal basis in a standard
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fashion. To do this we write /  = Y^v fvQv = ]Cv fvfv* where

\ / 2 Re (<p(j,k)) if j > k  

h.k) = if j  = k

y/2lm  (fok)) if j< k ,

or

y/2(j+ k+  l ) 1/2 zS^ (r) c o s ( ( j - m  

fa M r- 9 ) = \  (2j  + l ) 1/2 4 (r)

v/2(j + k + I ) 1' 2 sin((/ -  k)0)

if7 > k 

if7 = k 

if j  < k,

and

V^ReCf(/,*)) if 7 > k

h.k) = < f(j,j) if j  = k

-y/2 lm (f(jtk)) ifj< k .

We have seen in Proposition 8 and in Section 6.2.5 that in the two cases considered £v is real 

for all v. Equation (5.41) in the continuous case and equations (5.46) and (5.48) in the discrete 

case immediately give us that ( / l f ) v is real for all v. Accordingly, the calculation of the least 

favourable functional is simplified to the computation of

2 ^2 Re(/(/.*))Re(to))+ 5Z fa*) 0<i’k)
j>k j=k

where R c (^ tk)(r, 6)) = (j + k + 1) 1 /2  zjj^ 1 (/; 0 ) cos((/ -  /:) 0 ). Moreover, the least favourable 

function can be seen to be symmetric in 6. This means that in the cases that we consider the 

least favourable function is symmetric about the 6 = 0 axis. This is not surprising, given the 

general set up.

6.3 Results obtained

In this section we present some of our findings. First, we briefly outline the investigation. 

After a discussion of the minimax risks themselves, we introduce the notion of efficiency as 

a meaningful way of interpreting the minimax risks. We make some comments about the 

implication of our findings for the design of experiments and machines, before computing some
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least favourable functions. This last part provides an illustration of one use of the contouring 

package CONICON (see [36]).

63.1 Outline of the investigation

In this section we investigate the estimation of two different linear functionals of the density f .  

These were first introduced in Section 6.2.1. The first, defined in equation (6.1), is denoted 

by T(XiS), where

and is the ‘average’ of /  over the disc D(x; 5 ) .  The second, defined in equation (6.2), is denoted 

by Tx, where

Tx(f) = f(x),

and is the value of the density /  at the point x. In Proposition 7 we showed that if we take the 

limit of the first functional as the radius s -» we obtain the second functional.

In this section we consider three different x  s. In polar coordinates (r, 0) relative to the centre 

of brain space B and the x axis, these are (0.0,9), (0.4, 9) and (0.7,9). We take 9 = 0.0, i.e. x 

is constrained to lie along the x  axis, in Cartesian coordinates. In the continuous case we can 

do this completely without loss of generality as the choice of x  axis is arbitrary. In the discrete 

case, however, the situation is a little different. We suppose that the unit circle is divided into 

an even number N  of detectors of equal size, the intervals having polar angular coordinates 

(IjcdIN, 2k (d + 1)/AO for d = 0,1, . . . ,  N  -  1. The problem of estimating the integral of f  

over a disc centre (r, 6), or the value of f  at this point is equivalent to the same problem, but 

with 9 replaced by 9\, where 9\ = 9 (mod 2k IN) and 0.0 < 9\ < 2k IN. Thus, without loss 

of generality, we may take our original 9 e (0, 2k ! N). Moreover, in this sector the problem 

is symmetric in 9 about 9 - k IN.  Accordingly, a more thorough investigation would consider 

various 9 s in the range 0.0 to k /N,  and this could be an area for further work. It is not, however, 

expected that there will be much variation in the results for 0 in this range, and so in this work 

we consider only 0 = 0.0.

Now that we have selected the three different vectors x  to use for both types of functional 

described above, all that remains is for us to state the different values o f the radius s that we
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n

Figure 6.2: The minimax risk fo r  various numbers o f  detectors N  fo r  n > 100, 000

take in equation (6.1). In this work we consider s = 0.1 and s  = 0.3. Overall this gives us 9 

cases to consider.

6.3.2 Minimax risks

We computed the minimax risks as a function o f the expected number o f emissions n for various 

values o f the number o f detectors N. The values that we consider in this section are N  = 64, 

128, 256, 512 and N  = the last corresponding to the continuous case as was mentioned in 

Section 5.3.8. Throughout this section we set a = 1.0 and C = y/2, the upper bound on C, as 

calculated from equation (5.21), required to ensure that all density functions in the class T  are 

nonnegative.

We present the results of the calculations of the minimax risks themselves in only one case: 

that o f estimating the functional 7(o,o. ])(/)• Figure 6.2 shows the minimax risks for each o f the 

above values o f N, for n ranging from 100,000 to We can display the minimax risks for 

n -  oo by plotting on the x  axis 1 -1 0 0 ,0 0 0  /« , which means that n = °° corresponds to x  -  1. 

Because o f this, the interval just before x  = 1 covers an extremely large range of values o f n.
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Figure 6.3: The minimax risk fo r  various numbers o f  detectors N  fo r  n > 50, 000, 000

It can clearly be seen that these minimax risks are decreasing functions of n, as was proved 

in Sections 5.3.5 and 5.3.7. Figure 6.3 shows an enlargement of the x  interval [0.998, 1.0]. 

Here the minimax risks seem to be straight lines (i.e. the minimax risks seems to decreases 

at a rate proportional to 1 In) as was suggested by the asymptotic expansion (5.59) given in 

Section 5.3.10 (although the meaning of that expansion is questionable).

We now make three remarks about these graphs. The first is a direct consequence o f the 

result found in Section 5.3.9, where we showed that, for a fixed n, if  we doubled the number of 

detectors N, the minimax risk decreased. This can be seen clearly for both graphs as the N  = 64 

curve lies uniformly above the N  = 128 curve, and so on.

The second remark concerns the difference between the curves for finite N, and the curve 

for the continuous case (N  = °°). What is clear from both graphs, but especially from the 

second, is that the minimax risks for N  = 256, 512 and the continuous case (N  = °°) are almost 

identical, whereas there is a noticeable (although not large) distance between the N  = 64 and 

N  = 128 curves, and the curve for the continuous case. This observation, which has potentially 

important implications for the design of these PET machines, will be quantified and discussed
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further in Section 6.3.3 below.

The third remark concerns the behaviour of the curves as n —» °°. As described in 

Sections 5.3.8 and 5.3.10, the limit of the minimax risk as n —» is a positive quantity when the 

number of detectors N  is finite and zero when N  is infinite. This result can be clearly seen from 

an examination of the second graph at x  = 1 (n = °°). (The values of the minimax risk given 

here tie up with the coefficients of the constant terms given in Table 5.3 in Section 5.3.10.)

The discussion in this section has concentrated on the minimax risks. However, these 

quantities are not very meaningful in themselves. In Section 6.3.3 we present a possible way 

of quantifying the information contained in these curves, and the results of doing this for all of 

the 9 cases outlined in Section 6.3.1. We also discuss further the implication of these results 

for machine design.

6 3 3  Efficiency

In this section we present a meaningful way of interpreting the minimax risks by means of a 

quantity that we shall refer to as efficiency. We now outline the basic idea; the quantities that we 

shall use are illustrated in Figure 6.4. First we assume that with a fixed number N  of detectors 

and a fixed expected number n of emissions we achieve a minimax risk of r (n, N). We then 

compute n* = n*(n, N), the expected number of emissions necessary to achieve the same or 

better (i.e. lower) value r(n, N) of the minimax risk in the continuous case. Clearly, n* < n as 

the class of estimators when N  is finite is a subset of the class of estimators in the continuous 

case (compare the argument of Section 5.3.9). We now define the efficiency eff (n, N) (when 

there are N  detectors relative to the continuous case) as the ratio of n to «*:

*

eff (n, N) = — . (6.7)
n

Immediately we have that 0 < eff (n, N) < 1, with eff (n, °°) = 1 for all values of n. 

Also, since the results of Section 5.3.9 give us that n*(n,N) < n*(n, 2N), we can see that 

eff (n, N) < eff (n, 2N), Vn, N. Moreover, we present the following proposition about the 

behaviour of eff (n, N) as n —>

Proposition 9 For finite N,

lim eff (n, N) = 0
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Figure 6.4: Diagram to explain that lim„_>oo eff (n,N ) = 0

Proof. This proof is based on Figure 6.4. Let the number of detectors A be fixed, but 

finite. We established in Section 5.3.8 that the limit o f the minimax risk as n —> is strictly 

positive when A is finite. Moreover, because the minimax risk is strictly decreasing in n (see 

Section 5.3.7 for this result in the case when A is finite (and Section 5.3.5 for the infinite case)), 

this limit is approached from above. In this proof we shall refer to the limit when there are 

A detectors as A (A). Since r(n, °°) < r (n, A), \/n  and since the limit o f the minimax risk as 

n —» oo is exactly zero in the continuous case, there exists a finite «a(ao such that V/z > ha(ao> 

r(n,°°) < A (A). Now let n > «a(ao arbitrary. Since r(n ,N ) > A (A), the number of 

observations required in the continuous case to achieve a risk o f r(n ,N )  or lower, namely 

n* = n*(n, N), is clearly such that n* < «a(A0- Thus,

e f f ( n , A 0 = - S ^ ,  
n n

for all n > «a(A0- The right hand side o f this inequality tends to zero from above as n —» 

Hence, the result is established. □

As we shall see below, in practical situations high efficiencies can often be obtained, even 

though eff {n, N) —» 0 as n -»  °°. We also note that n \  ̂  is an increasing function of A as A (A) 

decreases as A increases (and in fact «a(az) —> 00 as A —» *»).
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In Figure 6.5 we present plots of the efficiency for the 9 cases described in Section 6.3.1. 

In all 9 cases we consider values of n from 5 million to 50 million, and N  = 64, 128 and 256, 

as well as the continuous case. We take these values to illustrate the method and we do not 

necessarily intend to suggest that they are more representative of reality than any other values. 

For this reason we present a qualitative description of the graphs. In each graph there are four 

lines: the top line corresponds to the continuous case, the next line corresponds to the N  = 256 

case, the third line corresponds to the N  = 128 case and the bottom line corresponds to the 

N  = 64 case. The three columns of the graph represent the three points under consideration, 

namely x  = (0.0,0.0), (0.4,0.0) and (0.7,0.0). The top row gives the efficiencies for estimating 

the functional Tx, the second row gives the efficiencies for estimating the functional T(x>o.i), 

and the third row gives the efficiencies for estimating the functional T(Xi0.3). From the graphs 

we can see easily the effect of discretization. In the first row the efficiency when N  = 256 is 

near to 1.0 and seems to be fairly constant over the range of n considered. Moreover, with this 

functional the position of the point at which we are trying to estimate the density does not seem 

to have much effect on the efficiency. Thus, it seems that when N  = 256, there is not much 

to choose between the discrete case and the continuous case. When N  = 128 the efficiency is 

again almost constant at over 0.9, although it does seem that as the point moves away from the 

centre of the circle, the efficiency decreases slightly. This last feature is more clearly visible 

in the N  = 64 case. We note also that in the N  = 64 case, the efficiency noticeably decreases 

as n increases. In general, similar comments can be made for the middle row, which concerns 

the functional T^o.i), except that here the efficiency seems a little higher when compared to 

the top row. Finally, the third row, which concerns the functional T{x, 0.3 ) displays a marked 

decline in efficiency as the disc moves from the centre of brain space, B. Moreover, the effect 

of discretization is clearly visible in the case when x  = (0.7,0.0).

63.4 Implications for the design of experiments and machines

In this section we assume that it is of interest to discover the average intensity in a certain 

region of brain space. (In the above work we considered only circular regions, but the theory 

developed covers regions of any shape, and the extension of the FORTRAN programs to more 

general regions, possibly defined by the user with the mouse on the screen, is a topic for further 

work.) From the graphs of the minimax risk the experimenter can assess the effect of, for 

example, doubling the expected number of emissions n. In addition, the effect of doubling the
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number of detectors N  can also be assessed. In the example given in Figure 6.2 and Figure 6.3 

for instance, doubling the expected number of emissions may noticeably reduce the minimax 

risk, whereas doubling the number of detectors beyond a certain point may achieve very little. 

Such statements clearly have implications for the design of experiments and machines.

6.3.5 Least favourable functions

In this section we present some examples of the least favourable functions. The forms of the 

least favourable function are given in equation (5.41) in the continuous case and equation (5.48) 

in the discrete case. There, and in this section, we disregard the first term of the expansion, 

namely 1. Accordingly, the integral of the functions we show in this section, with respect to 

the measure fi over the unit circle, is zero rather than one. The ± sign tells us that an equivalent 

least favourable function can be found by reflection in the appropriate axis. All the examples 

in this section are presented in such a way that the value of the function at the point of interest, 

x, is positive.

In Section 5.3.11 we considered the symmetry of the least favourable function and in 

Proposition 6 we gave a sufficient condition for the least favourable function to be radially 

symmetric. In Section 6.2.4 we showed that the least favourable function for estimating T(x,s) 

is symmetric if x  = 0. Similarly, in Section 6.2.5 we showed that the least favourable function 

for estimating Tx is symmetric again if x = 0. In this discussion we consider examples of both 

symmetric and asymmetric least favourable functions. In all the examples that we give the least 

favourable function is symmetric about the x  axis, as we established in Section 6.2.6.

First, we give examples and a qualitative description of symmetric least favourable 

functions. In all the cases that we shall present the (expected) number of emissions n is 

10,000,000. We set a = 1.5 and C = 2.0. Again we attach no special significance to these 

examples. Their purpose is to illustrate the theory we have developed above. The first graph 

of Figure 6.6 shows the least favourable function for estimating both 7(o,o.i) and To in the 

continuous case (N = °°), the middle graph presents the same functions in the case when there 

are 128 detectors (N  = 128), and the bottom graph deals with the case when there are 32 

detectors (N  = 32). Because of the radial symmetry the functions are shown for only a region 

of the positive x  axis (they remain almost indistinguishable from zero after about x = 0.4). The 

function itself is the surface of revolution obtained by rotating these curves about the vertical 

axis. There is clearly some difference between the graphs: the range of the curves is greater
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in the top (N = °°) graph than in the bottom (N = 32) graph. Moreover, in the top graph, 

the curves seem a little more separated. They seem to take their most extreme values near 

the point x  = 0 and the curve that corresponds to T(o,o.i)(f) seems to change rapidly over the 

boundary of that disc, which is indicated by the vertical line. In Table 6.2 we give the value 

of these least favourable functions and others when N  = 64 and N  = 256 at the origin. We

N 7(o.o,o.i) 7o.o

32 0.01456 0.01185

64 0.01466 0.01139

128 0.01485 0.01129

256 0.01487 0.01127

oo 0.02976 0.02252

Table 6.2: The value o f the radially symmetric least favourable functions at the origin

make two comments. First the value of the least favourable function for 7(o.o,o.i) at the origin is 

greater than the value of the least favourable function for 7o.o for all the values of N  considered. 

Secondly, for finite N, this value for 7(0.0,o.i) increases with N, whereas for 7o.o it decreases 

with N.

Secondly, we give examples and a qualitative description of asymmetric least favourable 

functions away from the centre of the unit circle. We consider T(Xio.i)(f) and Tx(f), where 

x -  0.7. Again we take n = 10,000,000, a = 1.5 and C -  2.0. In Figure 6.7 we present 

contour plots of that part of the asymmetric least favourable functions that lies in a square centre 

(0.7,0), of sides 0.4. We use the excellent C0NIC0N programs of Sibson[36]. In particular we 

use an interface to these programs written by Dr Glenn Stone. The axes and the labels are 

produces by means of a POSTSCRIPT program written by the author. The reader is advised 

that the numbers printed on the contour lines follow the convention of having their top in the 

direction of increasing height. We indicate on the plots the disc and its centre, or the point, 

as appropriate. The top row is concerned with the continuous case (N = °°), the middle row 

with the case when there are 128 detectors (.N = 128), and the bottom row with the case when 

there are 32 detectors (N  = 32). The least favourable functions for the continuous case are 

relatively simple, whereas for the N  = 32 and N = 128 cases they are very complicated. For
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comparison, Table 6.3 gives the value (taken to be positive) of the least favourable function at 

the point (0.7,0.0) in Cartesian coordinates. We observe the same behaviour here as we noted

N F((0.7,0.0),0.1) F (0 .7 ,0 .0 ) ( /)

32 0.0197 0.0147

64 0.0217 0.0135

128 0.0223 0.0133

256 0.0224 0.0132

oo 0.0546 0.0361

Table 6.3: The value o f the least favourable function at the point (0.7,0.0) 

for the results given in Table 6.2.

6.4 Conclusions

In this chapter we have presented some numerical examples to illustrate the theory developed 

in Chapter 5. We introduced two linear functionals, discussed some relevant computational 

aspects and investigated the behaviour of the minimax risk as a function of the expected number 

of emissions n, for various values of the number of detectors N. We provide an interpretation of 

these minimax risks by means of the notion of efficiency. The examples that we have considered 

have provided us with some insight into the construction of the PET machine (in terms of 

doubling the number of detectors N) and the design of the experiment (in terms of increasing the 

expected number of emissions n). Finally, we presented some examples of the least favourable 

functions.
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