

University of Bath

PHD

Subjectivity and ownership: A perspective on software reuse

Batenin, Adam

Award date:
2005

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Dec. 2021

https://researchportal.bath.ac.uk/en/studentthesis/subjectivity-and-ownership-a-perspective-on-software-reuse(badbb403-69c2-4644-819b-a03bb9c69cff).html

Subjectivity and Ownership:
A Perspective on Software Reuse

submitted by

Adam Batenin
for the degree of Doctor of Philosophy

of the

University of Bath
2005

C O P Y R IG H T

A ttention is draw n to th e fact th a t copyright of th is thesis rests w ith its au thor. This copy of the

thesis has been supplied on the condition th a t anyone who consults it is understood to recognise

th a t its copyright rests w ith its au tho r and th a t no quo tation from the thesis and no inform ation

derived from it m ay be published w ithout the prior w ritten consent of the author.

This thesis m ay be m ade available for consultation w ithin the University L ibrary and may be pho

tocopied or lent to o ther libraries for the purposes of consultation.

Signature of A u th o r .

A dam Batenin

UMI Number: U 601444

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601444
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

;, .- ■.,.! ii

f
%

f.' S 3 1 0 J ' " 2006

 fi,2:...

Summary

C onstruction of software from existing com ponents is a long s tanding goal of software engineering.

Cost is an im portan t factor distinguishing a com ponent created for reuse from a com ponent built

for a particu lar application. C onstruction of reusable com ponents requires investm ent th a t the

developer can recoup only by reuse or by m arketing the com ponent for reuse by others. Much

of to d ay ’s software construction is not aimed a t m arkets bu t to fulfill specific objectives set ou t

in requirem ents. This thesis proposes a means of constructing more reusable software, including

software th a t is not destined for com ponent m arkets, by combining subjectiv ity and ownership.

Subjectivity, in the form of Subject-O riented Program m ing, is a software developm ent technol

ogy in the area of A spect-O riented Software Development th a t enables software decom position into

partially overlapping m odules known as subjects. Subjects enable the creation of m odular imple

m entations of use cases, features and systemic requirem ents, all w ithin the fam iliar environm ent of

object-oriented program m ing. Anomalous interactions during stateful inter-subject interactions are

an acute problem in reuse and for m odular subject developm ent. In the worst cases, they require

either patching or invasive modifications. To tackle th is problem , we propose annotations in the

form of ownership types. In object-oriented program m ing, Ownership Types have been proposed as

a solution to the endemic problem of aliasing. S tructured use of aliases facilitates the construction

of robust software th a t ensures representation encapsulation and supports m odular reasoning. The

subject-oriented approach to problem s previously modelled using object-oriented idioms requires a

novel solution to the concept of ownership. Subjects do not have a representation; instead, ownership

types ann o ta te the ownership stru c tu re of object collaborations im plem ented by subjects.

In th is thesis we propose the Subjective Alias P ro tection System or SAPS. It is a tool both

for subject design and reuse. At a small syntactic overhead, SAPS supports the design of well

s truc tu red subjects whose classes ensure representation containm ent. SAPS improves the reusability

of subjects: Subjective O wnership Types are per-object anno tations of the places an object may

be referenced or modified. O ur extensions to subject com position rules constrain subject and class

reuse to meaningful cases and can prevent com positions leading to anom alous interactions. SAPS

facilitates m odular developm ent of subjects because aspects of subject effect on s ta te can be observed

from the points of in ter-subject interaction. Finally, Subject-O riented Program m ing w ith SAPS can

address more concerns th an is possible w ithout it.

Acknowledgements

This d issertation is dedicated to my m other, Larissa, who has supported me throughout and always

believed in my eventual success. Her unwavering support helped me trem endously during the difficult

periods. T hank you to my stepfather, David, for encouraging me to succeed.

I would like to th an k P eter Wallis, my first supervisor, who opened for me the door to Com puter

Science research and stim ulated my im agination. I would like to give a big thank you to Eam onn

O ’Neill, my second supervisor, who taugh t me to th ink m ore critically and helped to understand

the scientific process.

My experience of B ath was enhanced by Michael and Heather; they are kind and generous people

who m ade me p a rt of their family. I will always have colourful memories of the Resident T utor system

a t B ath . Anne W , C at, Si, Tom, Eliana, Subbu, David G and Isobel are ju s t some of the wonderful
people th a t I had the pleasure of working and party ing with.

A special thank you goes to Lucy, Sunniva and Edwige.

T he PhD experience had its ups and downs bu t coming to the office was always an uplifting (and
a t tim es a distracting) experience. I have been lucky to share my work tim e w ith m any brilliant

colleagues including Dave P, Bill, Natee, W afaa, Joy, Jerry, Tracy, M att; and in the la ter years Adam

D, A ndy H, M anu, S irapat, Peiyi, Ben, Em m a, Owen and Vas. L ast bu t no t least I have benefited

from the support and advice given by B ath C om puter Science staff including Angela, Jam es, M arina,

P eter and Julian.

Contents

Sum m ary i

A cknow ledgem ents ii

Table O f C ontents iii

1 In troduction 1
1.1 Position on Software R e u s e .. 2

1.2 From Reuse Problem s to S A P S .. 2

1.3 Thesis O utline .. 4
1.3.1 Aims, O bjectives and L im ita tio n s .. 4

1.3.2 C o n v en tio n s.. 4
1.3.3 C hapter by C h a p t e r .. 5

2 E volution and R euse 7
2.1 W h at Is R e u s e ? .. 7

2.2 M odularity and R e u s e ... 9
2.2.1 M o d u la r i ty .. 9

2.2.2 Reuse A r t i f a c ts ... 10
2.2.3 The Effect of E xternal Pressures on R e u sa b ility ... 12

2.3 Challenges in C onstructing Reusable S o ftw a re .. 13

2.3.1 Frameworks and Com ponent Based D ev e lo p m en t... 13

2.3.2 Problem s w ith P lanning for R e u s e ... 14

2.3.3 Black-box and W hite-box Reuse S t r a t e g i e s .. 15

2.3.4 Setting The Research D irection on R e u s e ... 16

2.4 Reuse in O bject-O riented P ro g ra m m in g .. 17

2.4.1 Key A spects of O bject-O riented Program m ing L a n g u a g e s 17

2.4.2 The Role of Inheritance in R e u s e .. 19

2.4.3 Reuse A rtifacts Not Associated w ith a Class .. 21

2.5 Conclusion ... 21

3 A dvanced Separation o f Concerns 22
3.1 M ulti-D im ensional Separation of C o n c e rn s ... 22

3.1.1 M otivation for M D S O C ... 23

3.1.2 The M DSOC M o d e l .. 25

3.1.3 MDSOC and The Position on R e u s e ... 27

iii

CONTENTS iv

3.2 Technology for M odularisation of C o lla b o ra t io n s .. 29

3.2.1 C ollaborations in O bject-O riented P ro g ra m m in g ... 29

3.2.2 O bject T e a m s .. 31

3.2.3 GenVoca ... 32

3.2.4 Subject-O riented P ro g ra m m in g ... 32

3.2.5 C o n c lu s io n ... 37

3.3 A spect-O riented P r o g r a m m in g ... 38

3.3.1 Aspect J .. 39

3.3.2 Bracket R elationships in S O P ... 40

3.3.3 C a e s a r .. 41

3.3.4 O bject T e a m s .. 43

3.4 A Case for Subject-O riented P ro g ram m in g ... 43

4 Interaction P roblem s in Subject-O riented Program m ing 44
4.1 In troduction to In teraction P ro b le m s ... 44

4.1.1 Feature In teraction Problem s in Telecom A p p lic a t io n s ... 46

4.1.2 Com position A n o m a lie s ... 47

4.1.3 In teraction Analysis in A O P ... 48

4.1.4 Towards U nderstanding Interaction P ro b le m s .. 49

4.2 Persistence and A s s o c ia t io n .. 49

4.2.1 In teraction Problem A n a ly s i s ... 52

4.3 W ater Beans ... 52
4.3.1 Detailed Design C o n s id e ra tio n s ... 54
4.3.2 An Interaction P r o b l e m ... 55

4.3.3 An O bject-O riented S o l u t i o n ... 56

4.3.4 A Solution For Subject-O riented P ro g ra m m in g .. 57

4.4 Union M embers and R e p re se n ta tiv e s .. 59

4.4.1 An Interaction P r o b l e m ... 60

4.4.2 An O bject-O riented S o l u t i o n ... 61

4.4.3 Redesigning the O bject-O riented S o lu t io n ... 62

4.4.4 Towards a Solution for Subject-O riented P ro g ra m m in g .. 63

4.4.5 T he Role of Aliasing M odes in U nderstanding Subject I n t e r a c t i o n 67

4.5 Conclusion ... 68

5 A lias P rotection and S u b jectiv ity 70
5.1 A Review of Alias P ro tec tion S y s t e m s ... 71

5.1.1 Ownership Types for Flexible Alias P r o t e c t i o n .. 72

5.1.2 A l ia s J a v a ... 76

5.1.3 U nderstanding Aliasing M o d e s ... 77

5.1.4 On Effects A n n o ta t io n s ... 79

5.1.5 Conclusion ... 81

5.2 T he Im pact of the Subject-O riented Paradigm on A P S s ... 82

5.2.1 The C ar M echanic E x a m p le .. 83

5.2.2 Peer and Extension S u b j e c t s .. 83

5.2.3 How to T reat the M odes of Corresponding E le m e n ts .. 86

CONTENTS v

5.2.4 C riteria for M ode S e le c t io n .. 87

5.3 Problem s w ith O wnership P a r a m e te r s .. 88

5.3.1 Ownership P aram eters and ADTs .. 90

5.3.2 A Layered A r c h i te c tu r e ... 91

5.3.3 T he Two Roles of Ownership P a r a m e te r s .. 91

5.4 Dealing w ith Incom plete S pec ifica tions.. 92

5.5 Towards an APS for U nderstanding Subject I n t e r a c t io n ... 96

5.6 Conclusion ... 97

6 SA P S - Subject D esign 99
6.1 Subjective O wnership Types and S A P S .. 100

6.1.1 Deep O w n e r s h ip .. 100

6.1.2 T he Origin of the N o t a t i o n .. 101

6.2 Explicit C ontext I d e n t i f i e r s .. 103

6.2.1 exps in Action .. 105

6.2.2 C ontext Identifier A r i th m e t ic ... 107

6.2.3 T ype Checking and R epresentation C o n ta in m e n t... 108

6.3 Unknown C ontext Identifiers ... 112

6.3.1 U nderstanding u n k s .. 114

6.3.2 unk Resolution C o n s t r a in t s .. 115

6.3.3 Checking Classes A gainst u c irc s ... 117

6.3.4 Per-C lass C h e c k s .. 119

6.4 Classes w ith O wnership P aram eters ... 121

6.4.1 Com posable and Uncom posable C la s s e s .. 122

6.4.2 In teraction Between The H ie ra rc h ie s ... 123

6.4.3 Ownership P aram eter O rd e r in g ... 125
6.4.4 S trengths and L im itations of the System of e x p s .. 127

6.4.5 Types and T ype C h eck in g ... 129

6.5 Conclusion ... 130

7 SA P S - Subject C om position 131
7.1 Com position R u l e s .. 132

7.2 A System of L a b e ls .. 136

7.2.1 Clausal R epresentation of Subject L a b e l s .. 138

7.2.2 Correspondence C la u s e s ... 139

7.2.3 G r o u p e r s .. 140
7.2.4 C o m b in a to r s .. 143

7.2.5 On the C orrectness of the Com position Model .. 144

7.2.6 M apping Control Clauses to C om position R u le s .. 145

7.2.7 Definitions ... 151

7.3 G rouper Definitions .. 153

7.3.1 Nam e M a tc h in g .. 153

7.3.2 Selection 153

7.3.3 Correspondence M a tc h in g ... 154

7.3.4 G rouper For Execute Sites in Bracket R e la t io n s h ip s .. 154

CONTENTS vi

7.3.5 G rouper for Call Sites in Bracket R e la tio n sh ip s .. 155

7.4 T he M odel of Type C o m p o s it io n ... 157

7.4.1 Subjective Ownership Type E q u iv a le n c e .. 158

7.4.2 SOT-Aware Com position R u le s ... 161

7.4.3 Extensions to the System of L a b e ls .. 163

7.5 Type C om binators and Resolution C o lle c t io n ... 165

7.5.1 T he Type C o m b in a to r .. 165

7.5.2 T ype Sequence C o m b in a to r .. 167

7.5.3 Checking Call S e t s ... 168

7.5.4 Exam ple ... 169

7.6 Resolution Validation .. 170

7.6.1 P r e p a r a t io n ... 170

7.6.2 Clausal R epresentation of A ssociation and In h e r i ta n c e .. 175

7.6.3 G raph R epresentation for R e so lu tio n ... 177

7.6.4 P ropagation A lgorithm ... 179

7.7 Conclusion ... 180

8 E valuation 183
8.1 In teraction Problem s and R e u se ... 184

8.1.1 The L ibrary M anagem ent S y s te m .. 184
8.1.2 M odular Development of S u b j e c t s .. 185

8.1.3 In teraction P ro b le m s .. 188
8.1.4 Reuse and R e u s a b i l i ty .. 189

8.2 Feature-O riented D e v e lo p m e n t... 192

8.3 System Integration: A C ross-C utting C o n c e rn ... 195
8.4 Using Uncom posable Classes for Security .. 199

8.5 Using exps for Com position R e s tr ic tio n ... 201
8.6 L im i ta t io n s ...204

8.6.1 Incom patible D om ain V iew s .. 204

8.6.2 Defining Com posable and U ncom posable C la s s e s ...206

8.7 Conclusion ...208

9 C onclusions and Future W ork 210
9.1 T he Subjective Alias P ro tection S y s t e m ..211

9.1.1 An U nderstanding of Interaction Problem s ... 211

9.1.2 S A P S ..212

9.1.3 C o n tr ib u tio n s ..213

9.2 Fu tu re W ork ..215

9.2.1 Im plem entation I s s u e s .. 215

9.2.2 F o rm a lisa tio n ..216

9.2.3 M ore Powerful Aliasing S y s t e m s ..216
9.2.4 Support for Layered Designs ...221

9.3 A F inal W o r d ... 222

CONTENTS

R eferences

List of Figures

2-1 Exam ple dem onstrating m ultiple d ispatch ... 19

3-1 Scattering and tangling in S E E ... 23

3-2 T he Check Feature as a h y p e r s l ic e .. 25

3-3 T he hyperm odules created by co m p o sitio n ... 26

3-4 A spectJ program im plem enting the T ra c in g concern... 40

3-5 H yper/J-sty le program im plem enting the T ra c in g concern.. 41

4-1 T he subjects im plem enting the P e r s i s t e n c e , A s s o c ia t io n and T ra n s a c t io n concerns 50

4-2 W ater Beans class diagram for the G rap h ic s s u b j e c t .. 54

4-3 W ater Beans class diagram for the W a te rP re ssu re s u b je c t ... 54
4-4 T he W ater Beans in teraction problem .. 56

4-5 W ater Beans conceptual event m o d e l .. 56
4-6 Sim ulating m ultiple dispatch in J a v a .. 57

4-7 T he Jo in U n io n subject class d i a g r a m .. 59

4-8 T he D ism iss subject class d ia g ra m ... 60

4-9 T he R e t i r e subject class diagram ... 60

4-10 JoinU nion, Dismiss and R etire concerns as a (badly structu red) OO program 61

4-11 OO Program im plem enting the JoinU nion, Dismiss and R etire concerns anno tated

w ith FAP aliasing m o d e s .. 64

4-12 Jo inU nion , D ism iss and R e t i r e subjects anno ta ted w ith FAP aliasing modes . . . 65

5-1 An object graph showing ownership a r c s ... 74

5-2 P rogram dem onstrating Ownership T y p e s ... 75

5-3 O wnership stru c tu re for a Queue i n s t a n c e ... 76

5-4 I t e r a t o r extension to the Queue class w ith Ownership T y p e s .. 76

5-5 Queue w ith Alias Java a n n o ta tio n s ... 78

5-6 Queue exam ple extended w ith G reenhouse and Boylands effects a n n o ta t io n s 81

5-7 Queue exam ple extended w ith JO E effects a n n o ta t io n s ... 82

5-8 T he HireCompany subject w ith A liasJava a n n o t a t i o n s ... 84

5-9 T he M echanic subject w ith A liasJava annotations .. 85
5-10 Com position of subjects w ith incom patible ownership param eter l i s t s 89

5-11 Com position of subjects w ith partially overlapping ownership param eter lists 90

5-12 Com posite design p a tte rn as a s u b j e c t .. 93

LIST OF FIGURES ix

5-13 O wnership stru c tu re examples for the Draw concern in a CAD application (left) and

for the Size concern in a File System application (r i g h t) .. 94

5-14 CADdraw subject anno ta ted w ith O wnership T y p e s .. 94

5-15 F ile S y s te m S iz e subject anno ta ted w ith Ownership Types ... 95

6-1 SAPS com position p ro c e s s .. 100

6-2 An Ownership T r e e .. 104

6-3 O wnership struc tu re for subject F lo o rP re s s B u tto n . , .. 105

6-4 Code for subject F lo o r P r e s s B u t to n .. 106

6-5 S tatic visibility check exemplified... 109

6-6 A 2 applied to different kinds of expression..109

6-7 Using world owned ob jects...110

6-8 Exam ple showing out of range e x p s ... I l l

6-9 SuperTax subject w ith exam plar ownership structu re 1.. 113

6-10 SuperTax subject w ith exam plar ownership structu re 2 .. 113

6-11 SuperTax subject im plem ented using u n k s ... 114
6-12 An exam ple involving an unknown context identifier.. 115

6-13 unks and resolution se ts ... 116
6-14 Checking expressions involving unks.. 118

6-15 Further checking of expressions involving unks...119

6-16 Yet more checking of expressions involving unks... 119

6-17 A dditional checks for unks. Case 1... 120

6-18 Queue class im plem ented using Subjective Ownership T y p e s ... 121

6-19 V ec to r class core interface.. 124
6-20 Class P airQ ueue specialised to uncom posable classes... 124
6-21 O w nership param eter ordering.. 125

6-22 Using types derived from uncom posable classes.. 126

6-23 Exam ple w ith P a i r co m p o sab le /u n co m p o sab le ... 128

6-24 Correctness P roperties for S O T .. 129

7-1 Com position rules su m m ary .. 134

7-2 Exam ple showing .. 135

7-3 R esults of applying com position rules... 136

7-4 Subject label represented as a tree of n o d e s .. 137

7-5 Label clauses.. 138

7-6 G rouper synopsis.. 141

7-7 Correspondences created by bracket relationships: b ra c k e t-e x e c top; b ra c k e t-c a l l

bo tto m ... 142

7-8 R etu rn value com binators... 143

7-9 Correctness properties of control clauses.. 145

7-10 Table showing the elem ents used in the definition of the m e rg e B y N a m e com position

rule .. 148
7-11 Table showing the elements used in the definition of the o v e r r id e B y N a m e compo

sition r u l e ... 148

7-12 Label clauses for S I and correspondences created by m e rg e B y N a m e 149

LIST OF FIGURES x

7-13 Clauses created by o v e r r id e B y N a m e ...149
7-14 Clauses created by a bracket relationship on execute sites.. 150

7-15 Clauses created by a bracket relationship on call sites.. 151

7-16 Functions used in the definition of com position directives... 152

7-17 U pdating existing clauses w ith correspondences from the w rapper class..............................156

7-18 C ontext co rrespondences.. 159

7-19 Exam ple showing direct and indirect unk re so lu tio n .. 160

7-20 Exam ple for SO T-aw are composition ru les..161

7-21 T he effect of bracket relationships on unk r e s o lu t io n ... 162

7-22 Label clauses... 164

7-23 Com position elements used in the definition of the SAPS m e rg e B y N a m e composi

tion r u l e ... 165

7-24 C om position of P erfo rm ance and F i r e C o n t r o l l e r s u b je c ts ... 169

7-25 Labels used for resolution validation... 171

7-26 R esolution validation e x a m p le ... 173

7-27 unk resolution propagation rules ... 174

7-28 R esolution propagation exam ple ... 179
7-29 Per-G raph P ropagation A lg o r i th m ... 181

7-30 Top-Level P ropagation A lg o rith m ... 182

8-1 Sketches of an object graph (left) and ownership tree (right) for the AddNewBook concernl86

8-2 T he AddNewBook subject in the L ibrary M anagem ent S y s t e m ... 187
8-3 A sketch of the ownership tree for the Union set of c o n c e rn s ... 188

8-4 Jo inU nion , D ism iss and R e t i r e subjects anno ta ted w ith S O T 190

8-5 A sketch of the ownership tree for a Lift s y s te m ... 191

8-6 C om posite design p a tte rn as a subject anno ta ted w ith S O T ... 191

8-7 A sketch of the ownership tree common to the subjects m aking up the L ibrary M an

agem ent System .. 193

8-8 In tegration of B i t s .. 196

8-9 E q u a l i ty subject w ith encapsulated a s s o c ia t io n s .. 197

8-10 E q u a l i ty subject w ith exposed a sso c ia tio n s .. 198

8-11 Subject containing RSA a lg o r i th m ..200

8-12 Subject im plem enting a secure term inal a p p lic a tio n ...201

8-13 S trategy game com position in te r f a c e .. 202

8-14 Subject FM and 2 versions of subjects KD using unks and exps ..203

8-15 Subjects B lu r and M a g n i f y ... 205

8-16 Subject Base in the graphics s u i t e ..207

8-17 Subject C opyPaste in the graphics s u i t e ... 207

8-18 Code fragm ent showing R egion as an uncom posable c l a s s ...208

9-1 Subject B a s e ...217

9-2 Co-ownership T r e e .. 218

9-3 Subject E q u a l i ty and com position specification for in tegration w ith subject Base . 219

9-4 P e r s i s t e n c e subject dem onstrating co-ownership as a concern th a t emerges during

c o m p o s itio n .. 221

LIST OF FIGURES

9-5 Subject P u t im plem enting th e P u t feature in the Queue concern

9-6 Subject Get im plem enting th e G et feature in the Queue concern

Chapter 1

Introduction

In th is thesis we propose the Subjective Alias P ro tection System (SAPS) - a synthesis of Subject-

O riented Program m ing and an Alias P rotection System. Subject-O riented Program m ing (SOP) [49]

is a program m ing paradigm th a t builds on the strengths of object-oriented program m ing by in

troducing subject as a new kind of module. Subjects abstrac tly m odularise m any concerns th a t

are difficult to m odularise using object-oriented program m ing technology. Each subject is an ordi

nary object-oriented program and subject interaction occurs a t join points - key points in subject

s tructure . These properties make subjects very good a t cleanly separating m any functional and

im plem entation dom ain concerns.

These properties also make subjects very reusable, bu t we will show th a t subject reusability comes

a t a cost. T he absence of an abstrac t functional interface is bo th a positive and a negative reuse

factor. On the one hand, interfaces facilitate struc tu red reuse th a t guarantees desirable correctness

properties, and on the other, they make it difficult to extend or modify software in ways th a t were
no t intended by the original developer. Subject interaction can lead to undesirable interference th a t,

a t worst, requires invasive redefinitions. Reuse of stateful subjects is expensive because the reuser

m ust understand the im plem entation in detail in order to reuse successfully.

To address these problem s we specify Subjective Ow nership Types (SO T). SO T are a new type

system th a t supersedes the existing types in subjects. They are inspired by the Ownership Types

for Flexible Alias P ro tection [23]. In object-oriented program m ing, Alias P ro tection Systems are

an a ttem p t to address the problems caused by proliferation of object aliases [57]. This continues

to be the purpose of SO T when viewing program s one sub ject a t a tim e. We propose SAPS as a

com bination of SO T and the necessary extensions for subject in teraction. SAPS constrains subject

com position (interaction) in order to ensure th a t only elem ents w ith m utually com patible types are

joined. We will show th a t SAPS makes significant contributions in a num ber of areas: bo th m odular

developm ent of subjects and subject reuse are more feasible th a n w ith SO P alone; some interaction

problem s are addressed directly while o ther anom alies are easier to detect because the extent of

object aliasing is explicit in the types of elements a t join points; and it is possible to use SOP to

address new kinds of concerns.

In order to introduce our work, Section 1.1 establishes our position on software reuse. T he posi

tion m otivates us to understand reuse b e tte r and guides us tow ards proposing SAPS as a pragm atic

reuse technology. The progression from the reuse position to SAPS is detailed in Section 1.2. Section

1.3 explains the objectives of this thesis and describes the way it is organised.

1

CHAPTER 1. INTRODUCTION 2

1.1 Position on Software Reuse

O ur work is m otivated by the technical challenges underlying software reuse. Software reuse has

received a lot of research a tten tion and there have been success stories [14, 113]. However, reuse

rem ains a topic for research because software engineers are constantly facing new challenges as

software pervades all areas of hum an activity and challenges grow in scale. To set ou t our reuse

position we will play ou t a typical software developm ent scenario th a t goes on in m any software

houses across the world.

Consider an application developer who has been tasked w ith creating a program to address the

needs of some client. O ur developer faces two constrain ts common to m any of to d ay ’s projects. The

first is program m ing in a m ainstream object-oriented program m ing language. The second is tim e.

T he tim e it takes the developer to create the p roduct is a m ajor contribu tor to cost. To reduce overall

costs the program m er is prepared to purchase com ponents, use application frameworks, scavenge

code and apply the la test m ethods in software engineering. T he developer takes pride in his work and

wishes to create well s truc tu red software th a t will be easy to m aintain, predictable during evolution

and reusable in fu ture projects. However, tim e is the overriding concern and corners can be cut to

ensure th a t the p roduct is delivered on schedule.

Now, an interesting question: w hat is the chance th a t the code he w rites can be reused in fu ture

projects? We believe th a t the tug-of-war between the in terests of the developer on a schedule and a

reuser in a hurry are a t the core of the software reuse problem .

T he developer m ust com plete the project on tim e which m eans th a t all good design ideas th a t

aid fu ture code reuse bu t cost tim e may not be adopted. M any design guidelines, although valuable

in theory, are dropped by program m ers in practice when they require effort. This effort is only
rew arded in fu ture m aintenance, evolution and reuse tasks. For example, separating types from their

im plem entations or using accessor m ethods for field look-up and update are known ways of improving

the separation of concerns and, therefore, reusability. However, unless enforced technologically or

institutionally , developers will often ignore good practices in order to save time.

T he reuser would like to reduce costs by assembling code from pre-existing com ponents ra ther

th an w riting code from scratch. The problem is one of finding code to reuse, possibly extracting it

from ano ther application, and adapting it to m eet the needs of the project. The reuser’s job is m ade

more difficult as the result of shortcu ts taken by previous developers.

We believe th a t improving opportunities for reuse depends on ideas th a t are of value to the

original developer and facilitate future reusability. Reuse ideas stan d more chance of being ac

cepted by practitioners when they are beneficial to the original developer. O ur a ttem p ts to improve

opportun ities for reuse are influenced throughout by th is position.

1.2 From Reuse Problems to SAPS

U ltim ately m otivated by issues in software reuse, th is Section describes the progression tow ards the

Subjective Alias P ro tection System. Software reuse is achieved th rough construction of reusable

software [82]. In order to make software more reusable it is necessary to separate all pertinen t con

cerns. Separation of concerns is of value to the software developer because tackling one subproblem

a t a tim e is easier th an tackling the whole problem a t once. We will show th a t using the current

m ainstream program m ing languages such as Java [45], the tim e-pressured developer cannot cleanly

CHAPTER 1. INTRODUCTION 3

separate all pertinen t concerns. E n ter M ulti-D im ensional Separation of Concerns (MDSOC) [122].

M DSOC proposes to organise software into m ultiple dimensions of concerns. By enabling the m odu

larisation of all concerns along all dim ensions th a t developers believe to be im portan t we can reduce

the cost of software developm ent over the lifecycle and improve opportunities for reuse.

T he pursu it of the M DSOC idyll is the dom ain of technology broadly referred to as Aspect-

O riented Software Development (AOSD) [90]. In AOSD, concerns are realised by modules called

aspects. Instead of interacting by message passing, aspect interaction is based on so-called join

points. Jo in points are defined in different ways [66], bu t usually they are either program m ing

language constructs or arcs in the p rog ram ’s dynam ic call graph. Join point interfaces enable sepa
ra tion of concerns for functional and non-functional requirem ents. Having identified the join point

interfaces, aspects can be developed independently and in tegrated using aspect-oriented compilers.

From a reuser’s perspective, code associated w ith pertinen t concerns from past projects is abstrac t

and m odular, m aking it m ore easily reusable th an when program m ed w ith conventional technology.

S ubject-O riented Program m ing is one stran d of AOSD th a t adheres well to the MDSOC model.

A subject is a m odule denoting an aspect. SO P concepts are realised in the program m ing language

H y p e r/J [121]. This language combines the modelling poten tia l required for separating m any con

cerns w ith the fam iliarity of m ainstream object-oriented program m ing: subjects are w ritten in pure

Java. Each subject has a very large num ber of join points determ ined by the underlying language.

Together these form its po ten tial interface to o ther subjects. T he actual in teraction points, along

which subjects com m unicate, only becom e apparen t when subjects are composed, i.e. subjects do

not explicitly publish a com position interface.

O ur experience w ith program m ing H y p e r/J has highlighted the strengths and weaknesses of evo

lution and reuse in the SO P paradigm . Each subject is relatively easy to understand as it addresses

either a single concern or a well-defined concern set. However, relationships between concerns and
subject interaction are often com plicated. We will show th a t the difficulty of understanding all con

sequences of com m unication can lead to unw anted in teractions or interaction problems. These affect
subject reuse, potentially lim iting the range of concerns to which Subject-O riented Program m ing

can be realistically applied.
In teraction problem s are a topic of our investigation. W ithin the range of in teraction problems,

there are those th a t can be solved by re-specifying in ter-subject in teraction and those which re

quire invasive m odifications to subjects. Re-specification of interaction affects the ‘cem ent’ between

‘building blocks’, whereas changes to subjects affect the ‘building blocks’. T he la tte r is a lot more

expensive to correct, m aking reuse uneconomical. M odular subject developm ent is also affected by

this problem; independent design can begin only when the effect of join point in teraction on s ta te

is well understood.

One way to facilitate stru c tu red reuse is to introduce form al com position interfaces. T h a t is,

to allow join point interaction bu t only a t predefined join points. However, subjects are m eant to

be reusable in ways not antic ipated by their original developers and, for this reason, we m ust look

for an a lternative solution. Instead, we propose to help subject composers to understand the effect

of com position on object s ta te by m aking explicit the way subjects use objects. O ur challenge is

com pounded by the reuse m otivation problem sta ted in the reuse position: any solution m ust benefit

the original developer as well as fu tu re reusers. We believe th a t Alias P ro tection Systems (APSs)

satisfy our reuse position. APSs are a solution to problem s caused by unstructu red object aliasing
in object-oriented program m ing. A PSs constrain object aliasing to enable m odular reasoning (on

CHAPTER 1. INTRODUCTION 4

objects). B ut each subject is an object-oriented sub-program and design-in-the-sm all is a purely

object-oriented activity. An APS is useful to the subject designer because it helps him to struc tu re

subjects b e tte r in order to avoid aliasing problem s. An APS is also useful to the composer for it

anno ta tes the elem ents a t com position join points, thereby helping to explain the effect th a t one

subject has on another subject.

Inspired by Flexible Alias Protection , we propose the Subjective Alias P ro tec tion System. Sub

jects can be composed when Subjective O wnership Types a t jo in points are m utually com patible.

The new em phasis on aliasing issues helps to prevent some in teraction problems. I t also aids de

tection of o ther interaction problem s by helping the composer to understand the effect of subject

interaction on state.

1.3 Thesis Outline

1.3.1 Aims, Objectives and Limitations

The m ain aim of th is thesis is to introduce SAPS as a reuse technology th a t has value to the original

developer of software. The secondary aim is to tackle in teraction problem s experienced in subject-

oriented program m ing. To m otivate these aims and defend the thesis we propose a sequence of

objectives:

1. Develop an understanding of the factors affecting software reuse and how to construct reusable
software.

2. Review the s ta te of the a rt in A spect-O riented Software Developm ent w ith the goal of identi

fying the technological trends th a t best m eet our reuse position.

3. Investigate the phenom enon of in teraction problem s in Subject-O riented Program m ing and
identify how they m ay be tackled.

4. Propose a set of requirem ents for an A PS for Subject-O riented Program m ing.

5. After presenting SAPS, show th a t SO T are a useful APS for subject design; explain how

SAPS enhances subject-oriented software development; and dem onstrate th a t SAPS addresses

in teraction problems.

T he m aterial presented in this thesis is of a conceptual natu re , so our approach is predom inantly

informal. We em phasise the software engineering issues ra th e r th an a type system because we

believe th a t an explanation of the relationships between reuse, interaction problem s, subjectivity

and ownership m ust come first. A rigorous form al model th a t follows on from the conceptual

understanding is fu ture work.

SAPS is not specific to any program m ing language, although it is expected th a t subjects will be

developed in an object-oriented language th a t combines subclassing w ith subtyping and has single

inheritance. O ur subject com position sem antics are based on th e observed sem antics of H y p er/J

and our subject com position language is interoperable w ith the core of H y p er/J .

1.3.2 Conventions

Exam ples are presented in Java pseudocode. We use the following typeface conventions. W hen

w riting code fragm ents we use the t y p e w r i t e r f a m ily of fonts. W here program m ing languages

CHAPTER 1. INTRODUCTION 5

use common English words for operators and keywords, we use the b o ld fa c e s e r ie s to distinguish

from the w ords’ general usage. Im portan t words and phrases are em phasised w ith italics. The sans

serif fonts are used in the presentation of SAPS concepts and to refer to ownership contexts. For

displaying m athem atical expressions the slanted fo n t is used.

1.3.3 Chapter by Chapter

C h a p te r 2: E v o lu tio n a n d R e u s e

Having already established our position, this C hapter describes the factors influencing reuse and

the challenges in constructing reusable software. It reviews object-oriented program m ing as a reuse

technology from the perspective of program m ers of m ainsteam program m ing languages.

C h a p te r 3: A d v a n c e d S e p a ra t io n o f C o n c e rn s

In moving beyond OOP, th is C hapter looks a t research in the area of A spect-O riented Software

Development. M ulti-D im ensional Separation of Concerns is presented as a model for understand

ing m any of the problem s in software engineering. We evaluate AOSD technology based on the

capability for separating two kinds of concerns: feature concerns from the problem dom ain, usually

associated w ith object collaborations; and aspectual concerns from the solution dom ain th a t are

difficult to m odularise w ith conventional program m ing languages. Subject-O riented Program m ing

can m odularise collaborations and m any aspectual concerns. It also satisfies our position on reuse.

C h a p te r 4: I n te r a c t io n P ro b le m s in S u b je c t - O r ie n te d P r o g r a m m in g

In this C hap ter we relate our own experience and th a t of o ther researchers w ith regard to interaction
problems. The problems we identify are categorised based on the kind of solution they require. The

first interaction problem can be addressed by reform ulating the com position specification. The
second by extending SOP w ith more powerful com position rules. T he th ird requires invasive subject

m odifications and is caused by an unantic ipated s ta te change in an object. This anom aly is hard to
detect because d a ta concerns are scattered across subjects.

We propose to develop an Alias P ro tection System for SO P in order to encourage subject devel

opers to create well s truc tu red subjects and to help subject composers to understand the effect of

subject interaction on sta te .

C h a p te r 5: A lia s P r o te c t io n a n d S u b je c t iv i ty

This C hap ter presents the s ta te of a r t in Alias P ro tection System s in object-oriented program m ing

and sets out the requirem ents for a system th a t is suitable for Subject-O riented Program m ing. SOP

decentralises class development, letting each subject define abstractions from its own viewpoint. The

decentralised style of software developm ent makes existing APSs unsuitable. The requirem ents for

an APS in SO P lay the foundations for the Subjective Alias P ro tection System.

C h a p te r 6: S A P S — S u b je c t D e s ig n

This C hap ter presents the principles of Subjective Ow nership Types. I t describes the way SO T are

used in subject design and describes the way types are checked.

CHAPTER1. INTRODUCTION 6

The containm ent properties of SO T are sim ilar to those of Ow nership Types proposed by Clarke

et al [23]. O wnership Types, like o ther APSs, are based on a centralised definition of classes. Subjects

define new classes, m ost of which do not have a centralised view. We use the concept of centralisation

to partitio n classes into two hierarchies called com posable and uncom posable. Uncom posable classes

can use an ownership type system very similar to th a t proposed by Clarke. Com posable classes

require a new type system . Instead of ownership param eters, we propose explicit and unknown

context identifiers for labelling object owners.

C hapter 7: SA P S - Subject C om position

At the core of a subject-oriented language like H y p e r/J is a subject com position model. We extend

the subject com position m odel discussed by Ossher et al [95] w ith contexts and describe w hat it

means to compose elements anno ta ted w ith Subjective O w nership Types. T he model is extensible

allowing new kinds of com position rules to be defined. The challenges include the specification of

unknown context resolution. This is a m echanism by which partia l knowledge of ownership s tructu re

specified in one subject is filled in by composing w ith o ther subjects. T he o u tpu t of com position is
a new subject containing the synthesis of concerns im plem ented by the input subjects.

C hapter 8: E valuation

The evaluation presented in this C hap ter dem onstrates th a t SAPS can elim inate some interaction

problem s entirely and can help to detec t o ther in teraction problem s by anno ta ting the effect of

subject interaction on sta te . The u tility of SAPS to the subject-oriented developer is shown through

a range of design problems. We show also how to use our system to express security concerns th a t
cannot be represented in SO P w ithout SAPS.

C hapter 9: C onclusions and Future W ork

In the final C hapter, SAPS is reviewed in term s of its contributions to reuse, interaction problems,

and as a tool for improving the design of subject-oriented program s. We conclude w ith a discussion
of plans to extend SAPS w ith additional aliasing capabilities.

Chapter 2

Evolution and Reuse

The position on reuse, outlined in Section 1.1 on page 2, is th a t im proving opportunities for reuse

depends on technologies th a t also have value to the original developer. There are a t least two ways

of m aking the construction of reusable software beneficial to the developer. The first is building

reusable artifacts w ith the aim of m arketing to a wide audience. The second is b e tte r separation of

concerns w ithin software; th a t is, not to build software for reuse m arkets bu t to make software more

reusable as a consequence of improved m odularity.

T he position on reuse also describes the pressures on developers which m ake code less reusable,

highlighting the significance of m aking all software more reusable and no t ju s t software which was

intended for reuse. This d issertation takes the second approach above: to seek im provements in

m odularity as the way of improving reusability. To defend the approach, the present C hapter

describes software evolution and reuse. Section 2.1 defines reuse and reusable software. Section 2.2

explores the m odularity issues in reuse. Section 2.3 presents the challenges of constructing software

for reuse. M ainstream software developm ent is presently dom inated by object-oriented program m ing

(O O P). O bject-oriented program m ing was tou ted as a m eans of im proving opportunities for reuse.

In Section 2.4, we discuss its successes and failures in th a t respect.

2.1 W hat Is Reuse?

Software reuse has been proposed as a solution to the software crisis - the problem of building

large, reliable software system s in a controlled and cost effective way [82]. T he benefits of reuse are

improved quality of the finished product from reuse of pre-tested artifacts and reduced development

costs due to economies of scale - the developm ent cost of a single reusable artifac t is am ortised by

all who in tegrate it in their products. Software reuse is difficult because useful reuse abstractions

are typically complex. The program m er m ust either be fam iliar w ith th e artifacts or take tim e to

study and understand them . E ither way, it m ust be cheaper to reuse the software artifact than to

develop software from scratch [70].

It is im portan t to distinguish software reuse from reusable software. Software reuse is the activity

th a t takes place afterw ard, when software was initially created in the past. To best support this,

reusable software m ust be created beforehand in such a way th a t it is easy to reuse later.

In its m ost general sense, reuse is the ac t of taking existing artifacts related to the creation of

software and incorporating them in a new project or extending software w ith new functionality.

7

CHAPTER 2. EVOLUTION AND REUSE 8

T he types of artifacts th a t can be reused are not lim ited to pieces of code. It is possible to reuse

requirem ent specifications, design patterns, tes t cases, and anything else related to the construction

of software. However, when talking about reuse we usually th ink of code, and th a t is w hat we will

m ean when discussing reuse.

T here exists a difference between the act of reuse and usage of software by a client. For instance,

according to Poulin [103], the use of high-level languages, software developm ent tools, applications

and application generators is not reuse because an applications developer is generally no t expected

to write th is software. Categories which represent reuse are:

• The first use of a com ponent bu t not the subsequent uses.

• Code from utility, domain-specific and corporate libraries.

We broadly agree w ith P ou lin ’s categorisation bu t would like to include software evolution w ith

the aim of incorporating new requirem ents. We define software evolution as the process by which

system s are extended w ith new code due to changing requirem ents. T he new code is called the

extension. Poulin [103] does not count evolution as reuse because stric tly it does no t involve using

code in an unrelated project. B ut in the ‘real w orld’, evolution and reuse often look like two sides

of the same coin. Consider the way Meyer defines reusable com ponents [87]:

“a software element th a t m ust be usable by developers who are no t personally known

to the com ponent’s au thor to build a p ro ject th a t was no t foreseen by th e com ponent’s
au th o r.”

This definition readily applies to software evolution. For the following reasons, we are inclined to

include evolution in forthcom ing discussions on reuse:

• The person creating the extension is no t necessarily the original au tho r and therefore may be
unfam iliar w ith the application.

• T he ad ap ta tion of th e extended artifact to accom m odate the extension is often unanticipated

w ith respect to the original requirem ents, requiring the original program to be adapted to
accom m odate the extension.

• T he extension w riter invests tim e in creating the extension instead of reconstructing the ap

plication from the ground up. Ju s t as when one reuses code in an unrelated application, the

extension w riter m ust believe th a t understanding the original program takes less effort th an
rew riting it.

• As often happens, docum entation may be absent or hopelessly ou t of date.

• In object-oriented program m ing, inheritance is associated b o th w ith seamless evolution for

creating families of types and w ith code reuse [101].

Im pedim ents to software reuse are technical and non-technical. A lthough the em phasis of this

d issertation is on technical factors, the non-technical factors are also reviewed.

O rganisations are generally all too happy to cut costs. In the experience of Schm idt [110] organ

isations would like to rew ard in ternal reuse efforts bu t a num ber of non-technical factors conspire to

m ake reuse hard:

CHAPTER 2. EVOLUTION AND REUSE 9

O rg a n is a t io n a l . Development, deploym ent and support of reusable artifacts requires a deep under

standing of the application developer’s needs and business requirem ents. In a large organisation

w ith m any projects the num ber of reusable artifacts increases, m aking it harder to struc tu re

an organisation to provide interaction between team s.

E c o n o m ic . C reation of reusable assets requires investm ent which needs to be charged for each

project. O rganisations find it difficult to in stitu te appropria te taxation on reused artifacts

when reuse departm ents are responsible for balancing the ir books.

A d m in is t r a t iv e . I t is common for developers to scavenge classes or functions from existing pro

gram s developed w ithin their im m ediate workgroup. However, it is harder to catalogue, archive

and retrieve reusable assets across m ultiple business units in a large organisation.

P o li t ic a l . R ivalry between business un its may stifle reuse of artifac ts developed by o ther units when

it is perceived as a th re a t to job security or influences th e balance of power.

P sy c h o lo g ic a l. T he ‘not invented here’ syndrom e is ubiquitous in m any organisations. Enforce

m ent of reuse practices is seen as m anagem ent lacking confidence in the developers’ technical

ability.

Reuse as a m ulti-organisational problem requires a com m unity of developers who are prepared to

share ideas, tools, m ethods and code. However, sharing is no t trad itionally an ethic of commercial

companies. On the contrary, com panies prefer to keep their p roducts proprietory in order to m aintain

com petitiveness [80].

2.2 M odularity and Reuse

In order to understand reuse problem s it is im portan t to understand w hat the developers w ant to

reuse. Reuse is usually discussed in term s of particu lar m odular artifacts such as functions and

classes, whereas program m ers generally wish to reuse code associated w ith concerns. M odularity

is a t the core of reusability; getting it right will have great im pact on reusability. M aintenance

significantly im pacts reusability. We argue th a t im proving the traceability of requirem ents in designs

can reduce the negative im pact of evolution and facilitate the reuse of code associated w ith those

requirem ents.

2.2.1 Modularity

Decomposing artifacts into smaller p arts is a t the core of software development. We decompose

system s into modules because tackling problem s one m odule a t a tim e is easier th an tackling the

whole problem a t once. In term s of software, a system is m odular when each activ ity of the system

is perform ed by exactly one module, and when the inputs and o u tp u ts of each m odule are well

defined [99]. An activ ity can be understood as code which executes in response either to a client or

system requirem ent.

P arnas questioned the criteria we use for decomposing system s into modules [97]. He s ta ted

th a t m odules should hide difficult design decisions or design decisions which are likely to change.

Applied to d a ta representation, this principle is the foundation for ab strac t d a ta types (ADTs) and

is a t the core of object-oriented program m ing. T he m odule user or client is interested in w hat the

CHAPTER 2. E VOL UTION AND RE USE 10

m odule does and not how it does it. The functionality of the m odule is accessed through an interface

which does no t reveal the way the module is im plem ented. T he process of m odular decom position

continues until each m odule in the system has a clear purpose.

T he com plete set of modules exhibits a hierarchical s truc tu re . At the roo t is the whole system

and each m odule is composed of modules below it in the hierarchy. P arnas observed th a t b e tte r

reuse can be achieved if modules higher up in the hierarchy use m odules lower down bu t not the

o ther way around. This way the modules closer to the roo t can be removed and a new tree grown

using the low level modules a t the leaves.

M odularity affects evolution and reusability directly [17]. T he concerns which the developer

chooses to m odularise will be easy to m aintain, evolve and reuse. O ther concerns, which were not

deemed im portan t or which were not m ade m odular for one reason or another will be harder to

reuse. A num ber of factors conspire to make the initial choice of modules less th an straightforw ard:

• T he technology m ust enable separation of concerns identified as im portan t. It is well known

th a t it is possible to w rite a program in any language th a t is general enough, bu t some lan

guages are b e tte r suited to separating certain kinds of concern. For example, in object-oriented

program m ing, inheritance can be used seamlessly to introduce a new variant of a type. Dy

nam ic dispatch - the technology th a t makes this possible - can be sim ulated in a procedural

program m ing language. However, the procedural program m er will no t build dynam ic dispatch
into the program before it is needed.

• There are m any concerns, which makes it hard to determ ine which ones to m odularise. It
is hard to identify those concerns which are im portan t. For example, a t an early stage in

the specification of a m atrix m anipulation system , the developer is concerned w ith m atrix
operations available to a client. T he set of available operations may change. If this happens, it
would be nice to introduce new operations w ithout invasive changes to existing code. For this

reason, the developer considers trea ting each m atrix operation as a module. For reasons of

efficiency, the im plem entation of each operation is tied closely to the m atrix im plem entation.

T here may be one algorithm for sparse m atrices and one for full m atrices, or a single algorithm

th a t trea ts bo th kinds of m atrix the same. Now the developer believes th a t each kind of m atrix

should be a module.

• Having separated concerns identified as im portan t it should be possible to compose modules

cheaply and predictably. W hen reuse of modules becomes common, relatively little tim e will

be spent w riting new modules, and m ost of the program m ing effort will lie w ith combining

m odules [59]. Com position is p a rt of the cost of reuse. As the tim e spent adapting and

debugging the interaction increases, so reuse of those modules becomes less appealing.

M odularity clearly affects reuse, bu t w hat affects m odularity? T he choice of modules is guided

by the program m ing technology. Reusable artifacts are associated w ith w hat the underlying pro
gram m ing language determ ines as modules.

2.2.2 Reuse Artifacts

Reuse fundam entally depends on the reuser’s ability to ex trac t code. If th e concern is realised as a

m odular artifac t from a library then no work is necessary. O therw ise, the reuser m ust disentangle the
code in order to reuse it. In order to be cost-effective, reuse should not involve m ajor modifications.

CHAPTER 2. EVOLUTION AND REUSE 11

In m ainstream program m ing technology, functions, procedures or com ponents are m odular artifacts.

Program m ing technology dictates those concerns th a t become m odular and those th a t do not have

a m odular form, instead becoming im plicit or tigh tly in tegrated in com ponents and architectures.

Functions are the m ost fine-grained m odular artifacts of reuse th a t we distinguish. For example,

m any cryptographic libraries are full of functions th a t com pute factors of large numbers. P ure

functions are some of the easiest th ings to reuse because they have single en try and exit points, do

no t modify global d a ta and offer referential transparency. R eferential transparency allows a pure

function to be replaced by its value which m eans th a t a function can be referenced anywhere w ithout

adverse consequences [37].

P rocedures em body elements of functionality th a t may depend on or modify some global state.

By com parison, pure functions are easier to reuse because in order to reuse procedures one also

has to understand the procedure’s effect on shared sta te . In object-oriented program m ing, non

triv ial procedures are analogous to object collaborations. T he s ta te is no t global bu t instead is

a ttrib u ted to objects involved in the collaboration. Collaborations are hard to reuse because objects

are generally associated w ith m ultiple collaborations [86]. Reusing collaborations involves factoring

out all o ther concerns a ttached to the objects. For example, graph traversal algorithm s are useful

in m any applications. Among the algorithm s which can be applied to an a rb itra ry graph is the

com putation of the num ber of unconnected subgraphs. This algorithm should be readily reusable in

m any applications bu t the objects playing the roles of vertices or edges also contain o ther behaviour

th a t is hard to separate. Program m ing languages and o ther technology for im proving collaboration

m odularity are reviewed as p a rt of C hap te r 3 (page 22) on A dvanced Separation of Concerns.

Com ponents are aggregations of functions and procedures. T hey present interfaces th a t let
clients access the ir functionality and custom ise the com ponents to address application requirem ents.

The th ing th a t characterises com ponents and makes them different from sets of related functions

and procedures is the sharing of a represen tation - a common im plem entation th a t rem ains hidden

beneath the facade. C om ponents can be large or small. A t one extrem e are common abstrac t

d a ta types; a t the o ther there are com ponents which can function as stand-alone applications.

For example, a spreadsheet tool is a com ponent th a t has interfaces for adding and removing d a ta

from cells, for changing the num ber of rows and columns, for creating relations between cells and

for changing d a ta views. It is norm al for clients to request ex tra functionality from successful

com ponents which m ay require the interfaces to be extended or modified.

A rchitectures are assemblies of com ponents; they are subsystem s th a t provide services. Reuse

of architectures perm its substan tia l savings over stand-alone com ponents. Developers are keen to

reuse architectures to leverage application development. A rchitectures can support concerns such

as distribution, letting the application developers concentrate on the business end of their system.

For example, an agent framework is an architecture. An agent fram ework allows for the creation of

autonom ous, heterogeneous objects th a t have the ability to ‘reason’ for themselves, negotiate w ith

o ther agents or refuse to accept messages [130]. Conform ance w ith existing technology may guide

the developer to selecting one agent p latform over another. Reusability is often in the requirem ents

for architectures.

The reused concern or the unit of change during evolution is not determ ined by the technology

used to im plem ent it bu t by w hat th e reuser or m aintainer considers im portan t. Reuse is simpler

when th e concern happens to coincide w ith a m odular artifact, be it a function, a procedure, a

com ponent or an architecture. P rogram m ers may wish to reuse all sorts of concerns including

CHAPTER 2. EVOLUTION AND REUSE 12

code associated w ith im plem entation abstractions and feature concerns, i.e. code addressing an

aspect of end-user functionality. To facilitate reusability, all pertinen t concerns require a m odular

representation.
Seamless evolution and reusability are achievable th rough investm ent in architecture bu t external

pressures negatively im pact architectures, slowly eroding any inherent flexibility.

2.2.3 The Effect of External Pressures on Reusability

It has been observed th a t reusability is affected by the deadline effect. P ro jects often have tight

schedules th a t force the program m ers to come up w ith quick solutions to problems. Any reusability

which was inherent in program s initially is eroded little by little by a sequence of unanticipated

extensions [104]. M any projects s ta r t out w ith a well-defined arch itecture which gradually gets

eroded until the program becomes a big ball of mud. According to Foote and Yoder [41], the

big ball of m ud arch itec tu re predom inates in practice. Program s th a t have such architecture are

“haphazardly stru c tu red , sprawling, sloppy, duct-tape and bailing wire, spaghetti code jungle” . The

problem w ith big balls of m ud is th a t they are of no use to anybody except the current users who

become dependent on th e services these system s offer. Big balls of m ud are an oil slick in the ocean

of reusable software - as system s grow larger they become m ore and m ore difficult to understand,

raising the cost of reuse [17].

A project which s ta rts out w ith a discernible arch itecture becomes a big ball of m ud largely
because of cost. T he custom er usually needs som ething by tom orrow . Often, the people who m anage

the developm ent process simply do not regard arch itecture as a pressing concern. If program m ers
know th a t w orkm anship is invisible, and m anagers do not w ant to pay for it, a vicious circle is born.

In m uddy code the im portan t d a ta is global, the rest is passed surreptitiously th rough various

channels. V ariable and function nam es are uninform ative or even misleading. Control flow and pro

gram m er in ten t is hard to understand. T he code is patched num erous tim es by different m aintainers

and there is no up to d a te docum entation.
The prevalence of the big ball of m ud approach to software developm ent has lead Foote and Yoder

to conclude th a t it is a m ethod which works. I t is a p a th of least resistance when one is confronted

w ith the forces described above. In order to restore stru c tu re Foote and Yoder suggest th a t system s

should be refactored. R efactoring improves the program ’s structu re , im proving its understandability

and facilitating evolution w ithout changing the program ’s functionality [93]. Refactoring enables

consolidation - a process by which experience accrued as the system evolves gets absorbed into the

system ’s structu re . W hen code has declined beyond com prehension and repair, reconstruction or

resta rting from the ground up rem ains the sole viable approach.

We believe th a t realistic technology-based solutions to stopping program s tu rn ing into big balls

of m ud m ust take into account the tim e pressures placed on developers. For example, in a pressured

environm ent, changes in requirem ents are hacked directly into code. Instead of applying changes

to design artifacts and then applying the changes to code, code is changed and the designs slip

into obsolescence. Design artifacts are discarded because of the effort associated w ith m aintaining

them w hen all th a t really counts is w hether the code works or not. M aking designs more useful to

m aintainers is the way to raise in terest in design artifacts. We believe th a t code is less likely to tu rn

into big balls of m ud when up-to-date design docum ents are available for assessing the im pact of

m odifications and extensions during m aintenance.

CHAPTER 2. EVOLUTION AND REUSE 13

For object-orientation, Clarke et al [25] believe th a t there are th ree reasons why developers do

not use designs th roughout the software lifecycle:

• Designs are often large and monolithic. Classes and interfaces are centralised notions and only

one designer a t a tim e can work on a given design unit. C entralisation causes early com m it

m ent to struc tu re which m ay overconstrain the set of possible designs too early, consequently

increasing th e im pact of change.

• Designs are too difficult to reuse because they bundle too m any pieces together. Classes

designed for a particu lar system are too specialised for general use. Potentially reusable classes

include a lot more functionality th an a reuser requires, decreasing their com prehensibility and

reusability.

• M ost im portantly , there is struc tu ra l m isalignm ent between requirem ents and code w ith the

design caught in th e middle. In requirem ents, th e units of abstrac tion and decom position

relate to capabilities, features and o ther concepts in the problem dom ain. O bject-oriented

code focuses on classes, interfaces and m ethods. This causes the problem s of traceability of

requirem ents in code. Design languages such as UML [18] produce designs th a t align well

w ith code. Consequently, designs also align poorly w ith requirem ents. W hen the requirem ents

change, the developer does not wish to incur the cost of m aking changes twice - once for design

and once for code. So he changes only code.

T he reuse lesson is th a t designs and code should m odularise w hat is in the requirem ents as well

as w hat is necessary to m odularise in the im plem entation.

D ecentralisation can drive down costs for the original developer: given the right technology one

developm ent team can be assigned to the im plem entation of each requirem ent despite the struc tu ra l
overlap in im plem entations. M odular developm ent of each requirem ent m ay speed up project delivery
making the technology th a t enables decentralisation a ttrac tiv e to the original developers and the
reusers.

2.3 Challenges in Constructing Reusable Software

C om ponent and framework development are associated w ith the construction of reusable software.

In order to successfully m arket software as a reuse artifact, it is necessary to make software ad ap t

able to a range of applications. This requires developers to an tic ipate changes and then provide

flexibility th rough design. Blackbox and whitebox are two strategies for m aking software adaptable

to evolution.

2.3.1 Frameworks and Component Based Development

Com position and generation technologies are two accepted ways of constructing reusable soft

ware [16]. Frameworks - a generation technology - are sem icom plete applications th a t can be used to

generate custom applications. They are specialised to a range of applications and designed to solve

a narrow set of problem s [36]. Com ponent-based developm ent (CBD) - a com position technology -

involves building system s using prepackaged com ponents. S tandard com ponent architectures such

as CORBA [13], JavaB eans [48] and M icrosoft COM [108] enable developers to m arket com ponents
to wide audiences.

CHAPTER 2. EVOLUTION AND REUSE 14

C om ponents, such as those designed for the JavaB eans model, can be custom ised b u t only in the

way intended by the developer. The ad ap ta tion interface is lim ited to introspection - the ability to

observe and modify a predefined range of properties. There is no conventional access to the internal

design which makes it difficult to modify beans if the modification was originally not anticipated.

Also, there exist concerns th a t we would like to reuse bu t which are no t easily m odularised by a

com ponent. For instance, a Tracer com ponent th a t gathers sta tistics abou t d a ta flow between other

com ponents is difficult to define. All com ponents th a t m ay be traced are required to implement a

certain interface and to support the notification of d a ta flow w ithin their im plem entation. M anual

selection of d a ta flow points is prone to error. Even more im portantly, when com ponents are devel

oped independently by th ird parties, it is not reasonable to expect com ponent developers to know

abou t all o ther com ponents w ith which they m ay be connected.

Fram eworks can significantly increase software quality and reduce developm ent effort [36]. One

problem is finding the right framework to reuse. Com panies a ttem pting to use large-scale frameworks

often fail to recognise and resolve challenges such as [35]:

• the learning curve the program m ers m ust go through before they become proficient a t using a

particu lar framework,

• in tegration between frameworks th a t address parallel concerns,

• framework m aintenance will require application code to be updated ,

• reliance on framework developers to remove defects, and

• efficiency penalties over custom applications.

M any im pedim ents to framework reuse are non-technical and are, in general, connected to prob

lems a custom er can experience when relying on external services. Overall, the benefits of frame

works significantly exceed the drawbacks bu t reuse rem ains a problem in new application areas where

frameworks are unavailable.

2.3.2 Problems with Planning for Reuse

W hen constructing reusable software, th e developers aim to to m ake the ir com ponent as generally

useful as possible in order to open it up to a wider m arket. The process requires the developer

to an tic ipate variation and create hooks for fu ture evolution. It also helps to avoid invasive code

m odifications w ith respect to planned extensions. For example, in framework construction, certain

extensions are p a rt of the requirem ents and, therefore, should be built-in. In order to create a

successful framework one m ust foresee the uses to which the framework will be put.

T he program m ing language used in software developm ent determ ines the cost of providing ex

tension points. For instance, abstrac t d a ta types such as lists are conceptually generic w ith respect

to the kinds of com ponents th a t can be stored within. W hen building com ponent libraries, ADTs

can be m ade generic in any sufficiently general program m ing language. However, in order to eas

ily construct generic ADTs the language m ust support either generalisation or inheritance. For

example, C + + supports genericity w ith tem plate classes [115]. Tem plate classes allow families of
related classes to be specified w ithout a significant syntactic overhead. W hen the cost of providing

a particu lar kind of adap ta tion is not significant w ithin some language, program m ers will take ad

vantage of the available language features in order to make com ponents more adap tab le as p a rt of

CHAPTER 2. EVOLUTION AND REUSE 15

good design. Program m ing language features such as genericity can lead to more reusable software

w ithout requiring investm ent.

T he problem w ith planning for reuse beyond th e original requirem ents is elegantly sum m ed up

by Fowler [42]:

“One way to deal w ith changing requirem ents is to build flexibility into the design so

th a t you can easily change it as the requirem ents change. However, th is requires insight

into w hat kind of changes you expect. A design can be planned to deal w ith areas

of volatility, bu t while th a t will help for foreseen requirem ents changes, it won’t help

(and can hurt) for unforeseen changes. So you have to understand the requirem ents well

enough to separate the volatile areas, and my observation is th a t this is very h ard .”

T he advice of E xtrem e Program m ing [11] is th a t you do not build flexible com ponents on purpose.

Let the struc tu res grow as they are needed. The reasons are economic - if work is done on features

th a t m ay be needed tom orrow, tim e will be lost for features th a t need to be done for this iteration.

Also, working on things for the future is outside the contract the program m er has w ith a custom er.

It should be up to the custom er to decide w hat ex tra work should be done.

2.3.3 Black-box and W hite-box Reuse Strategies

T he term s white-box reuse and black-box reuse are defined in relation to w hat the reuser believes

to be the interface for adapting the artifact. W ith w hite-box reuse, program m ers are free to modify

code beyond the ad ap ta tion interface to suit their needs. In CBD, the adap ta tion interfaces of

com ponents are the points of in teraction between the com ponents and w ith the com ponent model.

In frameworks, the ad ap ta tion interface consists of the preplanned extension points. This approach

gives a lot of freedom for com ponent adap ta tio n bu t is also fraught w ith difficulty because consistent
m odification requires com plete fam iliarity w ith code. T he o ther extrem e is black-box reuse which

disallows unantic ipated modification of the retrieved com ponent. T he black-box stra tegy can make
it more difficult to find suitable artifacts. Black-box com ponents in CBD technologies allow a lim ited

degree of ad ap ta tion which may be insufficient to custom ise the com ponent to the needs of another
project.

Com m on abstrac t d a ta types are black-boxes because the reuser is in terested in their functionality

b u t not im plem entation. Larger-grained com ponents are often black-boxes to reuser-clients bu t

white-boxes to reusers who require access to parts of the internal design. For example, consider the

developm ent of user-interface (UI) software for mobile phones. There are two kinds of reusers. The

UI com pany producing the software and the telecom com pany configuring the software. Changes to

the underlying model are m ade by the UI com pany who see the software in w hite-box form. The

telecom com pany m ay configure the software for phones w ith a different num ber of keys, displays in

m onochrom e or colour, and introduce different menu options. The telecom com pany is a black-box
reuser.

Confusingly, frameworks are classed as white-box reuse [35] despite th e im plem entation of frame

work classes being hidden from the reuser. The reuser needs to access docum entation explaining

how to extend the framework to create an application bu t does not need to know the details of
im plem entation of framework classes.

T he inform ation hiding aspect of black-boxes is appealing because it allows more complex system s
to be built by using black-boxes as building blocks. T he open-ended adaptab ility of white-boxes is

CHAPTER 2. EVOLUTION AND REUSE 16

appealing too because it gives considerable freedom to adap t com ponents. T he situation is analogous

to the drivers of racing cars. A lthough it is possible to drive a car w ithout understanding anything

abou t the details of engine or gearbox design, or the principles of power and torque, an expert

driver will use his knowledge of the way the m achine works to harness its po ten tial for winning.

Furtherm ore, to drive a racing car well it is no t necessary to know anything about, for example, the

way the gearbox shifts cogs. Hence, a t every stage, there is ex tra inform ation which separates an

expert user from a novice and additional details which are not relevant to perfom ing the task well.

R eturn ing to com puting, Kiczales believes th a t O pen Im plem entations can address the problem

by providing m ultiple interfaces [64]. O pen Im plem entations is a proposal for w riting substra te sys

tem s - program s used by developers for creating and supporting the execution of client applications.

P rogram m ing technology and operating system s are examples of su bstra te systems. Such program s

have two kinds of interfaces: the meta-level interface is a side door into substra te system s th a t is

used to ta ilo r the base-level interface to meet the special needs of clients. T he meta-level interface

uses m eta-object protocols [65] to provide th ree kinds of openings:

I n t r o s p e c t io n . Access to im plem entation sta te . ■

In v o c a tio n . Access to in ternal fuctionality.

In te rc e s s io n . Changes to behaviour or im plem entation stra tegy to improve perform ance.

A power user can exploit the m eta-level interface to modify the system in powerful yet s truc tu red

ways. W riting su bstra te system s as O pen Im plem entations is more expensive initially. The cost is

recouped th rough reduced extension costs. W hen the substra te lacks functionality needed by its

user, the user can use the m eta-level interface to extend the substra te .

Clearly, only a small proportion of program m ing activ ity is concerned w ith w riting substrates.

Nevertheless, m eta-object protocols dem onstrate the ir flexibility when coping w ith changing require
m ents and the resulant changes to systems. In order to be more adap tab le to unantic ipated changes

a com ponent needs to provide facilities for changing from the inside.

2.3.4 Setting The Research Direction on Reuse

C onstruction of reusable software plays an im portan t role in the software reuse spectrum bu t it is

not the whole of the spectrum . A lot of software is not built for reuse bu t to address the functional
requirem ents.

There are a t least two ways th a t construction of reusable software can be m otivated. The

first is to develop m arketable com ponents. The incentive comes in th e form of com ponent trade.

Building reusable com ponents for m arketing is an established practice in the software industry. One

of the challenges concerns opening up com ponent m arkets to improve availability and drive down

prices [105]. The second is to seek im provem ents in software m odularity. Due to the unanticipated

n a tu re of evolution and reuse, it is often not possible to predict w hat concerns the current project

will share w ith o ther projects. However, the units of software decom position will be more reusable if

each m odule addresses one well-defined concern. As a s ta rting point, the feature concerns identified

in the requirem ents specification should be considered for m odularisation.

T his d issertation focuses on m odularity for reuse. O bject-orientation is to d ay ’s dom inant pro

gram m ing paradigm . In the rest of this C hapter, the way object-oriented program m ing enables
software reuse is examined.

CHAPTER 2. EVOLUTION AND REUSE 17

2.4 Reuse in Object-Oriented Programming

W hen object-oriented program m ing (O O P) was introduced, it was m arketed as a program m ing

paradigm th a t facilitates reusability (e.g. [40]). B u t as we have shown, reuse has m any facets and

two people who have an intuitive understanding of reuse may each have a different intuitive under

standing. Presently, O O P is discussed in the way it is commonly perceived by m any object-oriented

program m ers [83]: th rough the languages C + + [115] and Java [45]. For reasons of com patibility

and for non-technical reasons program m ers are often required to use these languages in projects.

2.4.1 Key Aspects of Object-Oriented Programming Languages

A num ber of factors combine to m ake object-oriented program m ing am enable to code reuse:

A b s t r a c t io n . D a ta abstraction encourages the creation of modules which hide the ir im plem entation

behind an ab strac t interface.

I n h e r i ta n c e . A new class can be derived by reusing code from an existing class.

P o ly m o rp h is m . W ith polym orphism , an object of a derived class can be used in place of an object

of the expected class.

A b s t r a c t io n

O bjects can be used to represent abstractions in the problem dom ain and in the solution dom ain, i.e.
the dom ain of im plem entation. To understand w hat an object does it is not necessary to look inside
the object; the behaviour is characterised by w hat is observed a t the interface. T he d a ta abstraction

properties of object-oriented languages are well su ited for m odelling ab strac t d a ta types.

T he class is the m odular design un it in OOP. Its designer decides w hat is internal and external.

Visibility modifiers p r i v a t e and p u b l ic determ ine the services th a t are available to clients. The

abstraction properties support the construction of black-boxes where the interface makes available

those services th a t are required by clients in the ob jec t’s sphere of application. It is not in the

interests of the original designer to an ticipate any additional services to which a reuser will require

access.

T he conceptual separation of type specification from im plem entations of the type is opaque in

C + + and Java. A class defines b o th the type of objects and their im plem entation; although, Java

does allow program m ers to separate the type from the im plem entations w ith interface constructs.

M ultiple classes can im plem ent an interface, defining variants, and a single class can im plem ent

m ultiple interfaces, in effect perm itting an object to have m any types or views. In order to be useful

in reuse the developer m ust be consistent in separating all classes from interfaces. G ood object-

oriented practice suggests also th a t one should hide all field variables. Accessor m ethods should

provide controlled access. These practices improve the separation of concerns by abstracting the

client away from the im plem entation, allowing one to change the im plem entation w ithout affecting

the clients. This good advice is not always followed by program m ers probably because it requires
ex tra keystrokes or due to misplaced concerns for execution speed.

Solutions need not come in the form of a different program m ing language. Extensive labour-

saving tool support exists for Java and C + + to discourage bad practice.

CHAPTER 2. EVOLUTION AND REUSE 18

Inheritance

Inheritance is a relationship defined between classes. In object-oriented terminology, a subclass

extends a superclass inheriting its non-private members, possibly overriding inherited m ethods and

defining new m em bers. Class members are field variables and m ethods. Reuse w ith inheritance

comes in two forms: superclass reuse and client reuse.

Superclass reuse is the m ost common form associated w ith inheritance. W hen two classes have

sim ilar parts, these can be ex tracted and placed into a common superclass which bo th classes

inherit [61]. A lternatively, one can s ta rt from an existing class or classes (in C-l—1-), inherit and

m ake the required modifications. The first form of superclass reuse is more likely to occur during

initial developm ent as code gets factored into a common superclass. T he second form is common

during a posteriori reuse.

Client reuse is the reuse of code associated w ith clients. W hen inheritance is used to create a
subtype, all the code th a t uses the supertype instances can seamlessly m igrate to using subtype

instances. T he am ount of code reused th is way is often more significant th an w ith superclass
reuse [15].

M ultiple inheritance allows a subclass directly to inherit m em bers from m ultiple superclasses.

Languages th a t support m ultiple inheritance of im plem entation, such as C + + , also have a con

flict resolution m echanism for disam biguating the order of inherited mem bers when sim ilarly nam ed

m em bers are inherited from different superclasses. M ultiple inheritance simplifies reuse because

it allows one to create classes th a t contain com binations of properties inherited from d istinct su

perclasses. On the o ther hand, it can make the behaviour of objects m ore difficult to understand
because it requires com prehension of more branches in the hierarchy.

P olym orphism

Subtype polym orphism , genericity and m ultiple dispatch are different kinds of polym orphism . C + +

and Java have subtype polym orphism in common. O bjects in terac t by sending each o ther messages.

T he object whose code is executed in response to a message is known as the receiver. In these

languages, sub type polym orphism requires a dynam ic check. W hen a m ethod is called, the code

which gets executed is determ ined a t run-tim e based on the type of the receiver.

This polym orphic behaviour is useful when a group of objects have the sam e general form bu t

differ in specific details. The client can tre a t related objects in the same way bu t the behaviour th a t

is invoked depends on the actual type of the receiver. Polym orphism reduces initial development

costs by trea ting a set of objects of different types in a generic way; clients can refer to the subset

of the interface all objects share. To achieve the same effect in procedural languages one can define

m aintenance intensive i f - t f i e n - e l s e structures.

Genericity is also known as param etric polym orphism . C + + supports genericity through tem

pla te classes. Tem plate classes are in stan tia ted by giving concrete classes as special type param eters.

G enericity is extrem ely useful where an upfront requirem ent for genericity is identified, e.g. for cre

ating reusable containers such as L i s t [X] which can be param eterised by different types X of list
elements.

M ultiple dispatch appears in CLOS [63] - the object-oriented extension to the Lisp language. It

allows code selection based on the dynam ic type of the receiver and param eters. M ultiple dispatch

can reduce the cost of class reuse in some designs. Consider the exam ple of two or more modems.

CHAPTER 2. EVOLUTION AND REUSE 19

Modem ml = new X M o d e m O ; // notice that static type is different
Modem m2 = new XModemO; // to dynamic type.
Modem m3 = new YModemO ;
ml.connect(m2); // invokes proprietory
ml.connect(m3); // invokes standard

abstract class Modem {
void connect(Modem m) { .. } // the standard protocol

>
class XModem extends Modem {

void connect(XModem m) { .. } // proprietory protocol
>
class YModem extends Modem {

void connect(YModem m) { .. } // proprietory protocol
>

Figure 2-1; Exam ple dem onstrating m ultiple dispatch.

Suppose th a t to enable faster d a ta transfer, a m odem connects to ano ther m odem of the same make

using a proprietory protocol. Two modems of different makes com m unicate using the standard

protocol. M ultiple dispatch allows us to define a simple interface th a t is common to all modems.

W hen a new m odem model is produced, we create a new subclass of th e ab strac t m odem class which

defines the proprietory protocol. T he client code can tre a t all m odem s the same bu t connection

invokes the propretory protocol when the dynam ic type of the receiver and param eter are the same.

F igure 2-1 shows the M odem exam ple using Java-like pseudocode. Unlike Java, the param eter type
is dynam ic. In the absence of m ultiple dispatch, th e effect of co n n e c t (. .) will be to call the

s tan d ard protocol each time.

2.4.2 The Role of Inheritance in Reuse

O bject-oriented program m ing associates reuse w ith classes. A class is a versatile reuse un it because

it spans all levels of abstraction from basic ab strac t d a ta types to large and complex com ponents.
Inheritance is the m ain reuse operato r introduced by object-oriented program m ing. Reusers employ

inheritance to derive a new class from existing classes. M aintainers also use inheritance when re

quirem ents change. R eluctance to modify existing classes for fear of breaking them leads m aintainers

to using inheritance instead. Inheritance acts as version control: the subclass is a newer version of

the superclass. However, inheritance is also used for conceptual modelling, to express supertype-

subtype relationships, and to introduce varian t im plem entations of types. Using inheritance for

reuse w ithout establishing a clear conceptual relationship between the superclass and the subclass

leads to the the ball of m ud arch itecture described earlier. The elim ination of m ultiple inheritance

of im plem entation from the Java language can be seen as a way of try ing to com bat bad practice.

LaLonde and P ugh [72] discuss th ree d istinct in terp retations of inheritance. Subclassing refers

to inheritance of im plem entation. Subtyping perm its an instance of a subclass to be used in the

place of the superclass. Inheritance between classes is modelled using the ‘is-a’ test. T he problem

is th a t m ainstream program m ing languages have few ways of expressing the different relationships.

Inheritance problem s are a consequence of m isunderstanding the precise na tu re of the relationship.

P o rte r [101] proposed separating the subtype hierarchy from inheritance of im plem entation as

a way of improving the understandability of object-oriented program s. In the subtype hierarchy,

CHAPTER 2. EVOLUTION AND REUSE 20

m ethod signatures defined in the supertype can be redefined in the subtype, bu t no m ethod im

plem entation overriding takes place. The subtype hierarchy achieves full substitu tability . In the

im plem entation hierarchy code sharing occurs. An im plem entation class im plem ents zero or more

types and can inherit im plem entations from m ultiple classes.

All reuse examples so far have concentrated on reuse of a single class in creating a new class.

However, m uch can be gained by subclassing m ultiple abstractions. The absence of m ultiple inher

itance is a hurdle to class reuse. The problem is one of using m ultiple inheritance in a structu red

way in order to keep program s easy to understand and facilitate reusability in the future.

G ardner [44] has distinguished between different fundam ental forms of inheritance. She proposes

five struc tu red inheritance relationship (SIRs) for object-oriented program m ing. The relationships

are conceptually orthogonal, all SIRs are necessary to model the conceptual relationships th a t occur

in software system s, and SIRs are sufficient for modelling uses of inheritance described in object-

oriented literature:

V a r ia n t . Describes a relationship where the subclass satisfies the type specification in the super

class. For example, a linked list or array im plem entation of a stack type.

V iew . Describes a use of m ultiple inheritance by which an instance of the superclass can be viewed

as a num ber of different types. In this way it is possible to develop different interfaces to the

sam e object which are appropriate to different kinds of client. For example, view of a person

as a studen t, paren t, employee, patien t, etc.

E v o lu tio n . Allows the im plem entation of abstrac tion to be built up over tim e due to changing

requirem ents. T he evolved abstraction is not expected to work in the original system , although

the evolved abstraction may be conform ant w ith the old system . For example, in moving from

m onochrom e to colour displays we may inherit class P o in t to create C o lo u rP o in t.

C o n s t r u c t io n . A form of inheritance for reuse which uses an existing class in building another

class. For example, a num ber of graphical application windows m ay inherit the same menu
abstraction.

S p e c ia l is a t io n . C reates a hierarchy of types where a subtype is su bstitu tab le wherever the super

type is expected. For example, C h ild and A d u lt subtypes of a Custom er.

O f the five relationships, specia lisation is associated w ith the behavioural notion of subtyp
ing [74] and variant w ith type conform ant im plem entations. All bu t specia lisation can be used

to establish some kind of code reuse relationship. M ultiple inheritance can be used w ith m ost SIRs

to create new abstractions. The atom ic natures of each SIR ensures th a t the relationship w ith the

inherited abstractions is conceptually sound and explicit in the design. For example, variant and

view SIRs can be used together, e.g. an object of the 2DPoint class can be viewed as a IPair.
Im plem entation class IP air is a variant of type TPair. In another example, construction can be

used m ultiple times, e.g. to add the behaviour of S cro llb ar and T itleB ar abstractions to a Window
abstraction . G ardner dem onstrates th a t m ultiple inheritance is conceptually valid and th a t it has a

role in m odelling and reuse.

In object-oriented program m ing languages, visibility modifiers p u b l ic and p r i v a t e delineate

the interface from the im plem entation and pro tect secure d a ta from direct access. Class m embers

m arked p r o te c te d are accessible w ithin subclassess bu t no t to external clients. In Java, the modifier

CHAPTER 2. EVOLUTION AND REUSE 21

f i n a l signifies th a t the subclasses should not redefine th a t member, f i n a l also facilitates compiler

optim isation. These modifiers fundam entally affect the reusability of a class by specifying valid

extension points. Reuse is a problem where the required extension point is no t visible to the subclass

due to the presence of certain modifiers.

O bject-oriented program m ing perm its black-box reuse of classes using delegation and inheritance.

W ith delegation, instances of existing classes are used to build new abstractions. Program m ers may

prefer to use inheritance over delegation due to the advantages associated w ith client reuse. W hen

th e subclass is not a behavioural subtype of the reused abstraction the reuser m ust ensure th a t

the new abstrac tion will be conform ant w ith all existing clients. W ith delegation, the clients m ust

always co-evolve w hether the new abstraction is conform ant or not. Inheritance is often preferred to

delegation when the derived abstraction has a sim ilar interface and shares aspects of im plem entation

w ith the reused class. Using inheritance to do program m ing-by-difference the reuser only specifies

the way in which the new class differs from its superclass(es).

2.4.3 Reuse Artifacts Not Associated with a Class

Reuse problem s also occur when the concern is no t cap tured by a single class. E ither a single

class addresses m ultiple concerns or there are m any classes th a t jo in tly contribu te to a concern.

Respectively, these are problem s of tangling and scattering. Discussion of such reuse artifacts forms

p a rt of C hap ter 3 (page 22) on Advanced Separation of Concerns.

In sum m ary, reuse in object-oriented program m ing languages requires a degree of preplanning.

Concerns th a t were not m odularised by a class originally are difficult to reuse. Non-invasive evolution

of classes is no t always possible because the variance points are hidden w ithin and are not p a rt of
the ob jec t’s externally specified behaviour.

2.5 Conclusion

This C hap ter discussed the challenges associated w ith software evolution and reuse. B etter separa
tion of concerns is a way to improve the reusability of software in projects where reusability is not

a prim ary concern. M odularisation in design of concerns derived from the problem dom ain has the

po ten tial to benefit bo th the original developer and the reuser. The original developer benefits from

parallel m odular developm ent of concerns. Reusers who share goals w ith those addressed by existing

projects can reuse artifacts from those systems. Due to traceability of requirem ents in design, the

reuser is b e tte r able to identify and ex tract the code associated w ith the reuse artifact.

O bject-oriented program m ing emphasises the reuse of classes. P rep lanned reuse is supported

th rough a com bination of inheritance and delegation, bu t reuse of software where reusability was

no t a concern a priori often requires access to extension points th a t are hidden inside the class.

In moving beyond m ainstream object-oriented languages, the next C hap ter looks a t extensions to

m ainstream languages and other program m ing technologies which

• m odularise concerns th a t are not easily represented by classes, and

• facilitate reuse of software in ways not an tic ipated by its original developers.

Chapter 3

Advanced Separation of Concerns

M odularity is key to m aking reuse possible. The previous C hap ter reviewed object-oriented pro

gram m ing as perceived by developers of m ainstream languages. Today, thanks to object-oriented

program m ing, the reuse of abstractions represented by classes is a reality. However, problem s rem ain

when a class cannot be extended due to the absence of suitable extension points. Reuse of concerns

th a t are no t m odularised by a single class requires a degree of advance planning. For instance, m any

concerns in the problem dom ain and certain concerns in the solution dom ains, such as persistence,

synchronisation and distribu tion are not m odular in object-oriented program s. M odularity of these

concerns is achieved through advanced separation of concerns.
The aim of this C hapter is to review the s ta te of a rt and understand the challenges involved

in advanced separation of concerns. O ur view on m odularity coincides w ith th a t taken by T arr
e t al [122], These researchers propose M ulti-D im ensional Separation of Concerns (M DSOC) as a

new program m ing paradigm for improving the m odularity of concerns th a t developers identify as

im portan t. Section 3.1 presents MDSOC and describes the m otivational factors for changing the

way software is developed.

M any concerns in the problem dom ain are no t cap tured by a single class bu t associated w ith

collaborating suites of classes. These collaborations are m odular in design languages such as UML

in the form of sequence and collaboration diagram s. M DSOC technologies for m aking collaboration

m odular in code are reviewed in Section 3.2.

A spect-O riented Program m ing (AOP) addresses certain goals of M DSOC by m odularising per

sistence, synchronisation and distribution concerns, as well as m any o ther concerns th a t cu t across

application functionality. M echanisms for m odularisation of solution dom ain concerns th a t have

proven difficult to m odularise in object-oriented program s are reviewed in Section 3.3.

Subject-O riented Program m ing (SOP) is an instance of M DSOC th a t can m odularise collabora

tions and m any solution dom ain concerns. Section 3.4 justifies the selection of SOP as the vehicle

for supporting reuse.

3.1 M ulti-Dim ensional Separation of Concerns

M DSOC is a new paradigm for modelling and im plem enting software artifacts [122]. It proposes

the separation of overlapping concerns along m ultiple dimensions of com position and decom position.

A concern is any m atte r of interest in a software system . Dimensions group concerns; they are a

22

CHAPTER. 3. ADVANCED SEPARATION OF CONCERNS 23

LogFileLogger
VariableExpression

Expression
Literal

NumberExpression
UnaryOperator BinaryOperator

UnaryMinusOpUnaryPlusOp PlusOperator MinusOperator

oCheck feature Aggregation

Display feature ► Inheritance

Evaluate feature

Figure 3-1: Scattering and tangling in SEE

perspective on to the system. MDSOC improves reusability by modularising all pertinent concerns
a t the same tim e - concerns from the problem domain, those emerging as part of the design, during
initial software development, and in m aintenance.

The problems of degrading software comprehensibility, common m aintenance tasks leading to
high-impact invasive changes and limited reusability are caused, in large part, by our inability to keep
separate all concerns of im portance in software systems. All formalisms support the decomposition
of problems into subproblems to some extent, but provide a restricted set of decomposition and
composition mechanisms. These mechanisms support a single dom inant dimension of separation,
ignoring all other possible dimensions. Tarr et al have term ed this phenomenon the ‘tyranny of the
dom inant decomposition’. In order to break the tyranny, the MDSOC proposal requires technology
to support simultaneous separation of m ultiple concerns in multiple dimensions.

W hat follows is a sum m ary of the problems identified by Tarr et al th a t m otivate the introduction
of the MDSOC model; a review of the m ain concepts of the MDSOC model th a t help to explain the

way systems should be modelled; and a a critique MDSOC based on our reuse position.

3.1.1 M otivation for MDSOC

To illustrate the problems in software development Tarr et al [122] develop the Software Engineering
Environment application. The application supports the specification of algebraic expressions with

a collection of tools th a t m anipulate the shared abstract syntax tree representation. The initial
tool set includes an evaluation capability to determ ine the result of evaluating an expression, a
display capability, and a check capability which determines both semantic and syntactic correctness

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 24

of expressions.

T he UML design for the application (shown in Figure 3-1) contains a class for each kind of

E x p re s s io n in the ab strac t syntax tree. Each class defines the e v a lO , d i s p l a y () and ch eck O

operations which realise the tools in the stan d ard object-oriented fashion. The code has a simi

lar s tru c tu re to the design. This exam ple illustra tes an im portan t issue in software development:

the system is decomposed differently when viewed from the perspectives of requirem ents and de

sign/code. Requirem ents are decomposed by tool or feature, and design/code is decom posed by

class. This phenom enon leads to the problem s of scattering and tangling:

S c a t te r in g . A single requirem ent affects m ultiple design and code units.

T a n g lin g . M ultiple requirem ents are im plem ented w ithin a single module.

Each of e v a lO , d i s p l a y () and ch eck O is scattered across the class hierarchy w ith m any classes

contributing to the realisation of each concern. The im plem entation of each class tangles th e feature

concerns.
Having used the application, clients request functionality for optionally m aking expressions per

sistent. T he clients also require different kinds of style checking functionality, and it should be

possible to mix and m atch syntactic, sem antic and different kinds of style checker.

These seemingly simple additions (from the perspective of the client) significantly im pact the

design and code; scattering and tangling pose a problem to the evolution of the Software Engineering

Environm ent. Persistence requires m odifications to the accessor m ethods of each class to retrieve

persistent objects and save modified s ta te to th e database. It is possible to use inheritance to add

persistence functionality bu t all clients m ust be evolved to create instances of the new abstractions.
M oreover, the persistence requirem ent is affected by the selection of checkers; the style checkers

m ust include their persistent s ta te together w ith expressions. M ix-and-m atch of checkers requires

in frastructu re support th a t was no t necessary originally. T he V isitor design p a tte rn introduces the

flexibility a t the cost of higher coupling between the AST classes and the visitor classes [43]. The

V isitor p a tte rn is useful when m any distinct operations need to be perform ed on objects in an

object structu re . T he introduction of the V isitor p a tte rn m ay im pact fu ture extensions if new kinds

of E x p re s s io n need to be defined. The changes are invasive because un its of change do not m atch

the units of abstraction w ithin the design/code. Subclassing and design p a tte rn s require particu lar

changes to be anticipated, bu t anticipating fu ture change is no t in the requirem ents of m any projects.

Different artifacts associated w ith software creation have varying levels of abstraction . T hey are

decomposed and structu red differently because of em phasis on different kinds of concerns. Scattering

and tangling of requirem ents occur because th e concerns of im portance in the requirem ents do not

m ap cleanly to design and code units. Hence, w hen changes to requirem ents happen, p ropagation

takes a great deal of effort.

T he cause of the problem is the ‘ty ranny of the dom inant decom position’. Today’s formalisms

support a small set of decom positions and usually have a single ‘dom inan t’ one a t a tim e. The

dom inant decom position satisfies some im po rtan t needs bu t usually a t the expense of others. For

example, in the original object-oriented solution to the Software Engineering Environm ent, decom

position based on d a ta encapsulation concerns reduces the traceability of feature concerns which are

equally im portan t. Solving the problem involves breaking the ty ranny by m odularising sim ultane

ously all concerns identified as im portan t. T he dimensions of concerns identified as im portan t to

the Software Engineering Environm ent include:

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 25

PlusOperatorVarlableExpressIon

Expression

NumberExpressIon MinusOperator

UnaryOperator

Check featureO Aggregation ^ Inheritance

Figure 3-2: The Check Feature as a hyperslice

F e a tu re . These include display, evaluate, persistence, syntactic check, style check, semantic check.

U n it o f c h an g e . Additions made due to user requests.

C u s to m is a tio n . Additions or changes needed to specialise the component to a particular purpose.

O b je c t . The classes involved in the system.

There are many other dimensions of concerns which may be applicable, such as to separate
‘optional’ from ‘required’ pieces, or to customise the application to different kinds of user, etc. The
dimensions are rarely orthogonal, they overlap and can affect one another. A flexible solution to
modularisation must allow the pertinent dimensions to apply a t the same time and handle overlap
and interaction between them.

3.1.2 The MDSOC Model

The MDSOC model is intended to capture all concerns and all dimensions of concerns in a software
intensive project. It introduces hyperslices as an additional flexible means of software decomposition.
Hyperslices are intended to modularise concerns in dimensions other than the dom inant one. Hyper
slices are implemented using a set of convensional modules and units, w ritten in any formalism. For
instance, Figure 3-2 shows hyperslices applied to UML class diagrams. The modules are classes and
a hyperslice is a collection of classes. A ttributes and operations are the units in the hyperslice. A
collection of units corresponds to a module, e.g. a class or an interface. To understand the hyperslice
it should not be necessary to look inside its units. The hyperslice contains exactly those modules
and units th a t are required to address the concern.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 26

SEE hypermodule

mat 'ph

Kernel

Display

C h eck

Evaluate

Core hypermodule

, match

Logging

Figure 3-3: The hypermodules created by composition

Hyperslices are expected to overlap such th a t the modules and units in one occur, possibly in
a different form, in other hyperslices. A system is w ritten as a collection of hyperslices, reflecting
the concerns in the system th a t have been identified as im portant along as many dimensions as
necessary. Systems are created by composing hyperslices on the basis of composition rules. A set

of input hyperslices and a composition rule together are called a hypermodule. A new hyperslice is
created by applying a composition rule to input hyperslices, so a hypermodule can be used whenever
a hyperslice is expected. The complete runnable system artifact, e.g. a component or a subsystem
represented as a class diagram, can be modelled as a hypermodule.

Composition is established by a process known as matching - identifying elements which de
scribe the same concept in different hyperslices. The differences between corresponding elements are
resolved before integration of elements produces a unified whole. The specification of composition
is part of the design process and cannot be autom ated. Figure 3-3 shows the m atching process and
generation of a hypermodule in SEE.

Application of the MDSOC model to the Software Engineering Environm ent example leads to
the separation of m ajor concerns of im portance identified during requirements analysis. Hyperslices

can modularise the ‘kernel’ functionality which contains the sta te and accessor methods, and each of
the display, evaluation and checking features. Checking is itself a hypermodule made up of hyperslices

specifying the different kinds of checks present in the system. W ith MDSOC instantiated on UML
class diagrams, each hyperslice contains the design for one concern. Hyperslices modularise the
features, and within each hyperslice the object concerns are separated in the class diagram. If
these modules can be kept separate in code then separation of feature concerns can persist over the

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 27

lifecycle.

M odularisation of features also solves the problem of scattering and tangling: all elements per

ta in ing to a concern are specified w ithin its hyperslice. The AST concept - the m ost general concern

in the application - is m odularised by the k e r n e l hyperslice. I t has been separated from its context

and can be reused in o ther applications. O ther concerns, such as ch eck in g , although more specific,

can still be reused in o ther contexts if the situation arises.

The final application is created on the basis of the com position rule. By including or excluding

hyperslices it is possible to mix and m atch features. W hen requirem ents change, such as the addition

of persistence described earlier, a new concern is introduced along two dimensions. Persistence is

a feature and also represents a un it of change. It can be modelled as a separate hyperslice and

composed w ith o ther hyperslices.

The M DSOC model is not a panacea for bad design. It is possible to over or underseparate

concerns. O verseparation leads to a large num ber of hypersices w ith complex inter-slice relationships

th a t m ay actually reduce com prehension and increase complexity.

3.1.3 MDSOC and The Position on Reuse

Technology im plem enting the M DSOC model can facilitate reuse by im proving the m odularity of

concerns th a t are presently tangled and scattered in designs in code. Therefore, this technology is

going to be a ttrac tive to practitioners who wish to create well struc tu red systems. However, a t least

two aspects of M DSOC m ay d etrac t practitioners:

• The M DSOC model introduces a lot of duplication. If each hyperslice defines the functionality

it requires, the sam e behaviours may be defined m ultiple times. By contrast, m odern pro
gram m ing trends have tended to minimise duplication. P ragm atic M DSOC technology m ust

endeavour to avoid duplication during hyperslice design and coding stages; although, as in

m ultiple inheritance, duplication during reuse should be expected.

• T he M DSOC model improves m odularity bu t does no t improve encapsulation. A class is both
a m odular artifact and a un it of encapsulation; however, a hyperm odule does no t provide any

additional encapsulation. Composing hyperslices to form a hyperm odule reduces duplication

by in tegrating m atching modules and units, b u t a hyperm odule does not hide any more im

plem entation details th an the hyperslices from which it is created. Recall th a t a hyperslice

consists of m odules and units. Only the units of a hyperslice are m odular artifacts in the
trad itional sense as defined in Section 2.2.1 on page 9.

T he absence of additional m eans of inform ation hiding can im pact hyperm odule reusability. Un

derstanding the im pact of adding further hyperslices is no easier w ith hyperm odules th an w ith the

hyperslices from which a hyperm odule is composed.

M DSOC perm its decom position of system s along m any dimensions. For example, requirem ents,

design and code hyperslices pertain ing to the developm ent of the ‘expression’ concept in the ‘kernel’

concern of the Software Engineering Environm ent can be a hyperm odule. This decom position helps

to trace the development of the ‘kernel’ th rough the lifecycle. This and o ther decom positions may be

useful during reuse or m aintenance bu t w hat decom positions have value to the original developer?

In order to change the way practitioners develop software, it is im portan t to m otivate new kinds of

decom positions. We believe th a t there are two dimensions of concerns th a t have value to the original
developer:

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 28

• Concerns in the feature dimension. M odularisation of a system along feature concerns may

enable concurrent developm ent of features by team s. Feature m odularisation facilitates re

quirem ent traceability and may reduce the duration of developm ent cycles as team s work in

parallel on realising each feature.

• C ross-cutting concerns in the solution domain. C ross-cutting concerns th a t are scattered and

tangled in the dom inant dimension have become popularly known as aspects. In addition to the

usual benefits associated w ith improved m odularity, m odularisation of aspects often reduces

the am ount of code overall [66].

In any large project there are concerns which arise in the solution dom ain. These concerns are

defined by the solution techniques. Aksit et al [4] em phasise the im portance of solution dom ain

over problem dom ain concerns. They argue th a t the problem dom ain concerns do no t include the

necessary concerns for im plem enting the software system because m any im portan t concerns are

tran sp aren t to the user. To illustrate the point an exam ple of sharing com ponents in a network is

presented. The subconcerns of consistency m anagem ent and perform ance optim isation emerge as
p a rt of the solution dom ain. These are not explicitly included in the requirem ents specification bu t

should be trea ted as aspects of the system.

An alternative view is presented by Jacobson [60] who argues th a t system s should be sliced use

case by use case. Use cases have been widely adopted for requirem ents specification. They are a core

p a rt of the Unified Process - a way of constructing software w ith UML. In order for a feature-based

decom position to be a ttrac tiv e in projects where feature m odularity is no t an a priori requirem ent,

the to ta l cost of development, including hyperslice com position, should be com parable to the cost

of conventional software development. In o ther words, the benefits to the original developer should
help outweigh the initial investm ent.

In order to make it easier to concentrate on the problem dom ain concerns, it has been proposed to
m ake feature concerns oblivious to aspects, i.e. system level concerns [38]. For instance, it should be

possible to specify the features of the application w ithout m aking provisions for security. T he security

policy is applied separately. T he features neither need to declare the secure artifacts nor make special
provision for security to be applied. Obliviousness makes it possible to m ake functional changes to the

application w ithout concern for particu lar aspects; the aspects can easily adap t to changes in feature

code. Obliviousness is not an intrinsic property of M DSOC bu t program s created using MDSOC

technology can be designed to support obliviousness w ith respect to certain concerns. Most Java

program m ers are oblivious to details of m em ory deallocation thanks to garbage collection. Also,

in com ponent developm ent w ith JavaB eans aspects of bean deploym ent are separated from bean

functionality. T he design of beans is oblivious to the deploym ent strategy. Essential to obliviousness

in M DSOC are powerful m eans of connecting hyperslices.

In the following two Sections we review the technology for m odularisation of collaborations and

aspects. T here is a degree of overlap: a num ber of proposals are well su ited to m odularisation of

bo th collaborations and aspects. Subject-O riented Program m ing [49] and O bject Teams [54] are

two such models. The presentation of these proposals is split over the two Sections.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 29

3.2 Technology for M odularisation of Collaborations

M any functional concerns are associated w ith collections of classes ra th e r th an w ith a single class.

A t runtim e, objects of the types derived from these classes collaborate on a task defined by the

concern. A way to achieve the reusability of object collaborations is w ith a straightforw ard m apping

from design level concepts into d istinct im plem entation elements [111].

In the present Section, the recent work related to the m odularisation of collaborations is pre

sented. The presentation s ta rts w ith a ttem p ts to extend object-oriented program m ing w ith support

for collaborations, and leads to a lternative software development models th a t also enable related

classes to be m odularised.

3.2.1 Collaborations in Object-Oriented Programming

Contracts is the nam e given to a technique for formally specifying behavioural com positions [53, 58].

A contract defines a set of com m unicating participants and the ir contractual obligations. Partic i

pan ts are m utually recursive: they refer to each o ther and send each o ther messages. C ontractual

obligations consist of:

T y p e o b lig a tio n s . T he partic ipan t m ust support certain variables and an external interface.

C a u s a l o b lig a tio n s . The p a rtic ipan t m ust perform an ordered sequence of actions and make cer
ta in conditions tru e in response to messages sent to the external interface. Causal obligations

cap tu re the behavioural dependencies between objects.

Each contract also defines invariants th a t partic ipan ts cooperate to m aintain and actions which
should be taken to resatisfy the invariant. In order to in itia te a contract, th e s ta te of all participants

m ust be set up in line w ith the invariants.

This formalism has constructs for the refinem ent and inclusion of behaviour defined in existing

contracts. Refinement allows for the specialisation of contractual obligations and invariants. The

obligations of m ultiple partic ipan ts are specialised in concert. Inclusion allows contracts to be

composed from simpler contracts. A subcontract relates a subset of the partic ipan ts of the contracts

which include it.

C ontracts are specified in a high-level language th a t allows ab strac t description of behaviour and

realised using conformance declarations. In a conformance declaration, classes m ap to partic ipan t

specifications, i.e. the program m ust be shown to satisfy the specification. A class conforms when its

m ethods and instance variables satisfy the typing and causal obligations required by the partic ipant

definition. The im plem entation of a partic ipan t can be d istribu ted am ong a num ber of classes related

by inheritance, and a class can im plem ent the con tractual obligations of a num ber of participants.

For example, code common to a num ber of contracts may be ex tracted into an abstrac t superclass.

C ontracts make explicit those interactions which in object-oriented program m ing are hidden

inside constructors or implicit in sequences of m ethod calls. T hey are intended to be im plemented

directly in an object-oriented language. A lthough m odularity of collaborations is achieved a t the

design level, the separation of concerns is not p ropagated into code, thereby losing the traceability

between design and code.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 30

T em plate-B ased Im plem entations o f C ollaborations

An im plem entation of collaborations based on tem plate classes in C + + is proposed by VanHilst

and N otkin [125, 126]. Each object in a collaboration is said to play roles in collaborations w ith

o ther objects [12]. Tem plate classes can be used to im plem ent roles. Role partic ipan ts are passed

as param eters to the tem plates. A tem plate param eterises all partic ipan ts to which it m ust refer,

including self. For example, the fa th er’s role in a two parent household m ight be defined in p a rt as:

template <class ChildType, class MotherType, class SuperType>
class FatherRoIe : public SuperType {

ChildType *child;
MotherType *mother;

>;

In this collaboration, the C hildT ype and M otherType param eters are the collaborators w ith this

F a th e rR o Ie . Tem plate param eters indicate th a t, as yet, they are of unknown type. The SuperType

role is used in every definition, since every role is p a rt of some unknown class. Tem plates are instan

tia ted by specifying classes for each tem plate param eter. For example, suppose th a t C h ild C la ss
and M o th erC lass play the child and m other roles in the above collaboration, H usbandC lass plays

the self role, T hen an instan tia tion of the F a th e rR o Ie appears as:

class FatherCIass : public FatherRoIe<ChiIdCIass, MotherClass, HusbandCIass> {};

Roles from different collaborations can be composed in this model. I t is possible to compose roles
from different bu t related collaborations and from repeated uses of the same collaboration. New

roles are created by passing tem plate classes as param eters to o ther tem plates. Sm aragdakis and
B atory la ter propose an im provem ent to tem plate-based im plem entations of collaborations entitled

Mixin Layers [112]. M ixin Layers address certain scalability issues by defining roles as nested or

inner classes of an outer class th a t denotes the entire collaboration. A C + + im plem entation of a

two paren t household is given below:

template <class CoIIabSuper>
class TwoParentFamily : public CoIIabSuper {
public:

class MotherRoIe : public CoIIabSuper::MotherRoIe { ...
class FatherRoIe : public CoIIabSuper::FatherRoIe { ...
class ChildRoIe : public CoIIabSuper::ChildRoIe { ... };

>;

T he tem plate-based approach makes it possible to im plem ent m any collaborations m odularly in

code, addressing the traceability problem associated w ith contracts.

T he roles of a collaboration can be reused in the creation of new roles using inheritance, bu t

in m any collaboration specialisation scenarios a set of role classes m ust evolve a t the sam e time.

The set of evolved classes partic ipating in the collaboration m ust be used together. A lthough code

is shared w ith the super-roles, the roles are not type substitu tab le for the ir superclasses. N either

subtype polym orphism nor m ultiple dispatch can provide the s ta tic safety guarantees which ensure

th a t only objects of the sam e collaboration partic ipate . To address this problem , E rn st has proposed
family polym orphism [34].

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 31

Fam ily P olym orphism

The classes of objects partic ipating in a collaboration, i.e. roles, form a family. Family polym orphism

allows to statically declare and m anage the relations between several classes polymorphically, in such

a way th a t a given set of classes is known to constitu te a family bu t it is not known statically exactly

w hat classes they are.

In a system containing m ore than one varian t of a class family, in order to avoid mixing families

inappropriately it is necessary to m aintain consistency in the usage of family members. Family

polym orphism is a m echanism th a t helps to resolve this problem , statically ensuring th a t the roles

of any set of families are never mixed. Besides supporting collaboration refinem ent, family polym or

phism also confines role objects to their family, thereby encapsulating role objects in collaborations.

The O bject Teams approach to making collaborations m odular uses the encapsulation properties of

family polym orphism to create reusable collaborations.

3.2.2 Object Teams

T he O bject Teams [54] proposal introduces a new kind of module, a team , for m odularising object

collaborations. A team is an instantiable aggregation of confined objects called roles. It contains a
collection of classes th a t define the roles and a set of operations and variables defined a t team-level.

Teams support th ree kinds of inheritance-style relationship:

• Explicit inheritance between team s is used to create specialised team s as well as to reuse code

specified in the superteam . For example, imagine an application th a t allows a passenger to

collect bonuses w ith every flight. A Bonus team , as an ab strac t collaboration between the
scheme S u b s c r ib e r and a Bonus Item , m ay be extended to create a F lig litB o n u s team . The

F lig litB o n u s refines Bonus by redefining th e function c a l c u l a t e C r e d i t () to re tu rn a rounded

value. Explicit inheritance links F lig litB o n u s to Bonus.

• Inheritance between roles is called im plicit inheritance. By redefining a role class in a subteam

we im plicitly gain access to the mem bers of th a t role in the superteam . T he c a lc u l a t e C r e d i t ()

operation is overridden due to implicit inheritance between B onusltem in team F lig litB o n u s

and the sam e role class in team Bonus.

• Team com position is achieved with object-based inheritance (which is in fact delegation). This

establishes a relationship between a role in a team and some base class, i.e. the class begins

to play a role. For example, suppose we w ant to apply the F lig litB o n u s team to a particu lar

application involving air miles. Class Segment defines the a ttr ib u te which specifies the segment

length. In order to c a l c u l a t e C r e d i t () , we require access to the air miles travelled. This is
formalised in code by declaring:

class Bonusltem playedBy Segment

O bject Teams supports the encapsulation of team representation. Usually, a role instance is

confined to its enclosing team , however, a role can be exposed bu t only if th e team reference is

declared f i n a l , i.e. im m utable. The modifier ensures th a t no o ther team is assigned to this variable

while the role is exposed. T he exposed roles cannot be passed to a different team from the one in
which they originate.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 32

3.2.3 GenVoca

GenVoca is a com ponent model for constructing hierarchical software system s [10]. It provides direct

language support for a design model th a t supports com ponent com position. T he fam iliar notions of

abstraction , encapsulation and param eterisation are extended to include the new kind of GenVoca

com ponent which has the following properties:

A b s t r a c t io n . Support for standardised interfaces in the form of the realm construct. S tandardis

ation leads to functionally similar, interchangeable and in teroperable com ponents.

E n c a p s u la t io n . Large-scale construction is supported th rough the component construct. Com po

nents can encapsulate collaborations of m ultiple classes.

P a r a m e te r i s a t io n . C ustom isation and com position of com ponents is supported w ith param eter

isation. In particu lar, realm param eters can be passed to com ponents to create layered or

hierarchical com positions of com ponents.

A set of function and class declarations defines the realm . To im plem ent a realm it is necessary

to specify im plem entations for all classes and functions defined in the realm . It is also possible to

introduce to ta lly new classes and m embers in the im plem entation.

Instead of using inheritance, GenVoca employs param eterisation to create connections between

com ponents. Any com ponent which is in stan tia ted w ith a realm param eter im plem ents a new layer.
A layer is the term used to describe a com ponent built by reusing another com ponent. T he new layer

can extend the realm p aram eter’s interface to create new classes. T he result is a new com ponent

which im plem ents new functionality on top of th e com ponent it extends.
GenVoca is im plem ented in the P+-1- language which is an extension to C + + . T he language

hides a tem plate-based im plem entation, sim ilar to the one described in the previous Section. Similar

to Mixin Layers and O bject Teams, GenVoca adds a concept of a higher-level module.
GenVoca emphasises construction of reusable com ponents w ith a strong em phasis on valid com

binations of features im plem ented by com ponents. M ore recently B ato ry et al propose to scale
step-wise refinement to hyperslice level [8, 9]. Step-wise refinement asserts th a t complex program s

can be derived by progressively adding features. By considering the com binations of orthogonal,
i.e. non-overlapping features, B atory et al show th a t valid com binations can be specified relatively

concisely. In a model th a t can be decomposed along n dimensions of concerns w ith k features along

each dimension, there could be as m any as 0 (k n) feature com binations to consider. However, based

on the results achieved by B atory and his colleagues, specifications of length O(kn) can be produced.

The shorter specifications enable the program m er faster to convince him self of the correctness of his

program for all com binations of its features.

3.2.4 Subject-Oriented Programming

Subject-O riented Program m ing (SOP) [49] is a program m ing paradigm th a t can m odularise feature

concerns. In SOP, the subject is the artifac t playing the role of the hyperslice. A subject models

its dom ain from its own particu lar perspective and is im plem ented using classes, instance variables

and operations in a standard , object-oriented way. It is a subprogram th a t addresses a concern from

the problem dom ain or the solution dom ain. Subjects facilitate a clean separation of concerns by
defining only those elements which contribute to addressing the concern.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 33

H arrison and Ossher [49] observed th a t O O P is well suited for building independent applications

bu t less well suited for building in tegrated suites or families of applications. The trad itional view

of O O P is of a model for representing abstractions in the real world. The complexities of object

im plem entations are hidden behind a com pact, ab strac t interface. However, real world abstractions

have a m ultitude of requirem ents and constraints. For instance, a car abstraction can be viewed

from the perspectives of the driver, salesm an or mechanic. Each dom ain has its own vital properties

of the car and has particu lar dem ands on behaviour which can affect those properties. T he driver

may classify cars based on size, economy, reliability and is concerned prim arily w ith the behaviour

of driving. T he salesm an m ay classify cars based on model designation; the choice of cars to buy and

sell depends on the dem and for a particu lar model, the wholesale and reta il prices. The mechanic

classifies cars based on parts and tool availability. European models have attachm ents m easured in

m etric un its while A m erican cars use im perial measures. In the trad itiona l object-oriented view of

the world, when requirem ents arise, all these views m ust be accom m odated by th e interface. As

software evolves, more requirem ents get introduced, bloating the interface further and leading to the

scattering and tangling problem s discussed in th e m otivation for M DSOC in Section 3.1 on page 22.

T he SO P solution facilitates independent developm ent of cooperating applications as subjects.

C ooperation is achieved by sharing objects and join tly contributing to th e execution of operations.

In the above example, the dom ains of driving, car sales and mechanic responsibilities can be trea ted

as separate subjects which can be im plem ented independently and subsequently composed to satisfy
application goals. T he aims of SO P are:

• T reating each subject as an application: there should be no explicit dependence in code on
o ther applications.

• T he composed applications m ay cooperate loosely or closely.

• It should be possible to add new applications th a t serve to extend existing applications in

unantic ipated ways.

• Each application should m ain tain the advantages of inheritance, polym orphism and encapsu
lation.

SO P conforms well to the M DSOC model described earlier. Subjects can im plem ent features
and concerns emerging in the solution domain. Com position of subjects takes place after all points

of interaction between subjects have been agreed. Subjects can be im plem ented independently or

reused if a suitable subject exists already.

T he sim ilarity between SO P and M DSOC is not surprising given th a t M DSOC generalises m any

of the ideas first presented as p a rt of SOP. T he program m ing language H y p e r/J [121] im plem ents

all SO P concepts. O ur description of SOP sem antics is based on the specification of H y p er/J .

Subject D esign

W ithin a single subject, design is a purely object-oriented activity. In the H y p e r/J language, each

subject is program m ed as a Java package. Com position is perform ed on compiled subjects, i.e. on

the Java V irtual M achine bytecodes. Therefore, each subject m ust compile correctly before it can

be composed and the classes of each subject m ust be valid Java classes. For example, it is common

for a problem decomposed by feature to share a ‘kernel’ concern which defines operations used in

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 34

the im plem entation of o ther features. The o ther subjects can either define a m ethod w ith an em pty

im plem entation or declare the shared m ethod a b s t r a c t . N either solution is ideal. In the first, a

non -vo id m ethod m ust re tu rn a value. As no im plem entation is defined, the subject au tho r m ust

specify an a rb itra ry value to return . In the second, if a m ethod is a b s t r a c t then the Java class

which declares it m ust also be abstract. In Java, an ab strac t class has no direct instances, m aking

this solution unsuitable in those cases where the subject needs to in stan tia te th a t class.

As an object-oriented artifact, a subject has a functional interface defined by one or m ore of its

classes. As a subject-oriented artifact, it also has a com positional interface. The behaviour of a

subject can be invoked using either or bo th interfaces. W hen the subject im plem ents a feature it

often has a functional interface th a t is invoked by external clients th rough m ethod dispatch. Subjects

m ay also im plem ent concerns which are no t invoked as a result of a m ethod call bu t in conjunction

w ith control flow related events in o ther subjects, e.g. when an operation is called w ithin ano ther

subject. For instance, consider a C aching subject th a t can be applied to a subject im plem enting

an a rb itra ry d a ta struc tu re . Saved values are sto red in the cache before being stored in the d a ta

struc tu re , and retrieved values are first looked up in the cache. T he caching behaviour is invoked
when values are stored and retrieved from a d a ta structure . The C aching subject is activated v ia the

com positional interface. T he subjects to which caching applies are affected a t their com positional
interface.

T he com positional interface is wider th an th e trad itional functional interface. The points in code

where elem ents are stored and retrieved from a d a ta stru c tu re need not be p a rt of the functional

interface. The com positional interface is essential to cleanly separate concerns, and it helps to add
new concerns w ithout modifying existing code.

Subject C om position

Com position forms a single program which is a synthesis of the input subjects. It takes place s ta ti

cally, before the composed program is run. Subject com position is defined in term s of two concepts:

correspondence and integration. Correspondence identifies the places of in teraction between subjects
and in tegration determ ines the action taken on corresponding elements.

The prim ary point of interaction is the class or the interface. Classes can correspond only to

classes and interfaces only to interfaces. The views of the sam e kind of object as expressed by the

class or the interface in corresponding subjects m ust be composed. Subjects can agree th a t a set

of classes or interfaces represent the same type of object from different perspectives w ithout having

anything else in common. Class or interface com position makes it possible to view an ob ject via

different types in each subject.

At runtim e, m ost subject interactions need to share m ore th an ju s t object identity; behaviour

and s ta te m ay also need to be shared. Subjects are sta tic entities and do not have s ta te as such.

S ta te is associated w ith objects of executing subject-oriented program s. Statically, th a t is in term s

of program tex t, s ta te is cap tured by instance variables. Behaviours affecting the s ta te take the

form of operations which are associated w ith classes directly or inherited. Subject in teractions th a t

involve s ta te or behaviour are specified by defining correspondences between instance variables and
operations of corresponding classes.

S ta te can be shared between subjects when corresponding classes define the sam e instance vari

able. For example, bo th the car driver and salesm an share the notion of car key. By establishing

correspondence between the instance variables representing the car key, subjects can share key ob

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 35

jects a t runtim e. Behaviour is shared when subjects define the same activ ity in response to an

action. For instance, s ta rtin g the car is a behaviour which is the same for bo th its driver and th e

salesm an. The realisation of shared behaviour can be delegated to one subject and activated by all

who need it. We have also observed other interactions:

• Request by one subject to invoke behaviour in another. For example, a driver who has lost his

key may request the mechanic to s ta r t the car using o ther means. Here the behaviour is no t

the sam e for both , ra ther, ju s t one subject has the behaviour which the o ther may require.

• Perform ance of an activ ity in which ano ther subject participates, e.g. a prospective purchaser

may ask a mechanic to help him evaluate the ca r’s condition. The purchaser’s decision is based

both on his own assessm ent and th a t of the mechanic.

• An event which m ay be of in terest to another subject, e.g. if the car is stolen, its driver will

w ant to notify the police.

In tegration is the process of establishing an interaction between corresponding elements. In order

to synthesise a single program from the inputs, SO P unifies the corresponding elements based on in te

gration rules. D uring execution, m ethods are invoked from m ultiple input subjects. W hich m ethods

are invoked depends on the subject where the call originates, the correspondences, and th e in tegra

tion strategy. M any kinds of in tegration rules can be defined bu t there are two general-purpose rules

which are used in m any compositions. T he m e rg e rule describes a union of corresponding elem ents

and the o v e r r id e rule describes the selection, a t com position tim e, of one of the corresponding
elements.

T he definitions of bo th these in tegration rules are overloaded to specify the unification of m ultiple

kinds of corresponding elements. The m e rg e rule is defined as follows:

• For instance variables, its effect is to create a single variable in the ou tpu t.

• For operations, the m ethod bodies are set to execute in a rb itra ry order (but not in parallel).

W hen the operation is called in any input subject, all m ethod bodies are executed. If m eth

ods re tu rn values, all the re tu rn values are packaged into an a rray and a composer-specified

sum m ariser m ethod is used to determ ine th e re tu rn value for the m e rg e d operations.

• For classes, th is in tegration rule creates a single class in the ou tpu t. All m em ber integrations

can only be perform ed in the context of a corresponding class. For example, if two subjects

bo th declare anE ngine to be an instance variable of class Car, then in order to merge th e views

of engines, it is necessary to specify the correspondence between C ar classes.

T he o v e r r id e rule also applies to classes and the ir members. The com positional effect of o v e r

r id e on instance variables is the same as m e rg e . For operations, the overriding m ethod replaces

all overridden m ethods such th a t when any one of th e corresponding operations is called, only the

overriding m ethod executes. The overridden m ethods do not contribu te to th e behaviour of the

ou tpu t subject and cannot be invoked. On classes, the o v e r r id e rule has a quantifying effect: each

element of the overriding class replaces th e corresponding elem ents of the overridden classes. T he

mem bers of the overridden classes w ithout corresponding overriding elem ents are unchanged.

T he in tegration rules presented above and other, custom in tegration rules (th a t can be defined by

a power user who is fam iliar w ith the SOP rule framework) are the operators in the SO P composition

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 36

language. T he language gives the composer fine-grained control over the interaction, m aking it

possible to express m any com positions. However, when subjects im plem ent feature concerns th a t

have been designed in concert, the com positions should be concise. More verbose specifications may

be required to compose subjects which have been developed separately.

Com position is specified in term s of a top-level rule th a t applies to all elements, followed by

a sequence of lower-level rules describing exceptions and additional directives. The top-level rules
a re1:

c o m p o se . Specifies a sequence of subjects to compose and the nam e of the o u tpu t subject, e.g. com

p o se S I , S2 in to S ;.

m e rg e B y N a m e . Establishes correspondences between all identically nam ed elements and applies

the m e rg e in tegration rule to each correspondence.

o v e r r id e B y N a m e . Establishes correspondence between identically nam ed elem ents and uses the

o v e r r id e in tegration rule. T he first subject in the c o m p o s e clause is the overriding subject
(the source of the overriding elements).

The sim plest com position specification contains one c o m p o s e directive and one of the B y N a m e

rules. A t the lower level, correspondence between elements th a t have different nam es can be estab

lished using the e q u a te directive. This takes n elem ents of the sam e kind from n different subjects

and specifies th a t these elem ents correspond. Exceptional in tegrations are specified in term s of

m e rg e , o v e r r id e and o ther basic integration rules.

W hen composing feature concerns, it is common to use the m e rg e B y N a m e stra tegy a t th e top-
level. T he features represent corresponding views which m ust be in tegrated to form the com plete
program . At the lower level, when two or more subjects share a m ethod im plem entation, only one

subject needs to im plem ent it. The o v e r r id e rule can be used to select the im plem ented m ethod.

This in tegration rule can also be used to select ju s t one im plem entation from a set of equivalent

im plem entations of a m ethod, e.g. one se tter m ethod im plem entation from the set of equivalent
setters.

A dditional directives which can be specified after th e top-level rule include b ra c k e t relationships.

B rackets are useful for specifying aspectual interactions: when one subject augm ents or modifies the

behaviour of another a t key points in its control flow. These relationships are discussed in the next

Section together w ith technology for supporting aspect-oriented program m ing.

O n C o m p o s i t io n V a lid ity

So far we have described key principles of com position b u t no t the way an SO P language checks

com position correctness.

In th e H y p e r/J language, subjects are pieces of o rdinary Java code. W hen instance variables and

operations are composed, the re tu rn types and param eters in th e same positions m ust have the sam e

types. Type correspondence is required during m e rg e in tegration because any input subject may

a ttem p t to access or modify the shared element. T ype equivalence is also conceptually meaningful

during merging as it suggests th a t the views of th e object interface are m utually com patible. H y p e r/J

requires type equivalence for o v e r r id e also. T he need for type equivalence here is less clear as

1Note that we diverge from Hyper/J syntax in order to simplify the presentation, but composition semantics are
unaltered.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 37

override makes it possible to apply changes one subject a t a tim e, ra th e r th an one class a t a tim e

as is the case w ith inheritance in a language like Java. It is possible to use override to evolve

an application to using a new family of types. R eturn ing to the earlier example, in some m odern

vehicles the engine is s ta rted not w ith a key b u t by entering a code on a keypad. A new subject

can be developed which replaces the Key class and changes all existing clients of the Key class.

Nevertheless, in H y p e r/J type equivalence in corresponding elements is required even for override.
T ype equivalence is not as restrictive as it m ay sound; corresponding classes cause elem ents of

these types to be com position com patible. Hence, different subjects can have different nam es for the

sam e concept, e.g. Warranty and Guarantee describe the same kind of artifact. As another example,

consider the merging of Sink and Source classes (as variants of some kind of buffer). One subject

creates a Sink object; the reference becomes visible in another subject as a Source object th rough

a shared instance variable or a merged operation. The m erge of these classes is m eaningful only if

all objects of these types can be viewed from b o th perspectives.

The choice of Java constrains w hat can be done to check com position correctness. I t is well

known th a t types are only a small p a rt of w hat makes a program correct. The em phasis on formal

specification of collaborations in contracts and on valid com binations of GenVoca realm s is aim ed

a t ensuring th a t the interactions are not only conceptually relevant bu t functionally correct. Family

polym orphism [34] is concerned w ith consistent evolution of a family of classes in a way th a t preserves

type sub titu tab ility and maximises class reuse. Com paratively, in SO P little a tten tion is given to
the im portan t topic of interaction validity. In the following C hapter on in teraction problem s in SOP

(starting on page 44), we analyse the in teractions th a t are difficult to detect during reuse or before

independent subject developm ent commences.

3.2.5 Conclusion

T he technologies presented in th is Section enable the m odularisation of collaborations. In object-

oriented program m ing, contracts enable the high-level specification of m utually recursive objects,

collaboration refinement and composition. Program m ing techniques based on tem plates and inner

classes can be used to compose collaborations. Fam ily polym orphism supports the evolution of sets

of classes while m aximising class and client reuse.

D irect program m ing language support for collaborations can be found in O bject Teams, GenVoca

and Subject-O riented Program m ing. For program m ers of a m ainstream object-oriented language

transition to SO P is probably the easiest. SO P lets the developer im plem ent subjects using the

fam iliar object-oriented techniques. Only the sub ject composer needs to know about the com position

language. However, the SO P composition rules presented to now have affected classes and some

decom positions require object-level granularity. GenVoca also operates on classes ra th er th an objects

bu t allows new com ponents combining a num ber of features to be synthesised dynamically. By

contrast, subject-oriented com position is specified during a separate phase of software development.

O bject Team s has object-level granularity. Team s can be activated and deactivated dynamically,

and m ultiple instances of a team can be present a t the sam e time. Consequently, w ith O bject Teams

it is possible to separate more concerns more cleanly.

T he previous C hapter discussed the often unantic ipated natu re of reuse. To facilitate reuse it

should be possible to reuse a com ponent in a way not anticipated by its original developers. The

com positional interfaces in SO P enable subjects to be connected to o ther subjects in unanticipated

ways. The layer reusers in GenVoca create new layers by extending existing layers. T he set of

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 38

valid layer extension points is restricted to the predefined interface. T he team modules of O bject

Team s are reused a t their functional interface bu t O bject Teams also support additional forms of

interaction detailed in the following Section on A spect-O riented Program m ing.

A priori creation of reusable software in SO P is supported by inheritance and delegation in the

language used to im plem ent the subjects. GenVoca supports the creation of com ponent families.

The client can create new com ponents by mixing and m atching features created earlier as p a rt of

a family. O bject Teams leverages family polym orphism for reuse of collaborating suites of classes.

GenVoca supports polym orphism using the realm construct bu t a realm is the interface of a single

com ponent ra th e r th an a com ponent family.

GenVoca and O bject Teams provide stronger support for creation of reusable com ponents for

use by th ird parties. GenVoca focuses on valid perm utations of modules and O bject Teams focuses

on type substitu tab le com ponent families. By contrast, Subject-O riented Program m ing has an

extensible set of com position rules th a t m ake subjects b e tte r suited for reuse in ways which were

no t initially anticipated . SO P has com paratively poor support for checking interaction correctness.

Unlike team s, subjects can m odularise collaborations bu t do not encapsulate collaboration state.

There is no way of determ ining interaction correctness until all subjects in the com position are

known. In conclusion, we believe th a t in order to improve the reusability of collaborations w ithout a

priori investm ent in reusability, Subject-O riented Program m ing is the b e tte r candidate technology.

3.3 Aspect-O riented Programming

A spect-O riented Program m ing (AOP) is an approach to m odularising cross-cutting concerns - con
cerns th a t are hard to m odularise using to d ay ’s m ainstream program m ing technology. Initially,

the term ‘A O P ’ was associated w ith a particu lar approach to addressing cross-cutting concerns by

Kiczales et al [66], bu t due to the popularity of the program m ing language A spectJ, AOP has be

come synonym ous w ith o ther program m ing technology including Com position F ilters [3], A daptive

Program m ing [73] and Subject-O riented Program m ing. See [90] for an overview of approaches.

A O P (as described in [66]) is a generalisation of the ideas behind domain-specific languages

RIDL and COOL for d istribu tion and concurrency [78, 76]. Aspect J introduces language extensions

to Java th a t allow distribution , concurrency and o ther concerns to be m odularised. A domain-

specific language allows only a few concerns to be separated and a set of domain-specific languages
may not be m utually com patible. AOP addresses some of the goals of MDSOC: it facilitates the

m odularisation of m any solution dom ain concerns th a t are difficult to m odularise w ithin a m ainsteam
program m ing language.

T he concepts of jo in point and aspect un ite all A O P approaches. Jo in points are places in the

program where m odules in teract. Join points can be determ ined in different ways. In SOP, language

constructs like instance variables, operations and classes are join points, so the places of subject

correspondence and join points are synonymous. In A spectJ, join points are certain places in the

program ’s control flow. Thus, join points are dynam ic concepts. A spects are modules containing
the code which addresses some concern.

Join point in teraction can be sym m etric or asym m etric [50]. In an asym m etric model, the aspects

are ‘woven’ into the ‘base’ modules a t the join points. T he selection of join points comes from the base

program and aspects are w ritten w ith respect to some base. A spectJ is an exam ple of an asym m etric

model. In a sym m etric model, every m odule is trea ted as an aspect. A base is no t distinguished

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 39

linguistically although it may be distinguished logically w ithin the dom ain of application. The join

points come from each aspect and the interaction is usually specified separately. The SO P m odel is

sym m etric.

In order to separate some concerns it is necessary to have fine control over the join points.

M any concerns affect only a subset of instances of a class. For example, AOP technology can be

used to m odularise the reusable parts of design pa tte rns [47]. Consider the Observer p a tte rn [43]:

subscribers register w ith publishers2 to receive notifications about s ta te changes. T he reusable

p a rts of the aspect include th e S u b s c r ib e r and P u b l i s h e r interfaces, and the protocol for enabling

S u b s c r ib e r reg istra tion and event notification.

Suppose th a t in an application, the R e c ta n g le dimensions are observed by Shapes whose pro

portions are linked to th a t of the R e c ta n g le , and the R e c ta n g le ’s c o lo u r property is observed by

a different bu t possibly overlapping collection of Shapes which set their colour in relation to the

colours of adjacent Shapes. Each Shape is possibly both a P u b l is h e r and an S u b s c r ib e r and a

Shape needs to be a P u b l is h e r to two sets of S u b sc r ib e rs . Com position rules such as m e rg e

in SOP affect classes bu t cannot distinguish between instances and it is no t possible to reuse the
Observer p a tte rn in the required setting. In fact all subject-oriented com position rules presented to

now relate classes ra th er th an objects.

T his Section reviews the technology for m odularisation of concerns th a t cross-cut o ther function

ality. The review includes to d ay ’s m ost popular A O P technology, A spectJ; extensions to SO P which

enable more concerns to be separated; and the two m ost recent proposals C aesar [88] and O bject
Teams [54].

3.3.1 AspectJ

A spectJ is a forw ard-com patible extension to the Java language: valid Java program s are also valid

A spectJ program s. A spectJ introduces a new kind of m odule known as an aspect Like an ordinary

Java class, an aspect contains m embers th a t define its s ta te and behaviour. Instead of the usual

functional interface, an aspect has a com positional interface th a t is based on join points. To select

the join points of in terest the aspect body defines pointcuts - specifications of jo in points of in terest
to an aspect. T he behaviour associated w ith an aspect is set to execute before, after or around the

join points. T he last of these executes the aspect code instead of the code a t the join point, possibly
calling the code a t th e join point using the p ro c e e d (. .) sta tem ent.

Poin tcu ts are specified in term s of designators. These describe events in the control flow such as

when some instance variable is read or some event is throw n. A lthough A spectJ has a huge selection

of designators, the m ost commonly used ones are concerned w ith m ethod invocation and execution.

In the ‘Hello W orld!’ of A spectJ program s, an aspect is used to m odularise the T ra c in g concern.

The T ra c in g concern, shown in Figure 3-4, requires a message to be prin ted im m ediately before and

im m ediately after any m ethod executes.

Note th a t asterisks are used as w ildcards to m atch the execution of any operation on any class.

In a trad itional object-oriented program , tracing requires either th a t every m ethod body is modified
to include a call to the tracer m odule or for the program to be run w ith in a debugging suite. The

first solution does not scale while the second one is fine by itself bu t causes com plications when

collaboration w ith another application is required, e.g. a review of the recorded trace to see th a t

2The usual terms ‘subject’ and ‘observer’ have been replaced by ‘publisher’ and ‘subscriber’ to avoid confusion
with SOP terminology.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 40

aspect TraceSIICIasses {
pointcut myMethodO : execution(* *(..));

before () : myMethodO {
Trace .traceEntryO" + thisJoinPointStaticPart. get Signature 0) ;

>
after() : myMethodO {

Trace.traceExit("" + thisJoinPointStaticPart.getSignature());
>

>

public class Trace {
public static void traceEntry(String str) {...}
public static void traceExit(String str) {...}

>

Figure 3-4: A spectJ program im plem enting the T ra c in g concern.

execution has passed certain key points.

A spectJ has a very powerful join point language th a t allows program m ers to m odularise code per

tain ing to m any non-functional concerns, separating the non-functional concerns from the program ’s

m ain functionality. Concerns th a t should be separated [75] include synchronisation, location control

(organisation issues), real-tim e constraints, failure recovery, debugging, persistence and transaction
m anagem ent. The aspect is linked to the base program through pointcuts, b u t the base program

creates no explicit links to the aspect. Furtherm ore, good aspect-oriented design suggests using
inter-aspect inheritance to separate the aspect functionality from the pointcuts th a t declare the way

the aspect interfaces the base.
A spectJ is appealing to the original developer because m odularisation of scattered code reduces

the size of the whole program and improves its understandability . T he declarative style for describing

join points makes A spectJ more a ttrac tiv e to program m ers th an m eta-object protocols from which

it evolved.

3.3.2 Bracket Relationships in SOP

Bracket relationships (brackets for short) are an advanced com positional m echanism in the subject-

oriented program m ing language H y p er/J . We describe them here because their introduction was

inspired by th e dynam ic join points of A spectJ. Bracket relationships allow the m ethods of one

subject to w rap the m ethod call and execute sites in o ther subjects. The m ethods which are set to

execute before or after another m ethod are called wrappers and every bracketed m ethod or m ethod

call point is known as the wrappee. Sim ilar to call and execu tion designators of A spectJ, the

bracket relationships of H y p e r/J can use p a tte rn m atching to specify the w rappee points.

Figure 3-5 shows subject T ra c in g which contains the code for th is concern and a fragm ent of

the com position specification which enables the tracing of all m ethod calls in the program . The

m eta-param eter $ s ig n a tu r e references the S t r i n g represention of the operation signature a t the

join point. T he syntax of the exam ple is simplified from true H y p e r/J syntax bu t consistent w ith

SOP examples th a t follow.

Bracket relationships are im plem ented w ith the correspondence and in tegration rules of SOP.

Brackets actually set up correspondences between classes containing the w rappers and the classes

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 41

subject Tracing {
public class Trace {

public static void traceEntry(String str) {...}
public static void traceExit(String str) {...}

>
>

bracket < < * , * > > with before Tracing.Trace.traceEntry($signature)
after Tracing.Trace.traceExit($signature);

Figure 3-5: H yper/J-sty le program im plem enting the T ra c in g concern.

containing the wrappees. m e rg e sem antics are used to in tegrate the corresponding elements; the

instance variables and operations are integrated , then calls to w rappers are inserted a t the relevant

points.

Bracket relationships are applied after the top-level com position strategy, e.g. m e rg e B y N a m e .

T he com position specification may contain e q u a te directives which create correspondences between

differently nam ed elements which should be composed, and the w rappers execute around all equated

w rappees whenever a t least one of them m atches the pattern . Because brackets also setup corre

spondences between the classes of the w rappers and the wrappees, it is an error for the w rappers to

have correspondences derived from the top-level com position rule. However, a w rapper class does

have a functional interface of its own and it is possible to create instances of w rapper classes directly.

H y p e r/J does no t have the a r o u n d construct of A spectJ which helps to separate concerns in

some cases. The a r o u n d construct perm its the w rappers dynam ically to determ ine if the wrappee

should be executed. A lthough, the SO P fram ework provides an opportun ity to introduce this and
o ther rules.

3.3.3 Caesar

T he Caesar language [88] builds on the streng ths of the A spectJ approach to m odularisation of

cross-cutting concerns by improving the separation between the definition of the aspectual modules

and the definition of the deploym ent of those modules w ith the base and o ther aspects.

The Observer p a tte rn , seen earlier, benefits from instance level application. B ut even then, its

definition in A spectJ is not as reusable as m ay be required in practice. T he A spectJ definition does

separate the p a tte rn protocol from its applications by using in ter-aspect inheritance bu t the solution

is no t sufficiently general. Specifically:

1. As discussed earlier, a com ponent may play the role of a publisher more than once, i.e. it may be

observed independently for changes of two different properties. For this reason, the A spectJ

im plem entation uses P u b l is f ie rS u b s c r ib e rP ro to c o l aspect singleton to combine bo th the

publisher and subscriber roles, using a hash tab le to m ap between instances of publishers and

their subscribers. T he tangling of roles in a single aspect makes the relationship between

the core p a tte rn functionality and different specialisations of it unclear. For instance, if la ter

S p e c ia lP u b l is f ie r specialises the publisher role conceptually, we have to subclass the whole

protocol to create an extension of ju s t one role. To avoid such problem s it is necessary to keep

each aspect role separate.

2. Applying the aspect to a problem requires m apping each role directly on to a class, i.e. af

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 42

fected classes have to im plem ent the P u b l i s h e r or S u b s c r ib e r interfaces. However, for some

applications of the p a tte rn , the role may be im plicit in a collaboration. For example, suppose

th a t S c reen needs to observe changes in points and lines. Points are represented by Node

objects and lines im plicitly by pairs of adjacent Node instances. Thus, for lines, there is no

single abstrac tion th a t can inherit the P u b l i s h e r interface.

3. In certain cases the aspect bindings should be reusable. Such is the case w ith com positions be

tween a class-based representation of an ab strac t syntax tree and a general tree representation .

A bstrac t syn tax trees are used in m any applications. M any different tree im plem entations m ay

be used w ith such a binding, e.g. ones to display trees or to perform algorithm s. These kinds

of bindings require a special kind of polym orphism to make them tru ly reusable.

4. In A spectJ, the aspect is woven statically a t compile tim e. I t is no t possible dynam ically to

select a different aspect im plem entation a t run-tim e, to activate or deactivate the aspect. For

example, w ith respect to the Observer p a tte rn , we m ust select in advance w hether to have

synchronous or asynchronous notification of changes, i.e. there is no aspectual polym orphism .

C aesar addresses these shortcom ings th rough aspect collaboration interfaces (ACIs). These are

bidirectional interfaces between two sets of m odules, called aspect im plem entations and aspect bind
ings. T he first p a rt is called the provided interface and the second, the expected interface. T he

aspect im plem entations realise the p a rt of the A C I’s interface th a t is concerned w ith the aspectual

functionality, e.g. the Observer p a tte rn protocol. T he provided p a rt of the ACI binds the aspect

roles to the ta rg e t application abstractions.

Addressing th e deficiencies in the A spectJ solution, we see th a t for point 1 the aspects can be
represented in term s of their own class struc tu re . There is no need for global aspect s ta te because
each aspect deploym ent hides the s ta te w ithin instances of aspect roles. For point 2, C aesar uses

aspect bindings to m ap aspects to dom ain abstractions. Bindings are fully-fledged Java classes

w ith additional features th a t the program m er can use to specify complex aspect in teractions w ith

base code. For point 3, aspect binding reusability is achieved in th ree directions. One can define

functionality th a t is polym orphic w ith respect to (a) aspect im plem entations by being w ritten to a

certain aspect binding type, (b) aspect bindings by being w ritten to a certain aspect im plem entation

type, or (c) b o th of them , by being w ritten to an ACI. Finally, for point 4, inheritance betw een

aspects is combined w ith polym orphism to allow specialised aspects to be used in the future.

Caesar is an instan tia tion of MDSOC as it divides problem s into m ultiple dimensions of concerns,

allowing one to view and use the system from different perspectives. Unlike Caesar, in SO P th ere is

no explicit notion of com position interface and reuse is associated w ith subject code bu t no t usually
the com position specifications. Reuse of com position specifications is not considered because it is

expected th a t for m ost compositions, the relationships can be concisely defined using a top-level

com position strategy. This is certainly th e case for subjects designed in concert where m ost corre

spondences are inferred by nam e equivalence. W here subjects are built for reuse, the com position

specification is also a potential reuse artifact. To reuse subjects successfully, one requires docum en

ta tio n which includes a description of the way the subject may interact. T he exam ples can be used

as informal tem plates for creating a com position specification. Finally, C aesar is an object based

approach whereas SO P is class based.

CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 43

3.3.4 Object Teams

O bject Teams also supports advanced interaction between team s in the style of A spectJ. Recall from

Section 3.2.2 on page 31 th a t a team class encapsulates a num ber of role classes. Using object-based

inheritance each role is bound to a class th a t begins to play th a t role. O bject Teams requires all

roles to be bound.

Team interaction is handled by so-called callins and callouts. M ethod delegation uses callouts.

These allow a role instance to delegate the call to an instance of a base class. A callin mimicks

A sp ec tJ’s b e fo re , a f te r and a ro u n d advice. A t certain points specified in the team , the base

object calls into the the role, passing s ta te and m eta inform ation to the role.

3.4 A Case for Subject-Oriented Programming

This C hapter has discussed technology for advanced separation of concerns. T he goals of reuse can

be b e tte r addressed by m odularising concerns in the feature dimension and by separating m ore of

the cross-cutting concerns th a t emerge as p a rt of the solution from the rest of the functionality.

We propose SO P as the reuse vehicle because it best fits our reuse position. Subject-O riented

P rogram m ing keeps the initial developm ent costs low for program m ers fam iliar w ith to d ay ’s m ain

stream program m ing languages. It has a powerful join point language th a t enables the separation

of m any kinds of concerns. SO P supports reuse by allowing extensions and com positions a t points

th a t may not have been an tic ipated by the original developer.

SOP also has disadvantages com pared to o ther approaches:

• A subject is a m odular artifact. However, when non-public join points are used for creating

extensions and specifying subject interactions, the subject no longer encapsulates the s ta te of

collaborations it implements.

• T he benefits of inheritance and polym orphism are restricted to subject im plem entations. Con

sequently, construction of software for reuse and expression of conceptual relationships where

inheritance between subjects is appropriate m ust rely more on com position rules. For instance,

present com position rules cannot express the relationship between an ‘a b s tra c t’ subject and

its ‘concrete’ variants.

We believe th a t the second problem m ay be tackled w ith new com position rules bu t th e first point

is more challenging. Subjects break the encapsulation of objects yet fail to encapsulate s ta te common

to the collaboration as happens in O bject Teams. Broken object encapsulation is an inhibitor

to m odular developm ent and reuse of subjects. In the next C hap ter we detail our experiences

of program m ing w ith H y p e r/J and discuss in teraction problem s which we believe result from the

invasive natu re of subject interaction.

Chapter 4

Interaction Problem s in
Subject-O riented Program m ing

Subject-O riented Program m ing is a technology for separation of concerns. It enables subject reuse

using powerful com position rules. Subject reuse and evolution is not defined on pre-declared com po

sition interfaces in the same way as trad itional com ponents. Instead, in teraction between subjects
takes place a t the points defined by subject s tructure . T he absence of a more ab strac t interface

makes it difficult to predict all consequences of interaction in advance. We call the unw anted in ter

actions between subjects interaction problems. T he present C hapter explores in teraction problem s

in SO P and suggests possible solution spaces.
Section 4.1 defines in teraction problems. We com pare in teraction problem s in subject-oriented

program m ing to feature interaction problems in telecom applications. Exam ples of interaction prob

lems are draw n from existing work and through our personal experience of program m ing w ith Hy-

p e r /J . Sections 4.2, 4.3 and 4.4 present exam ples of interaction problems. In each case, we com pare

the subject-oriented program to a functionally-equivalent 0 0 program , and present existing work

intended to address the problem or a description of a possible solution. Section 4.5 concludes by

proposing to develop a subject-oriented Alias P ro tection System.

4.1 Introduction to Interaction Problems

D ecom position of program s by feature rarely leads to orthogonality. Features often read and w rite

a common set of p roperties which in an object-oriented design would be encapsulated in an object.

SO P supports decom position by feature by defining corresponding classes and class m em bers, and

by allowing one subject to interface another a t m ethod call sites and potentially o ther internal join

points. Broken object encapsulation leads to a wide interface, m aking m odular developm ent of

subjects more challenging com pared to conventional program m ing where encapsulation is preserved.

For example, in order to reuse a subject in a com position, it is not enough to know what the

com ponent does. One m ust look beneath the interface a t how the com ponent is im plem ented. So, if

two subjects bo th have views of the Employee class which share the s a l a r y field, bo th m ust agree

on the type of th is field, its valid range and usage policy. This kind of in teraction requires one to

have knowledge of the way o ther subjects im plem ent and use data .

We believe th a t broken encapsulation com bined w ith a high num ber of in teracting subjects leads

44

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 45

to in teraction problems. In order to be able to tackle in teraction problem , it is first necessary to

find a suitable definition for in teraction problem s. A definition should help us to understand the

problem space and also to evaluate the solution space. There has been little published on interaction

problem s in SO P specifically, so the net is cast fu rther afield to o ther dom ains where interaction

occurs between modules th a t describe overlapping perspectives.

V iew point-O riented Systems Engineering (VOSE) [39] is a framework for supporting th e de

sign of heterogeneous systems. A viewpoint is a locally m anaged entity which encapsulates p artia l

knowledge about the system or dom ain, specified in a particu lar, suitable representation scheme; it

carries partia l knowledge of the process of design. VOSE uses inter-viewpoint checks to verify the

consistency of a specification w ith those m aintained by other viewpoints. Conflict resolution is part

of the specification process. The aim of inter-view point checks is to elim inate inconsistencies and

produce a conflict-free design. Inconsistencies are equally undesirable in subject-oriented com posi

tion because they m ake subjects uncom posable. However, SO P does perm it variation to a degree.

Each subject can define classes from its own perspective and each subject can define its own class

hierarchy. O ther inconsistencies are undesirable, requiring invasive m odifications to subjects.

Feature interaction problem is a term coined in the telecom m unication dom ain to describe in ter

ference between services. A bad feature in teraction is one th a t causes the overall system behaviour

to be undesirable. Interference occurs when the behaviour of one feature is affected by the behaviour

of another feature or another instance of the sam e feature [68]. I t has been recognised th a t research
into m ethods for detection and resolution of feature interactions in telecom system s is also of signfi-

cance outside the telecom dom ain. According to P la th [100], feature in teraction problem s can often
be traced back to the fact th a t two or m ore features m anipulate the sam e entities in th e system ,
and in doing so, violate some underlying assum ptions abou t these entities th a t the o ther features

rely on. O ur in tuitive understanding of in teraction problem s is com parable to feature interaction
problem s as defined by P la th .

In her work on subject-oriented design, Clarke has investigated the com position of object-oriented
design models [24]. In her experience there exist

“. . . additional p roperties arising for the o u tp u t of composition. These are not defined in

any input subject bu t arise as a result of com position itself.”

C larke’s definition implies th a t the com position is meaningful overall bu t particu lar in teractions

were either not foreseen or unexpected. Assuming th a t the additional properties are unw anted,

some action m ust be taken to correct the interaction. Changes can be m ade to the com position

specification, the input subjects or by using a patch subject. T he last two approaches are least

desirable because they raise the cost of subject reuse. The following definition reflects our view th a t

w hether the in teractions are unforeseen, unspecified or unexpected, the overall effect is undesirable

and requires some corrective action on behalf of either the composer or a subject designer.

D e f in it io n : (I n te r a c t io n P ro b le m) A subject interaction occurs when the behaviour of one

subject influences the behaviour of another. In teraction problem s are unw anted subject interactions.

In teraction problem s are im portan t to us because they affect m odular subject developm ent and

reuse of subjects. Having established a definition, we now look a t th e current understanding of
interaction problem s in related areas and evaluate the approaches to tackling them .

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 46

4.1.1 Feature Interaction Problems in Telecom Applications

T he best understanding of interaction problems th a t we have comes from the telecom domain. Tele

com applications are built around features which surround the basic service. T he aim is to develop
features m odularly and resolve any in teraction issues between features in a reasonable am ount of

tim e w ithout modifying the feature specifications. Features subtly interfere because they m anipulate

the sam e common service variables. In the telecom dom ain it is im portan t to be able to rapidly

develop and deploy new features w ithout d isrupting the functionality of existing features.

K im bler points ou t [67] th a t the trick is no t in finding resolutions bu t in developing mechanisms

to detect and resolve interactions th a t are efficient and th a t apply in the m ajority of cases. The

approaches to tackling feature interactions can be broadly grouped into design m ethods, architectural

approaches and runtim e techniques [52]:

• In the design approach, specifications of separately developed features are composed. The

com position is searched for interactions. U ndesirable in teractions are resolved by modifying

feature specifications. However, a feature cannot be redesigned independently to elim inate

the in teraction and features may no t be open for re-design. So instead, m ost design-time

resolutions specify how groups of features behave together, using various techniques to define

valid perm utations of features. T he m ain problem w ith the design approach is scalability.

M ost telecom system s have hundreds of features w ith the num ber of interactions growing

exponentially as yet more features are added.

• The arch itectural solutions involve co-ordinating the features’ access to shared resources. For
instance, a pipe-and-filter arch itecture serialises features’ reactions to each event. The problem

w ith this approach is th a t it tends to over-const rain access. The analysis of feature interaction

is still required to ensure th a t features do not miss key events occurring further down the

pipeline. A rchitectural solutions are too general to prevent in teractions th a t violate all feature

constraints.

• Resolutions th a t are not resolved sta tically m ust be resolved dynamically. Resolution can be

deferred until the unw anted interaction occurs and some action needs to be taken.

T he design approaches are also applicable to subject-oriented in teraction problems. For instance,

Van Der S trae ten and B richau [114] propose to use declarative m etalevel representation of the

feature’s im plem entation to detect interaction and interference (i.e. interaction problem s). Feature

in teraction is detected using logic rules, e.g. a logic rule can detect access to the same instance

variable by two different features. Rules for detecting interference are expressed as constraints or

invariants on the im plem entation.

Analysis of subject-oriented com position is also constrained by scalability. The complexity of

in teraction analysis grows significantly as the num ber of in teracting subjects increases. The design

approach is a useful way of understanding in teractions and resolving problem s bu t unless the model

is im bedded in code, the reuser m ust construct a new model for each new feature every tim e its

subject is introduced to an existing set. A design approach consistent w ith our reuse position m ust

have value no t ju s t for the composer bu t also for the subject developer.

An arch itectural solution is useful in the telecom and other dom ains where there exists some well

defined set of common resources. B ut Subject-O riented Program m ing can be used in areas where

there is either no common set of resources or the arch itecture itself is subject to evolution.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 47

SO P only supports design-tim e composition. R untim e resolution of conflicts introduces overheads

th a t may be acceptable during testing bu t no t in the deployed system . We believe th a t resolvable

conflicts are addressed best using com position rules.

4.1.2 Composition Anomalies

Tekinerdogan et al [123] have conducted an evaluation of the different kinds of com position schemes

(e.g. inheritance, delegation and join point based com position) in order b e tte r to understand anom a

lies occuring during concern composition. They distinguish three categories of problems:

• Com position is not possible for logical reasons. One tries to compose concerns which are

inherently uncom posable.

• C om position cannot be realised because the adopted com position scheme does not support it,

although com position is possible from the logical perspective.

• C om position is realisable w ith the adopted com position scheme, bu t requires additional work

arounds or glue code th a t reduces the m aintainability of the resulting design.

Com position anomalies are examples of the last two categories only. In order to be composable

concerns have to be bo th functionally and procedurally com posable [123]. Functional com posability

depends on com position being conceptually sound. For instance, it makes sense to compose a

buffer concern w ith locking facilities bu t not w ith a random num ber generator. T he composition

m ust have useful and correct sem antics, which m eans th a t the in tegration of subconcerns m ust
provide the intended functionality. For example, although it is meaningful to compose a graph

representation w ith an algorithm for counting subgraphs, the two are sem antically uncom posable
if they are represented as sets of vertices and adjacency lists. P rocedural com posability refers to

in teroperability or the dependencies and in teractions between com ponents. There are three kinds of

procedural composability:

• Signature level com posability refers to the signatures of various com ponents.

• P rotocol level com posability refers to the ordering of operations.

• Semantic level com posability refers to the sem antics of the composed operations.

For a given com position scheme, a com position anom aly occurs when concerns which are func

tionally and procedurally composable either cannot be composed using the com position scheme or

deviate from the expected interaction. The com poser m ay adopt a different com position scheme,

modify one or more of the input concerns, or create glue code to achieve the desired behaviour.
According to Tekinerdogan et al,

“A lthough there is no fundam ental problem w ith the need for additional code, it tu rn s out

th a t this reduces quality properties such as adaptability , reusability and m aintainability,

in v irtually all cases.”

W ith respect to SO P in teraction problems, choosing a different com position scheme is synony

mous with changing the com position specification or defining new com position rules; modification of

input concerns is analogous to subject modification; and glue code is the creation of a new subject to

patch up an interaction. A different com position rule may not be available or it m ay not be possible

to create a practical im plem entation w ithin the SO P com position framework.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 48

C om p osition R ules versus R efactoring

One problem w ith reusing subjects is the absence of adequate join points [7]. In the term inology

of Tekinerdogan e t al [123] from the previous Section, the subjects are functionally com posable bu t

the set of available com position rules cannot establish protocol level composability.

Lopes et al believe [77] th a t more powerful m eans of referencing are required, capable of exposing

all kinds of join points. A powerful com position language enables the separation of m ore concerns

and makes it easier to change the specification of interaction w ithout changing the stru c tu re of

the module. An alternative to new com position rules is refactoring. Refactoring is a sem antics

preserving program transform ation [124]. W here possible, the subject composer m ay refactor a

subject to expose join points for the purpose of com position. R efactoring should be the preferred

approach when it leads to lower coupling between subjects. Refactoring can also m ake com position

specifications shorter and easier to understand.

In the following discussion of interaction problem s, it will be assum ed th a t jo in points necessary

to express the com position exist already.

4.1.3 Interaction Analysis in AOP

In teraction problem s have been observed in the dom ain of A spect-O riented Program m ing. T his is

no t surprising given th a t separation of feature concerns and cross-cutting concerns from the solution
dom ain bo th use join point interception.

Douence et al [33] propose to form ally analyse statefu l aspects. Analysis takes place on an asym
m etric A OP framework which supports the concepts of join point, aspect and aspect com position.
Aspect com position determ ines when aspects m atch; aspects are said to in teract when they m atch

the same join point. S tateful aspects are defined in term s of sequences of join points; they take ac

count of the history of com putation instead of a single point. T he fram ework perm its s ta tic analysis

of interactions between aspects. Specifically, it is possible to detect when aspects do not interact.

T he framework supports com position rules which specify the correct order for execution of aspects

when m ultiple aspects affect a join point. T he com position rules are the m ain m eans of resolving

conflicts. A spect reuse is addressed by the use of explicit requirem ents on the base program . These

requirem ents specify join point h istory conditions th a t ensure the correct application of the aspect.

The reuse requirem ent p a rt of Douence’s A O P framework is of use to th e aspect developer also.

It makes explicit the otherwise im plicit requirem ent for the correct application of an aspect, m aking

it useful for supporting the m odular developm ent of th e aspect.

K atz [62] proposes to diagnose harm ful aspects using regression verification. He defines harm ful

aspects as those th a t make the desirable properties of the base object-oriented system un true in

the com bination of the base w ith the aspect. Regression testing is a process by which the system

is tested w ith every new aspect th a t is added to it, to ensure th a t the te s t suite which previously

was passed is still passed. Regression testing is not well suited to aspect-oriented system s because

aspects affect the original control flow m aking original tests irrelevant. As aspects inherently affect

m any parts of the program , it is difficult to determ ine w hat p a rt of the te s t su ite m ight still be

relevant. Instead, K atz proposes regression verification as a com bination of s ta tic type analysis,
deductive verification and model checking.

S tatic analysis can prove th a t an aspect does not invasively affect the base system . D eductive

verification over aspect code can establish a lack of harm w ith respect to specific properties, e.g. an

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 49

invariant of an existing system can be shown to be an invariant of the system containing the aspect.

M odel checking techniques can help to detect harm ful aspects by showing th a t each interaction

specified in the aspect is acceptable. Each interaction triggers a set of verification tasks and all

required te s t conditions are autom atically checked. In order to enable regression verification, the

system s to which the aspects are added need to be augm ented w ith specifications describing the

desirable properties of the system . Regression verification may also be applicable to subject-oriented
developm ent. However, it requires b e tte r discipline on behalf of the subject developer to specify the

desirable properties of subjects.

4.1.4 Towards Understanding Interaction Problems

The following th ree Sections present th ree in teraction problems. These cases have been chosen

because they dem onstrate the kinds of actions th a t need to be taken in order to correct an anomaly.

In the w orst cases correction entails invasive m odifications to subjects or patching. In order to

understand the im pact of subject-oriented decom position on in teraction problems, every subject-

oriented solution is com pared w ith a functionally equivalent object-oriented solution.

4.2 Persistence and Association

T he first exam ple of an interaction problem is concerned w ith th e ordering of subjects in their

in teraction w ith each o th e r1. There are th ree concerns, im plem ented as th ree subjects.

• The Persistence concern stores ob jects’ fields in a file system or a database. An object is m ade

persistent autom atically when another persistent object holds a reference to it. Once an object
becomes persistent it stays persistent until it is destroyed.

• The A ssociation concern updates b inary associations between objects. Suppose x and y are
re la ted by association, if some object x is set to reference y then y is set to reference x. Each

object can be involved in a t m ost one association relationship.

• The T ransaction concern im plem ents a business case relating a C ustom er and an O rder. A

custom er references an order and an order is associated w ith a custom er.

The code for these subjects is given in Figure 4-1. By bringing these th ree subjects together we

create a new kind of TransactionPA subject th a t supports persistence and association functionality.

C om binations of Transaction w ith Association or of Transaction w ith Persistence work very

well. B ut when the th ree are brought together, their order of in teraction becomes significant.
Let us consider the first of two com position specifications.

1 compose Persistence, Association, Transaction into TransactionPA;
2 mergeByName;
3 equate class AssocX, Customer into Customer;
4 equate class AssocY, Order into Order;
5 equate field AssocX.y, Customer.order into order;
6 equate field AssocY.x, Order.cust into cust;
7 equate operation AssocX.setY, Customer.setOrder into setOrder;
8 order operation AssocX.setY after Customer.setOrder;
9 equate operation AssocY.setX, Order.setCust into setCust;
10 order operation AssocY.setX after Order.setCust;
11 bracket <<*.set,J with before Persistence.PersistentCIass.setValue;

1 Adapted from an example in Renaud Pawlak’s PhD thesis [98].

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 50

subject Persistence {
class PersistentCIass {

static Store s;
void setValue(Object value) {

if(s.isPersistent(this)) {
s .makePersistent(value);

>

>
>

subject Association {
class AssocX {

AssocY y;
void setY(AssocY y) {

if(y.getX() != this) y .setX(this);
>
AssocY getYO { return y; >

>
class AssocY {

AssocX x;
void setX(AssocX x) {

if (x.getYO != this) x.setY(this);
>
AssocX getX() { return x; >

>
>

subject Transaction {
class Customer {

Order order;
void setOrder(Order order) { this.order = order; }

>
class Order {

Customer cust;
void setCust(Customer cust) { this.cust = cust; }

>

>

Figure 4-1: The subjects implementing the Persistence, Association and Transaction concerns

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 51

Consider a program th a t has a custom er object aC ust and an order object anO rder. To s ta r t

w ith, aC ust is transien t and anO rder is persistent, and there is no link between them . We execute

a C u s t . s e tO rd e r (a n O rd e r) . In addition to the behaviour specified in Transaction, the effect of this

in teraction should be to m ake aC u st persistent and to set anO rder to reference its custom er. The

following sequence of m ethod bodies is run:

1. P e r s i s t e n c e .P e r s i s t e n tC la s s . s e tV a lu e : receiver object aC ust is no t persistent, do no th

ing.

2. T ra n s a c tio n .C u s to m e r .s e tO rd e r : set th e custom er to reference th e order.

3. A s s o c ia t io n . A ssocX .setY : an O rd er does no t have a reference to aC ust so upda te the asso

ciation.

4. P e r s i s t e n c e . P e r s i s t e n t C l a s s . s e tV a lu e : receiver object anO rder is persistent, so save the
s ta te of aC u st, i.e. save an O rd er. c u s t = n u l l .

5. T r a n s a c t io n . O rd e r . s e tC u s t: set the order to reference the custom er. T h a t is, a n O rd e r . c u s t

= aC ust.

6. A s s o c ia t io n . A ssocY .setX : aC u st does have a reference to anO rder, so do nothing.

A fter th is in teraction , the value in storage is different to the value in memory. In store we have

a n O rd e r .c u s t = n u l l and in m em ory a n O rd e r .c u s t = aC ust. This is an anom alous interaction.
Suppose we change the com position specification such th a t the Persistence concern is applied after

the m erge of Association and Transaction , i.e. replace line 11 in the above com position specification
with:

bracket <r*.set,J with after Persistence.PersistentClass.setValue;

Now we get the following sequence of calls. T he values in storage and m em ory are the sam e, and
the interaction is as intended:

1. T ra n s a c t io n .C u s to m e r . se tO rd e r : set the custom er to reference th e order.

2. A s s o c ia t io n . A ssocX .setY : an O rd er does not have a reference to aC ust so upda te th e asso
ciation.

3. T ra n s a c t io n .O rd e r .s e tC u s t: set the order to point to the custom er.

4. A s s o c ia t io n . A ssocY .setX : do noth ing because the custom er already references the order.

5. P e r s i s t e n c e .P e r s i s t e n t C l a s s . se tV a lu e : control is still w ith the order object. an O rd er is

persistent, so save th e s ta te of aC u st, i.e. save a n O rd e r .c u s t = aC ust.

6. P e r s i s t e n c e .P e r s i s t e n tC la s s . s e tV a lu e : control has now re tu rned to the custom er object.

aC ust is now persistent. Save a C u s t . o rd e r = anO rder.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 52

4.2.1 Interaction Problem Analysis

W ould this problem occur in an object-oriented program ? A functionally sim ilar solution is the one

where the P e r s i s t e n c e and A s s o c ia t io n concerns are tangled and scattered in a single program . In

an object-oriented program , the interaction is a sequence of statem ents, probably appearing within

a single m ethod body. This problem is much less likely in object-oriented program m ing because

the sta tem ents are localised. I t is also possible th a t the subject composer as a reuser has failed to

u nderstand the artifacts well enough in order to reuse them successfully.

T he understandability of reuse artifacts m ay be improved by defining com position interfaces.

However, we are re luctan t to define com position interfaces because they m ay restric t com position in

ways no t an tic ipated by the original developer.

T he interaction problem may be avoided th rough b e tte r concern modelling. S u tton and Rou-

vellou [120] propose Cosmos for modelling concerns through the lifecycle. A concern in Cosmos is

‘any m a tte r of in terest in a software system ’. A Cosmos model provides a form of docum entation

for basic inform ation about concerns and their relationships. T he detailed inform ation abou t con

cerns is found inside subjects (or o ther design and im plem entation artifacts) bu t a schem a affords

a global perspective. R elationships between concerns can be modelled w ithin the schema. Physi
cal relationships describe the com position dependencies between concerns. A specialisation of the

Cosmos schem a to SO P m ay be used to describe the precedence of concerns in the above example,

e.g. P e r s i s t e n c e a c t i v a t e s A f t e r A s s o c ia t io n where a c t iv a te s A f t e r is a physical relationship.

A fter the relationship has been identified, assertions can be used to validate the com position [69].

Assertions describing com position relationships between concerns are an extension to design-by-

contract rules as used in the Eiffel language [85]. Assertions can validate th a t the application
contains a suitable set of subjects applied in the right order bu t it cannot help to identify in which
order the subjects should be composed.

4.3 W ater Beans

O ur second exam ple concerns the development of a series of JavaB eans com ponents [119]. JavaBeans

are reusable software com ponents th a t can be m anipulated visually in a builder tool and composed

to create end-user applications. The requirem ents for an object to be a bean are as follows:

• O bjects m ust have a zero-argum ent constructor and m ust be either Serializable or Externaliz-
able.

• Any properties of the object th a t are to be trea ted as bean properties, changeable by the user,

should be indicated by the presence of appropria te get and set m ethods whose nam es are g e tP
and s e tP where P is p roperty name.

• Some bean properties, known as bound properties, fire events whenever their values change

so th a t any registered listeners (i.e. o ther beans) will be informed of those changes. M aking

a bound p roperty involves keeping a list of registered listeners, and creating and dispatching

event objects in m ethods th a t change the property values, such as s e tP m ethods.

The application consists of th ree beans: W aterS ource, V alve and P ip e . These can be con

nected arb itrarily while observing the condition th a t no com ponent can be connected up-stream of a

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 53

W aterS ource com ponent. W ater can flow out from any W aterSource, V alve and P ip e to any num

ber of V alves and P ipes. W ater can flow in to a V alve or P ip e from any num ber of W aterS ources,

V alves and P ipes. W ater comes from W aterS ources a t some user specified volume and all com po

nents have a graphical representation th a t shows when w ater is flowing. Prom the topology of th e

exam ple one should be able to determ ine the w ater pressure in any given pipe segment.

T he client would like to build networks of W ater Beans by using the Bean Box environm ent for

JavaB ean experim entation [31]. The B ean Box environm ent allows beans to be connected in order

to enable d a ta flow between them . The W ater Beans have two responsibilities. F irst, they should

enable w ater pressure to be determ ined based on the supply volume and the network topology.

Secondly, they should have a graphical represen tation which conveys a sensation of w ater flowing

through the network.

SO P m ay be used to ex trac t bean behaviour [51]. The benefit of separating bean properties from

an ab strac t d a ta type, e.g. a C a r te s ia n P o in t class, are clear - it untangles the A D T im plem entation

from code for listeners and au tom atic firing of events for changed property values. T he benefit of

separating bean properties from the W ater Beans is less clear - the event system and property value

changes are p a rt of the model. W ater Beans properties are conceptually tangled w ith the JavaB eans

im plem entation logic and separation in code would be overkill. Therefore, the system is decom posed

into the following two subjects based on the two m ain concerns identified from the requirem ents.

• The W a te rP re ssu re subject abstrac ts the algorithm s for calculating the w ater pressure for each

pipe segment in the network based on some user specified supply volume and the properties

associated w ith the valve or pipe. Supply volume dow nstream from a valve drops to zero when

a valve is closed. Supply volume is restored when the valve is open. T he topology and th e

s ta te of the pipe network determ ines the pressure in any given pipe.

• The G rap h ic s subject contains W ater Beans drawing algorithm s. T he design of the subject
follows the M odel-View-Controller paradigm [20] whenever possible, separating the draw ing

algorithm s from the model th a t controls their activation. The controller in terprets user input

during network design in the Bean Box. The Bean Box creates connections betw een th e

beans. In the model, instances of the W aterE v en tO b jec t class ‘ca rry ’ the w ater supply. T he

W aterS ource ‘drips’ one W ate rE v en tO b jec t per second to its list of listeners. An open V alve

passes on th e received W aterE v en tO b jec ts to its W a te rL is te n e rs . A closed V alve does no t

pass on any W aterE ven tO b jects . A P ip e works in the same way as an open V alve.

This decom position m odularises the definition of graphics for the W ater Beans, localising the changes

th a t affect the aspect of W ater Beans visual representation . Also, it becomes possible to create

families of W ater Beans, i.e. w ith or w ithout the W a te rP re ssu re concern.

B oth the W a te rP re ssu re and the G ra p h ic s subjects use the event system to enable com m uni

cation between the W ater Beans. The client requires th a t connections between the W ater Beans

should be established by drawing a single link from the upstream com ponent to the dow nstream

com ponent. T his integration requirem ent indicates th a t the event system s of each subject should

be combined.

Before a detailed design can be developed for each subject we have to work out the su b jec ts’

com position interfaces. In order for the event models to be composable a degree of coordination is

required in the area of event model design. One area of in teraction identified between concerns is

w ater supply volume dropping to zero. This event is sim ilar to a valve being shut; th e w ater stops

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 54

« u t i l i t y »

C anvas

tim eO fEvenl: int

FlowEvenl

handleEventfe: Flow Event): void

« ln f e r f a c e »

FlowDstener

dispatch Event() : void

ru n () : void

lhread:Thread

listeners : Vector

W aterSource
la stE v en t: FlowEvent

lis ten e rs : Vector

thread:Thread_______

handleEvent(e: Flow Event): void

d ispatchE ven t(): void

runt) : void

Pipe
open : Boolean

la s tE v en t: FlowEvent

listeners : Vector

thread:Thread_______

handleEvenl(e: F low Event): void

dispatchEventQ : void

mn^wjd^^

Valve

Figure 4-2: W ater Beans class diagram for the G rap h ic s subject

flowing. Once the com position interface has been defined, work can commence independently on the

detailed design for these subjects.

4.3.1 Detailed Design Considerations

T he G rap h ic s subject uses the JavaB eans event model to sim ulate w ater delivery. Every event
carries a tim estam p. In the model underlying the G rap h ic s concern, a W ater Bean is considered

to be carrying w ater if the tim estam p of the last event is less th an 2 seconds before the present

tim e. If the last event came more th an 2 seconds ago then the bean changes its representation to

indicate th a t w ater is no longer flowing. T he effect of the model is to produce the sensation of w ater

em ptying over tim e ra th er th an instantaneously. Figure 4-2 contains th e class diagram of the m ain

« ln l e r f a c e »

RafeChangeCistener

handleEvenffe: R ateC hangeE ven t): void

5 S

RateC hangeE vent

Valve

open : boolean

la stE v en t: RateC hangeE vent

lis ten e rs : Vector

handleEvent(e: R ateC hangeE ven t): void

dispatchEventQ : void

Pipe

la stE v en t: RateC hangeE vent

lis ten e rs : Vector

handleEvent(e: R ateC hangeE ven t): void

dispatchEventQ : void

W aterSource

listeners : Vector

dispatchEventQ : void

Figure 4-3: W ater Beans class diagram for the W a te rP re s su re subject

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 55

features of the G raphics subject. Each bean uses a th read to check for elapsed tim e. M ethod r u n ()

executes a loop th a t periodically com pares the tim estam p of the last event against the current tim e.

T he W a te rP re ssu re subject uses the JavaB eans event model to propagate changes in supply

volume. P ip es have an observable pressure property th a t is determ ined by the ra te a t which w ater
enters the pipe (rate equals volume over tim e) and the diam eter of the pipe. V alves are either

fully open or fully closed; either they let the full volume of w ater pass th rough or none a t all.

W hen th e w ater supply volume changes the change in w ater pressure in each pipe is v irtually

instantaneous. Figure 4-3 contains the class d iagram of the m ain features in the W a te rP re s su re

subject. h an d le E v e n t (. .) m ethods are called by the bean framework when a new event is received.

T he d isp a tc f iE v e n t 0 m ethods are called when the ra te change is propagated to listeners.

To compose, m e rg e integrates the listener interfaces, the event classes, and the W ater Bean

classes th a t correspond by name.

4.3.2 An Interaction Problem

Com position of these subjects produces an anomaly. W hen a closed valve v opens, the volume of

supplied w ater toggles from zero to the volume upstream from the valve. T he upstream ra te is taken

from the last event th a t v receives. The change in volume causes v to release events to all listeners.
W hen a bean dow nsteam of v receives the event, it coincidentally changes its visual representation

because the event also indicates th a t w ater is flowing. In the m eantim e, v is still showing th a t w ater
is no t flowing because it is w aiting for an event from an upstream object. Finally, when v receives an
event from an upstream bean, its representation changes to indicate th a t w ater is passing through.

Figure 4-4 shows a tim e trace for th is interaction problem . W aterS ource (visually represented

by a tap) supplies w ater a t 10 litres per m inute. T he ta p is connected in sequence to a pipe, followed

by a valve, followed by two more pipe segments. At tim e t the valve is closed, there is w ater in the

pipe preceeding the valve b u t no w ater beyond it. T he w ater pressure before th e valve is 5 b ar and

0 bar afterw ards. At tim e t + 1 the valve opens. In the W a te rP re ssu re subject, the valve creates

and dispatches an event to all listeners to indicate th a t a change in supply volume has occurred and,

consequently, a change in pressure. Coincidentally, the pipes dow nstream from the valve in te rp re t

the incoming event as w ater flow, rendering the pipes a grey colour. The valve is still clear because

its representation will change only in response to an incoming event. A t tim e t + 2 th e event from

the pipe connected im m ediately before the valve arrives a t the valve, and the program re tu rn s to
the correct s ta te .

There is no simple way to correct this in teraction problem. On th e one hand, keeping the

event models separate leads to no undesirable interactions. On the o ther, there is a requirem ent

to in tegrate event models which leads to th is anomaly. W ith the SO P in tegration rules we have

described up to now, to rectify the interaction we m ust modify the input subjects or create a new

subject to patch things up.

The problem is th a t the W a te rP re ssu re and G rap h ic s subjects use the event model in different

ways. The in tegration requirem ent dem ands a single event type to describe bo th variants. In effect,

a single event type quantifies over or generalises the two uses of th e event system . A distinction

between different events is required in order to specialise the trea tm en t for each event type. SOP

does not define in tegration rules to express th is relationship a t present.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 56

t+1

t+2

Figure 4-4: The W ater Beans interaction problem.

W aterEvent

! 111 1
FlowEvent RateChangeEvent

Flow A ndRateChangeEvent

Figure 4-5: W ater Beans conceptual event model

4.3.3 An Object-Oriented Solution

Lets look a t the way the W ater Beans could be designed as an object-oriented program. It is possible
to model this interaction using inheritance. We need to define a common event type such th a t a
single connection between W ater Beans is sufficient to establish their interaction. Also, it should still
be possible to distinguish between three kinds of event: water flow, w ater pressure change and the
union the two. Figure 4-5 shows an inheritance hierarchy describing this relationship. At the root
of the hierarchy is an abstract W aterEvent class which quantifies over all other kinds of events. The
W ate rP ressu re concern creates RateChangeEvents, and the G raph ics concern creates FlowEvents.
W hen a new W ater Bean is connected into the network, the upstream bean should dispatch a
FlowAndRateChangeEvent object. Conceptually, this is an action th a t is performed jointly by the

Graphics and W aterPressure concerns.
There are problems with implementing this design elegantly in JavaBeans.

• Java does not support multiple inheritance of implementation, so the FlowAndRateChangeEvent
has to be declared as a direct subclass of W aterEvent instead. This increases code duplication.

• Java does not have multiple dispatch a variant of the inheritance mechanism th a t uses
the dynamic type of the param eters as well as well as the dynamic type of the receiver to
choose the m ethod to dispatch. M ultiple dispatch enables the dynamic selection of the right

31
10 1/min

10 1/min

10 1/min

" \ / ■

5 bar closed 0 bar

5 bar

5 bar

open

jg.
onen

5 bar

5 bar

0 bar

5 bar

5 bar

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 57

void handleWaterEvent(WaterEvent e) {
if(e instanceof FlowEvent) { ... }
else if(e instanceof RateChangeEvent e) { . . }
else if(e instanceof FIowSndRateChangeEvent e) { ... }
else { ... >

>

Figure 4-6: Sim ulating m ultiple dispatch in Java

m ethod to execute depending on w hether one gets a FlowEvent, a RateChangeEvent or a

FlowAndRateChangeEvent object from an upstream bean. Instead, the receiver m ust m anually

switch based on the type of the incoming event as shown in Figure 4-6.

• There are conceptual problems w ith using Jav a ’s inheritance m echanism to m odel this rela

tionship. The G rap h ics concern is in terested only in th e tim estam p of the event, whereas

the W a te rP re ssu re concern is in terested only in the volume of w ater. Inheritance in Java is

m onotonic - classes cannot disinherit the m ethods they inherit. One can call the getVolum e

m ethod on a Flow Event object in spite of its no t being well defined conceptually. T his can

lead to fu ture reuse problems.

Clearly, an object-oriented design can be created to address this problem . B u t a Java-based solu

tion does not have inheritance relationships which can m odel th e conceptual relationships faithfully.

In o ther languages, e.g. Eiffel [84], the unsuitable m ethods m ay be disinherited, thereby addressing
the last point above.

G ardner has proposed S tructu red Inheritance Relationships (discussed in Section 2.4.2 on page
19) in order to overcome problems associated w ith inheritance, improve conceptual m odelling and

facilitate reuse [44]. Among her recom m endations is a V iew inheritance relationship which allows a

subclass to provide an a lternate interface to ta rg e t objects th a t is more appropriate to some clients

th an the interface provided by the default view. Languages th a t provide na tu ra l classifications of

objects will produce m ore robust object-oriented program s th an those th a t model one solution to

the problem [81].

4.3.4 A Solution For Subject-Oriented Programming

The interaction problem can be addressed by a com position rule th a t allows objects to be dis

tinguished by the subject th a t instan tia tes them . We propose the view -m erge in tegration rule

for dynam ic selection based on subject of origin. The view -m erge rule is inspired by the V iew
structu red inheritance relationship [44] b u t scaled to sub ject granularity.

The view -m erge in tegration rule can be applied on a set of corresponding classes. W hen a

view -m erged object is received as an operation param eter, th e m ethod body to execute is selected

based on the subject which in stan tia ted it. An object is considered to be in stan tia ted by subject S
when it is:

• in stan tia ted on an instance variable in S th a t has no corresponding instance variables, or

• created in the body of a m ethod in S w ith the exception to those m ethods which have corre

sponding abstract m ethods in o ther subjects.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 58

W hen subjects S \ . . . S n are composed, an object is considered to be in stan tia ted by all sub jects

when it is

• in stan tia ted on an instance variable Vi in Si and there exists some Vj in Sj w ith i ^ j such

th a t Vi,Vj correspond, or

• created in the body of m ethod in Si and there exists some rrij in S j w ith i ^ j such th a t

m i,rrij correspond and m j abstract.

T he last of these deserves an additional explanation. Recall th a t in SOP, a m ethod is declared

abstract when another subject is responsible for its im plem entation. W hen a set of abstract
m ethods is merged w ith im plem ented operations, the effect is to share the im plem entations between

all host classes. O bjects created in these operations are classed as belonging to all subjects.

We believe th a t the view-merge rule can be im plem ented w ithin the SO P rule framework.

W hereas the s tan d ard merge rule in SO P creates a single class in the o u tp u t from a set of input

subjects, view-merge creates an inheritance hierarchy as follows:

W hen view-merge is applied to S \.A , S 2 .A and S 3 . A , create class X by merge in

tegration of S i.A , S 2 .A and S 3 .A . Also create three subclasses of X called X -S i.A ,

i G {1,2, 3}, by augm enting the interface of each S i.A w ith stub m ethods order to make
them into proper subclasses of X (to satisfy Java type rules). W hen A is in stan tia ted in

<Si, create an instance of X JS i.A if the point where in stan tia tion occurs is exclusive to
5 i, bu t create an X object instead if the instan tia tion point is shared by two or more

subjects. For example, if A is in stan tia ted in a m ethod exclusive to S 2 then in sta tia te
an object of type X JS 2 .A . B ut if A is in stan tia ted in a m ethod in S 2 th a t does have

corresponding abstract m ethods then in stan tia te X instead.

W hen an object of a view-merged class is received as a param eter, the m ethod body

to execute is selected dynam ically using th e in s ta n c e o f operato r in Java to sim ulate

m ultiple dispatch. T he code of the kind given in Figure 4-6 for dynam ic selection is

injected autom atically into all m ethods th a t have a param eter of type A.

The details of rule im plem entation are hidden from the rule user. In the W ater Beans ap

plication, view-merge can be applied to the com position of FlowEvent and RateChangeEvent
classes to create class FlowAndRateChangeEvent. W hen Graphics in stan tia tes an event ob ject and

sends it to listeners, only the Graphics su b jec t’s handler m ethod gets executed. Similarly, when

WaterPressure instan tia tes an event and sends it to listeners, only the WaterPressure su b jec t’s

handler m ethod is executed. However, when a m ethod belonging to bo th these subjects instan tia tes

an event object, bo th handlers will be run.

F urther developm ent of this rule should extend it to operations w ith m ultiple param eters. Con

sider m ethod doSomething(A a, B b) where A and B are view-merged. T he dynam ic types of

b o th a and b m ust be used to select the m ethod body to execute. In order to continue the discussion

on interaction problems, the design of th is com position rule is no t developed further a t th is point.

O ther rules m ay be inspired by various uses of inheritance; sub ject com position rules describe

relationships between abstractions th a t may be modelled w ith inheritance in object-oriented pro

gram m ing. Developm ent of in tegration rules is open-ended in nature . I t depends on the existence of

a suitable com position framework - this is already the case w ith Subject-O riented Program m ing. By

increasing the com position vocabulary it becomes possible to compose m ore subjects non-invasively.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 59

creates

acquires

repN am e: String

UnionRep

representative: UnionRep

Membership

thellnion : Union

em ployee: Employee

i o i n U n i o n O ; Ypi f l _ _ _ _

MembershipSecretary

myM embership: Membership

Employee

m em ber2rep: Hashtable

reps : Vector___________

iQinfe: Em ployee!: void

Union

Figure 4-7: T he Jo in U n io n subject class diagram

4.4 Union Members and Representatives

T he th ird anom aly we present is not solved by changing the order of subject com position or by
defining m ore powerful com position rules. T he in teraction problem is caused by incom patible domain

views. T he exam ple concerns the developm ent of software for a trad e union. The initial description

of system functionality is as follows:

T he employees of a com pany can become m em bers of a union. T he union is a large

organisation consisting of workers and union representatives. U pon joining, an employee

is assigned a representative who advises the m em ber on his or her rights in case of

an industrial dispute or if a m em ber feels th a t he has been trea ted unfairly by the

com pany which employs him. An employee deals solely w ith his union representative.

T he representative handles small cases personally. Bigger issues are taken back to the

union com m ittee who take a collective decision on behalf of all m embers. An issue which

all union representatives get to deal w ith is dismissals. T he representatives deal w ith

dismissals on a personal basis. A dismissed employee contacts the representative who

can investigate the causes of a dismissal and so on.

D uring analysis, joining the union and dismissal features are identified. In the design the

Jo in U n io n subject describes the way an employee becomes a union mem ber. T he D ism iss sub

ject describes the procedure involved in getting help when an employee is dismissed. These subjects

are shown in Figures 4-7 and 4-8.

In the Jo in U n io n subject, the M em b ersh ip S ec re ta ry . jo in U n io n m ethod sends an Employee

object as argum ent to Union to register him as a mem ber. Union generates a M em bership object

th a t is stored by the Employee. A M embership contains a reference to th e employee’s UnionRep.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 60

C om pany Em ployee

em ployees : Vector o --------------------------------- myM em bership : M em bership

cJismissO : void appealO : UnionRep

get

UnionRep

<r

'ep resen ta tive

V
M em bership

represen tative : UnionRep

Figure 4-8: T he D ism iss sub ject class diagram

UnionRep
retire

Union

o -------------------------

repNam e : String

theUnion : Union

------------------------ > m ember2rep : Hashtable

reDS : Vector

Member

retireh : void retirefrep: S tr ing): void___

Figure 4-9: The R e t i r e subject class diagram

The interaction in the D ism iss subject s ta r ts w ith the Company object th a t d ism is se s an

Employee. T he Employee can call the a p p e a l m ethod. This re tu rns the assigned union repre

sentative in the form of a UnionRep object to handle th e allegations of unfair dismissal.

T he com position specification joins all identically nam ed artifacts. M em bership classes are joined,
r e p r e s e n t a t i v e field is the same union representative in bo th subjects. The two views of the

Employee class share the myMembersfiip field also.
An additional requirem ent is in troduced into the design a t a la ter stage. A union representative

is now able to retire from the post. UnionRep sends a r e t i r e message to th e U nion giving his nam e.

T he m em bers th a t the retiring representative served are assigned an alternative representative from

the pool. T his concern is elegantly cap tured by the R e t i r e subject as shown in Figure 4-9. The

collaboration involves updating the mem ber2rep collection to reference some new representative,

then removing the retiree from the r e p s pool. W hen composing, we equate classes Employee and

Member for they represent the sam e abstraction from different perspectives.

4.4.1 An Interaction Problem

There exists an anom aly in the composed program th a t emerges during a particu lar in teraction

between the R e t i r e and D ism iss subjects. T he problem m anifests itself when an employee is

dismissed after his union representative retires. T he union now associates the employee w ith a new

union representative bu t the employee’s m em bership still refers to the retired representative. The

D ism iss subject re tu rns the retired union rep instead of his replacem ent. The Jo inU nion sub ject

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 61

Employee

myMembership : Membership

ap p e a l() : String

A

acquires/gc t representative

Com pany

em o lo v e e s : Vector

dismiss£)_i void_

Union

m em b er2 rep : Hashtable

r e p s : Vector____________

join(e: E m ployee): Membership

retirefrep: S tring): void

■>

<■

V
Membership

representative : UnionRep

UnionRep

rep N a m e : String

theUnion : Union

A

M em bershipSecretary

theU nion : Union

e m p lo y ee : Employee

ioinUnionO : void

Figure 4-10: JoinU nion, Dismiss and R etire concerns as a (badly s tructu red) 0 0 program

inform ally expects the relationship between an employee and his union representative to be invariant.

The D ism iss subject reinforces th is assum ption by relying solely on myMembership for inform ation

on the representative.

Invasive m odifications to the W ater Beans exam ple seen earlier were avoided by defining composi

tion rules which reflect the tru e relationship between abstractions. However, th is anom aly cannot be

solved non-invasively by addition of com position rules because the in teraction cannot be expressed
as a relationship between the composable elem ents of corresponding subjects.

We observe two ways of correcting this interaction w ith design. T he first solution is to make

the R e t i r e subject upda te all references between the employee and the representative. T he R e t i r e

subject becomes responsible for updating each Em ployee’s m em bership details in the U nion object

and all M embership objects. The second requires reconstruction of Jo in U n io n and D ism iss concerns

such th a t U nion class becomes the only source of inform ation regarding the relationships between

employees and representatives. The first solution extends the design which has outgrow n its useful

ness in a highly coupled way. To its credit, the first solution requires no m odifications w ith respect

to the Jo in U n io n and D ism iss subjects. According to Tekinerdogan et al [123], it is a com position

anom aly because the additional code affects quality factors (see Section 4.1.2 on page 47). Also,

the explicit cap ture of cross-cutting concerns in subjects should be the n a tu ra l consequence of good

m odularity and not the result of a corrective m easure due to a tangled im plem entation [29]. The

second solution is a b e tte r design because it localises the employee-union representative relationship

bu t it requires invasive m odifications to all input subjects. Clearly, neither solution is ideal.

The cause of th is interaction problem is understood best by looking a t an object-oriented design

for Jo inU nion , D ism iss and R e t i r e concerns.

4.4.2 An Object-Oriented Solution

An object-oriented design addressing these concerns is shown in Figure 4-10. The in teraction prob

lem experienced in the o u tpu t of subject-oriented com position occurs also in this object-oriented

program . T his kind of problem in object-oriented program m ing has been blam ed on uncontrolled
object aliasing [57].

In object-oriented program s, objects are passed by reference. An object is said to be aliased when

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 62

there are two or m ore references to it. O bject s ta te depends on th e values of its variables and the

s ta te of o ther objects it references. Aliasing problem s can occur w hen an object reveals references to

the objects contained w ithin through the interface. The client can obtain a reference and proceed to

dispatch messages to the reference w ithout going th rough the interface of the object th a t revealed

it. This can pose problem s when try ing to understand object-oriented program s because a s ta te

change to one object affects all others th a t alias it. Confusion can arise when object s ta te changes

no t as a result of a message sent to its interface bu t because of an alias into its s ta te .

Aliasing problem s are particularly acute in object-oriented program m ing because m ost objects

have m utable sta te . O bject s ta te m utates as the result of changes to values and the s ta te of refer

enced objects. Some objects are im m utable: the ir s ta te cannot be changed although the values of

variables referencing them can. This includes atom ically typed objects such as integers and booleans.

Im m utable objects can be aliased more freely because their s ta te cannot be modified.

To address aliasing problems, a num ber of researchers have proposed Alias Protection System s

(APSs) [56, 6, 91, 5, 127, 23]. At the core of any A PS is a concept of object representation.

R epresentation consists of objects th a t are used in the im plem entation of abstractions (classes).

P ragm atic approaches to alias protection do not hide the represen tation w ithin one object bu t

enable controlled exposure to support idiom atic uses of object-oriented program m ing. Flexible

Alias P ro tection (FAP) [92] is one of the m ost advanced APSs. T he inspiration for FAP cam e from

the observation th a t problems are not caused by aliases per se; ra ther, they are due to non-local

changes caused by aliases. Aliasing should be allowed so long as th e visibility of changes to objects

is controlled. T he Union exam ple could be redesigned, using FAP to enforce encapsulation, thus

steering clear of the aliasing problem in Figure 4-10.

4.4.3 Redesigning the Object-Oriented Solution

Flexible Alias P ro tection takes the form of aliasing m ode declarations (additional types) th a t are

inserted into code by the program m er and checked sta tically by an au tom ated checker. T he full

details of FAP are no t relevant for our exam ple2. Suffice it to say th a t in our exam ple objects of

non-value types have one of th ree modes:

• Representation objects (mode rep) can be m anipulated freely inside the container b u t never

exposed.

• A representation object can be passed to internal containers as an argument object (mode

a rg). To minimise its effect, an argum ent object m ust appear im m utable from the perspective

of objects th a t access it. T he messages sent to argum ent ob jects should appear to be purely
functional.

• Variable objects (mode v a r) may be m anipulated and aliased freely anywhere in th e program

in the sam e way as objects in a m ainstream object-oriented program m ing language.

M ost objects require a single mode to describe the aliasing policy. Classes im plem enting ADTs,

such vectors and hashtables, require additional modes: vectors require one additional m ode for the

elements stored inside; hashtables require two additional m odes - one for the keys and one for the
values. Being able to specify the mode of container elem ents param etrically makes A D Ts more

reusable. Assignm ent between expressions of different modes is forbidden in m ost cases, bu t an

2Chapter 5 on page 70 contains a detailed review of Alias Protection Systems.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 63

object can be viewed using different modes a t different times. A r e p object can be viewed as an a rg

object when it is passed to another r e p object for storage, e.g. a union representative can be stored

in a d a ta s tru c tu re containing all o ther union representatives.

Figure 4-11 contains the improved object-oriented im plem entation for the Jo inU nion , D ism iss

and R e t i r e concerns anno ta ted w ith FAP aliasing modes. T he aliasing problem has been elim intated

in th is design. T he M embership class has been deleted and Employee objects use U nion as the sole

source of employee-union representative relationships. In the U nion class, a hash tab le is used to

store m em ber-to-representative associations (line 29). T his hashtable is the private representation

of its U nion object as indicated by the leading r e p mode. Inside the angle brackets, m em bers can

be referenced bu t no t modified by the U nion as indicated by a rg . Union representatives have mode

re p ; they are trea ted as representation objects which m ust not be exposed externally.

D uring a dismissal appeal (line 9), when getRepName m ethod is called by the employee, instead

of re turn ing a reference to a UnionRep, we re tu rn its repName field (line 38 followed by 23). This

object is im m utable; once created, it is accessed in a purely functional way, leading to no unexpected

s ta te changes in objects th a t reference it directly or transitively.

4.4.4 Towards a Solution for Subject-Oriented Programming

In object-oriented program m ing FAP aliasing m odes serve two roles. T he first role is alias protection;
it is to p ro tect representation objects from external access. The second role is annotational. Aliasing
modes anno ta te object usage, describing the perm issions to access and modify the s ta te of an object.

It is the second role which m otivates our application of FAP to Subject-O riented Program m ing.

Aliasing modes m ay also be useful for describing the way subjects use objects. A t present in

H y p e r/J , Java types are the only interface-level formalism for checking com position validity, and

the composer m ust rely on informal docum entation or im plem entation inspections to check th a t

subject in teraction is problem free. The addition of aliasing modes will improve the com poser’s

ability to reason abou t interaction.

In Figure 4-12, FAP aliasing modes are applied to the Jo in U n io n (fig. 4-7), D ism iss (fig. 4-8)

and R e t i r e (fig. 4-9) subjects. Subjects are purely object-oriented and aliasing m odes are applied

w ithout m aking any stru c tu ra l or functional changes. No changes are necessary because on its

own each subject is a reasonable object-oriented design. The modes in each sub jec t are chosen

independently from o ther subjects. W hen two or more modes are applicable, the conceptually m ost

descriptive m ode is chosen.

The modes were selected based on the following justifications. In the Jo in U n io n subject:

• M em b ersIiip S ec re ta ry . tfieU nion has m ode re p to indicate th a t only th is M em bersIiipS ecre tary
can visibly change the s ta te of tfieU nion.

• M em bersIiipS ecre tary .em ployee has m ode v a r because an employee need no t be a m em ber

of a union. Mode a rg is not appropria te because of changes to an employee’s m utable s ta te

when setting mem bership.

• E m ployee. myMembersfiip has mode a rg because changes to the s ta te of myMembersIiip are not
expected after it is created.

• M e m b e rs h ip .re p re s e n ta t iv e has m ode a r g to indicate th a t the rep resen tative’s s ta te is im
m utable.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 64

1 class MembershipSecretary {
2 vax Union theUnion;
3 var Employee employee;
4 void joinUnionO { theUnion.join(employee); }
5 >
6
7 class Employee {
8 var Union theUnion;
9 arg String appeal() { return theUnion.getRepName(this); }
10 >
11
12 class Company {
13 rep Vector<var EmpIoyee> employees;
14 void dismiss() I

15 var Employee e = selectEmpIoyeeToDismissO;
16 arg String repName = e.appeal();
17
18 >
19 var Employee selectEmpIoyeeToDismissO { ... }
20 >
21
22 class UnionRep {
23 arg String repName;
24 var Union theUnion;
25 void retireO { theUnion. retire (repName) ; }
26 >
27
28 class Union {
29 rep Hashtable<arg Employee, rep UnionRep> member2rep;
30 rep Vector<rep String> reps;
31 void join(arg Employee e) { member2rep.add(e, selectRepRandomlyO); }
32 void retire(arg String r) {
33 rep UnionRep old = getRepByName(r);
34 changeRep(oId, selectRepRandomlyO);
35 reps.remove(old);
36 >
37 void changeRep (rep UnionRep oldRep, rep UnionRep newRep) { ... }
38 arg String getRepName(arg Employee e) { return member2rep.get(e).getRepNameO ; >
39 rep UnionRep selectRepRandomlyO { ... }
40 rep UnionRep getRepByName(arg String repName) { ... }
41 >

Figure 4-11: 0 0 Program im plem enting the JoinU nion, Dismiss and R etire concerns anno ta ted w ith
FAP aliasing modes

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 65

subject JoinUnion {
class MembershipSecretary {

rep Union theUnion;
var Employee employee;
void joinUnionO { theUnion. join (employee) ; }

>
class Employee {

arg Membership myMembership;
>
class Membership {

arg UnionRep representative;
>
class UnionRep {

arg String repName;
>
class Union {

rep Hashtable<var Employee, arg UnionRep> member2rep;
rep Vector<arg UnionRep> reps;
join(var Employee e) { ... }

>
>

subject Dismiss {
class Company {

rep Vector<rep EmpIoyee> employees;
void dismissO { . . . }

>
class Employee {

arg Membership myMembership;
arg UnionRep appeal() { ... >

>
class UnionRep {
>
class Membership {

arg UnionRep representative;
>

}

subject Retire {
class UnionRep {

var Union theUnion
arg String repName;
void retire() { . . . >

>
class Union {

rep Hashtable<arg Member, rep UnionRep> member2rep;
rep Vector<rep UnionRep> reps;
void retire(arg String repName) { ... >

>
class Member { >

Figure 4-12: Jo in U n io n , D ism iss and R e t i r e subjects an n o ta ted w ith FAP aliasing modes

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 66

• U nion.m em ber2rep is the representation of its container. I t cannot be exposed outside.

Employee objects used as the hashtable keys have m ode v a r because they can be aliased

and changed outside th is object. UnionRep objects used as hash tab le values have m ode a rg

because they are aliased bu t not visibly changed w ithin th is class.

• U nion, r e p s is also the represention of its container. T he decision to use a vector to reference all

union representatives is a design decision th a t should be hidden in an 0 0 program . UnionRep

objects stored in the vector have mode a rg because they are aliased bu t not visibly changed

in th is class.

In the D ism iss subject:

• Company. em ployees is a vector of Employee objects, r e p m ode on the vector and th e elements

w ithin indicates th a t the choice to use a vector to reference employees is an im plem entation

decision th a t should be hidden from clients. Com pany employees cannot be contacted directly

by the com pany clients.

• Employee .myMembership has mode a rg to indicate th a t the s ta te of myMembership is not
changed by th is Employee instance.

• M e m b e rs h ip .re p re s e n ta t iv e has m ode a rg to indicate th a t representative’s s ta te is not
changed by th is class.

In the R e t i r e subject:

• UnionRep. th eU n ion has m ode v a r. By retiring, the represen tative changes the s ta te of the
union. However, more th an one representative m ay retire , requiring the union to be modified
by m ultiple representatives.

• U nionRep.repNam e has m ode a rg because the represen tative’s nam e is not expected to change.

• U nion.m em ber2rep is the representation of its object so it has m ode re p . The union associates

m em bers to representatives bu t does no t change them in any way. M embers have m ode a rg

because employees can be a m em ber of more th an one union. Representatives have mode re p

because they are exclusively the representatives of th is union.

• U n io n .re p s is also the representation of its container. UnionRep objects stored in the vector

have m ode r e p because they are exclusively the m em bers of this union and should no t be
referenced outside.

Having specified the subjects, a tten tion now tu rn s to the ir com position. Com position of aliasing

m odes has not been addressed in existing work and requires fu rther investigation before being

applied. Two choices are apparent: either only elements w ith th e sam e modes m ay be com posed or

it should be allowed to compose elements w ith non-m atching modes. M ode equivalence is meaningful

because subjects in Figure 4-12 are different views of the sam e dom ain. Lets consider the sem antics

of pairwise com position of modes. This is easily extended to n-ary compositions:

re p w i th re p . All com positions take place in the context of corresponding classes. Hence, this

com position means th a t bo th subjects can alias this ob ject freely inside the encapsulating

object bu t not expose it to external clients.

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 67

a rg w i th a rg . B oth subjects can pass the object freely bu t never modify it in a way th a t is visible,

v a r w i th v a r . B oth subjects can alias and modify the object freely.

Com position of elements w ith the above m odes leads to the sam e m ode in the o u tp u t as in the

input bu t only if equivalent modes appear a t all join points. M odes in different classes are interre

lated, and a change in aliasing m ode in one class would have a cascading effect on modes in other

classes. Com posing the above subjects, the views of corresponding elements in Employee/Member

(different views of the same entity), M embership and UnionRep classes are equivalent across all three

subjects. For class Union there are two places where modes are no t equivalent:

• In Jo in U nion , employees have m ode v a r . This m ode is required in order legally to pass an
Employee instance when calling U nion , j o i n and to be able to m odify it w ithin Union. In

R e t i r e , employees have mode a rg because the U nion does no t affect or depend on their state.

However, purely from the point of view of aliasing o ther FAP m odes can be used in th is position

in R e t i r e .

• In Jo in U nion , union representatives have m ode a rg because they are assigned to E m ployee. my-

M em bership 's r e p r e s e n t a t i v e field in the body of U nion , j o i n (m ethod body elided in Figure

4-12). M ode v a r is also legal in th is case. In R e t i r e , union representatives have m ode re p
because conceptually U nion objects cannot expose them . A lthough o ther modes are also valid

here.

A lthough no t a join point, M em b ersh ip S ecre ta ry and UnionRep refer to the sam e U nion object

in separate subjects. Jo in U n io n uses mode r e p to specify th a t M em b ersh ip S ecre ta ry is the sole

object th a t can modify M em b ersh ip S ecre ta ry .theU n ion . R e t i r e uses v a r to specify th a t any
object can change the s ta te of U nionR ep .theU nion .

The different modes in corresponding elem ents and, occasionally, in non-corresponding elements

indicate differences in the way the dom ain is perceived from th e perspectives of different concerns.

In m any cases th ere is more th an one choice of modes. M ode v a r is the superset of uses described

by re p and a rg ; it can be used in places where the o ther two m odes are appropriate, and, during

com position, v a r m ay replace modes re p and a rg .

T he requirem ent of m ode equivalence prevents com position and averts the interaction problem.

T he use of FAP modes for conceptual m odelling of subject aliasing properties has helped to show

th a t the subjects have differing views of the dom ain. However, th is com position may not have been

preventable if o ther modes had been chosen. T he application of FA P concepts to Subject-O riented

Program m ing raises a num ber of interesting questions:

• Do aliasing m odes help to understand subject interaction for th e purpose of avoiding in teraction
problems?

• Is m ode equivalence the only m eaningful com position or is it also meaningful to compose

elements w ith different modes?

• W hat are th e criteria for choosing aliasing modes?

4.4.5 The Role of Aliasing Modes in Understanding Subject Interaction

In the term inology of M ulti-D im ensional Separation of Concerns, it can be said th a t d a ta sharing

between subjects leads to ‘object encapsulation’ becom ing a dim ension of concerns. Subjects sca tter

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 68

and tangle code which in an object-oriented design would be hidden in the represen tation of some

class. In the Union exam ple broken object encapsulation has been shown to lead to an interaction

problem.

C om position of elem ents w ith equivalent aliasing m odes helps to address th e scattering and

tangling. It constrains com position but in a struc tu red way. FAP does no t reduce the set of

available jo in points. A liasing m ode equivalence shows an agreem ent on object aliasing policy

between subjects. M odes used as p a r t of the com positional interface support independent subject

developm ent and sub ject reuse by strengthening the typing of com posabie elem ents of each subject.

Aliasing m odes help the com poser to reason abou t subject in teraction and also fit well w ith our reuse

position. Subjects are object-orien ted program s and object aliasing is a concern in subject design.

An alias protection system such as FAP is of value to the subject developer: it helps to create well

s tru c tu red subjects th a t encapsulate and pro tec t object represen tation from access a t the su b jec t’s

functional interface.

T he U nion exam ple has shown th a t different modes for corresponding elements do not necessarily

indicate in teraction problem s. T he selected modes are not m utually exclusive. However, th is need

not be the case for o ther Alias P ro tection System s. For exam ple, consider m ode val which describes

value types and im m utable objects. Suppose we compose two String classes and in tegrate two

corresponding String-type variables from each subject. In the first subject th e String class is

im m utable. In the second sub ject String is m utable; it in troduces the setValue (. .) m ethod
which enables the value to be changed. Suppose th a t in the first sub ject the variable has mode

val and the second subject m ode rep. These String classes should not be merged because the first
subject m ay depend on String being im m utable. There is no problem w ith com posing elem ents w ith

different modes per se. T he challenge is determ ining the m ode of the o u tp u t elem ent and of all o ther
elem ents affected by th is com position. Clearly, FAP was never intended for sub jec t com position.

F urther work is required to determ ine the best modes to use and the policies for m ode selection and
composition.

4.5 Conclusion

This C hap ter has described in teraction problem s in subject-oriented program s. We defined an in ter

action problem as an unw anted subject in teraction. In teraction problem s are undesirable because

they raise the cost of sub jec t reuse and im pact m odular developm ent of subjects. In th e worst

cases, interaction problem s require either invasive subject m odifications or patching. This C hap

te r has presented a range of in teraction problem s occurring in Subject-O riented P rogram m ing and
suggested ways of tackling them .

The first exam ple dem onstra ted th e im portance of concerns and the way they relate to each

other. We looked a t th e com binations of Persistence w ith Transaction and Association w ith
Transaction. However, it is insufficient to evaluate in teractions in a pairw ise m anner. Unless

there exists no connection between concerns then any in teraction analysis m ust involve all concerns
together.

T he second exam ple dem onstrates the tension between concerns w ith respect to a shared re

source. The in tention of having a single connection between the W ater Beans causes a single event

model to be shared for carrying two kinds of event. The com position rules available in the SOP

language H y p e r/J cannot resolve th e interaction w ithout changes to the input subjects. However,

CHAPTER 4. INTERACTION PROBLEMS IN SUBJECT-ORIENTED PROGRAMMING 69

th e SO P com position framework allows o ther rules to be defined. T he v iew -m erge com position rule

is proposed for addressing the anom alous in teraction non-invasively.

T he Union exam ple dem onstrates th a t interaction problem s can be caused by encapsulation

issues. Subjects have dependencies on object s ta te th a t m ay be subverted during in ter-subject

in teraction, resulting in interaction problem s. Some d a ta dependencies can be m ade explicit in

subjects w ith the aid of modes proposed as p a rt of Flexible Alias P ro tection [92]. For instance,

aliasing m odes can describe where and how object s ta te can be changed. By using Flexible Alias

P ro tec tion as p a rt of the com position interface it becomes easier to observe d a ta dependencies and

detect in teraction problems.

Alias P ro tection System s (of which Flexible Alias P ro tec tion is bu t one) help to create well

s tru c tu red object-oriented program s. By ensuring the absence of ex ternal aliases into object repre

sen tation they enable m odular reasoning. T his property makes A PSs useful to the original subject

developer who is also an object-oriented program m er. Being useful to the original developer and

the reuser potentially makes APSs an excellent reuse technology in projects where future reusability

is no t p a rt of the initial requirem ents. Moreover, APSs an n o ta te the objects which depend on or

m odify the s ta te of o ther objects. The anno tational p roperties facilitate the reuse of subjects. For

these reasons, we believe th a t APSs are a topic w orthy of fu rther investigation. In the next C hapter,

we review the background on Alias P ro tection System s and discuss alias anno ta tion in the context

of Subject-O riented Program m ing.

Chapter 5

Alias Protection and Subjectivity

T he previous C hapter described the curren t understanding of interaction problem s - unw anted

in teractions between subjects. In teraction problem s affect the reusability of subjects and are an

im pedim ent to independent subject development. In the w orst case, the anom alous interactions can

be corrected only by invasively modifying subjects or by defining a patch subject. In our exam ple the

problem was caused by broken assum ptions abou t object s ta te . We observed th a t the opportun ity

to detect the anom alous in teraction improved when anno ta tions from Flexible Alias P ro tection [92]

were applied w ithin each subject. The way subjects use and modify objects is m ade explicit w ith

alias annotations. We believe th a t alias anno ta tions will be generally useful to subject composers

(th a t is, sub ject reusers) for the purposes of understanding in teractions and preventing anomalies.

In object-oriented program m ing, unstructu red aliasing has been identified w ith understandabil-
ity and reasoning problems. Alias P ro tection System s (APSs), including Flexible Alias P rotection ,

constrain object aliasing in a struc tu red way, im proving object encapsulation and facilitating m odu
lar reasoning. In this sense, APSs have value to the subject developer. The sub ject developer, as an

object-oriented program m er, is concerned w ith creating well struc tu red and m aintainable subjects.
APSs fit well w ith our position on reuse: we believe th a t a reuse technology has m ore chance of

being accepted when it has value to the original developer.

T he aim of th is C hapter is to present our understanding of the way subjectiv ity affects aliasing

properties. We lay the foundation for creating an APS for SOP. Section 4.4 on page 59 talked about

Flexible Alias P ro tection in the context of an in teraction problem . In the present C hapter, Section

5.1 describes the background to APSs and reviews the related area of effects annotation . SO P is

different to O O P in the way it approaches certain design problem s. Following the background, we

commence our analysis of the way SO P affects alias annotations, th a t is, the way the alias protection

policy is realised by aliasing modes. These Sections form a p a r t of our contribution to th e thesis.

Section 5.2 presents the strategies for selecting aliasing modes and the m eaning of mode equivalence

and inequivalence. Section 5.3 looks a t the problem s caused by ownership param eters. In Section 5.4

the reusability of subjects is explored; we analyse a subject which should be useful w ithin a family

of applications. Section 5.5 describes the properties of A PSs th a t are useful for understanding

subject-oriented interaction.

70

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 71

5.1 A Review of Alias Protection System s

E ncapsulation is one of the corner-stones of object-oriented program m ing. Well s truc tu red objects

hide their im plem entation and present an ab strac t interface to clients. N on-trivial object-oriented

program s consist of many collaborating objects th a t send each o ther messages which include objects

in param eters and re tu rn values. O bject-oriented languages pass objects by reference. An o b jec t’s

s ta te is m ade up of the values of its field variables and the s ta te of all objects it references. W hen

an object is referred to using two or more names, it is said to be aliased. Aliases are created during

variable and field assignm ent, and when an object is passed in a m ethod argum ent or re tu rned by

ano ther m ethod call. Aliases pose a problem particu larly in object-oriented program m ing because

objects have persistent local s ta te [57]. W hen object A receives a reference to object B , A m ay send

messages to B which modify its s ta te . Execution of a m ethod call affects the s ta te of the receiver

object B and all o ther objects which reference the receiver. T he sta tes of objects th a t reference B

change seemingly w ithout the affected objects being accessed.

Visibility modifiers such as p r iv a t e are not an adequate protection from aliases. They p ro tect

variables from direct access bu t fail to disallow object exposure. One can easily w rite a ge tter

m ethod th a t reveals a p r i v a t e object. For example, consider class R e c ta n g le , im plem ented using

P o in ts as shown below:

class Rectangle {
private Point topleft;
private Point bottomright;
Point getTopIeftO { return topleft; }
void setTopIeft(Point topleft) { this.topleft = topleft; }
Point getBottomright() { return bottomright; }
void setBottomright(Point bottomright) ■(this.bottomright = bottomright; }
void shiftBy(Point p) {

topleft.shiftBy(p);
bottomright.shiftBy(p);

>
>

There are tim es when a R e c ta n g le client needs to know and change its rectangle’s geometry.

Accessor m ethods are provided for this purpose. However, the client who gets the P o in t objects

from a rectangle should use them w ith care because they are a p a rt of the rectangle’s m utable

s ta te . For instance, suppose a client, who is unaw are of the way R e c ta n g le is im plem ented, has

two R e c ta n g le objects r l and r 2 . A t some m om ent he wishes to resize and move r 2 such th a t the

t o p l e f t coordinate of r 2 becomes the sam e as th a t of r l . Then, he shifts r l to another location

by calling m ethod v o id s h i f tB y (P o in t p):

1 Rectangle rl, r2;
2 Point p;
3 Point rl_tl = rl.getTopIeftO;
4 r2.setTopIeft(rl_tI);
5 rl.shiftBy(p);

T he unforeseen result will be also to shift r 2 by the am ount denoted by p. As a consequence
of this interaction, after line 4, r l and r2 share the same P o in t object and not ju s t the sam e top

left coordinate. T his is problem atic to a client who is expecting only the top left coordinate to be

shared. T he problem is solved post hoc by cloning P o in t objects either in the im plem entation of

P o in t or in the client. To the reuser of R e c ta n g le , in order to use the R e c ta n g le well, the clients
m ust be aware of the way it is implem ented.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 72

M ost solutions for tackling problems such as th is have been in the area of alias prevention and

control. Flexible Alias P ro tection uses aliasing modes to describe w hat a R e c ta n g le object and the

clients of rectangles can do w ith P o in t objects. W hen the R e c ta n g le designer’s in tention is to keep

P o in t objects hidden, he should use m ode re p . O bjects of m ode re p cannot be disclosed outside

the ir container, hence getter m ethods m ust re tu rn clones of t o p l e f t and b o tto m r ig h t .

For th e m ost p a rt program m ers avoid aliasing problem s, probably because objects m ostly com

m unicate in close groups [56]. T he problem faced by APS designers is to create APSs th a t provide

a degree of alias protection while supporting common object-oriented idioms. T he em phasis is on

practicality: discouraging bad practice w ithout forbidding the designer from creating all sorts of

object-oriented program s. Presently, we discuss in detail two recent proposals which fit th is descrip

tion best. Clarke et a l’s Ownership Types [23] derive from a form alisation of th e core of Flexible

Alias Protection . Aldrich et a l’s A liasJava [5] is an alias anno ta tion system th a t em phasises the

description of aliasing properties over strong encapsulation.

The issue of alias protection is related closely to effects annotation. An effects system describes

the way th a t the s ta te of a com ponent may be accessed during program execution. This inform ation

is useful to program m ers for reasoning abou t d a ta dependencies between com putations [106]. An

effects system has the ability to infer the effects of a com putation, to declare the perm itted effects

and to check th a t the inferred effects are perm itted . Aliases introduce additional dependencies

between com putations m aking precise effects description more difficult. This Section also describes

the role of effects system s in understanding subject interaction.

5.1.1 Ownership Types for Flexible Alias Protection

Ow nership Types [23] have been proposed as a way of encapsulating objects used in the im plem en

ta tio n of classes. At the core of O wnership Types is the concept of contexts. Every object owns a

context and is owned by a context. The context an object owns is known as the ob jec t’s representa
tion. T he context th a t owns the object is the o b jec t’s owner. C ontexts partitio n objects into nested

groups, m aking it possible to ta lk abou t the inside and the outside of an object.

P rogram execution begins w ithin a default system context world1. Any object created w ith

owner context world can be referenced everywhere in the program . O bjects of value types im plicitly

have world as owner, indicating th a t they can be aliased anywhere in the program . Every new

object created comes w ith a new representation context by default. In essence, the only objects

th a t can access this representation context are the object itself and o ther objects nested inside th is

representation context bu t only as long as they have been granted a permission. Thus, an object

o’s representation context is no t accessible from outside o. This property is known as representation
containment.

An ownership type is the d a ta type of an object extended w ith an angle-bracketed list of contexts.

Non-value types are derived from classes. Class nam es are followed by a sequence of ownership

parameters. W hen creating a new object, th e object owner is passed as the first ownership param eter.

T he owner can be either world, the current representation context or any context from the ownership

param eters of the class containing the expression.

For example, the Queue class w ith field variable head of type L ink m ay be defined as follows:

1 class Queue<owner, data> {

1The notation of Ownership Types changed in later work [21]. The more recent notation is used here.

CHAPTER 5. ALIAS PROTECTION AND SU BJECTIVITY 73

2 Link<this, data> head;
3
4 >

d a ta in line 1 is the nam e of the second ownership param eter. I t is bound by the client instan

tia tin g Queue. The owner of Head is the current represen tation context, i.e. th is queue instance, as

indicated by t h i s . Class L ink requires an additional ownership param eter, d a ta in line 2 is bound

to the sam e context which binds d a ta in line 1 .

O w nership Types are flexible because the owner need not be th e object which does the instan

tia ting . In fact, the object owner does no t need to reference th e objects it owns and can reference

objects owned by others.

T he system of ownership param eterisation allows clients to custom ise the ownership properties

of objects. An o b jec t’s owner context and ownership param eters are bound a t instan tia tion and

rem ain invariant until the object is destroyed. For example, w ith ownership param eters it is possible

to create two Queue objects where in the first, the queue and d a ta w ithin are owned by the current

representation context, and in the second, the queue is owned by th e current representation context

bu t the d a ta inside is owned by world:

Queue<this, this> ql;
Queue<this, worId> q2;

Variables q l and q2 can never be aliases for the sam e objects because they have different types.

A lthough both are have the sam e owner, the d a ta sets referenced by each are disjoint.

R epresentation containm ent is best understood in term s of ob ject graphs. A snapshot of an

object-oriented program a t runtim e can be represented by an ob ject graph. O bjects are vertices
and solid edges denote in ter-object references. As the program executes, the graph evolves, w ith

new vertices and edges added and old ones removed. At the roo t of th e graph is context world
representing the system in which the program runs. The sequence of solid edges between the root

vertex world and any o ther vertex of interest forms a path. In a well formed object graph, all vertices

are reachable by pa th s bu t there may be m ultiple pa ths for each object.

The dashed edges relate objects to their owner contexts. In a graph th a t satisfies the representa

tion containm ent property, every p a th to an object m ust pass th rough th a t ob jec t’s owner. Consider
the graph in Figure 5-1. Its p roperties are:

• O bject o4 is owned by o2 and o4 is in o2 ’s representation context.

• o2 is owned by o l. o2 is in o l ’s representation context.

• Global objects w ith owner world are o l, o3, o5 and ol.

• o l owns 0 6 bu t does not reference it. All pa ths to 0 6 m ust pass th rough its owner context o l.

• The world owned object o3 can alias 0 6 so long as all p a th to 0 6 pass o6 ’s owner. o3 cannot be

aliased outside o l because th a t would lead to the exposure of represen tation of o l - the edge
m arked w ith a cross.

T he program in Figure 5-2 dem onstrates Ow nership T ypes applied to the developm ent of the

Queue ab strac t d a ta type. Queue is im plem ented as a collection of L ink objects. T he first elem ent

in the queue is referred to by h ead and the last elem ent by t a i l .

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 74

world

not valid

Figure 5-1: An object graph showing ownership arcs

Class names are followed by a sequence of ownership param eters where the first param eter is
always owner. This refers to the owner context of the current instance. The Queue class also has
ownership param eter d a ta which refers to the owner of elements stored in the queue. In order for all
elements to be treated as a single collection they m ust have the same ownership type, O bject< data>
in the example. In addition to owner, the L ink class also has ownership param eter d. In collaboration
with the queue, d gets bound to the owner of the data referred to by the link.

W hen links are created, their ownership param eters are bound. L ink objects are owned by the
queue, given by t h i s , and the L ink’s ownership param eter d is bound to the same context as Queue’s
d a ta . Ownership Types uses the self reference t h i s to sta te th a t links are the representation of
their queue. Variables head and t a i l can be aliases for the same object because they both have the
same ownership type.

The implementation of Queue requires links to refer to each other. This can happen only when all
links have the same owner context. In the L ink class we refer to the n e x t link’s owner param etrically
with owner. The type of the n e x t field is L inkcow ner, d> indicating th a t the owner of n e x t is the
same as the owner of this link, i.e. the queue which owns all the links. Figure 5-3 illustrates an
object graph with ownership edges for a queue with 5 elements.

O bject-oriented programming idioms such as Iterators [43] need short-term access to representa

tion objects. In order for an efficient im plem entation to be possible, iterators must alias representa
tions of the collections over which they iterate. The representation containm ent properties presented

to now have enforced encapsulation fully making it difficult to create efficient iterators.
In an extension to Ownership Types, Clarke and Drossopoulou proposed support for dynamic

aliases [21]. Dynamic aliases allow objects from the representation context tem porarily to escape
outside. The word dynamic refers to the way short-term aliases are implemented. In object-oriented
languages, object references held in instance variables are stored on the heap while those held in
a m ethod’s local variables are stored on the stack. All stack allocated variables are dynamic; they
are destroyed when the m ethod returns. Heap allocated references survive between m ethod calls.
In Ownership Types, external dynamic aliases to other objects’ representation are allowed so long
as the owner object is also in scope. Thus a representation object can be exposed but only in the

CHAPTER 5. ALIAS PROTECTION AND SU BJECTIVITY 75

class Queue<owner, data> {

Link<this, data> head = null;
Link<this, data> tail = null;

void put (Object<data> o) ■(
LinkCthis, data> I = new Lin£<this, data>(o);
if(head == null) {

head = tail = I;
} else {

tail.next = 1 ;
tail = I;

>
>

Object<data> get() {
if(head == null) return null;
Object<data> o = head.o;
if(head == tail) {

head = tail = null;
} else {

head = head.next;
>
return o;

>
>

class Link<owner, d> {
Object<d> o;
LinECowner, d> next;
Link(Object<d> o) { this.o = o; >

>

Figure 5-2: P rogram dem onstrating O wnership Types

scope of its owner.

In the original O w nership Types [23], the ownership param eter bindings for an object could
come only from the set of ownership param eters of the host class (including owner) and the set

{this, world}. For dynam ic aliases, the bindings can also come from any variable which is also in

scope. For example, F igure 5-4 shows an ite ra to r extension to the Queue class seen originally in

Figure 5-2.

To obtain an ite ra to r, th e queue client calls makelterator. The client gains sequential access to

the d a ta in th e queue by repeated ly calling ite ra to r’s next m ethod. In the following code fragm ent,

first a queue is created and then an ite ra to r is obtained from the queue:

Queue<this, d> q - new Queue<this, d>();
Iterator<q, d> it = q.maKelteratorO;

Note th a t the owner of the ite ra to r is the queue. The owner context of i t signifies th a t i t is

allowed to access the represen tation of q bu t only while q is in scope.

An a lternative perspective on aliasing is taken by Aldrich et al in their work on A liasJava [5].

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 76

V
I

I queue J

head tail

next' ~
link I link4

data3 data5datal data4

Figure 5-3: Ownership structure for a Queue instance

class QueueCowner, data> -f

Iterator<this, data> makelteratorO {
return new IteratorCthis, data>(head);

>
>

class Iterator<owner, dt> {
Link<ovner, dt> current;
Iterator(Link<owner, dt> first) { current = first; }
boolean hasNextO { return current != null }
Object<dt> next() {

Object<dt> currentData = current.data;
current = current.next;
return currentData;

>
>

Figure 5-4: I t e r a t o r extension to the Queue class with Ownership Types

5.1.2 Alias Java

AliasJava is an alias annotation system for specifying d a ta sharing relationships in Java programs.
It claims to capture several common forms of sharing th a t exist in object-oriented systems. The
annotation system takes the form of a type system th a t lives alongside visibility modifiers and data

types (like aliasing modes in FAP). There are five kinds of annotation found in AliasJava:

unique. A newly created object is considered unique - there is only one reference to it. After a
un ique variable is read, the source location must be set to another value before executing

any other statem ent th a t may result in the original value being read a second time, un ique
values can be assigned to any other d a ta sharing annotation but the inverse is not true as

other annotations do not guarantee uniqueness.

owned. Objects th a t are confined to the scope of the enclosing object are considered owned. A

reference to an owned object may be passed to another container if an explicit permission
is granted. Unlike objects which are declared p r iv a te , we cannot write a getter m ethod to

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 77

expose owned objects, owned objects may be aliased freely inside their container.

ownership param eters. An owned object m ay be shared w ith o ther objects by granting access a t

instan tia tion tim e w ith ownership parameters. An owned object can be passed several levels

down the object hierarchy. W hen gran ting access, ow nership is passed either directly by

referring to the owned annotation , or by using any of the client’s ownership param eters -

these represent ownership properties associated w ith o ther objects. In classes which declare

ownership param eters, objects w ith anno tations taken from th e set of ownership param eters

are trea ted the sam e as owned objects.

shared. O bjects which are intended to be aliased th roughout th e program are considered shared.

O bjects which are either global or do not have an owner are given the s h a re d annotation.

lent. A u n iq u e , s h a re d or owned object can be lent to another ob ject for the duration of a m ethod

call. A l e n t object cannot be stored in an instance variable or re tu rned from a m ethod call.

However, it can be passed on as a param eter to o ther operations as long as o ther operations

also tre a t the reference as l e n t . A u n iq u e object can be aliased tem porarily w ith l e n t . An

owned object m ay be exposed externally w ith l e n t .

F igure 5-5 contains the Queue exam ple w ith A liasJava anno tations. The head and t a i l links are

owned by their queue. I t e r a t o r instances are unique when crea ted and can be bound to any mode

in the client. T he right to reference d a ta objects is gran ted to Queue using ownership param eter
d a ta .

5.1.3 Understanding Aliasing Modes

O w nership Types and A liasJava approach encapsulation and aliasing from slightly different bu t
in tim ately object-oriented perspectives. B oth are concerned w ith th e developm ent of black-boxes

which hide their im plem entation details. O w nership Types and A liasJava have the concept of object
owner. Every object has exactly one owner th a t does no t change over tim e (w ith the exception of

unique references). Ownership param eterisation is used to separa te the owner of the abstraction from

the owners of elem ents stored w ithin. T he checking of types an d m odes is s ta tic , dem onstrating the

pragm atic na tu re of these approaches. Aldrich et al [5] go even fu rther to suggest algorithm s for

inferring annotations in legacy software.

The containm ent properties of O wnership Types are stronger th a n those of A liasJava. In Own

ership Types, the set of contexts forms a partia l order. In o rder for object x to refer to object y,

the representation of x m ust be inside the valid owners of y [22]. T his property perm its th e creation

of robust ownership structu res where the representation of objects rem ains hidden behind the in ter

face. T his property has beed dubbed deep ownership. A liasJava instead enforces shallow ownership

which guarantees th a t the owner of an object will not change. T he stronger containm ent properties

of Ownership Types are instrum ental in m aking it possible to reason abou t the absence of aliases.

By contrast, the unique aliasing mode of A liasJava ensures th e absence of aliases bu t requires an

unconventional program m ing style or explicit language support.

Beside O w nership Types and AliasJava, a num ber of o ther A PSs have been proposed. Islands [56]
and Balloon types [6] focus on full object encapsulation in which all representation objects are

inaccessible outside the container. O bjects can be moved in or ou t w ith unique references or using

o ther techniques th a t prevent aliases escaping. T he Universes approach [91] makes extensive use of

CHAPTER 5. ALIAS PROTECTION AND SU BJECTIVITY

class QueueCIient {
owned Queue<owned> q = new Queue<owned>();
void run() {

owned Object ol = new ObjectO;
owned Object o2 = new ObjectO;
q.put(ol);
q.put(o2);

>

class Queue<data> {

owned Linkcowned, data> head = null;
owned Linkcowned, data> tail = null;

void put(data Object o) {
owned Linkcowned, data> I = new Linkcowned, data>(o);
if(head == null) {

head = tail = I;
} else {

tail.next = I;
tail = I;

}
>

data Object get() {
if(head == null) return null;
data Object o = head.o;
if(head == tail) {

head = tail = null;
} else {

head = head.next;
>
return o;

>

unique Iterator<owned, data> makelteratorO {
return new Iterator<owned, data>(head);

>
>

class LinkCqueueSsOwner, dt> {
dt Object o;
queueSsOwner LinkCqueueSsOwner, dt> next;
Link(dt Object o) { this.o = o; }

>

class IteratorCqueueSsOwner, dt> {
queueSsOwner LinkCqueueSsOwner, dt> current;
Iterator(queueSsOwner LinkCqueueSsOwner, dt> first) { current = first; }
boolean hasNextO { return current != null >
dt Object next() {

dt Object currentData = current.data;
current = current.next;
return currentData;

>

Figure 5-5: Queue w ith A liasJava annotations

CHAPTER 5. ALIAS PROTECTION AND SU BJECTIVITY 79

read-only references to specify a powerful APS. B oyapati et al [19] propose extending Ow nership

Types w ith dynam ic aliases th a t are scoped to a group of re la ted classes. Confined Types [127]

focus on the security of objects. An object of a confined type is sta tically scoped w ithin a package

and any external references are disallowed. Confined Types are m otivated by the need to prevent

access by u n trusted program s running in the sam e space. For instance, a Java applet can confine

all objects of a certain type to the m odule denoted by the package which contains the applet. The

realisation of Confined Types depends on anonym ous methods th a t do not expose, m anipulate or

depend on the identity of the receiver object. In order to keep th e identity of the confined objects

h idden w ithin the package, unconfined objects can only call anonym ous m ethods.

Aliasing modes and properties can be roughly divided into those which describe the places where

an object can be aliased and those which restric t access to the o b jec t’s interface. B oth A liasJava and

the core of Ownership Types are concerned w ith the former: when an object acquires a reference,

it has unrestric ted access to its interface. Some APSs use interface restrictions to im plem ent the ir

aliasing policy. For instance, in Confined Types anonym ous m ethods allow confined objects to

be m uta ted while keeping their identity hidden. Flexible Alias P ro tec tion has the a rg m ode [92].

R epresentation objects (mode re p) which should be hidden from external clients can be passed to

in ternal objects under mode a rg . T he client of an a rg object only accesses the im m utable interface.

M essages sent to the im m utable interface do not modify ob ject s ta te in a way th a t is visible. T he

client is protected from m utable s ta te and the effect of an a r g ob ject on the client is constant.
Noble et al [92] partition modes into those which constra in ex ternal clients and those which

constrain the im plem entation. Modes which constrain th e ex ternal clients of an object are upwardly
restrictive. Those which constrain the im plem entation are downwardly restrictive. P ragm atic con

siderations suggest th a t downwardly restrictive modes are preferable to upw ardly restrictive ones.
Com ponents designed w ith the aid of an APS should be usable in existing system s bu t upw ard

restrictions require o ther com ponents to be aware of the APS used in th is com ponent’s design. For

exam ple, anonym ous m ethods are downwardly restrictive: th e design of packages is constrained to

disallow direct access to confined objects and the ir identities from objects outside the package. The

a rg m ode downwardly constrains the receiver to using the im m utable interface of the object in a

param eter. In the Islands model [56], the re a d m ode anno ta tes variables to indicate read-only ac

cess to their s ta te . The re a d m ode is transitive: any reference obtained from the interface is also

read-only. T his mode is upw ardly restrictive because it constrains the ob jec t’s clients.

T he modes introduced to now have anno ta ted object references. Effects annotations are instead
placed on m ethods. Effects are also of in terest to us because, like aliasing modes, we believe th a t

they can improve the understandability of sub ject interaction.

5.1.4 On Effects Annotations

Effects annotations describe the possible of m ethod execution on s ta te a t signature level. Alias con

tro l is a t the heart of effects system s in object-oriented program m ing. T he choice of effects is driven

by the goals of the effects system ’s designers. G reenhouse and B oylands’s O bject-O riented Effects

System [46] is m otivated by the intention to perform sem antics-preserving program transform ations.

Transform ations often require the order of s ta tem ents to be changed. Two com putations do not

interfere when one com putation does not w rite s ta te th a t is read or w ritten by another. Therefore,

G reenhouse and Boyland only track read and write effects. T he FX language [79] also introduces

the alloc effect which describes m em ory allocation and in itialisation. T he alloc effect adds to th e de

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 80

scriptiveness of the effects system and proves useful for compiling program s th a t execute on parallel

com puters.

In G reenhouse and B oyland’s system [46], effects are described on regions which are encapsu

lations of m utable sta te . Instance and s ta tic variables appear in regions which together form a

hierarchy. Each variable has a default region and a special region called A ll is a t the top of each

class. Effects are specified on m ethod declarations sim ilarly to th ro w s clauses in Java. The private

s ta te of an object is abstrac ted using th e unshared annotation . Fields declared u n sh a re d have no

aliases, th a t is, they are unique. O bjects read from an u n sh a re d object and stored in local variables

m ust not be revealed beyond the scope of the m ethod call. T heir effect is to ta lly encapsulated

w ithin the object. In the term inology of regions, u n sh a re d objects appear in the regions of their

enclosing container, and consequently the ir effects are hidden by th e effects of the container as a

whole. Unaliased objects, anno ta ted w ith keyword u n iq u e , are used to insert and ex trac t objects

from containers. S tatic analysis ensures th a t param eters and re tu rn values are unaliased during the

m ethod call.

T rying to redesign the Queue example to use G reenhouse and B oyland’s effects annotations shows

some of the lim itations of this approach. Suppose we try to use th e linked list representation as be
fore; in order to keep representation objects hidden, the program has to be redesigned to incorporate

uniqueness. The m ain change involves the removal of field t a i l in order to make all links unaliased

w ithin the Queue. T he g e t () m ethod (which re tu rns the last elem ent) now has algorithm ic complex

ity 0 (n) over the elements in the queue because it m ust traverse all preceding elements to get to the

tail. This com pares unfavourably w ith the O w nership Types or Alias Java im plem entations which

were 0 (1) . O ther, more efficient im plem entations of the Queue abstrac tion are possible. However,

it is im portan t to note th a t the im plem entation m ust reflect the idiosyncrasies of G reenhouse and

B oyland’s effects system . In order to m ain tain perform ance, th e preferred im plem entation cannot
be used and another im plem entation is required.

In the absence of a l e n t mode as seen in A liasJava, the ite ra to r is m ade integral to the Queue class.
M ethod r e s e t l t e r a t o r now perform s the function of creating a ‘new ’ iterator. This im plem entation

prohibits m ultiple sim ultaneous iterators from being created. F igure 5-6 shows the m ain design
elements.

T he JO E language (Java+O w nership+E ffects) extends a Java-like language w ith Ownership

Types and an effects system [21]. Instead of using regions for describing effects, JO E employs

ownership contexts to describe effect shapes. As described earlier, the contexts in the scope of a class

include this, world, owner and the o ther ownership param eters. T here are two kinds of effect shapes.

T he band effect denotes the set of objects referenced by the instance variables of one object. The

band is specified in relation to the current context this. For instance, suppose (p, this, owner, world}

is the set of contexts in scope. T he bands include:

• Each one of this, owner, world is a band.

• this.l describes the band which has the present instance as owner.

• owner.1 is the same as this.

• this.2 describes the band which has this.l as owner.

• p.O is the same band as p ; it denotes all objects referenced by th e instance variables of p.

CHAPTER 5. ALIAS PROTECTION AND SU BJECTIVITY 81

class Queue {
region Data;
unshared Link head = null;
unshared int index;

void put(Object o) reads nothing writes Data { }
Object get() reads Data writes nothing { ... }
void resetIterator() reads nothing writes nothing { ... }
boolean hasNextO reads nothing writes nothing { . . . }
Object next() reads Data writes nothing { ... >

>

class Link {
region Data;
Object o in Data;
unshared Link next;
Link(Object o) reads nothing writes Data {...)■

>

Figure 5-6: Queue exam ple extended w ith G reenhouse and Boylands effects annotations

T he under effects denote a set of objects whose contexts are inside of and include a band.
An under effect is w ritten by w rapping a band w ithin u n d e r (. .) . For instance, the annotation

under(th is) denotes an effect which concerns all objects referenced by this and other objects in
the representation context of this. The anno ta tion u n d e r(p .l) denotes an effect which concerns all

objects referenced by contexts represented by bands p.i where i > 1 .
In F igure 5-7 the Queue exam ple is an n o ta ted w ith JO E effects. For instance, the p u t m ethod

declares the w r i te s u n d e r (t h i s) effect. T he call to the L ink constructor writes the newly cre

a ted L ink object as specified in the w r i t e s t h i s anno ta tion on the L ink constructor. In Queue

this is equivalent to w r i te s t h i s . l . T he new object is assigned either to t a i l or to both head

and t a i l , w ith effect w r i t e s t h i s . Hence, th e combined effect of th e first s ta tem ent in p u t is
w r i t e s u n d e r (t h i s) . All o ther sta tem ents in p u t either read or w rite the under effect denoted by

u n d e r (t h i s) (note th a t read is included in write).

5.1.5 Conclusion

APSs are a response to a call for b e tte r trea tm en t of object aliases [57]. Uncontrolled aliasing has

been shown to lead to program s which are h a rd to understand and m aintain. T he present Section

has shown th a t APSs have in common the concept of an owned object. In Ownership Types the

em phasis is on strong encapsulation. The core of Ow nership Types is concerned w ith constraining

object aliasing to a subset of objects in the program . In A liasJava the em phasis is on alias annotation .

Instead of strong encapsulation, modes describe where the objects are aliased. Aliasing is m anaged

by a com bination of param eterisation, dynam ic aliases to allow tem porary access, and uniqueness

which enables the object to change its owner. In all APSs, the aliasing annotations, modes or types

work together to im plem ent the containm ent policy. A mode is like a role th a t changes depending

upon where the object is referenced.

We have described two com putational effects system s. T he effects system s are m otivated by

requirem ents for m odular reasoning in order to perform program transform ations or to enable paral-

lelisation. W hile we expect th a t effects system s will be useful to understanding subject interaction,

CHAPTER 5. ALIAS PROTECTION AND SUB JEC TIVITY 82

class Queue<owner, data> {
Link<this, data> head = null;
Link<this, data> tail = null;
void put(Object<data> o) writes under(this) {

Link<this, data> I = new LinkCthis, data>(o);

>
Object<data> get() reads this.l writes this { ... }
Iterator<this, data> makelteratorO reads this writes this.l { ... }

>

class Link<owner, d> {
Object<d> o;
Link<owner, d> next;
Link(Object<owner, d> o) writes this I . . . 1

>

class Iterator<owner, dt> {
Link<owner, dt> current;
Iterator(Link<owner, dt> first) writes this { ... >
boolean hasNextO { . . . }
Object<dt> next() reads this.l writes this { ... }

>

Figure 5-7: Queue exam ple extended w ith JO E effects annotations

com pared to APSs, effects system s are not as universally useful to subject designers. Moreover, as

exemplified by JO E , effects system s are bu ilt on top of alias pro tection systems. For these reasons,
we choose to explore APSs as the m eans of im proving the understandab ility of subject in teraction. In

the following Sections we look a t the way th e difference between subject-oriented and object-oriented

program m ing im pacts Alias P ro tection System s.

5.2 The Impact of the Subject-O riented Paradigm on A PSs

Subject-O riented Program m ing is based on a belief th a t in m any cases there is no single intrinsic

view of objects. Instead, the behavour is determ ined by a com bination of a num ber of possibly

overlapping extrinsic perspectives. In the previous C hapter SO P was applied to a num ber of such

examples. SO P decomposes software into subjects, and each subject uses classes to m odel the

perspective assigned to it during decom position. SO P introduces new concepts of correspondence

and in tegration for synthesising the various views of abstractions and for reusing subjects.

Common ab strac t d a ta types such as queues and hashtables have been used to dem onstrate APSs.

The object-oriented m echanisms of inheritance and delegation have proven well suited for conceptual

modelling of A D T families and for reuse of ADTs. Stacks and hashtables do not exemplify SO P

precisely because there exists a clear instrinsic understanding of th e behaviour of these abstractions.

M ulti-perspective developm ent opens a question on how to deal w ith the different views th a t

subjects have of object aliasing and ownership. Should sub ject designers agree on the aliasing

policies or is there room for different views? W h at role does the com position specification play in

determ ining th e mode in the ou tp u t subject? In the following, we apply a selection of ideas from

APSs to the challenges posed by SO P examples.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 83

5.2.1 The Car Mechanic Example

Suppose there exists a car hire com pany which leases vehicles ou t to clients. Each client is a driver

who takes the vehicle for the period of the lease and re tu rns it to the hire com pany when the lease

expires, the car breaks down or the driver has an accident. C ars in good condition can be leased out

again, however, cars which have been in accidents or are broken down m ust await the mechanic. T he

task of the mechanic is to restore cars to working condition. T his is done by removing the working

engine from crashed cars and using it to replace the broken engine in a car which has broken down.

T he exam ple is decomposed into two subjects. T he HireCompany subject contains the functionality

associated w ith car leasing, driving, breaking down and crashing. T he M echanic subject contains

the engine swapping functionality.

W ithou t reference to any particu lar A PS, th is example invites a num ber of questions:

• Is the M echanic subject an extension to the HireCompany base, or are these subjects peers?

Aliasing modes m ay be trea ted differently in each case.

• Should the modes be equivalent, and if not, w hat is the m eaning of different modes on corre

sponding elements?

• These subjects are being developed in concert. In view of th e fu ture com position, w hat are

the criteria for mode selection?

Suppose A liasJava annotations are chosen to describe the su b jec ts2. The anno ta ted HireCompany

and M echanic subjects are shown in Figures 5-8 and 5-9 respectively. T he com position specification

th a t ties these subjects together is given by:

compose HireCompany, Mechanic;
mergeByName;
bracket ‘‘Driver.rent ’ * with after Mechanic.afterHire;

Let us now look a t the above questions in m ore detail.

5.2.2 Peer and Extension Subjects

Peer subjects are perspectives on to the sam e dom ain. T hey represent partia l and potentially

overlapping views which should not be contradictory. By con trast, an extension subject extends

some base w ith optional or exceptional functionality. The extension m ay modify properties in a way

th a t is contradictory w ith respect to the base view. B ut why does it m a tte r if subjects are peers or

re la ted by evolution? - the stra tegy for determ ining the o u tp u t m ode m ay be tailored accordingly.

Looking a t the C ar Mechanic exam ple we observe th a t th e HireCompany subject is the m ain

p a rt of the application. Conceptually, it can be understood w ithou t reference to any o ther subject.

T he M echanic subject represents an exceptional case th a t is m eaningful only in relation to a base,

e.g. th e HireCompany subject. In the present case, it can be said th a t the M echanic sub ject extends

the HireCompany subject.

Having agreed th a t conceptually the M echanic extends H ireCompany, how does SO P specify when

subjects are peers or related by extension? T he com position specification has two purposes. The

first is to specify the way subjects should be synthesised from th e inputs. Secondly, the com position

specification has a conceptual dimension which describes the w ay elem ents relate. Conceptually,

2we can equally well have chosen Ownership Types or another APS for this example.

CHAPTER 5. ALIAS PROTECTION AND SU BJECTIVITY

class CarHireCo {
owned Vector<owned> fleet;

void addCar(unique Car c) {
fleet.add(c);

>

void hireTo (shared Driver d) •(
lent Iterator it = fleet. iteratorO ;
while (it .hasNextO) {

lent Car c = (lent Car)it.next();
if(c.state == 0) {

d.rent(c);
return;

>

>
// no working cars left to rent

>

void mainQ {
shared CarHireCo f = new CarHireCoO;
f. addCar (new CarO);
f .addCar(new Car());
shared Driver dl = new DriverO;
shared Driver d2 = new DriverO;
f.hireTo(dl);
f,hireTo(d2);

>
>

class Car {
// 0 = rentable, 1 == crashed but engine ok, 2 = broken engine
shared int state;
owned Engine e;
void go() {

e.startO

>
>

class Engine {
void start() { .. }

>

class Driver {
void rent(lent Car c) {

drive(c);
>
void drive(lent Car c) {

c.goO;
// breakdown, crash or return the car unchanged

>

Figure 5-8: The HireCompany subject w ith A liasJava annotations

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY

class Mechanic {
unique Engine spareEngine;
shared Car brokenCar;
void afterHire(shared Car c) {

switch(c.state) {
case 0: break;
case 1:

spare = c .extractEngine();
if(brokenCar != null) doRepairO;
break;

case 2:
brokenCar = c;
if (spareEngine != null) doRepairO;

>
>
void doRepairO {

brokenCar.fitEngine(spareEngine);
spareEngine = null;
brokenCar.state = 0;
brokenCar = null;

>
>

class Car {
// 0 = rentable, 1 = crashed but engine ok, 2 = broken engine
owned int state;
unique Engine e;
unique Engine extractEngineO {

unique Engine r = e;
e = null;
return r;

>
void fitEngine(unique Engine e) {

this.e = e;
>

class Engine { }

Figure 5-9; The M echanic subject w ith A liasJava annotations

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 86

m e rg e describes the joining of views w ith no im plicit order or precedence and implies com patibility

betw een aliasing modes. Com patibility need not m ean equality although equality is the m ost stra igh t

forward m easure of com patibility. E quality is m eaningful for the m odes of bo th Ownership Types

and AliasJava. If, for example, all corresponding variables are declared owned, the ou tp u t m ode

is also owned. The o v e r r id e rule specifies an ordering where th e overriding elem ent replaces the

overridden element, e.g. the overriding operation replaces th e overridden operation. Conceptually,

the overriding element m ay to ta lly change the aliasing policy in a way th a t is not com patible w ith the

previous modes. So a param eter w ith a unique anno ta tion m ay be overridden by a shared anno ta tion

from the signature of the overriding operation.

In SOP, the mechanics of com position a t tim es clash w ith th e conceptual model. One such case is

when a composer has to use o v e r r id e to select one m ethod body from two identical definitions while

conceptually merging corresponding views. Looking a t the com position specification for the C ar

M echanic example, we observe th a t m e rg e B y N a m e is used to jo in subjects. The rule is necessary

for describing the synthesis of subjects bu t the rule fails to convey the conceptual relationship

between the concerns. The b ra c k e t relationship induces an order bu t only between classes and

operations.

5.2.3 How to Treat the Modes of Corresponding Elements

The trea tm en t of modes of corresponding elem ents may be re lated to the top level com position rule

relating the subjects. One can require modes to be the same or in troduce a level of variability th a t

fits in w ith the SOP model of decentralised development.

There is no reason why different modes cannot be composed conceptually. M odes help to reason

abou t the aliasing properties of objects in the o u tp u t subject only when the ou tp u t m ode does no t

degenerate to unrestric ted aliasing. For instance, in AliasJava, th e s h a re d m ode conveys little useful

inform ation. Com position using m e rg e inevitably increases ob ject aliasing because each sub ject

introduces behaviour which increases aliasing. If m ost objects becom e s h a re d due to com position,

aliasing anno ta tion benefits th a t the APS brings will be lost.

Once again, consider the com position in the C ar Mechanic exam ple. In the HireCompany subject,

cars are owned by C arH ireC o and l e n t to the hirer for the d u ra tio n of the m ethod call. Engines are

owned by cars w ith the driver having no direct access to the c a r’s engine. In the M echanic subject,

cars are globally aliased objects as indicated by the s h a re d anno ta tion . To the mechanic each car

has a single engine as indicated by u n iq u e . W hen the engine is replaced from a crashed car to one

w ith the broken engine, uniqueness anno ta tes w ith precision th e effect of the swap. A liasJava does

no t allow an object to be sim ultaneously owned and u n iq u e as these are to ta lly different aliasing

properties. Likewise objects cannot be s h a re d and l e n t a t the sam e time. The com bination of the

properties of any of these modes leads to global aliasing as described by sh a re d .

T he problem lies in p a rt w ith the choice of modes and in p a r t w ith the way modes are selected

from those available. An APS w ith a menu of finer grained m odes th an those offered by A liasJava

m ay prevent all com positions of non-equivalent modes degenerating to sh a re d . For exam ple, if the

APS allowed bo th the CarH ireCo and the M echanic to share th e ownership of cars, some m ode such

as co-ow ned could replace s h a re d when elem ents w ith owned and l e n t modes are composed. A

l e n t object in one subject may become aliased as owned in ano ther so long as no references are
passed back to the original subject.

At times, more th an one m ode is capable of describing the ac tual aliasing properties. For example,

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 87

a ca r’s engine is owned by the car in HireCompany. Mode u n iq u e could have been used equally well

w ithout any changes to subject im plem entation. This topic is discussed in more detail in the next
Subsection.

Consistency checking is a concern when composing different modes. In an APS like AliasJava,

aliasing modes are used in concert. For instance, an owned object m ay be passed to another container

using ownership param eters and la ter l e n t to o ther objects. C hanging the m ode in any one class

will have a ripple effect on o ther classes th a t alias the object.

5.2.4 Criteria for Mode Selection

An APS like AliasJava makes it possible to use m ore th an one m ode in some cases. We have identified

the following strategies for program m ers to use when selecting modes:

• D e s ig n th e s u b je c t in o r d e r to c o n fo rm w i th a n A P S . Encapsulation is a cornerstone of

object-oriented program m ing and one should design subjects w ith representation encapsulation
in mind. APSs support encapsulation b u t w ith a certain program m ing style th a t may not fit

w ith all applications of object-oriented program m ing. By following the A P S ’s idiom strictly,

the developer m ay be pressured into creating designs th a t do no t satisfy o ther concerns. For

example, in Figure 5-6 on page 81, the range of available m odes affected efficiency: the program

re tu rns object clones when references would lead to a m ore efficient im plem entation.

• U se th e m o s t c o n s t r a in in g m o d e w h ile s t i l l m a k in g i t p o s s ib le to c r e a te t h e s a m e

d e s ig n as e n v is io n e d o r ig in a lly . In th is case, one selects the m ost constraining m ode in

order to describe the interaction. It suggests th a t one should no t follow the idiom atic style of
the APS bu t instead use the APS to an n o ta te the la ten t relationships. T his is th e approach

taken by any mode inference algorithm . Inference algorithm s identify the m ost constraining
aliasing mode.

• U se th e m o d e w h ic h is t h e m o s t s u i ta b le c o n c e p tu a lly . In th is case, conceptual m od

elling is identified as a priority. The choice of m ode is influenced not by the dom ain of im ple
m entation but ra th er by the problem dom ain. Selection is an option when th e available modes

are no t orthogonal and two or m ore m odes can describe the in teraction.

• U se th e s t r o n g e s t m o d e p o s s ib le in v ie w o f c o m p o s i t io n . One should bear in m ind th a t

subjects are often incom plete designs; sub jects contribu te to the behaviour of classes th rough

com position. W hen subjects are designed as p a rt of a collaborative effort, i.e. designed w ith

a particu lar com position in mind, the choice of m odes m ay be influenced by the subjects w ith

which the present subject is going to be composed. For exam ple, suppose th a t the m ode m ost

suitable conceptually is owned. However, com position in troduces behaviour th a t produces

external aliases, requiring a change to m ode sh a re d . Thus, m ode selection is predicated on

w hether the problem dom ain is understood to be a single sub jec t or a collection of subjects.

In conclusion, when composing elements w ith different m odes, a fine grained APS is necessary

in order to avoid all com position leading to a com plete generalisation of properties, e.g. m ode

sh a re d . D eterm ination of the o u tpu t mode m ay depend on b o th th e input modes and the way the

com position is specified. Mode com patibility is required for the m e rg e com position strategy. For

o v e rr id e , m ode com patibility is not essential. However, the overriding of one m ode by another

requires some form of consistency checking to ensure th a t all m ode changes are m utually consistent.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 88

5.3 Problem s with Ownership Param eters

B oth A liasJava and O wnership Types use param eterisation to g ran t containers access to objects

which are not p a rt of their im m ediate representation . O w nership param eters are im portan t for

creating reusable classes. For example, the following two Queue objects have different aliasing

properties (using O wnership Types):

Queue<this, this> si;
Queue<this, worId> s2;

B oth queues are the im m ediate representation of the objects in which they are declared, bu t in

s i the elements are owned by the current represen tation context while in s 2 the elem ents can be

aliased anywhere.

O w nership param eterisation works very well for classes w ith an intrinsic view like Queue b u t no t

so well for classes created using SO P from a collection of overlapping dom ain views. Some objects

and the ir owners are relevant only to a subset of com posed subjects. These different views of classes

tran sla te to different ownership param eter lists. We present two exam ples of th is problem .

F irst, consider F in a n c e and HR (Hum an Resources) subjects in an office suite shown in Figure 5-

10. B oth subjects m anipulate Employee objects. In F in an ce , employee expenses are reim bursed by

sending E xpensesS fiee t objects to the F in anceD ep t. For th is reason, during instan tia tion , Employee

objects are param eterised by the owner of F in an ceD ep t, giving rise to ow nership param eter fd . In

subject HR, the hum an resources departm ent assigns line m anangers to employees. In order for

an employee to reference the line m anager, the Employee class has ow nership param eter lm. The

program in Figure 5-10 uses Ownership Types annotations. P roblem s occur when one subject is

responsible for instan tia ting Employee. Suppose subject F in a n c e does th e in stan tia ting . A lthough
bo th F in a n c e . Employee and HR. Employee have ownership param eter lists of the sam e length, these

param eters represent different concepts th a t m ay well denote different owners.
T he second program perform s graphical transform ations on C o o rd in a te objects. I t consists

of two subjects, shown in Figure 5-11, and uses A liasJava anno ta tions. In the subject A lg In 2 D,
m anipulations of coordinates are done in two dimensions, using only x and y values. In subject

AlgIn3D, the algorithm s apply to th ree dim ensions, incorporating th e z axis. Problem s occur when

a C o o rd in a te in stan tia ted in one subject is passed to ano ther subject. For instance, bo th subjects

declare class X w ith corresponding fields someC. Any object assigned to someC in one subject au to

m atically becomes visible in another subject. W hen AlgIn2D creates a coordinate, it binds only the

n and m param eters, and param eter p is unbound. It is not clear how th e unbound param eter should

be trea ted . W hen AlgIn3D creates a coordinate, it binds param eters n, m and p. If th a t coordinate

is passed to AlgIn2D, the value bound to p will be lost. In order to restore th e binding to p we m ust
track its value while the object is aliased w ithin AlgIn2D.

Naively, one m ay require th a t corresponding classes have ow nership p aram eter lists th a t m ap

one-to-one. Different nam es for corresponding ownership param eters should not pose a problem

because the renam ing facilities of SO P can be easily extended to include ownership param eters. In

th e first example, th is entails introducing concepts from the F inance concern into th e H R concern

and vice versa. In the second example, th is m eans introducing the z axis into all classes which refer

to C o o rd in a te objects in AlgIn2D. However, any such action v iolates a fundam ental principle of

S ubject-O riented Program m ing concerning clean separation of concerns. It would be inappropriate

to have to include additional ownership param eters in order to satisfy some o ther concern.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY

subject Finance {
class FinanceDept<owner> {

void acceptExpenses(ExpensesSheet<owner> es) { . . . }
>
class EmpIoyee<owner, fd> {

FinanceDept<fd> finDept;
Employee(FinanceDept<fd> finDept) { this.finDept = finDept; }
void sendExpensesO {

ExpensesSheet<fd> es = new ExpensesSheet<fd>(...);
fd.acceptExpenses(es);

>

>
class ExpensesSheet<owner> { ... }

// example code using these definitions
FinanceDept<q> finDept;
EmpIoyee<p, q> emp = new EmpIoyee<p, q>(finDept);
emp.sendExpenses();

>

subject HR {
class HRDept<owner, Im> {

Vector<this, Im> lineManagers;
void addLineManager(LineManager<Im> IineMan) {

lineManagers.add(IineMan);
>
void assignLineManager(Emp!oyee<owner> e) {

e .setLineManager((LineManager<Im>)lineManagers.firstEIement());
>

>
class EmpIoyee<owner, Im> {

LineManager<Im> IineMan;
void setLineManager(LineManager<Im> IineMan) {

this.IineMan = IineMan;
>

>
class LineManager<owner> { ... }

// example code using these definitions
LineManager<g> Im;
HRDept<f, g> hr;
EmpIoyee<f, g> emp;
h r .addLineManager(Im);
hr.assignLineManager(emp);

Figure 5-10: Com position of subjects w ith incom patible ownership param eter lists

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 90

subject SIgIn2D {
class Coordinated, m> {

n int x;
m int y ;

}

class X<a, b> {
owned Coordinated, b> someC;

>
>

subject SIgIn3D {
class Coordinated, m, p> {

n int x;
m int y;
p int z;

>

class X<a, b> {
owned Coordinated, b, a> someC;

>
>

Figure 5-11: Com position of subjects w ith partia lly overlapping ownership param eter lists

Moreover, there is another way in which ownership param eters and SO P interfere. In SOP,

corresponding classes can have different and non-corresponding superclasses. Each class has an

ownership param eter list which the subclasses inherit. Therefore, the problem can occur also when

classes w ith non-corresponding superclasses are composed.
As a reprieve, there is always a t least some overlap in the ownership param eter lists. In AliasJava

and Ow nership Types, each object has an owner th a t is set a t instan tia tion and does not change

until the object is destroyed. In SO P program s, the owner is guaranteed to be bound for all objects

in all subjects. Classes which have a single ownership param eter denoting the object owner can be

composed w ithout these problems.

In the following Subsections we look in g reater detail a t the problem of ownership param eters

in SOP, sta rtin g from the developm ent of ab strac t d a ta types and moving on to the way ownership

param eters contribu te to creation of larger program s w ith SOP.

5.3.1 Ownership Parameters and ADTs

Com m on ab strac t d a ta types like stacks, queues and hashtables are not candidates for decom position

along purely functional lines. These classes have clear intrinsic properties and we cannot improve

the ir design by fragm enting further. A D Ts can be associated w ith aspectual concerns such as

synchronisation and persistence. SO P b ra c k e t relationship and o ther aspect-oriented technology

can m odularise these aspects. A spectual concerns like synchronisation and persistence apply on a

per instance basis; it should be possible to have two instances of the sam e basic A D T with different

com binations of properties.

M ost aspects affect behaviour bu t in a way th a t is transparen t to the existing clients. So long

as aspects do not introduce d a ta which require param etric specification of ownership, all subjects

have the sam e view of an ADT and all ownership param eters are bound no m atte r which subject

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 91

in stan tia tes such a class. In conclusion, ownership param eters do not pose a problem if all subjects

th a t use param eterised com ponents have the sam e view of the ir param etric properties. This is a
good result for A D T reuse; ownership param eters support reusability by letting the client specify

th e aliasing properties of each instance.

B ut A D T reuse does no t end w ith common com ponents like stacks and hashtables. Program m ers

create a rb itra rily complex com ponents which use common ADTs in their im plem entation. For

exam ple, consider a S p re a d sh e e t com ponent. A client m ay want to create m ultiple spreadsheets

w ith different ownership properties. B u t a Spreadsheet is a large and complex application supporting

m any features. SOP can simplify Spreadsheet developm ent by enabling m odular development of its

features. By mixing and m atching, th e com poser can tailor a Spreadsheet to the client by providing

the required features. The Spreadsheet exam ple would benefit from the m odularisation poten tial of

SO P and the custom isation afforded by ownership param eters.

5.3.2 A Layered Architecture

P arnas [97] was am ong the first to suggest th a t modules should be arranged into a hierarchy, w ith

m odules higher up using modules lower down b u t not vice versa. An arch itecture th a t describes

th is layering is called a layered architecture. SO P enhances program s built of layers by supporting
additional dimensions of decom position. SO P can be used a t each layer to separate concerns in the

developm ent of large com ponents such as the S p re a d s h e e t discussed above. Still larger applications
bu ilt using SO P technology may use S p re a d s h e e t objects in their im plem entation. And so on

tow ards even larger com ponents.

In order to achieve separation of concerns between layers, a t each layer the com ponent used in

the im plem entation of a sub ject has to be a black-box. For example, S p re a d sh e e t may support a

degree of adap ta tio n based on particu lar reusability requirem ents. T he adap ta tions can be perform ed

w ithout looking inside the black-box. Functional changes which cannot be affected w ith param eters
or o ther interface-level adap tations require the black-box to be opened up. T he changes consist of
one or m ore subjects and are applied using SO P com position rules.

In order to scale, an A PS should help SO P to build large com ponents by subject composition.
A t each layer:

• Aliasing modes should help com posers avoid in teraction problem s by improving the under-
standab ility of interaction.

• Aliasing modes should protect the representation of the o u tp u t com ponent from access by
external clients.

• O w nership param eters should facilitate client-end custom isation of containers used in subject
design.

5.3.3 The Two Roles of Ownership Parameters

A further problem w ith ownership param eters concerns the way they are used in design. Refer back

to the Q ueue exam ple anno ta ted w ith O w nership Types in F igure 5-2 page 75. Suppose two subjects
bo th define a L in k class. A nother way of defining this class is:

class Link<owner, I, d> {
Object<d> o;

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 92

Linkd, I, d> next;
Link(Object<d> o) { this.o = o; }

>

In Figure 5-2, bo th the L ink owner and the n e x t link have ow nership context owner. Above, the

L ink owner can be set separately from the owner of the n e x t link.

Suppose two subjects bo th define th e L ink class bu t in different ways as shown here. These

classes are conceptually composable bu t require significant m odifications to subjects or extensive

glue code. The problem is th a t in Figure 5-2, the owner param eter is reused when defining th e

owner of the n e x t Link. This solution suffices for the im plem entation of the Queue class bu t makes

th e L ink class less reusable th an it can be. In a reuse setting, a client m ay require two links w ith

different ownership types, e.g.:

Link<this, owner, worId> Iinkl;
Link<this, this, wor!d> Iink2;

T his exam ple shows th a t while constructing class Queue for reuse, L ink is trea ted as an imple

m entation abstrac tion whose reusability does no t concern the designer. Refer back to the criteria for

m ode selection in Section 5.2.4 on page 87. T he original design of L in k in Figure 5-2 used ownership

param eters to describe the conceptual relationship between classes Queue and L ink. In the context of

Queue, th is link and the n e x t link have the sam e owner. The decision to use an additional ownership

param eter is characteristic of an intention to achieve the best separa tion of concerns by conforming

with the AP S. T he conceptual selection of m odes was b e tte r a t an n o ta tin g existing usage bu t m ade
L ink less reusable.

T his exam ple shows also th a t ownership param eters play two roles in APSs:

• As the m eans of custom ising the ownership properties of A D Ts, and

• As an im plem entation mechanism for passing access perm issions.

The former is required because we w ant to reuse ADTs w ith different ownership properties. The

la tte r is problem atic w ithin SO P because w ithin each subject, classes define only those ownership

param eters th a t are needed to realise the curren t concern. Defining additional param eters to satisfy

o ther concerns is contrary to the spirit of SOP. Consequently, we believe th a t in subject-oriented

program s, for class definitions th a t are d istribu ted across subjects, ownership param eters are no t

the best way to pass access permissions. Some o ther system is required.

Finally, we also observe th a t ownership param eters pass access perm issions bu t have little value

as an annotational aid. An ownership param eter denotes th a t ‘some o ther object owns th is ob jec t’

w ithout m aking it clear which object it is. A concrete m ode th a t p inpoints the actual owner or

describes an aliasing policy is b e tte r for understanding subject com position because it conveys a t a

glance the extent of aliasing.

Client side custom isation of ownership properties is necessary no t only for ADTs bu t also for

concerns im plem ented by subjects. This is th e topic of the following Section.

5.4 Dealing with Incom plete Specifications

W hen decomposing a program into subjects, m ore often th an not th ere are subconcerns which are

common to more th an one subject. In order no t to duplicate code, a set of subjects delegate the

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 93

subject Composite {
abstract class Component {

abstract Object doActionO;
>

abstract class Composite extends Component {
Vector children;

Object doictionO {
Iterator it = children.iterator();
while(it.hasNextO) {

Component c = (Component)it.next();
perChild(c);

>
return null;

>
abstract void perChild(Component c);

>
>

Figure 5-12: Com posite design p a tte rn as a subject

im plem entation of the subconcern to ju st one subject. For instance, consider a banking application

in which subjects implement the OpenAccount and B a la n c e T ran s f e r concerns. Both subjects make

use of operation A cco u n t. d e p o s i t (. .) . In OpenAccount, it is called to set the in itial balance
when a new account is opened. In B a la n c e T ra n s f e r , it is called after the donor account has been
w ithdraw n. Only one subject need im plem ent d e p o s i t (. .) .

In A liasJava and Ownership Types, ownership param eters make container classes m ore reusable

by allowing clients to specify th e ownership properties. In SOP, subjects are elements of reusable

software th a t can im plem ent pa tte rn s in a generic way. T he subject designer may want th e composer

to specify the precise aliasing properties of a subject. Some subjects are m ade more reusable if their

aliasing properties are not set in stone bu t allowed to vary based on the o ther subjects w ith which

the reused subject is composed.

Reusability requirem ents and delegation are two reasons why an APS should have a way of

specifying modes in some general way. Let us consider an example. A com puter aided design (CAD)

application creates pictures from prim itive objects such as rectangles, lines and other pictures. The

com ponents m aking up a p icture can be aliased by any o ther com ponent. W hen a client needs to

redraw th e picture, d raw () is called on all prim itive elem ents and, recursively, on all pictures within.

In an unrelated program , consider a file system consisting of files and directories. D irectories contain

files and o ther directories. Files or whole directories can be moved from one place to another. W hen

a client calls the s i z e O com m and on a file or a directory, the value associated w ith th e size of the

file or d irectory is calculated from th e constituen t parts.

Drawing in the CAD application and calculation of file system size are feature concerns th a t

affect m ultiple classes in the base application. The behaviour associated w ith draw O and s i z e O

can be ex tracted into separate subjects, bu t it is possible to go still further. T he concern th a t ties
these subjects together is ‘object hierarchy trav ersa l’. The Com posite design p a tte rn [43] describes

how to build object hierarchies consisting of p rim itive and com posite objects. P rim itive objects can

be composed into more complex objects, which in tu rn can be composed, and so on recursively.

C lients tre a t prim itive and com posite objects in th e sam e way.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 94

^ a D k ec lo ry(a P ic tu reJ ^ .

/ / » \ Csik

(aL in e) i (aR eclangle) \ \ (aP icture) aF ileJ (aD irectory J

(a D ir e c to ry) (a F ileJ(aL ine j (a L in e) (jaRectangle j

Figure 5-13: Ownership structure examples for the Draw concern in a CAD application (left) and
for the Size concern in a File System application (right)

subject CADdraw {
abstract class Component<owner> {

abstract Object<world> drawO;
>
class Picture<owner, topPic> extends Component<owner> {

Object<world> draw() { /* to be composed with doActionO */ }
void perChild(Component<topPic> c) {

c .draw();
>

>
class Line<owner> extends Component<owner> {

Object<world> draw() { .. }
>
class Rectangle<owner> extends Component<owner> {

Object<world> drawQ { . . }
>

>

Figure 5-14: CADdraw subject annotated with Ownership Types

W ith SOP we can implement the Composite pa ttern in a non-application specific way, and extend

the generic pa ttern definition to create the subjects for doing draw O and s i z e O . The Com posite
subject w ithout aliasing modes is given in Figure 5-12. However, problems occur when we try to give
an aliasing annotation or type to the objects referenced in the Composite pattern . The problem is
illustrated by the object graphs in Figure 5-13. The solid edges denote references and dashed edges
denote ownership relations. In the CAD application, all pictures, lines and rectangles are owned
by the root picture. This structure allows for lines, rectangles and pictures to be shared between
pictures a t different levels. In the file system, the files and directories are owned by the directory
th a t references them. The movement of a file from one directory to another changes the file’s owner.

The different ownership structures required by these two problems translate into different aliasing
modes in the design of the Composite pattern . The CAD drawing subject (Figure 5-14) requires
the children of a composite object to be param eterised by the owner, which is the top-level picture.
A nnotated with Ownership Types, the Com posite subject acquires the following modes:

abstract class Composite<owner, topPic> extends Component<owner> {
Vector<this, topPic> children;

>

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 95

subject FileSystemSize {
abstract class Component<owner> {

abstract int sizeO;
>
class Directory<owner> extend Component<owner> {

int tempSize = 0;

int sizeO { return tempSize; }

void perChiId(Component<this> c) {
tempSize += c.size();

>

>

class FiIe<owner> extends Component<owner> {
int fileSize;
int size() { return fileSize; }

>
>

Figure 5-15: F ile S y s te m S iz e subject anno ta ted w ith O wnership Types

In the file system (Figure 5-15), the directories and files inside ano ther directory are owned by
th a t directory, giving the following Ow nership T ype annotations:

abstract class Composite<owner> extends Component<owner> {
Vector<this, this> children;

>

T he problem occurs w hether we use Ow nership Types or A liasJava. In fact, th e problem is

m ore serious in A liasJava because the file system can employ the u n iq u e m ode instead of ownership

param eterisation. However, suppose th a t we stay w ith non-un ique ownership. I t should then be

possible to design the C om posite subject while allowing a degree of freedom when selecting the

owner of the com ponents referenced by the composite.
In re la ted work, Clarke and W alker [26] discuss composition patterns which separate the design of

cross-cutting requirem ents into reusable, extensible design models. C om position patte rn s are an ex

tension to UML tem plates and com position sem antics defining how b o th s tru c tu ra l and behavioural

design elements m ay be merged. C om position p a tte rn s use tem plate param eters as placeholders for

elem ents replaced by real elem ents in the composed design. The tem plate param eters have con

stra in ts. For instance, when m odularising a design p a tte rn such as O bserver [43] as a com position

p a tte rn , operations th a t are specific to p a tte rn instan tia tion are specified as com position p a tte rn

param eters. The Observer p a tte rn has already featured heavily in the exam ples of C hap ter 3 on page

22. To recap, the Observer p a tte rn describes a collaboration between a Publisher and a num ber of

Subscribers. Subscribers dynam ically register and deregister an in terest in Publishers, so th a t when

th e P ub lisher’s s ta te changes all its registered Subscribers are notified of the change. T he tem plate

param eters of th is com position p a tte rn are:

• The Publisher and Subscriber classes.

• The behaviour which constitu tes a s ta te change in the Publisher.

• The behaviour for perform ing updates in response to s ta te change notifications.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 96

• T he behaviours for in itiating the reg istra tion and dereg istration of Subscriber objects w ith

Publishers.

Each tem plate param eter is typed as either a class or an operation , w ith operations having

certa in param eters of their own, e.g. th is is the case w ith reg istra tion and dereg istra tion behaviours.

Clarke and W alker [27] have shown a m apping from com position p a tte rn s to H y p e r/J and A spect J.

Tem plate param eters are the client-specific elem ents of subject designs.

We believe th a t the reusability of com position patte rn s will be im proved by th e in troduction of

aliasing modes th a t are bound during com position. Aliasing m odes should be in the list of tem pla te

param eters. To best support the creation of reusable subjects and to enable delegation during

design, it is necessary to specify the aspect of aliasing th a t should be param eterised , the constrain ts

on param eterisation and a representation for param eters and constrain ts.

5.5 Towards an A PS for Understanding Subject Interaction

Over the previous Sections th is C hap ter has described the m ain properties of Alias P ro tec tion

System s and the way the shift tow ards Subject-O riented P rogram m ing affects those properties. The

current Section brings these th reads together in order to evoke th e desirable properties for a subject-

oriented APS. T h a t is, to highlight those properties which best help sub jec t com posers to understand

subject interaction.

According to Aldrich et al [5], a way of evaluating an Alias P ro tec tion System is by showing

how annotations can help program m ers answer questions th a t are difficult to answer in existing

program s. We discuss some questions th a t are hard to answer presen tly in SO P program s and for
each question describe:

1. The reason it is difficult to answer th is question presently w ith SOP.

2. The APS properties th a t can help to answer the question.

• W h ic h o b je c ts m a y m o d ify th i s o b j e c t ’s s t a t e ? For exam ple, suppose there is an in

teraction problem when a collection of subjects are composed. T he problem is traced to an

unw anted s ta te change in an object.

1. The cause of the s ta te change is difficult to diagnose because alm ost any object in the

system is potentially a client of th e object whose s ta te changes.

2. C ontainm ent properties of Ow nership Types are superior to th e anno ta tions of A liasJava

because Ownership Types do not allow objects outside the owner to change the o b jec t’s

sta te . In AliasJava, only the owner is invariant b u t ow nership can be gran ted to any

object created subsequently. Ow nership Types offers stronger represen ta tion containm ent

guarantees. The objects th a t can modify another ob ject depend also on dynam ic aliases

allowed by an APS.

• H o w d o e s o n e s u b je c t a ffec t t h e o b je c ts o f a n o th e r s u b je c t? M ost complex behaviour

is specified inside of and occurs w ithin a subject. It is n a tu ra l to th ink of a sub ject in term s

of the object collaborations it im plem ents. O bjects passed as argum ents to the collaboration

from the outside and those created w ithin appear to be owned by th e sub jec t. O f course, there

is no actual subject ownership because subjects are merely packages.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 97

1. This question is difficult to answer a t present w ith SO P because one is required to study

operation im plem entations to understand their effect on shared state.

2. A mode specified in the signature can help one u n derstand the way a subject affects an

object th a t is also referenced by ano ther subject. For exam ple, if an operation in subject

51 is merged w ith a r e a d -o n ly operation (w ith r e a d - o n ly transitive) from 52 then there

are no unw anted s ta te changes to objects ‘owned’ by 51 in calls to the merged operation.

• W h a t in te g r a t io n t e s t s s h o u ld b e r u n o n t h e o u tp u t s u b je c ts c r e a te d b y th i s c o m

p o s i t io n ? Before a com ponent created by subject com position can be released it m ust be

tested to check th a t it satisfies the requirem ents. Subjects in te rac t when sharing control or

d a ta , hence com positions which in tegrate classes bu t never th e ir m em bers require no in tegra

tion testing. Subjects th a t share control bu t not da ta , e.g. th e Tracing concern in C hap ter 3

on page 22, cannot be analysed through APSs because they do not pass object references over

join points.

1. W here subjects pass object references over join points, the modes of the shared d a ta

elements affect the range of tests required.

2. Subjects th a t use only the im m utable interface of shared objects, e.g. mode a rg in Flexible

Alias P rotection, are not affected by s ta te changes to those objects. W hen one sub ject

depends on the m utable s ta te of objects in ano ther sub jec t bu t is r e a d -o n ly on the

objects it accesses, only the sub ject w ith r e a d -o n ly access needs to be tested for s ta te

changes. This is sim ilar to the S pectators and A ssistants m odel [28] defined for A spect J .

Aspects th a t only read bu t never modify objects a t jo in po in ts are spectators, the rest are

assistants. In Aspect J an aspect is a class bu t a sub ject is a family of classes. T he notion
of spectato r may be defined over the set of in ter-subject jo in points by using aliasing

modes th a t denote r e a d -o n ly access.

For understanding subject interaction, we believe th a t the in itial challenge lies in getting control
over object aliasing in a m ulti-subject environm ent in order th a t th e first question above can be

answered. The effect of one subject on another can be b e tte r understood only when the ex ten t of
aliasing is known.

5.6 Conclusion

This C hapter has reviewed Alias P ro tection System s and discussed the challenges of developing

an A PS for SOP. An APS anno ta tes the objects which depend on or modify the s ta te of o ther

objects. T his property is useful to the subject com poser because it can help to understand sub jec t

in teractions and thus prevent in teraction problems.

T he differences in approach to software developm ent between SO P and O O P im pact th e selection

of aliasing modes. T he m ain technical challenges are:

• Ownership param eters are problem atic because each sub jec t m ay need to reference objects

from partia lly overlapping sets of owners.

• Ownership param eters are still required for creating trad itio n a l container classes.

CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY 98

• C ertain subjects should be param eterisable by concrete aliasing m odes of objects in o ther

subjects.

• Subject-oriented com position may be used to create new black-box com ponents.

In the following C hapters we present the Subjective Alias P ro tec tion System. SAPS addresses

m any of the above challenges: it is a fully fledged APS th a t also improves subject reusability.

Chapter 6

SA PS — Subject D esign

The Subjective Alias P ro tection System is our proposal for improving reusability in a way th a t is

also useful to the original developer of software. SAPS is an Alias P ro tection System for subject

design and an anno ta tion system for subject com position. The APS p a rt of SAPS, also known as

Subjective O w nership Types (SOT), helps subject designers to create well s truc tu red subjects th a t

avoid problem s which are known to result from bad uses of aliases. In this sense, SO T are of use

to the original developer of software. SAPS is SO T plus subject-oriented com position rules. SO T

ann o ta te object aliasing a t the points of subject in teraction, helping the com poser to understand the

effect of subject interaction on sta te . T hrough explicit alias m anagem ent, SAPS helps th e subject

in teg ra to r to prevent in teraction problems.
T he presentation of the SAPS is split over th is and the following C hapter. The present C hapter

describes the Subjective Ownership Types used in subject design. C hap ter 7 discusses the com po

sition of subjects anno ta ted w ith Subjective O w nership Types.
Like Ow nership Types [23], SO T enforced deep ownership properties. However, th e tra its of

subject-orien tation distinguish SO T from any object-oriented APS. For a num ber of reasons th a t will

be explained inside th is C hapter, SO T makes it possible to define two kinds of classes: com posable

classes and uncom posable classes. Subject definitions predom inantly contain com posable classes.

We say th a t a subject has an ownership s tru c tu re which is a model of the su b jec t’s ownership

relationships. In composable classes the ownership stru c tu re is formalised by a system of explicit

context nam ing. We will show th a t when separating concerns into subjects there are p a rts of the

ownership stru c tu re which a subject either does not know or should not need to know about. For this

purpose com posable classes feature a new kind of context variable th a t has no equivalent in object-

oriented program m ing. These so-called unknown contexts make it possible to specify subjects in a

m ore reusable way th an is possible w ith explicit contexts alone. Uncom posable classes are black-

box abstractions th a t re ta in ownership param eters as the m eans for formalising their ownership

structures.

T his C hap ter continues the presentation of our contribution to the thesis. Section 6.1 explains

the principles of SO T and links them to the observations m ade in the previous C hapter concerning

the differences in approaches to software construction between subject-oriented and object-oriented

program m ing. Section 6.2 explains the principles of explicit context nam ing used in com posable

classes. Section 6.3 describes unknown contexts and their relationship to explicit contexts. Uncom

posable classes and their relationship to com posable classes are described in Section 6.4. Along the

99

CHAPTER 6. SAPS - SUBJECT DESIGN 100

Object
Code

Source Code
annotated with
Subjective
Ownership Types

Ownership
Types
Labels

SOT Compiler Subject Composer

Ownership
Types
Labels

Composition
Specification

Figure 6-1: SAPS com position process

way we present the properties of correctness for Subjective Ow nership Types. These include deep

ownership checks. Section 6.5 concludes th is C hapter.

6.1 Subjective Ownership Types and SAPS

This Section describes the principles of Subjective O w nership Types. In order to p u t SO T into

context we will outline the SAPS process.

Subjective Ownership Types are p a rt of a process th a t consists of two key stages. F igure 6-1

shows th a t subjects anno ta ted w ith Subjective O w nership Types are individually com piled using

th e SO T Compiler (also known as the Subject Com piler). The SO T Com piler type checks the
subject, generating Ownership T ypes Labels as one p a rt of its ou tpu t. For the second p a rt, th e SO T

compiler strips ou t the Subjective O w nership Types and uses a stan d ard program m ing language
compiler to generate object code. T he O w nership Types Label contains the stubs denoting the

su b jec t’s com posable elements, types and o ther a ttrib u tes of constructs found in object code.

For the second stage, the Subject Com poser takes as inpu t object code, O w nership T ypes Labels

and a com position specification. Initially, the com position specification is applied to Ow nership

Types Labels. The ou tp u t label is generated if th e Subjective O w nership Types found in the in

p u t labels perm it composition. Finally, object code for th e o u tp u t subject is linked based on the

com position specification and object code of th e input subjects.

6.1.1 Deep Ownership

To create a useful Alias P ro tection System for Subject-O riented Program m ing it is necessary to

find the right balance between an A PS for subject design and an anno ta tion system for subject

in teraction. We believe th a t the righ t balance can be struck by devising a system th a t enforces

deep ownership bo th for a single sub ject and across a set of subjects linked by a com position

specification. T h a t is, to extend SO P w ith additional types and com position rules for enforcing the

sam e containm ent properties as O w nership Types [22].

In deep ownership only the o b jec t’s owner and other tru s ted objects inside the owner can refer

ence the object. This means th a t represen tation objects are to ta lly hidden from external clients. In

the setting of one subject, represen tation containm ent properties of O wnership Types b e tte r sup

CHAPTER 6. SAPS - SUBJECT DESIGN 101

p o rt m odular reasoning a t the object level th an shallow ownership as used in A liasJava. A liasJava’s

constrain ts on owned objects do not prevent owned or represen tation objects from passing to ex

ternal clients. T he capability to reference objects owned by o thers can be passed using ownership

param eters to an object w ith any o ther owner. Consequently, the effect on s ta te is no t constrained

to the sam e degree as w ith deep ownership. T he previous C hap ter has argued th a t deep ownership

is b e tte r suited to answering in teraction questions about the effect of in teractions on the s ta te of

objects. We antic ipate th a t deep ownership will help to trace the source of an anom aly in m any

cases.

O bject-oriented program m ing and SO P are different ways of addressing design challenges. In

subject-oriented development, we have found the no ta tion used by O w nership Types for com m uni

cating the ownership constrain ts inadequate for enforcing deep ownership. Instead, we propose a

new system ; one th a t is b e tte r suited to the SO P paradigm and its idioms. Before delving into the

details of Subjective Ownership Types we sum m arise the m otivation for its constituents.

6.1.2 The Origin of the Notation

T he Subjective Alias P ro tection System is sim ultaneously inspired by a num ber of observations

detailed in the previous C hapter. We review these in order to help explain the origin of our no tation .

• O bservation 1: T he Suitab ility o f th e D eep O w nership M odel.

As described above, we w ant SO T to enforce deep ownership. We feel th a t it represents an

agreeable compromise between a flexible alias protection m odel for subject design and an alias
anno ta tion system for subject interaction.

• O bservation 2: C ustom isation o f O w nership P ro p erties o f A D T s.

A PSs have been dem onstrated in term s of A D Ts such as one m ay find today in u tility libraries.

SO P will not be used to extend the definitions of these classes as for the m ost p a rt inheritance

and delegation are well suited to creating new types based on these abstractions. Com m on

ADTs and types derived from them by inheritance or delegation will be used in subject defi

nitions. O w nership Types and A liasJava have employed ow nership param eterisation to enable

clients to custom ise the aliasing properties of ADTs. T he inheren t flexibility of ow nership

param eterisation also should prove useful for subject design.

• O bservation 3: T he A n n otation al P rop erties o f O w nership Param eters.

SAPS is m otivated by interaction problem s. I t should help program m ers to steer clear of and

subsequently detect anomalies. Consequently, in order to help th e composer to understand

the in tra-sub ject relationships Subjective Ow nership Types should anno ta te the ownership

struc tu re of subjects. O wnership param eters convey little inform ation abou t the ownership

structure; w ith the exception of the first param eter which denotes th e o b jec t’s owner, ownership

param eters represent objects a t possibly a rb itra ry points in th e owner hierarchy. P aram eteri

sation is useful for custom ising the ownership properties of A D Ts (see O bservation 2, above)

bu t is less su ited for anno ta ting the ownership stru c tu re of subjects. The composer gains little

useful inform ation about the role an object plays in collaborations im plem ented by th e sub jec t
when its owner is denoted param etrically.

• O bservation 4: P aram eterisation is C haracteristic o f an O bjective P ersp ective .

CHAPTER 6. SAPS - SUBJECT DESIGN 102

A subject defines only those abstractions and functions th a t contribute to addressing its con

cern. T he same principle should also extend to ownership concepts: a class in a subject

should only have to define those ownership concepts th a t perta in to im plem enting its concern.

We have shown in Section 5.3 on page 88 th a t subjectiv ity concepts interfere w ith ownership

param eterisation. W hen instan tia ting , a subject does not and should no t have access to all

contexts which an object of th a t type m ay need to reference in all subjects. In m any cases this

results in a subject being unable to bind all ownership param eters declared in all o ther sub

jects. We believe th a t ownership param eterisation is characteristic of an objective perspective

of software developm ent where the client always sees the whole interface. To handle subjective

perspectives, SAPS proposes an alternative to th is perm ission passing mechanism.

• O bservation 5: C onstruction o f N ew C om ponents.

Subject-O riented Program m ing enables th e decom position of program s by feature. Decompo

sition by feature applies not ju s t to end-user program s bu t also to com ponents bu ilt for reuse

in com ponent frameworks. These com ponents are intended to be reused as black-boxes bu t

may support certain an ticipated extensions and adaptations. In order to extend the benefits of

SO P to the design of com ponents for use w ith existing frameworks, the restrictions on aliasing

m ust be hidden w ithin the ou tpu t subject. If necessary, subjects m ay restric t each o ther bu t

any aliasing modes em ergent in the o u tp u t subject should be downwardly restrictive.

• O bservation 6: P artia lly Specified O w nership Structures.

Subjects are often incom plete program s, delegating to o ther subjects certain im plem entation

details. A t o ther times, subjects im plem ent collaborations w ith certain reusability require
m ents. B oth cases require some form of genericity. W ith respect to ownership, Section 5.4 on
page 92 identified an exam ple w here the ownership struc tu re of one subject may be param e-
terised by o ther subjects.

T he present C hap ter is dedicated to explaining how the above observations have influenced

Subjective Ow nership Types. A com bination of observations 2, 3, 4 and 5 have inspired us to
formalise the separation of ADT u tility library classes from those classes created as p a rt of the

subject definition. ADTs from utility libraries and o ther classes requiring custom isation of aliasing

properties are in the set of uncomposable classes. T he vast m ajority of classes created as p a rt of

sub ject design are p a rt of the set th a t we call composable classes. In teraction between objects of

com posable and uncom posable classes is possible in m ost cases.

Uncom posable classes do not partic ipa te in compositions; however, the ir instances can. A D Ts are

cohesive black boxes; we believe th a t for common ADTs, SO P cannot simplify the ir im plem entation.

Based on observation 2, in order for clients to be able to custom ise the aliasing properties of ADTs,

ownership param eterisation is used w ith these classes. Com posable classes are defined using an

a lternative type system th a t does away w ith ownership param eters.

O bservations 3 and 4 have inspired a new no ta tion of explicit context identifiers for describing

externally owned objects in composable classes. T his no ta tion replaces ownership param eterisation

to enforce deep ownership. Based on observation 6, we introduce unknown context identifiers. These

are used in com posable classes for referring to objects whose ownership contexts are no t known in

th e curren t subject. An unknown context identifier is p a rt of another su b jec t’s design decision.

T hey are bound when subjects are composed to form com plete program s.

CHAPTER 6. SAPS - SUBJECT DESIGN 103

O bservation 5 is concerned w ith our rules for subject com position. SAPS helps to hide the objects

used in the im plem entation of com ponents from th e framework clients of the com ponent. Subjects

agree on the representation objects and each subject specifies representation objects using Subjective

O w nership Types. In conjunction w ith subject com position rules th a t preserve types, the o u tp u t

sub ject continues to hide the common representation . SO T create no restrictions on th e use of the

o u tp u t subject w ithin a com ponent framework. O bservation 5 also concerns subject-oriented design

in the large, i.e. the co-design of m ultiple subjects together. This aspect of Subjective O w nership

Types is discussed in the following C hapters.

In this C hapter, we will present 12 properties th a t are required to ensure SO T correctness. The

properties will be presented gradually and brought together a t the end in order to describe checks

for type correctness.

6.2 Explicit Context Identifiers

Explicit context identifiers are a t the core of SO T and the design of composable classes. To make

further discussion of explicit context identifiers m ore m anageable, they will be referred to as exps

(singular: exp), exps replace ownership param eters in com posable classes. The exp anno ta tions are

used by the subject compiler to check th a t the subject satisfies the contrain ts of deep ownership.

T he term explicit has been adopted because the ordering of contexts is explicit in the exp no

ta tion . To help explain the ordering of contexts and the origin of the no tation we present object

graphs more formally th an they were described in the previous C hapter. A snapshot of an executing
subject-oriented program can be represented as an object graph:

D e f in itio n : (O b je c t G ra p h) An object graph is a finite directed graph whose u>i vertices repre

sent objects. References are denoted uj\ —> u)2 - T he root object p is a distinguished vertex w ith all

objects reachable from root either directly or along a p a th formed by edges.

In order to support deep ownership all references to th e object m ust come either from the ob

je c t’s owner or from other objects which are inside th a t owner. G raphically, th is p roperty can be
understood in term s of paths between p and the object of interest. All pa ths from th e roo t to the

object m ust pass through the vertex representing th e o b jec t’s owner. In graph theory, th e owner is

the im m ediate dom inator for the objects it owns. T he im m ediate dom inator comes from a set of

dominators of an object:

D e f in itio n : (D o m in a to r) For a given object graph, vertex wi is a dom inator for u)2 if and only if

every p a th from p to ui2 includes u>i. dom inator (0J2) is the set denoting all such dom inators including

Ui .

A useful way of representing dom inator inform ation is in a tree, which in our case is called the

ownership tree. T he root vertex is p and each vertex dom inates only its descendants in th e tree [2].

Such a tree is induced by dom inator{1̂ 2) D. dom inator(w i):

D e fin itio n : (O w n e rs h ip TVee) The ownership tree of an object graph is given by th e p artia l

CHAPTER 6. SAPS - SUBJECT DESIGN 104

world

u O

Figure 6-2: An Ownership Tree

order < on objects:

u>2 < <̂ i iff dominator((J2) 5 dominator (uj\)

p as the biggest element. Vertex u>2 is the immediate dom inator of u)\ if and only if 0J2 is the least
element of dominator(u) 1) not including u)\. We write u)\ < UJ2 when 0)2 is the immediate dom inator
of U)\.

The owner of u>i is defined as the im m ediate dom inator of u>i. As the program executes the object
graph evolves. New objects and references are added, other objects and references are removed. The
ownership tree co-evolves with changes to the object graph. P o tter et al [102] observed th a t object
graphs have an implicit dom ination structure. Although changes to the dom ination structure are
inevitable, in well structured program s changes are limited. The purpose of an ownership type
system is to formalise the dom ination structure in order to constrain the evolution of the object
graphs, such th a t new references can be added only in a structured way.

Subjective Ownership Types formalise the ownership structure by numbering the dom inators.
The dom inator set of forms a sequence with u>i as the first, ojj with Ui < ujj as the second,
until p as the last element. The elements of the sequence can be identified with their position in
the sequence. Let 1—> denote the relationship between a sequence position index and the sequence
element denoted by the index. Also let a be a set of such tuples. The element identified by index
i is denoted cr(i) with cr(l) = uji as the first element. For example, consider the ownership tree in

Figure 6-2. In the Figure, world owns objects ol and o7; ol owns o2, o3 and o4; o4 owns o5 and 0 6 ;
object o l owns 0 8 . Object o4 is associated with sequence (o4, o l, world) of dom inators. Then for o4,

0 is defined as:
<7 = {1 1—> o4, 2 1—► ol, 3 1—> world}

Object o l is associated with sequence (o7, world) of dominators. Its a is defined as:

o = {1 I—> o7, 2 1—> world}

Now, suppose th a t Figure 6-2 is the intended ownership structure th a t we wish to formalise
using types. We use the dom inator indices dom (a) U {0} (the domain of a including zero) to define

CHAPTER 6. SAPS - SUBJECT DESIGN 105

L ift

Figure 6-3: Ownership structu re for subject F lo o rP re ssB u tto n

explicit context identifiers for each object. W ith respect to o4, explicit context identifier 0 is shared
by all objects th a t have o4 as owner, i.e. objects o5 and 0 6 in the representation context of o4.

Explicit context identifier 1 refers to o4, the current context of interest. The owner of o4 is o l - the
im m ediate dom inator of o4. We use explicit context identifier 2 to refer to the object th a t owns the
current instance. Finally, explicit context identifier 3 refers to world, the ownership context of o l.
From now on, we shall adopt notation expn to refer to explicit context identifier n. For example, for
explicit context identifier 0 we will w rite exp0 , for explicit context identifier 1 we will write expj.

No two objects can have the same a because exp2 always refers to a different this, a is based on
perspective and an object can be referred to by two different exps. For example, world is referred to
as exp4 from o5 and exp2 from o7.

Explicit context identifiers denote object owners in program texts. In the body of a composable
class, a type is formed by extending the nam e of a composable class with an angle bracketed exp,

world or an unknown context identifier. Like t h i s in Ownership Types, exp0 denotes objects in
the current representation context. The owner context is always labelled using exp: . The other
explicit context identifiers refer to greater dom inators in the ownership tree. We retain context
identifier world for referring to global objects which can be aliased anywhere. Objects of value types
have world as owner implicitly and do not require additional annotations. This scheme allows new
objects and references to existing objects to be created in the current representation context, in
the representation context of this ob ject’s owner, in the global context or in any other context th a t

dom inates this object.

6.2.1 exps in Action

To show the exp notation in action we use an example from a lift operation system. Suppose th a t
one use case in the specification of a lift operation system describes the action of pressing a button
a t some floor. T he floor on which the bu tton is pressed should be added to the lift’s list of floors to
visit. One subject can m odularise the im plem entation of this use case.

To understand the ownership structure of a subject, the subject designer can draw the intended
ownership tree. Figure 6-3 shows th a t the lift and the floors w ithin it are owned by the building.

The buttons are owned by their respective floors.
Figure 6-4 shows th a t this structure can be formalised in subject code using exps. From line

2 we observe th a t in class B u ild in g the l i f t is owned by the B u ild in g . In line 3, the f lo o r s

Building

Floors

Buttons

CHAPTER 6. SAPS - SUBJECT DESIGN

1 class Building {
2 Lift<0> lift;
3 Floor<0,0>[] floors = new FIoor<0,0>[10];
4 void mainO {
5 for(int i = 0; i < 10; i++) floors[i].setLift(lift);
6 >
7 >
8
9 class Lift {
10 Floor<0,l>[] floorToVisit;
11 int index = 0;
12 void addFIoorToVisit(FIoor<l> f) {
13 if(index < 10) floorToVisit[index++] = f;
14 >
15 >
16
17 class Floor {
18 Lift<l> lift;
19 Button<0> button;
20 void setLift(Lift<l> lift) {
21 this.lift = lift;
22 button.lift = lift;
23 button.thisFIoor = this;
24 >
25 >
26
27 class Button {
28 FIoor<2> thisFIoor;
29 Lift<2> lift;
30 void press () ■(
31 lift.addFIoorToVisit(thisFIoor);
32 >
33 >

Figure 6-4: Code for subject FloorPressButton

CHAPTER 6. SAPS - SUBJECT DESIGN 107

array and the elem ents w ithin it are owned by th is B u ild in g instance. In class L i f t , f lo o r T o V is i t

a rray (line 10) is owned by th is L i f t instance b u t the F lo o r objects, passed as argum ents in calls

to a d d F Io o rT o V is it (. .) (lines 12-14) and stored in the vector, are owned by th is L i f t ’s owner.

W hen m ethod B u t to n .p r e s s () is called (lines 30-32), th e floor on which the bu tto n is pressed is

added to the lift’s list of floors to visit. As seen in Figure 6-3, from the perspective of a bu tton ,

t h i s F I o o r (line 28) and l i f t (line 29) bo th have owners given by exp2.

6.2.2 Context Identifier Arithmetic

The num eric no ta tion th a t we have adopted for exps is used bo th by program m ers and the Subject

Compiler to type check program s. SAPS program m ers use d a ta flow between objects to m entally

check the validity of explicit context identifiers, i.e. to check th a t two references in different classes

are m utually consistent if objects of those classes can ever reference the sam e object. References are

generally passed between objects as argum ents or re tu rn values in m ethod calls, during field variable

update and access. W hen references are passed as m ethod param eters or in a field update , d a ta

flows out from source to ta rget. For m ethod call re tu rn values and field variable access, d a ta flows

the o ther way. To help program m ers do the m ental calculations we in troduce functions A i and A 2

for outw ard and inward d a ta flow respectively. T he Subject Compiler relies on A 2 to type check
expressions.

In the outw ard direction, two factors contribu te to calculating the context identifier a t the target:

• T he exp representing the ownership context of the object to which the reference is passed, k.

• T he exp or exps of the object whose reference is being passed, m .

The calculation of the context identifier a t ta rg e t is arithm etically simple, though it takes a
knack to grasp the concept. To explain the calculation, first one m ust rem em ber th a t exps num ber

the dom inators of t h i s object. In order to prevent representation exposure, only the owner object

m and o ther objects inside m are allowed to access the representation of m . The receiver context k

m ust be inside the context of the argum ent object m , i.e. k < m . Conversely there is representation

exposure: by definition of dom inators, if an object w ith owner k also references an object w ith owner

m then m is not a dom inator for th a t object.

W hatever the value of k is a t source, in the ta rg e t the ownership context of the self reference is

given by expj. T here exists a difference of m — k contexts between the argum ent and the receiver.
P u ttin g the difference in relation to the ownership context of the self reference in the target, the

passed reference has context identifier m — k + 1 in the ta rg e t object. This calculation is cap tured

by A i:
A i (k, m) d= m — k + 1

Let us dem onstrate A i in action using the code in F igure 6-4 on page 106. Consider th e loop

shown in line 5 which passes a L i f t reference to each of the floors. In the body of the loop each

floor object has type F loor<0>; thus k = 0. In class B u ild in g , the lift object whose reference is

being passed has type L ift< 0 > ; thus m = 0. By A i in class F lo o r the type of this lift object m ust

be L if t< l> . As seen a t line 20, this is indeed the case.

In the re tu rn direction, the exp value of the reference in the current context is obtained from

field variable accesses or from the re tu rn value of m ethod calls. Two factors contribu te to calculate

the context identifier a t the destination:

CHAPTER 6. SAPS - SUBJECT DESIGN 108

• T he exp representing the ownership context of the object from which the reference is ob

tained, k.

• T he exp or exps in the source of the object whose reference is being obtained, n.

T he ownership context of the self reference in the source object is given by expj. In order to

prevent representation exposure, n m ust be greater th an zero. Conversely, the object w ith owner

n is the representation of n , and it m ay not be accessed by any object o ther th an the one bound

to t h i s . There exists a difference of n — 1 contexts between the owner of the object and the self

reference. P u ttin g the difference in relation to the the receiver’s context k, the obtained reference

has context identifier n — 1 + k. T his calculation is cap tu red by A 2 :

A 2 (k, m) d= k + n — 1

To dem onstrate A 2 tu rn once more to the code in Figure 6-4 on page 106. T he field update

expression a t line 22 sets the B u tto n , l i f t field. D uring type checking, the types of expressions on

bo th sides of assigm ent m ust be equal. On the left hand side, the type of b u t to n , l i f t is determ ined

by obtaining k and n. The type of b u t to n in the class of the expression is B utton<0>; thus k = 0.

T he type of the field in source class is L if t< 2 > as shown a t line 29; thus n = 2. By A 2 , the type of

expression b u t t o n . l i f t a t ta rg e t is L i f t< l> as expected.

6.2.3 Type Checking and Representation Containment

An im portan t purpose of exps is to prevent representation exposure by enforcing deep ownership

constrain ts a t compile tim e. In deep ownership, in order for object x to reference y , x m ust be inside
the set of valid owners of y [22]:

x —» y =>• x < owner(y)

So far we have presented only exps. So the only valid types we can form a t th is tim e are

those derived by substitu ting an exp for the owner context. To prevent representation exposure,

substitu tion m ust satisfy two properties:

• P r o p e r ty 1. If exp0 is in the type of a param eter, re tu rn value or field variable then this is
the only valid receiver expression.

• P r o p e r ty 2. T he context in the actual param eter m ust be as given by A 2 .

In a s ta tic check, only this is guaranteed to be the owner of the representation. Any other

expression may denote o ther objects whose representation context is different to this. Consequently,

this is the only valid receiver when the type of a m ethod param eter, a m ethod re tu rn value or a

field variable contains exp0. F igure 6-5 shows exam ples of valid and invalid accesses. In line 5, field

variable e has exp0 in its type. However, it can be upda ted because t h i s is the im plicit receiver

expression. T he sam e is not true of line 6 because d m ay contain a reference to any D object (not

ju s t t h i s . Lines 7 to 10 show valid and invalid expressions involving m ethod calls.

For well-typed exressions the explicit context identifiers m ust be m utually consistent. T he Sub

ject Compiler uses A 2 to check types for m utual correctness. F igure 6-6 shows A 2 being applied

to field access, field update and m ethod call expressions. In line 6, a newly declared variable eO is

initialised w ith an object re tu rned by a field access. By A 2 the type of the field access expression is

CHAPTER 6. SAPS - SUBJECT DESIGN

1 class D {
2 D<0> d;
3 E<0> e;
4 void f o o O {
5 e = new E<0>(); // Valid. Equivalent to 'this.e = new E C O ^) ; ’
6 d.e = ... // Invalid, e is in the representation of d
7 e = getSomeEQ ; // Valid. Implicit receiver 'this’ in rhs expression
8 .. = d.getSomeEQ; // Invalid. getSomeE returns a representation object
9 setSomeE(e); // Valid. The expected and actual parameter type is E<0>
10 d.setSomeE(e); // Invalid. Only ’this’ can access this method
11
12 >
13 E<0> getSomeE() { . . >
14 void setSomeE(E<0> someE) { .. }
15 >
16
17 class E { }

Figure 6-5: S tatic visibility check exemplified.

1 class C {
2 D<0> dO;
3 D<1> dl;
4 D<2> d2;
5 mainO {
6 E<0> eO = dO.el;
7 dl.el = new E<1>();
8 E<2> e2 = d2.getEl();
9 dl.setEl(new E<1>());
10 >

11 >
12
13 class D {
14 E<1> el;
15 E<1> getEl() { return el; >
16 void setEl(E<l> el) { this.el = el; }
17 >
18
19 class E { }

Figure 6-6: A 2 applied to different kinds of expression.

CHAPTER 6. SAPS - SUBJECT DESIGN 110

1 class LibraryCIass {
2 T Iibfun(V v) { .. >
3 void register(Object c) { /* e.g. for async notification * / }

4 >
5
6 subject S {
7 class C {
8 D<0> d;
9 void foo() {
10 LibraryCIass<vorId> Ic;
11 V<worId> v;
12 T<worId> t = Ic.Iibfun(v);
13 d.v = v; <- ok to pass world owned objects
14 // Ic.register(this); <- representation exposure!
15 >
16 >
17 class D {
18 V<worId> v;
19 >
20 >

Figure 6-7: Using world owned objects.

E<0>. Line 7 contains a field update expression. By A 2 the type of the expression on the left hand

side of assignm ent is E<1>. In line 8, a newly declared variable e2 is initialised w ith object re tu rned

by a m ethod call. The exp in the re tu rn type is given by A 2 (2 ,1) = 2. Finally, line 9 shows a m ethod

call th a t passes a reference into d l . Here A 2 is used to check the type of the actual param eter. e x p 2

is the context identifier of the owner in the receiver expression. ex p 2 is also th e declared context

identifier in class D. Thus, A 2 (l , 1) = 1 is the expected context identifier in the type of the actual

param eter.

Function A 2 is used also when t h i s is the receiver expression. For some class D, t h i s has type

D<1> and A 2 is applied conventionally to expressions involving t h i s (w hether used im plicitly or

explicitly) to determ ine the expected context identifier in the type of the expression.

world v ersu s exps

world denotes the global context bu t by definition of exps there is always one exp th a t denotes the

global context also. T he decision to keep world for objects of non-value types is a p ragm atic one.

It enables SAPS program s to in teract w ith existing libraries by trea ting as world-owned all objects

created from library classes or obtained from the interfaces of library objects. Im plem entations of

existing libraries are unaw are of ownership concepts and deep ownership, so representation objects

passed to objects of library classes m ay be exposed.

Despite the overlap w ith exps, we class world as representing a context th a t is external to all

o ther contexts. This decision enables objects of library classes to be referenced and passed freely

w ithin SAPS program s b u t also restric ts world owned objects from referencing o ther objects whose

context is specified by an exp. The Subject Com piler m ust ensure th a t only world owned objects are

received from and passed to the interface of a world owned object. A ssignm ent between exp owned

and world owned objects is not allowed. This leads to our th ird property for SO T correctness:

• P r o p e r ty 3. world is external to all contexts denoted by exps.

CHAPTER 6. SAPS - SUBJECT DESIGN 111

1 subject S {
2 class £ {
3 B<0> b;
4 C<1> c;
5 void foo() {
6 c = b.c;
7 >
8 >
9 class B {
10 C<2> c;
11 >
12 >
13
14 m a inO {
15 £<wor!d> a;
16 B<worId> b;
17 >

Figure 6-8: Exam ple showing out of range exps

Figure 6-7 shows the use of a E ib ra ry C la s s object w ithin a subject. In line 10, l c is declared

w ith owner world. This enables objects to be obtained from and safely passed to the l c object

(line 12), b u t prevents us from being able to r e g i s t e r self w ith the library (line 14).

O ut o f range exps

References whose types feature exp0 and e x p : are always well formed because they always represent

objects th a t are known to exist. However, it is possible to use the o ther exps to create references
to non-existent contexts, e.g. type T<999> can be created from class T. Such types are problem atic

because they are meaningless, i.e. the exp in the type does not refer to a real dom inator. exps m ust

prevent representation exposure bu t ou t of range exps do not cause representation exposure as they

always refer to objects outside the current representation context. Consequently, we do not check

for ou t of range exps.

Figure 6-8 shows an exam ple of ou t of range exps. Lines 15 and 16 show two objects being
created in the global context. In this program all exps in class A refer to contexts th a t exist: exp0

is th e represen tation context of m ain’s a; exp! refers to the ownership context of m ain ’s a, i.e. the

global context otherwise referred to by world. In class B, exp2 refers to the context th a t owns th is B

instance. There are two possible bindings for exp2: th rough object a or th rough object b in main.

T hrough a, exp2 binds to the global context. However, th rough b exp2 denotes the owner of the

global context, i.e. the owner of context world. B ut world is the roo t of the ownership tree and has

no dom inators. Hence, exp2 is an out of range context identifier.

A ttem pting to access an object w ith an ou t of range context is a conceptual error although no t a

type error. In the exam ple of Figure 6-8, m ost probably the designer of subject S intends for objects
of type B to be used as p a rt of a collaboration w ith objects of type A and clients should no t create

instances of B directly. Judicious use of visibility modifiers should help prevent unauthorised access.

By declaring class B p r iv a t e , it is possible to disallow the in stan tia tion of B outside S.

CHAPTER 6. SAPS - SUBJECT DESIGN 112

6.3 Unknown Context Identifiers

For m any applications of subjects, exps make it possible to refer directly to all the contexts an

object needs to reference, e.g. Figure 6-3 on page 105. However, there exist concerns im plem ented

by subjects which need to refer to contexts which are not known in advance for one of two reasons:

• The context is external to the ownership stru c tu re of the subject, such as when a collabo

ration im plem ented by the subject refers to d a ta objects external to the set of collaboration

participants.

• The decision abou t the context should be delegated to another subject. Subjects im plem ent

concerns th a t cross-cut the stru c tu re of o ther subjects. In order for a subject to ad ap t to the

ownership stru c tu re of another subject the ownership context has to be s ta ted more generally

th an is possible w ith exps.

Unknown context identifiers address b o th issues. In order to condense the presentation we shorten

‘unknown context identifer’ to unk (plural: unks). unks ab strac t explicit context identifiers in the

sense th a t each unk represents one exp per class. They are context variables w ith subject scope bu t
class level binding.

To m otivate unks, consider the developm ent of the SuperTax concern. A super tax is a flat levy

on taxable objects in a tax declaration. It is envisaged th a t this concern will apply to a num ber of tax

departm ents. D uring analysis the in ternal organisation of tax departm ents is tran sla ted to ownership
structu res w ithin the design. Some of the requirem ents and their ownership in terp re ta tions (in an

italicised fo n t) are given below:

• T he declaration artifac t and the goods specified w ithin belong to a tax declaration. TaxCalcu-

l a t i o n owns the d e c l a r a t i o n and the Goods objects.

• T he tax declaration is p a rt of an overall tax calculation for a trader. T a x C alc ul a t io n owns
the d e c l a r a t i o n .

• T he tax declaration is the responsibility of the tax assessor who works w ith all aspects

of tra d e r’s tax liabilities. TaxAssessor owns Tax Ca lc ul a t io n objects and the associated

d e c l a r a t i o n s .

• T he tax declaration belongs to the Custom s and Excise office which employs the tax assessors.

CustomsAndExciseOff ice owns the TaxAssessors.

• The goods listed in the tax declaration belong to the Custom s and Excise office. CustomsAnd
E x c i s e O f f i c e owns the Goods objects in the d e c l a r a t i o n .

In realising the SuperTax concern we create the SuperTax subject. T his subject classifies Goods

as either T ax ab le or NonTaxable, levying a flat du ty of 200 on every T ax ab le object. W hen a

client calls c a lc u la te T a x C . .) w ith a d e c l a r a t i o n a rray as argum ent, the du ty is calculated and

stored in the T a x C a lc u la t io n ’s amount field. Figure 6-9 shows the key p a rts of the im plem entation.

It adopts an ownership struc tu re where the d e c l a r a t i o n and the Goods objects are owned by the

T a x C a lc u la tio n . The same subject w ith an alternative ownership stru c tu re is shown in F igure 6-10.

Here the d e c l a r a t i o n is owned by the T ax A ssesso r object and the Goods objects are owned by the

CHAPTER 6. SAPS - SUBJECT DESIGN

subject SuperTax {
class TaxAssessor {

TaxCaIcuIation<0> tc;
>
class TaxCalculation {

int amount;
void caIcuIateTax(Goods<0, 0>[] declaration) {

for(int i = 0; i < declaration.length; i++) {
amount += declaration[i] . calcuIateSuperTaxO ;

>

>

>
abstract class Goods {

int calcuIateSuperTaxO;
>
abstract class Taxable extends Goods ■(

int calcuIateSuperTaxO { return 200; >
>
abstract class NonTaxable extends Goods {

int calcuIateSuperTaxO { return 0; }
>

Figure 6-9: SuperTax subject w ith exam plar ownership s tru c tu re 1.

subject SuperTax {
class CustomsAndExciseOffice {

TaxAssessor<0> ta;
>
class TaxAssessor {

TaxCaIcuIation<0> tc;
>
class TaxCalculation {

int amount;
void caIcuIateTax(Goods<l, 2>[] declaration) {

for(int i = 0; i < declaration.length; i++) {
amount += declaration[i] . calcuIateSuperTaxO ;

>

>

>

>

Figure 6-10: SuperTax subject w ith exam plar ownership s tru c tu re 2.

CHAPTER 6. SAPS - SUBJECT DESIGN 114

subject SuperTax {
unit k, m;
ucirc k <= m;
class TaxCalculation {

int amount;
void ca!cuIateTax(Goods<k, m>[] declaration) {

for(int i = 0; i < declaration.length; i++) {
amount += declaration[i] . calcuIateSuperTaxO ;

>
>

>
abstract class Goods {

int calcuIateSuperTaxO;
>
abstract class Taxable extends Goods {

int calcuIateSuperTaxO { return 200; >
>
abstract class NonTaxable extends Goods {

int calcuIateSuperTaxO { return 0; }
>

Figure 6-11: SuperTax subject im plem ented using unks

Custom sA ndExciseO ff i c e object. The two solutions differ only in term s of ownership structu res as
expressed by the exps in the types.

unks enable the ownership struc tu re to be s ta ted m ore generally th an is possible w ith exps. A
single program in Figure 6-11 can replace the two program s shown in Figures 6-9 and 6-10. In the

SuperTax subject unks facilitate two kinds of ownership variations: the owner of the d e c l a r a t i o n
array and the owner of the Goods referenced in the d e c la r a t io n . The variation is introduced

through unks k and m (referred to as unkjt and unkm henceforth), unk*, denotes the owner of the

d e c l a r a t i o n and unkm denotes the owner of th e Goods. Figure 6-11 shows the SuperTax subject

w ith exps replaced by the new unks.

An unk is a context variable th a t binds to one exp per class. Figures 6-9 and 6-10 presented

two possible bindings for unkfc and unkm. For Figure 6-9, in class T a x C a lc u la t io n unk*, binds to

exp0 and unkm binds to exp0. For Figure 6-10, in class T a x C a lc u la t io n unk*, binds to exp: and

unkm binds to exp2. Now, thanks to unks, a single SuperTax subject can replace a family of subjects

th a t vary purely in term s of the ownership stru c tu re formalised by their explicit context identifiers.
Figure 6-11 also contains a u c i r c declaration. T his will be explained once we have described the

unk concept in g reater detail.

6.3.1 Understanding unks

unks are characterised by the following list of properties:

• As seen in the SuperTax example, an unk generalises an explicit context identifier in a class. It

represents a choice of explicit context identifiers which enables a sub ject to adap t to a greater
num ber of ownership structures.

• An unk gets bound by composition. To avoid confusion, we use resolution to refer to ‘unk

binding by subject com position’, reserving binding for function and ownership param eters.

CHAPTER 6. SAPS SUBJECT DESIGN 115

subject S {
unk k;
class A {

B<0> b;
void passC(C<k> c) {

b .doStuffToC(c);
>

>
class B where 1 <= k {

void doStuffToC(C<k> c) { ... }
>
class C { }

}

Figure 6-12: An example involving an unknown context identifier.

• unks are scoped a t subject level. Conceptually an unk represents a single unknown context,
th a t is, one object in the collaboration defined in the subject.

• unks resolve on a per class basis. Different resolutions in different classes are inevitable: two

objects a t different ownership tree depths will use different exps to refer to a common object.

T he global scope and class level resolution mean th a t an unk is a set of tuples of the form
(ClassName, unk), where each tuple maps onto a set of exps. This is illustrated by the example in
Figure 6-12. A fc-owned object c is passed to an A object which collaborates w ith a B object by
doing something with c.

unkfc resolves to an exp in A, B but not C because C does not contain any expressions whose
type contains unk*;. unkfc can resolve to any exps in classes A and B so long as the resolutions are
m utually consistent such th a t the subject type checks successfully. Valid resolutions are shown in
the following table below. Any row represents a valid resolution. The ellipsis indicates th a t other
values m atching this pa ttern are also acceptable.

A B

0 1

1 2

2 3

By using A i the reader can mentally check th a t any resolution for A will produce the correspond

ing resolution for B. In this Chapter, the focus is on exp-unk interaction within subjects. Subject
composition and unk resolution are presented in the next Chapter.

6.3.2 unk Resolution Constraints

In a few cases an unk can resolve to any exp; however, mostly the set of values to which an unk

can resolve is constrained by other relationships. This introduces the notion of an unknown context
identifier resolution constraint, formalised in SAPS by ucirc1 declarations. A ucirc is a predicate
th a t expresses a constraint on unk resolution.

1 pronounced “you-serk”

CHAPTER 6. SAPS - SUBJECT DESIGN 116

subject S {
unit k;
nnk m;
class 5 where 1 <= k, k <= 1 { ... }
class B where m <= 1, 1 <= k, 2 <= m { ... >

>

Figure 6-13: unks and resolution sets.

There are two kinds of u c i r c appearing in code bo th of which have m ade an appearance in the

preceding examples:

• Subject level ucirc declarations express an in ter unk constrain t. These appear a t sub ject level

because they express a context ordering th a t should hold for all classes in which the two unks

appear together. For example, u c i r c k <= m expresses th a t the context denoted by unk*, is

always inside the context denoted by unkm.

• Class level ucircs are specified in w here clauses of classes [30]. They express a constrain t on unk

resolution applicable to th a t class and classes derived from it. For example, c l a s s A w here

k <= 2 expresses th a t in class A unk^ may resolve to exp0, expx or exp2. Also, c l a s s B w here

1 <= m, m <= 2 expresses th a t in class B unkm m ay resolve to exp: or exp2.

The Subject Com piler perform s checks against ucircs a t b o th class and subject level. B u t before

the body of a class is checked, the ucircs themselves are checked for consistency.

ucirc C on sisten cy Checking

A consistency check ensures th a t ucircs are well formed and offer meaningful constrains on unk

resolution. An unk implies a choice of exps and it is m isleading to use an unk when ucircs im ply one

or no exps. We use the term resolution set to refer to the set of exps to which an unk may resolve in

a class as determ ined by the ucircs. An em pty resolution set indicates a type error. The unk should

be replaced by the exp when its resolution set is a singleton. In Figure 6-13, for class A, unk*, should

be replaced by exp^ For class B, unkm has an em pty resolution set bu t the resolution set for unkfc

is valid.

The ucircs are checked per class, bu t first the class level ucircs are extended w ith those a t sub ject

level. In order to be consistent the ucircs of each class should satisfy the following conditions:

• All unks appearing in ucircs are declared.

• There are no cycles in ucirc declarations.

• T he com bination of class and subject level ucircs produces valid resolution sets.

Looking a t cycles, consider r = {(w < v) , (v < w) , (w < u)}. This set has a cycle. Clearly,

u = v = w is the only resolution which satisfies all constraints. This set of contexts and the

associated constrain ts should be replaced by a single unk. We require cycles to be removed from

designs because they m ay cause confusion. T h a t is, a t a glance unks and ucircs lead the sub ject to

reuser to believe th a t there exists a choice contexts when there is no such choice.

W hen subtypes are introduced, the resolution constrain ts of the subtype m ust be valid sub
constraints of the supertype. An unk in the subclass may never resolve to a value th a t is outside

CHAPTER 6. SAPS - SUBJECT DESIGN 117

the resolution set specified in the superclass. The subclass may strengthen the ucircs defined in

the superclass bu t it m ay never weaken them . T h a t is, the superclass constrain ts m ust im ply the

constrain ts of the subclass. Consistency checking of ucircs is formalised by the following property:

• P rop erty 4. The resolution sets of all unks m ust be well formed.

6.3.3 Checking Classes Against ucircs

ucircs can be understood as sanity conditions for unks. They have three responsibilities:

• To check th a t types are well formed.

• To com m unicate valid resolution sets.

• To type check expressions involving objects whose types contain unks.

T he checking of types derived from uncom posable classes will be described la ter in this C hapter.

However, we are in a position to describe arrays.

Checking Arrays

In general, the contents of an array should be accessible everywhere the array is accessible. For one

dim ensional arrays two context identifiers are required: the owner of the array m ust be inside the

owner of the elem ents of the array. In arrays of higher dimension, each earlier dim ension m ust be
inside the la ter ones. The constrain ts on context identifier substitu tion for arrays introduces our

next p roperty for SO T correctness:

• P rop erty 5. The context substitu tions for ownership param eters of arrays m ust allow access

to lower dimensions wherever higher dimensions are accessible.

Recall the SuperTax exam ple of F igure 6-11 on page 114. T he Goods objects in the d e c l a r a t i o n

should be accessible wherever the d e c l a r a t i o n object is accessible. From left to right, th e two

context identifiers in the type of d e c l a r a t i o n denote the array and the elements. The ucirc relating

unkfc and unkm guarantees th a t the d e c l a r a t i o n array will be accessible only where its elements

are accessible.

C om m unicating Valid R eso lu tion S ets

P roperty 1 ensures th a t objects in the representation context cannot be accessed externally. There

fore, if an unk-owned class m em ber is accessed externally, then exp0 is no t in the realisation set of

th a t unk. In order to com m unicate valid resolution sets to subject reusers, SO T requires ucircs for

all unk-owned class m em bers w ith external clients. D eclarative com pleteness of subjects m akes it

possible to validate all m em bers for external access.

Eecall the exam ple in Figure 6-12 on page 115. This exam ple features a w here clause on class B

th a t constrains the resolution set of unk*,. This ucirc is required in order to prevent representation

exposure by expression b . d o S tu f f ToC (c) in the body of m ethod A. passC (. .) . In order to prevent

representation exposure in the body of class A, class B requires a resolution constrain t.

In order to understand the m otivation for this constrain t, consider the effect of unkfc resolving to
exp0 in B. Then expression b . d o S tu f f T o C (c) would lead to representation exposure. T hus ucirc 1

<= k is a sanity check th a t constrains the resolution set of unkfc in B order to prevent representation

exposure during composition.

CHAPTER 6. SAPS - SUBJECT DESIGN 118

subject S {
unk k;
unk m, n;
ucirc m <= n;
class U where 2 <= k {

T<2> t;
V<k> v;
W<m> w;
X<n> x;
void foo() { t.bar(v); >
void fee() { w.x = x; }

>
class T where 1 <= k {

void bar(V<k> v) { ... >
>
class W where 1 <= n {

X<n> x;
>
class V { ... }

class X { ... }
>

Figure 6-14: Checking expressions involving unks.

Checking E xpressions

ucircs are also used when checking field access, field upda te and m ethod call expressions. W ithin a

subject, an object whose context is given by an unk m ust always be referred to using the same unk.

I t is an error for an unk to bind to an exp (and vice versa) in a m ethod call, field update, or any
o ther expression.

There are num ber of cases, we will go th rough each one in tu rn .

• F irst, in Figure 6-14, suppose th a t we are checking the expression in the body of m ethod

U .fo o (. .) . Consider the analogy w ith exps. Recall th a t exps num ber the dom inators of

an object. Suppose U .v has type V<1>. By definition or exps, v is inside expj. An exp2

owned object t cannot reference v; conversely, contrary to the definition of exps, expx does not

dom inate v. In order for t to reference v, t m ust be inside v.

Now exam ine Figure 6-14. In the body of class U, in order for t to reference v, t m ust be inside

v. The resolution set of unk*, m ay contain neither exp0 nor exp2. T he resolution constrain t in

the where clause of U formalises this constrain t. Note th is ucirc may be om itted when an u n k ’s

resolution set is unrestricted.

One special case concerns the trea tm en t of th e self reference this. The owner of this is always

given by exp^ A lthough it is technically valid to pass th e self reference in relation to an unk

whose resolution set is {0,1}, in the present work this can be passed only in relation to exp0

and expj. T his is a simplification th a t is intended to improve clarity w ith m inim al im pact on

subject reusability.

• Secondly, in Figure 6-14, suppose th a t we are checking the expression in the body of m ethod

U .f e e (. .) . By the sam e principle as in the previous case, in order for w to reference x, w m ust

be inside x. The owners of these objects are given by unks, so th is constrain t is expressed a t

subject level by u c i r c m <= n.

CHAPTER 6. SAPS - SUBJECT DESIGN 119

subject S {
unk k;
class F {

H<k> h;
J<2> j;
void foo() { h.j = j; }

>
class H {

J<3-k> j; // o-o!
>

Figure 6-15: F urther checking of expressions involving unks.

subject S {
unk k, m;
ucirc k <= m;
class F {

H<k> h;
J<m> j ;
void foo() { h.j = j; }

>
>
class H where 1 <= m {

J<m> j; // that’s better!

Figure 6-16: Yet more checking of expressions involving unks.

• Thirdly, we disallow expressions which place an unk owned object as th e receiver against types
containing exps in m ethod param eters, re tu rn types, or field variables. T he resulting type

contains context expressions which m ay be correct bu t difficult for the reader to com prehend.

Class H in F igure 6-15 shows the context expression produced by exp arithm etic. According
to A 2 the type of F. j is correctly given as A2 (k , 3 — k) = 2. To avoid context expressions

involving unks, the program m er should introduce u nkm and rew rite th e ucircs as shown in

Figure 6-16.

Type checking expressions whose types contain unks introduces two further correctness properties:

• P r o p e r ty 6. T he ucircs m ust imply the inter-unk ordering required by the type or expression.

• P r o p e r ty 7. The ucircs m ust imply the resolution constrain ts required by the type or expres

sion.

6.3.4 Per-Class Checks

unks are abstractions over exps and so inherit all the properties associated w ith exps. unks represent

a choice of exps. So a program th a t uses unks should have a choice of exps to use in the place of its

unks. An ownership struc tu re th a t cannot be expressed using exps also cannot be expressed using

unks. For example, type checking fails in R .fo o O in F igure 6-17 because one of the two field update

expressions is invalid. This program should also fail type checking when unks are used in the place of

exps. The unk checks we have described to now are insufficient. They check each semicolon delim ited

expressions separately bu t th is condition requires the recording of history. As shown in the following

CHAPTER 6. SAPS - SUBJECT DESIGN 120

1 subject S {
2 class R {
3 T<0> tO;
4 T<1> tl;
5 V<2> v;
6 void fo o O {
7 tO.v = v;
8 tl.v = v;
9 >
10 >
11 class T {
12 V<3> v;
13 >
14 class V { ... }
15 >

Figure 6-17: A dditional checks for unks. Case 1.

table, there are two problem cases. Colum ns C a se 1 and C a se 2 show the replacem ent types for

declarations in Figure 6-17.

D e c la r a t io n C a se 1 C a se 2

tO in line 3 T<0> T<a>

t l in line 4 T<1> T

v in lines 5 and 12 T<k> T<k>

In case 1, given expressions in lines 7 and 8 of Figure 6-17 and a valid resolution for unk*, in R, unk*,

will resolve to different exps in T. In case 2, if un k a and unk*, resolve to different exps in R then unk*

will resolve to different exps in T. Conceptually, two unks refer to two different contexts, so u n k a and

unkf, should be replaced by a single unk.

To detect these cases the Subject Compiler uses an E x p re s s io n R e p o s ito ry th a t records the

types of receiver objects of affected expressions. E ntries have the following form:

{k, C, v)

where A; is an unk whose usage is recorded. I t appears in a field, re tu rn value or param eter type. C is

the class containing the expression, v is either an unk or exp denoting the last usage. M ethod calls,

field accesses and updates trigger a look-up and a possible up d a te to the E x p re s s io n R e p o s ito ry .

E rrors are detected as follows:

• In case 1 a t line 7, the E x p re s s io n R e p o s ito ry object has no prior en try for (unkfc,T), so tuple

(unkfc ,T ,exp0) is inserted. U pon checking code in line 8, we lookup (unkfc,T) which returns

exp0. B ut, expo ^ ex p l5 so line 8 fails type checking.

• In case 2 a t line 7, the E x p re s s io n R e p o s ito ry object has no prior en try for (unkfc,T), so tuple

(unkfc,T, unka) is inserted. U pon checking code in line 8, we lookup (unkfc,T) which returns

unka . B ut, un ka / unkb, so line 8 fails type checking.

O ur next correctness property states:

• P r o p e r ty 8. All type checking of expressions whose types contain unks uses th e E x p re s s io n R e p o s ito ry .

CHAPTER 6. SAPS - SUBJECT DESIGN 121

class Queue<data> {

Link<0, data> head = null;
Link<0, data> tail = null;

void put(Object<data> o) {
Lin£<0, data> I = new Linlc<0, data>(o);
if (head == null) { .

head = tail = I;
} else {

tail.next = I;
tail = I;

>
>

Object<data> get() {
if(head == null) return null;
Object<data> o = head.o;
if(head == tail) {

head = tail = null;
} else {

head = head.next;
>
return o;

>
>

class Link<d> {
Object<d> o;
Lin£<l, d> next;
Link(Object<d> o) { this.o = o; }

>

class QueueClient {
Queue<0, 1> ql;
Queue<0, 0> q2;

>

Figure 6-18: Queue class im plem ented using Subjective O wnership Types

6.4 Classes w ith Ownership Parameters

A bstract d a ta types are im plem ented as classes w ith ownership param eters in SO T. These classes

are special because the owners of the d a ta they reference should be specifiable independently from

the owner of the abstraction itself. M ultiple instances of th e sam e kind of abstraction , possibly w ith

different aliasing properties, m ay be required in the body of the sam e class, unks are insufficient

to specify this kind of diversity because unks are resolved per class while we require per object

variability.

O ur solution is to adopt ownership param eters for additional contexts which should be specifiable

param etrically. Linked lists, queues and stacks have a single ownership param eter for their da ta .

H ashtables have two ownership param eters: one for the keys and the o ther for the values. Figure 6-
18 shows class Queue im plem ented using ownership param eters. M ultiple instances of Queue w ith

different ownership properties can be created in class Q u eu eC lien t. C on trast th is design w ith the

one for O wnership Types shown in Figure 5-2 on page 75.

CHAPTER 6. SAPS - SUBJECT DESIGN 122

T he set of contexts th a t can be referenced in the im plem entation of Queue is {0,1, d a ta , world}.

exp0 and expx denote the representation context and the owner of the curren t instance. No other

exps are allowed. Observe th a t classes do not declare the owner param eter in the list of ownership

param eters.

6.4.1 Composable and Uncomposable Classes

Classes w ith ownership param eters are uncomposable in SAPS: subject-oriented com position rules

which describe join points inside these classes are disallowed, bu t delegation and inheritance can

still be used to extend uncom posable classes. Classes th a t use exps and unks in the ir definition are

composable. These can partic ipa te in inheritance, delegation and all subject-oriented com position

rules.

T he inheritance hierarchies of com posable and uncom posable classes are separate except for

the uncom posable default class O b je c t found a t the roo t of b o th com posable and uncom posable

hierarchies. A class which does not declare a superclass im plicitly extends O b je c t. Uncom posable

classes are distinguished syntactically by having a (possibly em pty) com m a separated sequence of

ownership param eters following the class nam e as shown in Figure 6-18. B oth kinds of classes share

th e sam e nam e space and it is illegal to have an uncom posable and a com posable class w ith the
sam e nam e in one subject.

As detailed a t the beginning of this C hapter, the m otivation for separation comes from a series of

observations detailed in C hapter 5. Common to these is the tug-of-war between w anting to cleanly
separate concerns while still providing encapsulation. In Section 2.3.3 on page 15 we com pared black-

box and w hite-box reuse strategies. P rogram m ers as experts of their trad e often require access of

certain key aspects of im plem entation. We concluded th a t in order to be adap tab le to unanticipated

changes a com ponent needs to provide facilities for changing from the inside. B ut there is often a lim it

to the details th a t will benefit the expert. Section 2.3.3 used the racing driver analogy to m otivate

this model. In Section 3.1.3 on page 27 it was noted th a t th e M DSOC m odel aims to improve

the m odularity of scattered and tangled concerns bu t does no t improve encapsulation. Subject-

O riented Program m ing is a flexible model for separating and recom posing concerns. I t provides
access to im plem entation th a t program m ers require bu t it has no program m atic way of m arking a

com ponent as an im plem entation abstraction which should no t be decomposed further. SOP lacks
the encapsulation m echanisms th a t stop the program m ers being overwhelmed by im plem entation

details.

In SAPS, uncom posable classes are a way of m arking a class as an im plem entation abstraction.

T he m ost im m ediate exam ple of an im plem entation abstaction is a class such as Queue shown above.

The vast m ajority of software developers will not w ant to know how Queue is im plem ented, they are

black-box users of Queue. L ater on, the same will probably be true of subject-oriented program s

im plem ented using Queue objects. New com ponents constructed by composing subjects will be used

as basic building blocks in larger systems. And so the cycle will continue.

The subject designer chooses w hether to define a class as com posable or uncom posable. Overall

we expect th a t developers will be defining com posable classes. Uncom posable classes are used

m ostly to define new kinds of container abstractions. Unlike abstractions of “real world” entities,

containers are characteristic of an objective perspective and have been the hallm ark of object-

oriented program m ing. In general, the im plem entations of these abstractions cannot be improved
by subject-oriented decomposition.

CHAPTER 6. SAPS - SUBJECT DESIGN 123

We antic ipate th a t common ADTs will be reused from uncom posable class libraries. Definition

of new uncom posable classes should be relatively rare and lim ited to th e following cases:

• To define new kinds of container abstractions.

• To define classes whose instances need to be reused in conjunction w ith different ownership

properties, and the system of exps cannot provide the required flexibility.

• To create abstractions th a t should be sealed, thereby artificially restricting the com position

interface of a subject.

Class Queue shown in Figure 6-18 exemplifies the first point. For the second point we propose

the following heuristic:

C reate an uncom posable class when requiring an abstraction th a t m ay have m any in

stances, possibly in m any subjects, each w ith different ownership properties. C reate a

com posable class otherwise.

In a la ter Subsection we will present the lim itations of th e exp no ta tion com pared to param eterisa-

tion. T he evaluation C hap ter 8 contains examples of uncom posable classes being used for interface

restriction and for sealing.

unks or O w nership Param eters?

unks are not the sam e as ownership param eters and they can never be confused for one another, unks

are used in composable classes and ownership param eters are used in uncom posable classes. They

are conceptually sim ilar in th e sense th a t bo th provide a way of param eterising program s, allowing

th ird parties to custom ise ownership structures. Beyond this, unks and ownership param eters work

very differently:

• The scope of an ownership param eter is a class and the classes derived from it. T he scope of

an unk is a subject - a collection of heterogeneous classes.

• unks are resolved by subject com position and ownership param eters are bound during object

instan tiation .

• An unk can bind an ownership param eter of an uncom posable class, bu t an ownership param

eter is never resolved.

6.4.2 Interaction Between The Hierarchies

In teraction between hierarchies encompasses bo th inheritance and aggregation, the so-called is-a and

has-a hierarchies respectively. A part from a common root, the two inheritance hierarchies cannot
be mixed. It is not possible to create an uncom posable class by inheriting from a composable class

or vice versa. A lthough there may be im plem entation related reasons for doing so, conceptually th e

two hierarchies serve different purposes and so should not be mixed.

W hen defining a new com posable class, instances of bo th com posable and uncom posable classes

can be used in the im plem entation. The evaluation C hap ter 8 relies extensively on the uncom posable

class V ec to r whose core interface (and th a t of the associated I t e r a t o r) is shown in Figure 6-19.

CHAPTER 6. SAPS - SUBJECT DESIGN 124

class Vector<data> {
void add(Object<data> o);
Object<data> remove(Object<data> o);
IteratorCl, data> iterator(); // a version that respects deep ownership

>
class Iterator<data> {

bool hasNextO;
Object<data> next();

>

Figure 6-19: V e c to r class core interface.

class Pair<m, n> {
X<m> fst;
Y<n> snd;

}

class PairQueue<p, q, r> {
// p binds owner of Pair, q binds Pair.m, r binds Pair.n
void put(Pair<p, q, r> obj) { ... >

>

Figure 6-20: Class P airQ ueue specialised to uncom posable classes.

W hen types are created exps and unks bind the ownership param eters of uncom posable classes bu t
the way ownership param eters are used in uncom posable class definitions is hidden from clients.

U ncom posable classes are defined using instances of bo th com posable and uncom posable classes.
Queues and V ec to rs store instances of O b jec t. O bjects of any class can be stored because all

classes derive from O b jec t. Specialised subclasses of Queue or V e c to r m ay be usable only w ith

uncom posable classes. For instance, in Figure 6-20 class P airQ ueue is usable only w ith objects of

uncom posable class P a ir .

Com posable class instances can be used in the definitions of uncom posable classes only when the
im plem entation is restric ted to accessing m em bers whose types feature contexts ex p 2 and world only.

exp0 is the representation context which cannot be accessed, unks and all o ther exps are undefined

in uncom posable classes. Thus, container classes which store references to objects of composable

classes bu t never access the interface can always be used w ith com posable class instances. This

restriction introduces another property necessary for SO T correctness:

• P r o p e r ty 9. Expressions in uncom posable classes m ust be restric ted to contexts {1, world} in

the m em bers of composable classes.

Subclasses of uncom posable classes can declare additional ownership param eters to those which

are inherited. Uncom posable classes can be declared in subjects; however, it is best to declare them in

class libraries. The libraries can then be im ported by all subjects which need to use these abstractions

in their im plem entations. Those which are declared in subjects are not modified by com position, bu t

depending on the com position rules either forwarded to the o u tp u t subject unchanged or discarded.

CHAPTER 6. SAPS - SUBJECT DESIGN 125

1 class E<p, q> where p <= q {
2 Queue<p, q> s; // requires p <= q
3 X<0, p> x;
4 Y<p> y;
5 void foo() {
6 x.y = y;
7 >
8 class X<p> {
9 Y<p> y;
10 >
11 class Y<> { }
12 >

Figure 6-21: O wnership param eter ordering.

6.4.3 Ownership Parameter Ordering

In uncom posable classes the owner param eter is im plicitly inside o ther param eters. Therefore, any

substitu tion m ust satisfy the im plicit constrain t of uncom posable classes th a t requires the owner to

be inside all o ther contexts. T his leads to our next property:

• P rop erty 10. In a substitu tion for the param eters of an uncom posable class the context

binding owner m ust be inside o ther contexts.

W hereas for exps the ordering of contexts is explicit in the notation , the ordering of contexts

represented by ownership param eters may need to be m ade explicit. To help explain the issue,
consider the exam ple in Figure 6-21. Line 2 requires p <= q because the Queue owner m ust be
inside the d a ta referenced by the Queue. Line 6 requires 1 <= p because contexts th a t bind to

ownership param eters m ust be outside the context th a t binds expj, i.e. the owner context. In order
to disam biguate the context ordering in view of such types and expressions, we again employ where

clauses. These clauses are required only where the context ordering needs disam biguating. So if no
type or expression in E depends on p <= q then the where clause is not required. C onstrain t 1 <=

p is im plicit in SO T and does not require a where clause. T he requirem ent for ordering of ownership
param eters introduces our next p roperty for representation containm ent:

• P rop erty 11. A substitu tion for the ownership param eters of an uncom posable class m ust

obey the context ordering in its where clause.

As in com posable classes, cycles in the constrain ts specified in where clauses should be removed

because they m isleadingly represent a choice of contexts. Subclasses of uncom posable classes may

define additional ownership param eters and constrain ts on ownership param eter substitu tion . To

ensure representation containm ent we require the final property:

• P rop erty 12. T he ownership param eter ordering of uncom posable classes m ust be well
formed.

T he use of types derived from an uncom posable class Map in bo th com posable and uncom posable

classes is shown in Figure 6-22. A m ap is an A D T th a t stores key, value pairs and supports operations

for addition and removal of pairs. This abstraction has a containm ent property which sta tes th a t

values may be accessed only where the keys can be accessed, formalised in line 1 by a constrain t

on ownership param eters of class Map. Map is defined as an uncom posable class; it is a trad itional

CHAPTER 6. SAPS - SUBJECT DESIGN

1 class Map<key, value> where key <= value {
2 void put(Object<key> k, Object<vaIue> v) { ... }
3 Object<value> get(Object<key> k) { ... }
4 >
5
6 subject SafetyBoxFeature {
7 class SafetyBox<data> {
8 Map<0, 0, data> datamap;
9 Password<0> password;
10 Object<data> getItem(String pw) {
11 if(password.accepted(pw)) return datamap.get(password);
12 >
13 >
14 class Password { .

15 bool accepted(String pw) {...)■
16 >
17 >
18
19 subject AddNewAccount {
20 unk k, m;
21 ucirc k <= m;
22 class AccountPortfolio {
23 Map<0, k, m> accounts;
24 addAccount (Account<k> acc, Integer<m> amount) ■(
25 accounts.put(acc, amount);
26 >
27 >
28 class Account {
29 String holder;
30
31 >
32 >

Figure 6-22: Using types derived from uncom posable classes.

CHAPTER 6. SAPS - SUB JECT DESIGN 127

object-oriented abstraction whose design cannot be im proved by subject-oriented decom position.

Ow nership param eters enable m ultiple m aps to be created, each w ith different ownership properties.

Figure 6-22 defines two clients of Map. The uncom posable class S af etyB ox uses a m ap to hide

d ata . D a ta can be accessed by providing the right password. S af etyB ox is an exam ple of an

abstrac tion constructed from and built on top of an existing Map class. Its designer envisages th a t a

reuser will require m ultiple safety boxes to im plem ent a security policy subject, each w ith a different

aliasing policy. In line 8, to create a type from Map the available contexts are su bstitu ted for the

ownership param eters of Map. The first identifier denotes the owner, the second and th ird b ind key

and v a lu e respectively. Map requires th a t owner <= key <= v a lu e . The substitu tion satisfies this

condition.

A nother client of Map exists in th e AddNewAccount subject. This subject im plem ents a feature

for adding a new account to a portfolio. Class A c c o u n tP o r tfo l io is composable; th is sub jec t will

be composed w ith others to create a su ite of financial tools. In order to m axim ise reusability the

subject defines unkfc and unkm to denote the owners of the A ccount object and the am ount it

contains. These will be resolved by o ther subject w ith which AddNewAccount will be composed.

A m ap is used in A c c o u n tP o r tfo l io to store th e accounts and their am ounts. exp0, unk*, and

un km bind the owner context and o ther ownership param eters of Map. P roperties 10 and 11 ensure

th a t only substitu tions satisfying the ownership param eter ordering are accepted. Validity depends

on u c i r c k <= m (line 21) because Map requires th a t the context binding to key is inside th e context
binding to v a lu e . C orrectness property 6 ensures th a t it is possible to observe th is constrain t from

the ucircs. Conversely, th is would be an invalid substitu tion .

6.4.4 Strengths and Limitations of the System of exps

exps are well su ited to anno ta ting the ownership properties of subjects because SO P shifts from
classes to collaborations of classes as units of in terest. In object-oriented program m ing the class

is the m odular unit; an object of a class m ay appear a t any point in an object graph including a t

the top w ith world as owner. No assum ptions can be m ade abou t objects outside the owner. In

subject-oriented program m ing, subjects often im plem ent collaborations where objects are tightly

coupled. The subject is the pertinen t m odular unit. We th ink of objects as playing very particu lar

roles in collaborations; the subject creator has a priori knowledge of the existence of objects external

to the owner. This is very well dem onstrated by the F lo o rP re s s B u tto n subject: it is possible to

sketch the ownership stru c tu re of F lo o rP re s s B u tto n from the types of in B u ld in g and t l i i s F lo o r

in Figure 6-4. The labelling of dom inators num erically contributes to m aking SO T into an elegant

system for specifying program m er intent.

T he ordering of contexts inherent in the exp nota tion can be achieved w ith ownership param eters

by specifying an order for the contexts bound to ownership param eters. T his ordering is explicit in

B oyapati et al [19]. However, ordering alone does no t address the fundam ental problem s caused by

the com bination of ownership param eters and subjectiv ity (see Section 5.3, page 88).

Com pared to Ow nership Types, SO T can be classed as m ore permissive. T he system of exps

allows one object to reference another w ith a different owner w ithout prior perm ission. In O w nership

Types, a perm ission in the form of ownership param eterisation is always required. Seen from a

collaboration perspective th is is a strength : pre-established collaborators generally do no t seek

perm ission to com m unicate; subjects pre-establish the boundaries of object collaboration.

C om pared to ownership param eterisation , explicit contexts appear to hardw ire the ownership

CHAPTER 6. SAPS - SUBJECT DESIGN

subject SI {
class fl {

Pair<0, 0, 1> pi;
PairCl, 1, 1> p2;
X<0>
Y<1>
X<1>
Y<1>

>
class Pair<m, n> {

X<m> fst;
Y<n> snd;

>
class Main {

void main() {
A<0> a;
Y<0>
X<0>
Y<worId>

>

>
>
subject S2 {

class A {
Pair<0> pi;
Pair<l> p2;
X<0>
Y<0>
X<1>
Y<1>

>
class Pair {

X<1> fst;
Y<1> snd;

>
class Main {

void main() {
S C O a;
// Y<0>
X<0>
Y<0>

>

}
>

fl() { return pi.fst; }
f2() { return pi.snd; }
f3() { return p2.fst; }
f4() { return p2.snd; >

yi = a.f2();
x2 = a.f3();
y2 = a.f4();

fl() { return pi.fst; >
f2() { return pi.snd; }
f3() { return p2.fst; >
f4() { return p2.snd; }

yl = a.f2(); representation exposure
x2 = a.f3();
y2 = a.f4();

Figure 6-23: Exam ple w ith P a i r com posable/uncom posable

CHAPTER 6. SAPS - SUBJECT DESIGN 129

• P rop erty 1. If exp0 is in the type of a param eter, re tu rn value or field variable then this is
the only valid receiver expression.

• P rop erty 2. The context in the actual param eter m ust be as given by A 2 .

• P rop erty 3. world is external to all contexts denoted by exps.

• P rop erty 4. The resolution sets of all unks m ust be well formed.

• P rop erty 5. The context substitu tions for ownership param eters of arrays m ust allow access
to lower dimensions wherever higher dimensions are accessible.

• P rop erty 6. The ucircs m ust imply the inter-unk ordering required by the type or expression.

• P rop erty 7. The ucircs m ust imply the resolution constrain ts required by the type or expres
sion.

• P rop erty 8. All type checking of expressions whose types contain unks uses the
E x p re s s io n R e p o s ito ry .

• P rop erty 9. Expressions in uncom posable classes m ust be restric ted to contexts {1, world} in
the m em bers of composable classes.

• P rop erty 10. In a substitu tion for the param eters of an uncom posable class the context
binding owner m ust be inside o ther contexts.

• P rop erty 11. A substitu tion for the ownership param eters of an uncom posable class m ust
obey the context ordering in its where clause.

• P rop erty 12. The ownership param eter ordering of uncom posable classes m ust be well
formed.

Figure 6-24: Correctness P roperties for SOT

stru c tu re into the design of each class. Subject design w ith exps forces th e developer to make decisions
abou t the ownership structure . This was a m otivating factor in the in troduction of unknown context
identifiers. W hen exps cannot provide the required flexibility, uncom posable classes m ust be used. To

dem onstrate the lim itations of the exp nota tion consider Figure 6-23. The Figure shows two subjects:

in SI class P a i r is uncom posable and in S2 it is composable. In S I the ownership param eters of

A .p i and A .p2 are bound to different contexts. M ethod calls to A .f2 () , A .f3 () and A .f4 () from

M ain .m ain () are valid bu t a call to A . f l O would cause representation exposure. Turning to the

case where P a i r is com posable, note th a t no choice of exps w ithin A and P a i r can produce th e same

types for the m ethods of A. S2 shows one of a num ber of failed a ttem pts, exps cannot ad ap t to the

subtle differences in ownership structures, unks cannot address th is problem: an unk resolves to one

exp per class and not per object. T he sub ject designer m ust use the uncom posable class P a i r if the

full range of ownership structu res is required w ithin the subject.

6.4.5 Types and Type Checking

We are now in a position to sum m arise the properties and describe valid types. SO T correctness

is ensured by the checks perform ed when enforcing the properties given in Figure 6-24. Before

expression checking commences work is carried out to check p roperty 4.

A Subjective O wnership Type is created by substitu ting the available context identifiers for the

owner and any o ther ownership param eters of a class. Different types are created in the bodies of

CHAPTER 6. SAPS - SUBJECT DESIGN 130

com posable and uncom posable classes. In com posable classes, the set of contexts to choose from

includes the exps, the unks and world. In uncom posable classes, the selection is m ade from the

current set of ownership param eters, exp0, expx and world.

T he validity of substitu tion relies on context identifier ordering in the class where the type is
formed and on the substitu tion constrain ts of the uncom posable class from which the type is formed.

Inside a com posable class properties 3, 6, 7, disam biguate the order of su bstitu ted contexts and

properties 5, 10 and 11 ensure th a t the substitu tions are valid. In an uncom posable class properties

3, 10 and 11 disam biguate the order of su bstitu ted contexts and properties 5, 10, 11 ensure th a t the

substitu tions are valid.

W hen checking com posable classes, the check for property 1 guarantees representation contain

m ent. Checks for properties 2, 3, 6, 7 and 8 ensure th a t expressions are well formed. W hen checking

uncom posable classes, representation containm ent is ensured by property 1 also. P roperty 12 en

sures th a t ownership param eters are ordered in a s truc tu red way. P roperty 9 makes certain th a t

objects of composable classes are accessed correctly by expressions. Expression checking proceeds by

ex tracting the substitu tion for the ownership param eters and checking th a t the type of the actual

p aram eter m atches the expected type in the field or m ethod param eter. O wnership param eters

are adopted from O wnership Types, and the checks perform ed by the Subject Compiler m irror the
description in [23].

6.5 Conclusion

This C hapter has introduced Subjective Ow nership Types for use in subject design. Subjective

Ow nership Types provide alias protection for objects and support deep ownership. W ith SO T two
kinds of classes can be created:

• Composable classes use a new system of explicit and unknown context identifiers. We believe

th a t explicit contexts identifiers or exps are well suited to specifying the intended ownership
properties of collaborations im plem ented by subjects. T he dom ination s tructu re is explicit in

the notation. Unknown context identifiers or unks make it possible to defer the selection of an

explicit context until com position. T he full range of subject-oriented com position rules can be

used on composable classes.

• Uncomposable classes use ownership param eters to create black-box com ponents where the

ownership properties can be set by the client on a per-object basis. Interface-level subject-

oriented com position rules which affect instances of uncom posable classes are allowed.

Com posable and uncom posable classes exist in separate class hierarchies bu t have a common

superclass. SO T allow instances of one kind of class to be safely used in th e definition of the other

kind. Uncom posable classes enable the creation of black-boxes which are used as building blocks

in subject construction. T he design of subjects uses com posable classes predom inantly. Features

im plem ented by subject can be composed to form larger grained com ponents.

The following C hapter presents th e second p a rt of the Subjective Alias P ro tection System: ex

tensions to Subject-O riented Program m ing to support the com position of subjects anno ta ted w ith
Subjective O wnership Types.

Chapter 7

SAPS — Subject C om position

This C hap ter is concerned w ith all aspects of subject com position. Its overall aim is to present a

model of com position th a t synthesises subjects anno ta ted w ith Subjective O w nership Types (SOT).

This aim can be broken down into th ree top level objectives:

• Review the com position rules and describe the underlying model for subject composition.

• Describe the effect of com position on SO T concepts presented in C hap ter 6.

• Specify SAPS by defining the necessary extensions to th e underlying model to support the
com position of SO T anno ta ted elements.

C hapter 3 has already presented m uch of the syntax of the SO P com position language. Af
te r reviewing com position rules, we will show th a t com position prim arily involves th ree activities:
bringing together artifacts which should be composed, reconciling their differences and synthesis.

B ut before artifacts can be brought together each subject m ust be decomposed into its composable

elements. We will present the system of labels - a model for describing th e com posable elements

of subjects. C om position rules w ritten by the subject in teg rato r are parsed into a series of compo

sition directives. Groupers are directives th a t bring together elem ents and perform reconciliation.

Combinator perform synthesis.

For th e second item , we will discuss the challenges of composing SO T anno ta ted elements. One

way to achieve deep ownership in the o u tp u t subject is for com position to preserve the ownership

declarations in the input subjects. Correctness depends on the notion of type equivalence and

SO T-aw are com position rules. Equivalence is no t as restrictive as it may sound. Ow nership types

have d a ta and context identifier com ponents; class com position leads to da ta ty p e equivalence, and

explicit contexts can be composed w ith unknown context identifiers. Unification of explicit and

unknown contexts yields resolutions: the unknown context identifier becomes bound to the explicit

context identifier. In the model we propose all unknown context identifiers m ust be elim inated;

th a t is, com position of subjects should m ap all unks to exps. W ith SO T-aw are com position rules

com position elements are either forwarded to the o u tp u t unchanged or modified in a sem antically

consistent way. No declarations are removed. We will argue th a t a consistent m apping of th is kind

leads to desirable deep ownership properties in the o u tp u t subject.

For the th ird item , we will specify the elem ents required to im plem ent the model described as

p a rt of the second item . In order to support SO T concepts, the system of labels will be extended w ith

131

CHAPTER 7. SAPS - SUBJECT COMPOSITION 132

new prim itives. We will specify type com binators for checking element com posability and introduce

functions th a t collect unk resolutions. An im portan t p a rt of SAPS is checking th a t a collection of

unk resolutions is consistent. We will present an algorithm th a t, given a set of resolutions, a ttem p ts

to resolve all unks in a subject. T he algorithm perform s unk resolution propagation. It relies on

s ta tic links between classes to forward resolutions from one class to the next.

Section 7.1 is analysis of past work on SO P and H y p e r/J . It sum m arises the com position rules and

redescribes the effect of com position on subjects. Section 7.2 presents the system of labels - a model

of prim itives on top of which we define com position directives. O ur model is an extensive reworking

of the original [94, 95] and forms a p a rt of the contribution to the thesis. Section 7.3 defines

groupers which m anipulate elements from the system of labels and bring together elements from

different subject th a t should be composed. The above th ree Sections conclude the presentation of

subject com position in general, i.e. not specific to com position of subjects anno ta ted w ith Subjective

Ow nership Types. T he following Sections are concerned w ith extensions th a t will enable SO T

anno ta ted elements to be composed, they are also p a rt of our contribution. Section 7.4 describes the

m eaning of composing SO T anno ta ted elements. Section 7.5 defines type com binators and resolution
m apping functions. C om binators check th a t the types of grouped elements can be composed and,

where necessary, determ ines the type in the o u tp u t subject. Resolution m apping functions collect
unk resolutions and store them as a ttr ib u tes of labels. At the end, the results of resolution m apping

functions are used by resolution propagation functions defined in Section 7.6. Section 7.7 concludes
this C hapter.

7.1 Com position Rules

In this Section we review and analyse the com position rules first seen in C hap ter 3. T he SOP

language is an extensible collection of com position rules. Applied to a collection of input subjects

the com position rules cause an o u tp u t subject to be created. Com position takes place statically,

before the program is run. Each inpu t subject realises some concern by defining a set of classes, field

variables and operations whose execution will produce the desired behaviour. The o u tpu t subject

also is a set of classes, field variables and operations. The behaviour of the o u tp u t subject depends

on the input behaviours and the sem antics of the com position rules used in its creation. The subject

in teg rato r m ust choose the right mix of com position rules to produce the intended behaviour. M ost

com positions can be achieved w ith a relatively sm all selection of rules. However, more exotic rules

can be defined for particu lar cases. For instance, in Section 4.3 on page 52 we proposed th e v iew -

m e rg e rule which directly addressed the needs of a tricky interaction issue.

For the m ost part, com position is abou t bringing together definitions from the input subjects.

T he m ain difference between rules concerns the action to take a t the point of contact, i.e. a t the join

point. In the core set of m ost commonly used rules there are four actions:

u n ify By far the m ost common action is to unify the elements, e.g. create a single Employee class

based on a set of Employee classes from input subjects.

s lc t Select one element from a range of alternatives, e.g. choose one se tA c c o u n tN o (. .) operation

im plem entation from a set of im plem entations in the input subjects.

e x e c P repend a set of behaviours w ith another behaviour, or append a new behaviour to an existing

set, e.g. prepend C aching behaviour in order to save the values passed as param eters to

CHAPTER 7. SAPS - SUBJECT COMPOSITION 133

operations.

ca ll Insert a trigger such th a t a behaviour is invoked before or after a set of behaviours, e.g. trig

ger a b a la n c e C h e c k (. .) operation for account w ithdraw als of bank custom ers w ith lim ited

borrowing.

T he first two actions are symmetric and the last two are asymmetric. In a sym m etric action the

elem ents a t a join point are different p arts of the same concept. A single elem ent will be created

in the ou tpu t. Unifying the elements brings together all the definitions from all input subjects and

produces one definition in the ou tpu t. Selection nom inates one definition above all others and puts

th a t into the ou tp u t subject. W hen the o u tp u t subject is run, a reference to any input element

involved in a sym m etric action will re tu rn the ou tp u t element. We call th is process forwarding

because references to input elements are forwarded to the o u tpu t element. In a sym m etric action,

all inpu t elements forward to the sam e set in the ou tpu t.

In an asym m etric action, a new elem ent e is partnered w ith each elem ent in an existing set of

elements { s i . . . s n }. T he new element adds to existing concepts. A set of elem ents { (si, e) . . . (sn , e)}

will be created in the ou tpu t. In asym m etric actions forwarding takes place from the input elements
Si to the o u tp u t elements (S j,e), e forwards only to e. For example, C aching behaviour is added

to m ultiple abstractions. W hen messages are dispatched to these abstraction , the cache behaviour
is invoked. In m ost cases, it is not expected th a t invocation of cache behaviour directly will invoke

the cached abstractions.

Sym m etric and asym m etric actions m ay be combined. In the sim plest case, an asym m etric

action will apply after the sym m etric action. For instance, a set of elem ents { s i . . . sn } m ay be

composed using a sym m etric action to form S . A new element e will be com posed with S using an

asym m etric action to produce some o u tp u t elem ent (5, e). O ther more exotic com position rules are
also conceivable.

T here is an im portan t difference between the two kinds of asym m etric actions shown in th e above

list, e x e c does no t distinguish the source of the request for behaviour. T he behaviour is adap ted

universally and is the same for all clients. In ca ll the behaviour is adap ted more specifically to the

needs of the client. For instance, when registering w ith a medical centre, the nurse asks all new

patien ts to register their personal details. T he procedure is universal and e x e c should be used. B ut,

suppose a bunch of patien ts w ith flu sym ptom s a tten d the medical centre. T he trea tm en t dispensed

by the doctor is not the sam e for all patien ts w ith flu sym ptom s. For instance, patien ts who recently

re turned from abroad may undergo additional tes ts to those who have not had any recent foreign

trips. This interaction m ay use c a ll to specialise behaviour.

The concepts of bringing elements together, forwarding, sym m etric and asym m etric actions un

derlie subject-oriented com position rules. A core set of com position rules is sum m arised in F igure 7-1.

We will use these com position rules when w riting com position specifications.

The subjects to compose and the nam e of the o u tp u t subject are specified using c o m p o se ,

e q u a te establishes th a t the nam ed input elem ents should be composed in some way bu t does not

specify the action to take during com position, m e rg e builds on e q u a te . In addition to grouping a

set of elements it also specifies an action. Applied to a set field variables, m e rg e creates a single

field variable in the ou tpu t. Applied to a set of operations, m e rg e creates a single operation in

the ou tpu t. Applied to a set of classes, m e rg e creates a single class in the ou tpu t. The m e rg e of

operations and field variables is meaningful only in the context of a class, and the Subject Com poser

CHAPTER 7. SAPS - SUBJECT COMPOSITION

c o m p o se . Specifies a sequence of subjects to compose and the nam e of the o u tpu t
subject, e.g. compose S I , S2 in to S ;.

e q u a te . Groups together elem ents of th e sam e kind, giving the grouped element a
new nam e in the o u tp u t subject. Overloaded by elem ent type. For example,
e q u a te SI .A , S2.B, S3.C in to S.D; equates classes.

m e rg e . Specifies the u n ify action on a set of elements of the sam e kind, giving
the ou tp u t elem ent a new name. It is overloaded by elem ent type, e.g. merge
S l . A . v , S2.A.W in to S .A .x ; merges instance variables.

o v e r r id e . Specifies the s lc t action on a set of operations. One operation is nomi
nated above others, th is is the overriding operation. T he ou tp u t operation can
be given a new name, e.g. in o v e r r id e S l . B . f o o , S 2 . B . b a r w ith S l . B . f o o
in to S . B . b e e ; it is applied to operations.

b ra c k e t . Specifies either an e x e c or a c a ll action on a set of operations. T he opera
tions to be bracketed (or w rapped) can be specified exactly or using wildcards.
The brackets (or w rappers) can include b e fo re and a f te r p arts which are exe
cuted either im m ediately before or im m ediately after the w rapped operations.
T he in terg ra to r m ay specify either b e fo re or a f te r and need not specify both
parts.

The e x e c form of brackets has th ree parts: the w rappee specification, the
b e fo re and a f te r w rappers. A t m ost one of b e fo re and a f te r w rappers is
allowed to be null. For example, consider b r a c k e t ‘ ‘ * . f o o ’ ’ w itE b e fo re
S I . A.b a r a f t e r S I . A. b e e ;. This rule will cause operation S I . A. b a r to exe
cute im m ediately before any operation m atching p a tte rn *. f oo and S I . A. bee
to execute im m ediately after any operation m atching the sam e p a tte rn .

T he ca ll form of brackets has an ex tra f ro m p a rt th a t narrow s the set of
m atched operations. It can be either a list of classes or operations. For exam
ple, b r a c k e t ‘ ‘ ♦ . f o o ’ ’ f rom S2.B, S2.C w ith b e fo re S I . A . b a r a f t e r
5 1 .A .b e e ; is identical to the e x e c form above w ith the exception th a t the
w rappers are run only when called from the m ethods of classes S I . B and S 2 . B.

m e rg e B y N a m e . Brings together all identically nam ed elem ents and applies the
u n ify action throughout.

o v e r r id e B y N a m e . Brings together all identically nam ed elem ents and applies the
s lc t action throughout. T he first subject in the c o m p o se clause is the over
riding subject (the source of the overriding elements).

o r d e r . Specifies an order for operation com position, e.g. o rd e r S l . A . f o o a f t e r
5 2 . A. f o o ; Used in conjunction w ith m e rg e on operations. By default m e rg e
does no t imply an order.

Figure 7-1: Com position rules summary.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 135

subject SI {
class A {

int value = 1;
void f() {

value += 3;
>
void Sl_op() {

f();
>

>
>

subject S2 {
class A {

int value = 1;
void f() {

value *= 3;
>
void S2_op() {

f();
>

>
>

subject S3 {
class B {

int value = 1;
void g(){

value *= 5;
}
void S3_op() {

g<>;
>

>
>

// subject external clients:
A al = new 5();
S a2 = new A ();
B b = new B();
al.Sl_op();
a2.S2_op();
b.S3_op();

Figure 7-2: Exam ple showing

is required to check th a t the ou tp u t field variable or operation has a valid destination. T he m e rg e

of classes sets the ou tp u t class b u t does no t group the class members.

o v e r r id e also builds on e q u a te by specifying an action. I t applies only to operations, selecting

one operation im plem entation over others, o v e r r id e on field variables and classes works th e same

as m e rg e .

b ra c k e t is a com position rule th a t combines bo th a grouping facility and actions. The operations

to be bracketed are grouped w ith the bracket operations, and either the e x e c or the ca ll action is

applied to each grouping. Behind the scenes, the b r a c k e t com position rule uses the u n ify action
to compose the classes containing the w rappers and the wrappees, and the s lc t action to compose

w rapper and w rappee operations.

T he com position rules presented to now provide fine grained control over the com position ele

m ents. B u t using these rules to compose non-trivial program s would produce very lengthy com

position specifications. In order to make com position specification more concise, SO P introduces

top-level com position rules which group elem ents based on a s tra tegy of some kind. For subjects

designed in concert, grouping by nam e is useful. Identically nam ed elements of th e sam e kind across

all input subjects can be brought together: classes are grouped w ith classes, operations w ith oper

ations and field variables w ith o ther field variables. m e rg e B y N a m e and o v e r r id e B y N a m e are

two com position rules th a t combine grouping based on nam e equivalence w ith an action. W henever

m e rg e B y N a m e or o v e r r id e B y N a m e are used, the o ther com position rules become exceptions to

the groupings and actions implied them .

To help ground the presented concepts consider the th ree subjects shown in F igure 7-2. Suppose

th a t these subjects are to be composed: compose S I , S2, S3 in to S ;. Each subject contains

m ethod S*_op th a t calls either f or g. Figure 7-2 shows th ree sub ject-ex ternal clients of the o u tpu t

subject which call operations S*_op in tu rn . Before the call, a l . v a l u e = 1, a 2 .v a lu e = 1 and

b . v a l u e = 1. Figure 7-3 shows the v a lu e field after the execution of each S*_op based on the

com position specification shown in the row.

(1) shows th a t w ithout any additional rules the calls are m alformed. W ithou t addition rules

CHAPTER 7. SAPS - SUBJECT COMPOSITION 136

composition specification J, al.value a2.value b .value
(1) no additional specs invalid invalid invalid
(2) overrideByName; 4 4 5
(3) mergeByName; order S2.A.f after SI.A.f 12 12 5
(4) overrideByName; merge SI.A.f, S2.A.f into S.A.f;

order S2.A.f after SI.A.f; 12 12 5
(5) mergeByName; bracket ‘‘A.f’’ with before S3.B.g;

order S2.A.f after SI.A.f 24 24 5
(6) mergeByName; bracket “ A.f,} with after S3.B.g;

order S2.A.f after SI.A.f 60 60 5
(7) mergeByName; bracket ‘‘A .f ’ 1

from SI.A with before S3.B.g;
order S2.A.f after SI.A.f 24 12 5

(8) mergeByName; bracket ‘‘A .f * 1

from SI.A with after S3.B.g;
order S2.A.f after SI.A.f 60 12 5

(9) overrideByName; bracket ‘‘A.f,, with before S3.B.g; 8 8 5
(10) overrideByName; bracket <‘A.f,, with after S3.B.g; 20 20 5
(11) overrideByName; bracket *‘A .f ’ *

from SI.A with before S3.B.g; 8 4 5
(12) overrideByName; bracket ‘‘A .f * ’

from SI.A with after S3.B.g; 20 4 5

Figure 7-3: R esults of applying com position rules.

classes A and B are not been formed in th e ou tpu t. Clearly, S3 is unaffected by any com position,

so we will concentrate on the behaviour of SI and S2 only. (2) specifies th a t SI overrides o ther

subjects. W hen any f is called only SI contributes to changing v a lu e . (3) combines all views of
f and disam biguates the order of operation execution. In (4), the top-level com position rules is

specialised by a m e rg e to cancel out the effect of o v e r r id e B y N a m e on f . A bracket in (5), (6),

(7) and (8) affects all places m atching the p a tte rn except the subject which is the source of the
w rapper. In (5) the sequence of calls is: S3.A.g, S I . A. f , S 2 . A . f for bo th Sl_op and S2_op. In (7)

the sequence of calls is: S3. A.g, SI .A . f , S2. A . f for Sl_op bu t S I . A. f , S 2 . A . f for S2_op. In (9)

to (12) S 2 . A . f is overridden by S I . A . f . So calls to either operations will execute only the body of
S I . A . f .

7.2 A System of Labels

Subject-oriented com position rules are specified in term s of an open and extensible framework known

as the system of labels [94, 95]. This Section presents a model for describing the com posable elements

of subjects and shows how com position rules m ap on to the model.

A subject label is the com position interface of the subject, it contains all inform ation abo u t a

subject needed for specifying and carrying out com position. T he com position process is a function

from the input subject labels to result or o u tp u t labels. The ou tp u t subject is created by linking

code based on the result label. In order to support the above com position rules, sub ject labels should

contain the following inform ation:

• Classes defined or used by the subject.

• Instance variables including their types.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 137

(operation)

Call Set

Instance
Variable

Realisation

Realisation
Set

Class

Figure 7-4: Subject label represented as a tree of nodes

• O perations including their signatures.

• M ethod execution m appings th a t m ap operations and classes to m ethod bodies to be executed.

• M ethod call m appings th a t m ap operations and classes to execution m appings.

Two points require clarification: m ethod execution and m ethod call m appings. M ethod execution

m appings describe the effect of m ethod dispatch. In an uncom posed subject a m apping is sim ilar to

a m ethod definition in an object-oriented language: a single m ethod body is executed in response to

a m ethod call on a receiver. In a subject created by composing o ther subjects m any m ethod bodies
may need to be executed in response to a m ethod call. We use the term realisation to distinguish

an abstraction of a m ethod body from an operation which describes a ta rg e t for a m ethod call. A

realisation set contains the realisations to execute in response to a m ethod call on a receiver.

M ethod call m appings also describe th e effect of m ethod dispatch bu t from the call end. By

default a single call will execute the code associated w ith a single realisation set. B ut bracket

relationships th a t perform the ca ll action described in the last Section cause m ultiple realisation

sets to execute. A call set contains the realisation sets to execute in response to a m ethod call.

W hen im plem enting concerns, each subject defines its own class hierarchy. Com position of
subjects w ith different class hierarchies is an im portan t p a rt of subject-oriented program m ing. In

heritance makes sense w ithin a subject b u t no t when m ultiple subjects are considered together.

Also, com bination of inheritance hierarchies so as to preserve the ir effect can lead to cycles [129].

To alleviate these problem s, class hierarchies are done away w ith by flattening or inheritance expan

sion [96]: all inherited inform ation is m ade explicit in each class by copying declarations from the

class where they are defined to the classes which inherit the declarations.

T he subject label can be represented by an ab strac t syntax tree (AST) of nodes shown in Figure 7-

4. A subject label is a collection of operations and classes. Instance variables are nested inside classes.

O perations are not nested inside classes bu t shared between a set of classes based on the su b jec t’s

inheritance relationships. R ealisation sets are nested sim ultaneously w ithin com posable classes and

operations, indicating th a t to gain access to a realisation set we m ust know its subject, the operation

and class name. R ealisations are nested inside realisation sets. Perhaps surprisingly, call sets are

nested inside realisation sets instead of realisations; after all, calls em anate from m ethod bodies. Call

sets do not change the m ethod call a t source bu t act as dictionaries for redirecting control flow to

CHAPTER 7. SAPS - SUBJECT COMPOSITION 138

S : subject
S. els : classes
S. ops : operations
S .m ap : m appings
S.cls .c : class
S.cls .c .v : instvar o f ty p e t
S .ops.o : operation w ith signature (to, t \ . . . tn)
S .m ap.o .c : realisation set returning u
S .m ap .o .c .r : realisation
S .m a p .o .c .m .r : call set (. . . , S .m a p .m .r , . . .)

Figure 7-5: Label clauses.

various realisation sets. The redirection is affected per class or per operation m aking it appropriate

to nest call sets inside realisation sets.

T he AST m ay be an elegant model for representing and searching for com posable elements bu t

it is not well suited for explaining com position rules. We would like to use a single no tation both for
subject labels and for com position concepts. Fortunately, an A ST can be equally well represented

as a flat set given th a t fully qualified nam es are used in place of nesting.
We propose a clausal notation . All activ ity takes place w ithin the clause universe U. Clauses can

be specified in a rb itra ry order. Label clauses describe bo th the sub jec ts’ com posable entities and

the o u tp u t subject. Control clauses describe the details of com position. In the following Subsections

we describe the clausal representation of labels and the label com position model.

7.2.1 Clausal Representation of Subject Labels

Subject labels are represented by an unordered list of clauses. An elem ent from the subject label is

an a ttribu te-value binding for some com pound name:

CompoundName : AttributeName OptionalValue

A com pound nam e is a do t-separated list of identifiers. In general, com pound nam es are in terpreted

hierarchically, where the leftm ost elem ent is the m ost general and the rightm ost elem ent is the m ost

specific w ith dots specifying node tree depth. An a ttr ib u te nam e is some identifier. Some a ttrib u tes

have no values while o thers m ay be a rb itra rily complex. A single com pound nam e can have several

a ttribu te-value pairs.

Figure 7-5 shows all clauses necessary to define the com position rules shown in Figure 7-1 on

page 134. The roo t of the AST for a subject is given by the s u b je c t clause. S is the nam e of

some subject. A subject has th ree subgroups which are always defined. T he els group contains all

classes, the ops group contains all operations and the map group contains all m ethod m appings,

i.e. realisation sets and their sub-elem ents. At the next level down, the c la s s clause shows class c

in subject S . Instance variables are given as subelem ents of classes: v is an instance variable of

class c in subject S. t is an a ttr ib u te of the in s tv a r clause th a t denotes the type of v. o p e r a t io n

clauses have signature types as a ttribu tes, to is the type of the re tu rn value and t \ to t n are the

param eter types. In the clause universe all operations have distinct names. T his is not a constrain t

on im plem entation; ra ther, the clause universe is an abstraction and the Subject Com poser m aintains

CHAPTER 7. SAPS - SUBJECT COMPOSITION 139

a m apping between actual operation names and their labels in the clause universe.

A r e a l i s a t io n s e t clause specifies the result of calling an operation on an instance of a specific

class; r e a l is a t io n s are specified separately, o is the operation and c is the class on which the

operation is called, u is the re tu rn value specification. For input subjects there is a t m ost one re tu rn

value b u t for subjects which are the p roduct of com position the re tu rn values m ust be am algam ated

in some way. In general, u is passed to some function / which uses a stra tegy to select or calculate

the re tu rn value. The ordering of operation nam e before class nam e is no t intended to convey

nesting. Instead, the o and c com ponents of a realisation set clause form a two-dim ensional m atrix

for selecting a set of realisations and call sets. A r e a l i s a t io n clause specifies a m ethod body to

execute w ithin a realisation set.

A ca ll s e t clause is a subcom ponent of its realisation set. T he com pound nam e sta tes th a t

realisation set given by o x c in subject S contains a call to realisation set m x r where m is the

m ethod and r is the class identifier. Subjects are declaratively com plete so there is no need to

include an additional subject nam e in the label. T he Subject Compiler has proven th a t realisation

set m x r is defined in S. All m ethod call sites in all operations are nodes because each is a potential

join point. Com position rules work a t class m em ber level, so for specifying com position rules it is

sufficient to know th a t a realisation set contains a particu lar call w ithout exposing the details of

control flow inside. T he ca ll s e t a ttr ib u te is a sequence of realisation sets to call. This set usually

includes m x r . By default, the re tu rn value is taken from realisation set m x r.

C o n tro l C la u se s

T he intuitive concepts of grouping elem ents and applying actions are formalised in the clause universe
by control clauses. We distinguish between three kinds of control clauses:

• Correspondence clauses directly specify grouping between label clauses.

• Grouper clauses are a more powerful way of grouping labels. G roupers are a means of au to

m atically determ ining correspondences.

• Combinator clauses combine the a ttrib u tes of corresponding clauses and help generate the
ou tpu t clauses.

Top level com position rules are specific collections of a ttr ib u te com binators and node groupers.

O ther com position rules directly m anipulate correspondence clauses.

7.2.2 Correspondence Clauses

Correspondence clauses specify which labels are to be combined to produce an ou tpu t label.

n : co m p o se d -o f(g , F)

T he correspondence clause has th ree parts, n is the output label which will be added in to the

universe, q is the input sequence of labels of corresponding elements whose a ttrib u tes are to be

combined in some way. The order in the sequence sets the order for a ttribu tes. F is called the

forwarding se t ; i t ’s m ain role is to realise the concept of forwarding introduced earlier. Forwarding

concerns c la ss and o p e r a t io n labels:

CHAPTER 7. SAPS - SUBJECT COMPOSITION 140

• For classes it describes which of the classes in the input set are to be replaced by the composed

class. W hen a class in the forwarding set is in stan tia ted , an object of the new class in the

ou tp u t label will be created.

• For operations it describes which of the operations in the input sequence get replaced by the

ou tp u t operation. W hen an operation in the forwarding set is called, all input operations will

be executed.

Clearly, an input operation or class m ust exist in exactly one forwarding set, lest it is ambiguous

which operations to execute or which class to in stan tia te . O verridden elem ents forw ard once to a

special null subject which tells the Subject Com poser to unlink the code represented by it. Entities

which have no correspondences in o ther subjects are involved in an identity correspondence. The

effect is to forward the node w ithout changes, e.g.:

S.ops.foo : c o m p o s e d -o f ((S i .ops . fo o) ,{S l .ops.foo})

S.e ls .A : c o m p o sed -o f((iS i .els.A), { S I .els.A})

For operations and classes, the separation of input labels from the forwarding set facilitates

creation of advanced interactions. For example, suppose when creating prin ting software we have two

subjects: N o rm a lP rin t and H e a d e rP r in t. Calling p r i n t (A cco u n t, Doc) on a P r i n t e r object in

N o rm a lP rin t activates H e a d e rP r in t’s m ethod followed by the N o rm a lP rin t’s m ethod. T he former

debits the account, prin ts the sum m ary and account info, and the la tte r p rin ts the ac tual docum ent.

However, calling p r i n t (Ac c o u n t, Doc) in the scope of H e a d e rP r in t, only prin ts the account info

w ithout debiting the account. A correspondence clause to express th is relationship is given by:

TotalPrint. ops.print : c o m p o s e d - o f ((HeaderPrint, ops. p r in t , NormalPrint. ops.print),
{ N orm alPrin t. ops.print})

The forwarding set is used also w ith realisation sets to denote those elem ents th a t contribu te to

the re tu rn value calculation. For instance, th is feature is used to im plem ent the b r a c k e t rule: only

the bracketed m ethods contribute to the re tu rn value. T he forwarding set is no t used w ith any other
kinds of element.

7.2.3 Groupers

A grouper generates correspondence clauses autom atically based on some strategy. A com m on way

of determ ining correspondences is by name. Elem ents representing the sam e concept in different

subjects should be grouped together. T his sta tegy is used in bo th m e rg e B y N a m e and o v e r r id e -

B y N a m e com position rules. Once a grouper completes its work o ther rules can create a lternative

correspondence clauses to add to or to replace those created by the grouper.

Figure 7-6 shows a synopsis of groupers used to im plem ent the com position rules in F igure 7-1

on page 134. G roupers n a m e -m a tc h and s e le c t- f i r s t work in the context of specific constructs.

In order to group classes or operations, their subjects m ust correspond. Instance variables can

be grouped only in the context of corresponding classes, c o r r e s p o n d in g - r s is used solely w ith

realisation sets. R ealisation sets can be grouped only if their subcom ponents are already known

to correspond, n a m e -m a tc h , s e le c t- f ir s t and c o r r e s p o n d in g - r s can be described as sym m etric

groupers in the sense th a t they group elem ents representing the sam e concept from all inpu t subjects.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 141

• n a m e -m a tc h Draws into a new correspondence clause those label clauses th a t have the same
last nam e com ponent.

• s e le c t- f i r s t Draws into a new correspondence clause the input label from the first input subject
th a t contributes to the ou tpu t label.

• c o r r e s p o n d in g - r s Draws into a new correspondence clause those realisation sets whose con
stituen t classes and operations correspond.

• b ra c k e t-e x e c U pdates a collection of correspondence clauses including the realisation set of
each w rappee w ith the realisation sets of the w rappers and the classes of each w rappee w ith
the classes of the w rappers.

• b ra c k e t-c a ll U pdates a collection of call sets of correspondence clauses including the call set
of each w rappee w ith calls to the w rappers and the classes of each w rappee w ith th e the classes
of the w rappers.

Figure 7-6: G rouper synopsis.

For classes and operations, n a m e -m a tc h forwards all elements to the ou tpu t, s e le c t- f i r s t only

forwards the overriding element. T he overridden elements forward to the special null subject. These

groupers have no error conditions.

b ra c k e t-e x e c and b ra c k e t-c a ll groupers generate correspondence clauses for bracket relation

ships. T hey create correspondences for m ethod execute and call locations respectively. T he activities

perform ed by these groupers can be sum m arised in term s of the following steps:

1. Bracket relationships use a p a tte rn to specify those locations th a t should be w rapped. These

groupers generate a list of classes containing the join points based on th e p a tte rn . In order to

prevent recursive bracketing, th is list never includes the classes in subjects which are the source

of the w rapper m ethods. Recursive bracketing can occur when both w rappees and w rappers

are th e sam e element, and should be prevented.

2. “Clones” of classes containing the w rapper m ethods are composed w ith classes containing the

bracketed locations. We have pu t clone above in quotes because the appearance of cloning is

created using correspondence clauses and there is no explicit clone operator. F igure 7-7 shows

the difference between b ra c k e t-e x e c and b ra c k e t-c a ll : the form er composes the w rapper

class “clone” w ith the class containing the w rapped operation, while the la tte r composes the

w rapper class “clone” w ith the class containing the w rapped m ethod call.

3. T he w rappees are set to execute around the w rapped elements. For b ra c k e t-e x e c , the resolu

tion set of each w rapped m ethod is augm ented w ith the resolution sets denoting the w rappers.

For b ra c k e t-c a ll , the relevant call set of each w rapped realisation set is augm ented w ith new

calls to the w rapper realisation sets. All m em bers of w rappee and w rapper classes are set to

correspond. “Cloned” w rapper classes’ m em ber operations forward to th e o u tp u t operation.

In conjuncton w ith inheritance the two forms of bracket relationship realised by these two

groupers can produce different interactions, b ra c k e t-c a ll selects call points based on the declared

type, so a call will be bracketed irrespective of the dynam ic type of the receiver. Thus, b ra c k e t-c a ll

affects all classes below it in the inheritance hierarchy, b ra c k e t-e x e c selects execution points by

class, so when the p a tte rn specifies the class, classes below it in the hierarchy will not be bracketed.

T here are two error conditions for these groupers, bo th detected during step 1 above:

CHAPTER 7. SAPS SUBJECT COMPOSITION 142

com posed using: bracket "B.bar" with before X.wrapper;

subject S 1

B myB;

void foo() { myB.bar();

void bar() { }

subject S2

void wrapperQ

B myB;

void foo() { myB.barQ;
void wrapper() { }

subject S2

void bar()

subject SI

com posed using: bracket "B.bar" from A .foo with before X.wrapper;

Figure 7-7: Correspondences created by bracket relationships: b ra c k e t-e x e c top; b ra c k e t-c a ll
bottom .

CHAPTER 7. SAPS - SUBJECT COMPOSITION 143

• identity . The sequence of a ttr ib u tes m ust be of length 1 or an error is flagged; the ou tp u t is
the a ttr ib u te of the sole element.

• equivalent. All values m ust be equivalent. T he result is the first re tu rn value. Equivalence
needs to be defined for each type of a ttrib u te .

• first or last. The first or last values is re tu rned from the sequence.

• union. R eturn a set containing the union of all a ttribu tes.

• forw arding-set []. This is a param eterised com binator th a t takes another com binator as a
param eter. T he re tu rn value is selected from the forwarding set of th is correspondence clause,
e.g. forw arding-set [equivalent] uses the re tu rn value from the first realisation set in the
input sequence if all re tu rn values in the forwarded realisation sets are equivalent and the
forwarding set is not empty.

Figure 7-8: R etu rn value com binators.

• It is an error for the p a tte rn no t to m atch any elements. T his is a sanity check th a t prevents

ineffective compositions.

• It is an error for a class containing a w rapper m ethod to have corresponding classes from prior

com position rules. Bracketing in conjunction w ith prior correspondences can create forwarding
cycles.

7.2.4 Combinators

Once all correspondences are established, com binators are applied to the a ttrib u tes of corresponding
elements. A com binator determ ines th e o u tp u t label’s a ttr ib u te from a sequence of input a ttribu tes.

From Figure 7-5 on page 138 we observe th a t there are th ree kinds of a ttr ib u te to combine:

• The types of corresponding instance variables.

• The sequences of types for signatures of corresponding operations and signatures of operations

specified in call set clauses.

• The re tu rn value of corresponding realisation sets.

In order for instance variables to be com posable, either they m ust have the same type or th e clause

universe should contain a correspondence clause th a t forwards all input types to the sam e ou tp u t

type. In general, in order for operations to be com posable they m ust have equivalent signatures.

Exceptions include operations used as w rappers in bracket relationship which m ay accept m eta

param eters in the signatures of w rapped operations (e.g. see th e exam ple in Figure 3-5 on page 41)

and m ay have v o id re tu rn types. O therw ise, signature com bination repeatedly applies the type

com binator used for variables. For call set clauses, the com binator only checks th a t operations can

be combined. Com position aborts if a sequence of input types cannot be combined.

A com binator for realisation sets describes the way the re tu rn value should be com puted from all

corresponding realisation sets, th a t is, from all re tu rn values. T he a ttr ib u te of the ou tp u t realisation

set label is itself a com binator. For instance, in H y p e r/J bracket relationship semantics, only the

bracketed operations contribute to the re tu rn value. Figure 7-8 lists a num ber of general purpose

com binators th a t can be used in com position rules. Com position aborts if a re tu rn value com binator

CHAPTER 7. SAPS - SUBJECT COMPOSITION 144

generates an error. The com binator for ca ll s e t label a ttrib u tes m ust determ ine the call set for the

o u tp u t label from a sequence of input call sets.

7.2.5 On the Correctness of the Composition Model

Confidence in the correctness of the system of labels can be a tta in ed if it can be shown th a t for

all com position specifications all expressions which may get executed are well formed. Com position

does not change realisations bu t does change w hat realisations are executed during m ethod dispatch.

Expressions are well formed when they have valid targets. Thus for correctness it is sufficient to

check th a t all references extending outside realisations still have valid destinations after com position.

Program created by subject com position will crash if a reference to a class or any of its mem bers

cannot be resolved. T here are two kinds of problems: either th e class or its m em ber cannot be found

in the ou tp u t subject or a reference to an element is am biguous. Am biguity results from having

m ore th an one choice of class to in stan tia te or m em ber to access. We can address these problem s

by enforcing two properties:

• M onotonic composition: no com position rule removes declarations.

• Correct forwarding: each reference to an elem ent in th e input m ust resolve to one elem ent in

the ou tpu t.

T he first p roperty ensures th a t references to classes or m em bers always have targets . To enforce
it, all classes, operations and instance variables in input subjects m ust also exist in the ou tp u t

subject. W ith respect to forwarding: for classes it ensures th a t types resolve to a d istinct class;

for operations it ensures th a t a m ethod call has one ta rg e t operation; and for instance variables it

ensures th a t a field reference has a d istinct target.
In order to enforce the above properties each kind of realisation artifact th a t extends links outside

evokes constrain ts on the com position rules th a t m ay be created:

• T y p e s . Realisations form types from classes. It is im portan t th a t all types th a t can be

created before composition, can still be created afterw ard. In the system of labels the relation

between input and ou tpu t types is governed by the inpu t sequences and forw arding sets of

correspondence clauses. M onotonic com position is ensured by requiring each inpu t class to

be in the input sequence of one or more ou tp u t classes. By definition, the forwarding set

only contains elements in the input sequence. C orrect forwarding requires th a t no input class

forwards to null. Moreover, for all correspondence clauses containing th e class in the ir input

sequence, only one may forward it. By following these principles when devising com position

rules the o u tp u t will contain exactly one class for each input class.

• F ie ld A c c e s s /U p d a te . The nesting properties of th e system of labels ensure th a t instance

variables always correspond in the context of corresponding classes. To ensure bo th m onotonic

ity and forwarding, for each d istinct instance variable in corresponding classes there should be

one instance variables in the o u tpu t class.

• M e th o d C a lls . In order for a m ethod call to succeed it m ust have a valid receiver type and

m ethod nam e. T here are no constrain ts on w hat is executed during a m ethod call. C onstrain ts

on class com position ensure th a t all receiver types rem ain valid after com position. M onotonic

com position requires th a t for each realisation set in the input subjects there is a t least one

CHAPTER 7. SAPS - SUBJECT COMPOSITION 145

• Each input class m ust appear in exactly one forwarding set of a correspondence
clause.

• If class C appears in the input set of correspondence clause S .c ls .C ’, then each
instance variable C.v of C m ust appear in the input set of correspondence
clause S.c ls .C ’. v ’.

• Each input realisation set m ust appear in the input sequence of a correspon
dence clause.

• Each input operation m ust appear in exactly one forwarding set of a corre
spondence clause.

Figure 7-9: C orrectness properties of control clauses.

realisation set in the o u tpu t subject. B u t realisation execution is guarded by the forwarding set

of operation clauses, so correct forwarding requires th a t each distinct input operation appears

in exactly one forwarding set. Note th a t th is places no constraints on the ou tp u t label and an

operation m ay forward to null.

In summary, com position rules m ust have the properties shown in Figure 7-9. T he following

com position rule definitions enforce the above properties.

7.2.6 Mapping Control Clauses to Composition Rules

In this Section we explain the way in which com position rules are im plem ented in term s of the system

of labels. Rules in th e com position specifications are evaluated from the top down. T here are two

passes: first groupers create and upda te correspondence clauses, secondly a ttr ib u te com binators are

applied. Com position specifications s ta r t w ith a m e rg e B y N a m e or another top level com position

rule T he o ther com position rules specify exceptions. m e rg e B y N a m e is used w ith m ost com position

specification and for th is reason the com position process is outlined in th a t Section.

c o m p o s e

The c o m p o s e directive inserts a single correspondence clause into the clause universe. For example,

compose S I , S2, S3 in to S; inserts:

S : co m p o sed -o f((iS 'l, S2, S3), 0)

e q u a te

Typically, the e q u a te directive is used to bring together elem ents th a t represent the sam e concept

bu t have not been brought together by a top level com position rule. For th is reason the input

elem ents are sym m etrically forwarded to th e ou tpu t. P aram eters given to e q u a te m ust come from

different (and corresponding) subjects, e q u a te is mindful of existing correspondence clauses: it

checks if any param eters already partic ipa te in com position. T here are two error conditions:

• T he o u tpu t elem ent exists bu t contains none of the inpu t elements. So th e present e q u a te is
in a race w ith an existing clause.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 146

• An inpu t element already forwards to an ou tp u t label th a t is different to th a t required by

equate. T his is an error because each input elem ent is allowed to forward to a t m ost one

o u tp u t element.

These correctness criteria are the same w hether equate is applied to classes, operations or vari

ables. For example, suppose th a t we are parsing e q u a te S I .A, S2 .B in to S . C ; , then com position

will ab o rt if the clause universe already contains any of:

S .c ls .C : com posed-of((S 3 .els.E, S 4 -c ls .F) ,{S 3 .c ls .E , S4-cls .F})
S .cls .D : com posed-of((S i .e ls .A , S 3 .els.E), { S i .e ls .A , S 3 .els.E})

In the first case above, the ou tp u t class C is already formed by composing classes unrelated to

param eters of equate. So, the present equate is in a race w ith an existing clause. In the second

case, a param eter to equate already forwards to a different ou tp u t label. Each input elem ent is

allowed to forward to a t m ost one o u tp u t element,

equate succeeds in all o ther cases:

• No prior clauses exist.

• An input elem ent partic ipates in an “iden tity” correspondence.

• One or more of the input elem ents already forward to the o u tp u t element required by equate.

For example, in the following, the first two clauses denote “identity” correspondence clauses.

S.els .A : com posed-of((S i .e ls .A) , {S i .e ls .A })
S .c ls .B : com posed-of({S 2 .c ls .B) ,{S 2 .c ls .B })
S .c ls .C : com posed-of((S 3 .els.E, S 2 .c ls .B) ,{S 3 .c ls .E , S 2 .c ls .B })

In the th ird clause, one or more of the param eters to equate already partic ipates in a com position.
It is acceptable because it allows an om itted elem ent to be added to an existing clause, creating:

S .c ls .C : com posed-of((iS'i.els.A, S 3 .els.E, S2 .c ls .B),
{S i .e ls .A , S 3 .els.E, S 2 .c ls .B })

For instance variables, equate additionally checks th a t all classes containing the corresponding

variables contribute to the same ou tp u t class, i.e. contribute m eans “appear in the sam e input

sequence” . equate on operations sets up correspondences for operations, classes and realisation sets.

Consider equate S l . A . f o o , S 2 . B . b a r in to S . C . f ee ; . W ith no prior clauses, equate creates the
following correspondence clauses:

S .c ls .C : com posed-of((iSI .els. A, S2 .e ls .B), { S I .els. A, S 2 .e ls.B})
S.ops.fee : com posed-of((iS7.ops.foo, S 2 .ops.bar), { S I .ops.foo, S 2 .ops.bar})

S .m ap .fee .C : com posed-of((S i .map.foo.A, S 2 .map.bar.B), { S i .map.foo.A, S2 .m a p .b a r .B })

m erge

m erge brings together elements and applies the appropriate com binators. For classes, it does the
work defined for equate, class label clauses do not have a ttribu tes, so there are no a ttrib u tes to

CHAPTER 7. SAPS - SUBJECT COMPOSITION 147

combine. For instance variables, m e rg e additionally checks th a t all classes containing the corre

sponding variables contribute to the same ou tpu t class and applies the type com binator to set the

type of the o u tp u t variable. For operations, m e rg e does the work defined for e q u a te . The signature

com binator creates the signature of the o u tp u t operation. T he a ttr ib u te of o u tp u t realisation set

clause is set to fo rw a rd in g -s e t [eq u iv a len t].

o v e r r id e

o v e r r id e creates correspondence clauses for the overriding elements and deletes the clauses of over

ridden elements. Consider o v e r r id e S l . A . f o o , S 2 . B . b a r w ith S l . A . f o o in t o S . C . f e e ; . This

directive indicates th a t all calls to S l . A . f o o and S 2 . B . b a r should forward to S l . A . f o o (which is

renam ed to S . C . f e e in the ou tp u t subject), o v e r r id e c rea tes/u p d ates the following correspondence

clauses:

S .c ls .C : c o m p o s e d -o f ((S l .e l s .A , S 2 .els.B), {S I .e ls .A , S 2 .e ls.B})

S.ops.fee : c o m p o s e d -o f{(SI .ops.foo), { S i .ops.foo})

null : c o m p o s e d -o f{(S2 .ops .bar) ,{S 2 .ops.bar})
S .m ap .fee .C : c o m p o s e d - o i ((S l .map.foo.A, S 2 .m ap .bar.B), {SI .m ap .foo .A , S 2 .map.bar.B})

The first clause helps to ensure th a t operation overriding takes place between corresponding classes.

The second clause sta tes “execute fo o whenever fo o is requested.” The th ird clause composes into
null which indicates th a t no node should be created for the inpu t elements. W hen running the

o u tp u t program , calls to b a r will execute no code. The last clause s ta tes th a t only th a t all input
realisation sets contribu te to the ou tpu t subject. In a nutshell, a call to S 2 . B . b a r will forward to
the elem ents in the input sequence of S . m a p . f e e . C which, th rough forwarding, executes S . C . f e e .

S2.ops.bar forwards to null, so no realisations are executed on th e behalf of S 2 .map.bar.B.
o v e r r id e has two error conditions th a t conceptually m irror those of e q u a te :

• For the first and second clauses above, no input elem ent m ay forward to an ou tp u t th a t is

different to th a t which is required by o v e r r id e param eters. T he overridden elements will be

reforwarded to null. R ealisation sets use forwarding clauses for o ther purposes (see Section 7.2.2
on page 139.

• For the first, second and fourth clause above, if the o u tp u t label clause required by e q u a te

exists already, then a t least one of the input elements m ust be related to o v e r r id e param eters.

This error condition prevents a race for an o u tp u t label w ith o ther rules. T he o u tp u t label

null is unaffected by races.

W hen the ou tpu t labels are created, the signature of the overriding operation is taken as the

a ttr ib u te of the ou tp u t operation; the signature com binator checks th a t corresponding operations

have com patible signatures. T he a ttr ib u te of ou tp u t realisation set label is set to fo rw a rd in g -
s e t [e q u iv a le n t] .

m e rg e B y N a m e a n d o v e r r id e B y N a m e

The m e rg e B y N a m e com position s tra tegy specifies th a t all correspondences should be established

based on construct name. Figure 7-10 shows it as a bundle of groupers and com binators to be

applied a t each kind of node or to its a ttribu tes. o v e r r id e B y N a m e also uses nam e equivalence as

CHAPTER 7. SAPS - SUBJECT COMPOSITION 148

C om po sitio n A ttr ib u te
C o n s tru c t

G ro u p e r C o m b in a to r

subject (explicit match)
class n am e-m atch
instance variable n am e-m atch

type type combinator
operation n am e-m atch

signature signature combinator
realisation set co rresp o n d in g -rs

ret. val. spec. last
realisation n am e-m atch
call set n am e-m atch

call set attrib. un ion

Figure 7-10: Table showing the elements used in the definition of the m e rg e B y N a m e com position
rule

C om po sitio n A ttr ib u te
C o n s tru c t

G ro u p e r C o m b in a to r

subject (explicit match)
class n am e-m atch
instance variable n am e-m atch

type type combinator
operation se lec t-firs t

signature signature combinator
realisation set co rresp o n d in g -rs

ret. val. spec. first
realisation n am e-m atch
call set se lec t-first

call set attrib. first

F igure 7-11: Table showing the elements used in the definition of the o v e r r id e B y N a m e com position
rule

CHAPTER 7. SAPS - SUBJECT COMPOSITION 149

SI :
SI .els. A :
S i .els. A.value :
S l .ops .f :
SI .ops.SI -op :
SI .map.f.A :
S i .map.Si ~op.A :
S i .map.Sl -op.A.f .A :
SI .map.Sl -op.A.Sl -A-Sl -op :
S i .map.f .A .Sl -A . f :

subject
class
instvar of type int
operation with signature (void)
operation with signature (void)
realisation set returning identity
realisation set returning identity
call set (SI .map.f .A)
realisation
realisation

S : composed-of ((S I , S2, S3),®)
S.els. A : composed-of ((SI .els.A, S2.cls.A), {SI.els.A, S2.cls.A})
S.cls.A.value : com posed-o{((S 1 .els.A.value, S2.els.A.value), ®)
S.ops.} : composed-of((SI .ops.f, S2 .ops .f) ,{S l .ops.}, S2.ops.f})
S.map.f .A : composed-of((Si .map.} .A, S2. map.f .A), {SI .map.f .A, S2 .map.f .A})
S.map.f .A .S i-A - f : composed-of((5i .map. f . A. SI -A-f), 0)
S.ops.SI -op : composed-of ((Si .ops.SI -op), {SI .ops.Si ~op})
S.map.Si -op.A : com posed -o f((S l .map.Sl -op.A), {S i .map.Sl -op.A})
S.map.SI -op.A.f .A : composed-of((SI .map.Sl -op.A.f .A),®)

Figure 7-12: Label clauses for S I and correspondences created by m e rg e B y N a m e .

S : com posed-of((5i, S2 , S3),®)
S.els.A : composed-of ((SI .els.A, S2.cls.A), {SI.els. A, S2.cls.A})
S.cls.A.value : composed-of((5i .els.A.value, S2.els.A.value), ®)
S.ops.f : composed-of((Si .ops.f), {SI .ops.f})
null : composed-of((S2.ops.f),{S2.ops.f})
S.map.f .A : co m p o sed -o f ((Si .map.f .A, S2.map.f .A), {SI .map.f .A, S2.map.f .A})

Figure 7-13: Clauses created by o v e r r id e B y N a m e .

the basis for bringing elements together and Figure 7-11 also shows it as a bundle of groupers and

com binators.

A com position specification consisting of a c o m p o s e sta tem ent and either m e rg e B y N a m e

or o v e r r id e B y N a m e establishes correspondences th a t satisfy the correctness properties given in

Figure 7-9 on page 145. O ther com position rules preserve th e s ta tu s quo, changing correspondences

to preserve the correctness properties.

We will use th is opportun ity to explain the com position process. C om position is set in m otion

by specifying corresponding subjects using th e c o m p o s e rule. Inpu t subjects are required to have

d istinct sub ject nam es. Com position involves the application of groupers a t successively finer levels

of construct granularity. Correspondences arising from a to p level com position rule are created

first. O u tp u t labels for realisation sets and call sets are created. These specify how to compose

the a ttribu tes. Next, the rem aining com position rules are applied in the sequence given by the

com position specification. These rules create, modify and delete correspondences; and possibly

change the com binators set by the top level com position rule. Finally, a walk over the clause

universe applies the com binators and creates the ou tp u t labels. C om binator selection is driven by

the type of corresponding elements.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 150

S3.els.B :
S3.els.B.value :
S3.ops.g :
SI .ops.S3-op :
SS.map.g.B :
S3.map.S3-op.B :
S3 .map.S3-op.B .g.B :
S3.map.g.B.S3-B~g :
S3.map.S3-op.B.S3-B.S3-op :

class
instvar of type in t
operation with signature (void)
operation with signature (void)
realisation set returning identity
realisation set returning identity
call set {S3.map.g.B)
realisation
realisation

S.els.A : composed-of{{S3.els.B, S i .els. A, SS.cls.A), {S i .els.A, S2.cls.A})
S.cls.A.value : composed-of((5i .els.A.value, S2 .els.A.value, S3 .els.B.value), 0)
S.ops.f : composed-of ((.S3.ops.g, SI .ops.f, S2.ops.f), {SI .ops.f, S2.ops.f})
S.map.f .A : composed-of{{S3, map. g.B, S i .map.f .A, S2.map.f.A),

{S i .map.f .A, S2 .map.f .A})
S.map.f .A : realisation set returning forwarding-set[last]

Figure 7-14: Clauses created by a bracket relationship on execute sites.

To exemplify m e rg e B y N a m e we re tu rn to the com position of subjects in F igure 7-2 on page 135.

To top p a rt of F igure 7-12 shows the input label clauses for subject S I. T he bo ttom p a rt of

F igure 7-12 shows some of the correspondence clauses created by com position (3) in Figure 7-3

on page 136. Note th a t operations th a t have no corresponding elements, e.g. S l.A .S l_ o p , are in

“iden tity” correspondences.
F igure 7-13 presents some of the correspondence clauses created by com position (2) in Figure 7-3

on page 136. Note th a t only overridden o p e r a t io n labels forward to the null subject. In accordance

w ith the correctness principles, realisation sets, classes and instance variables are unified.

b ra c k e t

T he two forms of bracket relationship are realised by groupers b ra c k e t-e x e c and b ra c k e t-c a ll .

Essentially, there is a one-to-one m apping between a b ra c k e t com position rule in the com position

specification and the groupers, b ra c k e t-c a ll is selected if the rule has a f ro m part.

F igure 7-14 shows some of the correspondence clauses created by com position (5) in F igure 7-

3 on page 136. T his com position specification first applies m e rg e B y N a m e and then a bracket

relationship of the b ra c k e t-e x e c variety. T he top p a rt shows the labels of the w rapper class B.

T he bo ttom p a rt shows some of the correspondence clauses created by the b ra c k e t-e x e c grouper.

In the bo ttom p art, the label of the w rapper class is added to the existing correspondence clause.

T he w rapper class is in stan tia ted when th e bracketed classes are in stan tia ted bu t not vice versa.

T he m em bers of the w rapper class are set to correspond w ith the m em bers of the class whose

operations are bracketed. Note th a t the realisation set denoting the w rapper operation is prepended

to the sequence of input realisation sets. T he order of input realisation sets determ ines the order of

operation execution. The bracket relationship changes the default a ttr ib u te of the ou tp u t label for

affected realisation sets: w rappers do not contribu te to re tu rn value calculation.

Figure 7-15 shows some of the correspondence clauses created by com position (7) in F igure 7-3.

T his com position specification first applies m e rg e B y N a m e and then a bracket relationship of the

b ra c k e t-c a ll variety. T he Figure shows th e correspondence clauses created by the b ra c k e t-c a ll

CHAPTER 7. SAPS - SUBJECT COMPOSITION 151

S.els.A : composed-of((5'5.cZs.JB, SI .els. A, S2.cls.A), {SI .els. A, S2.cls.A})
S.cls.A.value : com posed-of ((SI .els. A. value, S2. els. A. value, S3, els. B. value),®)
S.ops.g : com p o sed -o f ((S3, ops. g), {S3, ops. g})
S. ops. S3-op : com p o sed -o f ((S3.ops.S3-op), {S3.ops.S3 -op})
S.map.S3-op.A : composed-of((S3.map.S3-op.B),{S3.map.S3-op.B})
S.map.S3-op.A.g.A : com posed-of((S3.map.S3-op.B.g.B),®)
S.map.Sl .op.A.f .A : call se t (S3.map.g.B, S i .map.f .A)

Figure 7-15: Clauses created by a bracket relationship on call sites.

grouper. T he w rapper class and its m em bers are composed w ith the class containing th e bracketed

operations. From the top, class A is formed by composing the m erged classes w ith the w rapper class.

T he v a lu e fields are grouped into a correspondence clause. T he operations g and S3_op, realisation

sets and call set clauses have no nam e based correspondences, so they get placed into identity

correspondence clauses. Finally the call set a ttr ib u te of the bracketed operation is prepended w ith

a call to the w rapper operation. The order in the call set sequence denotes the call order for calling

operations, ensuring th a t the w rapper is called before the wrappee.

o r d e r

O rdering of behavours is significant and can change the overall effect of composed operations. Bracket

relationships imply an order bu t the u n ify family of com position rules, which include m e rg e and

m e rg e B y N a m e , do not. The o r d e r directive perform s pair wise m odification of input sequences

of realisation set clauses. It allows the order of execution to be set where the order is significant.

W ithou t o rd e r , the sequence of execution cannot be assumed. Com positions (3) to (8) in Figure 7-3

on page 136 use o r d e r to disam biguate the sequence in which m erged operations are executed. This
rule will fail if the clause universe does not contain the elem ents given by param eters.

7.2.7 Definitions

T he following Sections will define groupers, type com binators, etc th a t rely on functions for m anip
ulating the clause universe U in following ways:

• F inding all clauses m atching some p a tte rn .

• Replacing a label clause a ttr ib u te w ith a new value or overw riting one clause by another.

• E xtrac ting inform ation from a com pound nam e of a label clause.

A label clause has been defined as an a ttribu te-value binding for a name. T he label is identified by

a com pound name; it is a list of identifiers separated by dots:

name<).name\.name2 . . . nam en : A ttribu te description and values

Figure 7-16 shows a list of functions, m a tc h and e x t r a c t use underscores as non-null wildcards.

O ther nam es are m atched exactly. For example:

• m a tc h (S. els. _) is the set of class labels in subject S.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 152

• m a tc h (n). Searches U for label clauses th a t m atch the com pound nam e p a tte rn n. R eturns
a set of such elements which m ay be empty.

• rep lace (rr , y) or r e p la c e (xt, xt') . Replaces clause x by clause y in Z7, or replaces a ttr ib u te
t of clause x by a ttr ib u te t' and clause y. x is discarded. Clause x m ust exist in U or there is
an error condition.

• e x tra c tp (n) . F ilters com pound nam e n based on p a tte rn p. The p a tte rn is a do tted expression
of a form sim ilar to a com pound nam e which uses the question m ark to denote the nam e to
ex tract. O ther nam es are used for p a tte rn m atching. I t is an error for the com pound nam e
not to m atch the pattern .

• d t(i) . E x trac ts the class nam e from type t when t has form 721.77,2 .713(^1 .. .pk). n 1 .n2 .n3 is
the com pound nam e of a c la ss label, d t is defined as:

dt(7ii.7i2 .7i3(p i .. .p k)) d= n i .n 2 .n 3

• fo rw ard s-to (Z). Searches U for correspondence clauses and returns the ou tp u t label clause
to which Z forwards. In a well formed clause universe, each input c la ss or o p e r a t io n label
forwards to one ou tp u t label or null:

fo rw ard s-to (Z) = f n w h e re n : c o m p o sed -o f(g , F) 6 U A Z 6 F

Figure 7-16: Functions used in the definition of com position directives.

• m a tc h (5 .els.-, v) is the set of instance variable labels in subject S of classes th a t define instance
variable v.

• m a tc h (_ .77ia p —) is the set of all realisation sets in all subjects in U.

A well formed p a tte rn for e x t r a c t has exactly one question m ark. Trailing underscores can be
om itted.

• e x t r a c t ? . ^ (S.cls .c .v) = S. T he els in the p a tte rn m atches els in the corresponding position
in the com pound name. T his p a tte rn can also be specified as ?.cZs___

• e x t r a c t . .opa.?(S .ops .0) = o. The underscore indicates th a t we do not care abou t the nam e of
the first element. The second elem ent m ust be ops.

• e x t r a c t _.map...?{S.cls.c.v) is an error. T he map nam e does not m atch th e nam e in the corre

sponding position of the com pound nam e.

r e p la c e is commonly used w ith correspondence clauses to modify the input sequence and to change

th e a ttr ib u te of an existing label clause, for example:

• re p la c e (c : c o m p o s e d -o f^ , F) , c : c o m p o se d -o f(< /,F ')) replaces q by q' and F by F ' for

the correspondence clause associated w ith label c.

• replace(cZ : in s tv a r o f ty p e £, d : in s tv a r o f t y p e t ') overwrites type t by t ' for instance

variable label d.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 153

7.3 Grouper Definitions

In this Section we define groupers used in the specification of top level com position rules m ergeB y
N am e and overrideB yN am e. G roupers generate com position clauses either autom atically based

on the labels in the clause universe or based on the param eters. There are five groupers to present.

G roupers nam e-m atch , select-first and corresponding-rs are the “au tom atic” groupers repre

senting prior a r t [94]. b racket-exec and bracket-call accept param eters consisting of a p a tte rn

specifying points to bracket and th e w rapper operations. Additionally, bracket-call takes a from
param eter constrain ing the call points.

7.3.1 Name Matching

G rouper nam e-m atch(n , Q) generates correspondence clauses based on nam e equivalence. As in

p u t it takes label n denoting a prefix for the o u tp u t label and sequence Q of sets containing the

elem ents from which correspondences will be draw n. Nam e m atching creates correspondences for

sets of classes, instance variables and operations, etc. It works by checking for equivalence in the

last nam e com ponent of the elem ents’ com pound nam es. E lem ents w ith equivalent nam es in the last

com ponent are draw n in to a correspondence clause. E lem ents th a t have no corresponding counter

p a rts in o ther sets are pu t into identity correspondence clauses.

D efinition: (N am e M atching) For prefix n specifying the node type and sequence of sets

Q = (S i . . . Sk), th e nam e m atching grouper is defined as:

n am e-m atch (n, Q) = f {n .x : co m p o sed -o f((n i.x . . . rik.x), (ni- x . . . nfc.rr})

w here a: is a d istinct last nam e com ponent of

a t least one set in Q : 3i G [1, k], rii.x € Si

nam e-m atch also creates th e forwarding set as the following exam ple dem onstrates. T he forwarding

set is used w ith operations and classes only:

nam e-m atch(£.ops, ({S I .o p s . fn l , S I .ops.fn2, S I .ops.fn3}, { S 2 .o p s . fn l , S 2 .o p s . fn 2}))

S .o p s . fn l : com posed-of((5 'i.o p s . fn l , S 2 .o p s . fn l) , { S I . o p s . f n l , S 2 .o p s . fn l})
S .ops.fn2 : com p osed -of((S I .ops.fn2 , S2 .o p s . fn 2), { S I .ops.fn2, S 2 .ops.fn2 })
S .ops .fnS : com p osed -of((S I .o p s . jh 3) ,{ S l .ops.fnS})

7.3.2 Selection

For overrideB yN am e the o u tp u t contains elem ents taken from the first set in Q. No p a tte rn

m atching is required. O verridden elem ents are forw arded to the null sub ject which indicates to the

Subject Com poser th a t no code should be generated for this node. T his is specified as:

D e f in itio n : (S e le c t F i r s t) For prefix n specifying the node type and sequence of subjects Q =

CHAPTER 7. SAPS - SUBJECT COMPOSITION 154

(S i . . . Sk) the selection grouper is defined as:

s e le c t- f i r s t (n ,Q) d= { n .x : c o m p o se d -o f((n i.x) , {n i.z})

n u l l : c o m p o se d -o f((n 2 .a:. . . rifc.rr), { n 2 . x . . . nk-x})}

where x is a d istinct last nam e com ponent of

the first set of Q : n \ £ h e a d (Q)

7.3.3 Correspondence Matching

For grouping realisation sets, a special c o r r e s p o n d in g - r s grouper is specified. R ealisation sets

correspond when their constituent classes and operations correspond. T h a t is, in order to estab

lish realisation set correspondence, prior correspondence should exist between classes and operations.

D e f in it io n : (C o r re s p o n d in g R e a l is a t io n S e ts) For prefix n of the form S.m ap and sequence of

subjects Q = (S i . . . Sk), the grouper for realisation sets is defined as:

c o r r e s p o n d in g - r s = f {n.o.c : c o m p o s e d -o f ((n i .o .c . .. rifc.o.c), { n i .o .c . .. n i.o .c})}

where o, c are d istinct operation and class nam es

and the clause universe contains:

S .o p s .o : c o m p o se d -o f(q0 ,E 0)

S.cls.c : com posed-of(< 7c, Ec)

for some o, c, q0 ,E 0, qc, Ec, such th a t

Si.ops.Oi € qQ A Si.cls.Ci € qc Vi £ [1,/c]

7.3.4 Grouper For Execute Sites in Bracket Relationships

T he b ra c k e t-e x e c grouper is a control clause. It sets up correspondences th a t realise the bracket
relationship which w raps m ethod execution sites in classes. O ne control clause is placed into the

clause universe for each bracket relationship in the com position specification. It is envisaged th a t

m ultiple grouper instances affecting overlapping sets of bracketed locations will be applied. The

order in which the groupers are evaluated sets the order of w rapper m ethod execution. The earlier

ones are executed closer to the bracketed location. T he activ ity of b ra c k e t-e x e c can be sum m arised

as follows:

1 . Identify the pertinen t realisation set clauses representing the locations to bracket.

2 . Add to them the realisation sets denoting the w rapper operations.

3. Compose into each class containing bracketed operations th e elem ents of each class containing

the w rappers, thereby “cloning” the w rapper classes.

This control clause has the following form:

bracket-exec(n, (p, before, after))

CHAPTER 7. SAPS - SUBJECT COMPOSITION 155

T he first param eter n is the label of the ou tpu t subject. The second param eter is a 3-tuple where p is

th e m atch p a tte rn , before and after are the realisation set labels for the before and after w rappers.

At m ost one of before and after can be null.

T he p a tte rn p m atches realisation set clauses in the o u tp u t subject n. For example, suppose

we wish to bracket all operations m atching (1C. * ’ ’ , i.e. execution of any operation in class C. T he

following set contains th e realisation set labels in U described by this pa ttern :

{c | c £ m atch (n .m ap .- .C)}

P a tte rn are specified as regular expressions which b ra c k e t-e x e c expands into a set of m atches in

U. ‘ ‘ * . * ’ ’ m atches all m ethods in all classes. Let p \ . . . p k be the com pound names for realisation

sets in sub jec t n created from p a tte rn p.

before and after are realisation set labels from an input subject. Using forw ards-to and extract
we construct o u tp u t subject labels for these realisation sets. Let M be those realisation sets th a t

should be bracketed:

M = { p i- ..p jfc } \

{n.map.forwards-to(extract_.TOap.?(&e/ore)).forwards-to(extract_.map._.?(&e/ore)),
forwards-to(n.map.extract_.map.?(a/ter)).forwards-to(extract_.map._.?(a/iter))}

For each en try in M , bracket-exec replaces the correspondence clause in U w ith a new correspon

dence clause containing the upd a ted input sequence q. T he forw arding set, describing the elements

of q which con tribu te to re tu rn value com putation, is unchanged.

replace(m* : com posed-of(<7, E),rrii : com posed-of((before, q, after), E)) 'irrii £ M

N ext, th e classes containing the brackets and their m em bers are introduced into th e classes con

tain ing bracketed locations. M c, M a and M 0 respectively specify the class, instvar and operation
labels th a t require changing:

M c = { m a tc h (n .d s .e x t r a c tn.map._.?(mi)) I Vra* £ M }

M s = { m a tc h (n .d s .e x t r a c tn.map._.?._(rai)) | Vra* £ M }

M 0 = { m a tc h (n .o p s .e x tra c tn.map.?(rai)) | Vra* £ M }

Figure 7-17 shows the clause universe being updated w ith new clauses containing the elements

from the w rapper classes, replace is applied for each m c £ M c, m 3 £ M a and m 0 £ M 0. Note

th a t the forw arding sets for classes and operations are unchanged. For classes, the w rapper class

is in stan tia ted only when the w rappee class is instan tia ted . For operations, before and after are

called only when th e bracketed operation is invoked. T his p roperty ensures th a t forwarding is done

correctly. At this point the work of bracket-exec is complete.

7.3.5 Grouper for Call Sites in Bracket Relationships

T he bracket-call grouper is a control clause th a t sets up correspondences th a t realise the bracket

relationship which w raps m ethods a t the call point. For each bracket relationship containing a from

CHAPTER 7. SAPS - SUBJECT COMPOSITION 156

replace(m c : com posed-of(g, F),
m c : com posed-of((extract ?. map (before) . els .extract map. ? (before),

Q,

extract? map(after).els.extract map. ?(after)),
*0)

Let v = ex tra ct_.cis._.?(ms) in
replace(m s : co m p o sed -o f^ ,F),

m s : com posed-of((extract?.map(before).els.extr a c t _.map._?(before).v,
Q,

extract? map(after).cls.extract map ?(after).v),
0))

replace(m 0 : composed-of(<7, F),
m 0 : composed-of((extract?.Tnap(&e/ore).ops.extract_.map.?(6e/'ore),

Q,

extract? map(after).ops.extract map ?(after)),
F))

Figure 7-17: U pdating existing clauses w ith correspondences from the w rapper class.

clause in th e com position specification, a bracket-call control clause is placed into the universe.

M ultiple groupers may be applied to a possibly overlapping set of call points. The order in which

bracket-call groupers are processed sets the order of w rapper m ethod invocation. T he activ ity of

th is clause can be sum m arised as follows:

1. Use the p a tte rn to identify the call set clauses whose a ttrib u tes will be extended w ith the

w rappers.

2. Add the realisation sets denoting the w rappers to each call set label a ttrib u te .

3. Compose into each class containing a bracketed call set th e elements of each class containing

the w rappers.

This control clause has the following form:

bracket-call(n, (p, / , before, after))

The first param eter n is the nam e of the ou tpu t subject. T he second param eter is a 4-tuple w here p is

the p a tte rn describing the m ethods which should be bracketed, / is a list of either class or operation

labels describing the call points, before and after are the realisation sets of w rapper m ethods. The

re tu rn value from the bracketed m ethod call is passed back to the calling context and the re tu rn

values from w rapper calls are discarded. At m ost one of before and after can be null.

Let p \ .. .pk be the realisation set labels m atched by p a tte rn p. In order to select the call points,

we determ ine set M of realisation set labels m atched by p. To prevent recursive bracketing, th is set

does not include th e realisations denoting the w rappers:

M = { p i . . . P k } \

{n. map. forw ards-to(extract_.map.?(fee/ore)), forwards- to(extract_.map._.?(6e/cre)),

forwards-to(n.map.extract_.map.?(a/£er)).forwards-to(extract_.map._.?(a/ter))}

CHAPTER 7. SAPS - SUBJECT COMPOSITION 157

Next, we search U for call set clauses th a t describe calls to nodes in M . Set D contains the call set

labels which should be bracketed:

D = {m atch (n .m a p__ extract.. opa.?(/')._) V

m atch (n .m a p___ ex tr a c t ..^ .? (//)) I f ' t f }

T he a ttr ib u te of each d G D is extended w ith before and after realisation sets:

rep lace (d$cs, d%(before)d%cs) after))

where d$cs is the a ttr ib u te of a call set clause d

T he final step is the same as for bracket-exec. Each class containing a w rapper m ethod and its

m em bers is introduced into the classes containing bracketed call points. M c, M s and M 0 respectively

specify the class, instvar and op eration labels th a t require changing:

M c = {m atch(n.cZs.extractn.TOap._.?(d)) | Vd G D }

M s = {m atch (n .els.ex tra ctn.map._.?._(d)) | Vd G D }

M 0 = {m atch(n .ops.extractn.map,?(d)) | Vd G D }

Figure 7-17 shows the clause universe being u p d a ted w ith new clauses containing the elem ents from

the w rapper classes, replace is applied for each m c G M c, m s G M s and m 0 G M 0. A t this point

th e work of bracket-call is complete.

7.4 The M odel of Type Com position

In th is Section we introduce the model for com posing subjects anno ta ted w ith Subjective Ownership

Types. We will argue th a t subject com position based on our notion of type equivalence leads to

deep ownership in the o u tpu t subject.

The aim of subject com position is to create a program th a t combines th e functionality of its
input subjects in a useful way. T he role of SAPS is to clarify subject interaction by constraining

aliasing in a m ulti subject environm ent. So SAPS should enable the ownership properties of the

o u tp u t subject to be determ inable from th e inpu ts and the com position specification.

T he model we propose is one where com position preserves the ownership properties of its input

subject. Subjects may be composed using the rules we have described so long as the ownership

properties of each input subject continue to hold. We intend for all subjective ownership type

declarations in each input subject to stay tru e after com position for all valid com positions. O n the

positive side, th is model leads to a nice p roperty th a t every object keeps its representation context;

representation containm ent is preserved and no object is exposed outside its owner. O n the negative

side, this model requires subjects w ith inherently different ownership properties to compromise on

a common ownership structure . The consequences of this com position model for subject-oriented

program m ing are evaluated in C hap ter 8.

O ur model depends on two factors presented over the following two Subsections:

• A m eans of determ ining equivalent subjective ownership types across the inpu t subjects.

• SO T-aw are com position rules th a t preserve each sub jec t’s ownership properties.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 158

7.4.1 Subjective Ownership Type Equivalence

In Subject-O riented Program m ing the com posable elements of subjects are brought together by

defining a correspondence between them . C orresponding elements are composed into a single element

in the ou tpu t. The a ttrib u tes of corresponding elem ents are combined to create the a ttr ib u te of the

o u tp u t element. Types are a ttrib u tes of bo th field variables and operations. SO P only perm its

com position of elem ents w ith equivalent types. In the case of value types equivalence is observable

im m ediately, e.g. com position of i n t type variables is allowed bu t com position of variables of type

i n t and f l o a t is not allowed. For ab strac t types, equivalence m eans either th a t corresponding

elem ents have types common to all subjects or type equivalence results from class correspondence.

C om m on types are generated from classes which are defined in class libraries and im ported into each

subject th a t uses them .

Subjective O wnership Types are an extension to existing type declarations of an object-oriented

language. All elem ents w ith value types have global aliasing properties and require no additional

type checking. A bstrac t types are derived from com posable and uncom posable classes. T he d a ta

com ponent of a type is followed by a sequence consisting of the owner context and o ther identifiers

which bind the ownership param eters in the uncom posable class declaration.

For types derived from com posable classes, d a ta type equivalence usually is inferred from the

com position specification. By definition, uncom posable classes cannot be composed. Uncom posable

classes are defined in libraries and im ported into all subjects th a t need them . For types derived

from uncom posable classes, d a ta type equivalence is observable immediately. C ontext identifiers
appear in a sequence after the d a ta com ponent. Suppose a num ber of such sequences are combined.
Clearly, all sequences are of the same length: atom ic types have no context identifiers; ab strac t d a ta

types derive from the same uncom posable class and thus require the same num ber of contexts in

all subjects; all types derived from com posable classes require exactly one context representing the

owner. T he equivalence in the context com ponent of a type is checked one position a t a time. There

are th ree possible com binations of contexts:

1. Explicit context combined w ith an explicit context.

2. Explicit context combined w ith an unknown context.

3. Unknown context combined w ith another unknown context.

In Figure 7-18, context correspondences labelled (1), (2) and (3) relate to the points in the

enum erated list above. For explicit contexts, equivalence is observable im m ediately from the repre

sentation . Case (1) in Figure 7-18 shows th a t subjects S I and S2 b oth view A .S as being owned by its
container, an object of class A. In case (2) an exp combines w ith an unk in class A. T he unk assumes

the value of the exp in A, producing a resolution. In the Figure, unk* resolves to expj in class A. In

case (3), when all corresponding contexts are unknown, no resolutions occur bu t th e com position

specification m ust infer a correspondence betw een those unks. T he com position specification m ust

specify th a t unkm in S I . A corresponds w ith unkm in S2 .A . This is indeed the case in Figure 7-18:

the m e r g e B y N a m e com position s tra tegy will create a correspondence for unkm .

unk R eso lu tion

In principle, a subject com position need not resolve all unks appearing in all com posed subjects, and

each com position can resolve m ore and m ore unks. Section 9.2 on page 215 will show th a t partia l

CHAPTER 7. SAPS SUBJECT COMPOSITION 159

Subject SI
class A

unk m

Hashtabie<0,1, m> h|

merge

Subject S2
class A

Hashtable<0,k,m> h
unk k unk m

Figure 7-18: Context correspondences

resolution plays an im portant role in the future development of SAPS. However, presently we require

that:

1. Every context combination yields a resolution.

2. Subject composition resolves all unks in all input subjects. An unk m ust resolve in every class
where it may be observed in the type of a declaration, an expression or subexpression.

Resolutions can occur in two ways:

• Directly through combination of types of corresponding elements. W hen a resolution occurs,
the Subject Composer creates a resolution mapping p which maps class name, unk pairs to exp

values:
p d= {(C ,k) n}*

• Indirectly using association and inheritance relationships between classes. Associations are
formalised in code by field accesses, updates and m ethod calls. Associations and inheritance
can propagate a resolution between classes. Section 7.6 on page 170 will present the resolution
validation algorithm which consumes a resolution m apping and attem pts to resolve unks in all

classes.

Direct and indirect resolution is shown in Figure 7-19. Suppose th a t subjects SI and S2 are

merged by name. Classes S I . A and S2 .A correspond, and so do instance variables S l . A . c and
S2 .A .C. Instance variable correspondence produces resolution (A, A:) »-> 1. However, class S l . B also
has a construct whose type depends on unkfc which is not resolved by composition. Composition of
SI and S2 cannot resolve unk^ in B because S2 has no concept of this kind. These sort of differences
are totally consistent with subject-oriented development: each subject should only define concepts
th a t serve to address its concern. Indirect resolution uses the association between classes SI .A and
S l . B to propagate the resolution from S I .A to S l . B . S l . A . f o o defines a field update expression

CHAPTER 7. SAPS - SUBJECT COMPOSITION 160

subject SI {
nnlr k;
class S where 1 <= k {

B<1> b;
C<k> c;
void foo() { b.c = c; >

>
class B where 1 <= k {

C<k> c;
>
class C { >

>
subject S2 {

class A {
C<1> c;
D<1> d;
void bar() { c.d = d; }

>
class C {

D<1> d;
>
class D { }

>

Figure 7-19: Exam ple showing direct and indirect unk resolution

which associates classes A and B. Feeding the resolved values into A i (defined in Section 6.2.2 on

page 107) yields resolution (B,k) i-* 1.
Indirect resolution is m eaningful because m ost sub jects im plem ent collaborations. O bjects col

labora te by sending each other messages containing references to o ther objects. Indirect resolution

depends on the fact th a t a t runtim e field access, up d a te and m ethod call expressions create a link

between two references to the same object. I t then uses the principles of explicit context identifier

arithm etic to calculate the correct type a t the o ther end of the association. Thus, for subjects im

plem enting a single collaboration, a single direct resolution may be sufficient to resolve the unknown
context for all classes. O ther subjects may require m ultiple direct resolutions to achieve subject-w ide
resolution.

R e s o lu t io n C o n s t r a in ts

unks often have resolution constrain ts in the form of ucircs. Conceptually, resolution constrain ts

ensure th a t in each class an unk denotes a range of exps and no resolution in the valid range

causes representation exposure. Recall th a t a t subject level, ucircs specify inter-unk ordering. Given

declaration u c i r c k <= m and some class A where the value of unkfc and unkm can be observed, any

resolution for unkfc and unkm in A m ust satisfy k <= m. A t class level, ucircs are s ta ted in where

clauses. These specify a range to which an unk m ust resolve in th a t class. Given declaration c l a s s

B where 1 <= k, unkfc m ust resolve to a value grea ter th an exp0 in B and its subclasses.

Resolution constrain ts are im portan t during com position. A fter all, th is is the tim e when unks

are replaced by exps. However, the declared ucircs are no t suitable for th is purpose. Com position

changes th e m ake-up of a class, introducing new instance variables and changing operation be

haviour. For instance, the o v e r r id e com position rule selects one m ethod definition over a num ber

of others. T he resolution constrain ts required by the overriding expression are likely to be different

CHAPTER 7. SAPS - SUBJECT COMPOSITION 161

subject SI {
class TitleBar {

Widget<0> w;
>

>
subject S2 {

class Window {
Widget<0> w;

>

>

Figure 7-20: Exam ple for SO T-aw are com position rules.

to the constrain ts of overridden operations. Consequently, to ensure valid resolution th e resolution

constrain ts pertain ing to a class m ust be inferred from its declarations and definitions in the output.

7.4.2 SOT-Aware Composition Rules

Com position rules are defined in term s of element grouping and a ttr ib u te com bination. T he preced

ing Subsection was concerned w ith com bination of type a ttrib u tes . P resently we are concerned w ith

elem ent grouping. There are two points which concern grouping: first, we argue th a t th e composi

tion rules in this C hap ter do not cause representation exposure; secondly, we take a look a t bracket

relationships in the contexts of SAPS.

C o m p o s i t io n R u le s a n d R e p r e s e n ta t io n E x p o s u re

We require subject com position to preserve the ownership properties of input subjects. We propose

th a t in order to do so, all class member grouping should take place in the scope of grouped classes.
Given type equivalence, th is p roperty ensures th a t for all objects, a representation object in one

subject is trea ted as representation in all o ther subjects.

T he SAPS model has two kinds of class member: instance variables and operations. T he struc

tu ra l properties of the system of labels ensure th a t instance variables can correspond only w ithin

corresponding classes. To dem onstrate th is point, consider F igure 7-20. In order for S I .T i t l e B a r .w

and S2.Window.w to ever reference th e same W idget object, S I .T i t l e B a r and S2.Window m ust

correspond. If bo th subjects type checked correctly before com position, then we can be certain th a t

no subject exposes the W idget object outside its representation context.

S truc tu ra l p roperties alone are not enough to ensure th a t newly introduced behaviour does not

cause representation exposure - this is the dom ain of com position rules. In the system of labels,

behaviour is abstrac ted by realisation labels. All is safe while classes execute realisations sourced

from their own subject. R epresentation exposure can be caused by an external realisation th a t finds

its way into the set by composition. So, this problem can be addressed if com position rules control

w hat realisations get executed.

In the system of labels, realisations are nested inside realisation sets. By definition of realisation

set, during m ethod dispatch on a receiver all realisations in a realisation set will be executed. If th a t

realisation set is itself composed of others, then all input realisation sets will contribu te to th e set

of executed realisations. B ut, access to realisations is guarded by (o p e ra t io n , c la ss) label pairs.

CHAPTER 7. SAPS SUBJECT COMPOSITION 162

Subject SI

| void f1 (Stack<0,0> s)]

Subject S2

void f2 (Stack<0, k> s

Class C

void f3 (Stack<l,1> s)

void f4 (Stackcl,1> s

Clone of class X for A

void before(Stack<m,n> s)

void after(Stackcm,n> s)

Clone of class X for

void before(Stack<m,n> s)j

■̂ v o i d after (Stackcm, n> s)|

Clone of class X for C

J void before (Stack<m, n> s)|

void after(Stackcm,n> s)

Subject S3

|void before(Stack<m,n> s)

[void after (Stack<m, n> s)|

(Correspondences) (Clones of)

Figure 7-21: The effect of bracket relationships on unk resolution

It follows th a t the executed realisations will come from some input class. Consequently, in order to
prevent representation exposure it is necessary for classes guarding th a t behaviour to be composed.

This property is true of all valid combinations of composition rules th a t we have specified. Top
level composition rules use n a m e -m a tc h to group classes. All finer grained composition may add
but never delete classes from correspondence clauses.

B ra c k e t R e la t io n s h ip s a n d S A P S

Recall th a t bracket relationships are an asymmetric subject composition mechanism th a t enables the
behaviour defined in one subject to extend the behaviour defined in another. Bracket relationships
take a pa ttern param eter which expands into a list of classes containing the join points. The bracket

relationship composes the classes containing the wrapper m ethods with each class in the list. The
w rapper methods are set to execute around the bracketed points. Bracket relationships create the
effect of cloning, with the bracketed locations and wrapper m ethods coming from corresponding
classes. It follows th a t the type combination principles apply also to bracket relationships: the type
in the interface of the w rappers must be equivalent to the type of the bracketed locations.

Operations th a t play the role of w rapper m ethods can use exps and unks in the types of their
param eters. By using unks, the aspectual subject can adapt to the contexts appearing in the

bracketed locations. Recall th a t an unk resolves to one exp per class. The resolution is well-defined if
for multiple bracketed locations within one class, each join point resolves to equivalent exps. Figure
7-21 shows the effect of bracket relationships. Class X is “cloned” once for each class containing
bracketed locations. The unks in the wrapper methods of “cloned” classes correspond with the

contexts (both explicit and unknown) in the bracketed sites, producing the following resolutions and
unk correspondences:

CHAPTER 7. SAPS - SUBJECT COMPOSITION 163

context\class A B C

m 0 0 1

n 0 k 1

Section 7.2.3 on page 140 described the conceptual difference between its two forms. B oth forms

establish correspondences between the w rappee classes and th e w rapper classes, in effect merging

th e classes of the w rappers w ith each class of the wrappee. b ra c k e t-e x e c creates correspondences

a t the receiver of the call whereas b ra c k e t-c a ll creates correspondences a t the class containing

th e call. B oth forms of bracket relationship lead to type com bination and, hence, unk resolution

Technically, b ra c k e t-e x e c and b ra c k e t-c a ll differ in term s of where resolutions occur. In b ra c k e t-

e x e c resolutions occur in the class containing the bracketed realisation set(s). In b ra c k e t-c a ll

resolutions occur in the class containing the bracketed call set(s).

T he SAPS notion of composable and uncom posable classes adds a new dim ension to the way

th e two forms are understood. In SAPS only b ra c k e t-c a ll can be used w ith bracket operations

of uncom posable classes. There are two reasons for disallowing b ra c k e t-e x e c on operations of
uncom posable classes:

• Uncom posable classes are black-boxes. b ra c k e t-e x e c implies th a t all calls to an object of an

uncom posable class should be extended w ith additional behaviour. This is a “sta tic extension”
- an extension th a t affects all existing clients. Inheritance is black-box extension mechanism

th a t should be used to specialise an uncom posable class, i.e. a black-box.

• b ra c k e t-e x e c implies “bracket calls to all objects of th is kind” , b ra c k e t-c a l l allows for a
m ore accurate specification of intent by implying “bracket calls to objects of th is kind from

th is set of call points” . SAPS prevents composers from m aking overly broad sta tem ents about
interaction. Specifying in teraction in the m ost sem antically precise way will m ake program s

m ore resilient to fu ture changes [77]; which aids reusability.

7.4.3 Extensions to the System of Labels

SAPS introduces m any new concepts into SOP. These concepts prim arily affect type com bination.

C om position of elements whose a ttrib u tes are subjective ownership types requires us to define new

com binators. T ype com bination produces unk resolutions. To ensure th a t sub ject are composed

correctly it is necessary to check th a t unks have resolved completely. D irect resolution through

type com bination creates some but no t all resolutions. Therefore, in an additional final step to the

com position process the Subject Composer uses resolution propagation to indirectly resolve all unks

in all subjects.

We propose to extend to the system of labels to incorporate the following SAPS concepts:

• Com posable and uncom posable classes defined or used by the subject.

• Instance variables and operations in com posable classes only.

• Unknown contexts declared in the subject.

• Call sets appear only in composable classes bu t may call operations of com posable classes.

• Clauses to collect unk resolutions from type com binations.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 164

* S : subject
S.els : com posable classes
S.im p : uncom posable classes

* S.ops : operations
* S.m ap : m appings

S.own : unknown con texts
S.cls.c : com posable class
S.cls.c : resolu tion m apping p
S.im p .c : uncom posable class (k \ . . . kn)

* S.cls .c .v : instvar o f ty p e t
* S.ops.o : operation w ith signature (t o , t i .. . t n)

S.ops.o : partial reso lu tion m apping pd
S.im p.o .c : uncom posable realisation set

* S.m ap.o .c : realisation set returning u
* S.m ap .o .c .r : realisation
* S .m a p .o .c .m .r : call set (. . . , S .m a p .m .r , . . .)

S.ow n .k : unknown context

Figure 7-22: Label clauses.

Figure 7-22 shows the additional clauses created to incorporate these. T he * in the leftm ost column

indicates th a t the clause is unchanged from Figure 7-5 on page 138. W orking from the top , the els
group now contains only com posable classes. The imp group refers to uncom posable classes which

are either defined in subject S or im ported from an external library into S. The own group contains

the su b jec t’s unks.

T he composable class clause labels com posable classes. T he new r e s o lu t io n m a p p in g a ttrib u te
of com posable classes collects the direct resolutions perta in ing to each class, p is a set whose entries

are of the form k t-* n where k is an unk and n is an exp. O peration labels gain th e p a r t ia l

r e s o lu t io n m a p p in g a ttr ib u te . pd has the sam e form as the r e s o lu t io n m a p p in g a ttr ib u te of

class labels. pd tem porarily store resolutions from operation signature com binations which take
place independently of classes. An uncomposable class clause introduces class c which has sequence

(k i . . . kn) of ownership param eters. The sequence does not include the implicit owner param eter.

Uncom posable classes are included because they are used as types of com posable elements. An

uncomposable realisation set clause denotes operation o in uncom posable class c. T his clause is

included because the call set of a com posable class may include calls to operations of uncom posable

classes. An unknown context clause defines an unk appearing in a subject. Unknown context

identifiers are also com posable elements of subjects th a t may be grouped w ith unks from other

subjects.

T he creation of resolution m appings is closely related to the issue of a ttr ib u te com bination.

Therefore, it makes sense to describe com bination and resolution m appings together in Section 7.5.

Checking resolution m appings for consistency can take place only once all direct resolution are

collected. These checks are described in Section 7.6 on page 170.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 165

C om position A ttr ib u te C o m b in a to r R eso lu tio n
C o n stru c t M ap p in g F n
instance variable

type ct
Rinst

operation
signature cg

Rops

realisation set Rra
call set

call set attrib. cg
Rea

Figure 7-23: C om position elements used in the definition of the SAPS m e rg e B y N a m e com position
rule

7.5 Type Combinators and Resolution Collection

T his Section defines type com binators and resolution m apping functions used by com position rules.

F igure 7-23 shows th a t there are two type com binators: C t for combining a sequence of types and

Cg for combining types in signatures. The la tte r sim ply calls th e form er to combine the types a t

each position. S ignature com bination is used to combine th e a ttrib u tes of o p e r a t io n clauses and

to check the a ttrib u tes of ca ll s e t clauses.

T ype com bination produces unk resolutions for the class where resolution occurs. Resolution

m apping functions are shown in the th ird column in F igure 7-23. Type com binators are applied

in th e context of some clause. Figure 7-4 on page 137 shows th a t in the case of in s tv a r and ca ll

s e t labels, the class in which resolution occurs is known from the com pound name; call sets and

instance variables are nested inside a class. The sam e is no t tru e of o p e r a t io n labels. Resolutions

from com positions of o p e r a t io n labels cannot be im m ediately a ttr ib u te d to the a class. Instead, we

postpone resolution m apping creation until r e a l i s a t io n s e t labels are combined. R esolution m ap

pings are stored as a ttrib u tes of the ou tp u t c la ss labels. W hen operation signatures are combined
we store partia l resolution mappings as a ttrib u tes of o p e r a t io n labels.

7.5.1 The Type Combinator

T he type com binator Ct{Q) determ ines the ou tpu t type by com posing types in Q. In th e process, Ct
checks th a t the types can be combined. W hat denotes a com posable sequence of types? O wnership
types have two parts: the d a ta type and the ownership context. In order for types to be composable
bo th p a rts should correspond. The d a ta types m ust come either from the sam e uncom posable class
or from com posable classes th a t are specified as corresponding. For example, for com posable classes
R and S the following m ust hold:

Ct((Sl .cls.R(1), => S.cls.T : com posed -o f((Si .cls.R, S2.els.S),
S2.cls.S(1)) = T (l) {SI .cls.R, S2.cls.S}) € U

O w nership contexts can be made up of explicit and unknown context identifiers. W hen unks are

used, we require every com bination of contexts to yield a resolution. Hence, for any sequence Q

there m ust be a t least one type w ith an exp for each context p aram eter position.

Before Ct is presented, we m ust describe the functions used in its definition, d t- fo rw a rd (Q)

determ ines the nam e of the d a ta com ponent of the ou tpu t type from a sequence of input types

Q = (t i . . . t k).

CHAPTER 7. SAPS - SUBJECT COMPOSITION 166

d t-fo rw ard ((ii . . . tk)) =f d t(i i) if Vi G [1, k] e x tra c t..? (U) = imp A
d t(ti) = dt(£2) = . . . = dt(ifc)

fo rw ard s-to (d t(ti)) if Vi G [1,/c] e x tra c t..? (U) = els A
fo rw ard s-to (d t(ii)) = . . . = forw ards-to(dt(tA :))

Let M c be a two-dimensional m atrix of contexts created from Q. The context identifiers of each

type are placed into a row such th a t M c[i, j } refers to the j t h context in the i th type in Q. We define

two indices e x p index(M c, j) and u n k index(Mc,'j) to column j of m atrix M c as follows:

e x P index(M c , j) d= {i I Mc[i,j] e A f \ J {world}}

u n k index(Mc, j) d= {i | M c[i, j } £ M U {world}}

N ote th a t i is in range [1, |Q|].
T he e x p -e x is ts te s t holds if there is a t least one exp for a corresponding set of contexts in

colum n j of M c. The e x p -e q u iv test holds if e x p -e x is ts and all corresponding exps in colum n j

are equivalent (or equal to world), e x p -v a lu e re tu rns the o u tp u t context value for colum n j:

e x p - e x is ts (Q, j) d= e x p index(M c, j) ± 0

e x p -e q u iv(Q , 'j) d= e x p -e x is ts (Q , j) A Vi, i ' G e x p index(M c, j) , M c[i, 'j] = M c[i', 'j]

e x p -v a lu e(Q, j) d= M c[i, 'j] i f e x p -e q u iv (Q , j) A i G e x p index{M c, j)
null o th e rw is e

Now we can present the type com binator. Ct takes a sequence of types to combine Q and re tu rns
the o u tp u t type.

D e f in it io n : (T y p e C o m b in a to r)

C t(Q) = f d t- fo rw a rd (Q)(e x p -v a lu e (Q , 1) , . . . , e x p -v a lu e (Q , m))

where Q = (t i(c1A . . . Ci)m), t 2 (c2 , i . . . c2,m) . . . t k (ck,i . . . cfc,m))

T h e M a in R e s o lu t io n M a p p in g F u n c t io n

The resolution m appings of unks are stored in th e clause universe as a ttrib u tes of class labels.

Alongside com binators, the Resolution M apping Function R (Q) is called to create the resolution set

for a sequence of corresponding types Q. The definition of R also uses the m atrix rep resen tation of

types.

T he exps and the unks appearing in th e same column of M c generate resolutions. For some

column j of M c, r e s -m a p creates a set of resolutions:

re s -m a p (Q ,j) d= { M c[i, j] e x p -v a lu e(Q ,'j) | i G u n k index(M c, j) }

A union of resolutions produced by all columns gives the com plete resolution m apping for a sequence

of corresponding types in Q :

CHAPTER 7. SAPS - SUBJECT COMPOSITION 167

D e f in it io n : (R e s o lu t io n M a p p in g F u n c tio n)

R (Q) = f Uj€[i,m] re s -m a p (Q , j)
where Q = (£1 (0 1 ,1 . . . c i>m), t 2 {c2,i . . . c 2,m) . . . t k (ck, 1 . . . Ck,m))

R e s o lu t io n s o n I n s ta n c e V a r ia b le s

W hen instance variables are composed, the resolution m apping a ttr ib u te for the class containing the

instance variable n is upd a ted w ith resolutions from com binations of types in Q :

Rinst{n, Q) *=* re p la c e (c : r e s o lu t io n m a p p in g p, c : r e s o lu t io n m a p p in g pU R (Q))

where c = e x t r a c t? .cis (n) .d s .e x tra c t_ .c/s.?(n)

7.5.2 Type Sequence Combinator

T he type sequence com binator is best understood in term s of its application to operation signatures.

S ignatures are the a ttr ib u tes of operation clauses and th is com binator is m ost commonly used to

combine the signatures of corresponding operations. In order to be composable, operations m ust

define the sam e num ber of param eters. T he re tu rn values and param eters in corresponding positions

m ust have equivalent types as defined by Ct .
T he type sequence com binator Cg(Q) takes a sequence Q of type subsequences to be combined,

and produces the ou tp u t subsequence. Cg is defined in term s of the type com binator Ct which is

called once for each set of corresponding types.

D e f in it io n : (T y p e S e q u e n c e C o m b in a to r)

Cg(Q) = < a« fo ,0 , *1,0 • • • *fc,0»> • 1 • Ct((to,mi *l,m • • • *ifc,m)))
where Q = ((*o,o> *o,i • • • *o,m)) (*i,o> *i,i • • • *i,m) , • • ■ > (*fc,o> *fc,i • • •

R e s o lu t io n s in O p e r a t io n S ig n a tu re s

Signature com bination produces unk resolutions which should be associated w ith o u tp u t classes.

B ut operation signature com bination is defined separately from classes. The missing inform ation

becomes available only when realisation sets are combined. In the m eantim e, we associate resolutions

from signature com bination w ith the partial resolution mapping a ttr ib u te of the o u tp u t operation
label n.

R ops (n , Q) = f r e p la c e (n : p a r t i a l r e s o lu t io n m a p p in g pd ,

n : p a r t ia l r e s o lu t io n m a p p in g U •^7((*0,i> *l,i • • • *fc,i)))
iG[l,m]

where Q = ((*o,o,*o,i • • -*o ,m)) (*1,0 j *1,1 • • • *i,m), • • •) (*fc,0) *fc,l • • • *fc,m))

Realisation set com bination provides an opportun ity to fill in the missing inform ation for partia l

resolutions created by signature com bination. P a rtia l resolution m appings are stored as a ttr ib u tes

CHAPTER 7. SAPS - SUBJECT COMPOSITION 168

of o u tp u t operation labels such as the following:

n.ops.foo : p a r t ia l r e s o lu t io n m a p p in g {k i-> v}

T he nam e of the class is taken from the nam e of the ou tp u t realisation set label r , and th e resolution

m apping a ttr ib u te of this class is updated . N otation m $prm denotes the p artia l resolution m apping

a ttr ib u te of label m:

R ra(r) d= re p la c e (c : r e s o lu t io n m a p p in g p, c : r e s o lu t io n m a p p in g P U pd)

where c = e x tra c t? .map (r) .d s .e x tra c t_ .map._.?(r)

and pd = (e x tra c t? .map (r) .o p s .e x tra c t_ map?(r))$prm

7.5.3 Checking Call Sets

A call set label has as its a ttr ib u te a sequence of realisation sets. Any m ethod calls to th e realisation

set denoted by the label generate calls to the elem ents in th e a ttrib u te . This p roperty is used

w ith bracket relationships on call sites. During com position it is necessary to type check th a t the

signatures of operations described by the call sets m atch because the same argum ents are bound

to the param eters of all operations. However, there is an exception. The w rapper operations used

in bracket relationships also accept either no param eters or special m et a-param eters describing

th e bracketed operation, e.g. the bracketed operation name. These do not concern us, for w rapper

operations w ith no param eters or m eta-param eters do not combine types. M ethods used as w rappers
always have v o id re tu rn type, so only param eter types are checked.

Call set checking applies Cg to sequences of signature types not including the re tu rn type. For
a ttr ib u te M of a call set label CS this sequence is given by:

B r = ([m a tc h (e x tra c t? .map(C S).0p s .e x tra c t_ .map.?(M [i]))]$param s | i e [1 ,|M |])

where params denotes the param eter types of an operation label

R e s o lu t io n s fro m C a ll S e ts

Allied w ith the above checks is resolution m apping collection from call sets. T he unks in th e interface

of w rapper m ethods resolve the exps in the types of the w rapper operation.

Function R cs updates th e resolution m apping of the class containing the call set label. I t has two

param eters where the first param eter n is the com pound nam e of the call set label, and the second

param eter Q is a sequence of signature types not including the re tu rn type given by B r above:

R c s (n , Q) =f re p la c e (c : r e s o lu t io n m a p p in g p ,

c : r e s o lu t io n m a p p in g pU [j R ((p 0>t, P i , t . . -Pk , t))

where c = e x tr a c t? .map (n).c /s .e x tra c t_ .map._.?(n), and

Q = ((PO.OiPO.l • ■ -PO,s), < P l ,0 ,P l , l ■ • •P l , s) • • • (Pk,0,Pk, l • ■ •P k , s))

CHAPTER 7. SAPS - SUBJECT COMPOSITION 169

subject FireControIIer {
vmlc sc_owner, arr_owner, pr_owner;
ucirc arr_owner <= pr_owner;
abstract class Stage {

SafetyCurtain<sc_owner> sc;
Vector<0,pr_owner> props;
abstract void arrangeProps(Prop<arr_owner,pr_owner>[] pr);
void makeSafeO {

arrangeProps(nuII);
sc.lower();

}
>

>
subject Performance {

class Stage {
SafetyCurtain<l> sc;
Vector<0,2> props;
void arrangeProps(Prop<l,2>[] pr) { . . }

>
>

compose Performance, FireControIIer into SafePerformance;
mergeByName;

Figure 7-24: Com position of P erfo rm an ce and F i r e C o n t r o I I e r subjects

7.5.4 Example

Type com bination and resolution m apping collection is dem onstrated in term s of com position of sub
jects P erfo rm ance and F i r e C o n t r o I I e r shown in Figure 7-24. The o u tp u t subject, S af e P e r f ormance,

is created using m e rg e B y N a m e semantics.
T he type com binator is applied to determ ine the types of corresponding instance variables sc

and p ro p s . It is activated after grouping activ ity completes, creating the following clauses in U: Ct
is applied to in tegrate the types of corresponding instance variables:

SafePerformance.cls.Stage.se : in s tv a r o f ty p e Ct(
(Performance. els. Safety Curtain (1),
FireControIIer. els. Safety Curtain (sc-owner)))

Saf ePerf ormance.els. Stage.props : in s tv a r o f ty p e Ct{
(Performance.imp. Vector (0, 2),
FireControIIer.imp. Vector(0, pr-owner)))

Next Rinst is invoked as follows:

Rinst (SafePerf ormance. els. Stage, sc , (Performance, els .Safety Curtain (1),
FireControIIer. els. Safety Curtain (sc-owner)))

Rinst (SafePerf ormance. els. Stage.props, (Performance. imp. Vector (0, 2),
FireControIIer.imp. Vector(0, pr.owner)))

Rinst creates resolution which are added to clause universe as the a ttr ib u te of the pertinen t class

CHAPTER 7. SAPS - SUBJECT COMPOSITION 170

label. T he clause universe will contain the following clauses:

SafePerformance.cls.Stage.se : instvar of type SafePerformance. els. Safety Curtain (1)
Saf ePerf ormance. els. Stage.props : instvar of type SafePerformance. imp. Vector (0,2)
Safe Performance, els. Stage : resolution mapping {sc-owner t- *• 1 ,pr-Owner i—> 2}

To resolve unkaTT_otimer, operations a r ra n g e P ro p s m ust be composed using the type sequence
com binator Cg. Cg invokes Ct once in a benign way to combine the corresponding v o id types of
re tu rn values. T he second invocation combines the param eter types. A t th is point R opi) is invoked
in order ob tain the resolutions from this signature com bination:

R 0ps{SafePerformance. ops. arrangeProps, ((void(), Perf ormance. els. Prop {1, 2)),
{voidQ, FireControIIer.els.Prop(arr-owner, pr.owner))))

A fter these activities the clause universe contains the following clauses:

Saf ePerf ormance. ops. arrangeProps : operation with signature {voidQ,
SafePerformance. els. Prop (1,2))

SafePerformance.ops.arrangeProps : partial resolution mapping {arr-owner 1 ,pr-owner *-*■ 2}

m e rg e B y N a m e creates a correspondence clause for the realisation set representing S ta g e . a r

ra n g e P ro p s (. .) . C om bination of realisation sets provides an opportun ity to com plete the partia l

resolution. Resolutions in operation a rra n g e P ro p s occur inside class S tag e . The resolution m apping

of class S ta g e is upda ted w ith the p artia l resolutions from operation a r ra n g e P ro p s , giving:

Saf ePerf ormance. els. Stage : resolution mapping
{sc-owner h-> 1, arr-owner ► 1, pr-owner i—► 2}

7.6 Resolution Validation

Resolution validation checks th a t unks resolve to exps in all classes where they appear and th a t

resolutions satisfy resolution constraints. For each unk in the o u tp u t subject we construct a graph.

Its vertices are classes and edges are established by the definitions and behaviour in the o u tp u t

classes.

We will present a resolution propagation algorithm which a ttem p ts to determ ine an exp value

for each vertex of each graph. Resolution propagation s ta rts when the graphs are seeded by direct
resolutions from type com binations. In the present work, failure to determ ine the exp for all vertices

indicates an invalid subject com position. T he value of partia l resolution is discussed in Future W ork

on page 215. Before presenting the algorithm we explain the p reparation stages which include unk,

resolution constrain t and inter-class relationship collection.

7.6.1 Preparation

Resolution validation requires access to the following:

• The set of unks th a t appear in the types of com position com ponents. T he unks pertain ing to

each class are a union of unks in the com position subelem ent of the class.

• The set of resolution constrain ts th a t apply to the unk set. These are used to check th a t unks

resolve correctly in each class.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 171

S.cls .c .v : instvar o f ty p e t
S .ops.o : operation w ith signature (t o , t i .. . t n)
S .m ap .o .c .r : realisation typ es { t i .. . t m }
S.cls .c : unks to resolve { u i . . . up}

S .cls .c .v : resolu tion constraints (e.g. 1 <= k, m
S.ops.o : resolu tion constraints (. . .)
S .m ap .o .c .r : resolu tion constraints (. . .)
S.cls.c : resolu tion constraints (. . .)

S .m ap .o .c .r : association set { (d ,n ,k) }*
S .c l s .A j .v : w ith classes { A 2 . . . A n }

Figure 7-25: Labels used for resolution validation.

• T he resolutions m appings from type com binations for seeding the resolution propagation al

gorithm .

• R elationships between classes by which a resolved value can be propagated from class to class.

All th is inform ation is collected during subject type checking. The system of labels conveys the

resolution d a ta to the resolution propagation algorithm .

unk C ollection

T he set of all unks in a class is determ ined from the types of com position com ponents defined or

used in th a t class. T he top th ree labels in F igure 7-25 show th a t th is inform ation is obtained from:

• T he declared types in operation signatures, instance and local variables.

• T he types of expressions in realisations.

An unk resolves to one exp per class, so th e next task is to collect all unks pertain ing to each ou tpu t
class. T he “unks to resolve” a ttr ib u te of class labels holds this set. Suppose th a t an o u tp u t class
S .C is created by com posing S \ .C \ . . . S n .Cn , then the a ttr ib u te value is given by unksToResolve:

unksToResolve(S'.c/s.C) { get-unks (ti$ type) | v € match(S'i.cZs.C't._) A i G [1, n]} U
{get-unks(o$siy) | o = match (Si. ops. x) A
x G match (S'*, m ap.-C i) A i £ [1, n]} U
{get-unks (r$imfcs) | r G match (S .m ap .- .C —)}

where, for some type t or set of types T , get-unks is defined as:

get-unks(T) =f get-unks(t)
teT

get-unks(t) = f {c | c is an unk in t}

R eso lu tion C onstraint C ollection

Com position changes the m ake-up of a class, introducing new m em bers and overriding operation

im plem entations. Consequently, the resolution constrain ts of an o u tp u t class m ust be gathered

CHAPTER 7. SAPS - SUBJECT COMPOSITION 172

from its subcom ponents. In the system of labels only instance variables, operation signatures and

realisations are associated w ith types. Figure 7-25 shows th a t in the system of labels, th is inform ation

is available as a ttr ib u tes of in s tv a r , o p e r a t io n , and re a l is a t io n clauses. T he constrain ts pertaining

to each o u tp u t class S .C composed from S \ .C \ . . . S n .Cn are collected together using c o lle c tU c irc s

and set as an a ttr ib u te of S.C:

collectU circs(S '.cZ s.C ') = f {v$rc | v G m a tc h (S i .c ls .C i-) A i G [1 ,n]} U

{o$rc | o = m a tc h (Si.ops.x) A

x G m a tch (S i .m ap .-C *) A i G [l,n]} U

{r$rc | r G m a tc h (S .map.-.C .S)}

T he penu ltim ate step is to reduce the resolution constrain ts to a canonical form using the following

rew rite rules. n ,n ' denote exps and u , v , w denote unks.

{(u < n), (u < n ')} C R C {u < m in (n , n ')} U [R C — {(u < n) , (u < n')}]

{(n < u), (n ' < u)} C R C {u < m a x (n , n ')} U [R C — {(n < u), (n' < u)}

{ (u < v), (v < ru)} C R C A (u < w) R C {u < iu} U R C

T he resolution sets of unks may not be empty. No input su b jec t’s resolution set was em pty before

com position, so an em pty resolution set a t th is point indicates an invalid com position, unk cycles

lead to singleton resolution sets. Singleton resolution sets are acceptable during com position because

they still m ake valid resolution possible.

E x a m p le

To dem onstrate resolution constrain t collection consider the exam ple in Figure 7-26. T he example

shows a m e rg e B y N a m e com position of subjects S I, S2 and S3 into the o u tpu t subject S. For o u tpu t

classes A and T, two unks are defined: unk*, and unkm. Resolution constra in ts are collected from

all instance variables types, operation signatures and m ethod im plem entations th a t contribute to

classes A and T. m e rg e B y N a m e sem antics ensure th a t all input elements contribute to the ou tpu t,
so we can equally well observe the constrain ts collection from Figure 7-26:

• For class A:

lin e 4: k < 1

lin e 6: k < 1

lin e 14: k < m

l in e 16: 1 < h, 1 < m

• For class T:

lin e 20: k < m

lin e 26: 1 < m

CHAPTER 7. SAPS - SUBJECT COMPOSITION

1 subject SI {
2 nnTc K;

3 class S where k <= 1 {
4 Vector<k,l> v;
5 void foo(S<l> s) {
6 v.add(s);
7 >
8 >
9 }
10 subject S2 {
11 unk k, m;
12 ucirc k <= m;
13 class S where 1 <= k, 1 <= m {
14 Vector<k,m> v;
15 void bar(T<l> t) {
16 t.v = v;
17 >
18 >
19 class T where 1 <= k, 1 <= m {
20 Vector<k,m> v;
21 >
22 >
23 subject S3 {
24 unk m;
25 class T where 1 <= m {
26 Vector<l,m> v;
27 >
28 >
29 compose SI, S2, S3 into S;
30 mergeByName;

Figure 7-26: Resolution validation exam ple

CHAPTER 7. SAPS - SUBJECT COMPOSITION 174

A n B

k

k - n + 1

A n B

k
«=-----------------------------

k + n - 1

A B

k k

A B

k k

Figure 7-27: unk resolution propagation rules

T his com position creates the following labels in the clause universe:

S.e ls .A : unks t o re so lv e { k ,m }
S .c l s .T : unks t o re so lv e {k, m }

S.e ls .A : r e s o lu t io n c o n s t r a in t s {(/e < 1), (k < m), (1 < k), (1 < m)}
S .c l s .T : r e s o lu t io n c o n s t r a in t s { (k < ra), (1 < ra)}

T he com position in F igure 7-26 has created resolutions th a t are represented in U as a ttrib u tes of

class nodes:

C o r r e s p o n d e n c e o f lin e s 4 a n d 14 S .e ls .A : r e s o lu t io n m a p p in g { m i-> 1}

C o r re s p o n d e n c e o f lin e s 20 a n d 26 S .c ls .T : r e s o lu t io n m a p p in g {k i-> 1}

R e s o lu t io n P r o p a g a t io n B e tw e e n C la sse s

Indirect resolution uses association and inheritance for propagation. T he principles of context iden

tifier a rithm etic presented in Section 6.2.2 on page 107 create the association links. Propagations

can pass b o th up and down the inheritance hierarchy using the types of class m em bers to create

links.

We can represent bo th kinds of p ropagation pictorially in class graphs. F igure 7-27 shows reso

lution propagation for unkfc. In each diagram , unk*, is already resolved in class A, and the aim is to

resolve it in B . There are two kinds of edges between classes:

• A s s o c ia t io n is represented by open ended edges. Associations denote resolution propagation

due to behaviour, such as due to m ethod calls, field access and upda te expressions. The

identifier on the edge denotes the owner context of the receiver expression.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 175

• Inheritance is represented by solid triangu lar ended edges. Here, inheritance denotes resolu

tion propagation due to the declared inheritance relationships.

From the top down in F igure 7-27, an association edge from A to B indicates th a t A contains an

expression th a t passes an ob ject whose type contains unkjt to an n-owned instance of class B. The

expression in B denotes the value of unk&, calculated from th e value of unkjt in A and the value on

the edge. Similarly, for the second p icture from the top , the value of unkjt is known in A and not

known in B. The arrow direction denotes th a t the expression connecting these classes is defined in

B. n can be an unk or an exp. W hen n is an unk, it m ust be resolved a t the class from where the

arrow em anates before proceeding to resolve unkjt in B.

For inheritance, the directed end points to the superclass. If A is a subclass of B, unkjt should

resolve to the sam e value in B only if B also has types th a t utilise unkjt. If A is B’s superclass and B

has types th a t utilise unkjt, then unkjt should resolve to the sam e value in B as in its superclass.

7.6.2 Clausal Representation of Association and Inheritance

In the clause universe the association relationships in subjects are represented as a ttrib u tes of re

alisations. These labels are constructed during subject typechecking. Figure 7-25 shows th a t the

association set a ttr ib u te of realisations is a set of tuples where d is the da ta ty p e of the receiver
expression, n is the owner context (explicit or unknown) in the type of the receiver expression and k

is an unk in the type of the actual param eter or the field upda te expression. For example, consider

th e following code and the label it generates:

1 class C {
2 D<0> d;
3 E<k> e ;
4 F<p, q> f;
5 void foo() {
6 d.bar(e);
7 e.f = f;
8 >
9 >

Suppose the body of m ethod f o o () is represented by label S .m ap .foo .C .r . The expressions in

th e realisations produce the following association tuples:

Line 6: (D, 0, k)

Line 7: (E ,k ,p) \ (E ,k ,q)

N ote th a t line 7 produces tw o tuples: one for each unk in the ty p e of the expression on the right

hand side of the assignm ent. T he com plete label is:

S .m ap .foo .C .r : a ssociation set {(.D,0, fc), (E , k ,p) , (E, k ,q)}

Inheritance between classes is not represented explicitly in th e system of labels bu t is inferred

from realisation set, realisation and instance variable labels:

• For realisation set-based propagation, suppose th a t unk*. resolves in class C of subject S and

there exist the following labels in the clause universe:

S .m ap.foo .C : realisation set returning . . .
S.ops.foo : operation w ith signature

CHAPTER 7. SAPS - SUBJECT COMPOSITION 176

T hen all o ther classes in S th a t also define operation f o o (. .) have the sam e resolution for

unkfc. T his notion is formalised by R S B P which takes subject S and operation foo, and re tu rns

the labels of classes th a t share th is operation. T he set of classes affected by this resolution is

given by:

RSB P(iS ')/oo) = f {c | c € m a tc h (S .map.foo.f)}

• For realisation-based propagation, suppose th a t unkfc resolves in class C , realisation r has unkfc

in its r e a l is a t io n ty p e s a ttr ib u te and the clause universe has the following labels:

S .m ap .foo .C .r : r e a l is a t io n

S.m ap .bar .D .r : r e a l is a t io n

S .m ap .foo .E .r : r e a l is a t io n

T h a t is, th ree realisation sets share the same realisation r. Classes D and E m ust also have

the sam e resolution. Hence, when unkfc resolves in class C , it resolves in all classes in th is set.

In the general case, for realisation r ', the set of classes in subjects S th a t have r' in one or

m ore realisation sets is given by R B P (£ , r')\

R B P (S ', r') = f { m a tc h (5 .cls.x) \ x 6 { e x tr a c t . .map._.?(rs) | rs € m a tc h (,S .m ap___ r')}

• Finally, in instance variable-based propagation instance variables propagate resolutions up and

down the class hierarchy. Suppose unkfc resolves in class C and there exist th e following labels
in th e clause universe:

S .c ls .C .v : in s tv a r o f ty p e t (. . . , fc,. . .)

Then, all classes th a t define the sam e instance variable will also resolve unkfc. The following

does not specify all affected classes because unrelated classes m ay define an instance variable
w ith the sam e name:

{c | c € m atch(5 '.c/s._ .i;)}

Instead, all classes th a t define or inherit the sam e instance variable are given as values of the

w i th c la sse s a ttr ib u te of an instance variable label (also shown in Figure 7-25 on page 171:

S.cls.Ax .v : w i th c la sse s { A 2 . . . A n }

Upon seeing th is label we can conclude th a t there exist n — 1 o ther labels:

S .c ls .A i .v : w i th c la s se s { A i . . . A n } \ {A i} iG [2,n]

Supposing unkfc resolves in class C of subject S , for each instance variable v whose contexts

include unkfc, the set of classes affected by th is resolution is given by IV B P :

IV B P (5 ', C, v) = f {m atch(5 '.c/s.a:) | x G S.cls.C.v%wc}

where no ta tion p%wc denotes the values associated w ith the w i th c la s se s a ttr ib u te of label p.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 177

7.6.3 Graph Representation for Resolution

R esolution propagation is m ost easily understood in term s of a class graph representation . For

each unkfc in the o u tp u t subject S , we construct graph Gk by obtaining values from the clause

universe. Each Gk = (V , A, H) is m ade up of th ree elements: V is the set of vertices; A is the set

of association edges connecting the the elem ents of V such th a t v — v' G Gk if (v ,n ,v ') G A; H

is the set of (bi-directed) inheritance edges connecting the elem ents of V such th a t v v' G Gk if
{ v ,v ') V (v*,v) G H . T he edges are bi-directional to indicate th a t the same rule is used to propagate

resolutions bo th ways. T he set of all graphs is G = { G ^ . . . Gkm}- For each Gk G (? the sets V , A , H

are constructed as follows:

• The set of vertices in Gk is given by:

{c | c G m a tc h (S.els.-) A k G c$utr}

where c%utr is the value associated w ith the unks to re so lv e a ttr ib u te of class c.

• T he association edges are draw n based on a s s o c ia t io n s e t a ttrib u tes of realisation labels.

Each such a ttr ib u te has class C a s a com ponent of its com pound name. T he a ttr ib u te value

is a set of tuples of the form (C ' , n , u). Gk has an edge labelled n from C to C ' if and only if

k = u.

• T he inheritance edges are draw n based on the propagation rules defined in the preceding

Section. In G k , we draw an edge between C and its superclass C ' if and only if C inherits from
C ' a m ethod or an instance variable, either directly or transitively, th a t has unkfc in its type

or signature, or if any m ethods of C (realisation sets) share code (a realisation) w ith class C '
th a t contains an expression or sub-expression whose type features unkfc.

W ith each vertex v in Gk we associate its resolved value. In addition, the following functions are

defined:

• lookupfc(u) is the resolved value of unkfc a t vertex v in Gk (class v), or e r r o r if unkfc is no t

resolved.

• u p d a te fc (u ,n) sets the resolution for unkfc in class v to n , i.e. the value a t vertex v in Gk is

set to n.

C lass labels’ r e s o lu t io n c o n s t r a in ts a ttr ib u te s are no t added to graphs. For each class C

they are placed verbatim into resolution constra in ts environm ents V £ c . Let no tation 'RCc \k/n]

denote th e environm ent created by substitu ting n for unkfc in 7ZCc . W hen unkfc resolves to n in

class C , we perform the substitu tion in the environm ent. If the constrain ts are satisfied, TZCc is

reduced by elim inating tautologies, i.e. inter-exp expressions. O therw ise the resolution is invalid

and com position aborts.

P ropagation s ta rts by applying the resolution m apping on to the graph set. For each vertex of

each graph we apply the resolution if one exists and also reduce th e appropria te resolution constrain ts

CHAPTER 7. SAPS - SUBJECT COMPOSITION 178

environm ent.

VGfc = ({'Ui. . . vm }, _, .) e G

V v u i E [1, m]

le t Erm = [match(<S'.els.Vi)]$rm in

u p d a t e fc(^ , Erm(k)) A 7ZCVi[k /Erm(k)] i f k € dom(F rm)

where c$rra is the value of the r e s o lu t io n m a p p in g a ttr ib u te of class c

At this stage we can test for term ination and, if not finished, apply the resolution propagation

algorithm (presented in Section 7.6.4 on page 179). T he com position is valid when all vertices in

all graphs in G have a value w ithin the specified constraints. In order to exemplify the resolution

theory presented thus far and to m otivate the propagation algorithm we present an example.

E x a m p le

This exam ple tu rn s a tten tion tow ards the way resolutions are propagated in the program in Figure

7-26 on page 173. From the clause universe we observe th a t the ou tp u t subject has two unks: unk*

and unkm. Two graphs are constructed, G = {Gk,Gm}:

Gk = ({AT},{(A,1,T>},0)
Gm = ({A:r},{(.4,i,:r}},0)

T he graphs are identical because a single expression (line 16 in Figure 7-26) propagates the resolu
tions for unkfc and unkm. The ucircs are given by:

HCA = {(A; < 1), (k < m), (1 < k), (1 < m)}

7ZCT = {(& < m), (1 < fc), (1 < m)}

T he resolution m apping is collected from the clause universe and applied to the graphs:

• m i—> 1 in A:

1. u p d a t e m(A, 1) sets the value a t vertex A in Gm to 1.

2. S ubstitu ting 1 for m in R C A leads to 7ZCA = {(k < 1), (1 < k)}.

• A: i—> 1 in T:

1. upd a te fc (T , 1) sets the value a t vertex T in Gk to 1.

2. S ubstitu ting 1 for k in 1ZCT leads to 7ZCT = {(1 < m)}.

At this point, the value of unkfc is known in T bu t not in A. Likewise, th e value of unkm is known in
A bu t no t in T. P ropagation of resolutions occurs as follows:

1. By lookupfc(T) = 1 and association edge (A , 1 ,T) in Gk, we conclude th a t unkfc resolves to 1

in vertex A. The association edge was followed in the direction opposite to its arrow.

2. S ubstitu ting 1 for k in 7ZCA leads to 1ZCA = 0.

CHAPTER 7. SAPS SUBJECT COMPOSITION 179

Gk

0
B

m
A C

Figure 7-28: Resolution propagation example

3. By lo o k u p m(.<4) = 1 and association edge (A ,1 ,T) in Gm , we conclude th a t unkm resolves to
1 in vertex T . This time, the association edge was followed in the same direction as the arrow.

4. Substituting 1 for m in IZCT leads to 7ZCT = 0.

Now all unks have resolved correctly in all nodes in G. The composition in Figure 7-26 is valid.

7.6.4 Propagation Algorithm

The algorithm for resolution propagation, based on the graph representation described in preceding
Section and used in the above example, consists of two parts. Per-graph propagation resolves one unk

a t a time, using resolutions on other unks where possible. Top-level propagation applies per-graph
propagation until either all vertices in all graphs are resolved or there remain unresolved vertices
w ith no further resolutions possible. This indicates an invalid composition.

The term inating condition is resolution of all vertices in all graphs. It is defined as:

T erm (G) = VGt(= {{« ,. £

/\lookup*., (uj)
j€[l,m]

Resolution may also abort prem aturely if ucircs are not satisfied, or if a collection of direct resolutions
and propagations resolve an unk to different values for one class.

Per-graph propagation differentiates between two kinds of resolution due to association. Consider
the graph Gk given in Figure 7-28. Suppose unkfc resolves to exp0 directly in A. We can immediately
resolve unkfc to exp2 in B. However, resolving unkfc in C is predicated on the resolution of unkm in C.
Suppose unkm resolves to exp2 in C. Now we can resolve unkfc, giving exp2 in C. These two forms of
resolution propagation give rise to the following definitions:

• A s im p le a s so c ia tio n is one where the context on the edge is an exp. S im p le p ro p a g a tio n

occurs immediately following the resolution on one end of the edge.

• An u n k -p re d ic a te d a sso c ia tio n is one where the context on the edge is an unk. An unk-
p re d ic a te d p ro p a g a tio n occurs only after the value a t the edge is resolved.

All inheritance based propagations occur immediately because there is no condition on resolution.
Simple and unk-predicated propagations depend on two functions which were described graph

ically in the top two diagrams of Figure 7-27 on page 174. The context a t the vertex is given by

m and on the edge by n. Function A i describes propagation along the arrow and A 2 describes
propagation in the opposite direction. These were presented in Section 6.2.2 on page 107.

CHAPTER 7. SAPS - SUBJECT COMPOSITION 180

P e r - G r a p h P r o p a g a t io n A lg o r i th m

T he P e r - G r a p h P r o p a g a t io n A lg o r i th m (P G P A), shown in Figure 7-29, is applied on to each

graph in G. I t proceeds by doing simple, unk-predicated, and inheritance-based propagations. W hen

no m ore propagation can be done, either because all vertices are resolved or an unk-predicated

propagation requires the unk to be resolved, per-graph propagation stalls, and we move on to the

next graph. P G P A re tu rns the num ber of successful propagations or aborts. A bortions indicate

invalid com positions and can occur due to the following reasons:

• T he resolution does not satisfy the resolution constraints.

• A t each resolved vertex, P G P A rechecks the values a t the o ther end of each edge. T here are

often m ultiple propagation paths and all should produce the sam e resolutions. We ab o rt if the

value calculated for a node is different from a value previously calculated via a different pa th .

P G P A is called recursively if the unk resolved a t least a t one vertex in the outer call.

T o p -L e v e l P r o p a g a t io n A lg o r i th m

T he T o p -L e v e l P r o p a g a t io n A lg o r i th m (T L P A), shown in Figure 7-30, proceeds by doing per-

graph propagations. These re tu rn a count of succesful new resolutions. If, after visiting all graphs,

the term ination condition is satisfied, the com position is successful and we halt. O therw ise, if any

per-graph propagation has a non-zero count, the top-level propagation is restarted . W hen th e count

is zero from all per-graph propagations and the term ination condition is no t satisfied, we conclude

th a t com position failed to resolve all unks subject-w ide and the com position is invalid.
To create the o u tp u t subject, all unks in all classes are replaced by their resolved values in G.

7.7 Conclusion

This C hap ter has presented extensions to Subject-O riented Program m ing necessary for com posing

subjects anno ta ted w ith Subjective O w nership Types. T he extensions in tegrate seamlessly w ith

th e subject com position model. Com position of elements is described in term s of the system of

labels which represent each su b jec t’s com posable elements. Com position is based on the concept of

correspondence: corresponding labels from different subjects are unified into a single result label.

T he code for the o u tpu t subject is created by linking based on th e result label.

In order for corresponding elements to be combined, they m ust define equivalent types. T ype

equivalence is based on bo th da ta ty p e and context equivalence. T he type m ust derive either from

the sam e uncom posable class or from corresponding composable classes. C ontext equivalence allows

for explicit-explicit and explicit-unknown context com binations. Explicit and unknown context

com binations produce resolution m appings which describe the value to which an unk resolves in a

p articu lar class.

We require all unks used in all input subjects to be resolved by com position. Thus, sub jects

featuring unks have the missing inform ation filled in through application to o ther sub jects where

contextual inform ation is explicit. Com position rules used in the com position specification are

defined in term s of groupers, com binators and resolution m apping functions. G roupers define the

elem ents which should correspond, com binators perform the in tegration, and resolution m appings

are used to elim inate all unks in the o u tp u t subject. Com position alone is often insufficient to

CHAPTER 7. SAPS - SUBJECT COMPOSITION

D efinition: (Per-G raph Propagation A lgorithm) The following conventions
are used in the definitions:

G = {<2fci .. • G/cm}
G ki = (V ,A ,H) i e [l , m \

V = {vj j e [l , n } }
A = {(vp, E , v q) p , q e [l , n \ } *
H = {(vp ,v q) p , q e [l , n] } *

P G P A uses two global variables: total is a count of p ropagations for each iteration
of sim ple/unk-pred icated /inheritance-based propagations; propagations is a count
of propagations for each call to P G P A .

var propagations = 0, total = 0

P G P A (G ,i) =
propagations = 0
foreach Vj j G [1, n] A lookup^ (Vj) G A f

let 7j = lookupfci(uj) in
foreach (V j , E , vq) G A w here E G A f

let r q = A i (r j , E) in target-update(G , z, vq, rq)
foreach (vq, E ,V j) G A w here E G A f

let r q = A 2{rj, E) in target-update(G , i, vq, rq)
foreach (v j ,E , vq) G A w here E £ A f

let E vai = lookup£;(uj) in
continue if E vai = error
let r q = A i (r j , E vai) in target-update(G , z, vq, rq)

foreach (v q , E, V j) G A w here E £ A f
let E vai = lookupE(ug) in

continue if E vai = error
let r q = A 2(rj,Eyai) in target-update(G , i, vq, rq)

foreach (v j , v q) G H
let r q = rj in target-update(G , z, vq, rq)

foreach (vq, v j) G H
let r q = rj in target-update(G , z, vQ) r q)

total = total + resolutions
P G P A (G , i) if reso lu tions > 0
total

Function target-u p d ate modifies the graph w ith resolutions, reducing the resolu
tion constra in ts set, or abo rts P G P A if th e value a t ta rg e t is not as expected.

target-update(G ,« ,ug,rg) =
update*.. (vq, r q) A 7ZCVq [k i / r q]

Apropagations = propagations -f 1 if lookup*.. (z;g) = error
abort if lookup*^ (vq) ^ r q

Figure 7-29: Per-G raph P ropagation A lgorithm

CHAPTER 7. SAPS - SUBJECT COMPOSITION 182

D e fin it io n : (T o p -L e v e l P r o p a g a t io n A lg o r i th m) The following convention is
used in the definition:

G = {G k l . . . G km)

T L P S (G) =
le t count = 0 in

fo re a c h i G [l,m] count = count + P G P A (G , i)
h a l t if T e rm (G)
T L P A (G) i f count > 0
a b o r t

F igure 7-30: Top-Level P ropagation A lgorithm

resolve unks in all classes where they are used. We presented a resolution validation algorithm for

propagating resolutions subject-w ide based on direct resolutions from correspondences.

Chapter 8

Evaluation

In th is C hap ter we evaluate the Subjective Alias P ro tec tion System in order to show th a t SAPS has

addressed the problem s th a t have m otivated it. SAPS was m otivated first by reuse and secondly by

in teraction problem s. We will show how our proposal improves on Subject-O riented Program m ing

in bo th of those areas.

Subject-O riented Program m ing is m ore th an an enhancem ent to O bject-O riented Program m ing.

It represents a a new way of addressing design challenges. SAPS was designed to work in th e context

of SO P; so it is im portan t to show the range of ways in which SAPS is useful to the subject-oriented

developer. We will dem onstrate the u tility of SAPS to the subject-oriented program m er th rough a

presen tation of design cases where reuse and interaction problem s play a part.

Evaluation takes place th rough a range of examples. T he exam ples have been carefully cho
sen based on a range of applications of SOP, an application of Alias P ro tection System s, and to

dem onstrate a SAPS strongpoint. L im itation of SAPS are discussed also.
Section 8.1 evaluates the contribution of SAPS w ith respect to th e m otivation factors for th is

thesis. SO P enables decom position of system s by feature. D ecom position by feature can be applied

to the developm ent of applications and large grained black-box com ponents. Section 8.2 shows

the way to construct com ponents by com bining S O T -anno tated feature subjects. W ith SAPS, for

all feature com binations, it can be shown th a t the com ponent, i.e. the o u tp u t subject, hides its

represen tation from com ponent clients. Section 8.3 shows th e m odularisation of a cross-cutting

concern using SAPS. This example evaluates the flexibility of SAPS when adap ting to th e different

ways the cross-cutting concern may be im plem ented. In Section 8.4 we show the m odularisation of a

security concern w ith SAPS. U ncom posable classes m ay be used to hide an algorithm im plem entation

th a t would otherwise be accessible to ano ther subject th rough join point in teraction. SO P has no

concept of com posable or uncom posable classes, thus there is no way of specifying th e places th a t

subjects should not interact. This exam ple shows th a t SAPS addresses a concern th a t could not

be addressed in SOP w ithout SAPS. In Section 8.5 we show the way explicit contexts may be

used to restric t com position in order to steer clear of anom alous in teractions. Finally, Section 8.6

dem onstrates the known weaknesses of our approach.

183

CHAPTER 8. EVALUATION 184

8.1 Interaction Problem s and Reuse

O ur position on reuse m eans th a t SAPS is required to play two different roles. In the first role,

SAPS has to be useful to the su b jec t’s original developer. As p a rt of a design process a system is
decom posed into subjects w ith the in tention of developing subjects m odularly. In its second role,

SAPS has to be useful to the subject composer, the reuser. SAPS anno ta tes the way subjects use

objects. D uring com position, Subjective O wnership Types help the reuser to understand the subject

and to gain insight into the consequences of interaction and detect anomalies.

T he them e th a t ties these two roles of SAPS is m odularity: the issue of m odular construction

of subjects and the reuse of subjects as modules. Before descussing interaction problem s and reuse,

th is Section evaluates how SAPS im pacts m odular software construction w ith SOP. B ut first, we

present the L ibrary M anagem ent System as a running example.

8.1.1 The Library Management System

The L ibrary M anagem ent System (LMS) was first introduced by Clarke in her work on Subject-

O riented Design [24]. T he LMS m anages the resources w ith in a library, and the activities relating to

those resources. T he full set of features of this system is beyond our scope, bu t the subset in which

we are in terested concerns the m anagem ent of books and periodicals, their ordering and physical

location w ithin the library.

A lib ra ry ’s resources are m ultiple copies of books and, optionally, periodicals. L ibrarians and

borrowers are library users bu t only librarians in teract w ith the system . There are a num ber of

requirem ents on the system , including:

• A d d l ib r a r y re s o u rc e . The lib rarian m ay add to th e catalogue new books, in some instances

new periodicals, or new copies of existing titles. T he librarian supplies inform ation on book

related details such as au thor or title . Location inform ation is generated by the system .

• R e m o v e l ib r a r y re s o u rc e . All copies of a given resource may be removed from the LMS

once they have been re tu rned to the library by the borrowers.

• O r d e r l ib r a r y re s o u rc e . O rder inform ation m ay be kept in the LMS. Once the order arrives,

the system is updated w ith new resources.

• S e a rc h fo r l ib r a r y re s o u rc e . All users may search for physical locations of copies of a

particu lar title.

• B o r ro w l ib r a r y re s o u rc e . T he borrow ing of resources depends on the library where the

LMS will be used. In some libraries only books m ay be borrowed, while in o thers periodicals

m ay also be borrowed. T he num ber of books th a t can be borrowed depends on who is doing
the borrowing and the application. For example, in a university application, postg raduates

m ay be allowed to borrow 10 books com pared to 6 books for undergraduate students.

• R e t u r n l ib r a r y re s o u rc e . W hen a resource is re tu rned late, a fine is issued to the borrower

which he m ust pay before borrowing any more books. T he length of tim e a resource can be

borrowed depends on the library and th e type of borrower. For instance, librarians m ay be

allowed to borrow books for longer th an m em bers of th e public.

CHAPTER 8. EVALUATION 185

T he LMS is a m ulti-user application. W hile searches can be perform ed concurrently, exclusive access

is required in order to add or remove resources.

To enable the traceability of requirem ents in code, each requirem ent above can be considered a

feature of th e LMS. Subjects can be used either to im plem ent these features directly or each feature

can be decom posed further into subconcerns w ith one sub ject im plem enting each subconcern. In the

experience of Lai and M urphy [71] two people working independently may identify different features

of im portance in the sam e piece of software. As our s ta rtin g point, a system is already decomposed

into subjects based on the features the developm ent m anager has identified as im portan t.

8.1.2 Modular Development of Subjects

Software is decomposed into modules because it is believed th a t tackling one m odule a t a tim e is

easier th an tackling the whole problem a t once. However, th e scattering of object representation

across subjects in certain subject-oriented decom positions inhibits the m odular developm ent of con

cerns. One of the factors th a t inspired decom position by feature was the productiv ity im provem ent

which m ay be gained through concurrent developm ent of features by separate team s (see Section

3.1.3 on page 27). The purpose of th is Section is to explain w hat im provem ents SAPS has m ade in
this respect.

In her thesis on Subject-O riented Design, Clarke [24] w rites th a t designers can work on subjects

representing different p arts of the system w ith little need for com m unication. I t is tru e th a t subject-

oriented decom position allows partia lly overlapping views of a dom ain to be specified m odularly.

Two designers can work on the design of one class sim ultaneously. However, as in any system where

m odules in teract, com m unication between design team s is required in order to establish th e details

of the interaction. SO P requires advance planning in order th a t subjects may be composed together.
For exam ple, consider the subconcern of A d d l ib r a r y re s o u rc e for adding a new book to the

library catalogue. This subconcern is realised in term s of a subject called AddNewBooK. T he librarian
supplies the au thor, the title and the num ber of copies. T he system adds the new resource to the

catalogue and determ ines a su itable location for the resource from au tho r details. Based on th is
inform al description, the subject designer can (m odularly) identify the m ain objects as viewed from

the perspective of th is feature:

• T he system used by the librarian is represented by a R esourceM anager object.

• A Book is a kind of R esource .

• One or m ore C op ies of a Book are created.

• T he librarian supplies A uthor, T i t l e and NumberOfCopies to th e R esourceM anager.

• T he R esourceM anager object assigns a L o c a tio n to each R esource .

Furtherm ore, the librarian is the actor who interfaces w ith a R esourceM anager. The external

properties supplied by the actor include the book details and num ber of copies being introduced.

All o ther objects including Book, Copy and L o c a tio n are p a rt of this concern’s im plem entation.

However, as the following dem onstrates, no further m eaningful m odular activ ity is possible a t

this stage. In AddNewBook, a unique integer identifier is associated w ith each copy of a new book.

No o ther inform ation needs to be recorded. For this subject it is sufficient to use an i n t a rray

to store the identifiers. However, from the B o r ro w l ib r a r y re s o u rc e requirem ent we are aware

CHAPTER 8. EVALUATION 186

world

resource manager

vector of books

books locations

) vector of copies

C m) copies

authortitle

world

resource manager
author

title
locationbook

number of copies

O copy

Figure 8-1: Sketches of an object graph (left) and ownership tree (right) for the AddNewBook concern

th a t borrow er rela ted inform ation will be associated w ith copies. Thus in view of com position, the

subject au th o r instead should use objects of class Copy to store the integer identifier. Thus, m odular

developm ent of subjects is possible, bu t sub ject developers m ust collaborate in order to ensure th a t

the ir sub ject can be composed w ithout further changes.

In SO P th e subject developers m ust collaborate on m any aspects of interaction, no t least of which
is th e issue of desirable interaction. In exchange for g reater certain ty in in teraction correctness, SAPS

form ally delays the point a t which m odular developm ent commences until a m utually com patible
ownership s tru c tu re is established. W hen subjects are developed in concert, the establishm ent of

ownership structu res should be done before independent work on subjects begins. Ownership trees,
first presented in Section 6.2 in page 103, are a useful way of com m unicating the ownership structure .

To create an ownership tree, it is necessary to understand the intended ownership structure ,

which in tu rn is understood from a sketch of the object graph for a subject. For example, a sketch

of the collaboration im plem ented by subject AddNewBook is represented by an object graph shown

in the left diagram of Figure 8-1. To create an ownership tree, one separates the external objects

from the in ternal ones: title and au tho r are properties of books th a t are supplied by the librarian;

th e num ber of copies is also an externally determ ined property. For the internal objects, each book

is associated w ith a location for storage and a location may store m any different books; books and

locations m ust have the same owner in order to enable them to reference each other. A book is

responsible for keeping track of all copies of th a t book, m aking each book the conceptual owner of

its copies.

T he key elem ents of the ownership stru c tu re are represented by an ownership tree sketch in the

righ t d iagram of Figure 8-1. T he sketch elides the details of d a ta struc tu res used in the implemen

ta tion . T he purpose of the diagram is to convey the m ain ownership properties.

T his ownership tree can be used to aid subject im plem entation. F igure 8-2 shows an imple
m entation for sub ject AddNewBook. The R esourceM anager .addNewBook(. .) collaboration takes

two S t r in g type param eters denoting the new book, and a single i n t type param eter represent

ing the num ber of copies to be added. Note th a t the S t r in g class is im m utable. O bjects of type

S t r in g are trea ted as elements of value type and require no context identifiers. Im m utable objects

CHAPTER 8. EVALUATION

subject AddNewBook {
class ResourceManager {

Vector<0, 0> resource;
void addNewBook(String title, String author, int noCopies) {

Book<0> book = new Book<0>(title, author, noCopies);
book.location = new Location<0>(author);
resource.add(book);

>

>
abstract class Resource {

Vector<0, 0> copies;
String title;
Location<l> location;
Resource(int noCopies) {

while((noCopies—) > 0) {
int id = ID.newIDO;
Copy<0> copy = new Copy<0>(id);
copies.add(copy);

>
>

>
class Book extends Resource {

String author;
Book(String title, String author, int noCopies) {

super(noCopies);
this.title = title;
this.author = author;

>

>
class Copy {

int id;
Copy(int id) {

this.id = id;
>

>
class Location {

Location(String author) { / * determines location based on bibliographic details */ }
>

>

Figure 8-2: The AddNewBook subject in the L ibrary M anagem ent System

CHAPTER 8. EVALUATION 188

_ world

company

employee

membership
secretary

Figure 8-3: A sketch of the ownership tree for th e Union set of concerns

have global ownership; the owner is im plicitly world. T he books and locations are owned by the

R esourceM anager object as indicated by exp0. Copies are created in the scope of a Book instance

which also owns them .

Sketches of ownership trees for different subjects should be sim ilar. For instance, o ther subjects

in the LMS th a t m anipulate books, locations and copies should have the same ownership structu re

for those objects.

We do no t prove th a t the length of tim e spent on developm ent is less w ith SAPS th a n w ithout
SAPS. To do so requires tim ing different team s of sim ilar experience and w ith sim ilar fam iliarity w ith

the application dom ain. However, by m aking ownership inform ation explicit in types, we believe

th a t SAPS leads to productiv ity improvements. F irst, by elim inating certain in teraction problems,

and secondly, by helping to pinpoint the cause of o ther in teraction problem s as explained in the
following.

8.1.3 Interaction Problems

Section 4.4 on page 59 has shown th a t the scattering of d a ta concerns can lead to in teraction

problem s. SAPS was partly m otivated by in teraction problem s th a t required invasive sub jec t m od

ifications. W ith SAPS, in order to be composable, corresponding elements m ust define com patible

types including com patible context identifiers. Now, interaction problem s are anom alies th a t occur

despite corresponding elements having com patible types. Even then, SAPS rem ains useful because

the owner represents a boundary w ithin which object s ta te m ay be changed. This is an im provem ent

over SO P program s w ithout SAPS which do not define a boundary on aliasing.

R evisiting the Union example in Section 4.4 on page 59, recall th a t the com position of subjects

Jo inU nion , D ism iss and R e t i r e m anifested an interaction problem . The problem was caused by

uncontrolled aliasing of union representative objects, such th a t a link between union representatives

and m em bers which was previously assum ed to be invariant becam e broken when the R e t i r e subject

was introduced.

W ith SAPS, one approach is to develop these subjects independently from each other, using SO T

to do conceptual modelling as described in Section 5.2.4 on page 87. These subjects have different

ownership structu res which tran sla te to incom patible Subjective O wnership Types a t jo in points.

Consequently, subjects cannot be composed using the com position rules we defined in C hap ter 7.

A b e tte r approach is to use the strongest m ode in view of com position. These subjects are

intended to be composed together, so it makes sense to identify the common ownership struc tu re

union

O union rep

CHAPTER 8. EVALUATION 189

and th en define the subjects in relation to it. A sketch of such a struc tu re is shown in F igure 8-3.

All ob jects in the d iagram except the union representatives are world owned. Figure 8-4 shows the

m ain details of these subjects. SAPS has elim inated the original interaction problem by m aking

aliasing an explicit concern and by creating a well struc tu red subject-oriented program based on the

SO T m odel of alias protection.

In terac tion problem s in SO P can occur in spite of com patible Subjective O wnership T ypes a t the

join points. In such cases SAPS helps to detect interaction problem s because it constrains object

aliasing. For example, consider the ownership tree in F igure 8-5 which depicts the m ain objects in a

Lift system created using SAPS. Suppose th a t during testing a problem is discovered w ith th e soft

ware controlling the opening and closing of lift d o o rs . From the ownership stru c tu re it is clear th a t

only objects inside the ownership context of d o o rs can directly affect the s ta te of th e d o o rs object.

SO T direct the m aintainer to analysing code in all subjects which can affect d o o rs . Specifically,

this includes code which contributes to the s ta te and behaviour of l i f t , f l o o r s e l e c t i o n b u tto n ,

s to p b u t to n , d o o r open b u tto n , m o to r and d o o rs . Any code which contributes exclusively to the

s ta te and behaviour of b u i ld in g , f l o o r s and b u t to n s cannot change the s ta te of the d o o rs object.

8.1.4 Reuse and Reusability

O ur position on reuse s ta ted th a t im proving opportunities on reuse depends on ideas th a t are of

value to the original developer as well as the reuser. In the conclusion to C hap ter 4 on page 68 we

s ta ted our belief th a t Alias P ro tec tion System s will be useful to subject developers. A PSs already

help object-oriented program m ers to create well s truc tu red object-oriented program s th a t control

alias exposure. The construction of subjects is essentially an object-oriented activity, so there is also

a benefit the subject developer.

Reuse in SO P is m ost commonly associated w ith composition; however, it is also possible to sub
class individual classes from an existing subject when creating a new subject. For instance, to create

the A ddN ew Periodical subject, it is necessary to introduce a new operation into R esourceM anager
and to define class P e r io d ic a l . In LMS, periodicals differ from books in having only a single copy
and an additional field denoting the category. Instead of com position, the subject au thor m ay choose

to use inheritance or delegation to define P e r io d ic a l .

In ten tional construction of reusable abstractions is supported in SAPS in two ways. T he subject

au thor m ay define uncom posable classes. For the m ost p art, the decision to create uncom posable

classes is m ade using the heuristic specified in Section 6.4.1 on page 122. There is a notable exception:

in Section 8.4 on page 199 uncom posable classes are used for security. In the LMS, no classes

identified during requirem ents analysis require param eterisation w ith respect to their ownership

properties. C onsequently all are composable.

R eusability is also supported th rough unknown context identifiers. An unk represents a choice of

exps so a subject th a t employs unks can ad ap t to a num ber of different ownership structu res th a t can

be represented using exps. For example, Section 5.4 on page 92 described the reusability requirem ent

on the Com posite design p a tte rn , unks can be used to create a reusable definition for th is p a tte rn .

Figure 8-6 shows the p a tte rn im plem entation anno ta ted w ith Subjective O wnership Types. Two

unks are used: unk^ denotes the owner of the children objects w ith respect to the com posite object;

unkm denotes the owner of object re tu rned by the collaboration realised by the com posite s truc tu re .

W ith slight modifications, subjects CADdraw (Figure 5-14 on page 94) and F ile S y s te m S iz e (Figure
5-15 on page 95) can be composed w ith subject Com posite.

CHAPTER 8. EVALUATION

subject JoinUnion {
class MembershipSecretary {

Union<worId> theUnion;
EmpIoyee<worId> employee;
void joinUnion() { theUnion.join(employee); }

>
class Employee {
>
class UnionRep {

String repName;
>
class Union {

HashtabIe<0, world, 0> member2rep;
Vector<0, 0> reps;
join(Emp!oyee<worId> e) { /* assign a rep to an employee */ }

>
>

subject Dismiss {
class Company {

Vector<0, vorId> employees;
void dismissO { ... e.appealO; ... }

>
class Employee {

Union<worId> theUnion;
String appealO { return theUnion.getRepName(this); }

>
class UnionRep {
>

>

subject Retire {
class UnionRep {

Union<2> theUnion;
void retireO { theUnion. ret ire (this); }

>
class Union {

HashtableCO, world, 0> member2rep;
Vector<0, 0> reps;
void retire (Member<0> m) ■(... }

>
class Member { >

Figure 8-4: Jo inU nion , D ism iss and R e t i r e subjects anno ta ted w ith SO T

CHAPTER 8. EVALUATION

world

floor selection button

stop button (3

door open button

building

floors

motor Q buttons

(^) doors

F igure 8-5: A sketch of the ownership tree for a Lift system

subject Composite {
u n it k , m;

abstract class Component {
abstract Object<m> doSctionO ;

>

abstract class Composite extends Component {
Vector<0, k> children;

Object<m> doSctionO {
lterator<0, k> it = children.iterator();
while (it .hasNextO) {

Component<k> c = (Component<k>)it.next();
perChild(c);

>
return null;

>
abstract void perChild(Component<k> c);

>
>

Figure 8-6: Composite design pattern as a subject annotated with SOT

CHAPTER 8. EVALUATION 192

8.2 Feature-Oriented Developm ent

One stren g th of Subject-O riented Program m ing is the ability to m ix-and-m atch features for on-

dem and rem odularisation. The subject composer, in the role of a com ponent vendor, can supply

software containing precisely those features th a t are required by the client. T he supplied software

takes the form of a trad itional black-box com ponent th a t will be used by the client in his application

developm ent.

T he exact environm ent in which the com ponent will be used is not known by the vendor, bu t

th e com ponent developed w ith SOP m ay in ter-operate w ith client software th a t maliciously or ac

cidentally subverts its s ta te through representation exposure. It is im portan t th a t the vendor has

com plete confidence in the encapsulation of the com ponent’s m utable s ta te fo r all combinations of

features, such th a t the only way the s ta te can be changed is th rough interface operations. F u rther

more, the com ponent may be used in an environm ent where the client is possibly unaw are of either

SO P or SAPS.

SAPS extends the benefits of alias protection to com ponent developm ent w ith SOP. Each feature

is developed as a subject. In order to compose features successfully the subject designers m ust

agree on the way corresponding classes use objects: representation object in one subject is also a

represen tation object in all o ther subjects. Any features in troduced as enhancem ents a t a later da te

m ust also conform to this model of encapsulation. SAPS is downwardly restrictive; th a t is, clients

using a com ponent developed w ith SAPS need not be aware of Subjective Ow nership Types used in
its developm ent.

T he com position rules defined in the preceding C hap ter have a m onotonic effect: com position

can in troduce new behaviour to objects bu t com position does not change the object owner. W ith
respect to feature E , composing F w ith o ther features does no t change the ownership context of any

objects created or referenced w ithin the behaviour specified by F . This is precisely the property
required to safely m ix-and-m atch features.

Before a set of collaborating subjects can be im plem ented, the developm ent team s m ust agree on

th e ownership properties of the common objects m anipulated by features. For the LMS requirem ents

in Section 8.1.1 on page 184 these properties can be sum m arised as follows:

• Resources (book and periodicals) are owned by the resource m anager. Any external referencing
to these resources should be done using value identifiers.

• T he copies of a resource are owned by the resource.

• Borrowers are external to the resource m anager. Consequently, external references to copies

is done th rough value identifiers.

• Fines are owned by borrowers th a t collect them .

F igure 8-7 depicts a sketch of the ownership stru c tu re common to these features. Having pre

sented th e AddNewBook subject in Figure 8-2, a tten tion now tu rn s to the ownership details of the

o ther features th a t make up the LMS.

T he RemoveResource subject deletes a resource from the lib rary catalogue. The item to be

removed can be any valid subtype of R esource . T he concrete type of the item is no t relevant to the
present concern, so only class R esource is declared. This subject m anipulates the sam e objects and
has the sam e SO T declarations as AddNewBook:

CHAPTER 8. EVALUATION 193

world

borrowerresource

finecopy

Figure 8-7: A sketch of the ownership tree common to the subjects m aking up the L ibrary M anage
m ent System

subject RemoveResource {
class ResourceManager {

Vector<0, 0> resource;
void removeResource(String title, String author) { }

>
class Resource {

Vector<0, 0> copies;

>

>

T he ordering of resources is the responsibility of the OrderBook and O rd e rP e r io d ic a l subjects.

For books, th is sub ject is sim ilar in design to AddNewBook except th a t no shelf location is associated
w ith the resource until the order arrives. T he resource is still added to the catalogue bu t a special flag

indicates th a t the item is not yet available for browsing or borrowing. The search for library resources

is im plem ented by the S ea rc fiB y T itie subject. Given the title of a resource, the collaboration

im plem ented by th is subject re tu rns the location of this resource.

Subject BorrowBook associates a book copy w ith a borrower. The copy can reference the borrow er

because the borrow er’s owner context is external to th a t of th e Copy object. The borrower stores

the i n t identifier denoting the copy.

subject BorrowBook ■(
class Book {

Vector<0, 0> copies;
void borrow(Borrower<worId> b, int copyld) { ... }

>
class Copy {

Borrower<worId> b;

>
abstract class Borrower { ... >
class UndergraduateBorrower extends Borrower { ... >
class PostgraduateBorrower extends Borrower { ... }

>

W hen re turn ing a book late, a fine is issued. T he R eturnB ook subject creates F in e objects inside

B orrow er objects. In SOT, only an object inside B orrow er can create objects whose owner is th is

B orrow er. It is expected th a t m ethods B o o k .r e tu rn (. .) and B o o k .b o rro w (. .) will be activated

a t runtim e using a barcode scanner object th a t is owned by the ResourceM anager:

CHAPTER 8. EVALUATION 194

subject ReturnBook {
class Book {

void return(int copyId) { ... }

>
class Copy {

Borrower<worId> b;

>
class Borrower {

Vector<0, 0> fine;

>
class LibrarianBorrower extends Borrower { . . . }
class PublicBorrower extends Borrower { ... }
class Fine { ... }

>

subject Scanner {
abstract class ResourceManager {

Scanner<0> s;
abstract void borrow(int copyld);
abstract void retum(int copyld);

>
class Scanner implements Runnable { . . . }

>

T h e requirement for concurrency has been identified as necessary to facilitate multi-user access
to the Library M a n a g e m e n t System. Updating of the library records requires a write lock to exclude
all readers. Concerns such as AddNewBook and RemoveResource require a write lock. Each activation
of searching behaviour increments the count of readers. This behaviour is implemented by subject
Synch:

subject Synch {
abstract class SynchCIass {

int activeReaders, activeWriters;
synchronized void waitWriterReadersO { ... }
synchronized void waitReadersO {...}■
void decrementWritersO { activeWriters— ; }
void decrementReaders0 { activeReaders— ; }

>
>

T h e mixing and matching of features occurs within the composition specification. For ex
ample to supply a component that contains features AddNewBook, RemoveResource, OrderBook,
SearchByTitle, BorrowBook, ReturnBook and Synch, the composition specification is given by:

compose AddNewBook, RemoveResource, OrderBook, SearchByTitle, BorrowBook, ReturnBook, Synch
into LMS;

mergeByName;
bracket ResourceManager.addNewBook with before Synch.SynchCIass.waitWriterReaders

after Synch.SynchCIass.decrementWriters;
bracket ResourceManager.removeResource with before Synch.SynchCIass.waitWriterReaders;

after Synch.SynchCIass.decrementWriters;
bracket ResourceManager.orderBook with before Synch.SynchCIass.waitWriterReaders;

after Synch.SynchCIass.decrementWriters;
bracket Book.borrow with before Synch.SynchCIass.waitWriterReaders;

CHAPTER 8. EVALUATION 195

after Synch.SynchCIass.decrementWriters;
bracket Book.return with before Synch.SynchCIass.waitWriterReaders;

after Synch.SynchCIass.decrementWriters;
bracket ResourceManager.search with before Synch.SynchCIass.waitReaders;

after Synch.SynchCIass.decrementReaders;

T he o u tp u t subject contains the ResourceManager class. T his class is the interface to the LMS

com ponent. T his com ponent can be used in applications requiring LMS functionality. T he interface

does no t to expose any representation objects used in the im plem entation while still m aking it

possible for th e LMS com ponent developers to reap the benefits of feature-based decom position. To

a client who is unaw are of Subjective Ownership Types, the functional interface is given by:

class ResourceManager {
void addNewBook(String title, String author, int noCopies) { ... }
void removeResource(String title, String author) { ... }
void orderBook(String title, String author, int noCopies) {...}■
String SearchByTitle(String title) { ... }

>

Borrowing and return ing of resources is not a p a rt of the LMS functional interface. T his func

tionality is p a r t of the im plem entation of the ResourceManager.

8.3 System Integration: A Cross-Cutting Concern

Subject-O riented Program m ing is a technology th a t enables M ulti-D im ensional Separation of Con

cerns. In addition to the m odularisation of concerns in the feature dimension, SO P can also m odu

larise cross-cutting concerns in o ther dimensions. T he preceding Section showed the u tility of SAPS
in feature-oriented development. In order for SAPS to be useful to the subject-oriented developer,

SAPS m ust be able to express the different representation containm ent requirem ents dem anded by

a range of SO P applications. In this Section, we dem onstrate th e u tility of SAPS w ith respect to

a cross-cutting concern; it has been shown th a t system in tegration is a cross-cutting concern in

object-oriented software [117, 118].

Suppose one constructs a system th a t in tegrates the behaviour of several b inary digits. Each B i t

is defined as:

subject JustSBit {
class Bit I

boolean value;
void set() { value = true; }
void clear() { value = false; >
boolean get() { return value; }

>
>

T he in tegration concern is to synchronise the sta tes of particu la r Bit pairs. Associations (rela

tions) betw een pairs of bits are created dynamically. There are two kinds of association: Equality
and Trigger. Figure 8-8 shows th ree Bit objects connected by Equality relations. Equality prop

agates s etO and clear () calls from the left to the right side and vice versa. Trigger propagates

them in one direction only.

W hen try ing to m ap these design structures into object-oriented program s, one finds th a t integra

tion issues become tangled in the im plem entation of class Bit. In a purely object-oriented solution

the Bit class stores references to ends of relations; the code for set () and clear () also im plem ents

CHAPTER 8. EVALUATION 196

Figure 8-8: In tegration of B its

the p ropagation of effects to related B its . Looking a t the E q u a l i ty association, we see th a t th e lack

of an ab s trac t im plem entation for E q u a l i ty makes the concern hard to understand. T he B i t and

the E q u a l i ty have been hardw ired together and are difficult to separate. Design patte rn s improve

the designs a little bu t fail to achieve clear separation because the p a tte rn code is still tangled w ith

the B i t class definition [116].

T he SO P designs for the E q u a l i ty association improve on object-oriented solutions. Subject

E q u a l i ty cleanly disentangles this concern from subject Ju s tA B it. However, code created th rough
system in tegration seldom runs in isolation. M ore likely, it is a subsystem th a t in ter-operates w ith

other subsystem s, possibly also created by integration. For example, a collection of B its m ay be

aggregated into a binary instruction to perform a b it shift operation or B i ts may be organised into

tem porary groups based s ta te patterns. Suppose th a t the B i t in tegration scenarios for the E q u a l i ty

relation tran sla te into design variants for the E q u a l i ty subject. T he differences can be distilled

into different ownership structu res created by com binations of b its and E q u a l i ty associations. We

observe th ree variants:

1. T he A s s o c ia t io n object is co-owned by the B its th a t are connected by it.

2. T he A s s o c ia t io n is split into two parts, w ith each B i t owning an A s s o c ia t io n object th a t
refers to the o ther B it .

3. T he A s s o c ia t io n is owned either by the sam e object as the B its or another object outside
th e B i t owner.

T he first solution is the best case for E q u a l i ty associations th a t the in teg rato r wishes to hide

inside the B its . Once created, only the B i t objects in th e association would be able to modify

associations directly. SAPS cannot im plem ent th is model because every object m ust have exactly
one owner. %

T he second solution is well-suited to T r ig g e r associations. T r ig g e r propagates one way, so only

the ob ject a t the source needs to m aintain the association. For E q u a l i ty , two A s s o c ia t io n objects

are created w ith each referencing the B i t a t the end opposite. Like the first proposal, this approach

hides the A s s o c ia t io n object in the representation of the B it . T here may be m any associations

between pairs of B i ts and associations may be added or removed dynamically. In order to prevent

representation exposure, the corresponding associations have an i n t id field. The id s of the two

ends of an association have the same value. This solution is shown in Figure 8-9.

T he th ird m odel allows the in tegrator to decide on the owner of th e A s s o c ia t io n s and the B its .

In Figure 8-10, exam ple client code creates B i ts and A s s o c ia t io n s whose owner is given by exp0.

A s s o c ia t io n s reference B its and vice versa. Consequently, A s s o c ia t io n and B it should always

have th e sam e ownership context. In th is model, the A s s o c ia t io n can be directly accessed and
modified by the B i t client.

These designs dem onstrate the flexibility and the lim itations of SAPS for adapting to different

ownership structu res dem anded by a cross-cutting concern. SAPS can m odel two out of th ree

CHAPTER 8. EVALUATION 197

subject Equality {
class Bit {

Vector<0,0> assoc = new Vector<0,0>();
boolean busy; // used to prevent infinite loops
void associate(Bit<l> b) {

Sssociation<0> a = new Association<0>(b);
assoc.add(a);
b.assoc_back(this, a.id);

>
void assoc_back(Bit<l> b, int id) {

Association<0> a = new Association<0>(b, id);
assoc.add(a);

>
void set() {

for(lterator<0,0> it = assoc.iterator(); it.hasNext();) {
Association<0> a = (Association<0>)it.next();
if(!busy) {

busy = true;
a.b.setO;
busy = false;

>
>

>
// code for clear() elided

>

class Association {
int id; // unique key identifying this association
Bit<2> b;
Association(Bit<2> b) { ... >
Association(Bit<2> b, int id) { .. . }

>
>

// composition specification used
compose JustSBit, Equality into Integration;
mergeByName;
order Equality.Bit.set after JustSBit.Bit.set;

// example client code
Bit<0> bl = new Bit<0>();
Bit<0> b2 = new Bit<0>();
Bit<0> b3 = new Bit<0>();
bl .associate(b2);
b2 .associate(b3);

Figure 8-9: Equality subject with encapsulated associations

CHAPTER 8. EVALUATION

subject Equality {
class Bit {

boolean busy; // used to prevent infinite loops
ReIation<l> rel;
void clear() {

for(Iterator<l,l> it = rel.r.iterator(); it.hasNext();) {
Association<l> a = (Sssociation<l>)it,next();
if(!busy) {

busy = true;
if(a.I == this) a.r.clear();
if(a.r == this) a.I.cIearO;
busy = false;

>
>

>
// code for set() elided

>

class Association {
Bit<l> I, r;
Association (Bit<l> I, Bit<l> r, ReIation<l> rel) {

this.l = I;
this.r = r;
I.rel = rel;
r.rel = rel;
rel.add(this);

>

>

class Relation {
Vector<l,l> r = new Vector<l,1>();
void add(Association<l> a) { r.add(a); }

>
>

// composition specification
compose JustABit, Equality into Integration;
mergeByName;
order Equality.Bit.clear after JustABit.Bit.clear;

// example client code;
Relation<0> r = new Relation<0>();
Bit<0> bl = new Bit<0>();
Bit<0> b2 = new Bit<0>();
Bit<0> b3 = new Bit<0>();
Association<0> al = new Association<0>(bl, b2, r) ;
Association<0> a2 = new Association<0>(b2, b3, r) ;

Figure 8-10: Equality subject with exposed associations

CHAPTER 8. EVALUATION 199

ownership structu res presented here. However, SO T are no t intended for co-ownership of the kind

described in the first case. Co-ownership is discussed as p a r t of fu ture work in Section 9.2 on page

215.

8.4 U sing Uncom posable Classes for Security

Public key cryptography is one of a num ber of security tools in d istribu ted system s. T he implemen

ta tion of public key cryptography should therefore be secure. Specifically, the random num bers used

in the generation of public and private keys should no t be accessible outside the RSA algorithm [107].

T he im plem entation of RSA should be reusable in a num ber of different settings. In any appli

cation of RSA, the objects th a t represent private keys should be confined to their application and

under no circum stances should an external client gain access to the private key.

Subject-oriented program m ing achieves the goal of m aking the public key cryptography algo

rithm m odular by definining all pertinen t functionality w ithin the RSA subject (shown in Figure

8-11). W ith in SOP, m aking random num bers secure is due to Subjective Ow nership Types. T he

functionality associated w ith generating random num bers used in keys is associated w ith m ethod

K e y F a c to ry .g e n K e y P a ir(. .) . We have im plem ented K eyF acto ry as an uncom posable class. H ad

we m ade K eyF ac to ry com posable it would have been open to a ttack through advanced SOP com

position rules. For instance, bracket relationships on m ethod call sites could be used to in tercept

m ethod calls to private random num ber generators (line 17). U ncom posable classes never have
internal jo in points, m aking th is m ethod of im plem entation secure for fu ture extensions.

Class Key contains the algorithm for RSA encryption. Class Key is composable, m aking it
possible to in troduce a more efficient encryption algorithm by subject com position a t any tim e in

the future. In order to m ake the encryption facilities of RSA reusable in different settings, the

owner of th e message to encrypt is given by unk&. T he encrypted message owner is given by unkm .

The encrypted message can be seen where its decrypted coun terpart cannot be: giving rise to ucirc

k < m . Fields Key.mod and K ey.exp are owned by the owner of their Key object. T he com ponents

m aking up a key should be accessible to th e key’s owner b u t never outside.

Besides being uncom posable, class K eyF acto ry has priv_key_ow ner as the ownership param eter

binding to the owner of the private key it receives as argum ent. Field K ey F a c to ry . rn d is owned by

this instance of K eyF actory . No object outside any K eyF acto ry instance can change the s ta te of

the object referenced by K e y F a c to ry . rnd . T his privilege is granted only to th is K eyF acto ry and

other objects inside this K eyF acto ry th a t have been given a perm ission to do so.

Subject S ecu reT erm in a l (Figure 8-12) im plem ents secure transm ission of messages. As in all

subject-oriented program s, there is no explicit connection to o ther subjects o ther th an in the com

position specification. In principle, S e c u reT e rm in a l need not be composed w ith RSA bu t w ith

any subject(s) im plem enting the undefined functionality. T he final application would be expected

to involve o ther subjects, such as for doing I /O and so on. However, the presented subjects are

composed on the basis of the following com position specification:

compose RSS, SecureTerminal into RSSTerminal;
mergeByName;

In class S ecu reT erm in a l.K ey , messages to encrypt have this Key as owner, given by expj. The

encrypted messages can be aliased globally, given by world. D uring com position, unkfc - the owner of

decrypted messages - resolves to expj in class Key; unkm - the owner of encrypted messages - resolves

CHAPTER 8. EVALUATION 200

1 subject RS5 {
2 unit k , m;
3 ucirc k <= m;
4 class Key {
5 BigDecimaI<l> mod;
6 BigDecimaI<l> exp;
7 String<m> encrypt(String<k> msg) {
8 I I encrypt using mod and exp.
9 >
10 String<k> decrypt(String<m> msg) {
11 // decrypt using mod and exp.
12 >
13 >
14 class KeyFactory<priv_key_owner> {
15 Random<0> rnd = new Random(System.currentTimeMillisO);
16 void genKeyPair(Key<worId> pub, Key<priv_key_owner> priv) I

17 double d = rad.nextDouble();
18 // use the random value to compute and set the key components.
19 >
20 >
21 >

Figure 8-11: S ubject containing RSA algorithm

to world. T he resolution satisfies the subject-level ucirc in subject RSA. S e c u re T e rm in a l. K eyFactory
is defined as an uncom posable class. It is included for declarative completeness: in order to enable

each subject to typecheck correctly.

The T e rm in a l class owns the decrypted messages. p r iv a te K e y is confined to the T e rm in a l ob

jec t as required, b u t no t to the S e c u reT e rm in a l subject. O ther sub jec ts’ classes composed w ith

T e rm in a l can see and change p r iv a te K e y . This is precisely the effect we require: any additional

functionality introduced explicitly th rough com position should be able to m anipulate p riv a te K e y ;
o ther subjects m ust specify the same owner for p r iv a te K e y , m aking the effect of com position pre

dictable.
In line 12, K eyF acto ry is also owned by th is Term inal instance. The second param eter binds the

priv_key_ow ner param eter. This m ust be exp0 in order for the m ethod call in line 14 to typecheck
correctly. O perations s e n d (. .) and r e c e iv e (. .) respectively dispatch the outgoing message and

accept incoming messages.

T he SAPS solution is superior bo th to a pure subject-oriented solution and to an object-oriented

solution created w ith the aid of Confined Types [127]. C om pared to SOP, by m aking K eyF acto ry

uncom posable, SAPS ensures th a t secrecy is afforded to the algorithm for generating keys. In the

case of subject RSA, SAPS restricts the set of objects th a t can observe the private keys and, in the

case of the S ecu reT e rm in a l application, guarantees th a t no object o ther th an the T erm in a l object

(and objects owned by the T erm ina l) can view or modify the private key.

C om pared to Confined Types, the RSA subject is much more com pact th an the RSA package in

Java w ith Confined Types. Confined T ypes require the program m er to declare and use anonym ous

m ethods (see Section 5.1.3). Anonymous m ethods m ay require additional classes to be introduced

which would not be there if Confined T ypes were no t used [127]. The S ecu reT e rm in a l subject has

no syntactic dependencies on the RSA subject. SO T also allow a num ber of different ownership

s tructu res to be defined for use in conjunction w ith RSA instead of the b inary confined/unconfined

CHAPTER 8. EVALUATION 201

1 subject SecureTerminal {
2 abstract class Key {
3 abstract String<worId> encrypt(String<l> msg);
4 abstract String<l> decrypt(String<worId> msg);
5 >
6 abstract class KeyFactory<priv_Key_owner> {
7 abstract void genKeyPair(Key<worId> pub, Key<priv_Key_owner> priv);
8 >
9 class Terminal {
10 String<0> msg_in, msg_out;
11 Key<0> privateKey;
12 KeyFactory<0,0> KeyFactory;
13 Terminal(Key<worId> publicKey) {
14 KeyFactory.genKeyPair(publicKey, privateKey);
15 >
16 String<vorId> send(Key<wor!d> publicKey) {
17 return publicKey.encrypt(msg_out);
18 >
19 void receive(String<worId> msg) {
20 msg_in = privateKey.decrypt(msg);
21 >
22 >
23 >

Figure 8-12: Subject im plem enting a secure term inal application

modes of Confined Types.

An intriguing solution to object containm ent has been dem onstrated w ithin O bject Teams [55].

Extension of RSA w ith S ecu reT e rm in a l functionality is achieved w ith family polym orphism , or team

inheritance. T his solution carries all the benefits of subtyping which are presently lacking in subject
com position. The O bject Teams solution is based on the Confined T ypes model: confined roles are

encapsulated w ith in their enclosing team instance.

8.5 Using exps for Com position Restriction

Exam ples in C hap ter 6 and in th is C hapter have shown th a t unknow n context identifiers can be used

to delegate design decisions on contexts to another subject. E xplicit contexts can do the opposite:

they can constrain subjects to particu lar com positions in order to ensure th a t only functionally valid

com positions are specified.

Consider a stra tegy game where one or more hum an players com pete against one or more com

puter opponents. Each player (hum an or com puter) controls an arm y of droids th a t can be arb itrarily

organised into squads. The game objective is to cap tu re the oppositions’ flags. To achieve the aim,

players split arm ies into squads and deploy some strategy. Each squad then plays a role in the s tra t

egy. The role involves reaching some destination waypoint as defined by the strategy. For example

the S u rro u n d s tra tegy involves positioning squads a t points on th e circle circumference defined by

the ta rg e t a t th e centre of the circle. W ithin each squad the droids are pu t into a formation. Each

form ation has different fighting characteristics. For example, the S q u are form ation is good for de

fending a position from m ulti-directional attacks. T he artificial intelligence engine is able to select

bo th the stra tegy and the form ation a t each stage in the game bu t a strong (hum an) player should

be able to win by m aking b e tte r strategic and, occasionally, form ation decisions.

CHAPTER 8. EVALUATION 202

subject Game {
class Player {

Vector<0,0> droids;
Vector<0,0> squads;

>
class Squad {

Droid<l> commander;
Vector<0,l> droids;

>
class Droid { }

>

Figure 8-13: S tra tegy game com position interface

W h at makes th is gam e different from its com petitors is the facility for specifying new strategies

and form ations. These can be uploaded by players and added to the set of control options. S trategies

and form ations are defined as SO T -annotated subjects. These subjects are in tegrated into the game

using subject-oriented com position rules.

T he gam e architects require th a t no user specified stra tegy or form ation lets one player take

control of droids in ano ther player’s army. This is enforced by restricting th e com position interface

to the design given in Figure 8-13.

T he players would like to ensure th a t subjects for new strategies and form ations are deployed

correctly. T h a t is, the com position is restricted to particu lar correspondences such th a t the composed

sub ject functions as intended. The aim is to restric t com position in order to elim inate com positions

th a t are known to lead to anomalies. For example, one anom alous in teraction is identified in the

com bination of subjects for the flanking maneuvre s tra tegy and the keep distance form ation:

• T he flanking m aneuvre (subject FM in Figure 8-14) is a well-known m ilitary strategy. I t involves

sp litting one’s arm y into two squads. A sm aller squad is left to resist the a ttack ing force and

a bigger squad goes around and attacks the opponent from behind.

• T he keep distance form ation unbunches droids, pu tting each droid the sam e distance from its

neighbours. Two subjects can be created here: in F igure 8-14, KD1 uses unks to denote Droid
owner and KD2 uses exps. The unks in the definition of KD1 m ake this subject m ore reusable.

Com position of FM w ith either KD1 or KD2 is desirable because th e keep distance form ation gives

th e sm aller squad an appearance of being bigger th an it is in reality in order to mislead th e enemy.

Two com position specifications can be created for in tegrating subjects Game, FM and KD1 based on

two resolutions of unkfc:

1. unkfc resolves to exp0 in KD1 .Aggregation: classes Game. Player. droids<0,0>, FM. Flanking-
Maneuvre.droid<0,0> and KD1 .Aggregation.droids<0,k> correspond.

2. unkfc resolves to expj in KD1. Aggregation: classes Game. Squad. droids<0, 1> and KD1. Aggre
gation. droids<0 ,k> correspond, unkfc resolves to exp2 in KD1.Droid by resolution propaga

tion.

T he first com position contains an anom aly th a t causes droids of the smaller squad to keep

distance w ith droids of the bigger squad, creating one long chain instead of cleanly sp litting into

two squads. T he second com position produces the intended result. To ensure correct deploym ent of

CHAPTER 8. EVALUATION 203

subject FM {
class FlankingManeuvre {

Position<l> target2attack;
Vector<0,0> droids;
Vector<0,0> squads;
void do_FM() {

Squad<0> front = ...
Squad<0> flank = ...
squads = new Vector<0,0>(front, flank);
front.attackDirect(target2attack);
fIank.round(target2attack);

>

subject KD1 { // using unks
unk k;
class Aggregation {

Vector<0,k> droids;
void do_KD() {

for(lterator<0,k> it = droids.iterator() ; it .hasNextO ;) {
Droid<k> d = (Droid<k>)it.next();
d.neighbour_Ieft = findNeighbourO;
d . neighbour_right = f indNeighbourQ ;

>

>

class Droid where 1 <= k {
Droid<k> neighbour_Ieft;
Droid<k> neighbour_right;

subject KD2 { // using exps
class Aggregation {

Vector<0,l> droids;
void do_KD() {

for(lterator<0,l> it = droids.iterator(); it.hasNext();) {
Droid<l> d = (Droid<l>)it.next();
d.neighbour_Ieft = findNeighbourO;
d.neighbour_right = f indNeighbourO ;

>

>

class Droid {
Droid<2> neighbour_Ieft;
Droid<2> neighbour_right;

>

Figure 8-14: Subject FM and 2 versions of subjects KD using unks and exps

CHAPTER 8. EVALUATION 204

th e keep distance concern, we replace KD1 by KD2 which uses exps instead of unkfc. Now the second

com position is the only valid option.
T he a lternative of using ucircs w ith KD1 does not work. For example, one m ay try to specify:

class Aggregation where 1 <= k {...}

All definitions inside class A g g reg a tio n satisfy th is definition. B ut th e resolution constrain ts of the

o u tp u t class are no t based on the declared ucircs bu t on the behaviour defined w ithin th e composed

class. T hus k = 0 will still be in the resolution set of unkfc in the class to which A g g re g a tio n for

w ards. ucircs are intended to prevent representation exposure in the input subject. For com position

constra in ts, exps should be used to convey a particu lar ownership structu re .

8.6 Limitations

T his Section describes the known lim itations of SAPS. It is im portan t to isolate the issues which are

specific to the decisions taken in the creation of SAPS from the lim itations of SO P as a paradigm .

T he la tte r was reviewed in C hapter 3 on page 22 where SO P was com pared to o ther technology

for advanced separation of concerns. SOT as an APS has lim itations: for instance, it does no t

su p p o rt dynam ic aliases which are necessary to support subject design w ith respect to certa in

object-oriented idioms. The challenges in providing support for dynam ic aliases and o ther aliasing

m odes are discussed in future work on page 215.

T he following two Subsections deal w ith two fundam ental lim itations of SAPS. W hen concerns

to be com posed have incom patible views of a dom ain, the differences may tran sla te to incom patible
ow nership structu res. Incom patible dom ain views may force changes to the subject s tru c tu re in

order to accom m odate the SAPS model of com position. The second problem concerns th e selection

betw een com posable and uncom posable classes. T he system of explicit contexts is more rigid th an
ow nership param eterisation. T he rigidity enables desirable restrictions on subject com position as
seen in Section 8.5 on page 201 but may prove too restrictive during evolution.

8.6.1 Incompatible Domain Views

T his lim itation of SAPS concerns dom ain modelling. To enable clean separation of concerns a

subject defines only those abstractions which perta in to addressing its concern. A problem can

occur if dom ain views w ith inherently incom patible ownership s tructu res need to be composed. For

exam ple, consider the development of a graphics suite. T he system is decomposed into subjects

such th a t one subject designer can implement each algorithm . T he following two algorithm s are

identified:

• A blurring algorithm recalculates the colour a t each pixel from the values of its im m ediate

neighbouring pixels.

• A m agnification algorithm com putes the colour a t the current pixel based on the values in its

region. A region is an array of neighbouring pixels.

These two algorithm s are im plem ented as subjects B lu r and M agnify shown in Figure 8-15.

Subject B lu r defines classes P ic tu r e and P ix e l only. B lurring is perform ed per pixel. T he pixels

are owned by the picture th a t they represent. The neighbouring pixels are obtained dynam ically by

CHAPTER 8. EVALUATION 205

subject Blur {
class Picture {

Pixel<0,0,0>[] [] p;
Pixel<0> getLeftNeighbour(PixeI<0> px) { ... }
Pixel<0> getRightNeighbour(PixeI<0> px) { ... }

>
class Pixel {

Picture<2> inPic;
void blur() {

Pixel<l> leftP = inPic.getLeftNeighbour(this);
Pixel<l> rightP = inPic.getRightNeighbour(this);

>

>
>

subject Magnify {
class Picture {

float magFactor;
Region<0, 0, 0> [] [] r ;

>
class Region {

P i x e K O , 0, 0> [] [] p ;
Region<l> magnifyO { / * magnify this region * / }

>
class Pixel {

int blue, red, green;
Region<2> inRegion;
Picture<3> inPic;
void calcValueO {

/* cailculate new blue, red, green for this pixel based on
values in inRegion and the magnification factor in inPic * /

>

Figure 8-15: Subjects Blur and Magnify

CHAPTER 8. EVALUATION 206

sending a m essage to in P ic . For efficiency, subject M agnify perform s m agnification one region a t a

tim e. A p ic ture owns the region and the region owns the pixels. A call to R e g io n .m a g n ify () creates

a new region whose pixel values are determ ined from th e current region based on the m agnification

factor stored in P ic tu r e .m agFactor.

Across these two subjects classes P ic tu r e and P ix e l represent the sam e concept. Com position

of sub jects B lu r and M agnify creates an efficient im plem entation where m agnification and blurring

can be applied on the same picture. However, the additional concept of region in subject M agnify

in troduces an additional layer of abstraction which affects the exps used in the definition. Observe

th a t in B lu r . P ix e l variable in P ic has type P ic tu re < 2 > whereas in M agnify .P ix e l th is variable

has type P ic tu re < 3 > . Consequently, these two subjects cannot be composed.

We m ay a ttem p t to use unks in subject B lu r in order to enable variability between th e contexts of

a p icture and its pixels. However, this is futile because in M agnify the pixels are in the represen tation

context of R egion and in B lu r they are in the representation context of P ic tu r e . To make it possible

to compose these subjects it is necessary to harm onise th e context identifiers of corresponding

elem ents either by adding the region concept to B lu r or by flattening th e ownership s tru c tu re in

M agnify. E ither way, separation of concerns is affected: one subject has to be modified in order to

ensure com posability w ith another subject. This is an endem ic problem of the subject com position

model we have adopted. More flexible alias anno ta tion system s m ay be b e tte r able to cope w ith

incom patible dom ain views expressed by subjects.

8.6.2 Defining Composable and Uncomposable Classes

This lim itation of SAPS concerns the definition of new classes. T he choice is between com posable
and uncom posable classes. If for some reason it becomes necessary to m odify a definition from

com posable to uncom posable or vice versa, there will be expensive repercussions. Section 6.4.1
on page 122 defined a heuristic for helping developers select w hat kind of class to define. In our

experience th e heuristic serves well and drastic changes are rare. However, an exception to the
heuristic m ay occur when a new concern is added to an existing concern set.

Continuing w ith the exam ple of the graphics suite, th e draw ing of a picture is perform ed one
region a t a tim e in relation to a colour map. A colour m ap is a function from the pixel value to the

real colour of th a t pixel. The colour m ap for a picture is a p roperty owned by the picture library.

New p icture creation and the drawing functionality is associated w ith sub ject Base shown in F igure

8-16. In an alternative im plem entation, these concerns m ay be developed as separate subjects bu t

the curren t decom position is sufficient to illustrate our point.

L ater, copy and paste features are added. T he proposed solution uses a R egion object as a

buffer for storing the copied fragm ent. The copy operation uses P ic tu r e L ib r a r y .b u f f e r to alias a

clone of th e m arked-up region. The paste operation applies the buffer to the ta rg e t image. F igure

C opyPaste shows the subject th a t we would like to create.

A problem becomes apparen t when we try to compose instance variables R egion.cm . These

fields correspond because they clearly represent the same object. T he types are ColourMap<2> and

ColourM ap<l> in subjects Base and C opyPaste respectively. In Base the colour m ap is owned by

the owner of the current region which gives rise to exp2. In C opyP aste the colour m ap is owned

by the p ictu re library which also owns the current region, giving rise to e x p ^ The system of exps

cannot cope w ith dynam ic hierarchy changes; it requires all ob jects referred to by context identifiers

(both explicit and unknown) to have the same relative positions for all instances of a class.

CHAPTER 8. EVALUATION 207

subject Base {
class PictureLibrary {

CoIourMap<0> cm;
Picture<0> pi, p2;
void newPicO {

pi = new Picture<0>(cm);
}

>
class Picture {

CoIourMap<l> cm;
Region<0,0, 0> [] [] r ;
Picture(CoIourMap<l> cm) { this.cm = cm; }
void draw() /* draw each region */ }

>
class Region {

CoIourMap<2> cm;
void draw() { /* draw this region in relation to cm */ }

>
class CoIourMap { ... }

Figure 8-16: Subject Base in th e graphics suite

subject CopyPaste {
class PictureLibrary {

CoIourMap<0> cm;
Picture<0> pi, p2;
Region<0> buffer;
void copy() { buffer = pl.copyO; }
void paste() { p2.paste(buffer); }

>
class Picture {

Region<0,0, 0> [] [] r ;
Dims<0> marlnip;
Region<l> copyO { / * create region based on markup */ >
void paste(Region<l> buffer) { ... }

>
class Region {

CoIourMap<l> cm;
>
class CoIourMap { ... }
class Dims { /* specifies the dimensions of the area of interest * / }

Figure 8-17: Subject CopyPaste in the graphics suite

CHAPTER 8. EVALUATION 208

1 class PictureLibrary {
2 CoIourMap<0> cm;
3 Picture<0> pi, p2;
4 Region<0,0> buffer;
5 void newPicO { pi = new Picture<0>(cm); >
6 >
7 class Picture {
8 Region<0,0,<0,0»[] [] r;
9 CoIourMap<l> cm;
10 Picture(CoIourMap<l> cm) {
11 this.cm = cm;
12 /* for each region with indices i,j * /

13 r[i] [j] .setCM(cm) ;
14 >
15 class Region<cm_owner> {
16 void setCM(Co!ourMap<cm_owner> cm) { ... }
17 >

Figure 8-18: Code fragm ent showing R egion as an uncom posable class

To provide the required flexibility, class R egion should be m ade uncom posable w ith the owner of

the colour m ap passed to the region as an ownership param eter. F igure 8-18 shows a fragm ent of code

where R egion has been declared as an uncom posable class. T he type of P ic tu r e L ib r a r y .b u f f e r in

line 4 is R eg ion<0 ,0> and of r [i] [j] in lin e 13 is R egion<0,1> . T he ownership param eter cm_owner

of uncom posable class R egion binds differently in each case.
T his exam ple has shown th a t additional requirem ents can pu t a stra in on the usability of a

com posable class, necessitating a change to an uncom posable class. T he system of explicit context
nam ing is m ore rigid (or less flexible) th an the system of ownership param eterisation . Having m ade

R egion uncom posable it is no longer possible to extend this class by subject com position which

tends to lim it fu ture adaptability . Earlier examples have shown th a t the rigidity of explicit contexts

is also a s tren g th of SAPS. In our experience rigidity is a compromise th a t works well in m ost cases.

8.7 Conclusion

Through a range of examples we have presented an evaluation of SAPS. T he evaluation has assessed

SAPS w ith respect to the factors th a t have m otivated it. We have presented a range of subject-

oriented developm ent scenarios in which SAPS is an aid to sub ject design or reuse and dem onstrated
the lim itations of our approach.

SAPS satisfies our reuse position by being of value to the subject developer and the reuser. We

have shown th a t SAPS addresses the in teraction problems which m otivated it in C hapter 4 on page

44. SAPS is a useful tool in subject-oriented software development. T his C hapter has dem onstrated

the following:

• Black-box com ponents can be internally decomposed by feature while keeping the representa

tion of the black-box hidden from its external clients.

• SO T can ad ap t to a variety of ownership structu res when subjects are used to m odularise
cross-cutting concerns.

• Uncom posable classes may be used to hide im plem entation details from interception a t join

CHAPTER 8. EVALUATION 209

points.

• Unknown context identifiers support the a priori construction of reusable subjects.

• D eliberate use of explicit context identifiers can constrain com position to achieve th e intended

interaction.

Chapter 9

Conclusions and Future Work

T his thesis was m otivated by our interest in the factors affecting reuse. T he conventional approach to

reuse involves th e construction of reusable software. T he original developer needs to invest upfront

in order to reap the benefits later. T he initial investm ent can be recouped by m arketing the software.

C om ponent frameworks support the custom isation and in tegration of prebuilt com ponents for the

purpose of constructing new systems. However, m ost software built today is not intended for reuse

b u t is constructed to m eet some functional requirem ents. Reuse and evolution issues are secondary

to functionality. U pfront investm ent in reusability will w aste tim e th a t should be spent on m eeting

the deadline for the current iteration. Consequently, a question arose concerning how to build more
reusable software in cases where fu ture reusability is no t in the initial requirem ents. We believe th a t
to successfully tackle this issue, a technological solution m ust be of value to the original developers

as well as th e reuser. The original developer will be m ore in terested in a reuse technology if th a t

technology addresses certain problems during software construction.
In search of a solution, we looked a t the way software is engineered. It is generally acknowledged

th a t separation of concerns is an im portan t reuse factor. Developers require technology th a t helps to

separa te all concerns th a t they believe to be im portan t. For functional concerns, m odularity is the

key. Faced w ith a design problem, developers should be able to m odularise the functional concerns.

T raceability between the artifacts of im portance in the requirem ents and code be tte r supports the

reuse, m aintenance and evolution of those artifacts.

O bject-oriented program m ing technology has failed to provide all the reuse benefits it was sup

posed to offer. M any functional concerns can be represented as object collaborations. In m ainstream

object-oriented program m ing languages object collaborations are no t m odular. Also, there exist as

pects of system s - the concerns th a t cross-cut m ultiple object - which are scattered and tangled

w ith th e m ain functionality defined by abstractions. T he scattering and the tangling makes bo th

th e abstrac tions and the aspects less reusable. Design p a tte rn s either cannot cleanly separate the

concerns or the flexibility they provide becomes required after th e program is w ritten. Applying

p a tte rn s during evolution is invasive, often requiring significant changes to program structure . Even

concerns which are cleanly m odularised by classes often cannot be extended in the way the reuser

w ants. Interfaces intended for defining the boundary between th e client and abstraction implemen

ta tio n im pede non-invasive evolution. In m ainstream object-oriented languages there is a fuzzy line

betw een subclassing for im plem entation reuse and subtyping for type substitu tability . A subclass

th a t is in tended to be used in another application is required to conform to the interface(s) of its

210

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 211

superclass(es) even when substitu tab ility is not required.

9.1 The Subjective Alias Protection System

Of all the recent proposals for addressing separation of concerns we have argued th a t Subject-

O riented Program m ing (SOP) [49] best m eets our reuse objectives. SO P introduces subjects as

a new kind of m odule. Subjects are packages of classes and each subject defines a concern from

its own perspective using a fam iliar object-oriented language. In m any cases, subjects are suitable

vehicles for m odularising object collaborations and aspects. Subject in teraction is specified in the

com position specification using a special com position language. Unlike trad itional paradigm s, where

in teraction takes the form of procedure calls of one kind or another, subjects in terac t a t jo in points.

Jo in points are defined by language constructs such as classes and the ir m embers. W hereas functional

interfaces are defined explicitly, join point interfaces ‘sim ply ex ist’; there are no predefined extension

or evolution points. One subject can be created as an extension to another and applied w ithout

changes to the extended subject. There is no substitu tab ility defined between subjects, b u t in ternally

each subject re ta ins the benefits of inheritance for creating families of type substitu tab le abstractions.

9.1.1 An Understanding of Interaction Problems

In moving from classes to subjects as the m ain un it of reuse we encountered interaction problem s.

U nderstanding the interaction inevitably becomes m ore difficult as the num ber of subjects increases.

In teraction problem s are caused in p a rt by the absence of com position interfaces. In our investigation

we categorised interaction problem s by the ir severity, th a t is, by effort required to overcome or
elim inate th e anomaly. In increasing order of m agnitude they are:

• C hange the com position specification.

• E x tend the com position language w ith a new com position rule.

• E ither modify the input subjects or create a patch subject.

The need for a powerful com position language was understood by S O P ’s creators from th e s ta rt.
The com position language is defined on top of an extensible fram ework th a t allows m any rules to

be specified. However, invasive changes to subjects or patching are a significant draw back to SO P
as bo th a design and a reuse medium.

Independent developm ent of modules is an im portan t p a rt of any paradigm . After a system is

decom posed into subjects, it should be possible to assign each team the task of im plem enting each

subject. In order for th e com position of independently im plem ented or reused subjects to satisfy the

requirem ents, the interface of subject in teraction m ust be identified in advance. T he problem is th a t

the reuser m ust have a deep understanding of the subject. For m any com positions, it is no t enough

to know w hat th e subject does from th e behaviour observed a t th e functional interfaces of its classes.

It is necessary to know how those classes are im plem ented. T he types of elements a t jo in points

provide little insight into the effects of subject interaction. In terac tion problem s requiring invasive

changes or patching can be due to unanticipated s ta te changes, e.g. when behaviour specified in one

subject breaks an im plicit condition in another subject, bu t th e types of elements a t jo in points

provide little insight into the effects of subject interaction.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 212

In an early a ttem p t a t a solution we considered introducing formal com position interfaces. These

are a ttrac tiv e because they enable m odular reasoning and delineate p u b l ic join points from the

p r i v a t e im plem entation. However, a formal com position interface is incom patible w ith our view on

reuse: a sub ject should be reusable and extensible in ways not an tic ipated by its developers.

9.1.2 SAPS

The alternative th a t we propose, SAPS, improves the understandability of subject in teraction w ith

out in troducing form al com position interfaces. Like SOP, SAPS is not tied to any one language bu t

is intended to be used in conjunction w ith to d ay ’s m ainstream program m ing technology. T he SAPS

proposal was inspired by a num ber of im portan t observations:

• SO P cannot improve the basic design of ab strac t d a ta types.

• SO P m ay be used to create new com ponents.

• O bject aliasing is a cross-cutting concern in SOP.

For SAPS we split classes into two hierarchies called com posable and uncom posable. Uncompos-

able classes are common abstrac t d a ta types and o ther container abstractions. Uncom posable classes

have no in ternal jo in points. M ethod calls to their instances m ay be bracketed using SO P com po

sition rules and they can be extended using conventional m eans b u t subject com position cannot be

used to modify class definitions. T he full range of com position rules m ay be applied on com posable

classes.

Com posable and uncom posable classes are anno ta ted using Subjective O w nership Types (SOT).
These ex tend the fam iliar d a ta types w ith ownership contexts. For every object in a subject-oriented

program SO T define an owner. T he owner forms a boundary. T he object m ay have m ultiple
references (aliases) inside the boundary, any of which may m u ta te its s ta te , so long as no references
are exposed outside the boundary. The ownership contexts them selves are objects and from the

perspective of each object there are objects th a t it owns, known as the representation context. SOT

ensure th a t objects never expose objects in their representation context.

T he system is very flexible: an object is not required to reference objects in its representation

context, yet it can also reference objects it does not own. Two to ta lly different m echanism s make

flexibility possible. For uncom posable classes we adap ted the system used by Ownership Types [23].

At instan tia tion , an object is param eterised by the contexts it needs to reference. An ownership

capability is passed in the form of an ownership param eter. Param eterisa tion is required for un

com posable classes because the subject developer m ay require two instances of the sam e container

class w ith different ownership properties. For composable classes a to ta lly new system of context

identification was invented. The nesting between ownership contexts inspired explicit context iden

tifiers or exps. Instead of passing ownership capabilities using param eters, each context is num bered

in relation to the curren t representation context, exps and ow nership param eters enforce very simi

lar represen tation containm ent properties. T he m ain difference is th a t ownership param eters grant

perm ission and exps do not require perm ission to be granted.

Ow nership param eters were unsuitable for composable classes because each subject m ay assign
responsibilities to a class and subjects have partially overlapping views of abstractions. Thus, in

each subject a class defines the ownership param eters it requires. In a subject-oriented program

any subject m ay create objects resulting in o ther sub jects’ ow nership param eters not binding. The

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 213

system of exps avoids this problem by requiring only a single ownership param eter for com posable

classes - th e object owner. This is bound no m atte r which subject perform s the instantiation .

D uring requirem ents capture for SAPS we identified the need for a special kind of ownership

param eterisation . Subjects may be used to describe concerns which apply in different contexts. The

system of exps is too rigid to describe the variety. So, we introduced unknown context identifiers or

unks for context identifiers which get bound by subject com position (resolved in our term inology),

unks can refer to contexts th a t are external to the collaboration im plem ented by a subject or sim ply

to those contexts which are p a rt of ano ther su b jec t’s design. To ensure correct resolution, unks are

accom panied by resolution constrain ts or ucircs.
In order to compose subjects, the corresponding elements m ust define com patible types. Com

patib ility is based on type equivalence. In addition to subject-oriented com position requirem ents,

SA PS requires th a t elements define equivalent context identifiers. In th e case of exp and unk com

bination , resolutions are produced which m ust satisfy the resolution constrain ts. We have argued

th a t, under certa in com position rules, representation objects as defined in each input subject rem ain

p ro tec ted and th e types in the ou tpu t subject are well-formed.

9.1.3 Contributions

Together, Subjective Ownership Types and extensions to subject com position rules form the Sub

jective Alias P ro tection System. SAPS contributes to solving in teraction problems, to m aking SO P

a viable paradigm of software construction, and to improving opportun ities for reuse.

S A P S for A ddressing Interaction P rob lem s

Subject interaction problem s lie on the critical p a th th a t leads to SAPS. Therefore, it is im portan t
to explain how SAPS helps to solve in teraction problems.

T he success of SO P as a paradigm for software developm ent and, in parallel, as a concern

reuse technology depends on the developers’ ability to im plem ent subjects independently and reuse

sub jects off-the-shelf. In teraction problem s in p a rt stem from com posers’ inability to foresee all

consequences of in teraction on sta te . We have shown th a t for sta tefu l (de)com positions the effect

of subjects on s ta te can be understood by studying the details of im plem entation bu t not from join

po in t interfaces alone. We believe th a t the level of granularity for understanding subject interaction

is too low, which makes independent developm ent im practical and reuse of subjects uneconomical.

As an Alias P ro tection System, SAPS directly helps to solve in teraction problem s caused by

unconstrained aliasing in SOP. M odular developm ent commences after a m utually com patible own

ership s tru c tu re has been agreed by subject developers, otherw ise th e subjects m ay not be com pos

able. We have shown th a t by having to agree on an ownership s tru c tu re some in teraction problem s

can be elim inated entirely. SAPS partially addresses the problem of granularity. I t constrains ob

jec t aliasing in subject-oriented program s, m aking it easier to understand the effect of subjects on

sca tte red s ta te . T he Subjective Ownership Types a t join po in ts help to determ ine those objects

th a t can directly affect sta te , although it rem ains necessary to study m ethod im plem entations to

understand s ta te m uta tion in detail. The annotational p roperties of SAPS make it easier for the

sub jec t com posers/reusers to understand the in teraction and de tec t anomalies.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 214

S A P S fo r S u b je c t - O r ie n te d D e s ig n

Subject com position is associated bo th w ith design and reuse. This d issertation has dem onstrated

the streng ths and the lim itations of SAPS as a tool for supporting subject-oriented software con

struction.

U ncom posable classes can be used to hide class im plem entations. Defining a class as uncom

posable is equivalent to ‘do not compose here’. T hus it is possible, where necessary, to restrict

com position to particu lar classes. However, we believe th a t th is should be done w ith care; uncom

posable classes should not in general be used to define the com position interface, bu t, ra th er, to hide

the im plem entations of those abstractions which should not be accessible.

By m aking common ab strac t d a ta types uncom posable we acknowledge th a t open class develop

m ent w ith SO P cannot improve the core design of these abstractions. However, it should be possible

to apply aspects to abstrac t d a ta types w ith SOP. For example, a client may require persisten t Queue

objects. SAPS allows instances of uncom posable classes to partic ipa te in open class com positions

bu t never the ir classes. SAPS bracket relationship can create a persistent Queue object. Inheri

tance or delegation should be used if a persistent Queue class is required. To create new container

abstrac tions w ith param eterisable ownership properties developers m ust use uncom posable classes.

W hether th is is a significant design im pedim ent in practice rem ains to be seen.

M any exam ples of SOP dem onstrate a single com position th a t ties together input subjects to

produce th e o u tp u t application. No further com positions are considered. We have looked into

the next dim ension of com position, a t the ownership properties associated w ith o u tp u t subjects.

By m aking ownership properties explicit it has become possible to com m unicate and enforce the

ownership properties required for the ou tp u t subject. In th is way SAPS supports the construction

of system s using black-box com ponents created using SOP.

S A P S o n R e u s e

This thesis is m otivated by software reuse. SOP provides the essential platform for reuse and m ost

reuse benefits derive from using subjects as reuse artifacts. C om patib ility w ith existing platform s

makes SO P useful to reusers. SO P can synthesise new program s from existing software created

w ithout awareness of SOP. We believe th a t there are four ways in which SAPS supports or improves
reuse opportunities:

• C o m p a t ib i l i ty w i th e x is t in g p ra c t ic e s . W ith SAPS we have improved SO P while a t

tem pting to minimise the im pact on software which exists already. The checking of Subjective

O w nership Types is s ta tic bo th for input subjects and for com positions. For instance, the

SAPS im plem entation for Java should run on a s tan d ard v irtua l machine. SO T are down

w ardly restrictive which m eans th a t S O T -annotated subjects (created either by program m er

or by com position) place no constraints on the way the client code is im plem ented.

• E n c a p s u la t io n o f r e p r e s e n ta t io n . It can be said th a t com ponent reusability is im proved if

the developer is certain of its correctness. R epresentation encapsulation im pacts correctness.

SO P can be used to create com ponents by mixing and m atching features. SAPS extends the

benefits of an Alias P ro tection System to SOP. It helps to ensure th a t all com binations of

features keep representation objects hidden inside the com ponent.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 215

• C o r r e c t s u b je c t d e p lo y m e n t. C om pared to ownership param eterisation , th e system of

explicit context nam ing does a good job of conveying the ownership structu re . T his property

is useful during subject composition. We have shown th a t, when alternative and seemingly

valid com positions exist, by using exps we can ensure th a t subjects are composed correctly.

• U n k n o w n c o n te x t id e n tif ie r s . T hrough unks, SAPS supports the realisation of concerns

w here precise ownership stru c tu re is determ ined by com position. For example, the Com posite

design p a tte rn [43] should be reusable w ith a num ber of different ownership structu res, unks

support th e developm ent of subjects where reuse is in the requirem ents.

Finally, SAPS satisfies our reuse position by being of value to the original subject developers.

Subjects are object-oriented and aliasing is a concern in object-oriented program m ing. Some invest

m ent is required by subject developers in order to apply Subjective Ow nership Types to subjects.

However, SO T are a fully-fledged Alias P ro tection System th a t helps the developer to create well

s tru c tu red subjects.

9.2 Future Work

There are th ree avenues of research th a t are relevant to the work in th is thesis:

• Software reuse is and, we believe, will rem ain a research topic so long as software engineers

pursue ways to drive down software developm ent costs. T he success of a reuse technology

depends on m any factors, one of which is the m otivation for the original developer whose

efforts m ay or m ay not be reused in the future. All proposals th a t seek to improve reuse

should address th is issue.

• In teraction problem s in the presence of shared object s ta te were presented and tackled in this

thesis. However, in teraction problems in A spect-O riented Software Development is still an

open research issue.

• In th is thesis we have not discussed the subject-oriented design process: how concerns th a t
become subjects are identified and analysed. A process of subject-oriented design is an open

research issue. Consequently, it is too early to assess the im pact of SAPS on the analysis,

design and testing stages.

T he above are im portan t issues in the long term . We dedicate th is Section to topics which are

of more im m ediate concern. We discuss im plem entation, form alisation, and extensions to SAPS in

order to im prove its concern modelling potential.

9.2.1 Implementation Issues

SOP concepts are realised w ithin the program m ing language H y p e r/J . In th is language th e subjects

are im plem ented in Java. At the tim e of w riting, not all functionality specified in the docum en

ta tion [121] is im plem ented in the language. Also, the relationship between com position rules and

access modifiers is not fully developed in either SO P or H y p er/J .

We have constructed a simple SO T compiler and a Subject Com poser for a toy language based

on Java. T he developm ent of a SO T compiler for all of Java and th e in tegration of SAPS concepts

into H y p e r/J is fu ture work. A lthough the m ajor theoretical issues are specified in this d issertation ,

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 216

before a com piler for a production language can be specified, the relationship between SAPS and

advanced language features should be considered, e.g. inner classes and exception handling.

9.2.2 Formalisation

The approach used in this work has been predom inantly an inform al one. Firstly, our aim was to

improve opportun ities for reuse and, secondly, to help solve interaction problems. We have not only

m ade progress on b o th issues bu t also dem onstrated SAPS as an invaluable tool for subject-oriented

design. A specification of sta tic and dynam ic sem antics of Subjective O wnership Types, and a proof

of soundness is fu ture work. T he ownership concepts a t subject level m ay be m odelled using C larke’s

extensions [22] to the im perative variant of A badi and C ardelli’s object calculi [1]. We believe th a t

the containm ent properties of subjective ownership concepts can be shown to m ap on to th e core

model.

In [128], the au thors define the sem antics of MinAML, an idealised aspect-oriented program m ing

language th a t distills the essence of A spect J and the bracketing functionality of H y p e r/J . T he core

aspect calculus on which it is based features explicitly labelled jo in points and a single piece of

advice th a t applies a t the label. T he MinAML language is inspired m ore by A spectJ th an H y p er/J

in th a t it is based on an assym m etric model [50]. The base program s cannot m anipulate advice in

any significant way. In the core aspect language the labelled jo in points are defined independently of
o ther constructs and hence can be reused in o ther com putational settings w ith little change. Walker

et al [128] show how constructs from Abadi and C ardelli’s first order object calculus in ter-operate

w ith the aspect calculus. A possible avenue of investigation would be the in ter-relation between

subjective ownership concepts expressed using object calculi and th e aspect calculus.

9.2.3 More Powerful Aliasing Systems

D ynam ic A liases

The original work on Ownership Types [23] th a t inspired Subjective O w nership Types lacked support

for dynam ic aliases. D ynam ic aliases were added to O wnership Types in [21]. In Section 5.1.1 on

page 72 we showed the u tility of dynam ic aliases for supporting object-oriented idioms such as

iterators. D ynam ic aliases are still required for uncom posable classes for the sam e reason as in

object-oriented program s: to enable efficient access to d a ta stored in containers. In subject design

their o ther uses include the definition of friendly functions and in itialisation of object representation

w ith externally created objects to which there are no ex ternal aliases [32]. Friendly functions are

perm itted access into another ob jec t’s private representation. A num ber of im portan t issues rem ain

ou tstand ing a t th is point:

• How is a m ode describing dynam ic aliases useful to the sub jec t composer? A dynam ic mode

describes an additional alias usage policy which may prove useful for constraining com position

to ensure correct subject deployment.

• How to incorporate a dynam ic model into SAPS? Clearly, a m ode describing dynam ic access

m ay never appear in the type of an instance variable. B u t such a m ode may appear in the

types of operation signatures, local variables and expressions.

• Com posing two elements when both have a dynam ic mode yields an o u tp u t element w ith the

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 217

1 subject Base {
2 class Byte {
3 Bit<0,0>[8] bit;
4 void set(int index) {
5 bit[index] = true;
6 >
7 int value() { / * return int value of byte */ }
8
9 >
10 class Bit {
11 boolean value;
12 void se t O { value = true; }
13 >
14 >

Figure 9-1: Subject Base

sam e mode. W hat is the meaning of composing an exp anno ta ted elem ent w ith an element

whose owner is specified by a dynam ic mode?

C o-ow nership

During evaluation we identified a concern th a t would benefit from a different form of object ownership

to th a t offered by SAPS: it was necessary to associate s ta te w ith more th an one representation

context. T he need for shared ownership of th is kind has not been considered by APS researchers

whose work is reviewed in th is thesis. This is probably because in m any trad itional applications
of object-oriented technology, the flexibility provided by single owner system s proves sufficient.
However, advanced separation of concerns advocated by M DSOC and supported by SO P may benefit

from a m ore powerful system .
We believe th a t there are two forms of co-ownership th a t would im prove the m odelling potential

of SAPS:

• System s where co-ownership is required by a fixed num ber of objects identified in advance.

• System s w here co-ownership is a concern th a t emerges during subject composition.

W hen discussing co-ownership of an object we presum e th a t th e owners are not ordered and

th a t existing ownership structu res are insufficient to express the required relationship. For example,

consider th e program in F igure 9-1. At present SAPS disallows a B i t to be owned by two or more

different B yte objects.

B ut suppose th a t such an ownership structu re was necessary. How would the owners be specified

and how can we ensure th a t only the owners and o ther tru sted ob ject access the co-owned object?

The problem is th a t in order to get into the representation of its owners, an object has to pass

through an un tru sted context. Thus we require some form of represen tation exposure.

Ways of constraining external references include uniqueness, dynam ic aliases, read-only interfaces

and reference-only access. We prefer to steer clear of uniqueness for it requires either program m ing

language support for linear types [89] or the program m er to adopt an unconventional program m ing

style [5]. R ead-only references are upwardly restrictive and operations which are read-only may

become read-w rite operations after composition. Dynamic aliases still allow objects other th an the

owners to change object s ta te .

C H A P T E R 9. CO NCLU SIO NS AN D F U TU R E W O R K

a B y te a n o t h e r B y t e

218

a P e r s i s t e n t S t o r e

b i t s

c o n n e c t o r s

Figure 9-2: Co-ownership Tree

We shall discuss two candidate schemes for co-ownership. Co-ownership w ith a fixed number of

pre-specified owners is represented by a sequence of context identifiers th a t follow the class name.
Co-ownership as an emergent concern requires a form of context polymorphism th a t is not easily
represented using either unks or ownership param eters. Figure 9-2 shows an object graph and

ownership relations for two concerns th a t would benefit from these schemes. Solid edges indicate
inter-object references and dashed edges relate objects to their owners. C onnector objects associate
exactly two B its th a t also own the C onnector. Only the owner B its (and objects inside) should
be allowed access to the shared C onnector. A P e r s i s t e n tS to r e object saves the sta te of B its
belonging to potentially different Bytes. The P e r s i s t e n tS to r e object should be allowed access in
addition to the explicitly specified B it owner.

C o -o w n e rsh ip : F ix e d O w n e r L ist

For a fixed num ber of pre-identified owners the code in Figure 9-3 shows a subject w ith annotations
we propose. It is composed with subject Base specified in Figure 9-1. This example shows the
component integration concern from Section 8.3 on page 195 where the associations are co-owned
by the pertinent B its . An array of C onnector objects is declared in line 4 and initialised in lines
6-7. The array is owned by the encapsulating Byte. The C onnecto rs are co-owned by the B its they
connect. We use $ instead of angle brackets to indicate a family of owners.

Explicit contexts and variable identifiers in scope can be specified as owners. The co-owned
object can be passed based on existing SAPS rules so long as all co-owners are in scope. T ha t is,
each owner can be referred to using either an exp or a variable. W hen the object type contains only
variable names, a e.g. line 4 in Figure 9-3, the client may only initialise and pass the reference; it
is not allowed to access the object’s inteface. This system ensures, first, th a t external clients have
no sta te dependencies on objects exposed outside their owners and, secondly, th a t sta te changes to

exposed objects are avoided. Variables in the type are indicative of external owners th a t cannot be
specified w ith an exp. In fact, the type of a co-owned object may contain at most one exp, otherwise
there exists a redundant co-owner in the definition.

The following code fragm ent shows a reference being passed to a U instance. O bject myT is co
owned by the current representation context and by myV. myT’s reference can be passed to myU only
if its co-owners remain accessible either using exps or using a variable name:

U<0> myU;
V<1> myV;
T$myV, 0$ myT;

CHAPTER 9. CONCLUSIONS AND FUTURE W ORK 219

1 subject Equality {
2 class Byte {
3 Bit<0,0>[8] bit;
4 Connector<0, $bit[i],bit[i+1]$>[7] c;
5 void maKeEqualityO {
6 for(int i = 0; i < 7; i++)
7 c[i] = new Connector$bit[i],bit[i+1]$ (bit[i],bit[i+1]);
8 >
9 >
10 abstract class Bit {
11 abstract void set();
12 >
13
14 class Connector {
15 boolean busy;
16 Bit<2> left, right;
17 Connector(Bit<2> left, Bit<2> right) {
18 this.left = left;
19 this.right = right;
20 >
21 void after_set (Bit<2> target) ■[
22 if(target == left) {
23 if(!busy) {
24 busy = true;
25 right.setO;
26 busy = false;
27 >
28 >
29 // same for right
30 >
31 >
32 >
33
34 // composition specification
35 compose Base, Equality into BE;
36 mergeByName;
37 bracket “ Bit * *. “ set * * with alter Equality.Connector<$Receiver>.after.set($Receiver);

Figure 9-3: Subject E quality and composition specification for integration with subject Base

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 220

myU.setMyT(myT, myV);

class U ■[
void setMyT(T$someV, 1$ someT, V<2> someV) { ... >

>

T he com position specification connecting subjects Base and E q u a l i ty (lines 35-37 in Figure

9-3) is conventional except for the last sta tem ent. T he norm al effect of the bracket relationship on

execute sites is to in troduce the body of class C o n n ec to r into class B i t , so the s ta te of a single

C o n n ec to r ob ject is associated w ith a single B i t object. However, this is no t the effect we require.

We need to associate the s ta te of two B its w ith the righ t C onnecto r. T his is indicated in the

com position specification by C o n n ec to r< $R ece iver> where $ R e c e iv e r is a m eta-param eter binding

to the iden tity of th e receiver object m atched by the p a tte rn . This no ta tion m eans exactly “the

C o n n ec to r w ith a co-owner given by $ R e c e iv e r” . Finally, no ta tion a f t e r _ s e t ($ R e c e iv e r) passes

the receiver object to th e w rapper m ethod as the sole argum ent.

To im plem ent th is system , changes are required bo th to the SOT compiler and the Subject

Composer. T he dynam ic association between two B i t objects to one C o n n ec to r object should be

hidden from the com position au thor by the im plem entation of the Subject Composer. In related

work, Sakurai et al [109] showed the way sta tefu l aspects like those im plem ented by th e E q u a l i ty

subject can be im plem ented in A spectJ. The au thors define A s s o c ia t io n aspects which associate

the s ta te of one aspect instance w ith a num ber of objects, selected dynam ically using A sp ec tJ’s

join point m echanism . W hile our proposal predefines the co-owners, it also aim s to enforce object

containm ent in a m ulti-ow ner environm ent.

Co-ow nership: E m ergent O wners

W hen the set of co-owners is no t known in advance, it should be possible to param eterise an object

by its o ther owners. SAPS has two forms of param eterisation: ownership param eters are bound

during object in stan tia tio n and unks are resolved by subject com position. In addition we propose a

form of context polym orphism th a t we will call o;-contexts. T he purpose of cu-contexts is to refer to

m ultiple owners dynam ically.

To m otivate w -contexts consider the Persistence concern. T he Persistence concern is diffi

cult to im plem ent w ith SAPS presently because s ta te is associated w ith ju s t one owner. The

P e r s i s t e n t S t o r e is a separa te object w ith a separate represen tation context. In order to save

the objects in the represen tation contexts of a B yte object, it is necessary to expose the B i t objects

from the represen tation of B yte and pass them to th e P e r s i s t e n t S t o r e object. The above system

of pre-specified co-ownership is not suitable here: B i ts from m any B ytes m ay be associated w ith the

P e r s i s t e n tS to r e . T he P e r s i s t e n t S t o r e needs to know abou t th e elements it stores bu t not abou t

B ytes or abo u t the way B yte objects are organised. Thus co-ownership is a cross-cutting concern

th a t emerges when subjects Base and P e r s i s t e n c e are composed.

F igure 9-4 shows th e Persistence subject anno ta ted w ith cu-contexts. The $-punctuated identifier

in line 2 refers to th e w-context bound dynam ically during in ter-subject interaction. According

to the com position specification (line 15), th e world-owned P ersisten tS to re ob jec t’s s a v e _ s e t(. .)

m ethod is called w ith the object of the bracketed m ethod as argum ent. The exp0 in s a v e _ s e t(. .)

shows th a t the P ersisten tS tore co-owns the B it param eter w ith th e object bound to b it_ow ner. The

b it_ o w n er w -context binds to m ultiple B yte objects, thus allowing one P e r s i s t e n t S t o r e object to

store B its from the represen tation of a limitless num ber of B ytes.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 221

1 subject Persistence {
2 class PersistentStore with bit_owner {
3 HashtabIe<0,$0,bit_owner$,worId> h;
4 void save_set(Bit$0,bit_owner$ b) { h.put(b,true); }
5 boolean retrieve(Bit$0,bit_owner$ b) { h.get(b); }
6
7 >
8 class Bit { }
9 >
10
11 // composition specification
12 compose Base, Equality, Persistence into BP;
13 mergeByName;
14 bracket ‘‘Bit* * . 1 ‘set’’ with after Equality.Connector<$Receiver>.after_set($Receiver);
15 bracket “ Bit’’. “ set’’ with after Persistence.PersistentStore<worId>.save_set($Receiver);

Figure 9-4: Persistence subject dem onstrating co-ownership as a concern th a t emerges during
com position

In conclusion, in some cases, in order to support separation of concerns we require a more

advanced alias protection system th an SAPS. T he two schemes th a t we have presented allow m ultiple

objects to co-own an object while still protecting it from external access. We believe th a t th e schemes

we propose are feasible bu t further work is required in order to fully develop the two forms of co-

ownership and to assess the ir im pact on Subject-O riented Program m ing.

9.2.4 Support for Layered Designs

In C hap ter 5 on page 70 we discussed the construction of new com ponents by subject com position.

C hapter 8 on page 183 has shown th a t SAPS helps to ensure th a t the representation of such com po

nents stays hidden behind the functional interface. One extension concerns the use of com ponents

constructed by subject com position w ith SAPS-aware clients.

Im agine a Spreadsheet com ponent which has been created by subject com position. Spreadsheet
is created w ithou t reference to any one particu lar application. Consequently, contexts o ther th an

exp2 and world in the functional interface are no t meaningful. Furtherm ore, as proposed in C hap ter

5, the client should be able to param eterise Spreadsheet instances w ith respect to the ir ownership
properties.

To m eet the dem and for new com ponents which are constructed by subject com position, we

propose an extension for transform ing the ou tp u t subject into an uncom posable class w ith ownership

param eters. T he uncom posable class can then be reused as a black-box in the design of larger-grained

subject-oriented program s. The transform ation is a m apping from a subject w ith unresolved unks

to a class or classes where unks become ownership param eters.

Up to now we required th a t com position resolves all unks. In order to have ownership param eters

some unks should not be resolved by composition. Subjects contain class and subject-level ucircs.

Class level ucircs for the unresolved unks rem ain. Subject-level ucircs where only one of two unks

resolves becom e class-level ucircs th a t get appended to each class. Subject-level ucircs where neither

unk resolves are pu t into the uncom posable classes’ w here clauses. For each class nom inated as

a com ponent interface, the resolution set should no t be constrained although it may exclude the

represen tation context exp0 .

To illu stra te the transform ation we use a small example. T he Queue concern may be decom posed

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 222

subject Put {
nnTc £ ;

class Queue {
Link<0> head = null;
Link<0> tail = null;

void put(Object<K> o) {
Link<0> I = new Link<0>(o);
if(head == null) {

head = tail = I;
> else {

tail.next = I;
tail = I;

>
>

>

class Link {
Object<k> o;
Link<l> next;
Link(Object<k> o) { this.o = o; }

>
>

Figure 9-5: Subject P u t im plem enting th e P u t feature in the Queue concern

into two ‘fea tu res’ for p u tting elements into the Queue and getting elem ents ou t of the Queue1. We

m ay use SO P to im plem ent each feature as a subject: subjects P u t and G et are shown in Figures

9-5 and 9-6 respectively.
T he subjects are m erged in the usual way bu t unkfc, denoting the d a ta owner, is unresolved.

N om inating class Queue as the interface, unkfc is tu rned into an ownership param eter, creating an

uncom posable class w ith the following externally accessible interface:

class Queue<k> {
Object<K> get() { ... }
void put(Object<k> o) { ... }

>

T his exam ple shows th a t the proposed extension helps to hide feature concerns of a com ponent

while, a t th e sam e tim e, m aking the com ponent reusable w ithin a variety of contexts. W ith th is

extension SAPS will be b e tte r suited to support software developm ent where com ponents are or

ganised in layers. To realise this extension, further work is required in the area of unknown context

resolution.

9.3 A Final Word

The Subjective Alias P ro tection System developed in th is d issertation has brought together subjec

tiv ity and ownership in response to our perspective on reuse. We believe th a t to construct reusable

software w hen reuse is not in the requirem ents dem ands technology th a t is of value to the orig

inal developer. O ur approach is characterised by feature-based decom position, using subjects to

m odularise concerns identified in the requirem ents. W here s ta te was involved, anomalies in subject

1Note that we do not advocate that Queue be implemented this way.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 223

subject Get {
nnlc k ;

class Queue {
Link<0> head = null;
Link<0> tail = null;

Object<k> get() {
if(head == null) return null;
Object<k> o = head.o;
if(head == tail) {

head = tail = null;
} else I

head = head.next;
>
return o;

>
>

class Link {
Object<k> o;
Link<l> next;

>
>

Figure 9-6: Subject Get im plem enting the G et feature in the Queue concern

interaction were deemed to make independent development unlikely and subject reuse im probable.

T he ownership concepts we introduce into subject-oriented development raise the level of abstrac
tion , im proving the developers’ and reusers’ ability to understand subject interaction, while a t the
sam e tim e adding value to the subject creator for whom fu ture reuse is generally not a prom inent
concern.

Recently, Jacobson [60] w rote abou t th e im portan t difference th a t A spect-O riented Software

D evelopm ent will make to the way software is constructed. He drew the link between Use Cases in

UML and aspects (in the general sense th a t includes subjects). The design process th a t Jacobson

envisages for the fu ture involves the following stages:

1. F ind and specify the use case to describe the system requirem ents.

2. Design and code each use case.

3. Com pose th e use case slices (e.g. code in the form of subjects im plem enting each use case).

4. Test each use case.

For the th ird step, Jacobson writes “I expect th a t this activ ity will be reduced through tooling and

th rough collaboration between the concerned use case designers” . We believe th a t SAPS has m ade

a contribu tion in th is respect.

Bibliography

[1] M. A badi and L. Cardelli. A Theory o f Objects. M onographs in C om puter Science. Springler-

Verlag, 1996.

[2] A. V. Aho, R. Sethi, and J . D. U llm an. Compilers. Priciples, Techniques, and Tools. Addison-

Wesley series in C om puter Science. Addison-W esley Publishing Company, 1986.

[3] M. Aksit, L. Bergm ans, and S. Vural. An object-oriented language-database in tegration model:

T he com position-filters approach. In Ole Lehrm ann M adsen, editor, Proceedings o f the 6 th

European Conference on Object-Oriented Programming (ECO O P), volum e 615, pages 372-

395, Berlin, Heidelberg, New York, Tokyo, 1992. Springer-Verlag.

[4] M. A ksit, B. Tekinerdogan, and L. Bergm ans. T he six concerns for separation of concerns. In

E C O O P 2001 Workshop on Advanced Separation o f Concerns, B udapest, 2001.

[5] J. A ldrich, V. K ostadinov, and C. Cham bers. Alias anno tations for p rogram understanding.

In A C M Sym posium on Object Oriented Programming: System s, Languages, and Applications

(O O P SLA), November 2002.

[6] P. S. Almeida. Balloon types: Controlling sharing of s ta te in d a ta types. Zecture Notes in

C om puter Science , 1241:32-59, 1997.

[7] A. B atenin. In tegration of independently-developed object-oriented designs. In O O PSLA ’01

Companion. ACM, O ctober 2001.

[8] D. B atory, J . Liu, and J. N. Sarvela. Refinem ents and m ulti-dim ensional separation of concerns.

In E S E C /F S E ’03, 2003.

[9] D. B atory, J.N . Sarvela, and A.Rauschm ayer. Scaling step-wise refinem ent. IE E E Transactions

on Software Engineering, 30(6):355-371, 2004.

[10] D. B atory, V. Singhal, J. Thom as, S. D asari, B. Geraci, and M. Sirkin. T he GenVoca model

of software-system generation. IE E E Software, ll(5):8 9 -9 4 , Septem ber 1994.

[11] K. Beck. Em bracing change with E xtrem e Program m ing. Computer, 32:70-77, O ctober 1999.

[12] K. Beck and W. Cunningham . A labora to ry for teaching object oriented thinking. A C M

S IG P L A N Notices, 24(10):l-6 , O ctober 1989.

[13] R. B en-N atan. C O RBA: A guide to C O RBA. McGraw-Hill, 1995.

[14] R. Biddle, A. M artin , and J. Noble. No name: ju s t notes on software reuse. A C M S IG P L A N

Notices, 38(12): 76-96, December 2003.

224

BIBLIOGRAPHY 225

[15] R. Biddle and E. Tempero. Explaining inheritance: A code reusability perspective. SIG C SEB:

SIG C SE B ulletin (A C M Special In terest Group on C om puter Science Education), 28, 1996.

[16] T . B iggerstaff and C. R ichter. R eusability framework, assessm ent, and directions. IE E E

Software, 4(2):41-59, M arch 1987.

[17] B. W. Boehm , J. R. Brown, H. K asper, M. Lipow, G. M acleod, and R. M erritt. Characterstics

o f Software Quality. TRW Series on Software Technology, 1978.

[18] G. Booch, J . R um baugh, and I. Jacobson. The Unified Modeling Language User Guide.

Addison-Wesley, 1999.

[19] C. B oyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. A C M

S IG P L A N Notices, 38(l):213-223, Jan u ary 2003.

[20] F. Buschm ann, R. M eunier, H. R ohnert, P. Som m erlad, and M. Stal. A system o f patterns -
pattern oriented software architecture. Wiley, 1996.

[21] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and

effect. In A C M Sym posium on Object Oriented Programming: System s, Languages, and A p

plications (O O P SLA), November 2002.

[22] D. Clarke, J . Noble, and J. M. P o tte r. Simple ownership types for object containm ent. Lecture

Notes in Com puter Science, 2072:53-76, 2001.

[23] D. Clarke, J . P o tte r, and J. Noble. O wnership types for flexible alias protection. A C M SIG
P L A N Notices, 33(10):48-64, O ctober 1998.

[24] S. Clarke. Composition o f Object-Oriented Software Design Models. PhD thesis, School of

C om puter Applications, Dublin C ity University, 2001.

[25] S. Clarke, W . Harrison, H. Ossher, and P. Tarr. Subject-oriented design: tow ards im proved

alignm ent of requirem ents, design, and code. A C M S IG P L A N Notices, 34(10):325-339, O cto

ber 1999.

[26] S. Clarke and R. J. Walker. Com position patterns: an approach to designing reusable aspects.

In Proceedings o f the 23rd international conference on Software engineering, pages 5-14. IE E E

C om puter Society, 2001.

[27] S. Clarke and R. J . Walker. Separating crosscutting concerns across the lifecycle: From

com position p a tte rns to A spectJ and H y p e r/J . Technical R eport TR-2001-05, D epartm ent

of C om puter Science, U niversity of B ritish Columbia, A ugust 08 2001. Wed, 08 Aug 2001

21:00:41 GM T.

[28] C. Clifton and G. T . Leavens. S pectators and Assistants: E nabling m odular aspect-oriented

reasoning. Technical R eport 02-10, Iowa S ta te University, D epartm ent of C om puter Science,
2002 .

[29] C. C onstantinides and T. Skotiniotis. Providing m ultidim ensional decom position in object-

oriented analysis and design. In IA S T E D International Conference on Sofware Engineering

(IC SE 2004)i Innsbruck, A ustria , 2004.

BIBLIOGRAPHY 226

[30] M. Day, R. G ruber, B. Liskov, and A. Myers. Subtypes vs. where clauses: C onstraining

param etric polym orphism . A C M S IG P L A N Notices, 30(10): 156—168, O ctober 1995.

[31] A. DeSoto. Using the Beans D evelopment K it 1.0. JavaSoft, Sun M icrosystem s Inc., Septem ber

1997.

[32] D. L. Detlef, K. R. M. Leino, and G. Nelson. W restling w ith rep exposure. Technical report,

Com paq System s Research C enter, 1998.

[33] R. Douence, P. F radet, and M. Sudholt. Com position, reuse and interaction analysis of stateful

aspects. In Conference on Aspect-Oriented, Software Development, pages 141-150, 2004.

[34] E. E rnst. Family polym orphism . In E C O O P ’Ol - Object-Oriented Programming, volume 2072

of Lecture N otes in Com puter Science, pages 303-326. Springer Verlag, 2001.

[35] M. Fayad and D. C. Schm idt. O bject-oriented application frameworks. C om m unications o f

the ACM , 40(10):32-38, O ctober 1997.

[36] M. E. Fayad. In troduction to the C om puting Surveys’ electronic sym posium on object-oriented

application frameworks. A C M Computing Surveys, 32(1), M arch 2000. Article No. 4.

[37] A. J. Field and P. G. Harrison. Functional Programming. Addison-W esley, W okingham, 1988.

[38] R. E. Film an and D. P. Friedm an. A spect-oriented program m ing is quantification and oblivi

ousness. Technical report, Jan u ary 2000.

[39] A. Finkelstein, J. K ram er, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints: A

framework for in tegrating m ultiple perspectives in system s developm ent. In ternational Journal
o f Software Engineering and Knowledge Engineering, 1 (2):31—58, 1992.

[40] G. Fischer. Cognitive view of reuse and redesign. IE E E Software, 4(4):60-72, Ju ly 1987.

[41] B. Foote and J . W . Yoder. Big Ball of M ud. In Proceedings o f PLop ’91, 1997. Fourth

Conference on P a tte rn s Languages of Program s (PLoP ’9 7 /E uroP L oP ’97).

[42] M artin Fowler. Extrem e Programming Examined, pages 3-18. Addison-Wesley, 2001.

[43] E. Gam m a, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-W esley P u b

lishing Company, Inc., Reading, M assachusetts, 1994. ISBN 0-201-63361-2.

[44] T . G ardner. Inheritance Relationships fo r Disciplined Software Construction. P hD thesis,
U niverity of B ath , 1999.

[45] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison Wesley, 1997.

[46] A. Greenhouse and J. Boyland. An object-oriented effects system . Lecture Notes in Com puter

Science, 1628:205-229, 1999.

[47] J. H annem ann and G. Kiczales. Design p a tte rn im plem entation in Java and Aspect J . A C M

SIG P L A N Notices, 37(11): 161-173, 2002.

[48] E. R. Harold. JavaBeans. I D G Books W orldwide, Indianapolis, IN, USA, 1998.

BIBLIOGRAPHY 227

[49] W . Harrison and H. Ossher. Subject-oriented program m ing (A critique of pure objects). In

Proceedings o f the O O PSLA ’93 Conference on Object-oriented Programming System s, Lan

guages and Applications, pages 411-428. IE E E C om puter Society, Los A lam itos, CA, USA,

O ctober 1993.

[50] W illiam H. H arrison, H arold L. Ossher, and Peri L. Tarr. Asym m etrically vs. sym m etrically

organized paradigm s for software com position. Technical report, IBM Research, 2002.

[51] Y. Hassoun and C. A. Constantinides. T he developm ent of generic definitions of hyperslice

packages in H y p er/J . In Uwe Assm ann, Elke Pulverm ueller, Isabelle Borne, N oury B ouraqadi,

and P ierre Cointe, editors, Electronic Notes in Theoretical C om puter Science , volume 82.

Elsevier, 2003.

[52] J. D. Hay and J. M. Atlee. Composing features and resolving interactions. In David S.

Rosenblum, editor, Proceedings o f the A C M S IG S O F T 8 th In ternational Sym posium on the

Foundations o f Software Engineering (FSE-00), volume 25, 6 of A C M Software Engineering

Notes , pages 110-119, NY, November 8-10 2000. ACM Press.

[53] R. Helm, I. Holland, and D. Ganghopadhyay. C ontracts: Specifying behavioural com positions

in object-oriented systems. In O O P S L A ’90, pages 169-180, 1990.

[54] S. H errm ann. O bject team s: Im proving m odularity for crosscutting collaborations. Objects,
Components, Architectures, Services, and Applications fo r a Networked World, L N C S 2591,
2002.

[55] S. Herrm ann. Confinement and representation encapsulation in object team s. Technical R eport
ISSN 14369915, U niversity of Berlin, June 2004.

[56] J. Hogg. Islands: Aliasing protection in object-oriented languages. In A ndreas Paepcke, editor,

O O PSLA ’91 Conference Proceedings: Object-Oriented Programming System s, Languages, and
Applications, pages 271-285. ACM Press, 1991.

[57] J. Hogg, D. Lea, A. Wills, D. deCham peaux, and R. Holt. T he Geneva Convention on the

trea tm en t of object aliasing. O O PS M essenger, 3(2): 11—16, April 1992.

[58] I. M. Holland. Specifying reusable com ponents using contracts. In E C O O P ’92 L N C S 615,
pages 287-308, 1992.

[59] U. Holzle. In tegrating independently-developed com ponents in object-oriented languages. Lec

ture Notes in C om puter Science, 707:36-56, 1993.

[60] I. Jacobson. T he case for aspects. Software D evelopment Magazine, O ctober-N ovem ber 2003.

[61] I. Jacobson, M. Christerson, P. Jonsson, and G. G. O vergaard. Object-Oriented Software
Engineering. Addison-Wesley, 1992.

[62] S. K atz. Diagnosing harm ful aspects using regression verification. In Foundations o f Aspect

Languages Workshop at A O S D ’04, 2004.

[63] S. E. Keene. Object-Oriented Programming in C om m on Lisp: A Program m er’s Guide to

CLOS. Addison Wesley Professional, 1989.

BIBLIOGRAPHY 228

[64] G. Kiczales. Beyond the black box: open im plem entation — Soapbox. IE E E Software, 13(1),

Jan u ary 1996.

[65] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The A r t o f the M eta-Object Protocol M IT

Press, Cam bridge (MA), USA, 1991.

[66] G. Kiczales, J . Lamping, A. M endhekar, C. M aeda, C. Lopes, J. Loingtier, and J . Irwin.

A spect-oriented program m ing. In M ehm et Ak§it and Satoshi M atsuoka, editors, E C O O P ’97—

Object-Oriented Programming, volume 1241 o f Lecture N otes in Com puter Science, pages 220-

242. Springer, 1997.

[67] K. K im bler. Comprehensive approach to service in teraction handling. Com puter Networks and

IS D N System s , 1998.

[68] K. K im bler and H. Velthuijsen. Feature interaction benchm ark. In Discussion paper fo r the

panel on Benchm arking at Feature Interaction Workshop, 1995.

[69] H. K laeren, E. Pulverm iiller, A. Rashid, and A. Speck. A spect com position applying the design

by con trac t principle. Lecture Notes in C om puter Science , 2177:57-69, 2001.

[70] C. W . K rueger. Software reuse. A C M Computing Surveys , 24(2):131—183, June 1992.

[71] A. Lai and G. C. Murphy. T he struc tu re of features in java code: An exploratory investigation.

In O O PSLA Companion’99, 1999.

[72] W. LaLonde and J . Pugh. Subclassing / subtyping ^ is-a. Journal o f Object-Oriented Pro
gram m ing , pages 57-60, Jan u ary 1991.

[73] K. J . L ieberherr, I. Silva-Lepe, and C. Xaio. A daptive object-oriented program m ing using
graph-based custom izations. Com m unications o f the A C M , 37(5):94-101, May 1994.

[74] B. H. Liskov and J. M. W ing. A behavioral notion of subtyping. A C M Transactions on
Programming Languages and System s , 16(6):1811-1841, November 1994.

[75] C. Lopes and W. Hursch. Separation of concerns. Technical repo rt, College of C om puter
Science, N ortheastern University, February 1995.

[76] C. V. Lopes. Aspect-O riented Software Development, chap ter AOP: An Historical Perspective.
Addison-Wesley, 2004.

[77] C. V. Lopes, P. Dourish, D. H. Lorenz, and K. L ieberherr. Beyond AOP: tow ard natu ra lis tic

program m ing. S IG P L A N Notices, 38(12):34-43, 2003.

[78] C. V. Lopes and G. Kiczales. D: A language framework for d istribu ted program m ing. Technical

R eport SPL97-010, P9710047, Xerox Palo Alto Research C enter, Palo Alto , CA , USA,
February 1997.

[79] J. M. Lucassen and D. K. Gifford. Polym orphic effect system s. In Proceedings o f the 15th

A C M S IG P L A N -S IG A C T sym posium on Principles o f programming languages, pages 47-57.
ACM Press, 1988.

[80] A. Lynex and P. J. Layzell. O rganisational considerations for software reuse. A nnals o f
Software Engineering, 5:105-124, 1998.

BIBLIOGRAPHY 229

[81] J. D. M cGregor and T . Corson. Supporting dimensions of classification in object-oriented

design. Journal o f Object-Oriented Programming, 5(9):25-30, 1993.

[82] M. D. Mcllroy. M ass produced software com ponents. In P. N aur and B. Randell, editors,

Report on a conference by the N A T O Science C om m ittee, pages 138-150. NATO Scientific

Affairs Division, 1968.

[83] B. Meyer. G enericity versus inheritance. In O O PSLA ’86, pages 391-405, Septem ber 1986.

[84] B. Meyer. Eiffel: The Language. P ren tice Hall, 1991.

[85] B. Meyer. Applying design by contract. IE E E C om puter, 1992.

[86] B. M eyer. Object-Oriented Software Construction, 2nd Ed. Prentice-H all, Englewood Cliffs,

N J 07632, USA, second edition, 1997.

[87] B. Meyer. Com ponent and object technology: O n to com ponents. Computer, 32(1): 139-140,

Jan u ary 1999.

[88] M. Mezini and K. O sterm ann. C onquering aspects w ith Caesar. In In ternational Conference

on Aspect-O riented Software Development (AO SD ’03), Boston, USA, 2003.

[89] N. H. Minsky. Towards alias-free pointers. Lecture N otes in C om puter Science, 1098:189-209,

1996.

[90] Tzilla E lrad (m oderator) M ehm et Aksit G regor Kiczales K arl L ieberherr H arold Ossher (pan

elists). Discussing aspects of A O P. Com m unications o f the ACM , 44(10):33-38, O ctober

2001 .

[91] P. M uller and A. Poetzsch-H effter. Universes: A type system for conrolling representation
exposure. In A. Poetzsch-Heffter and J . Meyer, editors, Programming Languages and Funda

m entals o f Programming. Fernuniversitat Hagen, 1999.

[92] J. Noble, J . Vitek, and J. P o tter. Flexible alias protection. Lecture Notes in Com puter Science,
1445:158-185, 1998.

[93] W. F. Opdyke. Refactoring Object-Oriented Frameworks. Ph .D . thesis, U niversity of Illinois,

1992.

[94] H. Ossher, M. K aplan, W. H arrison, and A. K atz. Subject-oriented com position rules. A C M

S IG P L A N Notices, 30(10):235-250, O ctober 1995.

[95] H. Ossher, M. K aplan, A. K atz, W . H arrison, and V. Kruskal. Specifying subject-oriented

com position. Theory and Practice o f Object System s, 2(3):179-202, 1996.

[96] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type System s. John W iley & Sons, 1994.

[97] D. L. P arnas. On the criteria to be used in decomposing system s into modules. Com m unications

o f the A C M 15(12), 1972.

[98] R. Paw lak. Interactional Aspect O riented Programming to C onstruct M ultiple Concerns Appli
cations. PhD thesis, CED RIC C om puter Science L abora to ry of CNAM , Paris, France, 2002.

BIBLIOGRAPHY 230

[99] S. L. Pfleeger. Software Engineering: Theory and Practice. Prentice-H all, U pper Saddle River,

N J, 1998.

100] M. P la th and M. Ryan. Feature Interactions in Telecommunications and Software System s,
volum e V, chapter P lug-and-P lay Features, pages 150-164. IOS Press, 1998.

101] H arry H. P o rter. Separating the subtype hierarchy from the inheritance of im plem entation.

Journal o f Object-Oriented Programming, 4(9):20-21,24-29, February 1992.

102] J. P o tte r, J . Noble, and D. Clarke. The ins and outs of objects. In Australian Software

Engineering Conference, Adelaide, A ustralia, November 1998. IE E E Press.

103] J. S. Poulin. Measuring Software Reuse: principles practices, and economic models. Addison-

Wesley Longm an Inc., 1997.

104] C. V. R am am oorthy, V. Garg, and A. P rakash. Support for reusability in Genesis. IE E E

Transactions on Software Engineering , 14(8): 1145-1154, A ugust 1988. Special Section on

CO M PSA C ’86.

105] T . R avichandran and M. A. R othenberger. Software reuse strategies and com ponent m arkets.

C om m unications o f the A C M , 46(8): 109—114, A ugust 2003.

106] J . C. Reynolds. Syntactic control of interference. In Proceedings o f the F ifth A nnua l A C M

Sym posium on Principles o f Programming Languages, pages 39-46, Jan u ary 1978.

107] R. R ivest, A. Sham ir, and L. Aldeman. A m ethod for obtain ing digital signatures and public-
key cryptosystem s. Com m unications o f the A C M , 21(1), 1978.

108] D. Rogerson. Inside COM: M icrosoft's Component Object Model. M icrosoft Press, 1997.

109] K. Sakurai, H. M asuhara, N. Ubayashi, S. M atsuura, and S. Komiya. A ssociation aspects.

In Proceedings o f the 3rd international conference on A sped-oriented software development,
pages 16-25. ACM Press, 2004.

110] D. C. Schm idt. W hy software reuse has failed and how to make it work for you. C + + Report,

Jan u ary 1999.

111] I. Sm aragdakis. Im plem enting large-scale object-oriented components. PhD thesis, U niversity

of Texas a t A ustin, 1999.

112] Y. Sm aragdakis and D. Batory. Im plem enting layered designs w ith mixin layers. In Eric Jul,

editor, E C O O P ’98 - Object-Oriented Programming, volume 1445 of Lecture Notes in Com puter

Science , pages 550-570. Springer, 1998.

113] M. Sparling. Lessons learned: th rough six years of com ponent-based development. Com m u

nications o f the ACM , 43(10):47-53, O ctober 2000.

114] R. Van D er S trae ten and J. Brichau. Features and feature in teractions in software engineering

using logic. EC O O P ’01 Workshop Reader, 2001.

115] B. S troustrup . T he C+-1- program m ing language (2nd edition). Addison Wesley, IS B N 0-201-

53992-6, June 1991.

BIBLIOGRAPHY 231

116] K. Sullivan, L. Gu, and Y. Cai. N on-m odularity in aspect-oriented languages: In tegration as

a crosscutting concern for aspectj. In A O SD 2002 Conference Proceedings, pages 19-27, 2002.

117] K. J. Sullivan. Easing the Design and Evolution o f Integrated System s. PhD thesis, U niversity

of W ashington, 1994.

118] K. J. Sullivan and D. Notkin. Reconciling environm ent in tegration and software evolution.

A C M Transactions on Software Engineering and Methodology 1, pages 229-268, 1992.

119] Sun M icrosystems. JavaBeans Specification 1.0, Ju ly 1997.

120] S. Su tton and I. Rouvellou. M odeling of software concerns in Cosmos. In G regor Kiczales,

editor, AOSD2002, pages 127-133. ACM, 2002.

121] P. T arr and H Ossher. H y p e r/J user and installa tion m anual. Available from

h ttp ://w w w .research .ibm .com /hyperspace , 2000.

122] P. Tarr, H. L. Ossher, W. H. H arrison, and S. M. Sutton, Jr. N degrees of separation: M ulti-
dim entional separation of concerns. In Proceedings o f the 21st In ternational Conference on

Software Engineering, M ay 1999.

123] B. Tekinerdogan, L. Bergm ans, M. G landrup, and M. Aksit. On com posing separated concerns:
C om posability com position anomalies. O ctober 2000.

124] L. Tokuda and D. Batory. Evolving object-oriented designs w ith refactorings. In 1 4 th IE E E

In ternational Conference on Autom ated Software Engineering, pages 174-182. IE E E C om puter
Society Press, 1999.

125] M. VanHilst and D. Notkin. Using C + + tem plates to im plem ent role-based designs. Lecture

Notes in C om puter Science, 1049:22-37, 1996.

126] M. VanHilst and D. N otkin. Using role com ponents to im plem ent collaboration-based designs.

A C M S IG P L A N Notices, 31(10):359-369, O ctober 1996.

127] J. V itek and B. Bokowski. Confined types. A C M S IG P L A N Notices, 34(10):82-96, O ctober

1999.

128] D. W alker, S. Zdancewic, and J . L igatti. A theory of aspects. In Proceedings o f the A C M

S IG P L A N International Conference on Functional Programming (IC F P ’03), ACM SIG PLA N

Notices. ACM , A ugust 2003.

129] R. J. W alker. E lim inating cycles in composed class hierarchies. Technical R eport TR-2000-07,

D epartm ent of C om puter Science, University of B ritish Colum bia, Ju ly 2000.

[130] M. J. W ooldridge. A n Introduction to M ultiAgent System s. Chichester: Wiley, 2002.

http://www.research.ibm.com/hyperspace

