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Summary

C onstruction of software from existing com ponents is a  long s tanding goal of software engineering. 

Cost is an im portan t factor distinguishing a com ponent created  for reuse from a com ponent built 

for a particu lar application. C onstruction of reusable com ponents requires investm ent th a t the 

developer can recoup only by reuse or by m arketing the com ponent for reuse by others. Much 

of to d ay ’s software construction is not aimed a t m arkets bu t to  fulfill specific objectives set ou t 

in requirem ents. This thesis proposes a means of constructing  more reusable software, including 

software th a t is not destined for com ponent m arkets, by combining subjectiv ity  and ownership.

Subjectivity, in the form of Subject-O riented Program m ing, is a  software developm ent technol

ogy in the  area of A spect-O riented Software Development th a t enables software decom position into 

partially  overlapping m odules known as subjects. Subjects enable the creation of m odular imple

m entations of use cases, features and systemic requirem ents, all w ithin the  fam iliar environm ent of 

object-oriented program m ing. Anomalous interactions during stateful inter-subject interactions are 

an acute problem  in reuse and for m odular subject developm ent. In the  worst cases, they require 

either patching or invasive modifications. To tackle th is problem , we propose annotations in the  

form of ownership types. In object-oriented program m ing, Ownership Types have been proposed as 

a solution to  the  endemic problem  of aliasing. S tructured  use of aliases facilitates the  construction 

of robust software th a t ensures representation encapsulation and supports m odular reasoning. The 

subject-oriented approach to  problem s previously modelled using object-oriented idioms requires a 

novel solution to  the  concept of ownership. Subjects do not have a representation; instead, ownership 

types ann o ta te  the ownership stru c tu re  of object collaborations im plem ented by subjects.

In th is thesis we propose the  Subjective Alias P ro tection  System  or SAPS. It is a  tool both  

for subject design and reuse. At a  small syntactic overhead, SAPS supports the  design of well 

s truc tu red  subjects whose classes ensure representation containm ent. SAPS improves the  reusability 

of subjects: Subjective O wnership Types are per-object anno tations of the  places an  object may 

be referenced or modified. O ur extensions to  subject com position rules constrain  subject and  class 

reuse to  meaningful cases and can prevent com positions leading to  anom alous interactions. SAPS 

facilitates m odular developm ent of subjects because aspects of subject effect on s ta te  can be observed 

from the points of in ter-subject interaction. Finally, Subject-O riented  Program m ing w ith SAPS can 

address more concerns th an  is possible w ithout it.
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Chapter 1

Introduction

In th is thesis we propose the Subjective Alias P ro tection  System  (SAPS) -  a  synthesis of Subject- 

O riented Program m ing and an Alias P rotection System. Subject-O riented  Program m ing (SOP) [49] 

is a  program m ing paradigm  th a t builds on the  strengths of object-oriented program m ing by in

troducing subject as a  new kind of module. Subjects abstrac tly  m odularise m any concerns th a t 

are difficult to  m odularise using object-oriented program m ing technology. Each subject is an ordi

nary  object-oriented program  and subject interaction  occurs a t join points -  key points in subject 

s tructure . These properties make subjects very good a t cleanly separating  m any functional and 

im plem entation dom ain concerns.

These properties also make subjects very reusable, bu t we will show th a t subject reusability comes 

a t a  cost. T he absence of an abstrac t functional interface is bo th  a positive and a negative reuse 

factor. On the one hand, interfaces facilitate struc tu red  reuse th a t guarantees desirable correctness 

properties, and on the other, they make it difficult to  extend or modify software in ways th a t were 
no t intended by the original developer. Subject interaction  can lead to  undesirable interference th a t, 

a t worst, requires invasive redefinitions. Reuse of stateful subjects is expensive because the reuser 

m ust understand  the  im plem entation in detail in order to  reuse successfully.

To address these problem s we specify Subjective Ow nership Types (SO T). SO T are a new type 

system  th a t  supersedes the  existing types in subjects. They are inspired by the  Ownership Types 

for Flexible Alias P ro tection  [23]. In object-oriented program m ing, Alias P ro tection  Systems are 

an  a ttem p t to  address the  problems caused by proliferation of object aliases [57]. This continues 

to  be the purpose of SO T when viewing program s one sub ject a t a  tim e. We propose SAPS as a 

com bination of SO T and the  necessary extensions for subject in teraction. SAPS constrains subject 

com position (interaction) in order to  ensure th a t only elem ents w ith m utually  com patible types are 

joined. We will show th a t SAPS makes significant contributions in a  num ber of areas: bo th  m odular 

developm ent of subjects and subject reuse are more feasible th a n  w ith SO P alone; some interaction 

problem s are addressed directly while o ther anom alies are easier to  detect because the  extent of 

object aliasing is explicit in the  types of elements a t join points; and  it is possible to  use SOP to  

address new kinds of concerns.

In order to  introduce our work, Section 1.1 establishes our position on software reuse. T he posi

tion m otivates us to  understand  reuse b e tte r and guides us tow ards proposing SAPS as a pragm atic 

reuse technology. The progression from the reuse position to  SAPS is detailed in Section 1.2. Section

1.3 explains the  objectives of this thesis and describes the  way it is organised.

1
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1.1 Position on Software Reuse

O ur work is m otivated by the  technical challenges underlying software reuse. Software reuse has 

received a lot of research a tten tion  and there  have been success stories [14, 113]. However, reuse 

rem ains a  topic for research because software engineers are constantly  facing new challenges as 

software pervades all areas of hum an activity  and  challenges grow in scale. To set ou t our reuse 

position we will play ou t a typical software developm ent scenario th a t goes on in m any software 

houses across the  world.

Consider an  application developer who has been tasked w ith creating a  program  to  address the 

needs of some client. O ur developer faces two constrain ts common to  m any of to d ay ’s projects. The 

first is program m ing in a m ainstream  object-oriented program m ing language. The second is tim e. 

T he tim e it takes the developer to  create the p roduct is a  m ajor contribu tor to  cost. To reduce overall 

costs the  program m er is prepared to  purchase com ponents, use application frameworks, scavenge 

code and apply the la test m ethods in software engineering. T he developer takes pride in his work and 

wishes to  create well s truc tu red  software th a t will be easy to  m aintain, predictable during evolution 

and reusable in fu ture projects. However, tim e is the  overriding concern and corners can be cut to  

ensure th a t the  p roduct is delivered on schedule.

Now, an  interesting question: w hat is the chance th a t the  code he w rites can be reused in fu ture 

projects? We believe th a t the  tug-of-war between the  in terests of the  developer on a schedule and a 

reuser in a hurry  are a t the core of the  software reuse problem .

T he developer m ust com plete the project on tim e which m eans th a t all good design ideas th a t 

aid fu ture code reuse bu t cost tim e may not be adopted. M any design guidelines, although valuable 

in theory, are dropped by program m ers in practice when they  require effort. This effort is only 
rew arded in fu ture m aintenance, evolution and reuse tasks. For example, separating  types from their 

im plem entations or using accessor m ethods for field look-up and  update  are known ways of improving 

the separation  of concerns and, therefore, reusability. However, unless enforced technologically or 

institutionally , developers will often ignore good practices in order to  save time.

T he reuser would like to  reduce costs by assembling code from pre-existing com ponents ra ther 

th an  w riting code from scratch. The problem is one of finding code to  reuse, possibly extracting  it 

from ano ther application, and adapting  it to m eet the  needs of the project. The reuser’s job  is m ade 

more difficult as the  result of shortcu ts taken by previous developers.

We believe th a t improving opportunities for reuse depends on ideas th a t are of value to  the 

original developer and facilitate future reusability. Reuse ideas stan d  more chance of being ac

cepted by practitioners when they are beneficial to  the  original developer. O ur a ttem p ts  to  improve 

opportun ities for reuse are influenced throughout by th is position.

1.2 From Reuse Problems to SAPS

U ltim ately m otivated by issues in software reuse, th is Section describes the  progression tow ards the 

Subjective Alias P ro tection  System. Software reuse is achieved th rough construction of reusable 

software [82]. In order to  make software more reusable it is necessary to  separate  all pertinen t con

cerns. Separation of concerns is of value to  the  software developer because tackling one subproblem  

a t a  tim e is easier th an  tackling the whole problem  a t once. We will show th a t using the current 

m ainstream  program m ing languages such as Java [45], the tim e-pressured developer cannot cleanly
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separate  all pertinen t concerns. E n ter M ulti-D im ensional Separation  of Concerns (MDSOC) [122]. 

M DSOC proposes to  organise software into m ultiple dimensions of concerns. By enabling the m odu

larisation  of all concerns along all dim ensions th a t developers believe to  be im portan t we can reduce 

the  cost of software developm ent over the  lifecycle and improve opportunities for reuse.

T he pursu it of the  M DSOC idyll is the  dom ain of technology broadly referred to  as Aspect- 

O riented Software Development (AOSD) [90]. In AOSD, concerns are realised by modules called 

aspects. Instead  of interacting by message passing, aspect interaction is based on so-called join 

points. Jo in  points are defined in different ways [66], bu t usually they  are either program m ing 

language constructs or arcs in the  p rog ram ’s dynam ic call graph. Join point interfaces enable sepa
ra tion  of concerns for functional and  non-functional requirem ents. Having identified the join point 

interfaces, aspects can be developed independently  and  in tegrated  using aspect-oriented compilers. 

From  a reuser’s perspective, code associated  w ith pertinen t concerns from past projects is abstrac t 

and m odular, m aking it m ore easily reusable th an  when program m ed w ith conventional technology.

S ubject-O riented Program m ing is one stran d  of AOSD th a t  adheres well to  the  MDSOC model. 

A subject is a  m odule denoting an  aspect. SO P concepts are realised in the program m ing language 

H y p e r/J  [121]. This language combines the  modelling poten tia l required for separating m any con

cerns w ith the fam iliarity of m ainstream  object-oriented program m ing: subjects are w ritten  in pure 

Java. Each subject has a very large num ber of join points determ ined by the  underlying language. 

Together these form its po ten tial interface to  o ther subjects. T he actual in teraction points, along 

which subjects com m unicate, only becom e apparen t when subjects are composed, i.e. subjects do 

not explicitly publish a  com position interface.

O ur experience w ith program m ing H y p e r/J  has highlighted the strengths and weaknesses of evo

lution and reuse in the  SO P paradigm . Each subject is relatively easy to  understand  as it addresses 

either a  single concern or a  well-defined concern set. However, relationships between concerns and 
subject interaction  are often com plicated. We will show th a t the  difficulty of understanding all con

sequences of com m unication can lead to  unw anted in teractions or interaction problems. These affect 
subject reuse, potentially  lim iting the  range of concerns to  which Subject-O riented  Program m ing 

can be realistically applied.
In teraction  problem s are a  topic of our investigation. W ithin  the range of in teraction  problems, 

there are those th a t can be solved by re-specifying in ter-subject in teraction  and those which re

quire invasive m odifications to  subjects. Re-specification of interaction  affects the  ‘cem ent’ between 

‘building blocks’, whereas changes to  subjects affect the ‘building blocks’. T he la tte r is a lot more 

expensive to  correct, m aking reuse uneconomical. M odular subject developm ent is also affected by 

this problem; independent design can begin only when the effect of join point in teraction  on s ta te  

is well understood.

One way to facilitate stru c tu red  reuse is to  introduce form al com position interfaces. T h a t is, 

to  allow join point interaction  bu t only a t predefined join points. However, subjects are m eant to 

be reusable in ways not antic ipated  by their original developers and, for this reason, we m ust look 

for an a lternative solution. Instead, we propose to  help subject composers to  understand  the  effect 

of com position on object s ta te  by m aking explicit the  way subjects use objects. O ur challenge is 

com pounded by the reuse m otivation problem  sta ted  in the reuse position: any solution m ust benefit 

the  original developer as well as fu tu re  reusers. We believe th a t Alias P ro tection  Systems (APSs) 

satisfy our reuse position. APSs are a solution to  problem s caused by unstructu red  object aliasing 
in object-oriented program m ing. A PSs constrain object aliasing to  enable m odular reasoning (on
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objects). B ut each subject is an object-oriented sub-program  and  design-in-the-sm all is a  purely 

object-oriented activity. An APS is useful to  the  subject designer because it helps him  to  struc tu re  

subjects b e tte r in order to  avoid aliasing problem s. An APS is also useful to  the  composer for it 

anno ta tes the  elem ents a t com position join points, thereby helping to  explain the  effect th a t one 

subject has on another subject.

Inspired by Flexible Alias Protection , we propose the Subjective Alias P ro tec tion  System. Sub

jects can be composed when Subjective O wnership Types a t jo in  points are m utually  com patible. 

The new em phasis on aliasing issues helps to  prevent some in teraction  problems. I t also aids de

tection  of o ther interaction problem s by helping the composer to  understand  the effect of subject 

interaction  on state.

1.3 Thesis Outline

1.3.1 Aims, Objectives and Limitations

The m ain aim of th is thesis is to introduce SAPS as a reuse technology th a t  has value to  the  original 

developer of software. The secondary aim is to  tackle in teraction  problem s experienced in subject- 

oriented program m ing. To m otivate these aims and  defend the thesis we propose a sequence of 

objectives:

1. Develop an understanding of the factors affecting software reuse and how to  construct reusable 
software.

2. Review the s ta te  of the a rt in A spect-O riented Software Developm ent w ith the  goal of identi

fying the  technological trends th a t best m eet our reuse position.

3. Investigate the phenom enon of in teraction  problem s in Subject-O riented Program m ing and 
identify how they m ay be tackled.

4. Propose a  set of requirem ents for an  A PS for Subject-O riented  Program m ing.

5. After presenting SAPS, show th a t SO T are a  useful APS for subject design; explain how 

SAPS enhances subject-oriented software development; and  dem onstrate  th a t SAPS addresses 

in teraction  problems.

T he m aterial presented in this thesis is of a  conceptual natu re , so our approach is predom inantly 

informal. We em phasise the  software engineering issues ra th e r th an  a  type system  because we 

believe th a t  an explanation of the  relationships between reuse, interaction  problem s, subjectivity  

and  ownership m ust come first. A rigorous form al model th a t  follows on from the conceptual 

understanding is fu ture work.

SAPS is not specific to any program m ing language, although it is expected th a t subjects will be 

developed in an object-oriented language th a t combines subclassing w ith subtyping and has single 

inheritance. O ur subject com position sem antics are based on th e  observed sem antics of H y p er/J  

and our subject com position language is interoperable w ith the core of H y p er/J .

1.3.2 Conventions

Exam ples are presented in Java pseudocode. We use the  following typeface conventions. W hen 

w riting code fragm ents we use the  t y p e w r i t e r  f a m ily  of fonts. W here program m ing languages
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use common English words for operators and keywords, we use the  b o ld fa c e  s e r ie s  to  distinguish 

from the w ords’ general usage. Im portan t words and  phrases are em phasised w ith  italics. The sans 

serif fonts are used in the  presentation  of SAPS concepts and to  refer to  ownership contexts. For 

displaying m athem atical expressions the slanted fo n t is used.

1.3.3 Chapter by Chapter 

C h a p te r  2: E v o lu tio n  a n d  R e u s e

Having already established our position, this C hapter describes the  factors influencing reuse and 

the  challenges in constructing reusable software. It reviews object-oriented program m ing as a reuse 

technology from the perspective of program m ers of m ainsteam  program m ing languages.

C h a p te r  3: A d v a n c e d  S e p a ra t io n  o f  C o n c e rn s

In moving beyond OOP, th is C hapter looks a t research in the  area of A spect-O riented Software 

Development. M ulti-D im ensional Separation of Concerns is presented as a  model for understand

ing m any of the  problem s in software engineering. We evaluate AOSD technology based on the 

capability  for separating two kinds of concerns: feature concerns from the  problem  dom ain, usually 

associated w ith object collaborations; and aspectual concerns from the  solution dom ain th a t are 

difficult to  m odularise w ith conventional program m ing languages. Subject-O riented  Program m ing 

can m odularise collaborations and  m any aspectual concerns. It also satisfies our position on reuse.

C h a p te r  4: I n te r a c t io n  P ro b le m s  in  S u b je c t - O r ie n te d  P r o g r a m m in g

In this C hap ter we relate our own experience and th a t of o ther researchers w ith regard to  interaction 
problems. The problems we identify are categorised based on the  kind of solution they require. The 

first interaction  problem  can be addressed by reform ulating the  com position specification. The 
second by extending SOP w ith more powerful com position rules. T he th ird  requires invasive subject 

m odifications and is caused by an  unantic ipated  s ta te  change in an  object. This anom aly is hard  to 
detect because d a ta  concerns are scattered  across subjects.

We propose to  develop an Alias P ro tection  System  for SO P in order to  encourage subject devel

opers to  create well s truc tu red  subjects and to  help subject composers to  understand  the  effect of 

subject interaction  on sta te .

C h a p te r  5: A lia s  P r o te c t io n  a n d  S u b je c t iv i ty

This C hap ter presents the  s ta te  of a r t in Alias P ro tection  System s in object-oriented program m ing 

and sets out the  requirem ents for a  system  th a t is suitable for Subject-O riented  Program m ing. SOP 

decentralises class development, letting  each subject define abstractions from its own viewpoint. The 

decentralised style of software developm ent makes existing APSs unsuitable. The requirem ents for 

an  APS in SO P lay the  foundations for the  Subjective Alias P ro tection  System.

C h a p te r  6: S A P S  — S u b je c t  D e s ig n

This C hap ter presents the  principles of Subjective Ow nership Types. I t describes the way SO T are 

used in subject design and describes the way types are checked.
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The containm ent properties of SO T are sim ilar to  those of Ow nership Types proposed by Clarke 

et al [23]. O wnership Types, like o ther APSs, are based on a centralised definition of classes. Subjects 

define new classes, m ost of which do not have a centralised view. We use the  concept of centralisation 

to  partitio n  classes into two hierarchies called com posable and  uncom posable. Uncom posable classes 

can use an ownership type system  very similar to  th a t proposed by Clarke. Com posable classes 

require a new type system . Instead of ownership param eters, we propose explicit and unknown 

context identifiers for labelling object owners.

C hapter 7: SA P S -  Subject C om position

At the  core of a  subject-oriented language like H y p e r/J  is a  subject com position model. We extend 

the  subject com position m odel discussed by Ossher et al [95] w ith contexts and describe w hat it 

means to  compose elements anno ta ted  w ith Subjective O w nership Types. T he model is extensible 

allowing new kinds of com position rules to  be defined. The challenges include the specification of 

unknown context resolution. This is a  m echanism  by which partia l knowledge of ownership s tructu re  

specified in one subject is filled in by composing w ith o ther subjects. T he o u tpu t of com position is 
a  new subject containing the  synthesis of concerns im plem ented by the  input subjects.

C hapter 8: E valuation

The evaluation presented in this C hap ter dem onstrates th a t SAPS can elim inate some interaction 

problem s entirely and can help to  detec t o ther in teraction  problem s by anno ta ting  the effect of 

subject interaction  on sta te . The u tility  of SAPS to  the  subject-oriented  developer is shown through 

a range of design problems. We show also how to  use our system  to  express security concerns th a t 
cannot be represented in SO P w ithout SAPS.

C hapter 9: C onclusions and Future W ork

In the  final C hapter, SAPS is reviewed in term s of its contributions to  reuse, interaction  problems, 

and as a  tool for improving the design of subject-oriented program s. We conclude w ith  a discussion 
of plans to  extend SAPS w ith additional aliasing capabilities.



Chapter 2

Evolution and Reuse

The position on reuse, outlined in Section 1.1 on page 2, is th a t im proving opportunities for reuse 

depends on technologies th a t  also have value to  the  original developer. There are a t least two ways 

of m aking the construction of reusable software beneficial to  the developer. The first is building 

reusable artifacts w ith the aim of m arketing to  a wide audience. The second is b e tte r separation  of 

concerns w ithin software; th a t is, not to  build software for reuse m arkets bu t to  make software more 

reusable as a  consequence of improved m odularity.

T he position on reuse also describes the pressures on developers which m ake code less reusable, 

highlighting the significance of m aking all software more reusable and no t ju s t software which was 

intended for reuse. This d issertation  takes the second approach above: to  seek im provements in 

m odularity  as the  way of improving reusability. To defend the  approach, the  present C hapter 

describes software evolution and reuse. Section 2.1 defines reuse and reusable software. Section 2.2 

explores the  m odularity  issues in reuse. Section 2.3 presents the challenges of constructing  software 

for reuse. M ainstream  software developm ent is presently dom inated by object-oriented program m ing 

(O O P). O bject-oriented program m ing was tou ted  as a  m eans of im proving opportunities for reuse. 

In Section 2.4, we discuss its successes and  failures in th a t respect.

2.1 W hat Is Reuse?

Software reuse has been proposed as a solution to  the software crisis -  the  problem  of building 

large, reliable software system s in a  controlled and  cost effective way [82]. T he benefits of reuse are 

improved quality of the  finished product from reuse of pre-tested  artifacts and reduced development 

costs due to  economies of scale -  the  developm ent cost of a  single reusable artifac t is am ortised by 

all who in tegrate it in their products. Software reuse is difficult because useful reuse abstractions 

are typically complex. The program m er m ust either be fam iliar w ith th e  artifacts or take tim e to  

study  and  understand  them . E ither way, it m ust be cheaper to  reuse the  software artifact than  to  

develop software from scratch  [70].

It is im portan t to distinguish software reuse from reusable software. Software reuse is the activity  

th a t takes place afterw ard, when software was initially created  in the past. To best support this, 

reusable software m ust be created  beforehand in such a way th a t it is easy to  reuse later.

In its m ost general sense, reuse is the  ac t of taking existing artifacts related  to  the  creation of 

software and incorporating them  in a new project or extending software w ith new functionality.

7
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T he types of artifacts th a t can be reused are not lim ited to  pieces of code. It is possible to  reuse 

requirem ent specifications, design patterns, tes t cases, and anything else related  to  the  construction 

of software. However, when talking about reuse we usually th ink  of code, and th a t is w hat we will 

m ean when discussing reuse.

T here exists a  difference between the act of reuse and usage of software by a  client. For instance, 

according to  Poulin [103], the use of high-level languages, software developm ent tools, applications 

and application generators is not reuse because an applications developer is generally no t expected 

to  write th is software. Categories which represent reuse are:

•  The first use of a  com ponent bu t not the  subsequent uses.

•  Code from utility, domain-specific and corporate libraries.

We broadly agree w ith P ou lin ’s categorisation bu t would like to  include software evolution w ith 

the aim of incorporating new requirem ents. We define software evolution as the  process by which 

system s are extended w ith new code due to  changing requirem ents. T he new code is called the 

extension. Poulin [103] does not count evolution as reuse because stric tly  it does no t involve using 

code in an unrelated  project. B ut in the  ‘real w orld’, evolution and reuse often look like two sides 

of the  same coin. Consider the  way Meyer defines reusable com ponents [87]:

“a software element th a t m ust be usable by developers who are no t personally known 

to the com ponent’s au thor to  build a p ro ject th a t was no t foreseen by th e  com ponent’s 
au th o r.”

This definition readily applies to  software evolution. For the  following reasons, we are inclined to 

include evolution in forthcom ing discussions on reuse:

•  The person creating the  extension is no t necessarily the  original au tho r and  therefore may be 
unfam iliar w ith the  application.

•  T he ad ap ta tion  of th e  extended artifact to  accom m odate the  extension is often unanticipated  

w ith respect to  the original requirem ents, requiring the original program  to  be adapted  to 
accom m odate the extension.

•  T he extension w riter invests tim e in creating the extension instead of reconstructing the ap

plication from the  ground up. Ju s t as when one reuses code in an  unrelated  application, the  

extension w riter m ust believe th a t understanding the  original program  takes less effort th an  
rew riting it.

•  As often happens, docum entation may be absent or hopelessly ou t of date.

•  In object-oriented program m ing, inheritance is associated b o th  w ith seamless evolution for 

creating families of types and w ith code reuse [101].

Im pedim ents to  software reuse are technical and non-technical. A lthough the em phasis of this 

d issertation  is on technical factors, the non-technical factors are also reviewed.

O rganisations are generally all too happy to  cut costs. In the experience of Schm idt [110] organ

isations would like to  rew ard in ternal reuse efforts bu t a num ber of non-technical factors conspire to  

m ake reuse hard:
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O rg a n is a t io n a l .  Development, deploym ent and support of reusable artifacts requires a  deep under

standing of the  application developer’s needs and  business requirem ents. In a large organisation 

w ith m any projects the  num ber of reusable artifacts increases, m aking it harder to  struc tu re  

an organisation to  provide interaction  between team s.

E c o n o m ic . C reation of reusable assets requires investm ent which needs to  be charged for each 

project. O rganisations find it difficult to  in stitu te  appropria te  taxation  on reused artifacts 

when reuse departm ents are responsible for balancing the ir books.

A d m in is t r a t iv e .  I t is common for developers to  scavenge classes or functions from existing pro

gram s developed w ithin their im m ediate workgroup. However, it is harder to  catalogue, archive 

and retrieve reusable assets across m ultiple business units in a  large organisation.

P o li t ic a l .  R ivalry between business un its may stifle reuse of artifac ts developed by o ther units when 

it is perceived as a  th re a t to  job  security or influences th e  balance of power.

P sy c h o lo g ic a l. T he ‘not invented here’ syndrom e is ubiquitous in m any organisations. Enforce

m ent of reuse practices is seen as m anagem ent lacking confidence in the developers’ technical 

ability.

Reuse as a m ulti-organisational problem  requires a  com m unity of developers who are prepared to  

share ideas, tools, m ethods and code. However, sharing is no t trad itionally  an  ethic of commercial 

companies. On the  contrary, com panies prefer to  keep their p roducts proprietory  in order to  m aintain 

com petitiveness [80].

2.2 M odularity and Reuse

In order to  understand  reuse problem s it is im portan t to  understand  w hat the developers w ant to  

reuse. Reuse is usually discussed in term s of particu lar m odular artifacts such as functions and 

classes, whereas program m ers generally wish to  reuse code associated w ith concerns. M odularity 

is a t the  core of reusability; getting  it right will have great im pact on reusability. M aintenance 

significantly im pacts reusability. We argue th a t im proving the traceability  of requirem ents in designs 

can reduce the negative im pact of evolution and  facilitate the  reuse of code associated w ith those 

requirem ents.

2.2.1 Modularity

Decomposing artifacts into smaller p arts  is a t the core of software development. We decompose 

system s into modules because tackling problem s one m odule a t  a  tim e is easier th an  tackling the 

whole problem  a t once. In term s of software, a  system  is m odular when each activ ity  of the  system  

is perform ed by exactly one module, and  when the  inputs and o u tp u ts  of each m odule are well 

defined [99]. An activ ity  can be understood  as code which executes in response either to  a client or 

system  requirem ent.

P arnas questioned the criteria  we use for decomposing system s into modules [97]. He s ta ted  

th a t m odules should hide difficult design decisions or design decisions which are likely to  change. 

Applied to  d a ta  representation, this principle is the foundation for ab strac t d a ta  types (ADTs) and 

is a t the core of object-oriented program m ing. T he m odule user or client is interested in w hat the
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m odule does and not how it does it. The functionality of the  m odule is accessed through an interface 

which does no t reveal the  way the module is im plem ented. T he process of m odular decom position 

continues until each m odule in the system  has a clear purpose.

T he com plete set of modules exhibits a hierarchical s truc tu re . At the  roo t is the  whole system  

and  each m odule is composed of modules below it in the  hierarchy. P arnas observed th a t b e tte r 

reuse can be achieved if modules higher up in the hierarchy use m odules lower down bu t not the 

o ther way around. This way the  modules closer to  the  roo t can be removed and a  new tree grown 

using the  low level modules a t the leaves.

M odularity  affects evolution and reusability directly [17]. T he concerns which the developer 

chooses to  m odularise will be easy to  m aintain, evolve and reuse. O ther concerns, which were not 

deemed im portan t or which were not m ade m odular for one reason or another will be harder to  

reuse. A num ber of factors conspire to  make the initial choice of modules less th an  straightforw ard:

•  T he technology m ust enable separation  of concerns identified as im portan t. It is well known 

th a t it is possible to  w rite a program  in any language th a t  is general enough, bu t some lan

guages are b e tte r suited to  separating  certain  kinds of concern. For example, in object-oriented 

program m ing, inheritance can be used seamlessly to introduce a  new variant of a  type. Dy

nam ic dispatch -  the  technology th a t makes this possible -  can be sim ulated in a  procedural 

program m ing language. However, the  procedural program m er will no t build dynam ic dispatch 
into the  program  before it is needed.

•  There are m any concerns, which makes it hard  to  determ ine which ones to  m odularise. It 
is hard  to identify those concerns which are im portan t. For example, a t an  early stage in 

the  specification of a  m atrix  m anipulation system , the  developer is concerned w ith m atrix  
operations available to  a client. T he set of available operations may change. If this happens, it 
would be nice to  introduce new operations w ithout invasive changes to  existing code. For this 

reason, the developer considers trea ting  each m atrix  operation  as a  module. For reasons of 

efficiency, the im plem entation of each operation is tied  closely to  the m atrix  im plem entation. 

T here may be one algorithm  for sparse m atrices and one for full m atrices, or a  single algorithm  

th a t trea ts  bo th  kinds of m atrix  the  same. Now the developer believes th a t each kind of m atrix  

should be a module.

•  Having separated  concerns identified as im portan t it should be possible to  compose modules 

cheaply and predictably. W hen reuse of modules becomes common, relatively little  tim e will 

be spent w riting new modules, and m ost of the  program m ing effort will lie w ith combining 

m odules [59]. Com position is p a rt of the  cost of reuse. As the  tim e spent adapting  and 

debugging the interaction increases, so reuse of those modules becomes less appealing.

M odularity  clearly affects reuse, bu t w hat affects m odularity? T he choice of modules is guided 

by the  program m ing technology. Reusable artifacts are associated w ith w hat the  underlying pro
gram m ing language determ ines as modules.

2.2.2 Reuse Artifacts

Reuse fundam entally depends on the reuser’s ability  to  ex trac t code. If th e  concern is realised as a 

m odular artifac t from a library  then  no work is necessary. O therw ise, the reuser m ust disentangle the 
code in order to  reuse it. In order to  be cost-effective, reuse should not involve m ajor modifications.
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In m ainstream  program m ing technology, functions, procedures or com ponents are m odular artifacts. 

Program m ing technology dictates those concerns th a t become m odular and those th a t do not have 

a m odular form, instead becoming im plicit or tigh tly  in tegrated  in com ponents and architectures.

Functions are the m ost fine-grained m odular artifacts of reuse th a t we distinguish. For example, 

m any cryptographic libraries are full of functions th a t com pute factors of large numbers. P ure  

functions are some of the  easiest th ings to  reuse because they  have single en try  and exit points, do 

no t modify global d a ta  and  offer referential transparency. R eferential transparency  allows a  pure 

function to  be replaced by its value which m eans th a t a  function can be referenced anywhere w ithout 

adverse consequences [37].

P rocedures em body elements of functionality  th a t may depend on or modify some global state. 

By com parison, pure functions are easier to  reuse because in order to  reuse procedures one also 

has to  understand  the procedure’s effect on shared sta te . In object-oriented program m ing, non

triv ial procedures are analogous to  object collaborations. T he s ta te  is no t global bu t instead is 

a ttrib u ted  to  objects involved in the  collaboration. Collaborations are hard  to  reuse because objects 

are generally associated w ith m ultiple collaborations [86]. Reusing collaborations involves factoring 

out all o ther concerns a ttached  to  the  objects. For example, graph  traversal algorithm s are useful 

in m any applications. Among the algorithm s which can be applied to  an a rb itra ry  graph is the 

com putation  of the num ber of unconnected subgraphs. This algorithm  should be readily reusable in 

m any applications bu t the  objects playing the  roles of vertices or edges also contain o ther behaviour 

th a t is hard  to  separate. Program m ing languages and o ther technology for im proving collaboration 

m odularity  are reviewed as p a rt of C hap te r 3 (page 22) on A dvanced Separation of Concerns.

Com ponents are aggregations of functions and procedures. T hey present interfaces th a t let 
clients access the ir functionality and  custom ise the com ponents to  address application requirem ents. 

The th ing th a t characterises com ponents and makes them  different from sets of related functions 

and procedures is the sharing of a  represen tation  -  a  common im plem entation th a t rem ains hidden 

beneath  the  facade. C om ponents can be large or small. A t one extrem e are common abstrac t 

d a ta  types; a t the o ther there are com ponents which can function as stand-alone applications. 

For example, a  spreadsheet tool is a  com ponent th a t has interfaces for adding and  removing d a ta  

from cells, for changing the  num ber of rows and columns, for creating relations between cells and 

for changing d a ta  views. It is norm al for clients to  request ex tra  functionality  from successful 

com ponents which m ay require the  interfaces to  be extended or modified.

A rchitectures are assemblies of com ponents; they are subsystem s th a t  provide services. Reuse 

of architectures perm its substan tia l savings over stand-alone com ponents. Developers are keen to  

reuse architectures to  leverage application  development. A rchitectures can support concerns such 

as distribution, letting  the  application developers concentrate on the  business end of their system. 

For example, an agent framework is an  architecture. An agent fram ework allows for the creation of 

autonom ous, heterogeneous objects th a t  have the ability  to  ‘reason’ for themselves, negotiate w ith 

o ther agents or refuse to  accept messages [130]. Conform ance w ith  existing technology may guide 

the developer to  selecting one agent p latform  over another. Reusability is often in the requirem ents 

for architectures.

The reused concern or the  unit of change during evolution is not determ ined by the  technology 

used to  im plem ent it bu t by w hat th e  reuser or m aintainer considers im portan t. Reuse is simpler 

when th e  concern happens to  coincide w ith a m odular artifact, be it a  function, a  procedure, a  

com ponent or an architecture. P rogram m ers may wish to  reuse all sorts of concerns including



CHAPTER 2. EVOLUTION AND REUSE 12

code associated w ith  im plem entation abstractions and feature concerns, i.e. code addressing an 

aspect of end-user functionality. To facilitate reusability, all pertinen t concerns require a m odular 

representation.
Seamless evolution and  reusability are achievable th rough investm ent in architecture bu t external 

pressures negatively im pact architectures, slowly eroding any inherent flexibility.

2.2.3 The Effect of External Pressures on Reusability

It has been observed th a t  reusability is affected by the deadline effect. P ro jects often have tight 

schedules th a t force the  program m ers to  come up w ith quick solutions to  problems. Any reusability 

which was inherent in program s initially is eroded little  by little  by a  sequence of unanticipated  

extensions [104]. M any projects s ta r t out w ith a well-defined arch itecture  which gradually gets 

eroded until the  program  becomes a big ball of mud. According to  Foote and Yoder [41], the 

big ball of m ud arch itec tu re  predom inates in practice. Program s th a t  have such architecture are 

“haphazardly  stru c tu red , sprawling, sloppy, duct-tape  and  bailing wire, spaghetti code jungle” . The 

problem  w ith big balls of m ud is th a t they  are of no use to  anybody except the  current users who 

become dependent on th e  services these system s offer. Big balls of m ud are an oil slick in the ocean 

of reusable software -  as system s grow larger they  become m ore and  m ore difficult to  understand, 

raising the cost of reuse [17].

A project which s ta rts  out w ith a discernible arch itecture becomes a  big ball of m ud largely 
because of cost. T he  custom er usually needs som ething by tom orrow . Often, the people who m anage 

the developm ent process simply do not regard arch itecture as a  pressing concern. If program m ers 
know th a t w orkm anship is invisible, and m anagers do not w ant to  pay for it, a  vicious circle is born.

In m uddy code the  im portan t d a ta  is global, the rest is passed surreptitiously  th rough  various 

channels. V ariable and  function nam es are uninform ative or even misleading. Control flow and pro

gram m er in ten t is hard  to  understand. T he code is patched num erous tim es by different m aintainers 

and there  is no up to  d a te  docum entation.
The prevalence of the  big ball of m ud approach to  software developm ent has lead Foote and Yoder 

to  conclude th a t it is a  m ethod which works. I t is a  p a th  of least resistance when one is confronted 

w ith the forces described above. In order to  restore stru c tu re  Foote and Yoder suggest th a t system s 

should be refactored. R efactoring improves the program ’s structu re , im proving its understandability  

and facilitating evolution w ithout changing the program ’s functionality [93]. Refactoring enables 

consolidation -  a  process by which experience accrued as the  system  evolves gets absorbed into the 

system ’s structu re . W hen code has declined beyond com prehension and repair, reconstruction or 

resta rting  from the  ground up rem ains the  sole viable approach.

We believe th a t realistic technology-based solutions to  stopping program s tu rn ing  into big balls 

of m ud m ust take into account the  tim e pressures placed on developers. For example, in a  pressured 

environm ent, changes in requirem ents are hacked directly into code. Instead  of applying changes 

to  design artifacts and  then  applying the  changes to  code, code is changed and the designs slip 

into obsolescence. Design artifacts are discarded because of the  effort associated w ith m aintaining 

them  w hen all th a t really counts is w hether the  code works or not. M aking designs more useful to  

m aintainers is the  way to  raise in terest in design artifacts. We believe th a t code is less likely to  tu rn  

into big balls of m ud when up-to-date design docum ents are available for assessing the im pact of 

m odifications and  extensions during m aintenance.
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For object-orientation, Clarke et al [25] believe th a t there  are th ree reasons why developers do 

not use designs th roughout the software lifecycle:

•  Designs are often large and monolithic. Classes and interfaces are centralised notions and only 

one designer a t a  tim e can work on a  given design unit. C entralisation causes early com m it

m ent to  struc tu re  which m ay overconstrain the set of possible designs too early, consequently 

increasing th e  im pact of change.

•  Designs are too  difficult to  reuse because they  bundle too m any pieces together. Classes 

designed for a  particu lar system  are too specialised for general use. Potentially  reusable classes 

include a lot more functionality th an  a reuser requires, decreasing their com prehensibility and 

reusability.

•  M ost im portantly , there is struc tu ra l m isalignm ent between requirem ents and code w ith the 

design caught in th e  middle. In requirem ents, th e  units of abstrac tion  and  decom position 

relate to capabilities, features and o ther concepts in the problem  dom ain. O bject-oriented 

code focuses on classes, interfaces and m ethods. This causes the  problem s of traceability  of 

requirem ents in code. Design languages such as UML [18] produce designs th a t align well 

w ith code. Consequently, designs also align poorly w ith requirem ents. W hen the  requirem ents 

change, the  developer does not wish to  incur the  cost of m aking changes twice -  once for design 

and once for code. So he changes only code.

T he reuse lesson is th a t designs and code should m odularise w hat is in the  requirem ents as well 

as w hat is necessary to  m odularise in the im plem entation.

D ecentralisation can drive down costs for the original developer: given the  right technology one 

developm ent team  can be assigned to  the im plem entation of each requirem ent despite the  struc tu ra l 
overlap in im plem entations. M odular developm ent of each requirem ent m ay speed up project delivery 
making the  technology th a t enables decentralisation a ttrac tiv e  to  the original developers and the 
reusers.

2.3 Challenges in Constructing Reusable Software

C om ponent and  framework development are associated w ith the  construction of reusable software. 

In order to  successfully m arket software as a  reuse artifact, it is necessary to  make software ad ap t

able to a range of applications. This requires developers to  an tic ipate  changes and then  provide 

flexibility th rough design. Blackbox and  whitebox are two strategies for m aking software adaptable 

to  evolution.

2.3.1 Frameworks and Component Based Development

Com position and generation technologies are two accepted ways of constructing  reusable soft

ware [16]. Frameworks -  a  generation technology -  are sem icom plete applications th a t can be used to 

generate custom  applications. They are specialised to  a range of applications and designed to  solve 

a narrow  set of problem s [36]. Com ponent-based developm ent (CBD) -  a  com position technology -  

involves building system s using prepackaged com ponents. S tandard  com ponent architectures such 

as CORBA [13], JavaB eans [48] and M icrosoft COM  [108] enable developers to  m arket com ponents 
to  wide audiences.
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C om ponents, such as those designed for the JavaB eans model, can be custom ised b u t only in the 

way intended by the developer. The ad ap ta tion  interface is lim ited to introspection -  the  ability to  

observe and modify a predefined range of properties. There is no conventional access to  the internal 

design which makes it difficult to  modify beans if the modification was originally not anticipated. 

Also, there  exist concerns th a t we would like to  reuse bu t which are no t easily m odularised by a 

com ponent. For instance, a  Tracer com ponent th a t gathers sta tistics abou t d a ta  flow between other 

com ponents is difficult to define. All com ponents th a t m ay be traced  are required to  implement a 

certain  interface and to  support the notification of d a ta  flow w ithin their im plem entation. M anual 

selection of d a ta  flow points is prone to  error. Even more im portantly, when com ponents are devel

oped independently  by th ird  parties, it is not reasonable to expect com ponent developers to  know 

abou t all o ther com ponents w ith which they  m ay be connected.

Fram eworks can significantly increase software quality and reduce developm ent effort [36]. One 

problem  is finding the  right framework to  reuse. Com panies a ttem pting  to  use large-scale frameworks 

often fail to  recognise and resolve challenges such as [35]:

•  the  learning curve the program m ers m ust go through before they  become proficient a t using a 

particu lar framework,

•  in tegration between frameworks th a t address parallel concerns,

•  framework m aintenance will require application code to  be updated ,

•  reliance on framework developers to  remove defects, and

•  efficiency penalties over custom  applications.

M any im pedim ents to  framework reuse are non-technical and are, in general, connected to  prob

lems a custom er can experience when relying on external services. Overall, the  benefits of frame

works significantly exceed the drawbacks bu t reuse rem ains a  problem  in new application areas where 

frameworks are unavailable.

2.3.2 Problems with Planning for Reuse

W hen constructing reusable software, th e  developers aim  to  to  m ake the ir com ponent as generally 

useful as possible in order to  open it up to  a wider m arket. The process requires the developer 

to  an tic ipate  variation and create hooks for fu ture evolution. It also helps to  avoid invasive code 

m odifications w ith respect to  planned extensions. For example, in framework construction, certain  

extensions are p a rt of the requirem ents and, therefore, should be built-in. In  order to create a  

successful framework one m ust foresee the  uses to  which the framework will be put.

T he program m ing language used in software developm ent determ ines the  cost of providing ex

tension points. For instance, abstrac t d a ta  types such as lists are conceptually generic w ith respect 

to  the kinds of com ponents th a t can be stored within. W hen building com ponent libraries, ADTs 

can be m ade generic in any sufficiently general program m ing language. However, in order to  eas

ily construct generic ADTs the language m ust support either generalisation or inheritance. For 

example, C + +  supports genericity w ith tem plate  classes [115]. Tem plate classes allow families of 
related classes to be specified w ithout a  significant syntactic overhead. W hen the cost of providing 

a  particu lar kind of adap ta tion  is not significant w ithin some language, program m ers will take ad

vantage of the  available language features in order to  make com ponents more adap tab le  as p a rt of
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good design. Program m ing language features such as genericity can lead to  more reusable software 

w ithout requiring investm ent.

T he problem  w ith planning for reuse beyond th e  original requirem ents is elegantly sum m ed up 

by Fowler [42]:

“One way to  deal w ith changing requirem ents is to  build flexibility into the  design so 

th a t you can easily change it as the  requirem ents change. However, th is requires insight 

into w hat kind of changes you expect. A  design can be planned to  deal w ith areas 

of volatility, bu t while th a t will help for foreseen requirem ents changes, it won’t  help 

(and can hurt) for unforeseen changes. So you have to  understand  the  requirem ents well 

enough to  separate  the  volatile areas, and my observation is th a t this is very h ard .”

T he advice of E xtrem e Program m ing [11] is th a t you do not build flexible com ponents on purpose. 

Let the struc tu res grow as they are needed. The reasons are economic -  if work is done on features 

th a t m ay be needed tom orrow, tim e will be lost for features th a t  need to  be done for this iteration. 

Also, working on things for the future is outside the contract the  program m er has w ith a custom er. 

It should be up to  the custom er to decide w hat ex tra  work should be done.

2.3.3 Black-box and W hite-box Reuse Strategies

T he term s white-box reuse and black-box reuse are defined in relation to  w hat the  reuser believes 

to  be the  interface for adapting  the artifact. W ith  w hite-box reuse, program m ers are free to  modify 

code beyond the ad ap ta tion  interface to  suit their needs. In CBD, the  adap ta tion  interfaces of 

com ponents are the  points of in teraction  between the  com ponents and  w ith the com ponent model. 

In frameworks, the  ad ap ta tion  interface consists of the  preplanned extension points. This approach 

gives a  lot of freedom for com ponent adap ta tio n  bu t is also fraught w ith difficulty because consistent 
m odification requires com plete fam iliarity w ith code. T he o ther extrem e is black-box reuse which 

disallows unantic ipated  modification of the  retrieved com ponent. T he black-box stra tegy  can make 
it more difficult to find suitable artifacts. Black-box com ponents in CBD technologies allow a lim ited 

degree of ad ap ta tion  which may be insufficient to  custom ise the  com ponent to  the  needs of another 
project.

Com m on abstrac t d a ta  types are black-boxes because the reuser is in terested  in their functionality 

b u t not im plem entation. Larger-grained com ponents are often black-boxes to  reuser-clients bu t 

white-boxes to  reusers who require access to parts of the  internal design. For example, consider the 

developm ent of user-interface (UI) software for mobile phones. There are two kinds of reusers. The 

UI com pany producing the  software and the telecom  com pany configuring the software. Changes to  

the underlying model are m ade by the UI com pany who see the software in w hite-box form. The 

telecom com pany m ay configure the  software for phones w ith a  different num ber of keys, displays in 

m onochrom e or colour, and introduce different menu options. The telecom com pany is a  black-box 
reuser.

Confusingly, frameworks are classed as white-box reuse [35] despite th e  im plem entation of frame

work classes being hidden from the  reuser. The reuser needs to  access docum entation  explaining 

how to extend the framework to  create an application bu t does not need to  know the details of 
im plem entation of framework classes.

T he inform ation hiding aspect of black-boxes is appealing because it allows more complex system s 
to  be built by using black-boxes as building blocks. T he open-ended adaptab ility  of white-boxes is
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appealing too because it gives considerable freedom to  adap t com ponents. T he situation  is analogous 

to  the drivers of racing cars. A lthough it is possible to  drive a  car w ithout understanding anything 

abou t the details of engine or gearbox design, or the principles of power and torque, an expert 

driver will use his knowledge of the way the  m achine works to  harness its po ten tial for winning. 

Furtherm ore, to  drive a  racing car well it is no t necessary to know anything about, for example, the 

way the gearbox shifts cogs. Hence, a t every stage, there  is ex tra  inform ation which separates an 

expert user from a  novice and  additional details which are not relevant to  perfom ing the task  well.

R eturn ing  to  com puting, Kiczales believes th a t O pen Im plem entations can address the problem  

by providing m ultiple interfaces [64]. O pen Im plem entations is a  proposal for w riting substra te  sys

tem s -  program s used by developers for creating and supporting the execution of client applications. 

P rogram m ing technology and operating system s are examples of su bstra te  systems. Such program s 

have two kinds of interfaces: the meta-level interface is a  side door into substra te  system s th a t is 

used to  ta ilo r the base-level interface to meet the  special needs of clients. T he meta-level interface 

uses m eta-object protocols [65] to  provide th ree kinds of openings:

I n t r o s p e c t io n .  Access to  im plem entation sta te . ■

In v o c a tio n . Access to  in ternal fuctionality.

In te rc e s s io n . Changes to  behaviour or im plem entation stra tegy  to  improve perform ance.

A power user can exploit the m eta-level interface to  modify the system  in powerful yet s truc tu red  

ways. W riting su bstra te  system s as O pen Im plem entations is more expensive initially. The cost is 

recouped th rough reduced extension costs. W hen the  substra te  lacks functionality  needed by its 

user, the  user can use the  m eta-level interface to  extend the substra te .

Clearly, only a small proportion  of program m ing activ ity  is concerned w ith w riting substrates. 

Nevertheless, m eta-object protocols dem onstrate the ir flexibility when coping w ith changing require
m ents and the resulant changes to  systems. In order to  be more adap tab le  to  unantic ipated  changes 

a com ponent needs to  provide facilities for changing from the  inside.

2.3.4 Setting The Research Direction on Reuse

C onstruction of reusable software plays an  im portan t role in the  software reuse spectrum  bu t it is 

not the  whole of the  spectrum . A lot of software is not built for reuse bu t to  address the  functional 
requirem ents.

There are a t least two ways th a t construction of reusable software can be m otivated. The 

first is to develop m arketable com ponents. The incentive comes in th e  form of com ponent trade. 

Building reusable com ponents for m arketing is an established practice in the  software industry. One 

of the  challenges concerns opening up com ponent m arkets to improve availability and drive down 

prices [105]. The second is to  seek im provem ents in software m odularity. Due to  the unanticipated  

n a tu re  of evolution and  reuse, it is often not possible to predict w hat concerns the current project 

will share w ith o ther projects. However, the units of software decom position will be more reusable if 

each m odule addresses one well-defined concern. As a s ta rting  point, the  feature concerns identified 

in the requirem ents specification should be considered for m odularisation.

T his d issertation  focuses on m odularity  for reuse. O bject-orientation  is to d ay ’s dom inant pro

gram m ing paradigm . In the  rest of this C hapter, the  way object-oriented program m ing enables 
software reuse is examined.
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2.4 Reuse in Object-Oriented Programming

W hen object-oriented program m ing (O O P) was introduced, it was m arketed as a  program m ing 

paradigm  th a t facilitates reusability (e.g. [40]). B u t as we have shown, reuse has m any facets and 

two people who have an intuitive understanding of reuse may each have a different intuitive under

standing. Presently, O O P is discussed in the  way it is commonly perceived by m any object-oriented 

program m ers [83]: th rough the languages C + +  [115] and  Java [45]. For reasons of com patibility 

and for non-technical reasons program m ers are often required to use these languages in projects.

2.4.1 Key Aspects of Object-Oriented Programming Languages

A  num ber of factors combine to  m ake object-oriented program m ing am enable to  code reuse:

A b s t r a c t io n .  D a ta  abstraction  encourages the creation of modules which hide the ir im plem entation 

behind an ab strac t interface.

I n h e r i ta n c e .  A  new class can be derived by reusing code from an existing class.

P o ly m o rp h is m . W ith  polym orphism , an object of a  derived class can be used in place of an object 

of the expected class.

A b s t r a c t io n

O bjects can be used to  represent abstractions in the  problem  dom ain and in the  solution dom ain, i.e. 
the  dom ain of im plem entation. To understand  w hat an object does it is not necessary to look inside 
the  object; the behaviour is characterised by w hat is observed a t the  interface. T he d a ta  abstraction  

properties of object-oriented languages are well su ited  for m odelling ab strac t d a ta  types.

T he class is the  m odular design un it in OOP. Its  designer decides w hat is internal and external. 

Visibility modifiers p r i v a t e  and  p u b l ic  determ ine the  services th a t are available to  clients. The 

abstraction  properties support the  construction of black-boxes where the  interface makes available 

those services th a t are required by clients in the  ob jec t’s sphere of application. It is not in the  

interests of the original designer to  an ticipate any additional services to  which a  reuser will require 

access.

T he conceptual separation  of type specification from im plem entations of the  type is opaque in 

C + +  and  Java. A class defines b o th  the type of objects and  their im plem entation; although, Java 

does allow program m ers to  separate  the type from the im plem entations w ith interface constructs. 

M ultiple classes can im plem ent an interface, defining variants, and a  single class can im plem ent 

m ultiple interfaces, in effect perm itting  an  object to  have m any types or views. In order to  be useful 

in reuse the  developer m ust be consistent in separating all classes from interfaces. G ood object- 

oriented practice suggests also th a t one should hide all field variables. Accessor m ethods should 

provide controlled access. These practices improve the  separation of concerns by abstracting  the 

client away from the im plem entation, allowing one to  change the im plem entation w ithout affecting 

the clients. This good advice is not always followed by program m ers probably  because it requires 
ex tra  keystrokes or due to  misplaced concerns for execution speed.

Solutions need not come in the form of a  different program m ing language. Extensive labour- 

saving tool support exists for Java and  C + +  to  discourage bad practice.
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Inheritance

Inheritance is a  relationship  defined between classes. In object-oriented terminology, a  subclass 

extends a superclass inheriting its non-private members, possibly overriding inherited m ethods and 

defining new m em bers. Class members are field variables and m ethods. Reuse w ith inheritance 

comes in two forms: superclass reuse and client reuse.

Superclass reuse is the m ost common form associated w ith inheritance. W hen two classes have 

sim ilar parts, these can be ex tracted  and placed into a  common superclass which bo th  classes 

inherit [61]. A lternatively, one can s ta rt from an existing class or classes (in C-l—1-), inherit and 

m ake the  required modifications. The first form of superclass reuse is more likely to  occur during 

initial developm ent as code gets factored into a common superclass. T he second form is common 

during a posteriori reuse.

Client reuse is the  reuse of code associated w ith clients. W hen inheritance is used to create a 
subtype, all the  code th a t uses the supertype instances can seamlessly m igrate to  using subtype 

instances. T he am ount of code reused th is way is often more significant th an  w ith superclass 
reuse [15].

M ultiple inheritance allows a subclass directly to  inherit m em bers from m ultiple superclasses. 

Languages th a t support m ultiple inheritance of im plem entation, such as C + + , also have a  con

flict resolution m echanism  for disam biguating the order of inherited mem bers when sim ilarly nam ed 

m em bers are inherited  from different superclasses. M ultiple inheritance simplifies reuse because 

it allows one to  create  classes th a t contain com binations of properties inherited from d istinct su

perclasses. On the  o ther hand, it can make the behaviour of objects m ore difficult to  understand  
because it requires com prehension of more branches in the  hierarchy.

P olym orphism

Subtype polym orphism , genericity and m ultiple dispatch are different kinds of polym orphism . C + +  

and Java have subtype polym orphism  in common. O bjects in terac t by sending each o ther messages. 

T he object whose code is executed in response to  a  message is known as the  receiver. In these 

languages, sub type polym orphism  requires a  dynam ic check. W hen a  m ethod is called, the code 

which gets executed is determ ined a t run-tim e based on the type of the receiver.

This polym orphic behaviour is useful when a group of objects have the  sam e general form bu t 

differ in specific details. The client can tre a t related  objects in the  same way bu t the behaviour th a t 

is invoked depends on the  actual type of the  receiver. Polym orphism  reduces initial development 

costs by trea ting  a  set of objects of different types in a generic way; clients can refer to  the subset 

of the interface all objects share. To achieve the  same effect in procedural languages one can define 

m aintenance intensive i f - t f i e n - e l s e  structures.

Genericity is also known as param etric  polym orphism . C + +  supports genericity through tem 

pla te  classes. Tem plate classes are in stan tia ted  by giving concrete classes as special type  param eters. 

G enericity is extrem ely useful where an upfront requirem ent for genericity is identified, e.g. for cre

ating  reusable containers such as L i s t  [X] which can be param eterised by different types X of list 
elements.

M ultiple dispatch  appears in CLOS [63] -  the  object-oriented extension to  the  Lisp language. It 

allows code selection based on the dynam ic type of the  receiver and  param eters. M ultiple dispatch 

can reduce the cost of class reuse in some designs. Consider the  exam ple of two or more modems.



CHAPTER 2. EVOLUTION AND REUSE 19

Modem ml = new X M o d e m O ; // notice that static type is different
Modem m2 = new XModemO; // to dynamic type.
Modem m3 = new YModemO ;
ml.connect(m2); // invokes proprietory
ml.connect(m3); // invokes standard

abstract class Modem {
void connect(Modem m) { .. } // the standard protocol

>
class XModem extends Modem {

void connect(XModem m) { .. } // proprietory protocol
>
class YModem extends Modem {

void connect(YModem m) { .. } // proprietory protocol
>

Figure 2-1; Exam ple dem onstrating  m ultiple dispatch.

Suppose th a t  to  enable faster d a ta  transfer, a  m odem  connects to  ano ther m odem  of the  same make 

using a proprietory  protocol. Two modems of different makes com m unicate using the standard  

protocol. M ultiple dispatch allows us to  define a simple interface th a t is common to  all modems. 

W hen a new m odem model is produced, we create a new subclass of th e  ab strac t m odem  class which 

defines the  proprietory  protocol. T he client code can tre a t all m odem s the  same bu t connection 

invokes the  propretory  protocol when the dynam ic type of the  receiver and param eter are the  same. 

F igure 2-1 shows the  M odem exam ple using Java-like pseudocode. Unlike Java, the  param eter type 
is dynam ic. In the  absence of m ultiple dispatch, th e  effect of co n n e c t ( .  . )  will be to  call the  

s tan d ard  protocol each time.

2.4.2 The Role of Inheritance in Reuse

O bject-oriented program m ing associates reuse w ith classes. A  class is a  versatile reuse un it because 

it spans all levels of abstraction  from basic ab strac t d a ta  types to  large and complex com ponents. 
Inheritance is the  m ain reuse operato r introduced by object-oriented program m ing. Reusers employ 

inheritance to  derive a  new class from existing classes. M aintainers also use inheritance when re

quirem ents change. R eluctance to  modify existing classes for fear of breaking them  leads m aintainers 

to  using inheritance instead. Inheritance acts as version control: the  subclass is a  newer version of 

the  superclass. However, inheritance is also used for conceptual modelling, to  express supertype- 

subtype relationships, and  to  introduce varian t im plem entations of types. Using inheritance for 

reuse w ithout establishing a clear conceptual relationship between the superclass and the  subclass 

leads to  the  the  ball of m ud arch itecture  described earlier. The elim ination of m ultiple inheritance 

of im plem entation from the Java language can be seen as a  way of try ing  to  com bat bad practice.

LaLonde and P ugh [72] discuss th ree d istinct in terp retations of inheritance. Subclassing refers 

to  inheritance of im plem entation. Subtyping perm its an instance of a  subclass to  be used in the 

place of the  superclass. Inheritance between classes is modelled using the ‘is-a’ test. T he problem  

is th a t m ainstream  program m ing languages have few ways of expressing the different relationships. 

Inheritance problem s are a consequence of m isunderstanding the precise na tu re  of the relationship.

P o rte r [101] proposed separating  the subtype hierarchy from inheritance of im plem entation as 

a way of improving the understandability  of object-oriented program s. In the  subtype hierarchy,
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m ethod signatures defined in the supertype can be redefined in the  subtype, bu t no m ethod im

plem entation  overriding takes place. The subtype hierarchy achieves full substitu tability . In the 

im plem entation hierarchy code sharing occurs. An im plem entation class im plem ents zero or more 

types and  can inherit im plem entations from m ultiple classes.

All reuse examples so far have concentrated on reuse of a  single class in creating a new class. 

However, m uch can be gained by subclassing m ultiple abstractions. The absence of m ultiple inher

itance is a  hurdle to  class reuse. The problem is one of using m ultiple inheritance in a structu red  

way in order to  keep program s easy to  understand and facilitate reusability in the future.

G ardner [44] has distinguished between different fundam ental forms of inheritance. She proposes 

five struc tu red  inheritance relationship (SIRs) for object-oriented program m ing. The relationships 

are conceptually orthogonal, all SIRs are necessary to  model the  conceptual relationships th a t occur 

in software system s, and SIRs are sufficient for modelling uses of inheritance described in object- 

oriented literature:

V a r ia n t .  Describes a  relationship where the subclass satisfies the  type specification in the super

class. For example, a  linked list or array  im plem entation of a  stack  type.

V iew . Describes a use of m ultiple inheritance by which an  instance of the  superclass can be viewed 

as a num ber of different types. In this way it is possible to  develop different interfaces to  the 

sam e object which are appropriate  to different kinds of client. For example, view of a  person 

as a studen t, paren t, employee, patien t, etc.

E v o lu tio n . Allows the im plem entation of abstrac tion  to  be built up over tim e due to  changing 

requirem ents. T he evolved abstraction  is not expected to  work in the  original system , although 

the evolved abstraction  may be conform ant w ith the old system . For example, in moving from 

m onochrom e to  colour displays we may inherit class P o in t  to  create C o lo u rP o in t.

C o n s t r u c t io n .  A form of inheritance for reuse which uses an existing class in building another 

class. For example, a  num ber of graphical application windows m ay inherit the  same menu 
abstraction.

S p e c ia l is a t io n . C reates a hierarchy of types where a  subtype is su bstitu tab le  wherever the super

type is expected. For example, C h ild  and A d u lt subtypes of a  Custom er.

O f the  five relationships, specia lisation  is associated w ith the  behavioural notion of subtyp
ing [74] and  variant w ith type conform ant im plem entations. All bu t specia lisation  can be used 

to  establish some kind of code reuse relationship. M ultiple inheritance can be used w ith m ost SIRs 

to  create new abstractions. The atom ic natures of each SIR ensures th a t  the  relationship w ith the 

inherited abstractions is conceptually sound and  explicit in the  design. For example, variant and 

view  SIRs can be used together, e.g. an object of the  2DPoint class can be viewed as a IPair. 
Im plem entation class IP air is a  variant of type TPair. In another example, construction  can be 

used m ultiple times, e.g. to  add the  behaviour of S cro llb ar and T itleB ar abstractions to  a Window 
abstraction . G ardner dem onstrates th a t m ultiple inheritance is conceptually valid and th a t it has a  

role in m odelling and reuse.

In object-oriented program m ing languages, visibility modifiers p u b l ic  and  p r i v a t e  delineate 

the  interface from the im plem entation and  pro tect secure d a ta  from direct access. Class m embers 

m arked p r o te c te d  are accessible w ithin subclassess bu t no t to  external clients. In Java, the  modifier
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f i n a l  signifies th a t the  subclasses should not redefine th a t member, f i n a l  also facilitates compiler 

optim isation. These modifiers fundam entally affect the reusability of a  class by specifying valid 

extension points. Reuse is a  problem  where the required extension point is no t visible to  the  subclass 

due to  the  presence of certain  modifiers.

O bject-oriented program m ing perm its black-box reuse of classes using delegation and inheritance. 

W ith  delegation, instances of existing classes are used to build new abstractions. Program m ers may 

prefer to  use inheritance over delegation due to  the  advantages associated w ith client reuse. W hen 

th e  subclass is not a  behavioural subtype of the  reused abstraction  the  reuser m ust ensure th a t 

the  new abstrac tion  will be conform ant w ith all existing clients. W ith  delegation, the  clients m ust 

always co-evolve w hether the  new abstraction  is conform ant or not. Inheritance is often preferred to  

delegation when the  derived abstraction  has a sim ilar interface and  shares aspects of im plem entation 

w ith the reused class. Using inheritance to do program m ing-by-difference the reuser only specifies 

the  way in which the new class differs from its superclass(es).

2.4.3 Reuse Artifacts Not Associated with a Class

Reuse problem s also occur when the concern is no t cap tured  by a single class. E ither a  single 

class addresses m ultiple concerns or there  are m any classes th a t jo in tly  contribu te to  a concern. 

Respectively, these are problem s of tangling and  scattering. Discussion of such reuse artifacts forms 

p a rt of C hap ter 3 (page 22) on Advanced Separation  of Concerns.

In sum m ary, reuse in object-oriented program m ing languages requires a  degree of preplanning. 

Concerns th a t were not m odularised by a class originally are difficult to  reuse. Non-invasive evolution 

of classes is no t always possible because the variance points are hidden w ithin and  are not p a rt of 
the  ob jec t’s externally  specified behaviour.

2.5 Conclusion

This C hap ter discussed the  challenges associated w ith software evolution and reuse. B etter separa
tion  of concerns is a way to  improve the reusability of software in projects where reusability is not 

a  prim ary concern. M odularisation in design of concerns derived from the  problem  dom ain has the 

po ten tial to  benefit bo th  the original developer and the  reuser. The original developer benefits from 

parallel m odular developm ent of concerns. Reusers who share goals w ith those addressed by existing 

projects can reuse artifacts from those systems. Due to  traceability  of requirem ents in design, the 

reuser is b e tte r able to  identify and ex tract the  code associated w ith the  reuse artifact.

O bject-oriented program m ing emphasises the  reuse of classes. P rep lanned  reuse is supported  

th rough a  com bination of inheritance and delegation, bu t reuse of software where reusability was 

no t a  concern a priori often requires access to  extension points th a t are hidden inside the  class. 

In moving beyond m ainstream  object-oriented languages, the  next C hap ter looks a t extensions to  

m ainstream  languages and other program m ing technologies which

•  m odularise concerns th a t are not easily represented by classes, and

•  facilitate reuse of software in ways not an tic ipated  by its original developers.



Chapter 3

Advanced Separation of Concerns

M odularity  is key to  m aking reuse possible. The previous C hap ter reviewed object-oriented  pro

gram m ing as perceived by developers of m ainstream  languages. Today, thanks to  object-oriented  

program m ing, the  reuse of abstractions represented by classes is a  reality. However, problem s rem ain 

when a  class cannot be extended due to  the  absence of suitable extension points. Reuse of concerns 

th a t are no t m odularised by a single class requires a degree of advance planning. For instance, m any 

concerns in the problem  dom ain and certain  concerns in the  solution dom ains, such as persistence, 

synchronisation and distribu tion  are not m odular in object-oriented program s. M odularity  of these 

concerns is achieved through advanced separation  of concerns.
The aim  of this C hapter is to  review the s ta te  of a rt and understand  the  challenges involved 

in advanced separation of concerns. O ur view on m odularity  coincides w ith th a t taken  by T arr 
e t al [122], These researchers propose M ulti-D im ensional Separation of Concerns (M DSOC) as a 

new program m ing paradigm  for improving the  m odularity  of concerns th a t developers identify as 

im portan t. Section 3.1 presents MDSOC and  describes the  m otivational factors for changing the 

way software is developed.

M any concerns in the  problem  dom ain are no t cap tured  by a  single class bu t associated w ith 

collaborating suites of classes. These collaborations are m odular in design languages such as UML 

in the  form of sequence and collaboration diagram s. M DSOC technologies for m aking collaboration 

m odular in code are reviewed in Section 3.2.

A spect-O riented Program m ing (AOP) addresses certain  goals of M DSOC by m odularising per

sistence, synchronisation and distribution  concerns, as well as m any o ther concerns th a t  cu t across 

application functionality. M echanisms for m odularisation of solution dom ain concerns th a t  have 

proven difficult to  m odularise in object-oriented program s are reviewed in Section 3.3.

Subject-O riented Program m ing (SOP) is an  instance of M DSOC th a t can m odularise collabora

tions and m any solution dom ain concerns. Section 3.4 justifies the  selection of SOP as the  vehicle 

for supporting  reuse.

3.1 M ulti-Dim ensional Separation of Concerns

M DSOC is a  new paradigm  for modelling and im plem enting software artifacts [122]. It proposes 

the  separation  of overlapping concerns along m ultiple dimensions of com position and decom position. 

A concern is any m atte r of interest in a  software system . Dimensions group concerns; they  are a

22
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Figure 3-1: Scattering and tangling in SEE

perspective on to the system. MDSOC improves reusability by modularising all pertinent concerns 
a t the same tim e -  concerns from the problem  domain, those emerging as part of the design, during 
initial software development, and in m aintenance.

The problems of degrading software comprehensibility, common m aintenance tasks leading to 
high-impact invasive changes and limited reusability are caused, in large part, by our inability to keep 
separate all concerns of im portance in software systems. All formalisms support the decomposition 
of problems into subproblems to  some extent, but provide a restricted set of decomposition and 
composition mechanisms. These mechanisms support a single dom inant dimension of separation, 
ignoring all other possible dimensions. Tarr et al have term ed this phenomenon the ‘tyranny of the 
dom inant decomposition’. In order to break the tyranny, the MDSOC proposal requires technology 
to support simultaneous separation of m ultiple concerns in multiple dimensions.

W hat follows is a sum m ary of the problems identified by Tarr et al th a t m otivate the introduction 
of the MDSOC model; a review of the m ain concepts of the MDSOC model th a t help to explain the 

way systems should be modelled; and a a critique MDSOC based on our reuse position.

3.1.1 M otivation for MDSOC

To illustrate the problems in software development Tarr et al [122] develop the Software Engineering 
Environment application. The application supports the specification of algebraic expressions with 

a collection of tools th a t m anipulate the shared abstract syntax tree representation. The initial 
tool set includes an evaluation capability to  determ ine the result of evaluating an expression, a 
display capability, and a check capability which determines both semantic and syntactic correctness
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of expressions.

T he UML design for the  application (shown in Figure 3-1) contains a class for each kind of 

E x p re s s io n  in the ab strac t syntax  tree. Each class defines the e v a lO ,  d i s p l a y () and  ch eck O  

operations which realise the  tools in the stan d ard  object-oriented fashion. The code has a  simi

lar s tru c tu re  to  the design. This exam ple illustra tes an im portan t issue in software development: 

the  system  is decomposed differently when viewed from the perspectives of requirem ents and  de

sign/code. Requirem ents are decomposed by tool or feature, and design/code is decom posed by 

class. This phenom enon leads to  the problem s of scattering and tangling:

S c a t te r in g .  A  single requirem ent affects m ultiple design and code units.

T a n g lin g . M ultiple requirem ents are im plem ented w ithin a  single module.

Each of e v a lO ,  d i s p l a y () and  ch eck O  is scattered  across the  class hierarchy w ith m any classes 

contributing to  the realisation of each concern. The im plem entation of each class tangles th e  feature 

concerns.
Having used the  application, clients request functionality for optionally m aking expressions per

sistent. T he clients also require different kinds of style checking functionality, and it should be 

possible to  mix and m atch syntactic, sem antic and  different kinds of style checker.

These seemingly simple additions (from the  perspective of the  client) significantly im pact the 

design and code; scattering  and tangling pose a  problem  to  the evolution of the Software Engineering 

Environm ent. Persistence requires m odifications to  the  accessor m ethods of each class to  retrieve 

persistent objects and save modified s ta te  to  th e  database. It is possible to use inheritance to  add 

persistence functionality bu t all clients m ust be evolved to  create instances of the  new abstractions. 
M oreover, the  persistence requirem ent is affected by the selection of checkers; the  style checkers 

m ust include their persistent s ta te  together w ith expressions. M ix-and-m atch of checkers requires 

in frastructu re  support th a t was no t necessary originally. T he V isitor design p a tte rn  introduces the 

flexibility a t the  cost of higher coupling between the AST classes and  the  visitor classes [43]. The 

V isitor p a tte rn  is useful when m any distinct operations need to  be perform ed on objects in an 

object structu re . T he introduction  of the V isitor p a tte rn  m ay im pact fu ture  extensions if new kinds 

of E x p re s s io n  need to  be defined. The changes are invasive because un its of change do not m atch 

the  units of abstraction  w ithin the  design/code. Subclassing and  design p a tte rn s  require particu lar 

changes to  be anticipated, bu t anticipating fu ture  change is no t in the  requirem ents of m any projects.

Different artifacts associated w ith software creation have varying levels of abstraction . T hey are 

decomposed and structu red  differently because of em phasis on different kinds of concerns. Scattering  

and  tangling of requirem ents occur because th e  concerns of im portance in the  requirem ents do not 

m ap cleanly to  design and code units. Hence, w hen changes to  requirem ents happen, p ropagation  

takes a  great deal of effort.

T he cause of the problem  is the  ‘ty ranny  of the dom inant decom position’. Today’s formalisms 

support a  small set of decom positions and usually have a single ‘dom inan t’ one a t a  tim e. The 

dom inant decom position satisfies some im po rtan t needs bu t usually a t the  expense of others. For 

example, in the  original object-oriented solution to  the  Software Engineering Environm ent, decom

position based on d a ta  encapsulation concerns reduces the traceability  of feature concerns which are 

equally im portan t. Solving the problem  involves breaking the ty ranny  by m odularising sim ultane

ously all concerns identified as im portan t. T he dimensions of concerns identified as im portan t to  

the Software Engineering Environm ent include:
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Figure 3-2: The Check Feature as a hyperslice

F e a tu re . These include display, evaluate, persistence, syntactic check, style check, semantic check. 

U n it  o f  c h an g e . Additions made due to user requests.

C u s to m is a tio n . Additions or changes needed to  specialise the component to a particular purpose.

O b je c t .  The classes involved in the system.

There are many other dimensions of concerns which may be applicable, such as to separate 
‘optional’ from ‘required’ pieces, or to customise the application to different kinds of user, etc. The 
dimensions are rarely orthogonal, they overlap and can affect one another. A flexible solution to 
modularisation must allow the pertinent dimensions to apply a t the same time and handle overlap 
and interaction between them.

3.1.2 The MDSOC Model

The MDSOC model is intended to capture all concerns and all dimensions of concerns in a software 
intensive project. It introduces hyperslices as an additional flexible means of software decomposition. 
Hyperslices are intended to  modularise concerns in dimensions other than  the dom inant one. Hyper
slices are implemented using a set of convensional modules and units, w ritten in any formalism. For 
instance, Figure 3-2 shows hyperslices applied to UML class diagrams. The modules are classes and 
a hyperslice is a collection of classes. A ttributes and operations are the units in the hyperslice. A 
collection of units corresponds to a module, e.g. a  class or an interface. To understand the hyperslice 
it should not be necessary to  look inside its units. The hyperslice contains exactly those modules 
and units th a t are required to  address the concern.
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Figure 3-3: The hypermodules created by composition

Hyperslices are expected to  overlap such th a t the modules and units in one occur, possibly in 
a different form, in other hyperslices. A  system  is w ritten as a collection of hyperslices, reflecting 
the concerns in the system th a t have been identified as im portant along as many dimensions as 
necessary. Systems are created by composing hyperslices on the basis of composition rules. A  set 

of input hyperslices and a composition rule together are called a hypermodule. A  new hyperslice is 
created by applying a composition rule to  input hyperslices, so a hypermodule can be used whenever 
a hyperslice is expected. The complete runnable system artifact, e.g. a component or a subsystem 
represented as a class diagram, can be modelled as a hypermodule.

Composition is established by a process known as matching -  identifying elements which de
scribe the same concept in different hyperslices. The differences between corresponding elements are 
resolved before integration of elements produces a unified whole. The specification of composition 
is part of the design process and cannot be autom ated. Figure 3-3 shows the m atching process and 
generation of a hypermodule in SEE.

Application of the MDSOC model to  the Software Engineering Environm ent example leads to 
the separation of m ajor concerns of im portance identified during requirements analysis. Hyperslices 

can modularise the ‘kernel’ functionality which contains the sta te  and accessor methods, and each of 
the display, evaluation and checking features. Checking is itself a hypermodule made up of hyperslices 

specifying the different kinds of checks present in the system. W ith MDSOC instantiated on UML 
class diagrams, each hyperslice contains the design for one concern. Hyperslices modularise the 
features, and within each hyperslice the object concerns are separated in the class diagram. If 
these modules can be kept separate in code then separation of feature concerns can persist over the
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lifecycle.

M odularisation of features also solves the problem  of scattering and tangling: all elements per

ta in ing  to  a  concern are specified w ithin its hyperslice. The AST concept -  the  m ost general concern 

in the  application -  is m odularised by the k e r n e l  hyperslice. I t has been separated  from its context 

and can be reused in o ther applications. O ther concerns, such as ch eck in g , although more specific, 

can still be reused in o ther contexts if the situation  arises.

The final application is created  on the basis of the  com position rule. By including or excluding 

hyperslices it is possible to  mix and m atch features. W hen requirem ents change, such as the addition 

of persistence described earlier, a  new concern is introduced along two dimensions. Persistence is 

a  feature and also represents a  un it of change. It can be modelled as a  separate  hyperslice and 

composed w ith o ther hyperslices.

The M DSOC model is not a  panacea for bad design. It is possible to  over or underseparate 

concerns. O verseparation leads to  a large num ber of hypersices w ith complex inter-slice relationships 

th a t  m ay actually  reduce com prehension and increase complexity.

3.1.3 MDSOC and The Position on Reuse

Technology im plem enting the  M DSOC model can facilitate reuse by im proving the m odularity  of 

concerns th a t are presently tangled and  scattered  in designs in code. Therefore, this technology is 

going to  be a ttrac tive  to  practitioners who wish to  create well struc tu red  systems. However, a t least 

two aspects of M DSOC m ay d etrac t practitioners:

•  The M DSOC model introduces a  lot of duplication. If each hyperslice defines the functionality 

it requires, the sam e behaviours may be defined m ultiple times. By contrast, m odern pro
gram m ing trends have tended to  minimise duplication. P ragm atic  M DSOC technology m ust 

endeavour to  avoid duplication during hyperslice design and coding stages; although, as in 

m ultiple inheritance, duplication during reuse should be expected.

•  T he M DSOC model improves m odularity  bu t does no t improve encapsulation. A class is both  
a m odular artifact and a un it of encapsulation; however, a  hyperm odule does no t provide any 

additional encapsulation. Composing hyperslices to  form a hyperm odule reduces duplication 

by in tegrating m atching modules and units, b u t a hyperm odule does not hide any more im

plem entation details th an  the hyperslices from which it is created. Recall th a t  a  hyperslice 

consists of m odules and units. Only the  units of a hyperslice are m odular artifacts in the  
trad itional sense as defined in Section 2.2.1 on page 9.

T he absence of additional m eans of inform ation hiding can im pact hyperm odule reusability. Un

derstanding  the im pact of adding further hyperslices is no easier w ith hyperm odules th an  w ith the 

hyperslices from which a hyperm odule is composed.

M DSOC perm its decom position of system s along m any dimensions. For example, requirem ents, 

design and  code hyperslices pertain ing to  the developm ent of the  ‘expression’ concept in the ‘kernel’ 

concern of the Software Engineering Environm ent can be a hyperm odule. This decom position helps 

to  trace  the  development of the  ‘kernel’ th rough the lifecycle. This and  o ther decom positions may be 

useful during reuse or m aintenance bu t w hat decom positions have value to  the  original developer? 

In order to  change the way practitioners develop software, it is im portan t to  m otivate new kinds of 

decom positions. We believe th a t there are two dimensions of concerns th a t have value to  the  original 
developer:
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•  Concerns in the  feature dimension. M odularisation of a  system  along feature concerns may 

enable concurrent developm ent of features by team s. Feature m odularisation facilitates re

quirem ent traceability  and may reduce the duration  of developm ent cycles as team s work in 

parallel on realising each feature.

•  C ross-cutting concerns in the  solution domain. C ross-cutting concerns th a t are scattered  and 

tangled  in the  dom inant dimension have become popularly known as aspects. In addition to  the 

usual benefits associated w ith improved m odularity, m odularisation of aspects often reduces 

the am ount of code overall [66].

In any large project there  are concerns which arise in the solution dom ain. These concerns are 

defined by the  solution techniques. Aksit et al [4] em phasise the  im portance of solution dom ain 

over problem  dom ain concerns. They argue th a t the  problem  dom ain concerns do no t include the 

necessary concerns for im plem enting the  software system  because m any im portan t concerns are 

tran sp aren t to  the user. To illustrate  the  point an exam ple of sharing com ponents in a network is 

presented. The subconcerns of consistency m anagem ent and perform ance optim isation emerge as 
p a rt of the  solution dom ain. These are not explicitly included in the  requirem ents specification bu t 

should be trea ted  as aspects of the system.

An alternative view is presented by Jacobson [60] who argues th a t system s should be sliced use 

case by use case. Use cases have been widely adopted  for requirem ents specification. They are a core 

p a rt of the  Unified Process -  a  way of constructing  software w ith UML. In order for a  feature-based 

decom position to  be a ttrac tiv e  in projects where feature m odularity  is no t an a priori requirem ent, 

the to ta l cost of development, including hyperslice com position, should be com parable to  the  cost 

of conventional software development. In o ther words, the  benefits to  the  original developer should 
help outweigh the initial investm ent.

In order to  make it easier to  concentrate on the  problem  dom ain concerns, it has been proposed to  
m ake feature concerns oblivious to  aspects, i.e. system  level concerns [38]. For instance, it should be 

possible to  specify the features of the  application w ithout m aking provisions for security. T he security 

policy is applied separately. T he features neither need to  declare the  secure artifacts nor make special 
provision for security to  be applied. Obliviousness makes it possible to  m ake functional changes to  the  

application w ithout concern for particu lar aspects; the  aspects can easily adap t to  changes in feature 

code. Obliviousness is not an intrinsic property  of M DSOC bu t program s created  using MDSOC 

technology can be designed to  support obliviousness w ith respect to  certain  concerns. Most Java 

program m ers are oblivious to  details of m em ory deallocation thanks to  garbage collection. Also, 

in com ponent developm ent w ith JavaB eans aspects of bean deploym ent are separated  from bean 

functionality. T he design of beans is oblivious to  the  deploym ent strategy. Essential to  obliviousness 

in M DSOC are powerful m eans of connecting hyperslices.

In the  following two Sections we review the  technology for m odularisation of collaborations and 

aspects. T here is a  degree of overlap: a  num ber of proposals are well su ited  to  m odularisation of 

bo th  collaborations and aspects. Subject-O riented Program m ing [49] and  O bject Teams [54] are 

two such models. The presentation of these proposals is split over the  two Sections.
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3.2 Technology for M odularisation of Collaborations

M any functional concerns are associated w ith collections of classes ra th e r th an  w ith a single class. 

A t runtim e, objects of the types derived from these classes collaborate on a task  defined by the 

concern. A way to  achieve the  reusability  of object collaborations is w ith a  straightforw ard m apping 

from design level concepts into d istinct im plem entation elements [111].

In the  present Section, the  recent work related  to  the  m odularisation  of collaborations is pre

sented. The presentation  s ta rts  w ith  a ttem p ts  to  extend object-oriented program m ing w ith support 

for collaborations, and leads to  a lternative software development models th a t  also enable related 

classes to  be m odularised.

3.2.1 Collaborations in Object-Oriented Programming

Contracts is the  nam e given to  a technique for formally specifying behavioural com positions [53, 58]. 

A contract defines a  set of com m unicating participants and the ir contractual obligations. Partic i

pan ts are m utually  recursive: they  refer to  each o ther and send each o ther messages. C ontractual 

obligations consist of:

T y p e  o b lig a tio n s .  T he partic ipan t m ust support certain  variables and  an external interface.

C a u s a l  o b lig a tio n s .  The p a rtic ipan t m ust perform  an ordered sequence of actions and make cer
ta in  conditions tru e  in response to  messages sent to  the  external interface. Causal obligations 

cap tu re  the behavioural dependencies between objects.

Each contract also defines invariants th a t partic ipan ts cooperate to  m aintain  and actions which 
should be taken to  resatisfy the  invariant. In order to  in itia te  a  contract, th e  s ta te  of all participants 

m ust be set up in line w ith the  invariants.

This formalism has constructs for the  refinem ent and inclusion  of behaviour defined in existing 

contracts. Refinement allows for the  specialisation of contractual obligations and invariants. The 

obligations of m ultiple partic ipan ts are specialised in concert. Inclusion allows contracts to  be 

composed from simpler contracts. A subcontract relates a  subset of the  partic ipan ts of the  contracts 

which include it.

C ontracts are specified in a high-level language th a t allows ab strac t description of behaviour and 

realised using conformance declarations. In a conformance declaration, classes m ap to  partic ipan t 

specifications, i.e. the  program  m ust be shown to  satisfy the specification. A class conforms when its 

m ethods and instance variables satisfy the typing and causal obligations required by the partic ipant 

definition. The im plem entation of a  partic ipan t can be d istribu ted  am ong a  num ber of classes related 

by inheritance, and a  class can im plem ent the  con tractual obligations of a  num ber of participants. 

For example, code common to  a num ber of contracts may be ex tracted  into an  abstrac t superclass.

C ontracts make explicit those interactions which in object-oriented program m ing are hidden 

inside constructors or implicit in sequences of m ethod calls. T hey are intended to be im plemented 

directly in an  object-oriented language. A lthough m odularity  of collaborations is achieved a t the 

design level, the  separation of concerns is not p ropagated  into code, thereby losing the  traceability  

between design and code.
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T em plate-B ased  Im plem entations o f C ollaborations

An im plem entation of collaborations based on tem plate  classes in C + +  is proposed by VanHilst 

and N otkin [125, 126]. Each object in a  collaboration is said to play roles in collaborations w ith 

o ther objects [12]. Tem plate classes can be used to  im plem ent roles. Role partic ipan ts are passed 

as param eters to  the tem plates. A tem plate  param eterises all partic ipan ts to  which it m ust refer, 

including self. For example, the fa th er’s role in a two parent household m ight be defined in p a rt as:

template <class ChildType, class MotherType, class SuperType> 
class FatherRoIe : public SuperType {

ChildType *child;
MotherType *mother;

>;

In this collaboration, the  C hildT ype and M otherType param eters are the  collaborators w ith this 

F a th e rR o Ie . Tem plate param eters indicate th a t, as yet, they  are of unknown type. The SuperType 

role is used in every definition, since every role is p a rt of some unknown class. Tem plates are instan

tia ted  by specifying classes for each tem plate  param eter. For example, suppose th a t C h ild C la ss  
and M o th erC lass  play the  child and m other roles in the  above collaboration, H usbandC lass plays 

the  self role, T hen an  instan tia tion  of the  F a th e rR o Ie  appears as:

class FatherCIass : public FatherRoIe<ChiIdCIass, MotherClass, HusbandCIass> {};

Roles from different collaborations can be composed in this model. I t is possible to  compose roles 
from different bu t related collaborations and from repeated  uses of the  same collaboration. New 

roles are created  by passing tem plate  classes as param eters to  o ther tem plates. Sm aragdakis and 
B atory  la ter propose an im provem ent to  tem plate-based im plem entations of collaborations entitled 

Mixin Layers [112]. M ixin Layers address certain  scalability issues by defining roles as nested or 

inner classes of an outer class th a t denotes the  entire collaboration. A C + +  im plem entation of a 

two paren t household is given below:

template <class CoIIabSuper>
class TwoParentFamily : public CoIIabSuper {
public:

class MotherRoIe : public CoIIabSuper::MotherRoIe { ...
class FatherRoIe : public CoIIabSuper::FatherRoIe { ...
class ChildRoIe : public CoIIabSuper::ChildRoIe { ... };

>;

T he tem plate-based approach makes it possible to  im plem ent m any collaborations m odularly in 

code, addressing the traceability  problem  associated w ith contracts.

T he roles of a  collaboration can be reused in the  creation of new roles using inheritance, bu t 

in m any collaboration specialisation scenarios a  set of role classes m ust evolve a t the  sam e time. 

The set of evolved classes partic ipating  in the collaboration m ust be used together. A lthough code 

is shared w ith the  super-roles, the roles are not type substitu tab le  for the ir superclasses. N either 

subtype polym orphism  nor m ultiple dispatch can provide the s ta tic  safety guarantees which ensure

th a t only objects of the sam e collaboration partic ipate . To address this problem , E rn st has proposed
family polym orphism  [34].
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Fam ily P olym orphism

The classes of objects partic ipating  in a collaboration, i.e. roles, form a family. Family polym orphism  

allows to  statically  declare and m anage the relations between several classes polymorphically, in such 

a way th a t  a  given set of classes is known to  constitu te  a  family bu t it is not known statically  exactly 

w hat classes they  are.

In a system  containing m ore than  one varian t of a  class family, in order to  avoid mixing families 

inappropriately  it is necessary to  m aintain  consistency in the usage of family members. Family 

polym orphism  is a  m echanism  th a t helps to  resolve this problem , statically  ensuring th a t the roles 

of any set of families are never mixed. Besides supporting collaboration refinem ent, family polym or

phism  also confines role objects to their family, thereby encapsulating role objects in collaborations. 

The O bject Teams approach to  making collaborations m odular uses the encapsulation properties of 

family polym orphism  to  create reusable collaborations.

3.2.2 Object Teams

T he O bject Teams [54] proposal introduces a new kind of module, a  team , for m odularising object 

collaborations. A  team  is an instantiable aggregation of confined objects called roles. It contains a 
collection of classes th a t define the roles and a set of operations and variables defined a t team-level. 

Teams support th ree kinds of inheritance-style relationship:

•  Explicit inheritance  between team s is used to  create specialised team s as well as to  reuse code 

specified in the  superteam . For example, imagine an application th a t allows a  passenger to  

collect bonuses w ith every flight. A  Bonus team , as an ab strac t collaboration between the  
scheme S u b s c r ib e r  and  a  Bonus Item , m ay be extended to  create a  F lig litB o n u s  team . The 

F lig litB o n u s  refines Bonus by redefining th e  function c a l c u l a t e C r e d i t  ()  to  re tu rn  a rounded 

value. Explicit inheritance links F lig litB o n u s  to  Bonus.

•  Inheritance between roles is called im plicit inheritance. By redefining a role class in a subteam  

we im plicitly gain access to  the mem bers of th a t role in the  superteam . T he c a lc u l a t e C r e d i t  () 

operation  is overridden due to implicit inheritance between B onusltem  in team  F lig litB o n u s 

and the sam e role class in team  Bonus.

•  Team com position is achieved with object-based inheritance (which is in fact delegation). This 

establishes a relationship between a role in a  team  and some base class, i.e. the  class begins 

to  play a role. For example, suppose we w ant to  apply the F lig litB o n u s  team  to  a particu lar 

application involving air miles. Class Segment defines the  a ttr ib u te  which specifies the  segment 

length. In order to  c a l c u l a t e C r e d i t ( ) ,  we require access to  the  air miles travelled. This is 
formalised in code by declaring:

class Bonusltem playedBy Segment

O bject Teams supports the  encapsulation of team  representation. Usually, a role instance is 

confined to  its enclosing team , however, a  role can be exposed bu t only if th e  team  reference is 

declared f i n a l ,  i.e. im m utable. The modifier ensures th a t no o ther team  is assigned to  this variable 

while the  role is exposed. T he exposed roles cannot be passed to  a different team  from the  one in 
which they  originate.



CHAPTER 3. ADVANCED SEPARATION OF CONCERNS 32

3.2.3 GenVoca

GenVoca is a  com ponent model for constructing hierarchical software system s [10]. It provides direct 

language support for a design model th a t supports com ponent com position. T he fam iliar notions of 

abstraction , encapsulation and param eterisation are extended to  include the new kind of GenVoca 

com ponent which has the following properties:

A b s t r a c t io n .  Support for standardised interfaces in the  form of the  realm  construct. S tandardis

ation  leads to functionally similar, interchangeable and in teroperable com ponents.

E n c a p s u la t io n . Large-scale construction is supported  th rough  the  component construct. Com po

nents can encapsulate collaborations of m ultiple classes.

P a r a m e te r i s a t io n .  C ustom isation and com position of com ponents is supported  w ith param eter

isation. In particu lar, realm  param eters can be passed to  com ponents to  create layered or 

hierarchical com positions of com ponents.

A  set of function and class declarations defines the  realm . To im plem ent a  realm  it is necessary 

to  specify im plem entations for all classes and functions defined in the realm . It is also possible to  

introduce to ta lly  new classes and m embers in the  im plem entation.

Instead  of using inheritance, GenVoca employs param eterisation  to  create connections between 

com ponents. Any com ponent which is in stan tia ted  w ith a realm  param eter im plem ents a  new layer. 
A  layer is the term  used to  describe a  com ponent built by reusing another com ponent. T he new layer 

can extend the realm  p aram eter’s interface to  create new classes. T he result is a  new com ponent 

which im plem ents new functionality on top  of th e  com ponent it extends.
GenVoca is im plem ented in the  P+-1- language which is an extension to  C + + . T he language 

hides a tem plate-based im plem entation, sim ilar to  the  one described in the  previous Section. Similar 

to  Mixin Layers and O bject Teams, GenVoca adds a  concept of a  higher-level module.
GenVoca emphasises construction of reusable com ponents w ith a strong em phasis on valid com

binations of features im plem ented by com ponents. M ore recently B ato ry  et al propose to scale 
step-wise refinement to  hyperslice level [8, 9]. Step-wise refinement asserts th a t complex program s 

can be derived by progressively adding features. By considering the  com binations of orthogonal,
i.e. non-overlapping features, B atory  et al show th a t valid com binations can be specified relatively 

concisely. In a  model th a t can be decomposed along n  dimensions of concerns w ith k  features along 

each dimension, there  could be as m any as 0 ( k n ) feature com binations to  consider. However, based 

on the results achieved by B atory  and his colleagues, specifications of length O(kn)  can be produced. 

The shorter specifications enable the  program m er faster to  convince him self of the  correctness of his 

program  for all com binations of its features.

3.2.4 Subject-Oriented Programming

Subject-O riented Program m ing (SOP) [49] is a  program m ing paradigm  th a t  can m odularise feature 

concerns. In SOP, the subject is the  artifac t playing the role of the  hyperslice. A  subject models 

its dom ain from its own particu lar perspective and  is im plem ented using classes, instance variables 

and operations in a standard , object-oriented way. It is a  subprogram  th a t addresses a concern from 

the  problem  dom ain or the  solution dom ain. Subjects facilitate a  clean separation of concerns by 
defining only those elements which contribute to  addressing the concern.
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H arrison and Ossher [49] observed th a t O O P is well suited for building independent applications 

bu t less well suited for building in tegrated  suites or families of applications. The trad itional view 

of O O P is of a  model for representing abstractions in the real world. The complexities of object 

im plem entations are hidden behind a  com pact, ab strac t interface. However, real world abstractions 

have a m ultitude of requirem ents and  constraints. For instance, a  car abstraction  can be viewed 

from the perspectives of the driver, salesm an or mechanic. Each dom ain has its own vital properties 

of the  car and has particu lar dem ands on behaviour which can affect those properties. T he driver 

may classify cars based on size, economy, reliability and is concerned prim arily  w ith the behaviour 

of driving. T he salesm an m ay classify cars based on model designation; the choice of cars to  buy and 

sell depends on the dem and for a particu lar model, the wholesale and  reta il prices. The mechanic 

classifies cars based on parts  and  tool availability. European models have attachm ents m easured in 

m etric un its while A m erican cars use im perial measures. In the  trad itiona l object-oriented view of 

the  world, when requirem ents arise, all these views m ust be accom m odated by th e  interface. As 

software evolves, more requirem ents get introduced, bloating the interface further and leading to  the  

scattering  and tangling problem s discussed in th e  m otivation for M DSOC in Section 3.1 on page 22.

T he SO P solution facilitates independent developm ent of cooperating applications as subjects. 

C ooperation is achieved by sharing objects and  join tly  contributing  to  th e  execution of operations. 

In  the  above example, the  dom ains of driving, car sales and mechanic responsibilities can be trea ted  

as separate  subjects which can be im plem ented independently and  subsequently composed to  satisfy 
application goals. T he aims of SO P are:

•  T reating each subject as an application: there  should be no explicit dependence in code on 
o ther applications.

•  T he composed applications m ay cooperate loosely or closely.

•  It should be possible to  add new applications th a t serve to  extend existing applications in 

unantic ipated  ways.

•  Each application should m ain tain  the advantages of inheritance, polym orphism  and encapsu
lation.

SO P conforms well to  the M DSOC model described earlier. Subjects can im plem ent features 
and concerns emerging in the solution domain. Com position of subjects takes place after all points 

of interaction  between subjects have been agreed. Subjects can be im plem ented independently or 

reused if a  suitable subject exists already.

T he sim ilarity between SO P and M DSOC is not surprising given th a t M DSOC generalises m any 

of the ideas first presented as p a rt of SOP. T he program m ing language H y p e r/J  [121] im plem ents 

all SO P concepts. O ur description of SOP sem antics is based on the  specification of H y p er/J .

Subject D esign

W ithin a single subject, design is a  purely object-oriented activity. In the  H y p e r/J  language, each 

subject is program m ed as a Java package. Com position is perform ed on compiled subjects, i.e. on 

the  Java V irtual M achine bytecodes. Therefore, each subject m ust compile correctly before it can 

be composed and the classes of each subject m ust be valid Java classes. For example, it is common 

for a  problem  decomposed by feature to share a  ‘kernel’ concern which defines operations used in
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the  im plem entation of o ther features. The o ther subjects can either define a  m ethod w ith an  em pty  

im plem entation or declare the  shared m ethod a b s t r a c t .  N either solution is ideal. In the  first, a  

non -vo id  m ethod m ust re tu rn  a value. As no im plem entation is defined, the subject au tho r m ust 

specify an a rb itra ry  value to  return . In the  second, if a  m ethod is a b s t r a c t  then  the Java  class 

which declares it m ust also be abstract. In Java, an ab strac t class has no direct instances, m aking 

this solution unsuitable in those cases where the  subject needs to  in stan tia te  th a t  class.

As an object-oriented artifact, a  subject has a functional interface defined by one or m ore of its 

classes. As a subject-oriented  artifact, it also has a com positional interface. The behaviour of a  

subject can be invoked using either or bo th  interfaces. W hen the  subject im plem ents a  feature it 

often has a  functional interface th a t is invoked by external clients th rough m ethod dispatch. Subjects 

m ay also im plem ent concerns which are no t invoked as a result of a  m ethod call bu t in conjunction 

w ith control flow related  events in o ther subjects, e.g. when an operation is called w ithin ano ther 

subject. For instance, consider a C aching subject th a t can be applied to  a subject im plem enting 

an a rb itra ry  d a ta  struc tu re . Saved values are sto red  in the cache before being stored in the  d a ta  

struc tu re , and retrieved values are first looked up in the  cache. T he caching behaviour is invoked 
when values are stored and retrieved  from a d a ta  structure . The C aching  subject is activated  v ia the  

com positional interface. T he subjects to which caching applies are affected a t their com positional 
interface.

T he com positional interface is wider th an  th e  trad itional functional interface. The points in code 

where elem ents are stored and retrieved from a  d a ta  stru c tu re  need not be p a rt of the  functional 

interface. The com positional interface is essential to  cleanly separate  concerns, and it helps to  add  
new concerns w ithout modifying existing code.

Subject C om position

Com position forms a single program  which is a  synthesis of the  input subjects. It takes place s ta ti

cally, before the  composed program  is run. Subject com position is defined in term s of two concepts: 

correspondence and integration. Correspondence identifies the places of in teraction between subjects 
and in tegration  determ ines the  action taken on corresponding elements.

The prim ary point of interaction is the class or the  interface. Classes can correspond only to  

classes and  interfaces only to  interfaces. The views of the  sam e kind of object as expressed by the  

class or the interface in corresponding subjects m ust be composed. Subjects can agree th a t  a  set 

of classes or interfaces represent the  same type  of object from different perspectives w ithout having 

anything else in common. Class or interface com position makes it possible to  view an ob ject via 

different types in each subject.

At runtim e, m ost subject interactions need to  share m ore th an  ju s t object identity; behaviour 

and s ta te  m ay also need to  be shared. Subjects are sta tic  entities and do not have s ta te  as such. 

S ta te  is associated w ith objects of executing subject-oriented program s. Statically, th a t is in term s 

of program  tex t, s ta te  is cap tured  by instance variables. Behaviours affecting the  s ta te  take the  

form of operations which are associated w ith classes directly or inherited. Subject in teractions th a t 

involve s ta te  or behaviour are specified by defining correspondences between instance variables and 
operations of corresponding classes.

S ta te  can be shared between subjects when corresponding classes define the sam e instance vari

able. For example, bo th  the car driver and salesm an share the notion of car key. By establishing 

correspondence between the instance variables representing the car key, subjects can share key ob
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jects a t runtim e. Behaviour is shared when subjects define the same activ ity  in response to  an  

action. For instance, s ta rtin g  the car is a  behaviour which is the  same for bo th  its driver and  th e  

salesm an. The realisation of shared behaviour can be delegated to  one subject and activated  by all 

who need it. We have also observed other interactions:

•  Request by one subject to  invoke behaviour in another. For example, a  driver who has lost his 

key may request the  mechanic to  s ta r t the car using o ther means. Here the behaviour is no t 

the  sam e for both , ra ther, ju s t one subject has the  behaviour which the o ther may require.

•  Perform ance of an activ ity  in which ano ther subject participates, e.g. a  prospective purchaser 

may ask a mechanic to  help him  evaluate the  ca r’s condition. The purchaser’s decision is based 

both  on his own assessm ent and th a t of the mechanic.

•  An event which m ay be of in terest to  another subject, e.g. if the  car is stolen, its driver will 

w ant to  notify the police.

In tegration  is the process of establishing an interaction between corresponding elements. In order 

to  synthesise a single program  from the  inputs, SO P unifies the  corresponding elements based on in te

gration rules. D uring execution, m ethods are invoked from m ultiple input subjects. W hich m ethods 

are invoked depends on the  subject where the  call originates, the correspondences, and th e  in tegra

tion  strategy. M any kinds of in tegration rules can be defined bu t there  are two general-purpose rules 

which are used in m any compositions. T he m e rg e  rule describes a union of corresponding elem ents 

and the  o v e r r id e  rule describes the selection, a t com position tim e, of one of the corresponding 
elements.

T he definitions of bo th  these in tegration rules are overloaded to  specify the  unification of m ultiple 

kinds of corresponding elements. The m e rg e  rule is defined as follows:

•  For instance variables, its effect is to  create a single variable in the  ou tpu t.

•  For operations, the m ethod bodies are set to execute in a rb itra ry  order (but not in parallel). 

W hen the operation  is called in any input subject, all m ethod bodies are executed. If m eth

ods re tu rn  values, all the  re tu rn  values are packaged into an a rray  and a composer-specified 

sum m ariser m ethod is used to  determ ine th e  re tu rn  value for the m e rg e d  operations.

•  For classes, th is in tegration rule creates a  single class in the  ou tpu t. All m em ber integrations 

can only be perform ed in the  context of a  corresponding class. For example, if two subjects 

bo th  declare anE ngine to  be an  instance variable of class Car, then  in order to  merge th e  views 

of engines, it is necessary to  specify the correspondence between C ar classes.

T he o v e r r id e  rule also applies to  classes and  the ir members. The com positional effect of o v e r

r id e  on instance variables is the  same as m e rg e . For operations, the overriding m ethod replaces 

all overridden m ethods such th a t when any one of th e  corresponding operations is called, only the  

overriding m ethod executes. The overridden m ethods do not contribu te to  th e  behaviour of the  

ou tpu t subject and  cannot be invoked. On classes, the  o v e r r id e  rule has a quantifying effect: each 

element of the  overriding class replaces th e  corresponding elem ents of the  overridden classes. T he 

mem bers of the  overridden classes w ithout corresponding overriding elem ents are unchanged.

T he in tegration rules presented above and other, custom  in tegration  rules ( th a t can be defined by 

a  power user who is fam iliar w ith the SOP rule framework) are the operators in the  SO P composition
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language. T he language gives the  composer fine-grained control over the interaction, m aking it 

possible to  express m any com positions. However, when subjects im plem ent feature concerns th a t 

have been designed in concert, the  com positions should be concise. More verbose specifications may 

be required to  compose subjects which have been developed separately.

Com position is specified in term s of a  top-level rule th a t applies to  all elements, followed by 

a sequence of lower-level rules describing exceptions and additional directives. The top-level rules 
a re1:

c o m p o se . Specifies a  sequence of subjects to  compose and the nam e of the  o u tpu t subject, e.g. com

p o se  S I ,  S2 in to  S ;.

m e rg e B y N a m e . Establishes correspondences between all identically nam ed elements and applies 

the m e rg e  in tegration  rule to  each correspondence.

o v e r r id e B y N a m e . Establishes correspondence between identically nam ed elem ents and uses the 

o v e r r id e  in tegration  rule. T he first subject in the  c o m p o s e  clause is the  overriding subject 
(the source of the overriding elements).

The sim plest com position specification contains one c o m p o s e  directive and one of the  B y N a m e  

rules. A t the lower level, correspondence between elements th a t  have different nam es can be estab

lished using the  e q u a te  directive. This takes n  elem ents of the  sam e kind from n  different subjects 

and specifies th a t these elem ents correspond. Exceptional in tegrations are specified in term s of 

m e rg e , o v e r r id e  and o ther basic integration rules.

W hen composing feature concerns, it is common to  use the  m e rg e B y N a m e  stra tegy  a t th e  top- 
level. T he features represent corresponding views which m ust be in tegrated  to  form the  com plete 
program . At the  lower level, when two or more subjects share a m ethod im plem entation, only one 

subject needs to  im plem ent it. The o v e r r id e  rule can be used to  select the  im plem ented m ethod. 

This in tegration rule can also be used to  select ju s t one im plem entation from a  set of equivalent 

im plem entations of a  m ethod, e.g. one se tter m ethod  im plem entation from the  set of equivalent 
setters.

A dditional directives which can be specified after th e  top-level rule include b ra c k e t  relationships. 

B rackets are useful for specifying aspectual interactions: when one subject augm ents or modifies the 

behaviour of another a t key points in its control flow. These relationships are discussed in the  next 

Section together w ith technology for supporting  aspect-oriented program m ing.

O n  C o m p o s i t io n  V a lid ity

So far we have described key principles of com position b u t no t the way an SO P language checks 

com position correctness.

In th e  H y p e r/J  language, subjects are pieces of o rdinary  Java  code. W hen instance variables and 

operations are composed, the re tu rn  types and param eters in th e  same positions m ust have the  sam e 

types. Type correspondence is required during m e rg e  in tegration  because any input subject may 

a ttem p t to  access or modify the  shared element. T ype equivalence is also conceptually meaningful 

during merging as it suggests th a t the  views of th e  object interface are m utually  com patible. H y p e r/J  

requires type equivalence for o v e r r id e  also. T he need for type equivalence here is less clear as

1Note that we diverge from Hyper/J syntax in order to simplify the presentation, but composition semantics are 
unaltered.
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override makes it possible to  apply changes one subject a t a  tim e, ra th e r th an  one class a t a  tim e 

as is the  case w ith inheritance in a language like Java. It is possible to  use override to  evolve 

an  application to using a new family of types. R eturn ing  to  the earlier example, in some m odern 

vehicles the  engine is s ta rted  not w ith a  key b u t by entering a  code on a keypad. A  new subject 

can be developed which replaces the Key class and  changes all existing clients of the Key class. 

Nevertheless, in H y p e r/J  type equivalence in corresponding elements is required even for override.
T ype equivalence is not as restrictive as it m ay sound; corresponding classes cause elem ents of 

these types to  be com position com patible. Hence, different subjects can have different nam es for the 

sam e concept, e.g. Warranty and Guarantee describe the  same kind of artifact. As another example, 

consider the  merging of Sink and Source classes (as variants of some kind of buffer). One subject 

creates a Sink object; the  reference becomes visible in another subject as a  Source object th rough 

a  shared instance variable or a  merged operation. The m erge of these classes is m eaningful only if 

all objects of these types can be viewed from b o th  perspectives.

The choice of Java constrains w hat can be done to  check com position correctness. I t is well 

known th a t types are only a small p a rt of w hat makes a program  correct. The em phasis on formal 

specification of collaborations in contracts and on valid com binations of GenVoca realm s is aim ed 

a t ensuring th a t the  interactions are not only conceptually relevant bu t functionally correct. Family 

polym orphism  [34] is concerned w ith consistent evolution of a  family of classes in a way th a t preserves 

type sub titu tab ility  and maximises class reuse. Com paratively, in SO P little  a tten tion  is given to 
the im portan t topic of interaction validity. In the  following C hapter on in teraction problem s in SOP 

(starting  on page 44), we analyse the in teractions th a t are difficult to  detect during reuse or before 

independent subject developm ent commences.

3.2.5 Conclusion

T he technologies presented in th is Section enable the  m odularisation of collaborations. In  object- 

oriented program m ing, contracts enable the  high-level specification of m utually  recursive objects, 

collaboration refinement and composition. Program m ing techniques based on tem plates and  inner 

classes can be used to  compose collaborations. Fam ily polym orphism  supports the  evolution of sets 

of classes while m aximising class and client reuse.

D irect program m ing language support for collaborations can be found in O bject Teams, GenVoca 

and Subject-O riented Program m ing. For program m ers of a m ainstream  object-oriented language 

transition  to  SO P is probably the easiest. SO P lets the  developer im plem ent subjects using the 

fam iliar object-oriented techniques. Only the  sub ject composer needs to  know about the  com position 

language. However, the  SO P composition rules presented to  now have affected classes and  some 

decom positions require object-level granularity. GenVoca also operates on classes ra th er th an  objects 

bu t allows new com ponents combining a num ber of features to  be synthesised dynamically. By 

contrast, subject-oriented com position is specified during a  separate phase of software development. 

O bject Team s has object-level granularity. Team s can be activated  and  deactivated dynamically, 

and m ultiple instances of a  team  can be present a t the  sam e time. Consequently, w ith O bject Teams 

it is possible to  separate  more concerns more cleanly.

T he previous C hapter discussed the often unantic ipated  natu re  of reuse. To facilitate reuse it 

should be possible to  reuse a  com ponent in a way not anticipated  by its original developers. The 

com positional interfaces in SO P enable subjects to be connected to  o ther subjects in unanticipated  

ways. The layer reusers in GenVoca create new layers by extending existing layers. T he set of
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valid layer extension points is restricted to the predefined interface. T he team  modules of O bject 

Team s are reused a t their functional interface bu t O bject Teams also support additional forms of 

interaction  detailed in the  following Section on A spect-O riented Program m ing.

A priori creation of reusable software in SO P is supported  by inheritance and delegation in the  

language used to im plem ent the subjects. GenVoca supports the creation of com ponent families. 

The client can create new com ponents by mixing and  m atching features created earlier as p a rt of 

a  family. O bject Teams leverages family polym orphism  for reuse of collaborating suites of classes. 

GenVoca supports polym orphism  using the realm  construct bu t a  realm  is the  interface of a  single 

com ponent ra th e r th an  a com ponent family.

GenVoca and O bject Teams provide stronger support for creation of reusable com ponents for 

use by th ird  parties. GenVoca focuses on valid perm utations of modules and O bject Teams focuses 

on type  substitu tab le  com ponent families. By contrast, Subject-O riented Program m ing has an 

extensible set of com position rules th a t m ake subjects b e tte r suited for reuse in ways which were 

no t initially anticipated . SO P has com paratively poor support for checking interaction correctness. 

Unlike team s, subjects can m odularise collaborations bu t do not encapsulate collaboration state. 

There is no way of determ ining interaction correctness until all subjects in the com position are 

known. In conclusion, we believe th a t in order to  improve the reusability  of collaborations w ithout a 

priori investm ent in reusability, Subject-O riented Program m ing is the  b e tte r candidate technology.

3.3 Aspect-O riented Programming

A spect-O riented Program m ing (AOP) is an approach to  m odularising cross-cutting concerns -  con
cerns th a t are hard  to  m odularise using to d ay ’s m ainstream  program m ing technology. Initially, 

the  term  ‘A O P ’ was associated w ith a  particu lar approach to  addressing cross-cutting concerns by 

Kiczales et al [66], bu t due to  the popularity  of the  program m ing language A spectJ, AOP has be

come synonym ous w ith o ther program m ing technology including Com position F ilters [3], A daptive 

Program m ing [73] and  Subject-O riented Program m ing. See [90] for an overview of approaches.

A O P (as described in [66]) is a  generalisation of the  ideas behind domain-specific languages 

RIDL and COOL for d istribu tion  and concurrency [78, 76]. Aspect J  introduces language extensions 

to  Java th a t allow distribution , concurrency and  o ther concerns to  be m odularised. A domain- 

specific language allows only a few concerns to  be separated  and a set of domain-specific languages 
may not be m utually  com patible. AOP addresses some of the  goals of MDSOC: it facilitates the 

m odularisation of m any solution dom ain concerns th a t  are difficult to  m odularise w ithin a m ainsteam  
program m ing language.

T he concepts of jo in  point and aspect un ite  all A O P approaches. Jo in  points are places in the 

program  where m odules in teract. Join points can be determ ined in different ways. In SOP, language 

constructs like instance variables, operations and  classes are join points, so the  places of subject 

correspondence and  join points are synonymous. In A spectJ, join points are certain  places in the 

program ’s control flow. Thus, join points are dynam ic concepts. A spects are modules containing 
the code which addresses some concern.

Join point in teraction  can be sym m etric or asym m etric [50]. In an  asym m etric model, the aspects 

are ‘woven’ into the ‘base’ modules a t the  join points. T he selection of join points comes from the  base 

program  and aspects are w ritten  w ith respect to some base. A spectJ is an exam ple of an asym m etric 

model. In a sym m etric model, every m odule is trea ted  as an  aspect. A base is no t distinguished
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linguistically although it may be distinguished logically w ithin the  dom ain of application. The join 

points come from each aspect and the interaction is usually specified separately. The SO P m odel is 

sym m etric.

In order to  separate  some concerns it is necessary to  have fine control over the  join points. 

M any concerns affect only a subset of instances of a  class. For example, AOP technology can be 

used to  m odularise the reusable parts of design pa tte rns [47]. Consider the  Observer p a tte rn  [43]: 

subscribers register w ith publishers2 to  receive notifications about s ta te  changes. T he reusable 

p a rts  of the aspect include th e  S u b s c r ib e r  and P u b l i s h e r  interfaces, and  the  protocol for enabling 

S u b s c r ib e r  reg istra tion  and event notification.

Suppose th a t in an application, the R e c ta n g le  dimensions are observed by Shapes whose pro

portions are linked to  th a t of the R e c ta n g le , and  the R e c ta n g le ’s c o lo u r  property  is observed by 

a different bu t possibly overlapping collection of Shapes which set their colour in relation  to  the 

colours of adjacent Shapes. Each Shape is possibly both  a P u b l is h e r  and  an  S u b s c r ib e r  and  a 

Shape needs to  be a P u b l is h e r  to  two sets of S u b sc r ib e rs . Com position rules such as m e rg e  

in SOP affect classes bu t cannot distinguish between instances and it is no t possible to  reuse the 
Observer p a tte rn  in the  required setting. In fact all subject-oriented com position rules presented  to 

now relate classes ra th er th an  objects.

T his Section reviews the  technology for m odularisation of concerns th a t cross-cut o ther function

ality. The review includes to d ay ’s m ost popular A O P technology, A spectJ; extensions to  SO P which 

enable more concerns to  be separated; and the  two m ost recent proposals C aesar [88] and O bject 
Teams [54].

3.3.1 AspectJ

A spectJ is a  forw ard-com patible extension to  the  Java language: valid Java program s are also valid 

A spectJ program s. A spectJ introduces a new kind of m odule known as an  aspect Like an  ordinary 

Java class, an aspect contains m embers th a t define its s ta te  and behaviour. Instead of the  usual 

functional interface, an aspect has a  com positional interface th a t is based on join points. To select 

the join points of in terest the aspect body defines pointcuts -  specifications of jo in  points of in terest 
to  an aspect. T he behaviour associated w ith an  aspect is set to execute before, after or around the  

join points. T he last of these executes the aspect code instead of the  code a t the  join point, possibly 
calling the  code a t th e  join point using the  p ro c e e d ( . .)  sta tem ent.

Poin tcu ts are specified in term s of designators. These describe events in the  control flow such as 

when some instance variable is read or some event is throw n. A lthough A spectJ has a huge selection 

of designators, the m ost commonly used ones are concerned w ith m ethod invocation and execution. 

In the  ‘Hello W orld!’ of A spectJ program s, an aspect is used to  m odularise the T ra c in g  concern. 

The T ra c in g  concern, shown in Figure 3-4, requires a  message to  be prin ted  im m ediately before and 

im m ediately after any m ethod executes.

Note th a t asterisks are used as w ildcards to  m atch  the execution of any operation on any class. 

In a trad itional object-oriented program , tracing  requires either th a t every m ethod body is modified 
to  include a  call to  the tracer m odule or for the  program  to be run  w ith in  a debugging suite. The 

first solution does not scale while the second one is fine by itself bu t causes com plications when 

collaboration w ith another application is required, e.g. a review of the  recorded trace  to  see th a t

2The usual terms ‘subject’ and ‘observer’ have been replaced by ‘publisher’ and ‘subscriber’ to avoid confusion 
with SOP terminology.
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aspect TraceSIICIasses {
pointcut myMethodO : execution(* *(..));

before () : myMethodO {
Trace .traceEntryO" + thisJoinPointStaticPart. get Signature 0  ) ;

>
after() : myMethodO {

Trace.traceExit("" + thisJoinPointStaticPart.getSignature());
>

>

public class Trace {
public static void traceEntry(String str) {...} 
public static void traceExit(String str) {...}

>

Figure 3-4: A spectJ program  im plem enting the  T ra c in g  concern.

execution has passed certain  key points.

A spectJ has a very powerful join point language th a t  allows program m ers to  m odularise code per

tain ing to m any non-functional concerns, separating the  non-functional concerns from the program ’s 

m ain functionality. Concerns th a t should be separated  [75] include synchronisation, location control 

(organisation issues), real-tim e constraints, failure recovery, debugging, persistence and transaction  
m anagem ent. The aspect is linked to  the base program  through pointcuts, b u t the base program  

creates no explicit links to  the  aspect. Furtherm ore, good aspect-oriented design suggests using 
inter-aspect inheritance to  separate  the aspect functionality from the pointcuts th a t declare the way 

the  aspect interfaces the  base.
A spectJ is appealing to  the  original developer because m odularisation of scattered  code reduces 

the size of the  whole program  and improves its understandability . T he declarative style for describing 

join points makes A spectJ more a ttrac tiv e  to  program m ers th an  m eta-object protocols from which 

it evolved.

3.3.2 Bracket Relationships in SOP

Bracket relationships (brackets for short) are an  advanced com positional m echanism  in the subject- 

oriented program m ing language H y p er/J . We describe them  here because their introduction was 

inspired by th e  dynam ic join points of A spectJ. Bracket relationships allow the m ethods of one 

subject to  w rap the  m ethod call and execute sites in o ther subjects. The m ethods which are set to  

execute before or after another m ethod are called wrappers and every bracketed m ethod or m ethod 

call point is known as the  wrappee. Sim ilar to  call and execu tion  designators of A spectJ, the 

bracket relationships of H y p e r/J  can use p a tte rn  m atching to specify the  w rappee points.

Figure 3-5 shows subject T ra c in g  which contains the  code for th is concern and a  fragm ent of 

the com position specification which enables the  tracing of all m ethod calls in the program . The 

m eta-param eter $ s ig n a tu r e  references the S t r i n g  represention of the  operation  signature a t the 

join point. T he syntax  of the exam ple is simplified from true  H y p e r/J  syntax  bu t consistent w ith 

SOP examples th a t follow.

Bracket relationships are im plem ented w ith the  correspondence and in tegration rules of SOP. 

Brackets actually  set up correspondences between classes containing the w rappers and the classes
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subject Tracing { 
public class Trace {

public static void traceEntry(String str) {...} 
public static void traceExit(String str) {...}

>
>

bracket < < * , * > >  with before Tracing.Trace.traceEntry($signature) 
after Tracing.Trace.traceExit($signature);

Figure 3-5: H yper/J-sty le  program  im plem enting the  T ra c in g  concern.

containing the wrappees. m e rg e  sem antics are used to  in tegrate  the corresponding elements; the 

instance variables and operations are integrated , then  calls to  w rappers are inserted a t the relevant 

points.

Bracket relationships are applied after the  top-level com position strategy, e.g. m e rg e B y N a m e . 

T he com position specification may contain e q u a te  directives which create correspondences between 

differently nam ed elements which should be composed, and the  w rappers execute around all equated 

w rappees whenever a t least one of them  m atches the  pattern . Because brackets also setup corre

spondences between the  classes of the  w rappers and the  wrappees, it is an  error for the w rappers to 

have correspondences derived from the top-level com position rule. However, a  w rapper class does 

have a functional interface of its own and  it is possible to  create instances of w rapper classes directly.

H y p e r/J  does no t have the  a r o u n d  construct of A spectJ which helps to  separate  concerns in 

some cases. The a r o u n d  construct perm its the  w rappers dynam ically to  determ ine if the wrappee 

should be executed. A lthough, the  SO P fram ework provides an opportun ity  to  introduce this and 
o ther rules.

3.3.3 Caesar

T he Caesar language [88] builds on the  streng ths of the A spectJ approach to  m odularisation of 

cross-cutting concerns by improving the separation  between the definition of the  aspectual modules 

and the definition of the deploym ent of those modules w ith the base and  o ther aspects.

The Observer p a tte rn , seen earlier, benefits from instance level application. B ut even then, its 

definition in A spectJ is not as reusable as m ay be required in practice. T he A spectJ definition does 

separate  the p a tte rn  protocol from its applications by using in ter-aspect inheritance bu t the solution 

is no t sufficiently general. Specifically:

1. As discussed earlier, a  com ponent may play the  role of a publisher more than  once, i.e. it may be 

observed independently for changes of two different properties. For this reason, the A spectJ 

im plem entation uses P u b l is f ie rS u b s c r ib e rP ro to c o l  aspect singleton to  combine bo th  the 

publisher and  subscriber roles, using a hash tab le  to  m ap between instances of publishers and 

their subscribers. T he tangling of roles in a single aspect makes the relationship between 

the core p a tte rn  functionality and different specialisations of it unclear. For instance, if la ter 

S p e c ia lP u b l is f ie r  specialises the  publisher role conceptually, we have to  subclass the whole 

protocol to  create an extension of ju s t one role. To avoid such problem s it is necessary to  keep 

each aspect role separate.

2. Applying the  aspect to  a problem  requires m apping each role directly  on to a class, i.e. af
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fected classes have to  im plem ent the  P u b l i s h e r  or S u b s c r ib e r  interfaces. However, for some 

applications of the  p a tte rn , the  role may be im plicit in a  collaboration. For example, suppose 

th a t S c reen  needs to  observe changes in points and lines. Points are represented by Node 

objects and lines im plicitly by pairs of adjacent Node instances. Thus, for lines, there  is no 

single abstrac tion  th a t can inherit the P u b l i s h e r  interface.

3. In certain  cases the  aspect bindings should be reusable. Such is the  case w ith com positions be

tween a class-based representation  of an ab strac t syntax  tree and  a  general tree  representation . 

A bstrac t syn tax  trees are used in m any applications. M any different tree im plem entations m ay 

be used w ith such a binding, e.g. ones to  display trees or to  perform  algorithm s. These kinds 

of bindings require a  special kind of polym orphism  to  make them  tru ly  reusable.

4. In A spectJ, the  aspect is woven statically  a t compile tim e. I t is no t possible dynam ically to  

select a  different aspect im plem entation a t run-tim e, to  activate or deactivate the  aspect. For 

example, w ith respect to  the Observer p a tte rn , we m ust select in advance w hether to  have 

synchronous or asynchronous notification of changes, i.e. there  is no aspectual polym orphism .

C aesar addresses these shortcom ings th rough aspect collaboration interfaces (ACIs). These are 

bidirectional interfaces between two sets of m odules, called aspect im plem entations and  aspect bind
ings. T he first p a rt is called the provided interface and the second, the  expected interface. T he 

aspect im plem entations realise the p a rt of the A C I’s interface th a t  is concerned w ith the aspectual 

functionality, e.g. the  Observer p a tte rn  protocol. T he provided p a rt of the ACI binds the  aspect 

roles to  the ta rg e t application abstractions.

Addressing th e  deficiencies in the  A spectJ solution, we see th a t for point 1 the  aspects can be 
represented in term s of their own class struc tu re . There is no need for global aspect s ta te  because 
each aspect deploym ent hides the s ta te  w ithin instances of aspect roles. For point 2, C aesar uses 

aspect bindings to  m ap aspects to  dom ain abstractions. Bindings are fully-fledged Java classes 

w ith additional features th a t the  program m er can use to  specify complex aspect in teractions w ith 

base code. For point 3, aspect binding reusability  is achieved in th ree directions. One can define 

functionality th a t is polym orphic w ith respect to  (a) aspect im plem entations by being w ritten  to  a 

certain  aspect binding type, (b) aspect bindings by being w ritten  to  a certain  aspect im plem entation 

type, or (c) b o th  of them , by being w ritten  to  an ACI. Finally, for point 4, inheritance betw een 

aspects is combined w ith polym orphism  to allow specialised aspects to  be used in the  future.

Caesar is an  instan tia tion  of MDSOC as it divides problem s into m ultiple dimensions of concerns, 

allowing one to  view and use the  system  from different perspectives. Unlike Caesar, in SO P th ere  is 

no explicit notion of com position interface and  reuse is associated w ith subject code bu t no t usually 
the  com position specifications. Reuse of com position specifications is not considered because it is 

expected th a t  for m ost compositions, the  relationships can be concisely defined using a top-level 

com position strategy. This is certainly th e  case for subjects designed in concert where m ost corre

spondences are inferred by nam e equivalence. W here subjects are built for reuse, the  com position 

specification is also a potential reuse artifact. To reuse subjects successfully, one requires docum en

ta tio n  which includes a description of the way the  subject may interact. T he exam ples can be used 

as informal tem plates for creating a com position specification. Finally, C aesar is an  object based 

approach whereas SO P is class based.
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3.3.4 Object Teams

O bject Teams also supports advanced interaction between team s in the style of A spectJ. Recall from 

Section 3.2.2 on page 31 th a t a team  class encapsulates a num ber of role classes. Using object-based 

inheritance each role is bound to  a class th a t begins to play th a t role. O bject Teams requires all 

roles to  be bound.

Team  interaction  is handled by so-called callins and callouts. M ethod delegation uses callouts. 

These allow a role instance to  delegate the  call to  an  instance of a  base class. A callin mimicks 

A sp ec tJ’s b e fo re , a f te r  and a ro u n d  advice. A t certain  points specified in the team , the  base 

object calls into the  the role, passing s ta te  and m eta inform ation to  the  role.

3.4 A Case for Subject-Oriented Programming

This C hapter has discussed technology for advanced separation  of concerns. T he goals of reuse can 

be b e tte r addressed by m odularising concerns in the  feature dimension and by separating  m ore of 

the  cross-cutting concerns th a t emerge as p a rt of the  solution from the rest of the functionality.

We propose SO P as the reuse vehicle because it best fits our reuse position. Subject-O riented  

P rogram m ing keeps the initial developm ent costs low for program m ers fam iliar w ith to d ay ’s m ain

stream  program m ing languages. It has a powerful join point language th a t  enables the  separation 

of m any kinds of concerns. SO P supports reuse by allowing extensions and  com positions a t points 

th a t may not have been an tic ipated  by the  original developer.

SOP also has disadvantages com pared to  o ther approaches:

•  A subject is a  m odular artifact. However, when non-public join points are used for creating 

extensions and specifying subject interactions, the  subject no longer encapsulates the s ta te  of 

collaborations it implements.

•  T he benefits of inheritance and  polym orphism  are restricted  to  subject im plem entations. Con

sequently, construction of software for reuse and  expression of conceptual relationships where 

inheritance between subjects is appropriate  m ust rely more on com position rules. For instance, 

present com position rules cannot express the  relationship between an ‘a b s tra c t’ subject and 

its ‘concrete’ variants.

We believe th a t the  second problem  m ay be tackled w ith new com position rules bu t th e  first point 

is more challenging. Subjects break the encapsulation of objects yet fail to  encapsulate s ta te  common 

to  the  collaboration as happens in O bject Teams. Broken object encapsulation is an inhibitor 

to  m odular developm ent and reuse of subjects. In the next C hap ter we detail our experiences 

of program m ing w ith H y p e r/J  and  discuss in teraction problem s which we believe result from the 

invasive natu re  of subject interaction.



Chapter 4

Interaction Problem s in 
Subject-O riented Program m ing

Subject-O riented Program m ing is a  technology for separation of concerns. It enables subject reuse 

using powerful com position rules. Subject reuse and  evolution is not defined on pre-declared com po

sition interfaces in the  same way as trad itional com ponents. Instead, in teraction  between subjects 
takes place a t the  points defined by subject s tructure . T he absence of a  more ab strac t interface 

makes it difficult to  predict all consequences of interaction  in advance. We call the  unw anted in ter

actions between subjects interaction problems. T he present C hapter explores in teraction  problem s 

in SO P and suggests possible solution spaces.
Section 4.1 defines in teraction  problems. We com pare in teraction  problem s in subject-oriented 

program m ing to  feature interaction  problems in telecom  applications. Exam ples of interaction prob

lems are draw n from existing work and through  our personal experience of program m ing w ith  Hy- 

p e r /J . Sections 4.2, 4.3 and 4.4 present exam ples of interaction problems. In each case, we com pare 

the  subject-oriented program  to  a  functionally-equivalent 0 0  program , and  present existing work 

intended to  address the problem  or a description of a  possible solution. Section 4.5 concludes by 

proposing to  develop a subject-oriented Alias P ro tection  System.

4.1 Introduction to Interaction Problems

D ecom position of program s by feature rarely  leads to  orthogonality. Features often read and w rite 

a  common set of p roperties which in an object-oriented design would be encapsulated in an  object. 

SO P supports decom position by feature by defining corresponding classes and class m em bers, and 

by allowing one subject to  interface another a t m ethod call sites and potentially  o ther internal join 

points. Broken object encapsulation leads to  a wide interface, m aking m odular developm ent of 

subjects more challenging com pared to conventional program m ing where encapsulation is preserved.

For example, in order to  reuse a  subject in a  com position, it is not enough to know what the  

com ponent does. One m ust look beneath  the  interface a t how  the  com ponent is im plem ented. So, if 

two subjects bo th  have views of the  Employee class which share the  s a l a r y  field, bo th  m ust agree 

on the type of th is field, its valid range and usage policy. This kind of in teraction  requires one to  

have knowledge of the way o ther subjects im plem ent and  use data .

We believe th a t broken encapsulation com bined w ith a high num ber of in teracting  subjects leads

44
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to  in teraction problems. In order to  be able to  tackle in teraction problem , it is first necessary to  

find a suitable definition for in teraction problem s. A  definition should help us to  understand  the 

problem  space and  also to  evaluate the solution space. There has been little  published on interaction  

problem s in SO P specifically, so the  net is cast fu rther afield to  o ther dom ains where interaction  

occurs between modules th a t describe overlapping perspectives.

V iew point-O riented Systems Engineering (VOSE) [39] is a  framework for supporting  th e  de

sign of heterogeneous systems. A  viewpoint is a  locally m anaged entity  which encapsulates p artia l 

knowledge about the  system  or dom ain, specified in a particu lar, suitable representation  scheme; it 

carries partia l knowledge of the  process of design. VOSE uses inter-viewpoint checks to  verify the 

consistency of a  specification w ith those m aintained by other viewpoints. Conflict resolution is part 

of the  specification process. The aim  of inter-view point checks is to  elim inate inconsistencies and 

produce a  conflict-free design. Inconsistencies are equally undesirable in subject-oriented com posi

tion  because they  m ake subjects uncom posable. However, SO P does perm it variation to  a  degree. 

Each subject can define classes from its own perspective and each subject can define its own class 

hierarchy. O ther inconsistencies are undesirable, requiring invasive m odifications to  subjects.

Feature interaction problem  is a  term  coined in the  telecom m unication dom ain to  describe in ter

ference between services. A  bad feature in teraction is one th a t causes the  overall system  behaviour 

to  be undesirable. Interference occurs when the  behaviour of one feature is affected by the behaviour 

of another feature or another instance of the sam e feature [68]. I t has been recognised th a t  research 
into m ethods for detection and resolution of feature interactions in telecom  system s is also of signfi- 

cance outside the  telecom dom ain. According to  P la th  [100], feature in teraction problem s can often 
be traced  back to  the fact th a t two or m ore features m anipulate the  sam e entities in th e  system , 
and in doing so, violate some underlying assum ptions abou t these entities th a t the o ther features 

rely on. O ur in tuitive understanding of in teraction  problem s is com parable to  feature interaction 
problem s as defined by P la th .

In her work on subject-oriented design, Clarke has investigated the com position of object-oriented 
design models [24]. In her experience there  exist

“. . .  additional p roperties arising for the o u tp u t of composition. These are not defined in

any input subject bu t arise as a result of com position itself.”

C larke’s definition implies th a t the com position is meaningful overall bu t particu lar in teractions 

were either not foreseen or unexpected. Assuming th a t the  additional properties are unw anted, 

some action m ust be taken to  correct the  interaction. Changes can be m ade to  the  com position 

specification, the  input subjects or by using a patch  subject. T he last two approaches are  least 

desirable because they  raise the  cost of subject reuse. The following definition reflects our view th a t 

w hether the  in teractions are unforeseen, unspecified or unexpected, the  overall effect is undesirable 

and requires some corrective action on behalf of either the composer or a  subject designer.

D e f in it io n : ( I n te r a c t io n  P ro b le m )  A subject interaction  occurs when the  behaviour of one 

subject influences the  behaviour of another. In teraction  problem s are unw anted subject interactions.

In teraction  problem s are im portan t to  us because they  affect m odular subject developm ent and 

reuse of subjects. Having established a definition, we now look a t th e  current understanding  of 
interaction problem s in related  areas and evaluate the  approaches to  tackling them .
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4.1.1 Feature Interaction Problems in Telecom Applications

T he best understanding of interaction  problems th a t we have comes from the  telecom  domain. Tele

com applications are built around features which surround the basic service. T he aim  is to develop 
features m odularly and resolve any in teraction  issues between features in a reasonable am ount of 

tim e w ithout modifying the  feature specifications. Features subtly  interfere because they  m anipulate 

the  sam e common service variables. In the  telecom  dom ain it is im portan t to  be able to  rapidly 

develop and deploy new features w ithout d isrupting the  functionality of existing features.

K im bler points ou t [67] th a t the  trick is no t in finding resolutions bu t in developing mechanisms 

to  detect and  resolve interactions th a t are efficient and th a t apply in the  m ajority  of cases. The 

approaches to  tackling feature interactions can be broadly grouped into design m ethods, architectural 

approaches and runtim e techniques [52]:

•  In the  design approach, specifications of separately  developed features are composed. The 

com position is searched for interactions. U ndesirable in teractions are resolved by modifying 

feature specifications. However, a  feature cannot be redesigned independently to elim inate 

the in teraction and  features may no t be open for re-design. So instead, m ost design-time 

resolutions specify how groups of features behave together, using various techniques to  define 

valid perm utations of features. T he m ain problem  w ith the  design approach is scalability. 

M ost telecom  system s have hundreds of features w ith the  num ber of interactions growing 

exponentially as yet more features are added.

•  The arch itectural solutions involve co-ordinating the features’ access to  shared resources. For 
instance, a  pipe-and-filter arch itecture serialises features’ reactions to  each event. The problem  

w ith this approach is th a t it tends to  over-const rain  access. The analysis of feature interaction 

is still required to  ensure th a t features do not miss key events occurring further down the 

pipeline. A rchitectural solutions are too general to  prevent in teractions th a t violate all feature 

constraints.

•  Resolutions th a t are not resolved sta tically  m ust be resolved dynamically. Resolution can be 

deferred until the  unw anted interaction occurs and some action needs to  be taken.

T he design approaches are also applicable to  subject-oriented  in teraction  problems. For instance, 

Van Der S trae ten  and B richau [114] propose to  use declarative m etalevel representation of the  

feature’s im plem entation to  detect interaction  and  interference (i.e. interaction problem s). Feature 

in teraction is detected using logic rules, e.g. a  logic rule can detect access to  the same instance 

variable by two different features. Rules for detecting  interference are expressed as constraints or 

invariants on the im plem entation.

Analysis of subject-oriented com position is also constrained by scalability. The complexity of 

in teraction  analysis grows significantly as the  num ber of in teracting subjects increases. The design 

approach is a useful way of understanding in teractions and resolving problem s bu t unless the  model 

is im bedded in code, the reuser m ust construct a  new model for each new feature every tim e its 

subject is introduced to  an existing set. A design approach consistent w ith our reuse position m ust 

have value no t ju s t for the  composer bu t also for the  subject developer.

An arch itectural solution is useful in the  telecom  and other dom ains where there  exists some well 

defined set of common resources. B ut Subject-O riented Program m ing can be used in areas where 

there  is either no common set of resources or the  arch itecture  itself is subject to  evolution.
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SO P only supports design-tim e composition. R untim e resolution of conflicts introduces overheads 

th a t may be acceptable during testing  bu t no t in the  deployed system . We believe th a t  resolvable 

conflicts are addressed best using com position rules.

4.1.2 Composition Anomalies

Tekinerdogan et al [123] have conducted an evaluation of the  different kinds of com position schemes 

(e.g. inheritance, delegation and join point based com position) in order b e tte r to  understand  anom a

lies occuring during concern composition. They distinguish three categories of problems:

•  Com position is not possible for logical reasons. One tries to  compose concerns which are 

inherently uncom posable.

•  C om position cannot be realised because the  adopted  com position scheme does not support it, 

although com position is possible from the  logical perspective.

•  C om position is realisable w ith the adopted  com position scheme, bu t requires additional work

arounds or glue code th a t reduces the  m aintainability  of the  resulting design.

Com position anomalies are examples of the  last two categories only. In order to  be composable 

concerns have to  be bo th  functionally  and  procedurally com posable [123]. Functional com posability 

depends on com position being conceptually sound. For instance, it makes sense to  compose a 

buffer concern w ith locking facilities bu t not w ith a  random  num ber generator. T he composition 

m ust have useful and  correct sem antics, which m eans th a t the  in tegration  of subconcerns m ust 
provide the  intended functionality. For example, although it is meaningful to  compose a graph 

representation  w ith an algorithm  for counting subgraphs, the  two are sem antically uncom posable 
if they are represented as sets of vertices and adjacency lists. P rocedural com posability refers to  

in teroperability  or the dependencies and in teractions between com ponents. There are three kinds of 

procedural composability:

•  Signature level com posability refers to  the  signatures of various com ponents.

•  P rotocol level com posability refers to  the  ordering of operations.

•  Semantic level com posability refers to  the  sem antics of the composed operations.

For a given com position scheme, a com position anom aly occurs when concerns which are func

tionally and procedurally composable either cannot be composed using the com position scheme or 

deviate from the  expected interaction. The com poser m ay adopt a  different com position scheme, 

modify one or more of the  input concerns, or create glue code to  achieve the desired behaviour. 
According to  Tekinerdogan et al,

“A lthough there  is no fundam ental problem  w ith the need for additional code, it tu rn s  out 

th a t this reduces quality properties such as adaptability , reusability and m aintainability, 

in v irtually  all cases.”

W ith  respect to  SO P in teraction problems, choosing a different com position scheme is synony

mous with changing the com position specification or defining new com position rules; modification of 

input concerns is analogous to  subject modification; and glue code is the creation of a  new subject to  

patch  up an interaction. A different com position rule may not be available or it m ay not be possible 

to  create a  practical im plem entation w ithin the  SO P com position framework.
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C om p osition  R ules versus R efactoring

One problem  w ith reusing subjects is the  absence of adequate join points [7]. In the  term inology 

of Tekinerdogan e t al [123] from the  previous Section, the  subjects are functionally com posable bu t 

the  set of available com position rules cannot establish protocol level composability.

Lopes et al believe [77] th a t  more powerful m eans of referencing are required, capable of exposing 

all kinds of join points. A  powerful com position language enables the separation  of m ore concerns 

and makes it easier to  change the  specification of interaction  w ithout changing the  stru c tu re  of 

the  module. An alternative to  new com position rules is refactoring. Refactoring is a  sem antics 

preserving program  transform ation  [124]. W here possible, the  subject composer m ay refactor a 

subject to  expose join points for the  purpose of com position. R efactoring should be the  preferred 

approach when it leads to lower coupling between subjects. Refactoring can also m ake com position 

specifications shorter and easier to  understand.

In the following discussion of interaction problem s, it will be assum ed th a t jo in  points necessary 

to  express the  com position exist already.

4.1.3 Interaction Analysis in AOP

In teraction  problem s have been observed in the  dom ain of A spect-O riented Program m ing. T his is 

no t surprising given th a t separation of feature concerns and cross-cutting concerns from the  solution 
dom ain bo th  use join point interception.

Douence et al [33] propose to  form ally analyse statefu l aspects. Analysis takes place on an  asym 
m etric A OP framework which supports the  concepts of join point, aspect and aspect com position. 
Aspect com position determ ines when aspects m atch; aspects are said to  in teract when they  m atch 

the same join point. S tateful aspects are defined in term s of sequences of join points; they  take ac

count of the  history  of com putation instead of a single point. T he fram ework perm its s ta tic  analysis 

of interactions between aspects. Specifically, it is possible to  detect when aspects do not interact. 

T he framework supports com position rules which specify the correct order for execution of aspects 

when m ultiple aspects affect a  join point. T he com position rules are the m ain m eans of resolving 

conflicts. A spect reuse is addressed by the  use of explicit requirem ents on the base program . These 

requirem ents specify join point h istory  conditions th a t ensure the  correct application of the  aspect.

The reuse requirem ent p a rt of Douence’s A O P framework is of use to  th e  aspect developer also. 

It makes explicit the  otherwise im plicit requirem ent for the  correct application of an  aspect, m aking 

it useful for supporting  the m odular developm ent of th e  aspect.

K atz [62] proposes to  diagnose harm ful aspects using regression verification. He defines harm ful 

aspects as those th a t make the desirable properties of the base object-oriented system  un true in 

the  com bination of the  base w ith the  aspect. Regression testing  is a  process by which the  system  

is tested  w ith every new aspect th a t is added to  it, to  ensure th a t the  te s t suite which previously 

was passed is still passed. Regression testing  is not well suited to  aspect-oriented system s because 

aspects affect the original control flow m aking original tests irrelevant. As aspects inherently  affect 

m any parts  of the  program , it is difficult to  determ ine w hat p a rt of the  te s t su ite  m ight still be 

relevant. Instead, K atz proposes regression verification as a  com bination of s ta tic  type analysis, 
deductive verification and  model checking.

S tatic  analysis can prove th a t an  aspect does not invasively affect the  base system . D eductive 

verification over aspect code can establish a lack of harm  w ith respect to  specific properties, e.g. an
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invariant of an existing system  can be shown to  be an  invariant of the  system  containing the  aspect. 

M odel checking techniques can help to  detect harm ful aspects by showing th a t each interaction  

specified in the  aspect is acceptable. Each interaction triggers a  set of verification tasks and  all 

required te s t conditions are autom atically  checked. In order to  enable regression verification, the 

system s to  which the aspects are added need to  be augm ented w ith specifications describing the 

desirable properties of the system . Regression verification may also be applicable to  subject-oriented 
developm ent. However, it requires b e tte r discipline on behalf of the  subject developer to  specify the 

desirable properties of subjects.

4.1.4 Towards Understanding Interaction Problems

The following th ree Sections present th ree in teraction problems. These cases have been chosen 

because they  dem onstrate  the  kinds of actions th a t need to  be taken in order to  correct an anomaly. 

In the  w orst cases correction entails invasive m odifications to  subjects or patching. In order to 

understand  the im pact of subject-oriented decom position on in teraction  problems, every subject- 

oriented solution is com pared w ith a functionally equivalent object-oriented  solution.

4.2 Persistence and Association

T he first exam ple of an interaction problem  is concerned w ith th e  ordering of subjects in their 

in teraction w ith each o th e r1. There are th ree concerns, im plem ented as th ree subjects.

•  The Persistence concern stores ob jects’ fields in a file system  or a  database. An object is m ade 

persistent autom atically  when another persistent object holds a reference to  it. Once an  object 
becomes persistent it stays persistent until it is destroyed.

•  The A ssociation concern updates b inary associations between objects. Suppose x and  y are 
re la ted  by association, if some object x is set to  reference y then  y is set to  reference x. Each 

object can be involved in a t m ost one association relationship.

•  The T ransaction concern im plem ents a business case relating  a C ustom er and an O rder. A 

custom er references an  order and an order is associated w ith a  custom er.

The code for these subjects is given in Figure 4-1. By bringing these th ree  subjects together we 

create a new kind of TransactionPA subject th a t supports persistence and  association functionality. 

C om binations of Transaction w ith Association or of Transaction w ith Persistence work very 

well. B ut when the th ree are brought together, their order of in teraction  becomes significant.
Let us consider the  first of two com position specifications.

1 compose Persistence, Association, Transaction into TransactionPA;
2 mergeByName;
3 equate class AssocX, Customer into Customer;
4 equate class AssocY, Order into Order;
5 equate field AssocX.y, Customer.order into order;
6 equate field AssocY.x, Order.cust into cust;
7 equate operation AssocX.setY, Customer.setOrder into setOrder;
8 order operation AssocX.setY after Customer.setOrder;
9 equate operation AssocY.setX, Order.setCust into setCust;
10 order operation AssocY.setX after Order.setCust;
11 bracket <<*.set,J with before Persistence.PersistentCIass.setValue;

1 Adapted from an example in Renaud Pawlak’s PhD thesis [98].
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subject Persistence { 
class PersistentCIass { 

static Store s; 
void setValue(Object value) { 

if(s.isPersistent(this)) { 
s .makePersistent(value);

>

>
>

subject Association { 
class AssocX {

AssocY y;
void setY(AssocY y) {

if(y.getX() != this) y .setX(this);
>
AssocY getYO { return y; >

>
class AssocY {

AssocX x;
void setX(AssocX x) {

if (x.getYO != this) x.setY(this);
>
AssocX getX() { return x; >

>
>

subject Transaction { 
class Customer {

Order order;
void setOrder(Order order) { this.order = order; }

>
class Order {

Customer cust;
void setCust(Customer cust) { this.cust = cust; }

>

>

Figure 4-1: The subjects implementing the Persistence, Association and Transaction concerns
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Consider a  program  th a t has a custom er object aC ust and an order object anO rder. To s ta r t 

w ith, aC ust is transien t and  anO rder is persistent, and there  is no link between them . We execute 

a C u s t . s e tO rd e r  (a n O rd e r) . In  addition to  the behaviour specified in Transaction, the  effect of this 

in teraction  should be to  m ake aC u st persistent and to  set anO rder to  reference its custom er. The 

following sequence of m ethod  bodies is run:

1. P e r s i s t e n c e .P e r s i s t e n tC la s s . s e tV a lu e :  receiver object aC ust is no t persistent, do no th 

ing.

2. T ra n s a c tio n .C u s to m e r .s e tO rd e r :  set th e  custom er to  reference th e  order.

3. A s s o c ia t io n .  A ssocX .setY : an O rd er does no t have a reference to  aC ust so upda te  the  asso

ciation.

4. P e r s i s t e n c e  . P e r s i s t e n t C l a s s . s e tV a lu e : receiver object anO rder is persistent, so save the  
s ta te  of aC u st, i.e. save an O rd er. c u s t  = n u l l .

5. T r a n s a c t io n . O rd e r . s e tC u s t:  set the  order to reference the  custom er. T h a t is, a n O rd e r . c u s t  

= aC ust.

6. A s s o c ia t io n .  A ssocY .setX : aC u st does have a  reference to  anO rder, so do nothing.

A fter th is in teraction , the  value in storage is different to  the  value in memory. In store we have 

a n O rd e r .c u s t  = n u l l  and in m em ory a n O rd e r .c u s t  = aC ust. This is an  anom alous interaction.
Suppose we change the com position specification such th a t the  Persistence concern is applied after 

the  m erge of Association and  Transaction , i.e. replace line 11 in the  above com position specification 
with:

bracket <r*.set,J with after Persistence.PersistentClass.setValue;

Now we get the  following sequence of calls. T he values in storage and  m em ory are the  sam e, and 
the  interaction  is as intended:

1. T ra n s a c t io n .C u s to m e r . se tO rd e r :  set the  custom er to  reference th e  order.

2. A s s o c ia t io n .  A ssocX .setY : an O rd er does not have a reference to  aC ust so upda te  th e  asso
ciation.

3. T ra n s a c t io n .O rd e r  .s e tC u s t:  set the  order to  point to  the custom er.

4. A s s o c ia t io n .  A ssocY .setX : do noth ing  because the custom er already references the order.

5. P e r s i s t e n c e  .P e r s i s t e n t C l a s s .  se tV a lu e : control is still w ith  the  order object. an O rd er is 

persistent, so save th e  s ta te  of aC u st, i.e. save a n O rd e r .c u s t  = aC ust.

6. P e r s i s t e n c e .P e r s i s t e n tC la s s . s e tV a lu e :  control has now re tu rned  to the  custom er object. 

aC ust is now persistent. Save a C u s t . o rd e r  = anO rder.
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4.2.1 Interaction Problem Analysis

W ould this problem  occur in an object-oriented program ? A  functionally sim ilar solution is the  one 

where the  P e r s i s t e n c e  and A s s o c ia t io n  concerns are tangled and  scattered  in a single program . In 

an  object-oriented program , the interaction is a  sequence of statem ents, probably appearing within 

a  single m ethod body. This problem  is much less likely in object-oriented program m ing because 

the sta tem ents are localised. I t is also possible th a t the  subject composer as a  reuser has failed to 

u nderstand  the  artifacts well enough in order to  reuse them  successfully.

T he understandability  of reuse artifacts m ay be improved by defining com position interfaces. 

However, we are re luctan t to  define com position interfaces because they m ay restric t com position in 

ways no t an tic ipated  by the  original developer.

T he interaction problem  may be avoided th rough  b e tte r concern modelling. S u tton  and Rou- 

vellou [120] propose Cosmos for modelling concerns through the lifecycle. A  concern in Cosmos is 

‘any m a tte r of in terest in a  software system ’. A  Cosmos model provides a  form of docum entation 

for basic inform ation about concerns and their relationships. T he detailed inform ation abou t con

cerns is found inside subjects (or o ther design and  im plem entation artifacts) bu t a  schem a affords 

a global perspective. R elationships between concerns can be modelled w ithin the schema. Physi
cal relationships describe the com position dependencies between concerns. A  specialisation of the 

Cosmos schem a to  SO P m ay be used to  describe the  precedence of concerns in the above example, 

e.g. P e r s i s t e n c e  a c t i v a t e s A f t e r  A s s o c ia t io n  where a c t iv a te s A f  t e r  is a  physical relationship.

A fter the relationship has been identified, assertions can be used to  validate the  com position [69]. 

Assertions describing com position relationships between concerns are an  extension to  design-by- 

contract rules as used in the  Eiffel language [85]. Assertions can validate th a t the  application 
contains a  suitable set of subjects applied in the  right order bu t it cannot help to  identify in which 
order the subjects should be composed.

4.3 W ater Beans

O ur second exam ple concerns the  development of a  series of JavaB eans com ponents [119]. JavaBeans 

are reusable software com ponents th a t can be m anipulated  visually in a builder tool and composed 

to  create end-user applications. The requirem ents for an  object to  be a bean are as follows:

•  O bjects m ust have a zero-argum ent constructor and m ust be either Serializable or Externaliz- 
able.

•  Any properties of the object th a t are to  be trea ted  as bean properties, changeable by the  user, 

should be indicated by the  presence of appropria te  get and set m ethods whose nam es are g e tP  
and s e tP  where P is p roperty  name.

•  Some bean properties, known as bound properties, fire events whenever their values change 

so th a t any registered listeners (i.e. o ther beans) will be informed of those changes. M aking 

a bound p roperty  involves keeping a list of registered listeners, and  creating and dispatching 

event objects in m ethods th a t change the property  values, such as s e tP  m ethods.

The application consists of th ree beans: W aterS ource, V alve and P ip e . These can be con

nected arb itrarily  while observing the condition th a t no com ponent can be connected up-stream  of a
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W aterS ource com ponent. W ater can flow out from any W aterSource, V alve and P ip e  to  any num 

ber of V alves and  P ipes. W ater can flow in  to  a  V alve or P ip e  from any num ber of W aterS ources, 

V alves and  P ipes. W ater comes from W aterS ources a t some user specified volume and all com po

nents have a graphical representation  th a t shows when w ater is flowing. Prom the  topology of th e  

exam ple one should be able to  determ ine the  w ater pressure in any given pipe segment.

T he client would like to  build networks of W ater Beans by using the Bean Box environm ent for 

JavaB ean experim entation [31]. The B ean Box environm ent allows beans to  be connected in order 

to  enable d a ta  flow between them . The W ater Beans have two responsibilities. F irst, they  should 

enable w ater pressure to  be determ ined based on the  supply volume and  the  network topology. 

Secondly, they  should have a graphical represen tation  which conveys a sensation of w ater flowing 

through the  network.

SO P m ay be used to  ex trac t bean behaviour [51]. The benefit of separating  bean properties from 

an ab strac t d a ta  type, e.g. a  C a r te s ia n P o in t  class, are clear -  it untangles the  A D T im plem entation 

from code for listeners and  au tom atic firing of events for changed property  values. T he benefit of 

separating  bean properties from the  W ater Beans is less clear -  the  event system  and property  value 

changes are p a rt of the  model. W ater Beans properties are conceptually tangled w ith the JavaB eans 

im plem entation logic and separation  in code would be overkill. Therefore, the  system  is decom posed 

into the  following two subjects based on the  two m ain concerns identified from the  requirem ents.

•  The W a te rP re ssu re  subject abstrac ts  the  algorithm s for calculating the  w ater pressure for each 

pipe segment in the  network based on some user specified supply volume and the properties 

associated w ith the valve or pipe. Supply volume dow nstream  from a  valve drops to  zero when 

a valve is closed. Supply volume is restored when the  valve is open. T he topology and  th e  

s ta te  of the  pipe network determ ines the  pressure in any given pipe.

•  The G rap h ic s  subject contains W ater Beans drawing algorithm s. T he design of the  subject 
follows the M odel-View-Controller paradigm  [20] whenever possible, separating  the  draw ing 

algorithm s from the  model th a t controls their activation. The controller in terprets user input 

during network design in the  Bean Box. The Bean Box creates connections betw een th e  

beans. In the model, instances of the  W aterE v en tO b jec t class ‘ca rry ’ the  w ater supply. T he 

W aterS ource ‘drips’ one W ate rE v en tO b jec t per second to  its list of listeners. An open V alve 

passes on th e  received W aterE v en tO b jec ts  to  its W a te rL is te n e rs . A closed V alve does no t 

pass on any W aterE ven tO b jects . A P ip e  works in the same way as an open V alve.

This decom position m odularises the  definition of graphics for the  W ater Beans, localising the  changes 

th a t affect the  aspect of W ater Beans visual representation . Also, it becomes possible to  create 

families of W ater Beans, i.e. w ith or w ithout the  W a te rP re ssu re  concern.

B oth the W a te rP re ssu re  and  the  G ra p h ic s  subjects use the event system  to  enable com m uni

cation between the  W ater Beans. The client requires th a t connections between the  W ater Beans 

should be established by drawing a single link from the  upstream  com ponent to  the  dow nstream  

com ponent. T his integration requirem ent indicates th a t the  event system s of each subject should 

be combined.

Before a detailed design can be developed for each subject we have to  work out the su b jec ts’ 

com position interfaces. In order for the  event models to  be composable a degree of coordination is 

required in the area of event model design. One area of in teraction identified between concerns is 

w ater supply volume dropping to  zero. This event is sim ilar to a valve being shut; th e  w ater stops
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Figure 4-2: W ater Beans class diagram  for the  G rap h ic s  subject

flowing. Once the com position interface has been defined, work can commence independently  on the 

detailed design for these subjects.

4.3.1 Detailed Design Considerations

T he G rap h ic s  subject uses the  JavaB eans event model to  sim ulate w ater delivery. Every event 
carries a tim estam p. In the model underlying the  G rap h ic s  concern, a  W ater Bean is considered 

to  be carrying w ater if the  tim estam p of the  last event is less th an  2 seconds before the  present 

tim e. If the  last event came more th an  2 seconds ago then  the  bean changes its representation  to  

indicate th a t w ater is no longer flowing. T he effect of the  model is to  produce the  sensation of w ater 

em ptying over tim e ra th er th an  instantaneously. Figure 4-2 contains th e  class diagram  of the  m ain

« ln l e r f a c e »

RafeChangeCistener

handleEvenffe: R ateC hangeE ven t): void

5 S

RateC hangeE vent

Valve
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handleEvent(e: R ateC hangeE ven t): void 

dispatchEventQ : void
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la stE v en t: RateC hangeE vent 

lis ten e rs : Vector

handleEvent(e: R ateC hangeE ven t): void 

dispatchEventQ : void

W aterSource

listeners : Vector

dispatchEventQ : void

Figure 4-3: W ater Beans class diagram  for the  W a te rP re s su re  subject
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features of the  G raphics subject. Each bean uses a th read  to  check for elapsed tim e. M ethod r u n ( )  

executes a loop th a t periodically com pares the  tim estam p of the  last event against the  current tim e.

T he W a te rP re ssu re  subject uses the  JavaB eans event model to  propagate changes in supply 

volume. P ip es  have an  observable pressure property  th a t is determ ined by the ra te  a t which w ater 
enters the  pipe (rate  equals volume over tim e) and the diam eter of the  pipe. V alves are either 

fully open or fully closed; either they let the  full volume of w ater pass th rough or none a t all. 

W hen th e  w ater supply volume changes the change in w ater pressure in each pipe is v irtually  

instantaneous. Figure 4-3 contains the class d iagram  of the  m ain features in the  W a te rP re s su re  

subject. h an d le E v e n t ( .  .)  m ethods are called by the bean framework when a new event is received. 

T he d isp a tc f iE v e n t 0  m ethods are called when the ra te  change is propagated  to  listeners.

To compose, m e rg e  integrates the  listener interfaces, the  event classes, and  the  W ater Bean 

classes th a t correspond by name.

4.3.2 An Interaction Problem

Com position of these subjects produces an  anomaly. W hen a closed valve v opens, the volume of 

supplied w ater toggles from zero to  the  volume upstream  from the valve. T he upstream  ra te  is taken  

from the  last event th a t v receives. The change in volume causes v to  release events to  all listeners. 
W hen a bean dow nsteam  of v receives the  event, it coincidentally changes its visual representation 

because the  event also indicates th a t w ater is flowing. In the m eantim e, v is still showing th a t w ater 
is no t flowing because it is w aiting for an  event from an upstream  object. Finally, when v receives an 
event from an upstream  bean, its representation changes to  indicate th a t w ater is passing through.

Figure 4-4 shows a  tim e trace  for th is interaction  problem . W aterS ource (visually represented 

by a tap ) supplies w ater a t 10 litres per m inute. T he ta p  is connected in sequence to  a pipe, followed 

by a valve, followed by two more pipe segments. At tim e t  the  valve is closed, there  is w ater in the  

pipe preceeding the valve b u t no w ater beyond it. T he w ater pressure before th e  valve is 5 b ar and  

0 bar afterw ards. At tim e t  +  1 the  valve opens. In the  W a te rP re ssu re  subject, the  valve creates 

and dispatches an  event to  all listeners to  indicate th a t a  change in supply volume has occurred and, 

consequently, a  change in pressure. Coincidentally, the  pipes dow nstream  from the  valve in te rp re t 

the  incoming event as w ater flow, rendering the  pipes a grey colour. The valve is still clear because 

its representation will change only in response to  an incoming event. A t tim e t +  2 th e  event from 

the pipe connected im m ediately before the valve arrives a t the valve, and  the  program  re tu rn s  to  
the  correct s ta te .

There is no simple way to  correct this in teraction problem. On th e  one hand, keeping the  

event models separate  leads to  no undesirable interactions. On the o ther, there  is a  requirem ent 

to  in tegrate event models which leads to  th is anomaly. W ith  the  SO P in tegration  rules we have 

described up to  now, to  rectify the  interaction  we m ust modify the  input subjects or create a new 

subject to  patch  things up.

The problem  is th a t the  W a te rP re ssu re  and  G rap h ic s  subjects use the  event model in different 

ways. The in tegration requirem ent dem ands a  single event type to  describe bo th  variants. In  effect, 

a  single event type quantifies over or generalises the  two uses of th e  event system . A distinction 

between different events is required in order to  specialise the  trea tm en t for each event type. SOP 

does not define in tegration  rules to  express th is relationship a t present.
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t+1
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Figure 4-4: The W ater Beans interaction problem. 
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Figure 4-5: W ater Beans conceptual event model 

4.3.3 An Object-Oriented Solution

Lets look a t the way the W ater Beans could be designed as an object-oriented program. It is possible 
to model this interaction using inheritance. We need to define a common event type such th a t a 
single connection between W ater Beans is sufficient to establish their interaction. Also, it should still 
be possible to  distinguish between three kinds of event: water flow, w ater pressure change and the 
union the two. Figure 4-5 shows an inheritance hierarchy describing this relationship. At the root 
of the hierarchy is an abstract W aterEvent class which quantifies over all other kinds of events. The 
W ate rP ressu re  concern creates RateChangeEvents, and the G raph ics concern creates FlowEvents. 
W hen a new W ater Bean is connected into the network, the upstream  bean should dispatch a 
FlowAndRateChangeEvent object. Conceptually, this is an action th a t is performed jointly by the 

Graphics and W aterPressure concerns.
There are problems with implementing this design elegantly in JavaBeans.

• Java does not support multiple inheritance of implementation, so the FlowAndRateChangeEvent 
has to be declared as a direct subclass of W aterEvent instead. This increases code duplication.

•  Java does not have multiple dispatch a variant of the inheritance mechanism th a t uses 
the dynamic type of the param eters as well as well as the dynamic type of the receiver to 
choose the m ethod to dispatch. M ultiple dispatch enables the dynamic selection of the right
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void handleWaterEvent(WaterEvent e) { 
if(e instanceof FlowEvent) { ... } 
else if(e instanceof RateChangeEvent e) { . . } 
else if(e instanceof FIowSndRateChangeEvent e) { ... } 
else { ... >

>

Figure 4-6: Sim ulating m ultiple dispatch  in Java

m ethod to  execute depending on w hether one gets a  FlowEvent, a RateChangeEvent or a 

FlowAndRateChangeEvent object from an upstream  bean. Instead, the receiver m ust m anually 

switch based on the  type of the incoming event as shown in Figure 4-6.

•  There are conceptual problems w ith using Jav a ’s inheritance m echanism  to  m odel this rela

tionship. The G rap h ics  concern is in terested only in th e  tim estam p of the event, whereas 

the W a te rP re ssu re  concern is in terested  only in the volume of w ater. Inheritance in Java is 

m onotonic -  classes cannot disinherit the  m ethods they  inherit. One can call the  getVolum e 

m ethod on a Flow Event object in spite of its no t being well defined conceptually. T his can 

lead to  fu ture  reuse problems.

Clearly, an  object-oriented design can be created  to  address this problem . B u t a  Java-based solu

tion does not have inheritance relationships which can m odel th e  conceptual relationships faithfully. 

In o ther languages, e.g. Eiffel [84], the unsuitable m ethods m ay be disinherited, thereby addressing 
the last point above.

G ardner has proposed S tructu red  Inheritance Relationships (discussed in Section 2.4.2 on page 
19) in order to  overcome problems associated w ith inheritance, improve conceptual m odelling and 

facilitate reuse [44]. Among her recom m endations is a  V iew  inheritance relationship which allows a 

subclass to  provide an  a lternate  interface to  ta rg e t objects th a t  is more appropriate  to  some clients 

th an  the interface provided by the default view. Languages th a t provide na tu ra l classifications of 

objects will produce m ore robust object-oriented program s th an  those th a t model one solution to  

the problem  [81].

4.3.4 A Solution For Subject-Oriented Programming

The interaction problem  can be addressed by a  com position rule th a t allows objects to  be dis

tinguished by the  subject th a t instan tia tes them . We propose the view -m erge in tegration  rule 

for dynam ic selection based on subject of origin. The view -m erge rule is inspired by the V iew  
structu red  inheritance relationship [44] b u t scaled to  sub ject granularity.

The view -m erge in tegration rule can be applied on a set of corresponding classes. W hen a 

view -m erged object is received as an operation param eter, th e  m ethod body to  execute is selected 

based on the  subject which in stan tia ted  it. An object is considered to  be in stan tia ted  by subject S  
when it is:

•  in stan tia ted  on an instance variable in S  th a t  has no corresponding instance variables, or

•  created in the  body of a  m ethod in S  w ith the exception to  those m ethods which have corre

sponding abstract m ethods in o ther subjects.
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W hen subjects S \ . . .  S n are composed, an object is considered to  be in stan tia ted  by all sub jects 

when it is

•  in stan tia ted  on an  instance variable Vi in Si  and there exists some Vj in Sj  w ith i ^  j  such 

th a t Vi,Vj correspond, or

•  created  in the  body of m ethod in Si and  there  exists some rrij in S j  w ith i ^  j  such th a t 

m i,rrij correspond and  m j  abstract.

T he last of these deserves an additional explanation. Recall th a t  in SOP, a m ethod is declared 

abstract when another subject is responsible for its im plem entation. W hen a set of abstract 
m ethods is merged w ith im plem ented operations, the effect is to  share the  im plem entations between 

all host classes. O bjects created in these operations are classed as belonging to  all subjects.

We believe th a t  the view-merge rule can be im plem ented w ithin the  SO P rule framework. 

W hereas the s tan d ard  merge rule in SO P creates a  single class in the  o u tp u t from a set of input 

subjects, view-merge creates an  inheritance hierarchy as follows:

W hen view-merge is applied to  S \.A , S 2 .A  and S 3 . A , create class X  by merge in

tegration  of S i.A , S 2 .A  and S 3 .A . Also create three subclasses of X  called X -S i.A , 

i G {1,2, 3}, by augm enting the interface of each S i.A  w ith stub  m ethods order to  make 
them  into proper subclasses of X  (to satisfy Java type  rules). W hen A  is in stan tia ted  in 

<Si, create an instance of X JS i.A  if the  point where in stan tia tion  occurs is exclusive to  
5 i,  bu t create an X  object instead if the  instan tia tion  point is shared by two or more 

subjects. For example, if A  is in stan tia ted  in a  m ethod exclusive to  S 2 then  in sta tia te  
an object of type X JS 2 .A . B ut if A  is in stan tia ted  in a m ethod in S 2 th a t does have 

corresponding abstract m ethods then  in stan tia te  X  instead.

W hen an object of a  view-merged class is received as a param eter, the  m ethod body 

to  execute is selected dynam ically using th e  in s ta n c e o f  operato r in Java to sim ulate 

m ultiple dispatch. T he code of the  kind given in Figure 4-6 for dynam ic selection is 

injected autom atically  into all m ethods th a t  have a param eter of type A.

The details of rule im plem entation are hidden from the rule user. In the W ater Beans ap

plication, view-merge can be applied to  the com position of FlowEvent and RateChangeEvent 
classes to  create class FlowAndRateChangeEvent. W hen Graphics in stan tia tes an event ob ject and 

sends it to  listeners, only the Graphics su b jec t’s handler m ethod gets executed. Similarly, when 

WaterPressure instan tia tes an event and  sends it to  listeners, only the  WaterPressure su b jec t’s 

handler m ethod is executed. However, when a m ethod belonging to  bo th  these subjects instan tia tes 

an event object, bo th  handlers will be run.

F urther developm ent of this rule should extend it to  operations w ith m ultiple param eters. Con

sider m ethod doSomething(A a, B b) where A and  B are view-merged. T he dynam ic types of 

b o th  a and b m ust be used to  select the m ethod body to  execute. In order to  continue the  discussion 

on interaction  problems, the design of th is com position rule is no t developed further a t th is point.

O ther rules m ay be inspired by various uses of inheritance; sub ject com position rules describe 

relationships between abstractions th a t may be modelled w ith inheritance in object-oriented pro

gram m ing. Developm ent of in tegration rules is open-ended in nature . I t depends on the  existence of 

a  suitable com position framework -  this is already the case w ith Subject-O riented  Program m ing. By 

increasing the  com position vocabulary it becomes possible to  compose m ore subjects non-invasively.



CHAPTER 4. INTERACTION PROBLEMS IN  SUBJECT-ORIENTED PROGRAMMING  59

creates

acquires

repN am e: String

UnionRep

representative: UnionRep

Membership

thellnion : Union 

em ployee: Employee

i o i n U n i o n O ; Ypi f l _ _ _ _

MembershipSecretary

myM embership: Membership

Employee

m em ber2rep: Hashtable

reps : Vector___________

iQinfe: Em ployee!: void

Union

Figure 4-7: T he Jo in U n io n  subject class diagram

4.4 Union Members and Representatives

T he th ird  anom aly we present is not solved by changing the order of subject com position or by 
defining m ore powerful com position rules. T he in teraction problem  is caused by incom patible domain 

views. T he exam ple concerns the  developm ent of software for a  trad e  union. The initial description 

of system  functionality is as follows:

T he employees of a  com pany can become m em bers of a  union. T he union is a  large 

organisation consisting of workers and  union representatives. U pon joining, an  employee 

is assigned a  representative who advises the m em ber on his or her rights in case of 

an industrial dispute or if a  m em ber feels th a t he has been trea ted  unfairly by the 

com pany which employs him. An employee deals solely w ith his union representative.

T he representative handles small cases personally. Bigger issues are taken back to  the  

union com m ittee who take a  collective decision on behalf of all m embers. An issue which 

all union representatives get to  deal w ith is dismissals. T he representatives deal w ith 

dismissals on a  personal basis. A dismissed employee contacts the  representative who 

can investigate the causes of a  dismissal and  so on.

D uring analysis, joining the  union and  dismissal features are identified. In  the  design the 

Jo in U n io n  subject describes the  way an employee becomes a union mem ber. T he D ism iss  sub

ject describes the  procedure involved in getting  help when an employee is dismissed. These subjects 

are shown in Figures 4-7 and 4-8.

In the Jo in U n io n  subject, the M em b ersh ip S ec re ta ry . jo in U n io n  m ethod sends an Employee 

object as argum ent to  Union to  register him as a  mem ber. Union generates a  M em bership object 

th a t is stored  by the  Employee. A M embership contains a reference to  th e  employee’s UnionRep.
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Figure 4-8: T he D ism iss  sub ject class diagram
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retireh : void retirefrep: S tr ing): void___

Figure 4-9: The R e t i r e  subject class diagram

The interaction  in the D ism iss subject s ta r ts  w ith the Company object th a t d ism is se s  an 

Employee. T he Employee can call the  a p p e a l m ethod. This re tu rns the  assigned union repre

sentative in the  form of a  UnionRep object to  handle th e  allegations of unfair dismissal.

T he com position specification joins all identically nam ed artifacts. M em bership classes are joined, 
r e p r e s e n t a t i v e  field is the  same union representative in bo th  subjects. The two views of the  

Employee class share the  myMembersfiip field also.
An additional requirem ent is in troduced into the  design a t a  la ter stage. A union representative 

is now able to  retire  from the post. UnionRep sends a r e t i r e  message to  th e  U nion giving his nam e. 

T he m em bers th a t the  retiring representative served are assigned an alternative representative from 

the  pool. T his concern is elegantly cap tured  by the  R e t i r e  subject as shown in Figure 4-9. The 

collaboration involves updating  the  mem ber2rep collection to  reference some new representative, 

then  removing the  retiree from the r e p s  pool. W hen composing, we equate classes Employee and 

Member for they  represent the sam e abstraction  from different perspectives.

4.4.1 An Interaction Problem

There exists an  anom aly in the  composed program  th a t emerges during a  particu lar in teraction  

between the R e t i r e  and D ism iss  subjects. T he problem  m anifests itself when an employee is 

dismissed after his union representative retires. T he union now associates the  employee w ith a  new 

union representative bu t the  employee’s m em bership still refers to  the  retired  representative. The 

D ism iss  subject re tu rns the retired  union rep instead of his replacem ent. The Jo inU nion  sub ject
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Figure 4-10: JoinU nion, Dismiss and R etire concerns as a  (badly s tructu red) 0 0  program

inform ally expects the  relationship between an employee and his union representative to  be invariant. 

The D ism iss  subject reinforces th is assum ption by relying solely on myMembership for inform ation 

on the representative.

Invasive m odifications to  the W ater Beans exam ple seen earlier were avoided by defining composi

tion  rules which reflect the tru e  relationship between abstractions. However, th is anom aly cannot be 

solved non-invasively by addition  of com position rules because the  in teraction cannot be expressed 
as a relationship between the composable elem ents of corresponding subjects.

We observe two ways of correcting this interaction  w ith design. T he first solution is to  make 

the R e t i r e  subject upda te  all references between the employee and the representative. T he R e t i r e  

subject becomes responsible for updating  each Em ployee’s m em bership details in the  U nion object 

and all M embership objects. The second requires reconstruction  of Jo in U n io n  and D ism iss  concerns 

such th a t U nion class becomes the only source of inform ation regarding the relationships between 

employees and  representatives. The first solution extends the design which has outgrow n its useful

ness in a highly coupled way. To its credit, the  first solution requires no m odifications w ith respect 

to  the Jo in U n io n  and D ism iss  subjects. According to  Tekinerdogan et al [123], it is a com position 

anom aly because the  additional code affects quality  factors (see Section 4.1.2 on page 47). Also, 

the explicit cap ture  of cross-cutting concerns in subjects should be the n a tu ra l consequence of good 

m odularity  and  not the  result of a  corrective m easure due to a  tangled im plem entation [29]. The 

second solution is a  b e tte r design because it localises the  employee-union representative relationship 

bu t it requires invasive m odifications to all input subjects. Clearly, neither solution is ideal.

The cause of th is interaction problem  is understood  best by looking a t an  object-oriented design 

for Jo inU nion , D ism iss  and R e t i r e  concerns.

4.4.2 An Object-Oriented Solution

An object-oriented design addressing these concerns is shown in Figure 4-10. The in teraction prob

lem experienced in the o u tpu t of subject-oriented com position occurs also in this object-oriented 

program . T his kind of problem  in object-oriented program m ing has been blam ed on uncontrolled 
object aliasing [57].

In object-oriented program s, objects are passed by reference. An object is said to  be aliased when
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there  are two or m ore references to  it. O bject s ta te  depends on th e  values of its variables and the 

s ta te  of o ther objects it references. Aliasing problem s can occur w hen an object reveals references to  

the  objects contained w ithin through the interface. The client can obtain  a reference and  proceed to  

dispatch messages to  the reference w ithout going th rough  the  interface of the  object th a t  revealed 

it. This can pose problem s when try ing to  understand  object-oriented program s because a s ta te  

change to  one object affects all others th a t alias it. Confusion can arise when object s ta te  changes 

no t as a  result of a  message sent to its interface bu t because of an  alias into its s ta te .

Aliasing problem s are particularly  acute in object-oriented program m ing because m ost objects 

have m utable sta te . O bject s ta te  m utates as the result of changes to  values and the s ta te  of refer

enced objects. Some objects are im m utable: the ir s ta te  cannot be changed although the  values of 

variables referencing them  can. This includes atom ically typed  objects such as integers and  booleans. 

Im m utable objects can be aliased more freely because their s ta te  cannot be modified.

To address aliasing problems, a  num ber of researchers have proposed Alias Protection System s  

(APSs) [56, 6, 91, 5, 127, 23]. At the core of any A PS is a  concept of object representation. 

R epresentation consists of objects th a t are used in the  im plem entation of abstractions (classes). 

P ragm atic  approaches to  alias protection  do not hide the represen tation  w ithin one object bu t 

enable controlled exposure to  support idiom atic uses of object-oriented  program m ing. Flexible 

Alias P ro tection  (FAP) [92] is one of the  m ost advanced APSs. T he inspiration for FAP cam e from 

the  observation th a t problems are not caused by aliases per se; ra ther, they are due to  non-local 

changes caused by aliases. Aliasing should be allowed so long as th e  visibility of changes to  objects 

is controlled. T he Union exam ple could be redesigned, using FAP to  enforce encapsulation, thus 

steering clear of the  aliasing problem  in Figure 4-10.

4.4.3 Redesigning the Object-Oriented Solution

Flexible Alias P ro tection  takes the  form of aliasing m ode declarations (additional types) th a t are 

inserted into code by the  program m er and checked sta tically  by an  au tom ated  checker. T he full 

details of FAP are no t relevant for our exam ple2. Suffice it to  say th a t in our exam ple objects of 

non-value types have one of th ree modes:

•  Representation  objects (mode rep ) can be m anipulated  freely inside the  container b u t never 

exposed.

•  A representation object can be passed to  internal containers as an  argument object (mode 

a rg ). To minimise its effect, an argum ent object m ust appear im m utable from the  perspective 

of objects th a t  access it. T he messages sent to  argum ent ob jects should appear to  be purely 
functional.

•  Variable objects (mode v a r)  may be m anipulated  and  aliased freely anywhere in th e  program  

in the  sam e way as objects in a  m ainstream  object-oriented program m ing language.

M ost objects require a single mode to  describe the aliasing policy. Classes im plem enting ADTs, 

such vectors and hashtables, require additional modes: vectors require one additional m ode for the 

elements stored  inside; hashtables require two additional m odes -  one for the  keys and one for the 
values. Being able to specify the mode of container elem ents param etrically  makes A D Ts more 

reusable. Assignm ent between expressions of different modes is forbidden in m ost cases, bu t an

2Chapter 5 on page 70 contains a detailed review of Alias Protection Systems.
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object can be viewed using different modes a t different times. A  r e p  object can be viewed as an a rg  

object when it is passed to  another r e p  object for storage, e.g. a  union representative can be stored 

in a d a ta  s tru c tu re  containing all o ther union representatives.

Figure 4-11 contains the improved object-oriented im plem entation for the  Jo inU nion , D ism iss 

and R e t i r e  concerns anno ta ted  w ith FAP aliasing modes. T he aliasing problem  has been elim intated 

in th is design. T he M embership class has been deleted and Employee objects use U nion as the  sole 

source of employee-union representative relationships. In the U nion class, a  hash tab le  is used to  

store m em ber-to-representative associations (line 29). T his hashtable is the  private representation  

of its U nion object as indicated by the leading r e p  mode. Inside the  angle brackets, m em bers can 

be referenced bu t no t modified by the U nion as indicated by a rg . Union representatives have mode 

re p ; they  are trea ted  as representation objects which m ust not be exposed externally.

D uring a dismissal appeal (line 9), when getRepName m ethod is called by the employee, instead 

of re turn ing  a reference to  a  UnionRep, we re tu rn  its repName field (line 38 followed by 23). This 

object is im m utable; once created, it is accessed in a purely functional way, leading to  no unexpected 

s ta te  changes in objects th a t reference it directly  or transitively.

4.4.4 Towards a Solution for Subject-Oriented Programming

In object-oriented program m ing FAP aliasing m odes serve two roles. T he first role is alias protection; 
it is to  p ro tect representation objects from external access. The second role is annotational. Aliasing 
modes anno ta te  object usage, describing the  perm issions to  access and modify the  s ta te  of an object.

It is the  second role which m otivates our application of FAP to Subject-O riented Program m ing. 

Aliasing modes m ay also be useful for describing the  way subjects use objects. A t present in 

H y p e r/J , Java  types are the  only interface-level formalism for checking com position validity, and 

the  composer m ust rely on informal docum entation  or im plem entation inspections to  check th a t 

subject in teraction  is problem  free. The addition  of aliasing modes will improve the  com poser’s 

ability  to  reason abou t interaction.

In Figure 4-12, FAP aliasing modes are applied to  the  Jo in U n io n  (fig. 4-7), D ism iss  (fig. 4-8) 

and  R e t i r e  (fig. 4-9) subjects. Subjects are purely object-oriented and aliasing m odes are applied 

w ithout m aking any stru c tu ra l or functional changes. No changes are necessary because on its 

own each subject is a  reasonable object-oriented design. The modes in each sub jec t are chosen 

independently from o ther subjects. W hen two or more modes are applicable, the conceptually m ost 

descriptive m ode is chosen.

The modes were selected based on the  following justifications. In the Jo in U n io n  subject:

•  M em b ersIiip S ec re ta ry . tfieU nion has m ode re p  to  indicate th a t only th is M em bersIiipS ecre tary  
can visibly change the  s ta te  of tfieU nion.

•  M em bersIiipS ecre tary  .em ployee has m ode v a r  because an employee need no t be a m em ber 

of a  union. Mode a rg  is not appropria te  because of changes to  an employee’s m utable s ta te  

when setting  mem bership.

•  E m ployee. myMembersfiip has mode a rg  because changes to  the  s ta te  of myMembersIiip are not 
expected after it is created.

•  M e m b e rs h ip .re p re s e n ta t iv e  has m ode a r g  to  indicate th a t the rep resen tative’s s ta te  is im
m utable.
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1 class MembershipSecretary {
2 vax Union theUnion;
3 var Employee employee;
4 void joinUnionO { theUnion.join(employee); }
5 >
6
7 class Employee {
8 var Union theUnion;
9 arg String appeal() { return theUnion.getRepName(this); }
10 >
11
12 class Company {
13 rep Vector<var EmpIoyee> employees;
14 void dismiss() I

15 var Employee e = selectEmpIoyeeToDismissO;
16 arg String repName = e.appeal();
17
18 >
19 var Employee selectEmpIoyeeToDismissO { ... }
20 >
21
22 class UnionRep {
23 arg String repName;
24 var Union theUnion;
25 void retireO { theUnion. retire (repName) ; }
26 >
27
28 class Union {
29 rep Hashtable<arg Employee, rep UnionRep> member2rep;
30 rep Vector<rep String> reps;
31 void join(arg Employee e) { member2rep.add(e, selectRepRandomlyO); }
32 void retire(arg String r) {
33 rep UnionRep old = getRepByName(r);
34 changeRep(oId, selectRepRandomlyO);
35 reps.remove(old);
36 >
37 void changeRep (rep UnionRep oldRep, rep UnionRep newRep) { ... }
38 arg String getRepName(arg Employee e) { return member2rep.get(e).getRepNameO ; >
39 rep UnionRep selectRepRandomlyO { ... }
40 rep UnionRep getRepByName(arg String repName) { ... }
41 >

Figure 4-11: 0 0  Program  im plem enting the JoinU nion, Dismiss and  R etire  concerns anno ta ted  w ith 
FAP aliasing modes
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subject JoinUnion {
class MembershipSecretary { 

rep Union theUnion; 
var Employee employee;
void joinUnionO { theUnion. join (employee) ; }

>
class Employee {

arg Membership myMembership;
>
class Membership {

arg UnionRep representative;
>
class UnionRep { 

arg String repName;
>
class Union {

rep Hashtable<var Employee, arg UnionRep> member2rep; 
rep Vector<arg UnionRep> reps; 
join(var Employee e) { ... }

>
>

subject Dismiss { 
class Company {

rep Vector<rep EmpIoyee> employees; 
void dismissO { . . . }

>
class Employee {

arg Membership myMembership; 
arg UnionRep appeal() { ... >

>
class UnionRep {
>
class Membership {

arg UnionRep representative;
>

}

subject Retire { 
class UnionRep { 

var Union theUnion 
arg String repName; 
void retire() { . . . >

>
class Union {

rep Hashtable<arg Member, rep UnionRep> member2rep;
rep Vector<rep UnionRep> reps;
void retire(arg String repName) { ... >

>
class Member { >

Figure 4-12: Jo in U n io n , D ism iss and R e t i r e  subjects an n o ta ted  w ith FAP aliasing modes
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•  U nion.m em ber2rep is the  representation  of its container. I t  cannot be exposed outside. 

Employee objects used as the  hashtable keys have m ode v a r  because they can be aliased 

and  changed outside th is object. UnionRep objects used as hash tab le values have m ode a rg  

because they are aliased bu t not visibly changed w ithin th is  class.

•  U nion, r e p s  is also the represention of its container. T he decision to use a vector to  reference all 

union representatives is a  design decision th a t  should be hidden in an 0 0  program . UnionRep 

objects stored  in the vector have mode a rg  because they  are aliased bu t not visibly changed 

in th is class.

In the  D ism iss  subject:

•  Company. em ployees is a  vector of Employee objects, r e p  m ode on the  vector and th e  elements 

w ithin indicates th a t the  choice to  use a vector to  reference employees is an im plem entation 

decision th a t  should be hidden from clients. Com pany employees cannot be contacted  directly 

by the com pany clients.

•  Employee .myMembership has mode a rg  to  indicate th a t  the  s ta te  of myMembership is not 
changed by th is Employee instance.

•  M e m b e rs h ip .re p re s e n ta t iv e  has m ode a rg  to  indicate th a t  representative’s s ta te  is not 
changed by th is class.

In the  R e t i r e  subject:

•  UnionRep. th eU n ion  has m ode v a r. By retiring, the represen tative changes the  s ta te  of the 
union. However, more th an  one representative m ay retire , requiring the  union to  be modified 
by m ultiple representatives.

•  U nionRep.repNam e has m ode a rg  because the  represen tative’s nam e is not expected to  change.

•  U nion.m em ber2rep is the representation of its object so it has m ode re p . The union associates 

m em bers to  representatives bu t does no t change them  in any way. M embers have m ode a rg  

because employees can be a m em ber of more th an  one union. Representatives have mode re p  

because they  are exclusively the representatives of th is union.

•  U n io n .re p s  is also the  representation of its container. UnionRep objects stored in the  vector 

have m ode r e p  because they  are exclusively the m em bers of this union and should no t be 
referenced outside.

Having specified the subjects, a tten tion  now tu rn s  to  the ir com position. Com position of aliasing 

m odes has not been addressed in existing work and requires fu rther investigation before being 

applied. Two choices are apparent: either only elements w ith th e  sam e modes m ay be com posed or 

it should be allowed to  compose elements w ith non-m atching modes. M ode equivalence is meaningful 

because subjects in Figure 4-12 are different views of the  sam e dom ain. Lets consider the  sem antics 

of pairwise com position of modes. This is easily extended to  n-ary  compositions:

re p  w i th  re p . All com positions take place in the  context of corresponding classes. Hence, this 

com position means th a t bo th  subjects can alias this ob ject freely inside the encapsulating 

object bu t not expose it to  external clients.
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a rg  w i th  a rg . B oth  subjects can pass the  object freely bu t never modify it in a  way th a t is visible, 

v a r  w i th  v a r . B oth  subjects can alias and modify the  object freely.

Com position of elements w ith the above m odes leads to  the  sam e m ode in the o u tp u t as in the 

input bu t only if equivalent modes appear a t all join points. M odes in different classes are interre

lated, and  a change in aliasing m ode in one class would have a cascading effect on modes in other 

classes. Com posing the above subjects, the views of corresponding elements in Employee/Member 

(different views of the  same entity), M embership and UnionRep classes are equivalent across all three 

subjects. For class Union there  are two places where modes are no t equivalent:

•  In Jo in U nion , employees have m ode v a r . This m ode is required in order legally to  pass an 
Employee instance when calling U nion , j o i n  and  to  be able to  m odify it w ithin Union. In 

R e t i r e ,  employees have mode a rg  because the  U nion does no t affect or depend on their state. 

However, purely from the  point of view of aliasing o ther FAP m odes can be used in th is position 

in R e t i r e .

•  In Jo in U nion , union representatives have m ode a rg  because they  are assigned to  E m ployee. my- 

M em bership 's r e p r e s e n t a t i v e  field in the  body of U nion , j o i n  (m ethod body elided in Figure 

4-12). M ode v a r  is also legal in th is case. In R e t i r e ,  union representatives have m ode re p  
because conceptually U nion objects cannot expose them . A lthough o ther modes are also valid 

here.

A lthough no t a  join point, M em b ersh ip S ecre ta ry  and  UnionRep refer to  the  sam e U nion object 

in separate  subjects. Jo in U n io n  uses mode r e p  to  specify th a t  M em b ersh ip S ecre ta ry  is the  sole 

object th a t can modify M em b ersh ip S ecre ta ry  .theU n ion . R e t i r e  uses v a r  to  specify th a t  any 
object can change the s ta te  of U nionR ep .theU nion .

The different modes in corresponding elem ents and, occasionally, in non-corresponding elements 

indicate differences in the  way the  dom ain is perceived from th e  perspectives of different concerns. 

In m any cases th ere  is more th an  one choice of modes. M ode v a r  is the  superset of uses described 

by re p  and a rg ; it can be used in places where the  o ther two m odes are appropriate, and, during 

com position, v a r  m ay replace modes re p  and a rg .

T he requirem ent of m ode equivalence prevents com position and  averts the  interaction  problem. 

T he use of FAP modes for conceptual m odelling of subject aliasing properties has helped to  show 

th a t the  subjects have differing views of the  dom ain. However, th is  com position may not have been 

preventable if o ther modes had been chosen. T he application of FA P concepts to  Subject-O riented 

Program m ing raises a num ber of interesting questions:

•  Do aliasing m odes help to  understand  subject interaction  for th e  purpose of avoiding in teraction 
problems?

•  Is m ode equivalence the  only m eaningful com position or is it also meaningful to  compose 

elements w ith  different modes?

•  W hat are th e  criteria  for choosing aliasing modes?

4.4.5 The Role of Aliasing Modes in Understanding Subject Interaction

In the term inology of M ulti-D im ensional Separation of Concerns, it can be said th a t d a ta  sharing 

between subjects leads to  ‘object encapsulation’ becom ing a  dim ension of concerns. Subjects sca tter
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and tangle code which in an  object-oriented design would be hidden in the  represen tation  of some 

class. In the  Union exam ple broken object encapsulation has been shown to  lead to  an interaction 

problem.

C om position of elem ents w ith  equivalent aliasing m odes helps to  address th e  scattering  and 

tangling. It constrains com position but in a struc tu red  way. FAP does no t reduce the set of 

available jo in  points. A liasing m ode equivalence shows an  agreem ent on object aliasing policy 

between subjects. M odes used as p a r t of the  com positional interface support independent subject 

developm ent and  sub ject reuse by strengthening the  typing of com posabie elem ents of each subject. 

Aliasing m odes help the com poser to  reason abou t subject in teraction  and also fit well w ith our reuse 

position. Subjects are object-orien ted  program s and  object aliasing is a  concern in subject design. 

An alias protection  system  such as FAP is of value to  the  subject developer: it helps to  create well 

s tru c tu red  subjects th a t encapsulate and pro tec t object represen tation  from access a t the su b jec t’s 

functional interface.

T he U nion exam ple has shown th a t  different modes for corresponding elements do not necessarily 

indicate in teraction  problem s. T he selected modes are not m utually  exclusive. However, th is need 

not be the  case for o ther Alias P ro tection  System s. For exam ple, consider m ode val which describes 

value types and im m utable objects. Suppose we compose two String classes and  in tegrate  two 

corresponding String-type variables from each subject. In  the  first subject th e  String class is 

im m utable. In the  second sub ject String is m utable; it in troduces the  setValue ( .  .)  m ethod 
which enables the  value to  be changed. Suppose th a t in the  first sub ject the variable has mode 

val and the  second subject m ode rep. These String classes should not be merged because the  first 
subject m ay depend on String being im m utable. There is no problem  w ith com posing elem ents w ith 

different modes per se. T he  challenge is determ ining the m ode of the  o u tp u t elem ent and  of all o ther 
elem ents affected by th is  com position. Clearly, FAP was never intended for sub jec t com position. 

F urther work is required to  determ ine the best modes to  use and  the  policies for m ode selection and 
composition.

4.5 Conclusion

This C hap ter has described in teraction  problem s in subject-oriented program s. We defined an  in ter

action problem  as an  unw anted subject in teraction. In teraction  problem s are undesirable because 

they  raise the  cost of sub jec t reuse and  im pact m odular developm ent of subjects. In th e  worst 

cases, interaction  problem s require either invasive subject m odifications or patching. This C hap

te r has presented a range of in teraction  problem s occurring in Subject-O riented  P rogram m ing and 
suggested ways of tackling them .

The first exam ple dem onstra ted  th e  im portance of concerns and  the way they  relate  to  each 

other. We looked a t th e  com binations of Persistence w ith Transaction and Association w ith 
Transaction. However, it is insufficient to  evaluate in teractions in a pairw ise m anner. Unless 

there  exists no connection between concerns then  any in teraction  analysis m ust involve all concerns 
together.

T he second exam ple dem onstrates the  tension between concerns w ith respect to  a shared  re

source. The in tention of having a  single connection between the  W ater Beans causes a single event 

model to  be shared for carrying two kinds of event. The com position rules available in the  SOP 

language H y p e r/J  cannot resolve th e  interaction w ithout changes to  the input subjects. However,
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th e  SO P com position framework allows o ther rules to  be defined. T he v iew -m erge com position rule 

is proposed for addressing the anom alous in teraction non-invasively.

T he Union exam ple dem onstrates th a t interaction problem s can be caused by encapsulation 

issues. Subjects have dependencies on object s ta te  th a t m ay be subverted during in ter-subject 

in teraction, resulting in interaction problem s. Some d a ta  dependencies can be m ade explicit in 

subjects w ith the aid of modes proposed as p a rt of Flexible Alias P ro tection  [92]. For instance, 

aliasing m odes can describe where and how object s ta te  can be changed. By using Flexible Alias 

P ro tec tion  as p a rt of the  com position interface it becomes easier to  observe d a ta  dependencies and 

detect in teraction problems.

Alias P ro tection  System s (of which Flexible Alias P ro tec tion  is bu t one) help to  create well 

s tru c tu red  object-oriented program s. By ensuring the absence of ex ternal aliases into object repre

sen tation  they  enable m odular reasoning. T his property  makes A PSs useful to  the original subject 

developer who is also an object-oriented program m er. Being useful to  the  original developer and 

the  reuser potentially  makes APSs an excellent reuse technology in projects where future reusability 

is no t p a rt of the initial requirem ents. Moreover, APSs an n o ta te  the  objects which depend on or 

m odify the  s ta te  of o ther objects. The anno tational p roperties facilitate the  reuse of subjects. For 

these reasons, we believe th a t APSs are a topic w orthy of fu rther investigation. In the next C hapter, 

we review the background on Alias P ro tection  System s and discuss alias anno ta tion  in the  context 

of Subject-O riented Program m ing.



Chapter 5

Alias Protection and Subjectivity

T he previous C hapter described the  curren t understanding  of interaction  problem s -  unw anted 

in teractions between subjects. In teraction problem s affect the  reusability of subjects and are an 

im pedim ent to  independent subject development. In the  w orst case, the  anom alous interactions can 

be corrected only by invasively modifying subjects or by defining a patch  subject. In our exam ple the 

problem  was caused by broken assum ptions abou t object s ta te . We observed th a t the opportun ity  

to  detect the  anom alous in teraction improved when anno ta tions from Flexible Alias P ro tection  [92] 

were applied w ithin each subject. The way subjects use and  modify objects is m ade explicit w ith 

alias annotations. We believe th a t alias anno ta tions will be generally useful to  subject composers 

( th a t is, sub ject reusers) for the  purposes of understanding in teractions and  preventing anomalies.

In object-oriented program m ing, unstructu red  aliasing has been identified w ith understandabil- 
ity  and reasoning problems. Alias P ro tection  System s (APSs), including Flexible Alias P rotection , 

constrain  object aliasing in a  struc tu red  way, im proving object encapsulation and facilitating m odu
lar reasoning. In this sense, APSs have value to  the subject developer. The sub ject developer, as an 

object-oriented program m er, is concerned w ith creating well struc tu red  and  m aintainable subjects. 
APSs fit well w ith our position on reuse: we believe th a t  a  reuse technology has m ore chance of 

being accepted when it has value to  the original developer.

T he aim  of th is C hapter is to  present our understanding of the  way subjectiv ity  affects aliasing 

properties. We lay the foundation for creating an  APS for SOP. Section 4.4 on page 59 talked about 

Flexible Alias P ro tection  in the context of an  in teraction problem . In the  present C hapter, Section 

5.1 describes the  background to  APSs and reviews the  related  area of effects annotation . SO P is 

different to  O O P in the  way it approaches certain  design problem s. Following the  background, we 

commence our analysis of the  way SO P affects alias annotations, th a t is, the  way the  alias protection 

policy is realised by aliasing modes. These Sections form a p a r t of our contribution  to  th e  thesis. 

Section 5.2 presents the  strategies for selecting aliasing modes and  the m eaning of mode equivalence 

and inequivalence. Section 5.3 looks a t the problem s caused by ownership param eters. In Section 5.4 

the  reusability  of subjects is explored; we analyse a subject which should be useful w ithin a  family 

of applications. Section 5.5 describes the  properties of A PSs th a t are useful for understanding 

subject-oriented  interaction.

70
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5.1 A Review of Alias Protection System s

E ncapsulation  is one of the  corner-stones of object-oriented program m ing. Well s truc tu red  objects 

hide their im plem entation and present an ab strac t interface to  clients. N on-trivial object-oriented 

program s consist of many collaborating objects th a t send each o ther messages which include objects 

in param eters and  re tu rn  values. O bject-oriented  languages pass objects by reference. An o b jec t’s 

s ta te  is m ade up of the  values of its field variables and the s ta te  of all objects it references. W hen 

an object is referred to  using two or more names, it is said to  be aliased. Aliases are created during 

variable and  field assignm ent, and when an object is passed in a  m ethod argum ent or re tu rned  by 

ano ther m ethod call. Aliases pose a  problem  particu larly  in object-oriented program m ing because 

objects have persistent local s ta te  [57]. W hen object A  receives a  reference to  object B , A  m ay send 

messages to  B  which modify its s ta te . Execution of a  m ethod call affects the  s ta te  of the receiver 

object B  and all o ther objects which reference the receiver. T he sta tes of objects th a t reference B  

change seemingly w ithout the affected objects being accessed.

Visibility modifiers such as p r iv a t e  are not an adequate protection from aliases. They p ro tect 

variables from direct access bu t fail to  disallow object exposure. One can easily w rite a  ge tter 

m ethod th a t  reveals a  p r i v a t e  object. For example, consider class R e c ta n g le , im plem ented using 

P o in ts  as shown below:

class Rectangle {
private Point topleft; 
private Point bottomright;
Point getTopIeftO { return topleft; }
void setTopIeft(Point topleft) { this.topleft = topleft; }
Point getBottomright() { return bottomright; }
void setBottomright(Point bottomright) ■( this.bottomright = bottomright; } 
void shiftBy(Point p) { 

topleft.shiftBy(p); 
bottomright.shiftBy(p);

>
>

There are tim es when a  R e c ta n g le  client needs to  know and change its rectangle’s geometry. 

Accessor m ethods are provided for this purpose. However, the client who gets the P o in t  objects 

from a rectangle should use them  w ith care because they  are a p a rt of the  rectangle’s m utable 

s ta te . For instance, suppose a client, who is unaw are of the  way R e c ta n g le  is im plem ented, has 

two R e c ta n g le  objects r l  and r 2 . A t some m om ent he wishes to  resize and move r 2  such th a t  the  

t o p l e f t  coordinate of r 2  becomes the  sam e as th a t  of r l .  Then, he shifts r l  to  another location 

by calling m ethod v o id  s h i f tB y  (P o in t  p ):

1 Rectangle rl, r2;
2 Point p;
3 Point rl_tl = rl.getTopIeftO;
4 r2.setTopIeft(rl_tI);
5 rl.shiftBy(p);

T he unforeseen result will be also to shift r 2  by the  am ount denoted by p. As a consequence 
of this interaction, after line 4, r l  and  r2  share the  same P o in t  object and  not ju s t the sam e top  

left coordinate. T his is problem atic to a client who is expecting only the top  left coordinate to  be 

shared. T he problem  is solved post hoc by cloning P o in t  objects either in the im plem entation of 

P o in t  or in the  client. To the  reuser of R e c ta n g le , in order to  use the  R e c ta n g le  well, the  clients 
m ust be aware of the  way it is implem ented.
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M ost solutions for tackling problems such as th is have been in the area of alias prevention and 

control. Flexible Alias P ro tection  uses aliasing modes to  describe w hat a R e c ta n g le  object and the  

clients of rectangles can do w ith P o in t  objects. W hen the R e c ta n g le  designer’s in tention is to  keep 

P o in t  objects hidden, he should use m ode re p . O bjects of m ode re p  cannot be disclosed outside 

the ir container, hence getter m ethods m ust re tu rn  clones of t o p l e f t  and b o tto m r ig h t .

For th e  m ost p a rt program m ers avoid aliasing problem s, probably because objects m ostly  com

m unicate in close groups [56]. T he problem  faced by APS designers is to  create APSs th a t  provide 

a  degree of alias protection  while supporting  common object-oriented idioms. T he em phasis is on 

practicality: discouraging bad  practice w ithout forbidding the designer from creating all sorts of 

object-oriented program s. Presently, we discuss in detail two recent proposals which fit th is descrip

tion  best. Clarke et a l’s Ownership Types [23] derive from a  form alisation of th e  core of Flexible 

Alias Protection . Aldrich et a l’s A liasJava [5] is an  alias anno ta tion  system  th a t em phasises the  

description of aliasing properties over strong encapsulation.

The issue of alias protection is related  closely to  effects annotation. An effects system  describes 

the  way th a t the  s ta te  of a  com ponent may be accessed during program  execution. This inform ation 

is useful to  program m ers for reasoning abou t d a ta  dependencies between com putations [106]. An 

effects system  has the  ability to  infer the  effects of a com putation, to  declare the  perm itted  effects 

and to  check th a t the  inferred effects are perm itted . Aliases introduce additional dependencies 

between com putations m aking precise effects description more difficult. This Section also describes 

the role of effects system s in understanding subject interaction.

5.1.1 Ownership Types for Flexible Alias Protection

Ow nership Types [23] have been proposed as a  way of encapsulating objects used in the im plem en

ta tio n  of classes. At the core of O wnership Types is the  concept of contexts. Every object owns a 

context and is owned by a context. The context an  object owns is known as the ob jec t’s representa
tion. T he context th a t  owns the  object is the  o b jec t’s owner. C ontexts partitio n  objects into nested  

groups, m aking it possible to  ta lk  abou t the  inside and the outside of an object.

P rogram  execution begins w ithin a  default system  context world1. Any object created  w ith 

owner context world can be referenced everywhere in the  program . O bjects of value types im plicitly 

have world as owner, indicating th a t they  can be aliased anywhere in the  program . Every new 

object created comes w ith  a new representation context by default. In essence, the only objects 

th a t can access this representation context are the  object itself and o ther objects nested inside th is 

representation context bu t only as long as they  have been granted  a permission. Thus, an  object 

o’s representation context is no t accessible from outside o. This property  is known as representation  
containment.

An ownership type is the d a ta  type of an object extended w ith an angle-bracketed list of contexts. 

Non-value types are derived from classes. Class nam es are followed by a  sequence of ownership 

parameters. W hen creating a  new object, th e  object owner is passed as the  first ownership param eter. 

T he owner can be either world, the  current representation context or any context from the ownership 

param eters of the  class containing the expression.

For example, the  Queue class w ith field variable head  of type L ink  m ay be defined as follows:

1 class Queue<owner, data> {

1The notation of Ownership Types changed in later work [21]. The more recent notation is used here.
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2 Link<this, data> head;
3
4 >

d a ta  in line 1 is the nam e of the  second ownership param eter. I t is bound by the client instan 

tia tin g  Queue. The owner of Head is the  current represen tation  context, i.e. th is queue instance, as 

indicated  by t h i s .  Class L ink  requires an  additional ownership param eter, d a ta  in line 2 is bound 

to  the  sam e context which binds d a ta  in line 1 .

O w nership Types are flexible because the owner need not be th e  object which does the  instan 

tia ting . In fact, the  object owner does no t need to  reference th e  objects it owns and can reference 

objects owned by others.

T he system  of ownership param eterisation  allows clients to  custom ise the ownership properties 

of objects. An o b jec t’s owner context and ownership param eters are bound a t instan tia tion  and 

rem ain invariant until the  object is destroyed. For example, w ith  ownership param eters it is possible 

to  create two Queue objects where in the first, the  queue and  d a ta  w ithin are owned by the current 

representation context, and in the  second, the  queue is owned by th e  current representation  context 

bu t the d a ta  inside is owned by world:

Queue<this, this> ql;
Queue<this, worId> q2;

Variables q l  and  q2  can never be aliases for the sam e objects because they  have different types. 

A lthough both  are have the sam e owner, the  d a ta  sets referenced by each are disjoint.

R epresentation containm ent is best understood  in term s of ob ject graphs. A snapshot of an 

object-oriented program  a t runtim e can be represented by an  ob ject graph. O bjects are vertices 
and  solid edges denote in ter-object references. As the program  executes, the  graph evolves, w ith 

new vertices and  edges added and old ones removed. At the  roo t of th e  graph is context world 
representing the system  in which the  program  runs. The sequence of solid edges between the  root 

vertex world and any o ther vertex of interest forms a  path. In a  well formed object graph, all vertices 

are reachable by pa th s  bu t there  may be m ultiple pa ths for each object.

The dashed edges relate objects to their owner contexts. In  a  graph  th a t satisfies the representa

tion containm ent property, every p a th  to  an object m ust pass th rough  th a t ob jec t’s owner. Consider 
the  graph in Figure 5-1. Its p roperties are:

•  O bject o4 is owned by o2  and o4 is in o2 ’s representation  context.

•  o2  is owned by o l. o2  is in o l ’s representation  context.

•  Global objects w ith owner world are o l, o3, o5 and ol.

•  o l owns 0 6  bu t does not reference it. All pa ths to  0 6  m ust pass th rough its owner context o l.

•  The world owned object o3 can alias 0 6  so long as all p a th  to  0 6  pass o6 ’s owner. o3 cannot be 

aliased outside o l because th a t would lead to  the  exposure of represen tation  of o l -  the  edge 
m arked w ith a  cross.

T he program  in Figure 5-2 dem onstrates Ow nership T ypes applied to  the developm ent of the 

Queue ab strac t d a ta  type. Queue is im plem ented as a  collection of L ink  objects. T he first elem ent 

in the  queue is referred to  by h ead  and the  last elem ent by t a i l .
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world
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Figure 5-1: An object graph showing ownership arcs

Class names are followed by a sequence of ownership param eters where the first param eter is 
always owner. This refers to the owner context of the current instance. The Queue class also has 
ownership param eter d a ta  which refers to the owner of elements stored in the queue. In order for all 
elements to  be treated  as a single collection they m ust have the same ownership type, O bject< data>  
in the example. In addition to owner, the L ink  class also has ownership param eter d. In collaboration 
with the queue, d gets bound to the owner of the data  referred to by the link.

W hen links are created, their ownership param eters are bound. L ink objects are owned by the 
queue, given by t h i s ,  and the L ink’s ownership param eter d is bound to  the same context as Queue’s 
d a ta . Ownership Types uses the self reference t h i s  to  sta te  th a t links are the representation of 
their queue. Variables head and t a i l  can be aliases for the same object because they both have the 
same ownership type.

The implementation of Queue requires links to  refer to each other. This can happen only when all 
links have the same owner context. In the L ink class we refer to  the n e x t link’s owner param etrically 
with owner. The type of the n e x t field is L inkcow ner, d> indicating th a t the owner of n e x t is the 
same as the owner of this link, i.e. the queue which owns all the  links. Figure 5-3 illustrates an 
object graph with ownership edges for a queue with 5 elements.

O bject-oriented programming idioms such as Iterators [43] need short-term  access to representa

tion objects. In order for an efficient im plem entation to  be possible, iterators must alias representa
tions of the collections over which they iterate. The representation containm ent properties presented 

to  now have enforced encapsulation fully making it difficult to  create efficient iterators.
In an extension to Ownership Types, Clarke and Drossopoulou proposed support for dynamic 

aliases [21]. Dynamic aliases allow objects from the representation context tem porarily to  escape 
outside. The word dynamic refers to the way short-term  aliases are implemented. In object-oriented 
languages, object references held in instance variables are stored on the heap while those held in 
a  m ethod’s local variables are stored on the stack. All stack allocated variables are dynamic; they 
are destroyed when the m ethod returns. Heap allocated references survive between m ethod calls. 
In Ownership Types, external dynamic aliases to other objects’ representation are allowed so long 
as the owner object is also in scope. Thus a  representation object can be exposed but only in the
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class Queue<owner, data> {

Link<this, data> head = null;
Link<this, data> tail = null;

void put (Object<data> o) ■(
LinkCthis, data> I = new Lin£<this, data>(o); 
if(head == null) { 

head = tail = I;
} else {

tail.next = 1 ;  
tail = I;

>
>

Object<data> get() {
if(head == null) return null;
Object<data> o = head.o; 
if(head == tail) { 

head = tail = null;
} else {

head = head.next;
>
return o;

>
>

class Link<owner, d> {
Object<d> o;
LinECowner, d> next;
Link(Object<d> o) { this.o = o; >

>

Figure 5-2: P rogram  dem onstrating  O wnership Types

scope of its owner.

In the original O w nership Types [23], the ownership param eter bindings for an object could 
come only from the set of ownership param eters of the  host class (including owner) and the  set 

{this, world}. For dynam ic aliases, the bindings can also come from any variable which is also in 

scope. For example, F igure 5-4 shows an ite ra to r extension to  the  Queue class seen originally in 

Figure 5-2.

To obtain  an  ite ra to r, th e  queue client calls makelterator. The client gains sequential access to  

the  d a ta  in th e  queue by repeated ly  calling ite ra to r’s next m ethod. In the  following code fragm ent, 

first a queue is created and  then  an ite ra to r is obtained from the  queue:

Queue<this, d> q -  new Queue<this, d>();
Iterator<q, d> it = q.maKelteratorO;

Note th a t the  owner of the ite ra to r is the queue. The owner context of i t  signifies th a t  i t  is 

allowed to  access the  represen tation  of q bu t only while q is in scope.

An a lternative perspective on aliasing is taken  by Aldrich et al in their work on A liasJava [5].
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Figure 5-3: Ownership structure  for a Queue instance 

class QueueCowner, data> -f

Iterator<this, data> makelteratorO { 
return new IteratorCthis, data>(head);

>
>

class Iterator<owner, dt> {
Link<ovner, dt> current;
Iterator(Link<owner, dt> first) { current = first; } 
boolean hasNextO { return current != null }
Object<dt> next() {

Object<dt> currentData = current.data; 
current = current.next; 
return currentData;

>
>

Figure 5-4: I t e r a t o r  extension to  the Queue class with Ownership Types

5.1.2 Alias Java

AliasJava is an alias annotation system for specifying d a ta  sharing relationships in Java programs. 
It claims to capture several common forms of sharing th a t exist in object-oriented systems. The 
annotation system takes the form of a type system th a t lives alongside visibility modifiers and data  

types (like aliasing modes in FAP). There are five kinds of annotation  found in AliasJava:

unique. A newly created object is considered unique -  there is only one reference to it. After a 
un ique  variable is read, the source location must be set to another value before executing 

any other statem ent th a t may result in the original value being read a second time, un ique 
values can be assigned to  any other d a ta  sharing annotation  but the inverse is not true  as 

other annotations do not guarantee uniqueness.

owned. Objects th a t are confined to the scope of the enclosing object are considered owned. A 

reference to an owned object may be passed to another container if an explicit permission 
is granted. Unlike objects which are declared p r iv a te ,  we cannot write a getter m ethod to
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expose owned objects, owned objects may be aliased freely inside their container.

ownership param eters. An owned object m ay be shared w ith o ther objects by granting  access a t 

instan tia tion  tim e w ith ownership parameters. An owned object can be passed several levels 

down the object hierarchy. W hen gran ting  access, ow nership is passed either directly by 

referring to  the  owned annotation , or by using any of the  client’s ownership param eters -  

these represent ownership properties associated w ith o ther objects. In classes which declare 

ownership param eters, objects w ith anno tations taken  from th e  set of ownership param eters 

are trea ted  the sam e as owned objects.

shared. O bjects which are intended to be aliased th roughout th e  program  are considered shared. 

O bjects which are either global or do not have an owner are given the  s h a re d  annotation.

lent. A u n iq u e , s h a re d  or owned object can be lent to  another ob ject for the duration  of a  m ethod 

call. A l e n t  object cannot be stored in an  instance variable or re tu rned  from a m ethod call. 

However, it can be passed on as a  param eter to  o ther operations as long as o ther operations 

also tre a t the  reference as l e n t .  A u n iq u e  object can be aliased tem porarily  w ith l e n t .  An 

owned object m ay be exposed externally  w ith l e n t .

F igure 5-5 contains the Queue exam ple w ith A liasJava anno tations. The head  and t a i l  links are 

owned by their queue. I t e r a t o r  instances are unique when crea ted  and  can be bound to  any mode 

in the client. T he right to  reference d a ta  objects is gran ted  to  Queue using ownership param eter 
d a ta .

5.1.3 Understanding Aliasing Modes

O w nership Types and A liasJava approach encapsulation and  aliasing from slightly different bu t 
in tim ately object-oriented perspectives. B oth  are concerned w ith  th e  developm ent of black-boxes 

which hide their im plem entation details. O w nership Types and  A liasJava have the  concept of object 
owner. Every object has exactly one owner th a t does no t change over tim e (w ith the exception of 

unique references). Ownership param eterisation  is used to  separa te  the  owner of the abstraction  from 

the  owners of elem ents stored  w ithin. T he checking of types an d  m odes is s ta tic , dem onstrating  the 

pragm atic na tu re  of these approaches. Aldrich et al [5] go even fu rther to  suggest algorithm s for 

inferring annotations in legacy software.

The containm ent properties of O wnership Types are stronger th a n  those of A liasJava. In Own

ership Types, the  set of contexts forms a  partia l order. In o rder for object x  to  refer to  object y, 

the  representation  of x  m ust be inside the  valid owners of y  [22]. T his property  perm its th e  creation 

of robust ownership structu res where the representation of objects rem ains hidden behind the  in ter

face. T his property  has beed dubbed deep ownership. A liasJava instead  enforces shallow ownership 

which guarantees th a t the  owner of an object will not change. T he stronger containm ent properties 

of Ownership Types are instrum ental in m aking it possible to  reason abou t the  absence of aliases. 

By contrast, the unique aliasing mode of A liasJava ensures th e  absence of aliases bu t requires an 

unconventional program m ing style or explicit language support.

Beside O w nership Types and AliasJava, a  num ber of o ther A PSs have been proposed. Islands [56] 
and Balloon types [6 ] focus on full object encapsulation in which all representation objects are 

inaccessible outside the container. O bjects can be moved in or ou t w ith unique references or using 

o ther techniques th a t prevent aliases escaping. T he Universes approach  [91] makes extensive use of
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class QueueCIient {
owned Queue<owned> q = new Queue<owned>(); 
void run() {

owned Object ol = new ObjectO; 
owned Object o2 = new ObjectO; 
q.put(ol); 
q.put(o2);

>

class Queue<data> {

owned Linkcowned, data> head = null; 
owned Linkcowned, data> tail = null;

void put(data Object o) {
owned Linkcowned, data> I = new Linkcowned, data>(o); 
if(head == null) { 

head = tail = I;
} else {

tail.next = I; 
tail = I;

}
>

data Object get() {
if(head == null) return null; 
data Object o = head.o; 
if(head == tail) { 

head = tail = null;
} else {

head = head.next;
>
return o;

>

unique Iterator<owned, data> makelteratorO { 
return new Iterator<owned, data>(head);

>
>

class LinkCqueueSsOwner, dt> { 
dt Object o;
queueSsOwner LinkCqueueSsOwner, dt> next;
Link(dt Object o) { this.o = o; }

>

class IteratorCqueueSsOwner, dt> {
queueSsOwner LinkCqueueSsOwner, dt> current;
Iterator(queueSsOwner LinkCqueueSsOwner, dt> first) { current = first; } 
boolean hasNextO { return current != null > 
dt Object next() {

dt Object currentData = current.data; 
current = current.next; 
return currentData;

>

Figure 5-5: Queue w ith  A liasJava annotations
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read-only references to  specify a powerful APS. B oyapati et al [19] propose extending Ow nership 

Types w ith dynam ic aliases th a t are scoped to  a group of re la ted  classes. Confined Types [127] 

focus on the  security of objects. An object of a  confined type  is sta tically  scoped w ithin a package 

and any external references are disallowed. Confined Types are m otivated by the  need to  prevent 

access by u n trusted  program s running in the  sam e space. For instance, a  Java applet can confine 

all objects of a  certain  type to  the  m odule denoted by the  package which contains the  applet. The 

realisation of Confined Types depends on anonym ous methods th a t  do not expose, m anipulate or 

depend on the identity  of the receiver object. In order to  keep th e  identity  of the  confined objects 

h idden w ithin the  package, unconfined objects can only call anonym ous m ethods.

Aliasing modes and properties can be roughly divided into those which describe the places where 

an  object can be aliased and  those which restric t access to  the  o b jec t’s interface. B oth A liasJava and 

the core of Ownership Types are concerned w ith the former: when an object acquires a reference, 

it has unrestric ted  access to its interface. Some APSs use interface restrictions to  im plem ent the ir 

aliasing policy. For instance, in Confined Types anonym ous m ethods allow confined objects to  

be m uta ted  while keeping their identity  hidden. Flexible Alias P ro tec tion  has the  a rg  m ode [92]. 

R epresentation  objects (mode re p )  which should be hidden from  external clients can be passed to  

in ternal objects under mode a rg . T he client of an  a rg  object only accesses the im m utable interface. 

M essages sent to  the  im m utable interface do not modify ob ject s ta te  in a way th a t is visible. T he 

client is protected  from m utable s ta te  and the  effect of an  a r g  ob ject on the  client is constant.
Noble et al [92] partition  modes into those which constra in  ex ternal clients and those which 

constrain the im plem entation. Modes which constrain  th e  ex ternal clients of an object are upwardly 
restrictive. Those which constrain the im plem entation are downwardly restrictive. P ragm atic  con

siderations suggest th a t downwardly restrictive modes are preferable to  upw ardly restrictive ones. 
Com ponents designed w ith the  aid of an APS should be usable in existing system s bu t upw ard 

restrictions require o ther com ponents to  be aware of the  APS used in th is com ponent’s design. For 

exam ple, anonym ous m ethods are downwardly restrictive: th e  design of packages is constrained to  

disallow direct access to  confined objects and  the ir identities from objects outside the package. The 

a rg  m ode downwardly constrains the receiver to  using the  im m utable interface of the  object in a  

param eter. In the  Islands model [56], the re a d  m ode anno ta tes variables to  indicate read-only ac

cess to  their s ta te . The re a d  m ode is transitive: any reference obtained from the  interface is also 

read-only. T his mode is upw ardly restrictive because it constrains the  ob jec t’s clients.

T he modes introduced to  now have anno ta ted  object references. Effects annotations are instead 
placed on m ethods. Effects are also of in terest to  us because, like aliasing modes, we believe th a t 

they  can improve the  understandability  of sub ject interaction.

5.1.4 On Effects Annotations

Effects annotations describe the  possible of m ethod execution on s ta te  a t signature level. Alias con

tro l is a t the  heart of effects system s in object-oriented program m ing. T he choice of effects is driven 

by the goals of the effects system ’s designers. G reenhouse and  B oylands’s O bject-O riented Effects 

System  [46] is m otivated by the intention to  perform  sem antics-preserving program  transform ations. 

Transform ations often require the  order of s ta tem ents to  be changed. Two com putations do not 

interfere when one com putation does not w rite s ta te  th a t  is read  or w ritten  by another. Therefore, 

G reenhouse and Boyland only track  read and write effects. T he FX  language [79] also introduces 

the  alloc effect which describes m em ory allocation and in itialisation. T he alloc effect adds to  th e  de
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scriptiveness of the effects system  and  proves useful for compiling program s th a t execute on parallel 

com puters.

In  G reenhouse and B oyland’s system  [46], effects are described on regions which are encapsu

lations of m utable sta te . Instance and s ta tic  variables appear in regions which together form a 

hierarchy. Each variable has a default region and  a special region called A ll is a t the top  of each 

class. Effects are specified on m ethod declarations sim ilarly to  th ro w s  clauses in Java. The private 

s ta te  of an object is abstrac ted  using th e  unshared annotation . Fields declared u n sh a re d  have no 

aliases, th a t is, they are unique. O bjects read  from an u n sh a re d  object and stored in local variables 

m ust not be revealed beyond the scope of the  m ethod call. T heir effect is to ta lly  encapsulated 

w ithin the object. In the  term inology of regions, u n sh a re d  objects appear in the regions of their 

enclosing container, and consequently the ir effects are hidden by th e  effects of the  container as a  

whole. Unaliased objects, anno ta ted  w ith keyword u n iq u e , are  used to  insert and ex trac t objects 

from containers. S tatic  analysis ensures th a t  param eters and re tu rn  values are unaliased during the 

m ethod call.

T rying to  redesign the  Queue example to  use G reenhouse and  B oyland’s effects annotations shows 

some of the  lim itations of this approach. Suppose we try  to  use th e  linked list representation  as be
fore; in order to  keep representation objects hidden, the  program  has to  be redesigned to  incorporate 

uniqueness. The m ain change involves the removal of field t a i l  in order to  make all links unaliased 

w ithin the Queue. T he g e t  () m ethod (which re tu rns the  last elem ent) now has algorithm ic complex

ity  0 (n ) over the  elements in the queue because it m ust traverse all preceding elements to  get to  the  

tail. This com pares unfavourably w ith the  O w nership Types or Alias Java im plem entations which 

were 0 (1 ) . O ther, more efficient im plem entations of the Queue abstrac tion  are possible. However, 

it is im portan t to  note th a t the  im plem entation m ust reflect the  idiosyncrasies of G reenhouse and 

B oyland’s effects system . In order to  m ain tain  perform ance, th e  preferred im plem entation cannot 
be used and another im plem entation is required.

In the absence of a  l e n t  mode as seen in A liasJava, the  ite ra to r is m ade integral to  the Queue class. 
M ethod r e s e t l t e r a t o r  now perform s the  function of creating a  ‘new ’ iterator. This im plem entation 

prohibits m ultiple sim ultaneous iterators from being created. F igure 5-6 shows the m ain design 
elements.

T he JO E  language (Java+O w nership+E ffects) extends a  Java-like language w ith Ownership 

Types and  an effects system  [21]. Instead  of using regions for describing effects, JO E  employs 

ownership contexts to  describe effect shapes. As described earlier, the  contexts in the  scope of a  class 

include this, world, owner and  the  o ther ownership param eters. T here are two kinds of effect shapes. 

T he band effect denotes the  set of objects referenced by the instance variables of one object. The 

band is specified in relation to  the  current context this. For instance, suppose (p, this, owner, world} 

is the  set of contexts in scope. T he bands include:

•  Each one of this, owner, world is a band.

•  this.l describes the  band which has the  present instance as owner.

•  owner.1 is the same as this.

•  this.2 describes the  band which has this.l as owner.

•  p.O is the  same band as p ; it denotes all objects referenced by th e  instance variables of p.
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class Queue { 
region Data;
unshared Link head = null; 
unshared int index;

void put(Object o) reads nothing writes Data { }
Object get() reads Data writes nothing { ... }
void resetIterator() reads nothing writes nothing { ... }
boolean hasNextO reads nothing writes nothing { . . . }
Object next() reads Data writes nothing { ... >

>

class Link { 
region Data;
Object o in Data; 
unshared Link next;
Link(Object o) reads nothing writes Data {...)■

>

Figure 5-6: Queue exam ple extended w ith G reenhouse and Boylands effects annotations

T he under  effects denote a set of objects whose contexts are inside of and include a band. 
An under effect is w ritten  by w rapping a  band  w ithin u n d e r ( . . ) .  For instance, the annotation  

under(th is) denotes an  effect which concerns all objects referenced by this and  other objects in 
the  representation  context of this. The anno ta tion  u n d e r(p .l)  denotes an  effect which concerns all 

objects referenced by contexts represented by bands p.i where i > 1 .
In F igure 5-7 the  Queue exam ple is an n o ta ted  w ith JO E  effects. For instance, the  p u t m ethod 

declares the w r i te s  u n d e r ( t h i s )  effect. T he call to  the L ink  constructor writes the newly cre

a ted  L ink  object as specified in the  w r i t e s  t h i s  anno ta tion  on the  L ink  constructor. In Queue 

this is equivalent to  w r i te s  t h i s . l .  T he new object is assigned either to  t a i l  or to  both  head  

and  t a i l ,  w ith  effect w r i t e s  t h i s .  Hence, th e  combined effect of th e  first s ta tem ent in p u t  is 
w r i t e s  u n d e r ( t h i s ) .  All o ther sta tem ents in p u t either read or w rite the under effect denoted by 

u n d e r ( t h i s )  (note th a t read is included in write).

5.1.5 Conclusion

APSs are a response to  a call for b e tte r trea tm en t of object aliases [57]. Uncontrolled aliasing has 

been shown to  lead to  program s which are h a rd  to  understand  and m aintain. T he present Section 

has shown th a t APSs have in common the concept of an owned object. In Ownership Types the 

em phasis is on strong encapsulation. The core of Ow nership Types is concerned w ith constraining 

object aliasing to  a  subset of objects in the  program . In A liasJava the  em phasis is on alias annotation . 

Instead  of strong encapsulation, modes describe where the objects are aliased. Aliasing is m anaged 

by a com bination of param eterisation, dynam ic aliases to  allow tem porary  access, and uniqueness 

which enables the  object to  change its owner. In  all APSs, the  aliasing annotations, modes or types 

work together to  im plem ent the  containm ent policy. A mode is like a role th a t changes depending 

upon where the  object is referenced.

We have described two com putational effects system s. T he effects system s are m otivated by 

requirem ents for m odular reasoning in order to  perform  program  transform ations or to  enable paral- 

lelisation. W hile we expect th a t effects system s will be useful to  understanding  subject interaction,
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class Queue<owner, data> {
Link<this, data> head = null;
Link<this, data> tail = null;
void put(Object<data> o) writes under(this) {

Link<this, data> I = new LinkCthis, data>(o);

>
Object<data> get() reads this.l writes this { ... }
Iterator<this, data> makelteratorO reads this writes this.l { ... }

>

class Link<owner, d> {
Object<d> o;
Link<owner, d> next;
Link(Object<owner, d> o) writes this I  . . .  1

>

class Iterator<owner, dt> {
Link<owner, dt> current;
Iterator(Link<owner, dt> first) writes this { ... > 
boolean hasNextO { . . . }
Object<dt> next() reads this.l writes this { ... }

>

Figure 5-7: Queue exam ple extended w ith JO E  effects annotations

com pared to  APSs, effects system s are not as universally useful to  subject designers. Moreover, as 

exemplified by JO E , effects system s are bu ilt on top  of alias pro tection  systems. For these reasons, 
we choose to  explore APSs as the  m eans of im proving the  understandab ility  of subject in teraction. In 

the  following Sections we look a t the way th e  difference between subject-oriented and object-oriented 

program m ing im pacts Alias P ro tection  System s.

5.2 The Impact of the Subject-O riented Paradigm on A PSs

Subject-O riented Program m ing is based on a belief th a t  in m any cases there  is no single intrinsic 

view of objects. Instead, the  behavour is determ ined by a com bination of a  num ber of possibly 

overlapping extrinsic perspectives. In the previous C hapter SO P was applied to  a num ber of such 

examples. SO P decomposes software into subjects, and  each subject uses classes to  m odel the  

perspective assigned to it during decom position. SO P introduces new concepts of correspondence 

and  in tegration for synthesising the  various views of abstractions and  for reusing subjects.

Common ab strac t d a ta  types such as queues and  hashtables have been used to  dem onstrate  APSs. 

The object-oriented m echanisms of inheritance and  delegation have proven well suited for conceptual 

modelling of A D T families and for reuse of ADTs. Stacks and  hashtables do not exemplify SO P 

precisely because there  exists a clear instrinsic understanding  of th e  behaviour of these abstractions.

M ulti-perspective developm ent opens a question on how to  deal w ith the  different views th a t 

subjects have of object aliasing and ownership. Should sub ject designers agree on the  aliasing 

policies or is there  room  for different views? W h at role does the  com position specification play in 

determ ining th e  mode in the ou tp u t subject? In the following, we apply a selection of ideas from 

APSs to  the  challenges posed by SO P examples.
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5.2.1 The Car Mechanic Example

Suppose there exists a  car hire com pany which leases vehicles ou t to  clients. Each client is a  driver 

who takes the  vehicle for the  period of the  lease and re tu rns it to  the  hire com pany when the lease 

expires, the  car breaks down or the  driver has an  accident. C ars in good condition can be leased out 

again, however, cars which have been in accidents or are broken down m ust await the mechanic. T he 

task  of the mechanic is to restore cars to  working condition. T his is done by removing the  working 

engine from crashed cars and using it to  replace the  broken engine in a car which has broken down. 

T he exam ple is decomposed into two subjects. T he HireCompany subject contains the  functionality 

associated w ith car leasing, driving, breaking down and crashing. T he M echanic subject contains 

the  engine swapping functionality.

W ithou t reference to  any particu lar A PS, th is example invites a  num ber of questions:

•  Is the M echanic subject an extension to  the  HireCompany base, or are these subjects peers? 

Aliasing modes m ay be trea ted  differently in each case.

•  Should the modes be equivalent, and if not, w hat is the  m eaning of different modes on corre

sponding elements?

•  These subjects are being developed in concert. In view of th e  fu ture com position, w hat are 

the criteria for mode selection?

Suppose A liasJava annotations are chosen to  describe the  su b jec ts2. The anno ta ted  HireCompany 

and M echanic subjects are shown in Figures 5-8 and 5-9 respectively. T he com position specification 

th a t ties these subjects together is given by:

compose HireCompany, Mechanic; 
mergeByName;
bracket ‘‘Driver.rent ’ * with after Mechanic.afterHire;

Let us now look a t the  above questions in m ore detail.

5.2.2 Peer and Extension Subjects

Peer subjects are perspectives on to  the  sam e dom ain. T hey  represent partia l and  potentially  

overlapping views which should not be contradictory. By con trast, an  extension subject extends 

some base w ith  optional or exceptional functionality. The extension m ay modify properties in a  way 

th a t is contradictory  w ith respect to  the  base view. B ut why does it m a tte r  if subjects are peers or 

re la ted  by evolution? -  the  stra tegy  for determ ining the o u tp u t m ode m ay be tailored  accordingly.

Looking a t the  C ar Mechanic exam ple we observe th a t th e  HireCompany subject is the  m ain 

p a rt of the  application. Conceptually, it can be understood w ithou t reference to  any o ther subject. 

T he M echanic subject represents an exceptional case th a t  is m eaningful only in relation to  a base, 

e.g. th e  HireCompany subject. In  the  present case, it can be said th a t  the  M echanic sub ject extends 

the  HireCompany subject.

Having agreed th a t conceptually the  M echanic extends H ireCompany, how does SO P specify when 

subjects are peers or related  by extension? T he com position specification has two purposes. The 

first is to  specify the way subjects should be synthesised from th e  inputs. Secondly, the  com position 

specification has a conceptual dimension which describes the  w ay elem ents relate. Conceptually,

2we can equally well have chosen Ownership Types or another APS for this example.
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class CarHireCo {
owned Vector<owned> fleet;

void addCar(unique Car c) { 
fleet.add(c);

>

void hireTo (shared Driver d) •(
lent Iterator it = fleet. iteratorO ; 
while (it .hasNextO) {

lent Car c = (lent Car)it.next(); 
if(c.state == 0) {

d.rent(c); 
return;

>

>
// no working cars left to rent

>

void mainQ {
shared CarHireCo f = new CarHireCoO; 
f. addCar (new CarO); 
f .addCar(new Car()); 
shared Driver dl = new DriverO; 
shared Driver d2 = new DriverO; 
f.hireTo(dl); 
f,hireTo(d2);

>
>

class Car {
// 0 = rentable, 1 == crashed but engine ok, 2 = broken engine 
shared int state; 
owned Engine e; 
void go() { 

e.startO

>
>

class Engine {
void start() { .. }

>

class Driver {
void rent(lent Car c) { 

drive(c);
>
void drive(lent Car c) { 

c.goO;
// breakdown, crash or return the car unchanged

>

Figure 5-8: The HireCompany subject w ith A liasJava annotations
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class Mechanic {
unique Engine spareEngine; 
shared Car brokenCar; 
void afterHire(shared Car c) { 

switch(c.state) { 
case 0: break; 
case 1:

spare = c .extractEngine(); 
if(brokenCar != null) doRepairO; 
break; 

case 2:
brokenCar = c;
if (spareEngine != null) doRepairO;

>
>
void doRepairO {

brokenCar.fitEngine(spareEngine); 
spareEngine = null; 
brokenCar.state = 0; 
brokenCar = null;

>
>

class Car {
// 0 = rentable, 1 = crashed but engine ok, 2 = broken engine 
owned int state; 
unique Engine e; 
unique Engine extractEngineO { 

unique Engine r = e; 
e = null; 
return r;

>
void fitEngine(unique Engine e) { 

this.e = e;
>

class Engine { }

Figure 5-9; The M echanic subject w ith A liasJava annotations
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m e rg e  describes the  joining of views w ith no im plicit order or precedence and implies com patibility  

betw een aliasing modes. Com patibility  need not m ean equality although equality is the m ost stra igh t 

forward m easure of com patibility. E quality  is m eaningful for the  m odes of bo th  Ownership Types 

and  AliasJava. If, for example, all corresponding variables are declared owned, the ou tp u t m ode 

is also owned. The o v e r r id e  rule specifies an  ordering where th e  overriding elem ent replaces the  

overridden element, e.g. the  overriding operation  replaces th e  overridden operation. Conceptually, 

the  overriding element m ay to ta lly  change the aliasing policy in a  way th a t is not com patible w ith the  

previous modes. So a param eter w ith a unique anno ta tion  m ay be overridden by a shared anno ta tion  

from the  signature of the overriding operation.

In SOP, the mechanics of com position a t tim es clash w ith th e  conceptual model. One such case is 

when a composer has to  use o v e r r id e  to  select one m ethod body from  two identical definitions while 

conceptually merging corresponding views. Looking a t the com position specification for the  C ar 

M echanic example, we observe th a t m e rg e B y N a m e  is used to  jo in  subjects. The rule is necessary 

for describing the synthesis of subjects bu t the  rule fails to  convey the conceptual relationship 

between the  concerns. The b ra c k e t  relationship induces an order bu t only between classes and 

operations.

5.2.3 How to Treat the Modes of Corresponding Elements

The trea tm en t of modes of corresponding elem ents may be re lated  to  the  top  level com position rule 

relating  the subjects. One can require modes to  be the same or in troduce a level of variability  th a t 

fits in w ith the SOP model of decentralised development.

There is no reason why different modes cannot be composed conceptually. M odes help to  reason 

abou t the aliasing properties of objects in the  o u tp u t subject only when the  ou tp u t m ode does no t 

degenerate to  unrestric ted  aliasing. For instance, in AliasJava, th e  s h a re d  m ode conveys little  useful 

inform ation. Com position using m e rg e  inevitably increases ob ject aliasing because each sub ject 

introduces behaviour which increases aliasing. If m ost objects becom e s h a re d  due to  com position, 

aliasing anno ta tion  benefits th a t the APS brings will be lost.

Once again, consider the com position in the  C ar Mechanic exam ple. In the  HireCompany subject, 

cars are owned by C arH ireC o and l e n t  to  the  hirer for the d u ra tio n  of the m ethod call. Engines are 

owned by cars w ith the  driver having no direct access to  the c a r’s engine. In the M echanic subject, 

cars are globally aliased objects as indicated by the s h a re d  anno ta tion . To the  mechanic each car 

has a single engine as indicated by u n iq u e . W hen the engine is replaced from a crashed car to  one 

w ith the broken engine, uniqueness anno ta tes w ith  precision th e  effect of the  swap. A liasJava does 

no t allow an object to  be sim ultaneously owned and u n iq u e  as these are to ta lly  different aliasing 

properties. Likewise objects cannot be s h a re d  and  l e n t  a t the  sam e time. The com bination of the  

properties of any of these modes leads to  global aliasing as described by sh a re d .

T he problem  lies in p a rt w ith the choice of modes and in p a r t w ith the way modes are selected 

from those available. An APS w ith a menu of finer grained m odes th an  those offered by A liasJava 

m ay prevent all com positions of non-equivalent modes degenerating to  sh a re d . For exam ple, if the  

APS allowed bo th  the CarH ireCo and the M echanic to share th e  ownership of cars, some m ode such 

as co-ow ned could replace s h a re d  when elem ents w ith owned and  l e n t  modes are composed. A 

l e n t  object in one subject may become aliased as owned in ano ther so long as no references are 
passed back to  the  original subject.

At times, more th an  one m ode is capable of describing the ac tual aliasing properties. For example,
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a ca r’s engine is owned by the car in HireCompany. Mode u n iq u e  could have been used equally well 

w ithout any changes to  subject im plem entation. This topic is discussed in more detail in the  next 
Subsection.

Consistency checking is a concern when composing different modes. In an APS like AliasJava, 

aliasing modes are used in concert. For instance, an owned object m ay be passed to  another container 

using ownership param eters and  la ter l e n t  to  o ther objects. C hanging the m ode in any one class 

will have a ripple effect on o ther classes th a t  alias the object.

5.2.4 Criteria for Mode Selection

An APS like AliasJava makes it possible to  use m ore th an  one m ode in some cases. We have identified 

the  following strategies for program m ers to  use when selecting modes:

•  D e s ig n  th e  s u b je c t  in  o r d e r  to  c o n fo rm  w i th  a n  A P S . Encapsulation is a  cornerstone of 

object-oriented program m ing and one should design subjects w ith  representation  encapsulation 
in mind. APSs support encapsulation b u t w ith a certain  program m ing style th a t may not fit 

w ith all applications of object-oriented program m ing. By following the  A P S ’s idiom  strictly, 

the developer m ay be pressured into creating designs th a t  do no t satisfy o ther concerns. For 

example, in Figure 5-6 on page 81, the  range of available m odes affected efficiency: the  program  

re tu rns object clones when references would lead to  a m ore efficient im plem entation.

•  U se  th e  m o s t  c o n s t r a in in g  m o d e  w h ile  s t i l l  m a k in g  i t  p o s s ib le  to  c r e a te  t h e  s a m e  

d e s ig n  as e n v is io n e d  o r ig in a lly . In th is case, one selects the  m ost constraining m ode in 

order to  describe the interaction. It suggests th a t one should no t follow the idiom atic style of 
the APS bu t instead use the  APS to  an n o ta te  the  la ten t relationships. T his is th e  approach 

taken by any mode inference algorithm . Inference algorithm s identify the m ost constraining 
aliasing mode.

•  U se  th e  m o d e  w h ic h  is t h e  m o s t  s u i ta b le  c o n c e p tu a lly . In th is case, conceptual m od

elling is identified as a  priority. The choice of m ode is influenced not by the dom ain of im ple
m entation but ra th er by the  problem  dom ain. Selection is an  option when th e  available modes 

are no t orthogonal and  two or m ore m odes can describe the  in teraction.

•  U se  th e  s t r o n g e s t  m o d e  p o s s ib le  in  v ie w  o f  c o m p o s i t io n . One should bear in m ind th a t 

subjects are often incom plete designs; sub jects contribu te to  the  behaviour of classes th rough 

com position. W hen subjects are designed as p a rt of a  collaborative effort, i.e. designed w ith 

a  particu lar com position in mind, the  choice of m odes m ay be influenced by the subjects w ith 

which the present subject is going to  be composed. For exam ple, suppose th a t the  m ode m ost 

suitable conceptually is owned. However, com position in troduces behaviour th a t  produces 

external aliases, requiring a  change to  m ode sh a re d . Thus, m ode selection is predicated  on 

w hether the  problem  dom ain is understood  to  be a single sub jec t or a  collection of subjects.

In conclusion, when composing elements w ith different m odes, a  fine grained APS is necessary 

in order to avoid all com position leading to  a  com plete generalisation of properties, e.g. m ode 

sh a re d . D eterm ination of the  o u tpu t mode m ay depend on b o th  th e  input modes and  the  way the  

com position is specified. Mode com patibility  is required for the  m e rg e  com position strategy. For 

o v e rr id e , m ode com patibility is not essential. However, the  overriding of one m ode by another 

requires some form of consistency checking to  ensure th a t all m ode changes are m utually  consistent.
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5.3 Problem s with Ownership Param eters

B oth A liasJava and O wnership Types use param eterisation  to  g ran t containers access to  objects 

which are not p a rt of their im m ediate representation . O w nership param eters are im portan t for 

creating reusable classes. For example, the  following two Queue objects have different aliasing 

properties (using O wnership Types):

Queue<this, this> si;
Queue<this, worId> s2;

B oth queues are the im m ediate representation of the objects in which they  are declared, bu t in 

s i  the  elements are owned by the  current represen tation  context while in s 2  the  elem ents can be 

aliased anywhere.

O w nership param eterisation  works very well for classes w ith an  intrinsic view like Queue b u t no t 

so well for classes created  using SO P from a  collection of overlapping dom ain views. Some objects 

and  the ir owners are relevant only to  a subset of com posed subjects. These different views of classes 

tran sla te  to  different ownership param eter lists. We present two exam ples of th is problem .

F irst, consider F in a n c e  and HR (Hum an Resources) subjects in an  office suite shown in Figure 5- 

10. B oth subjects m anipulate Employee objects. In F in an ce , employee expenses are reim bursed by 

sending E xpensesS fiee t objects to  the  F in anceD ep t. For th is reason, during instan tia tion , Employee 

objects are param eterised by the owner of F in an ceD ep t, giving rise to  ow nership param eter fd . In 

subject HR, the hum an resources departm ent assigns line m anangers to  employees. In order for 

an  employee to  reference the line m anager, the  Employee class has ow nership param eter lm. The 

program  in Figure 5-10 uses Ownership Types annotations. P roblem s occur when one subject is 

responsible for instan tia ting  Employee. Suppose subject F in a n c e  does th e  in stan tia ting . A lthough 
bo th  F in a n c e . Employee and HR. Employee have ownership param eter lists of the  sam e length, these 

param eters represent different concepts th a t m ay well denote different owners.
T he second program  perform s graphical transform ations on C o o rd in a te  objects. I t consists 

of two subjects, shown in Figure 5-11, and uses A liasJava anno ta tions. In the  subject A lg In 2 D, 
m anipulations of coordinates are done in two dimensions, using only x and  y values. In subject 

AlgIn3D, the algorithm s apply to  th ree dim ensions, incorporating  th e  z axis. Problem s occur when 

a  C o o rd in a te  in stan tia ted  in one subject is passed to  ano ther subject. For instance, bo th  subjects 

declare class X w ith corresponding fields someC. Any object assigned to  someC in one subject au to 

m atically  becomes visible in another subject. W hen AlgIn2D creates a  coordinate, it binds only the 

n and m param eters, and param eter p is unbound. It is not clear how th e  unbound param eter should 

be trea ted . W hen AlgIn3D creates a  coordinate, it binds param eters n, m and  p. If th a t  coordinate 

is passed to  AlgIn2D, the  value bound to p will be lost. In  order to  restore  th e  binding to  p we m ust 
track  its value while the  object is aliased w ithin AlgIn2D.

Naively, one m ay require th a t corresponding classes have ow nership p aram eter lists th a t m ap 

one-to-one. Different nam es for corresponding ownership param eters should not pose a  problem  

because the renam ing facilities of SO P can be easily extended to  include ownership param eters. In 

th e  first example, th is entails introducing concepts from the  F inance concern into th e  H R concern 

and vice versa. In the  second example, th is m eans introducing the  z axis into all classes which refer 

to  C o o rd in a te  objects in AlgIn2D. However, any such action v iolates a  fundam ental principle of 

S ubject-O riented Program m ing concerning clean separation of concerns. It would be inappropriate  

to  have to include additional ownership param eters in order to  satisfy some o ther concern.



CHAPTER 5. ALIAS PROTECTION AND SUBJECTIVITY

subject Finance {
class FinanceDept<owner> {

void acceptExpenses(ExpensesSheet<owner> es) { . . . }
>
class EmpIoyee<owner, fd> {

FinanceDept<fd> finDept;
Employee(FinanceDept<fd> finDept) { this.finDept = finDept; } 
void sendExpensesO {

ExpensesSheet<fd> es = new ExpensesSheet<fd>(...); 
fd.acceptExpenses(es);

>

>
class ExpensesSheet<owner> { ... }

// example code using these definitions 
FinanceDept<q> finDept;
EmpIoyee<p, q> emp = new EmpIoyee<p, q>(finDept); 
emp.sendExpenses();

>

subject HR {
class HRDept<owner, Im> {

Vector<this, Im> lineManagers; 
void addLineManager(LineManager<Im> IineMan) { 

lineManagers.add(IineMan);
>
void assignLineManager(Emp!oyee<owner> e) {

e .setLineManager((LineManager<Im>)lineManagers.firstEIement());
>

>
class EmpIoyee<owner, Im> {

LineManager<Im> IineMan;
void setLineManager(LineManager<Im> IineMan) { 

this.IineMan = IineMan;
>

>
class LineManager<owner> { ... }

// example code using these definitions 
LineManager<g> Im;
HRDept<f, g> hr;
EmpIoyee<f, g> emp; 
h r .addLineManager(Im); 
hr.assignLineManager(emp);

Figure 5-10: Com position of subjects w ith  incom patible ownership param eter lists
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subject SIgIn2D {
class Coordinated, m> { 

n int x; 
m int y ;

}

class X<a, b> {
owned Coordinated, b> someC;

>
>

subject SIgIn3D {
class Coordinated, m, p> { 

n int x; 
m int y; 
p int z;

>

class X<a, b> {
owned Coordinated, b, a> someC;

>
>

Figure 5-11: Com position of subjects w ith  partia lly  overlapping ownership param eter lists

Moreover, there  is another way in which ownership param eters and SO P interfere. In SOP, 

corresponding classes can have different and  non-corresponding superclasses. Each class has an 

ownership param eter list which the subclasses inherit. Therefore, the  problem  can occur also when 

classes w ith non-corresponding superclasses are composed.
As a reprieve, there  is always a t least some overlap in the ownership param eter lists. In AliasJava 

and  Ow nership Types, each object has an  owner th a t is set a t instan tia tion  and does not change 

until the  object is destroyed. In SO P program s, the  owner is guaranteed to  be bound for all objects 

in all subjects. Classes which have a single ownership param eter denoting the object owner can be 

composed w ithout these problems.

In the following Subsections we look in g reater detail a t the  problem  of ownership param eters 

in SOP, sta rtin g  from the developm ent of ab strac t d a ta  types and moving on to  the way ownership 

param eters contribu te  to  creation of larger program s w ith SOP.

5.3.1 Ownership Parameters and ADTs

Com m on ab strac t d a ta  types like stacks, queues and hashtables are not candidates for decom position 

along purely functional lines. These classes have clear intrinsic properties and  we cannot improve 

the ir design by fragm enting further. A D Ts can be associated w ith aspectual concerns such as 

synchronisation and persistence. SO P b ra c k e t  relationship and  o ther aspect-oriented technology 

can m odularise these aspects. A spectual concerns like synchronisation and  persistence apply on a  

per instance basis; it should be possible to  have two instances of the  sam e basic A D T with different 

com binations of properties.

M ost aspects affect behaviour bu t in a way th a t is transparen t to  the existing clients. So long 

as aspects do not introduce d a ta  which require param etric  specification of ownership, all subjects 

have the sam e view of an ADT and all ownership param eters are bound no m atte r which subject
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in stan tia tes such a class. In conclusion, ownership param eters do not pose a problem  if all subjects 

th a t  use param eterised com ponents have the  sam e view of the ir param etric  properties. This is a 
good result for A D T reuse; ownership param eters support reusability  by letting  the client specify 

th e  aliasing properties of each instance.

B ut A D T reuse does no t end w ith common com ponents like stacks and hashtables. Program m ers 

create a rb itra rily  complex com ponents which use common ADTs in their im plem entation. For 

exam ple, consider a S p re a d sh e e t com ponent. A client m ay want to  create m ultiple spreadsheets 

w ith different ownership properties. B u t a  Spreadsheet is a  large and  complex application supporting  

m any features. SOP can simplify Spreadsheet developm ent by enabling m odular development of its 

features. By mixing and m atching, th e  com poser can tailor a  Spreadsheet to  the  client by providing 

the  required features. The Spreadsheet exam ple would benefit from the m odularisation poten tial of 

SO P and the  custom isation afforded by ownership param eters.

5.3.2 A Layered Architecture

P arnas [97] was am ong the first to  suggest th a t modules should be arranged into a hierarchy, w ith 

m odules higher up using modules lower down b u t not vice versa. An arch itecture th a t describes 

th is layering is called a layered architecture. SO P enhances program s built of layers by supporting  
additional dimensions of decom position. SO P can be used a t each layer to  separate  concerns in the 

developm ent of large com ponents such as the  S p re a d s h e e t discussed above. Still larger applications 
bu ilt using SO P technology may use S p re a d s h e e t objects in their im plem entation. And so on 

tow ards even larger com ponents.

In order to  achieve separation of concerns between layers, a t each layer the com ponent used in 

the  im plem entation of a  sub ject has to  be a black-box. For example, S p re a d sh e e t may support a  

degree of adap ta tio n  based on particu lar reusability  requirem ents. T he adap ta tions can be perform ed 

w ithout looking inside the black-box. Functional changes which cannot be affected w ith param eters 
or o ther interface-level adap tations require the  black-box to  be opened up. T he changes consist of 
one or m ore subjects and are applied using SO P com position rules.

In  order to  scale, an A PS should help SO P to  build large com ponents by subject composition. 
A t each layer:

•  Aliasing modes should help com posers avoid in teraction  problem s by improving the under- 
standab ility  of interaction.

•  Aliasing modes should protect the  representation  of the  o u tp u t com ponent from access by 
external clients.

•  O w nership param eters should facilitate  client-end custom isation of containers used in subject 
design.

5.3.3 The Two Roles of Ownership Parameters

A further problem  w ith ownership param eters concerns the  way they  are used in design. Refer back 

to  the  Q ueue exam ple anno ta ted  w ith O w nership Types in F igure 5-2 page 75. Suppose two subjects 
bo th  define a L in k  class. A nother way of defining this class is:

class Link<owner, I, d> {
Object<d> o;
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Linkd, I, d> next;
Link(Object<d> o) { this.o = o; }

>

In Figure 5-2, bo th  the L ink  owner and the  n e x t  link have ow nership context owner. Above, the  

L ink  owner can be set separately  from the  owner of the  n e x t  link.

Suppose two subjects bo th  define th e  L ink  class bu t in different ways as shown here. These 

classes are conceptually composable bu t require significant m odifications to  subjects or extensive 

glue code. The problem  is th a t in Figure 5-2, the  owner param eter is reused when defining th e  

owner of the  n e x t  Link. This solution suffices for the  im plem entation  of the  Queue class bu t makes 

th e  L ink  class less reusable th an  it can be. In a reuse setting, a  client m ay require two links w ith 

different ownership types, e.g.:

Link<this, owner, worId> Iinkl;
Link<this, this, wor!d> Iink2;

T his exam ple shows th a t while constructing class Queue for reuse, L ink  is trea ted  as an imple

m entation  abstrac tion  whose reusability does no t concern the designer. Refer back to  the  criteria  for 

m ode selection in Section 5.2.4 on page 87. T he original design of L in k  in Figure 5-2 used ownership 

param eters to describe the conceptual relationship between classes Queue and L ink. In the context of 

Queue, th is link and the n e x t  link have the sam e owner. The decision to  use an additional ownership 

param eter is characteristic  of an intention to  achieve the best separa tion  of concerns by conforming 

with the AP S. T he conceptual selection of m odes was b e tte r a t an n o ta tin g  existing usage bu t m ade 
L ink  less reusable.

T his exam ple shows also th a t ownership param eters play two roles in APSs:

•  As the m eans of custom ising the  ownership properties of A D Ts, and

•  As an  im plem entation mechanism for passing access perm issions.

The former is required because we w ant to  reuse ADTs w ith different ownership properties. The 

la tte r  is problem atic w ithin SO P because w ithin each subject, classes define only those ownership 

param eters th a t are needed to  realise the curren t concern. Defining additional param eters to  satisfy 

o ther concerns is contrary  to the spirit of SOP. Consequently, we believe th a t in subject-oriented 

program s, for class definitions th a t are d istribu ted  across subjects, ownership param eters are no t 

the  best way to  pass access permissions. Some o ther system  is required.

Finally, we also observe th a t ownership param eters pass access perm issions bu t have little  value 

as an  annotational aid. An ownership param eter denotes th a t ‘some o ther object owns th is ob jec t’ 

w ithout m aking it clear which object it is. A concrete m ode th a t  p inpoints the  actual owner or 

describes an aliasing policy is b e tte r for understanding  subject com position because it conveys a t a 

glance the  extent of aliasing.

Client side custom isation of ownership properties is necessary no t only for ADTs bu t also for 

concerns im plem ented by subjects. This is th e  topic of the  following Section.

5.4 Dealing with Incom plete Specifications

W hen decomposing a program  into subjects, m ore often th an  not th ere  are subconcerns which are 

common to more th an  one subject. In order no t to  duplicate code, a  set of subjects delegate the
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subject Composite {
abstract class Component { 

abstract Object doActionO;
>

abstract class Composite extends Component {
Vector children;

Object doictionO {
Iterator it = children.iterator(); 
while(it.hasNextO) {

Component c = (Component)it.next(); 
perChild(c);

>
return null;

>
abstract void perChild(Component c);

>
>

Figure 5-12: Com posite design p a tte rn  as a  subject

im plem entation of the  subconcern to  ju st one subject. For instance, consider a banking application 

in which subjects implement the  OpenAccount and  B a la n c e T ran s f  e r  concerns. Both subjects make 

use of operation A cco u n t. d e p o s i t  ( . . ) .  In OpenAccount, it is called to  set the  in itial balance 
when a new account is opened. In B a la n c e T ra n s f  e r ,  it is called after the  donor account has been 
w ithdraw n. Only one subject need im plem ent d e p o s i t ( .  . ) .

In A liasJava and  Ownership Types, ownership param eters make container classes m ore reusable 

by allowing clients to  specify th e  ownership properties. In SOP, subjects are elements of reusable 

software th a t can im plem ent pa tte rn s  in a generic way. T he subject designer may want th e  composer 

to  specify the  precise aliasing properties of a  subject. Some subjects are m ade more reusable if their 

aliasing properties are not set in stone bu t allowed to  vary based on the  o ther subjects w ith which 

the  reused subject is composed.

Reusability requirem ents and delegation are two reasons why an  APS should have a way of 

specifying modes in some general way. Let us consider an example. A com puter aided design (CAD) 

application creates pictures from prim itive objects such as rectangles, lines and other pictures. The 

com ponents m aking up a p icture can be aliased by any o ther com ponent. W hen a client needs to 

redraw  th e  picture, d raw () is called on all prim itive elem ents and, recursively, on all pictures within. 

In an  unrelated  program , consider a  file system  consisting of files and directories. D irectories contain 

files and o ther directories. Files or whole directories can be moved from one place to  another. W hen 

a client calls the  s i z e O  com m and on a file or a  directory, the  value associated w ith th e  size of the 

file or d irectory is calculated from th e  constituen t parts.

Drawing in the  CAD application and calculation of file system  size are feature concerns th a t 

affect m ultiple classes in the base application. The behaviour associated w ith draw O  and  s i z e O  

can be ex tracted  into separate subjects, bu t it is possible to go still further. T he concern th a t  ties 
these subjects together is ‘object hierarchy trav ersa l’. The Com posite design p a tte rn  [43] describes 

how to  build object hierarchies consisting of p rim itive and com posite objects. P rim itive objects can 

be composed into more complex objects, which in tu rn  can be composed, and so on recursively. 

C lients tre a t prim itive and com posite objects in th e  sam e way.
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Figure 5-13: Ownership structure examples for the Draw concern in a CAD application (left) and 
for the Size concern in a File System application (right)

subject CADdraw {
abstract class Component<owner> { 

abstract Object<world> drawO;
>
class Picture<owner, topPic> extends Component<owner> {

Object<world> draw() { /* to be composed with doActionO */ } 
void perChild(Component<topPic> c) { 

c .draw();
>

>
class Line<owner> extends Component<owner> {

Object<world> draw() { .. }
>
class Rectangle<owner> extends Component<owner> {

Object<world> drawQ { . . }
>

>

Figure 5-14: CADdraw subject annotated  with Ownership Types

W ith SOP we can implement the Composite pa ttern  in a non-application specific way, and extend 

the generic pa ttern  definition to  create the subjects for doing draw O  and s i z e O .  The Com posite 
subject w ithout aliasing modes is given in Figure 5-12. However, problems occur when we try  to  give 
an aliasing annotation or type to  the objects referenced in the Composite pattern . The problem is 
illustrated by the object graphs in Figure 5-13. The solid edges denote references and dashed edges 
denote ownership relations. In the CAD application, all pictures, lines and rectangles are owned 
by the root picture. This structure allows for lines, rectangles and pictures to be shared between 
pictures a t different levels. In the file system, the files and directories are owned by the directory 
th a t references them. The movement of a file from one directory to  another changes the file’s owner.

The different ownership structures required by these two problems translate  into different aliasing 
modes in the design of the Composite pattern . The CAD drawing subject (Figure 5-14) requires 
the children of a composite object to be param eterised by the owner, which is the top-level picture. 
A nnotated with Ownership Types, the Com posite subject acquires the following modes:

abstract class Composite<owner, topPic> extends Component<owner> {
Vector<this, topPic> children;

>
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subject FileSystemSize {
abstract class Component<owner> { 

abstract int sizeO;
>
class Directory<owner> extend Component<owner> { 

int tempSize = 0;

int sizeO { return tempSize; }

void perChiId(Component<this> c) { 
tempSize += c.size();

>

>

class FiIe<owner> extends Component<owner> { 
int fileSize;
int size() { return fileSize; }

>
>

Figure 5-15: F ile S y s te m S iz e  subject anno ta ted  w ith O wnership Types

In the file system  (Figure 5-15), the  directories and files inside ano ther directory are owned by 
th a t directory, giving the following Ow nership T ype annotations:

abstract class Composite<owner> extends Component<owner> {
Vector<this, this> children;

>

T he problem  occurs w hether we use Ow nership Types or A liasJava. In fact, th e  problem  is 

m ore serious in A liasJava because the file system  can employ the  u n iq u e  m ode instead of ownership 

param eterisation. However, suppose th a t  we stay  w ith non-un ique ownership. I t should then  be 

possible to  design the C om posite subject while allowing a degree of freedom when selecting the  

owner of the com ponents referenced by the composite.
In  re la ted  work, Clarke and W alker [26] discuss composition patterns which separate  the  design of 

cross-cutting requirem ents into reusable, extensible design models. C om position patte rn s  are an  ex

tension to  UML tem plates and com position sem antics defining how b o th  s tru c tu ra l and behavioural 

design elements m ay be merged. C om position p a tte rn s  use tem plate  param eters as placeholders for 

elem ents replaced by real elem ents in the  composed design. The tem plate  param eters have con

stra in ts. For instance, when m odularising a  design p a tte rn  such as O bserver [43] as a  com position 

p a tte rn , operations th a t are specific to  p a tte rn  instan tia tion  are specified as com position p a tte rn  

param eters. The Observer p a tte rn  has already featured heavily in the  exam ples of C hap ter 3 on page 

22. To recap, the  Observer p a tte rn  describes a collaboration between a  Publisher and a num ber of 

Subscribers. Subscribers dynam ically register and  deregister an  in terest in Publishers, so th a t  when 

th e  P ub lisher’s s ta te  changes all its registered Subscribers are notified of the change. T he tem plate  

param eters of th is com position p a tte rn  are:

•  The Publisher and  Subscriber classes.

•  The behaviour which constitu tes a  s ta te  change in the  Publisher.

•  The behaviour for perform ing updates in response to  s ta te  change notifications.
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•  T he behaviours for in itiating  the reg istra tion  and dereg istration  of Subscriber objects w ith 

Publishers.

Each tem plate  param eter is typed as either a class or an operation , w ith  operations having 

certa in  param eters of their own, e.g. th is is the case w ith reg istra tion  and  dereg istra tion  behaviours. 

Clarke and  W alker [27] have shown a  m apping from com position p a tte rn s  to  H y p e r/J  and A spect J. 

Tem plate param eters are the  client-specific elem ents of subject designs.

We believe th a t the  reusability of com position patte rn s  will be im proved by th e  in troduction  of 

aliasing modes th a t are bound during com position. Aliasing m odes should be in the  list of tem pla te  

param eters. To best support the  creation of reusable subjects and  to  enable delegation during 

design, it is necessary to  specify the aspect of aliasing th a t should be param eterised , the  constrain ts 

on param eterisation  and a representation  for param eters and constrain ts.

5.5 Towards an A PS for Understanding Subject Interaction

Over the previous Sections th is C hap ter has described the m ain properties of Alias P ro tec tion  

System s and  the way the  shift tow ards Subject-O riented  P rogram m ing affects those properties. The 

current Section brings these th reads together in order to  evoke th e  desirable properties for a  subject- 

oriented APS. T h a t is, to  highlight those properties which best help sub jec t com posers to  understand  

subject interaction.

According to  Aldrich et al [5], a  way of evaluating an Alias P ro tec tion  System  is by showing 

how annotations can help program m ers answer questions th a t are difficult to  answer in existing 

program s. We discuss some questions th a t are hard  to  answer presen tly  in SO P program s and  for 
each question describe:

1. The reason it is difficult to  answer th is question presently w ith SOP.

2. The APS properties th a t can help to  answer the question.

•  W h ic h  o b je c ts  m a y  m o d ify  th i s  o b j e c t ’s s t a t e ?  For exam ple, suppose there  is an  in

teraction  problem  when a collection of subjects are composed. T he problem  is traced  to  an 

unw anted s ta te  change in an object.

1. The cause of the  s ta te  change is difficult to  diagnose because alm ost any object in the  

system  is potentially  a client of th e  object whose s ta te  changes.

2. C ontainm ent properties of Ow nership Types are superior to  th e  anno ta tions of A liasJava 

because Ownership Types do not allow objects outside the  owner to  change the  o b jec t’s 

sta te . In AliasJava, only the owner is invariant b u t ow nership can be gran ted  to  any 

object created subsequently. Ow nership Types offers stronger represen ta tion  containm ent 

guarantees. The objects th a t can modify another ob ject depend also on dynam ic aliases 

allowed by an APS.

•  H o w  d o e s  o n e  s u b je c t  a ffec t t h e  o b je c ts  o f  a n o th e r  s u b je c t?  M ost complex behaviour 

is specified inside of and occurs w ithin a subject. It is n a tu ra l to  th ink  of a  sub ject in term s 

of the  object collaborations it im plem ents. O bjects passed as argum ents to  the  collaboration 

from the  outside and those created  w ithin appear to  be owned by th e  sub jec t. O f course, there  

is no actual subject ownership because subjects are merely packages.
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1. This question is difficult to  answer a t present w ith SO P because one is required to  study  

operation im plem entations to understand  their effect on shared  state.

2. A  mode specified in the  signature can help one u n derstand  the  way a subject affects an 

object th a t is also referenced by ano ther subject. For exam ple, if an operation in subject 

51 is merged w ith a r e a d -o n ly  operation  (w ith r e a d - o n ly  transitive) from 52  then  there  

are no unw anted s ta te  changes to  objects ‘owned’ by 51 in calls to the  merged operation.

•  W h a t  in te g r a t io n  t e s t s  s h o u ld  b e  r u n  o n  t h e  o u tp u t  s u b je c ts  c r e a te d  b y  th i s  c o m 

p o s i t io n ?  Before a com ponent created  by subject com position can be released it m ust be 

tested  to  check th a t it satisfies the  requirem ents. Subjects in te rac t when sharing control or 

d a ta , hence com positions which in tegrate  classes bu t never th e ir m em bers require no in tegra

tion testing. Subjects th a t  share control bu t not da ta , e.g. th e  Tracing concern in C hap ter 3 

on page 22, cannot be analysed through APSs because they  do not pass object references over 

join points.

1. W here subjects pass object references over join points, the  modes of the  shared  d a ta  

elements affect the  range of tests  required.

2. Subjects th a t use only the im m utable interface of shared objects, e.g. mode a rg  in Flexible 

Alias P rotection, are not affected by s ta te  changes to  those objects. W hen one sub ject 

depends on the m utable s ta te  of objects in ano ther sub jec t bu t is r e a d -o n ly  on the  

objects it accesses, only the  sub ject w ith r e a d -o n ly  access needs to  be tested  for s ta te  

changes. This is sim ilar to  the  S pectators and A ssistants m odel [28] defined for A spect J . 

Aspects th a t only read bu t never modify objects a t jo in  po in ts are spectators, the  rest are 

assistants. In Aspect J an aspect is a  class bu t a  sub ject is a  family of classes. T he notion 
of spectato r may be defined over the  set of in ter-subject jo in  points by using aliasing 

modes th a t denote r e a d -o n ly  access.

For understanding subject interaction, we believe th a t the  in itial challenge lies in getting  control 
over object aliasing in a m ulti-subject environm ent in order th a t th e  first question above can be 

answered. The effect of one subject on another can be b e tte r understood  only when the ex ten t of 
aliasing is known.

5.6 Conclusion

This C hapter has reviewed Alias P ro tection  System s and discussed the  challenges of developing 

an  A PS for SOP. An APS anno ta tes the  objects which depend on or modify the  s ta te  of o ther 

objects. T his property  is useful to  the  subject com poser because it can help to understand  sub jec t 

in teractions and thus prevent in teraction  problems.

T he differences in approach to  software developm ent between SO P and  O O P im pact th e  selection 

of aliasing modes. T he m ain technical challenges are:

•  Ownership param eters are problem atic because each sub jec t m ay need to  reference objects 

from partia lly  overlapping sets of owners.

•  Ownership param eters are still required for creating trad itio n a l container classes.
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•  C ertain  subjects should be param eterisable by concrete aliasing m odes of objects in o ther 

subjects.

•  Subject-oriented com position may be used to  create new black-box com ponents.

In the  following C hapters we present the  Subjective Alias P ro tec tion  System. SAPS addresses 

m any of the  above challenges: it is a fully fledged APS th a t also improves subject reusability.



Chapter 6

SA PS — Subject D esign

The Subjective Alias P ro tection  System  is our proposal for improving reusability in a way th a t is 

also useful to  the original developer of software. SAPS is an Alias P ro tection  System for subject 

design and an anno ta tion  system  for subject com position. The APS p a rt of SAPS, also known as 

Subjective O w nership Types (SOT), helps subject designers to  create well s truc tu red  subjects th a t 

avoid problem s which are known to  result from bad uses of aliases. In this sense, SO T are of use 

to  the  original developer of software. SAPS is SO T plus subject-oriented com position rules. SO T 

ann o ta te  object aliasing a t the points of subject in teraction, helping the com poser to  understand  the 

effect of subject interaction  on sta te . T hrough explicit alias m anagem ent, SAPS helps th e  subject 

in teg ra to r to  prevent in teraction  problems.
T he presentation  of the  SAPS is split over th is and the  following C hapter. The present C hapter 

describes the  Subjective Ownership Types used in subject design. C hap ter 7 discusses the  com po

sition of subjects anno ta ted  w ith Subjective O w nership Types.
Like Ow nership Types [23], SO T enforced deep ownership properties. However, th e  tra its  of 

subject-orien tation  distinguish SO T from any object-oriented APS. For a num ber of reasons th a t will 

be explained inside th is C hapter, SO T makes it possible to define two kinds of classes: com posable 

classes and uncom posable classes. Subject definitions predom inantly  contain com posable classes. 

We say th a t a  subject has an ownership s tru c tu re  which is a  model of the su b jec t’s ownership 

relationships. In composable classes the ownership stru c tu re  is formalised by a  system  of explicit 

context nam ing. We will show th a t when separating  concerns into subjects there  are p a rts  of the  

ownership stru c tu re  which a subject either does not know or should not need to  know about. For this 

purpose com posable classes feature a new kind of context variable th a t  has no equivalent in object- 

oriented program m ing. These so-called unknown contexts make it possible to  specify subjects in a 

m ore reusable way th an  is possible w ith explicit contexts alone. Uncom posable classes are black- 

box abstractions th a t re ta in  ownership param eters as the m eans for formalising their ownership 

structures.

T his C hap ter continues the  presentation of our contribution to  the  thesis. Section 6.1 explains 

the  principles of SO T and links them  to  the  observations m ade in the  previous C hapter concerning 

the  differences in approaches to  software construction between subject-oriented and object-oriented 

program m ing. Section 6.2 explains the principles of explicit context nam ing used in com posable 

classes. Section 6.3 describes unknown contexts and  their relationship to  explicit contexts. Uncom

posable classes and their relationship to  com posable classes are described in Section 6.4. Along the

99
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Figure 6-1: SAPS com position process

way we present the  properties of correctness for Subjective Ow nership Types. These include deep 

ownership checks. Section 6.5 concludes th is C hapter.

6.1 Subjective Ownership Types and SAPS

This Section describes the  principles of Subjective O w nership Types. In order to  p u t SO T into 

context we will outline the SAPS process.

Subjective Ownership Types are  p a rt of a  process th a t  consists of two key stages. F igure 6-1 

shows th a t subjects anno ta ted  w ith  Subjective O w nership Types are individually com piled using 

th e  SO T Compiler (also known as the  Subject Com piler). The SO T Com piler type checks the  
subject, generating Ownership T ypes Labels as one p a rt of its ou tpu t. For the  second p a rt, th e  SO T 

compiler strips ou t the Subjective O w nership Types and uses a  stan d ard  program m ing language 
compiler to  generate object code. T he O w nership Types Label contains the  stubs denoting the  

su b jec t’s com posable elements, types and  o ther a ttrib u tes  of constructs found in object code.

For the  second stage, the  Subject Com poser takes as inpu t object code, O w nership T ypes Labels 

and  a  com position specification. Initially, the  com position specification is applied to  Ow nership 

Types Labels. The ou tp u t label is generated  if th e  Subjective O w nership Types found in the  in

p u t labels perm it composition. Finally, object code for th e  o u tp u t subject is linked based on the  

com position specification and object code of th e  input subjects.

6.1.1 Deep Ownership

To create a useful Alias P ro tection  System  for Subject-O riented  Program m ing it is necessary to  

find the  right balance between an  A PS for subject design and  an  anno ta tion  system  for subject 

in teraction. We believe th a t the  righ t balance can be struck  by devising a  system  th a t  enforces 

deep ownership bo th  for a  single sub ject and across a set of subjects linked by a com position 

specification. T h a t is, to  extend SO P w ith additional types and  com position rules for enforcing the 

sam e containm ent properties as O w nership Types [22].

In deep ownership only the o b jec t’s owner and  other tru s ted  objects inside the owner can refer

ence the object. This means th a t represen tation  objects are  to ta lly  hidden from external clients. In 

the  setting  of one subject, represen tation  containm ent properties of O wnership Types b e tte r  sup
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p o rt m odular reasoning a t the object level th an  shallow ownership as used in A liasJava. A liasJava’s 

constrain ts on owned objects do not prevent owned or represen tation  objects from passing to  ex

ternal clients. T he capability  to  reference objects owned by o thers can be passed using ownership 

param eters to  an object w ith any o ther owner. Consequently, the  effect on s ta te  is no t constrained 

to  the  sam e degree as w ith deep ownership. T he previous C hap ter has argued th a t deep ownership 

is b e tte r suited to  answering in teraction questions about the  effect of in teractions on the  s ta te  of 

objects. We antic ipate  th a t deep ownership will help to  trace  the  source of an anom aly in m any 

cases.

O bject-oriented program m ing and SO P are different ways of addressing design challenges. In 

subject-oriented  development, we have found the  no ta tion  used by O w nership Types for com m uni

cating the  ownership constrain ts inadequate for enforcing deep ownership. Instead, we propose a 

new system ; one th a t is b e tte r suited to  the  SO P paradigm  and  its idioms. Before delving into the  

details of Subjective Ownership Types we sum m arise the  m otivation for its constituents.

6.1.2 The Origin of the Notation

T he Subjective Alias P ro tection  System  is sim ultaneously inspired by a  num ber of observations 

detailed in the  previous C hapter. We review these in order to  help explain the origin of our no tation .

•  O bservation 1: T he Suitab ility  o f  th e  D eep  O w nership  M odel.

As described above, we w ant SO T to  enforce deep ownership. We feel th a t  it represents an 

agreeable compromise between a flexible alias protection  m odel for subject design and an  alias 
anno ta tion  system  for subject interaction.

•  O bservation 2: C ustom isation  o f  O w nership P ro p erties  o f A D T s.

A PSs have been dem onstrated  in term s of A D Ts such as one m ay find today in u tility  libraries. 

SO P will not be used to  extend the  definitions of these classes as for the m ost p a rt inheritance 

and delegation are well suited to  creating  new types based on these abstractions. Com m on 

ADTs and types derived from them  by inheritance or delegation will be used in subject defi

nitions. O w nership Types and  A liasJava have employed ow nership param eterisation  to  enable 

clients to  custom ise the aliasing properties of ADTs. T he inheren t flexibility of ow nership 

param eterisation  also should prove useful for subject design.

•  O bservation 3: T he A n n otation al P rop erties o f  O w nership  Param eters.

SAPS is m otivated by interaction  problem s. I t  should help program m ers to  steer clear of and  

subsequently detect anomalies. Consequently, in order to  help th e  composer to  understand  

the in tra-sub ject relationships Subjective Ow nership Types should anno ta te  the  ownership 

struc tu re  of subjects. O wnership param eters convey little  inform ation abou t the  ownership 

structure; w ith the exception of the  first param eter which denotes th e  o b jec t’s owner, ownership 

param eters represent objects a t possibly a rb itra ry  points in th e  owner hierarchy. P aram eteri

sation is useful for custom ising the ownership properties of A D Ts (see O bservation 2, above) 

bu t is less su ited  for anno ta ting  the ownership stru c tu re  of subjects. The composer gains little  

useful inform ation about the  role an object plays in collaborations im plem ented by th e  sub jec t 
when its owner is denoted param etrically.

•  O bservation 4: P aram eterisation  is C haracteristic o f  an O bjective P ersp ective .
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A  subject defines only those abstractions and functions th a t contribute to  addressing its con

cern. T he same principle should also extend to  ownership concepts: a  class in a subject 

should only have to  define those ownership concepts th a t perta in  to  im plem enting its concern. 

We have shown in Section 5.3 on page 88 th a t subjectiv ity  concepts interfere w ith ownership 

param eterisation. W hen instan tia ting , a  subject does not and  should no t have access to  all 

contexts which an object of th a t type m ay need to  reference in all subjects. In m any cases this 

results in a  subject being unable to  bind all ownership param eters declared in all o ther sub

jects. We believe th a t ownership param eterisation  is characteristic of an  objective perspective 

of software developm ent where the client always sees the whole interface. To handle subjective 

perspectives, SAPS proposes an alternative to th is perm ission passing mechanism.

•  O bservation 5: C onstruction  o f N ew  C om ponents.

Subject-O riented Program m ing enables th e  decom position of program s by feature. Decompo

sition by feature applies not ju s t to  end-user program s bu t also to  com ponents bu ilt for reuse 

in com ponent frameworks. These com ponents are intended to  be reused as black-boxes bu t 

may support certain  an ticipated  extensions and adaptations. In order to  extend the  benefits of 

SO P to  the design of com ponents for use w ith existing frameworks, the  restrictions on aliasing 

m ust be hidden w ithin the ou tpu t subject. If necessary, subjects m ay restric t each o ther bu t 

any aliasing modes em ergent in the  o u tp u t subject should be downwardly restrictive.

•  O bservation 6: P artia lly  Specified  O w nership Structures.

Subjects are often incom plete program s, delegating to  o ther subjects certain  im plem entation 

details. A t o ther times, subjects im plem ent collaborations w ith certain  reusability  require
m ents. B oth cases require some form of genericity. W ith  respect to  ownership, Section 5.4 on 
page 92 identified an exam ple w here the ownership struc tu re  of one subject may be param e- 
terised by o ther subjects.

T he present C hap ter is dedicated to  explaining how the above observations have influenced 

Subjective Ow nership Types. A com bination of observations 2, 3, 4 and 5 have inspired us to 
formalise the  separation of ADT u tility  library  classes from those classes created  as p a rt of the 

subject definition. ADTs from utility  libraries and o ther classes requiring custom isation of aliasing 

properties are in the  set of uncomposable classes. T he vast m ajority  of classes created  as p a rt of 

sub ject design are p a rt of the set th a t  we call composable classes. In teraction  between objects of 

com posable and uncom posable classes is possible in m ost cases.

Uncom posable classes do not partic ipa te  in compositions; however, the ir instances can. A D Ts are 

cohesive black boxes; we believe th a t for common ADTs, SO P cannot simplify the ir im plem entation. 

Based on observation 2, in order for clients to  be able to  custom ise the aliasing properties of ADTs, 

ownership param eterisation  is used w ith these classes. Com posable classes are defined using an 

a lternative type system  th a t does away w ith ownership param eters.

O bservations 3 and 4 have inspired a  new no ta tion  of explicit context identifiers for describing 

externally  owned objects in composable classes. T his no ta tion  replaces ownership param eterisation  

to  enforce deep ownership. Based on observation 6, we introduce unknown context identifiers. These 

are used in com posable classes for referring to  objects whose ownership contexts are no t known in 

th e  curren t subject. An unknown context identifier is p a rt of another su b jec t’s design decision. 

T hey are bound when subjects are composed to  form com plete program s.
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O bservation 5 is concerned w ith our rules for subject com position. SAPS helps to  hide the objects 

used in the  im plem entation of com ponents from th e  framework clients of the  com ponent. Subjects 

agree on the  representation  objects and each subject specifies representation objects using Subjective 

O w nership Types. In conjunction w ith subject com position rules th a t preserve types, the o u tp u t 

sub ject continues to  hide the  common representation . SO T create no restrictions on th e  use of the  

o u tp u t subject w ithin a com ponent framework. O bservation 5 also concerns subject-oriented design 

in the  large, i.e. the co-design of m ultiple subjects together. This aspect of Subjective O w nership 

Types is discussed in the  following C hapters.

In this C hapter, we will present 12 properties th a t are required to  ensure SO T correctness. The 

properties will be presented gradually and brought together a t the  end in order to  describe checks 

for type correctness.

6.2 Explicit Context Identifiers

Explicit context identifiers are a t the core of SO T and the  design of composable classes. To make 

further discussion of explicit context identifiers m ore m anageable, they  will be referred to  as exps 

(singular: exp), exps replace ownership param eters in com posable classes. The exp anno ta tions are 

used by the  subject compiler to  check th a t the  subject satisfies the  contrain ts of deep ownership.

T he term  explicit has been adopted because the  ordering of contexts is explicit in the  exp no

ta tion . To help explain the ordering of contexts and  the  origin of the  no tation  we present object 

graphs more formally th an  they were described in the  previous C hapter. A snapshot of an  executing 
subject-oriented  program  can be represented as an  object graph:

D e f in itio n : ( O b je c t  G ra p h )  An object graph is a  finite directed graph whose u>i vertices repre

sent objects. References are denoted uj\ —> u)2 - T he root object p is a  distinguished vertex  w ith all 

objects reachable from root either directly or along a p a th  formed by edges.

In order to  support deep ownership all references to  th e  object m ust come either from the  ob

je c t’s owner or from other objects which are inside th a t owner. G raphically, th is p roperty  can be 
understood  in term s of paths between p and the  object of interest. All pa ths from th e  roo t to  the  

object m ust pass through the vertex representing th e  o b jec t’s owner. In graph theory, th e  owner is 

the im m ediate dom inator  for the  objects it owns. T he im m ediate dom inator comes from a set of 

dominators of an  object:

D e f in itio n : (D o m in a to r )  For a  given object graph, vertex wi is a  dom inator for u)2  if and  only if 

every p a th  from p to  ui2 includes u>i. dom inator (0J2 ) is the  set denoting all such dom inators including

Ui .

A useful way of representing dom inator inform ation is in a tree, which in our case is called the 

ownership tree. T he root vertex is p and each vertex  dom inates only its descendants in th e  tree  [2]. 

Such a tree is induced by dom inator{1̂ 2 ) D. dom inator(w i):

D e fin itio n : (O w n e rs h ip  TVee) The ownership tree  of an  object graph is given by th e  p artia l
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Figure 6-2: An Ownership Tree

order <  on objects:

u>2 <  <̂ i iff dominator((J2 ) 5  dominator (uj\)

p as the biggest element. Vertex u>2 is the immediate dom inator of u)\ if and only if 0J2 is the least 
element of dominator(u) 1) not including u)\. We write u)\ < UJ2 when 0)2 is the immediate dom inator 
of U)\.

The owner of u>i is defined as the im m ediate dom inator of u>i. As the program  executes the object 
graph evolves. New objects and references are added, other objects and references are removed. The 
ownership tree co-evolves with changes to the object graph. P o tter et al [102] observed th a t object 
graphs have an implicit dom ination structure. Although changes to  the dom ination structure  are 
inevitable, in well structured program s changes are limited. The purpose of an ownership type 
system is to formalise the dom ination structure  in order to  constrain the evolution of the object 
graphs, such th a t new references can be added only in a structured  way.

Subjective Ownership Types formalise the ownership structure by numbering the dom inators. 
The dom inator set of forms a  sequence with u>i as the first, ojj with Ui < ujj as the second, 
until p as the last element. The elements of the sequence can be identified with their position in 
the sequence. Let 1—> denote the relationship between a sequence position index and the sequence 
element denoted by the index. Also let a  be a set of such tuples. The element identified by index 
i is denoted cr(i) with cr(l) =  uji as the first element. For example, consider the ownership tree in 

Figure 6-2. In the Figure, world owns objects ol and o7; ol owns o2, o3 and o4; o4 owns o5 and 0 6 ; 
object o l  owns 0 8 . Object o4 is associated with sequence (o4, o l, world) of dom inators. Then for o4, 

0  is defined as:
<7 =  {1 1—> o4, 2 1—► ol, 3 1—> world}

Object o l  is associated with sequence (o7, world) of dominators. Its a  is defined as:

o  =  {1 I—> o7, 2 1—> world}

Now, suppose th a t Figure 6-2 is the intended ownership structure  th a t we wish to formalise 
using types. We use the dom inator indices dom (a ) U {0} (the domain of a  including zero) to  define
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L ift

Figure 6-3: Ownership structu re  for subject F lo o rP re ssB u tto n

explicit context identifiers for each object. W ith respect to o4, explicit context identifier 0 is shared 
by all objects th a t have o4 as owner, i.e. objects o5 and 0 6  in the representation context of o4. 

Explicit context identifier 1 refers to o4, the current context of interest. The owner of o4 is o l -  the 
im m ediate dom inator of o4. We use explicit context identifier 2 to  refer to the object th a t owns the 
current instance. Finally, explicit context identifier 3 refers to  world, the ownership context of o l. 
From now on, we shall adopt notation expn to refer to explicit context identifier n. For example, for 
explicit context identifier 0 we will w rite exp0 , for explicit context identifier 1 we will write expj.

No two objects can have the same a  because exp2 always refers to  a different this, a  is based on 
perspective and an object can be referred to by two different exps. For example, world is referred to  
as exp4 from o5 and exp2 from o7.

Explicit context identifiers denote object owners in program texts. In the body of a composable 
class, a type is formed by extending the nam e of a composable class with an angle bracketed exp, 

world or an unknown context identifier. Like t h i s  in Ownership Types, exp0 denotes objects in 
the current representation context. The owner context is always labelled using exp: . The other 
explicit context identifiers refer to  greater dom inators in the ownership tree. We retain context 
identifier world for referring to global objects which can be aliased anywhere. Objects of value types 
have world as owner implicitly and do not require additional annotations. This scheme allows new 
objects and references to existing objects to  be created in the current representation context, in 
the representation context of this ob ject’s owner, in the global context or in any other context th a t 

dom inates this object.

6.2.1 exps in Action

To show the exp notation in action we use an example from a lift operation system. Suppose th a t 
one use case in the specification of a lift operation system describes the  action of pressing a button  
a t some floor. T he floor on which the bu tton  is pressed should be added to the lift’s list of floors to 
visit. One subject can m odularise the im plem entation of this use case.

To understand  the ownership structure  of a subject, the subject designer can draw the intended 
ownership tree. Figure 6-3 shows th a t the lift and the floors w ithin it are owned by the building. 

The buttons are owned by their respective floors.
Figure 6-4 shows th a t this structure  can be formalised in subject code using exps. From line 

2 we observe th a t in class B u ild in g  the l i f t  is owned by the B u ild in g . In line 3, the f lo o r s

Building

Floors

Buttons
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1 class Building {
2 Lift<0> lift;
3 Floor<0,0>[] floors = new FIoor<0,0>[10];
4 void mainO {
5 for(int i = 0; i < 10; i++) floors[i].setLift(lift);
6 >
7 >
8
9 class Lift {
10 Floor<0,l>[] floorToVisit;
11 int index = 0;
12 void addFIoorToVisit(FIoor<l> f) {
13 if(index < 10) floorToVisit[index++] = f;
14 >
15 >
16
17 class Floor {
18 Lift<l> lift;
19 Button<0> button;
20 void setLift(Lift<l> lift) {
21 this.lift = lift;
22 button.lift = lift;
23 button.thisFIoor = this;
24 >
25 >
26
27 class Button {
28 FIoor<2> thisFIoor;
29 Lift<2> lift;
30 void press () ■(
31 lift.addFIoorToVisit(thisFIoor);
32 >
33 >

Figure 6-4: Code for subject FloorPressButton
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array  and  the elem ents w ithin it are owned by th is B u ild in g  instance. In class L i f t ,  f lo o r T o V is i t  

a rray  (line 10) is owned by th is L i f t  instance b u t the  F lo o r  objects, passed as argum ents in calls 

to  a d d F Io o rT o V is it ( .  .)  (lines 12-14) and stored in the vector, are owned by th is L i f t ’s owner. 

W hen m ethod B u t to n .p r e s s () is called (lines 30-32), th e  floor on which the  bu tto n  is pressed is 

added to  the  lift’s list of floors to  visit. As seen in Figure 6-3, from the  perspective of a  bu tton , 

t h i s F I o o r  (line 28) and l i f t  (line 29) bo th  have owners given by exp2.

6.2.2 Context Identifier Arithmetic

The num eric no ta tion  th a t we have adopted  for exps is used bo th  by program m ers and the  Subject 

Compiler to  type check program s. SAPS program m ers use d a ta  flow between objects to  m entally 

check the  validity of explicit context identifiers, i.e. to  check th a t  two references in different classes 

are m utually  consistent if objects of those classes can ever reference the  sam e object. References are 

generally passed between objects as argum ents or re tu rn  values in m ethod calls, during field variable 

update  and access. W hen references are passed as m ethod param eters or in a field update , d a ta  

flows out from source to  ta rget. For m ethod  call re tu rn  values and field variable access, d a ta  flows 

the  o ther way. To help program m ers do the  m ental calculations we in troduce functions A i and A 2 

for outw ard and inward d a ta  flow respectively. T he Subject Compiler relies on A 2 to  type  check 
expressions.

In the  outw ard direction, two factors contribu te to  calculating the  context identifier a t the  target:

•  T he exp representing the  ownership context of the  object to  which the  reference is passed, k.

•  T he exp or exps of the  object whose reference is being passed, m .

The calculation of the  context identifier a t ta rg e t is arithm etically  simple, though it takes a 
knack to  grasp the concept. To explain the  calculation, first one m ust rem em ber th a t exps num ber 

the dom inators of t h i s  object. In order to  prevent representation exposure, only the  owner object 

m  and o ther objects inside m  are allowed to  access the representation of m . The receiver context k  

m ust be inside the  context of the  argum ent object m , i.e. k < m .  Conversely there  is representation 

exposure: by definition of dom inators, if an object w ith owner k  also references an  object w ith owner 

m  then  m  is not a  dom inator for th a t object.

W hatever the value of k  is a t source, in the ta rg e t the ownership context of the  self reference is 

given by expj. T here exists a  difference of m  — k  contexts between the  argum ent and the  receiver. 
P u ttin g  the difference in relation to  the  ownership context of the  self reference in the  target, the 

passed reference has context identifier m  — k  +  1 in the  ta rg e t object. This calculation is cap tured  

by A i:
A i (k, m ) d= m  — k  + 1

Let us dem onstrate  A i in action using the code in F igure 6-4 on page 106. Consider th e  loop 

shown in line 5 which passes a L i f t  reference to  each of the  floors. In the  body of the loop each 

floor object has type F loor<0>; thus k =  0. In class B u ild in g , the  lift object whose reference is 

being passed has type L ift< 0 > ; thus m  =  0. By A i in class F lo o r  the  type of this lift object m ust 

be L if t< l> .  As seen a t line 20, this is indeed the case.

In the re tu rn  direction, the  exp value of the  reference in the  current context is obtained  from 

field variable accesses or from the re tu rn  value of m ethod calls. Two factors contribu te to  calculate 

the  context identifier a t the destination:
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•  T he exp representing the  ownership context of the  object from which the reference is ob

tained, k.

•  T he exp or exps in the  source of the object whose reference is being obtained, n.

T he ownership context of the self reference in the  source object is given by expj. In order to  

prevent representation exposure, n  m ust be greater th an  zero. Conversely, the object w ith owner 

n  is the  representation  of n , and it m ay not be accessed by any object o ther th an  the one bound 

to  t h i s .  There exists a  difference of n  — 1 contexts between the  owner of the  object and the self 

reference. P u ttin g  the  difference in relation to  the  the  receiver’s context k, the  obtained reference 

has context identifier n  — 1 +  k. T his calculation is cap tu red  by A 2 :

A 2 (k, m ) d= k  + n  — 1

To dem onstrate  A 2 tu rn  once more to  the  code in Figure 6-4 on page 106. T he field update  

expression a t line 22 sets the B u tto n , l i f t  field. D uring type checking, the types of expressions on 

bo th  sides of assigm ent m ust be equal. On the  left hand  side, the  type of b u t to n ,  l i f t  is determ ined 

by obtaining k  and  n. The type  of b u t to n  in the  class of the  expression is B utton<0>; thus k  =  0. 

T he type of the field in source class is L if t< 2 >  as shown a t line 29; thus n  =  2. By A 2 , the  type of 

expression b u t t o n . l i f t  a t ta rg e t is L i f t< l>  as expected.

6.2.3 Type Checking and Representation Containment

An im portan t purpose of exps is to  prevent representation exposure by enforcing deep ownership 

constrain ts a t compile tim e. In  deep ownership, in order for object x  to  reference y , x  m ust be inside 
the set of valid owners of y  [22]:

x  —» y  =>• x  <  owner(y)

So far we have presented only exps. So the  only valid types we can form a t th is tim e are 

those derived by substitu ting  an exp for the  owner context. To prevent representation exposure, 

substitu tion  m ust satisfy two properties:

•  P r o p e r ty  1. If exp0 is in the  type of a  param eter, re tu rn  value or field variable then  this is 
the only valid receiver expression.

•  P r o p e r ty  2. T he context in the  actual param eter m ust be as given by A 2 .

In a s ta tic  check, only this is guaranteed to  be the  owner of the  representation. Any other 

expression may denote o ther objects whose representation  context is different to  this. Consequently, 

this is the  only valid receiver when the  type of a  m ethod param eter, a m ethod re tu rn  value or a 

field variable contains exp0. F igure 6-5 shows exam ples of valid and  invalid accesses. In line 5, field 

variable e has exp0 in its type. However, it can be upda ted  because t h i s  is the  im plicit receiver 

expression. T he sam e is not true  of line 6 because d m ay contain a reference to  any D object (not 

ju s t t h i s .  Lines 7 to  10 show valid and  invalid expressions involving m ethod calls.

For well-typed exressions the  explicit context identifiers m ust be m utually  consistent. T he Sub

ject Compiler uses A 2 to  check types for m utual correctness. F igure 6-6 shows A 2 being applied 

to  field access, field update  and  m ethod call expressions. In line 6, a  newly declared variable eO is 

initialised w ith an  object re tu rned  by a  field access. By A 2 the  type  of the  field access expression is
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1 class D {
2 D<0> d;
3 E<0> e;
4 void f o o O  {
5 e = new E<0>(); // Valid. Equivalent to 'this.e = new E C O ^ ) ; ’
6 d.e = ... // Invalid, e is in the representation of d
7 e = getSomeEQ ; // Valid. Implicit receiver 'this’ in rhs expression
8 .. = d.getSomeEQ; // Invalid. getSomeE returns a representation object
9 setSomeE(e); // Valid. The expected and actual parameter type is E<0>
10 d.setSomeE(e); // Invalid. Only ’this’ can access this method
11
12 >
13 E<0> getSomeE() { . . >
14 void setSomeE(E<0> someE) { .. }
15 >
16
17 class E { }

Figure 6-5: S tatic  visibility check exemplified.

1 class C {
2 D<0> dO;
3 D<1> dl;
4 D<2> d2;
5 mainO {
6 E<0> eO = dO.el;
7 dl.el = new E<1>();
8 E<2> e2 = d2.getEl();
9 dl.setEl(new E<1>());
10 >

11 >
12
13 class D {
14 E<1> el;
15 E<1> getEl() { return el; >
16 void setEl(E<l> el) { this.el = el; }
17 >
18
19 class E { }

Figure 6-6: A 2 applied to  different kinds of expression.
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1 class LibraryCIass {
2 T Iibfun(V v) { .. >
3 void register(Object c) { /* e.g. for async notification * /  }

4 >
5
6 subject S {
7 class C {
8 D<0> d;
9 void foo() {
10 LibraryCIass<vorId> Ic;
11 V<worId> v;
12 T<worId> t = Ic.Iibfun(v);
13 d.v = v; <- ok to pass world owned objects
14 // Ic.register(this); <- representation exposure!
15 >
16 >
17 class D {
18 V<worId> v;
19 >
20 >

Figure 6-7: Using world owned objects.

E<0>. Line 7 contains a field update  expression. By A 2 the  type of the expression on the  left hand 

side of assignm ent is E<1>. In line 8, a  newly declared variable e2 is initialised w ith  object re tu rned  

by a  m ethod call. The exp in the re tu rn  type is given by A 2 (2 ,1) =  2. Finally, line 9 shows a m ethod 

call th a t passes a  reference into d l .  Here A 2 is used to  check the type of the  actual param eter. e x p 2 

is the context identifier of the  owner in the receiver expression. ex p 2 is also th e  declared context 

identifier in class D. Thus, A 2 ( l ,  1) =  1 is the  expected context identifier in the  type  of the  actual 

param eter.

Function A 2 is used also when t h i s  is the  receiver expression. For some class D, t h i s  has type 

D<1> and  A 2 is applied conventionally to  expressions involving t h i s  (w hether used im plicitly or 

explicitly) to  determ ine the  expected context identifier in the  type of the  expression.

world v ersu s  exps

world denotes the  global context bu t by definition of exps there  is always one exp th a t denotes the  

global context also. T he decision to  keep world for objects of non-value types is a  p ragm atic one. 

It enables SAPS program s to  in teract w ith existing libraries by trea ting  as world-owned all objects 

created from library  classes or obtained from the interfaces of library  objects. Im plem entations of 

existing libraries are unaw are of ownership concepts and  deep ownership, so representation objects 

passed to  objects of library  classes m ay be exposed.

Despite the  overlap w ith exps, we class world as representing a  context th a t is external to  all 

o ther contexts. This decision enables objects of library  classes to  be referenced and passed freely 

w ithin SAPS program s b u t also restric ts world owned objects from referencing o ther objects whose 

context is specified by an exp. The Subject Com piler m ust ensure th a t only world owned objects are 

received from and passed to  the  interface of a  world owned object. A ssignm ent between exp owned 

and world owned objects is not allowed. This leads to  our th ird  property  for SO T correctness:

•  P r o p e r ty  3. world is external to  all contexts denoted by exps.
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1 subject S {
2 class £ {
3 B<0> b;
4 C<1> c;
5 void foo() {
6 c = b.c;
7 >
8 >
9 class B {
10 C<2> c;
11 >
12 >
13
14 m a inO {
15 £<wor!d> a;
16 B<worId> b;
17 >

Figure 6-8: Exam ple showing out of range exps

Figure 6-7 shows the  use of a  E ib ra ry C la s s  object w ithin a subject. In line 10, l c  is declared 

w ith owner world. This enables objects to  be obtained from and  safely passed to  the  l c  object 

(line 12), b u t prevents us from being able to  r e g i s t e r  self w ith the library  (line 14).

O ut o f  range exps

References whose types feature exp0 and e x p : are always well formed because they  always represent 

objects th a t are known to  exist. However, it is possible to  use the  o ther exps to  create references 
to  non-existent contexts, e.g. type T<999> can be created from class T. Such types are problem atic 

because they are meaningless, i.e. the  exp in the  type does not refer to  a real dom inator. exps m ust 

prevent representation  exposure bu t ou t of range exps do not cause representation  exposure as they 

always refer to  objects outside the current representation  context. Consequently, we do not check 

for ou t of range exps.

Figure 6-8 shows an exam ple of ou t of range exps. Lines 15 and 16 show two objects being 
created  in the  global context. In this program  all exps in class A refer to  contexts th a t exist: exp0 

is th e  represen tation  context of m ain’s a; exp! refers to  the  ownership context of m ain ’s a, i.e. the  

global context otherwise referred to  by world. In  class B, exp2 refers to  the  context th a t owns th is B 

instance. There are two possible bindings for exp2: th rough object a  or th rough object b in main. 

T hrough  a, exp2 binds to  the  global context. However, th rough b exp2 denotes the  owner of the  

global context, i.e. the  owner of context world. B ut world is the  roo t of the  ownership tree  and has 

no dom inators. Hence, exp2 is an out of range context identifier.

A ttem pting  to  access an object w ith an ou t of range context is a  conceptual error although no t a 

type error. In the  exam ple of Figure 6-8, m ost probably the  designer of subject S intends for objects 
of type  B to  be used as p a rt of a collaboration w ith objects of type  A and  clients should no t create 

instances of B directly. Judicious use of visibility modifiers should help prevent unauthorised  access. 

By declaring class B p r iv a t e ,  it is possible to  disallow the  in stan tia tion  of B outside S.
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6.3 Unknown Context Identifiers

For m any applications of subjects, exps make it possible to  refer directly to  all the  contexts an 

object needs to reference, e.g. Figure 6-3 on page 105. However, there  exist concerns im plem ented 

by subjects which need to  refer to  contexts which are not known in advance for one of two reasons:

•  The context is external to  the  ownership stru c tu re  of the  subject, such as when a collabo

ration  im plem ented by the  subject refers to  d a ta  objects external to  the  set of collaboration 

participants.

•  The decision abou t the  context should be delegated to  another subject. Subjects im plem ent 

concerns th a t cross-cut the  stru c tu re  of o ther subjects. In order for a  subject to  ad ap t to the  

ownership stru c tu re  of another subject the  ownership context has to  be s ta ted  more generally 

th an  is possible w ith exps.

Unknown context identifiers address b o th  issues. In order to  condense the  presentation  we shorten 

‘unknown context identifer’ to  unk (plural: unks). unks ab strac t explicit context identifiers in the 

sense th a t each unk represents one exp per class. They are context variables w ith subject scope bu t 
class level binding.

To m otivate unks, consider the developm ent of the  SuperTax concern. A  super tax  is a  flat levy 

on taxable  objects in a tax  declaration. It is envisaged th a t this concern will apply to  a num ber of tax  

departm ents. D uring analysis the  in ternal organisation of tax  departm ents is tran sla ted  to  ownership 
structu res w ithin the design. Some of the  requirem ents and their ownership in terp re ta tions (in an 

italicised fo n t ) are given below:

•  T he declaration artifac t and  the  goods specified w ithin belong to  a  tax  declaration. TaxCalcu-  

l a t i o n  owns the d e c l a r a t i o n  and the Goods objects.

•  T he tax  declaration  is p a rt of an  overall tax  calculation for a  trader. T a x C alc ul a t io n  owns 
the d e c l a r a t i o n .

•  T he tax  declaration is the  responsibility of the  tax  assessor who works w ith all aspects 

of tra d e r’s tax  liabilities. TaxAssessor  owns Tax Ca lc ul a t io n  objects and the associated 

d e c l a r a t i o n s .

•  T he tax  declaration belongs to  the  Custom s and Excise office which employs the  tax  assessors. 

CustomsAndExciseOff ice owns the TaxAssessors.

•  The goods listed in the  tax  declaration belong to  the Custom s and Excise office. CustomsAnd
E x c i s e O f f i c e  owns the Goods objects in the d e c l a r a t i o n .

In realising the SuperTax concern we create the  SuperTax subject. T his subject classifies Goods 

as either T ax ab le  or NonTaxable, levying a flat du ty  of 200 on every T ax ab le  object. W hen a 

client calls c a lc u la te T a x C . .)  w ith a  d e c l a r a t i o n  a rray  as argum ent, the  du ty  is calculated and 

stored in the  T a x C a lc u la t io n ’s amount field. Figure 6-9 shows the  key p a rts  of the  im plem entation. 

It adopts an ownership struc tu re  where the  d e c l a r a t i o n  and the  Goods objects are owned by the 

T a x C a lc u la tio n . The same subject w ith an  alternative ownership stru c tu re  is shown in F igure 6-10. 

Here the d e c l a r a t i o n  is owned by the T ax A ssesso r object and the Goods objects are owned by the
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subject SuperTax { 
class TaxAssessor {

TaxCaIcuIation<0> tc;
>
class TaxCalculation { 

int amount;
void caIcuIateTax(Goods<0, 0>[] declaration) { 

for(int i = 0; i < declaration.length; i++) { 
amount += declaration[i] . calcuIateSuperTaxO ;

>

>

>
abstract class Goods { 

int calcuIateSuperTaxO;
>
abstract class Taxable extends Goods ■( 

int calcuIateSuperTaxO { return 200; >
>
abstract class NonTaxable extends Goods { 

int calcuIateSuperTaxO { return 0; }
>

Figure 6-9: SuperTax subject w ith exam plar ownership s tru c tu re  1.

subject SuperTax {
class CustomsAndExciseOffice {

TaxAssessor<0> ta;
>
class TaxAssessor {

TaxCaIcuIation<0> tc;
>
class TaxCalculation { 

int amount;
void caIcuIateTax(Goods<l, 2>[] declaration) { 

for(int i = 0; i < declaration.length; i++) { 
amount += declaration[i] . calcuIateSuperTaxO ;

>

>

>

>

Figure 6-10: SuperTax subject w ith exam plar ownership s tru c tu re  2.
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subject SuperTax { 
unit k, m; 
ucirc k <= m; 
class TaxCalculation { 

int amount;
void ca!cuIateTax(Goods<k, m>[] declaration) { 

for(int i = 0; i < declaration.length; i++) { 
amount += declaration[i] . calcuIateSuperTaxO ;

>
>

>
abstract class Goods { 

int calcuIateSuperTaxO;
>
abstract class Taxable extends Goods { 

int calcuIateSuperTaxO { return 200; >
>
abstract class NonTaxable extends Goods { 

int calcuIateSuperTaxO { return 0; }
>

Figure 6-11: SuperTax subject im plem ented using unks

Custom sA ndExciseO ff i c e  object. The two solutions differ only in term s of ownership structu res as 
expressed by the exps in the  types.

unks enable the  ownership struc tu re  to  be s ta ted  m ore generally th an  is possible w ith exps. A  
single program  in Figure 6-11 can replace the  two program s shown in Figures 6-9 and 6-10. In the 

SuperTax subject unks facilitate two kinds of ownership variations: the  owner of the  d e c l a r a t i o n  
array  and  the owner of the Goods referenced in the  d e c la r a t io n .  The variation is introduced 

through unks k and m (referred to  as unkjt and unkm henceforth), unk*, denotes the  owner of the  

d e c l a r a t i o n  and unkm denotes the  owner of th e  Goods. Figure 6-11 shows the SuperTax subject 

w ith exps replaced by the new unks.

An unk is a  context variable th a t binds to  one exp per class. Figures 6-9 and 6-10 presented 

two possible bindings for unkfc and unkm. For Figure 6-9, in class T a x C a lc u la t io n  unk*, binds to  

exp0 and unkm binds to  exp0. For Figure 6-10, in class T a x C a lc u la t io n  unk*, binds to  exp: and 

unkm binds to exp2. Now, thanks to  unks, a single SuperTax subject can replace a family of subjects 

th a t vary purely in term s of the  ownership stru c tu re  formalised by their explicit context identifiers. 
Figure 6-11 also contains a u c i r c  declaration. T his will be explained once we have described the 

unk concept in g reater detail.

6.3.1 Understanding unks

unks are characterised by the  following list of properties:

•  As seen in the  SuperTax example, an  unk generalises an  explicit context identifier in a  class. It 

represents a  choice of explicit context identifiers which enables a sub ject to  adap t to  a greater 
num ber of ownership structures.

•  An unk gets bound by composition. To avoid confusion, we use resolution  to  refer to  ‘unk 

binding by subject com position’, reserving binding for function and ownership param eters.
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subject S {
unk k;
class A {

B<0> b;
void passC(C<k> c) { 

b .doStuffToC(c);
>

>
class B where 1 <= k {

void doStuffToC(C<k> c) { ... }
>
class C { }

}

Figure 6-12: An example involving an unknown context identifier.

•  unks are scoped a t subject level. Conceptually an unk represents a single unknown context, 
th a t is, one object in the collaboration defined in the subject.

•  unks resolve on a per class basis. Different resolutions in different classes are inevitable: two 

objects a t different ownership tree depths will use different exps to refer to  a common object.

T he global scope and class level resolution mean th a t an unk is a set of tuples of the form 
(ClassName, unk), where each tuple maps onto a set of exps. This is illustrated by the example in 
Figure 6-12. A fc-owned object c is passed to an A object which collaborates w ith a B object by 
doing something with c.

unkfc resolves to  an exp in A, B but not C because C does not contain any expressions whose 
type contains unk*;. unkfc can resolve to any exps in classes A and B so long as the resolutions are 
m utually consistent such th a t the subject type checks successfully. Valid resolutions are shown in 
the following table below. Any row represents a valid resolution. The ellipsis indicates th a t other 
values m atching this pa ttern  are also acceptable.

A B

0 1

1 2

2 3

By using A i the reader can mentally check th a t any resolution for A will produce the correspond

ing resolution for B. In this Chapter, the focus is on exp-unk interaction within subjects. Subject 
composition and unk resolution are presented in the next Chapter.

6.3.2 unk Resolution Constraints

In a few cases an unk can resolve to any exp; however, mostly the set of values to  which an unk 

can resolve is constrained by other relationships. This introduces the notion of an unknown context 
identifier resolution constraint, formalised in SAPS by ucirc1 declarations. A ucirc is a predicate 
th a t expresses a constraint on unk resolution.

1 pronounced “you-serk”
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subject S { 
unit k; 
nnk m;
class 5 where 1 <= k, k <= 1 { ... } 
class B where m <= 1, 1 <= k, 2 <= m { ... >

>

Figure 6-13: unks and  resolution sets.

There are two kinds of u c i r c  appearing in code bo th  of which have m ade an appearance in the  

preceding examples:

•  Subject level ucirc declarations express an in ter unk constrain t. These appear a t sub ject level

because they  express a  context ordering th a t should hold for all classes in which the  two unks

appear together. For example, u c i r c  k <= m expresses th a t the context denoted by unk*, is 

always inside the  context denoted by unkm.

•  Class level ucircs are specified in w here clauses of classes [30]. They express a constrain t on unk 

resolution applicable to  th a t class and  classes derived from it. For example, c l a s s  A w here 

k <= 2 expresses th a t in class A unk^ may resolve to  exp0, expx or exp2. Also, c l a s s  B w here 

1 <= m, m <= 2 expresses th a t in class B unkm m ay resolve to  exp: or exp2.

The Subject Com piler perform s checks against ucircs a t b o th  class and  subject level. B u t before 

the body of a class is checked, the  ucircs themselves are checked for consistency.

ucirc C on sisten cy  Checking

A consistency check ensures th a t ucircs are well formed and offer meaningful constrains on unk 

resolution. An unk implies a  choice of exps and it is m isleading to  use an unk when ucircs im ply one 

or no exps. We use the term  resolution set to  refer to  the  set of exps to  which an unk may resolve in 

a class as determ ined by the  ucircs. An em pty resolution set indicates a  type  error. The unk should 

be replaced by the  exp when its resolution set is a  singleton. In Figure 6-13, for class A, unk*, should 

be replaced by exp^ For class B, unkm has an em pty resolution set bu t the  resolution set for unkfc 

is valid.

The ucircs are checked per class, bu t first the class level ucircs are extended w ith those a t sub ject 

level. In order to  be consistent the  ucircs of each class should satisfy the  following conditions:

•  All unks appearing in ucircs are declared.

•  There are no cycles in ucirc declarations.

•  T he com bination of class and  subject level ucircs produces valid resolution sets.

Looking a t cycles, consider r  =  {(w <  v ) , ( v  < w ) , ( w  <  u)}. This set has a cycle. Clearly, 

u  =  v = w  is the  only resolution which satisfies all constraints. This set of contexts and  the  

associated constrain ts should be replaced by a single unk. We require cycles to  be removed from 

designs because they  m ay cause confusion. T h a t is, a t a  glance unks and ucircs lead the sub ject to  

reuser to  believe th a t there  exists a  choice contexts when there  is no such choice.

W hen subtypes are introduced, the  resolution constrain ts of the  subtype m ust be valid sub
constraints of the supertype. An unk in the  subclass may never resolve to  a  value th a t  is outside
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the  resolution set specified in the  superclass. The subclass may strengthen  the  ucircs defined in 

the  superclass bu t it m ay never weaken them . T h a t is, the  superclass constrain ts m ust im ply the 

constrain ts of the  subclass. Consistency checking of ucircs is formalised by the following property:

•  P rop erty  4. The resolution sets of all unks m ust be well formed.

6.3.3 Checking Classes Against ucircs

ucircs can be understood as sanity  conditions for unks. They have three responsibilities:

•  To check th a t types are well formed.

• To com m unicate valid resolution sets.

•  To type check expressions involving objects whose types contain unks.

T he checking of types derived from uncom posable classes will be described la ter in this C hapter. 

However, we are in a position to  describe arrays.

Checking Arrays

In general, the  contents of an array  should be accessible everywhere the  array  is accessible. For one 

dim ensional arrays two context identifiers are required: the  owner of the  array  m ust be inside the 

owner of the elem ents of the array. In arrays of higher dimension, each earlier dim ension m ust be 
inside the la ter ones. The constrain ts on context identifier substitu tion  for arrays introduces our 

next p roperty  for SO T correctness:

•  P rop erty  5. The context substitu tions for ownership param eters of arrays m ust allow access 

to  lower dimensions wherever higher dimensions are accessible.

Recall the  SuperTax exam ple of F igure 6-11 on page 114. T he Goods objects in the  d e c l a r a t i o n  

should be accessible wherever the d e c l a r a t i o n  object is accessible. From  left to  right, th e  two 

context identifiers in the type of d e c l a r a t i o n  denote the array  and the elements. The ucirc relating 

unkfc and unkm guarantees th a t the  d e c l a r a t i o n  array  will be accessible only where its elements 

are accessible.

C om m unicating Valid R eso lu tion  S ets

P roperty  1 ensures th a t objects in the representation context cannot be accessed externally. There

fore, if an  unk-owned class m em ber is accessed externally, then  exp0 is no t in the  realisation set of 

th a t unk. In  order to  com m unicate valid resolution sets to  subject reusers, SO T requires ucircs for 

all unk-owned class m em bers w ith external clients. D eclarative com pleteness of subjects m akes it 

possible to  validate all m em bers for external access.

Eecall the exam ple in Figure 6-12 on page 115. This exam ple features a w here clause on class B 

th a t constrains the resolution set of unk*,. This ucirc is required in order to  prevent representation  

exposure by expression b . d o S tu f f  ToC ( c )  in the body of m ethod A. passC  ( . . ) .  In order to  prevent 

representation exposure in the body of class A, class B requires a  resolution constrain t.

In order to  understand  the m otivation for this constrain t, consider the  effect of unkfc resolving to  
exp0 in B. Then expression b . d o S tu f f T o C ( c )  would lead to  representation exposure. T hus ucirc 1 

<= k is a  sanity  check th a t constrains the  resolution set of unkfc in B order to  prevent representation  

exposure during composition.
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subject S { 
unk k; 
unk m, n; 
ucirc m <= n; 
class U where 2 <= k {

T<2> t;
V<k> v;
W<m> w;
X<n> x;
void foo() { t.bar(v); > 
void fee() { w.x = x; }

>
class T where 1 <= k { 

void bar(V<k> v) { ... >
>
class W where 1 <= n {

X<n> x;
>
class V { ... }  

class X { ... }
>

Figure 6-14: Checking expressions involving unks.

Checking E xpressions

ucircs are also used when checking field access, field upda te  and  m ethod call expressions. W ithin  a 

subject, an object whose context is given by an unk m ust always be referred to  using the same unk. 

I t is an error for an  unk to  bind to  an exp (and vice versa) in a  m ethod call, field update, or any 
o ther expression.

There are num ber of cases, we will go th rough  each one in tu rn .

•  F irst, in Figure 6-14, suppose th a t we are checking the expression in the body of m ethod 

U .fo o ( .  . ) .  Consider the  analogy w ith exps. Recall th a t exps num ber the dom inators of 

an object. Suppose U .v  has type V<1>. By definition or exps, v is inside expj. An exp2 

owned object t  cannot reference v; conversely, contrary  to  the definition of exps, expx does not 

dom inate v. In order for t  to  reference v, t  m ust be inside v.

Now exam ine Figure 6-14. In the body of class U, in order for t  to  reference v, t  m ust be inside 

v. The resolution set of unk*, m ay contain neither exp0 nor exp2. T he resolution constrain t in 

the  where clause of U formalises this constrain t. Note th is ucirc may be om itted  when an u n k ’s 

resolution set is unrestricted.

One special case concerns the trea tm en t of th e  self reference this. The owner of this is always 

given by exp^ A lthough it is technically valid to  pass th e  self reference in relation to  an unk 

whose resolution set is {0,1}, in the  present work this can be passed only in relation to  exp0 

and expj. T his is a simplification th a t is intended to  improve clarity  w ith m inim al im pact on 

subject reusability.

•  Secondly, in Figure 6-14, suppose th a t we are checking the expression in the  body of m ethod 

U .f  e e ( . . ) . By the sam e principle as in the  previous case, in order for w to  reference x, w m ust 

be inside x. The owners of these objects are given by unks, so th is constrain t is expressed a t 

subject level by u c i r c  m <= n.
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subject S { 
unk k; 
class F {

H<k> h;
J<2> j;
void foo() { h.j = j; }

>
class H {

J<3-k> j; // o-o!
>

Figure 6-15: F urther checking of expressions involving unks.

subject S { 
unk k, m; 
ucirc k <= m; 
class F {

H<k> h;
J<m> j ;
void foo() { h.j = j; }

>
>
class H where 1 <= m {

J<m> j; // that’s better!

Figure 6-16: Yet more checking of expressions involving unks.

•  Thirdly, we disallow expressions which place an  unk owned object as th e  receiver against types 
containing exps in m ethod param eters, re tu rn  types, or field variables. T he resulting type 

contains context expressions which m ay be correct bu t difficult for the  reader to  com prehend. 

Class H in F igure 6-15 shows the  context expression produced by exp arithm etic. According 
to  A 2 the  type of F. j  is correctly given as A2 ( k , 3  — k) =  2. To avoid context expressions 

involving unks, the  program m er should introduce u nkm and  rew rite th e  ucircs as shown in 

Figure 6-16.

Type checking expressions whose types contain unks introduces two further correctness properties:

•  P r o p e r ty  6. T he ucircs m ust imply the inter-unk ordering required by the  type or expression.

•  P r o p e r ty  7. The ucircs m ust imply the resolution constrain ts required by the  type or expres

sion.

6.3.4 Per-Class Checks

unks are abstractions over exps and so inherit all the  properties associated w ith exps. unks represent 

a choice of exps. So a program  th a t uses unks should have a choice of exps to  use in the  place of its 

unks. An ownership struc tu re  th a t cannot be expressed using exps also cannot be expressed using 

unks. For example, type checking fails in R .fo o O  in F igure 6-17  because one of the  two field update  

expressions is invalid. This program  should also fail type checking when unks are used in the  place of 

exps. The unk checks we have described to  now are insufficient. They check each semicolon delim ited 

expressions separately  bu t th is condition requires the  recording of history. As shown in the  following
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1 subject S {
2 class R {
3 T<0> tO;
4 T<1> tl;
5 V<2> v;
6 void fo o O  {
7 tO.v = v;
8 tl.v = v;
9 >
10 >
11 class T {
12 V<3> v;
13 >
14 class V { ... }
15 >

Figure 6-17: A dditional checks for unks. Case 1.

table, there  are two problem  cases. Colum ns C a se  1 and  C a se  2 show the  replacem ent types for 

declarations in Figure 6-17.

D e c la r a t io n C a se  1 C a se  2

tO in line 3 T<0> T<a>

t l  in line 4 T<1> T<b>

v in lines 5 and 12 T<k> T<k>

In case 1, given expressions in lines 7 and 8 of Figure 6-17 and a  valid resolution for unk*, in R, unk*, 

will resolve to  different exps in T. In case 2, if un k a and unk*, resolve to  different exps in R then  unk* 

will resolve to  different exps in T. Conceptually, two unks refer to  two different contexts, so u n k a and 

unkf, should be replaced by a single unk.

To detect these cases the Subject Compiler uses an E x p re s s io n R e p o s ito ry  th a t records the 

types of receiver objects of affected expressions. E ntries have the  following form:

{k, C, v)

where A; is an  unk whose usage is recorded. I t  appears in a  field, re tu rn  value or param eter type. C  is 

the  class containing the  expression, v  is either an unk or exp denoting the  last usage. M ethod calls, 

field accesses and updates trigger a  look-up and a possible up d a te  to  the  E x p re s s io n R e p o s ito ry .

E rrors are detected as follows:

•  In case 1 a t line 7, the  E x p re s s io n R e p o s ito ry  object has no prior en try  for (unkfc,T), so tuple 

(unkfc ,T ,exp0) is inserted. U pon checking code in line 8, we lookup (unkfc,T) which returns 

exp0. B ut, expo ^  ex p l5 so line 8 fails type checking.

•  In case 2 a t line 7, the E x p re s s io n R e p o s ito ry  object has no prior en try  for (unkfc,T), so tuple 

(unkfc,T, unka ) is inserted. U pon checking code in line 8, we lookup (unkfc,T) which returns 

unka . B ut, un ka /  unkb, so line 8 fails type checking.

O ur next correctness property  states:

•  P r o p e r ty  8. All type checking of expressions whose types contain unks uses th e  E x p re s s io n R e p o s ito ry .
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class Queue<data> {

Link<0, data> head = null;
Link<0, data> tail = null;

void put(Object<data> o) {
Lin£<0, data> I = new Linlc<0, data>(o); 
if (head == null) { .

head = tail = I;
} else {

tail.next = I; 
tail = I;

>
>

Object<data> get() {
if(head == null) return null;
Object<data> o = head.o; 
if(head == tail) { 

head = tail = null;
} else {

head = head.next;
>
return o;

>
>

class Link<d> {
Object<d> o;
Lin£<l, d> next;
Link(Object<d> o) { this.o = o; }

>

class QueueClient {
Queue<0, 1> ql;
Queue<0, 0> q2;

>

Figure 6-18: Queue class im plem ented using Subjective O wnership Types

6.4 Classes w ith Ownership Parameters

A bstract d a ta  types are im plem ented as classes w ith ownership param eters in SO T. These classes 

are special because the  owners of the d a ta  they  reference should be specifiable independently from 

the owner of the  abstraction  itself. M ultiple instances of th e  sam e kind of abstraction , possibly w ith 

different aliasing properties, m ay be required in the body of the  sam e class, unks are insufficient 

to  specify this kind of diversity because unks are resolved per class while we require per object 

variability.

O ur solution is to  adopt ownership param eters for additional contexts which should be specifiable 

param etrically. Linked lists, queues and  stacks have a single ownership param eter for their da ta . 

H ashtables have two ownership param eters: one for the keys and  the  o ther for the  values. Figure 6- 
18 shows class Queue im plem ented using ownership param eters. M ultiple instances of Queue w ith 

different ownership properties can be created  in class Q u eu eC lien t. C on trast th is design w ith the 

one for O wnership Types shown in Figure 5-2 on page 75.
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T he set of contexts th a t can be referenced in the  im plem entation of Queue is {0,1, d a ta , world}. 

exp0 and expx denote the representation context and the owner of the curren t instance. No other 

exps are allowed. Observe th a t classes do not declare the  owner param eter in the  list of ownership 

param eters.

6.4.1 Composable and Uncomposable Classes

Classes w ith ownership param eters are uncomposable in SAPS: subject-oriented com position rules 

which describe join points inside these classes are disallowed, bu t delegation and  inheritance can 

still be used to  extend uncom posable classes. Classes th a t use exps and unks in the ir definition are 

composable. These can partic ipa te  in inheritance, delegation and  all subject-oriented com position 

rules.

T he inheritance hierarchies of com posable and uncom posable classes are separate  except for 

the  uncom posable default class O b je c t found a t the  roo t of b o th  com posable and  uncom posable 

hierarchies. A class which does not declare a  superclass im plicitly extends O b je c t. Uncom posable 

classes are distinguished syntactically  by having a (possibly em pty) com m a separated  sequence of 

ownership param eters following the class nam e as shown in Figure 6-18. B oth kinds of classes share 

th e  sam e nam e space and  it is illegal to have an  uncom posable and  a com posable class w ith the 
sam e nam e in one subject.

As detailed a t the beginning of this C hapter, the  m otivation for separation comes from a series of 

observations detailed in C hapter 5. Common to  these is the  tug-of-war between w anting to cleanly 
separate  concerns while still providing encapsulation. In Section 2.3.3 on page 15 we com pared black- 

box and w hite-box reuse strategies. P rogram m ers as experts of their trad e  often require access of 

certain  key aspects of im plem entation. We concluded th a t in order to  be adap tab le  to  unanticipated  

changes a com ponent needs to  provide facilities for changing from the  inside. B ut there  is often a lim it 

to  the  details th a t will benefit the  expert. Section 2.3.3 used the  racing driver analogy to  m otivate 

this model. In Section 3.1.3 on page 27 it was noted th a t  th e  M DSOC m odel aims to  improve 

the m odularity  of scattered  and tangled concerns bu t does no t improve encapsulation. Subject- 

O riented Program m ing is a  flexible model for separating  and recom posing concerns. I t provides 
access to  im plem entation th a t program m ers require bu t it has no program m atic way of m arking a 

com ponent as an im plem entation abstraction  which should no t be decomposed further. SOP lacks 
the  encapsulation m echanisms th a t stop the  program m ers being overwhelmed by im plem entation 

details.

In SAPS, uncom posable classes are a way of m arking a  class as an  im plem entation abstraction. 

T he m ost im m ediate exam ple of an  im plem entation abstaction  is a  class such as Queue shown above. 

The vast m ajority  of software developers will not w ant to  know how Queue is im plem ented, they are 

black-box users of Queue. L ater on, the  same will probably be true  of subject-oriented program s 

im plem ented using Queue objects. New com ponents constructed  by composing subjects will be used 

as basic building blocks in larger systems. And so the cycle will continue.

The subject designer chooses w hether to define a class as com posable or uncom posable. Overall 

we expect th a t developers will be defining com posable classes. Uncom posable classes are used 

m ostly to  define new kinds of container abstractions. Unlike abstractions of “real world” entities, 

containers are characteristic of an objective perspective and  have been the hallm ark of object- 

oriented program m ing. In  general, the  im plem entations of these abstractions cannot be improved 
by subject-oriented decomposition.
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We antic ipate  th a t common ADTs will be reused from uncom posable class libraries. Definition 

of new uncom posable classes should be relatively rare  and lim ited to  th e  following cases:

•  To define new kinds of container abstractions.

•  To define classes whose instances need to  be reused in conjunction w ith different ownership 

properties, and  the  system  of exps cannot provide the  required flexibility.

•  To create abstractions th a t should be sealed, thereby artificially restricting the com position 

interface of a  subject.

Class Queue shown in Figure 6-18 exemplifies the  first point. For the  second point we propose 

the  following heuristic:

C reate an uncom posable class when requiring an abstraction  th a t  m ay have m any in

stances, possibly in m any subjects, each w ith different ownership properties. C reate a 

com posable class otherwise.

In a la ter Subsection we will present the  lim itations of th e  exp no ta tion  com pared to  param eterisa- 

tion. T he evaluation C hap ter 8 contains examples of uncom posable classes being used for interface 

restriction  and for sealing.

unks or O w nership Param eters?

unks are not the  sam e as ownership param eters and  they can never be confused for one another, unks 

are used in composable classes and ownership param eters are used in uncom posable classes. They 

are conceptually sim ilar in th e  sense th a t bo th  provide a way of param eterising  program s, allowing 

th ird  parties to  custom ise ownership structures. Beyond this, unks and ownership param eters work 

very differently:

•  The scope of an  ownership param eter is a  class and the  classes derived from it. T he scope of 

an unk is a  subject -  a  collection of heterogeneous classes.

•  unks are resolved by subject com position and  ownership param eters are bound during object 

instan tiation .

•  An unk can bind an ownership param eter of an uncom posable class, bu t an  ownership param 

eter is never resolved.

6.4.2 Interaction Between The Hierarchies

In teraction between hierarchies encompasses bo th  inheritance and aggregation, the so-called is-a and 

has-a hierarchies respectively. A part from a common root, the two inheritance hierarchies cannot 
be mixed. It is not possible to  create an uncom posable class by inheriting from a composable class 

or vice versa. A lthough there  may be im plem entation related  reasons for doing so, conceptually th e  

two hierarchies serve different purposes and so should not be mixed.

W hen defining a new com posable class, instances of bo th  com posable and  uncom posable classes 

can be used in the  im plem entation. The evaluation C hap ter 8 relies extensively on the  uncom posable 

class V ec to r whose core interface (and th a t of the  associated I t e r a t o r )  is shown in Figure 6-19.
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class Vector<data> {
void add(Object<data> o);
Object<data> remove(Object<data> o);
IteratorCl, data> iterator(); // a version that respects deep ownership

>
class Iterator<data> { 

bool hasNextO;
Object<data> next();

>

Figure 6-19: V e c to r class core interface.

class Pair<m, n> {
X<m> fst;
Y<n> snd;

}

class PairQueue<p, q, r> {
// p binds owner of Pair, q binds Pair.m, r binds Pair.n 
void put(Pair<p, q, r> obj) { ... >

>

Figure 6-20: Class P airQ ueue specialised to  uncom posable classes.

W hen types are created  exps and unks bind the  ownership param eters of uncom posable classes bu t 
the  way ownership param eters are used in uncom posable class definitions is hidden from clients.

U ncom posable classes are defined using instances of bo th  com posable and  uncom posable classes. 
Queues and V ec to rs  store instances of O b jec t. O bjects of any class can be stored because all 

classes derive from O b jec t. Specialised subclasses of Queue or V e c to r m ay be usable only w ith 

uncom posable classes. For instance, in Figure 6-20 class P airQ ueue is usable only w ith objects of 

uncom posable class P a ir .

Com posable class instances can be used in the  definitions of uncom posable classes only when the 
im plem entation is restric ted  to  accessing m em bers whose types feature contexts ex p 2 and world only. 

exp0 is the  representation context which cannot be accessed, unks and all o ther exps are undefined 

in uncom posable classes. Thus, container classes which store references to  objects of composable 

classes bu t never access the interface can always be used w ith com posable class instances. This 

restriction introduces another property  necessary for SO T correctness:

•  P r o p e r ty  9. Expressions in uncom posable classes m ust be restric ted  to  contexts {1, world} in 

the m em bers of composable classes.

Subclasses of uncom posable classes can declare additional ownership param eters to  those which 

are inherited. Uncom posable classes can be declared in subjects; however, it is best to  declare them  in 

class libraries. The libraries can then  be im ported  by all subjects which need to  use these abstractions 

in their im plem entations. Those which are declared in subjects are not modified by com position, bu t 

depending on the com position rules either forwarded to  the  o u tp u t subject unchanged or discarded.
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1 class E<p, q> where p <= q {
2 Queue<p, q> s; // requires p <= q
3 X<0, p> x;
4 Y<p> y;
5 void foo() {
6 x.y = y;
7  >
8 class X<p> {
9 Y<p> y;
10 >
11 class Y<> { }
12 >

Figure 6-21: O wnership param eter ordering.

6.4.3 Ownership Parameter Ordering

In uncom posable classes the  owner param eter is im plicitly inside o ther param eters. Therefore, any 

substitu tion  m ust satisfy the im plicit constrain t of uncom posable classes th a t  requires the owner to  

be inside all o ther contexts. T his leads to  our next property:

•  P rop erty  10. In a substitu tion  for the  param eters of an uncom posable class the  context 

binding owner m ust be inside o ther contexts.

W hereas for exps the  ordering of contexts is explicit in the  notation , the  ordering of contexts 

represented by ownership param eters may need to  be m ade explicit. To help explain the issue, 
consider the  exam ple in Figure 6-21. Line 2 requires p <= q because the  Queue owner m ust be 
inside the  d a ta  referenced by the Queue. Line 6 requires 1 <= p because contexts th a t bind to  

ownership param eters m ust be outside the  context th a t binds expj, i.e. the  owner context. In order 
to  disam biguate the  context ordering in view of such types and expressions, we again employ where 

clauses. These clauses are required only where the  context ordering needs disam biguating. So if no 
type or expression in E depends on p <= q then the where clause is not required. C onstrain t 1 <= 

p is im plicit in SO T and  does not require a where clause. T he requirem ent for ordering of ownership 
param eters introduces our next p roperty  for representation  containm ent:

•  P rop erty  11. A  substitu tion  for the ownership param eters of an uncom posable class m ust 

obey the  context ordering in its where clause.

As in com posable classes, cycles in the  constrain ts specified in where clauses should be removed 

because they  m isleadingly represent a  choice of contexts. Subclasses of uncom posable classes may 

define additional ownership param eters and constrain ts on ownership param eter substitu tion . To 

ensure representation containm ent we require the  final property:

•  P rop erty  12. T he ownership param eter ordering of uncom posable classes m ust be well 
formed.

T he use of types derived from an uncom posable class Map in bo th  com posable and  uncom posable 

classes is shown in Figure 6-22. A m ap is an A D T th a t stores key, value pairs and supports operations 

for addition and removal of pairs. This abstraction  has a containm ent property  which sta tes th a t 

values may be accessed only where the  keys can be accessed, formalised in line 1 by a constrain t 

on ownership param eters of class Map. Map is defined as an  uncom posable class; it is a  trad itional
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1 class Map<key, value> where key <= value {
2 void put(Object<key> k, Object<vaIue> v) { ... }
3 Object<value> get(Object<key> k) { ... }
4 >
5
6 subject SafetyBoxFeature {
7 class SafetyBox<data> {
8 Map<0, 0, data> datamap;
9 Password<0> password;
10 Object<data> getItem(String pw) {
11 if(password.accepted(pw)) return datamap.get(password);
12 >
13 >
14 class Password { .

15 bool accepted(String pw) {...)■
16 >
17 >
18
19 subject AddNewAccount {
20 unk k, m;
21 ucirc k <= m;
22 class AccountPortfolio {
23 Map<0, k, m> accounts;
24 addAccount (Account<k> acc, Integer<m> amount) ■(
25 accounts.put(acc, amount);
26 >
27 >
28 class Account {
29 String holder;
30
31 >
32 >

Figure 6-22: Using types derived from uncom posable classes.
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object-oriented abstraction  whose design cannot be im proved by subject-oriented  decom position. 

Ow nership param eters enable m ultiple m aps to be created, each w ith different ownership properties.

Figure 6-22 defines two clients of Map. The uncom posable class S af etyB ox uses a  m ap to  hide 

d ata . D a ta  can be accessed by providing the right password. S af etyB ox is an  exam ple of an 

abstrac tion  constructed  from and built on top  of an existing Map class. Its  designer envisages th a t a 

reuser will require m ultiple safety boxes to  im plem ent a security policy subject, each w ith a different 

aliasing policy. In line 8, to  create a type from Map the  available contexts are su bstitu ted  for the 

ownership param eters of Map. The first identifier denotes the owner, the  second and  th ird  b ind key 

and  v a lu e  respectively. Map requires th a t owner <= key <= v a lu e . The substitu tion  satisfies this 

condition.

A nother client of Map exists in th e  AddNewAccount subject. This subject im plem ents a  feature 

for adding a  new account to  a portfolio. Class A c c o u n tP o r tfo l io  is composable; th is sub jec t will 

be composed w ith others to  create a su ite  of financial tools. In order to  m axim ise reusability  the 

subject defines unkfc and unkm to  denote the  owners of the  A ccount object and the  am ount it 

contains. These will be resolved by o ther subject w ith which AddNewAccount will be composed. 

A m ap is used in A c c o u n tP o r tfo l io  to  store th e  accounts and their am ounts. exp0, unk*, and 

un km bind the owner context and  o ther ownership param eters of Map. P roperties 10 and 11 ensure 

th a t only substitu tions satisfying the ownership param eter ordering are accepted. Validity depends 

on u c i r c  k <= m (line 21) because Map requires th a t the  context binding to  key is inside th e  context 
binding to  v a lu e . C orrectness property  6 ensures th a t  it is possible to  observe th is constrain t from 

the  ucircs. Conversely, th is would be an  invalid substitu tion .

6.4.4 Strengths and Limitations of the System of exps

exps are well su ited to  anno ta ting  the ownership properties of subjects because SO P shifts from 
classes to  collaborations of classes as units of in terest. In object-oriented program m ing the  class 

is the m odular unit; an  object of a  class m ay appear a t any point in an object graph including a t 

the  top  w ith world as owner. No assum ptions can be m ade abou t objects outside the  owner. In 

subject-oriented program m ing, subjects often im plem ent collaborations where objects are tightly  

coupled. The subject is the  pertinen t m odular unit. We th ink  of objects as playing very particu lar 

roles in collaborations; the subject creator has a priori knowledge of the  existence of objects external 

to  the  owner. This is very well dem onstrated  by the  F lo o rP re s s B u tto n  subject: it is possible to 

sketch the ownership stru c tu re  of F lo o rP re s s B u tto n  from the  types of in B u ld in g  and t l i i s F lo o r  

in Figure 6-4. The labelling of dom inators num erically contributes to  m aking SO T into an elegant 

system  for specifying program m er intent.

T he ordering of contexts inherent in the exp nota tion  can be achieved w ith ownership param eters 

by specifying an  order for the  contexts bound to  ownership param eters. T his ordering is explicit in 

B oyapati et al [19]. However, ordering alone does no t address the  fundam ental problem s caused by 

the  com bination of ownership param eters and  subjectiv ity  (see Section 5.3, page 88).

Com pared to  Ow nership Types, SO T can be classed as m ore permissive. T he system  of exps 

allows one object to  reference another w ith a different owner w ithout prior perm ission. In O w nership 

Types, a  perm ission in the  form of ownership param eterisation  is always required. Seen from a 

collaboration perspective th is is a  strength : pre-established collaborators generally do no t seek 

perm ission to  com m unicate; subjects pre-establish the  boundaries of object collaboration.

C om pared to ownership param eterisation , explicit contexts appear to  hardw ire the ownership
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subject SI { 
class fl {

Pair<0, 0, 1> pi; 
PairCl, 1, 1> p2; 
X<0>
Y<1>
X<1>
Y<1>

>
class Pair<m, n> { 

X<m> fst;
Y<n> snd;

>
class Main { 

void main() { 
A<0> a;
Y<0>
X<0>
Y<worId>

>

>
>
subject S2 { 

class A {
Pair<0> pi; 
Pair<l> p2;
X<0>
Y<0>
X<1>
Y<1>

>
class Pair {

X<1> fst;
Y<1> snd;

>
class Main { 

void main() { 
S C O  a;
// Y<0>
X<0>
Y<0>

>

}
>

fl() { return pi.fst; }
f2() { return pi.snd; }
f3() { return p2.fst; }
f4() { return p2.snd; >

yi = a.f2();
x2 = a.f3();
y2 = a.f4();

fl() { return pi.fst; >
f2() { return pi.snd; }
f3() { return p2.fst; >
f4() { return p2.snd; }

yl = a.f2(); representation exposure 
x2 = a.f3(); 
y2 = a.f4();

Figure 6-23: Exam ple w ith  P a i r  com posable/uncom posable
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•  P rop erty  1. If exp0 is in the  type of a  param eter, re tu rn  value or field variable then  this is 
the  only valid receiver expression.

•  P rop erty  2. The context in the  actual param eter m ust be as given by A 2 .

• P rop erty  3. world is external to  all contexts denoted by exps.

•  P rop erty  4. The resolution sets of all unks m ust be well formed.

•  P rop erty  5. The context substitu tions for ownership param eters of arrays m ust allow access 
to  lower dimensions wherever higher dimensions are accessible.

• P rop erty  6. The ucircs m ust imply the inter-unk ordering required by the type  or expression.

•  P rop erty  7. The ucircs m ust imply the  resolution constrain ts required by the  type or expres
sion.

•  P rop erty  8. All type  checking of expressions whose types contain unks uses the 
E x p re s s io n R e p o s ito ry .

•  P rop erty  9. Expressions in uncom posable classes m ust be restric ted  to  contexts {1, world} in 
the  m em bers of composable classes.

•  P rop erty  10. In a substitu tion  for the param eters of an  uncom posable class the  context 
binding owner m ust be inside o ther contexts.

•  P rop erty  11. A substitu tion  for the  ownership param eters of an uncom posable class m ust 
obey the  context ordering in its where clause.

•  P rop erty  12. The ownership param eter ordering of uncom posable classes m ust be well 
formed.

Figure 6-24: Correctness P roperties for SOT

stru c tu re  into the design of each class. Subject design w ith exps forces th e  developer to  make decisions 
abou t the  ownership structure . This was a m otivating factor in the  in troduction  of unknown context 
identifiers. W hen exps cannot provide the  required flexibility, uncom posable classes m ust be used. To 

dem onstrate  the  lim itations of the  exp nota tion  consider Figure 6-23. The Figure shows two subjects: 

in SI class P a i r  is uncom posable and in S2 it is composable. In S I the  ownership param eters of 

A .p i and  A .p2 are bound to  different contexts. M ethod calls to  A .f2 ( ) ,  A .f3 ( )  and A .f4 ( )  from 

M ain .m ain () are valid bu t a  call to  A . f l O  would cause representation  exposure. Turning to  the 

case where P a i r  is com posable, note th a t no choice of exps w ithin A and P a i r  can produce th e  same 

types for the  m ethods of A. S2 shows one of a  num ber of failed a ttem pts, exps cannot ad ap t to  the  

subtle differences in ownership structures, unks cannot address th is problem: an unk resolves to  one 

exp per class and not per object. T he sub ject designer m ust use the  uncom posable class P a i r  if the 

full range of ownership structu res is required w ithin the subject.

6.4.5 Types and Type Checking

We are now in a position to  sum m arise the  properties and  describe valid types. SO T correctness 

is ensured by the checks perform ed when enforcing the  properties given in Figure 6-24. Before 

expression checking commences work is carried out to  check p roperty  4.

A Subjective O wnership Type is created by substitu ting  the available context identifiers for the 

owner and any o ther ownership param eters of a  class. Different types are created  in the  bodies of
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com posable and uncom posable classes. In com posable classes, the  set of contexts to  choose from 

includes the  exps, the  unks and world. In uncom posable classes, the  selection is m ade from the 

current set of ownership param eters, exp0, expx and  world.

T he validity of substitu tion  relies on context identifier ordering in the  class where the  type is 
formed and  on the substitu tion  constrain ts of the  uncom posable class from which the  type is formed. 

Inside a com posable class properties 3, 6, 7, disam biguate the  order of su bstitu ted  contexts and 

properties 5, 10 and 11 ensure th a t the  substitu tions are valid. In an  uncom posable class properties 

3, 10 and  11 disam biguate the  order of su bstitu ted  contexts and  properties 5, 10, 11 ensure th a t the 

substitu tions are valid.

W hen checking com posable classes, the  check for property  1 guarantees representation  contain

m ent. Checks for properties 2, 3, 6, 7 and 8 ensure th a t expressions are well formed. W hen checking 

uncom posable classes, representation containm ent is ensured by property  1 also. P roperty  12 en

sures th a t  ownership param eters are ordered in a s truc tu red  way. P roperty  9 makes certain  th a t 

objects of composable classes are accessed correctly by expressions. Expression checking proceeds by 

ex tracting  the substitu tion  for the  ownership param eters and checking th a t the  type of the  actual 

p aram eter m atches the expected type in the  field or m ethod param eter. O wnership param eters 

are adopted  from O wnership Types, and  the  checks perform ed by the  Subject Compiler m irror the 
description in [23].

6.5 Conclusion

This C hapter has introduced Subjective Ow nership Types for use in subject design. Subjective 

Ow nership Types provide alias protection  for objects and  support deep ownership. W ith  SO T two 
kinds of classes can be created:

•  Composable classes use a new system  of explicit and  unknown context identifiers. We believe 

th a t explicit contexts identifiers or exps are well suited to  specifying the  intended ownership 
properties of collaborations im plem ented by subjects. T he dom ination s tructu re  is explicit in 

the notation. Unknown context identifiers or unks make it possible to  defer the selection of an 

explicit context until com position. T he full range of subject-oriented com position rules can be 

used on composable classes.

•  Uncomposable classes use ownership param eters to  create black-box com ponents where the 

ownership properties can be set by the  client on a per-object basis. Interface-level subject- 

oriented com position rules which affect instances of uncom posable classes are allowed.

Com posable and uncom posable classes exist in separate  class hierarchies bu t have a common 

superclass. SO T allow instances of one kind of class to  be safely used in th e  definition of the  other 

kind. Uncom posable classes enable the  creation of black-boxes which are used as building blocks 

in subject construction. T he design of subjects uses com posable classes predom inantly. Features 

im plem ented by subject can be composed to  form larger grained com ponents.

The following C hapter presents th e  second p a rt of the  Subjective Alias P ro tection  System: ex

tensions to  Subject-O riented Program m ing to  support the  com position of subjects anno ta ted  w ith 
Subjective O wnership Types.



Chapter 7

SAPS — Subject C om position

This C hap ter is concerned w ith all aspects of subject com position. Its overall aim  is to  present a 

model of com position th a t synthesises subjects anno ta ted  w ith Subjective O w nership Types (SOT). 

This aim  can be broken down into th ree top  level objectives:

•  Review the com position rules and describe the  underlying model for subject composition.

•  Describe the  effect of com position on SO T concepts presented in C hap ter 6.

•  Specify SAPS by defining the  necessary extensions to  th e  underlying model to  support the  
com position of SO T anno ta ted  elements.

C hapter 3 has already presented m uch of the syntax  of the  SO P com position language. Af
te r reviewing com position rules, we will show th a t com position prim arily involves th ree activities: 
bringing together artifacts which should be composed, reconciling their differences and synthesis. 

B ut before artifacts can be brought together each subject m ust be decomposed into its composable 

elements. We will present the  system  of labels -  a  model for describing th e  com posable elements 

of subjects. C om position rules w ritten  by the  subject in teg rato r are parsed into a  series of compo

sition directives. Groupers are directives th a t bring together elem ents and  perform  reconciliation. 

Combinator  perform  synthesis.

For th e  second item , we will discuss the  challenges of composing SO T anno ta ted  elements. One 

way to  achieve deep ownership in the  o u tp u t subject is for com position to  preserve the ownership 

declarations in the  input subjects. Correctness depends on the  notion of type equivalence and 

SO T-aw are com position rules. Equivalence is no t as restrictive as it may sound. Ow nership types 

have d a ta  and  context identifier com ponents; class com position leads to  da ta ty p e  equivalence, and 

explicit contexts can be composed w ith unknown context identifiers. Unification of explicit and 

unknown contexts yields resolutions: the  unknown context identifier becomes bound to  the explicit 

context identifier. In the  model we propose all unknown context identifiers m ust be elim inated; 

th a t is, com position of subjects should m ap all unks to exps. W ith  SO T-aw are com position rules 

com position elements are either forwarded to  the  o u tp u t unchanged or modified in a sem antically 

consistent way. No declarations are removed. We will argue th a t a  consistent m apping of th is kind 

leads to desirable deep ownership properties in the o u tp u t subject.

For the th ird  item , we will specify the elem ents required to  im plem ent the  model described as 

p a rt of the second item . In order to  support SO T concepts, the system  of labels will be extended w ith

131
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new prim itives. We will specify type com binators for checking element com posability and introduce 

functions th a t collect unk resolutions. An im portan t p a rt of SAPS is checking th a t a collection of 

unk resolutions is consistent. We will present an algorithm  th a t, given a set of resolutions, a ttem p ts  

to  resolve all unks in a  subject. T he algorithm  perform s unk resolution propagation. It relies on 

s ta tic  links between classes to  forward resolutions from one class to  the  next.

Section 7.1 is analysis of past work on SO P and H y p e r/J . It sum m arises the  com position rules and 

redescribes the  effect of com position on subjects. Section 7.2 presents the  system  of labels -  a  model 

of prim itives on top  of which we define com position directives. O ur model is an  extensive reworking 

of the  original [94, 95] and forms a p a rt of the  contribution  to  the  thesis. Section 7.3 defines 

groupers which m anipulate elements from the system  of labels and bring together elements from 

different subject th a t should be composed. The above th ree Sections conclude the  presentation  of 

subject com position in general, i.e. not specific to  com position of subjects anno ta ted  w ith Subjective 

Ow nership Types. T he following Sections are concerned w ith extensions th a t will enable SO T 

anno ta ted  elements to  be composed, they  are also p a rt of our contribution. Section 7.4 describes the 

m eaning of composing SO T anno ta ted  elements. Section 7.5 defines type com binators and resolution 
m apping functions. C om binators check th a t the  types of grouped elements can be composed and, 

where necessary, determ ines the  type in the  o u tp u t subject. Resolution m apping functions collect 
unk resolutions and store them  as a ttr ib u tes  of labels. At the  end, the  results of resolution m apping 

functions are used by resolution propagation  functions defined in Section 7.6. Section 7.7 concludes 
this C hapter.

7.1 Com position Rules

In this Section we review and analyse the  com position rules first seen in C hap ter 3. T he SOP 

language is an  extensible collection of com position rules. Applied to  a collection of input subjects 

the com position rules cause an  o u tp u t subject to  be created. Com position takes place statically, 

before the  program  is run. Each inpu t subject realises some concern by defining a set of classes, field 

variables and operations whose execution will produce the desired behaviour. The o u tpu t subject 

also is a  set of classes, field variables and operations. The behaviour of the  o u tp u t subject depends 

on the  input behaviours and the sem antics of the com position rules used in its creation. The subject 

in teg rato r m ust choose the right mix of com position rules to  produce the  intended behaviour. M ost 

com positions can be achieved w ith a relatively sm all selection of rules. However, more exotic rules 

can be defined for particu lar cases. For instance, in Section 4.3 on page 52 we proposed th e  v iew - 

m e rg e  rule which directly  addressed the  needs of a  tricky interaction  issue.

For the  m ost part, com position is abou t bringing together definitions from the  input subjects. 

T he m ain difference between rules concerns the  action to  take a t the point of contact, i.e. a t the join 

point. In the core set of m ost commonly used rules there  are four actions:

u n ify  By far the m ost common action is to  unify the elements, e.g. create a  single Employee class 

based on a  set of Employee classes from input subjects.

s lc t  Select one element from a range of alternatives, e.g. choose one se tA c c o u n tN o (. . )  operation  

im plem entation from a set of im plem entations in the  input subjects.

e x e c  P repend  a set of behaviours w ith another behaviour, or append a new behaviour to  an existing 

set, e.g. prepend C aching  behaviour in order to  save the values passed as param eters to
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operations.

ca ll Insert a  trigger such th a t a  behaviour is invoked before or after a set of behaviours, e.g. trig 

ger a  b a la n c e C h e c k ( . .)  operation  for account w ithdraw als of bank custom ers w ith lim ited 

borrowing.

T he first two actions are symmetric  and the  last two are asymmetric. In a sym m etric action  the 

elem ents a t a  join point are different p arts  of the  same concept. A  single elem ent will be created 

in the  ou tpu t. Unifying the elements brings together all the  definitions from all input subjects and 

produces one definition in the  ou tpu t. Selection nom inates one definition above all others and  puts 

th a t into the ou tp u t subject. W hen the o u tp u t subject is run, a  reference to  any input element 

involved in a sym m etric action will re tu rn  the ou tp u t element. We call th is process forwarding 

because references to  input elements are forwarded to the  o u tpu t element. In a  sym m etric action, 

all inpu t elements forward to  the  sam e set in the  ou tpu t.

In an asym m etric action, a  new elem ent e is partnered  w ith each elem ent in an  existing set of 

elements { s i . . .  s n }. T he new element adds to  existing concepts. A  set of elem ents { (si, e ) . . .  (sn , e)} 

will be created  in the  ou tpu t. In asym m etric actions forwarding takes place from the  input elements 
Si to  the  o u tp u t elements (S j,e), e forwards only to  e. For example, C aching  behaviour is added 

to m ultiple abstractions. W hen messages are dispatched to  these abstraction , the cache behaviour 
is invoked. In m ost cases, it is not expected th a t invocation of cache behaviour directly will invoke 

the  cached abstractions.

Sym m etric and  asym m etric actions m ay be combined. In the  sim plest case, an asym m etric 

action will apply after the  sym m etric action. For instance, a  set of elem ents { s i . . .  sn } m ay be 

composed using a sym m etric action to  form S . A  new element e will be com posed with S  using an 

asym m etric action to  produce some o u tp u t elem ent (5, e). O ther more exotic com position rules are 
also conceivable.

T here is an im portan t difference between the two kinds of asym m etric actions shown in th e  above 

list, e x e c  does no t distinguish the  source of the  request for behaviour. T he behaviour is adap ted  

universally and  is the  same for all clients. In ca ll the  behaviour is adap ted  more specifically to  the 

needs of the  client. For instance, when registering w ith a medical centre, the  nurse asks all new 

patien ts to  register their personal details. T he procedure is universal and e x e c  should be used. B ut, 

suppose a bunch of patien ts w ith flu sym ptom s a tten d  the  medical centre. T he trea tm en t dispensed 

by the  doctor is not the  sam e for all patien ts w ith flu sym ptom s. For instance, patien ts who recently 

re turned  from abroad may undergo additional tes ts  to  those who have not had any recent foreign 

trips. This interaction m ay use c a ll to  specialise behaviour.

The concepts of bringing elements together, forwarding, sym m etric and asym m etric actions un

derlie subject-oriented com position rules. A  core set of com position rules is sum m arised in F igure 7-1. 

We will use these com position rules when w riting com position specifications.

The subjects to  compose and the  nam e of the  o u tp u t subject are specified using c o m p o se , 

e q u a te  establishes th a t the  nam ed input elem ents should be composed in some way bu t does not 

specify the  action to  take during com position, m e rg e  builds on e q u a te .  In addition  to  grouping a 

set of elements it also specifies an  action. Applied to  a  set field variables, m e rg e  creates a  single 

field variable in the  ou tpu t. Applied to  a set of operations, m e rg e  creates a  single operation  in 

the ou tpu t. Applied to  a set of classes, m e rg e  creates a  single class in the  ou tpu t. The m e rg e  of 

operations and  field variables is meaningful only in the  context of a  class, and the  Subject Com poser
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c o m p o se . Specifies a  sequence of subjects to  compose and the  nam e of the  o u tpu t 
subject, e.g. compose S I ,  S2 in to  S ;.

e q u a te .  Groups together elem ents of th e  sam e kind, giving the  grouped element a  
new nam e in the  o u tp u t subject. Overloaded by elem ent type. For example, 
e q u a te  SI .A ,  S2.B,  S3.C in to  S.D; equates classes.

m e rg e . Specifies the  u n ify  action on a  set of elements of the sam e kind, giving 
the  ou tp u t elem ent a new name. It is overloaded by elem ent type, e.g. merge 
S l . A . v ,  S2.A.W in to  S .A .x ;  merges instance variables.

o v e r r id e . Specifies the s lc t  action on a  set of operations. One operation  is nomi
nated  above others, th is is the overriding operation. T he ou tp u t operation  can 
be given a new name, e.g. in o v e r r id e  S l . B . f o o ,  S 2 . B . b a r  w ith  S l . B . f o o  
in to  S . B . b e e ;  it is applied to  operations.

b ra c k e t .  Specifies either an  e x e c  or a  c a ll action on a set of operations. T he opera
tions to  be bracketed (or w rapped) can be specified exactly or using wildcards. 
The brackets (or w rappers) can include b e fo re  and  a f te r  p arts  which are exe
cuted either im m ediately before or im m ediately after the  w rapped operations. 
T he in terg ra to r m ay specify either b e fo re  or a f te r  and  need not specify both  
parts.

The e x e c  form of brackets has th ree parts: the  w rappee specification, the 
b e fo re  and a f te r  w rappers. A t m ost one of b e fo re  and a f te r  w rappers is 
allowed to  be null. For example, consider b r a c k e t  ‘ ‘ * . f o o ’ ’ w itE  b e fo re  
S I . A.b a r  a f t e r  S I . A. b e e ;. This rule will cause operation  S I . A. b a r  to  exe
cute im m ediately before any operation  m atching p a tte rn  *. f  oo and S I . A. bee 
to  execute im m ediately after any operation m atching the  sam e p a tte rn .

T he ca ll form of brackets has an ex tra  f ro m  p a rt th a t narrow s the set of 
m atched operations. It can be either a  list of classes or operations. For exam 
ple, b r a c k e t  ‘ ‘ ♦ . f o o ’ ’ f rom S2.B,  S2.C w ith  b e fo re  S I . A . b a r  a f t e r
5 1 .A .b e e ;  is identical to  the  e x e c  form above w ith the exception th a t  the 
w rappers are run  only when called from the m ethods of classes S I . B and  S 2 . B.

m e rg e B y N a m e . Brings together all identically nam ed elem ents and  applies the 
u n ify  action throughout.

o v e r r id e B y N a m e . Brings together all identically nam ed elem ents and  applies the 
s lc t  action throughout. T he first subject in the c o m p o se  clause is the  over
riding subject (the source of the  overriding elements).

o r d e r .  Specifies an order for operation com position, e.g. o rd e r  S l . A . f o o  a f t e r
5 2 . A. f  o o ; Used in conjunction w ith m e rg e  on operations. By default m e rg e  
does no t imply an order.

Figure 7-1: Com position rules summary.
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subject SI { 
class A  {

int value = 1; 
void f() { 

value += 3;
>
void Sl_op() { 

f();
>

>
>

subject S2 { 
class A  {

int value = 1; 
void f() { 

value *= 3;
>
void S2_op() { 

f();
>

>
>

subject S3 { 
class B {

int value = 1; 
void g(){ 

value *= 5;
}
void S3_op() { 

g<>;
>

>
>

// subject external clients: 
A  al = new 5();
S a2 = new A ();
B b = new B(); 
al.Sl_op(); 
a2.S2_op(); 
b.S3_op();

Figure 7-2: Exam ple showing

is required to  check th a t the  ou tp u t field variable or operation  has a valid destination. T he m e rg e  

of classes sets the  ou tp u t class b u t does no t group the  class members.

o v e r r id e  also builds on e q u a te  by specifying an action. I t  applies only to  operations, selecting 

one operation im plem entation over others, o v e r r id e  on field variables and  classes works th e  same 

as m e rg e .

b ra c k e t  is a  com position rule th a t combines bo th  a grouping facility and actions. The operations 

to  be bracketed are grouped w ith the bracket operations, and  either the  e x e c  or the  ca ll action is 

applied to  each grouping. Behind the scenes, the  b r a c k e t  com position rule uses the u n ify  action 
to  compose the  classes containing the  w rappers and  the wrappees, and the  s lc t  action to  compose 

w rapper and w rappee operations.

T he com position rules presented to  now provide fine grained control over the  com position ele

m ents. B u t using these rules to  compose non-trivial program s would produce very lengthy com

position specifications. In order to  make com position specification more concise, SO P introduces 

top-level com position rules which group elem ents based on a s tra tegy  of some kind. For subjects 

designed in concert, grouping by nam e is useful. Identically nam ed elements of th e  sam e kind across 

all input subjects can be brought together: classes are grouped w ith classes, operations w ith oper

ations and field variables w ith o ther field variables. m e rg e B y N a m e  and  o v e r r id e B y N a m e  are 

two com position rules th a t combine grouping based on nam e equivalence w ith an  action. W henever 

m e rg e B y N a m e  or o v e r r id e B y N a m e  are used, the  o ther com position rules become exceptions to 

the  groupings and actions implied them .

To help ground the  presented concepts consider the  th ree subjects shown in F igure 7-2. Suppose 

th a t these subjects are to  be composed: compose S I ,  S2, S3 in to  S ;. Each subject contains 

m ethod S*_op th a t calls either f  or g. Figure 7-2 shows th ree sub ject-ex ternal clients of the  o u tpu t 

subject which call operations S*_op in tu rn . Before the call, a l . v a l u e  =  1, a 2 .v a lu e  =  1 and 

b . v a l u e  =  1. Figure 7-3 shows the v a lu e  field after the  execution of each S*_op based on the 

com position specification shown in the  row.

(1) shows th a t w ithout any additional rules the  calls are m alformed. W ithou t addition rules
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composition specification J, al.value a2.value b .value
(1) no additional specs invalid invalid invalid
(2) overrideByName; 4 4 5
(3) mergeByName; order S2.A.f after SI.A.f 12 12 5
(4) overrideByName; merge SI.A.f, S2.A.f into S.A.f; 

order S2.A.f after SI.A.f; 12 12 5
(5) mergeByName; bracket ‘‘A.f’’ with before S3.B.g; 

order S2.A.f after SI.A.f 24 24 5
(6) mergeByName; bracket “ A.f,} with after S3.B.g; 

order S2.A.f after SI.A.f 60 60 5
(7) mergeByName; bracket ‘‘A .f ’ 1 

from SI.A with before S3.B.g; 
order S2.A.f after SI.A.f 24 12 5

(8) mergeByName; bracket ‘‘A .f * 1 

from SI.A with after S3.B.g; 
order S2.A.f after SI.A.f 60 12 5

(9) overrideByName; bracket ‘‘A.f,, with before S3.B.g; 8 8 5
(10) overrideByName; bracket <‘A.f,, with after S3.B.g; 20 20 5
(11) overrideByName; bracket *‘A .f ’ * 

from SI.A with before S3.B.g; 8 4 5
(12) overrideByName; bracket ‘‘A .f * ’ 

from SI.A with after S3.B.g; 20 4 5

Figure 7-3: R esults of applying com position rules.

classes A and B are not been formed in th e  ou tpu t. Clearly, S3 is unaffected by any com position, 

so we will concentrate on the behaviour of SI and  S2 only. (2) specifies th a t SI overrides o ther 

subjects. W hen any f  is called only SI contributes to  changing v a lu e . (3) combines all views of 
f  and disam biguates the order of operation execution. In (4), the top-level com position rules is 

specialised by a m e rg e  to  cancel out the effect of o v e r r id e B y N a m e  on f . A  bracket in (5), (6), 

(7) and (8) affects all places m atching the  p a tte rn  except the  subject which is the  source of the 
w rapper. In (5) the  sequence of calls is: S3.A.g,  S I .  A. f ,  S 2 . A . f  for bo th  Sl_op and  S2_op. In  (7) 

the  sequence of calls is: S3. A.g, SI .A . f ,  S2. A . f  for Sl_op bu t S I . A. f ,  S 2 . A . f  for S2_op. In  (9) 

to (12) S 2 . A . f  is overridden by S I . A . f .  So calls to  either operations will execute only the  body of 
S I . A . f .

7.2 A System  of Labels

Subject-oriented com position rules are specified in term s of an open and  extensible framework known 

as the  system  of labels [94, 95]. This Section presents a  model for describing the  com posable elements 

of subjects and  shows how com position rules m ap on to the  model.

A  subject label is the  com position interface of the  subject, it contains all inform ation abo u t a 

subject needed for specifying and carrying out com position. T he com position process is a  function 

from the input subject labels to  result or o u tp u t labels. The ou tp u t subject is created by linking 

code based on the result label. In order to  support the  above com position rules, sub ject labels should 

contain the following inform ation:

•  Classes defined or used by the subject.

•  Instance variables including their types.
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(operation)

Call Set

Instance
Variable

Realisation

Realisation
Set

Class

Figure 7-4: Subject label represented as a  tree  of nodes

•  O perations including their signatures.

•  M ethod execution m appings th a t m ap operations and classes to  m ethod bodies to  be executed.

•  M ethod call m appings th a t m ap operations and classes to  execution m appings.

Two points require clarification: m ethod execution and m ethod call m appings. M ethod execution 

m appings describe the  effect of m ethod dispatch. In an uncom posed subject a  m apping is sim ilar to  

a m ethod definition in an  object-oriented language: a  single m ethod body is executed in response to  

a m ethod call on a  receiver. In a subject created by composing o ther subjects m any m ethod bodies 
may need to  be executed in response to  a  m ethod call. We use the term  realisation to  distinguish 

an abstraction  of a  m ethod body from an operation  which describes a ta rg e t for a  m ethod call. A  

realisation set contains the realisations to  execute in response to  a  m ethod call on a  receiver.

M ethod call m appings also describe th e  effect of m ethod dispatch bu t from the  call end. By 

default a  single call will execute the  code associated w ith a single realisation set. B ut bracket 

relationships th a t perform  the  ca ll action described in the  last Section cause m ultiple realisation 

sets to  execute. A  call set contains the  realisation sets to  execute in response to  a  m ethod call.

W hen im plem enting concerns, each subject defines its own class hierarchy. Com position of 
subjects w ith different class hierarchies is an im portan t p a rt of subject-oriented program m ing. In

heritance makes sense w ithin a  subject b u t no t when m ultiple subjects are considered together. 

Also, com bination of inheritance hierarchies so as to  preserve the ir effect can lead to cycles [129]. 

To alleviate these problem s, class hierarchies are done away w ith by flattening or inheritance expan

sion [96]: all inherited inform ation is m ade explicit in each class by copying declarations from the 

class where they are defined to  the classes which inherit the  declarations.

T he subject label can be represented by an ab strac t syntax tree  (AST) of nodes shown in Figure 7-

4. A subject label is a  collection of operations and  classes. Instance variables are nested inside classes. 

O perations are not nested inside classes bu t shared between a  set of classes based on the su b jec t’s 

inheritance relationships. R ealisation sets are nested sim ultaneously w ithin com posable classes and 

operations, indicating th a t to  gain access to  a realisation set we m ust know its subject, the operation 

and  class name. R ealisations are nested inside realisation sets. Perhaps surprisingly, call sets are 

nested inside realisation sets instead of realisations; after all, calls em anate from  m ethod bodies. Call 

sets do not change the m ethod call a t source bu t act as dictionaries for redirecting control flow to
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S : subject
S. els : classes
S. ops : operations
S .m ap  : m appings
S.cls .c  : class
S.cls .c .v  : instvar o f ty p e  t
S .ops.o  : operation  w ith  signature (to, t \ . . .  tn )
S .m ap.o .c  : realisation  set returning u
S .m ap .o .c .r  : realisation
S .m a p .o .c .m .r  : call set ( . . . ,  S .m a p .m .r , . . . )

Figure 7-5: Label clauses.

various realisation sets. The redirection is affected per class or per operation  m aking it appropriate  

to  nest call sets inside realisation sets.

T he AST m ay be an elegant model for representing and  searching for com posable elements bu t 

it is not well suited for explaining com position rules. We would like to use a single no tation  both  for 
subject labels and for com position concepts. Fortunately, an A ST can be equally well represented 

as a  flat set given th a t fully qualified nam es are used in place of nesting.
We propose a clausal notation . All activ ity  takes place w ithin the  clause universe U. Clauses can 

be specified in a rb itra ry  order. Label clauses describe bo th  the  sub jec ts’ com posable entities and 

the o u tp u t subject. Control clauses describe the  details of com position. In the  following Subsections 

we describe the  clausal representation  of labels and  the label com position model.

7.2.1 Clausal Representation of Subject Labels

Subject labels are represented by an unordered list of clauses. An elem ent from the  subject label is 

an  a ttribu te-value binding for some com pound name:

CompoundName  : AttributeName OptionalValue

A com pound nam e is a  do t-separated  list of identifiers. In general, com pound nam es are in terpreted  

hierarchically, where the leftm ost elem ent is the  m ost general and the rightm ost elem ent is the  m ost 

specific w ith dots specifying node tree depth. An a ttr ib u te  nam e is some identifier. Some a ttrib u tes  

have no values while o thers m ay be a rb itra rily  complex. A single com pound nam e can have several 

a ttribu te-value pairs.

Figure 7-5 shows all clauses necessary to  define the  com position rules shown in Figure 7-1 on 

page 134. The roo t of the  AST for a  subject is given by the s u b je c t  clause. S  is the  nam e of 

some subject. A subject has th ree subgroups which are always defined. T he els group contains all 

classes, the  ops group contains all operations and  the map  group contains all m ethod m appings,

i.e. realisation sets and their sub-elem ents. At the next level down, the c la s s  clause shows class c 

in subject S .  Instance variables are given as subelem ents of classes: v  is an  instance variable of 

class c in subject S. t  is an a ttr ib u te  of the  in s tv a r  clause th a t denotes the type of v. o p e r a t io n  

clauses have signature types as a ttribu tes, to is the  type of the  re tu rn  value and  t \  to  t n are the  

param eter types. In the  clause universe all operations have distinct names. T his is not a  constrain t 

on im plem entation; ra ther, the  clause universe is an abstraction  and  the Subject Com poser m aintains
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a m apping between actual operation  names and their labels in the  clause universe.

A  r e a l i s a t io n  s e t  clause specifies the  result of calling an operation  on an instance of a  specific 

class; r e a l is a t io n s  are specified separately, o is the operation and c is the  class on which the 

operation  is called, u  is the re tu rn  value specification. For input subjects there  is a t m ost one re tu rn  

value b u t for subjects which are the  p roduct of com position the  re tu rn  values m ust be am algam ated 

in some way. In general, u  is passed to  some function /  which uses a stra tegy  to  select or calculate 

the  re tu rn  value. The ordering of operation  nam e before class nam e is no t intended to  convey 

nesting. Instead, the  o and c com ponents of a  realisation set clause form a two-dim ensional m atrix  

for selecting a  set of realisations and call sets. A  r e a l i s a t io n  clause specifies a  m ethod body  to  

execute w ithin a realisation set.

A  ca ll s e t  clause is a  subcom ponent of its realisation set. T he com pound nam e sta tes th a t 

realisation set given by o x c in subject S  contains a  call to  realisation set m  x r  where m  is the 

m ethod and  r  is the class identifier. Subjects are declaratively com plete so there  is no need to  

include an additional subject nam e in the label. T he Subject Compiler has proven th a t realisation 

set m  x r  is defined in S.  All m ethod call sites in all operations are nodes because each is a  potential 

join point. Com position rules work a t class m em ber level, so for specifying com position rules it is 

sufficient to  know th a t  a  realisation set contains a particu lar call w ithout exposing the details of 

control flow inside. T he ca ll s e t  a ttr ib u te  is a  sequence of realisation sets to  call. This set usually 

includes m  x r . By default, the  re tu rn  value is taken  from realisation set m  x r.

C o n tro l  C la u se s

T he intuitive concepts of grouping elem ents and applying actions are formalised in the  clause universe 
by control clauses. We distinguish between three kinds of control clauses:

•  Correspondence clauses directly specify grouping between label clauses.

•  Grouper clauses are a  more powerful way of grouping labels. G roupers are a means of au to 

m atically determ ining correspondences.

•  Combinator clauses combine the  a ttrib u tes  of corresponding clauses and help generate the 
ou tpu t clauses.

Top level com position rules are specific collections of a ttr ib u te  com binators and  node groupers. 

O ther com position rules directly m anipulate correspondence clauses.

7.2.2 Correspondence Clauses

Correspondence clauses specify which labels are to  be combined to  produce an  ou tpu t label.

n  : co m p o se d -o f(g , F )

T he correspondence clause has th ree parts, n  is the  output label which will be added in to  the 

universe, q is the  input sequence of labels of corresponding elements  whose a ttrib u tes  are to  be 

combined in some way. The order in the sequence sets the  order for a ttribu tes. F  is called the 

forwarding se t ; i t ’s m ain role is to  realise the  concept of forwarding introduced earlier. Forwarding 

concerns c la ss  and o p e r a t io n  labels:
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•  For classes it describes which of the classes in the  input set are to  be replaced by the  composed 

class. W hen a class in the forwarding set is in stan tia ted , an object of the new class in the 

ou tp u t label will be created.

•  For operations it describes which of the operations in the input sequence get replaced by the 

ou tp u t operation. W hen an operation  in the  forwarding set is called, all input operations will 

be executed.

Clearly, an input operation or class m ust exist in exactly one forwarding set, lest it is ambiguous 

which operations to  execute or which class to  in stan tia te . O verridden elem ents forw ard once to a 

special null subject which tells the  Subject Com poser to unlink the  code represented by it. Entities 

which have no correspondences in o ther subjects are involved in an  identity  correspondence. The 

effect is to  forward the node w ithout changes, e.g.:

S.ops.foo  : c o m p o s e d -o f ( (S i  .ops . fo o ) ,{S l  .ops.foo})

S.e ls .A  : c o m p o sed -o f((iS i .els.A), { S I  .els.A})

For operations and classes, the  separation of input labels from the forwarding set facilitates 

creation of advanced interactions. For example, suppose when creating prin ting  software we have two 

subjects: N o rm a lP rin t and  H e a d e rP r in t. Calling p r i n t  (A cco u n t, Doc) on a  P r i n t e r  object in 

N o rm a lP rin t activates H e a d e rP r in t’s m ethod followed by the N o rm a lP rin t’s m ethod. T he former 

debits the  account, prin ts the  sum m ary and  account info, and the  la tte r  p rin ts the  ac tual docum ent. 

However, calling p r i n t  (Ac c o u n t, Doc) in the  scope of H e a d e rP r in t,  only prin ts the  account info 

w ithout debiting the account. A  correspondence clause to  express th is relationship is given by:

TotalPrint. ops.print : c o m p o s e d - o f  ((HeaderPrint, ops. p r in t , NormalPrint. ops.print),
{ N orm alPrin t. ops.print})

The forwarding set is used also w ith realisation sets to  denote those elem ents th a t  contribu te  to 

the  re tu rn  value calculation. For instance, th is feature is used to  im plem ent the b r a c k e t  rule: only 

the  bracketed m ethods contribute to  the  re tu rn  value. T he forwarding set is no t used w ith  any other 
kinds of element.

7.2.3 Groupers

A  grouper generates correspondence clauses autom atically  based on some strategy. A  com m on way 

of determ ining correspondences is by name. Elem ents representing the sam e concept in different 

subjects should be grouped together. T his sta tegy  is used in bo th  m e rg e B y N a m e  and o v e r r id e -  

B y N a m e  com position rules. Once a  grouper completes its work o ther rules can create a lternative 

correspondence clauses to  add to  or to  replace those created  by the  grouper.

Figure 7-6 shows a synopsis of groupers used to  im plem ent the  com position rules in F igure 7-1 

on page 134. G roupers n a m e -m a tc h  and s e le c t- f i r s t  work in the  context of specific constructs. 

In order to  group classes or operations, their subjects m ust correspond. Instance variables can 

be grouped only in the  context of corresponding classes, c o r r e s p o n d in g - r s  is used solely w ith 

realisation sets. R ealisation sets can be grouped only if their subcom ponents are already known 

to  correspond, n a m e -m a tc h , s e le c t- f ir s t  and  c o r r e s p o n d in g - r s  can be described as sym m etric 

groupers in the sense th a t they  group elem ents representing the sam e concept from all inpu t subjects.



CHAPTER 7. SAPS -  SUBJECT COMPOSITION 141

•  n a m e -m a tc h  Draws into a new correspondence clause those label clauses th a t have the same 
last nam e com ponent.

•  s e le c t- f i r s t  Draws into a new correspondence clause the input label from the first input subject 
th a t contributes to  the  ou tpu t label.

•  c o r r e s p o n d in g - r s  Draws into a new correspondence clause those realisation sets whose con
stituen t classes and  operations correspond.

•  b ra c k e t-e x e c  U pdates a  collection of correspondence clauses including the  realisation set of 
each w rappee w ith the realisation sets of the  w rappers and  the classes of each w rappee w ith 
the  classes of the  w rappers.

•  b ra c k e t-c a ll  U pdates a collection of call sets of correspondence clauses including the call set 
of each w rappee w ith calls to  the  w rappers and the  classes of each w rappee w ith th e  the  classes 
of the  w rappers.

Figure 7-6: G rouper synopsis.

For classes and operations, n a m e -m a tc h  forwards all elements to  the  ou tpu t, s e le c t- f i r s t  only 

forwards the overriding element. T he overridden elements forward to  the  special null subject. These 

groupers have no error conditions.

b ra c k e t-e x e c  and b ra c k e t-c a ll  groupers generate correspondence clauses for bracket relation

ships. T hey create correspondences for m ethod execute and  call locations respectively. T he activities 

perform ed by these groupers can be sum m arised in term s of the  following steps:

1. Bracket relationships use a p a tte rn  to  specify those locations th a t should be w rapped. These 

groupers generate a list of classes containing the join points based on th e  p a tte rn . In order to  

prevent recursive bracketing, th is list never includes the  classes in subjects which are the  source 

of the  w rapper m ethods. Recursive bracketing can occur when both  w rappees and  w rappers 

are th e  sam e element, and should be prevented.

2. “Clones” of classes containing the  w rapper m ethods are composed w ith classes containing the 

bracketed locations. We have pu t clone above in quotes because the appearance of cloning is 

created  using correspondence clauses and  there  is no explicit clone operator. F igure 7-7 shows 

the  difference between b ra c k e t-e x e c  and b ra c k e t-c a ll :  the  form er composes the  w rapper 

class “clone” w ith the class containing the  w rapped operation, while the  la tte r composes the 

w rapper class “clone” w ith the class containing the  w rapped m ethod call.

3. T he w rappees are set to  execute around the w rapped elements. For b ra c k e t-e x e c , the  resolu

tion set of each w rapped m ethod is augm ented w ith the resolution sets denoting the  w rappers. 

For b ra c k e t-c a ll ,  the  relevant call set of each w rapped realisation set is augm ented w ith new 

calls to  the w rapper realisation sets. All m em bers of w rappee and w rapper classes are set to  

correspond. “Cloned” w rapper classes’ m em ber operations forward to  th e  o u tp u t operation.

In conjuncton w ith inheritance the  two forms of bracket relationship realised by these two 

groupers can produce different interactions, b ra c k e t-c a ll  selects call points based on the  declared 

type, so a call will be bracketed irrespective of the  dynam ic type of the  receiver. Thus, b ra c k e t-c a ll  

affects all classes below it in the inheritance hierarchy, b ra c k e t-e x e c  selects execution points by 

class, so when the p a tte rn  specifies the  class, classes below it in the  hierarchy will not be bracketed.

T here are two error conditions for these groupers, bo th  detected during step  1 above:
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com posed using: bracket "B.bar" with before X.wrapper;

subject S 1

B myB;

void foo() { myB.bar();

void bar() { }

subject S2

void wrapperQ

B myB;

void foo() { myB.barQ;
void wrapper() { }

subject S2

void bar()

subject SI

com posed using: bracket "B.bar" from A .foo with before X.wrapper;

Figure 7-7: Correspondences created by bracket relationships: b ra c k e t-e x e c  top; b ra c k e t-c a ll 
bottom .
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• identity . The sequence of a ttr ib u tes  m ust be of length 1 or an error is flagged; the ou tp u t is 
the a ttr ib u te  of the  sole element.

•  equivalent. All values m ust be equivalent. T he result is the  first re tu rn  value. Equivalence 
needs to  be defined for each type of a ttrib u te .

•  first or last. The first or last values is re tu rned  from the sequence.

•  union. R eturn  a  set containing the  union of all a ttribu tes.

•  forw arding-set []. This is a  param eterised com binator th a t takes another com binator as a 
param eter. T he re tu rn  value is selected from the  forwarding set of th is correspondence clause, 
e.g. forw arding-set [equivalent] uses the re tu rn  value from the first realisation set in the 
input sequence if all re tu rn  values in the  forwarded realisation sets are equivalent and  the 
forwarding set is not empty.

Figure 7-8: R etu rn  value com binators.

•  It is an error for the  p a tte rn  no t to  m atch any elements. T his is a  sanity  check th a t prevents 

ineffective compositions.

•  It is an error for a  class containing a w rapper m ethod to  have corresponding classes from prior 

com position rules. Bracketing in conjunction w ith prior correspondences can create forwarding 
cycles.

7.2.4 Combinators

Once all correspondences are established, com binators are applied to  the  a ttrib u tes  of corresponding 
elements. A com binator determ ines th e  o u tp u t label’s a ttr ib u te  from a sequence of input a ttribu tes. 

From  Figure 7-5 on page 138 we observe th a t there  are th ree kinds of a ttr ib u te  to  combine:

•  The types of corresponding instance variables.

•  The sequences of types for signatures of corresponding operations and signatures of operations 

specified in call set clauses.

•  The re tu rn  value of corresponding realisation sets.

In order for instance variables to  be com posable, either they  m ust have the  same type or th e  clause 

universe should contain a correspondence clause th a t forwards all input types to  the  sam e ou tp u t 

type. In general, in order for operations to  be com posable they  m ust have equivalent signatures. 

Exceptions include operations used as w rappers in bracket relationship which m ay accept m eta  

param eters in the  signatures of w rapped operations (e.g. see th e  exam ple in Figure 3-5 on page 41) 

and  m ay have v o id  re tu rn  types. O therw ise, signature com bination repeatedly  applies the  type 

com binator used for variables. For call set clauses, the  com binator only checks th a t operations can 

be combined. Com position aborts if a  sequence of input types cannot be combined.

A com binator for realisation sets describes the way the re tu rn  value should be com puted from all 

corresponding realisation sets, th a t is, from all re tu rn  values. T he a ttr ib u te  of the ou tp u t realisation 

set label is itself a  com binator. For instance, in H y p e r/J  bracket relationship semantics, only the 

bracketed operations contribute to  the re tu rn  value. Figure 7-8 lists a  num ber of general purpose 

com binators th a t can be used in com position rules. Com position aborts if a  re tu rn  value com binator
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generates an  error. The com binator for ca ll s e t  label a ttrib u tes  m ust determ ine the  call set for the  

o u tp u t label from a  sequence of input call sets.

7.2.5 On the Correctness of the Composition Model

Confidence in the  correctness of the system  of labels can be a tta in ed  if it can be shown th a t for 

all com position specifications all expressions which may get executed are well formed. Com position 

does not change realisations bu t does change w hat realisations are executed during m ethod  dispatch. 

Expressions are well formed when they  have valid targets. Thus for correctness it is sufficient to  

check th a t all references extending outside realisations still have valid destinations after com position.

Program  created by subject com position will crash if a  reference to  a class or any of its mem bers 

cannot be resolved. T here are two kinds of problems: either th e  class or its m em ber cannot be found 

in the  ou tp u t subject or a reference to an element is am biguous. Am biguity results from having 

m ore th an  one choice of class to  in stan tia te  or m em ber to  access. We can address these problem s 

by enforcing two properties:

•  M onotonic composition: no com position rule removes declarations.

•  Correct forwarding: each reference to  an elem ent in th e  input m ust resolve to  one elem ent in 

the ou tpu t.

T he first p roperty  ensures th a t references to  classes or m em bers always have targets . To enforce 
it, all classes, operations and instance variables in input subjects m ust also exist in the ou tp u t 

subject. W ith  respect to forwarding: for classes it ensures th a t types resolve to  a d istinct class; 

for operations it ensures th a t a  m ethod call has one ta rg e t operation; and  for instance variables it 

ensures th a t a  field reference has a d istinct target.
In order to  enforce the  above properties each kind of realisation artifact th a t extends links outside 

evokes constrain ts on the com position rules th a t m ay be created:

•  T y p e s . Realisations form types from classes. It is im portan t th a t all types th a t can be 

created  before composition, can still be created afterw ard. In the  system  of labels the  relation 

between input and  ou tpu t types is governed by the  inpu t sequences and  forw arding sets of 

correspondence clauses. M onotonic com position is ensured by requiring each inpu t class to  

be in the  input sequence of one or more ou tp u t classes. By definition, the  forwarding set 

only contains elements in the  input sequence. C orrect forwarding requires th a t  no input class 

forwards to  null. Moreover, for all correspondence clauses containing th e  class in the ir input 

sequence, only one may forward it. By following these principles when devising com position 

rules the  o u tp u t will contain exactly one class for each input class.

•  F ie ld  A c c e s s /U p d a te .  The nesting properties of th e  system  of labels ensure th a t instance 

variables always correspond in the  context of corresponding classes. To ensure bo th  m onotonic

ity and  forwarding, for each d istinct instance variable in corresponding classes there  should be 

one instance variables in the o u tpu t class.

•  M e th o d  C a lls . In order for a  m ethod call to  succeed it m ust have a valid receiver type  and 

m ethod nam e. T here are no constrain ts on w hat is executed during a m ethod call. C onstrain ts 

on class com position ensure th a t all receiver types rem ain valid after com position. M onotonic 

com position requires th a t for each realisation set in the  input subjects there  is a t least one
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•  Each input class m ust appear in exactly one forwarding set of a  correspondence 
clause.

•  If class C  appears in the  input set of correspondence clause S .c ls .C ’, then  each 
instance variable C.v  of C  m ust appear in the  input set of correspondence 
clause S.c ls .C ’. v ’.

•  Each input realisation set m ust appear in the  input sequence of a  correspon
dence clause.

•  Each input operation m ust appear in exactly one forwarding set of a  corre
spondence clause.

Figure 7-9: C orrectness properties of control clauses.

realisation set in the  o u tpu t subject. B u t realisation execution is guarded by the  forwarding set 

of operation  clauses, so correct forwarding requires th a t  each distinct input operation  appears 

in exactly one forwarding set. Note th a t th is places no constraints on the  ou tp u t label and  an 

operation  m ay forward to  null.

In summary, com position rules m ust have the  properties shown in Figure 7-9. T he following 

com position rule definitions enforce the  above properties.

7.2.6 Mapping Control Clauses to Composition Rules

In this Section we explain the way in which com position rules are im plem ented in term s of the system  

of labels. Rules in th e  com position specifications are evaluated from the top  down. T here are two 

passes: first groupers create and  upda te  correspondence clauses, secondly a ttr ib u te  com binators are 

applied. Com position specifications s ta r t  w ith a m e rg e B y N a m e  or another top  level com position 

rule T he o ther com position rules specify exceptions. m e rg e B y N a m e  is used w ith m ost com position 

specification and for th is reason the com position process is outlined in th a t Section.

c o m p o s e

The c o m p o s e  directive inserts a  single correspondence clause into the clause universe. For example, 

compose S I ,  S2, S3 in to  S; inserts:

S  : co m p o sed -o f(( iS 'l, S2, S3),  0)

e q u a te

Typically, the  e q u a te  directive is used to  bring together elem ents th a t represent the  sam e concept 

bu t have not been brought together by a top  level com position rule. For th is reason the  input 

elem ents are sym m etrically forwarded to  th e  ou tpu t. P aram eters given to  e q u a te  m ust come from 

different (and corresponding) subjects, e q u a te  is mindful of existing correspondence clauses: it 

checks if any param eters already partic ipa te  in com position. T here are two error conditions:

•  T he o u tpu t elem ent exists bu t contains none of the  inpu t elements. So th e  present e q u a te  is 
in a  race w ith an existing clause.
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•  An inpu t element already forwards to  an ou tp u t label th a t is different to  th a t required by 

equate. T his is an  error because each input elem ent is allowed to  forward to  a t  m ost one 

o u tp u t element.

These correctness criteria  are the same w hether equate is applied to  classes, operations or vari

ables. For example, suppose th a t we are parsing e q u a te  S I .A, S2 .B in to  S . C ; , then com position 

will ab o rt if the clause universe already contains any of:

S .c ls .C  : com posed-of( (S 3 .els.E, S 4 -c ls .F ) ,{S 3 .c ls .E ,  S4-cls .F})
S .cls .D  : com posed-of( (S i .e ls .A ,  S 3 .els.E), { S i .e ls .A ,  S 3 .els.E})

In the  first case above, the  ou tp u t class C is already formed by composing classes unrelated  to  

param eters of equate. So, the present equate is in a race w ith an existing clause. In the  second 

case, a  param eter to  equate already forwards to  a different ou tp u t label. Each input elem ent is 

allowed to  forward to a t m ost one o u tp u t element, 

equate succeeds in all o ther cases:

•  No prior clauses exist.

•  An input elem ent partic ipates in an “iden tity” correspondence.

•  One or more of the  input elem ents already forward to  the  o u tp u t element required by equate. 

For example, in the following, the  first two clauses denote “identity” correspondence clauses.

S.els .A  : com posed-of( (S i .e ls .A ) ,  {S i .e ls .A } )
S .c ls .B  : com posed-of( {S 2 .c ls .B ) ,{S 2 .c ls .B } )
S .c ls .C  : com posed-of( (S 3 .els.E, S 2 .c ls .B ) ,{S 3 .c ls .E ,  S 2 .c ls .B })

In the th ird  clause, one or more of the  param eters to  equate already partic ipates in a com position. 
It is acceptable because it allows an om itted  elem ent to  be added to  an existing clause, creating:

S .c ls .C  : com posed-of((iS'i.els.A, S 3 .els.E, S2 .c ls .B),
{S i .e ls .A ,  S 3 .els.E, S 2 .c ls .B })

For instance variables, equate additionally  checks th a t all classes containing the  corresponding 

variables contribute to  the  same ou tp u t class, i.e. contribute m eans “appear in the  sam e input 

sequence” . equate on operations sets up correspondences for operations, classes and realisation sets. 

Consider equate S l . A . f o o ,  S 2 . B . b a r  in to  S . C . f ee ; .  W ith  no prior clauses, equate creates the  
following correspondence clauses:

S .c ls .C  : com posed-of((iSI .els. A, S2 .e ls .B ),  { S I  .els. A, S 2 .e ls.B})
S.ops.fee : com posed-of((iS7.ops.foo, S 2 .ops.bar), { S I  .ops.foo, S 2 .ops.bar})

S .m ap .fee .C  : com posed-of( (S i  .map.foo.A, S 2 .map.bar.B), { S i  .map.foo.A, S2 .m a p .b a r .B })

m erge

m erge brings together elements and applies the appropriate  com binators. For classes, it does the 
work defined for equate, class label clauses do not have a ttribu tes, so there  are no a ttrib u tes  to
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combine. For instance variables, m e rg e  additionally  checks th a t  all classes containing the corre

sponding variables contribute to  the same ou tpu t class and applies the type com binator to  set the  

type of the  o u tp u t variable. For operations, m e rg e  does the  work defined for e q u a te .  The signature 

com binator creates the  signature of the o u tp u t operation. T he a ttr ib u te  of o u tp u t realisation set 

clause is set to  fo rw a rd in g -s e t  [eq u iv a len t].

o v e r r id e

o v e r r id e  creates correspondence clauses for the overriding elements and deletes the  clauses of over

ridden elements. Consider o v e r r id e  S l . A . f o o ,  S 2 . B . b a r  w ith  S l . A . f o o  in t o  S . C . f e e ; .  This 

directive indicates th a t all calls to  S l . A . f o o  and S 2 . B . b a r  should forward to  S l . A . f o o  (which is 

renam ed to  S . C . f e e  in the ou tp u t subject), o v e r r id e  c rea tes/u p d ates  the following correspondence 

clauses:

S .c ls .C  : c o m p o s e d -o f ( (S l .e l s .A ,  S 2 .els.B), {S I .e ls .A ,  S 2 .e ls.B})

S.ops.fee : c o m p o s e d -o f{(SI .ops.foo), { S i  .ops.foo})

null : c o m p o s e d -o f{(S2 .ops .bar) ,{S 2 .ops.bar})
S .m ap .fee .C  : c o m p o s e d - o i ( ( S l  .map.foo.A, S 2 .m ap .bar.B ), {SI .m ap .foo .A , S 2 .map.bar.B})

The first clause helps to  ensure th a t operation  overriding takes place between corresponding classes. 

The second clause sta tes “execute fo o  whenever fo o  is requested.” The th ird  clause composes into 
null which indicates th a t no node should be created  for the inpu t elements. W hen running the 

o u tp u t program , calls to  b a r  will execute no code. The last clause s ta tes th a t  only th a t  all input 
realisation sets contribu te to the  ou tpu t subject. In a nutshell, a call to  S 2 . B . b a r  will forward to  
the  elem ents in the input sequence of S . m a p . f e e . C  which, th rough  forwarding, executes S . C . f e e .  

S2.ops.bar forwards to  null, so no realisations are executed on th e  behalf of S 2 .map.bar.B. 
o v e r r id e  has two error conditions th a t conceptually m irror those of e q u a te :

•  For the  first and second clauses above, no input elem ent m ay forward to  an ou tp u t th a t is 

different to  th a t which is required by o v e r r id e  param eters. T he overridden elements will be 

reforwarded to  null. R ealisation sets use forwarding clauses for o ther purposes (see Section 7.2.2 
on page 139.

•  For the  first, second and fourth clause above, if the  o u tp u t label clause required by e q u a te  

exists already, then  a t least one of the input elements m ust be related  to  o v e r r id e  param eters. 

This error condition prevents a  race for an o u tp u t label w ith o ther rules. T he o u tp u t label 

null  is unaffected by races.

W hen the ou tpu t labels are created, the  signature of the  overriding operation  is taken  as the  

a ttr ib u te  of the ou tp u t operation; the signature com binator checks th a t corresponding operations 

have com patible signatures. T he a ttr ib u te  of ou tp u t realisation set label is set to  fo rw a rd in g -  
s e t  [e q u iv a le n t] .

m e rg e B y N a m e  a n d  o v e r r id e B y N a m e

The m e rg e B y N a m e  com position s tra tegy  specifies th a t all correspondences should be established 

based on construct name. Figure 7-10 shows it as a  bundle of groupers and  com binators to  be 

applied a t each kind of node or to  its a ttribu tes. o v e r r id e B y N a m e  also uses nam e equivalence as
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C om po sitio n  A ttr ib u te  
C o n s tru c t

G ro u p e r C o m b in a to r

subject (explicit match)
class n am e-m atch
instance variable n am e-m atch

type type combinator
operation n am e-m atch

signature signature combinator
realisation set co rresp o n d in g -rs

ret. val. spec. last
realisation n am e-m atch
call set n am e-m atch

call set attrib. un ion

Figure 7-10: Table showing the elements used in the definition of the  m e rg e B y N a m e  com position 
rule

C om po sitio n  A ttr ib u te  
C o n s tru c t

G ro u p e r C o m b in a to r

subject (explicit match)
class n am e-m atch
instance variable n am e-m atch

type type combinator
operation se lec t-firs t

signature signature combinator
realisation set co rresp o n d in g -rs

ret. val. spec. first
realisation n am e-m atch
call set se lec t-first

call set attrib. first

F igure 7-11: Table showing the  elements used in the  definition of the  o v e r r id e B y N a m e  com position 
rule
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SI  :
SI .els. A :
S i  .els. A.value :
S l .ops .f  :
SI .ops.SI -op :
SI .map.f.A :
S i  .map.Si ~op.A :
S i  .map.Sl -op.A.f .A :
SI .map.Sl -op.A.Sl -A-Sl -op : 
S i  .map.f .A .Sl -A . f  :

subject
class
instvar of type int 
operation with signature (void) 
operation with signature (void) 
realisation set returning identity 
realisation set returning identity 
call set (SI .map.f .A) 
realisation 
realisation

S : composed-of (( S I , S2, S3),®)
S.els. A : composed-of ((SI .els.A, S2.cls.A), {SI.els.A, S2.cls.A})
S.cls.A.value : com posed-o{((S  1 .els.A.value, S2.els.A.value), ®)
S.ops.} : composed-of((SI .ops.f, S2 .ops .f) ,{S l .ops.}, S2.ops.f})
S.map.f .A : composed-of((Si .map.} .A, S2. map.f .A), {SI .map.f .A, S2 .map.f .A})
S.map.f .A .S i-A - f  : composed-of((5i .map. f .  A. SI -A-f), 0)
S.ops.SI -op : composed-of ((Si .ops.SI -op), {SI .ops.Si ~op})
S.map.Si -op.A : com posed -o f((S l  .map.Sl -op.A), {S i .map.Sl -op.A})
S.map.SI -op.A.f .A : composed-of((SI .map.Sl -op.A.f .A),®)

Figure 7-12: Label clauses for S I and  correspondences created by m e rg e B y N a m e .

S  : com posed-of((5i, S2 , S3),®)
S.els.A : composed-of ((SI .els.A, S2.cls.A), {SI.els. A, S2.cls.A})
S.cls.A.value : composed-of((5i .els.A.value, S2.els.A.value), ®)
S.ops.f : composed-of((Si .ops.f), {SI .ops.f})
null : composed-of((S2.ops.f),{S2.ops.f})
S.map.f .A : co m p o sed -o f  ((Si .map.f .A, S2.map.f .A), {SI .map.f .A, S2.map.f .A})

Figure 7-13: Clauses created  by o v e r r id e B y N a m e .

the  basis for bringing elements together and  Figure 7-11 also shows it as a  bundle of groupers and 

com binators.

A  com position specification consisting of a  c o m p o s e  sta tem ent and either m e rg e B y N a m e  

or o v e r r id e B y N a m e  establishes correspondences th a t satisfy the  correctness properties given in 

Figure 7-9 on page 145. O ther com position rules preserve th e  s ta tu s  quo, changing correspondences 

to  preserve the  correctness properties.

We will use th is opportun ity  to  explain the  com position process. C om position is set in m otion 

by specifying corresponding subjects using th e  c o m p o s e  rule. Inpu t subjects are required to  have 

d istinct sub ject nam es. Com position involves the application of groupers a t successively finer levels 

of construct granularity. Correspondences arising from a to p  level com position rule are created 

first. O u tp u t labels for realisation sets and  call sets are created. These specify how to  compose 

the  a ttribu tes. Next, the rem aining com position rules are applied in the  sequence given by the  

com position specification. These rules create, modify and delete correspondences; and  possibly 

change the com binators set by the top  level com position rule. Finally, a  walk over the  clause 

universe applies the com binators and creates the  ou tp u t labels. C om binator selection is driven by 

the type of corresponding elements.
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S3.els.B :
S3.els.B.value :
S3.ops.g :
SI .ops.S3-op :
SS.map.g.B  :
S3.map.S3-op.B :
S3 .map.S3-op.B .g.B :
S3.map.g.B.S3-B~g :
S3.map.S3-op.B.S3-B.S3-op  :

class
instvar of type in t  
operation with signature (void) 
operation with signature (void) 
realisation set returning identity 
realisation set returning identity 
call set {S3.map.g.B) 
realisation 
realisation

S.els.A : composed-of{{S3.els.B, S i  .els. A, SS.cls.A), {S i  .els.A, S2.cls.A})
S.cls.A.value : composed-of((5i .els.A.value, S2 .els.A.value, S3 .els.B.value), 0)
S.ops.f : composed-of ((.S3.ops.g, SI .ops.f, S2.ops.f), {SI .ops.f, S2.ops.f})
S.map.f .A : composed-of{{S3, map. g.B, S i  .map.f .A, S2.map.f.A),

{S i  .map.f .A, S2 .map.f .A})
S.map.f .A : realisation set returning forwarding-set[last]

Figure 7-14: Clauses created by a  bracket relationship on execute sites.

To exemplify m e rg e B y N a m e  we re tu rn  to  the  com position of subjects in F igure 7-2 on page 135. 

To top  p a rt of F igure 7-12 shows the  input label clauses for subject S I. T he bo ttom  p a rt of 

F igure 7-12 shows some of the  correspondence clauses created  by com position (3) in Figure 7-3 

on page 136. Note th a t operations th a t  have no corresponding elements, e.g. S l.A .S l_ o p , are in 

“iden tity” correspondences.
F igure 7-13 presents some of the  correspondence clauses created  by com position (2) in Figure 7-3 

on page 136. Note th a t only overridden o p e r a t io n  labels forward to  the  null subject. In accordance 

w ith the  correctness principles, realisation sets, classes and instance variables are unified.

b ra c k e t

T he two forms of bracket relationship are realised by groupers b ra c k e t-e x e c  and  b ra c k e t-c a ll .  

Essentially, there  is a  one-to-one m apping between a b ra c k e t  com position rule in the  com position 

specification and the  groupers, b ra c k e t-c a ll  is selected if the rule has a  f ro m  part.

F igure 7-14 shows some of the  correspondence clauses created by com position (5) in F igure 7- 

3 on page 136. T his com position specification first applies m e rg e B y N a m e  and then  a bracket 

relationship of the  b ra c k e t-e x e c  variety. T he top  p a rt shows the  labels of the w rapper class B. 

T he bo ttom  p a rt shows some of the  correspondence clauses created by the  b ra c k e t-e x e c  grouper. 

In the bo ttom  p art, the  label of the  w rapper class is added to  the  existing correspondence clause. 

T he w rapper class is in stan tia ted  when th e  bracketed classes are in stan tia ted  bu t not vice versa. 

T he m em bers of the w rapper class are set to  correspond w ith the  m em bers of the  class whose 

operations are bracketed. Note th a t the  realisation set denoting the  w rapper operation  is prepended 

to  the  sequence of input realisation sets. T he order of input realisation sets determ ines the  order of 

operation  execution. The bracket relationship changes the  default a ttr ib u te  of the  ou tp u t label for 

affected realisation sets: w rappers do not contribu te to  re tu rn  value calculation.

Figure 7-15 shows some of the correspondence clauses created by com position (7) in F igure 7-3. 

T his com position specification first applies m e rg e B y N a m e  and  then  a bracket relationship of the  

b ra c k e t-c a ll  variety. T he Figure shows th e  correspondence clauses created by the  b ra c k e t-c a ll
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S.els.A : composed-of((5'5.cZs.JB, SI .els. A, S2.cls.A), {SI .els. A, S2.cls.A})
S.cls.A.value : com posed-of ((SI .els. A. value, S2. els. A. value, S3, els. B. value),®)
S.ops.g : com p o sed -o f  ((S3, ops. g), {S3, ops. g})
S. ops. S3-op : com p o sed -o f  ((S3.ops.S3-op), {S3.ops.S3 -op})
S.map.S3-op.A : composed-of((S3.map.S3-op.B),{S3.map.S3-op.B})
S.map.S3-op.A.g.A : com posed-of((S3.map.S3-op.B.g.B),®)
S.map.Sl .op.A.f .A : call se t (S3.map.g.B, S i  .map.f .A)

Figure 7-15: Clauses created  by a bracket relationship on call sites.

grouper. T he w rapper class and its m em bers are composed w ith the class containing th e  bracketed 

operations. From  the  top, class A is formed by composing the  m erged classes w ith the  w rapper class. 

T he v a lu e  fields are grouped into a correspondence clause. T he operations g and S3_op, realisation 

sets and call set clauses have no nam e based correspondences, so they  get placed into identity  

correspondence clauses. Finally the  call set a ttr ib u te  of the  bracketed operation is prepended w ith 

a  call to  the  w rapper operation. The order in the call set sequence denotes the  call order for calling 

operations, ensuring th a t the w rapper is called before the  wrappee.

o r d e r

O rdering of behavours is significant and can change the overall effect of composed operations. Bracket 

relationships imply an order bu t the u n ify  family of com position rules, which include m e rg e  and  

m e rg e B y N a m e , do not. The o r d e r  directive perform s pair wise m odification of input sequences 

of realisation set clauses. It allows the  order of execution to  be set where the  order is significant. 

W ithou t o rd e r ,  the  sequence of execution cannot be assumed. Com positions (3) to  (8 ) in Figure 7-3 

on page 136 use o r d e r  to  disam biguate the  sequence in which m erged operations are executed. This 
rule will fail if the  clause universe does not contain the elem ents given by param eters.

7.2.7 Definitions

T he following Sections will define groupers, type com binators, etc  th a t rely on functions for m anip
ulating  the clause universe U  in following ways:

•  F inding all clauses m atching some p a tte rn .

•  Replacing a  label clause a ttr ib u te  w ith  a new value or overw riting one clause by another.

•  E xtrac ting  inform ation from a com pound nam e of a label clause.

A  label clause has been defined as an a ttribu te-value binding for a  name. T he label is identified by 

a com pound name; it is a list of identifiers separated  by dots:

name<).name\.name2 . . .  nam en : A ttribu te  description and values

Figure 7-16 shows a list of functions, m a tc h  and e x t r a c t  use underscores as non-null wildcards. 

O ther nam es are m atched exactly. For example:

•  m a tc h  (S. els. _) is the set of class labels in subject S.
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•  m a tc h (n). Searches U  for label clauses th a t  m atch the  com pound nam e p a tte rn  n. R eturns 
a  set of such elements which m ay be empty.

•  rep lace (rr , y)  or r e p la c e (x$t, x$t') .  Replaces clause x  by clause y  in Z7, or replaces a ttr ib u te  
t  of clause x  by a ttr ib u te  t' and clause y. x  is discarded. Clause x  m ust exist in U  or there  is 
an error condition.

•  e x tra c tp (n ) . F ilters com pound nam e n  based on p a tte rn  p. The p a tte rn  is a  do tted  expression 
of a  form sim ilar to  a  com pound nam e which uses the question m ark to  denote the  nam e to  
ex tract. O ther nam es are used for p a tte rn  m atching. I t is an error for the com pound nam e 
not to  m atch the pattern .

•  d t( i) .  E x trac ts  the class nam e from type  t  when t  has form 721.77,2 .713(^1 ..  .pk). n 1 .n2 .n3 is 
the  com pound nam e of a  c la ss  label, d t  is defined as:

dt(7ii.7i2 .7i3( p i ..  .p k)) d=  n i .n 2 .n 3

•  fo rw ard s-to (Z ). Searches U  for correspondence clauses and returns the  ou tp u t label clause 
to  which Z forwards. In a well formed clause universe, each input c la ss  or o p e r a t io n  label 
forwards to  one ou tp u t label or null:

fo rw ard s-to (Z ) = f n  w h e re  n  : c o m p o sed -o f(g , F )  6  U  A Z 6  F

Figure 7-16: Functions used in the  definition of com position directives.

•  m a tc h ( 5  .els.-, v) is the  set of instance variable labels in subject S  of classes th a t define instance 
variable v.

•  m a tc h (_ .77ia p — ) is the  set of all realisation sets in all subjects in U.

A  well formed p a tte rn  for e x t r a c t  has exactly one question m ark. Trailing underscores can be 
om itted.

•  e x t r a c t ? . ^ (S.cls .c .v)  =  S.  T he els in the p a tte rn  m atches els in the  corresponding position 
in the  com pound name. T his p a tte rn  can also be specified as ?.cZs___

•  e x t r a c t . .opa.?(S .ops .0 ) = o. The underscore indicates th a t we do not care abou t the  nam e of 
the first element. The second elem ent m ust be ops.

•  e x t r a c t _.map...?{S.cls.c.v) is an error. T he map  nam e does not m atch th e  nam e in the  corre

sponding position of the com pound nam e.

r e p la c e  is commonly used w ith correspondence clauses to  modify the  input sequence and  to  change 

th e  a ttr ib u te  of an existing label clause, for example:

•  re p la c e (c  : c o m p o s e d -o f^ ,  F ) , c : c o m p o se d -o f(< /,F ') )  replaces q by q' and F  by F '  for

the correspondence clause associated w ith label c.

•  replace(cZ : in s tv a r  o f  ty p e  £, d : in s tv a r  o f  t y p e  t ') overwrites type  t by t ' for instance 

variable label d.
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7.3 Grouper Definitions

In this Section we define groupers used in the specification of top  level com position rules m ergeB y
N am e and  overrideB yN am e. G roupers generate com position clauses either autom atically  based 

on the  labels in the  clause universe or based on the  param eters. There are five groupers to  present. 

G roupers nam e-m atch , select-first and  corresponding-rs are the “au tom atic” groupers repre

senting prior a r t  [94]. b racket-exec and  bracket-call accept param eters consisting of a  p a tte rn  

specifying points to  bracket and  th e  w rapper operations. Additionally, bracket-call takes a  from  
param eter constrain ing the  call points.

7.3.1 Name Matching

G rouper nam e-m atch(n , Q) generates correspondence clauses based on nam e equivalence. As in

p u t it takes label n  denoting a prefix for the  o u tp u t label and sequence Q  of sets containing the  

elem ents from which correspondences will be draw n. Nam e m atching creates correspondences for 

sets of classes, instance variables and  operations, etc. It works by checking for equivalence in the  

last nam e com ponent of the  elem ents’ com pound nam es. E lem ents w ith equivalent nam es in the  last 

com ponent are draw n in to  a correspondence clause. E lem ents th a t have no corresponding counter

p a rts  in o ther sets are pu t into identity  correspondence clauses.

D efinition: (N am e M atching) For prefix n  specifying the node type and sequence of sets

Q = ( S i . . .  Sk), th e  nam e m atching grouper is defined as:

n am e-m atch  (n, Q) = f {n .x  : co m p o sed -o f((n i.x . . .  rik.x), (ni- x . . .  nfc.rr})

w here a: is a  d istinct last nam e com ponent of 

a t least one set in Q : 3i G [1, k], rii.x €  Si

nam e-m atch  also creates th e  forwarding set as the  following exam ple dem onstrates. T he forwarding 

set is used w ith operations and  classes only:

nam e-m atch(£.ops, ( {S I  .o p s . fn l , S I  .ops.fn2, S I  .ops.fn3}, { S 2 .o p s . fn l , S 2 .o p s . fn 2}))

S .o p s . fn l  : com posed-of((5 'i.o p s . fn l , S 2 .o p s . fn l ) ,  { S I . o p s . f n l , S 2 .o p s . fn l})
S .ops.fn2  : com p osed -of( (S I  .ops.fn2 , S2 .o p s . fn 2 ), { S I  .ops.fn2, S 2 .ops.fn2 })
S .ops .fnS  : com p osed -of( (S I  .o p s . jh 3 ) ,{ S l  .ops.fnS})

7.3.2 Selection

For overrideB yN am e the  o u tp u t contains elem ents taken  from the first set in Q. No p a tte rn  

m atching is required. O verridden elem ents are forw arded to the  null sub ject which indicates to  the  

Subject Com poser th a t  no code should be generated  for this node. T his is specified as:

D e f in itio n : (S e le c t  F i r s t )  For prefix n  specifying the  node type and sequence of subjects Q =
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( S i . . .  Sk)  the  selection grouper is defined as:

s e le c t- f i r s t  (n ,Q )  d= { n .x :  c o m p o se d -o f( (n i.x ) , {n i.z} )

n u l l : c o m p o se d -o f( (n 2 .a:. . .  rifc.rr), { n 2 . x . . .  nk-x})}  

where x  is a  d istinct last nam e com ponent of 

the first set of Q : n \  £  h e a d (Q )

7.3.3 Correspondence Matching

For grouping realisation sets, a  special c o r r e s p o n d in g - r s  grouper is specified. R ealisation sets 

correspond when their constituent classes and operations correspond. T h a t is, in order to  estab

lish realisation set correspondence, prior correspondence should exist between classes and operations.

D e f in it io n :  (C o r re s p o n d in g  R e a l is a t io n  S e ts )  For prefix n  of the form S.m ap  and sequence of 

subjects Q = ( S i . . .  Sk), the  grouper for realisation sets is defined as:

c o r r e s p o n d in g - r s  = f {n.o.c : c o m p o s e d -o f ( (n i .o .c . .. rifc.o.c), { n i .o .c . ..  n i.o .c})}

where o, c are d istinct operation  and class nam es 

and the clause universe contains:

S .o p s .o :  c o m p o se d -o f(q0 ,E 0)

S.cls.c  : com posed-of(< 7c, Ec) 

for some o, c, q0 ,E 0, qc, Ec, such th a t 

Si.ops.Oi €  qQ A Si.cls.Ci €  qc Vi £ [1,/c]

7.3.4 Grouper For Execute Sites in Bracket Relationships

T he b ra c k e t-e x e c  grouper is a  control clause. It sets up correspondences th a t realise the  bracket 
relationship which w raps m ethod execution sites in classes. O ne control clause is placed into the  

clause universe for each bracket relationship in the com position specification. It is envisaged th a t 

m ultiple grouper instances affecting overlapping sets of bracketed locations will be applied. The 

order in which the  groupers are evaluated sets the order of w rapper m ethod execution. The earlier 

ones are executed closer to  the  bracketed location. T he activ ity  of b ra c k e t-e x e c  can be sum m arised 

as follows:

1 . Identify the  pertinen t realisation set clauses representing the  locations to  bracket.

2 . Add to  them  the  realisation sets denoting the w rapper operations.

3. Compose into each class containing bracketed operations th e  elem ents of each class containing 

the w rappers, thereby “cloning” the  w rapper classes.

This control clause has the  following form:

bracket-exec(n, (p, before, after))
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T he first param eter n  is the label of the  ou tpu t subject. The second param eter is a 3-tuple where p  is 

th e  m atch  p a tte rn , before and after  are the realisation set labels for the before and after w rappers. 

At m ost one of before and  after can be null.

T he p a tte rn  p  m atches realisation set clauses in the  o u tp u t subject n. For example, suppose 

we wish to  bracket all operations m atching ( 1C. * ’ ’ , i.e. execution of any operation  in class C. T he 

following set contains th e  realisation set labels in U  described by this pa ttern :

{c  | c £  m atch (n .m ap .- .C )}

P a tte rn  are specified as regular expressions which b ra c k e t-e x e c  expands into a set of m atches in 

U. ‘ ‘ * . * ’ ’ m atches all m ethods in all classes. Let p \ . . . p k  be the com pound names for realisation 

sets in sub jec t n  created  from p a tte rn  p.

before and  after are realisation  set labels from an input subject. Using forw ards-to and  extract 
we construct o u tp u t subject labels for these realisation sets. Let M  be those realisation sets th a t 

should be bracketed:

M  =  { p i- ..p jfc } \

{n.map.forwards-to(extract_.TOap.?(&e/ore)).forwards-to(extract_.map._.?(&e/ore)),
forwards-to(n.map.extract_.map.?(a/ter)).forwards-to(extract_.map._.?(a/iter))}

For each en try  in M , bracket-exec replaces the  correspondence clause in U  w ith a new correspon

dence clause containing the  upd a ted  input sequence q. T he forw arding set, describing the  elements 

of q which con tribu te  to  re tu rn  value com putation, is unchanged.

replace(m* : com posed-of(<7, E),rrii  : com posed-of((before, q, after),  E) )  'irrii £ M

N ext, th e  classes containing the  brackets and their m em bers are introduced into th e  classes con

tain ing  bracketed locations. M c, M a and M 0 respectively specify the  class, instvar and  operation  
labels th a t  require changing:

M c =  { m a tc h ( n .d s .e x t r a c tn.map._.?(mi)) I Vra* £ M }

M s =  { m a tc h ( n .d s .e x t r a c tn.map._.?._(rai)) | Vra* £ M }

M 0 =  { m a tc h (n .o p s .e x tra c tn.map.?(rai)) | Vra* £ M }

Figure 7-17 shows the  clause universe being updated  w ith new clauses containing the elements 

from the  w rapper classes, replace is applied for each m c £ M c, m 3 £  M a and m 0  £ M 0. Note 

th a t  the  forw arding sets for classes and operations are unchanged. For classes, the  w rapper class 

is in stan tia ted  only when the  w rappee class is instan tia ted . For operations, before and after are 

called only when th e  bracketed operation is invoked. T his p roperty  ensures th a t  forwarding is done 

correctly. At this point the  work of bracket-exec is complete.

7.3.5 Grouper for Call Sites in Bracket Relationships

T he bracket-call grouper is a  control clause th a t sets up correspondences th a t  realise the  bracket 

relationship  which w raps m ethods a t the call point. For each bracket relationship containing a from
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replace(m c : com posed-of(g, F),
m c : com posed-of( (extract ?. map (before) . els .extract map. ? (before),

Q,

extract? map(after).els.extract map. ?(after)),
*0)

Let v =  ex tra ct_.cis._.?(ms) in 
replace(m s : co m p o sed -o f^ ,F ),

m s : com posed-of((extract?.map(before).els.extr a c t  _.map._?(before).v,
Q,

extract? map( after).cls.extract map ?(after).v),
0))

replace(m 0 : composed-of(<7, F ),
m 0 : composed-of((extract?.Tnap(&e/ore).ops.extract_.map.?(6e/'ore),

Q,

extract? map(after).ops.extract map ?(after)),
F ))

Figure 7-17: U pdating existing clauses w ith  correspondences from the  w rapper class.

clause in th e  com position specification, a  bracket-call control clause is placed into the universe. 

M ultiple groupers may be applied to a  possibly overlapping set of call points. The order in which 

bracket-call groupers are processed sets the  order of w rapper m ethod invocation. T he activ ity  of 

th is clause can be sum m arised as follows:

1. Use the p a tte rn  to  identify the  call set clauses whose a ttrib u tes  will be extended w ith  the 

w rappers.

2. Add the  realisation sets denoting the  w rappers to  each call set label a ttrib u te .

3. Compose into each class containing a bracketed call set th e  elements of each class containing 

the  w rappers.

This control clause has the  following form:

bracket-call(n, (p, / ,  before, after))

The first param eter n  is the  nam e of the ou tpu t subject. T he second param eter is a  4-tuple w here p  is 

the  p a tte rn  describing the  m ethods which should be bracketed, /  is a  list of either class or operation 

labels describing the  call points, before and  after  are the  realisation sets of w rapper m ethods. The 

re tu rn  value from the  bracketed m ethod call is passed back to  the  calling context and the re tu rn  

values from w rapper calls are discarded. At m ost one of before and after can be null.

Let p \ .. .pk be the  realisation set labels m atched by p a tte rn  p. In order to  select the call points, 

we determ ine set M  of realisation set labels m atched by p. To prevent recursive bracketing, th is set 

does not include th e  realisations denoting the  w rappers:

M  = { p i . . . P k } \

{n. map. forw ards-to(extract_.map.?( fee/ore)), forwards- to(extract_.map._.?(6e/cre)), 

forwards-to(n.map.extract_.map.?(a/£er)).forwards-to(extract_.map._.?(a/ter))}
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Next, we search U  for call set clauses th a t  describe calls to  nodes in M .  Set D  contains the  call set 

labels which should be bracketed:

D  =  {m atch (n .m a p__ extract.. opa.?(/')._) V

m atch (n .m a p___ ex tr a c t ..^ .? ( //)) I f ' t f }

T he a ttr ib u te  of each d G D  is extended w ith  before and after realisation sets:

rep lace (d$cs, d%(before)d%cs) after))

where d$cs is the  a ttr ib u te  of a  call set clause d

T he final step is the  same as for bracket-exec. Each class containing a w rapper m ethod  and  its 

m em bers is introduced into the  classes containing bracketed call points. M c, M s and M 0 respectively 

specify the  class, instvar and op eration  labels th a t require changing:

M c =  {m atch(n.cZs.extractn.TOap._.?(d)) | Vd G D }

M s =  {m atch (n .els.ex tra ctn.map._.?._(d)) | Vd G D }

M 0 =  {m atch(n .ops.extractn.map,?(d)) | Vd G D }

Figure 7-17 shows the  clause universe being u p d a ted  w ith new clauses containing the  elem ents from 

the  w rapper classes, replace is applied for each m c G M c, m s G M s and  m 0  G M 0. A t this point 

th e  work of bracket-call is complete.

7.4 The M odel of Type Com position

In th is Section we introduce the model for com posing subjects anno ta ted  w ith Subjective Ownership 

Types. We will argue th a t subject com position based on our notion of type equivalence leads to  

deep ownership in the o u tpu t subject.

The aim  of subject com position is to  create  a  program  th a t combines th e  functionality of its 
input subjects in a useful way. T he role of SAPS is to  clarify subject interaction  by constraining 

aliasing in a m ulti subject environm ent. So SAPS should enable the  ownership properties of the 

o u tp u t subject to  be determ inable from th e  inpu ts and the  com position specification.

T he model we propose is one where com position preserves the  ownership properties of its input 

subject. Subjects may be composed using the  rules we have described so long as the  ownership 

properties of each input subject continue to  hold. We intend for all subjective ownership type 

declarations in each input subject to  stay  tru e  after com position for all valid com positions. O n the  

positive side, th is model leads to  a nice p roperty  th a t  every object keeps its representation  context; 

representation  containm ent is preserved and  no object is exposed outside its owner. O n the negative 

side, this model requires subjects w ith inherently  different ownership properties to  compromise on 

a  common ownership structure . The consequences of this com position model for subject-oriented 

program m ing are evaluated in C hap ter 8.

O ur model depends on two factors presented over the following two Subsections:

•  A m eans of determ ining equivalent subjective ownership types across the  inpu t subjects.

•  SO T-aw are com position rules th a t  preserve each sub jec t’s ownership properties.
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7.4.1 Subjective Ownership Type Equivalence

In Subject-O riented  Program m ing the com posable elements of subjects are brought together by 

defining a correspondence between them . C orresponding elements are composed into a  single element 

in the  ou tpu t. The a ttrib u tes  of corresponding elem ents are combined to  create the  a ttr ib u te  of the  

o u tp u t element. Types are a ttrib u tes  of bo th  field variables and operations. SO P only perm its 

com position of elem ents w ith equivalent types. In the  case of value types equivalence is observable 

im m ediately, e.g. com position of i n t  type  variables is allowed bu t com position of variables of type 

i n t  and f l o a t  is not allowed. For ab strac t types, equivalence m eans either th a t corresponding 

elem ents have types common to  all subjects or type equivalence results from class correspondence. 

C om m on types are generated from classes which are defined in class libraries and im ported into each 

subject th a t uses them .

Subjective O wnership Types are an extension to  existing type declarations of an  object-oriented 

language. All elem ents w ith value types have global aliasing properties and require no additional 

type checking. A bstrac t types are derived from com posable and  uncom posable classes. T he d a ta  

com ponent of a  type  is followed by a sequence consisting of the owner context and o ther identifiers 

which bind the ownership param eters in the  uncom posable class declaration.

For types derived from com posable classes, d a ta  type equivalence usually is inferred from the 

com position specification. By definition, uncom posable classes cannot be composed. Uncom posable 

classes are defined in libraries and im ported  into all subjects th a t need them . For types derived 

from uncom posable classes, d a ta  type equivalence is observable immediately. C ontext identifiers 
appear in a sequence after the  d a ta  com ponent. Suppose a num ber of such sequences are combined. 
Clearly, all sequences are of the  same length: atom ic types have no context identifiers; ab strac t d a ta  

types derive from the same uncom posable class and  thus require the  same num ber of contexts in 

all subjects; all types derived from com posable classes require exactly one context representing the 

owner. T he equivalence in the  context com ponent of a  type is checked one position a t a time. There 

are th ree possible com binations of contexts:

1. Explicit context combined w ith an explicit context.

2. Explicit context combined w ith an unknown context.

3. Unknown context combined w ith another unknown context.

In Figure 7-18,  context correspondences labelled (1),  (2) and  (3) relate to  the  points in the 

enum erated list above. For explicit contexts, equivalence is observable im m ediately from the  repre

sentation . Case (1) in Figure 7-18 shows th a t  subjects S I  and S2 b oth  view A .S  as being owned by its 
container, an  object of class A. In case (2) an exp combines w ith an  unk in class A. T he unk assumes 

the  value of the  exp in A, producing a resolution. In the Figure, unk* resolves to  expj  in class A. In 

case (3), when all corresponding contexts are unknown, no resolutions occur bu t th e  com position 

specification m ust infer a  correspondence betw een those unks.  T he com position specification m ust 

specify th a t unkm in S I . A  corresponds w ith unkm in S2 .A .  This is indeed the  case in Figure 7-18: 

the  m e r g e B y N a m e  com position s tra tegy  will create a  correspondence for unkm .

unk R eso lu tion

In principle, a  subject com position need not resolve all unks  appearing in all com posed subjects, and

each com position can resolve m ore and  m ore unks.  Section 9.2 on page 215 will show th a t partia l
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Subject SI
class A

unk m

Hashtabie<0,1, m> h|

merge

Subject S2
class A

Hashtable<0,k,m> h
unk k unk m

Figure 7-18: Context correspondences

resolution plays an im portant role in the future development of SAPS. However, presently we require 

that:

1. Every context combination yields a resolution.

2. Subject composition resolves all unks in all input subjects. An unk m ust resolve in every class 
where it may be observed in the type of a declaration, an expression or subexpression.

Resolutions can occur in two ways:

• Directly through combination of types of corresponding elements. W hen a resolution occurs, 
the Subject Composer creates a resolution mapping p which maps class name, unk pairs to  exp 

values:
p d=  {(C ,k ) n}*

•  Indirectly using association and inheritance relationships between classes. Associations are 
formalised in code by field accesses, updates and m ethod calls. Associations and inheritance 
can propagate a resolution between classes. Section 7.6 on page 170 will present the resolution 
validation algorithm  which consumes a resolution m apping and attem pts to  resolve unks in all 

classes.

Direct and indirect resolution is shown in Figure 7-19.  Suppose th a t subjects SI  and S2 are 

merged by name. Classes S I . A  and S2 .A  correspond, and so do instance variables S l . A . c  and 
S2 .A .C.  Instance variable correspondence produces resolution (A, A:) »-> 1. However, class S l . B  also 
has a construct whose type depends on unkfc which is not resolved by composition. Composition of 
SI and S2 cannot resolve unk^ in B because S2 has no concept of this kind. These sort of differences 
are totally consistent with subject-oriented development: each subject should only define concepts 
th a t serve to  address its concern. Indirect resolution uses the association between classes SI .A and
S l . B  to propagate the resolution from S I .A  to S l . B .  S l . A . f o o  defines a field update expression
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subject SI {
nnlr k;
class S where 1 <= k {

B<1> b;
C<k> c;
void foo() { b.c = c; >

>
class B where 1 <= k {

C<k> c;
>
class C { >

>
subject S2 { 

class A {
C<1> c;
D<1> d;
void bar() { c.d = d; }

>
class C {

D<1> d;
>
class D { }

>

Figure 7-19: Exam ple showing direct and indirect unk resolution

which associates classes A and B. Feeding the resolved values into A i (defined in Section 6.2.2 on 

page 107) yields resolution (B,k )  i-* 1.
Indirect resolution is m eaningful because m ost sub jects im plem ent collaborations. O bjects col

labora te  by sending each other messages containing references to  o ther objects. Indirect resolution 

depends on the  fact th a t a t runtim e field access, up d a te  and  m ethod call expressions create  a  link 

between two references to  the same object. I t then  uses the  principles of explicit context identifier 

arithm etic  to  calculate the  correct type a t the  o ther end of the association. Thus, for subjects im

plem enting a  single collaboration, a  single direct resolution may be sufficient to  resolve the  unknown 
context for all classes. O ther subjects may require m ultiple direct resolutions to  achieve subject-w ide 
resolution.

R e s o lu t io n  C o n s t r a in ts

unks often have resolution constrain ts in the  form of ucircs. Conceptually, resolution constrain ts 

ensure th a t in each class an unk denotes a  range of exps and  no resolution in the  valid range 

causes representation exposure. Recall th a t a t subject level, ucircs specify inter-unk ordering. Given 

declaration u c i r c  k <= m and some class A where the value of unkfc and  unkm can be observed, any 

resolution for unkfc and unkm in A m ust satisfy k <= m. A t class level, ucircs are s ta ted  in where 

clauses. These specify a  range to  which an  unk m ust resolve in th a t class. Given declaration c l a s s  

B where 1 <= k, unkfc m ust resolve to  a value grea ter th an  exp0 in B and  its subclasses.

Resolution constrain ts are im portan t during com position. A fter all, th is is the  tim e when unks 

are replaced by exps. However, the declared ucircs are no t suitable for th is purpose. Com position 

changes th e  m ake-up of a  class, introducing new instance variables and changing operation be

haviour. For instance, the o v e r r id e  com position rule selects one m ethod definition over a  num ber 

of others. T he resolution constrain ts required by the  overriding expression are likely to  be different
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subject SI {
class TitleBar {

Widget<0> w;
>

>
subject S2 { 

class Window {
Widget<0> w;

>

>

Figure 7-20: Exam ple for SO T-aw are com position rules.

to  the constrain ts of overridden operations. Consequently, to  ensure valid resolution th e  resolution 

constrain ts pertain ing  to  a class m ust be inferred from its declarations and definitions in the  output.

7.4.2 SOT-Aware Composition Rules

Com position rules are defined in term s of element grouping and  a ttr ib u te  com bination. T he preced

ing Subsection was concerned w ith com bination of type a ttrib u tes . P resently  we are concerned w ith 

elem ent grouping. There are two points which concern grouping: first, we argue th a t  th e  composi

tion  rules in this C hap ter do not cause representation exposure; secondly, we take a look a t bracket 

relationships in the  contexts of SAPS.

C o m p o s i t io n  R u le s  a n d  R e p r e s e n ta t io n  E x p o s u re

We require subject com position to  preserve the ownership properties of input subjects. We propose 

th a t in order to  do so, all class member grouping should take place in the scope of grouped classes. 
Given type  equivalence, th is p roperty  ensures th a t  for all objects, a  representation  object in one 

subject is trea ted  as representation  in all o ther subjects.

T he SAPS model has two kinds of class member: instance variables and operations. T he struc

tu ra l properties of the  system  of labels ensure th a t  instance variables can correspond only w ithin 

corresponding classes. To dem onstrate th is point, consider F igure 7-20. In order for S I .T i t l e B a r  .w 

and S2.Window.w to  ever reference th e  same W idget object, S I .T i t l e B a r  and  S2.Window m ust 

correspond. If bo th  subjects type checked correctly before com position, then we can be certain  th a t 

no subject exposes the  W idget object outside its representation context.

S truc tu ra l p roperties alone are not enough to ensure th a t newly introduced behaviour does not 

cause representation exposure -  this is the dom ain of com position rules. In the  system  of labels, 

behaviour is abstrac ted  by realisation labels. All is safe while classes execute realisations sourced 

from their own subject. R epresentation exposure can be caused by an external realisation th a t finds 

its way into the set by composition. So, this problem  can be addressed if com position rules control 

w hat realisations get executed.

In the  system  of labels, realisations are nested inside realisation sets. By definition of realisation 

set, during m ethod dispatch on a receiver all realisations in a realisation set will be executed. If th a t 

realisation set is itself composed of others, then  all input realisation sets will contribu te  to  th e  set 

of executed realisations. B ut, access to  realisations is guarded by (o p e ra t io n , c la ss) label pairs.
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Subject SI

| void f1 (Stack<0,0> s)]

Subject S2

void f2 (Stack<0, k> s

Class C

void f3 (Stack<l,1> s)

void f4 (Stackcl,1> s

Clone of class X for A

void before(Stack<m,n> s)

void after(Stackcm,n> s)

Clone of class X for

void before(Stack<m,n> s)j 

■̂ v o i d  after (Stackcm, n> s)|

Clone of class X for C

J void before (Stack<m, n> s)|

void after(Stackcm,n> s)

Subject S3

|void before(Stack<m,n> s) 

[void after (Stack<m, n> s)|

(Correspondences) (Clones of)

Figure 7-21: The effect of bracket relationships on unk resolution

It follows th a t the executed realisations will come from some input class. Consequently, in order to 
prevent representation exposure it is necessary for classes guarding th a t behaviour to be composed.

This property is true of all valid combinations of composition rules th a t we have specified. Top 
level composition rules use n a m e -m a tc h  to  group classes. All finer grained composition may add 
but never delete classes from correspondence clauses.

B ra c k e t R e la t io n s h ip s  a n d  S A P S

Recall th a t bracket relationships are an asymmetric subject composition mechanism th a t enables the 
behaviour defined in one subject to extend the behaviour defined in another. Bracket relationships 
take a pa ttern  param eter which expands into a list of classes containing the join points. The bracket 

relationship composes the classes containing the wrapper m ethods with each class in the list. The 
w rapper methods are set to  execute around the bracketed points. Bracket relationships create the 
effect of cloning, with the bracketed locations and wrapper m ethods coming from corresponding 
classes. It follows th a t the type combination principles apply also to bracket relationships: the type 
in the interface of the w rappers must be equivalent to the type of the bracketed locations.

Operations th a t play the role of w rapper m ethods can use exps and unks in the types of their 
param eters. By using unks, the aspectual subject can adapt to  the contexts appearing in the 

bracketed locations. Recall th a t an unk resolves to one exp per class. The resolution is well-defined if 
for multiple bracketed locations within one class, each join point resolves to equivalent exps. Figure 
7-21 shows the effect of bracket relationships. Class X is “cloned” once for each class containing 
bracketed locations. The unks in the wrapper methods of “cloned” classes correspond with the 

contexts (both explicit and unknown) in the bracketed sites, producing the following resolutions and 
unk correspondences:
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context\class A B C

m 0 0 1

n 0 k 1

Section 7.2.3 on page 140 described the conceptual difference between its two forms. B oth forms 

establish correspondences between the w rappee classes and  th e  w rapper classes, in effect merging 

th e  classes of the  w rappers w ith  each class of the wrappee. b ra c k e t-e x e c  creates correspondences 

a t the  receiver of the call whereas b ra c k e t-c a ll  creates correspondences a t the  class containing 

th e  call. B oth forms of bracket relationship lead to  type com bination and, hence, unk resolution 

Technically, b ra c k e t-e x e c  and b ra c k e t-c a ll  differ in term s of where resolutions occur. In b ra c k e t-  

e x e c  resolutions occur in the class containing the  bracketed realisation set(s). In b ra c k e t-c a ll  

resolutions occur in the class containing the bracketed call set(s).

T he SAPS notion of composable and uncom posable classes adds a new dim ension to  the way 

th e  two forms are understood. In SAPS only b ra c k e t-c a ll  can be used w ith bracket operations 

of uncom posable classes. There are two reasons for disallowing b ra c k e t-e x e c  on operations of 
uncom posable classes:

•  Uncom posable classes are black-boxes. b ra c k e t-e x e c  implies th a t all calls to  an  object of an 

uncom posable class should be extended w ith additional behaviour. This is a  “sta tic  extension” 
-  an  extension th a t affects all existing clients. Inheritance is black-box extension mechanism 

th a t should be used to  specialise an uncom posable class, i.e. a  black-box.

•  b ra c k e t-e x e c  implies “bracket calls to all objects of th is kind” , b ra c k e t-c a l l  allows for a 
m ore accurate specification of intent by implying “bracket calls to  objects of th is kind from 

th is set of call points” . SAPS prevents composers from m aking overly broad sta tem ents about 
interaction. Specifying in teraction in the  m ost sem antically precise way will m ake program s 

m ore resilient to  fu ture changes [77]; which aids reusability.

7.4.3 Extensions to the System of Labels

SAPS introduces m any new concepts into SOP. These concepts prim arily  affect type com bination. 

C om position of elements whose a ttrib u tes  are subjective ownership types requires us to  define new 

com binators. T ype com bination produces unk resolutions. To ensure th a t sub ject are composed 

correctly it is necessary to  check th a t unks have resolved completely. D irect resolution through 

type com bination creates some but no t all resolutions. Therefore, in an additional final step  to  the  

com position process the  Subject Composer uses resolution propagation  to  indirectly  resolve all unks 

in all subjects.

We propose to  extend to  the system  of labels to  incorporate the following SAPS concepts:

•  Com posable and uncom posable classes defined or used by the  subject.

•  Instance variables and operations in com posable classes only.

•  Unknown contexts declared in the subject.

•  Call sets appear only in composable classes bu t may call operations of com posable classes.

•  Clauses to  collect unk resolutions from type com binations.
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* S  : subject
S.els  : com posable classes
S.im p  : uncom posable classes

* S.ops : operations
* S.m ap : m appings

S.own : unknown con texts
S.cls.c  : com posable class
S.cls.c  : resolu tion  m apping p
S.im p .c  : uncom posable class (k \ . . .  kn )

* S.cls .c .v  : instvar o f  ty p e  t
* S.ops.o  : operation  w ith  signature ( t o , t i .. . t n)

S.ops.o  : partial reso lu tion  m apping pd
S.im p.o .c  : uncom posable realisation  set

* S.m ap.o .c  : realisation  set returning u
* S.m ap .o .c .r  : realisation
* S .m a p .o .c .m .r  : call set ( . . . ,  S .m a p .m .r , . . . )

S.ow n .k  : unknown context

Figure 7-22: Label clauses.

Figure 7-22 shows the additional clauses created  to  incorporate these. T he * in the leftm ost column 

indicates th a t the clause is unchanged from Figure 7-5 on page 138. W orking from the  top , the els 
group now contains only com posable classes. The imp  group refers to  uncom posable classes which 

are either defined in subject S  or im ported  from an external library  into S.  The own  group contains 

the  su b jec t’s unks.

T he composable class clause labels com posable classes. T he new r e s o lu t io n  m a p p in g  a ttrib u te  
of com posable classes collects the  direct resolutions perta in ing  to  each class, p is a  set whose entries 

are of the  form k t-* n  where k  is an unk and n  is an exp. O peration  labels gain th e  p a r t ia l  

r e s o lu t io n  m a p p in g  a ttr ib u te . pd has the  sam e form as the  r e s o lu t io n  m a p p in g  a ttr ib u te  of 

class labels. pd tem porarily  store resolutions from operation  signature com binations which take 
place independently  of classes. An uncomposable class clause introduces class c which has sequence 

( k i . . .  kn ) of ownership param eters. The sequence does not include the  implicit owner param eter. 

Uncom posable classes are included because they  are used as types of com posable elements. An 

uncomposable realisation set clause denotes operation  o in uncom posable class c. T his clause is 

included because the call set of a  com posable class may include calls to  operations of uncom posable 

classes. An unknown context clause defines an unk appearing in a subject. Unknown context 

identifiers are also com posable elements of subjects th a t may be grouped w ith unks from other 

subjects.

T he creation of resolution m appings is closely related to  the  issue of a ttr ib u te  com bination. 

Therefore, it makes sense to  describe com bination and resolution m appings together in Section 7.5. 

Checking resolution m appings for consistency can take place only once all direct resolution are 

collected. These checks are described in Section 7.6 on page 170.
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C om position A ttr ib u te C o m b in a to r R eso lu tio n
C o n stru c t M ap p in g  F n
instance variable

type ct
Rinst

operation
signature cg

Rops

realisation set Rra
call set

call set attrib. cg
Rea

Figure 7-23: C om position elements used in the  definition of the  SAPS m e rg e B y N a m e  com position 
rule

7.5 Type Combinators and Resolution Collection

T his Section defines type com binators and resolution m apping functions used by com position rules. 

F igure 7-23 shows th a t there are two type com binators: C t for combining a  sequence of types and 

Cg for combining types in signatures. The la tte r sim ply calls th e  form er to  combine the  types a t 

each position. S ignature com bination is used to  combine th e  a ttrib u tes  of o p e r a t io n  clauses and 

to  check the  a ttrib u tes  of ca ll s e t  clauses.

T ype com bination produces unk resolutions for the  class where resolution occurs. Resolution 

m apping functions are shown in the th ird  column in F igure 7-23. Type com binators are applied 

in th e  context of some clause. Figure 7-4 on page 137 shows th a t in the case of in s tv a r  and ca ll 

s e t  labels, the class in which resolution occurs is known from the  com pound name; call sets and 

instance variables are nested inside a class. The sam e is no t tru e  of o p e r a t io n  labels. Resolutions 

from com positions of o p e r a t io n  labels cannot be im m ediately a ttr ib u te d  to  the  a class. Instead, we 

postpone resolution m apping creation until r e a l i s a t io n  s e t  labels are combined. R esolution m ap

pings are stored as a ttrib u tes  of the ou tp u t c la ss  labels. W hen operation signatures are combined 
we store partia l resolution mappings as a ttrib u tes  of o p e r a t io n  labels.

7.5.1 The Type Combinator

T he type  com binator Ct{Q) determ ines the  ou tpu t type by com posing types in Q. In th e  process, Ct 
checks th a t the  types can be combined. W hat denotes a com posable sequence of types? O wnership 
types have two parts: the  d a ta  type and the ownership context. In  order for types to  be composable 
bo th  p a rts  should correspond. The d a ta  types m ust come either from the sam e uncom posable class 
or from com posable classes th a t are specified as corresponding. For example, for com posable classes 
R and S the  following m ust hold:

Ct((Sl .cls.R( 1), => S.cls.T : com posed -o f((Si .cls.R, S2.els.S),
S2.cls.S( 1)) =  T (l)  {SI .cls.R, S2.cls.S}) € U

O w nership contexts can be made up of explicit and unknown context identifiers. W hen unks are 

used, we require every com bination of contexts to  yield a  resolution. Hence, for any sequence Q 

there  m ust be a t least one type w ith an  exp for each context p aram eter position.

Before Ct is presented, we m ust describe the functions used in its definition, d t- fo rw a rd (Q )  

determ ines the  nam e of the  d a ta  com ponent of the  ou tpu t type  from a sequence of input types 

Q = ( t i . . . t k ).
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d t-fo rw ard ((ii . . .  tk)) =f d t( i i)  if Vi G [1, k] e x tra c t..? (U) = imp A
d t( ti)  =  dt(£2) =  . . .  =  dt(ifc) 

fo rw ard s-to (d t(ti))  if Vi G [1,/c] e x tra c t..? (U) = els A
fo rw ard s-to (d t(ii))  =  . . .  =  forw ards-to(dt(tA :))

Let M c be a  two-dimensional m atrix  of contexts created  from Q. The context identifiers of each 

type  are placed into a row such th a t M c[i, j } refers to  the  j t h  context in the  i th  type in Q. We define 

two indices e x p index(M c, j )  and u n k index(Mc,'j) to  column j  of m atrix  M c as follows:

e x P index(M c , j )  d= {i  I Mc[i,j] e A f \ J  {world}} 

u n k index(Mc, j )  d=  {i | M c[i, j } £  M  U {world}}

N ote th a t i is in range [1, |Q|].
T he e x p -e x is ts  te s t holds if there  is a t least one exp for a  corresponding set of contexts in 

colum n j  of M c. The e x p -e q u iv  test holds if e x p -e x is ts  and all corresponding exps in colum n j  

are equivalent (or equal to  world), e x p -v a lu e  re tu rns the o u tp u t context value for colum n j:

e x p - e x is ts (Q, j )  d=  e x p index(M c, j )  ±  0

e x p -e q u iv(Q , 'j )  d=  e x p -e x is ts (Q , j )  A Vi, i ' G e x p index(M c, j ) ,  M c[i, 'j] =  M c[i', 'j]

e x p -v a lu e(Q, j )  d=  M c[i, 'j] i f  e x p -e q u iv (Q , j )  A i G e x p index{M c, j )
null o th e rw is e

Now we can present the  type com binator. Ct takes a sequence of types to  combine Q  and  re tu rns 
the  o u tp u t type.

D e f in it io n : (T y p e  C o m b in a to r )

C t(Q ) = f d t- fo rw a rd (Q )(e x p -v a lu e (Q , 1 ) , . . . ,  e x p -v a lu e (Q , m ))

where Q = ( t i(c1A . . .  Ci)m), t 2 (c2 , i . . .  c2,m) . . .  t k (ck,i . . .  cfc,m))

T h e  M a in  R e s o lu t io n  M a p p in g  F u n c t io n

The resolution m appings of unks are stored in th e  clause universe as a ttrib u tes  of class labels. 

Alongside com binators, the Resolution M apping Function R ( Q ) is called to  create the  resolution set 

for a  sequence of corresponding types Q. The definition of R  also uses the  m atrix  rep resen tation  of 

types.

T he exps and the  unks appearing in th e  same column of M c generate resolutions. For some 

column j  of M c, r e s -m a p  creates a set of resolutions:

re s -m a p (Q ,j)  d=  { M c[i, j] e x p -v a lu e(Q ,'j)  | i G u n k index(M c, j ) }

A  union of resolutions produced by all columns gives the  com plete resolution m apping for a  sequence 

of corresponding types in Q :
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D e f in it io n :  (R e s o lu t io n  M a p p in g  F u n c tio n )

R (Q )  = f Uj€[i,m] re s -m a p (Q , j )  
where Q =  (£1 (0 1 ,1 . . .  c i>m), t 2 {c2,i . . . c 2,m) . . . t k (ck, 1 . . . Ck,m ))

R e s o lu t io n s  o n  I n s ta n c e  V a r ia b le s

W hen instance variables are composed, the  resolution m apping a ttr ib u te  for the  class containing the 

instance variable n  is upd a ted  w ith resolutions from com binations of types in Q :

Rinst{n, Q ) *=* re p la c e (c  : r e s o lu t io n  m a p p in g  p, c : r e s o lu t io n  m a p p in g  pU  R ( Q ))

where c =  e x t r a c t? .cis (n ) .d s .e x tra c t_ .c/s.?(n)

7.5.2 Type Sequence Combinator

T he type sequence com binator is best understood  in term s of its application to  operation  signatures. 

S ignatures are the  a ttr ib u tes  of operation clauses and  th is com binator is m ost commonly used to 

combine the signatures of corresponding operations. In order to  be composable, operations m ust 

define the  sam e num ber of param eters. T he re tu rn  values and param eters in corresponding positions 

m ust have equivalent types as defined by Ct .
T he type  sequence com binator Cg(Q ) takes a sequence Q  of type subsequences to  be combined, 

and produces the ou tp u t subsequence. Cg is defined in term s of the type com binator Ct which is 

called once for each set of corresponding types.

D e f in it io n : (T y p e  S e q u e n c e  C o m b in a to r )

Cg(Q)  =  < a« fo ,0 , *1,0 • • • *fc,0»> • 1 • Ct((to,mi *l,m • • • *ifc,m))) 
where Q  =  ((*o,o> *o,i • • • *o,m)) (*i,o> *i,i • • • *i,m) , • • ■ > (*fc,o> *fc,i • • •

R e s o lu t io n s  in  O p e r a t io n  S ig n a tu re s

Signature com bination produces unk resolutions which should be associated w ith o u tp u t classes. 

B ut operation signature com bination is defined separately  from classes. The missing inform ation 

becomes available only when realisation sets are combined. In the  m eantim e, we associate resolutions 

from signature  com bination w ith the  partial resolution mapping  a ttr ib u te  of the  o u tp u t operation 
label n.

R ops ( n , Q ) = f r e p la c e (n  : p a r t i a l  r e s o lu t io n  m a p p in g  pd ,

n  : p a r t ia l  r e s o lu t io n  m a p p in g  U •^7((*0,i> *l,i • • • *fc,i)))
iG[l,m]

where Q  =  ((*o,o,*o,i • • -*o ,m)) (*1,0 j *1,1 • • • *i,m), • • • ) (*fc,0) *fc,l • • • *fc,m))

Realisation set com bination provides an  opportun ity  to  fill in the missing inform ation for partia l 

resolutions created  by signature com bination. P a rtia l resolution m appings are stored as a ttr ib u tes
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of o u tp u t operation labels such as the following:

n.ops.foo  : p a r t ia l  r e s o lu t io n  m a p p in g  {k  i-> v}

T he nam e of the class is taken  from the nam e of the  ou tp u t realisation set label r , and th e  resolution 

m apping a ttr ib u te  of this class is updated . N otation  m $prm  denotes the p artia l resolution m apping 

a ttr ib u te  of label m:

R ra(r) d=  re p la c e (c  : r e s o lu t io n  m a p p in g  p, c : r e s o lu t io n  m a p p in g  P U pd) 

where c =  e x tra c t? .map (r ) .d s .e x tra c t_ .map._.?(r) 

and pd =  ( e x tra c t? .map (r ) .o p s .e x tra c t_ map?(r))$prm

7.5.3 Checking Call Sets

A  call set label has as its a ttr ib u te  a sequence of realisation sets. Any m ethod calls to  th e  realisation 

set denoted  by the label generate calls to  the  elem ents in th e  a ttrib u te . This p roperty  is used 

w ith bracket relationships on call sites. During com position it is necessary to  type check th a t the  

signatures of operations described by the  call sets m atch because the same argum ents are bound 

to  the  param eters of all operations. However, there  is an exception. The w rapper operations used 

in bracket relationships also accept either no param eters or special m et a-param eters describing 

th e  bracketed operation, e.g. the bracketed operation  name. These do not concern us, for w rapper 

operations w ith  no param eters or m eta-param eters do not combine types. M ethods used as w rappers 
always have v o id  re tu rn  type, so only param eter types are checked.

Call set checking applies Cg to sequences of signature types not including the re tu rn  type. For 
a ttr ib u te  M  of a call set label CS  this sequence is given by:

B r  =  ( [m a tc h (e x tra c t? .map(C S ).0p s .e x tra c t_ .map.?(M [i]))]$param s | i e  [1 ,|M |]) 

where params  denotes the param eter types of an operation label

R e s o lu t io n s  fro m  C a ll S e ts

Allied w ith  the  above checks is resolution m apping collection from  call sets. T he unks in th e  interface 

of w rapper m ethods resolve the exps in the  types of the  w rapper operation.

Function R cs updates th e  resolution m apping of the  class containing the call set label. I t has two 

param eters where the  first param eter n  is the com pound nam e of the  call set label, and  the second 

param eter Q  is a sequence of signature types not including the  re tu rn  type given by B r  above:

R c s ( n , Q )  =f re p la c e (c  : r e s o lu t io n  m a p p in g  p ,

c : r e s o lu t io n  m a p p in g  pU  [ j  R ( ( p 0>t, P i , t . .  -Pk , t ) )

where c =  e x tr a c t? .map (n ).c /s .e x tra c t_ .map._.?(n), and 

Q  =  ((PO.OiPO.l • ■ -PO,s),  < P l ,0 ,P l , l  ■ • •P l , s ) • • • ( Pk,0,Pk, l  • ■ •P k , s ))
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subject FireControIIer {
vmlc sc_owner, arr_owner, pr_owner; 
ucirc arr_owner <= pr_owner; 
abstract class Stage {

SafetyCurtain<sc_owner> sc;
Vector<0,pr_owner> props;
abstract void arrangeProps(Prop<arr_owner,pr_owner>[] pr); 
void makeSafeO { 

arrangeProps(nuII); 
sc.lower();

}
>

>
subject Performance { 

class Stage {
SafetyCurtain<l> sc;
Vector<0,2> props;
void arrangeProps(Prop<l,2>[] pr) { . . }

>
>

compose Performance, FireControIIer into SafePerformance; 
mergeByName;

Figure 7-24: Com position of P erfo rm an ce  and F i r e C o n t r o I I e r  subjects

7.5.4 Example

Type com bination and  resolution m apping collection is dem onstrated  in term s of com position of sub
jects P erfo rm ance  and  F i r e C o n t r o I I e r  shown in Figure 7-24. The o u tp u t subject, S af e P e r f  ormance, 

is created using m e rg e B y N a m e  semantics.
T he type com binator is applied to  determ ine the  types of corresponding instance variables sc  

and p ro p s . It is activated  after grouping activ ity  completes, creating the following clauses in U: Ct 
is applied to  in tegrate the  types of corresponding instance variables:

SafePerformance.cls.Stage.se : in s tv a r  o f ty p e  Ct(
(Performance. els. Safety Curtain (1),
FireControIIer. els. Safety Curtain (sc-owner)))

Saf ePerf ormance.els. Stage.props : in s tv a r  o f ty p e  Ct{
(Performance.imp. Vector ( 0, 2),
FireControIIer.imp. Vector(0, pr-owner)))

Next Rinst is invoked as follows:

Rinst (SafePerf ormance. els. Stage, sc , (Performance, els .Safety Curtain (1),
FireControIIer. els. Safety Curtain (sc-owner)))

Rinst (SafePerf ormance. els. Stage.props, (Performance. imp. Vector (0, 2),
FireControIIer.imp. Vector(0, pr.owner)))

Rinst creates resolution which are added to  clause universe as the  a ttr ib u te  of the pertinen t class
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label. T he clause universe will contain the following clauses:

SafePerformance.cls.Stage.se : instvar of type SafePerformance. els. Safety Curtain (1)
Saf ePerf ormance. els. Stage.props : instvar of type SafePerformance. imp. Vector (0,2)
Safe Performance, els. Stage : resolution mapping {sc-owner t- *• 1 ,pr-Owner i—> 2}

To resolve unkaTT_otimer, operations a r ra n g e P ro p s  m ust be composed using the  type sequence 
com binator Cg. Cg invokes Ct once in a benign way to  combine the corresponding v o id  types of 
re tu rn  values. T he second invocation combines the  param eter types. A t th is point R opi) is invoked 
in order ob tain  the  resolutions from this signature com bination:

R 0ps{SafePerformance. ops. arrangeProps, ((void(), Perf ormance. els. Prop {1, 2)),
{voidQ, FireControIIer.els.Prop(arr-owner, pr.owner))))

A fter these activities the  clause universe contains the  following clauses:

Saf ePerf ormance. ops. arrangeProps : operation with signature {voidQ,
SafePerformance. els. Prop (1,2))

SafePerformance.ops.arrangeProps : partial resolution mapping {arr-owner 1 ,pr-owner *-*■ 2}

m e rg e B y N a m e  creates a  correspondence clause for the realisation set representing S ta g e . a r 

ra n g e P ro p s  ( .  . ) .  C om bination of realisation sets provides an  opportun ity  to  com plete the  partia l 

resolution. Resolutions in operation a rra n g e P ro p s  occur inside class S tag e . The resolution m apping 

of class S ta g e  is upda ted  w ith the p artia l resolutions from operation  a r ra n g e P ro p s , giving:

Saf ePerf ormance. els. Stage : resolution mapping
{sc-owner h-> 1, arr-owner ► 1, pr-owner i—► 2}

7.6 Resolution Validation

Resolution validation checks th a t unks resolve to  exps in all classes where they  appear and th a t 

resolutions satisfy resolution constraints. For each unk in the  o u tp u t subject we construct a  graph. 

Its  vertices are classes and edges are established by the  definitions and behaviour in the o u tp u t 

classes.

We will present a  resolution propagation  algorithm  which a ttem p ts  to  determ ine an exp value 

for each vertex of each graph. Resolution propagation s ta rts  when the  graphs are seeded by direct 
resolutions from type com binations. In the  present work, failure to  determ ine the  exp for all vertices 

indicates an invalid subject com position. T he value of partia l resolution is discussed in Future W ork 

on page 215. Before presenting the  algorithm  we explain the  p reparation  stages which include unk, 

resolution constrain t and inter-class relationship collection.

7.6.1 Preparation

Resolution validation requires access to  the following:

•  The set of unks  th a t appear in the  types of com position com ponents. T he unks  pertain ing  to  

each class are a  union of unks  in the  com position subelem ent of the  class.

•  The set of resolution constrain ts th a t apply to  the  unk set. These are used to  check th a t unks  

resolve correctly in each class.



CHAPTER 7. SAPS -  SUBJECT COMPOSITION 171

S.cls .c .v  : instvar o f ty p e  t
S .ops.o  : operation  w ith  signature ( t o , t i ..  . t n )
S .m ap .o .c .r  : realisation  typ es { t i ..  . t m }
S.cls .c  : unks to  resolve { u i . . .  up}

S .cls .c .v  : resolu tion  constraints (e.g. 1 <= k, m
S.ops.o  : resolu tion  constraints ( . . .)
S .m ap .o .c .r  : resolu tion  constraints (. . . )
S.cls.c  : resolu tion  constraints ( . . .)

S .m ap .o .c .r  : association  set { (d ,n ,k ) }*
S .c l s .A j .v  : w ith  classes { A 2 . . .  A n }

Figure 7-25: Labels used for resolution validation.

•  T he resolutions m appings from type com binations for seeding the resolution propagation  al

gorithm .

•  R elationships between classes by which a  resolved value can be propagated  from class to  class.

All th is inform ation is collected during subject type checking. The system  of labels conveys the 

resolution d a ta  to  the  resolution propagation algorithm .

unk C ollection

T he set of all unks in a  class is determ ined from the  types of com position com ponents defined or 

used in th a t class. T he top  th ree labels in F igure 7-25 show th a t th is inform ation is obtained  from:

•  T he declared types in operation signatures, instance and local variables.

•  T he types of expressions in realisations.

An unk resolves to  one exp per class, so th e  next task  is to  collect all unks  pertain ing  to  each ou tpu t 
class. T he “unks to  resolve” a ttr ib u te  of class labels holds this set. Suppose th a t an  o u tp u t class 
S .C  is created  by com posing S \ .C \ . . .  S n .Cn , then  the  a ttr ib u te  value is given by unksToResolve:

unksToResolve(S'.c/s.C) { get-unks (ti$ type) | v € match(S'i.cZs.C't._) A i G [1, n]} U
{get-unks(o$siy) | o =  match (Si. ops. x) A 
x  G match (S'*, m ap.-C i)  A i £ [1, n]} U 
{get-unks (r$imfcs) | r G match (S .m ap .- .C —)}

where, for some type t  or set of types T , get-unks is defined as:

get-unks(T ) =f get-unks(t)
teT

get-unks(t) = f {c | c is an unk in t}

R eso lu tion  C onstraint C ollection

Com position changes the m ake-up of a class, introducing new m em bers and overriding operation 

im plem entations. Consequently, the resolution constrain ts of an o u tp u t class m ust be gathered
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from its subcom ponents. In the system  of labels only instance variables, operation  signatures and 

realisations are associated w ith types. Figure 7-25 shows th a t in the  system  of labels, th is inform ation 

is available as a ttr ib u tes  of in s tv a r ,  o p e r a t io n ,  and  re a l is a t io n  clauses. T he constrain ts pertaining 

to  each o u tp u t class S .C  composed from S \ .C \ . . .  S n .Cn are collected together using c o lle c tU c irc s  

and  set as an a ttr ib u te  of S.C:

collectU circs(S '.cZ s.C ') = f {v$rc | v  G m a tc h (S i .c ls .C i-)  A i  G [1 ,n]} U

{o$rc | o =  m a tc h  (Si.ops.x)  A 

x  G m a tch (S i .m ap .-C *) A i G [l,n ]}  U 

{r$rc  | r  G m a tc h (S .map.-.C .S)}

T he penu ltim ate  step is to  reduce the resolution constrain ts to  a  canonical form using the  following 

rew rite rules. n ,n '  denote exps and u , v , w  denote unks.

{(u  < n ), (u < n ')}  C R C  {u  <  m in (n , n ')}  U [R C  — {(u < n ) , ( u <  n')}]

{(n <  u ), (n ' < u)} C R C  {u  < m a x (n , n ')}  U [R C  — {(n  <  u ), (n' < u)}

{ ( u  <  v ), (v < ru)} C R C  A (u < w) R C  {u  <  iu} U R C

T he resolution sets of unks may not be empty. No input su b jec t’s resolution set was em pty before

com position, so an em pty resolution set a t th is point indicates an  invalid com position, unk cycles 

lead to  singleton resolution sets. Singleton resolution sets are acceptable during com position because 

they  still m ake valid resolution possible.

E x a m p le

To dem onstrate  resolution constrain t collection consider the  exam ple in Figure 7-26. T he example 

shows a m e rg e B y N a m e  com position of subjects S I, S2 and S3 into the o u tpu t subject S. For o u tpu t 

classes A and  T, two unks are defined: unk*, and unkm. Resolution constra in ts are collected from 

all instance variables types, operation  signatures and m ethod im plem entations th a t  contribute to  

classes A and  T. m e rg e B y N a m e  sem antics ensure th a t all input elements contribute to  the ou tpu t, 
so we can equally well observe the  constrain ts collection from Figure 7-26:

•  For class A:

lin e  4: k < 1

lin e  6: k < 1

lin e  14: k < m  

l in e  16: 1 <  h, 1 <  m

•  For class T:

lin e  20: k < m  

lin e  26: 1 <  m
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1 subject SI {
2 nnTc K;

3 class S where k <= 1 {
4 Vector<k,l> v;
5 void foo(S<l> s) {
6 v.add(s);
7 >
8 >
9 }
10 subject S2 {
11 unk k, m;
12 ucirc k <= m;
13 class S where 1 <= k, 1 <= m {
14 Vector<k,m> v;
15 void bar(T<l> t) {
16 t.v = v;
17 >
18 >
19 class T where 1 <= k, 1 <= m {
20 Vector<k,m> v;
21 >
22 >
23 subject S3 {
24 unk m;
25 class T where 1 <= m {
26 Vector<l,m> v;
27 >
28 >
29 compose SI, S2, S3 into S;
30 mergeByName;

Figure 7-26: Resolution validation exam ple
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A n B
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Figure 7-27: unk resolution propagation  rules

T his com position creates the  following labels in the  clause universe:

S.e ls .A  : unks t o  re so lv e  { k ,m }
S .c l s .T :  unks t o  re so lv e  {k, m }

S.e ls .A  : r e s o lu t io n  c o n s t r a in t s  {(/e <  1), (k <  m ), (1 <  k ), (1 <  m)}
S .c l s .T  : r e s o lu t io n  c o n s t r a in t s  { (k  < ra), (1 <  ra)}

T he com position in F igure 7-26 has created  resolutions th a t are represented in U  as a ttrib u tes  of 

class nodes:

C o r r e s p o n d e n c e  o f  lin e s  4  a n d  14 S .e ls .A  : r e s o lu t io n  m a p p in g  { m  i-> 1}

C o r re s p o n d e n c e  o f  lin e s  20 a n d  26  S .c ls .T  : r e s o lu t io n  m a p p in g  {k  i-> 1}

R e s o lu t io n  P r o p a g a t io n  B e tw e e n  C la sse s

Indirect resolution uses association and inheritance for propagation. T he principles of context iden

tifier a rithm etic  presented in Section 6.2.2 on page 107 create the  association links. Propagations 

can pass b o th  up and  down the  inheritance hierarchy using the types of class m em bers to  create 

links.

We can represent bo th  kinds of p ropagation  pictorially in class graphs. F igure 7-27 shows reso

lution propagation  for unkfc. In each diagram , unk*, is already resolved in class A,  and the aim  is to 

resolve it in B .  There are two kinds of edges between classes:

•  A s s o c ia t io n  is represented by open ended edges. Associations denote resolution propagation  

due to  behaviour, such as due to  m ethod calls, field access and  upda te  expressions. The 

identifier on the edge denotes the  owner context of the  receiver expression.
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•  Inheritance is represented by solid triangu lar ended edges. Here, inheritance denotes resolu

tion propagation due to  the  declared inheritance relationships.

From  the top down in F igure 7-27, an  association edge from A to  B indicates th a t A contains an 

expression th a t passes an  ob ject whose type contains unkjt to  an  n-owned instance of class B. The 

expression in B denotes the  value of unk&, calculated from th e  value of unkjt in A and the value on 

the  edge. Similarly, for the second p icture from the  top , the value of unkjt is known in A and  not 

known in B. The arrow direction denotes th a t the  expression connecting these classes is defined in 

B. n  can be an unk or an exp.  W hen n  is an unk,  it m ust be resolved a t the class from where the 

arrow  em anates before proceeding to  resolve unkjt in B.

For inheritance, the  directed end points to  the  superclass. If A is a  subclass of B, unkjt should 

resolve to  the  sam e value in B only if B also has types th a t  utilise unkjt.  If A is B’s superclass and  B 

has types th a t utilise unkjt, then  unkjt should resolve to  the sam e value in B as in its superclass.

7.6.2 Clausal Representation of Association and Inheritance

In the clause universe the association relationships in subjects are represented as a ttrib u tes  of re

alisations. These labels are constructed  during subject typechecking. Figure 7-25 shows th a t  the  

association  set a ttr ib u te  of realisations is a  set of tuples where d is the da ta ty p e  of the  receiver 
expression, n  is the owner context (explicit or unknown) in the  type  of the receiver expression and k  

is an unk in the  type of the  actual param eter or the  field upda te  expression. For example, consider 

th e  following code and the label it generates:

1 class C {
2 D<0> d;
3 E<k> e ;
4 F<p, q> f;
5 void foo() {
6 d.bar(e);
7 e.f = f;
8 >
9 >

Suppose the body of m ethod f o o ( )  is represented by label S .m ap .foo .C .r .  The expressions in 

th e  realisations produce the  following association tuples:

Line 6: (D, 0, k)

Line 7: (E ,k ,p ) \  ( E ,k ,q )

N ote th a t  line 7 produces tw o tuples: one for each unk in the  ty p e  of the  expression on the  right

hand  side of the  assignm ent. T he com plete label is:

S .m ap .foo .C .r  : a ssociation  set {(.D,0, fc), (E , k ,p ) ,  (E, k ,q )}

Inheritance between classes is not represented explicitly in th e  system  of labels bu t is inferred

from realisation set, realisation and instance variable labels:

•  For realisation set-based propagation, suppose th a t unk*. resolves in class C  of subject S  and  

there  exist the following labels in the  clause universe:

S .m ap.foo .C  : realisation  set returning . . .
S.ops.foo : operation  w ith  signature
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T hen all o ther classes in S  th a t also define operation  f o o ( .  .)  have the sam e resolution for 

unkfc. T his notion is formalised by R S B P  which takes subject S  and operation foo, and re tu rns 

the  labels of classes th a t  share th is operation. T he set of classes affected by this resolution is 

given by:

RSB P(iS ')/oo) = f {c | c €  m a tc h (S  .map.foo.f)}

•  For realisation-based propagation, suppose th a t  unkfc resolves in class C , realisation r  has unkfc 

in its r e a l is a t io n  ty p e s  a ttr ib u te  and the clause universe has the  following labels:

S .m ap .foo .C .r  : r e a l is a t io n

S.m ap .bar .D .r  : r e a l is a t io n

S .m ap .foo .E .r  : r e a l is a t io n

T h a t is, th ree  realisation sets share the  same realisation r. Classes D  and E  m ust also have 

the  sam e resolution. Hence, when unkfc resolves in class C , it resolves in all classes in th is set. 

In the  general case, for realisation r ',  the  set of classes in subjects S  th a t have r'  in one or 

m ore realisation sets is given by R B P (£ ,  r')\

R B P (S ', r')  = f { m a tc h ( 5 .cls.x) \ x  6  { e x tr a c t . .map._.?(rs) | rs €  m a tc h ( ,S .m ap___ r')}

•  Finally, in instance variable-based propagation  instance variables propagate  resolutions up  and 

down the  class hierarchy. Suppose unkfc resolves in class C  and there  exist th e  following labels 
in th e  clause universe:

S .c ls .C .v  : in s tv a r  o f  ty p e  t ( . . . ,  fc,. . . )

Then, all classes th a t define the sam e instance variable will also resolve unkfc. The following 

does not  specify all affected classes because unrelated  classes m ay define an  instance variable 
w ith the  sam e name:

{c  | c €  m atch(5 '.c/s._ .i;)}

Instead, all classes th a t define or inherit the  sam e instance variable are given as values of the 

w i th  c la sse s  a ttr ib u te  of an  instance variable label (also shown in Figure 7-25 on page 171:

S.cls.Ax .v : w i th  c la sse s  { A 2 . . .  A n }

Upon seeing th is label we can conclude th a t there  exist n  — 1 o ther labels:

S .c ls .A i .v  : w i th  c la s se s  { A i . . .  A n } \  {A i}  iG  [2,n]

Supposing unkfc resolves in class C  of subject S ,  for each instance variable v  whose contexts 

include unkfc, the set of classes affected by th is resolution is given by IV B P :

IV B P (5 ', C, v) = f {m atch(5 '.c/s.a:) | x  G S.cls.C.v%wc}

where no ta tion  p%wc denotes the  values associated w ith the w i th  c la s se s  a ttr ib u te  of label p.
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7.6.3 Graph Representation for Resolution

R esolution propagation is m ost easily understood in term s of a  class graph representation . For 

each unkfc in the  o u tp u t subject S ,  we construct graph Gk by obtaining values from the  clause 

universe. Each Gk =  (V , A, H )  is m ade up of th ree elements: V  is the set of vertices; A  is the set 

of association edges connecting the the elem ents of V  such th a t v — v' G Gk if ( v ,n ,v ' )  G A; H  

is the  set of (bi-directed) inheritance edges connecting the  elem ents of V  such th a t v v' G Gk if 
{ v ,v ' ) V  (v*,v) G H .  T he edges are bi-directional to  indicate th a t the  same rule is used to  propagate  

resolutions bo th  ways. T he set of all graphs is G =  { G ^  . . .  Gkm}- For each Gk G (? the  sets V , A , H  

are constructed  as follows:

•  The set of vertices in Gk is given by:

{c  | c G m a tc h  (S.els.-)  A k  G c$utr}

where c%utr is the  value associated w ith the unks to  re so lv e  a ttr ib u te  of class c.

•  T he association edges are draw n based on a s s o c ia t io n  s e t  a ttrib u tes  of realisation labels. 

Each such a ttr ib u te  has class C a s a  com ponent of its com pound name. T he a ttr ib u te  value 

is a  set of tuples of the form (C ' , n , u ). Gk has an edge labelled n  from C  to  C '  if and only if 

k =  u.

•  T he inheritance edges are draw n based on the propagation  rules defined in the  preceding 

Section. In G k , we draw an edge between C  and its superclass C ' if and  only if C  inherits from 
C ' a  m ethod or an instance variable, either directly or transitively, th a t has unkfc in its type  

or signature, or if any m ethods of C  (realisation sets) share code (a realisation) w ith class C ' 
th a t contains an expression or sub-expression whose type features unkfc.

W ith  each vertex v in Gk we associate its resolved value. In addition, the  following functions are 

defined:

•  lookupfc(u) is the  resolved value of unkfc a t vertex v  in Gk (class v ), or e r r o r  if unkfc is no t 

resolved.

•  u p d a te fc (u ,n )  sets the  resolution for unkfc in class v  to  n , i.e. the  value a t vertex v in Gk is 

set to  n.

C lass labels’ r e s o lu t io n  c o n s t r a in ts  a ttr ib u te s  are no t added to  graphs. For each class C  

they  are placed verbatim  into resolution constra in ts environm ents V £ c . Let no tation  'RCc \k/n] 

denote th e  environm ent created  by substitu ting  n  for unkfc in 7ZCc . W hen unkfc resolves to  n  in 

class C , we perform  the  substitu tion  in the  environm ent. If the  constrain ts are satisfied, TZCc  is 

reduced by elim inating tautologies, i.e. inter-exp expressions. O therw ise the  resolution is invalid 

and  com position aborts.

P ropagation  s ta rts  by applying the resolution m apping on to  the graph set. For each vertex  of 

each graph  we apply the resolution if one exists and also reduce th e  appropria te  resolution constrain ts
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environm ent.

VGfc =  ({'Ui. . .  vm }, _, . ) e G  

V v u i  E [1, m] 

le t  Erm =  [match(<S'.els.Vi)]$rm in  

u p d a t e fc( ^ , Erm(k))  A 7ZCVi[k /Erm(k)] i f  k  €  dom(F rm)

where c$rra is the  value of the r e s o lu t io n  m a p p in g  a ttr ib u te  of class c

At this stage we can test for term ination and, if not finished, apply the  resolution propagation 

algorithm  (presented in Section 7.6.4 on page 179). T he com position is valid when all vertices in 

all graphs in G have a value w ithin the  specified constraints. In order to  exemplify the resolution 

theory  presented thus far and to  m otivate the  propagation algorithm  we present an example.

E x a m p le

This exam ple tu rn s  a tten tion  tow ards the way resolutions are propagated  in the program  in Figure

7-26 on page 173. From  the clause universe we observe th a t the  ou tp u t subject has two unks: unk* 

and unkm. Two graphs are constructed, G =  {Gk,Gm}:

Gk = ({AT},{(A,1,T>},0) 
Gm = ({A:r},{(.4,i,:r}},0)

T he graphs are identical because a single expression (line 16 in Figure 7-26) propagates the resolu
tions for unkfc and unkm. The ucircs are given by:

HCA =  {(A; <  1), (k < m ), (1 <  k), (1 <  m)}

7ZCT =  {(& <  m ), (1 <  fc), (1 <  m )}

T he resolution m apping is collected from the clause universe and applied to  the graphs:

•  m  i—> 1 in  A:

1. u p d a t e m(A, 1) sets the value a t vertex A in Gm to  1.

2. S ubstitu ting  1 for m  in R C A leads to  7ZCA =  {(k < 1), (1 <  k)}.

•  A: i—> 1 in T:

1. upd a te fc (T , 1) sets the  value a t vertex T  in Gk to  1.

2. S ubstitu ting  1 for k  in 1ZCT leads to  7ZCT =  {(1 <  m )}.

At this point, the  value of unkfc is known in T bu t not in A. Likewise, th e  value of unkm is known in 
A bu t no t in T. P ropagation  of resolutions occurs as follows:

1. By lookupfc(T ) =  1 and association edge (A , 1 ,T ) in Gk, we conclude th a t unkfc resolves to 1 

in vertex A. The association edge was followed in the direction opposite to  its arrow.

2. S ubstitu ting  1 for k  in 7ZCA leads to  1ZCA =  0.
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Figure 7-28: Resolution propagation example

3. By lo o k u p m(.<4) =  1 and association edge ( A ,1 ,T ) in Gm , we conclude th a t unkm resolves to 
1 in vertex T . This time, the association edge was followed in the same direction as the arrow.

4. Substituting 1 for m  in IZCT leads to 7ZCT =  0.

Now all unks have resolved correctly in all nodes in G. The composition in Figure 7-26 is valid.

7.6.4 Propagation Algorithm

The algorithm  for resolution propagation, based on the graph representation described in preceding 
Section and used in the above example, consists of two parts. Per-graph propagation resolves one unk 

a t a time, using resolutions on other unks where possible. Top-level propagation applies per-graph 
propagation until either all vertices in all graphs are resolved or there remain unresolved vertices 
w ith no further resolutions possible. This indicates an invalid composition.

The term inating condition is resolution of all vertices in all graphs. It is defined as:

T erm (G ) =  VGt( =  {{« ,. £

/\lookup*., (uj)
j€[l,m]

Resolution may also abort prem aturely if ucircs are not satisfied, or if a collection of direct resolutions 
and propagations resolve an unk to different values for one class.

Per-graph propagation differentiates between two kinds of resolution due to association. Consider 
the graph Gk given in Figure 7-28. Suppose unkfc resolves to exp0 directly in A. We can immediately 
resolve unkfc to  exp2 in B. However, resolving unkfc in C is predicated on the resolution of unkm in C. 
Suppose unkm resolves to  exp2 in C. Now we can resolve unkfc, giving exp2 in C. These two forms of 
resolution propagation give rise to the following definitions:

•  A s im p le  a s so c ia tio n  is one where the context on the edge is an exp. S im p le  p ro p a g a tio n  

occurs immediately following the resolution on one end of the  edge.

•  An u n k -p re d ic a te d  a sso c ia tio n  is one where the context on the edge is an unk. An unk- 
p re d ic a te d  p ro p a g a tio n  occurs only after the value a t the edge is resolved.

All inheritance based propagations occur immediately because there is no condition on resolution.
Simple and unk-predicated propagations depend on two functions which were described graph

ically in the top  two diagrams of Figure 7-27 on page 174. The context a t the vertex is given by 

m and on the edge by n. Function A i describes propagation along the arrow and A 2 describes 
propagation in the opposite direction. These were presented in Section 6.2.2 on page 107.
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P e r - G r a p h  P r o p a g a t io n  A lg o r i th m

T he P e r - G r a p h  P r o p a g a t io n  A lg o r i th m  (P G P A ), shown in Figure 7-29, is applied on to  each 

graph  in G. I t proceeds by doing simple, unk-predicated, and inheritance-based propagations. W hen 

no m ore propagation  can be done, either because all vertices are resolved or an unk-predicated 

propagation  requires the  unk to  be resolved, per-graph propagation stalls, and we move on to  the  

next graph. P G P A  re tu rns the  num ber of successful propagations or aborts. A bortions indicate 

invalid com positions and  can occur due to  the  following reasons:

•  T he resolution does not satisfy the  resolution constraints.

•  A t each resolved vertex, P G P A  rechecks the  values a t the  o ther end of each edge. T here are 

often m ultiple propagation paths and  all should produce the  sam e resolutions. We ab o rt if the 

value calculated for a  node is different from a  value previously calculated via a  different pa th .

P G P A  is called recursively if the  unk resolved a t least a t one vertex in the  outer call.

T o p -L e v e l P r o p a g a t io n  A lg o r i th m

T he T o p -L e v e l P r o p a g a t io n  A lg o r i th m  (T L P A ), shown in Figure 7-30, proceeds by doing per- 

graph  propagations. These re tu rn  a count of succesful new resolutions. If, after visiting all graphs, 

the  term ination  condition is satisfied, the com position is successful and  we halt. O therw ise, if any 

per-graph  propagation has a  non-zero count, the top-level propagation is restarted . W hen th e  count 

is zero from  all per-graph propagations and  the  term ination  condition is no t satisfied, we conclude 

th a t com position failed to  resolve all unks subject-w ide and the com position is invalid.
To create the  o u tp u t subject, all unks in all classes are replaced by their resolved values in G.

7.7 Conclusion

This C hap ter has presented extensions to  Subject-O riented Program m ing necessary for com posing 

subjects anno ta ted  w ith Subjective O w nership Types. T he extensions in tegrate  seamlessly w ith 

th e  subject com position model. Com position of elements is described in term s of the system  of 

labels which represent each su b jec t’s com posable elements. Com position is based on the concept of 

correspondence: corresponding labels from different subjects are unified into a  single result label. 

T he code for the  o u tpu t subject is created by linking based on th e  result label.

In order for corresponding elements to  be combined, they  m ust define equivalent types. T ype 

equivalence is based on bo th  da ta ty p e  and  context equivalence. T he type  m ust derive either from 

the  sam e uncom posable class or from corresponding composable classes. C ontext equivalence allows 

for explicit-explicit and explicit-unknown context com binations. Explicit and  unknown context 

com binations produce resolution m appings which describe the value to  which an unk resolves in a 

p articu lar class.

We require all unks used in all input subjects to  be resolved by com position. Thus, sub jects 

featuring unks have the missing inform ation filled in through application to  o ther sub jects where 

contextual inform ation is explicit. Com position rules used in the  com position specification are 

defined in term s of groupers, com binators and resolution m apping functions. G roupers define the  

elem ents which should correspond, com binators perform  the in tegration, and  resolution m appings 

are used to  elim inate all unks in the  o u tp u t subject. Com position alone is often insufficient to
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D efinition: (Per-G raph Propagation  A lgorithm ) The following conventions 
are used in the  definitions:

G =  {<2fci ..  • G/cm}
G ki = ( V ,A ,H )  i e [ l , m \

V  = {vj j e [ l , n } }
A  = {(vp, E , v q) p , q e [ l , n \ } *
H  = {(vp ,v q) p , q e [ l , n ] } *

P G P A  uses two global variables: total is a  count of p ropagations for each iteration  
of sim ple/unk-pred icated /inheritance-based  propagations; propagations is a  count 
of propagations for each call to  P G P A .

var propagations =  0, total =  0

P G P A (G ,i )  =  
propagations =  0
foreach Vj j  G [1, n] A lookup^ (Vj ) G A f  

let 7j =  lookupfci(uj) in
foreach (V j , E , vq) G A  w here E  G A f

let r q =  A i ( r j , E )  in target-update(G , z, vq, rq) 
foreach (vq, E ,V j ) G A  w here E  G A f

let r q =  A 2{rj, E ) in target-update(G , i, vq, rq) 
foreach ( v j ,E ,  vq) G A  w here E  £  A f  

let E vai =  lookup£;(uj) in 
continue if  E vai =  error
let r q =  A i ( r j , E vai) in target-update(G , z, vq, rq) 

foreach (v q , E, V j )  G A  w here E  £  A f  
let E vai =  lookupE(ug) in 

continue if  E vai =  error
let r q =  A 2(rj,Eyai)  in target-update(G , i, vq, rq) 

foreach ( v j , v q) G H
let r q =  rj  in target-update(G , z, vq, rq) 

foreach (vq, v j ) G H
let r q =  rj  in target-update(G , z, vQ) r q) 

total = total +  resolutions 
P G P A (G , i) if reso lu tions  > 0 
total

Function target-u p d ate  modifies the  graph  w ith resolutions, reducing the resolu
tion  constra in ts set, or abo rts  P G P A  if th e  value a t ta rg e t is not as expected.

target-update(G ,« ,ug,rg) =  
update*.. (vq, r q) A 7ZCVq [k i / r q]

Apropagations =  propagations -f 1 if  lookup*.. (z;g) =  error 
abort if  lookup*^ (vq) ^  r q

Figure 7-29: Per-G raph  P ropagation  A lgorithm
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D e fin it io n :  (T o p -L e v e l P r o p a g a t io n  A lg o r i th m )  The following convention is 
used in the definition:

G  = {G k l . . . G km)

T L P S (G )  =
le t  count =  0 in

fo re a c h  i G [l,m ] count = count +  P G P A ( G , i )  
h a l t  if  T e rm (G )
T L P A (G ) i f  count > 0 
a b o r t

F igure 7-30: Top-Level P ropagation  A lgorithm

resolve unks in all classes where they are used. We presented a  resolution validation algorithm  for 

propagating  resolutions subject-w ide based on direct resolutions from correspondences.



Chapter 8

Evaluation

In th is C hap ter we evaluate the  Subjective Alias P ro tec tion  System  in order to  show th a t SAPS has 

addressed the problem s th a t have m otivated  it. SAPS was m otivated  first by reuse and  secondly by 

in teraction  problem s. We will show how our proposal improves on Subject-O riented Program m ing 

in bo th  of those areas.

Subject-O riented  Program m ing is m ore th an  an enhancem ent to  O bject-O riented  Program m ing. 

It represents a  a  new way of addressing design challenges. SAPS was designed to  work in th e  context 

of SO P; so it is im portan t to  show the range of ways in which SAPS is useful to  the  subject-oriented 

developer. We will dem onstrate the  u tility  of SAPS to  the subject-oriented program m er th rough a 

presen tation  of design cases where reuse and interaction problem s play a part.

Evaluation takes place th rough a  range of examples. T he exam ples have been carefully cho
sen based on a range of applications of SOP, an application of Alias P ro tection  System s, and to  

dem onstrate  a  SAPS strongpoint. L im itation of SAPS are discussed also.
Section 8.1 evaluates the contribution  of SAPS w ith respect to  th e  m otivation factors for th is 

thesis. SO P enables decom position of system s by feature. D ecom position by feature can be applied 

to the  developm ent of applications and  large grained black-box com ponents. Section 8.2 shows 

the way to  construct com ponents by com bining S O T -anno tated  feature subjects. W ith  SAPS, for 

all feature com binations, it can be shown th a t  the  com ponent, i.e. the  o u tp u t subject, hides its 

represen tation  from com ponent clients. Section 8.3 shows th e  m odularisation of a  cross-cutting 

concern using SAPS. This example evaluates the flexibility of SAPS when adap ting  to  th e  different 

ways the  cross-cutting concern may be im plem ented. In Section 8.4 we show the  m odularisation of a 

security  concern w ith SAPS. U ncom posable classes m ay be used to  hide an  algorithm  im plem entation 

th a t would otherwise be accessible to  ano ther subject th rough  join point in teraction. SO P has no 

concept of com posable or uncom posable classes, thus there  is no way of specifying th e  places th a t 

subjects should not interact. This exam ple shows th a t SAPS addresses a  concern th a t could not 

be addressed in SOP w ithout SAPS. In  Section 8.5 we show the  way explicit contexts may be 

used to  restric t com position in order to  steer clear of anom alous in teractions. Finally, Section 8.6 

dem onstrates the  known weaknesses of our approach.

183
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8.1 Interaction Problem s and Reuse

O ur position on reuse m eans th a t SAPS is required to  play two different roles. In the  first role, 

SAPS has to  be useful to  the  su b jec t’s original developer. As p a rt of a  design process a  system  is 
decom posed into subjects w ith the in tention of developing subjects m odularly. In its second role, 

SAPS has to  be useful to  the subject composer, the  reuser. SAPS anno ta tes the way subjects use 

objects. D uring com position, Subjective O wnership Types help the reuser to  understand  the  subject 

and  to  gain insight into the  consequences of interaction and  detect anomalies.

T he them e th a t ties these two roles of SAPS is m odularity: the  issue of m odular construction 

of subjects and  the  reuse of subjects as modules. Before descussing interaction problem s and reuse, 

th is Section evaluates how SAPS im pacts m odular software construction w ith SOP. B ut first, we 

present the  L ibrary M anagem ent System  as a  running example.

8.1.1 The Library Management System

The L ibrary  M anagem ent System  (LMS) was first introduced by Clarke in her work on Subject- 

O riented Design [24]. T he LMS m anages the  resources w ith in  a  library, and the  activities relating  to  

those resources. T he full set of features of this system  is beyond our scope, bu t the  subset in which 

we are in terested  concerns the  m anagem ent of books and periodicals, their ordering and physical 

location w ithin the  library.

A lib ra ry ’s resources are m ultiple copies of books and, optionally, periodicals. L ibrarians and 

borrowers are library  users bu t only librarians in teract w ith  the  system . There are a num ber of 

requirem ents on the  system , including:

•  A d d  l ib r a r y  re s o u rc e .  The lib rarian  m ay add  to  th e  catalogue new books, in some instances 

new periodicals, or new copies of existing titles. T he librarian  supplies inform ation on book 

related  details such as au thor or title . Location inform ation is generated by the  system .

•  R e m o v e  l ib r a r y  re s o u rc e .  All copies of a  given resource may be removed from the  LMS 

once they  have been re tu rned  to  the  library  by the borrowers.

•  O r d e r  l ib r a r y  re s o u rc e . O rder inform ation m ay be kept in the LMS. Once the order arrives, 

the  system  is updated  w ith new resources.

•  S e a rc h  fo r  l ib r a r y  re s o u rc e .  All users may search for physical locations of copies of a  

particu lar title.

•  B o r ro w  l ib r a r y  re s o u rc e . T he borrow ing of resources depends on the  library  where the 

LMS will be used. In some libraries only books m ay be borrowed, while in o thers periodicals 

m ay also be borrowed. T he num ber of books th a t can be borrowed depends on who is doing 
the  borrowing and  the  application. For example, in a  university application, postg raduates 

m ay be allowed to  borrow 10 books com pared to 6 books for undergraduate  students.

•  R e t u r n  l ib r a r y  re s o u rc e . W hen a  resource is re tu rned  late, a  fine is issued to  the borrower 

which he m ust pay before borrowing any more books. T he length of tim e a resource can be 

borrowed depends on the library  and th e  type  of borrower. For instance, librarians m ay be 

allowed to  borrow books for longer th an  m em bers of th e  public.
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T he LMS is a  m ulti-user application. W hile searches can be perform ed concurrently, exclusive access 

is required  in order to  add or remove resources.

To enable the traceability  of requirem ents in code, each requirem ent above can be considered a 

feature of th e  LMS. Subjects can be used either to  im plem ent these features directly  or each feature 

can be decom posed further into subconcerns w ith one sub ject im plem enting each subconcern. In the 

experience of Lai and M urphy [71] two people working independently  may identify different features 

of im portance in the sam e piece of software. As our s ta rtin g  point, a  system  is already decomposed 

into subjects based on the  features the  developm ent m anager has identified as im portan t.

8.1.2 Modular Development of Subjects

Software is decomposed into modules because it is believed th a t tackling one m odule a t a  tim e is 

easier th an  tackling the whole problem  a t  once. However, th e  scattering  of object representation  

across subjects in certain  subject-oriented decom positions inhibits the  m odular developm ent of con

cerns. One of the factors th a t inspired decom position by feature was the  productiv ity  im provem ent 

which m ay be gained through concurrent developm ent of features by separate  team s (see Section

3.1.3 on page 27). The purpose of th is Section is to  explain w hat im provem ents SAPS has m ade in 
this respect.

In her thesis on Subject-O riented Design, Clarke [24] w rites th a t designers can work on subjects 

representing different p arts  of the system  w ith little  need for com m unication. I t is tru e  th a t subject- 

oriented decom position allows partia lly  overlapping views of a  dom ain to  be specified m odularly. 

Two designers can work on the design of one class sim ultaneously. However, as in any system  where 

m odules in teract, com m unication between design team s is required in order to  establish th e  details 

of the  interaction. SO P requires advance planning in order th a t  subjects may be composed together.
For exam ple, consider the  subconcern of A d d  l ib r a r y  re s o u rc e  for adding a new book to  the  

library  catalogue. This subconcern is realised in term s of a subject called AddNewBooK. T he librarian  
supplies the  au thor, the title  and the num ber of copies. T he system  adds the new resource to  the 

catalogue and determ ines a  su itable location for the  resource from au tho r details. Based on th is 
inform al description, the subject designer can (m odularly) identify the m ain objects as viewed from 

the perspective of th is feature:

•  T he system  used by the  librarian  is represented by a  R esourceM anager object.

•  A Book is a  kind of R esource .

•  One or m ore C op ies of a  Book are created.

•  T he librarian  supplies A uthor, T i t l e  and  NumberOfCopies to  th e  R esourceM anager.

•  T he R esourceM anager object assigns a L o c a tio n  to  each R esource .

Furtherm ore, the librarian is the  actor who interfaces w ith a R esourceM anager. The external 

properties supplied by the actor include the  book details and  num ber of copies being introduced. 

All o ther objects including Book, Copy and  L o c a tio n  are p a rt of this concern’s im plem entation.

However, as the  following dem onstrates, no further m eaningful m odular activ ity  is possible a t 

this stage. In AddNewBook, a unique integer identifier is associated w ith  each copy of a new book. 

No o ther inform ation needs to  be recorded. For this subject it is sufficient to  use an i n t  a rray  

to  store the  identifiers. However, from the  B o r ro w  l ib r a r y  re s o u rc e  requirem ent we are  aware
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Figure 8-1: Sketches of an object graph (left) and ownership tree  (right) for the  AddNewBook concern

th a t  borrow er rela ted  inform ation will be associated w ith copies. Thus in view of com position, the  

subject au th o r instead should use objects of class Copy to  store the  integer identifier. Thus, m odular 

developm ent of subjects is possible, bu t sub ject developers m ust collaborate in order to  ensure th a t 

the ir sub ject can be composed w ithout further changes.

In SO P th e  subject developers m ust collaborate on m any aspects of interaction, no t least of which 
is th e  issue of desirable interaction. In exchange for g reater certain ty  in in teraction correctness, SAPS 

form ally delays the point a t which m odular developm ent commences until a  m utually  com patible 
ownership s tru c tu re  is established. W hen subjects are developed in concert, the  establishm ent of 

ownership structu res should be done before independent work on subjects begins. Ownership trees, 
first presented in Section 6.2 in page 103, are a useful way of com m unicating the ownership structure .

To create  an  ownership tree, it is necessary to  understand  the  intended ownership structure , 

which in tu rn  is understood from a sketch of the object graph for a  subject. For example, a  sketch 

of the  collaboration  im plem ented by subject AddNewBook is represented by an  object graph shown 

in the left diagram  of Figure 8-1. To create an  ownership tree, one separates the external objects 

from the  in ternal ones: title  and au tho r are properties of books th a t are supplied by the librarian; 

th e  num ber of copies is also an externally  determ ined property. For the  internal objects, each book 

is associated w ith a  location for storage and  a  location may store m any different books; books and 

locations m ust have the same owner in order to  enable them  to  reference each other. A book is 

responsible for keeping track  of all copies of th a t book, m aking each book the  conceptual owner of 

its copies.

T he key elem ents of the  ownership stru c tu re  are represented by an ownership tree  sketch in the 

righ t d iagram  of Figure 8-1. T he sketch elides the details of d a ta  struc tu res used in the implemen

ta tion . T he purpose of the  diagram  is to  convey the  m ain ownership properties.

T his ownership tree can be used to  aid subject im plem entation. F igure 8-2 shows an imple
m entation  for sub ject AddNewBook. The R esourceM anager .addNewBook(. .)  collaboration takes 

two S t r in g  type  param eters denoting the  new book, and  a single i n t  type param eter represent

ing the num ber of copies to  be added. Note th a t the  S t r in g  class is im m utable. O bjects of type 

S t r in g  are trea ted  as elements of value type and  require no context identifiers. Im m utable objects
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subject AddNewBook { 
class ResourceManager {

Vector<0, 0> resource;
void addNewBook(String title, String author, int noCopies) {

Book<0> book = new Book<0>(title, author, noCopies); 
book.location = new Location<0>(author); 
resource.add(book);

>

>
abstract class Resource {

Vector<0, 0> copies;
String title;
Location<l> location;
Resource(int noCopies) { 

while((noCopies— ) > 0) { 
int id = ID.newIDO;
Copy<0> copy = new Copy<0>(id); 
copies.add(copy);

>
>

>
class Book extends Resource {

String author;
Book(String title, String author, int noCopies) { 

super(noCopies); 
this.title = title; 
this.author = author;

>

>
class Copy { 

int id;
Copy(int id) { 

this.id = id;
>

>
class Location {

Location(String author) { / *  determines location based on bibliographic details */ }
>

>

Figure 8-2: The AddNewBook subject in the L ibrary  M anagem ent System
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Figure 8-3: A  sketch of the ownership tree  for th e  Union set of concerns

have global ownership; the  owner is im plicitly world. T he books and locations are owned by the  

R esourceM anager object as indicated by exp0. Copies are created  in the scope of a  Book instance 

which also owns them .

Sketches of ownership trees for different subjects should be sim ilar. For instance, o ther subjects 

in the LMS th a t m anipulate books, locations and copies should have the  same ownership structu re  

for those objects.

We do no t prove th a t the length of tim e spent on developm ent is less w ith SAPS th a n  w ithout 
SAPS. To do so requires tim ing different team s of sim ilar experience and  w ith sim ilar fam iliarity w ith 

the application  dom ain. However, by m aking ownership inform ation explicit in types, we believe 

th a t SAPS leads to  productiv ity  improvements. F irst, by elim inating certain  in teraction problems, 

and secondly, by helping to  pinpoint the  cause of o ther in teraction  problem s as explained in the  
following.

8.1.3 Interaction Problems

Section 4.4 on page 59 has shown th a t the scattering  of d a ta  concerns can lead to  in teraction 

problem s. SAPS was partly  m otivated by in teraction problem s th a t  required invasive sub jec t m od

ifications. W ith  SAPS, in order to  be composable, corresponding elements m ust define com patible 

types including com patible context identifiers. Now, interaction problem s are anom alies th a t occur 

despite corresponding elements having com patible types. Even then, SAPS rem ains useful because 

the owner represents a  boundary  w ithin which object s ta te  m ay be changed. This is an im provem ent 

over SO P program s w ithout SAPS which do not define a boundary  on aliasing.

R evisiting the Union example in Section 4.4 on page 59, recall th a t the  com position of subjects 

Jo inU nion , D ism iss  and  R e t i r e  m anifested an interaction problem . The problem  was caused by 

uncontrolled aliasing of union representative objects, such th a t a  link between union representatives 

and m em bers which was previously assum ed to  be invariant becam e broken when the  R e t i r e  subject 

was introduced.

W ith  SAPS, one approach is to  develop these subjects independently  from each other, using SO T 

to  do conceptual modelling as described in Section 5.2.4 on page 87. These subjects have different 

ownership structu res which tran sla te  to  incom patible Subjective O wnership Types a t jo in  points. 

Consequently, subjects cannot be composed using the  com position rules we defined in C hap ter 7.

A b e tte r  approach is to  use the strongest m ode in view of com position. These subjects are 

intended to  be composed together, so it makes sense to  identify the  common ownership struc tu re

union

O  union rep
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and th en  define the subjects in relation to  it. A  sketch of such a struc tu re  is shown in F igure 8-3. 

All ob jects in the  d iagram  except the  union representatives are world owned. Figure 8-4 shows the  

m ain details of these subjects. SAPS has elim inated the original interaction  problem  by m aking 

aliasing an  explicit concern and  by creating a well struc tu red  subject-oriented program  based on the  

SO T m odel of alias protection.

In terac tion  problem s in SO P can occur in spite of com patible Subjective O wnership T ypes a t the  

join points. In  such cases SAPS helps to  detect interaction problem s because it constrains object 

aliasing. For example, consider the  ownership tree in F igure 8-5 which depicts the  m ain objects in a 

Lift system  created  using SAPS. Suppose th a t during testing  a problem  is discovered w ith  th e  soft

ware controlling the opening and closing of lift d o o rs . From the ownership stru c tu re  it is clear th a t 

only objects inside the  ownership context of d o o rs  can directly affect the  s ta te  of th e  d o o rs  object. 

SO T direct the  m aintainer to  analysing code in all subjects which can affect d o o rs . Specifically, 

this includes code which contributes to  the  s ta te  and  behaviour of l i f t ,  f l o o r  s e l e c t i o n  b u tto n , 

s to p  b u t to n , d o o r open b u tto n , m o to r and  d o o rs . Any code which contributes exclusively to  the  

s ta te  and  behaviour of b u i ld in g ,  f l o o r s  and b u t to n s  cannot change the s ta te  of the  d o o rs  object.

8.1.4 Reuse and Reusability

O ur position on reuse s ta ted  th a t im proving opportunities on reuse depends on ideas th a t are of 

value to  the  original developer as well as the  reuser. In the conclusion to  C hap ter 4 on page 68 we 

s ta ted  our belief th a t Alias P ro tec tion  System s will be useful to  subject developers. A PSs already 

help object-oriented program m ers to  create well s truc tu red  object-oriented program s th a t  control 

alias exposure. The construction of subjects is essentially an object-oriented activity, so there  is also 

a  benefit the  subject developer.

Reuse in SO P is m ost commonly associated w ith composition; however, it is also possible to  sub
class individual classes from an existing subject when creating a  new subject. For instance, to  create 

the  A ddN ew Periodical subject, it is necessary to  introduce a  new operation into R esourceM anager 
and to  define class P e r io d ic a l .  In LMS, periodicals differ from books in having only a  single copy 
and an additional field denoting the  category. Instead of com position, the subject au thor m ay choose 

to use inheritance or delegation to  define P e r io d ic a l .

In ten tional construction  of reusable abstractions is supported  in SAPS in two ways. T he subject 

au thor m ay define uncom posable classes. For the  m ost p art, the  decision to  create uncom posable 

classes is m ade using the  heuristic specified in Section 6.4.1 on page 122. There is a  notable exception: 

in Section 8.4 on page 199 uncom posable classes are used for security. In the LMS, no classes 

identified during requirem ents analysis require param eterisation  w ith respect to  their ownership 

properties. C onsequently all are composable.

R eusability  is also supported  th rough unknown context identifiers. An unk represents a  choice of 

exps so a subject th a t employs unks  can ad ap t to  a num ber of different ownership structu res th a t can 

be represented using exps.  For example, Section 5.4 on page 92 described the reusability requirem ent 

on the Com posite design p a tte rn , unks  can be used to  create a reusable definition for th is p a tte rn . 

Figure 8-6 shows the  p a tte rn  im plem entation anno ta ted  w ith Subjective O wnership Types. Two 

unks are used: unk^ denotes the  owner of the  children objects w ith respect to  the  com posite object; 

unkm denotes the  owner of object re tu rned  by the  collaboration realised by the  com posite s truc tu re . 

W ith  slight modifications, subjects CADdraw (Figure 5-14 on page 94) and F ile S y s te m S iz e  (Figure 
5-15 on page 95) can be composed w ith subject Com posite.



CHAPTER 8. EVALUATION

subject JoinUnion {
class MembershipSecretary {

Union<worId> theUnion;
EmpIoyee<worId> employee;
void joinUnion() { theUnion.join(employee); }

>
class Employee {
>
class UnionRep {

String repName;
>
class Union {

HashtabIe<0, world, 0> member2rep;
Vector<0, 0> reps;
join(Emp!oyee<worId> e) { /* assign a rep to an employee */ }

>
>

subject Dismiss { 
class Company {

Vector<0, vorId> employees;
void dismissO { ... e.appealO; ... }

>
class Employee {

Union<worId> theUnion;
String appealO { return theUnion.getRepName(this); }

>
class UnionRep {
>

>

subject Retire { 
class UnionRep {

Union<2> theUnion;
void retireO { theUnion. ret ire (this); }

>
class Union {

HashtableCO, world, 0> member2rep;
Vector<0, 0> reps;
void retire (Member<0> m) ■( ... }

>
class Member {  >

Figure 8-4: Jo inU nion , D ism iss and R e t i r e  subjects anno ta ted  w ith SO T
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F igure 8-5: A sketch of the  ownership tree  for a  Lift system

subject Composite {
u n it  k ,  m;

abstract class Component {
abstract Object<m> doSctionO ;

>

abstract class Composite extends Component { 
Vector<0, k> children;

Object<m> doSctionO {
lterator<0, k> it = children.iterator(); 
while (it .hasNextO) {

Component<k> c = (Component<k>)it.next(); 
perChild(c);

>
return null;

>
abstract void perChild(Component<k> c);

>
>

Figure 8-6: Composite design pattern as a subject annotated with SOT
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8.2 Feature-Oriented Developm ent

One stren g th  of Subject-O riented Program m ing is the ability  to m ix-and-m atch features for on- 

dem and rem odularisation. The subject composer, in the  role of a  com ponent vendor, can supply 

software containing precisely those features th a t are required  by the  client. T he supplied software 

takes the  form of a  trad itional black-box com ponent th a t will be used by the client in his application 

developm ent.

T he exact environm ent in which the  com ponent will be used is not known by the  vendor, bu t 

th e  com ponent developed w ith SOP m ay in ter-operate w ith client software th a t  maliciously or ac

cidentally  subverts its s ta te  through representation exposure. It is im portan t th a t the vendor has 

com plete confidence in the encapsulation of the  com ponent’s m utable s ta te  fo r  all combinations of  

features, such th a t the  only way the s ta te  can be changed is th rough  interface operations. F u rther

more, the com ponent may be used in an environm ent where the  client is possibly unaw are of either 

SO P or SAPS.

SAPS extends the benefits of alias protection to  com ponent developm ent w ith SOP. Each feature 

is developed as a  subject. In order to  compose features successfully the subject designers m ust 

agree on the  way corresponding classes use objects: representation  object in one subject is also a 

represen tation  object in all o ther subjects. Any features in troduced as enhancem ents a t a  later da te  

m ust also conform to  this model of encapsulation. SAPS is downwardly restrictive; th a t is, clients 

using a  com ponent developed w ith SAPS need not be aware of Subjective Ow nership Types used in 
its developm ent.

T he com position rules defined in the  preceding C hap ter have a m onotonic effect: com position 

can in troduce new behaviour to  objects bu t com position does not change the  object owner. W ith  
respect to  feature E ,  composing F  w ith o ther features does no t change the ownership context of any 

objects created  or referenced w ithin the behaviour specified by F . This is precisely the  property  
required to  safely m ix-and-m atch features.

Before a  set of collaborating subjects can be im plem ented, the  developm ent team s m ust agree on 

th e  ownership properties of the  common objects m anipulated  by features. For the  LMS requirem ents 

in Section 8.1.1 on page 184 these properties can be sum m arised as follows:

•  Resources (book and periodicals) are owned by the resource m anager. Any external referencing 
to  these resources should be done using value identifiers.

•  T he copies of a resource are owned by the  resource.

•  Borrowers are external to  the resource m anager. Consequently, external references to  copies 

is done th rough  value identifiers.

•  Fines are owned by borrowers th a t collect them .

F igure 8-7 depicts a sketch of the ownership stru c tu re  common to  these features. Having pre

sented th e  AddNewBook subject in Figure 8-2, a tten tion  now tu rn s  to  the  ownership details of the  

o ther features th a t make up the LMS.

T he RemoveResource subject deletes a  resource from the  lib rary  catalogue. The item  to  be 

removed can be any valid subtype of R esource . T he concrete type of the  item  is no t relevant to  the  
present concern, so only class R esource is declared. This subject m anipulates the sam e objects and 
has the sam e SO T declarations as AddNewBook:
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world

borrowerresource

finecopy

Figure 8-7: A sketch of the  ownership tree  common to  the  subjects m aking up the  L ibrary  M anage
m ent System

subject RemoveResource { 
class ResourceManager {

Vector<0, 0> resource;
void removeResource(String title, String author) { }

>
class Resource {

Vector<0, 0> copies;

>

>

T he ordering of resources is the responsibility of the OrderBook and  O rd e rP e r io d ic a l  subjects. 

For books, th is sub ject is sim ilar in design to  AddNewBook except th a t no shelf location is associated 
w ith the resource until the order arrives. T he resource is still added to  the  catalogue bu t a  special flag 

indicates th a t  the  item  is not yet available for browsing or borrowing. The search for library  resources 

is im plem ented by the S ea rc fiB y T itie  subject. Given the title  of a  resource, the  collaboration 

im plem ented by th is subject re tu rns the location of this resource.

Subject BorrowBook associates a  book copy w ith a borrower. The copy can reference the  borrow er 

because the  borrow er’s owner context is external to  th a t of th e  Copy object. The borrower stores 

the i n t  identifier denoting the copy.

subject BorrowBook ■( 
class Book {

Vector<0, 0> copies;
void borrow(Borrower<worId> b, int copyld) { ... }

>
class Copy {

Borrower<worId> b;

>
abstract class Borrower { ... >
class UndergraduateBorrower extends Borrower { ... > 
class PostgraduateBorrower extends Borrower { ... }

>

W hen re turn ing  a book late, a  fine is issued. T he R eturnB ook subject creates F in e  objects inside 

B orrow er objects. In SOT, only an  object inside B orrow er can create objects whose owner is th is 

B orrow er. It is expected th a t m ethods B o o k .r e tu rn ( . .)  and B o o k .b o rro w (. .)  will be activated  

a t runtim e using a  barcode scanner object th a t is owned by the  ResourceM anager:
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subject ReturnBook { 
class Book {

void return(int copyId) { ... }

>
class Copy {

Borrower<worId> b;

>
class Borrower {

Vector<0, 0> fine;

>
class LibrarianBorrower extends Borrower { . . . } 
class PublicBorrower extends Borrower { ... } 
class Fine { ... }

>

subject Scanner {
abstract class ResourceManager {

Scanner<0> s;
abstract void borrow(int copyld); 
abstract void retum(int copyld);

>
class Scanner implements Runnable { . . . }

>

T h e  requirement for concurrency has been identified as necessary to facilitate multi-user access 
to the Library M a n a g e m e n t  System. Updating of the library records requires a write lock to exclude 
all readers. Concerns such as AddNewBook and RemoveResource require a write lock. Each activation 
of searching behaviour increments the count of readers. This behaviour is implemented by subject 
Synch:

subject Synch {
abstract class SynchCIass {

int activeReaders, activeWriters; 
synchronized void waitWriterReadersO { ... } 
synchronized void waitReadersO {...}■ 
void decrementWritersO { activeWriters— ; } 
void decrementReaders0  { activeReaders— ; }

>
>

T h e  mixing and matching of features occurs within the composition specification. For ex
ample to supply a component that contains features AddNewBook, RemoveResource, OrderBook,
SearchByTitle, BorrowBook, ReturnBook and Synch, the composition specification is given by:

compose AddNewBook, RemoveResource, OrderBook, SearchByTitle, BorrowBook, ReturnBook, Synch 
into LMS; 

mergeByName;
bracket ResourceManager.addNewBook with before Synch.SynchCIass.waitWriterReaders

after Synch.SynchCIass.decrementWriters; 
bracket ResourceManager.removeResource with before Synch.SynchCIass.waitWriterReaders;

after Synch.SynchCIass.decrementWriters; 
bracket ResourceManager.orderBook with before Synch.SynchCIass.waitWriterReaders;

after Synch.SynchCIass.decrementWriters; 
bracket Book.borrow with before Synch.SynchCIass.waitWriterReaders;
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after Synch.SynchCIass.decrementWriters; 
bracket Book.return with before Synch.SynchCIass.waitWriterReaders;

after Synch.SynchCIass.decrementWriters; 
bracket ResourceManager.search with before Synch.SynchCIass.waitReaders;

after Synch.SynchCIass.decrementReaders;

T he o u tp u t subject contains the  ResourceManager class. T his class is the  interface to  the LMS 

com ponent. T his com ponent can be used in applications requiring LMS functionality. T he interface 

does no t to  expose any representation  objects used in the im plem entation while still m aking it 

possible for th e  LMS com ponent developers to  reap the  benefits of feature-based decom position. To 

a client who is unaw are of Subjective Ownership Types, the  functional interface is given by:

class ResourceManager {
void addNewBook(String title, String author, int noCopies) { ... }
void removeResource(String title, String author) { ... }
void orderBook(String title, String author, int noCopies) {...}■
String SearchByTitle(String title) { ... }

>

Borrowing and  return ing  of resources is not a  p a rt of the LMS functional interface. T his func

tionality  is p a r t of the  im plem entation of the ResourceManager.

8.3 System  Integration: A Cross-Cutting Concern

Subject-O riented Program m ing is a  technology th a t  enables M ulti-D im ensional Separation of Con

cerns. In addition to  the m odularisation of concerns in the feature  dimension, SO P can also m odu

larise cross-cutting concerns in o ther dimensions. T he preceding Section showed the  u tility  of SAPS 
in feature-oriented  development. In  order for SAPS to  be useful to  the subject-oriented developer, 

SAPS m ust be able to  express the  different representation containm ent requirem ents dem anded by 

a range of SO P applications. In this Section, we dem onstrate  th e  u tility  of SAPS w ith respect to 

a cross-cutting concern; it has been shown th a t system  in tegration  is a  cross-cutting concern in 

object-oriented  software [117, 118].

Suppose one constructs a system  th a t in tegrates the  behaviour of several b inary  digits. Each B i t  

is defined as:

subject JustSBit { 
class Bit I  

boolean value;
void set() { value = true; } 
void clear() { value = false; > 
boolean get() { return value; }

>
>

T he in tegration  concern is to  synchronise the  sta tes of particu la r Bit pairs. Associations (rela

tions) betw een pairs of bits are created dynamically. There are two kinds of association: Equality 
and Trigger. Figure 8-8 shows th ree Bit objects connected by Equality relations. Equality prop

agates s etO and  clear () calls from the left to  the  right side and  vice versa. Trigger propagates 

them  in one direction only.

W hen try ing  to  m ap these design structures into object-oriented program s, one finds th a t  integra

tion issues become tangled in the  im plem entation of class Bit. In  a purely object-oriented solution 

the Bit class stores references to  ends of relations; the  code for set ()  and clear ()  also im plem ents
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Figure 8-8: In tegration  of B its

the  p ropagation  of effects to  related  B its . Looking a t the  E q u a l i ty  association, we see th a t th e  lack 

of an ab s trac t im plem entation for E q u a l i ty  makes the  concern hard  to  understand. T he B i t  and  

the  E q u a l i ty  have been hardw ired together and are difficult to  separate. Design patte rn s  improve 

the designs a little  bu t fail to  achieve clear separation because the p a tte rn  code is still tangled w ith  

the B i t  class definition [116].

T he SO P designs for the  E q u a l i ty  association improve on object-oriented solutions. Subject 

E q u a l i ty  cleanly disentangles this concern from subject Ju s tA B it. However, code created th rough  
system  in tegration  seldom runs in isolation. M ore likely, it is a  subsystem  th a t  in ter-operates w ith 

other subsystem s, possibly also created by integration. For example, a  collection of B its  m ay be 

aggregated into a  binary  instruction to  perform  a  b it shift operation or B i ts  may be organised into 

tem porary  groups based s ta te  patterns. Suppose th a t the B i t  in tegration scenarios for the  E q u a l i ty  

relation tran sla te  into design variants for the E q u a l i ty  subject. T he differences can be distilled 

into different ownership structu res created by com binations of b its and  E q u a l i ty  associations. We 

observe th ree  variants:

1. T he A s s o c ia t io n  object is co-owned by the B its  th a t are connected by it.

2. T he A s s o c ia t io n  is split into two parts, w ith each B i t  owning an A s s o c ia t io n  object th a t 
refers to  the  o ther B it .

3. T he A s s o c ia t io n  is owned either by the sam e object as the  B its  or another object outside 
th e  B i t  owner.

T he first solution is the  best case for E q u a l i ty  associations th a t  the  in teg rato r wishes to  hide 

inside the  B its . Once created, only the B i t  objects in th e  association would be able to  modify 

associations directly. SAPS cannot im plem ent th is model because every object m ust have exactly  
one owner. %

T he second solution is well-suited to  T r ig g e r  associations. T r ig g e r  propagates one way, so only 

the  ob ject a t the  source needs to  m aintain the association. For E q u a l i ty ,  two A s s o c ia t io n  objects 

are created  w ith each referencing the B i t  a t the  end opposite. Like the  first proposal, this approach 

hides the  A s s o c ia t io n  object in the representation of the  B it .  T here may be m any associations 

between pairs of B i ts  and associations may be added or removed dynamically. In order to  prevent 

representation exposure, the corresponding associations have an i n t  id  field. The id s  of the  two 

ends of an  association have the same value. This solution is shown in Figure 8-9.

T he th ird  m odel allows the in tegrator to  decide on the owner of th e  A s s o c ia t io n s  and the B its . 

In Figure 8-10, exam ple client code creates B i ts  and  A s s o c ia t io n s  whose owner is given by exp0. 

A s s o c ia t io n s  reference B its  and vice versa. Consequently, A s s o c ia t io n  and  B it  should always 

have th e  sam e ownership context. In th is model, the A s s o c ia t io n  can be directly accessed and 
modified by the  B i t  client.

These designs dem onstrate the flexibility and the  lim itations of SAPS for adapting  to  different 

ownership structu res dem anded by a cross-cutting concern. SAPS can m odel two out of th ree



CHAPTER 8. EVALUATION 197

subject Equality { 
class Bit {

Vector<0,0> assoc = new Vector<0,0>(); 
boolean busy; // used to prevent infinite loops 
void associate(Bit<l> b) {

Sssociation<0> a = new Association<0>(b); 
assoc.add(a); 
b.assoc_back(this, a.id);

>
void assoc_back(Bit<l> b, int id) {

Association<0> a = new Association<0>(b, id); 
assoc.add(a);

>
void set() {

for(lterator<0,0> it = assoc.iterator(); it.hasNext(); ) { 
Association<0> a = (Association<0>)it.next(); 
if(!busy) { 

busy = true; 
a.b.setO; 
busy = false;

>
>

>
// code for clear() elided

>

class Association {
int id; // unique key identifying this association 
Bit<2> b;
Association(Bit<2> b) { ... >
Association(Bit<2> b, int id) { .. . }

>
>

// composition specification used
compose JustSBit, Equality into Integration;
mergeByName;
order Equality.Bit.set after JustSBit.Bit.set;

// example client code 
Bit<0> bl = new Bit<0>();
Bit<0> b2 = new Bit<0>();
Bit<0> b3 = new Bit<0>(); 
bl .associate(b2); 
b2 .associate(b3);

Figure 8-9: Equality subject with encapsulated associations
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subject Equality { 
class Bit {

boolean busy; // used to prevent infinite loops 
ReIation<l> rel; 
void clear() {

for(Iterator<l,l> it = rel.r.iterator(); it.hasNext(); ) { 
Association<l> a =  (Sssociation<l>)it,next(); 
if(!busy) { 

busy = true;
if(a.I == this) a.r.clear(); 
if(a.r == this) a.I.cIearO; 
busy = false;

>
>

>
// code for set() elided

>

class Association {
Bit<l> I, r;
Association (Bit<l> I, Bit<l> r, ReIation<l> rel) { 

this.l = I; 
this.r = r;
I.rel = rel; 
r.rel = rel; 
rel.add(this);

>

>

class Relation {
Vector<l,l> r = new Vector<l,1>(); 
void add(Association<l> a) { r.add(a); }

>
>

// composition specification
compose JustABit, Equality into Integration;
mergeByName;
order Equality.Bit.clear after JustABit.Bit.clear;

// example client code;
Relation<0> r = new Relation<0>();
Bit<0> bl = new Bit<0>();
Bit<0> b2 = new Bit<0>();
Bit<0> b3 = new Bit<0>();
Association<0> al = new Association<0>(bl, b2, r) ;
Association<0> a2 = new Association<0>(b2, b3, r) ;

Figure 8-10: Equality subject with exposed associations
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ownership structu res presented here. However, SO T are no t intended for co-ownership of the kind 

described in the  first case. Co-ownership is discussed as p a r t of fu ture work in Section 9.2 on page 

215.

8.4 U sing Uncom posable Classes for Security

Public key cryptography is one of a  num ber of security tools in d istribu ted  system s. T he implemen

ta tion  of public key cryptography should therefore be secure. Specifically, the random  num bers used 

in the  generation  of public and private keys should no t be accessible outside the  RSA algorithm  [107].

T he im plem entation of RSA should be reusable in a num ber of different settings. In any appli

cation of RSA, the objects th a t represent private keys should be confined to  their application and  

under no circum stances should an  external client gain access to  the  private key.

Subject-oriented  program m ing achieves the  goal of m aking the  public key cryptography algo

rithm  m odular by definining all pertinen t functionality w ithin the RSA subject (shown in Figure

8-11). W ith in  SOP, m aking random  num bers secure is due to Subjective Ow nership Types. T he 

functionality associated w ith generating random  num bers used in keys is associated w ith m ethod 

K e y F a c to ry .g e n K e y P a ir( . . ) .  We have im plem ented K eyF acto ry  as an  uncom posable class. H ad 

we m ade K eyF ac to ry  com posable it would have been open to a ttack  through advanced SOP com

position rules. For instance, bracket relationships on m ethod call sites could be used to  in tercept 

m ethod calls to  private random  num ber generators (line 17). U ncom posable classes never have 
internal jo in  points, m aking th is m ethod of im plem entation secure for fu ture extensions.

Class Key contains the algorithm  for RSA encryption. Class Key is composable, m aking it 
possible to  in troduce a  more efficient encryption algorithm  by subject com position a t any tim e in 

the future. In order to  m ake the  encryption facilities of RSA reusable in different settings, the  

owner of th e  message to  encrypt is given by unk&. T he encrypted  message owner is given by unkm . 

The encrypted message can be seen where its decrypted coun terpart cannot be: giving rise to  ucirc 

k < m .  Fields Key.mod and K ey.exp are owned by the  owner of their Key object. T he com ponents 

m aking up a  key should be accessible to  th e  key’s owner b u t never outside.

Besides being uncom posable, class K eyF acto ry  has priv_key_ow ner as the  ownership param eter 

binding to  the  owner of the  private key it receives as argum ent. Field K ey F a c to ry . rn d  is owned by 

this instance of K eyF actory . No object outside any K eyF acto ry  instance can change the s ta te  of 

the  object referenced by K e y F a c to ry . rnd . T his privilege is granted  only to  th is K eyF acto ry  and  

other objects inside this K eyF acto ry  th a t have been given a  perm ission to  do so.

Subject S ecu reT erm in a l (Figure 8-12) im plem ents secure transm ission of messages. As in all 

subject-oriented  program s, there  is no explicit connection to  o ther subjects o ther th an  in the  com

position specification. In principle, S e c u reT e rm in a l need not be composed w ith RSA bu t w ith 

any subject(s) im plem enting the undefined functionality. T he final application would be expected 

to involve o ther subjects, such as for doing I /O  and  so on. However, the  presented subjects are 

composed on the basis of the following com position specification:

compose RSS, SecureTerminal into RSSTerminal; 
mergeByName;

In class S ecu reT erm in a l.K ey , messages to  encrypt have this Key as owner, given by expj. The 

encrypted messages can be aliased globally, given by world.  D uring com position, unkfc -  the  owner of 

decrypted messages -  resolves to  expj in class Key; unkm -  the  owner of encrypted messages -  resolves
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1 subject RS5 {
2 unit k ,  m;
3 ucirc k <= m;
4 class Key {
5 BigDecimaI<l> mod;
6 BigDecimaI<l> exp;
7 String<m> encrypt(String<k> msg) {
8 I I  encrypt using mod and exp.
9 >
10 String<k> decrypt(String<m> msg) {
11 // decrypt using mod and exp.
12 >
13 >
14 class KeyFactory<priv_key_owner> {
15 Random<0> rnd = new Random(System.currentTimeMillisO);
16 void genKeyPair(Key<worId> pub, Key<priv_key_owner> priv) I

17 double d = rad.nextDouble();
18 // use the random value to compute and set the key components.
19 >
20 >
21 >

Figure 8-11: S ubject containing RSA algorithm

to world. T he resolution satisfies the subject-level ucirc in subject RSA. S e c u re T e rm in a l. K eyFactory  
is defined as an  uncom posable class. It is included for declarative completeness: in order to enable 

each subject to  typecheck correctly.

The T e rm in a l class owns the decrypted  messages. p r iv a te K e y  is confined to  the  T e rm in a l ob

jec t as required, b u t no t to  the  S e c u reT e rm in a l subject. O ther sub jec ts’ classes composed w ith 

T e rm in a l can see and change p r iv a te K e y . This is precisely the  effect we require: any additional 

functionality  introduced explicitly th rough  com position should be able to  m anipulate p riv a te K e y ; 
o ther subjects m ust specify the same owner for p r iv a te K e y , m aking the effect of com position pre

dictable.
In line 12, K eyF acto ry  is also owned by th is Term inal instance. The second param eter binds the 

priv_key_ow ner param eter. This m ust be exp0 in order for the  m ethod call in line 14 to  typecheck 
correctly. O perations s e n d ( . .)  and r e c e iv e  ( . .)  respectively dispatch the  outgoing message and 

accept incoming messages.

T he SAPS solution is superior bo th  to  a pure subject-oriented solution and  to  an object-oriented 

solution created  w ith the  aid of Confined Types [127]. C om pared to SOP, by m aking K eyF acto ry  

uncom posable, SAPS ensures th a t secrecy is afforded to  the algorithm  for generating keys. In the 

case of subject RSA, SAPS restricts the  set of objects th a t can observe the  private keys and, in the 

case of the  S ecu reT e rm in a l application, guarantees th a t no object o ther th an  the T erm in a l object 

(and objects owned by the T erm ina l) can view or modify the  private key.

C om pared to  Confined Types, the  RSA subject is much more com pact th an  the  RSA package in 

Java w ith Confined Types. Confined T ypes require the  program m er to  declare and use anonym ous 

m ethods (see Section 5.1.3). Anonymous m ethods m ay require additional classes to  be introduced 

which would not be there  if Confined T ypes were no t used [127]. The S ecu reT e rm in a l subject has 

no syntactic dependencies on the RSA subject. SO T also allow a  num ber of different ownership 

s tructu res to  be defined for use in conjunction w ith RSA instead of the b inary  confined/unconfined
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1 subject SecureTerminal {
2 abstract class Key {
3 abstract String<worId> encrypt(String<l> msg);
4 abstract String<l> decrypt(String<worId> msg);
5 >
6 abstract class KeyFactory<priv_Key_owner> {
7 abstract void genKeyPair(Key<worId> pub, Key<priv_Key_owner> priv);
8 >
9 class Terminal {
10 String<0> msg_in, msg_out;
11 Key<0> privateKey;
12 KeyFactory<0,0> KeyFactory;
13 Terminal(Key<worId> publicKey) {
14 KeyFactory.genKeyPair(publicKey, privateKey);
15 >
16 String<vorId> send(Key<wor!d> publicKey) {
17 return publicKey.encrypt(msg_out);
18 >
19 void receive(String<worId> msg) {
20 msg_in = privateKey.decrypt(msg);
21 >
22 >
23 >

Figure 8-12: Subject im plem enting a secure term inal application

modes of Confined Types.

An intriguing solution to object containm ent has been dem onstrated  w ithin O bject Teams [55]. 

Extension of RSA w ith S ecu reT e rm in a l functionality is achieved w ith family polym orphism , or team  

inheritance. T his solution carries all the  benefits of subtyping which are presently lacking in subject 
com position. The O bject Teams solution is based on the Confined T ypes model: confined roles are 

encapsulated w ith in  their enclosing team  instance.

8.5 Using exps for Com position Restriction

Exam ples in C hap ter 6 and in th is C hapter have shown th a t unknow n context identifiers can be used 

to  delegate design decisions on contexts to  another subject. E xplicit contexts can do the  opposite: 

they can constrain  subjects to  particu lar com positions in order to  ensure th a t only functionally valid 

com positions are specified.

Consider a  stra tegy  game where one or more hum an players com pete against one or more com

puter opponents. Each player (hum an or com puter) controls an arm y of droids th a t can be arb itrarily  

organised into squads. The game objective is to  cap tu re  the oppositions’ flags. To achieve the aim, 

players split arm ies into squads and deploy some strategy. Each squad then  plays a role in the  s tra t

egy. The role involves reaching some destination waypoint as defined by the  strategy. For example 

the  S u rro u n d  s tra tegy  involves positioning squads a t points on th e  circle circumference defined by 

the ta rg e t a t th e  centre of the circle. W ithin  each squad the droids are pu t into a formation. Each 

form ation has different fighting characteristics. For example, the  S q u are  form ation is good for de

fending a  position from m ulti-directional attacks. T he artificial intelligence engine is able to  select 

bo th  the stra tegy  and the form ation a t each stage in the game bu t a  strong (hum an) player should 

be able to  win by m aking b e tte r strategic and, occasionally, form ation decisions.
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subject Game {
class Player {

Vector<0,0> droids;
Vector<0,0> squads;

>
class Squad {

Droid<l> commander;
Vector<0,l> droids;

>
class Droid { }

>

Figure 8-13: S tra tegy  game com position interface

W h at makes th is gam e different from its com petitors is the  facility for specifying new strategies 

and  form ations. These can be uploaded by players and  added to  the  set of control options. S trategies 

and  form ations are defined as SO T -annotated  subjects. These subjects are in tegrated  into the game 

using subject-oriented com position rules.

T he gam e architects require th a t no user specified stra tegy  or form ation lets one player take 

control of droids in ano ther player’s army. This is enforced by restricting  th e  com position interface 

to  the  design given in Figure 8-13.

T he players would like to  ensure th a t subjects for new strategies and form ations are deployed 

correctly. T h a t is, the  com position is restricted  to  particu lar correspondences such th a t the  composed 

sub ject functions as intended. The aim  is to  restric t com position in order to  elim inate com positions 

th a t  are known to  lead to  anomalies. For example, one anom alous in teraction  is identified in the  

com bination of subjects for the  flanking maneuvre s tra tegy  and  the  keep distance form ation:

•  T he flanking m aneuvre (subject FM in Figure 8-14) is a  well-known m ilitary strategy. I t involves 

sp litting  one’s arm y into two squads. A  sm aller squad is left to  resist the  a ttack ing  force and 

a  bigger squad goes around and attacks the opponent from behind.

•  T he keep distance form ation unbunches droids, pu tting  each droid the sam e distance from its 

neighbours. Two subjects can be created  here: in F igure 8-14, KD1 uses unks to  denote Droid 
owner and KD2 uses exps. The unks in the  definition of KD1 m ake this subject m ore reusable.

Com position of FM w ith either KD1 or KD2 is desirable because th e  keep distance form ation gives 

th e  sm aller squad an appearance of being bigger th an  it is in reality  in order to  mislead th e  enemy. 

Two com position specifications can be created  for in tegrating  subjects Game, FM and KD1 based on 

two resolutions of unkfc:

1. unkfc resolves to exp0 in KD1 .Aggregation: classes Game. Player. droids<0,0>, FM. Flanking- 
Maneuvre.droid<0,0> and KD1 .Aggregation.droids<0,k> correspond.

2. unkfc resolves to  expj in KD1. Aggregation: classes Game. Squad. droids<0, 1> and  KD1. Aggre
gation. droids<0 ,k> correspond, unkfc resolves to  exp2 in KD1.Droid by resolution propaga

tion.

T he first com position contains an anom aly th a t causes droids of the  smaller squad to  keep 

distance w ith droids of the  bigger squad, creating one long chain instead of cleanly sp litting  into 

two squads. T he second com position produces the intended result. To ensure correct deploym ent of
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subject FM {
class FlankingManeuvre {

Position<l> target2attack;
Vector<0,0> droids;
Vector<0,0> squads; 
void do_FM() {

Squad<0> front = ...
Squad<0> flank = ...
squads = new Vector<0,0>(front, flank); 
front.attackDirect(target2attack); 
fIank.round(target2attack);

>

subject KD1 { // using unks
unk k;
class Aggregation {

Vector<0,k> droids; 
void do_KD() {

for(lterator<0,k> it = droids.iterator() ; it .hasNextO ; ) { 
Droid<k> d = (Droid<k>)it.next(); 
d.neighbour_Ieft = findNeighbourO; 
d . neighbour_right = f indNeighbourQ ;

>

>

class Droid where 1 <= k { 
Droid<k> neighbour_Ieft; 
Droid<k> neighbour_right;

subject KD2 { // using exps
class Aggregation {

Vector<0,l> droids; 
void do_KD() {

for(lterator<0,l> it = droids.iterator(); it.hasNext(); ) { 
Droid<l> d = (Droid<l>)it.next(); 
d.neighbour_Ieft = findNeighbourO; 
d.neighbour_right = f indNeighbourO ;

>

>

class Droid {
Droid<2> neighbour_Ieft; 
Droid<2> neighbour_right;

>

Figure 8-14: Subject FM and 2 versions of subjects KD using unks and exps
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th e  keep distance concern, we replace KD1 by KD2 which uses exps instead of unkfc. Now the second 

com position is the only valid option.
T he a lternative  of using ucircs w ith KD1 does not work. For example, one m ay try  to  specify:

class Aggregation where 1 <= k {...}

All definitions inside class A g g reg a tio n  satisfy th is definition. B ut th e  resolution constrain ts of the  

o u tp u t class are no t based on the declared ucircs bu t on the  behaviour defined w ithin th e  composed 

class. T hus k =  0 will still be in the resolution set of unkfc in the class to  which A g g re g a tio n  for

w ards. ucircs are intended to  prevent representation exposure in the input subject. For com position 

constra in ts, exps should be used to  convey a  particu lar ownership structu re .

8.6 Limitations

T his Section describes the known lim itations of SAPS. It is im portan t to  isolate the issues which are 

specific to  the  decisions taken in the  creation of SAPS from the  lim itations of SO P as a  paradigm . 

T he la tte r was reviewed in C hapter 3 on page 22 where SO P was com pared to  o ther technology 

for advanced separation  of concerns. SOT as an APS has lim itations: for instance, it does no t 

su p p o rt dynam ic aliases which are necessary to  support subject design w ith respect to  certa in  

object-oriented  idioms. The challenges in providing support for dynam ic aliases and o ther aliasing 

m odes are discussed in future work on page 215.

T he  following two Subsections deal w ith two fundam ental lim itations of SAPS. W hen concerns 

to  be com posed have incom patible views of a  dom ain, the  differences may tran sla te  to  incom patible 
ow nership structu res. Incom patible dom ain views may force changes to  the  subject s tru c tu re  in 

order to  accom m odate the SAPS model of com position. The second problem  concerns th e  selection 

betw een com posable and uncom posable classes. T he system  of explicit contexts is more rigid th an  
ow nership param eterisation. T he rigidity enables desirable restrictions on subject com position as 
seen in Section 8.5 on page 201 but may prove too restrictive during evolution.

8.6.1 Incompatible Domain Views

T his lim itation  of SAPS concerns dom ain modelling. To enable clean separation  of concerns a 

subject defines only those abstractions which perta in  to  addressing its concern. A problem  can 

occur if dom ain views w ith inherently  incom patible ownership s tructu res need to  be composed. For 

exam ple, consider the  development of a graphics suite. T he system  is decomposed into subjects 

such th a t one subject designer can implement each algorithm . T he following two algorithm s are 

identified:

•  A blurring  algorithm  recalculates the colour a t each pixel from  the values of its im m ediate 

neighbouring pixels.

•  A m agnification algorithm  com putes the  colour a t the  current pixel based on the values in its 

region. A region is an array  of neighbouring pixels.

These two algorithm s are im plem ented as subjects B lu r  and M agnify shown in Figure 8-15. 

Subject B lu r  defines classes P ic tu r e  and P ix e l  only. B lurring is perform ed per pixel. T he pixels 

are owned by the  picture th a t they  represent. The neighbouring pixels are obtained dynam ically by
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subject Blur { 
class Picture {

Pixel<0,0,0>[] [] p;
Pixel<0> getLeftNeighbour(PixeI<0> px) { ... }
Pixel<0> getRightNeighbour(PixeI<0> px) { ... }

>
class Pixel {

Picture<2> inPic; 
void blur() {

Pixel<l> leftP = inPic.getLeftNeighbour(this);
Pixel<l> rightP = inPic.getRightNeighbour(this);

>

>
>

subject Magnify { 
class Picture { 

float magFactor;
Region<0, 0, 0> [] [] r ;

>
class Region {

P i x e K O , 0, 0> [] [] p ;
Region<l> magnifyO { / *  magnify this region * /  }

>
class Pixel {

int blue, red, green;
Region<2> inRegion;
Picture<3> inPic; 
void calcValueO {

/* cailculate new blue, red, green for this pixel based on
values in inRegion and the magnification factor in inPic * /

>

Figure 8-15: Subjects Blur and Magnify
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sending a  m essage to  in P ic . For efficiency, subject M agnify  perform s m agnification one region a t a  

tim e. A  p ic ture  owns the  region and the  region owns the  pixels. A  call to  R e g io n .m a g n ify () creates 

a  new region whose pixel values are determ ined from th e  current region based on the m agnification 

factor stored  in P ic tu r e  .m agFactor.

Across these two subjects classes P ic tu r e  and  P ix e l  represent the  sam e concept. Com position 

of sub jects B lu r  and M agnify creates an efficient im plem entation where m agnification and  blurring 

can be applied on the  same picture. However, the additional concept of region in subject M agnify 

in troduces an  additional layer of abstraction  which affects the exps used in the  definition. Observe 

th a t in B lu r .  P ix e l  variable in P ic  has type P ic tu re < 2 >  whereas in M agnify .P ix e l  th is variable 

has type P ic tu re < 3 > . Consequently, these two subjects cannot be composed.

We m ay a ttem p t to  use unks in subject B lu r in order to  enable variability  between th e  contexts of 

a  p icture and its pixels. However, this is futile because in M agnify the  pixels are in the represen tation  

context of R egion  and in B lu r they are in the representation context of P ic tu r e .  To make it possible 

to  compose these subjects it is necessary to  harm onise th e  context identifiers of corresponding 

elem ents either by adding the region concept to  B lu r  or by flattening th e  ownership s tru c tu re  in 

M agnify. E ither way, separation of concerns is affected: one subject has to  be modified in order to  

ensure com posability w ith another subject. This is an endem ic problem  of the  subject com position 

model we have adopted. More flexible alias anno ta tion  system s m ay be b e tte r able to  cope w ith 

incom patible dom ain views expressed by subjects.

8.6.2 Defining Composable and Uncomposable Classes

This lim itation  of SAPS concerns the definition of new classes. T he choice is between com posable 
and  uncom posable classes. If for some reason it becomes necessary to  m odify a definition from 

com posable to  uncom posable or vice versa, there  will be expensive repercussions. Section 6.4.1 
on page 122 defined a heuristic for helping developers select w hat kind of class to  define. In our 

experience th e  heuristic serves well and  drastic  changes are  rare. However, an exception to  the  
heuristic m ay occur when a new concern is added to  an existing concern set.

Continuing w ith the exam ple of the graphics suite, th e  draw ing of a  picture is perform ed one 
region a t a  tim e in relation to  a colour map. A colour m ap is a  function from the  pixel value to  the 

real colour of th a t pixel. The colour m ap for a  picture is a  p roperty  owned by the picture library. 

New p icture  creation and  the drawing functionality is associated w ith  sub ject Base shown in F igure

8-16. In an  alternative im plem entation, these concerns m ay be developed as separate subjects bu t 

the  curren t decom position is sufficient to  illustrate our point.

L ater, copy and paste features are added. T he proposed solution uses a R egion  object as a  

buffer for storing the copied fragm ent. The copy operation  uses P ic tu r e L ib r a r y  .b u f f e r  to  alias a 

clone of th e  m arked-up region. The paste operation applies the  buffer to  the  ta rg e t image. F igure 

C opyPaste  shows the subject th a t we would like to  create.

A problem  becomes apparen t when we try  to  compose instance variables R egion.cm . These 

fields correspond because they clearly represent the  same object. T he types are ColourMap<2> and  

ColourM ap<l> in subjects Base and C opyPaste respectively. In Base the  colour m ap is owned by 

the  owner of the  current region which gives rise to  exp2. In C opyP aste  the colour m ap is owned 

by the p ictu re  library which also owns the current region, giving rise to  e x p ^  The system  of exps 

cannot cope w ith dynam ic hierarchy changes; it requires all ob jects referred to  by context identifiers 

(both explicit and unknown) to  have the same relative positions for all instances of a  class.
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subject Base {
class PictureLibrary {

CoIourMap<0> cm;
Picture<0> pi, p2; 
void newPicO {

pi = new Picture<0>(cm);
}

>
class Picture {

CoIourMap<l> cm;
Region<0,0, 0> [] [] r ;
Picture(CoIourMap<l> cm) { this.cm = cm; } 
void draw() /* draw each region */ }

>
class Region {

CoIourMap<2> cm;
void draw() { /* draw this region in relation to cm */ }

>
class CoIourMap { ... }

Figure 8-16: Subject Base in th e  graphics suite

subject CopyPaste { 
class PictureLibrary {

CoIourMap<0> cm;
Picture<0> pi, p2;
Region<0> buffer;
void copy() { buffer = pl.copyO; } 
void paste() { p2.paste(buffer); }

>
class Picture {

Region<0,0, 0> [] [] r ;
Dims<0> marlnip;
Region<l> copyO { / *  create region based on markup */ > 
void paste(Region<l> buffer) { ... }

>
class Region {

CoIourMap<l> cm;
>
class CoIourMap { ... }
class Dims { /* specifies the dimensions of the area of interest * /  }

Figure 8-17: Subject CopyPaste in the graphics suite
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1 class PictureLibrary {
2 CoIourMap<0> cm;
3 Picture<0> pi, p2;
4 Region<0,0> buffer;
5 void newPicO { pi = new Picture<0>(cm); >
6 >
7 class Picture {
8 Region<0,0,<0,0»[] [] r;
9 CoIourMap<l> cm;
10 Picture(CoIourMap<l> cm) {
11 this.cm = cm;
12 /* for each region with indices i,j * /

13 r[i] [j] .setCM(cm) ;
14 >
15 class Region<cm_owner> {
16 void setCM(Co!ourMap<cm_owner> cm) { ... }
17 >

Figure 8-18: Code fragm ent showing R egion  as an  uncom posable class

To provide the  required flexibility, class R egion should be m ade uncom posable w ith the  owner of 

the colour m ap passed to  the region as an ownership param eter. F igure 8-18 shows a fragm ent of code 

where R egion  has been declared as an uncom posable class. T he type of P ic tu r e L ib r a r y  .b u f f e r  in 

line 4 is R eg ion<0 ,0>  and  of r  [ i ]  [ j ]  in lin e  13 is R egion<0,1> . T he ownership param eter cm_owner 

of uncom posable class R egion binds differently in each case.
T his exam ple has shown th a t additional requirem ents can pu t a  stra in  on the usability of a 

com posable class, necessitating a  change to  an uncom posable class. T he system  of explicit context 
nam ing is m ore rigid (or less flexible) th an  the  system  of ownership param eterisation . Having m ade 

R egion uncom posable it is no longer possible to  extend this class by subject com position which 

tends to  lim it fu ture  adaptability . Earlier examples have shown th a t the  rigidity of explicit contexts 

is also a  s tren g th  of SAPS. In our experience rigidity is a  compromise th a t works well in m ost cases.

8.7 Conclusion

Through a  range of examples we have presented an  evaluation of SAPS. T he evaluation has assessed 

SAPS w ith  respect to  the  factors th a t  have m otivated it. We have presented a  range of subject- 

oriented developm ent scenarios in which SAPS is an  aid to  sub ject design or reuse and dem onstrated  
the lim itations of our approach.

SAPS satisfies our reuse position by being of value to  the  subject developer and the  reuser. We 

have shown th a t SAPS addresses the  in teraction problems which m otivated it in C hapter 4 on page 

44. SAPS is a  useful tool in subject-oriented software development. T his C hapter has dem onstrated  

the following:

•  Black-box com ponents can be internally decomposed by feature while keeping the  representa

tion  of the  black-box hidden from its external clients.

•  SO T can ad ap t to  a variety of ownership structu res when subjects are used to  m odularise 
cross-cutting concerns.

•  Uncom posable classes may be used to  hide im plem entation details from interception a t join
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points.

•  Unknown context identifiers support the a priori construction  of reusable subjects.

•  D eliberate use of explicit context identifiers can constrain  com position to  achieve th e  intended 

interaction.
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Conclusions and Future Work

T his thesis was m otivated  by our interest in the  factors affecting reuse. T he conventional approach to  

reuse involves th e  construction of reusable software. T he original developer needs to  invest upfront 

in order to  reap the  benefits later. T he initial investm ent can be recouped by m arketing the software. 

C om ponent frameworks support the custom isation and in tegration of prebuilt com ponents for the  

purpose of constructing new systems. However, m ost software built today  is not intended for reuse 

b u t is constructed  to  m eet some functional requirem ents. Reuse and evolution issues are secondary 

to  functionality. U pfront investm ent in reusability will w aste tim e th a t should be spent on m eeting 

the  deadline for the current iteration. Consequently, a  question arose concerning how to  build more 
reusable software in cases where fu ture reusability is no t in the  initial requirem ents. We believe th a t 
to  successfully tackle this issue, a  technological solution m ust be of value to  the  original developers 

as well as th e  reuser. The original developer will be m ore in terested  in a  reuse technology if th a t 

technology addresses certain  problems during software construction.
In search of a  solution, we looked a t the  way software is engineered. It is generally acknowledged 

th a t  separation  of concerns is an im portan t reuse factor. Developers require technology th a t helps to  

separa te  all concerns th a t they  believe to  be im portan t. For functional concerns, m odularity  is the  

key. Faced w ith a  design problem, developers should be able to  m odularise the  functional concerns. 

T raceability  between the  artifacts of im portance in the  requirem ents and  code be tte r supports the  

reuse, m aintenance and evolution of those artifacts.

O bject-oriented  program m ing technology has failed to  provide all the  reuse benefits it was sup

posed to  offer. M any functional concerns can be represented as object collaborations. In m ainstream  

object-oriented  program m ing languages object collaborations are no t m odular. Also, there exist as

pects of system s -  the  concerns th a t cross-cut m ultiple object -  which are scattered  and tangled 

w ith  th e  m ain functionality defined by abstractions. T he scattering  and the tangling makes bo th  

th e  abstrac tions and  the aspects less reusable. Design p a tte rn s  either cannot cleanly separate  the  

concerns or the  flexibility they provide becomes required after th e  program  is w ritten. Applying 

p a tte rn s  during evolution is invasive, often requiring significant changes to  program  structure . Even 

concerns which are cleanly m odularised by classes often cannot be extended in the  way the reuser 

w ants. Interfaces intended for defining the boundary  between th e  client and  abstraction  implemen

ta tio n  im pede non-invasive evolution. In m ainstream  object-oriented  languages there  is a  fuzzy line 

betw een subclassing for im plem entation reuse and subtyping for type substitu tability . A subclass 

th a t is in tended to  be used in another application is required to  conform to  the interface(s) of its

210



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 211

superclass(es) even when substitu tab ility  is not required.

9.1 The Subjective Alias Protection System

Of all the  recent proposals for addressing separation  of concerns we have argued th a t Subject- 

O riented Program m ing (SOP) [49] best m eets our reuse objectives. SO P introduces subjects as 

a  new kind of m odule. Subjects are packages of classes and each subject defines a concern from 

its own perspective using a  fam iliar object-oriented language. In m any cases, subjects are suitable 

vehicles for m odularising object collaborations and  aspects. Subject in teraction  is specified in the  

com position specification using a special com position language. Unlike trad itional paradigm s, where 

in teraction  takes the  form of procedure calls of one kind or another, subjects in terac t a t jo in  points. 

Jo in  points are defined by language constructs such as classes and  the ir m embers. W hereas functional 

interfaces are defined explicitly, join point interfaces ‘sim ply ex ist’; there  are no predefined extension 

or evolution points. One subject can be created as an extension to  another and  applied w ithout 

changes to  the  extended subject. There is no substitu tab ility  defined between subjects, b u t in ternally  

each subject re ta ins the  benefits of inheritance for creating families of type substitu tab le  abstractions.

9.1.1 An Understanding of Interaction Problems

In moving from classes to  subjects as the  m ain un it of reuse we encountered interaction  problem s. 

U nderstanding the  interaction  inevitably becomes m ore difficult as the  num ber of subjects increases. 

In teraction  problem s are caused in p a rt by the absence of com position interfaces. In our investigation 

we categorised interaction  problem s by the ir severity, th a t is, by effort required to  overcome or 
elim inate th e  anomaly. In increasing order of m agnitude they are:

•  C hange the  com position specification.

•  E x tend  the com position language w ith a new com position rule.

•  E ither modify the  input subjects or create a patch  subject.

The need for a  powerful com position language was understood  by S O P ’s creators from th e  s ta rt. 
The com position language is defined on top of an extensible fram ework th a t allows m any rules to  

be specified. However, invasive changes to  subjects or patching are a  significant draw back to  SO P 
as bo th  a design and  a reuse medium.

Independent developm ent of modules is an  im portan t p a rt of any paradigm . After a  system  is 

decom posed into subjects, it should be possible to  assign each team  the  task  of im plem enting each 

subject. In  order for th e  com position of independently im plem ented or reused subjects to  satisfy the  

requirem ents, the  interface of subject in teraction m ust be identified in advance. T he problem  is th a t 

the reuser m ust have a  deep understanding of the  subject. For m any com positions, it is no t enough 

to  know w hat th e  subject does from th e  behaviour observed a t th e  functional interfaces of its  classes. 

It is necessary to  know how those classes are im plem ented. T he  types of elements a t jo in  points 

provide little  insight into the effects of subject interaction. In terac tion  problem s requiring invasive 

changes or patching can be due to  unanticipated  s ta te  changes, e.g. when behaviour specified in one 

subject breaks an  im plicit condition in another subject, bu t th e  types of elements a t jo in  points 

provide little  insight into the effects of subject interaction.
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In an  early a ttem p t a t a  solution we considered introducing formal com position interfaces. These 

are a ttrac tiv e  because they enable m odular reasoning and delineate p u b l ic  join points from the 

p r i v a t e  im plem entation. However, a  formal com position interface is incom patible w ith our view on 

reuse: a  sub ject should be reusable and extensible in ways not an tic ipated  by its developers.

9.1.2 SAPS

The alternative  th a t  we propose, SAPS, improves the understandability  of subject in teraction  w ith

out in troducing form al com position interfaces. Like SOP, SAPS is not tied to  any one language bu t 

is intended to  be used in conjunction w ith to d ay ’s m ainstream  program m ing technology. T he SAPS 

proposal was inspired by a num ber of im portan t observations:

•  SO P cannot improve the basic design of ab strac t d a ta  types.

•  SO P m ay be used to  create new com ponents.

•  O bject aliasing is a  cross-cutting concern in SOP.

For SAPS we split classes into two hierarchies called com posable and uncom posable. Uncompos- 

able classes are common abstrac t d a ta  types and o ther container abstractions. Uncom posable classes 

have no in ternal jo in  points. M ethod calls to  their instances m ay be bracketed using SO P com po

sition rules and  they  can be extended using conventional m eans b u t subject com position cannot be 

used to  modify class definitions. T he full range of com position rules m ay be applied on com posable 

classes.

Com posable and  uncom posable classes are anno ta ted  using Subjective O w nership Types (SOT). 
These ex tend  the  fam iliar d a ta  types w ith ownership contexts. For every object in a  subject-oriented 

program  SO T define an owner. T he owner forms a  boundary. T he object m ay have m ultiple 
references (aliases) inside the boundary, any of which may m u ta te  its s ta te , so long as no references 
are exposed outside the  boundary. The ownership contexts them selves are objects and from the 

perspective of each object there  are objects th a t it owns, known as the representation context. SOT 

ensure th a t  objects never expose objects in their representation  context.

T he system  is very flexible: an object is not required to  reference objects in its representation 

context, yet it can also reference objects it does not own. Two to ta lly  different m echanism s make 

flexibility possible. For uncom posable classes we adap ted  the system  used by Ownership Types [23]. 

At instan tia tion , an  object is param eterised by the  contexts it needs to  reference. An ownership 

capability  is passed in the form of an  ownership param eter. Param eterisa tion  is required for un

com posable classes because the  subject developer m ay require two instances of the  sam e container 

class w ith  different ownership properties. For composable classes a to ta lly  new system  of context 

identification was invented. The nesting between ownership contexts inspired explicit context iden

tifiers or exps. Instead  of passing ownership capabilities using param eters, each context is num bered 

in relation to  the  curren t representation context, exps and  ow nership param eters enforce very simi

lar represen tation  containm ent properties. T he m ain difference is th a t ownership param eters grant 

perm ission and  exps do not require perm ission to  be granted.

Ow nership param eters were unsuitable for composable classes because each subject m ay assign 
responsibilities to  a class and subjects have partially  overlapping views of abstractions. Thus, in 

each subject a  class defines the  ownership param eters it requires. In a  subject-oriented program  

any subject m ay create objects resulting in o ther sub jects’ ow nership param eters not binding. The
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system  of exps avoids this problem  by requiring only a single ownership param eter for com posable 

classes -  th e  object owner. This is bound no m atte r which subject perform s the  instantiation .

D uring requirem ents capture for SAPS we identified the  need for a  special kind of ownership 

param eterisation . Subjects may be used to  describe concerns which apply in different contexts. The 

system  of exps is too  rigid to describe the variety. So, we introduced unknown context identifiers or 

unks for context identifiers which get bound by subject com position (resolved in our term inology), 

unks can refer to  contexts th a t are external to  the collaboration im plem ented by a subject or sim ply 

to  those contexts which are p a rt of ano ther su b jec t’s design. To ensure correct resolution, unks are 

accom panied by resolution constrain ts or ucircs.
In order to  compose subjects, the corresponding elements m ust define com patible types. Com 

patib ility  is based on type equivalence. In addition to  subject-oriented com position requirem ents, 

SA PS requires th a t  elements define equivalent context identifiers. In  th e  case of exp and unk com

bination , resolutions are produced which m ust satisfy the resolution constrain ts. We have argued 

th a t,  under certa in  com position rules, representation  objects as defined in each input subject rem ain 

p ro tec ted  and  th e  types in the ou tpu t subject are well-formed.

9.1.3 Contributions

Together, Subjective Ownership Types and  extensions to  subject com position rules form the  Sub

jective Alias P ro tection  System. SAPS contributes to  solving in teraction  problems, to  m aking SO P 

a  viable paradigm  of software construction, and to  improving opportun ities for reuse.

S A P S  for A ddressing Interaction  P rob lem s

Subject interaction  problem s lie on the critical p a th  th a t leads to  SAPS. Therefore, it is im portan t 
to  explain how SAPS helps to  solve in teraction  problems.

T he success of SO P as a  paradigm  for software developm ent and, in parallel, as a  concern 

reuse technology depends on the developers’ ability to im plem ent subjects independently and  reuse 

sub jects off-the-shelf. In teraction  problem s in p a rt stem  from com posers’ inability to foresee all 

consequences of in teraction on sta te . We have shown th a t for sta tefu l (de)com positions the effect 

of subjects on s ta te  can be understood by studying the  details of im plem entation bu t not from join 

po in t interfaces alone. We believe th a t the  level of granularity  for understanding  subject interaction 

is too  low, which makes independent developm ent im practical and  reuse of subjects uneconomical.

As an Alias P ro tection  System, SAPS directly helps to  solve in teraction  problem s caused by 

unconstrained aliasing in SOP. M odular developm ent commences after a  m utually  com patible own

ership s tru c tu re  has been agreed by subject developers, otherw ise th e  subjects m ay not be com pos

able. We have shown th a t by having to  agree on an ownership s tru c tu re  some in teraction problem s 

can be elim inated entirely. SAPS partially  addresses the  problem  of granularity. I t constrains ob

jec t aliasing in subject-oriented program s, m aking it easier to  understand  the  effect of subjects on 

sca tte red  s ta te . T he Subjective Ownership Types a t join po in ts help to  determ ine those objects 

th a t  can directly  affect sta te , although it rem ains necessary to  study  m ethod im plem entations to  

understand  s ta te  m uta tion  in detail. The annotational p roperties of SAPS make it easier for the  

sub jec t com posers/reusers to  understand  the  in teraction and de tec t anomalies.
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S A P S  fo r  S u b je c t - O r ie n te d  D e s ig n

Subject com position is associated bo th  w ith  design and  reuse. This d issertation has dem onstrated  

the streng ths and  the  lim itations of SAPS as a tool for supporting subject-oriented software con

struction.

U ncom posable classes can be used to  hide class im plem entations. Defining a class as uncom 

posable is equivalent to  ‘do not compose here’. T hus it is possible, where necessary, to  restrict 

com position to  particu lar classes. However, we believe th a t th is should be done w ith care; uncom 

posable classes should not in general be used to  define the  com position interface, bu t, ra th er, to  hide 

the im plem entations of those abstractions which should not be accessible.

By m aking common ab strac t d a ta  types uncom posable we acknowledge th a t open class develop

m ent w ith  SO P cannot improve the  core design of these abstractions. However, it should be possible 

to  apply aspects to  abstrac t d a ta  types w ith SOP. For example, a  client may require persisten t Queue 

objects. SAPS allows instances of uncom posable classes to  partic ipa te  in open class com positions 

bu t never the ir classes. SAPS bracket relationship can create a persistent Queue object. Inheri

tance or delegation should be used if a  persistent Queue class is required. To create new container 

abstrac tions w ith param eterisable ownership properties developers m ust use uncom posable classes. 

W hether th is is a  significant design im pedim ent in practice rem ains to  be seen.

M any exam ples of SOP dem onstrate  a single com position th a t ties together input subjects to  

produce th e  o u tp u t application. No further com positions are considered. We have looked into 

the next dim ension of com position, a t the  ownership properties associated w ith o u tp u t subjects. 

By m aking ownership properties explicit it has become possible to  com m unicate and enforce the 

ownership properties required for the ou tp u t subject. In th is way SAPS supports the construction 

of system s using black-box com ponents created using SOP.

S A P S  o n  R e u s e

This thesis is m otivated  by software reuse. SOP provides the essential platform  for reuse and m ost 

reuse benefits derive from using subjects as reuse artifacts. C om patib ility  w ith existing platform s 

makes SO P useful to  reusers. SO P can synthesise new program s from existing software created 

w ithout awareness of SOP. We believe th a t there  are four ways in which SAPS supports or improves 
reuse opportunities:

•  C o m p a t ib i l i ty  w i th  e x is t in g  p ra c t ic e s .  W ith  SAPS we have improved SO P while a t

tem pting  to  minimise the  im pact on software which exists already. The checking of Subjective 

O w nership Types is s ta tic  bo th  for input subjects and for com positions. For instance, the  

SAPS im plem entation for Java should run  on a  s tan d ard  v irtua l machine. SO T are down

w ardly restrictive which m eans th a t S O T -annotated  subjects (created either by program m er 

or by com position) place no constraints on the way the client code is im plem ented.

•  E n c a p s u la t io n  o f  r e p r e s e n ta t io n .  It can be said th a t com ponent reusability is im proved if 

the  developer is certain  of its correctness. R epresentation encapsulation im pacts correctness. 

SO P can be used to  create com ponents by mixing and m atching features. SAPS extends the 

benefits of an  Alias P ro tection  System to  SOP. It helps to  ensure th a t  all com binations of 

features keep representation  objects hidden inside the  com ponent.
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•  C o r r e c t  s u b je c t  d e p lo y m e n t.  C om pared to  ownership param eterisation , th e  system  of 

explicit context nam ing does a good job  of conveying the ownership structu re . T his property  

is useful during subject composition. We have shown th a t, when alternative and seemingly 

valid com positions exist, by using exps we can ensure th a t  subjects are composed correctly.

•  U n k n o w n  c o n te x t  id e n tif ie r s . T hrough unks, SAPS supports the  realisation of concerns 

w here precise ownership stru c tu re  is determ ined by com position. For example, the  Com posite 

design p a tte rn  [43] should be reusable w ith a  num ber of different ownership structu res, unks 

support th e  developm ent of subjects where reuse is in the  requirem ents.

Finally, SAPS satisfies our reuse position by being of value to  the  original subject developers. 

Subjects are object-oriented and aliasing is a  concern in object-oriented program m ing. Some invest

m ent is required by subject developers in order to  apply Subjective Ow nership Types to  subjects. 

However, SO T are a fully-fledged Alias P ro tection  System  th a t  helps the  developer to  create well 

s tru c tu red  subjects.

9.2 Future Work

There are th ree  avenues of research th a t are relevant to  the  work in th is thesis:

•  Software reuse is and, we believe, will rem ain a research topic so long as software engineers 

pursue ways to  drive down software developm ent costs. T he success of a  reuse technology 

depends on m any factors, one of which is the m otivation for the  original developer whose 

efforts m ay or m ay not be reused in the  future. All proposals th a t seek to  improve reuse 

should address th is issue.

•  In teraction  problem s in the presence of shared object s ta te  were presented and  tackled in this 

thesis. However, in teraction problems in A spect-O riented Software Development is still an 

open research issue.

•  In th is thesis we have not discussed the  subject-oriented design process: how concerns th a t 
become subjects are identified and analysed. A process of subject-oriented  design is an  open 

research issue. Consequently, it is too early to  assess the  im pact of SAPS on the  analysis, 

design and testing  stages.

T he above are im portan t issues in the long term . We dedicate th is Section to  topics which are 

of more im m ediate concern. We discuss im plem entation, form alisation, and extensions to  SAPS in 

order to  im prove its concern modelling potential.

9.2.1 Implementation Issues

SOP concepts are realised w ithin the program m ing language H y p e r/J . In th is language th e  subjects 

are im plem ented in Java. At the  tim e of w riting, not all functionality  specified in the  docum en

ta tion  [121] is im plem ented in the  language. Also, the  relationship between com position rules and 

access modifiers is not fully developed in either SO P or H y p er/J .

We have constructed  a  simple SO T compiler and  a Subject Com poser for a  toy  language based 

on Java. T he developm ent of a SO T compiler for all of Java and th e  in tegration  of SAPS concepts 

into H y p e r/J  is fu ture  work. A lthough the m ajor theoretical issues are specified in this d issertation ,
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before a com piler for a production language can be specified, the relationship between SAPS and 

advanced language features should be considered, e.g. inner classes and  exception handling.

9.2.2 Formalisation

The approach used in this work has been predom inantly  an  inform al one. Firstly, our aim  was to  

improve opportun ities for reuse and, secondly, to  help solve interaction  problems. We have not only 

m ade progress on b o th  issues bu t also dem onstrated  SAPS as an  invaluable tool for subject-oriented 

design. A specification of sta tic  and dynam ic sem antics of Subjective O wnership Types, and a  proof 

of soundness is fu ture  work. T he ownership concepts a t subject level m ay be m odelled using C larke’s 

extensions [22] to  the  im perative variant of A badi and C ardelli’s object calculi [1]. We believe th a t 

the containm ent properties of subjective ownership concepts can be shown to  m ap on to  th e  core 

model.

In [128], the  au thors define the  sem antics of MinAML, an  idealised aspect-oriented program m ing 

language th a t  distills the  essence of A spect J  and  the bracketing functionality of H y p e r/J . T he core 

aspect calculus on which it is based features explicitly labelled jo in  points and  a  single piece of 

advice th a t  applies a t the  label. T he MinAML language is inspired m ore by A spectJ th an  H y p er/J  

in th a t it is based on an assym m etric model [50]. The base program s cannot m anipulate advice in 

any significant way. In the  core aspect language the  labelled jo in  points are defined independently  of 
o ther constructs and  hence can be reused in o ther com putational settings w ith little  change. Walker 

et al [128] show how constructs from Abadi and C ardelli’s first order object calculus in ter-operate 

w ith the aspect calculus. A possible avenue of investigation would be the in ter-relation  between 

subjective ownership concepts expressed using object calculi and  th e  aspect calculus.

9.2.3 More Powerful Aliasing Systems 

D ynam ic A liases

The original work on Ownership Types [23] th a t inspired Subjective O w nership Types lacked support 

for dynam ic aliases. D ynam ic aliases were added to  O wnership Types in [21]. In Section 5.1.1 on 

page 72 we showed the  u tility  of dynam ic aliases for supporting  object-oriented idioms such as 

iterators. D ynam ic aliases are still required for uncom posable classes for the  sam e reason as in 

object-oriented program s: to  enable efficient access to  d a ta  stored  in containers. In subject design 

their o ther uses include the definition of friendly functions and in itialisation of object representation  

w ith externally  created objects to  which there are no ex ternal aliases [32]. Friendly functions are 

perm itted  access into another ob jec t’s private representation. A num ber of im portan t issues rem ain 

ou tstand ing  a t th is point:

•  How is a  m ode describing dynam ic aliases useful to  the sub jec t composer? A dynam ic mode 

describes an additional alias usage policy which may prove useful for constraining com position 

to  ensure correct subject deployment.

•  How to  incorporate a  dynam ic model into SAPS? Clearly, a  m ode describing dynam ic access 

m ay never appear in the type of an instance variable. B u t such a m ode may appear in the 

types of operation  signatures, local variables and expressions.

•  Com posing two elements when both  have a dynam ic mode yields an o u tp u t element w ith  the
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1 subject Base {
2 class Byte {
3 Bit<0,0>[8] bit;
4 void set(int index) {
5 bit[index] = true;
6 >
7 int value() { / *  return int value of byte */ }
8
9 >
10 class Bit {
11 boolean value;
12 void se t O  { value = true; }
13 >
14 >

Figure 9-1: Subject Base

sam e mode. W hat is the  meaning of composing an exp anno ta ted  elem ent w ith  an element 

whose owner is specified by a dynam ic mode?

C o-ow nership

During evaluation we identified a  concern th a t would benefit from a different form of object ownership 

to  th a t offered by SAPS: it was necessary to  associate s ta te  w ith more th an  one representation 

context. T he need for shared ownership of th is kind has not been considered by APS researchers 

whose work is reviewed in th is thesis. This is probably because in m any trad itional applications 
of object-oriented technology, the  flexibility provided by single owner system s proves sufficient. 
However, advanced separation of concerns advocated by M DSOC and supported  by SO P may benefit 

from a m ore powerful system .
We believe th a t  there  are two forms of co-ownership th a t would im prove the  m odelling potential 

of SAPS:

•  System s where co-ownership is required by a fixed num ber of objects identified in advance.

•  System s w here co-ownership is a  concern th a t emerges during subject composition.

W hen discussing co-ownership of an object we presum e th a t th e  owners are not ordered and 

th a t existing ownership structu res are insufficient to  express the  required relationship. For example, 

consider th e  program  in F igure 9-1. At present SAPS disallows a B i t  to  be owned by two or more 

different B yte objects.

B ut suppose th a t  such an ownership structu re  was necessary. How would the owners be specified 

and how can we ensure th a t only the owners and o ther tru sted  ob ject access the  co-owned object? 

The problem  is th a t in order to  get into the representation of its owners, an object has to  pass 

through an  un tru sted  context. Thus we require some form of represen tation  exposure.

Ways of constraining external references include uniqueness, dynam ic aliases, read-only interfaces 

and reference-only access. We prefer to  steer clear of uniqueness for it requires either program m ing 

language support for linear types [89] or the  program m er to  adopt an  unconventional program m ing 

style [5]. R ead-only references are upwardly restrictive and operations which are read-only may 

become read-w rite operations after composition. Dynamic aliases still allow objects other th an  the 

owners to  change object s ta te .
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Figure 9-2: Co-ownership Tree

We shall discuss two candidate schemes for co-ownership. Co-ownership w ith a fixed number of 

pre-specified owners is represented by a sequence of context identifiers th a t follow the class name. 
Co-ownership as an emergent concern requires a form of context polymorphism th a t is not easily 
represented using either unks or ownership param eters. Figure 9-2 shows an object graph and 

ownership relations for two concerns th a t would benefit from these schemes. Solid edges indicate 
inter-object references and dashed edges relate objects to their owners. C onnector objects associate 
exactly two B its  th a t also own the C onnector. Only the owner B its  (and objects inside) should 
be allowed access to  the shared C onnector. A  P e r s i s t e n tS to r e  object saves the sta te  of B its  
belonging to potentially different Bytes. The P e r s i s t e n tS to r e  object should be allowed access in 
addition to  the explicitly specified B it owner.

C o -o w n e rsh ip : F ix e d  O w n e r  L ist

For a fixed num ber of pre-identified owners the code in Figure 9-3 shows a subject w ith annotations 
we propose. It is composed with subject Base specified in Figure 9-1. This example shows the 
component integration concern from Section 8.3 on page 195 where the associations are co-owned 
by the pertinent B its . An array of C onnector objects is declared in line 4 and initialised in lines 
6-7. The array is owned by the encapsulating Byte. The C onnecto rs are co-owned by the B its  they 
connect. We use $ instead of angle brackets to indicate a family of owners.

Explicit contexts and variable identifiers in scope can be specified as owners. The co-owned 
object can be passed based on existing SAPS rules so long as all co-owners are in scope. T ha t is, 
each owner can be referred to using either an exp or a variable. W hen the object type contains only 
variable names, a e.g. line 4 in Figure 9-3, the client may only initialise and pass the reference; it 
is not allowed to  access the  object’s inteface. This system ensures, first, th a t external clients have 
no sta te  dependencies on objects exposed outside their owners and, secondly, th a t sta te  changes to 

exposed objects are avoided. Variables in the type are indicative of external owners th a t cannot be 
specified w ith an exp. In fact, the type of a co-owned object may contain at most one exp, otherwise 
there exists a redundant co-owner in the definition.

The following code fragm ent shows a reference being passed to  a U instance. O bject myT is co
owned by the current representation context and by myV. myT’s reference can be passed to myU only 
if its co-owners remain accessible either using exps or using a  variable name:

U<0> myU;
V<1> myV;
T$myV, 0$ myT;
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1 subject Equality {
2 class Byte {
3 Bit<0,0>[8] bit;
4 Connector<0, $bit[i],bit[i+1]$>[7] c;
5 void maKeEqualityO {
6 for(int i = 0; i < 7; i++)
7 c[i] = new Connector$bit[i],bit[i+1]$ (bit[i],bit[i+1]);
8 >
9 >
10 abstract class Bit {
11 abstract void set();
12 >
13
14 class Connector {
15 boolean busy;
16 Bit<2> left, right;
17 Connector(Bit<2> left, Bit<2> right) {
18 this.left = left;
19 this.right = right;
20 >
21 void after_set (Bit<2> target) ■[
22 if(target == left) {
23 if(!busy) {
24 busy = true;
25 right.setO;
26 busy = false;
27 >
28 >
29 // same for right
30 >
31 >
32 >
33
34 // composition specification
35 compose Base, Equality into BE;
36 mergeByName;
37 bracket “ Bit * *. “ set * * with alter Equality.Connector<$Receiver>.after.set($Receiver);

Figure 9-3: Subject E quality  and composition specification for integration with subject Base
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myU.setMyT(myT, myV); 

class U ■[
void setMyT(T$someV, 1$ someT, V<2> someV) { ... >

>

T he com position specification connecting subjects Base and  E q u a l i ty  (lines 35-37 in Figure 

9-3) is conventional except for the  last sta tem ent. T he norm al effect of the  bracket relationship on 

execute sites is to  in troduce the  body of class C o n n ec to r into class B i t ,  so the  s ta te  of a  single 

C o n n ec to r ob ject is associated w ith a  single B i t  object. However, this is no t the  effect we require. 

We need to  associate the  s ta te  of two B its  w ith the righ t C onnecto r. T his is indicated in the 

com position specification by C o n n ec to r< $R ece iver>  where $ R e c e iv e r is a  m eta-param eter binding 

to  the  iden tity  of th e  receiver object m atched by the  p a tte rn . This no ta tion  m eans exactly “the 

C o n n ec to r w ith  a  co-owner given by $ R e c e iv e r” . Finally, no ta tion  a f t e r _ s e t  ($ R e c e iv e r)  passes 

the  receiver object to  th e  w rapper m ethod as the  sole argum ent.

To im plem ent th is system , changes are required bo th  to  the  SOT compiler and  the Subject 

Composer. T he dynam ic association between two B i t  objects to  one C o n n ec to r object should be 

hidden from the  com position au thor by the  im plem entation of the  Subject Composer. In related  

work, Sakurai et al [109] showed the way sta tefu l aspects like those im plem ented by th e  E q u a l i ty  

subject can be im plem ented in A spectJ. The au thors define A s s o c ia t io n  aspects which associate 

the  s ta te  of one aspect instance w ith a num ber of objects, selected dynam ically using A sp ec tJ’s 

join point m echanism . W hile our proposal predefines the co-owners, it also aim s to  enforce object 

containm ent in a m ulti-ow ner environm ent.

Co-ow nership: E m ergent O wners

W hen the  set of co-owners is no t known in advance, it should be possible to  param eterise an object 

by its o ther owners. SAPS has two forms of param eterisation: ownership param eters are bound 

during object in stan tia tio n  and  unks are resolved by subject com position. In addition we propose a 

form of context polym orphism  th a t we will call o;-contexts. T he purpose of cu-contexts is to  refer to 

m ultiple owners dynam ically.

To m otivate w -contexts consider the  Persistence concern. T he Persistence concern is diffi

cult to  im plem ent w ith  SAPS presently because s ta te  is associated w ith ju s t one owner. The 

P e r s i s t e n t S t o r e  is a  separa te  object w ith a separate  represen tation  context. In order to  save 

the objects in the represen tation  contexts of a  B yte object, it is necessary to  expose the B i t  objects 

from the  represen tation  of B yte and pass them  to  th e  P e r s i s t e n t S t o r e  object. The above system  

of pre-specified co-ownership is not suitable here: B i ts  from m any B ytes m ay be associated w ith the 

P e r s i s t e n tS to r e .  T he P e r s i s t e n t S t o r e  needs to  know abou t th e  elements it stores bu t not abou t 

B ytes or abo u t the  way B yte  objects are organised. Thus co-ownership is a  cross-cutting concern 

th a t emerges when subjects Base and P e r s i s t e n c e  are composed.

F igure 9-4 shows th e  Persistence subject anno ta ted  w ith cu-contexts. The $-punctuated  identifier 

in line 2 refers to  th e  w-context bound dynam ically during in ter-subject interaction. According 

to  the com position specification (line 15), th e  world-owned P ersisten tS to re  ob jec t’s s a v e _ s e t( .  .)  

m ethod is called w ith the  object of the  bracketed m ethod as argum ent. The exp0 in s a v e _ s e t( .  .)  

shows th a t  the  P ersisten tS tore  co-owns the B it param eter w ith th e  object bound to  b it_ow ner. The 

b it_ o w n er w -context binds to  m ultiple B yte objects, thus allowing one P e r s i s t e n t S t o r e  object to  

store B its  from the  represen tation  of a  limitless num ber of B ytes.
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1 subject Persistence {
2 class PersistentStore with $bit_owner$ {
3 HashtabIe<0,$0,bit_owner$,worId> h;
4 void save_set(Bit$0,bit_owner$ b) { h.put(b,true); }
5 boolean retrieve(Bit$0,bit_owner$ b) { h.get(b); }
6
7 >
8 class Bit { }
9 >
10
11 // composition specification
12 compose Base, Equality, Persistence into BP;
13 mergeByName;
14 bracket ‘‘Bit* * . 1 ‘set’’ with after Equality.Connector<$Receiver>.after_set($Receiver);
15 bracket “ Bit’’. “ set’’ with after Persistence.PersistentStore<worId>.save_set($Receiver);

Figure 9-4: Persistence subject dem onstrating co-ownership as a  concern th a t emerges during 
com position

In conclusion, in some cases, in order to  support separation  of concerns we require a  more 

advanced alias protection system  th an  SAPS. T he two schemes th a t  we have presented allow m ultiple 

objects to  co-own an object while still protecting  it from external access. We believe th a t th e  schemes 

we propose are feasible bu t further work is required in order to  fully develop the  two forms of co- 

ownership and  to  assess the ir im pact on Subject-O riented Program m ing.

9.2.4 Support for Layered Designs

In C hap ter 5 on page 70 we discussed the construction of new com ponents by subject com position. 

C hapter 8 on page 183 has shown th a t SAPS helps to  ensure th a t  the representation of such com po

nents stays hidden behind the  functional interface. One extension concerns the use of com ponents 

constructed  by subject com position w ith SAPS-aware clients.

Im agine a  Spreadsheet com ponent which has been created by subject com position. Spreadsheet 
is created  w ithou t reference to  any one particu lar application. Consequently, contexts o ther th an  

exp2 and world in the  functional interface are no t meaningful. Furtherm ore, as proposed in C hap ter 

5, the client should be able to  param eterise Spreadsheet instances w ith respect to the ir ownership 
properties.

To m eet the  dem and for new com ponents which are constructed  by subject com position, we 

propose an  extension for transform ing the ou tp u t subject into an  uncom posable class w ith ownership 

param eters. T he uncom posable class can then be reused as a  black-box in the  design of larger-grained 

subject-oriented  program s. The transform ation is a  m apping from a subject w ith unresolved unks 

to  a class or classes where unks become ownership param eters.

Up to  now we required th a t com position resolves all unks. In  order to  have ownership param eters 

some unks should not be resolved by composition. Subjects contain class and subject-level ucircs. 

Class level ucircs for the  unresolved unks rem ain. Subject-level ucircs where only one of two unks 

resolves becom e class-level ucircs th a t get appended to  each class. Subject-level ucircs where neither 

unk resolves are pu t into the  uncom posable classes’ w here  clauses. For each class nom inated  as 

a com ponent interface, the  resolution set should no t be constrained although it may exclude the  

represen tation  context exp0 .

To illu stra te  the  transform ation we use a small example. T he Queue concern may be decom posed
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subject Put {
nnTc £ ;

class Queue {
Link<0> head = null;
Link<0> tail = null;

void put(Object<K> o) {
Link<0> I = new Link<0>(o); 
if(head == null) { 

head = tail = I;
> else {

tail.next = I; 
tail = I;

>
>

>

class Link {
Object<k> o;
Link<l> next;
Link(Object<k> o) { this.o = o; }

>
>

Figure 9-5: Subject P u t im plem enting th e  P u t feature in the Queue concern

into two ‘fea tu res’ for p u tting  elements into the  Queue and getting  elem ents ou t of the  Queue1. We 

m ay use SO P to  im plem ent each feature as a  subject: subjects P u t and G et are shown in Figures

9-5 and  9-6 respectively.
T he subjects are m erged in the  usual way bu t unkfc, denoting the d a ta  owner, is unresolved. 

N om inating class Queue as the interface, unkfc is tu rned  into an ownership param eter, creating an 

uncom posable class w ith the following externally  accessible interface:

class Queue<k> {
Object<K> get() { ... } 
void put(Object<k> o) { ... }

>

T his exam ple shows th a t the  proposed extension helps to  hide feature concerns of a com ponent 

while, a t th e  sam e tim e, m aking the com ponent reusable w ithin a  variety of contexts. W ith  th is 

extension SAPS will be b e tte r suited to  support software developm ent where com ponents are or

ganised in layers. To realise this extension, further work is required in the area  of unknown context 

resolution.

9.3 A Final Word

The Subjective Alias P ro tection  System  developed in th is d issertation  has brought together subjec

tiv ity  and  ownership in response to  our perspective on reuse. We believe th a t to  construct reusable 

software w hen reuse is not in the  requirem ents dem ands technology th a t is of value to  the  orig

inal developer. O ur approach is characterised by feature-based decom position, using subjects to  

m odularise concerns identified in the requirem ents. W here s ta te  was involved, anomalies in subject

1Note that we do not advocate that Queue be implemented this way.
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subject Get {
nnlc k ;

class Queue {
Link<0> head = null;
Link<0> tail = null;

Object<k> get() {
if(head == null) return null;
Object<k> o = head.o; 
if(head == tail) { 

head = tail = null;
} else I

head = head.next;
>
return o;

>
>

class Link {
Object<k> o;
Link<l> next;

>
>

Figure 9-6: Subject Get im plem enting the G et feature in the Queue concern

interaction  were deemed to  make independent development unlikely and subject reuse im probable. 

T he ownership concepts we introduce into subject-oriented development raise the level of abstrac
tion , im proving the  developers’ and reusers’ ability to  understand  subject interaction, while a t the  
sam e tim e adding value to  the subject creator for whom fu ture  reuse is generally not a  prom inent 
concern.

Recently, Jacobson [60] w rote abou t th e  im portan t difference th a t A spect-O riented Software 

D evelopm ent will make to  the  way software is constructed. He drew the link between Use Cases in 

UML and  aspects (in the  general sense th a t includes subjects). The design process th a t Jacobson 

envisages for the  fu ture involves the following stages:

1. F ind  and  specify the  use case to  describe the system  requirem ents.

2. Design and  code each use case.

3. Com pose th e  use case slices (e.g. code in the  form of subjects im plem enting each use case).

4. Test each use case.

For the  th ird  step, Jacobson writes “I expect th a t this activ ity  will be reduced through tooling and 

th rough  collaboration between the concerned use case designers” . We believe th a t SAPS has m ade 

a  contribu tion  in th is respect.
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