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Abstract

In this work, conjugates of polyamines have been designed and synthesised to condense 

DNA, a first and key step in gene therapy. A fluorescent assay method is proposed for 

assessing DNA condensation with lipopolyamines in aqueous solution using ethidium 

bromide as a fluorescent probe. The excitation wavelength is optimised and a rapid and 

reproducible method developed.

A novel protection strategy for the desymmetrisation of symmetrical polyamines, using 

the trifluoroacetyl protecting group, is outlined in detail and used in the synthesis of 

unsymmetrical polyamine amides and carbamates. The application of a homologation 

strategy, based upon reductive alkylation, was used to allow the sequential and 

regiocontrolled introduction of additional charges to polyamines.

Tetraamine spermine and a pentaamine derivative have beenA^-acylated with various 

alkyl acid chains and their relative binding affinity for DNA determined using the ethidium 

bromide displacement assay. In this preliminary study, the importance of the number of 

charges on the polyamine and the type of lipid covalently attached to the polyamine is 

demonstrated.

Novel polyamine carbamates have also been prepared from cholesterol and their piCas 

determined potentiometrically. Polyamine amides have been prepared from lithocholic (3 a- 

hydroxy), deoxycholic (3a,7a-dihydroxy), chenodeoxycholic (3a,12a-dihydroxy), 

ursodeoxycholic (3a,7|3-dihydroxy) and cholic (3a,7a,12p-trihydroxy) acids and their salt- 

dependent binding affinity for DNA determined. The importance of the number of charges, 

their regiochemical distribution on the polyamine, and the nature of the lipid covalently 

attached to the polyamine, in DNA condensation are demonstrated.
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Boc r-butoxycarbonyl

DCC dicyclohexylcarbodiimide

DCU dicyclohexylurea

DMF dimethylformamide

DMSO dimethylsulfoxide
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EthBr ethidium bromide
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NMR nuclear magnetic resonance
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This is an investigation of polyamine mediated DNA condensation and its 

applications in lipoplex formation and gene therapy.

This thesis is presented as eight Chapters, each Chapter is written in the style of the 

Journal for which it is intended to be submitted for publication. Consequently, the relevant 

references are to be found at the end of each Chapter.

In Chapter 1, we review the roles of polyamines in cellular functions, with particular 

reference to DNA condensation, and describe selective polyamine based non-viral gene 

delivery systems. The aim is to highlight specific cellular functions that are attributed to 

polyamines and determine if these have been adapted, or could be adapted to lipopolyamine 

based gene delivery. This Chapter will be submitted to Advanced Drug Delivery Reviews.

In Chapter 2, we develop a fluorescent assay for assessing binding affinity for, and 

condensation of DNA with lipopolyamines in aqueous solution. Ethidium bromide was used 

as a fluorescent probe. The excitation wavelength is optimised and a rapid and reproducible 

method developed. This Chapter therefore describes the analytical techniques which we have 

applied in subsequent Chapters. This work will be submitted to the Journal o f 

Pharmaceutical and Biomedical Analysis.

In Chapter 3, we develop a novel protection strategy for the synthesis of 

unsymmetrical polyamine amides using the trifluoroacetyl protecting group. The application 

of a homologation strategy, based upon reductive alkylation is developed, allowing the 

sequential and regiocontrolled introduction of additional charges to these polyamine amides. 

Tetraamine spermine and a pentaamine derivative have been TV'-acylated with various single 

alkyl chains and their relative binding affinities for DNA were determined. This Chapter 

therefore details the synthetic polyamine chemistry that was developed and used in 

subsequent Chapters. It also highlights areas for further investigation in polyamine mediated 

condensation, such as the total number of positive charges and their regiochemical 

distribution on the polyamine, and the nature of the lipid covalently attached to the
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polyamine. This Chapter will be submitted to Tetrahedron. Preliminary communications 

from this work have been published in Tetrahedron Lett: 1998,39, 439-442, and 1998,39, 

443-446.

In Chapter 4, we have designed and synthesised novel polyamine carbamates of 

cholesterol. The pATas were determined potentiometrically for conjugates substituted with up 

to five amino functional groups and their salt dependent binding affinities for calf thymus 

DNA were measured. This Chapter is therefore an in depth investigation of the importance 

of the total number of positive charges and their regiochemical distribution on cholesterol 

polyamine carbamates in DNA condensation mediated by lipopolyamines. This Chapter will 

be submitted to J. C. S. Perkin Trans. 1. Preliminary communications from this work have 

been published in Chem. Comm., 1998,1403-1404 and Pharm. Pharmacol. Commun., 1999, 

5, 145-150.

In Chapter 5, we have designed and synthesised novel polyamine amides from cholic 

and lithocholic acids by acylation of tri-Boc protected spermine and thermine and their salt 

dependent binding affinities for calf thymus DNA were determined. This Chapter is 

therefore an in depth investigation of the importance of the lipid covalently attached to the 

polyamine in DNA condensation mediated by lipopolyamines. This Chapter will be 

submitted to J. C. S. Perkin Trans. 1. Preliminary communications from this work have been 

published in Chem. Comm., 1998, 2035-2036 and Pharm. Pharmacol. Commun., 1999, 5, 

139-144.

In Chapter 6, we have designed and synthesised novel polyamine carbamates of 

cholesterol and amides of lithocholic acid. An additional charge has been introduced onto the 

tetraamine spermine by reductive alkylation of these conjugates, and their salt dependent 

binding affinities for calf thymus DNA were determined. This Chapter will be submitted to 

J. C. S. Perkin Trans. 1.
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In Chapter 7, we have designed and synthesised novel polyamine amides from 

chenodeoxycholic (3a,7a-dihydroxy), deoxycholic (3a,12a-dihydroxy) and ursodeoxycholic 

(3a,7p-dihydroxy) acids by acylation of tri-Boc protected spermine. Salt dependent binding 

affinities for calf thymus DNA were determined. This Chapter is therefore a detailed 

investigation of the importance of lipid covalently attached to the polyamine in DNA 

condensation mediated by lipopolyamines. This Chapter will be submitted to J. C. S. Perkin 

Trans. 1.

In Chapter 8, we describe the in vitro transfection competence of the cholesteryl 

carbamates synthesised in Chapter 4. These results show that transfection activity of these 

cholesteryl carbamates is sensitive to both the number of positive charges and their 

regiochemical distribution along the polyamine backbone. This Chapter will be submitted to 

FEBS Letters.
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Chapter 1

Polyamines in gene therapy: 

A review



Abstract: The roles of polyamines in cellular functions are reviewed, with particular 

reference to DNA condensation. A selection of polyamine based non-viral gene delivery 

systems are described, and related to the structure and function of cellular polyamines.

Introduction

Progress in the design and synthesis of lipopolyamines for the delivery of DNA both 

in vitro and in vivo is slow, with little emphasis on the precise function of the polyamines. 

Transfection efficiency is still low, particularly in vivo when compared to adenovirus-based 

vectors [1-7]. At present, most gene therapy protocols involve the use of highly efficient 

recombinant viral vectors. However, these gene vectors have a limited carrier capacity and 

are associated with immunological problems when used repeatedly or at high dose [8,9]. 

Synthetic vectors could, in principle, solve the aforementioned problems and the design of 

such systems has recently become an area of considerable research interest. The ideal gene 

delivery system should protect and deliver DNA into cells efficiently, be non-toxic, non- 

immunogenic and easy to produce on a large scale [9]. Cationic lipids are a promising class 

of compounds that are meeting some of these requirements [1-7,9,10]. In this Chapter we 

review the roles of polyamines in cellular functions, with particular reference to DNA 

condensation and selective polyamine based non-viral gene delivery systems. The aim is to 

highlight some of the complex cellular functions that are attributed to polyamines and 

determine if these have been adapted, or could be adapted to lipopolyamine based gene 

delivery. A greater comprehension and application of the diverse cellular functions of 

polyamines may be beneficial in understanding the mechanisms governing cationic lipid 

mediated gene transfection [6].
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Role of polyamines in cellular functions

Putrescine (1,4-diaminobutane), spermidine and spermine (Fig. 1) are naturally 

occurring di- and polyamines present in many cells at up to millimolar concentrations [11- 

13]. The nucleus of eukaryotic cells contain concentrations of polyamines as high as 5 mM 

[14]. Prokaryotes usually contain more putrescine and spermidine and generally lack 

spermine, which seems to be confined to nucleated eukaryotic cells. At physiologically  ̂’ 

relevant ionic strength and pH conditions, these simple linear aliphatic polyamines are 

essentially fully protonated (positively charged) and, together with magnesium, they account 

for the majority of intracellular cationic charge [12,15,16]. This charge means that a major 

portion of intracellular polyamines are bound to macromolecules. It has been postulated that 

polyamines at micromolar concentrations may be responsible for regulatory interactions [17]. 

The first experimental evidence that polyamines interacted with DNA was demonstrated by 

the ability of these compounds to cause condensation, aggregation and increased melting 

temperature (Tm). Indeed, charge neutralisation of intracellular poly-anions such as DNA and 

RNA may be among the most important physiological roles of these compounds [16].

putrescine

cadaverine

H
spermidine

H

H
spermine

Fig. 1. Structure of four natural polyamines
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Many ligands have different association constants for single and double-stranded DNA.

Their presence in the chromatin will stabilise or destabilise the DNA secondary structure, 

thus affecting the biological activity of the DNA and the ability of other ligands to compete 

for binding sites on the DNA [18]. As nucleic acid packing is rigorously and continuously 

regulated during replication and transcription, it is likely to be mediated through 

condensation-decondensation mechanisms whose effect is triggered by minute alterations of 

cellular conditions [19]. This has been demonstrated in a recent study [16], where spermine 

and spermidine, at physiological concentrations, were shown to both enhance and also inhibit 

the binding of several sequence-specific DNA binding proteins. Polyamines also affect DNA 

replication and translation, protein synthesis, membrane stabilisation, and the activity of 

enzymes such as kinases and topoisomerases. Some of these effects are polyamine specific, 

while others are due to the general cationic nature of these aliphatic polyammonium ions.

It would be naive to call these molecules simple, as they possess special 

characteristics such as a unique charge distribution, a hydrophobic methylene backbone to 

allow secondary interactions and structural flexibility. The charge distribution is dependent 

on the pKas of the polyamine amines, which are proportional to the inter-nitrogen distances 

[20]. Binding of polyamines to DNA requires the pair-wise formation of electrostatic 

interactions which is dependent on the correct spacing between the amines, which in turn 

influences both base strength and conformational flexibility [20].

The binding of polyamines has a profound effect on DNA structure, causing 

transitions from B to both A and Z forms of DNA [16,21-27]. Minyat and co-workers [21] 

showed that the B to A transition of DNA in water/ethanol solutions, conditions that may 

more closely resemble those found in vivo (diminished water activity), was induced by 

spermine and spermidine and compounds such as putrescine (1,4-diaminobutane, Fig. 1) and 

cadaverine (1,5-diaminopentane, Fig. 1) were found to stabilise the B conformation. 

Transcription is thought to be accompanied by a local B to A transition in the DNA template



under polymerase and therefore it was postulated that polyamines have a direct influence on 

the DNA template conformation [21]. Bloomfield and co-workers [23] demonstrated that 

polyamines were capable of provoking the transition from right-handed B-DNA to left- 

handed Z-DNA. The transition occurred at low polyamine concentrations, below those 

required for condensation. Other studies have shown that polyamines can induce the B-Z 

transition and bending in specific DNA sequences and these may be important in nucleosome 

phasing or chromatin condensation [26].

An early theory for the mechanism of interaction of polyamines with DNA was 

defined in terms of the counterion condensation theory developed by Manning [28]. This 

interaction was considered as territorial or non-specific in nature and dependent on the 

counter ion valency, the dielectric constant of the solvent, temperature and the DNA- 

phosphate charge separation. However more recent evidence suggest that the structure of the 

polyamine plays an important role in provoking the B-DNA to Z-DNA transition [24]. 

Structural specificity has been shown to be an important feature in the induction and 

stabilisation of left-handed Z-DNA [23,24,29,30] and triplex DNA [31,32] by polyamines. 

Triplex chromosomal DNA stabilisation may be an important function of polyamines [32]. 

Transcriptional regulation in vivo, may occur through RNA triplex formation and interference 

at the promoter regions of certain genes [33,34]. However, structural specificity appears to 

be less critical in the stabilisation of duplex DNA [31].

Stabilisation of specific DNA conformations may be important for processes such as 

nucleosome formation [35], chromatin condensation [36] and gene expression [37]. Evidence 

from the crystal structures of various DNA sequences in the presence of spermine [27] 

indicates that spermine can adopt a wide variety of binding modes, each of which may 

correlate with different biological functions of the polyamine.
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Polyamine DNA condensation

At higher concentrations than those required for transition from B to A or Z DNA, 

polyamines mediate conformational changes such as DNA aggregation and condensation [38- 

44]. Condensation is caused by alleviation of the charge repulsion between neighbouring 

phosphates on the DNA helix allowing collapse into a more compact structure [45-47]. DNA 

condensation is dependent upon three characteristic properties of the natural or synthetic 

polyamines: the number of positive charges which therefore influence the local ionic 

strength [26,29,31,44]; secondly, the regiochemical distribution of these charges whose pATas 

are intimately dependent upon their cooperativity [26,29,43,48]; and thirdly, the local salt 

concentration [31,43,49,50].

At a cellular level DNA is present in a condensed form. In eukaryotic cells DNA is 

compacted into chromatin by histones, and polyamines may be involved in this process. In 

viruses, several different molecules have been implicated in the condensation of viral DNA 

into a more compact form. These include internal proteins [51] and diamines such as 

putrescine and polyamines such as spermidine and spermine [41]. The assembly of lambda 

phage particles requires the condensation of 14 to 17 x 103 nm of double stranded DNA into 

an icosahedral head which is about 60 nm in diameter. Thus there is an environment rich in 

the four-carbon diamine, putrescine during phage head assembly for condensation of the 

required genetic material [52]. Spermine is also found tightly associated with viral DNA in 

quantities capable of neutralising 50 % of the anionic phosphate charge [53]. Packing of 

DNA into phage heads seems to be an ordered sequence of structural and biochemical events 

rather than a simple spontaneous self-assembly of component molecules [38,54,55].

In order to cause condensation of DNA any free energy processes that oppose the 

process must be overcome, these include the loss of entropy by the DNA in going from a 

random-coil to the condensed form, the energy needed to bend the stiff helix or needed to 

cause local melting or kinking, and the electrostatic repulsion of the charged strands [41]. It
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has been demonstrated theoretically that the condensation of polymers can become 

thermodynamically favorable under certain polymer-solvent conditions [56,57]. The free 

energy of compacted DNA is lowered by the binding of various molecules including , 

polylysine, polyamines, ethanol and polyethylene glycol [58]. Another way of favouring the 

condensation of DNA is to raise the free energy of the expanded form by the addition of 

neutral polymers that interact unfavourably with DNA [59]. The dominant force that opposes 

condensation of DNA in bacteriophage is electrostatic repulsion and this is counteracted 

binding of polyamines to the phosphate backbone of the DNA [60].

Monovalent and divalent cations (Na+, Mg2+) reverse DNA condensation induced by 

polyamines [42]. The competition between the two species follows the ion-exchange 

behaviourjDutlined in Manning’s [28] theory of atmospheric cation binding to DNA. DNA 

condensation can occur when a critical fraction of the polyamine is adsorbed to the DNA and 

neutralises the negative charge on the phosphate backbone [28,41,42]. Polyamine binding to 

DNA is dependent on both the ionic strength [49] and the temperature of the solution, 

suggesting that the interaction is predominantly electrostatic in nature and driven by 

counterion release [61].

Some structure activity relationships for the condensation of DNA by polyamines 

have been reported. It has been postulated that that the central aliphatic chain of spermine 

(tetramethylene) is suitable to bridge between different strands of DNA, but a trimethylene 

spacing is suitable to interact with adjacent phosphate groups on the same strand of DNA 

strands [24,62,63]. A more recent study [13] has shown that diamines with an odd number of 

carbon atoms (three and five) induce compaction of a single double-strand of DNA, but the 

diamine putrescine (four methylene spacing) tends to induce aggregation between different 

molecules of DNA, instead of the compaction of individual molecules. Chromatin 

precipitation analyses have revealed that spermine was several-fold more effective than 

spermidine at condensing chromatin and that putrescine had only a minor effect [64].
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Structure activity of polyamine binding to DNA

Binding of polyamines causes conformational changes to DNA, the changes being 

dependent on the charge and structure of the cation and these are related to the charge 

distribution along the methylene backbone of the polyamine [25,43,65]. Although these 

molecules appear to be simple ligands they may interact with DNA on several levels [25]. 

Polyamines stabilise DNA against thermal denaturation [23], shear breakage and radiation 

damage [66] and are capable of provoking a conformational changes such as transition from 

the right-handed B to left-handed Z-DNA, as discussed previously.

The binding of spermine induces specific structural changes in DNA: molecular 

modelling and physiochemical studies suggest that these changes involve a bend in the axis 

of the DNA helix at specific sequences [25,26,29,67,68,69,70]. Fluorimetric studies 

analysing the interaction of polyamines with synthetic polynucleotide-ethidium bromide 

complexes, showed that spermine and some spermine analogues induced structural changes 

specific to alternating A-T sequences [26]. Alternating tracts of A-T sequences are found in 

the genomes of many species close to eukaryotic promoters, indicating that spermine may 

play a role in the regulation of transcription by structural changes in these sequences [26].

DNA aggregation and ethidium bromide displacement assays have indicated that the 

binding of polyamines to DNA appears to be a function more of total charge than charge 

distribution [71], although chain length dependence of binding to DNA of dicationic linear 

diamines has been reported [44]. The order of binding is diamines < triamines < tetraamines 

< pentaamines [29,44,71]. Rowatt and Williams [72] have investigated the strength of 

binding of polyamines to DNA using the dye arsenazo III to measure unbound cations. It 

was found that the presence of a butylene rather than a propylene chain is preferable for tight 

binding. N l-Acetylspermine had a lower binding affinity for DNA than spermine, which 

would allow spermine to be removed from DNA by acetylating free spermine with the
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enzyme spermine TV1-acetyl transferase which is active in animal cells. The work of Rowatt 

and Williams [72] shows that spermine can combine with every phosphate group in the DNA.

Ethidium bromide displacement experiments using synthetic DNA have indicated 

spermine has a small but real GC over AT preference in its binding to DNA [73]. The extent 

of the secondary and higher order conformational modulations elicited by spermine is found 

to correlate with the percentage of GC base pairs: its effect on the B to A or B to Z transitions 

as well as on the condensation processes are significantly more pronounced in GC-rich DNA 

molecules [19]. DNA-conformation-dependent binding between polyamines and DNA, 

which is associated with differences in charge and with the methylene spacing between the 

nitrogens has also been reported [19].

The exact binding site for polyamines to DNA in solution (major grove, minor grove 

or phosphate backbone) has not been established [44,67]. However, conflicting speculations 

include binding in the major [74] and minor groove[75] and spanning the minor groove 

[63,76]. Crystal structures of polyamines bound to DNA oligomers indicate that well defined 

groove-binding orientations can be achieved in the solid state [74,77].

Nature has selected specific polyamines such as spermine and spermidine to perform 

cellular functions such as DNA condensation. These choices of both the number of positive 

charges and their regio-chemical distribution may be a simple reflection of the biosynthetic 

pathways they are derived from. However, the research in this area, although conflicting, 

does imply a more complex structure activity relationship for polyamine-DNA interactions. 

Wilson and Williams [78] conclude these polyamines have evolved to give a binding constant 

of specific strength to DNA as to allow rapid response to enviromental changes. Some of the 

key areas of research in lipopolyamine mediated gene therapy are complex formation through 

condensation of DNA, the extracellular stability of this complex and its dissociation inside 

the cell so it is accessible to the transcription apparatus [79,80]. The polyamine-DNA 

interactions plays a critical role in these aspects; by understanding these interactions and
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adapting them for lipopolyamine gene delivery, the gap between non-viral and viral delivery 

systems may decrease.

Lipopolyamines in gene therapy

In this Chapter, we review lipopolyamine based gene therapy and therefore many non- 

viral strategies are outside the scope of this work. Lipopolyamines differ from monocationic 

lipids, such as DOTMA. Their headgroups are polycationic and carry a high charge density 

capable of condensing DNA into small toroidal structures [81]. Non-viral delivery systems 

with multicationic head groups have been shown to be more active at transfection than their 

monocationic counterparts [9]. The bulky headgroups give the molecule a conical shape 

which produces assemblies with a high radius of curvature, thus influencing the shape of the 

multi-molecular assembly with DNA [81]. Lipopolyamines generally form micelles, in 

contrast to monovalent cationic lipids which generally form bilayers [81].

Simple mixing of the cationic lipid with plasmid DNA leads to spontaneous self- 

assembly of DNA aggregates through a charge interaction between the DNA phosphate 

groups and the polyamine. Then, several steps need to be performed by the complex to 

achieve delivery of the DNA and expression (see Fig. 2), including binding to the cell 

surface, internalisation by endocytosis, endosomal escape into the cell cytoplasm and 

uncoating of the DNA from the lipopolyamine, nuclear transportation of the genetic material 

so it is accessble to the transcription apparatus and, finally, appropriate expression of the 

transgene [79,82]. It is generally recognised that the complexes are internalised by 

endocytosis [81-87]. However, little is known about the exact mechanism of DNA release 

from the lipoplex, although the DNA is thought to be released from the complex prior to 

entry into the nucleus [79].

Lipofectin [88] (Fig. 3), which does not contain any polyamine functionality, was the 

first cationic lipid formulation to receive widespread attention as a gene delivery agent. It is
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the first example of many such cationic liposome formulation [9,89] and therefore will be 

discussed in more detail. Lipofectin consists of a 1:1 mixture of the cytofectin [88] (2,3- 

dioleyloxy)propyl-./V, N, A^-trimethylammonium chloride (DOTMA) and fusogenic lipid 

diester dioleoylphosphatidylethanolamine (DOPE). As the cationic lipid requires the 

presence of DOPE to destabilise bilayer membranes and promote membrane fusion, it has 

been postulated [90] that the encapsulated DNA must gain entry to the cytoplasm by 

fusion/destabilisation of the plasma or endosomal membrane.

condensation
lipopolyamine

binding to cell wall

lipid

polyamine

DNA delivery particle

binding and formation o f a nucleus
target cell

intemalis
(endocyt<

endosome membrane disruption

; ( § ]

migration of delivered 
DNA to target cell nucleus

Fig. 2. Schematic representation o f  the gene delivery process by lipopolyam ines
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DOTMA (N- [ 1 -(2,3 -dioley loxy )propy 1] -TV, N, Af-trimethylammonium chloride)

O

DOPE (dioleoylphosphatidylethanolamine)

Fig. 3. The components of Lipofectin

In electron microscopy, the observed structure of DNA may change significantly from 

its original structure in aqueous environment, due to the severe pre-treatments such as drying 

and staining (uranyl acetate) [13]. Indeed, cryoelectron microscopy has shown the 

quantitative and reversible condensation of plasmid DNA into toroids with spermine only 

when an excess of uranyl acetate is added [91]. The bulk of the work in this area has 

concentrated on monocationic lipids such as DOTMA or DC-Chol {3p-[7V-(jV’,Af’- 

dimethylaminoethane)carbamoyl]-cholesterol} in combination with DOPE. These lipids 

form liposomes in solution which bind to the surface of the DNA, through a charge 

interaction with the phosphate backbone, while maintaining their size and shape [88].

Electron micrographs of metal shadowed DNA complexed with DOTMA/PE 

(phosphatidylethanolamine) liposomes, suggests that the cationic liposomes bind initially to 

the DNA to form clusters of aggregated vesicles along the nucleic acids. At a critical 

liposome density, DNA-induced membrane fusion and liposome-induced DNA collapse 

occurs. The resulting condensed DNA is completely encapsulated within the fused lipid
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bilayers and the exposed surface is substantially smaller than the extended DNA molecules 

[92].

Freeze fracture electron microscopy of DOTMA/DOPE liposomes complexed with 

DNA shows liposome complexes (meatballs) and also bilayer covered DNA tubules 

(spaghetti), the tubules being connected to the liposome complexes and also free in the 

suspension [93]. Optical microscopy has shown that when DNA is added to liposomes 

(DOTAPiDOPE, a monocationic lipid) there is an unexpected topological transition to 

optically birefringent liquid-crystalline condensed globules [94]. Synchrotron x-ray 

diffraction of the globules reveals a novel multilamellar structure with alternating lipid 

bilayer and DNA monolayers [94].

Dioctadecylamidoglycylspermine (DOGS, Transfectam, Fig. 4), was one of the first 

polyamine based lipid (lipopolyamine) gene delivery vectors [95]. This molecules contain 

spermine covalently bound to two hydrophobic chains. The spermine headgroup interacts 

with the DNA causing condensation and formation of self-organised compact nuclear 

particles. Excess lipopolyamine coats the condensed particles, giving them a net positive 

charge which allows electrostatic binding to the cell surface. The polyamine headgroup is 

thought to carry multifunctional properties that are important for gene therapy, since 

performance cannot be improved by the addition of fusogenic lipids or with nuclear 

localisation signals, when the complexes are highly positively charged [96,97]. The 

potentiometric determination of the the p^as of DOGS (Transfectam) which are 10.5, 9.5, 8.4 

and 5.5 may provide an explanation for the endosome escape mechanism of this molecule. 

The pKa of the last amine is 5.5, which is halfway between the extracellular and 

intralysosomal pH values. This means that the polyamine headgroup is capable of buffering 

the pH of the endosome, causing inactivation of pH dependent lysosomal enzymes and 

increasing the osmolarity of the vesicles leading to endosome swelling and rupture
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[81,86,98,99,]. Alternatively the surplus of positively charged lipids in the DNA complex 

could directly destabilize the endosomal membrane by lipid mixing [79,97,100].

It has been postulated that release of the plasmid DNA from the lipoplex is due to 

displacement by genomic DNA [86,101,]. However, direct microinjection into the nucleus of 

the complex results in low transfection [102] and implies an alternative mechanism. Xu and 

Szoka [79] propose that certain ionic molecules found in high concentrations in the cell, such 

as ATP, polypeptides, RNA, spermine, histones, or anionic lipids, displace the ionic 

interaction between the DNA and the cationic lipid. Whatever the mechanism, nuclear 

translocation seems to be by far the highest barrier to transfection [86]. Endosomal escape 

however, seems to be only a moderate barrier for highly positively charged complexes (3.6 

charge ratio of cationic lipid to DNA), but a substantial bottleneck for less positively charged 

complexes (1.5 charge equivalents) [97].

Fig. 4. Structure of Transfectam

SAR studies with Transfectam [96] have shown that the polyamine headgroup is 

important for condensation and efficient gene transfer. The number, nature, and location of 

charges also dramatically influenced the transfection properties of the cationic lipid.

H3N©

Transfectam, DOGS

© NH3

NH
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Transfectam is among the best currently available in vitro cationic lipids [81]. At low charge 

ratios, with and without neutral lipids (e.g. DOPE) much more modest levels of in vivo 

transfection have been achieved [81,103-106]. For in vivo applications the charge ratio 

between the lipopolyamine and the DNA needs to be close to neutral [96], and therefore an 

endosome escape mechanism is required. At Transfectam/DNA charge ratio of 0.75 the state 

of the condensation of the DNA in the lipoplex is dependent on the ionic strength of solution 

[80], indicating salt dependent binding of the lipopolyamine.

The structures of DNA-lipopolyamines complexes should be different from their 

monocationic lipid counterparts since the multi-molecular complex formed on mixing the 

lipid with DNA will be driven by the shape of the lipid [81]. Electron microscopy of 

Transfectam-DNA complexes (6:1 charge ratio) shows well defined structures (50-100 nm in 

diameter), which are either alone or aggregated into larger complexes (100-400 nm in 

diameter) [81]. The micrographs also indicated that transfectam might form tubular micelles, 

with the DNA wrapped around and between them [81].

In a recent study [107], which focused on optimisation of gene delivery to airway 

epithelial cells both in vitro and in vivo, many structural features of lipopolyamines were 

found to be important and the inclusion of the helper lipid DOPE was required. All three 

components that make up the cationic lipid, the lipid anchor, linker and cationic headgroup, 

were found to have a role in determining transfection activity. However the nature of the 

headgroup was the dominant feature. Compounds with a ‘T-shape’ configuration proved to 

be more efficient at in vivo transfection than similar head groups that had been coupled via a 

primary rather than a secondary amine. However, confirmation of the mechanism by which 

the ‘T-shape’ headgroup influences activity was not demonstrated. Cationic lipid #67 (Fig.

5) [107], which contained three protonable amines compared to two in lipid #53 (Fig. 5), was 

found to be more active. When the number of protonable amines was increased to four, lipid 

#75 (Fig. 5), the transfection activity decreased. Therefore it was concluded that there was an
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upper limit to the number of protonable amines that could be present in the headgroup. The 

decrease in activity was attributed either to an increase in water solubility and tendency to 

form micelles (which exhibit greater toxicity), or alternatively, to a precise, undefined, 

molecular interaction of the spermine headgroup of lipid #67. Substitution of the cholesterol 

anchor of lipid #67 with anchors containing dialkyl chains, lipid #102 (Fig. 5), exhibited

O

O

Lipid #53
V.

H
.N

Lipid #67

H
.N

^  Lipid #75 

NH

NH-

Lipid #102

Fig. 5. Structure of some of the Genzyme lipopolyamines
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reduced activity in vivo, however this compound was the most active in vitro. The free base 

derivatives of these lipopolyamines was found to be more active than the acetate salts. The 

nature of the linker or spacer arm was also shown to be an important determinant of 

transfection activity. Replacing the carbamate linker with an amide, a urea, or an amine 

resulted in a decrease in activity.

The activity of the cationic lipids for in vivo delivery could not be predicted from the 

in vitro analysis. However the in vitro transfection data were useful in identifying structures 

that would not work well in vivo, since these compounds performed ineffectively in both 

assays. Lipid #67 was capable of mediating 1,000-fold higher expression in vivo than could 

be achieved with plasmid DNA alone. A more recent study of lipid #67 [6] demonstrated 

that the in vivo gene transfer was still relatively low and was affected by the polarization, 

differentiation and proliferative state of the cells. Diminished transfection in nonmitotic cells 

was attributed to inefficient nuclear translocation of the plasmid DNA from the cytoplasm 

[6].

Cationic facial amphiphiles (molecules whose hydrophilic and hydrophobic regions 

are segregated along the long axis) are another polyamine-based system showing promise for 

gene delivery [90]. Various poly amines, spermine, tetraethylenepentamine, and 

pentaethylenehexamine have been conjugated to bile acid based amphiphiles, then mixed 

with DOPE (1:1) to facilitate transfection. To date, bis-glycosylated cis-AB-steroid, a 3a,

7a, 12a-cholic acid amide, linked to pentaethylenehexamine (Fig. 6) has shown the greatest 

ability to promote p-galactosidase plasmid uptake in COS-7 cells [90].

The pKa values of tetraethylenepentamine are reported as 10.0, 9.2, 8.2, 4.1 and 2.6 

[108]. This is an exquisite example of the co-operativity of p£as along a polymethylene 

chain, as the fourth pKz is comparable with acetic acid (pKz 4.76), and the fifth with chloro- 

(pKa 2.87) and fluoroacetic acid ( p 2.59) [109]. Therefore, at pH 7.0, a +3 charge for the



bile acid monoacylated conjugate of pentaethylenehexamine was assumed [90]. While it is 

also assumed that the polyamine moiety of this cholic acid conjugate would bind to DNA and 

cause condensation, the complete mechanism of DNA uptake, mediated by this synthetic 

vector, was unclear. One possible theory is that the destabilising properties of facial 

amphiphiles (i.e. molecules which possess a nonpolar steroid nucleus with a polar side-chain) 

might increase the fusogenic potential of the transfecting particle.

R i =R2=ct-gIucoside

7a,12a-bisglucosyl cholic acid conjugated to pentaethylenehexamine

Fig. 6. Structure of a polyamine bile acid conjugate

Spermidine- and spermine-cholesterol (Fig. 7), with spermidine carbamoylated a tN 1 

or N 3, and used as an unknown mixture of these two +2 charged regioisomers, are novel 

transfection agents [110]. The mechanism by which these compounds promote DNA 

delivery is unknown, but it suggested that the cationic portion interacts with the nucleic acid, 

while the hydrophobic cholesteryl moiety associates with the membrane lipid bilayer, 

resulting in fusion with, or transient disruption of the cell membrane effecting direct delivery 

of DNA to the cytosol [110]. These conjugates of polyamines and cholesterol, joined by a 

carbamate linkage, were designed to be biodegradable and non-toxic. The spermidine 

conjugates were found to be significantly more efficient at improving oligonucleotide entry
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into cells (Vero cells) than the spermine derivative and the co-administration of a fiisogenic 

lipid or peptide was not required.

Fig. 7. Structure of spermidine- and spermine-cholesterol

Another cationic-cholesterol transfection agent is cholesteryl-spermidine, 

carbamoylated a tN \  therefore a +3 charged species [111] (Fig. 8), similar to DOGS and (like 

DOGS) not dependent on the presence of a fusogenic lipid for DNA delivery to the cell. 

However the addition of a fusogenic peptide (influenza virus HA2) did result in enhanced 

transfection levels, indicating that endosome escape is a limiting factor for this type of 

delivery system.

+

O
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H
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H

Spermidine-cholesterol
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H

Spermine-cholesterol
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'V,

Cholesteryl-spermidine

Fig. 8. Structure o f cholesteryl-spermidine

In this study [111], alkylation a tN 1 was varied using simple alkyl side chains 

(octyl-, hexadecyl- and dodecyl) to provide a varying degree of lipophilicity, but these 

derivative were not effective at transfection (HuH-7 cells). However, attaching 7V4-(3p-(./V-5- 

pentyl)carbamoyl)-cholesteryl as the lipophilic group gave enhanced transfection levels. 

Transfection efficiency was also found to be dependent on the charge of the lipoplex, only 

complexes with a slight net positive charge were effective.

During the writing of this thesis Bischoff and co-workers [112] compared the in vitro 

transfection activity of a series of isomeric cationic cholesterol derivatives of spermine (two 

isomers, Fig. 9) and spermidine (three isomers, see Fig. 9) in two different cell lines as the 

free base with DOPE. The position of the cholesterol moiety was shown to be of critical 

importance for efficient transfection of primary satellite cells from dog muscle (Myoblasts). 

Isomers with a derivatized secondary amine had the greatest activity. However, in 

transfection of human lung epithelial cells (A549), differences were less pronounced and did 

not follow the same pattern. Thus, as well as variation in transfection dependent on the 

structure of the polyamine, there also seems to be cell type dependent variation in 

transfection activity.
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Fig. 9. Structures of a series of isomeric cationic cholesterol derivatives of spermine (two isomers) and 

spermidine (three isomers)

During our studies of polyamine DNA condensation, Byk et al [113] developed a 

solid support strategy, which allowed easy access to unsymmetrically monofunctionalised 

polyamine headgroups with varying geometries. Branched, globular and linear polyamines 

were synthesised (Fig. 10). In their SAR studies variable-length lipids and variable-length 

linkers between the cationic headgroup and the lipid were synthesised and the transfection 

efficacy of lipopolyamines determined. RPR 120535 was found to have the highest in vitro 

activity (human Hela cells and mouse fibroblasts NIH3T3) and display significant in vivo 

transfection activity (Lewis lung carcinoma tumour model) over naked DNA. The use of
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helper lipids such as DOPE during transfection procedures was not required and the 

polyamines were in the salt form.

„  „  „  „  . „  „  J  1  /C H 2)17CH3
H2N/ n ^ N ' ^ s / n ^  —

H I  ^(CH2)17CH3

RPR 120535 linear headgroup

H I A x c h 2)I7c h 3

RPR 126096 T-shaped headgroup

H2N

H 0
N A  /(CH2)nCH3

H I  (CH2)i7CH3

i2n

RPR 120528 globular headgroup 

H2N

o
- A ,  x(CH2)I7CH3

H A s (CH2)i7CH3

2 RPR 120525 branched headgroup 

Fig. 10. Structures of linear, T-shaped, globular and branched lipopolyamines

Interestingly, the linear polyamine displayed advantageous DNA-complexing 

property and transfection efficiency, which could result from increased steric flexibility and a
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more favourable interaction with DNA [112]. In general, a linker of 5 carbons between the

the lipid chains (12,13,14, and 18) showed that the hydrophobicity of the lipid moiety had a 

crucial effect on in vitro gene delivery, with C18 being optimal. It was also concluded that 

there was an optimal net charge for maximal transfection and that increasing the charge was 

not always beneficial.

Another study published during our work, investigated methods of improving DC- 

Chol:DOPE liposomes for gene delivery [7]. A series of triamine, tetraamine and pentaamine 

cholesteryl carbamates were synthesised and tested in vitro (CFT1 cells) and in vivo (lung of 

female BALB/c mice). This SAR study was designed to determine the optimal methylene 

spacing on the polyamine headgroup. The most active analogues in vitro (CTAH, Fig. 11) 

and

polyamine and lipid moieties was found to be most advantageous. Variation in the length of

H2N

H
.N

'N
H

‘N
H

CTAP

h 2n
H
,N

' N

H
'N
H

CTAH

Fig. 11. Structure of cholesteryl carbamates synthesised by Miller and co-workers
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in vivo (CTAP, Fig. 11) were both pentamines, as the free base, with unnatural methylene 

spacing between the nitrogens. No correlation was found between in vivo and in vitro 

activity. The study concluded that the methylene spacing appeared to be almost a more 

critical factor in promoting efficient gene delivery than the absolute number of amine 

functional groups. CTAP was 500 times more active than naked DNA and was comparable 

in activity to lipid #67 in vivo. It was postulated that altering the methylene group spacing of 

the lipopolyamine, enabled the strength of binding to DNA to be manipulated, and this was a 

crucial factor in transfection.

Conclusions

This chapter highlights some of the lipopolyamines used in gene therapy. The 

polyamines used within these delivery systems do show some structural similarities, such as 

propylene and/or butylene spacing between the amino functional groups. Transfectam is the 

most widely studied of these delivery systems and multifunctional properties have been 

attributed to the spermine head group. Polyamine headgroups have been derivatised at both 

primary and secondary amines with conflicting results in some of these studies. Many of the 

lipopolyamines, but not all, have amines that will not be protonated at physiological pH. In 

the case of Transfectam this has been linked to an endosome escape mechanism. None of 

these studies have measured and characterised polyamine-DNA binding affinity and looked 

for a correlation with transfection efficency.

Lipopolyamine-based gene transfer systems have proven excellent for in vitro 

applications. However, adapting these systems for efficient in vivo gene transfer will need 

major improvements. A clearer understanding of the role of polyamine-DNA interactions in 

the mechanisms governing cationic lipid mediated gene transfection may help in the design 

of this type of molecule.
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Chapter 2

Groove-binding polyamine conjugate-DNA interaction monitored 

by ethidium bromide fluorescence and its application in the 

analysis of lipoplex formation
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Abstract: A fluorescent assay method is proposed for assessing DNA condensation with 

cholesterol polyamine carbamates in aqueous solution using ethidium bromide as a 

fluorescent probe. The excitation wavelength is optimised and a rapid and reproducible 

method developed.

1. Introduction

Non-viral gene therapy is a rapidly expanding area of research which requires 

physicochemical methods of characterising the interactions of small molecules and polymers 

with DNA. Displacement or binding exclusion of ethidium bromide (Eth Br) to DNA is one 

such technique that is employed to measure these interactions. In this Chapter, we evaluate 

some useful analytical techniques for this research area, and we optimise them for rapid, 

reproducible and efficient evaluation of lipoplex formation using Eth Br as a fluorescent 

probe. Thus, we are seeking to quantify lipoplex formation, the first and a key step in gene 

therapy.

NH:

Br'

ethidium bromide

Fig. 1. Structure of ethidium bromide

Eth Br (Fig. 1) is a cationic dye and a trypanocidal drug which interacts with both 

double stranded DNA and RNA by intercalation between the base pairs [1-9]. A large 

increase in fluorescence is observed when the phenanthridium moiety of this molecule 

intercalates [1] making it a useful probe to measure drug-DNA interactions.
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There are two binding sites: the primary site, which has been interpreted as 

intercalation between base pairs, and the secondary, which is thought to be electrostatic 

between the cationic Eth Br and the anionic phosphate groups on the DNA surface [10]. The 

secondary mode of binding is most evident at low salt and high dye concentrations. Binding 

of dye is saturated when one dye molecule is bound for every four or five base pairs [10]. 

Analysis of binding using Manning’s theory of counterion condensation of polyelectrolytes 

[11] indicates each intercalated Eth Br molecule lengthens the DNA by about 0.27 nm and 

outside binding only becomes significant at low salt concentrations [10]. When Eth Br binds 

in the intercalated site, there is a large fluorescence enhancement [1], this is due to the 

hydrophobic environment surrounding the Eth Br molecule allowing slow proton transfer to 

water molecules and leading to a longer life-time for the excited state [9]. Detailed studies 

using X-ray diffraction [4,12-13], binding isotherms [3], ’H and 31P-NMR spectroscopy [14] 

and molecular modelling [4] lead to the conclusion that intercalation follows nearest 

neighbourhood exclusion and therefore exclude occupancy of the neighbouring interbase pair 

sites.

Molecular modelling studies of Eth Br intercalation into DNA have shown binding is 

accompanied by a helical screw axis displacement (or dislocation) in its structure [4]. The 

helical axes are displaced approximately +1.0 A (for B DNA), base pairs in the immediate 

region are twisted by 10°, giving rise to an angular unwinding of -26° and the intercalated 

base pairs are tilted relative to one another by 8°. These changes in DNA conformation mean 

that intercalation is limited to every other base-pair at maximal drug-nucleic acid binding 

ratios i.e. a neighbour exclusion model [4]. These modelling studies also indicate that the 

conformational flexibility of DNA allows intercalation of the Eth Br at kinked regions of the 

double helix. In summary, intercalation of Eth Br occurs at regions where the base-pairs are 

unwound (kinked), which induces a conformational change in the double helix, restricting the 

total number of intercalation sites.
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When studying conformational changes within DNA, it is important to ensure that 

binding takes place exclusively at the intercalation site [15]. Free Eth Br (in solution) is 

strongly quenched by aqueous solvent and therefore only exhibits weak fluorescence relative 

to that which has intercalated. It has been proposed that the major pathway for deactivation 

of free Eth Br in aqueous solution involves proton transfer from the excited singlet state to 

water [9]. The enhancement of Eth Br fluorescence, observed on binding to DNA, is 

attributed to a reduction in the excited-state proton-transfer rate [9]. Indeed, Eth Br within 

the hydrophobic environment of the intercalation site is sterically protected from the aqueous 

solvent, allowing fluorescence. The fluorescence is not affected by the molecular weight of 

the DNA or the base composition [1]. A two stranded hydrogen-bonded structure and not 

simply a stacked structure are required for strong binding of Eth Br [1,9]. Eth Br does not 

bind with equal affinity to all inter-base pair sites, purine-pyrimidine sequences bind more 

strongly than purine-purine and pyrimidine-pyrimidine sequences [2,12,16]. There are abrupt 

changes in the fluorescence intensity at pH>l 1 and <3, these values represent the pH values 

of denaturation of DNA, further evidence that a double stranded structure is required [1].

At high salt (>0.5 M NaCl) [17] concentrations, Eth Br binds almost exclusively to 

double-stranded polynucleotides by intercalation with the resulting enhanced fluorescence. 

The intensity of fluorescence shows the expected qualitative decrease with increasing salt 

concentration, but with some binding that is rather independent of changes in salt 

concentration [1]. The changes in binding are due to increases in the dissociation coefficient, 

with the total number of binding sites remaining constant [1]. However, at low salt 

concentrations (10 mM and below), Eth Br can bind to the outside of the helix where the 

fluorescence efficiency is low, but the absorption spectrum is the same as that obtained on 

binding in the intercalation sites of DNA [1].

Measurement of the ability of a drug to displace Eth Br from DNA has been shown to 

be a valid measurement of DNA binding ability of both intercalative and non-intercalative
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drugs [18-26]. Displacement of Eth Br from DNA provides an indirect method of measuring 

the binding affinity of drugs that lack a chromophore. It does not provide a direct measure of 

the binding constant, but offers a qualitative comparison of binding affinities within a series 

of compounds with similar structures. This assay uses direct excitement of the Eth Br (^excit 

= 546 nm, A,emjss = 595 nm), with no absorbance or fluorescence by the polyamine conjugate

or drug at the critical wavelengths, and NaCl concentrations between 5-50 mM. Loss of Eth 

Br fluorescence has also been used to measure the alkylation of DNA, as methylated DNAs 

have an unaltered binding constant for Eth Br, but a reduction in the number of binding sites, 

hence the loss in fluorescence intensity is directly proportional to the extent of alkylation 

[27].

Lipoplex [28] formation is a new area of research in which the displacement assay 

[24-25,29-30] and adaptations based on the exclusion of Eth Br binding to DNA [30-35] have 

also been used. DNA collapse, by charge neutralisation of cationic lipids, is thought to be a 

key step in lipoplex formation. The fluorescent intensity of the intercalated Eth Br is not 

affected by increasing concentrations of cationic lipid until a specific lipid to DNA ratio is 

reached, upon which a large and sharp decrease of the intensity is observed. Hard et al. [36] 

have demonstrated that the binding constant of Eth Br is dependent on the molecular 

flexibility of DNA in linker regions of chromatin and that this flexibility is altered through 

cationic compaction. Thus, DNA condensation might be expected to lower the affinity of Eth 

Br for DNA and therefore its exclusion cannot be considered to be a direct measure of a 

drug’s binding affinity. Basu et al. [17] also concluded from a study of polyamines binding 

to DNA that simple polyamine-DNA association was not entirely responsible for the release 

of Eth Br. DNA bending induced by the polyamine binding above a critical concentration 

caused conformational changes within the double helix that facilitated the release of bound 

Eth Br.
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The model for Eth Br intercalation proposed by Sobell et al. [4] shows the need for 

flexibility within the double helix of DNA to allow intercalation. Eth Br exists in equilibrium 

between the intercalated sites and free in solution. Therefore, loss of flexibility in the double­

stranded structure of DNA through condensation will result in a shift in the binding 

equilibrium of Eth Br into the solution phase, with the resultant loss in fluorescence.

In Gershon’s [31] adaptation of the displacement assay, the Eth Br is indirectly 

excited by energy transfer from the DNA, and this produces a much greater fluorescent 

enhancement (unpublished data from this laboratory). The assay is based on exclusion, rather 

than displacement of Eth Br. This is achieved by preforming complexes of DNA and 

conjugate and then immediately prior to analysis, adding Eth Br. The fluorescence is 

independent of the size of DNA (100-23,000 bp), closed circular supercoiled plasmid DNA 

(defined sequence and mass) has a similar fluorescence to calf thymus DNA (random 

sequence and mass), and the value is not affected by the absolute concentrations of DNA and 

binder.

In this Chapter, we establish the best conditions for rapid, reproducible and efficient 

evaluation of lipoplex formation using Eth Br as a fluorescent probe. It evaluates excitation 

of the Eth Br both directly (546 nm) and by energy transfer via the DNA (260 nm), and also 

compares addition of Eth Br before and after complex formation. A series of cholesterol 

polyamine carbamates 1-6 (Fig. 2), whose synthesis we have previously described [34], are 

evaluated using the experimentally determined optimum conditions. Finally, changes in the 

salt concentration and their effect on fluorescence, binding affinity of Eth Br and of the 

cholesterol polyamine carbamates are evaluated using the assay.
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1 m = 2, n = 1 
2 m =  l , n =  1
3 m = 0, n = 1
4 m=  1, n = 0

5 n = 1
6 n = 2

Fig. 2. Structures of cholesterol polyamine carbamates

2. Experimental

2.1 Materials

Calf thymus DNA and Eth Br were obtained from Sigma, the cholesterol polyamine 

carbamates were synthesised and their positive charges at pH 7.4 calculated as previously 

described [34]. Compounds were lyophilized as their poly-TFA salts, weighed and dissolved 

in MilliQ water. Eth Br was weighed and a stock solution (0.5 mg/ml) made up in MilliQ 

water. Buffer and NaCl solutions were also made up in MilliQ water and buffers were pH 

adjusted to 7.4 with NaOH. A stock solution (2 ml) of calf thymus DNA (1 mg/ml) for the
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exclusion assay was dissolved in 20 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4 buffer 

and its concentrations determined spectroscopically [28], For the displacement assay, a stock 

solution of approximately 60 pg/ml (3 ml) was made and its concentration was also 

accurately determined spectroscopically [28].

2.2 Apparatus

Fluorescence studies were carried out with a Perkin-Elmer LS 5OB Luminescence 

Spectrometer (^-excit= 260 nm, A,emjss = 600 nm; 1 cm path length 3 ml glass cuvette: slit

width 5 nm). An IBM compatible personal computer was used for data collection, using FL 

WinLab (Perkin-Elmer) software. DNA concentration and purity were determined using 

triplicate spectrophotometric readings at 260 (for DNA concentration) and 280 nm (protein 

contamination) with a Milton Roy Spectronic 601 spectrometer [28].

2.3 Exclusion assay

6 pg (6 pi of 1 mg/ml solution, [DNA base-pair] = 3.0 pM, [28]) of DNA was diluted 

to 250 pi with buffer (2 mM HEPES, 150 mM NaCl, pH 7.4). Varying masses of cholesterol 

carbamate (dependent on the charge ratio required) were diluted to a volume of 250 pi with 

buffer (2 mM HEPES, 150 mM NaCl, pH 7.4) and added to the DNA, mixed in a 

microcentrifuge and incubated for 30 minutes at ambient temperature. Each solution was 

then diluted to 3 ml with 20 mM NaCl. Immediately prior to analysis, 3 pi of Eth Br solution 

(0.5 mg/ml, 1.3 mM, effectively present in excess) was added, the sample was mixed on a 

bench top vortex and the fluorescence measured. The fluorescence was expressed as the 

percentage of the maximum fluorescence signal when Eth Br was bound to the DNA in the 

absence of competition for binding and was corrected for background fluorescence of free 

Eth Br in solution.
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2.4 Displacement assay

The concentration of the DNA stock solutions (approximately 60 pg/ml, 3 ml) was 

determined spectroscopically and 6 pg (approximately 300 pi) of DNA was diluted to 3 ml 

with buffer (20 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) in a glass cuvette stirred 

with a micro-flea. Immediately prior to analysis, 3 pi of Eth Br solution (0.5 mg/ml) was 

added to the stirring solution and allowed to equilibrate 1 min. 5 pi aliquots of the 

cholesterol carbamate (0.25 mg/ml) were then added to the stirring solution and the 

fluorescence measured after 1 min equilibration. The fluorescence was expressed as the 

percentage of the maximum fluorescence signal when Eth Br was bound to the DNA in the 

absence of competition for binding and was corrected for background fluorescence of free 

Eth Br in solution. 150 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4 buffer was used for 

the experiments conducted at elevated salt concentration.

Results and discussion

3.1. Optimisation o f the excitation wavelength

Both direct and indirect excitation of Eth Br have been used to determine the relative 

binding affinity of molecules for DNA. In this Chapter, we determine if changing the 

excitation wavelength from 546 (direct excitation) to 260 nm (indirect excitation through 

energy transfer) was valid. Therefore, carbamate 1 was tested in the displacement assay at 

low salt (20 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) using both excitation 

wavelengths and fluorescence emission was measured at 600 nm (slit width 5 nm; 1 cm path 

length). The results are detailed in Fig. 3 and 4, and are represented as a function of charge 

ratio [28], the positive charge equivalents of the polyamine conjugate to the negative charge 

equivalents of the DNA phosphate backbone. In Fig. 3, these data are represented as a 

function of the percentage fluorescence and they show no apparent difference between the
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Fig. 3. Eth Br displacement assay o f  cholesterol polyam ine carbamate 1. ( ♦ )  D isplacem ent assay, 6 pg o f  CT 

D N A  in buffer (3 ml, 20  mM NaCl, 2 mM HEPES, 10 pM  EDTA, pH 7.4) w as m ixed with Eth Br (3 pi o f  0.5 

m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min equilibration tim e) were added and the 

fluorescence (%) determined (n = 2) using an excitation wavelength o f  260  nm. (■ )  Displacem ent assay using 

an excitation w avelength o f  546 nm (n =  1)
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Fig. 4. Eth Br displacement assay o f  cholesterol polyam ine carbamate 1. ( ♦ )  D isplacem ent assay, 6 pg o f  CT  

D N A  in buffer (3 ml, 20 mM NaCl, 2 mM HEPES, 10 pM  EDTA, pH 7 .4) w as m ixed with Eth Br (3 pi o f  0.5  

m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min equilibration tim e) were added and the absolute 

fluorescence determined (n = 1) using an excitation wavelength o f  260  nm. (■ )  D isplacem ent assay using an 

excitation wavelength o f  546 nm (n =  1)
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two methods. However, when these data are represented as a function of absolute 

fluorescence, Fig. 4, it is apparent that indirect excitation of the Eth Br produces a more 

sensitive assay. In conclusion, indirect excitation of Eth Br by irradiation at 260 nm was 

chosen as the method of inducing fluorescence of Eth Br.

3.2. Comparison o f  the displacement and exclusion assay

The aim was to determine if excluding Eth Br from binding rather than displacing it 

from its intercalation sites would have any influence on the assay (Xexcjt = 260 nm; A,emjss =

600 nm; slit width 5 nm). Fig. 5 shows the results of carbamate 1 in both assays. The small

s?
0)o
cao
£o

Li.

Charge ratio

Fig. 5. Eth Br displacem ent and exclusion assays o f  cholesterol polyam ine carbamate 1. ( ♦ )  Displacem ent 

assay, 6 pg o f  CT D N A  in buffer (3 ml, 20  mM NaCl, 2 m M  HEPES, 10 pM  EDTA, pH 7.4) w as m ixed with 

Eth Br (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 mg/ml, 1 min equilibration tim e) were added 

and the fluorescence determined (n =  1). (■ )  Exclusion assay, 6 pg o f  CT D N A  was m ixed with varying 

m asses o f  cholesterol carbamate (dependent on the charge ratio required) in buffer (500 pi, 2  m M  HEPES, 150 

mM NaCl, pH 7.4) and incubated for 30 mins. Each solution was then diluted to 3 m l with 20 m M  NaCl, prior 

to analysis, 3 pi o f  Eth Br solution (0.5 m g/m l) was added and the fluorescence measured (n =  2)
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difference between the curves is due to the slightly higher salt concentration in the exclusion 

assay, as the binding of this type of compound is salt dependent [17,37]. The results from the 

displacement assay are from a single experiment and those from the exclusion assay are the 

mean of two experiments (Fig. 5).

The reproducibility of the assay was verified by repeat experiments, Fig. 6 shows the 

results of six repeats of carbamate 1 in the displacement assay and Fig. 7 two repeats of 

carbamate 1 in the exclusion assay. It is apparent from Fig. 7 that there are large variations in 

the readings for the exclusion assay when compared to the displacement assay. Indeed, 

Gershon et al. [31] reported at intermediate ratios of binder to DNA clear fluctuations of the 

fluorescence intensity as a function of time were observed, culminating in background 

fluorescence values. At high and low ratios the fluorescence is not time dependent in its 

behaviour. The time dependent fluctuations were attributed to the large sensitivity of the 

DNA condensation process to minor changes in the environmental conditions. For the 

exclusion assay, a stock solution of DNA at 1 mg/ml (2 ml) was made and 6 pi aliquots (6 

pg) used for each data point. For the displacement assay, stock solutions of approximately 60 

pg/ml (3 ml) were made, the concentration determined spectroscopically, and the required 

volume to give 6 pg (« 300 pi) of DNA diluted to 3 ml with buffer. Therefore, as the 

fluctuations in the exclusion assay are dependent on minor changes in the DNA 

concentration, the less accurate method of DNA sample preparation may account for some of 

the fluctuations.
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Fig. 6. Eth Br displacement assay o f  cholesterol polyam ine carbamate 1. 6 pg o f  CT D N A  in buffer (3 ml, 20  

mM NaCl, 2 mM HEPES, 10 pM  EDTA, pH 7.4) was mixed with Eth Br (3 pi o f  0.5 m g/m l) and aliquots o f  

compound (5 pi o f  0.25 m g/m l, 1 min equilibration time) were added and the fluorescence (%) determined (n =

6)
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Fig. 7. Eth Br exclusion assay o f  cholesterol polyam ine carbamate 1. 6 pg o f  CT D N A  was m ixed with varying 

m asses o f  cholesterol carbamate (dependent on the charge ratio required) in buffer (500 pi, 2 m M  HEPES, 150 

mM  NaCl, 10 pM  EDTA , pH 7.4) and incubated for 30 mins. Each solution was then diluted to 3 ml with 20  

mM NaCl, prior to analysis, 3 pi o f  Eth Br solution (0.5 m g/m l) was added and the fluorescence (%) measured

(n =  2)
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To confirm the reproducibility of the displacement assay over the exclusion assay 

carbamates 1-6 were screened, Fig. 8 shows the exclusion assay of all six cholesterol 

polyamine carbamates 1-6 and Fig. 9 the displacement assay. These data demonstrate the 

problems of fluctuations in the fluorescence at intermediate values in the exclusion assay, that 

are absent in the displacement assay results (Fig. 9). In conclusion, both assays produce 

similar overall results, however, the displacement assay is much more rapid and without the 

fluctuations in fluorescence at intermediate values.
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Fig. 8. Eth Br exclusion assay o f  cholesterol polyam ine carbamates 1-6 at low  salt concentration (20  mM  

NaCl). Exclusion assay, 6 pg o f  CT D N A  was m ixed with varying m asses o f  cholesterol polyam ine carbamate 

(dependent on the charge ratio required) in buffer (500 pi, 2 mM HEPES, 150 mM NaCl, 10 pM  ED TA , pH 

7.4) and incubated for 30 mins. Each solution was then diluted to 3 ml with 20 mM NaCl, prior to analysis, 3 

pi o f  Eth Br solution (0.5 m g/m l) was added and the fluorescence measured (n =  1)
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Fig. 9. Eth Br displacement assay o f  cholesterol polyam ine carbamates 1-6 at low  salt concentrations (20 mM  

NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 20  mM NaCl, 2 mM HEPES, 10 pM  EDTA, pH 7.4) was m ixed with  

Eth Br (3 pi o f  0.5 m g/m l) and aliquots o f  com pound (5 pi o f  0.25 m g/m l, 1 min equilibration tim e) were added 

and the fluorescence (%) determined (n =  1)

3.3. High (150 mM  NaCl) and low salt concentration (20 mM NaCl) in the displacement 

assay

The binding affinity of spermine for DNA has been shown to be salt dependent 

[17,37], and variation of the salt concentration in the assay may provide important 

information with respect to lipoplex formation. Therefore, we have investigated the binding 

behaviour of cholesterol polyamine carbamates 1-6 at physiological salt concentrations (150 

mM NaCl, Fig. 10). The fluorescent intensity of Eth Br is also salt dependent and therefore 

to increase the sensitivity of the assay the excitation and emission slit widths were increased 

from 5 to 10 nm. Fig. 10 shows a change in order of the relative binding affinity of each 

carbamate compared to the results at low salt concentrations (20 mM NaCl, Fig. 9) and 

incomplete exclusion of all the Eth Br. Basu et al. [17] have previously shown, using
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pentaamines, the inability to displace completely Eth Br from DNA at elevated salt 

concentrations. This phenomenon was explained by aggregation of the polyamine-DNA 

complex before complete exclusion of the Eth Br had occurred. Carbamates 1-6 produced 

similar results. In conclusion, Eth Br fluorescence decreases at elevated salt concentrations 

resulting in a decrease in the sensitivity of the assay and incomplete displacement of Eth Br is 

apparent. Variations in this parameter may provide useful information with respect to 

lipoplex formation and stability, a first key step in gene therapy.
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Fig. 10. Eth Br displacement assay o f  cholesterol polyam ine carbamates 1-6 at high salt concentrations (150  

mM  NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 150 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) was m ixed  

with Eth Br (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min equilibration time) were 

added and the fluorescence (%) determined (n = 1)
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Chapter 3

Homologation of polyamines in the rapid synthesis of 

lipo-spermine conjugates and related lipoplexes

54



Abstract: Lipo-polyamine amides are useful synthetic (non-viral) gene delivery vectors. 

Desymmetrisation of readily available symmetrical polyamines is an important first step in 

the synthesis of such compounds. The application of trifluoroacetyl as a protecting group 

allows unsymmetrical polyamine amides to be easily prepared. The application of a 

homologation strategy, based upon reductive alkylation, allows the sequential and 

regiocontrolled introduction of additional charges to polyamines. Tetraamine spermine and a 

pentaamine derivative have been A^-acylated with various single alkyl chains and their 

relative binding affinity for DNA determined using an Eth Br displacement assay. The 

importance of the number of charges on the polyamine and the type of lipid covalently 

attached to the polyamine is demonstrated.

Introduction

Polyamines and polyamine amides, including the triamine spermidine 1 and the 

tetraamine spermine 2 (Fig. 1) have been investigated by Blagbrough and co-workers.1'11 

These naturally occurring linear amines are found in most living cells and play important 

roles in vivo, as discussed in chapter 1. Maintaining the 3D structure of DNA,12'16 by 

condensation11,17,18 is one of these roles. Spermidine 1 and spermine 2 contain a 3-4 

methylene spacing between the amino functional groups which means that these molecules 

are essentially fully protonated at physiological pH (i.e. ammonium ions).19 Therefore, they 

should interact readily with the DNA phosphate backbone, causing condensation by charge 

neutralisation.7

However, these polyamine-DNA interactions are readily reversible under 

physiological conditions20 and form one of the plethora of roles played by spermidine I and 

spermine 2 in vivo, together with polycationic histones.21,22,23 Structure-activity relationship 

studies (for a review see: Chapter 1 and Blagbrough et al.1) with polyamines have shown that 

these molecules are ideally suited to bind to and then condense DNA.24 In order to reinforce
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these effects, it is apparently beneficial if a lipid is covalently bound to the polyamine moiety, 

such a lipid can be cholesterol,24,25 a bile acid,26 or an aliphatic chain.27,28,29 As part of our 

continuing studies on polyamine-mediated DNA condensation30,31,32,33 we have developed a 

rapid synthetic route to unsymmetrically protected spermine,30 homologated this compound31 

to allow the introduction of another secondary amine and hence an additional positive charge. 

The covalent attachment of different lipids (stearic [octadecanoic], palmitic [hexadecanoic], 

oleic [ds-9-octadecenoic] and elaidic [toms-9-octadecenoic] acid) then allows structure- 

activity relationships for their binding to DNA to be investigated.

spermidine 1

spermine 2

Fig. 1. Structure of spermidine 1 and spermine 2

Recently, we and others have shown that polyamines and polyamine amides can be 

prepared by reductive alkylation,7'9,34,35 consecutive Michael additions to acrylonitrile,35,36 or 

regioselective acylation of unsymmetrically protected polyamines. M,34‘37 The tetraamine 

spermine 2 is readily available and is an ideal starting material to incorporate three (or four) 

positive charges in to a target molecule. However, the desymmetrisation protocol is by 

nature low yielding and often involves laborious chromatographic purifications. Such low 

yielding and repetitive steps are not efficient on a gram scale. There are problems with 

efficient syntheses of V-mono-Z- and A^-mono-Boc-spermine. Using either Z-Cl together
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with sensitive pH control, or (Boc)20  with the polyamine in large excess, was either not 

practical or required time-consuming chromatographic purification from the excess of 

unreacted polyamine.38-40 In this Chapter, we report a practical synthesis of unsymmetrical 

polyamine amides using trifluoroacetyl as a protecting group whose introduction and removal 

can be controlled under facile conditions.

The ratio of primary amine to protecting group reagent is critical in order to avoid di­

protection (of both primary amines) and poly-protection (including secondary amines).38 

Presumably, the higher nucleophilicity of the secondary amines is masked by corresponding 

steric effects,35 as there is always selectivity. The facile and specific (for primary over 

secondary amines) introduction of trifluoroacetyl using ethyl trifluoroacetate, as reported in 

recent Tetrahedron Letters,41 and its ready removal with aqueous ammonia42 (pH = 11) or 

with methanolic aqueous K2C 03 solution43 makes it a superior protecting group to 

carbobenzoxy (Z, CBZ) and to terf-butoxycarbonyl (Boc) for the purpose of gram scale 

protection of polyamines. Thus, trifluoroacetyl is the protecting group of choice, over Z and 

Boc, for practical routes to unsymmetrical polyamine amides and carbamates.30'33 Therefore, 

we have prepared N \ N 2, N  3-tri-Boc-spermine 6 (Fig. 2) by this strategy.

We have prepared unsymmetrical polyamine amides which are charged at 

physiological pH and therefore interact with DNA. The syntheses of lipo-spermidines 8,10, 

12,14 (Fig. 3) which mimic the charge distribution of spermidine 1, but are covalently 

attached to different lipids, are outlined. The charge distribution of spermine 2 is mimicked 

using reductive alkylation on the poly-protected spermine 6, to form pentaamine 19 (Fig. 4) 

introducing a secondary amine and hence an additional charge. Covalent attachment of 

stearic acid, leads to target compound 21 (Fig. 4). We are utilising the charge distribution 

found in the natural polyamines spermidine 1 and spermine 2 as biomimetic warheads for the 

efficient condensation of DNA, an essential first step in non-viral gene delivery.
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3 R = H; R '=COCF3
4 R = COCF3; R' = COCF3

H
BocN' ‘N*

Boc

Boc 
,N,

H
,N R

5 R = COCF3
6 R = H

Fig. 2. Structures of acetamides 3 and 4, and carbamates 5 and 6

7 R = Boc; n = 0 9 R = Boc; n = 1
8 R = H+; n = 0 1 0 R  = f |+; n = l

11 R = Boc; n = 1 Qis C=C
12 R = H+; n =  l,cwC=C

13 R = Boc; n = 1 transC=C
14 R = Hj+; n = 1 fransC=C

Fig. 3. Structures of tri-Boc protected polyamine amide intermediates 7, 9 ,11 ,13  and target polyamine amides 

8,10, 12,14

Lipo-polyamine conjugates 8,10,12,14 and 21 interact with DNA (forming 

lipoplexes44) as demonstrated by an ethidium bromide (Eth Br) fluorescence quenching 

assay.45 Prevention of Eth Br binding to DNA is a method of studying the binding behaviour 

of polyamines with nucleic acids.45'51 While the modes of binding to DNA of aliphatic 

polyamines and Eth Br (a polyaromatic intercalator) are certainly different, this assay does
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Fig. 4. Structures o f alcohol 15, aldehyde 16, poly-Boc protected pentamines 17-19, tetra-Boc protected amide 

20 and target amide 21

offer a qualitative comparison of the DNA-binding ability of similar classes of compounds.50' 

52 Therefore, compounds 8,10,12,14, and 21 can be critically compared as a function of 

both the concentration and charge ratio44 required to displace Eth Br binding to DNA. The 

positive charge on the spermidine headgroup has been determined previously on 3- 

cholesteryl carbamate analogues to be 2.4.32 The positive charge on the spermine headgroup 

was determined potentiometrically as 3.4 (see Chapter 4).

Results and Discussion

Synthesis

Spermine 2 was selectively protected on one of the primary amines with ethyl 

trifluoroacetate in order to afford mono-trifluoroacetamide 3, but also affording di- 

trifluoroacetamide 4.30 Immediately, in this solution, the remaining free amines were Boc 

protected with di-ter/-butyl dicarbonate to afford compound 5. Selective deprotection of the 

trifluoroacetamide was then achieved by increasing the pH of the solution above 11, with
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conc. aqueous ammonia, to afford polyamine 6 with a free primary amine unmasked. N- 

Acylation of protected spermine 6 with hexadecanoic acid (palmitic), mediated by DCC and 

catalytic 1-hydroxybenzotriazole afforded tri-Boc protected lipo-spermidine 7. Deprotection 

by treatment with trifluoroacetic acid and purification by RP-HPLC gave the 

polytrifluoroacetate salt of polyamine amide 8. Poly-Boc protected spermine 6 was also N- 

acylated with stearic (octadecanoic), oleic [cz's-9-octadecenoic], elaidic [trans-9- 

octadecenoic] acids to afford amides 9,11 and 13 respectively. Deprotection afforded and 

purification by RP-HPLC gave the target polyamine amides 10,12 and 14.

3-Aminopropan-l-ol was Z-protected under Schotten-Baumann conditions to afford 

alcohol 15. Swem oxidation of the primary alcohol 15, with oxalyl chloride activated 

DMSO, gave aldehyde 16. Reductive alkylation of the primary amine in 6 with aldehyde 16 

afforded protected polyamine 17. Protection of the newly introduced secondary amine (A4) 

was achieved with di-tert-butyl dicarbonate to form fully protected polyamine 18. 

Hydrogenation of the Z carbamate, in the presence of Pearlman’s catalyst (Pd(OH)2) afforded 

protected unsymmetrical polyamine 19. iV-Acylation of protected homologated spermine 19 

with hexadecanoic acid, mediated by DCC and catalytic HOBt afforded tetra-Boc protected 

lipo-spermine 20. Deprotection by treatment with trifluoroacetic acid gave the 

polytrifluoroacetate salt of polyamine amide 21.

Nomenclature

We have named the target compounds as their corresponding spermine derivatives, using 

IUPAC conventions. Fig. 5 outlines the number system used in the NMR assigment of 

spermine (TFA salt), and for ̂ -(hexadecanoyty-ljlb-diamino^SjlS-triazahexadecane 21.
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2 spermine as the poly-TFA salt

21

Fig. 5. Numbering system used in the NMR assignment of spermine 2 (poly-TFA salt) and polyamine amide 21 

(poly-TFA salt)

Structural assigment

In order to make a ]H and 13C assignment for the polyamine headgroups, we have first 

conducted NMR experiments on spermine (Figs. 6 and 7). To establish confidence in our 

analysis of spermine, we have compared them to the literature values53 and also to those 

calculated using additivity rule calculations (Fig. 6).54 The techniques used for spermine 

were then used for the assignments of the polyamine amides. The assignment of the 

spermidine headgroup in amides 8,10,12, and 14 is also compared to a wasp toxin with the 

same polyamine moiety (Fig. 8).55

The resonance of the methylene backbone of the free base of spermine can be found 

in three distinct regions,55,56,57 around 50 ppm methylene groups adjacent to a secondary 

amine (C3, C5, C8, CIO), around 40 ppm methylene groups adjacent to a primary amino 

group (1 and 12) and around 30 ppm methylene groups separated from nitrogen by at least 

one carbon on each side (C2, C6, C7, Cl 1). The protonation of amines causes a shielding of
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the carbon atoms in the vicinity of the nitrogen resulting in an up-field shift in their signal. 

Methylene groups positioned alpha to an amine are deshielded more, and therefore have 

larger down field 13C shifts, than those positioned further away.58,59 Methylene groups alpha 

to a secondary amine have larger downfield chemical shifts than those alpha to a primary 

amine.58 The upfield shift on protonation of amines is detectable as far as five carbon atoms 

away, the greatest being at the P-position.58,60 Thus, in the fully protonated spermine species 

carbons 5 and 8 have the furthest downfield signals as they are both a  and 8 to a protonated 

secondary amine (Fig. 6). C3 and CIO have signals that are upfield from C5 and C8 as they 

are a  to a secondary and y to a primary protonated amines. Cl and C12 come into resonance 

the furthest upfield of the methylenes attached directly to an amine because they are a  to a 

primary and 8 to a secondary protonated amines (Fig. 6). C2 and Cl 1 are influenced by two 

p protonated amines (primary and secondary) and therefore come into resonance further 

downfield from C6 and C7 which are influenced by a p and a y protonated secondary amines 

(Fig. 6).

The 13C chemical shifts estimated for spermine (Fig. 6) on the basis of the additivity 

rules54 differ in general by about 5 ppm from the experimental values. This method claims to 

be within 5 ppm of the observed values, which is in agreement with our findings. More 

importantly, these predicted values agree with the order of the observed assignments, with C6 

and C7 coming into resonance nearest to TMS. !H NMR chemical shift predictions54 for the 

fully protonated spermine species are 1.70 ppm (C6, C7), 2.2 ppm (C2, Cl 1) and 2.94 (Cl, 

C3, C5, C8, CIO, C l2) which is in agreement with the measured values (see experimental), 

except for the fact that C3 and CIO are chemically distinct from Cl, C5, C8, C12 and come 

into resonance further downfield. This can be accounted for by the deshielding effect of a y 

protonated primary amine which is not allowed for in the calculation. The !H, 13C correlation 

spectrum for spermine (Fig. 7) confirms the proton and carbon assignments and shows the 

validity of these calculation methods.
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®  11 h 2 7 5 3 1

Assignment Literature Observed Calculated

5 and 8 49.8 46.4 50.2

3 and 10 47.4 44.1 49.5

land  12 39.5 36.4 35.3

2 and 11 26.5 24.0 26.6

6 and 7 25.5 22.9 21.6

Fig. 6. I3C NMR assignment for spermine. Literature values 53 are in D20  at 40 °C for the fully protonated 

species as the tetrahydrochloride salt. The observed values are in D20  at 22 °C for the fully protonated species 

as the tetratrifluoroacetic acid salt. Calculated values are estimates based on additivity rule calculations of 13C 

chemical shifts in aliphatic compounds.54
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1-CH2, 5-CH2,8-CH2, 12-CH2 
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Fig. 7. ‘H, 13C chem ical shift correlation spectrum o f  spermine 2 (3 .4 .3 ) as its poly-TFA  salt, show ing  

resolution o f  the polyam ine chain resonances ([2H]6 DM SO, 21.2  °C)
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7V-Acylation of one of the primary amines of spermine leads to an unsymmetrical polyamine 

and therefore loss of symmetry of the chemical shifts in the propylene chains. Consequently, 

C l, C2 and C3 are now under the influence of an amide rather than a protonated primary 

amine, and therefore are less deshielded and come into resonance further upfield than their 

counterparts, CIO, Cl 1 and C l2, on the other propylene chain. The 13C assignment for 

compound 8 (Fig. 8) compares favourably for the assignment of the polyamine moiety in 

philanthotoxin-3.4.3 and the calculated values are within 5 ppm. However, using the 

additivity rules, we calculate that C l2 will come into resonance further upfield than Cl, 

which is clearly not the case experimentally. Comparison of the *H, 13C chemical shift 

correlation spectrum of spermine, poly-TFA salt (Fig. 7) and compound 8 (poly-TFA salt, 

Fig. 9) shows that as the polyamine becomes unsymmetrical by the formation of an amide 

bond the protons on Cl come into resonance further upfield from those protons adjacent to a 

protonated amine, Cl 2. The assigment of philanthotoxin-3.4.3 is also in agreement with this 

observation.54 Calculation of the !H chemical shifts of a methylene group adjacent to an alkyl 

amide (2.99 ppm) and a protonated primary amine (2.67 ppm) is also in agreement with the 

correlation spectroscopy assignment. This allows the unequivocal identification of Cl which 

couples to a signal at 36.8 ppm and allows the signal at 37.3 to be assigned to C12. The 13C 

assignment of the spermidine head group is therefore based on the comparison with a 

comparable literature compound, calculations using additivity rules and by !H, 13C chemical 

shift correlation spectroscopy.
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Assignment 22 8 Calculated (8)

5 and 8 51.2,51.1 47.8 50.2

10 48.9 46.0 49.5

3 48.3 45.4 49.0

12 41.4 37.3 35.3

1 39.9 36.8 38.4

11 34.4 26.5 26.6

2 30.7 24.6 22.0

6 and 7 29.1 23.6,23.7 21.6

Fig. 8. 13C NMR assignment for philanthotoxin-3.4.3 55 22 in D20  at 25 °C for the fully protonated species as 

the tetrahydrochloride salt. The observed values for compound 8 are in D20  at 22 °C for the fully protonated 

species as the tritrifluoroacetic acid salt. Calculated values are estimates based on additivity rule calculations of 

13C chemical shifts in aliphatic compounds.54



6-CH,, 7-CH,
3-CH2, 5-CH2, 8-CH2, 10-CH2, 12-CH2

15’-CH.

2-CH-

4’-CH2 to 13’-CH-

14’-CH-

12-CH-

3-CH.

10-CH-

1-CH-3’-CH2 11-CH2 2-CH

2’-CH-

2.51.5 2.0 3.0

5-CH2, 8-CH2.

Fig. 9. 'H, 13C chem ical shift correlation spectrum o f  polyam ine amide 8 as its poly-TFA  salt, show ing  

resolution o f  the polyam ine chain resonances (D 20 ,  21.3 °C)
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The 13C NMR assignment of compound 21 (Fig. 10) is in good agreement with the 

calculated values. Once again the calculated chemical shifts of Cl 6 and Cl are not correct, 

but the !H, 13C chemical shift correlation spectrum (Fig. 11) confirms the assignments. 

Calculation of the !H chemical shifts of a methylene group adjacent to an alkyl amide (2.99 

ppm) and a protonated primary amine (2.67 ppm) are also in agreement with this observation. 

This allows the unequivocal identification of Cl which couples to a signal at 36.8 ppm and 

allows the signal at 37.3 to be assigned to C l6. C14 is chemically distinct

Assignment Observed Calculated

C9 and C12 46.1 50.2

C14 44.7 49.5

C3, C5 and C l 44.0,43.9,43.8 49.0,47.2,47.2

C16 36.1 35.3

Cl 35.6 38.4

C2 26.1 27.7

C15 23.8 26.6

CIO and C ll 22.7 21.6

C6 22.5 22.3

Fig. 10. I3C NMR assignment for compound 21 are in DMSO at 22 °C for the fully protonated species as the 

tetratrifluoroacetic acid salt. Calculated values are estimates based on additivity rule calculations of 13C 

chemical shifts in aliphatic compounds.54

from C3, C5 and C7 because it is y to a protonated primary amine, based on this fact and the 

calculated values it is assigned to the downfield signal at 44.7. The assigments for C2, C l5,
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3-CH2, 5-CH2, 7-CH2, 9-CH2,12-CH2, 14-CH2, !6-CH2

3’-CH.
4 ’-CH2 to IS’-CHLj. 2-CH-

1-CH-
16’-CH-

16’-CH2
2 ’-CH.15’-CH.

6-CH T—r T TT

10-CH2, 11-c h .

15-CH.

3’-CH.

4 ’-CH, to 13’-CH

14’-CH.

2’-CH.

1-CH.

3-CH2, 5-CH2, 7-CH.

Fig. 11. 'H, 13C chemical shift correlation spectrum o f  polyam ine amide 21 as its poly-TFA  salt, show ing  

resolution o f  the polyam ine chain resonances ([2H]6 DM SO, 21.4 °C)
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CIO, Cl 1 and C6 are based on the *H, 13C chemical shift correlation spectroscopy (Fig. 11). 

The 13C assignment of the spermine head group is therefore based on calculations using 

additivity rules and by !H, 13C chemical shift correlation spectroscopy.

DNA binding affinities

The polyelectrolyte theory of Manning61 predicts that when 90 % of the charge on 

DNA is neutralized, condensation will occur.18,62’63 DNA condensation is clearly an efficient 

process with lipo-polyamine amides 8 , 1 0 ,1 2 ,1 4 , and 21 (Fig. 12), as nearly complete 

exclusion of Eth Br occurs before the charge ratio of the complex reaches one.

100 _

60 IO)o
c — X —<DO
</5 —X—50 -L£
o3

0 0.2 0.4 0.8 1.2 1.4 1.60.6 1
charge ratio

Fig. 12. Eth Br fluorescence assay o f  com pounds 8, 1 0 ,1 2 , 14 and 21 at pH 7.4, 20 mM NaCl, as a function o f  

charge ratio

The charge ratio at which 50 % of the Eth Br (CR50) is displaced are 0.52, 0.49, 0.50, 

0.50 and 0.51 respectively. Aggregation of the DNA probably accounts for incomplete 

exclusion of Eth Br from the DNA.64 When these data (at 20 mM NaCl) are represented as a 

function of concentration of the lipopolyamine rather than charge (Fig. 13), compound 21 

displaces 50 % of the Eth Br at a much lower concentration (0.90 pM) compared to
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compounds 8 (1.35 pM), 10 (1.27 pM), 12 (1.29 pM) and 14 (1.29 pM). Binding affinity to 

DNA is a function of charge and therefore tetraamine 21 should bind with higher affinity than 

triamines 8 ,1 0 ,1 2 , and 14.

100 T

90 i

80 _

a>o
c

60 1
a>o — X —§ 50 _
o
£ 40 _

X

10 _

0 0.5 1 1.5 2 2.5 3 3.5 4

concentration (uM )

Fig. 13. Eth Br fluorescence assay o f  polyam ine amides 8, 1 0 ,1 2 , 14 and 21 at pH 7.4, 20  mM  N aCl, as a 

function o f  concentration (jiM ).

At 150 mM NaCl DNA condensation is still clearly an efficient process with lipo- 

polyamine amide 10 (CR50 = 0.55, Fig. 14), however for amides 1 2 ,1 4  and 21 the process is 

less efficient (CR50 = 1.12, 1.00 and 1.05 respectively). Conjugate 8 contains the same 

spermidine headgroup as compound 10, but two less methylenes in the alkyl chain and yet 

has a profoundly different binding affinity for DNA (CR50 = 1.67 compared to 0.55). These 

data (at 150 mM NaCl) represented as a function of concentration (Fig. 15), show binding 

affinity to DNA of these lipopolyamines are a function of charge and the lipid covalently 

attached to the polyamine. Amides 10 and 21 displaces 50 % of the Eth Br at a much lower 

concentrations (1.40 and 1.85 pM) compared to compounds 8 ,1 2 , and 14 (4.27, 2.85, and 

2.56 pM respectively). Conjugate 21 has 3.4 positive charges distributed on the polyamine
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headgroup compared to 2.4 on the other compounds. Amide 10 has a saturated C l8 alkyl 

chain compared to the C 16 alkyl chain on compounds 21 and 10 and the unsaturated C l8 

alkyl chains on amides 12 and 14 Polyamine amide 10 has the greatest binding affinity and 

we therefore conclude that the nature of the lipid attached to the polyamine seems to be a 

more critical function at higher salt concentrations. Higher concentrations of lipo- 

polyamines, at elevated salt concentrations, are also required to displace the Eth Br, reflecting 

the salt dependent DNA binding character of this type of compound.

100 _

80

70 _
— X —

X60

50

40

30

20 '

-X  X
10

0 4___________________________ 4____________________________ 4__________________________ 4____________________________ t_________________________ 4___________________________4

0 0.5 1 1.5 2 2.5 3
charge ratio

Fig. 14. Eth Br fluorescence assay o f  compounds 8, 10, 12, 14 and 21 at pH 7.4, 150 m M  NaCl, as a function  

o f  charge ratio
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Fig. 15. Eth Br fluorescence assay o f  compounds 8, 10, 12, 14 and 21 at pH 7.4, 150 mM  NaCl, as a function 

o f  concentration (pM )

These data support our hypothesis that DNA binding affinity and condensation are a 

sensitive function of both the charge32 and hydrophobicity65 of this type of ligand. We have 

used an adaptation of an Eth Br displacement assay based on the work of Cain.52 

Previously32,31,65 we have used an Eth Br exclusion assay based on the work of Gershon49 and 

found it to be both time consuming and produce variable results at intermediate 

lipopolyamine to DNA charge ratios. Gershon49 has demonstrated at high and low charge 

ratios, where the fluorescence intensity is at its extreme values, no time dependence is 

observed. However, at intermediate values, time dependence is observed. The displacement 

assay of Cain52 has previously been used to compare the binding affinity of both intercalating 

and non-intercalating drugs and provides rapid and comparable results without any variability 

at intermediate concentrations. In Cain’s original assay, the fluorescence enhancement was 

due to direct excitation of the intercalated Eth Br (^eXc it= 546 nm, A,emjss = 595 nm). In

our adaptation, we have indirectly excited the Eth Br by energy transfer from the DNA, in a
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similar manner to that used by Gershon and co-workers,49 we have demonstrated that this 

produces a much greater fluorescent enhancement (see Chapter 2).

Conclusion

In this work we have developed a novel strategy, using trifluoroacetyl as a protecting 

group, to allow the rapid synthesis of unsymmetrical lipo-polyamines. The application of a 

homologation strategy, based on reductive alkylation, in the synthesis of unsymmetrical lipo- 

polyamines has also been demonstrated. Using an Eth Br displacement assay, we have 

established that the binding affinity to DNA of this type of compound is dependent on the 

lipid covalently attached to the polyamine, the positive charge on the polyamine and the salt 

concentration.

Experimental

All chemicals were purchased from Sigma-Aldrich-Fluka Chemical company 

(Gillingham, Dorset) and used without further purification. Column chromatography was 

performed over silica gel 60 (35-75 pm) purchased from Prolabo (Merck). Analytical TLC 

was performed using aluminium-backed plates coated with Kieselgel 60 F254, purchased from 

Merck. The chromatograms were visualised with either potassium permanganate (basic 

aqueous) or ninhydrin (acidic butanolic). Removal of solvents in vacuo means using a Buchi 

Rotavapor at water aspirator pressure. Melting points were carried out using a Reichert-Jung 

Thermo Gfalen Kopfler block and are uncorrected. Polyamines and other salts are highly 

hygroscopic and therefore determination of the melting points of their polytrifluoroacetic acid 

salts was not relevant. High and low resolution fast atom bombardment (FAB) mass spectra 

were recorded on a Fisons VG AutoSpec Q instrument, with m-nitrobenzyl alcohol (mNBA) 

as the matrix. NMR and 13C NMR spectra were recorded using JEOL 270 (operating at 

270 MHz for ]H and 67.8 MHz for 13C) or JEOL EX 400 (operating at 400 MHz for ]H and
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100.8 MHz for 13C) spectrometers. Chemical shifts values are recorded in parts per million 

on the 6 scale. Spectra were referenced internally using either the residual solvent resonance 

for !H and 13C, to TMS, or to 3-(trimethylsilyl)propionic-2,2,3,3-d4acid (sodium salt). 

Coupling constants (J values) are expressed in Hertz and the multiplicities are recorded as s 

(singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet) and b (broad). 

Microanalysis was performed by the Microanalysis Laboratory at the University of Bath. 

However, the presence of polyamines in the cationic lipids makes elementary analysis 

inadequate as a purity criterion.29 Thus, the proposed structures were unambiguously 

assigned using !H and ,3C NMR and accurate MS although the elemental analysis was not 

within the ±0.4 %. Anhydrous methanol was prepared by distillation from magnesium 

turnings and iodine and was stored over 3 A molecular sieves under anhydrous nitrogen. 

Anhydrous CH2C12 and DMSO were prepared by distillation from calcium hydride (5 % w/v) 

and were stored over 4 A molecular sieves. Analytical and semi-preparative RP-HPLC were 

performed with a Jasco PU-980 pump equipped with a Jasco UV-975 detector (X = 220 nm). 

The column stationary phase was Supelcosil ABZ+Plus, 5 pm (15 cm x 4.6 mm for the 

analytical and 25 cm x 10 mm for the semi-preparative columns). The mobile phase was an 

isocratic mixture of methanol and 0.1 % aqueous trifluoroacetic acid, with 1.5 and 4.0 ml/min 

flow rates for the analytical and semi-preparative columns respectively.

The DNA binding affinities of the target compounds were measured using an Eth Br 

fluorescence displacement assay based upon the exclusion of Eth Br (1.3 pM) from calf 

thymus DNA (6 pg, [DNA base-pair] = 3.0 pM). The assay is an adaptation of the work of 

Cain et al. ,52 the method is rapid and involves the addition of microlitre aliquots of polyamine 

conjugate to a 3 ml solution of Eth Br (1.3 pM) and calf thymus DNA (6 pg, [DNA base- 

pair] = 3.0 pM) in buffer (20 mM NaCl, 2 mM HEPES, pH 7.4) with the decrease in 

fluorescence monitored (^eXcit= 260 nm, ^emiss = ^00 wn; 1 cm path length glass cuvette)
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recorded after each addition (1 min equilibration time). The decrease in fluorescence was 

critically compared for compounds 8,10,12,14,21 as both the charge ratio44 (Fig. 12) and 

concentration (Fig. 13). Salt dependence of the binding affinities of the conjugates has also 

been investigated using this assay at physiological salt concentration (150 mM NaCl, 2 mM 

HEPES, pH 7.4) and the decrease in fluorescence was critically compared as both the charge 

ratio (Fig. 14) and concentration (Fig. 15).

General procedure A: Amine acylation

To 1.0 mmol of poly-Boc-protected polyamine dissolved in DMF (5 ml), 

hexadecanoic acid (palmitic acid), octadecanoic acid (stearic acid), £r<my-9-octadecenoic acid 

(elaidic acid) or czs-9-octadecenoic acid (oleic acid) (1.2 mmol), 1-hydroxybenzotriazole (27 

mg, 0.2 mmol) and DCC (308 mg, 1.5 mmol) were added. Then the reaction mixture was 

heated to 40 °C and stirred, under nitrogen, for 17 h. The solution was then concentrated in 

vacuo (40 °C) and the residue dissolved in CH2C12 (10 ml). The precipitate of DCU was 

removed by filtration. The filtrate was concentrated in vacuo and the residue purified over 

silica gel (EtOAc-hexane 50:50 to 60:40 v/v) afforded the title compound as a colourless oil.

General procedure B: Boc removal

To a stirring solution of lipo-polyamine dissolved in CH2C12 (3 ml), under nitrogen, at 

25 °C was added TFA (3 ml). After 2 h the solution was concentrated in vacuo and the 

residue purified by semi-preparative RP-HPLC over Supelcosil ABZ+Plus (5 pm, 25 cm x 10 

mm, MeOH-0.1 % aq. TFA).

(/V-7V4-./V9-Tri-ter/-butoxycarbonyl)-l,12-diamino-4,9-diazadodecane 6

To a solution of spermine (1.0 g, 4.95 mmol) in methanol (70 ml), at -78 °C under 

nitrogen, ethyl trifluoroacetate (703 mg, 4.95 mmol) was added dropwise over 30 min.
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Stirring was continued for a further 30 mins, then the temperature was increased to 0 °C to 

afford predominantly the mono-trifluoroacetamide 3. Using the above protocol and without 

isolation, the remaining amino functional groups were quantitatively protected by dropwise 

addition of an excess of di-terf-butyldicarbonate (4.23 g, 19.80 mmol, 4.0 equiv.) in methanol 

(10 ml) over 3 min. The reaction was then warmed to 25 °C and stirred for a further 15 h to 

afford the fully protected polyamine 5; R{ 0.6 (EtOAc). The trifluoroacetate protecting group 

was then removed (in situ) by increasing the pH of the solution above 11 with conc. aqueous 

ammonia and stirring at 25 °C for 15 h. The solution was concentrated in vacuo and the 

residue purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 70:10:1 to 50:10:1 v/v/v) to 

afford the title compound 6 as a colourless homogeneous oil (1.24 g, 50 %). R{ 0.5 (CH2C12- 

MeOH-conc. aq. NH3 50:10:1 v/v/v). !HNMR, 400 MHz, CDC13: 1.42-1.55 [m, 31 H, 6- 

CH2, 7-CH2, 0-C(CH3)3 x 3, overlapping]; 1.60-1.72 (m, 6 H, 2-CH2, 11-CH2, NH,); 2.70 (t, 2 

H, J=  7, 12-CHj); 3.05-3.38 (m, 10 H, 1-CH2, 3-CH2, 5-CH2, 8-CH2, 10-CH2); 5.29-5.44 (bs,

1 H, CO-NH-CH2). 13C NMR, 100 MHz, CDC13: 25.4,25.8,25.9, 26.3 (6-CH2, 7-CH2); 

28.35, 28.5, 28.7 [2-CH2, 0-C-(CH3)3]; 31.3, 32.5 (11-CH2); 37.3, 37.6 (1-CH2); 38.8, 39.3 

(12-CH2); 43.7,44.1, 44.2,44.4 (3-CH2, 10-CH2); 46.3, 46.7 (5-CH2, 8-CH2, overlapping); 

78.8, 78.9, 79.1, 79.3 (quat. C x 3); 155.3, 155.5, 155.6, 156.0 [N-C0-0-C-(CH3)3, 

overlapping]. MS, FAB+ foimd 503,21 % (M++ 1), C25H50N4O6 requires M+ = 502. High- 

resolution MS m/z, FAB+ found 503.3823, (M+ + 1), C25H51N40 6 requires M+ + 1 = 503.3808.

3-Benzyloxycarbonylaminopropan-l-ol 15

To a stirring solution of 3-aminopropan-l-ol (3.0 g, 40 mmol) inNaOH aq. (1 M, 44 

ml) at 0 °C, benzyl chloroformate (7.51 g, 44 mmol) was added dropwise over 3 min. The 

solution was then allowed to warm to 25 °C, stirred for 1 h and then CH2C12 (30 ml) was 

added. After 3 h the organic layer was separated and the aqueous layer extracted with CH2C12 

(2x35 ml). The combined organic extracts were dried (MgS04) and the solution was
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concentrated in vacuo and the residue purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 

300:10:1 to 200:10:1 v/v/v) to afford the title compound 15 as a white solid (8.26 g, 99 %). 

i?f 0.3 (CH2Cl2-MeOH-conc. aq. NH3 200:10:1 v/v/v). mp: 50-51 °C. ]H NMR, 270 MHz, 

CDC13: 1.67 (quin, 2 H, 6.0,2-CH2); 3.31 (t, 2 H, J=  6.3, 3-CH2); 3.64 (t, 2 H, J=  5.8,1- 

CH2); 5.09 (s, 2 H, CO-0-CH2-Ph); 7.26-7.34 (m, 5 H, Ph). 13C NMR, 67.5 MHz, CDC13:

32.4 (2-CH2); 37.9 (1-CH2); 59.6 (3-CH2); 66.7 (0-CH2-Ph); 128.0, 128.1, 128.4, (Ph); 136.4 

(Cq Ph); 157.2 (N-CO-O). MS, FAB+ found 210, 75 % (M+ + 1), CnH15N 03 requires M+ = 

209. Anal. Calcd. For CuH15N 03: C 63.14; H 7.23; N 6.69. Found: C 63.10; H 7.25; N 

6.64.

3-Benzyloxycarbonylaminopropanal 16

Oxalyl chloride (1.91 g, 15.0 mmol) was dissolved in freshly distilled anhydrous 

CH2C12 (from CaH2) and stirred at -78 °C under nitrogen. Then anhydrous DMSO (1.94 ml,

27.0 mmol) was added dropwise over 3 min and the mixture stirred for a further 10 min at - 

78 °C. Alcohol 15 (2 g, 13.7 mmol) in anhydrous CH2C12 (10 ml) was then added dropwise 

over 3 min. The resultant cloudy suspension was then warmed (~ -40 °C) until the solution 

cleared and then cooled to -78 °C for 10 min. Triethylamine (9.5 ml, 68 mmol) was added, 

the solution was warmed to 25 °C and water (50 ml) was then added. The organic layer was 

separated and the aqueous layer extracted with CH2C12 (2x35 ml). The combined organic 

extracts were dried (MgS04) and the solution was concentrated in vacuo and the residue 

purified over silica gel (EtOAc) to afford the title compound 16 as a white solid (1.63 g, 82 

%). R{ 0.5 (EtOAc). mp: 57-58 °C. !H NMR, 270 MHz, CDC13: 2.71 (t, 2 H , J =  5.8,2- 

CH2); 3.43-3.56 (m, 2 H, 3-CH2); 5.07 (s, 2 H, CO-O-CITrPh); 5.22-5.34 (bs, 1 H, CH2-NH- 

CO-O); 7.30-7.42 (m, 5 H, Ph); 9.70-9.84 (m, 1 H, 1-CHO). 13C NMR, 67.5 MHz, CDC13:

34.4 (2-CH2); 44.0 (3-CH2); 66.7 (0-CH2-Ph); 128.0,128.1,128.4, (Ph); 136.3 (quat C);

156.3 (N-CO-O); 201.1 (1-CHO). MS, FAB+ found 208,44 % (M+ + 1), CnH13N 03 requires
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M+= 207. Anal. Calcd. For CnH13N 03: C 63.76; H 6.32; N 6.76. Found: C 63.70; H 6.41;

N 6.73.

A^-A^-A^-A^-Tetra-fe/tf-butoxy carbonyl-1,16-diamino-4,9,13- 

triazahexadecane 19

Tri-Boc protected polyamine 6 (1.06g, 2.10 mmol) was placed over 4 A molecular 

sieves (~ 4 g), evacuated under reduced pressure and then dissolved under nitrogen in freshly 

distilled anhydrous methanol (20 ml). Aldehyde 16 (366 mg, 1.76 mmol), sodium 

cyanoborohydride (166 mg, 2.64 mmol) and a catalytic amount of glacial acetic acid were 

then added and the reaction mixture stirred at 25 °C, under nitrogen, for 24 h. The solvent 

was then evaporated under reduced pressure and the residue purified over silica gel (CH2C12- 

MeOH-conc. aq. NH3 100:10:1 v/v/v) to afford protected polyamine 17; R{ 0.25 (CH2C12- 

MeOH-conc. aq. NH3 100:10:1 v/v/v), as a yellow oil, which included traces of protected 

polyamine starting material 6 and aldehyde 16. Compound 17 was then dissolved in DMF 

(10 ml) at 25 °C, under nitrogen, and di-ter/-butyl dicarbonate (445 mg, 2.0 mmol) was added 

dropwise over 3 min to the stirring solution. After 1 h, conc. aq. NH3 (1 ml) was added, the 

solution stirred for a further 30 min and then the solution was concentrated in vacuo (40 °C). 

The residue was then dissolved in MeOH (10 ml), Pearlman’s catalyst [500 mg, Pd(OH)2 on 

carbon 20 %] added and the flask and contents evacuated and flushed twice with hydrogen. 

The solution was then stirred for 4 h at 25 °C under an atmosphere of hydrogen. The catalyst 

was filtered through a bed of celite and the filtrate evaporated in vacuo and the residue 

purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 to 75:10:1 v/v/v) to afford the 

title polyamine 19 as a colourless oil (518 mg, 45 %). R{ 0.15 (CH2Cl2-MeOH-conc. aq. NH3 

100:10:1 v/v/v). !H NMR, 400 MHz, CDC13: 1.41-1.60 [m, 40 H, 6-CH2, 7-CH2, C-(CH3)3 x 

4]; 1.60-1.80 (m, 6 H, 2-CH2, 11-CH2, 15-CH2); 2.18-2.24 (bs,2H,NHj); 2.71 ( t ,2 H ,J= 7 ,  

16-CH2); 3.05-3.35 (m, 14 H, 1-CH2, 3-CH2, 5-CH2, 8-CH2,10-CH2,12-CH2, 14-CH2); 5.30-
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5.50 (bs, 1 H, CO-NH-CH2). 13C NMR, 100 MHz, CDC13: 25.3,25.4,25.5,25.8, 25.8,25.9 

(6-CH2, 7-CH2, 11-CH2); 28.3, 28.7, 28.8 [2-CH2, 0-C-(CH3)3 x 4, overlapping]; 31.1, 32.3 

(15-CH2); 37.2, 37.6 (1-CH2); 38.7, 39.3 (16-CH2); 43.7,43.9,44.0,44.1,44.1, 44.2, 44.7 (3- 

CH2, 10-CH2, 12-CH2,14-CH2, overlapping); 46.4,46.7 (5-CH2, 8-CH2, overlapping); 155.3,

160.0 (N-CO-O x 4). MS, FAB+ found 660, 95 % (M+ + 1), C33H65N50 8 requires M+ = 659. 

High-resolution MS m/z, FAB+ found 660.4906, (M+ +1), C33H66N50 8 rquires M+ + 1 = 

660.4911.

Arl-(Hexadecanoyl-[TV4-7V9-7V12-tri-^rr-butoxycarbonyl])-l,12-diamino-4,9- 

diazadodecane 7

Protected tetraamine 6 (500 mg, 1.0 mmol) was reacted according to general 

procedure A to afford the title compound 7 as a colourless oil (663 mg, 96 %). R{ 0.3 

(EtOAc-hexane 60:40 v/v). ]H NMR, 400 MHz, CDC13: 0.88 (t, 3 H, J  = 7, 16'-CH3); 1.24-

1.35 (m, 24 H, 4'-CH2 to 15'-CH2); 1.43-1.52 [m, 31 H, 6-CH2, 7-CH2, 0-C(CH3)3 x 3]; 1.57-

1.60 (m, 6 H, 2-CH2, 11-CH2, 3'-CH2); 2.18 (t, 2 H, J=  7, 2’-CH2); 3.20-3.40 (m, 12 H, 1- 

CH2, 3-CH2, 5-CH2, 8-CH2, 10-CH2, 12-CH2); 5.25-5.40 (bs, 1 H, CH2-NH-CO-0); 6.70-6.85 

(bs, 1 H, CH2 CO-NH-CH2. 13C NMR, 100 MHz, CDC13: 14.1 (16'-CH3); 22.7 (15'-CH2);

25.5.25.5, 25.6,25.8, 26.0 (6-CH2, 7-CH2, 3'-CH2); 27.2, 27.7, 28.4,28.8, 29.0 [2-CH2, 11- 

CH2, 0-C-(CH3)3, overlapping]; 29.4, 29.5, 29.5,29.7,29.7 (4'-CH2 to 13'-CH2, overlapping);

31.9 (14'-CH2); 35.4, 35.9 (12-CH2); 37.0 (2'-CH2); 37.4, 37.7 (1-CH2); 43.1, 43.3, 43.8,44.2 

(3-CH2, 10-CH2); 46.2,46.7 (5-CH2, 8-CH2, overlapping); 79.0, 79.6, 79.6, 79.8 (quat. C x 3);

155.5, 155.5, 156.1, 156.5 [N-C0-0-C-(CH3)3, overlapping]; 173.5 (N-CO-CH2). MS, FAB+ 

found 741, 70 % (M+ +1), C41H80N4O7 requires M+ = 740. High-resolution MS m/z, FAB+ 

found 741.6109, (M+ +1), C41H81N40 7 requires M+ + 1 = 741.6105.
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7V1-Hexadecanoyl-l,12-diamino-4,9-diazadodecane 8

Amide 7 (381 mg, 0.51 mmol) was deprotected according to general procedure B to 

afford the title compound 8 as a white solid (polytrifluoroacetate salt 267 mg, 66 %), tK 3.7 

min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeOH-O.l % aq. TFA 

70:30). ’H NMR 400 MHz, D20: 0.80-0.92 (m, 3 H, 16'-CH3); 1.15-1.38 (m, 24 H, 4'-CH2 to 

15'-CH2); 1.47-1.61 (m, 2 H, 3'-CH2); 1.70-1.84 (m, 4 H, 6-CH2, 7-CH2); 1.84-1.95 (m, 2 H,

11-CH2); 2.09 (q, 2 H, J=  8, 2-CH2); 2.19 (t, 2 H, J=  7, 2'-CH2); 2.95-3.19 (m, 10 H, 3-CH2,

5-CH2, 8-CH2, 10-CH2,12-CH2); 3.19-3.30 (m, 2 H, 1-CH2). 13C NMR, 100 MHz, D20: 14.6 

(16'-CH3); 23.4 (15'-CH2); 23.6, 23.7 (6-CH2, 7-CH2); 24.6 (2-CH2); 26.5 (11-CH2, 3'-CH2, 

overlapping); 30.0, 30.2, 30.3, 30.5, 30.6, 30.6,30.7 (4'-CH2 to 13'-CH2, overlapping); 32.8 

(14'-CH2); 36.7 (2'-CH2); 36.8 (1-CH2); 37.3 (12-CH2); 45.4 (3-CH2); 46.0 (10-CH2); 47.8,

47.8 (5-CH2, 8-CH2); 177.2 (NH-CO-CH2). MS, FAB+ found 441,100 % (M+ + 1),

C26H56N40  requires M+ = 440. High-resolution MS m/z, FAB+ found 441.4542, (M+ + 1), 

C26H57N40  requires M+ + 1 = 441.4532.

ArI-(Octadecanoyl-[7V4-Ar8-7V12-tri-rerr-butoxycarbonyl])-l,12-diamino-4,9- 

diazadodecane 9

Protected tetraamine 6 (508 mg, 1.0 mmol) was reacted with stearic acid (345 mg, 1.2 

mmol) according to general procedure A to afford the title compound 9 as a colourless oil 

(659 mg, 85 %). R{ 0.2 (EtOAc-hexane 50:50 v/v). *H NMR, 400 MHz, CDC13: 0.88 (t, 3 H, 

J=  7, 18'-CH3); 1.23-1.35 (m, 28 H, 4'-CH2 to 17’-CH2); 1.43-1.52 [m, 31 H, 6-CH2, 7-CH2,

0-C(CH3)3 x 3]; 1.60-1.70 (m, 6 H, 2-CH2, 11-CH2, 3'-CH2); 2.18 (t, 2 H, J=  7, 2'-CH2); 

3.05-3.34 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 8-CH2,10-CH2,12-CH2); 5.24-5.40 (bs, 1 H, CH2- 

NH-CO-O); 6.70-6.85 (bs, 1 H, CH2 CO-NH-CH2). 13C NMR, 100 MHz, CDC13: 14.1 (18'- 

CH3); 22.6 (17'-CH2); 25.4, 25.5,25.6, 25.8, 25.9 (6-CH2, 7-CH2, 3'-CH2); 27.6, 28.4, 28.7,

28.9 [2-CH2, 11-CH2, 0-C-(CH3)3, overlapping]; 29.1, 29.3, 29.5, 29.6 (4'-CH2 to 15'-CH2,
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overlapping); 31.9 (16'-CH2); 33.9, 35.3 (12-CH2); 36.9, 37.3 (1-CH2, 2'-CH2, overlapping); 

43.2, 43.7, 44.1,44.1 (3-CH2,10-CH2); 46.2,46.6 (5-CH2, 8-CH2, overlapping); 79.5, 79.7 

(quat. C x 3, overlapping); 156.0, 156.4 [N-C0-0-C-(CH3)3, overlapping]; 173.3 (N-CO- 

CH2). MS, FAB+ found 769, 15 % (M+ +1), requires M+ = 768. High-resolution

MS m/z, FAB+ found 769.6427, (M+ + 1), C43H85N40 7 requires M+ + 1 = 769.6418.

A^-Octadecanoyl-lylZ-diamino^^-diazadodecane 10

Amide 9 (400 mg, 0.52 mmol) was deprotected according to general procedure B to 

afford the title compound 10 as a white solid (polytrifluoroacetate salt, 257 mg, 61 %), tR

10.35 min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeOH-0.1 % aq. 

TFA 60:40). !H NMR 400 MHz, D20: 0.83-0.90 (m, 3 H, 18'-CH3); 1.17-1.45 (m, 28 H, 4'- 

CH2 to 17'-CH2); 1.47-1.63 (m, 2 H, 3'-CH2); 1.72-1.83 (m, 4 H, 6-CH2, 7-CH2); 1.83-1.94 

(m, 2 H, 11-CH2); 2.09 (q, 2 H,J=  8 ,2-CH2); 2.19 (t, 2 H, J=  7, 2'-CH2); 2.95-3.17 (m, 10 

H, 3-CH2, 5-CH2, 8-CH2, 10-CH2, 12-CH2); 3.17-3.30 (m, 2 H, 1-CH2). 13C NMR, 100 MHz, 

D20: 17.4 (18'-CH3); 26.2 (17'-CH2); 26.3, 26.4 (6-CH2, 7-CH2); 27.3 (2-CH2); 29.3 (11-CH2, 

3'-CH2, overlapping); 32.7, 33.0, 33.0, 33.2, 33.3, 33.5 (4'-CH2 to 15'-CH2, overlapping); 35.5 

(16'-CH2); 39.5 (2'-CH2); 39.5 (1-CH2); 40.0 (12-CH2); 48.1 (3-CH2); 48.8 (10-CH2); 50.6 (5- 

CH2, 8-CH2, overlapping); 179.9 (NH-CO-CH2). MS, FAB+ found 469, 100 % (M+ + 1), 

C28H60N4O requires M+ = 468. High-resolution MS m/z, FAB+ found 469.4845, (M+ +1), 

C28H61N40  requires M+ + 1 = 469.4845.

A 1-(rra«5-9-Octadecenoyl-[Ar4-Ar9-Arl2-tri-tert-butoxycarbonyl])-l,12-diamino-4,9- 

diazadodecane 13

Tetraamine 6 (471 mg, 0.9 mmol) was reacted with elaidic acid (318 mg, 1.1 mmol) 

according to general procedure A to afford the title compound 13 as a white waxy solid (644 

mg, 90 %). R{ 0.1 (EtOAc-hexane 50:50 v/v). *H NMR, 400 MHz, CDC13: 0.88 (t, 3 H, J  =
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7, 18'-CH3); 1.23-1.38 (m, 20 H, 4’-CH2 to 6'-CH2, l l ’-CH2 to 17'-CH2); 1.40-1.55 [m, 31 H, 

6-CH2, 7-CH2, 0-C(CH3)3 x 3]; 1.58-1.62 (m, 6 H, 2-CH2,11-CH2, 3'-CH2); 1.91-2.00 (m, 4 

H, 7'-CH2, IO'-CHj); 2.18 (t, 2 H, J=  7, 2'-CH2); 3.05-3.33 (m, 12 H, 1-CH2,3-CH2, 5-CH2, 

8-CH2, 10-CH2j 12-CHj); 5.25-5.46 (m, 2 H, 8'-CH, 9'-CH, CH2-NH-C0-0); 6.72-6.88 (bs, 1 

H, CH2 CO-NH-CH2). 13C NMR, 100 MHz, CDC13: 14.1 (18'-CH3); 22.6 (17'-CH2); 25.4,

25.5, 25.6, 25.7, 25.9 (6-CH2, 7-CH2, 3'-CH2); 27.6, 28.4,28.7, 28.8 [2-CH2, 11-CH2, O-C- 

(CH3)3, overlapping]; 29.0, 29.1,29.2, 29.3,29.4, 29.5,29.6 (4'-CH2 to 6'-CH2, 1 l'-CH2 to 

15'-CH2, overlapping); 32.5 (16'-CH2); 33.9, 34.0 (7'-CH2,10'-CH2); 35.3, 35.9 (12-CH2);

36.9 (2'-CH2); 37.3, 37.6 (1-CH2); 43.2,43.7,44.1 (3-CH2,10-CH2, overlapping); 46.6 (5- 

CH2, 8-CH2, overlapping); 79.5, 79.7 (quat. C x 3, overlapping); 130.2, 130.3 (8'-CH, 9-CH); 

156.1, 156.4 [N-C0-0-C-(CH3)3, overlapping]; 173.3 (N-CO-CH2). MS, FAB+ found 767,

15 % (M+ +1), C43H82N40 7 requires M+ = 766. High-resolution MS m/z, FAB+ found 

767.6255, (M+ + 1), C43H83N40 7 requires M+ + 1 = 767.6262.

Arl(/raws-9-Octadecenoyl)-l,12-diamino-4,9-diazadodecane 14

Amide 13 (400 mg, 0.52 mmol) was deprotected according to general procedure B to 

afford the title compound 14 as a white solid (polytrifluoroacetate salt, 257 mg, 61 %), tK 

10.65 min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeOH-0.1 % aq. 

TFA 60:40). !H NMR 400 MHz, D20: 0.83-0.90 (m, 3 H, 18'-CH3); 1.17-1.45 (m, 20 H, 4'- 

CH2 to 6'-CH2, ll'-CH2 to 17'-CH2); 1.47-1.63 (m, 2 H, 3'-CH2); 1.72-1.83 (m, 4 H, 6-CH2, 7- 

CH2); 1.85-2.03 (m, 6 H, 11-CH2, 7'-CH2,10'-CH2); 2.03-2.15 (m, 2 H, 2-CH2); 2.19 (t, 2 H, J  

= 7, 2'-CH2); 2.95-3.17 (m, 10 H, 3-CH2, 5-CH2, 8-CH2,10-CH2,12-CH2); 3.17-3.30 (m, 2 H, 

1-CH2); 5.32-5.45 (m, 2 H, 8'-CH, 9'-CH).. 13C NMR, 100 MHz, D20: 14.7 (18'-CH3); 23.4 

(17'-CH2); 23.6,23.7 (6-CH2, 7-CH2); 24.6 (2-CH2); 26.5 (11-CH2, 3'-CH2, overlapping);

30.0, 30.1, 30.2, 30.4, 30.5 (4'-CH2 to 6'-CH2, ll'-CH2 to 15'-CH2, overlapping); 32.7 (16'- 

CH2); 33.4 (7'-CH2, 10'-CH2); 36.7 (2'-CH2); 36.8 (1-CH2); 37.3 (12-CH2); 45.4, 46.0 (3-CH2,
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10-CH2); 47.8 (5-CH2, 8-CH2, overlapping); 130.9, 131.0 (8'-CH, 9'-CH); 177.1 (NH-CO- 

CH2). MS, FAB+ found 467, 100 % (M+ +1), C28H58N40  requires M+ = 466. High-resolution 

MS m/z, FAB+ found 467.4679, (M+ + 1), C28H59N40  requires M+ + 1 = 467.4689.

Arl-(m-9-Octadecenoyl-|7V4-7V9-iV12-tri-te/'/-butoxycarbonyl])-l,12-diamino-4,9- 

diazadodecane 11

Tetraamine 6 (471 mg, 0.9 mmol) was reacted with oleic acid (318 mg, 1.1 mmol) 

according to general procedure A to afford the title compound 11 as a white waxy solid (550 

mg, 77 %). Rf 0.1 (EtOAc-hexane 50:50 v/v). ‘H NMR, 400 MHz, CDC13: 0.88 (t, 3 H, J=  

7, 18-CH3); 1.24-1.37 (m, 20H, 4'-CH2to 6'-CH2, 1 l'-CH2to 17'-CH2); 1.42-1.55 [m, 31 H,

6-CH2, 7-CH2, 0-C(CH3)3 x 3]; 1.59-1.62 (m, 6 H, 2-CH2, 11-CH2, 3'-CH2); 1.88-2.05 (m, 4 

H, 7'-CH2, 10'-CH2); 2.18 (t, 2 H,J=  7 ,2'-CH2); 3.00-3.35 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 

8-CH2, 10-CH2, 12-CH2); 5.30-5.42 (m, 2 H, 8'-CH, 9'-CH, CH2-NH-CO-0); 6.64-6.82 (bs, 1 

H, CH2 CO-NH-CH2). 13C NMR, 100 MHz, CDC13: 14.1 (18'-CH3); 22.6 (17'-CH2); 24.9,

25.5, 25.6, 25.7, 25.9 (6-CH2, 7-CH2, 3'-CH2); 27.2 (7'-CH2, 10'-CH2, overlapping); 27.6,

28.4, 28.7 [2-CH2, 11-CH2, 0-C-(CH3)3, overlapping]; 28.9, 29.1, 29.3, 29.5, 29.7 (4'-CH2 to 

6'-CH2, ll'-CH2 to 15'-CH2, overlapping); 31.8 (16'-CH2); 35.3 (12-CH2, overlapping); 36.9 

(2’-CH2); 37.3, 37.7 (1-CH2); 43.2, 43.7,44.0 (3-CH2, 10-CH2, overlapping); 46.6,46.8 (5- 

CH2, 8-CH2, overlapping); 79.5, 79.7 (quat. C x 3, overlapping); 129.7,129.9 (8-CH, 9'-CH);

156.0 [N-C0-0-C-(CH3)3, overlapping]; 173.2 (N-CO-CH2). MS, FAB+ found 767,20 %

(M+ +1), C43H82N40 7 requires M+ = 766. High-resolution MS m/z, FAB+ found 767.6277,

(M+ + 1), C43H83N40 7 requires M+ + 1 = 767.6262.

A^cis^-OctadecenoyO-ljll-diamino^^-diazadodecane 12

Amide 11 (519 mg, 0.52 mmol) was deprotected according to general procedure B to 

afford the title compound 12 as a white solid (polytrifluoroacetate salt, 257 mg, 61 %), tR
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7.40 min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeOH-O.l % aq.

TFA 65:35). *H NMR 400 MHz, D20: 0.86 (t, 3 H, J=  7, 18,-CH3); 1.20-1.37 (m, 20 H, 4'- 

CH2 to 6'-CH2 and ll'-CH2to 17'-CH2); 1.51-1.59 (m, 2 H, 3'-CH2); 1.63-1.80 (m, 4 H, 6- 

CH2, 7-CH2); 1.88 (q, 2 H, J=  7 ,1 1-CH2); 1.95-2.04 (m, 4 H, 7'-CH2, lO'-CHJ; 2.09 (quin, 2 

H, J=  7, 2-CH2); 2.19 (t, 2 H, J=  7 ,2'-CH2); 2.95-3.10 (m, 10 H, 3-CH2, 5-CH2, 8-CH2, 10- 

CH2, 12-CHJ; 3.20-3.28 (m, 2 H, 1-CH2); 5.25-5.40 (m, 2 H, 8'-CH, 9'-CH). 13C NMR, 100 

MHz, D20: 14.7 (18'-CH3); 23.4 (17'-CH2); 23.6, 23.7 (6-CH2, 7-CH2); 24.6 (2-CH2); 26.5 

(11-CH2, 3'-CH2, overlapping); 27.9, 28.0 (7'-CH2, lO'-CHJ; 29.9, 30.0, 30.1, 30.1, 30.3, 30.5 

(4'-CH2 to 6'-CH2 and 1 l'-CH2 to 15'-CH2, overlapping); 32.7 (16'-CH2); 36.7 (2'-CH2); 36.8 

(l-CHj); 37.3 (12-CH2); 45.4, 46.0 (3-CH2,10-CH2); 47.8 (5-CH2, 8-CH2, overlapping);

130.4, 130.5 (8-CH, 9'-CH); 177.2 (NH-CO-CH2). MS, FAB+ found467, 100 % (M+ + 1), 

C28H58N40  requires M+ = 466. High-resolution MS m/z, FAB+ found 467.4693, (M+ +1), 

C28H59N40  requires M+ + 1 = 467.4689.

7V1-(Hexadecanoyl-[Ar4-Ar9-Arl3-7V16-tetra-ter/-butoxycarbonyl])-l,16-diamino-4,9,13- 

triazahexadecane 20

Pentaamine 19 (478 mg, 0.73 mmol) was reacted according to general procedure A to 

afford the title compound 20 as a colourless oil (570 mg, 88 %). R{ 0.2 (EtOAc-hexane 60:40 

v/v). !H NMR, 400 MHz, CDC13: 0.88 (t, 3 H, J = 7 ,16'-CH3); 1.20-1.35 (m, 24 H, 4'-CH2 

to 15'-CH2); 1.35-1.58 [m, 42 H, 2-CH2, 10-CH2, 11-CH2, 0-C(CH3)3 x 4]; 1.58-1.83 (m, 6 

H, 6-CH2, 15-CH2, 3'-CH2); 2.18 (t, 2 H, J - 7, 2'-CH2); 3.05-3.40 (m, 16 H, 1-CH2, 3-CH2, 5- 

CH2, 7-CH2, 9-CH2,12-CH2,14-CH2,16-CH2); 5.24-5.40 (bs, 1 H, CH2-NH-CO-0); 6.70- 

6.85 (bs, 1 H, CH2 CO-NH-CH2). 13CNMR, 100 MHz, CDC13: 14.1 (16'-CH3); 22.6 (15'- 

CH2); 25.4, 25.5, 25.7, 25.8,25.9 (6-CH2, 10-CH2, 11-CH2, 3'-CH2, overlapping); 27.6, 27.7, 

27.8, 28.4 [2-CH2,15-CH2, 0-C-(CH3)3, overlapping]; 29.3,29.5, 29.6, 29.6 (4"-CH2 to 13"- 

CH2, overlapping); 31.9 (14'-CH2); 33.9, 35.3 (16-CH2); 36.9, 37.3 (1-CH2,2 ’-CH2,
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overlapping); 43.2,43.7, 44.1, 44.7, 46.5,46.8 (3-CH2, 5-CH2, 7-CH2, 9-CH2, 12-CH2, 14- 

CH2overlapping); 79.3, 79.4, 79.7 (quat. C x4, overlapping); 155.4,156.1, 156.3 [N-CO-O- 

C-(CH3)3 x 4, overlapping]; 173.3 (N-CO-CH2). MS, FAB+ found 898,20 % (M+ + 1), 

C49H95N50 9 requires M+ = 897. High-resolution MS m/z, FAB+ found 898.7207, (M+ +1), 

C49H96N50 9 requires M+ + 1 = 898.7208.

Arl-(Hexadecanoyl)-l,16-diamino-4,8,13-triazahexadeeane 21

Amide 20 was deprotected according to general procedure B to afford the title 

compound 21 as the polytrifluoroacetate salt (104 mg, 49 %), tR 5.0 min by RP-HPLC 

(Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeOH-0.1 % aq. TFA 65; 35). !H NMR 400 

MHz, [2H]6 DMSO: 0.86 (t, 3 H, J=  7 ,16'-CH3); 1.15-1.35 (m, 24 H, 4'-CH2 to 15'-CH2); 

1.42-1.53 (m, 2 H, 3'-CH2); 1.60-1.69 (m, 4 H, 10-CH2, 11-CH2); 1.72 (quin, 2 H, J=  7, 2- 

CH2); 1.86-2.00 (m, 4 H, 6-CH2 15-CH2); 2.06 (t, 2 H, J=  7, 2'-CH2); 2.83-2.94 (m, 8 H, 9- 

CH2, 12-CH2,14-CH2, 16-CH2); 2.94-3.05 (m, 6 H, 3-CH2, 5-CH2, 7-CH2); 3.05-3.12 (m, 2 H,

1-CH2). 13C NMR, 100 MHz, [2H]6 DMSO: 14.0 (16'-CH3); 22.1 (15'-CH2); 22.5 (6-CH2); 

22.7 (10-CH2, 11-CH2, overlapping); 23.8 (15-CH2); 25.3 (3'-CH2); 26.1 (2-CH2); 28.7,28.8,

29.0, 29.1 (4'-CH2 to 13'-CH2, overlapping); 31.3 (14'-CH2); 35.4 (2'-CH2); 35.6 (1-CH2);

36.1 (16-CH2); 43.8, 43.9,44.0 (3-CH2 5-CH2 7-CH2); 44.7 (14-CH2); 46.1 (9-CH2, 12-CH2, 

overlapping); 172.7 (NH-CO-CH2). MS, FAB+ found 498,100 % (M+ + 1), C ^ H ^ O , 

requires M+ = 497. High-resolution MS m/z, FAB+ found 498.5114, (M+ + 1), C28H59N40j 

requires M+ + 1 = 498.5 111.
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Chapter 4

Synthesis of cholesterol polyamine carbamates: 

pKz studies and condensation of calf thymus DNA
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Abstract: Novel polyamine carbamates have been prepared from cholesterol. The piTas are 

determined potentiometrically for conjugates substituted with up to five amino functional 

groups. Salt-dependent binding affinity for calf thymus DNA was also determined using an 

Eth Br displacement assay; these polyamine carbamates are models for lipoplex formation 

with respect to gene delivery (lipofection), a key first step in gene therapy.

Aims

The aims of this Chapter are to synthesise a series of polyamine cholesterol 

carbamates and investigate SAR for their binding affinities for, and condensation of, calf 

thymus DNA using an ethidium bromide (Eth Br) displacement assay. Changes in binding 

affinity for DNA with respect to variations in the total number of positive charges and the 

differences in the distribution of these charges along the lipopolyamine were investigated. 

Salt dependent binding of these cholesteryl carbamates to DNA were also studied.

Introduction

In this Chapter, we investigate the role of positive charge and its distribution along a 

lipopolyamine in the DNA condensation process, and this is an extension of the preliminary 

studies of Chapter 3. Using our orthogonal protection strategy for efficient syntheses of 

unsymmetrical polyamine amides,1 six carbamates of cholesterol (at position 3) were 

designed and synthesised (13-16 see Fig. 1 and 23-24 see Fig. 2).2'3 Cholesteryl was chosen 

as the lipid moiety because its use in lipoplex formation had previously been reported,4*8 and 

it was readily available as the required chloroformate. Six commercially available 

polyamines were used as the cationic headgroups: l,12-diamino-4,9-diazadodecane 1 

(spermine, 3.4.3, see Fig. 1), 1,11-diamino-4,8-diazaundecane 2 (thermine, norspermine, 

3.3.3, see Fig. 1), l,10-diamino-4,7-diazadecane 3 (3.2.3, see Fig. 1), l,9-diamino-3,7- 

diazanonane 4 (2.3.2, see Fig. 1), 1,11-diamino-3,6,9-triazaundecane 17 (tetraethylene-
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pentamine, 22.2.2, see Fig. 2) and l,14-diamino-3,6,9,l 1-tetra-azatetradecane 18 

(pentaethylenehexamine, 22.2.2.2, see Fig. 2) affording 13-16 (Fig. 1) and 23-24 (Fig. 2) 

respectively.

H2N'

1. MeOH, CH3CH2OCOCF3 
-78 °C to 0 °C over 1 h

2. (Boc)20 , 0 °C to 25 °C over 1 h
3. Cone. aq. NH3, pH 11

Jn H 1 JmH 1 *n

Boc N ‘ 
H n

‘N"R"N"M̂ NH2Boc l Jm Boc Jn

1 m = 2, n = 1
2 m = 1, n = 1
3 m = 0, n = 1 
4 ra=  1, n = 0

5 m = 2, n = 1
6 m = 1, n = 1
7 m = 0, n = 1
8 m = 1, n = 0

Cholesteryl chloroformate, 
25 °C, 12 h, CH2C12, TEA

BocN ^ M ^ na o
m Boc I Jn H

9 m = 2, n = 1
10 m = 1, n = 1
11 m = 0, n = 1
12 m = 1, n = 0

CH2C12-TFA 9:1,25 °C, 
2 h, RP-HPLC

v

O
A. 13 m = 2, n = 1

14 m = 1, n =  1
15 m = 0, n = 1n H mH n H
16 m = 1, n = 0

Fig. 1. Structure and synthesis of target polyamine cholesteryl carbamates 13-16
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1. MeOH, CH3CH2OCOCF3 
-78 °C to 0 °C over 1 h

2. (Boc)20 , 0 °C to 25 °C over 1 h
3. Cone. aq. NH3, pH 11

H
LN.

n

kNH2 17 n = 1
18 n = 2

BocN'
H

Boc 
,N.

‘N ‘ 
Boc

Boc 
IN.

n

‘NH2
19 n = 1
20 n = 2

Cholesteryl chloroformate, 
25 °C, 12 h, CH2C12, TEA

O
A.

BocBoc
21 n = 1
22 n = 2

BocN O
Boc

CH2C12-TFA 9:1, 25 °C, 
2 h, RP-HPLC

23 n = 1
24 n = 2

Fig. 2. Structure and synthesis of target polyamine cholesteryl carbamates 23 and 24

94



Condensation of calf thymus DNA was monitored using the refined displacement 

assay described in Chapter 2. The pK^s of these compounds were measured 

potentiometrically and their values used to determine (using the Henderson-Hasselbach 

equation) the charge carried on the polyamine at physiological pH (7.4).2

Results and Discussion

Synthesis

Spermine 1 (Fig. 1) was unsymmetricaliy protected with di-terf-butyl dicarbonate 

using our orthogonal protection strategy.1 Selective protection of one primary amino 

functional group was achieved by reaction with ethyl trifluoroacetate, at -78 °C, to form the 

trifluoroacetamide. Immediately, in this methanolic solution, the remaining three amino 

functional groups were Boc protected, with an excess of di-tert-butyl dicarbonate, to afford 

the fully protected polyamine. The trifluoroacetyl protecting group was then cleaved by 

increasing the pH to 11 with conc. aqueous ammonia, to afford the poly-Boc protected 

poly amine 5. Any excess of di-tert-butyl dicarbonate was quenched by the ammonia.

Reaction of the free primary amine of this unsymmetricaliy protected polyamine 5 

with cholesteryl chloroformate, afforded the fully protected carbamate 9, as outlined in Fig.

1. Deprotection with trifluoroacetic acid in CH2C12 (1:9) and purification by RP-HPLC 

afforded the target carbamate 13, as the polytrifluoroacetate salt. Microanalysis of C, H and 

N, performed by Celltech Therapeutics (Slough), was not within ±0.4 %. However, the 

presence of polyamines in the cationic lipids makes elementary analysis an inadequate 

method of measuring the purity of these compounds. Polyamines are highly hygroscopic and 

can adopt a different salt degree.9 Thus, the proposed structure was unambiguously assigned 

using accurate MS, ^  13C and HETCOR NMR after RP-HPLC purification to homogeneity.

Polyamines 2,3 and 4 (Fig. 1) were also unsymmetricaliy protected using our 

orthogonal protection strategy to afford poly-Boc protected polyamines 6, 7 and 8
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respectively. Carbamoylation with cholesteryl chloroformate afforded carbamates 10,11 and

12. Deprotection and purification by RP-HPLC afforded the target carbamates 14,15 and 16 

as the polytrifluoroacetate salts.

The utility of this protection strategy was demonstrated by the successful isolation of 

the poly-protected species 19 and 20 (Fig. 2) from technical grade pentaamine 17 (2.2.2.2, 80 

% purity) and hexaamine 18 (2.2.2.2.2, 85 % purity) in modest overall yields (14 and 10 % 

respectively). Carbamoylation with cholesteryl chloroformate afforded carbamates 21 and

22. Deprotection and purification by RP-HPLC afforded the target carbamates 23 and 24 as 

their polytrifluoroacetate salts.

Nomenclature

We have named the target compounds as their corresponding polyamine derivatives, 

using IUPAC conventions. In Fig. 3, we outline the numbering system used in the NMR 

assignment of (N ’-cholesteryloxy-3-carbonyl)-1,12-diamino-4,9-diazadodecane 13.

N
H 4 6

Fig. 3. Structure and numbering system of (7'/‘-cholesteryloxy-3-carbonyl)-1,12-diamino-4,9-diazadodecane 13

Charge at physiological pH

We have designed and synthesised a series of polyamine cholesteryl carbamates 13- 

16,23 and 24) where both the charge and its regiochemical distribution has been varied along 

the polyamine moiety. The charge on these molecules has been characterized by measuring 

the pÂas (Table 1) of these molecules potentiometrically, using a Sirius PCA101
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Polyamine Measured p ^ as Net charge

3.4.3 (spermine) 1 10.9 ± 0.01 
10.1 ±0.01
8.9 ± 0.01 
8.1 ±0.01

3.8

3.4.3-cholesteryl-3-carbamate 13 10.1 ±0.06 
8.6 ± 0.06 
7.3 ± 0.05

2.4

3.3.3-cholesteryl-3-carbamate 14 10.7 ± 0.04 
8.8 ± 0.02 
7.2 ± 0.02

2.3

3.2.3-cholesteryl-3-carbamate 15 10.0 ± 0.02 
8.0 ± 0.02 
5.5 ± 0.02

1.8

2.3.2-cholesteryl-3-carbamate 16 9.3 ± 0.01
7.6 ± 0.01
5.7 ± 0.01

1.6

2.2.2.2-cholesteryl-3-carbamate 23 9.9 ± 0.20 
8.4 ± 0.20 
6.3 ± 0.21
3.9 ± 0.21

2.0

2.2.2.2.2-cholesteryl-3 -carbamate 24 10.2 ±0.10 
8.6 ± 0.08 
7.2 ± 0.09
4.4 ± 0.09
2.5 ± 0.28

2.3

Table 1. Measured pK z values of steroidal polyamine conjugates and the net positive charge (at pH 7.4) 

calculated using the Henderson-Hasselbach equation

automated titrator (experiments in collaboration with Mr. M. Earll and Dr. R. J. Taylor, 

Celltech Therapeutics).2 The net positive charge carried by these molecules at physiological 

pH (7.4) has then been calculated using the Henderson-Hasselbach equation (Table 1). The 

p£as of poly amines are a function of the inter-amine distance as well as their substituents. It 

is important to recognise that any charge is shared across several of the basic centers and that 

it cannot be attributed to a single point. Even when the first charge is introduced principally

97



on the primary amine, it is also distributed on to the secondary amines. This has been

demonstrated using unsymmetrical triamine, spermidine 10 and illustrates that not all amines 

are protonated at physiological pH. Furthermore, there exists a series of complex equilibria 

between the ammonium ions and the corresponding amines. This series of molecules all 

carry different charges at pH 7.4 (Table 1) which are distributed on varying lengths of 

methylene chain and could therefore be reasonably expected to impart differences in 

biological activity.

NMR assignments

The assignment of the polyamine head groups in this series of polyamine 

carbamates 13-16,23 and 24 is based upon calculations using additivity rules 11 and 

HETCOR NMR The assignment of cholesteryl carbamate 13 is discussed in detail as a 

representative example. Conformational isomers (populations interconverted by a-bond 

rotation) are observed for the poly-Boc protected polyamines and therefore two signals for 

each carbon on the methylene backbone of the polyamine and for each carbon on the Boc 

groups were observed. Generally 14N-!H couplings are not observed, but in the case of 

ammonium compounds, the combination of quadrupole relaxation and exchange of NH- 

protons is not sufficiently large to completely eliminate the coupling across one bond.11 

Therefore carbamates 13-16,23 and 24 display broad ammonium signals above 8 7.0 ppm.

In order to make a !H and 13C assignment for the polyamine headgroups, we have first 

conducted NMR experiments on spermine 1 (Tables 2 and 3). To establish confidence in our 

analysis of spermine, we have compared them to the literature values12 and also to those 

calculated using additivity rule calculations (Table 2).11 Our measurements of the 13C NMR 

chemical shifts of spermine 1 (Table 2) compare favourably with those found in the literature 

allowing for the difference in solvent and temperature. The chemical shifts estimated for 

spermine in Table 2 on the basis of the additivity rules 11 differ in general by about 5 ppm
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from the experimental values. This method 11 claims to be within 5 ppm of the observed 

values, which is in agreement with our findings. More importantly, these predicted values 

agree with the order of the assignments, with C6 and C7 (8 27.7 ppm) coming into resonance 

nearest to TMS.

Our measurements of the !H NMR chemical shifts of spermine 1 (Table 3) compare 

favourably with those found in the literature 12 allowing for the differences in solvent and 

temperature. ^  NMR chemical shift predictions for the free base of spermine are in 

agreement with the measured values, except for the fact that C3 and CIO are chemically 

distinct from C5 and C8 and come into resonance further downfield. This can be accounted 

for by the deshielding effect of a y-protonated primary amine which is not allowed for in the 

calculations. The !H, 13C correlation spectrum for spermine confirms the proton and carbon 

assignments and shows the validity of the calculation methods.

Assignment Literature Observed Calculated

5 and 8 51.2 49.8 49.5

3 and 10 49.0 47.6 46.6

1 and 12 41.5 40.3 39.7

2 and 11 34.5 33.7 36.3

6 and 7 29.2 27.7 28.7

Table 2. 13C NMR assignment for spermine 1. Literature values 12 are in D20  at 40 °C for the free base. The 

observed values are measured in CDC13 at 22 °C for the free base. Calculated values are estimates based on 

additivity rule calculations of ,3C chemical shifts in aliphatic compounds.11
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Assignment Literature Observed Calculated

1 and 12 2.63 2.76, t 2.47

3 and 10 2.56 2.66,t 2.43

5 and 8 2.58 2.61, m 2.43

2 and 11 1.60 1.63, quin 1.65

6 and 7 1.48 1.52, quin 1.45

Table 3. 'H NMR assignment for spermine 1. Literature values 12 are in D20  at 40 °C for the free base. The 

observed values are measured in CDC13 at 22 °C for the free base. Calculated values are estimates based on 

additivity rule calculations of 'H chemical shifts in aliphatic compounds.11

In order to investigate the effect of desymmetrisation of spermine 1 on A-acylation as 

a carbamate, AAtert-butoxycarbonyl-4,9-diazadodecane-1,12-diamine 25 was synthesised as 

a model. The assignment for the polyamine methylene backbone (Table 4) shows how a 

primary amine is fractionally more electron withdrawing than a carbamate, so the nuclei at 

C12 are slightly more deshielded relative to those at Cl and therefore they come into 

resonance a little downfield of C l. This assignment was confirmed by 2D experiments. The 

long range effect of ̂ -carbamoylation (p-effect), is to bring C2 into resonance further 

upfield relative to Cl 1. To a much lesser extent, C3, C5, C8 and CIO are effected by this 

long range desheilding effect of a carbamate and C6 and C7 are chemically equivalent. The 

calculated 13C chemical shifts are again within 5 ppm,11 however the additivity rules 11 

calculate that Cl will come into resonance further down field than C l2, which is clearly not 

the case. This was also the case with N 1 -hexadecanoylspermine (TFA salt) in Chapter 3.

100



Assignment Observed Calculated 13CNMR

5 and 8 49.7,49.8 50.2

10 and 3 47.8,47.6 46.6

12 40.4 39.7

1 39.1 42.0

11 33.3 36.3

2 29.9 33.5

6 and 7 27.7 28.7

Table 4. I3C NMR assignments for jV’-/er^-butoxycarbonyl-4,9-diazadodecane-1,12-diamine 25 measured in 

CDC13 at 22 °C for the free base. Calculated values are estimates based on additivity rule calculation of 13C 

chemical shifts in aliphatic compounds.11

7V-Acylation of one of the primary amines of spermine leads to an unsymmetrical 

polyamine 13 and therefore loss of symmetry of the 13C chemical shifts in the propylene 

chains of the spermine headgroup (Table 5). Consequently Cl, C2 and C3 are now under the 

influence of a carbamate rather than a protonated primary amine, are less deshielded and 

therefore come into resonance further upfield than their counterparts CIO, Cl 1 and C12 on 

the other propylene chain. In the preceding Chapter, the 13C assignment for N l- 

hexadecanoyl-spermine was elucidated and the signal at 8 36.8 ppm was assigned to the 

polyamine methylene adjacent to the amide. In compound 13 the amide moiety is replaced 

by a carbamate which leads to a slight increase in the shielding effect at Cl and therefore this 

nucleus comes into resonance slightly further upfield at 8 36.1 ppm. During these studies,
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two other research groups have synthesised and published the NMR assignment of this 

carbamate 13 (Table 5) as the free base in CDC13. Our assignment compares favourably with 

that of Bischoff et ol.,s with the differences in chemical shifts being attributed to a change in 

solvent and the protonation state of the polyamine. The protonation of amines causes a 

shielding of the carbon atoms in the vicinity of the nitrogen, leading to a decrease in the 

chemical shift by 2 ppm for an a-carbon, 3 to 4 ppm for a p-carbon and 0.5 to 1.0 ppm for a 

y-carbon.11 However, our assignment disagrees with that of Cooper et a l.7 who have also 

published the 13C assignment for carbamates 14 and 16 and our unambiguous assignments 

also do not agree.

H2N
O
A,

H

Assignment Observed Bischoff Cooper

5 and 8 46.0 49.6 and 49.8 38.6 (8), 36.9 (5)

10 44.6 47.9 47.4

3 43.9 47.6 49.5

12 37.4 40.6

1 36.1 38.7 49.9

11 26.2 32.0

2 23.8 29.7 27.5

6 and 7 22.6 27.7 and 27.8

Table 5. 13C NMR assignment of carbamate 13 in [2H]6 DMSO for the fully protonated species as the poly-TFA 

salt. Literature values (Bischoff et a l}  and Cooper et al}) are in CDC13 as the free base.
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The assignment of the polyamine headgroups in this series of polyamine carbamates 

13-16 and 23-24 is therefore based upon comparison with a literature compound, calculations 

using additivity rules and by 'H, 13C chemical shift correlation spectroscopy.

Ethidium bromide displacement assay

The DNA binding affinities of the target compounds were measured using an Eth Br 

fluorescence displacement assay based upon the displacement of Eth Br (1.3 pM) from its 

intercalation site in calf thymus DNA (6 pg, [DNA base-pair] = 3.0 pM), previously 

described in detail in Chapter 2. The assay is an adaptation of the work of Cain et al.13 the 

method is rapid and involves the addition of microlitre aliquots of polyamine conjugate to a 3 

ml solution of Eth Br (1.3 pM) and calf thymus DNA (6 pg, [DNA base-pair] = 3.0 pM) in 

buffer (20 mM NaCl, 2 mM HEPES, pH 7.4) with the decrease in fluorescence monitored
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Fig. 4. Eth Br displacement assay o f  carbamate 13 compared to spermine 1 and polylysine at low salt (20  mM  

N aC l). 6 pg o f  CT D N A  in buffer (3 ml, 20  mM N aC l, 2 mM HEPES, 10 pM  EDTA, pH 7.4) was m ixed with 

Eth Br (3 pi o f  0.5 m g/m l) and aliquots o f  com pound (5 pi o f  0.25 m g/m l, 1 min equilibration time) were added 

and the fluorescence (%) determined (n =  1).
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Fig. 5. Eth Br displacement assay o f  carbamates 13-16 and 23-24  at low  salt (20  mM NaCl). 6 pg o f  CT D N A  

in buffer (3 ml, 20 mM NaCl, 2 mM  HEPES, 10 pM  EDTA, pH 7.4) was m ixed with Eth Br (3 pi o f  0.5 

m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min equilibration tim e) were added and the 

fluorescence (%) determined (n =  1).
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Fig. 6. Eth Br displacement assay o f  carbamate 13 compared to spermine 1 and polylysine at high salt (150  

mM NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 150 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) was m ixed  

with Eth Br (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min equilibration tim e) were 

added and the fluorescence (%) determined (n = 1).
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Fig. 7 Light scattering assay o f  carbamate 13 at low  salt (20  m M  N aCl) and high salt (150 m M  NaCl). 60 pg  

o f  CT D N A  in buffer (3 ml, 20 mM  NaCl, 2 mM HEPES, 10 pM  EDTA, pH 7.4) was stirred and aliquots o f  

compound (5 pi o f  1.0 m g/m l, 1 min equilibration tim e) were added and the absorbance (320 nm ) measured (n

= 1).

(^excit= 260 nm, ^emiss = 600 nm; 1 cm path length glass cuvette) after each addition (1 

min equilibration time).

The decrease in fluorescence was critically compared against polylysine (average 

molecular weight 9,600 Da) and spermine 1 (Fig. 4) for compound 13 at 20 mM NaCl as a 

function of charge ratio. At physiological pH, spermine carries a net positive charge of 3.8 

(Table 1), whereas that of polylysine is in excess of 30 and carbamate 13 2.4. In Fig. 4 we 

show that covalent attachment of cholesterol to spermine, enables this carbamate 13 to 

displace Eth Br from DNA at similar charge ratios to multivalent poly lysine. In Fig. 5, we 

compare the relative DNA binding affinities of all six carbamates (13-16 and 23-24) as a 

function of charge ratio at low salt concentration (20 mM NaCl). These data show 

differences in the binding affinity for DNA for carbamates 13-16 and 23-24. The only
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structural differences in these molecules are in the polyamine moieties. The changes in 

methylene spacing and number of nitrogens impart a different net positive charge and 

distribution to the molecules, which has been shown to have a profound effect on the 

molecules’ ability to induce DNA conformational changes.14 These results give support to 

our hypothesis that binding is a function of charge and that the regiochemical distribution of 

such charges is also significant for DNA affinity. These data do not prove that the DNA has 

condensed, but they provide additional evidence that there has been a gross morphological 

change in the tertiary structure of the DNA, as the binding affinity of Eth Br for duplex DNA 

is high.15

Salt dependence of the binding affinities of the conjugates has also been investigated 

using this assay at physiological salt concentration (150 mM NaCl, 2 mM HEPES, pH 7.4) 

and the decrease in fluorescence is critically compared as a function of the charge ratio. The 

decrease in fluorescence was compared against polylysine (average molecular weight 9,600 

Da) and spermine 1 (Fig. 4) for carbamate 13. These data show that spermine’s binding 

affinity for DNA is salt dependent,14,16 that polylysine is unaffected and that cholesteryl 

carbamate 13 is unable to displace all the Eth Br. Basu et al. have previously shown, using 

pentamines, the inability to displace completely Eth Br from DNA at elevated salt 

concentrations.17 This phenomenon was explained by aggregation of the polyamine-DNA 

complex before complete displacement of the Eth Br had occurred. With carbamates 14-16 

and 23-24, we obtained closely comparable results.

DNA condensation assay

In order to follow the condensation of DNA into particles, the UV absorbance at 320 

nm has been measured. As polyamines bind to the double helix and cause condensation an 

increase in absorbance is observed above 300 nm. The scattering of light is really being 

measured rather than the absorption. Precipitation of the DNA might be apparent to the
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naked eye (as a function of the gross amount), but it would not lead to an increase in the 

absorption above 300 nm. In Fig. 7, we show the apparent increase in UV absorption (320 

nm) of carbamate 13 at both low and high salt concentrations (20 mM and 150 mM NaCl 

respectively). At low salt concentrations, these data are consistent with particle formation 

and the absorption reaches a plateau at the same charge ratio as complete Eth Br exclusion 

(Fig. 4). However, it should be noted that, due to the lack of sensitivity of this assay, the 

DNA concentration was in a ten-fold excess compared to the Eth Br assay and no Eth Br was 

present. At high salt concentrations, these data are consistent with particle formation and the 

absorption reaches a plateau at the same charge ratio as the plateau observed in the Eth Br 

exclusion experiment (Fig. 6). Increased light scattering at elevated salt concentrations (150 

mM), compared to the low salt (20 mM) experiment, suggests larger particle size formation 

and gives weight to the argument that aggregation has occurred between the polyamine-DNA 

complexes.

Conclusions

Herein we report the design and synthesis of polyamine carbamates of cholesterol (at 

position 3), using our orthogonal protection strategy for efficient syntheses of unsymmetrical

polyamine amides.13 Six compounds have been made using polyamines: l,12-diamino-4,9- 

diazadodecane 1 (spermine, 3.4.3), 1,11-diamino-4,8-diazaundecane 2 (thermine, 

norspermine, 3.3.3), l,10-diamino-4,7-diazadecane 3 (3.2.3), l,9-diamino-3,7-diazanonane 4 

(2.3.2), tetraethylenepentamine 17 (1.22.2) and pentaethylenehexamine 18 (22.2.2.2) 

affording 13-16, 23 and 24 respectively. The p£a values of these compounds were then 

measured using a Sirius PCA101 automated pKa titrator, in 0.15 M KC1 ionic strength 

adjusted water. The DNA binding affinities of these polyamine carbamates were determined 

using calf thymus DNA and a fluorescence quenching assay based upon Eth Br displacement.
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These pATas values are comparable with those determined for 3.4.3 (spermine 1) both 

potentiometrically and spectroscopically. The Eth Br displacement data give support to our 

hypothesis that binding is a function of charge and that the regiochemical distribution of such 

charges is also significant for DNA affinity. These subtle differences in DNA condensation 

as a function of charge distribution are clearly important for lipoplex formation.

In a recent, comprehensive paper on the role of charge in polyamine analogue 

recognition, Bergeron and co-workers demonstrated that small structural alterations resulted 

in substantial differences in biological activities.18 The four methylene central spacer 

(butylene) found in spermine 1 has also been shown to be important for binding affinity, 

confirming that both the number of positive charges and their distribution have a profound 

effects on the polyamine’s ability to induce DNA conformational changes. The 

polyelectrolyte theory of Manning19 requires 90 % of the charge to be neutralized for efficient 

DNA condensation. We have achieved this using our cholesterol polyamine carbamates. 

These results will be of use in gene therapy studies and should find ready application in the 

design of lipoplexes with particular reference to spermidine and spermine class alkaloids.

This evaluation of pKa data, the number and regiochemical distribution of charges along the 

polyamine backbone, may lead to a clearer understanding of lipoplex modes of action.

Experimental

Ethidium bromide displacement assay

Calf thymus DNA, polylysine (average molecular weight 9,600 Da and degree of 

polymerisation 38 by viscosity) and Eth Br were obtained from Sigma. The polyamine 

compounds were used as their TFA salts, weighed and dissolved in MilliQ water. Eth Br was 

weighed and a stock solution (0.5 mg/ml) made up in MilliQ water. The buffer solutions (20 

mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4 and 150 mM NaCl, 2 mM HEPES, 10 pM 

EDTA, pH 7.4) were also made up in MilliQ water and were pH adjusted to 7.4 with NaOH.
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A stock solution of calf thymus DNA of approximately 60 pg/ml (3 ml) was made in buffer 

(20 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) and the concentration determined 

spectroscopically.20 DNA (6 pg) was diluted to 3 ml with buffer (20 mM NaCl, 2 mM 

HEPES, 10 pM EDTA, pH 7.4) in a glass cuvette with a micro-flea. Immediately prior to 

analysis, Eth Br (3 pi, 0.5 mg/ml) was added to the stirring solution and allowed to 

equilibrate for 1 min. Aliquots (5 pi) of the cholesterol carbamate (0.25 mg/ml) were then 

added to the stirring solution and the fluorescence measured after 1 min equilibration. The 

fluorescence was expressed as the percentage of the maximum fluorescence signal when Eth 

Br was bound to the DNA in the absence of competition for binding and was corrected for 

background fluorescence of free Eth Br in solution. High-salt experiments were conducted 

with the 150 mM NaCl buffer solution. Fluorescence studies were carried out with a Perkin 

Elmer LS50B luminescence spectrometer (7.excit = 260 nm, ?Lemiss = 600 nm; 1 cm path length 3 

ml glass cuvette: slit width 5 nm [20 mM NaCl] and 10 nm [150 mM NaCl]). An IBM 

compatible personal computer was used for data collection, using FL WinLab (Perkin-Elmer) 

software.

DNA condensation (light scattering) assay

The polyamine compounds were used as their TFA salts, weighed and dissolved in 

MilliQ water. The buffer solutions (20 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4 and 

150 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) were also made up in MilliQ water and 

were pH adjusted to 7.4 with NaOH. A stock solution of calf thymus DNA of approximately 

1 mg/ml (3 ml) was made in buffer (20 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) and 

the concentration determined spectroscopically.20 DNA (60 pg) was diluted to 3 ml with 

buffer (20 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) in a glass cuvette with a micro­

flea and the concentration determined spectroscopically. Aliquots (5 pi) of the cholesteryl 

carbamate (0.25 mg/ml) were then added to the stirring solution and the absorbance (light
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scattering) measured after 1 min stirring to reach equilibrium. The absorbance at 320 nm was 

then measured. High salt concentration experiments were conducted with the 150 mM NaCl 

buffer solution. UV absorbance studies were carried out with a Milton Roy Spectronic 601 

spectrometer (1 cm path length, 3 ml glass cuvette).

General procedures

Column chromatography was performed over silica gel 60 (35-75 pm) purchased 

from Prolabo-Merck. Analytical TLC was performed using aluminium-backed plates coated 

with Kieselgel 60 F254, purchased from Merck. The chromatograms were visualised with 

either potassium permanganate (basic aqueous) or ninhydrin (acidic butanolic). Removal of 

solvents in vacuo means using A Buchi Rotavapor at water aspirator pressure. High and low 

resolution fast atom bombardment (FAB) mass spectra were recorded on a VG AutoSpec Q 

instrument, with m-nitrobenzyl alcohol (mNBA) as the matrix. *H NMR and 13C NMR 

spectra were recorded using JEOL 270 (operating at 270 MHz for !H and 67.8 MHz for 13C) 

or JEOL EX 400 (operating at 400 MHz for *H and 100.8 MHz for 13C) spectrometers. 

Chemical shifts values are recorded in parts per million on the 5 scale. Spectra were 

referenced internally using either the residual solvent resonance for 13C, or to TMS for ]H. 

Coupling constants (J  values) are expressed in Hertz and the multiplicities are recorded as s 

(singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet) and b (broad). 13C 

multiplicity determinations were aided by 90° and 135° DEPT pulse sequences. HETCOR 

spectra were used, when required, to confirm the *H or 13C assignment and were recorded 

using a JEOL GX400 spectrometer. Microanalysis was performed by the Microanalysis 

Laboratory at the University of Bath. However, the presence of polyamines in the cationic 

lipids makes elementary analysis inadequate as a criterion of purity.9 Polyamines and other 

salts are highly hygroscopic and therefore determination of the melting points of their 

polytrifluoroacetic acid salts was not relevant.



Anhydrous methanol was prepared by distillation from magnesium turnings and 

iodine and was stored over 3 A molecular sieves under anhydrous nitrogen. Anhydrous 

CH2C12 and DMSO were prepared by distillation from calcium hydride (5 % w/v) and were 

stored over 4 A molecular sieves. Analytical and semi-preparative RP-HPLC were performed 

with a Jasco PU-980 pump equipped with a Jasco UV-975 detector (X = 220 nm). The 

column stationary phase was Supelcosil ABZ+Plus, 5 pm (15 cm x 4.6 mm for the analytical 

and 25 cm x 10 mm for the semi-preparative columns respectively). The mobile phases were 

isocratic mixtures of acetonitrile (MeCN) and 0.1 % aqueous trifluoroacetic acid, with 1.5 

and 4.0 ml/min flow rates for the analytical and semi-preparative columns respectively. All 

chemicals were purchased from Sigma-Aldrich-Fluka Chemical company (Gillingham, 

Dorset) and used without further purification.

General procedure A: poly-Boc protection ofpolyamines

To a solution of the polyamine (5 mmol) in methanol (70 ml) at -78 °C under 

anhydrous nitrogen was added ethyl trifluoroacetate (1 equiv.) dropwise over 30 min.

Stirring was continued for a further 30 mins, then the temperature was increased to 0 °C to 

afford predominantly the mono-trifluoroacetamide. Using the above protocol and without 

isolation, the remaining amino functional groups were quantitatively protected by dropwise 

addition of an excess of di-terf-butyldicarbonate in methanol (10 ml) over 3 min. The 

reaction was then warmed to 25 °C and stirred for a further 15 h to afford the fully protected 

polyamine. The trifluoroacetate protecting group was then removed (in situ) by increasing 

the pH of the solution above 11 with conc. aqueous ammonia and stirring at 25 °C for 15 h. 

The solution was then concentrated in vacuo and the residue purified over silica gel to afford 

the title compound as a colourless homogeneous oil by TLC analysis.
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General procedure B: carbamate formation

To a solution of the poly-Boc protected polyamine in CH2C12 (8 ml) and triethylamine 

(3.0 equiv.) at 0 °C under nitrogen was added cholesteryl chloroformate (1.2 equiv.) dropwise 

in CH2C12 (3 ml) over 30 min. Stirring was continued for a further 10 mins, then the 

temperature was increased to 25 °C and the solution stirred for a further 2 h. The solution 

was then concentrated in vacuo and the residue purified over silica gel to afford the title 

compound as a white foam.

General procedure C: Boc removal

To the stirring solution of lipo-polyamine dissolved in CH2C12 (180 ml), under 

nitrogen, at 25 °C was added TFA (20 ml). After 2 h, the solution was concentrated in vacuo, 

lyophilized and the residue purified by semi-preparative RP-HPLC over Supelcosil 

ABZ+Plus (5 pm, 25 cm x 10 mm, MeOH-0.1 % aq. TFA), to yield the title compound as a 

white solid (poly-TFA salt).

(Â 1y/V4̂ V9-Tri-/er/-butoxycarbonyl)-l,12-diamino-4,9-diazadodecane 5

l,12-Diamino-4,9-diazadodecane 1 (spermine, 3.4.3) (1.0 g, 4.95 mmol) was reacted 

according to general procedure A to afford the title compound 5 as a colourless oil (1.24 g, 50 

%). Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 70:10:1 to 50:10:1 v/v/v), R{ 0.5 

(CH2Cl2-MeOH-conc. aq. NH3 50:10:1 v/v/v). ]HNMR, 400 MHz, CDC13: 1.42-1.55 [m, 31 

H, 6-CH2, 7-CH2, 0-C(CH3)3 x  3]; 1.60-1.72 (m, 6 H, 2-CH2, 11-CH2, NH,); 2.70 (t, 2 H, J=  

7, 12-CHj); 3.05-3.38 (m, 10 H, 1-CH2, 3-CH2, 5-CH2, 8-CH2, 10-CH2); 5.29-5.44 (bs, 1 H, 

CO-NH-CH2). 13C NMR, 100 MHz, CDC13: 25.4, 25.8, 25.9, 26.3 (6-CH2, 7-CH2); 28.35,

28.5, 28.7 [2-CH2, 0-C-(CH3)3, overlapping]; 31.3, 32.5 (11-CH2); 37.3, 37.6 (1-CH2); 38.8,

39.3 (12-CHa); 43.7,44.1,44.2,44.4 (3-CH2,10-CH2); 46.3,46.7 (5-CH2, 8-CH2, 

overlapping); 78.8, 78.9, 79.1, 79.3 (quaternary C x 3, overlapping); 155.3, 155.5, 155.6,
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156.0 [3 x N-C0-0-C-(CH3)3, overlapping]. MS, FAB+ found 503, 21 % (M+ + 1), 

C25H50N4O6 requires M+ = 502. High-resolution MS m/z, FAB+ found 503.3823, (M+ +1), 

C25H5]N40 6 requires M+ + 1 = 503.3808.

(T V 1JV4JVS- T ri-te/*/-butoxycarbonyI)-l,ll-diamino-4,8-diazaundecane 6

1,11-Diamino-4,8-diazaundecane 2 (thermine, norspermine, 3.3.3) (3.0 g, 16.0 mmol) 

was reacted according to general procedure A to afford the title compound 6 as a colourless 

oil (3.16 g, 41 %). Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3100:10:1 v/v/v), R{ 

0.18 (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 v/v/v). !HNMR, 400 MHz, CDC13: 1.35-1.43 

[m, 27 H, 0-C(CH3)3 x  3]; 1.48-1.70 (m, 4 H, 2-CH2, 6-CH2); 1.70-1.78 (m, 2 H, 10-CH2);

1.95-2.00 (s, 2 H, NH2); 2.63 (t, 2 U,J=  7, 11-CH2); 2.96-3.30 (m, 10 H, 1-CH2, 3-CH2, 5- 

CH2, 7-CH2, 9-CH2). 13C NMR, 100 MHz, CDC13: 27.3,27.7, 27.8, 28.1,28.4, 28.8, 28.9,

29.5 [2-CH2, 5-CH2, 0-C-(CH3)3, overlapping]; 31.4, 31.8 (8-CH2); 37.3, 37.5 (1-CH2); 38.8,

39.2 (9-CH2); 43.1,43.3,43.8,44.5 (3-CH2,4-CH2, 6-CH2, 7-CH2, overlapping); 79.3, 79.5,

79.6 (quaternary C x 3, overlapping); 155.5, 156.0 [3 x N-C0-0-C-(CH3)3, overlapping].

MS, FAB+ found 489, 100 % (M+ +1), C24H48N40 6 requires M+ = 488. High-resolution MS 

m/z, FAB+ found 489.3645, (M+ +1), C24H49N40 6 requires M+ + 1 = 489.3652.

(7V'Ar4>/V7-Tri-^r^-butoxycarbonyl)-l,10-diamino-4,7-diazadecane 7

l,10-Diamino-4,7-diazadecane 3 (3.2.3) (3.0 g, 17.2 mmol) was reacted according to 

general procedure A to afford the title compound 7 as a colourless oil (3.315 g, 41 %). 

Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 v/v/v), R{ 0.10 (CH2C12- 

MeOH-conc. aq. NH3 100:10:1 v/v/v). *HNMR, 400 MHz, CDC13: 1.35-1.50 [m, 27 H, O- 

C(CH3)3 x 3]; 1.50-1.85 (m, 6 H, 2-CH2, 9-CH2, NH2); 2.57-2.68 (m, 2 H, 10-CH2); 2.96-3.10 

(m, 2 H, 1-CH2); 3.10-3.34 (m, 8 H, 3-CH2, 5-CH2, 6-CH2, 8-CH2). 13C NMR, 100 MHz, 

CDC13: 26.9, 27.1, 27.9, 28.3, 28.9 [2-CH2, 0-C-(CH3)3, overlapping]; 31.7, 32.6 (9-CH2);
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37.2, 37.5 (1-CH2); 38.9, 39.3 (10-CH2); 43.5, 44.3, 44.9,45.2,45.3 (3-CH2, 5-CH2, 6-CH2, 

8-CH2, overlapping); 79.6, 79.7, 79.8 (quaternary C x 3, overlapping); 155.4,155.8, 156.0 [3 

x N-C0-0-C-(CH3)3, overlapping]. MS, FAB+ found 475,100 % (M+ + 1), C23H46N40 6 

requires M+ = 474. High-resolution MS m/z, FAB+ found 475.3496, (M+ +1), C23H47N40 6 

requires M+ + 1 = 475.3495.

( N 1JV3̂ 1-T ri-ter/-butoxycarbonyl)-l ,9-diamino-3,7-diazanonane 8

l,9-Diamino-3,7-diazanonane 4 (2.3.2) (2.0 g, 12.5 mmol) was reacted according to 

general procedure A to afford the title compound 8 as a colourless oil (2.681 g, 47 %). 

Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 to 75:10:1 v/v/v), R{ 0.18 

(CH2Cl2-MeOH-conc. aq. NH3 100:10:1 v/v/v). *H NMR, 400 MHz, CDC13: 1.43-1.52 [m, 

29 H, 0-C(CH3)3 x 3, NHJ; 1.75-1.82 (m, 2 H, 5-CH2); 2.83-2.87 (t, 2 H, J=  7, 9-CH2); 3.16- 

3.38 (m, 10 H, 1-CH2, 2-CH2,4-CH2, 6-CH2, 8-CH2); 5.00-5.30 (bs, 1 H, CO-NH-CH2). 13C 

NMR, 100 MHz, CDC13: 27.5, 27.7,28.2,28.3, 28.4 [5-CH2, 0-C-(CH3)3, overlapping];

39.5, 40.5 (1-CH2); 40.6, 40.7 (9-CH2); 45.3,45.5,46.4,46.7 (2-CH2, 8-CH2); 50.1, 50.1,

50.2 (4-CH2, 6-CH2, overlapping); 79.1, 79.5, 79.8 (quaternary C x 3, overlapping); 155.6, 

155.9, 156.0 [3 x N-C0-0-C-(CH3)3, overlapping]. MS, FAB+ found 461,100 % (M+ + 1), 

C^H^KjOg requires M+ = 460. High-resolution MS m/z, FAB+ found 461.3345, (M+ + 1), 

C22H45N40 6 M+ + 1 = 461.3339.

(Â Î V3r/V6̂ V9-Tetra-te#*/-butoxycarbonyl)-l,ll-diamino-3,6,9-triazaundecane 19

1,11-Diamino-3,6,9-triazaundecane 17 (2.2.2.2) (3.0 g, 15.8 mmol) was reacted 

according to general procedure A to afford the title compound 19 as a colourless oil (1.364 g, 

14 %). Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 200:10:1 to 150:10:1 v/v/v), R{ 

0.07 (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 v/v/v). *HNMR, 400 MHz, CDC13: 1.44-1.54 

[m, 36 H, 0-C(CH3)3 x  4]; 1.96 (s, 2 H, NH2); 2.75-2.92 (m, 2 H, 11-CH2); 3.16-3.35 (m, 14
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H, 1-CH2, 2-CH2, 4-CH2j 5-CH2, 7-CH2, 8-CH2 10-CH2,). 13C NMR, 100 MHz, CDC13: 28.1,

28.3, 28.6, [0-C-(CH3)3 x  4, overlapping]; 39.3, 39.5 (1-CH2); 40.3,40.8 (8-CH2); 45.0,45.2,

45.3, 45.6, 45.8,46.5,47.6, 50.1, 50.8, 50.9 (2-CH2,4-CH2, 5-CH2, 7-CH2, 8-CH2, 10-CH2, 

overlapping); 79.0, 79.9, 80.1 (quaternary C x 4, overlapping); 155.3, 155.4, 155.6, 156.0 [4 

x N-C0-0-C-(CH3)3, overlapping]. MS, FAB+ found 590, 90 % (M+ + 1), C28H55N50 8 

requires M+ = 589. High-resolution MS m/z, FAB+ found 590.4144, (M+ + 1), C28H56N50 8 

requires M+ + 1 = 590.4128.

(Arl,iV3,Ar6r/V9,7V12-Penta-te/*/-butoxycarbonyl)-l,14-diamino-3,6,9,12-tetra- 

azatetradecane 20

l,14-Diamino-3,6,9,ll-tetra-azatetradecane 18 (2.2.2.2.2) (3.0 g, 12.9 mmol) was 

reacted according to general procedure A to afford the title compound 20 as a colourless oil 

(0.899 g, 10 %). Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 200:10:1 to 150:10:1 

v/v/v), 0.18 (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 v/v/v). 'HNMR, 400 MHz, CDC13:

I.43-1.53 [m, 45 H, 0-C(CH3)3 x 5]; 2.53-2.64 (s, 2 H, NH2); 2.75-2.92 (m, 2 H, 14-CH2); 

3.20-3.38 (m, 18 H, 1-CH2, 2-CH2,4-CH2, 5-CH2, 7-CH2, 8-CH2,10-CH2,11-CH2,13-CH2,). 

13C NMR, 100 MHz, CDC13: 28.4 [0-C-(CH3)3 x 5, overlapping]; 39.3, 39.5 (1-CH2); 40.4,

40.7 (14-CH2); 44.9, 45.3,45.5,45.6,49.8 (2-CH2,4-CH2, 5-CH2, 7-CH2, 8-CH2, 10-CH2, 11- 

CH2,14-CH2, overlapping); 79.0, 79.1, 79.6, 79.9 (quaternary C x 5, overlapping); 155.2, 

155.4, 155.8, 155.9, 156.0 [5 x N-C0-0-C-(CH3)3, overlapping]. MS, FAB+ found 733, 90 % 

(M+ +1), C35H68N6O10 requires M+ = 732. High-resolution MS m/z, FAB+ found 733.5083, 

(M+ + 1), C35H69N6O10 requires M+ + 1 = 733.5075.
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Â12-C h o les tery loxy-3-car bonyl-(Ar4̂ /V9r/V12-tri-/^r/-butoxycarbonyl)-l,12-dia min 0-4,9- 

diazadodecane 9

Amine 5 (500 mg, 1.0 mmol) was reacted with cholesteryl chloroformate according to 

general procedure B to afford, after purification over silica gel (EtOAc-hexane; 1:9 to 3:7 

v/v), the title compound 9 as a white foam (699 mg, 77 %). R{ 0.52 (EtOAc-hexane; 4:6 v/v). 

lU NMR, 400 MHz, CDC13: 0.68 (s, 3 H, 18'-CH3); 0.84, 0.85 (2 x d, 6 H, J = 7, overlapping 

2 Hz, 26'-CH3, 27'-CH3); 0.91 (d, 3 H, J=  7 ,21'-CH3); 1.01 (s, 3 H, 19'-CH3); 0.94-2.00 (m, 

61 H, 3 x 0-C-[CH3]3, 2-CH2, 6-CH2, 7-CH2, 11-CH2, l'-CH2, 2'-CH2,4'-CH2, 7'-CH2, 8'-CH, 

9'-CH, l l ’-CH2, 12'-CH2,14'-CH, 15'-CH2, 16'-CH2, 17'-CH, 20'-CH, 22'-CH2, 23'-CH2, 25'- 

CH); 2.20-2.38 (m, 2 H, 24'-CH2,); 3.05-3.38 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 8-CH2, 10- 

CH2, 12-CH2); 4.40-4.55 (m, 1 H, 3'-CH); 5.35-5.40 (m, 1 H, 6’-CH); 5.45-5.60 (bs, 1 H, 

CH2-NH-CO). 13C NMR, 100 MHz, CDC13: 11.9 (18'-CH3); 18.7 (21'-CH3); 19.3 (19'-CH3);

21.0 (ll'-CH2); 22.6 (27'-CH3); 22.8 (26'-CH3); 23.8 (23'-CH2); 24.3 (15'-CH2); 25.4, 25.6,

26.0, 26.0 (6-CH2, 7-CH2); 28.0,28.2, 28.4,28.5,28.9 (2-CH2, 11-CH2, 2'-CH2, 16'-CH2, 25'- 

CH, 3 x 0-C-[CH3]3, overlapping); 31.9 (7'-CH2, 8'-CH, overlapping); 35.8 (20'-CH); 36.2 

(22'-CH2); 36.6 (lO'-C); 37.0 (l'-CH2); 37.5 (1-CH2, 12-CH2); 38.6 (24'-CH2); 39.5, 39.7 (4'- 

CH2,12'-CH2); 42.3 (13'-C); 43.7, 44.2 (3-CH2,10-CH2, overlapping); 46.3, 46.8 (5-CH2, 8- 

CH2, overlapping); 50.0 (9'-CH); 56.1 (17'-CH); 56.7 (14'-CH); 74.1 (3'-CH); 79.6, 79.7 (3 x 

quaternary C, overlapping); 122.3 (6'-CH); 140.0 (5'-C); 156.2 (3 x NH-C0-0-C(CH3)3, N- 

CO-O-CH, overlapping). MS, FAB+ found 915,20 % (M+ +1), C53H94N408 requires M+ = 

914. High-resolution MS m/z, FAB+ found 915.7128, (M+ +1), C53H95N40 8 requires M+ + 1 

= 915.7151.
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Aril-ChoIesteryIoxy-3-carbonyI-(Arlr/V4r/V8-tri-ter/-butoxycarbonyI)-l,ll-diamino-4,8- 

diazaundecane 10

Amine 6 (500 mg, 1.0 mmol) was reacted with cholesteryl chloroformate according to 

general procedure B to afford, after purification over silica gel (EtOAc-hexane; 2:8 to 4:6 

v/v), the title compound 10 as a white foam (0.788 mg, 85 %). R{ 0.33 (EtOAc-hexane; 4:6 

v/v). *H NMR, 400 MHz, CDC13: 0.66 (s, 3 H, 18'-CH3); 0.84, 0.85 (2 x d, 6 H, J=  7, 

overlapping 2 Hz, 26'-CH3,27'-CH3); 0.89 (d, 3 H, J=  7, 21'-CH3); 0.99 (s, 3 H, 19'-CH3); 

0.94-2.10 (m, 59 H, 3 x 0-C-[CH3]3,2-CH2, 6-CH2, 10-CH2, l'-CH2,2'-CH2, 4'-CH2, 7'-CH2, 

8'-CH, 9-CH, 1 l'-CH2, 12'-CH2, 14'-CH, 15'-CH2,16'-CH2,17'-CH, 20'-CH, 22'-CH2, 23'- 

CH2, 25-CH); 2.25-2.42 (m,2 H, 24'-CH2,); 3.08-3.40 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 7- 

CH2, 9-CH2, 11-CH2); 4.45-4.58 (m, 1 H, 3'-CH); 5.37-5.42 (m, 1 H, 6'-CH); 5.50-5.62 (bs, 1 

H, CH2-NH-CO). 13CNMR, 100 MHz, CDC13: 11.8 (18'-CH3); 18.7 (21'-CH3); 19.3 (19'- 

CH3); 21.0 (1 r-CH2); 22.5 (27'-CH3); 22.8 (26'-CH3); 23.8 (23'-CH2); 24.2 (15'-CH2); 28.0, 

28.1,28.2, 28.4, 28.8 (2-CH2, 6-CH2, 10-CH2,2'-CH2,16'-CH2, 25'-CH, 3 x 0-C-[CH3]3, 

overlapping); 31.8, 31.9 (7'-CH2, C8'-CH, overlapping); 35.7 (20'-CH); 36.1 (22'-CH2); 36.5 

(lO'-C); 37.0 (l'-CH2); 37.5 (1-CH2, 11-CH2); 38.5 (24'-CH2); 39.5, 39.7 (4'-CH2, 12'-CH2);

42.3 (13'-C); 43.7, 44.2, 44.3, 44.4,44.5, 44.7 (3-CH2, 5-CH2, 7-CH2, 9-CH2, overlapping);

50.0 (9'-CH); 56.1 (17-CH); 56.6 (14'-CH); 74.1 (3'-CH); 79.7 (3 x quaternary C, 

overlapping); 122.3 (6'-CH); 139.9 (5'-C); 156.0, 156.2 (3 x NH-C0-0-C(CH3)3, N-CO-O- 

CH, overlapping). MS, FAB+ found 901, 30 % (M+ +1), C52H92N40 8 requires M+ = 900.

Arl0-Cholesteryloxy-3-carbonyl-(ArIr/V4̂ V-tri-^r/-butoxycarbonyl)-l,10-diamino-4,7- 

diazadecane 11

Amine 7 (500 mg, 1.1 mmol) was reacted with cholesteryl chloroformate according to 

general procedure B to afford, after purification over silica gel (EtOAc-hexane; 2:8 to 4:6 

v/v), the title compound 11 as a white foam (713 mg, 76 %). R{ 0.33 (EtOAc-hexane; 4:6
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v/v). !H NMR, 400 MHz, CDC13: 0.70 (s, 3 H, 18'-CH3); 0.89, 0.90 (2 x d, 6 H, J=  7, 

overlapping 2 Hz, 26'-CH3 and 27'-CH3); 0.95 (d, 3 H, J=  7 ,21'-CH3); 1.04 (s, 3 H, 19'-CH3); 

0.94-2.00 (m, 57 H, 3 x 0-C-[CH3]3, 2-CH2, 9-CH2, l'-CH* 2'-CH2, 4'-CH2, 7'-CH2, 8'-CH, 9'- 

CH, ll'-CHj, 12'-CH2, 14-CH, 15'-CH2, 16'-CH2, 17'-CH,20'-CH,22'-CH2,23'-CH2, 25'- 

CH); 2.25-2.43 (m, 2 H, 24'-CH2,); 3.08-3.24 (m, 4 H, 1-CH2, 10-CH2); 3.24-3.45 (m, 8 H, 3- 

CH2, 5-CH2, 6-CH2, 8-CH2); 4.45-4.58 (m, 1 H, 3'-CH); 5.37-5.42 (m, 1 H, 6'-CH); 5.58-5.62 

(bs, 1 H, CH2-NH-CO). 13C NMR, 100 MHz, CDC13: 11.8 (18'-CH3); 18.6 (21'-CH3); 19.3 

(19'-CH3); 21.0 (H'-CH2); 22.5 (27'-CH3); 22.8 (26'-CH3); 23.8 (23'-CH2); 24.2 (15’-CH2);

28.0,28.1, 28.2, 28.4,28.9 (2-CH2, 9-CH2,2'-CH2,16'-CH2, 25'-CH, 3 x 0-C-[CH3]3, 

overlapping); 31.8 (7'-CH2, 8'-CH, overlapping); 35.7 (20'-CH); 36.1 (22'-CH2); 36.5 (lO'-C); 

36.9 (l'-CH2); 37.2, 37.4, 37.5 (1-CH2,10-CH2); 38.5 (24'-CH2); 39.5, 39.7 (4'-CH2, 12'-CH2);

42.2 (13'-C); 44.1,44.2,44.8,45.1 (3-CH2, 5-CH2, 6-CH2, 8-CH2, overlapping); 49.9 (9'-CH);

56.1 (17-CH); 56.6 (14'-CH); 74.1 (3'-CH); 80.1 (3 x quaternary C, overlapping); 122.3 (6'- 

CH); 139.9 (5'-C); 155.9, 156.1, 156.2 (3 x NH-C0-0-C(CH3)3, N-CO-O-CH, overlapping). 

MS, FAB+ found 887, 50 % (M+ + 1), C51H90N4O8 requires M+ = 886.

A^-Cholesteryloxy-3-carbonyl-(iV1 ̂ V3̂ V7-tri-ter/-butoxycarbonyl)-l ,9-diamino-3,7- 

diazanonane 12

Amine 8 (500 mg, 1.1 mmol) was reacted with cholesteryl chloroformate according to 

general procedure B to afford, after purification over silica gel (EtOAc-hexane; 2:8 to 4:6 

v/v), the title compound 12 as a white foam (788 mg, 83 %). R{ 0.20 (EtOAc-hexane; 4:6 

v/v). NMR, 400 MHz, CDC13: 0.65 (s, 3 H, 18'-CH3); 0.84, 0.85 (2 x d, 6 H, J=  7, 

overlapping 2 Hz, 26’-CH3 and 27'-CH3); 0.89 (d, 3 H, J = 7, 21'-CH3); 0.98 (s, 3 H, 19'-CH3); 

0.93-2.00 (m, 55 H, 3 x 0-C-[CH3]3, 5-CH2, l'-CH2,2'-CH2, 4'-CH2, 7'-CH2, 8'-CH, 9'-CH, 

ll'-CH2, 12'-CH2, 14'-CH, 15'-CH2, 16'-CH2, 17'-CH, 20'-CH, 22'-CH2, 23'-CH2, 25'-CH);

2.14-2.30 (m, 2 H, 24'-CH2,); 3.02-3.34 (m, 12 H, 1-CH2, 2-CH2 4-CH2, 6-CH2, 8-CH2, 9-
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CH2); 4.30-4.50 (m, 1 H, 3'-CH); 5.20-5.35 (m, 1 H, 6'-CH). 13C NMR, 100 MHz, CDC13:

11.8 (18,-CH3); 18.6 (21'-CH3); 19.3 (19'-CH3); 21.0 (ll'-CH2); 22.5 (27'-CH3); 22.8 (26'- 

CH3); 23.7 (23'-CH2); 24.2 (15'-CH2); 27.5, 27.7, 28.0, 28.1, 28.2,28.4 (5-CH2, C2'-CH2, 16'- 

CH2, 25-CH, 3 x 0-C-[CH3]3, overlapping); 31.8 (7'-CH2, 8'-CH, overlapping); 35.7 (20'- 

CH); 36.1 (22'-CH2); 36.5 (lO'-C); 36.9 (l'-CH2); 38.5 (24'-CH2); 39.4, 39.7, 39.9 (1-CH2, 9- 

CH2,4'-CH2, 12'-CH2, overlapping); 42.2 (13'-C); 45.1,45.5,45.6, 46.3,46.4,46.6, 46.7,46.8 

(2-CH2,4-CH2, 6-CH2, 8-CH2, overlapping); 49.9 (9!-CH); 56.0 (17!-CH); 56.6 (14!-CH); 74.1 

(3-CH); 79.1, 79.9 (3 x quaternary C, overlapping); 122.4 (6'-CH); 139.8 (5'-C); 156.1,156.3 

(3 x NH-C0-0-C(CH3)3, N-CO-O-CH, overlapping). MS, FAB+ found 873, 10 % (M+ + 1), 

C50H88N4O8 requires M+ = 872.

Arll-CholesteryIoxy-3-carbonyl-(7VIy/V3r/V6̂ V9-tetra-ter/-butoxycarbonyl)-l,11-diamino-

3,6,9-triazaundecane 21

Amine 19 (500 mg, 0.85 mmol) was reacted with cholesteryl chloroformate according 

to general procedure B to afford, after purification over silica gel (EtOAc-hexane; 2:8 to 4:6 

v/v), the title compound 21 as a white foam (322 mg, 38 %). R{ 0.24 (EtOAc-hexane; 4:6 

v/v). !H NMR, 400 MHz, CDC13: 0.67 (s, 3 H, 18'-CH3); 0.86, 0.87 (2 x d, 6 H, J =  7, 

overlapping 2 Hz, 26’-CH3 and 27'-CH3); 0.91 (d, 3 H, J=  7 ,21'-CH3); 1.00 (s, 3 H, 19'-CH3); 

0.95-2.03 (m, 62 H, 4 x 0-C-[CH3]3, l'-CH2, 2'-CH2,4'-CH2, 7'-CH2, 8'-CH, 9'-CH, l l ’-CH2, 

12'-CH2, 14'-CH, 15'-CH2, 16'-CH2,17'-CH, 20'-CH, 22'-CH2,23'-CH2, 25'-CH); 2.18-2.38 

(m, 2 H, 24'-CH2,); 3.20-3.40 (m, 16 H, 1-CH2, 2-CH2,4-CH2, 5-CH2 7-CH2, 8-CH2,10-CH2,

11-CH2); 4.40-4.53 (m, 1 H, 3'-CH); 5.33-5.40. (m, 1 H, 6'-CH). 13C NMR, 100 MHz,

CDC13: 11.9 (18'-CH3); 18.7 (21'-CH3); 19.3 (19’-CH3); 21.0 (ll'-CH2); 22.6 (27'-CH3); 22.8 

(26'-CH3); 23.8 (23'-CH2); 24.3 (15'-CH2); 28.0, 28.2, 28.4 (2'-CH2,16'-CH2,25'-CH, 4 x 0 -  

C-[CH3]3, overlapping); 31.9 (7’-CH2, 8'-CH, overlapping); 35.8 (20'-CH); 36.2 (22'-CH2);

36.5 (lO'-C); 37.0 (l'-CH2); 38.6 (24'-CH2); 39.5, 39.7 (1-CH2, 11-CH2, 4'-CH2, 12'-CH2,
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overlapping); 42.3 (13'-C); 45.2, 45.4, 45.7,46.6,46.7,47.9 (2-CH2,4-CH2, 5-CH2, 7-CH2, 8- 

CH2, 10-CH2, overlapping); 50.0 (9'-CH); 56.1 (17'-CH); 56.7 (14'-CH); 74.2 (3'-CH); 80.0,

80.2 (4 x quaternary C, overlapping); 122.4 (6'-CH); 139.8 (5'-C); 155.2, 155.5,155.8, 156.1, 

156.3 (4 x NH-C0-0-C(CH3)3, N-CO-O-CH, overlapping). MS, FAB+ found 1002, 10 %

(M+ + 1), C56H99N5O10 requires M+ = 1001.

7V14-Cholesteryloxy-3-carbonyI-(7V 1 ;Ar3̂ V6r/V9̂ V12-penta-^r/-butoxycarbonyl)-l,14- 

diamino-3,6,9,12-tetra-azatetradecane 22

Amine 20 (500 mg, 0.70 mmol) was reacted with cholesteryl chloroformate according 

to general procedure B to afford, after purification over silica gel (EtOAc-hexane; 2:8 to 4:6 

v/v), the title compound 22 as a white foam (430 mg, 55 %). R{ 0.23 (EtOAc-hexane 4:6 

v/v). !H NMR, 400 MHz, CDC13: 0.60 (s, 3 H, 18'-CH3); 0.78, 0.79 (2 x d, 6 H, J=  7, 

overlapping 2 Hz, 26'-CH3 and 27'-CH3); 0.84 (d, 3 H, J=  7 ,21'-CH3); 0.93 (s, 3 H, 19'-CH3); 

0.88-2.00 (m, 71 H, 5 x 0-C-[CH3]3, l'-CH2, 2'-CH2,4'-CH2, 7'-CH2, 8'-CH, 9'-CH, ll'-CH2, 

12'-CH2, 14-CH, 15'-CH2, 16'-CH2, 17-CH, 20'-CH, 22,-CH2, 23,-CH2, 25'-CH); 2.15-2.30 

(m, 2 H, 24'-CH2,); 3.10-3.33 (m, 20 H, 1-CH2, 2-CH2,4-CH2, 5-CH2 7-CH2, 8-CH2, 10-CH2,

11-CH2, 13-CH2,14-CH2); 4.34-4.48 (m, 1 H, 3’-CH); 5.25-5.32. (m, 1 H, 6'-CH). ,3C NMR, 

100 MHz, CDC13: 11.8 (18'-CH3); 18.6 (21'-CH3); 19.3 (19'-CH3); 21.0 (ll'-CH2); 22.5 (27- 

CH3); 22.8 (26'-CH3); 23.7 (23'-CH2); 24.2 (15'-CH2); 28.0, 28.1, 28.2, 28.3 (2'-CH2,16'-CH2, 

25'-CH, 5 x 0-C-[CH3]3, overlapping); 31.8 (7'-CH2, 8'-CH, overlapping); 35.7 (20'-CH);

36.1 (22'-CH2); 36.5 (10'-CH2); 36.9 (l'-CH2); 38.5 (24'-CH2); 38.5, 39.4, 39.7, 39.8 (1-CH2, 

14-CH2, 4'-CH2,12'-CH2, overlapping); 42.2 (13'-C); 44.9,45.2,45.3, 46.4,46.8 (2-CH2, 4- 

CH2, 5-CH2, 7-CH2, 8-CH2,10-C,11-CH2,13-CH2, overlapping); 49.9 (9'-CH); 56.0 (17-CH);

56.6 (14-CH); 74.1 (3'-CH); 79.9, 80.1 (5 x quaternary C, overlapping); 122.3 (6'-CH); 139.8 

(5'-C); 155.1, 156.1 (5 x NH-C0-0-C(CH3)3, N-CO-O-CH, overlapping). MS, FAB+ found 

1145, 10 % (M+ + 1), C63H]]2N60 12 requires M+ = 1144.
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(A^-CholesteryIoxy-3-carbonyI)-l,12-diammo-4,9-diazadodecane 13

Carbamate 9 (432 mg, 0.47 mmol) was deprotected according to general procedure C 

and purified by semi-prep. RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN- 

0.1 % aq. TFA 50:50 v/v) to afford the title compound 13 as a white solid 

(polytrifluoroacetate salt, 158 mg, 35 %), tK 9.0 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA; 50:50 v/v). !H NMR, 400 MHz, [2H]6 DMSO: 

0.67 (s, 3 H, 18,-CH3); 0.86 (d, 6 H, J=  7, 26’-CH3, 27'-CH3); 0.91 (d, 3 H, 6, 21,-CH3); 

0.99 (s, 3 H, 19'-CH3); 0.94-2.00 (m, 34 H, 2-CH2, 6-CH2, 7-CH2,11-CH2, l'-CH2, 2'-CH2, 4'- 

CH2, 7'-CH2, 8-CH, 9'-CH, ll'-CH2,12'-CH2,14'-CH, 15'-CH2,16'-CH2, 17-CH, 20'-CH, 

22'-CH2, 23'-CH2,25'-CH); 2.15-2.32 (m, 2 H, 24'-CH2,); 2.84-3.08 (m, 12 H, 1-CH2, 3-CH2, 

5-CH2, 8-CH2,10-CH2, 12-CHj); 4.27-4.39 (m, 1 H, 3'-CH); 5.35-5.42 (m, 1 H, 6'-CH); 7.24,

8.03, 8.70, 8.91 (4 x bs, ammonium signals) 13CNMR, 100 MHz, [2H]6 DMSO: 11.7 (18- 

CH3); 18.6 (21'-CH3); 19.0 (19'-CH3); 20.6 (ll'-CH2); 22.4 (26'-CH3); 22.6 (6-CH2, 7-CH2, 

overlapping); 22.7 (27'-CH3); 23.2 (23'-CH2); 23.8, 23.9 (2-CH2, 15'-CH2); 26.2 (11-CH2);

27.4 (16'-CH2); 27.8, 27.9 (2'-CH2, 25'-CH); 31.3, 31.4 (7'-CH2, 8'-CH); 35.2 (20'-CH); 35.7 

(22'-CH2); 36.1, 36.2 (lO'-C, 1-CH2); 36.6 (l'-CH2); 37.4 (12-CH2); 38.3 (24?-CH2); 38.9, 39.0 

(4'-CH2, 12'-CFI2); 41.9 (13'-C); 43.9 (3-CH); 44.6 (10-CH2); 46.0 (5-CH2, 8-CH2, 

overlapping); 49.5 (9'-CH); 55.6 (17'-CH); 56.1 (14'-CH); 73.0 (3'-CH); 121.9 (6'-CH); 139.7 

(5'-C); 155.8 (OCONH). MS, FAB+ found 615, 100 % (M+ + 1), C38H70N4O2 requires M+ = 

614. High-resolution MS m/z, FAB+ found 615.5577, (M+ + 1), C38H71N40 2 requires M+ + 1 

= 615.5577.

(A1-Cholesteryloxy-3-carbonyl)-l,ll-diamino-4,8-diazaundecane 14

Carbamate 10 (300 mg, 0.24 mmol) was deprotected according to general procedure 

C and purified by semi-prep. RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, 

MeCN-0.1 % aq. TFA, 49:51 v/v) to afford the title compound 14 as a white solid
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(polytrifluoroacetate salt, 218 mg, 69 %), tR 8.3 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA, 49:51 v/v). *H NMR, 400 MHz, [2H]6 DMSO: 

0.64 (s, 3 H, 18'-CH3); 0.83 (d, 6 H, J=  7, 26'-CH3, 27'-CH3); 0.88 (d, 3 H, 6, 21'-CH3); 

0.96 (s, 3 H, 19'-CH3); 0.94-2.00 (m, 32 H, 2-CH2, 6-CH2, 10-CH2, l'-CH2, 2'-CH2, 4'-CH2, 7'- 

CH2, 8-CH, 9-CH, ll'-CH2,12'-CH2,14'-CH, 15'-CH2, 16'-CH2,17'-CH, 20'-CH, 22'-CH2, 

23'-CH2, 25-CH); 2.15-2.32 (m ,2 H,24'-CH2,);2.80-3.08 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 7- 

CH2, 9-CH2, 11-CH2); 4.22-4.35 (m, 1 H, 3'-CH); 5.29-5.32 (m, 1 H, 6'-CH); 77.20, 8.05,

8.93 (3 x bs, ammonium signals, overlapping). 13C NMR, 100 MHz, [2H]6 DMSO: 11.7 (18'- 

H3); 18.6 (21'-CH3); 19.1 (19'-CH3); 20.6 (ll'-CH2); 22.5 (26'-CH3); 22.7 (27'-CH3); 23.2 

(23'-CH2); 23.8,23.9 (2-CH2, 6-CH2, 15'-CH2, overlapping); 26.2 (10-CH2); 27.5 (16'-CH2); 

27.8, 27.9 (2'-CH2, 25'-CH); 31.4, 31.5 (7'-CH2, 8'-CH); 35.3 (20'-CH); 35.7 (22'-CH2); 36.1,

36.2 (lO'-C, 1-CH2); 36.6 (l'-CH2); 37.4 (11-CH2); 38.4 (24'-CH2); 39.1, 39.3 (4'-CH2, 12'- 

CH2); 41.9 (13'-C); 44.0 (3-CH2, 9-CH2, overlapping); 44.8 (5-CH2, 7-CH2, overlapping);

49.5 (9'-CH); 55.6 (17'-CH); 56.2 (14'-CH); 73.1 (3'-CH); 122.0 (6'-CH); 139.8 (5'-C); 155.9 

(OCONH). MS, FAB+ found 601, 100 % (M+ + 1), C37H68N40 2 requires M+ = 600. High- 

resolution MS m/z, FAB+ found 601.5428, (M+ +1), C37H69N40 2 requires M++l = 601.5421.

(A^-Cholesteryloxy-3-carbonyl)-l,10-diamino-4,7-diazadecane 15

Carbamate 11 (300 mg, 0.34 mmol) was deprotected according to general procedure 

C and purified by semi-prep. RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, 

MeCN-0.1 % aq. TFA, 50:50 v/v) to afford the title compound 15 as a white solid 

(polytrifluoroacetate salt, 181 mg, 58 %), tK 8.6 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA; 50:50 v/v). *H NMR, 400 MHz, [2H]6 DMSO: 

0.64 (s, 3 H, 18'-CH3); 0.83 (d, 6 H, J=  7 ,26'-CH3,27'-CH3); 0.88 (d, 3 H, J=  6, 21'-CH3); 

0.96 (s, 3 H, 19'-CH3); 0.94-2.40 (m, 30 H, 2-CH2, 9-CH2, l'-CH2,2'-CH2, 4'-CH2, 7'-CH2, 8'- 

CH, 9'-CH, ll'-CH2,12'-CH2,14'-CH, 15'-CH2,16'-CH2,17'-CH, 20'-CH, 22'-CH2, 23'-CH2,
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25-CH); 2.15-2.32 (m, 2 H, 24'-CH2,); 2.84-3.08 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 6-CH2, 8- 

CH2, 10-CHj); 4.27-4.39 (m, 1 H, 3'-CH); 5.35-5.42 (m, 1 H, 6'-CH); 7.22, 8.03, 9.04, 9.23 (4 

x bs, ammonium signals). 13C NMR, 100 MHz, [2H]6 DMSO: 11.9 (18'-CH3); 18.7 (21'- 

CH3); 19.2 (19'-CH3); 20.8 (ll'-CHJ; 22.6 (26'-CH3); 22.9 (27'-CH3); 23.4 (23'-CH2); 24.1 

(15'-CH2); 26.5 (2-CH2, 9-CH2, overlapping); 27.6 (16'-CH2); 28.0, 28.1 (2'-CH2, 25'-CH);

31.6 (7'-CH2, 8'-CH, overlapping); 35.5 (20’-CH); 35.9 (22'-CH2); 36.3 (lO'-C, 1-CH2, 

overlapping); 36.8 (l'-CH2); 37.5 (10-CH2); 38.5 (24'-CH2); 39.2, 39.4 (4'-CH2,12'-CH2);

42.1 (13'-C); 42.8, 42.9 (3-CH2, 8-CH2); 44.5 (5-CH2); 45.20 (6-CH2); 49.7 (9'-CH); 55.8 

(17-CH); 56.4 (14'-CH); 73.3 (3'-CH); 122.1 (6'-CH); 139.9 (5'-C); 156.0 (OCONH). MS, 

FAB+ found 587, 100 % (M+ +1), C36H66N40 2 requires M+ = 586. High-resolution MS m/z, 

FAB+ found 587.5272, (M+ + 1), C36H67N40 2 requires M++l = 587.5264.

(A^-CholesteryIoxy-3-carbonyl)-l,9-diamino-3,7-diazanonane 16

Carbamate 12 (300 mg, 0.34 mmol) was deprotected according to general procedure 

C and purified by semi-prep. RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, 

MeCN-0.1 % aq. TFA, 50:50 v/v) to afford the title compound 16 as a white solid 

(polytrifluoroacetate salt, 133 mg, 42 %), tR 5.7 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA, 50:50 v/v). *H NMR, 400 MHz, [2H]6 DMSO: 

0.65 (s, 3 H, 18’-CH3); 0.83, 0.84 (2 x d, 6 H, J=  7, overlapping 2 Hz, 26'-CH3, 27'-CH3);

0.88 (d, 3 H, J=  6, 21'-CH3); 0.96 (s, 3 H, 19'-CH3); 0.94-2.00 (m, 28 H, 5-CH2, l'-CH2, 2'- 

CH2, 4'-CH2, 7'-CH2, 8'-CH, 9'-CH, ll'-CH2,12'-CH2,14'-CH, 15'-CH2,16'-CH2,17'-CH, 20'- 

CH, 22'-CH2,23'-CH2, 25'-CH); 2.18-2.33 (m, 2 H, 24'-CH2,); 2.95-3.30 (m, 12 H, 1-CH2, 2- 

CH2, 4-CH2, 6-CH2, 8-CH2, 9-CH2); 4.28-4.39 (m, 1 H, 3’-CH); 5.30-5.38 (m, 1 H, 6’-CH); 

7.27, 8.21, 8.85, 9.21 (4 x bs, ammonium signals). 13C NMR, 100 MHz, [2H]6 DMSO: 11.7 

(18’-CH3); 18.6 (21’-CH3); 19.0 (19’-CH3); 20.6 ( l l ’-CH2); 22.4, 22.7 (5-CH2,26’-CH3, 27- 

CH3); 23.2 (23'-CH2); 23.9 (15'-CH2); 27.4 (16'-CH2); 27.8 (2'-CH2,25'-CH, overlapping);
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31.4 (7'-CH2, 8'-CH, overlapping); 35.1 (1-CH2); 35.2 (20'-CH); 35.7 (22'-CH2); 36.1 (lO'-C);

36.6 (l'-CH2); 36.7 (9-CH2); 38.1 (24,-CH2); 38.6, 38.9 (4'-CH2, 12'-CH2); 41.9 (13'-C); 43.9,

44.2 (4-CH2, 6-CH2); 46.5 (2-CH2, 8-CH2, overlapping); 49.5 (9'-CH); 55.6 (17-CH); 56.1 

(14'-CH); 73.5 (3'-CH); 122.0 (6'-CH); 139.7 (5'-C); 155.9 (OCONH). MS, FAB+ found 573, 

15 % (M+ + 1), C33Hg4N40 2 requires M+ = 572. High-resolution MS m/z, FAB+ found 

573.5106, (M+ + 1), C35H65N40 2 requires M+ + 1 = 573.5108.

(A^-Cholesteryloxy-3-carbonyl)-l,l l-diamino-3,6,9-triazaundecane 23

Carbamate 21 (298 mg, 0.28 mmol) was deprotected according to general procedure 

C and purified by semi-prep. RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, 

MeCN-0.1 % aq. TFA 47:55 v/v) to afford the title compound 23 as a white solid 

(polytrifluoroacetate salt, 95 mg, 30 %), tR 6.2 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA; 45:55 v/v). lH NMR, 400 MHz, [2H]6 DMSO: 

0.65 (s, 3 H, 18'-CH3); 0.84 (d, 6 H, J=  7, 26'-CH3,27'-CH3); 0.89 (d, 3 H, J=  6 ,21'-CH3); 

0.97 (s, 3 H, 19'-CH3); 0.94-2.00 (m, 26 H, l'-CH2, 2'-CH2,4 ’-CH2, 7,-CH2, 8'-CH, 9'-CH, IV- 

CH2, 12'-CH2, 14-CH, 15'-CH2, 16'-CH2, 17'-CH, 20'-CH, 22'-CH2, 23'-CH2, 25'-CH); 2.18- 

2.35 (m, 2 H, 24'-CH2,); 3.00-3.08 (m, 2 H, 2-CH2); 3.08-3.17 (m, 2 H, 1-CH2); 3.17-3.30 (m, 

12 H, 4-CH2, 5-CH2, 7-CH2, 8-CH2,10-CH2,11-CH2); 4.30-4.40 (m, 1 H, 3'-CH); 5.30-5.38 

(m, 1 H, 6'-CH); 7.29, 8.49 (2 x bs, ammonium signals, overlapping) (m, H-N+-C-H); 7.80-

9.5 (bs, H-N+-C-H). ,3C NMR, 100 MHz, [2H]6 DMSO: 11.7 (18'-CH3); 18.6 (21'-CH3); 19.0 

(19'-CH3); 20.6 (1 l'-CH2); 22.4,22.7 (26'-CH3, 27'-CH3); 23.2 (23'-CH2); 23.9 (15'-CH2);

27.4 (16'-CH2); 27.8 (2'-CH2,25'-CH, overlapping); 31.4 (7'-CH2, 8'-CH, overlapping); 35.2 

(20-CH); 35.4 (1-CH2); 35.7 (22'-CH2); 36.1 (lO'-C); 36.6 (l'-CH2); 36.7 (11-CH2); 38.2 (24'- 

CH2); 38.6, 38.9 (4'-CH2,12'-CH2); 41.9 (13'-C); 42.8,43.1,43.3 (4-CH2, 5-CH2, 7-CH2, 8- 

CH2, overlapping); 44.2 (10-CH2); 46.7 (2-CH2); 49.5 (9'-CH); 55.6 (17'-CH); 56.1 (14'-CH);

73.5 (3'-CH); 122.0 (6'-CH); 139.7 (5'-C); 156.0 (OCONH). MS, FAB+ found 602, 100 %
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(M+ + 1), C36H67N50 2 requires M+ = 601. High-resolution MS m/z, FAB+ found 602.5380, 

(M+ + 1), C36H68N50 2 requires M+ + 1 = 602.5373.

(Arl-Cholesteryloxy-3-carbonyI)-l,14-diamino-3,6,9,12-tetra-azatetradecane 24

Carbamate 22 (300 mg, 0.26 mmol) was deprotected according to general procedure 

C and purified by semi-prep. RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, 

MeCN-0.1 % aq. TFA, 49:51 v/v) to afford the title compound 24 as a white solid 

(polytrifluoroacetate salt, 128 mg, 40 %), tR 10.4 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA, 47:53 v/v). *H NMR, 400 MHz, [2H]6 DMSO:

0.65 (s, 3 H, 18'-CH3); 0.84, 0.85 (2 x d, 6 H, J=  7, overlapping 2 Hz, 26'-CH3, 27'-CH3);

0.89 (d, 3 H, J =  6, 21'-CH3); 0.97 (s, 3 H, 19'-CH3); 0.94-2.00 (m, 26 H, l'-CH2,2'-CH2, 4'- 

CH2, 7'-CH2, 8-CH, 9'-CH, ll'-CH2, 12'-CH2, 14'-CH, 15'-CH2, 16'-CH2, 17-CH, 20'-CH, 

22'-CH2, 23'-CH2, 25-CH); 2.18-2.35 (m, 2 H, 24’-CH2,); 3.02-3.10 (m, 2 H, 2-CH2); 3.10- 

3.18 (m, 2 H, 1-CH2); 3.17-3.30 (m, 16 H, 4-CH2, 5-CH2, 7-CH2, 8-CH2, 10-CH2, 11-CH2, 13- 

CH2, 14-CH2,); 4.30-4.42 (m, 1 H, 3'-CH); 5.30-5.40 (m, 1 H, 6'-CH); 7.29, 8.50, 9.13 (3 x 

bs, ammonium signals, overlapping). 13C NMR, 100 MHz, [2H]6 DMSO: 11.7 (18'-CH3);

18.6 (21'-CH3); 19.0 (19'-CH3); 20.6 (1 l'-CH2); 22.4, 22.7 (26'-CH3, 27'-CH3); 23.2 (23'- 

CH2); 23.9 (15'-CH2); 27.4 (16'-CH2); 27.8 (2'-CH2, 25'-CH, overlapping); 31.4 (7'-CH2, 8'- 

CH, overlapping); 35.2 (1-CH2, 20'-CH, overlapping); 35.7 (22'-CH2); 36.1 (lO'-C); 36.6 (14- 

CH2); 36.8 (l'-CH2); 38.3 (24'-CH2); 38.9,40.0 (4'-CH2,12'-CH2); 41.9 (13'-C); 42.8,43.0 (4- 

CH2, 5-CH2, 7-CH2, 8-CH2, 10-CH2, 11-CH2, overlapping); 44.2 (13-CH2); 46.7 (2-CH2);49.5 

(9'-CH); 55.6 (17-CH); 56.1 (14'-CH); 73.5 (3'-CH); 122.0 (6'-CH); 139.7 (5'-C); 156.0 

(OCONH). MS, FAB+ found 645,100 % (M+ + 1), C38H72N60 2 requires M+ = 644. High- 

resolution MS m/z, FAB+ found 645.5802, (M+ + 1), C38H73N60 2 requires M+ + 1 = 645.5795.
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A^-ferf-Butoxy carbonyl-4,9-diazadodecane-l, 12-diamine 25

A solution of di-terf-butyl dicarbonate (900 mg, 4.1 mmol) in THF (10 ml) was added 

dropwise (over 3 mins) to a vigorously stirred solution of spermine (2.5 g, 12.4 mmol, 3 

equiv.) in THF (15 ml) at 0 °C under an atmosphere of nitrogen. The reaction mixture was 

stirred for 1 h at 0 °C, warmed to 25 °C and then stirred for a further 23 h. Water (10 ml) was 

then added to the reaction mixture and the solvent concentrated in vacuo. The resulting 

yellow oil was then purified by column chromatography over silica gel (CH2Cl2-MeOH-conc. 

aq. NH3 20:5:1 to 4:2:1 v/v./v) to afford the title compound, after lyophilisation, as a pale 

yellow, viscous oil (930 mg, 74 %); R{ 0.37 (CH2Cl2-MeOH-conc. aq. NH3 4:2:1 v/v/v). !H 

NMR, 400 MHz, CDC13: 1.43 (m, 9 H, 3 x CH3); 1.50-1.56 (m, 4 H, 6-CH2, 7-CH2); 1.60- 

1.70 (m, 4 H, 11-CH2,2-CH2); 2.54-2.72 (m, 8 H, 10-CH2, 8-CH2, 5-CH2, 3-CH2); 2.72-2.82 

(m, 2 H, 12-CH2); 2.82-3.24 (m, 4 H, CHrNH, and 2 x CH2-NH-CH2); 3.38-3.44 (m, 2 H, 1- 

CH2); 5.20-5.40 (bs, 1 H, CH2-NH-CO). 13C NMR, 100 MHz, CDC13: 27.7 (C6-CH2, C7- 

CH2, overlapping); 28.5 (3 x CH3); 29.9 (C2-CH2); 33.3 (C11-CH2); 39.1 (C1-CH2); 40.4 

(C12-CH2); 47.6,47.8 (C3-CH2, C10-CH2); 49.7,49.8 (C5-CH2, C8-CH2). MS, El, found 

302 (M+); Cl, found 303 (M++l), C15H34N40 2 requires M+ = 302.
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Chapter 5

Spermine and thermine conjugates of cholic acid condense DNA, 

but lithocholic acid polyamine conjugates do so more efficiently
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Abstract: Polyamine amides have been prepared from cholic and lithocholic acids by 

acylation of tri-Boc protected spermine and thermine and their binding affinities for calf 

thymus DNA were determined using an ethidium bromide displacement assay; these 

polyamine amides are models for lipoplex formation with respect to gene delivery 

(lipofection), a key first step in gene therapy.

Aims

The aims of this Chapter are to synthesise a series of polyamine amides of bile acids 

lithocholic 1 and cholic acids 2 (Fig. 1) and to investigate SAR for their binding affinities for 

calf thymus DNA using an ethidium bromide displacement assay. Changes in binding 

affinity for DNA with respect to variations in the hydrophobicity on a lipopolyamine are 

investigated. Differences in the distribution of positive charges, with respect to the spermine 

3 and thermine 4 (Fig. 2) headgroups and their effects on binding affinity, including salt 

dependent binding of these polyamine amides of lithocholic and cholic acids are also 

investigated.

Introduction

In this Chapter, we investigate how changes in the hydrophobicity of a lipopolyamine 

affect the condensation process of DNA and hence lipoplex formation. This work is an 

extension of the preliminary studies of Chapters 3 and 4. Using our orthogonal protection 

strategy for efficient syntheses of unsymmetrical polyamine amides,1 two amides of 

lithocholic acid, 11 and 12 (at position 24), and two amides of cholic acid, 13 and 14 (also at 

position 24), were designed and synthesised.2,3 The cholan ring structure was chosen as the 

lipid moiety, because its use in lipoplex formation has previously been reported4,5 and a 

variety of derivatives were readily available with differing numbers of hydroxyl groups at 

varying positions on the ring system. Two commercially available polyamines were used as
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the cationic headgroups: l,12-diamino-4,9-diazadodecane 3 (spermine, 3.4.3) and 1,11- 

diamino-4,8-diazaundecane (thermine, norspermine, 3.3.3) 4.

Condensation of calf thymus DNA was monitored using the refined displacement 

assay described in Chapter 2. The p ^ s  of the polyamine headgroups of these compounds 

were assumed to be the same as those measured potentiometrically4 for the cholesterol 

carbamates in Chapter 4, and the net positive charge was then calculated using the 

Henderson-Hasselbach equation at pH 7.4. In this Chapter, we describe how changes in 

hydrophobicity of cholic and lithocholic acids conjugated to polyamines influence lipoplex 

formation, a key first step in gene therapy.

O

OH

HO""''*

O

OHHO

HO"’"

Fig. 1. Structures of lithocholic 1 and cholic acids 2
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Results and discussion

Synthesis

Polyamines 3 and 4 were sequentially unsymmetrically protected with di-tert-butyl 

dicarbonate using our orthogonal protection strategy.1 Selective protection of one primary 

amino functional group, in each symmetrical polyamine 3 and 4, by reaction with ethyl 

trifluoroacetate, afforded the respective mono-trifluoroacetamides. Immediately, in these 

solutions, the remaining amino functional groups were Boc protected, with di-terr-butyl 

dicarbonate, to afford the fully protected polyamines. The trifluoroacetyl protecting group 

was then cleaved by increasing the pH to 11 with conc. aqueous ammonia, to afford 

Â 1y/V2y/V3-tri-Boc protected polyamines 5 and 6.

Reaction of the free primary amine of these unsymmetrically protected polyamines 5 

and 6 with lithocholic 1 and cholic acids 2, afforded the fully protected amides 7-10. 

Deprotection with trifluoroacetic acid in CH2C12 (1:9) and purification by RP-HPLC afforded 

target polyamine amides 11-14, as their polytrifluoroacetate salts. The proposed structures 

were unambiguously assigned using !H, I3C and HETCOR NMR and accurate FAB-MS.

Charge at physiological pH

The charge on these molecules 11-14 has been assumed to be the same as the 

cholesteryl carbamates characterized potentiometrically in Chapter 4. Therefore amides 11 

and 13 (conjugates of spermine) have been assigned a net positive charge of 2.4 and amides 

12 and 14 (conjugates of thermine) have been assigned a net positive charge of 2.3.4

Nomenclature

We have named the target compounds 11-14 as their corresponding polyamine 

derivatives, using IUPAC conventions. In Fig. 3, we outline the numbering system used in
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the NMR assignment of TV !-(3 a-hydroxy-5 (3-cholan-24-carbonyl)-1,12-diamino-4,9- 

diazadodecane 11.

HO1
4 H  6

Fig. 3. Structure and numbering system for N 1 -(3 a-hydroxy-5 (3-cholan-24-carbonyl)-1,12-diamino-4,9- 

diazadodecane 11

NMR assignments

The assignment of the polyamine headgroups in this series of polyamine 

amides 11-14 is based upon calculations using additivity rules,5 *H, I3C chemical shift 

correlation spectroscopy and detailed comparisons with the cholesterol carbamates 

characterized in Chapter 4 taken together with the amides reported above in Chapter 3. The 

assignment of the cholan ring structure is based on the literature assignments8 and the 

expected changes in the carbon chemical shifts due to substituent effects are consistent with 

these assignments. Conformational isomers (populations interconverted by a-bond rotation) 

are observed for the poly-Boc protected polyamines and therefore two signals for each carbon 

on the methylene backbone of the polyamine and for each carbon on the Boc groups were 

observed. Generally 14N-!H couplings are not observed, but in the case of ammonium 

compounds, the combination of quadrupole relaxation and exchange of NH-protons is not 

sufficiently large to completely eliminate the coupling across one bond.7 Therefore 

carbamates 11-14 display broad ammonium signals above 6 7.0 ppm. In addition, signals at 8
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7.2 (1:1:1, t, lJ=  51 Hz. 14N-!H) were observed for these ammonium ions, which we interpret 

as due to the symmetry of the R14NH3+ cations.7

Ethidium bromide displacement assay

The DNA binding affinities of the target compounds 11-14 were measured using the 

modified ethidium bromide fluorescence displacement assay described in detail and validated 

in Chapter 2. The decrease in fluorescence was critically compared against poly lysine 

(average molecular weight 9,600 Da) and spermine 3 (Fig. 4) for compounds 11-14 at 20 mM 

NaCl as a function of charge ratio. At physiological pH, spermine carries a net positive 

charge of 3.8 (Chapter 4, Table 1), polylysine a net positive charge in excess of 30. N 1- 

Acylation of spermine 3 or thermine 4 with lithocholic acid 1, affords amides 11 and 12 

respectively. In Fig. 4, amides 11 and 12, and polycationic poly lysine exhibit similar binding 

affinity for DNA. Complete displacement of ethidium bromide, with polylysine, occurs as 

the conjugate-DNA complexes become neutral (charge ratio = 1). A slight excess of positive 

charge is required to displace the ethidium bromide with the lithocholic acid conjugates 11 

and 12. Compared to spermine 3, however, conjugates 11 and 12 have a greater binding 

affinity for DNA.

vV’-Acylation with cholic acid affords more hydrophilic amides 13 and 14 as they 

contain three hydroxyl functional groups (compared to the one alcohol functional group of 

lithocholic acid) which are all located regiospecifically on the a-face of the cholan ring 

system. Fig. 4 shows that these amides 13 and 14 have a decreased binding affinity for DNA, 

compared to their lithocholic acid counterparts 11 and 12, and they require a large excess of 

positive charge to displace the ethidium bromide from its intercalation sites.
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Fig. 4. Ethidium bromide displacement assay o f  amides 11-14 compared to spermine 3 and polylysine at low  

salt (20 mM  NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 20 mM  NaCl, 2 mM HEPES, 10 pM  EDTA, pH 7.4) was 

m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min 

equilibration tim e) were added and the fluorescence (%) determined (n =  1)
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Fig. 5. Ethidium bromide displacement assay o f  amides 11 and 13 compared to spermine 3 and polylysine at 

high salt (150 mM NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 150 mM  NaCl, 2 mM  HEPES, 10 pM EDTA, pH 

7.4) was m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 mg/ml, 1 

min equilibration time) were added and the fluorescence (%) determined (n =  1)
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At elevated salt concentrations (Fig. 5) the binding affinity for DNA of polylysine is 

unaffected, but that of spermine shows salt-dependent binding to DNA. Amide 11, which 

contains the lithocholan ring structure (with one hydroxyl moiety), requires a large excess of 

positive charge to displace the ethidium bromide (Fig. 5). The binding behaviour of amide 

13 mimics that of spermine 3 and the displacement of ethidium bromide is almost completely 

inhibited at elevated salt concentrations.

DNA condensation assay

In order to follow the condensation of DNA into particles, the UV absorption at 320 

nm has been measured. As polyamines bind to the double helix of DNA and cause 

condensation an increase in absorbance is observed above 300 nm (as described in Chapter 

4). In Fig. 6, we show the apparent increase in UV absorption at 320 nm of DNA as aliquots 

of amide 13 are added at low and high salt concentrations (20 mM and 150 mM NaCl 

respectively). At low salt concentrations, these data are consistent with particle formation 

and the absorption reaches a plateau at the same charge ratio as complete ethidium bromide 

exclusion (Fig. 4). However, it should be noted that due to the lack of sensitivity of this light 

scattering assay, the DNA concentration was in a ten-fold excess compared to that used in the 

ethidium bromide assay. At high salt concentrations, there are no particles formed by DNA 

condensation and hence no light scattering, with no visible precipitation of the DNA. These 

data are consistent with inhibition of complex formation between the DNA and conjugate at 

elevated salt concentrations.

137



0.2 T

0.15

3
re
o>oerex:
>-

13 20 mM NaQ 
13 150 mM NaQotoXJre

0.05

3 61 4

charge ratio

Fig. 6. Light scattering assay o f  amide 13 at low  salt (20 mM N aCl) and high salt (150 mM  NaCl). 60 pg o f  

CT D N A  in buffer (3 ml, 20 mM NaCl, 2 mM  HEPES, 10 |iM  EDTA, pH 7.4) was stirred and aliquots o f  

compound (5 pi o f  1.0 m g/m l, 1 min equilibration tim e) were added and the absorption (320 nm ) measured (n =

1)

Conclusions

The polyelectrolyte theory of Manning9 predicts that when 90 % of the charge on the 

DNA is neutralized, condensation will occur.10'12 Thus, if binding affinities o f compounds 

that cause DNA condensation are expressed in terms of the charge ratio at which 50 % (CR50) 

of the ethidium bromide fluorescence is quenched, efficient condensing agents will have 

values below one (CR50 < 1.0). DNA condensation, at low salt (20 mM NaCl), is clearly an 

efficient process with lithocholic acid polyamine amides 11 and 12 (CR50 = 0.7 and 0.6 

respectively). However an excess of positive charges is required for cholic acid polyamine 

amides 13 and 14 (CR50 = 2.6 and 2.8 respectively) and for free spermine (CR50 > 4.0) to 

condense calf thymus DNA, reflecting their significantly weaker binding affinities for DNA. 

At high salt (150 mM NaCl) DNA condensation with lithocholic acid polyamine amide 11 is 

salt dependent, the CR50 has increased from 0.7 to 4.7. The more hydrophilic cholic acid
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polyamine amide 13 exhibits even greater salt dependent DNA condensation, the CR50 has 

increased from 2.6 to a value greater than 12, since displacement of Eth Br is completely 

inhibited within the charge ratio range tested for this compound (0-12). Whilst 

hydrophobicity is important for minor groove recognition,13 DNA condensation is dependent 

upon hydrophobicity, distance between positive charges14 as well as total number of 

charges.11,15,16 These data give support to our hypotheses that DNA binding and DNA 

condensation are also a sensitive function of the lipid attached to the polyamine, as well as a 

function of the positively charged polyamine moiety.

Experimental

General details

Column chromatography, NMR, MS, RP-HPLC and other details are described in 

Chapter 4.

General procedure A: poly-Boc protection ofpolyamines

To a solution of the polyamine in methanol (70 ml), at -78 °C under nitrogen, was 

added ethyl trifluoroacetate (1 equiv.) dropwise over 30 min. Stirring was continued for a 

further 30 mins, then the temperature was increased to 0 °C to afford predominantly the 

mono-trifluoroacetamide. Using the previously detailed protocol and without isolation, the 

remaining amino functional groups were quantitatively protected by dropwise addition of an 

excess of di-tert-butyldicarbonate in methanol (10 ml) over 3 min. The reaction was then 

warmed to 25 °C and stirred for a further 15 h to afford the fully protected polyamine. The 

trifluoroacetate protecting group was then removed {in situ) by increasing the pH of the 

solution above 11 with conc. aq. ammonia and stirring at 25 °C for 15 h. The solution was
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then concentrated in vacuo and the residue purified over silica gel to afford the title 

compound as a colourless homogeneous oil.

General procedure B: amide formation

To a solution of the poly-Boc protected polyamine (1 equiv.) in CH2C12 (10 ml) the 

bile acid (cholic or lithocholic acid, 1 equiv.), 1-hydroxybenzotriazole (HOBt) (0.2 equiv.) 

and dicyclohexylcarbodiimide (DCC) (1.5 equiv.) were added. Then the reaction mixture 

was stirred at 25 °C, under nitrogen, for 24 h. The precipitate of dicyclohexylurea was then 

removed by filtration. The filtrate was concentrated in vacuo and the residue purified over 

silica gel (CH2Cl2-MeOH) to afford the title compound as a white foam.

General procedure C: Boc removal

To a stirring solution of lipo-polyamine dissolved in CH2C12 (180 ml), under nitrogen 

at 25 °C, was added TFA (20 ml). After 2 h, the solution was concentrated in vacuo, 

lyophilized and purified by semi-preparative RP-HPLC over Supelcosil ABZ+Plus (5 pm, 25 

cm x 10 mm, MeOH-0.1 % aq. TFA) to afford the title compound as a white solid (poly-TFA 

salt).

(/VV/VVV9-Tri-ter/-butoxycarbonyI)-l,12-diamino-4,9-diazadodecane 5

l,12-Diamino-4,9-diazadodecane 3 (spermine, 3.4.3) (1.0 g, 5.0 mmol) was reacted 

according to general procedure A to afford the title compound 5 as a homogeneous oil (1.24 

g, 50 %). Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 70:10:1 to 50:10:1 v/v/v), R{ 

0.5 (CH2Cl2-MeOH-conc. aq. NH3 50:10:1 v/v/v). *H NMR, 13C NMR and MS as described 

in Chapter 4.
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(N \N 4,N*-T ri-tert-butoxycarbonyl)-l,l l-diamino-4,8-diazaundecane 6

1,11-Diamino-4,8-diazaundecane 4 (thermine, norspermine, 3.3.3) (3.0 g, 16.0 mmol) 

was reacted according to general procedure A to afford the title compound 6 as a 

homogeneous oil (3.16 g, 41 %). Purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 

100:10:1 v/v/v), R( 0.18 (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 v/v/v). !HNMR, 13CNMR 

and MS as described in Chapter 4.

N 1- [3a-Hydroxy-5[3-cholan-24-carbonyI-(ArVV9,Arl2-tri-ter/-butoxycarbonyl)]-l,12- 

diamino-4,9-diazadodecane 7

Protected polyamine 5 (500 mg, 1.0 mmol) and lithocholic acid (375 mg, 1.0 mmol) 

were reacted according to general procedure B to afford the title compound 7 as a white foam 

(610 mg, 71 %). Purified by column chromatography over silica gel (CH2Cl2-MeOH; 25:1 

v/v) R{ 0.22 (CH2Cl2-MeOH; 20:1 v/v). !H NMR, 400 MHz, CDC13: 0.64 (s, 3 H, 18'-CH3);

0.83-2.26 (m, 69 H, 2-CH2, 6-CH2, 7-CH2, 11-CH2, 3 x 0-C-[CH3]3, 1' -CH2, 2' -CH2, 4'-CH2, 

5'-CH, 6'-CH2, 7'-CH2, 8-CH, 9'-CH, ll'-CH2, 12'-CH2, 14’-CH, 15'-CH2, 16'-CH2,17'-CH, 

19'-CH3, 20'-CH, 21'-CH3, 22’-CH2, 23'-CH2); 2.84-3.05 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 8- 

CH2, 10-CH2, 12-CH2); 3.60-3.70 (m, 1 H, 3'-CH); 6.75-6.90 (bs, 1 H, CH2-NH-CO). 13C 

NMR, 100 MHz, CDC13: 12.0 (18'-CH3); 18.3 (21'-CH3); 20.7 (1 l'-CH2); 23.2 (19'-CH3);

24.1 (15'-CH2); 25.4,25.6, 25.9 (6-CH2, 7-CH2, overlapping); 26.3 (7'-CH2); 27.1 (6'-CH2); 

27.6, 28.1, 28.4,28.7 (2-CH2,11-CH2, 16'-CH2, 3 x 0-C-[CH3]3, overlapping); 30.4 (2'-CH2);

31.7 (22'-CH2); 33.7 (23'-CH2); 34.5 (lO'-C); 35.3, 35.4 (12-CH2, 20'-CH, l ’-CH2); 35.8 (8'- 

CH); 36.3 (4'-CH2); 37.3 (1-CH2); 40.1 (12'-CH2); 40.3 (9'-CH); 42.0 (5'-CH); 42.6 (13'-CH);

43.2.43.7 (3-CH2,10-CH2, overlapping); 46.6 (5-CH2, 8-CH2, overlapping); 56.0 (17-CH);

56.4 (14-CH); 71.6 (3'-CH); 79.7 (3 x quat C, overlapping); 156.0, 156.4 (3 xNH-CO-O);

173.7 (CH2-CO-NH). MS, FAB+ found 861, 20 % (M++l), C49H88N40 8 requires M+ = 860.
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7V;-[3a-Hydroxy-5p-cholan-24-carbonyl-(Ar4,iV8,Arll-tri-te/'M)utoxycarbonyl)]-l,ll- 

diamino-4,8-diazaundecane 8

Protected polyamine 6 (500 mg, 1.0 mmol) and lithocholic acid (385 mg, 1.0 mmol) 

were reacted according to general procedure B to afford the title compound 8 as a white foam 

(751 mg, 87 %). Purified by column chromatography over silica gel (CH2Cl2-MeOH; 25:1 

v/v) Rf 0.30 (CH2Cl2-MeOH; 20:1 v/v). >H NMR, 400 MHz, CDC13: 0.64 (s, 3 H, 18'-CH3);

0.84-2.24 (m, 67 H, 2-CH2, 6-CH2,10-CH2, 3 x 0-C-[CH3]3, 1' -CH2, 2' -CH2, 4'-CH2, 5'-CH, 

6'-CH2, 7'-CH2, 8'-CH, 9'-CH, ll'-CH2, 12'-CH2, 14'-CH, 15'-CH2,16'-CH2,17'-CH, 19'-CH3, 

20-CH, 21'-CH3, 22'-CH2,23’-CH2); 2.84-3.05 (m, 12 H, 1-CH2,3-CH2, 5-CH2, 7-CH2, 9- 

CH2, 11-CH2); 3.60-3.70 (m, 1 H, 3'-CH); 6.75-6.90 (bs, 1 H, CH2-NH-CO). 13C NMR, 100 

MHz, CDC13: 12.0 (18'-CH3); 18.3 (21'-CH3); 20.7 (1 l'-CH2); 23.2 (19'-CH3); 24.1 (15'- 

CH2); 26.3 (7'-CH2); 27.1 (6'-CH2); 27.6, 28.1,28.4, 28.7 (2-CH2, 6-CH2, 10-CH2, 16'-CH2, 3 

x 0-C-[CH3]3, overlapping); 30.4 (2'-CH2); 31.7 (22’-CH2); 33.7 (23'-CH2); 34.5 (lO'-C);

35.3, 35.4 (11-CH2,20'-CH, l'-CH2, overlapping); 35.8 (8'-CH); 36.4 (4'-CH2); 37.3 (1-CH2);

40.1 (12'-CH2); 40.3 (9'-CH); 42.0 (5'-CH); 42.6 (13'-CH); 43.6,43.7, 44.2,44.7 (3-CH2, 5- 

CH2, 7-CH2, 9-CH2, overlapping); 56.0 (17'-CH); 56.4 (14'-CH); 71.7 (3'-CH); 79.7 (3 x quat 

C, overlapping); 155.9, 156.3 (3 xNH-CO-O); 173.7 (CH2-CO-NH). MS, FAB+ found 847, 

20 % (M++l), C48H86N40 8 requires M+ = 846.

Ar;-[3a,7a,12a-Trihydroxy-5p-cholan-24-carbonyl-(7V4,/V9,Arl2-tri-te/'/-butoxycarbonyl)]-

l,12-diamino-4,9-diazadodecane 9

Protected polyamine 5 (500 mg, 1.0 mmol) and cholic acid (406 mg, 1.0 mmol) were 

reacted according to general procedure B to afford the title compound 9 as a white foam (532 

mg, 60 %). Purified by column chromatography over silica gel (CH2Cl2-MeOH; 15:1 to 10:1 

v/v) Rf 0.17 (CH2Cl2-MeOH; 10:1 v/v). !HNMR, 400 MHz, CDC13: 0.67 (s, 3 H, 18’-CH3);

0.88 (s, 3 H, 19'-CH3); 0.91-2.40 (m, 62 H, 2-CH2, 6-CH2, 7-CH2,ll-CH2, 3 x 0-C-[CH3]3, 1'-
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CH2, 2'-CH2,4'-CH2, 5'-CH, 6'-CH2, 8'-CH, 9'-CH, ll'-CH2, 14'-CH, 15'-CH2, 16'-CH2j IT ­

CH, 20-CH, 21'-CH3, 22'-CH2, 23'-CH2); 2.80-3.37 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 8-CH2, 

10-CH2, 12-CH2); 3.37-3.50 (m, 1 H, 3'-CH); 3.83 (s, 1 H, 7'-CH); 3.96 (s, 1 H, 12'-CH); 

6.75-6.90 (bs, 1 H, CH2-NH-CO). 13C NMR, 100 MHz, CDC13: 12.5 (18'-CH3); 17.5 (21'- 

CH3); 22.5 (19-CH3); 25.5, 25.7, 26.0 (6-CH2, 7-CH2, overlapping); 26.4 (9'-CH2); 27.6 (16*- 

CH2); 27.7, 28.1, 28.2, 28.4, 28.5, 28.7, 28.9 (2-CH2, 11-CH2, 1 l'-CH2, 3 x 0-C-[CH3]3, 

overlapping); 30.5 (2'-CH2); 31.7 (22’-CH2); 33.6 (23’-CH2); 34.7 (6'-CH2); 34.8 (lO'-C); 35.3 

(l'-CH2); 35.5, 35.7 (12-CH2, 20'-CH, overlapping); 37.4, 37.7 (1-CH2); 39.5 (8'-CH); 39.6 

(4'-CH2); 41.5, 41.7 (5'-CH, 14'-CH); 43.5,43.7,44.2 (3-CH2, 10-CH2, 5-CH2, 8-CH2, 

overlapping); 46.4,46.8 (13'-C, 17-CH); 68.4 (7'-CH); 71.9 (3'-CH); 73.0 (12'-CH); 79.6,

79.8 (3 x quat C, overlapping); 156.1, 156.4 (3 xNH-CO-O); 174.1 (CH2-CO-NH). MS, 

FAB+ found 893, 40 % (M++l), C49H88N4O10 requires M+ = 892.

Ar/-[3a,7a,12a-Trihydroxy-5(3-cholan-24-carbonyl-(7V4̂ V8v/V11-tri-^r/-butoxycarbonyl)]-

l,ll-diamino-4,8-diazaundecane 10

Protected polyamine 6 (500 mg, 1.0 mmol) and cholic acid (418 mg, 1.0 mmol) were 

reacted according to general procedure B to afford the title compound 10 as a white foam 

(824 mg, 91 %). Purified by column chromatography over silica gel (CH2Cl2-MeOH; 20:1 to 

15:1 to 10:1 v/v) R{ 0.20 (CH2Cl2-MeOH; 10:1 v/v). ^N M R , 400 MHz, CDC13: 0.67 (s, 3 

H, 18'-CH3); 0.88 (s, 3 H, 19'-CH3); 0.91-2.30 (m, 60 H, 2-CH2, 6-CH2, 10-CH2, 3 x O-C- 

[CH3]3, l'-CH2, 2'-CH2,4'-CH2, 5-CH, 6'-CH2, 8'-CH, 9’-CH, ll'-CH2,14'-CH, 15'-CH2, 16'- 

CH2,17'-CH, 20'-CH, 21'-CH3, 22'-CH2, 23'-CH2); 2.88-3.38 (m, 12 H, 1-CH2, 3-CH2, 5-CH2, 

7-CH2, 9-CH2,11-CH2); 3.38-3.50 (m, 1 H, 3'-CH); 3.83 (s, 1 H, 7'-CH); 3.96 (s, 1 H, 12'- 

CH); 6.75-6.90 (bs, 1 H, CH2-NH-CO). 13C NMR, 100 MHz, CDC13: 12.5 (18'-CH3); 17.5 

(21'-CH3); 22.5 (19'-CH3); 26.4 (9’-CH2); 27.6 (16'-CH2); 28.2, 28.5, 28.8, 28.9 (2-CH2, 6- 

CH2, 10-CH2, 1 l'-CH2, 3 x 0-C-[CH3]3, overlapping); 30.5 (2'-CH2); 31.7 (22'-CH2); 33.6
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(23,-CH2); 34.7 (6'-CH2); 34.8 (lO'-C); 35.3 (l'-CH2); 35.5, 35.7 (11-CH2, 20,-CH, 

overlapping); 37.4 (1-CH2, overlapping); 39.5 (8'-CH); 39.6 (4'-CH2); 41.5, 41.7 (5'-CH, 14'- 

CH); 43.5,43.8, 44.8 (3-CH2, 5-CH2, 7-CH2, 9-CH2, overlapping); 46.4,46.7 (13'-C, 17'-CH);

68.4 (7'-CH); 71.9 (3'-CH); 73.0 (12'-CH); 79.8 (3 x quat C, overlapping); 156.0, 156.1 (3 x 

NH-CO-O); 174.1 (CH2-CO-NH). MS, FAB+ found 879, 5 % (M+ + 1), C48H86N4O10 requires 

M+ = 878.

A7-(3a-Hydroxy-5p-choIan-24-carbonyl)-l,12-diamino-4,9-diazadodecane 11

Amide 7 (300 mg, 0.34 mmol) was deprotected according to general procedure C.

The residue was lyophilized to produce 352 mg of a white powder, 225 mg was purified by 

RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 38:62 v/v) 

to afford the title compound 11 as a white solid (polytrifluoroacetate salt, 61 mg, 27 %), tR

11.5 min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeCN-0.1 % aq.

TFA, 40:60 v/v). !H NMR, 400 MHz, [2H]6 DMSO: 0.61 (s, 3 H, 18'-CH3); 0.82-0.98 (m, 7 

H, l'p-CH, 19'-CH3,21'-CH3); 0.98-1.28 (m, 9H, 2'a-CH, 6'a-CH, 7'a-CH, ll'P-CH, 14'-CH, 

15'a-CH, 16’P-CH, 17'-CH, 22'p-CH); 1.28-1.44 (m, 7 H, 4'P-CH, 5'-CH, 7'P-CH, 8'-CH, 9'- 

CH, ll'a-CH, 20'-CH); 1.44-1.86 (m, 13 H, 6-CH2, 7-CH2, 11-CH2, l'a-CH, 2’P-CH, 4'a- 

CH, 6'P-CH, 15'p-CH, 16'a-CH, 22'a-CH); 1.86-2.15 (m, 5 H, 2-CH2,12'p-CH, 23'a-CH, 

23'p-CH); 2.84-3.05 (m, 10 H, 3-CH2, 5-CH2, 8-CH2,10-CH2,12-CH2); 3.05-3.15 (m, 2 H, 1- 

CH2); 3.30-3.42 (m, 1 H, 3'-CH); 4.15 (bs, 1 x OH, [+H20]); 7.24 (1:1:1, t, ]J=  51 ,14N-!H);

8.03, 8.71, 8.90 (3 xbs, ammonium signals). 13CNMR, 100 MHz, [2H]6DMSO: 11,8 (18- 

CH3); 18.2 (21'-CH3); 20.3 (ll'-CH2); 22.5,22.7 (6-CH2, 7-CH2); 23.2 (19'-CH3); 23.7, 23.8 

(2-CH2, 15'-CH2); 26.0,26.1 (11-CH2, 7'-CH2); 26.8 (6'-CH2); 27.7 (16'-CH2); 30.3 (2'-CH2);

31.5 (22'-CH2); 32.2 (23'-CH2); 34.1 (lO'-C); 34.9 (20'-CH); 35.1 (l'-CH2); 35.3 (8'-CH); 35.5 

(1-CH2); 36.1 (4'-CH2); 36.2 (12-CH2); 39.6 (12'-CH2); 39.9 (9'-CH); 41.4 (5'-CH); 42.2 (13'- 

CH); 43.8 (3-CH2); 44.6 (10-CH2); 46.0, 46.1 (5-CH2, 8-CH2); 55.5 (17'-CH); 56.0 (14'-CH);

144



69.8 (3'-CH); 173.1 (CH2-CO-NH). MS, FAB+ found 561,40 % (M+ + 1), C ^ H A  

requires M+ = 560. High-resolution MS m/z, FAB+ found 561.5135, (M++l), C34H65N402 

requires M+ + 1 = 561.5108.

A^-(3a-Hydroxy-5(3-cholan-24-carbonyl)-l,ll"diamino-4,8-diazaundecaiie 12

Amide 8 (300 mg, 0.36 mmol) was deprotected according to general procedure C.

The residue was lyophilized to produce 347 mg of a white powder, 225 mg were purified by 

RP-FCPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 38:62 v/v) 

to afford the title compound 12 as a white solid (polytrifluoroacetate salt, 71 mg, 32 %). tR

7.0 min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA, 

38:62 v/v). !H NMR, 400 MHz, [2H]6 DMSO: 0.61 (s, 3 H, 18'-CH3); 0.84-0.98 (m, 7 H, 

l'P-CH, 19'-CH3,21'-CH3); 0.98-1.28 (m, 9H, 2'a-CH, 6'a-CH, 7'a-CH, ll'p-CH, 14'-CH, 

15'a-CH, 16'p-CH, 17'-CH, 22'p-CH); 1.28-1.44 (m, 7 H, 4'P-CH, 5'-CH, 7'P-CH, 8'-CH, 9'- 

CH, ll'a-CH, 20'-CH); 1.44-1.86 (m, 9 H, 10-CH2, l'a-CH, 2'p-CH, 4'a-CH, 6'p-CH, 15'P- 

CH, 16'a-CH, 22'a-CH); 1.86-2.15 (m, 7 H, 2-CH2, 6-CH2, 12'P-CH, 23'a-CH, 23'p-CH); 

2.85-3.05 (m, 10 H, 3-CH2, 5-CH2, 7-CH2, 9-CH2, 11-CH2); 3.05-3.14 (m, 2 H, 1-CH2); 3.30- 

3.42 (m, 1 H, 3'-CH); 3.63 (bs, 1 x OH, [+H20]); 7.22 (1:1:1, t, lJ=  51,14N-!H); 8.01, 8.79, 

8.97 (3 x bs, ammonium signals). 13C NMR, 100 MHz, [2H]6 DMSO: 11.8 (18'-CH3); 18.2 

(21'-CH3); 20.3 (ll'-C H J; 22.3 (6-CH2); 23.2 (19'-CH3); 23.7 (2-CH2, 15'-CH2, overlapping); 

26.0, 26.1 (10-CH2, 7'-CH2); 26.8 (6'-CH2); 27.6 (16'-CH2); 30.3 (2'-CH2); 31.4 (22'-CH2);

32.2 (23'-CH2); 34.1 (lO'-C); 34.9 (20'-CH); 35.0 (l'-CH2); 35.2 (8'-CH); 35.4 (1-CH2); 36.1 

(10-CH2); 36.2 (4'-CH2); 39.6 (12'-CH2); 39.8 (9'-CH); 41.4 (5'-CH); 42.2 (13'-CH); 43.8,

43.9 (3-CH2,10-CH2); 44.7 (5-CH2, 7-CH2, overlapping); 55,4 (17’-CH); 56.0 (14'-CH); 69.8 

(3'-CH); 173.0 (CH2-CO-NH). MS, FAB+ found 547, 100 % (M+ + 1), C33H62N40 2 requires 

M+ = 546. High-resolution MS m/z, FAB+ found 547.4955, (M+ + 1), C33H63N40 2 requires M+ 

+ 1 = 547.4951.
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Ari-(3a,7a,12a-Trihydroxy-5p-cholan-24-carbonyI)-l,12-diamino-4,9-diazadodecane 13

Amide 9 (300 mg, 0.34 mmol) was deprotected according to general procedure C.

The residue was lyophilized to produce 345 mg of a white powder, 220 mg was purified by 

RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 25:75 v/v) 

to afford the title compound 13 as a white solid (polytrifluoroacetate salt, 74 mg, 34 %). tR

5.0 min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA, 

27:73 v/v). !H NMR, 400 MHz, [2H]6 DMSO: 0.58 (s, 3 H, 18'-CH3); 0.50-1.00 (m, 8 H, 

l'P-CH, 15'a-CH, 19,-CH3,21'-CH3); 1.05-1.50 (m, 10 H, 2'a-CH, 2'p-CH, 4'p-CH, 5'-CH, 

6'a-CH, 1 r-CH2, 16'p-CH, 20-CH, 22'P-CH); 1.50-2.00 (m, 19 H, 2-CH2, 6-CH2, 7-CH2, 11- 

CH2, l'a-CH, 4'a-CH, 6'P-CH, 9'-CH, 14'-CH, 15'P-CH, 16'a-CH, 17'-CH, 22'a-CH, 23'a- 

CH, 23'p-CH); 2.00-2.25 (m, 3 H, 4'a-CH, 9'-CH, 23a-CH); 2.78-3.01 (m, 10 H, 3-CH2, 5- 

CH2, 8-CH2, 10-CH2, 12-CH2); 3.01-3.12 (m, 2 H, 1-CH2); 3.12-3.22 (m, 1 H, 3'-CH); 3.43 

(bs, 3 x OH, [+H20]); 3.61 (s, 1 H, 7'-CH); 3.79 (s, 1 H, 12'-CH); 7.22 (1:1:1, t, lJ=  51 ,14N- 

*H); 8.01, 8.67, 8.87 (3 x bs, ammonium signals). I3C NMR, 100 MHz, [2H]6 DMSO: 12.2 

(18'-CH3); 17.0 (21'-CH3); 22.5, 22.7 (6-CH2, 7-CH2,15'-CH2, 19'-CH3, overlapping); 23.7 (2- 

CH2); 26.0 (11-CH2); 26.1 (9'-CH2); 27.2 (16'-CH2); 28.5 (ll'-CH2); 30.3 (2'-CH2); 31.6 (22'- 

CH2); 32.3 (23'-CH2); 34.3 (lO'-C); 34.8 (6'-CH2); 35.1, 35.2 (l'-CH2, 20'-CH); 35.4 (1-CH2); 

36.1 (12-CH2); 38.8 (4'-CH2, 8’-CH); 41.3, 41.4 (5’-CH, 14'-CH); 43.8 (3-CH2); 44.5 (10- 

CH2); 45.6 (13'-C); 46.0, 46.1 (5-CH2, 8-CH2,17'-CH); 66.1 (7'-CH); 70.3 (3-CH); 70.9 (12'- 

CH); 173.2 (CH2-CO-NH). MS, FAB+ found 593,100 % (M+ + 1), C34H64N40 4 requires M+

= 592. High-resolution MS m/z, FAB+ found 593.5010, (M+ + 1), C34H65N40 4 requires M+ +

1 =593.5006.
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N]-(3 a,7a, 12a-T rihy droxy-5 p-choIan-24-carbony I)-1,11 -diamino-4,8-diazaundecane 14

Amide 10 (300 mg, 0.34 mmol) was deprotected according to general procedure C. 

The residue was lyophilized to produce 352 mg of a white powder, 225 mg was purified by 

RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 27:73 v/v) 

to afford the title compound 14 as a white solid (polytrifluoroacetate salt, 124 mg, 55 %). tR

6.8 min by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA, 

30:70 v/v). ’H NMR, 400 MHz, [2H]6 DMSO: 0.58 (s, 3 H, 18'-CH3); 0.50-1.00 (m, 8 H, 

l'p-CH, 15'cx-CH, 19'-CH3, 21'-CH3); 1.05-1.50 (m, 10 H, 2'a-CH, 2'P-CH, 4'p-CH, 5'-CH, 

6'a-CH, 1 l'-CH2,16'p-CH, 20'-CH, 22'P-CH); 1.50-2.05 (m, 17 H, 2-CH2, 6-CH2, 10-CH2, 

l'a-CH, 4'a-CH, 6'P-CH, 9'-CH, 14'-CH, 15'P-CH, 16’a-CH, 17'-CH, 22'a-CH, 23'a-CH, 

23'p-CH); 2.05-2.28 (m, 3 H, 4'a-CH, 9'-CH, 23a-CH); 2.85-3.05 (m, 10 H, 3-CH2, 5-CH2, 

7-CH2, 9-CH2,11-CH2); 3.05-3.15 (m, 2 H, 1-CH2); 3.15-3.25 (m, 1 H, 3'-CH); 3.60 (s, 1 H, 

7'-CH); 3.79 (s, 1 H, 12'-CH); 5.00- (bs, 3 x OH, [+H20]); 7.21 (1:1:1, t, lJ=  51, “N-'H); 

8.01, 8.78, 8.97 (3 xbs, ammonium signals). 13CNMR, 100 MHz, [2H]6DMSO: 12.2 (18- 

CH3); 17.0 (21'-CH3); 22.4, 22.5,22.7 (6-CH2,15'-CH2, 19'-CH3, overlapping); 23.8 (2-CH2);

26.0 (10-CH2); 26.2 (9'-CH2); 27.2 (16'-CH2); 28.5 (ll'-CH2); 30.3 (2'-CH2); 31.6 (22'-CH2);

32.3 (23'-CH2); 34.3 (lO'-C); 34.8 (6'-CH2); 35.1, 35.2 (l'-CH2,20’-CH); 35.5 (1-CH2); 36.1 

(11-CH2); 39.2 (4'-CH2, 8'-CH); 41.3, 41.4 (5'-CH, 14'-CH); 43.9,44.0 (3-CH2, 9-CH2); 44.7 

(5-CH2, 7-CH2); 45.6 (13'-C); 46.0 (17'-CH); 66.1 (7'-CH); 70.3 (3-CH); 70.9 (12'-CH); 173.2 

(CH2-CO-NH). MS, FAB+ found 579, 100 % (M+ + 1), C33H62N40 4 requires M+ = 578. 

High-resolution MS m/z, FAB+ found 579.4849, (M+ +1), C33H63N40 4 requires M+ + 1 = 

579.4854.
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Chapter 6

Homologated spermine steroid conjugates condense 

calf thymus DNA as a function of salt concentration
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Abstract: Cholesterol and lithocholic acid have been derivatized with a short lipophilic- 

chain substituted with the tetraamine spermine; these conjugates condense calf thymus DNA 

as a function of salt concentration as determined by a modified ethidium bromide binding 

assay.

Aims

The aims of this Chapter are to synthesise two carbamates of cholesterol 19 and 20 

(Fig. 4). and two polyamine amides of lithocholic acid 23 and 24 (Fig. 5), that mimic the 

positive charge distribution of the natural polyamine spermine 1 (Fig. 1). We will also 

measure the pK^s of these polyamine conjugates, calculate their charge at physiological pH, 

and compare them to spermine 1. We will also investigate SAR for their binding affinity for 

calf thymus DNA using an ethidium bromide displacement assay at low and high salt 

concentrations (20 and 150 mM NaCl respectively).

Introduction

In this Chapter, we investigate how mimicking the charge distribution of the natural 

polyamine spermine 1 may be advantageous in the condensation process of DNA and hence 

lipoplex formation. This work is an extension of the studies of Chapters 3, 4 and 5. Using 

our orthogonal protection strategy for efficient syntheses of unsymmetrical polyamine 

amides,1 and our homologation strategy,2 two carbamates of cholesterol 19 and 20, and two 

amides of lithocholic acid 23 and 24 were designed and synthesised. Cholesterol and 

lithocholic acid were chosen as the lipid moieties because they are both efficient at lipoplex 

formation when covalently attached to a polyamine, as we established previously in Chapters 

4 and 5. Two synthetic pentaamines were used as the cationic headgroups: 1,16-diamino- 

4,9,13-triazahexadecane (3.4.3.3) and l,19-diamino-4,9,13-triazanonadecane (3.4.3.6), these 

were used as their unsymmetrically protected tetra-Boc derivatives, 15 and 16 respectively.
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Condensation of calf thymus DNA was monitored using the refined displacement 

assay described in Chapter 2. The pKas of the polyamine headgroups of these compounds 

were measured potentiometrically for the cholesterol carbamates as described in Chapter 4. 

The charge was then calculated using the Henderson-Hasselbach equation at pH (7.4). In this 

Chapter, we therefore describe how mimicking both the number of positive charges and their 

distribution, as found in the natural product polyamine spermine 1, may have advantages in 

condensation of DNA and thus influence lipoplex formation.
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Fig. 1. Novel protection strategy for the synthesis of (Â  1/ / 4/ / 9-tri-ter/-butoxycarbonyl)-1,12-diamino-4,9- 

diazadodecane 4
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Fig. 2. Synthesis of target aldehydes 9 and 10

5 n = 1
6 n = 4
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9 n = 1
10 n = 4
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Fig. 4. Synthesis of target polyamine carbamates 19 and 20
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Fig. 5. Synthesis of target polyamine amides 23 and 24
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Results and discussion

Synthesis

Spermine 1 (Fig. 1) was selectively protected on one of the primary amines with ethyl 

trifluoroacetate to afford the mono-trifluoroacetamide 2 (but also trace amounts of the di- 

trifluoroacetamide). Immediately, in this solution, the remaining free amines were Boc 

protected with di-terr-butyl dicarbonate, to afford the fully protected polyamine 3. Selective 

deprotection of the trifluoroacetamide was then achieved by increasing the pH of the solution 

above 11, with conc. aqueous ammonia, to afford tri-Boc protected spermine 4 with one free 

primary amine unmasked (Fig. 1).

3-Aminopropan-l-ol 5 and 6-aminohexan-1 -ol 6 (Fig. 2) were Z-protected under basic 

conditions to afford the mono-Z protected aminopropan-l-ol 7 and aminohexan-l-ol 8 

respectively. Swem oxidation of these primary alcohols, with oxalyl chloride activated with 

DMSO, at -78 °C gave the mono-Z protected aminopropanal 9 and aminohexanal 10 (Fig. 2). 

Reductive alkylation of primary amine 4 with aldehydes 9 and 10 (Fig. 3) afforded protected 

polyamines 11 and 12 respectively. Protection of the newly introduced secondary amine 

(TV13) was achieved with di-terr-butyl dicarbonate to form fully protected polyamines 13 and 

14 (Fig. 3). Hydrogenation of the Z carbamates, in the presence of Pearlman’s catalyst 

(Pd(OH)2), afforded protected unsymmetrical polyamines 15 and 16 respectively and in 

modest overall yields. Reaction of the free primary amine of the protected homologated 

spermines 15 and 16 with cholesteryl chloroformate, afforded the fully protected carbamates 

17 and 18 (Fig. 4). Deprotection with trifluoroacetic acid in CH2C12 and purification by RP- 

HPLC afforded the target compounds 19 and 20, as their polytrifluoroacetate salts (Fig. 4). 

Acylation of protected homologated spermines 15 and 16 with lithocholic acid, mediated by 

DCC and catalytic HOBt afforded tetra-Boc protected lipo-spermines 21 and 22 (Fig. 5). 

Deprotection by treatment with trifluoroacetic acid in CH2C12 and purification by RP-HPLC 

afforded the target compounds 23 and 24, as their polytrifluoroacetate salts (Fig. 5).
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Charge at physiological pH

We have designed and synthesised two polyamine cholesteryl carbamates 19 and 20, 

and two polyamine amides of lithocholic acid 23 and 24, where the charge and regiochemical 

distribution found on spermine 1 has been mimicked. The charge on the cholesteryl 

carbamates 19 and 20 has been characterized by potentiometric measurement of their pi£as 

(Table 1), using a Sirius PCA101 automated titrator (Celltech Therapeutics). The net positive 

charge at physiological pH (7.4) has then been calculated using the Henderson-Hasselbach 

equation (Table 1). The charges on the cholesteryl carbamates 19 and 20 (at physiological 

pH) are similar to those on spermine 1. However, these carbamates 19 and 20 contain only 

one primary amine compared to the two of spermine 1 which has an effect on the p^as of the 

polyamine. The pATas and therefore the net positive charge at physiological pH (7.4) for 

polyamine amide conjugates 23 and 24 has been assumed to be the same as the corresponding 

cholesteryl carbamate derivatives 19 and 20 respectively.

Polyamine Measured pKas Net charge

3.4.3 (spermine) 1 10.9 ± 0.01 
10.1 ±0.01
8.9 ± 0.01 
8.1 ±0.01

3.8

3.4.3.3-cholesterol-3-carbamate 19 10.7 ±0.09
9.3 ± 0.06
8.4 ± 0.07
7.5 ± 0.06

3.4

3.4.3.6-cholesterol-3-carbamate 20 9.7 ± 0.02 
9.1 ±0.02 
8.4 ± 0.02
7.7 ± 0.01

3.5

Table 1. Measured pKa values of steroidal polyamine conjugates 19 and 20 and the net positive charge 

calculated using the Henderson-Hasselbach equation
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Nomenclature

We have named the target compounds as their corresponding polyamine derivatives, 

using IUPAC conventions. In Fig. 6, we outline the numbering system used in the NMR 

assignment of N ‘-(Sa-hydroxy-Sp-cholan-^-carbonyl)-1,16-diamino-4,8,l 3- 

triazahexadecane 23.

HO"

1t 1
o-l H1 9 l

^  1 ^ ^  i  >  '
, , H

3 5

i t

, 24 N
NH2

4 H 6

Fig. 6. Structure and numbering system for N  -(3a-hydroxy-5P-cholan-24-carbonyl)-1,16-diamino-4,8,13- 

triazahexadecane 23

NMR assignments

The assignment of the polyamine headgroups in this series of polyamine carbamates 

19-20 and amides 23-24 is based upon calculations using additivity rules, by !H, 13C chemical 

shift correlation spectroscopy and by analogy with carbamates and amide derivatives 

previously synthesised and described above in Chapters 3,4 and 5. The assignment of the 

cholan ring structure is based on the literature assignments3 and the expected changes in the 

carbon chemical shifts due to substituent effects are consistent with the literature.3 The 

assignment of the cholesteryl ring structure is based on the literature assignments4 and !H, 13C 

chemical shift correlation spectroscopy on cholesteryl chloroformate. The spectroscopic 

assignment of cholesteryl carbamate 20 is discussed in detail as a representative example.

Conformational isomers (populations interconverted by a-bond rotation) are observed 

for the poly-Boc protected polyamines and therefore two signals for each carbon on the
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methylene backbone of the polyamine and for each carbon on the Boc groups were observed. 

Generally 14N-!H couplings are not observed, but in the case of ammonium compounds, the 

combination of quadrupole relaxation and exchange of NH-protons is not sufficiently large to 

completely eliminate the coupling across one bond.5 Therefore carbamates 13-16,23 and 24 

display broad ammonium signals above 8 7.0 ppm. In addition, signals at 8 7.2 (1:1:1, t, lJ=  

51 Hz. 14N-!H) were observed for these ammonium ions, which we interpret as due to the 

symmetry of the R14NH3+ cations.5

H?N

O
A ,O'

H

Assignment Observed 13C Calculated 13C Observed !H

6, 12, 15 46.8 51.9 2.94

17 46.2 49.5 2.94

8, 10 44.0 47.2 2.94

1 40.1 44.6 2.94

19 36.3 35.3 2.94

2 29.3 31.9 1.38

3,4 25.7,25.9 25.7,25.3 1.25

5 25.5 26.3 1.53

18 23.9 26.6 1.92

9, 13, 14 22.5, 22.7, 22.7 22.3,21.6,21.6 1.95,1.63, 1.63

Table 2. I3C and *H NMR assignments for carbamate 20 in [2H]6 DMSO for the fully protonated species as its 

polytrifluoroacetic acid salt. Measured values are estimates based on additivity rule calculations of 13C 

chemical shifts in aliphatic compounds.5
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The observed I3C NMR chemical shifts of carbamate 20 (Table 2) are in good 

agreement with the calculated values. The additivity rules5 calculations differ in general by 

about 5 ppm from the experimental values. This method claims to be within 5 ppm of the 

observed values, which is in agreement with our findings. However, these predicted values 

do not agree with the order of the assignments for C5 C3, C4 and Cl 8. In the !H assignment 

of Cl 8 and C5, Cl 8 is deshielded by a p-primary and a p-secondary amine compared to a 

single p-secondary for C5. Therefore, the protons on C18 will come into resonance further 

downfield than those on C5. The !H, 13C chemical shift correlation spectroscopy (Fig. 7) 

confirms the assignment of C5 to the signal at 5 25.5 ppm and the signals at 6 23.9 ppm to 

C l8. The protons on C3 and C4 are not under any strong deshielding influences (y-amide 

and y-secondary amine respectively) and therefore would be expected to come into resonance 

closer to TMS than the protons on C5 and Cl 8. The *H, 13C chemical shift correlation 

spectroscopy (Fig. 7) confirms the assignment of C3 and C4 to the signal at 6 25.7 ppm and 8

25.9 ppm. The calculated 13C chemical shifts of the methylene adjacent to the primary 

amine,C19, and the methylene adjacent to the amide,Cl, are in agreement with the !H, 13C 

chemical shift correlation spectrum (Fig. 7). This was not the case for the assignment of the 

headgroup (as discussed above in Chapter 4) in conjugates 19 and 23. Cl (adjacent to an 

acylated amine) is no longer under the influence of a y-protonated secondary amine and so 

comes into resonance the furthest downfield of any of the polyamine headgroups assigned to 

date. This allows the signal at 40.1 ppm to be unambiguously assigned to Cl and the signal 

at 36.3 ppm to be assigned to Cl 9. The 13C assignment of this polyamine headgroup is 

therefore based on the comparison with other polyamine conjugates, calculations using 

additivity rules and by ^  13C chemical shift correlation spectroscopy.
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1-CH2, 6-CH2, 8-CH2, 10-CH2,
12-CH2, 15-CH2, 17-CH2,19-CH2

13-CH2, 14-CH2

5-CH-
2-CH-

m

0 .5 1.0 2.0 2 .5 3 .0

.O

13-CH2, 14-CH;

5-CH-

2-CH.

19-CH-

■9
1-CH2

17-CH.

6-CH2, 12-CH2, 15-CH2,

Fig. 7. 'H, nC chem ical shift correlation spectrum o f  carbamate 20 as its TFA salt, show ing resolution o f  the 

polyam ine chain resonances ([2H ]6 DM SO, 21 °C), the unassigned 13C resonances can all be attributed to the 

cholesteryl m oiety

Ethidium bromide displacement assay

The DNA binding affinities of the target compounds 19 and 20, and 23 and 24 were 

measured using the modified ethidium bromide fluorescence displacement assay described in 

Chapter 2. The decrease in fluorescence was critically compared against polylysine (average
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molecular weight 9,600 Da) and spermine 1 for compounds 19 and 20, and 23 and 24 at 20 

mM NaCl as a function of charge ratio. At physiological pH, spermine 1, carries a net 

positive charge of 3.8 (Chapter 5, Table 1), and polylysine in excess of +30. Conjugates 19 

and 23 carry a net positive charge of 3.4, conjugates 20 and 24 carry a net positive charge of

3.5 at physiological pH. Fig. 8 shows that A-acylation of the polytrifluoroacetic acid salt of 

polyamine headgroups 15 and 16, which mimic both the positive charge and distribution 

found on spermine, with lithocholic acid 23 and 24, or with cholesterol 19 and 20, makes 

these conjugates potent binders of DNA. The cholesteryl derivatives 19 and 20 are as potent 

as polycationic polylysine (at 20

100 T » 1

80 i
- X - 2 3  
- X — 24oocQO(OOwO3

PL 9,600
60 -

20  -

0 1 2 3 4 5

charge ratio

Fig. 8. Ethidium bromide displacement assay o f  compounds 19, 20, 23, and 24 compared to spermine 1 and 

polylysine at low  salt (20  mM NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 20  mM N aCl, 2 m M  HEPES, 10 pM  

EDTA, pH 7.4) was m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  com pound (5 pi o f  0.25  

m g/m l, 1 min equilibration time) were added and the fluorescence (%) determined (n =  1).
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mM NaCl), but the lithocholic acid derivatives 23 and 24 require a slight excess of positive 

charge to displace the ethidium bromide. Basu et al. have previously shown8 that 

pentaamines bind with greater affinity to DNA than tetraamines (e.g. spermine), and that the 

latter are unable to completely exclude all the ethidium bromide from DNA. This was 

attributed to aggregation of the complexes.8,9 Lithocholic acid derivatives 23 and 24 do not 

reach the same base levels of fluorescence as cholesteryl derivatives 19 and 20.

At elevated salt concentrations (Fig. 9), the lithocholic acid derivatives 23 and 24 

show salt-dependent binding to DNA and require a large excess of positive charge to displace 

the ethidium bromide from its intercalation sites. The cholesteryl carbamates 19 and 20,

100 T

0)
£  60 - o o (/)<DS.o
S 40 _

-x—

—x—
PL 9,600

C X-Tw'X--i m ■ *

0.5 1.5 2 2.5 3 3.5 4.5 50 1 4
charge ratio

Fig. 9. Ethidium bromide displacem ent assay o f  compounds 19, 20, 23 and 24 compared to spermine 1 and 

polylysine at high salt (150 mM NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 150 mM NaCl, 2 mM  HEPES, 10 pM  

EDTA, pH 7.4) was m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25  

m g/m l, 1 min equilibration tim e) were added and the fluorescence (%) determined (n = 1).

however, are more resistant to these elevated salt concentrations and show comparable 

condensation behaviour to polycationic polylysine, although with less efficiency. Derivatives 

20 and 24 containing the homologated spermine with the six methylene spacer, show slightly
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enhanced levels of ethidium bromide displacement, probably reflecting their slightly 

enhanced lipophilicity.

Much of the biological activity of DNA is modulated by its interaction with 

polycations such as histones, basic regulatory proteins and polyamines.6 These polycations 

have a much stronger electrostatic binding affinity for the phosphate backbone of DNA than 

the monovalent counterions that are also present endogenously. However, due to the large 

molar excess of the monovalent species, the latter provide effective competition. Therefore, 

polyamine affinity for DNA is salt dependent.6,7,9 The experimentally observed in vivo 

transfection efficiency dependence on the specific DNA complexation medium,10 may be 

explained by salt dependent binding of polyamines. The release mechanism of the DNA 

from the cationic liposome complex inside cells11 may also be explained in terms of 

competition for binding sites on the DNA.

Carbamates 19 and 20 are compared to (V-cholesteryloxy-3-carbonyl)-1,12-diamino- 

4,9-diazadodecane 25 (Fig. 10), previously described in Chapter 5, as a function of charge 

ratio at elevated salt concentrations (Fig. 11). These data show comparable degrees of 

ethidium bromide displacement for all three polyamines, with the more lipophilic carbamate 

20 being the slightly more active. When these data are compared as a function of 

concentration (Fig. 12), carbamates 19 and 20 have a greater binding affinity for DNA than 

polyamine 25, as these conjugates 19 and 20 have 3.4 and 3.5 positive charges respectively, 

compared to carbamate 25 which has 2.4. Lipophilic carbamate 20 was the slightly more 

active when compared to carbamate 19. These results are consistent with Manning’s 

hypothesis that at 90 % charge neutralisation of the DNA phosphate backbone, condensation 

occurs.12 A binding equilibrium for ethidium bromide exists between its intercalation sites 

and free (solvated) ethidium bromide. When intercalated, ethidium bromide induces an 

unwinding of the double helix over several base pairs13 and this excludes binding at the 

neighbouring intercalation sites (as described in Chapter 2). The binding of polyamines
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results in bending of the double helix of DNA and therefore the base pairs are no longer 

parallel, which does not favour the intercalation of ethidium bromide through 7t-7t stacking. 

This conformational change thus inhibits reintercalation of ethidium bromide and results in a 

decrease in fluorescence intensity as ethidium bromide only fluoresces strongly when 

intercalated. The increased lipophilic nature of carbamate 20 (compared to 19) may explain 

the increased binding affinity of this compound.

Fig. 10. Structure o f  (./Vl-cholesteryloxy-3-carbonyl)-l,12-diam ino-4,9-diazadodecane 25
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Fig. 11. Ethidium bromide displacement assay o f  compounds 19, 20, compared to carbamate 25  at high salt 

(150 mM NaCl). 6 pg o f  CT DNA  in buffer (3 m l, 150 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) was 

m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  com pound (5 pi o f  0.25 m g/m l, 1 min 

equilibration tim e) were added and the fluorescence (%) determined (n =  1).
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Fig. 12. Ethidium bromide displacement assay o f  compounds 19, 20, compared to carbamate 25 at high salt 

(150 mM NaCl). 6 p g  o f  CT D N A  in buffer (3 ml, 150 mM  NaCl, 2 mM HEPES, 10 pM EDTA , pH 7.4) w as 

m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min 

equilibration time) were added and the fluorescence (%) determined (n =  1).

Conclusions

The polyelectrolyte theory of Manning11 predicts that when 90 % of the charge on the 

DNA is neutralized, condensation will occur. DNA condensation is clearly an efficient 

process with 3-cholesteryl carbamates 19 and 20 at low salt concentrations, lithocholic acid 

polyamine amides 23 and 24 require a slight excess of positive charge in order to condense 

calf thymus DNA, reflecting their weaker binding affinities for DNA. At elevated salt 

concentrations, the lithocholic acid conjugates 23 and 24 exhibit a significantly greater 

degree of salt-dependent binding than their cholesteryl carbamate counterparts 19 and 20 .

The differences in binding affinity between the cholesterol and bile acid derivatives (at 20 

and 150 mM NaCl) could be attributed to their different lipophilicities. In Chapter 3, binding 

affinity for DNA was affected by changing the lipid moiety from a C 1 6 t o a C 1 8  alkyl chain.
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During this study Byk et al.u have demonstrated that the hydrophobicity of the lipid moiety 

has a crucial effect on in vitro gene transfer, going from aC18toC12 dialkyl chain results in 

a decrease in transfection. The introduction of the six methylene spacer into the polyamine 

backbone of conjugates 20 and 24 results in a small increase in binding affinity (at 150 mM 

NaCl) compared to their cholesteryl 19 or lithocholic acid 23 counterparts. This difference 

can be attributed to the increase in lipophilicity (three additional methylenes), or a 

combination of the increased lipophilicity together with the slight increase in positive charge 

(from 3.4 to 3.5). The introduction of an extra positive charge on carbamates 19 and 20 (3.4 

and 3.5 respectively) compared to carbamate 25 (2.4), results in lower concentrations of 

conjugate being required for efficient condensation of the DNA. From these results, we 

conclude that condensation is a function of both the total number of positive charges and the 

lipophilicity of this type of molecule. The overall number of positive charges on these 

molecules is slightly smaller than that found on spermine (3.8) and so the charge distribution 

found on this natural polyamine is mimicked, but not reproduced exactly. Our evaluation of 

pK& data, the number and regiochemical distribution of positive charges along the polyamine 

backbone, and changes in lipophilicity, may lead to a clearer understanding of lipoplex 

formation, a key first step in gene therapy.

The performance of cationic lipids will benefit from a clearer understanding of the 

barriers to transfection. These barriers include extracellular complex stability and complex 

dissociation either in the endosome or cytoplasm so plasmid DNA can be localised in the 

nucleus and expressed. One explanation for the release of DNA from the complex is that 

certain ionic molecules found in high concentrations in the cell (ATP, polypeptides, RNA, 

spermine, histones or anionic lipids) displace the ionic interaction between plasmid DNA and 

the cationic lipid.11 Polyamine-binding affinity has a vital role in these key aspects., 

Although the ideal cationic head group for this class of non-viral gene delivery system has
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not yet been developed, this study clearly demonstrates the salt dependence of 

polyammonium ion-DNA binding.

Experimental

General details

Column chromatography, NMR, MS, RP-HPLC and other details are described in 

Chapter 4.

General procedure A: carbamate formation

To a solution of the poly-Boc protected polyamine (1 equiv.) in CH2C12 (8 ml) and 

triethylamine (3.0 equiv.) at 0 °C under nitrogen was added cholesteryl chloroformate (1.2 

equiv.) dropwise in CH2C12 (3 ml) over 30 min. Stirring was continued for a further 10 mins, 

then the temperature was increased to 25 °C and the solution stirred for a further 2 h. The 

solution was concentrated in vacuo and the residue purified over silica gel to afford the title 

compound as a white foam.

General procedure B: amide formation

To a solution of the poly-Boc protected polyamine (1 equiv.) in CH2C12 (10 ml) was 

added the carboxylic acid (1 equiv.), 1-hydroxybenzotriazole (0.2 equiv.) and 

dicyclohexylcarbodiimide (1.5 equiv.). Then the reaction mixture was stirred at 25 °C, under 

nitrogen, for 24 h. The precipitate of dicyclohexylurea was then removed by filtration. The 

filtrate was concentrated in vacuo and the residue purified over silica gel (CH2Cl2-MeOH) to 

afford the title compound as a white foam.
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General procedure C: Boc removal

To a stirring solution of lipo-polyamine dissolved in CH2C12 (180 ml), under nitrogen 

at 25 °C, was added TFA (20 ml). After 2 h, the solution was concentrated in vacuo, the 

residue lyophilized and then purified by RP-HPLC over Supelcosil ABZ+Plus (5 pm, 25 cm 

x 10 mm, MeCN-0.1 % aq. TFA) to afford the title compound as a white solid (poly-TFA 

salt).

(Â 1,A4,Ar9-Tri-ter^-buto3cycarbonyl)-l,12-diamino-4,9-diazadodecane 4

l,12-Diamino-4,9-diazadodecane 1 (spermine, 3.4.3) (1.0 g, 5.0 mmol) was reacted as 

previously described to afford the title compound 4 as a homogeneous oil (1.24 g, 50 %). !H 

NMR, 13C NMR and MS as previously described.

3-Benzyloxycarbonylaminopropan-l-ol 7

3-Aminopropan-l-ol 5 (3.0 g, 40.0 mmol) was reacted as previously described to 

afford the title compound 7 as a white solid (8.26 g, 99 %). R{ 0.3 (CH2Cl2-MeOH-conc. aq. 

NH3 200:10:1 v/v/v). mp: 50-51 °C. !H NMR, 13C NMR and MS as previously described.

6-Benzyloxycarbonylaminohexan-l-ol 8

To a stirring solution of 6-aminohexan-l-ol 6 (2.0 g, 20.0 mmol) in CH2C12 and 

triethylamine (1.73g, 20.0 mmol) at 25 °C, benzyl chloroformate (2.92 g, 20.0 mmol) was 

added dropwise over 3 min. The solution was stirred for 16 h, the solution was then 

concentrated in vacuo and the residue purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3; 

300:10:1 v/v/v) to afford the title compound 8 as a white solid (3.69 g, 86 %). R{ 0.2 

(CH2Cl2-MeOH-conc. aq. NH3 200:10:1 v/v/v). NMR, 400 MHz, CDC13: 1.27-1.43 (m, 4 

H, 3-CH2,4-CH2); 1.43-1.60 (m, 4 H, 2-CH2, 5-CH2); 1.94 (s, 1 H, CH2-OH); 3.18 (q, 2 H, J  

= 7, 6-CH2); 3.61 (t, 2 H, J=  7, 1-CH2); 4.88 (bs, 1 H, CH2-NH-CO-0); 5.08 (s, 2 H, CO-O-
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CH2-Ph); 7.30-7.37 (m, 5 H, Ph). 13C NMR, 100 MHz, CDC13: 25.3 (3-CH2); 26.4 (4-CH2);

29.9 (5-CH2); 32.5 (2-CHJ; 40.9 (6-CH2); 62.6 (1-CH2); 66.6 (0-CH2-Ph); 128.1, 128.3,

128.5, (Ph); 136.6 (Cq Ph); 156.5 (N-CO-O). MS, FAB+ found 252,45 % (M+ + 1), 

C14H21N 03 requires M+= 251. High-resolution MS m/z, FAB+ found 252.1601, (M+ +1), 

C14H22N 03 requires M+ + 1 = 252.1600.

3-Benzyloxycarbonylaminoprcpanal 9

Primary alcohol 7 (2.0 g, 13.7 mmol) was oxidised under Swem conditions as 

previously described to afford the title compound 9 as a white solid (1.63 g, 82 %). Rf 0.5 

(EtOAc). mp: 57-58 °C. NMR, 13C NMR and MS as previously described.

6-Benzyloxycarbonylaminohexanal 10

Oxalyl chloride (1.34 ml, 15.3 mmol) was dissolved in freshly distilled anhydrous 

CH2C12 (60 ml from CaH2) and stirred at -78 °C under nitrogen. Then anhydrous DMSO 

(1.98 ml, 27.9 mmol) was added dropwise over 3 min and the mixture stirred for a further 10 

min at -78 °C. Alcohol 8 (3.5 g, 13.9 mmol) in anhydrous CH2C12 (10 ml) was then added 

dropwise over 3 min. The resultant cloudy suspension was then allowed to warm (~ -40 °C) 

until the solution cleared and then cooled to -78 °C for 10 min. Triethylamine (9.7 ml, 70 

mmol) was then added, the solution warmed to 25 °C and water (100 ml) was added. The 

organic layer was separated and the aqueous layer extracted twice with CH2C12 (60 ml). The 

combined organic extracts were dried (MgS04) and the solution was concentrated in vacuo 

and the residue purified over silica gel (EtOAc) to afford the title compound 10 as a white 

solid (3.1 g, 89%). R{0.7 (EtOAc). lU NMR, 400 MHz, CDC13: 1.33 (quin, 2-H, J=  7,4- 

CH2); 1.51 (quin, 2 H ,J = 7 , 5-CH2); 1.63 (quin, 2 H, J=  7, 3-CH2); 2.42 (t, 2 H ,J=  7, 2- 

CH2); 3.17 (q, 2 H, J=  7, 6-CH2); 4.95 (s, 1 H, CH2-NH-CO-0); 5.08 (s, 2 H, CO-O-CH,- 

Ph); 7.30-7.40 (m, 5 H, Ph); 9.73 (bs, 1 H, CH2-CHO). 13C NMR, 100 MHz, CDC13: 21.5 (3-
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CH2); 26.1 (4-CH2); 29.6 (5-CH2); 40.6 (6-CH2); 43.6 (2-CH2); 66.4 (0-CH2-Ph); 127.8, 

128.0, 128.4, (Ph); 136.5 (Cq Ph); 156.3 (N-CO-O); 202.4 (CHO). MS, FAB+ found 250,25 

% (M+ +1), C14H19N 03 requires M+= 249. High-resolution MS m/z, FAB+ found 250.1446, 

(M++l), C14H20NO3 requires M+ + 1 = 250.1443.

(7V1,ArVV9,/V13-Tetra-te/'f-butoxycarbonyl)-l,16-diamino-4,9,13- 

triazahexadecane 15

Polyamine 4 (1,06 g, 2.10 mmol) was reacted as previously described to afford the 

title compound 15 as a colourless oil (520 mg, 45 %). R{ 0.15 (CH2Cl2-MeOH-conc. aq. NH3 

100:10:1 v/v/v). !H NMR, 13C NMR and MS as previously described.

(Arl,Â 4,Â 9,Arl3-Tetra-/er/-butoxycarbonyl)-l,19-diamino-4,9,13- 

triazanonadecane 16

Protected polyamine 4 (2.11 g, 4.21 mmol) was placed over 4 A molecular sieves (~ 6 

g), evacuated under reduced pressure and then dissolved under nitrogen in freshly distilled 

anhydrous methanol (35 ml). Aldehyde 10 (366 mg, 1.76 mmol), sodium cyanoborohydride 

(166 mg, 2.64 mmol) and a catalytic amount of glacial acetic acid were then added and the 

reaction mixture stirred at 25 °C, under nitrogen, for 96 h. The solvent was then evaporated 

under reduced pressure and the residue purified over silica gel (CH2Cl2-MeOH-conc. aq. NH3 

100:10:1 v/v/v) to afford protected polyamine 12; R{ 0.33 (CH2Cl2-MeOH-conc. aq. NH3 

100:10:1 v/v/v), as a yellow oil, which included traces of protected polyamine starting 

material 4 and aldehyde 10. Compound 12 was then dissolved in DMF (10 ml) at 25 °C, 

under nitrogen, and di-ter/-butyl dicarbonate (1.01 g, 5.05 mmol) was added dropwise over 3 

min to the stirring solution to produce protected polyamine 14. After 1 h, the excess of di- 

fer/-butyl dicarbonate was quenched with conc. aq. NH3 (2 ml), the solution stirred for 30 

min and then concentrated in vacuo (40 °C). The residue was then dissolved in MeOH (20

171



ml), Pearlman’s catalyst [1 g, Pd(OH)2 on carbon 20 %] added and the flask and contents 

evacuated and flushed twice with hydrogen. The solution was then stirred for 4 h at 25 °C 

under an atmosphere of hydrogen. The catalyst was filtered through a bed of celite and the 

filtrate evaporated in vacuo and the residue purified over silica gel (CH2Cl2-MeOH-conc. aq. 

NH3 150:10:1 to 75:10:1 v/v/v) to afford the title protected polyamine 16 as a colourless oil 

(974 mg, 40 %). R{ 0.27 (CH2Cl2-MeOH-conc. aq. NH3 100:10:1 v/v/v). ]HNMR, 400 MHz, 

CDC13: 1.23-1.55 [m, 48 H, 6-CH2, 7-CH2, 15-CH2,16-CH2,17-CH2,18-CH2, 4 x O-C- 

(CH3)3]; 1.55-1.80 (m, 4 H, 2-CH2, 11-CH2); 2.53 (s, 2 H, NH2), (t, 2 H, 7 ,19-CH2); 3.04- 

3.35 (m, 14 H, 1-CH2, 3-CH2, 5CH2, 8-CH2, 10-CH2,12-CH2,14-CH2); 5.30-5.50 (bs, 1 H, 

CH2-NH-CO). 13C NMR, 100 MHz, CDC13: 25.5,25.9 (6-CH2, 7-CH2, 11-CH2, 

overlapping); 26.5 26.8 (3-CH2,4-CH2, 5-CH2); 27.8, 28.3,28.4 [2-CH2, 0-C-(CH3)3, 

overlapping]; 32.7, 32.9 (18-CH2); 37.2, 37.6 (1-CH2); 41.7 (19-CH2, overlapping); 43.6, 

44.1,44.2, 44.6,44.7 (3-CH2, 10-CH2, 12-CH2, overlapping); 46.4, 46.6,46.8 (5-CH2, 8-CH2, 

14-CH2, overlapping); 79.1, 79.2, 79.4 (quat C x 4, overlapping); 155.4, 156.0 [4 xN-CO-O- 

C-(CH3)3, overlapping]. MS, FAB+ found 702, 100 % (M+ +1), C36H71N5Og requires M+= 

701. High-resolution MS m/z, FAB+ found 702.5391, (M++l), C36H72N50 8 requires M+ + 1 = 

702.5381.

A^-(Cholesteryloxy-3-carbonyl-[iV4̂ V8̂ V13̂ V16-tetra-/ert-butoxycarbonyl])-l,16- 

diamino-4,8,13-triazahexadecane 17

Compound 15 (500 mg, 0.76 mmol) was reacted with choiesteryl chloroformate 

according to general procedure A to afford, after purification over silica gel (EtOAc-hexane; 

2:8 to 4:6 v/v), the title compound 17 as a white foam (678 mg, 77 %). R{ 0.13 (EtOAc- 

hexane; 4:6 v/v). 5H NMR, 400 MHz, CDC13: 0.60 (s, 3 H, 18'-CH3); 0.79, 0.80 (2 x d, 6 H, 

J=  7, overlapping 2 Hz, 26'-CH3 and 27'-CH3); 0.84 (d, 3 H, J=  7, 21'-CH3); 0.90 (s, 3 H, 

19'-CH3); 0.94-2.00 [m, 72 H, 4 x 0-C-(CH3)3, 2-CH2, 6-CH2,10-CH2, 11-CH2, 15-CH2, 1'-
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CH2, 2'-CH2,4'-CH2,7'-CH2,8'-CH, 9’-CH, ll'-CH2,12'-CH2,14'-CH, 15'-CH2, 16'-CH2j IT­

CH, 20-CH, 22'-CH2,23'-CH2,25'-CH]; 2.08-2.28 (m, 2 H, 24'-CH2>); 3.08-3.24 (m, 4 H, 1- 

CH2s 10-CH2); 3.00-3.40 (m, 8 H, 1-CH2,3-CH2,5-CH2,7-CH2,9-CH2,12-CH2,14-CH2, 16- 

CH2, ); 4.35-4.50 (m, 1 H, 3'-CH); 5.25-5.40 (m, 1 H, 6'-CH); 5.40-5.50 (bs, 1 H, CHr NH- 

CO). 13C NMR, 100 MHz, CDC13: 11.8 (18'-CH3); 18.6 (21'-CH3); 19.3 (19’-CH3); 21.0 (11'- 

CH3); 22.5 (27'-CH3); 22.8 (26'-CH3); 23.8 (23'-CH2); 24.2 (15'-CH2); 25.5,25.6,25.8,25.9 

(6-CH2,10-CH2,11-CH2); 27.7,27.8,267.9,28.1,28.2,28.4,28.7 (2-CH2,15-CH2, 2', 16', 

25'-CH, 4 x 0-C-(CH3)3, overlapping); 31.8 (7'-CH2, 8-CH, overlapping); 35.7 (20'-CH);

36.1 (22'-CH2); 36.5 (lO'-C); 36.9 (l'-CH2); 37.3, 37.5, 37.6 (1-CH2,16-CH2, overlapping);

38.5 (24'-CH2); 39.5, 39.7 (4'-CH2, 12'-CH2); 42.2 (13'-C); 43.5,43.6,44.1,44.3, 44.7, 46.3,

46.5, 46.6,46.8 (3-CH2, 5-CH2, 7-CH2, 9-CH2,12-CH2,14-CH2, overlapping); 49.9 (9'-CH);

56.0 (17-CH); 56.6 (14'-CH); 74.0 (3'-CH); 79.3, 79.4, 79.5, 79.7 (3 x quat C, overlapping);

122.3 (6-CH); 139.9 (5'-C); 155.4, 156.0,156.2 (4 xNH-C0-0-C(CH3)3,N-CO-O-CH, 

overlapping). MS, FAB+ found 702,100 % (M+ +1), C61H109N5O10 requires M+= 1071. 

High-resolution MS m/z, FAB+ found 1072.8239, (M+ + 1), C61H110N5O10 requires M+ + 1 = 

1072.8253.

iVi-(Cholesteryloxy-3-carbonyl-[7VVV11,7V1VV19-tetra-fer/-butoxycarbonyl])-l,19- 

diamino-7,11,16-triazanonadecane 18

Protected polyamine 16 (350 mg, 0.50 mmol) was reacted with cholesteryl 

chloroformate according to general procedure A to afford, after purification over silica gel 

(EtOAc-hexane ; 2:8 to 4:6 v/v), the title compound 18 as a white foam (506 mg, 90 %). R{ 

0.28 (EtOAc-hexane; 4:6 v/v). !H NMR, 400 MHz, CDC13: 0.69 (s, 3 H, 18'-CH3); 0.88,

0.89 (2 x d, 6 H, J=  7, overlapping 2 Hz, 26'-CH3 and 27'-CH3); 0.91 (d, 3 H, J=  7, 21'-CH3);

1.03 (s, 3 H, 19'-CH3); 0.94-2.10 [m, 78 H, 4 x 0-C-(CH3)3,2-CH2, 3-CH2,4-CH2, 5-CH2, 9- 

CH2, 13-CH2, 14-CH2,18-CH2, l'-CH2, 2’-CH2, 4'-CH2, 7’-CH2, 8'-CH, 9'-CH, ll'-CH2, 12'-
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CH2, 14'-CH, 15'-CH2, 16'-CH2, 17'-CH, 20'-CH, 22'-CH2, 23'-CH2j 25'-CH]; 2.20-2.40 (m, 2 

H, 24'-CH2); 3.05-3.35 (m, 16 H, 1-CH2, 6-CH2, 8-CH2, 10-CH2,12-CH2, 15-CH2, 17-CH2, 

19-CHa); 4.40-4.55 (m, 1 H, 3'-CH); 4.60-4.85 (bs, 1 H, CH2-NH-CO); 5.35-5.40 (m, 1 H, 6'- 

CH). 13C NMR, 100 MHz, CDC13: 11.9 (18'-CH3); 18.7 (21'-CH3); 19.3 (19'-CH3); 21.0 (11'- 

CH3); 22.6 (27'-CH3); 22.8 (26'-CH3); 23.8 (23'-CH2); 24.3 (15'-CH2); 25.6, 26.0,26.4 (3- 

CH2, 4-CH2, 5-CH2, 9-CH2,13-CH2, 14-CH2, overlapping); 28.0,28.2,28.3,28.5 (18-CH2, 2'- 

CH2,16'-CH2,25'-CH, 4 x 0-C-(CH3)3, overlapping); 31.9 (7'-CH2, 8'-CH, overlapping); 35.8 

(20-CH); 36.2 (22'-CH2); 36.6 (lO'-C); 37.0 (l'-CH2); 37.3, 37.5 (19-CH2); 38.6 (24'-CH2);

39.5, 39.7 (4'-CH2,12'-CH2); 40.7 (1-CH2); 42.3 (13'-C); 44.7,46.4,46.5,46.8 (6-CH2, 8- 

CH2, 10-CH2,12-CH2,15-CH2,17-CH2, overlapping); 50.0 (9'-CH); 56.1 (17-CH); 56.7 (14'- 

CH); 74.1 (3'-CH); 79.2, 79.3, 79.5 (3 x quat C, overlapping); 122.4 (6'-CH); 139.9 (5'-C);

155.5,156.2 (4 x NH-C0-0-C(CH3)3, N-CO-O-CH, overlapping). MS, FAB+ found 1115,10 

% (M+ +1), C60H109N5O10 requires M+ = 1113. High-resolution MS m/z, FAB+ found 

1114.8699, (M+ + 1), C60H110N5O10 requires M+ + 1 = 1114.8722.

A^-(Cholesteryloxy-3-carbonyl)-l,16-diamino-4,8,13-triazahexadecane 19

Carbamate 17 (591 mg, 0.9 mmol) was deprotected according to general procedure C 

and produced 626 mg of a white powder, 230 mg was purified by RP-HPLC (Supelcosil 

ABZ+Plus, 5 pm x 25 cm x 10 mm, MeCN-0.1 % aq. TFA 47:53 v/v) to afford the title 

compound 19 as a white solid (polytrifluoroacetate salt, 140 mg, 38 %), /R 7.3 min by RP- 

HPLC (Supelcosil ABZ+Plus, 5 pm, 15 cm x 4.6 mm, MeCN-0.1 % aq. TFA 45:55 v/v). !H 

NMR, 400 MHz, [2H]6 DMSO: 0.65 (s, 3 H, 18'-CH3); 0.82 (d, 6 H, J=  7, 26'-CH3, 27'-CH3);

0.89 (d, 3 H, J=  6, 21'-CH3); 0.99 (s, 3 H, 19'-CH3); 0.94-2.00 (m, 36 H, 2-CH2, 6-CH2, 10- 

CH2,11-CH2, 15-CH2, l'-CH2, 2'-CH2,4'-CH2, 7'-CH2, 8'-CH, 9'-CH, ll'-CH2, 12'-CH2j 14'- 

CH, 15'-CH2, 16'-CH2,17'-CH, 20'-CH, 22'-CH2, 23'-CH2, 25’-CH); 2.15-2.33 (m, 2 H, 24'- 

CH2,); 2.84-3.08 (m, 16 H, 1-CH2, 3-CH2, 5-CH2, 7-CH2, 9-CH2,12-CH2, 14-CH2, 16-CH2);

174



4.24-4.40 (m, 1 H, 3'-CH); 5.30-5.37 (m, 1 H, 6'-CH); 7.20 (1:1:1, t, lJ=  51 ,14N-*H); 7.21,

8.01, 8.78, 8.91(4 x bs, ammonium signals). 13CNMR, 100 MHz, [2H]6 DMSO: 11.7 (18- 

CH3); 18.6 (21'-CH3); 19.0 (19'-CH3); 20.6 (ll'-CH2); 22.4,22.7 (6-CH2, 10-CH2, 11-CH2, 

26'-CH3, 27'-CH2, overlapping); 23.2 (23'-CH2); 23.8,23.9 (15-CH2, 15'-CH2); 26.3 (2-CH2);

27.4 (16'-CH2); 27.8, 27.9 (2'-CH2, 25'-CH); 31.3, 31.4 (7'-CH2, 8'-CH); 35.2 (20'-CH); 35.7 

(22'-CH2); 36.1, 36.2 (1-CH2, lO'-C); 36.6 (l'-CH2); 37.4 (16-CH2); 38.3 (24’-CH2); 38.5, 38.9 

(4'-CH2, 12'-CH2); 41.9 (13'-C); 43.9,44.0 (3-CH2, 5-CH2, 7-CH2, overlapping); 44.8 (14- 

CH2); 46.1 (9-CH2,12-CH2, overlapping); 49.5 (9'-CH); 55.6 (17-CH); 56.1 (14'-CH); 73.1 

(3'-CH); 121.9 (6'-CH); 139.7 (5'-C); 155.8 (OCONH). MS, FAB+ found 672,100 % (M+ + 

1), C4]H77N50 2 requires M+ = 671. High-resolution MS m/z, FAB+ found 672.6163, (M+ +1), 

C4]H78N50 2 requires M+ + 1 = 672.6156.

A^-(Cholesteryloxy-3-carbonyl)-l,19-diamino-7,ll)16-triazanonadecane 20

Carbamate 18 (462 mg, 0.42 mmol) was deprotected according to general procedure 

C and produced 552 mg of a white powder, 450 mg was purified by RP-HPLC (Supelcosil 

ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA 50:50 v/v) to afford the title 

compound 20 as a white solid (polytrifluoroacetate salt, 234 mg, 59 %), tR 7.0 min by RP- 

HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA 50:50 v/v). !H 

NMR, 400 MHz, [2H]6 DMSO: 0.66 (s, 3 H, 18'-CH3); 0.84 (d, 6 H, J=  7, 26'-CH3, 27'-CH3);

0.90 (d, 3 H, J=  6, 21'-CH3); 0.97 (s, 3 H, 19'-CH3); 0.97-2.04 (m, 42 H, 2-CH2, 3-CH2, 4- 

CH2, 5-CH2, 9-CH2, 13-CH2,14-CH2, 18-CH2, l'-CH2, 2'-CH2, 4'-CH2, 7'-CH2, 8'-CH, 9’-CH, 

ll'-CH2, 12'-CH2,14'-CH, 15'-CH2, 16'-CH2,17’-CH, 20'-CH, 22'-CH2, 23'-CH2, 25'-CH);

2.15-2.33 (m, 2 H, 24'-CH2,); 2.84-3.08 (m, 16 H, 1-CH2, 6-CH2, 8-CH2,10-CH2,12-CH2, 15- 

CH2, 17-CH2, 19-CH2); 4.25-4.40 (m, 1 H, 3'-CH); 5.30-5.40 (m, 1 H, 6'-CH); 7.05 (t, J=  5, 

H-N+-C-H); 7.28 (1:1:1, t, lJ=  51 ,14N-!H); 7.05, 8.09, 8.88, 9.01 (4 x bs, ammonium 

signals). 13C NMR, 67.8 MHz, [2H]6 DMSO: 11.8 (18'-CH3); 18.6 (21'-CH3); 19.1 (19'-CH3);

175



20.7 (ll'-CHj); 22.5,22.7 (9-CH2, 13-CH2, 14-CH2,26'-CH3,27'-CH3, overlapping); 23.4 

(23'-CH2); 23.9 (18-CH2, 15'-CH2, overlapping); 25.5 (5-CH2); 25.7, 25.9 (3-CH2, 4-CH2); 

27.5 (16'-CH2); 27.9 (2'-CH2,25'-CH, overlapping); 29.3 (2-CH2); 31.5 (7'-CH2, 8'-CH, 

overlapping); 35.3 (20'-CH); 35.8 (22'-CH2); 36.2, 36.3 (19-CH2, lO'-C); 36.7 (l'-CH2); 38.5 

(24'-CH2); 39.1, 39.3 (4'-CH2, 12'-CH2); 40.1 (1-CH2); 42.0 (13'-C); 44.0 (8-CH2, 10-CH2, 

overlapping); 46.2 (17-CH2); 46.8 (6-CH2, 12-CH2,15-CH2, overlapping); 49.6 (9'-CH); 55.7 

(17-CH); 56.3 (14'-CH); 72.9 (3'-CH); 121.9 (6'-CH); 139.9 (5'-C); 158.6 (OCONH). MS, 

FAB+ found 714,100 % (M+ +1), C44H83N50 2 requires M+= 713. High-resolution MS m/z, 

FAB+ found 714.6637, (M+ + 1), C44H84N50 2 requires M+ +1 = 714.6625.

/V/-[3a-Hydroxy-5(3-cholan-24-carbonyl-(7V4,7V8,AriyV 16-tetra-/er/-butoxycarbonyl)]-

l,16-diamino-4,8,13-triazahexadecane 21

Polyamine 15 (340 mg, 0.52 mmol) and lithocholic acid were reacted according to 

general procedure B. The residue was purified by column chromatography over silica gel 

(CH2Cl2-MeOH; 30:1 to 25:1 v/v) to afford a white foam 21 (354 mg, 66 %). Rf 0.24 

(CH2Cl2-MeOH; 20:1 v/v). !H NMR, 400 MHz, CDC13: 0.64 (s, 3 H, 18'-CH3); 0.83-2.40 

[m, 80 H, 2-CH2, 6-CH2, 10-CH2, 11-CH2, 15-CH2, 4 x 0-C-(CH3)3, 1' -CH2, 2' -CH2,4'-CH2, 

5'-CH, 6'-CH2, 7'-CH2, 8'-CH, 9'-CH, ll'-CH2,12'-CH2,14'-CH, 15,-CH2,16'-CH2, 17'-CH, 

19'-CH3,20-CH, 21'-CH3, 22'-CH2,23'-CH2]; 3.05-3.35 (m, 16 H, 1-CH2, 3-CH2, 5-CH2, 7- 

CH2, 9-CH2, 12-CH2,14-CH2,16-CH2); 3.55-3.70 (m, 1 H, 3'-CH); 6.75-6.90 (bs, 1 H, CH2- 

NH-CO). 13CNMR, 100 MHz, CDC13: 12.1 (18'-CH3); 18.4(21'-CH3); 20.8 (ll'-CH2); 23.4 

(19'-CH3); 24.2 (15'-CH2); 25.4, 25.5, 25.7, 25.8, 25.9 (6-CH2, 10-CH2, 11-CH2, overlapping);

26.4 (7'-CH2); 27.2 (6'-CH2); 27.6, 27.9,28.2,28.5, 28.7,28.9 [2-CH2,15-CH2, 16'-CH2, 4 x 

0-C-(CH3)3, overlapping]; 30.5 (2'-CH2); 31.8 (22'-CH2); 33.8 (23'-CH2); 34.6 (lO’-C); 35.4,

35.5 (1-CH2, 20'-CH, l'-CH2); 35.8 (8'-CH); 36.4 (4'-CH2); 37.4, 37.7 (16-CH2); 40.2 (12'- 

CH2); 40.4 (9'-CH); 42.1 (5'-CH); 42.7 (13'-CH); 43.3,43.8,44.2,44.8,46.4,46.5, 46.6,46.8
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(3-CH2, 5-CH2, 7-CH2, 9-CH2, 12-CH2, 14-CH2, overlapping); 56.1 (17-CH); 56.5 (14'-CH);

71.7 (3'-CH); 79.4, 79.7, 79.8 (4 x quat C, overlapping); 155.4, 156.1, 156.3 (4 xNH-CO-O- 

C(CH3)3); 173.8 (CH2-CO-NH). MS, FAB+ found 1018, 80 % (M+ + 1), C57H103N5O10 

requires M+ = 1017. High-resolution MS m/z, FAB+ found 1018.7774, (M+ + 1),

C57H]04N5O10 requires M+ + 1 = 1018.7783.

A^-[3a-Hydroxy-5p-cholan-24-carbonyl-(iV7̂ V11̂Vrl6̂ V19-tetra-teit-butoxy carbonyl)]- 

l,19-diamino-7,ll,16-triazanonadecane 22

Polyamine 16 (350 mg, 0.5 mmol) and lithocholic acid were reacted according to 

general procedure B. The residue was purified by column chromatography over silica gel 

(CH2Cl2-MeOH; 26:1 to 20:1 v/v) to afford a white foam 22 (350 mg, 66 %). Rf 0.18 

(CH2Cl2-MeOH; 20:1 v/v). !H NMR, 400 MHz, CDC13: 0.64 (s, 3 H, 18'-CH3); 0.83-2.30 [m, 

86 H, 2-CH2, 3-CH2,4-CH2, 5-CH2, 9-CH2, 13-CH2, 14-CH2, 18-CH2, 4 x 0-C-(CH3)3, 1'- 

CH2, 2'-CH2,4'-CH2, 5'-CH, 6'-CH2, 7'-CH2, 8'-CH, 9'-CH, ll'-CH2,12'-CH2,14'-CH, 15'- 

CH2, 16'-CH2, 17-CH, 19'-CH3,20'-CH, 21'-CH3,22'-CH2, 23'-CH2]; 3.04-3.30 (m, 16 H, 1- 

CH2, 6-CH2, 8-CH2, 10-CH2,12-CH2,15-CH2,17-CH2,19-CH2); 3.59-3.70 (m, 1 H, 3'-CH). 

,3C NMR, 100 MHz, CDC13: 12.1 (18'-CH3); 18.4 (21'-CH3); 20.8 (1 l'-CH2); 23.4 (19'-CH3);

24.2 (15'-CH2); 25.5, 25.6, 26.0, 26.1 (3-CH2, 4-CH2, 5-CH2, 9-CH2, 13-CH2,14-CH2, 

overlapping); 26.4 (7'-CH2); 27.2 (6'-CH2); 28.3, 28.4,28.5 [18-CH2, 16’-CH2, 4 x O-C- 

(CH3)3, overlapping]; 29.4, 29.7 (2-CH2); 30.5 (2'-CH2); 31.9 (22'-CH2); 33.7 (23'-CH2); 34.6 

(lO'-C); 35.4, (l'-CH2); 35.5 (20'-CH); 35.8 (8'-CH); 36.4 (4'-CH2); 37.4, 37.7 (19-CH2); 38.9,

39.2 (1-CH2); 40.2 (12'-CH2); 40.4 (9'-CH); 42.1 (5'-CH); 42.7 (13'-CH); 43.7,44.8,46.4,

46.5, 46.6, 46.8 (6-CH2, 8-CH2,10-CH2,12-CH2,15-CH2,17-CH2, overlapping); 56.0 (17'- 

CH); 56.5 (14'-CH); 71.8 (3'-CH); 79.2, 79.3, 79.5 (4 x quat C, overlapping); 155.5,156.6,

156.1 (4 x NH-C0-0-C(CH3)3); 173.6 (CH2-CO-NH). MS, FAB+ found 1060, 10 % (M+ +
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1), C60H109N5O10 requires M+ = 1059. High-resolution MS m/z, FAB+ found 1060.8256, (M+

+ 1), C60H110N5O10 requires M+ + 1 = 1060.8253.

A^-(3a-Hydroxy-5p-cholan-24-carbonyl)-l,16-diamino-4,8,13-triazahexadecane 23

Amide 21 (500 mg, 0.49 mmol) was deprotected according to general procedure C 

and produced 583 mg of a white powder, 340 mg was purified by RP-HPLC (Supelcosil 

ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 29:71 v/v) to afford the title 

compound 23 as a white solid (polytrifluoroacetate salt, 179 mg, 50 %), tR 5.1 min by RP- 

HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 29:71 v/v). *H 

NMR, 400 MHz, [2H]6 DMSO: 0.61 (s, 3 H, 18'-CH3); 0.84-0.98 (m, 7 H, l'P-CH, 19'-CH3, 

21'-CH3); 0.98-1.28 (m, 9H, 2'cc-CH, 6'a-CH, 7'a-CH, 1 l'P-CH, 14'-CH, 15'a-CH, 16'P-CH, 

17-CH, 22'P-CH); 1.28-1.44 (m, 7 H, 4'P-CH, 5'-CH, 7'p-CH, 8'-CH, 9'-CH, ll'a-CH, 20'- 

CH); 1.44-1.86 (m, 13 H, 2-CH2,10-CH2,11-CH2,l'a-C H , 2'p-CH, 4'a-CH, 6'p-CH, 15'P- 

CH, 16a-CH, 22a-CH); 1.86-2.15 (m, 7 H, 6-CH2, 15-CH2, 12'P-CH, 23'cx-CH, 23'p-CH); 

2.84-3.05 (m, 14 H, 3-CH2, 5-CH2, 7-CH2, 9-CH2, 12-CH2,14-CH2, 16-CH2); 3.05-3.14 (m, 2 

H, 1-CH2); 3.32-3.43 (m, 1 H, 3'-CH); 5.00 (bs, 1 x OH, [+H20]); 7.26 (1:1:1, t, lJ=  51 ,14N- 

*H); 8.05, 8.85, 8.97 (3 x bs, ammonium signals, overlapping). 13C NMR, 100 MHz, [2H]6 

DMSO: 11.9 (18'-CH3); 18.4 (21'-CH3); 20.5 ( l l ’-CH2); 22.5, 22.7 (6-CH2, 10-CH2, ll-CH J;

23.4 (19'-CH3); 23.9 (2-CH2, 15'-CH2, overlapping); 26.3 (2-CH2, 7'-CH2); 27.0 (6'-CH2); 27.8 

(16'-CH2); 30.5 (2'-CH2); 31.6 (22’-CH2); 32.4 (23'-CH2); 34.3 (lO'-C); 35.1 (20'-CH); 35.2 

(l'-CH2); 35.5 (8’-CH); 35.7 (1-CH2); 36.3 (16-CH2,4'-CH2, overlapping); 39.9 (12’-CH2);

40.1 (9'-CH); 41.6 (5'-CH); 42.4 (13'-CH); 44.0 (3-CH2, 5-CH2, 7-CH2); 44.9 (14-CH2); 46.2 

(9-CH2,12-CH2); 55.6 (17'-CH); 56.2 (14'-CH); 70.0 (3'-CH); 173.2 (CH2-CO-NH). MS, 

FAB+ found 618, 100 % (M+ +1), C37H71N50 2 requires M+= 617. High-resolution MS m/z, 

FAB+ found 618.5696, (M+ + 1), C37H72N50 2 requires M+ + 1 = 618.5686.
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A^-(3a-Hydroxy-5p-cholan-24-carbonyl)-l,19-diamino-7,ll>16-triazanonadecane 24

Amide 22 (300 mg, 0.28 mmol) was deprotected according to general procedure C 

and produced 343 mg of a white powder, 120 mg was purified by RP-HPLC (Supelcosil 

ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 29:71 v/v) to afford the title 

compound 24 as a white solid (polytrifluoroacetate salt, 94 mg, 85 %). tR 6 min by RP-HPLC 

(Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 29:71 v/v). *H NMR, 

400 MHz, [2H]6 DMSO: 0.60 (s, 3 H, 18’-CH3); 0.84-0.98 (m, 7 H, l'p-CH, 19'-CH3, 21'- 

CH3); 0.98-1.44 (m, 22 H, 2-CH2, 3-CH2,4-CH2, 2'a-CH, 4'p-CH, 5'-CH, 6'a-CH, 7'a-CH, 

7'p-CH, 8'-CH, 9'-CH, 1 l'a-CH, 1 l'p-CH, 14'-CH, 15'a-CH, 16'p-CH, 17'-CH, 20'-CH, 22'P- 

CH); 1.44-2.20 (m, 20 H, 5-CH2, 9-CH2, 13-CH2,14-CH2,18-CH2, l'a-CH, 2'p-CH, 4'a-CH, 

6'P-CH, 12'p-CH, 15'P-CH, 16a-CH, 22a-CH, 23'a-CH, 23'P-CH) 2.74-3.10 (m, 16 H, 1- 

CH2, 6-CH2, 8-CH2, 10-CH2, 12-CH2, 15-CH2,17-CH2); 3.32-3.43 (m, 1 H, 3'-CH); 4.75- (bs, 

1 x OH, [+H20]); 7.38 (1:1:1, t, V =  51 ,14N-JH); 7.79, 8.06, 8.84, 8.98 (4 xbs, ammonium 

signals). 13C NMR, 100 MHz, [2H]6 DMSO: 11.9 (18'-CH3); 18.3 (21'-CH3); 20.4 (1 l'-CH2);

22.4 (9-CH2); 22.7 (13-CH2, 14-CH2, overlapping); 23.3 (19'-CH3); 23.8, 23.9 (18-CH2, 15'- 

CH2, overlapping); 25.4 (5-CH2); 25.7, 25.9 (3-CH2, 4-CH2); 26.2 (7’-CH2); 27.0 (6’-CH2);

27.8 (16'-CH2); 29.0 (2-CH2); 30.4 (2'-CH2); 31.7 (22'-CH2); 32.4 (23'-CH2); 34.2 (lO'-C);

35.0 (20'-CH); 35.2 (l'-CH2); 35.4 (8'-CH); 36.2, 36.3 (19-CH2,4'-CH2); 38.2 (1-CH2); 39.9 

(12'-CH2); 40.0 (9'-CH); 41.6 (5'-CH); 42.3 (13'-CH); 43.9 (8-CH2, 10-CH2, overlapping);

46.1 (17-CH2); 46.8 (6-CH2,12-CH2,15-CH2, overlapping); 55.6 (17'-CH); 56.1 (14'-CH);

69.9 (3'-CH); 172.4 (CH2-CO-NH). MS, FAB+ found 660, 100 % (M+ + 1), C40H77N5O2 

requires M+= 659. High-resolution MS m/z, FAB+ found 660.6144, (M+ + 1), C44H78N50 2 

requires M+ + 1 = 660.6156.
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Chapter 7

The significance of regio- and stereochemistry in the condensation 

of DNA by spermine conjugates of dihydroxy-substituted

bile acids
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Abstract: Polyamine amides have been prepared from chenodeoxycholic (3a,7a- 

dihydroxy), deoxycholic (3a,12a-dihydroxy) and ursodeoxycholic (3a,7p-dihydroxy) acids 

by acylation of tri-Boc protected spermine and their binding affinities for calf thymus DNA 

were determined using an ethidium bromide displacement assay; these polyamine amides are 

models for lipoplex formation with respect to gene delivery (lipofection), a key first step in 

gene therapy.

Aims

The aims of this Chapter are to synthesise a series of bile acid polyamine amides and 

to investigate the SAR of their binding affinity for calf thymus DNA using an ethidium 

bromide displacement assay. Changes in binding affinity for DNA with respect to variations 

in the position of the hydroxyl groups of chenodeoxycholic 1 (3a,7a-dihydroxy-5p-cholanic 

acid), deoxycholic 2 (3a, 12a-dihydroxy-5p-cholanic acid) and ursodeoxycholic 3 (3a,7p- 

dihydroxy-5 p-cholanic acid) acids, covalently attached to spermine are investigated.

Introduction

In this Chapter, we investigate the role of the lipid moiety in the DNA condensation 

process, and this is an extension of the preliminary studies of Chapter 3 and the in-depth 

studies of Chapters 4, 5 and 6. Using our orthogonal protection strategy for efficient 

syntheses of unsymmetrical polyamine amides,1 three bile acid amides of spermine 1 were 

designed and synthesised 11-13. Chenodeoxycholic 1, deoxycholic 2 and ursodeoxycholic 3 

acids (Fig. 1) were chosen as the lipid moieties because they allow the controlled regio- and 

stereochemical substitution of the two hydroxyl groups on the cholan ring system.

Previously (Chapter 5), we have shown that the binding affinity for DNA of spermine 

covalently attached to lithocholic 4 (one hydroxyl) and cholic 5 acids (three hydroxyls) is 

profoundly different.
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Condensation of calf thymus DNA was monitored using the refined displacement 

assay described in Chapter 2 and applied above in Chapters 4-6. The $Kas of these 

polyamines (spermidine mimics) were assumed to be the same as (A^-cholesteryloxy-S- 

carbonyl)-l,12-diamino-4,9-diazadodecane, described in Chapter 4, and the positive charge 

carried at physiological pH (7.4) was therefore assumed to be the same (+ 2.4). We now 

investigate if changes in the stereochemistry and position of the alcohol functional groups on 

the cholan ring system influence the binding affinity of these compounds for calf thymus 

DNA.

Results and Discussion

Synthesis

Spermine 6 was unsymmetrically protected with di-terf-butyl dicarbonate using our 

orthogonal protection strategy as described above. TV-Acylation of the free primary amine of 

this unsymmetrically protected polyamine 7 with chenodeoxycholic acid 1, mediated by DCC 

and catalytic HOBt afforded the tri-Boc protected lipo-spermine 8. Deprotection with 

trifluoroacetic acid in CH2C12 (1:9) and purification by RP-HPLC afforded the target amide 

11, as its polytrifluoroacetate salts. Microanalysis of these salts, performed by Celltech 

Therapeutics (Slough), was not within ±0.4 %. However, the presence of polyamines in the 

cationic lipids makes elementary analysis an inadequate method of measuring the purity of 

these compounds. Polyamines are highly hygroscopic and can adopt a different salt degree.2 

Thus, the proposed structure was unambiguously assigned using accurate MS, !H, 13C and 

HETCOR NMR after RP-HPLC purification to homogeneity.

Spermine 6 was also iV-acylated with deoxycholic 2 and ursodeoxycholic 3 acids to 

afford poly amine amides 9 and 10. Deprotection and purification by RP-HPLC afforded the 

target amides 12 and 13, as their polytrifluoroacetate salts.
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H

Fig. 1. Structures of chenodeoxycholic 1, deoxycholic 2, ursodeoxycholic 3, lithocholic 4 and cholic 5 acids
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1. -78 °C to 0 °C over 1 h 
MeOH, CH3CH2OCOCF3

2. (Boc)20  0 °C to 25 °C over 1 h
3. Cone. aq. NH3, pH 11

NBoc

Bile acid, DCC, HOBt, 
25 °C, 24 h, CH2C12

O

HO

CH2C12-TFA 9:1,
25 °C,2 h, RP-HPLC

‘N ‘ 
Boc

Boc 
,N.

H
.NBoc

8 Rj = a-OH, R2 = H
9 Rj = H, R2 = a-OH
10 Rj = p-OH, R2 = H

O

HO

N ‘
H

H

N'
H

11 Rj = a-OH, R2 = H
12 Rj = H, R2 = a-OH
13 R! = p-OH,R2 = H

Fig. 2. Synthesis of target polyamine amides 11-13



Charge at physiological pH

The charge on these molecules 11-13 has been assumed to be the same as the 

cholesteryl carbamates characterized potentiometrically in Chapter 4. Therefore amides 11- 

13 have been assigned a net positive charge of 2.4 at physiological pH.

Nomenclature

We have named the target compounds as their corresponding polyamine derivatives, 

using IUPAC conventions. Fig. 3 outlines the numbering system used in the NMR assigment 

of N  ̂ (BaJa-dihydroxy-S p-cholan-24-carbonyl-1,12-diamino-4,9-diazadodecane (poly-TFA 

salt).

HO 'OH

Fig. 3. Structure and numbering system for N 1 -(3a,7a-dihydroxy-5P-cholan-24-carbonyl)-1,12-diamino-4,9- 

diazadodecane 11

NMR assignments

The assignment of the polyamine head groups in this series of polyamine amides 11- 

13 is based upon calculations using additivity rules,3 *H, 13C chemical shift correlation 

spectroscopy and detailed comparisons with spermine conjugates characterized in Chapters 4-

7. The assignment of the cholan ring structures is based on the literature assignments4 and 

the expected changes in the carbon chemical shifts due to substituent effects are consistent 

with these assignments.
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Ethidium bromide displacement assay

The DNA binding affinities of the target compounds 11-13 were measured using the 

modified ethidium bromide fluorescence displacement assay described in Chapter 2. The 

decrease in fluorescence was critically compared against polylysine (average molecular 

weight 9,600 Da) and spermine 6 (Fig. 4) for compounds 11-13 at 20 mM NaCl as a function 

of charge ratio.

100 _

80 _

60 .

£  40 .

20 _

PL 9,600

charge ratio

Fig. 4. Ethidium bromide displacement assay o f  compounds 11-13 compared to spermine 6 and polylysine at 

low  salt (20  mM NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 20 mM NaCl, 2 mM HEPES, 10 pM  EDTA, pH 7.4) 

w as m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0 .25 m g/m l, 1 min 

equilibration time) were added and the fluorescence (%) determined (n = 1).

At physiological pH, spermine 6 carries a net positive charge of 3.8 (Chapter 5 Table 

1), Fig. 4 shows that A^-acylation of spermine 6 with chenodeoxycholic 1, deoxycholic 2 and 

ursodeoxycholic 3 acids, makes these amides 11-13 slightly more potent binders of DNA 

than spermine although they only carry 2.4 positive charges. Compared to multicationic 

polylysine they are poor condensers of calf thymus DNA, as a large excess of positive charge
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is required to displace ethidium bromide and complete exclusion was never achieved within 

the parameters of the experiment. If the binding affinities for DNA, of these three polyamine 

amides 11-13, are expressed as the charge ratio at which 50 % (CR50) of the ethidium 

bromide was quenched, then conjugate 12 (CR50 = 1.6) has the greatest affinity and this can 

be attributed to the position and stereochemistry of the hydroxyl groups. Amide 11 (CR50 = 

2.3) has two hydroxyls at position 3 and 7, which are both on the a-face of the cholan ring 

structure and shows a weaker binding affinity relative to amide 12, which has the hydroxyl at 

position 12 on the a-face rather than at position 7. Amide 13 (CR^ = 2.6) has the hydroxyl at 

position 3 on the a-face, but the hydroxyl at position 7 is now on the p-face, and this 

conjugate shows the weakest binding affinity for DNA.

Comparison of the ethidium bromide exclusion data of these amides 11-13 (Fig. 5) 

with the spermine conjugates of lithocholic 14 (CR50 = 0.7) and cholic 15 (CR50 = 2.6) acids 

(Fig. 6) shows differences in binding affinity for DNA for these compounds (Fig. 5). 

Interestingly, the predicted log P values for these compounds using Advanced Chemistry 

Development Inc. (ACDLabs, Toronto, Ontario, Canada) log P computer prediction 

programme, Table 1, shows some degree of correlation between increasing binding affinity 

and increasing hydrophobicity of the lipid covalently attached to the polyamine. The binding 

affinities are expressed as the charge ratio at which 50 % (CR50) of the ethidium bromide was 

quenched.
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Fig. 5. Ethidium bromide displacement assay o f  compounds 11-13 compared to amides 14 and 15 at low  salt 

(20 m M  NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 20 mM  NaCl, 2 mM  HEPES, 10 pM EDTA , pH 7.4) was 

m ixed with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min 

equilibration tim e) were added and the fluorescence (%) determined (n =  1)

o

14 R = H
15 R = OH

'N'
H

H

Fig. 6. Structure o f  N '-Q a -h y d ro x y -S p -ch o lan ^ -carb on yO -U n -d iam in o^ ^ -d iazad od ecan e  14 and 

Arl-(3a,7a,12a-trihydroxy-5(3-cholan-24-carbonyl)-l,12-diam ino-4,9-diazadodecane 15
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Compound Calculated log P CR50

11 3.60 ±0.44 2.3

12 3.60 ± 0.44 1.6

13 3.60 ± 0.44 2.6

14 5.64 ±0.43 0.7

15 1.55 ±0.45 2.6

Table 1. Calculated log Ps of amides 11-15

Fig. 7. Structures of steroidal polyamines 16-18 from Burrows and co-workers5’7
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There are a few recent reports of the binding of steroidal polyamines to DNA in the 

literature.5'7 Compounds with the strongest interaction with DNA appeared to be those that 

presented not only a large cationic surface area, but also an extended hydrophobic region,

Fig. 7 shows steroidal polyamines 16-18 which display high affinity for DNA.5,6 Tetraamine 

18 had the highest affinity, measured by ethidium bromide displacement, a structure that 

maintains large hydrophobic regions as well as four positive charges. These reports5'7 

concluded that disruption of the hydrophobic surface of the steroid diminished the binding 

affinity for DNA.7 The di-hydroxy cholanamide derivatives 11 and 12 are facially 

amphiphilic molecules,8,9 that is the steroidal nucleus contains both a hydrophilic (a-face) and 

hydrophobic ((3-face) domain, compared to conjugate 13 which contains a hydroxyl moiety 

on both the a- and (3-faces. The amphiphilic nature of conjugates 11 and 12 may explain the 

small increase in binding affinity of these molecules compared to cholanamide

13.

At elevated salt concentrations, e.g. 150 mM (Fig. 8), the binding affinity for DNA of 

polylysine is unaffected, but that of spermine 6 shows salt-dependent binding to DNA. 

Amides 11-13 (Fig. 6), which contain the cholan ring structure with two hydroxyl moieties, 

mimic the salt dependent behaviour of spermine 6 and the displacement of ethidium bromide 

is almost completely inhibited at elevated salt concentrations (Fig. 8). In Chapter 4, we 

demonstrated that the cholesteryl carbamate of spermine (TV1 -cholesteryloxy-3 -carbony 1)-

l,12-diamino-4,9-diazadodecane) showed only a small change in its binding affinity for DNA 

at elevated salt concentrations, the calculated log P for this compound is 10.18 ± 0.41. In 

Chapter 5, the spermine conjugate of lithocholic acid 14 (Fig. 5) showed a degree of salt 

dependent binding, the calculated log P for this compound is 5.64 ± 0.43. The dihydroxy 11- 

13 and trihydroxy 15 bile acid conjugates of spermine all have much smaller calculated log P 

values (see Table 1). Therefore, we hypothesise that, within a series of similar polyamine 

amides, log P may be a valuable predictor of DNA binding affinity.
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Fig. 8. Ethidium bromide displacement assay o f  compounds 11-13 compared to spermine 6 at high salt (150  

m M  NaCl). 6 pg o f  CT D N A  in buffer (3 ml, 150 mM NaCl, 2 mM HEPES, 10 pM EDTA, pH 7.4) was m ixed  

with ethidium bromide (3 pi o f  0.5 m g/m l) and aliquots o f  compound (5 pi o f  0.25 m g/m l, 1 min equilibration 

tim e) were added and the fluorescence (%) determined (n = 1).

Conclusions

The polyelectrolyte theory of Manning10 predicts that when 90 % of the anionic 

phosphate charge on DNA is neutralized, condensation will occur. DNA condensation is 

clearly an inefficient process with polyamine amides 11-13, as an excess of positive charges 

is required to bring about a decrease in the intensity of fluorescence of the ethidium bromide. 

These polyamine amide steroids 11-13 are relatively less lipophilic compared to the 

carbamates and amide derivatives discussed in previous Chapters. Therefore, the relative 

decrease in DNA binding affinity may be reflected by their increase in hydrophilicity. 

Complete inhibition of fluorescence in the binding assay, as seen with polylysine, is never 

achieved within the parameters of the experiments, and is similar to the situation achieved 

with spermine 6. Basu et al. have shown that the concentration of spermine 6 required to
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release all the ethidium bromide is too high to be used without causing DNA aggregation,11 

and complete release of ethidium bromide from the complex and the resultant decrease in 

fluorescence is never seen.

The small differences in the binding affinity between these molecules 11-13 could be 

due to the amphiphilic nature of amides 11 and 12 compared to amide 13. Although the exact 

mode of binding of a steroid moiety to DNA is not known, the literature precedent is for 

minor-groove binding,7 which is influenced by hydrophobicity of the steroid.5-6 These data 

give support to our hypotheses that DNA binding and DNA condensation are also a sensitive 

function of the lipid attached to the polyamine, as well as a function of the positively charged 

polyamine moiety. Log P calculations on this type of molecule may also be a good predictor 

of salt dependent binding to DNA.

Experimental

General procedures

Column chromatography, NMR, MS, RP-HPLC and other details are described in 

Chapter 4.

General procedure A: amide formation

To a solution of the poly-Boc protected spermine (1 equiv.) in CH2C12 (10 ml) was 

added the bile acid (1 equiv.), 1-hydroxybenzotriazole (0.2 equiv.) and 

dicyclohexylcarbodiimide (1.5 equiv.). Then the reaction mixture was stirred at 25 °C, under 

nitrogen, for 24 h. The precipitate of dicyclohexylurea was then removed by filtration. The 

filtrate was concentrated in vacuo and the residue purified over silica gel (CH2Cl2-MeOH) to 

afford the title compound as a white foam.
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General procedure B: Boc removal

To the stirring solution of lipo-polyamine dissolved in CH2C12 (180 ml), under 

nitrogen at 25 °C, was added TFA (20 ml). After 2 h the solution was concentrated in vacuo, 

the residue lyophilized and purified by semi-preparative RP-HPLC over Supelcosil 

ABZ+Plus (5 pm, 25 cm x 10 mm, MeOH-O.l % aq. TFA) to yield the title compound as a 

white solid (poly-TFA salt).

(7V1̂ V4̂ V9-Tri-tert-butoxycarbonyl)-l,12-diamino-4,9-diazadodecane 7

l,12-Diamino-4,9-diazadodecane 6 (spermine, 3.4.3) (1.0 g, 4.95 mmol) was reacted 

as previously described to afforded the title compound 7 as a homogeneous oil (1.24 g, 50 

%). NMR, 13C NMR and MS as previously described.

N  1-(3a,7a-Dihydroxy-5f3-cholan-24-carbonyI-[7V4,7V9,7V12-tri-ter/-butoxycarbonyl])-l,12- 

diamino-4,9-diazadodecane 8

Poly-Boc protected polyamine 7 (500 mg, 1.0 mmol) and chenodeoxycholic acid (469 

mg, 1.2 mmol) were reacted according to general procedure A to afford the title compound 8 

as a white foam (814 mg, 93 %). Purified by column chromatography over silica gel 

(CH2Cl2-MeOH; 25:1 v/v) R{ 0.14 (CH2Cl2-MeOH; 18:1 v/v). *H NMR, 400 MHz, CDC13: 

0.66 (s, 3 H, 18'-CH3); 0.84-2.23 (m, 67 H, 2-CH2, 6-CH2, 7-CH2,11-CH2, 3 x 0-C-[CH3]3, 

l'-CH2, 2'-CH2, 4'-CH2, 5'-CH, 6’-CH2, 8'-CH, 9'-CH, ll'-CH2,12'-CH2,14'-CH, 15'-CH2, 16'- 

CH2, 17-CH, 19'-CH3, 20'-CH, 21'-CH3, 22'-CH2, 23'-CH2); 3.00-3.40 (m, 12 H, 1-CH2, 3- 

CH2, 5-CH2, 8-CH2, 10-CH2, 12-CH2); 3.40-3.53 (m, 1 H, 3'-CH); 3.83-3.86 (m, 1 H, 7-CH); 

6.75-6.90 (bs, 1 H, CH2-NH-CO). 13CNMR, 100 MHz, CDC13: 11.7 (18'-CH3); 18.3 (21'- 

CH3); 20.5 (1 l'-CH2); 22.7 (19'-CH3); 23.7 (15'-CH2); 25.7, 25.8, 26.0 (6-CH2, 7-CH2, 

overlapping); 27.6, 28.1, 28.4 (2-CH2,11-CH2,16'-CH2, 3 x 0-C-[CH3]3, overlapping); 30.6 

(2'-CH2); 31.7 (22'-CH2); 32.8 (9'-CH); 33.7 (23'-CH2); 34.5 (6'-CH2); 35.0 (lO'-C); 35.3, 35.5
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(12-CH2, 20-CH, l'-CH2, overlapping); 37.3, 37.4 (1-CH2); 39.4 (8'-CH); 39.6 (4'-CH2); 39.8 

(12'-CH2); 41.4 (5'-CH2); 42.6 (13'-CH); 43.2,43.7 (3-CH2,10-CH2, overlapping); 46.6 (5- 

CH2, 8-CH2, overlapping); 50.4 (14'-CH); 55.8 (17'-CH); 68.4 (7’-CH); 71.9 (3'-CH); 79.7 (3 

x quat C, overlapping); 156.0,156.4 (3 x NH-C0-0-C(CH3)3); 173.6 (CH2-CO-NH). MS, 

FAB+ found 877, 6 % (M+ +1), C49H88N409 requires M = 876. High-resolution MS m/z, 

FAB+ found 877.6605, (M+ + 1), C49H89N40 9 requires M+ + 1 = 877.6630.

N  1-(3a,12a-Dihydroxy-5(3--cholan-24-carbonyI-[ArVV9,7V12-tri-/e/7-butoxycarbonyI])-

l,12-diamino-4,9-diazadodecane 9

Poly-Boc protected polyamine 7 (500 mg, 1.0 mmol) and deoxycholic acid (469 mg,

1.2 mmol) were reacted according to general procedure A to afford the title compound 9 as a 

white foam (640 mg, 73 %). Purified by column chromatography over silica gel (CH2C12- 

MeOH; 30:1 to 15:1 v/v) Rt 0.13 (CH2Cl2-MeOH; 18:1 v/v). *H NMR, 400 MHz, CDC13: 

0.67 (s, 3 H, 18’-CH3); 0.84-2.40 (m, 67 H, 2-CH2, 6-CH2, 7-CH2, 11-CH2, 3 x 0-C-[CH3]3, 1' 

-CH2, 21 -CH2, 4'-CH2, 5'-CH, 6'-CH2, 7'-CH2, 8'-CH, 9'-CH, ll'-CH2, 14'-CH, 15'-CH2, 16'- 

CH2, 17'-CH, 19'-CH3, 20-CH, 21'-CH3, 22'-CH2,23'-CH2); 3.00-3.40 (m, 12 H, 1-CH2, 3- 

CH2, 5-CH2, 8-CH2,10-CH2,12-CH2); 3.48-3.66 (m, 1 H, 3'-CH); 3.95-4.03 (m, 1 H, 12'- 

CH); 6.75-6.90 (bs, 1 H, CH2-NH-CO). 13CNMR, 100 MHz, CDC13: 12.7 (18'-CH3); 17.4 

(21'-CH3); 23.1 (19'-CH3); 23.6 (15'-CH2); 25.8, 26.1 (6-CH2, 7-CH2, 7'-CH2, overlapping);

27.1, 27.4 (16'-CH2, 6'-CH2); 27.6,28.4, 28.6 (2-CH2, 11-CH2, 1 l ’-CH2, 3 x 0-C-[CH3]3, 

overlapping); 30.4 (2’-CH2); 31.6 (22’-CH2); 33.6 (9'-CH, 23'-CH2); 34.1 (lO'-C); 35.2, 35.5 

(12-CH2, 20'-CH, l ’-CH2, overlapping); 36.0 (8’-CH); 36.4 (4’-CH2); 37.3, 37.4 (1-CH2); 42.0 

(5'-CH2); 43.2, 43.7 (3-CH2, 10-CH2, overlapping); 46.4,46.6 (5-CH2, 8-CH2, 13-CH, 

overlapping); 47.1 (17-CH); 48.2 (14'-CH); 71.7 (3'-CH); 73.0 (12'-CH); 79.7 (3 x quat C, 

overlapping); 156.0,156.4 (3 x NH-C0-0-C(CH3)3); 173.7 (CH2-CO-NH). MS, FAB+ found
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877, 6 % (M+ +1), C49H88N409 requires M+ = 876. High-resolution MS m/z, FAB+ found 

877.6620, (M+ + 1), C49H89N40 9 requires M+ + 1 = 877.6630.

N  1-(3a,7(3-Dihydroxy-5p-cholan-24-carbonyl-[7V4,Ar9,Arl2-tri-^rr-butoxycarbonyl])-l,12- 

diamino-4,9-diazadodecane 10

Poly-Boc protected polyamine 7 (500 mg, 1.0 mmol) and ursodeoxycholic acid (391 

mg, 1.0 mmol) were reacted according to general procedure A to afford the title compound 10 

as a white foam (667 mg, 76 %). Purified by column chromatography over silica gel 

(CH2Cl2-MeOH; 30:1 to 15:1 v/v) R{ 0.25 (CH2Cl2-MeOH; 18:1 v/v). !H NMR, 400 MHz, 

CDC13: 0.66 (s, 3 H, 18'-CH3); 0.84-2.40 (m, 67 H, 2-CH2, 6-CH2, 7-CH2, 11-CH2, 3 x O-C- 

[CH3]3, 1' -CH2, 2' -CH2,4'-CH2, 5'-CH, 6 '-CH2, 8 '-CH, 9'-CH, ll'-CH2,12'-CH2,14'-CH, 15'- 

CH2,16’-CH2,17-CH, 19'-CH3,20'-CH, 21'-CH3,22'-CH2,23'-CH2); 3.00-3.35 (m, 12 H, 1- 

CH2, 3-CH2, 5-CH2, 8-CH2, 10-CH2, 12-CH2); 3.54-3.66 (m, 2 H, 3'-CH, 7'-CH); 6.75-6.90 

(bs, 1 H, CH2-NH-CO). 13C NMR, 100 MHz, CDC13: 12.1 (18'-CH3); 18.4 (21'-CH3);

21.1(1 l'-CH2); 23.3 (19'-CH3); 25.4, 25.6,26.0 (6-CH2, 7-CH2, overlapping); 26.9 (15'-CH2);

27.6, 28.4, 28.6 (2-CH2, 11-CH2, 16'-CH2, 3 x 0-C-[CH3]3, overlapping); 30.3 (2'-CH2); 31.8 

(22'-CH2); 33.7 (23'-CH2); 34.0 (lO'-C); 34.9 (l'-CH2); 35.3 (12-CH2, 20'-CH, overlapping); 

36.9, 37.3 (1-CH2, 4’-CH2, 6 '-CH2, overlapping); 39.1 (9’-CH); 40.1 (12'-CH2); 42.4 (5’-CH2); 

43.3, 43.7 (3-CH2, 10-CH2, 8-CH, 13-C, overlapping); 46.4,46.6 (5-CH2, 8-CH2, 

overlapping); 54.9 (14'-CH); 55.7 (17-CH); 71.2, 71.3 (3’-CH, 7-CH); 79.5, 79.7 (3 x quat C, 

overlapping); 156.0,156.4 (3 x NH-C0-0-C(CH3)3); 173.7 (CH2-CO-NH). MS, FAB+ found 

877, 6 % (M+ +1), C49H88N40 9 requires M+ = 876. High-resolution MS m/z, FAB+ found 

877.6616, (M+ + 1), C49H89N40 9 requires M+ + 1 = 877.6630.
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Arl-(3a,7a-Dihydroxy-5p-choIan-24-carbonyl)-l,12-diamino-4,9-diazadodecane 11

Boc protected polyamine amide 8 (732 mg, 0.84 mmol) was deprotected according to 

general procedure B. The residue was lyophilized to produce 995 mg of a white powder, 400 

mg was purified by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % 

aq. TFA, 25:75 v/v) to afford the title polyamine amide 11 as a clear glass 

(polytrifluoroacetate salt, 146 mg, 47 %), tR 5.7 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 25:75 v/v). !H NMR, 400 MHz, [2H]6 DMSO: 

0.61 (s, 3 H, 18'-CH3); 0.82-1.55 (m, 20 H, l'p-CH, 2'oc-CH, 2'P-CH, 5'P-CH, 8 'P-CH, l l ’cc- 

CH, ll'P-CH, 12'oc-CH, 14'oc-CH, 15'oc-CH, 16'p-CH, 17'a-CH, 19'-CH3,20'-CH, 21-CH3, 

22'p-CH,); 1.55-2.25 (m, 19 H, 6-CH2, 7-CH2,11-CH2, 2-CH2, l'a-CH, 4'oc-CH, 4'P-CH, 6 'a- 

CH, 6 'P-CH, 15'P-CH, 16'a-CH, 22'a-CH, 12'p-CH, 23'a-CH, 23'P-CH); 2.80-3.05 (m, 10 H, 

3-CH2, 5-CH2, 8-CH2, 10-CH2,12-CH2); 3.05-3.15 (m, 2 H, 1-CH2); 3.15-3.24 (m, 1 H, 3'P- 

CH); 3.58-3.66 (m, 1 H, 7'P-CH); 4.40 (bs, 2 x OH, [+H20]); 7.27 (1:1:1, t, 7 = 5 1 ,14N-!H); 

8.07, 8.76, 8.93 (3 x bs, ammonium signals). 13C NMR, 100 MHz, [2H]6 DMSO: 11.6 (18'- 

CH3); 18.3 (21'-CH3); 20.3 (ll'-CH2); 22.6, 22.7 (6-CH2, 7-CH2, 19’-CH3, overlapping); 23.2 

(15'-CH2); 23.8 (2-CH2,); 26.1 (11-CH2); 27.9 (16'-CH2); 30.6 (2'-CH2); 31.6 (22'-CH2); 32.3 

(23'-CH2); 34.8, 34.9 (6 '-CH2, lO'-C); 35.1 (9'-CH, 20'-CH, overlapping); 35.3 (l'-CH2); 35.6 

(1-CH2); 36.2 (12-CH2); 38.9, 39.7, 39.9 (4'-CH2, 8 '-CH, 12'-CH2); 41.4 (5'-CH2); 42.0 (13'- 

CH); 43.9 (3-CH2); 44.7 (10-CH2); 46.0,46.1 (5-CH2, 8-CH2); 50.1 (14'-CH); 55.6 (17'-CH);

66.2 (7'-CH); 70.4 (3'-CH); 173.2 (CH2-CO-NH). MS, FAB+ found 577, 100 % (M+ + 1), 

C34H64N40 3 requires M = 576. High-resolution MS m/z, FAB+ found 577.5060, (M+ +1), 

C34H66N40 3 requires M+ + 1 = 577.5057.

Arl-(3a,12a-Dihydroxy-5p-cholan-24-carbonyl)-l,12-diamino-4,9-diazadodecane 12

Boc protected polyamine amide 9 (595 mg, 0.68 mmol) was deprotected according to 

general procedure B. The residue was lyophilized to produce 760 mg of a white powder, 460
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mg was purified by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 % 

aq. TFA, 25:75 v/v) to afford the title polyamine amide 12 as a clear glass 

(polytrifluoroacetate salt, 158 mg, 43 %), tR 5.6 min by RP-HPLC (Supelcosil ABZ+Plus, 5 

pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 25:75 v/v). !H NMR, 400 MHz, [2H]6 DMSO: 

0.59 (s, 3 H, 18'-CH3); 0.79-1.07 (m, 8 H, l'p-CH, 15'a-CH, 19'-CH3, 21'-CH3); 1.07-2.20 (m, 

32 H, 2-CH2, 6-CH2, 7-CH2, 11-CH2, l'a-CH, 2'a-CH, 2'P-CH, 4'a-CH, 4’P-CH, 5'P-CH, 

6 'a-CH, 6 'p-CH, 7'a-CH, 7’P-CH, 8 'P-CH, 9'a-CH, 1 l'a-CH, ll'P-CH, 14'a-CH, 15'p-CH, 

16'a-CH, 16'P-CH, 17'a-CH, 20'-CH, 22'p-CH, 22'a-CH, 23'a-CH, 23'p-CH); 2.80-3.04 (m, 

10 H, 3-CH2, 5-CH2, 8-CH2,10-CH2,12-CH2); 3.04-3.15 (m, 2 H, 1-CH2); 3.30-3.42 (m, 1 H, 

3'P-CH); 3.60-4.60 (m, 12'p-CH, 2 x OH, [+H20]); 7.27 (1:1:1, t, !J =  51 ,14N-!H); 8.07, 8.76, 

8.94 (3 x bs, ammonium signals).13C NMR, 100 MHz, [2H]6 DMSO: 12.3 (18'-CH3); 17.0 

(21'-CH3); 22.5, 22.6 (6-CH2, 7-CH2); 23.0 (19'-CH3); 23.4 (15'-CH2); 23.7 (2-CH2,); 26.1 

(11-CH2, 7'-CH2, overlapping); 26.9, 27.1 (16'-CH2, 6 '-CH2); 28.5 (ll'-CH2); 30.1 (2'-CH2); 

31.6 (22'-CH2); 32.3 (23’-CH2); 32.8 (9'-CH); 37 (lO'-C); 35.0 (l'-CH2,20'-CH, overlapping); 

35.5 (8 '-CH); 35.6 (1-CH2); 36.1, 36.2 (12-CH2,4 ’-CH2); 41.5 (5'-CH); 43.8 (3-CH2, 13’-CH, 

overlapping); 44.5 (10-CH2); 45.9,46.0,46.1 (5-CH2, 8-CH2, 17'-CH); 47.4 (14'-CH); 69.8 

(3'-CH); 70.9 (12'-CH); 173.2 (CH2-CO-NH). MS, FAB+ found 577, 100 % (M+ + 1), 

C34H64N40 3 requires M+ = 576. High-resolution MS m/z, FAB+ found 577.5063, (M+ + 1), 

C34H66N40 3 requires M+ + 1 = 577.5057.

Â 1-(3a,7p-Dihydroxy-5p-cholan-24-carbonyl)-l,12-diamino-4,9-diazadodecane 13

Boc protected polyamine amide 10 (618 mg, 0.71 mmol) was deprotected according 

to general procedure B. The residue was lyophilized to produce 840 mg of a white powder, 

330 mg was purified by RP-HPLC (Supelcosil ABZ+Plus, 5 pm, 25 cm x 10 mm, MeCN-0.1 

% aq. TFA, 22:78 v/v) to afford the title polyamine amide 13 as a clear glass 

(polytrifluoroacetate salt, 124 mg, 49 %), tR 5.2 min by RP-HPLC (Supelcosil ABZ+Plus, 5

198



pm, 25 cm x 10 mm, MeCN-0.1 % aq. TFA, 25:75 v/v). ]H NMR, 400 MHz, [2H]6 DMSO:

0.62.(s, 3 H, 18'-CH3); 0.82-1.52 (m, 22 H, l'P-CH, 2'a-CH, 2'P-CH, 4'a-CH, 5'P-CH, 6 'a- 

CH, 6 ’P-CH, 8 'p-CH, 1 l'a-CH, 1 l'p-CH, 12'a-CH, 14'a-CH, 15'a-CH, 16'p-CH, 17'a-CH, 

19'-CH3, 21-CH3,22'p-CH,); 1.52-2.20 (m, 17 H, 6-CH2, 7-CH2, 11-CH2,2-CH2, l'a-CH, 4'p- 

CH, 12'p-CH, 15'p-CH, 16'a-CH, 20'-CH, 22'a-CH, 23'a-CH, 23'P-CH); 2.80-3.05 (m, 10 H, 

3-CH2, 5-CH2, 8-CH2, 10-CH2,12-CH2); 3.05-3.13 (m, 2 H, 1-CH2); 3.22-3.37 (m, 2 H, 3'p- 

CH, 7'a-CH); 5.00 (bs, 2 x OH [+H20]); 7.25 (1:1:1, t, XJ=  51 ,14N-!H); 8.04, 8.73, 8.91 (3 x 

bs, ammonium signals). 13C NMR, 100 MHz, [2H]6 DMSO: 12.1 (18'-CH3); 18.5 (21'-CH3); 

20.9 (ll'-CH2); 22.6, 22.7 (6-CH2, 7-CH2); 23.3 (19'-CH3); 23.8 (2-CH2,); 26.1 (11-CH2);

26.8 (15'-CH2); 28.2 (16'-CH2); 30.3 (2'-CH2); 31.7 (22'-CH2); 32.4 (23'-CH2); 33.8 (lO'-C);

34.9 (l'-CH2); 35.1 (20'-CH); 35.6 (1-CH2); 36.2 (12-CH2); 37.3 (6 '-CH2); 37.7 (4'-CH2); 38.8 

(9'-CH); 39.9 (12'-CH2); 42.2 (5'-CH); 43.0,43.1 (8 '-CH, 13-CH); 43.9 (3-CH2); 44.7 (10- 

CH2); 46.1, 46.2 (5-CH2, 8-CH2); 54.7 (14'-CH); 55.9 (17'-CH); 69.5 (7'-CH); 69.7 (3'-CH);

173.2 (CH2-CO-NH). MS, FAB+ found 577, 60 % (M+ + 1), 0 3 4 ^ ^ 0 3  requires M+ = 576. 

High-resolution MS m/z, FAB+ found 577.5066, (M+ +1), 0 3 4 ^ ^ 0 3  requires M+ + 1 = 

577.5057.
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Chapter 8

Transfection mediated by cholesterol polyamine carbamates: 

regiochemical distribution of positive charges has a role in

lipofection
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Abstract: Cholesterol polyamine carbamates have been prepared from cholesteryl 

chloroformate. Their binding affinities for calf thymus DNA were determined using an 

ethidium bromide displacement assay. Their in vitro transfection competence was also 

measured. These results show that transfection activity of these cholesteryl carbamates is

the polyamine backbone. This is a quantitative study of small molecule mediated non-viral 

gene therapy.

1. Introduction

Naturally occurring di- and polyamines (Fig. 1) such as the diamine putrescine (1,4- 

diaminobutane) 1, triamine spermidine 2 and tetraamine spermine 3 are known to effect, at 

high concentrations, the condensation of DNA into rod-like or toroidal-shaped structures [1- 

6]. In order for this process to occur, the free energy that opposes condensation has to be

spermine 3

Fig. 1. Structure of putrescine 1, spermidine 2 and spermine 3

overcome. This energy barrier includes: the loss of entropy in going from a random-coil to a 

condensed form, the energy required to bend the stiff helix or cause local melting or kinking, 

and the electrostatic repulsion of the charged strands [6]. The condensation of DNA can

sensitive to both the number of positive charges and their regiochemical distribution along

putrescine 1

spermidine 2
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become thermodynamically favourable under certain DNA-solvent conditions [7], or when 

the free energy of compacted DNA is lowered by the binding of various molecules including 

polylysine, ethanol, polyethylene glycol and polyamines [8]. In bacteriophage, the dominant 

force that opposes DNA condensation is electrostatic repulsion, and this is countered by the 

binding of polyamines [9]. DNA condensation in gene delivery is a rapidly expanding area 

of research for the design of non-viral vectors for use in gene therapy [10,11].

Natural polyamines are essentially fully protonated at physiological pH. The charge 

distribution is clearly important for molecular recognition, but also the hydrophobic 

polymethylene backbone confers structural flexibility and the possibility of important 

secondary binding interactions. There are multiple parallel protonation pathways for the 

basic centres of the partially protonated species which may account for many of the 

biochemical functions of these molecules [12]. Manning’s polyelectrolyte theory [13] 

predicts that condensation will occur when the negative charge of the phosphate backbone of 

DNA is neutralised by cationic molecules. DNA condensation is dependent upon three 

characteristic properties of natural or synthetic polyamines: the number of positive charges 

which therefore influence the local ionic strength [14,15]; secondly, the regiochemical 

distribution of these charges whose pATas are intimately dependent upon their cooperativity 

[15,16]; thirdly, the local salt concentration [6,15]. Although Manning [13] predicts that 

condensation will occur when the polyamine:DNA charge ratio approaches 1:1, in practice, 

the off-rate of binding of simple polyamines is so large as to require a several-fold charge 

excess of polyamine to DNA (polyammonium ions to phosphate) in order to effect efficient 

condensation of DNA. It has recently been demonstrated that a,co-diaminoalkanes with an 

odd number of carbon atoms induce DNA condensation more efficiently than those where the 

interamine (interammonium ion) chain is an even number of carbon atoms [17]. Thus, the 

spacing as well as the number of positive charges is of particular importance. The 

condensation process with biogenic amines is also salt dependent, the amount of polyamine
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required to effect DNA condensation increasing with ionic strength [15,18,19]. At 

physiological concentrations, polyamines enhance the binding of several proteins to DNA, 

but inhibit others, the degree of enhancement correlating with the cationic charge [20]. It has 

been postulated that charge neutralisation of intracellular polyanions such as DNA and RNA 

may be among the most important physiological roles of these compounds [20]. Stabilisation 

of specific DNA conformations may be important for processes such as nucleosome 

formation [21], chromatin condensation [22] and gene expression [23]. Evidence from the 

crystal structures of various DNA sequences in the presence of spermine [24-27] indicates 

that this linear polyamine can adopt a wide variety of binding modes, each of these slightly 

different polyamine-induced DNA conformations may then correlate with different 

biophysical properties.

We and others have recently begun to establish structure-activity relationships for 

polyamine binding and condensation of DNA, indicating that appropriately modified 

polyamines could be ideally suited for use in gene therapy [8,14,28-32]. These interactions 

are however readily reversible under physiological conditions, and covalent attachment of a 

lipid is one method of reinforcing these interactions [31]. However, the nature of both the 

polyamine and the lipid moiety have effects on the binding affinity of these molecules to 

DNA [16,32]. Synthetic cationic lipids have been used extensively to deliver DNA both in 

vivo and in vitro [31,33-37]. These cationic lipids possess common structural similarities: a 

hydrophobic moiety (e.g. two hydrocarbon chains or a steroid), a positively-charged head 

group, and a linker functional group such as an ester, amide or carbamate to bind these two 

moieties together covalently. Despite their potential in gene therapy, little work has focused 

on the design of the optimum polyammonium head group to interact with the DNA.

We have designed and synthesized a series of polyamine carbamates of cholesterol 4- 

9 (Fig. 2) [16], where both the charge and its regiochemical distribution have been varied 

along the polyamine moiety. These molecules have been fully characterized and their p£as
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determined potentiometrically (Fig. 2). The net cationic charge at physiological pH (7.4) has 

also been calculated using the Henderson-Hasselbach equation (Fig. 2) [16]. In this Chapter, 

we report our investigation of transfection dependence as a function of positive charge 

distributed along the polyamine moiety using these cholesterol polyamine carbamates 4-9.

2. Materials and methods

2.1. Materials

Plasmid pEGlacZ containing the bacterial p-galactosidase gene under the control of 

the human cytomegalovirus immediate early promoter was constructed using standard 

molecular cloning techniques. The 7,676 base pair plasmid was derived by cleavage of 

pGFP-Nl (Clontech) with Hind III and Bel I to remove the reporter gene fragment. The p~ 

galactosidase coding region from pSV-p-galactosidase (Promega) was then inserted via a 

Hind III to Bam HI fragment. Plasmid DNA was then purified using an anion-exchange 

column (Qiagen Ltd). The average molecular weight per base pair was calculated to be 

620.84 Da (310.5 Da for a monophosphorylated nucleotide). The amount of negative charge 

on the plasmid was then determined on the basis that a single negative charge is associated 

with each nucleotide.

2.2. Cholesterol polyamine carbamate preparation

Cholesterol polyamine carbamates 4-9 were synthesized and characterized 

spectroscopically as previously described [16]. Their pA ŝ were determined [16] and the net 

positive charge (see Fig. 2) of the polyammonium moiety was calculated for pH = 7.4, using 

the Henderson-Hasselbach equation.
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2.3. DNA-cholesterol polyamine carbamate complex preparation

Transfection complexes were prepared at three different charge ratios 

(ammoniumrphosphate 0.5:1, 1:1,4:1) in 20 mM HEPES buffer at pH 7.4. An equal volume 

of a 120 pg/ml solution of plasmid DNA was added to the polyamine solution at the 

appropriate concentration.

2.4. Cell culture and transfection

(Experiments in collaboration with Dr T. Baker, Celltech Therapeutics) Chinese 

Hamster Ovary cells were seeded into 24 well plates at 100,000 cells per well 24 h before the 

experiment. The adherent cells were washed once in Opti-MEM (Gibco BRL) prior to 

transfection. Washed medium was removed and replaced with 0.5 ml of Opti-MEM to which 

167 pi of the transfection complex was added (5 pg DNA). Cells were incubated for a 

further 4 h a t 3 7 ° C i n 5 %  C02 before removal of the medium and non-cell associated 

complex and addition of 1 ml of fresh medium (Dulbecco’s modified Eagle medium 

[DMEM], plus glutamate, asparagine, adenosine, guanosine, cytidine, uridine, thymidine and 

10 % dialysed foetal calf serum: [Gibco]). Cells were cultured for a further 72 h before 

harvesting. The medium was then aspirated and the cells were washed twice with 1 ml 

phosphate buffered saline. Cells were lysed by the addition of 200 pi per well of lysis buffer 

(Promega) and the plate was agitated on a orbital mixer for 15 min. The lysates were 

transferred to individual eppendorfs, taking care to remove attached cells by scraping with a 

pipette tip prior to removal. Cell debris was removed by centrifugation in a microfuge for 5 

min followed by transfer of the supernatant into clean eppendorfs.

Levels of p-galactosidase activity were determined using an enzyme assay system 

from Promega according to the manufacturers protocol as follows: 50 pi of cell extract was 

incubated with the provided buffer and substrate Onitrophenyl-P-D-galactopyranoside 

(ONPG) and the optical density measured spectroscopically. Levels of p-galactosidase
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expression were quantified by reference to a standard curve and related to the amount of 

protein in the extract (measured using a BCA assay kit from Pierce) to give a final value 

expressed as mU of p gal per mg of protein. The transfection competence was critically 

compared for compounds 4-9 as a function of mU of p gal per mg of protein (Fig. 2).

2.5. Calf thymus DNA

Linear double stranded calf thymus DNA was purchased as the sodium salt (Sigma) 

and, prior to use, was dissolved in buffer (20 mM NaCl, 2 mM HEPES, pH 7.4). The 

quantity and purity of DNA was determined using triplicate spectrophotometric readings at 

260 and 280 nm with a Milton Roy Spectronic 601 spectrometer.

2.6. Ethidium bromide displacement assay

The DNA binding affinities of the target compounds were measured using an 

ethidium bromide fluorescence assay based upon the displacement of ethidium bromide (1.3 

pM) from calf thymus DNA (6 pg, [DNA base-pair] = 3.0 pM) and is described in detail in 

Chapter 2. This assay is an adaptation of the work of Cain et al. [38]. The method is rapid 

and involves the addition of microlitre aliquots of polyamine conjugate to a 3 ml solution of 

ethidium bromide (1.3 pM) and calf thymus DNA (6 pg, [DNA base-pair] = 3.0 pM) in 

buffer (20 mM NaCl, 2 mM HEPES, pH 7.4) with the decrease in fluorescence monitored 

(^excit= 260 nm, ^emiss = 600 nm; 1 cm path length glass cuvette) recorded after each 

addition (1 min equilibration time). The decreases in fluorescence are critically compared for 

compounds 4-9 as a function of their charge ratio (Fig. 3).
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3. Results and discussion

The cholesterol polyamine carbamates 4-9 have been tested for transfection 

competence at three different charge ratios (0.5:1, 1:1, 4:1), calculated taking into account the 

average charge per molecule at pH = 7.4. The results are shown in Fig. 3. It is clear that the 

carbamate incorporating the 3.4.3 methylene spacing along the polyamine moiety, carbamate 

4, has the highest transfection activity. All these molecules have the same cholesteryl (lipid) 

moiety joined to the polyamine via a carbamate linker, but have different methylene spacing 

and hence a different positive charge distribution. Even though thermine carbamate 5 carries 

a similar charge at pH 7.4 to that on spermine carbamate 4, the spacing of these positive 

charges seems to be less favourable in the former. Indeed, the work of Basu et al. [15,19] has 

shown that the length of the central carbon chains on polyamines is important for the 

induction of conformational changes in DNA. This is further underlined by our results 

obtained with carbamate 9 which has a poor performance in the transfection assay, yet it also 

carries a net cationic charge of 2.3, but with a significantly different methylene backbone.

Due to electrostatic repulsion within the polyamine moiety of carbamate 9, it is likely that the 

majority of the positive charge will be distributed between the primary amine and the 

secondary amine next to the carbamate linker, with the balance on the central secondary 

amine due to electrostatic repulsion. Thus, with the 2.2.2.2.2-polymethylene 

(polyethylenimine) backbone the charge distribution on this molecule is different and is a 

possible explanation for the experimentally observed difference in transfection activity.

The relative binding affinities of carbamates 4-9 are compared in Fig. 4 as a function 

of charge ratio at low salt concentration (20 mM NaCl), described in detail above (Chapter 2). 

These data show differences in the binding affinity for DNA of these carbamates. The only 

structural differences in these molecules are in the polyamine moieties. The changes in 

methylene spacing and number of nitrogens impart a different net positive charge and

209



distribution to the molecules, which has been shown to have a profound effect on the 

molecules’ ability to induce DNA conformational changes (Chapter 4). These differences in 

binding affinity for DNA may result in the formation of different lipoplex structures, with 

varying degrees of stability, which would have a profound effect on transfection competence.

The barriers to transfection by cationic lipids include extracellular complex stability 

and complex dissociation either in the endosome or cytoplasm so plasmid DNA can be 

localized in the nucleus and expressed [39,40]. One explanation for the release of DNA from 

the complex is that certain ionic molecules found in high concentration in the cell (ATP, 

polypeptides, RNA, spermine, histones or anionic lipids) displace the ionic interaction 

between plasmid DNA and the cationic lipid [39] (Chapter 6). Polyamine-binding affinity 

has a vital role in these key aspects and small differences in binding affinity for DNA may 

provide an explanation for the differences seen in the transfection experiments (Fig. 3).

Some structure-activity relationships for the condensation of DNA by polyamines 

have been reported [17,41-44]. It has been postulated that that the central aliphatic chain of 

spermine (tetramethylene) is suitable to bridge between different strands of DNA, but a 

trimethylene spacing is suitable to interact with adjacent phosphate groups on the same strand 

of DNA [41-43], A more recent study [17] has shown that diamines with an odd number of 

carbon atoms (three and five) induce compaction of a single double-strand of DNA, but the 

diamine putrescine (tetramethylene spacing) tends to induce aggregation between different 

molecules of DNA, instead of the compaction of individual molecules. Chromatin 

precipitation analyses have revealed that spermine was several-fold more effective than 

spermidine at condensing chromatin and that putrescine had only a minor effect [44].

Binding of polyamines causes conformational changes to DNA, the changes being 

dependent on both the charge and structure of the cation and is related to the charge

210



Charge ratio 0.5:1

.£ ^  <u .ts
c$ £  
^  800
£ <uco

03
r£"530 
-*—>

J
CO001

C2_

160

120  -  

8 0  -

4 0  -

5  6  7  8
cholesterol polyamine carbamate

Charge ratiol:!

.5 £>
4)

2 -5 
°« & 
w> o>H co 
c  03 T3 

2  •£  
• £  2 
. 3  J
roo 03
£ ^  

CO.

1 6 0  -t

120 4 

8 0  -

4 0  -
■

5  6  7  8
cholesterol polyamine carbamate

Charge ratio 4:1

*  ,

7  8  9
cholesterol polyamine carbamate

Fig. 3. Comparison o f  (3-galactosidase activity in CHO cells fo llow ing delivery o f  pEGlacZ com plexed  with  

cholesterol polyam ine carbamates (at charge ratios, ammoniumrphosphate, o f  0.5:1, 1:1, 4:1). M ean ±  S.D.

(« = 3)

.3 £*
I  :> 
s. Ion
£ ucrt

03T3
o

■+->0
J3co
001

CO.

1 6 0  -

120  -

8 0  -

4 0  -

211



0 0.5 1 1.5 2 2.5 3
charge ratio

Fig. 4. Ethidium bromide displacement assay o f  cholesterol polyam ine carbamates 4-9 at 20  mM NaCl

distribution along the methylene backbone of the polyamine [15,28,45]. Although these 

molecules appear to be simple ligands they probably interact with DNA on several levels

[28]. Rowatt and Williams [30] have investigated the strength of binding of polyamines to 

DNA and found that the presence of a butylene rather than a propylene chain is preferable for 

tight binding. Spermine was also shown to be capable of combining with every phosphate 

group on the DNA.

In conclusion, the four methylene spacing found in spermine, could have significant 

implications for DNA-polyamine association and lipoplex formation. Both the number of 

positive charges on the polyamine, and the distribution of charge on the surface of the 

molecule have profound effects on its ability to induce DNA conformational changes, which 

may be relevant to their biological function. Lipopolyamine binding to DNA has a vital role 

in lipoplex dissociation and extracellular stability, small changes in binding affinity may 

therefore have profound effects on these barriers to transfection. The most active carbamate 

4 in the transfection experiments contains the methylene distribution found in spermine and
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we therefore hypothesise that the transfection activity of these cholesterol polyamine 

carbamates is sensitive to both the number of positive charges and their regiochemical 

distribution along the polyamine (polyammonium) backbone.
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Abstract
T h e  fa m ily  o f  polyam ines and p o ly a m in e  am id es, e sp ec ia lly  unsym m etrical syn th etic  
m em b ers, is  critically  assessed  w ith  resp ect to  ch em ica l structure and pharm acologica l 
a c tiv ity . N aturally  occurring p o ly a m in es  (and  d ia m in es) and m o n o - (and d i-) acy la ted  
p o ly a m in e s  (p o lyam in e am ides) are b lock ers o f  ca tio n  ch an n els that are receptor- or  
v o lta g e -g a ted . Such com pounds are lead s for  the d esig n  o f  n o v e l therapeutic agents. 
Furtherm ore, polyam ines and p o ly a m in e  am id es are tem plates for  the d esign  o f  syn thetic  
v ec to rs  w ith  potential application in g e n e  therapy.

N atural d i- and polyam ines, sp ider and w asp  v en o m  p o lyam in e  am id e toxins and their 
a n a lo g u es , and totally  synthetic p o ly a m in es , are potent cation -ch an n el b lockers with u ses  
as s e le c t iv e  receptor probes for n ico tin ic  a ce ty lch o lin e  and g lu tam ate  (N M D A  and non- 
N M D A ) receptors, sodium  and ca lc iu m  ch an n els . T herefore, as recep tor probes, they m ay  
h e lp  us to  understand the m olecu lar  m ech a n ism s o f  neurodegeneration , and u ltim ately  to 
d e s ig n  drugs for the treatment o f  n eu rod egen era tive  d isea ses, e sp e c ia lly  stroke. P o lyam in e  
co n ju g a te s  are a lso  novel therapeutic lead  co m p o u n d s for p o ss ib le  treatm ents o f  cancer, 
diarrh oea , m alaria and h aem och rom atosis (/?-thalassaem ia). T he m eta l ch ela tin g  properties 
o f  (p o ly -)  ethylen ed iam ines h ave led  to their incorporation in  ion  chelators w hich  are 
sy n th e tic  R N ase  and D N ase e n zy m es . S yn th etic  p o lyam in es and p o lyam in e  am ides h ave  
p oten tia l as n ovel vectors in g en e  d e liv ery . S u ch  com p ou n d s can  co n d en se  D N A  to form  
toro id a l particles w hich  m ay be incorporated  in a non-viral g e n e  d e livery  system . T he  
a p p lica tio n s  o f  p o ly lysin e , p o ly e th y len im in e , Starburst p o lyam id oam in e  dendrim ers, 
T ran sfectam  (D O G S), ch o lic  ac id , and ch o les tero l con ju gates to gen e  therapy are 
co m p a red  as a function o f  structure and pK a.

T h is  a ssessm en t o f  po lyam in es and p o ly a m in e  am id es stresses the b asic ity  o f  the am ine  
fu n ction a l groups. The pK a’s o f  th ese  fu n ction a lities  are a m ajor determ inant in their 
b in d in g  to b io log ica l m acrom olecu les. S e le c t iv ity  o f  p h arm aco log ica l action  a lso  e n c o m ­
p a sse s  con trib utions from so lution  con form ation  and lip op h ilic ity  as w ell as am ine pKa 
T h e u se  o f  these com pounds as leads for the d es ig n  o f  n ovel therapeutics or gen e m ed ic in es  
is d em on strated  to be practical as w ell as th eoretica lly  p ossib le .

N aturally  o ccu rr in g  p olyam ines, such as the tetra- 
am in e  sp erm in e  (1 ) and the triam ine sp erm id in e (2 ) 
(F igu re 1) o c c u r  in c e lls  at m icrom olar co n cen tra ­
tion s, and m ay even  rise to m illim olar lev e ls  in 
certain  ca n cer  c e lls  (T abor & Tabor 1984). The  
b io sy n th e tic  b u ild in g  b locks for these and c lo s e ly  
related  p o ly a m in e s  are the a-am in o acids orn ith ine  
and ly s in e , a fford in g  the d iam ines putrescine (3 )  
( 1,4 -d ia m in o b u ta n e) and cadaverine (4 ) (1 ,5 -d i-

Conrcspondcncc: I. S. Blagbrough, School of Pharmacy and 
Pharmacology, University of Bath. Bath BA2 7AY. UK

am inopen tan e), r esp ec tiv e ly  (F igure 1). In recent 
years, w e  have esta b lish ed  that p o lyam in es. and the 
new  c la ss  o f  ca tio n -ch a n n el b lock in g  agen ts p o ly ­
am ine am ides, d erived  from analogy  w ith the low  
m olecu lar  w eigh t fraction  o f  the ven om s of certain  
sp iders and a parasitic w asp , have potential as 
potent, se lec tiv e  recep tor  probes and even  as novel 
therapeutic lead co m p o u n d s in the d esign  of anti 
tum our agents. O ther w orkers, e sp e c ia lly  and 
B ergeron  et al (1 9 8 7 , 1989). have addressed  the 
u sefu ln ess  o f  p o ly a m in es  in can cer ch em otherapy. 
In m ore recent stu d ies , p o lyam in es have been
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1 Spermine 2 Spermidine

3 Putrescme 4 Cadaverine

Figure 1. Structures of physiological polyamincs and di­
amines.

id en tified  as novel leads for the d esign  o f  anti- 
diarrhoeal agents and antim alarials, and as ion  
ch ela tors. Furthermore, the p ossib ility  o f  using  
p o ly -a m in es  (especially  the dim ers to hexam ers o f  
e th y l-en ed iam in e) for the design  o f  sp ecific  sy n ­
th etic  R N ase  or D N ase en zym es has been  addres­
sed  in e leg a n t studies by Yoshinari et al (1991 ).

W e a lso  consider the potential for p o lyam in es, in 
an ex ten s io n  o f  one o f  their possib le in -v iv o  roles, 
in m ain ta in ing  D N A  condensation w orking w ith or 
w ith ou t h istones to stabilize the three-d im ensional 
structure o f  polynucleic acids. Thus, p o lyam ines  
and p o lyam in e  am ides d isp lay m any o f  the ideal 
properties o f  synthetic vectors for p olyn u cleo tid e  
d e liv ery  in gen e  therapy. R ecent im provem ents in 
the u se  o f  po ly lysin e  in D N A  condensation  and ce ll  
tran sfection  have com e w ith the d esign  o f  unsym - 
m etrical polyam ine am ides and the application o f  
sy n th etic  polyam ines. P olyeth ylen im ine and Star- 
burst polyam idoam ine dendrim ers are tw o such  
p o ly a m in e  based gene-delivery system s. T ransfec- 
lam  (D O G S ) is an unsym m etrical g ly c in e -sp er  
m in e conjugate, designed and prepared by Behr et 
al (1 9 8 9 ) . It incorporates tw o long lipid  chains for 
b ilayer  form ation. DOGS is the parent m em ber o f  
lip o p o ly a m in e  gene-delivery vectors, form ing  
co m p a ct p a n ic le s  which are not cation ic liposom es. 
B y a n a lo g y , cholesterol and cholic  acid  conjugated  
un sym m etrica l polyam ine am ides have recently  
been  reported as synthetic vectors for gen e  therapy.

channel blockers is not surprising when one c o n ­
siders their structures (Figure 2), essen tia lly  fu lly  
protonated at physiological pH. By com parison, the 
pKa’s o f  sperm ine (1) and sperm idine (2) are 11 -50, 
1 0 9 5 , 9-79 , 8 90  and 11-56, 10 80, 9  52, resp ec­
tively  (Takeda et al 1983). The corresponding data 
for P hT X -3.4 .3  (6) are 11-4, 10 4, 9 5 and 8-5, 
although the m easured pKa o f  9 5 a lso  accounts for 
the phenolic functional group, and therefore an 
increase in acid ity from pH 10-4 to 9-5 finds both  
the secondary am ine nearer to the tyrosine residue, 
and the phenoxide o f  tyrosine gain ing protons 
(Jaroszew ski et al 1996). T he pKa o f  phenol is 
10-0, and the pK a’s o f  tyrosine are 10-07 and 9 11 
(and 2-20).

M any polyam ine am ides have now  been iso lated  
from the venom  o f  certain spiders, (rev iew s by 
Blagbrough & U sherw ood 1992; Schafer et al
1994) and characterized pharm acologically  
(rev iew s by U sherw ood & Blagbrough 1991; Car­
ter 1995; M ueller et al 1995). T hese low  m olecular  
w eight toxins (argiotoxins) (7 -1 2 , Figure 3) are 
potent se lec tiv e  non-com petitive antagonists o f  
glutam ate receptors, b locking the ca tion -se lective  
channels associated  with this excitatory a -am in o  
acid (both N M D A  and non-N M D A  glutam ate  
receptors). T herefore, they have potential as phar- 
m acologica l probes and as lead com pounds for the 
design  o f  drugs to treat neurodegeneration, espe  
c ia lly  stroke (Parks et al 1991; B lagbrough & 
U sherw ood 1992; Carter 1995). H ow ever, unsym  
m etrical polyam ine am ides require com p lete  
syntheses for sufficient material to be availab le for 
detailed pharm acological characterization.

T he novel p o lyam ine F T X -3.3  (13 ) (B lagbrough  
&  M oya 1994) and the polyam ine am ide sF T X -3 3 
(14) (M oya & Blagbrough 1994) are important 
pharm acological too ls (Figure 4) for m odulation  o f  
v o ltage-sen sitive  ca lcium  channels (V S C C ). T hese  
polyam in es b lock  V SC C  with differential inhibi

lo n -ch a n n el b lock ers

S p erm in e (1) is found in the venom  o f  certain 
sp iders w here it accom panies a range o f  small 
m o lecu le  phenols (F ischer &  Bohn 1957; G ilbo & 
C o le s  1964) The venom  o f  a solitary parasitic 
w asp  ( P h i l a n t h u s  t r i a n t > u l u n i )  contains thermo 
sp erm in e (a regioisom cr o f  sperm ine) conjugated to 
I.-tyrosine in P hT X -4.3.3 (5) (F igure 2). T his  
un sym m etrica l polyam ine am ide is essen tia lly  
eq u ip m en t with synthetic sperm ine-contain ing  
an a lo g u e  P hT X -3 .4 .3  (6). T hese polyam ine am ides  
(p h ilan th o tox in s) arc potent blockers o f  the cation  
ch a n n e ls  gated exogen ou sly  by n icotine and endo  
g c n o u s ly  by acety lch olin e That they arc cation

5 PhTX-4.3.3

6  PhTX 3 4 3

Figure 2 Structures of polyamine amide wasp toxin Phi X 
4 3.3 (5) and its essentially equipotenl analogue PhlX-3 -1 3 
(6 )
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CO N H ,

7 ArgTX-636

8 ArgTX-659

OH CO N H ,

jsnrfrHO  v  0*1 CO N H ,

9 ArgTX-673

10 NSTX-3

11 JSTX 3
OH H

12 CNS 2103

Figure 3. Structures of polyamine amide spider toxins.

tion  in m ature rat cerebellar Purkinje ce lls  (D upere  
et al 1996) and antagonize P-, N- and L -type V S C C  
in a vo ltage-d ep en d en t manner (N orris et al 1996). 
O ther ph arm aco log ica l evidence for cation -channel 
b lo ck a g e  c o m e s  from one en dogenous role o f  
c y to s o lic  sperm ine (1) and sperm idine (2) as gating  
m o le c u le s  for inw ard rectifying potassium  ch an n els  
(F ick er  et al 1994; Lopatin et al 1994).

C ancer

T here is ever  increasing realization o f  the b io lo g i­
cal e ffe c ts  o f  po lyam ines, particularly in ce llu lar  
p ro cesses , in clu d in g  growth and replication (H eby  
& P ersson  1990). Thus, it is not surprising that 
p o ly a m in e  con ju gates continue to be the focu s o f  
sign ifican t attention as potential anticancer agents.

There is a p o lyam in e transporter which sp ecifica lly  
m ediates the uptake o f  extracellular p o lyam ines  
into c e lls  (S e iler  & D ezeure 1990), and rapidly  
div id ing  tum our ce lls  require large quantities o f  
polyam ines. C onsequently, this polyam ine trans­
porter is  up-regulated in tumour ce lls  m oreso than  
in norm al c e lls  (S eiler  et al 1990). P o lyam ines  
groove-b ind  to D N A  from either the major or the  
m inor g ro o v e  (R odger et al 1994, 1995) and it is 
thought that en dogenou s polyam ines a lso  affect 
chrom atin stab ility  and structure (Basu et al 1992). 
T he b iosyn th etic  pathway o f  the com m on p h y sio ­
log ica l d i- and polyam ines, putrescine (3), cada- 
verine (4 ), sperm idine (2) and sperm ine (1 ) is w e ll 
characterized  (rev iew s by Tabor & Tabor 1984; 
M arton &  P egg  1995). Indeed, inhibitors have been  
syn th esized  for som e o f  the key  en zym es (G uo et al 
1995; P egg  et al 1995). Taking these three aspects  
into account w hen  design ing polyam ine based  
anticancer agen ts, there ex ists a potential uptake  
m echanism  w ith  selectiv ity  for cancer ce lls  (C ohen  
& Sm ith  1990) and tw o p ossib le  m odes o f  c y to ­
tox ic ity . T his tox ic ity  may be m ediated either by  
D N A  binding and hence disruption o f  transcription  
(F euerstein  et al 1990), or by interference w ith  
p olyam in e b iosynthetic  pathw ays thereby m o d ­
u lating the ce llu lar  concentrations o f  en d ogen ou s  
p olyam ines.

T o date, som e o f  the sim plest and m ost e ffec tiv e  
synth etic  p o lyam in es to show  anticancer activ ity  
have been  d ev e lo p ed  by Porter, Bergeron and their 
co-w ork ers. T h ey  initially found activity w ith  
sperm idine and sperm ine analogues w hich are /V- 
a lkylated  (Porter et al 1982, 1985). Further stud ies 
sh ow ed  the best analogues to be tetra-am ines w hich  
have been /?/T-ethylated on the term inal, prim ary  
am in es (e .g . 15, 16 and 17) (B ergeron et al 1987, 
Porter et al 1987) (F igure 5). T h ese  com pounds are

15 DENSPM

13 FTX-3.3 
o

/ t
H NH ,

14 sFTX 3.3

A .

Figure 4. Structures of synthetic polyamincs which modulate
voltage sensitive calcium channels

1 6  DESP M

1 7 DEHSPM

Figure 5. Structures of synthetic antiproliferative polyamines 
DFNSPM (15). DFSPM (16) and DFHSPM (17)
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reco g n iz ed  and taken into c e lls  by the polyam ine  
transporter. O n ce  inside the c e lls , they deplete  
in tracellu lar  p o lyam in e p oo ls by dow n-regu lating  
th e  e n z y m e  ornithine d ecarb oxy lase  (O D C ), the  
first e n z y m e  in the p olyam ine sy n th esis  pathway, 
and up -regu la tin g  the sp erm in e-sp erm id in e N  -  

acety ltra n sfera se  (S S A T ) en zy m e w h ich  works in  
th e  b ack  co n v ersio n  pathw ay (B ergeron  e t al 1989). 
T h e  sy n th etic  analogues w ere found to  replace the  
p h y s io lo g ic a l po lyam in es and, o v er  a 2 4 -h  period  
in -v itro , it w as found that the total am ount o f  
p o ly a m in e  norm alized  and the n itrogen content o f  
ea ch  m o le c u le  (i.e . 3 in sperm idine, 4  in sperm ine) 
rem ain ed  constant. T he cy to to x ic  e ffe c ts  o f  the  
a n a lo g u e s  D E N S P M  (15), D E S P M  (1 6 ) and  
D E H S P M  (1 7 )  in  in-vitro cu ltures o f  L 1 2 1 0  c e lls ,  
o v e r  9 6  h , w ere  1-3 j j m ,  0 -2  f i M  and 0 -06  f i M  

re sp e c t iv e ly . In vestigation  in to  their m od e  o f  action  
sh o w e d  a sign ifican t variation in their ability to  
c o m p e te  w ith  n ative p o lyam in es for cellu lar  
up tak e, but in  tim e it w as found that they  reached  
co m p a ra b le  concentrations in the c e lls  and had  
sim ila r  d ep le t in g  e ffec ts  on en d o g en o u s p o lyam in e  
p o o ls . A s  the ana logu es sh ow  d ifferen t cy to tox ic  
e f fe c ts , the d isp layed  cy to to x ic ity  m ight b e  partly  
d u e  to  so m e  s ite -sp ec ific  in teractions not in vo lved  
in  p o ly a m in e  b iosyn th esis. In vestiga tion s are o n ­
g o in g  b oth  into the m echanism  o f  action  o f  these  
co m p o u n d s  and into their c lin ica l use.

A n o th er  approach to the d ev e lo p m en t o f  anti- 
tum ou r co m p o u n d s is the co v a len t link ing o f  
c y to to x ic  agen ts , w h ose  activ ity  is m ediated  
through  d irect interaction with D N A , to a p o ly ­
am in e . T h e resu lting conjugate w ill be transported  
in to  the c e ll through the p o lyam in e transport 
m ech a n ism  ( i f  recogn ized ) and the p o lyam in e  
sh ou ld  further aid D N A  binding o f  the cy to to x ic  
c o m p o n e n t at its D N A  target site. W e h ave been  
lin k in g  po lyarom atic  anthracene and acrid ine m o i­
e t ie s  to  sp erm in e (Carrington et al 1996). A crid ine  
d er iv a tiv e s , e sp ec ia lly  9 -am in oacrid in es, sh ow  
p ron ou n ced  antitum our activ ity . E x ten sive  research  
in to  stru ctu re-a ctiv ity  relationships cu lm inated  in 
the a n tileu k a em ic  drug am sacrine (D en n y  et al 
1983). T h e activ ity  o f  these com p ou n d s is due to 
their ab ility  to bind to D N A  through intercalation , 
resu ltin g  in d isruption  o f  D N A  transcription. In iti­
a lly , the /V1 p osition  o f  sperm ine w as bound to the 9 
p o sitio n  o f  anthracene through an am ide bond. T he  
in teraction  o f  the resulting conju gate w ith  D N A  
w as then in vestiga ted  by linear and circular  
d ich ro ism , and normal absorption techn iques  
(A d la m  et al 1994; R odger et al 1994). T h ese  data  
w ere  supported  by dynam ic com p uter m o d ellin g  
s im u la tio n s  o f  the conjugate in the p resence o f  a 
strand o f  D N A  (A dlam  et al 1994; R odger et al
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Figure 6. Structures of cytotoxic synthetic conjugates of 
polyamines with tricyclic aromatics.

1995). O ne o f  the ou tcom es o f  th ese  ex p er im en ts  
w as the co n c lu s io n  that th is con ju ga te  can  b in d  in  a 
b ifu n ction a l m anner w ith  the p o ly a m in e  in  the  
gro o v e , and the anthracene in tercalating b e tw een  
the b ase  pairs. In-vitro stru ctu re-activ ity  s tu d ies  on 
a ser ies  o f  an a logu es (1 8 - 2 2 )  (F igu re 6 ), o n  B 1 6  
m urine m elan om a ce lls , h ave  sh ow n  that th e  b est 
activ ity  is ach iev ed  by attach ing sperm ine to  a cr i­
d ine v ia  an an ilin e  (Q araw i et al 1997). T h e  m ost  
potent cy to to x in  in this series, sy n th esized  to  date, 
a lso  has a 5-carbon  sp acer d erived  from  5 -a m in o -  
va leric  ac id  b etw een  the acrid ine and sp erm in e  
m o ietie s  (2 1 )  w h ich  m ay co n fer  a reg ion  o f  f le x ­
ib ility  b etw een  the tw o b on d in g  reg ions.

C h loram b u cil is a n itrogen m ustard co n ta in in g  
com p ou n d  w h ich  is used  to treat a nu m ber o f  
can cers. Its m ech an ism  o f  action  is D N A  a lk y la tion  
and h en ce cro ss-lin k in g  o f  D N A  strands. C h lo r ­
am bucil has been  conjugated  to both sp erm id in e  (2 )  
and sperm ine ( I ) ,  resulting in D N A  cross-lin k ers  
w ith the p oten tia l to carry up to 3 (2 3 ) or 4  (2 4 )  
p o sitiv e  ch arges at p h y sio lo g ica l pH (C ohen  et al 
1992, C u llis  et al 1995) (F igure 7). In-vitro  
exp erim en ts have estab lish ed  that th ese  p o ly a m in e  
con ju gates are recogn ized  by ce llu la r  uptake s y s ­
tem s— the sperm id in e con ju ga te  d isp layed  ~  35 
tim es m ore cy to to x ic ity  than ch loram b u cil a lon e . 
T h ese  con ju ga tes a lkylate D N A  in the sam e p o s i­
tions as ch loram b u cil in d icatin g  that the p o ly a m in e  
m oiety  d o es not a ffect the m ech an ism  o f  a lk y la tion . 
H ow ever, in -v iv o  stud ies did  not d isp lay  the h igh  
level o f  a c tiv ity  predicted  by in -v itro  a ssays (C u llis  
et al 1995). A m ore p rom isin g  approach to the 
design  and syn th esis  o f  p o ly a m in es co n ta in in g  a 
reactive functional group cap ab le  o f  D N A  a lk y la ­
tion has recen tly  been d escr ib ed  (L i e l al 1996). 
Sperm id ine and sperm ine an a lo g u es (e .g . 2 5 ) w ere  
prepared w ith  the prim ary am in es rep laced  by 
azirid inc fu n ction a l groups (F igu re 7) to g iv e  a b i . s -  

alkylating  agen t bound to a p o ly a m in e  b ack b on e. 
S tud ies sh o w ed  these co m p o u n d s to be transported  
into c e lls  and to cross-lin k  D N A . T he in -v iv o
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Figure 7. Structures of polyamine-containing compounds 
which cross-link DNA.

a c tiv ity  o f  sp erm in e  a n a logu e  2 5  w as com parab le  
w ith  that sh o w n  b y  other fcw -alkylating agen ts in  
the sa m e  a ssa y , m ak ing  it a lead  com p oun d  w ith  the  
p o ten tia l fo r  further d evelop m en t.

Diarrhoea
T a b o r  &  T a b o r  (1 9 6 4 )  reported that rela tively  h igh  
co n cen tra tio n s  o f  sp erm in e (1 ) and sperm id ine (2 )  
are fo u n d  in  th e  gastro in testin al tract. T he p h y s io ­
lo g ic a l a c tiv ity  o f  p o ly a m in es in the gut w as su b ­
seq u en tly  ch aracterized  w ith  initial in vestiga tion s  
carried  o u t w ith  p o lym ers d erived  from  e th y len i-  
m in e , c o m m o n ly  a va ilab le  p o lyam in e-con ta in in g  
c o m p o u n d s  w ith  a variety  o f  industrial u ses (M e l­
a m ed  e t a l 1 9 77 ). B ranched-chain  p olym ers w ere  
sh o w n  to  in h ib it gastric em p ty in g  in rats, w h ile  
lin ear  structures had n eg lig ib le  p h y sio lo g ica l 
a c tiv ity . It w as thought that p o lyam in es m ight find 
u se  as ap p etite  suppressants or in p rolonging the 
a ctio n  o f  o ra lly  adm in istered  drugs. H ow ever, fur­
ther ex p er im en ta tio n  in v o lv in g  oral adm inistration  
to d o g s  resu lted  in a severe  retching respon se  
(T a n sy  e t al 1977 ). In vestigations w ere a lso  carried  
out w ith  sm a ll-m o le c u le  p o lyam in es, for exam p le , 
sp erm in e  (1 ) , sp erm id in e (2 ) and synthetic c lo se  
a n a lo g u e s  (B e la ir  et al 1981). T he naturally  
occu rr in g  p o ly a m in es  w ere found to have a pro­
found  e f f e c t  on gastric  em p ty in g , w h ile  syn th etic  
a n a lo g u e s  had sig n ifica n tly  low er activ ities.

In H IV -re la ted  in fection s , there is a frequent 
o ccu rren ce  o f  ser iou s diarrhoea, either as a result o f  
in fe c tio n  or as a sid e  e ffec t from certain drugs. S o  
far th is has been  d ifficu lt to treat, ex istin g  drugs 
g iv in g  o n ly  a partial respon se and a high relapse  
rate. A n ew  approach to treatm ent, d evelop ed  by 
B ergeron  et al (1 9 9 6 ) , has been  the use o f  synthetic  
p o ly a m in e s  to s lo w  gut m otility . A fter initial 
stru c tu r e -a c tiv ity  a ssessm en t, D E H SPM  (1 7 ) w as  
found  to  sh o w  antid iarrhoeal activ ity  in a castor-o il

ind uced  d iarrhoea m odel in rats, and has n ow  been  
used  to  treat patients in the c lin ic . T h e draw back  
w ith  th is com p ou n d  is  chronic tox ic ity  a sso c ia ted  
w ith  th e  accu m u lation  o f  m etabolites. In -v ivo  stu ­
d ies  h a v e  sh o w n  that D E H SPM  (1 7 ) is first m eta ­
b o lized  b y  /V -de-ethylation. N orm ally , the n ext 
stage  in  p o ly a m in e  m etabolism  w ould  be rem oval 
o f  the 3 -am in op rop y l m o ietie s  through th e  action  
o f  S S A T  and p o lyam in e  ox id ase . H ow ever, the  
rem ain in g  h om osp erm in e  conta ins o n ly  4 -a m in o -  
butyl fragm en ts w h ich  are not m etab o lized  and  
therefore a ccu m u la te  in the p atient’s tissu es. T h is  
problem  h as b een  reso lved  by syn th esiz in g  c o m ­
poun ds su b stitu ted  w ith  hydroxyl groups (on  te t­
rahedral carbon  a tom s o f  ^ -con figu ration ) (2 6 ) on  
m eth y len es  lo ca ted  y  to  the ethylated  am in es  
(F igu re 8 ). T h e se  a lco h o l functional groups o ffer  
poten tia l s ite s  for  en zy m a tic  con jugation  or o x id a ­
tion  lea d in g  to  further m etab o lism  and e lim in a tio n . 
S tu d ies  sh o w e d  that tetra-am ine 2 6  retains its g a s­
troin testin al a c tiv ity  and has sign ifican tly  reduced  
ch ron ic  to x ic ity , a lthou gh  the ex a ct m ech an ism  o f  
degrad ation  is  n ot k n ow n  (B ergeron  et a l 1996). 
T h ese  resu lts illustrate the w ay  in w h ich  to x ic ity  
a sso c ia ted  w ith  p o ly a m in es  can be reduced  w ith ou t  
the lo s s  o f  therapeutic  e ffec t.

M a la r ia

M alaria co n tin u es  to  be a m ajor health  prob lem  in 
the w orld  tod ay  d esp ite  the progress w h ich  has 
been m ad e in its treatm ent. M ajor prob lem s are 
n ow  related  to  strains o f  the m alaria parasite w h ich  
are resistan t to  ch loroq u in e  and other anti m alarial 
drugs. T h is  has led  to  a con tin u in g  search for drugs 
o f  d ifferen t ch em ica l c la sse s  and w ith n ew  m od es  
o f  action  (F airlam b  & C eram i 1992). M uch w ork  
has b een  carried  out on the b io syn th esis  and fu n c ­
tion o f  d ia m in es  p u trescin e (3 ) and cad averin e (4 ). 
and p o ly a m in es  sp erm id in e (2 ) and sperm ine (1 ) in 
a num ber o f  hum an in fec tiv e  parasites (r ev iew s  by 
T abor &  T abor 1984; M arton &  P egg  1995). i -  

D iflu o ro m eth y lo m ith in e  (D F M O ) (2 7 ) w as id en ti­
fied as a p oten tia l therapeutic agent as it is know n  
to be an inh ib itor o f  orn ith ine d eca rb o x y la se , the 
e n z y m e  w h ich  transform s orn ith in e to putrescine in 
the first stage  in p o ly a m in e  b io sy n th esis  (M e tc a lf  et 
al 1978; B acch i et al 1987). In -v ivo  trials sh ow ed  
that D F M O  in h ib its the grow th  o f  parasites, but in

Figure 8. A substituted polyamine (26) for the treatment ol 
diarrhoea
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so m e  c a se s  it fa ils to bring about a com p lete  cure. 
A  further approach in volves synthetic polyam in es  
w h ich  h a v e  previously  found use in treating cancer  
(B iton ti et al 1989). Term inally 6 /s-benzylated  
tetra-am ines w ere initially identified as inhibiting  
the grow th  o f  the parasites P l a s m o d i u m  f a l c i p a r u m  

and P l a s m o d i u m  b e r g h i .  Further studies w ere car­
ried ou t to  in vestigate the optim um  number o f  
m eth y len e  groups required in the p olyam in e chain, 
as w e ll as the e ffec t o f  changing the b en zy l su b ­
stituen ts to  m oieties o f  sim ilar size  (e .g . cy c lo -  
h ex y lm eth y l and ring substituted ben zyls)  
(E dw ards et al 19 9 i. A s a result o f  testing both in- 
vitro  and in -v iv o  (using a P .  b e r g h i  in fection  in 
m ice ) a lead  com pound was chosen  w ith term inal 
/V -benzyl groups and a sequence o f  3 then 7  then 3 
m eth y len e  groups separating the four am in es (2 8 )  
(F igu re 9 ). T h is tetra-am ine is  less  potent than 
ch loroq u in e  yet m ore active than tetracycline, an  
an tib io tic  u sed  to treat resistant strains o f  infection . 
On co-adm in istration  o f  tetra-am ine 28  w ith  
D F M O  (2 7 ) , a com p lete  cure w as e ffected  in the in- 
v iv o  m o u se  m odel. The m echanism  o f  action o f  
th ese com p ou n d s has not yet been fu lly  in vesti­
gated , but it is thought that they interfere w ith  
p o ly a m in e  b iosyn th esis as w ell as p ossib ly  o ccu ­
p y in g  k ey  b ind ing sites on D N A .

Iron ch e la tion

In all form s o f  life, except for a few  sp ec ies  o f  
bacteria , iron p lays an important role, principally in 
m etab o lic  p rocesses where the interconversion  
b etw een  the +  2 and -F 3 oxidation states is used in 
a variety  o f  redox proteins. In the environm ent, iron  
gen era lly  occu rs at the ferric oxidation  leve l w hich  
is largely  in so lu b le  and hence presents a problem  to 
m icroorgan ism s. M icrobes have so lved  this by  
gen eratin g  iron chelator system s ca lled  sidero- 
phores w h ich  com p lex  (sequester) ferric iron, 
a llo w in g  it to be accessed  (B ergeron 1984). M any  
siderop h ores contain  polyam ine or polyam ide  
m o ie tie s , for exam p le , parabactin (29), agrobactin  
(3 0 ) and desfenrioxam ine B (31) (Figure 10). Phy- 
tosid erophores are low  m olecular w eight ion -ch e­
lating com p ou n d s endogenous to plants. T hey

facilitate iron solublization  and transport in a 
m anner analogous to the m icrobial siderophores. 
T he phytosiderophore n icotianam ine (32) (S ch o lz  
et al 1992; M atsuura et al 1994) is a triamine w h ich  
contains a primary, a secondary and a tertiary 
am ine functional groups. T hese polyam ine based  
com pounds are important as probes for the in ves  
tigation  o f  iron transport into various ce lls , the 
roles o f  iron in in fection  and, in their ow n right, 
as potential treatm ents for haem ochrom atosis  
(/T thalassaem ia).

R N a se  an d  D N ase

T he d esign  and syn thesis o f  synthetic catalysts  
w hich  hydrolyse R N A  w ith the aim  o f  d eve lop in g  
system s w h ich  m ediate site -se lec tiv e  scission  has 
recently  been  reported (Y oshinari et al 1991). 
O riginally , the catalysts w ere based around transi 
tion m etal chem istry , but recent d evelopm ents have  
incorporated o ligoam in es, such as ethylened iam ine, 
w hich  w ill e ffic ien tly  hydrolyse R N A s. In this 
c lea v a g e , the m echanism  o f  action  in vo lves an 
intram olecular a c id -b a se  co-operation  betw een  an 
am m onium  cation  and an uncharged am ine. T o  
m ake a s ite -se lec tiv e  R N A  cleav in g  agent, e th y le ­
n ed iam ine has been linked to a 19-m er p iece  o f  
synthetic D N A  (3 3 ) (Figure 11), designed  so  that 
the D N A  seq u en ce is com plem entary with the R N A  
seq u en ce adjacent to the desired site for sc iss ion . 
E thylened iam ine is used here for its acid ity, rather 
than as a m etal-ion  chelator. T he pK a’s o f  e th y le ­
ned iam ine are 9 2 and 6 5 (Y oshinari et al 1991), 
or 9 -92  and 6 -86  (A lbert & Serjeant 1984). H ow
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Figure 9 Structures of DFMO (27) and a tetra-amine (28) for 
the treatment of malaria

Figure 10. Structures of siderophores parabactin (29). agro 
baclin (30). desfenrioxamine B (31) and nicotianamine (32)
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ev er , “ that intram olecular co-operation betw een  
tw o  a m in o  resid u es p lays a dom inant role is 
stron g ly  e v id e n c e d ” w ith “ remarkable acceleration  
o f  R N A  h y d ro ly s is  by sim p le o ligoam in es as h igh ly  
poten t ca ta ly tic  m oieties for artificial 
r ib o n u c le a se s” (Y osh inari et al 1991). D N A  inter- 
ca la tors (anthraquinones) substituted w ith m etal 
c h e la tin g  m o ie tie s  (ethylened iam in es), and co m -  
p lex ed  to cupric ion s, induce the chain c lea v a g e  o f  
d o u b le  stranded D N A  (Ihara et al 1994). O ther  
artific ia l r ib on u cleases have been d esign ed  on a 
p o ly a m in e  or a m in e-im id a zo le  tem plate (B reslow
1 9 95), w ith  acrid in e used to e ffect R N A  intercala­
tion  (S h in o zu k a  et al 1994).

DNA condensation for polynucleotide delivery 
in gene therapy

P o ly ly s in e  co n d en ses  D N A  and e ffec ts  ce ll trans­
fec tio n  (M arquet &  H oussier 1991; Behr 1993; 
P erales et al 1994). H ow ever, p o ly ly s in e  has 
b e c o m e  the su b ject o f  m ore recent interest w hen  
c o v a le n t ly  attached to a protein, such as transferrin 
(C otten  et al 1990), as a targeting m oiety . T his 
protein  then en a b les target ce ll penetration by  
recep tor-m ed ia ted  en d ocytosis. H ow ever, in order 
to  av o id  en zy m a tic  ly sosom al degradation, the 
in c lu sio n  o f  free ch loroqu ine (C otten et al 1990) or 
the a ttachm en t o f  rep lication-deficient adenoviruses  
(W agn er et al 1992) is required to ensure better 
su rviva l and m ore effic ien t transfer o f  the foreign  
D N A  into the cy to so l o f  the target ce ll. O ther 
p o ly a m in e  b ased  gen e-d elivery  sy stem s include  
p o ly e th y len im in e , an organic m acrom olecu le  with  
a h igh  ca tio n ic  charge density  potential w h ich  
sh ou ld  fac ilita te  D N A  condensation  and pH b u f­
fering  (B o u s s if  et al 1995). T hese applications o f  
p o ly a m in es  m im ic  the natural e ffects  o f  h istones  
in teracting  w ith  D N A  (O ng et al 1976). Starburst 
p o ly a m id o a m in e  dendrim ers are a new  c la ss  o f  
h ig h ly  branched  spherical polym ers that are so lu b le  
in aq u eou s so lu tion  and have a unique surface o f  
prim ary a m in o  functional groups (T om alia  et al 
1990; W u et al 1994; K ukow ska-L atallo  et al
1996). At p h y sio lo g ica l pH, these am ino groups 
w ill be p o s it iv e ly  charged and should interact w ith  
p o ly a n io n s  (p h osphates along n u cleic  acid p o ly ­
m ers). R ecen t stud ies have show n that certain  
p o ly a m id o a m in e  dendrim ers form stable com -
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Figure I 1. DNA-cthylenediaminc conjugate (33) as a syn­
thetic RNase

p lexes (aggregates) w ith D N A  under m ost p h y sio ­
logical con d ition s, som e o f  w hich  are capable o f  
m ediating non -sp ecific  in-vitro transfection. H o w ­
ever, th ese starburst polyam ine dendrim ers m ay not 
con d en se D N A  into toroidal particles w ithout the  
use o f  an additional polycation  (D E A E -dextran) 
(K ukow ska-L atallo  et al 1996).

T he b inding o f  p o lyam in es has a profound e ffe c t  
on D N A  structure, causing transitions from B to 
both A  and Z  form s o f  D N A . A t higher c o n ­
centrations, p o lyam in es m ediate conform ational 
changes such as D N A  aggregation and con d en sa­
tion. C ondensation  is caused  by alleviation o f  the  
charge repulsion  b etw een  neighbouring phosphates  
on the D N A  helix  a llow in g  co llap se  into a m ore  
com pact structure. D N A  condensation  is dependent 
upon three characteristic properties o f  the natural or 
synthetic p o lyam in es— the num ber o f  p o sitiv e  
charges w h ich  therefore in fluence the local io n ic  
strength (Stew art &  Gray 1992), the reg iochem ical 
distribution o f  th ese charges w h ose  pK a’s are 
in tim ately  dependent upon their co-operativ ity , and  
the loca l salt concentration . T he prerequisites for  
d elivery  o f  D N A  across an intact cy top lasm ic  
m em brane are condensation  and m asking o f  the  
n egative charges o f  the phosphate backbone. 
Sperm ine (1 ) and sperm idine (2) are tw o o f  the  
sm allest natural p o lycation s capable o f  e ffec tin g  
both charge neutralization and condensation  o f  the  
p o lyn u cle ic  acid . T h ese  interactions are, h ow ever, 
readily reversib le under p h ysio log ica l con d ition s  
(B ehr 1993). Indeed, m any stud ies (A llison  et al 
1981; Feuerstein  et al 1990; Plum et al 1990; 
R ow att & W illiam s 1992; Stew art & Gray 1992) 
have sh ow n  structu re-activ ity  relationships for the 
binding and cond en sation  o f  D N A  with p o ly ­
am ines, ind icating that appropriately m odified  
p olyam in es are id ea lly  suited for use as g en e  
d elivery  system s. In order to reinforce these e ffec ts , 
it is apparently beneficia l if a lipid is cova len tly  
bound to the p olyam in e (B ehr 1986).

At present, m ost gen e therapy protocols in v o lv e  
the use o f  h igh ly  effic ien t recom binant viral v e c ­
tors. T h ese  gen e vectors, how ever, have a lim ited  
carrier cap acity  and are associated  with im m uno-

34 DOTMA

35 DOPE

Figure 12. Structures of Lipofectin components DOTMA 
(34) and DOPE (35).
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lo g ic a l p rob lem s as a function o f  high d ose  or 
repeated  u se  (T em in  1990). Synthetic vectors 
c o u ld , in prin cip le , so lv e  these problem s, and the 
d es ig n  o f  su ch  sy stem s has recently b ecom e an area 
o f  con sid erab le  research interest. L ipofectin  
(F e ig n er  et al 1987) (Figure 12), w as the first 
ca tio n ic  lip id  form ulation to receive w idespread  
atten tion  as a g en e  delivery agent. L ipofectin  c o n ­
s ists  o f  a 1:1 m ixture o f  (m on o-)cation ic  lip id  
b is -e th er  (2 ,3-d ioIey loxy)propyI-N , N ,  A -trim ethyl- 
a m m o n iu m  ch lorid e (D O T M A , 34 ) and fu sogen ic  
lip id  d iester  d io leoylphosphatidylethanolam ine  
(D O P E , 3 5 , F igure 12). A s the cation ic lip id  
requires the p resence o f  a phosphatidylethanola- 
m in e (e .g . D O P E ) capable o f  destab iliz ing  b ilayer  
m em b ran es and prom oting m em brane fusion , it has 
b een  p ostu la ted  (W alker et al 1996) that the 
en cap su la ted  D N A  m ust gain entry to the c y to ­
p lasm  b y  fu sion  or destabilization  o f  the p lasm a or 
e n d o so m a l m em brane.

D io c tad ecy lam id og lycy lsp erm in e  (D O G S, Trans- 
fec ta m , 3 6 ) , and d ipalm itoylphosphatidyl-ethano- 
lam in e  sp erm ine (D P P E S, 37 ) w ere the first p o ly ­
a m in e  based  lip id  (lipopolyam ine) gen e d elivery  
vectors (B eh r et al 1989).T hese m o lecu les contain  
sp erm in e (1 )  co v a len tly  bound to tw o hydrophobic  
ch a in s (F igu re 13). W hen m ixed with D N A , these  
p o lyam in e-in corp oratin g  vectors cause co n d en sa ­
tion and form ation  o f  self-organized  com p act 
n u clear p artic les w ith an ex cess  coat o f  ca tion ic  
lip id . T h ese  com p act particles are not ca tion ic  
l ip o so m e s . T he fact that D O G S (36 ) d oes not 
require the presence o f  a fusogen ic lipid or a d if ­
fu s in g  w eak  base such as chloroquine (w h ich  acts

36 DOGS

37 DPPES

by buffering the acid ic lysosom al interior), has tw o  
p ossib le  exp lanation s— either the particles gain  
access  to  the ce lls  via direct m em brane fu sion , or 
the D N A  escap es from  the degradative ly sosom al 
en zy m es becau se o f  the unique buffering cap acity  
o f  sperm ine (R em y et al 1994). This interpretation  
is supported by an analysis o f  the pK a’s o f  D O G S  
(36 ) w h ich  are 10-5, 9-5 , 8-4 and 5-5. It m ay ind eed  
be sign ifican t that the fourth (low est) o f  th ese  pK a  
values corresponds to the internal pH o f  the (a c id ic )  
ly so so m e (R em y et al 1994).

C ation ic  facia l am phiphiles (m olecu les w h o se  
hydrophilic and hydrophobic regions are se g r e ­
gated a lon g  the long ax is) are another p oly  am ine- 
based sy stem  sh ow in g  prom ise for gen e d e livery  
(W alker et al 1996). V arious polyam ines— sp er­
m ine (1 ) , tetraethylenepentam ine (38), and pen- 
taethylenehexam ine(39>— h ave been conjugated  to 
bile acid  based am phiphiles and then m ixed  w ith  
D O PE  (3 5 ) (1 :1 ) to facilita te  transfection. T o  date, 
b is-g ly co sy la ted  c /s-A B -stero id  (40), a 3a, 7a , 12a  
ch o lic  acid  am ide linked to pen taethylenehexam ine  
(F igure 14) has show n the greatest ability to pro  
m ote /L ga lactosid ase  p lasm id  uptake in C O S -7 
ce lls  (W alker et al 1996).

T he pK a va lu es o f  tetraethylenepentam ine (3 8 )  
are reported as 10 0, 9 -2 , 8-2, 4 1  and 2-6 (P aoletti 
et al 1973). T h is is an exq u isite  exam ple o f  the co  
operativ ity  o f  p K a’s a lon g  a p o lym eth ylen e chain , 
as the fourth pKa is com parable with acetic  acid  
(pK a 4 -7 6 ), and the fifth w ith ch loro- (pK a 2 -8 7 )  
and fluoroacetic acids (pK a 2-59) (A lbert & Ser  
jeant 1984). T herefore, at pH 7-0 , a -1-3 charge for 
the b ile  acid  m on oacylated  conjugate o f  pen  
taeth y len eh exam in e is assum ed (W alker et al
1996). W h ile  it is a lso  assum ed that the p o lyam in e  
m oiety  o f  this ch o lic  acid conjugate w ill bind to 
D N A  and cau se  con d en sation , the com p lete

H

r  N ^  N  ^  2I l
H H

38 Tetrathylenepentamine

H H

H ,N . , N ^
7 N N ^  NHI I

H H

39 Pentaethylenehexamine

40 R| = R? + u glucoside

Figure 13. Structures of lipopolyamines DOGS (36) and 
DPPFS (37)

Figure 14. Polyamincs and a glycosylated cholic acid 
conjugate (40)
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m ech an ism  o f  D N A  uptake, m ediated by this sy n ­
thetic  vector , is  unclear. O ne possib le  theory is that 
the d esta b iliz in g  properties o f  facial am ph ip h iles  
(i.e . m o le c u le s  w hich  p ossess a nonpolar steroid  
n u cleu s w ith  a polar side chain) m ight increase the  
fu so g e n ic  potential o f  the transfecting particle.

S p e r m id in e -  (41) and sperm ine-ch olestero l (42) 
(F igure 15), w ith  sperm idine carbam oylated at TV1 or 
N  , and used  as an unknown mixture o f  these tw o  
+  2  charged  regioisom ers, are novel transfection  

agents (G u y-C affey  et al 1995). The m echanism  by  
w h ich  th ese  com pounds promote D N A  d elivery  is 
un know n, but it is possib le that the cation ic  portion  
in teracts w ith  the nucleic acid, w h ile  the hydro- 
p h ob ic  ch o lestery l m oiety associates w ith  the 
m em brane lip id  bilayer, resulting in fusion  w ith , or  
transient d isruption o f  the ce ll m em brane e ffec tin g  
direct d e liv ery  o f  D N A  to the cytoso l (G u y-C affey  e t  
al 1995). A nother cationic cholesterol transfection  
a^ent is  ch o lestery l-sp erm id in e (43) (a lkylated  at 
N  , therefore potentially a -f  3 charged sp ec ie s)  
(M oradpour et al 1996) (Figure 15), sim ilar to  
D O G S  (36) and (like D O G S) not dependent on  the  
p resen ce o f  a fu sogen ic lipid for D N A  delivery  to the  
ce ll. A  d eta iled  analysis o f  the structure and for­
m ulation  o f  cation ic lipids w hich are e ffic ien t in 
a ch iev in g  g en e  delivery to the lung, w ith particular  
respect to  cy st ic  fibrosis, has established that c a tio ­
nic lip id s can be as e ffective  as adenovirus-based

H ,N

H?N

O
o

H

/  43 Cholesteryl-spermidine
N H ?

Figure 15. Structures of polyamine-containing cholesterol 
transfection agents

vectors (L ee et al 1996). Possibly more significant is 
the con clu sion  that the activity o f  cationic lip ids for 
in -v ivo  gen e  d elivery  could not be predicted from  
the in-vitro an alysis, and therefore this has to be 
tested d irectly (L ee  et al 1996).

Conclusions
P olyam ines and polyam ine am ides continue to  
dem onstrate sign ificant potential in the pharm aceu­
tical sc ien ces  both as lead com pounds for a variety  
o f  therapeutic targets, and as synthetic vectors in 
gene therapy for effic ien tly  effectin g  gen e d elivery .
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Abstract: Desymmetrisation of readily available symmetrical polyamines is an
important first step in the synthesis of many polyamine containing natural products.
Likewise in the synthesis of polyamine amides which are potentially useful for gene 
delivery and as neuroprotectants, based upon channel blocking toxins found in certain 
wasp and spider venoms. The application o f trifluoroacetyl as a protecting group allows 
unsymmetrical polyamine amides to be easily prepared on a gram scale.
© 1997 Elsevier Science Ltd. All rights reserved.

In our studies of polyamines and polyamine amides, 1' 11 we are investigating spermine 1 which is a 

linear tetra-amine, naturally occurring in all cells and playing important roles in vivo. These roles include 

maintaining the 3D structure of DNA , 1216 including condensing DNA , 1117 ' 18 modulating cell signalling via 

e.g. inward rectifying potassium channels, 19' 20 and potentiating and channel-blocking subtypes of glutamate 

receptors . I ' 3-21 23 Recently, we and others have shown that poiyamines and polyamine amides can be prepared 

by reductive alkylation , 7’9-24‘25 consecutive Michael additions to acrylonitrile, 25'26 or regioselective acylation of 

unsymmetrically protected polyamines. 1'4-24' 27 Tetra-amine spermine 1 is readily available and is an ideal 

starting material to incorporate three (or four) positive charges in to a target molecule. However, the 

desymmetrisation protocol is by nature low yielding and involves laborious chromatographic purification. 

Such low yielding steps are not efficient on a gram scale. There are problems with efficient syntheses of 7V1- 

mono-Z- 2 and /V'-mono-BOC-spermine 3. Using either Z-Cl together with sensitive pH control, or (B O C ^O  

with the polyamine in large excess, was either not practical or required time-consuming chromatographic 

purification from the excess of unreacted polyamine.28 In this Letter, we report the practical synthesis of 

unsymmetrical polyamine amides using trifluoroacetyl as a protecting group (see 4) whose introduction and 

removal can be controlled under facile conditions.

H
O

sperm ine 1 2

H H H H

3 4
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The ratio of primary amine to protecting group reagent is critical in order to avoid di-protection (of 

primary amines) and poly-protection (of secondary amines) . 28 Presumably, the higher nucleophilicity of the 

secondary amines is masked by corresponding sleric effects,25 as there is always selectivity. The facile and 

specific (for primary over secondary amines) introduction of trifluoroacetyl using ethyl trifluoroacelate, as 

reported in recent Letters™ and its ready removal with aq. ammonia30 (pH = II) or with methanolic aq. 

K2CO 3 solution31 makes it a superior protecting group to carbobenzoxy (Z, CBZ) and to fe/7-butoxycarbonyl 

(BOC) for the puipose of gram scale protection of polyamines. Thus, trifluoroacetyl is the protecting group of 

choice, over Z and BOC, for practical routes to unsymmetrical polyamine amides and carbamates. Therefore, 

we have prepared N l, N2, Af3-tri-Z-spermine 9 and Nl, N2, N3-tri-BOC-spermine 15 by this strategy.

Spermine 1 was selectively protected on a primary amino functional group by reaction with ethyl iri- 

fluoroacetate (1.0 eq„ MeOH, -78 °C for 1 h then to 0 °C over 1 h), to afford a mixture containing (by HPLC) 

predominantly mono-trifluoroacetamide 4, but also di-trifluoroacetamide 5 (shown by Z protection to afford 6  

and subsequent TFA selective deprotection to yield diamine 7 which was easily purified from monoamine 9). 

Immediately, in this solution of 4, the remaining amino functional groups were quantitatively protected with 

dibenzyl dicarbonate (4 eq., 0 °C to 25 °C over 1 h) to afford protected polyamine 8 , or with di-rm -butyl 

dicarbonate (4 eq., 0 °C to 25 °C over 1 h) to afford protected polyamine 14. The TFA protecting group was 

then removed (in situ) by increasing the pH to II , with conc. aq. ammonia, 30 stirring (25 °C, 15 h) to afford 

after one simple (the reaction mixtures do not contain any free spermine) chromatographic purification over 

silica gel (DCM-MeOH-conc. NH4 OH 70:10:1 to 50:10:1 v/v/v), N \ N2, W3-tri-Z-spermine 9 (48 %) and A'1, 

N2, N 3-tri-BOC-spermine 15 (50 %) respectively, from convenient, one-pot reactions. The utility of protected 

spermine 9 was demonstrated by a practical synthesis of the biologically important cation channel blocker 

philanthotoxin-3.4.3 (PhTX-3.4.3) 11 starting with N-acylation of L-Tyr methyl ester.HCl O-benzyl ether with 

n-butanoyl chloride ( 1 .1  eq.. 2.2 eq. TEA, DCM, 25 °C, 2 h, 83 %). Saponification of the methyl ester (3 eq. 1 

M aq. NaOH, MeOH, 25 °C, 4 h, then 3 M aq. HCI) afforded the free carboxylic acid (96 %) which was 

coupled (1.5 eq. DCC, 0.2 eq. HOBt, DCM, 25 °C, 16 h) to tri-Z-spermine 9 to afford polyamine amide 10 (79 

%). Deprotection of O-benzyl and three benzylcarbamate functional groups was achieved by hydrogenolvsis 

(Pearlman’s catalyst. H2 50 psi, MeOH. 25 °C, 20 h) affording PhTX-3.4.3 11 as its free base (85 %) 9 21
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The preparation of N1, N2, /V'-tri-fluorenylmethoxycarbonylspermine 13 was attempted following the 

above protocol by reaction with 9-fluorenylmethyl succinimidyl carbonate (4 eq., 0 °C to 25 °C, 15 h) to afford 

protected polyamine 12 (70 %). Selective dcprotection was then investigated using potassium carbonate,’' 1 

sodium borohydride, and hydrazine, but in all cases proved to be unsuccessful yielding mixtures of products.

13 R = H 15 R = H

We have exemplified the gram scale use of N l, N2, N3-tri-BOC-spermine 15 by preparing A/'-3-(4- 

hydroxyphenyl)-propanoyl-spermine 17, acylating protected spermine 15 with 3-(4-hydroxyphenyl)-propanoic 

acid (1.5 eq. DCC, 0.2 eq. HOBt, DCM, 25 °C, 16 h) to afford protected polyamine amide 16 (79 %). 

Deprotection by treatment with TFA in DCM (DCM-TFA 90:10 v/v, 25 °C, 2 h) afforded the polytrifluoro- 

acetate salt o f channel blocking polyamine amide 17 (77 %).2'23 This cation channel blocker is a potent 

analogue o f PhTX-3.4.3 l l . 2,23 3P-(Af!-Spermine)-carbonylcholesterol 19 has recently been developed as a 

novel lead compound11'32'33 for polyamine-mediated DNA condensation in gene delivery.11 Therefore, we 

have prepared unsymmetrical polyamine carbamate 19 by reaction of protected spermine 15 with cholesteryl 

chloroformate (1.2 eq., 3.0 eq. TEA, DCM, 0 °C 10 min then 25 °C 12 h) to yield 3$-N*-(Nl, N2, W3-tri-BOC- 

spermine)carbamoylcholesterol 18 (77 %). Deprotection (DCM-TFA 10:90 v/v, 0 °C, 2 h) and purification by 

RP-HPLC over Supelcosil ABZ+Plus (5 pm) (MeCN-0.1 % aq. TFA 50:50 v/v, X = 220 nm) afforded the 

polytrifluoroacetate salt of polyamine carbamate 19 (50 %).32 Polyamine-steroid (or more simply polyamine- 

lipid) conjugates such as polyamine carbamate 19 are biologically important as non-viral vectors for safe and 

efficient gene transfer with potential application in gene delivery.11,32'33 The practical synthetic routes to 

unsymmetrical polyamine amides and carbamates, reported in this Letter, will find ready application.

RHN,

OH
16 R = BOC
17 R = H ,+

RHN.
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Abstract: Polyamine amides are useful in gene delivery as synthetic (non-viral) vectors 
or mimics of polycationic histones. The application of a homologation strategy, based 
upon reductive alkylation, allows unsymmetrical polyamine amides to be prepared in 
good yield. The interaction of this polyamine amide with calf thymus DNA was 
demonstrated in an ethidium bromide fluorescence quenching assay.
© 1997 Elsevier Science Ltd. All rights reserved.

Gene delivery is an established protocol for the introduction into cells of polynucleic acids in vitro. 
However, although gene therapy has the potential to correct a variety of disorders, including inflammation, 

cancer, neurodegeneration, and cystic fibrosis. Even with more than 200 clinical trials underway worldwide, 

there is still no single outcome that points to a success story.la' lb One current major problem is the vector 

which carries the DNA into the cell. Non-viral vectors represent safe and efficient gene transfer strategies1' 1*1 

which, unlike viral vectors, do not elicit immune responses.1'  Poly-L-lysine2 (n = 55-450) I and transfectam 1'4 

(DOGS, 2) are examples of non-viral vectors capable of delivering DNA to cells in vitro and in vivo through 

DNA condensation , 5'6 non-specific cell binding and internalisation. Spermidine 3 and spermine 4 contain a 3- 

4 methylene spacing between the amino functional groups which means that these molecules are essentially 

fully protonated at physiological pH (i.e. ammonium ions). Therefore, they should interact readily with the 

DNA phosphate backbone, causing condensation by charge neutralisation .7

Transfectam (DOGS) 2poly-L-lysine 1

*H,N‘
H,

sperm idine  3

N'
NH,*

spermine 4

0040-4039/98/S 19.00 <D 1997 Elsevier Science I .id All rights reserved 
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However, these polyamine-DNA interactions are readily reversible under physiological conditions® and 

form one of the plethora of roles played by spermidine 3 and Spermine 4 in vivo, together with polycationic 

histones .5'9 Structure-activity relationship studies (for a review, see: Blagbrough et al.1) with polyamines have 

shown that these molecules are ideally suited to bind to and then condense DNA . 10 In order to reinforce these 

effects, it is apparently beneficial if a lipid is covalently bound to the polyamine moiety, such a lipid can be 

cholesterol, 10' 11 a bile acid , 12 or an aliphatic chain. ' ' '4 In the preceding Letter,1* we reported the rapid and 

efficient synthesis of unsymmetrically protected tri-BOC-spermine using trifluoroacetyl as a protecting group. 

In this Letter, we report the preparation of lipo-spermidine 8  and lipo-spermine 13 using reductive alkylation 

as the key step for the homologation of polyamines and the preparation of unsymmetrical polyamine amides 

which are charged at physiological pH and therefore interact with DNA2"12 to form lipoplexes.lb We are 

utilising the charge distribution found in the natural polyamine spermine 4 as a biomimetic warhead for the 

efficient condensation of plasmid DNA, an essential first step in non-viral gene delivery.

Spermine 4 was selectively protected on one of the primary amino functional groups by reaction with 

ethyl trifluoroacetate (1.0 eq., MeOH, -78 °C for 1 h then to 0 °C over 1 h), to afford a mixture containing 

predominantly mono-trifluoroacetamide, but also di-trifluoroacetamide. Immediately, in this solution, the 

remaining three amino functional groups were BOC protected with di-rerr-butyl dicarbonate (4 eq.. 0 °C to 25 

°C over 1 h) to afford compound 5. The TFA protecting group was then cleaved by increasing the pH to I 1 

with conc. aq. ammonia, stirring (25 °C, 15 h) to afford, after flash chromatography over silica gel (DCM- 

MeOH-conc. NH4OH 70:10:1 to 50:10:1 v/v/v), N ', N 1, N 3-tri-rm-BOC-spermine 6  (50 %). /V-Acylation of 

protected spermine 6  with hexadecanoic acid (1.2 eq., palmitic acid), mediated by DCC (1.5 eq.) and catalytic 

1 -hydroxybenzotriazole (HOBt) (0.2 eq., DMF, 40 °C, 12 h) afforded, after purification over silica gel 

(EtOAc-hexanc 50:50 to 60:40 v/v), tri-BOC protected acylated spermine 7 (95 %). Deprotection by treatment 

with TFA (90:10 TFA-DCM v/v. 25 °C, 1 h) gave the polytrifluoroacetate salt of polyamine amide 8  (60 %), a 

spermidine 3 equivalent carrying three charges at physiological pH.

7 R = BOC
8  R = H2+

3-Aminopropan-l-ol was Z-protected under Schotlen-Baumann conditions (1.1 eq. Z-CI. I M aq 

NaOH, DCM. 0 to 25 °C. 4 h, 60 %). Swern oxidation of the primary alcohol was then achieved b\ reaction 

with DMSO activated with oxalyl chloride (DCM. -78 °C), to afford, after purification over silica gel (EtOAc). 

Tcarbobcnzoxyaminopropanal (82 %)
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Reductive alkylation of the primary amine in 6(1.2 eq.) with this aldehyde ( 1 .0 eq.. 1.5 eq. NaCNBHj, 

cat. CHjCOOH, anhydrous MeOH, 25 °C, 24 h) gave protected amine 9 which was purified over silica gel 

(DCM-McOH-conc. NH4OH 100:10:1 v/v/v). Secondary amine (/V4) was BOC-protccted (1.2 eq. (B 0C )20 , 

DMF. 25 °C. I h. then quenched with NH4OH) to form fully protected polyamine 10. Selective removal of the 

Z carbamate was then achieved by hydrogenolysis (Pearlman’s catalyst Pd(OH)2, MeOH. 25 °C. 12 h) to yield, 

after purification over silica gel (DCM-MeOH-conc. NH4OH 150:10:1 to 100:10:1 v/v/v), protected polyamine 

11 (47 %). A/Acylation of primary amine 11 with palmitic acid (1.2 eq.. 1.5 eq. DCC. 0.2 eq. HOBt. DMF, 

N2, 40 °C, 12 h) afforded, after purification over silica gel (EtOAc-hexane 50:50 to 60:40 v/v), poly-BOC 

protected polyamine amide 12 (95 %). Deprotection by treatment with TFA in DCM (10:90 TFA-DCM v/v, 

25 °C, 2 h) gave the polytrifluoroacelaie salt of lipo-spermine polyamine amide 13 (55 %).

12 R = BOC
13 R = H2*

Lipo-poiyamine conjugates 8  and 13 interact with DNA (forming lipoplexes) as demonstrated by an 

ethidium bromide (EthBr) 14 fluorescence quenching assay . 143 Prevention of EthBr binding to DNA is a 

method of studying the binding behaviour of polyamines with nucleic acids. 14 16 While the modes of binding 

to DNA of aliphatic polyamines and EthBr (a polyaromatic intercalator) are certainly different, this assay does 

offer a qualitative comparison of the DNA-binding ability of similar classes of compounds. 15' 16 We have used 

poly-L-lysine 1 (n = 255) and spermine 4 as our standards. 144 Lipopolyamines 8  and 13 interact with calf 

thymus DNA in a manner consistent with DNA condensation and lipoplex formation The IC50S were 

determined (see graph) and are respectively 0.75 and 0.52 (charge ratio) compared to 0.75 and >4 (charge 

ratio) for poly-lysine 1 and spermine 4 respectively. Thus, lipo-spermidine 8  is essentially equipotent with the 

standard poly-L-lysine 1. Lipo-spermine 13 has significantly higher binding-affimty for DNA than either 8 or 

I, and all three of these molecules have higher binding-affinity for DNA than free (un-conjugated) spermine 4

1 M
i-

h2n

ethidium bromide 14
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Behr and co-workers have highlighted the key role played by spermine 4, and established that inany 

properties besides DNA binding strength and compaction are important for efficient gene transfer.4 

Optimisation of the lipid moiety will require the preparation of generations of analogues.10 Furthermore, there 

is no obvious correlation between in vitro activity and in vivo potency with respect to gene delivery.,t’ Our 

approach allows unsymmetrical polyamine amides to be readily prepared on a gram scale without resorting to 

multiple chromatographic purification procedures which will be useful in this optimisation procedure.1'
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Synthesis o f cholcsterol-polyaminc carbamates: pK a studies and condensation 
o f calf thymus DNA
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" Department o f  Pharmacy and Pharmacology, University o f Bath, Claverton Down, Bath, UK BA2 7'AY 
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Novel cholesterol-polyamine carbamates have been pre­
pared and their pK ŝ determined potentiometrically for 
conjugates substituted with up to five amino functional 
groups and the binding affinity for calf thymus DNA has 
also been determined; these polyamine carbamates are 
models for lipoplex formation with respect to gene delivery 
(lipofection), a key first step in gene therapy.

Polyam ines such as tetra-amine spermine 1 are widely distrib­
uted in nature and display a variety o f  important biological 
activities. *-2 Polyam ines affect DNA replication and translation, 
protein synthesis, membrane stabilization and the activity o f  
certain  kinases and topoisomerases. Stabilization o f  specific 
D NA  conform ations and charge neutralisation o f intracellular 
polyanions (e.g. DNA and RNA) may be among the most 
im portant physiological roles o f polyamines. Their binding has 
a  profound effect on DNA structure, causing transitions from B 
to both A and Z  forms, and at higher concentrations conforma­
tional changes, e.g. aggregation and condensation.2-3 Condensa­
tion is caused by alleviation o f charge repulsion between 
neighbouring phosphates on the DNA helix allowing collapse 
into a m ore com pact structure.3 Polyamine mediated condensa­
tion is a rapidly expanding area of research for non-viral vectors 
in gene therapy (lipoplexes in lipofection).4

T he application o f  synthetic lipo-polyamines constitutes a 
safer and m ore efficient gene transfer strategy which, unlike the 
use o f  viral vectors, does not elicit immune responses.5 Within 
the prerequisites for delivery o f DNA across an intact 
cytoplasm ic m em brane arc condensation and masking the 
negative charge o f the phosphate backbone; polyammonium 
ions are therefore suitable for use as gene delivery systems.6-7 
C ovalent attachm ent o f a lipid moiety,8 such as an aliphatic 
chain2-7-9 or a steroid,6-l0-11 further enhances polyamine- 
m ediated DNA condensation.12 The mechanism by which these 
com pounds cause lipofection is poorly understood. Knowledge 
about the pA'aS, especially accurate prediction along a poly­
am ine (polyam m onium ) chain, will allow protonation states at 
physiological pH to be determined and therefore DNA binding 
affinities can be predicted with greater confidence. Such 
physicochem ical properties are important in the design o f 
lipoplexes for efficient lipofection.

H erein we report the design and synthesis of polyamine 
carbam ates o f cholesterol (at position 3), using our orthogonal 
protection stragegy for efficient syntheses of unsymmetrical 
polyam ine am ides.13 Six compounds have been made using 
polyam ines: l,I2-diam ino-4,9-diazadodecane 1 (spermine,
3 4.3), 1,1 1 -diamino-4,8-diazaundecanc (ihcrmine, norspcr- 
mine, 3.3.3), 1 ,10-diamino-4,7-diazadccane (3.2.3), 1,9-diam- 
ino-3,7-diazanonane (2.3.2), tetraethylenepentamine 2 (2.2_2.2) 
and pentaethylenehexam ine (2.2.2.2.2) affording 6—11 re­
spectively. O ur protocol for the synthesis of carbamate 10 is 
ou tlined .t The pKa values o f these compounds were then 
m easured using a Sirius PCA101 automated p/C, titrator, in 0.15 
M KC1 ionic strength adjusted water; values obtained for 
sperm ine (3.4.3) 1 arc comparable with literature values 
determ ined both potentiometrically and spectroscopi­
ca lly .14- 16

HjN

RN
H

Spermine (3.4.3) 1

H
.N R 1

2 R = H. R1 = H
3 R = H, R1 =COCF3
4 R = Boc, R1 = COCF3
5 R = Boc, R1 = H

u

H

6 m = 2, n = 1 
7m =  1, n= 1 
6m  = 0 , n=1  
9 m= 1, n-Q

H2N
H
N.

10 n --
11 n =

T he DNA binding affinities for this series o f polyamine 
conjugates 6 -11  were determined using calf thym us DNA (6 
pg, [DNA base-pair] = 3.0 p M ) ,§  and a fluorescence quenching 
assay based upon exclusion of ethidium bromide which is 
effectively present in excess (1.3 p M ) . 1112 T he binding 
affinities are critically compared as both the charge ratio4 and 
concentration at which 50% o f the ethidium brom ide fluores­
cence was quenched (in 20 m M  NaCl, see Table 1). T hese data 
give support to our hypothesis that binding is a function of 
charge and that the regiochemical distribution of such charges is 
also significant for DNA affinity; conjugates 3.4.3 6, 3.3.3 7, 
3.2.3 8 and 2.3.2 9 show this trend. Likewise, polyethylene 
imine conjugates 10 and 11 were (respectively) w eaker with 
only 2.0 charges at pH 7.4 and stronger wtih 2.3 charges 
distributed along the polyamine. Carbamates 7 and 1 1 have 
comparable pAT.s across the first three protonation sites, but 
their structural differences arc reflected in their DNA binding 
affinities (Table 1). Tlic.se subtle differences in DNA conden 
sation as a function of charge distribution arc clearly important 
for lipoplex formation when compared with the higher charge 
on unconjugatcd spermine (3.8 al pH 7.4).

In a recent, comprehensive paper on the role o f charge in 
polyamine analogue recognition, Bergeron ct al. demonstrated 
that sm all structural alterations resulted in substantial differ 
cnccs in biological activities.15 pA",s arc a function o f  the inter 
amine distance as well as their substituents. It is important to 
recognise that any charge is shared across several o f the basic
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Table I Polyamine pAf.s sa l ethidium bromide exclusion data

Polyamine Measured p K j Net charge* Charge ratio* Conc7|«M*

1 10.9 xO.Ol 
10.1 x 0.01 
8.9 x 0.01 
8.1 x 0.01

3.8 >4.0 > 17 0

6 10.1 x 0.06 
8.6 x 0.06 
7.3 x 0.05

2.4 0.62 1.3

7 10.7 x 0.04 
8.8 x 0.02 
7 2 x 0.02

2.3 0.76 16

8 10.0 x 0.02 
8 .0 x 0 .0 2  
5.5 x 0.02

1.8 0.80 1.7

9 9.3 x 0.01
7.6 x 0.0!
5.7 x 0 .01

1.6 0.88 2.4

10 9.9 x 0.20 
8.4 x 0.20 
6.3 x 0.21
3.9 x  0.21

2.0 0.92 2.7

11 10.2 x 0.10 
8.6 x 0.08 
7.2 x  0.09
4.4 ± 0.09
2.5 x 0.28

2.3 0.66 1.3

* Net positive charge calculated from the Henderson-Hasselbach equation 
at pH 7.4. * Charge ratio4 at which 50% exclusion o f ethidium bromide is 
effected using calf thymus DNA at pH 7.4. c Concentration o f polyamine 
conjugate at which 50% exclusion of ethidium bromide (1.3 HM) is effected 
using calf thymus DNA (3.0 jtm) at pH 7.4.

centres and that it cannot be attributed to a single point. Even 
when the first charge is introduced principally on the primary 
amine, it is also distributed on to the secondary amines. This has 
been shown using unsymmetrical triamine, spermidine.17

The four methylene central spacer found in spermine 1 has 
also been shown to be important for binding affinity, confirming 
that both the number o f positive charges and their distribution 
has a profound effect on the polyamine’s ability to induce DNA 
conform ational changes.11 The measured pKMs for polyamines 
containing am inopropyl16 and aminoethyl10 units and Trans- 
fectam (D O G S)7-19 add further weight to this hypothesis. These 
results w ill be o f use in gene therapy studies and should find 
ready application in the design o f lipoplexes with particular 
reference to spermidine and spermine class alkaloids. This 
evaluation o f  pATa data, the number and regiochemical distribu­
tion o f charges along the polyamine backbone, may lead to a 
clearer understanding of lipoplex modes of action.

W e thank the EPSRC and Celltech Therapeutics Ltd, for a 
CASE studentship (to A. J. G.). We acknowledge some 
prelim inary experimental work o f Ms Dima Al-Hadilhi (U ni­
versity o f Bath) and useful discussions with Dr Ian S. Haworth 
(University o f  Southern California). I. S. B. and I. S. H. arc 
recipients o f a NATO grant (CRG 970290).
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S perm ine and therm ine conjugates of cholic acid condense DNA, 
but lithocholic acid polyamine conjugates do so more efficiently

A n d rew  J .  G ea ll, D im a A l-H adith i and  Ian S. B la g b ro u g h * t

Department ojPharmacy and Pharmacology, University of Bath, Claverton Down, Bath. UK BA2 7AY

Polyam ine am ides have been prepared from cholic and  
lithocholic acid  by acylation of tri-Boc protected sperm ine 
and  therm ine  and  their binding affinities for ca lf thym us 
D NA  w ere determ ined  using an ethidium  brom ide fluores­
cence quench ing  assay; these polyamine amides arc  models 
for lipoplex form ation  with respect to gene delivery (lipofec­
tion), a  key first step in gene therapy.

Amongst polyamine-containing natural products,1 polyamino- 
steroids form a novel, small group whose members and their 
analogues display a variety of interesting biological activities. 
Following DNA binding studies with synthetic polyamino- 
steroids such as dimer 1, up to four structural features contribute 
to the strength and type of DNA interactions: total number of 
positive charges, cation type, regiochemical distribution of the 
ammonium groups, and steroid hydrophobicity.2̂ 1 Recently, a 
so-called molecular umbrella 2 has been constructed from 
cholic acid 3 and spermidine, creating structures that can mask 
an attached agent (dansyl as a drug mimetic) from the 
surrounding environment.5 Polyamino-steroid squalamine, iso­
lated from liver and gallbladder tissues of the dogfish shark, 
Squalus acanthias, is a spermidine-containing sterol sulfate 
which displays antimicrobial and fungicidal properties, and 
induces osmotic lysis of protozoa.6-8 Walker and co-workers

HO''

1 Aminosteroid dimer

o=s=o

n (c h 3i :

2 Aminosteroid dimer

3 R = OH R' = OH
4 R = H R' = OH
5 R = OH R' = pentaelhylenehexam ine
6 R = H R' = pentaelhylenehexam ine
7 R = a -glucoside R’ = pentaethylenehexam ine
8 R = H R' = thermine
9 R = H R' = spermine

10 R = OH R' = thermine
11 R = OH R' - spermine

have recently reported the DNA binding affinity and in vitro 
gene delivery potential of various polyamines conjugated to 
cholic and lithocholic acids 3 and 4 9 Although most of their 
transfection agents contained a cationic head group attached to 
a hydrophobic tail (e.g. cholic and lithocholic acid derivatives 5 
and 6), the more hydrophilic bile acid conjugate 7 had the 
greatest transfection activity.9

As part of our continuing studies on polyamine-mediated 
DNA condensation,10-12 we have synthesized polyamine con 
jugates of cholic and lithocholic acids 3 and 4 in order to 
investigate the effects of changes in hydrophobicity on their 
binding affinity to DNA. Cholic acid 3 is a sterol nucleus with 
a hydroxylated hydrophilic surface and an all-hydrocarbon 
hydrophobic surface, possessing the 5f)-cholane ring structure 
(a c/s-fused A,B-bicycle). The binding of polyamines to DNA is 
not a trivial process,2-411-1' spermine and spermidine may bind 
preferentially to GC-rich major groove and to AT-rich minor 
groove regions.11 Structure-activity relationships for the bind 
ing of polyamines to DNA, and the subsequent condensation of 
DNA, indicate that polyammonium ions are suitable for use as 
gene delivery systems.10-14 Covalent attachment of a lipid 
moiety, such as an aliphatic chain or a steroid, further enhances 
polyamine-mediated DNA condensation. The mechanism by 
which these compounds cause lipofection is poorly under 
stood.12-15 Therefore, it is important to determine their 
physicochemical properties for the design of lipoplexes capable 
of efficient lipofection.1216

Herein we report the design and synthesis of polyamine 
amides of lithocholic acid 4. using our orthogonal protection 
strategy with polyamines thermine (1,11-diamino-4.8-diazaun- 
decane, norspermine, 3.3.3) and spermine (1.12-diamino 
4,9-diazadodecane, 3.4.3) affording 8t and 9 respectively, and 
the corresponding cholic acid amides 10 and 11.10-12 The 'H 
NMR spectra ((2H6]DMSO) of their poly-7 FA salts all 
displayed broad ammonium signals at 5 8.00, 8.79 and 8.98 
(exchanged with 2HiO). In addition, signals at 51.20 (1:1:11.'./ 
= 51 Hz, l4N-'H) were observed for these ammonium ions 
which we interpret as due to the symmetry of the RMNH, 
cations.17 The DNA binding affinities ot these polyamine bile 
acid conjugates were determined using calf thymus DN A and a 
fluorescence quenching assay based upon ethidium bromide 
exclusion.18 The pK.A values of these compounds were assumed 
to be similar to their 3-cholesteryl carbamate analogues.1- In 
our hands, all members ot this series of polyamine amides 8 -1 1 
were water soluble (at I mg ml ').9 The binding altinitics ot 
these polyamine conjugates have been critically compared as ,i 
function of the charge ratio at which 50% (CRs,,) ot the 
ethidium bromide fluorescence was quenched (measured m 30 
iu m  NaC'l). Lithocholic acid conjugates 8  and 9 displ.oed ( K 
values of 0.5 and 0.7 respectively (big. I), and these results 
compare favourably with those obtained using the .'-chotcslcix I 
carbamate of spermine (( Rm, 0.03) 1 However, cholic acid 
conjugates 10 and 11 have significantly weaker binding 
affinities, displaying CRsu values ot 5.4 and 5.9 respectively, 
comparable with spermine (>4.0) (big. I) Applying the 
calculation of Burrows and co-workers.- and using .v'0 Da as 
the mean weight per nucleotide.H> the C>(i values ot 8 9. 10 and 
II are 3.5. 5.4. 42.0 and 45.9 u\i respectively I'he polv
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Fig. 1 Ethidium bromide exclusion assay results (calf thymus DNA, (DNA 
base-pair] = 3.0 pm. 1.3 um ethidium bromide, 20 ihm NaCl, excitation A 
= 260 nm, emission A = 600 nm) showing (♦ )  spermine, (■) lithocholic 
acid-thermine conjugate 8, (A) lithocholic acid-spermine conjugate 9, ( • )  
cholic acid-thermine conjugate 10 and (X) cholic acid-spermine conjugate 
11

electrolyte theory of M anning19 predicts that when 90% of the 
charge on the DNA is neutralized, condensation will occur.13 
DNA condensation is clearly an efficient process with litho­
cholic acid polyamine amides 8 and 9 and with 3-cholesteryl 
carbam ates (CR50 < 1.0), however an excess o f positive 
charges is required for cholic acid polyamine amides 10 and 11 
and for free spermine (CR50 > 4.0) to condense calf thymus 
DNA, reflecting their significantly weaker binding affinities for 
DNA. Whilst hydrophobicity is important for minor groove 
recognition,20 DNA condensation is dependent upon hydro­
phobicity and distance between positive charges,21 as well as 
total num ber of charges.13 These data give support to our 
hypotheses that DNA binding and DNA condensation are also a 
sensitive function of the lipid attached to the polyamine, as well 
as a function of the positively charged polyamine moiety.
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DNA Condensation by Bile Acid Conjugates of Thermine 
and Spermine

IA N  S. B L A G B R O U G H , D IM A  A L -H A D IT H I A N D  A N D R E W  J. G E A L L  

Department o f Pharmacy and Pharmacology, University o f Bath, Bath BA2 7A Y, UK

Abstract
D N A  co n d en sa t io n  w as a ch iev ed  w ith  p o ly a m in e  con ju ga tes o f  b ile  acids. Sperm ine and  
th erm in e , lin ea r  tetraam ines, w ere  m o n o -a cy la ted  on  a prim ary am in e w ith  ch o lic  and  
lith o c h o lic  a c id s .

T h e  resu ltin g  p o ly a m in e  am id es w ere  tr iam in es con ta in in g  eith er  a propyl-b uty l or a 
d ip ro p y l sp a c in g . T hus, the form er m im ic s  both  the p o s itiv e  charge and its reg ioch em ica l 
d istr ib u tion  fo u n d  in  the natural product sp erm id in e. C a lf  thym us D N A  w as ex ten d ed  by  
saturation  w ith  an intercalator, e th id iu m  b rom id e. D N A  b in d in g  affin ity  w as then m easured  
by flu o r e sc e n c e  q u en ch in g  w ith  d e tec tio n  o f  resid ual in terca lated  eth id iu m  brom ide at 
6 0 0  nm .

T h e  resu lts  ob ta in ed  w ith  this e x c lu s io n  a ssa y  sh o w  that p o ly a m in e  lith o ch o lic  acid  
co n ju g a te s  c o n d e n se  D N A  m ore e ff ic ie n tly  than the an a lo g o u s c h o lic  acid  p o lyam in e  
a m id es .

T h e  b in d in g  o f  p o ly a m in e s  has a profound e ffe c t  on  
D N A  structure, c a u s in g  transitions from  B  to  both  
A  and Z  fo rm s o f  D N A  (T h om as &  M essn er  1988;  
F eu erste in  e t a l 1 9 9 0 , 1991; D e lcro s  e t al 1993; 
R o d g er  e t a l 1994; P an ag io tid is  e t  al 1995 ). A t  
h ig h er  co n cen tra tio n s , p o ly a m in es  m ed ia te  c o n ­
form ation a l c h a n g e s  su ch  as D N A  aggregation  and  
c o n d e n sa t io n  (G o su le  &  S ch e llm a n  1976 , 1978; 
C hattoraj e t  al 1978; W ilso n  &  B lo o m fie ld  1979; 
W id o m  &  B a ld w in  1980; B asu  et al 1990; S tew art  
& G ray 1 9 9 2 ). C o n d en sa tio n  is ca u sed  by a lle v ia ­
tion  o f  the ch a rg e  rep u ls io n  b e tw een  n eigh b ou rin g  
p h osp h ates o n  th e  D N A  h e lix  a llo w in g  c o lla p se  
in to a m ore  c o m p a c t structure (B lo o m fie ld  1991 , 
1996 , 1997  ). D N A  co n d en sa tio n  is dep en d en t upon  
three ch a ra cter istic  p rop erties o f  the natural or  
sy n th etic  p o ly a m in e s: the num ber o f  p o s itiv e  
ch a rg es w h ic h  th erefore  in flu en ce the loca l ion ic  
strength  (B a su  &  M arton 1987; Stew art &  G ray  
1992; D e lc r o s  e t a l 1 993 ); the reg io ch em ica l d is ­
tribution  o f  th e se  ch a rg es w h o se  pK a va lu es are 
in tim a te ly  d ep en d en t upon their coop era tiv ity  
(B asu  &  M arton  1987; B asu  et al 1990; D e lcro s et 
al 1993; G ea ll et al 1998b); and the loca l salt 
con cen tra tio n  (T ik ch o n en k o  et al 1988; B asu et al 
1990). T h e  p rereq u is ites  for d e liv ery  o f  D N A

Correspondence: I. S. Blagbrough, Department of Pharmacy 
and Pharmacology, University of Bath. Bath BA2 7AY, UK. 
E-Mail: prsisb@bath.ac.uk

across an intact cy to p la sm ic  m em brane are c o n ­
d en sa tion  and m ask in g  o f  the n ega tive  ch arges o f  
the p h osp h ate b ack b on e (B eh r 1993 ). S p erm in e and  
sp erm id in e (F igu re 1) are tw o  o f  the sm a lle s t n at­
ural p o ly ca tio n s  cap ab le  o f  e ffe c tin g  both  ch arge  
n eu tra lization  and con d en sa tion  o f  the p o ly n u c le ic  
acid  (T abor & T abor 1984; F euerstein  et al 1 9 9 0 ). 
H o w ev er , th ese  in teraction s are read ily  rev ersib le  
under p h y s io lo g ica l co n d itio n s (B ehr 1 9 9 3 ). 
Ind eed , m any stu d ies have sh ow n  str u c tu r e -  
a ctiv ity  re la tion sh ip s for the b ind in g  and c o n ­
den sation  o f  D N A  w ith  p o ly a m in es  (A lliso n  et al 
1981; B asu  &  M arton 1987; B asu  e t al 1990; 
F eu erstein  et al 1990: P lum  et al 1990; R ow att &  
W illia m s 1992; Stew art & Gray 1992; G ea ll e t al 
1998a , b), in d ica tin g  that appropriately m o d ified  
p o ly a m in es  are id ea lly  su ited  for u se as g en e  
d e liv ery  sy s tem s w ith c lear  p otentia l in g en e  ther­
apy (C rysta l 1995; F eign er 1997; M ahato e t al 
1997; O ’D risco ll 1997; V erm a &  S o m ia  1997 ). T o  
rein force these e ffe c ts , it is apparently b en efic ia l i f  
a lip id  is co v a len tly  bound to the p o lyam in e  (B eh r  
1986).

S teroidal natural products such  as b u fo to x in  
(F igure 2) and its parental steroid  b u fo ta lin  h a v e  
b een  the subject o f  both c la ss ica l natural product 
iso la tio n  (Pettit &  K am an o 1972; Pettit et al 1987; 
K am an o et al 1988 ) and sem i-sy n th etic  s tr u c tu r e -  
activ ity  stu d ies for m any years (P ettit & K am ano
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Figure I . Structure of the natural polyamines spermine and 
spermidine.

Figure 3. Structures of a monomer and dimer polyamino- 
steroids.
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Figure 2. Structure of the toad venom bufotoxin and shark 
antibiotic squalamine.

1972; S h im ad a  et al 1984; Pettit et al 198 7 ). 
B u fo to x in , the toad v en o m  con stitu en t o f  the E uro­
pean  toad  B u f o  v u l g a r i s ,  p o sse ss  the su b ero y l-  
arg in in e  resid u e at the 3 -h y d ro x y  p o sitio n  o f  its  
stero id  n u c leu s  and sh o w s d ig ita lis - lik e  card iac  
e ffe c ts  (P ettit &  K am an o  1972). Sq u a lam in e (F ig ­
ure 2 ), a p o ly a m in o stero l su lph ate iso la ted  from  the  
t issu es  o f  the d og fish  shark S q u a l u s  a c a n t h i a s ,  is  
another natural product steroid  that is a n ti­
m icrob ia l, fu n g ic id a l and in d u ces ly s is  o f  p ro tozoa  
(M o o re  e t al 1993; M oriarty et al 1994 , 1995; 
S a d o w in k  et al 1 9 95 ). T hus, am ongst p o ly a m in e-  
c o n ta in in g  natural products, p o ly a m in o -stero id s  
form  a sm a ll n o v e l group  w ith  a variety o f  in ter­
e st in g  b io lo g ic a l a c tiv ity .

D N A  b in d in g  stu d ies  w ith  syn th etic  p o ly a m in o -  
stero id s (F igu re 3 ), rev ea led  that up to four stru c­
tural fea tu res con trib ute to the strength and typ e o f  
D N A  interactions: total num ber o f  p o sitiv e  ch arges, 
ca tio n  typ e, r eg io c h e m ica l distribution  o f  the  
a m m o n iu m  grou p s, and steroid  hyd rop h ob ic ity  
(H sieh  e t al 1994 , 1995; M u ller et al 1996). W alk er  
et al (1 9 9 6 , 1998 ) h ave  recen tly  reported the D N A

OH

Lithocholic acidh o -

o

OH

'" o h  Cholic acidHO*

o H H

R =a.-glycoside
HO"

(I

Figure 4. Structure of lithocholic and cholic acids and an 
active in-vitro gene delivery bile acid conjugate.

b in d in g  affin ity  and in -vitro  g e n e  d e liv ery  p o ten tia l 
o f  various p o ly a m in es co n ju g a ted  to c h o lic  and  
lith o ch o lic  ac id s (F igure 4 ). A lth o u g h  m ost o f  their  
tran sfection  agen ts con ta ined  a  ca tio n ic  head  grou p  
attached  to a hydroph ob ic tail, the m ore h y d ro p h ilic  
b ile  acid  con ju gate  (F igure 4 )  had the grea test  
tran sfection  activ ity .

A s part o f  our o n g o in g  stu d ies  on  p o ly a m in e -  
m ed ia ted  D N A  con d en sation  (G ea ll &  B la g b ro u g h

' n h 2

HO"
2: n = 2, R = OH
3: n =  1, R = H 
4 : n = 2, R = H

Figure 5. Structure of target compounds.
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Figure 6. Synthetic route to target compound 2.

1998; G ea ll et al 1998a, b), for the potentia l 
ap p lica tion  o f  p o lyam in e conjugates in gen e ther­
apy (B lagb rou gh  et al 1997), w e have syn th esized  
c h o lic  and lith o ch o lic  acid conjugates o f  therm ine 1 
and 3  and sp erm in e 2 and 4 (F igure 5), in order to 
in v estig a te  the e ffec ts  on chan ges in hydro- 
p h ob ic ity  on  D N A  binding affinity. T he syn th esis  
o f  c h o lic  acid  sperm ine polyam ine am ide 2 is 
o u tlin ed  in F igure 6.

a Jasco PU  9 8 0  pum p coupled  to a Jasco U V  9 7 5  
U V -v is ib le  detector.

S y n t h e s i s  o f  p o l y a m i n e  a m i d e  c o n j u g a t e s  

T ri-B oc sperm ine w as syn thesized  as p rev iou sly  
reported (B lagb rough  & G eall 1998). A -A cy la tion  
o f  the free prim ary am ine o f  N \  N 2 ,  /V3-tri-B O C - 
sperm ine w ith  ch o lic  acid  (1 eq u iv ., C H 2C12, 2 5 °C . 
2 4  h) m ed iated  by 1-hydroxyb en zotriazo le  (0-2  
eq u iv .) and 1 ,3 -d icycloh exy lcarb od iim id e (1-5  
eq u iv .) afforded , after purification over  s ilica  ge l 
(C H 2C12- C H 30 H , 1 5 :1  to 1 0 :1 , v /v ) the fu lly  
protected am id e (86% ). D eprotection  (C H 2C12-  
T F A , 9 0 : 1 0 ,  v /v , 0°C , 2 h )  and purification by R P- 
H PLC  ov er  A B Z  +  Plus ( 5  p m ,  S u p e lco s il)  
(C H 3C H -0 - l%  aqueous T F A , 2 5 : 7 5 ,  v /v . 
X  =  2 2 0  nm ) afforded the polytrifluoroacetate salt 
o f  p o lyam in e am ide 5 (34% ). H R -FA B  m ass  
spectrom etry (p ositive  ion in m -N B A ) found  
5 9 3 -5 0 0 9 9 2  ( M + l ) ,  C 3 4 H 6 5 N 4 0 4  requires
5 9 3 -5 0 0 5 8 2 . *H and 13C N M R  w ere con sisten t w ith  
the structure o f  this m o lecu le .

D N A  b i n d i n g  a f f i n i t y  a s s a y s  

T he D N A  b ind ing  affin ity o f  the target com p ou n d s  
w as m easured u sing  an eth id ium  brom ide fluores­
cen ce  q u en ch in g  assay based on ex c lu s io n  o f  
eth id ium  brom ide (1-3 /iM ) from  c a lf  thym us D N A  
(6  p g ,  D N A  b ase-pair con cn  =  3 p M ) (G ershon  et 
al 1993). C o m p lex es  o f  D N A  and conjugate w ere  
preform ed (incubated  at room  tem p, for 3 0 m in )  
and then im m ed ia te ly  before an alysis, eth id iu m  
brom ide (3 p L ,  0 -5 m g m L  ') w as added and the
flu orescence m onitored (xe - 2 6 0  nm .
^emiss =  6 0 0  nm; 1 cm  path length g la ss  cu vette ). 
A ffin ity  w as cr itica lly  com pared for con ju gates 1 
4  as a fu n ction  o f  charge ratio in Figure 7. W e a lso

M a te r ia ls  and  M eth o d s

M a t e r i a l s

A ll c h e m ic a ls  and reagents w ere purchased from  
S ig m a -A ld r ich -F lu k a  (G illingh am . U K ) and w ere  
of the h igh est grade available. S o lven ts (H PL C  
grade) w ere  purchased from F isons (L oughbor­
o u gh , U K ) and w ere used w ithout further pur­
ification . F lash co lu m n  chrom atography used dry 
packed  S orb sil C 60-H  silica  gel purchased from  
M erck (E c c le s , U K ), used according to the m ethod  
o f  S till et al (1 9 7 8 ) w ith pressure applied  using a 
hand b e llo w s . Isocratic HPLC w as perform ed u sing

O) 40

12
Charge ratio

Figure 7. Ethidium bromide fluorescence assay based on the 
work of Gershon et al (1993) at 20 mM NaCl. ♦ . 3 litho-3.3 3: •
1 cholic-3.3.3; A, 2 cholic-3.4.3; ■. 4 litho-3.4.3; x. spermine 
3.4.3
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Figure 8. Ethidium bromide fluorescence assay based on the 
work of Cain et al (1978) at 20 mM NaCl. ♦ . 3 litho-3.3.3; • ,  1 
cholic-3.3.3; A, 2 cholic-3.4.3: ■. 4 litho-3.4.3; x, spermine 
3.4.3.
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Figure 9. Ethidium bromide fluorescence assay based on the 
work of Cain et al (1978) at 150mM NaCl. A. 2 cholic-3.4.3; 
■ 4 litho-3.4.3; x, spermine 3.4.3; O, 5 cholesterol-3.4.3.

Figure 10. Spermine cholesteryl carbamate.

used  an eth id ium  brom ide d isp lacem en t assay  
based  on the work o f  C ain et al (1 9 7 8 ) to an alyse  
the b in d in g  affinity o f  these b ile a c id -p o ly a m in e  
con ju ga tes. T h is m ethod is rapid and in vo lves the 
add ition  o f  m icrolitre fractions o f  p o lyam ine c o n ­
ju ga te  to a 3-m L  so lu tion  o f  eth id ium  brom ide  
(1-3 //M) and ca lf  thym us D N A  (6 /tg , D N A  base- 
pair con cn  =  3//M ) in buffer (2 0  mM N aC l); the 
d ecrease  in fluorescen ce recorded after each ad d i­
tion ( l m in  equilibration  tim e) (F igure 8). Salt 
d ep en d en ce  o f  the b inding affinity o f  con ju gates 2 
and 4  w as a lso  investigated  using this assay at 
p h y s io lo g ica l salt concentration  (1 5 0  mM N aC l)

(F igure 9), and com pared w ith sperm ine ch o lestery l 
ch loroform ate (F igure 10) and sperm ine.

R esu lts  and  D iscu ss io n

T he polyelectro ly te  theory o f  M anning (1 9 7 8 )  
predicts that w hen 90%  o f  the charge on D N A  is 
neutralized , condensation  w ill occur (B lo o m fie ld  
1991, 1996, 1997). D N A  cond en sation  is c lear ly  an 
effic ien t process with lith och o lic  acid p o lyam in e  
am ides 3 and 4. An ex cess  o f  p ositive  charge is 
required for ch o lic  acid po lyam in e am id es 1 and 2 
in order to condense foreign  D N A . T h ese  data  
support our hypothesis that D N A  b inding affin ity  
and conden sation  are a sen sitiv e  function  o f  
hydrophobicity . In this paper, w e used an eth id ium  
brom ide exc lu sion  assay based on the w ork o f  
G ershon et al (1 9 9 3 ) and found it to be a particu­
larly sen sitive  assay. At high and low  charge ratios 
(p o ly a m m o n iu m -D N A  phosphate), w here the 
fluorescence intensity is at its extrem e va lu es, tim e  
dep en d en ce is not observed . H ow ever, at inter­
m ediate charge ratio values, tim e d ep en d en ce w as  
observed . W e have found that variable results are 
obtained at these interm ediate charge ratios. Fur­
therm ore, this assay protocol is tim e con su m in g , as 
each  data point must be prepared in ind ividual 
v ia ls. C on versely , the d isp lacem en t assay  o f  C ain et 
al (1 9 7 8 ), previously  used to  com pare the b ind ing  
affin ity o f  both intercalating and non -in tercalating  
drugs, is particularly rapid (requiring on ly  seco n d s)  
and provides com parable results w ithout any s ig ­
nificant variability at interm ediate charge ratios. In 
this assay, the fluorescence en han cem ent is due to 
direct excitation  o f  the intercalated eth id ium  bro­
m ide (2excit =  5 4 6  nm, Aemiss =  595  nm ). In our 
adaptation, w e have indirectly  ex c ited  the eth id ium  
brom ide by energy transfer from  the D N A , in a 
sim ilar m anner to that proposed  and used by G er­
shon et al (1993 ). T his produces sign ifican tly  
increased  lev e ls  o f  fluorescence.

Interestingly, the predicted log  P va lu es for these  
com p ou n d s (1 -25, 1 -55, 5-34, 5-64, 10-18 for c o m ­
pounds 1 - 5 ,  resp ectively ) using  A d van ced  C h em ­
istry D evelop m en t Inc. (A C D L ab s, T oronto, O N )  
L og P com puter prediction program m e, sh ow  a 
correlation  betw een  increasing b ind ing affin ity and 
increasing hydrophobicity o f  the lip id  co v a len tly  
attached to the polyam ine. T he sig n ifica n ce  o f  the 
increased  hydrophobic driving force o f  the c h o ­
lesterol 5 and lith och o lic  acid  4  con ju ga tes  over  
free sperm ine and the ch o lic  acid  2 conju gate  
b ecom es apparent at e levated  salt con cen tration s  
(F igure 9).
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Abstract
N o v e l ch o les tero l p o lyam in e  carbam ates w ere  prepared and their pK a va lu es determ ined  
p oten tio m etr ica lly . U sin g  the H e n d e r s o n -H a s se lb a c h  eq uation , their charge, at p h y sio ­
lo g ic a l pH , w as determ ined . B in d in g  a ffin ity  fo r  c a lf  thym us D N A  w as m easured  u sin g  an 
e th id iu m  brom id e ex c lu s io n  assay  (f lu o r e sc e n c e  q u en ch in g).

T h e se  ch o les tero l p o lyam in e  carbam ates are m o d e ls  for  lip o p lex  form ation , the first and 
a k ey  step  in  g en e  d elivery .

P u tresc in e  ( 1 ,4 -d iam in ob u tan e), sp erm id in e and  
sp erm in e  are naturally  occurring d i- and p o ly ­
a m in es  p resen t in m any c e lls  at up to m illim o la r  
co n cen tra tio n s  (A m e s  &  D ubin  1960; T abor &  
T abor 1984; Y o sh ik a w a  & Y o sh ik aw a  1995 ). A t  
p h y s io lo g ic a l io n ic  strength and pH  co n d it io n s , 
th ese  s im p le  lin ear  a liphatic p o ly a m in es  are 
e sse n tia lly  fu lly  protonated (p o s itiv e ly  ch arged )  
and, to g e th er  w ith  m agn esiu m , th ey  accou n t for the  
m ajority  o f  in tracellu lar ca tion ic  ch arge (T abor &  
T abor 1984; P eg g  1988; P an ag io tid is et al 199 5 ). 
T h ese  b io g e n ic  am ines (p o ly a m m o n iu m  io n s)  
a ffec t D N A  rep lica tion  and translation , protein  
sy n th es is , m em b ran e stab ilization , and the a c tiv ity  
o f  e n z y m e s  su ch  as k inases and to p o iso m era ses  
(F eu erste in  et al 1990). S o m e o f  th ese  e ffe c ts  are 
p o ly a m in e -sp e c if ic  w h ile  others are d ue to th e  
gen era l c a tio n ic  nature o f  these a lip h atic  c o m ­
p ou n d s (P a n a g io tid is  et al 1995). T h ey  ex h ib it  
sp ec ia l ch aracter istics in clu d in g  a unique ch arge  
d istr ib u tion , and a hyd rophobic p o ly  m eth y len e  
b a ck b o n e  w h ich  a llo w s  secon dary  in teractions and  
structural f lex ib ility . At p h y sio lo g ica l co n cen tra ­
tion s, p o ly a m in e s  enh an ce the b in d in g  o f  severa l 
p rotein s to D N A , but inhib it others; the d egree  o f  
en h a n cem en t correlates w ith  the ca tio n ic  ch arge  
(P a n a g io tid is  et al 1995). It has been  postu lated  that 
ch arge neutra liza tion  o f  intracellu lar p o ly a n io n s  
such  as D N A  and R N A  m ay be am on g  the m ost 
im portant p h y s io lo g ic a l roles o f  th ese  co m p o u n d s  
(T abor & T abor 1984). In -v iv o  stab iliza tion  o f
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sp ec ific  D N A  con form ation s , by p o ly ca tio n ic  
co m p o u n d s in c lu d in g  p o lyam m on iu m  io n s  
(B lo o m fie ld  1997 ), m ay be im portant for p ro cesse s  
su ch  as n u c leo so m e  form ation  (G am er & F e lsen -  
fe ld  198 7 ), chrom atin  con d en sation  (S en  &  
C rothers 1986) and g en e  exp ress ion  (R ich  et al 
1984 ). E v id en ce  from  the crystal structures o f  
variou s D N A  seq u en ces  in the presen ce  o f  sp er ­
m in e  in d ica tes that sp erm in e can adopt a w id e  
variety  o f  b in d in g  m o d es , each  o f  w h ich  m ay c o r ­
relate  w ith  d ifferen t p o ly a m in e  fu n ction s (D rew  &  
D ick erso n  1981; G essn er  et al 1989; Jain et al 
1989; C lark e t al 1990). D N A  w ill con d en se  w h en  
the free en ergy  that o p p o ses  D N A  con d en sation  is 
o v erco m e . T h is en ergy  barrier in clu d es the lo ss  o f  
en tropy in g o in g  from  a random  c o il to a co n d en sed  
form , the en ergy  required to deform  (bend) the s t if f  
h e lix  or cau se  lo ca l m eltin g  or k ink ing, and the  
e lec trosta tic  rep u lsion  o f  the charged strands 
(W ilso n  & B lo o m fie ld  1979). It has been sh ow n  
that the con d en sa tion  o f  p o lym ers can b eco m e  
th erm od yn am ica lly  favou rab le under certain p o ly ­
m e r - s o lv e n t  co n d it io n s  (P ost & Z im m  1979). T h e  
free  en ergy  o f  com p acted  D N A  is low ered  by the  
b in d in g  o f  variou s m o le c u le s  in clu d in g  p o ly ly s in e ,  
p o ly a m in es , eth anol and p o ly e th y len e  g ly c o l  
(A lliso n  et al 1981). D N A  con d en sation  is a rapid ly  
exp an d in g  area o f  research for non-viral vectors in 
g en e  therapy (B eh r 1993; B lagbrough  et al 1997; 
F eig n er  el al 1997). D N A  con d en sation  can be  
in d u ced  by a llev ia tio n  o f  charge repulsion  b e tw een  
n eigh b ou rin g  p h osp h ates on  the D N A  h elix  a l lo w ­
in g  c o lla p se  in to  a com p act structure (B lo o m fie ld  
1996, 1997). C o v a len t attachm ent o f  a lip id

mailto:prsisb@bath.ac.uk
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Figure 1. Structure of lipopolyamines: transfectam (1), 
RPR 120535 (2), Genzyme lipid 67 (3), Genzyme lipid 63 (4) 
and CTAP (5).

m o ie ty , such  as tw o  aliphatic ch a in s (B eh r et al 
1989; B yk  et al 1998) (transfectam  (1 ) and  
R PR  120 5 3 5  (2); F igure 1), or a stero id  (L ee  et al 
1996; C oop er et al 1998) (G en zy m e  lip id  6 7  (3 ) , 
G en z y m e  lip id  63  (4 ) and C T A P  (5); F igure 1) 
further en h an ces p o ly a m in e-m ed ia ted  D N A  c o n ­
d en sation  (G eall & B lagbrough  1998).

T h e  m ech an ism  by w h ich  lip o p o ly a m in es  ca u se  
lip o fec tio n  is poorly  understood  (B eh r 1993). 
K n o w led g e  o f  pK a va lu es w ill a llo w  protonation  
sta tes at p h y s io lo g ica l pH to be determ in ed  and  
therefore  D N A  in teractions can be pred icted  w ith  
greater co n fid en ce . H ere, w e report the sy n th esis , 
pK a, and D N A  b ind in g  affin ity  o f  p o ly a m in e  car­
b am ates o f  ch o lestero l 6 - 1 1  (F igure 2 ), w here both  
the num ber o f  p o sitiv e  ch arges and the m eth y len e  
sp a c in g  h ave been  varied a lon g  the p o ly a m in e  
m o ie ty . E ach o f  th ese m o lecu le s  therefore has a 
d ifferen t d istribution  o f  ca tion ic  ch arge a lon g  its 
p o ly a m in e  head group w h ich  m ay in flu en ce D N A  
b in d in g  affin ity .

l2N - d > N ' H > N ^ h N T 0 . 
I I n  H I lm  H I I n  H

6 : m = 2 , n = 1

7: m = 1 , n = 1

8 : m = 0 , n = 1 

9 : m = 1 , n = 0

10: n=1
11: n = 2

Figure 2. Structure of target cholesterol polyamine carba­
mates 6-11.

Materials and Methods

M a t e r i a l s

A ll ch em ica ls  and reagents w ere  purchased  from  
S igm a-A ld rich -F lu k a  (G illin g h a m , U K ) and w ere  
o f  the h igh est grade av a ila b le . S o lv e n ts  (H P L C  
grade) w ere purchased from  F iso n s  (L o u g h b o r­
ough , U K ) and w ere u sed  w ith ou t further pur­
ification . F lash  co lu m n  ch rom atograp h y  u sed  dry  
packed Sorb sil C 6 0-H  s ilica  g e l p u rch ased  from  
M erck (E cc le s , U K ), u sed  accord in g  to  the m eth od  
o f  Still et al (1 9 7 8 ) w ith  pressure ap p lied  u sin g  a 
hand b e llow s. Isocratic  H P L C  w as p erform ed  u sin g  
a Jasco P U  9 8 0  pum p co u p led  to a J asco  U V  9 7 5  
U V -v is ib le  detector.

S y n t h e s i s  o f  p o l y a m i n e  c a r b a m a t e s  

T he orthogonal p rotection  strategy  for  e ff ic ien t  
syn th eses o f  un sym m etrica l p o ly a m in e  a m id es  
(B lagbrough  & G ea ll 1998) is o u tlin ed  in F igure 3. 
Sperm ine w as se le c tiv e ly  p rotected  on  a prim ary  
am ino functional group by reaction  w ith  eth y l tri- 
fiuoroacetate (1 eq u iv ., C H ^O H , —7 8 °C  for 1 h then  
to 0°C  over  1 h), to afford a m ixture co n ta in in g  
predom inantly m on o-tr iflu oroacetam id e , but a lso  
di-trifluoroacetam ide (sh o w n  by rev erse -p h a se  
H PLC a n a lys is  o f  the final Z  p ro tection  product 
before s ilica  ge l purification  (F igu re  4 )) . Im m ed i­
ately , in this so lu tion , the rem ain in g  a m in o  fu nc-
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tional groups w ere quantitatively protected with  
d ib en zy l d icarb onate (4  eq u iv ., 0  to 25°C  over I h), 
or d i-/er /-b u ty l dicarbonate (4  equ iv ., 0  to 25°C  
o v er  1 h). T h e T F A  protecting group w as then  
rem oved  (in -situ ) by increasing the pH to 11, with  
con cen trated  aq u eou s am m onia, and stirring (25°C , 
15 h) to afford  after chrom atographic purification  
over  s ilica  g e l (C H 2 CI2 —C H 3O H -con cen trated  aq ­
u eou s N H 3 7 0 : 1 0 : 1  to 5 0 : 1 0 : 1 ,  v /v /v ) ,
/V1, N 2, /V3-tr i-Z -sperm ine (48% ) and /V1, N 2 , N 3-tri- 
B O C -sp erm in e (50% ) resp ectively , from c o n ­
ven ien t, o n e -p o t reactions.

S ix  co m p o u n d s w ere syn thesized  using p o ly ­
am ines: l,12 -d ia m in o -4 ,9 -d ia za d o d eca n e  (sper­
m ine, 3 .4 .3 ), 1 ,11-diam ino-4,8-d iazaundecane (ther- 
m in e, norsperm in e, 3 .3 .3 ), l,10 -d iam in o-4 ,7 -d ia -  
zad ecan e  (3 .2 .3 ) , l,9 -d iam in o-3 ,7 -d iazan on an e  
(2 .3 .2 ) , tetraeth ylen ep en tam ine (2 .2 .2 .2 ) and pen- 
tae th y len eh ex a m in e  (2 .2 .2 .2 .2 ) (com pounds 6 - 1 1 .  
resp ectiv e ly ; F igure 2). In Figure 5, w e outline our 
protocol for the syn th esis o f  carbam ate 6. Reaction

o f  the free primary am ine o f  N \  N 2 ,  N 3-tri-B O C - 
sperm ine w ith ch o lestery l ch loroform ate ( 1 2  
eq u iv ., 3 eq u iv . T E A , C H 2C12, 0°C  for lO m in  then

Figure 4. Reversed-phase HPLC chromatograph of tri-Z- N l- N4- A^-spermine reaction mixture over C-8 capped silica, usine 
gradient elution (01 % aq. TFA-CH^OH, 70:30 to 0: 100 
over 30min).

78°C for 1 h 
78°C over 1h

CH3 OH
CH3 CH2 OCOCF.

0 to 25°C

(BOCLO

BOCN

CH3OH, NH4 OH pH 1 1

BOCN'
II

'N' 
BOC

BOC
■ N. ^  .Nil,

Figure 3. Synthesis ol unsymmetrically protected s|X'rmme

CH3OH/NH4OH pH

ZN'
II
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78°C to 0°C over 1h 
c h 3oh , CH3CH2OCOCF3

1. (Boc)20  0°C to 25°C over 1h
2. Cone' aq. NH3, pH 1 1

O
'N  CF, II

50%

Cholesteryl chloroformate, 
25°C, 1 2h, DCM, TEA

80%OXBoc
BocN N

HBoc

10

11

IIjN

H H

10-9, 8 6, 7 3 
net charge = 2.4

H II H

10-7, 8 8, 7-2 
net charge = 2-3 

11
A

10 0, 8 0, 5-5 
net charge = 1-8

H;N

HjN

9-3, 7 6, 5 7 
net charge = 1 -6 

h  11^ n̂ . n̂ nA
H II

9-9, 8-4, 6 3, 3-9 
net charge = 1 6 

h  v
HjN̂

J ,

T

A
H H H

10-2, 8-6. 7-2, 4-4, 2-5 
net charge = 2-3 

Figure 6. Measured pKa values of steroidal polyamine con­
jugates and net positive charge calculated using the 
Henderson-Hasselbach equation.

to 2 5 CC for 12 h) afforded, after purification over  
s ilic a  gel (E tO A c- hexane, 9 : 1  to 7 : 3 ,  v /v )  the 
fu lly  protected  carbam ate (80% ). D eprotection  
(C H 2C12-T F A , 9 0 : 1 0 ,  v /v ,  0°C , 2 h )  and pur­
ification  by reverse-phase H PLC  over A B Z -f-P lu s  
( 5 /rm, S u p e lco s il)  (C H 3C N -0 - l%  aqueous T F A , 
5 0 : 5 0 ,  v /v .  /. =  220  nm) afforded the polytri- 
fiuoroacetate salt o f  p o lyam in e carbam ate 6 (60% ). 
H R -F A B  m ass spectrom etry (p o sitiv e  ion in m -  

N B A ) found 6 15 -557  ( M + l ) ,  C 36H71N 40 2
requires 615 -5 5 7 . 'H and 1 C N M R  spectral data  
w ere con sisten t w ith the assign ed  structure o f  this 
m o lecu le .

p K a  m e a s u r e m e n t s  a n d  D N A  b i n d i n g  a f f i n i t y  a s s a y  

T he pK a va lu es o f  these com p ou n d s w ere m easured  
u sin g  a Sirius P C A 101 autom ated pKa titrator, in 
0  15 m KC1 ion ic  strength-adjusted water. N et 
p o sitiv e  charge at pH 7-4 (F igure 6) w as ca lcu lated  
u sing  the H en d erso n -H a sse lb a ch  equation. T he  
D N A  binding affin ity o f  p o lyam in e carbam ates 6 -  
11 w as determ ined  using c a lf  thym us D N A  
(c a lf  thym us D N A , D N A  base-pair co n cen ­
tration =  3 /tM, 1-3 /iM eth id ium  brom ide, 20m M  
N aC l, 2cxcil =  2 6 0  nm, 2emiss =  6 0 0  nm) and a

100 
90 
80 

: 70
i 60
; 50 
j 40
i 30
: 2 0  

10 
o

%
\ >

V

* V

0 0-2 0-4 0 6 0-8 1-0 1-2 1-4 
Charge ratio

1 6  1 8  2-0

Figure 7. Ethidium bromide exclusion assay of carbamates 
6-11 as a function of charge ratio. ♦ . 3.4.3.-chol (6): ■ 3.3.3- 
chol (7); ▲, 3.2.3-chol (8); x, 2.3.2-chol (9); j:. 2.2.2.2-chol 
(10); # , 2.2.2.2.2-chol (11).

fluorescence qu enching assay  based  upon eth id iu m  
brom ide ex c lu sio n  (C ain et al 1978; G ershon  et al 
1993; G eall et al 1998). B in d in g  affin ity  o f  p o ly ­
am ine conju gates 6 - 1 1  w as cr itica lly  com pared  as 
both the charge ratio (F e ign er  et al 1997) (F igure  
7), and concentration  (F igu re 8) o f  con ju gate  vs 
d ecrease in eth id ium  brom ide flu orescen ce.

R esu lts  an d  D isc u ss io n

W e p reviously  reported the u se fu ln ess o f  our practical 
and rapid syn theses o f  u n sym m etrica lly  protected

DCM TFA 9:1, 25°C, 2h 
RP-HPLC

v  v  N
H

Figure 5. Synthesis of target cholesterol polyamine carba­
mates.
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Figure 8. Ethidium bromide exclusion assay of carbamates 
6 II as a function of concentration. ♦ , 3.4.3.-chol (6); ■ 
3 3 3-chol (7); A, 3.2.3-chol (8); x, 2.3.2-chol (9); *, 2.2.2.2- 
chol (10); • ,  2.2.2.2.2-chol (11).

p olyam in es (B lagbrou gh  & G eall 1998; G eall & 
B lagbrough  1998). H ere w e present chrom atographic 
data that further confirm s the overall se lectiv ity  o f  
ethyl trifluoroacetate for reaction w ith ^primary 
am ines. T h e crude reaction m ixture o f  /V1, A - , N 3 - tri- 
Z -sp erm ine and its by-products in our trifluoroacetyl 
se lec tiv e  protection  strategy (Figure 3) w as assayed  
by reverse-p h ase  H PLC  (Figure 4). F ive peaks w ere  
iso lated  (reten tion  tim es, 5-6, 7-3, 1 0 0 , 17-3 and  
23-8 m in, c o lle c te d  on  a sem i-preparative scale) and 
their structures w ere confirm ed by 'H and l3C N M R  
sp ectroscop ic  data and m ass sp ectroscop y . A s a result 
o f  usin g  an e x c e s s  o f  d ibenzyl carbonate, there can  
on ly  be three p o ss ib le  polyam ine products if  tri­
fluoroacetate is se lec tiv e  for primary am ines. T h ese  
protected p o ly a m in es are tetra-Z-sperm ine where no  
trifluoroacetyl protection  occurred, /V1, N ~ ,  A '-tri-Z - 
sperm ine, the desired  product, and A 2, A 3-di-Z - 
sperm ine w here tw o  trifluoroacetyl protecting groups 
w ere incorporated (i.e . reaction w ith both primary 
am ino functional groups). T he other tw o peaks in the 
HPLC trace are due to quenching the ex cess  o f  
d ib en zy l carbonate w ith  am m onia, benzyl carbam ate 
and b en zy l a lco h o l (confirm ed by co -e lu tion  with an 
authentic sam p le). R eacting purified A 1, A". /V3-tri- 
B oc-sp erm in e w ith  cholesteryl chloroform ate, and 
then trifluoroacetic acid  deprotection, afforded the 
desired  ch o lestero l sperm ine carbam ate 6 (Figure 5). 
A n alogu es 7  11 w ere sim ilarly prepared.

pK a v a lu es are a function o f  the inter-am ine  
d istan ce as w ell as their substituents and hence not 
all the am in es (a lon g  a p olyam ine chain) arc pro- 
tonated at p h y sio lo g ica l pH. T his is clearly  
dem on strated  in this series o f  com p oun ds (6 11. 
Figure 6 ). Furtherm ore, at p h ysio log ica l pH there 
ex is ts  a ser ie s  o l com p lex  equilibria betw een  the 
am m oniu m  ion s and the corresponding am ines, the 
resp ective  con ju ga te  acid s and bases. It is important 
to reco g n ize  that any charge is shared across s e v ­

eral o f  the basic  centres and that it cannot be  
attributed to a s in g le  point. E ven  w hen the first 
charge is introduced principally  on the prim ary  
am ine, it is a lso  distributed on to the secondary  
am ines. T h is ser ies o f  m o lecu les  all carry different 
charges at pH 7-4 (F igure 6) w hich  are distributed  
on varying len gth s o f  m ethylene chain. In a recent, 
com p reh en sive  paper on the role o f  charge in 
p olyam in e an a logu e recogn ition , Bergeron et al 
(1 9 9 5 ) dem onstrated  that sm all structural a ltera­
tions resulted  in substantial d ifferen ces in b io lo g i­
cal activ ity . T h e reg iochem ical distribution o f  
charges on the p o lyam in e leads to sm all d ifferen ces  
in b inding affin ity  (F igures 7, 8) w hich  m ay be o f  
b io log ica l sign ifican ce . T he four m ethylen e central 
spacer found in sperm ine has been  show n to be 
im portant for b ind ing  affin ity, confirm ing that both  
the num ber o f  p o sitiv e  charges and their d istribu­
tion has a profound e ffec t on the ability  o f  the 
p olyam in e to in d u ce D N A  conform ational ch an ges  
(B asu & M arton 1987; B asu et al 1990; D elcros et 
al 1993). T h e p o lye lectro ly te  theory o f  M anning  
(1 9 7 8 ) requires 90%  o f  the charge to be neutralized  
for effic ien t D N A  con densation . W e have a ch iev ed  
this using  our ch o lestero l p o lyam in e carbam ates. 
T hese results w ill be o f  use in g en e  therapy stud ies  
and should  find ready application  in the d esign  o f  
lip o p lex es w ith  particular reference to sperm id ine  
and sperm ine c la ss  a lkaloids. W e have show n that 
the pKa va lu es o f  p o lyam in e con ju gates 6 - 1 1  are a 
function o f  their interam ine spacing. B ind ing a ffi­
nity has b een  dem onstrated  to be a function  o f  
p ositive  charge. An understanding o f  lip op o lya- 
m in e-m ed iated  D N A  con d en sation  is essen tia l for  
the d eve lop m en t o f  this type o f  non-viral g en e  
d elivery  vector. T h is evaluation  o f  pKa data, and  
the num ber and reg ioch em ica l distribution o f  charges  
along  the p o lyam in e backbone, m ay lead to a clearer  
understanding o f  lip op lex  m odes o f  action.
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