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ABSTRACT

This thesis investigates a particular signal processing problem in the field of underwater 

acoustics, namely that of uncertainty in the shape of a hydrophone array, and of how this affects 

bearing determination. The problem is reduced by characterizing the array shape by a limited Fourier 

Series whose coefficients are to be determined. The processing applied to a particular shape estimate 

is Conventional Beamforming, because of its resilience to high noise levels and minor phase errors.

Degradation of the beam pattern is shown for errors in the various Fourier coefficients. The 

concept of a ’power function’ is introduced — an empirical measure of the degree of focusing in an 

image. It is shown that in the absence of noise, such a figure is maximized for processing using the 

correct values for the coefficients. An investigation is undertaken into the accuracy in array shape 

and source bearing attainable by this process in the presence of various noise effects — additive 

noise, secondary sources and multiplicative noise (the latter representing inhomogeneities in the 

transmission medium).

This is followed by a wider investigation into the changes in value of a power function for 

errors in more than one Fourier term, to show the structure of the variations and to ascertain the 

viability of gradient methods for locating the peak value of this function of many unknowns.
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TABLE OF COMMONLY USED ABBREVIATIONS

AR — Autoregressive

CBF — Conventional Beamforming

CW — Continuous Wave (=pure sinusoid)

CZ — Convergence Zone

DFT — Discrete Fourier Transform

FFT — Fast Fourier Transform

FT — Fourier Transform

KT — Knox-Thompson

LP — Linear Predictor

lms — least mean square

MA — Moving Average

MATE — Mid-ocean Acoustic Transmission Experiment

ME , MEM — Maximum Entropy (Method)

M L, MLM — Maximum Likelihood (Method)

MUSIC — Multiple Source Identification and Classification

NLM — Non-Linear Methods

pdf — probability distribution function

PHD — Pisarenko Harmonic Decomposition

PSD — Power Spectral Density

PSF — Point Spread Function

RI — Refractive Index

rms — root mean square

SI — Speckle Interferometry

SLL — Sidelobe Level

SNR — Signal to Noise Ratio

SPR — Successive Planewave Removal

ssp — sound speed profile

TDE — Time Delay Estimation

USC — Underwater Sound Channel



GLOSSARY

Below is a list of some of the variables used in this work, along with a description of what 

they represent. Some letters are used in more than one context; their main uses are given here.

AR coefficient fo Scale length of fluctuations

Fourier coefficient t Time

Ai Amplitude of source Vi Voltage at element

bi MA coefficient V Summed voltage

B Change in Log-amplitude Wi Element weighting

c Local sound speed */.?«• Element position

Co Reference sound speed a Inter-sensor correlation

d Inter-element separation P Correlation across array

D Length of array Yi Log of multiplicative scalar

«,(0) Steering vector Au Beam width

E[..] Expectation operator A0 Separation/Error in bearing

/ Frequency (cycles/sec) A<J> Phase difference

Fn Array factor Ci Rms/Amplitude ratio

fiix) Basis function f\i Multiplicative scalar

i j Summation indices 0 Scan angle

I Intensity (eqv. power) % Specific angle e.g. source

j Square root of -1 X Wavelength

k Wavenumber (=2k/X) n Fractional change in RI

L Length of array It Correlation length /L

n No. of elements <>A Rms fluctuation in amplitude

n Refractive index Gm S.d. of multiplicative noise

N No. of beams formed <y„ Rms error in angle

Pi Power in direction 0,- Cfx Rms positional error

p m Power in direction 0 Rms fluctuation in phase

n Distance from origin CO Frequency (in rads/sec)
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1. AIM OF PROJECT

When a towed array is used to detect sources in the underwater environment, one of the 

significant problems encountered is that the performance of the signal processing can be badly 

degraded by errors in the assumed positions of the sensors. The aim of this work is to investigate the 

deterioration in quality of a signal’s beam pattern due to such errors, and also the resulting increased 

error in estimation of source direction, and thence to find an approach that will improve the detection 

and tracking capability of the system by determining the parameters that describe the configuration 

of the array.



2. INTRODUCTION TO THESIS

Passive sonar detection of distant submarines is often achieved by use of a towed array — a 

series of hydrophones along a cable towed some distance behind a ship. Many algorithms exist for 

locating sources when the sensor positions are well determined, especially when equally spaced 

along a straight line; however, for the case of interest the positions are neither accurately known nor 

constant in time. This has important effects on the processing that can be applied, and on the ability 

to locate sources.

The work contained herein relates to this signal processing problem, which is investigated 

by analytical and computational means. The first section of this thesis begins with some elementary 

aspects concerning sources of sound in the ocean, and an introduction to a simple beamforming 

technique for locating sources using a linear array of hydrophones. A brief explanation is then made 

of the causes of shape uncertainty and the problem this poses to the processing.

The second part is a literature survey, covering many of the aspects introduced in the first 

section, but concentrating more on the points of particular relevance to this work. The opening 

chapter relates the specific nature of this investigation to similar situations in many diverse areas of 

physics, showing how phenomena like positional uncertainty of detectors and variable transmission 

media are common to all. This indicates why some reference is made to work outside the confines of 

underwater acoustics. However, attention is also drawn to the real differences in scale and relative 

importance of the various phenomena, which prevent the automatic transfer of solutions from one 

field to another. There are chapters summarising the many high resolution algorithms for source 

estimation, the theoretical and observed structure of the refractive index in the ocean, and 

disturbances of the array. The last of these covers observed array configurations, their effect on 

processing, and various authors’ efforts to overcome this problem, either by modelling the 

disturbance or by use of suitable averaging.

This project continues the line first advocated by Muller & Buffington71, and then followed 

by Bucker16, of characterizing the beam pattern for a particular shape estimate by a single value. 

This figure, here termed a ’power function’ is devised to represent the sharpness or quality of the 

image, such that an iterative technique to maximize the value will lead to the correct array shape



being determined. The third section of this thesis details the particular means of this investigation, 

briefly explaining the hardware and software used, as well as the specific implementation used for 

certain subroutines. A list is given of various possible power functions, whose properties are to be 

compared over a variety o f scenarios.

The next two sections contain the results discovered in this project. In the first one the 

emphasis is on array shapes close to true. The opening chapter details the degradation of the beam 

pattern caused by varying errors in the different Fourier coefficients that describe the shape. Note is 

also made of the pointing error associated with positional inaccuracy, and the limits on source 

visibility i.e. the magnitude of errors sufficient for the power lobe in the source direction to be 

superseded by its own sidelobes. Next follows an introductory chapter on power functions showing 

their applicability under perfect conditions (i.e. single source and no noise present), and an 

illustration of the effect of noise. The subsequent chapters are concerned with the best strategy for 

shape determination, contrasting the performance of the different power functions, and investigating 

their dependence on the processing conditions — angular sector of interest, beam sampling rate and 

system of sensor shading used The remainder of this results section then explores how the shape 

accuracy attainable is independent of true array shape, but varies as a function of bearing, frequency 

and levels of additive and multiplicative noise (the latter being a means of modelling fluctuations in 

the refractive index along the transmission path). Where possible, comparison is made to the 

expected dependence upon such terms.

The second section of results relates to a different aspect of the problem. This looks at 

estimates of the array shape that are far from true, and explores the local variation in value of a 

power function. This is in order to determine whether an iterative technique, pursuing a route of 

increasing power function value, will converge to an array shape near the true one or to some other 

whose resultant beam pattern gives no assistance in localizing sources. Different processing 

approaches are again compared. In particular, are noted the constraints imposed on the initial 

estimate when high noise levels or secondary sources are liable to be present.

The final section of the main part of this thesis looks briefly at the particular problem of 

dealing with several unknowns at once. Firstly, note is taken of how an error in one Fourier 

coefficient affects the estimation of others, leading to the production of an orthogonal basis such that 

the errors in all the terms are independent of one another. The next chapter shows how a simple 

gradient routine may be created that effectively locates the maximum over several unknowns. This is 

followed by a short chapter comparing the various power functions tested, highlighting which are the



most suitable candidates for any continuation of this work. Then follows suggestions for further 

work along these lines and a summary bringing together all the findings from this research.

Appendices are provided at the end covering some of the more specialized (and 

mathematical) arguments — some of these are original, whilst others repeat less commonly found 

material.



3. GENERAL BACKGROUND

3.1 The‘Source’

This project is concerned with a passive sonar array i.e. one where the system purely listens 

for sound emitted by a submarine. [ Active arrays, which emit a known signal and detect its echo off 

objects, are unsuitable for the long range detection and secretive monitoring that is the aim of this 

work. ] There are many ways in which a vessel can emit sound. If it uses its own active sonar that 

emission may be detected and used to localize it, although it may not be aware of the silent 

observer’s presence. However, even a silent vessel unwittingly produces noise. Some will be caused 

by turbulence as the vessel slips through water. More intense sound may be caused by cavitation 

noise around the propellor, which will be modulated by the blades to show a sharp frequency peak 

corresponding to the rotation rate of the propellor multiplied by the number of blades on it  Coupling 

of internal machinery noise through the hull may also lead to sharp well defined frequency emissions. 

It is on the assumption that these discrete frequencies are significant, that this project is simulated 

purely in terms of the signal at a few select frequencies rather than a series of time measurements at 

each sensor or else a large number of frequency components. In recent times, submarine builders 

have taken care not only to reduce the reflectivity of the vessels by use of anechoic tiles, but also to 

minimize the emission of sound25.

Motion of a source or receiver will affect the received frequency via the Doppler Effect. 

Assuming that array motion transverse to its line is slow, the frequency shift experienced at all the 

sensors will be the same. This may vary with time depending upon changes in direction by the 

emitter or towing ship. Burlakova, Saichev & Slavinski19 also refer to frequency wandering caused 

by inhomogeneities in the ocean. Such an effect would differ from sensor to sensor. If there are two 

or more frequencies present, then this effect can be distinguished from the Doppler shift as the two 

have different frequency dependence.



3.2 Structure of an Array

A device for converting an incoming underwater pressure waves into an electrical signal is 

known as a hydrophone. There are several different physical processes by which such a conversion 

may be achieved; those generally in use share the property of linearity i.e. the amplitude of the 

electrical signal produced is directly proportional to the amplitude of the pressure variations (i.e. the 

sound waves). Hydrophones can be made to have a response that varies according to the direction of 

the incident wave. However, for work with towed arrays, it is more common to use a type whose 

response is independent of angle — these are termed omni-directional. The reasons that these are 

used are that it is not possible to maintain a constant orientation for all hydrophones without rigid 

connections, and that it is often important to be able to search through all angles for sources of sound. 

Also, for the frequency range of interest in this work, directional hydrophones would be very large.

One hydrophone can merely detect the amplitude of a pressure wave; it cannot give any 

information as to its bearing. For this, two or more hydrophones are required — the direction o f the 

source being obtained by comparing the phases of the signals received at each of the hydrophones. 

[ In this context, any slight difference in amplitudes can not really aid in determination of the source 

direction. ]

Any set of two or more hydrophones used for co-processing can be termed an array. Now, 

although just two such hydrophones could yield an accurate determination of bearing, it is usually 

necessary to use far more. The reasons for this being the need to detect more than one source and 

effects due to the presence of noise (caused by other sources, bottom reflections, receiver noise), 

which would seriously affect such a two element array.

Given many hydrophones, there are several different types of configuration that can be

adopted:-

• Straight line

• Along the circumference of a circle or a set of concentric circles

• 2-D or 3-D grid

• Random

Each may have its merits, but the situation considered for this project is that of a towed 

array, which requires that the array lies along a line. This is achieved by placing the hydrophones in



a long flexible cable, which is let out of the back of the ship (or submarine). The actual active part of 

the array may be separated from the stem by hundreds of metres of towing cable. This enables the 

sensors to be reasonably distant from the ship (reducing the pick up of noise from it), and also allows 

the array to sink to a low depth. A combination of length of towing cable, its weight, and the towing 

speed determines at which depth the array lies. A device at the end of the array, called a drogue, 

provides the tension necessary to keep the array fairly straight. A taut cable is susceptible to 

resonances like a violin string — to prevent occurrence of such disturbing the array VIMs (Vibration 

Isolation Modules) are positioned either end of the active section in order to attenuate the 

oscillations.

However some freedom still exists in the positioning of the elements along that line:-

• Equally spaced

• All separations to be multiples of a standard length — a ’sparse’ array

• Random

Many processing algorithms exist for the first case, relying on the symmetry of the 

arrangement, whereas little can be done for the other two cases. Bucker 14 has proposed an algorithm 

for the second case that can yield good resolution under suitable conditions. The first case is the one 

generally adopted because:-

• There exist many algorithms for that situation.

• Processing does not place undue emphasis on any particular elements (whereas the sparse

array may), and is thus less affected by noise at that element or its failure.

• Sections of array can be replaced much easier if all are identical.

• It is more resilient against noise than the other methods.

A straight line array can only be used to determine the direction of a source relative to the 

line of the array. Thus the direction of a source can only be restricted to a cone centred on the line of 

the array. However, interest is generally only in distant sources, and as these must lie in roughly the 

same horizontal plane as the array, the indeterminacy is thus reduced to a question of which side of 

the array the source lies on. This is known as ’Left-Right Ambiguity’. When dealing with a 

perfectly straight array of constant orientation, this problem cannot be overcome by any processing. 

[ Note that a horizontal planar array, either of grid or circular design would not be subject to such

- 7 -



difficulties. ] If a line array is being used, it is necessary to pursue a route that will orientate the array 

in a different direction. A new determination of bearing will now remove this uncertainty in location 

[see Fig 3.1].

Fig 3.1 : Diagram to show how bearing determination using 2 non-parallel 

array lines removes the left-right ambiguity.

Note: if the array was not precisely straight, but rather curved in a known manner e.g. from 

A to D via B and C, then such an ambiguity would not exist. Rotating the line of the array also deals 

with the problem of poor resolution for an array towards ’endfire’ i.e. along the line of the array.



3.3 Aliasing

The resolution capability of an array using Conventional Beamforming [see appendix 2] is 

given by:-

where n is the number of sensors and d their separation. Thus, to maximize the resolution, 

the sensors are placed as far apart as is permissible. There is, though, an upper limit on the 

separation, above which ambiguities in bearing again occur.

Fig 3.2 : Diagram to show how phase delays depend upon relative location o f source and sensors.

Consider the situation illustrated for a 2 element array in Fig 3.2. The phase of the signals 

at elements A and B are determined as <\>A , <j>fi respectively. This is due to the difference in travel 

time from the source to the two sensors. Assuming a far-held source and hence plane waves, the 

extra distance travelled to B is given by:-

AS = d sinQ [3.2]

The difference in phase thus resulting is:-

A<J> = 2n(d sinG / A,) [3.3]

as phase changes by 2n over the distance of a wavelength. A source at a different angle, 0', 

may produce the same phase difference and hence be indistinguishable. For this to occur requires:-



27t(^sin0 /A) = 2n(dsmQ' /X)+2nn , n e N

-*  d  = • 0nX- a> I3-4!sin0-sin0

As sin0-sin0' must be in the range 0 to 2, non-trivial solutions for the separation will only 

occur for d > A/2.

If the separation is half a wavelength, sources at one endfire direction ( Q - l/2 n)  cannot be 

distinguished from those at the other ( 0 = -  W n ). If such problems are to be avoided, it is necessary 

to insist that the separation of the elements is to be less than half a wavelength. This result is 

analogous to the Nyquist limit on frequency determination. Note, if interest is only in sources within 

±0O of broadside, then the limit upon element separation becomes:-

d  < , X a [3.5]
1 + sin0o

This situation, in which an uncertainty in source bearing occurs because of too large a 

separation of elements, is termed aliasing. This effect is independent of the nature of the signal 

processing used.

3.4 Various Causes of Noise

One of the major reasons for having many elements in an array is in order to be able to 

overcome the problems caused by noise. This noise may take various forms dependent upon origin; 

the relative importance of the different types will depend upon the frequency used for processing. 

This work is concerned with sharp frequency emissions in the range 150-400Hz, with most of the 

work being done at 250Hz. The arrays simulated generally have sensors at half-wavelength spacing 

i.e. 3m. Although many aspects of the problem scale with wavelength and array dimensions, the 

values are given here as the nature of various noise effects does change with frequency. Brief 

reference is given here to sources of noise over a wide range of frequencies, however only those in 

the aforementioned band are of concern here.



a) Other Sources

There may be many sources radiating at the selected frequency; some will be of interest, 

whilst others merely provide extraneous noise. Over large distances the oceans can be regarded as 

two dimensional — reflections o f sound waves off the sea bottom and surface can be significant 

enough to cause the power of signals to fall off only as 1/r rather than 1/r2. Consequently, the effect 

of distant shipping can be noticeable. Apart from incidental discrete shipping, there are often 

situations where a strong source is deliberately activated to hide another. This is referred to as a 

’jammer’ or ’interference signal’. [ In such cases, there is a need to be able to detect sources well 

below the level of the jammer. This may be achieved by standard processing using an algorithm with 

low sidelobes, or by implementing an algorithm that rejects such interference e.g. Adaptive Noise 

Cancelling (ANC) which directs a null of the array’s directivity pattern towards the interference. ] 

Another important source is the ship towing the array, which will of necessity be fairly close to the 

sensors. This problem is reduced by making sure that the active part of the array is far from the ship 

by using a long towing cable.

It is generally assumed that additive noise has Gaussian statistics; Bouvet & Schwartz11 

have shown this to be close to true for background noise and merchant shipping, however other 

sources such as snapping shrimp have a pdf (probability distribution function) that can not be 

modelled even in terms of a Gaussian-Gaussian mixture.

b) Reflections

There may be echoes of the desired signal from both sea surface and bottom. These will 

have taken a slightly different path through the ocean from source to sensor, and hence be of different 

(and varying) phase to the direct signal. Such echoes may appear to originate from slightly different 

bearings to the direct ray.

c) Local Noise

Underwater sound may also be generated by many other means — aquatic life, waves and 

rain upon the sea surface, cracking of overhead ice, or simply due to the wind blowing upon the top. 

This last effect is often characterized in terms of Sea States in a manner similar to the Beaufort Scale 

for winds. The power spectra of the various meteorological sources have been investigated by 

Scrimger et al93, Ferguson & Wylie35, Nystuen & Farmer75 and Hamson46 amongst others, and 

shown to be significant only at frequencies of the order of 1-20kHz. [ Note, with a horizontal linear 

array these all-encompassing sources may appear to show directionality — this is due to focusing



towards broadside rendering the array sensitive to overhead sources too. ]

d) Self-Noise

When an array is towed rapidly through water, noise is induced by the turbulent boundary 

layer surrounding the array; Owsley & Fay76 have stated that the correlation length of such is only of 

the order of 0.1m.

e) Inhomogeneity

The sea is not homogeneous — there are both temporal and spatial variations in 

temperature, salinity and pressure, and hence in refractive index. Thus the phase delay at one element 

with respect to another is affected not only by the bearing of the source, but also by the difference in 

the nature of the medium through which the different rays have propagated. [ This is dealt with in 

further detail in chapter 9. ]

f) Electrical Noise

This is the term for effects due to non-linearity of the transducer response, thermal noise in 

amplification circuits and rounding error caused by digitising the analogue signal. Kazmirtsak & 

Tyutekin54 have shown how the limited bit size of analogue-digital convertors (ADCs) affects the 

performance of bearing estimators.

There will also be effects caused by:-

g) Inexact balancing of propagation times for signals along wires in the array.

h) Uncertainty in location of elements of array relative to one another.

i) Relative motion of array and sources, which causes a Doppler shift of the signals to a 

frequency slightly different from the one used for processing.

j) A weakened response or failure in one or more channels.

Item h) is the main effect under investigation in this project, but several of the others will 

have to be modelled and taken into account during the processing.



4. CONVENTIONAL BEAMFORMING

4.1 Mathematical Formulation

A very simple method of processing such data is known as Delay-Sum & Square or 

Conventional Beamforming (CBF). In this method, searching is performed over all angles, 0, of 

interest by scanning over the corresponding values for the wavenumber vector, k.

For each sensor, the received signal, v, (= A ejk~r ) is multiplied by the complex number 

e~jk'r, the k' corresponding to the wave number in the chosen direction of the search. If this matches 

the true bearing of the source, the signals at all the sensors will be reduced to the same value A. The 

degree of correlation at these sensors (i.e. a measure of how ’correct’ the choice of k' is) can be 

formed by adding all such processed values together, then taking the modulus squared, which 

represents the power in the signal. In mathematical notation this would be written:-

/>(0') = V2(Qr) = Jifjr
L«=i

[4.1]

where k' = (  sin0', cos0') . For a straight array of equally spaced elements, with no 

noise present, it can be shown [see appendix 2] that the power perceived in a direction 0', due solely 

to a source on a bearing of 0O, can be expressed as:-

W2 sin2 [ 1>2kdn (sin0 -  sin0o) ]
 7 - ------ -------------- —  [4.2]
sin2 [ l/2kd (sin0-sin0o) ]

This is shown in Fig 4.1a. The expression maximizes at 0 = 0o i.e. for a beam formed along 

the direction of the true source, but it also renders finite values for the power in other directions, 

which could mask weaker sources. The subsidiary peaks, known as sidelobes, occur fon-

sin0 = sin0o + a  a =  t  • 4" • T  • '’‘nd

with those further from the main one containing progressively less power. For lobes far 

from the main one, it can be shown that the level of the 2mth is 6dB less than that of the mth. No 

power is perceived at angles midway between the sidelobes —Jhese gaps are termed nulls. However,
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Fig 4.1 : a) Beam pattern for a source at broadside (0°) with element spacing, d = X/ 2. 

b) Beam pattern for a source at 45° with element spacing, d = X, showing that the 

true source is indistinguishable from its alias.

note that if the condition d < U2  is broken, there may occur other peaks at equal height to the main 

one satisfying:-

sinG = sinG0 + p - ^  P = 1, 2 , • • • [4.4]
d

This is shown in Fig 4.1b, where d = X. It is now not possible to distinguish which peak 

corresponds to the correct bearing. This effect, known as aliasing was referred to earlier 

[chapter 3.3].

4.2 Linearity

Consider the situation where an array is insonified by two sources at angles Gj, G2 

respectively. It can be shown that the beam pattern produced by CBF is exactly the sum of the beam 

patterns due to each source separately [see appendix 3]. This property is known as linearity and can 

be very useful in processing. It follows that the presence of an extra source in a pattern can not 

drastically alter the pattern due to the other sources, unless the others are at or below the level of the 

relevant side lobes. It also follows that the ratio of the heights of well separated main lobes will
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represent the true ratio of the powers of the relevant sources.

There can be a problem when there is a great disparity in the power output of the 2 (or 

more) sources. The height of the first side lobe is -13.3dB (relative to the height of the main lobe), 

which represents only 4% of the power that is attributed to the true direction. However, if a much 

weaker source is located close to this bearing, its own main lobe may not appear to make a very 

significant difference to the whole beam pattern, especially when there is some noise present in the 

system. There are two approaches to dealing with this difficulty — weighting of the signals of the 

individual elements and post-processing of the image; these are discussed later in this chapter.

43  Statistics For Uniform Weighting

As has been shown earlier the beam pattern for the standard delay-sum-and-square 

technique is given by the discrete equivalent of a sine2 function:-

f ( 8 ) -  [4.2’]
sn r(1'2Ms)

where s = sin0-sin0o , and the amplitude, A, set to 1 without loss of generality. The

defining equation for this processor may be written as:-

V(Q) = j^wivie-jkidsine [4.5]
i=i

where the weightings, wit are all taken to be equal, as the standard technique places equal 

emphasis on the values from all the sensors. Here, this uniform weighting will be represented by all 

wi being unity; other authors prefer the definition w,- = l/n , as this corresponds to unit magnitude for 

the response in the direction of the source.

Approximating the above expression by the form for a finite continuous receiver,

P(Q) = sin2C'mkds) / Q'mkds)2 , and denoting the array length, n d by D, the statistics given in

Table 4.1 may easily be derived.



3-dB half-beam width 

Position of first null

4 X/9D

x/d

Position of first sidelobe peak 

Height of first sidelobe 

Fall off in sidelobe height 

Peak sidelobe level

3 A/2D

-13.3dB

-6dB/octave

-13.3dB

Table 4.2 —  Characterization of beam pattern for uniform weighting.

Many of these figures have great significance when a situation involving two or more 

sources is being considered. Linearity implies that if multiple sources insonify an array, the resultant 

beam pattern is the sum of those for the individual sources scaled according to their respective 

amplitudes. Two sources may only be resolved if their main lobes can be distinguished. For sources 

of equal amplitude, this corresponds, to a close approximation, to each source lying on the first null 

of the other or further away. The often quoted Rayleigh criterion for resolution is then X/D. [ The 

slightly different value for 2-D imaging is referred to later. ] Note, all the angular sizes expressed in 

Table 4.1 are actually in terms of sin0 — this simply reduces to changes in 0 for a source near 

broadside; close to endfire the resolution is much poorer.

However, if one of the sources is considerably weaker (e.g. more distant or the stronger is a 

deliberate interference signal) then it may easily be overlooked even if at a very different bearing to 

the stronger one. This is where the values for the peak sidelobe level and fall off rate are significant 

as they indicate how far a weak source has to be from the main one in order that it might be 

discerned.

4.4 Different Weightings

Changing the relative values of the weights affects the shape of the beam pattern and thus 

all the characteristics listed in Table 4.1. Many different series of weights have been proposed; the 

relevant amplitude scalings for some are illustrated in Fig 4.2, along with the effect of each on the 

beam pattern. The characteristics of a selection of these are compared in Table 4 2  with those for the 

uniform weighting. The full statistics of considerably more shadings have been detailed by Harris45.
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Fig 4.2 : Plots of amplitude scaling for different weighting systems, and the resultant beam patterns, 

a), b) Uniform weighting and the image produced by i t ; c), d) Bartlett weighting and image ; 

e), f) Hann weighting and image ; g), h) Gaussian weighting and image.

[ Taken from Marple'67
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Fig 4.2 (cont.) : Plots of weighting systems and resultant beam patterns, 

i), j) Hamming weighting and the image produced by i t ; k), 1) Dolph-Chebyshev weighting and image.

[ Taken from Marple67 ]

For the 2-D situation alluded to earlier, the uniform weighting over a circular aperture may 

be viewed in one dimension as a weighting of V l-*2/r2 , and thus the different beamwidth observed 

in this case may be understood. [ Actually, a 2-D FFT of the uniform disc generates the first Bessel 

equation, which has its first null at 1.22X/D. ]

It can be seen that many shadings cause a lower sidelobe level (SLL) than that for uniform 

weighting, but usually at the expense of increased width of the main lobe. Some of the simplest 

forms are those of Hann (’Cosine Squared’ ; w, = x>2{ 1 + cos(7u In) ) , i = - n , n ) and Bartlett 

( ’triangular’ ; w,= I n - i  \ I n , i = - n , n ). The latter may be viewed as a uniform weighting 

convolved with itself. A further self-convolution yields the Parzen set of weights. There is no single 

’best’ choice of weights, but rather a different ’optimum’ for each specification.

That which produces no sidelobes at all may be thought best in a way, but the binomial 

weighting which achieves this, also causes a very wide main lobe. Butterworth weighting is one
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Type of Height of Width at -3dB level

Window First Sidelobe (Relative Values)

Uniform -13.3 dB 0.89

Bartlett -26.5 dB 1.28

Hann -31.5 dB 1.44

Gaussian -42. dB 1.33

Hamming -43. dB 1.30

50dB Dolph- 

Chebyshev
-50. dB 1.33

Table 4.1 : Comparison of sidelobe levels and beamwidths for various shadings.

which produces a ’maximally flat’ response i.e. it has the maximum number of main peak derivatives 

equal to zero. ’Dolph-Chebyshev’ refers to a series of different shadings. For a chosen peak sidelobe 

level, a set of weights can be calculated that yield the minimum beamwidth consistent with this 

restriction. This is achieved by matching the conditions to a Chebyshev polynomial — a method first 

proposed by Dolph30,84. One important characteristic of this choice is that all the sidelobe are at the 

maximum height i.e. there is no fall off in level for lobes further from the main one. Wang103 has 

worked on the implementation of an algorithm that minimizes the power spilt outside a certain 

desired sector. More recently, techniques have been developed which control the weights adaptively, 

depending upon the received signal. An example is the Maximum Likelihood Method (MLM) which 

is discussed in chapter 8.6.

Despite its high sidelobes, uniform weighting is a common choice as ’best’. Of those 

commonly encountered, it has the narrowest beamwidth [see Table 4.2], and the actual weights are 

the simplest to implement Later, in discussions on the effects of element failure and phase and 

amplitude errors, the statistic is shown to be important. This is minimized, for a fixed

number of elements, when all the wt are equal.



4.5 Superdirectivity

All of the shadings so far shown have given a positive or zero weighting to each of the 

elements. Nairower beamwidths than those tabulated previously can be achieved by a method called 

superdirectivity. In this some of the elements are given negative weighting i.e. their values are 

subtracted from the total; If this is done then the desired narrow main lobe is achieved, but even 

larger lobes are present just outside the range of real angles. Although such superdirective arrays can 

sometimes be of use, they are found to be sensitive to random additive noise, as subtraction of signals 

from one another reduces the signal power, whereas noise powers always add as they are 

uncorrelated. Indeed, superdirective arrays will be sensitive to other errors in the system, such as 

misshapen arrays or imperfect coherence of the signal across the array. Recently Cox, Zeskind & 

Kooij27 have proposed that the poor resolution of arrays towards endfire may be overcome to some 

extent by oversteering (i.e. directing the mainbeam beyond real angles, I sin0 I > 1, such that that 

part of the main lobe within real space is narrower). This is only possible if the elements are nearer 

than half wavelength separation. However, this too must involve some subtraction of signals in the 

desired look direction, and thus reduce its rejection of noise.

4.6 Post-Processing of CBF Image

If conventional beamforming has been applied to data containing signals from sources of 

very different amplitude, then it may be difficult to recognise the weaker ones, or else there might be 

great uncertainty in their bearings. This can be overcome, to some extent, by removing from the 

formed pattern the beam pattern expected for the strong source alone. The bearing of the strong 

source is taken to be that of the midpoint of the highest lobe in the pattern, and its amplitude to be the 

value of that peak or close to it  When this source and all its inherent sidelobes have been taken 

away, the pattern resulting should be that of the remaining sources. This follows from the principle 

of linearity [chapter 4.2]. This procedure can then be repeated in an iterative manner until the 

bearing, and strength of all the sources have been determined; that left otherwise unaccounted for is 

categorised as ’noise’. The following points are of particular interest:-

1) The process as outlined can be applied to any arrangement of hydrophones, not just 

equi-spaced linear arrays. The only requirement is that the sensor positions are well determined in 

order that the expected beam pattern for a source on a certain bearing may be calculated accurately.
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2) If the array contains n sensors, the maximum number of meaningful sources that can be 

retrieved is n - 1. This provides a limit for the iteration.

3) More advanced techniques terminate the search when the resultant beam pattern has no 

really significant peaks, or else when the highest remaining peak is, say, below 1% of the strength of 

the primary source.

4) Continued subtraction of powers may lead to negative values for some parts of the 

pattern; these are without physical meaning, but should be expected due to the presence of additive 

noise and interference between sources.

5) Although this technique can enable detection of weak sources masked by the sidelobes 

of a strong one, it will have difficulty resolving two equi-amplitude sources within a beamwidth of 

one another, as it will err in finding the first bearing estimate.

6) As subtraction of signals is once again involved, estimates can be significantly in error 

when the signal to noise ratio is low.

Schwarz91 has created a more advanced version of this algorithm known as CLEAN. This 

operates on the complex voltage perceived in each direction, rather than the power, thus the available 

phase information is not ignored. In this case, the pattern removed for each source is that 

corresponding to g.Vit where Vt is the complex amplitude at the peak, and g is the loop gain. The 

gain must be within the range 0<g <2 for convergence of the algorithm. In many cases unity gain is 

used, but Hogbom51 suggests values between 0.25 and 0.5. The iterative process is then run such that 

many ’sources’ are detected, and then all those within a beamwidth are summed together, and the 

bearing estimate defined as the weighted mean of all those within that group.

An article by Schwarz92 indicates that care must be taken in the use of the CLEAN 

algorithm, although splendid results are shown for some real astronomical data. He warns of its 

susceptibility to errors in the model.

A further refinement was produced by Hebbert & Barkakati47. Their Successive 

Planewave Removal (SPR) algorithm acts on the observed covariance matrix. With SPR the first 

source is estimated as previously and removed from the image. However, during the course of the 

pinpointing of subsequent sources, slight errors in the previous estimates are searched for in terms of 

second order effects. Thus the estimates of the strongest sources are successively updated to allow 

for the more minor sidelobes of the weak sources.
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4.7 Summary

Conventional Beamforming is a simple process for detecting from which bearings energy is 

being received. The processor merely adds the voltages with suitable weighting; the beam being 

made to point in various directions by the use of appropriate delays. The resolution limit for CBF 

processing is given by X/D, where X is thewavelengthof interest and D is th6 length of the array. 

Sources more closely separated than this can not be resolved by this means. High resolution 

beamforming methods exist [chapter 8] which can achieve this under certain noise conditions. The 

other difficulty with CBF processing is the detection of source(s) in the presence of much stronger 

ones.

The characteristics of the beam pattern may be altered by changing the weights, although a 

compromise has to be made, as no set will both lower SLL and reduce the width of the mainbeam. In 

many ways, Dolph-Chebyshev is seen as the ideal compromise. However for the purposes of this 

project, both additive and multiplicative noise levels are large, so there is no benefit in having the 

sidelobes for the perfect pattern at -50dB. Uniform weighting will generally be used here, partly for 

simplicity, but also as it has properties to recommend i t  An alternative means of locating the weaker 

sources is to apply some form of post processing to the image in order to remove the effect of known 

(i.e. visible) sources.

If the number of sensors is limited, a non-uniform layout of them may be used in order to 

achieve resolution performance equivalent to that of a much larger array with all its sensor positions 

filled. The main requirement for a ’sparse array* like that is in radio astronomy, because of the vast 

cost of each receiver. Bucker14 shows the implementation of the sparse array processing for an 

acoustic array. As the number of sensors is less than for a full array, the amount of wiring running 

inside the tow-cable can be reduced considerably. However, such are not widely used as they do not 

have the SNR gain of the full array.
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5. EFFECT OF CHANNEL FAILURE

The processing discussed above uses the output from all the sensors. If one or more of 

these sensors should be faulty e.g. due to damaged wiring, the performance of the system will be 

degraded. Ramsdale & Howerton82 have shown that if the output of sensor i, with weighting w, 

(normalized so that £ w 2= l), has been reduced to zero due to a failure in the channel, then:-

i ) The whole pattern is scaled down by a factor of l-w f

ii) There is an additive noise level across the spectrum of w}

If more than one element has failed the effect is more complicated, the additive effect 

being modulated by the beam pattern of solely the faulty elements.

Fig 5.1 shows the result of various simulations by Ramsdale & Howerton. They have 

shown the effect of failure for a 32-element array with Hann weighting [see chapter 4.4]. The lines 

show the effect for loss of the 2nd, 4th, 8th and 16th elements in turn, and indicate the greater 

degradation for those elements with the larger weighting.

Below are listed six possible approaches to this effect:-

i) Ignore the problem — i.e. perform beamforming as though all channels performed 

perfectly, and accept the consequent degradation in performance.

ii) Only use the larger whole part of the array — if faulty element is near middle or there is 

more than one defective, the number of sensors being used may be reduced considerably. 

Consequently the resolution is reduced markedly as well as noise rejection capability.

iii) Perform separate processing for the two (or more) complete parts and then treat these 

sub-arrays as directional receivers for the purpose of further processing of their outputs — this 

technique may work quite well with the approach proposed by Hinich & Rule49 for dealing with 

positional uncertainty [see chapter 10.3]; however its incorporation in the shape determining 

algorithm used later is more difficult.
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Fig 5.1 : Average beam patterns associated with failure of various elements in a Hann 

weighted array. [ Taken from Ramsdale & Howerton82. ]

iv) Wang103 has proposed a method for recalculating all the weights used, subject to a 

criterion of minimizing the power outside a certain angular region. This method requires no 

assumptions concerning the spacing of the elements.

v) The approach proposed by Bucker14 for sparse arrays could be applied — i.e. form all 

the cross-products for certain element separations individually and combine them as needed for the 

desired element weighting.

vi) Estimate the voltage at the failed sensor by simple linear interpolation between its 

nearest neighbours — this will increase the effect of the noise from neighbouring elements.

vii) Estimation of voltage using 4 nearest neighbours.

As investigation of this noise effect is not the prime objective of this project, no attempt 

has been made to discern which of the above is the best approach to this difficulty. Operation i), by 

default, is thus the one implemented.
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6. PROCESSING OF CURVED ARRAY

6.1 Causes of Positional Uncertainty

In all of the forgoing analysis, it has been assumed that the sensors lie equally spaced along 

a straight line. Whilst this assumption may be correct in many areas in which beamforming of arrays 

is performed, such is usually not the case when the elements are in a long flexible line towed through 

water. There are two main causes for this non-linearity of the array:-

i ) Changes in direction of the towing vessel.

ii) Cross-currents in the ocean.

There are various reasons why a ship deploying an array has to veer from a straight course:-

a) To avoid ships or coast that lie ahead.

b) In order to return to the section of the coast that it has been patrolling.

c) In order to be able to investigate better those sectors that had been endfire to the array — 

areas in which array performance is poor.

If a ship towing a long array attempts a sharp turn, the tension along the array will be 

significantly reduced, causing the array to sink to a lower depth. Whilst such is going on, the array 

would not be useful for detection. Thus, although this work and others referenced may contain 

examples of arrays contorted into a semi-circular curve, such a condition is unlikely to be 

encountered in practice.

Some information concerning the present shape of the array can be inferred from a 

knowledge of the route followed by the ship. It can be assumed that the array follows itself to some 

extent, as the tension moving it will be approximately parallel to its axis. However, the second cause 

(ocean currents) prevents much useful information being derived from the ship’s route.

However, once the array shape has been correctly determined for a certain instant, it will be 

valid for some time afterwards to assume that the array is following itself i.e. all sensors trace out 

roughly the same route in space as the ones immediately preceding it, but with an appropriate time 

delay. Although such is not exactly true, it can be used to produce a first estimate of the new array 

shape.
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This project investigates processing problems when the array shape is unknown. The 

remainder of this chapter details beamforming using the correct array shape; processing with slightly 

erroneous shape estimates is covered in chapter 15.

6.2 Processing Using the True Array Shape

Beamforming relies upon the estimates of the sensor positions being sufficiently accurate 

that the compensating phase shift used is close to the correct one. If the component of the location 

error of a sensor is of the order of half a wavelength in the direction of the source, then the error in 

phase shift will cause the part of the signal due to the source to be subtracted from the sum, rather 

than added. Thus, if the position errors of several sensors are of the order of a quarter wavelength, 

then the beam pattern will be badly degraded.

However, if all the sensor positions are well determined, the beamforming exercise will 

usually produce a pattern akin to that for a straight array. Figs 6.1a,b,c show an array of 24 elements 

at Xl2 separation with the true positions being used in the beamforming. In Fig 6.1a, the sensors lie 

along a straight line, in Fig 6.1b, they lie along a shallow arc of radius 30X, (array length = 111/2>-); 

and in Fig 6.1c they lie along a semi-circle (radius = 3.7A,).

All the patterns have roughly the same form, but in the third case, the separation between 

the end sensors is significantly less than when the array is straight, and consequently the beamwidth 

of the mainlobe is increased. Also as the sensors appear concentrated towards the ends, the first 

sidelobes are not reduced as much as for a straight array; the effect is similar to an equi-spaced 

straight array, with greater sensor weighting towards the ends of the array.

The effect for a source near endfire is rather different as Figs 6.2a-c show. Again, when the 

array is only slightly curved, correct compensation yields a beam pattern close to that for the straight 

array. The semi-circular array, however, has an apparent width greater than for the straight array; its 

projection perpendicular to direction of source has an asymmetric distribution of sensors which cause 

the asymmetry of the resultant beam pattern.

To summarise, for array shapes close to a straight line, correct compensation will yield a 

beam pattern almost identical to that for a straight array. For more significantly curved arrays, the 

pattern is similar but with raised sidelobes. These can be reduced by use of elemental weighting to
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Fig 6.1 : Beam patterns as a function of curvature and weighting, 

a), b), c) are for uniform weighting of elements on a straight line, shallow curve and semi-circle 

respectively, d) is for semi-circle, but with compensatory weighting.

compensate for the density tapering, i.e. the non-uniformity of elemental separation along the 

equivalent straight array. Fig 6.Id displays the result of processing the same data as for Fig 6.1c, 

except that now a weighting function cos(nm/n) is used, where m = l/m  - i  corresponds to numbering 

the sensors from the centre of the array. This was adopted because the element density along the 

equivalent straight array is as 1 /cos(nx/L). The beam pattern in Fig 6.Id is not the same as for the 

original straight array [Fig 6.1a], as the latter has a larger effective length, and consequently a 

narrower mainlobe. Fig 6.Id most closely resembles the pattern for a 24 element straight array with 

only 2.375m separation of the sensors (i.e. d=X/n), and hence of the same effective length 

[see Fig 6.2d].
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Fig 6.2 : Beam patterns as a function of curvature and weighting, 

a), b), c) are for uniform weighting and a source at 10°, with the array lying along 

a straight line, a shallow curve and a semi-circle respectively ; d) represents the beam pattern 

for a more closely spaced array, with uniform weighting and a source at 0°.
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7. MANY FIELDS OF PHYSICS

7.1 Analysing Wave Phenomena

The estimation of the parameters of a simple signal contaminated with noise occurs in 

many branches of physics.

A common example of such is frequency estimation from a sampled time record at a sensor. 

If a single known frequency is of interest (i.e. only its phase and amplitude is to be determined), this 

may be achieved by the use of a very narrow band-pass (notch) filter — in this work, the data 

supplied are the complex amplitudes produced by such filters on each o f the elements. However, it is 

often necessary to sample the time record at a detector, and apply digital processing techniques to 

estimate the coefficients at previously undetermined frequencies. In this case, one may be looking 

for several sinusoids in a noisy data record.

A similar situation exists in the spatial processing of the complex amplitudes at a finite 

number of receivers in order to gain information concerning the angular distribution of the sources. 

This occurs not only in underwater acoustics, but also in radio astronomy, optical astronomy and 

other imaging systems with visible light, formation of microwave images and seismology: indeed, 

such processing is applicable in most situations involving multiple detection and comparison of wave 

functions.

Indeed, if the given data contained a single sinusoid and no noise whatsoever, the task of 

fixing the signal values could be performed accurately by many methods (with impunity). 

However, in all cases (apart from purely mathematical ones) there is some degree of noise present, 

whether it be due to lack o f constancy in the emitted signal, fluctuations in the medium used for 

propagation, extraneous noise in the detectors or a combination of all three. It is also possible that 

one is not concerned with a single sinusoidal variation — there may be multiple emitters or a single 

one of finite (as opposed to infinitessimal) width.

These many areas o f physics are listed to explain why some items of the literature survey 

are taken from works not associated with underwater sound transmission. However, it is also useful 

to compare and contrast the different areas to understand why articles covering one are not
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necessarily of great use in another.

7.2 Active / Passive

First of all it must be emphasised that the present project is specifically concerned with 

passive sonar i.e. purely listening for signals emitted from the source(s), as opposed to active sonar, 

where a signal (a ’ping’) is sent out, and its echo reflected from the target that is to be detected. 

Active sonar is not used for this particular case, as it alerts submersibles to the fact that they are 

being sounded, and also the energy of such a reflected signal falls as one over the fourth power of 

range, and is thus unsuitable for the very distant sources, which the array in question might be 

expected to detect There are several important aspects of the processing of active arrays which need 

to be reconsidered for the passive case.

a) The ’ping’ is close to an impulse, and as such will contain a wide variety of frequencies, 

whereas passive processing may be (although not necessarily) performed on the assumption of a CW 

signal. [ Note, it is not possible for the emitted sound to be a CW, because of difficulty in achieving a 

high enough power level, and more importantly that such would provide a very large ’interference’ 

signal effectively obliterating any of the desired echoes. ]

b) Multipath phenomena may often be readily distinguishable, because of sufficient 

difference in transit times. With the CW signals of the passive case, additive interference is 

inevitable if more than one strong ray path exists.

c) Range may be estimated from delay times for echoes; whereas wavefront curvature must 

be used in the passive case. Also radial velocity can be deduced from the Doppler shift on reflected 

signals; such analysis is not possible for passive sonar, unless the true emitting frequency is known 

beforehand from previous observation of the same or identical objects.

It should be noted that most of the papers on microwave analysis are for a reflected signal, 

i.e. akin to an active array, whereas none of those dealing with astronomy are.



7.3 Sensor Layout

Another major difference between the above topics is the layout of the sensors. This is 

principally a question of 1-D or 2-D. The particular array of interest is a nominally straight one, 

consisting of a finite number of evenly spaced elements. Two and three dimensional arrays do occur 

in sonar use, but here we are confined to the 1-D case. A similar variety is encountered in astronomy 

— the 5km track at Cambridge is an example of a linear one, the VLA in New Mexico is a large 

regular 2-D array, and Merlin in the UK is an irregular, though well measured 2-D array. All the 

optical work is principally concerned with a regular 2-D matrix of receptors, although some works 

consider the image as a set of lines and apply 1-D strip-line processing to each direction in turn. In 

seismology, a complex 2-D structure may be employed, such as that of LAS A in Montana, which is 

intended to detect and pinpoint seismic waves with a wide range of frequencies, arrival directions 

and even velocities (the various compressional and shear waves travel at different speeds).

Cost and ease of manufacture are also important factors in the layout of elements in the 

various cases. Production of hydrophone elements is fairly cheap — the number of receivers in a 

sonar array is limited rather by the time required for processing (proportional to number of elements 

to the second or third power), the number of wires to run along the array to retrieve the data, and the 

increase in hydrodynamical drag with the length of the array. In radio astronomy, the cost of a single 

large dish receiver is tremendous, thus the number of sensors is seriously constrained. Hence the 

great need in this field for ’sparse’ arrays, which are ones which mimic well the performance of much 

larger ’filled’ arrays of equally spaced detectors. Optical telescopes may also be thought of as 

consisting of many contiguous mini reflectors in a circular geometry; the advent of the Multiple 

Mirror Telescope should not change much the nature of such comments, so long as the mirrors are all 

correctly aligned.

7.4 Multipath

Multipath is the term used to describe the existence of more than one ray-path from source 

to receiver(s). In many situations one path may be dominant, but the contribution of others may 

increase considerably due to a change in the positions of the sources, or simply as a matter of 

conditions varying with time. In underwater sonar, extra paths may exist due to a varying sound 

speed with depth, or else reflection from sea bottom or surface. A similar situation is found for
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’horizontal’ radio paths — different ray paths being separated by the order of 0.2°, and reflections 

occurring from the sea or land surface below the path or from various mounds. Interpretation of 

seismological records is highly concerned with different routes from source to array, but as the signal 

is usually a very short impulse (e.g. a detonation or a ’boomer’), the reflections from various 

interfaces can be resolved due to their different time lags.

7.5 Inhomogeneities

The medium between source and receiver cannot, however, be simply characterized by a 

slowly varying spatial function. There are also fluctuations in the refractive index (i.e. speed at 

certain instant in time and space, normalized with respect to the mean value) over all length and time 

scales. Variations in the sea can occur with a period of a day, due to heating by the sun, and tides 

induced by the moon, and also with a period of a year due to annual climatic changes. However, that 

of interest here is that which changes over the order of seconds or minutes, and often with a short 

correlation length. This can be due to temperature inhomogeneities, presence of biomass or 

advecting of water masses. Investigation has shown many of the spatial distributions of these 

variations to be lenticular in shape rather than spherical.

Microwave channels in the ionosphere suffer a similar problem, caused by variations in the 

electron density. These are found to be elongated along the direction of the Earth’s magnetic field. 

Optical astronomy is limited by ’seeing’, the term given to fluctuations in image (e.g. twinkling of 

stars) due to the refractive properties of the atmosphere changing with a correlation time of the order 

of 1/100 sec. The resolution capability of a telescope is limited by the transverse correlation of such 

fluctuations. The world’s largest telescopes at present (such as the Hale telescope on Mt Palomar 

with a mirror 5m in diameter) are much wider than the typical correlation width. Thus resolution 

cannot be improved by making larger instruments, although such might be constructed for their 

increased light gathering power. In order to enable such massive ’scopes to function at their 

diffraction limited resolution, it is necessary to place them beyond the atmosphere (e.g. the proposed 

Hubble Space Telescope) or else apply some form of adaptive processing to correct for the 

fluctuations. Similarly, radio signals reaching the Earth after having passed close to the Sun 

deteriorate due to inhomogeneities propagating out in the solar wind.
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7.6 Positional Errors

Clearly there will be uncertainties in the hydrophone locations if they lie along a flexible 

cable towed behind a ship. Such errors will be due to manoeuvres of the ship, cross-currents in the 

ocean and disturbances propagating along the array in the way that a flag flaps in a strong wind. 

Such problems would be considerably reduced by attaching the hydrophones to a rigid platform such 

as the hull of a ship. That is not possible in this case for several reasons:-

a) Arrays are often required to be longer than the ship.

b) It is commonly required to have the receivers at a depth of several hundred metres or

more.

c) Most importantly, it is necessary that there are no sources very close to the array, such as 

the vessel itself, in order that distant faint signals will not be swamped by a strong nearby source.

The companion fields in which signal processing has been referred to, tend not to have such 

a flexible layout to their receivers; however, they can still have problems of positional uncertainty.

Sometimes, it is just a case of an unknown constant layout of receivers (such as random 

locations of microwave antennae on a hill slope), there being difficulty in directly measuring such a 

3-D arrangement to the necessary precision. For a single rigid platform, or large receiver dish, there 

can be errors associated with their manufacture; and for space-borne antennae, varied thermal 

heating by the sun may cause some degree of warping. [ Note the degree of accuracy required in 

these various fields may differ — in the underwater scenario, a rms error of 0.1 X may be tolerable, as 

it would generally still allow sources to be detected, whereas in other fields an error of 0.1 X would be 

unacceptable as it could cause significant degradation to a complicated image. ]

7.7 Field of View

The intended function of these various detectors varies much. In the sonar case, a watch is 

being maintained over all angles of interest, typically either one side of the array (180° sweep) or 

both sides (360°). The aim is to detect a source in any direction and be able to fix its bearing. With a 

seismological array, interest is definitely only in the region below the array, and usually in angles 

fairly close to the array normal. Of necessity, the sonar receivers are omni-directional, in order that 

such a large sector may be surveyed. The opposite is the case in astronomy and radio-astronomy,
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where the receiver itself has high directional properties, as interest at any one time is only in a very 

small sector o f the sky. Here the aim is not merely detection, but observing details, for which 

algorithms that give a good resolution without bias are required.

7.8 Others

All the processing concerned with imaging of electromagnetic waves can also use any 

information available in the polarization o f the signals; such is not possible for sonar, as the water 

waves are longitudinal only.



8. HIGH RESOLUTION METHODS

8.1 Introduction

Conventional Beamforming (CBF) provides a good general estimator of periodicity within 

signals, but there are methods which have been developed recently that achieve a much greater 

resolution with less overspill into directions with no source. These high resolution methods are 

particularly useful when the available data sequence is short and the SNR high.

The CBF method makes no assumption about autocorrelation lags outside those obtainable 

from the data, whereas some of the following methods implicitly select certain continuations using 

a priori knowledge of the expected form of the data sequence. Each of these methods, thus has a 

specific underlying model associated with it — first the correct model should be selected and then the 

necessary parameters are calculated from the available data using various estimators. It is to be 

observed that several methods are very efficient and precise when the true autocorrelation lags are 

used, but are significantly poorer in real implementation as only the estimates of the lags are 

available. These algorithms are often referred to as Non-Linear Methods (NLM) as the spectral 

estimates that each generates for a multi-source environment is not simply the same as the sum of the 

estimates for the individual sources.

Some of the more common high resolution methods are discussed below. More detailed 

explanations have been produced by Marple67 and Kay & Marple53. Introductory papers to several 

of the methods have been written by Burg18 (Maximum Entropy), Capon22 (Maximum Likelihood), 

Pisarenko79 (PHD) and Schmidt88 (MUSIC).



8.2 Autoregressive Modelling

8.2.1 Introduction to AR Processes

An autoregressive (AR) model is one in which each value of a sequence can be expressed 

in terms of those preceding it, along with an error term i.e.

p
xH = ~ 'L ai*n-i + nn [8.1]

/=i

where p  is the order of the filter, a, are a series of fixed coefficients (to be determined) and 

nn is the nth number of a sequence of uncorrelated random numbers. [ Note, the minus sign has no 

specific meaning — it is merely an artefact of the re-arrangement of an earlier formulation. ] When 

written as above, it can be seen that this is also the equation of a forward linear prediction (LP) filter, 

and in some literature it is referred to under that name.

Autocorrelation lags, expressing the observed relationship between successive items of 

data, may be calculated from the observed sequence by:-

1 N - k

Ck =  ~Tj 7* Z  ****+* [8-2]
** ~K ;=i

The AR coefficients are related to the autocorrelation lags by the Yule-Walker equations.

These produce a set of p + 1 linear equations, often expressed in matrix form. Straight forward

Gaussian elimination requires of the order of p 3 operations, however, an efficient method known as 

the Levinson-Durbin algorithm exists that only needs of the order of p 2 operations. Another 

particular advantage of this algorithm is that it successively calculates the coefficients of all the AR 

filters up to order p. This is particularly useful as the true order is often not known beforehand, so the 

order which best fits the data can be selected afterwards.

As the model order is increased, successive estimates of the variance, cr2, of the random 

noise will be monotonically decreasing. If the generating model is actually an AR(p) process (i.e. of 

order />), then the variance estimate will remain constant for attempted orders greater than or equal to 

p, thus giving a clear indication of the true order. If the actual generating process was not a pure 

AR(p) one, then the estimates of o2 will always be decreasing, even though the higher orders may not 

be giving any extra information.



If the order selected is too low, the spectrum appears smoothed, lacking the sharp responses 

that pinpoint source completely; if the order is too high, spurious peaks are introduced.

8.2.2 Maximum Entropy Method

It is possible to propose a series o f lags outside the observed range — this will create a 

larger data window and hence narrower resolution. There are an infinite number of possible 

continuations consistent with the given lags; Burg18 proposed the selection of the one which 

corresponds to the time series with the maximum entropy, thus applying the fewest constraints on the 

unknown data. This corresponds to the Power Spectral Density (PSD) with the flattest (whitest) 

spectrum. This processing of AR data is called Maximum Entropy (ME) processing, but is also often 

known as the Burg Algorithm in his honour.

P(0) =

The Maximum Entropy spectral estimate is given by:-

CT2

1 + 5>.e*(G)
»=i

[8.3]

where ax are the autoregression coefficients and {e,(0)} are the components of the steering 

vector i.e. the required phase delays for each element.

The actual power in a direction is proportional to the area under the peak rather than the 

peak height itself. ME is equivalent to AR PSD for Gaussian random processes, when the true 

autocorrelation lags are known for uniformly spaced samples. ME can be performed for unequally 

spaced autocorrelation lags. If this is the case, or if the lags are estimates then the ME and AR PSDs 

will differ.

When additive noise is present, the filter function is not now an AR process, but an ARMA 

one (see later). If the data is interpreted via an AR model, this may give rise to a double peak i.e. the 

PSD showing two nearby sharp peaks for just one source. This effect, usually referred to as spectral 

line splitting (SLS) from its occurrence in problems of frequency estimation, is particularly prevalent 

at high SNR, and can be shown to be dependent upon the initial phase of the signal. This is true for 

both real and complex data sets. Kesler, Boodaghians & Kesler55 refer to the problems associated 

with the Burg Algorithm when the sources are correlated e.g. due to multipath. Their Generalized 

Burg Algorithm has less resolution than the original but shows less bias on those it can resolve. 

Further discussion of the effects of coherence can be found in a paper by Luthra & Steinberg66.
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Meredith & Ramsdale70 have compared the performance of MEM and WBB (Wagstaff-Berrou 

Broadband — a variant of MEM) to CBF processing using real acoustic data. For a single high SNR 

source, the bearing estimation of all three were identical. MEM and WBB proved better at resolving 

two sources using only a few data samples; however, these methods produced greater variance in 

estimates of the power ratio than CBF did.

8.2.3 Covariance and Modified Covariance Methods

The Burg Algorithm corresponds to least mean squares (lms) minimization with respect to 

a single parameter (the reflection coefficient) whilst satisfying the Levinson recursive relationship; 

alternatively, 1ms minimization can be performed with respect to all linear prediction coefficients, 

removing the Levinson recursion constraint This generates a version of the AR spectral estimator 

known as the covariance method. Rewriting the problem in terms of forward and backward linear 

predictors and minimizing the coefficients associated with both leads to the formulation of the 

modified covariance method. Although based on the AR model, this does not exhibit the spectral line 

splitting that can occur with the Burg Algorithm.

8.2.4 Selecting Model Order

All the AR methods require specification of the order of the process, p. In some cases the 

appropriate value may be known beforehand; in others, this value has to be selected, either by the 

operator judging the visual impact of the image, or by minimization of some measure. As mentioned 

earlier, the error variance associated with successive model orders will be monotonically decreasing 

(unless the process is a true AR one). Too high an order will lead to better fits to the noise corrupted 

data, adding false peaks. To overcome this many people have developed criteria that are intended to 

enable order selection. Many work well on data simulations of an AR process plus noise, but 

generally underestimate the necessary order for real data, where the model is not so close. It has 

been experimentally observed that choosing the order to be about a third of the number of lags 

available will generally produce the best results.
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8.3 Moving Average (MA) and ARMA Models

A Moving Average (MA) model for the data assumes that the given series can be written as 

a scaled sum of a set of random numbers i.e.

xn = [8.4]
i=0

where p  is the order of the filter and {«, } is a series of independent random numbers. 

Spectra associated with this model have broad smooth topped lobes and sharp nulls, as opposed to the 

sharp peaks and broad nulls of AR modelling, and hence are of little use in this context.

An ARMA model is a combination of the AR and MA models. The underlying model for 

an ARMA(p,q) process is given by:-

x n = 'L b jH n -j -  'L ^ iX n -i [8-5]
7=0 «=1

[ Alternatively, if expressed as a filter function in z-transform notation, it is given by 

H (z)=2? (z)/A (z), where B(z) ,A(z)  are the transfer functions of the MA and AR portions 

respectively. ] The spectra produced by such a process have some of the attributes of both parents’ 

spectra, being able to represent both sharp peaks and sharp nulls. However, estimating the various 

coefficients is difficult, as the equations relating them to the autocorrelation lags are non-linear. Sub

optimum methods exist which independently estimate the MA and AR parameters.

8.4 Pisarenko Harmonic Decomposition

Pisarenko79 produced a model for analysing geophysical data which assumed that the 

signal was due to perfect sinusoids plus additive uncorrelated noise. To match a data set to the model 

requires the estimation o f both frequency and amplitude for each spectral component, as opposed to 

the FFT formulation of CBF which simply estimates the power for certain pre-selected frequency 

intervals.

This method, known as Pisarenko Harmonic Decomposition (PHD), produces a line 

spectrum rather than a continuous one, and is thus poor at representing broad sources or dealing with



coloured noise. This is not surprising as the model assumes perfect sinusoid signals, and the 

decomposition relies heavily on this. The standard Toeplitz form generates biased estimates even 

when there is no noise. Barrett & McMahon7 refer to a non-Toeplitz variant with similar structure to 

the Prony method (see below), and which produces similar results.

8.5 Prony Model

In 1795, Baron de Prony produced an algorithm for exactly fitting p  exponentials to 2p  data 

points, as he was interested in such a model for interpolation purposes. More recently, this was 

extended to use more than 2p  items of data, and achieve a least-mean-square fit. Performing such 

requires solution of a difficult non-linear problem, which is usually achieved by an iterative 

technique. This can be re-formulated in ARMA form similar to PHD, only here the poles 

(representing frequencies) are not constrained to have unit modulus, and thus may be damped, 

broadening the peak. This model then has the ability to match sharp spectral lines and also broad 

sources.

A spectral line estimator has also been introduced based on Prony’s model. This has 

several advantages over PHD — autocorrelation are lags not required, it is easier to determine model 

order, frequency and power estimates are less biased and it is computationally simpler.

Gitel’son, Glebova & Kuznetsov41 have simulated the performance of the Prony algorithm 

with three correlated equi-strength sources. For various correlations from none to fully correlated, 

the algorithm managed to determine source directions accurately and the phase locks between them. 

However, the additive noise level used was 20dB below that of the signals. Bucker15 has tested the 

Prony algorithm more thoroughly. He found that for reasonable SNR, it was better than CBF for 

sources towards endfire, but CBF (in its FFT implementation) was better when noise levels were 

high.
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8.6 Maximum Likelihood Method

A Maximum Likelihood (ML) processor can be viewed as similar to CBF for the output 

can be expressed as the sum of phased records with appropriate weighting. However, here the 

weights are not constant, but dependent upon the received signal record. The ML method is defined 

such that the power in all directions other than that desired is minimized subject to the constraint of 

unity gain in the ’look’ direction. Because of its defining conditions, this algorithm is often also 

called the Minimum Variance (MV) one. The weighting vector fulfilling this condition will vary 

with angle, and the power perceived from those various directions. It can be shown that the set of 

weights is given by:-

e H(e)R-J, <(0)

where is the autocorrelation matrix of the signals, e(Q) is the steering vector and e H(Q) 

is its Hermitian counterpart (complex conjugate transpose). [ Note, in practice the true 

autocorrelation matrix is not used, rather only an estimate of it  ]

The PSD estimate of the ML processor can be expressed in terms of all the AR PSD 

estimates from order one to the order of the autocorrelation matrix. Thus, it is not surprising that the 

resolution of MLM is inferior to that of an AR method of the same order, although it is far superior to 

the simple CBF approach. However, ML estimates exhibit much less variance than those from AR 

methods.

Care must be taken in interpreting ML spectral plots — peak height does not indicate 

power, rather area under the peak is proportional to the square root of the power. [ For AR PSD, area 

is proportional to power.]

Porter, Dicus & Fizell80 have compared the performance of CBF and ML using simulations 

with a complicated sound speed profile. ML appeared to perform better, in that its sidelobes were 

lower, however, its localization of a source was no more accurate, and it could produce sharp false 

peaks in the display. Kirlin & Dewey57 have calculated the Cramer-Rao Lower Bound (CRLB) (to 

which the ML estimator often approximates) for the problem of correlated noise. However, they 

principally detail the pointing accuracy for a single source case, without examining the possibility of 

secondary or false sources.



8.7 Eigenanalysis Methods including MUSIC

Another family of algorithms is based on examination of the structure of the 

autocorrelation matrix associated with the data. A NxN matrix will have N  eigenvalues associated 

with it (not necessarily all distinct), and an eigenvector for each of these, thus spanning the whole 

space. In this case, all the eigenvalues will be real and positive, as they can be shown to represent 

power in the direction of the orthogonal bases of the matrix.

The p  highest eigenvalues each correspond to the power of a signal plus a constant additive 

noise term; the remaining N - p  values correspond to noise alone, and will thus be expected to be 

equal. A biased autocorrelation estimate must be made to ensure that the matrix is positive definite. 

Determining the order, /?, should be simply a matter of noting the number of distinct eigenvalues; 

however, with real data, all the noise-only eigenvalues will differ slightly, thus care is required in 

order estimation.

One of the first estimators to be based on this approach was PHD described earlier. Two 

other common PSD estimators based on the above eigenanalysis are the MUSIC (Multiple Source 

Identification and Classification) and EV (Eigenvector) algorithms. These utilize the near 

orthogonality of signal subspace vectors to the estimated noise-only ones. MUSIC is the more 

widely used one, although it produces more spurious peaks than EV. The form for MUSIC is:-

P M U S l d ® )  ~  ------- 7— T T  -----------------  [ 8 - 7 ]

eH(Q)
N
Z  V.-V?

( i = p + l
e(Q)

where v,- is the eigenvector corresponding to the zth eigenvalue. Note, this does not 

generate a true power estimate.

The above methods achieve better performance at low SNR than Prony and AR-based 

processes. In his explanation of MUSIC, Schmidt88 shows how it outperforms ML, ME and CBF in 

resolving two sources insonifying a 3-element array. However, it is to be noted that the present 

problem involves considerably more elements and much higher noise levels, so that the applicability 

of MUSIC in this project does not necessarily follow. Indeed, Schmidt showed how sensitive it could 

be to the slightest truncation of the data.

Farrier & Jeffries34 state that eigenvector methods are very sensitive to phase and 

amplitude errors, and propose another algorithm based only on the signal subspace vectors. Paulraj 

& Kailath77 refer to bias and resolution problems that occur when the sensor noise is coloured. Their
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solution involves subtraction of successive estimates of the autocorrelation matrix, under the 

assumption that the statistical properties of the noise will not have changed. Such an approach is 

suspect with rather high noise levels. A later proposal by Paulraj & Kailath78 involves rescaling of 

the autocorrelation matrix to allow for the known (i.e. expected) decorrelation. This enables criteria 

for order estimation to perform better. However, the rescaled matrix does not enhance source 

determination unless the SNR is very high. If the coherence function is unknown, it must be 

parametrized and a multi-dimensional search performed. Roy, Paulraj & Kailath87 have created a 

further eigenvector based algorithm, ESPRIT. Like MUSIC, this is based on PHD, but able to use all 

the autocorrelation lags available. Its proponents claim that it has certain advantages over MUSIC.

8.8 Summary

As can be seen there are a multitude of methods, all providing better resolution than the 

conventional beamforming method. However, selection of a method is not merely a matter of 

picking that which claims the finest resolution. Many other factors need to be taken into 

consideration, such as behaviour in the presence of additive noise (possibly coloured). Also, in many 

cases a perfect plane wave source cannot be assumed — Paulraj & Kailath78 state that a slight 

decorrelation across the array may give the effect of rays converging from a broad source. 

Alternatively, there may be correlation between two or more sources, possibly due to multipath. 

Byme & Steele21 have indicated that many NLMs are unstable when either multipath or correlated 

noise is present Other factors to be taken into consideration are the computational complexity (and 

hence run-time of each) and as to whether they can be successfully applied to sensors that are not 

equally spaced on a straight line.

Each of the above algorithms may see use in the field of signal processing, as each in turn 

has a niche in which it is particularly applicable, often having been designed with that specific 

function in mind. The applicability generally depends upon the appropriateness of the underlying 

model and the assumptions that go with it

Many papers have been written upon the deleterious effects of certain conditions upon 

specific algorithms, and often introduce variants that cope with the problem in question. Thus the 

number of different signal processing algorithms is large, but with mainly only those detailed above 

having been fully investigated. A more detailed description of their derivation and implementation
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may be found in works by Kay & Maiple53 and Marple67. Both compare the performance of all the 

algorithms on specific data sets. Further comparisons, using either simulated or real acoustic data 

have been performed by Barrett & McMahon7, Scholz & Kroll89, Bucker15, Porter, Dicus & Fizell80, 

Fizell37 and Meredith and Ramsdale70. The relative performance of various Time Delay Estimators 

(TDEs) is detailed by Fertner & Sjolund36 and Nikias & Pan74.

For the particular case of this project, where noise levels may be high, the signal partially 

decorrelated across the array and great uncertainty exists in the location of the sensors, then the CBF 

approach is the one selected. This is because the other algorithms tend to perform poorly when the 

true situation is far from that which the model assumes, whereas CBF is fairly robust Given 

reasonable length arrays, and the narrowness of the frequency band being processed, it is unlikely 

that there will be two closely spaced sources, so the shortcomings of CBF in this respect may be 

overlooked. Also, note that CBF is computationally simpler than most o f the high resolution 

methods, even though the FFT implementation will not be able to be invoked when the array is 

contorted.
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9. PHASE FLUCTUATIONS ALONG

THE TRANSMISSION PATH

9.1 Various Causes of Phase Error

In the ideal case, it would be expected that for a linear array insonified by a source oblique 

to it, the phase of the received signal at each sensor would show an exact linear trend across the 

array. However, in any particular realization it will not do so, for the following reasons: -

1) Addition of random additive noise will disturb the organized distribution across the

array.

2) The signal may pass through slightly different patches of the sea on its way to the 

various receivers — spatial variations in the refractive index will cause propagation times to be 

different from that predicted simply in terms of geometrical distances; this is modelled by correlated 

multiplicative noise.

3) Non-linearity of the array — those sensors nearer the source receiving the signal earlier 

than expected, those further away later. This effect is greatest for a source at broadside.

4) Mismatch of the time delays in the cables returning the signals from the elements to the 

processor.

5) Errors in the phase shifters used for beamforming.

Although all of the above can cause phase errors, their results may be different both 

spatially and temporally. First of all the phase shifter errors may be discounted, as they are likely to 

be very small, effectively uncorrelated between sensors and completely different between 

consecutive realistic realizations. In a similar way, random additive noise should not make that 

significant a contribution to phase error, unless the noise is fairly correlated across the whole array, 

e.g. when multipath interference occurs between the direct ray and that reflected off the sea bottom. 

Considerable investigation of the effect of uncorrelated additive noise is referred to in this thesis, 

especially in the presence of pure phase errors, such as caused by misshapen arrays.

Inhomogeneities in the medium are quite likely to lead to phase errors that are correlated 

across the length of the array. The fluctuations for different sources will be different, although not in
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any predictable way, simply that they will have similar correlation widths. There will be some 

variation with the bearing of the source if the transverse and longitudinal correlation lengths are 

different; the latter being the speed of sound times the correlation time.

Phase differences due to non-linearity of the array geometry can certainly be significant in 

long arrays. Given the phase errors associated with the array shape for a source at one angle, an 

approximation to the true shape might be deduced and hence the errors for a source at a different 

angle may be computed. The precise mapping between different phase errors here contrasts with the 

virtual independence of those due to phase fluctuations. [ Signal degradation due to non-linearity 

(transverse displacements) should not be observable towards endfire, whereas that caused by the 

changing refractive index will be as present there as elsewhere. ] It is to be expected that array shape 

fluctuations will have a characteristic time different to the typical duration of the inhomogeneities, 

and thus that the two effects will be able to be distinguished on a temporal basis too.

The existence of errors in the compensation time along the cables is a constant malfunction 

of the array. This might possibly be detected in the long term, when it is seen that certain elements 

seem to have a bias in their error location when examined over many hours of data in vastly different 

situations. It is unlikely that such errors would be large, and thus that the time and trouble would be 

taken to measure them.

This project is principally concerned with the errors resulting from array shape 

deformations. The following pages first discuss the variations in phase (and amplitude) associated 

with inhomogeneities in the ocean, as they are expected to be significant, and a necessary part of any 

realistic simulation. Their magnitude is noted, as is their correlation length and correlation time. 

After that, investigation is commenced into the various causes of locational uncertainty for the 

elements and then of how this affects the processing of the received data. Finally, there are a few 

pages indicating how various authors have approached the task of overcoming phase disturbances in 

the many fields in which it has manifested itself.
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9.2 Sound Speed Dependence

The speed of a sound wave in the open sea is a function of temperature, salinity and 

pressure (and hence depth). It also varies with frequency, so dispersion of a pulse will occur i.e. its 

various spectral components will travel at different rates, causing the shape of the pulse to evolve 

with time. The refractive index (RI) of a medium, represented by n, is given by:-

n = c $ l c  [9.1a]

jll = /z — 1 ~-Ac / Co [9.1b]

where c Q is the standard speed, defined for specific conditions, and fi is the fractional 

change, which is very small compared to unity.

If the sound speed is greater over one route than another, then the signal will travel quicker 

over the former. Application of Fermat’s theorem implies that sound will tend to travel over a route 

that is locally shortest in time. Consequently, the principal ray between two well separated points is 

a curve that spends a considerable proportion of its route in the deep, as that is generally where the 

speed is greatest. For a typical sound speed profile, many of the rays emitted by a source near the 

surface will take a broad range of routes through the deep ocean, reaching the surface close to one 

another. The resultant Convergence Zone (CZ) occurs at about 55-65km from the source.

Heating of the surface by the sun, increases the sound speed at the top. Consequently, there 

is usually a region some way below the surface where the sound speed is a minimum. This is 

typically at a depth of a few hundred metres, although the sound speed profile (ssp) will vary both 

diumally and with the seasons, as is shown, for instance, by Flatte' & Stoughton38.

This section of minimum speed acts as a duct for the sound rays; those descending from it 

being refracted up, whilst those rising being bent down. Such an occurrence is often referred to as an 

Underwater Sound Channel (USC). Artel’nyi, Didenkulov & Raevskii5 show that sound trapped in a 

USC should theoretically lead to an intensity distribution with a minimum at the centre, the point of 

minimum sound speed. However, intensity is often observed to be a maximum there; this is 

attributed to internal waves, which are mentioned later. For a source located on the axis of the duct, 

it is to be expected that all the rays emerging within a certain sector near the horizontal will travel 

along the channel without escaping. Observation of the angular intensity distribution on the 

channel’s axis, caused by a multitude of incoherent sources, will show most of the energy to be 

received from such a sector. In measurements by Artel’nyi et al. this corresponds to I 0 I < 16°,

- 4 7 -



where 0 is the angle from the horizontal. They state that theory predicts that little energy should be 

transported by near horizontal rays, but that for frequencies below 100Hz the angular distribution is 

roughly uniform across the sector. However, for higher frequencies, both they and Aredov, 

Okhrimenko & Furduev4 observe a broad drop in intensity for the near horizontal rays.

9.3 Lateral Differences

Many workers model the ocean as layered i.e. with all physical values (and hence RI) 

constant for a fixed depth. This is usually adequate for investigations of transmission loss, and other 

work where a simple source-receiver situation with time averaging is envisaged. However, the real 

sea departs from such a simplified view — the refractive index varies in a way that cannot be 

properly predicted, although its statistics may be understood. The refractive index is a function of 

3-D space (not just depth) and time. In a paper concerning propagation models, Jensen52 illustrates 

the temperature variations to be observed in various 2-D vertical sections of the sea. Although 

effectively random in nature, these variations are smooth, such that a correlation will exist between 

the RI fluctuations at one location and those at close neighbours in space and/or time. The 

correlation length (time) is a single figure indicating the region (interval) over which such variations 

are similar. The values for these parameters will depend significantly upon the frequency considered, 

and also on the conditions in the water mass.

9.4 Causes of Fluctuation

Fluctuations in RI occur on all scales from metres to thousands of kilometres, and from 

milliseconds to a year. Ali, Ferla & Akal3 tabulate such information in terms of the underlying 

causes for each interval of the spectrum, ranging from microstructure to circulation of the ocean due 

to the annual variation in its heating by the sun. Die tidal effects are only particularly relevant in 

shallow water. One of the causes of disturbance is thermal microstructure, which is the presence of 

minuscule fluctuations in temperature; Whitmarsh, Skudrzyk & Urick105 describe the statistics of 

this. The horizontal scale length associated with such is in the region of metres to hundreds of 

metres, but the correlation time of such variations is around a few milliseconds. Thus scattering is
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only effective for frequencies greater than a kilohertz. As the frequencies considered in this project 

are significantly below this, finestructure can be ignored. Medwin68 mentions the effect of entrained 

bubbles near the surface being greater than scattering by microstructuie.

Internal waves are the movement of large masses of water, and have correlation lengths of 

the order of 100m to several kilometres, whilst their correlation times cover the range from 10 

minutes to 24 hours. A display of the intensity of RI fluctuations versus spatial wavenumber is called 

the Kolmogorov spectrum. Gregg44 refers to a distinct change in the slope at 0.1 cycles/metre; this is 

sometimes taken as the dividing point between microstructure and internal waves.

9.5 Expected Level of Fluctuations

Various models have been devised to predict the expected degree of fluctuation in phase 

and amplitude. Wilson & Tappert106 state that the Parabolic Equation method works well for low 

frequencies, but for those of 1kHz or more the method is impractical; they propose use of the 

radiation transport equation to cover such a range. Chotiros & Culbertson24 favour formatting the 

fluctuation spectrum in terms of Gaussians, as the scatter of such a disturbance is well known. They 

reckon this approach simpler than using that involving wavenumber spectra and structure functions.

Komissarov62 has performed careful mathematical analysis of the expected effect of 

random anisotropic inhomogeneities on phase and amplitude fluctuations. Defining B to be the 

logarithmic change in amplitude i.e. B = In [A (x,y,z)/A0] ~ AA/Aq and <J) to be the phase fluctuation, 

the expected variation in each is given by:-

<BZ> = «j>2> = <qi2> kl  L ax [9.2]

where jj. is the refractive index change as defined earlier, ax the correlation length of such 

along the ray path, k 0 the wavenumber of the signal and L the distance travelled. Not surprisingly, 

the rms variation in <J> is found to be inversely proportional to the wavelength, X. The mutual 

correlation of the amplitude and phase fluctuations, RB̂  = <£<})>/V<5 2 >«}>2> is finite for short ray 

paths, but tends to zero for large distances. The transverse correlation coefficients for sensors far 

from the source are predicted to fit the distribution below:-
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Rb = <B\B2> / <B2> = exp ( - / 2/a2) [9.3a]

R^ = «l>i <t>2> ! «|>2> = exp ( - /2/a2) [9.3b]

where I is the lateral separation of the sensors.

Yang & McDaniel107 predict the expected level of fluctuations of a 3kHz signal due 

separately to finestructure and internal waves. For the former a horizontal correlation length of 74m 

is used, whilst the value is only 2m for the vertical direction. Internal waves were shown to lead to 

much greater changes in RI, and consequently decoherence due to them dominates over the effect for 

finestructure.

9.6 Observed Spectrum of Fluctuations

Many experiments have been done to measure the amplitude and phase fluctuations over 

totally refracted paths (i.e. ones where there is a single path from source to receiver, and it involves 

no reflections off the sea surface or bottom). Some of the most thorough ones were those at the Cobb 

Seamount31,32 and the one called MINIMATE33 which was performed at Quilcene Bay. [ The second 

experiment at the the Cobb Seamount site was given the acronym MATE — Mid-ocean Acoustic 

Transmission Experiment ] All three involved measurement of the physical properties of the water 

e.g. temperature profiles, whilst the correlation measurements were being taken. The first Cobb 

Seamount experiment used pulses of 4kHz and 8kHz sound over a 17.2km path to sensors up to 15m 

apart For both frequencies the phase difference at the two sensors was found to be normally 

distributed. Both Cobb experiments showed that the intensity of the phase fluctuations followed a 

GT3 dependence as expected, where co is the frequency of the fluctuations, rather than of the sound 

used. However, the amplitude variations obeyed a co-1 law instead, whereas the expectation from the 

theory of internal waves was that it too would be proportional to co-3. Desaubies29 quotes the 

amplitude fluctuations as having a variance of about 5.0 (dB)2 at 4kHz. He suggested the spectral 

discrepancy might be explained in terms of finestructure being passively advected by the internal 

waves. Ewart32 has extended this line of thought to show good agreement with the data, although he 

does not claim that the model is necessarily true. The Cobb experiments showed that the phase 

difference between the signals at two sensors were proportional to co-1/2.
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MINIMATE looked at 4 frequencies (all in the kilohertz) range, but only over a path length 

of 1.1km. It was observed that the travel time variations were approximately the same for different 

frequencies whereas the amplitude fluctuations were uncorrelated across frequency. Little 

correlation was observed in the changes in travel time at two sensors 3m apart

This project is primarily concerned with CW signals in the frequency band 100-400Hz, for 

which measurements can be found dispersed throughout the literature. In a summary table of others’ 

results, Urick101 gives a figure of 400m for the correlation width of a 400Hz signal, travelling over 

430km; Flatte & Stoughton38 quote a figure of 1km for a 178Hz signal over a 135km route.

The above discussion has been for totally refracted paths; however, if the dominant path 

involves reflection off the sea surface, then the correlation length is reduced considerably — Urick101 

states this may be by as much as a factor of 6. Akulicheva & Frolov2 have studied the characteristics 

of two singly reflected rays over a distance of 65km. The different degree of fluctuations associated 

with the two could be attributed to the different sea surface conditions at the relevant reflection areas 

— changes in angle of surface being the primary contributor rather than the varying height of the 

water mass. Surface reflections lead to small variations with a period of around a second. Galkin & 

Frolov39 attribute significant variations of the vertical arrival angle to variations of the surface slope, 

because the angle of arrival (AoA) only changes by 0.2° for purely water-borne rays. Urick100,102 

has shown that in a multipath environment, there is a 1 in 10 chance that the signal level may drop by 

as much as lOdB; but if a single dominant path exists then there is only a 20% chance that level will 

fall by more than 2dB.

Beran & Whitman9 explain how velocity inhomogeneities in the water mass itself affect 

the passage of sound waves in a similar way to RI variations. However, they conclude that such an 

effect only becomes at all significant for frequencies greater than 20kHz.

Urick101 states that for significant fluctuation levels, there is no benefit to be obtained from 

using an array any longer than twice the correlation length of the fluctuations.



9.7 Simulated Fluctuations

Despite Komissarov’s derivation of the Gaussian form for cross-sensor correlation, and the 

results of Ewart31 and others to support such, many authors involved in simulation work e.g. Paulraj 

& Kailath78, Butler20 and Kirlin & Dewey57 invoke the simple exponential decay law for the 

correlations i.e.

<BiBj> = exp[ - a  I i - j  I ] [9.4]

as this is a very simple correlation to simulate. Given a set of uncorrelated random 

numbers, {/!;}, one way of producing a set with the desired properties, is to set-

a\  = rt\ [9.5a]

a-,, =  aa,_i + V l - a 2 m [9.5b]

A series of random numbers whose correlation is described by a Gaussian can be obtained 

by taking a set of independent random numbers and convolving them with a Gaussian, a process most 

efficiently implemented in the inverse Fourier domain. Any other desired distribution, such as the 

sine function can be achieved by this method. Buckley17 details the simulation and use of such 

random numbers to provide a ’phase-changing screen’. Tough98 has looked at methods of generating 

distributions such that their development in time may be as required too.

9.8 Summary

As can be observed from the above, many people have spent a lot of time attempting to 

determine the nature of the variations due to the medium. The experimental results for specific 

processing parameters tend to show great variability, depending upon the oceanic conditions present 

Komissarov has produced a clear prediction of the expected degree of fluctuations, assuming rays 

involve no reflections. Although such an assumption may not be too representative of the true 

situation to be encountered, his results may prove a useful guide to the size of the correlation length.

Workers who have had need to perform simulation of correlated noise, have often modelled 

the correlation as either Gaussian or exponential decay. Their investigation has generally been over a 

large range of values for the correlation length, the span often having been chosen in terms of the



degree of coherency at neighbouring hydrophones or over the whole length o f the array. This was in 

order to show the varied behaviour of their processors, rather than through reference to any pertinent 

figures in the literature. This, consequently, is the approach adopted here — use of a breadth of 

correlations varying from totally uncorrelated to fully correlated. Naturally computation time 

restricts the number of intermediate degrees of correlation which can be investigated.



10. MISSHAPEN NATURE OF ARRAY

10.1 Physical Causes

This project is particularly concerned with the effect of misshapen arrays upon signal 

processing techniques. There are many reasons why an array will not correspond to the ideal equi- 

spaced line array assumed by many algorithms. Manufacturing errors may cause the element 

separation to be non-uniform, but errors of the order of a few percent are unlikely to be significant 

here. Rapid towing of the array through the water, with resistance provided by the drogue will cause 

variable stretching of the array along its line. However, much more important are the effects that 

cause the elements to lie off the ’line of the array’ by possibly several wavelengths. Two major 

causes for this exist.

Firstly, there is the presence of cross-currents in the ocean. A steady uniform cross-current 

will principally only cause the line of the array to rotate such that its direction is now no longer 

parallel to that in which the ship is pointing. However, large eddies and other major disturbances will 

produce variable forces on the array and cause it to adopt some other configuration. Note the 

resultant shape is likely to be analytically smooth, as the cross-forces, although fluctuating, will show 

some correlation across the array.

The other common cause of contorted arrays is that the towing ship is undergoing (or has 

just completed) some manoeuvre changing the route that it is pursuing. It may be required to do this 

for a number of reasons — avoiding islands or other ships, turning back to continue patrol of a certain 

patch of the ocean, or in order to produce a different direction of the array such that the range of a far 

off source may be determined by triangulation.

The above two processes are complicated to model fully, as not only do the forces vary in 

space, but also in time, and the array is being towed through the spatial distribution too. Some papers 

have assumed that an array towed around a curve will pursue a circular arc. Such is certainly easy to 

model, but it is not totally representative of the evolution of the array shape. Brandenburg12 has 

investigated the changing shape of an array, utilizing such a model in which the array follows itself. 

With this model of array movement, he continues on to propose a specific trajectory for the turning 

vessel in order to minimize the amount of time required for the array to straighten again. Other
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authors have concluded that an array will ’cut the comer’ i.e. take the shortest route, if the turning 

circle is sufficiently sharp. Indeed in some cases, cornering may reduce the tension at the end of the 

array, thus leading to a sag.

Bedendender8 has explored the various models detailing the curve adopted by a cable 

subject to tension and hydrodynamical loads. Unfortunately, the cases considered are complicated 

3-D ones rather than just planar, so little insight is gained, although the models could be constrained 

to deal with variations in a specific horizontal plane, or else the planar projection of the 3-D result for 

a nominally level array could be used. Also, the models predict a steady-state shape, giving no 

indication of the curves likely to be encountered when the forces are fluctuating. Cartwright & 

Mayers23 have applied kinematic equations to the case where the towing ship is not adopting a 

perfectly straight course. The resultant form for the evolution of the array shape was solved by two 

mathematical methods, whose results were consistent; however no comparison was made to in situ 

measurements on an array.

Ketchman56 has calculated the vibrations in array shape likely to be caused by vortex 

shedding (i.e. eddies) as the array moves through the water. He was principally concerned with the 

existence of high frequency vibrations (around 50Hz), and concluded that the associated correlation 

length is 1-3.5 cable diameters, and that pitch (up-down) variations dominate over yaw (left-right) 

ones. These rapid vibrations are of tiny amplitude — extension of these findings to slower large 

amplitude oscillations seems uncertain.

10.2 Effect on Processing

Some of the causes of phase error mentioned previously have had their specific effect on 

processing investigated e.g. Godara42 has made predictions of the effects of limited phase shifters, 

and Gray43 has shown how ’quantization lobes’ can arise because of the need for interpolation when 

examining a sampled time record. Many more authors have simply investigated the effect of 

independent errors. The source of such errors could be most of those listed previously, although 

usually the resulting variances in amplitude, and in phase, cr|, will be small i.e. «: 1. [ Errors 

caused by misplaced sensors are unlikely to be independent i.e. totally uncorrelated, unless their 

separation is far greater than the wavelength of the disturbances travelling along the array, or else 

they are all independently held in position e.g. attached to separately moored buoys. ]
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Ramsdale & Howerton82 have examined the probable height of error related sidelobes for a 

given level of distortion. They rigorously derived an expression for the effect of independent errors 

in amplitude and phase, not only finding the mean error-induced sidelobe level (SLL), but also the 

probable height of the peak sidelobe — for 30-50 elements, this is about 7dB above the mean value. 

The full derivation for the height of the error lobes contains an expression of the form J j v f  / Q^w,)2 , 

where {w, } is the set of weights used for the n elements. This is minimized ( - » lln) for the selection 

of uniform weighting. Other weighting schemes thus induce higher SLLs, although, for most 

commonly used scalings, the difference from that for uniform weighting amounts to no more than a 

few decibels. An exception is superdirective arrays, which show great sensitivity to such errors.

Quazi81 has shown that where the error induced level dominates over the true beam pattern 

i.e. the true sidelobes are negligible to the levels simply due to noise, the probability on a chosen 

bearing of observing a certain power level, x, is given by the pdf pr(x)  = (1/ji2) exp(-x/|±2), where p.2 

is the mean level added to the beam pattern due to the errors. Quazi also detailed the effect of 

amplitude and phase errors upon the pointing accuracy of the beamformer. The rms error, cjm, is 

given by:-

Au
f  V2 Vl-KTx3

Vl -Pr(e)
[10.1]

where Au is the beam width, and pr{e) is the probability of element failure. Note that 

element failure alone cannot cause pointing error.

Ling, Lo & Rahmat-Samii65 have modelled a similar problem for microwave dishes, noting 

the effect on mean and peak SLLs. Tsao & Steinberg" have simulated the effect of such errors upon 

a microwave antenna array that was implementing the CLEAN algorithm. Positional errors of the 

order of 0.2A, or more, led to false targets of significant amplitude; however Tsao & Steinberg’s 

’absolute threshold’ seemed to be able to discriminate sufficiently well to prevent acceptance of such 

peaks as real sources. Kleinberg58 has simulated the loss in array gain due separately to amplitude 

and phase errors, later expressing this in terms of a combined measure for the errors.

Cox, Zeskind & Owen28 have compared the performance of a linear predictor algorithm 

(similar to MEM), ML processor and CBF under the effect of such independent errors. They found 

that the phase errors caused the same shift of peak for all three, although in the case of LP it 

corresponded to more than one beamwidth. Amplitude errors were found not to cause the LP peak to 

wander, but rather to lead to splitting of the peak. Mumford & Lawton’s72 investigation for ML

- 5 6 -



processors stated that the amplitude and phase errors were equally important, the effects being 

dependent on the total variance of the errors. Smallish independent errors still enable the processor 

to resolve sources, but the ability to compare magnitudes is severely degraded.

Schultheiss & Ianniello90 have detailed the effect of independent small errors on estimation 

of both bearing and range. They also consider correlation in sensor displacements of the form 

E(xiXj) = p * l~J *, and show that for 5 or more sensors the errors in range and bearing are uncorrelated 

and almost constant over the interval -0.5 < p < 0.5. Schultheiss & Ianniello had specifically studied 

an ML estimator; however, they state that at high SNR, CBF is only slightly more erroneous. 

Ginzkey40 has compared the effect of positional errors on several different processors — CBF, MLM, 

MEM and EDM (Eigenvector Decomposition Method). The maximum errors investigated 

corresponded to only about a tenth of a wavelength. The output SNR of CBF remained relatively 

unchanged, whilst that of the others decreased markedly — MLM and EDM showing no better gain 

than CBF for A/10 errors.

Their emphasis had been predominantly on small arrays with a short correlation length for 

the sensor disturbances; Hodgkiss50, on the other hand, has looked at the degradation of large arrays 

following a perfect circular arc, in which case the correlation is significant across the whole array. 

Nakatsuka73, too, has examined the effect of ’wavy phase errors’ - in this case the field of application 

was space-borne microwave arrays. Steinberg & Yadin97, in turn, give the equation for the reduction 

in gain of a ’radio camera’ (high resolution microwave antenna) resulting from random phase errors:-

AG = 4.3 a j  dB [10.2]

Their analysis was continued for partially correlated phase errors; however, interest was principally 

only in very small scan angles and phase errors due to multipath interference.

Knapp59 has looked at the influence of significant phase errors on the detection probability 

of large arrays, rather than upon the bearing accuracy. He states that when the rms error is 0.1 A the 

effect of the deformity is noticeable, the success rate for detection being reduced to only 75%. He 

proposes the form for a processor with optimum detection capability. For small position errors, less 

than 0.1 A, the standard CBF processor yields equivalent performance, but for very large errors the 

detection rate of the standard is reduced to that of one sensor alone, whereas that of the ’optimum 

processor’ is V/T better. However, even for his processor with no additive noise, errors greater than 

half a wavelength cut the detection rate to less than 20%. It is pointed out that processors which use 

a priori knowledge of the fluctuation statistics may be prone to great discrepancies if that knowledge
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is inaccurate. Specifically, ANC (Adaptive Noise Cancelling) can be very suspect to disturbances, as 

mismatch errors in cancelling will add to the problems due to imperfect addition in the look 

direction; Reed83 covers the details for one specific processor.

103  Restoring Image Quality

Hinich & Rule49 have approached the problem of a misformed array by considering it as a 

collection of successive mini arrays. Specifically, they looked at division of a 50 element contorted 

array into 4 and 8 element sub-arrays. Beamforming of these independent systems creates a 

distribution of estimates, whose average is close to the true bearing of the source. For a perfectly 

straight array, CBF processing of the whole array is preferable to use of sub-arrays. However, when 

the array is contorted, sub-array processing improves the estimation of source bearing — 4 element 

sub-arrays being best for a source near broadside, and 8 element ones for angles close to endfire. Use 

of median rather than mean, or ’closing aperture’ sub-arrays (i.e. pairs from each end successively 

inwards) were found not to improve performance. As an extension, Hinich48 also suggested division 

of time record into short segments with averaging over time estimates too. Such an approach seems 

rather suspect for the noise levels envisaged in this project, and detection of a second source is 

unlikely. A possible adaptation would be to reconstruct the believed array shape using the various 

sub-array estimates, and then perform CBF with these element locations to see whether weaker 

sources exist.

Brown & Ghiglia13 have looked at a variant of this. In their discussion of the map-drift 

technique, they divided the sensors up into n sub-arrays, and performed beamforming for each to 

yield bearing estimates, and then used these values to fit an nth order polynomial curve to the whole 

array, rather than simply producing a ’curve’ of n straight lines. They also investigated a cubic spline 

fitting method. Butler20, too, has looked at this in attempting to use information from a few position 

calibrators on the array in order to infer locations for them all. Cubic splines were shown to give a 

good fit to the array shape (which was modelled by a sinusoidal curve) and thus the sidelobes could 

be kept down.

A similar approach has been adopted by Bouvet10, except that he interests himself in 

locating each sensor individually using a ’co-operative source’ (i.e. one whose bearing and range is 

approximately known beforehand).
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The general self-survey equations linking sensor and source positions have been developed 

by Lee & Domy64 for a 3-D microwave array. As no restrictions exist on the relative positions of the 

detectors (such as a linking cable), three distinguishable sources are required. If a certain three are 

used for localization of elements, then no information on their position can be obtained. With 4 

sources, each in turn may be located. Lee & Domy have looked at the stability and complexity of the 

solutions of the resulting equations. They conclude that localization calculations will be well 

behaved if the individual sources are at least 28 beamwidths apart The distinguishable sources may 

either operate at different frequencies, or else be scheduled to emit at different times. Only three 

sources are required for the two dimensional problem. Rockah & Schultheiss85 have investigated the 

theoretical limit on such determination, by calculating the Cramer-Rao Lower Bound (CRLB) for the 

estimation. For a set of sensors independently disturbed from their nominal positions, the resultant 

variance in bearing estimate is given by:-

.  2 nol
<4 = - ^  [10*3]

where a* is the total variance in the individual position estimates (i.e. of both x and y co

ordinates), and riy- is the distance between the zth and yth sensors. [ Note, this value was derived 

assuming a 2-D array of arbitrary design. ] The individual fixing of each element’s position as 

detailed above will tend to be rather erroneous when the signal level of the source is low. In 

Bouvet’s simulation, the array estimate differed markedly from true when the SNR was 5dB. In the 

particular situation envisaged for this project, strong calibratory sources will not be available; instead 

only the vessel(s) to be located will be present, and they will be weak emitters. Such a procedure of 

shape determination is also unlikely to cope with multiple sources broadcasting over the same 

frequency band.

An entirely different approach involves examination of the structure of the beam pattern 

resulting from a particular guess. This technique was applied to the problem of misshapen acoustic 

arrays by Bucker16, but originated in a proposal by Muller & Buffington71. They were looking at a 

scheme of adaptive correction for an optical telescope, in order to overcome signal decorrelation due 

to the variability of the atmosphere through which all the rays were passing.

The fundamental limit of the resolution of a telescope due to diffraction is approximated by 

AJD, where D  is the width of the main mirror (or lens). However, the atmosphere in a column above 

the mirror is not uniform. If the variations in refractive index (RI) are equal across any horizontal
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section of the medium, then the signal would still be perfectly correlated. However, the horizontal 

scale length, r0, of the isoplanatic patches (that part of the atmosphere over which RI fluctuations are 

correlated) is only of the order of 10cm. Thus the turbulence related resolution of a telescope, given 

by X/r0, is in the region of a few seconds of arc, which is much wider than the equipment’s 

theoretical limit. Thus it should be noted that large Earth-based telescopes are not designed to 

improve the resolution attainable, but to have greater light gathering power.

Muller & Buffington calculated various statistics of the image intensity pattern, I(x,y),  

amongst which were the intensity at the central point, I(x0,y0) and the summed square intensity, 

j  I 2(x,y)dxdy.  Maximization of any of these criteria should correspond to correct retrieval of the 

phase information and production of a diffraction limited image. Some of the measures were shown 

to converge analytically, whilst others were found to do so experimentally. Sica94 indicates a simple 

proof for | / 2(x,y) dx dy using Parseval’s relation, but continues on to show that such analysis cannot 

be applied when the effective point spread function (PSF) varies with spatial co-ordinates.

To cope with such a space-variant situation, he compares long-term exposures (blurred 

images) with a specially blurred version of a ’snapshot’. A snapshot (short-term exposure) of a small 

sector of the sky will contain diffraction-limited information, as long as the exposure is no longer 

than the correlation time of the atmospheric inhomogeneities, which is approximately 10ms. This 

method requires knowledge of the expected blurring due to long time exposures, however, more 

recently, Sica95 has shown that just the shape of the transfer function is required, as the appropriate 

width can be determined. Ward & Saleh104 have applied a blurring filter that simply corresponds to 

addition o f a small number of images, shifted by predetermined amounts. Their method is driven by 

the maximization of a function of both the beamwidth of the overall system and the noise variance.

Rosenfeld & Kak86 provide a good summary and mathematical derivation of many of the 

processes that may be applied to blurred images. They comment that use of the Laplacian operator to 

sharpen images is physically justifiable, as it emphasises the high wavenumber components that have 

been most affected by blurring. However, they add that such a procedure is only suitable in the 

absence of any knowledge concerning the blurring mechanism; if such information is available, 

restoration techniques such as inverse filtering are generally superior.

In astronomy, observers are generally interested in a very small field of view, such that the 

object in which detail is to be sought is smaller than the isoplanatic patch size. By 1970 it had been 

realised that very short exposures (of the order of 10ms) could yield diffraction- rather than
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turbulence-limited images. However, in such short exposures the photon flux is low, and 

consequently the quality restricted by photon probability statistics. Straight forward averaging (long

time exposure) removes this problem at the expense of the superposition of many slightly shifted 

images creating a blurred view. Labeyie63 showed that useful information for averaging could be 

obtained from each short exposure image by taking the modulus squared of its Fourier transform. 

This technique, called Speckle Interferometry (SI), is equivalent to forming the autocorrelation of the 

image, which loses all the phase information.

SI performs reasonably for binaries or simple symmetrical objects. Knox & Thompson60,61 

produced an improvement which utilizes the phase information. Their method was devised to cope 

with resolving more complicated images, such as planetary moons. The KT (Knox-Thompson) 

method requires the presence of a reference point-source star; but this does not have to be in the same 

isoplanatic patch (area suffering identical degradation effects), but must be close enough to have the 

same mean square fluctuation characteristics as the complicated image to be restored. This averaging 

approach can work with low levels of random additive or multiplicative noise. Ayers, Northcott & 

Dainty6 have looked at an extended version of the KT method, which is based on a higher order 

statistic, that is an average of the correlation value for two intervals. This is compared with the Triple 

Correlation method, which uses higher order statistics too. Little real difference was found between 

the performance of the two.

As for high resolution beamformers [chapter 8], further algorithms exist that are slight 

variants of others, but with some particular defect removed. For example, Aitken & Johnson1 cite 

certain advantages of the Phase-Gradient method over KT. Cowie & Songaila26 discuss application 

of another algorithm on real astronomical data recorded at Mauna Kea. They claim to be able to 

achieve diffraction-limited images using a reference star up to 5 patches away. With the good 

’seeing’ associated with that site, the process can be applied to objects of interest within 30 arc 

seconds of a bright point source.



10.4 Summary

Little information seems to be readily available on the configurations adopted by large 

towed arrays, although significant deviations from a straight line are known to exist. To a good 

approximation, hydrophone elements are believed to follow the route of preceding ones, thus 

enabling good estimates to be made of the positions a short interval after they have been determined. 

However, such cannot be simply extended to infer array shape from the route of the towing vessel, as 

cross currents and eddies provide significant changes along the length of the towing cable. Some 

work has been done using a limited number of directional sensors along the array — if these were 

accurate enough for sonar work, then this problem of positional uncertainty would not exist.

Many authors have investigated the effect of minor phase and amplitude errors on the 

bearing estimate and sidelobe level — a rms positional error of O.lX, being the tolerance limit for 

most forms of processing. At this level of errors, high resolution beamformers showed no gain over 

the conventional ’delay sum and square’ technique.

Many different approaches to the problem of shape uncertainty have been proposed, 

coming from various different environments. The practical applicability of each individually 

depends upon how well the specified scenario matches that envisaged in this project. Here we are 

concerned with scanning over all angles with considerable noise present Thus those methods which 

rely on an ’almost empty’ object field will not be applicable here. The various speckle imaging 

techniques require the presence of a neighbouring strong point-like source. No strong sources are 

likely to be present in the acoustical case, except for the towing ship, which always being close to 

endfire can be of little help for element location. Oceanic fluctuations would shift the pattern for an 

otherwise well-focused image. In which case independent realizations might be profitably averaged 

by some implementation of the KT algorithm. However, such tends to be used to bring out detail in 

an already located source; use of such averaging to detect the source is suspect for if an individual 

processed ’snapshot’ can not be made to yield the source location(s) itself, then it is unlikely that the 

image restoration will be any good.

Several more of the above methods required the existence of strong co-operative sources — 

an invalid assumption for the present case. The phase correcting approach of Muller & Buffington 

seems the most applicable. Although convergence using some ’power functions’ is proved in their 

appendix, it must be borne in mind that they were working on a single source situated in the centre of 

their narrow field of view, and that no additive noise was assumed. Bucker has indicated that the 

process can be applied to a multi-source environment with significant noise. There seems to have
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been little follow up of this, so this work is primarily concerned with determining the performance 

limits of such a method, and of investigating which power functions converge quickest, and which 

are most stable.



11. COMPUTER IMPLEMENTATION

11.1 Hardware and Incorporated Software

This entire project was a computational investigation of the problem in question, namely 

determination of the effect of array positional uncertainty on source detection and bearing 

estimation, and testing of a means of overcoming it  The approach used involved maximization of a 

measure termed a power function (pf), which was calculated from the power variations within the 

beam pattern; various pfs are defined in chapter 12.

Original work was done on a Honeywell 68 DPS level 2, running Multics operating system. 

All programming was done in Fortran 77, with use of NAG for random number generators and 

GINO-GRAF for graphical output This machine had to be replaced due to aging — subsequent work 

was done on a Gould NP1 running Unix. Due to considerable changes and improvements required, 

the work on the Gould was done with a completely rewritten program, although many of the 

subroutines were very similar to the versions used on the first machine.

Fortran 77 was used once again, as was NAG for random number generation. However, 

this time GINO-GRAF was unavailable, so the inferior NAG Graphical Supplement (NGS) was 

incorporated instead. The relevant coding amounted to approximately 2400 lines, and was stored in 

4 files.

Word processing and laser writing had originally been performed by a GEC 63/40 using 

troff — its departure, and the eventual availability of appropriate software (SoftQuad) on the Gould, 

meant that this machine was in the end used both to produce results and to present them in this thesis.
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Fig 11.1 : Flowchart of program performing the investigations detailed in this project.
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11.2 Organization of Program

The flowchart in Fig 11.1 describes the action of the program, and the sequence of 

subroutine calls. However, usually some of the routines were bypassed for any particular run; for 

example, when hundreds of simulations were needed for averaging, then graphical output such as 

beam patterns and contour plots were not called. Also, although the local gradient might often be 

calculated, the search direction used was often set to a predetermined one e.g. a single member of the 

Fourier basis.

The routines on the left-hand side of the diagram were concerned with simulation of the 

signal, whilst those on the right related to the processing — beamforming, calculating power 

functions and relevant graphical output The coloured in decision boxes enable selection of one of 

three possible tasks for the program:-

i) Creation of signal record only (and storage)

ii) Processing of stored signal record.

iii) Production of new signal record, storage of its values, and processing of it

The two decision boxes at the bottom gave the program the ability to repeat all its work either for 

exactly the same conditions (inner loop) or for slightly modified ones (outer loop). Many repeats of 

identical conditions being necessary to produce sufficient results that statistical analysis could be 

applied meaningfully; repeated sequences of runs for modified conditions enabled many similar 

scenarios to be processed successively, rather than using repeated calls of the main program, with 

different values read in from the input files.

If the program was truly divided into simulation and processing parts, then the element 

failure routine should belong to the former. However, it was felt advantageous to store the full 

element record, and incorporate the failure in the processing side, so that the effect could be applied 

to stored simulations, enabling more precise comparisons with processing of unadulterated signals.

Beam patterns, on output, could either be independently scaled, such that their maximum 

corresponded to the full scale of the graph, or else drawn on axes calibrated such that full scale 

corresponded to the peak response for processing using the true shape.



11.3 Input / Control

The program was required to investigate a large variety of conditions, and to use different 

processing, depending on which aspects of the problem were being investigated. To cope with the 

large range of scenarios, the input conditions were read from 3 different files. One characterized the 

sources present — no. of sources, frequencies emitted, and for each source the bearing and range, as 

well as the phase and amplitude at each of its frequencies. Another file dealt with the noise — levels 

(standard deviations) and correlations of both additive and multiplicative. The third file described 

the array — no. of hydrophones, their spacing and the true array configuration in terms of its Fourier 

components.

These 3 files contained all the information necessary to simulate the signal record. Any 

such record produced was automatically stored; an option within the program permitted retrieval of 

previously produced data to enable different processing approaches to be used on not just the same 

situations, but on exactly the same data. In such cases, the previous 3 input files were superfluous.

A fourth file contained all the conditions pertinent to the processing of the signal record. 

Some values in this file were parameters describing the initial shape estimate, search range to be 

tried, beam sampling rate and sector to be scanned etc., whilst others were ’flags’ i.e. simple integer 

values destined to switch on or off various pathways in the program, such as plotting of beam 

patterns or contours, accurate bearing estimation or use of gradient search methods.

11.4 Parametrization of Array Shape

For this work, the array shape is characterized by a limited Fourier series. This is specified 

by the Fourier coefficients, a j , j  = 1 ,8  , such that the sensor locations are given by:-

xi = { ^ - - i ) d  [11.1a]

8

yi = 2) fly sin ( nj (i - l ) / ( n - l ) ) [11.1b]
j = i

where array length, L - n - \  d ~ n d ,  n is the number of elements and d their separation. 

Alternatively, the variety of possible array shapes may be regarded as a domain spanned by the basis 

functions,/), where f s are given by:-
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f j ( x )  =  sin ( 7  k ( ^ - - x ) / L ) [11.1c]

Note, that:-

i) The array is actually numbered here from right to left (i.e. x decreases as i increases).

ii) The array is centred about the origin.

iii) The nodes of the Fourier series are located at i =1 and i =n -1 (i.e. on the end elements).

This type of characterization was chosen because it generates a smooth form for the cable, 

as would be expected, without needing many numbers to be specified. This particular 

parametrization also seemed a wise choice for a basis, as components of a Fourier series are mutually 

orthogonal. The application of orthogonality concepts to estimation of several independent 

coefficients is discussed in chapter 30.

The first 3 of these Fourier terms are illustrated in Fig 11.2. It can be seen that the shape of 

II is such that the line of the array i.e. the straight line which best fits the points is no longer parallel 

to the original straight form. Indeed, this conceptual ’fine of the array’ will shift linearly with the 

amplitude of the 2nd Fourier coefficient.

Fig 11.2 : Illustration of first 3 Fourier terms in simple basis

As there is generally no fixed reference point in open sea operation, source bearings can 

only be determined relative to the array. If data for a certain signal record are processed using an 

inappropriately rotated array (possibly due to an erroneous value for a 2) then the estimates of the 

source bearing will be out by the same amount. To overcome such a simple estimation error for the 

wrong a 2 value, it is convenient to alter the 2nd basis function to its Fourier equivalent rotated 

through the correct compensatory angle. As deviations perpendicular to the array are small relative
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to the array length, it is sufficient merely to subtract out the equation of the best fit line to this curve. 

The equation for this line and for the equivalent higher order even terms is calculated in appendix 7. 

Thus the basis functions generally used in this work have the y- values computed according to:-

8 4

>» = X ai  sin ( KJ ( i - ! ) / (* - ! ) )  + X a 2j ( / 2 j  k L ) [11.2]
;=l j=i

The difference in bearing estimation between these two characterizations ( [11.1b], [11.2]) 

is shown in chapter 15.4.

11.5 Noise Generation

It was required to be able to generate complex Gaussian noise of standard deviation, a n, 

and inter-sensor correlation, E [«,«}] = a* e a *l~  ̂ . [ Note, as correlated noise is only a small aspect 

of this investigation, a fully realistic modelling of the correlation of ocean noise is not needed, rather 

what is required is a simple form characterized by one or two parameters that enables correlation 

length to be changed easily. This particular form for the correlation was chosen for its simplicity 

both in implementation and interpretation. All other correlation forms, including Gaussian (the other 

commonly used one) could be produced by a filtering technique; however, the exponential form can 

be created more simply. ]

The NAG routine used was G05DDF(M,S) which generates a number randomly from a 

Gaussian distribution of mean, M, and s.d.,S. This was called twice with mean zero and s.d.=l/V2, 

which were then equated to the real and imaginary parts of the complex noise, viz:-

S = SQRT(0.5) ; XN = G05DDF(0.,S) ; YN = G05DDF(0.,S)

CN(J) = CMPLX(XN,YN)

The complex noise, CN(J) (J = 1, NEL — no. of elements), generated by this method has a mean of 

(0., 0.) and a s.d. of 1. Rescaling of the magnitude of the noise (i.e. the s.d. —> SD) and production of 

the desired correlation, using ALPHA = a , is achieved by:-



BETA = SQRT(1-ALPHA*ALPHA) ; CN2(1) = CN(1) * SD 

DO 10 J = 2, NEL 

10 CN2(J) = CN2(J-1) * ALPHA + CN(J) * SD * BETA

Thus the array CN2(J) contains random values with a Gaussian distribution of zero mean 

and a standard deviation of value SD, and having an exponential form for the correlation as required.

11.6 Element Weightings

The reasons for attributing greater importance to the signals from some elements than from 

others is discussed in chapter 4.4. This paragraph merely states which ones have been used in this 

project, and their actual coding, especially as to the locations of zero weighting for the Hann and 

Bartlett schemes (compare to chapter 4.4). The five used were:-

UNIFORM : Wi = 1

HALF-COSINE : Wi /  n i —n "  \
= cos( t ~ 7 ~ )

HANN : Wi = 0.5 + 0.5 cos (  n • )

HAMMING : Wi = 0.54 + 0.46 cos

BARTLETT : Wi _  n ' -  | i - n '  | 
n

where wt- is the weighting of the z'th element, and n is the midpoint of the array of n 

elements i.e. n' = x>2 (n+1).

11.7 Measuring Estimation Accuracy

To investigate the accuracy of the estimates it is necessary to evaluate power 

functions (pfs) for various shape estimates close to true. Generally, the trial shapes are described by:-

= Co + i K  , i = - n , - n + 1, • • • ,n [11.3]
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where £,• is the vector representation ( a i , a 2, a 3 , "  *) of the series of Fourier coefficients 

describing the trial shape, £0 is that for the true, and the incremental step. Often A£ has zero 

values for all terms except one i.e. it corresponds to a search over just one of the unknown 

coefficients, with the rest already determined. In chapter 30, work is also done for cases where the 

central guess, labelled £0, does not correspond to the correct set of values, and neither does any of the 

others — this is to test whether the power function algorithm selects the shape nearest to true when 

the true shape is not one of those tested.

The number of combinations tried, N , equals 2 /i+ l. Now, although it is expected that on 

average the power function will peak for C = Co* the effects of noise will lead to the maximum lying 

at some other shape nearby. Care must be taken in the search procedure to ensure that the range of 

values investigated contains all the likely locations of the peak i.e. the range must be such that the 

peak rarely occurs at i = - n  or i = n, as this would be indicative of the true maximum being much 

further away. However, it is also useful to have I A £ I small as this is the resolution capability of the 

shape determination. A small value for this improves the accuracy of the measurement error and 

allows more precise comparison of different situations. These two variables are linked by N, the 

number of beam patterns to be calculated and stored. In this program, N  was constrained to have a 

maximum value of 50.

11.8 Repeated Searches and Convergence

It is not practical to extend the linear search method highlighted above to a higher 

dimension i.e. to calculate pf values for all possible combinations of all possible values for the 

coefficients. Instead, 2 main approaches are possible:-

i) Repeated linear searches — independent evaluation of each of the coefficients via the 

linear search method.

ii) Method of steepest ascent — investigation of changes in pf for small increments of the 

various <z, leads to a direction vector for the steepest rate of change; a linear search can then be used 

in this direction.

There are also further algorithms appropriate for gradient climbing that involve alterations 

to the up-slope vector, using extra knowledge about the structure o f the n-dimensional surface close 

to the power function peak. However, much of this project is about whether the pf peak (and thus
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hopefully the true source shape) will be reached, rather than how efficiently the program converges 

to that point.

11.9 Increased Resolution

Much of this work was done with beamforming using an angular separation of 2° between 

beams. In cases where higher precision was required, the angular sector local to the peak was 

scanned again at, say 0.01° resolution.

A routine had been written which took the highest peak and the points either side and fitted 

a quadratic curve to them. The implementation of this is discussed in appendix 9. Although the 

application of this in the determination of the peak position led to a reasonable gain in accuracy, it 

was not generally used in this situation — the increased resolution beamforming being implemented 

because of the certainty of its results. [ Alternatively, methods such as Fourier interpolation or fitting 

of a cubic spline could be used, but each makes assumptions about the shape of the lobe. ]

In the attempts to converge towards the true shape, power functions were calculated for a 

number of shapes differing by constant increments in one or more parameters; the peak pf value 

indicating the shape closest to true. Here the method of fitting a quadratic was beneficial, as it 

reduced the number of trial shapes to be tested, and hence the computation time.

11.10 Timing

This project has not been particularly concerned with the amount of computation time 

required, save when it was large enough to severely delay the gathering of results. However, in any 

eventual implementation, this is an important item. In such a case, it would be desirable to have real

time processing, i.e. analysis of data in less time than taken to acquire a new set of voltages.

Most of the computing time is taken up with beamforming operations. The time required 

for this is proportional to the number of hydrophones, the number of shapes tested and the number of 

beams formed for each. One commonly timed situation involved formation of 56 beams at 2°
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separation using 16 elements; 49 shapes could be tested and compared in 6.0 seconds (to within

0.1 secs).

Note, some knowledge of the location of the source(s) could reduce the size of the angular 

sector scanned; coupled with a decrease in initial resolution to, say 3°, this would reduce the number 

of beams needed (and thus the processing time) by half. More efficient coding and implementation 

of the vector preprocessor could lower the time taken for 49 shapes to 1.0 secs,

A more complicated question is the number of trial shapes really needed. Although as 

many as 4 Fourier terms might need to be evaluated, updating of array shape from that of a few 

seconds past should keep the total number of trial shapes down, probably to well below 40. Thus a 

calculation time of 1.0s may well be viable for the situation described above. However, note that a 

doubling of the number of elements effectively quadruples the processing time, as the limiting 

resolution would have to be halved. As an example, some work was done on an array of 128 

elements — beamforming for one shape estimate took about 5 seconds; that to do 50 shapes 

(i.e. typical of a search routine) was 4 minutes.



12. LIST OF POWER FUNCTIONS TESTED

The quality of a particular beam pattern is to be characterized by a single figure, the 

maximization of which is hoped to correspond to retrieval of the correct array shape. Bucker16 in his 

work used only J p 2cos0d0, whilst Muller & Buffington71 had investigated a variety of measures. 

Some of theirs were rather specific to their situation, assuming a circular aperture and the source to 

be at the centre. This project investigated a number of different estimators, here termed ’power 

functions’, as they are generally summations of functions of the power over different directions. All 

the ones tested are listed below, although some were only briefly investigated, or intended as part of 

the definition of others.

pfl =
N

I ,  Pi
i= 1

IICO<4-1

N

Z  Pi Pi-I
i=2

pf2 =
N
£  Pi cos 0,
i=1

pfl4 =
N

Z  Pi Pi-1 cos0»-
i=2

pf3 =
N

Z a?
i= 1

pfl 5 =
N

ZP?PM 
«= 2

pf4 =
N
X  Pf COS 0,
i=l

pfl 6 =
N

Z  p f  Pi-l COS0/
i= 2

pf5 =
N

X pI
i= 1

pfl7 = 2 pf3 + 1 pfl3

pf6 =
N
x  p f  cos0,
i=1

pfl8 = 2 pf4 + 1 pfl4

pf7 =
N - S

Z  Pi (Pi-5 + A+s)
4=6

pfl9 = 1 pf5 + 1 pfl5

pf8 = Max { p i } pf20 = 1 pf6 + 1 pfl6

pf9 = pf5 / pf3 pf21 =
N
Z A A -3  COS0,
i=4

pfio = pf6 / pf4 pf22 = 2 pf4 + 1 pf21

pfll = pf3 / pfl pf23 = pfl4 /  pf2

pfl2 = pf4 /  pf2 pf24 = pf22 / pf2

where N  is the number of beams formed, and pt is the power perceived in direction 0t .



Note, this is a full list of all those available for investigation. Usually, only a small number 

of these would be looked at — the most frequently adopted ones being nos. 4 ,5 ,6 , and 8. Some parts 

of the work also concentrated on 12,14,15 & 16; and others compared different versions of the pf4 

estimator, viz: 4 ,12 ,1 4 ,1 8 ,2 1 ,2 2 ,2 3  & 24.

Those which involve the product of the power at two different angles are referred to as 

’correlation pfs’; numbers 17-20 are ’interpolation pfs’ in that they are devised to approximate the 

behaviour of nos. 3-6 at higher angular resolution [see appendix 11].
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13. INTERPOLATION OF DATA IN 2-D

13.1 Requirement when Plotting Contours

Facilities exist within the NAG Graphical Supplement and other libraries for the 

production of contour plots representing the variations of a function of two parameters; the data 

being supplied as the values of the function at the intersection points of a rectangular 2-D grid. The 

NAG routine used here, determines where a specific contour would cut this imagined 2-D mesh, by 

using simple linear interpolation between the known values at the intersections. The contour is then 

drawn by connecting these points with straight lines. This will work well for gently undulating 

surfaces if a large number of points is supplied e.g. 100 x 100, but here it is proposed to make do with 

far fewer points because of the computational time involved in the calculation of each value. [ In the 

present context, the surface represents one of the ’power functions’ under investigation — this 

corresponds to a weighted sum over all look directions, where the power response in each direction 

in turn involves the sum of the weighted phased (delayed) signals from each of the sensors.) It is 

hoped that an 11 x 11 array will contain sufficient information to display the behaviour of the power 

functions.

However, straightforward use of the aforementioned NAG routine would lead to very 

angular contours [see Fig 13.1], which would detract from the smooth variations expected for the 

surface. To overcome this, it is beneficial to increase the size of the grid artificially, by adding in 

interpolated values between those actually calculated.

The power function surface is expected to be smoothly varying, so as long as the original 

grid points are not too widely spaced, no extrema should be overlooked. [ This can also be confirmed 

by displaying separately single sections of the surface with the extra points actually calculated. ]
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Fig 13.1 

Angular Contour

13.2 Interpolation Methods

There are three simple interpolation 

explained below:-
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>

s \

f — ►------<— i (— «►— *— X

Fig 13.2 

Interpolation Points

which can be easily invoked; these are briefly

i) Linear Interpolation

Consider the surface to be represented by /  where only the values for integral i j  are 

known. These points are symbolised by the crosses in Fig 13.2. Values at the extra points along the 

horizontal lines (represented by circles) may be derived from:-

/ ( i+ T .y )  = f ( i j )  + y t / O + l j ) - / ( ' . ; ) )

= y / ( ' . ; )  + T  f v + l j )  etc. [13.1]

The procedure may then be repeated over the other index, j ,  to yield values for all the 

required points.
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ii) Quadratic Interpolation

Using the three nearest known points, a quadratic curve may be fitted, and the value 

corresponding to the required point calculated. With the nomenclature introduced previously, this 

can be written as:-

f d - j J )  = [ 2 / 0 - 1  J )  + 8 /  ( i j )  -/ ( i+ l .y ) ]  / 9 [13.2a]

f U + T - j )  = [ - /(> '-W ) + 8 / ( U )  + 2 /( i+ l ,y ) ]  / 9 [13.2b]

A similar process is then applied to obtain values for non-integral j.  Note, some other 

method such as linear interpolation may be needed for points just within the limits of the grid, or else 

the formula for points two thirds of a step from the central datum will have to be used.

iii) FFT Interpolation

There is a well-known method of fitting a smooth curve to a set of points that merely 

involves Fourier Transforming the data (actually with a Discrete Fourier Transform (DFT)), padding 

out extra high frequency terms with zeros and inverting the transform. This is easily extended to a 

grid of points on a surface — a 2-D FFT is performed, zeros added in the locations shown in Fig 13.3, 

and then an inverse 2-D FFT used to produce the desired smooth surface fitting the given points.

0

1 1 1

O

Transformed

Data 0

Fig 13.3 : Location of zero-padding in frequency domain
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13.3 Comparison of Methods

All 3 methods involve simple extensions of procedures for 1-D interpolation — methods i) 

and ii) simply correspond to interpolation in one direction followed by interpolation in the other. It is 

to be noted that the values obtained are independent of which direction is first processed.

With the availability of ready-written Fourier routines, method iii) is actually the easiest to 

implement, although the computational complexity within the FFT calls is greater than in the other 

methods. The FFT method needs equi-spaced data points, although not necessarily a square grid of 

them. Such is not the case for the others; however, this does not confer an advantage, as the data will 

be supplied as a regular grid of values anyway.

The quadratic method has the disadvantage that extra care is needed for points near the 

edge of the grid. There is also a slight problem concerning the matching of interpolation intervals 

which may give neighbouring values the incorrect ascendancy over one another. The quadratic 

method is also more difficult to extend to 4-fold or 5-fold increase in the number of points.

Earlier investigations using the FFT method for the simple 1-D case have shown that 

problems arise if there is a mismatch in the values at each end of the supplied data set, as the actual 

DFT implementation assumes that the data interval corresponds to the repeating period of the 

function (like for a Fourier Series). In reacting to a large jump in value where the ends join up, 

oscillations may occur in the fitted curve, leading to spurious peaks.

Finally, if the true surface contains a high peak that sharply falls away to undulations just 

above zero, then the quadratic and FFT methods may possibly yield some points with negative 

values. This is not desirable here, as the power functions, due to their definition, are always positive. 

Linear fitting can not cause this problem. For this reason, and also to prevent unwarranted 

oscillations or mismatches, the linear method is the one chosen, although it does yield a more jagged 

match to the surface than the others.

[ Note, negatives may be prevented from occurring in methods ii) and iii) by taking the 

logarithms of the data prior to the interpolation, as all resulting values in that domain will correspond 

to positive ones in the original. Addition of such a scheme, not only complicates the comprehension 

of the routine, but also affects the performance of the methods previously detailed e.g. linear fitting 

would now correspond to fitting exponential curves to the data. ]
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14. COMPARISON OF THE PERFORMANCE

OF VARIOUS POWER FUNCTIONS OVER 2-D

The contour plots produced for each of the power functions indicates how each of these 

measures changes with various guesses at the array shape. In a more limited way, linear sections 

show similar behaviour, although, of course, only for variations in one unknown. The 1-D sections 

are often individually scaled so that the lowest and highest recorded delineate the extremes of the 

ordinate. Thus it should not be thought that the power function values shown actually descend to 

zero. Variations in value greater than a factor of 10 may occur for some measures over a suitably 

wide variety of shape estimates; however, in several cases fine details of the variation will be being 

examined, such that the range of estimates causes the measure to change by only a few percent.

Similar caution must be applied when analysing the contour plots. The plots have equi- 

spaced contours at 10, 15 or more levels (generally 15), exactly covering the full range of the 

supplied data. It may then be thought simple to compare power functions merely in terms of numbers 

of contours e.g. height of main peak relative to mean level or to other peaks, or steepness of slope in 

terms of how closely packed contours are. [ Note, in this context steep slopes are not desired, rather a 

peak with broad slopes is preferred as this indicates its presence over a greater region of the plot, thus 

enabling gradient ascent methods to converge quickly from distant i.e. highly erroneous initial 

estimates. ]

The inappropriateness of merely counting contours to register a power function’s 

performance is easily seen by comparing a typical power function such as ^ p f  [as defined in 

chapter 12], with its logarithm, In I I • Naturally, they are equally suitable for use as a measure 

of shape fitting; however their apparent characteristics in terms of equi-spaced contours will be very 

different This situation is analogous in many ways to the problem of characterizing the ’best’ 

frequency/bearing estimator [chapter 8.8].

The more useful measures of a power functions performance can be seen to be:-

a) The mean error in peak position (i.e. any bias).

b) The rms error in peak position (i.e. standard deviation of estimate).
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c) The percentage of occasions in which the highest peak is approximately correctly placed 

— high levels of noise may occasionally cause a subsidiary peak to exceed the ’main’ one.

d) The distance in the vector space to the nearest saddle point of the surface — this is an 

indication of the limit of the region in which a gradient climbing routine would perform perfectly

i.e. without any chance of ascending a subsidiary peak.

Note, in an analogous manner to beam patterns, there will be fixed subsidiary peaks 

(sidelobes) indicative of a repeating distance, and also some random ones, due to that particular 

realization of the noise field (both additive and multiplicative). The statistics of a power function 

surface, as detailed above, will vary with level of noise.



15. VARIATION OF DIRECTION OF MAXIMUM SIGNAL

15.1 Introduction

The beam pattern produced by the delay-sum-and-square method has a main lobe in the 

direction of the source, and subsidiary sidelobes of gradually diminishing level. The overall shape, 

and its dependence upon the shading of the elements, has been discussed more thoroughly earlier 

[chapter 4]. This chapter introduces the effect of hydrophone positional errors, showing how these 

affect the beamforming, and consequently the estimation of the location of the source. The array 

shape is described by a limited Fourier series [chapter 11.4] — here are described the effects of errors 

in each individual term.

15.2 Variations in First Coefficient

For a given true array shape, and consequent signal record, beamforming was performed 

for a multitude of other shapes, differing in the first term from the original by as much as 7.2m. [ The 

wavelength used here is 6m, with the 16 sensors at half-wavelength separation. ] The resultant beam 

patterns for some of the situations are given in Fig 15.1. Note, all the illustrations of beam patterns in 

the results sections of this report, are for angles between -90° and 90°, with the power axis covering a 

range of 30dB. t

It can be seen that for small errors (<  XU) ,  the source direction corresponds to the highest 

lobe, but that for errors greater than this the adjoining sidelobes assume a larger value than the main 

one. As the beam pattern has remained symmetrical despite the large errors, the bearing of the source 

could still be deduced from the centre of symmetry of the pattern. However, if there were other 

sources present, or significant background noise, then the deformed response for the source would not 

be manifest, and thus the source ’lost’.

Table 15.1 details the approximate bearings of the 5 highest lobes for various trial shapes, 

along with a more accurate determination for the highest one.

- 8 2 -



b)

- — V

Fig 15.1 : Beam patterns for various erroneous estimates of the array shape.

From left —> right and top —> bottom, A a i = -7.2m, -3.6m, 0.0m, 0.6m, 1.2m, 1.8m, 2.4m, 3.0m, 3.6m, 

4.2m, 4.8m, 5.4m, 6.0m, 6.6m & 7.2m. [16 elements; source at broadside (0°) and no noise]
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Aaj / m Aai/X Position of 5 highest peaks /  degs 1st peak (to 0.001°)

-5.2 -0.87 -15.0 15.0 -7.9 7.9 23.6 -15.059

-4.8 -0.80 -7.7 7.7 -15.0 15.0 -24.1 -7.727

-3.2 -0.53 -7.7 7.7 0.0 16.2 -16.2 -7.673

-2.8 -0.47 0.0 -7.7 7.7 16.7 -16.7 -0.001

-1.6 -0.27 0.0 -8.7 8.7 17.7 -17.7 0.003

0.0 0.00 0.0 10.3 -10.3 -17.9 17.9 0.001

1.6 0.27 0.0 8.7 -8.7 17.7 -17.7 0.001

2.8 0.47 0.0 7.7 -7.7 16.7 -16.7 -0.001

3.2 0.53 7.7 -7.7 0.0 16.2 -16.2 7.672

4.8 0.80 7.7 -7.7 15.0 -15.0 24.1 7.726

5.2 0.87 15.0 -15.0 -7.9 7.9 23.6 15.023

Table 15.1 : Location of power lobes caused by beamforming with erroneous shape estimates.

[ 16 elements insonified by a broadside source (noise at -80dB): beamforming over -90°, 90°. ]

15.3 Second Coefficient

Here the second coefficient is characterized simply as the second Fourier term, sin2roc/L 

[see chapter 11.4, equation 11.1] i.e. without removal of the straight line that fits the shape closest. 

The effect of changes in this coefficient are shown in Fig 15.2.

It will be noted that the beam pattern corresponding to an erroneous shape is no longer 

symmetrical about the true source direction. The direction of the highest peak shifts noticeably for 

small errors; this can be alleviated considerably by defining the basis function for the second 

coefficient to incorporate the removal of the ’best-fit’ line, described in chapter 11.4 and calculated 

in appendix 7.
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Fig 15.2 : Beam patterns for various erroneous estimates of the array shape.

From left —> right and top -> bottom, Aa 2 = -7.2m, -3.6m, 0.0m, 0.6m, 1.2m, 1.8m, 2.4m, 3.0m, 3.6m, 

4.2m, 4.8m, 5.4m, 6.0m, 6 .6 m & 7.2m. [16 elements; source at broadside (0°) and no noise]
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15.4 Higher Coefficients

The manner in which the beam pattern alters for errors in the higher order terms is briefly 

illustrated in Figs 15.3,15.4.

Fig 15.3 : Beam patterns for various erroneous estimates of the array shape.

From left —» right and top —» bottom, A a 2 = -3.0m, 0.0m, 0.6m, 1.2m, 1.8m & 3.0m, 

[16 elements; source at broadside (0 °) and no noise]

From the beam patterns already shown, it can be concluded that:-

i) Errors in odd Fourier terms still lead to symmetric displays, whilst those in even terms 

do not. This is explained in appendix 4 part I.

ii) An error of -Aat will lead to the same degraded pattern as an error of Aait but with 

reflection about the source direction. This is demonstrated mathematically in part II of appendix 4.

iii) Errors in the even terms lead to incorrect peak directions approximately consistent with 

the concept of the best fit straight line.

iv) For all Fourier terms, other than the first, the necessary error for the source to be lost is 

below 2.4m.
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Fig 15.4 : Beam patterns for various erroneous estimates of the array shape.

From left —» right and top —> bottom, Acz4  = -3.0m, 0.0m, 0.6m, 1.2m, 1.8m & 3.0m,

[16 elements; source at broadside (0 °) and no noise]

A more thorough investigation is summarised in Table 15.2 which gives the error in the 

main beam direction for various magnitudes of error, thus indicating how the pattern evolves with the 

misshapen nature of the array. In the table, 2* and 4* indicate searches using the 2nd and 4th Fourier 

terms respectively, but with the ’best line’ removed.

15.5 Arrays of Different Size

The results already given are caused by the sensor location errors perpendicular to the 

array. Placing twice as many hydrophones along the same length of array, leads to minimal change in 

the values observed. Using twice as many hydrophones, but at the same spacing, thus doubling the 

array length, does cause some changes, but these are solely due to the increased array length. The 

effects are:-

- 8 7 -



Error in Shape Fourier Coefficient

Ad; /  m Adi /  X. 1 2 2* 3 4 4* 5

-1.0 -0.17 0 2021 -262 -1 989 -149 -1

o
 

• 
o

0.00 0 2 0 0 0 0 1

0.2 0.03 1 -400 61 1 -190 40 1

0.4 0.07 -2 -793 117 -1 -380 75 -2

0.6 0.10 1 -1200 170 0 -578 109 -1

0.8 0.13 -1 -1607 219 -1 -779 132 2

1.0 0.17 2 -2018 263 1 -989 154 3

1.2 0.20 2 -2450 290 1 -1212 165 -2

1.4 0.23 2 -2892 306 0 -1448 153 -1

1.6 0.27 -1 -3368 290 11 degs 15 degs 17 degs 19 degs

1.8 0.30 -2 -3886 240 11 degs 15 degs 17 degs 19 degs

2.0 0.33 1 7 degs 12 degs 11 degs 15 degs 17 degs 19 degs

Table 15.2 : Error in primary lobe peak / 10 3  degs 

[ Figures for 16 element array at X / 2 spacing. ]

i) Sidelobes are located much nearer to main lobe; so, when the source is ’lost’, the 

maximum peak becomes 6° rather than 12°, for example.

ii) The wandering of the main lobe for small errors in the even terms is only half that 

observed previously, simply because the deviation of the line of the array is halved.

Thus, it follows that the results given here for a 16 element array at half wavelength 

spacing may be applied to* many other arrays; the important parameter being the ratio of the errors 

perpendicular to the array to the wavelength of the radiation.



15.6 Further Analysis of Maximum Tolerated Error

The first Fourier term, sin 7uc !L [0 < x < L ] ,  represents a deviation from straight, with all 

the sensors shifted to one side of the local zero; thus the amplitude (i.e. the maximal disturbance) is a 

poor measure of the change for a general element. If the corresponding coefficient is a i , the straight 

line that best fits the points (in a least mean square sense) is given by y = 2a \ In. Denoting the rms 

deviation from this closest linear approximation by , it can be shown that:-

x>x = a/i/2 — 4/tt2 • cii [15.1]

The mean value for the third Fourier term is given by y = 2a$ /3tc, which is sufficiently 

small compared to a 3 that it may be approximated by zero. The rms deviation of a sinusoid from 

zero is given by the familiar at / V2~, thus for all the coefficients of order greater than or equal to 3, the 

rms error is given by:-

\)4 = Vl/2 -a, [15.2]

However, this can not be used as the value for the 2nd coefficient as <22 sin 27ix/L is best 

approximated by a line of significant slope, y = - a 2 (6/nL)(x-L/2),  where L is the length of the 

array. The modified basis function generally invoked here involves the removal of that term i.e.

y  = a 2 [sin27u:/L + (6/nL)(x-L/2) ] [15.3]

A little calculus shows that the rms value of y for x in the interval [0, L] is given by:-

\>2 = V 1/2 -  3/7t2 • a 2 [15.4]

Several simulations using 32 elements were done in order to be able to measure accurately 

the tolerance error for each basis function i.e. the maximum error in each term for which the 

mainlobe is just greater than all of the sidelobes. This is tabulated for the first 5 functions in

Table 15.3, along with the relevant conversion figure, (=  \), / at ) ,  and the corresponding rms error

— the latter being expressed both in metres and wavelengths.

It can be seen that the maximum rms error tolerated, before the mainlobe is superseded by 

its subsidiaries is a sixth of a wavelength. This agrees with the comments by Steinberg96 and others 

who state that the loss in array gain of randomly disturbed arrays becomes significant when the rms 

error exceeds A/10.
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Basis

Function

Conversion 

Value, Ci

Amplitude 

Tolerance, Aa,/m

Rms Error 

v ,/  m

Rms Error 

v

1 0.308 3.15 0.97 0.162

2 0.443 1.98 0.87 0.146

3 0.707 1.46 1.03 0.172

4 0.707 1.48 1.05 0.174

5 0.707 1.43 1.01 0.169

Table 15.3 : Comparison of the maximum tolerated errors for each of the basis functions.

[ Answers derived from simulations using 32 elements, with X, = 6 m. ]

15.7 Dependence of Tolerance upon Weighting and Bearing

15.7.1 Effect of applying weighting to the elements

Searches over the first 4 Fourier coefficients were repeated using Hann weighting. As this 

shading scheme takes relatively less notice of the end elements than uniform does, it is found that 

errors for the first 2 Fourier terms of as much as 10m still leave the central peak as the highest. 

[ Note, that if the few elements at either end are totally ignored (i.e. given zero weighting), this 

corresponds to a shorter array, with a smaller amplitude disturbance, so the ’improved’ performance 

for Hann is not surprising. ] Higher order coefficients correspond to basis functions which contain 

significant variation within the central portion, thus a weighting scheme that emphasises that area, 

loses the source for errors of similar magnitude to that for uniform weighting. For errors in a i , when 

the sidelobes finally exceed the mainlobe level, the location of the false peak is only of the order of 

5° away from the source, rather than 8° away, as occurred for uniform weighting under the same 

circumstances.

It should be noted that the modified basis functions labelled 2* and 4* no longer correctly 

compensate for the line of the array. The best fit line would have to be recalculated, by minimizing 

the mean square error as before, but this time with application of Hann weighting to emphasise some



of the points.

15.7.2 Dependence upon source bearing

As the conjugate variable to >,• in the Fourier notation is k cos0, it may be expected that the 

errors in k y t cos0 term will be constant. Thus, for a fixed wavenumber, the tolerance to errors in yt 

should be inversely proportional to cos0 i.e. for sources at 0°, 45° and 60" the errors should be in the 

ratio 1: ' I I : 2. This is approximately borne out in simulations — the necessary errors in Aat for the 

source to be just lost, had the relationship 1: 1.5 :2.2 ; however, errors for the 60° source were hard 

to determine, involving vastly misshapen arrays.

15.8 Effect of Added Noise upon Bearing Error

A few simulations were done with noise of the same level as the signal. The required 

errors in shape, Aaif to cause the source to be lost were noted. Often the value was far less for a 

positive(/negative) error than for the other, so both values were recorded. Note was also taken, of the 

location of the corresponding ’false’ sources i.e. high sidelobes. Finally, the bearing of the peak of 

the beam pattern for processing with the true shape, and the maximum bearing error for true source 

location, were noted. [ The former differed from 0" due to the added noise; the latter due to noise 

and erroneous shape estimate. ] A total of 20 simulations were done; half were tested over the first 

Fourier term and half over the second. The relevant averages are given in Table 15.4. It can be seen 

that noise only alters the main bearing slightly; its major effect being to cause the source to be lost 

within the sidelobes for a less misshapen array.

15.9 Summary

The results of this chapter have shown that for no added noise, reasonable errors in the 

sensor positions can be absorbed without causing erroneous bearing estimates, provided that the best- 

fit line of the true array and the estimate are parallel. With suitably chosen basis functions, errors in 

the even order terms need not cause bearing error either, although the choice for the basis function
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Basis function label 1 2*

1 Afli I min for loss /  m 2.1 1.2

1 Aa,-1 max for loss /  m 3.2 2.2

Bearing error for true shape /  degs 0.5 1.0

Maximum bearing error in

convergence area /  degs
2.4 2.1

Location of false peak /  degs 7.9 11.0

Table 15.4 : Statistics for a few realizations with added noise at OdB SNR.

Function labels 1 and 2* refer to first and modified second Fourier terms respectively; I Aa t I mi,, is the 

minimum deviation from true which may lose source, I Afl,- I max is the limit beyond which it is probably lost.

depends upon the weighting scheme used.

However, once the errors exceed a certain value (rms error >X/ 6) ,  sidelobes prove to be 

more significant than the main one. As the displacement in the direction of the source is the crucial 

indicator, measures of deviations perpendicular to the array indicate a limit proportional to 1 /cosG. 

Again, results for different weightings appear more tolerant of shape errors; but, if expressed more 

appropriately as weighted rms errors, the results are the same.

Presence of additive noise of comparable level to the signal leads to bearing estimate errors 

of approximately 1° for beamforming using the true shape. Beamforming using incorrect shapes can 

lead to errors of twice this magnitude. However, the most significant effect of the noise is to reduce 

the range of shapes for which the mainlobe level exceeds the sidelobe level. A more detailed 

investigation of the effect of added noise is given in chapter 20.
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16. DEMONSTRATION OF APPLICATION

OF POWER FUNCTIONS

16.1 Variation of pf4 over Bases

It has been simply stated that power functions were defined as a measure of the sharpness 

or quality of the beam pattern. Here it is shown that, in the absence of noise, most of the definitions 

of chapter 12 are maximized for the correct shape i.e. that the ideal beam pattern, corresponding to 

processing with the true array configuration, exhibits a greater spread of power values, than any beam 

pattern formed using erroneous position estimates.

Figs 16.1a-d show the value ascribed to pf4 (the 4th power function from the list in 

chapter 12) for the beam patterns illustrated in Figs 15.1-4.

16.2 Other Power Functions

The displays in Fig 16.1 are for pf4, but most of the other pfs (power functions) behave 

similarly. A comparison of several differently defined pfs is shown in Fig 16.2. [ Note, for the first 

diagram, the true array shape is a straight line, characterized by all coefficients being zero; in the 

second case, a more complicated contortion is used, having non-zero values for the first 4 

coefficients, the true value for a i being 5.

The majority are seen to behave like pf4; pf6, and others with cubic terms, show a faster 

fall-off rate than pf4, but still have only one peak and smooth changes in value. That which measures 

peak height alone, pf8, follows the same general form as pf4, but has many subsidiary peaks and 

sharp changes in its first derivative. The relevance of this is brought out in the chapters on 

convergence regions [chapters 27-29]. A few of the pfs are of no use alone — pfl and pf2 produce 

little variation over the range of errors, with the peak generally not near the correct parameter value 

(Fig 16.2a is an exception, as the true shape is a straight array). Similarly pf21 can not be applied by
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2c.

Fig 16.1 : Diagram to show variation of the sharpness measure, pf4, 

for errors in the various Fourier coefficients. Error ranges correspond to those in Figs 15.1-4. 

a) Error in first term: -7.2m < A d \ <  7.2m ; b) Error in first term: -7.2m < Aa 2 ^  7.2m ; 

c) Error in first term : -3.0m <Afl 3  < 3.0m ; d) Error in first term : -3.0m < A a 4  < 3.0m .

itself, as it has a definite local minimum at zero error. However the latter, in combination with pf4, 

produces pf22 [see chapter 12], which has a correctly placed peak with a slower fall-off than most 

others.

- 9 4 -



a) b)
pfs

a x /  m —» a x I m -»

Fig 16.2 : Comparison of the variations in value of power functions over -7.2m < A a \ < 7.2m. 

a) True value for a x is 0.0m ; b) True value for j is 5.0m.

16.3 Effects of Noise

The preceding paragraphs have shown that in the ideal case, i.e. with no noise effects 

present, the true array shape is characterized by the maximum value of pf4. When additive noise is 

part of the simulation, the situation is somewhat different as shown in Fig 16.3.

The noise can be seen to have disrupted the position of the pf4 maximum, although only by 

a metre or so. In all cases, the pf value for large errors is much greater than occurs for no noise — in 

all of the realizations subsidiary peaks occur for errors of the order of 6m. In terms of assessing the 

accuracy with which power functions can aid shape restoration, it is the displacements of the main 

peak that matter, rather than the fall-off rate or the propinquity of subsidiary peaks. The remainder of 

this section of results [chapters 17-26] is thus concerned with the wandering of the pf maximum.
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A a ! / m —>

Fig 16.3 : Variations of pf4 with error in a i , when high levels of noise are present. 

[ 16 element array, with uncorrelated noise at OdB per element. ]
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17. OBTAINING STATISTICS FOR

COMPARISON OF POWER FUNCTIONS

17.1 Introduction

This project is concerned with the use of power functions to lead to approximately correct 

estimations of the array shape. The investigation of such can be divided into principally two 

different areas. One aspect is that of convergence from shapes far from true; this is dealt with later 

[chapter 27 and onwards]. The other important area of investigation is that concerned with small 

scale effects i.e. looking only at array shapes close to true, and examining the error associated with 

each of the power functions for the various different situations. The procedure for measuring these 

effects is detailed in chapter 11.7.

17.2 Distribution of Peaks

It is expected that the location of the power function peak will be approximately normally 

distributed about the true shape. To test this 1500 simulations were performed and the specific peak 

locations recorded. [The actual scenario used 16 elements at half-wavelength spacing, a single 

source at 10°, and uncorrelated additive noise 20dB below that; searching was only over the first 

Fourier coefficient. ] Results were logged for 4 different pfs (power functions) — these are tabulated 

below, along with their calculated means and standard deviations. Fig 17.1 compares each result 

graphically with a normal distribution with the same parameters.



Trial

Shape

No.

Frequency of Selection

pf4 pf5 pf6 pf8

-15 0 0 0 2

-14 0 3 2 3

-13 3 1 2 7

- 1 2 2 1 1 1 1 1 2

- 1 1 1 0 8 8 9

- 1 0 6 1 0 1 0 9

-9 16 14 14 15

- 8 17 2 0 2 0 25

-7 24 35 34 31

- 6 54 38 40 46

-5 38 46 45 47

-4 63 60 60 62

-3 82 76 76 83

- 2 106 109 109 84

- 1 113 104 104 113

0 97 113 113 106

1 117 96 95 74

2 119 84 8 6 83

3 103 107 106 92

4 91 92 93 1 1 1

5 109 107 107 76

6 72 82 81 91

7 80 72 73 69

8 51 53 52 60

9 47 47 47 52

1 0 31 43 44 38

1 1 15 26 25 42

1 2 1 1 1 2 1 2 18

13 4 9 9 16

14 7 7 7 3

15 1 2 15 15 2 1

Mean 1.54 1.65 1.65 1.73

S.D. 5.05 5.40 5.39 5.76

Table 17.1 : Table to show the relative occurrence 

of various shape estimates and their means and standard deviations.
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Fig 17.1 : Comparison of distribution of shape estimates with 

suitably scaled Gaussians. Results relate to 1500 simulations of a low noise scenario, 

and graphs are for power functions 4, 5, 6  & 8  respectively.
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17.3 Statistical Significance

The results in Table 17.1 are not displayed in terms of actual physical dimensions because 

such is not relevant here. The accompanying graphs [Fig 17.1] shows how the scatter of 

measurements approximately fits a normal distribution. In all cases, the deviation of the mean from 

true (zero) is only a fraction of the standard deviation (s.d.) of the scatter, but it does show that the 

estimator is statistically biased, as can be seen from looking at the data for pf4, If the mean of the 

samples was zero, then the s.d. would be equal to the rms (root-mean-square) value of the data set, 

which is 5.28. The expected s.d. of the mean would then be 5.28 / Vl500 = 0.136; the observed mean 

is thus 11.3 standard deviations away from zero, making the original assumption of a zero mean 

highly improbable.

It may thus be concluded that the estimator is biased in this particular situation; some 

measurements for different conditions repeat this observation, but usually the mean of the data is 

around a seventh to a twentieth of the s.d., rather than a quarter as here. A more thorough analysis of 

the statistics of samples from a normal distribution is given in appendix 13.
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18. EFFECT OF PROCESSING CHOICE

18.1 Introduction

From the preceding chapter it can be seen that for a single scenario (set of parameters 

describing the simulation conditions) and a set shape estimation strategy (set of search values, 

weightings and power functions used to determine shape) there will be a range of estimates of the 

array shape. This has been shown to be approximately normally distributed, with a mean close to the 

true shape, although the difference may be significant on a statistical level. It is thus generally 

convenient to characterise the set of results for a specific scenario and strategy by the rms error 

associated with the estimates. In cases where the mean is of a similar order to the rms error, 

significant bias may be understood to exist and this will be noted.

In order to appreciate fully how the estimation error varies with different aspects of the 

scenario, it is instructive to determine first how much such a measure depends upon the type of 

processing applied. One of the most obvious variables in the processing is the selection of which 

power function [see chapter 12 for list] should be heeded. Examination of the spread of results in the 

simulation of the previous chapter shows that there is only a small difference between those 

illustrated. It is found that generally there is little to discriminate between the ’successful’ ones. 

Measures such as j p  <20 and Jp  cos0 <29 are ’unsuccessful’ in that they fail to estimate the shape with 

anything like the accuracy of the others. This is not surprising, as both are measures of the integrated 

power over all angles i.e. the total power received, and thus would be expected to be constant. 

Estimators such as -  J In I p  I <20 are of intermediate performance i.e. poor compared to those 

illustrated previously. A more detailed comparison of the ’successful’ ones is given later 

[chapter 32],

For the majority of the ensuing chapters, a specific set of the power functions 

(nos. 4 ,5 , 6  & 8 ) will be investigated — in cases where only one is used this is likely to be the first of 

these. Thus the phrase the power function without a qualifying number will either refer to power 

functions in general or that of prime interest for now viz. pf4. This one is selected as ’the standard’ 

on account of its simplicity in construction and generally agreeable behaviour.
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18.2 Dependence Upon Processing Angles

It must be borne in mind that the power functions are not actually implemented as integrals, 

but as a finite sum of samples from 0! to 02 in steps of 50. It is useful to note whether the rms error 

depends much on the choices for these values.

Two specific situations are examined. Both have a single source plus uncorrelated additive 

noise 20dB below that and have the same true shape, characterized by the first 2 Fourier terms being 

2.7 and -1.83, with the rest zero. This shape is illustrated in Fig 18.1 below. In the first case, the 

source is at 10.0°; in the second at 34.5°. One hundred realizations are made of each (differing due 

to the random noise) and recorded. These two sets are then processed for many choices of 0 j , 02 and 

50, so that the differences appearing are due solely to the selection of processing parameters and not 

to different individual realizations. The results are presented in Tables 18.1 and 18.2.

The first table [Table 18.1] shows a selection of different angular ranges, all with 50 = 2°, 

and the estimation error pertaining to each. In the second table [Table 18.2], a 180° sector [-90° to 

90°], corresponding to one side of the array, is investigated at resolutions varying from 6° to 0.5°. 

Results are normalized w.r.t. (with respect to) those for 2° sampling over [-90°, 90°] to enable easy 

comparison of values. [ The actual error variations for ’standard’ processing are included at the 

bottom of Table 18.1; it can be seen that there are greater variations in the estimates of a\ than a2 , 

and that a source oblique to the array, makes the processing slightly less sensitive to positional 

errors. ]

Fig 18.1 : Diagram of true array shape (a i = 2.7, a 2 -  -1-83, other a,- = 0. ) 

[ Dotted lines represent wavefronts at X/4 separation. ]
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Sector scanned First Coefficient, a i Second Coefficient, a 2

0 i/degs 0 2/degs 10° Source 34.5° Source 10° Source 34.5° Source

-180 180 1.017 1.485* 2.027* 1.261*

-1 2 0 12 0 1.008 1 .0 0 2 1 .0 0 0 1.060*

-90 90 1 .0 0 0 1 .000 1 .0 0 0 1 .0 0 0

-60 60 1 .0 0 0 1.006 1 .0 0 0 0.987

-45 45 1 .0 0 0 1.025 0.996 1.199*

-30 30 1 .0 0 0 ##* 1 .0 0 0 ##*

-15 15 0.999 ##* 1 .1 1 2* ##*

0 180 1.042* 1.298* 1 .8 6 8 * 1.667*

0 90 1.006 1.003 0.994 0.994

0 60 1.006 1.006 0.996 0.990

0 45 1.006 1 .0 2 2 0.996 1.197*

0 30 1 .0 0 2 ##* 0.997 ##*

Absolute values 

for standard /  cm
5.11 5.39 3.80 4.02

Table 18.1 : Table to show how rms error of the pf4 estimator depends upon search sector.

For all cases 80 ~ 2°, and scan is over first coefficient only. Results are normalized w.r.t. values for 

the standard [-90°, 90°]. * Indicates bias present; ## Indicates errors greater 

than search range (±16cm), so comparison not possible.

It should be borne in mind that there is a resolution limit to the experiment. For each of the 

100 signal records, standard processing (-90° to 90°, in steps of 2°) selects one of the 41 closely 

similar shapes as its idea of the true one. For several of the changes in the angular sector searched 

and in the angular resolution, the power function selects exactly the same shapes for all 10 0  cases, 

hence a value of 1.000 for the relative merit. This does not mean that performance is exactly 

identical, but that the difference is at least very small. Sometimes a change in the angular parameters
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Angular

Resolution

80

First Coefficient, a x Second Coefficient, a 2

10° Source 34.5° Source 10° Source 34.5° Source

6° 1.130 1.197* 2.514* 2.549*

4° 1.004 0.999 1 .001 0.995

3° 1 .0 0 0 1 .0 0 0 0.997 1 .0 0 2

2° 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

1° 1.005 0.998 0.996 1 .0 0 2

0.5° 1.007 1 .001 0.996 1 .001

Table 18.2 : Table to show how ims error of pf4 estimator depends upon resolution. 

For all cases search is over -90° to 90°, with scan over first coefficient only. Results are 

normalized w.r.t. values for 89 = 2°. * Indicates bias present

affects the shape chosen in 1-10 cases. Typically this results in a figure of relative merit ranging from

0.97 to 1.03 i.e. differing only by a few percent. Those figures differing by more than 3% may well 

show a real change in performance. This was observed to occur for angular sampling at 6° (the 

beamwidth here for 16 elements is approximately 8°) and also for searching over 0 ° to 180° and 

-180° to 180°.

For all the tables, an asterisk indicates situations where the mean was observed to be 

significantly biased i.e. its magnitude was greater than a third of the rms error. Biasing and/or 

increased rms error tended to occur when one of the edges of the interval was close to the source 

direction. This was observed for processing of the 10° source using [-15°, 15°] and for the 34.5° 

source with [0°, 36°] (data not shown). Note, further runs investigating other pfs than pf4 showed 

reasonable agreement with the above statements. However, it was found that pf8 was usually more 

sensitive to sources near the end of the search interval. The other major cases of biasing, involving 

searches over both sides of the array, were found to be much less for pf5, pf6  and pf8 than for pf4. 

Consequently, the rms error for pfs 5 , 6  & 8  in these cases was significantly less than for pf4. With 

the pf8 estimator (i.e peak height o f beam pattern), there was increased error and bias at 4° resolution 

for the 34.5° source, and at 3° for both sources. This was due to none of the pre-selected beams
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being sufficiently close to the true source direction for pf4 to be fully sensitive to the power from that 

direction.

18.3 Power Functions with Interpolation

With 6 ° beam sampling, the accuracy associated with power functions decreases from what 

was attainable for 2° — this is because the samples no longer adequately represent the detail of the 

beam patterns. To overcome this, an approximation to the beam patterns may be constructed by 

linear interpolation between the sampled points. Power functions such as j p 2 dQ can then be 

calculated over a continuous range of 0. Appendix 11 shows how a pf may be created that achieves 

this quickly without explicit interpolation for all the intermediate points. The interpolation variants 

of pf3, pf4, pf5 and pf6  were implemented as pfl7, p fl8 , pfl9 and pf20 respectively [see chapter 12]. 

Testing on the output of the 6° processor showed pf4 to exhibit slightly increased variance for a ! 

estimation, and considerably greater for a 2- However, the interpolation power function pf 18, was 

found to overcome this problem, having minimal change in estimation error, and no biasing. The pfs 

containing the correlation terms alone showed variations similar to pf4.

It is unlikely, however, that any approach akin to power functions will work well for 

sampling less frequently than 6°, as the beam width (= 8° here) provides a real physical limit.

18.4 Shape Inversion

It can be seen that the signal record received for one situation is exactly identical to that 

which would be received for the mirror image case i.e. with both the shape inverted and the source(s) 

on the opposite side of the array. Naturally, if power functions are evaluated over a full 360°, the 

values for the two situations will be identical. This may affect certain shape estimation techniques, if 

the true shape is close to a straight line, with a wide range search for coefficient to be estimated. For 

example, consider an array shape specified by a j=3. with the other terms zero, and with scanning for 

the first coefficient over ±6 m. An algorithm utilizing beamforming over all angles will show the 

power function to have two distinct peaks at ±3m [see Fig 18.2a], one corresponding to the true shape
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and one to its inverse (and consequently with the perceived source on the wrong side of the array). 

However, if beamforming is constrained to one side of the array (i.e. [-90°, 90°], the false peak is not 

encountered [Fig 18.2b].

cx

/ /

Fig 18.2 : Plots of power function variations as a function of estimated coefficient, a j .

Search range for fl i is -6 m to 6 m with the true value being 3.0m — correct values (all zero) used for other 

coefficients. Both graphs are forpf4 with processing for a) over [-180°, 180°] and for b)over (-90°, 90°]

In the situation described two exactly opposite situations were covered in the search; 

however, if one of the other terms has been determined as a non-zero value, and is kept constant 

during the search, then the reflected shape will not be investigated. Such a situation is shown in 

Figs 18.3a, where the true value of a 3 is now 0.8m, and has been correctly determined prior to the 

search over a i .

Note, for the 360° processing, the value of the power function for a \ =-3 (an error A a x 

of-6m) is the same as would be calculated for the inverse shape with (ax, a 3) = (+3., -0.8) (i.e. an 

error Aa3 of-1.6m). Thus the estimator continues to show a peak for a x=-3 (albeit weaker than 

for a i=3) as it is close to a ’version’ of the true shape.

Fig 18.3b once again shows that knowledge of which side of the array the source is on, not 

only reduces processing time by a half, but also prevents power functions converging to a subsidiary 

peak, not close to the true one.
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flj /  m —> a\ / m —»

Fig 18.3 : Plots of power function variations as a function of estimated coefficient, a i .

Search range for a \ is -6 m to 6 m with the true value being 3.0m — correct values (all zero, except a 3 =0 .8 ) 

used for other coefficients. Both graphs are for pf4 with processing for a) over [-180°, 180°]

and for b) over [-90°, 90°]

18.5 Relative Source/Beam Alignment

A more detailed investigation was completed for the choice of 6° resolution to show how 

the performance of the estimators varies with the position of the source relative to the beams. An 

initial test was done with scanning over [-42°, 42°] for sources at 0°, 1°, 2° ,.... However, the 

estimates showed considerable variation simply due to the random nature of each 100 or so 

realizations, as explained in appendix 13. This cause was clearly demonstrated by the difference 

between estimates for sources at 0° and 6°. In order to remove this difficulty, a single set of 

realizations was recorded and the directions of the beams altered slightly between passes to produce 

the required variation in alignment of the source. The ith sequence of beamforming (i = 0 to 12) was 

performed over [-42°+50, 42°+60] in steps of 6°, where 50 was chosen to be 0.6/°. Only one 

specific set of noise realizations was used, and thus the 1st and 11th rms estimates (a shift difference 

of 6°) should be almost the same.

A source of SNR=10dB was simulated at 0° i.e. directly broadside, and a total of 300 

realizations produced. Scanning was performed independently over the first and second Fourier
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coefficients and the statistics for pf4 and pf8  monitored. These two were chosen as the former has an 

integral form, whilst the latter reflects the power level in the peak and thus may be expected to 

behave differently. The results observed are given in Table 18.3.

Beam Shift,
1st Fourier term 2nd Fourier term

80 / degs pf4 pf8 pf4 pf8

0 . 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

0 .6 1.014 1.016 1.802* 1.653*

1.2 1.053 1.069 2.855* 2.704*

1.8 1.074 1.173 3.43* 3.64*

2.4 1.055 1.377 2.79* 4.19*

3.0 1 .021 1.683 1.134 4.25

3.6 1.054 1.359 2 .6 6 * 4.25*

4.2 1.062 1.165 3.28* 3.65*

4.8 1.037 1.062 2.67* 2.69*

5.4 1.008 1.015 1.61* 1.63*

6 .0 1.001 1 .001 1 .0 0 2 1.004

6 .6 1.017 1.015 1.803* 1.652*

7.2 1.054 1.068 2.858* 2.702*

Table 18.3 Comparison of the rms errors for different source/beam alignments.

Single source at 0° with SNR=10dB. Scanning over [-42°+ 8 0 ,42°+ 80] in steps of 6° with various 

values for the shift, 80. Note 80 = 0° directs a beam at the source; all figures are relative to this one. 

300 simulations used. * Indicates bias has occurred.
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18.6 Observations on the Effects of Misalignment

As a shift of the 6 ® beam fan by 6.0° would leave it unaltered (except for loss of -42° beam 

and appearance of 48° one), the performance of the shape estimators should remain unchanged too. 

This is clearly shown in the results — the very slight differences being due to the very occasional 

effect of the extra beam at 48° instead of -42®, and to the limited accuracy of numbers in the 

computer, causing the beams to be shifted by 6.000001®. From the symmetrical nature of the 

situation, it would be anticipated that errors for main beam, say 1 .8 ®, to the right of source should be 

the same as for the main beam 1.8® to the left This too is represented in the results — the greater 

differences here being due to this only being true for the expected level of error, not for each 

individual realization (as was the case for the 6 .0 ® shift).

For estimates of the first Fourier term, pf4 (and indeed other integral pfs) showed little 

change in performance as the fan was gradually moved. However, pf8 , which solely records the peak 

value, became significantly less accurate as the beams moved away from the peak of the mainlobe.

Investigation of the second Fourier term showed all power functions being dependent upon 

the alignment o f the beams relative to the source. In this case, the degradation was more severe, pf8  

still being the most susceptible. It is interesting to note that pf4 showed near-optimum performance 

for the source dead between beams (3® shift), whereas this marked the poorest performance for pf8 . 

Also, the estimators usually showed extreme bias in their shape determination; for shifts 0.6® -  2.4® , 

the array was estimated to be straighter than it really was, whilst for 3.6® -  5.4® the bias was the 

other way. This held for all the estimators.

A further pair of runs was performed on the stored 300 realizations. Both used the angular 

scan range [-40®, 44®] with a step of 6 ®, and both were investigations of the the second Fourier term. 

The difference between them was that one used the 2nd basis function as generally invoked in this 

project i.e. with the best fit line to the sinusoid subtracted out to leave a shape variation that 

maintains a constant direction for the mainbeam [see Table 15.2], whilst the other was just the simple 

Fourier term. The inconstancy of the mainbeam direction in the latter case, meant that various 

erroneous shapes might line the source direction up with a fan beam far better than the true shape 

would, and consequently an estimator using that characterization of the array shape had far greater 

errors in its estimates. For the case referred to, the rms error was nearly 5 times the magnitude of that 

achieved using the modified basis function.
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It can be seen that although a simple investigation showed only slightly increased errors for 

a resolution of 6°, there are many cases in which the processing is sensitive to the relative direction 

of the source with respect to the beams. Of course, the bearing of the source is not generally known 

beforehand.

18.7 Summary

No noticeable benefit in performance can be gained by changing the search range or 

resolution from that selected as ’standard’ for an array of length 8 A., i.e. [-90°, 90°] in steps of 2° ; 

however, decreasing the resolution (i.e. increasing the value for 69) may lead to significant loss in 

performance once 80 is of the order of half a beamwidth or more. Results tend to show that much 

processing time would be saved without performance degradation if beamforming could be restricted 

to within 20° of the source direction, using 2° or 3° resolution. Note, such may not necessarily be the 

case for shapes far from true when the bearing of the primary source is undetermined or when several 

similar strength sources are present Clearly, it is to be expected that the source direction need be in 

the search sector, this is a fact generally borne out by the cases where the 34.5° source was outside 

the scan, resulting in errors a magnitude greater at least
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19. EFFECT OF CHOICE OF WEIGHTING FUNCTION

19.1 Introduction

Different shadings of the array are sometimes used in order to accentuate various facets of 

the beam pattern. Dolph-Chebyshev is often used when low sidelobes are required; uniform 

weighting is generally more appropriate when high levels of noise are present [ These and other 

observations are made in greater detail in chapter 4.4. ] It might, in some cases, be worthwhile to 

perform all the beamforming for shape estimation with one weighting, whilst applying another to 

extract details for the array configuration finally selected. Below is introduced the concept of an 

’array factor’ — a single figure which is often useful as a characteristic of the effect of a specific set 

of weights. This is then followed by results derived from many simulations, using different shading 

patterns for the array elements.

19.2 The Array Factor

A useful characteristic figure for a set of weights is provided by the array factor which is 

defined as follows:-

This definition is similar to that occurring in rigorous calculations of the effects of

respectively). Note, from the above definition it follows that:-

i) Fn depends only on the values of W; used, not on their order of occurrence — thus an 

array with its largest weightings at the periphery may have the same array factor as one shaded more 

conventionally, with the emphasis on the central elements.

ii) For a given number of elements, the factor is minimized for uniform weighting; other 

generally used weightings produce a value only 20-50% greater.

[19.1]

amplitude and phase errors, and also of element failure (see Ramsdale & Howerton82 and Quazi81



iii) Ideally, any chosen weighting scheme will produce the same factor, independent of n.

The above factor has been introduced as it is believed likely that the positional errors 

associated with the power function estimates may show a similar dependence on the choice of 

weighting to that found for phase and amplitude errors. Five different sets of shading have been 

used; these are detailed in chapter 11.6. Table 19.1 lists the array factors for each. The first figure 

given, F „ t corresponds to that calculated by representing the weights by a continuous filter and 

performing integrations where necessary; this would be the value achieved in the limit for a very 

large array. As the specific implementation used in this program may differ slightly from the 

standard for a finite set (e.g. zero-points for Bartlett weighting are at {=0 and i= n + l  here), the array 

factor is explicitly evaluated for 16 and 256 elements, producing the statistics F 16 and

Weighting ^16 F 2S6

Uniform 1 .0 0 0 1 .0 0 0 1 .0 0 0

Half-Cosine 1.234 1.168 1229

Hann 1.500 1.412 1.494

Hamming 1.363 1.427 1.367

Bartlett 1.333 1.259 1.328

Table 19.1 Array factor calculated for different weightings

19.3 Results of Simulation

Two sets of 100 realizations were performed for a 16 element array, using the sources, 

background noise and array shape referred to in chapter 18i .2. Independent searches were performed 

over the first two Fourier components for each weighting in turn. The standard deviations of the 

estimates are summarised in Tables 19.2 and 19.3 below.
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Weighting
Source at 10.0° Source at 34.5°

System 1st term 2 nd term 1st term 2 nd term

Uniform 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

Half-Cosine 1.158 1.077 1.113 1.283*

Hann 1.543 1.535* 1.432 2.748*

Hamming 1.446 1.393* 1.336 2.403*

Bartlett 1.245 1.139* 1.181 1.504*

Table 19.2 Shape estimation error by pf4 for different weightings 

[ Averaged over 100 realizations, and normalized with respect to that for uniform weighting. ]

* Indicates bias has occurred

19.4 Summary of Effects of Weighting

As can be seen from the above, uniform weighting leads to the least error, although the 

difference is often not very large. The rms estimation error is greatest for those weightings with the 

largest array factor. Bartlett and Half-Cosine perform well, producing errors only about 10% greater 

than those for uniform. However, the relative errors for Hann and Hamming weightings are not in the 

order predicted by their F 16 array factors. The results asterisked correspond to situations where the 

magnitude of the mean was more than a quarter of the rms value — in some cases it was as much 

as 80%. It will be noted that severe bias does not occur for searches over the first Fourier coefficient, 

and that they are less common for uniform and Half-Cosine weighting than for the others.
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Weighting
Source at 10.0° Source at 34.5°

System 1st term 2 nd term 1st term 2 nd term

Uniform 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 *

Half-Cosine 1.082 1 .1 0 0 1.042 1.760*

Hann 1.352 1.217 1.271 2.415*

Hamming 1.205 1.154 1.169 2.182*

Bartlett 1.115 1.111 1.075 1.908*

Table 19.3 Shape estimation error by pf8  for different weightings 

[Averaged over 100 realizations, and normalized with respect to that for uniform weighting.]

* Indicates bias has occurred

19.5 Element Failure

A similar effect should be observed due to element failure. If there are 16 elements equally 

weighted, but one has failed, providing no signal, then it is just as though its weighting was set to 

zero. Consequently, the effective array factor would be 16/15= 1.067.

A routine can be invoked in the program to simulate random element failure. It may be set 

to attribute a possibility of 1/16 for the failure of each individual element. [ This is slightly different 

to an expected single failure on an element chosen at random, but should be approximately the 

same. ] The two sets of 100 realizations were processed to yield records with an element failure 

probability of 1/16, and then the shape determined as before. This was then repeated for probabilities 

of 2/16,3/16 and 4/16 — the results are summarised below in Table 19.4.

The results in the table show fairly reasonable agreement with expectations — however, in 

one case, element failure seems to improve the accuracy of the estimator! The results given are for 

pf4, but similar behaviour was observed for other power functions; however, for many pfs, one of the 

scenarios led to smaller errors with 3 failures (on average) than for 2. Possibly, slightly more 

consistent results might have been produced by constraining the failure routine to produce exactly 

one dud element instead of an average of one etc.
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Probability 

of Failure

Effective

Array

Factor

10° Source 34.5° Source

1st term 2 nd term 1st term 2 nd term

0/16 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

1/16 1.067 1.052 1 .0 2 0 1.092 1.034

2/16 1.143 1.076 0.934 1.125 1.132

3/16 1.231 1.129 1.101 1.128 1.306

4/16 1.333 1 .201 1.556 1.316 1.415

Table 19.4: Further investigation of array factor.

A comparison of the shape estimation errors occurring due to element failure; each independently 

normalized with respect to the value for the failure-free result for that case.

19.6 Summary

Note, in this chapter it is not implied that the figure for relative performance is expected to 

be identical to the array factor, merely that the values should be in the same order — there may be a 

square root or logarithmic relation. The results for various weightings fit fairly well with 

expectations, although those for Hann and Hamming are not in the order predicted by their F 16 

values. For the case of element failures, an expected order of merit is much more obvious. Although, 

the figures in the table reflect the correct order for most cases, the actual range of values for a 

particular failure rate is large considering that 100 realizations were averaged. Consequently, it is 

difficult to fully compare shadings and element failure via their effective array factors. Clearly, 

averaging over a greater number of realizations could improve matters, although considerable 

computation time would then be incurred. It had been hoped that using a single set of signal data 

would reduce the effect of random fluctuations, making it possible to discern accurately small 

performance differences with only, say 10 0 , different realizations.
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20. LEVELS OF ADDITIVE NOISE

20.1 Introduction

All the above discussion has been concerned with testing the stability of the power function 

estimates to various changes in the processing parameters. The signal was of amplitude 100., and the 

noise of rms value 10. — an amplitude ratio of 10., corresponding to a signal to noise ratio (SNR) on 

input of 20dB. With perfect processing using 16 elements, a gain of 101og1016= 12dB is achieved, 

yielding an output SNR of 32dB. The SNR for various other amplitude ratios is given in Table 20.1. 

The value of 20dB referred to earlier is of intermediate value — it is far less than that required by 

some of the specialist high resolution signal processing techniques discussed in the literature survey, 

but is also considerably greater than that realistically likely to be encountered in the situations for 

which this work is intended. Typical input SNR values for sources (other than ’co-operative’ ones

i.e. calibratory beacons) are OdB or less; this is because they may be quite distant, and are 

endeavouring to travel as quietly as possible.

Below is an investigation of how the rms error in shape estimate depends upon the level of 

the additive noise.

20.2 Observed Dependence upon Noise Level

The set of results given here relate to one of the standard scenarios specified earlier 

[chapter 18.2] — the only change being the level of additive noise used. [ The search range must be 

simultaneously updated to prevent the actual peaks of the power functions from straying outside of 

the range of shapes investigated. ] The results tabulated below are now absolute, rather than relative 

as before; it is helpful to bear in mind that the array length is 48m and that the wavelength of the 

radiation is 6 m.

All four sets of results are broadly similar. Note, the number of digits given in the columns 

does not reflect the true accuracy of the situation. Each is merely the result of 100 independent
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Amplitude 

Ratio (S/N)

Input

SNR/dB

Output SNR /dB

16 elements 64 elements

1 0 0 0 . 60.0 72.0 78.1

300. 49.5 61.6 67.6

1 0 0 . 40.0 52.0 58.1

30. 29.5 41.6 47.6

1 0 . 2 0 .0 32.0 38.1

5. 14.0 26.0 32.0

3. 9.5 2 1 .6 27.6

2 . 6 .0 18.1 24.0

1.5 3.5 15.6 2 1 .6

1 . 0 .0 12 .0 18.1

0 .8 -1.9 10.1 16.1

0 .6 -4.4 7.6 13.6

0.4 -8 .0 4.1 10.1

0.3 -10.5 1.6 7.6

0 .2 -14.0 -1.9 4.1

0.15 -16.5 -4.4 1 .6

0 .1 -2 0 .0 -8 .0 -1.9

Table 20.1: Conversion table between amplitude ratios and decibels

computer simulations, and so a value from such realizations may be calculated accurately; however, 

this is only within 10-20% of the ’true’ value, due to the limited number of trials. A few other 

observations may be made:-

i) The accuracy in estimating the second Fourier term is noticeably better than for first for 

an SNR in the range 10-25dB. However, note should be taken of the observations in 15.6 that the rms 

error is a more representative measure than amplitude, and that the conversion value between the two
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Noise

Amplitude

Input 

SNR /dB

1st Fourier term 2nd Fourier term

pf4 pf8 pf4 pf8

0 .1 60.0 0 .8 6 3.04* 2.70* ##

0 .2 54.0 1.44 3.24* 2.71* ##

0.4 48.0 2.08 3.65* 3.05* ##

0 .8 41.9 4.08 4.74* 3.75* ##

1 .6 35.9 7.24 8 .11* 6.69* ##

3.2 29.9 15.3 16.1 12.3 48.2*

6.4 23.9 33.7 34.7 19.8 48.8*

1 2 .8 17.9 80.4 80.3 44.3 64.5*

2 0 .0 14.0 95. 1 0 0 . 70. 91.

30.0 10.5 155. 156. 108. 1 1 2 .

45.0 6.9 199. 207. 164. 170.

67.5 3.4 329. 331. 265. 266.

101.3 -0 .1 625. 605. 406. 354.

151.9 -3.6 1794. 1628. 1673. 1538.

227.8 -7.2 4628. 4546. 4803. 4442.

Table 20.2 : Variation of estimator error (in mm) for various noise levels 

Single source, of amplitude 100. is located at 10°, noise is uncorrelated. * Indicates bias has occurred. 

## Indicates whore error in pf8 is more than 5 times that of pf4, and hence outside search range.

[ The number of elements and the wavelength of radiation used were 16 and 6m respectively. ]

is markedly different for the first and second coefficients.

ii) The pf4 estimator showed significant bias in estimating the 2nd Fourier coefficient in all 

the cases of high SNR. [ Note, further work using a SNR of 80dB, and much finer resolution, seems 

to indicate that 2.6mm is the limiting error in estimation of a 2 bypf4. However, under the same 

conditions, those power functions involving a p 3 term (nos.5,6,19 & 20) could reduce the size of the
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estimation error to about 0.5mm; pfl9 being the most precise of them. ]

iii) Although an SNR of 60dB is not realistic here, such a situation was modelled to show 

more fully the variations with noise level. However, as all cases gave biased estimators, and those 

for pf4 on the 2nd term are unexpectedly large, it may be that problems are being encountered due to 

the limited precision of data handling.

iv) The likely shape error for an input SNR of -4.5dB or lower, is sufficient that the source 

be masked by its own sidelobes [see Table 15.3] as well as the noise induced ones. Thus estimation 

errors for noisier scenarios are meaningless, unless some weighting is applied.

v) In chapter 26.2 the equivalence is shown between low levels of uncorrelated additive 

and multiplicative noise, and the variance of the shape errors predicted for the latter. The implication 

is, that for situations with a SNR of greater than about lOdB, the estimation accuracy of each 

coefficient should be proportional to the amplitude ratio of noise to signal, and also that the variances 

for the first two coefficients be in the ratio 1.44 to one. These predictions are for the defined 

’optimum estimator’ — clearly pf4 does not quite fulfil such a description.

For easier interpretation, the two sets of rms errors for pf4 (one for each of the Fourier 

terms) are plotted against noise level in Fig 20.1. Note, the performance curves of the ’optimum 

estimator’ discussed in chapter 26.4, when plotted on the same axes as Fig 20.1, would be straight 

lines of slope - 1 .

20.3 Variation with Number of Sensors

As it is possible that the behaviour of the estimators depends primarily upon the effective 

output SNR, a collection of realizations was performed over a small range of input SNR, using 

varying numbers of hydrophones so that many situations had the same ideal output SNR. For 

beamforming using the correct element locations, the output power ratio is n times the input power 

ratio, where n is the number of hydrophones. Expressed as SNRs in decibels, this becomes:-

(S N R )0 = (SNR), + 101og10n [20.1]

Thus a doubling of the number of hydrophones, improves the output SNR by 3dB if 

nothing else is changed. Note, this analysis does assume that the sensor positions used for the 

beamforming are close to the true ones. The results displayed in Table 20.3 are for estimates of the
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Fig 20.1 : Plot of pf4’s shape estimation error for various noise levels, 

a) Estimation error of first coefficient, a \ ; b) Estimation error of second coefficient, a 2  . 

Each point is the result of 100 simulations for a 16 element array, with a single source at broadside 

and beamforming over [-90°, 90°] in steps of 2°.
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second Fourier coefficient using a source at 4.7°, and beams formed at intervals of 2°. In all cases, 

the effective array length, L = n d , was maintained at48m, by altering the element separation, d, as 

well as n. [ Note, other simulations using a constant separation of 3m (and hence variable values 

forL) gave similar results. ]

No. of 

elements 

n

Input SNR /  dB

14.0 1 1 .0 8 .0 4.9

8 9.0 13.7 18.3 28.8

11 8.7 13.0 15.3 24.9

16 6 .6 10.5 14.5 19.9

2 2 6.7 8 .0 1 1 .8 16.5

32 4.9 7.4 10.7 14.5

Table 20.3 : Comparison of the rms errors (in cm) for the estimation of a  2  by pf4, 

using different noise levels and no. of elements. In all cases, array length = 48m, and processing was 

over [-40°, 40°] in steps of 2°. Results are from 200 simulations, with the source at 4.7°.

The data in the table show that the rms shape error decreases as number of elements and 

SNR increase, as would be clearly expected. To draw conclusions on a possible dependence on the 

overall output SNR, requires that similar values be obtained for situations where one has double the 

number of elements of the other, but an input SNR 3dB lower. Appendix 13 indicates that caution 

should be observed when comparing measures obtained from a finite number of samples; 

nonetheless, the data recorded may be understood to show good agreement with expectation. Taking 

logs of the number of elements, and also of the rms errors (because of their general exponential 

increase) enables a plane to be fitted to the points by a least-mean-square process [see appendix 8 ]. 

The resultant plane has the form:-

logio( cJ(a2) ) = -  0.4555 • log10(n ) -  0.5034 • log 10(ps lp n) -  0.679 [20.2]
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where o (a 2) is in terms of the wavelength (6 m), and ps Ipn is the ratio of signal power to 

noise on input Thus, the expected rms error in the estimate may be expressed in terms of a single 

measure via:-

E [o (fl2)]  = 0.21 f ( n a - p s Ipn) [20.3]

where a  = 1.105, and f ( x ) = l / ' f x .  Note, a  = 1 corresponds to dependence solely on the 

total output power; the value observed differs only slightly from this. The results achieved may only 

be relevant for SNRs in the above range; certainly,/(jc) * 1/Vx for all SNRs, as could be seen from 

Table 20.2 and Fig 20.1.
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21. ERRORS INDEPENDENT OF TRUE SHAPE

Much of the simulation work has been done using one particular array shape as the true 

one. This one had the first 2 Fourier coefficients taking the values 2.7 and -1.83 respectively, with the 

rest zero. Work was generally done on only the one shape, because it was believed that the results 

were dependent only on the scenario and the error in any estimate of the array shape. However, it 

was felt necessary to show that this assumption was correct. In order to demonstrate this 300 

simulations were done for 4 different array shapes — the shapes used all had a,- = 0 for i > 3, with the 

first two coefficients taking on the values (2.7,-1.83), (3.2,2.5), (-0.7,1.1) and (-7.2,-0.4) 

respectively.

These shapes were chosen as they were representative of many cases, from nearly straight 

to a bow of 1.2X, and contain all possible combinations of signs for the first 2 coefficients. The 

simulated source was at 15° to broadside, with additive noise lOdB below the signal level. 

Beamforming was done over [-20° 90°] in steps of 2 and the searching was done over the 2nd 

coefficient The source was deliberately selected to be off from broadside, and the angular scan 

range not to be symmetric with respect to array normal or source, in order to provide a general case. 

Table 21.1 contains the rms errors for 4 different power functions produced from the 300 simulations 

for each array shape.

The generally close agreement shows that the pfs are sensitive to errors in the deviation, 

but not the actual misshapen nature itself. Therefore measurements for one particular array shape 

can be taken to be typical of a multitude of configurations, thus preventing the need for repetition of 

all measurements for many different array shapes, and subsequent averaging. It is to be noted that 

although a range of rms values was observed, all the larger ones were for pf8 , indicating that it is in 

general a much poorer estimator than the others for the conditions used. None of the estimators 

showed any significant bias.
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Array

Shape

No.

Rms errors of estimators

pf4 pf5 pf6 pf8

1 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

2 1.003 1.007 1.006 1.188

3 0.919 0.927 0.928 1.104

4 1.015 1.031 1.032 1.046

Absolute error 

for no. 1 /  mm
37.2 36.9 36.9 74.9

Table 21.1 : Comparison of rms errors of various pfs for different array shapes.

Values are normalized with respect to those for array 1; the absolute values for that shape are included too. 

[ Statistics from 300 simulations of a source at 15° with noise at -lOaB. ]
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22. EFFECT OF RANGE UPON ESTIMATION

For situations where passive sonar is used, the source is generally at a considerable 

distance (of the order of a 1 00km or more), such that the ratio of array length to source range is far 

less than one. Consequently, it is appropriate to model the scenario by a far-field source i.e. one 

which yields plane-waves at the array. The basic shape estimation algorithms make this fundamental 

assumption. Appendix 5 gives a more complete form for the distance (or time) from a source to each 

individual element. When the second order terms cause a variation of A/2 (i.e. 180° phase shift) from 

that expected for a source at infinite distance, then the emitter is generally perceived to be in the 

’near-field’. This occurs at a distance, z = L 2 / 4A,, where L is the full length of the array. [ Note, the 

rms variation in the spatial delays, relative to the plane-wave case, is approximately a factor of 0.3 

times smaller [see chapter 15.6] i.e. = A./6 ; this agrees well with the figures observed in Table 15.3, 

for the limits on shape error that permit clear visibility of the source. ]

As the principal effect of the source being close is to add a quadratic term to the delays of 

the wavefronts, this will be closely matched by the phase compensations for a distant source 

insonifying an array with an increased value for the a t component (a gentle bow). The proof of this 

is given in appendix 6 . Denoting the range of the source by r, the form for the modified coefficient 

becomes:-

. L 2 co s0  ro n  „
a i ~ a i +  — z  I2 2 -1!8  r

A simulation to test this is recounted below.

An array of 32 elements was insonified by a source at a range of 1000m emitting at a 

frequency of 250Hz (A.=6 m). The array elements were at half wavelength spacing (hence L = 96m) 

and the first 4 shape coefficients were (2.7, -1.83,0., 0 .). No additive noise was used. Beamforming 

was performed over [-90°, 90°] in steps of 2°, with higher resolution then used to pin-point the 

source. Four different bearings were used in order to assess the accuracy of [22.1]. Table 22.1 

contains the results.
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Source

Bearing

Expected 

value for 

Aati / m

Observed Increment /  m Bearing 

error 

A0 ! /  degs

Highest

sidelobe

m01 0 2 0 3 04

0 ° 1.15 1 .10 0 .0 0 1 0.035 0 0 .0 0 -15.5

30* 1 .0 0 0.90 0 .0 2 0 0.015 0 -0.03 -12 .0

45* 0.82 0.70 0.029 0 .0 0 2 0 -0.04 -10.9

60* 0.58 0.46 0 .0 1 2 -0.008 -0.007 -0.05 -9.2

Table 22.1 : Measurements of apparent shape distortion due to proximity of source.

Array used had 32 elements at half wavelength (3m) separation; source was at 1000m from array centre

and there was no additive noise.

It can be seen that there is generally good agreement between the predicted values and 

those observed. When the source is at 0", the change in a 3 is approximately 1/31 of that fora! — 

close to the value of 1/27 expected. As the source moves from broadside, the increment in a \ 

changes as predicted, however its ratio to a 2 does not remain constant. This is because the effect is 

so small, so that it is soon swamped by low order terms ignored in the theory. Similarly, the values 

for a 2 and a 4 are finite, showing the importance of the *y,- sinG’ terms neglected in appendix 6 .

Note, here it was necessary to have a very close source in order to make a distinct change 

in the shape parameters. The new value should not so much be regarded as a ’wrong’ estimate, but as 

a modified one, appropriate for the situation, as it is that which best helps the array to give a focused 

image. However, if two sources exist, one in the near-field, and one in the far, then they will be 

trying to drive the shape estimation algorithms towards different points — consequently, at least one 

will be poorly focused. If the two are widely separated in angle, judicious use of windowing on the 

beamforming operations will enable each to be focused in turn, using the array configuration relevant 

for each case.
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^D EPEN D EN C E UPON BEARING AND FREQUENCY

23.1 Introduction — Expected Behaviour

This chapter investigates the dependence of the rms shape error upon the bearing of the 

source. It is clearly to be expected that the power functions will be less able to determine sensor 

positions perpendicular to the line of the array as the source bearing moves from broadside. As the 

particular characterization of array shape used here represents the y-components of the positions in 

terms of a limited Fourier series, leaving the x-values fixed, it follows that the rms error will depend 

only on the wavenumber perpendicular to the array, given by ky = (2k/X) c o sG. Although the mean 

value of the additive noise is zero, and also its expected correlation, any particular realization will 

yield finite values. Similarly, the changes in phase of the complex phasors due to the added noise 

will have non-zero mean and correlation for each individual simulation — it is this variation in phase 

that the power function attempts to counter, a positional ’error’ of Ay, for the zth element leading to a 

compensating phase change of A<fo= ky Ay,-. The noise-induced phase changes have statistics for rms 

error and rms correlation value that relate solely to the level of the noise (i.e. the SNR), not the 

bearing of the source. Thus the statistics of the required phase compensation are independent of 

bearing. Consequently, the statistics relating to the deviation in the shape estimation will vary with 

0, as ky is a function of such. In short, for a fixed SNR, it is expected that:

As error in a Fourier term is proportional to rms error in y-values, it follows that the rms 

error in a Fourier coefficient, such as a x will depend upon bearing.

where the resulting constant of proportionality, A!, includes the relationship between Ay, 

and A a x and also the factor of 2k . A x is thus the rms error in estimate of the a x coefficient for the 

standard wavelength (k=Ao) and for a broadside source (0 = 0O). To test these predictions, a series of 

many simulations was performed, the results of which are given in the following pages.

ky • (A y,)^  = constant [23.1]

-> (Aai)rms = A\ (AAo)sec0 [23.2]
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23.2 Observed Dependence Upon Bearing

Separate simulations were performed for sources at each of 0°, 15°, 30°, 40°, 50°, 60°, 65°, 

70° and 75°, with an additive noise level 20dB below the signal strength. Independent estimates 

were made of the rms errors for the first two Fourier terms — these are summarised in Table 23.1. 

Results for pf8 are included as well as those for pf4, as for large angles, those of the latter were 

atypical of the performance of the other power functions.

For most of the cases, beamforming was reduced to the angular sector -20° to 90°, as this 

required only 56 beams at 2® separation, instead of 91, and thus saved on computation time. 

Elsewhere in this thesis [Table 18.1] it is shown that similar alterations have negligible effect for 

sources at 10° and 34.5°. A further check on the validity of this is included here — the signal records 

for the source at 70° were processed with beams formed over the sectors [-20®, 90®], [-90®, 90®] and 

[-180®, 180®] in turn.

An SNR of 20dB was used for the simulations, as this had been a ’standard’ test in much of 

the earlier work. It is of an intermediate level, suffering neither from the problems of too high a ratio 

(limited precision of data handling), nor too low a value (source indiscernible from noise-related 

sidelobes). However, as many of the ’in the field’ measurements will have signal and noise of 

comparable strength, a repeat of all the investigations was performed for an input SNR of OdB. 

These are presented in Table 23.2.

23.3 Discussion of Results

The following points may be concluded from the tables:-

i) Rms error increases with bearing (apart from slight discrepancies for 0®/15®).

ii) For the 70® source, processing over [-20®, 90®] does not give noticeably different results 

to that which would be achieved for [-90®, 90®]. However, a full search over [-180®, 180®] leads to 

significantly greater errors, probably due to the large width mainlobe near endfire, which spills over 

into angles greater than 90®.

iii) Although usually of comparable performance, the rms error for pf4 is much larger than 

that for pf8  when both are estimating the 2nd Fourier term using a source at 70 ®. [ The figures for 

the other two pfs monitored (nos. 5 & 6 ) agree well with those for pf8 . ]
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Source Direction 1st Fourier term 2nd Fourier term

e sec 0 pf4 pf8 pf4 pf8

0 1.000 1.000 1 .0 0 0 1.000 1.000

15 1.035 0.932 0.986 1.044 1.910

30 1.155 1.221 1 .2 2 0 1.266 1.264

40 1.305 1.241 1.233 1.195 1 .221

50 1.556 1.754 1.785 1.966 1.470

60 2 .0 0 0 2.018* 1 .8 8 6 5.8* 1.923

65 2.366 3.77 3.74 9.5* 2.182

70 2.923 3.63 2.946 17.9* 2.639

70 (a) 3.71 2.946 18.7* 2.639

70 (b) 5.77 2.944 26.* 2.639

75 3.863 4.979 4.949 28.* 3.919

Absolute values for 

source at 0 ° /mm
47.2 47.5 35.8 35.5

Table 23.1 : Variation of rms errors with bearing of source 

Each figure results from 100 independent simulations of a source of SNR=20dB, and with beamforming 

over -20° to 90° step 2°. All figures in main table are relative to that for a broadside source. * Indicates 

bias has occurred, (a) Search range modified to [-90°, 90°]; (b) Changed to [-180°, 180°]

iv) The tables for the two widely separated noise levels are in good agreement with one 

another; not just in the manner predicted, but also in the conditions that cause the pf4 estimator (and 

others) to be biased.
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Source Direction 1st Fourier term 2nd Fourier term

0 sec 0 pf4 pf8 pf4 pf8

0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

15 1.035 0.992 1.121 0.965 1.018

30 1.155 1.047 1.098 1.229 1.215

40 1,305 1.301 1.359 1.408 1.395

50 1.556 1.778 1.744 1.887* 1.477

60 2 .0 0 0 2.124 2.044 3.1* 2.159

65 2.366 3.15 2.25 3.6* 2.257

70 2.923 4.14 3.23 4.2* 2.585

70 (a) 4.33* 3.23 4.9* 2.597

70 (b) 4.29* 3.38 6 .6 * 3.395

75 3.863 5.75 4.09 5.5* 3.98

Absolute values for 

source at OP /mm
559. 532. 403. 378.

Table 23.2 : Variation of rms errors with bearing of source 

Each figure results from 100 independent simulations of a source of SNR=0dB, and with beamforming 

over -20° to 90° step 2°. All figures in main table are relative to that for a broadside source. * Indicates 

bias has occurred, (a) Search range modified to [-90°, 90°]; (b) Changed to [-180°, 180°]

23.4 Experimental Variation with Frequency

In furtherance to the investigation of the dependence of the errors upon bearing, it was 

seemly to assess the importance of frequency, as the earlier analysis [23.2] had yielded a prediction 

that the rms shape errors would be proportional to the wavelength of radiation used. As this was felt 

to be an important area to explore, a large series of simulations was run — 300 realizations for each 

of 7 frequencies, and all at 2 different noise levels too.
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As the elements were spaced at half-wavelength separation for the standard wavelength 

(Ao=6 m), beamforming for the higher frequency runs could have led to problems due to aliasing. In 

order to prevent such difficulties, the scan for all cases was over [-30°, 30°] in steps of 2°. The 

source simulated was at 4.7°, a value near broadside, but differing a little to avoid any extreme 

effects that might exist for that direction. The findings are given in Table 23.3.

Simulated Signal Relative Estimator Error

Frequency /  Hz A / Ao SNR=10dB SNR=0dB

128 1.953 2 .2 1 1 1.950

160 1.563 1.810 1.739

2 0 0 1.250 1.352 1.282

250 1 .0 0 0 1 .0 0 0 1 .0 0 0

312.5 0.800 0.860 0.834

390.6 0.640 0.629 0.646

488.3 0.512 0.648* 0.535

Table 23.3 : Comparison of the rms errors at different frequencies ( Ao = 6 m ) .

Results are for estimation of 2nd Fourier term, using a single source at 4.7° and processing over [-30°, 30°] 

in steps of 2°. 300 realizations used for each; columns independently normalized w.r.t. value for 250Hz.

* Indicates bias has occurred i.e. mean not close to zero error.

The results show reasonable agreement with that expected from [23.2], although the figure 

for the lOdB source at 488Hz appears a little inconsistent. Broadly similar observations were found 

for other pfs; some actually gave a greater error at the lOdB level for 488Hz than for 3 12Hz.
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24. EFFECT OF CORRELATED NOISE

24.1 Introduction

All the results given so far have been for uncorrelated additive noise i.e. that for which the 

expected value for the correlation between 2 different sensors, E[n, n*], is zero, although on any 

single realization this will have a finite value. This is not always the case in the real environment. 

This chapter concerns investigation using a simple exponential model for the autocorrelation of the 

noise viz. E[nt /zy] = or*‘~y* , l a l  < 1 .

Note, if a signal record consisting solely of uncorrelated noise (i.e. no signal) is processed 

via conventional beamforming techniques, the resulting beam pattern for any individual realization 

will still show a lobed structure [Fig 24.1a], with some lobes of greater height than others. This 

image is not ’real’ i.e. representative of the experimental conditions, array configuration or 

processing parameters. [The expected form, which is that achieved by ensemble averaging, 

corresponds to a power display that is constant over angle. ] However, the shape estimation 

algorithm discussed will still strive to focus the beam pattern, selecting an array shape that causes the 

greatest variation in the level of the lobes [Fig 24.1b]. Ideally, the algorithm should make some 

estimate of the power of any possible signal, and terminate the shape estimation if this value lies 

below a certain threshold level.

24.2 Processing with no Signal

24.2.1 Fully Correlated Noise

If the correlation coefficient, a , is unity, then all the values for the sensor, are fully 

correlated i.e. identical. This is exactly equivalent to the signal received by a straight array from a 

perfectly coherent source perpendicular to the array. Thus, application of shape estimation 

algorithms to perfectly correlated noise causes convergence towards a straight array with a pseudo- 

source at broadside, independent of the true shape. Note, if the correlation had been given by
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Fig 24.1 : Plots of beam patterns due solely to noise 

(a) is the typical result for a pre-selected array shape; (b) is the result of an attempt by power 

functions to focus pattern. The number of ’error lobes’ is limited by the number of elements, here 16.

E[n, n'j] = z t i  , with z = then the effect would be of a source at 0 insonifying a straight array, 

where feisinQ = -<|>.

24.2.2 Partially Correlated Noise

If a  is now reduced to a value just below unity, say 0.95, the noise values at neighbouring 

sensors will still be closely correlated, but over the length of the array, the correlation will be small. 

This will produce a ’fuzzy’ or diffuse image, as shown in Fig 24.2 — the effect of the slight 

incoherence being to broaden the width of the mainbeam, to weaken it, thus making the sidelobes 

relatively higher than normal, and to reduce the depth of the nulls.

Again, as the expected correlation between sensors is real and positive, shape estimators 

will on average tend towards a straight line, with a source at broadside. However, any particular 

realization of the noise may be more adequately represented by a gentle bow in the array shape. The 

rms value of this bow, , will increase with the degree of incoherency i.e. as the signal

becomes less correlated.

Although the variable specified in the simulation conditions is the correlation between 

adjacent elements, a , a figure more representative of the variation across the array would be useful.
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Fig 24.2 : Plots of beam patterns for different correlation coefficients 

No signal present; 16-element array, solely insonified by correlated noise, a) a  = 0.95 ; b) a  = 0.90 

In both cases, array shape used was a straight line.

There are 3 suitable candidates — p, the correlation between the two end sensors; a , the mean 

correlation between any two elements; and p., the ratio of array length (L) to the decay length of the 

correlation (L*). These three are given by:-

p = a""1 = a" [24.1]

In a  = —y  X X l n  a ( i j )  ~ (n-*)ln a* = -* ) k In a  = ±  n In a
n  i = l ; = l  n  k=0 n

-> a  = a rt/6 [24.2]

(i -  (nd) / (-d/ln a )  = -n  In a  = n In (1/a) [24.3]

[ The measure, a  was written in terms of logs simply because the normal evaluation of the 

mean led to a cumbersome expression. ] A series of simulations was performed to give an indication 

of the rms shape error for various degrees of correlation; these are summarised in Table 24.1.

These results show that the rms error associated with correlated additive noise is a function 

of both the number of elements and of the correlation coefficient. The table indicates that P is a 

useful indicator of the coherence of the signal across the whole array; however, it is not fully clear
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n a P (a 1 )rms I ^

16 1 .0 0 0 1 .0 0 0 0 .0 0 0

16 0.975 0.667 0 .1 0 0

8 0.903 0.440 0.123

16 0.950 0.440 0.125

32 0.975 0.440 0.139

16 0.925 0.287 0.141

16 0.900 0.185 0.166

8 0.563 0 .0 1 0 0.239

16 0.750 0 .0 1 0 0.242

32 0 .8 6 6 0 .0 1 0 0.235

Table 24.1 : Variation of the parameter a i with the correlation of the noise.

Each figure is the result of 200 simulations of the correlated noise with no signal present i.e. effectively a 

semi-coherent or ’fuzzy’ source. Hydrophone separation = 0.26A, ( X =11.7m).

whether the shape error is a function of P alone, of if there is some residual dependence upon the 

number of elements in the array.

One set of realizations was done with the same element separation, but using a wavelength 

of 3m. The value of (a ! )ms / X recorded then was consistent with the relevant entry in the table. This 

shows that results for correlated noise scale with wavelength in a similar manner to those for 

uncorrelated [see chapter 23.4],
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243  Single Source plus Correlated Noise

In the previous section it was shown that correlated noise causes shape estimation 

algorithms to converge towards a straight line, the effect being strongest (and thus having less 

variance) for the most correlated cases. Thus when a curved array is insonified by a strong source 

and correlated noise of a similar level, there is a choice of two different configurations towards which 

shape estimation algorithms may tend, depending upon the relative power levels and distributions of 

the two ’sources’. Table 24.2 gives the results for a series of simulations investigating this.

True

array

shape

a  = 0.3 a  = 0.5 a  = 0.7 a  = 0.85 a  = 0.95

A a\ AG Adi AG Aa\ AG Adi AG Aat AG

No. 1 1.54 4.0 1.73 5.0 1.84 6.5 1.98 5.1 2.62 6 .2

No. 2 1.48 4.6 2.04 5.4 2.32 5.6 2.97 7.1 3.15 7.3

No. 3 1.01 2.3 1.26 3.5 1.35 4.9 1.39 5.4 1.52 5.1

Table 24.2 : Comparison of the rms errors due to correlated noise for differently shaped arrays. 

Shape no. 1 was characterized by Fourier coefficients a j , a 2 , = (4.0,0.0,0.0); shape no. 2 by

(-6.0,0.0, 0.0); and no. 3 by (3.7, -1.83,1.2). Investigation was only of first coefficient and source 

bearing, the units being metres and degrees respectively. 1 0 0  simulations were performed for a 16 element 

array with a source at 9 A° . The additive noise was at OdB relative to the source.

The results for the 3 different shapes show the same overall trends, although the 

magnitudes differ, as the shapes are varying amounts from a straight line. In all case the estimates of 

a 1 showed a bias towards zero, indicative of the effect expected due to correlated noise. The 

magnitude of the bias was observed to be approximately lm less than the rms variation.

Sometimes the maximization of the power function (pf4) led to a beam pattern where the 

highest lobe was due to noise rather than the signal. Note was taken of how often the highest lobe 

was within 3.5° o f the true source bearing. [ A value of 3.5° was selected as it is just under half the 

beamwidth — any peaks within 3.5° of true must lie on the correct power lobe, albeit displaced
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somewhat; peaks displaced further probably lie on different lobes of the beam pattern, ] For most of 

the cases in Table 24.2, the success rate for source location was around 90%; however, noise 

correlations of 0.7 or greater reduced the success rates for shapes 1 and 2 to 60-75%.

In order to examine the dependence upon the level of the noise, one shape (no. 2) was 

selected for further trials. This one was chosen as it differed more from a straight line than the 

others, and consequendy the effects should be more pronounced. The variations with both noise 

level and correlation are displayed in Table 24.3.

SNR
a  = 0.3 a  == 0.5 a  = 0.7 a  = 0.85 a  = 0.95

/dB Adi -% - Aai -% - Adi -% - Adi -% - Adi -% -

-1.9 1.08 96 0.81 99 1.36 90 1.95 83 2.27 76

0 .0 1.48 91 2.04 84 2.32 76 2.97 57 3.15 60

1.9 2.39 74 3.02 61 3.38 48 3.29 54 3.64 51

3.8 3.04 62 3.91 43 3.81 48 4.10 36 4.61 2 2

Table 24.3 : Comparison of the effects of noise of varying levels and degrees of correlation.

100 simulations were performed for a 16 element array with a source at 9.4°. Shape search was only 

over 1 st coefficient, for which A a \ is given in metres; the '%' refers to the number of occasions 

upon which the highest peak of the beam pattern occurred within 3.5° of source bearing.

24.4 Summary

Correlated noise has been shown to mimic the effects of a ’fuzzy’ or indistinct source. On 

account of the way that such noise is generated in the program, its effect here is of a broadside source 

insonifying a straight array. When a true source is present, the effect on source detection and shape 

estimation depends upon the relative strengths of source and noise, and on the correlation of the
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latter. The more correlated the noise is, the more it resembles the output of a source, and 

consequently, the greater its effect on shape estimation algorithms. With signal and noise of equal 

strength (on input), the detection rate is good if the noise is poorly correlated (a  < 0.5).

Estimation of a j , the lowest order coefficient, shows that the frequency distribution of the 

selections is no longer centred on zero error; instead a bias is found, generally corresponding to a 

magnitude of lm (k /6 )  less than the rms error. A further series of realizations with a source at 42.8°, 

rather than 9.4° led to increases in bias and rms error of 20-50%. This is in rough agreement with 

expectations as secG has increased by a factor of 1.34. The percentage detection rate for the more 

oblique source does not appear to be significantly different from that for the one near broadside.

When the correlation is large, such that the noise resembles a source at a different focal 

distance, the distribution of selected shapes is bimodal, with peaks near a\ -  - 6 m (the true 

characterization of the array shape) and a\ = 0 m (the straight array favoured by the ’noise-source’).
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25. PRESENCE OF A SECONDARY SOURCE

25.1 Dependence upon Phase

It is found that a single realization of a particular 2 source scenario, with only one 

frequency and no additive noise, will not enable beamforming or shape estimation to yield the exact 

values for the various parameters. This is not due to random noise, as none is present, but rather the 

interaction of the 2 sources. Any single realization of a pair of sources at a single frequency will be 

equivalent to a phase lock between the two signals. The biases observed are dependent on the 

relative phase of the two signals. A series of simulations with gradual increase in the relative phase 

shows the full relationship between the biases and the phase — these are shown in Table 25.1.

25.2 Measurements of Sinusoidal Variations

Table 25.1 shows that the fluctuations seem to follow a sinusoidal variation, depending 

upon the phase difference and having negligible bias of the mean. Appendix 3 shows that such a 

relationship is clearly expected for the power pattern. Whereas this is not clearly demonstrated for 

the other measures, the results seem to fit such a pattern well. Appendix 12 shows that 3 realizations 

with 1 2 0° phase shift between them should be sufficient to estimate the mean and variance 

accurately. In Table 25.2 the mean and s.d. for the conditions of Table 25.1 are compared with the 

results obtained i) using 12 realizations with random phase, and ii) using 3 realizations with phase 

separation of 120°. [ Note, the data for 30° phase shifts is slightly different to the previous table, as a 

different search range was employed here. ]

Note, the results for random phase are not necessarily worse than for stepped phase — 

different series of 12  realizations yield slightly different figures, sometimes greater than the stepped 

results, sometimes less. This variation shows that a dozen random runs does not give as consistent 

results as 3 at fixed phase increments.
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Phase diff.

<J>1 <|>2 

/degs

Shape estimate error /  cm Bearing 

error 

A0 ! /  degs

Bearing 

error 

A92 /  degs

Power 

ratio 

P 2 I P  ipf4 pf5 pf6 pf8

0 0 0 0 0 0.13 -0.98 0.136

30 3 4 4 4 0 .1 2 -0.94 0.132

60 6 8 8 8 0.08 -0.78 0.119

90 8 9 9 10 0 .0 1 -0.24 0 .1 0 1

1 2 0 7 8 8 10 -0.06 0.98 0.091

150 5 5 5 6 -0 .1 2 2.03 0.092

180 0 1 1 1 -0.15 2.26 0.094

2 1 0 -4 -4 -4 -5 -0.13 2.03 0.091

240 -7 -8 -8 -9 -0.07 1.09 0.089

270 -8 -9 -9 -1 0 0 .0 1 -0 .1 1 0.098

300 -7 -8 -8 -9 0.08 -0 .6 8 0.116

330 -4 -5 -5 -5 0 .1 2 -0.90 0.130

Mean -0.08 0.08 0.08 0.08 0.0017 0.32 0.107

Rms error 5.6 6.5 6.5 7.2 0 .1 0 0 1.27 0.019

Table 25.1 : Variation of various estimates with relative phase of signals.

Results are for 2 sources — one at 5.0°, the other (-10dB) at -25.4° —  insonifying a 16 element array.

Shape estimates are for coefficient a j .

In a genuine acoustic situation, there would be no dependence between the phases of the 2 

sources (unless one was an echo of the other off a nearby object), and so all realizations would be 

independent and correspond to totally random values for the phase. It can be seen here, that a dozen 

or so measurements would be needed to accurately assess the mean and standard deviation of the 

estimates. However, as a simulation exercise, only 3 samples are required to make an unbiased and 

accurate estimate of each. [ Of course, in this particular case the errors in shape and source direction 

are minuscule; the estimates of the second source do show more noticeable variation. ]
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No. of samples 

and phase 

increment

Calculated

Statistic

Estimation Error /  cm Bearing errors Power

Ratio

P 2 !P\pf4 pf5 pf6 pf8 A0 ! A02

12 at 30°
Mean

S.D.

-0.08

5.61

0.08

6.46

0.08

6.46

0.08

8.43

0.0017

0 .1 0 0

0.32

1.27

0.107

0.019

12 random
Mean

S.D.

-1.42

6 .0 0

-2 .0 0

6.76

-2 .0 0

6.76

-2.25

8.67

0.043

0.099

-0.18

1.09

0.115

0.023

3 at 120°
Mean

S.D.

0 .0 0

5.66

0 .0 0

6.38

0 .0 0

6.38

2 .0 0

9.49

0.0033

0.098

0.29

1.29

0.107

0.018

Table 25.2 : Comparison of sampling methods.

[ Results refer to estimates of a i for a 16 clement array insonified by one source at 5.0°, and a weaker 

one (-10dB) at -25.4°. There was no additive noise present — variations are due to varying interaction. ]

A wider investigation of the problem shows that a s.d. of 5.6cm for pf4 is not typical of all 

similar scenarios. Variation of the secondary source direction by 0.5° changes this value to 6.4cm. 

Gradual movement of the secondary source shows that the variance fluctuates in a manner akin to a 

sinusoid, having a period of about 8.5°; i.e. standard deviation of error variations peaks for certain 

secondary angles approximately 8.5° apart The size of the error in a ! varies from a minimum of 

zero (i.e. all estimates for that direction are correct) to a maximum of 8.3cm (corresponding to a 

phase dependence with amplitude 11.7cm).

Further simulations were performed, using the same primary source at 5°, and secondary at

angles between 25° and 35°. These runs used different power levels for the second source 6 dB,

-3dB and -0.9dB (relative to the first source). Examination of the rms errors for estimates of a i , 

P 2IP\ ,  0i and 02 continue to show fluctuations with a period of 8.5°. The maximum values for 

each measure are presented in Table 25.3.
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Power Ratio, P 2 / P 1 Rms Errors for poorest case

Magnitude /dB a \ l  cm P 2 IPi 0 i /  degs 0 2 /degs

0 .1 0 -1 0 .0 8.3 0.018 0 .1 1 1.29

0.25 -6 .0 10.7 0.015 0.18 0.83

0.50 -3.0 10.5 0.040 0.25 0.60

0.81 -0.9 6 .2 0.023 0.31 0.48

Table 25.3 : Variation of errors with level of secondary source.

[ Results show worst level of errors encountered for 2nd source in the interval [-35.4°, -25.4°]; 

values at each angle estimated using 3 realizations for each situation with 120° phase increment. ]

It is to be noted that the maximum rms errors in the estimated power ratio and source 

directions occur when the source is at the bearing which causes the minimum error variation in a i . 

This bearing was the same for all power levels.

25.3 Two Adjacent Sources

In cases where the second source is close to the first, the behaviour differs a little from that 

detailed earlier. Maintaining the primary source at 5.0°, a second source (3dB weaker) was simulated 

at angles of -7.4°, -5.4° and -3.4° in turn. [Note, the beamwidth for the 16 element array is 

roughly 8 ° .]  The statistics of 12 phase-stepped simulations for each situation are given in 

Table 25.4.

As expected, the closer proximity of the sources caused greater interaction of the signals as 

evidenced by the larger shape and bearing errors. However, the variation with phase difference 

<t>2 ~4>i no longer shows a sinusoidal relationship. For example, the shape errors, Aa lt produced by 

different phases for the -5.4® source are given by
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Bearing of 2nd source, e2 -1A° -5.4° - 3.4°

Source separation, A012 12.4° 10.4° 8.4°

Error in 1st coefficient, A a\/cm 22.5 75.5 85.0

A0 ! /  degs 0.51 0.43 0.89
Bearing error

A02 /  degs 1.06 1.29 1 2 .2 *

Rms power ratio, P 2I P l 0.51 0.38 0.24

Table 25.4 : Variations in estimates of shape and source parameters, when 2 sources are close.

[ Results obtained by use of 12 stepped phase changes with an increment of 30°. Array has 16 elements 

at 3m separation, with X — 6 m. The true power ratio is 0.50 and no noise is present. ]

* Large error due to 2nd source being lost.

Aa^Afc) = 0 ,  -1 2 , -1 7 ,  -1 4 ,  - 8 , - 3 ,  0 ,  3 ,  8 , 14, 16, 13

where At}),- = 27c(i—1)/12, and the quantization unit for the shape selection was 7.5cm. The 

variation is still of mean zero, and has symmetry about the zero-crossings; but the maximum errors 

no longer occur at A<)>,- = ±90°. With the second source at -3.4°, the interaction is so strong, that the 

reduction of the 2nd mainlobe for 5 successive simulations out of the 12, causes it to be exceeded by 

the sidelobe on the other side of the primary. This results in the large error in A02 highlighted by the 

asterisk.

All results in the table relate to beamforming using the shape selected by pf4; using the 

correct shape improves a few of the bearing estimates. However, it does not alter the depression of 

the 2nd mainlobe for the 3rd run, and so consequently loses the weaker source for 5 occasions out 

of 1 2 .
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25.4 Summary

For situations concerning two sources and no additive noise, there is an estimation error in 

all the parameters due to the phase relationship between the two sources. These biases show a 

variation with phase possessing zero mean and approximately sinusoidal behaviour. Therefore 

sufficient averaging over different phases will result in no residual bias. The degree of variation also 

depends upon the specifics of the scenario e.g. angular separation of sources and relevant power 

levels, but in all cases the errors are small — I Aai  I «: X I 10, A0! c  1°. When the second source 

is lOdB weaker than the first, the estimation of its bearing may be out by more than 1 degree; 

however, a signal that weak would be obliterated anyhow by any reasonable level of additive noise.

However, the above is not necessarily correct when the two sources are about a beamwidth 

apart Then the interaction will make a significant change to the estimation of the second source, 

even if it is of comparable strength to the first. Note, in such cases even information as to the true 

element positions can not make a great difference.
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26. EFFECT OF MULTIPLICATIVE NOISE

26.1 Introduction

The causes of multiplicative noise have been referred to earlier [chapter 9], along with the 

simple model used here to provide such an effect in the simulations. To summarise, the transmission 

path between a source and sensor has a complex number T | associated with it — the effective voltage 

perceived at an element i due to a source, being % times the value expected for a perfectly 

homogeneous ocean. Thus T | models both amplitude and phase fluctuations. The value y= ln  T| 

(also complex) has mean zero, and a correlation between 2  sensors i , j  given by:-

ED»y;] = o J a 1' - ' 1 [26.1]

where a m is the standard deviation of the Gaussian from which y4 is drawn (and hence the 

rms value of ) . and a  is the correlation coefficient between neighbouring sensors.

26.2 Simple Cases

26.2.1 Fully Correlated

A considerable simplification of the problem is made when a =  1. Then the multiplicative 

terms are fully correlated, causing all the signal voltages to be premultiplied by the same quantity, 

and thus the beamforming, source detection and shape estimation are totally unaffected. This 

corresponds to a change in the refractive index of a large mass of water between the source and the 

array, whose correlation width is far greater than the length of the array. The unchanged performance 

is easily confirmed by simulations. A slight reduction in a  to, say 0.95, corresponds to closely 

correlated fluctuations across the length of the array. Once more, the statistics for correlation over 

the whole array [see chapter 24.2] enable easier comprehension. [ Using a value of a  of 0.95 for a 16 

element array corresponds to P (correlation between end sensors) being 0.4. The comparable value 

for jLi is 0.82, indicating that the transverse correlation length is roughly the size of the array. ] So for
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an array of 16 sensors, effects of the incoherence are expected to be manifest for values of a  of 0.95 

or less.

26.2.2 Totally Uncorrelated

The other easy reduction of the situation occurs when the noise is totally uncorrelated 

between sensors. Multiplicative noise can be expressed as additive noise associated with a specific 

source in the manner below:-

v,' = t\i Vi = Vi + rii [26.2a]

where:-

n-JVi = 1 1 , - 1  = exp(Y ,)-l = y, (for ly l  « 1 ) [26.2b]

Thus a value of n,- for the additive noise at a single sensor is equivalent to a multiplicative

coefficient of Tj, (or y,) as given above. Evaluation of mean and correlation over all elements gives:-

yi = rii / vi [26.3a]

EtYiYy] = E [mnj] / Efv.v)] [26.3b]

[ Note, this 2nd expression does not simplify further, as E[v,- v*] is not, in general, constant. 

For the specific case of a broadside source and a straight array, E[v, vy ] = I v I 2 = constant, and thus 

the two sources of errors are exactly equivalent then. ] However, the situation of uncorrelated 

multiplicative noise, E[y, y} ] = 0, for iV/, corresponds perfectly with uncorrelated additive noise, 

whatever the phase relationship of {v, }. Statistical results for uncorrelated multiplicative noise of 

magnitude a m should be the same as that occurring for uncorrelated additive noise, when the 

amplitude ratio of noise to signal is om.
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26.3 Observed Effect of Correlated Noise

A varied series of simulations was performed to examine how different values for the 

magnitude (standard deviation) and correlation of the multiplicative noise affect both shape 

estimation and source characterization. These are given in Tables 26 .1 -3 .

Noise

S.D.

<*«

a  = 0 .0 a  = 0.5 a  = 0.85 a  = 0.95

0 1 0 2 a 3 0 1 < * 2 03 0 1 0 2 03 0 1 0 2 a 3

0 . 1 4.5 3.3 2 . 1 6.4 4.0 2 . 6 6 . 0 3.4 1 . 6 4.0 2 . 1 1 . 0

0 . 2 10.7 7.0 4.1 12.9 8.3 5.0 11.9 7.2 3.4 7.7 4.3 1 . 8

03 16.0 10.9 63 18.2 13.4 7.2 17.9 1 0 . 0 5.3 10.4 6 . 1 2.7

0.4 18.8 13.3 9.0 27.7 16.3 1 0 . 2 25.6 14.1 6 . 8 16.4 7.9 3.8

0.5 26.9 17.5 1 2 . 1 34.2 23.0 13.4 31.3 16.2 9.0 19.2 11.4 5.2

0 . 6 32. 28. 13. 47. 28. 17. 40. 2 0 . 1 1 . 25. 13. 6 . 2

0.7 42. 26. 17. 51. 32. 2 2 . 47. 23. 13. 27. 15. 6 . 6

0 . 8 52. 30. 2 1 . 69. 38. 24. 49. 31. 14. 36. 18. 7.1

0.9 1 2 2 . 192. 184. 83. 56. 104. 74. 29. 7. 35. 0 . 0 .

1 . 0 614. 993. 885. 226. 594. 627. 65. 17. 203. 2 0 . 0 . 0 .

Table 26.1 : Shape estimate errors (in cm) for different levels of multiplicative noise. 

All results are from 150 simulations using 16 element array, with d / X -  0.5.

All the entries in the tables refer to the pf4 estimator, using 150 simulations of a scenario 

with a single source at 9.4° from broadside insonifying the array at 250Hz (—» X,=6 m). The spacing 

of the hydrophones was 3m, and there was no additive noise present It should be noted that a value 

of <jm of 0 .0  or a value of a  of 1.0  results in an error free pattern, for which the errors in a l5 a 2, a 3 

and 0! are zero, and the height of the highest sidelobe is -13.3dB. [ Note, as the power level near a 

lobe peak varies slightly for a change of 1°, the actual relative sidelobe level observed will depend 

slightly upon the orientation of the chosen beams; thus a sidelobe level lower than -13.3 might be 

recorded.] Fig 26.1 shows some examples of the effect upon beam patterns of various levels of 

multiplicative noise.
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S.D. of 

Noise

Highest sidelobe level /  dB

a  = 0 .0 a  = 0.5 a  = 0.85 a  = 0.95

0 .1 -12.3 - 12.1 -12.3 - 1 2 .2

0 .2 - 12.1 - 12.1 - 12.1 - 1 2 .2

0.3 - 1 2 .0 - 11.8 - 12.1 - 1 2 .0

0.4 -11.4 -11.4 - 11 .8 - 12.1

0.5 -10.5 -10.4 -11.4 -11.9

0 .6 -9.4 -9.6 - 1 1 .0 - 1 2 .0

0.7 - 8 .2 -9.0 -10.3 -11.3

0 .8 -7.4 -7.6 -9.3 -10.7

0.9 -5.3 - 6 .2 -8.5 - 10.1

1.0 -1 .9 -3.3 -7.1 -9.7

Table 26.2 : Average peak sidelobe level for different levels of multiplicative noise.

All results are from 150 simulations using 16 element array, with d l X = 0.5.

26.4 Expected Magnitude of Shape Errors

As shown in [26.2], the effects on a single element of multiplicative noise and additive 

noise are equivalent. Ignoring the change in amplitude, which only has a minor effect upon the 

processing, the change in the signal is consistent with the phase error due to an erroneous element 

location; therefore a certain value for the noise at an element, will be equivalent to the sensor 

displacement that causes the same phase error. If the cause of the multiplicative noise yields values 

which are totally uncorrelated between sensors, then the resultant deviations of their positions will 

show no correlation either. Fourier analysis of a set of totally random mislocations is equivalent to 

examination of the frequency spectrum of white noise — i.e. all the terms have zero mean, and a 

constant standard deviation.
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S.D. of 

Noise

<ym

Error in Bearing Estimate /  degs

a  = 0 .0 a  = 0.5 a  = 0.85 a  = 0.95

0 .1 0.08 0 .1 1 0.14 0 .1 0

0 .2 0.14 0.23 0.25 0 .2 2

0.3 0 .2 1 0.28 0.41 0.31

0.4 0.31 0.45 0.53 0.40

0.5 0.35 0.56 0.71 0.48

0 .6 0.48 0.73 0.76 0.65

0.7 0.53 0.78 1.08 0.71

0 .8 0.62 1 .0 2 1.13 0.79

0.9 9.6 4.8 1.24 0.82

1 .0 26.6 15.6 4.3 1.02

Table 26.3 : Average bearing error for different levels of multiplicative noise. 

All results are from 150 simulations using 16 element array, with d /X = 0.5.

Thus uncorrelated noise should cause shape estimates to converge on configurations for 

which the expected value for each coefficient is zero, and its expected magnitude is a constant, 

independent of the order of the term. In the particular application used here, it is the rms error 

associated with each basis function that should maintain a constant value. The conversion factor, 

employed in 15.6, related the amplitude coefficients of the basis functions to their respective rms 

deviations. Applying the values 0.31, 0.44 and 0.71 obtained for the first three terms, to the ’error’ 

values associated with a = 0  [first results column of Table 26.1], shows the rms deviations of all three 

to be approximately equal. This is only true for uncorrelated noise of magnitude a m<0.8. Above 

this level, the formulation is unable to deal with the large shape variation required, and thus no 

relationship is apparent between the magnitudes of the various A a, rms values produced.
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Fig 26.1 : Plots of beam patterns for different values for the standard deviation (<Tm) 

and correlation (a) of multiplicative noise, a-c) Gm = 1.0 , a =0.5 ; d) <5m = 1.0 , a =0.0 ; 

e) CJm =  0.8 , a =0.5 ; f) <7m =  1 0 , 0t= 0.85

The phase change due to a multiplicative value of T|, is given by:-

Atj>, = arg(T]t) = arg(e y) ~ y2 [26.4]

where Y=Yi +7 Y2 and I YI ^  1- As the multiplicative noise was created with mean zero 

and s.d. a m, the phase change, At)),, will have zero mean and a rms value of a m / V 2 . Therefore:-

var(At)),) = <s2m / 2 [26.5]

For an error in a single basis coefficient, A a,, the rms position error of the hydrophones is 

A a,. Consequently, errors in all the coefficients cause a total rms phase error, A<£>, given by:-

(AO)2 = * 2"£c?(At2,)2 [26.6]
i = i
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where n is the number of sensors, and k is the wavenumber. Applying the expectation 

operator, and noting as before that E [ Q  (Aa,)2] is a constant over all r, reduces the expression to:-

E [ (AO)2 ] = k z • n-2  • E [ Q  (Aa, ) 2 ] [26.7a]

-»  var(AO) = k z nC,2 var(Aa1) [26.7b]

Now, the cause of the phase fluctuations here was not the misshapen array, rather it was the 

response to match the phase changes arising from the multiplicative noise. Substituting the statistics 

for such phase changes [26.5] into [26.7b] yields the expected dependence of shape mismatching 

upon multiplicative noise, namely:-

(Aa^nns = ~j==~Z~ [26.8]
\ 2 n k

The figures in the first results column of Table 26.1 show reasonable agreement with this 

prediction. [ Note, the derivation assumed that Gm «*: 1 and that the noise was uncorrelated — 

consequently the above treatment applies to additive noise as well. ]
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27. REGION OF CONVERGENCE TO TRUE SHAPE

27.1 Introduction

The preceding chapters (nos. 18-26) show how precisely power functions may be able to 

estimate array shape and source bearing(s) in the presence of various noise levels, correlations, 

secondary sources, different weighting schemes etc. Chapter 30 indicates how a suitably constructed 

basis removes any bias in the estimation of one Fourier term, despite errors in the others; whilst 

chapter 31 relates how a gradient search routine may be used to locate the peak promptly. In these it 

is demonstrated that the shape parameters can be determined quickly and accurately using power 

functions from errors of over 2 m (one third of a wavelength).

This and the ensuing chapters (28, 29) are concerned with the size of the ’convergence 

region’ i.e. that part of the vector space spanned by the coefficients from which use of power 

functions can enable the correct shape specification to be approached.

Fig 27.1a shows how one of the power functions (pf4) varies for various errors in the first 

coefficient, a i . The pf is ’well behaved’ over the range of values shown in that there is only one 

maximum and the pf does not achieve a constant level. Therefore processing of two trial shapes, 

differing slightly in their value for a j , will always yield pf values ordered such that that for the shape 

nearest to true is the greater. In such a case, an algorithm can correctly infer the direction in which 

a i needs to be altered.

Fig 27.1b shows the same scenario examined over a greater range of a \ . For values of a i 

less than -17m or greater than 17m, comparison of neighbouring trial shapes may fail to infer the 

correct direction for approach to the global maximum; thus the algorithm will then converge to one 

of the local subsidiary maxima at a i =-32m  or a i = 32m.

Note, as the beam patterns gradually evolve with changes in the estimated parameters it 

follows that power functions will change smoothly too i.e. there will be no discontinuities in the 

variation of a pf with shape. Also, for the pfs of integral form, their derivative with respect to the 

shape parameters will be continuous too. The spiky nature of some of the diagrams contained in this 

thesis is simply due to insufficient sampling in terms of values of a, — this is due to processing time
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Fig 27.1 : Variation of a power function with the error in estimation of the first coefficient.

Plots for a 16 element array, with A/2 spacing (A = 6 m). a) -1 0 .0 m < Aa i < 1 0 .0 m ; b) -40.0m < A a \ < 40.0m.

and storage limiting the number of trial shapes that could be tested.

It should be observed that the deviations referred to here ( > 10m) are unrealistic for a 

16 element array of length 48m. Not only is an array that short unlikely to contain such variations, 

but also the characterization of the array shape [Eqs. 11.1,2] is no longer valid, as the elements will 

no longer have equally spaced x-values. Consequently, most of this section is only pertinent to larger 

arrays, of at least 16A in length (32 elements at A/2). However, as computation time increases 

approximately as the square of the number of elements (due to the required reduction in separation of 

the beams), most simulations are done for arrays of 16 or 32 elements.

27.2 Location of Minima

From parameter searches, such as illustrated in Fig 27.1b, the important measure as regards 

the size of the convergence region is not the locations of the subsidiary maxima, but rather the 

positions of the minima nearest to the parameter value for the correct shape, as it is these which 

delimit the range of a, for which convergence to true is certain. [ Note, these local peaks observed in
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section may not necessarily have zero gradient w.r.t all parameters — thus it is possible that search 

routines may uncover a continuously uphill route from a subsidiary ’maximum’ to the true one, that 

makes an excursion in one or more of the other dimensions. Such will gready increase convergence 

time, and is not easy to demonstrate. An artificial surface is shown in Fig 27.2a for which this is 

true. ]

b)

is.0 20

Fig 27.2 : a) Contour plot of a surface with only one maximum,

b) Cross section of a) showing 3 apparent maxima. [ All units arbitrary. ]

It would be expected that the locations of the minima be specific to a particular scenario 

and type of processing. As the pf display (as in Fig 27.1b) has stretches of nearly constant level, 

slight fluctuations in the power function may easily give rise to extra peaks and consequendy nearer 

minima; thus the positions of the minima can be surprisingly sensitive to details of the scenario. As 

an example, Table 27.1 gives the approximate positions of the nearest minima for a series of 

scenarios with idendcal array shape and processing, but different bearings for the only source.

Although it may be expected that the minima should be approximately symmetrically 

placed about the true value (or rather about the particular peak for that realization), this is clearly not 

always the case. For most of the entries in Table 27.1, the values for lower and upper minima are the 

same or differ by only lm. In some cases, the difference amounts to 2 or3m. [Note, here the 

resolution limit, i.e. the separation in a j of different trial shapes, is 1.0m. ]
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Source Bearing/degs -40. -36. -32. -28. -24. -20. -16. -12.

Aa i / m for lower minimum 

Aa i / m for upper minimum

-13.

12.

-13.

13.

-14.

14.

-14.

13.

-15.

15.

-14.

16.

-17.

15.

-16.

19.

-8. -4. 0. 4. 8. 12. 16. 20. 24. 28. 32. 36.

-16.

17.

-20.

17.

-17.

15.

-17.

18.

-16.

17.

-16.

16.

-15.

15.

-14.

15.

-14.

14.

-13.

14.

-13.

14.

-12.

12.

Table 27.1 : Variation of minima locations with source bearing.

[ Results relate to estimation of a \ for a 16 element array, with X=6 m, and beamforming every 2°. ]

The variations for other power functions mirror approximately those given in the table for 

pf4, showing a maximum size of the convergence region for the source near broadside, with a gradual 

reduction towards ±40°; however, each shows different variations about the general trend indicating 

a fine sensitivity to bearing angle. Similarly, a source at a fixed bearing insonifying various 

differently shaped arrays gives a range of convergence limits. Variations of a few metres depending 

upon the fine scale of the scenario make comparisons more difficult; however, generally a processing 

approach that improves convergence range for one particular array shape and source scenario will do 

so for others, even though the results for the two situations may differ by as much as 20%. [ An 

exception is pf8, whose behaviour for the range of conditions in Table 27.1 showed fluctuations about 

a curve with a minimum for a source at broadside. Its behaviour is not always anomalous in this 

manner. ]
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27.3 Minima for Higher Order Terms

In a similar manner, the minima for the 2nd, 3rd and 4th coefficients may be determined for 

a range of source bearings. The results given in Table 27.2 relate to 20 different bearings from -40.7° 

to 25.8° in steps of 3.5°. The locations are given for the average positions of the lower and upper 

minima for pf4. Also included are the equivalent results achieved with a small but significant noise 

level (-20dB relative to the source). Using the results for the no noise case, a mean absolute position 

of the minima may be calculated, Aa,-, — the final column expresses this value in terms of 

wavelengths.

Fourier

Index

i

Resolution 

limit 

da,- /m

Mean Aa,- / m for no noise Mean Aa,- /  m for -20dB noise Mean Abs. 

Position 

Aa,- / XLower min. Upper min. Lower min. Upper min.

1 1 . 0 0 15.40 15.20 14.43 1433 235

2 0.40 636 6.28 6.41 7.37 1.07

3 033 4.63 433 4.42 4.60 0.75

4 0.33 3.92 4.07 3.82 3.98 0.67

Table 27.2 : Location of minima of pf4 for an array of 16 elements at X / 2 spacing (X = 6 m). 

Minima averaged from 20 source position over -40.7° to 25.8°, using beamforming over [-60°, 60°]. 

Resolution, as given in column 2, is coarse, but due to averaging results should be fairly accurate.

It can be seen that the mean positions of the upper and lower minima are symmetrically 

placed about true. Also, noise at the -20dB level (or lower) has minimal effect on these positions.

Note, when the description of the convergence range is altered from amplitudes of Fourier 

coefficients to their rms displacements (via the conversion factor, introduced in chapter 15.6) the 

estimator still shows more resilience to errors in the first function than to those in the lower order 

terms, (Aa i )rms / X being 0.79, whilst for the others (A a,)^  / X is around 0.55.
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27.4 Different Choices of Average

In the above work, the ’average’ location of the minima, Aa,, was calculated as the mean of 

the absolute values of the whole ensemble. In many statistical applications an rms value is deemed 

appropriate — this always being larger than the aforementioned one, as it takes greater note of the 

large values. In a lot of simulations it is right to highlight the extremely large values, however here it 

is the smallest values which should be thought of as critical. Occasional occurrences of very close 

minima are causes of grave concern, and special note should be taken of them. Consequently, more 

suitable definitions of ’average’ for this situation are:-

N
a/  where N  / a /  = £  ( 1  / I Aa,-1 )  [27.1a]

«= i

2  N  2
a™ where N / ( a , - ^ )  = £ ( l / A a , )  [27.1b]

«=i

Of these two, [27.1b] is probably the more appropriate, simply because it corresponds to an 

rms error in wavenumber space, and thus may be more open to mathematical manipulation than the 

definition containing the modulus function. As all results in this section bear some degree of 

uncertainty, because of values’ fluctuation with fine scale, and the poor resolution obtainable (e.g. in 

Table 27.2, the individual Aa! measurements were only available to the nearest metre), it is not too 

important which definition is used, as long as comparisons are always made between situations with 

similar processing and averaging. Consequently, the mean absolute value, Aa,, as used earlier, is 

retained throughout.

There is one case of particular note. If the true array shape is a straight line, i.e. all the a, 

are zero, then the lower and upper minima occur at exactly symmetrical locations, and these values 

are symmetrical w.r.t bearing too. A simple smooth variation is observed over 0 — the minima 

locations becoming closer as the source moves towards endfire at a rate intermediate between cosG 

and cos20. As the minima points seem so well behaved for the straight line array with broadside 

source, such is often adopted as the standard situation to avoid the complications of the averaging 

required to remove fine scale effects.
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27.5 Accuracy in the Determination of the Minima Points

As the pfs are only calculated at a finite number of values of a,-, the observed minima points 

will be displaced from the true values (which could be found by more frequent sampling). The 

storage constraint on this computer program limits the number of at values that can be used in one 

search. The resulting sampling error over a,-, means that any particular result may err from true by 

10-15%.

If no noise is present in the simulation, repeated realizations will yield the same values, and 

so averaging will not yield a more accurate figure. Many realizations of a noisy scenario will 

produce a useful and meaningful average, as will slightly different source directions or true array 

shapes for the no noise case.

Much of the zero noise investigation can be done adequately from individual realizations, 

as high accuracy is not required. It is to be noted that with such an approach occasional results may 

be anomalous i.e. a quirk of the particular combination of scenario and processing, and not reflect the 

general behaviour. Care has been taken to minimize such incidents.

27.6 Different Numbers of Hydrophones

An increase in the number of hydrophones usually corresponds to an increased array size, 

and consequently the magnitude of the array deviations is likely to change. However, this does not 

reduce to the original situation rescaled by a factor throughout, as the beam pattern has changed 

(become finer) due to the increased resolution of the larger array. Also, a bow error (incorrect value 

of a i) of A/2 [see Table 15.3] is sufficient to obscure a source no matter how high the SNR or long 

the array.

Therefore, it is not necessarily simple to extrapolate the minima locations from a 16 or 32 

element array as used in these simulations to ones of 64 or more elements that may be used in 

practice. Consequently some work was done on large arrays; Table 27.3 compares the results of such 

with the shorter ones that have been more thoroughly studied.

The results show an increase in convergence region with number of elements, n, as would 

be expected. The size of the region appears to be approximately proportional to n; albeit that the
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No. of 

elements 

n

Average location of pf4 minima / m

Aa i >1
 

SJ 
1

A a 2 A a 4

16 18.0 8.0 6.0 4.7

24 28.5 15.3 7.3 6.0

32 38.0 21.0 7.3 7.3

48 63.0 33.0 12.0 7.3

64 90.0 42.0 19.0 19.0

Table 27.3 : Increase of convergence region with number of receivers.

All arrays had sensors at half wavelength separation (A, = 6 m). [ Results are for a source at broadside 

and a straight array, using beamforming over [-60°, 60°] in steps of 0.75° ; no noise present. ]

results are rough owing to the coarseness of the measurements. The actual values given in the table 

show a slightly greater rate of growth for the a x and a 2 spans than for the lower terms; however the 

figures given are not sufficient to indicate whether such occurs in general i.e. for all shapes, and 

repeatedly larger arrays.

27.7 Different Power Functions

Although the majority of the useful power functions can be seen to have very similar 

properties as regards estimation accuracy [see chapters 17,20], it is important to examine whether 

such is the case for the size of the convergence region. The results of an investigation into this are 

shown below in Table 27.4.

It is apparent that for the cases shown (zero noise) there is negligible difference between 

most of the pfs. An exception is pf8, that which is solely a measure of the peak height Although the 

primary source ceases to be prominent for errors in excess of 3m, it is clear that for, say a 32 element
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No. of 

elements 

n

Average location of minima, Aa! /  m

pf4 pf5 pf8 pfl4 pfl6

16 18. 14. 3.0 18. 18.

24 28.5 22.5 7.5 28.5 27.

32 38. 32. 20. 38. 32.

48 63. 63. 39. 63. 63.

64 90. 90. 48. 90. 90.

Table 27.4 : The variation of minima locations with choice of power function.

Results are for a source at broadside, with a straight array using beamforming over [-60°, 60°] in steps 

of 0.75°, and different numbers of elements. [ Wavelength, X = 6 m ; no noise present. ]

array, all the lobes are decreasing in size as Aa! —»20m, albeit that the one in the direction of the 

source diminishs quickest. [ This is only true on a coarse scale — examination at more finely spaced 

values of a i [see Fig 16.2] shows several small lobes in the variation of pf8. ]

For a great many situations, pf4 continues to provide a performance that equals or 

surpasses others. In certain of the simulations involving noise, a difference can be discerned: this is 

mentioned where appropriate.

27.8 Effect of Different Weighting Schemes

Although all of the weighting schemes investigated had the effect of reducing the sidelobe 

levels for processing using the true shape, this did not in itself make the source peak visible for any 

greater range of a, . A heavily shaded array is in many ways similar to consideration of only the 

central part of the original. Consequently, an error of a certain size in the a x term corresponds to a 

much smaller bow in the central ’effective’ array. For this smaller error, the source might still be
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visible whereas the larger error in the whole array would have obscured it  Thus weighting can 

increase the magnitude of the bow error that still leads to a primary peak in the source direction. A 

similar argument holds for errors in a 2. Of the five systems of weighting investigated 

[see chapter 11.6], Hamming led to the largest convergence region — for a x and a 2 it was about 25% 

bigger than for uniform. For higher order coefficients, the convergence regions are approximately 

equal for all weightings, as then consideration of predominantly the central portion can not improve 

the performance. This is because the relative deviations within the central section are the same as 

those for the array viewed as a whole.

The majority of the estimators behave as the one detailed above (pf4), the exception being 

pf8 (the peak height measure). On account of the reduced sidelobe level and increased source 

visibility associated with Hamming weights, the improvement in performance of pf8 is even more 

marked than for pf4, such that over a x and a 2 its limiting range is the same as for the others, rather 

than only 50% of their value as occurred for uniform weighting.

-161 -



28. CHANGE IN CONVERGENCE REGION

DUE TO A SECOND SOURCE

28.1 Effect on Estimation of a Single Term

Chapter 25 shows that the presence of another source does not improve the accuracy of the 

shape estimate; rather the interaction between the signals of the two sources causes a bias in the 

determination o f the coefficients, and that bias is dependent upon the relative phase of the two 

emissions. Consequently, care was taken in the measurement of the convergence range for two 

source scenarios to allow for similar behaviour. Table 28.1 indicates how the minima for a specific 

two source situation vary with changes in the relative phase.

The presence of the extra source has vastly reduced the convergence region for both a i 

and a 2. In the case of a\  there is a shallow minimum near ±3.5m that varies little with the relative 

phase of the two sources. However, the minima points for a 2 are strongly dependent on the phase 

difference — the positions of the nearest minima varying from ±1.8m to ±6.4m.

The pf display fora2 (i.e. plot of values of pf4 versus errors in a 2) shows sizable secondary 

peaks for A<j> = 0°. These peaks rapidly fade to nothing as the phase changes by 180°, so the larger 

minima locations for A<J> = 180° are not due to the minima moving, but rather to them disappearing to 

reveal the distant ones.

Examination of the behaviour for different power functions shows that they all exhibit 

similar behaviour — though most produce minima slightly nearer to true than pf4 does. The minima 

for a 3 show wide variation like those for a 2.
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Relative

Phase

$1

Position of minima of pf4 /  m

Lower Aa\ Upper Aai Mean A**! Lower Aa 2 Upper Aa 2

0° -3.60 3.65 3.63 -1.9 1.8

30° -3.60 3.45 3.53 -2 .0 1.8

60° -3.55 3.30 3.43 -2.1 2.0

90° -3.55 3.30 3.43 -2.5 6.4

120° -3.55 3.30 3.43 -6.3 6.2

150° -3.65 3.40 3.53 -6.0 6.1

180° -3.60 3.60 3.60 -5.9 6.1

210* -3.40 3.65 3.53 -6.0 6.1

240* -3.30 3.55 3.43 -6.3 6.2

270* -3.30 3.55 3.43 -2.5 6.4

300* -3.30 3.55 3.43 -2.1 2.0

330* -3.45 3.60 3.53 -2.0 1.8

Average -3.49 3.49 3.49 -3.8 4.4

Table 28.1 : Variation of minima locations with relative phase of sources.

[16 element array at A/2 spacing (A. = 6 m); primary source at 4.7° and secondary (3dB weaker) 

at -25.4°. No noise present. Uniform weighting applied at beamforming stage. ]

28.2 Two-Dimensional Searches

The minima in a \ and its associated subsidiary maxima are very shallow, so it is possible 

that search routines will not be distracted from the true peak by those minor ones. Also, several 

independent signal records will contain different values for the relative phase of the sources; 

consequently the variable peaks for a 2 will not always be present to deflect search routines from the 

true shape, although they may succeed for 5 occasions out of 12 [see Table 28.1].
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However, convergence to the true shape parameters from a significantly erroneous one is 

not a simple matter, as typically neither of the initial values for a\  or a 2 is correct. The importance 

of this statement is shown by the contour plots in Fig 28.1.

The plots are for 4 of the situations referred to in Table 28.1 — phase differences of 0°, 90°, 

180° and 270®. The weak minima for errors in a\  alone are not discernible; the strong subsidiary 

peak for an error in a 2 can only be seen clearly for a relative phase ofO®. However, a common 

property for all the diagrams is a significant peak in the region of ( a i , a 2) = (3.5,1.5) and its 

reflection points in ai  and a 2. Coupled with the two variable ones on the a 2 axis, they provide a 

’protective shield’ around the true peak, rendering it unlikely that simple gradient search routines 

will converge to the correct shape.

This is thus a definite limitation to the power function approach. It is to be noted that an 

error in a\  of only 3.0m is sufficient to mask the main source for 9 out of the 12 occasions 

[cf Table 15.3]. However, the combination of errors in a\  and a 2 at the subsidiary peak define an 

array shape for beamforming that enables the primary to be found for 6 of the simulations, and the 

secondary too for 4 of those — albeit that the bearing estimates for both showed a bias of about -5°.

28.3 ‘Fixed’ False Peaks and ‘Jumps’ to THie

Although the maxima near (0 1 , 0 2 ) = (0.,±3.0) are transient in that their presence depends 

on the phase of the signals, that near (3.5,1.5) appears more permanent. Not only does it occur for 

all phase differences for the scenario investigated above, but it and/or its mirror image at (3.5, -1.5) 

is present for different power ratios of the sources and for different separations.

Increasing the power of the second source such that it is equal to the first makes little 

change to contour plots ofpf4. Reducing the power ratio to -6dB causes the extra maxima to 

diminish, although their approximate positions are maintained. Further reduction to -12dB removes 

the maxima completely, producing a pf variation akin to that for a single source scenario. Clearly 

such a weak second source can only be discernible with significant element weighting and/or low 

noise levels. However, the increased probability of locating the primary, when the power ratio is 

reduced to -12dB, is important.
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Fig 28.1 : Four contour plots to show variation of pf4 over a ! and a  2 -

All diagrams are for a 2 source scenario —  primary at 4.7°, secondary (3dB weaker) at -25.4°. 

Diagrams show the differences for <}>i — <J)2 equal to 0°, 90°, 180° and 270° respectively.

[  X  =  j 6 m  ; - 6 m  <  Aa j  <  6 m  ; - 6 m  <  A a 2  —  6 m  ]
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Altering the angular separation of the sources does affect the position of the maxima. 

When the sources are nearer than 15°, the subsidiary peaks disappear, leaving a convergence region 

of ±8 m for both a\  and a 2 — thus covering all realistic array contortions. [Note, this is for a 

16 element array of beam width = 8 °. ] A greater separation causes the maxima to be further away, 

although still in approximately the same vector directions as before.

These vectors, (Aal%Aa2) = (0.0,±3.0) and (±4.0,±1.5) are clearly important in that they 

are characteristic of maxima positions for this particular array design and processing. [ The values 

given are averages, typical of the nearest peaks for a variety of source scenarios. ] If the pf algorithm 

has converged to a shape specified by ( a i \ a 2 ), but in spite of locating a local maximum is 

unsatisfied by the focusing achieved, then a different strategy may be adopted. Previous convergence 

work relied on the smoothness of the pf variations and the uniqueness of the maximum; in cases 

where this second assumption is false, it can be beneficial to investigate the pf values at the points 

(a i ,  a 2 ±3.0) and ( a / ±4.0, a 2'±1.5). If any of these yields a higher value than that at the top of the 

present peak, then that point must lie on a greater peak, probably the true one. Note, this will not 

lead to a ’jump’ from the true peak to a false one, as the latter would be smaller.

This is in many ways an empirical approach, not in keeping with the concept of gradual 

convergence via a gradient method. However, its aim is the same — a strategy for reaching the point 

of highest pf value without explicitly beamforming and calculating the power function for all points 

on a grid of 2 (or more) dimensions. The key to this approach is the well defined locations of the 

subsidiaries relative to the true maxima, necessitating that only 6  points be tested prior to a ’jump’ in 

the vector space.

[ This is a slightly idealised view, as the relative positions do show some variation, thus an 

initial jump attempt may fail. As an example, for widely separated sources, the subsidiary may be at 

(6.5,2.5), thus a leap of (-4.0,-1.5) will not reach the main peak. To cope with such situations, a 

secondary leap attempt might be required using vectors approximately 70% bigger than before, 

although this would increase the complexity of the process, and also the number of trial shapes 

tested. Note, in many cases for such distant maxima, the initial shape estimate is likely to be inside 

the ’defensive wall’ and hence not led astray by the false peaks. ]
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28.4 Effect of Weighting the Elements

As mentioned at other stages, shading the elements places more emphasis on the signals 

from the central portion of the array, within which the deviations (and estimated errors therein) are 

smaller than for the array as a whole. Application of Hamming weights to the processing of the two 

source scenario detailed above leads to a great simplification of the problem, as the subsidiary 

maxima are absent from many of the contour plots. Where they remain, they are located about 30% 

further along the vectors specified before, but showing greater variation in position.

For simulations involving sources 17° apart, Hamming weights lead to far fewer peaks than 

uniform, as the former causes much wider mainlobes in the beam pattern, such that they are almost 

like one source, for which convergence is simple. However, in the majority of such cases, the highest 

point on the contour plot corresponds to a shape erring by a metre or so in a j or a 2- Such is not the 

case for uniform weighting, which always gives a peak very close to the true specification of the 

array shape.

28.5 Increased Number of Hydrophones

Some investigations were done for a 64 element array with half wavelength spacing (hence 

4 times as long as the previous 16 element one). They showed the maxima to be considerably more 

distant; rough measurements indicated the peaks to be about 3 times as distant as for 16 elements, 

rather than the 4 times expected for linearity. Certainly part of the reason for the improvement is that 

the beamwidth is considerably less, such that sources, say 30° apart, have reduced interaction.

A short series of investigations over 3 unknowns indicated that a prominent peak is present 

at around ( a i , a 2, a 3) = (11.0, 2.5,1.6). There may be many extra peaks at this distance when all 

mirror images and other points are included. Thus the ’jump’ approach may be of little benefit, if a 

large number of extra shapes needs to be tested. However, it was interesting to note that at this 

highly inaccurate shape estimate, a degree of focusing had been achieved which enabled both sources 

to be pinpointed to within a few degrees on 75% of occasions!

An important observation from this is that a clear convergence region of ±12m (i.e. 2X) in 

a 1 and a 2 might be expected for arrays in excess of 10 0  elements, whilst it is possible that the shape 

fluctuations for such a 300m array will not exceed that
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28.6 Summary

The presence of a secondary source, of significant amplitude compared to the first, has been 

shown to have grave consequences for shape estimation via the pf method. For a single source with 

no added noise the pf surface plotted over a x and a 2 exhibits a unique maximum, the pf falling off 

monotonically from i t  However, the structure is not that of a simple hillock — ridges run off along 

the vector directions (±4.0, ±1.5) as is shown by Fig 28.2. When the second source is within 6dB of 

the primary, the interaction between them causes subsidiary maxima to occur along some of these 

ridges. Also, a peak may occur on the a 2 axis (at a 2=±3.0 for a 16 element array) — though this 

depends very much on the relative phase of the sources.

t . i

T
E

cs<3
<

Fig 28.2 : Contour plot to show variation of pf4 for various values of a ! and a 2. 

[ Array has 16 elements at X / 2, ( X = 6 m). Single source; no noise. ]

The maxima are fairly constant in position, being constrained by the positions of the ridges. 

Altering the relative phase of the sources or changing the pf examined makes little difference. The 

relative power P 2/P\  mainly affects the intensity of the maxima, not their positions. A wider
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angular separation of the sources causes the maxima to lie at a further distance along the ridges. 

Increasing the number of elements (for constant element spacing) also increases their distance.

Subsidiary maxima also occur in displays of the a\  - a 3 and a 2- a 3 planes. There is also 

evidence of significant peaks occurring for non-zero values of all of a \ , a 2 and a 3 — these are not 

easy to investigate, and hard to illustrate.

For many of the low noise cases investigated, use of significant element weighting removes 

any near subsidiaries, making convergence simpler. However, weighting schemes such as Hamming 

tend to show poor accuracy in locating the precise array characterization, thus it is prudent to use 

Hamming or others for convergence from afar, and then revert to uniform weights in order to 

pinpoint the true shape accurately.

Note, if the two sources emit at similar but distinguishable frequencies, then the problem 

will not arise — shape estimation could be performed independently (and accurately) using the two 

separate sources; comparison of the estimates will then confirm the validity of the approach. If the 

two sources are at indistinguishable frequencies (i.e. one characteristic sharp resonance for both 

sources, and no Doppler shift for either), then the situation is more complicated. However, varying 

refractive index in the ocean along the two different ray paths will remove any phase lock, such that 

successive measurements will yield situations with different structure for the subsidiary peaks. Some 

degree of averaging will remove several false peaks, but it is likely that some will remain along the 

ridges proving a hindrance to basic convergence routines.

One approach for overcoming the obstructions that these maxima provide to search 

routines is to employ the concept of a ’jump’ in values. This involves calculation of pf values for a 

few trial shapes corresponding to particular step sizes along possible ridges. If a higher pf value is 

found than that at the current summit, then the tested place must lie on a larger peak, probably the 

true one.

Lastly, it is to be borne in mind that several of these ’false’ peaks, corresponding to highly 

inaccurate shape estimates, can actually enable the sources to be located accurately, with a 

probability of success often exceeding 50%. [ This observation, like the rest of this chapter, was 

based on simulation work with no additive noise, because the presence of such, would have made it 

harder to view the structure present A few simulations of the two source scenario with noise have 

shown a marked degradation in the clarity of the beam pattern at a false peak, indicative of the 

importance of achieving the true pf peak. ]
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29. EFFECT OF NOISE ON CONVERGENCE REGION

29.1 Introduction

For a single source, without noise, the convergence region is large — this is illustrated in 

Fig 29.1a for a 16 element array. The pf variation over a.\ shows only one peak over the interval 

-18m <Aai <18m, and the limits for a 2 are -8m<Aa2^8m. Addition o f significant noise (-3dB per 

element) has a marked effect on the appearance of the contour plot, as evidenced by Fig 29.1b — the

when A#2 = 0  and -4.0m< Aa  ̂<2.2m where Aa, = 0 for this specific realization. For other combinations 

of Aax and the region of convergence is significantly less due to the introduction of new secondary

peaks.
The contour plot gives a good idea of the convergence region for uncertainties in both a \ 

and a 2 ; however, an adequate representation for comparison purposes can be achieved by noting the 

mean absolute positions of the minima — Aa\  being 8.3m and Aa 2 3.1m for the case illustrated. 

Clearly, a meaningful value, representative of the given noise level can only be achieved by 

sufficient averaging.

29.2 Effect of Processing Choice

As this part of the work is concerned with how large a shape error lies within a 

convergence region, it was necessary to fix on a particular set of processing parameters as standard, 

such that different scenarios might be effectively compared. First of all, tests were done to register 

the relative merits of different power functions, beam sampling rates, angular scans and weighting 

systems. The findings are briefly summarised in Table 29.1.

The actual simulation conditions used for the comparison were carefully selected — a 

significant noise level (-3dB per element), as that was of concern here, and a 64 element array, as 

much of the work in this chapter is particularly relevant to lengthy arrays. [ The large computational 

load for big arrays necessitates that only a small number of signal records be investigated. ] For 

comparison with the tests of accuracy dependence upon different processing methods
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Fig 29.1 : Contour plots for 16 element array, showing variation of pf4 with d i and di -  

a) Uniform weighting at the beamformer, with no added noise ; b) Uniform weighting with -3dB noise ; 

c) Hamming weighting with no noise ; d) Hamming weighting for same signal record as for b).

[ \  = 6m ; -8m < Ad i < 8m ; -8m < Ad 2 ^  8m ]

[see chapter 18], it should be noted that 0.5° sampling for a 64 element array is equivalent to 2° 

sampling for 16 elements, whilst 1.5° is equivalent to the sparse 6° sampling.

For a correctly focused 64 element array, the power perceived from angles more than 30° 

from the source is minuscule and can be easily discounted without affecting the accuracy of the 

shape estimates; however, when ascertaining convergence regions, the power spread into such sectors
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Angular

Sector

Scanned

Angular

Resolution

Weighting

System

Average Minima Locations Aaj /  m

pf4 pf6 pf8 pfl2 pfl4 pfl6

±90° 0.5° Uniform 28.6 25.4 13.8 27.3 33.6 27.2

±90° 1.5° Uniform 36.3 26.5 13.8 29.3 38.8 29.3

±30° 0.5° Uniform 30.6 20.9 10.6 24.3 0.0 11.3

±30° 0.5° Hamming 49.1 38.4 16.6 43.6 54.8 39.8

Angular

Sector

Scanned

Angular

Resolution

Weighting

System

Average Minima Locations Aa 2 / m

pf4 pf6 pf8 pfl2 pfl4 pfl6

±90° 0.5* Uniform 15.3 13.2 7.5 14.3 15.1 12.3

±90° 1.5* Uniform 16.5 14.5 7.5 15.0 15.9 13.3

±30* 0.5* Uniform 11.3 9.4 6.5 10.8 0.4 3.5

±30* 0.5* Hamming 28.7 18.4 10.3 23.8 28.8 19.0

Table 29.1 : Investigation of how the size of the convergence region depends upon processing choice. 

Particular data in table relate to 7 simulations of a 64 element array of X / 2  spacing (A, = 6 m), 

with a source at broadside, and additive noise of level -3dB on input

does appear to be important to the accounting — here neglect of such reduces the convergence region 

by about 30%. It appears that reduction of the angular resolution to nearly the order of the 

beamwidth improves the convergence properties; this too is totally in contrast to observations 

concerning the accuracy of parameter estimation [chapter 18.2]. This is looked at more carefully on 

the following page.

In chapter 27.8, it was explained that element weighting could be beneficial for the 

estimation of the 1st and 2nd Fourier terms, due to its concentrated emphasis on the central, less
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distorted, section of the array. However, it is a little surprising that it still provides such a clear 

advantage when noise is of a significant noise level, as uniform weighting generally offers the best 

noise rejection properties.

Note, a second series of 7 simulations for a differently shaped 64 element array, with 

additive noise at +3dB, confirmed several of the above findings. A reduction in resolution once more 

increased the convergence region; however, this was not so for the correlation pfs (14,15 & 16), their 

performance being reduced by 50-80%. The increase in size of the region was mainly in the a 2 

direction. However, with Hamming weights applied (and consequently a larger mainlobe), a 

reduction in resolution led to the correlation pfs showing a significantly increased convergence 

region, whilst the others were relatively unaffected. A decrease in the angular sector processed led to 

no change for processing with uniform weights, whilst if Hamming weights were adopted, then the 

reduced search sector appeared to increase the convergence region, though only by about 5-10%. 

More thorough experimentation suggests that a cut in resolution will usually reduce the region 

slightly.

Over a wide range of situations, pf4 has again consistently proved to be one of the best 

Generally, in work with large arrays, pf 14 showed a slight advantage over it, but here the reduction in 

search sector has badly affected all the correlation pfs [see chapter 12] — in the case of pfl4, a 

significant minimum occurred at the parameter value corresponding to the correct array shape. The 

estimator noting solely the peak height in any pattern, pf8, shows a convergence region much greater 

than that over which the source is visible, but not on par with the others. It shows little dependence 

on the beam sampling strategy.

Subsequent investigations in this chapter were generally done using beamforming over 

[-90°, 90°] and Hamming weights, with reference typically to the pf4 estimator. Although, the results 

in Table 29.1 had shown that sampling need not be too frequent, a policy was adopted of using 2° 

samples for a 16 element array, and finer sampling in proportion to beamwidth for larger arrays, 

i.e. 1° for 32 elements and 0.5° for 64 elements. This reflected the uncertainty in the applicability of 

the results for ’poor’ sampling rates. For some work, the computational load necessitated that the 

angular scan be reduced to, say ± 30°, and the consequent reduction in performance accepted.
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293  Dependence Upon Noise Level and Number of Elements

Investigations using 20 realizations at a variety of noise levels produced the results given 

in Table 29.2, which show how the convergence region reduces as the noise becomes more 

significant.

Noise Ratio Mean absolute locations of minima

Amplitude /dB Aa\  /m Aa2 /m Aa3 /  m

0.001 -60. 24. 10.4 4.8

0.316 -10. 24. 10.4 4.6

0.500 - 6. 20.4 9.9 3.2

0.707 - 3. 17.4 9.3 2.6

0.900 - 0.9 10.7 7.4 2.4

1.000 0. 9.0 6.8 2.1

Table 29.2 : An indication of how the convergence region changes with increasing noise level. 

[ Single source at broadside ; 16 element Hamming weighted array with X = 6 m. ]

Increasing the number of elements reduces the array’s sensitivity to random noise. An 

array of 9 6 elements (total length 288m) has a convergence interval over a\  that still amounts to 

±90m when the noise level is -6dB. As values this large are hard to determine with any precision, it 

is difficult to compare arrays with the same input SNR but different numbers of elements. Thus it is 

advantageous to compare cases of similar output SNR; this is done in Table 29.3.

Examination of a few contour plots of pf4 for a 64 element array, show that the measures 

Aa i and Aa2 are still fairly representative of the size of the convergence region. Thus it can be seen 

that for large arrays convergence is fairly certain, even for errors in the Fourier terms of up to 20m. 

The results in Table 29.3 show that, to a good approximation, the size of the convergence region is 

determined by the output SNR level. However, for a fixed number of elements, there does not seem 

to be a linear increase in the intervals with increasing SNR.
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No. of S N R  /  dB Minima locations for pf4

Hydrophones Input Output Acii /m Aa 2 /  m

10 22 24.0 10.4

6 18 20.4 9.9
16

3 15 17.4 9.3

0 12 9.0 6.8

6 21 42.3 19.9

3 18 29.4 16.3
32

0 15 15.1 8.7

-3 12 8.8 5.6

3 21 46.8 20.1

0 18 26.2 13.1
64

-3 15 14.7 8.6

-6 12 9.7 4.8

0 21 38.6 21.1

-3 18 23.7 13.6
128

-6 15 13.3 7.7

-9 12 9.0 5.3

Table 29.3 : A comparison of the convergence intervals for a i and a 2 for different noise levels. 

Results are for pf4 being evaluated over [-90°, 90°] except for 128 elements which used [-30°, 30°]; 

Hamming weights were applied at the beamforming stage. [ X = 6m ]

Using Hamming weighting on large arrays with very high noise levels, some differences 

can be discerned between the various pfs. Firstly, pfl4 (one of the correlation pfs) showed a slight 

superiority to pf4 — the difference is noteworthy in that pf 14 equalled or surpassed pf4 for all cases 

in Table 29.3, albeit that the differences were sometimes only 1 or 2%. The interpolation power
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function pfl8, formed from them both [see chapter 12], usually proved better still. Overall, the best 

performance in this regime was achieved by pf21, which looked at the correlation between powers at 

3 times the beam separation (0.5® for 64 element array). With fine resolution, its convergence 

interval was up to 20% larger than that for pf4; if the resolution was reduced by a factor of 3, then 

this estimator was no good, and one that looked at power correlation between successive beams was 

best Clearly, the angular separation for the desired autocorrelation corresponds to a certain fraction 

of the beamwidth, rather than a certain number of beams.

Further work using the 64 element array with noise at OdB on input revealed that a source 

at 50® caused a larger convergence region than occurred for a broadside source. The increase in both 

of the dimensions analysed was about 1.3. No difference was observed between those pfs having a 

cosO term in their definition and those without.

It may be thought that further increase in the noise level will continue the shrinkage of the 

convergence regions; however, such is not the case. The convergence regions associated with a large 

peak in the pf surface have a minimum size dependent upon theprocessing; increased noise simply 

reduces the probability that the said peak lies anywhere near the point representing the true array 

shape.

In chapter 24.1 it is shown that a beam pattern can be produced from a totally noisy signal 

record, and that it will still show lobes of the characteristic width (A.ID), albeit that the heights will 

be random. In a similar manner, a contour plot can be produced from a record of pure noise — peaks, 

troughs and ridges will still be present in the pf surface, their dimensions being characteristic of the 

array (no. of elements and spacing) and also of the power function and weighting scheme employed. 

Fig 29.2 shows plots for several surfaces produced from the same record of pure noise.

All the diagrams show peaks in approximately the same locations — comparison of b) with 

a) and d) with c) shows that pf8 exhibits a more rapid descent from the peak, and more extraneous 

lobes than pf4 does. Use of Hamming weights, in both cases, leads to a significantly larger scale for 

the peak structure. These diagrams indicate the minimum possible size of convergence regions for 

each of the processing choices.
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Fig 29.2 : Various contour plots of the same signal record of pure noise, 

a) pf4 with uniform weights ; b) pf8  with uniform weights ; c) pf4 with Hamming weights ; d) pf8  with 

Hamming weights. Processing was for 64 element array at 3m spacing, with processed wavelength = 6 m.

[ -6 m < Aa j < 6 m ; -6 m < Aa i  < 6 m ]

29.4 Effect of Multiplicative Noise

As discussed in chapter 26.2.2, uncorrelated multiplicative noise is similar in effect to 

uncorrelated additive noise, hence the discussion here of multiplicative noise is for the correlated 

form only. Such a type of noise has an effect upon the pf values, although usually the effect causes 

few subsidiary peaks in the vicinity of the true one. Instead it produces minor ripples in the surface,
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which should not dismpt iterative techniques attempting to ascend to the peak. Typical examples are 

shown in Fig 29.3.
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F ig  2 9 .3  : E x a m p le  c o n to u r  p lo t s  to  s h o w  e f f e c t  o f  m u lt ip l ic a t iv e  n o i s e  o n  s u r fa c e  o f  p f 4 .

P lo t s  r e la te  to  a  s in g le  s o u r c e  a n d  a 1 6  e l e m e n t  array, a n d  m u lt ip l ic a t iv e  n o i s e  c h a r a c te r iz e d  b y  Gm = 1.0 ; 

a  =  0 .8 5  ( p  =  a n =  0 .0 7 ) .  a )  an d  b )  s h o w  p r o c e s s in g  o f  2  r e a l iz a t io n s  u s in g  u n if o r m  w e ig h t in g  ;

c )  a n d  d )  a re  fo r  th e  s a m e  d a ta  w ith  H a m m in g  w e ig h t s .  [ c f  a d d i t iv e  n o i s e  c a s e  o f  F ig  2 9 .1  ]

[ X .  =  6 m  ; - 1 0 m  <  Aa i  <  1 0 m  ; - 1 0 m  <  A f l 2 -  1 9 m  ]
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The presence of multiplicative noise in a two source scenario actually seems to simplify the 

situation, as it removes the problem of phase lock. Thus the local minima produced by the 

interaction of the sources disappear or are reduced in intensity. Some examples of this are shown in 

Fig 29.4.
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Fig 29.4 : Example contour plots to show effect of multiplicative noise on two source scenario.

Plots relate to a 16 element array, and multiplicative noise characterized by CTm = 1.0 ; a  = 0.85 ([3 = a" = 0.07). 

The second source is 3dB weaker than the primary and separated from it by about 30°. a), b), c) and d) 

correspond to phase differences between the signals of 0°, 90°, 180° and 270°. [cf Fig 28.1]

[ X = 6m ; -10m < Aa j < 10m ; -10m < A a 2 ^ 10m ]
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It is to be noted that where the subsidiaries still occur, their locations remain in the 

directions (±4, ±1.5), so the ’jump’ method will continue to be applicable. Use of Hamming weights 

on signals corrupted by multiplicative noise again reduces the occurrence of subsidiaries; however, 

the improvement is not so marked as for the no noise case [cf chapter 28.4].

29.5 Summary

It has been shown that additive noise reduces the convergence region over a \  and a 2, 

i.e. the errors in these values from which power functions are likely to be able to recover the true 

shape. When noise levels are high, the limits of the intervals for individual realizations may differ by 

a factor of 5 or more. Taking the mean absolute deviation of these minima, Aat , as representative of 

a particular situation enabled simple comparisons to be made of the typical size of the convergence 

region for different scenarios and means of processing.

Some dependence on angular sampling rate and search sector was observed, but the effect 

is generally small, and varies between cases. More importantly, Hamming weights applied at the 

beamforming stage lead to a considerable increase in the convergence range. Comparison of contour 

plots for uniform and Hamming weights applied to the same data show the latter to be even more 

beneficial — the extra weighting leads to many of the subsidiary peaks being smoothed over. The 

only disadvantage of this weighting is that it produces a greater error in the location of the pf 

maximum.

Investigation at different levels of additive noise resulted in the observation that the 

convergence intervals are dependent mainly on the output SNR. Values for the ideal output level less 

than about 12dB correspond to conditions for which the rms error in parameter estimation is several 

metres (thus blurring the source); convergence intervals for such situations therefore have little 

meaning, as the shape achieved at the pf peak is too inaccurate for source detection.

The results in Table 27.3 for no noise (and uniform weights) infer that the convergence 

intervals for a\ and a 2 expand at least as rapidly as the number of elements. However, a similar 

perusal of Table 29.3, say for an input level of OdB, indicates that the range no longer increases 

approximately linearly with hydrophone number.
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Investigation of correlated multiplicative noise was likewise confined to conditions for 

which a pf peak would exist close to the true values for the shape parameters. Examination of 

relevant contour plots showed only minor disturbances to the pf surfaces, guaranteeing fairly trouble 

free convergence.

The best approach for finding an unknown shape in a noise field of unknown properties 

would seem to be initial use of Hamming weights and pf23 estimator with reasonably fine angular 

sampling, but reverting to uniform weights and, say pf4, after a few iterations to ensure the best 

possible accuracy in the final estimate. In order to improve the speed of the process, the intermediate 

section may be done with Hamming weights and coarse angular sampling. The previous chapter 

demonstrated that if the noise field is complicated by other coherent sources, then convergence to the 

true parameter values is not guaranteed; a ’jump’ in the vector space being necessary to overcome 

that Note, when the shape determination routine is applied to signal records corresponding to 

successive positions of an array, then the first estimate for each situation is unlikely to be out by more 

than a few metres in any term, and hence problems of distant convergence and subsidiary maxima 

can largely be ignored.
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30. INTER-DEPENDENCE OF BASIS FUNCTIONS

30.1 Independence of odd and even functions

The chapters on estimation accuracy (nos. 18-26) cover performance of the power 

functions for shape estimates close to true, using the correct values for all the coefficients, other than 

the one under investigation. This chapter deals with another facet of the problem, relating to the rate 

of convergence towards the correct set of parameters. Here, the rms error and mean estimate of the 

zth coefficient are determined, whilst maintaining a constant ’error’ or offset in one or more of the 

other coefficients, in order to determine how accurately one may be found in spite of any errors in the 

others.

To achieve this, an error, Aar  was set up in the value for the j'th coefficient, and then a 

series of estimates of the zth one performed. The mean and variance were calculated, and noted as a 

function of the various values of Aar  The actual conditions of this experiment involved a source at 

4.7° to a 16 element array of half wavelength spacing, with a low level (-26dB) of uncorrelated 

additive noise. Beamforming was over [-50®, 50®] in steps of 2®. The offset, A w a s  varied from

0 .0 m to about 2 .0 m (a third of a wavelength), and the statistics calculated from runs of 2 0  realizations 

each.

For a fixed deviation in an odd function, the estimates of the coefficient of an even basis 

function are found to be unbiased. The rms error increases with the magnitude of the error term, from 

figures of around 3 -4.5cm  for the true shape to 6 -9cm  for a biasing ’error’ of around 1.4m. 

Similarly, a set shift in the value of an even coefficient causes little change in the estimation of odd 

coefficients. Thus the various odd and even functions affect the power function values in an 

independent manner.

An error of magnitude greater than about 1.5m affects the estimation of other coefficients 

more seriously, with greatly increased values for the rms errors. In some cases, the coupling of a 

sizable error in one term with a search over another, leads to selection of a shape, whose beam pattern 

peak is no longer in the direction of the source. In other cases, large offset terms may bias the 

estimate of another, whilst still retaining the peak lobe in the true source direction. In many of these 

cases, a further estimation of the coefficient for the offset term will improve matters, removing the
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bias from subsequent estimations.

30.2 Dependence between Odd/Odd and Even/Even

The results summarised above indicate that the estimation of, say a 2, remains unbiased in 

the presence of errors in a i and a 3. However, it is found that if the value of a 4 used is incorrect, then 

the peak of the power function is shifted, hence resembling a biased estimator. In the same way, 

estimation of a.\ is affected by an erroneous choice for a 3 . The statistics of the estimators, as a 

function of the magnitude of the ’error’ term are given in Table 30.1.

Error in 

Adj /  m
m 1 1 Aa3 m2 1 Aa4 m3 1 Ad\ m 1 1 Aa*i

0 .2 0 .2 2 0 .1 2 0.056 - 0 .0 0 2

0.4 0.46 0 .2 2 0 .1 1 0 0.008

0 .6 0.70 0.34 0.159 0 .0 1 0

0 .8 0.92 0.44 0 .2 1 0 0.038

1.0 1.16 0.55 0.259 0.039

1.2 1.43 0.64 0.311 0.058

1.4 -1.19 -1.14' 0.375 0.082

1.6 -1.42 -0.23' 0.422 -0.006

1.8 -1.07' -0.45' 0.971 -0.188'

Table 30.1 : Biasing of estimates of one coefficient, due to an error in another. 

m i  I A d j  represents the bias in estimate of the ith term in metres due to an error in the 7 th coefficient 

Results are for pf4 using 20 realizations with an SNR of 26dB. Estimates usually show little variation; '  indicates 

cases where variance is large. fl3  is the coefficient of the modified third basis function, described in the text
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It can be seen that the estimation of a\  is seriously affected by an error in the value of a 3. 

The biasing is most significant for this pairing as larger values of a \  are needed to alter the beam 

pattern [see chapter 15.6]. Notable shifts of mean are also observed for estimation of a 2 and a 3  in 

the presence of errors in a 4 and a.\ respectively. In all cases, the biasing is approximately 

proportional to the offset term.

These results suggest that it is likely that a slight alteration to the basis functions will 

render them independent. Using the notation of Eqn 11.1c,the third function may be redefined as:-

= s in (37uc//) + a s in ( 7ur/L) [30.1]

and noting the bias in a 1 estimation caused by different values for this function, leads to an 

optimum value for a  close to 1.12. The final column in Table 30.1 gives the mean error in estimation 

of a 1 for various offsets in the coefficient a3 for this modified function.

Fig 30.1 shows contour plots of pf4 covering various values for the first and third 

coefficients. An off-centre section parallel to the x-axis corresponds to the pf variation over a 1 for a 

fixed error in a 3 . Thus, the position of the peak of the a 1 section can be seen to depend upon the 

value of a 3 selected and vice versa.

The value of 1.12 was arrived at empirically. Similar investigations show that a suitably 

modified set of basis functions, f / (x ) ,  may be defined in terms of the previous Fourier components, 

fi (*), by:-

' h ' i x f 000 % (*r
f l ( x ) 0 1 0  0 f i i x )

/ 3' W a31 0 1 0 h ( x )

O<N

0

where (X31 = 1.12 and 042  = 0.56. Using such a modified set of functions as the basis for 

characterizing the array shape, makes the estimation of one coefficient independent of the errors in 

the others, provided that none of the errors is more than a metre. Note, not only is estimation of a 1 

independent of errors in a 3, but also the a\  peak is not affected by deviations in a \ .  As f 2 ' (x) is a 

combination of odd functions, estimation of its coefficient remains independent of the values of a 2 

and a A. This independence appears to be true for different noise levels, and for any original array 

shape and any bearing for the source (except close to endfire, which always hinders shape 

determination). This implies that if a trial shape is close enough to true, that the source is clearly 

visible, then convergence to the ’best solution’ shape will be quick, as each of the coefficients is
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Fig 30.1 : Contour plots to show variation of pf4 in terms of 2 coefficients

a) Horizontal and vertical axes are a i and a 3  respectively ; b) Axes are for a \ and <2 3 . 

Both graphs encompass a span o f ± 2 m for each coefficient, and minimal noise. [ A, = 6 m ]

easily determined. With weak secondary sources present, this improvement from mislocations of the 

order of a metre to close to true, may be sufficient to render hitherto unobserved sources detectable 

[see Figs 30.2a,b]. The presence of the extra source does not affect the basis orthogonality in any 

noticeable way; convergence to within a few decimetres of true occurred for the case in Fig 30.2 after 

just 4 linear searches over the modified basis.

A simple physical justification for the actual values of a 31 and 042  seems unlikely, as the 

various pfs yield different values, usually similar in magnitude, but noticeably different The results 

here are for pf4. The numerical values for a  were obtained empirically through repeated simulations. 

Surprisingly, it is found that not only do these values vary with array length, but also with the number 

of sensors within that length. Table 30.2 contains the experimentally determined values for (*31 and 

(X42 for various different arrays.

For any particular array design, the biasing effects (and consequent compensating terms, a) 

are independent of the frequency used; provided that the frequency is not too high, causing problems 

with aliasing and undersampling of beam pattern. This is extremely important, as it means that the 

same basis can be used for many frequencies at once, or even for work in the time domain.
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Fig 30.2 : Two beam patterns to show the improvement occurring for removal of element errors of lm  or so, 

with special reference to the observability of the second source at -25°, whose power is lOdB less than 

that of the primary, and noise is at -lOdB too. Errors for a) are (flj, a 3> <2 4 ) = (1.2,1.0,0.9, -0.4)m

b) is the pattern for the correct shape.

Observations of bias for the 192m array using only 2° sampling, led to different results to those 

presented in the table — the value then being sensitive to the source direction. Likewise, the results 

achieved for 8  element arrays using [-50°, 50°] were dubious (possibly due to aliasing), hence the 

reduction in angular search sector.

A few trials showed that the adjustment numbers depended upon the choice of shading 

function — uniform weighting causing the minimum value. Hann and Hamming produced results 

3-4 times that for uniform, whilst Half-Cosine and Bartlett were intermediate. However, the 

magnitude of the compensatory term is not important, rather the range of usefulness i.e. linearity 

should be emphasised. It is found that linearity breaks down for Hamming weighting at about the 

same offset values as for uniform.

Although the requirement for different basis functions for different arrays may be a little 

cumbersome, it is not hard to implement. Appropriate values for various sections of the array could 

be stored in a look-up table, or else determined by preliminary simulation work as here.

- 186-



No. of 

elements 

n

Constant length, L = 48m Constant separation, d -  3m

d «31 O42 L (X31 CX42

8 6.00 0.73 0.27 24. 0.70 0.26

16 3.00 1.12 0.56 48. 1.12 0.56

32 1.50 1.40 0.71 96. 1.33 0.71

64 0.75 1.52 0.79 192. 1.57 0.80

Table 30.2 : Values of the basis adjustments, (X3 1  and OC4 2  for differently designed arrays.

For most cases, beamforming was over [-50°, 50°] in steps of 2°, however, 1° samples were used 

for 96m array and 0.75° for 192m one, whilst the range [-27°, 27°] was used for 8  elements. 

Results are accurate to about 3%.
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31. APPLICATION OF GRADIENT SEARCH METHODS

31.1 Introduction

This project has concentrated more on determining the probability and limits of many 

power functions for array shape retrieval and source detection, than on actually implementing an 

efficient (i.e. fast) implementation of such. A technique common to many problems involving 

maximization of a function of many values is to use a gradient search routine. This examines the 

effect on a function, f ( u i , u 2, • • • ) of slight changes in the variables in order to produce a vector 

description of the gradient: -

Locally, this will represent the steepest change of gradient This may not necessarily be 

straight towards the peak though, as this depends upon the structure of the surface around the peak. 

More advanced routines exist which utilize other information to infer the direction of the peak 

relative to the gradient vector.

The implementation used here simply calculates the gradient as above and then applies a 

linear search in that direction. When the maximum in that direction is found, its position is located 

more accurately by fitting a quadratic curve to the highest pf values (as detailed in appendix 9) — 

this achieves reasonable accuracy without requiring many shapes to be tested. The procedure is then 

repeated from this new position, and continued either a set number of times or until a local maximum 

achieved.
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31.2 Application to Real Surfaces

Although the gradient method can be applied to a problem of many unknowns, discussion 

here is confined to only 2  parameters, so that contour plots may be used to illustrate the points. 

Firstly, Fig 31.1 shows a situation for which convergence is straightforward, as the surface has only 

one peak, and all parts of the surface slope in approximately the right direction.

o —

V  -

T
E

• V

Fig 31.1 : Contour plot showing a situation for which a simple gradient routine can quickly 

locate the peak. [ Line represents convergence route adopted for one initial estimate. ]

The second diagram, [Fig 31.2] shows a slightly more complex situation — from the 

particular starting point chosen, the route pursued is rather circuitous, as the orientation of the local 

gradient vector is not close to the direction of the pf maximum. However, convergence is still 

achieved.

More complicated pf variations, corresponding to interaction of several sources and/or high 

noise levels, have several subsidiaries which may divert the algorithm from the global peak. Note, 

all that is required is a local maximum; these subsidiaries do not have to be very prominent, as
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Fig 31.2 : Contour plot showing a situation for which the simple gradient routine is slow.

evidenced by the pf surfaces in Fig 31.3. [ Those maxima caused by the interaction of 2 sources lie at 

fairly well defined locations, hence the suggestion of a ’jump’ stage to the algorithm [chapter 28.3], 

followed by quick convergence up the correct slope. ]

Fig 31.4 illustrates one situation for which the gradient routine successfully and quickly 

proceeds from an estimate whose beam pattern shows no source to one enabling two to be found.

The simulation was for a 32 element array, insonified by two sources (one 3.7dB weaker 

than the other) with uncorrelated additive noise at -1.9dB relative to the stronger one. The 

multiplicative noise field was characterized by crm = 0.7, a=0.95 [see chapter 26.1 for explanation of 

values]. The various parts of Fig 31.4 show the beam patterns associated with the initial shape 

estimate, the final shape estimate and the true array shape. A summary of the parameters derived 

from the beam patterns is given in Table 31.1.
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Fig 31.3 : Diagrams to show that even weak local maxima may be sufficient to prevent correct convergence.

Description of 

array shape used 

for beamforming

Shape Coefficients Source Estimates

a x / m a 2 /m 0 i /  degs 02  / degs P 2IP i

Initial estimate 8.50 5.20 14.0 (40.0)* —

After 2 gradient searches -1.35 -0.36 24.7 -33.3 - 11.4 dB

Final convergence point -0.72 0.32 24.7 -34.0 -10.5 dB

True shape 0 .0 0 0 .0 0 24.7 -33.3 - 10.0 dB

Simulation values 0 .0 0 0 .0 0 24.7 -34.4 - 3.7 dB

Table 31.1 : Comparison of the source parameters determined firom the beam patterns of Fig 31.4. 

For initial shape, many peaks exist exceeding that near to the direction of second source.

[ Note, bearing accuracy limited by beam separation, which was 0.67°. ]
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Fig 31.4 : Diagram to show how application of gradient methods to a pf surface 

may lead to quick convergence to true shape, a) Beam pattern using initial shape estimate ;

b) Beam pattern using final shape estimate ; c) Beam pattern using correct array shape ; 

d) Contour plot of the power function used (pf4) showing convergence route.

Note, power in the direction of the primary source is greater by 0.3dB for the final shape 

estimate than for the true shape. Several realizations, using the same descriptors for the noise field, 

indicate that the observed P 2 IP \ ratio for the true shape is not typically less than that allocated in 

the simulation routine.
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313 Comparison to Linear Search

The first two contour plots in Fig 31.5 show the convergence route adopted for a given 

situation by a) repeated linear searches over a \ and a 3, b) linear searches along directions of local 

gradient. Although the latter requires extra beamforming operations in order to determine the 

gradient, this is clearly made up for by the more rapid arrival at the peak. This overall reduction in 

the number of shapes to be tested (and hence in computation time) is commonly observed, although 

for cases such as Fig 31.2 the repeated linear search may be quicker.

Fig 31.5c shows the effect of applying the repeated linear search method with the modified 

basis functions introduced in chapter 30. [In this particular case, / 3' is being used, which 

corresponds to a change in a\  of 1.12 for each increment in a 3 of 1. ] In many situations involving 

gradient climbing routines to locate maxima, a ’slow’ convergence is used, wherein small steps are 

taken and the the gradient redetermined after each one. This is particularly appropriate for tracking 

problems, where the routine is required to ascend and follow the summit of a gradually varying 

pattern, using the latest data set at each stage of the journey. The route pursued by such a means is 

illustrated in Fig31.5d for completeness, but is of little use in this work due to the greater time 

involved in the extra gradient calculations.

[ Note, for the case shown, repeated linear searches using a.\ first do not lead to 

convergence to the correct value, rather the routine tends to some subsidiary off the region covered in 

the plots. The importance of selecting the correct variable for the first search, is another shortcoming 

of the non-gradient method. ]

With the gradient routine applied to the pf4 measure, it is not clear whether there is any 

benefit to be gained from changing to the modified basis of chapter 30.
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Fig 31.5 : Four contour plots for same situation illustrating different routes followed to the peak, 

a) Repeated linear searches over a \ and a 3 ; b) Use of gradient routine as advocated in chapter 31.1 ;

c) Repeated linear searches over a \ and a 3 ; d) Use of ’slow’ gradient routine.
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32. COMPARISON OF THE PERFORMANCE OF

DIFFERENT POWER FUNCTIONS

32.1 Introduction

The power functions that were examined are defined in chapter 12. Some of these were not 

really intended as estimators themselves, but rather as part of other definitions, for example pf 1 and 

pf2 are measures of the total power in the chosen sector. As power is roughly constant, these 

themselves are of no use for shape estimation, however, their values are required for normalization of 

others.

1/2K
The integral J p  cosOdO for a straight array represents the total power received from

all directions, which equals the sum of the powers at the individual hydrophones. Significantly 

misshapen arrays would result in different values for the integrated power, as then cos0 is not the 

appropriate angular shading; however for shapes approximating to a straight line, cosO will suffice. 

In most situations beamforming is only performed over a reduced sector — [-90°, 90°] or smaller. In 

which case increased error in estimate of array shape will lead to greater overspill of power from the 

sector containing the source, and consequently the estimate of power will decrease. The other 

important point to note is that the equivalence to total power is strictly only for the integral 

formulation, whereas in evaluation as a power function this is approximated by a summation.

All this explains why the ’total power’ cannot be expected to be completely constant over 

all trial shapes. When evaluated over a wide range of trial shapes, pf 1 and pf2 vary by only a small 

fraction of their values, with the peak not necessarily near the true parameter value [see Fig 16.2 ]. 

When used for normalizing others, they can only cause a minor modification to the original. In cases 

where the accuracy of an estimator is being assessed, pf 1 and pf2 change so little over the range of 

parameter values as to have minimal effect In cases of convergence range, the variation in 

parameter value is much greater, such that pf 1 may fluctuate enough to have a minor effect.



32.2 Accuracy

In work concerned with how precisely shape parameters could be determined, it was found 

that uniform weighting and a fairly frequent sampling rate (several beams per lobe) gave the best 

results. Under these conditions, most of the simple integral pfs (principally nos. 3-6) give almost 

identical results, although at very high SNR pf5, pf6, pfl9 and pf20 (all of which involve a p z term) 

are better than pf4. The estimator based on peak height, pf8, has more difficulty still with such low 

noise signals, although use of a much finer angular resolution does enable it to produce performance 

figures of the order of the others. For sources far from broadside, no real difference was found 

between estimators containing the cosG term and those without

At low sampling rates Oust over one beam per beamwidth) most estimators show similar 

performance values as before for estimation of the a x term, but have greater variance in their 

estimates of a 2 . An exception is pfl8, which was designed to overcome the problem of low sampling 

rate.

32.3 Convergence

In work concerned with determining the convergence region, use of Hamming weights at 

the beamforming stage was shown to render the pf surfaces more amenable to gradient climbing 

routines. Of the simple integral pfs, pf4 proves to be generally better than those involving a/?3 term. 

The peak height measure, pf8, has smaller convergence intervals, although these tend to be much 

larger than the range of shapes for which the source is visible.

Some of the correlation and interpolation pfs [see chapter 12], which had been designed 

with precision shape determination in mind, give superior convergence performance topf4. 

However, care must be taken over selection of the correct correlation interval (numeral k in pipi+lt). 

This is dependent on the angular sampling rate — the best estimators use a convergence interval 

corresponding to a shift of about a beamwidth.
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33. RECOMMENDATIONS FOR FURTHER WORK

This project attempted to cover a great many facets of a large problem, but limits of time 

imply that there are many parts that could benefit from further investigation. Some of the more 

important ones are listed below:-

• Further determination of the locations of ’fixed’ subsidiary maxima in more than 2 

dimensions, and of how they depend upon array characterization and scenario used.

• Determine a more representative way of measuring convergence region in 2 or more 

dimensions, rather than just looking independently at two terms of the basis i.e. determine 

location of nearest saddle points.

• Investigate the effect of signal clipping i.e. reducing the precision of the data used, either 

just the digitization of input, or else reduced numerical accuracy throughout the processing 

— more complicated functions may be more sensitive.

• Perform simulations with signal at 2 or more frequencies; determine what emphasis should 

be placed on each if the SNR at each frequency is different

• Use multiplicative noise that is different at different frequencies, but shows correlation 

between close values.

• Investigate whether some measure may be devised, such that comparison of its value at a 

frequency containing possible source emissions with that at one not expected to contain 

any, will yield an estimate of the likely SNR of any sources present, and thus whether the 

pf algorithm can be usefully applied, or whether it will end up focusing random noise.

• Produce a faster algorithm, to work in real time, possibly using a transputer or dedicated 

processor.

• High resolution non-linear methods are generally much more susceptible to errors than 

Conventional Beamforming techniques. At high SNRs, the pf method can lead to very
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accurate determinations of the sensor positions, such that ML or MUSIC might be 

beneficially applied. Such high signal strengths occur in fields other than underwater 

acoustics. When the noise and signal are of comparable power, and thus the residual errors 

larger, it is unlikely that high resolution methods can yield better quality information on 

source positions and relative powers; however, no work has been done on such.

Obtain useful data on likely array configurations (not necessarily as a series of Fourier 

terms) so that realistic contortions can be simulated, rather than ones just believed to be 

likely. [ The present work has been able to encompass all gently undulating shapes, but 

there was little information on the period of ripples in the array, radius of ship’s turning 

circle or magnitude of oscillations. ]

Adapt work to perform on consecutive array shapes, using a hydrodynamical model to 

produce a good initial estimate of new array shape, from the shape found from the previous 

data set At high noise levels there is a compromise to be found between independent 

inaccurate shape determination for each set of signals, and summing the time records prior 

to application of algorithm, which will cause difficulties if the shape changes much in that 

time span.

Comparison of different shape estimation algorithms i.e. power function method versus 

mini array approach of Hinich & Rule [see chapter 10.3]. It is expected that the pf method 

will be the slower, but more able to cope with high levels of noise.

Application to real data — the real proof of the pudding!



34. CONCLUSIONS

This work has been concerned with use of Conventional Beamforming techniques applied 

to a series of sensors lying along a curved line. An investigation was made into the deterioration in 

quality of the beam pattern for various erroneous estimates of the positions of the sources.

From such images, a series of measures was proposed, each of which in some way 

characterizing the degree of focusing in an image. These measures, here termed ’power functions’, 

were generally expressed as weighted summations of functions o f the power distribution in the beam 

pattern. In the absence of noise these were all shown to be at their maximum for processing using the 

true array shape. Presence of any noise terms — additive, multiplicative or other sources — tends to 

disturb the position of the pf (power function) maximum away from that o f the true array shape; the 

deviation increasing with the magnitude of the noise terms.

To simplify the problem of so many poorly determined sensor locations, the array shape 

was characterized by a modified Fourier Series of low order. For most o f the work, no more than 4 

terms were considered, although it was shown that the work could be extended to higher orders if 

further terms were deemed necessary. The modification to the Fourier Series is that those elements of 

the basis containing an even number of half periods have a linear tom  subtracted out, such that the 

best-fit line (in a least squares sense) has a constant orientation. This was shown to stabilise the 

direction of the main lobe against errors in the even terms, and also to aid the estimation of their 

values.

Many of the results quoted herein are for processing at a frequency of 250 Hz (X=6m), 

however it is shown that values generally scale with wavelength.

Considerable work was done on the accuracy with which power functions could determine 

the various coefficients and hence the array shape. Under moderate conditions, most of the 

estimators showed similar behaviour, with little dependence on search sector or angular sampling 

rate. If the source lay outside the search sector or the beam separation was of the order of a 

beamwidth then all the estimates were affected, indicating the importance to be placed on sufficient
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sampling from bearings close to the source(s). However, use of very fine sampling such that the 

summations are close to their appropriate integral limits gave negligible improvement over sampling 

at a rate of 2-4 times per beamwidth. Thus there is an optimum sampling rate, such that less 

frequently reduces estimation accuracy, whilst more frequently increases the computation time for no 

overall gain. The accuracy was also shown to depend on the system of sensor shading used. The 

error increases with the spread of the weighting values — uniform weighting being the optimum 

choice for precision shape estimation.

For a given level of additive uncorrelated noise, it was predicted that the attainable 

accuracy in a Fourier coefficient should depend upon the bearing and frequency of the source 

according to:-

Adi = ( Aa, )0 ■ ( / ( / /  ) • secQ

where Aa, is the rms error in the estimate of the zth term, and ( Aa; )0 is the error at 

frequency, / 0, for a source at broadside (0=0). Simulation experiments matched the above 

expression well, apart from for sources at angles of 65° or greater, in which case the precision was 

less than predicted.

Uncorrelated additive noise and uncorrelated multiplicative noise were shown to be exactly 

equivalent at low levels. [ Multiplicative noise was used to imitate the uncertainties in refractive 

index along a particular ray path, which cause the variations in the phase and amplitude along that 

route. ] Denoting the optimum estimator to be that which exactly matches the phase disturbances by 

using sufficient Fourier terms, it was shown that the performance accuracy of such, when applied to 

signals containing uncorrelated noise, was governed by:-

where k is the wavenumber (=2nlX), n is the number of elements, a„ is the amplitude ratio

of the noise and signal terms and £,• is a factor relating rms displacement errors to the errors in the
>

amplitudes of the various Fourier coefficients. Investigation using the pf4 estimator yielded rms 

errors for the coefficients inversely proportional to as predicted. Their magnitudes increased 

approximately linearly with noise level, being between 0.9 and 1.2 times that for the optimum 

estimator. Very low noise levels ( < -50dB on input) gave greater difficulties for the estimator in that 

it retained a bias rather than continuing to decrease with amplitude. For a 16 element array, input 

noise levels greater than 3dB also led to errors of a size greater than proportionality predicts;
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however, by then the combination of considerable noise and significant shape errors is too great for 

any source to be really visible.

Significantly correlated additive noise was shown to resemble the signal from a single 

source passing through a partially decorrelating medium. A measure was introduced which was 

representative of the correlation across the array as a whole. Comparison of arrays of different length 

insonified by noise of different correlations indicated that shape estimation accuracy is principally 

dependent on the aforementioned measure.

When another source is present, insonifying the array at precisely the same frequency, then 

the interaction of the two leads to greater errors in shape estimation than if just the one was there. 

The interaction causes a bias in the estimation of shape coefficients and source bearings. These 

biases are observed to be sinusoidally dependent on the phase difference of the two signals; due to 

the varying nature of the sea, two sources cannot maintain a constant phase difference, hence 

averaging will remove the bias entirely. Note, the error in shape estimates is small, but the bearing of 

the weaker source wanders by a few degrees.

The other main focus of this work concerned the likelihood that the true element locations 

(and hence source bearings) could be retrieved from highly erroneous initial estimates. Provided that 

noise conditions are not too severe, a power function will peak at shape parameters close to the true 

values. However, as evaluating a power function for each shape involves beamforming — for large 

arrays, a process that takes several seconds on the mainframe — it is impractical to try all possible 

combinations of values for 4 or more coefficients. A gradient search method is preferable, but that 

places certain constraints on the pf variations. For the gradient method to cause convergence from an 

initial shape estimate to the pf peak close to the true shape requires that a continuous uphill route 

exists between the two.

The work contained herein concentrated primarily on cases of just one or two unknowns, as 

it was possible to illustrate the problems for such cases. However, extension of the concepts to a 

question of more unknowns is relatively straightforward. In one dimension (i.e. with just one 

parameter to be determined), a convergence interval may be defined, corresponding to all values of 

the unknown for which a slight increment in the estimate causes the pf to change in a manner that 

infers the direction of the correct value. Viewed as a graph of pf value against parameter, it can be 

seen that all points on the same lobe of the graph as the maximum are ones for which convergence is
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certain. Therefore the local minima (-^ -p f= 0 , where a,- is the z'th Fourier coefficient) define the

limits of the interval. For 2 unknowns the situation is more complicated — subsidiary maxima and 

saddle points occurring at various points not necessarily on either of the axes.

It was found that use of Hamming weights at the beamforming stage greatly enhanced the 

convergence properties, although they did increase the inaccuracy of the location of the power 

function maximum. With this weighting system employed, a single source with little or no added 

noise had convergence intervals over all coefficients that exceeded any values that might occur in 

reality. When significant levels of additive noise are simulated, the convergence intervals are 

curtailed somewhat. Using combinations of different length arrays and different levels of noise, it 

was found that the convergence intervals for a x and a 2 seemed to be dependent on their product

i.e. the possible output SNR. For a value of 12dB, the convergence intervals for a x and a 2 are 

approximately 9m and 6m. Weaker signals than that give insufficient guide to the shape estimator, 

such that the selected shapes are so far from true that the source cannot be located; thus convergence 

intervals are meaningless for an output SNR much below 12dB.

The addition of a second source to the scenario has a great effect on the situation. As 

mentioned earlier the location of the peak experiences a small bias dependent on the phase difference 

of the signals. A more pronounced effect of the interaction is shown when considering a contour plot 

covering errors in the first two coefficients a x and a 2. For sources of comparable strength (power 

ratio in the range 0-6dB) and separated by about 30°, a circle of subsidiary maxima occur about the 

true pf peak. These are approximately located at (Aaj, Aa2) = (0M±3.)m and (±4., ±1.5)m. Not all 

are always present — those on the Aa 2 axis occurring for less than half of the possible phase 

differences. The other 4 maxima vary in prominence too, depending on the phase relationship of the 

sources, but there are always some present These subsidiary maxima prove a distraction for gradient 

routines approaching from highly erroneous shapes.

To overcome this problem of an incorrect maximum being achieved, it was proposed that 

when a peak is reached, a ’jump’ routine be invoked. This compares the value of the power function 

at the current peak with those at the 6 locations corresponding to changes in shape of 

(Aax, Atf2) = (0.,±3.)m and (±4.,±1.5)m; the largest being selected as nearest to true, and the 

gradient method applied again to achieve that peak. This method is based on the approximate 

constancy in locations of the maxima. The above values for the jump size are correct for a 

16 element array with the sources about 25-50° apart If the sources are more widely separated, the 

interaction is less and consequently the maxima lie further out, albeit along the same vector direction.
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The distance that the maxima lie from the true peak is also roughly proportional to the number of 

elements.

Correlated multiplicative noise is shown to have only minor effects on the contour plots 

such that the convergence region remains large. The combination of two sources and multiplicative 

terms does cause subsidiary maxima to exist, though they tend to be less frequent than for scenarios 

involving just 2 sources i.e. the multiplicative terms have reduced the interaction of the 2 signals.

Thus it can be seen that measures calculated from the beam patterns for particular shape 

estimates can be very useful guides in determining the positions of the hydrophones, and hence the 

bearings of distant sources. It has been shown that by a suitable choice of weighting function, rapid 

convergence from highly erroneous estimates can be achieved, despite the presence of many noise 

effects.
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App 1. THE RELATIONSHIP BETWEEN BEAM

PATTERN AND DIRECTIVITY PATTERN

i) A beam pattern may be defined as the distribution of the power perceived from a 

direction, 0, when only a source at 0o is present

ii) A directivity pattern is the sensitivity of a processor looking in direction 0O, to a source 

at variable angle, 0.

Let there be N  sensors, arbitrarily distributed with respect to a set of co-ordinate axes. 

Their position vectors are {r, }, i =1, N , and the wavevector for a far-field source at 0' is k \

i) Ignoring an arbitrary phase term, the signal at the sensors due to a unit magnitude source 

is given by the complex voltage, v,, where vi = exp(jk0 -ri) . The voltage perceived in the look 

direction, 0, is thus:-

N  N

V(Q)='£exp(jk0 -ri)exp(-jk-ri) = £exp[y(ko-k)M  [A l.l]
i=1 »=i

and the power distribution, P(Q) , is given by the square of that

ii) However, if the source was at 0, the signal becomes v,- = exp(Jk’ri ) , and the overspill 

into the look direction, 0O is then given by:-

N  N

V'(Q) = Xexp(/£r,) exp(-y£0r,) = X exPC/ 0k-ko)r t] [A1.2]
i=i *=i

and the directivity function, D (0 ), by its square.
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It is easily seen that VX0)=-V'(0) and hence that D(Q) = P(Q) for any distribution of 

sensors. Thus although the terms beam pattern and directivity pattern have very different definitions, 

they have the same mathematical form and may be used interchangeably in this context.

Note, however, that ’beam pattern’ is more generally used to refer to the perceived image 

pattern for a certain signal record, which may contain several sources and additive noise, whereas a 

’directivity pattern’ is always the response to a single source under ideal conditions.

If a perfectly straight array of n elements, at equal spacing, d, is insonified by a unit source 

at angle 0O to its normal, the complex voltage at each sensor is given by:-

App 2. BEAM PATTERN FOR A STRAIGHT ARRAY

-jkdisin&Q [A2A]

Beamforming yields the power perceived from direction, 0 as:-

/>(©) = V(0).y*(0) [A2.2]

where:-

A

[A2.3]
*=i

[ Note a normalization factor of 1 In is commonly used. ] *

A
jkdi (sinO-sinOo)

-> n e )  = S > [A2.4]
« = i
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2 X  , where z=e/“ (*i"9-“ eo) 
1=1

z
2* _  J • »*/2

s i n ( 1/2f c f a . A j )  y (* + l)k £ A » /2 fA O  s i
sin(l'2M.Aj) 1 J

where As = ( sinG -  sin0o ). Thus:-

_  sin2 (l/2kdn.As) _  sin2 (izdn. As A,) 
^ sin2(1/2)W.As) sin2(7trf. As/X)

[A2.6]

Note the pattern is dependent only on the difference of the sines of the angles rather than 

the absolute values themselves. The beamwidth at broadside is given by:-

A0 ~A s = X /D  [A2.7]

where D = n d  is the length of the array. The beamwidth corresponds to the necessary 

change in angle for the argument of the numerator of [A2.6] to alter by n  radians.
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App 3. PROOF OF LINEARITY

FOR CONVENTIONAL BEAMFORMING

Consider an array of n sensors, with cartesian co-ordinates x,, y(-, insonified by a source at 

0!. Then the signal at each of the sensors would be:-

vi = A leJkl' i [A3.1]

where k \ =  ( s n̂®i ,cos0i ) ,  r4-= fo.y,) and A! is a complex number containing 

both amplitude and initial phase of signal.

Conventional beamforming produces a beam pattern given by:-

Vi(e) =  n * )  = [A3.2]

where w, are the values of the weights, ri=(x4,y4) are the estimated element locations, and k 

is the wavenumber vector corresponding to angle 0.

-> ^ i(6) = j ^ i w ienkxri-k̂ i) [A3.3a]
i=i

Similarly, the pattern due to a source at 02 to the array is:- 

V2(0) = ' t A 2wienk2' i~L?i) [A3.3b]
»=i

If the array receives the signals from both sensors simultaneously, the sensor voltages are 

given by:-

vi = A 1e jkin + A 2 e jk2ri [A3.4]

Application of the beamforming algorithm then yields:-

V n  ( 0 )= 5 > « v»*
i=i

~j*7i
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= 1 + 5 > ^ 2 * j
» = 1  i = l

-> ^ 12(0) = V1(0) + V 2(0) [A3.5]

Now, P = W *, and expressing the values A, explicitly in terms of amplitude and phase i.e. 

At = , it follows that-

?  12(6) = [ Vi (0) + K2(0)][W  (0) + V^(0)]

= Vl V \ + V 1 V1 + P ' [A3.6]

where:-

p ’ = Y dYda la 2wiwj  [V (*1'r'*?,'+*1 -  * 2 0 + ^ 2 )  +  e i (^ -*^^2  -  * j r,+*?,-<ei) n
*=i;=i J L -*

= E 1 '2 cos K* 1 ri-k2rj) + k (r£—ry) + ((^ i^ )]  [A3.7]
«=iy=i

Use of the trigonometric relation cos(\y+A<J>) = cos\ycosA<J) -  siny sinA<J), enables the 

dependence on phase difference, A<t>, to be brought through the summation to give:-

P 12(0) = P 1 (0) + ^ 2(0 ) + f*(0) cos(A(}>) + P(0) sin(A(})) [A3.8]

The last terms (the cross-product terms) depend on the initial phases of the two signals. 

Thus any single realization of a simulation of the two source scenario will not immediately lead to a 

beam pattern that is the sum of the two individual ones. However, in the real world, even the 

slightest motion of sources will lead to the difference in their initial phases changing completely. 

Accepting that A<j) is highly variable, the expectation operator may be applied to [A3.8] to give:-

B [P i2(0)] =P i(Q ) + P 2 (Q) [A3.9]

Note, in simple modelling of situations the sources are phase locked to one another. To 

remove any such effect, several realizations must be done with different relative phases of the 

sources. Actually, for the 2-source case, it would be sufficient to perform two realizations, changing 

the phase of one source by n radians between them — the average of the two patterns so formed 

should have no cross-product terms.

Thus, it can be seen that the expected response due to two sources is simply the sum of 

those due to each separately, for any array shape, ’guessed’ shape and elemental weighting.
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App 4. SYMMETRY OF THE BEAM PATTERN

AND ITS DEPENDENCE ON ERRORS

Part I

Consider the beamformer output expressed in terms of s = sinG, noting that Sq = sin0o> 

where 0O is the bearing of the only source (angle is relative to array normal). Letting w,- be the values 

of the amplitude shading of the elements, and assuming that there are no noise effects present, the 

beamformer output an amount s' either side of the source direction (i.e. for s = sois')  is given by:-

V(so+s') = Ytwiejkdi ŝ° = YdWie *luUs' [A4.1]
*=i «=i

V(s0-s')  = i , w ie iu i^ - ,) =  [A4.2]
»=1 «=1

1=1
= V^Cso+sO [A4.3]

Noting that P(s) = V̂ (s) K*(s), it can be seen that the power perceived at equal angles from 

the source direction are the same, independent of the elemental weighting used. This means that the 

beam pattern is symmetrical about the true direction. Note, the weights need not even be 

symmetrically arranged about the centre of the array for this to be so. Therefore weighting errors 

cannot cause an asymmetric beam pattern, nor it is possible to adjust the weights so as to lower the 

side lobes on one side of the main beam at the expense of the other.

Such an effect is achieved by phase mis-match errors; this is equivalent to using complex 

weights, in which case = w* no longer holds, and thus the above analysis fails.

Part H

An error in phase compensation is exactly the same as the presence of phase components in 

the weighting values. Re-examining equations A4.1, A4.2 in this light leads to:-
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n

V(so+ i >  S>i«'yW [A 4.1]
1 = 1

n H

V (SOS') = ] £ > , • < ? =  £  W»+l-m «■jkd (n +1 Jj' - jkdms' , m=/z+l-z
t=l m=l

nyjw(A+i)j' [A4.4]
m=l

Thus, P (jo + ^ 0(•yo -^ O  if wn+\-i~Wi for all i, i.e. the beam pattern due to the source will 

be symmetrical if both the true weightings (Re{wt }) and the errors in phase are symmetrical.

Coupled with the earlier result, one may conclude that asymmetric beam patterns can only

occur if:-

a) phase compensation errors exist when asymmetric weighting is used (e.g. when element 

failure has occurred).

Note, another implication of this result is that a weak source nearby to a strong one may be 

rendered more clearly visible by incorrect focusing, such that the side lobes of the stronger source are 

away from the weak source’s main lobe. However, it might be more convenient to adopt a system of 

weights, such as Dolph-Chebyshev, which when correctly focused give low side lobes on both sides.

Continuing with the representation of phase mis-match as the phase component of the

weighting values, one may compare the beam patterns for two erroneous estimates of the true shape 

corresponding to equal and opposite errors on each element. Let V+, V_ correspond to the perceived 

voltage displays for the two beamforming attempts; the change in phase error between the two cases 

is simply represented by the transformation w,- —»w*. The perceived voltage in a given direction for 

the first shape estimate (remembering that the errors are contained in the weighting terms) is given

b) errors in phase are not symmetrically arranged.

Part in

by:-

V’+(j0+J/) '= Z wie jUU' [A4.1]

That for the second estimate is given by:-
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V_(so+s') = 'Zw'e-jkdis' = J
^ K i l o s ' ) [A4.5]

Thus a reversal of the signs of all the phase errors causes an inversion of the single source 

beam pattern about the true bearing of the source. Assuming that the source is not too near to end- 

fire, the full beam pattern will contain almost exactly the same power levels as the first*. Thus power 

function formulae acting over the full range of sinG will give the same values for each. Therefore the 

power functions will be symmetrical about the value for the true shape. [ * For d=X/2, the aliasing 

that occurs is such that, any part of the pattern reflected out of the allowable domain of sinG will be 

translated back in. ]

Part IV

Now consider a general array shape given by x , , y,- and an estimate of this shape which errs 

by Ax,, Ay,- in those values. The resultant errors in phase compensation for a direction 0 are given 

by:-

A<fo = ( Ay,- cos0 + Ax, sin0 ) / A, [A4.6]

The distribution of A<J>,- across the array may be viewed as the sum of two distributions — 

one even, one odd. When expressed as simple complex numbers (as used above) the relationship is 

given by:-

H,v, = e-‘^  [A4.7]

where |i, and v, are the even and odd distributions respectively. Using m as an index for

counting from the other end, i.e. m = n + l - i ,  the symmetry properties of the various weightings,

including w, (now used simply as the amplitude component), may be summarised as below:-

Wm = w, = v*C = w* [im = \ii vm=v* [A4.8]

It is also helpful to define a constant, d>, as follows:- 

& = e jkd{n+l)s' [A4.9]

Now take V+ as the array response for one set of phase errors, i.e.:-
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n
[A4.r]

1=1

Then one may easily compare it with the response achieved for another set of phase errors 

corresponding to the inversion of only the even term:-

Altematively, V_ can be defined to be the array response for an inversion of the odd 

component of the phase errors; in which case, it becomes:-

The importance of these last two results is that if beamforming is attempted for many 

possible array shapes, then the beam patterns (power responses) for a set of shapes differing only in 

their choice of the odd terms in the phase, will be symmetrical about the zero error term, for any 

choice of even errors. Therefore a power function should mimic this symmetry, and hence possibly 

lead to the discovery of the odd error terms even when significant errors in the even are present The 

reverse is also true i.e. that the true even terms can be found independently of the odd terms.

Therefore, it makes extremely good sense to model the array shape with a set of functions 

which are either even or odd, as an error in the estimation of one symmetry set will not affect the 

other.

NOTE: The above only proves that any power function of the beam pattern will be 

symmetrical about the true shape; it does not show that anything other than a local extremum occurs 

there. Also, observe that all the above analysis was carried out in zero noise conditions; such is not 

realistic, the true conditions having noise levels commensurate with that of the signal, as well as 

other sources being present No proof has yet been obtained for power function performance with 

even the simplest noise; hence the need for repeated simulations. However, the above analysis 

indicates aspects of the behaviour to be looked for.

n n
-yJWfn+l-mJj'

[A4.10a]

IB A

V_(so-s') = I,Wi\kvUik*‘' = 2

= 4>V'.(j 0+jO [A4.10b]
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App 5. SIMULATION OF SIGNAL

FOR NEAR AND FAR-FIELD SOURCES

Consider an array positioned such that its centre is at the origin of the co-ordinate system, 

and it lies roughly along the x-axis. The position of the sensors are given by {*,, y,}, and that of one 

of the sources by (xy, yj). Defining {r4-} and ry- to be the distances of these points from the origin, the 

time lead, xiy, of the signal from the yth source reaching the z'th sensor before the origin is given by:-

Tv = (rr rij),c

= [  rj - V(xj-xi) 2 + (yj-yd2 ]

= j  [  r-} -^xj+yj-TjCiXj-lyiyj+xf+yf ]

= j  [  1 - V 1 -  (2x,xj+2y,yr xf-yf)  / r j  ]  [A5.1]

Using V l -x  = 1 -x /2  - x 2/8 -  • • •, we obtain:-

r;
*ij ~X;; =  — y(2x,xy+2yjy-x?-y?)//j + j ( 2xixj+2 yiyj-x j - y j ) 2 /r^ [A5.2]

Noting that xy/ry = sinG and yy/ry = cos0, and also that x j  + y j  c  I x,xy + ytyy 1 , this simplifies to:-

t ij = — [ *isin0+ y,cos0- ( x j  +yj ) /2 ry + (x,sin0+ y,cos0)2/2ry- J [A5.3a]

= — XjSin0+y,cos0 -  ——  x2(l-sin20 ) -2 x lyisin0cos0+ y2(l-co s20) 
c L J 2rjc <- -J

= — ^XjSinO+y.cosfi J -  ^  [^x,cos0-y,sin0 J [A5.3b]

Note, for a far-field source, ry »  rt , this reduces to the familiar

T — [x.sinO+yiCOsfi] [A5.4]
c
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App 6. RELATIONSHIP BETWEEN SOURCE RANGE

AND PERCEIVED ARRAY SHAPE

Consider an array of some shape specified by its parameters, a , , i= \ ,n  , which is insonified 

by a near-field source at range, r, and bearing, 0. From appendix 5, the relevant time delays are:-

Tj = £ x,sin0+ y,cos0 J -  ■ £ x,cos0 -  y, sin0 J [A6.1 ]

In the special case of an approximately straight line (and provided that I 0 I is not close to 90°), 

I Jt,cos0 I »  I y,sin0 I , and consequently the second order term may be simplified to give:-

T.- = — XjSinO + VjCOS© -  —— x2cos20 [A6.2]
c L -I 2 rc

Now, consider a sample quadratic given by y  = 1 - ( 2 x l n - 1)2 . This is chosen, as over the 

interval [0, n] it has zero value at the ends, and unity magnitude at the peak (in the centre). Fourier 

analysis of this shows that-

32
y ~ —

7T

sinx sin3x sin5x 
+ — =— + — =— +1

[A6.3]

In the derivation of [A6.2], time delays were calculated relative to the centre of the array, 

hence the maximum value of xf  is L2/4. Thus the magnitude of the quadratic term in [A6.2] is 

[L2 cos2 0 /4  ] / 2rjc, and consequently the expression for the delays may be approximated by:-

%i = — £ X;sin0+ y '  cos0 J [A6.4a]

where

,  L 2c o s0  3 2  
yi =y i  + —  ’ T8 rj t t

sin(7Cc/L) sin(37u:/L)
1 + 33 +

[A6.4b]

As all the terms other than the first are small, the effect of these modified time delays will 

be to cause the shape estimation algorithm to overestimate a\ by L2cos0/8r; — 32/tc3 being very 

close to 1.
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App 7. THE LINE OF THE ARRAY

There is a problem inherent in the use of components of a Fourier Series, and that is that 

those basis functions which have odd symmetry about the array centre cause the ’line of the array’ to 

be no longer parallel to the x-axis, as is illustrated in Fig A7.1. Quite clearly, this effect is greater for 

the lower order terms.

Fig A7.1a: Basis function for n=2 Fig A7.1b: Basis function for n=6

Note, an array as shown in Fig A7.1a will not shift the main beam of the array by 0 if the 

correct element positions are used; the shift of 0 corresponds to the effect of processing assuming 

that all the elements lie along the x-axis. However, it is useful to investigate the effect of pointing 

bias due to errors in the estimation of such a component, and of how this effect may be removed by 

altering the characterization of the array shape. Clearly the locational bias is not the only problem 

associated with incorrect estimation of the Fourier components — the quality of the beam pattern is 

also degraded such that when errors start being of the order of a third of a wavelength, one of the 

sidelobes may become dominant; for those conditions, the analysis given here is irrelevant.

For ease of analysis, the array is positioned such that the origin lies at the centre of the 

array. Thus a basis function of the array shape is given by:-

y = aHsin(mzx/L) , jc = [-L /2,L /2] [A7.1]

where L is the length of the array, and the order n corresponds to the number of sinusoidal 

half-periods in the whole array, and thus is always even, for the cases of interest here. The best fit 

straight line is given by:-
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y =  m x  [A7.2]

where gradient m is to be determined S is defined as the sum of the squares of the error of 

the fit. For simplicity an integral representation is used here:-

L / 2

S = J [ansin(nKx/L)-mx ] 2 dx 
-L a

L a  L a  L a

=  J  fl2sin2 (nrcx/L) dr -  J  2 manxsin(mzx/L) dx + J  m2 x 2 dx
-L a  - L a  -L a

= a2 • -d • L + 2manL 2lnn - sn + m 2 * 2 • [A7.3]

where sn = ( - l )n/2 = -1,1, -1,... for n=2 ,4 ,6 ,...

The best fit corresponds to setting the derivative with respect to m to zero, leading to:-

2anL 2 lnK'Sn + m ' L 3l6  = 0

—» m = -  (12//17EL) sn • an [A7.4]

This implies that the resultant pointing bias, A0 due to an error Aan in the estimation of an

even Fourier coefficient is given by:-

A0 = (\2fnnL) sn • Aan [A7.5]

Alternatively, the basis functions may be redefined with the necessary linear term removed viz:-

f n(x) = sin(nnx/L) + ( \2 s n! n n L ) x [A7.6]

[ Note, the actual implementation used in this work defines bases over the range [0, L] —

the change of interval automatically causes all the sn to be of the same sign. ]
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App 8. FITTING A PLANE TO A

2-D ARRAY OF POINTS

Formulae have been produced that enable a straight line to be fitted to a set of points, with 

the optimizing constraint that it should be chosen to minimize the sum of the squares of the 

deviations of the points from that line. Similarly, a plane, z - a x  + b y  + c , can be fitted to a set of 

points zitj = /  (xit yj), such that S  is minimized, where the sum of the squares, S, is defined by:-

2
s  = 2  [ zij -  CLXi-byj-c  ] [A8.1a]

ij

= S i — a S2 ~b S3 — c S4 + o?" S5 + cib S5 + oc S7 + S g + be S 9 + S 10 [A8.1b]

where:-

s i = ' L ztj  S 2 = £ 2 x 1ziJ S3 = £2yyz<>y SA = Yd2ziJ S5 =X**?
i,j i.j i.j i,j i,j

•S,6 - £ 2 x i ) ’y $9~J12yj S i o - ^ l
i,j ij  ij  i,j i,j

= number of points [A8.2]

The derivatives of S  with respect to the 3 unknowns may be found, and equated to zero to 

locate the extremum, thus:-

dS/da = dStdb = dSldc = 0 [A8.3]

Application of [A8.3] to [A8.1b] gives 3 simultaneous equations in 3 unknowns. Lengthy 

algebraic manipulation yields the final result:-

a = a ' / d  b = b ' l d  c = c ' l d  [A8.4a]

where:-
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a' — S S jS gS io  — 4 S 4 S i  S % — 2.S2 S9 S$ — 4S$ S$S  10 + 2 S 3 S7 S$ + 2. S 4 S $ S 9 [A8.4b]

br — 8  S 3 S5 5 10 — 4 S4 S5 S9 — 2 S3 £ 7 — 4 S2 S6 S 10 + 2 S2 S7 S 9 ■*■ 2 S4 Sg S7 [A8.4c]

c/ = 8 S4 S 5 5g —4 5 2 ^7 5 g — 2 ^ 4  S6 — 4 S 3 S5 S 9 + 2.S 2 S &Sg + 2 S 3 S6 S7 [A8.4d]

d = I6 S5 5g S 10 — 4 S7 S7 Sg — 4 S5 S9 S9 — 4 Sg Sg S 10 + 4 S6 S7 S9 [A8.4e]

App 9. FITTING A QUADRATIC CURVE

Given three points (x \,y 1), (*2 0 '2). (*3  O'3)* where the jq are different, it is always possible 

to fit a quadratic curve through all the points. If the three points used are near the maximum of a 

smooth unknown curve, then the peak of the fitted quadratic will be a good estimate of the location of 

the peak of the unknown curve. Let the quadratic be represented by y =ax2+bx+c, where a, b and c 

are yet to be determined. Then:-

yL = axJ + bxi + c , i =1,3 [A9.1]

Writing out in full for z=l,3, and then treating as simultaneous equations yields the values 

for parameters a and b as:-

^ l0 '2 -> '3 )+ ^ 2 ( ) '3 -3 'l )+ ^ 3 ( ) 'l -3 '2 )  rAOO .a = — —z---------------      [A9.2a]
*l(*2-*3) +*2(*3-*l) +*3(*l-*2)

.  4 0 '2 -> 3 )+ 4 0 '3 -3 'l)+ ^ 3  0 'l-> 2) r  a o  o u tb = —---------------      [A9.2b]
* 1  (X2- X 3) + * 2 (* 3 -X  1)  +  * 3  (X 1 - X 2 )
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The extremum of such a quadratic occurs at:-

x = -b  I l a

_ J _  x%(y2- y 3) + x l ( y 2- y l ) + x l ( y l - y 2) 
~ 2  x l (y2- y 3) + x 2(yi - y l ) + x 3(y l - y 2)

[A9.3]

If the Xi are equally spaced, the x-axis may be rescaled to render x,=-1,0,1, and thus the 

form for x' reduces to:-

, ^ ( y i - y s )  rAft/11
x -   —  [A9.4]

>i+>3-2y2

Therefore, for equally spaced values of x  :-

^ ( y i - y s )  A rAnci
x  = x 2 + ----------  —  Ax [A9.5]

y l+y 3- 2 y 2

This is the form generally used in the program. Simulations with various curves have

confirmed that this is fairly good at estimating x \ .

App 10. JUSTIFICATION OF POWER FUNCTIONS

( And A Brief Discussion of Their Merits)

As has been stated earlier, the power distributed over a beam pattern is fixed, independent 

of the choice of array shape used for processing i.e. jp d Q = a  constant [Note, this and other 

expressions should more correctly be written in terms of sinO i.e. jp  d  (sinG), but the difference is
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unimportant here. ] However, different estimates of array configuration lead to markedly different 

beam patterns, those closer to the true array shape leading to patterns which are better focused. The 

idea of a focused pattern is intuitively clear, however it is necessary to reflect briefly upon it, as such 

a concept has to be coded for a computer. Comparing beam patterns due to shape estimates both near 

and far from true (e.g. Figs 15.1-4), it is seen that the pattern of the true shape is characterized by the 

following points:-

1) The highest main lobe

2) The greatest variation in power with respect to 0

3) The deepest nulls

4) The sharpest pattern (i.e. steepest gradient, dp/d0)

5) The narrowest main lobe

6) The greatest concentration of power around the peak of the beam pattern

7) The closest resemblance to an ’ideal’ beam pattern.

Note — the above are merely observations of what occurs when no noise is present — no 

proof is included, and indeed several might be of little use in the presence of additive noise or other 

effects. Many of these may be implemented in the form of a ’power function’ by calculating

i ) ,  using different choices for /  ( p  (0t) , 0 , ) .  [  N.B. In all cases where a summation is given, 

it is derived from an J  representation of the above properties. The behaviour of the sums will be 

close to those of the corresponding integrals, provided that the beam sampling is often enough i.e. A0 

is small. ]

1 ) /  (p,0) = p (0 ).5 (0 -0 o) where 0O is the angle corresponding to the peak of the pattern 

(i.e. the summation just contains the peak value). It is easily seen that for a single source with no 

additive noise, this will always be maximized for the true array shape. However, this measure uses 

only one figure from the many values of p(0) available, and it certainly seems likely that some 

information is wasted when several sources of similar power are present

2a) /  (p> 6) = [p  (0) ~ p ] 2 = P 2(0) -  2pp (6 )+ p  . This represents the variance in the power 

levels; summation over 0 leads to:-
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£ / ( p . e ) = l > 2( e ) - X p 2

As the total power level, and hence p, is believed to be independent of the shape chosen for 

processing, this power function reduces to £ p 2.

2b) Higher order moments of the distribution can also be calculated e.g. skewness 

corresponds to /(p ,0 )  = [p (0 ) - p ]3, which upon summation and removal of constants reduces to a 

form containing £ p 2 and £ p 3 only.

3) /  (p,0) = -ln (p) or 1 Ip would give great emphasis to the depth of the nulls in a beam 

pattern. In the absence of any noise, this will provide a good measure of how focused the pattern is; 

however, in taking note of the depth of the nulls, it is using the parts most sensitive to noise.

2
4) /  (p, 0) = [ or [ . When applied to just the main lobe, the summation for the first

expression will simply yield twice the peak height When applied to the whole angular range, it is a 

measure of the ’spikiness’ of the pattern. The expression [ will take greater note of the sharp

declines. Alternatively, one could form [-^^-] = p [ -^r] •

5) As complete nulls will not exist in the presence of noise, the width of the main lobe 

must, of necessity, be defined in terms of the breadth at a certain power level relative to the peak 

(e.g. lOdB). Such is not easily determined accurately as power levels are only known at discrete 

angles.

6) / (p ,0 )  = - p ' ( 0 - 0 o)2. This provides the second moment of the power distribution 

about the perceived source direction. Note, this method and that for number 5 are difficult to 

generalise for several sources.

7) Comparison of experimental beam patterns with that for an ideal will show how much of 

the power in the former can be accounted for by the main source. This is similar to using a matched 

filter to detect a known form of signal.
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App 11. INCREASING THE EFFECTIVE SAMPLING

FOR POWER FUNCTIONS

A beam pattern is a smooth curve, values existing for all angles, 0. However 

computational limits require that the values only be calculated for/^different angles (usually equally 

spaced), and thus power functions are formed from this set of N  figures. However, if N  is sufficiently 

large, values for the power between selected angles, 0,, may be given closely by a linear 

approximation: -

From the original N  data points, two of the power functions that may be formed are given

below:-

[A ll.l]

N

p 2- Y p I [A11.2a]

-  N - 1

P = YPiPi* 1 [A11.2b]

Note that the second one purely gives a measure of the correlation between neighbouring 

angles. It is a simple extension to define a power function of the form of P 2, but also acting on the 

Af-1 interpolation points between each angle used for beamforming:-



j ± ( M - l ) M ( 2 M - l ) p }  + ± M ( M + l ) ( 2 M + l ) p U

[ M 2 (M+1) -  (A/+l)(2Af+1) ]  p iPi+l

(2M3-3M 2+M)+(2M3+3M2+Af) ^  2 (3M3+3M)-(2M3+3M2+M) _
s --------------------- a ------------------------ + --------------- ^ 2 ---------------

M +
2M

6 M J

M -  —  
M

[A11.4]

Now, if interpolation is only calculated for midpoints (i.e. M -2), then the factors become 

■j-, -y. The results of such interpolation can be easily compared against results for original

beamforming with 2N-1 beams, to test the validity of the interpolation. The natural continuation is 

then to implement it for infinite M i.e. for all points along interpolation line. This is easily done, as 

the actual interpolation values are not required; it is sufficient to use the correct multiples of P 2 and 

P. Inthiscase:-

MUn> G2 = x f 2 + T ^ [A11.5]

[ Note dropping a factor of ’M’ throughout makes no difference to the performance of the 

power function. ] A similar extension of JJ} 3 leads to:-

G3= 4-2>?+ \Yphu\ [A11.6]

Equivalent forms for ]Tp2cos0 are easily produced: the cross-correlation part may simply 

use p;pt+1cos0x- rather than p iPi+x Vcos0,- cos0t+1 as p(Q) varies much more quickly than the cosine 

term.

Also, note that performing the linear interpolation in p f  would not lead to an improved 

power function. It might be more accurate if the linear interpolation was applied to V(0); however, 

this would lead to much more complicated arithmetic, so such has not been considered worthy of 

implementation as yet. Another possible improvement is to use a quadratic interpolation — this will 

lead to an overall power function containing summations of the form , 2jPiPi+i and £p«A +2 -
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App 12. ESTIMATION OF THE PARAMETERS

OF A SINUSOID

If a sinusoid of known period is sampled, an estimate can be made of its mean value and 

the amplitude of its oscillations. Let the sinusoid have period, T,  amplitude, a , phase lead, <J) and 

bias, b, i.e.

y = b + a cos (27cr IT + (j>) [A12.1]

As the period is known a priori, samples can be taken at regular intervals throughout one 

cycle i.e. for = iTIn , i = 0,n -1. Then the value of the zth sample is given by:-

y, = b + a cos(2izi In + <j)> = b + R |AeytD,J [A12.2]

where A = a e ^ t co=2re/n and R{ • • •} is the operation taking the real part of a number. The

sum of the samples is given by:-

S\ = bn  + RjxAe '̂J = b n + A  R j  [A12.3]

As n(0 = 2 n, the mean of the samples, m =S\/n  will simply yield b , provided that e j(0 *  1;

the equality only occurs for n = 1.

Similarly, designating the sum of the squared deviations from the mean by S 2 , yields (for

n *  1):-

S2 = l f l 2cos2((0/+^) = |^y+ yCOS(2(OZ+2<j))]
1=1 »=1

a 2 n . t n  J e 2jan- l
> 1

+ A 2 R-j e [A12.4]

Thus, the variance, a 2 = S 2/n will yield the correct rms value, a 212, as long as n is neither 1 

nor 2. It may be concluded that 3 correctly spaced samples are all that is required to make an 

unbiased estimate of the mean and standard deviation of a sinusoid.
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App 13. STATISTICS OF SAMPLES FROM

A GAUSSIAN DISTRIBUTION

A commonly used pdf (probability distribution function) is that referred to as a Gaussian or 

normal distribution. In such a model, the probability of a variable having a certain value, x, is given 

by:-

p r ( x )  =  - - I -  e - < * - V /2« 2 [ A 1 3
\27t a

where the mean value is x 0, and the standard deviation, a. For many uses, x is measured 

from the mean, so in the analysis below * 0  = 0 and is hence omitted. Some simple mathematical 

manipulations show the following:-

'/2n a
~x2/2a2 dx = 1 [A13.2]

f “ * - X -  e ~x2/2a2 dx = 0 [A13.3]
J \2jt a

f x 2-,r l — 2/20(2 dx = a 2 [A13.4]
J_00 y2n a

The first equation shows the distribution is correctly normalized i.e. probability that * is 

between minus and plus infinity is unity; the second that the mean is zero; and the third that the 

variance is a 2. Simple integration by parts yields the expectation o f* 4, and thus the kurtosis, k

f x 4 - -J - -  e ~x2f7a2 dx = 3a4 [A13.5]
J_ao v2n a

k  = E[x4] - E 2[x 2] = 2a4 [A13.6]

Another figure of occasional interest is the expected absolute deviation -from zero, as 

opposed to rms deviation i.e. the standard deviation; the form for the former is given below:-

f 1*1 J -  e -*2/2a2 dx = ■ 2*-- e ~x2llx*2 dx = V2/7C a  [A13.7]
J_ '  1 J0 yl2na
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This project has entailed statistical analysis of many simulation results, which generally 

approximate to a Gaussian distribution [see chapter 17]. In any case, the Central Limit Theorem 

states that the average of many simulations will follow such a distribution. In order to compare 

different conditions or different methods of processing, it is desirable to know the mean and s.d. of 

the estimate for any given situation. However, such can only be measured approximately, and that by 

averaging independent realizations. The ensemble mean and variance are defined as follows:-

Note, in the second case, it is tacitly assumed that the mean is zero. Using [A13.2-5], the 

expected statistics of x and var(;c) can be deduced as follows:-

It follows, therefore, that the estimate of the mean will be unbiased, but subject to variation 

with s.d. equal to a 2 In. The estimated mean is thus unlikely (<5% ) to differ by more than 2 s.d. 

from that correctly associated with the estimator. [ Its value may differ significantly from the 

expected mean; this discrepancy can then be attributed to a slightly biased estimator, rather than a 

statistical fluctuation. ]

Similarly, ensemble averaging will yield an unbiased estimate of the variance, a 2; its

variance measured will be correct to within 10%, and, consequently, the measured s.d. of the 

estimates will be within 5% of true. This is quite a large value for the variation, implying that rms

[A13.8]

var(x) = —1 > 2 [A13.9]

[A13.10]

var(ic) = E [x * ) -  E2 [3c] = £  £  E [xiXj] -  0 =
n
- E [ x 2] = a 2 In [A13.ll]

E[var(x)] = — £ E [ x 2] = E[x2] = a 2 [A13.12]

var(var(x)) = E [(var(x)-a2)2] = E (—Y x f - a 2) (—X * ; - a 2) 
L J n : H :

[A13.13]

variation from this value will have a s.d. of V2In a 2, so that if 200 realizations are averaged, the
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estimates for 2 situations of identical error may be expected to differ by 1%.  Such, a problem has 

been observed several times e.g. when a source at 15° led to less errors than one at 0° [Table 23.2]. 

Note that if only 50 simulations were used instead of 200, in order to save computer time, the 

associated errors in the rms values would be doubled.

This is the reason that several of the simulations for comparing processing parameters and 

element failure operate on stored databases. It being expected that slight differences which would be 

hidden by the random statistics of different realizations, may be more clearly seen when all the 

processing is performed on identical signal records.
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