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SUMMARY

Ttti* thesis has Investigated the three main aspects of two-stroke diesel 

engines: scavenging, supercharging and compounding.

(1) .  scavenging

As a non-predictive model of the scavenging process, the generalized 

thermodynamic model has been introduced. This model can give a 

thermodynamic description for any possible scavenging process. As 

predictive models, the phenomenological fluid dynamic models: the steady 

jet model and the unsteady jet model, have been suggested. Based on jet 
mixing and propagation, these models can give an approximate description 

of velocity and concentration fields for the uniflow scavenging process, thus 

obviating the uncertainty of the- thermodynamic models. A group of model 

laws for scale modelling the scavenging process has been established. The 

experimental work on a simple water rig has been done.

( 2 ) .  supercharging and compounding

Three engine models have been built into programs CSPS. CSP3Z and 

CSPMZ for modelling the two-stroke engine. Based on engine model CSP3Z. 

program CSP3ZTC has been made for simulating the turbocharged engines. 

Using program CSPMZ. the author has predicted the performance of the 

Ford ceramic two-stroke opposed-plston diesel engine, and optimized the 

port design of the Ford engine. The optimization procedure is suitable for 

any uniflow scavenged engine. Using program CSP3ZTC. the author, has 

predicted the performance for the turbocharged Ford caramlc engine without 

and with a blower. Using program CSPS. the author has estimated the 

operating characteristics for the differential compound two-stroke engine for 

a 30-48 ton truck. Furthermore, the author has suggested a new compound 

engine system with three continueously variable transmissions between the 

engine and compressor, the engine and output shaft, the power turbine and 

output shaft- respectively.
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NOTATION

Units are S. I. unless stated.

Chapter 1

Relative charge.

Purity.
Charging efficiency.

Scavenging efficiency.

Trapping efficiency.

Delivery ratio.
Scavenging ratio.

Chapter 2

Mass concentration of air within the air zone.
Mass concentration of residual gas within the air zone. 

Mass concentration of air within the-residual gas zone. 
Mass concentration of residual gas within the residual 
gas zone.
Mass concentration of air within the mixing zone.

Mass concentration of residual gas within the mixing 

zone.

Mass concentration of air within the genaral zone.
Mass concentration of residual gas within the genaral 

zone.
Discharge proportion coefficient of the air zone.

Discharge proportion coefficient of the residual zone.

Discharge proportion coefficient of the mixing zone.

Specific absolute enthalpy
Specific absolute enthalpy of the air zone.

Specific absolute enthalpy of the residual gas zone.

Specific absolute enthalpy of the mixing zone.
Specific absolute enthalpy of the general zone.

Specific absolute enthalpy flowing into the general zone. 
Specific absolute enthalpy flowing out of the general



zone.

Intake proportion coefficient of the air zone.

Intake proportion coefficient of the mixing zone. 

Reference mass.

Mass flowing into the cylinder.

Mass flowing into the cylinder at the end of phase A.

Mass flowing out of the cylinder.

Mass within the air zone.
Mass within the air zone at the end of phase A.

Mass flowing into the air zone.

Mass flowing out of the air zone.

Mass within the residual gas zone.

Mass within the residual gas zone at the end of phase 

A.

Mass within the residual gas zone at the beginning of 

the scavenging process.

Mass flowing out of the residual gas zone.

Mass within the general zone.

Mass of air within the general zone.
Mass of residual within the general zone.
Mass flowing into the general zone.
Mass flowing out of the general zone.

Mass within the mixing zone.

Mass of air within the mixing zone.
Mass of air within the mixing zone at the end of phase 

A.

Mass of residual gas within the mixing zone.

Mass flowing into the mixing zone.

Mass flowing out of the mixing zone.

Cylinder pressure.

Heat transfer from the air zone.

Heat transfer from the residual gas zone.
Heat transfer from the mixing zone.

Heat transfer from the general zone.

Specific gas constant.

Cylinder temperature.
Temperature of the air zone.

Temperature of the residual zone.



Temperature of the mixing zone.
Specific internal energy.

Specific internal energy of the air zone.

Specific internal energy of the residual zone.

Specific internal energy of the general zone.

Specific internal energy of the mixing zone.

Volume of the air zone.

Volume of the residual zone.

Volume of the general zone.

Volume of the mixing zone.

Cylinder volume.

Ratio of specific heats.

Variation.
Volumetric ratio of the residual gas zone at the end of 

phase A.
Charging efficiency at the end of phase A.

Charging efficiency at the end of phase B.
Volumetric ratio of the mixing zone at the beginning of 
the scavenging process.
Delivery ratio at the end of phase A.

Delivery ratio at the end of phase B.

Chapter 3

Area.

Wall area.
Constant.

Constant.

Constant.

Discharge coefficient.

Cylinder bore.

Equivalence ratio of the general zone i.
Stoichoimetric fuel-air ratio.

Mass of burnt fuel within the general zone I.

Mass of burnt fuel flowing into the general zone I. 

Mass of burnt fuel within the general zone I at the 

beginning of the scavenging process.

Mass of burnt fuel flownlg out of the general zone I.



Sum of air mass and the air mass consumed in the 

combustion.

Sum of air mass and the air mass consumed in the 

combustion within the general zone i.

Sum of air mass and the air mass consumed in the

combustion flowing into the general zone i.

Sum of air mass and the air mass consumed in the

combustion within the general zone I at the beginning of 

the general zone i.

Sum of air mass and the air mass consumed in the

combustion flowing out of the general zone i.

Pressure.
The difference between cylinder pressure with 

combustion and cylinder pressure at the same point in 

the same conditions except for the absence of any 

combustion.

Pressure at the downstream volume.

Trapped pressure.
Pressure at the upstream volume.
Heat transfer through the head.

Heat transfer through the liner.
Heat transfer through the piston.
Heat transfer through the wall.
Specific gas constant of the upstream volume.

Time.

Cylinder temperature.
Temperature of the general zone I.

Trapped temperature.

Temperature within the upstream volume'.

Wall temperature.
Mean piston speed.

Cylinder swept volume.

Trapped volume..
Heat transfer coefficient.

Pressure ratio.
Critical pressure ratio.
Compressible flow function.



Chapter 4

Section 4 .2

Exhaust port area.

Mean inlet port area.

Initial effective flow area.

Reduced area.
Inlet port area.

Sonic velocity in the cylinder.

Sonic velocity in the exhast manifold.

Sonic velocity at the exhaust port opening. 

Parameter.

- Air mass concentration within zone I.

Delay array 

Parameter.

Engine speed.
Cylinder pressure.
Cylinder pressure at which choked flow ceases. 

Exhaust manifold pressure.
Cylinder pressure at the exhaust port opening.

Inlet manifold pressure.

Cylinder radius.

Jet radius.
Time ratio.

Volume of zone I.

Connective velocity.
Mean velocity.

Axial velocity.

Recirculating velocity.
Sonic velocity ratio of exhaust to cylinder.

Sonic velocity ratio of exhaust to choked condition.
Sonic velocity ratio of exhaust to release.

Axial length.

Crank angle.
Intermediate variable.
Intake angle.

Density.



Blowdown period.

Scavenge period.

Section 4. 3

Jet width.

Specific total internal energy.

Specific total internal energy in the l-th zone within 

region m.

Initial injected momentum flux.
Initlai Injected momentum flux for the l-th zone within 

region m.

Axial flux of linear momentum.
Axial flux of angular momentum.

Specific absolute enthalpy flowing into the l-th zone with 

region m.

Specific absolute enthalpy flowing out of the l-th zone 

with region m.
Mass for the l-th zone within region m.
Air mass for the l-th zone within region m.

Residual gas mass for the l-th zone within region m. 
Mass flowing Into the l-th zone within region m.

Mass flowing out of the l-th zone within region m.

Mass of burnt fuel in the l-th zone within region m. 

Mass of burnt fuel flowing into the l-th zone within 

region m.

Mass of burnt fuel in the l-th zone within region m at 

the beginning of the scavenging process.

Mass of burnt fuel flowing out of the l-th Zone within 

region m.

Mass of the air mass trapped and the air mass cosumed 

in combustion of the burnt fuel in the l-th zone within 

region m.

Mass of the air mass trapped and the air mass cosumed 

in combustion of the burnt fuel flowing into the l-th zone 

within region m.

Mass of the air mass trapped and the air mass cosumed 

in combustion of the burnt fuel in the l-th zone within



region m at the beginning of the scavenging process. 

Mass of the air mass trapped and the air mass cosumed 

in combustion of the burnt fuel flowing out of the l-th 
zone within region m.

Effective convection mass flow rate.

Normal to the main flow.

Heat transfer from the l-th zone within region m.

Initial swirl rate.

Radius.
Radial velocity, velocity of the main flow.

Initial velocity at the input ports.

Tangential velocity.

Volume of the l-th zone within region m.

Tangential velocity of the l-th zone within region m. 

Tangential velocity flowing into the l-th zone within 

region mr.

Tangential velocity flowing out of the l-th zone within 

region m.
Axial velocity.

Axial velocity of the l-th zone within region m.
Axial velocity flowing into the l-th zone within region m. 

Axial velocity flowing out of the l-th zone within region 

m.
Eddy diffusivlty. 

rz- eddy diffusivlty. 

r9 - eddy diffusivlty.
Tangential direction.

Initial density at the inlet ports.'

Density of the surrounding fluid.
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Constant.

Mixing length.

Mean velocity. - 

Turbulence dissipation rate.
Turbulence kinetic energy.



Chapter 6

OH concentration of the mass retained in the tank.

OH concentration of the mass injected.

Air mass fraction concentration in the residual gas 

region in the jetting region.

OH concentration of the mass discharged from the tank. 

OH concentration of the residual mass.

Air mass fraction concentration in the residual gas 

region in the residual gas region.

Mass diffusivlty.

Specific total internal energy.

Eckert number.

Euier number.

Froude number.
Specific absolute enthalpy.

Material diffusion flux.

Length.
Engine characteristic length.

Model characteristic length.
Mass retained in the tank.
Injected mass.
injected mass retained In the tank.

Injected mass discharged from the tank.
Mass discharged from the tank.

Initial residual mass.

Residual mass retained in the tank.

Residual mass discharged from the tank.

PH value.

POH value.
Prandtl number.
Heat diffusion flux.

Reynolds number.

Length scaling factor.

Time scaling factor.
Velocity scaling factor.

Control surface area.

Schmidt number.



Strouhal number.

Process time.
Engine characteristic time.

Model characteristic time.

Convective velocity.

Specific internal energy.

Engine characteristic velocity.

Model characteristic velocity.

Volume.
Moving velocity of the control surface.

Model width.

Thermal diffusivlty.

Model thickness.

Normally directed vector.
Thermal conductivity.

Dynamic viscosity.

Kinematic viscosity.

Momentum diffusion flux.
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Constant.
Constant.
Constant.

Constant.

Constant.
Constant.

Shape parameter of diffusion burning.
Shape parameter of diffusion burning.

Shape parameter of premix burning.

Shape parameter of premfx burning.

Constant.

Accumulated fuel mass.
Non-dimensionalized fuel mass in the diffusion burning. 

Fuel mass in the diffusion burning.

Fuel mass supplied to engine per minute. 

Non-dlmenslonallzed fuel mass in the premix burning. 

Fuel mass In the premix burning.



Mt Non-dlmenslonalized total injected fuel mass.

mt Total injected fuel mass,
n Polytropic exponent.
Nq Reference engine speed.

pm Mean cylinder pressure.
p

max Maximum cylinder pressure.

^12 Heat release.

rc Boost pressure ratio.

Vp Mean piston velocity.
W12 work.

B  Ratio of premixed burnt fuel mass to total.
A Burning duration.

0 Ignition delay.

a u 12 Difference of internal energy.

0| Ignition time.
T Non-dimenslonallzed time.
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DHI Degree of heat insulation.

fmoP Friction mean effective pressure.
had c Compressor Isentroplc enthalpy rise.
N Rotational speed.
wc Compressor power.

T7C Compressor efficiency.
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P Compressor tip diameter,

f Sectional area scaling factor.a
fg Diameter scaling factor.

f Mass flow seating factor,m
W Compressor power,

c
W Engine power,

o
W Power loss to gear train,

gear loss
W Output shaft power,

o/s
Turbine power.

0Q Dynamic loss ratio.



Friction torque.

Input torque.

Output torque.
Angular velocity of the input shaft. 

Angular velocity of the output shaft.



Part 1 GENERAL



Chapter 1 INTRODUCTION

1.1 CENTRAL TOPICS OF THIS THESIS

For a power system with an internal combustion engine as motive power, 

increasing power at the output shaft implies an increase of air-taking 

capacity and improvement of output shaft brake thermal efficiency.

Without increasing engine size, three ways are open materially to increase 

air-taking capacity:

(1 ) .  increasing engine speed.
(2 ) .  supercharging and intercooiing.

(3 ) .  using the two-stroke cycle principle.

Improving output shaft brake thermal efficiency implies

(4 ) .  improving the combustion process.

(5 ) .  reducing the friction and accesories' loss.
(6) .  suppressing the cooling loss.
(7) .  regenerating the lost energy.

(8) .  matching the engine and transmission.

It Is notable that in item (6 ) .  when the engine is thermally insulated, the 

heat prevented from being transferred to the coolant will appear mainly in 

the exhaust gases.

This thesis focuses attention on the characteristics of the high output 

two-stroke diesei engines. I .e.  the following topics:

(1) .  scavenging,

(2 ) .  supercharging 

and

(3 ) .  compounding a two-stroke engine power system.

1 .2  SCAVENGING
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1.2.1 TWO-STROKE CYCLE

The two-stroKe cycle requires one revolution of the crankshaft for each 
power stroke. From the standpoint-of thermodynamics, compared with the 

four-stroke cycle, it allows doubling the output from the same size of engine 

by doubling the number of power strokes. The two-stroke cycle Is 

applicable to both compresslon-ignitlon operation and spark-lgniticn 

operation. However, the scope of this thesis is limited within the former. 

From the standpoint of mechanical design, it makes some simplification of 

valve mechanism possible. The largest reciprocating-plston engines (up to 

43000 bhp) and the smallest engines (down to 0.02 bhp) follow the 

two-stroke cycle. Many medium sized engines where weight or space is at 

a premium, use the two-stroke cycle principle.

In a four-stroke cycle engine the charge is drawn Into the cylinder by the 

piston. In a two-stroke engine there Is no suction stroke and the charge 

must be pressed Into the cylinder by a pump or blower. The operation of 

clearing the cylinder of exhaust gases and filling it more or less completely 

with fresh charge is called scavenging. (1.1]

1 .2 .2  SCAVENGING PROCESS

The scavenging process may be subdivided Into three periods:

(1) .  the blowdown period in which the exhaust ports or valve are opened, 

the products of combustion pass to the exhaust manifold, and the cylinder 

pressure falls rapidly. The blowdown angle is defined as the crank angle 

from exhaust port opening to the point at which the cylinder pressure equals 

the pressure in the inlet manifold, that Is. to the beginning of inflow of air 

Into the cylinder. In an ideal design when the cylinder pressure equals the 

air supply pressure, the Inlet ports open. Actually, the inlet ports open 

probably earlier or later than the ideal point.

(2) .  the scavenge period in which both the exhaust and Inlet ports or 

valve(s) are open, fresh air charge flows into the cylinder and residual gas 

Is discharged from the cylinder. The scavenge period continues as long as 

the inlet ports are open, and the total pressure in the Inlet manifold exceeds 

the pressure in the cylinder, and the cylinder pressure is greater than the 

total pressure In the exhaust manifold.
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(3 ) .  the charging period in which the exhaust ports close before or after the 

inlet ports are closed. If the exhaust ports close first, there Is a better 
chance for the cylinder pressure to build up to a value higher than the 

exhaust pressure during the subsequent period before the inlet ports close. 

If the inlet ports close first, there may be some escape of fresh air charge 

to the exhaust system.

1 .2 .3  FUNDAMENTAL REQUIREMENTS OF SCAVENGING SYSTEM

(1) economy: The power taken from the the engine and used for

compressing the scavenging air must not be excessive, that is. the pressure 

drop between the inlet and exhaust ports and the air flow rate must not be 

excessive.

(2 ) reliability: The operation must repeat stably even under unfavourable 

running conditions caused by fouling of the inlet and exhaust ports, 

deteriorating- sealing of the inlet and exhaust ports, or accidental reduction 

of the air supply. The scavenging system must be resistant to fouling 

especially when the engine operates on poor quality fuel.

1 .2 .4  METHODS OF SCAVENGING

1 .2 .4 .1  Cross scavenging

The air enters the cylinder through the inlet ports directed off centre, this 

produces an upward movement of the air which forces the exhaust gases to

travel in a U-shaped path. i.e . to form a cross flow. In the

cross-scavenging engine the Inlet ports and the exhaust ports are on 

opposite sides of the cylinder liner, as shown In Fig. 1.1a.

1 .2 .4 .2  Loop scavenging

In this case the air stream is directed on to the unported wall and the gas 

stream follows an O-shaped. I.e . a loop path. This system can be divided 

Into two groups:

(1 ) with exhaust ports located above the inlet ports as in the MAN system, 
as shown In Fig. 1.1b;

(2 ) with exhaust ports located between two groups of inlet ports as in the
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Schnuerle system, as shown in Fig. 1.1c.

1 .2 .4 .3  Unlflow scavenging

The air enters the cylinder from one end and leaves it from the opposite 

end. normally with intake swirl to improve the scavenging quality. This 

system also can be subdivided into two groups:

(1) with inlet or exhaust valve(s) fitted In the cylinder head, as shown in 

Figs. I . l d  and e;

(2) with opposed pistons to control respectively the Inlet and exhaust ports, 

as shown In Fig. l . l f .

1 .2 .5  COMPARISON OF DIFFERENT SCAVENGING SYSTEMS

1 .2 .5 .1  Cross scavenging

This may give higher output per unit weight and bulk because the cross 

scavenged engine without valve-camshaft mechanism can run at higher 

piston speeds. But its scavenging efficiency is comparatively low because 

too early short-circuiting of fresh mixture is difficult to avoid completely.

Although much work remains to be done in this field, the following general
relations seem to be established.

With cross scavenging system, it is necessary to direct the incoming air so 

that it follows an axial path close to the inlet side of the cylinder wall on its 

way toward the cylinder head. This objective can be accomplished either 

by a properly designed deflector on the piston or by inlet ports designed to 

direct the air toward the side of the cylinder away from the exhaust ports.

With supercharging, and at high piston speeds this system can obtain high 

specific output.

1 .2 .5 .2  Loop scavenging

The scavenging efficiency of such system is good. One obvious

disadvantage of this system is the limitation on port area. However, for
long-stroke engines operating at low piston speeds, this arrangement has
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proved satisfactory.

The addition of auxiliary valves gives the advantages of unsymmetricai timing 

to loop-scavenging cylinders. At present, the commercial use of these 

devices is confined to large cylinder running at low piston speeds.

1 .2 .5 .3  Unifiow scavenging

Uniflow scavenging with opposed pistons

Both excellent scavenging efficiency and high flow capacity cause engines of 

this type to obtain high mean effective pressures. Here, the problem is to 

decide whether the increased specific output outweighs the disadvantage of 
the required complicated mechanical arrangement. When high specific 

output is important, this system is very attractive and quite widely used in 

locomotive and submarine engines. Incidentally, the only successful diesel 
aircraft engine holds the world's record for specific output of diesel engines.

Uniflow scavenging with poppet-valve

This system shows excellent performance. Hence, again, the gain in 

specific output may not mean a gain in output per unit of bulk and weight, 
especially if speed is limited by the poppet valve gear.

1 .2 .6  BASIC DEFINITIONS IN THE SCAVENGING PROCESS

Trapped volume: it is the cylinder volume at the commencement of the 

compression stroke.

Delivery ratio:

^ _ _________Mass of delivered air__________

Trapped volume’ density in Inlet manifold
<1.1)

Scavenging ratio:

5



Mass of delivered air
X .  *   ------------------------------------------------------------------------ —

Mass of trapped cylinder charge

Trapping efficiency:

Mass of delivered air retainedy  a —

Mass of delivered air

Charging efficiency:

Mass of delivered air retained
’ ch Trapped volume*density in inlet manifold

Scavenging efficiency:

Mass of delivered air retained
*8C Mass of trapped cylinder charge

Relative charge:

( 1. 2)

(1 .3 )

(1 .4 )

(1 .5 )

( 1. 6)

Mass of trapped cylinder charge
rch Trapped volume‘ density In Inlet manifold

Purity:

_ Mass of air in trapped cylinder-charge 

Mass of trapped cylinder charge

It is obvious that the following equations are valid,

T) =X*i] (1 .8 )
ch tr

(1 .7 )
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V  =x -7?
sc sc tr

(1 .9 )

From the previous equations, it Is evident that the two groups of 

parameters:

(1) delivery ratio and charging efficiency,

(2) scavenging ratio and scavenging efficiency

are distinguished by the different reference conditions. The former is related 

to the Inlet manifold conditions, the latter Is related to the trapped 

conditions In the cylinder. The relative charge gives a connection of these 

two groups of parameters.

The purity indicates the total air content trapped in the cylinder Including the 

fresh air trapped in the cylinder and the remaining air in the cylinder from 

the residual gas in the previous cycle.

1 .3  SUPERCHARGING

1 .3 .1  NECESSITY OF SUPERCHARGING

In a certain sense, practically all two-stroke engines are supercharged. 

Instead of aspirating ambient air. it is forced into the cylinder by a pump 

or blower. However, the amount of air so forced into the cylinder does not 
- exceed the amount which the same cyiinder receives under the air density 

at the temperature in the Inlet manifold and the trapped- pressure In the 

cylinder. It is evident that the trapped pressure Is between the pressures 

In the inlet and exhaust manifolds. If the pressure in the exhaust manifold 

Is atmospheric, even if the amount of air so delivered exceeds the cylinder 

displacement by 30 to 50 per cent, nevertheless, most of that extra air Is 

short-circuited between the Inlet and exhaust ports. The power required to 

scavenge, and hence the fuel consumption, increases rapidly with 

Increasing delivery ratio. An optimum point may be reached at which net 

power output reaches a peak. Therefore, the only feasible way to achieve
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large gains in output is by increasing the exhaust pressure and the inlet 
pressure together. [1 .2], [1.3]

The necessity for increasing exhaust pressure immediately suggests the use 

of an restriction In the exhaust system. The restriction may be either passive 

or active, or their combination.

Passive exhaust restriction is purely a restriction which produces a pressure 

drop between the exhaust ports and the surroundings and extracts no 

exhaust energy.

Active exhaust restriction is a device which not only constitutes a flow 

resistance In the exhaust system but also recovers the useful energy of 

exhaust gas.

1 .3 .2  PASSIVE EXHAUST RESTRICTION AND PURELY ENGINE-DRIVEN 

SUPERCHARGER

Passive exhaust restrictions are further classified into several types:

(1 ) .  port-scavenging with short exhaust ports, see Fig. 1.2a.
(2 ) .  port-scavenging with a rotating sleeve valve in the exhaust ports, see 

Fig. 1 .2b.
(3 ) .  port-scavenging with opposed-piston, see Fig. 1.2c.
(4 ) .  U-cylinder with one piston controlling the inlet ports and the other 

controlling the exhaust ports, see Fig. 1 .2d .

(5 ) .  with exhaust valves, see Fig. 1 .2e .

(6 ) .  with sleeve valve, see Fig. 1.2f.

Passive exhaust restrictions are'used only for building up a proper back 

pressure to improve the trapping effectiveness of the scavenging air, and 

hence to increase output power, not for recovering the useful work from 

exhaust of the base engine. Therefore, the engine is the only source of 

motive power in the power system with such a passive exhaust restriction, 

and the compressor must be driven by the engine.

The following two types of compressor can be used as a supercharger.
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(1 ) .  positive displacement compressors such as multi-vaned compressor. 

Roots compressor. Lysholm compressor, screw compressor. VW scroll 

compressor. [1.4] KKK wankel system rotary compressor. [1.5] see Fig. 

1.3a to f.

(2 ) .  turbodynamic compressor such as centrifugal compressor, see Fig. 

1. 3g.

The positive displacement compressors have steep constant speed lines. 

The pressure ratio Is largely independent of speed. The flow rate is directly 

proportional to speed and quite independent of pressure ratio. The 

displacement compressors have no choke, no surge, can run over a wide 

range, and obtain a large pressure ratio with small flow rate. They have 

a good efficiency.

The turbocompressors have constant speed lines with a variable slope; for 
centrifugal compressor they are practically level at the surge line, but drop 

off rapidly. The pressure ratio is dependent of speed. The flow rate is 

proportional to speed. In the performance maps, there exist a surge region 

in the left. Therefore, they cannot run stably with small flow and high 

pressure ratio. They can obtain an excellent efficiency at high speed. The 

difficulty in using a centrifugal supercharger arises from the very high shaft 
speed at which it must operate. A gear train with a large step-up ratio is 

necessary, and this makes the simple and cheap centrifugal supercharger 

expensive.

1 .4  TURBOCHARGED. SUPERCHARGED AND COMPOUNDED SYSTEMS

1 .4 .1  ACTIVE EXHAUST RESTRICTION AND ENGINE COMPOUNDING SYSTEM 

Active exhaust-restrictions may further be classified Into two groups:

(1 ) .  direct recovery

The exhaust gases of the base engine are expanded In a device.

(a) exhaust-driven turbine

The exhaust turbine extracts the useful work of exhaust gases to drive a 

compressor or to feed to the output shaft of the power system.
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(b) exhaust-driven Comprex pressure-wave supercharger

The exhaust gases expand in the Comprex supercharger to boost the
inflowing air charge. [1.6]

(2 ) .  Indirect recovery

The exhaust energy of the base engine is used as a heat source for a 

separate closed system of a continuous heat engine, for instance, a 

Ranklne bottoming cycle heat engine to return the useful work as mechanical 

power to the output shaft of the power plant.

The introduction of an active exhaust restriction device gives the power 

system another source of motive power. The crucial task is to organise the 

mechanical. pneumatic and thermal connections and to improve 

performance.

1 .4 .2  BASIC REQUIREMENTS FOR AUTOMOTIVE ENGINE SYSTEMS

(1 ) . efficiency: better fuel economy throughout the complete range of 
engine speed.
(2 ) .  drlveabllity: wide operating range of speed and load and sufficient 

torque backup, hence better acceleration and fast responsiveness to an 

increase in power demand without noticeable delay.

(3 ) .  compactness: small space requirements and low weight.

1 .4 .3  PROBLEMS iN TWO-STROKE ENGINE COMPOUNDING SYSTEM

1 .4 .3 .1  Reliability and durability

High output means considerably higher mechanical and thermal loadings, 
which often give rise to reliability and durability concerns. Especially 

thermally insulated engines further aggravate the problem of thermal loading 

on the elements of the combustion chamber and turbocharger. 

Port-scavenging systems provide greater freedom in the combustion 

chamber. The combustion chamber may be easily placed In the cylinder 

head. This relieves the thermal loading on the piston.

1 .4 .3 .2  Matching
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Compared with four-stroke engines, the matching problem of a two-stroke 

engine system Is aggravated by Its special characteristics. Two-stroke 

engines require more .scavenging air. ‘ But more scavenging air implies 

lower exhaust temperature because of dilution of exhaust gases with 

short-circuited air. which causes a decrease in the exhaust energy available 

to drive the turbine.

In the two-stroke engine the charging of the cylinder requires a positive 

pressure drop between the inlet and exhaust ports throughout a wide speed 

range.

Hence, substantial difficulties have been encountered in matching the 

thermodynamic and fluid dynamic characteristics of the supercharger with 

those of the two-stroke engine. Low speed torque and transient response 

have therefore tended to be poor, the inadequacies becoming more 

pronounced with power-rating increase, and incidentally setting severe 

limitation on transmission optimization.

1 .4 .4  TURBOCHARGING SCHEMES

The turbocharged engine Is the simplest engine system for improving the 

thermal efficiency and Increasing the power output. However, the engine- 

turbocharger aggregate comprises a relatively slow speed reciprocating 

engine and an ultra high speed turbomachine. The former operates 

cyclically, thus resulting In pulsating flows in the Inlet and exhaust 

manifolds, and the latter Ideally requires the flow conditions to be steady. 

Matching the two machines to satisfy the performance requirements over a 

wide range is difficult, especially such problems as the turbocharger 

Inefficiency at low engine speeds and the- inadequate flow range continue to 

arouse concern.

For improving the low speed torque, the following measures have been 

proposed.

(1 ) .  supplementing the exhaust gas energy by external means, e._g. pelton 

wheel drive suggested by Tlmoney [1.7] or air Injection proposed by Ledger 

et al. [1 .8], see Fig. 1 .4a , b.
(2 ) .  efficient use of exhaust energy, e .g . with the divided entry
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turbines [1.9] or a pulse converter. [1 .10], see Fig. 1 .4c. d. e.

(3 ) .  the use of a waste gate to limit turbocharger speed and boost pressure 

at high engine speeds and to achieve an increase boost pressure at low 

engine speeds, see Fig. 1.4f.

For tailoring the turbocharger performance characteristics to suit a wide 

range Gf flow rate, the following methods have been suggested,

(1 ) .  variable geometry compressor with a continuously variable vaned 

diffuser [1.11] or inlet guide vanes [1.12], see Fig. 1 .5a. b. By rotating 

the vanes, the variable vaned diffuser can accommodate the change of flow 

angle due to variation of flow rate, thus decreasing the incidence loss and 

improving the diffusion process. By increasing the inlet vane angle in the 

direction from negative to positive pre-whirl, the mass flow rate and 

pressure ratio at constant compressor speed are reduced. The surge line 

shifts quite significantly to the left. The efficiency contours have the same 

tilting tendency as that of varying flow rate. Thus, it seems possible that 
the optimum compressor efficiency can be maintained over a wide flow 

range.

(2 ) .  variable geometry turbine with a pivoting vane system [1.13] or a 

variable area volute [1.14], see Fig. 1 .5c , d. By varying blade angle with 

speed or mass flow rate, both the effective turbine area and rotor inlet gas 

angle may be controlled. In particular, the effect of turbine area control 

improves utilization of the exhaust gas energy by the turbine at low engine 

speed, without over-speeding the turbocharger or over-boosting the engine 

at high engine speed, by increasing effective turbine area under these 

conditions.

(3 ) .  sequential turbocharging. By fitting two or three turbochargers in 

parallel on a common exhaust manifold, the system can be considered as 

a variable geometry turbocharger in discrete steps, [1.15] see Fig. 1.5e. 

At rated conditions all are in operation, but with decrease of speed one and 

then two turbochargers are cut-out by closing appropriate valves. In effect 

this reduces the total turbine area, hence raises the turbine (and therefore 

compressor) pressure ratio at low engine speed.

1 .4 .5  ENGINE SYSTEM SCHEMES
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The Inherent difficulties in matching and sizing make simple addition of a 

supercharger to an engine Impossible if the best performance throughout the 

speed and load range Is to be obtained. Hence numerous compound 

engine systems have been developed. To further improve the performance, 

some compound engine systems Introduce extra external energy sources, for 

example, a combustor in the Hyperbar supercharging system [1.16] and a 

battery electric motor in the engine-electric hybrid vehicles by JPL [1.171. 

Some compound engine systems are listed as follows.

(1 ) .  conventional turbocharged engine with a conventional turbocharger, 

and with or without auxiliary blower, see Fig. 1 .6a .

(2 ) .  conventional supercharged engine with a Comprex supercharger, see 

Fig. 1 .6b.

(3 ) .  Cummins positive displacement compound system with a positive 

displacement expander and a compressor, see Fig. 1 .6c. [1.18]
(4 ) .  Cummins turbocompound-engine with an exhaust power turbine, see 

Fig. 1. 6d. [1.19]

(5 ) .  BBC integrated power system with a power turbine operating in parallel 
with a turbocharger, see Fig. 1 .6e . [1.20]

(6 ) .  conventional turbocharged engine with a hydrostatic shunt 
transmission, see Fig. 1 .6f. [1.21]

(7 ) .  Hyperbar supercharging system with an auxiliary combustor, see Fig. 
1 .6g.

(8 ) .  JPL engine-electric hybrid system, see Fig. 1.6h.
(9 ) .  Rankine cycle compound engine system, see Fig. 1.61. [1.22]

(1 0 ). Perkins differentially supercharged engine with a 3 speed 

transmission, see Fig. 1.6J. [1.23]

(1 1 ). Wallace's differential compound engine without transmission gear box. 
see Fig. 1. 6k. [1. 24]

Thus while the main attention in recent years has focussed on four-stroke 

engines. Wallace earlier built a differential compound two-stroke engine.
[1.25]

1 .4 .6  WALLACE'S PiFFERENTlAL COMPOUND ENGINE (DCE)

The Wallace DCE mechanical arrangement Is shown In Fig. 1 .7 . The engine 

is connected with the fully floating epicyclic gear train providing the
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differential link between output shaft and compressor, such that any 

decrease In output shaft speed, at fixed engine speed, is accompanied by 

a corresponding Increase In compressor speed and hence compressor mass 

flow delivery. This in turn leads to extremely favourable air margins for both 

low speed torque and good transient response under low output shaft speed 

conditions. The geared power turbine provides additional torque backup, 

further amplified greatly by the use of the turbine continuously variable 

transmission (CVT) which allows the turbine to operate at optimum speed. 

The turbine variable nozzles are a means of both limiting boost pressure 

under low output shaft speed conditions and ensuring optimum efficiency 

under all conditions.

A microprocessor control is implemented to ensure operation within safe 

limits of all parameters and for rapid transient conditions.

The unique feature of the DCE is Its ability to feed power to. rather than 

absorb power from, the engine due to the compound mode of operation, 
with resultant efficiency benefits, particularly when coupied with adiabatic or 
semi-adiabatic operation.

The DCE can legitimately be regarded as the logical embodiment in a single 

powertrain, of the advances made in the separate fields of engine, 
transmission, turbomachinery and microprocessor control technology. The 

DCE combines the thermodynamic advantage of compounding, so far at the 

expense of considerably higher complication and capital cost, with the 

smooth torque rise and good transient response associated with the best 
CVT. and through continuous optimization using a microprocessor control 

system, with outstanding overall economy. [1.26]

It Is obvious that the substitution of a two-stroke engine will add the 

advantage of compactness to the DCE.

1 .5  SUMMARY

The task of the author is to work for the Investigation and development of 

high output two-stroke diesel engines. Hence the central topics of this 

thesis are scavenging, supercharging and compounding In two-stroke diesel 

engines with special reference to the differential compound engine.
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( a ) ,  c r o s s  s c a v e n g i n g ;
( b ) .  l o o p  s c a v e n g i n g /  MAN t y p e ?
( c ) . l o o p  s c a v e n g i n g ,  S c h n u e r l e  t y p e ?
( d ) .  u n i f l o w  s c a v e n g i n g /  p o p p e t  i n l e t  v a l v e ;
( e ) .  u n i f l o w  s c a v e n g i n g /  p o p p e t  e x h a u s t  v a l v e ;
( f ) .  u n j f l o w  s c a v e n g i n g /  o p p o s e d  p i s t o n .

Fig. 1 .1  Methods of Scavenging



( a ) .  p o r t - s c a v e n g i n g  w i t h  s h o r t  e x h o u s t  p o r t s ,
( U ) .  p o r t - s c a v e n g i n g  w i t h  a r o t a t i n g  s l e e v e  v a l v e  

i n  t h e  e x h a u s t  p o r t s ,
( c )  . p o r t - s c a v e n g i n g  w i t h  o p p o s e d - i >  i s t o n ,
( < J ) .  U - c y l i m J e r  w i t h  o n e  p i s t o n  c o n t r o l l i n g  t h e  i n l e t  p o r t s  

a n d  t h e  o t h e r  c o n t r o l l i n g  t h e  e x h a u s t  p o r t s ,
( e ) .  w i t h  e x h a u s t  v a l v e s ,
( f ) .  w i t h  s l e e v e  v a l v e .

Fig. 1 .2  Passive Exhaust Restrictions
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Chapter 2 ISOBARiC AND 1SOCHORIC THERMODYNAMIC SCAVENGING

MODEL

2.1  INTRODUCTION

During the scayenge period the cylinder is open to both the inlet and 

exhaust systems at the same time. The flow processes are extremly 

complex and simplifying assumptions must be made. A number of models 

of increasing complexity have been developed to describe the scavenging 

process. Basically these models can be grouped into two classes:

(1 ) .  Thermodynamic models which omit the investigation of the fluid 

dynamic behaviour, and give only a description of the thermodynamic 

properties, based on the presupposition of an artificial history of the flow 

and concentration fields.
(2 ) .  Fluid dynamic models which involve the study of the flow processes, 

hence provide full Information of the flow, concentration and thermodynamic 

property fields, obviating the need for the artificial history.

Furthermore, the thermodynamic model may be subdivided into two types:

( a ) . Isobaric and Isochoric models which assume that both the cylinder 
pressure and volume are constant during the scavenging process.

(b ) .  varying pressure and volume models in which both the pressure and 

volume are temporal variables.

The former gives a simple description of the thermodynamic properties which 

is suitable to quantitatively assess the scavenging process for the ideal 
cycle. The latter provides an appropriate description of the thermodynamic 

properties which is applicable to calculate the scavenging process in the 

step-by-step simulations.

This chapter will focus on the isobaric and isochoric model and derive a 

generalized conclusion from which all the present isobaric and isochoric 

models, from the Hopkinson model [2.1] in 1914 up to the Baudequin and 

Rochelle model [2 .2] in 1980. can be deduced.
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2 .2  PHYSICAL DESCRIPTION

In essence, the flow in the cylinder during the scavenging process belongs 

to the category of unsteady jets. The fresh air in the form of a jet is 

injected into the cylinder. The cylinder head and walls and the top surface 

of the cylinder enclose the jet. As a consequence of momentum transfer 

between the jet and surroundings, residual g3s is entrained from the 

surroundings across the boundaries of the jet. Hence the jet is divided into 

two regions: a mixing zone M and an air zone A. as shown in Fig. 2 .1 .  

The entralnment Induces secondary flow within the surrondings. called 

recirculating flow. The recirculation causes the zone to change into two 

zones: a mixing zone M and a residual gas zone G. Therefore, the 

cylinder is virtually divided into three zones: a mixing zone, an air zone

and a residual gas zone. The compositions within the air zone ^nd the gas 

zone maintain their initial values in the inlet manifold and in the cylinder at 
the beginning of the scavenging process, respectively. However, the 

composition within the mixing zone is temporally and spatially variable.

After the beginning of the scavenging process, the jet flowing through the 

inlet ports propagates In the cylinder and eventually arrives at the exhaust 

ports. Before its arrival, the jet pushes residual gas out through the exhaust 
ports. The first phase, in which solely the residual gas discharges into the 

exhaust manifold. Is called the displacement scavenging phase, as shown 

In Fig. 2.2a.

Subsequently a combined flow possibly Including air. residual gas and an 

air-gas mixture passes through the exhaust ports. The discharge 

proportions of air. gas and mixture depend on running condition, port 

-geometry and layout, piston geometry and position. The functions 

describing these discharge proportions are temporal variables. This second 

phase. ' called mixing scavenging, continues until the mixing zone 

disappears, as shown in Fig. 2.2b.

After the mixing scavenging phase, some adead space" of residual gas may 

be left. Only pure air passes through the exhaust ports. This third phase 

is called the short-circuiting phase. The residual gas within the "dead 

space" cannot escape and its amount depends on the scavenging system, 

as shown in Fig. 2 . 2c.
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The thermodynamic method neglects the fluid dynamic behaviour of the 

scavenging process. Hence, the thermodynamic method needs an artificial 

description of flow and concentration fields. In this simplified model, the 

assumptions are as follows:

(1 ) .  constant cylinder pressure during the scavenging process

(2 ) .  constant cylinder volume, hence no external work to be done

(3 ) .  dividing the cylinder into three zones: air zone, residual gas zone and 

mixing zone
(4 ) .  homogeneous temperature and concentration within each zone

(5 ) .  neglect of heat transfer between the zone and walls

(6 ) .  Ideal gases, with the same constant specific heat

(7 ) .  zero-valued formation heats at 0 K, i .e.  

h= u= 0. at T= 0.

whence

h= RT y-1

u= ——r RT *y-i

where y  Is the ratio of specific heats.
(8 ) .  specifying an artificial history of intake proportion within the air and 

mixing zones, and of discharge proportion within the air. mixing and 

residual gas zones.
(9 ) .  neglect of mass, momentum and heat transfer between the zones.

It is notable that actually the air flowing through the inlet ports first

exclusively enters the air zone, and then entralnment and recirculation form
the mixing zone. However, instead of the mixing history In the cylinder, the
discharge history is important for predicting the scavenging process. For

convenience, the idealized model considers that a part of the air injected

directly mixes with a given amount of residual gas and forms the mixing zone
and another part mingles with the air zone, also shown in Fig. 2.2.

Incorporated with variable coefficients of intake and exhaust proportions, this 

treatment can describe any discharge history. By means of a proper choice 

of parameter, in principle, this model can Infinitely approximate any real 

scavenging process.

2 .3  MATHEMATICAL TREATMENT
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2 . 3 . 1  GOVERNING EQUATIONS (IDEALIZED TREATMENT)

2 .3 .1 .1  Conservation of mass

For the general zone I. 

i i I
Am = Am -Am (2 .1 )

in out

change of mass flowing mass flowing
mass in = into the -  out of the 
the zone zone zone

For the air zone,

a 3 3
Am = Am -Am (2 .2 )

in out

a
where Am is the air mass entering the the air zone through inlet ports, 

in

a
Am is the air mass discharged from the air zone through exhaust 

out
ports.

For the residual gas zone.

9 9Am = -Am (2 .3 )
out

g
where Am is the residual gas mass discharged from the gas zone through 

out
exhaust ports.

For the mixing zone.

. m A mAm = A m , -Am rtIn out (2  4)

m
where Am is the air mass entering the mixing zone through inlet ports, 

in

m
Am is the mixture mass discharged from the mixing zone through 

out
exhaust ports.

2 .3 .1 .2  Composition equation
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The mass concentrations of air and residual gas within the general zone I 

are respectively.

Iv
c'=
9

%
ma+ni

I

ma+"b

I
where m is the air mass within the zone 

a
I

m is the residual gas mass within the zone 
9

It is obvious that.

for the air zone.

a
c = 1 

a

a
c = 0 

9

for the residual gas zone,

C ° = 0

c9= 1 
9

and for the mixing zone, 

m
m ac =

a g 
m

cm=  — S L
m +m a g

2 .3 .1 .3  Conservation of energy

(2 .5 )

( 2 . 6 )

(2 .7 )

( 2 . 8)

(2 .9 )

( 2 . 10)

( 2 . 11) 

( 2 . 12)
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For the general zone I.

I I  I I I I  I I
A( m u ) = £(Am  h )-£ (A m  h )-A Q -PA V (2 .13 )

in in out out

change of enthalpy enthalpy heat transfer 
internal = flowing -  flowing -  from the 
energy in into the out of zone
the zone zone the zone

external work 
-  done by 

the zone

I
where h is the specific absolute enthalpy within the upstream zone 

in

For the air zone.

A(m 3ua )= Ama ha-Am 6 t^ -A Q ^PA V3 (2 .1 4 )
in out

For the gas zone.

9 0 9 9 9 9
A(m u )=  -Am h -AQ -PAV (2 .15 )

out

For the mixing zone.

m m  m a m m  m m
A(m u ) = Am h -Am h -AQ -PAV (2 .1 6 )

in out

2 .3 .1 .4  Equation of state

Using local properties, the equation of state is used for each zone 

I I
PV= m RT (2 . 17)

i

2 .3 .1 . 5 Volume constraint

The volumes of the air. gas and mixing zones add up to the total volume 

of cylinder.

a g m
V +V +V = V (2 .1 8 )

cyi
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2 .3 .2  BOUNDARY CONDITION

For the inlet ports, the sum of air mass injected into the air and mixing 

zones equates to the total air mass flowing into the cylinder

a m
Am +Am = Am (2. 19)

in in in

The coefficients of intake proportion are defined as.

for the a ir  zo n e , 
a

Am  
a in

I = -------  ( 2 .2 0 )
Am

in

for the mixing zo n e , 
m

Am  
m in

I =   ■ (2 .2 1 )
Am

in

and evidently , 

a  m
I +r = 1 - (2 .2 2 )

Here, it is notable that in this model fresh air never enters the gas zone.

For the exhaust ports, the sum of mass discharged from the air. gas and 

mixing zones should be added up to form the total mass flowing out of the 

cylinder

a g m
Am +Am +Am = Am  (2 .2 3 )

out out out out

The coefficients of discharge proportion are.

fo r the a ir  zo n e , 
a

Am  
a  out

O = ---------
Am

out
for the gas zone . 

9
Am

o 9 = — ^
Am

out

(2 .2 4 )

(2 .2 5 )
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for the mixing zone, 
m

Am
m out __N

0  =   (2 .2 6 )
Am

out
and evidently, 

a g m
0 +D +D =1 (2 .2 7 )

From the equation of volume constraint (2 .1 8 ) . the energy equations of ail 

the three zones (2 .1 4 ) . (2 .1 5 ) and (2 .1 6 ) may be added to give the 

overall energy balance equation.

a a g g - m m  a a a g g m m
A(m u +m u +m u )=  Am h -Am (D h +D h +D h )-A Q  -PAV

in out cyl cyl

(2 .2 8 )

From the assumptions of constant volume. Ideal gas and zero-valued 

formation heat at 0 K, the left-hand side of equation (2 .2 8 ) becomes

m*RT m°RT mmRT
a < -------- 2  ♦  _ 9 .   £ )

7-1 7-1 7“ 1

= -^ T A(VaW °^Vm) *  0 
7"1

(2 .2 9 )

where T is the air temperature injected which is constant 
a

T is the residual gas temperature which Is constant 
g

T is the mixture temperature which is variable with mixture 
m

composition.

Due to the assumptions of Isochoric and adiabatic processes, from equation



Because of the assumptions of ideal gas and constant specific heat, the 

following relationship can be obtained

m_ . _m _  m _T +m T 
T = *  a 9 9

m mm (2 .3 1 )

hence.

^ o u t  Ta
Amln o " T a+O0 Tg+Om ( m ^ T a+m ^ T g ) / m m (2 32)

which gives the relation between the mass flowing into the cylinder and the 

mass flowing out of the cylinder.

From the equation of mass conservation for the air zone.

a a a 
Am = Am -A m

in out

3 3
= I Am -0  Am (2 .3 3 )

in out

both sides being divided by Am .
in

a Am _
Am _  |3  out

~ " Amln <2 34)

3 3
where Am = Am because there exists only pure air within the air zone 

a

Similarly, for the gas zone.

Am® _ „g Amout
<2-35,

9 9where Am =Am because there exists only pure residual gas within the gas 
9

zone. It is noted that air never enters the gas zone, and only residual gas 

discharges from the gas zone.

The composition within the mixing zone varies. From the conservation of air 
mass within the mixing zone.
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m m m m
Am =Am ~c Am (2 .36 )

a in a out

the following equation can be obtained

m m
Am m Anri .
 —  e |m-  —2. 0   —  (2 .37 )
Amln mm Am|n

Again, from the conservation of residual gas within the mixing zone 

m m m
Am = -c  Am (2 .38 )

g g out

hence

A_ m  m
om  ^ m Am
 SL   a 0 m  out

Am, m Am. , _  . . .In m In (2 .39 )

The five first-order ordinary differential equations (2 .3 2 ) , (2 .3 4 ) , (2 .3 5 ) .  
(2 .3 7 ) and (2 .3 9 ) constitute a simultaneous system. Provided the
coefficients of intake and discharge proportions. I and 0 , are specified, the 

system can be solved.

2 .4  COMPUTATIONAL PROCEDURE AND RESULTS

The system of five simultaneous ordinary differential equations (2 .3 2 ) .  
(2 .3 4 ) . (2 .3 5 ) .  (2 .37 ) and (2 .3 9 ) is solved by the fourth-order

Runge-Kutta method. The coefficients of intake and exhaust proportions 

may be set arbitrarily.

The step length for the input variables, i.e . delivery ratio. Is taken as 

0.02 . The curve of charging efficiency in the perfect mixing scavenging 

process is applied to the estimation of accuracy. Compared with the 

theoretical solution the errors of the computational results are maintained 

within 1.0% .

In addition, a comparison between experimental and computational results is 

made for the three scavenging eystems: uniflow, loop and cross

scavenging systems. The experimental work using model tests was 

conducted by List [2.31. In principle, the coefficients of Intake and 

discharge proportions are variable with the delivery ratio. In reality, in the
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following computations the coefficients of intake and discharge proportion are 

assumed to be maintained constant during each phase, and adjusted to 

obtain the computational results with an accuracy of 2 %. In these 

calculations, the temperatures of fresh air and residual gas are equal to 300 

and 800 K respectively. Fig. 2 .3  shows the comparison. Table 2.1 lists the 

characteristic parameters and coefficients of Intake and exhaust proportions 

in these computations.

As for the scavenging efficiency of the three scavenging systems, the unifiow 

scavenging system is superior, and the cross scavenging system is 

inferior. The reason is that cross scavenging causes too early 

short-circuiting and too large a "dead space* of remaining residual gas. 

and the uniflow scavenging system, especially with swirl, intensifies the 

entralnment and postpones the advent of short-circuiting and diminishes the 

"dead space*. The analysis of parameters in the computations coincides 

with the analysis of experimental work. This confirms the versatility of the 

generalized model.

2 .5  DERIVATION OF FORMULAE OF A SIMPLIFIED ANALYTICAL MODEL

In the previous section, those computations with the constant coefficients of 
intake and discharge proportions have obtained the satisfactory results. 
Actually, once the coefficients are constant, an analytical form of this model 

can be derived. As previously mentioned, this model considers the 

scavenging process as a process composed of the following three phases: 

(see Fig. 2 .2 )

Phase A: the displacement scavenging phase during which only residual gas 

is discharged from the cylinder, and at the end of which an amount of pure 

residual gas remains until the end of the process.

Phase B: the mixing scavenging phase in which a combined flow is 

discharged from the mixing zone and the air zone until the disappearance 

of the mixing zone.
Phase C: the short-circuiting phase during which a flow of fresh air passes 

straight through the exhaust ports.

2. 5.1 PHASE A: DISPLACEMENT SCAVENGING
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At the beginning of the scavenging process, the totai mass of residual gas 

is

P V 
g a cyl

m = --------- (2 .4 0 )
o RT

9
The air from the inlet manifold flows Into the cylinder through the Inlet port.

A portion of the air mixes with a specified initial volume of residual gas. its

volumetric ratio to the cylinder volume being 17 . and forms the mixing
o

zone. This means that at the beginning of the scavenging process the
9

mixing zone is composed of the residual gas of 17 m . and the residual
g 0 0

gas zone is of ( 1-17 >m . as shown in Fig. 2 .4 . Another portion of the air
o o

Injected produces the air zone. The coefficients of intake proportion are 
m a

I for the mixing zone, and I for the air zone. It is noted that the air 
from inlet manifold never enters the residual gas zone, hence the following 

equation Is valid.

m a
I +1 =1 (2 .4 1 )

On the exhaust side, only the flow from the residual gas zone passes 

through the exhaust ports. Therefore, the coefficient of discharge
proportion in the residual gas zone equates to one. and the other two
coefficients in the mixing zone and the air zone equate to zero. i.e .

D9= 1 (2 .4 2 )

oa= 0 (2 .4 3 )

m
D = 0 (2 .4 4 )

Phase A continues until the volume of remaining residual gas reaches a

specified value. Its volumetric ratio to the cylinder volume being 77 . This
g A

means that throughout phase A the residual gas mass of 77 m is intactiy
o o

contained in the mixing zone, while the residual gas mass in the gas zone
9 9reduces from d -17 )m  to 77 m . as shown In Fig. 2 .4 .

0 0  A o

The system of equations (2 .3 2 ) .  (2 .3 4 ) ,  (2 .3 5 ) . (2 .37 ) and (2 .3 9 )

respectively becomes as follows

30



^ o u t  Ta
a t jt - ' t :  (2 - 45>in g 

Am3 _ .a
■z^r; (2 .46 )in

* 9 TaAm _ _a

* m.n " ‘  T9 <2 4 7 )

A mAm a
- r —  = I (2 .48 )

In

* mAm
=

Am,  in
0 (2 .49 )

It Is easy to find their integral solutions for phase A.

T
a

m = m (2 .5 0 )
out T In

9

A A
m = I m (2 .51 )

in

T
9 9 a

m = m - — m (2 .52 )
o T In 

9

m  m
m = I m (2 .5 3 )

a in

P V
m m  a cyl

m = m = v   (2 .54 )
g g.o  oRT

9

From equations (2 .5 1 ) and (2 .5 3 ) , the following equation can be obtained:

a m
m + m = m (2 .55 )

a in
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The reference mass M Is defined by.

P V , a cyl
R Ta

With both sides being divided by M. from the definitions of the delivery ratio 

and charging efficiency, equation (2 .5 5 ) becomes.

i *  = X (2 .5 6 )
^ch

When phase A ends. It Is noted that the following relationships are valid 

m a
m +m = m = X M (2 .5 7 )

a .A  A in.A A

m a .A = ' " V *  (2 .5 8 )

m _ PaVcyl _ Ta M 
m g .A “ ^oR  Tg “ V o  Tg (2 .59 )

where the additional subscript A means the end of phase A.

From equation (2 .5 2 ) . the specified volumetric ratios are substituted

(2 .6 0 )

T
T  min.A <2 - 6 ”

g

The physical meaning of equation (2 .6 2 ) is obvious, because the volumetric

ratio of the residual gas zone at the end of phase A is reduced from the

initial ratio ( 1-77 ) to the final ratio 17 . that is. the gas zone makes the
o A

room of the volumetric ratio 1 -17 -77 for fresh air, as shown In Fig. 2 .4 .
o A

That indicates that when the delivery ratio reaches X^. phase A ends and

one obtains the charging efficiency 77 =X .
ch. A A

9 9 am A = m* -  = -  m. A A o T in.A 
9

PaVcy« „  / a Vcyi
^A R T ^o R T

9 9
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2 .5 .2  PHASE B: MIXING SCAVENGING

The boundary condition at the inlet ports Is the same as that for phase A. 
However, the condition at the exhaust ports is different. The residual gas 

no longer passes through the exhaust ports, but the air-gas mixture and the 

air do. The corresponding coefficients of exhaust proportion satisfy the 

following equation

9
D = 0 (assumption) (2 .63 )

m a
D +D = 1 (2 .64 )

This phase continues until the air-gas mixture in the mixing zone ceases to 

discharge, following a certain level of air supplied.

The original full system of equations (2 .3 2 ) , (2 .3 4 ) ,  (2 .3 5 ) . (2 .3 7 ) and 

(2 .3 9 ) respectively takes the following simplified forms

'"'"out 1

Amln Da+DmT /T  (2.65)m a

a a 1
  =  | - D  ----------- -----------
Amln Oa+OmT /T  (2.66)m a '

Am9 _ Q
Am ” (assumption) (2 .67 )

in

* mAm ,
_ 2 _  = |m -  D o"" -  ■■ ■ -■-■---------- ( 2 .  6 8 )

In O *D  T / Tm a

*  mAm „  _  _
_ 0 m m

Am ln 9 Oa ^D m T /Tm a
(2 .69 )

where



hence
T m , m_T m +m T /T  m _ a g g  a
T m . ma m +m

a 9

From equations (2 .6 8 ) and (2 .6 9 ) ,  the following equations can be derived

m m  TAm ._ni m _ m „ _
_ a  = <0 - I  > _ i  _ i _  (o  +O =2)
A m m  0 m  mm Om a (2 .7 0 )

9 9

From equations (2 .66 ) and (2 .6 9 )

Am

Amm
(PaH a)

~m
mm

m m

(0  - I  (O +D T /T  ))
_____________ 9 a—

( 2 . 71)

And from equation (2 .6 9 )

Am, ( ( Da +Dm T / T  ) + m " V m % In _ _  g a a g
4mm Om (2 .7 2 )

9

It Is necessary for the system (2 .7 0 ) , (2 .71 ) and (2 .7 2 ) to distinguish 

between two different cases.

m m
2 .5 .2 .1  Case I: I #D

Using the method of integrating factors, the solution of equation (2 . 70) can 

be achieved



After the substitution of the previous equation (2 .7 3 ) into equation (2 .7 1 ) .  

its solution can be obtained

m m A ♦ Oa ( 1 -  = 2 - ) ( m m - m m . )A r a g g .A

m T m
m A T _  m

♦ COa ♦ D m A  ) « n *  .< <  - 3-  )m T g . A m
m a mg .A  g .A

-  1)

(2 .7 4 )

Similarly, from equation (2 .72 )

m. = m. A in In.A

m T m c_o -I )m * T m
♦----- ------- ( - ^ - A +(Oa+Om=2 ))  mm ( l - (  — ) om )

(Om- lm) mm . a 9 ‘ Ag.A  g .a

(2 .7 5 )

Equations (2 .7 3 ) and (2 .7 4 ) may be substituted by equation (2 .7 5 ) and 

added up to give

m a m , a m -f m = m . + m . a a. A A

DmT .m. (m. -m , A)
. - a  mm . n - (1 - ( 0  - I  ) In In.A  } ,

a 9 mm +mm (Da+DmT /T  )a. A g .A  g a (2>76)

With both sides divided by M and substituted by equations (1 .4 ) .  (2 .5 7 ) .  

(2 .5 8 ) . (2 .5 9 ) and (2 .6 2 ) .  the previous equation (2 .7 6 ) changes into the 

following equation

( Dm- I m) ( x-c 1-n -1, ) ) m
= Cl -  77a ) -  t? (1 -  —---------------------------- 0. - A  _____

°  ,m<1~7yo”7?A)+1?o (Dm+DaTa /T g>) (Dm”,m>

(2 .7 7 )
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It is now necessary that case I should be subdivided into two different 

situations to investigate

m m  a a
2 . 5 . 2 . 1 . 1  Situation 1: D > I . I. e. D < I

From the requirement that the fractional exponent function in equation 

(2 . 77) must give a positive real solution, the following inequality can be 

obtained,

T
x *  ---------— —  <im( 1-7J -7K ) ♦ 7) <Dm+Da~ ) >  ♦ < l-»  - V

CD - I > O A O g 0 A

(2 .78 )

and the maximum of delivery ratio is called X . Phase B continues until
B

the delivery ratio achieves X^. and then the mixing zone vanishes, and the 

charging efficiency reaches the- maximum.

„  = 1-1? (2 .79)
^ch.B  A

where the additional subscript B means the end of phase 8 . The physical
meaning of this equation is that when phase B ends, fresh air occupies ail

the cylinder space except the residual gas 'dead space* of 7? V . as
A cyl

shown in Fig. 2.4 .

m m  a a
2 .5 .2 .  1.2 Situation 2: D <1 . I . e .D  > I

Equation (2 .77)  can be changed Into the following form
.m

lm(1-7?rt-7?A)47?^(Dm4 ° aT /T  ) — ~« , o A 'o a q ,,m  _m.77̂ . = ( 1 - t?a) -  7? ( -------------------------------------------------— a  ) (I -O  )ch A o , .m . _ m , _  ̂ , rn( I  -D  ) X+D (1-7? -7?a)47? (D +D T /T  )o A o a g
(2 .80)

Phase B can continue without limitation of delivery ratio. With Increase of 

air supply, the charging efficiency approximates to the same maximum.

71 = 1“T?^ch.B  A
m m

2 .5 .2 .2  Case II: I = D
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m m  a a
It Is noted that If I = D . then I = D

Similarly, the following solutions of equations (2 .7 0 ) .  (2 .71)  and (2 .72)

can be obtained

m _m  a . m m .
m a = m a . A - < O a ♦ d 7 ) ( " >  -  m . )  (2 .81)

a

ma = ma + —-  (1 - ( Da+Dm^ -) )  ( -  m™ . )
A o a 9 9 ' (2 .82)

T mm
m.n = " 'in .A  -  L  « D ^ 7 ) m m A ♦ m™ A> LnC )

°  a m g.A
(2 .83)

By transformation, the formula of charging efficiency can be derived as 

follows

Dm (X -(l-7 7  -7?.))
= -  v  exp(-

A °  <2.84)

Phase B could carry on infinitely. With increase of delivery ratio, the 

charging efficiency approaches the limit

^ch.B 3 '  ~  v  A

which Is the same as that In case I.

2 . 5 . 3  PHASE C: SHORT-CIRCUITING

m m
Actually, only under the situation 1: D >1 . the scavenging model 
includes phase C. In phase C. the mixing zone disappears. Only the air 

zone connects with both inlet and exhaust ports. The coefficients of 

proportion become as follows

D9=0 (2 .85)

m
O =0 (2 .8 6 )
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a
O *1 (2 .8 7 )

and

|9=0 ( 2 . 88)

m
I =0 (2 .89)

M O  (2.90)

Hence, the system (2 . 32) .  (2. 34) .  (2. 35).  (2. 37) and (2. 39) respectively 

becomes

Am «out _ ^

Amln (2 .91)

A a 
Am = 0

Am,in

A,n?_ = o
Amln

Amm 
~  — = 0 

mln

(2 .92)

(2 .93)

(2.94)

. m Am g

^ I n  (2 .95)

It is easy to get the formula of charging efficiency

„  = 77 = 1 - 7 ?  (2 .96)
^ch ch.B A

The physical meaning of this equation is that during phase C the charging 

efficiency maintains a constant because due to short-circuiting all the fresh 

air flowing into the cylinder, at the same time, is discharged from the 

cylinder, as shown in Fig. 2.4.

2 .5 .4  SUMMARY
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In summary, the formulae of the scavenging model are 

Phase A:

Hch=x ( 2 5 6 )

Phase B:

m m
(1 ) .  O >1

(D m- I m) <X-(1-77o- 17a >> Qm

^Ch -  n  -  V  -  V '  -  m (Om+OaT /T  >> (Om- l m)
o A o a g

x ‘  <c/n- 1'"> (,m (1 - ’ o - V  *  v Dm+D“r ”  ♦ " V a '

(2 ,77)

m m
(2 ) .  0  =1

rch = “ 7?^exp(-

D'" n - ,'o - ’»A)+ ’'o <0m* 0aV T9 )

<2.84)

m m 
(3 ) .  0  <1

-77A>+7} (D m*OaT /T  ) — J *
Deh= <1-1?A) -  » < --------------------— - ---- 2----------------2— 9-------  , <1 -D  )

« m - O m )  X * D m ( 1 - v o- V A ) *V 0 (O m* o \ / T g>
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(2 .8 0 )

Phase C:

= l - „  (2 .96)
"ch A
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2 .6  DERIVATION OF EXISTING MODELS FROM THE GENERALIZED MODEL

In this section, the equations of the previous pages are used to derive the 

scavenging lormulations of a number of well known workers.

2 .6 .1  HOPKINSON'S MODEL[2. 1]

Main hypothesis: Only the mixing zone 
Only phase B

dm.in

U
dmout

—ii ir

HOPKINSON’ S riOOEl

I
Hopklnson 
perfect adzing -0 9

o . «

0 . 7

0 6

OS

0 . 4

O . J

0.2

0. I *0

0
O S

0 . 2 S 0 - / 5  1 - 25  I - P S

OELIVERT RATIO

2 - 2 5

Formula of charging efficiency: from equations (2 .8 4 )

, -x
* c h =1- e

Remarks: Only one scavenging curve
No initial displacement scavenging phase
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2 . 6 . 2  BENSO N'S M O D E U 2 .4 ]

Main hypothesis: Two zones: the residual gas zone and the mixing zone 
No air zone
Two phases-phase A and phase B
No remaining residual gas after the end of phase A

(*■) (B)

dmdmout dmin out

SEKSOWS HO0EI

o . « *

0 . 5

0 . *

0 3

0-2

0- I

......... ! 1—  :
d is p la c e s )m t j 1 1 | 

Benson

/ p e r fe c t  a i * in £

/
-

T

/
y

s

V,
//

//
A

t>/ |m- l

/
0  -1

/ v°
I.... 1 ____

0 0 - 5
0 . 2 5  0 . 7 5

1 . 3  2 2 . 5
1 - 25  1 . 75  2 - 2 5

OCMVCRT RAT I O

Formula of charging efficiency: from equations (2 .5 6 )  and (2 .8 4 )

” ch=x
— ( X-< 1 -7 J  > )  

”ch ■ 1 - ”oe °

a  « aa  = 1 -  V

(A > A. )  A

Remarks: No short-circuiting of fresh air
No "dead space" of residual gas
No curves under 7? =1-ech
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2 . 6 . 3  MAEKAWA'S M O P E U 2. 5)

Main hypothesis: Two zones
No phase A
No remaining residual gas
isothermal process 

m m 0 >1

I*dm
dm. *-n  ,r
a : nr

in

MAt KAWAS MODf l

0 <*

0 *

o. r

0 6

os

o . 4

0 3

0 I

0 ■ l

00 0 5 I 1 5 2 2 5
0 2 5

0 E l l » C * r  R AI J O

Formula of charging efficiency: from equations (2 .7 7 )  and (2 .
~ m

(O m > lm and A «

W ’

Remarks: No InKlal displacem ent phase
No ‘ dead space" of residual gas 
Isothermal idealization

(X > XA> A



2 . 6 . 4  SYNTHESIS OF BENSON AND MAEKAWA'S MODELSt2.21

Main hypothesis: Three zones
No remaining residual gas 
Isothermal process

U )  t f l )

^dm.
dm. ln in
Iadm.in

/

V
— 4 < \  ^ dmout

Imdtn.
dm. ln in ~

D̂ drnout
dm

Iadm.in a
out

Dadmout
S E * S O H - m » E < a w a • $  n o O f t

Benson-»Uekv**

p e c fec t a lx ln y

0 .  '

0 6

0 . ?

o. 4

0 . 3

J i

u
0 - 25 0 * 5  I . J 5  I . T 3

DEL 1 VERT RATI O

7 7  5

Formula of charging efficiency: from equations ( 2 .5 6 ) .  (2 .7 7 )  and (

ch

ch

(X < XA=1-T7Q) 

(D m - I m ) ( X - ( 1 - t;o ) )  Dm

( D m > lm and X  ̂ XB

ch = 1

,mn - V * * o

( X  > x B )

Remarks: No "dead space" of residual gas 
Isothermal idealization

2 .9 2 )

)
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2 . 6 . 5  THE M ODIFIED BENSON M O D E U 2 .2)

Main hypothesis: Two zones: the residual gas zone and the mixing zone 
No air zone
Two phases: phase A and phase B 

Remaining residual gas at the end of the scavenging process

( A )  ( B )

u  &\
\

— 14 ' v_  dm .dm __ I out
"Hi r

-

u
dm ——  —in

dmout
ii ir

if.i e-MsoM ioorL
r _ _ .  

displacement I
e r f e c  t  a i i  i n «

l i f t e d  Be n s o n

Ot

0 25 I .»5 2 25
DEL i 10

Formula of charging efficiency: from equations (2 .5 6 )  and (2 .8 4 )

’’ch = x
CX < Xa = 1 -t, 0 -7,a )

X -( l-T )  -1) ) 
’’ ch = < 1 - V V * * P < ----------------- - >n-v

(X > XA>

Remark: No short-circuiting of fresh air
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2 . 6 . 6  THE MODIFIED MAEKAWA M O P E U 2 .2 ]

Main hypothesis: Three zones
Two phases: phase A and phase B
No remaining reaiduai gas after the end of the process
isothermal process 

m m 
D >1

(*0 ( b)

I0 dm. 
dm
a1” I dm

rim

□ ( If 111

out

1 0 0 1 F I E O  r u E K H t f A S  MODEL

I
dlsplacement

p * r f * c t  a l z l n

0 8
nO '*.lfi.6d

0T

0 6

0  ■ 4

0 . 3

0-2

0. i

00 I 2 2 5
I -23 2 - 2 5

DEC 1 VERT RA- f lO

Formula of charging efficiency: from equations (2 .5 6 )  to (2 .8 4 )

mO (X-d-H ))

Remarks: No ‘ dead space” of residual gas 
isothermal idealization

<X < ^A= 1 - V

(X > XA>
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2 . 6 . 7  BAUDEQUIN AND ROCHELLE S M ODEU2. 2 )

Main hypothesis: Three zones
Two phases: phase A and phase B 
Remaining residual gas 
Isothermal process

(*■> (B)

dm. 1^ZZ£k-4 '
■ * £  n r iin

to  ~out to

I dm. in

Dmdmout
dmout
Dadmout

9 A U O E O O I * - * O C M E U E  S «OOEl

0 B p e r f e c t  a l x in g  —

0 B
B ,u d eq u  in -R o c h e lle

0 6

0 5

9. 4

0 . 3

0 i

0. I

0
0 . 5

0 . 25 0 . 7 5  l . 2 5  I . 7 5

0 E L I V E RT  R A t l O

2 25

Formula of charging efficiency: from equation (2 .5 6 )  and (2 .8 4 )

*c h  = X (X < x A= i - v

V Ch

Dm ( X - ( l - i? 0-»)A>)

Om ( l - , 0- V +” o

(X > X . )  A

Remarks: Isothermal Idealization



2 .7  CRITIQUE OF VARIOUS MODELS

Two groups of typical experimental results of charging efficiency for different 
scavenging systems by Schweitzer [1.1] and Flat Co. [2.6] are shown in 

Figs. 2. 5 and 2.6 .  It can be seen that the experimental curves of charging 

efficiency have the following characteristics.

( 1 ) .  variability: the different curve for the different scavenging systems, 

even for the different running conditions.

(2 ) .  a straight-line section for the displacement scavenging phase.

(3 ) .  a monotonically increasing curve section for the mixing scavenging 

phase, which has gradually decreasing gradient, possibly intersects the 

perfect mixing curve, and with increase of delivery ratio approaches a limit 

of less than 1.

Hopkinson's model is the simplest one-zone model with the mixing zone and 

gives only one unique charging efficiency curve. This model includes only 

the mixing scavenging phase.

Benson's model is a two-zone model with the mixing and residual gas zones

and gives a curve family of one parameter tj which describes the effect of
o

varying residual gas mass discharged during the displacement scavenging 

phase. This model includes the displacement scavenging phase, but does 

not Include the short-circuiting of fresh air. Therefore, this model cannot 

explain the possible intersection of the experimental curve with the perfect 

mixing curve.

Maekawa's model is a two-zone model with the mixing and air zones and
m m

gives a curve family o f two parameters I and D which describe the effect 
of varying exhaust history during the mixing phase. This-model does not 

Include the displacement scavenging phase. The curve family can Intersect 
the perfect mixing curve, but displays a wrong intersection trend. When 

such Intersection occurs, the charging efficiency curve should be first higher 

and then lower than the perfect mixing curve.

The synthesis of Benson and Maekawa's models is a three-zone model and
,m m

gives a curve family of three parameters 77 . I and D . This model
o

does not include either a residual gas "dead space" or the short-circuiting
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of fresh air. and cannot express a very slow increase of charging efficiency 

at the side of high delivery ratio.

The modified Benson model is a two-zone model with mixing and gas zones

and gives a curve family of two parameters i t  and i t  . Without short-
o A

circuiting of air, this model has a residual gas Mead space" of n  V
A cyl

The modified Maekawa model is a three-zone model and gives a curve family
m

of two parameters v  and 0  . Without "dead space" of residual gas. this
o

model includes short-circuiting of air. Baudequin and Rochelle's model is

a three-zone model and gives a curve family of three parameters i t  . v  
m o A

and D . This model includes both "dead space" of gas and short-circuiting

of air. These three model can correctly express the intersection of the

perfect mixing curve and the very slow increase of charging efficiency at

high delivery ratio. The generalized model suggested In this chapter is a

three-zone model and gives a five-parameter curve family. This model can

precisely and flexibly represent alt characteristics of the experimental
charging efficiency curve, because its five parameters provide greater

freedom for curve fitting.

Actually, this three-zone model can be further simplified as a two-zone 

model with air and gas zones and with variable coefficients of discharge 

proportion. In principle, this two-zone model can provide an exact curve 

for any scavenging process. However, unlike the three-zone model, the 

two-zone model cannot provide an analytical formula and requires the 

numerical method to solve It.

2 .8  CONCLUSIONS

Because of Its brevity. 1he model characterized by isobarlc and isochoric 

process is apposite to assess scavenging performance for the ideal cycle 

simulation. If the parameters are chosen properly, this model can give a 

good estimation. The shortcomings of this model are its incapacity to give 

a step-by-step description of the scavenging process and requirement of an 

artificial history of the flow and concentration fields.

The model needs five parameters:

one of two coefficients of intake proportion of the air and mixing zones
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two of th re e  coeffic ien ts  of d ischarge proportion o f the a ir . gas and mixing  

zones

ratio  of th e  in itial gas zone volum e to the cy lin d er volum e  

ratio  of th e  rem ain ing  gas zone volum e to the cy lin d er volum e

U nder th e  fu rth e r assum ption of constant coeffic ien ts  of in take and d ischarge  

proportions , the analytica l form ulae for this m odel can  be derived. And 

from  it. a ll existing m odels with the assum ption of isobaric  and isochoric  

scaveng ing  process can  be deduced.
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Table 2.1 Parameters and Coefficients Used in Computations

type of initial volumetric ratio volumetric ratio

scavenging volumetric of displacement of remaining

system ratio of - 

mixing zone

scavenging residual gas

uniflow .55 .45 0.

loop .60

CMCO o GO

cross .63 .12 .25

type of coefficients of

scavenging intake proportion exhaust proportion

system

- air zone mixing zone air zone mixing zone

unifiow

loop

cross

.58 .42

.65  .35

.65  .35

.10 .90

.44  .56

.41 .59



(a). Entrainment

(b). Entrainment 
and

Recirculation

Fig. 2. 1 Entrainm ent and Recirculation
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Chapter 3 STEP-BY-STEP THREE ZONE THERMODYNAMIC SCAVENGING

MODEL

3.1 INTRODUCTION

In Chapter 2. the genarallzed Isobaric and Isochoric thermodynamic model 

has been suggested. In that model it is assumed that the cylinder Is 

subdivided into three zones: air. gas and mixing zones, and composition 

and temperature in each zone are homogeneuous.

As aforementioned, the model may provide a good approximation of the 

scavenging process. However, under the assumptions of constant pressure 

and volume the model fails to give a detailed description of varying pressure 

and volume during the scavenging process, and cannot determine the 

trapped pressure and mass based on the running condition. On the other 
hand, step-by-step numerical calculations of the scavenging process are of 
particular Importance for optimizing port timing and matching a 
supercharger.

This chapter is aiming at developing a step-by-step thermodynamic model 
with variable cylinder pressure and volume following the previous idea that 
the cylinder space is divided Into the three zones in which composition and 

temperature are homogeneous respectively.

3 .2  PHYSICAL DESCRIPTION

The scavenging process including the inlet, in-cylinder and exhaust flow 

processes is of considerable complexity. These processes are unsteady. 
However, it has been shown by several investigators [3.1]. [3.2] and [3.3] 
that these unsteady flow processes can be analyzed on a quasi-steady 

basis. "Quasi-steady" state here means that there are no local pressure 

differences in the cylinder and in the inlet and exhaust manifolds, i .e.  the 

pressures are only functions of time, and that the mass rate flowing through 

the valves and ports at all time obeys the steady-state discharge equation, 
see Fig. 3. 1.

As above mentioned, owing to the entrainment the air jet flowing into the
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cylinder becomes two zones: the mixing and air zones. And in virtue of the 

recirculation, a mixing zone is separated from the residual gas zone. Thus, 
the cylinder is actually divided into three zones. Among three zones, only 

the composition of the mixing zone Is temporally and spatially variable.

The scavenging process may be composed of the following phases: 
displacement scavenging, mixing scavenging and short-circuiting. Following 

the same idea as in Chapter 2. specifying the initial volume of the mixing 

zone, "dead volume" of the residual gas zone and coefficients of intake and 

discharge proportions within the three zones during different phases provides 

an artificial history of flow and concentraton during the scavenging process. 

The simplifying assumptions made In this chapter are as follows

(1) .  uniform pressure within the cylinder
(2) .  dividing the cylinder into three zones: the air. gas and mixing zones
(3) .  homogeneous temperature and composition within each zone
(4) .  heat transfer between zones and walls using Woschni's correlation on 

the basis of a bulk average temperature
(5) .  neglect of mass, momentum and energy transfer between zones
(6) .  specifying an initial volume of the mixing zone. If necessary, a "dead 

volume" of the residual gas zone and an artificial history of Intake 

proportions within the air and mixing zones, and of discharge proportions 

within the air, gas and mixing zones.

3 .3  MATHEMATICAL TREATMENT

3.3.1 GOVERNING EQUATIONS

3 . 3 . 1 . 1  Conservation of mass

For the general zone I.

I I I
Am = Am -Am (3. 1)

in out

change of mass flowing mass flowing
mass in = Into the -  out of the 
the zone zone zone

where, as above, the superscript i may be taken as a. g and m which
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represent the air, gas and mixing zones respectively.

3 .3 .1 .2  Composition equation

Instead of air mass concentration, in this model, the equivalence ratio is 

used indirectly as a parameter of composition, because it can be 

conveniently used for calculating thermodynamic properties of air, gas and 

their gas mixture.

For the general zone i.

I i l l
m m +m -m

I  f_ f. o f.ln f.out

,S (% .o +'V lr> - ,V o u « )

and

i I I 
m = m+m 

f s

where the superscript i retains the previous significance.

I
m is the mass of burnt fuel within the zone i, 
f

I
m is the sum of air mass and the air mass consumed in the 

s i
combustion of the fuel m.

f

fs is stoichiometric fuel-air ratio, 

the subscripts o, in and out represent the initial, inflowing and 

outflowing amount respectively.

Under the assumption of complete combustion, the mass of residual gas is

i 1 i 
m = ( 1+~J m
9 fs 1 (3 .3 )

and the actual mass of fresh air is 

I i I
m = m -m (3 . 4)

a g
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3 . 3 . 1 . 3  Conservation of energy

For the general zone i

i i i I
A( m u ) = E<Am h ) -£ (  Am h ) -AQ-PAV  

in in out out
( 3 .  5)

change of enthalpy
internal = flowing 
energy in into the
the zone zone

enthalpy
flowing

heat transfer 
from the 

zoneout of 
the zone

external work 
done by 
the zone

I
where h is the specific absolute enthalpy within the upstream zone 

in

Similarly, the superscripts a. g and m are substituted for i to stand for the 

air. gas and mixing zones.

The equilibrium thermodynamic properties of the products of combustion of 
CnH2n and air are calculated from cylinder pressure, local temperature and 

equivalence ratio within each zone based on the mathematical expressions 

for the internal energy and gas constant by Newhall and Starkman [3.4].

Woschni's correlation is adopted to calculate heat transfer [3. 5]

AQ = aA (T -T  ) At (3 .6 )
w w cyl w

where a  Is the heat transfer coefficient.

( P-P )> o
0 .8

(3 . 7)

where the bulk average temperature is defined by

a m g 
m T «-m T +m T 

a mm 9T
cyl a m g 

m +m +m ( 3 .  8)
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and
D is the cylinder bore

V is the mean piston speed 
m

V is the swept volume 
s

P is the cylinder pressure

P . V . T are the trapped pressure, volume and temperature,
tr tr tr

P-P Is the difference between cylinder pressure with combustion and
o

cylinder pressure at the same point in the cycle for the same conditions 

except for the absence of any combustion.

The total heat transfer from the cylinder Is composed of three portion: heat 
transfer from the cylinder head, liner and piston for which the subscripts h.
I and p represent respectively. Thus, the total heat transfer is

AQ = AQ +AQ+AQ (3 .9)
cyl h I p

The heat transfers in the various zones are allocated in relation to their
mass and temperatures. I .e.

I
m T

I I
AQ = AQ

maT +mmT +mflT ^  ‘ 3. 10,
a m g

where the letter I may be taken as a. g and m for the air. gas and mixing
zones respectively.

Heat transfer between the zones is ignored.

3 . 3 . 1 . 4  Equation of state

Using local properties, the equation of state is used for each zone 

i i
PV = m RT (3 . 11)

3 . 3 . 1 . 5  Mass constraint

The present trapped mass is equal to the sum of the previous trapped mass, 
inflowing and outflowing mass
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m= m +Am -Am
o in out

( 3 .1 2 )

3 . 3 . 1 . 6  Volume constraint

The volumes of the air. gas and mixing zones add up to the total volume 

of cylinder.

The instantaneous cylinder volume and its derivative in respect of crank 

angle can be calculated based on the piston-crank mechanism. The kinetic 

analysis of a horizontal opposed piston engine, which this thesis 

emphasizes, is attached in Appendix i.

3 . 3 . 2  BOUNDARY CONDITIONS

The mass flowing through the inlet or exhaust ports is determined from the 

compressible flow equation

(3. 13)
cyl

P
u

Am= C A 
d

*  At
m

(3.14)

where



where Am is the mass flowing through the inlet or exhaust ports

II  is the pressure ratio
A is the geometric flow area

C is the coefficient of discharge 
d

P , R . T are the stagnation pressure, specific gas constant, 
u u u

stagnation temperature, all at the upstream condition
P Is the pressure downstream 

d
y  is the specific heat ratio based on the upstream conditions

The coefficient of discharge in equation (3. 14) is defined as the 

quotient of the actual and the theoretical mass flow rates based on the 

geometric area. The coefficient of discharge is quoted from a published 

correlation [3.6]. which, from dimensional analysis, is established between 

the coefficient of discharge and the following variables: the cylinder
pressure, port opening and temperature. Actually, it has been shown [3. 7] 
that constant coefficients of discharge render rather good results.

For the general zone i.

the definitions of the coefficients of intake and discharge proportion are the 

same as in Chapter 2

(3 . 17)

(3. 18)

It is noted that the following equations are valid

a m 
1 + 1 = 1 (3.19)

a g m 
D +D +D = 1 (3.20)

The equation of energy conservation (3 .5)  becomes

(3.21)
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It is noted that with the equations of mass and volume constraints. (3. 12) 

and ( 3 . 13 ) .  the equations of energy conservations of all the three zones
(3.21)  may be added to give the following overall energy balance equation

A( mu) = Am h -Am h -AQ -PAV
in in out out cyl cyl

(3.22)

change of enthalpy 
internal = flowing into -  
energy the cylinder

enthalpy 
flowing out 

of the cylinder

heat transfer 
from the 

cylinder

external 
-  work 

done

In summary, for each zone equations ( 3 . 1 ) .  ( 3 . 2 ) .  ( 3 .2 1 ) .  ( 3 .1 4 ) .
(3.10)  and (3 .11)  constitute a system of governing equations, and for ail 
the three zones the equations of mass and volume constraints. (3. 12) and 

( 3 . 13 ) .  must be satisfied. The simultaneous equations are non-linear. 
When the coefficients of intake and discharge proportions. I and D. are 

given, the system is solvable.

3 .4  COMPUTATIONAL PROCEDURE AND RESULTS

The flow chart for computation Is shown in Fig. 3.2.  The simultaneous 

system is solved by a stepwise integration method. With the compressible 

flow equation ( 3 . 1 4 ) .  equations (3 .1 )  and (3 .2 )  can be explicitly solved 

for mass and composition. However, equations ( 3 .2 1 ) .  (3.10)  and (3.11)  

are coupled for pressure, temperature and volume to satisfy the constraint 
equations (3.12)  and ( 3 . 1 3 ) .  A triple iteration loop is used for solution. 
The outer iteration loop ensures the volumes of the air. gas and mixing 

zones to satisfy the equation of volume constraint, and thereby verifies the 

conjecture of the cylinder pressure. The intermediate iteration loop makes 

the temperature and volume with each zone to satisfy the equation of state 

(3. 11). The reason for the introduction of the inner iteration loop is that the 

calculation from thermodynamic properties to temperature requires the 

inverse function of the internal energy polynomial, whose analytic form, 
however, is difficult to obtain. The program is incorporated in a 

step-by-step cycle simulation propram as an optional part to describe a 

scavenging process. The Increment Is 1° crank angle.

For the sake of estimating the difference resulting from the isobaric and
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Isochoric assumptions in the previous model in Chapter 2. the same 

experimental work for the uniflow, loop and cross scavenging systems by List
[2.3] is used again. The computations use the varying pressure and volume 

model suggested in this chapter. Because the original paper by List did not 

provide the details of the tested engines, these computations have been 

done based on a supposed engine with the same size and port timing, but 
with the different scavenging systems, whose characteristics are summarized 

in Table 3.1.  it is assumed that for the loop and cross scavenging systems 

the unsymmetrlc timing is realized by auxiliary scavenging valve The 

coefficients of intake and discharge proportions are the same as in Chapter 
2. as listed in Tab. 2.1.  The comparison between the computational 
results from these two models shows that the discrepancy remains within 

5%. Thus, the isobaric and isochoric model gives a good approximation, 
as shown in Fig. 3.3.  Pressures, temperatures, equivalence ratios and 

mass during the scavenging processes of the unlfiow. loop and cross 

systems are illustrated in Figs. 3 .4  to 3 .6 .  respectively. From these 

figures, it is obvious that under the same running conditions, among three 

scavenging systems the unifiow scavenging system traps the largest and 

purest charge, and achieves the best scavenging quality, the cross system 

traps the smallest and least pure, and the loop system situates between the 

previous two systems.

3 .5  COMPARISON OF DIFFERENT STEP-BY-STEP MODELS

In a real scavenging process, the air flowing into the cylinder first enters 

the air zone exclusively and then entrains gas within the gas zone and forms 

the mixing zone, in other words, air and gas from the air and gas zones 

respectively flow into the mixing zone.

From the equations of mass constraint ( 3 . 1 2 ) .  overall energy balance
(3.22)  and compressible flow ( 3 .1 4 ) ,  it is evident that under given 

conditions of inlet and exhaust manifolds, the history of overall exhaust 
composition, i .e. the upstream condition before exhaust ports, dominates 

the scavenging process. On the other hand, different combinations of 

different compositions and coefficients of Intake and discharge proportions 

within the three zones may lead to identical histories of overall exhaust 
composition.
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The models suggested in Chapter 2 and this chapter both consider that a 

part of air injected through the inlet ports directly mixes with a given amount 

of residual gas and forms the mixing zone. On the basis of the previous 

analysis, provided the correct exhaust history is specified these models are 

always able to give an approximate description of the real scavenging 

process.

3 .5 .1  STRE1T AND BORMAN'S MODEL [3.8]

3 . 5 . 1 . 1  Main points (Fig. 3.7)

Two zones:

zone 1 connected to the inlet ports 

zone 2 connected to the exhaust ports

Two phases:

displacement scavenging 

mixing scavenging

Mass transfer:

During the displacement scavenging phase, there is no mass transfer 

between these two zones, i .e.  zone 1 is the air zone and zone 2 is the gas 

zone.

During the mixing scavenging phase, both mass transfer rates from zone 1 

to zone 2 and from zone 2 to zone 1 increase with time. i .e.  both zones 

1 and 2 become the mixing zones with different compositions. However, 
with increase of time, the compositions within zones 1 and 2 approach the 

same concentration.

3 . 5 . 1 . 2  Analogous description based on the model suggested in this 

chapter

Two zones:
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the gas zone and the mixing zone

Two phases:

displacement scavenging 

mixing scavenging

Coefficients of intake and discharge proportions:

Throughout the scavenging process ail the air entering the cylinder flows
m

into the mixing zone. i .e.  I =1 .
During the displacement scavenging phase, only the gas within the gas zone 

flows out of the cylinder.
During the mixing scavenging phase, with increase of time the coefficient of 
discharge proportion from the gas zone decrease, and the coefficient of 
discharge proportion from the mixing zone increase. When the coefficient
of discharge proportion from the gas zone decreases to zero, the
scavenging process becomes a completely mixing scavenging process.

3 . 5 . 2  BENSON'S MODEL [3.9]

3 . 5 . 2 . 1  Main points (Fig. 3 .8)

Three zones:

the air. gas and mixing zones.
Throughout the scavenging process the air zone is always adjacent to the 

inlet ports.

Three phases:

displacement scavenging phase
short-circuiting
mixing scavenging phase

During the scavenging process, the gas. air and mixing zones are adjacent 
to the exhaust ports in the displacement scavenging. short-circuiting and 

mixing scavenging phases respectively.
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Mass transfer:

The air entering the mixing zone at any instant of time is a fixed proportion 

of the instantaneous air flow rate entering the cylinder. The gas entering the 

mixing zone is treated as follows:

treatment 1 : At any instant of time the proportions of gas and air entering 

the mixing zone are constant, i .e.  a fixed gas entrainment ratio, 

treatment 2 : The mass of gas in the gas zone is reduced linearly with time.

3 .5 .2 .2  Analogous decription based on the model suggested In this chapter

Three zones and three phases are the same as above mentioned. 

Coefficients of intake and discharge proportion:

Throughout the scavenging process, the ratio of coefficients of intake
proportion into the mixing and air zones is equal to the same fixed ratio as

m a
in Benson's model, i .e. I / 1 =const.

During the displacement scavenging phase, only the gas within the gas zone
g

discharges from the cylinder, i .e. D =1 .

During the short-circuiting phase, only the air within the air zone flows out
a

of the cylinder, i .e.  D =1 .

For the mixing scavenging phase, choosing an initial volume of residual gas 

for the mixing zone and coefficients of discharge proportion from the gas 

and mixing zones is equivalent to obtaining virtually the same overall 
exhaust composition as that in Benson's model. It is obvious that for

treatment 1 the coefficient of discharge proportion from the gas zone is
variable in order to get the same history of exhaust composition with in 

Benson's model, while for treatment 2 the coefficient of discharge proportion 

from the gas zone is fixed so as to give an linear reduction of the mass in
the gas zone with the lapse of time.

3 . 5 . 3  HEESCHEN'S MODEL [3. 10]
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3 . 5 . 3 . 1  Main points (Fig 3 .9 )

Three zones:

the air. gas and mixing zones.

Throughout the scavenging process the air zone is always connected with the 

inlet ports.

Three phases:

displacement scavenging 

mixing scavenging 

short-cirtultlng

Mass transfer:

During the displacement scavenging phase, only the gas zone is connected 

to the exhaust ports.
During the mixing scavenging phase, only the mixing zone is connected to 

the exhaust ports. The mixing scavenging phase continues until the mixing 

zone disappears.
During the short-circuiting phase, only the air zone is connected to the 

exhaust ports.
Throughout the scavenging process, both air and residual gas from the air 

and gas zones respectively enter the mixing zone in a fixed proportion which 

is dependent on power output.

3 . 5 . 3 . 2  Analogous description based on the model suggested in this 

chapter

Three zones and three phases are the same as above.
Coefficients of intake and discharge proportion:

During the displacement scavenging phase, only the gas in the gas zone
g

discharges from the cylinder, i. e. D =1 .
During the displacement and mixing scavenging phases, the ratio of 

coefficients of intake proportion into the mixing and air zones is the same 

as in Heeschen's model.
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Similarly, for the mixing scavenging, fitting an initial volume of residual gas 

for the mixing zone and coefficients of discharge proportion from the gas 

and mixing zones is to maintain the same history of overall exhaust 
composition as In Heeschen's model.

During the short-circuiting phase, only the air in the air zone flows into and
3  3

out of the cylinder, i .e.  i =1 and D =1.

3 .6  CONCLUSIONS

The present model characterized by varying pressure and volume is able to 

give a step-by-step description of the scavenging process. This model, like 

any other thermodynamic model, requires an artificial history of the flow and 

concentration fields.

The model needs five parameters:

one of two coefficients of intake proportion of the air and mixing zones 

two of three coefficients of discharge proportion of the air. gas and mixing 

zones

ratio of the initial gas zone volume to the cylinder volume
ratio of the remaining gas zone volume to the cylinder volume

Properly selecting the previous parameters. the generalized step-by-step
three zone model can represent any one of the various scavenging models
discussed in this chapter.
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Table 3.1 Characteristics of the Supposed Engine

Number of cylinders

Bore
Stroke
Swept volume 

Nominal compression ratio 

Rated power output 
Exhaust port open 

Inlet port open 

Exhaust port close 

Inlet port close 

Two-stroke cycle 

Compression ignition 

Scavenging system

3
82. 55 mm 

2t)3. 2 mm 

3.261 I 
14/1 

78 kw 

66 BBDC 

43 BBDC 

53 ABDC 

56 ABDC

optional
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Chapter 4 PHENOMENOLOGICAL FLUID DYNAMIC MODELS BASED ON JET

MIXING FOR UN1FIOW SCAVENGING

4.1 INTRODUCTION

A number of models have been developed over many years to describe the 

scavenging process. The essential nature of the previous models is 

thermodynamic, although some recent models have begun to take some gas 

dynamic characteristics into consideration. All these models require an 

artificial description of the history of the transport process in the cylinder in 

order to bridge the information gap which the omission of details of the 

transport process incurs.

The behaviour of turbulent jet flow in the scavenging process was first 
investigated many years ago [4.1]. Nevertheless, the complexity of the 

phenomenon precludes a comprehensive model. Fortunately, the
axisymmetry of the uniflow scavenging process, which achieves the best 
scavenging quality, alleviates the difficulty of the problem.

The aim of this chapter is to develop two simplified and practical fluid 

dynamic models for uniflow scavenging. Under the simplifying assumptions, 
such as uniform cylinder pressure and simple profiles of velocity and 

composition, the models in this chapter quickly and easily give a
phenomenological description with a temporal and spatial resolution of flow 

and concentration fields.

Firstly, this chapter outlines the fundamental features of the transport

phenomena in the scavenging process.

Secondly, following a conventional idea, this chapter introduces a steady jet 
model. This model assumes that the scavenging process is composed of two 

periods:

(1) .  the blowdown period based on compressible flow with varying pressure; 
and
(2) .  the scavenge period based on incompressible flow with constant

pressure and opening of the inlet and exhaust ports.
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The model retains the original advantages of simplicity and the ability to 

design the exhaust belt and approximately determine air flow rate [4.2], and 

furthermore, has the merit of providing a better physical description of the 

scavenging process than the earlier thermodynamic models.

Finally, this chapter suggests a multi-zone model based on unsteady jet 
theory. The model treats the scavenging process as compressible flow with 

varying pressures and variable opening of the Inlet and exhaust ports. This 

model has two versions:

version 1 based on mass entrainment rate, in which the jet is considered 

as an entity;
version 2 based on eddy diffusivity theory, in which the jet is further divided 

into several strips.

The model has all the capacities possessed by the steady jet model, and 

gives a better temporal and spatial resolution of the transport process.

4 .2  TRANSFER PHENOMENA IN THE SCAVENGING PROCESS

The scavenging process involves the transfer of momentum, energy and 

mass induced by forced convection. For convective flow, momentum
transfer assumes a dominant role over those- of energy and mass transfer,

although these three transfers actually interact.

When air emerges from the inlet ports, it interacts with gas from the

surroundings to form a jet. The jet separates from the ports. Immediately 

downstream from the ports, there is a region, the potential core, within 

which the velocity and concentration of air remain unchanged. As a
consequence of momentum exchange between the jet and surroundings, 
fluid is entrained from the surroundings perpendicular to the direction of 

flow. Outside the potential core a free shear layer develops. Entrainment 
is due to shear action as represented by an exchange coefficient and the 

transverse velocity gradient. The turbulent exchange coefficient is several 
orders of magnitude higher than the molecular exchange coefficient.

Because the jet is confined by the cylinder wall, cylinder head and piston, 
the void in the surroundings left by jet entrainment must be replenished from
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the part near the void. On the other hand, because of entrainment. the 

jetting region expands and decelerates with propagation. When the jet has 

developed sufficiently to block the supply of the void from the surroundings 

themselves, the void must be filled up directly from the jetting region. A 

recirculating flow is set up. Entrainment causes the gas in the surrounding 

region to flow into the jetting region. By contrast, the recirculation causes 

the air in the jetting region to flow into the surrounding region, as shown 

in Fig. 4. 1.

In some scavenging systems, intake swirl is used as a means of improving 

the scavenging quality. The tangentially directed inlet ports induce rotation 

in a stream of fluid. The jet flow has a tangential velocity component in 

addition to the axial and radial components of velocity encountered in 

non-swirling jets. The presence of the swirl results in the setting up of 
radial and axial pressure gradients which, in turn. Influence the flow field. 
In swirling systems with weak swirl, the jet flows along the inner region and 

leaves a recirculating region in the outer portion of the jet. As the swirl 
intensity increases, a critical point is reached when the adverse pressure 

gradient along the jet cannot be further overcome by the kinetic energy of 
the fluid particles flowing in the axial direction, and a recirculating flow is 

set up in the central portion of the jet. The internal recirculation zone has 

the form of a toroidal vortex. The abrupt change of flow pattern is called 

vortex breakdown. [4.3] Thus, the flow in the cylinder has two patterns:

(1) .  inner jetting flow with weak swirl; 
and

(2) .  outer jetting flow with strong swirl, 

as shown in Fig. 4.2.

The angle of spread of the jet increases with increasing swirl Intensity. In 

the case of vortex breakdown, with increase of swirl, the length of the 

central recirculation region decreases and its width increases. The 

entrainment increases, causing faster decay of the velocity and 

concentration of the jet with distance from the Inlet ports.

For jet flow in the scavenging process, variation in density arises due to 

heterogeneities in temperature and composition. Density variation changes
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local effective transport properties, buoyancy effects augment the transfer 

process, hence affect the flow, [4.4]

The quantitative description of the transfer phenomena is explained in 

Appendix II.
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4 .3  PHENOMENOLOGICAL STEADY JET MODEL

4.3.1 PHYSICAL DESCRIPTION

As aforementioned, a scavenging process can be subdivided into three
distinct periods: (1) the blowdown period. (2) the scavenging period and
(3) the charging period. In ordinary circumstances, however, the amount
that can enter during the charging period is small because the time interval

is very short and pressure in the cylinder during this period is rising rapidly.
due to the upward movement of the piston. Therefore, the scavenging
process is considered as a process of two periods: (1) the blowdown period

and (2) the scavenge period. During the blowdown period period r  .
b

the pressure in the cylinder falls to the trapped pressure which is between
the inlet and exhaust manifold pressures. The blowdown period can end
before or after the inlet ports or valves are open. During the scavenge

period t  . the turbulent jet. with or without swirl, entrains and pushes the 
s

residual gas out of the cylinder through the exhaust ports or valves until they 

are closed. Owing to entrainment and recirculation, the cylinder space is 

divided into two regions: the jetting and recirculating regions. The flow 

patterns may be of two forms: either an inner jetting flow without or with 

only weak swirl, or an outer jetting flow with strong swiri. Actually, the jet 
flow is a very complicated unsteady flow. It includes sudden jet expansion, 
impingement and sudden contraction, shear layer, flow separation and 

reattachment, with superimposed pulsating effects due to varying pressure 

gradients in the cylinder and flapping effects due to the changing gap 

between the ports and the piston both of which exert an influence on the 

entrainment rate of the jet.

in the present model, the simplifying assumptions are as follows: 

Throughout the scavenging process:

(1) .  constant pressure in the inlet and exhaust manifolds.
(2) .  uniform cylinder pressure.
(3) .  no heat transfer.
(4) .  no wall friction.

During the blowdown period:

72



(5) .  isentropic expansion of compressible gas from a constant volume 

cylinder through the exhaust ports or valves to the trapped pressure

During the scavenge period:

(6) .  the cylinder space is axisymmetrically subdivided into two regions: the 

jetting region and the recirculating region, and the velocities and 

concentrations are transversely homogeneous respectively in both regions.

(7) .  identical and uniform density of air and residual gas.
(8) .  quasi-steady imcompressible flow within the cylinder, constant volume 

flow rate through the inlet and exhaust ports or valves, focussing the 

previous effects on an apparent entrainment rate.

4 .3 .2  MATHEMATICAL TREATMENT

4 .3 . 2 . 1  Determination of the blowdown period r
b

In this model, the trapped pressure is considered to be equal to the 

arithmetic mean value of the inlet and exhaust manifold pressures. Under 
the previous assumptions, the process of exhaust gas flow through the 

exhaust ports has been investigated. [4.21. [4 .5]

The pressure In the exhaust ports Is equal to that in the exhaust manifold. 

Pe. The release pressure at the exhaust port opening is Pr. The cylinder 
pressure at any instant is Pcyi. The ratios of sonic velocities are:

a  P y -1

V i r - ( p£)21 ' < 4 . D
r r  r

a  P 7 -1

X = i ^ - =cyl cyl (4 .2 )

The sonic velocity is

a = f j yRT (4 .  3)

For subsonic flow, the following equation can be obtained (cf. 7. 114 [4 .2])
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cyl / ' x  (1-x >

X_a

Vcyl
Xr (4 .4)

where 

2
b= 7-1

The analytical solution of the right-hand side of equation (4 .4)  is

2 . 0 . 5
X  c— 3—  * _L k±) (

*  <b-1) b-1 (b-1)  I
secb 20d0)

(4. 5)

where a new variable 0  is defined as

x= COS0

When y = 1.4.  i .e.  b= 5. and equation (4 .4 )  becomes:

r3r f i  ,11 1 <l -x2) 0 5 . 3 ,sln8 „
~  I V  -  '  T ( 4 --------4--------  2~ 2 *  L" '“" ‘ a 2}> Kcyl *  x cos 0 ' r

(4. 6)

For sonic flow, the following equation is valid (cf. 7.127 [4.2])

X a
r  r / y+l e /

 1A dt = b ( ) (X-X ) (4 .7 )
V J e 2 r

cyl
where

(y+1)
e= *----------

2 ( y - l )

and

aa p»
X'= - r ~  =  ^ r 2- )  *

acyl ' cyl

where P* corresponds the cylinder pressure at which the choked flow 
cyl

ceases.
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For the general case of sonic and then subsonic flow, both equations (4 .4 )  

and (4. 7) must be used. These two equations can be generalized in the 

form

X a 
r r

( a  dt = f(P  P ) 
/  e r. cylV , . '  "  (4 8)^cy i

The critical pressure for sonic flow is 

y
r+1

p = P (------) 7 -1
cr e 2 , 4 _9)

If the release pressure Pe at the exhaust port opening is lower than Per, 
only the subsonic flow proceeds during the blowdown period. If Pe is higher 
than Per, then the sonic and then subsonic flow occurs. The sonic flow 

begins at Pe, ends at Per. i .e.  the ratio X' in equation (4 .7 )  is

p  —

P ' (4. 10)cr

Then, the subsonic flow begins at Per, ends at Ptr, i .e.  the ratio Xr in 

equation (4 .4 )  is

P zzl

r Pcr (4 .11)

Considering the relation

Ta  dt= fA  da (4 .12)
J e 360N )  e

equation (4 .8 )  can be solved by numerical integration, giving the blowdown
period r

b

4 .3 . 2 . 2  Determination of mass flow rate of scavenging air during the
scavenge period

After the blowdown period, the scavenge period begins. It is easy to obtain

the scavenge period r  from the blowdown period r  and the timing of
s b
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closing of ports or valves. Using the quasi-steady compressible flow 

equation, the mass flow rate of the scavenging air is

m« C A P  
d r s

P 2
2 y  1

 (( — )
<*y-l) RT„ P

ss (4.13)

where Ps is the pressure In the inlet manifold.
Pe Is the pressure in the exhaust manifold.

is the discharge coefficient
and the reduced area A is

r

(4.14)

Hence, the overall mean velocity flowing through the inlet ports is 

u -  ™Uln~ <4.15)
c In

where the mean area of the Inlet ports. A . Is
in

A,n= | Asdl ( 4 1 6 )b J

The velocity, furthermore, can be decomposed Into a radial and a tangential
component within the cylinder. As an approximate analysis, after the jets

impinge, the radial velocity u^ may be transformed into an equivalent axial
velocity w^. According to angular momentum conservation, the tangential

port velocity v changes into an azimuthal cylinder component, i .e.  shapes 
0

a swirl. The swirl subsequently decays because of wall friction, which is 

beyond the scope of this model.

4 .3.2.  3 Description of in-cylinder flow during the scavenge period

This model considers that the uniflow scavenging process is composed of 
two phases:

(1) .  displacement scavenging.
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and

(2 ) .  mixing scavenging.

Before the front of the jetting flow arrives at the exhaust ports or valves, the 

pure residual gas is discharged out of the cylinder, that is. the 

displacement scavenging phase is conducted, as shown in Fig. 4.2a and c. 

After its arrival, the gas mixture of air and residual gas is discharged from 

the exhaust ports, i .e.  the mixing scavenging phase goes on. as shown in 

Fig. 4.2b and d. Meantime, the fresh air concentration within the cylinder 
becomes higher and higher. Using the analysis of quasi-steady flow, this 

model describes an approximate temporally and spatially ever-changing 

concentration field during the scavenging process. Focussing the various 

effects on an apparent entrainment spread rate, and neglecting the delicate 

construction of the field, this method avoids the difficulties of unsteady jet 
flow.

4. 3. 2. 3.1 Initial condition

Vortex breakdown has been observed only in highly swirling flows. The 

second condition for the breakdown, under high swirl, is an adverse 

gradient of pressure in the axial direction. This implies that the downstream 

condition has an influence on vortex breakdown. But as a rule of thumb, 

the critical intake angle is taken. When the angle is greater than 40° .  
vortex breakdown occurs. [4. 6]

From the analysis in the previous section, the initial effective flow area is

A = A cosy> (4. 17)
0 in

where v> is Intake angle of inlet ports, as shown in Fig. 4.3.

According to the criterion of vortex breakdown, the apparent initial jet radius 

can be obtained:

before vortex breakdown, i .e.  for the inner jetting flow with weak swirl.

ro (4 .1 8 )
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after vortex breakdown, i .e. for the outer jetting flow with strong swirl

l\
r =o

R2 -  (4.19)
it

where R is the cylinder radius.

4. 3. 2. 3. 2 Basic equations

dr
When the jet spread rate is given, the model will be able to delimit the

dz
boundary between the jetting and recirculating regions.

For inner jetting flow, the jetting region expands from the central region to 

the outer region.

z
r = I t 1 dz C4. 20)2 '0 *  J dz

for outer jetting flow, the jetting region expands from the outer region to the 

central region, 

z

r 2= v / d T dz C4 21 )
o

When the radius of the jetting region becomes equal to the cylinder radius 

R or zero, respectively for the inner and outer jetting flow, the jet flow 

develops into a pipe flow.

Using the Eulerian approach, for inner jetting flow, neglecting the pressure 

gradient in the cylinder and the wall friction, the continuity and momentum 

equations can be written as

2 2 2 2
r w+( R - r  )w = r w (4.22)

j r 0 0
2 2 2 2 2 2 2

r w+(R - r  )w = r w (4.23)
j r 0 0

where r^ is the apparent initial jet radius.
w^ is the initial jet axial velocity.
w is the axial velocity in the jetting region
w is the axial velocity in the recirculating region,

r
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Their solutions are

V  V f r >2(1+fJ((? 2- m<^ )SLl> *
( 4 . 2 4 )

w = w (5^) 2 ( "I -  r o R

(5 _ )2- l
ro

( 3 2- lr (4.25)

Similarly, for outer jetting flow.

2 2 2 2 2 
(R - r  ) w +r w = (R - r  )w  

j r 0 0

2 2 2 2 2  2 2 2
(R - r  )w+r  w = (R - r  ) w 

j r 0 0

(4.26)

(4.27)

and

w = w ( l - ( ^ ) 2 ) ( U  j o R
J ( ( ^ 2- l ) ( ( y - ) 2-l>

(4.28)

< £ 2- l

Because jetting region expands with jet distance, i .e.  r >r for inner
2 0

jetting flow and r <r for the outer jetting flow, from relations (4.25)  and 
2 0

( 4 .29) ,  the recirculating velocities w always take negative values. This
r

means a backflow in the recirculating region. It is seen that the jetting flow 

is a decelerating flow along the axial direction.

As for convective velocities between the jetting and recirculating regions, the 

following equations can be achieved using a control volume of length dz in 

the jetting region based on mass conservation, as shown in Fig. 4.3.

For Inner jetting flow.
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d (w  m 2
) = w 2tfrdz 

c
( 4 . 3 0 )

i. e.

(4.31)

For outer jetting flow.

2 2
d[W7r(R - r  )]= w 2rrrdz 

j 0 c
(4.32)

i. e.

HI B  _
wc  £rdz> (4.33)

For the jetting region near the inlet ports, the convective velocities take 

positive values, that is. the Jetting flow entrains gas from the adjacent 
recirculating region. But if the Jetting flow expands sufficiently, w will
become negative, i .e.  the jetting flow discharges a part of gas into its 

neighbouring recirculating region. Under the assumption of steady jet flow, 
the jetting, recirculating and convective velocities on any cross-section 

maintain constant values throughout the scavenge period.

As for the concentrations in the Jetting and recirculating regions, within a 

control volume in both the jetting and recirculating regions, based on 

composition conservation, the following equation can be obtained

where V is the volume,
I

C is the air concentration of the volume.
I

C is the upstream air concentration flowing into the volume, 
in

C is the air concentration flowing out of the volume, 
out

The mass flow rate can be determined from the relevant jetting, recirculating 

and convective velocities and areas. Here, the concentrations are treated 

as temporally and spatially variable. At the beginning of the scavenge

c

out out (4.34)

80



period, the air concentration in the cylinder are set to zero throughout 
except at the inlet ports where it is set to 1.

The equation systems ( 4 . 2 0 ) .  ( 4 .2 4 ) ,  ( 4 .2 5 ) ,  ( 4 .31) .  ( 4 . 33 ) .  (4.34)  

and ( 4 . 21 ) .  ( 4 . 28 ) .  ( 4 .2 9 ) .  ( 4 . 31 ) .  ( 4 . 33 ) .  (4.34)  are the basic 

systems respectively for the inner and outer jetting flows. Under the

previous assumptions, an approximate steady flow is used to substitute for 
an unsteady fiow. When the jet spread rate, initial effective flow area and 

pressures in the inlet and exhaust manifolds are given, the boundary 

between the jetting and recirculating regions and a constant velocity field in 

the cylinder can be determined. The temporally and axially variable 

concentrations in the jetting and recirculating regions describe a history of 
the scavenging process.

4. 3. 2. 3. 3 Jet spread rate

For a confined jet. between the jetting and surrounding regions there exists 

a shear boundary layer in which lateral gradients in the mean velocity are 

dissipated. The real transverse velocity profile is bell-shaped, not "top-hat" 

shaped. Under the assumptions of the uniform density and initial 
momentum-flux distribution, the jet spread rate is well correlated by. [4.7]

dr
—= 0.0813 (4.35)
dz

However, this steady jet model has left the following aspects out of 
consideration,

(1) .  the effect of variable densities and unsteadiness, including flapping 

and pulsating, during the scavenge period.
(2) .  the effect of jet boundary layer,

(3) .  the effect of supercharging due to the late inlet port clossure during 

the charging period.

Thus, for improving the prediction of the scavenging process the model 
needs an apparent jet spread rate to compensate for the oversimplification. 
The experiments by Binder and Marinet [4. 8] show that the unsteadiness of 
the jet evidently widens the jet spread angle in the early stages, and that 
with increase of the initial jetting velocity and swirl and with decrease of the
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initial jetting area, the jet spread rate increases. On this basis, a 

phenomenological relation is introduced.

rir W*
Kj - 2  (1 + K2 <tan*»c>

O (4.36)

where the constants K . K . a. b. c reflect the effects of unsteadiness
1 2

and configuration of the cylinder, inlet and exhaust ports on the jet spread 

rate. The constants K l. K2. a. b and c can be obtained from experiment.

4 . 3 . 3  COMPUTATIONAL PROCEDURE AND RESULTS

The flow chart for computation is illustrated in Fig. 4.4.

Firstly, from equation (4 .8 )  the blowdown period is determined, and from 

equations (4. 14) and (4. 16) the reduced area and the mean inlet area are 

obtained based on numerical integration.

Secondly, the jet spread rate dr/dz is selected. From intake angle the flow 

pattern is decided. The radii of the jetting region are determined from 

equations (4. 18) and (4.20)  for inner jetting flow or from equations (4. 19) 
and (4.21)  for outer jetting flow.

Thirdly, the jetting and recirculating velocities from equations of (4 .24)  and 

( 4 . 25 ) .  or (4.28)  and ( 4 .2 9 ) .  and the convective velocities from equation

(4.31)  or (4.33)  can be obtained.

Fourthly, two non-dimensional arrays T and D are Introduced. The time 

ratio T is used for the control volume and defined as the ratio of the time 

interval during which a fluid element enters and leaves the volume to the 

time step length, in other words. T is the step number the fluid element 

needs when it passes through the volume element.

T -  ALAT/W  (4.37)m

where AL is the axial mesh size.
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W is the mean axial velocity flowing through the control volume, 
m

The delay array D is used for the cross-sectional control surface in the 

jetting or the recirculating region, and defined as the step number in which 

the jet front arrives at the cross-sectional surface, it is notable that the jet 
front forwards propagates in the jetting region, and then is divided into two 

parts, a part continues the forward propagation and develops into pipe flow, 
another part is diverted to the recirculating region and propagates backwards 

to the inlet port end. Considering this time sequence, the delay array D 

can be determined based on the time ratio T.

Finally, using the upstream differencing scheme of the finite difference 

method the time-dependent constituent continuity equation (4.34)  can be 

solved. For a control volume within the jetting or the recirculating region, 
the air concentration at the cross-sectional control surface first maintains 

the old value, and then is replaced by the new value when the flow with a 

higher air concentration arrives at the surface, while the air concentration 

at the longitudinally sectional control surface is equal to an average of the 

concentrations at the adjacent cross-sectional surfaces of the corresponding
upstream control volume. From the arrays T and D. these time-dependent
concentration values at the control surfaces can be determined, from 

equation (4.34)  the new mean concentration of the control volume can be 

obtained. This procedure is repeated until the scavenging process ends, 
thus giving a description of the temporally and axially variable concentration, 
i .e. a history of the scavenging process.

The criterion of stability of this algorithm is that the time ratio must be

greater than 1. This indicates that for each time step the flow in the jetting 

or the recirculating region should not penetrate a mesh. A comparison 

between the computational results for mesh numbers 8 and 32 respectively 

shows that the relative error of calculated scavenging efficiencies is within 

1 %.

The computational results are compared with Taylor's experiments. [4.9] 
The engine tested was a CFR uniflow scavenged two-stroke engine. 3 1 /4  

in. bore by 4 1/2 in. stroke. The engine had rectangular inlet ports and 

two poppet exhaust valves in the cylinder head, without intake swirl, see 

Fig. 4.5.  There were four configurations. The timing in configuration A
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was symmetrical. Configurations D. E and F were the same as
configuration A except that the exhaust-valve timings were set to 7. 14 and

o
21 . respectively ahead of the symmetrical position, as summarized in Table
4.1.  The discharge coefficient C is taken as 0.78.

d

At first, the fixed jet spread rate of equation (4.35)  is used. Fig. 4 .6  

shows the comparison between the experimental and computational results. 
Compared with the perfect mixing model, this model improves the prediction
of the scavenging efficiency. However, it fails to describe the effect of
engine speed and exhaust timing on scavenging efficiency. Compared with 

the experimental results the discrepancy is up to 15 %. These shortcomings 

originate from the oversimplifications of the model.

And then, the apparent spread rate is selected as follows, 

dr .  oo . 1. 8 . . ro. 16. 8
5 1 = 4 - 3 8 ,1 0  Too " h -1  <4 - 38)

Here, the term containinig intake angle #> in equation (4.36)  disappears
because the CFP engine has no swirl. Fig. 4 .7  shows the comparison
between the experimental and computational results. The comparison shows 

that this model can approximately reproduce the trend of the experimental 
results that with the increase of piston speed and with the advance of
exhaust timing, the scavenging efficiency Improves. The discrepancy is 

within 8 %.

s
Fig. 4 .8  Illustrates an example of flow field in the cylinder under a given 

running condition. This figure displays the velocities in the jetting and
recirculating regions and the varying directions of the convective velocities. 
The convective and recirculating flows and a part of the jetting flow rotate 

around an eddy eye. and form the recirculation.

Fig. 4 .9  shows a history of concentration in the cylinder. This figure 

indicates that with the lapse of time, hence with increase of delivery ratio, 

the space occupied by residual gas diminishes and the air concentration 

increases.

The equation of apparent jet spread rate (4.38)  reflects the following 

effects.
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(1) .  With increase of Jet velocity, the Jet entrainment rate increases, thus 

improving the scavenging efficiency.

(2) .  The thinner Jet gains the better scavenging efficiency from strong 

entrainment and longer residence time in the cylinder.

It Is worthwhile noting that the equation of apparent Jet spread rate (4.38)  

is purely empirical, hence is applied only for the specific engines.

4 .3 . 4  SUMMARY

The phenomenological model for the unlfiow scavenging process in 

two-stroke engines can be characterized by a steady Jet. This model 
describes the fixed velocity field and time-dependent history of concentration 

in the cylinder during the scavenging process.

This method allows the designer to estimate a history of concentration and 

to approximately predict the scavenging efficiency. The latter requires 

introducing a relationship of apparent Jet spread rate. Because this model 
is oversimplified, it is difficult to obtain a universal relationship of apparent 
Jet spread rate.

The finite difference algorithm for the composition conservation equation 

employs the following criterion of stability:

the time ratio T (4.36)  greater than 1.
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4 . 4  PHENONENOLOGICAL UNSTEADY JET MODEL

4.4 .1  PHYSICAL DESCRIPTION

Compared with the previous thermodynamic methods, this new multi-zone 

model introduces the equations of momentum and moment of momentum 

conservations to give a description of the spatial and temporal history of 
mass, local temperature and concentration within every zone, hence to 

avoid an artificial history, in comparison with comprehensive computational 

fluid dynamics (CFD) models, this model considers that the pressure in the 

cylinder is uniform, i .e. it neglects the pressure term in the equations of 
momentum conservation. This indicates that the model ignores the details 

of conversion of kinetic and pressure potential energies, and considers that 
pressure relaxation is carried out without delay. This assumption lends the 

model effictiveness of computation, but makes it unable to predict the details 

of the conversion of mechanical energies. The conversion between kinetic 

and pressure potential energies plays an important role in cross and loop 

scavenged engines. Fortunately. In uniflow scavenged engines this 

conversion is less important except during jet impingement and. additionally 

with swirl, during vortex breakdown processes within the regions next to the 

Inlet and exhaust ports. The present model neglects these processes, 
because their periods are relatively short compared with the total time a fluid 

particle takes from the inlet ports to the exhaust ports. Actually, the 

omission of these processes will have a minor influence on the whole 

temporal resolution of the scavenging process, especially for engines with 

long stroke. This model treats them as boundary condition.

The air jet flow and the residual gas within the cylinder are considered as 

two different regions. The jet portion entering the cylinder during a time 

step length makes up a new zone within the jetting region. Fig. 4. 10. The 

temperature, concentration and velocity within each zone are uniform. Their 
varying profiles at different times and cross-sections describe the spatial and 

temporal history of the scavenging process. As the jet propagates, the jet 

zones entrain the recirculation zones, and the adjacent jet and recirculation 

zones transfer mass, momentum and energy mutually. The void left by the 

entrainment within the recirculation region is filled up by neighbouring 

zones. The zones near the exhaust end will be discharged out of the 

cylinder. If a later jet zone overtakes an earlier jet zone, the two zones
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will merge. If the Jet flow en route develops into pipe flow, the surplus part 
of that jet zone will become a part of the corresponding recirculation zone. 
Thus, this model gives a step-by-step description of the scavenging 

process.

The model makes the following assumptions:

(1) .  uniform pressure within the cylinder.
(2 ) .  quiescent surrounding region.
(3) .  homogeneous temperature, concentration and velocity within each zone 

individually.
(4 ) .  neglect of wall friction.
(5 ) .  heat transfer using Woschnl's correlation based on a bulk average 

temperature.
(6 ) .  neglect of the distribution of radial velocity.

There are two different versions of profiles of velocity and concentration, fioff 
version 1: investigates the overall behaviour of the jet flow based on the 

turbulence model of entrainment and considers the Jetting region as an 

entirety. I. e. provides a simple "top-hat" profile.
version 2: discusses the transverse distribution of the jet flow based on the 

turbulence model of eddy diffuslvity and divides the jetting region Into several 
strips, i .e.  gives a detailed "step-shaped" profile.

4 . 4 . 2  MATHEMATICAL TREATMENT

4 .4 .2 .1  Version 1: entrainment model

4 . 4 . 2 . 1 . 1  Boundary conditions

The flow rates of Inflowing and outflowing gas mixture are determined from 

the compressible flow equation in which the discharge coefficient is quoted 

from the same correlation as In Chapter 3.

As previously, the intake angle is taken as a criterion of vortex breakdown. 

When the angle Is greater than 40° .  vortex breakdown occurs. I .e.  outer 
jetting flow Is initiated. When the angle is lower than the critical value, 
inner jetting flow occurs.
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It is assumed that after the Jet impingement the radial volocity component u 

eventually and equivalently becomes the axial component w and the 

tangential velocity component v achieves a radially proportional distribution 

based on moment of momentum conservation.

Before the scavenge period, the temperature and concentration throughout 

the cylinder are assumed to be uniform.

4 . 4 . 2 . 1 . 2  Governing equations

Using the Lagrangian approach, a large number of zones keeps track of the 

fluid elements respectively within the jet and recirculation regions.

The conservation equations are derived in generalized form. In which 

outflowing terms, for the Jet zone, and inflowing terms, for the recirculation 

zone disappear. Figs. 4 .10 and 4.11 show the subdivision of the unsteady 

flow field into axially advancing times I which are divided into transverse 

regions. Fig. 4 .10 applies to version 1 In which the transverse distribution 

is limited to the Jetting and recirculating regions only, whereas in version 2 

the jet Is transversely divided into several transverse regions of varying 

velocity and concentrations, as shown in Fig. 4.11.

4 .4 .2 .1 .2 .1  conservation of mass

For the l-th zone within region m.

m .l m .l m .l 
Am = Am -Am (4.39)

in out

change of mass flowing mass flowing
mass in = into the -  out of the 
the zone zone zone

where the superscript m is j for the jetting region, or, r for the recirculation

region and the superscript I Is the zone number.

4 . 4 . 2 . 1 . 2 . 2  composition equation

The equivalence ratio is used indirectly as a parameter of composition.
For the l-th zone within region m.
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I m .l m .l m .l 
i p  • "  A " *

:UlJ
i. m. ♦m, , -m , * .f f.o  Y.ln f.out

FM “ -   , -------------------------------------------
im  t ( m «-m . "in .8 8 8 8.0  8. In 8. out (4 .40 )

m .l m .l m .l 
and m = m +m 

f s

where the superscripts m and I retain the previous significance, 

m. I
Is the mass of burnt fuel in the l-th zone within region m.

m. I
m is the sum of the air mass trapped and the air mass consumed 

s m. I
in the combustion of the fuel m .

f

fs is the stoichiometric fuel-air ratio, 
the subscripts o. in and out represent the initial, inflowing and 

outflowing amount respectively.

Under the assumption of complete combustion, the mass of residual gas is

m .l . . .  1 * ^.m .I m *  ( U - H  mf a f fM 8 (4.41)

and the remaining mass of fresh air is

m .l m .l m .l
m = m -m  (4.42)

a 9

4 . 4 . 2 . 1 . 2 . 3  conservation of axial momentum

Neglecting the pressure term.

m. I m. I m. I m. I m. I m. I
A(m w )=  Am w -Am w (4.43)

in in out out

change of momentum momentum
momentum = flowing into -  flowing out of 
in the zone the zone the zone

m. I
where w is the axial velocity within the upstream zone of the i-th zone of 

In
region m.

m, I
w is the axial velocity within the l-th zone of region m. 

out
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4 .4 .2 .1 .2 .4  conservation of angular momentum about the centreline-axis

m .l m .l m .l m . I m . I m . I  m . l m . l m . l  
A(m r v ) =Am r v -Am r v

in in in out out out
(4.44)

change of angular angular
angular = momentum momentum
momentum flowing into flowing out of
in the zone the zone the zone

m. I
where v is the tangential velocity within the upstream zone of the l-th 

in
zone of region m. 

m .l
v is the tangential velocity within the l-th zone of region m. 
out

4 .4 .2 .1 .2 .5  conservation of energy

For the l-th zone of region m.

m.l m.l  m . i m . l  m . l m . l  m.l  m.l
A(m e )=  E(Am h ) -E(Am h ) -AQ -PAV

in in out out

change of total total
the total enthalpy enthalpy heat transfer
internal = flowing -  flowing from the
energy In Into the out of zone
the zone zone the zone

external work 
-  done by 

the zone

m. I
where h is the specific absolute enthalpy within the upstream zone of the 

in
l-th zone of region m. 

m .l
h Is the specific absolute enthalpy with the i-th zone of region m. 

out

The equilibrium thermodynamic properties of the products of combustion of 
CnH2n and air are calculated from the cylinder pressure, local temperature 

and equivalence ratio within each zone based on the same mathematical 
expressions as in Chapter 3.

Woschni's correlation is adopted to calculate heat transfer again.

AQ = aA (T -T  ) At (4 .46)
w w cyl w
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where A is the wall area, 
w

a  Is the heat transfer coefficient.

or = C -Dr 0 2 . p 0- 8 . T’ 0 - 53 0 .8

(4.47)

where the bulk average temperature Is defined by

(4.48)

and the other notations are the same as in Chapter 3.

The total heat transfer from the cylinder is composed of three portion: heat
transfer from the cylinder head, liner and piston for which the subscripts h.
I and p represent respectively. Thus, the total heat transfer Is

The heat transfers In the various zones are allocated in relation to their 
mass and temperatures. I .e.

where the superscripts I and m stand for the l-th zone In region m 

and the denominator with the superscripts I and k should be summed for all 
zones and regions.

Heat transfer between zones is ignored.

4 . 4 . 2 . 1 . 2 .  6 equation of state

Using local properties, the equation of state is used for each zone

m .l m .l m .l m .l 
PV = m R T (4.51)

AQ = AQ +AQ +AQ 
cyl h I |

(4.49)
P

m. IA Q A Qcyl
(4.50)

I k
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4 .4 .2 .1 .2 .  7 equation of entrainment

The entrainment equation is taken directly from the experimental results by 

Ricou and Spalding [4.10]

i  1
Am = 0 .28  pg FgAzAt (4 .52)

where Az is the axial length of a given jet zone
p is the density of the surrounding fluid of the jet zone

s
the initial injected momentum flux at the inlet ports is 

2
F S p U A (4 .53 )

0 0 0 in

where p is the initial jet density at the inlet ports,,
0

is the Initial jet velocity,
A is the opening area of the inlet ports,

in

The jet retains its "memory" of this flux and entrains Its surrounding fluid In 

relation with the density of surrounding fluid.

4 .4 .2 .1 .2 .8  coalescence of zones

When a later zone k catches up an earlier zone I in the jetting region, the 

coalescence of the zones is accomplished under an isobaric process.

m. I m. I m. k m, k 
mh= m h +m h

total enthalpy sum of
of the = enthalpies of the
merged zone zones to be merged

m .l m .l m .k m .k  
mw= m w +m w

axial momentum sum of axial
of the merged = momentum of the 
zone zones to be merged

m .l m .l m .l m .k m .k m.k 
mrv= m r v +m r v

(4 .54 )

(4 .55 )

(4 .5 6 )
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angular momentum sum of angular
about centreline = momentum about
of the merged centreline of the
zone zones to be merged

Under the assumption that the entrainment rate is not affected by the 

coalescence of zones, from equation (4 .5 2 ) , the following equation can be 

obtained

F0 “  * i C 7 *  J C *  >2 (4 .5 7 )

4 .4 .2 .1 .  3 Mass constraint

The present trapped mass is equal to the sum of the previous trapped mass, 
inflowing and outflowing mass

m= m +Am -Am (4 .58 )
0 in out

4 .4 . 2 .1 .4  Volume constraint

The calculated volumes of all zones trapped in the cylinder should be equal 
to the total volume of the combustion chamber.

m. I
£  £V = V (4 .5 9 )

cyl
m I

It is noted that with the constraint equations of mass and volume, the 

energy conservation equations (4 .4 5 ) through (4 .5 0 ) may be added to give 

the following overall energy balance equation.

A( me) = Am h -Am h -PAV -AQ
in in out out cyl cyl

change of total enthalpy total enthalpy external
total internal -  flowing into -  flowing out of -  work 
energy of the cylinder the cylinder done
working fluid

heat transfer 
from the 
cylinder

(4 .6 0 )

4. 4 .2 . 1 .5  Configuration of jet flow
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The flow pattern of the Jet is determined from the criterion of vortex 

breakdown based on the intake angle. The velocities of every zone are 

obtained from the momentum and angular momentum conservations, and the 

displacements of the zones may be calculated from the axial velocities. The 

volumes of the zones are obtained by means of an Iteration method based 

on the energy equation, the equation of state and the volume constraint. 

The cross-sectional area of the first zone next to the inlet ports equates to 

the area of the ports. From the axlsymmetry of Jet flow, the geometry of 

the first zone can be determined. The top area of the later zone equates 

to the bottom area of the adjacent former zone in the Jet region. Following 

a similar procedure, these zones build up the Jet region. With the 

entrainment and propagation, it is possible that some parts of Jet zones 

exceed the cylinder boundary. The redundant volume of the jet zone 

beyond the boundary will become a part of the corresponding surrounding 

recirculation zone. After contouring the jet. the recirculation zones fill up 

the space left in the cylinder. The total mass and volume of all the zones 

in the cylinder should satisfy the mass and volume constraints.

4 .4 .2 .2  Version 2: eddy dlffusivity model

The boundary conditions and basic equations except the entrainment 
equation are the same in version 2 as In version 1. The important 
distinction between version 1 and version 2 Is that version 2 divides the 

jetting region transversely into several strips.

Hence, the superscript m in the terms of the basic equations, such as in 
m .l m .l

m . w e tc .. represents all the different strips of the jetting region and 

the surrounding region. Fig. 4 .11 .

The equation of overall entrainment rate by Ricou and Spalding Is no longer 
applicable. Instead, this model uses a synthetic eddy dlffusivity hypothesis 

from Scheltz's [4.11] and Lllley's [4.12] models.

Firstly, this model follows Scheltz's idea to extend Prandtl's model of plain 

jet with constant density to plain jet with variable density. Here, plain jet 
means free jet without swirl. The model then imitates Lilley's model to 

generalise the plain jet model to a swirling jet model using an anisotropic 

eddy dlffusivity model.
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According to Prandtl's model of plain jet with constant density. [4.13] the 

eddy dlffusivity is

e = -c  b(U -U  ) (4 .6 1 )
t max min

where c is an empirical constant, 
b is the jet width.

U is the mean velocity, 
and the subscripts max and min denote the extreme values at a cross 

section.

Scheltz has extended the previous formula to free tubulence with variable 

density.

P«t = -C jb  <(pu>max -  (p U )m|n> (4 .6 2 )

where C is a constant.
1

For eddy dlffusivity model, the effective convection mass flux may be 

expressed as follows, (cf. Appendix II)

• dumcU = “ P € C ~  (4 .6 3 )
on

where m is the effective convection mass flux, 
c

U is the total mean velocity.

Is the eddy dlffusivity.

au
—  is the deriviative of velocity U normal to the main flow, 
dn

For swirling jet. after substitution of equation (4 .6 2 ) . equation (4 .6 3 ) is 

written In a cyllndric polar coordinates system.

a w  a  . v .m U = -p c    «■ P€ flr— -(-)
c  «  d r  r

. a w  ^ _  a  , v  

1 - p £ rz(—  * C2rTdr  d r  r

= -  C1b ((p W )max -  C p W ) m | n ) ( ^  * C 2 r i - ( ^ » )  . ,4 .6 4 )
o f  o r  r
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where (J Is the total mean velocity.
V Is the tangential mean velocity.
W Is the axial mean velocity.

e is the rz- eddy dlffusivity. 
rz

c is the r O -  eddy dlffusivity. 
rO

the factors C and C are functions of the swirl rate. This model leaves 
1 2

two parameters and C^. which describe the entrainment and anisotropy
of the jet respectively, and can be used to obtain a "best fit" with 

experiment. The results of this process by Scheltz and Lilley respectively 

are.

C . *  0 .039
2

C2 -  1+5.0 S |

where the Initial swirl rate S is
z

/ f t
Ge J (Vr)pW *2irrdr

2 RGZ R f^WpW*2?rrdr (4 .6 5 )
*o

where R is the outer radius.
G is axial flux of linear momentum, 

z
G is axial flux of angular momentum.

e

Under the aforementioned assumptions of the axial and tangetlal velocity 

distribution, that the swirl rate can be expressed as

i

S = |  ta n *  i (4 .6 6 )z i

where v> is the intake angle of the inlet ports.

From this, it is obvious that the entrained mass between adjacent zones is

((pW ) -(p W ) )
a— .  max______ m in. av\T _ a . . .Am -  C.,b y  <—  C2r^p<^))27rrAzAt (4 .6 7 )

96



This relation reflects the influence of "local" behaviours of turbulent jets on 

the mass entrainment. whereas the entrainment equation (4 .5 2 ) by Ricou 

and Spalding relates the entrained mass with the initial injected momentum 

flux.

The procedure of contouring the jet flow in version 2 is similar to that in 

version 1. Since version 2 has a multi-strip construction, the jetting region 

must be built up strip-by-strip and then the residual gas fills up the rest of 

the space in the cylinder.

4 .4 .3  COMPUTATIONAL PROCEDURE AND RESULTS

The flow chart for computation is Illustrated in Fig. 4 .12 . The system of 
simultaneous first order differential equations is solved by a stepwise 

integration process. Combined with the entrainment equation (4 .5 2 ) in 

version 1 or (4 .6 7 ) In version 2. equations (4 .3 9 ) through (4 .4 4 ) can be 

explicitly solved for the mass, composition, axial momentum and angular 
momentum of all zones. However, equations (4 .4 5 ) through (4 .5 1 ) cannot 
be explicitly solved for the pressure, temperature and volume to satisfy the 

constraint equations (4 .5 8 ) and (4 .5 9 ) . A triple iteration loop is used for 
solution. The program is incorporated in a step-by-step cycle simulation 

program as one of the available options to describe the scavenging process.
[4.14] The time step length Is ' 1 degree crankshaft angle. A graphics 

subroutine to draw timeline and contour velocity and concentration 

distribution Is Included in the program.

An experimental study of the scavenging process for validating the present 
analysis was conducted by Wallace et al. [4 .15]. [4. 16] The experimental 

technique applied was the trace gas method. The engine was the Rootes 

TS-3. 3-cyl. opposed piston 2-stroke engines, as shown in Fig. 4. 13. 

The characteristics of the engines are summarized In Table 4 .2 .

The varying parameters include engine speed, boost ratio, delivery ratio and 

alr-fuel ratio. Eight of these tests are compared In detail with the two 

versions of the present model and listed in Table 4 .3 . The comparison 

shows that both versions 1 and 2 provide satisfactory predictions for the 

scavenging process in uniflow scavenged engines. Version 1 and version 

2 give similar descriptions for the scavenging process, although version 1
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uses an "overall" entrainment correlation whereas version 2 quotes a "local" 

eddy diffuslvity hypothesis.

Using version 1. Fig. 4 .14  gives a comparison of the charging efficiencies 

between the experimental and theoretical results at the different engine 

speeds and loads. Fig. 4 .15  illustrates the effect of delivery ratio on 

trapping and charging efficiencies. Fig. 4 .16  is an example of the cylinder 
pressure and mean temperature during the scavenging process.

For version 2. the multi-strip model, it is necessary to estimate the 

convergence of the algorithm. Table 4 .4  shows that the algorithm of
version 2 has a good convergence for modelling the scavenging process. 
It is recommended that the number of strips is taken as four as a 

compromise between precision and computation cost.

Fig. 4 .17  shows a group of computed results for jet timelines, velocity and 

concentration distributions for version 1 and version 2 divided into four and 

six strips under the running condition listed in Table 4 .4 . The flow and 

concentration fields display a similar disposition, although the strip numbers 

in version 2 are different. This also verifies the stability of the algorithm of 
both two versions.

4 .4 .4  DISCUSSIONS

4 .4 .4 .1  Verification of the multi-zone model

As was mentioned by Wallace [4.16]. the trace gas method, due to the low 

temperature and little oxidation, underestimated the charging efficiency at 
high air-fuei ratio. An experimental result [4.17] also showed that the 

nearly complete combustion occurs at an air-fuei ratio of about 30. This 

indicates that the trace gas method at air-fuei ratios of about 30 should give 

good accuracy. The model simulation at about this ratio also displays a 

satisfactory agreement with the experimental results. Over the whole range, 
good agreement of air flow and output power provides further evidence of the 

validity of versions 1 and 2.

The present model simplifies the distribution of velocity and concentration as
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a "top-hat" In version 1 or "step-shaped" profile In version 2. and uses the 

published entrainment rate or eddy dlffusivlty hypothesis. Thus the model 
gives a good description of average behaviours. It is unnecessary in either 
versions 1 or 2 of this model to calibrate coefficients at different running 

conditions. The good predictions Implies that the model Is successful.

4 .4 .4 .2  Model prediction

From the viewpoints of mechanical integrity and port timing, the available 

range of opening areas in the inlet ports belt is limited. When the opening 

area is fixed, with increase of the intake angle, the cross-section area of 
the inlet ports decreases. When the intake angle is greater than the critical
angle, vortex breakdown occurs. Fig. 4 .18  shows an example of different
flow patterns and distributions of velocity and concentration. Fig. 4 .19  

illustrates the relationship between delivery ratio and pressure drop in the 

inlet and exhaust manifolds at different intake angles. Fig. 4 .19  also shows 

the effect of delivery ratio on trapping and charging efficiency.

It is evident that the Increase of engine speed shortens the period available 

for the scavenging process, and hence lessens the delivery ratio at the 

same pressure drop, and that the increase of the intake angle narrows the 

effective passages of the inlet ports, therefore, dimlshes the delivery ratio. 
On the other hand, it is also clear that the Increase of swirl angle
decreases the initial axial velocity of the jet flow, and defers the arrival of 
the jet at the exhaust ports. Hence. It depresses the trend of
short-circuiting. Excessively high delivery ratios cannot improve the trapping 

efficiency, because they lead to pressure drops, and hence to excessive 

compressor work. From Fig. 4 .19  . it is easy to understand that strong 

swirl at low engine speed is superior. However, weak swirl at high speed 

is advantageous. From considerations of both effectiveness and economy 

in the scavenging process variable geometry of the inlet ports is desirable.

4 .4 .5  SUMMARY

The good agreement between experimental and computational results 

indicates that the present multi-zone unsteady jet model, in both versions 1 

and 2 based on fundamental physical principles. Is successful.
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The model predicts the effect of swirl strength on the effectiveness of the 

scavenging process and demonstrates the desirability of variable geometry of 
inlet ports from considerations of both effectiveness and economy in the 

scavenging process.
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Table 4 .1  Characteristics of the CFR engine

Number of cylinders 1

Bore 3.25  In (82 .55  mm)

Stroke 4 .50  in (124 .3  mm)

Nominal compression ratio 5 .8 /1

Two-stroke cylinder with 2 poppet exhaust valves
Spark ignition

Port timing: 4 configurations
Timing BBTC BBTC ABTC ABTC

Configuration IO EO 1C EC
A 57 88 57 88

D 57 95 57 81

E 57 102 57 74

F 57 109 57 67

Table 4. 2 Characteristics of the Rootes TS3 Engine

Number of cylinders 3
Bore 3 .25 in (82. 55 mm)

Stroke 2 *4 .0 in (2 *101 .6  mm)

Swept volume 0. 115 cub. ft(3. 261 i )

Nominal compression ratio 16/1 . 14/1

Rated power output 78 kw

Opposed-piston 

Two-stroke cycle 

Compression ignition



Table 4. 3 Comparison Between Experimental and Computational Results

Case No. 1 2 3 4

Operating conditions
Engine Speed, rpm 1010. 1126. 1510. 1510.
Boost Pressure, bar 1.99 2 .50 1.52 1.60

Exhaust Pressure, bar 1.84 2 .26 1.39 1.38

Trapped Air-Fuel Ratio 30 .5 39 .2 30.5 29.8

Measured Values
Output Power, kw 48.61 52.56 54.52 59.57

Brake Thermal Efficiency 0.381 0.398 0.391 0.398

Charging Efficiency 0 .88 0 .86 0.80 0 .83
Air Mass Flow, kg/min 9 .88 13.65 8.28 10.63

Calculated Values from Version 1
Output Power, kw 48.24 53.22 52. 77 60.06

Brake Thermal Efficiency 0.377 0.389 0.383 0.390

Charging Efficiency 0 .87 0 .87 0. 77 0 .83

Air Mass Flow.kg/mln 10.31 14.26 8 .53 11. 14

Calculated Values from Version 2
Output Power, kw 49.56 54. 18 54.78 61.89

Brake Thermal Efficiency 0.380 0.391 0.387 0.393

Charging Efficiency 0 .89 0 .89 0.81 0 .85

Air Mas Flow.kg/mln 10.35 14.06 8.53 11.05



Case No. 5 6 7 8

Operating conditions
Engine Speed, rpm 1505. 1515. 1500. 2010.

Boost Pressure, bar 1.99 2.50 3 .00 1.99

Exhaust Pressure, bar 1.59 2. 15 2 .55 1.54

Trapped Alr-Fuel Ratio 30.5 41 .2 56.7 31.7

Measured Values
Output Power, kw 74.85 68.88 58.86 94.03

Brake Thermal Efficiency 0.414 0.412 0.398 0.403

Charging Efficiency 0 .85 0 .78 0 .72 0 .82
Air Mass Flow, kg/min 16.66 17.96 21.53 17.83

Calculated Values from Version 1
Output Power, kw 73.50 67.59 56.97 90.33

Brake Thermal Efficiency 0.397 0.400 0.393 0.404

Charging Efficiency 0.85 0 .84 0 .85 0 .79

Air Mass Flow, kg/min 16.07 17.02 20.61 16. 78

Calculated Values from Version 2

Output Power, kw 74. 19 68.52 58.20 92.64

Brake Thermal Efficiency 0.398 0.402 0.395 0.406

Charging Efficiency 0 .86 0 .86 0 .86 0.81

Air Mass Flow, kg/min 15.93 16.99 20.36 16.79



Table 4 .4  Convergence of Algorithm of Version 2

and Comparison with Version 1

Operating Condition 

Engine Speed: 1530 rpm 

Boost Pressure: 2. 5Q bar
Trapped Air-Fuel Ratio: 43 

Exhaust Pressure: 2 .29  bar

Version 2

No. of Strips 3 4 5
“  version i

6

Charging Eff. 

Trapping Eff.
Air Flow, kg/min 

Comp. Time Ratio

0.7933  

0.6753  

13.568 

1.00

0.8122  

0.6967  

13.566  

1.27

0.8124  

0.6936  

13.530 

1.66

0.8126 0.7803  

0.7004 0.6644  

13.402 13.567 

1.99 0 .60

i
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Chapter 5 CRITICAL ASSESSMENT OF SCAVENGING MODELS

5.1 THE ART OF CHOOSING A MODEL

A model is any simplified description of an engineering system or process 

that can be used to aid in analysis and design. The use of models allows 

the engineer to avoid the complexities of studying a realistic engineering 

system in its entirety and enables him to focus instead on only its essential 
elements. Engineers always construct models, both mathematical models 

and hardware models.

For the practising engineer, the purpose of the mathematical model is to 

optimize the design of the hardware model and to minimize the effort 
required to construct it.

For the research engineer, scavenging system research is comprised of two 

major activities: exploring the feasibility of new scavenging systems and 

developing an improved and more complete understanding of important 
phenomena that affect the success of the scavenging process, such as port 
or valve layout and configuration, inlet and exhaust system tuning, jet 
formation, swirl, boundary layers, turbulence etc.

In the past few years the computer has dramatically increased our analytical 
capabilities. This Increased computational capability has made possible 

much more sophisticated mathematical models. However, for such difficult 
problems involving complex geometry, strong nonllnearities sensitive to 

fluld-property variation e tc ., a numerical solution may be hard to obtain and 

would be excessively expensive even if possible. Extremely fast and 

small-scale phenomena such as turbulence, if they are to be computed in 

all their time-dependent detail by solving the unsteady Navler-Stokes 

equations, are still beyond the practioal reach of computational methods. 
Furthermore, there Is uncertainty about the extent to which the results 

obtained from complex computational fluid dynamics methods would agree 

with reality. On the other hand, if the prediction has a very limited 

objective (such as finding the overall pressure drop and the scavenging 

effiency for a particular scavenging system), experiment may be less 

expensive than computation.
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Therefore, the appreciation of the strengths and weaknesses of different 
approaches is essential to the proper choice of the appropriate technique. 
There is no doubt that experiment Is the only method for investigating a new 

basic phenomenon. in this sense, experiment leads and computation 

follows. It Is in the synthesis of a number of known phenomena that the 

computation performs more efficiently. Even then, sufficient validation of 

the computed results by comparison with experimental data is required. On 

the other hand, preliminary computations are often helpful in the design of 
the hardware model and reduction of the amount of experimentation.

An optimum prediction effort should thus be a judicious combination of 
computation and experiment, and a correct choice of mathematical models. 
The judgment consists in arriving at a compromise between the objectives of 
the prediction and economic and other constraints, such as computer 
capacity etc.

5 .2  FURTHER DETAILED CONSIDERATION

5 .2 .1  GENERAL

In the previous chapters, attention has been drawn to the general motion 

within the cylinder, entralnment and recirculation which decide the nature of 
the flow process. However, from the viewpoint of the scavenging process, 
turbulence and swirl have obvious Influences on the motion, while the flow 

in the wall boundary layers partly controls exhaust emissions. From the 

viewpoint of a complete cycle, the turbulence and the boundary layer affect 
the combustion, the heat transfer and the pollution formation. Over a 

longer operating period, cycie-to-cycle variations of the scavenging 

efficiency induce performance oscillation. As the boundary conditions, the 

port or valve layout and configuration, the pressure distribution and the 

velocity and turbulent intensity profile all exert an effect on the scavenging 

process. Therefore, a comprehensive predictive capability requires a wide 

range of knowledge covering turbulence. swirl, boundary layer, 

cycle-to-cycle variations, information relating to inlet and exhaust manifolds.

The following qualitative picture of the flow features in a typical engine is 

based on experiments in motored and operating engines, and to a great 
extent, on other flows of similar character.
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5 . 2 . 2  SWIRL

Swirling flows in cylinders exhibit a wide variety of flow features. At least 
three types of mean flow field can be identified. [5.1]

(1 ) .  no flow reversal.
(2 ) .  a central recirculation zone.

(3 ) .  a long backflow region or columnar fiow.

as shown in Fig. 5.1.

A minlmun flow Reynolds number Is required for flow recirculation. 
Increasing swirl will cause a transition from type 1 to type 2. and with 

further swirl increase from type 2 to type 3.

It Is now generally accepted that the transition from type 1 to 2. termed 

vortex breakdown, is a transition from supercritical to subcrltical flow. In 

this context, the term "critical11 refers to a flow for which long inertia waves 

are stationary with respect to the flow. If the flow is .supercritical, such 

waves are swept downstream from the originating disturbance, while for 
subcrltical flow these waves propagate upstream against the flow, carrying 

with them information about the nature of the downstream geometry and 

conditions.

From measurements with laser Doppler anemometers [5.21. it is shown that 

the vortex flow, in general, remains subcrltical down to the exit with 

backflow evident throughout the cylinder, and that the entire flow field is 

strongly affected by the exit geometry. It is also shown that even a weak 

exit contraction has a significant influence on a flow which remains 

subcrltical. However, a subcrltical vortex flow in a cylinder of constant 
cross-section approaches the critical flow state in the downstream direction, 
and if the cylinder is sufficiently long, eventually goes through the critical 
state and becomes increasingly supercritical, mainly under the influence of 
viscous vortex-core thickening. ' In contrast, a strong contraction has 

practically no influence on a flow which becomes supercritical, as shown in 

Fig. 5.2.

Further complicating the picture is the frequent occurrence of flow
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oscillations which depend in part on the entering velocity profiles and on 

flow geometry. [5. 3] Slight asymmetry at the inlet section has major effect 
on axial asymmetry at downstream sections. The centre of swirl turns 

helically around the cylinder axis in the same direction as the swirl itself and 

its pitch depends only on the swirl intensity. The recirculation bubble 

undergoes oscillations in the axial direction.

5 .2 .3  BOUNDARY LAYER

Using flow visualization techniques, a vortex motion is observed at the 

corner between the piston face and cylinder wall as the piston moves in the 

cylinder. In this investigation two types of flows are observed. [5.4]

(1 ) .  a sink flow as the piston retreats downwards in the cylinder.
(2 ) .  a spiral vortex flow as the piston moves upwards.

as shown in Fig. 5 .3 .  This indicates that during the expansion stroke a 

boundary layer is formed on the cylinder wall, while during the reverse 

stroke the fluid must be peeled off the cylinder wall, which gives rise to the 

formation of a larger vortex, so that quench layers formed at the walls 

during combustion are expelled at some point in the process. These
complex events determine which fluid elements remain in the cylinder at the 

end of the exhaust process.

5 .2 .4  TURBULENCE

Turbulence generated in a cylinder is quite complex. During the intake 

process, flow passing the ports or valves separates, produces sharp shear
layers off the edge of the ports or valves and results in a highly unsteady
motion. These shear layers break down Initially into ring-like vortices which 

merge to form larger-scale vortices. These larger-scale vortices in turn 

break down into three-dimensional turbulent motion. The turbulence 

increases from a moderate level in the jet core to a peak which coincides 

with the jet edge. [5.5] The resulting turbulent jet contains a broad

spectrum of turbulence scales ranging from large eddies of the order of the 

jet thickness to small-scale eddies that dissipate the turbulent motion. The 

jet flow induces a general circulation in the cylinder, which may be 

compounded by intake swirl produced in the manifold. The separation of
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the shear layers off the edge of the ports or valves sets up recirculation 

regions. The large-scale circulations probably induce smaller reverse 

circulation In the corner, as shown In Fig. 5.4.  After bottom dead centre 

and after closure of the inlet and exhaust ports, the existing turbulence field 

is compressed first by the motion of the piston during the compression 

stroke and subsequently by expanding burned gases during combustion.

5 .2 .5  CYCLE-TO-CYCLE VARIATION

From an experimental study, [5.6] Fig. 5 .5a plots the turbulence Intensity 

versus engine speed and shows that repeated measurements at a given 

speed exhibit considerable variation; Fig. 5.5b depicts the turbulent flame 

velocity Ut versus speed and exhibits even larger variations between 

Individual cycle at a given speed. The cycle-to-cycle variation derives from 

the turbulence phenomenon and non-repeatibility of the incoming flow during 

the Intake process.

Recirculating flows of the above mentioned type are typically very sensitive 

to minor variations in the flow, and hence there probably are substantial 
cycle-to-cycle variations In the locations and sizes of the recirculation 

regions. It is known that high flow rates and strongly swirling-induced flow 

patterns lead to reduction of cyclic variability.

5 .3  PREREQUISITES OF A COMPREHENSIVE AND PRECISE MODEL

5.3 .1  ACCURATE BOUNDARY CONDITIONS

The Inlet and exhaust boundary conditions play the dominant role in the 

generation of the mean flow and turbulence fields during the intake process. 
The observed sensitivity to the boundary conditions implies that accurate 

boundary conditions must be used for calculations. There Is the danger that 
Incorrect boundary conditions can by cancellation of errors result In 

apparently accurate flow calculations. The stipulation of boundary conditions 

involves dealing with the various and often complex shapes of practical 
chambers, associated Induction and exhaust arrangements, pressure 

distribution and velocity profiles

5 .3 .2  DETAILED FLOW MODELLING
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There is more than one mechanism for flow recirculation in the cylinder. 
In many cases, recirculation zone formation is an inviscid process only 

indirectly influenced by viscous and turbulent momentum transport. For 
instance, in terms of the inviscid flow theory, Benjamin successfully 

predicted the vortex breakdown phenomenon for swirling flow [5.7], and 

Meroney satisfactorily computed corner eddies for channel flow contractions 

(5.81. Thus failure accurately to predict flow recirculation is most likely not 

the result of a poor turbulence model. On the other hand, waves and flow 

oscillation are frequently linked to flow recirculation, and it may prove 

necessary to incorporate explicitly their influence in models for such flows.

However, the influence of turbulence and turbulent transport on flow 

recirculation should not underestimated. Flow patterns in and around the 

recirculation zone are affected by turbulence. Furthermore, swirl affects 

turbulence levels and turbulent transport, and boundary layer separation 

complicates the flow configuration. The effect Is greatly magnified In 

variable density flows where, depending on conditions, turbulence 

production can either be enhanced or suppressed by swirl.

5 .3 .3  PREPICTIBIUTY OF CYCUC VARIATION

Cycle-to-cycle variations are related to turbulence, and their inclusion in 

flow models has tended to be regarded as unique to engines where their 

effects are undoubtedly important.

Because the flows in the cylinder are not steady, conventional turbulence 

definitions based on time averaging are inappropriate. In periodic flows, an 

obvious alternative, namely phase averaging, cannot provide information 

about individual cycles, because cyclic variations of all origins are included 

as turbulence In this definition.

5 .4  COMPUTATIONAL FLUID DYNAMICS METHODS (CFD METHODS)

5 .4 .1  STATISTICAL FLUX MODELS (SFM) AND LARGE-EPPY SIMULATION 

(LES)

The foundations of all existing computational fluid dynamics methods lie in 

the well-known differential equations expressing the conservation laws of

108



momentum ( i. e. the Navier-Stokes equations ) .  mass and energy, if they 

could be solved exactly, then all information required for the scavenging 

process would be accessible. However, this is not possible because the 

unresolvably small time and length scales of the turbulent flows lead to the 

need for some form of averaging and closure with inherent approximations 

and consequent inexactitude and loss of information. The averaging-closure 

process has been termed “turbulence modelling*.

There are two main classes of models which seem suitable for engine 

applications, namely:

5 .4 .1 .1  8FM (STATISTICAL FLUX MODELS) [5 .9]. (5.10]

The models employ the phase-averaging process to yield a new set of 
equations containing additional unknowns which have the significance of 
turbulent fluxes of the entity in question (e .g .  the “Reynolds stress* in the 

case of the momentum equations). Closure of the equation set is then 

effected by deriving additional equations, of either algebraic or differential 
form, for the new unknowns, in which process certain approximations and 

assumptions necessarily enter, which render the results inexact. The 

success or failure of such methods, therefore, resides In the validity of the 

approximations which they embody.

5 . 4 . 1 . 2  LES (LARGE EDDY SIMULATION) [5.11]

The method uses spatial averaging in which the averaging is limited to the 

eddies below a certain scale which can be made of the same order of 
magnitude as the mesh size of computational grids for which numerical 

calculations are feasible. Motion larger than this are calculated in the 

normal way, I. e. as for laminar flow. The new unknowns arising from the 

averaging process (termed “subgrld-scale Reynolds stress* in the case of 

the momentum equations) are approximated by a SFM. but the small-scale 

turbulence is believed to possess certain regularities (e .g .  isotropy) which 

should allow them to be modelled accurately in particularly simple laws.

5 .4 .2  COMPARISON BETWEEN SFM AND LES

In SFM. models are needed for various averages of turbulence quantities.
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These models must reflect the contributions of all scales of turbulent motion. 
However. LES Is an approach In which one actually calculates the 

large-scale three-dimensional time-dependent turbulence structure in a 

single cycle. Thus, only the small-scale turbulence need be modelled. 
The small-scale turbulence is much more Isotropic than the large-scale 

turbulence, and is quite universal In character, and responds rapidly to 

changes in the large-scale field. This makes the modelling of the statistical 

fluxes associated with the small-scale motions a simple task compared to 

that faced in SFM. where the effects of large-scale turbulence must be 

included in the models.

An important difference between SFM and LES Is in the definition of the 

"turbulence*. In SFM. the "turbulence" is the deviation of the flow at any 

point at any instant from the average over many cycles of the flow. Thus. 
SFM "turbulence" contains some contribution from cycle-to-cycle variation, 
as shown In Fig. 5. 6a.

On the other hand, the turbulence in LES is defined as the departure from 

a local average at a single instant in time. LES gives the precise definition 

of the large-scale velocity. pressure. density. temperature and 

concentration fields. These should represent a smoothing of the actual 
field, with the smoothing removing the small-scale fluctuation. Therefore, 
the large-scale field of a variable at a point, x. should be defined as some 

sort of a local average of the actual field at points near x. The deviation 

of the actual field from the local average field is then the small-scale 

"turbulence", that is. in LES the "turbulence" really is related to events In 

the current cycle, as shown in Fig. 5 . 6b. Hence. LES carried out over 
several cycles should reveal the magnitude of cycle-to-cycle variation, which 

cannot be found by SFM.

At present, the computer time requirements of LES calculations in 

engine-like system are such that they are beyond the capacities of most 
research groups. If one is limited by computer capacity to two-dimensional 
time-dependent calculations, then LES is not possible, and SFM is the only 

choice. However, if one has the computer capability to do a 

three-dimensional time-dependent calculation, then it might as well be LES 

as SFM, and LES is likely to give more accurate results. With projected 

computer development, it is possible that within a decade LES calculations
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in engine-related system will become routine.

5 .4 .3  THE STATE OF THE ART OF LES

LES models have been subjected to limited evaluation for engine flow 

prediction, but only for two-dimensional calculation, which raises doubts 

about the validity of the comparison with experiments because the turbulence 

is always three-dimensional although the mean flow may be 

two-dimensional.

Even in the proper three-dimensional context, the following major problems 

still exist:

(1 ) .  the difficulty of posing realistic inflow boundary condition during 

induction.

(2 ) .  the necessity to accumulate statistics over many simulated engine 

cycles in order rigorously to compare with experiment.

Therefore, the LES approach is still in an early stage of development and 

is not yet ready for use In engine flow, but it may offer the best hope for 
soundly based, accurate flow calculations in practical engine systems.

5 .4 .4  THE STATE OF THE ART OF SFM

5 .4 .4 .1  Critique of SFM

From evaluation studies, the SFM approach has been proven to be a positive 

one. [5.12] As errors from other sources such as uncertain boundary 

conditions and numerical approximations are systematically reduced, so the 

overall accuracy of prediction has improved to levels which may already be 

adequate for some purpose. The speed, flexibility and accuracy of the 

numerical methods have steadily improved to the stage where 

three-dimensional calculations for practical chambers are feasible, but 
costly and subject to limitation.

However, the following weaknesses of the methods still remain

(1 ) .  their inability to predict cycle-to-cycle variation.
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(2 ) .  their discretization errors, which require the use of fine grids even with 

higher-order scheme,

(3 ) .  the problems of maintaining the required mesh connectivity properties 

during the scavenging process,
(4 ) .  the still large computing cost of three-dimensional calculations,

(5 ) .  the uncertain distributions of al! the main dependent variables ( i .e .  the 

velocity, composition, pressure, temperature and turbulence parameters 

which depend on the upstream condition and cannot be deduced from 

knowledge of the chamber configuration alone).
(6 ) .  the lack of reliable boundary layer formulae for the circumstances of 
engine flows because in an engine the wall boundary layers do not have time 

to relax to local equilibrium, hence the indiscriminate application of an 

assumed Universal* wall layer formula, such as in pipe flow, is a potential 

source of error.
(7 ) .  the inadequacy of experimental data, so that the analyses of 
in-cylinder flow behaviour have been characteristically, but not uniquely, 
extrapolative in nature.

Hence. SFM has earned the status of being a useful tool for engine flow 

analysis including the scavenging process, but in view of the still rather 
limited amount of accuracy assessment, and the known limitations of the 

SFM, the results must be accepted with some caution. According to the 

turbulence model. SFM has further been classified into different versions.

5 .4 .4 .2  Critique of turbulence models in SFM

Because of the appearance of the turbulent flux terms due to the averaging 

process, the mean-fiow equations are not closed, and a turbulence model 
is neccessary to determine these turbulent transport terms before the 

equations can be solved.

5 .4 .4 .2 . 1  Simple models

In the gradient diffusion approach, turbulent diffusion of any quantity is 

assumed proportional to the mean spatial gradient of that quantity, (cf. 
Appendix II) The coefficient of proportionality is an eddy "diffusivity". The 

first example of simple models is Prandtl's mixing-length hypothesis [5. 131. 

This hypothesis calculates the eddy diffusivity e by the following equation.
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au
where is the local mean-velocity gradient,

d n

I is a single unknown parameter, the mixing length, whose
m

distribution over the flow field has to be prescribed empirically.

The mixing-length hypothesis is the simplest model.

The second example of simple models is another Prandtl model pertinent to 

free turbulence. (4.13] This theory assumes that the overall flow character 

with the mixing layer is determined by the dimensions of the layer and the 

greatest velocity difference across this layer, and that the eddy diffusivity is 

determined by,

€ = c b(U -U  ) (5 .2 )
t max min

where c is a constant.

b is the width of the Jet.

This model has been extended and used in version 2 of the 

phenomenological unsteady jet model suggested in Chapter 4.

The simple models have been used widely and with considerable success for 
calculations of simple shear layers, and a great amount of experience has 

been accumulated in the specification of the empirical constant In such 

flows. However, the simple models are not suitable whenever turbulence 

transport and history effects are important, because the gradient diffusion 

approach implies that generation and dissipation of turbulence energy are in 

balance everywhere, and the convection and diffusion of turbulence energy 

are ignored. [5. 14] The simple models are of little use for flows more 

complex than shear layers because of the great difficulties in specifying the 

empirical constants in such flows.

5. 4. 4. 2. 2 One-equation models

One-equation models [5. 15] employing a transport equation for the kinetic 

energy k  of turbulence account for transport and history effects. The



transport equation is a differential equation describing how the rate of k  is 

balanced by convective transport by the mean motion, diffusive transport by 

turbulent motion, production by interaction of turbulent stress and 

mean-velocity gradients, and destruction by dissipation. Therefore, these 

models are superior to the simple models for non-equilibrium shear layers 

where the length-scale distribution can be prescribed realistically. 

However, they are not very suitable for complex flows, such as in-cylinder 

flows, where an empirical length-scale determination Is difficult.

The engine flow calculations performed to date have been based on 

two-equation models and stress-flux equation model.

5.4 . 4. 2. 3 Two equation models

Two-equation models employ an additional transport equation for the length

scale. Among these, the k - €  model [5.14] is the most popular one in
/

which the turbulence kinetic energy k  and its dissipation rate e are used to 
characterize turbulence. From eddy viscosity-diffusivity concept, the 

turbulent fluxes and stresses are represented by diffusion-like terms 

containing an isotropic eddy viscosity which is related to the two turbulence 

parameters. It has been shown to predict with a sufficient accuracy 

in-cylinder flows, including separating and complex three-dimensional flows.

However, the eddy viscosity concept itself, and more importantly, the use 

of the isotropic viscosity do not describe certain Important flow phenomena 

in the cylinder because in the complex cylinder geometry, eddy viscosity and 

diffusivity will certainly depend on the stress or flux component considered. 
For the scavenging process with variable densities, turbulence is strongly 

influenced by buoyancy forces acting in a dominant direction.

5 .4 .4 .  2 .4  Turbulent stress-flux equation models

Turbulent stress-flux equation models are more sophisticated models. In 

most general form, models of this type comprise seven simultaneous partial 
differential equations for the six stress components and the dissipation rate 

€. These equations are derived In exact forms, but they contain 

higher-order correlations which have be approximated in order to obtain a 

closed system. A particular advantage of deriving the exact equations is
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that terms accounting for buoyancy, rotation and other effects are 

introduced automatically. Among them, one relatively simple model is the 

Reynolds stress model (RSM) by Launder and his co-workers [5.16], which 

Is the only other SFM that has seen application in engine calculations. In 

many instances, the computed results show a good quantitative agreement, 

but still remain some discrepancies between measurements and predictions. 

[5. 17]

Compared with the k - €  model, this type of model is rather complex and 

computationally expensive. However, it is undeniable that the RSM performs 

even better than the k -€  model and. therefore, offers an alternative should 

the latter eventually prove to be inadequate.

5 .5  PHENOMENOLOGICAL FLUID DYNAMIC MODELS

5 .5 .1  PHENOMENOLOGICAL STEADY AND UNSTEADY JET MODELS (SJM 

AND UJM)

In contrast to the computational fluid dynamics (CFD) models just 
discussed, the phenomenological scavenging models developed in Chapter 
4 offer the advantages of greater simplicity and much shorter computation 

time, at the expenses of loss of detail.

The basis of UJM. as mentioned in Chapter 4. is still provided by the 

conservation equations of momentum, mass and energy, taken with 

assumptions, such as uniform cylinder pressure and assumed profiles of 

velocity and composition. Furthermore, it is assumed in the case of the 

SJM described in Chapter 4 that the process is isobaric and isochoric during 

the scavenge period, and that heat transfer is absent.

The real difficulty In the calculation of the velocity field In CFD models lies 

in the unkown pressure field. The pressure gradient forms a part of the 

source term for a momentum equation. There is no obvious equation for 
obtaining pressure. The assumption of uniform pressure greatly simplifies 

the computational work, but clearly does not reflect the real physical 
situation.

5 .5 .2  CRITIQUE OF UJM
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The neglect of the pressure term in the equations of momentum conservation 

makes the model unable to predict the conversion from kinetic to pressure 

potential energy. In loop scavenged engines this conversion of mechanical 
energies dominates throughout the scavenging process, whereas in uniflow 

scavenged engines the conversion is unimportant except within the regions 

near the inlet and exhaust ports.

With the proper entrainment equation, the unsteady jet model can 

approximately depict the flow pattern and satisfactorily predict scavenging 

efficiency for uniflow scavenged engines.

5 .5 .3  CRITIQUE OF SJM

The model not only omits the pressure term In the equations of momentum 

conservation, i .e.  the conversion of mechanical energies, but also replaces 

a time-dependent flow by a steady (incompressible flow with variable 

compositions.

These simplifications mean that the SJM is only able to provide a roughly 

approximate flow history of unlflow scavenged engines. Nevertheless, the 

model avoids the need for an artificial history during the scavenging 

process, as is the case with thermodynamic models.

5 .6  THERMODYNAMIC MODELS

5.6 .1  STEP-BY-STEP THERMODYNAMIC MODELS (STM) AND ISOBARIC AND 

ISOCHORIC THERMODYNAMIC MODELS (ITM)

Thermodynamic models take account of energy and mass conservations and 

neglect momentum conservations, i .e.  omit any of the fluid dynamic 

behaviour. However, the neglect of momentum conservations produces the 

uncertainty of the flow and concentration fields. The models needs an 

artificial history of the flow and concentration fields. Based on this 

presupposition, the models can quickly and easily give a description of the 

thermodynamic properties.

One of the crucial tasks of the study of the scavenging process is to predict 
the history of the flow and concentration fields, i .e.  the scavenging
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effectiveness. The Inability to predict this is an inherent drawback of 
thermodynamic models. On the other hand, arbitrary specifications of 
exhaust history make the models able to cover a wide spectrum of 
scavenging processes from short-circuiting to perfect displacement 

scavenging and to provide a thermodynamic description of any scavenging 

process.

Under the assumption of the cylinder being divided into several 
homogeneous zones, the STM can give a step-by-step desription of the 

scavenging process.

Under the further assumption of isobaric and isochoric processes, the ITM 

can provide a simple and direct relationship between mass flow rate and 

scavenging effectiveness.

5 .6 .2  CRITIQUE OF STM

The STM can provide an accurate and informative step-by-step description 

of the scavenging process, and hence estimate the influence of port timing, 
which is important for investigating the scavenging process and matching 

supercharging systems In STM. it is assumed that the cylinder is divided into 

two or three zones, viz. air. gas and mixing zones, composition and 

temperature in each zone being assumed homogeneous. Combined with a 

specification of an exhaust history, a model can give a thermodynamic 

description for a particular scavenging system. As already mentioned. Streit 
and Borman's model and Heeschen's model are applicable to uniflow 

scavenging systems, whereas Benson's model is limited to loop scavenging 

systems only.

The model suggested in Chapter 3 posesses the flexibility of specifying 

appropriate intake and exhaust proportions in different phases, and can thus 

provide a description for any type of scavenging system.

5 .6 .3  CRITIQUE OF ITM

The assumption of an isobaric and isochoric process approximates to the 

physical situation during the scavenging process and bestows simplicity on 

the models. In the ITM. it is assumed that the cylinder is either
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represented as a mixing zone, or alternatively divided into two or three 

zones. With an exhaust history, the ITM gives a relationship between mass 

flow rate and scavenging effectiveness for the particular process. As above 

mentioned, given an exhaust history any such model can give simple 

algebraic relations for scavenging effeciency.

The ITM proposed in Chapter 2 displays this generality. With a set of

variable intake and exhaust proportions the model can express any 

scavenging process. Furthermore, with a set of fixed intake and exhaust 
proportions respectively in different phases, the model gives a set of

algebraic equations which apply with different numerical values to any of
cases described.

5 .7  SUMMARY

Briefly, the more comprehensive a model, the greater its complexity. Since 

the scavenging process in the engine is very complex, simplifications must 
be made for its modelling under the limitation of computation cost. 
Accuracy must be weighed against complexity and cost. Different 
applications need different level of predictive programs.

Characteristics, advantages and disadvantages of the different models are 

outlined in Table 5 .1 :
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(a). flow without reversal,
(b). flow with a central recirculation,
(c). flow with a long backflow region.

Fig. 5. 1 Swirling Flows
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Chapter 6 SCALE MODELLING OF THE SCAVENGING PROCESS AND 
EXPERIMENTAL RESULTS FROM HYDRAULIC ANALOGUE

6.1 INTRODUCTION

Improvements in scavenging effectiveness require an understanding of the 

physical processes taking place during the scavenging process. Both 

mathematical and hardware models are beneficial for the understanding. A 

completely theoretical approach of the flow processes during the scavenging 

process based on the differential equations of Navier-Stokes is unrealistic 

because solving these equations is beyond the present computational 
capability, as explained in Chapter 5. Any mathematical model, from simple 

to comprehensive, must be validated by reality, i. e. experiments on 

hardware model, prototype or scale model. Experimental investigations on 

real engines have provided information of overall, i .e . macroscopic, 
scavenging effectiveness (6.11. [2.61. [4.91. (4.161. However, detailed or 

microscopic experimental studies of the scavenging process In engines 

involving flow and composition measurements are both tedious and difficult. 
In view of this, scale model testing possesses great advantages due to its 

simplicity and economy.

Some scavenging investigations have been conducted on the scale models 

reportedly for loop scavenging [6.21. [6.31. However, these experiments 

did not aim at uniflow scavenging process and did not Include any 

investigation of entralnment law. The object of the author is to build up a 

simple two-dimensional scale model for uniflow scavenging to validate the 

phenomenological unsteady jet model suggested in Chapter 4.

6 .2  SCALE MODEL

6. 2. 1 GENERAL CONCEPT

A scale model can serve as a valid substitute for the prototype model, when 

all functional relations of the scale model are made similar to the 

corresponding relations of the prototype. The scaled transformation of all 

important prototype relations into the similar model relations Involves the 

application of seven (or less, if less suffice) primary scale factors of basic
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physical quantities: those of length, time, mass, temperature, electric 

current, luminous intensity and amount of substance, in which, usually, 
only the former four quatities are used in fluid dynamics. By scaling length, 
time, force (instead of mass) and temperature, all quantities (variables and 

constants) of the model can be scaled. Primary scale factors and their 
interrelations can be derived from the following fundamental requirement of 
the scale model:

model and prototype must be governed by the same physical laws.

Each of the governing laws can be converted into one relationship, i. e. 
model law, between various characteristic numbers which are dimensionless 

secondary scale factors taken with the form of power function of the previous 

primary scale factors. With order-of-magnitude analysis, neglect of "weak” 
characteristic numbers, the set of model laws can further be simplified.

6 .2 .2  MODEL LAWS IN THE SCAVENGING PROCESS

The integral forms of the conservation equations are used for deriving model 
laws, because the Identification of the possible fluxes is most revealingly 

done. The physical meaning of the conservation equations is.

change of
quantity
accumulated
in the
control
volume

increase increase
of quantity of quantity

by convection + by diffusion 
through through
the control the control

surface surface

production 
of quantity 

by source 
in the 

control 
volume

destruction 
of quantity 
by dissipation 
in the control 
volume

( 6 . 1)

There exist three physical quantities to be transported: material, momentum 

and energy. They must be considered Independently because these 

quantities are different.

The phenomenon concerned is a transient behaviour of the confined jet 
entrainment and mixing during the scavenging process. The outer surface
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of the Jetting region is defined as a control surface S. The volume V 

bounded by S is called a control volume. The part of the cylinder space 

outside V Is the residual gas region, as shown in Fig. 6.1.

6 .2 .2 .1  Material fluxes

The equation of air species conservation is

“  (p C  dV + (p C  (U-v)dS + f | d S = 0  
dt J  J ja J r ra  J n

P  SbC Dp SC
I Ja r Ja
  p s u e  L~
t r ra b

p C  b C D
- J J ? . .j - J a -
p C  Ut C Ub

r ra ra

p C
—I —^  Sr 1 1 Ja
P cr ra

C
J

Sc Re C
ra

-5
0 ( 1) 0 ( 1) 0 ( 1 0  )

(6 . 2)

This most general form allows for a moving system boundary: each surface 

element dS moves with velocity component v normal to its plane.

Equation (6 .2 )  is the sum of three fluxes. The importance of each of these 

are dependent on its ratio to the others. This relationship can be assessed 

by means of approximation.

The first term, the rate-of-accumulation term, is 

P VC p  SbC
P C dt I  ja

dV . - J - J S . - I ___ £
t t

(6 .3 )
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where p Is the density within the jetting region.

C is the air concentration in terms of the mass fraction in the 
ja

jetting region.
t is the process time, a typical time constant for the process, 

b is the width of the jetting region.

The second term, the convection term, is

[p  C (U -v)dS = p SUC 
J r  r a  r  r a
S (6 .4 )

where the upstream is the residual gas region due to entrainment.
p is the density within the residual gas region, 

r
C is the air concentration in terms of the mass fraction in the 

ra
residual gas region.
and the convective velocity is assumed approximately equal to the jet velocity 

U. because they should have the same order of magnitude.

From Fick's law. the third term, the diffusion term, is

Op SC 
(  r  ja
/ j dS =— - —
• n b
S (6 .5 )

where j is the mass diffusion flux, 
n
D is the mass diffusivity.

After substitution of equations (6 .3 )  to (6 .5 )  into equation ( 6 .2 ) .  equation
(6 .2 )  becomes the form of the second line in expression ( 6 .2 ) .  Being

divided by p SUC , the expression changes into the form of the third line 
r ra

in expression (6 .2 ) .  Finally, from the definitions of the characteristic 

numbers, the equation becomes the form of the fourth line. Here, the 

characteristic numbers are:

Ub
Reynolds number. Re= . the ratio of inertia to viscosity force.

v

v
Schmidt number, Sc= the ratio of molecular viscosity to mass diffusivity.

b
Strouhal number, Sr= . the ratio of local to convective velocity, or the

Ut
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ratio of piston to convective velocity, because the jet width has the same 

order of magnitude as the opening port height, or as the piston 

displacement during the scavenging process.

6 . 2 . 2 . 2  Momentum fluxes

The equation of the momentum conservation is

^  Jp^UdV + J p  ( U-v)UdS -  JgCpj-p^JdV + Jo^PdS *  | TndS = °

S

( 6 . 6 )

PiSbU 2
—  p SU gSb(pj-p^) SAP b

i f i -
p Ut 2 o 2 P Ub

T U P r P  U r

gb
* “ ( —1 -  i )

AP

2 p
U r p U

r

p P. P. ,
- V r t u _1 i_
P r Pr

p Re 
r

A *
P

-5  -5
0 ( 1) 0 ( 1) 0 ( 1 0  ) 0 ( 1) 0 ( 1 0  )

Equation (6 .6 )  is the sum of five fluxes. The first term, the body inertia 

force term, is

- fdt )

p VU p SbU 
i i

p UdV = -------- =----------
j t t

v (6 .7 )

The second term, the convection term, is

f p  (U-v)UdS = p SU2 
f r  rs (6.8)

where the upstream is the residual gas region.
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The third term, the buoyancy term, is

J g C p -p ^ d V  = gSb(p^-p^)
v

The fourth term, the dynamic pressure-area force term, is

(6 .0)

PdS = SAP (6. 10)
n

S

where 0 is the outward normal unit vector, 
n

From Stoke's hypothesis for a Newtonian fluid, the fifth term, the momentum 

diffusion term, is

f iS U
dS = ------  <6. 11)/  T 

J n
5

where t i  is the dynamic viscosity.

Similarly, being substituted by equations (6 .7 )  to (6 .11)  and divided by 

2
p SU . expression (6 .6 )  assumes dlmensionless form, as shown in its 

r
fourth line. There, the new characteristic numbers are

AP
Euler number. Eu=  . the ratio of pressure to inertia force.

p u 2

pgb r
Froude number. Fr= 1(1 -  ) .  the ratio of inertia to gravity force.

2 P U j

6 . 2 . 2 . 3  Energy fluxes

The equation of energy conservation is

JPjUdV + J p rh(U -v)dS  + j  qndS -  j p(eydV -  = 0

(6 .1 2 )
p C ATSb
—  --------  p C A T U S  ^ TS * SU SbAPr p b
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l p| b , a _  p l  tfU I bAP
Vpr Ut Ub p r P,bCpAT p r P,UtCpAT

iP i 1 EuU .  1 -JL— —1 SrEuEc
y p r  PrRe p f Re p f

0 ( 1) 0 ( 1) 0 ( 10" 5 ) 0(10 5 ) 0 ( 1)

Equation (6 .12)  is the sum of five fluxes. The first term, the body internal 
energy term, is

“ ( dt J

p C ATV p C ATSb 
j v j v

p udV = ------------ ---------------
I t t

v (6 .13)

where C is the specific heat at constant volume, 
v

The second term, the convection term, is

I  p h(U -v)dS = p C ATUS (6 . 14)
J r  r p
S

where the upstream is the residual gas region.
C is the specific heat at constant pressure.

P

From Fourier's law. the third term, the thermal diffusion term, is

( -■I n
KATS

q dS = --------  (6 . 15)
b

5

where q is the thermal enthalpy diffusion flux, 
n

k  is the thermal conductivity.

Also from Stoke's hypothesis for a Newtonian fluid, the fourth term, the 

friction heating term, is
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, !L SU2

~ /  P|°vdV =   (6 .16)
v  b

where e is the rate of generation of thermal energy by viscous dissipation 
v

of mechanical energy.

The fifth term is the compression heating term.

Similarly, the dimensionless form with characteristic numbers can be derived 

as in the fourth line of expression (6 .1 2 ) .  During the transformation of 

expression (8.11)  from the second to the third line, in the third term the 

following relation is used.

a =  — —  (6. 17)
P C 

r P
where a  is the thermal diffusivity.

The two more new characteristic numbers are
2

U
Eckert number. Ec= . the ratio of kinetic energy convection to thermal

C AT
enthalpy convection p

v
Prandtl numbor. Pr= ^ the ratio of molecular viscosity to thermal 
diffusivity.

6 . 2 . 2 . 4  Similarity in the scavenging process

Incorporated with geometric similarity and the equation of state, the above 

mentioned conservation equations constitute a complete set of the physical 

laws governing the scavenging process, as follows.

the geometrical similarity

the equation of state

from equation (6 .2 )

C p 
ja j

f (Sr. Re. Sc) = 0 (6 .18)
m C p 

ra. r.
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from equation ( 6 .6 )

j j
I (Sr. Eu. Re. Fr) = 0  <6 19)
mv p

r.

from equation ( 6 . 12)

f (Sr. “ 1 Eu. Ec. Pr) = 0  (6  2Q)
O P r.

where subscripts m. mv and e denote the conservation laws of mass, 
momentum and energy respectively.

This means that the perfect similarity is a set of relationships between 

characteristic numbers Sr. p j/p r. Eu. Ec. Re. Fr and Pr.

The order-of-magnitude analysis can be used to omit weak terms and obtain 

a simple similarity. From the typical data in the scavenging process, the 

orders of magnitude of characteristic numbers are estimated, as follows.

Sr = 0 (1 )

H i
= 0 ( 1)

Pr

Eu = 0 (1 )

Ec = 0 (1 )

5
Re = 0 ( 1 0  )

Sc = 0 ( 1 )

-5
Fr = 0 (1 0  )

Pr = 0 ( 1 )

By the estimation of order of magnitude of the characteristic numbers, the 

following reliable similarity can be derived from the dimerrsionless forms of 
the conservation equations ( 6 . 2 ) .  ( 6 . 6) and ( 6 . 12) .
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I

the geometrical similarity, 
the equation of state.

C. p « 
f (Sr. > = 0
m ° ra . Pr. (6 .21)

!jf (Sr. Eu) = 0
mv p^ (6.22)

V S r p EUEC>=°  <6.23)
r.

After the combination of the equation of state and the conservation equations
(6 .2 1 ) .  (6 .22)  and (6 .2 3 ) .  the reliable similarity becomes as follows.

C p 
la J

f(Sr. ------  —  Eu. Ec) = 0 (6 .24)
C p 

ra. r.

Here, the air concentration ratio Cja/Cra may be explained as a 

dimensioniess parameter for the scavenging effectiveness;
Strouhal number Sr can be considered as a ratio of piston speed to 

jet speed;
Euler number Eu is a ratio of pressure drop to kinetic energy; 
Eckert number Ec is a ratio of kinetic energy to heat transfer.

When Ec is assumed as much smaller than 1. the following isothermal 

similarity can be obtained

the geometrical similarity
C p

ia j
f(Sr. ----  —  Eu) = 0 (6 .25)

C p
ra. r.

Since heat transfer effects have been eliminated by omitting the Eckert 
number, so that the model cannot predict heat transfer effects.

Furthermore, isodensity is assumed in scale models, the simple similarity is

131



the geometrical similarity

C
Ja

f(Sr.  Eu) = 0 (6 .26)
C

ra.

This equation expresses the model law the water model with a moving piston 

must obey. Under the condition of similar geometrical configuration, the 

scavenging effectiveness, denoted by Cja/Cra. is dependent on the Euler 

and Strouhal numbers, i .e.  scavenging pressure and piston speed.

6 .3  WATER SCALE MODEL

6. 3. 1 BACKGROUND

The water model technique Is a very useful tool, simple and economic for 
studying jet entrainment and mixing phenomena, which has been used to 

investigate the fuel jet mixing in the diesei engine [6.4]. The use of water 
as a medium in model testing offers certain advantages such as slowing 

down the whole process many times, and hence providing feasibility of much 

simpler experimental techniques, for example, slow speed photography.

The object of this experiment is to validate the phenomenological unsteady 

jet model, suggested in Chapter 4. and estimate its precision in the case 

of planar imcompressible jet flow including jet impingement.

6 .3 .2  DESIGN OF WATER RIG

As a simplest scheme, the author has chosen a two-dimensional 
cylinder-like layout without a movable piston for modelling the uniflow 

scavenging process without swirl. Under this idea, the similarity of the 

scale model becomes the following simplest form

the geometrical similarity.
C

Ja
f(Sr. ----- ) = o (6 .27)

C
ra

It is obvious that this model fails to identify the following effects:
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(1 ) .  the effect of temperature and density variation on the scavenging 

effectiveness.
(2 ) .  the effect of piston movement on the scavenging effectiveness.
(3 ) .  the effect of intake swirl on the scavenging effectiveness.

The engine to be modelled is a medium speed opposed-piston two-stroke 

engine design developed by British Shipbuilders Co. which has a bore and 

stroke of 420 and 1000 mm respectively, a potential output of 1660 hp per 

cylinder at 360 rpm.

From the similarity. Strouhai number must be maintained constant.

(Sr) = (Sr) 
m e

that is.

(6 .28)

m
U T 

m m
U T 

e e

or

(6 .29)

R
I

 = 1 (6 .30 )
R R 

u t

where R . R and R are the scaling factors for length, velocity and time 
I u t

respectively.

For simplicity, the author has rebuilt the original water rig and used the 

existing injection pump, whose displacement volume is 0. 5 litre. To obtain 

the geometrical similarity, the thickness 0 is 0. 25 times the width W and the 
length L Is 2 .38 times the width. Under the condition of the maximum 

delivery ratio 1.2. from

V = X-V (6 .31)
pump m

the model geometry can be determined
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W = 89 mm 

0 = 22 mm 

L = 211 mm

The scaling factor of geometry is 

L
m 89

R = —  = ------  = 0.210
I L 420

e

It is assumed that the scavenging process takes 100 degrees of crankshaft 
angle, the jet velocity is equal to 65 m /s e c . . From these typical data of the 

engine, the following order-of-magnltude estimation can be achieved

L
e 0.420

Sr = ------- = ------------------ = 0. 1396
V t  65*0.0463

e e

V V
m m

v ‘  V 65
e

t t
m m

R = — = -----------
t t 0 .0463

e

hence
t R
e i 0.6320

m ” R V
v m

In this water rig. the jet velocity is equal to about 1 m /s e c . . This means 

that the cine-camera with 64 frame/sec. can take about 41 frames which 

gives a rather good resolution.

6 .3 .3  LAYOUT OF WATER RIG

The schematic layout of the water rig is shown in Fig. 6 .2 .  The water rig 

consists of the following components:

(1 ) .  a square tank sized by 22*89*211 mm. i .e.  0.41 litre, made of 
perpex with 2 inlet and 2 exhaust ports at two ends respectively, to 

represent the engine cylinder.
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(2 ) .  an injection pump with capacity of 0 .5  litre, made of stainless steel 

with a sealed piston and a filling plug.
(3 ) .  two plastic hoses which connect the injection pump with the square 

tank via two spring-loaded diaphragm check valves which prevent backflow 

from the tank to the pump, as shown in Figs. 6. 3 and 6 .4 .

(4 ) .  a container which keeps the discharged water from the tank.

(5 ) .  a PH meter to measure the PH values of solutions, hence to determine 

scavenging effectiveness.
(6 ) .  a compressed air supply with a reservoir in which the air supply 

pressure is adjusted by a valve.
(7 ) .  a stablized power supply and a control console.

6 .3 .4  OPERATION

(1 ) .  prepare alkali solution with concentration of PH value about 10.
(2 ) .  drain all solution in the tank, container and hoses.
(3 ) .  set the injection pressure and amount to the required level.
(4 ) .  stir the alkali solution in a beaker to uniform.
(5 ) .  fill the alkali solution via the exhaust port into the tank with a proper 
height in the exhaust port tube.
(6 ) .  fill pure water via the filling plug into the hoses and the pump.
(7 ) .  switch on the current and actuate the pump.
(8 ) .  pour the solution within the container into a graduated glass.
(9 ) .  pour the solution within the tank into another graduated glass.
(10) .  use the PH meter and measure the PH values of the solution in the

two graduated glasses and the beaker respectively.
(11).  repeat the operation from procedure (3) to (10) until the experiment 
ends.

It is notable that the simultaneous measuring the PH values of the solutions 

in procedure (10) is to avoid the error effected by zero-shift of the PH 

meter.

6 .3 .5  CALCULATION

In essence, the previous testing process Is a diluting process of alkali 
solution. From the definitions, the PH and POH values are.

135



PH= -LogC + (6 .32)
H

POH= -LogC -  . (6 .33)
OH

where C + is the H concentration.
H

C -  is the OH concentration.
OH

The PH and POH values of an aqueous solution are related by the ion 

product for water, which is approximately constant.

-1 4
C + x C -  = 10 (6 .34)

H OH

After the use of logarithms and rearrangement, the following relationship 

can be achieved.

PH = 14 -  POH = 14 + LogC -  (6 .35)
OH

The conservations of OH species are. 

for the mass trapped in the tank.

m C  = m C + m  C (6 .36)
in in j.in  J r.in  r

where m is the mass retained in the tank, 
in

m is the injected mass retained in the tank,
j.in

m is the residual mass retained in the tank,
r. in

and C C and C are the corresponding OH concentrations, 
in, j r

for the mass discharged from the tank.

m C  = m C + m  C (6 .37)
out out j.out j r, out r

where m is the mass discharged from the tank,
out

m is the injected mass discharged from the tank,
j.out

m is the residual mass discharged from the tank,
r. out

and C is the OH concentration of the mass discharged from the tank, 
out

And from imcompressibility. the mass conservations are.
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for the Injected mass.

m = m + m (6 .38)
j j .in j.out

injected mass = injected mass retained + injected mass discharged 
in the tank from the tank

for the residual mass.

m = m + m (6.39)
r r.in r.out

initial = residual mass retained + residual mass discharged
residual mass in the tank from the tank

and

m = m (6.40)
r in

initial residual mass = total mass retained In the tank

m = m (6 .41)
j out

Injected mass = total mass discharged from the tank

m = m (6 .42)
j. in r.out

injected mass retained = residual mass discharged 
in the tank from the tank

After substitution and rearrangement, the following relationship can be 

obtained.
C -C  

in r
m = m (6 .43)

j. in I n C - C
I r

C -C  
out r

m = m
j.out out C -C  (6.44)

I r

From the definition of charging and trapping efficiencies, they are.
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c  -c
in r

( 6 .4 5 )
ch c  -C  

J r

c  - c , out I
1/ = --------------  (6 .46)

tr C -C  
r J

Because pure water is injected into the tank, the OH concentration of the 

injected water C can be neglected. Being substituted by the PH value 

definition, the previous formulae (6 .45)  and (6 .46)  become 

C
in P H dn)-P H (r)

V  =  1 ~ -----  = 1 - 1 0  (6 .47)
ch C

C r 
out PH (out)-PH (r)

71 = --------  = 10 (6 .48)
tr C

r
Therefore, the PH values can be measured by PH meter, and the charging 

and trapping efficiencies can be obtained. Thus, the delivery ratio can be 

determined from

^ch
x = ---------------------------------------------------  (6 .49)

V
In this experiment, the injected water amount is used as a monitoring 

parameter, instead of a measured parameter, because it is difficult to 

precisely control the same remaining water mass in the tank before and after 

the injection.

6 .4  EXPERIMENTAL RESULTS ON THE WATER SCALE MODEL 

The experimental work has been conducted as follows.

(1 ) .  The gauge pressures of the compressed air reservoir are equal to 1.4  

and 2. 8 bar respectively.
(2 ) .  The displacements of the injection pump are equal to 100. 200. 300.
350. 400 and 430 mm respectively.

(3 ) .  At each running condition, the experiment includes the following two
tests:
(a ) ,  the flow visualization.

(b) .  the scavenging test with the PH-meter method.
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6. 4. 1 FLOW VISUALIZATION

In this test, potassium permanganate (KMn04) is used as a colour 
indicator. The red-coloured water solution of KMn04 is filled through the 

filling hole into the injection pump. The water without colour is filled
through the exhaust port into the tank. After the injection pump has been 

actuated, a jet propagates, mixes with the surrouding water without colour 

and forms a red-coloured mixing region. Therefore, the whole 

red-coloured region is composed of the fresh charge and mixing zones, 
while the region without colour is the residual charge zone. These processes 

of the jet propagation are filmed by a cine-camera with 64 frame per 

second. From these photographs, the following phenomena can be seen.

(1 ) .  After entering the tank, the two jets from two inlet ports impinge and 

deflect their directions to axial. However, this impingement is a process of 
gradually deflecting, not straightly impacting and abruptly deflecting.
(2 ) .  After the impingement, the jet flow develops to an axial jet. Despite the 

tank layout is designed as symmetric, the jet is unsymmetric because of the 

deviation in manufacture and operation.
(3 ) .  The propagation of the jet flow arouses a recirculating flow in the 

surrounding region. The recirculating flow lasts a rather long time after the 

end of the scavenging process.
(4 ) .  If the amount of the injected water is less than a certain value, the 

red-coloured water of fresh charge and mixing regions never arrives at and 

discharges from the exhaust ports, i . e . .  only the displacement scavenging 

phase occurs.
(5 ) .  When the amount of the injected water is greater than a certain value, 
first only the water without colour discharges from the exhaust ports, and 

then the red-coloured water arrives at and discharges from the exhaust 

ports. This means that the displacement scavenging phase first occurs, 
and then the mixing scavenging phase follows.

Fig. 6 .5  illustrates a group of typical photographs for the flow visualization 

of the scavenging process.

6 .4 .2  SCAVENGING TEST WITH THE PH-METER METHOD

Following the above operation procedures, described in Section 6 .3 .2 .  this
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experiment has been done under the same operating conditions as those in 

the flow visualization test. The experimental results are shown in Fig. 6 .6 .

From the experimental results. It can be concluded that.

(1 ) .  in the scavenging process, always the displacement scavenging phase 

first occurs, and then the mixing scavenging phase follows.
(2 ) .  with increase of delivered amount of fresh charge the trapped amount 
of fresh charge, i.e . the charging efficiency increases, while the trapping 

efficiency decreases.

These quantitative conclusions are consistent with those from the flow 

visualization. It is important to give an estimation of the precision for the 

phenomenological unsteady jet model suggested in Chapter 4 based on 

these experimental results.

6. 5 VALIDATION OF THE PHENOMENOLOGICAL UNSTEADY JET MODEL

The program WATERRIG is rewritten based on the program of the 

phenomenological unsteady jet model (U JM ). as described in Chapter 4. 
The program WATERRIG has the same idea and structure as those in UJM. 
Actually, program WATERRIG is a simplified version of version 1 of UJM for 
modelling imcompressible planar jet flow in a rectangular tank with constant 

flow section areas of inlet and exhaust ports because the entrainment law 

used in version 1 of UJM is valid also for planar flow, while the entrainment 
law in version 2 is used for cylindrical system. Like UJM. WATERRIG 

neglects the investigation of jet impingement.

In the real model rig. the inlet ports are fitted with diaphragm valves for 
preventing leakage of water from the injection pump into the tank before 

injection. However, the modelling with WATERRIG requires the flow areas 

of the inlet ports as the boundary conditions. Under the simplification of 

imcompressible quasi-steady flow, the following equation is evident.

m = pC A v T (6 .50 )
in f in in in

where m is the total mass flowing through the inlet ports, 
in

p is the density.
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C If the flow coefficient of the inlet port, 
f

A is the area of the inlet ports, 
in

v is the flow velocity at the inlet ports, 
in

T is the duration of the Jet flow, 
in

Here, the total mass m can be measured, and the duration Tin and the
in

velocity v can be approximately estimated from the photographs filmed in 
in

the flow visualization test. Therefore, the flow section area CfAin can be 

determined. For the sake of estimating the precision of the 

phenomenological unsteady jet model, the experiment at each operating 

point must be repeated twice, one with PH-meter method to obtain the 

charging and trapping efficiencies, another with flow visualization to 

determine the boundary conditions for computing.

A comparison between these experimental and computational results of the 

charging and trapping efficiencies is shown in Fig. 6 .7 . The discrepancy is 

within 5 %. Correspondingly. Fig. 6 .8  illustrates a comparison between the 

jet penetration processes. The prediction of the arrival time of jet from inlet 
to exhaust end is satisfactory. Fig. 6. 9 shows an example of computational 
results of concentration field.

From these comparisons, it can be concluded that under the condition of 
imcompressible flow without swirl the phenomenoiogicai unsteady jet model 
for uniflow scavenging process is satisfactory, and the entrainment law by 

Ricau and Spalding [4. 10] quoted in this model slightly underestimates mass 

entrainment rate. From the photographs from the flow visualization, for the 

jet confined within the cylinder-like space, the recirculation intensifies the 

entrainment and mixing process.

It is necessary in further experimental work to build a model in the form of 
a real cylinder with ports and a moving piston, and to carry out 
measurements with this model under operating conditions of variable density 

and swirl. In order to validate version 2 of the phenomenological unsteady 

jet model, it is required to measure the velocity and concentration fields, 
thus also establishing a new entrainment law for this kind of confined Jet.

6 . 6  CONCLUSIONS
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Scale modelling technique is beneficial for parametric and microscopic study 

of the scavenging process.

A group of model laws has been established. Generally speaking, the more 

accurate a modelling method, the more complicated the model rig and the 

measuring techniques for satisfying the more generalized model law and 

providing the more abundant information.

A series of scale model tests have been done on the simple water rig. 
These experiments combine the PH-meter method with the flow visualization. 

The experimental results have validated that for imcompressible jet flow 

without swirl the phenomenological unsteady jet model, suggested in Chapter 

4. is satisfactory with error of less than 5 %.
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Part 3 SUPERCHARGING AND COMPOUNDING



Chapter 7 TWO-STROKE OIESEL ENGINE MODELS

7. 1 INTRODUCTION

The diesel engine, being the most efficient known power plant, has been 

used in many applications. The output, fuel consumption and exhaust 

emissions of any diesel engine are governed by the flow and movement of 
gas in the engine. The flow in turn depends on compression ratio, 

dimensions and configuration of the combustion chamber, inlet and exhaust 
port or vaive layout, size and timing, swirl, squish, air-fuel ratio and 

injection system. Since all these parameters are variable, some over a very 

wide range, engine development or optimization of a basic design with an 

empirical approach would take a long and costly process. In recent years, 
the computer modelling techniques have been developed and used to 

simulate the diesel engine thermodynamic cycle and predict the performance 

satisfactorily.

The earliest air-standard models assumed air as the working fluid. (7.1] 
typically, but not certainly, assumed to be independent of temperature. 
After that, the fuel-air models used two separate charts for calculating the 

thermodynamic properties of a fuei-air mixture and the products of 
combustion of this mixture respectively [7 .2]. An earlier five-point model 
developed by Way and Wallace [7. 3] belongs to this group of models. These 

two groups of models both assumed that all engine processes are 

independent of time. This assumption simplifies the computation, but 
heavily damages the predictability. Then, thermodynamic rate models used 

time as a variable which represented a significant advance. [7.4] This type 

of model can predict the effect of vaive timing, and the effect of injection 

timing. Recently the multi-dimensional models based on the computational 
fluid dynamics methods have been developed for predicting engine 

subprocesses such as in-cyiinder flows, spray distribution and mixing.
[7 .5], [7.6] However, these models add markedly to the complexity of the 

model and the computer time required, and need the further experimental 
validations which are tedious and difficult.

The main uses of engine cycle simulation are as follows:

(1) .  to investigate major design options (for example, the performance
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estimation of the thermally insulated engine).

(2) .  to optimize aspects of design via parametric studies (for example, the 

optimization of port tim ing).
(3 ) .  to predict cylinder pressure and hence mechanical loading.

(4) .  to predict component temperature and hence thermal loading.

Generally speaking, the more simple the model, the more limited the 

applicability, and consequently the more limited the information obtained 

from the model. Based on the compromise between model complexities and 

computer capability, the thermodynamic rate models should be suitable for 
the above applications. According to different applications, the following 

two engine models are suggested.

(1) .  a simple engine model with a large step length.
(2 ) .  a step-by-step model which has two versions with different scavenging 
models.

These three programs are:

CSPS: Cycle Simulation Program with the Simple models, which is
composed of the simple engine model with the isobaric and isochoric 

thermodynamic scavenging model, in Chapter 2.

CSP3Z: Cycle Simulation Program with the 3 Zone scavenging model, which 

Is composed of the step-by-step engine model with the three-zone 

thermodynamic scavenging model, in Chapter 3.

CSPMZ: Cycle Simulation Program with the Multi-Zone scavenging model, 

which is composed of the step-by-step engine model with the 

phenomenological multi-zone unsteady jet model, in Chapter 4.

The engine model is composed of the following submodels:

(1) .  piston-crank mechanism
(2) .  gas properties
(3) .  combustion
(4) .  gas exchange
(5) .  heat transfer

145



(6 ) .  engine friction

Some submodels have different versions with different complexity level. 
Different programs use different submodels in the light of various 

requirements.

7 .2  SIMPLE ENGINE MODEL (PROGRAM CSPS)

7.2 .1  SOME CONCEPTS

The simple engine model is composed of the simple submodels in order to 

shorten computing time. CSPS can only give a cycle-to-cycle description 

rather than a "degree-by-degree" description.

The simple engine model has been developed based on a polytropic process 

with variable exponent, combined with the heat release correlation by 

Watson. Marzouk and Pilly [7.71. The cycle process in the combustion 

chamber is divided into the following three phases:

( 1) .  compression
( 2 ) .  combustion
(3 ) .  expansion

The combustion phase is. furthermore, subdivided into several steps. In 

each step, the burning fuel mass is computed based on Watson's 

correlation.

For a closed system, from the first law of thermodynamics, the non-flow 

energy equation Is

Q -  W = AU (7 . 1)
12 12 12

For a cylinder, the volume is determined by its piston crank mechanism. 
Generally speaking, the process within the cylinder Is a polytropic process 

with variable exponent, depending on the relationship of heat transferred to 

the system.

This model assumes that the polytropic exponents in the compression and
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expansion phases and each step of the combustion phase remain constant. 
Therefore, the model uses large step length.

7 .2 .2  PISTON-CRANK MECHANISM

This submodel evaluates the distance of the piston from the top dead centre 

position, cylinder volume and rate of change of cylinder volume with crank 

angle. The submodel provides two options, for the conventional engine and 

opposed-piston engine layouts. The submodel for the former has been 

programmed and described in the work by Tarabad. [4.14] The submodel for 
the latter Is described in Appendix I.

7 .2 .3  GAS PROPERTIES

In accordance with the requirement of quick and easy calculation, a set of 
relatively simple empirical polynomial relationship by Way and Wallace (7. 3] 
are used In program CSPS for calculating the specific heat at constant 
pressure, ratio of specific heats and enthalpy of exhaust gas in diesel 
engines as functions of temperature and equivalence ratio, but not of 
pressure. The corresponding subroutine has been made by Way.

7 .2 .4  HEAT TRANSFER

The heat flow transferred to cooling water and cooling oil is computed based 

on the correlation by Wallace and Wright [4. 15] which gives very good 

results, the error exceeding 5 per cent in very few instances for two-stroke 

opposed piston engines, and is a correlation between heat flow and running 

parameters:

0.87 No - 0 . 6  - 0 . 2  
Q = K(M ) (— )r  X (7 .2 )

c f N c

in which is the fuel mass supplied to engine per minute
N is the engine speed In rev/min.

r is the boost pressure ratio, 
c

X is the delivery ratio 
and coefficient K is determined by calibration with experimental results from 

the engine.
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This correlation based on the running parameters Is suitable for a simple 

model because it does not involve any calculation of thermodynamic process 

variables.

It is assumed that 10 per cent of the heat loss is allocated to the 

compression and expansion phases respectively, while 80 per cent is 

attributed to the combustion phase and is proportionally subtracted from the 

burning heat release. The transient heat flux experiments [7.8] support this 

approximate estimation of the heat loss distribution for conventional 
water-cooled engines.

7 .2 .5  COMBUSTION

To model the actual chemical combustion mechanism taking into 

consideration all the spatial and kinetic variables and so produce a time and 

space dependent heat release model Is at present an extremely difficult task. 
However, the current alternative approach is to use experimentally 

determined heat release diagrams and obtain mathematical expressions that 
conform to these diagrams. Apparent heat release equations are thus 

achieved without detailing the combustion reaction kinetics. This method 

avoids true combustion modelling. It is purely an experimental approach 

with only limited fundamental theoretical support.

the ignition delay period is calculated based on the theory by Wolfer [7.9] 

a2 a3
0(m s) = a exp< >P (7 .3 )

1 Tm m

from which ignition timing can be determined.

The apparent rate of fuel burning is determined from the correlation by 

Watson et. al. based on a form of Wiebe function. The accumulated amount 
of fuel burning is composed of the premix and the diffusion portions.

m = m + m (7 .4 )
a p d

Using the nominal burning duration A and the total quantity of fuel Injected 
m . the equation is non-dimensionalized as
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M ( r )  = 0 M  ( r )  + (1 -£ )M  Cr) 
t p d

(7 .5 )

where M is the "pre-mlxed" burning fraction,
P

M Is the "diffusion" burning fraction, 
d

$  is the phase proportionality factor of pre-mixed to total burning
mass.

m

m
t

and

r - (  0 - 0  ) /A  
i

The best representation of the experimental data has been achieved using 

the following functions

CpI Cp2
M ( r ) =  1-  ( 1-  r  ) (7 .6 )

P
Cd2

M ( r ) =  1- e x p (-C d lr  ) (7 .7 )
d

Furthermore, the correlation of the shape parameters CpI. Cp2. Cdl and

Cd2 with the basic engine parameters of Ignition delay 0. trapped
equivalence ratio F and engine speed N may be established empirically or 

t e
experimentally. This subroutine has been programmed by Tarabad.

7 .2 .6  VARIABLE POLYTROPIC EXPONENTS

From the previous relationships ( 7 . 5 ) .  ( 7 .6 )  and ( 7 .7 ) .  the burning fuel 
mass in each step within the combustion phase can be obtained. Combined 

with the heat loss flux, the heat quantity transferred into or out of the system 

in each phase and each step can be determined.

Thus, the following iteration procedures are used in each step in the 

combustion phase and in the compression and expansion phases.

(1 ) .  calculate the volume of the final state V .
2

(2 ) .  calculate the heat quantity Q . as explained before.
12

(3 ) .  guess a polytropic exponent n.
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(4 ) .  determine the temperature of the final state T from,
V

2 ( 1-n )
T = T <— >

2 1 V
1

(5 ) .  calculate the pressure of the final state P from:
2

if n*1

T n
2 ------

P = P <— ) n-1 
2 1 T

1
If n=l

P V 
1 1

P = -------
2 V

2

( 6) .  calculate the work along the process, 

if n#l
P V -P  V 

2 2 1 1
W = ----------------

12 1-n

If n=l

V
2

W = P V Log(— )
12 1 1  V

1

(7 ) .  calculate the internal energy from the function of thermodynamic
properties.
( 8 ) .  examine the correctness of the supposed polytropic exponent from the 

first law.

f(n) = Q -  W -  AU =0 
12 12 12

(9 ) .  If the error lies within a tolerance limit, the calculation In this step or 
phase ends.

(10) .  If the error exceeds the limit, correct the supposed poiytropic
exponent, repeat the calculation from the procedure (3)

These procedures are repeated from the compression, through the
combustion, to the expansion phases. Thus, a series of polytropic
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processes with constant exponents approximate the real process with 

continually variable exponents, as shown in Fig. 7.1.

7 .2 .7  ENGINE FRICTION

From the generated pressure -  crank angle diagram, the cycle simulation 

programs are able to calculate the Indicated work output. To determine the 

brake power output, the power loss due to friction must be calculated. 
Experimentally the most satisfactory method of determing the frictional power 
loss is to subtract the measured brake power from the indicated work. If no 

accurate pressure measuring device is available, the best alternatives are 

the Morse test and Willans line method.

From experimental tests, researchers have deduced empirical formulae for 
the frictional mean effective pressure (FMEP) as functions of engine speed 

and cylinder pressure. The formulae by S. K. Chen and Flynn 17. 10] 
developed for turbocharged engines and by F.J. Wallace and Wright for the 

TS3 two-stroke opposed piston engine [4.15] are optional in programs.

FMEP= A + B-P + C -V (7 .8 )
max p

where P is the maximum cylinder pressure 
max

V is the mean piston velocity 

and A. & and C are empirical constants for particular engines.

The FMEP is thus used to calculate the frictional power loss, due to all the 

the moving engine components. A fraction of this power loss is due to the 

sliding contact of the piston rings with the liner. The heat generated at the 

rings can therefore be estimated and used in the above mentioned heat 
transfer resistance network.

7 .2 .8  GAS EXCHANGE

In program CSPS. the flow characteristic of the engine is given in the form 

of a mapping which is obtained from the experiments.

The simplified analytical scavenging model is used in program CSPS. The
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coefficients of intake and discharge proportions and the volumetric ratios of 
the initial mixing and remaining residual gas zones are determined either 

empirlcaiiy or experimentally. This simplified treatment makes program CSPS 

particularly suitable for rapid cycle calculations, e.g .  for parametric 

studies.

7 .2 .9  SUMMARY

This model combines simplicity and precision. Compared with the original 
five-point model [7.3], this model has Improved the simulation precision, 
especially for the running conditions with predominantly premix combustion, 

because the five-point model only took diffusion combustion into 

consideration and neglected premix combustion. This model also discards 

the demand for a correcting engine diagram factor, whereas the five-point 
model needs the diagram factor to improve precision.

7 .3  STEP-BY-STEP ENGINE MODELS (CSP3Z AND CSPMZ)

7. 3. 1 SOME CONCEPTS

These two programs can give a step-by-step description of cycle simulation. 
Programs CSP3Z and CSPMZ are based on the emptying and filling concept
(7.4] in which the iniet and exhaust manifolds and cylinders are treated as 

control volumes with simultaneous gaseous inflows and outflows. The 

manifolds are treated as simple receivers specified by their volumes alone 

with neglect of heat transfer. The cylinders are also treated as simple 

volumes, but with variable volumes and surface areas. The slmplifylnglng 

assumptions of the Inlet and exhaust manifolds as mere receivers rather than 

a complex pipe system substantially reduce the complexity of the programs, 

and hence computing costs. However, these slmplications mean that the 

pressures in each volume are spatially uniform and temporally variable. The 

models ignore the effect of pressure wave propagation.

Programs CSP3Z and CSPMZ have been developed on the basis of program 

CSP which is a program based on the "emptying and filling" method for 
four-stroke diesel engine by Tarabad [4. 141. In this thesis, the attention 

will be concentrated on author's own work. The equations of energy and 

mass conservations bave been introduced in Chapters 3 and 4. Their
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detailed treatment In the programs has be described in the literature. 

[4.14]. [7.11] Programs CSP3Z and CSPMZ use the same submodels for 
piston-crank mechanism, combustion and engine friction as those in 

program CSP.

7 .3 .2  GAS PROPERTIES

The equibrium thermodynamic properties of the products of combustion of 
CnH2n and air were calculated by Newhali and Starkman [3.4]. using the 

data from the JANAF table. These values were converted to reference 

temperature of 0 K by Krieger and Borman [7. 12] to obtain mathematical 
expressions for the internal energy, gas constants and their partial 
derivatives as functions of temperature, pressure and equivalence ratio. 
The lean side formulation is in terms of normal interest in diesel engine 

practice. The rich side formulation is in terms of a single equation for each 

of a selected number of equivalence ratios. These relatively complex 

expressions are suitable for a step-by-step description in programs CSP3Z 

and CSPMZ for improving prediction accuracy.

7 .3 .3  HEAT TRANSFER

The heat flow path between the working gas and the engine coolant may be 

divided into three parts:

( 1) .  gas to wail
( 2) .  conduction through the wall
(3 ) .  wall to coolant

For the first part, the intermittent process inside the combustion chamber is 

very complex. Involving rapidly varying gas pressure and temperature and 

local fluid velocities which are In turn functions of engine speed, load, 
injection characteristics and chamber design. In programs CSP3Z and 

CSPMZ, the Woschni bulk heat transfer correlation [3. 5] is used to calculate 

the instantaneous convective heat transfer from gas to wail. For the third 

part, an empirical bulk heat transfer coefficient is used. For the second 

part, two-dimensional or three-dimensional heat flux models using the finite 

element method could be considered. However, the complexity and 

computing time and storage requirements of such models, in relation to the
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rest of the simulation program, render their use impractical with a "single 

zone" combustion model, which implicitly ignores spatial variations in gas 

temperature. Hence, the concept of one-dimensional steady-state heat flux 

is used, in the one-dimensional model, increasing the number of surfaces 

will improve the definition of temperature distribution, but will add to the 

complexity of data input and increase the computer time. The equivalent 

network of thermal resistance used is a trade-off between these factors, as 

shown in Fig. 7,2.

This one-dimensional model assumes that at a specified running condition 

the wail surfaces of piston, cylinder and head operate with constant and 

uniform temperatures and heat transfer coefficients respectively since the 

heat capacity of the surface material is normally large enough to heavily 

dampen the temperature fluctuations. In the network in program CSP the 

piston is treated as a star element with fixed thermal resistances, while in 

CSP3z and CSPMZ the piston is treated as a Delta element with variable 

thermal resistances. in CSP. the determination of the thermal resistance 

of the star element, in principle, can be obtained by the finite element 
method, but. actually, is difficult especially for a range of piston surface 

temperatures, because with variation of surface temperatures the resistances 

are changed. The suggested treatment of the Delta element can embody 

the dependence of heat flux upon surface temperates.

The heat conduction in the piston is a three-dimensional problem with a 

complex configuration and boundary conditions. Therefore, it is necessary 

to make the following assumptions.

(1 ) .  A "most approximate" solid circular cylinder of finite length is used to 

simulate the real configuration.
(2 ) .  The temperatures of the piston gas. liner and oil side surfaces are 

different, but respectively constant and uniform.

This produces a simple steady state heat conduction problem with a 

cylindrical coordinate system. The solution of the general heat conduction 

problem gives a temperature distribution from which the net heat flux through 

each side surface can be determined. However, it is difficult to decide 

what the individual contributions of heat flux are. In other words, the net 
heat fluxes. Qg. Ql and Qo. can be determined easily, while the heat flux
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contributions. Qgl. Qlo and Qgo. are difficult to determine. Therefore, the 

Delta element denoting the piston has three branches through which the net 
heat fluxes flow, as shown in Fig. 7.2.

There is a heat flux balance at each junction. From the three major 
junctions, under the specified flow directions shown in Fig. 7 .2 .  the 

following equations can be obtained

for junction I.

Q = Q (7 .9 )
9 P9

for junction II.

Q + Q = Q + E (7 . 10)
I Iw ig fr

for junction III,

Q + Q = 0  (7 . 11)
o co

where Q is the net heat flux through the piston gas side surface, 
g

Is the net heat flux through the piston liner side surface.
Q is the net heat flux through the piston oil side surface, 

o
Q is the convective heat flux through the piston gas side.

P9
Q is the convective heat flux through the liner gas side.

I g
Q is the heat flux through the liner into cooling water.

Iw
Q is the heat flux through the piston into cooling oil. 

co
for these heat fluxes, the positive directions are specified as those 

shown in Fig. 7 .2 ,

and E is the heat loss due to friction between piston and liner, 
fr

After substitution of the resistances R l. R2 and R8 . the set of equations
( 7 . 9 ) .  (7 .10)  and (7 .11)  become

Q = Q 
9 P9

T -T  
Ig cw

Q + = Q + e
» R ^ R  i g  fr

(7 .12)

(7 .1 3 )
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T -T
pO CO

Q +   = 0
o R

8

(7 .1 4 )

Using cyclic integration, the total convective heat flux transferred per cycle. 
Q and Q . can be calculated for each wall of the combustion chamber.

the heit loss flux due to friction between ring and liner is a certain

fraction of the friction work loss. The model treats the thermal resistances
from wall to coolant as constant. Thus, to solve the previous set of three 

non-linear equations needs the knowledge of the relationship between net 
heat fluxes and surface temperatures in the piston.

Under the above simplifying assumptions, when the temperatures of all the
piston side surfaces are given, the temperature distribution throughout the
piston can be determined by a solution of the heat conduction equation
using the separation method in the form of Bessel's function. Then from
the Fourier law of heat conduction the net heat fluxes through all the side
surfaces Q . Q and Q can be obtained. The details of the solution of the 

g i o
heat conduction equation are explained in Appendix III.

Summarizing, the procedures for heat transfer are as follows.

( 1) .  estimate the temperatures of the combustion chamber.

( 2 ) .  calculate the cycle average convective heat transfer rates to each wall 
of the combustion chamber.

(3 ) .  guess the temperatures of the three side surfaces of the piston.
(4 ) .  calculate the net heat fluxes through the piston side surfaces. Qg. Ql 
and Qo.

(5 ) .  solve the equation system ( 7 .1 2 ) .  (7 .13)  and (7 .14)  to obtain the 

temperatures of each element.
( 6) .  if the temperature errors are within the limit, the iteration of the inner 
loop ends, continue procedure ( 8 ) .
(7 ) .  if the temperature errors are beyond the limit, correct the 

temperatures and repeat the iteration of the inner loop from procedure(4).
( 8) .  update the temperatures, repeat the iteration of the outer loop from 

procedure ( 2 ) until the calculation converges.
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In the inner loop in program CSP3Z and CSPMZ. the Gauss-Seidel iteration 

method is used for solving the set of non-linear equations.

The other thermal resistances in the network are determined by component 

dimensions and material properties, or boundary conditions of the cooling 

system. [7. 11] The suggested resistance network describes the dependence 

of heat flux on surface temperatures of the piston. Thus, this heat transfer 

model can directly give an estimation of the heat flux and component 

temperatures for various engines, including thermally insulated engines.

7 .3 .4  GAS EXCHANGE

In programs CSP3Z and CSPMZ. the flow characteristics of the engine are 

calculated based on the compressible fluid equations in which the discharge 

coefficient correlation by Wallace and Mitchell [3. 6] is quoted.

The step-by-step three-zone thermodynamic scavenging model in Chapter 3 

is used in program CSP3Z. This scavenging model makes program CSP3Z 

able to provide a step-by-step description and to simulate all the scavenging 

processes: uniflow, loop and cross scavenging systems subject to the
proper and empirical choice of the flow and concentration field parameters.

The multi-zone unsteady jet model in Chapter 4 is used in program CSPMZ. 
This scavenging model allows program CSPMZ to predict the performance 

only for uniflow scavenging system and at the expense of computation cost.

7 .4  CRITIQUE OF PROGRAM CSPS. CSP3Z AND CSPMZ

The author has developed these three programs, from simple to complex. 
CSPS. CSP3Z and CSPMZ. In these programs, there is a rather balanced 

level of sophistication in the calculation for the various individual processes: 
gas exchange, heat transfer and combustion.

The simple program CSPS is composed of three simple submodels: the 

combustion model with large step length based on variable polytropic 

exponents, the scavenging model based on the analytical isobaric and 

isochoric thermodynamic process and the heat transfer model based on an 

empirical correlation. This simplicity allows program CSPS to give a quick
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and easy calculation suitable for predicting the overall performance of a 

compound engine system over all the operating range. The precision of the 

prediction relies on the choice of the scavenging parameters. The simple 

heat transfer model for the water-cooled engine in CSPS makes this program 

unable to predict the performance in thermally insulated engines. 

Improvements in predicting the scavenging and heat transfer processes are 

dependent on experiments and advanced analytical models.

The middle-level program CSP3Z is composed of submodels with 

middle-level complexity: the step-by-step description of all processes, the 

three-zone thermodynamic scavenging model and the heat transfer model 
with variable thermal resistance of the piston. The step-by-step method can 

predict the effect of port timing on supercharging. The three-zone 

scavenging model enables program CSP3Z to predict performance for the 

different scavenging systems, including cross, loop and uniflow systems, 
provided the proper parameters of the exhaust history are chosen. The heat 
transfer model can estimate the heat flux and temperature in each element 
for conventional and insulated engines.

Instead of the three-zone scavenging model, the complex program CSPMZ 

uses the complex multi-zone unsteady Jet scavenging model. This 

scavenging model allows program CSPMZ to fully predict the uniflow 

scavenging process.

A comparison between the computational results with programs CSP3Z. CSPS 

and the five-point engine model [7.3] has been conducted for estimating 

their precision. The computed engine is the differential compound engine 

using a two-stroke opposed piston engine as an alternative for the present 
OCE with a four-stroke engine. The only difference of the latter two cases 

is that in the engine programs, one uses the engine model of variable 

polytropic exponents above described, the other uses the five-point engine 

model. Tables 7.1 to 7 .3  list the computed results with these programs. 

For CSPS and the five-point engine model, the engine diagram factor is set 
to 1. Compared with the results from CSP3Z. the discrepancy of the results 

of the output power and efficiency from CSPS is within 4 %. whereas from 

the five-point engine model is within 8 %. which originates from the 

oversimplified combustion submodel. For the exhaust temperature, the 

maximum difference from CSPS is 130 K. while from the five-point engine
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model is 230 K.

7 .5  CONCLUSIONS

It is notable that the more complex the model, the more computation time 

the program needs. The computation time per cycle program CSP3Z 

requires is about one order of magnitude higher than CSPS. and the 

computation time with CSPMZ is a further order of magnitude higher than 

CSP3Z.

Each of the three programs is suitable for particular applications, depending 

on the compromise which is to be made between the ability to predict the 

process in detail and computation time.

Program CSPS is suitable for predicting overall performances of an engine 

compounding system. The behaviour of heat transfer is based either on 

experiments or on the results of simulation using program CSP3Z.

Program CSP3Z is appropriate for estimating the effect of port timing on 

supercharging and predicting heat transfer for conventional and insulated 

engines. The performance of the scavenging process is estimated based on 

either experiment or simulation with CSPMZ.

Program CSPMZ in a single cylinder version is suitable for predicting the 

scavenging performance of a uniflow scavenging system in detail.

159



REFERENCES

[7.1]. C. F. Hirshfeld and W. N. Barnard
"Elements of Heat Power Engineering"

John Willey and Sons. 1915

[7.2]. R. L. Horsey. J.E. Eberhardt and H.C. Hottel

"Thermodynamic Properties of the Working Fluid in Internal 
Combustion Engines"

SAE Transactions. 31. 409. 1936

[7.3]. R. J.B. Way and F.J. Wallace

"Notes on Engine Performance Analysis"
School of Engineering. University of Bath. 1977

[7.4]. K. J. McAulay. T. C. Wu. S. Chen. G. L. Borman. O.A. Uyehara
and P. S. Myers

"Development and Evaluation of the Simulation of the Compression 
Ignition Engines"

SAE Transaction. 1966

[7.5], A. D. Gosman. Y. Y. Tsui and A. P. Watkins
"Calculation of Three-Dimensional Air Motion In Model Engines"
SAE 840229. 1984

[7.6]. T.W. Kuo and R. C. Yu

"Modelling of Transient Evapovating Spray Mixing Process -  Effects 

of Injection Characteristics”
SAE 840226. 1984

[ 7 .7J. N. Watson. M. Marzouk and A. D. Pilley

"A Combustion Correlation for diesel Engine Simulation"
SAE 800029. 'diesel Combustion and Emissions' SP86 . 1980

[7. 8]. N. D. Whitehouse

"Heat Transfer in a Quiscent diesel Engine"
Proc. I. Mech. E. Vol. 185. 1970-71

160



[7.9]. H.H. Wolfer
"Der Zunderzug Im diesel Motor"
CDI Forschungsheft 392. 15-24. 1938

[7.101. S. K. Chen and P. F. Flynn

"Development of a single Cylinder Compression ignition Research
Engines"

SAE 650733. 1965

[7.111. A. C. Cole
"diesel Engine Thermal Insulation"
Ph.D. Thesis. Uniderslty of Bath. 1986

[7.121. R. B. Krieger and G.L. Borman
"The Computation of Apparent Heat Release for Internal Combustion

Engines"

ASME 66-W A/DGP-4. 1966

161



#

Tablo 7. 1 Computed Rosults Based on Step-by-Step Thr'ee Zone Model

*

€

C

(

deg k)  
k w. ) 
n . m .  ) )  
( b a r  ) 

kg/kw h r  )

)
.)

k )

OROOTCS TS3 DCE 
Onumber o f  c y l i n d e r s  

c o n - r o d  l e n g t h  ( m.m. )
ambient  t e m p e r a t u r e  ( deg k 
compression r a t i o  

Oenylne s p e e d ( r . p . m )  
boost p r e s s u r e  r a t i o  
t r a p p e d  a i r  to  f u e l  r a t i o  
del  I v er y  r a t  i o 
m a n ! f o l d  temp 
eng in e  power  
e ngi ne  t o r q u e  
b . m . e . p
s . f  . c .  (
b . t h e r m a l  e f f .  
f u e l  /  rev  /  c y l  ( g ,  
max cy l  p r e s s u r e  ( b a r  
exhaust  t e m p e r a t u r e ( d e y  
mass f l o w  ( k g / s )

Ocompressor speed ( r . p . m . )  
compressor  p r e s s u r e  r a t i o  
compressor power ( kw, ) 
compressor t o r q u e  (n .m )  
compressor e f f i c i e n c y  
by pass v a l v e  a r e a  ( s q . c m . )  

O t u r b l n e  speed ( r . p . m )  
t u r b i n e  p r e s s u r e  r a t i o  
mass f l o w  ( k g / s )  
t u r b i n e  power (kw)  
t u r b i n e  to r q u e  ( n . n )  
i n l e t  t e m p e r a t u r e  (deg k)  
t u r b i n e  e f f i c i e n c y  
o ut pu t  s h a f t  speed ( rpm)  
o ut pu t  s h a f t  power (kw)  
o ut pu t  s h a f t  t o r q u e  ( n . / m )  
out pu t  th erm al  e f f i c i e n c y  
dynamic I n j e c t i o n ( d e g r e e  c a )  
t u r b i n e  g e a r  r a t i o  
o ut pu t  s h a f t  g e a r  r a t i o  
c h a r g i n g  e f f i c i e n c y

1

3 . 0  bore  ( m.m. )  9 4 . 9 8
1 0 9 . 5 5  i n l e t  v a l v e  c l o s i n g  ( degs ) 5 5 . 6

) 2 9 4 . 0  am bient  p r e s s u r e  ( b a r  ) 0 . 9 9
1 4 . 0 0  e n g i n e  d iagr am f a c t o r  1 .0 0 0 0

2 5 2 2 . 0 0  2 1 7 8 . 0 0  2 2 3 0 . 0 0  1 7 3 8 .0 0  1 9 2 5 . 0 0
3 . 1 1 0  2 . 0 7 0  3 . 3 0 0  1 .8 9 0  3 . 4 9 0

2 5 . 3 5 0  2 2 . 0 2 0  2 6 . 4 5 0  2 3 . 0 8 0  2 7 . 3 7 0
0 . 6 9 1  0 . 5 3 6  0 .8 01  0 . 5 3 2  1 . 0 0 4

3 4 3 . 0 0 0  3 3 1 . 0 0 0  3 4 5 . 0 0 0  3 3 1 . 0 0 0  3 4 7 . 0 0 0
2 7 1 . 2 4  14 4 .4 1  2 7 0 . 5 1  9 7 . 2 6  2 5 8 . 9 4

1 0 2 7 . 0 0  6 3 3 . 2 0  1 1 5 8 .5 0  5 3 4 . 4 0  1 2 8 4 . 5 0
1 3 . 0 2 0 0  8 . 0 2 0 0  1 4 . 6 8 0 0  6 . 7 7 0 0  1 6 . 2 8 0 0

0 . 2 1 1  0 . 2 3 1  0 . 2 0 8  0 . 2 4 2  0 . 2 0 8
0 . 3 9 8 3  0 . 3 6 3 6  0 . 4 0 4 5  0 . 3 4 8 2  0 . 4 0 3 8
0 . 1 3 3  0 . 0 8 5  0 . 1 4 0  0 . 0 7 6  0 . 1 5 6

1 3 8 . 1 3  9 8 . 7 0  158 .2 1  9 3 . 7 4  1 2 8 . 7 6
7 8 9 . 0 0  8 4 3 . 0 0  7 4 0 . 0 0  7 9 6 . 0 0  7 2 4 . 0 0

0 . 4 6 2  0 . 2 0 9  0 . 5 1 2  0 . 1 5 4  0 . 5 6 2
5 4 2 9 . 0  2 7 7 3 . 0  5 9 8 0 . 0  2 2 0 9 . 0  6 5 1 0 . 0

3 , 2 1 0  2 . 1 0 0  3 . 4 5 0  1 . 9 1 0  3 . 6 2 0
7 4 . 6 9  2 4 . 2 3  9 3 . 6 0  1 6 . 3 0  1 0 9 . 2 4

1 3 1 . 3 7  9 3 . 4 4  1 4 9 . 4 6  7 0 . 4 7  1 6 0 . 2 2
0 . 7 2 1  0 . 6 0 1  0 . 6 8 3  0 . 5 6 7  0 . 6 7 3
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0

4 7 5 0 0 . 0  3 8 2 5 0 . 0  4 6 0 0 0 . 0  2 9 0 0 0 . 0  4 3 5 0 0 . 0
2 . 6 3 0  1 . 9 4 0  2 . 7 6 0  1 . 8 3 0  2 . 8 4 0
0 . 4 8 6  0 . 2 2 8  0 . 5 4 0  0 . 1 5 4  0 . 5 6 2

7 3 . 3 7  . 2 7 . 0 2  7 9 . 3 0  1 6 . 1 7  8 3 . 2 3
1 4 . 7 5  6 . 7 5  1 6 . 4 6  5 . 3 2  1 0 . 2 7

7 8 9 . 0 0  8 4 3 . 0 0  7 4 0 . 0 0  7 9 6 . 0 0  7 2 4 . 0 0
0 . 7 3 4  0 . 7 5 0  0 . 7 5 3  0 . 7 1 8  0 . 7 6 0

2 5 0 0 . 0 0  2 5 0 0 . 0 0  2 0 0 0 . 0 0  2 0 0 0 . 0 0  1 5 0 0 . 0 0
2 5 9 . 2 0  1 4 3 . 6 0  2 4 6 . 5 0  9 5 . 3 0  2 2 0 . 3 0
9 ° 0 . 00 5 4 9 . 0 0  1 1 7 7 .0 0  4 5 5 . 0 0  1 4 0 3 . 0 0

0 . 3 3 0 6  0 . 3 6 1 7  0 . 3 6 8 7  0 ,3 4 1 1  0 . 3 4 3 6
1 6 5 . 0  1 6 0 .1  1 6 3 . 7  1 5 8 . 0  1 7S .0
1 9 . 0 0  1 5 . 3 0  2 3 . 0 0  1 4 . 5 0  2 9 . 0 0
1 . 3 8 8  1 . 3 8 3  1 . 3 3 8  1 . 3 8 8  1 . 3 8 8
0 . 6 3 4  0 . 5 3 4  0 . 6 9 9  0 . 5 3 0  0 . 7 9 2

33
st roke
compressor  sc 
c o o l e r  e f f e c t  
t u r b i n e  f l o w

1 0 8 7 .0 0  
1 . 9 5 0

3 1 . 1 7 0
1 . 0 8 5

3 2 8 . 0 0 0  
6 9 . 5 3

6 1 0 . 7 0  
7 . 7 4 0 0  
0 .22 6  
0 . 3 7 1 9  
0 . 0 8 0  

9 4 . 7 1
6 0 6 . 0 0  

0 . 2 1 3
2 8 0 8 . 0

1 . 9 8 0  
2 2 . 7 5  
7 7 . 3 6

0 . 5 9 6  
0 .000  

2 5 0 0 0 . 0
1 . 9 8 0  
0 . 1 9 0

1 3 . 2 6  
5 . 0 7  

6 0 6 . 0 0  
0 . 7 2 2  

1000.00  
4 7 . 8 0  

5 5 2 . 0 0  
0 . 3 0 9 1  
1 6 6 . 8  
2 5 . 0 0  
1 . 3 8 8  
0 . 7 5 7

88  56
( m

a l e  f a c t o r  
i veness  
l o s s  f a c t o

1 5 3 3 .0 0  
4 . 8 3 0

2 5 . 7 1 0
1.218

3 6 5 . 0 0 0  
3 0 1 . 2 7

1 8 7 6 . 2 0
2 3 . 7 8 0 0

0.211
0 . 3 9 9 3
0 . 2 2 3

1 6 2 . 4 5
7 4 6 . 0 0  

0 . 8 0 3
9 1 3 1 . 0  

5 . 0 5 0
2 2 9 . 3 2
2 3 9 . 8 1

0 . 6 0 4
0 .000

4 1 5 0 0 . 0
3 . 7 9 0
0 . 7 7 6

1 4 3 . 5 6
3 3 . 0 4

7 4 6 . 0 0  
0 . 7 5 1

5 0 0 . 0 0  
2 0 3 . 7 0

3 8 9 0 . 0 0  
0 . 2 7 0 0  
1 7 9 . 5  
8 3 . 0 0  
1 . 3 8 8  
0 . 8 4 9

24
. m . )  2 3 3 . 5 3

1 .1 5  
0 . 8 3 2 0  

r  0 . 8 0 0 0
7 7 8 . 0 0  

2 . 0 7 0
3 6 . 2 9 0

1 .7 0 0
3 2 9 . 0 0 0  

5 5 . 8 2
6 8 5 . 4 0

8 . 6 9 0 0
0 . 2 2 5
0 . 3 7 3 3
0 . 0 9 0

1 0 6 . 1 3
4 8 3 . 0 0  

0 . 2 5 5
3 2 3 2 . 0

2 .120
2 8 . 8 6
8 5 . 2 6

0 . 6 2 2
0.000

1 7 0 0 0 . 0
1 . 8 7 0
0 . 2 4 7

11.86
6.66

4 8 3 . 0 0  
0 . 6 2 2

5 0 0 . 0 0  
3 6 . 4 0

6 9 6 . 0 0  
0 . 2 4 3 7  
1 6 8 . 4  
3 4 . 0 0  
1 . 3 8 8  
0 . 9 9 8



Table 7 .2  Computed Results Based on Variable Polytropic Exponent Model

OROOTES TS3 DCE 
Onunber o f  c y l i n d e r s 3 . 0 b or e ( m.m. )  94

33
. 9 3  s t r o k e

88 56
( m.

24
» . )  2 3 3 . !

con-pod l e n g t h  ( m.m. ) 1 0 0 . 5 5 i n l e t  v a l v e c l o s i n g  ( degs ) 55 •6  compressor  s c a l e  f a c t o r 1 .1 '
ambient t e m p e r a t u r e  ( deg k ) 29 0 . 4 ambien t  p r e s s u r e  '( b a r  ) 0 . 9 9  c o o l e r  e f f e c t i v e n e s s 0.1
compress ion r a t i o 1 4 .0 0 e n g i n e  d ia gram  f a c t o r 1 •0 000  t u r b i n e  f l o w lo s s  f a c t o r 0.1

Oengine s p e e d ( r . p . m ) 2 5 2 2 . 0 0 2 1 7 8 . 0 0 2 2 3 0 . 0 0 1 7 3 8 .0 0 1 9 2 5 .0 0 1 0 8 7 .0 0 1 5 3 3 . 0 0 7 7 8 . 0 0
boost  p r e s s u r e  r a t i o 3 . 0 8 8 2 . 0 5 2 3 . 3 0 4 1 . 9 1 6 3 . 5 4 2 2 . 0 2 1 4 . 7 6 7 2 . 2 0 7
t r a p p e d  a i r  to f u e l  r a t i o 2 4 . 7 9 7 2 0 . 4 8 2 2 7 . 2 6 8 2 1 . 0 9 2 2 8 . 2 7 3 3 5 . 7 0 6 2 9 . 6 8 1 4 4 . 4 6 4
d e l i v e r y  r a t  i o 0 . 6 3 4 0 . 4 8 5 0 . 7 4 9 0 . 4 8 5 0 . 8 8 0 0 . 9 5 2 1 . 2 5 3 1 . 4 5 4
m a n i f o l d  temp ( deg k) 3 2 4 . 0 5 9 3 0 4 . 3 4 7 3 2 8 . 9 8 7 3 1 2 . 7 9 2 3 3 3 . 5 6 0 3 0 4 . 1 3 7 3 5 9 . 8 4 3 3 0 6 . 1 6 6
e ngi ne  power ( k w.  ) 2 7 2 . 8 9 1 4 2 . 5 3 2 7 2 . 3 3 9 6 . 0 4 2 5 7 . 3 1 6 8 . 7 8 3 0 0 . 0 7 5 5 . 1 7
e ng i n e  t o r q u e  ( n . m .  ) ) 1 0 2 6 . 3 4 6 3 1 . 8 0 1 1 5 7 . 8 5 5 3 4 . 1 9 1 2 8 3 .9 4 6 1 1 . 4 7 1 8 7 6 . 4 3 6 8 4 . 6 8
b . m . e . p  ( b a r  ) 1 3 . 0 7 8 0 7 . 9 0 9 5 1 4 . 7 6 0 3 6 . 6 7 8 9 1 6 .1 5 5 9 7 . 6 4 8 0 2 3 . 6 5 8 6 8 . 5 7 0 3
s . f . c .  ( kg /kw h r  ) 0 . 2 0 9 0 . 2 4 6 0 . 1 9 9 0 . 2 5 7 0 . 2 0 6 0 . 2 2 6 0 . 2 0 5 0 . 2 2 0
b . t h e r m a l  e f f . 0 . 3 9 8 3 0 . 3 3 9 2 0 . 4 1 8 8 0 . 3 2 4 8 0 . 4 0 4 3 0 . 3 6 8 3 0 . 4 0 5 9 0 . 3 7 9 4
f u e l  /  rev  /  c y l  ( g .  ) 0 . 1 2 6 0 . 0 8 9 0 . 1 3 5 0 . 0 7 9 0 . 1 5 3 0 . 0 8 0 0 . 2 2 3 0 . 0 8 7
max c y l  p r e s s u r e  ( b a r  . ) 1 3 8 . 1 4 8 8 . 6 4 15 8 .7 1 8 1 . 9 2 1 3 8 . 2 4 9 0 . 7 4 1 7 0 . 2 3 1 0 2 . 7 8
exhaus t  t e m p e r a t u r e ( Jeg k ) 8 9 5 . 4 3 9 6 6 . 4 5 8 1 2 . 5 7 8 9 7 . 6 7 7 9 3 . 0 3 5 5 3 . 1 8 7 6 3 . 2 3 4 6 0 . 8 3
mass f l o w  ( k g / s ) 0 . 4 3 6 0 . 2 0 4 0 . 4 8 0 0 . 1 4 8 0 . 5 1 5 0 . 1 9 7 0 . 7 2 9 0 . 2 3 3
p e r c e n t a g e  hea t  t o  c o o l a n t 1 2 .4 1 1 9 . 0 4 1 2 . 2 6 2 2 . 9 9 1 2 .2 0 2 5 . 5 1 1 0 . 3 3 2 6 . 6 9

Ocompressor speed ( r . p . m . ) 5 4 2 9 . 2 2 8 3 6 . 0 5 9 4 4 . 5 2 2 3 5 . 6 6 3 6 1 . 9 2 7 6 1 . 2 8 8 3 9 . 9 3 1 4 8 . 4
compressor p r e s s u r e  r a t i o 3 . 2 9 5 2 . 1 1 9 3 . 5 5 0 1 . 9 5 2 3 . 8 1 7 2 . 0 8 3 5 . 2 6 7 2 . 2 8 8
mass f l o w  ( k g / s ) 0 . 4 3 6 0 . 2 0 4 0 . 4 8 0 0 . 1 4 8 0 . 5 1 5 0 . 1 9 7 0 . 7 2 9 0 . 2 3 3
compressor  power ( kw. ) 7 5 . 3 6 2 4 . 0 4 9 3 . 4 2 1 6 .4 0 1 1 0 . 9 5 2 2 . 8 7 2 2 5 . 5 8 2 9 . 2 6
compressor  t o r q u e  (n .m ) 1 3 2 . 5 0 8 0 . 9 0 1 5 0 .0 1 7 0 . 0 4 1 6 6 . 4 7 7 9 . 0 4 2 4 3 . 5 8 8 8 . 7 2
d e l i v e r y  t e m p e r a t u r e  (deg k) 4 6 6 . 0 8 4 1 1 . 8 7 4 3 7 . 4 5 4 0 5 . 0 9 5 0 7 . 8 2 4 1 0 . 2 0 5 9 8 . 8 3 4 1 9 . 2 5
compressor  e f f i c i e n c y 0 . 6 9 5 0 . 6 0 1 0 . 6 6 3 0 . 5 6 2 0 . 6 4 0 0 . 5 9 1 0 . 5 7 9 0 . 6 3 0
by pass v a l v e  a r e a  ( s q . c m . ) 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 , 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

O t u r b i n e  speed ( r . p . m ) 4 7 5 0 0 . 0 3 8 2 5 0 . 0 4 6 0 0 0 . 0 2 9 0 0 0 . 0 4 3 5 0 0 . 0 2 5 0 0 0 . 0 4 1 5 0 0 . 0 1 7 0 0 0 . 0
t u r b i n e  p r e s s u r e  r a t i o 2 . 6 9 0 1 . 9 4 3 2 . 7 4 3 1 . 8 5 3 2 .  888 1 . 8 9 9 3 . 7 0 8 2 . 0 2 6
mass f l o w  ( k g / s ) 0 . 4 5 2 0 . 2 1 4 0 . 4 9 5 0 . 1 5 5 0 . 5 3 0 0 . 2 0 1 0 . 7 4 6 0 . 2 3 7
t u r b i n e  power (kw) 7 7 . 0 5 2 6 . 8 0 7 8 . 1 9 16 .01 8 5 . 5 4 1 3 . 4 8 1 3 7 . 2 0 1 2 , 6 5
t u r b i n e  to r q u e  (n .m ) 1 5 . 5 6 6 . 6 9 1 6 . 2 2 5 . 2 7 1 8 .7 7 5 . 1 5 3 1 . 5 6 7 . 2 2
i n l e t  t e m p e r a t u r e  (deg k) 8 9 5 . 4 3 9 6 6 . 4 5 8 1 2 . 5 7 8 9 7 . 6 7 7 9 3 . 0 3 5 5 3 . 1 8 7 6 3 . 2 3 4 6 0 . 8 3
t u r b i n e  n o z z l e  a n g l e 8 . 8 6 8 6 . 1 8 9 9 . 0 5 9 4 , 4 6 5 9 . 0 7 3 4 . 4 2 4 9 . 7 5 3 4 . 3 6 0
t u r b i n e  e f f i c i e n c y 0 . 7 5 6 0 . 7 3 2 0 . 7 5 7 0 . 6 9 8 0 . 7 6 0 0 . 7 1 4 0 . 7 5 3 0 . 6 3 7
ou t pu t  s h a f t  speed (rprn) 2 5 0 0 . 0 0 2 5 0 0 . 0 0 2 0 0 0 . 0 0 2 0 0 0 . 0 0 1 5 0 0 . 0 0 1 0 0 0 . 0 0 5 0 0 . 0 0 5 0 0 . 0 0
o u t pu t  s h a f t  power (kw) 2 5 6 . 1 5 1 3 6 .0 1 2 3 9 . 4 9 8 9 . 3 0 2 1 8 . 6 6 5 5 . 4 7 1 9 5 . 9 9 3 6 . 1 3
o u t p u t  s h a f t  t o r q u e  ( n . / m ) 9 7 8 . 0 1 5 1 9 . 3 0 1 1 4 3 .0 2 4 2 6 . 2 2 1 3 9 1 . 4 3 5 2 9 . 5 0 3 7 4 1 . 6 3 6 8 9 . 6 2
o ut pu t  s h a f t  s f c  ( k g / k w . h r ) 0 . 2 2 3 0 . 2 5 8 0 . 2 2 6 0 . 2 7 6 0 . 2 4 3 0 . 2 8 1 0 . 3 1 5 0 . 3 3 6
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dynamic i n j e c t i o n ( d e j r e e  c a ) 1 6 5 . 0 1 6 0 .1 1 6 3 .7 1 5 8 . 0 1 7 5 . 0 1 6 6 . 8 1 7 9 . 5 1 6 8 . 4
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Tablo 7 .3  Computed Results Based on Five-Point Diesel Cycle Model
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Chapter 8 APPLICATIONS OF THE TWO-STROKE DIESEL ENOINE MODELS

8 .1 INTRODUCTION

In a conventional diesel engine, approximately one-third of the total fuel 
input energy is converted to useful work. A major part of the energy is 

rejected with the exhaust gases which are discharged at high temperature. 
Another major part of the energy is lost in the form of heat via the cooling 

system. For the conventional diesel engine, if only its cooling system is 

moved away, the wall temperature will rise, thus still a considerable amount 
of energy may be lost through the walls. To depress the heat loss, the 

walls must be thermally insulated. Therefore, limited cooled or uncooled 

insulated engines have been proposed.

It is expected that the thermally insulated engines possess the following 

advantages.

(1 ) .  improved engine efficiency: Such designs can reduce the parasitic 

losses associated with the cooling system. Due to the thermal insulation of 
the engine extra energy will be available at the exhaust which can be 

recovered through a compounding system.
(2 ) .  reduced engine-package volume: This is attributed to the elimination 

or at least the reduction of the size of the radiator and cooling system.

However, the thermal insulation will further increase the temperature of the 

walls due to the hot combustion gases. During the scavenging process the 

wall temperature is now considerably greater than that of the air charge 

which is expected to be detrimental to the engine volumetric efficiency due 

to the increased wall-to-charge heat transfer.

Compared with the four-stroke engines, the heat flow rate through the 

combustion chamber walls of the two-stroke engines Is much greater, 

because in the two-stroke engines the injected fuel mass is almost twice of 
that in the same sized four-stroke engines running at the same boost, 
air-fuel ratio and speed. Therefore, the same insulation measure will reduce 

much more heat loss for the two-stroke engines than that for the four-stroke 

engines. [8 . 1] Correspondingly, the component temperatures are also 

substantially higher. But the geometry of the wholly ported two-stroke 

engine lends itself substantially better to ceramic material than the valved
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engines. On the other hand, it is expected that compared with the 

four-stroke engine the two-stroke engine has a shorter gas exchange 

period, i .e.  the shorter duration of waii-to-charge heat transfer, which 

lessens the influence of the hot walls on the volumetric efficiency, and that 
compared with two-stroke engines with other scavenging systems the uniflow 

scavenging system should have a better volumetric efficiency, because this 

system considerably reduces the "dead space" in which the charge heated 

by the hot wall is reduced to a low density at a given scavenging pressure.

The majority of the research work on insulated engines has been 

concentrated on the four-stroke engine. [8 .21. [8 . 31. [8 . 4J. [8 . 5). while the 

Ford Co. has been developing a ceramic uncooled two-stroke 

opposed-piston diesel engine. The performance predictions have been made 

mainly for four-stroke engines. The thermodynamic rate engine models 

have been successfully used for the optimization of the valve timing for 
four-stroke engines [7.3]. but not satisfactorily for the optimization of the 

port timing. The reason is that for a four-stroke engine the scavenging 

period is short and the scavenging process occurs near the top dead centre 

at which the cylinder volume is a minimum, hence the four-stroke engine 

is not sensitive to the scavenging model, whilst for a two-stroke engine the 

scavenging process occurs near the bottom dead centre at which the 

cylinder volume is a maximum, hence the two-stroke engine is sensitive to 

the scavenging model. Therefore, the optimization of the port timing for the 

two-stroke engines needs a scavenging model with predictabily. The 

phenomenological unsteady jet model provides the possibility for the uniflow 

scavenged two-stroke engines.

The objects of this chapter are to predict the performance of the Ford
ceramic two-stroke opposed-piston diesel engine and to optimize the port

timing, it is notable that according to the requirement of the Ford Co. the

definitions of delivery ratio X and charging efficiency 7f use the SAE
ch

terminology:

 ̂ _ _______ Mass of delivered air ______
Displaced volume* ambient density ( 8 . 1)

Mass of delivered air retained
ch Displaced volume* ambient density (8 .2 )

8 .2  PERFORMANCE PREDICTION OF THE CERAMIC UNCOOLED ENGINE



8. 2. 1 ENGINE SPECIFICATIONS

The Ford newly designed engine is a small partially thermally insulated 
single-cylinder diesel engine.

The major characteristics of the engine are:

two-stroke opposed piston engine layout, as shown in Fig. 8 .1.

bore- 58 mm 

stroke= 124.8 mm 

compression ratio= 22 

displacement- 0.33 litre

uncooled system with monolithic pistons and cylinder of silicon nitride with 

thermal conductivity of 12 W/m*K.

port timing- exhaust port opening 75 BBDC 

inlet port opening 44 BBDC 

exhaust port closing 50 ABDC 

inlet port closing 67 ABDC

8 .2 .2  METHOD OF PREDICTING PERFORMANCE

The performance prediction Is based on calculation and comparison with the 

baseline engine. The baseline engine is a water-cooled engine with the 

same size and configuration, and at the same running conditions.

The heat transfer coefficient suggested by the Ford C o . . as shown in the 

Fig. 8 .2 .  is used for calculating the heat transfer from wall to coolant of 

the uncooled engine, whereas the correlation by Howarth [8 . 6] is used for 
calculating the heat transfer from wall to water of the water-cooled engine. 

The calculation of heat conduction through the wall is based on the heat 
conductivity of material.

The uncooled friction correlation for ringless piston by the Ford Co. is used 

for the uncooled engine.

fmep= -12 .07  + 0.0471*Ne

where friction mean effective pressure, fmep. is in Kn/m2
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engine speed. Ne. in rpm.

The friction formula from Wallace's experiments on the TS-3 two-stroke 

opposed piston engine, which operates in the speed range from 500 to 2000 

rpm. is used for the water-cooled engine.

fmep= 27. 0 + 0. 005*Pmax + 0. 025*Ne

where Pmax is the maximum cylinder pressure, 

fmep and Pmax in Kn/m2.
Ne in rpm.

Version 1 of program CSPMZ is used for predicting the performance of the 

uniflow scavenged engine.

8 .2 .3  IDENTIFICATION OF COMPUTATION CONDITIONS

Both the uncooled and the water-cooled engines have the same running 

conditions.

The injection rate is set to 12 c. c. per degree of crankshaft angle per cubic 

metre of cylinder displacement. The start of combustion is at TOC. as 

required, for compromising fuel economy and NOx emission reduction.

Full load is defined, as suggested: Air/Fuel ratio= 22. delivery ratio= 1 .2

Hence, part loads are defined as
2 /3  load: Air/Fuel ratio= 33. delivery ratlo= 1 .2
1/3 load: Air/Fuel ratlo= 66 , delivery ratio= 1.2.

The flow characteristics of the engine are computed respectively at delivery 

ratio- 0 . 8 . 1 .0  and 1. 2 .

The mean surface temperatures of cylinder and pistons are obtained from 

the calculations themselves.

8 .2 .4  UNCOOLED ENGINE CALCULATIONS

8 . 2 . 4 . 1  Scavenging performance

With Increase of engine speed the ratio of inlet to exhaust pressures, hence
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the air flow rate, increases at the same delivery ratio, as shown in Figs.
8 . 3 and 8.4.

With Increase of delivery ratio the charging efficiency improves and the 

trapping efficiency deteriorates, as shown in Figs. 8 .5  to 8 . 8 . Figs. 8 .5  

and 8 . 6 show that engine speed has evident influence on charging efficiency 

and trapping efficiency. The higher the engine speed, the more efficient 
the scavenging process at the same delivery ratio. The experiments by 

Taylor et. al. have clearly validated this effect [4.9]. In the 

phenomenological unsteady jet model the explanation of this effect is as 

follows. With increase of engine speed the difference between the inlet 

manifold and the cylinder pressures increases, thus the air flow velocity at 
the inlet ports increases and after entering the cylinder the air jet expands 

to a larger section area. The faster jet entrains more residual gas because 

of the increasing velocity gradient within the shearing layer. And like a 

larger “air piston", the wider air jet purges residual gas more efficiently. 
The faster and wider jet flow reflects the increase of the jet initial momentum 

flux in the entrainment equation by Rlcou and Spalding. [4.10] as described 

in Chapter 4. In the range of delivery ratio from 0 .8  to 1.2.  the curve 

family of charging efficiency for this scavenging process just intersect the 

charging efficiency curve for the perfect mixing scavenging process, as 

shown in Fig. 8.5 .  Figs. 8 .7  and 8 .8  show that the increase of injected 

fuel only improves the charging and trapping efficiencies slightly.

8 .2 .4 .2  Engine performance

Fig. 8 .9  shows the brake horsepower (BHP) under full load. 
Correspondingly, the brake specific fuel consumption (BSFC) is shown in 

Fig. 8.10.  The brake thermal efficiency (BTE) is mapped In Fig. 8.11.  

Figs. 8 . 12 and 8 . 13 show the increases of the maximum cylinder pressure 

and mean exhaust gas temperature with increase of engine speed.

Figs. 8 . 14 and 8 . 15 depict the increases of mean liner and piston surface 

temperatures.

The heat balance at full load is shown in Fig. 8 . 16. It is obvious that with 

the increase of engine speed the portion of heat loss to liner and pistons 

decreases, whereas the portion of heat loss to exhaust increases.

8 . 2 . 5  W A TER -C O O LED  ENG INE CALCULATIONS



8 .2 .5 .1  Scavenging performance

The water-cooled engine has almost the same air flow characteristics as the 

uncooled engine. However, because of relatively low trapped temperature, 

the water-cooled engine has better charging and trapping efficiencies than 

those of the uncooled engine.as shown in Figs. 8.17 and 8.18.

8 . 2 . 5 . 2  Engine performance

Figs. 8 .19 and 8 .20 are BHP and BSFC under full load. Fig. 8.21 shows 

the contours of BTE. Figs. 8 .22  to 8 .25 are the maximum cylinder
pressure, mean exhaust gas. liner and piston surface temperatures.

Fig. 8 .26 shows the heat balance at full load.

8 .2 .6  UNCOOLED ENGINE PREDICTIONS

Compared with the baseline water-cooled engine, the uncooled engine
suffers losses from 0. 5 to 3 % In charging efficiency due to elevated trapped 

temperature. The lower the engine speed and delivery ratio, the larger the 

loss in charging efficiency.

The degree of heat insulation is a function of engine speed and load. With 

increase of engine speed, degree of heat insulation increases. And the 

leaner the mixture, the more rapidly the degree of heat insulation increases, 
as shown in Fig. 8.27. Here, the degree of heat insulation (DHI) is define 

as.

Heat rejection with insulation 
DH,= 1- ----------------------------------------------------

(8 .3 )
Heat rejection without insulation

It is expected that the uncooled engine improves BSFC by an arithmetic 

mean of 13 %. However, the comparison of BSFC or BTE is uncertain 

because of the extrapolated engine speed in the friction formula used In the 

water-cooled engine. Therefore, a comparison of indicated thermal 
efficiency (ITE) is conducted, as shown in Fig. 8.28.  The improvement
of the uncooled engine in ITE is in the range from 3 to 6 %. but is not
proportional to rate of heat insulation. The explanation is that with
increasing engine speed the uncooled engine gains from more efficient 
reduction of heat losses to pistons and cylinder, and meanwhile, suffers 

losses from irreversible compression work Increasing with piston and liner
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surface temperatures.

As a result of the Increased charge heating during the intake process and 

compression stroke, the Ignition delays of the uncooled engine is reduced 

by approximately 10% relative to the water-cooled engine, as shown in Fig. 

8.29. The reduction in the amount of premixed combustion implies lower 
HC and NOx emissions.

The increase in mean exhaust temperature in the uncooled engine varies in 

the range from 20 to 25 K at full load, and the exhaust gas energy 

increases by 3 % of the total energy input.

8 .2 .7  DISCUSSION

The Ford Co. used the perfect displacement and complete mixing 

scavenging models (program TWOSIM) for the performance prediction of the 

ceramic uncooled engine. Table 8 .1 Illustrates a comparison of the 

computed results. The comparison shows a satisfactory agreement except 
for exhaust temperatures. It is noted that for the delivery ratio ranging from 

0 .8  to 1 .2  the scavenging efficiency obtained from CSPMZ is located 

between the scavenging efficiencies of the perfect displacement and 

complete mixing models from TWOSIM.

For the naturally aspirated four-stroke insulated engine the low volumetric 

efficiencies are clearly unacceptable (e .g .  a typical reduction of the 

efficiency is 7 % at air-fuei ratio 22:1 and 1000 rpm compared with the 

baseline water-cooled engine [7.11]) .  while for the uniflow scavenged 

two-stroke engine, from the computed results the charging efficiency is 

reduced by 3 %. It is expected that the uniflow scavenged engine should 

have this advantage in volumetric efficiency because the Inlet air is heated 

by the hot wall for a shorter time.

8 .2 .8  SUMMARY

The thermal insulation reduces the heat loss to coolant, increases the 

exhaust temperature, and generally improves the indicated thermal 
efficiency. The increased exhaust temperature will, increase the useful 
energy to the turbine. The temperature of the insulated walls rises, and the 

cylinder pressure slightly increases. The high wall temperature reduces the 

volumetric efficiency because of heating the incoming charge. The
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temperature of the walls during the scavenging and compression processes 

also affects the ignition delay of the injected fuel. Shorter delay may result 
in quieter combustion and decrease of the thermal efficiency.

Compared with the four-stroke engine and the two-stroke engine with other 

scavenging systems, the unifiow scavenged engine is expected to give a 

better volumetric efficiency because of the shorter time for heating the 

charge and the smaller "dead space" heated by the hot walls. For a given 

insulated engine, the degree of heat insulation is dependent on engine 

speed. The lower the speed, the less the degree of heat insulation 

because the time of heat transfer to coolant becomes longer. The modified 

thermal resistance network suggested in Chapter 7 can give an estimation 

of the component temperature.

8 .3  OPTIMIZATION OF PORT DESIGN

8.3 .1  ESSENCE OF PORT DESIGN

The objective of port design is to efficiently scavenge residual gas. that is, 
to trap as much fresh air as possible for combustion with the least loss of 
useful work, i. e. minimising loss of effective stroke and compressor work. 
The essence of this task Is to provide sufficient port area at the right time 

with an optimum pressure difference across the ports.

The blowdown period must be long enough to permit residual gas to be 

expanded to a pressure level which is less than the pressure in the inlet 
manifold, lest exhaust gases be blown into the inlet manifold. The scavenge 

period must be long enough to purge the cylinder with fresh air. The 

charging period must be proper to reach the desired supercharge.

The correct selection of scavenging pressure is important for a scavenging 

system design. When the scavenging pressure is too low, the longer 

scavenging duration reduces the effective stroke, hence the engine output. 

When the scavenging pressure is too high, more power to drive the 

compressor is expended to produce the higher scavenging pressure. Thus, 
there exists an optimum timing and a level of scavenging pressure to give 

the maximum output shaft efficiency.

The optimization of port design Is to reconcile these requirements, i.e. to 

allocate the working and scavenging durations and to fully utilise the limited
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scavenging duration at the least expense of useful work.

The m athem atical m eaning  of this optim ization Is to find a sch em e, which  

has the best output shaft effic iency am ong all the schem es with various 

com binations of port sh ap e , port tim ing and scavenging pressures. The  

following procedures a re  used fo r optim izing port design .

( 1) .  cho ice  of port shape .

( 2 ) .  optim ization of port tim ing .

( 3 ) .  size of exhaust port he igh t.

( 4 ) .  estim ation of the e ffec t of in le t port in take an g le .

All the configurations used in this optim ization a re  listed in T ab le  8 . 2 .  in all 

the following pred ictions, the exhaust m anifo ld  p ressure  is equal to 1 . 0 5  

bar.

8 . 3 . 2  OPTIM IZATION OF PORT DESIGN

8 .3 .2 .1  Choice of engine running condition

For an optim ization study, a thorough trea tm en t covering  the com plete  range  

of speed and load needs a  huge volum e of com puting work. The sim plifying  

trea tm en t for a  critica l running condition Is reaso n ab le  and useful. O nce  

a  design of opposed -p iston  en g in e  has been fixed the ch arac te ris tics  of flow  

sectional a re a  versus cran kan g le  a re  fixed. W ith in c rease  of en g in e  speed  

the tim e for scavenging is reduced  in inverse proportion . T h ere fo re , the  

problem  of output power reduction  due to insuffic ient port a re a s  first occurs  

at the rated speed of 4000  rpm . With In c rease  of eng ine  load the pressure  

at the beginning of the blowdown period rises . T h e re fo re , the problem  of 

exhaust backflow into the in let m anifo ld  due to short exhaust lead first 

happens a t full load (a ir - fu e l ra tio  22 ) and rated  speed .

Thus, during the optim ization , it Is stipulated that the eng ine  o p erates  at the  

full load of a ir - fu e l ratio 22  and rated speed of 4 0 0 0  rpm . the  harshest 

running cond ition , which req u ires  the en g in e  to possess the longest exhaust 

lead and the highest flow cap acity .

8 . 3 . 2 . 2  C om pressor power

In the previous section , the pow er to drive the com pressor has not been
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subtracted from  the en g in e  b rake pow er. H ow ever, it is necessary  fo r the  

optim ization of port design to take  it into co ns idera tion , i . e .  to give net 

output shaft therm al e ffic iency.

The com pressor pow er can  be exp ressed  as 

1
W = mh 

c 77 ad c
c

7 -1
P ------

1 y  out 7
= —  mT R ------- [<--------) -  1 J ( 8 . 4 )

ij  In 7 -1  P
c in

w here the co m pressor e ffic ien cy . 17 . is equal to 0 . 7 .
c

8 .3 .2 .3  Choice of port shape

The in let and exhaust ports should take a  rec tan g u la r shape with as la rg e  

a total width as possible in o rd e r to ach ieve suffic ient a re a  for the least 

scavenging duration .

In the new d es ig n s , the total w idths of the in let and exhaust ports a re  equal 

to th e ir m axim um s of 75 and 70 p e r cen t of the c ircu m feren c e  respective ly. 

For a  specified  total port w idth , the selection  of port num ber im plies a  

bridge width. A perfect th eo re tica l study should based on therm al and

stress analysis . As a s im ple  es tim atio n , it is helpful to list the following

statistics of s im ila r eng ines:

bridge width = 3 .7  mm fo r GM  71 en g in e  having 1 0 7 . 9 5  mm bo re ,

bridge width = 6 . 5 mm fo r TS 3 en g in e  having 82 . 55  mm bore .

The port num ber of 8 to 10 gives bridge widths of 5 .7  and 4 . 5  mm  which  

are  co inc iden t with the above statistics. In the case  of angu larly  d irected  

in let ports, the effective c ro s s -s e c tio n  width should be m ultip lied by the  

cosine of the flow intake an g le  to the rad ia l. The total width of the exhaust 

ports is m ade slightly n arro w er than that of the in let ports because  of the  

therm al stra in .

Com pared with the orig inal configuration  O . the m odified configuration I. as  

sum m arized , together with o th er configurations in Tab le  8 . 2 .  uses  

rec tan g u lar ports without in take swirl and has the sam e port tim ing . The  

calcu lated  results ind icate  that configuration I . i . e .  rec tan g u la r ports.
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provides am p le  port a re a , im proves the flow cap ac ity , as shown In F ig . 

8 . 3 0 ,  and in creases  the trapped a ir  m ass, as shown in F ig . 8 . 3 1 .  The  

in crease  of the output shaft pow er, see  F ig . 8 . 3 2 .  prevails over the  

in c rease  of the com pressor pow er, see  F ig . 8 . 3 3 .  Consequently, the  

output shaft e ffic iency of configuration  I im proves by 2  % . see  F ig . 8 . 3 4 .  

From  the viewpoint of the re lationship  betw een delivery ratio and charg ing  

effiiency , the  orig inal design is better than configuration  I. see  F ig . 8 . 3 5 .

8 .3 .2 .4  Optimization of port timing

Optim izing port tim ing is to

( 1) d e te rm in e  blowdown, period .

( 2 ) d e te rm in e  charg ing  period .

(3 )  d e te rm in e  scavenge period .

8 . 3 .  2 . 4 .  1 D eterm ination  of blowdown period

In a ll the m odified con figurations, the exhaust ports have taken the w idest 

rec tan g u la r s h ap e , as above d escrib ed . T h e re fo re , based on the previous  

s te p -b y -s te p  com putational resu lts , the blowdown perio d , o r the exhaust 

le a d , can  be determ in ed . From  the s te p -b y -s te p  cylinder pressure  

descrip tion  of configuration I, it is seen  that fo r the exhaust ports with total 

width of 0 . 7 tim es c ircu m feren c e  and height of g re a te r than 9 .5  mm the  

exhaust blowdown takes about 2 5  d eg re e s . A fterw ards, the m odel results  

for all configurations II to XI have proven that this exhaust lead Is adequate .

8 .3 .  2 . 4 .  2 D eterm ination  of charg ing  period

D eterm ination  of the charg ing  period is not purely th eo re tica l. Tab le  8 .3  

below shows the e ffec t of the ch arg ing  period . From  T ab le  8 . 3 , it is seen  

that with d e c re a s e  of speed the trend  of ch a rg e  backflow into the in let 

m anifold rises , and that com pared  with the Ford initial d es ig n , the optim um  

sch em e with a  shorter charg ing  period evidently im proves the charg ing  

p rocess , but does not avoid a sm all c h a rg e  m ass backflow into the  

m anifo ld . B ecause the em ptying and filling m ethod neg lected  the e ffect of 

inertia  of intake a ir  flow, the sh o rte r charg ing  period of 5 d eg rees  was used 

to take it into consideration . With re fe re n c e  to s im ila r opposed piston 

tw o-s troke  e n g in es , such as the Junkers Jum o 207  and Rootes T S 3 . 3 to 

5 d eg rees  of c rank  ang le  should be considered  as an ideal charg ing  period.
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8.3.  2. 4. 3 Determination of scavenge period

A fter the determ ination  of blowdown and charg ing  periods, o n ce  the  

scavenge period Is d e c id e d , the port tim ing will be d eterm ined . O ptim ising  

the scavenge period is to m in im ise en g in e  and com pressor losses. The  

eng ine power output is affected  by both the effective com pression  and  

expansion strokes. if the e ffective com pression  stroke is sh o rten ed , the  

trapped volum e is red u ced , thus d ecreas ing  the total c h a rg e , h en ce  the  

power output. With d ecreas e  of the  effective expansion stroke, the en erg y  

absorbed by en g in e  is red u ced , and the  en erg y  loss to exhaust gas rises . 

T h e re fo re , the im provem ent of en g in e  power output needs a  longer e ffec tive  

stroke. On the co n trary , the d e c re a s e  of com pressor power loss req u ires  

h igher ports, that is . to shorten effective stroke.

The scavenge period can  be determ ined  through the com parison  of 

com putational results of a  group of sch em es , configurations II to V . with  

various scavenging  p ressures and port tim ings to find the optim um  s ch em e  

with best output shaft e ffic iency.

A ccording to the p rinc ip le  of the  least m odification in the orig ina l d es ig n , 

at firs t, the tria ls  for restricting  the physical variation to port location and  

size w ere  done. H ow ever, un d er such res tric tio n , it is im possib le to obtain  

the flexibility fo r chang ing  port tim ing . The  reason is that for a  given  

opposed piston -  c rank  m ech an ism , the port o p e n in g -a n d  closing both a t  

the sam e tim e a re  d eterm ined  by the  top ed g e  of the ports. T h e re fo re , 

adjustm ent of port positions and d im ensions can n o t concurrently  satisfy the  

requ irem ents  that the blowdown, scavenge and charg ing  period should ea c h  

vary independently . For exam ple , it cannot extend the blowdown period and  

shorten the charg ing  period s im ultaneously . T h e re fo re , the new  sch em es  

have changed  only the following four e lem ents  of the crank  piston linkage to  

obtain the above m entioned blowdown and charg ing  periods and to vary the  

scavenge period , as in F ig . 8 . 5 4 ,

( 1 ) .  lower connecting  arm  len g th . B ,

( 2 ) .  lower rocker arm  length , C ,

( 3 ) .  d istance from  the cran k  vertica l cen tre  line to the inner ed g e  o f the  

in let ports. F .

( 4 ) .  d istance from  the c rank  vertica l cen tre  line to the inner ed g e  o f the  

exhaust ports. G .
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T ab le  8 .2  lists the port tim ings of configurations II to V with increasing  

scavenge period . With the In crease  of scavenge period , the flow capac ity , 

the trapped a ir  m ass and hence  the output shaft power in c re a s e , see  F igs. 

8 . 36  to 8 . 3 8 . H ow ever, at a  given scavenging pressure high flow capacity  

m eans high com pressor pow er, as shown in F ig . 8 . 3 9 .  and with the  

in c rease  of scavenge period the loss of effective stroke concurren tly  

in crease s . Thus, the m axim um  output shaft e ffic iency will occurs a t an  

in term ed ia te  port tim ing . F ig . 8 . 4 0  iiustrates the variation  of output shaft 

effic iency  with the in crease  of scavenge period . The  output shaft e ffic iency  

of configuration  II is relatively poor because it has too short scavenge period  

to effic iently  purge the cy linder with fresh a ir . The effic iency  of 

configuration  V a lso  becom es poor because it has too long scavenge period , 

thus suffering a  loss of e ffective stroke. C om pared  with the orig inal 

configuration  O . configuration  III and IV im prove the output shaft effic iency  

by 6 % .

F ig . 8 . 4 1  shows that with the in c rease  of scavenge period the charg ing  

effic iency  d e te rio ra tes .

H ere  configuration  ill has been chosen as a s tart for optim izing designs, 

because the slightly shorter scavenge period in configuration  111 is good for 

the mid and low speed running conditions. A slightly shorter scavenging  

period im plies a  slightly longer e ffective stroke. With d e c re a s e  of sp eed , 

the tim e fo r scavenging  is lo n g er, the flow capac ity  becom es relatively  m ore  

a m p le , thus increas ing  pow er output.

8 .3 .2 .5  Sizing of port height

As high an in le t port as possible is always benefic ia l fo r im proving flow  

cap acity . T h e re fo re , in a ll the the m odified sch em es , the in le t port heights  

have been taken a t th e ir possible m axim um . W hen port heights a re  

c h a n g e d , the p is to n -c ra n k  m echan ism  and the port top edges  always a re  

fixed, h en ce  the  port tim ings a re  fixed, w hile the bottom edges  shift, but 

a re  not set by the extrem e o u ter piston position.

Now. it is n ecessary  to es tim ate  the effects of exhaust port height.

These  estim ations w ere  conducted  on a  group of configurations III. VI and  

VII. which have the sam e port tim ing and d ecreas ing  exhaust port heights  

and op era te  at an a ir -fu e l ratio  of 22  and 4000  rpm .
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Figs. 8 . 4 2  to 8 . 4 7  show the com putational results with d ecreas e  of exhaust 

port height from  13 via 1 1 . 5  to 9 . 5  m m . With the d e c re a s e  of exhaust port 

h eig h t, the flow capacity  d e te rio ra te s , see  F ig . 8 . 4 2 .  the trapped a ir  m ass , 

h en ce  the output shaft power d e c re a s e , see  F igs. 8 . 4 3  and 8 . 4 4 .  

M ean w h ile , the com pressor pow er a t the given in le t m anifold pressures a lso  

d e c re a s e s , see  F ig . 8 . 4 5 .  F ig . 8 . 4 6  shows that the output shaft 

effic ien c ies  of this group of configurations rem ain  alm ost a t the sam e level 

because  with the d ecreas e  of exhaust port a re a  the reduction of co m p resso r  

pow er and the loss of en g in e  output power can ce l each  o ther.

H ere  it is notable that 9 . 5 mm  is the m inim um  exhaust port height w hich  

ensures the neccesary  a re a  fo r the above described  blowdown period .

F ig . 8 . 4 7  shows that with the d e c re a s e  of exhaust port he igh t, the ch arg in g  

effic iency  becom es relatively poor.

The  configuration VI has been taken as a  new start for continuing th is  

optim ization , because too high exhaust ports m ay prevent the cy lin d er  

pressure  to build up toward the in le t p ressure  n e a r the end o f the  

scavenging process , thus harm ing trapping  of scavenging a ir  m ass fo r m id  

and low speed running conditions.

8 .3 .2 .6  Sizing of intake angle of inlet port

Swirl exerts an in fluence not only on the scavenging  process but a lso  on the  

com bustion process. H ow ever. W atson 's  co rre la tio n  of ap p aren t ra te  of 

.burned fuel used in the program  cannot p red ic t the e ffec t of swirl on  

com bustion. [7 .6 ]

Is was assum ed that the com bustion process is not affected  by sw irl. T h e  

com putational results of a  group of configurations V I. V III. IX. X and XI with 

in take ang les  of 0 . 10 , 2 0 . 30  and 4 0  d eg . respective ly , give an estim ation  

of the e ffec t of swirl on the en g in e  p erfo rm an ce , as shown in F igs. 8 . 4 8  

to 8 . 5 3 .  With the in crease  of in le t port intake a n g le , the e ffective  flow  

section a re a . i . e .  flow cap ac ity , and the trapped  a ir  m ass d e c re a s e , see  

Figs. 8 . 4 8  to 8 . 4 9 .  C onsequently  the output shaft power and the  

com pressor power d e c re a s e , as shown in F igs. 8 . 5 0  and 8 . 5 1 .  At the  

sam e tim e . the charg ing  e ffic ien cy  im proves m arg ina lly  because  of sw irl, 

see F ig . 8 . 52.
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The output shaft e ffic ien c ies  stay a lm ost a t the sam e level with the In crease  

of in take an g le  from  0 to 40  d e g . . as shown in F ig . 8 . 53 . It is seen  that 

even though the design  with rad ia l In let ports used the sam e com bustion  

corre la tion  as the design with 30  d eg ree  intake a n g le , the in crease  of 

therm al e ffic iency  was only 1 % . If the e ffect of swirl on com bustion had  

been taken into consideration  and  a p roper com bination of a ir  swirl and fuel 

spray had been rea lize d , it could be expected that configuration X will give  

a satisfactory output shaft e ffic iency . Actually the Rootes TS3 has used the  

in take a n g le  of 30  d eg rees  and ach ieved  a satisfactory com bustion p rocess.

T h e re fo re , configuration  X should be recom m ended  as the optim um  design .

8 . 3 . 3  PERFORM ANCE PREDICTIO N OF OPTIM UM  SCHEM E

C om pared  with the o rig ina l d es ig n , the following m odifications have been  

m ade in the optim um  schem e:

( 1 ) .  low er connecting  arm  length  B -  1 3 1 . 4 0  m m .

( 2 ) .  low er rocker a rm  length C = 1 5 1 . 0 0  m m .

( 3 ) .  d is tance from  the  c ran k  vertica l cen tre  line to the In n er ed g e  of the  

in let ports F = 5 7 . 0 0  m m .

( 4 ) .  d is tance from  the  c ran k  vertica l cen tre  line to the in n er ed g e  of the  

exhaust ports G = 5 2 . 0 0  m m .

( 5 ) .  re c tan g u la r in le t ports: he igh t = 1 1 . 0 0  m m . total width -  1 3 6 . 6 5  m m . 

set a t 30  deg . an g le  with resp ec t to the  cy linder radius.

( 6 ) .  re c tan g u la r exhaust ports: height = 1 1 . 5 0  m m . total width = 1 2 7 . 5 4  

m m . rad ia l.

( 7 ) .  piston bowl volum e = 6 . 0 6 5 7  cu . cm  to keep the com pression  ratio  of 

22 . 00 .

conseqently .

( 8 ) .  stroke = 1 3 3 .5 1  m m .

( 9 ) .  d isp lacem ent = 0 . 3 5  litre .

( 1 0 ) .  m inim um  piston separation  = 1 . 7 7 7  m m .

( 1 1 ) .  port t im in g - exhaust port opening 71 BBDC

in let port opening  43  BBDC

exhaust port c losing 53 ABDC  

in le t port c losing  58 ABDC
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The rest of the geom etry  and the ch arac te ris tics  a re  the sam e as in the  

orig ina l design . The  linkage geom etry  of the optim um  schem e is shown in 

Fig . 8 . 5 4 .  Its porting d iagram  is shown in F ig . 8 . 5 5 .  The piston  

disp lacem ents  and the port a re a s  a re  listed in T ab le  8 . 4 .

8 .3 .3 .1  Performance prediction for optimum delivery ratio

As a fo rem en tio n ed , rea lization  of the best p erfo rm an ce  re lies  on the

com bination of optim um  configuration  and optim um  scavenging p ressure . A  

series  of num erica l tests show that the optim um  scavenging pressures vary  

with en g in e  speed and a re  slightly a ffected  by en g in e  load . F ig . 8 . 56  shows 

the re lationship  betw een en g in e  speed and optim um  delivery ratio . With 

in c rease  of en g in e  speed the  optim um  delivery ratio  d ecreas es  from  about 

2 .0  a t 500  rpm  to about 1 .1  a t 4 0 0 0  rpm . F ig . 8 . 5 7  illustrates the  

scavenging pressures in the  neighbourhood of the optim um  delivery ratio . 

Figs. 8 . 58  to 8 . 60  show the  correspond ing  a ir  flow ra te , output shaft pow er 

and specific  fuel consum ption under full load . F ig . 8 . 6 1  shows the  

contours of the output shaft therm al e ffic iency . It is w orthw hile noting that 

the com pressor pow er has been subtracted  in all these  brake output

predictions in this section . H ow ever. It has not been  taken Into

consideration  in the brake output p red ictions of Section 8 . 2 .  Even so. the

output shaft therm al e ffic iency  o f the optim um  sch em e  ach ieves  alm ost the

sam e peak value of 37  % as the o rig ina l d es ign . A fter the pow er to drive

the com pressor has been subtracted  from  the e n g in e  output of the orig inal

d es ig n , the optim um  sch em e im proves the output shaft e ffic iency by

approxim ately 5 % . and en h an ces  the output shaft to rque a t the fuii load of 

A /F  ratio  22  in the ran g e  o f from  9 % a t 4 0 0 0  rpm  to 29  % a t 500  rpm .

Figs. 8 . 6 2  to 8 . 6 5  give the m axim um  cy linder p ressu re , m ean exhaust gas . 

liner and piston surface tem p era tu res .

The sensitivity of the optim um  sch em e to scaveng ing  p ressure  is sum m ed up 

in T ab le  8 . 5 . It can  be seen  that un d er the high speed and load running  

conditions the sensitivity of output shaft e ffic iency  to scavenging  pressure  

increases .

How ever, the realization  of varying delivery ratio  im plies the use of a 

continuously variab le  transm ission  (C V T ) betw een the en g in e  and the  

com pressor. T h e re fo re , it is n ecessary  to p red ic t the p erfo rm an ce  of the  

optim um  schem e running at a  fixed delivery ra tio .
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8 .3 .3 .2  Performance prediction for fixed delivery ratio

The delivery ratios a re  varied  in the range  of from  0 .8  to 1 . 2 .  

corresponding ly  the ratio  of in le t to exhaust p ressures , a ir  flow ra te , 

charg ing  and trapping  e ffic ien c ies  a re  Illustrated In F igs. 8 . 66 to 8 . 69 .

In the following ca lcu lations the fixed delivery ratio  is equal to 1 .2  which is 

not only the ch o ice  for the orig ina l d es ig n , but also a  good com prom ise  

betw een perfo rm ances  a t low and high speeds for the optim um  design .

The output shaft power and spec ific  fuel consum ption a re  shown in F igs. 

8 . 7 0  and 8 . 7 1 .  T h e  contours of the output shaft e ffic iency a re  drawn in 

Fig . 8 . 72 . C om pared  with the optim um  schem e for the optim um  delivery  

ra tios , a t the high speed s ide  the a re a  of high effic iency for the fixed 

delivery ratio  contracts  s lightly , the  output shaft e ffic iency is reduced by an  

arithm etic  m ean of 2 . 5  % . T h e  output shaft torque varies from  an in crease  

by 1 % a t 4 000  rpm  to a  d e c re a s e  by 13 % a t 500 rpm . C om pared with the  

orig inal design the output shaft e ffic iency  running a t the delivery ratio  of 1 .2  

im proves by 2 . 5 % . and the output to rque a t full load en hances  in the ran g e  

between 10 % a t 4 0 0 0  rpm  and 16 %  a t 500  rp m . see  F ig . 8 . 6 1 .

F igs. 8 . 73 and 8 . 74  show the m axim um  cy linder pressure and m ean exhaust 

tem p eratu re . F igs. 8 .7 5  and 8 . 7 6  illustrate  the m ean liner and piston  

tem peratu res . F ig . 8 . 77 is the hea t ba lan ce  at full load.

The com parison betw een the perfo rm an ces  of the optim um  schem e running  

at the optim um  and fixed ratios a re  sum m ed up in T ab le  8 . 6 .

8 .3 .3 .3  Estimation of feasibility for compressor CVT

In the previous ca lcu la tions  fo r the optim um  delivery ra tio , the m echan ica l 

loss of the co m p resso r CVT has not been taken account. H ere  the  

effic iency of the CVT Is equal to 0 . 9 .  A fter the loss of the CVT has been  

su btracted , com pared  with the orig ina l design the output shaft e ffic iency  

virtually im proves by 4  % and the output shaft torque by 8 % at 4 0 0 0  rpm  

and 15 % at 500  rpm .

8 . 3 . 4  SUMMARY

The phen lm eno log ical unsteady je t m odel is used for optim izing the port
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des ig n . The  optim um  sc h e m e  obtained  evidently  im proves the en g in e  

p erfo rm an ce . T h e  following draw backs of the Ford in itial design  have been  

pinpointed ,

( 1) .  bad port shape: c irc u la r ports can n o t fully utilise the lim ited port zone.

( 2 ) .  wrong port tim ing: the  charg ing  period is too long.

The  optim ization procedures a re  su itab le  fo r any unlflow scavenged en g in e . 

For an optim um  s ch em e, th e re  exist a  group of optim um  delivery ratio  varied  

with en g in e  sp eed . H ow ever, the rea lization  of variab le  delivery ratio  

Im plies the use o f a  CVT on th e  co m pressor shaft.
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Table 8. 1 Comparison of tho Computed Results

Engine speed (row) 1000
CSPMZ

1000 1000Bhp (hp> 0.78 0.76 0.76Bmep (psi)
Bsfc (lbm/ho-hr) 15.2 15.1 14.9

0.522 0.323 0.524A'F trapped 70.2 75.8 81.7
De1ivery ratio 0.799 1.002 1.196Manifold delta P (in -In > 0. 29 0.43 0.60Trapping efficiency 0.679 0.577 0.523Scavenging efficiency 0.737 0.771 0.816
Exhaust temp (K) 451 442 434Peak combustion temp (K> 1147 1134 1124P«»ak combustion P (psi.) 856 862 371
Enoine sp^ed frpm) 1250 1250 1250Bhp (h p >, 2. 2.36 2.36Bmep (psi) 37.6 37.1 37.1Bsfc (lbm/hD-hr) 0.406 0.403 0.400A/F trapped 38. 32 41.91 44.86
Delivery ratio 0.795 0.997 1.196Manifold delta p (in Mg) 0.42 0.63 0.88Trapping efficiency 0.708 0.517 0.546Scavenoina efficiency 0.81? 0.350 0.876
Exhaust temp (K) 602 579 563Peak combustion temp (K) 1362 1327 1304
Peak combustion P (psi) 905 931 948
Engine spe*»d (rom) 1700 1700 1700
Bhp (hp) 6.53 6.54 6.52
Bmep (psi) 75.6 75.9 75.4
Bsfc (lbm/hp-hr) 0.385 0.376 0.370A/F trapped' 20.25 22.54 24.66
Delivery ratio 0.804 1 .002 1.198
Manifold delta P (in Mo) 0.73 1.10 1.55
Trapping efficiency 0.710 0.630 0.563Soavenaina efficiency 0.876 0.903 0.921
Exhaust temp (K> 897 839 796Peak combusr. ion t^mp (K) 1899 1314 1749Peak combustion P (pal) 886 919 965
Exhaust mfld P (kn/m/»>> 
Friction mep (psi)

105.0
5.08/6.79/9 .862 = = s:2̂ i2Sr ̂ 2«S 'Z ?sss«s

CSPMZ and TWOSIM

TWQ5TM: P. Mixing TWQ5IM: P. Scavenging
1000
0.77
14.8

0.51663.4

1,000
0.77
14.8 0.517
68.9

1000 
0.77 
14.8 

0.521 74 .4

1000
0.77
14.7

0.52186.0

1000 
0.77 
14.8 

. 0.522 
89.0

1000
0.76
14.6

0.529
92.0

0.798
0.40
0.588
0.695

1.004
0.48
0.511
0.744

1.199 
0.66 
0.466 
0.792 *

o. 803 
0.40 
0. 796 
0.964

1 .005 
0.48 0.664 
0.969

1. 199 0.66 0.574 
0.974

383
1330
92?

375
1315
931

368
1306
949

389
1356
931

376
132?
942

367
1303
953

1250 
2.44 
37.5 0.390 32.00

1250 
2.38 
36.6 

0.389 36.90

1250
2.38
36.6

0.38940.40

1250 
2.39 36.7 

0.393 4 2.90

1250 
2.38 36. S 

0.392 46 .00

1250 
2.38 36.5 

0. 392 4 8 .00
0.8040.480.5650.741

0.998
0.720.5120.788

1.201 0 . 9'-1 0.466 0.830

0.804
0.480.738
0.98?

0.0,39 
'o'72 0.639 0.987

1 .201 0. oq 
0.554 
0.988-

4881677
1001

455
16161027

435 1584 
. 1054

4851687
1009

4561632
1038

436*1595
1059

1700 17006.50
73.4
0.36119.90

17006.61
74.60.35721.90

1700 
6.48 
73.2 0. 369 20.90

1700
6.48
73.20.36123.40

1700 6.57 
74 .2 0.357 24. ̂ 0

0.998
1.230.5150.845

1.198 1.74 
0.472 0.875

0.7960.81
0.6920.995

0.998 
1 .23 0.603 0.994

1.197 
1 .74 

0.536 0.996
637
20611041

59019981089
7182205983

637 
2080 104 7

59020131093

5.
104.7 

2/6.8/9 .8 5.
104.7 
2/6.0/9 .8

= 3Ci = = = —r = - = = 3  = r«srr.isssi5sts:rssi:s



Table 8 .2  Summary of Configurations for Optimizing Port Design

C o n f i g u r a t i o n  n o . 0 ” i  1 I I I I I  ’ 1 I V  1 V
p o r t  s h a p e c i r c u l a r r e c t a n g u l a r
e x .  p o r t  open BBDC 75 68 7 i 7 3 75
i n .  p o r t  open BBDC 44 41 43 45 47
e x .  p o r t  c l o s e  ABDC 50 51 53 55 57

■ i n .  p o r t  c l o s e  ABDC 67 55 58 61 63
i n . p o r t  h e i g h t / s t r o k e  r a t i o 0 . 0 9 5 0 . 0 7 5 0 . 0 8 2 0 . 0 9 0 0 . 0 9 7
e H .  i n . p o r t  w i d t h /  c i r e  urn, r a t i o 0 . 6 5 3 0 . 7 5 0

• i n . p o r t  i n t a k e  a n g l e  d e g . 25 0
e x . p o r t  h e i g h t / s t r o k e  r a t i o 0 . 1 1 9 0 . 0 9 0 0 . 0 9 7 0 . 1 0 5 0 . 1 1 2
e x . p o r t  w i d t h / c i r c u m . r a t i o 0 . 8 1 2 0 . 7 0 0

i o r  i g i  na l f o r
! comment d e s i g n 9 h a p i  ng f o r  p o r t  t i m i n g
I POTt

c o n f i g u r a t i o n  n o . V I  V I I V I I I IX  1 X
. . . . . . . . . .  .

p o r t  shape r e c t : a n g u l a r
e x .  p o r t  open BBDC 71  ' ----------------- " -- “  " " "
i n .  p o r t  open BBDC 43
e x .  p o r t  c l o s e  ABDC 53
i n .  p o r t  c l o s e  ABDC 58
i n .  p o r t  h e i g h t / s t r o k e  r a t i o 0 . 0 8 2
e f f . i n . p o r t  w i d t h / c i r c u m . r a t i o 0 . 7 5 0 0 . 7 3 9 0 . 7 0 5 0 . 6 5 0 0 . 5 7 5
i n . p o r t  i n t a k e  a n g l e  d e g . 0 10 20 30 00
e x . j j o r t  he i gh t / s t  r o k e  r a t i o 0 . 0 8 6  | 0 . 0 7 1 0 . 0 8 6
e x .  p o r t  w i d t h / c i r c u m . r a t i o 0 . 7 0 0

f o r  s i z i n g f o r  d e t e r m i n i n g
comment e x h a u s t  p o r t i n l e t p o r t

h e i g h t i n t a k e a n g l  e



Table 8 .3  The Effect of the Charging Period

F o r d  i n i t i a l  d e s i g n

CPC = 50 A13DC 
IPC = 67 ABDC 
c h a r g i n g  p e r i o d  = 17 d e g .

en g i  no s p e e d t r a p p e d  mass t r a p p e d  mass e x t r a  c h a r g i n g
( r  pi..) a t  CPC ( g ) a t  IPC Cg) mass  ( g )

5 30 . 0 . 3 0 7 0 . 2 7 6 - 0 . 0 3 1
1 0 0 0 . 0 . 3 0 4 0 . 2 7 8 - 0 . 0 2 6
2 3 0 0 . 0 . 3 1 1 0 . 2 0 9 - 0 . 0 2 2
5 0 0 0 . 0 . 3 1 3 0 . 2 9 6 - 0 . 0 2 2
"i u ') C . 0 . 3 3 2 0 . 3 1 4 - 0 . 0 1 8

c uni.' ent : J e l i v e r y  t a t i o  = 1 . 2 a i  r - f u e 1 r a t i o  = 22  . 0

Opt i mum scheme ( c o n f i g u r a t i o n  X)

t r a p p e d  
a t  EPC

0 . 3 2 0
0 . 3 2 0
0 . 3 2 5
0 . 3 3 5
0 . 3 4 5

CPC = 53  ABDC 
IPC = 58 ABDC 
c h a r g i n g  p e r i o d  = 5 d e g .

mass t r a p p e d  mass e x t r a  c h a r g i n g
( g )  a t  IPC ( g )  mass ( g )

0 . 3 1 7  - 0 . 0 0 3
0 . 3 1 7  - 0 . 0 0 3
0 . 3 2 3  - 0 . 0 0 2
0 . 3 3 2  - 0 . 0 0 3
0 . 3 4 3  - 0 . 0 0 2



Table 0 4 Piston Displacement and Port Areas of the Optimum Scheme

CA i n . p . d i  s p l . 
(mm)

ex . p . d i s p 1 .  
( mm)

i n .  p o r t  a r e a  
( s g . c n )

ex . p o r t  
( sq .

a r e a  c y l  
cm) (1

- 3 0 0 . S O . 6? 17 • {  V , .  H :>65 ■'. >.» 70 • ' . 0 ■' 0 9 V . 9 7
- 2 ' > 3 . 5 5 . 3 5 7  7 0 7 . 6 7 3 ' " * r  0 0 r 0 fy 9 |’t ^ • . 2 0 5 7
- 2 9 6 . 5 5 . 9 0 ' M 1 6 . 5 1 9 6 f' . 0 «' 0 0 0 .  V . 0 0 9 ; . 2 ” os
- 2 9 0 . 5 0 . 2 5 9  I 0 5 . 3  06 6 0 . 9 0 9 0 . ) .  0 0 <» 9 0 . 7753
- 2 ° 2 . 5 3 . 0 2 0  3 0 0 . 1 5 6 2 O . 0 0 ;) 0 n . 0 0 0 0 9 . 2 7  00
- 2 ' » 0 . 5 2 . 5 7 7 9 0 2 . 9 5 0 0 0 . 0 0 0 0 0 . 0 9 0 9 9 . 2 6 0 5

- s a e . 51 . 7 0 7 0 11 . 7 2 9 0 0 . 0 n 9 0 ( 5 . 0 0 0 0 0 . 2 5 6  9

- 2116. 5 0 .  31 <*6 0 0 . '| 9 7 0 0 . 0 0  00 0 . 9 0 0 9 9 . 2 5 3 0
- 2 3 0 . 0 9 . o 0 7 0 3 ‘> . 2 5 0 6 n . 0 0 0 0 0 . 0 0 0 0 9 . 7 0  7 7
- 2 3 2 . 0 0 , 9 7  30 3 0 . 0 0 3 3 0 . 0 0 9 0 0 . 0 0 0 0 0 . 7 0  20
- 2 0 0 . 0 0 . 0 3 2 5 3 6 . 7 0 5 2 0 . 0 0 0 0 0 . 0 0 0 0 0 . 2 3 6 1
- 2 7 0 . 0 7 . 0 6 3 5 3 5 . 0 0 2 2 9 . 0 0 0 0 0 . 0 0 0 0 0 . 2 3 0 2
- 2 7 6 . 0 6 . 0 0 7 5 3 0 . 2 1 6 2 0 . 0 0 0 0 0 . 0 0 0 0 0 . 2 2 0  3
- 2 7 0 . 0 5 . 0 9 0 0 3 2 . 9 0 9 9 9 . 0 0 0 0 0 . 0 0 0 0 0 . 2 1 8 3
- 2 7 2 . 0 0 . 0 7 6 7 3 1 . 6 8 2 0 0 . 0 0 0 0 0 . 0 0 0 9 0 . 2 1 2 3
- 2 7 0 . 0 3 . 0 0 3  1 3 0 . 0 1 8 3 0 . 0 0 0 0 0 . 0 9 0 0 0 . 2 0 6 2
- 2 6 8 . 0 2 . 0 0 5 1 2 Q. 1 5 8 6 ( > . 0000 0 . 0 0 0 0 0 . 2 0 0 2
- 2 6 6 . 00 . 9 0  00 2 7 . 9 0 0 9 0 . 0 0 9 0 0 . 0 0 0 0 0 .  19/11
- 2 6 0 . 3 9 . 3 7 0 7 2 6 . 6 5 9 3 9 . 0 0 0 0 0 . 0 0 0 0 0 .  1079

- 2 6 2 . 3 0 . 7 9 7 0 2 5 . 0 2 3 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 1 0
- 2 6 0 . 3 7 . 7 0 0 1 2 0 . 1 9 9 0 0 . 0 0 0 0 0 . 0 0 0 c 0 . 1 7 5 7
- 2 5 0 . 3 6 . 6 0 1 0 2 2 . 9 8 7 9 0 . 0 0 0 0 n . 0 0 0 0 0 . 1 6 9 6
- 2 5 6 . 3 5 . 0 0 3 7 2 1 . 7 9 1 7 0 . 9 0 0 0 0 . 0 9 0 0 0 . 1 6 3 5
- 2 5 0 . 3 0 . 3 6 3 3 2 0 . 6 1 2 0 0 . 0 0 0 0 0 . 0 0 0 0 0 .  1570
- 2 5 2 . 3 3 . 2 0 0 9 1 9 . 0 5 1 0 9 . 0 0 0 0 0 . 0 0 0 0 0 . 1 5 1 0
- 2 5 0 . 3 2 . 1 0 7 0 1 0 . 3 1 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 0
- 2 0 8 . 3 0 . 9 7 0 1 1 7 . 1 9 1 1 0 . 9 0  0 0 0 . 0 0 0 0 0 . 1 3 ° 0
- 2 0 6 . 2 9 . 0 2 9 2 1 6 . 0 9 5 1 0 . 9 0 9 0 0 . 0 0 0 9 0 . 1 3 3 5
- 2 0 0  . 2 3 . 6 0 6 5 1 5 . 0 2 3 9 0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 2 7 6
- 2 0 2 . 2 7 . 5 0 3 3 1 3 . 9 7 8 9 0 . 0 0 0 0 0 . 0 0 0 9 0 . 1 2 1 9
- 2 0 0 . 2 6 . 0 0 1 2 1 2 . 9 6 1 8 0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 1 6 1
- 2 3 0 . 2 5 . 2 6 1 7 1 1 . 9 7 3 9 0 . 0 0 0 0 0 . 0 0 0 0 0 .  1 105
- 2 3 6 . 2 0 . 1 2 6 5 1 1 . 0 1 6 7 9 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 0
- 2 3 0 . 2 2 . 9 9 7 0 1 0 . 0 9 1 0 0 . 0 0 0 0 0 . 0 0 0 0 9 . 9 9 9 6
- 2 3 2 . 2 1 . 3 7 5 1 9 . 1 9 9 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 9 0 2
- 2 3 0 . 2 0 . 7 6 2 3 8 . 3 0 2 0 0 . 0 0 0 0 0 . 0 0 0 9 0 . 0 0 9 0
- 2 2 0 . 1 9 . 6 6 0 6 7 . 5 2 0 0 0 . 0 0 0 0 0 . 0 0 0 0 9 . 0 8 0 0
- 2 2 6 . 1 3 . 5 7 1 6 6 . 7 3 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 9 0
- 2 2 0 . 1 7 . 0 9 7 2 5 . 9 8 9 2 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 0 2
- 2 2 2 . 1 6 . 0 3 9 1 5 . 2 0 1 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 9 6 9 5
- 2 2 0 . 1 5 . 3 9 9 2 0 . 6 1 0 5 0 . 0 0 0 0 0 . 0 0 0 0 0 . 9 6 5 0
- 2 1 3 . 1 0 . 3 7 9 0 3 . 9 8 8 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 6 0 7
- 2 1 6 . 1 3 . 3 8 1 3 3 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 6 5
- 2 1 0 . 1 2 . 0 0 7 0 2 . 0 6 3 3 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 2 5
- 2 1 2 . 1 1 . 0 5 0 0 2 . 3 6 5 9 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 3 7
- 2 1 0 . 1 0 . 5 3 6 2 1 . 9 1 3 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 5 0
- 2 0 3 . 9 . 6 0 3 3 1 . 5 0 5 3 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 1 6
- 2 0 6 . 0 . 7 3 0 9 1 . 1 0 3 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 3 8 0
- 2 0 0 . 7 . 9 5 0 3 0 . 8 2 7 8 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 3 5 3
- 2 0 2 . 7 .  1500 0 . 5 5 9 1 0 . 0 0 0 0 0 . 0 0 0 0 9 . 0 3 2 5
- 2 0 0 . 6 . 3 9 3 3 0 . 3 3 7 6 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 9 9
- 1 9 3 . 5 . 6 6 0 9 0 . 1 6 3 3 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 7 6
- 1 9 6 . 0 . 9 8 2 5 0 . 0 3 7 9 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 0
- 1  ° 0  . 0 . 3 3 5 6 - 0  . 07.93 9 . 9 0 0 0 0 . 0 0 0 0 C . 0 2 3 5
- 1 9 2 . 3 . 7 2 9 2 - 0 . 0 6 9 3 0 . 9 0 0 0 0 . 0 0 0 0 0 . 0 2 1 8
- 1 9 0 . 3 .  1 6 0 6 - 0 . 0 5 0 3 9 . 0 0 9 0 0 . 0 0 0 9 9 . 9 2 0 0
- 1 3 0 . 2 . 6 0 2 7 0 . 0  169 0 . 0 0 0 0 0 . 0 9 0 0 0 . 9 1 <>2
- 1 3 6 . 2 .  1615 0 . 1 3 2 5 9 . 0 0 0 0 n . .9 9 0 9 9 . 0 1 8 7
- 1 3 0  . 1 . 7 3 0 9 0 . 2 " 6 1 9 . 9 0 ) 0 9 . 0 9  <•» *v 9 . 0 1 7 5



i , ‘ >Z2*  0 o 2 I  I *9 OOOC * L c 0 0 1/ * 6 9 6 8 0 9 * 9 6 *1/ 9-
2 1 Z 2 *  o 9 6 9 0  * 2 0 0 0 0 • 0 8 1 / 1 9 * 9 9 9 121. *1. 6 * 9 9 -
Z Li 9 2 * 0 0 0 o (» 0 0 0 0 0 * 0 I / 89Z * 29 Z 6 I 2 * 9 6 * 0 9 -
2 0 9 2 * 0 0 U 0 0 * u 0 0 0 G * 0 6 1 0 6 * 1 9 9 1 0 0 * 2 6 * o z -

0 0 0 0 * 0 0 0 0 0 * 0 Z . 9 I 0 *  19 Z I Z Z * 0 6 * 2 Z -
0 6 6 2 * 0 0 0 0 0 * 6 0 0 0 0 * 0 60 1 I * 0 9 0 1 9 9 * 6 9 * 6 Z -
2 9 6 2 * 0 0 0 0 0  * 0 0 0 0 0 * 0 9 9 8 1  * 61/ 6 I 8 2 * G 9 * 9 Z -
0 Z 9 2 * G 0 0 0 0 * O 0 0 0 0 * 0 6 9 6 2 * 8 0 Z 6 2 0 * Z 9 * 9  Z -
9 T 9 2 * 0 0 0 0 0 * 0 0 0 0 0 * 0 C 9 8 2 * Z 6 9 2 9 Z  * 99 * 0 8 -
9<_,22*0 0 0 0 0 * 0 0 0 0 0 * 0 9 9 0 9 * 9 1 / I Z6 6  * 69 * 2 8 -
Z 6 l 2 * 0 0 0 0 0 * 0 o o o c * o 9 2 1 9 * 9 6 0 0 9 2 * 9 9 * 6 8 -
9 9 1 2 * 0 0 0 0 0 * 0 0 0 0 0 * 0 Z 2 0 9 * 6 6 2 9 9 6 * 1 9 * 9 8 -
9 Z 0 2 * 0 0 0 0 0 * 0 0 0 0 0 * 0 9 Z Z 2  * 96 6 8 6 9 * 0 9 * 8 8 -
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2 9 8 1 * 0 0 0 0 0 * 0 0 0 0 0 * 0 6 Z 9 0  * 69 9 9 6 9 * 9 2 * 9 6 -
i z z i * o 0 0 0 0 * 0 0 0 0 0 * 0 6 Z 6 6 * Z 9 6 6 9 6 * 6 2 * 8 6 -
6 0 Z I * 0 0 0 0 0 * 0 0 0 0 0 * 0 9 9 6 8 * 9 9 2 9 9 2 * 9 2 * 001
8 6 9 1  * C 0 0 0 0 * 0 0 0 0 0 * 0 199 Z * 99 9 9 9 0 * 2 2 * 2 0 1
9 8 9 1 * 0 0 0 0 0 * 0 0 0 0 0 * 0 6 Z I  9 * 6 9 62ZG * 02 * 601
Z 2 S I * C 0 0 0 0 * 0 0 C 0 0 • c 9 1 6 6 * 9 9 2 Z 0 Z  * 6 1 " 9 0 1
Z96 1  * 0 0 0 0 0 * 0 0 0 0 0 * 0 9 6 9 9 * 2 9 9 1 9 9 * 8 1 * 80 I
Z 0 6 I  *G 0 0 0 0 * 0 0 0 0 0 * 0 9 2 2 2 * 1 9 6 Z 9 6 * Z I * 0 1 1
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t / 960  * C 0 0 0 0 * 0 0 0 0 0  * c 1 9 2 1 * 2 2 9 6 6 9 * 0 * 9 2 1
2 0 6 0 * 0 C 0 0 0 * 0 0 0 0 0 * 0 2 8 0 0 * 1 2 I o 2 9  * 8 * 3 2 1
1 9 9 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 6 9 0 6 * 6 1 9 6 6 9 * Z * 0 9 1
1 0 9 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 61 I 8 * 8 T 9 9 0 6 * 9 * 2 9 1
99ZG * 0 0 0 0 0 * 0 0 0 0 0 * 0 I  6 9 Z * Z I 6 1 9 1 * 9 * 6 9 1
9 0 Z 0  * 0 0 0 0 0  * 0 0 0 0 0 * 0 9 2 Z 9  * 9 I 2 9 9 6 * 9 * 9 9 1
0 9 9 0 * 0 G 0 0 0 * 0 0 0 0 0 * 0 2 8 2 9 * 9 1 0 6 9 Z  * 6 * 8 9 1
9 1 9 0  *0 0 0 0 0 * 0 0 G 0 0 * 0 Z9 09  * 6 I Z 9 2 1 * 6 * 0 6 1
t?Z9G * 0 0 0 0 0 * 0 0 0 0 0 * 0 ZO 09 * 9 I 2 0 9 9 * 9 * 2 6 1
n 9 9 0 * o C 0 0 0 * 0 0 0 0 0 * c 6 0 2 9 * 2 1 9 o Z 6  * 2 * 66 I
S» 6 6 0 * 0 0 0 0 0  * 0 0 0 0 0 * 0 2 9 9 9 * I I 6 2 Z 6 * 2 * 9 6 1
8 9 1? 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 2 8 9 Z  * 0 I 9 6 0 0 * 2 * 8 6 1
9 2 6 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 Z 8 9 8 * 6 8 1 6 9 * 1 * 0 8 1
1 6 9 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 9 6 9 6  * 6 Z 6 I  2 * I * 2 8 1
0 9 9 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 0 2 9 1 * 9 8 9 6 8 * 0 * 68 I
1 9 9 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 0 8 2 9  * Z 9 0 1 9 * 0 * 98  I
9 0 9 0 * 0 0 0 0 0 * 0 0 G 0 0 * 0 6 8 9 9 * 9 9 2 8 9 * 0 * 88  I
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A/ F  r a t i o
e n g i n e  s p o e  J = *300 rpi.i 
i n ,  m a n i f o l d  p r .  ( b a r )  
d e l i v e r y  r a t i o  
c h a r g i n g  e f f .  
t r a p p i n g  e f f .
0 .  M . E . P ( b a r )  
o u t p u t  s h a f t  p o w e r  (K'.J) 
o u t p u t  s h a f t  e f f .  
c o m p r e s s o r  p o w e r  (KM)  
e n g i n e  s p e e J  = 1 0 0 0  rpm 
i n .  m a n i f o l d  p r .  ( b a r )  
d e l i  ve r y  r a t i o  
c h a r g i n g  e f f .  
t rapf )  i ny e f f .
0 . M . F . . P .  ( b a r )  
o u t p u t  s h a f t  p o w e r  (K'.J) 
o u t p u t  s h a f t  e f f .  
c o m p r e s s o r  p o w e r  ( K! )  
e n g i n e  s p e e d  = 2 0 0 0  r p n  
i n .  m a n i f o l  I p r .  ( b a r )  
d e l i v e r y  r a t i o  
c h a r g i n g  o f f .  
t r a p p i n g  e f f .
D . M . L . f ’ . ( b a r )  
o u t p u t  s h a f t  p c w e r  CK!.') 
o j t p u t  s h a f t  e f f .  
C o m p r e s s o r  p o w e r  (K'J)  
e n g i n e  s p e e d  = 3 0 0 0  rpm 
i n .  m a n i f o l d  p r .  ( b a r )  
d e l i v e r y  r a t i o  
c h a r g i n g  o f f .  
t r a p p i n g  e f f .  
a . M . C . P .  ( b a r )  
o u t p u t  s h a f t  p c w e r  (K'J)  
o u t p u t  s h a f t  e f f .  
c o m p r e s s o r  p o w e r  (K! l )  
e n g i n e  s p e e d  = 4 0 0 0  rpm 
i n .  m a n i f o l d  p r .  ( b a r )  
d e 1 i ve r y  r a t i o  
c h a r g i n g  o f f .  
t r a p p  i ng e f f .
O . M . E . P .  ( b a r )
o u t p u t  s h a f t  p c w e r  (K'J)
o u t p u t  s h a f t  e f f .

n n j « p  f K ' M

o p t  1 mum
22 22 22

1 . 0 6 0 1 . 0 6 2 1 . 0 6 4
1 . 9 1 8 5 2 .  10 3 0 2 . 2 7 2 8
0 . 7 8 4 9 0 . 7 9 7 3 0 . 8 0 6 9
0 . 4 0 9 1 0 . 3 7 9 1 0 . 3 5 5 0
S . 70 5 . 8 0 5 . 8 7
1 . 6 8 1 . 7 1 1 . 7 3
0 . 3 1 4 0 . 3 1 5 0 . 3 1 4
0 . 0 5 0 . 0 6 0 . 0 6

1 . 0 7 5 1 . 0 8 5 I . 0 9 5
1 . 5 3 1 4 1 . 8 0 9 2 2 . 0 5 1 9
0 . 7 5 7 9 0 . 7 9 2 2 0 . 8 1 3 9
0 . 4 9 4 9 0 . 4 3 7 9 0 . 3 9 6 7
6 . 3 8 6 . 6 5 6 . 8 2
3 . 7 5 3 . 9 1 4 . 0 1
0 . 3 6 3 0 . 3 6 3 0 . 3 6 2  ,
0 . 1 0 0 . 1 3 0 . 1 7

1 . 1 2 0 1 . 1 4 0 1 . 1 6 0
1 . 3 0 2 0 1 . 4 7 6 8 1 . 6 3 1 3
0 . 7 4 5 4 0 . 7 7 7 7 0 . 8 0 0 2
0 . 5 7 2 5 0 . 5 2 2 6 0 . 4 9 0 5
6 . 3 6 6 . 6 7 6 . 8 6
7 . 4 7 7 . 8 5 8 . 0 6
0 . 3 7 1 0 . 3 7 2 0 . 3 6 9
0 . 2 7 0 . 3 6 0 . 4 5

1 . 1 6 0 1 . 1 9 0 1 . 2 2 0
1 . 1 0 5 6 1 . 2 4 3 9 1 . 3 6 6 9
0 . 7 2 6 5 0 . 7 5 5 2 0 . 7 7 9 4
0 . 6 5 7 1 0 . 6 0 7 1 0 . 5 7 0 2
5 . 8 4 6 . 2 1 6 . 3 7

1 0 . 2 9 1 0 . 9 7 1 1 . 2 2
0 . 3 5 4 0 . 3 5 6 0 . 3 5 3
0 . 4 6 0 . 6 2 0 . 7 8

1 . 1 9 0 1 . 2 3 0 1 . 2 7 0
0 . 9 4 3 4 1 . 0 5 1 7 1 . 1 6 5 0
0 . 6 8 0 3 0 . 7 4 9 7 0 . 7 7 0 9
0 . 7 2 1 1 0 . 7 1 2 8 0 . 6 6 1 7
5 . 1 5 5 . 8 3 5 . 8 3

1 2 . 1 1 1 3 . 7 1 1 3 . 7 1
0 . 3 2 7 0 . 3 3 6 0 . 3 3 1
0 62 0 . 8 4 1 . 0 9

33

1 . 0 5 9
1 . 7 9 9 5
0 . 7 7 4 2
0 . 4 3 1 2
3 . 6 8
1 . 0 9
0 . 3 0 7
0 . 0 5

1 . 0 7 5  
1 . 5 2 1 6  
0 . 7 6 1 4  
0 . 5 0 0 4  
4 . 2 0  
2 . 4 7  
0 . 3 5 9  
0 . 1 0

1 . 1 2 0
1 . 2 8 9 0
0 . 7 3 3 7
0 . 5 6 9 2
4 . 0 8
4 . 8 0
0 . 3 5 7
0 . 2 7

I . 1 6 0  
1 . 0 9 0 7  
0 . 7 1 7 9  
0 . 6 5 9 9
3 . 6 3
6 . 3 9  
0 . 3 2 7  
0 . 4 5

1 . 2 1 0
0 . 9 9 7 1
0 . 7 1 0 2
0 . 7 1 2 3
3 . 1 4
7 . 3 9  
0 . 2 8 6  
0 . 7 3

33

1 . 0 6 1  
2 . 0 0 0 0  
0 . 7 9 2 8  
0 . 3 9 6 4  
3 . 7 5  
I.11 
0 . 3 0 7  
0 . 0 5

1 . 0 8 5
1 . 7 9 9 4
0 . 7 9 2 9
0 . 4 4 0 6
4 . 3 9
2 . 5 8
0 . 3 5 9
0 . 1 3

1 . 1 4 0
1 . 4 6 4 3
0 . 7 7 4 4
0 . 5 2 8 9
4 . 2 9
5 . 0 5
0 . 3 5 8
0 . 3 6

1 . 1 9 0
1 . 2 3 0 1
0 . 7 5 4 7
0 . 6 1 3 5
3 . 8 0
6 . 7 0
0 . 3 2 8
0 . 6 1

1 . 2 5 0
1 . 1 1 3 0
0 . 7 3 6 3
0 . 6 6 1 5
3 . 2 4
7 . 6 3
0 . 2 3 6
0 - 9 7

33

1 . 0 6 3
2 . 1 7 3 3
0 . 8 0 1 6
0 . 3 6 8 9
3 . 7 9
1.12
0 . 3 0 6
0 . 0 6

1 . 0 9 5
2 . 0 3 9 4
0 . 8 1 4 3
0 . 3 9 9 5
4 . 4 6
2 . 6 2
0 . 3 5 6
0 . 1 7

1 . 1 6 0
1 . 6 1 7 0
0 . 8 0 0 0
0 . 4 9 4 7
4 . 3 7
5 . 1 4
0 . 3 5 4
0 . 4 5

1 . 2 20
1 . 3 5 4 0
0 . 7 7 7 6
0 . 5 7 4 3
3 . 9 0
6 . 8 9
0 . 3 2 5
0 . 7 8

1 . 2 9 0
1 . 2 1 1 5
0 . 7 6 6 8
0 . 6 3 2 9
3 . 3 6
7 . 9 2
0 . 2 8 4
1 . 2 2

66

1 . 0 5 8  
1 . 6 6 8 0  
0 . 7 5 3 4  
0 . 4 5 1 7  
1 . 4 5  
0 . 4 3  
0 . 2 4 9  
0 . 0 4

1 . 0 7 5  
1 . 4 9 5 4  
0 . 7 4 4 6  
0 . 4 9 7 9  
1 . 7 0  
1 . 0 0  
0 . 2 9 6  
0 . 1 0

1 . 1 20  
1 . 2 6 7 6  
0 . 7 2 7 6  
0 . 5 7 4 0  
1 . 4 4  
1 . 6 9  
0 . 2 5 7  
0 . 2 6

1 . 1 6 0
1 . 0 7 0 2
0 . 7 0 9 8
0 . 6 6 3 3
1. 01
1 . 7 7
0 . 1 8 5
0 . 4 5

1 . 2 3 0  
I . 0 3 8 9  
0 . 7 2 4 9  
0 . 6 9 7 8  
0 . 5 8  
1 . 3 4  
0 .  103  
0 . 8 3

66

1 . 0 6 0  
1 . 8 7 1 8  
0 . 7 7 6 7  
0 . 4 1 4 9
1 . 5 3  
0 . 4 5  
0 . 2 5 6  
0 . 0 5

1 . 0 8 5  
1 . 7 7 0 5  
0 . 7 8 2 6  
0 . 4 4 2 0  
1 . 8 0  
1 . 0 6  
0 . 2 9 6  
0 . 1 3

1 . 1 4 0  
1 . 4 4 4 5  
0 . 7 6 6 4  
0 . 5 3 0 5
1 . 5 3  
1 . 8 1  
0 . 2 5 9  
0 . 3 5

1 . 1 8 8 4  
1 . 2 0 3 4  
0 . 7 4 7 3  
0 . 6 2 1 0  
1 . 0 8  
1 . 9 0  
0 .  187  
0 . 5 9

1 . 2 7 0  
1 . 1 5 0 2  
0 . 7 5 9 1  
0 . 6 6 0 0  
0 . 6 0  
1 . 4 3  
0 . 1 0 4  
1 . 0 8

66

1 . 0 6  2 
2 . 0 5 9 9  
0 . 7 8 9 4  
0 . 3 8 2 2  
1 . 5 0  
0 . 4 5  
0 . 2 4 7  
0 . 0 6

1 . 0 9 5  
2 . 0 1 6 8  
0 . 8 1 0 1  
0 . 4 0 1 7  
1 . 8 1  
t . 0 6  
0 . 2 9 1  
0 . 1 7

1 . 1 6 0  
1 . 5 9 4 0  
0 . 7 9 2 4  
0 . 4 9 7 1  
1 . 5 4  
1 . 8 0  
0 . 2 5 2  
0 . 4 4

1 . 2 2 0  
1 . 3 3 3 1  
0 . 7 7 5 3  
0 . 5 8 1 6  
1 . 0 8  
1 . 9 1  
0 .  182  
0 . 7 6

1 . 3 1 0  
1 . 2 4 9 7  
0 . 7 7 7 6  
0 . 6 2 2 2  
0 . 5 5  
I . 2 7
0 . 0 9
1 . 3 4



A / F  r a t i o
Wl> V * mum 

22
i i xeu  

22
upv » mum

33
e n g i n e  s p e e d  = 5 0 0  ppm
i n .  m a n i f o l d  p r .  ( b a r ) 1 . 0 6 2 0 1 . 0 5 4 0 1 . 0 6 1 0
d e l i  v e r y  r a t i o 2 . 1 0 3 0 1 . 1 9 6 4 2 . 0 0 0 0
c h a r g i n g  e f f . 0 . 7 9 7 3 0 . 6 9 7 2 0 . 7 9 2 8
t r a p p i n g  e f f . 0 . 3 7 9 1 0 . 5 0 2 8 0 . 3 9 6 4
U . M . E . P .  ( b a r ) 5 . 8 0 5 . 0 6 3 . 7 5
o u t p u t  s h a f t  p o w e r  (K'J) 1 . 7 1 1 . 4 9 1 . 1 1
o u t p u t  s h a f t  e f f . 0 . 3 1 5 0 . 3 1 3 0 . 3 0 7
c o m p r e s s o r  p o w e r  (KW) 0 . 0 6 0 . 0 3 0 . 0 5
e n g i n e  s p e e d  = 1 0 0 0  rpm
i i i .  m a n i f o l d  p r .  ( b a r ) 1 . 0 8 5 0 1 . 0 6 5 7 1 . 0 0 5 0
d e 1 i v e r  y r a t i o 1 . 8 0 9 2 1 . 2 1 1 0 1 . 7 9 9 4
c h a r g i n g  e f f . 0 . 7 9 2 2 0 . 7 0 2 2 0 . 7 9 2 9
t r a p p  i n y e f f . 0 . 4 3 7 9 0 . 5 7 9 5 0 . 4 4 0 6
U . M . E . P .  ( b a r ) 6 . 6 5 6 . 0 5 4 . 3 9
o u t p u t  s h a f t  p o w e r  (KW) 3 . 9 1 3 . 5 6 2 . 5 8
o u t p u t  s h a f t  e f f . 0 . 3 6 3 0 . 3 6 3 0 . 3 5 9
c o m p r e s s o r  p o w e r  (KW) 0 . 1 3 0 . 0 7 0 . 1 3
e n g i n e  s p e e d  = 2 0 0 0  rpm
i n .  m a n i f o l d  p r .  ( b a r ) 1 . 1 4 0 0 1 . 1 1 0 4 1 . 1 4 0 0
d e l i v e r y  r a t i o 1 . 4 7 6 3 1 . 2 0 9 5 1 . 4 6 4 3
c h a r g i n g  e f f . 0 . 7 7 7 7 0 . 7 1 6 9 0 . 7 7 4 4
t r a p p i n g  e f f . 0 . 5 2 2 6 0 . 5 9 2 7 0 . 5 2 8 9
O . f l . C . P .  ( b a r ) 6 . 6 7 6 . 1 3 4 . 2 9
o u t p u t  s h a f t  p o w e r  (KW) 7 . 8 5 7 . 2 1 5 . 0 5
o u t p u t  s h a f t  e f f . 0 . 3 7 2 0 . 3 7 0 0 . 3 5 8
c o m p r e s s o r  p o w e r  ( K U ) 0 . 3 6 0 . 2 3 0 . 3 6
e n g i n e  s p e e d  = 3 0 0 0  rpm
i n .  m a n i f o l d  p r .  ( b a r ) 1 . 1 9 0 0 1 . 1 3 1 6 1 . 1 9 0 0
d e l i v e r y  r a t i o 1 . 2 4 3 9 1 . 2 0 3 9 1 . 2 3 0 1
c h a r g i n g  e f f . 0 . 7 5 5 2 0 . 7 4 0 3 0 . 7 5 4 7
t r a p p i n g  e f f . 0 . 6 0 7 1 0 . 6 1 4 8 0 . 6 1 3 5
U . M . C . P .  ( b a r ) 6 . 2 1 6 . 0 7 3 . 8 0
o u t p u t  s h a f t  p o w e r  ( KU) 1 0 . 9 7 1 0 . 7 1 6 . 7 0
o u t p u t  s h a f t  e f f . 0 . 3 5 6 0 . 3 5 4 0 . 3 2 8
c o m p r e s s o r  p o w e r  ( KU) 0 . 6 2 0 . 5 7 0 . 6 1
e n g i n e  s p e e d  = 4 0 0 0  rpm
i n .  m a n i f o l d  p r .  ( b a r ) 1 . 2 3 0 0 1 . 2 7 8 7 1 . 2 5 0 0
d e l i  v e r  r r a t i o 1 . 0 5 1 7 1 . 1 9 3 2 1 . 1 1 3 0
c h a r g i n g  e f f . 0 . 7 4 9 7 0 . 7 6 6 5 0 . 7 3 6 3
t r a p p i n g  e f f . 0 . 7 1 2 3 0 . 6 4 2 4 0 . 6 6 1 5
b . M . E . r .  ( b a r ) 5 . 8 3 5 . 8 7 3 . 2 4
o u t p u t  s h a f t  p o w e r  (K'J) 1 3 . 7 1 1 3 . 8 0 7 . 6 3
o u t p u t  sha  f t  e f f . 0 . 3 3 6 0 . 3 3 1 0 . 2 8 6
c o m p r e s s o r  p o w e r  (KW) 0 . 8 4 1 . 1 5 0 . 9 7

i 1 *  wu V K l  I mum
3 3  6 6

• I ACU 
66

1 . 0 5 4 1 1 . 0 6 0 0 1 . 0 5 4 3
1 . 2 0 5 2 1 . 8 7 1 8 1 . 2 1 0 9
0 . 6 8 7 8 0 . 7 7 6 7 0 . 6 8 3 9
0 . 5 7 0 7 0 . 4 1 4 9 0 . 5 6 4 8
3 . 2 7 1 . 5 3 1 . 3 8
0 . 9 6 0 . 4 5 0 . 4 1
0 . 3 0 6 0 . 2 5 6 0 . 2 5 4
0 . 0 3 0 . 0 5 0 . 0 3

1 . 0 6 5 7 1 . 0 8 5 0 1 . 0 6 6 5
1 . 1 9 5 4 1 . 7 7 0 5 1 . 2 0 9 0
0 . 7 0 4 1 0 . 7 8 2 6 0 . 6 9 5 8
0 . 5 8 9 0 0 . 4 4 2 0 0 . 5 7 5 5
3 . 8 4 1 . 8 0 1 . 5 8
2 . 2 6 1 . 0 6 0 . 9 3
0 . 3 5 6 0 . 2 9 6 0 . 2 9 4
0 . 0 7 0 . 1 3 0 . 0 7

1 . 1 1 1 9 1 . 1 4 0 0 1 . 1 1 3 4
1 . 2 1 0 1 1 . 4 4 4 5 1 . 2 0 4 5
0 . 7 2 3 0 0 . 7 6 6 4 0 . 7 1 4 6
0 . 5 9 7 4 0 . 5 3 0 5 0 . 5 9 3 3
3 . 9 4 1 . 5 3 1 . 3 9
4 . 6 4 1 . 8 1 1 . 6 4
0 . 3 5 6 0 . 2 5 9 0 . 2 5 5
0 . 2 4 0 . 3 5 0 . 2 4

1 . 1 8 4 7 1 . 1 8 4 4 1 . 1 8 8 4
1 . 2 0 5 0 1 . 2 0 3 4 1 . 2 0 3 4
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Chapter 9 TWO-STftOKE ENGINE SYSTEM MODELUNG

9. 1 INTRODUCTION

The two-stroke engine has no complete intake and exhaust stroke, is not 

self- aspirating and self- exhausting. It is necessary to use a compressor 

to help force out residual gases and fill in fresh charge. The compressor 

can be driven by the engine crankshaft or a turbine driven by the exhaust 

gases. The useful energy of the exhaust gases can be recovered by the 

turbine or a positive displacement expander, or used directly to drive a 

Comprex supercharger, or used as a heat source for a bottoming cycle. 

For improving thermal efficiency and power performance, many engine 

systems have been developed.

The system would be improved with the thermally insulated engine, leading 

to excellent economy due to reduction of heat loss and relaxation of cetane 

number requirements under "hot wall" condition. Furthermore, the system 

would be more compact with the two-stroke engine, in principle, doubling 

the output power within almost the same volume as that of the four-stroke 

engine.

To obtain optimum overall efficiency with such a sophisticated system, it is 

necessary to consider the performance of the total system rather than the 

efficiency of each component individually. There is. therefore, a pressing 

need for developing mathematical models to investigate the interaction of the 

various components and to improve the operating behaviour for the total 

system. For the two-stroke engines, the requirement of a positive pressure 

drop for scavenging and the tendency of low temperature of the diluted 

exhaust gases by the scavenging air add extra difficulties to the engine 

systems.

Designing an engine system is to devise a system layout and to select the 

components. Optimizing the engine system is to choose the component 

parameters and to determine the control policy. Modelling the system is to 

determine the distribution and balances of constituent, mass and energy 

from the mechanical, pneumatic and thermal connections based on the 

conservation laws.

181



9 .2  SYSTEM MODELS

Different engine systems are aimed at different applications, use different 

layouts and components. This thesis will focus its attention on the following 

two-stroke engine systems.

( 1 ) .  turbocharged engine without a blower.

( 2 ) .  turbocharged engine with a blower.

( 3 ) .  Wallace's differential compound enging (DCE).

( 4 ) .  compound engine system withe 3 continuously variable transmissions 

CCVT).

For these systems, the system models include the following submodels.

( 1 ) .  engine.

( 2 ) .  compressor.

( 3 ) .  turbine.

( 4 ) .  transmission.

As explained in Chapter 7. the engine models have been made into three 

programs CSP. CSP3Z and CSPMZ. Being extended, these three programs 

can model Wallace's DCE. Based on the engine program CSP3Z. program 

CSP3ZTC is made for modelling a two-stage turbocharging scheme in which 

the high-pressure stage can be coupled to the engine crankshaft, and each 

compressor and turbine can be included or omitted at will. Thus, the 

following common turbocharging schemes can be simulated.

( 1 ) .  single-stage turbocharging without a blower.

( 2 ) .  single-stage turbocharging with a blower.

( 3 ) .  two-stage turbocharging.

Program CSP3ZTC can deal with up to two turbochargers at each pressure 

stage.

9 .2 .1  COMPRESSOR MODEL

Both positive displacement and centrifugal compressors can be used in the 

system for boosting the inlet pressure. For. centrifugal compressors, the
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work completed by Whitfield. Patel and Wallace [9. 1] has shown that the 

complex nature of the flow configuration makes an analytical model of 

acceptable accuracy too elaborate to be used for a matching program. As 

a result, manifacturer's compressor performance maps are used in the 

programs in the form of 3-dimensional numerical arrays. The simplified 

approach greatly reduces computing time compared with the more complex 

analytical approach.

A scaling factor method is used for considering the effect of compressor 

size. From similarity of turbomachinery, the following non-dimensional 

relationship is valid

mJRT AT P
01 0 ND 02

-----------  V    = F<-----------    ) ( 9 .1 )
2 . . T l-----  P

P O 01 AlRT 01
01 01 .

where m is the mass flow rate.

R is the gas constant.

D is the diameter.

T) is the efficiency.
N Is the rotational speed.

AT = T -  T is the temperature difference.
0 02 01

the suffices 01 and 02 used with T and P denote the stagnation 

temperature and pressure at the inlet and outlet respectively.

This indicates that under the condition of geometric similarity the mass flow 

rate is proportional to the square of the diameter and the speed is inversely 

proportional to the diameter. Based on the diameter scaling factor the 

performance maps of a compressor with varying diameter can be 

represented. Furthermore, the sectional area scaling factor is introduced 

to take account of the effect of varying flow cross-sectional area in different 

trims of the compressor. Therefore, the virtual mass flow scaling factor is

2
f = f f ( 9 .2 )
m d a

For positive displacement compressors, although the theoretical model has 

been built up. the performance maps are used in the programs. [9.2] Only
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a mass flow scaling factor is used for considering the effect of size.

9 . 2 . 2  TURBINE MODEL

The turbine is used for recovering the exhaust available energy to drive t h e * 

compressor, the engine crankshaft or the powerplant output shaft. The 

analysis of turbine performance is simpler than in the case of compressor, 

partly due to the simpler flow configuration and to the generally accelerating 

flow which presents less serious problems. The one-dimensional theory by 

Wallace [9 .3 ] provides a successful analytical solution to both design and 

off-design conditions. The extended work by Wallace. Cave and Miles [9. 4] 

includes an allowance for nozzle and rotor losses and variable nozzle angle. 

The investigation by Way [9.5] accomplishes the representation of a 

nozzleless turbine by assuming conservation of angular momentum within the 

turbine casing and radial entry to the turbine.

In the programs, this theoretical model is used for modelling variable 

geometry turbines, while the performance maps are used for modelling fixed 

nozzle turbines. Because turbines obey the same similarity law as that for 

centrifugal compressors, the same scaling factor method is used for 

considering the effect of turbine size on the performance.

9 . 2 . 3  TRAMSMISSION

9 . 2 . 3 . 1  Epicycllc gearbox model

In the systems, the epicyclic gear train is used as a differential transmission 

as in Wallace's DCE. or a power turbine reduction gear train. The model 

developed by Myers [9 .6 ] is used to simulate dynamic performance of the 

total system including the epicyclic gearbox, the power output shaft and the 

load. Bearing and tooth load losses computed in the manner proposed by 

Magi [9.7]  are incorporated in this model, which when used with relevant 

data could be used to represent any epicyclic gearbox train.

9 . 2 . 3 . 2  CVT model

For an engine, a compressor or a turbine, the operation with high efficiency 

occurs only over a relatively narrow range of speed and load. For an engine
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system running over an wide range of speed and load, it is impossible for 

a fixed ratio transmission to obtain an optimum operation over the complete 

range. Therefore, the CVTs are used to adjust the transmission ratio to 

achieve the optimum matching. CVT transmission loss is complex and 

dependent on CVT type, speed ratio and load. However, the following 

simple model gives a good approximation.

It is assumed that the transmission loss is divided into two parts:

( 1 ) .  constant friction torque r

( 2 ) .  constant dynamic loss ratio 77 proportional to the output power.
0

From power balance, the following equation is evident

r  cj =77  ( t  cj - t  G) ) 
out out 0 in in f out

(9 .3 )

i. e.

T  t “ V ( r  r - r  ) out 0 in f
(9 .4 )

where r is the speed ratio

r  is the input torque 
in

r  is the output torque, 
out

Compared with the experimental results tested on the Dutch Van Doorne CVT 

TS165 by Vahabzadeh [9. 8 ], the coincidence between test and calculation is

satisfactory. In which r  is 60 Ib-in  and cj |S 0 . 95. as listed in Table 9 .1 .
f 0

Here, the traction coefficient is defined as.

Output speed • output torque ^

Input speed * input torque

9 .3  MODELLING TWO-STROKE TURBOCHARGED ENGINES

9.3.1 MODELLING THE TURBOCHARGED ENGINE WITHOUT A BLOWER
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9 .3 .1 .1  Some concepts

Matching a turbocharger to an automotive engine is difficult due to the wide 

speed and load variations encountered. The circumstances of the 

two-stroke engine aggravate the matching problems. The two-stroke 

engines require more scavenging air and a positive pressure drop from the 

intake to exhaust manifolds for scavenging, while the exhaust temperature is 

lower due to dilution of the exhaust gas with short-circuited air. which 

causes a decrease in the exhaust available energy to drive the turbine. 

Especially for low speed and load running conditions, the turbocharger will 

stall when the exhaust available energy is too low to drive it.

Few makes of automotive two-stroke engine are produced. The layout of 

turbocharged two-stroke engines with a blower is the only successful 

scheme. In this scheme normally a Roots blower is used, placed in series 

after the turbocharger compressor. The Roots blower provides most of the 

boost pressure at low speed and load, yet a reducing proportion of the total 

as speed and load rises. The Roots blower absorbs power from the 

crankshaft of the engine. The larger the capacity of Roots blower, the 

greater the loss in engine power output.

it will be expected that for a thermally insulated two-stroke engine the 

increased exhaust energy alleviates the above problem in matching of the 

turbocharger. The question is whether the turbocharged thermally insulated 

two-stroke engine can jettison the auxiliary blower or not. This section is 

to estimate the performance of the Ford turbocharged ceramic diesel engine 

without any blower and cooler and the effect of a waste gate on the 

performance.

9 . 3 . 1 . 2  Main specifications

The layout of the turbocharged engine is shown in Fig. 9 .1 .  The system 

is composed of an engine and a turbocharger without or with a waste gate. 

There is no cooler and auxiliary blower in this scheme.

The engine is the Ford initial design of the ceramic 3-cylinder two-stroke 

opposed piston diesel engine. The engine characteristics have been listed 

in Chapter 8 .

A Hoiset turbocharger for automotive diesel engines is used as the baseline
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turbocharger. The turbine is the Holset 4 LG -T2/2 . 6  T /F  radial flow 

turbine. The compressor is the Holset 4 LEK-255 radial flow compressor. 

The performance maps of the turbocharger used in these calculations are 

produced from the baseline turbocharger map multiplied by scaling factors.

9 . 3 . 1 . 3  Prediction method

Program CSP3ZTC is used for modelling the Ford turbocharged engine. This 

program uses the three-zone thermodynamic scavenging model, as 

explained in Chapter 3. For a turbocharged two-stroke engine there exists 

a possibility that backflow occurs. In this model the backflow from the 

exhaust manifold mingles with the residual gas zone during the displacement 

phase and with the mixing zone during the mixing phase, and the backflow 

from the cylinder to the inlet manifold comes from the air and mixing zones 

with the same ratio as the intake proportion.

For a given supercharged engine, when the boost ratio is varied its 

scavenging efficiency displays a relatively stable relationship with the delivery 

ratio with reference to cylinder trapping condition. The proper selection of 

the initial volume of the residual gas and the coefficients of intake and 

discharge proportions can allow this model to provide an approximate 

description for any scavenging system.

The complete turbocharger characteristics are used as boundary condition at 

the manifold "control volume". The compressor and turbine performance 

maps are produced using non-dimensional representation based on the 

baseline turbocharger map.

9 . 3 . 1 . 4  Identification of computation condition

The injection rate is still set to 12 c .c .  per degree of crank shaft angle per 

cubic metre of cylinder displacement. The start of combustion is adjusted 

to TDC. Full load is defined as air-fuel ratio -  22. 0. In the context of the 

turbocharged engine, delivery ratio is automatically determined from 

matching calculation. The volumes of the inlet and exhaust manifolds both 

are equal to 1 litre.

The relationship between scavenging efficiency and delivery ratio with 

reference to cylinder trapping condition is specified by the following
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parameters, based on the TS3 engine test of Wallace and Cave. [4. 16]

the ratio of the initial volume of the mixing zone to the cylinder volume at 

the beginning of the scavenging process -  0 .4 2

the ratio of the dead space of the residual gas zone to the cylinder volume

=  0 .

the coefficient of intake proportion of the air zone = 0. 63 

the coefficient of intake proportion of the mixing zone = 0 .37  

the coefficient of discharge proportion of the air zone during the mixing 

scavenging phase -  0 . 50

the coefficient of discharge proportion of the mixing zone during the mixing 

scavenging phase = 0. 50

Without any backflow, the three-zone thermodynamic model with these 

parameters gives the curve of scavenging efficiency versus delivery ratio with

reference to cylinder trapping condition, as shown in Fig. 9 .2 .

9 . 3 . 1 . 5  Optimization of turbocharger matching

The criteria of correct selection of a turbocharger are:

( 1 ) .  increase in output power.

( 2 ) .  improvement in output shaft efficiency.

( 3 ) .  wide operating region.

( 4 ) .  easy starting-up

( 5 ) .  protection from turbocharger overspeeding.

( 6 ) .  protection from compressor surge

which may be contradictory.

For a given two-stroke engine, both compressor and turbine have an
\

influence on the turbocharged engine performance. Therefore, the essence 

of turbocharger matching is a problem of two-parameter optimization. The 

optimization procedures can be divided into two stages.

( 1 ) .  compressor-turbine matching: In which the size of compressor is

changed gradually, for a given compressor a proper turbine is selected to 

satisfactorily meet the previous criteria based on the performances at the 

rated speed and load, thus both compressor and turbine are initially 

optimized for rated conditions only.
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( 2 ) .  turbocharger-engine matching: in which a comparison between

performance of this group of initially optimized turbochargers is conducted 

based on the computational results over the complete range of speed and

load, thus an ideal matching can be achieved.

In this report, firstly the matching of turbocharger without a waste gate is

carried out. Secondly, the matching of turbocharger with a waste gate is

conducted.

9 . 3 . 1 . 6  The performance of turbocharged engine without a waste gate

The design variables for a group of turbochargers having geometric similarity 

are size and sectional area. Because the air flow rate of the Ford 

turbocharged engine is approximately equal to half the flow rate of the 

baseline compressor, for simplicity, here the size is fixed to 0. 7 times of 

the baseline turbocharger, thus the only variable is sectional area.

It is supposed that the cast compressor impeller can run at the maximum tip 

speed of 430 m/s.  For the impeller of diameter of 63 mm it means that 

the turbocharger speed should be lower than 136000 rpm.

The numerical tests are conducted based on four different sized 

compressors fitted with various turbines. Their main characteristics are 

listed in Table 9 .2 .  Correspondingly, the predicted performances at the 

rated speed and load are illustrated in Table 9. 2 and the running points on 

compressor characteristics are shown in Fig. 9 .3 .

From these results, it can be seen that for a given sized compressor with 

decrease of turbine sectional area specific available energy at the turbine 

and pressure at the exhaust manifold increase, thus Increasing turbocharger 

speed and boost. Air flow rate is affected by two opposite effects: the 

increased boost ratio tends to increase the air flow rate, while the 

decreased turbine sectional area tends to restrict and reduce it. therefore 

the air flow rate changes slightly. Possibly there exists a maximum flow rate, 

as shown in Fig. 9 .3 .

A correct turbocharger matching should increase output power and 

efficiency, ensure a sufficient surge margin, a safe overspeed margin and 

a wide and stable operating region.
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From Fig. 9 .3  it is evident that the top points in these four curves, i .e .  

Matches 4. 8 . 12 and 16, produce their maximum output power and

efficiency, and they are under the overspeed limitation of 136000 rpm and 

that with the decrease of compressor sectional area the matching points 

move away from the surge line and finally shift to the region of low 

compressor efficiency. Thus. Match 8  and 12 should be selected as the 

optimum schemes.

Under the circumstance of the two-stroke engine, for a given turbocharger 

engine match and a specified air-fuel ratio the increased scavenging air 

short-circuiting through the inlet and exhaust ports decreases specific 

exhaust energy at the turbine inlet. With increase of trapped air-fuel ratio 

the leaner combustion further decreases specific available energy. When 

engine speed and load decrease, the turbocharger will shift to an operating 

point with relatively low air flow rate, boost pressure and speed. 

Eventually, when the engine runs at low speed and load, the turbocharger 

possibly will stall, thus the engine without an auxiliary blower cannot operate 

any further. Therefore, it is important for a turbocharged two-stroke engine 

without a blower to estimate the stable operating range.

From computational results of Match 8 . it is seen that it gives excellent 

output power and efficiency at high speed and load, as shown in Fig. 9 .4 .  

However, the turbocharger can operate only within a narrow region at high 

speed and load, as shown in Fig. 9 .5 .  Its explanation can be obtained 

from Figs. 9 . 6  to 9 . 8  which are contours of exhaust temperature, boost 

pressure and delivery ratio respectively. With decrease of engine load and 

speed, declining exhaust temperature results in decrease of boost pressure, 

hence delivery ratio. The engine running lines with varying air-fuel ratio on 

compressor characteristics illustrate analogy of flow through a two-stroke 

engine to flow through an orifice, and also comfirm the conclusion of 

dramatic decline of boost ratio with the decrease of engine load and speed, 

as shown in Fig. 9 .9 .  The corresponding turbine flow rate and efficiency 

are illustrated in Figs. 9 .1 0  and 9 .11 .  Compared with the initial scheme 

with an engine driven compressor, the turbocharged scheme increases 

output power by 90 % and efficiency by 15 %. However, the turbocharged 

engine provides an unfavourable increasing torque curve, as shown in Fig. 

9. 12. The pressure diagrams in the cylinder, inlet and exhaust manifolds 

at the rated speed and load are shown in Fig. 9. 13.

9. 3 .1 .  7 The performance of turbocharged engine with a waste gate
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The turbocharged engine fitted with a conventional fixed geometry turbine 

has encountered problems such as narrow operating range, insufficient 

torque backup, overspeeding and overboosting. A simple approach of 

avoiding these problems is to by-pass some of the exhaust gas around the 

turbine at high speed and load. A small turbocharger is fitted to achieve

good low speed boost and extend the operating range to the low speed side.

The waste gate can discharge part of the exhaust gas. thus reducing the 

exhaust pressure and coping with overspeeding and overboosting.

Based on the similar optimization procedures, described in the previous 

section, the optimum schemes Matches 17 and 18. for matching the 

turbocharger with a waste gate, can be obtained, and their main

characteristics are listed in Table 9 .3 .

The waste gate characteristics of opening area versus exhaust pressure are 

illustrated in Fig. 9 .14 .  It is supposed that the opening area is proportional 

to exhaust pressure and the waste gate is actuated at 2 . 8  bar and achieves 

its full opening of 10 sq. cm at 3 .8  bar. Here, the high exhaust pressure 

is exploited for widening the operating range.

Matches 17 and 18. Fig. 9. 15, show that, compared with the results

without a waste gate, the operating range is widened with an "ideal" torque 

backup of 60 % at the expense of high speed power and torque. The engine 

global performances of Match 18 are summarized as follows. The contours 

of engine efficiency, turbocharger speed, exhaust temperature, boost 

pressure and delivery ratio are drawn in Figs. 9 .16  to 9 .20 .  The engine 

operating lines with varying air-fuel ratio on compressor characteristics are 

shown in Fig. 9 .21 .  The corresponding turbine flow rate and efficiency are 

shown in Figs. 9 .22  and 23. The pressure diagrams in the cylinder, inlet 

and exhaust manifolds at the rated speed and load are illustrated in Fig. 

9 .24 .  It is worth noting that the turbocharger with the waste gate greatly 

widens the turbocharger operating range, unfortunately it has left a stall 

region around the corner of low speed and load (Figs. 9 .16  to 9 .2 0 ) .

9 .3 .1 .  8 Discussions

For a fixed geometry turbocharger with a waste gate, a formidable 

disadvantage is the turbocharger stall at low speed and load which not only 

makes the engine unable to operate at idle regimes, also indicates that it 

is difficult for the engine to start-up.

191



A naturally aspirated scavenging system by utilization of wave effects in the 

exhaust and induction system without a blower is not suitable for 

multi-cylinder engines running at variable speed because of the interference 

of exhaust waves between different cylinders. Especially when the engine 

operates at low speed regime, a relatively slow exhaust opening hinders the 

utilization of wave effects. ( 1 . 1]

The possible approaches for coping with these problems are as follows

( 1 ) .  the turbocharged scheme with a variable geometry turbocharger.

( 2 ) .  the turbocharged scheme with an engine-driven auxiliary blower.

( 3 ) .  the supercharged scheme with a power turbine coupled with the 

engine.

9 . 3 . 1 . 9  Summary

( 1 ) .  The turbocharged scheme without a waste gate can evidently improve 

the rated output power and efficiency. However, there exists a large region 

of turbocharger stall.

( 2 ) .  At some sacrifice of rated output power the turbocharged scheme with 

the waste gate can evidently improve the output power and efficiency at mid 

speed and load and achieve an "ideal" torque backup of 60 %. However, 

there still exists a region of turbocharger stall in the region of tow speed 

and load which indicates the inability of the engine to operate at idle 

regimes and the difficulty in starting-up.

( 3 ) .  Three possible approaches for coping with these problems are  

suggested, as above.

9 . 3 . 2  MODELLING THE TURBOCHARGED ENGINE WITH A BLOWER

9 . 3 . 2 . 1  Some concepts

The existing successful scheme of the turbocharged two-stroke engines is a 

turbocharged layout with a blower, as shown is Fig. 9 .25 .  In this scheme, 

the blower is driven by the engine, placed in series after the turbocharger 

compressor. Usually, a Roots compressor is used as this blower, because 

there is no surge, no choke and no friction in the working chamber, hence 

it can run at high speeds with minimal noise and vibration.

Coupled with the engine by a fixed ratio transmission, the blower takes
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power from the engine and provides part of the boost pressure, even the 

total boost when the turbocharger stalls. As engine speed and load rises, 

the Increasing available exhaust energy at the turbine Inlet allows the turbine 

to provide most of the total boost. Sometimes, it is possible that at high 

speeds and loads the turbocharger supplies more air than the blower can 

take in; as a result, the pressure after the blower exit is lower than the 

pressure before the blower inlet. Thus, a mismatch between the 

compressor and the blower occurs. As for the engine performance over the 

complete range of load and speed, if the blower is too small, it cannot 

provide sufficient air flow at low speeds and loads; if the blower is too 

large, it will waste too much engine power at high speeds and loads. This 

means a conflict between performance at high and low speeds. The wide 

range of engine speed further aggravates the matching problems.

This section is to predict the performance of the Ford turbocharged engine 

with blower coupled by a fixed ratio transmission and to analysize the 

interaction between the compressor and blower and the effects of the 

compressor and blower capacity and the waste gate actuating pressure on 

the engine performance.

9 . 3 . 2 . 2  Main specification

The layout of the turbocharged engine is shown in Fig. 9 .25 .  The system 

is composed of an engine, a blower and a turbocharger with a waste gate. 

Here, the compressor of the turbocharger is used as a low compression 

stage compressor, and the blower is engine-driven via a fixed ratio 

transmission, and used as a high compression stage. There is no cooler 

in this scheme.

The engine is the Ford Initial design of the ceramic two-stroke opposed 

piston diesel engine. The engine characteristics have been listed in Section

9 . 3 . 2 .  The same Holset turbocharger is used as the baseline 

turbocharger. The turbine is the Holset 4LG -T2/2 . 6 T /F  radial flow turbine. 

The compressor is the Holset 4 LEK-255 radial flow compressor.

The 0. 7 L helical Roots Blower is used as the baseline blower. Its 

performance maps are shown in Fig. 9 .26.  [9. 9J

9 . 3 . 2 .  3 Prediction method
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Also, program CSP3ZTC is used for predicting the performance. The only 

difference is that there are the two inlet manifolds: the low and high

pressure inlet manifolds in the intake system. When the turbocharger stalls, 

the turbine and compressor of the turbocharger both are treated as orifices 

respectively.

The performance maps of the turbocharger and the blower are produced 

from the maps of the baseline turbocharger and blower based on the scaling 

factor method. The blower is of displacement type of compressor. Its 

performance map can be produced only by a mass flow scaling factor.

All computation conditions are identical with those in the previous section. 

Full load Is defined as trapped air-fuel ratio of 22.

9 . 3 . 2 . 4  The performance of supercharged engine with a blower

Before the performance prediction of the Ford turbocharged engine with a 

blower commences, it is beneficial to investigate the performance of the 

supercharged engine with the Roots blower, because it provides a datum for 

the performance comparison. The engine is fitted with two different sized 

blowers, as listed in Table 9 .4 .

A relatively larger Roots blower is used in Match 1. The contours of 

delivery ratio, inlet manifold pressure and thermal efficiency of Matches 1 

and 2 are shown in Figs. 9 .27  to 9 .2 9  and 9. 30 to 9. 32 respectively.

Using a fixed blower transmission ratio of 2. the blower mass flow rate is 

dependent on engine speed, while engine load has little influence on it. 

Therefore, the delivery ratio and inlet manifold pressure in Match 1 are  

higher than those in Match 2. Match 1 has a slightly better efficiency at 

low and mid speeds than Match 2.

9 . 3 . 2 . 5  The performance of turbocharged engine with a blower

The turbocharged scheme with blower. Match 3. is composed of the purely 

turbocharged engine with the waste gate (Match 18 in Section 9 . 3 . 2 )  and 

the Roots blower with a mass flow scaling factor of 0 . 8 . Its main

characteristics are summarized in Table 9. 5.

The contours of thermal efficiency. turbocharger speed. exhaust
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temperature. delivery ratio. inlet manifold pressure. turbocharger 

compressor and blower boost ratios are shown in Figs. 9 .33  to 9 .39 .  

Compared with Figs. 9 .1 6  to 9 .2 0  of the purely turbocharged engine with 

the waste gate, the turbocharged engine with a blower can run over all 

speeds and loads, with greatly extended turbocharger operating range. 

However, the thermal efficiency deteriorates within the common operating 

range. The larger efficiency loss occurs at high speeds because the blower 

absorbs more power from the engine, as shown in Fig. 9 .33 .  The 

maximum torque curve becomes unfavourable, the peak torque decreases 

and shifts to the high speed side, as shown in Fig. 9 .33 .  The explanation 

is as follows, in Fig. 9 .39 .  there exists a region at high loads, low and 

mid speeds where the boost ratio of the blower is lower than 1 . i .e .  the 

pressure after the blower is lower than the pressure before it. The reason 

is that the air flow rate of the blower is dependent on blower speed, if with 

increase of engine load the air flow rate of the turbocharger increases and 

surpasses the intake capacity of the blower, thus the blower virtually 

becomes a restriction in the intake system, as a result, a pressure drop 

occurs at the blower. Therefore, the maximum engine torque at low speeds 

decreases. The boost pressure rises with speed and load. Due to the 

installation of the blower the variation of the delivery ratio over the complete 

operating range is reduced, as shown in Fig. 9 .36 .

Fig. 9. 40 shows the engine operation area superimposed on the compressor 

map. it is seen that the blower augments the air flow rate through the 

intake system, and with increase of engine speed the operating points enter 

the region of low compressor efficiency.

9 .3 . 2 . 6  The effect of blower capacity

Match 4 is introduced together with Match 3 to construct a group for 

analysizing the effect of blower capacity on the performance. The main 

characteristics of Match 4 are summarized in Table 9 .5 .  Match 4 is the 

same as Match 3 except that Match 4 uses a smaller blower having a mass 

flow scaling factor of 0 .6 .  Actually, this capacity of the Roots blower has 

already achieved the margin for acceptable performance at low speeds.

Figs. 9.41 and 9 .42  illustrate the comparisons between output torque and 

specific fuel consumption of Matches 3 and 4 at full load. The contours of 

thermal efficiency, turbocharger speed, exhaust temperature, delivery ratio, 

inlet manifold pressure, compressor and blower boost ratios for Match 4 are
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shown In Figs. 9 .33  to 9 .49 .  Compared with those figures of Match 3. it 

is seen that the turbocharged engine with a larger blower. Match 3. has a 

better performance at low speeds, while the turbocharged engine with a 

smaller blower. Match 4. has a better performance at high speeds. If the 

Roots blower is too small, scavenging at low speeds will be poor. If it is 

too large, then power will be wasted in developing an excessive boost 

pressure at high speeds, where the turbocharger alone could provide 

sufficient boost. For Match 4. the delivery ratio and inlet manifold pressure 

is reduced, and the region, where the blower boost is lower than 1 . is 

enlarged, as shown in Figs. 9 .46 .  9 .47  and 9 .49  respectively.

Fig. 9 .50  shows the engine operation area on the compressor map. Like 

Match 3. as engine speed rises, the operating points in Match 4 enter the 

low efficiency region of the compressor. It is worthwhile noting that the 

engine operating points at high loads, low and mid speeds move towards the 

surge line because the mismatched blower blocks the compressor air flow, 

the air flow through the compressor reduces, but the turbine work is 

maintained due to a hotter exhaust as the total air-fuel ratio gets richer, 

thus the operating points shift to a point of smaller flow rate and higher 

pressure (re fer Fig. 9 .2 1 ) .

9 .3 .2 .  7 The effect of turbocharger capacity

Matches 5 and 6  are introduced together with Match 3 to constitute a group 

for investigating the effect of turbocharger capacity on the performance. 

Matches 3. 5 and 6  use the same blower, but increasingly sized

turbochargers, with same size scaling factor applied to both compressor and 

turbine. Their characteristics are summarized in Table 9. 5.

Figs. 9.51 and 9 .52  show the comparisons between output torque and 

specific fuel consumption of this group at full load. With increase of 

turbocharger size the thermal efficiency at low speeds deteriorates because 

the enlarged turbine area decreases the turbocharger boost ratio, but the 

efficiency at high speeds improves because the larger turbine area reduces 

the power loss for compressing scavenging air. With increase of the 

turbocharger size, the engine torque curve becomes worse, the peak torque 

moves towards high speed side, the maximum torque curve, eventually, 

becomes monotonically increasing curve with engine speed. Match 6  gives 

a poor torque characteristic.
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Figs. 9. 53 to 9. 59 show the contours of thermal efficiency . turbocharger 

speed, exhaust temperature, delivery ratio, exhaust temperature, inlet 

manifold pressure, compressor and blower boost ratio for Match 6 . 

Compared with those contours of Match 3. Match 6  evidently improves the 

thermal efficiency and output torque at high speeds, but both deteriorate at 

low speeds. With increase of the turbocharger size the inlet manifold 

pressure, turbocharger speed, the peak values of the compressor and 

blower boost ratios decrease.

Fig. 9 .60  illustrates the engine operation area on the compressor map. It 

can be observed that compared with Match 3. Match 6  improves the 

matching at high speeds which coincides with the improvement of the engine 

efficiency at high speeds.

9 . 3 . 2 . 8  The effect-of waste gate actuating pressure

Matches 7 and 8  are combinations of Match 3 with decreasing waste gate 

actuating pressures of 2 . 8 .  2 . 5  and 2 . 2  bar respectively, as listed in Table 

9 .5 .

With decrease of waste gate actuating pressure, the flow rate of exhaust 

gases discharged through the waste gate increases, as a result, the 

compressor boost ratio, delivery ratio, hence engine maximum torque and 

power decline, as summarized in Table 9 . 6 . The maximum torque curves 

and the specific fuel consumptions at full load are shown in Figs. 9.61 and 

9.62 .  The maximum torque decreases and the specific fuel consumption 

deteriorates with decrease of waste gate actuating pressure because the 

exhaust energy has not been fully exploited by the turbocharger.

9 .3 .2 .  9 Discussions

(1 ) .  variable ratio transmission of blower

The air mass flow rate of the blower is dependent on the blower speed, 

while the mass flow rate of the compressor Is dependent mainly on the 

available exhaust energy at the turbine inlet. Therefore, the interaction 

between the turbocharger and the blower coupled via a fixed ratio 

transmission is inevitable. Sometimes, the blower boost ratio is less than 

1. i .e .  the mismatch occurs when the exhaust energy Is high but the blower 

speed is too low.
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From Figs. 9. 39 and 9. 49. it can be observed that the disadvantage of the 

fixed ratio transmission is that at high engine speeds the blower speed is too 

high; it provides too high a boost ratio and wastes too much engine power. 

On the contrary, sometimes, at high loads, low and mid engine speeds the 

blower speed is relatively low. the blower cannot intake as much air as the 

compressor supplies; thus a pressure drop at the blower will occur, which 

hinders the Increase of the maximum torque. it is expected that the 

installation of a variable ratio blower transmission can improve the engine 

performance over the complete range of load and speed.

( 2 ) .  switch-off machanism of blower transmission

Incorporated with another air passage between the high and low pressure 

inlet manifolds and an appropriate valve before the blower, an installation of 

a clutch on the blower transmission can cope with the above matching 

problems. When the turbocharger alone can provide sufficient scavenging 

air. the clutch is disengaged and the valve to the blower is cut-off, 

virtually, the system switches to a purely turbocharged scheme. With the 

switch-off mechanism, the system can use a blower with sufficient capacity 

for good scavenging at low engine speeds and loads, and switch off the 

blower and operate the engine only with the turbocharger to avoid wasting 

the engine power in driving the blower at high speeds and loads.

(3 ) .  variable geometry turbocharger

The above analysis of the effect of turbocharger capacity in Section 9. 3. 2. 7 

has the implication that the smaller housing turbocharger is beneficial for 

the performance at low speeds, and the larger housing is good for the 

performance at high speeds. Potentially, a variable geometry system could 

produce the characteristics of both small and large housing turbochargers. 

Therefore, it is expected that incorporated with a correct selected blower, 

the variable geometry turbocharger can Improve the performance over the 

complete load and speed range.

9 . 3 . 2 . 1 0  Summary

( 1 ) .  The installation of the blower placed in series after the turbocharger 

compressor greatly widens the operating region and allows the engine 

running over the complete range of load and speed.
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( 2 ) .  The turbocharged engine with a blower coupled via a fixed ratio 

transmission encounters the difficulty in compatibility of good performance 

both at high and low speeds. The turbocharged engine with the larger 

blower improves scavenging at low speeds, but at high speeds any 

scavenging benefit obtained by fitting the larger blower is marginal, and is 

not offset by its extra power requirements.

( 3 ) .  Three possible approches for further improving the global performance 

are recommended, as above. However, the improvement in the 

performance is realized at the expense of complicated design.

9 .4  MODELLING THE COMPOUND TWO-STROKE ENGINE SYSTEMS

9. 4. 1 MODELLING WALLACE'S DIFFERENTIAL COMPOUND ENGINE

9 .4 .1 .1  Some concepts

The concept of the differential compound engine (DCE) has been developed 

over 20 years in University of Bath. Its layout is shown in Fig. 9 .63 .  It 

is regarded as a means of achieving the following objectives, all particularly 

relevant in the context of traction prime movers.

( 1 ) .  high unit output.

( 2 ) .  high torque backup.

( 3 ) .  fuel economy.

( 4 ) .  dynamic response.

( 5 ) .  low pollution emission.

\

The present experimental unit is equipped with a conventional 6 -cylinder 

four-stroke D! engine for heavy truck and off-highway applications.

The task of this section is to predict the performances of the DCE with a 

two-stroke engine as a substitute for the four-stroke engine to enhance the 

advantage in high unit output and compactness.

9 . 4 . 1 . 2  Major components

9. 4. 1. 2. 1 Engine

The engine is a hypothetical high output two-stroke 3-cylinder Dl engine
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operating at high boost and BMEP conditions. Actually, the engine is an 

enlarged Rootes TS3 opposed piston two-stroke engine with a scaling factor 

of 1.15 and with a rating of 270 KW at 2500 rev/m in. at boost pressure 

ratio 3 /1 .  At this stage, no provision has been made for the incorporation 

of insulating components. The fuel pump is electronically all-speed  

governed, engine control constituting part of the overall control scheme.

9 .4 .  1 . 2 . 2  Fuily floating epicyciic gearbox

The epicyclic gearbox provides the continuously variable link between the 

engine and the output shaft, with the supercharging compressor being driven 

differentially. The engine drives the ring gear of the epicyclic gearbox. 

The planet carrier is geared to the output shaft. The supercharging 

compressor is driven by the sun gear.

Annulus to sun ratio: 3. 074.

Sungear to compressor- step up ratio: 3 .452 .

Planet carrier to output shaft- step up ratio: 1.953.

9 .4 .  1 . 2 . 3  Supercharging compressor

The compressor is the same rotary positive displacement type as that used 

in the DCE with the four-stroke engine. The only difference is the 

compressor with scaling factor 1. 15 to satisfy the scavenging demand. The 

somewhat bulkier compressor has substantial advantages in the DCE with its 

large compressor speed range, associated with the differential drive, and 

the resultant wide mass flow range. This type of compressor has no surge 

and no choke.

9 .4 .  1 . 2 . 4  Turbine

Also the same inward radial flow turbine is used in the present DCE. Its 

robustness, good efficiency and high pressure ratio capability have been 

proven fully. Variable nozzles of swivelling type confer a wide flow range 

and permit continuous adjustment for specific fuel consumption optimization 

and improved transient response.

9. 4. 1. 2. 5 Turbine CVT

The implementation of the turbine CVT is to improve overall efficiency and
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output torque in the mid and low output shaft speed regimes, since the use 

of the turbine CVT allows the turbine to operate at maximum efficiency under 

ail conditions.

9 .4 .  1 . 2 . 6  Bypass valve

This device provides an alternative air path under low output shaft speed 

conditions when compressor speed, hence compressed air flow, is high. 

Under transient conditions the short-circuited air flow through the bypass 

valve can enhance engine fuel-air ratio and hence transient response. In 

the context of two-stroke engines, proper air flow through the bypass valve 

can increase the pressure in the exhaust manifolds, hence the trapped air 

mass in the cylinder under mid and low output shaft speed regime.

9 . 4 . 1 . 3  Control of the CVT

Control of the unit is through four simultaneous "inputs", namely

( 1 ) .  fuei-rack setting, controlling power.

( 2 ) .  turbine-nozzle setting, controlling boost pressure ratio.

( 3 ) .  turbine CVT ratio setting, controlling the CVT ratio to optimize the 

turbine efficiency.

(4 ) .  bypass valve setting, controlling opening of the bypass valve to 

optimize the scavenging air flow through the cylinder.

9 . 4 . 1 . 4  Prediction of steady-state characteristics

9. 4. 1. 4. 1 General

Program CSPS is used for predicting overall performance, because it is a 

quick and easy program suitable for computations over a wide range of 

running conditions. In the simulation, the mass flow rate through the 

cylinders and the charging efficiency are based on the experimental results 

of Rootes TS3 two-stroke engine by Wallace and Wright [4. 151.

9 .4 .  1 . 4 . 2  Operating characteristics without a bypass valve

The steady-state performances are shown In Figs. 9 .6 4  to 9 . 6 8  and in 

Table 9 .7 .  In Figs. 9 .6 9  to 9 .72 .  two limiting torque curves (LTC) are  

illustrated. The torque backup of the upper LTC Is approximately equal to
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that of the DCE with the four-stroke engine [9.101. while in the region under 

the lower LTC the engine operates without exceeding the maximum cylinder 

pressure 150 bar. Table 9 .8  shows the operating characteristics of the rated 

and "stall" conditions of the DCE with the two-stroke engine. Compared with 

those of the DCE with the four-stroke engine, it is evident that the DCE with 

the two-stroke engine requires a wide speed and flow range of the 

compressor imposed by the differential gearing and higher boost ratio for 

scavenging, which is not easily satisfied with current centrifugal compressors 

with higher efficiency levels.

Figs. 9 .6 4  to 9 . 6 8  give the output shaft torque-speed envelopes with

contours of overall thermal efficiency, engine brake mean effective pressure

(B M EP). engine speed, boost pressure ratio and CVT ratio respectively, all

at optimized conditions. Fig. 9 .6 4  shows the remarkably high overall

efficiencies achievable. From Figs. 9 .6 5  and 9 . 6 6  it is obvious that the

very high torque backup is obtained with gradually rising engine BMEP and

decreasing engine speed. Torque multiplications over the output shaft

speed range 2500> N >500 rev/m in. are 3 .7 6  and 1 .82  for the upper
o /s

and the lower LTC respectively. BMEP also increase from 13.08 bar to 

23 .86  and 14.58 bar respectively. Fig. 9 .6 7  gives boost pressure 

contours, this varies from 3 .0 9  under the rated condition to 4 .7 7  and 3 .2 9  

at the maximum torque condition for the upper and lower LTC respectively. 

For the upper LTC. the maximum cylinder pressure at the 'stall' output 

speed rises to 209 bar. Fig. 9. 6 8  shows the overall turbine gear ratio for 

turbine best efficiency.

Close inspection of the performance prediction in Table 9. 7 for output shaft 

speeds of 2500. 2000. 1500. 1000 and 500 rev/m in. . each at 4 or 5 power 

levels, highlights the benefits of compounding, particularly at high output 

shaft speeds when compressor speeds are relatively low.

From Table 9 .7 .  under the rated condition ( N o /s = 2500 rev/m in. and 

Wo/s = 256 kw) . the work split among engine, compressor turbine and 

output shaft may be expressed as

W = W + W -  W -  W 
o /s  e t c  gear loss

(9 .6 )

that is.

202



256 .0  = 2 7 2 .9  + 77 .3  - 7 5 .4  -  W
gear loss

where W = 1 8 . 8  KW (including CVT loss). From this, the
gear loss

estimation of total transmission losses would be safe.

9 .4 .  1 . 4 . 3  Operating characteristics with a bypass valve

It is essential for the scavenging process in a two-stroke engine to retain 

the positive pressure drop between the inlet and exhaust manifolds, because 

in most of the scavenging process both the inlet and exhaust ports are 

open. In the network of air path in the DCE. the cylinder and turbine are 

connected in series. When the air flow through the cylinder increases, the 

pressure drop also increases. When the pressure in the exhaust manifold 

is too low. the trapped pressure In the cylinder also is too low. which 

impairs the scavenging effectiveness. Implementation of a bypass valve, 

i. e. a parallel connection of the cylinder and the bypass valve in the 

network, will be able to improve the scavenging effectiveness, since the 

proper opening of the bypass valve may increase the pressure in the exhaust 

manifold, i .e .  the trapped pressure, at the same time reduce the excessive 

loss of the compressor work, which occurs when the opening of the bypass 

valve is too wide. Fig. 9. 69 shows the relationship between optimum valve 

opening and output shaft speed and torques. The optimization of bypass 

valve openings increases the trapped mass in the cylinder, and incurs only 

a slight increase in the inlet pressure, as shown in Fig. 9 .70 .  The 

improvement of the trapping efficiency, in turn, enhances the increase in 

the output BMEP and efficiency. From Figs. 9. 71 and 9. 72. it is obvious 

that the improvements occur at the mid and low output shaft speed range, 

at which the excessive air flow rate, and hence pressure drop, also occur. 

In these figures, also two LTC are illustrated. The upper LTC is an 

approximate curve of that for the DCE with the four-stroke engine, while the 

lower LTC is the curve without exceeding the maximum cylinder pressure 150 

bar. Torque multiplications are 4 .1 0  and 1 .96  for the upper and lower 

LTC. BMEP increases from 13.08 bar at the rated condition to 2 3 .66  and 

14.58 at the "stall" condition. Boost ratio varies from 3 .0 9  to 4 .9 6  and 

3 .38 .  For the upper LTC. the maximum cylinder pressure reaches 214 bar. 

The computed results are listed in Table 9 .9 .

9 .4 .  1 . 4 . 4  Operating characteristics with a CVT on output shaft

In the DCE, the engine, compressor and output shaft are geared by a
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epicyclic train. With this linkage, the ratio of engine torque to compressor

torque always maintains fixed. When output shaft speed decreases, the

ratio of compressor speed to engine speed increases, which confers the 

OCE an excellent torque backup. Meanwhile, an excessive air mass rate 

flows through the DCE. which wastes extra compressor work. On the other 

hand, for low load running conditions, the engine operates under low boost 

pressure ratio and shows the inefficiency. The DCE without a change speed 

transmission will be confined from further improving the cruising

performance. It is important to make the DCE operate the engine at

optimum boost pressure ratio to achieve the best efficiency and maintain a 

proper ratio of compressor speed to engine speed to avoid excessive air flow 

rate.

The author suggests the following scheme:

The DCE is fitted with a CVT on the output shaft, which allows the 

compressor operate at proper speeds, i .e .  supply optimum scaveging air 

flow rates.

Fig. 9. 73 shows the optimum transmission ratio of the output shaft CVT. 

The corresponding engine and compressor speeds are shown in Figs. 9. 74 

and 9. 75. at which the excessive scavenging air flows are avoided. Fig. 

9. 76 shows the optimum transmission ratios of the turbine CVT which give 

best efficiency. The size of the turbine is reduced to 0 . 8  of that in the 

previous DCE scheme. The scheme with an output shaft CVT manifests itself 

in a better efficiency at the mid and high mid load range, although its 

maximum of overall efficiency decreases slightly owing to the loss due to the 

output shaft CVT. as shown in Fig. 9 .77 .  And It shows a worse efficiency 

only at the low load range, because the gain from the ouput shaft CVT 

cannot compensate the transmission loss due to the CVT. From the 

computed results, as listed in Table 9. 10. it is seen that the output CVT 

greately extends the region of true compounding, i .e .  excess of turbine over 

compressor power. In Figs. 9. 73 to 9. 76. only one LTC is shown. Under 

this LTC. the maximum cylinder pressure is lower than 150 bar. With 

decrease of output speed from 2500 to 500 rpm. torque rises 5.11 times, 

which is the desired constant horsepower characteristic. Boost ratio and 

BMEP maintain at the same levels of 3 .2  and 12.6  bar.

From the above, the ideal DCE should be equipped with an output shaft 

CVT. When the power unit is accelerating, the output shaft CVT is switched
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off to obtain the maximum torque backup, i. e. the best accelerating 

performance. When the unit is cruising, the output shaft CVT is switched 

on to achieve the best efficiency.

9 . 4 . 2  MODELLING THE COMPOUND ENGINE SYSTEM WITH THREE CVTS ON 

OUTPUT. COMPRESSOR AND TURBINE

9 .4 .2 .1  Some concepts

The author puts forward the new concept of the compound engine system 

(CES) with three CVTs. The new compounding scheme would be able to 

satisfy all the requirements of traction prime movers.

The layout of the scheme is simple, as shown in Fig. 9. 78. The engine 

drives the output shaft and the compressor via two CVTs respectively. The 

useful energy of the exhaust gases is recovered by the turbine, and the work 

is extraced by the turbine, in turn, is Imposed on the output shaft through 

another CVT. The compounding scheme has eliminated the epicyciic gear 

train and bypass valve.

The other major components are the same as those in the DCE. The 

engine is the same 3-cyllnder opposed piston two-stroke engine with scaling 

factor 1 .15.  The compressor is the same rotary positive displacement type. 

The turbine also is the same inward radial flow turbine with variable nozzles. 

The similar CVTs are fitted on the output, compressor and turbine shafts.

9 . 4 . 2 . 2  Control of CES with three CVTs

The following five simultaneous input variables are imposed on the unit

( 1 ) .  fuel-rack setting, controlling power.

( 2 ) .  turbine-nozzle setting, controlling boost pressure ratio.

( 3 ) .  output shaft CVT setting.

( 4 ) .  compressor CVT setting.

( 5 ) .  turbine CVT setting.

Similarly, control of the turbine nozzles and CVT settings would be 

implemented via a microprocessor in conjuction with appropriate actuators, 

with overriding function to ensure operation within safe limits of ail 

parameters.
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The control should possess two modes of function:

( 1 ) .  "economy* mode for cruising.

( 2 ) .  "sport" mode for accelerating.

Optimization could presumably be established via microprocessor with stored 

multi-dimensional maps representing optimum control schedules for boost 

and CVT ratio, and actuators operating the turbine nozzles and the CVT's 

line pressures.

9 . 4 . 2 . 3  Steady-state performance

Program CSPSCVT. a modified version based on program CSPS. is used for 

predicting steady-state performances of the CES with three CVTs.

The strategy of optimization is to keep the engine running at fuel-efficient 

boost pressure and fuel-air ratios, say about 3:1 and 25: 1 respectively, at 

which the engine and the compressor display their peak efficiencies.

Firstly, choosing the compressor CVT ratio is to obtain an optimum air flow 

rate for scavenging.

Secondly, adjusting the nozzle angle is to achieve an ideal boost pressure 

ratio.

Thirdly, optimizing the output shaft ratio Is to ensure the engine running at 

the most efficient fuel-air ratio and to keep power balance at given output 

shaft torque and speed.

Finally, selecting the turbine CVT ratio is to obtain the best turbine 

efficiency.

Figs. 9 .79  to 9.81 show the contours of optimum CVT ratios versus output 

shaft speed and torque. The corresponding overall output shaft efficiency 

is shown in Fig. 9 .82 .  which displays a wide area of excellent overall 

efficiency, even marginally better than the DCE scheme with output shaft 

CVT owing to the omission of the epicycilv gearbox at the mid and high load 

regimes and a narrow area of worse efficiency at the low load regimes due 

to CVT's inefficiency. In Figs. 9 .7 9  to 9 .81 .  only one LTC Is shown. Under 

this LTC. the maximum cylinder pressure Is lower than 150 bar. From the 

computed results, listed in Table 9 .11 .  It is seen that the region of true 

compounding is extended. Torque increases from 905 Nm at 2500 rpm to 

4577 Nm at 500 rpm. i .e .  5 time, which is the ideal hyperbolic
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characteristic.

From the above analysis, the CES with three CVTs would be considered as 

a promising scheme integrated with efficiency, flexibility and compactness.

9 .4 .3  DISCUSSIONS OF THE COMPOUND ENGINE SYSTEMS

For a 30-48 ton truck with the engine power from 200 to 350 KW designed 

to start on a gradient of 25 %. the satisfactory output torque characteristics 

should increase approximately 12 times from the rated output speed No/smax 

to output shaft stall. [9 .11] The "gap" between output shaft stall and 

1 /5 ( No/smax) is bridged in vehicle application by an output torque converter 

with ratio 3 .6 . For the truck application, the output torque should have an 

increase of 3 .31  times from No/smax to 1/5 (  N o /sm ax). The torque backup 

of Wallace' DCE with the upper LTC. DCE with CVT on output shaft and CES 

with 3 CVTs all exceeed this required value. Hence, without a gearbox they 

can achieve a satisfactory climbing performance. However, the torque 

backup of DCE with lower LTC is 1 .82  times, i .e .  lower than the desired 

value. Hence it needs a 2-speed gearbox to obtain the requirement of 

driveability.

In the DCE. the CES with three CVTs and other schemes [9.121. [1 .19 ], a 

power turbine extracts useful energy from exhaust gases directly to the 

engine, thus obviating the necessity for the thermodynamically wasteful 

condition of power balance between compressor and turbine in the purely 

turbocharged engine. The variable nozzles fitted in the power turbine 

further enhance improvements in thermal efficiency over all turbine running 

conditions.

For traction purposes, both the DCE and the CES with three CVTs schemes 

display excellent torque-speed characteristics. In the DCE scheme, this is 

achieved by coupling the engine, the compressor and the output shaft 

through the medium of epicyclic gearing. The mechanical connection 

permits the DCE to supply ample compressed air flow. i .e .  high and reliable 

torque backup, at the low output shaft speeds.

In the CES with three CVTs. the ideal torque-speed characteristics are 

realized by linking the engine and the output shaft through a CVT. thus 

avoiding the excessive loading in the engine. The coupling of the engine 

and the compressor via a CVT permits the compressor to optimize its air
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flow rate, thus eliminating excessive air flow and reverse of the compressor. 

The realization of the CES with three CVTs relies on the highly efficient and 

high rated CVT controlled by a microprocessor. The recent developments of 

such CVTs have made the CES with three CVTs promising. [9. 131. [9. 141. 

[9. 15]

The essentials of programs CSPS. CSP3Z, CSPMZ and CSP3ZTC are listed 

in Appendix IV.
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Table 9. 1 CVT Steady Test Results and Calculated Results

N i n 

r pm

Nout 

rpi.j 1

Tor jue 
i n 

l b - i n

S p e e d
ratio

Test Results 
Tord.l Tr.co. 
ou t 1 X

C a l c .  
T o r q . 1 

o u t  1

Resu1t s 
1 T r . c o .  
1 *

1319 2592 122 0.508 16 2 5 . 7 2 3 . 2

1308 2559 '496 0.510 2 1 4 8 4 . 4 183 7 2 . 2

1309 2550 836 0.513 362 8 4 . 3 350 8 1 . 6

1 348 1351 36 0.997 -2o - 7 2 . 3 -22 - 6 1 . 2

130S 1339 2 4 2 0.097 173 7 3 . 7 172 7 1 . 3

1202 1250 730 I . 0 2 0 702 94.3 6 5 0 8 7 . 4

1319 675 53 1 .950 *>4- 1.7 50 4 4 . 1

1333 690 223 1 .930 324 73.5 361 8 2 . 0

1312 605 554 1.910 952 89.7 9 4 8 8 9 . 3



Table 9 .2  Main Characteristics and Perform ance of the Turbocharged Engine
w i t h o u t  Wa s t e  Ga t e

M a t c h  1 M a t c h  2 M a t c h  3 M a t c h  4
c o m p r e s s o r  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
c o m p r e s s o r  s e c t i o n a l  a r e a  f a c t o r 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0
t u r b i n e  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
t u r b i n e  s e c t i o n a l  a r e a  f a c t o r 0 . 8 0 0 . 7 5 0 . 7 0 0 . 6 5
e n g i n e  s p e e d  ( r p m ) 4 0 0 0 . 4 0 0 0 . 4 0 0 0 . 4 0 0 0 .
a i r - f  u e 1 r a t i o 2 2 . 0 2 2 . 0 2 2 . 0 2 2 . 0
b r a k e  p o w e r  ( k w ) 5 9 . 5 6 3 . 2 7 1 . 2 7 4 . 5
H . M . E . P  ( b a r ) 9 . 0 2 9 . 8 5 1 0 . 7 9 1 1 . 3 4
b r a k e  t h e r m a l  e f f i c i e n c y 0 . 4 1 1 0 . 4 1 4 0 . 4 1 9 0 . 4 2 1
i n l e t  m a n i f o l J  p r e s s u r e  ( b a r ) 2 . 1 0 2 . 2 0 2 . 6 7 2 . 9 4
e x h a u s t  m a n i f o l d  p r e s s u r e  ( b a r ) 1 . 8 2 1 . 9 7 2 . 3 1 2 . 5 7
e x h a u s t  i r a n i f o l j  t e m p e r a t u r e  ( k ) 7 9 8 . 8 0 8 . 8 3 2 . 8 4 7 .
a i r  f l o *  r a t e  ( k g / s ) 0 . 1 1 2 0 . 1 1 9 0 . 1 3 4 0 . 1 4 0
d e n s i t y  r a t i o 1 . 6 1 . 6 1 . 8 1 . 9
t u r b o c h a r g e r  s p e e J  ( r p m ) 9 5 2 2 5 . 1 0 0 7 5 2 . 1 1 4 3 0 9 . 1 1 8 5 0 8 .
o e 1 i v e r  y r a t i o 1 . 4 4 1 . 5 3 1 . 7 1 1 . 7 9
c h a r g i n g  e f f i c i e n c y 0 . 9 5 I . 00 1 . 1 2 1 . 1 7

M a t c h  5 M a t c h  6 M a t c h  7 M a t c h  8
c o m p r e s s o r  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
c o m p r e s s o r  s e c t i o n a l  a r e a  f a c t o r 0 . 9 0 0 . 9 0 0 . 9 0 0 . 9 0
t u r b i n e  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
t u r b i n e  s e c t i o n a l  a r e a  f a c t o r 0 . 7 5 0 . 7 0 0 . 6 5 0 . 6 0
e n g i n e  s p e e d  ( r p m ) 4 0 0 0 . 4 0 0 0 . 4 0 0 0 . 4 0 0 0 .
d i  r - f u e l  r a t i o 2 2 . 0 2 2 . 0 2 2 . 0 2 2 . 0
b r a k e  p o w e r  ( k w ) 5 2 .  1 6 9 . 5 7 3 . 1 7 5 . 7
B . M . E . P ( b a r ) 9 . 4 2 1 0 . 5 2 1 1 . 0 8 1 1 . 4 9
b r a k e  t h e r m a l  e f f i c i e n c y 0 . 4 1 3 0 . 4 1 0 0 . 4 1 9 0 . 4 2 0
i n l e t  m a n i f o l d  p r e s s u r e  ( b a r ) 2 . 2 5 2 . 6 1 2 . 8 8 3 . 1 4
e x h a u s t  m a n i f o l d  p r e s s u r e  ( b a r ) 1 . 9 6 2 . 2 7 2 . 5 3 2 . 8 0
e x h a u s t  m a n i f o l d  t e m p e r a t u r e  ( k ) 8 1 0 . 8 3 2 . 8 4 9 . 8 6 7 .
a i r  f l o w  r a t e  ( k g / s ) 0 . 1 1 6 0 . 1 3 0 0 . 1 3 6 0 . 1 3 8
o e n s i t y  r a t i o 1 . 6 1 . 8 1 . 9 2 . 0
t u r b o c h a r g e r  s p e e d  ( r p m ) 1 0 2 3 1 4 . 1 1 5 1 3 3 . 1 2 0 0 9 3 . 1 2 4 1 0 8 .
o e l i v e r y  r a t i o 1 . 4 9 1 . 6 7 1 . 7 4 1 . 7 8
c h a r g i n g  e f f i c i e n c y 0 . 9 0 1 . 0 9 1 . 1 4 1 . 1 8



Table 9 . 2  Main Characteristics and Performance of the Turbocharged Engine
W i t h o u t  Wa s t e  G a t e

M a t c h  9 M a t c h  10 M a t c h  11 M a t c h  12
c o m p r e s s o r  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
c o m p r e s s o r  s e c t i o n a l  a r e a  f a c t o r 0 . 8 0 0 . 8 0 0 . 8 0 0 . 8 0
t u r b i n e  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
t u r b i n e  s e c t i o n a l  a r e a  f a c t o r 0 . 7 0 0 . 6 5 0 . 6 0 0 . 5 5
e n g i n e  s p e e d  ( r p m ) 4 0 0 0 . 4 0 0 0 . 4 0 0 0 . 4 0 0 0 .
a i r - f u e l  r a t i o 2 2 . 0 2 2 . 0 2 2 . 0 2 2 . 0
b r a k e  p o w e r  ( kw) 6 3 . 5 6 9 . 1 7 1 . 7 7 3 . 0
n . M . E . P  ( b a r ) 9 . 6 3 1 0 . 4 8 1 0 . 8 8 11 . 0 7
b r a k e  t h e r m a l  e f f i c i e n c y 0 . 4 1 3 0 . 4 1 6 0 . 4 1 7 0 . 4 1 7
i n l e t  m a n i f o l d  p r e s s u r e  ( ba r * ) 2 . 3 9 2 . 7 3 2 . 9 6 3 . 2 2
e x h a u s t  m a n i f o l d  p r e s s u r e  ( b a r ) 2 . 0 9 2 . 4 0 2 . 6 6 2 . 9 2
e x h a u s t  m a n i f o l J  t e m p e r a t u r e  ( k ) 8 2 7 . 8 4 6 . 8 6 4 . 8 8 8 .
a i r  f l o w  r a t e  ( k g / s ) 0 . 1 1 8 0 . 1 2 8 0 . 1 3 0 0 .  128
d e n s i t y  r a t i o 1 . 7 1 . 8 1 . 9 2 . 0
t u r b o c h o r ^ e r  s p e e d  ( r p m ) 1 1 0 0 4 9 . 1 1 9 2 0 6 . 1 2 4 0 7 7 . 1 2 8 9 4 1  .
d e l i v e r y  r a t i o 1 . 5 0 1 . 6 4 1 . 6 7 1 . 6 5
c h a r g i n g  e f f i c i e n c y 1 . 0 1 1 . 0 9 1 . 1 3 1 . 1 5

M a t c h  13 M a t c h  14 M a t c h  15 M a t c h  16
c o m p r e s s o r  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
c o m p r e s s o r  s e c t i o n a l  a r e a  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
t u r b i n e  s i z e  s c a l i n g  f a c t o r 0 . 7 0 0 . 7 0 0 . 7 0 0 . 7 0
t u r b i n e  s e c t i o n a l  a r e a  f a c t o r 0 . 6 5 0 . 6 0 0 . 5 5 0 . 5 0
e n g i n e  s p e e d  ( r p m ) 4 0 0 0 . 4 0 0 0 . 4 0 0 0  . 4 0 0 0 .
a i r - f u e l  r a t i o 2 2 . 0 2 2 . 0 2 2 . 0 2 2 . 0
b r a k e  p o w e r  ( k w ) 6 2 .  1 6 5 . 7 6 7 . 5 6 8 . 3
1 3 . M. E. P ( b a r ) 9 . 4 1 9 . 9 6 1 0 . 2 4 1 0 . 3 6
b r a k e  t h e r m a l  e f f i c i e n c y 0 . 4 1 0 0 . 4 1 2 0 . 4 1 0 0 . 4 0 9
i n l e t  m a n i f o l d  p r e s s u r e  ( b a r ) 2 . 4 4 2 . 7 2 2 . 9 8 3 . 1 2
e x h a u s t  m a n i f o l d  p r e s s u r e  ( b a r ) 2 . 1 7 2 . 4 4 2 . 7 2 2 . 9 7
e x h a u s t  m a n i f o l d  t e m p e r a t u r e  ( k ) 8 3 9 . 8 5 7 . 8 8 3 . 9 0 7 .
a i r  f l o w  r a t e  ( k g / s ) 0 . 1 1 3 0 . 1 1 8 0 . 1 1 9 0 . 1 1 7
d e n s i t y  r a t i o 1 . 7 1 . 8 1 . 9 1 . 9
t u r b o c h a r g e r  s p e e d  ( r p m ) 1 1 3 7 3 6 . 1 2 1 1 0 4 . 1 2 7 0 4 9 . 1 3 1 4 9 7 .
Je l  i v e r y  r a t i o 1 . 4 6 1 . 5 2 1 . 5 3 1 . 4 9
c h a r g i n g  e f f i c i e n c y 0 . 9 9 1 . 0 5 1 . 0 8 1 . 0 5



Table 9 .3  Characteristics of Turbochargcr with Waste Gate

Match 17 Match 18

compressor sizo scaling factor 0 .55  0 .50

compressor sectional area factor 0. 90 0. 90

turbine sizo scaling factor 0. 55 0. 50

turbino sectional area factor 0. 50 0. 50

Impeller diameter (mm) 4 9 .5  45 .0

maximum turbocharger speed (rpm ) 173000. 190000.

Table 9 .4  Characteristics of the Blower Supercharged Engines

turbocharger

blower mass flow scaling factor

Match 1 Match 2 

none none

1 .0  0 .8



Table 9. 5 Characteristics of tho Turbocharged Engines with a Blower

M

b l o w e r  ma s s  f l o w  s c a l i n g  f a c t o r  

c o m p r e s s o r  s i z e  s c a l i n g  f a c t o r  

c o m p r e s s o r  s e c t i o n a l  a r e a  s c a l i n g  f a c t o r  

t u r b i n e  s i z e  s c a l i n g  f a c t o r  

t u r b i n e  s e c t i o n a l  a r e a  s c a l i n g  f a c t o r  

i m p e l l e r  d i a m e t e r  ( mn)

ma x i mu m t u r b o c h a r g e r  s p e e d  ( 1 0 0 0 0 * r p m )  

w a s t e  g a t e  a c t u a t i n g  p r e s s u r e  ( b a r )

t c h 3 Mat ch4 Mat chS II a t c h 6 Mat  c h7 Ka t c h 8

0 . 8 0 . 6 0 . 8 0 . 0 0 . 8 0 . 8

0 . 5 0 . 5 0 . 6 0 . 7 0 . 5 0 . 5

0 . 9 0 . 9 0 . 9 0 . 9 O.o 0 . 9

0 . 5 0 . 5 0 . 6 0 . 7 0 . 5 0 . 5

0 . 5 0 . 5 0 . 5 5 0 . 6 0 . 5 0 . 5

4 5 . 0 4 5 . 0 5 4 . 0 6 3 . 0 4 5 . 0 4 5 . 0

1 9 . 0 1 9 . 0 1 5 . 8 1 3 . 6 1 9 . 0 1 9 . 0

2 . 8 2 . 0 2 . 8 2 . 8 2 . 5 2 . 2



Table 9. 6 Performance of Matches 3. 7 and 8 at Rated Regimes

e n g i n e  s p e e d
t r a p p e d  a i r - f u e l  r a t i o
e n g i n e  p o  we r  ( K W )
e n g i n e  t o r q u e  (NM)
b r a k e  t h e r m a l  e f f i c i e n c y
w a s t e  g a t e  a c t u a t i n g  p r e s s u r e  ( b a r )
f l o w  r a t e  t h r o u g h  c o m p r e s s o r  ( K g / S )
f l o w  r a t e  t h r o u g h  w a s t e  g a t e  ( K g / S )
t u r b o c h a r g e r  s p e e J  ( r p m )
t u r b o c h a r g e r  p o w e r  (K1J)
i n l e t  m a n i f o l d  p r e s s u r e  ( b a r )
e x h a u s t  m a n i f o l d  p r e s s u r e  ( b a r )
e x h a u s t  t e m p e r a t u r e  ( K )
c o m p r e s s o r  b o o s t  r a t i o
b l o w e r  b o o s t  r a t i o
d e l i v e r y  r a t i o

Mat ch 3 Mat ch 7 Mat ch 8
4 0 0 0 . 4 0 0 0 . 4 0 0 0 .
2 2 . 0 2 2 . 0 2 2 . 0
4 6 . 6 4 2 . 6 3 9 . 9
1 1 1 . 1 0 2 . 9 5 .
0 . 3 2 9 0 . 3 2 1 0 . 3 2 0
2 . 8 2 . 5 2 . 2
0 . 0 9 2 0 . 0 8 9 0 . 0 8 4
0 . 0 3 5 0 . 0 3 3 0 . 0 3 4
1 8 3 5 8 1 . 1 4 9 6 6 4 . 1 3 3 1 2 6 .
1 0 . 6 6 9 . 3 1 7 . 0 4
3 . 1 0 2 . 7 9 2 . 4 9
2 . 9 0 2 . 6 0 2 . 3 2
9 5 5 . 9 4 2 . 9 1 9 .
2 . 0 5 1 . 9 2 1 . 7 3
1 . 5 1 1 . 4 5 1 . 4 4
1 . 1 8 1 . 1 3 1 . 0 7



Table 9. 7 Computed Results of DCE without a Bypass Valve

OKOUTLS TL> 3 I'CC 57 85 5? 29
Oiiuuhcr of cylinders 5.0 bore ( m .m .) 9/1.98 stroke f »,«,) 233.S3
con-rovl l e n u t h  l . • » • • » . )  1 0 9 . SS inlet valve closing ( j«gs ) SS.6 compressor scale factor I . I S
ambient temperature C .leg k ) 29-1.-1 ambient pressure ( bar ) 0.99 cooler effectiveness 0.7916
compression ratio 1/1.00 engine diagram factor 1.0000 turbine flow loss factor 0 . 8 0 0 0

Oengine s p e e d (r .p .m) 2522.00 2938.00 2298.00 2178.00 2021.00 2230.00 2167.00 2002.00
boost pressure ratio 3.088 2.960 2.901 2.052 1.926 3.309 3.093 2.577
trapped air to foci ratio 29.8/11 29.789 22.807 20.236 16.000 26.950 29.161 26.706
J e 1 i very ratio 0.639 0.586 0.565 0.985 0.315 0.799 0.759 0.702
uonifold temp ( deg k) 329.059 319.087 311.500 309.397 378.863 328.987 323.119 316.291
engine power ( k w. ) 272.80 237.72 186.55 192.69 109.39 272.11 227.73 177.20
engine torque ( n.m. )) 1026.39 929.66 767.38 631 .80 998.93 1157.85 996.51 891.95
b.w.e.p ( bar ) 13.0770 11.7852 9.8118 7.9182 6.2931 19.7981 12.7016 10.6981
s.f.c. ( kg/kw hr ) 0.209 0.219 0.227 0.299 0.399 0.202 0.209 0.218
b . t h e r m a 1 e f f . 0.390 1 0.3891 0.3680 0.3355 0.2092 0.9135 0.9091 0.382?
foci / rev / cyl ( y. ) 0.126 0.116 0.102 0.090 0.119 0.137 0.119 0. 107
max cyl pressure ( bar .) 137.60 128.79 109.13 89.39 66.83 199.99 132.52 106.55
exhaust tempcrature(Jeg k ) 893.71 897.52 919.76 978.69 1935.91 823.17 772.79 800.88
nass flow (kg/s) 0.936 0.380 0.287 0.209 0.093 0.980 0.991 0.328
percentage heat to coolant 12.91 13.32 16.01 19.01 21.80 12.29 13.30 15.82

Oconpressor speed (r.p.m.) 5929.2 9796.0 3790.6 2836.0 1652.9 5999.5 5969.6 9225.8
compressor pressure ratio 3.295 3.122 2.512 2.119 1.931 3.550 3.256 2.713
Mass flow (kg/s) 0.936 0.380 0.287 0.209 0.093 0.980 0.991 0.328
compressor power ( kw. ) 75.36 60 | jjO 38.99 29.09 11.15 93.92 79.07 98.92
Compressor torguu (n.n) 132.50 1 19.90 99.36 80.90 69.99 150.01 1*29.26 109.37
delivery temperature (deg k) 966.08 952.12 929.65 911.87 919.26 987.95 961.92 991.25
compressor efficiency 0.695 0.717 0.656 0.601 0.509 0.663 0.706 0.662
by Pass valve area (sn.Ci..) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Oturbinc speed (r.p.m) 97500.0 96250.0 91750.0 9O5O0.0 51500.0 99800.0 91800.0 90000.0
turline pressure ratio 2 . 6 ‘»0 2.657 2.193 1.993 1.877 2.793 2.593 2.2 87
i.i ass flow (kg/s) 0.952 0.399 0.298 0.219 0.109 0.995 0.959 0.339
turbine power (kw) 77.27 66.57 91.82 27.22 29.88 79.97 63.37 93.56
turbine loruue (n.n) 15.53 13.79 9.56 6.92 9.61 16.93 19.97 10.39
inlet temperature (deo k) 893.71 897.52 919.76 978.69 1935.91 823.17 772.79 800.68
turbine nozzle angle 8.859 7.329 7.393 6.288 9.983 9.119 8.725 7.929
turbine efficiency 0.756 0.752 0.799 0.739 0.720 0.759 0.755 0.796
output shaft speed (rpm) 2500.00 2500.00 2500.00 2500.00 2500.00 2000.00 2000.00 2000.00
output shaft power (kw) 255.98 227.21 175.08 136.91 109.65 290.68 201.82 160.50
output shaft torque (n./w) 977.38 867.51 668.96 520.ei 918.69 1198.70 963.21 766.02
output shaft sfc (kg/kw.hr) 0.223 0.229 0.291 0.260 0.380 0.228 0.230 0.291
output thermal efficiency 0.3793 0.3719 0.3959 0.3207 0.2197 0.3658 0.3625 0.396?
engine fuel flow (kg/s) 0.951 0.399 0.705 0.591 0.699 0.915 0.779 0.699
dynamic injection(degree ca) 165.2 169.6 169.2 163.7 161.1 167.3 168.7 170.0
duration of injection 29.5 22.2 19.2 16.8 18.2 22.9 19.9 17.3
lurbi n« gear rat i o 19.00 18.50 16.70 16.20 20.60 22.90 20.^0 20.00
outpot shaft gear ratio 1 .388 1 .383 1.388 1.380 1.388 1.388 1 .388 1.388
charging efficiency

1
0.572 0.592 0.528 0.979 0.315 C .69 1 0.699 0.619



Table 9. 7 Computed Results of DCE without a Bypass Valve

JCy 
k w

(

k)
)

n.m. )) 
( bar ) 

kg/kw hr )

)
.)

k  )

I
OI.'OfJTCS TS3 bCl 
OnunLcr of cylinder* 
toii-rovl length (  p . m . )
ambient t n-i'vr at ur« ( deg k 
toupresii on ratio 

Oonyine speed ( r .p .m) 
boost pressure ratio 
trapped air to fuel ratio 
Jelivery ratio 
uanifold te«»i 
engine power 
engirie torgue 
b.m.e.p
» . f.c . (
b. thermal off. 
fuel / rev / cyl ( y.
wax cyl pressure ( bar 
exhaust tenperature(dey 
oass flow (kg/s)

heat to coolant 
speed (r.p.u.) 
pressure rat i o 
(kg/s)
power ( kw. ) 
torgue (n.«») 

delivery temperature (dey k) 
conpressor efficienc) 
by pass valve area (sti.Cn.) 

Oturbine speed (r.p.m) 
turbine pressure ratio 
mass flow (kg/s) 
turbine power (kw) 
turbine torque (n.n) 
inlet temperature (deo k) 
turbine nozzle a n g le 
turbine e f f i c iency 
output shaft speed (rpm) 
output shaft power (kw) 
output shaft torque (n./m) 
output shaft sfc (kg/kw.hr) 
output thermal efficiency 
engine fuel flow (kg/S) 
dynamic injection(degree ca) 
duration of injection 
t wrb i n« gear ratio 
output shaft gear ratio 
charging efficiency

percent age 
Oconpressor 
couprestor 
mass flow 
compressor 
coupressur

3.0 
109. r#r>

1-1.00

tore ( w .m..) 94.98
inlet valve closing ( degs ) 55.0
ambient pressure ( bar ) 0.99
engine diagram factor 1.0000

33 79 07
stroke ( w .
compressor scale factor 
cooler effectiveness 
turbine flow loss factor

24 
m . ) £33.53 

1.15  
0. /6«7 
0.6000

1901 .00 1730.00 1925.00 1888.00 1650.00 1493.00 1330.00 1769.00
2.335 1.916 3.542 3.241 2.473 2.030 1.756 4.180 (

25.366 19.072 29.002 31.435 32.156 30.128 23.192 30.348
0.638 0.485 0.800 0.924 0.908 0.808 0.570 1.066

308.740 312.792 333.560 327.915 316.270 305.514 321.513 347.852
195.03 95.90 260.53 225.51 140.67 97.24 60.08 297.09
736.20 534.19 1203.94 1132.09 810.77 627.74 439.28 1610.69

9.2209 6.6693 16.3582 14.4367 10.3041 7.8722 5.4599 20.2984 1

0.231 0.284 0.199 0.199 0.214 0.235 0.286 0.195
0.3609 0.2933 0.4200 0.4186 0.3906 0.3548 0.2920 0.4286
0.098 0.087 0. 149 0.132 0.101 0.085 0.072 0.182 '

90.80 65.43 158.52 142.82 102.46 77.97 56.16 186.04
820.63 996.04 767.97 715.05 670.60 671.18 793.16 745.69

0.263 0.140 0.515 0.494 0.336 0.229 0.119 0.649 (
17.83 22.69 12.24 13.13 17.36 21.68 27.72 10.92

3469.9 2235.6 6361.9 6083.0 4288.8 3105.3 1876.5 7902.5
2.432 1.952 3.817 3.505 2.618 2.112 1.778 4.598 (
0.263 0.148 0.515 0.494 0.336 0.229 0.119 0.649

39.53 16.40 110.95 93.55 47.43 26.41 11.16 173.02
95.19 70.04 106.47 146.80 105.56 81.19 56.78 208.98 (

425.36 405.09 507.82 482.37 435.04 409.14 388.30 557.51
0.651 0.562 0.640 0.673 0.663 0.612 0.562 0.605
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

39400.0 38600.0 43800.0 40800.0 34500.0 32100.0 31050.0 45000.0
2.173 1.853 2.838 2.611 2.100 1.864 1.697 3.270
0.272 0.155 0.529 0.506 0.344 0.236 0.123 0.665 (

33.52 13.58 82.71 67.25 33.37 19.20 10.04 111.89
8.12 4.59 18.02 15.73 9.23 5.71 3.09 23.73

820.63 99o.04 767.97 715.85 670.60 671.18 793.16 745.69 1
6.3C7 4.869 8.915 9.115 7.572 6.010 3.843 9.747
0.739 0.725 0.760 0.758 0.744 0.733 0.718 0.768

<2000.00 2000.00 1500.00 1500.00 1500.00 1500.00 1500.00 1000.00
135.50 91.70 216.02 184.77 117.57 84.06 54.62 221.03
646.70 437.65 1374.65 1175.81 748.14 534.94 347.56 2109.77

0.248 0.297 0.240 0.243 0.256 0.272 0.314 0.262 I
0.3367 0.2804 0.3482 0.3429 0.3264 0.3068 0.2654 0.3189
0.559 0.455 0.862 0.749 0.501 0.381 0.286 0.964
171.1 172.4 169.5 170.5 172.7 174.5 176.1 171.2 I
15.5 13.3 21.3 19.2 14.3 11.9 10.0 23.7

19.70 19.30 29.20 27.20 23.00 21.40 20.70 45.00
i1 .338 1 .380 1.388 1.388 1 .388 1.388 1.388 1.388

0.575 0.474 0.713 0.735 0.727 ft 1.7* A CTO A • A «



Table 9. 7 Computed Results of DCE without a Bypass Valve

1
o r o » • t i ; 5  j j i  u 3 8 9 2  5 1 2 4

•

O n u u b c r  o f  c y l  i i i ' l « r s 3 . 0 b o r e ( .........a . )  9 4 . 9 8  s t r o k e (  * . m . )  2 3 3 . 5 3

c o h t o w  l e m i l h  (  « . . . u . ) 1 0 9 . 5 5 i n l e t  v a l v e d o s i n g  ( d  e  * j  s  )  5 5 . 6  c o m p r e s s o r  s c a l e  f a c t o r 1 . 1 5 f

j m L i c n t  t e m p e r a t u r e  (  J e g  k  ) 2 9 4 . 4 u m b i e n t  p r e s s u r e  ( b a r  )  0 . 9 9  c o o l e r  e f f e c t i v e n e s s 0 . 8 3 2 0

c o m p r e s s  i o n  r a t i o 1 4  .  0  0 e n g i n e  d i a g r a m  f a c t o r 1 . 0 0 0 0  t u r b i n e  f l o w l o s s  f a c t o r 0 . 8 0 0 0

O e n g i n e  S p e e d ( r . p . m ) I 5 6 9 . n o 1 4 7 0 . 0 0 1 0 8 7 . 0 0 1 5 3 3 . 0 0 1 3 4 5 . 0 0 1 1 8 4 . 0 0 9 7 7 . 0 0 7 7 8 . 0 0 vr
b o o s t  p r e s s u r e  r a t i o 3 . 4 0 7 3 . 0 1 3 2 . 0 2 1 4 . 7 6 7 3 . 9 2 6 3 . 2 8 9 2 . 8 7 1 2 . 2 0 7

t r a p p e d  a i r  t o  f u e l  r a t i o 3 4 . 6 3 4 3 0 . 0 9 5 3 4 . 3 0 5 3 1 . 1 3 7 3 5 . 7 3 3 4 0 . 2 5 0 4 4 . 3 2 5 4 2 . 8 0 9

( J c 1 i v e r y  r a t i o 1 . 1 2 6 1 . 1 6 4 0 . 9 5 2 1 . 2 5 3 1 . 3 7 5 1 . 4 8 9 1 . 4 5 ? 1 . 4 5 4 f

m a n i f o l d  t e m p  (  d e g  k ) 3 3 1 . 2 3 5 3 2 2 . 6 7 4 3 0 4 . 1 3 7 3 5 9 . 8 4 3 3 4 2 . 1 2 6 3 2 8 . 9 4 7 3 1 7 . 9 5 8 3 0 6 . 1 6 6

e n g i n e  p o w e r  (  k  w .  ) 2 0 1 . 8 7 1 5 3 . 0 3 6 8 . 8 2 3 0 2 . 6 1 2 0 8 . 5 0 1 4 2 . 8 5 9 1 . 8 8 5 5 . 2 1

( e n g i n e  t o r q u e  ( n . m .  ) ) 1 2 2 1 . 5 8 9 8 7 . 0 2 6 1 1 . 4 7 1 8 7 6 . 4 3 1 4 8 7 . 3 1 1 1 5 9 . 2 1 9 0 4 . 3 2 6 8 4 . 6 8 f
b . u . e . p  ( b a r ) 1 5 . 5 5 1 0 1 2 . 5 8 2 3 7 . 6 5 2 2 2 3 . 8 5 8 7 1 8 . 7 3 6 1 1 4 . 5 8 2 4 1 1 . 3 6 7 0 8 . 5 7 6 9

s . f . c  .  (  k g / k w  h r  ) 0 . 1 9 6 0 . 2 0 0 0 . 2 3 5 0 . 1 9 4 0 . 1 9 5 0 . 2 0 0 0 . 2 0 8 0 . 2 2 8

b . t h e r m a l  o f f . 0 . 4 2 4 9 0 . 4 1 7 8 0 . 3 5 4 8 0 . 4 2 9 5 0 . 4 2 8 0 0 . 4 1 7 1 0 . 4 0 0 6 0 . 3 6 5 5 (
f u e l  /  r e v  /  C y l  (  q .  ) 0 .  1 4 0 0 . 1 1 5 0 . 0 8 3 0 . 2 1 3 0 . 1 6 8 0 . 1 3 4 0 . 1 0 9 0 . 0 9 0

w a x  c y l  p r e s s u r e  ( b a r  . ) 1 5 4 . 1 9 1 3 1 . 5 1 8 0 . 8 3 2 0 9 . 8 8 1 7 5 . 9 2 1 4 2 . 1 3 1 1 9 . 3 0 9 1 . 5 3

e x h a u s t  t e o p e r a t u r e ( J e g  k  ) 6 5 2 . 0 0 5 9 3 . 9 0 5 7 2 . 3 9 7 2 7 . 3 9 6 3 0 . 9 3 5 6 0 . 7 0 5 1 2 . 5 3 4 7 3 . 7 0

m a s s  f l o w  ( k g / s ) 0 . 5 2 0 0 . 4 5 0 0 . 1 9 7 0 . 7 2 9 0 . 6 0 8 0 . 5 0 5 0 . 3 6 7 0 . 2 3 3

p e r c e n t a g e  h e a t  t o  c o o l a n t 1 3 . 5 4 1 5 . 4 2 2 5 . 3 9 1 0 . 4 0 1 2 . 7 6 1 5 . 4 8 1 9 . 4 0 2 6 . 5 6

k O c o n p r e s s o r  s p e e d  ( r . p . p . ) 6 3 0 4 . 8 5 6 4 0 . 4 2 7 6 1 . 2 8 8 3 9 . 9 7 4 2 2 . 7 6 2 0 9 . 0 4 6 4 8 . 5 3 1 4 8 . 4

c o m p r e s s o r  p r e s s u r e  r a t i o 3 . 6 9 4 3 . 2 4 4 2 . 0 8 3 5 . 2 6 7 4 . 3 0 0 3 . 5 6 4 3 . 0 2 6 2 . 2 8 8

m a s s  f l o w  ( k g / s ) 0 . 5 2 0 0 . 4 5 0 0 . 1 9 7 0 . 7 2 9 0 . 6 0 8 0 . 5 0 5 0 . 3 6 7 0 . 2 3 3

c o m p r e s s o r  p o w e r  (  k w .  ) 1 0 6 . 1 5 7 5 . 0 9 2 2 . 8 7 2 2 5 . 5 8 1 5 0 . 1 1 9 7 . 8 5 5 6 . 6 3 2 9 . 2 6 (
c o m p r e s s o r  t o r q u e  ( n . m ) 1 5 8 . 4 4 1 2 3 . 2 5 7 9 . 0 4 2 4 3 . 5 8 1 9 3 . 0 4 1 5 0 . 4 3 1 1 6 . 2 9 8 8 . 7 2

d e l i v e r y  t e m p e r a t u r e  ( d a g  k ) 4 9 6 . 7 1 4 5 9 . 1 9 4 1 0 . 2 0 5 9 8 . 8 3 5 3 8 . 4 9 4 8 6 . 7 0 4 4 7 . 9 7 4 1 9 . 2 5

I c o m p r e s s o r  e f f i c i e n c y 0 . 6 5 o 0 . 7 1 3 0 . 5 9 4 0 . 5 7 9 0 . 6 1 9 0 . 6 6 8 0 . 7 1 3 0 . 6 3 0 <
b y  P u s s  v a l v e  a r e a  ( s < i . c u . ) 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

O t u r b i n e  s p e e d  ( r . p . m ) 3 9 0 0 0 . 0 3 6 0 0 0 . 0 3 G 0 0 0 . 0 4 7 0 0 0 . 0 4 1 0 0 0 . 0 3 7 0 0 0 . 0 3 4 0 0 0 . 0 2 8 0 0 0 . 0

t u r b i n e  p r e s s u r e  r a t i o 2 . 7 2 8 2 . 4 4 0 1 . 8 9 9 3 . 7 0 8 3 . 1 1 0 2 . 7 6 2 2 . 5 8 6 2 . 0 2 6 (
m a s s  f l o w  ( k g / s ) 0 . 5 3 1 0 . 4 6 6 0 . 2 0 1 0 . 7 4 5 0 . 6 1 9 0 . 5 1 3 0 . 3 7 2 0 . 2 3 7

t u r b i n e  p o w e r  ( k w ) 6 6  .  6 5 4 7 . u l 1 4 . 1 9 1 3 3 . 6 4 8 3 . 9 8 5 5 . 4 3 3 4 . 0 5 1 5 . 0 9

t u r b i n e  t o r q u e  ( n . L . ) 1 6 . 3 1 1 2 . u 2 4 . 5 1 2 7 . 1 4 1 9 . 5 5 1 4 . 3 0 9 , 5 6 5 . 1 5 <
i n l e t  t e m p e r a t u r e  ( d e o  k ) 6 5 2 . 0 0 5 9 3 . 9 0 5 7 2 . 3 9 7 2 7 . 3 9 6 3 0 . 9 3 5 6 0 . 7 0 5 1 2 . 5 3 4 7 3 . 7 0

t u r b i n e  n o z z l e  a n g l e 8 . 6 9 9 0 .  1 7 6 4 . 6 1 2 9 . 5 0  0 8 . 7 4 2 7 . 6 6 7 5 . 6 7 4 4 . 5 3 6

t u r b i n e  e f f i c i e n c y 0 . 7 5 8 0 . 7 5 2 0 . 7 2 5 0 . 7 7 1 0 . 7 6 3 0 . 7 5 4 0 . 7 4 1 0 . 7 2 7 (
o u t p u t  s h a f t  s p e e d  ( r p u ) 1 0 0 0 . 0 0 1 0 0 0 . 0 0 1 0 0 0 . 0 0 5 0 0 . 0 0 5 0 0 . 0 0 5 0 0 . 0 0 5 0 0 . 0 4 5 0 0 . 0 0

o u t p u t  s h a f t  p o w e r  ( k w ) 1 5 0 .  1 2 1 1 5 . 0 3 5 6 . 1 3 1 9 2 . 6 8 1 3 2 . 0 5 9 3 . 3 3 6 4 . 0 0 3 8 . 2 2

o u t p u t  s h a f t  t o r q u e  ( n . / m ) 1 4 3 2 . 9 0 1 0 9 8 . 0 3 5 3 5 . 7 7 3 6 7 8 . 3 2 2 5 2 0 . 9 3 1 7 8 1 . 8 1 1 2 2 1 . 7 8 7 2 9 . 6 8 t

o u t p u t  s h a f t  s f c  ( k q / k w . h r ) 0 . 2 6 4 0 . 2 6 6 0 . 2 8 8 0 . 3 0 5 0 . 3 0 8 0 . 3 0 6 0 . 2 9 9 0 . 3 3 0

o u t p u t  t h e r m a l  e f f i c i e n c y 0 . 3 1 6 0 0 . 3 1 4 0 0 . 2 3 9 4 0 . 2 7 3 5 0 . 2 7 1 1 0 . 2 7 2 5 0 . 2 7 9 1 0 . 2 5 3 1

e n g i n e  f u e l  f l o w  ( k g / s ) 0 . 6 6 0 0 . 5 0 9 0 . 2 7 0 0 . 9 7 9 0 . 6 7 7 0 . 4 7 6 0 . 3 1 9 0 . 2 1 0 i
d y n a m i c  i n j e c t i o n ( d e g r o e  C o ) 1 7 0 . 6 1 7 1 . 9 1 7 4 . 3 1 7 2 . 4 1 7 2 . 0 1 7 3 . 8 1 7 5 . 2 1 7 6 . 1

d u r a t i o n  o f  i n j e c t i o n 1 7 . 7 1 4 . 6 9 . 9 2 4 . 4 1 8 . 3 1 4 . 2 1 1 . 1 8 . 8
/ ( t u r b  i  n e  g e a r  r a t i o 3 9 . 0 0 3 6 . 0 0 3 0 . 0 0 9 4 . 0 0 8 2 . 0 0 7 4 . 0 0 6 8 . 0 0 5 6 . 0 0 i

o u t p u t  s h a f t  g e a r  r a t i o 1 . 3 0 8 1 . 3 8 0 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8

C h a r g i n g  e f f i c i e n c y 0 . 8 2 5 0 . 3 4 0 n . 7 4 8 0 . 8 7 5 0 . 9 1 3 0 . 9 4 3 0 . 9 3 3 0 . 9 3 3



Table 9 .8  Summary of DCE Rated and 'Stall' Conditions

Eng i ne
( 3 c y l , #  4 . 9 6  1 . #  2 s t r o k e  
opposed  p i s t o n #  
c o m p r e s s i o n  r a t i o  1 4 : 1  ) 
Speed ( r pm)
Boost  p r e s s u r e  r a t i o  
T r a p p e d  a i r - f u e l  r a t i o  
E n g i n e  power  (KW)
BMEP ( b a r )  
s , f  , c • (Ky/KW h)
B r a k e  t h e r m a l  e f f i c i e n c y  
Max,  c y l i n d e r  p r e s s u r e  ( b a r )  
E xh a us t  t e m p e r a t u r e  (K)

Compr essor
( R o t a r y  p o s i t i v e  d i s p .  t y p e )  
Speed ( r p m )
P r e s s u r e  r a t i o  
Comp, power  (KW)
Comp, e f f i c i e n c y  
Mass f l o w  ( K g / M i n )

T u r b i  ne
( R a d i a l  i n f l o w )
Speed ( r p m )
P r e s s u r e  r a t i o  
T u r b i n e  power  (KW)
T u r b i n e  e f f i c i e n c y

O u t p u t  s h a f t  c o n d i t i o n  
O u t p u t  s h a f t  speed  ( r p m)  
O u t p u t  s h a f t  t o r q u e  (fim) 
O u t p u t  s h a f t  power  (KW)
O u t p u t  s h a f t  s . f . c .  (Kg/KW h)  
O u t p u t  s h a f t  e f f i c i e n c y

r a t e d  s t a l l  s t a l l
u p p e r  LTC l o w e r

2 5 2 2 .  1 5 3 3 .  1 1 8 4 .
3 . 0 9  4 . 7 7  3 . 2 9
2 4 . 8  3 1 . 1  4 0 . 3
2 7 2 . 9  3 0 2 . 6  1 4 2 . 9
1 3 . 0 8  2 3 . 8 6  1 4 . 5 8
0 . 2 0 9  0 . 1 9 4  0 . 2 0 0
3 9 . 9  4 2 . 9  4 1 . 7
1 3 7 . 6  2 0 9 . 9  1 4 2 , 1
6 2 1 .  7 2 7 .  5 6 1 .

5 4 2 9 .  8 8 4 0 .  6 2 0 9 .
3 . 3 0  5 . 2 6  3 . 2 9
7 5 . 4  2 2 5 . 6  9 7 . 9
6 9 . 5  5 7 . 9  6 8 . 8
2 6 . 2  4 3 . 7  3 0 . 3

4 7 5 0 0 .  4 7 0 0 0 .  3 7 0 0 0 .
2 . 6 9  3 . 7 1  2 . 7 6
7 7 . 4  1 3 3 . 6  5 5 . 4
7 5 . 6  7 5 . 1  7 5 . 4

2 5 0 0 .  5 0 0 .  5 0 0 .
9 7 7 .  3 6 7 8 .  1 7 8 2 .
2 5 6 . 0  1 9 2 . 7  9 3 . 3
0 . 2 2 3  0 . 3 0 5  0 . 3 0 6
3 7 . 4  2 7 . 4  2 7 . 3



Table 9. 9 Computed Results of DCE with a Bypass Valve

k u  
n  

(

k) 
w. ) 

) )
UOP )
hr )

) 
.)

k )

1
0 P O U K 5  T 6 3 bCC
O n u n l e r  o f  c y l i n d e r s  

c o n - r o J  l e n g t h  (  • • . . i i . )

o  »  b  i e  n  t  t  e i - . r e r o t  u r c  (  J e - j  k )  

couprcjsion r a t i o  
O e n g i n e  s i  e c d ( r . p # t i )  

l - o o $ t  p r e s s u r e  r a t i o  

t r u P i  e J  a i r  t o  # » j e l  r a t i o  

J e t  i  v e r y  r 0 t  i o  

n * i t i  f o '  • )  t  e"»t  (
e n g i n e  p o w e r  (
enjine t o ri;ue ( 
t . u . e .»
s.f.c. ( kg/kw
b.therr.ial c f  f . 
fuel / rev / cyl ( I.
uax cyl i res sure ( bar
exhaust t ei.per a t ore C Jej 
uass flow (kg/s) 
kerccntije heat to coolant 

Oconpreiior speed (r.p. 1.1 .) 
c o m  ressor pressure ratio 
uass flow (k g / s )
Comrressor power ( k w . )
coup ressor t o r • <u e (n .«••) 
Jelivery t o»|.-e rature ( Je-j k) 
conpressor efficiency 
by pass valve area (s-i.cn.) 

Oturtine speed (r.!>.•:») 
tort'in e pressure r a t i o 
mass flow (kg/s) 
turbine power (kw) 
turbine lorque (n .m ) 
inlet temperature (ticvi k) 
turbine no/ile angle 
turbine efficiency 
output shaft speed (rpm) 

shaft power (kw) 
shaft torque (n,/w) 
shaft sfc (ktj/ko.hr) 
thermal efficiency 
fuel flow (k'j/s) 
inject ion(dew ree ca) 

i nj ec t i on

outi ut 
ou t pu t 
output 
o u t p u t  
engine 
dynani c 
Jurat ion of 
turbine gear ratio 
.output shaft gear ratio 

c h u r . j  i n o  e f f i C i o n e  y

3.0 
109.55 
? •»
1^.00 
?52?.oo 

3.C88 
r.n. *01  
".630 

32 'I. 0 5 °

272.an 
1 0 2 6 .  3 / i  

1 3 . 0 7 7 / J  

0 . 2 C  0  
0 . 3 9 9 1  

126 
1 3 7 . 6 0  
093.7 1 

0 . < 1 3 6  

i ? . n i 
5 ' J  2 9 . ?  

3 . 2 ° S  

O . « 3 o  

7 5 . 3 6  

1 3 2 . 5 0  

0 6 6 . 0 3  

0 . 6 9 5  

0.000 
0 7 5 0 0 . C 

2 . 6 9 0  

0 . 0 * 3 ?  

77.27 
1 5 . 5 3  

« 9 J . 7 1  
«.859 
0 . 7 5 6

2500.00 
255.90 
977.38

0.223
0.37O3
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Table 9 .9  Computed Results of DCE with a Bypass Valve

* 1
o f i u u T r s  t c j  n c F 3 3 88  6 5 2 4

»
O n u n f c e r  o f  c y l i n d e r s 3 . 0 b o r e ( n * .  m .  )  9 4 . 9 8  s t r o k e ( m . m . )  2 3 3 .

t o n - r o J  l e n g t h  (  n . n . ) 1 0 O . 5 S i n l e t  v a l v c

c«ou

c J e y s  )  5 5 . 6  c o m p r e s s o r  s c a l e  f a c t o r 1 .  1
j » ' b i c n t  I  e m > e  r  4 t  u  r  c  (  ' l e  j k  ) 2 0 4 . 4 a m b i e n t  p r e s s u r e  ( b a r  )  0 . 9 9  c o o l e r  e f f e c t i v e n e s s 0 .

»
c o u r  r e s s i o n  r a t  < u 1 4 . 0 0 e n g i n e  d i a g r a m  f a c t o r 1 . 0 0 0 0  t u r b i n e  f l o w l o s s  f a c t o r 0 .

O c n j i n e  S | . e e d ( r . p . m ) 1 9 0 1 . 0 0 1 7 3 8 . 3 0 1 9 2 5 . 0 0 1 8 8 8 . 0 0 1 6 5 0 . 0  0 1 4 9 3 . 0 0 1 3 3 0 . 0 0 1 7 6 9 . 0 0
b o o s t  p r e s s u r e  r a t i o 2 . 3 1 5 t  . ° 1 6 3 . 6 3 3 3 . 3 2 1 2 . 4 9 9 2 . 0 3 5 1 . 7 5 6 4 . 3 9 9

1 t r a p p e d  a i r  t o  f u e l  r o t i u 2 5 . 3 0 6 1 4 . 0 7 2 2 4 . 7 6 0 2 7 . 6 5 3 2 9 . 8 0 6 2 9 . 2 2 7 2 3 . 1 9 2 2 3 . 2 0 0
d e l i v e r y  r j t i o 0 . 6 3 * 0 . 4  «  5 0 . 6 9 3 0 . 7 5 3 0 . 7 9 7 0 . 7 7 4 0 . 5 7 0 0 . 6 * 4
m a n i f o l d  t v m ( . (  J e j  k ) 3  J O .  7 / 1 4 3 1 2 . 7 0 - 3 2 9 . 1 5 f t 3 2 5 . 7 1 0 3 1 3 . 0 2 0 3 0 4 . 6 8 8 3 2 1 . 5 1 3 3 3 5 . 2 9 7

1 e n g i n e  r o w e r  (  k  w . ) I ' I S . 0  3 9 5 . 4 0 2 5 7 . 6 5 2 2 2 . 5 4 1 3 8 . 7 5 9 6 . 9 8 6 0 . 0 f t ? 9 7 . 1 9

e n g i n e  t o r q u e  (  n . n . ) ) 7 3 6 . 2 0 5 3 4 . 1 9 1 2 3 3 . 9 4 1 1 3 2 . 0 9 8 1 0 . 7 7 6 2 7 . 7 4 4 3 9 . 2 8 1 6 1 0 . 6 9
b . m . e . i  ( b a r ) 4 . 2 2 0 4 6 . 6 6 4  3 1 6 .  1 7 7 2 1 4 . 2 4 6 9 1 0 . 1 6 3 6 7 . 8 5 0 9 5 . 4 5 9 9 2 0 . 3 0 5 1
s . f . c .  (  k g / k w  t i r ) 0 . 2 3 1 0 . 2 * 4 0 . 2 0 9 0 . 2 0 7 0 . 2 1 9 0 . 2 3 7 0 . 2 H 6 0 . 2 0 9
L * .  t  f » e r n a  1 e  f  f . 0 . 3 6 0 * 1 0 . 2 4 3 3 0 . 3 9 9 4 0 . 4 0 2 0 0 . 3 8 0 2 0 . 3 5 1 3 0 . 2 9 * 0 0 . 3 9 8 5
f u e 1 /  r e v  / C y l  (  g . ) 0 . 0 9 0 0 . 0 8 7 0 .  1 5 5 0 .  1 3 6 0 . 1 0 2 0 . 0 8 6 0 . 0 7 2 0 .  1 9 5

i i  a *  c y l  i r e s j u r *  (  b a r . ) 9 0 .  * 9 6 5 . 4  3 1 5 6 . 5 8 1 3 9 . 6 9 1 0 0 . 3 2 7 7 . 3 2 5 6 .  1 6 1 8 7 . 8 3
* e x h a u s t  t  e m p e  r a t  u  r e ( J e g  k ) 0 2 0 . 6 3 9 9 6 . 0 4 8 3 2 . 8 3 3 0 1 . 6 7 7 1 3 . 9 1 6 8 6 . 8 5 7 9 3 . 1 6 9 4 3 . 1 5

M a s s  f l o w  ( k g / s ) 0 . 2 6 3 9  .  1 4  f* 0 . 4 * 2 0 . 4 1 5 0 . 3 0 1 0 . 2 2 1 0 . 1 1 9 0 . 4 5 5

)
^ e r c e n t a j f  h e a t  t o  c o o l a n t 1 7 . 0 3 2 2 . o 9 1 2 . 5 0 1 3 . 4 4 1 7 . 6 7 21 . 8 2 2 7 . 7 2 1 1 . 4 6

^ c o m p r e s s o r  S |  e e  ) ( r . p . n . ) 3 0 6 4 . 0 2 2 3 5 . 6 6 3 6 1 . 4 6 0 8 3 . 0 4 2 8 f t . * 3 1 0 5 . 3 1 8 7 6 . 5 7 9 0 2 . 5
c o m p r e s s o r  p r e s s u r e  r a t i o 2 . 0 3 2 1 . 9 5 2 3 . 8 1 7 3 . 5 0 5 2 . 6 1 8 2 . 1 1 2 1 . 7 7 8 4 . 5 9 6

) M a s s  f l o -  ( k g / s ) 0 . 2 6 3 0 . 1 4 0 0 . 5 1 5 0  . 4 9 4 0 . 3 3 6 0 . 2 2 9 0 . 1 1 9 0 . 6 4 9
c o i ^ r e s s o r  p o w e r  (  k w . ) 3 0 . 5 3 1 6 . 4 0 1 1 0 . 9 5 9 3 . 5 5 4 7 . 4 3 2 6 . 4 1 1 1 . 1 6 1 7 3 . 0 2
c o m p r e s s o r  t o r - j u e  ( n . m ) 9 5 . 1 4 7 0 . 0 4 1 6 6 . 4 7 1 4 6 . 8 0 1 0 5 . 5 6 8 1 . 1 9 5 6 . 7 8 * 0 8 . 9 8

)
d e l  i v e r y  t e m p e r a t u r e  ( J e - j k ) 4 2 5 . 3 6 4 0 5 . 0 9 5 0 7 . 8 2 4 8 2 . 3 7 4 3 5 . 0 4 4 0 9 . 1 4 3 8 8 . 3 0 5 5 7 . 5 1
c o m p r e s s o r  e f f i c i e n c y 0 . 6 5 1 0 . 5 6 2 0 . 6 4 0 0 . 6 7 3 0 . 6 6 3 0 . 6 1 2 0 . 5 6 2 0 . 6 0 5
b y  P u s s  v a l v e  a r e a  ( s 4 . c n . ) 0 . 0 0 0 0 . 0 0 0 1 . 9 3 5 1 . 6 1 3 0 . 9 6 8 0 . 3 2 3 0 . 0 0 0 3 . 8 7 1

)
O t u r b i n e  s p e e d  ( r . o . m ) 3 4 0 0 0 . 0 3 * 6 0 0 . 0 4 3 * 0 0 . 0 4 0 8 0 0 . 0 3 4 5 0 0 . 0 3 2 1 0 0 . 0 3 1 0 5 0 . 0 4 5 0 0 0 . 0

t u r b i n e  p r e s s u r e  r a t i o 2 . 1 7 3 1 . 3 5 3 3 . 2 0 6 2 . 9 2 8 2 . 2 5 1 1 . 8 8 9 1 . 6 9 7 4  .  0 9 4
m a s s  f l o w  ( k  y  /  S ) 0 . 2 7 ? 0 . 1 5 5 0 . 5 3 0 0 . 5 0 7 0 . 3 4 4 0 . 2 3 6 0 . 1 2 3 0 . 6 6 6

) t u r l i n e  p o w e r  ( k w ) 3 3 . 5 2 1 0 . 5 8 9 7 . 1 2 7 7 . 9 8 3 6 . 8 9 1 9 . 7 7 1 0 . 0 4 1 4 3 . 0 9

t u r b i n e  t o r c u t  ( n . n ) «. 1? 4 . 5 9 2 1 . 1 6 1 8 . 2 4 1 0 . 21 5 . 8 8 3 . 0 9 3 0 . 3 5
i n l e t  t e m p e r a t u r e  ( J e y  k ) ft 2  0  .  6 3 9 9 o .84 8 2 1 . 6 0 7 5 5 . 4 2 6 8 7 . 4 5 6 7 7 . 4 5 7 9 3 . 1 6 * 3 8 . 3 5
t u r b i n e  n o t t l r  a n c l e 6 . 3 0 7 4 . 0 6 4 8 . 1 1 3 8 . 3 3 9 7 . 0 5 1 5 . 9 1 8 3 . 8 4 3 8 . 2 7 3

t u r b i n e  e f f i c i e n c y 0 . 7 3 9 0 . 7 2 5 0 . 7 5 3 0 . 7 5 3 0 . 7 4 0 0 . 7 3 2 0 . 7 1 8 0 . 7 5 1
o u t p u t  s h a f t  s p e e d  ( r i > u ) 2 0 0 0 . 0 0 2 0 0 0 . 0 0 1 5 0 0 . 0 0 1 5 0 0 . 0 0 1 5 0 0 . 0 0 1 5 0 0 . 0 0 1 5 0 0 . 0 0 1 0 0 0 . 0 0

> o u t p u t  s h a f t  p o w e r  ( k w ) 1 3 5 . 5 0 4 1 . 7 0 2 2 9 . 4 4 1 9 4 . 7 7 1 2 0 . 8 5 8 4 . 5 9 5 4 . 6 2 2 5 0 . 0 8
o u t p u t  s h a f t  t o r q u e  ( n , / n ) 6 C 6 . 7 0 4 3 7 . 6 5 1 4 6 0 . 0 3 1 2 3 9 . 4 1 7 6 9 . 0 3 5 3 8 . 3 0 3 4 7 . 5 6 2 3 8 7 . 0 7
o u t p u t  s h a f t  s f c  ( k g / k w . h r ) 0 . 2 4 8 0 . 2 9 7 0 . 2 3 5 0 . 2 3 7 0 . 2 5 2 0 . 2 7 2 0 . 3 1 4 0 . 2 4 9

) o u t p u t  t h e r m a l  e f f i c i e n c y 0 . 3 3 6 7 0 . 2 8 0 4 0 . 3 5 5 7 0 . 3 5 1 8 0 . 3 3 1 2 0 . 3 0 6 4 0 . 2 6 5 4 0 . 3 3 5 4
e n g i n e  f u e l  f l o w  ( k g / s ) 0 . 5 ' . > 9 0 . 4 5 5 0 . 8 9 7 0 . 7 7 0 0 . 5 0 7 0 . 3 8 4 0 . 2 * 6 1 . 0 3 7
d y n a m i c  i n j e c t i o n ( d e j r e e c  a ) 1 7 1 . 1 1 7 2 . 4 1 6 9 . 1 1 7 0 . 2 1 7 2 . 6 1 7 4 . 5 1 7 6 .  1 1 7 0 . 3

)
d u r a t i o n  o f  i n j e c t i o n 1 5 . 5 1 3 . 3 2 2 . 0 1 9 . 6 1 4 . 4 1 2 . 0 1 0 . 0 2 5 . 2
t u r h i n e  g e a r  r a t i o 1 ° .  7 0 1 9 . 3 0 2 9 . 2 0 2 7 . 2 0 2 3 . 0 0 2 1 . 4 0 2 0 . 7 0 4 5 . 0 0
o u t p u t  s h a f t  g e a r  r a t i o 1 . 3 0 f t 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8 1 . 3 8 8 1 . 5 8 8
c h a r g i n g  e f f i c i e n c - 0 . 5 7 5 0 . 4 7 4 0 . 6 0 9 0 . 6 4 4 0 . 6 6 8 0 . 6 5 5 0 . 5 3 2 0 . 6 0 3

5 5

5
a i o s
a o o o



Table 9 .9  Computed Results of DCE with a Bypass Valve

OROOTCS TS3 DCE
Onunher of cylinder* 3.0
con-rod length ( u.m.) 10°.55
ambient t enoerttture ( .ley k ) 29q.1
coupre** i on ratio 14.00

bore ( m.m.) 9q.98
inlet valve closing ( degs ) 55.6
ambient pressure ( bar ) 0.99
engine diagram factor 1.0000

38 107 62 24
stroke ( * . m . )  233.53
compressor scale factor 1.15
cooler effectiveness 0.6265
turbine flow loss factor 0.6000

Ocn./ifte speed(r.p.m) 1569.00 1470.00 1087.00 1533.00 1345.00 1 184.00 977.00 778.00
Lou si pressure ratio 3.5 11 3.107 2.021 4.960 4.062 3.382 2.919 2.228
trapped air to fuel rat»o 27.833 32.938 34.383 28.231 32.234 36.867 40.195 39.221
d e 1 i very rat i o 0. 768 0 . 8 4 0 0.952 0.960 1 .074 1.177 1.132 1.231
nani f o l n  tc*i ( Jej k) 322.6^5 316.223 304.137 352.865 338.754 326.053 310.897 306.917
engine power ( k w. ) 199.67 150.03 6 8 . 8 3 300.07 208 .66 142.84 91 .74 55.25
engine torque ( n.n. )) 1221.58 987.02 611.47 1876.43 1487.31 1159.21 904.32 884.68
b.w.e.p ( l-ar ) 15.381 1 12.4013 7.6535 23.6583 18.7508 14.5813 11 .349H 8.5830
s . f . c . ( ko/kw hr ) 0.208 0.203 0.235 0.197 0. 199 0.203 0.212 0.232
b . t h e r n a 1 e ff. 0 . 4 0 0 2 0.4012 0.3549 0.4226 0.4J98 0.4106 0.3935 0.3590
fuel / rev / cyl ( y. ) 0.107 0.119 0.08 3 0.215 0.171 0. 136 0.111 0.092
uax cyl | ressurc ( l<ar .) 1.19.85 120.G6 80.83 214.26 176.41 142.57 116.71 90.65
exhaust t empe r a t ure (-ley k ) 78 3.65 678.02 572.37 8 0 1 . 0 8 696.28 609.36 550.01 503.36
uass flow (kg/s) 0.379 0.350 0. 197 0.592 0.496 0.414 0.297 0. 199
percentage heat to ooolant 14. I** 16.08 25.3° 10.70 13.10 15.93 20. 1 4 27.23

Oconpressor speed (r.p.i.i.) u 3 9 0 . 8 5646.4 2761.2 8839.9 7422.7 6209.0 4648.5 3148.4
compressor pressure ratio 3.690 3.244 2.033 5.267 4.300 3.564 3.026 2.288
uass flow (kg/s) 0.520 0.450 0. 1?7 0.729 0.606 0.505 0.367 0.233
confressor power ( kw. ) 106.15 75.69 22.87 225.58 150.11 97.85 56.63 29.26
compressor torque (n.n) 1 56.4.1 123.25 79.04 243.58 193.04 150.43 116.29 88.72
delivery t(i»i-eroture (deg k) 496.71 959.19 410.20 59ft.e3 538.49 486.70 447.97 419.25
coupressor efficiency 0.656 0.713 0.594 0.579 0.619 0.668 0.713 0.630
Uy m s s  valve area (sy.cn.) 3.226 2.581 0.645 1.935 1 .935 1.935 1 .935 1 .290

Oturline speed (r.p.n) 3 9 0 G O .o 36000.0 3C000.0 47000.0 41000.0 37000.0 54000.0 28O00.0
turbine pressure ratio 3.263 2.?2o 1 .899 4.219 3.550 3.045 2.714 2.080
uass flow (k g / s ) 0.532 0.466 0.201 0.745 0.61«» 0.513 0.372 0.237
tur! i ne power (kw) 82.62 57.20 14.19 151.83 97.31 62.78 36.86 16.20
turLinc torque (n.n) 20.22 15.17 4.51 30.84 22.65 16.20 10.35 5.52
inlet temperature (dco k) 711.39 629.58 572.37 766.40 668.92 588.31 531.48 491.49
turbine nozzle ongle 7.604 7.229 4.612 8.571 7.886 7.123 5.499 4.462
turbine efficiency 0.746 0.745 0.725 C.768 0.758 0.751 0.740 0.727
output shaft speed (rpia) 1000.00 1 0 0 0 . 0 0 1000.00 500.00 500.00 500.00 500.00 500.00
output shaft power (kw) 164.99 123.96 56.13 209.62 144.46 100.17 66.61 39.25
output shaft turyue (n./u) 1574.83 1183.22 535.76 4001.74 2757.75 1912.40 1271.70 749.32
output shaft sfc (kg/kw.hr) 0.252 0.253 0.288 0.282 0.287 0.290 0.292 0.327
output thermal efficiency 0.3312 0.3297 0.2394 0.2953 0.2906 0.2880 0.2857 0.2550
engine fuel flow (ka/S) 0.693 0.523 0.270 0.987 0.691 0.484 0.324 0.214
dynamic injection(degree Ca) 170.2 171.7 174.3 172.3 171.8 173.6 175.0 1 76.0
duration of injection 18.4 14.° 9.9 24.6 16.6 14.4 11.2 8.9
turl ine gear ratio 39.00 36.00 30.00 94.00 82.00 74.00 68.00 56.00
output shaft gear ratio I .388 1 .383 1 .388 1 .388 1 . 388 1.388 1 .388 1 .388
c h mrginy efficiency C.652 0.694 0.748 0.753 0.800 0.545 0.827 0.865



Table 9 . 1 0  Computed Results of DCE with a Output Shaft CVT

( nar ) 
ko/k„ hr )

)
.)

k )
mass

OltUUTLS T 5 3 DCE 
Oiiumher of cylinders 
con-roo lenQt* (  u . m . )
a m b i e n t  t e n P t f r j t u r o  (  . l e j  k  )  

coupreiiioii raliu 
Oengine *i<e«o(r.p,n) 
boost pr*sSur<» ratio 
t '“appro ,ilr to fuel ratio 
jeIi vrry rat jc 
uanifold te<"n ( ie-j k )

engine power ( k w. )
engine tor.|Uo ( n . :i. ))
b • a  . e . i >
S . f  . c .  I
b . thermal cff. 
fuel / rev / cyl C q .
max cvl pressure ( Lar
exhaust tenpcraturelJej 

t  k ? / s )
neat to coolant 
S|>*e 1 (r.j.u.) 

compressor pressure ratio 
mass flo- tkc/s) 
compressor power C kw. )
compressor torjtic (n.m)
Jelivery t e«ve r at ure (.joj k) 
compressor effici ency 
by pass valve area f 3 T . c s . . . )  

Oturhine sneer (r.p.m) 
turbine pressure r.itio 
uass M o m  (k j/sl 
turbine power O'*! 
turbjne toroue f n . i . '  

inlet ter.iperjturc (ion k) 
turbine nozzle ar.oln 
turbine efficiency 
o u t p u t  s .t .1 f t Speeq ( r ,“V i )  
output s.aft ro><er f kw) 
output shaft tor ,<ie Cr'./ .' 
o u t P u t  s n a f t  s f c  ( k n / v . .  . i i r )  
o u t p u t  t n f  r<r jl efficiency 
engine fuel f l o w  fkn/s)
j y n a r i c  i n j e c t i O n ( •  l e ^ r o c  c a ) 
j u r a t i o n  o f  i n j e c t i o . i  
t u r h i  n c  r  j t  i  O

o u t p u t  s r . a f t  s e a r  r a t i o  
C h a  r g  i n o  e f f i c i e n c y

1

3.0 
109.55 
291.1

11 .0 0
2500.00 

3.160
25.361
0.590

320.030 
261 . 01  
<*39. 73
12.6187

0 . 2 1 0
0.3966
0 .1 2 2

137.0a
*90.72

9.020
12.51

5250.0 
3.203 
O.020

70.60 
128.37
0 0 1 .30

0 . 7 0 0 
0.000 

60000.0
2.817 
0.036 

7<*. 25
12.61 

*90 .72
16.76? 
0.776 

2 5 0 0 . n o  
2 30.2 3 
H7«.0u 

0.23*
9.3093
0 . 9 l 5 
loS.I
23.7

2o.0O
1 .386 
0 . So 7

bore (
inlet valve closing ( 
ambient pressure ( 
engine diagram factor 
2500.00 2500.00

3.160 3.160

m.m. ) 
degs ) 
bar )

90
55
0
1

25.361
0.591

320.030 
261.01 
989.73
12.6187

0 . 2 1 0
0.3966
0 . 1 2 2

137.00
890.72 

0 . 0 2 0
12.51

5250.0 
3.203 
0 . 0 2 0

70 ,o0 
128.37
061.30 

0.701 
0.000

60000.0
2.817
0.036

79.25
12.61

390.72 
lu.762
0.77o

2000.00 
231.57

1 105.20 
0.237
0.3^19
0.915
165.0 
23.7

30.00 
1.109 
0.517

25.361
0.591

320.030 
261.01  
989.73
12.6167

0 . 2 1 0
0.3966
0 .1 2 2

137.00
890.72

0 . 0 2 0
12.51

5250.0
3.203
0 . 0 2 0

70.60 
128.37
061.30 

0.701 
0.000

60000.0
2.817
0.036

79.25
12.61 

*90.72
16.762 
0.776 

1500.00 
232.9 1 

1932. 11 
0.236 
0.3539 
0.915 
165.0 
23.7 

9 0 . 0 0  
0.832 
0.507

2500.00 
3.160

25.361
0.590

320.030 
261.01 
989.73
12.6187 

0 . 2 1 0  
• 0.39u6 

0 .1 2 2  
137.00
890.72 

0 . 0 2 0
12.51

5250.0 
3.203 
0 . 0 2 0

70.60
128.37
061.30 

0.700 
0.000

6 1 0 0 0 . 0
2.817
0.036

79.33
1 2 . 0 1

890.72
1o.762
0.777 

lilOO.O* 
230.32 

2236.68 
0.230 
0.3560 
0.915 
165.0 
23.7 

ol .00 
0.551 
0.507

.98 

.6  

.99 

. 0 0 0 0
2500.00 

3. 1 60
25.361
0.590

320.030
26 1 .0 1
989.73
12.6187

0 . 2 1 0
0.3966
0 . 1 2 2

137.00
890.72 

0.120
12.51

5250.0 
3.203 
0 . 1 2 0

70.60
128.37
161.30 

0.701 
0.000

59500.0
2.817
0.136

79. 19
12.70

890.72
16.7o2 
0.775

5 0 0 . 0 0
235.52

0996.31
0.233
0.3579
0.915
165.0
23.7

1 19.00 
0.277 
0.507

18 96 5b
stroke ( m.
compressor scale factor 
cooler effectiveness 
turbine f l o w  loss factor

2 0 0 0 . 0 0
3.180

25.332
0.586

313.213
205.93
989.73
12.0050
0.217
0 . 3 8 0 0
0 .1 20

129.07
872.62 

0.310
10.19

o o o o .0
3.239
0.300

59.21
128.51
067.23

0.678
0.000

62500.0
2.973
0.353

65.81
10.05

872.62 
12.650
0.777

2500.00
182.70
697.57

0.215
0.3107
0.705
168.9
19.1

25.00
1.765
0.512

2000 . n o
3. IbO 

25.332 
0.586 

313.213 
205.93 
969.73 
12.0050 
0.217 
0.3600 
0 . 1 2 0  

129.07
872.62 

0.310
11.19

n o o . 0
3.239
0.300

59.20 
128.51 
067.23

0.678 
0.000 

61000.0 
2.973 
0.353 

65.86 
9.83

872.62 
12.650
0.777

2 0 0 0 . 0 0
160.10
* 7 8 . 6 1

0.213
0.3033
0.705
168.9

1 9 . 1
32.00
1 . 1 1 2
0.502

21
».) 233.53

1.15 
0.63/5 
0. bOyi

2 0 0 0 . 0 0
3.1*0 

25.332 
0.5*6 

313.213 
205.93 
9*9.7 3 
12.1950
0 . 2 1 7 
0.3810 
0 . 121

129.07
672.62 

0.390
10.19

0100.0 
3.239 
0.300

59.21
128.51
067.23

0.676
0.000

63000.0
2.973
0.353

65.85
9.98

672.62 
12.651
0.777 

1 5 0 0 . 0 0  
1*5.10 

1 179.62 
0 . 2 H  
0.395*
0. 715 
166.9 
19.1 

0 2 . 0 0
1 .059 
0.592 i

%



Table 9. 10 Computet! Results of DCE with a Output Shaft CVT

(

Jr., k) 
k w.  ) 
n . i.i. ) )
( bar ) 

*q/kw hr )

)
.)

k )

1
OflOMlS I S \ OCf.
Onuwher of cyl briers 
COn-rOj Inipth ( i.,.w.)
jr*u I en t temperature ( .ie«j k 
com|irr*$ion ratio

Otfngin* Speed C r .p . m )  
boost pressure ratio 
t rjppej dir to fuel ratio 
JeIi very r.it i c 
nani fold te"c 
engine power 
engine t or juo 
b . i.t . e . p
s . f.c . t
b.thermal oft.
fuel / rev / cyl ( q.
»a« cvl pressure ( bar 
e*hflust t cnpcr jturctod'j 
«nss fIok Ikp/s)
H erc«rtajf heat to coolant

Oconpressor Speed fr.p. 1.1.) 
compressor pressure ratio 
mess flow t kg/s)
Compressor power ( kw . )
compressor torque (n.n) 
Jelivery temperature (<1eg k) 
compressor efficiency 
bv PdSs valve ure a (so.Cu.)

Oturhine spee-J (r.p.*s) 
turPine pressure r.itio 
uass flow (kj/sl 
turf'ine po«er (k«) 
turPine toroue (n.n) 
inlet t eup,»r jf uro (non v ) 
turbine no^/lc .inolf 
turPir0 efficiency 
output snaft Spccf Iron) 
output snaft power (kw) 
output snaft torque (n./,j) 
output shaft sfc (ko/kw.hr) 
output thermal efficiency 
engine fuel flow (kq/s) 
jyn«(r.ic injection(decree ca) 
Juration of injection 
turPi ne ./ar rjtio 
output shaft cear ratio 
charijinq efticienC/

I

3.0
1° 9 .55 
2 ° 4 . 4  
1 '4.00

1 0 0 0 . 0 0  
3.203

2 6 . 5 2 0  
0 . 6 2 2  

? 9 ° . 3 6 l  
1 0 2 .  <>7 
< 4 0 9 . 7 3  

1 2 . ' 1 / 1 5 2  
0. 22f t  
0 . 3 6 6 1  
0 .  1 3 0  

1 2 6 . 1 4  
7 4 5 . 2 9  

0. t90 
2 0 . 7 / 4

2 * 0 9 . 0  
3 . 2 2 7  
0 .  1 9 0  

3 7 . 9 0  
12* . 95 
9 9 1 . 2 1  

0 . 5 9 ?  
0.000 

6 |OgO . 0
3.103 
0. 197 

31 . ? * 
4.6 7 

7 45.29 
6.197 
0.75? 

20oo.no
5 0.6 4

3 19. *5 
0.291 

. 0.2*67 
0. 391 
171.9 

1 2 . 6  
32.00 
3.1.)? 

o . S u o

bore (
inlet valve closing ( 
ambient pressure ( 
engine diagram factor

m.m. ) 
Jegs ) 
bar )

1 0 0 0 . 0 0  
3.203 

26.521 
0.622 

299.361 
102.97 
9*9.73 
12.4052 
0.223 
0.3661 
0.130 

126.19 
745.2° 

0.190
20.79 

?3O0.0
3.227 
0. i°0

37.80 
128.85 
491.21

0.592 
0.00 0 

o 9 5 0 0 . 0 
3.103 
0 . 1°7 

31.2°
4 . o 3 

745.2°
6. 1 °7
0.752 

1500.jo 
*1 .95 

S ? 1 . 4 6  
0.2*6 
0.2913 
0.3° 1 
171.1 

1 2 . 6  
•43.0 0 
2.3*0 
0 • 56 1

l o o o . o o
3.203

26.524
0.622

299.361
102.97
989.73
12.4452

0 . 22*
0.3661
0.130

126.14
745.29 

0.190
20.74 

2*00.0 
3.227 
0. 190 

37.80 
12ft.*5 
491.21 

0.592 
0.000 

64500.0
3.103 
0.197 

31 .25 
4.63

745.29 
6.197 
0.75?

500.00 
84 .62 

1615.39 
0.277 
0.3008 
0. 391 
171.4 

1 2 . 6  
129.00 
0.795 
0.569

500.00 
3.206 

30.749 
0.830 

294.185 
52. 15 

9 « 9 .73 
12.6074 
0.240 
0.3475 
0.139 

124.82
570.53 

0.129
29.00

?150.0
3.219
0.129

29.07
129.04
516.64

0.522
0.000

62500.0
3.094
0.133

15.14
2.31

570.53
• 3.o54

0.711 
2500.04 

26.84 
1*2.49 

0.466 
0.178* 
0.209 
175.1

9.4
25.00 

1 1.639 
0.0*6

94.98 
55.6 
0.99 
1 . 0 0 0 0  

500.00 
3.206 

30.749 
0.ft30 

294.185 
52.15 

989.73 
12.6074 
0.240 
0.3475 
0.139 

124.82
570.53 

0.129
29.00

2150.0 
3.21° 
0 . 12°

29.07 
129.04 
516.64 

0.522 
0.000 

64*00.0
3.094 
0. 133 

14.96 
2.23

570.53 
3.660 
0.703

2 0 0 0 . 0 0  
2*.01

133.70 
0.447

48 U S  136 
stroke ( n.
compressor scale factor 
cooler effectiveness 
turbine flow loss factor

0.1866 
0.209 
175.1 

°.4 
32.00 
9.311 
0 . 6 8 6

500.00
3.206

30.749
0.830

294.1*5
52.15

989.73
12.6074
0.240
0.3475
0.139

124.82
570.53 

0.129
29.00

2150.0 
3.219 
0.129

•29.07
129.04
516.64

0.522
0.000

63000.0
3.094
0.133

15.08
2.29

570.53
3.656 
0.708

1500.00
29.46

1*7.50
0.425
0.1963
0.209
175.1

9.4
42.00
6.983
0 .6 * 6

500.00
3.206

30.749
0.830

294.185
52.15

969.73
12.6074
0.240
0.3475
0.139

124.82
570.53 

0 . 12°
29.00

2150.0 
3.219 
0.129

29.07 
129.04 
516.64 

0.522 
0.000 

64000 .0
3.094
0.133

14.96
2.23

570.53 
3.660 
0.703

1000.00
30.69

292.91
0.40*
0.2044
0.209
175.1

9.4
64.00
4.656
0 . 6 8 6

2 4

it.) 2 33.53
1.15 

0 .V535 
0 . 6 0 0 0

500.00 
3.20o

30.749 
0.830 

294.185 
52.15 

9*9.73 
12.60 74 
0.240 
0.3475 
0. 139 

124.82
570.53 

0 . 129
29.00 

2150.0
3.219
0.129

29.07
129.04
516.64

0.522
0.000

63500.0
3.094
0.133

15.02
2.26

570.53 
3.656 
0.705

500.00 
3 2.0*

612.40
0.390
0.2137
0.209
175.1

9.4
127.00 
2.328 
0 .o*b »



Table 9 . 11  Computed Results of CES with 3 CVTs

III •  HI .

. l e . j

I
o n n n r r s  t s s  d c f
Onunbef of cylinder* 
con-rod length 
ambient temperature 
compression ratio 

Oenyine S p e e d (r . p .m ) 
boost pressure ratio 
trapped air to fuel ratio 
d e 1 i very ratio 
nan i fo1d t emp 
en.jlne power 
engine toryuc 
b . m . e . p
S . f . C  .  (

b.thermal eff. 
fuel / r e v  / c y l  ( y . 
max cyl pressure ( bar 
exhaust t e m p e r j t u r e (dej 
uass flow (kg/s)

heat to coolant 
speed (r.p.m.)

ratio

(
C

( n 
(

kg/kw

•Jej k)
k w. )

M • ) )
l > a r  ) 
h r  )

) 
.) 

k )

percent aye 
Oconp ressor 
compressor pressure 
mass flow (kg/s) 
compressor power 
compressor

)

k)

( kw.
t o r i j u e  ( n  .  m)  

d e l i v e r y  t e m p e r a t u r e  ( . f e y  
c o m p r e s s o r  e f f i c i e n c y  
b y  p a s s  v a l v e  a r e a  ( S ' l . C m . )

Oturbine speed (r.p.n) 
turbine pressure ratio 
mass flow (k.j/s) 
turbine power (kw) 
turbine toroue (n.n) 
inlet temperature ( ley k) 
turbine nozzle anole 
turbine efficiency 
output shaft speed (rpm) 

shaft power (kw) 
shaft tor |ue (n./m) 
shaft sfc (kn/kw.hr) 
thermal efficiency
f u e 1 f 1 ow ( k y / s )
inject ion(dejroe co)

output 
output 
output 
output 
enij i ne 
dynamic
duration of injection 
turbine year ratio 
output shaft gear ratio 
compressor shaft year ratio 
chur.jinp efficiency

3.0
1 0 9 . 5 5
294.4

i n . o o
2500.00 

3. 160
25.360

0 . 5 9 5
320.024 
261 .02 
489.7 3 
12.6192 
0.210 
0.3966 
0.122 

137.03 
890.71 

0. n 2 0  
12.51

5250.0 
3.243
0. a 2 o

70.50 
128.33 
461.2° 

o.7oa 
0.000 

60000.0 
2.816 
0.436 

79.23 
12.61 

8 ° 0 .71 
16•766 
0.776

2500.00
237.12 
905.30 

0.232 
0.3603 
0.9 15 
1 6 5 .  f| 
23.7 

24.00 
1 .000 
2.100 
0.50 7

bore (
inlet valve closing ( 
ambient pressure ( 
engine diagram factor

m.m. ) 
degs )
bar )

2500.00 
3.160

25.360
0.595

320.020
261.02
989.73
12.6192

0 . 2 1 0
0.3966
0 . 1 2 2

137.03
090.71 

0.420
12.51

5250.0 
3.243 
0.420

70.58
123.33
461.29

0.704
0.000

60000.0
2.516
0.436

79.23
12.61

890.71 
16.766
0.776

2 0 0 0 . 0 0  
237.79

1134.90 
0.231 
0.3613 
C.°i 5 
165.4 
23.7 

30.00 
0.30 0 
2 . 1 0 0  
0.54 7

9 4
55

0
1

1

2500.00 
3. 160

25.360
0.595

320.024
261.02
989.73
12.6192

0 . 2 1 0
0.3966
0 .1 22

137.03
890.71 

0.420
12.51

5250.0 
3.243 
0.420

70.58
128.33
461.29

0.704
0.000

60000.0
2.«16
0.436

79.23
12.61

890.71 
16.7 66
0.776

1500.00 
238.47

1517.49 
0.230 
0.3623 
0.915 
165.4 
23.7 

40.00 
0.600 
2 . 1  00 
0.54 7

2500.00 
3.160

25.360 
0.595 

320.024 
261 .0? 
989.73 
12.6192 

0 . 2 1 0  
0.3966 
0 . 1 2 2  

137.03 
090.71 

0.420 
12.51

5250.0 
3.243 
0.420

70.58 
128.33 
461.29 

0.704 
0.000 

61000.0 
2.816 
0.436 

79.32 
12.41 

890.,71 
16.766 
0.777 

1 000.0« 
239.22 

2283.46 
0.229 
0.3635 
0.915 
165.4 
23.7 

61 .00 
0.400 
2 . 1 0 0  
0.547

.98 

. 6  

.99 

.0000
2500.00 

3.160
25.360 
0.595 

320.024 
2 6 1 . 0 2  
989.73 
12.6192 

0 . 2 1 0  
0.3966 
0 .1 2 2  

137.03
890.71 

0.420
12.51

5250.0 
3.243 
0.420

70.58 
128.33 
461.29 

0.704 
0.000 

59500.0 
2.816 
0.436 

79.18 
12.70

890.71 
16.766
0.775 

500.00 
239.76
1577.21

0.229
0.3643
0.915
165.4
23.7

119.00
0 . 2 0 0
2 . 1 0 0
0.547

0 9 6  19
stroke ( ».
compressor scale factor 
cooler effectiveness 
turbine flow loss factor

2 0 0 0 . 0 0
3.180

25.332
0.586

313.210
205.94
989.73
12.4454
0.217
0.3841
0.124

129.07
872.59 

0.340
14.19

4400.0 
3.239 
0.340

59.23
128.49
467.21

0.679
0.000

62500.0
2.973
0.353

65.81
10.05

872.59 
12.655
0.777

2500.00 
183.28 
718.89

0.238 
0.3511 
0.745 
168.9 
19.1 

25.00 
1 .250 
2 . 2 0 0  
0.542

2 0 0 0 . 0 0  
3. 180 

25.332 
0.586 

313.210 
205.94 
989.73 
12.4454 
0.217 
0.3841 
0.124 

129.07
872.59 

0.340
14.19

4400.0 
3.239 
0.340

59.23
128.49
467.21

0.679
0.000

64000.0
2.973
0.353

65.87
9.82

872.59 
12.655
0.777

2 0 0 0 . 0 0  
189.02 
902.14

0.237 
0.3525 
0.745 
168.9 
19.1 

32.00 
1 . 0 0 0  
2.200 
0.542

2 4
m .) 2 5 3.53

1 .15 
0.6375 
0.8000

2 0 0 0 . 0 0  
3. 180 

25.332 
0.586 

313.210
205.94 
989.73 
12.4454 
0.217 
0.3841 
0.124 

129.07
872.59 

0.340
14.19

4400.0 
3.239 
0.340

59.23
128.49
467.21

0.679
0.000

63000.0
2.973
0.553

65.84
9.98

872.59 
12.655
0.777

1500.00 
189.66

1206.94
0.236
0.3537
0.745
168.9
19.1

42.00
0.750
2.200
0.542



Table 9. 11 Computed Results ot CES with 3 CVTs

(

Jej k) 
k w. ) 
n.i.1. ))
( bar ) 

kd/kw hr )

) 
. )  

k )

l
o:;i*utLH u s  o c f
0 n u hi b e r of c V 1 inters 
(.on-rnj leuMth (

t  r i . i p e r . i t  u r c  ( J e g  k 
c o u n r e s * i  o n  r a t  » u

P c  O j  i  n r  s p e e d ( r . n . m )

b o o s t  P r e s s u r e  r a t i o  
t  r j P | . r  j  j l  r  t c  f  u *  1 r a t i o  
j e l i v e r y  r ^ t  i c
u a n i  f o l '1 t  e w ,  > 
engine nowuf 
C b g  i  n r  f  o  r  | Ue  
b . in . e • p
* .  t . c  .  (
b.tHcriaal etf.
fuel / re v / cyl ( d . 
cia* cyl pressure ( bar 
exhaust t eiAper jturc ( Je j 
uass fI on (k c / s )

h e a t  t o  c o o l a n t  
s ^ e e d  ( r . p . m . )  
p r e s s u r e  r a t i o  
l k s / s )

(  k w .  ) 
( n . m )

J e l i v e r y  t e « v e r a t u r e  (Jeg k )  
c o m p r e s s o r  e f f i c i e n c y  
b y  p a s s  v a l v e  . » r e a  ( s o . c m . )

0 1 u  r h  i  n e  s p e e j  ( r . p . m )  

t u r b i n e  p r e s s u r e  r o t  i n  
m a s s  f l o w  (  k j  /  «*) 
t u r b i n e  p o w e r  (kw) 
t u r b i n e  t o r a u e  ( n . u )  
i n l e t  t e u n e r 0 t u r e  ( P o o  k )  
t u r b i n e  n o z z l e  m o l e  
t u r b i n e  e f f i c i e n c y  
o u t p u t  s h a f t  s , e e -1 ( r r » m )
output Shaft power (kw) 
output shaft tor |uo (n./n) 
output shaft sfc (kq/kw.hr) 
output thrr^jl efficiency 
online fuel flow (kn/s) 
Jynarric i n j ec t i on ( J* jree ca) 
juration of irjaction 
turbine wear r.it i o 
output s.iaft ceir ratio 
compressor sli* f t near ratio 
Charging efficiency

percent a jo 
Ocowpressor 
compressor 
mass flow 
compressor power 
compressor torque

3.0 
1°9.5S 
2°4.<l
14.00

2 0 0 0 . 00 
l . l u o

25.332 
0 . 5 8 b  

313.210 
2 0 5 . ° 4  
° 3 9 . 7  3 

l 2 . 4 q S 4  
0 . 2 1 7  

0 . 3 8 0 1  
0.120 

1 2 ^ . 0 7  
H 7 2 . 5 9  

o . 3 a o  
10.19 

<4000 .0 
3 . 2 3 9  
0 . 3 9 0  

5 9 . 2 3  
1 2 « . 0 9  
9 6 7 . 2 1  

0 . 6 7 9  
0.000 

6 00 09.0 
2 . 9 7 3  
0. 3 5 3  

6S.«2 
9 . 5 2  

7 2 . 5 9  
1 2 . 6 5 5  

0 . 7 7 7
iooe.00 
190.32 

1M 16.63 
0.235 
o. 3509 
0.795 
168.0 
1°. I

56.00
0.500
2.200
0 . 5-42

bore (
inlet valve cl using ( 
jmbient pressure ( 
engine diogram factor 
2000.00 1500.00

3. 180

m . m .) 
de-js ) 
bar )

99
55

0
1

25.332
0.586

313.210
205.90
989.73

1 2 . 0 0 5 0
0.217
0.3801
0.124 

129.07 
872.59 

0.300 
14.1° 

0900.0 
3.239 
0.300 

59.23 
120.09
067.21 

0.679 
0.090 

o 1500.0 
2.973 
0.353 

65.71 
10.29 

172.5° 
12.055 
0.776 

500.00 
190.8°

3o 09.30 
0.230 
0.3560 
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Table 9 11 Computed Results of CES with 3 CVTs

1
onontrs TS3 d c e u s 2 7 ?o

ambiont t either at urc ( deg k ) 290.0 ambient pressure ( bar ) 0 .99 cooler effectiveness 0.
compress 1 on ratio 10.00 engine diagram factor 1.0000 turbine flow 1 oss factor 0.

Ocngine speed ( r .p .m) 1000.00 1000.00 1000.00 500.00 500.00 500.00 500.00 500.00
boost pressure ratio 3.203 3.203 3.203 3.206 3.206 3.206 3.206 3.206
trapped air to fuel ratio 26.520 26.520 26.520 31.152 31.152 31.152 31.152 31.152
delivery ratio 0.621 0.621 0.621 0.830 0.830 0.830 0.830 0.830
taani fold temp ( oey k) 299.362 299.J62 299.362 290.182 290.182 290.182 290.182 290.182
engine power ( k w. ) 102.97 102.97 102.97 51 .09 51 .oo 51.09 51 .09 51.09
engine torque ( n.n. )) 989.73 989.73 989.73 989.73 989.73 989.73 9e9.73 909.73
b.m.e.f ( bar ) 12.0051 12.0051 12.00S1 12.0069 12.0069 12.0069 12.0069 12.0969
s.f.c. ( kg/kw hr ) 0.22A 0.228 0.228 0.200 0.200 0.200 0.200 0.200
b.thermal eff. 0.3661 0.3661 0.3661 0.3076 0. 3076 0.3076 0.3076 0.3076
fuel / rev / cyl ( g. ) 0.130 0.130 0.130 0.137 0.137 0.137 0.137 0.137
uax cyl p ressure ( bar .) 126.10 126.10 126.10 120.20 120.20 120.20 120.20 120.20
exhaust tenperoture(de*j k ) 705.30 705.30 705.30 566.58 566.58 566.58 566.58 566.58
Mass flow (kg/s) 0.190 0.190 0.190 0.129 0.129 0.129 0.129 0.129
percentage heat to coolant 20.70 20.7a 20.70 29.05 29.05 29.05 29.05 29.05

Oconpressor speed (r.p.i.) 2800.0 2800.0 2800.0 2150.0 2150.0 2150.0 2150.0 2150.0
compressor p ressure ratio 3.227 3.227 3.227 3.219 3.219 3.219 3.219 3.219
uass flow (kg/s) 0. 190 0.190 0.190 0.129 0.129 0.129 0. 129 0. 129
compressor power ( kw. ) 37.80 37.80 37.80 29.05 29.05 29.05 29.05 29.05
compressor torque (n.m) 128.86 128.86 128.86 128.99 128.99 128.99 128.99 128.99
delivery temperature (Jeg k) 091 .20 091.24 091.20 516.53 516.53 516.53 516.53 516.53
compressor efficiency 0.592 0.592 0.592 0.523 0.523 0.523 0.523 0.523
by pass valve area (si.cn.) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Oturbine speed (r.p.m) 600 0 o.o 60500.0 60500.0 62500.0 60000.0 63000.0 60000.0 63500.0
turbine p ressure ratio 3.103 3.103 3.103 3.090 3.090 3.090 3.090 3.090
mass flow (kg/s) 0. 197 0.19? 0.197 0.133 0.133 0.133 0.133 0. 1 33
turhine power (kw) 31.29 31.26 31.26 15.00 10.82 10.90 10.82 10.88
turtinc tornue (n.n) 0.67 0.63 0.63 2.2 9 2.21 2.26 2.21 2.20
inlet temperature ( leg k) 705.30 705.30 705.30 566.58 566.58 566.58 566.58 566.58
turbine nozzle angle 6. 196 6. 196 6.196 3.601 3.608 3.603 3.608 3.606
turbine e fficiency 0.752 3.752 0.752 0.710 0.701 0.707 0.701 0 . 7 00
output shaft speed (rpi.) 2000.00 1500.00 500.00 2500.00 2000.00 1500.00 1000.00 500.00
output shaft power (kw) 82.60 83.20 80.59 27.50 28.00 28.79 29.35 30. 0«
output shaft torque (n./q) 390.21 529.73 1610.95 100.99 133.63 183.23 280.10 570.31
output shaft sfc (kfl/kw.hr) 0.280 0.282 0.277 0.009 0.001 0.029 0.021 0.011
output thermal efficiency 0.2937 0.2960 0.3007 0. 1856 0.1890 0.1900 0.1981 0.2031
engine fuel flow (kg/s) 0.391 o . 3° 1 0.391 0.206 0.206 0.206 0.206 0.206
dynanic i n j e c t i o n (dejree ca) 171 .0 171.0 171.0 175.3 175.3 175.3 175.3 175.3
Juration of injection 12.6 12.6 12.6 9.3 9.3 9.3 9.3 9.3
turbine gear ratio 32.00 0 3.00 129.00 25.00 32.00 02.00 60.00 127.00
output shaft gear ratio 2.030 1 .509 0.500 5.000 0.000 3.000 2.000 1 .000
coupressor shaft gear ratio 2.800 2.800 2.800 0.300 0.300 0.300 0.300 0.300
Chjrjiny e fficiency 0.560 3.560 0.560 0.686 0.686 0.686 0.686 0.686



C o m p r e s s o r

N e s t e  G e te

I n l e t  M eni f o 1d

E x h a u s t  M an i f o l d

E n g i  ne

Fig 9. 1 Layout of T u rb o ch arged  Engine

t1
i j-——i
* i i i----J--- - i—--

i l  ,
iiii

i ! ! !
iii

1 1 /

iiii
iit•

! A

iitii

V

iti\
7  '/ i
A \

iiit
iiit

n  i
iiii

0 25 0 / 5  i 25 1 / 5  2 25 2 / 5

Fig 9 . 2  S c aveng in g  Effic iency versus Dollve-ry Ratio
with R e fe ren c o  to Cyllndor T rapp ing  Condition



CORRECTED SPEED
M a t c h  4

.. M a t c h  2 _1L

114286

• 4_
I /  I1 } ■

— + - 
100000

71429 .  !

005 0 <
0 025

015 
0.125 0.125

02 0-25 0-3
0-225 0225

CORRECTEO FLOW (KC/S)

a00
sr
p
R
E
S
Su
R
E

R
A
rio

M a t c h  8 ! ,C >
i — CORRECTED
1 : ;
£v .1»714----

£SD

Match 7

M a t c h  6

128^71

M a t c h  5 - 7-1 —

r .  114286

71429
42837 .  . 3 7 1 4 )

0 050 0 . 1 0.15 0 2 0 3
0 025 0 125 0 I 2S 0 . 225 0. 225

CORRECTED FLOW <KC/S'

Fig. 9 . 3  C o m p res so r  M atch in g  for T u rb o c h a rg e d  Eng ine  
without W aste  G ate



o — —•> 30 nxcwwnsD —ic/ioocd

CORRECTED 
FLOW 

<K
C

/S>

-tflooo)

c* c* C* Urf

o
O

o

o

c«

o
N>N>

o

C4



10

' 't/s , ! j

4000300020001000
500 <500 2500 3500

ENC1 ME SPEED <RP«)

Fig. 9 .4  Engino Efficiency Contours For Match 8

-H

• /

0 i :--------1------------- 1------------ 1------------  —<
0 <000 2000 3000 <000

500 <500 2 50C 3500

EMClNf SPEED

Fig. 9 . 5  Turbocharger Speed Contours for Match 8



m
tu

a
.

I 0

- * v - t -- «-•
" K .

4000300020001000
IS00 2500 3500

EMCIHE SPEEO (RPd)

Fig. 9 .6  Exhaust Temperature Contours for Match 8

10

400030002000(000
500 *500  2500 3500

ENCINF SPEED IRPW

9. 7 Boost Pressure Contours for Match 3



i 0

0 . 8
I — h-

4000300020001 00 0
35002500I 500500

EMC1 HE SPEED (RPM)

Fig. 9 .8  Delivery Ratio Contours lor Match 8

A i r - T  u c I  K a t  i o 22. 0

E n g i n e  S p e e J

;_-CORHBCTED SP 

1 ' 1 ! 
.135714---- 1.

t-V-i
128^71

30 0 0 . 7 1 - - ,

- . 1 1 4 2 8 62 25

2000 ^

8t>7 14

71429

428^7 .  • 57145-

Oi 0 15
0 1 25

0 250 05
0 i75 0 2250 025

C0RREC1E0 FLOW <KC/S>

Fig. 9 . 9  Compressor Matching for Match 8



A i r - f u e l  R a t i o  2 6 . 4

—  CORRECTED SP

135714

.128571 .

r. 114286. ,-

100000

8̂ 714
71429-

42857

0 025 0 025 0 l 25 0 125
2 0 25

0 .2 2 5  0 2 2 5

CORRECTED FLOW (KC/S)

A i r - F u e l  R a t i o  3 3 . 0

B00
Sr
p
RE
S
su
R
E

R
A
TI0

!
—  {.--C O R R E C T E D  SP

\1 1 ! i
.1 3 5 7 1 4 --------1-

EED3 25

-*-V-y

2 25 E n g  i n e

4 2857 .  . 57143
0 2 50 05

0 2250 025 0 1250 025

CORRECTEO FLOW (KC /S '

Fi g . 9 . 9  ( cont. )



0 OR

0.06

0 . 34

0 02

00000 I 0000040000 6000020000
1 0 0 0 0 ll0000sooooJOOOO;oooo

CORRECTED SPEED <R£v/mN;

Fig. 9. 10 Turbine Flow Rate for Match 8

l _ 1—

8

7

6

4

1

i0000080Q 004 0 0 0 0 6 00 0C
0 0 0 0  JOOOO SOOOC ’ 0 0 0 0  ‘JOOOO I 10 0 0 0

Fig. 9 . 11  Turbine Efficiency for Match 8



2 SO

2 2 5

2 00

irs

iso

I 25

100

75

25

Match 1«?

500 1500 2500 3500

ENGINE SPEEO <SPH)

Fig. 9. 12 Engine Torque Curves for M atches 8 and 12



c
p
0

I
p
n

E I
P P
c c

>000

9 0 0

8 0 0

C y 1 1 n d » r200

500

500

4 0 0

1 I n i e t  Man i f o l d

3 0 0

200

i 00

- 4 080
6020-20-6 0

CRANK ANClf iOEC'

360

3 00

2 60

— +

220 [unjust ''Ani o 1 d

200
- 3 0 0  - 2 0 0  <00 0  <00

-2 5 0  ISO  -5 0  50

Fig. 9. 13 Pressure Diagrams for Match 8 at Rated Regime



10

4 52 5. 50 5

EXMAUSI PRESSURE ( k . r i

Fig. 9. 14 Waste Gate Characteristics

200

 >_i 50

100

rs

50

25

4 0 0 050002000l 0 0 0
3 50 0I 5 00500

En C I n C SPEED (SPm i

Fig. 9. 15 Engine Torque Curves For Matches 17 and 18



— t—

4 00 03 0 0 020001000
5 0 0  1 5 0 0  2 5 0 0  3 50 0

EMC I HE SPEED (RPM>

Fig. 9. 16 Engine Efficiency Contours for Match 18

e
H
Ep
<

I

> 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0

S 00  15 0 0  2 5 0 0  350 0

ENGINE S>»E£0 (R P fll

Fig. 9. 17 Turbocharger Speed Contours for Match 18



10

**•»«
( '. / '/ / '/ A

4 0 0 030001 0 0 0 2000
S 00 ISOO 2 5 0 0  3500

EMCINE SPEED (RPru

Fig. 9. 18 Exhaust Tem perature Contours for Match 18

11

: 5f*'/ " " ie *  :

300 0I 0 0 0 4 0 0 0
1 5 0 0  2S 00  3 50 0

ENCINE SPEED <RPn>

Fig. 9. 19 Boost Pressure Contours for Match 18



10

3 0 0 0 <00020000 1000

5 0 0  i 5 0 0  2 5 0 0  3500

ENCINE SPEED (RPM>

Fig. 9 .2 0  Delivery Ratio Contours for Match 18

A i r - F u e l  K a t i o  2 2 . 0

Engi nt

1— !— I—; cuprrccTLO
3 .2 5 S o e e J *

- h

3000

2 0 0 0

2 25

1 2 J 0 0 C  

/  Nj . 1 0 0 0 0 0 . _
P0 0 0 O.

. h 0 n 0 o .
0 2 50 OS

0 1 250 0 2 5

CORRECTED FLOW (KC/SI

Fig. 9 . 21  Compressor Matching for Match 18



A > r - I " u e l  R a t i o  2 6 .  9

+ -

3 25
I IHW ! CORHECTLD SrCUi

 •  L j J-
' j \n vj . 190000 J•1C00

3 0 0 0

160000.  I2 25

o'j . 120000  
Nj . 1 0 0 0 0 0 ._
V foooo. i* 
60000. L •

0 0 5 0-250 15
0-2250- I 250 0 7 50 0 2 3

CORRECTEO f lO U  (KC/S)

A i r - F u e l  Ra t i o  33.0

3 - 2 5

3 5

3 .2 5

2 .2 5

2 5

1 25

i 25

------ --------- r ------- ,------ ---------t -------p-------r  —  ------
t i l li l l '1 1 | 1 a 1 *

' ' ' '! • i I I • » !I f  I  I ! • 1 i! • * i • i •
i J  i ! i ; i 
• / i i 1 

! ' 1 ! ! !

| /
Eng i ne i—f.—}.

1 > i
3p: eJ

T V ! « • • r
l \ \  j C0RI.CCTL0 SCLI.I 
A J J___ *_____l . . ___J___A____
1 ' ! . l o ooo oi  
I i 1
\  ' ___|____'____ 1____ I ____

~ n n
i  JL _>

t  — i— i  } r
\ . i Ao o j o . !

1 1 ' 1
• c. r  

,, j c /!
l r o  '

T 1 |
1 • • 1
k_S____ i____!____ ; ____ L____

i ' r ^ - j ” / . 1 6 0 0 0 0 .  !
1 • • 

J  ' I  • 1

- f h m• M  L A *  'O jj  i  L J >/o •/

7 i T * T  1
K  i i : j i
“V  i ooooo ------ 1------- !--------

• . • ! s ' ! ' ____!____^____

____•— o/  
L ^ O/ ' 

, U  * 'V <‘>

<>0f

. 1 2 0 0 OC. j ; j 
, 1OOOOO.
oooo.  ;

►o°-___ 1____ L___ :
0 0 5 0 15 0 2

0 0 25 0 0 25 0 125 0 225

0 -2 5  0
0 225

CORRECtEO FLOW (KC /S l

Fig. 9. 21 (cont. )



0  0 4

0 03

i6000'■ 2000080000
ooooc

f  <■ S*‘  4 - U N '

Fig. 9 .2 2  Turbine Flow Rate for Match 18

4

  *

4

J

2

80000 l10000 1 6 0 0 0 0
60001 30000

ORPEC’fO r,PElC -E./iin.

Fig. 9 . 2 3  Turbine Efficiency for Match 18



E
P
0

I
I '

C

I  I
P P
C 0

8 0 0

6 0 0

5 0 0

4 00

I n l e t  Mani f o l d

3 00

200

100

0
80400-8 0 - 4 0

- 6 0  - 2 0  20  60  

CRANK ANCLE (DEC)

3 60

— I— I n l e t  P « n j f 0 l j3 20

3 0 0

2 80

2 6 0
haust Han i f o l d

200
- 3 0 0

250

200 100 
- 1 50 -SO
CRANK ANCLE (OECl

50

Fig. 9 . 2 4  Prossure Diagrams for Match 18 at Rated Regime



T u r b i  neC o m p re s s o r

Low p r e s s u r e  
i n l e t  m a n i f o l d W a s t e  G a t e

B l o w e r

H i g h  p r e s s u r e  
i n l e t  m a n i f o l d

E x h a u s t  M a n i f o l d

Fig. 9 . 2 5  Layout of Turbocharged Engine with Blower



O
UT

LE
T 

M
IN

US
 

IN
LE

T

POWER
KW

IMUUMT

Q.7L HELICAL ROOTS

8000
RPM

160

6000
MO

4000

120

1002000

0

20 60 80 1000 40

FLOW -  L/S

CORRECTEO TO 100 kP« ABSOLUTE ANO 26 7°C

ABSOLUTE

PRESSURE
kP.

AIR
0.7L HELICAL ROOTS 

TEMPERATURE RISE w . FLOW ANO PRESSURE

80

70

60

50

40

30

20

10

0

160

140

120

8000
6000

RPM

T ~ T
40

T

20 40 60

FLOW -  US

~ T
80

ABSOLUTE
PRESSURE

kP«

1
100

Fig. 9 . 2 6  Perform ance Maps of 0. 7 L Helical Roots Blower



• G

i 4

I 0

8

G

-X.4

2

0
4 0 0 03 0 0 01 00 0 20000

5 0 0  i 5 00  2 5 0 0  3 5 0 0

ENCINE SPEED (RPM)

Fig. 9 . 2 7  Delivery Ratio Contours for Match 1

' i

I 4

■ 2

i 0

c

6

4

0
0 I 000 2000 3 0 0 0

5 0 0  iSOO 2 5 0 0  3 50 0

ENCINE SPEED (RPM)

Fig. 9 . 2 8 Inlot Manifold Prossuro Contours for Match 1



a> E 
w

o
.

4

10

6

6

4

2

0 4 0 0 03 00 0?0001000
3 5 0 02 5 0 0i 500SOO

EHCINE SPEED (Rp«>

Fig. 9 . 2 9  Brake Therm al Efficiency Contours for Match 1

2 0 0 0 30 0 0 4 0 0 0

2 5 0 0 3 5 0 0

E n C I n E SPEED (R Pnt

Fig. 9 . 3 0  Delivery Ratio Contours tor Match 2



16

I 4

10

6

4

2

0 4 0 0 020000 1000
5 0 0  1 5 0 0  2 S 0 0  350 0

EMC I ME SPEED <*PM)

Fig. 9. 31 Inlet Manifold Pressure Contours for Match 2

I 0

B

6

4

O.Afl

2

0
0 1000 2000 4 0 0 03 0 0 0

5 0 0  i5 0 0  2 5 0 0  3 5 0 0

Fig. 9. 32 Brake Thermal Efficiency Contours for Match 2



16

I 4

*2

i 0

8

6

q *-:4

-  y> 

0 •
2

0
3 0 0 0 4 0 0 01000 20000

3 5 0 02 5 0 0l 5 0 0

ENCINE SPEED (RPM)

Fig. 9 . 3 3  Brake Therm al Efficiency Contours for Match 3

• L

4

10

8

6

4

2

St

0
0 I 000 2000 3 00 0

5 0 0  I 5 0 0  2 5 0 0  3 5 0 0

En C I n E s p e e d  (RPMI

Fig. 9 . 3 4  Turbocharger Speed Contours for Match 3



K
I

2000
i 500  2 50 0

ENCINE SPEEO <RP«)

4 0 0 0

350 0

Fig. 9 . 3 5  Exhaust Tem poraturo Contours tor Match 3

— -b

0  » 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0

5 0 0  1 5 0 0  2 5 0 0  3 5 0 0

ENCINE SPEEO (RPM)

Fig. 9 . 3 6  Delivery Ratio Contours for Match 3



I 0

4 0 0 03 0 0 020001000
3S00i 5 00500

ENCINE SPEEO (PPM)

Fig. 9. 37 Inlet Manifold Pressure Contours for Match 3

><■

7

• 0

8

6

✓ *<?
4

2

0
1 000 2000 300 0

5 00 > 5 0 0 350 0

ENCINE SPEEO (RPfi)

Fig. 9 . 3 8  Compressor Boost Ratio Contours for Match 3



0 1000 2000 3000 4000
S00 ISOO 2500 3500

ENCINE SPEEO (N Pfl)

Fig. 9 . 3 9  Blower Boost Ratio Contours for Match 3

3.75

3 5

3-25

2.75

2 5 J - S -

I .75

» 25

i  i  E T I  i  . |  j . __ __r- -̂- -̂- j.-- j--+--1 * 1 * 1 1I [
__

j [ m  I  1 — —
j j / JkV\ i CORHEC

! 1 ; S j TllTx| .noooo

i rTC0 SPCLD
___ • ____ j___ __

1 1 __|- -a H--jiff ------- !—
! « ; II \ • lAoooo. I !
1: | / W u y  j i t __ __ __h r r f c 1 ff/t 160 000.! £ •»/ i/M//a. o |l. • _ J J_U 1 Mill B * o _I__ --' • 7 fljjWlV' ° T° 1 /L A* '‘A i i! o it /N/o </ \ j 1 __-- __I— or'ytivon. inoooo.

1  i
__

! \ ZJ l / f f l* ' '  120000 •
j ^ ’ l 00000 •__ i d inV foooo. 

6oooo. I
0 0 5 0 1 5 0 .2 0-2S

0 025 0 075 0 .  125 0 1 7 5 0 225 0 275

CORRECTEO FLOW (K C /S I

a i r - f u e l  r a t i o  22 . 0  
a i r - f u a l  r a t i o  2 6 . A 
• i r - f u e l  r a t i o  33.0  
a i r - f u a l  r a t i o  AA.O

Fig. 9 . 4 0  Engine Operation Area Superimposed
on Com pressor Map for Match 3



It

I 25

150

100

50

25

0 4 0 0 03 0 0 02000
350 0250015005 00

EMC I n £ SPEED (RPMI

Fig. 9. 41 Maximum Engine Torque Curves 
for M atches 3 and 4

260

2 50

2 40

2 30

220

210

> 20

Match 4

2000 3 0 0 0

3 5 0 0

ENGINE SPEED tRPMI

Fig 9 . 4 2  Specific Fuel Consum ptions at Full Load 
for M atches 3 and 4



■ 0

4 0 0 03 00 020001000
3 50 02 5 0 0i 5005 0 0

EMC I HE SPEEO <«PM)

Fig. 9 . 4 3  Brake Therm al Efficiency Contours for Match 4

■ 0

4 0 0 030002000• 000
3 5 0 02 5 0 05 0 0 i 500

EMCIME SPEED (R P n i

Fig. 9 . 4 4  Turbocharger Speed Contours for Match 4



cd 
XL w 

a

*

<

<?

to

8

6

600  k

4

2

0 4 0 0 03 0 0 0200010000
3 5 0 0i 5 00 250 05 0 0

EMC I HE SPEEO (RPfO

Fig. 9 . 4 5  Exhaust Tem perature Contours for Match 4

• G

1 4

' 2

10

8

20
6

4

2

0
3 0 0 00 1000

S 00  I 5 00  2 5 0 0  3 S 0 0

E m c 1 me SPEEO IRPM)

Fig. 9. 46 Delivery Ratio Contours for Match 4



-.o

1 . 2 0 9

0 1 0 0 0  2 0 0 0  3 00 0  4 0 0 0

5 0 0  i 5 00  2 5 0 0  3 5 0 0

EMC I ME SPEED (R Pm

Fig. 9. 47 Inlet Manifold Pressure Contours for Match 4

1 . 2 0

0 1 0 0 0  2 0 0 0  3 0 0 0  4 00 0

500 i 5 00  250C  3500

ENCIME SPEEO

Fig. 9. 48 Compressor Boost Ratio Contours for Match 4



12

'0

8

6

■ +~I-,4

2

0 4 0 0 03 0 0 020001000
350 000■ 5 005 0 0

ENCIME SPEEO (RPrt)

Fig. 9. 49 Blower Boost Ratio Contours for Match 4

C0Rf:CCTL0
E

2 • F5

I 1 0 0 0 0

JV; .lajooc 
. i ooooo. 
poo o ' ) .  ;

. 60000. !
0 250 0 5

0  2250 0 2 5

CORRECTED F lO U  C K C /S I

A •  i r - f u « 1 r a t i o 22.0
■ •  i r  -  f  u  e  1 r a t i o 26.0
• • i r - fue 1 r a t i o 3 3 . 0

▼ a i r -  f o e  1 r a t i o q a . O

Fig. 9 . 5 0  Engine Operation Aroa Superimposed
on Compressor Map for Match 4



Match J

Match 6

Match

— h-H-

0 i-------------1---------- --i-------------1-------------1
0 1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0

S00 150 0  2 5 0 0  3 5 0 0

ENCINE SPEEO (R Pm

Fig. 9 . 51  Maximum Engine Torque Curves 
for M atches 3 . 5 and 6

p
E
CIr
lc

u
E
0

c
0N
suM
P
t
I
0N
c
c/
KW
«
R

Match 5

Match S.

Match 6

40002000 3000

>5 0 0  2501

E N C IN f SPEEO 'R P n

Fig 9 . 5 2  Specific Fuol Consum ptions at Full Load 
for M atches 3. 5 and 6



ic

4 0 0 03 0 0 020001000
3 5 0 02 5 0 0l 500500

ENCIME SPEEO (R P fll

Fig. 9. 53 Brake Therm al Efficiency Contours for Match 6

I 4

i 2

tO

6

4

2 t a l l  - t

0
4 0 0 0300 020000 1000

5 0 0  1 5 0 0  2 5 0 0  3500

ENCIME SPEEO <RPm

Fig. 9. 54 Turbocharger Speed Contours for Match 6



4

/

•0

«

6

4

2

0 4 0 0 03 0 0 02000>000
3 5 0 0i S00soo

ENCINE SPEEO iPPMi

Fig. 9. 55 Delivery Ratio Contours for Match 6

700 K

4 00 03 0 0 020000 000

I SOOsoo

EMCINE SPEEO (P P m

Fig. 9. 56 Exhaust Tem perature Contours for Match 6



o *

4 0 0 030 0 020001000

soo ISOO 2 5 0 0

ENCIME SPEEO <*P « )

350 0

Fig. 9. 57 Inlet M anifold Pressure Contours for Match 6

2000
iSOO 2 5 0 0

ENCINE SPEEO IRPM1

4 0 0 0

3500

Fig. 9. 58 Com pressor Boost Ratio Contours for Match 6



• 0

H

t

4

0
400 03 00 00 l 000 2000

SOO i SOO 2 5 0 0  3 50 0

E N C IN E  SPEEO <RP«)

Fig. 9. 59 Blower Boost Ratio Contours for Match 6

325

3 5

3 .2 5

2 - 2 5

2 5

2 25

I . 25

I 5

i 25

. . . . . .  .
• ! • I {

1 ) 1 ' 1 1
*■ • 1i i I i i

i  i i  1 i
• 11 1-L ' i

engine speed (rp») J
' 1 1 1 1 1 ' 1 

i\__I--CORRECTED SPESD
— i — |— • r  t h

L anorti L' S K  1 !Y iU^ .111714---- —
• rs. 1 •

! ! X i - *1_i X  K
T T  i i
i ____L - 4 —— 1— ^ f — r /x tN /x

i ! ! r ^ J
IJk .128371.
I|_ i !------ 1 __. 3000  ̂ —  y , -------t r — 1

! i 1 / ' /  h
P~ T

J i  Ik ! i
, "  .  1 1 4 2 8 6 . [~ “

! 2000. A
! ' V-4 J

/  * 
. o;

\~~~J y ;

; /o Y ^

’̂ l.io oo o o . +
• i '

k  !
J 1l

A01
r—  J  ▼

/  i n .

>. 42837. • 571

r \  i i
\  . 83714. ;

1

!'• i
« •  !  j  :

0 0 0 5 0 . » 0 \ 5 0  2 0 25 (

0  0 2 5 0  0 2 5 0 l 25 0 l 25 0 - 2 2 5 0  2 25

C 0 R R E C IE 0  FLOW (K C /S )

  a i r - f u e l  r a t i o  22 .0
  • i r - f o e l  r i t  io 2 6 . a
  • i r - f u «  I ra t  i o. 35.0
—  » i r - f g « l  r a t i o  aa.o

Fig. 9 . 6 0  Engine Operation Aroa Superlmposod
on Compressor Map for Match 6



"
O
J
C
w
x
o
n
 

r* 
rnc

 
m

2 00

150

• 25

100

25

25

-H

H a t c h  3

2000 3 0 0 0 4 0 0 0

5 0 0 i 5 0 0 2 5 0 0 3 5 0 0

ENCI NE SPEEO (RPM)

Fig. 9 .6 1  M axim um  Eng ine  T orque  Curves  
for M atch es  3 . 7 and 8

2 6 0

2 5 0

2 4 0

2 3 0

220

210

M a t c h  3
-H

i 90

i 8 0

160
2000 3000

I 50 0 25 0 0 3500

ENCINE SPEED (RPm

Fig. 9. 62  Spec if ic  Fuel C o n su m p tio ns  at Full Load  
for M atch es  3 . 7 and 8



M P

V N ‘
&V

C V T

ECG TSS

TC

CC

BV : b y p a s s  v a l v e TC : t o r q u e t u r b i n e
b s  : b o o s t  s en s o r vn  : v a r i a b l e  t u r b i n e  n o z z l e s
C : c o m p r e s s o r T S S : o u t p u t t o r g u e ^ s p e e J  s e n s o r
c c  : c h a r g e  c o o l e r No : e n g  i ne s p e e d
E : e n g i n e N o s : o u t p u t s h a f t  s p e e d
E C G : e p i c y c l i c  g e a r  t r a i n N p s : p i a n e  t c a r r i e r  s p e e d
FP : f u e l  pump
C V T : c o n t i n u o u s l y  v a r i a b l e t ransm i ss i on

I NPUT S I GN AL S ;
1 .  t o r q u e  t r a n s d u c e r
2 .  s p e e d  t r a n s c u c e r
3 .  p r e s s u r e  t r a n s d u c e r

OUTPUT S I G N A L S :
A.  b y p a s s  v a l v e  c o n t r o l
5 .  CVT c o n t r o l
6 .  n o z z l e  c o n t r o l
7 .  f u e l  c o n t r o l

Fig. 9 .6 3 Layout of DCE



o
u

ti
u

l 
s

^
d

^
t 

lo
ra

u
e

 
(l

lm
)

2

\ o

0 25

CONTOUR HEICHT ‘ l O * 3

o u t p u t  s h j f t  s p e e J  ( r p « )

Fig. 9 . 6 4  Output Shaft Brake  T h e rm a l  Effic iency  
of D C E without Bypass Valvo

u p p e r  LTC

-Q-.,

X AXIS • I 0 3
T A X I S  •  10 3 C o n t o u r  u n i t :  b«» r

o u t p u t  s h j f t  n i c e  j  ( r » » « . )

Fig. 9. 65  E n g in e  B rake  M ean  Effective Pressure  
of DCE without Bypass Valve



o
u

tp
u

t 
s

h
u

ft
 

lo
ro

u
e

 
(f

.m
)

u p p e r  L T C

o 25

3 CON I OUR HE I CHI  * 1 0

c o n t o u r  u n i t :  r p »

o u t p u t  s h r t t t  s p c e  J  ( r p m )

Fig. 9 . 6 6  Eng ine  Speed
of DCE without Bypass Valve

5

u p p e r  LTC

l o w e r  LTC

□
0 25

X A X I S  •  I 0  3 
r  A X I S  * I 0 3

o u t p u t  i h j l  t  s u c e d  ( f |  « i )

Fig . 9 . 6 7  Boost P rossure  Ratio
of DCE without Bypass Valve



0 2 5

»

x ax is  0 0 :}
T A X I S  O 0 J

o u t p u t  s h a f t  s i > e e J  ( r» " )

Fig. 9. 68 Tu rb in e  G e a r  Ratio
of DCE without Bypass Valve

2

0

A AXIS •IO3
f  „ K} S .  , 0  3 c o n t o u r  u i . l t :  C. .

o u t p u t  » h  ,» f  I  - J i e n j  ( r , . * ]

Fig. 9. 69 Optimum Bypass Valve Opening
of DCE



l o w e r  LTC

«

3O

3

o u t p u t  i h u f  t s p e e J  ( f » . n )

Fig. 9. 70 Boost Pressure Ratio
of DCE with Bypass Valve

€

O
u p p e r  LTC

l o w e r  LTC

VI

3
2O

X A X I S  M O *  C o n t o u r  u n i t :  l a r
T A X I S  •  \ 0 3

o u t p u t  s h j f  t  s p e e d  ( r p n )

Fig. 9. 71 Engine Brake Mean Effective Pressure  
of DCE with Bypass Valve



o
u

tp
u

t 
s

h
jt

t 
to

ra
u

e
 

(l
.m

)

€

iD
C
u
c

l o w e r  LTC

DO

X A X I S  - I 0 3 CONTOUR HEI GHT M O ' 3
r  a x i s  m o 3

o u t p u t  s h j f t  s p e c  J  ( r , , o » )

Fig. 9. 72 Output Shaft Brake Therm al Efficiency 
of DCE with Bypass Valve

4 50

3 .  50

2 5 0

0 50

0 00

X A X I S  * < 0 ^  
T A X I S  • • 0 J

o u t p u t  s h a f t  s o c e j  ( r u m )

Fig. 9 . 73 O ptim um  T ransm iss ion  Ratio  
of Output Shaft CVT of DCE



3 . 5 0£

«i
3Oc
o

2 - 50

*xCl

3

i 50

0 5 0

X A X I S  « I 0 3 
T A X I S  » t 0 3

CON I  OUR HE I CHI  * 1 0  

Contour unit: r̂ >«

o u t p u t  i h j  11 s o c e J  ( r p m )

Fig . 9 . 7 4  E ng ine  Speed
of DCE with Output Shaft CVT

« 50

3 . 50

2 50

0 50

* A X I S  •  I 0 3 
T A X I S  • t o 3

2 4

CONTOUR HEI GHT * 1 0  

contour unit: ri.m

o u t p u t  s h u  T t  s c e e d  ( r p n )

Fig. 9. 75 Compressor Speed
of DCE with Output Shaft CVT



4 SO

3 - SO

2 -SO'

i/ll
0 so

X A X I S  * t 0 3
r a x i s  * i o 3

o u t i . u i  s h a f t  s p e e J  ( n . m )

Fig . 9. 76 T u rb in e  G e a r  Ratio
of D C E with Output Shaft CVT

3 SO

50

SO

—T»

0 00 0 2 4I 4

I A X I S  * t 0 3 CON I OUR M t l C M t  • » 0 ' 3
T AX I S  •  » 0  3

out i . u i  s h a f t  sureJ ( f p " )

Fig. 9 . 7 7  Output Shaft B rake  T herm al Effic iency  
of DCE with Output Shaft CVT



M P

V N

CVT

CC

T C

BS : b o o s t  s e n s o r  
C : c o m p r e s s o r
CC : c h a r g e  c o o l e r  
E : e n g i n e  
FP : f u e l  pump

CVT;  c o n t i n u o u s l y  v a r i a b l e

INPUT S I G N A L S :
1 . t o r q u e  t r a n s d u c e r
2 . s p e e d  t r j n s c u c e r
3 .  p r e s s u r e  t r a n s d u c e r

TC : t o r q u e  t u r b i n e
VN : v a r i a b l e  t u r b i n e  n o z z l e s
TSS:  o u t p u t  t o r q u e & s p e e d  s e n s o r
Ne : e n g i n e  s p e e d
Nos:  o u t p u t  s h a f t  s p e e d

t r a n s m i  s s i o n

OUTPUT s i g n a l s :
4 .  CVT c o n t r o l
5 .  n o z z l e  c o n t r o l
6 . f u e l  pump c o n t r o l

Fig. 9. 78 Layout of CES with 3 CVTs



4 50

3.  50

2-  50

i . 5 0

0 .  50

0 0 0

X A X I S  •  I 0  3 
T A X I S  « I 0 3

o u t p u t  s h j f t  s p e e d  ( r , . m )

Fig . 9. 79 E n g in e /O u tp u t  Shaft Speed  Ratio  
of C ES with 3 CVTs

4 . 5 0

E 3 5 0

D
C
c.C

2 - 5 0 i

3
3O

0 50

0 0 0 *

X A X I S  M 0 j
r  a x i s  - t o 3

o ^ U ' U t  s h j f t  s n e c j  ( r ^ m )

Fig. 9 . 8 0  C o m p resso r/E n g ine  Speed Ratio
of CES with 3 CVTs



o
ra

u
e 

(I
Jm

)

4 . 5 0

3 50

2 . 5 0

. 5 0

0  50'

0 0 0
0. 4

X A X I S  « I 0 3 
T A X I S  « 1 0 3

output shaft S t P c e J  ( r p « )

Fig. 9 . 8 1  T u rb in e /O u tp u t  Shaft Speed  ratio  
of C ES  with 3 CVTs

4 . 5 0

3 - 5 0

o

c .m

3
3.

o

0 5 0 *«

0 00

X A X I S  O 0 3 CONTOUR MEI CHT O 0 ‘ 3
T A X I S  * I 0 3

O u t p u t  s h a f t  SI ccj (rp">)

Fig. 9 . 8 2  Output Shaft Brake Thermal Efficiency
of CES with 3 CVTs



Chapter 10 CONCLUSIONS

This thesis has investigated the th ree  m ain aspects of tw o-s troke  d iesel 

eng ines: scaveng in g , supercharg ing  and com pounding.

( 1) .  scavenging

As a n o n -p re d ic tiv e  m odel of the scavenging process, the g en era lized  

therm odynam ic  m odel has been in troduced. This m odel can  give a

therm odynam ic descrip tion  for any possible scavenging process. Having  

specified  a  history of the scavenging process, this m odel is suitable for a ll 

scavenging system s including cross , loop and uniflow scavenging sch em es . 

As a s te p -b y -s te p  com puter p ro g ram , this m odel can give a d eta iled  

descrip tion  of varying pressure  and volum e for the scavenging process , 

which is im portan t fo r m atch ing  calcu lations of su percharg ing . For the  

sim plified  isobaric  and isochoric  m odel with respectively constant co effic ien ts  

of intake and d isch arg e  proportions during d ifferent scavenging phases , 

analytica l solutions for this m odel have been obtained . From  th ese , a ll 

existing m odels with the isobaric  and isochoric assum ptions can  be derived . 

Incorporated  with experim enta l work and experiences , the analytical form  of 

this m odel can  provide an easy and quick p erfo rm ance estim ation fo r the  

scavenging  p rocess.

As pred ictive m odels , the phenom enolog ica l fluid dynam ic m odels: the  

steady je t m odel and the unsteady Jet m odel, have been suggested . Based  

on jet mixing and p rop ag atio n , these m odels can give an approxim ate  

descrip tion  of velocity and concentration  fie lds for the uniflow scavenging  

p ro cess , thus obviating the uncerta in ty  of the therm odynam ic m odels . In 

the steady je t m o d e l, it is assum ed that during the scavenging process a ir  

and residual gas a re  im com pressib le  which im pairs precis ion  of this m odel. 

The unsteady je t m odel is soundly founded on the conservation laws of 

m ass, m om entum  and en erg y  for com pressib le  flow. A com parison betw een  

the com putational and experim enta l results of an opposed -p iston  tw o -s tro ke  

en g in e  dem onstrates  good ag reem en t.

A group of m odel laws fo r sca le  m odelling  the scavenging process has been  

estab lished . The  experim enta l work on a sim ple w ater rig has been d one. 

It a lso  validates that the unsteady jet m odel is satisfactory. This m odel can
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be used to optimize port design.

( 2 ) .  su p erch arg in g  and com pounding

T h ree  en g in e  m odels have been buiit into program s C SP S . C SP3Z and  

CSPM Z for m odelling the tw o-s troke  en g in e . The s im ple p rogram  CSPS  

uses the sim ple analytica l form ulae of the isobaric  and isochoric  

therm odynam ic m odel. This m odel is suitable for estim ating  the global 

p erfo rm ances  over the com ple te  range  of speed and load b ecause  of its 

sim plic ity . In this m odel, the processes in the en g in e  a re  treated  as 

polytropic process with a  variab le  exponent, which can  com bine  a  la rge  

com putation step length with a  relatively p rec ise  ap p aren t ra te  of burnt fuel 

to Im prove the prediction for the com bustion p rocess. The  in term ed ia te  

program  CSP3Z uses the g en era lized  therm odynam ic scaveng ing  m odel. This  

m odel can  provide a  s te p -b y -s te p  description for any scaveng ing  system  

which is benefic ia l for deta iled  and accu ra te  m atch ing  ca lcu la tion  of an  

en g in e  system . The co m plicated  program  CSPM Z uses the unsteady jet 

m odel with two optional versions of the en tra in m en t laws by Ricou and  

Spald ing [4 .1 0 ]  and by S cheltz  [4 .1 1 ] .  This m odel is app ro p ria te  for 

optim izing port design of uniflow scavenged en g in es . In the  heat transfer  

subm odel of p rogram s CSP3Z and CSPM Z. the piston is rep resen ted  by a 

variab le  D elta  res is tan ce  ca lcu la ted  based on the B essel solution of 

L ap lace 's  equation of s te a d y -s ta te  heat conduction . T h e re fo re , this 

subm odel can  estim ate  the tem peratu res  of the com bustion ch am b er of 

various eng ines  including insulated en g in es . P rogram s C SPS. CSP3Z and  

CSPM Z can  be used for m odelling  the d ifferen tia l com pound en g in e . Based  

on en g in e  m odel C SP3Z. p rogram  CSP3ZTC has been m ade for sim ulating  

the tu rbocharged  eng ines .

Using program  CSPM Z. the au thor has predicted the  p e rfo rm an ce  of the  

Ford c e ra m ic  tw o -s troke  opposed -p is to n  d iesel e n g in e , and optim ized the  

port design of the Ford e n g in e . The optim ization p ro ced u re  is su itab le  for 

any uniflow scavenged en g in e .

Using program  C SP3ZTC . the author has pred icted  the p erfo rm an ce  for the  

tu rbocharged  Ford ca ram ic  en g in e  without and with b low er.

Using program  C SPS. the author has estim ated the operating  characteris tics

212



for the d ifferen tia l com pound tw o -s tro ke  eng ine  for a 3 0 -4 8  ton truck. This  

p erfo rm ance  analysis dem onstrates  that the DCE with the tw o-stroke eng ine  

com bines im proved pow er density and package size with its inherent 

advantages of high effic iency and high torque backup.

F u rth erm o re , the author has suggested a  new com pound eng ine system with 

th ree  continueously variab le  transm issions between the eng ine  and  

com p resso r, the eng ine and output shaft, the power turb ine and output shaft 

respective ly . Its p erfo rm an ce  has been estim ated based on program  

CSPSCVT. This new com pound en g in e  system enhances  the im provem ents  

in the e ffic iency and the trans ien t response under the norm al m echan ica l 

and therm al loadings of the en g in e .

The author suggests that the following future research  work is im portant:

( 1 ) .  Based on the com putational fluid dynam ic m ethod, to develop a 

com prehensive  m odel for p red icting  the deta iled  velocity, tem peratu re  and  

concen tra tion  fie lds and scavenging  effectiveness for ail scavenging  

system s.

( 2 ) .  Based on the gen era lized  m odel law . to conduct the experim ental work 

on an approxim ately "real" m odel for m easuring  the velocity, tem peratu re  

and concentration  fields and for validating the previous m odel.

( 3 ) .  Based on the o n e -d im en s io n a l unsteady flow theory, to im prove the  

au th o r's  p resent com puter program  in o rd er to investigate wave e ffect in the  

in take and exhaust system and to optim ize its design .

( 4 ) .  To develop a com puter program  to pred ict the transien t behavour of a  

com pound tw o-s troke  en g in e  system .

( 5 ) .  To investigate the feasib ility  of the new com pound eng ine  system with 

3  CVTs in deta il.
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Appendix t KINEMATIC ANALYSIS OF HORIZONTAL OPPOSED PISTON

ENGINES

Fig . A l. 1 is the layout of the horizontal opposed piston eng ines co n cern ed . 

The linkage is split into two parts. The lower part of the eng ine linkage , 

consisting of the c ran ksh aft, the connecting  rod and the lower portion of 

the ro cker, is a  fo u r-b a r  ch a in . The upper portion, consisting of the  

piston, the piston rod and the upper portion of the rocker, is an eng ine  

m echanism  with an o ff-s e t piston.

The position of the top dead ce n te r used in the analysis below as the  

re fe re n c e  condition from  which crank an g le  is m easu red , is defined  as the  

cran k  position giving the m inim um  volum e in the com bustion ch am b er  

betw een the two horizontally  opposed pistons.

The analysis assum es rigid links, so that no a llow ance is m ade for the  

elastic ity  of the en g in e  parts or for the bearing c le a ra n c e s .

In the k inem atic  analysis  of tw o -s troke  e n g in e , th ere  a re  two d iffe ren t tasks:

( 1) .  to d e te rm in e  a  piston d isp lacem ent, that is. a c ran k  an g le  is g iven, 

and the correspond ing  piston d isp lacem ent needs to be found.

( 2 ) .  to d e te rm in e  the tim ing of the in let and exhaust ports, that is. a 

positions of the ports is g iven , and the corresponding  cran k  an g le  needs to  

be dete rm in ed .

The linkage can  be analysed  by the v e c to r-lo o p  m ethod. [Al. 1] With the  

notation in the F ig . A l. 1. fo r the low er part of the lin kag e , the vec to r-io o p  

eq u atio n , resolved into the horizontal and vertical com ponents , is

rck c o s a  + ell cos0  + a ir  co se  -  fvr = 0 ( A l . l )

rck s in a  + ell s in #  + a ir  s in e  -  fhr = 0 ( A I .2 )

The final a im  is to find the relation betw een the crank an g le , a .  and the  

piston d isp lacem ent, x. Above a il. for the lower part of the linkage , the  

re lation  betw een the cran k  an g le  a  and the lower rocker an g le  e should be
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obta ined . Thus it is necessary  to e lim in a te  $ .  A fter rearran g em en t, the  

following equation  can be ach ieved

K -  K c o s6 -  K sine -  K cosee -  K coscr + co saco se  + sincrslne = 0 
1 2 3 4  5

(A I .3 )

2 2 2 2 2 
w here  K = (fv r H h r +alr +rck -e l l  ) / ( 2  rck a ir)

1

K = fv r /rc k  
2

K = fh r /rc k
3

K = fv r /a lr
4

K = fh r /a ir
5

The  equation  ( A I .3 )  gives the re lation  betw een the c rank  a n g le , a .  and the  

rocker a n g le , y.  For co n ven ien ce , letting

a
w = ta n (“ )

2

€
v = tan(~~)2

and substituting the following equations  

2w
s in a  *

( 1+w2 )

2
c o s a  =  p -

( l + w * )

. 2v  s in e  = - 2
( l + v * )

2
( l - v * )

C O SC =   p—
( 1+ V  )

into equation  ( A I . 3 ) .  and rea rran g in g  yields the following equations
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2 2 2 2 
(C  w -2 K  w+C )v  -  2 (K  w -2w +K  )v  + (C  w -2 K  w+C ) =  0 

1 5 2  3 3  3 5 4
(A l. 4 )

or

2 2 2 2 
(C  v -2 K  v+C ) w -  2 (K  v -2v+ K  )w  + (C  v -2 K  v+C )=  0 

1 3  3  5 5 2  3 4
(A l. 5 )

w here  C = K +K -»-K +1
1 1 2  4

C = K +K -K  -1
2  1 2  4

C = K -K  +K -1
3  1 2  4

C = K -K  -K  +1
4  1 2  4

The fo rm er equation ( A I .4 )  is su itab le  to determ ine  the lower rocker a n g le . 

€ .  from  the cran k  an g le , a .  And the la tter equation ( A I .5 )  is app licab le  

to d eterm in e  the crank  a n g le , a .  from  the lower rocker a n g le . € .

S im ila rly , for the upper part of the lin kag e , the vec to r-lo o p  equation is

au r cosy  -  clu cos© + x = 0 ( A I . 6 )

au r s iny  -  clu sin© -  fpr = 0 (A l. 7)

B ecause the aim  is to find out the relationsh ip  between the upper rocker  

an g le  y  and the piston d isp lacem e n t x. the connecting  rod an g le  m ust be  

elim in a ted . Follow ing the previous p ro ced u re , the equation is

2 2 2 
(x+au r co s y ) + ( fp r -a u r  s in y ) = clu  ( A I .8 )

A fter re a rra n g e m e n t, the equation  becom es

x ~ ~ a u r*c o s y  + W c lu ^ -(fp r -  a u r * s ln y )^ ( Al. 9 )
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Similarly letting.

y
u = ta n (—) 

2

and substituting the following re lations  

2u
slny  =

( 1+u2 )

2
( 1 - u  ) co sy  -  ---------5-
( l + u * )

into equation ( A I .8 ) and rearran g in g  obtain the following equation  

2
(A +x) u -  2 fp r u + (A -x )  = 0 (A l. 10)

w here

2 2  p  o
A _ (x  +fpr +au r -c lu  )

2 * au r

The fo rm e r equation ( A I .9 )  can  be used to ca lcu la te  the piston  

d isp lacem ent x from  the upper rocker an g le  y .  The la tter equation (A l. 10) 

is su itab le  to find out the upper rocker an g le  y  from  the d isp lacem ent x.

From  the relationsh ip  betw een the upper and low er rocker angles

y  = € + C (A l. 11)

w here  C Is the an g le  conta ined  by the upper and low er rockers .

the follow ing equations a re  valid .

u = v+ tan ( c / 2 )
~ l - v - t a n ( € / 2 )  (A l. 12)

v ,  u - t a n ( c /2 )
l+ u * ta n (  c / 2 ) (Al. 13)
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It is understandab le  that the incorporation  of equation ( A I . 4 )  with equation  

( A I . 9 )  will be ab le  to d eterm in e  the piston d isp lacem ent from  the crank  

a n g le , via equation  ( A I . 1 2 ) ;  and that the incorporation of equation (Al .  10) 

with equation ( A I . 5 )  to d eterm in e  the crank  an g le  from  the d isp lcem ent. via 

equation ( A I . 1 3 ) .

( 1 ) .  D eterm ination  of the piston d isp lacem ent from  the crank an g le

( a ) . ca lcu la te  the tangen t of the half lower rocker an g le , v. from  the

tangent of the half c ran k  a n g le , w . using equation ( A I . 4 ) .

( b ) .  ca lcu la te  the tangen t of the half upper rocker an g le , u. from  the

tangent of the half lower rocker rocker an g le , v. using equation (A l. 12 ) .

( c ) .  ca lcu la te  the sine and cosine  of the rocker a n g le , y .

( d ) .  solve equation ( A I . 9 )  to obtain the piston d isp lacem ent from  the sine  

and cosine of the rocker an g le .

( 2 ) .  D eterm ination  of the crank an g le  from  the piston d isp lacem ent

( a ) ,  ca lcu la te  the tangen t of the half upper rocker an g le , u , from  the

piston d isp lacem ent, solving equation  (Al .  10 ) .

( b ) .  ca lcu la te  the tangen t of the half low er rocker a n g le , v. from  the half

upper rocker a n g le , u. using equation ( A I . 1 3 ) .

( c ) .  solve equation ( A I . 5 )  to get the tangent of the half crank an g le , w.

from  the tangen t of the half low er rocker a n g le , v.

( d ) .  ca lcu la te  the crank an g le  from  the tangen t of the half c rank  an g le .

It is notab le that the d is tance from  the crank vertical cen tre lin e  to the top 

of the p iston, y , can  be obtained  from  the following equation

y = fvr -  dpc -  x (Al .  14)

Fig. A 1.2 shows the defin ition of an g les . It assum es that the right piston 

contro ls the in let ports and the left piston controls the exhaust ports, and  

the crankshaft rotates c lo c k -w is e . For the crank  linkage of the in let piston, 

the re la tion  is

A
a  =  — tt +■ ~ *p

2
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w here  A is the phase an g le  betw een the in let and exhaust crank arm s. 

*p is the c rank  an g le  from  the top dead cen ter.

H ow ever, for the crank linkage of the exhaust p iston, the re lation  is

because  the exhaust crank  linkage is sym m etric  to the in let c ran k  linkage.

REFER EN C E

[Al. 1] S . M olian
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f V T

fvr— frame,crank vertical centre line to rocker pivot
fhr— frame,crank housing centre line to rocker pivots
fpr— frame,piston centre line to rocker pivots
ell— lower connecting rod
air— lower rocker arm
aur— upper rocker arm
clu— upper connecting rod
dpc— piston compression distance
rck— crank radius

Fig. Al. 1 Layout and Notation of Linkage



Fig. A I . 2  Definition of Angles



Appendix II QUANTITATIVE ESTIMATION OF TRANSFER PHENOMENA

All. 1 MOLECULAR MIXING AND TURBULENT MIXING

Two factors m ust be accounted  for In analysing tran s fer processes in 

turbulent flows.

M o lecu lar mixing: it has a vital ro le  in the dissipation and transport occuring  

in the sm alle r sca les  of the tu rbu lence and in the n e a r-w a ll reg ion .

Turbulent mixing: it actually  is the convective transport accom plished  by the  

tim e -m e a n  m otion of the flu id , and is dom inant through m ost of the flow.

All. 2 GENERALISED CONSERVATION EQUATIONS

For brevity, this appendix in troduces the g en era lise d  form  of the

conservation equations. For a given control vo lum e moving with a  

statistically steady turbulent flow , it is as follows.

A
At Jp*>dV - <£ JdA ♦  j  v>sdV (A ll. 1)

I. e .

sdm

m

(A ll. 2 )

ch an g e of the  
conservation  
am ount in 
the contro l 
volum e

flux of the conservation  
am ount through the  

= boundary surface of 
the contro l volum e

source or sink of the  
conservation  am ount 

+• in the contro l 
volum e

w here V is the total contro l volum e

A is the surface a re a  of the contro l vo lum e.

*> is the specific  property of the property am ount <I>.

s is the specific  source rate of the conservation am ount.

J is the flux of the property <E>.

P is the fluid density.
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The quantities y>. s and J for the m ass, m om entum  and energy conservation  

a re  listed in Tab le  A ll. 1.

For scavenging  p rocess, solely the source  term  am ong the conservation  

equations is the term  involving heat tran s fe r which is investigated fully. Only 

the problem  left is to d eterm in e  the fluxes of the properties .

A ll. 3  FLUX O F PROPERTY

A unit a re a  e lem en t rem ain ing  stationary within the turbulent flow is 

co n s id ered . The fluctuating values of property  and its flux a re  denoted by 

p + p ' and J + j'. The  fluctuating com ponent of velocity in the direction n 

nom al to the p lane is denoted by U + u '. as  shown in F ig . A ll. 1. The fluid 

density is denoted by p + p ' .  and the m o lecu la r diffusivity of the property is 

denoted  by K. In term s of these quan tities , the instantaneous flux of the  

p ro p erty  is

J+J'= -< p + p #) + <P+P#> «► **'>  <U+u'> (A ll. 3 )

This is the sum of the fluctuating convection and the sim ple grad ient 

diffusion, like that In F o u rie r's  and F ick 's  laws.

The  tim e -m e a n  value of the flux is then found to be

J= -pK-rj— + p Q U ♦  p * 7u* + *> 'p 'u ' + u ' p V  ♦  P 'o 'u '  
on

(A ll. 4 )

net flux = m o lecu la r diffusion + bulk convection +  tu rbu lent diffusion  
+  in teraction  betw een desity and property variation
+  in teraction  betw een desity and velocity variation
+  trip le  co rre la tion

A ccord ing  to the useful co n cep t proposed by Morkovin [All. 1] that if the  

M ach num ber of the turbu len t fluctuation is m uch less than unity, the effects  

of density fluctuations could be n eg lec ted , the term s of the contribution to 

the flux via an in teraction  betw een density and velocity varia tions , f p ' p ' u '  and

u ' p V .  and the term  of the trip le  co rre la tio n  p V ' u '  can  be n eg lected .

This last e lem en t may be form ally  converted  to a dlffussion term  by 

in troducing an eddy diffusity
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T - ,  a<Z> (A ll. 5 )
” p c *>0 n

w h ere  e  |S ^ e  eddy dlffuslvity of the property <D.

3 $  is the norm ally d irectional derivative of the property <X>. 
dn

A lternatively , the e ffec t of turbu lent mixing can  be represen ted  by an eddy

lateral convection velocity U or an eddy m ass flux o r Reynolds flux G
ip

P 0 *'®  (A ll. 6 )

p P U'= (A ll. 7 )

w here  is the  ch an g e  in $  across  som e fin ite  interval An. The  fo rm er

equation  (A ll. 6 ) is su itab le  for the m om entum  transfer process b ecause  the

absolute  am ount of m om entum  transported  is co n cern ed . H ow ever, the

la tter equation  (A ll. 7 ) is su itab le  fo r the mass and en erg y  tran s fe r

processes b ecause  only the re la tive  am ounts of m ass and enthalpy

transported  need co n s id erin g . W hether or not the transform ations (A ll. 5 )

(A ll. 6 ) and (A ll. 7 ) prove useful depends on w hether the hypothetical

quantities e . U . G can  be specified  rea lis tica lly , 
ip *p

From  the above analys is , the flux equation becom es  

- p (K + e  ) f £  ♦  p * U
(A ll. 8 )

or

J= + p * (U + lV
°  (A ll. 9 )

or

J -  - p k | *  + p® U  t  Q A®
3n *  (A ll. 10)

It is noted that when the a re a  e lem en t Is tangentia l to the je t tim elines the
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term of bulk convection p<DU disappears.

Based on equations (A ll. 5 ) and (A ll. 6 ) .  the eddy m ass flux is

p U  =» - p c  (A ll. 11)

From  equations (A ll. 5 ) and (A ll. 7 ) .  it is

V  "P£*rff2 (ah. i2>

Using re lation (A ll. 1 1 ) .  the eddy m ass flux in the m om entum  transfer  

process is

n  -  _  au /3n
Q m " p  m _ p c m U -  ‘ A ll. 13)

From  re lation  (A ll. 1 2 ) .  the eddy m ass flux In the m ass and energy transfer  

process a re

Q = p C  = - p e  ^ 2  c  H c  C

° h -  p H h= - p e h5 t r r 1 <A" - 14)

A ll. 4  REYNOLDS' ANALOGY

If the profiles of the t im e -m e a n  p ro p e rtie s  U . C and H a re  s im ila r, i . e .

2  a u _ 1_ a c _ i_  3h
U 3n~ AC 3n~ AH 3n (AI1- 15)

and the eddy diffusivities € . € and e a re  eq u a l, i . e .
m c h

Pr = i n .  !
t € h

c
S c .- 1

t €c
C

Lo4- 1
t

€ h

w here  Sc Is the turbulent Schm idt num ber, 
t

Pr is the turbulent Prandtl num ber, 
t
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Le is the tu rbu len t Lewis num ber, 
t

then the eddy m ass fluxes a re  the sam e for the th ree  transfers.

C All. 16)

For the fully tu rbu len t flow , the sim ilarity  of U . C and H Is valid because the  

effec t of turbu len t mixing dom inates  over that of m olecu lar m ixing. H ow ever, 

for the flow in fluenced by m o lecu la r diffusion, the following additional 

re lations m ust be satisfied  to va lidate  the sim ilarity

w here  v  is the m o lecu la r viscosity. 

k  Is the therm al conductiv ity .

D is the diffusion co e ffic ien t.

This series  of results is com m only re fe rred  to as Reynolds' analogy.

All. 5 MASS ENTRAINMENT RATE

It is assum ed that the p h enom eno log ica l unsteady je t m odel In C h ap ter 4  

obeys Reynolds' analogy and that the flow is fully turbulent. This ind icates  

that the flux term s in the equations of m om entum , mass and en erg y  

conservations a re  the sam e with the e ffective m om entum  flux. i . e .  the m ass  

en tra in m en t rate

This reflects  the physical background that the m om entum  tran s fer dom inates  

the m ass and en erg y  transfers .

It is evident that the en tra in m en t ra te  can  be derterm ined  e ith er d irectly  from  

the initial p aram eters  of je t. e . g .  by Ricou and Spald ing , or ind irectly  from  

the eddy viscosity, e . g .  by S cheltz  and Lilley. The fo rm er approach is used  

in version 1 of the phenom eno log ica l unsteady je t m odel in C hapter 4 which

S c=  f r -  1

m __
- p c _ 3 U / 3 n  

m Q (A ll. 17)
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d escrib es  the "m acroscopic" behaviour of Jet. w hereas the la tter is used in 

version 2 which dep icts the "m icroscopic" behaviour of je t.

REFER EN C E

[All. 1] M . V .  Morkovln

"The M echan ics  of Turbulence"  

G ordon and B reach . 1964

225



Table All. 1 The Generalised Form of the Conservation Equations

conservation

equation

specific property

iP

specific source rate
#
s

flux

J

mass concentration c 0 . pU c 
c

momentum velocity u .v.w 0 . pU u 
u

pU h 
h

onorgy total energy o i .o i T3 <



n
U + u '

Y

V + v

Fig. All. 1 Plane Element of Area
In Analysing Transport Mechanisms



Appendix III SOLUTION OF HEAT CONDUCTION EQUATION

equation in cylindrical coordinates is as follows

(Alii. 1)

in equation (Alii. 1) the temperature difference variable 9  = T -  T Is
c

introduced, where T is a constant reference temperature.
c

It is assumed that the piston is simplified as a cylinder. Thus the problem 

is as follows:

Find a solution giving the temperature distribution throughout the cylinder for 
the following boundary conditions, see Fig. A III.1.

At the oil side surface, i .e.  z = 0
/

9  = f (r) -  T (Alii. 2)
o c

At the gas side surface, i .e.  z = L

0 = f (r) -  T (Alii. 3)
9 c

At the liner side surface, i .e.  r = R

The general heat conduction

2  , a2ea e lae + -  0
+ dr 2 

3k dZdr

9  = f (z) -  T (Alii. 4)
I c

According to the principle of superposition, the final solution is equal to the 

sum of the solutions of the corresponding three problems

A + Q (Alii. 5)
0 - 9  + 0  + »|

9 °

Here. 9  . 9  and dare the solutions of equation (Alii. 1) under the 
g o l

following conditions respectively

problem 1:
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at 2 = 0. 9 = 0 (Alll. 6)
at z = L. 9 = f (r) -  T (Alll. 7)

at r = R. 9 = 0 (Alll. 8)

problem 2:

at z = 0. 9 = f <r) -  T (Alll. 9)
0 c

at 2 = L. 9 = 0 (Alll. 10)
at r = R. 9 = 0 (Alll. 11)

problem 3:

at 2 = 0. 9 = 0 (Alll. 12)

at 2 = L. 9 = 0 (Alll. 13)
at r = R. 9 = f (2) -  T (Alll. 14)

1 c

Thus, the problem of solving equation (Alll. 1) under the complex boundary 

conditions (Alll. 2) to (Alll. 4) is transformed into the summation of these 

three solutions of equation (Alll. 1) under the simple boundary conditions 

(Alll. 6) to (Alll. 8 ) . (Alll. 9) to (Alll. 11).  (Alll. 12) to (Alll. 14) 
respectively. By separating the variables, one seeks a solution of equation 

(Alll. 1) in the form

9 = R( r )Z (2) (Alll. 15)

where R(r) and Z(2) are functions of only r or z  respectively

After separation, the following two ordinary differential equations can be 

obtained from the original partial differential equation

2
d R 1 dR 2
 + -------- + X R = 0 (Alll. 16)

2 r dr
dr

2
d Z 2
  -  X Z = 0 (Alll. 17)2
dz

When X's in equations (Alll. 16) and (Alll. 17) is taken as real number, 
equation (Alll. 16) is recogni2ed as Bessel's equation of 2ero order, and
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equation (Alll. 17) leads to the hyperbolic function. Thus, the solution of 
the differential equation (Alll. 1) may be expressed as

0 = [B J (Xr) + B Y (Xr)]  (B sinhXz + B coshXz) (Alll. 18)
1 0 2 0 3 4

where J (x) is Bessel's function of the first kind of zero order.
0

Y (x) Is Bessel's function of the second kind of zero order. 
0

There exists one additional condition that the temperature must be finite at

r-0 . Because Y (Xr) -* «  as r -♦ 0. B =0 can be achieved.
0 2

The condition (Alll. 6) or (Alll. 10) makes B vanish, hence the solution
4

becomes

0 = B slnXz J (Xr) (Alii. 19)
0

For problem 1. the application of condition (Alll. 8) demands that

J (XR) = 0 (Alll. 20)
0

There are a countable infinite number of X's satisfying the defining relation 

(Alll. 20)

J (X R)= 0 (A lll.21)
O n

Firstly, the general solution is the sum of all the solutions corresponding to

each of the X 's 
n

0 = E B^slnhX z Jft( X r)
9 n=l n n 0 n (Alll. 22)

Secondly. the application of condition (Alll. 7) determines the unknown
B9 's

n

CO
f <r) -T = £  B*}slnhX L- J„(X r)
g c n=1 n n o n  (Alll. 23)

By the use of orthogonality of the Bessel functions, the constant coefficients
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<B9sinhX L) are given by 
n n

9 J X <r)- w v )dr
B alnhX L =■ a-------------5----------------n n n t o

2"', i <XnR) (Alll. 24)

Finally, the solution of problem 1 is

2 “  * ,nh* n2j0<xnr)
° a 2 E ------- ^ -------  rI,g( r ) - Tc,J0 (x nr)dr9 R n = l  slnhX UT(X R> >o 9n l  n

(Alll. 25)

Similarly, for problem 2 the solution is

0 •• sinhX,.(L-z) Jn(X,r> ,_ £_ r   n 0 n I
O 2 2 IQ n=1 e ln k \ I lc / \  D\

rlf ( r ) -T  }J„(X r)dr
R“ n=l slnhX.Ut(X^R) '<? °  c 0 nn

(Alll. 26)

When X's In equation (Alll. 16) and (Alll. 17) are taken as imaginary 

number. I. e. X= lyx

equations (Alll. 16) and (Alll. 17) become 

2
d R 1 dR 2
 + -------- -  At R = 0 (Alll. 27)

2 r dr
dr

2
d Z 2
  + At Z = 0 (Alll. 28)

2
dz

Equation (Alll. 27) is a modified Bessel equation of zero order, whereas
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equation (Alll. 28) Introduces the trigonometric function. Hence, the 

solution of the Laplace equation may possess the form

9  = (B i (#r)+B K (#r ) ) (B sin/iz+B cos/Ltz)
10  2 0 3 4

(Alll. 29)

where I (x) is the modified Bessel function of the first kind of zero order. 
0
K (x) is the modified Bessel function of the second kind of zero 

0
order.

From the boundness of the solution. B = 0 can be obtained.
2

because K i / i r ) -  00 as n r - *Q  
0

The condition (Aill. 12) makes B vanish, so the solution is
4

0  = B sin/iz I i f i z )  (Alll. 30)
0

For problem 3. firstly, the application of condition (Alll. 13) needs that 

n?r
H  = —  (Alll. 31)

Hence, the general solution is the sum of all the solutions corresponding to 

each positive integer

c* n I t M nffZi f n7rrx
e = E V ' T V t -’

n=l

(Alll. 32)

Secondly. the application of condition (Alll. 14) determines the unknown
B *s 
n

V z ) - Tc = E  
n=1 fBn'o(2^9>]8ln nyrz

L

(Alll. 33)
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Again using the orthogonality of the sine function, the coefficients can be 

obtained

Bn,0 (!T 9) = t | V * ) - Tc,8,n£!r dz
0  (Alll. 34)

Finally, the solution of problem 3 is

0 •  lft(n7n7L)sln(njrz/L) , L

«. = u = r — »,«*>- t cw "bp - *n=i  u /0

(Alll. 35)

Thus, the final solution giving the distribution of the piston temperature is

9 -  9 + 9 + 9
g o i

(Alll. 36)

where X is the n-th root of equation (Alll. 20) 
n

When all the surface temperatures are constant and uniform respectively, 
the solution is. further, simplified as

2(T  -T .) »  slnhX z Jn(X r)
e = — L  E   ------ — —

n=U slnhX L J , ( X  R) n n l n

2(T -T .) slnhX^(L-z) Jft(X r)
+ °  1 £ ______0_______0 n

R n=l X slnhX L J . ( X  R) n n l n

(Alll. 37)

with the boundary conditions

at z = L. 0 = T -  T (Alll. 38)
9 I

at z = 0. 0 = T -  T (Alll. 39)
o I

at r = R. 0 = 0 (Alll. 40)
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It it evident that the corresponding heat flux is as follows

q = K grade dA (Alll. 41)

For the gas side of the piston, z = L. the heat flux is

f R

Q_ = 2irK ^  rdr 
0 ]o  z=L

fcoshX^L

■ W K“  *  < V V J S )- T ^ d s a r j .>

Similarly, for the oil side surface, z= 0. the heat flux is

f e  ■
I  z=0

Qq = -27TK I rdr
o

»  coahX L n

(Alll. 42)

= 4irK U T.-T  ) E . + (T  -T .) £  .3I g X slnhX L o I X^slnhX^L n=l n n n - i  n n

(Alll. 43)

From the energy conservation, the heat flux through the liner side surface 

is

Q, = Q„ ♦ Q . 1 g o

•  coshX L -l 
= 4ttK (2T .-T  -T  ) r   --------0-----

1 9 o X slnhX Ln -1 n n

(Alll. 44)
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The positive zeros X of the Bessel function can be approximated as the
n

following asymptotic representation

4 n -l 0.050661 0.053041 0.262051
X = 7r( + -  + -  • • * )

n 4 4 n -l 3 5
<4n -l) (4 n - l)  (Alll. 45)

And the hyperbolic functions cosechx and cothx can be approximated as

-x -3x -5x -7x
cosechx = 2 (e  +e +e +e + • • • )  (Alll. 46)

-2x -4x -6x
cothx = l+2e +2e +2e + • • •  (Alll. 47)

Thus, the heat fluxes of the piston can be determined.
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■ m o l e  h e t w e e n l o w e r  a n d  u p p e r  r o c k e r  j r p s  ( d e n )

( 1 1 f 1 <T.A)

(mm )
( mm )
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r r p - < n  S t  a n C e  ,  C r a n k  v e r t i C d l  C e n t r e  t o  i n o c r  n j n e  0 * i n l . j t  r ~ j r \

H O !  . l i s t  n i , r t  1 1.1" )
h i p s h e i t j h i  o  * I « t  p o r t  f m " ' )
h c « ’  = o x h a i i a t  p o r t  ( m n )

w i r  = t o t . , 1  w i d t h  o f  i n l e t  p o r t s ?  i f  c i r c u l a r  i n l e t  n o r t » M c f  r . i . j ' i  * ! ' >  = ' • .  *

« e P  = e x h f l u s t  p o r t s ?  i f  c i P C j I . i r  r x h , i U 3 t  n o r t ,  1«; f  r  •*%,'» w e n s ' * .  ( )
L i n e  I  0 j  n  i  p ,  n e p ,  a ! i  n ,  a 1 e x  ( 2 i 2 » 7 M . 4 )  

n i p s n u m b e r  o *  i n l e t  p o r t s  
r e p :  e x h a u s t  p o r t s

a l j n z a n q l e  o f  i n l e t  p o r t  ( d e g r e e s )
. j * e * =  e x h a u s t  p o r t s  ( d e g r e e s )

L i n e  I t :  c o , i i r c n t  ( m a n i f o l d  < 1 a * a » .................) ( 2 y . i l )
L i n e  1 2 ;  n  i  1.1 * v i m ( i ) , i = l , n i m  ( i 2 ,  7 f  1 0 .  ' I ) n  i z  1, n  o f  i n l e t  m a m i  f o l d s ,  v i m ~ v o l u . . < c  o f  i n l e t  .;i a  n  i  f  o  I <1 s
L i n o  I 3 ; n e  m= n y  o f  c  x h >t u  s  t  m «  n  i f  o  I • 1 s ,  v e i | f i ) , i = 1 , n c r. -  v o '  o S o  0  * n x h a u  s t r j n j  f o l y ,  a f » " » t ? )  = i , n e f p  r  h e a t  t r a r i s f e r  .1 r  e a f o r  m o n i  f  o  I u s

( t e r o  f o r  i n l e t  . j a i i i  l o M s )  ( i 2 ,  7 * 1 A .  »)
L i n e  1 •'*; c o n t r o l  v o l u m e s  i n t e r c o n n e c t i o n  f o r  t ^ c  c V l  i n d c r s  ( l O i J )
f a t  e x a m p l e  J c y l i n d e r  o n l i n e  w i t h  s i n g l e  i n l e t  > r . i n i  * u l i s  * c . v .  ' I ) . , n . i
d i v i d e d  e x h , , u s t  m . j n j f o ' i  ( c . v .  ' j ) a n d  c o o l e r  ( c .  v .  A ) h a s  t h e  f o l l o w i n g
a r  r « n ^ e i ; . e n  t

1 4 b
2 4 b
3 •» b

L i n o  I S ;  „ c h » a P C , 0 1 , h t C , S „ 1 (  f  1 0  .  *1 )
i c h = c v l i n c e r  h e a l  h e a t  t r a n s f e r  j r e - i  f  n C h s . A i  f o r  o p p o s e  1 , i s t o n  e r m i n e )
i ( . c  = p i s t o r  c r o . n  

j l  = 1 i n e r  ( a t  t d c )  
r > t c = e x h a U 3 t  m a n i f o l d s  h c . | t  i r . , n s f o r  C o e f f i c i e n t  ( w / u . ? . * 0
s * 1 =  s w i r l  r a t i o  i n  w o s c h n i  f o r m u l a  f  f  1 n .  '• )

l i n e  J h ;  * r i c t i e r ' s c  a  l i n o  f a c t o r  - 1 . °  ,  f  o ' »  r  v a l u e s  o f  s c  1 1 i  O j  f a c t o r s  f o r  i e . j t  r e  t  c a s e  s h a p e
l i n e  j / ;  : , n f r  /  r C O o  1 ,  s  ,  P ,  - i c o o  1 / v o  I (  n c  v  ) * J  i  .1 ,  7 4 .1 .  -I )

, ^ y r  = n . , n n e r  j f  h y n ^ . s  v „ l v n j  
n c n 0  * = n tJn h e r  o *  c o o l e r s

• ' ,  r  = r  , u  i v j  1 . ; n  t  f 1 oW a r c . ,  o  * h / n . , s s  v a l v e s
i c  0 0  * = o  |U t v  4 1 o n  t  f ' o w  i r r a  j *  c o o l e r s

v o  1 ( n v ) = v u 1 j n e  u *  c o o l e r
L i n e  1 « ;  v r U » v r l , c i « J ( l ) / C i O ( 2 ) , c i J ( 4 ) , c i O ( S ) , c i . J ( o l  (  t) f  1 d  .  « )

.’ f f l : r , j  t  j  o c f  t h e  i n i t i a l  r e a i j u a l  d a  s v o l u m e  f o r  m i  x  i  i n  t o n u  
t o  t h e  t o t a l  c y l i n d e r  v o l u m e  

v r ’ s r u t i o  c f  t h e  f i n a l  r e s i d u a l  o a s  " J e o d  s p a c e "  v o l u n e  
t o  t h e  t o t a l  c y l i n d e r  v o l u m e  

c i  u  ( I ) = c o e f f i c i e n t  o f  i n t a k e  P r o p o r t i o n  i n t o  t h e  a i r  z o n e  
c i d < 2 >= h i i x i n o  t o n e
c i  0  ( 4 1 -  d i s c h a r g e  p r o p o r t i o n  f r o m  t K o  a i r  * o n e
C i O i b I -  n  i X i n . j  z o r m
c i 0 i  >j 1 = d a s  t o n e

l i n e  l q : c o m m e n t  I c o ^ i - r e s s o r  n a p , ..................) ( ? 0 a 4 )
l i n c  2 r : c O h P r e j s o r  " U i e  f a c t o r ,  l  f o r  c o m p r e s s o r  ->. j p A f o r  c o n p f c s s o r
s u h r o u t  i  n e .  I i  2 )
L i n e  2 1 :  u a s s  s e a l  i n n  * u c t o r , e f f i c i e n c v  s c a l i n g  f a c t o r  f o r  c o m p r e s s o r  ( l l f l O . o )
L i n e  i ? : c o m m e n t  ( t u r b i n e  n ^ p , ................... ) ( i f r t u ' U
L i n e  2 3 :  t u r b i n e  m o l e  ' j r t o r  ( i 2 )  S a m e  j s  f o r  t h e  c o m p r e s s o r
L m e  £ 4 ;  m a s s  s c a l i n g  f  u c L o r ,  e  f  f  i  c  i  e n c v  s c a l i n g  f a c t o r  f o r  t u r h j n e  ( l l M f t . f > )
L i n t , ?S;  .10 o f  p r e s s u r e  p o i n t s , n o  o f  n o n  . | i  m e n *  i  O n a  1 t u r b i n e  s n c e d  p o i n t s  ( i ? )
L i n e  t ’ h :  p r e s s u r e  p o i n t s  v  t  P (  i  ) ,  i  = 1 ,  n p  ( l h f « . 6 )
L i n *  . 7 ;  n o n  c i f e n s i u n j l  t u n b i n e  s p e e d  P o i n t s ,  v  t  s (  j )  ,  j  =  1 ,  n  t  s  ( 1 1 f l 0 . f i )
L i n »* 2 U : i l , d 2 t ,  i 3 o ,  d 3  i ,  a ,  h>2,  h p 3 ,  b t  2  ( l t f l 0 . 6 )



a = n o z z l e  3 n ' j l »  ( l e g )
L ?  = u l j O e  j n j l c  a t  r o t o r  e n t r y  ( r a j  i n  p , m y « n t  j a l  1 

h p 3  = s c r e w  p i t c h  o # r o t o r  M a d e s  a t  e x i t  ( e m )  
r > t ?  = n l w O e  i c k n e s s  j t  r o t o r  e n t r y  ( m m )  

l » n c t, g : u n i  , bb  J s ,  M > ? r r , p a  i ,  f  f , L t  3 o , h t  3 t ( l i q n . 6 )
t > L l =  » - > a s s o q e  w i d t h  , j t  e x i t  f r o m  n o z z l e  v a n e s  ( m ; j >  

l ; h 2 s  = p a s s a g e  w i d t h  j u s t  b e f o r e  r o t o r  e n t r y  ( m m )  
b t » 2 r r s  p a s s u c e  w i d t h  j u s t  a f t e r  r o t o r  e n t r y  ( n m )  

n s i =  c o n e  j m l c  a t  r o t o r  e n t r y  ( r j r l )  
f f  = f l o w  1 c s s f a c t o r ,  e q u a l s  1 f o r  n o  l o s s  

t ) t J o =  b l a d e  t h i c k n e s s  o t  r o t o r  e x i t  a t  t i n  ( p r r )  
l> 1 3 i = b l a o e  t h i c k n e s s  a t  r o t o r  e x i t  a t  r o o t  ( m m )

L i n e  3 0 : c o m m e n t  ( i . e .  . j i  f  f  e r e n t  i  j 1  c o m p o u n d  J a t a )  ( j J O a ' i )
L i n e  3 1 :  e n r ) C c r , t q r r o n r , c < l e »  t o e , o n e » c r j o  ( l l M d . b )  

r y r  = e , - i  e y e  1 i  c  q  e a r  r a t i o  
C i j r s o v e r a l  1 c o m p r e s s o r  g e a r  r . i t i o  
t g r s t u r b i n e  n e a r  r a t i o  
O g r  = o o t  p u t  3 h j  ♦ t  j C . i r  r 4 t  i o  
o ^ e =  o u t n j t  s h a f t  q «  a  r  e f f i c i e n c y  
t  g e =  t  a r i , i  n e V T  d e a r  "

c r . j C  = C a r r i  e r  "
c / =  c o  i p r e s s o r

I i n c  3 2 ;  -j i e ,  j c e .  ( l l f l - J . o )  s j e = s u n  n e a r  e f f i c i e n c y /  l in « *  =  j n r t u l u 3

L i n e  3i: j  o / j  e /  j  c / j  c  r , \ ,,, j  s  /
1 '1 = . j n i i u l u a  i n e r t i a
j e  = i*n j i ne i n e r t i a
JC = c o m p r e s s o r  i n e r t i a

j  C r  = c a r r i e r  i n e r t i a
J P = p l a n e t  i n e r t i a
J s = s u n  i n e r t i a
1 1 = t u r b i n e  i n e r t i a
j O  = o u t p u t  s h j f t  i n e r t i a

L i n e  3 0 ;  o  S 1 t / c  s  S ( 1 1  f 1 J . O )  
o s l t r o o t p u t  s h j f t  t o r q u e  

n s S = O a t p U t  s h j f t  S P O O J
L i n e  3 S :  c o m m e n t  ( r u n n i n q  c o n d i t i o n )  ( 2 ' j a { )
L i n c  3 h :  e s ,  f  f r . j t e # o f r / c a 1 v . , 1  ( f l O . J ,  M * ' . ' ) )

e s s e n q i n e  s p e e d  ( r o v / n j n j  
f f r a t e = f u e l  f l o w  r a t e  ( * c j / s e c )  

a f r = a i r _ f u e l  r a t i o  
c a l v j 1 = c « » l o r i f i c  v a l u e  o f  t h e  f u e l  ( h • J / K L ) 

n y t i c e : i f  f f r a t c  w a n t e d  t o  d e  s p e c i f i e i / t h e n  j f r = < f t .
i f  a f r  w a n t e J  t o  b e  s p e c  i  f  i e j / t  h e n  a f r > 0 . , a n d  t o  n v e r r i d  

L i n e  3 7 ;  t  a ,  p a ,  t  C h  /  t P / 1 1 ,  p b ,  n  i  n ,  t  i  n  ( l " f * . , ? )  
t a = a n b i e n t  t e m p e r a t u r e  ( o e g K )  
p a = a m b i e n t  p r e s s u r e  ( k n / m 2 )  

t c h =  t e m p e r a t u r e  o f  c / l i n d e r  h e a d  ( d e j K )  
t P =  t e m p e r a t u r e  o f  p i s t o n  c r o w n  ( O e q K )  
t 1 =  t e m p e r a t u r e  o f  l j n e r  ( m a x )  ( J e > j * )

P i n :  i n t a k  p r e s s u r e  ( k M / m 2 )  
p b  = b j c k  p r e s s u r e  ( k l ! / m 2 )  

t  i n =  i n t a k e  t e m p e r a t u r e  ( o e g b )
L i n e  3 * :  t c w / t C O / h p i s / c s u b / h t C 1 / r 2 t i * * / r ) / r 1 x

t  c w -  c o o l i n g  w a t e r  a v e r a o e  t e m p e r a t u r e  ( d e u K )  
t c o =  c o o l i n g  o i l  a v e r a q e  t  e r a p e r  a  t  u  r  e  ( d e q l * )

I m i  s :  h e i q h t  o f  * i  j t . / o  r p n w n  ( n " * )
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hc ,)t t r j r > j f , ; r  f't1.'; i S t inf . ;? •
Mx =  r f l Mx a t  ion f j c t o r  for  i t «.• r t f j o

Line i ’>: st . i t  i c » ii i c*c t i k j *' ( ) , i i. j or i ■ ' 1  jV ( de' i rco )
L i n e  40 ;  c r rtn N i n c r e me n t  ( l j f . i . 2 )
L i n e  4 1 : c f  1 »c< J / c f ' / / c L ;  ( '* f I d . u )
L i n e  4?: f i r s t  e s t i m a t e  o f  toi ' .nur  , t  j p u  i n r . j c a c o n t r o l  volu. ; ic t emp ( i ) , i  = l /  n c v  ( 1 0 f 8 . ? )
L i n o  43 :  f i r s t  c s t i n a l c  o f  p r e s s u r e  " " " t . r  ( i ) , i = ;  , nc v ( 1 0 f 0 . 2 )
L i n o  4' i ;  f i r s t  o s t i n o t o  o f  e q u i v a l e n c e  r a t i o  " " • e . ( ( i 1,  i = 1,  ncv ( l 0 f « . 2 J
l i n e  4 h : . i c /  c t ( i 2 )

n c v c t =  i iui.ihor o f  c a l c u l  j t  i on  c v c l e s  •*
L i n o  4h;  1 a / c u t  * i s t u r t * i c c h o , n 1

l a y o u t  =0 f o r  e n g i n e  l ot - ached * r o n  co , mo un d  u n i t
=  1 f o r  c o m t . n u n j  u n i *  •

i s t a r t  i s  not  used  
i e c h o = 0 f u r  r j  e c 11 o i o

= 1 f o r  ec ho i  m  *
nl  i s  not  used  

L i n o  47 :  two r e l a x a t i o n  ♦ a c t o r s
L i n e  4 ft: t o l e r a n c e s  4 ur  t . to c u n v o r o u n o e  ( I ’ M  :).•>) •
L i n e  4*1: -  of  p r e s s u r e  | r o n ( n o t  nsc . l l

c o o ' o r  e f f e c t i v e n e s s
c h . i r j i n n  c o o l e r  t e m p e r a t u r e  •
t c i . i Pe r . i t u r e  u n i t s :  ( K)

p r e s s u r e  u n i t s :  K < / m * * ?
1 on j t  h on i t s : ii-i •

ar o . j  u n i t s :  c n * * ?  
n. i ss u n i t s :  nr.ai . is

♦!A"LLiST I f  *M.r.!P ' ’I . V  A °  1 A;;l L^

' , c n  i ^ . i e n s i t ,  u *  i . i S  ' j i l u r "  *
r f f s  =  3 C u V o n _ , i . i n  ** f  ♦ i o  i o n e  y

c f f t r : t  r a , i p i n j  o # f ' C i e n c v
e t  a c  *  = c h a r q  i n j  u * f ’ c  i o n c v  •
e t * ( . = c * u r  j o  p u r  i t /
rue I =j e 1i very  rot  jo
Sr t i r =i . i oss of  J e l i v e r e . J  u i r  *
s a t o t = t o t u l  t n / n o ' f  a i r  mass
s a t r  = i i ass o f  4 p 1 i y r r c j  u i r  t r a P p e d

c
1 d i m c n s i o nu1 a r r  j y  ;
o me x = i n c r e n e n t  o f " j S s  f l o w i n g  f rom c y l i n d e r  t o  e x h a u s t  m a n i f o l d
r t n i n :  f rom i n l e t  m a n i f o l d  t o  c y l i n d e r  £
eqa i  r=e  , u i v j l e n c c  r a t i o  o f  . j i r  w i t h i n  i n l e t  m u n i f o l J
eqr . j =  o f  r e s i j u l  j a s  w i t h i n  c y l i n j d e r  a t  t h e

l i e j i f i n i n j  o f  s c a v e n g i n g  g
i s c e = i n j i c a t o r  o f  s c a v e n g i n g

i f  i * c u ( i c v ) = 0 , t h e n  n o n - s c a v e n j i n g  p r o c e s s
= l , t h e n  t h e  b e g i n n i n g  o f  s c a v e n g i n . j  p r o c e s s  £
= 2 , t h e n  s c a v e n g i n g  p r o c e s s
= 3 # t h e n  t h e  end o f  s c a v e n g i n g  p r o c e s s

i f  i sc a (  i cv+1 h)  = i  , p r  ( i n i  e t  m«*n i f o l  d )  > p r  ( c y  l i  n d e r ) •
= 2 # t h e n  b o t h  i n l e t  u n j  e x h a u s t  p o r t s  open

2 d i m e n s i o n a l  a r r j y :
f i U H A f  ( i  ,  } )  = s o r . i e  d u . a n t i t y  w i t h i n  z o n e t z o n c  i , j “ t h  c y l i n d e r )
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If*9 «10*1« 
j .i 5 zone

' i  j  = I n  c  r  v  »• ’ ’ I • . * I l f  » , | S 3
n  1 n j  = s ■ j  r  - . . , . i 4 p .  a

e 1 V J ~ »/ 4 V j l  i j P e
or, : j z » O t .J 1 I D j S S
" 1 . 0  j = iv> i n f  l o w  i n n  f o t o l  e n t  h i  I n /

o ; j = e  |«i  i v  j  1 e n c o  r i t i o  a t  p r e s e n t  s t e n

j o  = a t  p r e v i o u s  s t e p

h  j  =  s p o c  i f i e  o n M i a l n /  . i f  p r e s e n t  s t e p

X o II j t  p r e v i o u s  s t e p

j  =  t  o  t  a  1 n s i a t p r e s e n t  3 t o n
r  j  r> = i t p r e v i o u s  s t e p

*• j  » i i . i  j S  o f  r e a  i J o . »!  T j S S

f J -  t  M l ' O P j f o P C  j P o r ^ S O n t  S t e p

» J o  = 0  p n r o r f  i o u s  a t  e n

•I j = i i ' c C  i * i r i 1) P l'P n i l  e n e r g y  a t  p r e s e n t  s t e p

M , O = a t  p r e v i o u s  s t e (

V j = v o l « i , . i e  a t , r c s e o t  s t o r
V / O :  i t , P y V i  O u 3  S t o p

* j  n z i t  p r .*v  i  o u s  s t e p

7  j  o  = a t  p r e v i o u s  s t e p

4

4

%

4

4

4

%

*

«

«

«

«

«

<

«

«
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■ ■ ■ - l  *—» V ' U '  ■ I . I < Vf *  ' * i_
M ' J L f i  zu:iF Mrjni.L np SCAVLflGI.’JG

' ‘ r o j P o * :  carx. iz

' S u b r o u t i n e  a s s o c i a t e d :  a r h r l
c o n v t n  
c o m !  v  
c r a n k  
e  1 i  m 
e p q e a r  
e p g e a r s  
e q q r  
h e a t  
q a s p r o p  
i  n  i  t  
i n t x t 1 
i  n t x t 2  
me r  j r  

m o t p  i  s 
n I s y s  t  
o r d e r  
o r  i  f  i  c  e  
o u t  
p o r t  
q t o i  s 
r e s  i  s  1 1 
r  c  S|  >b
Sum 1
t  i n o *  
t  u  r  ‘ j w

total; 26

M A I L L I S T  ) F I I J P U T  q ; » T A n t . C

L i n e  1 : t i t l e  (  2 0 a ' 4 )
L i n o  2 : f i r i n g  o r d e r  ( i h )
L i n o  3 :  c o m m e n t  ( i . e .  Q n y i n e  d a t a ? . . . * )  ( 2 Q a ' l )
L i n e  *4 : n c  y 1 ( i  2 )

n c y l = n u m b e r  o f  c y l i n j e r s  
L i n e  5 :  c r , s C e ( f l f l O . d )

C r  = c o m p r e s s i o n  r a t  j o  
s c r = s i z e  s c a l i n g  f a c t o r  f o r  e n j i n e  

L i n o  o : p h a s e  a n y l e  b e t w e e n  c y l i n d e r s  ( d e g r e e s )  ( 1 0 f 8 .  
l i n e  7 : b o r e , f v r , f h r , f p r , c 1 1 r a l r , a u r , c 1 u , d p c , r c k , z c t a

b o r e = c y 1 i n J e r  b o r e  ( n w )  
f v r = f r a m « > c r a n k  v e r t i c a l  c e n t r e  l i n e  t o  r o c k e r  p i v o t  
f h r = f r a m e / c r a n k  h o u s i n g  c e n t r e  l i n e  t o  r o c k e r  p i v o t s  
f ( ; r = f  r a m e , p  i s t o n  c e n t r e  l i n e  t o  r o c k e r  p i v o t s  ( m m )  
c l l = l o w e r  c o n n e c t i n g  r o d  ( mm)  
a l r = 1 o w e r  r o c k e r  a r m  (mm)  
a u r = u p p e r  r o c k e r  a r m  (mm)  
c l u = u p P e r  c o n n e c t i n g  r o d  ( m m )  
d p c = o i s t o n  c o m p r e s s i o n  d i s t a n c e  ( m m )

2)
( l l f l O

(mm)
(r.»m )

i

K

i

%

%>

fc

fc



ro
am

d i p  

d e D  
h i  p  = 
heO = 
w i p  = 
wep = 

Line 10: 
n  i  p =  

n e P  = 
a  1 i  n  = 

< i > e x  = 
L i n e  11:  
L i n e  1 2 :  
L i  n o  1 3 :

^ d ? s t a n c e T c r a n k ' v e r t i c a l  c e n t r e  t o  i n n e r  e d g e  o f  i n l e t  p o r t  ( m m )
e x h a u s t  n o r t  ( m m )

h e i g h t  o f  i n l e t  p o r t  ( m m )
e x h a u s t  p o r t  ( m m )  

t o t a l  w i d t h  o f  i n l e t  p O P t s  ( m m )  ,
e x h a u s t  p o r t s  ( m m )  

i t i p #  n e p #  a  1 i n , a  l e x  ( 2 i  2 #  7  f  3 . ' I ) 
n u m b e r  o f  i n l o t  p o r t s

o x h u u s t  p o r t s  
a i t ' )  1 e  c f  i n l e t  p o r t  ( d e g r e e s )

e x h a u s t  p o r t s  ( d e g r e e s )  
c o m m e n t '  ( m a n i f o l d  d a t a » ) ( 2 0 a 4 )  
n i i . i l  v i m ( i ) , i = l # n i m  ( i 2 ,  7 f l 0 . <O

( z e r o  f o r  i n l e t  m a n i f o l d s )  ( i 2 #  7 f l 0 . f l )  
l i n o  1 0 ;  c o . t t r c l  v o l u m e s  i n t e r c o n n e c t i o n  f o r  t h e  c y 1 i n d e r s  ( 1 0 i 2 )  
f o r  e x o m o l e  5 c y l i n d e r  e n g i n e  w i t h  s i n g l e  i n l e t  ™ a n , f 0 l j s  ( c . v .  a a n . j  
d i v i d e d  e x h a u s t  n 0 n i f o U  ( c . v .  *5 > a n d  c o o l e r  ( c .  v .  6 )  h a s  t h e  f o l l o w ^  

a r r j n ^ e m e n t

1 « -j
2 i 5
3 I b 

l i n e  l b ;
ach = 
a» c  = 

a  1 =

(hfio.a) 
t r a n s f e r  a r e a ( u c h = . 0 1  f o r  o p p o s e d  p i s t o n  e n g i n e )

I

(w/m?.V)
o f  s c a l i n g  f a c t o r s  f o r  h e a t  r e l e a s e  s h a p e

. i c l w  j r c »  j '  , * i t c , s w l  
c v l i n c e r  h e a j  h e a t  
p i s t o n  c r o w n
1 i  n e r  ( a t  t d c 1 

h t c  = e x h , j U 3 t  n u n i f o l  i s  h e a t  t r a n s f e r  c o e f f i c i e n t  
s w l  = s w i r l  r a t i o  i n  w o s c h n i  f o r m u l a  ( n M O . O )

L i n o  1 6 :  f r i c t i o n  s c a l i n g  f a c t o r  = 1 . 0  » f o u r  v a l u e s
L i n o  1 7 :  I t h y p / n c o o l  # h / P r a c o o l  ^ v o l  ( n c v )  (  r. i  4. ,  7  f  f t  .  1 )

n h y p s n o a i P r  o f  h / p j s  v a l v e s  

n c O o  1 s n u « ! » r r  o f  c o o l e r s
n y r s e  , u i v  j l e n t  M o w  a r c . *  o f  h / p o s s  v a l v e s  

a c o o  * = e  , u  i  v . j  1 v * n t  f  ’  o w  a r e a  o f  c o o l e r s  

V u l ( n v ) = v « l a r e  o f  c o o l e r  
L i n e  1 * :  n  j  o >  «iW # ,  c  i  1 * C I 2 #  C i  3  (  5  i  ? #  7 f  M . ' * )

n j o z n u m b e r  o f  i n i t i a l  z o n e s  a t  b e g i n n i n g  o f  
m k j = n vJm i > e r  o *  s t r i p s  i n t o  w h i c h  c y l i n d e r  i s  
i f  ... ic j = 2 #  t h e n  c i  l = C o e f  f  i e n t  o f  e n t r a p m e n t  

c  j 1# C i  2  a r e  n o t  u s e d  
i f  . . , K j >  =  J , t h e n  c  j  l = c o o f  f i c i e n t  o f  m0 me n t u n  t r a s f e r

c j 2 , c j 3 = c o e f f i c i e n t s  o f  m i x i n g  l e n g t h  

l i n e  i ' » :  c o m m e n t  ( c o m p r e s s o r  m a p , .................. )  ( 2 0 a 4 )
L i n e  2 * ' ;  c o m p r e s s o r  m o d e  f a c t o r ,  1 f o r  c o m p r e s s o r  m a p  0  f o r  c o m p r e s s o r

‘ .ctor.eMicloncv . . .M W  '« to r  .or co.pres.or Ul .10.6)  
comment (turbine map# ••••••) •  (2^0 )̂
t u r b i n e  m o l e  f a c t o r  ( i 2 )  s o m e  a s  f o r  t h e  c o m p r e s s o r  , . . f i n
, a s s  s c a l i n g  f a c t o r , e f f i c i e n c v  s c a l i n g  f a c t o r  f o r  t u r b i n e  

n o  o f  p r e s s u r e  p o i n t s , n o  o f  n o n  d i m e n s i o n a l  t u r b i n e  s o e e d  p o i n t s  ( i 2 )

n r o 3 S u r e  p o i n t s . v t p l O # i * I # O P  ( l O M . f c )  , >
n o n  c i m e n s i u n . )  t u r b i n e  s p e e d  p o i n t s ,  v  t  s  I  j  )  # j  - 1  # n t  s  ( U f l O . 6 )  

j l , d j t , d 3 o #  d 3 i , a , b 2 » b p 3 # b t  2  ( l l f l O . 6 )  
l i a n e t e r  a t  n o z z l e  e n t r v  ( m m )

s c a v e n g i  n j  
d i  v  i  d e d  

r a t e

• i  n c  
Line
L  i n o  
I . i n  e 
I i n o  
•. i n o  
L i n  o

2?:
2 3 ;

;
i b ;  
..’6 : 
2 7: 
2 " :  
<11 =



as n o *  Z  F *  A n g l e  ( d e . j )
I) 1 i iOo 1 e a t  r o t o r  ftn t  r  v ( r a j  t o  t  . jn j c i i  * i a 1 ) 

n ( : ^= s e r e *  p i t c h  v, f  r o t o r  b l a d e s  j t  e x i t  ( ~ i '
^ t < ‘>= t>I  , -*a« t h i c k n e s s  a t  r o t o r  o n t r v  

L m t  2 Q : ' <h t  • b h  2 s ,  h b . ? r  r ,  r»s i ,  f  f ,  I ;  t  _>o,  b  1 3 i  ( 1 1 M  °  ,
*' l> 1 -  ,, a s s u c e  w i d t h  o t  e x i t  f r o *  n o z z l e  ; "  J

i_,n,2s = , . a s  s . j c e  w i d t h  j u s t  h e * o r «  r o t o r  e n t r y  ( - , , 1  
h b ? r r =  p a s s a g e  w i J t h  j u s t  a f t e r  r o t o r  e n t r y  f . . | i r j  

o s i =  c o n e  a n g l e  a t  r o t o r  e n t r y  ( r  %4 r l )  
f  f  = f l o w  l e s s f a c t o r ,  e q u a l s  1 f o r  n o  l o s s  

b t 3 o  = b l a d e  t h i c k n e s s  o t  r o t o r  e x i t  a t  t i n  ( n » )
U t 3 i =  t > l f l i Oe t h i c k n e s s  o t  r o t o r  e x i t  o t  r o o t  ( « w l  

L i n e  3 ° :  c o m m e n t  ( i . e .  d i f f e r e n t i a l  C o r , m u n , l  d a t a )  f j h a ' i )
L i n e  3 1 ;  e g r »c c  r , t o r  , o o r  , c o e  # t  g e ,  o j e » c r  ,e M l M O . h )

• g r = e p i c y c I i c  n e a r  r a t i o  
C g r = o v e r a l l  c « « j * f o S 5 o r  g e a r  r , j f  j ^
* j  r  = t  o r l i  i  n e  T e a r  r a t i o  
o « , r  = o u t p u t  s h j f t  j e . » r  r . , t « n  
o < , e =  o u t p u t  s h a f t  g e a r  e f f i c i e n c y  
t  .u e  = t  u r i # i  n e * r v T n e a r  *

L r,/ = cjrrier "
Cv j e=  c o , . i p r f  s s o r  "

L i n e  3 ? :  s o a r  a c e .  ( l l f l U . O )  s j e  = s u n  g e a r  e f f i c i e n c y ,  . i o c ~ a n m i  1 u s  j e o r  e f f i c i e n c y  
L i n e  3 3 ;  ] a ,  j  e ,  j  c  ,  j  c  r ,  j , , ,  j  s , i t ,  j  n ( k  ( 1 1 f l O . a )

j a r  a n n u l u s  i n e r t i a  
j e =  e n . j i n e  i n e r t i a  
j c =  c o m p r e s s o r  i n e r t i a  

i c r =  c a r r i e r  i n c r t i s  
, P =  p i  o n e t  i n e r t  j a 
j  s =  s t * n  i r e r t  i  a  
j t =  t u r b i n e  i n e r t i a  
j o s o u t p u t  s h a f t  i n e r t i a  

L i n e  3 ' » :  o s  I t , c s s  ( l l f l O . o )  
o s l t = o u t p u t  s h a f t  t o r o u c  

o s s = o u t p u t  s h a f t  s p e e d  
L i n e  3* * :  c o m m e n t  ( r u n n i n g  c o n d i t i o n )  ( 2 J a | )
L i n e  3 h ;  e s , f f r a t e , a f r , c a l v a l  ( f l 0 . 2 ,  ? f  1 0 .‘j, f 1 0 . 0 )  

e s = e n q » n e  s p e e d  ( r e v / m i n )  
f f r a t e = f u e l  f l o w  r a t e  ( k g / s e c )  

a f r = a i r _ f u e l  r a t i o  
c a 1 v a 1 = c a I  o r i ♦ i  c  v a l u e  o f  t h e  f u e l  ( K J / K G )

~  n o t i c e i i f  f f r a t e  w a n t e d  t o  b e  s p e c i f i e d , t h e n  a f  r  =  <<1 .
i f  a f r  w a n t e d  t o  b e  s p e c i f i e d , t h e n  a f r > 0 . , o n d  t o  o v e r r i d e  a n y  f f r a t e  

L i n e  3 7 ;  t a , p o , t c h ,  t p , t 1 , p b , p i n , t i n  ( I 0 f * . 2 )  
t a = a « b i e n t  t e » p e r a t u r e  ( d e g K )  
p a  = a . » b i e n t  p r e s s u r e  ( k f ; / m 2 )  

t c h =  t e n P e r a t u r e  o f  c y l i n d e r  heo<1  ( d e j K )  
t p =  t e m p e r a t u r e  o f  p i s t o n  c r o w n  ( d e o K )  
t l =  t e n c c r a t u r e  o f  l i n e r  ( m a x )  ( d e g K )

^  n i n =  i n t a k  p r e s s u r e  ( k f l / m 2 )
O) p h = b a c k  p r e s s u r e  ( k N / m 2 )

t  i n :  i n t a k e  t e m p e r a t u r e  ( d e g K )
L i n *  3 * :  t C m , t c o , h p i s , c s u b , h t c I , r 2 , r 8 , r 9 , r 1 x  ( l O f G . 2 )  

t c w =  c o o l i n g  w a t e r  a v e r a g e  t e m p e r a t u r e  ( d c q K )  
t c o :  c o o l i r g  o i l  a v e r a g e  t e m p e r a t u r e  ( d e a K )  

h p i s =  h e i g h t  o f  p i s t o n  c r o w n  ( m m )  
c s u h :  h e a t  c o n d u c t i v i t y  o f  p i s t o n  ( k w / K )



M a s  r e l a x a t i o n  f a c t o r  f o r  i t e r a t i o n  
L i n e  3**S s t a t i c  i n j e c t i o n ( d e g r e e ) / i n j e c t i o n  de l  a y ( d e g r e e )  ( 1 0 f 8 . 2 )
L i n e  40 :  c r a n k  i n c r e m e n t  ( 1 0 f d . 2 )
L i n e  41 :  c f I • c f a t c f v * c f m ( 8 f l 0 . . 6 J
L i n e  42 :  f i r s t  e s t i m a t e  o f  t e m p e r a t u r e  i n  each  c o n t r o l  vo l ume t e m p ( i ) , i = 1 , ncv ( 1 0 f 8 . 2 )
L i n e  43 :  f i r s t  e s t i m a t e  o f  p r e s s u r e  " " " " p r ( i ) ,  i s i , ncv ( 1 0 f d . 2 )
L i n e  4 4 :  f i r s t  e s t i m a t e  o f  e q u i v a l e n c e  r a t i o  " " * " e q ( i ) ,  f a t * n c v  ( 1 0 f 8 . 2 )
L i n e  4 5 :  n c y c t  ( i 2 )

n c v c t =  number  of  c a l c u l a t i o n  c v d e s  
L i n e  46 :  1a y o u t , i s t a r t , i e c h o * n I

l a y o u t = 0  f o r  e n g i n e  d e t a c h e d  f rom compound u n i t  
=1 f o r  compound u n i t  

i s t a r t  i s  not  used  
i echosO f o r  no e c h o i n g  

=1 f o r  e c h o i n g  
nl  i s  not  used  

L i n e  4 7 ;  two r e l a x a t i o n  f a c t o r s
L i n e  4 * :  t o l e r a n c e s  f o r  t h e  c o n v e r g e n c e  ( l t f 1 0 . 6 )
L i n e  4**: S o f  p r e s s u r e  d r o p ( n o t  u s e d )  

c o o l e r  e f f e c t i v e n e s s  
c h a r g i n g  c o o l e r  t e m p e r a t u r e  
t e m p e r a t u r e  u n i t s :  ( K)

p r e s s u r e  u n i t s :  K : ; / m* * 2  
l e n g t h  u n i t s :  mm 

a r e a  u n i t s :  c m* * 2  
mass u n i t s :  grams

NAMELIST OF m a j o r  m e w  v a r i a b l e s

a l v b = c r i t i c a l  i n t a k e  a n g l e  o f  v o r t e x  b r ea kdown
d e n m= d e n s i t y  o f  gas m i x t u r e
e f f s = s c a v e n g i n g  e f f i c i e n c y
e f f t r = t r a p o i n g  e f f i c i e n c y
e t a c h = c h a r q i n g  e f f i c i e n c y
etaf> = c h a r g e  p u r i t y
r ue  1= j e 1 i v e r y  r a t i o
s a i r = m a s s  o f  d e l i v e r e d  a i r
s a t o t = t o t a l  t r a p p e d  a i r  mass
s a t r = ma s s  o f  d e l i v e r e d  a i r  t r a p p e d

1 d i m e n s i o n a l  a r r a y :
a j x = t a n g e n t  o f  a n g l e  b e t we e n  a d j e c e n t  z ones  w i t h i n  d i f f e r e n t  s t r i p *  
d » e x = i n c r e m e n t  o f  mass f l o w i n g  f rom c y l i n d e r  t o  e x h a u s t  m a n i f o l d  
dmi n= f rom i n l e t  m a n i f o l d  t o  c y l i n d e r
e q a i r = e q u i v a l e n c e  r a t i o  o f  a i r  w i t h i n  i n l e t  m a n i f o l d
e q r g =  o f  r e s i d u l  gas w i t h i n " c y l i n g d e r  a t  t h e

b e g i n n i n g  o f  s c a v e n g i n g  
i s c a s i n d i c a t o r  o f  s c a v e n g i n g

i f  i s c a ( i c v ) = 0 , t h e n  n o n - s c a v e n g i n g  p r o c e s s
= l * t h e n  t h e  b e g i n n i n g  o f  s c a v e n g i n g  p r o c e s s  
= 2 , t h e n  s c a v e n g i n g  p r o c e s s  
= 3 , t h e n  t h e  end o f  s c a v e n g i n g  p r o c e s s  

i f  i s c a ( i c v M O )  = l , p r ( i n l e t  mani  f o l d ) > p r ( c y l i n d e r )
= 2 » t h e n  b o t h  i n l e t  and e x h a u s t  p o r t s  open  

m1 J i m u m  o f  2one w i t h i n  each  s t r i p
m a x ! j =  a l l  s t r i p s
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s j x = d i s t a n c e  o f  s J j e c e n t  z o n e s  w i t h i n  d i f f e r e n t  s t r i p s

3 d j m e n s i o n a l _ a r r a y :
A R R A Y ( i / J / k ) = s o m e  q u a n t i t y  w i t h i n  z o n e ( i - t h  s t r j p , J - z o n e * k - 1 h  c y l i n d e r )

a j  = i  n c  r  e i r  e n  t  o f  a i r  m a s s
d k e  j  = o f  t o t a l  i n t e r n a l  e n e r g y
d l m j = s u r p l u s  o f  m a s s
d 1 v  j  = o f  v o 1 u m e
cim j  = o f  t o t a l  m a s s
d m h j =  o f  i n f l o w i n q  t o t a l  e n t h a l p y
d « n w j =  o f  a x i a l  m o m e n t u m
e q j = e j u i v a  1 e n c e  r a t i o  a t  p r e s e n t  s t e p
e q j o =  a t  p r e v i o u s  s t e p
f j  = i n i t i a !  i n j e c t e d  m o m e n t u m  f l u x  a t  p r e s e n t  s t e p
f j o =  a t  p r e v i o u s  s t e p
h j = s p e c i f i c  e n t h a l p y  a t  p r e s e n t  s t e p
* j o =  a t  p r e v i o u s  s t e p
m j = t o t a l  m a s s  a t  p r e s e n t  s t e p
m j o =  a t  p r e v i o u s  s t e p
r j = r a J i u s  a t  p r e s e n t  s t e p
r j o =  a t  p r e v i o u s  s t e p
r j o > )  = i n n e r  r a J i u s  a t  p r e v i o u s  s t e p
s j = m a s s  c f  r e s i j u a l  q a s s
t j = t e m p e r a t u r e  a t  p r e s e n t  s t e p
t j o =  a t  p r e v i o u s  s t e p
u j = s p e c i f i c  i n t e r n a l  e n e r g y  a t  p r e s e n t  s t e p
u j o =  a t  p r e v i o u s  s t e p

v j = v o l u r . i e  a t  p r e s e n t  s t e p
v j o =  a t  p r e v i o u s  s t e p
w j  = a x i  a 1 v e l o c i t y  a t  p r e s e n t  s t e p
w j o =  a t  p r e v i o u s  s t e p
z j = o x i a l  J i s p l a c e m e n t  a t  p r e s e n t  s t e p
7 j o =  a t  p r e v i o u s  s t e p
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S u b  r o u t i n e  . i s a o c i  j t e d : a r h r  I 
Com 1 y 
c onmai ' 
c o n y t n  
C o o l e r  
c r a n k  
e p g e a r  
e , j gear s  
heat  
ga s p r o p  
head i ng 
i n i t 
i n t x 1 1 
i n t x 12 
merge  
m o t p  i S 
or  i f i ce 
out
out comp  
o u t e n *  
o u t  e x t  
out  hea t  
out  h r  
out  t u r b  
p o r t  
resist 
s i mp i t 
sum 1 
t  i mex 
t urbwA  
t ur map

t o t a l : 31
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NAMELIST OF INPUT DATAFILC

L i n e  1 : t i t l e  ( 2 0 a 4 )
L i n e  2 : f i r i n g  o r d e r  ( i 6)
L i n e  3 : comment ( i . e .  E n g i n e  d a t a / . . . . )  ( 2 0 a 4 )
L i n e  4 : n c y I / n c o m p / n t u r b / n c o m p 1 / n t u r b 1 / n b y p / i c o o  1 # i c o o l  1 ( 2 0 i 2 )

n c y l =  number o f  c y l i n d e r s  
ncomp:  number o f  h i g h  p r e s s u r e  c o mp r e s s or s  
n t u r b =  number o f  h i g h  p r e s s u r e  t u r b i n e s  

ncompl= number o f  low p r e s s u r e  compr e ss or s  
n t u r b l =  number o f  low p r e s s u r e  t u r b i n e s  

nhyps number o f  b ypass  v a l v e s



i c  o o 1 1 = 

L i n e  5 : 
c  r  = 

se e :  
L i n e  0 : 
L i n e  7 : 

L o r e :  
f v  r  = 
f h r = 
f »• r  =
C l l :  
a 1 r  = 
au r = 
c 1 u = 
dpc = 
r c k  = 

z e t  a = 
L i n e  0 :
L i n e  •? : 

aphase=  
d i p = 
dep = 
h i p = 
hep = 
w i p = 
wep = 

L i n e  1 0 :  
n i p = 
nep = 

a 1 i n = 
a 1 e x = 

L i ne 1 1 :  
L i n e  1 2 :  

n i m = 
v o 1 ( i  )  = 

L i n e  1 3 :  
nem = 

v o 1 ( i ) =

n u m b e r  o f  L O u ' c r s  i 
c r f  s e e  ( 3  f  1 0 . 4 )
c o . i p  r e  s s i o n  r a t  i  o 
s i z e  s e a  1 i  n j  f j c  t  o r
i > h .»S c  j  n 1 e ! f  t  w e C i  i

f t e t -  1 o .j p r e s s u r e  c o m i  r e s s o r

t o r  e n . j i n e  
c y l i n d e r s  ( d e g r e e s ) (10 f0.2)

b o r e ,  f v r ,  * h r ,  f , r , c l  1 ,  a 1 r ,  a u r , c l u ,  d y . c  , r c k , z e t a
e / 1  i n c o r  : - . o r e  C.sin 1

c e n t r e  l i n e  t o  r o c k e rf r a i i i e f c r j n k  v e r t i c a l  c e n t r e  l i n e  t o  r o c k e r  p i v o t  
f r a i r e , c r , j n k  housing c e n t r e  l i n e  t o  r o c k e r  p i v o t s  
f r a m e , p i s t o n  c e n t r e  l i n e  t o  r o c k e r  p i v o t s  ( m m )  
l o w e r  c o n n e c t  i n y  ' ' o n  ( mi . i )
l o w e r  r o c k e r  a r c  (mm) 

o p  p e r  r o c < e * r  a r c  ( n . p )  
o p p e r  c o n n e c t  > nc,  r o d  ( m m )
I ' i s t o r  C u i i p r c s s  i  o n  M S t a n C C  Cfarr.) 
c r a n k  r a d i u s  ( m n )
a n g l e  b e t w e e n  l o w e r  a n d  u p p e r  r o c k e r  a r m s  ( d e g r e e )  
c o m m e n t  ( p o r t  d a t a , . . . )  ( 2 0 a 4 )  
a p h a s e , d i p , d e p , h i p , h e p , w i p , w e p  ( 1 0 f l 0 . 6 )  
p h a s e  a n g l e  b e t w e e n  t w o  c r a n k  a r m s  ( d e g r e e s )
J i s t o n c e # c r a n k  v e r t i c a l  c e n t r e  t o  i n n e r  e d g e  o f

( I l f  10.6)

(mm)
( m m )

i n l e t  p o r t  ( m m )  
e x h a u s t  p o r t  ( m m )

h e  i  g l i t  o f  i n l e t  p o r t  ( m m )
e x h a u s t  p o r t  ( m m )

= t o t a l  w i d t h  o f  i n l e t  p o r t s ;  i f  c i r c u l a r  i n l e t  p o r t ,  d e f r a u d  w i p =  0 .  ( m m )
e x h a u s t  p o r t s ;  i f  c i r c u l a r  e x h a u s t  p o r t ,  d e f r a u d  w e p =  0 .  ( m m )  

n i p , n e p , a l i n , a l e x  ( 2 i 2 , 7 f 3 . 4 )  
n u m b e r  o f  i n l e t  p o r t s

e x h a u s t  p o r t s  
a n g l e  o f  i n l e t  p o r t  ( d e g r e e s )

e x h a u s t  p o r t s  ( d e g r e e s )
c o m m e n t  ( m a n i f o l d  d a t a , ................... )  ( 2 Q a 4 )
n i  i , i ,  ( v o l  ( i  )  ,  i  = n c y  I ♦  1 ,  n c y  1 f - n  i m ) ( i 2 , 7 f l 0 . 4 )
n o  o f  i n l e t  m a n i f o l d s  
v o l u m e  o f  i n l e t  m a n i f o l d s
n e m , ( v o l ( i ) , i =  n c y 1 f - n i m ♦ 1 , n c y 1 t n i m + n e m ) ( i 2 , 7 f l 0 . 4 )  
n o  o f  e x h a u s t  m a n i f o l d s  
v o l u m e  o f  e x h a u s t  m a n i f o l d s  

L i n e  1 4 : ( a c v ( i ) , i =  n c y l f l , n c v )  
a c v ( i ) =  a r e a  c f  m a n i f o l d s  

L i n e  1 5 :  c o n t r o l  v o l u m e s  i n t e r c o n n e c t i o n  f o r  t h e  c y l i n d e r s  ( 1 0  i  2 )  
f o r  e x a m p l e  3  c y l i n d e r  e n g i n e  w i t h  s i n g l e  i n l e t  m a n i f o l d s  ( c . v .  4 )  a n d  
d i v i d e d  e x h a u s t  m a n i f o l J  ( c . v .  5)  a n d  c o o l e r  ( c .  v .  6 )  h a s  t h e  f o l l o w i n g  
a r r a n g e m e n t

1 4 5
2  4 5
3  4 5 

L i n e  1 6 :
a c  h = 
a p e  = 

a 1 = 
h t c  = 
s w  1 = 

h t s f  =
L i n e  1 7 ;
L i n e  1 8 :  

v r 0  =

a c h , a p c , a l , h t c , s w l , h t s f  ( 8 f l 0 . 4 )
c y l i n c e r  h e a j  h e a t  t r a n s f e r  a r e a  (  a c h = . 0 1  f o r  o p p o s e d  p i s t o n  e n g i n e )
p i s t o n  c r o w n  
1 i n e r  ( a t  t d c )
e x h a u s t  m a n i f o l d s  h e a t  t r a n s f e r  c o e f f i c i e n t  ( w / m 2 . k )  
s w i r l  r a t i o  i n  w o s c h n i  f o r m u l a  
h e a t  t r a n s f e r  s c a l i n g  f a c t o r
f r i c t i o n  s c a l i n g  f a c t o r  = 1 . 0  ,  f o u r  v a l u e s  o f  s c a l i n g  f a c t o r s  f o r  h e a t  r e l e a s e  s h a p e  
v r 0 , v r l , c i d ( l ) , c i d ( 2 ) , c i d ( 4 ) , c i d ( 5 ) , c i d ( 6 )  ( 8 f l 0 . 4 )  
r a t i o  o f  t h e  i n i t i a l  r e s i d u a l  g a s  v o l u m e  f o r  m i x i n g  z o n e  

t o  t h e  t o t a l  c y l i n d e r  v o l u m e



c i u I ‘i ) = d i s c h a r g e  p a r t i t i o n  f rom t he  a i r  zone
c i o ( 5 ) =  m i x i n g  zone
c i «..((,) = gas zone

Lin. ;  19;  co,.iiror, t ( h i g h  p r e s s u r e  com, - r essor  m a p / ............) ( 2 0 a 4 )
L i n e  2 0 :  n c . i / n c s  ( 2 0 i 2 )

ncm= no of  p r e s s u r e  p o i n t s  f o r  h i g h  p r e s s u r e  c ompr e ss or  
ncs= no of  non J i me n s i o n a 1 t u r b i n e  speeJ p o i n t s  

L i n e  21 :  t 0 c / pCc$c 1s f , c w s f , c e s f , t c s / t j r / j t c  ( d f l O . O )
tOc= r e f e r e n c e  t e m p e r a t u r e  f o r  h i gh  p r e s s u r e  c ompr e ss or  
P0c= r e f e r e n c e  p r e s s u r e  

c l s f =  l e n g t h  s c a l i n g  f a c t o r  
cmsf= mass f l ow r a t e  s c a l i n g  f a c t o r  
c e s f =  e f f i c i e n c y  s c a l i n g  f a c t o r  

t c s =  t u r b o c h a r g e r  speed f o r  h i g h  p r e s s u r e  t u r b o c h a r g e r  
t g r =  t u r b i n e  g e a r  r a t i o  
j t c =  momentun o f  i n e r t i a  

L i n e  22 :  ( v e s ( i ) , i = 1 , n c s )  ( H f l O . O )  
v e s ( i ) =  speeJ p o i n t s  f o r  h i gh  p r e s s u r e  comp r e s s or  

L i n e  23:  mass f l o w  r a t e  p o i n t s  ( v c r a f ( i / j ) / i = l / n c m )  ( Q f l O . O )
L i n e  24 :  p r e s s u r e  p o i n t s  Cv cp Ci $ j ) »  i s l / ncr a)  ( 8 f l 0 . 0 )
L i n e  25 :  h i gh p r e s s u r e  comp r e s s or  e f f i c i e n c y  ( v c e ( i , j ) / i = 1 , ncm) ( 8 f 1 0 . 0 )
L i n e  26:  comment ( l o w  p r e s s u r e  c o mp r e s s o r  m j p , ............... ) ( 2 0 a 4 )
L i n e  27 ;  r tc i . i l / ncsl  ( 2 0 i 2 )

ncml = no o f  p r e s s u r e  p o i n t s  f o r  low p r e s s u r e  compr e ss or
n c s l =  no o f  non J i m e n s i o n a l  t u r b i n e  speed p o i n t s

L i n e  28 :  t O c l / p O c l / d s f l / c m s f l / c e s f l / t c s l / t g r l / j t c l  ( 8 f l 0 . 0 )  
t 0 c l =  r e f e r e n c e  t e m p e r a t u r e  f o r  low p r e s s u r e  compr e ss or  
p 0 c l =  r e f e r e n c e  p r e s s u r e  

c 1 s f 1= l e n g t h  s c a l i n g  f a c t o r
c m s f l =  mass f l o w  r a t e  s c a l i n g  f a c t o r
c e s f l =  e f f i c i e n c y  s c a l i n g  f a c t o r  

t c s l =  t u r b o c h a r g e r  speed f o r  low p r e s s u r e  t u r b o c h a r g e r  
t g r l =  t u r b i n e  g e a r  r a t i o  
j t c 1= momentum o f  i n e r t i a  

L i n e  29 :  ( v e s 1 ( i ) / i = 1 , n c s 1)
v c s l ( i ) =  speeJ p o i n t s  f o r  low p r e s s u r e  comp r e s s or
L i n e  30;  mass f l o w  r a t e  p o i n t s  ( v c m f 1 ( i , j ) , i = 1 / ncm1) ( 8 f l 0 . 0 )
L i n e  31:  p r e s s u r e  p o i n t s  ( v c p 1 ( i / j ) / i = 1 / n c m l ) ( 8 f l 0 . 0 )
L i n e  32 :  low p r e s s u r e  comp r e s s or  e f f i c i e n c y  ( v c e l ( i / J ) / i = l / n c m 1 ) ( 8 f l 0 . 0 )
L i n e  33 :  comment ( l o w  p r e s s u r e  t u r b i n e  m a p / ................) ( 2 0 a 4 )
L i n e  34 :  n t s l / n t p l / i t u r b l  ( 2 0 i 2)

n t s l =  no o f  non J i m e n s i o n a l  t u r b i n e  speed p o i n t s  f o r  low p r e s s u r e  t u r b i n e
n t p l =  no o f  p r e s s u r e  p o i n t s

i t u r L l =  no o f  low p r e s s u r e  t u r b i n e  e n t r y
L i n e  35 :  t 1s f 1 # t m s f 1 / t e s f 1 / t O t 1 , p 0 t 1 , d t i p i  ( B f l O . O )

t l s f l =  l e n g t h  s c a l i n g  f a c t o r  f o r  low p r e s s u r e  t u r b i n e  
t m s f l =  mass f l o w  r a t e  s c a l i n g  f a c t o r  
t e s f l s  t u r b i n e  e f f i c i e n c y  s c a l i n g  f a c t o r  

t O t 1= r e f e r e n c e  t e m p e r a t u r e  
p O t 1= r e f e n r e n c e  p r e s s u r e  

d t i p l =  t i p  J i a m e t e r  (mm)
L i n e  36:  speed p o i n t s l  ( v t s l ( i ) , i 1= l / n t s l )
L i n e  37:  p r e s s u r e  p o i n t  f o r  low p r e s s u r e  t u r b i n e  ( v t p 1 ( i ) / i = 1 / n t p 1)  ( 8 f l 0 . 0 )
L i n e  38:  mass f l o w r a t e  p o i n t s  ( v t m f 1 ( i / J ) / j = 1 / n t s 1)  ( 8 f l 0 . 0 )
L i n e  39:  t u r b i n e  e f f i c i e n c y  p o i n t s l  ( v t e l ( i / j ) / j = 1 / n t s 1) ( 8 f l 0 . 0 )
L i n e  40:  n w j l / a w g l / p w w1/Swg1 ( f l f l O . O )

nwgl = no o f  was t e  j a t e  f o r  low p r e s s u r e  t u r b i n e



« 
2
5
2

L i n e  1 1 :  c o m m e n t  ( r u n n i n g  c o n d i t i o n )  ( 2 0 a 4 )
L i n e  1 2 :  * s , f f r d t e , j f r » c o l v d l ( f l 0 . 2 ,  2 f l 0 . 5 ,  f l O . O )  

es = en g i n e  S| eed ( r e v / n i n )  
f f r a t e s f u e l  f 1 o .  r a t e  ( k g / s e c )  

a f r  s .j  i r_ f  u e 1 r a t i o 
c a l v a l s  c a l o r i f i c  v a l u e  uf  t h e  f u e l  ( KJ / KG)  

n o t i c e l i f  f f r a t e  want ed  to be s p e c i f i e d / t h e n  j f r :  <0 .
i f  a f r  w u n t e J  t o  b e  s p e c i f i e d # t h e n  a f r > 0 . / a n d  t o  o v e r r i d e  a n y  f f r a t e  

L i n e  -4 3 :  t a , p a , t w , t c h , t p , t l , p b , p i n * t i n  C l  O f  0 . 2 )  
t a s  a m b i e n t  t e m p e r a t u r e  ( d e g K )  
p a s  a . u l i i  o r . t  p r e s s u r e  ( k N / m 2 )  
t w =  c o o l i n j  w a t e r  t e m p e r a t u r e  ( d e g K )  

t c h s  t e m p e r a t u r e  u f  c y l i n d e r  h e a d  ( l o j K )  
t p  = t e m p e r a t u r e  o f  p i s t o n  c r o w n  ( d e g K )  
t l =  t e m p e r a t u r e  o f  l i n e r  ( m a x )  ( d e g K )  

p i n s  i n t a k  p r e s s u r e  ( k N / m 2 )  
p b =  b a c k  p r e s s u r e  ( k m / r n 2 )  

t i n =  i n t a k e  t e m p e r a t u r e  ( d e g K )
L i n e  44:  t e w / t c o / h p i  s ,  c s u b / h t c  1 / r2# r 8 ,  r' )# r  1 a ( 1 0 f f l . 2 )  

tcw= c o o l i n g  w a t e r  a v e r a g e  t e m p e r a t u r e  ( degK)  
t co=  c o o l i n g  o i l  a v e r a g e  t e m p e r a t u r e  ( degK)  

h p i s s  h e i g h t  o f  p i s t o n  crown  
csub= heat  c o n d u c t i v i t y  o f  p i s t o n  
h t c  1= hea t  t r a n s f e r  c o e f f i c i e n t  o f  l i n e r  
r 2 , r 8 # r 9 s  he a t  t r a n s f e r  r e s i s t a n c e s  

r l x =  r e l a x a t i o n  f a c t o r  f o r  i t e r a t i o n  
L i n e  45 :  s t a t i c  i n j e c t i o n ( d e g r e e ) / i n j e c t i o n  d e l a y ( d e g r e e )  ( 1 0 f 8 . 2 )
L i n e  46 :  c r a n k  i n c r e me n t  ( 1 0 f 8 . 2 )
L i n e  47:  c f 1» c f a # c f v # c f n  ( 3 f l 0 . 6 )
L i n e  4 8 :  f i r s t  e s t i m a t e  o f  t e m p e r a t u r e  i n  each c o n t r o l  vol ume  
L i n e  4 9 :  f i r s t  e s t i m a t e  o f  p r e s s u r e  " " " m
L i n e  50 :  f i r s t  e s t i m a t e  o f  e q u i v a l e n c e  r a t i o  " " "
L i n e  51 :  n c y c t  ( i 2 )

n c y c t =  n u m b e r  o f  c a l c u l a t i o n  c y c l e s  
L i n e  5 2 :  1 a y o u t / i s t a r t $ i e c h o / n 1 ,  i p i o t / i c h e c k / i p # n i t i t  

l a y o u t s  0 f o r  e n g i n e  d e t a c h e d  f r o m  c o m p o u n j  u n i t
= 1 f o r  c o m p o u n d  u n i t

i s t a r t  i s  n o t  u s e d  
i e c h o s  0 f o r  n o  e c h o i n g  

= 1 f o r  e c h o i n g  
n l  i s  n o t  u s e d  

i p l o t =  0 f o r  n o  p l o t t i n g  
= 1 f o r  p l o t t i n g  

i c h e c h s  o f o r  n o  c h e c k i n g  

= 1 f o r  c h e c k i n g  
i p  i s  n o t  u s e d  

n i n i t s  n o  o f  c a l c u l a t i o n  c y c l e s  f o r  i n i t i a t i o n  
L i n e  5 3 :  t w o  r e l a x a t i o n  f a c t o r s
L i n e  54 :  t o l e r a n c e s  f o r  t h e  c o n v e r g e n c e  ( 1 0 f l 0 . 6 )  

t e m p e r a t u r e  u n i t s :  ( K)  
p r e s s u r e  u n i t s :  Kh / m* * 2  

1e n g t h  uni  t s : mm 
a r e a  u n i t s :  cm* * 2  
mass u n i t s :  grams

t e m p ( i ) , i s j , n c v  ( 1 0 f 8 . 2 )  
p r ( f ) #  i  ~ l r n c v  ( 1  O f 8 . 2 )

e q ( i ) , i s l , n c v  ( 1 0  f  8,
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d e n m = d e n s i t y  o f  g j s  m i x t u r e
e f  f s  = a C j v ( j H j i n g  e f f i c i e n c y
e f f t r s t r a p p i n j  e f f i c i e n c y
e t  a c  h = c  I. a r j  i n  ^  e f f i c i e n c y
e U | > = c h < » r j e  p u r i t y
r u e  1 = l e  1 i v e r y  r ^ t i o
s a i r  = n . a s s  o f  J e l i v e r e i  a i r
s a t o t = t o t a l  t r a p p e d  a i r  m a s s
s a t r = n a s s  o f  J e l i v e r e i  a i r  t r a p p e d

1 i i m e  n  s  i  o  n  a  1 a r r a y :
«i i r .ex = i n c  r e r a o n t  o f  f l o w i n g  f r o m  c y l i n d e r  t o  e x h a u s t  m a n i f o l d
u i r i n =  f r o m  i n l e t  m u n i f o l J  t o  c y l i n d e r
c Ma i  r = c  i u i  v o  1 o n c e  r  »t  i o f  a i r  w i t h i n  i n l e t  m a n  i  f  o  1 J 
e p r . j =  o f  r e s i d u l  g a s  w i t h i n  c y l i n j d e r  a t  t h e

h e j i n n i r i j  o f  s c a v e n g i n g  
i s C u = i n d i c a t o r  o f  s c a v e n g i n g

i f  i sc<j ( i  c  v  ) =  0 / t h e n  n o n - s c a v e n g i n g  p r o c e s s
= 1» t h e n  t h e  b e g i n n i n g  o f  s c a v e n g i n g  p r o c e s s  
= 2 , t h e n  s c a v e n g i n g  p r o c e s s  
= 3 , t h e n  t h e  e n d  o f  s c a v e n g i n g  p r o c e s s  

i t  i s c a ( i c v + 1 0 ) = l , p r ( i n 1 e t  m a n i f o 1 d ) > p r ( c y 1 i n d e r )
= 2 f t h e n  b o t h  i n l e t  a n d  e x h a u s t  p o r t s  o p e n

2 d i m e n s i o n a l  a r r a y :
A R R A Y ( i , j ) = s o n c  q u a n t i t y  w i t h i n  z o n e ( z o n e  i , j - t h  c y l i n d e r )

= 1  f o r  t h e  a i r  z o n e
= 2  m i x i n y  z o n e
= 3  g a s  z o n e

a j  = i n c r e n r . e n t  o f  a i r  m a s s  
d l m j = s u r p 1 u s  o f  m a s s  
d l v j  = o f  v o l u m e
d m j =  o f  t o t a l  m a s s
d m h j =  o f  i n f l o w i n g  t o t a l  e n t h a l p y
e q j = e q u i v a  1 e n c e  r a t i o  a t  p r e s e n t  s t e p  
e q j o =  a t  p r e v i o u s  s t e p
h j = s p e c i f i c  e n t h a l p y  a t  p r e s e n t  s t e p
h j o =  a t  p r e v i o u s  s t e p
m j = t o t a l  m a s s  a t  p r e s e n t  s t e p
m j o =  a t  p r e v i o u s  s t e p
s j  = m a s s  c f  r e s i j u a l  y a s s  
t j = t e m p c r a t u r e  a t  p r e s e n t  s t e p
t j o =  a t  p r e v i o u s  s t e p
u j = s p e c i f i c  i n t e r n a l  e n e r g y  a t  p r e s e n t  s t e p
u j  o  = a t  , r e v i o o s  s t e i
v j = v o l u m e  a t  j r c s e n t  s t e p  
v j o =  a t  p r e v i o u s  s t e p
w j o =  a t  p r e v i o u s  s t e p
z j o =  a t  p r e v i o u s  s t e p


