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SUMMARY

When components have been made they must be inspected. In the research 

reported in this thesis a group of algorithms which form an automatic inspection 

method are described. Thus, a set of measurements of an engineering component - 

the coordinates of its surface points - taken by a coordinate measuring machine 

(particularly the non-contact type which is being developed at Bath University) 

[61] can be compared with a master solid model from a CAD system. Some of 

these algorithms exist in the literature on Stochastic Computational Geometry, but 

have not before been applied to this problem, some algorithms are new. Although 

the surface points can be gathered by using a measuring machine, an algorithm is 

also introduced which simulates its function.

The algorithms include:

a. methods for creating a tetrahedral packing with the measured points as ver

tices in which the surface of the component will be embedded as triangular 

facets,

b. methods for finding out which of the tetrahedra are solid, and form a solid 

body which represents the measured component,

c. methods for creating a surface model of the component by finding the surface 

triangles of each solid tetrahedron,

d. methods for finding the real faces of the measured component by finding the 

triangles lying on the same surface,



e. methods for matching the measured component to the solid model of the 

object created by CAD system under translation and rotation.

Once the two descriptions are matched, faces of the measured component may 

then be compared with the corresponding faces of the solid model and any out-of- 

tolerance differences can thereby automatically be reported. The way in which the 

matching is achieved is robust in the presence of errors in the component which 

cause it to differ slightly in shape from the solid model. As the whole purpose of 

measurement is to check for such errors, this is particularly important.
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CHAPTER 1

INTRODUCTION

1.1 Background To Solid Modelling

1.1.1 CAD

Computer-aided design (CAD) is the technology which is concerned with the use 

of computers to perform certain functions in design [11, 57], It can also be defined 

as the use of computer systems to assist in the creation, modification, analysis or 

optimization of a design. Its hardware typically consists of a computer, one or 

more graphics display terminals and keyboards and other peripheral equipment; 

while its software consists of the computer programs to implement computer graph

ics on the system and the application programs such as those for stress-strain 

analysis of components, computing the dynamic response of mechanisms, heat 

transfer calculations, numerical control part programming and so on.

The various design-related tasks which are performed by a modem computer- 

aided design system can be grouped into five functional areas [54]:

1. Geometric modelling

2. Engineering analysis

3. Design review and evaluation

4. Automated drafting

1



5. Part classification and coding

In the research reported in this thesis the author dealt with geometric model

ling and the checking of manufacturing errors by using a geometric modeller.

1.1.2 Geometric Modelling

Geometric modelling is the process in which a mathematical model is created to 

represent, store and manipulate geometric information about the size and the shape 

of physical objects in computer memory [4, 11, 54, 80]. In theory the class of 

physical objects is restricted to objects that are solid and rigid with a mathemati

cally well-behaved surface. They can move about in space with the restriction that 

two physical objects cannot occupy the same space at the same time (in theory: not 

all systems prevent this).

Geometric modellers can be classified in three groups:

1. Wire-frame modellers

2. Surface modellers

3. Solid modellers

1.1.2.1 Wire-frame Modelling

Wire-frame geometry is the first order of complexity in the definition of geometric 

models [11, 31, 54, 57, 81]. Wire-frame pictures are the simplest to create to 

check results in the quickest way. They expend relatively little computer time and 

memory and provide accurate information on the location of edges on the part.

2



But, since they are line models (which means they only require 3D coordinates to 

define the end points of lines in space), they can only provide partial information 

about objects. They convey no information about the surfaces themselves; they do 

not differentiate between the inside and the outside of the object; and since only 

the vertices and connecting lines are present to interpret the model, several 

interpretations may arise from a single model. Figure 1.1 shows an example of 

this type of ambiguity. Although fast wire-frame displays are still popular, because 

of the ambiguity of representing such quantities as the surface area and volume of 

the object wire-frame modelling has been replaced by solid modelling in the recent 

years.

1.1.2.2 Surface Modelling

A higher level of sophistication in geometric modelling is surface modelling [11, 

31, 57, 69, 81]. This is one of the major techniques used in representing three- 

dimensional objects. A surface model can be built by defining the surfaces on the 

wire-frame model in a way which is analogous to stretching a thin piece of 

material over a framework. Figure 1.2 shows the types of surfaces that the surface 

modellers may have.

Essentially, surface models are in the form of a mesh and the surface is a col

lection of facets (nearly all systems allow curved surfaces). They define part 

geometry such as surfaces and boundaries precisely and they help to produce 

smooth continuous surfaces in NC machining. They are used in aircraft and 

aerospace engineering, the automative industry and shipbuilding, as well as in

3



Figure 1.1 Possible interpretations of a wire-frame cuboid 
(from Rooney et al. [96])

Figure 1.2 Types of surfaces (from Krouse [69])
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medium sized companies manufacturing forgings, castings and moulded products. 

But they are mainly used in computer graphics. Many of the ambiguities of wire

frame models can easily be overcome by surface models.

However, surface models alone are not suitable as a general means of 

representing mechanical parts. For example, a face may be left off a part, there 

may be gaps between faces, or a face which occupies space inside a part may be 

defined. Since surface models do not prevent such errors, they cannot guarantee 

accuracy; and without accuracy highly-automated applications are impossible to 

achieve.

1.1.3 Solid Modelling

The highest level of sophistication in geometric modelling is solid modelling [11, 

31, 54, 57, 81, 96]. The term solid modelling encompasses a body of theory, tech

niques and systems focused on informationally complete representations of solids 

which permit any (in theory at least) well-defined geometrical property of any 

represented solid to be calculated automatically. Given the appropriate data, these 

systems can in principle represent and calculate any kind of information about 

objects, for example their colours, volumes, centres of gravity, moments of inertia, 

surface areas, costs and so on. Since they can handle both surface and volume 

problems and they are able to deal with complicated geometries, they are probably 

the best current method for representing engineering components.

The solid model provides a single computer representation of an engineering 

component which, again in theory, can be used for all computer assisted



engineering and manufacturing tasks. Since it is complete and unambiguous, it can

form the basis of a highly automated CAD/CAM application program.

The activities to which a solid model can be applied are as follows [89] :

a. Design conception: Component geometry can be defined by creating a solid 

model; new parts or components are most frequently created by modifying 

existing designs,

b. Design calculation: Characteristics of the solid model such as its enclosed 

volume, surface area, principal axes, moments around each axis and mass can 

be computed to test the initial design against the fundamental constraints 

imposed,

c. Clearance studies: The solid model can graphically be assembled with other 

solid models of the same product to ensure that the parts will fit together or 

move correctly,

d. Structural analysis: The distribution of temperature or mechanical loading 

within the solid model can be determined for a given set of conditions by 

using finite element mesh models. In this way the design may be checked 

against design requirements at an early stage without extensive prototype 

fabrication and testing,

e. Kinetic analysis: The solid model has a high potential for automated kinetic 

analysis where loads are calculated for an articulated mechanism. For exam

ple, the motion of a robot could be computed by simulating its response to the 

robot’s program. Mass properties can automatically be computed from the



solid models of each component. These properties are then used to compute 

loads on the robot’s joints at each point in time in the simulation,

f. Kinematics: If component is required to move during use, its working 

envelope can be checked on a graphics display screen and possible obstacles 

and collision courses can be detected (e.g. robot arm movements),

g. Ergonomics: If the product is to provide human comfort, the geometry pro

duced can be checked using standard human body models (e.g. using 

endomorph and ectomorph models in say, the design of a driver’s cab) [57],

h. Jig and fixture design: Jigs and fixtures are often redesigned for existing pro

ducts to improve productivity or to make use of new machines. Solid model

ling can be used to design this tooling correctly in relation to a model of the 

part,

i. Tooling design: Solid modelling is as productive for designing and laying-out 

tooling as it is for designing assemblies. If special tooling is required during 

manufacture, the tool can be designed around the solid model of the part to be 

machined or assembled,

j. Machining simulation: A sequence of machining can be planned and tool

paths can be checked by driving a cutting tool around the solid model of the 

part, a model of the machined component can be created by subtracting the 

swept volumes and precise measurements of dimensions can be taken from 

the model, production planning sheets and NC tape can be created accordingly 

[109],

7



k. Casting, forging and joining processes: Having constructed a solid model for 

a casting process, the volume of an object can be calculated to determine the 

amount of material required. Even more sophisticated analyses such as that of 

the cooling rate in castings or material flow in injection mouldings can be 

achieved; the plastic deformation of objects in forging processes or the 

strength of the joints in welding process can be analysed [114],

1. Machine vision: By linking machine vision techniques to models, systems can 

be trained to recognise different components and their positions and orienta

tions (e.g. parts on a conveyor can be identified by an overhead camera and 

mis-oriented parts classified) [114],

m. Quality control: The solid model can be used to determine how quality will 

be assessed and possibly improved upon,

n. Detail drawings: On acceptance of design, the 3D solid model can be manipu

lated to produce 2D orthographic views and dimensioned accordingly,

o. Assembly and assembly planning drawings: The solid model can be manipu

lated with its mating models to produce 2D orthographic assembly views; bills 

of materials and parts lists can be created accordingly; the order of assembly 

can be planned on the graphics display screen by using the solid model of the 

product; a series of exploded isometric views together with the necessary 

assembly instructions can then be produced,

p. Production advertising: Production presentation and appeal can be enhanced 

by using solid models with colour shading to provide graphical illustrations

8



for use in sales brochures,

q. Technical publications: The production of maintenance manuals and customer 

instruction manuals can be supported by using solid modellers.

In contrast to all these benefits, the main hinderance that solid modellers have 

is that they are relatively slow, and are greedy for computer processing power 

when compared to wire-frame or surface modellers. Problems of solid modelling 

systems and their solutions are discussed by Chiyokura [31].

All solid modelling systems provide facilities for creating, modifying and 

inspecting models of three-dimensional solid objects, but the way of representing 

such models in the computer differs. In general, we may classify the representa

tion schemes in six groups [96]:

1. Pure primitive instancing

2. Generalised sweeps

3. Spatial occupancy enumeration

4. Cellular decomposition

5. Boundary representation (B-rep)

6. Set-theoretic representation

All these methods won’t be discussed here; the reader is referred to [96] for 

full details. Set-theoretic representation and boundary representation are the most 

widely used representation schemes in commercial modellers.

9



1.13.1 Boundary Representation

In boundary representation, a solid is represented by its boundary elements [31, 81, 

96]. These elements are classified in two ways: geometric elements (points, curves 

and surfaces) which form the object, and topological elements which define the 

relationships between the geometric elements. The boundary representation 

approach keeps a list of faces, edges and vertices of the object together with the 

topological and adjacency relationships between them. The simplest boundary 

representation model is the triangular-faced polyhedron which is stored as a list of 

triangles. Arbitrary surfaces are approximated to any desired degree of accuracy 

by utilising many triangles.

1.13.2 Set-theoretic Representation

In the set-theoretic representation, a model is constructed from basic, three- 

dimensional, volumetric solid primitives such as blocks, cylinders, cones, spheres, 

hexahedra, tori and tubes [31, 67, 81, 96]. These basic primitives are often combi

nations of even simpler entities known as half spaces. The relationships between 

primitives are defined using the Boolean operators union, intersection and 

difference [57]. Types of modelling primitives and the effects of Boolean opera

tions on primitives are shown in Figure 1.3.

The data structure representing the complete object consists of a binary tree 

(Figure 1.4) in which the leaf nodes represent the primitive solids and the internal 

nodes represent the Boolean operators to combine these. The primitive solids 

which form the leaves may either be represented by simple functions which define

10
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Figure 1.3 (a) Solid primitives
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a volume in space or as half spaces. A half space is a surface (usually infinite) 

which completely divides three-dimensional space into two or more regions: a solid 

region, a void region and other regions. Any given point is then either in the solid, 

in the void, or on the dividing surface. Any complicated solid and void sub

division of space (such as the enclosed volumes forming the solid primitives) can 

be produced as the combination of such half spaces.

Both boundary and set-theoretic representations have their relative advantages 

and disadvantages [31, 80].

The set-theoretic representation tree allows the calculation of the surface area 

and the volume of an object unambiguously. Set-theoretic representations construct 

a correct and precise model from the available library of primitives (as, indeed, do 

boundary representations). They are suitable for many planning and design prob

lems such as rough-machining and collision checking (but not very suitable for 

graphics or finish-machining), they are easy to create, store and transmit, and they 

are guaranteed to be solid (though to the surprise of the user, they may sometimes 

be null), but they are slow at producing pictures. It is generally possible to convert 

set-theoretic representations to B-reps.

On the other hand, boundary representations are efficient sources of geometry 

for computer vision, graphics and NC finish-machining operations. They give 

more freedom to the designer in building complex models, but the validity of the 

model is more difficult to maintain. They are bulky, difficult to create and more 

expensive on memory since they are costly to store and transmit. Figure 1.5 

shows the comparison between B-rep and set-theoretic modelling techniques.
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Figure 1.4 A solid object and its binary tree (from Rooney et al. [96])
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Figure 1.5 Comparison between B-rep and set-theoretic modelling 
techniques (from Meguid [80])
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The solid modeller used in this research was a set-theoretic solid modeller.

1.2 Shape Reconstruction

Shape reconstruction is the problem of deducing a shape from a set of given or cal

culated data. These data - which are the only information about the solid objects - 

may be in different forms: they may be in the form of three-dimensional images 

made of voxels (volume elements) in which the shape is constructed by extracting 

and following the faces of voxels which are on the boundary of the objects; or they 

may be a finite number of planar contours which intersect the three-dimensional 

solid object; or, as in this research, the three-dimensional coordinates of surface 

points obtained by a laser range finder.

In the applications which use planar contours as data, a solid object is logi

cally divided into slices of parallel cross-sections with finite thickness. Here, the 

only information about the solid consists of the intersections of its surface with the 

planes. The sequence of contours is used to construct a piecewise planar approxi

mation to the original object surface or the volume of the object whose boundary is 

a polyhedron with triangular faces intersecting the cutting planes along the given 

contours [50, 51, 63, 68].

In some cases the data consist of range data. These are the cases where the 

only information about the solid is the geometrical position of each surface point, 

no topological information is available. Neighborhood relationships can be 

obtained by using the Voronoi tessellation [25] and the shape can be constructed 

by finding the triangular faces which lie on the boundary of a tetrahedral packing
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obtained from the Delaunay triangulation. This was the method used in this 

research reported here.

Alternatively, the shape is also constructed by fitting of polynomial surface 

patches such as Coons patches, Cartesian product patches, Bezier and B-spline 

patches and so on to the range data [31, 49, 81, 82, 112]. Different surface patch 

types and a survey on surface fitting is given in Besl and Jain [12]. Research done 

on various types of shape reconstruction will be discussed in the literature survey 

in Chapter 2.

1.3 Aims of This Project

When an engineering component has been manufactured it must often be checked 

for defects. Ideally such checking should be done against the original design of 

the component and any out-of-tolerance differences between the two should be 

reported.

This thesis will describe a group of algorithms which allow a collection of 

points on the surface of a manufactured component (such as might be gathered 

using a coordinate measuring machine) to be matched automatically with a solid 

model of the component. This would allow any defects on gross features of 

engineering components to be detected. A diagram of the measurement problem is 

shown in Figure 1.6. Some of these algorithms are extant in the literature on Sto

chastic Computational Geometry, but have not before been applied to this problem; 

others are new.
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The algorithms have been developed especially to handle the large numbers of 

surface points that may be gathered from a component using a laser non-contact 

measuring machine [27]. However, they would also be quite suitable for use with a 

conventional measuring machine. An application of the algorithms on a simple 

staircase model is shown in Figure 1.7. In figure 1.7 (a) the surface points of the 

model are shown. These surface points are processed to produce the model shown 

in figure 1.7 (b). This model is ready to be matched with the master solid model 

of the same component. Different colours in the figure correspond to different 

faces to be matched.

The solid modeller used for this research is called DORA. This is a set- 

theoretic solid modeller developed at Bath by John Woodwark [115]. The algo

rithms would work just as well with any other set-theoretic or B-rep modeller.

The system described in this thesis was implemented to deal with faceted 

components and solid models only, but it can be extented to work with curved 

components.

1.4 Thesis Outline

The first two chapters of this thesis contain background information about solid 

modelling and a review of the techniques available for triangulation, shape recon

struction and matching. This is followed in Chapter 3 by a review of coordinate 

measuring machines and some brief information about the laser non-contact 

measuring machine developed at Bath University. An algorithm which simulates 

the process of this measuring machine is also introduced in Chapter 3.



Figure 1.7 (a) 3D surface points
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Figure 1.7 (b) The measured component to be matched with its solid model
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Starting from Chapter 4 a group of algorithms is described for triangulation, 

classification of tetrahedra (which are the result of triangulation), clustering and 

matching. Chapter 4 introduces an efficient multi-dimensional algorithm [25] to 

construct the t̂essellation and triangulation to obtain the neighborhood relationship 

between the gathered surface points. An algorithm introduced in Chapter 5, which 

classifies the tetrahedra as air or solid, creates a solid model for the measured com

ponent and triangulates the surface of this component. This is followed by the 

description of an another algorithm in Chapter 6 which clusters the surface trian

gles and gathers them in collections, each collection representing a real facet of the 

solid model of the measured component. Chapter 7 then describes an algorithm 

which compares the real faces of the model with the faces of the component and 

matches them under translation and rotation. The final chapter consists of sugges

tions for further research and conclusions.
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CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

This chapter is a review of the literature on shape reconstruction, polyhedral 

approximation, triangulation and matching. Although research on shape recon

struction in scene analysis and image processing are not directly relevant to the 

research described here, they are worth mentioning to give an idea about 

different types of shape reconstruction. Most of these surveyed literature use 

range data (which mostly consist of the three-dimensional surface points) and 

polyhedral approximation.
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2.2 Shape Reconstruction

The problem of reconstructing a shape is that of finding an interpolation over a set 

of points lying on its boundary. A lot of research has been done on the problem of 

fitting a function to data given at a set of points scattered throughout a domain in 

the plane but this will not be reviewed in this survey. Instead, the relatively small 

amount of literature concerned specifically with shape reconstruction using a set of 

points scattered all over the closed surface bounding a solid object or a set of finite 

planar cross-sections shall be considered (this will be explained below). Such 

problems arise in robotics, shape analysis, computer graphics and image process

ing. Good surveys on shape reconstruction in image processing are given in Besl 

and Jain [12], Ahuja et al. [2] and Henry [61]. Some of the techniques used to 

build a shape in image processing are quite different from the techniques men

tioned in this research, but because of some similarities (such as the same sort of 

input - range data - and planar approximation), they are worth mentioning.

Researchers who use range data as their input reconstruct shape in many 

different ways. Dane and Bajcsy [37] proposed an object-centered three- 

dimensional model builder which uses 3D surface point information obtained from 

many views. Their technique forms subgroups of data points (for each view 

according to the information about their location and orientation) and determines 

surface primitives to represent them. It fits planar or quadratic surface primitives 

onto them via a least squares technique. It then transforms the surface primitives 

from a local coordinate system to a common global coordinate system by using the 

known transformations, and identifies the identical surfaces and builds a surface
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model. Clustering and region growing algorithms are different from the author’s 

but their subgroups are similar to his face clusters (see Chapter 6). The data points 

that they used in their technique are drawn from a limited area of the local surface 

area because of the conservative nature of region growing process. This fact 

makes the accurate estimation of the surface parameters more difficult. When 

fitting surface primitives onto subgroups via least squares technique no method has 

been mentioned to eliminate points with gross inaccuracies (which lie well away 

from the surface to be fitted due to experimental inaccuracies and seriously affect 

the accuracy to fit).

In another approach Vemuri and Aggarwal [107] described an algorithm for 

the reconstruction of three-dimensional objects using range data obtained by a laser 

range finder from a single view. Their algorithm fits surface patches to square 

neighbourhoods by computing the standard deviation of the Euclidean distance 

between consecutive points. If the standard deviation is less than a threshold, a 

surface patch is created to fit the square using splines. This technique avoids the 

fitting of surfaces to squares of high deviation, such as at edge discontinuities. 

However their technique suffers from an inability always to be able to represent 

re-entrant surfaces and undercuts as any method based on collection of 2D height 

grids. The data acquisition system they use works on the principle of light sheet 

triangulation [61].

Henderson [59] developed a technique of extracting planar faces from range 

data obtained by a laser range finder. His technique depends on a sequential 

region growing algorithm called the Three-point Seed Method [60]. In this method
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three-dimensional surface points - which are obtained from various sides of an 

object - are first stored randomly in a list with no topological connectivity informa

tion. Planar convex faces are then determined by sequentially choosing three very 

close non-collinear points and investigating the set of points lying in the plane of 

these three points. Provided the points which are found that lie close to the plane 

satisfy narrowness conditions, they are labelled as a plane and removed from the 

range data. This procedure is repeated until the range data is exhausted or no more 

planes can be found. The shape is reconstructed from the union of these planar 

faces. This technique is a useful technique since it is not restricted to single view 

range data images and is robust even for noisy data but problems were observed in 

detecting the edges.

Potmesil [90] proposed a method for constructing surface models of 

arbitrarily-shaped solid objects by matching three-dimensional surface segments 

onto the range data obtained by a triangulation-based range finder. Range data for 

an object’s surface are fitted using a sheet of parametric bicubic rectangular surface 

patches which are recursively merged into a quadtree hierarchical structure where 

each object is represented by a tree of surfaces. Ray-casting technique is used to 

obtain the surface information as in this thesis, but his technique evaluates not only 

surface point information but other surface informations such as the surface-normal 

vector and the surface-normal curvature at the intersection points between the ray 

and the surface description. This information is used in matching and merging 

algorithms (this information cannot, in general, be obtained in real measuring, so 

this simulation is not very realistic). Surface segments of the object are
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transformed into a common 3D space by a matching procedure and then their over

lapping sections are eliminated by a merging procedure. This match-and-merge 

process is iteratively repeated until a complete model of the object is generated. 

Figure 2.1 shows the last two stages of Potmesil’s method. Thirty-six views are 

used to define the object. First, 18 three-dimensional segments are reconstructed 

from the views, which are then merged into six new segments. These six segments 

are matched into a single model and the shape is reconstructed.

Boissonnat [19], Boissonnat and Faugeras [21] and Faugeras et al. [47] 

developed an algorithm for building a polyhedral approximation of three- 

dimensional surface points obtained from triangulation-based laser range finder. In 

another two papers Boissonnat [18, 20] proposed to use the Delaunay triangulation 

to construct shape by triangulating the surface of the object. He used the same 

triangulation-based laser range finder to obtain the 3D surface points. The 

polyhedral approximation technique he used will be explained in section 2.3 and 

Boissonnat’s triangulation technique (which is similar to the one described in 

Chapter 3) in section 2.3.1.

Many more examples which use range data as input to construct shape can be 

added to these. On the other hand, some of the shape reconstruction techniques 

use planar contours as data. These techniques construct surface contours by inter

secting a 3D solid with a finite number of specified parallel planes and then con

nect contours on consecutive slices with triangles. These are the methods where 

the only information about the solid consists of the intersections of its surface with 

planes. Here, the problem is not a detection problem but an interpolation problem.
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Figure 2.1 (a) 18 surface segments to be merged into six new 
segments (from Potmesil [90])

Figure 2.1 (b) Surface segments to be matched into a s in g l t  
model (from Potmesil [90])
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Kepel [68]; and Fuchs, Kedem and Uselton [50] reduce this interpolation problem 

to constructing a sequence of surfaces, one between each pair of adjacent contours. 

These surfaces are constructed from elementary triangular tiles, each defined 

between two consecutive points on the same contour and a single point on an adja

cent contour. Figure 2.2 shows a set of contours on a given shape and the indivi

dual triangular tiles defined over these contours.

Ganapathy and Dennehy [51] described an heuristic method for triangulating 

the three-dimensional surface formed by spanning a set of planar contours. Their 

method (which imposes no restriction on the orientation of contours) is claimed to 

be superior to Fuchs’s or Kepel*s since Kepel’s method is dependent not only on 

the number of points approximating a contour but on the shape of that contour as 

well, while Fuchs’s method requires a large number of steps for triangulation and 

is not suitable for applications where speed is of primary importance.

Boissonnat [17] worked on a similar problem as well. Unlike Fuchs, Kedem 

and Uselton*s method which constructs the surface of the object, his method con

structs a volume whose boundary is a polyhedron with triangular faces intersecting 

the cutting planes along the given contours. If there are L cross-sections, his 

method constructs a sequence of L-l partial shapes instead of constructing a shape 

over these cross-sections, where each of the partial shapes connects two cross- 

sections lying on adjacent planes. He then computes the L-l Delaunay triangula

tions of the vertices of the L-l couples of adjacent cross-sections and reconstructs 

the shape and obtains the volume, slice by slice, by pruning these L-l Delaunay 

triangulations (since the boundary of the object can be obtain without the need of

26



computing the Delaunay triangulation, the reason for this computation is not very 

clear). The surface of the object can be produced by looking at the surface of the 

obtained volume. Figure 2.3 shows a set of contours and the partial surfaces. For 

clarity, only boundary faces of the non-eliminated tetrahedra (which are not lying 

in a cutting plane) are shown.

Other shape reconstruction techniques have also been introduced in the litera

ture. Some of these methods use intensity images as input: Baker [6] proposed a 

shape building method which uses many intensity images taken from different 

known rotated views; Shapira and Freeman [100] described an algorithm for con

structing three-dimensional objects bounded by planar or quadratic surfaces from a 

set of photographs of scene taken from different views; Bocquet and Tichkiewitch 

[16] proposed a method which uses digitised standard mechanical drawings from 

three orthogonal views as input to reconstruct a shape and so on. These techniques 

use different sort of data as input than the data used in this thesis, and therefore 

will not be described in this section. In some other techniques such as Schmitt, 

Barsky and Du’s [98] (which is based on an adaptive subdivision approach) shape 

is reconstructed by fitting bicubic Bemstein-Bezier patches meeting with G1 

geometric continuity onto the three-dimensional data; or in Little’s [74] technique 

convex polyhedral object models are reconstructed by using their corresponding 

extended Gaussian images (EGI), as is Ikeuchi’s [64], which also reconstructs the 

original shape of a convex polyhedron from its EGI. A volume-based approach (in 

which the shape is obtained by the Delaunay triangulation - see section 4.2) was 

used to reconstruct a shape in this thesis. Thus neither of these works is directly
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Figure 2.2 Contours and triangular tiles (from Fuchs et al. [50])

Figure 2.3 Contours and partial surfaces (from Boissonnat [17]) 
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relevant. However, extended Gaussian images were used in matching the recon

structed shape onto the solid model primitives. Detailed information will be given 

about extented Gaussian images in Chapter 7.

In the applications of computer graphics, voxels (volume elements) have been 

used as data to construct shape as well as parallel contours. The literature related 

to these applications and a list of references about the applications of shape recon

struction in medicine is given by Lorensen and Cline [77].

2.3 Polyhedral Approximation

In many applications of pattern recognition, robotics, and computer vision, objects 

are initially represented by the coordinates of points lying on their boundaries. 

Since no relation between these points is known, this is a poor representation of 

the object. To make this representation complete and thus allow the shape to be 

analysed, the three-dimensional surface points should be approximated by three- 

dimensional surfaces. This is a polyhedral approximation of the surface of the 

object. Such approximations have been used to solve many problems such as: 

definition of the shape of the object; controlling the automatic machining of sur

faces [33, 41]; smooth interpolation between the points [32, 48, 88]; or, on the con

trary, reduction of the points without damaging greatly the actual shape of the 

object [47]; calculations of geometric properties such as volume, surface area, axes 

of inertia; definition of the surface normals at the points; extraction of elementary 

shapes and so on. Literature surveys on the problem of creating a triangulation 

over the object’s surface will be covered in the next section.



Polyhedral approximations have been used widely in shape reconstruction and 

shape analysis. Criteria which make polyhedral approximations useful as object 

representations are given in Henderson [58]. Ganapathy and Dennehy [51] used 

polyhedral approximations in their triangulation algorithm, and Henderson and 

Bhanu [60] created a three-dimensional model in terms of planar faces approxi

mated by polygons. These two methods have been described in the previous sec

tion.

Faugeras and Ponce [45] proposed a hierarchical structure for describing 3D 

objects. They use a recursive polyhedral approximation algorithm to construct a 

binary tree structure called a prism tree. In another paper, Faugeras and Hebert 

[46] segmented the surface of the object into planar regions by polyhedral approxi

mation in their matching procedure.

Boissonnat [19], Boissonnat and Faugeras [21] and Faugeras et al. [47] pro

posed an efficient algorithm for building a polyhedral approximation of a set of 3D 

surface points. As mentioned earlier, they obtained the surface points by using a
v

laser range finder which is similar to the one developed at Bath University [61]. 

Their algorithm is presented as a generalization of an existing algorithm for polyg

onal approximation of a two-dimensional curve. The basic approach is a graph- 

guided, divide-and-conquer procedure and the steps of the algorithm are given in 

[19],[21] and [47]. The net result of the algorithm is an approximation of the ori

ginal surface by a polyhedron whose faces are triangles. Results of two fairly 

complicated objects are shown in Figure 2.4. In spite of the difference in process

ing algorithms, the input and output for this approach are quite similar to
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Henderson’s [59].

Faugeras [44] proposed a method for producing a complete polyhedral 

representation of objects based on geometric matching between primitive surfaces 

in order to construct the models in his 3D object recognition algorithm. This algo

rithm will be explained in section 2.4. Figure 2.5 shows the object he used for 

modelling (which is an automobile part) and the surface triangulation of this object.

Several alternative approaches to polyhedral approximation are also introduced 

[58], including region growing, local feature clustering and divide-and-conquer 

techniques; though most of the time these techniques work together with polyhedral 

approximations like Henderson and Bhanu’s [60] sequential region growing algo

rithm. Region growing techniques fit surface patches to small seed areas which 

consist of a small group of points on the surface, and then expand the patches by 

adding and testing the neighbouring areas (or points) to see whether or not they 

satisfy the necessary conditions to join the expanding region. This is done until 

the equation of the patch no longer provides a good fit to the points added. This 

occurs when the patches reach the boundary of a different surface.

Local feature clustering techniques, different from region growing techniques, 

measure some feature at each point of the data (e.g., the surface normal at that 

point), and apply standard clustering techniques to the resulting vectors. Applica

tion of standard clustering techniques to local features of the range data has a 

tremendous potential. Clustering methods are required to be fast, to take neighbour 

constraints into account, and to allow the use of supplementary information. A 

good review of various methods and applications is given by Diday et al. [39].

31



Figure 2.4 Objects reconstructed by polyhedral approximation 
(from Boissonnat [19])

Figure 2.5 An automobile part and its 3D triangulation (from
Faugeras [44])
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Finally, the divide-and-conquer technique applies a recursive algorithm to pro

cess the data in two halves. This is a fast method. Boissonnat and Faugeras’s [21] 

algorithm is a graph guided divide-and-conquer approach to polyhedral approxima

tion of a set of 3D surface points as mentioned earlier. Divide-and-conquer tech

niques have been applied to the polyhedral approximation problems in multidi

mensional spaces successfully [9, 10, 92].

2.3.1 Triangulation

The problem of approximating the surface spanning a given set of 3D points as a 

polyhedron of triangular faces is that of creating a triangulation of the surface.

Triangulations have received a lot of attention in the past and have many 

areas of application [73]. They have been widely used in finite elements mesh 

generation [22, 23, 34, 97, 116], in computer graphics and in computer vision. In 

some applications such as Wordenweber’s [117], a triangulation technique has been 

used to produce pictures in geometric modelling.

In some others, it is used to construct smooth surfaces from scattered data in 

3D [48, 88]. Choong [33] proposed a novel heuristic triangulation technique to 

model a measured shape (the measurements being taken by a 3-axis measuring 

machine) which he used in an automated polishing process of die cast components 

by a robot. The three-dimensional geometry required was defined in the form of 

z= f(x,y) where z is represented by an array of height ordinates of the surface for 

discrete values of x and y. The technique is based on the creation of two- 

dimensional mesh of equilateral triangles on a plan view of the component. It
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distorts this mesh in the boundary region so that adjacent nodes are forced to coin

cide with points defining the boundary curve. .Nodes lying outside the boundary 

are rejected. Heights for each node are calculated by interpolating the z values 

from the original height ordinate array. The laying of the initial triangulation lat

tice is shown in Figure 2.6. As is seen from the isometric view in figure 2.6, the 

triangle elements in curved areas are highly distorted. The surface is then sub

jected to a triangulation process which attempts to create a structure of equilateral 

triangles. The result of triangulation is shown in Figure 2.7. This technique also 

suffers from same problem that Vemuri and Aggarwal’s technique suffers and it 

only works with single-valued surfaces.

Choi et al. [32], unlike Choong’s technique [33], proposed a technique which 

is concerned with the triangulation of 3D points (which are scattered on a 3D sur

face of complex shape) to construct smooth surfaces. Their algorithm, which is 

based on Thiessen/Voronoi polygonization [94], first triangulates 3D points and 

obtains a proper triangular grid. It then improves the grid by applying smooth tri

angular interpolants onto the points. To improve the smoothness of the surface, a 

smoothness criterion and a grid improvement algorithm (different from the 

Lawson’s max-min angle criterion [70] and the circle criterion [70] to obtain an 

optimal triangulation grid) have been introduced by them. It is reported that his 

triangulation algorithm may cause some numerical problems when the 3D points on 

a closed surface are triangulated (i.e. when the apex angle of a convex cone 

exceeded 89.92 degrees).
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(a) A 2-D mesh superimposed 
onto the plan view of a 
hemispherical surface

(b) Removal of nodes outside 
the boundary of the 
surface and coalescing 
nodes to the fixed 
boundary.

(c) Isometric view of (b)

Figure 2.6 Laying of the initial triangulation (from Choong [33])

Surface Formed by 2 Heni-spheres 
Intersected by a Semi-Cylinder

A Truncated Cone

Figure 2.7 The results of triangulation (from Choong [33])
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Oxley [84] used triangulation in surface fitting. His algorithm recursively 

splits an area up into one or two triangles and other areas in an initial triangulation 

stage. After applying this recursive process to the whole surface, the areas which 

are not triangles are stored on a stack. The algorithm proceeds by repeatedly 

removing an area from the stack, splitting it up and adding areas to the stack until 

the stack is exhausted.

Among the possible solutions of finding minimal structures (i.e. those with the 

fewest edges and which preserve the topology of the surface) to represent or to 

construct a shape, O’Rourke [83] suggested minimizing the surface area when tri

angulating a set of 3D points. His algorithm starts with the convex hull of a given 

set and shrinks this hull onto the internal points. In order to do this, it chooses a 

point internal to the hull, systematically modifies the current polyhedron to include 

this point, makes local adjustments to the polyhedron in the neighbourhood of the 

modified region and repeats this for all internal points until the internal points are 

exhausted. This algorithm is not guaranteed to reduce the residual error to get 

closer to the minimal polyhedron and has been claimed to yield strange results (see 

[20]).

Boissonnat and Faugeras’s graph guided algorithm [21] - as explained earlier - 

also approximates the surface with triangles. It uses an underlying graph to struc

ture the data for association with approximating triangles. Whenever a triangle 

does not approximate the data associated with it very well, graph methods are used 

to divide up the data for a better approximation.
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One of the most well known triangulations is the Delaunay triangulation [25, 

53, 106, 111]. The Delaunay triangulation is the geometric dual of the Voronoi 

tessellation [53, 106, 111] and is obtained by linking the points whose Voronoi 

polyhedra are adjacent across a common face. To analyse a shape and to compute 

some of its geometrical properties neighbourhood relationship information between 

its points needs to be obtained. The Delaunay triangulation obtains this informa

tion and produces a good polyhedral approximation of the shape. Delaunay tri

angulations and Voronoi tessellations will be explained in detail in Chapter 4. A 

good survey on defining the neighbourhood relationship of a point and applications 

of Voronoi tessellation can be found in Ahuja [1].

Delaunay triangulations have many different fields of application. Some of 

these applications are mentioned in [25], [72] and [111]. They have also been used 

by many finite elements mesh generators [30, 36, 78]. In one of his papers Bois

sonnat [18] proposed to use a Delaunay triangulation to represent a two or three 

dimensional shape which is defined by a finite number of surface points and con

structed the shape by pruning Delaunay triangles between adjacent cross-sections in 

the other paper [17]. To generate the triangulation [18, 20], he used the efficient 

multi-dimensional algorithm [25] which was also used in this research. Since the 

Delaunay triangulation fills the interior of the convex hull of the points with 

tetrahedra, it is the volumetric representation of the object. The object is 

represented by a set of tetrahedra and the boundary of the set (which is the convex 

hull) is a polyhedral approximation of the surface of the object (if all the points are 

in the convex hull). If the convex hull does not contain all the points, some
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tetrahedra need to be eliminated until all the points are on the boundary of the 

polyhedral shape.

Boissonnat [20] introduced four rules to eliminate redundant tetrahedra until 

all the points are on the boundary of a polyhedral shape. He eliminates the 

tetrahedra one after another by checking their associated value. This value (which 

is used to sort the tetrahedra) is defined as:

If Aj is the area of faces of the tetrahedron interior to the boundary, AB is the 

area of faces of the tetrahedron on the boundary and A is the area of faces of the 

tetrahedron, then the value associated to each tetrahedron is

( Z A j - X A b )

5 Z A

He eliminates the tetrahedra with the smallest values first. He suggests that this 

criterion tries to minimise the modifications of the boundary by eliminating the less 

regular tetrahedra. This method, which tends to eliminate sharp projections (which 

may really be there) is different from the methods described in this thesis. The 

result of his elimination is shown in Figure 2.8. The triangulation algorithm used 

in this thesis will be explained in Chapter 4 and the method of eliminating the 

redundant tetrahedra in Chapter 5.

2.4 Matching

After reconstructing the shape the next problem to be solved is that of matching 

the reconstructed shape to a geometric model. Different matching techniques have 

been introduced in the literature. Most of these techniques have been used exten-
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F igure 2.8 Elimination of redundant tetrahedra (from Boissonat [20])
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sively in scene analysis for matching model and scene descriptions and in pattern 

recognition. Good reviews on some of the main techniques such as relaxation, 

Hough transform, Fourier descriptors and moments and so on are given in [44] and 

in [86]. It is not the intention here to give a complete survey of these techniques. 

Instead, a few of them will be mentioned to draw attention to the differences 

between these techniques and the technique used in this research.

Bhanu and Faugeras [14] proposed a technique for shape matching in 2D 

which they based on a relaxation scheme called stochastic labelling. Bhanu [13] 

then extented this technique to be used in 3D. His matching technique in three- 

dimension uses planar faces as primitives as explained earlier, and matches an unk

nown view with the structural 3D model by using a stochastic face labelling tech

nique. The face features of area, perimeter, length of maximum, minimum and 

average radius vectors from the centroid of a face, number of vertices in the polyg

onal approximation of the boundary of a face, angle between the maximum and the 

minimum radius vectors and ratio of area/perimeter2 of a face are used as well as a 

feature-weighting vector to compute the initial face-labelling probabilities. The 

compatibility of a face of an unknown view with a face in the model is obtained 

by finding transformations, applying them and computing the error in feature 

values. The compatibility functions used in the first and second stage iteration use 

weighted quantities of: the distance between neighbouring face centroids, the ratio 

of the areas of the neighbouring faces, the difference in face orientations, and rota

tion angles for the maximum intersection area of coplanar faces. Transformations 

are computed at the end of second iteration stage. This method handles arbitrary
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view-points. However, it relies too heavily on the consistency of the output from 

the face-finding algorithm. Perhaps this is justified, but no evidence is given. All 

face-adjacency information is not utilised. A block diagram of this matching algo

rithm is given in Figure 2.9.

Davis [38] investigated representing a 2D shape as a spring-loaded template 

and searching for matches to this template with a relaxation-like graph processes. 

He used a hierarchical matching process: the low level of his hierarchy is based on 

the association graph where the nodes represent simple angle matches and the 

edges represent ordering and distance constraints; and the higher level is based on 

the line graph of the association graph where the nodes represent more complicated 

structures (such as pairs of simple matches) and edges represent more complex 

constraints based on comparing pairs of similarity transformations. An experimen

tal study of his matching algorithm which uses the coastlines of several islands as 

the input shapes is given in [38].

Faugeras [44], Faugeras and Hebert [46] and the group in INRIA introduced a 

3D object recognition and positioning algorithm which is based on geometrical 

matching between primitive surfaces. Their algorithm uses a segmentation of the 

surfaces to be identified into geometrical primitives and matches the scene primi

tive list to the model primitive list using an approach that minimises the mean 

square-error criterion over all plane-to-plane transformation matches. The transla

tion and rotation matching are separated into two independent least-squares prob

lems. The translation permits a standard linear least-squares solution but the rota

tion does not. Since classical least-squares methods cannot be directly applied to
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the rotation, quaternions are used to convert the nonlinear 3D rotation problem into 

four-dimensional eigenvalue problem which can be solved directly. The quantita

tive measure of goodness of the match between the data and the model is calcu

lated by combining the rotation and translation matching errors.

This technique is similar to the matching technique mentioned in this thesis in 

the sense that they both use least-squares technique to find the best transformation. 

In both techniques the estimation of the translation and of the rotation are indepen

dent. However, the major difference between the two techniques is the order of 

transformation. INRIA’s matching procedure does the rotation first. It rotates the 

model planes until they become as parallel as possible to the scene planes and then 

translates them to minimise the sum of the differences of the distances to the ori

gin. The technique described in this research, on the contrary, does the translation 

first. It translates the configurations to have centroids (or in other words plane 

centres which are minimum distance away from the faces) at the origin and does 

the rotation next to minimise the residual sum of squares between the planes.

Horn [62], Horn and Ikeuchi [63], Ikeuchi [64] used extended Gaussian 

images (EGI) to match the object models to the scene models. They compute the 

prototype surface-normal-vector orientation histograms for various shapes by using 

three-dimensional object models and compare the scene object histogram and pro

totype object histogram to compute the best match. The best match determines the 

orientation of the object in space. This approach is quite similar to the INRIA 

approach and to the approach used in this research since they all use surface- 

normal matching procedure. Figure 2.10 shows the surface normals of some
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samples and the extended Gaussian image of the normals.

Ballard and Sabbah [8] used the generalised Hough transformations to com

pute the 3D transformations (translation, rotation and scaling) between a given 

view and a given object; Zahn and Roskies [118] used Fourier shape descriptors; 

Dudani et al. [40] used moment invariants for the same purpose. Since a new 

method of matching was devised for this work, these literature and the literature 

about the other types of shape matching will not be reviewed in this thesis.

For the purpose of matching, the Procrustean technique [29] is introduced by 

the author. This technique and a matching algorithm using this technique will be 

described in detail in Chapter 7.

2.5 Concluding Remarks

In this chapter different techniques for shape reconstruction, polyhedral approxima

tion, triangulation and matching have been covered. Although some of these tech

niques are quite different from the techniques used in this research, they have been 

described precisely to give some idea about those differences.

As mentioned in the first chapter, the aim of this project was to form a model 

from the measured data and then match this model to the master solid model gen

erated by a CAD system. Two problems arise here: the two differing descriptions 

of the same (or nearly same - the purpose of inspection is to find manufacturing 

errors) component and the different coordinate systems to which the measured 

component and the master solid model belong. The algorithms which deal with
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these problems and match the objects under translation and rotation by using the 

Procrustean algorithm will be explained in the next chapters.
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CHAPTER 3

GATHERING THE DATA

3.1 Introduction

In a number of applications objects are initially described by a set of coordi

nates (x,y,z) of surface points scattered all over the object Such data are in 

general irregularly located in 3D space and can be generated by any coordinate 

measuring machine.

In this chapter a laser coordinate measuring machine is described. This is 

a non-contact type measuring machine, and was developed at Bath University 

[61]. In the latter sections, an algorithm which simulates the process of this 

measuring machine is introduced.

46



3.2 Co-ordinate Measuring Machines

The introduction of the new range machine tools - transfer lines, NC and CNC - 

has drawn attention to the need for rapid measurements of components. Since 

extremely complex components have started to be produced on machining centres 

much faster than they can be inspected, it has become obvious that conventional 

inspection methods are both wasteful of time and effort. So, in order to improve 

the accuracy, ease and speed of measurements, to reduce the time taken to record 

and analyse the results, and to improve the communication of measurement results, 

co-ordinate measuring machines (CMM) have been introduced [52, 91].

In modem production, time is critical. For this reason, improving floor-to- 

floor time is one of the important tasks to be achieved in modem tooling technol

ogy. Since one of the time-consuming operations which prevents the movement of 

components after machining is inspection, inspection time should be reduced. The 

principal benefit of computer-controlled co-ordinate measuring machines is a reduc

tion in inspection time.

Past inspection methods relied heavily upon manual methods, with a human 

operator sampling the production line in order to make time consuming measure

ments. Automated inspection techniques have significantly improved quality con

trol by providing an inspection capability which is far more reliable than human 

methods. During inspection, a large amount of numeric data is generated. These 

data can be processed and programmed so that component errors can be displayed 

visually or printed.
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Ideally, the inspection of a product should occur whilst the tool is cutting (any 

errors found during the machining can then be corrected instantly). This is called 

adaptive control or in-process control. In-process control is performed in real-time 

and is significant in providing feedback for applications such as the adaptive con

trol of machine tools, the monitoring of toolwear and machine malfunctioning, and 

the control of assembly processes (i.e. in the adaptive control of machine tools the 

measurement results at the cutting point are fed back to the machine controls and 

automatic adjustments of the machine speed or tool tip position are made). An 

application of in-process control is mentioned by Choong [33]. This type of con

trol is quite difficult in some methods of production.

However, this is not generally the requirement; inspection may be done with 

the machine stopped and the cutting tool withdrawn. This is called off-line inspec

tion and may take place in-between the manufacturing steps or during the final 

inspection. Errors when found are corrected. The inspection technique described 

in this thesis is off-line.

The intention here is not to give detailed information about the co-ordinate 

measuring machine or inspection techniques. Instead, a particular type of measuring 

machine from which the data used in this thesis were gathered will be described. 

This is a non-contact laser measuring machine. However, some information on 

CMMs and their development is mentioned by Gilheany and Trey win [52], and 

their utilisation is mentioned by Black [15]. A very recent survey of three- 

dimensional co-ordinate measuring machines is given in [35].
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3.3 The Laser Measuring Machine

Many different range-finding techniques used for measuring the shapes of three- 

dimensional objects have been introduced in the literature. These techniques, as 

shown in Figure 3.1, may be divided into two major categories: active techniques 

and passive techniques. In this section a laser range-finder [27, 44, 47, 61, 66, 79] 

based on triangulation will be described. Good surveys on different types of 3D 

data acquisition techniques are given by Jarvis [66] and Henry [61].

3.3.1 The Design Concept

The laser measuring machine [27, 61] from which the data were gathered was built 

for Rolls Royce Ltd. to measure turbine blades in three-dimensions as a final qual

ity check. Figure 3.2 shows the general layout of the machine, which is controlled 

by a small computer. The laser beam is directed anywhere on a component by the 

two galvanometer mirrors which rotate on perpendicular axes. The currents driving 

the mirror galvanometers are derived from the outputs of digital-to-analogue con

verters. The component to be measured (a turbine blade in the figure) is mounted 

on a rotary table which is also mounted on a vertical slideway to increase the range 

of the machine. The rotary table and slideway are both driven by stepper motors 

which are controlled by the computer. The slideway provided over 300mm of 

travel, enabling the objects to be measured in a cylinder of diameter 100mm and 

height 300mm. By use of the rotary table, the component may be inspected from 

many different directions.
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Lasers White light Ultrasound Radio waves
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Random access and sequential scan Random access Sequential scan

Range and brightness Range Brightness

Figure 3.1 Types of range-finding techniques (from Parthasarathy [85])
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The scattered light from the component is received by two Position Sensitive 

Detector (PSD) cameras mounted either side of the galvanometer assembly and 

angled at 45 degrees to each other. The signals produced by these cameras are 

amplified and sent to an analogue-to-digital converter; thus the coordinates of the 

light spot in three-dimensions are calculated. PSD cameras and their advantages 

over conventional cameras are mentioned in [27] and [61]. A plan view of the 

measuring geometry is shown in Figure 3.3.

As the whole apparatus is closed off with thick black curtaining for safety 

reasons, a TV camera is used to provide remote monitoring of the measurement 

process which allows the operator to position the target ready for the scanning. 

Once a view is selected by the TV camera, the illumination is switched off and the 

target is rotated to the scanning position and the scan starts. The target rotations 

between the scans and TV camera positions are controlled by the computer.

The light source used was a 5mW He-Ne laser, though this was replaced by a 

infra-red laser diode later on. The working volume in which the machine may take 

measurements was 100 x 100 x 200 mm, and a measurement accuracy of +/- 0.1 

mm was achieved.

3.3.2 Taking Measurements

The laser measuring machine is based on the laser triangulation technique [61, 66, 

79, 105]. In order to take a single measurement the computer generates the vol

tages for the mirror galvanometers needed to deflect the laser beam to the desired 

point on the component’s surface. The image of the bright, small spot of the beam
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is then picked up by two two-dimensional PSD cameras. These cameras each pro

duce two voltages proportional to the position of spot’s centroid focused on a rec

tangular photosensitive area. The four voltages resulting from the two images of 

the spot are read using analogue-to-digital converters and the computer calculates 

the three coordinates of the spot in space by using the values of these voltages 

together with the distance between the detectors. This is the triangulation tech

nique.

The main alternative to the triangulation technique - as seen from figure 3.1 - 

is the time-of-flight technique [61, 66, 79, 105]. In this technique, a laser beam (or 

acoustic energy) is directed towards the component to be measured and the path- 

length of the beam that strikes the component is calculated, either by measuring the 

short time delay between transmitted and received pulses, or by examining the 

interference of the beam with its reflection back along its path. The advantage that 

time-of-flight techniques have over triangulation is that, as long as the beam strikes 

the component, a measurement can always be made. Since the transmitted and 

received beams are co-axial, occlusion problems (which occasionally occur in the 

triangulation technique when the light spot on component’s surface is occluded 

from the view of one or both cameras by other projections of the component) do 

not exist in time-of-flight technique. However, the time-of-flight technique requires 

high-frequency electronics to make the measurements and sometimes to modulate 

the beam. Both techniques suffer when the beam strikes the component very 

obliquely and insufficient light is reflected into the detectors to make a measure

ment (this is a particular problem with shiny components).
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Figure 3.3 Plan view of the measuring geometry (from Bowyer et al. [271)

Figure 3.4 Surface points of the turbine blade (from Bowyer et al. [27])
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The occlusion problem in triangulation can be eliminated by inspecting the 

component from several directions. Thus the scan of the component’s surface was 

regular. Of course, the fact that the object’s faces were not all at the same orienta

tion meant that a given scan would lead to different densities of points on each. 

To keep the electronics simple and cheap, triangulation was preferred in [61]. Sur

veys on triangulation and time-of-flight techniques are given in [61], [66] and [79].

3.3.3 Analysing the Measurements

For inspection applications, measured data need to be compared with reference data 

produced from a model. For this reason, the data - which consist of the coordi

nates of surface points of the measured component - need to be analysed and then 

compared with reference data (a master solid model in this research) to find any 

manufacturing errors resulting from mismachining or any other reasons. This is 

the aim of this research. The methods used to analyse the data and to compare the 

model derived from the measured points with the master solid model of the com

ponent will be explained in the next chapters. As an example of input data, the 

surface points of a turbine blade are shown in Figure 3.4.

The laser measuring machine is capable of taking measurements at the rate of 

about three hundred measurements per second (however, to obtain the accuracy of 

+/- 0.1 mm this rate drops to thirty measurements per second). The measuring 

machine is used to measure engineering components automatically after teaching 

the machine from a master model of the components [27]. The teaching process is 

done by using a television camera.
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A method by Henry [61] which is different from the methods described in this 

research is proposed for comparing measured data with reference data derived from 

a model. His method, which is based on the Delaunay triangulation, generates 

range images from the irregularly sampled ‘z’ range values and uses two- 

dimensional interpolation. It then subtracts the measured range image from the 

reference range image (which is generated either by ray-tracing a master model or 

by measuring it by a vision system) and calculates an error image which produces 

information on the types of defects that may be present.

The laser measuring machine is a physical implementation of the ray-casting 

algorithm. In the next section, simulation of the data gathering process using laser 

measuring machine will be explained. A ray-tracing algorithm, DORA [115], has 

been used for the simulation.

3.4 Simulation of Data Gathering

As was mentioned earlier, the data to be analysed and matched to the reference 

data consist of points in space. These data may either be gathered by using a laser 

measuring machine or by using an algorithm which simulates the process of this 

measuring machine (simulation of the laser measuring machine was needed because 

the measuring machine was unserviceable most of the time during the preparation 

of this research). A set-theoretic solid modeller, DORA (Divided Object Ray- 

casting Algorithm) which was developed at Bath University to produce pictures has 

been slightly modified to be used for the simulation purpose.
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3.4.1 DORA - The Solid Modeller

DORA is based on the technique of ray-casting. Ray-casting [113] is a computer 

graphics technique which produces pictures by tracing a ray of light back from the 

viewer into a scene being depicted. A picture is produced by generating a pattern 

of straight lines or rays with a viewer’s line of sight through each pixel on a 

raster-scan graphics display. The ray is traced until it strikes a surface of the 

object and the colour of that surface is transferred to the pixel. Figure 3.5 shows 

the ray-casting process.

The ray-casting process in DORA compares each ray with a division structure 

- DORA divides the object space into sub-spaces to increase the speed of picture 

production over a number of pictures - and determines the first surface that the ray 

met. By comparing each primitive (half-space) with the ray and testing whether 

any of them represents a real surface and doing this for every ray, a picture is gen

erated.

DORA uses a model consisting of a set-theoretic combination of half-spaces 

to produce a picture on a raster graphics display. The model (which must be 

suplied as a list of half-space definitions and the set-theoretic operator tree which 

relates the half-spaces) can be prepared by an Algol-like language called SID (Set- 

theoretic Input to Dora) [24]. Part of the SID code that generates a hex-headed 

bolt is given in Figure 3.6.

Obviously, the principle of ray-tracers is very similar to the principle of the 

laser measuring machine. A ray is traced until it strikes to a surface of the object
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Figure 3.5 Ray-tracing

The SID m od e l b u ild in g  la ng uag e
; Build the bolt's shaft

z_point :=pt(0.0,1)
axis :=ln(z_point,z_point) ; In returns a line through a point 

; in a given direction
radius :=diam*0.5
btt_ shaft :=cylinder(axis, radius,n_ facets)

; Now the hex head
root_ 3 :=sqrt(3.0)
radius :=diam*0.5*root_ 3
face_ point :=pt(0,radius,0)
face :=space(face_ point,face_ point) ; space returns a planar 

; face through a point 
; with a given surface 
; normal

head :=face
FOR count :=1 TO 5 DO
{ angle :=count* 3.1415926/3

head :=head & spin(face,axis,angle)
}

; & means intersection

Figure 3.6 The SID code that generates a hex-headed bolt
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like a laser beam which is directed at the same surface. The only difference here 

is, although the laser measuring machine finds the coordinates of the point that the 

beam struck, the ray-tracer paints the corresponding pixel into the colour of the 

surface. By making some modifications to the ray-tracer this difference can be 

removed and the process of the laser measuring machine is simulated.

3.4.2 Modifications on DORA

DORA was modified to record the coordinates of the surface points that the rays 

struck. Each ray to be traced is defined in parametric form:

x = xQ + ft
y = y0 + g '
z = z + hro

where (xQ, y , zQ) is the ray’s starting point - a view-point which is defined in 

DORA’s command file f, g and h are the ray coefficients generated by the ray- 

tracer; r is the parameter of the ray and (x,y,z) is the intersection point if there is 

any intersection. Rays are cast from all around the object (6 or 8 different view

points are defined for this purpose) and the coordinates of the intersected points are 

found and written into a file to be used as data in the future processes.

To control the number of rays used to scan the object’s surface, two different 

angles are defined for horizontal and vertical directions. From these angles, incre

ment angles a and p of horizontal and vertical directions respectively can be calcu

lated as :
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a  =  Given angle in horizontal direction_____
desired number of rays in horizontal direction

P =
 Given angle in vertical direction_____
desired number of rays in vertical direction

These increment angles and the viewing pyramid are shown in Figure 3.7. By 

controlling the increment angles, complicated surfaces can be scanned with more 

rays than usual and more detailed information can be obtained to generate the 

model.

To take the accuracy of the laser measuring machine into consideration and to 

avoid degeneracy problems at the triangulation stage (which will be explained in 

the next chapter), the surface points were randomly perturbed by a small amount 

(between the range of IOji and lOOji - which is the accuracy of laser measuring 

machine). This was not intended to simulate errors in planarities of the surfaces 

themselves, or their roughness. Some suggestions about these cases will be given 

in Chapter 8. Figure 3.8 shows the surface points of two models. These surface 

points are obtained by the ray-tracer.

3.4.3 Limitations

A limitation that DORA has is that its models are faceted. Curved surfaces are 

approximated by a combination of planes and only infinite planar half-spaces are 

used as primitives by the modeller. This limitation has been accepted to generate 

fast running software. Since DORA has been used in simulation, this limitation in 

DORA affects the data gathering process.
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Figure 3.8 (a) Surface points

Figure 3.8 (b) Surface points
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3.5 Concluding Remarks

In this chapter the laser measuring machine and simulation of data gathering pro

cess is described. At this stage, the data which have been obtained either by this 

measuring machine or by the simulation are ready to be processed. In the next 

chapter, an efficient algorithm is introduced for processing the data. Although a 

laser measuring machine has been described in detail in this chapter, all the algo

rithms described in the next chapters would work just as well for a mechanical 

probe.
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CHAPTER 4

PROCESSING THE DATA

4.1 Introduction

The gathered data consist of a set of co-ordinates (x,y,z) representing the sur

faces of an engineering component. This information needs to be processed 

further to form a shape which will then be compared with the master solid 

model of the same component to find any defects.

This chapter introduces an efficient multi-dimensional algorithm [25] 

which uses the Delaunay triangulation to process the measured points and to 

find the neighbourhood relationships between them.
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4.2 The Delaunay Triangulation

The data to be matched to a collection of solid model primitives consist of points 

in space. Only the positions of points lying on the boundary of the measured 

objects are known; no topological information is available. Obviously, this infor

mation is insufficient to form or to analyse the shape of the measured object; some 

additional information such as the neighbourhood relationship between the points is 

also needed. To obtain this information the Voronoi diagram (also referred to as 

the Dirichlet tessellation amongs mathematicians or Thiessen polygons in geogra

phy) of the measured points is constructed.

The geometric dual of the Voronoi diagram is the Delaunay triangulation. 

Literature about the Voronoi diagram and Delaunay triangulation have already been 

mentioned in Chapter 2. In this section the definition and the properties of the 

Delaunay triangulation will be given. But first, the formal definition of a triangula

tion of a closed surface needs to be defined [19, 42]. A collection T of triangles 

(in Euclidean space) is a triangulation iff:

i. Any two triangles are either disjoint, or have a vertex in common, or have 

two vertices and consequently the entire edge joining them in common. That 

is, the triangles do not intersect and are not coincident except at vertices or 

edges. Also, all edges are simple in the sense that they have exactly two 

incident triangles. This is the triangulation requirement.

ii. All edges within a triangulated surface are connected, that is, there is a path 

of edges connecting any two of them. This requirement is called the connect-
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edness condition.

iii. For every vertex of a triangle of T, its link is a simple closed polygon; that is, 

every edge of a triangle is adjacent to exactly two triangles. This requirement 

is called the link condition.

From this definition, by reformulating the criteria above, some more definitions 

[42] can be derived such as:

i. Some subset of triangles, that pairwise share common edges, can be combined 

and this combination is called a face. In usual practice a face is chosen to be 

that subset of edge-sharing triangles that lie on a surface defined by a single 

equation or parametric representation. A triangle belongs to exactly one face.

ii. Faces may wholly bound to other faces and there is a path from one face to 

any other face by crossing shared edges. Faces can intersect only at shared 

vertices and edges.

The aim of triangulation is to find the surfaces. But at this point, a question arises: 

What is a good triangulation? A triangulation is regarded as good for interpolation 

purposes if its triangles are nearly equiangular. It was shown by Sibson [101] that 

there is only one locally equiangular triangulation of the convex hull of a 2D finite 

data set and that is the Delaunay triangulation.

The Delaunay triangulation is the geometric dual of its Voronoi diagram. In 

2D the Voronoi diagram is a pattern of packed convex polygons covering the 

whole plane, and is determined by a finite set of distinct points: each point is asso

ciated with a territory that is that area of the plane nearer to it than to any other
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data point. The formal definition of Voronoi diagram [53] is given as: for a given 

set P=  {p x , . . .  , pn }, N > 3 of points in the Euclidean plane where the points are 

not all colinear and where no four points are cocircular, the region of P, is the set 

Ti defined by

Ti =  { * :  d ( x , P i )  < d ( x , P j )  f o r  all i*j }  

where d is Euclidean distance.

Lee and Schachter [72] explained the structure of the Voronoi diagram by 

assuming the structure is the cells of a growth process. Voronoi polygons which 

have a boundary segment in common are said to be contiguous as are their generat

ing points and are called Voronoi neighbours. In two-dimensions polygons meet in 

threes (except in degenerate cases, see section 4.2.2) at Voronoi vertices so the 

lines joining contiguous generating points define triangles. These triangles triangu

late the whole area within the convex hull of the generating points. The perpendic

ular bisectors of the edges of this triangulation give the boundaries of the polygons 

and circumcentres of the triangles are vertices of the polygons. This triangulation 

is called the Delaunay triangulation. Figure 4.1 shows the Voronoi diagram and 

the Delaunay triangulation for 16 points. Bold lines represent the tessellation 

where the dotted lines represent the Delaunay triangulation.

In three-dimensions the territory of each data point becomes a convex 

polyhedron: the region of space nearer to the point than to any other. The faces of 

the polyhedra are convex polygons and each convex polygon lies in the plane 

which bisects an edge of a Delaunay tetrahedron. Figure 4.2 shows a three- 

dimensional Delaunay vertex and its associated Delaunay tetrahedron.
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Figure 4.1 Voroni diagram and Delaunay triangulation
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4.2.1 Properties of the Delaunay Triangulation

Properties of the Delaunay triangulation and their proofs are given by Lee and 

Schachter [72]. In this section some of these properties will be described without 

giving any proof.

Delaunay triangulations have several nice properties. First of all, they are 

locally equiangular (in fact they are the only locally equiangular triangulation of a 

finite data set as shown by Sibson [101]; for a definition of locally equiangular tri

angulation also see Sibson [101]). The Delaunay triangulation of a set of points is 

shown to satisfy the max-min angle criterion [70, 72, 101]. Lawson [70] suggested 

this criterion, which requires that the diagonal of every convex quadrilateral occur

ring in the triangulation should be well chosen to be able to make the resultant tri

angles as nearly equiangular as possible. Figure 4.3 shows this criterion on an 

example. Since the triangulation that maximises the minimum interior angle of the 

two resulting triangles needs to be chosen, triangulation (b) in figure 4.3 is pre

ferred.

Lawson [70] also used the max-min criterion to describe a local optimization 

procedure for constructing a triangulation. The edges of the Delaunay triangulation 

of a finite set of points are locally optimal. Since the Delaunay triangulation can 

be constructed by means of a local optimization criterion which ensures global 

optimality, it is the unique and the optimal triangulation of the convex hull of a set 

of points.
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Figure 4.2 A 3-D Delaunay vertex and its associated 
Delaunay tetrahedron (from Bowyer [25])

(a) (b)

Figure 4.3 The max-min angle criterion
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The second criterion which is used to construct the Delaunay triangulation is 

the circle criterion. This criterion [72] is defined as: "For a given set 

P -  {Pu • • • . Pn ) of points, A PiPjPk is a Delaunay triangle if and only if its cir- 

cumcircle does not contain any other point of P in its interior". In three- 

dimensions the circle criterion becomes the sphere criterion. The four vertices of 

each Delaunay tetrahedron lie on the surface of a sphere and no other vertex lies 

within that sphere. This property characterizes the Delaunay triangulation [17] in it 

dimensions: "if an hypersphere circumscribing k+1 points of P does not contain 

any other point of P  in its interior, this sphere is a Delaunay sphere and the 

corresponding k+1 points belong to a simplex of the Delaunay triangulation." The 

sphere criterion may also be regarded as a smoothness criterion (see [32]).

Apart from these properties, the Delaunay triangulation is also claimed to be a 

minimum edge length triangulation (or minimum-weight triangulation [106]) by 

Shamos and Hoey [99] but Lawson [70] and Lloyd [76] proved by counterexample 

that this is not the case.

All these properties make the Delaunay triangulation one of the most useful 

constructs associated with the interpolation of a given data set as well as construct

ing and analysing three-dimensional shapes.

4.2.2 Degeneracies

During the construction of the tessellation in two-dimensions four or more terri

tories may happen to meet at a vertex. Such a vertex is said to be degenerate [53]. 

In general, for ^-dimensions, a degeneracy occurs when more than k+1 Voronoi k-
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dimensional domains share a vertex.

Two types of problems with degeneracies are encountered:

i. when truncation error in the computer causes an error on a near degeneracy, 

for example an algorithm might make the point contiguous to point Pj but 

not make P} contiguous to Pit

ii. or when k+1 (or more) points he in a hyperplane and are cyclic [25].

The first type of degeneracy occurs whenever the distance from the new point 

to its neighbouring points is within the expected accumulated truncation error 

bounds or the new point coincides with an existing point. The second type 

includes the case when the forming points are lying on the comers of a regular 

square grid which determines a tessellation in which every vertex is degenerate. 

However, this type is highly unlikely unless the data points are intentionally placed 

on the grid. The algorithm described in section 4.3 overcomes these degeneracies 

and has run successfully on highly degenerate point patterns. The solutions to 

degeneracy problems are given in [25].

4.2.3 Applications of the Delaunay Triangulation

Apart from the applications mentioned in Chapter 2, as discussed by Boissonnat 

[20] Delaunay triangulations are quite useful in: automatic modelling of three- 

dimensional objects (see Chapter 2 for the references), applications in higher 

dimensions [25, 111], computing the skeleton of a polyhedron [71] and the 

definition of a shape hull of a dot pattern. Amongst these applications only some
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applications in automatic modelling of 3D objects will be mentioned in this sec

tion. These applications are:

1. Calculation of the mass properties such as volume, centre of mass, moments 

of inertia and so on by looking at the mass properties of the set of the interior 

tetrahedra. The volume is the sum of these elementary volumes, the centre of 

mass is the centre of gravity of the centres of mass of the different tetrahedra 

weighted by their volume, etc.

2. Calculation of equilibrium positions by finding the normal projection of the 

centre of mass onto the faces of the convex hull of the object which forms the 

boundary of the Delaunay triangulation.

3. Mesh generation to be used to perform stress and thermal analyses by using 

finite elements techniques (see Chapter 2 for the references). This mesh can 

be improved by adding new points in the interior of the object in order to 

obtain more regular tetrahedra.

4. Cruder polyhedral approximations by eliminating points producing elongated 

tetrahedra. This can be achieved easily if (as in the case of the algorithm 

described in the next section and in [ 1 1 1 ]) the algorithm computing the 

Delaunay triangulation is implemented as an iterative procedure which inserts 

the points into structure one after another and updates the triangulated struc

ture after each insertion.

The application of the Delaunay triangulation to gathered data to form a structure 

of tetrahedra with the measured surface points as vertices will be explained in sec-

73



tion 4.5.

4.3 The Triangulation Algorithm

Different Delaunay triangulation algorithms in 2D or higher dimensions have been 

proposed in the literature [53, 106, 111] and the efficiency of some of these algo

rithms has been reviewed by Boissonnat [17]. An algorithm which uses a 3D 

Delaunay triangulation will be described in this section. It will be described in 

some detail (though it has been published in [25]) because the data structure which 

it uses will be needed for subsequent chapters in this thesis. A 3D Delaunay tri- 

angulation (which is an assemblage of space-filling, disjoint, irregular tetrahedra) 

implies a topology among the three-dimensional points. By setting the topological 

relationship among the 3D points, a polyhedron that consists of triangular faces is 

constructed.

The triangulation algorithm described in this section is used to obtain neigh

bourhood relationship information for the three-dimensional surface points of the 

measured component gathered either by a measuring machine or the simulation. 

More precisely the problem here is to find the polyhedron (which consists of tri

angular faces) whose vertices are the measured points.

This algorithm has some similarities with Watson’s [111]. Watson also pro

posed an algorithm to compute ^-dimensional Delaunay tessellations. His algo

rithm checks ^-dimensional hyperspheres (which are the Delaunay spheres with the 

Delaunay vertices in the centre) and observes which circumspheres are intersected 

by the new point after each insertion. This process is the same as checking each
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new point to see whether it is closer to the vertex than its forming points are. If 

the circumsphere is intersected, the structure is modified. His algorithm adds the 

points into the structure in an ’advancing forward’ sequence which means the 

Delaunay fc-simplices behind the advancing front are in their final configuration 

while those ahead of the front are subject to alteration. The major difference of 

this algorithm from the one described in this chapter is, Watson does not use any 

technique such as finding the nearest neighbour to eliminate some of the vertices 

and checks all of the vertices to find the closest vertex which leads his execution

(2k—l)
time to be 0 ( N  k ) for N  data points. The execution time of the algorithm

( 1+*T )
described in this chapter is 0  ( N * ).

4.3.1 Data structure

Before starting to describe how the algorithm works, the data structure used needs 

to be explained. Green and Sibson’s [53] two-dimensional algorithm (which has 

some similarities with the algorithm described here) uses an additive method to 

compute the contiguities of Delaunay triangles and stores the triangulation in the 

form of lists of contiguous points for each point. It adds the points in turn and 

modifies the contiguities as each point is added. In the two-dimensional case the 

contiguity lists can be arranged in cyclic order. For the points this cyclic order has 

no starting point: it is a ring structure, that is to say a list which can be broken 

arbitrarily. To insert the points into the structure one by one, the algorithm uses 

the fact that in 2D contiguity lists can be stored cyclically. This sort of ordering is
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not possible in higher dimensions. So, how can the vertex or point structure be 

stored in higher dimensions?

To answer this question consider the 2D structure in Figure 4.4. Two lists 

can be constructed for each vertex in the structure: a list of points which form each 

vertex (each vertex is the circumcentre of its three forming points), and a list 

which contains the neighbouring vertices of each vertex, each one opposite one of 

the vertex’s forming point. Territorial boundaries that extend to infinity can be 

considered as terminating in a vertex labelled zero. Figure 4.5 shows the data 

structure for the six vertices in figure 4.4.

There is no cyclic order of the points around a vertex and the order of form

ing points in figure 4.5 is deliberately arbitrary. In k dimensions each vertex has 

k+1 forming points and k+1 neighbouring vertices opposite them.

4.3.2 Inserting a point into the structure

Triangulation of a data set starts with a simple structure (the most obvious starting 

pattern is the Delaunay simplex formed by the first k+1 points) and builds the tri- 

angulation upon this simple structure by adding each point to the structure one by 

one and modifying the structure after each insertion, starting the triangulation with 

the Delaunay simplex forming a tessellation containing one real vertex all of whose 

neighbouring vertices are 0. The only limitation which needs to be considered is 

that the first k+1 points must not all lie in a hyperplane in the k dimensional space 

in which the triangulation takes place. The flow-chart of the triangulation algo

rithm is given in Figure 4.6. Generating a convex hull from k+1 data points will
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Figure 4.4 The newly inserted point Q  - finding its 
territory (after Bowyer [25])

Vertex Forming Points Neighbouring Vertices
Vi Pi P i Ps v2 0 0
v2 Ps Ps P i V i F6 F3
Vs Ps Ps P a 0 f 4 V2

V4 Pe Ps P a 0 V5

Vs Pe Ps P i 0 V4

v6 Ps Pi P i 0 F2 V5

Figure 4.5 Data structure the Delaunay triangulation
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be explained in section 4.5.

To explain how the data points are inserted, suppose the new point Q needs to 

be inserted within the current convex hull of data points of the structure in figure 

4.4. The new territory which will be formed by the insertion of this new point is 

indicated by the dotted lines. The algorithm which finds the territory of the new 

point can be outlined as follows:

1. Find the first vertex in the structure which will be deleted by the new point 

(say V2). This vertex is any vertex which is nearer to the new point than to 

its forming points. There will always be at least one such vertex, as the ver

tex corresponding to the Delaunay simplex in which the new point lies will 

always be deleted and Delaunay simplices completely fill the convex hull of 

the currently included points.

2. Look for the other vertices which will also be deleted by starting from the 

first deleted vertex and performing a tree search through the vertex structure. 

This is not difficult if the data are stored as indicated in figure 4.5. The result 

will be a list of all vertices deleted by the new inserted point Q. In this case 

(as seen from figure 4.4) the list will be: { V2, V2 }.

3. The points contiguous to the point Q are all the forming points of the deleted 

vertices: { P 4 , P s , P 2> P z }.

4. Remove the old contiguities between the pairs of those forming points if all 

their vertices are in the list of deleted vertices (e.g. since the vertices V2 and

are deleted, remove the contiguity of P 3 - P 5)
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Figure 4.6 The flowchart of the triangulation algorithm
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5. In this case four new vertices will be formed for the new point: 

{ Wu W2, W3 , W4). Compute their forming points and neighbouring vertices. 

The forming points for each new vertex will be point Q and k of the points 

contiguous to Q. Each line in the tessellation is shared by k points around it 

(e.g. the line V2 - V6 is formed and shared by P2 and P3). The forming points 

of new vertices and their neighbouring vertices may be found by considering 

vertices pointed to by members of deleted vertex list that are not themselves 

deleted, and finding the rings of points around them. Thus Wi points out

wards to V6  from Q and is formed by { Pi, P3, Q }.

6 . Finally, overwrite the entries of deleted vertices with some of the new ones to 

save space.

All these operations considered above are of a local nature (except step 1). There

fore, the amount of work to be done is independent of the number of points 

currently in the structure and is roughly proportional to the number of new vertices 

created.

The problem to be solved in step 1 is to identify the first vertex which will be 

deleted by the point that is about to be inserted. One solution of this problem is 

easy: examine each vertex in the structure to see if it is nearer to the new point 

than to its forming points and find a vertex which satisfies the condition. But this 

would be very time consuming process (especially with large number of points in
r

higher dimensions) and would destroy the benefit of the local nature of the inser

tion algorithm. Therefore, to overcome these disadvantages, a vertex needs to be 

identified without the need to examine most of the vertices in the structure. This
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problem can be solved by finding the nearest neighbour of the new inserted point

4.3.3 Finding the nearest neighbour

The solution as proposed in Green and Sibson’s [53] two-dimensional algorithm is 

to start looking for the nearest neighbouring point at an arbitrary point and walk 

from neighbour to neighbour across the Delaunay triangulation, always approaching 

the new point until the point nearest to it is found. In applications in which the list 

of points is automatically in systematic order, the new point is likely to be near the 

one that had just been inserted and that last point would be the obvious place to 

start the walk. This will result in an almost negligible computational load. If 

nothing systematic is known about the position of points the obvious place to start 

this walk is at a point near to the centroid of the currendy accepted points; in k 

dimensions a walk for N points starting from the centroid of the configuration

_i_

should take 0 ( N k).

The routine which performs the walk starts with the last accepted point as the 

neighbouring point and checks if the new point is inside the Delaunay simplex 

which has the last accepted point as one of its forming points. To understand how 

the check is done consider the structure in Figure 4.7. The algorithm inspects the 

faces formed by omitting points in turn. It uses the result of vector products to 

make the decision. It first calculates the vector product of x and checks 

the sign of the result. The sign of the result gives the side on which the opposing 

comer point lies. Then it does the same calculation for X (the new point). Since
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(a) The inserted point is outside of the simplex

(b) The inserted point is inside the simplex 

Figure 4.7 Finding the nearest neighbour
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the sign of the result of X  ~Px x  X ~P3 is different from the previous sign as in figure 

4.7 (a), this means the new point X  is not on the same side as the opposing comer 

P n and, in fact, is not lying in the associated Delaunay simplex. In this case, it 

flags the path so that it is not taken again and finds the next simplex to examine. 

It does this by finding the vertex opposite to the point which causes the different 

sign (V2 in figure 4.7 (a)). It repeats this until the simplex containing X  is found, 

which it checks in the following manner: consider the simplex A  P XP 9 P 3 and the 

new point X  in figure 4.7 (b). In this case the resultant sign of vector products of 

Pi^gx p x p 3 and X~P9 x X ~ P 3 are the same (as are the signs of P ^ i  x  p 9 p 3 and 

X~Pl x X ' P  3, and P 3~P9 x  P 3 P l and X ~ P ^ x X  *£9) which means the new point is in 

the simplex. This ends the neighbour finding process.

4.3.4 Modifying the structure

Once the nearest neighbour of the new point has been found it is a simple matter 

to find a deleted vertex as explained in section 4.3.2. The new point must delete at 

least one point on the boundary of its nearest neighbour’s territory.

The routine takes the neighbouring vertices list of the deleted vertex, calcu

lates the squared distance between the new point and each vertex on the list (Ds) 

and the squared radius associated with the hypersphere in which the neighbouring 

vertex is in the centre (£>v), compares Ds and Dv, and adds the vertex into the 

deleted vertex list if the new point is closer to the vertex than its forming points 

are (which means Ds < Dv),  otherwise it ignores the vertex. After deleting the old 

vertices, old contiguities are also removed and the structure is modified to construct
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new vertices and new contiguities. The whole process is repeated after each inser

tion.

Finally, the algorithm should modify the structure only if the point inserted is 

within the current convex hull. If a new point is outside the convex hull, it should 

not delete any vertices and should be treated differently. This can easily be 

flagged, as none of the vertices of the new point’s nearest neighbour are deleted, 

and overcome by setting up the initial simplex and the vertex on which the algo

rithm builds such that the k+1 points on the comers of the simplex remain the con

vex hull throughout the entire process. As the whole range of floating point 

numbers is available this is not difficult. These first k+1 points would, almost 

always, not be data values, but would be artificially generated to bound the prob

lem. The generation of these points for the application of the triangulation algo

rithm to the measured or generated data is described in section 4.5.

4.4 Implementation of Details

4.4.1 Programming

The triangulation algorithm consists of a set of ISO FORTRAN subroutines which 

are callable from a simple main program that feeds the points to them one by one. 

The data structure of vertex lists and Delaunay simplexes are available at any 

stage of the processing as well as the lists of contiguities. Moreover, the lists of 

vertices around a point’s territory or common to a pair of points (the vertices asso

ciated with a contiguity) are also produced within the processing.
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It is possible to make the usual compromises between storage space and exe

cution time (e.g., either to store the position and squared radius associated with 

each vertex in the structure or to compute these values when they are needed).

In only two subroutines do floating point calculations take place: the subrou

tine which calculates the squared distance between any two points in the k dimen

sional space in which the tessellation is being constructed, and the subroutine 

which calculates the circumcentre and squared radius associated with the hyper

sphere which passes through the k+1 point at the comers of a simplex. Since the 

radii of the circumspheres are used only in comparison, the squared values are 

compared to save the time of root extraction.

4.5 Application of the Algorithm to the Gathered Data

The aim of applying the Delaunay triangulation algorithm is to form a three- 

dimensional structure (a solid structure) which is the aggregation of a set of packed 

tetrahedra with the measured points as the vertices. This can be achieved by fitting 

the tetrahedra to the surface points and finding which of these are solid. Some of 

the triangles that form the surfaces of these tetrahedra will form a complete tri

angulation of the measure object’s surface.

Because of the properties listed in section 4.2.1 the Delaunay triangulation is 

suitable for structuring the measured data. Since the only information about the 

gathered data is the position of the surface points lying on the boundary of the 

object, the adjacency relationship between the points needs also to be provided. 

This information (which can then be processed to determine which of them are
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lying on the same surface) is obtained from the Delaunay triangulation.

The surface points are added to the structure one by one. Before feeding the 

points into the structure a convex hull of the measured points is generated by form

ing a Delaunay simplex from k+1 points. These k+1 points are not data values but 

are artificially generated to bound the data set and the Delaunay simplex formed by 

these points encompasses the data points. The position of these k+1 points are cal

culated as follows:

1. Scan the measurements file and find the maximum and minimum values of

(%>y>%). L e t  p = ( ymin> ^min ) JUld q — ( Xmaxi zm« )•

2. Move the minimum and maximum points a given distance away in negative

and positive directions respectively so that the convex hull includes the

minimum and maximum points as well. The new p  and q are now:

p ’ = p  - ( 1 , 1 , 1 )

q' = q + ( 1 ,1 ,1 ) 

q ( V3’ V3’ V3 )

where d is the projection of q' onto the unit vector which is perpendicular to 

plane 1. Figure 4.8 shows two-dimensional representation of this. The trian

gle enclosing the data set corresponds to the Delaunay tetrahedra formed by 

the first four points in 3D and line 1 corresponds to plane 1. The d given 

above is obviously the distance of plane 1  from the origin as well.

3. From these definitions, the equation of plane 1 in Figure 4.9 can be written

as:
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and the first k+1 points (4 points for three-dimensional case) which are the 

vertices of the convex hull as:

Point 1 : ( x p', yp>, zp > )

Point 2 : ( x , y p>, zp > )

Point 3 : ( x p>,y, zp > )

Point 4 : ( xp>y yp>, z )

where * = V 3 ( d -  % - % > .  y = *  ■ ( d  -  % )

a n d i = V 3 (<i - f - f  ).

Placing the points in this way guarantees that all the data points will be inside 

them: they remain the convex hull throughout. The vertex data structure is 

modified after each point insertion. Since the data points are distinct there is no 

possibility of coming across the first type of degeneracy. To avoid the second type 

of degeneracy data points which are generated by simulation are randomly per

turbed.

4.6 Concluding Remarks

In this chapter a Delaunay triangulation algorithm has been described to process 

the measured or generated data. At the end of such processing, a three- 

dimensional structure which is the aggregation of a set of packed tetrahedra with 

the measured points as the vertices is formed. Some of the triangles that form the



45*
/

p

Figure 4.8 Projection of q'  onto the unit vector in 2D

p o  i n

p o  i p o  1

Figure 4.9 Convex hull in two-dimensions
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surfaces of these tetrahedra will form a complete triangulation of the measure 

object’s surface. But the problem here is to find which ones. A method of solving 

this problem will be explained in the next chapter.
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CHAPTER 5

FINDING THE OBJECT’S SURFACE

5.1 Introduction

The Delaunay triangulation forms a tetrahedral packing with the measured (or 

generated) points as vertices. This is a volumetric representation of the object. 

Since the faces of this model will be matched to a collection of solid model 

primitives, its surface needs to be found first.

Some of the triangular faces of the tetrahedra will form a complete tri

angulation of the surface. In this chapter a method of finding these tetrahedra 

(and the surface of the model as a result of this) is introduced [29]. In addi

tion, methods of eliminating the redundant tetrahedra (that is the tetrahedra 

which the algorithm initially categorises as solid but which are, in fact, air) is 

also described.
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5.2 Classification of Tetrahedra

In order to find the surface of the model the tetrahedra that form the model need to 

be classified. After the triangulation has been computed some Delaunay tetrahedra 

will lie within the measured object and will thus be solid, whereas some will lie 

outside it and will be air. If the tetrahedra may be so classified, then any of their 

triangular faces that form a boundary between a solid tetrahedron and an air 

tetrahedron will be part of the component’s surface. But how may the tetrahedra 

be classified in such a way?

As explained in Chapter 3, in order to measure each point a ray of light must 

have been directed at it or a measuring probe must have touched it  If the path 

taken by this is recorded then any Delaunay tetrahedra which it passes through 

must be air.

The algorithm which does the classification takes the surface points one by 

one, traces the path backwards from each point (by negating the coefficients of the 

ray which was used to detect each point) and classifies the tetrahedra which the ray 

passes through as air. Since the points are on the surface and the path is traced 

backwards all the tetrahedra which the path intersects on its way should be air. 

The flow chart of the algorithm is given in Figure 5.1.

This research was particularly concerned to deal with data gathered by the 

laser coordinate measuring machine mentioned earlier [61]. Henceforth the path 

will be considered to be a ray of light, but all the algorithms would work just as 

well with a mechanical probe path.
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Figure 5.1 Classification of tetrahedra
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The algorithm takes the first surface point and starts tracing its ray of light 

backwards. When it finds the intersection between a triangular face of the first 

tetrahedron and the ray (since the starting point is one of the forming points of this 

Delaunay tetrahedron, there is always one intersection with the first tetrahedron) it 

classifies this tetrahedron as air and continues tracing the ray into the tetrahedron 

which shares the intersected face with the first tetrahedron. After this there are 

always two intersections with the ray and each tetrahedron (unless the ray inter

sects an edge or a comer).

The ray-tracing algorithm uses parametric rays, as did the simulation algo

rithm (see Chapter 3). The next tetrahedron which the ray will pass through is 

determined in two ways: by using the ray parameters at the intersection points or 

by using the intersected face information. First, consider the ray parameter infor

mation.

Since rays are parametric, the parameter of ray at the intersection point is cal

culated as follows [28, 108]:

1. The equation of the plane in which a triangular face lies is given by

ax + by + cz + d = 0

The plane coefficients can be calculated from the coordinates of the points 

that form this triangle (see Figure 5.2). The implicit equation of a plane 

through these three points can be stated as a determinant:

x -  xj y - y j  z - z j  
*k ~xj yK -  yj zK ~ zj 
XL -xJ yL -  yj zL -  Zj

= 0

93



which contains the three independent variables, x ,  y  and z. This determinant 

states a vector formed by J and any point in the plane must be perpendicular 

to the vector product of the vectors from J to K and from J to L. This vector 

product is obviously normal to the plane. If the determinant is multiplied out 

it gives the usual form of plane equation indicated above and the coefficients 

of this plane are calculated from the co-ordinates of the three points which lie 

on this plane.

2. Since the rays are parametric and their equations are given as:

X =  X 0 +  f t

y =yo + gt
i  = z q +  h t

the parameter of the ray where it intersects the plane is then calculated as:

(axo +  by0 + cz0 + d )
( a f  + bg +  c h  )

In order to determine the next tetrahedron which the ray passes through, the inter

sected face which has the bigger ray parameter value of the two ray parameter 

values at the intersection points is found and the ray is traced towards the neigh

bouring tetrahedron which shares this face with the intersected tetrahedron. The 

ray parameters of each ray at the intersection points are determined and the next 

tetrahedron that each ray will follow is found. The method of finding whether the 

ray pierces the triangular face or not will be explained below.

If the ray parameters are too close to each other (because of the rounding 

error of the computer) the algorithm fails to chose the bigger ray parameter and 

fails to find the next tetrahedron to follow. In order to avoid this problem, the
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intersected faces can be checked as an alternative way of making the decision. 

Since the ray first intersects the face which is shared with the previous tetrahedron 

that the ray is coming from, the ray is traced towards the tetrahedron which has the 

other intersected face in common. Figure 5.3 shows the ray-tracing algorithm in 

two-dimensions.

Since the ray intersects the line P XPA (which corresponds a triangular face in 

three-dimensions), the next tetrahedron to be visited (corresponding to the vertex 

Fio) is the one which shares the line P 1P4  with the tetrahedron of V%. After the 

second intersection with the tetrahedron corresponding to the vertex V10 has been 

found, the next vertex is V5 which has the common edge P 4 P 7  with V10 and so on.

As explained in the section on the triangulation algorithm (section 4.3) the 

forming points of each Delaunay tetrahedron and the neighbouring vertices oppo

site to the forming points are kept in two separate lists. When an intersection 

between the ray and one of the faces of a Delaunay tetrahedron is found, the next 

tetrahedron to be visited is determined by checking the neighbouring vertices list 

and finding a Delaunay vertex that is opposite to the forming point of the 

tetrahedron which is not in the intersected face. For instance, in figure 5.3, for the 

tetrahedron corresponding to the vertex Vi0i the next vertex to be visited is vertex 

V5 which is opposite to Pi.

In order to determine if a ray pierces a triangular face (see Figure 5.4), the 

following calculations are performed:
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♦ b y ♦ c z +d = 0a x

Figure 5.2 A plane through three points

\

\

Figure 5.3 Ray-tracing in 2D. P 2 is the starting 
surface point and dotted lines represent the Voroni polyhedra.
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t ,

V i  =  [ (  a -  a) (.h ( i 2 -  ) ]

v 2 = [ ( a  - a  ) ( i i - a  ) ( i s - a  )] 

v3 = [ ( a - a ) (Xs-a ) ( X i - a  )]

Figure 5.4 Finding the intersection between the ray 
and the triangular face
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1. Calculate the length, j, between a and the tetrahedron’s centroid, g is the 

starting point of the ray (surface point).

S = V ( x  -  x 0 f  + ( y -  y0 )2 + ( -  Zo f

x ,y ,T  are the coordinates of the the centroid and x0, y0, z0 are the coordinates 

of the starting point of the ray, a , (origin of the line).

2. If s is equal to zero, then, the starting point is already on the triangular face, 

so return to the main program. Otherwise, set g to be a point s  away from a 

on the line.

X = x 0 + s f
y  = y o  +  sg
z =  z q  +  s h

3. Subtract g from the triangle and a and calculate the determinants of:

Vi = [ ( g - f i )  ( L i - g )  ( 1 2 - a ) ]

v2 = [ ( a - a )  i i i -a)  ( i 3 - a ) ]

v2 = [ ( a - a )  (1 3 - a ) ( i i - a ) ]

The V  s are the signed volumes of tetrahedra calculated by vector products. If all 

the values of V  are the same sign, the ray pierces the triangular face; if they are 

not, it does not.

There are always two intersections after the intersection with the first 

tetrahedron when the ray was traced backwards from the surface point to classify 

the tetrahedra. This statement is true unless the ray intersects an edge or a comer 

on its way. If the ray intersects an edge or a comer, the algorithm stops ray
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tracing, skips this surface point after giving a warning of this sort of intersection 

and takes the next surface point for the next ray to be traced. This case is rare and 

skipping the surftce point does not cause much problem in classification. Air 

tetrahedra which fiil to be found by stopping the ray tracing can be found from the 

other surface points and the next algorithm to be described, which is capable of 

eliminating the remaining misclassified solid tetrahedra.

All the tetrahedra that the ray intersects are classified as air until the ray is 

beyond the convex hull. This process is repeated for every surface point and the 

majority of tetrahedra are thereby classified.

5.3 Eliminating the redundant tetrahedra

The classification algorithm, dependent on the complexity of the shape, categorises 

some of the tetrahedra as solid which are, in fact, air. This might happen when 

some tetrahedra are not visited by any of the rays re-traced from the surface points. 

These are the redundant tetrahedra and need to be eliminated to construct the actual 

shape of the object. In the measuring process any remaining ambiguities may be 

resolved by having the measuring machine (which is most useful if it is on line) 

take extra measurements which pass through the tetrahedra about which there is 

still doubt.

In the next sections two methods of eliminating these redundant tetrahedra 

will be described.
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5.3.1 Eliminating the Long Flat Tetrahedra

The first method used in the author’s research to eliminate the redundant tetrahedra 

was to find the tetrahedra (classified as solid by the previous classifying algorithm) 

which are long and flat and to eliminate them by categorising them as air. A flat 

tetrahedron is a tetrahedron whose volume is small when compared with its cir- 

cumsphere. Figure 5.5 shows this type of tetrahedron. This sort of situation is 

unlikely to happen in a real physical object and anyway, such an object would be 

impossible to manufacture. In order to find these tetrahedra, the triangular faces of 

each tetrahedron are checked to see whether any of them are long and flat. The 

algorithm which finds these faces calculates the area of the circle that passes 

through the vertices of a triangular face and compares this area with the area of the 

triangular face. The constant to be used in the comparison is calculated as (see 

Figure 5.6):

The area of an equilateral triangle is:

a4 = (-2 iL )*2

where h = R +  R  s i n 3 0  = —R  and b =  2Rcos 3 0  =  V3 R and the area is A a  =  —

The area of circumcircle is: A0 = it R 2

and the constant as calculated from these areas is:
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Figure 5.5 A long flat tetrahedron

Figure 5.6 A triangular face and its circumcircle
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The range of the constant in this formula is between 0 and 1. As the value 

gets closer to 0 , the triangular face becomes much thinner and longer and as it gets 

closer to 1, the triangular face becomes more equilateral. The redundant 

tetrahedron has naturally three long and flat triangular faces. The algorithm finds 

the tetrahedra whose three of its four corresponding constants are close to 0  and 

one close 1  and eliminates them by classifying them as air.

Although this method excludes most of the superfluous tetrahedra, the second 

method described in the next section has been found to be more general and more 

suitable for the purpose.

5.3.2 The General Solution

The method explained in the previous section only eliminates the tetrahedra which 

are long and thin. But in some cases, there might be some tetrahedra with which 

this technique cannot cope (especially, tetrahedra on the edges). This sort of 

tetrahedron is not the long-thin type (see Figure 5.7), so, cannot be excluded by 

the technique described previously. In order to handle all sorts of redundant 

tetrahedra, a more general technique was developed.

This technique calculates the centroid of each solid tetrahedron, moves away 

at a given distance in positive and negative x ,y j  directions consecutively, sends a 

ray of light from that distance onto the centroid and calculates the ray parameter at 

the intersection point. If the surface of the object is beyond the centroid, the 

tetrahedron is classified as air, otherwise it is solid. Figure 5.8 shows this process 

on a simple example.
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Figure 5.7 Redundant tetrahedra

c e n t r o i d

‘ay

Figure 5.8 Elimination of redundant tetrahedron
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This is actually what the measuring machine would do in real life. It takes 

some extra measurements either by a measuring probe or a laser beam which pass 

through the tetrahedra about which there is still doubt.

After the calculation of the centroid, a point at the given distance away in the 

x direction is chosen as the first starting point. A ray is sent onto the centroid, and 

the ray parameter at the intersection point of the ray with the surface of the object 

is calculated by running the solid modeller - DORA - for the second time (since 

the equations of the half-spaces which form the model are known, the determina

tion of the ray parameter is very easy). If an intersection occurs before the cen

troid of the tetrahedron, this tetrahedron may be solid, if it does not, the 

tetrahedron is definitely air. In the case where the tetrahedron may be solid other 

measurements are made to try to classify its status. These are done in the remain

ing coordinate directions. If any of the intersection points are beyond the centroid 

of the tetrahedron, this tetrahedron is immediately categorised as air and the next 

solid tetrahedron is taken to be investigated. The flow chart of this algorithm is 

given in Figure 5.9.

5.4 Finding the Surface of the Object

The classification of the tetrahedra as solid or air allows the surface of the object to 

be found by finding the triangular faces of solid tetrahedra which form a boundary 

with air tetrahedra. In other words it facilitates the triangulation of the measured 

component’s surface.
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Figure 5.9 The method of eliminating the redundant tetrahedra
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In order to find the neighbouring tetrahedra, the algorithm uses the neighbour

ing vertex information for each Delaunay vertex corresponding to each Delaunay 

tetrahedron. After the neighbouring tetrahedra which are air are found, the triangu

lar faces of each tetrahedron that are shared by its air neighbours are added to the 

list of triangles which form the surface of the object.

The surface normal of each triangular face (which is needed for the algorithm 

to be described in Chapter 6 ) is calculated by using the vertex position information 

of each tetrahedron. As given in the definition of the Delaunay triangulation, 

Delaunay triangles are the perpendicular bisectors of Voronoi polygons. This 

means the boundaries joining the Voronoi vertices are perpendicular to the triangu

lar faces of the Delaunay tetrahedra and represent the normals of the faces (see 

Figure 5.10). Since the position of each vertex has already been recorded in the 

triangulation process, the surface normals are calculated from the difference 

between the vertex position of the tetrahedron and its air neighbour’s.

If the neighbouring vertex corresponds to a territorial boundary that extends to 

infinity (a zero-labelled vertex, see Chapter 3), since the neighbouring vertex is 

outside the convex hull no vertex position information is available. In this case the 

coefficients of the plane that the triangular face lies in give the normal of the tri

angular face and the plane coefficients are calculated as in section 5.2.

Furthermore, the algorithm finds the neighbouring triangles of each surface tri

angle. This is a very useful piece of information for the clustering process that 

will be described in Chapter 6 . The algorithm checks the edges of each surface tri

angle to see which one of the other surface triangles shares each edge, and stores
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the three neighbours of each triangle. The storage structure of the neighbouring 

triangles is shown in Figure 5.11.

At the end of the process, the triangles lying on the boundary of the object 

have been obtained. The data structure (which will be used in the next process) 

contains the position of the forming points of the surface triangles, their normals, 

their neighbouring triangles and the vertex number of the corresponding tetrahedron 

to which they belong. This information is sufficient to determine the real faces of 

the object.

5.5 Limitation

As the number of surface points which the model is generated from are increased 

the structure is divided into smaller and smaller triangles and a better and better 

approximation of the surface is achieved. However, the increase in the number of 

data points increases computation time. For this reason, a compromise should be 

made between the approximation of the surface and the execution time. For 

instance, to process 1300 points took 13 minutes on a VAX 11/730, and this time 

was increased up to 39 minutes for 3200 points. Of course, running the software 

on a modem machine - such as a Sun 4 - would reduce these times radically.

5.6 Concluding Remarks

In this chapter a technique to classify the tetrahedra as solid or air tetrahedra was 

introduced. This sort of classification allows not only the determination of the 

object’s surface but all sorts of different calculations about the object as well, such
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iv.

The normal to P\P% is: The position of V2 - the position of Vx 

Figure 5.10 Finding the normals of triangular faces

Forming points:

P 7 , P 9 , P n

Neighbour triangles:
F3 , Tt , T 5

Neighbour triangles are stored 
opposite to the forming points

Pn

Figure 5.11 The neighbouring surface triangles of T
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as its surface area, volume, centre of mass, moments of inertia and so on.

One of the aims in this project was to find the surfaces of the object. These 

would then be clustered into different sub-clusters each representing a real face of 

the object. For this reason, the three-dimensional structure (which is the aggrega

tion of solid tetrahedra) is used only for finding the surface, but it is obviously 

available for different sorts of applications. Information about how to use both the 

triangulation algorithm and the classification algorithm can be found in Appendix 

A. The clustering technique will be explained in the next chapter.
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CHAPTER 6

FINDING THE REAL FACES

6.1 Introduction

Once the surface of the object is determined, the next process is to find the real 

faces of the object. These will then be matched to the solid model primitives. As 

mentioned in Chapter 1, two problems are encountered in matching the measured 

component to the solid model primitives. The first problem arises from the fact 

that two differing descriptions of the same (or nearly the same) component must be 

compared. In order to make a comparison these two differing descriptions (the 

measured or generated data are in the form of the positions of surface points 

whereas the solid model primitives are in the form of half-spaces) should be in the 

same form.

In the previous chapters, the techniques used for processing the position of the 

surface point information were described. The aim of this processing was to form 

a volumetric model from the surface point information whose surface would pro

vide the half-spaces to be used in the matching process. In this chapter some tech

niques for finding these half-spaces (only the ones which represent the real faces of 

the object generated from the measured data) will be described.

The second problem: that of matching of these faces with the solid model 

primitives, will be explained in the next chapter.
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6.2 Finding the Faces

After carrying out the procedure described in Chapter 5, the surface of the object 

consists of the triangles lying on its boundary with the measured points as vertices. 

Since the faces of the object will be matched to the solid primitives, this surface 

information should be processed to find the faces. In order to find the real faces of 

the object, the surface triangles are gathered in collections, each collection 

representing a face of the component.

Each triangle forms a little plane in space. Even in one face all the triangles 

will not be exactly co-planar because of measurement errors. The triangles are sub

jected to cluster analysis to gather them together in collections representing faces. 

The aim is, indeed, to gather the surface points in collections and find the faces 

(half-spaces) that they are lying on. Since the surface points are the vertices of 

surface triangles, clustering the surface triangles is the same thing.

Two different types of clustering techniques have been applied to the surface 

triangles. The first clustering technique, SLINK [102], is an efficient clustering 

algorithm which is based on single-link or nearest neighbour cluster analysis. 

Before describing this technique some information should be given about cluster 

analysis in general [43, 56, 65, 93].

6.3 Cluster Analysis

As described by Hartigan [56] clustering is the grouping of similar objects. A 

clustering of a set is a partition of its elements that is chosen to minimise some
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measure of dissimilarity and cluster analysis is a generic term for a group of tech

niques which produce classifications from initially unclassified data. For this rea

son, as observed from the definition, clustering techniques are ideal tools for the 

purpose of finding the object’s faces. They may also be used in some other areas 

[7] such as finding the true typology, model fitting, prediction based on groups, 

data exploring to search for natural groupings in the data, data reduction to sim

plify the description of a large data set, generating hypotheses to be tested on 

future samples and so on.

Different types of clustering techniques have been introduced in the literature. 

It is not the intention here to give a review of cluster analysis techniques. Several 

attempts have been made at this (which is, in fact, a difficult task since the vast 

literature of the subject is scattered throughout journals from many different fields). 

Detailed information about these reviews is given in [43]. Since SLINK is based 

on the single-link method, amongst the clustering techniques only the single-link 

method (or the nearest neighbour method) will be described briefly in the next sec

tion.

The majority of clustering techniques uses a matrix of similarities or distances 

between the entities as an input for clustering. Therefore careful consideration is 

needed of the possible ways of defining these quantities. A similarity coefficient 

measures the relationship between two individuals, given the values of a set of p 

variates common to both. In general, similarity coefficients take values between 0 

and 1. On the other hand, distance measures, which are different from similarity 

measures (though transformations between a set of distance function values and a
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set of similarity function values is possible), can take any positive value.

As given in [43] a distance function d(x,y ) of pairs of points of a set E  is said 

to be a metric for E  if it satisfies the following conditions:

i. d(x,y )>  0 ; d(x,y)  = 0  if x = y ;

ii. d(x,y)  =  d(yjc ) ;

iii. d(x,z) + d ( y j )  > d{x,y)

The third condition (which is the one which differentiates most between distance

measures and similarity measures) is referred to as the triangular inequality.

The most widely used and the most familiar distance measure in clustering 

techniques is the Euclidean metric where the distance between points i and j  

denoted by di} is defined as

where Xik is the value of the k\h variable for the ith entity.

In some cases Euclidean distance might be very unsatisfactory. This is 

because Euclidean distance is effected badly by scale changes in the variables. 

Some other possible metrics can be used in clustering. Examples are the absolute 

metric or the Minkowsky metrics. Their definitions are given in [43]. The dis

tance measure used in this research will be explained in later sections.

The single link or nearest neighbour method is a type of hierarchical clustering 

method [43, 65]. For this reason, before explaining the structure of the single link

6.3.1 The Single Link Clustering Method

113



clustering method, some further information needs also to be given on hierarchical 

clustering techniques.

Hierarchical techniques are divided into two main groups: agglomerative 

methods and divisive methods [43]. Agglomerative methods proceed by a series of 

successive fusions of the N  entities into groups where divisive methods partition 

the entire set of data into N groups each containing a single entity. The single link 

method is a type of agglomerative hierarchical method.

Agglomerative methods build a tree from leaves to root They start clustering 

with the computation of a similarity or distance matrix between the entities, and 

end with a dendrogram showing the successive fusions of individuals which cul

minates at the stage where all the individuals are in one group. Different types of 

agglomerative methods have been described in [43]. Differences between the 

methods arise because of the different ways of defining similarity or distance 

between the groups of individuals.

The method of single link cluster analysis is the simplest of all hierarchical 

techniques. It may be applied with any associated similarity measure or distance 

measures. At each stage, after p  and q have been merged, the similarity between 

the new cluster (which is labelled t) and some other cluster r is calculated as [3]:

1. If Sij is a distance-like measure

S(r — min (,SprySqr )

Str is the distance between the two closest members of clusters t and r. If clusters t 

and r were to be merged, then for any entity in the resulting cluster the distance to
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its nearest neighbour would be at most s*.

2. If Sij is a similarity-like measure

Str = m a x  ( v » V  )

s,r is the similarity between the two most similar entities in clusters t and r.

The method is known as single link because groups are joined at each stage 

by the single shortest link between them. Although single link clustering is the 

simplest technique, it is incapable of delineating poorly separated clusters. How

ever, if two clusters are moved farther apart then the method will distinguish 

between them quite well. Figure 6.1 shows this where two clusters have their 

mutually closest members linked. The other problem in the single link method is 

that it is implemented with a stored data matrix and the storage requirement for the 

similarity matrix grows rapidly with the number of entities. Figure 6.2 shows 

storage requirements for similarity matrices.

6.3.2 SLINK: An Efficient Single Link Clustering Algorithm

SLINK [102] which is an optimally efficient algorithm for the single link cluster 

method has been applied to the problem of clustering the surface triangles.

The SLINK algorithm carries out single link cluster analysis on an arbitrary 

symmetric non-negative dissimilarity coefficient (DC) read in value-by-value from 

an input stream and produces a representation of the resultant dendrogram.

As a result of the algorithm the pointer representation (see [102]) of N  objects 

is converted into the packed form of a dendrogram. In general a dendrogram is a
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(a) (b)

Figure 6.1 Single link clustering examples (from Anderberg [3])

S t o r a g e  R e q u ir e m e n t s  f o r  S i m il a r it y  

M a t r ic e s

Number of 
entities

Storage
required

Number of  
entities

Storage
required

50 1225 300 44,850
100 4950 350 61,075
150 11,175 400 79,800
200 19,900 450 101,025
250 31,125 500 124,750

Figure 6.2 Storage requirements for similarity matrices (from
Anderberg [3])
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nested sequence of partitions with associated numerical levels (which will be 

referred to heights from here on), the partition at a high enough height being the 

whole set Figure 6.3 shows a single link dendrogram and Figure 6.4 shows the 

output of SLINK algorithm on a simple example which has only 6  surface trian

gles.

6.4 Application of the SLINK Algorithm to Surface Triangles

6.4.1 The Calculation of Dissimilarities

The surface of the object is the surface triangles with the measured points as ver

tices. In order to cluster these triangles to find the real faces of the object the 

SLINK algorithm is applied to them.

Each surface triangle lies on a little plane in space. If the coefficients of these 

planes are known (they can be calculated from the positions of the vertex points), 

then the dissimilarity coefficients of the surface triangles can be calculated. The 

aim here is to represent the planes as points on a hypercylinder in such a way that 

dissimilarity distances can be defined between them. The calculation of dissimilar

ities is as follows:

1. A normalised plane equation is represented as a point on a unit radius hyper

cylinder. The equations of the planes where the triangles lie are

dix + fyy + CiZ + di = 0  i=l, n

where n is the number of surface triangles. Since the plane coefficients are 

normalised (which means a2 + b2 + c2 = 1 ) each surface normal is a point on a
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Figure 6.3 A single link dendrogram

Point 2 2.227E-01

Point 5 2.731E+00

Point 1 1.287E+00

Point 4 1.744E+00

Point 3 8.85 9E-01

Point 6 INFINITY

Links

P 2 - P 1 2.731E+00
P 3 - P 1 1.744 E+00
P 4 - P 1 1 .287E+00
P 5 - P 2 2.227E-01
? 5 - P 4 2.731E+00
P 6 - P 3 8.8 59E-01
P 6 - ? 4 1.74 4E+00

Figure 6.4 Output of the SLINK algorithm
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unit sphere which is the projection of a four-dimensional unit hypercylinder. 

The distance along the axis of this represents the d  term in the equation 

above. Since drawing a hypercylinder is not possible, to understand the calcu

lation of dissimilarities, consider a unit cylinder in 3D on which the lines 

ax +  by +  d -  0  are represented as points and a circle v/hich is the projection of 

the cylinder (see Figure 6.5). This unit cylinder is analogous to the unit 

hypercylinder. Figure 6 . 6  shows the unit sphere and two points (which are, 

actually, two planes in which the two surface triangles lie) p  and q on it.

2. Cut the unit cylinder along the dotted line in figure 6.5, unwrap it and map 

the distances into a square whose sides are equal to n. The distances will 

then be

where and d ^  are the maximum and minimum perpendicular distance of 

planes from the origin, D = -  dm and dt s are the distances before the

mapping.

3. As seen from figure 6.5 the squared distance between the points p  and q is 

equal to

AM2 = Apt2 + A ^ 2 (Pythagoras theorem)

Apt = 0  (as seen from the projection on the circle)

and 0  is calculated from the scalar products between the points (which are, in 

fact, the planes in which the triangles lie) p  and q as
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Figure 6.5 A unit cylinder and its projection

1 2 0



0  =  c o s  1 ( (  ap Jbp ,cp )  • (  aq ,bq ,cq ) )

If 0  > 7c then 0  = 2 tc -  0 . The squared distance between the points p  and q is 

then equal to

Aw 2 =  0 2 +  w ( d p -  dq f

where w is the weighting factor to stretch the points if the distances are too 

close to each other.

The distances between the points on unit hypercylinder are used as the dissimilarity 

coefficients.

6.4.2 Determining the Clusters

The application of the SLINK algorithm to the calculated dissimilarity coefficients 

produces a resultant dendrogram with associated numerical levels for each cluster 

which can easily be converted into the usual tree-diagram. This information needs 

to be processed in order to determine the clusters each representing a real face of 

the object.

There are two ways of finding these clusters; either by defining a height (see 

section 6.3.2) on the tree-diagram or defining the number of clusters (which is easy 

since the shape and the number of the faces of the object is known). But first, 

some simple modifications need to be done to the output of the SLINK algorithm 

in order to form tree-diagrams.

The algorithm which deals with this problem sorts the heights first. It takes 

the smallest height value and finds the tag associated with this height. The tags
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associated with each height value consist of the triangle numbers (surface triangles 

to be clustered) and this information is already provided by the SLINK algorithm. 

The algorithm links this tag with the next one (the next tag and the order of the 

tags are also known from the SLINK algorithm) and flags it by negating its sign in 

order not to use the same triangle again. The tag which has the second smallest 

height value is considered next, its next tag is checked to see whether its sign is 

negative or not; if it is not, the two surface triangles are linked together and so on. 

Figure 6.7 shows the output of this sorting algorithm for the dendrogram given in 

figure 6.2. For the simplicity only six surface triangles were given as an input into 

the SLINK algorithm for this example.

The number of clusters and the height of the dendrogram (or tree-diagram) 

are related to each other. This makes two types of calculation possible; either the 

number of clusters can be determined by choosing the height in the dendrogram 

(the number of branches above the chosen height gives the number of clusters), or 

the height in dendrogram can be found by defining the desired number of clusters 

(which means a given number of branches determines the height). In order to 

understand these cases more clearly, consider the output of a cuboid model with 2 2  

surface triangles and its tree-diagram in Figure 6 .8 . In this case a given height of 

0.9 (which lies between 0.891 and 0.959) gives the desired number of clusters 

(which is 6  for a cuboid), or for the given 6  clusters, the value of 0.959 is encoun

tered as the minimum height by the algorithm.

The algorithm which does this uses the link information between the triangles. 

As shown in figure 6 .8 , two different lists are formed after the sorting algorithm: a
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Figure 6 . 6  Unit sphere and two surface normals

/N

i t e m s 6
2

6 2 . 7 3 0 9 9 9 9
6 1 . 7 4 4 0 0 0 0
4 1 . 2 8 6 9 9 9 9 1

6 0 . 8 8 5 9 0 0 0
5 0 . 2 2 2 7 0 0 0 1
0 0 . 0 0 0 0 0 0 0 0

2.731  _

1.744  _

0.222 _

2 5 3 6 :

Figure 6.7 Output of the sorting algorithm and its tree-diagram

123



Number of items 22
14 22 1 . 2 8 0 0 0 0 0

8 22 1 . 2 3 9 0 0 0 0
12 22 1 . 2 3 5 0 0 0 0
18 22 0 . 9 6 5 4 0 0 0
16 18 0 . 9 5 9 2 0 0 0
2 1 16 0 . 8 9 1 5 0 0 0
2 0 2 1 0 . 7 4 6 9 0 0 0
13 12 0 . 7 3 0 5 0 0 0

5 20 0 . 6 9 5 1 0 0 0
15 22 0 . 6 9 0 3 0 0 0
10 13 0 . 6 8 4 2 0 0 0

1 20 0 . 6 8 3 2 0 0 0
2 20 0 . 6 3 8 5 0 0 0
6 8 0 . 5 6 5 8 0 0 0

11 14 0 . 2 2 7 8 0 0 0
9 13 0 . 0 2 0 1 6 0 0

17 18 0 . 0 0 0 2 4 2 7
7 14 0 . 0 0 0 1 0 3 9
4 10 0-. 0 0 0 0 7 3 1
3 6 0 . 0 0 0 0 5 6 7

19 2 2 0 . 0 0 0 0 3 1 2
2 2 0 0 . 0 0 0 0 0 0 0

1 .28

1 . 239 ,

1 . 235

0 . 9 6 5

0 . 9 5 9

0.891

0 . 7 4 7
0 . 7 3

0 . 695
0 68.69

.56

0 . 22

0 .02

22 19 IS 2 20 I S  21 16 18 17 13 9 10 4 12 3 6 8 14 7 11

Figure 6.8 Tree-diagram of a model with 22 surface triangles
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list of pair of surface triangles which are the elements of a two-dimensional array 

and a list of associated height values of each pair. The algorithm first asks the 

user to choose whether to find the height value or the number of clusters and 

according to the choice it branches.

Suppose that the height value is given and the number of clusters needs to be 

found. The algorithm determines the number of clusters by finding the number of 

surface triangles which are above the given height. Each triangle above the limit 

height forms a cluster (these clusters will be called main clusters). It then checks 

second elements of each pair below the limit height to find the triangles which 

have links with the main clusters. It takes the first main cluster and searches the 

second elements (triangles) of pairs to find the triangles which have links with this 

cluster. Whenever it finds a link which means the second element of the pair is 

the same as the triangle in the main cluster, it clusters the first element of the pair 

with the main cluster, negates the sign of the pair and does this until it finds the 

last linked triangle.

When the algorithm finds the last linked triangle (this means there are no 

more pairs whose second elements are the same as the triangle in the main cluster), 

it makes the same search for this triangle. This time it searches the second ele

ments which are equal to the last linked triangle. After finding all the links of the 

last linked triangle, it searchs the lists backwards and finds the last negative signed 

pair, finds all the links of the first element of this pair, again searchs list back

wards, finds the next last negative signed pair and so on. After clustering all the 

triangles which are linked to the first main cluster, the same process is repeated for
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the other main clusters and all the surface triangles are clustered.

More or less the same process is done if the number of clusters are given. 

The main clusters and the triangles belonging to these clusters are determined 

according to the given number of clusters and the same process is repeated for the 

rest of the triangles. The flowchart of the algorithm is given in Figure 6.9.

At the end of the process the clusters of surface triangles (and the surface 

points obviously) each representing a real face of the object is found. Since the 

position of surface points in each cluster is known, the planes (half-spaces) which 

the surface points lie are found by using principle component analysis [61] to fit 

the planes into the surface points in each cluster. Principle component analysis is a 

technique which takes a cloud of points and finds the three axes of an ellipsoid 

which closely matches the cloud shape. The two longest axes of the ellipsoid 

determines the plane in which the points lie and the shortest axis determines the 

normal to the plane. This technique minimises the sum of the squares between the 

points and the plane. At this stage the measured object and its solid model are in 

the same form and ready to be matched.

Although the SLINK algorithm is an efficient algorithm for clustering the sur

face points and produces very good results for a small number of points, large 

numbers of surface points exceeded the memory capacity of the computer at the 

preparation stage of the dissimilarity matrix. For this reason, a different type of 

clustering algorithm has been developed. This algorithm will be explained in the 

next section.
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6.5 Clustering by Using the Surface Normals

In this technique surface normals are used for cluster analysis (as mentioned earlier 

each surface triangle forms a litde plane in space). The algorithm reads in the sur

face normal information, calculates the scalar product of surface normals of two 

triangles and checks the result. If the result is greater than a number which is 

close to 1, the two triangles are put into the same cluster. Since the surface nor

mals are normalised the scalar product equals the cosine of the angle between the 

planes in which the triangles or the surface points lie. If the result is close to 1, 

this means that the angle is close to 0  and the triangles lie on the same plane or on 

parallel ones.

The algorithm distinguishes the triangles lying on parallel planes by checking 

the perpendicular distance from their plane to the origin (the d term in their impli

cit plane equation, ax + by + cz + d = 0 ). It defines a mid-plane between the two 

parallel planes and clusters the triangles which are more distant from origin than 

the mid-plane in one cluster and the ones which are less distant in another. In the 

case of more than two parallel planes, first the parallel planes are split into two 

clusters, each cluster is checked to see whether they contain more than one plane, 

if they do, they are split again and checked again and the same process is repeated 

recursively until the triangles lying in each parallel plane are clustered in separate 

clusters. Figure 6.10 shows two parallel planes and their mid-plane.

Since the neighbourhood relationship between the surface triangles (that is to 

say, for any given triangle, its three neighbouring triangles are known) is also pro

vided (see section 5.4), any mis-clustered triangle is corrected by checking its
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neighbouring triangles. If all three neighbours are in the same cluster but the trian

gle is not, it is put into the same cluster with its neighbours. If two neighbours are 

in the same cluster then the surface normals of all three neighbours are inspected 

and weighting is used to decide if the central triangle ought to be clustered with 

the pair or not. Now, consider the structure in Figure 6.11. If two neighbouring 

triangles are in the same cluster (say cluster 4) and the third one is the different 

one (say cluster 6 ), the decision on classifying the central triangle is made as fol

lows :

1. Take the average of surface normals of two neighbouring triangles which are 

in the same cluster (NAV in figure 6.11) and calculate the angle (0) between 

the average normal and the surface normal of the central triangle. Since the 

surface normals are normalised, the angle 0  is

0  =  c o s -1  ( (  aAvJ>AV*cAv ) ' ( acr fie rcer  ) )

where aAV,bAV,cAV are the coefficients of the average normal and acr Merger are 

coefficients surface normal of the central triangle. The angle (<X>) between the 

third neighbour and the central triangle is

C> =  COS-1 ( (  a jN  J>TN >CTN ) ' (  acT*bcTiCCT ))

where 0™ ^ , ^  are the coefficients of the third neighbour’s surface normal.

2. If the ratio of 0  to O is smaller than a weighting factor (which is 2 at the 

start) then the central triangle is clustered with its two neighbours, otherwise 

with the third one. As the weighting factor becomes larger, the surface nor

mal of the central triangle becomes closer to the average surface normal.
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If three neighbours of the central triangle are in different clusters, no change is 

made in central triangle’s status.

Next, the algorithm handles false chamfers. False chamfers are artificial 

features which occur because of the lack of the ability of measuring machine to 

generate points exactly on the measured object’s edges (Figure 6.12). They are a 

product of the measuring system and need to be found to be got rid of. The algo

rithm checks all the clusters and finds their boundary by checking the surface trian

gles in the cluster. If two of the neighbours of a triangle are in the same cluster as 

the triangle but one neighbour is in a different cluster, this means two forming 

points (surface points) of this triangle are on the boundary. Since the false 

chamfers should be one triangle wide and all of the surface points in a false 

chamfer are on its boundary (see Figure 6.13), the algorithm finds the clusters 

which are one triangle wide, classifies these as false chamfers and does not con

sider them to be real faces in the matching process. The numbers on the triangles 

and on the faces in figure 6.13 are the cluster numbers that the triangles belong to. 

For simplicity only the triangles on the front face are shown.

After correcting the misclustered triangles and finding the false chamfers, the 

algorithm re-organises each cluster. At this stage the algorithm is capable of pro

ducing a topology between the clusters. It takes each cluster in turn, finds the false 

chamfers to which each cluster is adjacent and finds the clusters which share these 

false chamfers. Since the false chamfers are effectively represent the edges of the 

measured object the clusters which share the false chamfers should be neighbours. 

By finding the neighbours of each cluster the algorithm produces the
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neighbourhood relationship between the clusters which allows a boundary model of 

the measured component to be generated. The flowchart of the clustering algo

rithm is given in Figure 6.14.

Once the clusters are formed their surface area (each cluster represents a face 

of the measured component) can easily be calculated (the surface area of each face 

is the sum of areas of triangles that form the cluster). This surface area informa

tion will be used in the matching algorithm to be described in Chapter 7. Since 

the number of faces of the solid model and their surface areas are known, any clus

ter which has much smaller area than the minimum of the surface areas of the solid 

model is doubtful. The algorithm checks these sorts of clusters and investigates 

whether they are false chamfers, or part of some other clusters, or to see if the face 

is not well-represented because of an unsufficient number of surface points. If the 

number of clusters found by the algorithm is more than the number of faces of the 

solid model, it is obvious that some of these clusters are doubtful. In this case the 

algorithm fits a plane to each cluster, calculates the angle between the plane which 

the doubtful cluster lies and any other planes, if the result of the scalar product - 

which is equal to the cosine of the angle - is greater than or equal to the constant 

used to cluster the surface triangles, it merges the doubtful cluster with the other 

cluster. After trying all the other clusters, if no merging is possible (which means 

the result of scalar product is smaller than the constant for all other clusters), the 

doubtful cluster is classified as false chamfer. The algorithm re-organises the clus

ters and calculates the number of clusters. The number of clusters is now obvi

ously equal to the number of the faces of the solid model.
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As a result of all the processes the surface triangles (and obviously the surface 

points) are clustered together in different clusters, each cluster representing a face. 

Principle components analysis (see section 6.4.2) is then used on the measured 

points making up the triangle vertices in each collection to obtain a best-fit plane 

through them.

To see how to use the clustering algorithm see Appendix A. The input and 

the output of the clustering algorithm is given in Figure 6.15. The input consists 

of a list the positions of surface points forming each surface triangle, the normals 

of the planes in which each surface triangle lies, the neighboring triangles of each 

surface triangle and the number of the Delaunay vertex to which each triangle 

belongs. After the clustering only the cluster numbers of the surface triangles are 

added to this input to produce an output for plotting the surface triangulation and 

clustering. The second output consists of a list of neighbouring clusters of each 

clusters and the equations of planes which pass through the surface points in each 

cluster. For plotting an implementation of the painter’s algorithm (or Newell- 

Newell-Sancha algorithm) [55, 95, 110] was used. Figure 6.16 and Figure 6.17 

shows the result of surface triangulation and clustering on two simple examples. 

Different colours represent different clusters, which are, in fact, the faces of the 

object. The green colour represents the false chamfers. In figure 6.16 (b) and 

figure 6.17 (b) samples are shown from four different views.
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Forming Point 1 I Forming Point 2 | Forming Point 3 I Surface Normal
I I I

I Neighbour | Assoc.
I Triangles | Vertex

0.016 -0.001 5.499 0.018 0.000 5.697 0.016 0.000 5.900 4.764 -12.432 0.024 4 2 37 15810
0.000 0.007 5.982 0.016 -0.001 5.499 0.016 0.000 5.900 -2.186 -5.309 0.016 1 8 38 15810
0.363 0.000 5.699 0.363 0.000 5.899 0.016 0.000 5.900 -0.008 -23.460 -0.008 8 4 11 43
0.363 0.000 5.699 0.018 0.000 5.697 0.016 0.000 5.900 -0.024 -23.256 -0.035 1 3 39 43

-0.001 0.224 5.815 0.000 0.007 5.982 0.000 0.322 5.979 1-26.877 0.020 0.196 7 102 6 20821
-0.001 0.224 5.815 0.000 0.017 5.791 0.000 0.007 5.982 1-24.119 0.151 -0.044 38 5 41 13809
0.080 0.379 6.000 0.000 0.007 5.982 0.000 0.322 5.979 -2.527 0.086 9.482 5 99 12 20753
0.000 0.007 5.982 0.363 0.000 5.899 0.016 0.000 5.900 -0.00B -61.091 5.173 3 2 10 20752
0.709 0.000 5.699 0.709 0.000 5.900 0.363 0.000 5.899 0.010 -24.776 0.004 10 11 14 20797
0.000 0.007 5.982 0.709 0.000 5.900 0.363 0.000 5.899 0.006 -51.212 4.394 9 8 16 1824
0.709 0.000 5.699 0.363 0.000 5.699 0.363 0.000 5.899 0.003 -24.687 -0.008 3 9 43 20798
0.514 0.032 5.999 0.080 0.379 6.000 0.000 0.007 5.982 -0.296 -0.388 9.335 7 17 13 1614
0.501 0.413 6.000 0.514 0.032 5.999 0.080 0.379 6.000 0.004 -0.013 9.504 12 700 18 20801

Figure 6.15 (a) The input to the clustering algorithm

Neighbouring clusters :

Cluster 1 False chamfer
Cluster 2 12, 5, 3, 15, 11, 9, 6, 10, 14,Cluster 3 2, 4, 8, 7, 12,
Cluster 4 7/ 3, 2, 6,Cluster 5 2, 12, 15, 7,
Cluster 6 3, 2, 4, 7,
Cluster 7 4, 12, 15, 11, 9, 10, 14, 13, 5,Cluster 8 2, 3, 13, 7,
Cluster 9 11/ 2, 7, 10,
Cluster 10 9, 2, 14, 7,
Cluster 11 2, 9, 15, 7,
Cluster 12 2, 5, 7,
Cluster 13 14, 2, 8, 7,
Cluster 14 10, 2, 13, 7,
Cluster 15 2, 5, 11, 7,

Plane Coefficients of each cluster : Ax + By + Cz + D
A B C

Cluster 2 0.0000 1.0000 -0.0001Cluster 3 1.0000 0.0001 0.0000Cluster 4 -0.0001 0.0000 1.0000Cluster 5 1.0000 0.0000 0.0000Cluster 6 0.7084 0.0000 0.7058Cluster 7 0.0000 -1.0000 0.0000Cluster 8 -0.0001 0.0065 1.0000Cluster 9 -0.0001 0.0000 1.0000Cluster 10 1.0000 0.0000 0.0000Cluster 11 1.0000 0.0000 0.0009Cluster 12 -0.0015 0.0000 1.0000Cluster 13 1.0000 -0.0001 0.0001Cluster 14 0.0000 0.0000 1.0000Cluster 15 0.0002 0.0000 1.0000

- 0 . 0 0 0 1
-0.0005
-0.9997
- 2 . 0 0 0 0
-2.8253

6 . 0 0 0 1
-0.0241
-3.9997
-5.9999
-4.0042
-5.9983
-7.9999
- 2 . 0 0 0 0
-5.0006

Figure 6.15 (b) The output of the clustering algorithm
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Figure 6.16 (a) Surface triangulation and clustering

Figure 6.16 (b) Clustering the surface triangles
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Figure 6.17 (a) Surface triangulation and clustering

Figure 6.17 (b) Clustering the surface triangles
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6.6 Limitation

The algorithms described in this research can handle models with flat surfaces only 

(including the clustering algorithms). No work on clustering cylindrical parts has 

been done by the author. The extension of the research to include the cylinders 

and cones will be mentioned in the last chapter, which will give some suggestions 

for future work.

6.7 Concluding Remarks

The aim of clustering the surface triangles is to find the faces of the object which 

are represented by a group of clusters. In this chapter two different techniques to 

cluster surface triangles are described. The first one, which is an efficient single

linkage algorithm [ 1 0 2 ], clusters the surface triangles by using their dissimilarity 

coefficients, whereas the second type clusters them according to the scalar product 

of their surface normals. After the surface triangles are clustered, a plane is fitted 

to each cluster. Thus each plane represents a face of the object.

The next problem to be solved at this point is to match the description of 

measured component to the solid model primitives. Since these two descriptions 

are now more or less in the same form, they are ready to be matched. The match

ing process will be explained in the next chapter.
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CHAPTER 7

MATCHING

7.1 Introduction

The measured data and the solid model are now more or less in the same form: 

two collections of plane equations. Unfortunately they will, in general, be re

ferred to different coordinate frames, so, in order to compare them, it is neces

sary to translate and to rotate them to a best-fit with each other.

For this purpose the technique of Procrustean matching [29, 103] has 

been extended to allow this to be done. In this chapter this technique and its 

application to the problem will be described in detail.
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7.2 Matching the Two Descriptions

Finally, the surface description of the measured component needs to be matched 

with the surface description of the solid model generated by a CAD system, but 

this is not easy. Two problems might be encountered in matching the two descrip

tions: the first one - which was already covered in the previous chapters - is that 

there might be a difference between the types of the descriptions (the measured 

data is in the form of the positions of surface points where the solid model primi

tives are half-spaces); and the second one is that the measured component and the 

solid model might be related to different coordinate systems. In order to solve the 

second problem and to match the two descriptions under translation and rotation, 

Procrustes analysis was applied.

In some cases the translation and rotation (see Appendix B) between the 

measured component and the solid model are known (especially in the case of a 

measuring machine where the component is mounted in a fixture of known 

geometry and position before being inspected), but this is not the case for a general 

automatic inspection method. A good automatic inspection method must be capable 

of accommodating the general case where no information about the translations and 

rotations is available (i.e. in order to avoid rejecting perfectly good components 

that have been measured in slightly the wrong place).

The matching technique described in this thesis is capable of matching the 

surface descriptions of a measured component to the surface descriptions of a solid 

model, computing the difference between the two and reporting any out-of- 

tolerance differences deduced from them. After finding these differences it would
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be possible to discard the faces within tolerance, and carry out the whole process 

again on the bits that don’t match. This allows parts of the component which are 

of the right shape, but which are in the wrong place, to be identified and their posi

tion and orientation to be computed (e.g. if a bolt is missing or a hole is mis- 

drilled on a manufactured component, this can easily be spotted).

7.3 Procrustes Analysis

Procrustes analysis is a technique which is used for assessing the goodness-of-fit 

between two configurations. In this section a summary of Procrustes analysis will 

be given. More detailed information about this technique can be found in Sibson 

[103].

Consider two configurations of points, X and Y, each of N points in k- 

dimensional space, neither of the configurations are in the same position nor orien

tation as each other. Each configuration will be represented by a k x N  matrix, so 

X, for example, will be:

x =  [*“>, ••• ,*<">]

One to one correspondence (which means x(1) corresponds to y(1) and so on) exists 

at this stage (the need for this will be removed later). If two such configurations, 

X, Y are given, they can simply be compared by the sum of their squared posi

tional differences, G(X,Y):

N
G(X,Y)=  ( * (n)- y ( n ) )  =  trace (X - Y ) T ( X - Y ) .

n=l
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G(X,Y) is called the Procrustes statistic [103]. The aim is to match the 

configurations such that the value of G is minimum under the Euclidean group of 

transformations such as translation and rotation.

As described by Sibson [103], the optimal matching under translation is 

obtained by keeping the X fixed and matching Y to it by sliding Y until the cen

troids of the two configurations coincide. An alternative to this is to translate both 

X and Y so that their centroids are both at the origin. This is simple because in 

order to perform the translations one to one correspondence between the points is 

not needed.

It is also shown by Sibson that the best match under rotation (that is the rota

tion which makes the value of G minimum) is obtained by applying a k x k orthog

onal matrix P onto Y where P is:

_

P = XYt (YXtXY t ) 2

Since applying P to Y does not change its centroid (if this is at the origin), the 

rotation does not effect the translation which was done previously; in other words 

it is independent of the translation.

The matching of point patterns under scale change is also discussed by Sibson 

[103]. In this thesis only translation and rotation will be taken into consideration 

when matching the two configurations.
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7.4 The Procrustean Matching Algorithm

The only limitation in Procrustean matching is the need for the one to one 

correspondence between the points in each configuration in order to find the 

orthogonal matrix P. This is a serious limitation when considering the applicability 

of the technique to general pattern matching problems. In some cases the number 

of points in each configuration might also be different.

As mentioned in the previous section, in order to match the centroids of two 

point patterns no correspondence information between the points is necessary. 

Obviously this could easily be done even if there were different number of points 

in each configuration.

One thing that remains invariant under rotation is radius. Once Y has been 

translated so that its centroid coincides with that of X at the origin, no rotation of 

Y alters the radial distance of each of Y’s points from the origin. For this reason 

the points in each configuration are first matched according to their radial distance.

The algorithm first sorts the radial distances of points in each point pattern 

into two lists, Rx and Ry . It finds both the nearest entry in Ry to each entry in Rx 

and the nearest entry in Rx to each entry in Ry . If the relationship between the 

corresponding radial distances is symmetrical the two points having these radii are 

accepted as matched, the links are kept and the linked points are removed from 

further consideration. Otherwise, the links are broken and the process is repeated 

until all points are linked up to a nearest neighbour. The symmetrical and un- 

symmetrical links in matching the sorted lists of radii is shown in Figure 7.1. This
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Figure 7.1 Matching the sorted lists of radii (from Cakir et al. [29])
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process terminates quite quickly without links crossing one another as shown in the 

figure. In the case of differing number of points, in the larger configuration, obvi

ously, there will have some unmatched noise points but this does not cause much 

problem.

By matching the points pattern according to the radial distance the rotation 

matrix P can be estimated and Y is rotated to roughly the correct orientation. 

Once this has been done most points will be correctly matched, but there will be 

some mis-matches because of near-coincidences in radii (Figure 7.2). Now there 

are two sorts of links between the point patterns: links that are short in length 

which represent correct matches and links that are longer (usually they form a 

small group) representing mis-matches.

In order to resolve this and to distinguish the mis-matches, a probability den

sity estimate of the link length is constructed by convoluting their histogram with 

an appropriate kernel function, the width of which was increased until the density 

function had just two modes (see Silverman [104]). The first, sharp mode comes 

from the short links, the second, more diffuse mode comes from the mis-matches. 

Figure 7.3 shows the density estimation where the vertical scale is arbitrary. The 

length corresponding to the minimum between the two modes determines the limit 

to distinguish the mis-matches. The links longer than this length are broken and 

re-matched by using the Euclidean distance between the points rather than the 

radial distance as a matching criterion. Extra noise points (if there are any) are 

available for inclusion in this second match as well. After this, P can be re

computed more accurately than before and applied again to make a fine adjustment
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in the relative orientation between the two configurations.

Iterating the second re-matching process might be thought a good idea in an 

attempt to obtain better results, but in practice this is hardly necessary. After a 

couple of iterations no further improvement in the Procrustes statistic that measures 

the dissimilarity between the configurations is obtained.

The algorithm outlined in this section is efficient and works accurately on 

simulated data. It is a robust algorithm in the presence of errors in the 

configurations. The application of this algorithm to the problem of matching the 

measured component to the solid model primitives will be explained in the next 

section.

7.5 Matching by Using the Procrustean Algorithm

As described in the previous section the Procrustean algorithm matches the two 

point patterns under translation and rotation. However, the aim in this research is 

to match the faces of the measured component to solid model primitives generated 

by a CAD system; therefore half-spaces need to be matched, not points. Further

more there is no one-to-one correspondence between the two collections; and there 

may (because of manufacturing errors) even be different numbers of planes in the 

model and the measured object.

In order to perform the matching the plane equations are mapped onto 

Extended Gaussian Spheres (EGSs) [62, 75]. Thus, the surface normals of planes 

can be represented as points on a Gaussian sphere. In the next section Gaussian
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spheres and extended Gaussian spheres will be described briefly.

7.5.1 Extended Gaussian Spheres

The Gaussian sphere of a collection of planes is the points formed by their nor

mals on the unit ball. Imagine moving the unit surface normal of each plane so 

that its tail is at the centre of a unit sphere. The head of the unit normal then lies 

on the surface of the unit sphere. This sphere is called the Gaussian sphere and 

each point on it corresponds to a particular surface orientation.

When the surface normals are mapped to the Gaussian sphere planar regions 

become very small clusters, cylinders become unit radius circles, and cones become 

smaller radius circles (this information is quite useful in extending the work 

described in this thesis to allow work with cylinders and cones as well. This will 

be explained in the next chapter).

The extended Gaussian sphere is the pattern of points in space which is 

obtained by scaling each of these normals by a factor obtained from the planes: for 

example each plane normal might be scaled by the area of a facet lying in it. The 

EGS has some nice properties and these properties can be listed as [75]:

1. The extended Gaussian image is not affected by the translation of the object. 

It rotates in the same fashion as the object in space. This means rotation of 

the object causes an equal rotation of the extended Gaussian image, since the 

unit surface normals rotate with the object

151



2. The extended Gaussian image is a unique description of a convex object, no 

two convex objects have the same extended Gaussian image.

Figure 7.4 shows an extended Gaussian image and its corresponding object.

In this research the perpendicular distance from the planes to the origin and 

the surface areas of the faces are used to scale the normals. This will be described 

in section 7.5.3. A nice feature of this method is that any measurable characteristic 

of a face (even things such as colour) can be employed to scale the EGS without 

affecting the rest of the process.

7.5.2 Matching the Faces

The two configurations which contain the scaled normals of the faces of the meas

ured component and the solid model are first matched under translation and this is 

done by matching their centroids (will be referred to plane centres from here on). 

The plane centre of the configurations (which is minimum distance away from the 

faces) is calculated as follows:

The squared distance from the faces to the plane centre is

• n
f ( x , y , z )  =  d 2 ( x , y j )  =  ' £ ( a i x + b i y + c i z  +  d , ) 2

i = i

where a j ? , c  are the coefficients of planes and i is the number of faces. In order to 

find the minimum distance from the faces, x,y and z values which makes f(x,y,z) 

minimum needs to be found. If the partial derivatives with respect to x,y and z are 

calculated, and are assigned to zero, three plane equations are obtained:
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4 ^  =  X  2’( ° i  X  +  b i y  + Ci Z + d i )'( a i ) = 0
°X i = l

4 ^  = E  2 '(  ai x  +bi y +Ci z + di ) • (  bi )  =  0

4 ^ -  =  S  2 • (  a ,  X  +  y  +  Ci z +  4  ) • (  Ci )  =  0
°z »=i

which can be written as

a i  x  +  p i  y +  Yi z +  Tii =  0

0.2 X +  P 2  y  +  Y2 2 +  T|2 =  0

O 3 X  +  P 3  y +  Y3  Z  +  T| 3  =  0

h n n *

where a: is » Pi 2M«» Yi Z c*a* » anc* "Hi is JXa  and so on.
1=1 ; = 1  i = l  i = l

If the intersection point of these three planes is calculated (see [28]), the coor

dinates of the point which is the minimum distance away from the faces is calcu

lated. This point is the plane centre of the structure.

The next step to be done after the calculating the plane centres of both 

configurations is to translate the configurations so that the plane centres are at the 

origin. The new perpendicular distances of the faces from the plane centres are 

calculated as [87] (see Figure 7.5):

d /  = d i - s

where i is the number of faces and s is the displacement between the plane centre 

and origin and is calculated (from the projection of the displacement vector 

0 dx,dy,dz) onto the surface normal) as

s - a - d x  + b dy + c-dz
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Figure 7.4 An extended Gaussian sphere and its corresponding object

( a , b , c )

( d x , d y , d z )

Figure 7.5 The calculation of the displacement 

1 5 4



The surface normals (both the measured component’s and the solid model’s) 

are then scaled by these new perpendicular distances from the origin and the sur

face areas of the faces and the point patterns on extended Gaussian spheres are 

generated. The calculation of surface areas will be explained in the next section.

As the next step the optimal matching under translation is attained by making 

the plane centres of the point patterns X and Y coincide. For our purpose the 

configuration X is the points in the EGS of the solid model and the configuration Y 

is the points in the EGS of the measured component. Once the plane centres coin

cide (Y is translated so that its plane centre coincides with that of X at the origin) 

the radial distances of points in Y will be invariant under rotation. As explained in 

section 7.4 the two point patterns are first matched according to their radial dis

tances. Matched patterns after the first matching would allow the rotation matrix P 

to be estimated and Y is rotated to roughly the correct orientation.

In section 7.4 a technique of distinguishing the mis-matches was described. 

But later on it was discovered that forming that kind of histogram to estimate the 

link length did not improve distinguishing the mis-matches over the simpler tech

nique of breaking all the links and re-matching them according to their actual 

inter-point distances. After this, Y is rotated again to make a fine adjustment in 

the relative orientation between the measured component and the solid model. The 

two configurations are matched in such a way that the residual sum of squares 

between the two extended Gaussian spheres is minimal. The flowchart of the algo

rithm is given in Figure 7.6.
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Figure 7.6 The flowchart of the matching algorithm
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7.5.3 Scaling the Surface Normals

In order to match the measured component to the solid model, the surface normals 

in both configurations need to be mapped onto two extended Gaussian spheres. 

This mapping is done by scaling the normals by two factors: the perpendicular dis

tances of surfaces from the origin and their surface areas. These were multiplied 

together to give a length for the vectors. Scaling the surface normals by both the 

perpendicular distances and the surface areas allows the method to recover from 

any small miscalculation in either of them.

As mentioned in Chapter 6 , once the real faces of the measured component 

are determined their surface areas are calculated from the sum of the areas of sur

face triangles that form the faces. Since the solid model was already generated the 

areas of the faces in solid model could also be calculated. However, because of 

the false chamfers, the surface areas of measured component will be smaller than 

the surface areas of the solid model. In order to consider the effects of false 

chamfers, the surface areas of the measured component are scaled:

2  A  + E  Ap 
Ai = Ai ■ x  x  = — ---------------

EA
i=  1

where A, is the surface area of a face, AF is the surface area of a false chamfer, and 

i is the number of the faces.

As a second alternative, the ratio of the the sum of the surface areas of the 

solid model to the sum of the surface areas of the measured component can be 

used as a scale factor. The aim of scaling the surface areas of the measured
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component is to make them as close as possible to the surface areas of the solid 

model. Since the residual sum of squares between the two extended Gaussian 

spheres needs to be minimal to match the two descriptions, and the surface areas 

are used to scale the surface normals onto the EGSs, the surface areas of the two 

descriptions need to be the same (or nearly the same).

As mentioned earlier, there is no one-to-one correspondence between the faces 

or the surface areas of two configurations. The input of the surface coefficients 

and the surface areas into the matching algorithm and results will be discussed in 

the next section.

7.6 Results of the Matching Algorithm

In order to discuss the results of the matching algorithm, the input of the data 

needs to be explained first. The matching algorithm needs two types of informa

tion to achieve the matching: the surface normals of the planes which form the 

faces of both the measured component and the solid model, and their surface areas. 

Figure 7.7 shows a measured component (which is a simple staircase model) and 

its solid model. Each different colour in figure 7.7 (a) represents a facet and green 

represents the false chamfers.

The order of half-spaces (faces) of the solid model in a data file prepared by 

the solid modeller is different from that of the half-spaces of the measured com

ponent (which depends on the measuring process), therefore no one-to-one 

correspondence is available. As mentioned earlier, in some cases, there might be 

even different numbers of half-spaces in both configurations. Once the surface
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Figure 7.7 (a) A measured component (re-produced from figure 1.7 (b))

Figure 7.7 (b) Its solid model



normals of the faces are read in by the matching algorithm, their surface areas are 

read in the same order as the faces. The order of half-spaces and surface areas of 

a measured component (which is the same staircase model shown in figure 7.7) and 

of its solid model’s are shown in Figure 7.8. The perpendicular distances from the 

plane centre (which is the origin after the translation) are calculated and the surface 

normals are mapped onto the extended Gaussian spheres. The two configurations 

are now ready to be matched.

Figure 7.9 and Figure 7.10 show the result of the matching algorithm. Two 

data files are read in (first file is for the faces of the solid model, second one is for 

the measured data). The recovered offset is the difference between the plane cen

tres of two configurations after the matching under translation. Four values of each 

face are the coefficients of the planar faces, a, b, c, and d where the equation of 

each plane is ax + by + cz + d = 0  and d is the perpendicular distance from the plane 

centre. As seen from this first output Face 12 is mis-matched to Face 4 and Face 

7 is mis-matched to Face 13 because of near-coincidences in radii (see section 

7.4). If the limit distance to distinguish the mis-matches (see section 7.4) is not 

calculated and is given as 0  (which means all the links will be broken), the second 

output in figure 7.10, which is the output of matching according to the inter-point 

distances, is obtained. Since there is no translation or rotation between the meas

ured object and its solid model the recovered offset and the recovered rotation 

angle is 0 (or very close to 0). As in the second output the faces of the measured 

component and the solid model are perfectly matched to each other.
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1

2
3
4
5
6
7
8
9
10
11
12
13
14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Measured Component

P l a n e  C o e f f i c i e n t s  o f  STEPSO 

A B

Ax + By + Cz + D = 0
C D

0 . 4 0 4 2 2 7 8 E - 0 4  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 8 6 0 7 9 2 6 E - 0 4  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 7 0 8 4 4 1 0 E + 0 0  
0 . 1 8 6 5 4 9 3 E - 0 4  
0 . 7 1 6 0 3 0 6 E - 0 4  
0 . 6 0 8 3 9 6 3 E - 0 4  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 9 9 9 9 9 9 6 E + 0 0  
0 . 147  9 7 3 7 E - 0 2  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 1 4 2 1 7 2 1 E - 0 4  
0 . 1 9 8 4 9 5 7 E - 0 3

0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 1 0 8 0 8 1 5 E - 0 3  

- 0 . 4 4 3 4 6 7 8 E - 0 4  
0 . 2 3 7 5 3 3 7 E - 0 4  

- 0 . 7 6 3 2 6 7 3 E - 0 5  
- 0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 6 5 2 3 9 8 5 E - 0 2  
0 . 6 5 6 9 0 5 8 E - 0 5  

- 0 . 1 9 3 5 9 0 6 E - 0 5  
0 . 8 9 0 7 0 0 4 E - 0 5  
0 . 4 2 1 7 8 0 1 E - 0 4  

■ 0 .6 9 9 5 6 5 8 E - 0 4  
0 . 1 0 7 4 0 0 2 E - 0 4  
0 . 3 6 3 1 1 9 1 E - 0 6

- 0 . 6 2 6 2 8 1 3 E - 0 4  
0 . 4 2 1 6 4 5 5 E - 0 4  
0 . 1000000 E+ 01  

- 0 . 2 7 1 8 6 6 4 E - 0 4  
0 .7 0 5 7 7 0 0 E + 0 0  

- 0 . 3 5 2 2 6 3 1 E - 0 4  
0 . 9999787E+0 0  
0 . 1000000E+0 1  

- 0 . 1 7 9 7 6 3 4 E - 0 4  
0 .  9 4 2 4 1 7 8 E - 0 3  
0 .  9999989E+ 00  
0 . 8 4 0 9 8 5 7 E - 0 4  
0 . 100 0000E+0 1  
0 -1 0 0 0 0 0 0 E + 0 1

- 0 . 8 0 8 1 1 6 3 E - 0 4  
- 0 . 5 1 5 7  6 7 8 E - 0 3  
- 0 . 9 9 9 7 1 7 5 E + 0 0  
- 0 . 1 9 9 9 9 9 6 E + 0 1  
- 0  . 2 8 2 5 2 8 4 E + 0 1  

0 . 6 0 0 0 1 0 7 E + 0 1  
- 0 . 2 4 0 6 0 2 8 E - 0 1  
- 0  . 3 9 9 9 6 7 4 E + 0 1  
- 0  . 5 9 9 9 9 3 4 E + 0 1  
- 0  . 4 0 0 4 1 7 0 E + 0 1  
- 0 . 5 9 9 8 2 70E+01  
- 0  . 7 9 9 9 8 8 5 E + 0 1  
- 0 . 1 9 9 9 9 8 3 E + 0 1  
- 0 . 5 0 0 0 6 4 9 E + 0 1

A r e a s

3 0 . 6 6 5 6  
19 . 0 8 1 4  
1 8 . 2 6 3 6  

5 . 3 5 7 3  
2 6 . 5 9 6 2  
3 0 . 5 2 0 0  
4 6 . 8 2 7 9  
1 2 . 5 8 0 6  
1 2 . 1 3 9 8  

4 . 9 6 9 6  
1 2 . 5 3 7 5  
1 2 . 4 0 4 3  
1 1 . 8 0 6 7  
1 1 . 5 7 1 2

S o l i d  Model

P l a n e  C o e f f i c i e n t s  o f  STEPS Ax + By + Cz + D = 0 

C D

- 0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 1 0 0 0 0 0 0 E + 0 1  
O . O O O O O O O E + O O  
O . O O O O O O O E + O O  

■0. 1 0 0 0 0 0 0 E + 0 1  
0 - 0 0 0 0 0 0 0 E + 0 0  

- 0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 0 0 0 0 0 0 0 E + 0 0  

■0. 1 0 0 0 0 0 0 E + 0 1  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  

- 0 . 7 0 7 1 0 6 8 E + 0 0

0 . O O O OO O OE + OO  
■0. 1 0 0 0 0 0 0 E + 0 1  
O . OO O OO O OE + OO  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  
O . O O O OO O OE + OO  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 .OOOOOOOE+OO  
O . O O O O OO O E+ O O  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 .OOOOOOOE+OO

0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  

- 0 .1 0 0 0 0 0 0 E + 0 1  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 .1 0 0 0 0 0 0 E + 0 1  
0 . 0 0 0 0 0 0 0 E + 0 0  

• 0 . 100 00 00 E+ 01  
0 . 0 0 0 0 0 0 0 E + 0 0  

- 0 .1 0 0 0 0 0 0 E + 0 1  
0 . 0 0 0 0 0 0 0 E + 0 0  

•0 .1 0 0 0 0 0 0 E + 0 1  
0 .1 0 0 0 0 0 0 E + 0 1  

■0.7 0 7 1 0 6 8 E + 0 0

0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  
0 . 0 0 0 0 0 0 0 E + 0 0  

- 0 . 8 0 0 0 0 0 0 E + 0 1  
- 0 . 6 0 0 0 0 0 0 E + 0 1  
- 0 . 6 0 0 0 0 0 0 E + 0 1  

0 . 2 0 0 0 0 0 0 E + 0 1  
0 . 5 0 0 0 0 0 0 E + 0 1  
0 . 4 0 0 0 0 0 0 E + 0 1  
0 . 4 0 0 0 0 0 0 E + 0 1  
0 . 6 0 0 0 0 0 0 E + 0 1  
0 . 2 0 0 0 0 0 0 E + 0 1  

- 0  . 1 0 0 0 0 0 0 E + 0 1  
0 . 2 8 2 8 4 2 7 E + 0 1

A r e a s

1 9 . 2 0 0 0
3 0 . 4 0 0 0
4 8 . 0 0 0 0  
12 .0000
3 0 . 4 0 0 0
1 2 . 0 0 0 0  

6 . 0 0 0 0
1 2 . 0 0 0 0  

6 . 0 0 0 0  
1 2 . 0 0 0 0  
1 2 . 0 0 0 0  
12 . 0000  
1 8 . 0 0 0 0  
2 5 . 8 0 0 0

Figure 7.8 Plane coefficients of half-spaces and surface areas
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First .HSP file : steps.hsp
Second .HSP file : stepso.hsp
R e c o v e r e d o f f s e t : - 0 . 0 0 1 5  - 0 . 0 0 9 3  0 . 0 0 1 5

Do y o u  w a n t  t o  s e e t h e  o u t p u t  ?: Y

F a c e  : 9 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 2 5 3 5 2 1 2
F a c e  : 10 ( 0 . 9 9 9 9 9 9 2 - 0 . 0 0 0 0 0 6 6 0 . 0 0 1 2 4 3 2 - 0 . 2 5 7 1 2 3 2

F a c e  : 12 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0  . 7 8 8 7 3 2 3
F a c e  : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 2 3 8 - 0 . 0 0 0 0 2 7 2 1 . 7 4 4 9 4 1 9

F a c e  : 7 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 7 4 6 4 7 8 8
F a c e  : 13  ( - 0 . 0 0 0 0 1 4 2 0 . 0 0 0 0 1 0 7 1 . 0 0 0 0 0 0 0 0 . 7 9 0 2 1 7 5

F a c e  : 10 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 1 . 2 1 1 2 6 7 7
F a c e  : 8 ( - 0 . 0 0 0 0 5 7 5 0 . 0 0 0 0 0 6 1 1 . 0 0 0 0 0 0 0 - 1 . 2 0 9 6 6 1 5

F a c e  : 8 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 2 . 2 1 1 2 6 7 7
F a c e  : 14 ( 0 . 0 0 0 1 9 8 5 0 . 0 0 0 0 0 0 4 1 . 0 0 0 0 0 0 0 - 2 . 2 0 9 6 8 3 0

F a c e  : 11 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 2 . 2 5 3 5 2 1 2
F a c e  : 9 ( 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 0 1 9 - 0 . 0 0 0 0 1 8 0 - 2 . 2 5 5 0 4 7 4

F a c e  : 13  ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 7 8 8 7 3 2 3
F a c e  : 3 ( - 0 . 0 0 0 0 8 6 1 - 0 . 0 0 0 0 4 4 3 1 . 0 0 0 0 0 0 0 1 . 7 9 0 0 4 9 3

F a c e  : 6 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 2 1 1 2 6 7 7
F a c e  : 11 ( - 0 . 0 0 1 4 7 9 7 0 . 0 0 0 0 4 2 2 0 . 9 9 9 9 9 8 9 - 3 . 2 1 3 4 6 6 8

F a c e  : 14  ( - 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0 . 7 0 7 1 0 6 8 - 1 . 7 9 2 6 6 5 3
F a c e  : 5 ( 0 . 7 0 8 4 4 1 0 - 0 . 0 0 0 0 0 7 6 0 . 7 0 5 7 7 0 0 1 . 7 9 7 0 1 9 0

F a c e  : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 2 5 3 5 2 1 2
F a c e  : 12 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 4 8 5 - 0 . 0 0 0 1 3 3 0 4 . 2 5 4 8 1 0 3

F a c e  : 1 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 7 4 6 4 7 8 8
F a c e  : 2 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 0 8 1 0 . 0 0 0 0 4 2 2 3 . 7 4 4 8 6 7 7

F a c e  : 5 ( 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e  : 6 ( - 0 . 0 0 0 0 1 8 7 - 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 3 5 2 3 . 0 0 9 2 1 8 6

F a c e  : 2 ( 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e  : 1 ( 0 . 0 0 0 0 4 0 4 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 6 2 6 2 . 9 9 0 6 1 6 1

F a c e  : 3 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 7 8 8 7 3 2 3
F a c e  : 7 ( - 0 . 0 0 0 0 7 1 6 0 . 0 0 6 5 2 4 0 0 . 9 9 9 9 7 8 7 2 . 7 8 5 3 4 5 3

Do yo u w ant  t o  c a l c u l a t e  t h e  minimum d i s t a n c e  : N 
D Term : 0 . 0

S q u a r e d  d i s t  b e t w e e n  m o d e s :  0 . 0 0 0 0
R e c o v e r e d  a n g l e  a r o u n d  X a x i s :  0 . 0 0 7 3

Figure 7.9 Matching according to radial distances
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First .HSP file : steps.hsp
Second .HSP file : stepso.hsp
R e c o v e r e d  o f f s e t :  - 0 . 0 0 1 6  - 0 . 0 0 9 3  0 . 0 0 1 5

Do y o u  w an t  t o  s e e  t h e  o u t p u t  ?:  N

Do y o u  wan t  t o  c a l c u l a t e  t h e  minimum d i s t a n c e  
D Term : 0 . 0

S q u a r e d  d i s t  b e t w e e n  m o d e s : 0 . 0 0 0 0
R e c o v e r e d a n g l e a r o u n d  X a x i s : 0 . 0 0 7 3
R e c o v e r e d a n g l e a r o u n d  Y a x i s : - 0 . 0 0 0 4
R e c o v e r e d a n g l e a r o u n d  Z a x i s : 0 . 1 6 8 4

F a c e  : 9 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 2 5 3 5 2 1 2
F a c e  : 10 ( 0 . 9 9 9 9 9 9 5 0 . 0 0 0 1 3 3 6 0 . 0 0 0 9 4 9 5 - 0 . 2 5 6 6 5 1 0

F a c e  : 12 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0 . 7 8 8 7 3 2 3
F a c e  : 13 ( - 0 . 0 0 0 0 2 0 9 - 0 . 0 0 2 9 2 7 5 0 . 9 9 9 9 9 5 7 0 . 7 9 0 1 7 9 3

F a c e  : 7 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 7 4 6 4 7 8 8
F a c e  : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 5 1 3 - 0 . 0 0 0 0 2 0 1 1 . 7 4 4 8 6 3 9

F a c e  : 10 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 1 . 2 1 1 2 6 7 7
F a c e  : 8 ( - 0 . 0 0 0 0 6 7 5 - 0 . 0 0 2 9 3 1 7 0 . 9 9 9 9 9 5 7 - 1 . 2 0 9 6 9 8 6

F a c e  : 8 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 2 . 2 1 1 2 6 7 7
F a c e  : 14 ( 0 . 0 0 0 1 9 1 8 - 0 . 0 0 2 9 3 7 8 0 . 9 9 9 9 9 5 7 - 2 . 2 0 9 7 2 1 1

F a c e  : 11 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 2 . 2 5 3 5 2 1 2
F a c e  : 9 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 2 5 6 - 0 . 0 0 0 0 1 0 9 - 2 . 2 5 5 1 2 5 3

F a c e  : 13 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 7 8 8 7 3 2 3
F a c e  : 3 ( - 0 . 0 0 0 0 9 2 7 - 0 . 0 0 2 9 8 2 6 0 . 9 9 9 9 9 5 6 1 . 7 9 0 0 1 1 1

F a c e  : 6 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 2 1 1 2 6 7 7
F a c e  : 11 ( - 0 . 0 0 1 4 8 6 4 - 0 . 0 0 2 8 9 6 2 0 . 9 9 9 9 9 4 7 - 3 . 2 1 3 5 0 4 8

F a c e  : 14 ( - 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0 . 7 0 7 1 0 6 8 - 1 . 7 9 2 6 6 5 3
F a c e  : 5 ( 0 . 7 0 8 4 3 6 3 - 0 . 0 0 1 9 9 1 1 0 . 7 0 5 7 7 1 9 1 . 7 9 6 9 3 6 5

F a c e  : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 2 5 3 5 2 1 2
F a c e  : 12 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 5 7 3 0 . 0 0 0 0 9 0 9 - 4 . 2 5 4 9 9 4 8

F a c e  : 1 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 7 4 6 4 7 8 8
F a c e  : 2 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 2 3 5 4 0 . 0 0 0 0 4 9 5 3 . 7 4 4 7 8 9 8

F a c e  : 5 ( 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e  : 6 ( 0 . 0 0 0 1 0 8 8 - 0 . 9 9 9 9 9 5 6 - 0 . 0 0 2 9 7 3 5 3 . 0 0 9 2 6 1 8

F a c e  : 2 ( 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e  : 1 ( - 0 . 0 0 0 0 8 7 1 0 . 9 9 9 9 9 5 9 0 . 0 0 2 8 7 5 6 2 . 9 9 0 5 7 2 9

F a c e  : 3 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 7 8 8 7 3 2 3
F a c e  : 7 ( - 0 . 0 0 0 0 7 9 1 0 . 0 0 3 5 8 5 8 0 . 9 9 9 9 9 3 6 2 . 7 8 5 3 0 6 9

Do y o u  want  t o  p l o t  t h e  r e s u l t s l a t e r  on  ?:  N

Figure 7.10 Matching according to inter-point distances

163



The results of the matches and mis-matches can be plotted if desired. Figure 

7.11 shows the matches of the staircase model. 14 faces of the measured com

ponent matched with the faces of the solid model (each point on an EGS 

corresponds to a face) in the figure, face numbers are shown in figure 7.11 (b). 

The red in the figure represents the faces of the solid model and the green 

represents the measured component’s.

The matches and mis-matches of another example on an extended Gaussian 

sphere is shown Figure 7.12. Configurations are deliberately mis-matched in 

figure 7.12 (b) where the blue colour represents the first configuration and the 

green colour represents the second one. Since the configurations matched perfectly 

in figure 7.12 (a), it is difficult to distinguish the colours and configurations. The 

circle in both figure 7.12 (a) and figure 7.12 (b) corresponds to a cylindrical part of 

the sample.

If the number of faces are different (which means one of the faces of the 

measured component is missing or an extra face has been found - noise points, see 

section 7.4 -) then this mis-matched extra (or missing) face is found by checking 

how close the matches are and finding any matches which are not as close as the 

others. Figure 7.13 shows this. In this example extra face Face 68 is mis

matched to Face 54 and this mis-match can easily be spotted by checking the plane 

coefficients. This example was prepared to test the behaviour of the matching 

algorithm for a different number of faces in both configurations. The order of the 

faces in both configurations is the same and this allows the mis-match of the extra 

face to be shown more clearly. For the simplicity only some matches were shown
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Figure 7.11 (b) Matches with the face numbers



Figure 7.12 (a) Matches on an extented Gaussian sphere

T

$
+

Figure 7.12 (b) Mis-matches on an EGS
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Fieure 7.13 (a) The mis-matched extra face

Figure 7.13 (b) The extended Gaussian sphere of the matches
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in the figure. The rotation angle between the model and the measured component 

was 45 degrees. The matches on the EGS are shown in figure 7.13 (b). The sin

gle colour in the figure is the mis-matched extra face.

7.7 Problems in Matching

If the measured component to be matched is too symmetrical (which means that 

not only the perpendicular distances from the origin, but also the surface areas of 

some faces, are the same), the matching algorithm fails to match these faces and 

obviously can recover the wrong rotation angle as a result of this. This is not 

really a problem, or rather it is a problem from which any method must suffer as 

there is insufficient information for a decision to be made. In addition to this prob

lem, if there are some missing or extra faces in one of the configurations these 

missing or extra faces change the position of the plane centre and once the plane 

centre of the configuration is changed, the radial distances of the points are also 

changed and the configurations do not match perfectly with each other. Scaling 

surface normals not only by the perpendicular distances from the origin but by the 

surface areas as well partly solves this second problem but for big changes in the 

position of the plane centre the problem does still exist. Some examples related to 

this case and some further results are given in Appendix C.
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7.8 Concluding Remarks

In this chapter, as the final step in the work described in this thesis, surface 

descriptions of the measured component are matched to the surface descriptions of 

the solid model under translation and rotation. Once the two descriptions are 

matched, the faces of the measured component may be compared with the 

corresponding faces of the model and any out-of-tolerance differences reported. 

Also, if all faces within tolerance are discarded and the whole process is carried 

out again on bits that don’t match, the parts of the component which are of the 

right shape, but which are in the wrong place can be easily identified and their 

position and orientation can be computed.

In the next chapter some suggestions will be given for future work. An alter

native method which might handle cylinders and cones as well as planar surfaces 

will also be mentioned.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK

8.1 Introduction

This chapter includes the conclusion of the work described in this thesis and 

some suggestions for future work.

As mentioned in the earlier chapters the major limitation that the algo

rithms used in this research have is that most of them can only handle planar 

surfaces. In this final chapter some suggestions will be given that would ex

tend the research to handle cylindrical and conical components as well as 

planar surfaces.
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8.2 CONCLUSIONS

The motivation of the work described in this thesis was to design an automatic 

inspection method which compares a set of measurements (taken from the surface 

of an engineering component by a measuring machine) with a solid model of the 

same component created by a CAD system. Since the aim of inspection is to find 

any manufacturing errors, the two descriptions are then ready to be matched to find 

defects (if there are any).

A group of algorithms were used or developed for this purpose. Some algo

rithms which were used in this work already existed in the literature on Stochastic 

Computational Geometry, but had not before been applied to this problem. The 

new algorithms which were developed were to connect the extant algorithms so as 

to serve the best solution to the problem.

The initial data were the coordinates of points lying on the surface of the 

component gathered by a measuring machine (particularly a non-contact type laser 

measuring machine such as that developed at Bath University [61]). Later on a 

set-theoretic solid modeller (which was again written at Bath University by John 

Woodwark [115]) was used to simulate the function of the laser measuring 

machine. In order to simulate measurement errors the surface points were per

turbed slightly by random numbers. Since the implementation was to use the laser 

measuring machine the algorithms developed used the principles of a laser measur

ing machine (such as tracing the laser beam backwards in the classification algo

rithm, Chapter 5) but they could be used with any other sort of measuring machine.
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Since the initial data were not suitable to be compared with the solid model 

primitives (they were in a different forms), the three-dimensional Delaunay triangu

lation algorithm devised by Adrian Bowyer [25] was used to form a volumetric 

representation whose surfaces were in the same form as the solid model primitives. 

The problem was then to find the surfaces.

This problem was solved by finding the triangular faces of the tetrahedral 

packing (which formed the volumetric representation) that lay on the boundary of 

the measured component. In order to do so this tetrahedra were classified as solid 

or air.

Once the surface of the measured component had been found the next stage 

was to find the real faces of the measured component to be matched with the faces 

of the solid model. This was done by clustering the surface triangles lying on the 

same surface. The algorithm dealing with this problem was quite an efficient one 

but, since it was using scalar products to cluster the triangles, it was unable to han

dle curved surfaces, such as cylinders or cones. Suggestions to improve the algo

rithm so as to handle the cylinders and cones will be made in the next section. 

The clustering algorithm was used not only for clustering the surface triangles, but 

for deducing the topology between the faces and for finding the false chamfers 

(which were the products of the measuring machine and needed to be got rid of) as 

well. It fitted a plane to each cluster by using principle component analysis and 

output the equations of the planes which represented the real faces of the com

ponent. The next thing to do was to match these faces with the faces of the solid 

model.
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At this stage the two descriptions were ready to be matched (they were in the 

same form: both were planar half-spaces). The only problem which was encoun

tered here was that the descriptions were referred to different coordinate frames. 

In order to solve this problem the Procrustean algorithm was used to match the 

faces of the measured component with faces of the solid model. In order to do this 

the surface normals of the faces were scaled and mapped onto extended Gaussian 

spheres.

By matching the point patterns on their EGSs under translation and rotation 

the measured component was compared with its solid model and any out-of- 

tolerance differences were reported. This comparison allowed the manufacturing 

errors of the component to be found.

8.3 Suggestions for Future Work 

8.3.1 Dealing with Cones and Cylinders

Since the clustering technique described in this research uses the result of the 

scalar product of the surface normals to cluster the surface triangles, it is unable to 

handle curved surfaces, such as cylinders or cones. For this reason, only planar 

faces of the measured component were represented on extended Gaussian spheres 

and matched with the planar faces of the solid model.

In order to extend the work so as to distinguish cylindrical and conical parts 

of a measured component and to match them with the corresponding curved faces 

of the solid model the following method could be used:
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Once the surface triangles and their surface normals are found, the surface 

normals might be mapped onto a Gaussian sphere (or an extended Gaussian sphere, 

EGS) before clustering the surface triangles. In this technique, as in the technique 

described in Chapter 7, it might also be a good idea to scale the surface normals 

by the perpendicular distances of the triangular facets from the origin (this would 

allow the parallel planes to be clustered). After the mapping, the surface triangles 

lying on the same surface will form small clusters on the ordinary Gaussian sphere 

(as opposed to the extended one) whereas (as mentioned in section 7.5.1) triangles 

lying on cylindrical faces will form unit radius circles and the triangles on conical 

faces will form small radius circles. These different types of clusters would allow 

the different shapes (such as cylinders and cones as well as the planar surfaces) to 

be distinguished and different shapes could be matched by just matching the two 

Gaussian spheres (or EGSs), one for the measured component and one for the solid 

model.

Matching the planar faces by matching the two EGSs was explained in the 

previous chapter. In this section some suggestions will be given for matching con

ical parts and cylindrical parts. Firstly, matching the conical parts:

It is easier to distinguish a cone from its mapping on the Gaussian sphere (see 

Figure 8.1). The included angle of a cone determines the diameter of the small 

radius circle on the Gaussian sphere. By matching the two same-radius circles the 

conical parts of the measured component could easily be matched with the parts of 

the solid model (see Figure 8.2).
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i n c l u d e d

Figure 8.1 Representation of cones on a Gaussian sphere

EGS of the solid nodel EGS of the neasuned conponent

Figure 8.2 Matching the conical parts 
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On the other hand, matching cylinders is rather difficult. The reason for this 

is, that whatever their diameters, cylinders are represented as unit radius circles on 

Gaussian spheres. However, if the links between the surface normals and their 

corresponding surface triangles are kept, the diameters of the cylinder could be cal

culated.

If there is more than one cylindrical part in a model, these cylindrical parts 

might be matched by matching their axes. In order to match axes, first the center 

point which is minimum distance away from the axes is found and the lines are 

matched according to their distance from this centre point by using Procrustean 

matching under translation and rotation. The algebra [26] which calculates the 

centre point is given in Appendix D. Figure 8.3 shows the axes of cylinders and 

their matching.

If there is more than one cone which has the same included angle, the same 

technique could be used to find these cones, and the cones could again be matched 

by matching their axes.

axis of a 
cylinder

Figure 8.3 Axes of the cylinders and their mutually nearest point
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8.3.2 Reducing Processing Time

One of the aims of modem production is to reduce inspection time as much as pos

sible. Since the techniques described in this thesis deal with a large number of 

surface points and processing these surface points is time-consuming, it would be 

worthwhile investigating new methods which might reduce that processing time; 

thus increasing efficiency and reducing inspection time.

In order to reduce processing time, parallel processing might be a useful tool. 

Parallel processing is a technique for increasing the computation speed for a task, 

by dividing the algorithm into several sub-tasks and allocating multiple processors 

to execute multiple sub-tasks simultaneously. Current developments in parallel 

processing are of increasing interest to those concerned with the creation, display 

and analysis of pictures. It might also be quite useful in order to increase the 

accuracy and to reduce the processing time when reconstructing the measured 

engineering components from their surface points.

8.3.3 Dealing with Symmetry

Most real engineering components have symmetry about the axes (that is actually 

how they are designed). The problem of symmetry was already mentioned in 

Chapter 7. In some cases it is worthwhile to try the six possible 180 degree rota

tions about the axes to find the best match. Possible three 180 degree rotations 

around x, y and z axis were already tried in order to help to sort out the symmetry 

problem but did not help much for the case given in Appendix C. The best match
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here was defined as the match which minimises the sum of squared distances 

between the faces of the measured component and the solid model’s after each 

rotation.

As also mentioned in Chapter 7, the matching depends on the position of the 

plane centres of both the solid model and the measured component. Since the 

plane centre was the minimum distance away from the faces, extra or missing faces 

changed the centre of the planes of the measured component and the faces some

times failed to match. In order to solve this problem surface areas were also con

sidered to scale the surface normals, but for big changes in the position of the 

plane centre this did not help much either. For this reasons it is recommended that 

some other measures be found to scale the surface normals which would allow the 

technique to handle any amount of change in the position of the plane centre 

because of the missing or the extra faces of measured component. These measures 

could be the surface colour (if a colour television camera is assisting the measuring 

machine), the grey level for a monochrome camera (as long as the angle of illumi

nation is taken into account), the surface texture, the surface roughness, some bar 

codes or markings on the surface and so on.

Alternatively, in order to handle the cases where symmetry or missing or extra 

faces cause the matching algorithm to fail, the picture of the measured component 

and the solid model (the picture of the measured component was already produced 

by using the painter’s algorithm [55, 95, 110] and the faces were painted in 

different colours - see Chapter 6 ) could be used. The faces that were mis-matched 

could be corrected interactively by pointing at the faces which should be matched
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on both the measured component and the solid model and asking the algorithm to 

do the matching according to this information.

8.3.4 Dealing with Surface Roughness or Surface Alignments

Algorithms described in this thesis might also be used in checking the surface 

roughnesses or the surface alignments of the measured engineering components. 

Since the clustering algorithm produces the neighbourhood relationship information 

between the faces of the measured component, the angles between the neighbour

ing faces can be calculated to be compared with the solid model’s and any 

misalignment can be found.

Besides, the roughness of the surfaces might be introduced by just perturbing 

the measured points not by random numbers but by different sorts of distributions 

(i.e. Gaussian distribution) and checked again by comparing with the solid model.

179



REFERENCES

1. Ahuja, N., Dot pattern processing using Voronoi neighbourhoods, IEEE 

Trans, on Pattern Analysis and Machine Intelligence, Volume PAMI-4, 

Number 3, May 1982, page 336-343.

2. Ahuja, N., Bridwell, N., Nash, C., Huang, T.S., Three-dimensional robot 

vision, IEEE Workshop on Industrial Applications of Machine Vision, 

Research Triangle Park, May 1982, page 206-213.

3. Anderberg, M.R., Cluster analysis for applications, Academic Press, New 

York, 1973.

4. Baer, A., Eastman, C., Henrion, M., Geometric modelling - a survey, 

Computer-Aided Design, Volume 11, Number 5, September 1979, page 

253-272.

5. Bajcsy, R., Three-dimensional scene analysis, Proc. of the 5th Interna

tional Conference on Pattern Recognition (Miami Beach, Florida, 

December 1-4), IEEE, New York, page 1064-1073.

6 . Baker, H., Three-dimensional modelling, Proc. of the 5th International 

Joint Conference on Artificial Intelligence (Cambridge, Mass., Aug. 22- 

25), UCAI, page 649-655.

180



7. Ball, G.H., Classification analysis, Stanford Research Institute, SRI Pro

ject 5533, 1971.

8 . Ballard, D.H., Sabbah, D., Viewer independent shape recognition, IEEE 

Trans, on Pattern Analysis and Machine Intelligence, Volume PAMI-5, 

Number 2, March 1983, page 653-659.

9. Bentley, J., Multidimensional-divide-and-conquer, Commun. Ass. Corn- 

put. Mach., Volume 23, April 1980, page 214-229.

10. Bentley, J., Shamos, M., Divide-and-conquer in multidimensional space, 

Proc. ACM Symp. Theory of Computing, May 1976, page 220-230.

11. Besant, C.B., Lui, C.W.K., Computer-aided design and manufacture, 

Ellis Horwood Ltd., 1986.

12. Besl, P J., Jain, R.C., Survey: Three-dimensional object recognition, 

Computer Surveys, Vol 17, No 1, March 1985, page 75-145.

13. Bhanu, B., Representation and shape matching of 3-D objects, IEEE 

Trans, on Pattern Analysis and Machine Intelligence, PAMI-6 , May 1984, 

page 340-350.

14. Bhanu, B., Faugeras, O.D., Shape matching of two-dimensional objects, 

IEEE Trans, on Pattern Analysis and Machine Intelligence, Volume

181



PAMI-6 , Number 2, March 1984, page 137-156.

15. Black, S.P., Utilisation of 3-coordinate measuring machines, International 

Metrology Conference Nelex 80, paper 2.3, 7-9 October 1980.

16. Bocquet, J.C., Tichkiewitch, S., An expert system for reconstruction of 

mechanical objects from projections, Proceedings of the 6 th International 

Conference on Pattern Recognition (Munich, W.Germany, Oct 19-22), 

I APR and IEEE, New York, page 491-496.

17. Boissonnat, J.D., Shape reconstruction from planar cross-sections,

Proceedings of the IEEE conf. on Computer Vision and Pattern Recogni

tion, San Fransisco, June 1985, page 393-397.

18. Boissonnat, J.D., Representing 2D and 3D shapes with Delaunay triangu

lation, Proc. of the 7th International Conference on Pattern Recognition 

(Montreal, Canada, July 30-Aug 2), IEEE, New York, page 745-747.

19. Boissonnat, J.D., Representation of object triangulating points in 3-D

space, Proc. of the 6 th International Conference on Pattern Recognition

(Munich, West Germany, Oct 19-22), IEEE, New York, page 830-832.

20. Boissonnat, J.D., Geometric structures for three-dimensional shape

representation, ACM Trans, on Graphics, page 266-286, October 1984.

182



21. Boissonnat, J.D., Faugeras, O.D., Triangulation of 3-D objects, Proc. of 

the 7th International Joint Conference on Artificial Intelligence (Van

couver, B.C., Canada, Aug 24-28), UCAI, page 658-660.

22. Boubez, T.I., Funnell, W .RJ., Lowther, D.A., Pinchuk, A.R., Silvester,

P.P., Mesh generation for computational analysis, part I- Electromagnetic 

and technical considerations of mesh generations, Computer-Aided 

Engineering Journal, Volume 3, Number 5, October 1986, page 190-195.

23. Boubez, T.I., Funnell, W .RJ., Lowther, D.A., Pinchuk, A.R., Silvester, 

P.P., Mesh generation for computational analysis, part II- Geometric and 

topological considerations for three-dimensional mesh generation 

Computer-Aided Engineering Journal, Volume 3, Number 5, October 

1986, page 196-201.

24. Bowyer, A., SID- Set-theoretic Input to Dora, a language for describing 

solid objects, Bath University, School of Engineering, Internal Report, 

1986.

25. Bowyer, A., Computing Dirichlet tesselations, Computer Journal, Volume 

24, Number 2, 1981, page 162-166.

26. Bowyer, A., Personal communications, University of Bath.

183



27. Bowyer, A., Graham, D., Henry, G.K., The measurement of 3-D 

features using laser triangulation, Proc. of the 7th International Confer

ence on Automated Inspection and Product Control, Birmingham 1985, 

IFS Publications, page 313-322. 1980.

28. Bowyer, A., Woodwark, J.R., Programmer's geometry, Butterworths, 

1983.

29. Cakir, M.C., Bowyer, A., Matching measured components into solid 

models, Proc. of the International Conference on Theory and Practice of 

Geometric Modelling, (Blaubeuren, W.Germany, October 3-7), 1988.

30. Cavendish, J.C., Field, D.A., Frey, W.H., An approach to automatic 

three-dimensional finite element mesh generation, International Journal for 

Numerical Methods in Engineering, Volume 21, page 329-347, 1985.

31. Chiyokura, H., Solid modelling with DESIGNBASE, Addison-Wesley 

Publishing Company, 1988.

32. Choi, B.K., Shin, H.Y., Yoon, Y.I., Lee, J.W., Triangulation of scattered 

data in 3D space, Computer-Aided Design, Volume 20, Number 5, June 

1988, page 239-248.

33. Choong, Y.C., Intelligent robot vision in automated surface finishing, Ph. 

D. dissertation, University of Bath, 1982.

184



34. Cohen, H.D., A method for the automatic generation of triangular ele

ments on a surface, International Journal for Numerical Methods in 

Engineering, Volume 15, Number 3, page 470-477, 1980.

35. Coyne, B., Three-dimensional coordinate measuring machine survey, 

Quality Today, January 1989, page 17-31.

36. Csendes, Z J ., Shenton, D., Shahnasser, H., Adaptive finite element mesh 

generation using Delaunay algorithm, IEEE Transactions on Magnetics, 

Volume MAG-19, Number 6 , 1983, page 2551-2554.

37. Dane, C., Bajcsy, R., An object-centered three-dimensional model builder, 

Proc. of the 6 th International Conference on Pattern Recognition, IEEE, 

New York, page 348-350.

38. Davis, S.L., Shape matching using relaxation techniques, IEEE Trans, on 

Pattern Analysis and Machine Intelligence, Volume PAMI-1, Number 1, 

January 1979, page 60-72.

39. Diday, E., Govaert, G., Lechevallier, Y., Sidi, J., Clustering in pattern 

recognition, Digital Image Processing, J.C. Simon and R.M. Haralick, Eds. 

Dordrecht, Holland, Reidel, Oct. 1981, page 331-370.

40. Dudani, S., Breeding, K.J., McGhee, R.D., Aircraft identification by 

moment invariants, Trans. Computing, Volume C-26, page 39-45, 1977.

185



41. Duncan, J.P., Mair, S.G., Sculptured surfaces in engineering and medi

cine, Cambridge University Press, 1983.

42. Eastman, C.M., Preiss, K., A review of solid shape modelling based on 

integrity verification, Computer-Aided Design, Volume 16, Number 2, 

March 1984, page 66-80.

43. Everitt, B., Cluster analysis, Halsted Press, New York, 1974.

44. Faugeras, O.D., New steps toward a flexible three-dimensional vision sys

tem for robotics, Proc. of the 7th International Conference on Pattern 

Recognition (Montreal, Canada, July 30-Aug. 2), IEEE, New York, page 

796-805.

45. Faugeras, O.D., Ponce, J., Prism trees: a hierarchical representations of 

3-D objects, Proc. of the 8 th International Joint Conference on Artificial 

Intelligence (Karlsruhe, West Germany, Aug. 8-12), IJCAI, page 982-988.

46. Faugeras, O.D., Hebert, M., A 3-D recognition and positioning algorithm 

using geometrical matching between primitive surfaces, Proc. of the 8 th 

International Joint Conference on Artificial Intelligence (Karlsruhe, West 

Germany, Aug. 8-12), UCAI, page 998-1001.

47. Faugeras, O.D., Hebert, M., Mussi, P., Boissonnat, J.D., Polyhedral 

approximation of objects without holes, Proc. of the Pattern recognition

186



and Image Processing Conference (Las Vegas, Nevada, June 14-17), IEEE, 

New York, page 593-598.

48. Farin, G., Smooth interpolation to scattered 3D data, in Barnhill, R.E., 

and Boehm, W. (eds) Surface in Computer-Aided Geometric Design, 

North-Holland, Amsterdam, Netherlands, 1983.

49. Faux, I.D., Pratt, M.J., Computational geometry for design and manufac

ture, Ellis Horwood, Chichester, U.K., 1979.

50. Fuchs, H., Kedem, Z., Uselton, S.P, Optimal surface reconstruction 

from planar contours, Communications of ACM, Volume 20, Number 10, 

October 1977, page 69-75.

51. Ganapathy, S., Dennehy, T.G., A new general triangulation method for 

planar contours, ACM Computer Graphics, July 1982, Volume 16, 

Number 3, page 69-75.

52. Gilheany, R., Treywin, E.T., Developments in three co-ordinate measur

ing machines and associated software, International Metrology Conference 

Nelex 80, paper 2.2, 7-9 October 1980.

53. Green, P.J., Sibson, R., Computing Dirichlet tessellation in the plane, 

The Computer Journal, Volume 21, Number 2, page 168-173.

187



54. Groover, M.P., Zimmers, E.W., CAD/CAM Computer-aided design and 

manufacturing, Prentice/Hall International Editions, 1984.

55. Harrington, S., Computer graphics, a programming approach, Me Graw- 

Hill Inc., 1983.

56. Hartigan, J.A., Clustering algorithms, Wiley, New York, 1975.

57. Hawkes, B., The CADCAM process, Pitman Publishing, 1988.

58. Henderson, T., Efficient 3-D object representations for industrial vision 

systems, IEEE Trans, on Pattern Analysis and Machine Intelligence, 

Volume PAMI-5, No 6 , Nov 1983, page 609-617.

59. Henderson, T.C., An efficient segmentation method for range data, SPIE 

Conf. Robot Vision, Arlington, VA, May 1982, page 46-47.

60. Henderson, T.C, Bhanu, B., Three-point seed method for the extraction 

of planar faces from range data, IEEE Workshop on Industrial Applica

tions of Machine Vision, Research Triangle Park, May 1982, page 181- 

186.

61. Henry, G.K., Three-dimensional vision by laser triangulation, Ph. D. 

dissertation, University of Bath, 1988.

188



62. Horn, B.K.P., Extended Gaussian images, Proc. of IEEE, December 1972, 

page 1656-1678.

63. Horn, B.K.P., Ikeuchi, K., The mechanical manipulation of randomly 

oriented parts, Sci. Amer. 251, August 1984, page 100-111.

64. Ikeuchi, K., Reconstruction of three-dimensional objects using the 

extended Gaussian image, Proc. of the 7th International Joint Conference 

on Artificial Intelligence (Vancouver, B.C., Canada, Aug. 24-28), IJCAI, 

page 595-600.

65. Jambu, M., Lebeaux, M.O., Cluster analysis and data analysis, North- 

Holland Publishing Company, Netherlands, 1983.

6 6 . Jarvis, R.A., A perspective on range-finding techniques for computer 

vision, IEEE Trans, on Pattern Analysis and Machine Intelligence, Volume 

PAMI-5, Number 2, March 1983, page 122-139.

67. Kargas, A., Cooley, P., Richards, T.H.E., Interpretation of engineering 

drawings as solid models, Computer-Aided Engineering Journal, Volume 

5, Number 2, April 1988, page 67-78.

6 8 . Keppel, E., Approximating complex surfaces by triangulation of contour 

lines, IBM J. Res. Develop., Number 19, Jan. 1975, page 2-11.

189



69. Krouse, J.K, What every engineer should know about CAD/CAM, Marcel 

Dekker Inc., New York and Basel, 1982.

70. Lawson, C.L., Generation of triangular grid with application to contour 

plotting, California Institute of Technology, Jet Propulsion Laboratory, 

Number 299, 1972.

71. Lee, D.T., Medial axis transformation of a planar shape, IEEE Trans, on 

Pattern Analysis and Machine Intelligence, Volume PAMI-4, Number 4, 

July 1982, page 363-369.

72. Lee, D.T., Schacter, B.J., Two algorithms for constructing a Delaunay 

triangulation, Int. Journal of Computer and Information Sciences, Volume 

9, Number 3, 1980.

73. Lewis, B.A., Robinson, J.S., Triangulation of planar regions with appli

cations, The Computer Journal, Volume 21, page 324-332, 1978.

74. Little, J J ., An iterative method for reconstructing convex polyhedra from 

extended Gaussian images, Proc. of National Conference on Artificial 

Intelligence (Washington D.C., Aug 22-26), AAAI, page 247-250.

75. Little, J.J., Extended Gaussian Images, mixed volumes, and shape recon

struction, Proc. First ACM Symposium on Computational Geometry, (Bal

timore, 5-7 June 1985), page 15-23.

190



76. Lloyd, E.L., On triangulation of a set of points in the plane, Technical 

Report MIT/LCS/TM-8 8 , Laboratory for Computer Science, Massachusetts 

Institute of Technology, Cambridge, Massachusetts, May 1977.

77. Lorensen, W.E., Cline, H.E., Marching cubes: A high resolution 3D sur

face construction algorithm, ACM Computer Graphics, July 1987, Volume 

21, Number 4, page 163-168.

78. Lowther, D.A., Silvester P.P, Computer-aided design in magnetics, 

Springer-Verlag, 1985.

79. McCollum, A.J., Bachelor B.G., Cotter, S.M., Three-dimensional optical 

sensing, Proc. 7th International Conference on Automated Inspection and 

Product Control, Birmingham 1985, IFS Publications, page 161-176.

80. Meguid, S.A., Integrated computer-aided design of mechanical systems, 

Elsevier Applied Science London and New York, 1987.

81. Mullineux, G., CAD: Computational concepts and methods, Kogan Page 

Ltd., 1986.

82. Newman, W.M., Sproul, R.F., Principles of Interactive Computer Graph

ics, Me Graw Hill, 1979.

191



83. O’Rourke, J., Polyhedra of minimal area as 3D object models, Proc. of 

the 7th International Joint Conference on Artificial Intelligence, IJCAI, 

page 664-666.

84. Oxley, A., Surface fitting by triangulation, The Computer Journal, Volume 

28, Number 3, page 335-339, 1985.

85. Parthasarathy, S., Birk, J., Dessimoz, J., Laser range-finder for robot 

control and inspection, Proc. of the Society for Photo-Optical Instrumenta

tion Engineers Conference on Robot Vision, Volume 336, (Arlington, Va., 

May 6-7), SPIE, Bellingham, Washington, page 2-11.

8 6 . Pavlidis, T., A review of algorithms for shape analysis, Computer Graph

ics Image Processing, Volume 7, page 243-258, 1978.

87. Phelan, N.R., Personal communications, University of Bath.

8 8 . Piper, B.R., Visually smooth interpolation with triangular Bezier patches, 

in Farin, G. (ed) Geometric Modelling: algorithms and trends SIAM, Phi

ladelphia, USA, 1987.

89. Plummer, J.C.S., Making full use of a solid model database, CME 

July/August 1985, page 20-24.

192



90. Potmesil, M., Generating models of solid objects by matching 3-D surface 

matches, Proc. of the 8 th International Joint Conference on Artificial Intel

ligence, UCAI, page 1089-1093.

91. Poulter, K.F., Computer-aided dimensional engineering metrology, advan

tages and disadvantages, Proc. of the 7th International Conference on 

Automated Inspection and Production Control, Birmingham 1985, IFS 

Publications, page 37-44.

92. Preparata, F., Hong, S., Convex hulls of finite sets of points in two and 

three dimensions, Commun. Ass. Comput. Mach., Volume 20, page 87-93, 

1977.

93. Preperata, F.P., Shamos, M.I., Computational geometry - an introduc

tion, Springer-Verlag, New York, 1985.

94. Rhynsburger, D., Analytic delineation of Thiessen polygons, Geographical 

analysis, Volume 5, April 1973, page 133-144.

95. Rogers, D.F., Procedural elements for computer graphics, McGraw-Hill 

Inc., 1985.

96. Rooney, J., Steadman, P., Principles of computer-aided design, Pitman 

Publishing, 1987.

193



97. Sadek, E.A., A scheme for the automatic generation of triangular finite 

elements, International Journal for Numerical Methods in Engineering, 

Volume 15, page 1813-1822, 1980.

98. Schmitt, FJ.M , Barsky, B.A, Du, W.H, An adaptive subdivision method 

for surface-fitting from sampled data, ACM Computer Graphics, Volume 

20, Number 4, August 1986, page 179-188.

99. Shamos, M.I., Hoey, D., Closest-point problems, Proceedings of the 16th 

Annual Symposium on the Foundations of Computer Science, page 151- 

162, October 1975.

100. Shapira, R., Freeman, H., Reconstruction of curved surface bodies from 

a set of imperfect projections, Proc. of the 5th International Joint Confer

ence on Artificial Intelligence (Cambridge, Mass., Aug. 22-25), IJCAI, 

page 628-634.

101. Sibson, R., Locally equiangular triangulations, The Computer Journal, 

Volume 21, Number 3, page 243-245, 1978.

102. Sibson, R., SUNK: An optimally efficient algorithm for the single-link 

cluster method, The Computer Journal, Volume 16, Number 1, page 30- 

34, 1972.

194



103. Sibson, R., Studies in the robustness of multi-dimensional scaling: Pro

crustean scaling, Journal of the Royal Statistical Society, Series B, 

Volume 40, page 234-238, 1978.

104. Silverman, B.W., Using Kernel density estimates to investigate multimo

dality, Journal of the Royal Statistical Society, Series B, Volume 43, page 

97-99, 1981.

105. Staugaard, A.C.Jr., Robotics and AI: an introduction to applied machine 

intelligence, Prentice Hall, Inc., 1987.

106. Toussaint, G.T., Pattern recognition and geometric complexity, Proc. of 

the 5th International Conference on Pattern Recognition, IEEE, New York, 

page 1324-1347.

107. Vemuri, B.C., Aggarwal, J.K., Three-dimensional reconstruction of 

objects from range data, Proc. of the 7th International Conference on Pat

tern Recognition, IEEE, New York, page 752-754.

108. Walker, L, Personal communications, University of Bath.

109. Wallis, A.F., Woodwark, J.R., Interrogating solid models, Proceedings of 

CAD-84, Butterworths, 1984.

195



110. Wallis, A.F., Personal communications University of Bath.

111. Watson, D.F., Computing the n-dimensional Delaunay tessellation with 

applications to Voronoi polytopes, The Computer Journal, Volume 24, 

Number 2, 1981, page 167-172.

112. Woodwark, J.R., Computing shape, Butterworths, 1986.

113. Woodwark, J.R., Solid modelling - the set-theoretic approach, BCS 

Displays Group, Fundamentals of Geometric Modelling - Review and 

Potential, Cafe Royal, London, February 1986.

114. Woodwark, J.R., Shape models in computer integrated manufacture-a 

review, Computer-Aided Engineering Journal, Volume 5, Number 3, June 

1983, page 103-112.

115. Woodwark, J.R., Bowyer, A., Better and faster pictures from solid 

models, IEEE Computer Aided Enginering Journal, Volume 3, Number 2, 

1986.

116. Wordenweber, B., Automatic mesh generation of two and three- 

dimensional curvilinear manifolds, PhD. dissertation, Computer Labora

tory, Cambridge University, 1981.

196



117. Wordenweber, B., Surface triangulation for picture production, IEEE 

Computer Graphics and Applications, Volume 3, Number 8 , November 

1983, page 45-51.

118. Zahn, C., Roskies, R, Fourier descriptors for plane closed curves, IEEE 

Trans. Computing, Volume C-21, page 269-280, 1972.

197



LIST OF PUBLICATIONS

Cakir, M.C., Bowyer, A.

Matching Measured Components into Solid Models

Proc. of the International Conference on Theory and Practice of

Geometric Modelling, Blaubeuren, W.Germany, October 1988.

198



APPENDIX A

USER INTERFACE

A.l Introduction

This appendix gives some idea about how to use the software. In the first part 

the inputs and outputs of the triangulation and finding-the-surface-triangles 

steps will be explained. In the later sections the inputs and outputs of cluster

ing will be described. The matching algorithm will be explained in section 

7.7.
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A.2 Triangulation of the Surface Points

The input to the triangulation algorithm is the only information available at the 

start: the coordinates of the surface points of the component. The algorithm first 

asks the user if plotting the surface points is desired and if the answer is T, it plots 

them onto a raster scan graphics display. Different views of surface points can be 

obtained by simply asking the algorithm to plot the surface points again and again 

and defining a new view point for each plot. The next question is whether the user 

wishes to continue to triangulate the surface points or not (see Figure A l.l). If 

the answer is Y the algorithm continues, otherwise it stops. In order to see what 

the ray parameters are at the intersection points with each tetrahedron (to classify

the tetrahedra as solid or air), the fourth question in figure A l . l  should also be

answered as Y.

As seen from the HELP screen there are a couple of steps to triangulate the 

surface points and to find the surface triangles. The first command, EXT, finds the 

maximum and minimum of the coordinates of the surface points. This information 

is needed to form a structure around the surface points which guarantees all the 

surface points are inside. The next command S starts the Delaunay triangulation. 

The four points shown in figure Al . l  (point 1 , point 2, point 3, and point 4) are the 

vertices of the tetrahedron that encloses the surface points. For the given example 

4077 surface points are processed to generate the volumetric representation of the 

measured component. The Delaunay tetrahedra (that form the volumetric three- 

dimensional structure) and the Dirichlet tessellation can be plotted if P is typed as

the next command. A windowing facility is also available for the close
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Do y o u  w a n t  t o  p l o t  t h e  d a t a  ? : Y 
M e a s u r e m e n ts  f i l e :  STEPS.MES

D a ta  r a n g e  i s  ( - 0 . 0 0 2  - 0 . 0 0 2  - 0 . 0 0 3 )  t o  ( 8 .0 0 2  6 . 0 0 2  6 .0 0 2 )

V iew  p o s i t i o n :  4 , - 1 5 , 3
C e n t r e  o f  v i e w :  4 , 3 , 3
Top o f  v i e w :  4 . 0 0 0  - 1 4 . 0 0 0  3 . 8 4 5
G r a p h i c s  d e v i c e : B
PLTON: E r a s e  t h e  s c r e e n ?  Y
Do y o u  w an t  t o  p l o t  t h e  a g a i n  ? : N

Do y o u  w a n t  t o  c o n t i n u e  ? : Y

Do y o u  w a n t  t o  w r i t e  t h e  d a t a  ?:  N

I f  y o u  w a n t  a n y  h e l p  p r e s s  h :H

P r i n t e x t

P r e s s s
P r e s s P
P r e s s 1
P r e s s t

t o  f i n d  t h e  maximum an d  minimum o f  t h e  g i v e n  d a t a  an d  
t o  f o r m  a c o n v e x  h u l l  
t o  s t a r t  t h e  DELAUNAY TRIANGULATION 
t o  p l o t  t h e  t r i a n g u l a t i o n  
f o r  t h e  l i s t  o f  n e i g h b o u r i n g  v e r t i c e s  
t o  f i n d  t h e  t e t r a h e d r a  w h ic h  a r e  AIR 

P r i n t  DORA t o  r u n  D ora  f o r  t h e  s e c o n d  t im e  t o  e l i m i n a t e  t h e  e x t r a  t r i a n g l e s  
P r i n t  SURTRI t o  make t h e  l i s t  o f  t r i a n g l e s  w h ich  a r e  on t h e  s u r f a c e  
P r i n t  STOP t o  s t o p  t h e  p r o g r a m

B u t e x c e p t  l i s t i n g  a n d  p l o t t i n g  t h e  t r i a n g u l a t i o n ,  
p l e a s e  d o  t h e s e  s t e p s  i n  o r d e r  !

Command ? : EXT
M e a su r e m e n ts  f i l e :  STEPS.MES

Minimum p o i n t  : ( - 0 . 0 0 2  - 0 . 0 0 2  - 0 . 0 0 3  )
Maximum p o i n t  : ( 8 . 0 0 2  ' 6 . 0 0 2  6 .0 0 2  )

Command ? : S

P o i n t
P o i n t
P o i n t
P o i n t

- 1 . 0 0 2
2 5 . 0 1 2
- 1 . 0 0 2
- 1 . 0 0 2

- 1 . 0 0 2
- 1 . 0 0 2
2 5 . 0 1 2
- 1 . 0 0 2

- 1 . 0 0 3  ) 
- 1 . 0 0 3  ) 
- 1 . 0 0 3  ) 
2 5 . 0 1 1  )

Number o f  p o i n t s 4077

Command ? : P
M e a su r e m e n ts  f i l e :  MODEL.MES 
Do yo u  w ant t o  o p e n  a w indow  ? : Y 
B o t t o m - l e f t  c o r n e r  : 1 , 1 , 1  
T o p - r i g h t  c o r n e r  : 3 , 3 , 3  
G r a p h ic s  d e v i c e :  A

Cont’d...
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Command ? : T
F o r  v e r t e x  V 236 2  :
T h e r e  i s  NO i n t e r s e c t i o n  w i t h  t h i s  t e t r a h e d r o n ,  t r y  t h e  o t h e r s

F o r  v e r t e x  V 5 6 2 8  :
I n t e r s e c t i o n  i n  f i r s t  t e t r a h e d r o n  
Ray p a r a m e t e r  T( 2 ) :  .5 3 3 3 3 7 2 E + 0 0

F o r  v e r t e x  V 1 1 8 6  :
T h e r e  a r e  2 i n t e r s e c t i o n s  w i t h  t h i s  t e t r a h e d r o n  an d  t h i s  t e t r a h e d r o n  i s  AIR 
Ray p a r a m e t e r  T( 1 ) :  .5 3 3 3 3 7 2 E + 0 0  
Ray p a r a m e t e r  T( 2 ) :  .6 9 5 6 4 8 6 E + 0 0

F o r  v e r t e x  V 2 1 2 9  :
T h e r e  a r e  2 i n t e r s e c t i o n s  w i t h  t h i s  t e t r a h e d r o n  and  t h i s  t e t r a h e d r o n  i s  AIR  
Ray p a r a m e t e r  T( 3 ) :  .6 9 5 6 4 8 6 E + 0 0  
Ray p a r a m e t e r  T( 1 ) :  .1 0 0 0 0 0 0 E + 0 1

Now we a r e  O U T S ID E ,try  t h e  o t h e r  s t a r t i n g  p o i n t

Command ? : DORA
Command (.DOR) f i l e :  STEPS
I s  t h i s  y o u r  f i r s t  r u n n i n g  o f  DORA ?:N
How f a r  aw ay d o  y o u  w an t  t o  g o  ( i n  c m . ) ?  : 1 0 . 0
Your e p s i l o n  : 0 . 0 0 1

Command ? : SURTRI 
M e a su r e m e n ts  f i l e  : STEPS

Command? : STOP 

FORTRAN STOP

Figure A l.l  Triangulation and finding surface triangles

202



observations. The command L prints the list of neighbouring vertices for each 

Delaunay vertex onto the screen.

Once the three-dimensional structure is formed from the aggregation of a set 

of Delaunay tetrahedra (with the measured surface points as the vertices), the 

tetrahedra which are solid are determined by typing T as the next command. Only 

the ray parameters of the first ray (at the intersection points with the tetrahedra on 

its way) are shown in figure Al . l  to give some idea about the outputs of the algo

rithm.

If DORA is typed next (which it normally should be), the process of eliminat

ing the redundant tetrahedra is started. The algorithm reads the half-space informa

tion of the solid model of the component and determines where the faces of the 

component should be. The algorithm then asks if the user is running the solid 

modeller for the first time and the answer should be N  to this question. As men

tioned in Chapter 5, in order to eliminate the redundant tetrahedra DORA needs to 

be run for the second time (first run was to simulate the data gathering process and 

this second run is to simulate the measuring machine’s being on-line). For the 

example given in figure Al . l  the distance which is used to find any redundant 

tetrahedron is given as 10 cm. The algorithm moves away from the centroid of 

each tetrahedron at this given distance in positive and negative x,y, and z directions 

consecutively, and sends a ray onto the centroid of the tetrahedron to determine 

whether this tetrahedron is redundant or not (see figure 5.3).

After eliminating the redundant tetrahedra, the surface triangles are found by 

typing SURTRI as the next command. The output of surface triangles is written
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into a given file.

This is how the algorithm triangulates the surface points and finds the surface 

triangles. As written in the HELP menu, apart from listing the neighbouring ver

tices and plotting the triangulation and tessellation all these steps explained should 

be done in the given order. The program can be stopped at any stage by typing 

STOP as the next command.

A.3 Clustering the Surface Triangles

The clustering algorithm first reads in the surface triangles from a given file (see 

Figure A2.1). It then asks the user to define the constant which will be used in 

clustering (it checks the scalar product of two surface normals, if the result is 

greater than or equal to this given constant, it clusters these surface normals 

together).

The mid-distance factor which is asked to be defined as the next factor is the 

factor which determines the place of the mid-plane. Once the clusters were formed 

the position of mid-plane of each cluster is determined by finding the difference 

between the maximum and minimum distance values of each cluster and multiply

ing this difference with the given mid-distance factor.

Next, the weighting factor needs to be determined. The clustering algorithm 

uses this factor to decide to which cluster the surface triangle belongs when two of 

its neighbours are in the same cluster and the third one is in different cluster. As 

this factor gets bigger the chance of the surface triangle being clustered with its
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.SUR file :STEPTE.SUR
C o n s t a n t  : 0 . 9 8

Mid D i s t a n c e  F a c t o r : 0 . 5 2

W e i g h t i n g  F a c t o r  : 4 . 0

Number o f  s i n g l e  c l u s t e r s  : 36
Number o f  c h a n g e d  c o l o u r s  : 322

Number o f  s i n g l e  c l u s t e r s  : 0
Number o f  c h a n g e d  c o l o u r s  : 0

W e i g h t i n g  F a c t o r  : 4 . 0

Number o f  s i n g l e  c l u s t e r s  : 10
Number o f  c h a n g e d  c o l o u r s  : 214

Number o f  s i n g l e  c l u s t e r s  : 0
Number o f  c h a n g e d  c o l o u r s  : 0

Number o f  f a c e s  : 9
A rea o f f a c e 1 : 1 9 . 2
A rea o f f a c e 2 : 3 2 . 9
A rea o f f a c e 3 : 4 8 . 0
A rea o f f a c e 4 : 1 3 . 8
A rea o f f a c e 5 : 3 2 . 9
A rea o f f a c e 6 : 1 2 . 0
A rea o f f a c e 7 : 4 2 . 0
A r e a o f f a c e 8 : 1 8 . 0
A rea o f f a c e 9 : 2 5 . 8

C l u s t e r  5 i s  d o u b t f u l l .  NO m e r g in g .
M ig h t  b e  a f a l s e  c h a m fe r

C l u s t e r  8 i s  d o u b t f u l l .  NO m e r g in g .
M ig h t  b e  a f a l s e  c h a m fe r

D o u b t f u l  c l u s t e r  9 i s  m e r g e d  w i t h  c l u s t e r  4

D o u b t f u l  c l u s t e r  11 i s  m e r g e d  w i t h  c l u s t e r  13

C l u s t e r  14 i s  d o u b t f u l l .  NO m e r g in g .
M ig h t  b e  a f a l s e  c h a m fe r

W e i g h t i n g  F a c t o r  : 4 . 0

Number o f  s i n g l e  c l u s t e r s  : 0
Number o f  c h a n g e d  . c o l o u r s  : 1

Number o f  s i n g l e  c l u s t e r s  : 0
Number o f  c h a n g e d  c o l o u r s  : 0

Number o f  c l u s t e r s  : 9

Figure A2.1 Clustering the surface triangles
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two neighbours gets higher. The algorithm also reports the number of surface tri

angles whose three neighbours are in three clusters which are different from the the 

surface triangle’s cluster (single cluster) and the number of surface triangles whose 

clusters were changed. The algorithm asks for the weighting factor for the second 

time when it re-organises the clusters after clustering the surface triangles which 

are lying in parallel planes.

The algorithm then asks the number of faces of the solid model and their sur

face areas. By using this information and calculating the surface areas of the 

measured component, it finds which of the clusters are doubtful (they are the clus

ters whose surface areas are much smaller than the minimum surface area of the 

solid model). If the number of clusters which are found by the algorithm are more 

than the number of the faces of the solid model, it either tries to merge the doubt

ful cluster with any other cluster (it does this by fitting a plane to each cluster and 

calculating the scalar product between the doubtful cluster and any other clusters. 

If the result is greater than or equal to the given constant, the doubtful cluster is 

the part of this cluster) or if no merging is possible it classifies this doubtful cluster 

as a false chamfer. It organises the clusters again, tests single clusters, changes 

their clusters and outputs the number of clusters (which is obviously equal to the 

number of the faces of the solid model).
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APPENDIX B

ROTATIONS

B.l Introduction

This appendix gives general information about the three-dimensional rotations 

about x,y,z and arbitrary axes.
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B.2 Rotations

In three-dimensions the axis about which the rotation will take place needs to be

determined. Rotation of a point about the z axis through an angle 9 is given by:

c o sG  -sin  0  0  
s in 0  c o s 0  0

0  0  1

where the rotation angle 0  is measured anti-clockwise about the origin when look

ing at the origin from a point on the +z axis.

Thus, rotation about the x axis is:

[ * '  y '  z '  ]  =  [ *  y z ]  ■
1 0 0
0 COS0 -sin  0
0 s in 0 COS0

and rotation about y axis is given by:

[ * '  y '  z '  ] = [x  y  z  ]  •
c o s 0  0  s in 0

0  1  0

-sin 0  0  c o s 0

In order to rotate in clockwise direction a negative angle is used.

When the objects are rotated sequentially about x , y  and z axes, the rotation

matrix P can be calculated as:

c o s a -sin  a 0 c o s p 0 s in p 1 0 0
P = s i n a c o s a 0 • 0 1 0 • 0 c o s y -s in y

.  0 0 1 . -sin  P 0 c o s p 0 s in y c o s y  .

c o s a  c o s B  c o s a  sinjB s in y  -  s i n a  c o s y  c o s a  s in B  c o s y  +  s i n a  s in y  
P =  s i n a  c o s p  s i n a  s in p  s in y  +  c o s a  c o s y  s i n a  s in p  c o s y  -  c o s a  s in y  

. -sin  p  c o s p  s in y  c o s p  c o s y

For the given rotation matrix P:

P 11 P n P 13
P = Pn P22 P23

P31 P 32 P 33
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the rotation angles about the axes are calculated as:

a  = Atan( —  )  
P 11

P =  Atan ( ~P 31
VPn+^21

)

P 32Y = Atan( —  )
P  33

where y is the rotation angle about the x  axis, p  about the y  axis and a about the z

axis.

If the axis of rotation is a general axis, the equivalent rotation matrix is given

by:

P =
kx kx v 0  +  c 0  kx ky v 0  -  kt sQ  kx k  ̂ v 0  +  ky 5 0

kx ky v  0  +  kz s& ky ky V® +  c  0  ky kz v  0  -  kx sQ
kx kz v  0  -  ky sQ ky kz v  0  +  kx s S  kx kz v  0  +  c  0

where c &  =  c o s 0 ,  5 0  =  s i n 0 ,  v © =  1 - c o s 0 ;  kx, ky} kz are the coefficients of the gen

eral axis 1? and 0  is the rotation angle about the axis.

If the rotation matrix P is given:

p  11 P l 2 Pl3
p  = P 21 P22 P23

P 31 P 32 P33

then the rotation angle and the general axis can be calculated as:

o , A , P 11 + P22 +P33 ~ 1 .0  =  A co s( - - - - - - - - - - -   )

1

2sin0

P 32 ~ P 23 
P13-P31
P 21 ~ P 12
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APPENDIX C

FURTHER RESULTS

C.l Introduction

In this appendix some more results will be given on matching the measured 

components with their solid model. These results include the cases where 

symmetry or missing or extra faces of the measured component yields some 

mis-matches and the cases where the measured component matches perfectly 

with its solid model.
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C.2 Other Results

The result of the reconstruction and the matching of another component is shown 

in Figure C1.1. This measured component was also perfectly matched with its 

solid model. No missing or extra face of the measured component and no rotation 

or translation between the two was reported.

In the other result shown in Figure C1.2 the translation of 10 cm. and the 

rotations of 60 degrees about x axis, 30 degrees about the y axis and 45 degrees 

about z axis of the measured component were recovered, and the faces of the solid 

model were matched perfectly with the faces of the measured component. Minus 

sign in rotation angles indicates the clockwise direction of the rotations.

C.3 Symmetry Problem

In Figure C2.1 the result of matching a symmetric U-shaped measured component 

with its solid model is shown. As seen from Figure C2.2, not only the perpendic

ular distances from the plane centre, but also the surface areas of some of the 

faces, are the same. Since the matching algorithm uses these measures to scale the 

surface normals and the information to make the decision is insufficient, it fails to 

find the best match when more than one face corresponds to a face of the solid 

model. Thus it recovers the wrong rotation angle (although it recovers the right 

translation). There is no rotation or translation between the measured component 

and the solid model in figure C2.1. As discussed in Chapter 8 , possible 180 degree 

rotations about x, y and z axes were tried to improve the results but no improve

ment was observed. The default value for the rotation angles in figure C2.1 was



First .HSP file : stepte.hsp
Second .HSP file : stepteo.hsp
R e c o v e r e d  o f f s e t :  0 . 0 0 3 7  - 0 . 0 0 8 9  - 0 . 0 0 2 1

Do y o u  w ant  t o  s e e  t h e  o u t p u t  ?:  N

Do y o u  w ant  t o  c a l c u l a t e  t h e  minimum d i s t a n c e  
D Term : 0 . 0

Squared dist between modes: 0 . 0 0 0 0
Recovered angle around X axis: 0 . 0 3 3 9
Recovered angle around Y axis: 0 . 3 5 1 4
Recovered angle around Z axis: 0 . 1 1 4 3

Face : 8 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 5 2 2 4 9 1 5
Face : 3 ( - 0 . 0 0 0 0 1 3 2 - 0 . 0 0 2 2 0 2 4 0 . 9 9 9 9 9 7 6 1 . 5 2 0 8 4 5 8

Face : 6 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 4 7 7 5 0 8 5
Face : 6 ( 0 . 0 0 2 2 3 6 9 - 0 . 0 0 2 6 0 8 0 0 . 9 9 9 9 9 4 1 - 3 . 4 6 9 7 6 7 7

Face : 9 ( - 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0 . 7 0 7 1 0 6 8 - 1 . 7 1 7 9 9 0 2
Face : 4 ( 0 . 7 0 7 0 2 0 2 - 0 . 0 0 1 3 2 3 9 0 . 7 0 7 1 9 2 0 1 . 7 1 9 1 4 9 6

Face : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 0 9 2 8 8 6 9
Face : 9 ( 0 . 9 9 9 9 9 9 9 0 . 0 0 0 3 0 9 8 0 . 0 0 0 1 4 1 8 - 4 . 0 8 9 2 8 7 0

Face : 1 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 .  9 0 7 1 1 3 1
Face : 2 ( 0 . 9 9 9 9 9 9 9 0 . 0 0 0 3 9 3 5 0 . 0 0 0 1 9 5 4 3 . 9 1 0 7 7 6 5

Face : 7 ( 0 . 5 0 0 0 1 0 9 0 . 0 0 0 0 0 0 0 0 . 8 6 6 0 1 9 0 - 2  . 0 5 8 0 1 1 1
Face : 7 ( 0 . 4 9 9 9 6 3 1 - 0 . 0 0 1 6 8 6 0 0 . 8 6 6 0 4 5 1 - 2 . 0 5 7 9 8 5 3

Face : 5 ( 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 2 . 9 9 9 9 9 9 8
Face : 8 ( 0 . 0 0 0 3 0 2 5 - 0 . 9 9 9 9 9 7 6 - 0 . 0 0 2 1 8 9 8 3 . 0 0 8 9 6 0 0

Face : 2 ( 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 2
Face : 1 { - 0 . 0 0 0 2 8 2 3 0 . 9 9 9 9 9 7 6 0 . 0 0 2 1 8 3 7 2 . 9 9 1 1 0 5 1

Face : 3 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 5 2 2 4 9 1 5
Face : 5 ( - 0 . 0 0 0 1 3 0 3 0 . 0 0 4 2 5 0 0 0 . 9 9 9 9 9 0 9 2 . 5 1 5 3 4 2 0

S a t i s f i e d  ? Or d o  y o u  want  t o  t r y  r o t a t i o n s  a r o u n d  t h e  a x e s  [ 1 8 0 . 0 ]  : N

Do y o u  w ant  t o  p l o t  t h e  r e s u l t s  l a t e r  on ?:N

Figure C l . l  Matching of a measured component with its solid model
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F i r s t  .HSP f i l e  : s t e p s o . h s p
S e c o n d  .HSP f i l e  : s t e p s r 3 t . h s p
R e c o v e r e d  o f f s e t :  - 0 . 0 0 5 1  - 0 . 0 1 6 2  1 0 . 0 0 1 6

Do y o u  w a n t  t o  s e e  t h e  o u t p u t  ?:  N

Do y o u  w a n t  t o  c a l c u l a t e  t h e  minimum d i s t a n c e  : N 
D Term : 0 . 0

S q u a r e d  d i s t  b e t w e e n  m o d e s :  0 . 0 0 0 0
Recovered angle around X axis: - 5 9 . 8 6 9 2
Recovered angle around Y axis : - 2 9 . 8 7 7 0
Recovered angle around Z axis: - 4 5 . 0 5 8 2

Face : 10 ( 0 . 9 9 9 9 9 9 5 0 . 0 0 0 0 0 8 9 0 . 0 0 0 9 4 2 4 0 . 2 5 7 0 0 0 3
Face : 9 ( 0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0 . 0 0 0 1 1 7 5 0 . 2 5 3 5 2 3 6

Face : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 2 3 8 - 0 . 0 0 0 0 2 7 2 1 . 7 4 4 5 0 9 4
Face : 7 ( 0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0 . 0 0 0 1 1 7 5 1 . 7 4 6 4 7 8 4

Face : 13 ( - 0 . 0 0 0 0 1 4 2 0 . 0 0 0 0 1 0 7 1 . 0 0 0 0 0 0 0 0 . 7 9 5 9 5 9 3
Face : 12 ( 0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 0 . 7 8 8 7 3 1 7

Face : 8 ( - 0 . 0 0 0 0 5 7 5 0 . 0 0 0 0 0 6 1 1 . 0 0 0 0 0 0 0 1 . 2 0 3 9 1 9 9
Face : 10 ( 0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 1 . 2 1 1 2 6 9 3

Face : 14 ( 0 . 0 0 0 1 9 8 5 0 . 0 0 0 0 0 0 4 1 . 0 0 0 0 0 0 0 2 . 2 0 3 9 4 1 4
Face : 8 ( 0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 2 . 2 1 1 2 6 9 3

Face : 9 ( 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 0 1 9 - 0  . 0 0 0 0 1 8 0 2 . 2 5 5 4 8 0 1
Face : 11 ( 0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0 . 0 0 0 1 1 7 5 2 . 2 5 3 5 2 3 6

Face : 3 ( - 0 . 0 0 0 0 8 6 1 - 0 . 0 0 0 0 4 4 3 1 . 0 0 0 0 0 0 0 1 . 7 9 5 7 8 9 9
Face : 13 ( 0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 1 . 7 8 8 7 3 1 7

Face : 11 ( - 0 . 0 0 1 4 7 9 7 0 . 0 0 0 0 4 2 2 0 . 9 9 9 9 9 8 9 3 . 2 0 7 7 2 3 8
Face : 6 ( 0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 3 . 2 1 1 2 6 8 3

Face : 5 ( - 0 . 7 0 8 4 4 1 0 - 0 . 0 0 0 0 0 7 6 - 0  . 7 0 5 7 7 0 0 1 . 8 0 0 8 1 0 3
Face : 14 ( - 0 . 7 0 7 1 9 0 2 0 . 0 0 1 9 7 5 0 - 0 . 7 0 7 0 2 0 6 1 . 7 9 2 6 6 4 9

Face : 12 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 4 8 5 - 0 . 0 0 0 1 3 3 0 4 . 2 5 5 6 9 5 1
Face : 4 ( 0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0  . 0 0 0 1 1 7 5 4 . 2 5 3 5 2 3 6

Face : 2 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 0 8 1 0 . 0 0 0 0 4 2 2 3 . 7 4 3 5 5 0 9
Face : 1 ( - 0 . 9 9 9 9 9 9 9 - 0 . 0 0 0 1 2 4 9 0 . 0 0 0 1 1 7 5 3 . 7 4 6 4 7 8 4

Face : 6 ( - 0 . 0 0 0 0 1 8 7 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 3 5 2 2 . 9 9 0 7 4 6 7
Face : 5 ( - 0 . 0 0 0 1 2 4 5 0 . 9 9 9 9 9 5 6 0 . 0 0 2 9 1 8 0 2 . 9 9 9 9 9 9 2

Face : 1 ( 0 . 0 0 0 0 4 0 4 - 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 6 2 6 3 . 0 0 9 4 7 1 7
Face : 2 ( 0 . 0 0 0 1 2 4 5 - 0 . 9 9 9 9 9 5 6 - 0 . 0 0 2 9 1 8 0 2 . 9 9 9 9 9 5 8

Face : 7 ( - 0 . 0 0 0 0 7 1 6 0 . 0 0 6 5 2 4 0 - 0 . 9 9 9 9 7 8 7 2 . 7 5 2 4 7 7 4
Face : 3 ( - 0 . 0 0 0 1 1 7 9 0 . 0 0 2 9 1 8 0 - 0 . 9 9 9 9 9 5 7 2 . 7 8 8 7 3 1 7

S a t i s f i e d  ? Or do  y o u  want  t o  t r y  r o t a t i o n s  a r o u n d  t h e  a x e s  [ 1 8 0 . 0 ]  : N

Do you want  t o  p l o t  t h e  r e s u l t s  l a t e r  on ?: N

Figure C1.2 Matching of a measured component with its solid model
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180 degrees.

C.4 Missing or Extra Faces of the Measured Component

As discussed in Chapter 7, the algorithm fails to match some faces of the measured 

component with its solid model’s if the measured component has a different 

number of faces from its solid model. Since the different number of faces change 

the position of the centre point (which is minimum distance away from the faces), 

the radial distances from the centre point were also changed and some mis-matches 

occur. Figure C3.1 shows this sort of matching. The measured component in 

figure C3.1 has an extra face, Face 15 and because of this extra face, 3 faces were 

mis-matched (including the extra face) and the rotation angle is recovered by 2  

degrees difference.
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First .HSP file : samp.hsp
Second .HSP file : sampo.hsp
R e c o v e r e d  o f f s e t :  - 0 . 0 0 0 3  0 . 0 0 0 8  - 0 . 0 1 4 0

Do y o u  w a n t  t o  s e e  t h e  o u t p u t  ?:  N

Do y o u  w an t  t o  c a l c u l a t e  t h e  minimum d i s t a n c e  : N 
D Term : 0 . 0

S q u a r e d  d i s t  b e t w e e n  m o d e s : 0 . 0 0 0 0
R e c o v e r e d a n g l e a r o u n d  X a x i s : - 0 . 0 0 0 8
R e c o v e r e d a n g l e a r o u n d  Y a x i s : - 0 . 0 0 0 3
R e c o v e r e d a n g l e a r o u n d  Z a x i s : - 6 3 . 1 6 0 4

F a c e  : 9 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0
F a c e  : 2 ( 0 . 0 0 0 0 0 4 3 0 . 9 9 9 8 8 1 3 - 0  . 0 1 5 4 0 7 3 - 0 . 0 1 3 9 4 0 7

F a c e  : 7 ( 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0
F a c e  : 7 ( 0 . 0 0 0 6 4 2 4 - 0 . 0 4 1 3 3 7 3 - 0 . 9 9 9 1 4 5 0 - 0 . 9 8 7 9 9 6 7

F a c e  : 8 ( 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0
F a c e  : 5 ( 0 . 0 0 0 0 5 6 7 - 0 . 0 0 0 9 3 0 6 0 . 9 9 9 9 9 9 5 - 0 . 9 8 6 0 5 2 0

F a c e  : 6 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 2 . 0 0 0 0 0 0 0
F a c e  : 1 ( 0 . 0 0 0 0 0 3 8 0 . 0 1 5 3 8 5 7 0 . 9 9 9 8 8 1 6 - 3 . 0 0 0 8 6 8 3

F a c e  : 1 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 5 . 0 0 0 0 0 0 0
F a c e  : 4 ( - 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 1 2 1 0 . 0 0 0 0 0 4 9 - 5 . 0 0 0 3 5 5 0

F a c e  : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 5 . 0 0 0 0 0 0 0
F a c e  : 3 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 6 2 - 0 . 0 0 0 0 0 8 0 4 . 9 9 9 6 8 0 1

F a c e  : 2 ( 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e  : 6 ( 0 . 0 0 0 0 1 7 2 0 . 9 9 9 8 8 1 8 - 0 . 0 1 5 3 7 4 4 1 . 9 8 6 0 4 4 5

F a c e  : 5 ( 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e  : 8 ( 0 . 0 0 0 0 0 2 0 0 . 9 9 9 8 8 1 6 - 0  . 0 1 5 3 8 9 6 - 2 . 0 1 4 0 2 9 3

F a c e  : 3 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 0 0 0 0 0 0 0
F a c e  : 9 ( - 0 . 0 0 0 0 0 0 6 0 . 0 1 5 4 1 8 1 0 . 9 9 9 8 8 1 1 2 . 9 9 9 1 5 5 8

S a t i s f i e d ? Or do  y o u  w an t  t o  t r y  r o t a t i o n s a r o u n d  t h e  a x e s [ 1 8 0 . 0 ]  :

R o t a t i o n  a n g l e  a r o u n d  X a x i s  [ 1 8 0 . 0 ]
R o t a t i o n  a n g l e  a r o u n d  Y a x i s  [ 1 8 0 . 0 ]
R o t a t i o n  a n g l e  a r o u n d  Z a x i s  [ 1 8 0 . 0 ]

'S o r r y ,  r o t a t i o n s  a r o u n d  a x e s  h a s  NO u s e  !

Do you w ant  t o  p l o t  t h e  r e s u l t s  l a t e r  on ?:N

Figure C2.1 The effect of the symmetry problem on matching
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P l a n e  C o e f f i c i e n t s  o f  SAMP Ax + By + Cz + D = 0

A B c D Areas
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+

o
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o
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o
o

O
M

M
O

M
O

O
M

O 0.0000000E+00 
O.OOOOOOOE+OO 

-0.1000000E+01 
0.0000000E+00 
0.0000000E+00 
0.1000000E+01 
0.0000000E+00 
0.0000000E+00 

-0.1000000E+01

O.OOOOOOOE+OO 
0 .0000000E+00 
0.0000000E+00 

-0.1000000E+02 
-0.6000000E+01 
-0.4000000E+01 
0 .2000000E+01 

-0 .4000000E+01 
0 .2000000E+01

20.0000
40.0000
60.0000 
20.0000
40.0000
40.0000
20.0000 
20.0000 
20.0000

M e a s u r e d  Component

P l a n e  C o e f f i c i e n t s  o f  SAMPO 

A B

Ax + By + Cz + D = 0 

C D

0 . 2 0 2 3 3 9 4 E - 0 5  
0 . 9 2 3 2 7 3 0 E - 0 5  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 5 5 1 7 5 3 0 E - 0 4  
0 . 3 6 4 5 7 1 4 E - 0 5  
0 . 6 4 4 4 8 4 0 E - 0 3  
0 . 1 1 5 4 7 7 4 E - 0 4  
0 . 2 3 3 9 4 6 5 E - 0 5

■0.1 0 0 0 0 0 0 E + 0 1  
0 . 1 4 9 4 6 1 7 E - 0 4  
0 . 9 6 4 9 9 4 7 E - 0 5  

- 0 . 2 9 7 5 5 5 9 E - 0 5  
- 0 . 9 9 9 8 6 6 8 E + 0 0  
■0.1 7 9 5 5 3 0 E - 0 4  
0 . 9 9 9 6 6 2 9 E + 0 0  

- 0 . 2 7 7 6 8 3 4 E - 0 5  
• 0 . 1 0 0 0 0 0 0 E + 0 1

- 0 . 6 6 4 2 0 8 6 E - 0 5  
0 . 10 0 0 0 0 0 E + 0 1  

- 0 . 7 2 4 8 4 9 2 E - 0 5  
- 0 . 2 5 6 8 6 8 6 E - 0 4  
• 0 . 1 6 3 2 2 7 7 E - 0 1  
0 . 1 0 0 0 0 0 0 E + 0 1  

- 0 . 2 5 9 5 3 2 3 E - 0 1  
0 . 1 0 0 0 0 0 0 E + 0 1  
0 . 2 5 7 6 5 6 8 E - 0 4

0 . 1 2 1 3 1 5 0 E - 0 5  
- 0 . 2 0 0 0 0 3 1 E + 0 1  
- 0 . 2 8 4 9 8 6 2 E - 0 5  
- 0 . 99 9 9 9 6 3 E + 0 1  

0 . 2 0 4 7 0 8 7 E + 0 1  
0 . 1 1 7 2 7 60E -03  

- 0  . 3 9 3 3 0 6 6 E + 0 1  
- 0 . 4 0 0 0 0 7 8 E + 0 1  

0 . 5 9 9 9 9 3 9 E + 0 1

A r e a s

4 0 . 0 1 7 1  
2 1 . 9 9 9 3  
1 8 . 9 0 2 3  
1 8 . 9 0 5 5  
1 9 . 2 1 6 6  
6 1 . 0 6 3 3  
1 8 . 4 9 7 2  
4 0 . 4 7 9 6  
4 0 . 0 1 6 8

Figure C2.2 The plane coefficients of half-spaces and surface normals

216



F i r s t  .HSP f i l e  : s t e p s . h s p  
S e c o n d  .HSP f i l e  : s t p p l o . h s p
R e c o v e r e d  o f f s e t :  0 . 5 0 4 3  - 0 . 0 0 7 7  - 0 . 4 2 8 7

Do y o u  w an t  t o  s e e  t h e  o u t p u t  ?:  N
Do y o u  w an t  t o  c a l c u l a t e  t h e  minimum d i s t a n c e  : N 
D Term : 0 . 0

S q u a r e d  d i s t  b e t w e e n  m o d e s :  0 . 0 0 0 0
Recovered angle around X axis: - 0  . 0 1 8 4
Recovered angle around Y axis: - 2 . 4 1 4 0
Recovered angle around Z axis: 0 . 1 5 5 7

Face : 9 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 2 5 3 5 2 1 2
Face : 11 ( 0 . 9 9 9 0 6 4 7 - 0 . 0 0 0 1 0 4 8 0 . 0 4 3 2 4 0 0 0 . 2 4 8 4 2 5 7

Face : 12 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0 . 7 8 8 7 3 2 3
Face : 1 4 ( - 0 . 0 4 2 2 1 2 6 - 0 . 0 0 2 4 7 8 3 0 . 9 9 9 1 0 5 6 0 . 3 6 0 2 9 9 2

Face : 7 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 7 4 6 4 7 8 8
Face : 4 ( 0 . 9 9 9 1 2 3 0 - 0 . 0 0 0 0 6 2 6 0 . 0 4 1 8 7 1 5 2 . 2 5 1 5 7 7 9

Face : 10 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 1 . 2 1 1 2 6 7 7
Face : 9 ( - 0 . 0 4 2 1 9 0 1 - 0 . 0 0 2 4 7 9 3 0 . 9 9 9 1 0 6 5 - 1 .  6 3 9 8 4 3 6

Face : 12 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0  . 7 8 8 7 3 2 3
Face : 10 ( 0 . 9 9 9 1 1 5 7 - 0 . 0 0 0 0 6 3 0 0 . 0 4 2 0 4 4 8 - 1 . 7 4 9 1 4 8 5

Face : 11 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 2 . 2 5 3 5 2 1 2
Face : 13 ( 0 . 9 9 9 1 0 4 9 - 0 . 0 0 0 2 0 1 8 0 . 0 4 2 3 0 0 9 - 3 . 7 4 9 0 2 2 8

Face : 1 3 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 7 8 8 7 3 2 3
Face : 3 ( - 0 . 0 4 2 3 4 5 2 - 0 . 0 0 2 4 6 1 7 0 . 9 9 9 1 0 0 0 1 . 3 5 9 4 4 2 3

Face : 8 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 2 . 2 1 1 2 6 7 7
Face : 1 5 { - 0 . 0 4 1 9 1 4 8 - 0 . 0 0 2 4 8 3 0 0 . 9 9 9 1 1 8 1 - 2 . 6 3 9 8 7 8 2

Face : 4 ( 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 2 5 3 5 2 1 2
Face : 8 ( - 0 . 7 3 9 0 9 5 4 - 0 . 0 0 1 7 0 7 6 0 . 6 7 3 5 9 8 5 3 . 6 1 4 9 3 8 2

Face : 6 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 2 1 1 2 6 7 7
Face : 12 ( - 0 . 0 4 3 6 3 8 7 - 0  . 0 0 2 4 3 7 5 0 . 9 9 9 0 4 4 3 - 3 . 6 4 4 4 1 1 9

Face : 14 ( - 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0  . 7 0 7 1 0 6 8 - 1 . 7 9 2 6 6 5 3
Face : 5 ( 0 . 6 7 8 1 1 0 8 - 0 . 0 0 1 8 0 0 1 0 . 7 3 4 9 5 7 4 1 . 8 5 1 9 0 7 6

Face : 1 ( - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 7 4 6 4 7 8 8
Face : 2 ( 0 . 9 9 9 1 1 0 0 - 0 . 0 0 0 0 1 1 2 0 . 0 4 2 1 8 1 8 4 . 2 5 0 6 3 8 9

Face : 2 ( 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
Face : 1 ( - 0 . 0 0 0 0 2 0 8 0 . 9 9 9 9 9 7 2 0 . 0 0 2 3 6 6 7 2 . 9 9 2 2 7 1 3

Face : 5 ( 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
Face : 6 < 0 . 0 0 0 0 1 1 6 - 0 . 9 9 9 9 9 6 8 - 0 . 0 0 2 5 1 9 7 - 3 . 0 0 7 6 6 9 0

Face : 3 ( 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 7 8 8 7 3 2 3
Face : 7 ( - 0 . 0 4 3 1 2 0 7 0 . 0 0 3 8 1 9 5 0 . 9 9 9 0 6 2 5 2 . 3 5 3 0 8 8 2

Do you want to plot the results later on ? : N

Figure C3.1 The effect of an extra face of the measured 
component on matching
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APPENDIX D 

MATCHING THE AXES OF CYLINDERS

D.l Introduction

In order to match the axes of cylinders under translation and rotation the same 

technique which was used to match the planar faces could be used. One thing 

that remains invariant under rotation is the distances of axes from the point 

which is nearest to the axes. In this appendix the algebra which could be used 

to calculate this nearest point is given.
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D.2 Finding the Nearest Point to the Axes

The nearest point to the axes is the point which has the smallest sum of squared 

distances from the axes (lines). This point is calculated as follows [26] :

1. Find the sum of squared distances from an arbitrary point to all the lines (see 

[28]).

2. Partially differentiate that sum with respect to x,y and z coordinates of the 

point and set the partial derivatives to zero to find the minimum (the squared 

distance sum must be quadratic; therefore it can only have one minimum and 

one maximum; the maximum value it can take must be infinite; therefore the 

singular point must be minimum).

3. Solve the resulting linear system to obtain the position of the point. Accumu

late the sums needed for the linear equations.

The linear system will be:

oq * + Pi y  + Yi 2 + % = 0

®2 x + P2 y  + Y22 + TI2= 0

CX3 x  +  P 3  y  + Y 3  z +  t ] 3  =  0

where

= f 4 + ( g2 + h2 -  2 )-f2 + 1  and Oj = J  kh
»=i

¥ 1  = g'f 3  + ( g3 + ( h2 -  2  )-g ) •/ and P i  = E  ¥ 1  *
» = i

o)1 = A / 3 + (A3 + ( s 2 - 2 ) A  ) • /  and Y, = t  coi,
i=l

n

"H i  =  ~ E  (  K i »  ‘ +  ¥ 1 /  ’ yoi +  © I *  • zoi )

*=1
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k2  = / - s 3  + ( / 3  + (A2 - 2 ) /  )•* and a2= £  kj,
i=l

¥ 2  = g4 + ( f 2 + h2 — 2 )-g2 + 1  and P 2 = E  ¥2*
»= 1

co2 = / i - ^ 3  + ( / i 3  + ( / 2 - 2 ) ^  )■* and Y2= £ ® 2i
»=i

n
% = ~E ( K2i ' *0i + ¥2* ’ Y0» + ©2i ' z0i )

«=1

*3 = f  'h3 + ( f 3 + ( g2 -  2 )-f ) -A and a3  = i  K 3i

i=l

¥ 3  = gfh3 + ( g 3 + ( f 2~ 2 )-g ) -h and P3  =  E  ¥ 3 ;
»=i

0*2 = h4 + ( g2 + f 2- 2 )-h2 + 1 and Yj = E  ®3 i
1=1

n
^13 =  “ E  (  K3« ' x 0i +  ¥ 3 ; ■ y o i  +  © 3i ' z 0i )

»=1

where f , g , h  are the line coefficients, x0, yo> and * 0  is the origin of each line and i 

is the number of the lines.

If the intersection point of these three planes is calculated (see [28]), the coor

dinates of the nearest point which is the minimum distance away from the axes is 

determined. Once the nearest points of both the axes of the measured component 

and the solid model’s are calculated, configurations are translated so that their 

nearest points are both at the origin and matched by using the Procrustean algo

rithm under translation and rotation.
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APPENDIX E

PUBLISHED PAPER

This paper - which was given as reference [29] - will be published in the 

Proceedings of the International Conference on Theory and Practice of 

Geometric Modelling. The proceedings were in press during the preparation of 

this thesis.
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Abstract

When components have been made they need to be inspected. In this paper some newly devised automatic methods 
are described that compare a set of measurements of an engineering component taken by a coordinate measuring 
machine with a master solid model of the measured component obtained from a CAD system. Once matched, the 
two may then be compared to find any differences resulting from manufacturing errors and those manufacturing 
errors can automatically be reported.

1. Introduction

W h e n  a n  e n g in e e r in g  c o m p o n e n t  h a s  b e e n  m a n u fa c tu r e d  i t  m u s t  o f t e n  b e  c h e c k e d  f o r  d e f e c t s .  I d e a lly  
s u c h  c h e c k in g  s h o u ld  b e  d o n e  a g a in s t  th e  o r ig in a l  d e s ig n  o f  th e  c o m p o n e n t  a n d  a n y  o u t -o f - to le r a n c e  
d if f e r e n c e s  b e t w e e n  th e  tw o  s h o u ld  b e  r e p o r te d .

T h is  p a p e r  w i l l  d e s c r ib e  a  g r o u p  o f  a lg o r ith m s  w h ic h  a l lo w  a  c o l l e c t io n  o f  p o in t s  o n  th e  su r 
f a c e  o f  a  m a n u fa c tu r e d  c o m p o n e n t  ( s u c h  a s  m ig h t  b e  g a th e r e d  u s in g  a  c o o r d in a te  m e a s u r in g  m a c h in e )  
t o  b e  m a tc h e d  a u t o m a t ic a l ly  w i th  a  s o l id  m o d e l  o f  th e  c o m p o n e n t .  F ig u r e  1  s h o w s  th e  g a th e r e d  su r 
f a c e  p o in t s  a n d  th e  s o l id  m o d e l  o f  a  s im p le  s ta ir c a s e  m o d e l .  S o m e  o f  t h e s e  a lg o r it h m s  a r e  e x ta n t  in  th e  
l ite r a tu r e  o n  S to c h a s t ic  C o m p u ta t io n a l  G e o m e tr y ,  b u t  h a v e  n o t  b e fo r e  b e e n  a p p l ie d  t o  th is  p r o b le m ;  
s o m e  a r e  n o v e l  a n d  d u e  to  d ie  a u th o r s . T h e  w a y  in  w h ic h  th e  m a tc h in g  i s  a c h ie v e d  i s  r o b u s t  in  th e  
p r e s e n c e  o f  e rr o r s  in  th e  c o m p o n e n t  w h ic h  c a u s e  i t  to  d i f f e r  s l i g h d y  in  s h a p e  fr o m  th e  s o l id  m o d e l .  A s  
th e  th e  w h o l e  p u r p o s e  o f  m e a s u r e m e n t  i s  t o  c h e c k  fo r  su c h  e r r o r s , th is  i s  p a r t ic u la r ly  im p o r ta n t

T h e  a u th o r s ’ a lg o r it h m s  h a v e  b e e n  d e v e lo p e d  e s p e c ia l ly  to  h a n d le  th e  la r g e  n u m b e r s  o f  s u r fa c e  
p o in t s  th a t m a y  b e  g a th e r e d  fr o m  a  c o m p o n e n t  u s in g  a  la s e r  n o n - c o n ta c t  m e a s u r in g  m a c h in e  d e v e lo p e d  
b y  o n e  o f  th e m  a n d  o th e r s  [3 ] .  H o w e v e r ,  th e y  w o u ld  a l s o  b e  q u it e  s u ita b le  fo r  u s e  w ith  a  c o n v e n t io n a l  
c o o r d in a te  m e a s u r in g  m a c h in e .

T h e  s o l id  m o d e l le r  u s e d  b y  th e  a u th o r s  fo r  th is  w o r k  i s  c a l le d  D O R A . T h is  i s  a  s e t - th e o r e t ic  
s o l id  m o d e l le r  d e v e lo p e d  a t  B a th  b y  J o h n  W o o d w a r k  [8 ] . T h e  a lg o r ith m s  w o u ld  w o r k  j u s t  a s  w e l l  w ith  
a n y  o th e r  s e t - th e o r e t ic  o r  B - r e p  m o d e l le r .

T h e  a u th o r s ’ p r e s e n t  s y s t e m  i s  im p le m e n te d  to  d e a l  w i th  fa c e t e d  c o m p o n e n ts  a n d  s o l id  m o d e ls  
o n ly .  T h e y  a r e  c u r r en tly  e n g a g e d  in  e x te n d in g  i t  to  w o r k  w ith  c u r v e d  c o m p o n e n ts .
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2. The Algorithms

2.1 Triangulation

The data to be matched consist of points in space. The only information about these data (which have 
to be matched to a collection of solid model primitives) is the positions of the points which lie on the 
surface of the object, no topological information is available. To obtain topological information about 
the measured object the Voroni diagram or Dirichlet tessellation of the measured points is constructed. 
This technique is substantially similar to one devised by Boissonnat [1], who used an algorithm due to 
one of the authors (AB). The geometrical dual of the Voroni diagram, obtained by linking the points 
whose Voroni polyhedra are adjacent across a common face, is called the Delaunay triangulation. Fig
ure 2 shows the Voroni diagram and Delaunay triangulation for a small set of points (15 of them).

>

(

Figure 2. Voroni diagram (dotted lines) and Delaunay 
triangulation (bold lines).

The authors use an efficient multi-dimensional algorithm devised by one of them to construct the 
tessellation and triangulation [2]. In three dimensions the Delaunay triangles become a set of packed 
tetrahedra with the measured points as vertices. They fill the convex hull of the measured points. 
Some of the triangles that form the surfaces of these tetrahedra will form a complete triangulation of 
the measured object’s surface. The problem to be solved is to find which ones.

2.2 Classification of tetrahedra

To answer this we note that some Delaunay tetrahedra will lie within the measured object and will thus 
be solid, whereas some will lie outside it and will be air. If the tetrahedra may be so classified, then 
any of their triangular faces that form a boundary between a solid tetrahedron and an air tetrahedron 
will be part of the component’s surface. How may the tetrahedra be classified in such a way?
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In order to measure each point a ray of light must have been directed at it or a measuring 
probe must have touched it. If the path taken by this is recorded then any Delaunay tetrahedra which it 
passes through must be air. The algorithm which deals with classification, traces a path (which was 
used to detect the surface point) backwards from the point, and the tetrahedra which the path passes 
through are classified as air. Since the point is on the surface and the path is traced backwards all the 
tetrahedra which the path intersects on its way should be air.

The authors were particularly concerned to deal with data gathered by the laser coordinate 
measuring machine mentioned in the introduction. Henceforth the path will be considered to be a ray 
of light, but all the algorithms would work just as well with a mechanical probe path.

The algorithm takes the first surface point and start tracing its ray of light backwards. When it 
finds the intersection between a triangular face of the first tetrahedron and the ray (since the starting 
point is one of the forming points, there is always one intersection with the first tetrahedron) it classifies 
this tetrahedron as air and continues tracing the ray into the tetrahedron which shares the intersected 
face with the first tetrahedron. After this there are always two intersections with the ray and each 
tetrahedron (unless the ray intersects an edge or a comer). Figure 3 shows the ray tracing algorithm in 
two dimensions.

\

Figure 3. Ray tracing in 2D. P is the starting 
surface point and dotted lines represents the Voronoi polyhedra.

Since the ray intersects the line P P (which corresponds a face in three dimension) the next 
tetrahedra corresponding to the vertex to >̂e visited is V which is shares the line P P with V . After 
the second intersection with the tetrahedra corresponding1 °to the vertex V , the next vertex is which
has the common edge PJP7 with V and so on. All the tetrahedra that tlie ray intersects are classified
as air until the ray is beyond the convex hull or when the next vertex visited is already air.

This process is repeated for every surface point and the majority of tetrahedra are thereby
classified. Any remaining ambiguities may be resolved by having the measuring machine (which is 
most useful if on line) take extra measurements which pass through the tetrahedra about which there is 
still doubt. The algorithm which deals with this problem finds the centroid of each solid tetrahedron, 
moves a given distance away from the centroid and sends a ray of light towards the centroid. If the 
surface of the object is beyond the centroid, the tetrahedron is classified as air, otherwise it is solid.
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2 3  Clustering

T h e  c la s s i f ic a t io n  o f  th e  te tra h ed r a  a s  s o l id  o r  a ir  a l lo w s  th e  s u r fa c e  o f  th e  o b j e c t  t o  b e  fo u n d  b y  f in d in g  
th e  tr ia n g u la r  f a c e s  o f  s o l id  te tr a h e d r a  w h ic h  fo r m  a  b o u n d a r y  w ith  a ir  te tra h ed r a . In  o th e r  w o r d s  i t  
f a c i l i t a te s  t h e  tr ia n g u la t io n  o f  th e  m e a s u r e d  c o m p o n e n t ’s  s u r fa c e .  T h e  n e x t  p r o b le m  to  b e  s o lv e d  i s  th a t  
o f  g a th e r in g  th e  t r ia n g le s  to g e th e r  in  c o l l e c t i o n s ,  e a c h  c o l l e c t i o n  r e p r e s e n t in g  a  fa c e t  o f  th e  c o m p o n e n t .

E a c h  tr ia n g le  fo r m s  a  l i t t l e  p la n e  in  s p a c e .  E v e n  o n  o n e  f a c e t  a l l  th e  tr ia n g le s  w i l l  n o t  b e  
e x a c t ly  c o -p la n a r  b e c a u s e  o f  m e a s u r e m e n t  e r r o r s . T h e  tr ia n g le s  a r e  s u b je c te d  to  c lu s te r  a n a ly s i s  to  
g a th e r  th e m  to g e th e r  in  c o l l e c t i o n s  r e p r e s e n t in g  f a c e t s .  W e  h a v e  u s e d  th e  S L I N K  a lg o r ith m  [6 ]  w h ic h  
i s  b a s e d  o n  s in g le - l in k  o r  n e a r e s t  n e ig h b o u r  c lu s t e r  a n a ly s i s ,  f o r  a  s m a ll  n u m b e r  o f  s u r fa c e  p o in t s  b u t  
s in c e  th e  la r g e  n u m b e r  o f  s u r fa c e  p o in t s  c a u s e s  u s  t o  e x c e e d  th e  m e m o r y  c a p a c it y  o f  th e  c o m p u t e r  w ith  
th e  S L I N K  a lg o r it h m , w e  h a v e  d e v e lo p e d  a  d i f f e r e n t  c lu s te r in g  a lg o r ith m . In  th is  a lg o r ith m , s u r fa c e  
p o in t s  ( w h ic h  a r e  t h e  v e r t ic e s  o f  s u r fa c e  t r ia n g le s )  a r e  c lu s te r e d  a c c o r d in g  to  th e  n o r m a ls  o f  th e  p la n e s  
in  w h ic h  th e  t r ia n g le s  l i e ,  in  o th e r  w o r d s  s u r fa c e  n o r m a ls .

T h e  s c a la r  p r o d u c t  o f  s u r fa c e  n o r m a ls  o f  t w o  tr ia n g le s  i s  c a lc u la te d  a n d  i f  th e  r e s u lt  i s  g r e a te r  
th a n  a  n u m b e r  w h ic h  i s  c l o s e  to  1 , t h e  t w o  t r ia n g le s  a r e  p u t  in to  th e  s a m e  c lu s te r .  S i n c e  th e  s u r fa c e  
n o r m a ls  a r e  n o r m a lis e d  th e  s c a la r  p r o d u c t  e q u a ls  th e  c o s i n e  o f  th e  a n g le  b e tw e e n  th e  p la n e s  in  w h ic h  
th e  t r ia n g le s  ( o r  s u r fa c e  p o in t s )  l i e .  I f  th e  r e s u l t  i s  c l o s e  to  1 th is  m e a n s  th a t th e  a n g le  i s  c l o s e  t o  0  a n d  
th e  tr ia n g le s  l i e  o n  th e  s a m e  p la n e  o r  o n  p a r a l le l  o n e s .  T h e  a lg o r ith m  d is t in g u is h e s  th e  t r ia n g le s  l y in g  
o n  p a r a lle l  p la n e s  b y  c h e c k in g  th e  p e r p e n d ic u la r  d i s t a n c e  fr o m  th e ir  p la n e  t o  th e  o r ig in  ( th e  D  te rm  in  
th e ir  im p l ic i t  p la n e  e q u a t io n , A x  +  B y  +  C z  +  D  =  0 )

T h e  a lg o r ith m  d e f in e s  a  m id - p la n e  b e t w e e n  th e  t w o  p a r a lle l  p la n e s  a n d  c lu s te r s  th e  t r ia n g le s  
w h ic h  a r e  m o r e  d is ta n t  fr o m  o r ig in  th a n  th e  m id -p la n e  in  o n e  c lu s te r  a n d  th e  o n e s  w h ic h  a r e  l e s s  d is ta n t  
in  a n o th e r . In  th e  c a s e  o f  m o r e  th a n  t w o  p a r a l le l  p la n e s ,  f ir s t  th e  p a r a lle l  p la n e s  a r e  s p l i t  in to  t w o  c lu s 
te r s , e a c h  c lu s te r  i s  c h e c k e d  t o  s e e  w h e th e r  t h e y  c o n ta in  m o r e  th a n  o n e  p la n e ,  i f  th e y  d o  th e y  a r e  s p l it  
a g a in  a n d  c h e c k e d  a g a in  a n d  s a m e  p r o c e s s  i s  r e p e a te d  r e c u r s iv e ly  u n t i l  th e  tr ia n g le s  ly in g  in  e a c h  p a r a l
l e l  p la n e  a r e  c lu s te r e d  in  s e p a r a te  c lu s te r s .

S in c e  th e  a lg o r ith m  p r o v id e s  th e  n e ig h b o u r h o o d  r e la t io n s h ip  b e tw e e n  th e  s u r fa c e  tr ia n g le s  ( th a t  i s  
to  s a y , fo r  a n y  g i v e n  tr ia n g le ,  w e  k n o w  it s  th r e e  n e ig h b o u r in g  tr ia n g le s ) ,  a n y  m is -c lu s te r e d  tr ia n g le  i s  
c o r r e c te d  b y  c h e c k in g  it s  n e ig h b o u r in g  tr ia n g le s .  I f  a l l  th r e e  n e ig h b o u r s  a r e  in  th e  s a m e  c lu s te r  b u t  th e  
tr ia n g le  i s  n o t ,  i t  i s  p u t  in to  th e  s a m e  c lu s t e r  w i th  i t s  n e ig h b o u r s .  I f  t w o  n e ig h b o u r s  a r e  th e  s a m e  th e n  
th e  s u r fa c e  n o r m a ls  o f  a l l  th r e e  n e ig h b o u r s  a r e  in s p e c t e d  a n d  w e ig h t in g  i s  u s e d  to  d e c id e  i f  th e  c e n tr a l  
tr ia n g le  o u g h t  t o  b e  c lu s te r e d  w i th  th e  p a ir  o r  n o t

N e x t ,  th e  a lg o r ith m  h a n d le s  f a l s e  chamfers. F a l s e  c h a m f e r s  a r e  a r t if ic ia l  fe a tu r e s  w h ic h  o c c u r  
b e c a u s e  o f  th e  la c k  o f  th e  a b i l i t y  o f  m e a s u r in g  m a c h in e  to  g e n e r a te  th e  p o in t s  e x a c t ly  o n  th e  m e a su r e d
o b j e c t ’s  e d g e s  ( F i g u r e  4 ) .  F o  j e e

chon f ei
surface

Figure 4. False chamfer
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They are products of the measuring system which need to be found to be get rid of. Since the false 
chamfers should be one triangle wide, the algorithm finds the boundaries of each cluster and thereby 
finds clusters which are one triangle wide. It classifies these as chamfers and does not consider them to 
be real faces when matching.

As a result of all the processes the surface triangles (and the surface points obviously) are 
clustered together in different clusters, each cluster representing a facet. Principle components analysis 
is then used on the measured points making up the triangle vertices in each collection to obtain a best- 
fit plane through them all. F ig u r e  5  shows the result of surface triangulation and clustering on a simple 
staircase model (the missing lines on some steps are caused by a bug in the plotting program. This will 
be fixed!). Green colour represents the false chamfers.

F ig u r e  5 . Surface triangulation and clustering

2.4 Matching

The measured data and the solid model are now more or less in the same form: two collections of plane 
equations in space. Unfortunately they will, in general, be referred to different coordinate frames, so, in 
order to compare them, it is necessary to translate and to rotate them to a best-fit with each other. The 
authors have extended the technique of Procrustean matching [5] to allow this to be done.

The model and the measured planes are first translated so that their centroids are at the origin 
of coordinates. Either the model or the measured data now have to be rotated. Standard Procrustean 
rotation requires a known one-to-one correspondence between the two collections of points that are to 
be matched. In Procrustean rotation, for two roughly similar given configurations, X and Y, each of N 
points in K dimensional space, Sibson [5] shows that the best match under rotation is obtained by P Y  
where orthogonal KxK matrix P  is given by :

P=XYt(YXtXYt ) 2
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But in our case we don’t have points, we have planes; as yet there is no one-to-one correspon
dence between the two collections; and there may (because of manufacturing errors) even be different 
numbers o f planes in the model and the measured object

The rotation is performed upon the points in the two Extended Gaussian Spheres (EGSs) [4] of 
the collections of plane equations. The Gaussian sphere of a collection of planes is the points formed 
by their normals on the unit ball. The EGS is the pattern of points in space which is obtained by scal
ing each of these normals by a factor obtained from the planes, for example each plane normal might 
be scaled by the area of a facet lying in it. In our work we have used the perpendicular distance from 
the planes to the origin to scale the normals. The EGS thus effectively become the set o f points (one 
on each plane) that are closest to the origin. The authors also intend to try to use facet area for this as 
well. A nice feature of this method is that any measurable characteristic of a face can be employed to 
scale the EGS without affecting the rest of the process.

One thing that remains invariant under rotation is radius. The points in the two EGSs are 
matched under radius and then rotated. Once this has been done most points will be correctly matched, 
but some will have been mis-matched because of near-coincidences in radii (Figure 6).

i t

l i

N -
t r
i

i i
+ 1

%

-k

Figure 6. Matched and mis-matched pairs after rotation

Now there are two sorts of links between individual planes in the measured object and the solid model: 
links that are short in length which represent correct matches and links that are longer representing 
mis-matches. In the first approach to resolve this, a probability density estimate of the link length was 
constructed by convoluting their histogram with an appropriate kernel function, the width of which was 
increased until the density function had just two modes. Silverman [7] uses a Gaussian kernel, but a 
simple triangle was adequate for this application. The first, sharp mode comes from the short links, the 
second more diffuse mode comes from mis-matches. Figure 7  shows the density estimation; the verti
cal scale is arbitrary.
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Figure 7. Density estimation

All the links longer than the length corresponding to the minimum between the two modes were broken 
and re-matched by using the Euclidean distance between them rather than radius as a matching cri
terion. But later on the authors discovered that forming this sort of histogram to estimate the link 
length did not improve distinguishing the mis-matches over the simpler technique of breaking all the 
links and re-matching them using actual inter-point distances. After this, the rotation is done again to 
make a fine adjustment in the relative orientation between the component and the model. The two are 
now matched in such a way that the residual sum of squares between the two EGSs is minimal.

Faces of the component may now be compared with the corresponding faces of the model and 
any out-of-tolerance differences reported. Also, all faces within tolerance can be discarded, and the 
whole process carried out again on bits that don’t match. This allows parts of the component which are 
of the right shape, but which are in the wrong place, to be identified and their position and orientation 
to be computed.

3. Data Gathering

As was mentioned above the data to be matched consist of points in space. These data may either be 
gathered by using a laser non-contact measuring machine or by using an algorithm which simulates the 
process of this measuring machine. The modeller DORA uses a ray-tracer to generate its graphics. 
The way in which the laser measuring machine works is exactly analogous to this: rays of lights are 
directed at the object to be measured and the points where they strike the surface are calculated. In 
order to conduct controlled experiments on the matching system data was created using DORA’s ray 
tracer. This traced a ray of light back from the viewer into a model of the object being measured and 
found the intersection point of the ray and a surface in the model. It recorded the coordinates of these 
surface points into a measurements file. To simulate measurement inaccuracies these points were per
turbed slightly using a random number generator.
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Conclusion

T h e  a lg o r it h m s  e x p la in e d  in  th is  p a p e r  h a v e  b e e n  c o d e d  a n d  w o r k  e f f ic ie n t ly  a n d  a c c u r a te ly .  T h e y  a r e  
i m p le m e n t e d  to  d e a l  w ith  th e  c o m p o n e n t s  b u i ld  u p  o f  f la t  f a c e s  a n d  s o l id  m o d e l s  o n ly .  T h e  a u th o r s  a r e  
w o r k in g  o n  th e  p r o b le m  o f  e x t e n d in g  th e  a lg o r ith m s  t o  c o p e  w ith  c u r v e d  c o m p o n e n t s .
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