

University of Bath

PHD

The reconstruction of measured engineering components and their comparison with
solid models

Cakir, Mustafa Cemal

Award date:
1989

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021

https://researchportal.bath.ac.uk/en/studentthesis/the-reconstruction-of-measured-engineering-components-and-their-comparison-with-solid-models(f6d40a22-ec7a-4ec0-a6f0-709bc4c70476).html

THE RECONSTRUCTION OF MEASURED ENGINEERING

COMPONENTS AND THEIR COMPARISON

WITH SOLID MODELS

Submitted by Mustafa Cemal CAKIR

for the degree of PhD

of the University of Bath

1989

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been suplied on the condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no quo­

tation from the thesis and no information derived from it may be published without

the prior written consent of the author.

This thesis may be made available for consultation within the University Library

and may be photocopied or lent to other libraries for the purpose of consultation.

UMI Number: U602135

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U602135
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

U^lVEr?^?TV Df : &ATH 1
L I B R A S Y I

- 6FEB1790

SUMMARY

When components have been made they must be inspected. In the research

reported in this thesis a group of algorithms which form an automatic inspection

method are described. Thus, a set of measurements of an engineering component -

the coordinates of its surface points - taken by a coordinate measuring machine

(particularly the non-contact type which is being developed at Bath University)

[61] can be compared with a master solid model from a CAD system. Some of

these algorithms exist in the literature on Stochastic Computational Geometry, but

have not before been applied to this problem, some algorithms are new. Although

the surface points can be gathered by using a measuring machine, an algorithm is

also introduced which simulates its function.

The algorithms include:

a. methods for creating a tetrahedral packing with the measured points as ver­

tices in which the surface of the component will be embedded as triangular

facets,

b. methods for finding out which of the tetrahedra are solid, and form a solid

body which represents the measured component,

c. methods for creating a surface model of the component by finding the surface

triangles of each solid tetrahedron,

d. methods for finding the real faces of the measured component by finding the

triangles lying on the same surface,

e. methods for matching the measured component to the solid model of the

object created by CAD system under translation and rotation.

Once the two descriptions are matched, faces of the measured component may

then be compared with the corresponding faces of the solid model and any out-of-

tolerance differences can thereby automatically be reported. The way in which the

matching is achieved is robust in the presence of errors in the component which

cause it to differ slightly in shape from the solid model. As the whole purpose of

measurement is to check for such errors, this is particularly important.

ACKNOWLEDGEMENTS

Firstly, I wish to express my deepest gratitude to my supervisor, Dr. Adrian

Bowyer, who, being most generous with his time, has been a continual source of

guidance, encouragement and inspiration. I am also grateful to him for reviewing

the manuscript. I also wish to express my deep appreciation to Mr. Andrew Wallis

for his advice and suggestions on various parts of my project.

Special thanks are due to: Mr. Nigel R. Phelan, Mr. Ian Walker and Mr Izzet

Isik for many useful discussions and their helpful comments on my draft thesis. I

also wish to thank Mr. Antony E. Carter for his help, support and friendship.

Above all I am indebted to all my colleagues, my friends and all the people who

have contributed directly or indirectly to this work.

Finally, I wish to thank my loving wife for her help, support, understanding

and love throughout the project without which it would have never been com­

pleted.

LIST OF FIGURES

Page

Figure 1.1 Possible interpretations of a wire-frame cuboid 4

Figure 1.2 Types of surfaces... 4

Figure 1.3 (a) Solid prim itives..11

(b) Effects of Boolean operations on primitives11

Figure 1.4 A solid object and its binary tr e e .. 13

Figure 1.5 Comparison between B-rep and set-theoretic modelling techniques 13

Figure 1.6 The measurement problem .. 16

Figure 1.7 (a) 3D surface points ... 18

(b) The measured component to be matched with its solid m odel 18

Figure 2.1 (a) 18 surface segments to be merged into six new segments 25

(b) Surface segments to be matched into a single model25

Figure 2.2 Contours and triangular tiles ...28

Figure 2.3 Contours and partial surfaces ..28

Figure 2.4 Objects reconstructed by polyhedral approximation...............................32

Figure 2.5 An automobile part and its 3D triangulation .. 32

Figure 2.6 Laying of the initial triangulation ... 35

Figure 2.7 The results of triangulation ..35

Figure 2.8 Elimination of redundant tetrahedra ...39

Cont’d.

Page

Figure 2.9 Block diagram of the 3D shape-matching algorithm44

Figure 2.10 Surface normals and their extended Gaussian image44

Figure 3.1 Types of range-finding techniques... 50

Figure 3.2 General layout of the laser measuring machine...................................... 51

Figure 3.3 Plan view of the measuring geometry ...54

Figure 3.4 Surface points of the turbine blades ...54

Figure 3.5 Ray-tracing ... 58

Figure 3.6 The SID code that generates a hex-headed b o lt58

Figure 3.7 Increment angles and the viewing pyramid ... 61

Figure 3.8 Surface p o in ts ... 62

Figure 4.1 Voronoi diagram and Delaunay triangulation .. 68

Figure 4.2 A 3D Delaunay vertex and its associated Delaunay tetrahedron 70

Figure 4.3 The max-min angle criterion ..70

Figure 4.4 The newly inserted point Q - finding its territory 77

Figure 4.5 Data structure of the Delaunay triangulation ... 77

Figure 4.6 The flowchart of the triangulation algorithm .. 79

Figure 4.7 Finding the nearest neighbour ...82

Figure 4.8 Projection of q' onto the unit vector in 2D ... 88

Figure 4.9 Convex hull in two-dimensions...88

v i

Cont’d.

Page

Figure 5.1 Classification of tetrahedra ... 92

Figure 5.2 A plane through three points .. 96

Figure 5.3 Ray-tracing in 2D .. 96

Figure 5.4 Finding the intersection of the ray with the triangular face 97

Figure 5.5 A long flat tetrahedron.. 101

Figure 5.6 A triangular face and its circumcircle ... 101

Figure 5.7 Redundant tetrahedra.. 103

Figure 5.8 Elimination of redundant tetrahedra ... 103

Figure 5.9 The method of eliminating the redundant tetrahedra105

Figure 5.10 Finding the normals of triangular faces ..108

Figure 5.11 The neighbouring surface triangles o f T ..108

Figure 6.1 Single link clustering examples ..116

Figure 6.2 Storage requirement for similarity matrices ...116

Figure 6.3 A single link dendrogram ... 118

Figure 6.4 Output of the SUNK algorithm ..118

Figure 6.5 A unit cylinder and its projection ... 120

Figure 6.6 Unit sphere and two surface normals ... 123

Figure 6.7 Output of the sorting algorithm and its tree-diagram123

Figure 6.8 Tree-diagram of a model with 22 surface triangles................................124

Figure 6.9 Finding the clusters .. 127

vii

Cont’d.

Page

Figure 6.10 Two parallel planes and their mid-plane.. 130

Figure 6.11 A surface triangle and its neighbours... 130

Figure 6.12 A false chamfer .. 132

Figure 6.13 An ordinary cluster and a one-triangle-wide cluster132

Figure 6.14 The flowchart of the clustering algorithm ... 136

Figure 6.15 (a) The input to the clustering algorithm ..138

(b) The output of the clustering algorithm...138

Figure 6.16 (a) Surface triangulation and clustering of example 1 139

(b) Clustering the surface triangles ..139

Figure 6.17 (a) Surface triangulation and clustering of example 2140

(b) Clustering the surface triangles ..140

Figure 7.1 Matching the sorted lists of ra d ii ...147

Figure 7.2 Matched and mis-matched pairs after rotation 149

Figure 7.3 Density estimation ..149

Figure 7.4 An extended Gaussian sphere and its corresponding object154

Figure 7.5 The calculation of the displacement.. 154

Figure 7.6 The flowchart of the matching algorithm ..156

Figure 7.7 (a) A measured component ..159

(b) Its solid model ..159

Figure 7.8 Plane coefficients of half-spaces and surface a rea s161

viii

Cont’d.

Page

Figure 7.9 Matching according to radial distances ..162

Figure 7.10 Matching according to inter-point distances .. 163

Figure 7.11 (a) Matches on an extended Gaussian sphere .. 165

(b) Matches with the face numbers... 165

Figure 7.12 (a) Matches on an extended Gaussian sphere .. 166

(b) Mis-matches on an EGS ...166

Figure 7.13 (a) The mis-matched extra face ...167

(b) The extended Gaussian spheres of the matches167

Figure 8.1 Representation of cones on a Gaussian sphere .. 175

Figure 8.2 Matching a conical part 175

Figure 8.3 Axes of cylinders and their mutually nearest p o in t176

Figure A 1.1 Triangulation and finding the surface triangles202

Figure A2.1 Clustering the surface triangles .. 205

Figure C l.l Matching of a measured component with its solid model of ex 3212

Figure C l.2 Matching of a measured component with its solid model of ex 4213

Figure C2.1 The effect of the symmetry problem on matching215

Figure C2.2 Plane coefficients of half-spaces and surface areas 216

Figure C3.1 The effect of an extra face of the measured component on matching 217

ix

CONTENTS

Page

TITLE AND COPYRIGHT ... (i)

SUMMARY ...(ii)

ACKNOWLEDGEMENTS ... (iv)

TABLE OF FIGURES (v)

CHAPTER 1 : INTRODUCTION .. 1

1.1 Background to Solid Modelling .. 1

1.1.1 CAD ... 1

1.1.2 Geometric Modelling .. 2

1.1.2.1 Wire-frame Modelling .. 2

1.1.2.2 Surface Modelling .. 3

1.1.3 Solid Modelling.. 5

1.1.3.1 Boundary Representation ... 10

1.1.3.2 Set-theoretic Representation .. 10

1.2 Shape Reconstruction .. 14

1.3 Aims of This Project ... 15

1.4 Thesis Outline .. 17

X

Cont’d.

Page

CHAPTER 2 : LITERATURE SURVEY ... 20

2.1 Introduction .. 20

2.2 Shape Reconstruction ...21

2.3 Polyhedral Approximation ..29

2.3.1 Triangulation ...33

2.4 Matching ..38

2.5 Concluding Remarks ..43

CHAPTER 3 : GATHERING THE DATA ..46

3.1 Introduction .. 46

3.2 Co-ordinate Measuring Machines .. 47

3.3 Laser Measuring Machine ...49

3.3.1 The Design Concept ...49

3.3.2 Taking Measurements ...52

3.3.3 Analysing the Measurements .. 55

3.4 Simulation of Data Gathering ...56

3.4.1 DORA - The Solid Modeller .. 57

3.4.2 Modifications on DORA ...59

3.4.3 Limitations ... 60

3.5 Concluding Remarks ..63

xi

Cont’d.

Page

CHAPTER 4 : PROCESSING THE DATA ...64

4.1 Introduction ...64

4.2 The Delaunay Triangulation ..65

4.2.1 Properties of Delaunay Triangulation .. 69

4.2.2 Degeneracies ..71

4.2.3 Applications of the Delaunay Triangulation72

4.3 The Triangulation Algorithm .. 74

4.3.1 Data Structure ... 75

4.3.2 Inserting a Point into the Structure ...76

4.3.3 Finding the Nearest Neighbour ... 81

4.3.4 Modifying the Structure ...83

4.4 Implementation of Details ..84

4.4.1 Programming ... 84

4.5 Application of the Algorithm to the Gathered Data 85

4.6 Concluding Remarks ..87

CHAPTER 5 : FINDING THE OBJECT’S SURFACE 90

5.1 Introduction .. 90

5.2 Classification of Tetrahedra .. 91

5.3 Eliminating the Redundant Tetrahedra ..99

xii

Cont’d .

Page

5.3.1 Eliminating the Long Flat Tetrahedra ... 100

5.3.2 The General Solution .. 102

5.4 Finding the Surface of the Object ... 104

5.5 Limitation ... 107

5.6 Concluding Remarks ... 107

CHAPTER 6 : FINDING THE REAL FACES .. 110

6.1 Introduction .. 110

6.2 Finding the Faces .. I l l

6.3 Cluster Analysis .. I l l

6.3.1 The Single Link Clustering Method ...113

6.3.2 SLINK - An Efficient Single Link Clustering Algorithm 115

6.4 Application of SLINK Algorithm onto the Surface Triangles 117

6.4.1 The Calculation of Dissimilarities..... ... 117

6.4.2 Determining the Clusters .. 121

6.5 Clustering by Using the Surface Normals ... 128

6.6 Limitation ... 141

6.7 Concluding Remarks ... 141

xiii

Cont’d.

Page

CHAPTER 7 : MATCHING ... 142

7.1 Introduction ... 142

7.2 Matching the Two Descriptions ... 143

7.3 Procrustes Analysis .. 144

7.4 The Procrustean Matching Algorithm .. 146

7.5 Matching by Using the Procrustean Algorithm .. 150

7.5.1 Extended Gaussian Spheres .. 151

7.5.2 Matching the Faces .. 152

7.5.3 Scaling the Surface Normals .. 157

7.6 Results of the Matching Algorithm .. 158

7.7 Problems in Matching ..168

7.8 Concluding Remarks .. 169

CHAPTER 8 : CONCLUSIONS AND SUGGESTIONS

FOR FUTURE WORK ... 170

8.1 Introduction ... 170

8.2 Conclusion ... 171

8.3 Suggestions for Future Work .. 173

8.3.1 Dealing with Cones and Cylinders ... 173

8.3.2 Reducing the Processing Time ... 177

xiv

Cont’d.

Page

8.3.3 Dealing with Symmetry .. 177

8.3.4 Dealing with Surface Roughness and Surface Alignments 179

REFERENCES ... 180

LIST OF PUBLICATIONS .. 198

APPENDICES .. 199

APPENDIX A : User Interface ... 199

APPENDIX B : Rotations ...207

APPENDIX C : Further Results ...210

APPENDIX D : Matching the Axes of Cylinders ...218

APPENDIX E : Published Paper ..221

XV

CHAPTER 1

INTRODUCTION

1.1 Background To Solid Modelling

1.1.1 CAD

Computer-aided design (CAD) is the technology which is concerned with the use

of computers to perform certain functions in design [11, 57], It can also be defined

as the use of computer systems to assist in the creation, modification, analysis or

optimization of a design. Its hardware typically consists of a computer, one or

more graphics display terminals and keyboards and other peripheral equipment;

while its software consists of the computer programs to implement computer graph­

ics on the system and the application programs such as those for stress-strain

analysis of components, computing the dynamic response of mechanisms, heat

transfer calculations, numerical control part programming and so on.

The various design-related tasks which are performed by a modem computer-

aided design system can be grouped into five functional areas [54]:

1. Geometric modelling

2. Engineering analysis

3. Design review and evaluation

4. Automated drafting

1

5. Part classification and coding

In the research reported in this thesis the author dealt with geometric model­

ling and the checking of manufacturing errors by using a geometric modeller.

1.1.2 Geometric Modelling

Geometric modelling is the process in which a mathematical model is created to

represent, store and manipulate geometric information about the size and the shape

of physical objects in computer memory [4, 11, 54, 80]. In theory the class of

physical objects is restricted to objects that are solid and rigid with a mathemati­

cally well-behaved surface. They can move about in space with the restriction that

two physical objects cannot occupy the same space at the same time (in theory: not

all systems prevent this).

Geometric modellers can be classified in three groups:

1. Wire-frame modellers

2. Surface modellers

3. Solid modellers

1.1.2.1 Wire-frame Modelling

Wire-frame geometry is the first order of complexity in the definition of geometric

models [11, 31, 54, 57, 81]. Wire-frame pictures are the simplest to create to

check results in the quickest way. They expend relatively little computer time and

memory and provide accurate information on the location of edges on the part.

2

But, since they are line models (which means they only require 3D coordinates to

define the end points of lines in space), they can only provide partial information

about objects. They convey no information about the surfaces themselves; they do

not differentiate between the inside and the outside of the object; and since only

the vertices and connecting lines are present to interpret the model, several

interpretations may arise from a single model. Figure 1.1 shows an example of

this type of ambiguity. Although fast wire-frame displays are still popular, because

of the ambiguity of representing such quantities as the surface area and volume of

the object wire-frame modelling has been replaced by solid modelling in the recent

years.

1.1.2.2 Surface Modelling

A higher level of sophistication in geometric modelling is surface modelling [11,

31, 57, 69, 81]. This is one of the major techniques used in representing three-

dimensional objects. A surface model can be built by defining the surfaces on the

wire-frame model in a way which is analogous to stretching a thin piece of

material over a framework. Figure 1.2 shows the types of surfaces that the surface

modellers may have.

Essentially, surface models are in the form of a mesh and the surface is a col­

lection of facets (nearly all systems allow curved surfaces). They define part

geometry such as surfaces and boundaries precisely and they help to produce

smooth continuous surfaces in NC machining. They are used in aircraft and

aerospace engineering, the automative industry and shipbuilding, as well as in

3

Figure 1.1 Possible interpretations of a wire-frame cuboid
(from Rooney et al. [96])

Figure 1.2 Types of surfaces (from Krouse [69])

4

medium sized companies manufacturing forgings, castings and moulded products.

But they are mainly used in computer graphics. Many of the ambiguities of wire­

frame models can easily be overcome by surface models.

However, surface models alone are not suitable as a general means of

representing mechanical parts. For example, a face may be left off a part, there

may be gaps between faces, or a face which occupies space inside a part may be

defined. Since surface models do not prevent such errors, they cannot guarantee

accuracy; and without accuracy highly-automated applications are impossible to

achieve.

1.1.3 Solid Modelling

The highest level of sophistication in geometric modelling is solid modelling [11,

31, 54, 57, 81, 96]. The term solid modelling encompasses a body of theory, tech­

niques and systems focused on informationally complete representations of solids

which permit any (in theory at least) well-defined geometrical property of any

represented solid to be calculated automatically. Given the appropriate data, these

systems can in principle represent and calculate any kind of information about

objects, for example their colours, volumes, centres of gravity, moments of inertia,

surface areas, costs and so on. Since they can handle both surface and volume

problems and they are able to deal with complicated geometries, they are probably

the best current method for representing engineering components.

The solid model provides a single computer representation of an engineering

component which, again in theory, can be used for all computer assisted

engineering and manufacturing tasks. Since it is complete and unambiguous, it can

form the basis of a highly automated CAD/CAM application program.

The activities to which a solid model can be applied are as follows [89] :

a. Design conception: Component geometry can be defined by creating a solid

model; new parts or components are most frequently created by modifying

existing designs,

b. Design calculation: Characteristics of the solid model such as its enclosed

volume, surface area, principal axes, moments around each axis and mass can

be computed to test the initial design against the fundamental constraints

imposed,

c. Clearance studies: The solid model can graphically be assembled with other

solid models of the same product to ensure that the parts will fit together or

move correctly,

d. Structural analysis: The distribution of temperature or mechanical loading

within the solid model can be determined for a given set of conditions by

using finite element mesh models. In this way the design may be checked

against design requirements at an early stage without extensive prototype

fabrication and testing,

e. Kinetic analysis: The solid model has a high potential for automated kinetic

analysis where loads are calculated for an articulated mechanism. For exam­

ple, the motion of a robot could be computed by simulating its response to the

robot’s program. Mass properties can automatically be computed from the

solid models of each component. These properties are then used to compute

loads on the robot’s joints at each point in time in the simulation,

f. Kinematics: If component is required to move during use, its working

envelope can be checked on a graphics display screen and possible obstacles

and collision courses can be detected (e.g. robot arm movements),

g. Ergonomics: If the product is to provide human comfort, the geometry pro­

duced can be checked using standard human body models (e.g. using

endomorph and ectomorph models in say, the design of a driver’s cab) [57],

h. Jig and fixture design: Jigs and fixtures are often redesigned for existing pro­

ducts to improve productivity or to make use of new machines. Solid model­

ling can be used to design this tooling correctly in relation to a model of the

part,

i. Tooling design: Solid modelling is as productive for designing and laying-out

tooling as it is for designing assemblies. If special tooling is required during

manufacture, the tool can be designed around the solid model of the part to be

machined or assembled,

j. Machining simulation: A sequence of machining can be planned and tool

paths can be checked by driving a cutting tool around the solid model of the

part, a model of the machined component can be created by subtracting the

swept volumes and precise measurements of dimensions can be taken from

the model, production planning sheets and NC tape can be created accordingly

[109],

7

k. Casting, forging and joining processes: Having constructed a solid model for

a casting process, the volume of an object can be calculated to determine the

amount of material required. Even more sophisticated analyses such as that of

the cooling rate in castings or material flow in injection mouldings can be

achieved; the plastic deformation of objects in forging processes or the

strength of the joints in welding process can be analysed [114],

1. Machine vision: By linking machine vision techniques to models, systems can

be trained to recognise different components and their positions and orienta­

tions (e.g. parts on a conveyor can be identified by an overhead camera and

mis-oriented parts classified) [114],

m. Quality control: The solid model can be used to determine how quality will

be assessed and possibly improved upon,

n. Detail drawings: On acceptance of design, the 3D solid model can be manipu­

lated to produce 2D orthographic views and dimensioned accordingly,

o. Assembly and assembly planning drawings: The solid model can be manipu­

lated with its mating models to produce 2D orthographic assembly views; bills

of materials and parts lists can be created accordingly; the order of assembly

can be planned on the graphics display screen by using the solid model of the

product; a series of exploded isometric views together with the necessary

assembly instructions can then be produced,

p. Production advertising: Production presentation and appeal can be enhanced

by using solid models with colour shading to provide graphical illustrations

8

for use in sales brochures,

q. Technical publications: The production of maintenance manuals and customer

instruction manuals can be supported by using solid modellers.

In contrast to all these benefits, the main hinderance that solid modellers have

is that they are relatively slow, and are greedy for computer processing power

when compared to wire-frame or surface modellers. Problems of solid modelling

systems and their solutions are discussed by Chiyokura [31].

All solid modelling systems provide facilities for creating, modifying and

inspecting models of three-dimensional solid objects, but the way of representing

such models in the computer differs. In general, we may classify the representa­

tion schemes in six groups [96]:

1. Pure primitive instancing

2. Generalised sweeps

3. Spatial occupancy enumeration

4. Cellular decomposition

5. Boundary representation (B-rep)

6. Set-theoretic representation

All these methods won’t be discussed here; the reader is referred to [96] for

full details. Set-theoretic representation and boundary representation are the most

widely used representation schemes in commercial modellers.

9

1.13.1 Boundary Representation

In boundary representation, a solid is represented by its boundary elements [31, 81,

96]. These elements are classified in two ways: geometric elements (points, curves

and surfaces) which form the object, and topological elements which define the

relationships between the geometric elements. The boundary representation

approach keeps a list of faces, edges and vertices of the object together with the

topological and adjacency relationships between them. The simplest boundary

representation model is the triangular-faced polyhedron which is stored as a list of

triangles. Arbitrary surfaces are approximated to any desired degree of accuracy

by utilising many triangles.

1.13.2 Set-theoretic Representation

In the set-theoretic representation, a model is constructed from basic, three-

dimensional, volumetric solid primitives such as blocks, cylinders, cones, spheres,

hexahedra, tori and tubes [31, 67, 81, 96]. These basic primitives are often combi­

nations of even simpler entities known as half spaces. The relationships between

primitives are defined using the Boolean operators union, intersection and

difference [57]. Types of modelling primitives and the effects of Boolean opera­

tions on primitives are shown in Figure 1.3.

The data structure representing the complete object consists of a binary tree

(Figure 1.4) in which the leaf nodes represent the primitive solids and the internal

nodes represent the Boolean operators to combine these. The primitive solids

which form the leaves may either be represented by simple functions which define

10

Cylinder

TorusCone

Figure 1.3 (a) Solid primitives

O

: Difference
u : Union
n : Intersection

Figure 1.3 (b) Effects of Boolean operations on primitives
(a)Union (b)Difference (c)Intersection

II

a volume in space or as half spaces. A half space is a surface (usually infinite)

which completely divides three-dimensional space into two or more regions: a solid

region, a void region and other regions. Any given point is then either in the solid,

in the void, or on the dividing surface. Any complicated solid and void sub­

division of space (such as the enclosed volumes forming the solid primitives) can

be produced as the combination of such half spaces.

Both boundary and set-theoretic representations have their relative advantages

and disadvantages [31, 80].

The set-theoretic representation tree allows the calculation of the surface area

and the volume of an object unambiguously. Set-theoretic representations construct

a correct and precise model from the available library of primitives (as, indeed, do

boundary representations). They are suitable for many planning and design prob­

lems such as rough-machining and collision checking (but not very suitable for

graphics or finish-machining), they are easy to create, store and transmit, and they

are guaranteed to be solid (though to the surprise of the user, they may sometimes

be null), but they are slow at producing pictures. It is generally possible to convert

set-theoretic representations to B-reps.

On the other hand, boundary representations are efficient sources of geometry

for computer vision, graphics and NC finish-machining operations. They give

more freedom to the designer in building complex models, but the validity of the

model is more difficult to maintain. They are bulky, difficult to create and more

expensive on memory since they are costly to store and transmit. Figure 1.5

shows the comparison between B-rep and set-theoretic modelling techniques.

12

- : Difference r]
u : Union / / / V \
O I Intersection g jx planar half-spaces

Figure 1.4 A solid object and its binary tree (from Rooney et al. [96])

Set-theoretic Representation Boundary Representation

Figure 1.5 Comparison between B-rep and set-theoretic modelling
techniques (from Meguid [80])

13

The solid modeller used in this research was a set-theoretic solid modeller.

1.2 Shape Reconstruction

Shape reconstruction is the problem of deducing a shape from a set of given or cal­

culated data. These data - which are the only information about the solid objects -

may be in different forms: they may be in the form of three-dimensional images

made of voxels (volume elements) in which the shape is constructed by extracting

and following the faces of voxels which are on the boundary of the objects; or they

may be a finite number of planar contours which intersect the three-dimensional

solid object; or, as in this research, the three-dimensional coordinates of surface

points obtained by a laser range finder.

In the applications which use planar contours as data, a solid object is logi­

cally divided into slices of parallel cross-sections with finite thickness. Here, the

only information about the solid consists of the intersections of its surface with the

planes. The sequence of contours is used to construct a piecewise planar approxi­

mation to the original object surface or the volume of the object whose boundary is

a polyhedron with triangular faces intersecting the cutting planes along the given

contours [50, 51, 63, 68].

In some cases the data consist of range data. These are the cases where the

only information about the solid is the geometrical position of each surface point,

no topological information is available. Neighborhood relationships can be

obtained by using the Voronoi tessellation [25] and the shape can be constructed

by finding the triangular faces which lie on the boundary of a tetrahedral packing

14

obtained from the Delaunay triangulation. This was the method used in this

research reported here.

Alternatively, the shape is also constructed by fitting of polynomial surface

patches such as Coons patches, Cartesian product patches, Bezier and B-spline

patches and so on to the range data [31, 49, 81, 82, 112]. Different surface patch

types and a survey on surface fitting is given in Besl and Jain [12]. Research done

on various types of shape reconstruction will be discussed in the literature survey

in Chapter 2.

1.3 Aims of This Project

When an engineering component has been manufactured it must often be checked

for defects. Ideally such checking should be done against the original design of

the component and any out-of-tolerance differences between the two should be

reported.

This thesis will describe a group of algorithms which allow a collection of

points on the surface of a manufactured component (such as might be gathered

using a coordinate measuring machine) to be matched automatically with a solid

model of the component. This would allow any defects on gross features of

engineering components to be detected. A diagram of the measurement problem is

shown in Figure 1.6. Some of these algorithms are extant in the literature on Sto­

chastic Computational Geometry, but have not before been applied to this problem;

others are new.

15

Ob ject

Model 1i

Matchi

Triangu

data points

on o

Obj ect Measunenents
on

Sinulation

Finding the real
faces of the

object

Sol id Model 1ing

CAD Sgsten

Figure 1.6 The measurement problem

16

The algorithms have been developed especially to handle the large numbers of

surface points that may be gathered from a component using a laser non-contact

measuring machine [27]. However, they would also be quite suitable for use with a

conventional measuring machine. An application of the algorithms on a simple

staircase model is shown in Figure 1.7. In figure 1.7 (a) the surface points of the

model are shown. These surface points are processed to produce the model shown

in figure 1.7 (b). This model is ready to be matched with the master solid model

of the same component. Different colours in the figure correspond to different

faces to be matched.

The solid modeller used for this research is called DORA. This is a set-

theoretic solid modeller developed at Bath by John Woodwark [115]. The algo­

rithms would work just as well with any other set-theoretic or B-rep modeller.

The system described in this thesis was implemented to deal with faceted

components and solid models only, but it can be extented to work with curved

components.

1.4 Thesis Outline

The first two chapters of this thesis contain background information about solid

modelling and a review of the techniques available for triangulation, shape recon­

struction and matching. This is followed in Chapter 3 by a review of coordinate

measuring machines and some brief information about the laser non-contact

measuring machine developed at Bath University. An algorithm which simulates

the process of this measuring machine is also introduced in Chapter 3.

Figure 1.7 (a) 3D surface points

mmxxzA
W k X ttX Z : '

V ?***#&***■■
p s
hxxxxxxx** :'tz******** t

Figure 1.7 (b) The measured component to be matched with its solid model

18

Starting from Chapter 4 a group of algorithms is described for triangulation,

classification of tetrahedra (which are the result of triangulation), clustering and

matching. Chapter 4 introduces an efficient multi-dimensional algorithm [25] to

construct the t̂essellation and triangulation to obtain the neighborhood relationship

between the gathered surface points. An algorithm introduced in Chapter 5, which

classifies the tetrahedra as air or solid, creates a solid model for the measured com­

ponent and triangulates the surface of this component. This is followed by the

description of an another algorithm in Chapter 6 which clusters the surface trian­

gles and gathers them in collections, each collection representing a real facet of the

solid model of the measured component. Chapter 7 then describes an algorithm

which compares the real faces of the model with the faces of the component and

matches them under translation and rotation. The final chapter consists of sugges­

tions for further research and conclusions.

19

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

This chapter is a review of the literature on shape reconstruction, polyhedral

approximation, triangulation and matching. Although research on shape recon­

struction in scene analysis and image processing are not directly relevant to the

research described here, they are worth mentioning to give an idea about

different types of shape reconstruction. Most of these surveyed literature use

range data (which mostly consist of the three-dimensional surface points) and

polyhedral approximation.

20

2.2 Shape Reconstruction

The problem of reconstructing a shape is that of finding an interpolation over a set

of points lying on its boundary. A lot of research has been done on the problem of

fitting a function to data given at a set of points scattered throughout a domain in

the plane but this will not be reviewed in this survey. Instead, the relatively small

amount of literature concerned specifically with shape reconstruction using a set of

points scattered all over the closed surface bounding a solid object or a set of finite

planar cross-sections shall be considered (this will be explained below). Such

problems arise in robotics, shape analysis, computer graphics and image process­

ing. Good surveys on shape reconstruction in image processing are given in Besl

and Jain [12], Ahuja et al. [2] and Henry [61]. Some of the techniques used to

build a shape in image processing are quite different from the techniques men­

tioned in this research, but because of some similarities (such as the same sort of

input - range data - and planar approximation), they are worth mentioning.

Researchers who use range data as their input reconstruct shape in many

different ways. Dane and Bajcsy [37] proposed an object-centered three-

dimensional model builder which uses 3D surface point information obtained from

many views. Their technique forms subgroups of data points (for each view

according to the information about their location and orientation) and determines

surface primitives to represent them. It fits planar or quadratic surface primitives

onto them via a least squares technique. It then transforms the surface primitives

from a local coordinate system to a common global coordinate system by using the

known transformations, and identifies the identical surfaces and builds a surface

21

model. Clustering and region growing algorithms are different from the author’s

but their subgroups are similar to his face clusters (see Chapter 6). The data points

that they used in their technique are drawn from a limited area of the local surface

area because of the conservative nature of region growing process. This fact

makes the accurate estimation of the surface parameters more difficult. When

fitting surface primitives onto subgroups via least squares technique no method has

been mentioned to eliminate points with gross inaccuracies (which lie well away

from the surface to be fitted due to experimental inaccuracies and seriously affect

the accuracy to fit).

In another approach Vemuri and Aggarwal [107] described an algorithm for

the reconstruction of three-dimensional objects using range data obtained by a laser

range finder from a single view. Their algorithm fits surface patches to square

neighbourhoods by computing the standard deviation of the Euclidean distance

between consecutive points. If the standard deviation is less than a threshold, a

surface patch is created to fit the square using splines. This technique avoids the

fitting of surfaces to squares of high deviation, such as at edge discontinuities.

However their technique suffers from an inability always to be able to represent

re-entrant surfaces and undercuts as any method based on collection of 2D height

grids. The data acquisition system they use works on the principle of light sheet

triangulation [61].

Henderson [59] developed a technique of extracting planar faces from range

data obtained by a laser range finder. His technique depends on a sequential

region growing algorithm called the Three-point Seed Method [60]. In this method

22

three-dimensional surface points - which are obtained from various sides of an

object - are first stored randomly in a list with no topological connectivity informa­

tion. Planar convex faces are then determined by sequentially choosing three very

close non-collinear points and investigating the set of points lying in the plane of

these three points. Provided the points which are found that lie close to the plane

satisfy narrowness conditions, they are labelled as a plane and removed from the

range data. This procedure is repeated until the range data is exhausted or no more

planes can be found. The shape is reconstructed from the union of these planar

faces. This technique is a useful technique since it is not restricted to single view

range data images and is robust even for noisy data but problems were observed in

detecting the edges.

Potmesil [90] proposed a method for constructing surface models of

arbitrarily-shaped solid objects by matching three-dimensional surface segments

onto the range data obtained by a triangulation-based range finder. Range data for

an object’s surface are fitted using a sheet of parametric bicubic rectangular surface

patches which are recursively merged into a quadtree hierarchical structure where

each object is represented by a tree of surfaces. Ray-casting technique is used to

obtain the surface information as in this thesis, but his technique evaluates not only

surface point information but other surface informations such as the surface-normal

vector and the surface-normal curvature at the intersection points between the ray

and the surface description. This information is used in matching and merging

algorithms (this information cannot, in general, be obtained in real measuring, so

this simulation is not very realistic). Surface segments of the object are

23

transformed into a common 3D space by a matching procedure and then their over­

lapping sections are eliminated by a merging procedure. This match-and-merge

process is iteratively repeated until a complete model of the object is generated.

Figure 2.1 shows the last two stages of Potmesil’s method. Thirty-six views are

used to define the object. First, 18 three-dimensional segments are reconstructed

from the views, which are then merged into six new segments. These six segments

are matched into a single model and the shape is reconstructed.

Boissonnat [19], Boissonnat and Faugeras [21] and Faugeras et al. [47]

developed an algorithm for building a polyhedral approximation of three-

dimensional surface points obtained from triangulation-based laser range finder. In

another two papers Boissonnat [18, 20] proposed to use the Delaunay triangulation

to construct shape by triangulating the surface of the object. He used the same

triangulation-based laser range finder to obtain the 3D surface points. The

polyhedral approximation technique he used will be explained in section 2.3 and

Boissonnat’s triangulation technique (which is similar to the one described in

Chapter 3) in section 2.3.1.

Many more examples which use range data as input to construct shape can be

added to these. On the other hand, some of the shape reconstruction techniques

use planar contours as data. These techniques construct surface contours by inter­

secting a 3D solid with a finite number of specified parallel planes and then con­

nect contours on consecutive slices with triangles. These are the methods where

the only information about the solid consists of the intersections of its surface with

planes. Here, the problem is not a detection problem but an interpolation problem.

24

bottom side right side
back side

Figure 2.1 (a) 18 surface segments to be merged into six new
segments (from Potmesil [90])

Figure 2.1 (b) Surface segments to be matched into a s in g l t
model (from Potmesil [90])

25

Kepel [68]; and Fuchs, Kedem and Uselton [50] reduce this interpolation problem

to constructing a sequence of surfaces, one between each pair of adjacent contours.

These surfaces are constructed from elementary triangular tiles, each defined

between two consecutive points on the same contour and a single point on an adja­

cent contour. Figure 2.2 shows a set of contours on a given shape and the indivi­

dual triangular tiles defined over these contours.

Ganapathy and Dennehy [51] described an heuristic method for triangulating

the three-dimensional surface formed by spanning a set of planar contours. Their

method (which imposes no restriction on the orientation of contours) is claimed to

be superior to Fuchs’s or Kepel*s since Kepel’s method is dependent not only on

the number of points approximating a contour but on the shape of that contour as

well, while Fuchs’s method requires a large number of steps for triangulation and

is not suitable for applications where speed is of primary importance.

Boissonnat [17] worked on a similar problem as well. Unlike Fuchs, Kedem

and Uselton*s method which constructs the surface of the object, his method con­

structs a volume whose boundary is a polyhedron with triangular faces intersecting

the cutting planes along the given contours. If there are L cross-sections, his

method constructs a sequence of L-l partial shapes instead of constructing a shape

over these cross-sections, where each of the partial shapes connects two cross-

sections lying on adjacent planes. He then computes the L-l Delaunay triangula­

tions of the vertices of the L-l couples of adjacent cross-sections and reconstructs

the shape and obtains the volume, slice by slice, by pruning these L-l Delaunay

triangulations (since the boundary of the object can be obtain without the need of

26

computing the Delaunay triangulation, the reason for this computation is not very

clear). The surface of the object can be produced by looking at the surface of the

obtained volume. Figure 2.3 shows a set of contours and the partial surfaces. For

clarity, only boundary faces of the non-eliminated tetrahedra (which are not lying

in a cutting plane) are shown.

Other shape reconstruction techniques have also been introduced in the litera­

ture. Some of these methods use intensity images as input: Baker [6] proposed a

shape building method which uses many intensity images taken from different

known rotated views; Shapira and Freeman [100] described an algorithm for con­

structing three-dimensional objects bounded by planar or quadratic surfaces from a

set of photographs of scene taken from different views; Bocquet and Tichkiewitch

[16] proposed a method which uses digitised standard mechanical drawings from

three orthogonal views as input to reconstruct a shape and so on. These techniques

use different sort of data as input than the data used in this thesis, and therefore

will not be described in this section. In some other techniques such as Schmitt,

Barsky and Du’s [98] (which is based on an adaptive subdivision approach) shape

is reconstructed by fitting bicubic Bemstein-Bezier patches meeting with G1

geometric continuity onto the three-dimensional data; or in Little’s [74] technique

convex polyhedral object models are reconstructed by using their corresponding

extended Gaussian images (EGI), as is Ikeuchi’s [64], which also reconstructs the

original shape of a convex polyhedron from its EGI. A volume-based approach (in

which the shape is obtained by the Delaunay triangulation - see section 4.2) was

used to reconstruct a shape in this thesis. Thus neither of these works is directly

27

mmmm
jSS'ffg'#***'**.^ ▼ a Y a T i* '.. rA -< a •% . 1 . » .« '

Figure 2.2 Contours and triangular tiles (from Fuchs et al. [50])

Figure 2.3 Contours and partial surfaces (from Boissonnat [17])

28

relevant. However, extended Gaussian images were used in matching the recon­

structed shape onto the solid model primitives. Detailed information will be given

about extented Gaussian images in Chapter 7.

In the applications of computer graphics, voxels (volume elements) have been

used as data to construct shape as well as parallel contours. The literature related

to these applications and a list of references about the applications of shape recon­

struction in medicine is given by Lorensen and Cline [77].

2.3 Polyhedral Approximation

In many applications of pattern recognition, robotics, and computer vision, objects

are initially represented by the coordinates of points lying on their boundaries.

Since no relation between these points is known, this is a poor representation of

the object. To make this representation complete and thus allow the shape to be

analysed, the three-dimensional surface points should be approximated by three-

dimensional surfaces. This is a polyhedral approximation of the surface of the

object. Such approximations have been used to solve many problems such as:

definition of the shape of the object; controlling the automatic machining of sur­

faces [33, 41]; smooth interpolation between the points [32, 48, 88]; or, on the con­

trary, reduction of the points without damaging greatly the actual shape of the

object [47]; calculations of geometric properties such as volume, surface area, axes

of inertia; definition of the surface normals at the points; extraction of elementary

shapes and so on. Literature surveys on the problem of creating a triangulation

over the object’s surface will be covered in the next section.

Polyhedral approximations have been used widely in shape reconstruction and

shape analysis. Criteria which make polyhedral approximations useful as object

representations are given in Henderson [58]. Ganapathy and Dennehy [51] used

polyhedral approximations in their triangulation algorithm, and Henderson and

Bhanu [60] created a three-dimensional model in terms of planar faces approxi­

mated by polygons. These two methods have been described in the previous sec­

tion.

Faugeras and Ponce [45] proposed a hierarchical structure for describing 3D

objects. They use a recursive polyhedral approximation algorithm to construct a

binary tree structure called a prism tree. In another paper, Faugeras and Hebert

[46] segmented the surface of the object into planar regions by polyhedral approxi­

mation in their matching procedure.

Boissonnat [19], Boissonnat and Faugeras [21] and Faugeras et al. [47] pro­

posed an efficient algorithm for building a polyhedral approximation of a set of 3D

surface points. As mentioned earlier, they obtained the surface points by using a
v

laser range finder which is similar to the one developed at Bath University [61].

Their algorithm is presented as a generalization of an existing algorithm for polyg­

onal approximation of a two-dimensional curve. The basic approach is a graph-

guided, divide-and-conquer procedure and the steps of the algorithm are given in

[19],[21] and [47]. The net result of the algorithm is an approximation of the ori­

ginal surface by a polyhedron whose faces are triangles. Results of two fairly

complicated objects are shown in Figure 2.4. In spite of the difference in process­

ing algorithms, the input and output for this approach are quite similar to

30

Henderson’s [59].

Faugeras [44] proposed a method for producing a complete polyhedral

representation of objects based on geometric matching between primitive surfaces

in order to construct the models in his 3D object recognition algorithm. This algo­

rithm will be explained in section 2.4. Figure 2.5 shows the object he used for

modelling (which is an automobile part) and the surface triangulation of this object.

Several alternative approaches to polyhedral approximation are also introduced

[58], including region growing, local feature clustering and divide-and-conquer

techniques; though most of the time these techniques work together with polyhedral

approximations like Henderson and Bhanu’s [60] sequential region growing algo­

rithm. Region growing techniques fit surface patches to small seed areas which

consist of a small group of points on the surface, and then expand the patches by

adding and testing the neighbouring areas (or points) to see whether or not they

satisfy the necessary conditions to join the expanding region. This is done until

the equation of the patch no longer provides a good fit to the points added. This

occurs when the patches reach the boundary of a different surface.

Local feature clustering techniques, different from region growing techniques,

measure some feature at each point of the data (e.g., the surface normal at that

point), and apply standard clustering techniques to the resulting vectors. Applica­

tion of standard clustering techniques to local features of the range data has a

tremendous potential. Clustering methods are required to be fast, to take neighbour

constraints into account, and to allow the use of supplementary information. A

good review of various methods and applications is given by Diday et al. [39].

31

Figure 2.4 Objects reconstructed by polyhedral approximation
(from Boissonnat [19])

Figure 2.5 An automobile part and its 3D triangulation (from
Faugeras [44])

32

Finally, the divide-and-conquer technique applies a recursive algorithm to pro­

cess the data in two halves. This is a fast method. Boissonnat and Faugeras’s [21]

algorithm is a graph guided divide-and-conquer approach to polyhedral approxima­

tion of a set of 3D surface points as mentioned earlier. Divide-and-conquer tech­

niques have been applied to the polyhedral approximation problems in multidi­

mensional spaces successfully [9, 10, 92].

2.3.1 Triangulation

The problem of approximating the surface spanning a given set of 3D points as a

polyhedron of triangular faces is that of creating a triangulation of the surface.

Triangulations have received a lot of attention in the past and have many

areas of application [73]. They have been widely used in finite elements mesh

generation [22, 23, 34, 97, 116], in computer graphics and in computer vision. In

some applications such as Wordenweber’s [117], a triangulation technique has been

used to produce pictures in geometric modelling.

In some others, it is used to construct smooth surfaces from scattered data in

3D [48, 88]. Choong [33] proposed a novel heuristic triangulation technique to

model a measured shape (the measurements being taken by a 3-axis measuring

machine) which he used in an automated polishing process of die cast components

by a robot. The three-dimensional geometry required was defined in the form of

z= f(x,y) where z is represented by an array of height ordinates of the surface for

discrete values of x and y. The technique is based on the creation of two-

dimensional mesh of equilateral triangles on a plan view of the component. It

33

distorts this mesh in the boundary region so that adjacent nodes are forced to coin­

cide with points defining the boundary curve. .Nodes lying outside the boundary

are rejected. Heights for each node are calculated by interpolating the z values

from the original height ordinate array. The laying of the initial triangulation lat­

tice is shown in Figure 2.6. As is seen from the isometric view in figure 2.6, the

triangle elements in curved areas are highly distorted. The surface is then sub­

jected to a triangulation process which attempts to create a structure of equilateral

triangles. The result of triangulation is shown in Figure 2.7. This technique also

suffers from same problem that Vemuri and Aggarwal’s technique suffers and it

only works with single-valued surfaces.

Choi et al. [32], unlike Choong’s technique [33], proposed a technique which

is concerned with the triangulation of 3D points (which are scattered on a 3D sur­

face of complex shape) to construct smooth surfaces. Their algorithm, which is

based on Thiessen/Voronoi polygonization [94], first triangulates 3D points and

obtains a proper triangular grid. It then improves the grid by applying smooth tri­

angular interpolants onto the points. To improve the smoothness of the surface, a

smoothness criterion and a grid improvement algorithm (different from the

Lawson’s max-min angle criterion [70] and the circle criterion [70] to obtain an

optimal triangulation grid) have been introduced by them. It is reported that his

triangulation algorithm may cause some numerical problems when the 3D points on

a closed surface are triangulated (i.e. when the apex angle of a convex cone

exceeded 89.92 degrees).

34

(a) A 2-D mesh superimposed
onto the plan view of a
hemispherical surface

(b) Removal of nodes outside
the boundary of the
surface and coalescing
nodes to the fixed
boundary.

(c) Isometric view of (b)

Figure 2.6 Laying of the initial triangulation (from Choong [33])

Surface Formed by 2 Heni-spheres
Intersected by a Semi-Cylinder

A Truncated Cone

Figure 2.7 The results of triangulation (from Choong [33])

35

Oxley [84] used triangulation in surface fitting. His algorithm recursively

splits an area up into one or two triangles and other areas in an initial triangulation

stage. After applying this recursive process to the whole surface, the areas which

are not triangles are stored on a stack. The algorithm proceeds by repeatedly

removing an area from the stack, splitting it up and adding areas to the stack until

the stack is exhausted.

Among the possible solutions of finding minimal structures (i.e. those with the

fewest edges and which preserve the topology of the surface) to represent or to

construct a shape, O’Rourke [83] suggested minimizing the surface area when tri­

angulating a set of 3D points. His algorithm starts with the convex hull of a given

set and shrinks this hull onto the internal points. In order to do this, it chooses a

point internal to the hull, systematically modifies the current polyhedron to include

this point, makes local adjustments to the polyhedron in the neighbourhood of the

modified region and repeats this for all internal points until the internal points are

exhausted. This algorithm is not guaranteed to reduce the residual error to get

closer to the minimal polyhedron and has been claimed to yield strange results (see

[20]).

Boissonnat and Faugeras’s graph guided algorithm [21] - as explained earlier -

also approximates the surface with triangles. It uses an underlying graph to struc­

ture the data for association with approximating triangles. Whenever a triangle

does not approximate the data associated with it very well, graph methods are used

to divide up the data for a better approximation.

36

One of the most well known triangulations is the Delaunay triangulation [25,

53, 106, 111]. The Delaunay triangulation is the geometric dual of the Voronoi

tessellation [53, 106, 111] and is obtained by linking the points whose Voronoi

polyhedra are adjacent across a common face. To analyse a shape and to compute

some of its geometrical properties neighbourhood relationship information between

its points needs to be obtained. The Delaunay triangulation obtains this informa­

tion and produces a good polyhedral approximation of the shape. Delaunay tri­

angulations and Voronoi tessellations will be explained in detail in Chapter 4. A

good survey on defining the neighbourhood relationship of a point and applications

of Voronoi tessellation can be found in Ahuja [1].

Delaunay triangulations have many different fields of application. Some of

these applications are mentioned in [25], [72] and [111]. They have also been used

by many finite elements mesh generators [30, 36, 78]. In one of his papers Bois­

sonnat [18] proposed to use a Delaunay triangulation to represent a two or three

dimensional shape which is defined by a finite number of surface points and con­

structed the shape by pruning Delaunay triangles between adjacent cross-sections in

the other paper [17]. To generate the triangulation [18, 20], he used the efficient

multi-dimensional algorithm [25] which was also used in this research. Since the

Delaunay triangulation fills the interior of the convex hull of the points with

tetrahedra, it is the volumetric representation of the object. The object is

represented by a set of tetrahedra and the boundary of the set (which is the convex

hull) is a polyhedral approximation of the surface of the object (if all the points are

in the convex hull). If the convex hull does not contain all the points, some

37

tetrahedra need to be eliminated until all the points are on the boundary of the

polyhedral shape.

Boissonnat [20] introduced four rules to eliminate redundant tetrahedra until

all the points are on the boundary of a polyhedral shape. He eliminates the

tetrahedra one after another by checking their associated value. This value (which

is used to sort the tetrahedra) is defined as:

If Aj is the area of faces of the tetrahedron interior to the boundary, AB is the

area of faces of the tetrahedron on the boundary and A is the area of faces of the

tetrahedron, then the value associated to each tetrahedron is

(Z A j - X A b)

5 Z A

He eliminates the tetrahedra with the smallest values first. He suggests that this

criterion tries to minimise the modifications of the boundary by eliminating the less

regular tetrahedra. This method, which tends to eliminate sharp projections (which

may really be there) is different from the methods described in this thesis. The

result of his elimination is shown in Figure 2.8. The triangulation algorithm used

in this thesis will be explained in Chapter 4 and the method of eliminating the

redundant tetrahedra in Chapter 5.

2.4 Matching

After reconstructing the shape the next problem to be solved is that of matching

the reconstructed shape to a geometric model. Different matching techniques have

been introduced in the literature. Most of these techniques have been used exten-

38

F igure 2.8 Elimination of redundant tetrahedra (from Boissonat [20])

39

sively in scene analysis for matching model and scene descriptions and in pattern

recognition. Good reviews on some of the main techniques such as relaxation,

Hough transform, Fourier descriptors and moments and so on are given in [44] and

in [86]. It is not the intention here to give a complete survey of these techniques.

Instead, a few of them will be mentioned to draw attention to the differences

between these techniques and the technique used in this research.

Bhanu and Faugeras [14] proposed a technique for shape matching in 2D

which they based on a relaxation scheme called stochastic labelling. Bhanu [13]

then extented this technique to be used in 3D. His matching technique in three-

dimension uses planar faces as primitives as explained earlier, and matches an unk­

nown view with the structural 3D model by using a stochastic face labelling tech­

nique. The face features of area, perimeter, length of maximum, minimum and

average radius vectors from the centroid of a face, number of vertices in the polyg­

onal approximation of the boundary of a face, angle between the maximum and the

minimum radius vectors and ratio of area/perimeter2 of a face are used as well as a

feature-weighting vector to compute the initial face-labelling probabilities. The

compatibility of a face of an unknown view with a face in the model is obtained

by finding transformations, applying them and computing the error in feature

values. The compatibility functions used in the first and second stage iteration use

weighted quantities of: the distance between neighbouring face centroids, the ratio

of the areas of the neighbouring faces, the difference in face orientations, and rota­

tion angles for the maximum intersection area of coplanar faces. Transformations

are computed at the end of second iteration stage. This method handles arbitrary

40

view-points. However, it relies too heavily on the consistency of the output from

the face-finding algorithm. Perhaps this is justified, but no evidence is given. All

face-adjacency information is not utilised. A block diagram of this matching algo­

rithm is given in Figure 2.9.

Davis [38] investigated representing a 2D shape as a spring-loaded template

and searching for matches to this template with a relaxation-like graph processes.

He used a hierarchical matching process: the low level of his hierarchy is based on

the association graph where the nodes represent simple angle matches and the

edges represent ordering and distance constraints; and the higher level is based on

the line graph of the association graph where the nodes represent more complicated

structures (such as pairs of simple matches) and edges represent more complex

constraints based on comparing pairs of similarity transformations. An experimen­

tal study of his matching algorithm which uses the coastlines of several islands as

the input shapes is given in [38].

Faugeras [44], Faugeras and Hebert [46] and the group in INRIA introduced a

3D object recognition and positioning algorithm which is based on geometrical

matching between primitive surfaces. Their algorithm uses a segmentation of the

surfaces to be identified into geometrical primitives and matches the scene primi­

tive list to the model primitive list using an approach that minimises the mean

square-error criterion over all plane-to-plane transformation matches. The transla­

tion and rotation matching are separated into two independent least-squares prob­

lems. The translation permits a standard linear least-squares solution but the rota­

tion does not. Since classical least-squares methods cannot be directly applied to

41

the rotation, quaternions are used to convert the nonlinear 3D rotation problem into

four-dimensional eigenvalue problem which can be solved directly. The quantita­

tive measure of goodness of the match between the data and the model is calcu­

lated by combining the rotation and translation matching errors.

This technique is similar to the matching technique mentioned in this thesis in

the sense that they both use least-squares technique to find the best transformation.

In both techniques the estimation of the translation and of the rotation are indepen­

dent. However, the major difference between the two techniques is the order of

transformation. INRIA’s matching procedure does the rotation first. It rotates the

model planes until they become as parallel as possible to the scene planes and then

translates them to minimise the sum of the differences of the distances to the ori­

gin. The technique described in this research, on the contrary, does the translation

first. It translates the configurations to have centroids (or in other words plane

centres which are minimum distance away from the faces) at the origin and does

the rotation next to minimise the residual sum of squares between the planes.

Horn [62], Horn and Ikeuchi [63], Ikeuchi [64] used extended Gaussian

images (EGI) to match the object models to the scene models. They compute the

prototype surface-normal-vector orientation histograms for various shapes by using

three-dimensional object models and compare the scene object histogram and pro­

totype object histogram to compute the best match. The best match determines the

orientation of the object in space. This approach is quite similar to the INRIA

approach and to the approach used in this research since they all use surface-

normal matching procedure. Figure 2.10 shows the surface normals of some

42

samples and the extended Gaussian image of the normals.

Ballard and Sabbah [8] used the generalised Hough transformations to com­

pute the 3D transformations (translation, rotation and scaling) between a given

view and a given object; Zahn and Roskies [118] used Fourier shape descriptors;

Dudani et al. [40] used moment invariants for the same purpose. Since a new

method of matching was devised for this work, these literature and the literature

about the other types of shape matching will not be reviewed in this thesis.

For the purpose of matching, the Procrustean technique [29] is introduced by

the author. This technique and a matching algorithm using this technique will be

described in detail in Chapter 7.

2.5 Concluding Remarks

In this chapter different techniques for shape reconstruction, polyhedral approxima­

tion, triangulation and matching have been covered. Although some of these tech­

niques are quite different from the techniques used in this research, they have been

described precisely to give some idea about those differences.

As mentioned in the first chapter, the aim of this project was to form a model

from the measured data and then match this model to the master solid model gen­

erated by a CAD system. Two problems arise here: the two differing descriptions

of the same (or nearly same - the purpose of inspection is to find manufacturing

errors) component and the different coordinate systems to which the measured

component and the master solid model belong. The algorithms which deal with

43

M o d e l

C o n p u t a t i c

o f f a c e

f e e t u r e e

I s l b t e g e

o f

gradlent

r e l a x a t i o n

A I g o r i t h n

g r a d i e n t

r e l a x e t i o n

A l g o r i t h n

2 n d s t a g e

Figure 2.9 Block diagram of 3D shape-matching algorithm (from
Bhanu [13])

A sphere on a cylinder Surface normals Extented Gaussian image

Figure 2.10 Surface normals and their extended Gaussian images

44

these problems and match the objects under translation and rotation by using the

Procrustean algorithm will be explained in the next chapters.

45

CHAPTER 3

GATHERING THE DATA

3.1 Introduction

In a number of applications objects are initially described by a set of coordi­

nates (x,y,z) of surface points scattered all over the object Such data are in

general irregularly located in 3D space and can be generated by any coordinate

measuring machine.

In this chapter a laser coordinate measuring machine is described. This is

a non-contact type measuring machine, and was developed at Bath University

[61]. In the latter sections, an algorithm which simulates the process of this

measuring machine is introduced.

46

3.2 Co-ordinate Measuring Machines

The introduction of the new range machine tools - transfer lines, NC and CNC -

has drawn attention to the need for rapid measurements of components. Since

extremely complex components have started to be produced on machining centres

much faster than they can be inspected, it has become obvious that conventional

inspection methods are both wasteful of time and effort. So, in order to improve

the accuracy, ease and speed of measurements, to reduce the time taken to record

and analyse the results, and to improve the communication of measurement results,

co-ordinate measuring machines (CMM) have been introduced [52, 91].

In modem production, time is critical. For this reason, improving floor-to-

floor time is one of the important tasks to be achieved in modem tooling technol­

ogy. Since one of the time-consuming operations which prevents the movement of

components after machining is inspection, inspection time should be reduced. The

principal benefit of computer-controlled co-ordinate measuring machines is a reduc­

tion in inspection time.

Past inspection methods relied heavily upon manual methods, with a human

operator sampling the production line in order to make time consuming measure­

ments. Automated inspection techniques have significantly improved quality con­

trol by providing an inspection capability which is far more reliable than human

methods. During inspection, a large amount of numeric data is generated. These

data can be processed and programmed so that component errors can be displayed

visually or printed.

47

Ideally, the inspection of a product should occur whilst the tool is cutting (any

errors found during the machining can then be corrected instantly). This is called

adaptive control or in-process control. In-process control is performed in real-time

and is significant in providing feedback for applications such as the adaptive con­

trol of machine tools, the monitoring of toolwear and machine malfunctioning, and

the control of assembly processes (i.e. in the adaptive control of machine tools the

measurement results at the cutting point are fed back to the machine controls and

automatic adjustments of the machine speed or tool tip position are made). An

application of in-process control is mentioned by Choong [33]. This type of con­

trol is quite difficult in some methods of production.

However, this is not generally the requirement; inspection may be done with

the machine stopped and the cutting tool withdrawn. This is called off-line inspec­

tion and may take place in-between the manufacturing steps or during the final

inspection. Errors when found are corrected. The inspection technique described

in this thesis is off-line.

The intention here is not to give detailed information about the co-ordinate

measuring machine or inspection techniques. Instead, a particular type of measuring

machine from which the data used in this thesis were gathered will be described.

This is a non-contact laser measuring machine. However, some information on

CMMs and their development is mentioned by Gilheany and Trey win [52], and

their utilisation is mentioned by Black [15]. A very recent survey of three-

dimensional co-ordinate measuring machines is given in [35].

48

3.3 The Laser Measuring Machine

Many different range-finding techniques used for measuring the shapes of three-

dimensional objects have been introduced in the literature. These techniques, as

shown in Figure 3.1, may be divided into two major categories: active techniques

and passive techniques. In this section a laser range-finder [27, 44, 47, 61, 66, 79]

based on triangulation will be described. Good surveys on different types of 3D

data acquisition techniques are given by Jarvis [66] and Henry [61].

3.3.1 The Design Concept

The laser measuring machine [27, 61] from which the data were gathered was built

for Rolls Royce Ltd. to measure turbine blades in three-dimensions as a final qual­

ity check. Figure 3.2 shows the general layout of the machine, which is controlled

by a small computer. The laser beam is directed anywhere on a component by the

two galvanometer mirrors which rotate on perpendicular axes. The currents driving

the mirror galvanometers are derived from the outputs of digital-to-analogue con­

verters. The component to be measured (a turbine blade in the figure) is mounted

on a rotary table which is also mounted on a vertical slideway to increase the range

of the machine. The rotary table and slideway are both driven by stepper motors

which are controlled by the computer. The slideway provided over 300mm of

travel, enabling the objects to be measured in a cylinder of diameter 100mm and

height 300mm. By use of the rotary table, the component may be inspected from

many different directions.

49

Range Finders

Active methods Passive methods

Lasers White light Ultrasound Radio waves

Triangulation Time-of-flight

Single detector Multiple detector

Beam Projection Plane projection

Linear array camera 2-D array camera Position sensor

1-D scanning 2-D scanning

Galvanometer Motor Acousto-optic devices

Random access and sequential scan Random access Sequential scan

Range and brightness Range Brightness

Figure 3.1 Types of range-finding techniques (from Parthasarathy [85])

50

X*Y
PSO GALVANOMETER-
CAMERA ASSEMBLY

JURBINE
BLADE

CAMERA-

•ROTARY
TABLE

MIRROR
MOUNT

OPTICAL
BASEPLATE

HeNe LASER

Figure 3.2 General layout of the laser measuring machine (from Henry [61])

The scattered light from the component is received by two Position Sensitive

Detector (PSD) cameras mounted either side of the galvanometer assembly and

angled at 45 degrees to each other. The signals produced by these cameras are

amplified and sent to an analogue-to-digital converter; thus the coordinates of the

light spot in three-dimensions are calculated. PSD cameras and their advantages

over conventional cameras are mentioned in [27] and [61]. A plan view of the

measuring geometry is shown in Figure 3.3.

As the whole apparatus is closed off with thick black curtaining for safety

reasons, a TV camera is used to provide remote monitoring of the measurement

process which allows the operator to position the target ready for the scanning.

Once a view is selected by the TV camera, the illumination is switched off and the

target is rotated to the scanning position and the scan starts. The target rotations

between the scans and TV camera positions are controlled by the computer.

The light source used was a 5mW He-Ne laser, though this was replaced by a

infra-red laser diode later on. The working volume in which the machine may take

measurements was 100 x 100 x 200 mm, and a measurement accuracy of +/- 0.1

mm was achieved.

3.3.2 Taking Measurements

The laser measuring machine is based on the laser triangulation technique [61, 66,

79, 105]. In order to take a single measurement the computer generates the vol­

tages for the mirror galvanometers needed to deflect the laser beam to the desired

point on the component’s surface. The image of the bright, small spot of the beam

52

is then picked up by two two-dimensional PSD cameras. These cameras each pro­

duce two voltages proportional to the position of spot’s centroid focused on a rec­

tangular photosensitive area. The four voltages resulting from the two images of

the spot are read using analogue-to-digital converters and the computer calculates

the three coordinates of the spot in space by using the values of these voltages

together with the distance between the detectors. This is the triangulation tech­

nique.

The main alternative to the triangulation technique - as seen from figure 3.1 -

is the time-of-flight technique [61, 66, 79, 105]. In this technique, a laser beam (or

acoustic energy) is directed towards the component to be measured and the path-

length of the beam that strikes the component is calculated, either by measuring the

short time delay between transmitted and received pulses, or by examining the

interference of the beam with its reflection back along its path. The advantage that

time-of-flight techniques have over triangulation is that, as long as the beam strikes

the component, a measurement can always be made. Since the transmitted and

received beams are co-axial, occlusion problems (which occasionally occur in the

triangulation technique when the light spot on component’s surface is occluded

from the view of one or both cameras by other projections of the component) do

not exist in time-of-flight technique. However, the time-of-flight technique requires

high-frequency electronics to make the measurements and sometimes to modulate

the beam. Both techniques suffer when the beam strikes the component very

obliquely and insufficient light is reflected into the detectors to make a measure­

ment (this is a particular problem with shiny components).

53

P S D

M i r r o r

s p e c i n e n

P S D

\

L a s e r

Figure 3.3 Plan view of the measuring geometry (from Bowyer et al. [271)

Figure 3.4 Surface points of the turbine blade (from Bowyer et al. [27])

54

The occlusion problem in triangulation can be eliminated by inspecting the

component from several directions. Thus the scan of the component’s surface was

regular. Of course, the fact that the object’s faces were not all at the same orienta­

tion meant that a given scan would lead to different densities of points on each.

To keep the electronics simple and cheap, triangulation was preferred in [61]. Sur­

veys on triangulation and time-of-flight techniques are given in [61], [66] and [79].

3.3.3 Analysing the Measurements

For inspection applications, measured data need to be compared with reference data

produced from a model. For this reason, the data - which consist of the coordi­

nates of surface points of the measured component - need to be analysed and then

compared with reference data (a master solid model in this research) to find any

manufacturing errors resulting from mismachining or any other reasons. This is

the aim of this research. The methods used to analyse the data and to compare the

model derived from the measured points with the master solid model of the com­

ponent will be explained in the next chapters. As an example of input data, the

surface points of a turbine blade are shown in Figure 3.4.

The laser measuring machine is capable of taking measurements at the rate of

about three hundred measurements per second (however, to obtain the accuracy of

+/- 0.1 mm this rate drops to thirty measurements per second). The measuring

machine is used to measure engineering components automatically after teaching

the machine from a master model of the components [27]. The teaching process is

done by using a television camera.

55

A method by Henry [61] which is different from the methods described in this

research is proposed for comparing measured data with reference data derived from

a model. His method, which is based on the Delaunay triangulation, generates

range images from the irregularly sampled ‘z’ range values and uses two-

dimensional interpolation. It then subtracts the measured range image from the

reference range image (which is generated either by ray-tracing a master model or

by measuring it by a vision system) and calculates an error image which produces

information on the types of defects that may be present.

The laser measuring machine is a physical implementation of the ray-casting

algorithm. In the next section, simulation of the data gathering process using laser

measuring machine will be explained. A ray-tracing algorithm, DORA [115], has

been used for the simulation.

3.4 Simulation of Data Gathering

As was mentioned earlier, the data to be analysed and matched to the reference

data consist of points in space. These data may either be gathered by using a laser

measuring machine or by using an algorithm which simulates the process of this

measuring machine (simulation of the laser measuring machine was needed because

the measuring machine was unserviceable most of the time during the preparation

of this research). A set-theoretic solid modeller, DORA (Divided Object Ray-

casting Algorithm) which was developed at Bath University to produce pictures has

been slightly modified to be used for the simulation purpose.

56

3.4.1 DORA - The Solid Modeller

DORA is based on the technique of ray-casting. Ray-casting [113] is a computer

graphics technique which produces pictures by tracing a ray of light back from the

viewer into a scene being depicted. A picture is produced by generating a pattern

of straight lines or rays with a viewer’s line of sight through each pixel on a

raster-scan graphics display. The ray is traced until it strikes a surface of the

object and the colour of that surface is transferred to the pixel. Figure 3.5 shows

the ray-casting process.

The ray-casting process in DORA compares each ray with a division structure

- DORA divides the object space into sub-spaces to increase the speed of picture

production over a number of pictures - and determines the first surface that the ray

met. By comparing each primitive (half-space) with the ray and testing whether

any of them represents a real surface and doing this for every ray, a picture is gen­

erated.

DORA uses a model consisting of a set-theoretic combination of half-spaces

to produce a picture on a raster graphics display. The model (which must be

suplied as a list of half-space definitions and the set-theoretic operator tree which

relates the half-spaces) can be prepared by an Algol-like language called SID (Set-

theoretic Input to Dora) [24]. Part of the SID code that generates a hex-headed

bolt is given in Figure 3.6.

Obviously, the principle of ray-tracers is very similar to the principle of the

laser measuring machine. A ray is traced until it strikes to a surface of the object

57

v i e w e r

screen
ob ject

Figure 3.5 Ray-tracing

The SID m od e l b u ild in g la ng uag e
; Build the bolt's shaft

z_point :=pt(0.0,1)
axis :=ln(z_point,z_point) ; In returns a line through a point

; in a given direction
radius :=diam*0.5
btt_ shaft :=cylinder(axis, radius,n_ facets)

; Now the hex head
root_ 3 :=sqrt(3.0)
radius :=diam*0.5*root_ 3
face_ point :=pt(0,radius,0)
face :=space(face_ point,face_ point) ; space returns a planar

; face through a point
; with a given surface
; normal

head :=face
FOR count :=1 TO 5 DO
{ angle :=count* 3.1415926/3

head :=head & spin(face,axis,angle)
}

; & means intersection

Figure 3.6 The SID code that generates a hex-headed bolt

58

like a laser beam which is directed at the same surface. The only difference here

is, although the laser measuring machine finds the coordinates of the point that the

beam struck, the ray-tracer paints the corresponding pixel into the colour of the

surface. By making some modifications to the ray-tracer this difference can be

removed and the process of the laser measuring machine is simulated.

3.4.2 Modifications on DORA

DORA was modified to record the coordinates of the surface points that the rays

struck. Each ray to be traced is defined in parametric form:

x = xQ + ft
y = y0 + g '
z = z + hro

where (xQ, y , zQ) is the ray’s starting point - a view-point which is defined in

DORA’s command file f, g and h are the ray coefficients generated by the ray-

tracer; r is the parameter of the ray and (x,y,z) is the intersection point if there is

any intersection. Rays are cast from all around the object (6 or 8 different view­

points are defined for this purpose) and the coordinates of the intersected points are

found and written into a file to be used as data in the future processes.

To control the number of rays used to scan the object’s surface, two different

angles are defined for horizontal and vertical directions. From these angles, incre­

ment angles a and p of horizontal and vertical directions respectively can be calcu­

lated as :

59

a = Given angle in horizontal direction_____
desired number of rays in horizontal direction

P =
 Given angle in vertical direction_____
desired number of rays in vertical direction

These increment angles and the viewing pyramid are shown in Figure 3.7. By

controlling the increment angles, complicated surfaces can be scanned with more

rays than usual and more detailed information can be obtained to generate the

model.

To take the accuracy of the laser measuring machine into consideration and to

avoid degeneracy problems at the triangulation stage (which will be explained in

the next chapter), the surface points were randomly perturbed by a small amount

(between the range of IOji and lOOji - which is the accuracy of laser measuring

machine). This was not intended to simulate errors in planarities of the surfaces

themselves, or their roughness. Some suggestions about these cases will be given

in Chapter 8. Figure 3.8 shows the surface points of two models. These surface

points are obtained by the ray-tracer.

3.4.3 Limitations

A limitation that DORA has is that its models are faceted. Curved surfaces are

approximated by a combination of planes and only infinite planar half-spaces are

used as primitives by the modeller. This limitation has been accepted to generate

fast running software. Since DORA has been used in simulation, this limitation in

DORA affects the data gathering process.

60

v i e w p o i n t

s c r e e n

Figure 3.7 Increment angles and the viewing pyramid

61

Figure 3.8 (a) Surface points

Figure 3.8 (b) Surface points

62

3.5 Concluding Remarks

In this chapter the laser measuring machine and simulation of data gathering pro­

cess is described. At this stage, the data which have been obtained either by this

measuring machine or by the simulation are ready to be processed. In the next

chapter, an efficient algorithm is introduced for processing the data. Although a

laser measuring machine has been described in detail in this chapter, all the algo­

rithms described in the next chapters would work just as well for a mechanical

probe.

63

CHAPTER 4

PROCESSING THE DATA

4.1 Introduction

The gathered data consist of a set of co-ordinates (x,y,z) representing the sur­

faces of an engineering component. This information needs to be processed

further to form a shape which will then be compared with the master solid

model of the same component to find any defects.

This chapter introduces an efficient multi-dimensional algorithm [25]

which uses the Delaunay triangulation to process the measured points and to

find the neighbourhood relationships between them.

64

4.2 The Delaunay Triangulation

The data to be matched to a collection of solid model primitives consist of points

in space. Only the positions of points lying on the boundary of the measured

objects are known; no topological information is available. Obviously, this infor­

mation is insufficient to form or to analyse the shape of the measured object; some

additional information such as the neighbourhood relationship between the points is

also needed. To obtain this information the Voronoi diagram (also referred to as

the Dirichlet tessellation amongs mathematicians or Thiessen polygons in geogra­

phy) of the measured points is constructed.

The geometric dual of the Voronoi diagram is the Delaunay triangulation.

Literature about the Voronoi diagram and Delaunay triangulation have already been

mentioned in Chapter 2. In this section the definition and the properties of the

Delaunay triangulation will be given. But first, the formal definition of a triangula­

tion of a closed surface needs to be defined [19, 42]. A collection T of triangles

(in Euclidean space) is a triangulation iff:

i. Any two triangles are either disjoint, or have a vertex in common, or have

two vertices and consequently the entire edge joining them in common. That

is, the triangles do not intersect and are not coincident except at vertices or

edges. Also, all edges are simple in the sense that they have exactly two

incident triangles. This is the triangulation requirement.

ii. All edges within a triangulated surface are connected, that is, there is a path

of edges connecting any two of them. This requirement is called the connect-

65

edness condition.

iii. For every vertex of a triangle of T, its link is a simple closed polygon; that is,

every edge of a triangle is adjacent to exactly two triangles. This requirement

is called the link condition.

From this definition, by reformulating the criteria above, some more definitions

[42] can be derived such as:

i. Some subset of triangles, that pairwise share common edges, can be combined

and this combination is called a face. In usual practice a face is chosen to be

that subset of edge-sharing triangles that lie on a surface defined by a single

equation or parametric representation. A triangle belongs to exactly one face.

ii. Faces may wholly bound to other faces and there is a path from one face to

any other face by crossing shared edges. Faces can intersect only at shared

vertices and edges.

The aim of triangulation is to find the surfaces. But at this point, a question arises:

What is a good triangulation? A triangulation is regarded as good for interpolation

purposes if its triangles are nearly equiangular. It was shown by Sibson [101] that

there is only one locally equiangular triangulation of the convex hull of a 2D finite

data set and that is the Delaunay triangulation.

The Delaunay triangulation is the geometric dual of its Voronoi diagram. In

2D the Voronoi diagram is a pattern of packed convex polygons covering the

whole plane, and is determined by a finite set of distinct points: each point is asso­

ciated with a territory that is that area of the plane nearer to it than to any other

66

data point. The formal definition of Voronoi diagram [53] is given as: for a given

set P= {p x , . . . , pn }, N > 3 of points in the Euclidean plane where the points are

not all colinear and where no four points are cocircular, the region of P, is the set

Ti defined by

Ti = { * : d (x , P i) < d (x , P j) f o r all i*j }

where d is Euclidean distance.

Lee and Schachter [72] explained the structure of the Voronoi diagram by

assuming the structure is the cells of a growth process. Voronoi polygons which

have a boundary segment in common are said to be contiguous as are their generat­

ing points and are called Voronoi neighbours. In two-dimensions polygons meet in

threes (except in degenerate cases, see section 4.2.2) at Voronoi vertices so the

lines joining contiguous generating points define triangles. These triangles triangu­

late the whole area within the convex hull of the generating points. The perpendic­

ular bisectors of the edges of this triangulation give the boundaries of the polygons

and circumcentres of the triangles are vertices of the polygons. This triangulation

is called the Delaunay triangulation. Figure 4.1 shows the Voronoi diagram and

the Delaunay triangulation for 16 points. Bold lines represent the tessellation

where the dotted lines represent the Delaunay triangulation.

In three-dimensions the territory of each data point becomes a convex

polyhedron: the region of space nearer to the point than to any other. The faces of

the polyhedra are convex polygons and each convex polygon lies in the plane

which bisects an edge of a Delaunay tetrahedron. Figure 4.2 shows a three-

dimensional Delaunay vertex and its associated Delaunay tetrahedron.

67

Figure 4.1 Voroni diagram and Delaunay triangulation

68

4.2.1 Properties of the Delaunay Triangulation

Properties of the Delaunay triangulation and their proofs are given by Lee and

Schachter [72]. In this section some of these properties will be described without

giving any proof.

Delaunay triangulations have several nice properties. First of all, they are

locally equiangular (in fact they are the only locally equiangular triangulation of a

finite data set as shown by Sibson [101]; for a definition of locally equiangular tri­

angulation also see Sibson [101]). The Delaunay triangulation of a set of points is

shown to satisfy the max-min angle criterion [70, 72, 101]. Lawson [70] suggested

this criterion, which requires that the diagonal of every convex quadrilateral occur­

ring in the triangulation should be well chosen to be able to make the resultant tri­

angles as nearly equiangular as possible. Figure 4.3 shows this criterion on an

example. Since the triangulation that maximises the minimum interior angle of the

two resulting triangles needs to be chosen, triangulation (b) in figure 4.3 is pre­

ferred.

Lawson [70] also used the max-min criterion to describe a local optimization

procedure for constructing a triangulation. The edges of the Delaunay triangulation

of a finite set of points are locally optimal. Since the Delaunay triangulation can

be constructed by means of a local optimization criterion which ensures global

optimality, it is the unique and the optimal triangulation of the convex hull of a set

of points.

69

Figure 4.2 A 3-D Delaunay vertex and its associated
Delaunay tetrahedron (from Bowyer [25])

(a) (b)

Figure 4.3 The max-min angle criterion

70

The second criterion which is used to construct the Delaunay triangulation is

the circle criterion. This criterion [72] is defined as: "For a given set

P - {Pu • • • . Pn) of points, A PiPjPk is a Delaunay triangle if and only if its cir-

cumcircle does not contain any other point of P in its interior". In three-

dimensions the circle criterion becomes the sphere criterion. The four vertices of

each Delaunay tetrahedron lie on the surface of a sphere and no other vertex lies

within that sphere. This property characterizes the Delaunay triangulation [17] in it

dimensions: "if an hypersphere circumscribing k+1 points of P does not contain

any other point of P in its interior, this sphere is a Delaunay sphere and the

corresponding k+1 points belong to a simplex of the Delaunay triangulation." The

sphere criterion may also be regarded as a smoothness criterion (see [32]).

Apart from these properties, the Delaunay triangulation is also claimed to be a

minimum edge length triangulation (or minimum-weight triangulation [106]) by

Shamos and Hoey [99] but Lawson [70] and Lloyd [76] proved by counterexample

that this is not the case.

All these properties make the Delaunay triangulation one of the most useful

constructs associated with the interpolation of a given data set as well as construct­

ing and analysing three-dimensional shapes.

4.2.2 Degeneracies

During the construction of the tessellation in two-dimensions four or more terri­

tories may happen to meet at a vertex. Such a vertex is said to be degenerate [53].

In general, for ^-dimensions, a degeneracy occurs when more than k+1 Voronoi k-

71

dimensional domains share a vertex.

Two types of problems with degeneracies are encountered:

i. when truncation error in the computer causes an error on a near degeneracy,

for example an algorithm might make the point contiguous to point Pj but

not make P} contiguous to Pit

ii. or when k+1 (or more) points he in a hyperplane and are cyclic [25].

The first type of degeneracy occurs whenever the distance from the new point

to its neighbouring points is within the expected accumulated truncation error

bounds or the new point coincides with an existing point. The second type

includes the case when the forming points are lying on the comers of a regular

square grid which determines a tessellation in which every vertex is degenerate.

However, this type is highly unlikely unless the data points are intentionally placed

on the grid. The algorithm described in section 4.3 overcomes these degeneracies

and has run successfully on highly degenerate point patterns. The solutions to

degeneracy problems are given in [25].

4.2.3 Applications of the Delaunay Triangulation

Apart from the applications mentioned in Chapter 2, as discussed by Boissonnat

[20] Delaunay triangulations are quite useful in: automatic modelling of three-

dimensional objects (see Chapter 2 for the references), applications in higher

dimensions [25, 111], computing the skeleton of a polyhedron [71] and the

definition of a shape hull of a dot pattern. Amongst these applications only some

72

applications in automatic modelling of 3D objects will be mentioned in this sec­

tion. These applications are:

1. Calculation of the mass properties such as volume, centre of mass, moments

of inertia and so on by looking at the mass properties of the set of the interior

tetrahedra. The volume is the sum of these elementary volumes, the centre of

mass is the centre of gravity of the centres of mass of the different tetrahedra

weighted by their volume, etc.

2. Calculation of equilibrium positions by finding the normal projection of the

centre of mass onto the faces of the convex hull of the object which forms the

boundary of the Delaunay triangulation.

3. Mesh generation to be used to perform stress and thermal analyses by using

finite elements techniques (see Chapter 2 for the references). This mesh can

be improved by adding new points in the interior of the object in order to

obtain more regular tetrahedra.

4. Cruder polyhedral approximations by eliminating points producing elongated

tetrahedra. This can be achieved easily if (as in the case of the algorithm

described in the next section and in [1 1 1]) the algorithm computing the

Delaunay triangulation is implemented as an iterative procedure which inserts

the points into structure one after another and updates the triangulated struc­

ture after each insertion.

The application of the Delaunay triangulation to gathered data to form a structure

of tetrahedra with the measured surface points as vertices will be explained in sec-

73

tion 4.5.

4.3 The Triangulation Algorithm

Different Delaunay triangulation algorithms in 2D or higher dimensions have been

proposed in the literature [53, 106, 111] and the efficiency of some of these algo­

rithms has been reviewed by Boissonnat [17]. An algorithm which uses a 3D

Delaunay triangulation will be described in this section. It will be described in

some detail (though it has been published in [25]) because the data structure which

it uses will be needed for subsequent chapters in this thesis. A 3D Delaunay tri-

angulation (which is an assemblage of space-filling, disjoint, irregular tetrahedra)

implies a topology among the three-dimensional points. By setting the topological

relationship among the 3D points, a polyhedron that consists of triangular faces is

constructed.

The triangulation algorithm described in this section is used to obtain neigh­

bourhood relationship information for the three-dimensional surface points of the

measured component gathered either by a measuring machine or the simulation.

More precisely the problem here is to find the polyhedron (which consists of tri­

angular faces) whose vertices are the measured points.

This algorithm has some similarities with Watson’s [111]. Watson also pro­

posed an algorithm to compute ^-dimensional Delaunay tessellations. His algo­

rithm checks ^-dimensional hyperspheres (which are the Delaunay spheres with the

Delaunay vertices in the centre) and observes which circumspheres are intersected

by the new point after each insertion. This process is the same as checking each

74

new point to see whether it is closer to the vertex than its forming points are. If

the circumsphere is intersected, the structure is modified. His algorithm adds the

points into the structure in an ’advancing forward’ sequence which means the

Delaunay fc-simplices behind the advancing front are in their final configuration

while those ahead of the front are subject to alteration. The major difference of

this algorithm from the one described in this chapter is, Watson does not use any

technique such as finding the nearest neighbour to eliminate some of the vertices

and checks all of the vertices to find the closest vertex which leads his execution

(2k—l)
time to be 0 (N k) for N data points. The execution time of the algorithm

(1+*T)
described in this chapter is 0 (N *).

4.3.1 Data structure

Before starting to describe how the algorithm works, the data structure used needs

to be explained. Green and Sibson’s [53] two-dimensional algorithm (which has

some similarities with the algorithm described here) uses an additive method to

compute the contiguities of Delaunay triangles and stores the triangulation in the

form of lists of contiguous points for each point. It adds the points in turn and

modifies the contiguities as each point is added. In the two-dimensional case the

contiguity lists can be arranged in cyclic order. For the points this cyclic order has

no starting point: it is a ring structure, that is to say a list which can be broken

arbitrarily. To insert the points into the structure one by one, the algorithm uses

the fact that in 2D contiguity lists can be stored cyclically. This sort of ordering is

75

not possible in higher dimensions. So, how can the vertex or point structure be

stored in higher dimensions?

To answer this question consider the 2D structure in Figure 4.4. Two lists

can be constructed for each vertex in the structure: a list of points which form each

vertex (each vertex is the circumcentre of its three forming points), and a list

which contains the neighbouring vertices of each vertex, each one opposite one of

the vertex’s forming point. Territorial boundaries that extend to infinity can be

considered as terminating in a vertex labelled zero. Figure 4.5 shows the data

structure for the six vertices in figure 4.4.

There is no cyclic order of the points around a vertex and the order of form­

ing points in figure 4.5 is deliberately arbitrary. In k dimensions each vertex has

k+1 forming points and k+1 neighbouring vertices opposite them.

4.3.2 Inserting a point into the structure

Triangulation of a data set starts with a simple structure (the most obvious starting

pattern is the Delaunay simplex formed by the first k+1 points) and builds the tri-

angulation upon this simple structure by adding each point to the structure one by

one and modifying the structure after each insertion, starting the triangulation with

the Delaunay simplex forming a tessellation containing one real vertex all of whose

neighbouring vertices are 0. The only limitation which needs to be considered is

that the first k+1 points must not all lie in a hyperplane in the k dimensional space

in which the triangulation takes place. The flow-chart of the triangulation algo­

rithm is given in Figure 4.6. Generating a convex hull from k+1 data points will

76

Figure 4.4 The newly inserted point Q - finding its
territory (after Bowyer [25])

Vertex Forming Points Neighbouring Vertices
Vi Pi P i Ps v2 0 0
v2 Ps Ps P i V i F6 F3
Vs Ps Ps P a 0 f 4 V2

V4 Pe Ps P a 0 V5

Vs Pe Ps P i 0 V4

v6 Ps Pi P i 0 F2 V5

Figure 4.5 Data structure the Delaunay triangulation

77

be explained in section 4.5.

To explain how the data points are inserted, suppose the new point Q needs to

be inserted within the current convex hull of data points of the structure in figure

4.4. The new territory which will be formed by the insertion of this new point is

indicated by the dotted lines. The algorithm which finds the territory of the new

point can be outlined as follows:

1. Find the first vertex in the structure which will be deleted by the new point

(say V2). This vertex is any vertex which is nearer to the new point than to

its forming points. There will always be at least one such vertex, as the ver­

tex corresponding to the Delaunay simplex in which the new point lies will

always be deleted and Delaunay simplices completely fill the convex hull of

the currently included points.

2. Look for the other vertices which will also be deleted by starting from the

first deleted vertex and performing a tree search through the vertex structure.

This is not difficult if the data are stored as indicated in figure 4.5. The result

will be a list of all vertices deleted by the new inserted point Q. In this case

(as seen from figure 4.4) the list will be: { V2, V2 }.

3. The points contiguous to the point Q are all the forming points of the deleted

vertices: { P 4 , P s , P 2> P z }.

4. Remove the old contiguities between the pairs of those forming points if all

their vertices are in the list of deleted vertices (e.g. since the vertices V2 and

are deleted, remove the contiguity of P 3 - P 5)

78

START

Forn the convex hu 1 1

po

Yes

No

STOP

Any none
points to be
'" ' \ ^ e d d e d

into the structure

Insert the po

Renove the old
vertices end fori

the new one6

Find ell the vertices
to be deleted by

thi6 point. Add then

Find the neorest
neighbour to this

point end hence the
first vertex to be
deleted. Stort e

deleted vertex list

Figure 4.6 The flowchart of the triangulation algorithm

79

5. In this case four new vertices will be formed for the new point:

{ Wu W2, W3 , W4). Compute their forming points and neighbouring vertices.

The forming points for each new vertex will be point Q and k of the points

contiguous to Q. Each line in the tessellation is shared by k points around it

(e.g. the line V2 - V6 is formed and shared by P2 and P3). The forming points

of new vertices and their neighbouring vertices may be found by considering

vertices pointed to by members of deleted vertex list that are not themselves

deleted, and finding the rings of points around them. Thus Wi points out­

wards to V6 from Q and is formed by { Pi, P3, Q }.

6 . Finally, overwrite the entries of deleted vertices with some of the new ones to

save space.

All these operations considered above are of a local nature (except step 1). There­

fore, the amount of work to be done is independent of the number of points

currently in the structure and is roughly proportional to the number of new vertices

created.

The problem to be solved in step 1 is to identify the first vertex which will be

deleted by the point that is about to be inserted. One solution of this problem is

easy: examine each vertex in the structure to see if it is nearer to the new point

than to its forming points and find a vertex which satisfies the condition. But this

would be very time consuming process (especially with large number of points in
r

higher dimensions) and would destroy the benefit of the local nature of the inser­

tion algorithm. Therefore, to overcome these disadvantages, a vertex needs to be

identified without the need to examine most of the vertices in the structure. This

80

problem can be solved by finding the nearest neighbour of the new inserted point

4.3.3 Finding the nearest neighbour

The solution as proposed in Green and Sibson’s [53] two-dimensional algorithm is

to start looking for the nearest neighbouring point at an arbitrary point and walk

from neighbour to neighbour across the Delaunay triangulation, always approaching

the new point until the point nearest to it is found. In applications in which the list

of points is automatically in systematic order, the new point is likely to be near the

one that had just been inserted and that last point would be the obvious place to

start the walk. This will result in an almost negligible computational load. If

nothing systematic is known about the position of points the obvious place to start

this walk is at a point near to the centroid of the currendy accepted points; in k

dimensions a walk for N points starting from the centroid of the configuration

i

should take 0 (N k).

The routine which performs the walk starts with the last accepted point as the

neighbouring point and checks if the new point is inside the Delaunay simplex

which has the last accepted point as one of its forming points. To understand how

the check is done consider the structure in Figure 4.7. The algorithm inspects the

faces formed by omitting points in turn. It uses the result of vector products to

make the decision. It first calculates the vector product of x and checks

the sign of the result. The sign of the result gives the side on which the opposing

comer point lies. Then it does the same calculation for X (the new point). Since

81

(a) The inserted point is outside of the simplex

(b) The inserted point is inside the simplex

Figure 4.7 Finding the nearest neighbour

82

the sign of the result of X ~Px x X ~P3 is different from the previous sign as in figure

4.7 (a), this means the new point X is not on the same side as the opposing comer

P n and, in fact, is not lying in the associated Delaunay simplex. In this case, it

flags the path so that it is not taken again and finds the next simplex to examine.

It does this by finding the vertex opposite to the point which causes the different

sign (V2 in figure 4.7 (a)). It repeats this until the simplex containing X is found,

which it checks in the following manner: consider the simplex A P XP 9 P 3 and the

new point X in figure 4.7 (b). In this case the resultant sign of vector products of

Pi^gx p x p 3 and X~P9 x X ~ P 3 are the same (as are the signs of P ^ i x p 9 p 3 and

X~Pl x X ' P 3, and P 3~P9 x P 3 P l and X ~ P ^ x X *£9) which means the new point is in

the simplex. This ends the neighbour finding process.

4.3.4 Modifying the structure

Once the nearest neighbour of the new point has been found it is a simple matter

to find a deleted vertex as explained in section 4.3.2. The new point must delete at

least one point on the boundary of its nearest neighbour’s territory.

The routine takes the neighbouring vertices list of the deleted vertex, calcu­

lates the squared distance between the new point and each vertex on the list (Ds)

and the squared radius associated with the hypersphere in which the neighbouring

vertex is in the centre (£>v), compares Ds and Dv, and adds the vertex into the

deleted vertex list if the new point is closer to the vertex than its forming points

are (which means Ds < Dv), otherwise it ignores the vertex. After deleting the old

vertices, old contiguities are also removed and the structure is modified to construct

83

new vertices and new contiguities. The whole process is repeated after each inser­

tion.

Finally, the algorithm should modify the structure only if the point inserted is

within the current convex hull. If a new point is outside the convex hull, it should

not delete any vertices and should be treated differently. This can easily be

flagged, as none of the vertices of the new point’s nearest neighbour are deleted,

and overcome by setting up the initial simplex and the vertex on which the algo­

rithm builds such that the k+1 points on the comers of the simplex remain the con­

vex hull throughout the entire process. As the whole range of floating point

numbers is available this is not difficult. These first k+1 points would, almost

always, not be data values, but would be artificially generated to bound the prob­

lem. The generation of these points for the application of the triangulation algo­

rithm to the measured or generated data is described in section 4.5.

4.4 Implementation of Details

4.4.1 Programming

The triangulation algorithm consists of a set of ISO FORTRAN subroutines which

are callable from a simple main program that feeds the points to them one by one.

The data structure of vertex lists and Delaunay simplexes are available at any

stage of the processing as well as the lists of contiguities. Moreover, the lists of

vertices around a point’s territory or common to a pair of points (the vertices asso­

ciated with a contiguity) are also produced within the processing.

84

It is possible to make the usual compromises between storage space and exe­

cution time (e.g., either to store the position and squared radius associated with

each vertex in the structure or to compute these values when they are needed).

In only two subroutines do floating point calculations take place: the subrou­

tine which calculates the squared distance between any two points in the k dimen­

sional space in which the tessellation is being constructed, and the subroutine

which calculates the circumcentre and squared radius associated with the hyper­

sphere which passes through the k+1 point at the comers of a simplex. Since the

radii of the circumspheres are used only in comparison, the squared values are

compared to save the time of root extraction.

4.5 Application of the Algorithm to the Gathered Data

The aim of applying the Delaunay triangulation algorithm is to form a three-

dimensional structure (a solid structure) which is the aggregation of a set of packed

tetrahedra with the measured points as the vertices. This can be achieved by fitting

the tetrahedra to the surface points and finding which of these are solid. Some of

the triangles that form the surfaces of these tetrahedra will form a complete tri­

angulation of the measure object’s surface.

Because of the properties listed in section 4.2.1 the Delaunay triangulation is

suitable for structuring the measured data. Since the only information about the

gathered data is the position of the surface points lying on the boundary of the

object, the adjacency relationship between the points needs also to be provided.

This information (which can then be processed to determine which of them are

85

lying on the same surface) is obtained from the Delaunay triangulation.

The surface points are added to the structure one by one. Before feeding the

points into the structure a convex hull of the measured points is generated by form­

ing a Delaunay simplex from k+1 points. These k+1 points are not data values but

are artificially generated to bound the data set and the Delaunay simplex formed by

these points encompasses the data points. The position of these k+1 points are cal­

culated as follows:

1. Scan the measurements file and find the maximum and minimum values of

(%>y>%). L e t p = (ymin> ^min) JUld q — (Xmaxi zm«)•

2. Move the minimum and maximum points a given distance away in negative

and positive directions respectively so that the convex hull includes the

minimum and maximum points as well. The new p and q are now:

p ’ = p - (1 , 1 , 1)

q' = q + (1 ,1 ,1)

q (V3’ V3’ V3)

where d is the projection of q' onto the unit vector which is perpendicular to

plane 1. Figure 4.8 shows two-dimensional representation of this. The trian­

gle enclosing the data set corresponds to the Delaunay tetrahedra formed by

the first four points in 3D and line 1 corresponds to plane 1. The d given

above is obviously the distance of plane 1 from the origin as well.

3. From these definitions, the equation of plane 1 in Figure 4.9 can be written

as:

86

and the first k+1 points (4 points for three-dimensional case) which are the

vertices of the convex hull as:

Point 1 : (x p', yp>, zp >)

Point 2 : (x , y p>, zp >)

Point 3 : (x p>,y, zp >)

Point 4 : (xp>y yp>, z)

where * = V 3 (d - % - % > . y = * ■ (d - %)

a n d i = V 3 (<i - f - f).

Placing the points in this way guarantees that all the data points will be inside

them: they remain the convex hull throughout. The vertex data structure is

modified after each point insertion. Since the data points are distinct there is no

possibility of coming across the first type of degeneracy. To avoid the second type

of degeneracy data points which are generated by simulation are randomly per­

turbed.

4.6 Concluding Remarks

In this chapter a Delaunay triangulation algorithm has been described to process

the measured or generated data. At the end of such processing, a three-

dimensional structure which is the aggregation of a set of packed tetrahedra with

the measured points as the vertices is formed. Some of the triangles that form the

45*
/

p

Figure 4.8 Projection of q' onto the unit vector in 2D

p o i n

p o i p o 1

Figure 4.9 Convex hull in two-dimensions

88

surfaces of these tetrahedra will form a complete triangulation of the measure

object’s surface. But the problem here is to find which ones. A method of solving

this problem will be explained in the next chapter.

89

CHAPTER 5

FINDING THE OBJECT’S SURFACE

5.1 Introduction

The Delaunay triangulation forms a tetrahedral packing with the measured (or

generated) points as vertices. This is a volumetric representation of the object.

Since the faces of this model will be matched to a collection of solid model

primitives, its surface needs to be found first.

Some of the triangular faces of the tetrahedra will form a complete tri­

angulation of the surface. In this chapter a method of finding these tetrahedra

(and the surface of the model as a result of this) is introduced [29]. In addi­

tion, methods of eliminating the redundant tetrahedra (that is the tetrahedra

which the algorithm initially categorises as solid but which are, in fact, air) is

also described.

90

5.2 Classification of Tetrahedra

In order to find the surface of the model the tetrahedra that form the model need to

be classified. After the triangulation has been computed some Delaunay tetrahedra

will lie within the measured object and will thus be solid, whereas some will lie

outside it and will be air. If the tetrahedra may be so classified, then any of their

triangular faces that form a boundary between a solid tetrahedron and an air

tetrahedron will be part of the component’s surface. But how may the tetrahedra

be classified in such a way?

As explained in Chapter 3, in order to measure each point a ray of light must

have been directed at it or a measuring probe must have touched it If the path

taken by this is recorded then any Delaunay tetrahedra which it passes through

must be air.

The algorithm which does the classification takes the surface points one by

one, traces the path backwards from each point (by negating the coefficients of the

ray which was used to detect each point) and classifies the tetrahedra which the ray

passes through as air. Since the points are on the surface and the path is traced

backwards all the tetrahedra which the path intersects on its way should be air.

The flow chart of the algorithm is given in Figure 5.1.

This research was particularly concerned to deal with data gathered by the

laser coordinate measuring machine mentioned earlier [61]. Henceforth the path

will be considered to be a ray of light, but all the algorithms would work just as

well with a mechanical probe path.

91

START

YeBSur feoe point
exhoueted

STOP

Teke a new surface
point

Trace a ray backwards
fron the surface point

Find the intersection
with a faoe of first

tetrahedron CTl)
Classify T 1 as air

Find the neighbouring
tetrahedron Tn sharing
this intersected face

ver

Classify this tetrahedron
as air

rv

\7
Find the intersected

face of this tetrahedron

We aro beyond the
convex hull of the

data points

tered * see section 4.3.1

Figure 5.1 Classification of tetrahedra

92

The algorithm takes the first surface point and starts tracing its ray of light

backwards. When it finds the intersection between a triangular face of the first

tetrahedron and the ray (since the starting point is one of the forming points of this

Delaunay tetrahedron, there is always one intersection with the first tetrahedron) it

classifies this tetrahedron as air and continues tracing the ray into the tetrahedron

which shares the intersected face with the first tetrahedron. After this there are

always two intersections with the ray and each tetrahedron (unless the ray inter­

sects an edge or a comer).

The ray-tracing algorithm uses parametric rays, as did the simulation algo­

rithm (see Chapter 3). The next tetrahedron which the ray will pass through is

determined in two ways: by using the ray parameters at the intersection points or

by using the intersected face information. First, consider the ray parameter infor­

mation.

Since rays are parametric, the parameter of ray at the intersection point is cal­

culated as follows [28, 108]:

1. The equation of the plane in which a triangular face lies is given by

ax + by + cz + d = 0

The plane coefficients can be calculated from the coordinates of the points

that form this triangle (see Figure 5.2). The implicit equation of a plane

through these three points can be stated as a determinant:

x - xj y - y j z - z j
*k ~xj yK - yj zK ~ zj
XL -xJ yL - yj zL - Zj

= 0

93

which contains the three independent variables, x , y and z. This determinant

states a vector formed by J and any point in the plane must be perpendicular

to the vector product of the vectors from J to K and from J to L. This vector

product is obviously normal to the plane. If the determinant is multiplied out

it gives the usual form of plane equation indicated above and the coefficients

of this plane are calculated from the co-ordinates of the three points which lie

on this plane.

2. Since the rays are parametric and their equations are given as:

X = X 0 + f t

y =yo + gt
i = z q + ht

the parameter of the ray where it intersects the plane is then calculated as:

(axo + by0 + cz0 + d)
(a f + bg + c h)

In order to determine the next tetrahedron which the ray passes through, the inter­

sected face which has the bigger ray parameter value of the two ray parameter

values at the intersection points is found and the ray is traced towards the neigh­

bouring tetrahedron which shares this face with the intersected tetrahedron. The

ray parameters of each ray at the intersection points are determined and the next

tetrahedron that each ray will follow is found. The method of finding whether the

ray pierces the triangular face or not will be explained below.

If the ray parameters are too close to each other (because of the rounding

error of the computer) the algorithm fails to chose the bigger ray parameter and

fails to find the next tetrahedron to follow. In order to avoid this problem, the

94

intersected faces can be checked as an alternative way of making the decision.

Since the ray first intersects the face which is shared with the previous tetrahedron

that the ray is coming from, the ray is traced towards the tetrahedron which has the

other intersected face in common. Figure 5.3 shows the ray-tracing algorithm in

two-dimensions.

Since the ray intersects the line P XPA (which corresponds a triangular face in

three-dimensions), the next tetrahedron to be visited (corresponding to the vertex

Fio) is the one which shares the line P 1P4 with the tetrahedron of V%. After the

second intersection with the tetrahedron corresponding to the vertex V10 has been

found, the next vertex is V5 which has the common edge P 4 P 7 with V10 and so on.

As explained in the section on the triangulation algorithm (section 4.3) the

forming points of each Delaunay tetrahedron and the neighbouring vertices oppo­

site to the forming points are kept in two separate lists. When an intersection

between the ray and one of the faces of a Delaunay tetrahedron is found, the next

tetrahedron to be visited is determined by checking the neighbouring vertices list

and finding a Delaunay vertex that is opposite to the forming point of the

tetrahedron which is not in the intersected face. For instance, in figure 5.3, for the

tetrahedron corresponding to the vertex Vi0i the next vertex to be visited is vertex

V5 which is opposite to Pi.

In order to determine if a ray pierces a triangular face (see Figure 5.4), the

following calculations are performed:

95

♦ b y ♦ c z +d = 0a x

Figure 5.2 A plane through three points

\

\

Figure 5.3 Ray-tracing in 2D. P 2 is the starting
surface point and dotted lines represent the Voroni polyhedra.

96

t ,

V i = [(a - a) (.h (i 2 -)]

v 2 = [(a - a) (i i - a) (i s - a)]

v3 = [(a - a) (Xs-a) (X i - a)]

Figure 5.4 Finding the intersection between the ray
and the triangular face

97

1. Calculate the length, j, between a and the tetrahedron’s centroid, g is the

starting point of the ray (surface point).

S = V (x - x 0 f + (y - y0)2 + (- Zo f

x ,y ,T are the coordinates of the the centroid and x0, y0, z0 are the coordinates

of the starting point of the ray, a , (origin of the line).

2. If s is equal to zero, then, the starting point is already on the triangular face,

so return to the main program. Otherwise, set g to be a point s away from a

on the line.

X = x 0 + s f
y = y o + sg
z = z q + s h

3. Subtract g from the triangle and a and calculate the determinants of:

Vi = [(g - f i) (L i - g) (1 2 - a)]

v2 = [(a - a) i i i -a) (i 3 - a)]

v2 = [(a - a) (1 3 - a) (i i - a)]

The V s are the signed volumes of tetrahedra calculated by vector products. If all

the values of V are the same sign, the ray pierces the triangular face; if they are

not, it does not.

There are always two intersections after the intersection with the first

tetrahedron when the ray was traced backwards from the surface point to classify

the tetrahedra. This statement is true unless the ray intersects an edge or a comer

on its way. If the ray intersects an edge or a comer, the algorithm stops ray

98

tracing, skips this surface point after giving a warning of this sort of intersection

and takes the next surface point for the next ray to be traced. This case is rare and

skipping the surftce point does not cause much problem in classification. Air

tetrahedra which fiil to be found by stopping the ray tracing can be found from the

other surface points and the next algorithm to be described, which is capable of

eliminating the remaining misclassified solid tetrahedra.

All the tetrahedra that the ray intersects are classified as air until the ray is

beyond the convex hull. This process is repeated for every surface point and the

majority of tetrahedra are thereby classified.

5.3 Eliminating the redundant tetrahedra

The classification algorithm, dependent on the complexity of the shape, categorises

some of the tetrahedra as solid which are, in fact, air. This might happen when

some tetrahedra are not visited by any of the rays re-traced from the surface points.

These are the redundant tetrahedra and need to be eliminated to construct the actual

shape of the object. In the measuring process any remaining ambiguities may be

resolved by having the measuring machine (which is most useful if it is on line)

take extra measurements which pass through the tetrahedra about which there is

still doubt.

In the next sections two methods of eliminating these redundant tetrahedra

will be described.

99

5.3.1 Eliminating the Long Flat Tetrahedra

The first method used in the author’s research to eliminate the redundant tetrahedra

was to find the tetrahedra (classified as solid by the previous classifying algorithm)

which are long and flat and to eliminate them by categorising them as air. A flat

tetrahedron is a tetrahedron whose volume is small when compared with its cir-

cumsphere. Figure 5.5 shows this type of tetrahedron. This sort of situation is

unlikely to happen in a real physical object and anyway, such an object would be

impossible to manufacture. In order to find these tetrahedra, the triangular faces of

each tetrahedron are checked to see whether any of them are long and flat. The

algorithm which finds these faces calculates the area of the circle that passes

through the vertices of a triangular face and compares this area with the area of the

triangular face. The constant to be used in the comparison is calculated as (see

Figure 5.6):

The area of an equilateral triangle is:

a4 = (-2 iL)*2

where h = R + R s i n 3 0 = —R and b = 2Rcos 3 0 = V3 R and the area is A a = —

The area of circumcircle is: A0 = it R 2

and the constant as calculated from these areas is:

100

Figure 5.5 A long flat tetrahedron

Figure 5.6 A triangular face and its circumcircle

101

The range of the constant in this formula is between 0 and 1. As the value

gets closer to 0 , the triangular face becomes much thinner and longer and as it gets

closer to 1, the triangular face becomes more equilateral. The redundant

tetrahedron has naturally three long and flat triangular faces. The algorithm finds

the tetrahedra whose three of its four corresponding constants are close to 0 and

one close 1 and eliminates them by classifying them as air.

Although this method excludes most of the superfluous tetrahedra, the second

method described in the next section has been found to be more general and more

suitable for the purpose.

5.3.2 The General Solution

The method explained in the previous section only eliminates the tetrahedra which

are long and thin. But in some cases, there might be some tetrahedra with which

this technique cannot cope (especially, tetrahedra on the edges). This sort of

tetrahedron is not the long-thin type (see Figure 5.7), so, cannot be excluded by

the technique described previously. In order to handle all sorts of redundant

tetrahedra, a more general technique was developed.

This technique calculates the centroid of each solid tetrahedron, moves away

at a given distance in positive and negative x ,y j directions consecutively, sends a

ray of light from that distance onto the centroid and calculates the ray parameter at

the intersection point. If the surface of the object is beyond the centroid, the

tetrahedron is classified as air, otherwise it is solid. Figure 5.8 shows this process

on a simple example.

102

Figure 5.7 Redundant tetrahedra

c e n t r o i d

‘ay

Figure 5.8 Elimination of redundant tetrahedron

103

This is actually what the measuring machine would do in real life. It takes

some extra measurements either by a measuring probe or a laser beam which pass

through the tetrahedra about which there is still doubt.

After the calculation of the centroid, a point at the given distance away in the

x direction is chosen as the first starting point. A ray is sent onto the centroid, and

the ray parameter at the intersection point of the ray with the surface of the object

is calculated by running the solid modeller - DORA - for the second time (since

the equations of the half-spaces which form the model are known, the determina­

tion of the ray parameter is very easy). If an intersection occurs before the cen­

troid of the tetrahedron, this tetrahedron may be solid, if it does not, the

tetrahedron is definitely air. In the case where the tetrahedron may be solid other

measurements are made to try to classify its status. These are done in the remain­

ing coordinate directions. If any of the intersection points are beyond the centroid

of the tetrahedron, this tetrahedron is immediately categorised as air and the next

solid tetrahedron is taken to be investigated. The flow chart of this algorithm is

given in Figure 5.9.

5.4 Finding the Surface of the Object

The classification of the tetrahedra as solid or air allows the surface of the object to

be found by finding the triangular faces of solid tetrahedra which form a boundary

with air tetrahedra. In other words it facilitates the triangulation of the measured

component’s surface.

104

START

YesSurface point
exhaus ted

STOP

intersection witl
^ the surface^,

No

Yea

-"■''Tn t er aeo t x on"
point beyond thi

oen tro i d
Yes

"Moved in all
directions ^

Yee

No

Calculate its centroid

Teke a notionally
solid tetrahedron

Send a ray onto the
centroid

tetrahedron as AIR

Classifq this

te trehedron

Class!fu this

AIR

Move a given distance
away fron the centroid

x ,y ,z and
directions consecutivel

'Z

Figure 5.9 The method of eliminating the redundant tetrahedra

105

In order to find the neighbouring tetrahedra, the algorithm uses the neighbour­

ing vertex information for each Delaunay vertex corresponding to each Delaunay

tetrahedron. After the neighbouring tetrahedra which are air are found, the triangu­

lar faces of each tetrahedron that are shared by its air neighbours are added to the

list of triangles which form the surface of the object.

The surface normal of each triangular face (which is needed for the algorithm

to be described in Chapter 6) is calculated by using the vertex position information

of each tetrahedron. As given in the definition of the Delaunay triangulation,

Delaunay triangles are the perpendicular bisectors of Voronoi polygons. This

means the boundaries joining the Voronoi vertices are perpendicular to the triangu­

lar faces of the Delaunay tetrahedra and represent the normals of the faces (see

Figure 5.10). Since the position of each vertex has already been recorded in the

triangulation process, the surface normals are calculated from the difference

between the vertex position of the tetrahedron and its air neighbour’s.

If the neighbouring vertex corresponds to a territorial boundary that extends to

infinity (a zero-labelled vertex, see Chapter 3), since the neighbouring vertex is

outside the convex hull no vertex position information is available. In this case the

coefficients of the plane that the triangular face lies in give the normal of the tri­

angular face and the plane coefficients are calculated as in section 5.2.

Furthermore, the algorithm finds the neighbouring triangles of each surface tri­

angle. This is a very useful piece of information for the clustering process that

will be described in Chapter 6 . The algorithm checks the edges of each surface tri­

angle to see which one of the other surface triangles shares each edge, and stores

106

the three neighbours of each triangle. The storage structure of the neighbouring

triangles is shown in Figure 5.11.

At the end of the process, the triangles lying on the boundary of the object

have been obtained. The data structure (which will be used in the next process)

contains the position of the forming points of the surface triangles, their normals,

their neighbouring triangles and the vertex number of the corresponding tetrahedron

to which they belong. This information is sufficient to determine the real faces of

the object.

5.5 Limitation

As the number of surface points which the model is generated from are increased

the structure is divided into smaller and smaller triangles and a better and better

approximation of the surface is achieved. However, the increase in the number of

data points increases computation time. For this reason, a compromise should be

made between the approximation of the surface and the execution time. For

instance, to process 1300 points took 13 minutes on a VAX 11/730, and this time

was increased up to 39 minutes for 3200 points. Of course, running the software

on a modem machine - such as a Sun 4 - would reduce these times radically.

5.6 Concluding Remarks

In this chapter a technique to classify the tetrahedra as solid or air tetrahedra was

introduced. This sort of classification allows not only the determination of the

object’s surface but all sorts of different calculations about the object as well, such

107

iv.

The normal to P\P% is: The position of V2 - the position of Vx

Figure 5.10 Finding the normals of triangular faces

Forming points:

P 7 , P 9 , P n

Neighbour triangles:
F3 , Tt , T 5

Neighbour triangles are stored
opposite to the forming points

Pn

Figure 5.11 The neighbouring surface triangles of T

108

as its surface area, volume, centre of mass, moments of inertia and so on.

One of the aims in this project was to find the surfaces of the object. These

would then be clustered into different sub-clusters each representing a real face of

the object. For this reason, the three-dimensional structure (which is the aggrega­

tion of solid tetrahedra) is used only for finding the surface, but it is obviously

available for different sorts of applications. Information about how to use both the

triangulation algorithm and the classification algorithm can be found in Appendix

A. The clustering technique will be explained in the next chapter.

109

CHAPTER 6

FINDING THE REAL FACES

6.1 Introduction

Once the surface of the object is determined, the next process is to find the real

faces of the object. These will then be matched to the solid model primitives. As

mentioned in Chapter 1, two problems are encountered in matching the measured

component to the solid model primitives. The first problem arises from the fact

that two differing descriptions of the same (or nearly the same) component must be

compared. In order to make a comparison these two differing descriptions (the

measured or generated data are in the form of the positions of surface points

whereas the solid model primitives are in the form of half-spaces) should be in the

same form.

In the previous chapters, the techniques used for processing the position of the

surface point information were described. The aim of this processing was to form

a volumetric model from the surface point information whose surface would pro­

vide the half-spaces to be used in the matching process. In this chapter some tech­

niques for finding these half-spaces (only the ones which represent the real faces of

the object generated from the measured data) will be described.

The second problem: that of matching of these faces with the solid model

primitives, will be explained in the next chapter.

110

6.2 Finding the Faces

After carrying out the procedure described in Chapter 5, the surface of the object

consists of the triangles lying on its boundary with the measured points as vertices.

Since the faces of the object will be matched to the solid primitives, this surface

information should be processed to find the faces. In order to find the real faces of

the object, the surface triangles are gathered in collections, each collection

representing a face of the component.

Each triangle forms a little plane in space. Even in one face all the triangles

will not be exactly co-planar because of measurement errors. The triangles are sub­

jected to cluster analysis to gather them together in collections representing faces.

The aim is, indeed, to gather the surface points in collections and find the faces

(half-spaces) that they are lying on. Since the surface points are the vertices of

surface triangles, clustering the surface triangles is the same thing.

Two different types of clustering techniques have been applied to the surface

triangles. The first clustering technique, SLINK [102], is an efficient clustering

algorithm which is based on single-link or nearest neighbour cluster analysis.

Before describing this technique some information should be given about cluster

analysis in general [43, 56, 65, 93].

6.3 Cluster Analysis

As described by Hartigan [56] clustering is the grouping of similar objects. A

clustering of a set is a partition of its elements that is chosen to minimise some

111

measure of dissimilarity and cluster analysis is a generic term for a group of tech­

niques which produce classifications from initially unclassified data. For this rea­

son, as observed from the definition, clustering techniques are ideal tools for the

purpose of finding the object’s faces. They may also be used in some other areas

[7] such as finding the true typology, model fitting, prediction based on groups,

data exploring to search for natural groupings in the data, data reduction to sim­

plify the description of a large data set, generating hypotheses to be tested on

future samples and so on.

Different types of clustering techniques have been introduced in the literature.

It is not the intention here to give a review of cluster analysis techniques. Several

attempts have been made at this (which is, in fact, a difficult task since the vast

literature of the subject is scattered throughout journals from many different fields).

Detailed information about these reviews is given in [43]. Since SLINK is based

on the single-link method, amongst the clustering techniques only the single-link

method (or the nearest neighbour method) will be described briefly in the next sec­

tion.

The majority of clustering techniques uses a matrix of similarities or distances

between the entities as an input for clustering. Therefore careful consideration is

needed of the possible ways of defining these quantities. A similarity coefficient

measures the relationship between two individuals, given the values of a set of p

variates common to both. In general, similarity coefficients take values between 0

and 1. On the other hand, distance measures, which are different from similarity

measures (though transformations between a set of distance function values and a

112

set of similarity function values is possible), can take any positive value.

As given in [43] a distance function d(x,y) of pairs of points of a set E is said

to be a metric for E if it satisfies the following conditions:

i. d(x,y)> 0 ; d(x,y) = 0 if x = y ;

ii. d(x,y) = d(yjc) ;

iii. d(x,z) + d (y j) > d{x,y)

The third condition (which is the one which differentiates most between distance

measures and similarity measures) is referred to as the triangular inequality.

The most widely used and the most familiar distance measure in clustering

techniques is the Euclidean metric where the distance between points i and j

denoted by di} is defined as

where Xik is the value of the k\h variable for the ith entity.

In some cases Euclidean distance might be very unsatisfactory. This is

because Euclidean distance is effected badly by scale changes in the variables.

Some other possible metrics can be used in clustering. Examples are the absolute

metric or the Minkowsky metrics. Their definitions are given in [43]. The dis­

tance measure used in this research will be explained in later sections.

The single link or nearest neighbour method is a type of hierarchical clustering

method [43, 65]. For this reason, before explaining the structure of the single link

6.3.1 The Single Link Clustering Method

113

clustering method, some further information needs also to be given on hierarchical

clustering techniques.

Hierarchical techniques are divided into two main groups: agglomerative

methods and divisive methods [43]. Agglomerative methods proceed by a series of

successive fusions of the N entities into groups where divisive methods partition

the entire set of data into N groups each containing a single entity. The single link

method is a type of agglomerative hierarchical method.

Agglomerative methods build a tree from leaves to root They start clustering

with the computation of a similarity or distance matrix between the entities, and

end with a dendrogram showing the successive fusions of individuals which cul­

minates at the stage where all the individuals are in one group. Different types of

agglomerative methods have been described in [43]. Differences between the

methods arise because of the different ways of defining similarity or distance

between the groups of individuals.

The method of single link cluster analysis is the simplest of all hierarchical

techniques. It may be applied with any associated similarity measure or distance

measures. At each stage, after p and q have been merged, the similarity between

the new cluster (which is labelled t) and some other cluster r is calculated as [3]:

1. If Sij is a distance-like measure

S(r — min (,SprySqr)

Str is the distance between the two closest members of clusters t and r. If clusters t

and r were to be merged, then for any entity in the resulting cluster the distance to

114

its nearest neighbour would be at most s*.

2. If Sij is a similarity-like measure

Str = m a x (v » V)

s,r is the similarity between the two most similar entities in clusters t and r.

The method is known as single link because groups are joined at each stage

by the single shortest link between them. Although single link clustering is the

simplest technique, it is incapable of delineating poorly separated clusters. How­

ever, if two clusters are moved farther apart then the method will distinguish

between them quite well. Figure 6.1 shows this where two clusters have their

mutually closest members linked. The other problem in the single link method is

that it is implemented with a stored data matrix and the storage requirement for the

similarity matrix grows rapidly with the number of entities. Figure 6.2 shows

storage requirements for similarity matrices.

6.3.2 SLINK: An Efficient Single Link Clustering Algorithm

SLINK [102] which is an optimally efficient algorithm for the single link cluster

method has been applied to the problem of clustering the surface triangles.

The SLINK algorithm carries out single link cluster analysis on an arbitrary

symmetric non-negative dissimilarity coefficient (DC) read in value-by-value from

an input stream and produces a representation of the resultant dendrogram.

As a result of the algorithm the pointer representation (see [102]) of N objects

is converted into the packed form of a dendrogram. In general a dendrogram is a

115

(a) (b)

Figure 6.1 Single link clustering examples (from Anderberg [3])

S t o r a g e R e q u ir e m e n t s f o r S i m il a r it y

M a t r ic e s

Number of
entities

Storage
required

Number of
entities

Storage
required

50 1225 300 44,850
100 4950 350 61,075
150 11,175 400 79,800
200 19,900 450 101,025
250 31,125 500 124,750

Figure 6.2 Storage requirements for similarity matrices (from
Anderberg [3])

116

nested sequence of partitions with associated numerical levels (which will be

referred to heights from here on), the partition at a high enough height being the

whole set Figure 6.3 shows a single link dendrogram and Figure 6.4 shows the

output of SLINK algorithm on a simple example which has only 6 surface trian­

gles.

6.4 Application of the SLINK Algorithm to Surface Triangles

6.4.1 The Calculation of Dissimilarities

The surface of the object is the surface triangles with the measured points as ver­

tices. In order to cluster these triangles to find the real faces of the object the

SLINK algorithm is applied to them.

Each surface triangle lies on a little plane in space. If the coefficients of these

planes are known (they can be calculated from the positions of the vertex points),

then the dissimilarity coefficients of the surface triangles can be calculated. The

aim here is to represent the planes as points on a hypercylinder in such a way that

dissimilarity distances can be defined between them. The calculation of dissimilar­

ities is as follows:

1. A normalised plane equation is represented as a point on a unit radius hyper­

cylinder. The equations of the planes where the triangles lie are

dix + fyy + CiZ + di = 0 i=l, n

where n is the number of surface triangles. Since the plane coefficients are

normalised (which means a2 + b2 + c2 = 1) each surface normal is a point on a

117

0 .92_

0. 7S_

0.56_

0 .33_

0 . 21 _

2 5 1 4

Figure 6.3 A single link dendrogram

Point 2 2.227E-01

Point 5 2.731E+00

Point 1 1.287E+00

Point 4 1.744E+00

Point 3 8.85 9E-01

Point 6 INFINITY

Links

P 2 - P 1 2.731E+00
P 3 - P 1 1.744 E+00
P 4 - P 1 1 .287E+00
P 5 - P 2 2.227E-01
? 5 - P 4 2.731E+00
P 6 - P 3 8.8 59E-01
P 6 - ? 4 1.74 4E+00

Figure 6.4 Output of the SLINK algorithm

118

unit sphere which is the projection of a four-dimensional unit hypercylinder.

The distance along the axis of this represents the d term in the equation

above. Since drawing a hypercylinder is not possible, to understand the calcu­

lation of dissimilarities, consider a unit cylinder in 3D on which the lines

ax + by + d - 0 are represented as points and a circle v/hich is the projection of

the cylinder (see Figure 6.5). This unit cylinder is analogous to the unit

hypercylinder. Figure 6 . 6 shows the unit sphere and two points (which are,

actually, two planes in which the two surface triangles lie) p and q on it.

2. Cut the unit cylinder along the dotted line in figure 6.5, unwrap it and map

the distances into a square whose sides are equal to n. The distances will

then be

where and d ^ are the maximum and minimum perpendicular distance of

planes from the origin, D = - dm and dt s are the distances before the

mapping.

3. As seen from figure 6.5 the squared distance between the points p and q is

equal to

AM2 = Apt2 + A ^ 2 (Pythagoras theorem)

Apt = 0 (as seen from the projection on the circle)

and 0 is calculated from the scalar products between the points (which are, in

fact, the planes in which the triangles lie) p and q as

119

Figure 6.5 A unit cylinder and its projection

1 2 0

0 = c o s 1 ((ap Jbp ,cp) • (aq ,bq ,cq))

If 0 > 7c then 0 = 2 tc - 0 . The squared distance between the points p and q is

then equal to

Aw 2 = 0 2 + w (d p - dq f

where w is the weighting factor to stretch the points if the distances are too

close to each other.

The distances between the points on unit hypercylinder are used as the dissimilarity

coefficients.

6.4.2 Determining the Clusters

The application of the SLINK algorithm to the calculated dissimilarity coefficients

produces a resultant dendrogram with associated numerical levels for each cluster

which can easily be converted into the usual tree-diagram. This information needs

to be processed in order to determine the clusters each representing a real face of

the object.

There are two ways of finding these clusters; either by defining a height (see

section 6.3.2) on the tree-diagram or defining the number of clusters (which is easy

since the shape and the number of the faces of the object is known). But first,

some simple modifications need to be done to the output of the SLINK algorithm

in order to form tree-diagrams.

The algorithm which deals with this problem sorts the heights first. It takes

the smallest height value and finds the tag associated with this height. The tags

121

associated with each height value consist of the triangle numbers (surface triangles

to be clustered) and this information is already provided by the SLINK algorithm.

The algorithm links this tag with the next one (the next tag and the order of the

tags are also known from the SLINK algorithm) and flags it by negating its sign in

order not to use the same triangle again. The tag which has the second smallest

height value is considered next, its next tag is checked to see whether its sign is

negative or not; if it is not, the two surface triangles are linked together and so on.

Figure 6.7 shows the output of this sorting algorithm for the dendrogram given in

figure 6.2. For the simplicity only six surface triangles were given as an input into

the SLINK algorithm for this example.

The number of clusters and the height of the dendrogram (or tree-diagram)

are related to each other. This makes two types of calculation possible; either the

number of clusters can be determined by choosing the height in the dendrogram

(the number of branches above the chosen height gives the number of clusters), or

the height in dendrogram can be found by defining the desired number of clusters

(which means a given number of branches determines the height). In order to

understand these cases more clearly, consider the output of a cuboid model with 2 2

surface triangles and its tree-diagram in Figure 6 .8 . In this case a given height of

0.9 (which lies between 0.891 and 0.959) gives the desired number of clusters

(which is 6 for a cuboid), or for the given 6 clusters, the value of 0.959 is encoun­

tered as the minimum height by the algorithm.

The algorithm which does this uses the link information between the triangles.

As shown in figure 6 .8 , two different lists are formed after the sorting algorithm: a

122

CT
i

tO
O

J

Figure 6 . 6 Unit sphere and two surface normals

/N

i t e m s 6
2

6 2 . 7 3 0 9 9 9 9
6 1 . 7 4 4 0 0 0 0
4 1 . 2 8 6 9 9 9 9 1

6 0 . 8 8 5 9 0 0 0
5 0 . 2 2 2 7 0 0 0 1
0 0 . 0 0 0 0 0 0 0 0

2.731 _

1.744 _

0.222 _

2 5 3 6 :

Figure 6.7 Output of the sorting algorithm and its tree-diagram

123

Number of items 22
14 22 1 . 2 8 0 0 0 0 0

8 22 1 . 2 3 9 0 0 0 0
12 22 1 . 2 3 5 0 0 0 0
18 22 0 . 9 6 5 4 0 0 0
16 18 0 . 9 5 9 2 0 0 0
2 1 16 0 . 8 9 1 5 0 0 0
2 0 2 1 0 . 7 4 6 9 0 0 0
13 12 0 . 7 3 0 5 0 0 0

5 20 0 . 6 9 5 1 0 0 0
15 22 0 . 6 9 0 3 0 0 0
10 13 0 . 6 8 4 2 0 0 0

1 20 0 . 6 8 3 2 0 0 0
2 20 0 . 6 3 8 5 0 0 0
6 8 0 . 5 6 5 8 0 0 0

11 14 0 . 2 2 7 8 0 0 0
9 13 0 . 0 2 0 1 6 0 0

17 18 0 . 0 0 0 2 4 2 7
7 14 0 . 0 0 0 1 0 3 9
4 10 0-. 0 0 0 0 7 3 1
3 6 0 . 0 0 0 0 5 6 7

19 2 2 0 . 0 0 0 0 3 1 2
2 2 0 0 . 0 0 0 0 0 0 0

1 .28

1 . 239 ,

1 . 235

0 . 9 6 5

0 . 9 5 9

0.891

0 . 7 4 7
0 . 7 3

0 . 695
0 68.69

.56

0 . 22

0 .02

22 19 IS 2 20 I S 21 16 18 17 13 9 10 4 12 3 6 8 14 7 11

Figure 6.8 Tree-diagram of a model with 22 surface triangles

124

list of pair of surface triangles which are the elements of a two-dimensional array

and a list of associated height values of each pair. The algorithm first asks the

user to choose whether to find the height value or the number of clusters and

according to the choice it branches.

Suppose that the height value is given and the number of clusters needs to be

found. The algorithm determines the number of clusters by finding the number of

surface triangles which are above the given height. Each triangle above the limit

height forms a cluster (these clusters will be called main clusters). It then checks

second elements of each pair below the limit height to find the triangles which

have links with the main clusters. It takes the first main cluster and searches the

second elements (triangles) of pairs to find the triangles which have links with this

cluster. Whenever it finds a link which means the second element of the pair is

the same as the triangle in the main cluster, it clusters the first element of the pair

with the main cluster, negates the sign of the pair and does this until it finds the

last linked triangle.

When the algorithm finds the last linked triangle (this means there are no

more pairs whose second elements are the same as the triangle in the main cluster),

it makes the same search for this triangle. This time it searches the second ele­

ments which are equal to the last linked triangle. After finding all the links of the

last linked triangle, it searchs the lists backwards and finds the last negative signed

pair, finds all the links of the first element of this pair, again searchs list back­

wards, finds the next last negative signed pair and so on. After clustering all the

triangles which are linked to the first main cluster, the same process is repeated for

125

the other main clusters and all the surface triangles are clustered.

More or less the same process is done if the number of clusters are given.

The main clusters and the triangles belonging to these clusters are determined

according to the given number of clusters and the same process is repeated for the

rest of the triangles. The flowchart of the algorithm is given in Figure 6.9.

At the end of the process the clusters of surface triangles (and the surface

points obviously) each representing a real face of the object is found. Since the

position of surface points in each cluster is known, the planes (half-spaces) which

the surface points lie are found by using principle component analysis [61] to fit

the planes into the surface points in each cluster. Principle component analysis is a

technique which takes a cloud of points and finds the three axes of an ellipsoid

which closely matches the cloud shape. The two longest axes of the ellipsoid

determines the plane in which the points lie and the shortest axis determines the

normal to the plane. This technique minimises the sum of the squares between the

points and the plane. At this stage the measured object and its solid model are in

the same form and ready to be matched.

Although the SLINK algorithm is an efficient algorithm for clustering the sur­

face points and produces very good results for a small number of points, large

numbers of surface points exceeded the memory capacity of the computer at the

preparation stage of the dissimilarity matrix. For this reason, a different type of

clustering algorithm has been developed. This algorithm will be explained in the

next section.

126

Read LH

START

Read NC

Forn the nain
clue tec's C tri -
ancles above

LH

Forn the nain
clustere (NC

triangles)

i
Find NC (nun'
ber of trian­ Find LH
gles above LH

End of the
clueter

xhauet

Read the data
fron the new fileTaka the fire t

elenent of a nain
cluster (T O

Find a row whose
second elenent
equals to Tl

Assign its 1st
elenent to Tl

Take the last (-)
signed row.Neget

N ✓ ”oa °ny
row been found

Negate the sign
o f the row

Add the 1st ele
nent of this row
to the MC's list

* MC: Main Cluster

Figure 6.9 Finding the clusters

127

6.5 Clustering by Using the Surface Normals

In this technique surface normals are used for cluster analysis (as mentioned earlier

each surface triangle forms a litde plane in space). The algorithm reads in the sur­

face normal information, calculates the scalar product of surface normals of two

triangles and checks the result. If the result is greater than a number which is

close to 1, the two triangles are put into the same cluster. Since the surface nor­

mals are normalised the scalar product equals the cosine of the angle between the

planes in which the triangles or the surface points lie. If the result is close to 1,

this means that the angle is close to 0 and the triangles lie on the same plane or on

parallel ones.

The algorithm distinguishes the triangles lying on parallel planes by checking

the perpendicular distance from their plane to the origin (the d term in their impli­

cit plane equation, ax + by + cz + d = 0). It defines a mid-plane between the two

parallel planes and clusters the triangles which are more distant from origin than

the mid-plane in one cluster and the ones which are less distant in another. In the

case of more than two parallel planes, first the parallel planes are split into two

clusters, each cluster is checked to see whether they contain more than one plane,

if they do, they are split again and checked again and the same process is repeated

recursively until the triangles lying in each parallel plane are clustered in separate

clusters. Figure 6.10 shows two parallel planes and their mid-plane.

Since the neighbourhood relationship between the surface triangles (that is to

say, for any given triangle, its three neighbouring triangles are known) is also pro­

vided (see section 5.4), any mis-clustered triangle is corrected by checking its

128

neighbouring triangles. If all three neighbours are in the same cluster but the trian­

gle is not, it is put into the same cluster with its neighbours. If two neighbours are

in the same cluster then the surface normals of all three neighbours are inspected

and weighting is used to decide if the central triangle ought to be clustered with

the pair or not. Now, consider the structure in Figure 6.11. If two neighbouring

triangles are in the same cluster (say cluster 4) and the third one is the different

one (say cluster 6), the decision on classifying the central triangle is made as fol­

lows :

1. Take the average of surface normals of two neighbouring triangles which are

in the same cluster (NAV in figure 6.11) and calculate the angle (0) between

the average normal and the surface normal of the central triangle. Since the

surface normals are normalised, the angle 0 is

0 = c o s -1 ((aAvJ>AV*cAv) ' (acr fie rcer))

where aAV,bAV,cAV are the coefficients of the average normal and acr Merger are

coefficients surface normal of the central triangle. The angle (<X>) between the

third neighbour and the central triangle is

C> = COS-1 ((a jN J>TN >CTN) ' (acT*bcTiCCT))

where 0™ ^ , ^ are the coefficients of the third neighbour’s surface normal.

2. If the ratio of 0 to O is smaller than a weighting factor (which is 2 at the

start) then the central triangle is clustered with its two neighbours, otherwise

with the third one. As the weighting factor becomes larger, the surface nor­

mal of the central triangle becomes closer to the average surface normal.

129

p 1 ane

su r f a c e nor mal s

Figure 6.10 Two parallel planes and their mid-plane

TN

Figure 6.11 A surface triangle and its neighbours

130

If three neighbours of the central triangle are in different clusters, no change is

made in central triangle’s status.

Next, the algorithm handles false chamfers. False chamfers are artificial

features which occur because of the lack of the ability of measuring machine to

generate points exactly on the measured object’s edges (Figure 6.12). They are a

product of the measuring system and need to be found to be got rid of. The algo­

rithm checks all the clusters and finds their boundary by checking the surface trian­

gles in the cluster. If two of the neighbours of a triangle are in the same cluster as

the triangle but one neighbour is in a different cluster, this means two forming

points (surface points) of this triangle are on the boundary. Since the false

chamfers should be one triangle wide and all of the surface points in a false

chamfer are on its boundary (see Figure 6.13), the algorithm finds the clusters

which are one triangle wide, classifies these as false chamfers and does not con­

sider them to be real faces in the matching process. The numbers on the triangles

and on the faces in figure 6.13 are the cluster numbers that the triangles belong to.

For simplicity only the triangles on the front face are shown.

After correcting the misclustered triangles and finding the false chamfers, the

algorithm re-organises each cluster. At this stage the algorithm is capable of pro­

ducing a topology between the clusters. It takes each cluster in turn, finds the false

chamfers to which each cluster is adjacent and finds the clusters which share these

false chamfers. Since the false chamfers are effectively represent the edges of the

measured object the clusters which share the false chamfers should be neighbours.

By finding the neighbours of each cluster the algorithm produces the

131

sun f ace
c h a n fen

sun f ace

Figure 6.12 A false chamfer

o n e " t r i a n g l e -w ide
c l u s t e r \

(false cha mfe r) \

ordi nar y
c luster

Figure 6.13 An ordinary cluster and a one-triangle-wide cluster

132

neighbourhood relationship between the clusters which allows a boundary model of

the measured component to be generated. The flowchart of the clustering algo­

rithm is given in Figure 6.14.

Once the clusters are formed their surface area (each cluster represents a face

of the measured component) can easily be calculated (the surface area of each face

is the sum of areas of triangles that form the cluster). This surface area informa­

tion will be used in the matching algorithm to be described in Chapter 7. Since

the number of faces of the solid model and their surface areas are known, any clus­

ter which has much smaller area than the minimum of the surface areas of the solid

model is doubtful. The algorithm checks these sorts of clusters and investigates

whether they are false chamfers, or part of some other clusters, or to see if the face

is not well-represented because of an unsufficient number of surface points. If the

number of clusters found by the algorithm is more than the number of faces of the

solid model, it is obvious that some of these clusters are doubtful. In this case the

algorithm fits a plane to each cluster, calculates the angle between the plane which

the doubtful cluster lies and any other planes, if the result of the scalar product -

which is equal to the cosine of the angle - is greater than or equal to the constant

used to cluster the surface triangles, it merges the doubtful cluster with the other

cluster. After trying all the other clusters, if no merging is possible (which means

the result of scalar product is smaller than the constant for all other clusters), the

doubtful cluster is classified as false chamfer. The algorithm re-organises the clus­

ters and calculates the number of clusters. The number of clusters is now obvi­

ously equal to the number of the faces of the solid model.

133

START

Yes

Yes

Yes

nore surface'
^xtr i eng 1 e / ^

/ b u r f n c e v
triangles ex~
\ h a u s ted^X '^

/ T h \
result >
constant
\ r i) /

|Yes

Take a surface
triangle (ST)

Cluster ST1
with ST

Take the next
suface tri*
angle (ST1)

Find the dot
product of S T’8
nornal and STl‘s

Cont’cL

134

Yes

Yes
olusters then th<

—̂ Cocee o f SB""'

STOP

larsllel cluster,

Find felse
chon Tens

Re'organise
the clusters

Scale theBe
oreos

Calculate the areas
of clusters

Re'organise
the clusters

Output th<
resulis

cluster

Find the boundori
of clusters

Input the areas
f the solid nodel

Check i f there i
any nis'clusteri

Cont’d...

135

Yesnone
o 1 us ter

Yes

/AnyV
/none ele-N. y
nent in thi^—-
\ o luster /

Cluster ST2 in
first group

Cluster ST2lr
second group

Teke e
cluster

Teke a surface

triangle ST 2

AnyAm
Yes Teke a

c 1ua ter
Yes

o 1 us ter

Find the
angle bet­
ween two
olueters

close to
Merge the

clusters

Find ony
doub t fu1

cluster DC

This DC night
a false
chan fer

to each
cluster

Toko a
doub t fu1
cluster

Figure 6.14 The flowchart of the clustering algorithm

As a result of all the processes the surface triangles (and obviously the surface

points) are clustered together in different clusters, each cluster representing a face.

Principle components analysis (see section 6.4.2) is then used on the measured

points making up the triangle vertices in each collection to obtain a best-fit plane

through them.

To see how to use the clustering algorithm see Appendix A. The input and

the output of the clustering algorithm is given in Figure 6.15. The input consists

of a list the positions of surface points forming each surface triangle, the normals

of the planes in which each surface triangle lies, the neighboring triangles of each

surface triangle and the number of the Delaunay vertex to which each triangle

belongs. After the clustering only the cluster numbers of the surface triangles are

added to this input to produce an output for plotting the surface triangulation and

clustering. The second output consists of a list of neighbouring clusters of each

clusters and the equations of planes which pass through the surface points in each

cluster. For plotting an implementation of the painter’s algorithm (or Newell-

Newell-Sancha algorithm) [55, 95, 110] was used. Figure 6.16 and Figure 6.17

shows the result of surface triangulation and clustering on two simple examples.

Different colours represent different clusters, which are, in fact, the faces of the

object. The green colour represents the false chamfers. In figure 6.16 (b) and

figure 6.17 (b) samples are shown from four different views.

137

Forming Point 1 I Forming Point 2 | Forming Point 3 I Surface Normal
I I I

I Neighbour | Assoc.
I Triangles | Vertex

0.016 -0.001 5.499 0.018 0.000 5.697 0.016 0.000 5.900 4.764 -12.432 0.024 4 2 37 15810
0.000 0.007 5.982 0.016 -0.001 5.499 0.016 0.000 5.900 -2.186 -5.309 0.016 1 8 38 15810
0.363 0.000 5.699 0.363 0.000 5.899 0.016 0.000 5.900 -0.008 -23.460 -0.008 8 4 11 43
0.363 0.000 5.699 0.018 0.000 5.697 0.016 0.000 5.900 -0.024 -23.256 -0.035 1 3 39 43

-0.001 0.224 5.815 0.000 0.007 5.982 0.000 0.322 5.979 1-26.877 0.020 0.196 7 102 6 20821
-0.001 0.224 5.815 0.000 0.017 5.791 0.000 0.007 5.982 1-24.119 0.151 -0.044 38 5 41 13809
0.080 0.379 6.000 0.000 0.007 5.982 0.000 0.322 5.979 -2.527 0.086 9.482 5 99 12 20753
0.000 0.007 5.982 0.363 0.000 5.899 0.016 0.000 5.900 -0.00B -61.091 5.173 3 2 10 20752
0.709 0.000 5.699 0.709 0.000 5.900 0.363 0.000 5.899 0.010 -24.776 0.004 10 11 14 20797
0.000 0.007 5.982 0.709 0.000 5.900 0.363 0.000 5.899 0.006 -51.212 4.394 9 8 16 1824
0.709 0.000 5.699 0.363 0.000 5.699 0.363 0.000 5.899 0.003 -24.687 -0.008 3 9 43 20798
0.514 0.032 5.999 0.080 0.379 6.000 0.000 0.007 5.982 -0.296 -0.388 9.335 7 17 13 1614
0.501 0.413 6.000 0.514 0.032 5.999 0.080 0.379 6.000 0.004 -0.013 9.504 12 700 18 20801

Figure 6.15 (a) The input to the clustering algorithm

Neighbouring clusters :

Cluster 1 False chamfer
Cluster 2 12, 5, 3, 15, 11, 9, 6, 10, 14,Cluster 3 2, 4, 8, 7, 12,
Cluster 4 7/ 3, 2, 6,Cluster 5 2, 12, 15, 7,
Cluster 6 3, 2, 4, 7,
Cluster 7 4, 12, 15, 11, 9, 10, 14, 13, 5,Cluster 8 2, 3, 13, 7,
Cluster 9 11/ 2, 7, 10,
Cluster 10 9, 2, 14, 7,
Cluster 11 2, 9, 15, 7,
Cluster 12 2, 5, 7,
Cluster 13 14, 2, 8, 7,
Cluster 14 10, 2, 13, 7,
Cluster 15 2, 5, 11, 7,

Plane Coefficients of each cluster : Ax + By + Cz + D
A B C

Cluster 2 0.0000 1.0000 -0.0001Cluster 3 1.0000 0.0001 0.0000Cluster 4 -0.0001 0.0000 1.0000Cluster 5 1.0000 0.0000 0.0000Cluster 6 0.7084 0.0000 0.7058Cluster 7 0.0000 -1.0000 0.0000Cluster 8 -0.0001 0.0065 1.0000Cluster 9 -0.0001 0.0000 1.0000Cluster 10 1.0000 0.0000 0.0000Cluster 11 1.0000 0.0000 0.0009Cluster 12 -0.0015 0.0000 1.0000Cluster 13 1.0000 -0.0001 0.0001Cluster 14 0.0000 0.0000 1.0000Cluster 15 0.0002 0.0000 1.0000

- 0 . 0 0 0 1
-0.0005
-0.9997
- 2 . 0 0 0 0
-2.8253

6 . 0 0 0 1
-0.0241
-3.9997
-5.9999
-4.0042
-5.9983
-7.9999
- 2 . 0 0 0 0
-5.0006

Figure 6.15 (b) The output of the clustering algorithm

138

Figure 6.16 (a) Surface triangulation and clustering

Figure 6.16 (b) Clustering the surface triangles

139

S* >S*s *r:: K~« V.8p£SS!3
% £ § § m i$ m 0 & m ^ $mmmnS^asiSs^ss^ik^^:i w f i T T i r » T .) yn if i f f ' l'
iStSlsgsSeggsfe^l'^^S^v.r^mmm
ftfiaSgkB^aBaa&gB f̂ee

Figure 6.17 (a) Surface triangulation and clustering

Figure 6.17 (b) Clustering the surface triangles

140

6.6 Limitation

The algorithms described in this research can handle models with flat surfaces only

(including the clustering algorithms). No work on clustering cylindrical parts has

been done by the author. The extension of the research to include the cylinders

and cones will be mentioned in the last chapter, which will give some suggestions

for future work.

6.7 Concluding Remarks

The aim of clustering the surface triangles is to find the faces of the object which

are represented by a group of clusters. In this chapter two different techniques to

cluster surface triangles are described. The first one, which is an efficient single­

linkage algorithm [1 0 2], clusters the surface triangles by using their dissimilarity

coefficients, whereas the second type clusters them according to the scalar product

of their surface normals. After the surface triangles are clustered, a plane is fitted

to each cluster. Thus each plane represents a face of the object.

The next problem to be solved at this point is to match the description of

measured component to the solid model primitives. Since these two descriptions

are now more or less in the same form, they are ready to be matched. The match­

ing process will be explained in the next chapter.

141

CHAPTER 7

MATCHING

7.1 Introduction

The measured data and the solid model are now more or less in the same form:

two collections of plane equations. Unfortunately they will, in general, be re­

ferred to different coordinate frames, so, in order to compare them, it is neces­

sary to translate and to rotate them to a best-fit with each other.

For this purpose the technique of Procrustean matching [29, 103] has

been extended to allow this to be done. In this chapter this technique and its

application to the problem will be described in detail.

142

7.2 Matching the Two Descriptions

Finally, the surface description of the measured component needs to be matched

with the surface description of the solid model generated by a CAD system, but

this is not easy. Two problems might be encountered in matching the two descrip­

tions: the first one - which was already covered in the previous chapters - is that

there might be a difference between the types of the descriptions (the measured

data is in the form of the positions of surface points where the solid model primi­

tives are half-spaces); and the second one is that the measured component and the

solid model might be related to different coordinate systems. In order to solve the

second problem and to match the two descriptions under translation and rotation,

Procrustes analysis was applied.

In some cases the translation and rotation (see Appendix B) between the

measured component and the solid model are known (especially in the case of a

measuring machine where the component is mounted in a fixture of known

geometry and position before being inspected), but this is not the case for a general

automatic inspection method. A good automatic inspection method must be capable

of accommodating the general case where no information about the translations and

rotations is available (i.e. in order to avoid rejecting perfectly good components

that have been measured in slightly the wrong place).

The matching technique described in this thesis is capable of matching the

surface descriptions of a measured component to the surface descriptions of a solid

model, computing the difference between the two and reporting any out-of-

tolerance differences deduced from them. After finding these differences it would

143

be possible to discard the faces within tolerance, and carry out the whole process

again on the bits that don’t match. This allows parts of the component which are

of the right shape, but which are in the wrong place, to be identified and their posi­

tion and orientation to be computed (e.g. if a bolt is missing or a hole is mis-

drilled on a manufactured component, this can easily be spotted).

7.3 Procrustes Analysis

Procrustes analysis is a technique which is used for assessing the goodness-of-fit

between two configurations. In this section a summary of Procrustes analysis will

be given. More detailed information about this technique can be found in Sibson

[103].

Consider two configurations of points, X and Y, each of N points in k-

dimensional space, neither of the configurations are in the same position nor orien­

tation as each other. Each configuration will be represented by a k x N matrix, so

X, for example, will be:

x = [*“>, ••• ,*<">]

One to one correspondence (which means x(1) corresponds to y(1) and so on) exists

at this stage (the need for this will be removed later). If two such configurations,

X, Y are given, they can simply be compared by the sum of their squared posi­

tional differences, G(X,Y):

N
G(X,Y)= (* (n)- y (n)) = trace (X - Y) T (X - Y) .

n=l

144

G(X,Y) is called the Procrustes statistic [103]. The aim is to match the

configurations such that the value of G is minimum under the Euclidean group of

transformations such as translation and rotation.

As described by Sibson [103], the optimal matching under translation is

obtained by keeping the X fixed and matching Y to it by sliding Y until the cen­

troids of the two configurations coincide. An alternative to this is to translate both

X and Y so that their centroids are both at the origin. This is simple because in

order to perform the translations one to one correspondence between the points is

not needed.

It is also shown by Sibson that the best match under rotation (that is the rota­

tion which makes the value of G minimum) is obtained by applying a k x k orthog­

onal matrix P onto Y where P is:

_

P = XYt (YXtXYt) 2

Since applying P to Y does not change its centroid (if this is at the origin), the

rotation does not effect the translation which was done previously; in other words

it is independent of the translation.

The matching of point patterns under scale change is also discussed by Sibson

[103]. In this thesis only translation and rotation will be taken into consideration

when matching the two configurations.

145

7.4 The Procrustean Matching Algorithm

The only limitation in Procrustean matching is the need for the one to one

correspondence between the points in each configuration in order to find the

orthogonal matrix P. This is a serious limitation when considering the applicability

of the technique to general pattern matching problems. In some cases the number

of points in each configuration might also be different.

As mentioned in the previous section, in order to match the centroids of two

point patterns no correspondence information between the points is necessary.

Obviously this could easily be done even if there were different number of points

in each configuration.

One thing that remains invariant under rotation is radius. Once Y has been

translated so that its centroid coincides with that of X at the origin, no rotation of

Y alters the radial distance of each of Y’s points from the origin. For this reason

the points in each configuration are first matched according to their radial distance.

The algorithm first sorts the radial distances of points in each point pattern

into two lists, Rx and Ry . It finds both the nearest entry in Ry to each entry in Rx

and the nearest entry in Rx to each entry in Ry . If the relationship between the

corresponding radial distances is symmetrical the two points having these radii are

accepted as matched, the links are kept and the linked points are removed from

further consideration. Otherwise, the links are broken and the process is repeated

until all points are linked up to a nearest neighbour. The symmetrical and un-

symmetrical links in matching the sorted lists of radii is shown in Figure 7.1. This

146

jymne tr i c a .
Links

Link to one of
a symmetric pain

Un~symmetrical
Links

Figure 7.1 Matching the sorted lists of radii (from Cakir et al. [29])

147

process terminates quite quickly without links crossing one another as shown in the

figure. In the case of differing number of points, in the larger configuration, obvi­

ously, there will have some unmatched noise points but this does not cause much

problem.

By matching the points pattern according to the radial distance the rotation

matrix P can be estimated and Y is rotated to roughly the correct orientation.

Once this has been done most points will be correctly matched, but there will be

some mis-matches because of near-coincidences in radii (Figure 7.2). Now there

are two sorts of links between the point patterns: links that are short in length

which represent correct matches and links that are longer (usually they form a

small group) representing mis-matches.

In order to resolve this and to distinguish the mis-matches, a probability den­

sity estimate of the link length is constructed by convoluting their histogram with

an appropriate kernel function, the width of which was increased until the density

function had just two modes (see Silverman [104]). The first, sharp mode comes

from the short links, the second, more diffuse mode comes from the mis-matches.

Figure 7.3 shows the density estimation where the vertical scale is arbitrary. The

length corresponding to the minimum between the two modes determines the limit

to distinguish the mis-matches. The links longer than this length are broken and

re-matched by using the Euclidean distance between the points rather than the

radial distance as a matching criterion. Extra noise points (if there are any) are

available for inclusion in this second match as well. After this, P can be re­

computed more accurately than before and applied again to make a fine adjustment

148

+ t
N -

i i

+ r
i /

%

I I
+ 1

■k

Figure 7.2 Matched and mismatched pairs after rotation
(from Cakir et al. [29])

Figure 7.3 Density estimation

149

in the relative orientation between the two configurations.

Iterating the second re-matching process might be thought a good idea in an

attempt to obtain better results, but in practice this is hardly necessary. After a

couple of iterations no further improvement in the Procrustes statistic that measures

the dissimilarity between the configurations is obtained.

The algorithm outlined in this section is efficient and works accurately on

simulated data. It is a robust algorithm in the presence of errors in the

configurations. The application of this algorithm to the problem of matching the

measured component to the solid model primitives will be explained in the next

section.

7.5 Matching by Using the Procrustean Algorithm

As described in the previous section the Procrustean algorithm matches the two

point patterns under translation and rotation. However, the aim in this research is

to match the faces of the measured component to solid model primitives generated

by a CAD system; therefore half-spaces need to be matched, not points. Further­

more there is no one-to-one correspondence between the two collections; and there

may (because of manufacturing errors) even be different numbers of planes in the

model and the measured object.

In order to perform the matching the plane equations are mapped onto

Extended Gaussian Spheres (EGSs) [62, 75]. Thus, the surface normals of planes

can be represented as points on a Gaussian sphere. In the next section Gaussian

150

spheres and extended Gaussian spheres will be described briefly.

7.5.1 Extended Gaussian Spheres

The Gaussian sphere of a collection of planes is the points formed by their nor­

mals on the unit ball. Imagine moving the unit surface normal of each plane so

that its tail is at the centre of a unit sphere. The head of the unit normal then lies

on the surface of the unit sphere. This sphere is called the Gaussian sphere and

each point on it corresponds to a particular surface orientation.

When the surface normals are mapped to the Gaussian sphere planar regions

become very small clusters, cylinders become unit radius circles, and cones become

smaller radius circles (this information is quite useful in extending the work

described in this thesis to allow work with cylinders and cones as well. This will

be explained in the next chapter).

The extended Gaussian sphere is the pattern of points in space which is

obtained by scaling each of these normals by a factor obtained from the planes: for

example each plane normal might be scaled by the area of a facet lying in it. The

EGS has some nice properties and these properties can be listed as [75]:

1. The extended Gaussian image is not affected by the translation of the object.

It rotates in the same fashion as the object in space. This means rotation of

the object causes an equal rotation of the extended Gaussian image, since the

unit surface normals rotate with the object

151

2. The extended Gaussian image is a unique description of a convex object, no

two convex objects have the same extended Gaussian image.

Figure 7.4 shows an extended Gaussian image and its corresponding object.

In this research the perpendicular distance from the planes to the origin and

the surface areas of the faces are used to scale the normals. This will be described

in section 7.5.3. A nice feature of this method is that any measurable characteristic

of a face (even things such as colour) can be employed to scale the EGS without

affecting the rest of the process.

7.5.2 Matching the Faces

The two configurations which contain the scaled normals of the faces of the meas­

ured component and the solid model are first matched under translation and this is

done by matching their centroids (will be referred to plane centres from here on).

The plane centre of the configurations (which is minimum distance away from the

faces) is calculated as follows:

The squared distance from the faces to the plane centre is

• n
f (x , y , z) = d 2 (x , y j) = ' £ (a i x + b i y + c i z + d ,) 2

i = i

where a j ? , c are the coefficients of planes and i is the number of faces. In order to

find the minimum distance from the faces, x,y and z values which makes f(x,y,z)

minimum needs to be found. If the partial derivatives with respect to x,y and z are

calculated, and are assigned to zero, three plane equations are obtained:

152

4 ^ = X 2’(° i X + b i y + Ci Z + d i)'(a i) = 0
°X i = l

4 ^ = E 2 '(ai x +bi y +Ci z + di) • (bi) = 0

4 ^ - = S 2 • (a , X + y + Ci z + 4) • (Ci) = 0
°z »=i

which can be written as

a i x + p i y + Yi z + Tii = 0

0.2 X + P 2 y + Y2 2 + T|2 = 0

O 3 X + P 3 y + Y3 Z + T| 3 = 0

h n n *

where a: is » Pi 2M«» Yi Z c*a* » anc* "Hi is JXa and so on.
1=1 ; = 1 i = l i = l

If the intersection point of these three planes is calculated (see [28]), the coor­

dinates of the point which is the minimum distance away from the faces is calcu­

lated. This point is the plane centre of the structure.

The next step to be done after the calculating the plane centres of both

configurations is to translate the configurations so that the plane centres are at the

origin. The new perpendicular distances of the faces from the plane centres are

calculated as [87] (see Figure 7.5):

d / = d i - s

where i is the number of faces and s is the displacement between the plane centre

and origin and is calculated (from the projection of the displacement vector

0 dx,dy,dz) onto the surface normal) as

s - a - d x + b dy + c-dz

153

Figure 7.4 An extended Gaussian sphere and its corresponding object

(a , b , c)

(d x , d y , d z)

Figure 7.5 The calculation of the displacement

1 5 4

The surface normals (both the measured component’s and the solid model’s)

are then scaled by these new perpendicular distances from the origin and the sur­

face areas of the faces and the point patterns on extended Gaussian spheres are

generated. The calculation of surface areas will be explained in the next section.

As the next step the optimal matching under translation is attained by making

the plane centres of the point patterns X and Y coincide. For our purpose the

configuration X is the points in the EGS of the solid model and the configuration Y

is the points in the EGS of the measured component. Once the plane centres coin­

cide (Y is translated so that its plane centre coincides with that of X at the origin)

the radial distances of points in Y will be invariant under rotation. As explained in

section 7.4 the two point patterns are first matched according to their radial dis­

tances. Matched patterns after the first matching would allow the rotation matrix P

to be estimated and Y is rotated to roughly the correct orientation.

In section 7.4 a technique of distinguishing the mis-matches was described.

But later on it was discovered that forming that kind of histogram to estimate the

link length did not improve distinguishing the mis-matches over the simpler tech­

nique of breaking all the links and re-matching them according to their actual

inter-point distances. After this, Y is rotated again to make a fine adjustment in

the relative orientation between the measured component and the solid model. The

two configurations are matched in such a way that the residual sum of squares

between the two extended Gaussian spheres is minimal. The flowchart of the algo­

rithm is given in Figure 7.6.

155

START

Yes

No

MIPD Mininun Inter-Point
Distance

STOP

Use
MIPD • i
no tchini

Do the rotation

Find the MIPD

Match the patterns
according to their
radial distances

Mininun inter*
point distanoe is

Peed the plane
equations and surface
oreaa of the solid

nodel

Read the plane
equa 11ons and sur fsee

areas of the
neasured conponent

Find the perpendi*
cular distances of

alanes fron the cent
roid of patterns

Sea1e the norna1a
of planes and nap

then onto the exten­
ded Gaussian spheres

Do the rotation for
the fine adjuatnent.
The patterns are now
na tcned . Output the
notched patterns.

Break the links which
are greater than MIPD
end natch the patterns

aooording to their
inter-point distances

Figure 7.6 The flowchart of the matching algorithm

156

7.5.3 Scaling the Surface Normals

In order to match the measured component to the solid model, the surface normals

in both configurations need to be mapped onto two extended Gaussian spheres.

This mapping is done by scaling the normals by two factors: the perpendicular dis­

tances of surfaces from the origin and their surface areas. These were multiplied

together to give a length for the vectors. Scaling the surface normals by both the

perpendicular distances and the surface areas allows the method to recover from

any small miscalculation in either of them.

As mentioned in Chapter 6 , once the real faces of the measured component

are determined their surface areas are calculated from the sum of the areas of sur­

face triangles that form the faces. Since the solid model was already generated the

areas of the faces in solid model could also be calculated. However, because of

the false chamfers, the surface areas of measured component will be smaller than

the surface areas of the solid model. In order to consider the effects of false

chamfers, the surface areas of the measured component are scaled:

2 A + E Ap
Ai = Ai ■ x x = — ---------------

EA
i= 1

where A, is the surface area of a face, AF is the surface area of a false chamfer, and

i is the number of the faces.

As a second alternative, the ratio of the the sum of the surface areas of the

solid model to the sum of the surface areas of the measured component can be

used as a scale factor. The aim of scaling the surface areas of the measured

157

component is to make them as close as possible to the surface areas of the solid

model. Since the residual sum of squares between the two extended Gaussian

spheres needs to be minimal to match the two descriptions, and the surface areas

are used to scale the surface normals onto the EGSs, the surface areas of the two

descriptions need to be the same (or nearly the same).

As mentioned earlier, there is no one-to-one correspondence between the faces

or the surface areas of two configurations. The input of the surface coefficients

and the surface areas into the matching algorithm and results will be discussed in

the next section.

7.6 Results of the Matching Algorithm

In order to discuss the results of the matching algorithm, the input of the data

needs to be explained first. The matching algorithm needs two types of informa­

tion to achieve the matching: the surface normals of the planes which form the

faces of both the measured component and the solid model, and their surface areas.

Figure 7.7 shows a measured component (which is a simple staircase model) and

its solid model. Each different colour in figure 7.7 (a) represents a facet and green

represents the false chamfers.

The order of half-spaces (faces) of the solid model in a data file prepared by

the solid modeller is different from that of the half-spaces of the measured com­

ponent (which depends on the measuring process), therefore no one-to-one

correspondence is available. As mentioned earlier, in some cases, there might be

even different numbers of half-spaces in both configurations. Once the surface

158

Figure 7.7 (a) A measured component (re-produced from figure 1.7 (b))

Figure 7.7 (b) Its solid model

normals of the faces are read in by the matching algorithm, their surface areas are

read in the same order as the faces. The order of half-spaces and surface areas of

a measured component (which is the same staircase model shown in figure 7.7) and

of its solid model’s are shown in Figure 7.8. The perpendicular distances from the

plane centre (which is the origin after the translation) are calculated and the surface

normals are mapped onto the extended Gaussian spheres. The two configurations

are now ready to be matched.

Figure 7.9 and Figure 7.10 show the result of the matching algorithm. Two

data files are read in (first file is for the faces of the solid model, second one is for

the measured data). The recovered offset is the difference between the plane cen­

tres of two configurations after the matching under translation. Four values of each

face are the coefficients of the planar faces, a, b, c, and d where the equation of

each plane is ax + by + cz + d = 0 and d is the perpendicular distance from the plane

centre. As seen from this first output Face 12 is mis-matched to Face 4 and Face

7 is mis-matched to Face 13 because of near-coincidences in radii (see section

7.4). If the limit distance to distinguish the mis-matches (see section 7.4) is not

calculated and is given as 0 (which means all the links will be broken), the second

output in figure 7.10, which is the output of matching according to the inter-point

distances, is obtained. Since there is no translation or rotation between the meas­

ured object and its solid model the recovered offset and the recovered rotation

angle is 0 (or very close to 0). As in the second output the faces of the measured

component and the solid model are perfectly matched to each other.

160

1

2
3
4
5
6
7
8
9
10
11
12
13
14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Measured Component

P l a n e C o e f f i c i e n t s o f STEPSO

A B

Ax + By + Cz + D = 0
C D

0 . 4 0 4 2 2 7 8 E - 0 4
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 8 6 0 7 9 2 6 E - 0 4
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 7 0 8 4 4 1 0 E + 0 0
0 . 1 8 6 5 4 9 3 E - 0 4
0 . 7 1 6 0 3 0 6 E - 0 4
0 . 6 0 8 3 9 6 3 E - 0 4
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 9 9 9 9 9 9 6 E + 0 0
0 . 147 9 7 3 7 E - 0 2
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 1 4 2 1 7 2 1 E - 0 4
0 . 1 9 8 4 9 5 7 E - 0 3

0 . 1 0 0 0 0 0 0 E + 0 1
0 . 1 0 8 0 8 1 5 E - 0 3

- 0 . 4 4 3 4 6 7 8 E - 0 4
0 . 2 3 7 5 3 3 7 E - 0 4

- 0 . 7 6 3 2 6 7 3 E - 0 5
- 0 . 1 0 0 0 0 0 0 E + 0 1
0 . 6 5 2 3 9 8 5 E - 0 2
0 . 6 5 6 9 0 5 8 E - 0 5

- 0 . 1 9 3 5 9 0 6 E - 0 5
0 . 8 9 0 7 0 0 4 E - 0 5
0 . 4 2 1 7 8 0 1 E - 0 4

■ 0 .6 9 9 5 6 5 8 E - 0 4
0 . 1 0 7 4 0 0 2 E - 0 4
0 . 3 6 3 1 1 9 1 E - 0 6

- 0 . 6 2 6 2 8 1 3 E - 0 4
0 . 4 2 1 6 4 5 5 E - 0 4
0 . 1000000 E+ 01

- 0 . 2 7 1 8 6 6 4 E - 0 4
0 .7 0 5 7 7 0 0 E + 0 0

- 0 . 3 5 2 2 6 3 1 E - 0 4
0 . 9999787E+0 0
0 . 1000000E+0 1

- 0 . 1 7 9 7 6 3 4 E - 0 4
0 . 9 4 2 4 1 7 8 E - 0 3
0 . 9999989E+ 00
0 . 8 4 0 9 8 5 7 E - 0 4
0 . 100 0000E+0 1
0 -1 0 0 0 0 0 0 E + 0 1

- 0 . 8 0 8 1 1 6 3 E - 0 4
- 0 . 5 1 5 7 6 7 8 E - 0 3
- 0 . 9 9 9 7 1 7 5 E + 0 0
- 0 . 1 9 9 9 9 9 6 E + 0 1
- 0 . 2 8 2 5 2 8 4 E + 0 1

0 . 6 0 0 0 1 0 7 E + 0 1
- 0 . 2 4 0 6 0 2 8 E - 0 1
- 0 . 3 9 9 9 6 7 4 E + 0 1
- 0 . 5 9 9 9 9 3 4 E + 0 1
- 0 . 4 0 0 4 1 7 0 E + 0 1
- 0 . 5 9 9 8 2 70E+01
- 0 . 7 9 9 9 8 8 5 E + 0 1
- 0 . 1 9 9 9 9 8 3 E + 0 1
- 0 . 5 0 0 0 6 4 9 E + 0 1

A r e a s

3 0 . 6 6 5 6
19 . 0 8 1 4
1 8 . 2 6 3 6

5 . 3 5 7 3
2 6 . 5 9 6 2
3 0 . 5 2 0 0
4 6 . 8 2 7 9
1 2 . 5 8 0 6
1 2 . 1 3 9 8

4 . 9 6 9 6
1 2 . 5 3 7 5
1 2 . 4 0 4 3
1 1 . 8 0 6 7
1 1 . 5 7 1 2

S o l i d Model

P l a n e C o e f f i c i e n t s o f STEPS Ax + By + Cz + D = 0

C D

- 0 . 1 0 0 0 0 0 0 E + 0 1
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 1 0 0 0 0 0 0 E + 0 1
O . O O O O O O O E + O O
O . O O O O O O O E + O O

■0. 1 0 0 0 0 0 0 E + 0 1
0 - 0 0 0 0 0 0 0 E + 0 0

- 0 . 1 0 0 0 0 0 0 E + 0 1
0 . 0 0 0 0 0 0 0 E + 0 0

■0. 1 0 0 0 0 0 0 E + 0 1
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0

- 0 . 7 0 7 1 0 6 8 E + 0 0

0 . O O O OO O OE + OO
■0. 1 0 0 0 0 0 0 E + 0 1
O . OO O OO O OE + OO
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0
O . O O O OO O OE + OO
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0
0 .OOOOOOOE+OO
O . O O O O OO O E+ O O
0 . 0 0 0 0 0 0 0 E + 0 0
0 .OOOOOOOE+OO

0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0

- 0 .1 0 0 0 0 0 0 E + 0 1
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0
0 .1 0 0 0 0 0 0 E + 0 1
0 . 0 0 0 0 0 0 0 E + 0 0

• 0 . 100 00 00 E+ 01
0 . 0 0 0 0 0 0 0 E + 0 0

- 0 .1 0 0 0 0 0 0 E + 0 1
0 . 0 0 0 0 0 0 0 E + 0 0

•0 .1 0 0 0 0 0 0 E + 0 1
0 .1 0 0 0 0 0 0 E + 0 1

■0.7 0 7 1 0 6 8 E + 0 0

0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0
0 . 0 0 0 0 0 0 0 E + 0 0

- 0 . 8 0 0 0 0 0 0 E + 0 1
- 0 . 6 0 0 0 0 0 0 E + 0 1
- 0 . 6 0 0 0 0 0 0 E + 0 1

0 . 2 0 0 0 0 0 0 E + 0 1
0 . 5 0 0 0 0 0 0 E + 0 1
0 . 4 0 0 0 0 0 0 E + 0 1
0 . 4 0 0 0 0 0 0 E + 0 1
0 . 6 0 0 0 0 0 0 E + 0 1
0 . 2 0 0 0 0 0 0 E + 0 1

- 0 . 1 0 0 0 0 0 0 E + 0 1
0 . 2 8 2 8 4 2 7 E + 0 1

A r e a s

1 9 . 2 0 0 0
3 0 . 4 0 0 0
4 8 . 0 0 0 0
12 .0000
3 0 . 4 0 0 0
1 2 . 0 0 0 0

6 . 0 0 0 0
1 2 . 0 0 0 0

6 . 0 0 0 0
1 2 . 0 0 0 0
1 2 . 0 0 0 0
12 . 0000
1 8 . 0 0 0 0
2 5 . 8 0 0 0

Figure 7.8 Plane coefficients of half-spaces and surface areas

161

First .HSP file : steps.hsp
Second .HSP file : stepso.hsp
R e c o v e r e d o f f s e t : - 0 . 0 0 1 5 - 0 . 0 0 9 3 0 . 0 0 1 5

Do y o u w a n t t o s e e t h e o u t p u t ?: Y

F a c e : 9 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 2 5 3 5 2 1 2
F a c e : 10 (0 . 9 9 9 9 9 9 2 - 0 . 0 0 0 0 0 6 6 0 . 0 0 1 2 4 3 2 - 0 . 2 5 7 1 2 3 2

F a c e : 12 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0 . 7 8 8 7 3 2 3
F a c e : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 2 3 8 - 0 . 0 0 0 0 2 7 2 1 . 7 4 4 9 4 1 9

F a c e : 7 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 7 4 6 4 7 8 8
F a c e : 13 (- 0 . 0 0 0 0 1 4 2 0 . 0 0 0 0 1 0 7 1 . 0 0 0 0 0 0 0 0 . 7 9 0 2 1 7 5

F a c e : 10 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 1 . 2 1 1 2 6 7 7
F a c e : 8 (- 0 . 0 0 0 0 5 7 5 0 . 0 0 0 0 0 6 1 1 . 0 0 0 0 0 0 0 - 1 . 2 0 9 6 6 1 5

F a c e : 8 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 2 . 2 1 1 2 6 7 7
F a c e : 14 (0 . 0 0 0 1 9 8 5 0 . 0 0 0 0 0 0 4 1 . 0 0 0 0 0 0 0 - 2 . 2 0 9 6 8 3 0

F a c e : 11 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 2 . 2 5 3 5 2 1 2
F a c e : 9 (1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 0 1 9 - 0 . 0 0 0 0 1 8 0 - 2 . 2 5 5 0 4 7 4

F a c e : 13 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 7 8 8 7 3 2 3
F a c e : 3 (- 0 . 0 0 0 0 8 6 1 - 0 . 0 0 0 0 4 4 3 1 . 0 0 0 0 0 0 0 1 . 7 9 0 0 4 9 3

F a c e : 6 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 2 1 1 2 6 7 7
F a c e : 11 (- 0 . 0 0 1 4 7 9 7 0 . 0 0 0 0 4 2 2 0 . 9 9 9 9 9 8 9 - 3 . 2 1 3 4 6 6 8

F a c e : 14 (- 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0 . 7 0 7 1 0 6 8 - 1 . 7 9 2 6 6 5 3
F a c e : 5 (0 . 7 0 8 4 4 1 0 - 0 . 0 0 0 0 0 7 6 0 . 7 0 5 7 7 0 0 1 . 7 9 7 0 1 9 0

F a c e : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 2 5 3 5 2 1 2
F a c e : 12 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 4 8 5 - 0 . 0 0 0 1 3 3 0 4 . 2 5 4 8 1 0 3

F a c e : 1 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 7 4 6 4 7 8 8
F a c e : 2 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 0 8 1 0 . 0 0 0 0 4 2 2 3 . 7 4 4 8 6 7 7

F a c e : 5 (0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e : 6 (- 0 . 0 0 0 0 1 8 7 - 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 3 5 2 3 . 0 0 9 2 1 8 6

F a c e : 2 (0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e : 1 (0 . 0 0 0 0 4 0 4 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 6 2 6 2 . 9 9 0 6 1 6 1

F a c e : 3 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 7 8 8 7 3 2 3
F a c e : 7 (- 0 . 0 0 0 0 7 1 6 0 . 0 0 6 5 2 4 0 0 . 9 9 9 9 7 8 7 2 . 7 8 5 3 4 5 3

Do yo u w ant t o c a l c u l a t e t h e minimum d i s t a n c e : N
D Term : 0 . 0

S q u a r e d d i s t b e t w e e n m o d e s : 0 . 0 0 0 0
R e c o v e r e d a n g l e a r o u n d X a x i s : 0 . 0 0 7 3

Figure 7.9 Matching according to radial distances

162

First .HSP file : steps.hsp
Second .HSP file : stepso.hsp
R e c o v e r e d o f f s e t : - 0 . 0 0 1 6 - 0 . 0 0 9 3 0 . 0 0 1 5

Do y o u w an t t o s e e t h e o u t p u t ?: N

Do y o u wan t t o c a l c u l a t e t h e minimum d i s t a n c e
D Term : 0 . 0

S q u a r e d d i s t b e t w e e n m o d e s : 0 . 0 0 0 0
R e c o v e r e d a n g l e a r o u n d X a x i s : 0 . 0 0 7 3
R e c o v e r e d a n g l e a r o u n d Y a x i s : - 0 . 0 0 0 4
R e c o v e r e d a n g l e a r o u n d Z a x i s : 0 . 1 6 8 4

F a c e : 9 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 2 5 3 5 2 1 2
F a c e : 10 (0 . 9 9 9 9 9 9 5 0 . 0 0 0 1 3 3 6 0 . 0 0 0 9 4 9 5 - 0 . 2 5 6 6 5 1 0

F a c e : 12 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0 . 7 8 8 7 3 2 3
F a c e : 13 (- 0 . 0 0 0 0 2 0 9 - 0 . 0 0 2 9 2 7 5 0 . 9 9 9 9 9 5 7 0 . 7 9 0 1 7 9 3

F a c e : 7 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 7 4 6 4 7 8 8
F a c e : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 5 1 3 - 0 . 0 0 0 0 2 0 1 1 . 7 4 4 8 6 3 9

F a c e : 10 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 1 . 2 1 1 2 6 7 7
F a c e : 8 (- 0 . 0 0 0 0 6 7 5 - 0 . 0 0 2 9 3 1 7 0 . 9 9 9 9 9 5 7 - 1 . 2 0 9 6 9 8 6

F a c e : 8 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 2 . 2 1 1 2 6 7 7
F a c e : 14 (0 . 0 0 0 1 9 1 8 - 0 . 0 0 2 9 3 7 8 0 . 9 9 9 9 9 5 7 - 2 . 2 0 9 7 2 1 1

F a c e : 11 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 2 . 2 5 3 5 2 1 2
F a c e : 9 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 2 5 6 - 0 . 0 0 0 0 1 0 9 - 2 . 2 5 5 1 2 5 3

F a c e : 13 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 7 8 8 7 3 2 3
F a c e : 3 (- 0 . 0 0 0 0 9 2 7 - 0 . 0 0 2 9 8 2 6 0 . 9 9 9 9 9 5 6 1 . 7 9 0 0 1 1 1

F a c e : 6 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 2 1 1 2 6 7 7
F a c e : 11 (- 0 . 0 0 1 4 8 6 4 - 0 . 0 0 2 8 9 6 2 0 . 9 9 9 9 9 4 7 - 3 . 2 1 3 5 0 4 8

F a c e : 14 (- 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0 . 7 0 7 1 0 6 8 - 1 . 7 9 2 6 6 5 3
F a c e : 5 (0 . 7 0 8 4 3 6 3 - 0 . 0 0 1 9 9 1 1 0 . 7 0 5 7 7 1 9 1 . 7 9 6 9 3 6 5

F a c e : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 2 5 3 5 2 1 2
F a c e : 12 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 5 7 3 0 . 0 0 0 0 9 0 9 - 4 . 2 5 4 9 9 4 8

F a c e : 1 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 7 4 6 4 7 8 8
F a c e : 2 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 2 3 5 4 0 . 0 0 0 0 4 9 5 3 . 7 4 4 7 8 9 8

F a c e : 5 (0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e : 6 (0 . 0 0 0 1 0 8 8 - 0 . 9 9 9 9 9 5 6 - 0 . 0 0 2 9 7 3 5 3 . 0 0 9 2 6 1 8

F a c e : 2 (0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e : 1 (- 0 . 0 0 0 0 8 7 1 0 . 9 9 9 9 9 5 9 0 . 0 0 2 8 7 5 6 2 . 9 9 0 5 7 2 9

F a c e : 3 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 7 8 8 7 3 2 3
F a c e : 7 (- 0 . 0 0 0 0 7 9 1 0 . 0 0 3 5 8 5 8 0 . 9 9 9 9 9 3 6 2 . 7 8 5 3 0 6 9

Do y o u want t o p l o t t h e r e s u l t s l a t e r on ?: N

Figure 7.10 Matching according to inter-point distances

163

The results of the matches and mis-matches can be plotted if desired. Figure

7.11 shows the matches of the staircase model. 14 faces of the measured com­

ponent matched with the faces of the solid model (each point on an EGS

corresponds to a face) in the figure, face numbers are shown in figure 7.11 (b).

The red in the figure represents the faces of the solid model and the green

represents the measured component’s.

The matches and mis-matches of another example on an extended Gaussian

sphere is shown Figure 7.12. Configurations are deliberately mis-matched in

figure 7.12 (b) where the blue colour represents the first configuration and the

green colour represents the second one. Since the configurations matched perfectly

in figure 7.12 (a), it is difficult to distinguish the colours and configurations. The

circle in both figure 7.12 (a) and figure 7.12 (b) corresponds to a cylindrical part of

the sample.

If the number of faces are different (which means one of the faces of the

measured component is missing or an extra face has been found - noise points, see

section 7.4 -) then this mis-matched extra (or missing) face is found by checking

how close the matches are and finding any matches which are not as close as the

others. Figure 7.13 shows this. In this example extra face Face 68 is mis­

matched to Face 54 and this mis-match can easily be spotted by checking the plane

coefficients. This example was prepared to test the behaviour of the matching

algorithm for a different number of faces in both configurations. The order of the

faces in both configurations is the same and this allows the mis-match of the extra

face to be shown more clearly. For the simplicity only some matches were shown

164

Figure 7.11 (b) Matches with the face numbers

Figure 7.12 (a) Matches on an extented Gaussian sphere

T

$
+

Figure 7.12 (b) Mis-matches on an EGS

166

F i r s t .HSP f i l e : c a s t l p . h s p
S e c o n d .HSP f i l e : c a s t 3 p . h s p
R e c o v e r e d o f f s e t : 2 2 . 9 3 5 4 - 0 . 3 5 9 5 - 9 4 . 7 2 4 6

Do you want t o s e e t h e o u t p u t ?: N
Do you want t o c a l c u l a t e t h e minimum d i s t a n c e : N
D Term : 0 . 0

S q u a r e d d i s t b e t w e e n modes : 0 . 0 0 0 0
Recovered
Recovered
Recovered

angle
angle
angle

around X axis:
around Y axis :
around Z axis:

0 . 0 3 7 5
4 5 . 0 0 0 0

0 . 0 1 5 5

Face :
Face :

48
48

(- 0 . 7 0 7 1 0 6 6
{ - 0 . 7 0 7 1 0 6 6

0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0

- 0 . 7 0 7 1 0 6 9
- 0 . 7 0 7 1 0 6 9

- 0 . 9 4 1 1 7 7 4
- 0 . 9 4 1 1 5 8 3

Face :
Face :

13
13

(- 0 . 7 0 7 1 0 6 9
(- 0 . 7 0 7 1 0 6 9

0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0

0 . 7 0 7 1 0 6 6
0 . 7 0 7 1 0 6 6

4 . 62 50 00 0
4 . 6 2 5 0 3 0 5

Face :
Face :

66
66

(0 . 6 5 3 2 8 1 3
(0 . 6 5 3 2 8 1 4

0 . 3 8 2 6 8 3 4
0 . 3 8 2 6 8 3 4

0 . 6 5 3 2 8 1 6
0 . 6 5 3 2 8 1 6

5 . 4 3 2 3 7 4 5
5 . 2 9 4 8 0 8 9

Face :
Face :

68
54

(0 . 0 0 0 0 0 0 0
(0 . 2 7 0 5 9 8 1

- 1 . 0 0 0 0 0 0 0
- 0 . 9 2 3 8 7 9 5

0 . 0 0 0 0 0 0 0
0 . 2 7 0 5 9 8 2

6 . 1 1 1 1 0 6 9
1 . 8 7 4 5 6 5 8

Face :
Face :

55
55

(0 . 0 0 0 0 0 0 1
(0 . 0 0 0 0 0 0 1

- 1 . 0 0 0 0 0 0 0
- 1 . 0 0 0 0 0 0 0

0 . 0 0 0 0 0 0 1
0 . 0 0 0 0 0 0 1

- 6 . 3 8 8 8 9 1 7
- 6 . 0 2 9 4 1 7 5

Face :
Face :

20
20

(- 0 . 7 0 7 1 0 6 9
(- 0 . 7 0 7 1 0 6 9

0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0

0 . 7 0 7 1 0 6 6
0 . 7 0 7 1 0 6 6

- 7 . 3 7 5 0 0 0 0
- 7 . 3 7 4 9 6 9 5

Fieure 7.13 (a) The mis-matched extra face

Figure 7.13 (b) The extended Gaussian sphere of the matches

167

in the figure. The rotation angle between the model and the measured component

was 45 degrees. The matches on the EGS are shown in figure 7.13 (b). The sin­

gle colour in the figure is the mis-matched extra face.

7.7 Problems in Matching

If the measured component to be matched is too symmetrical (which means that

not only the perpendicular distances from the origin, but also the surface areas of

some faces, are the same), the matching algorithm fails to match these faces and

obviously can recover the wrong rotation angle as a result of this. This is not

really a problem, or rather it is a problem from which any method must suffer as

there is insufficient information for a decision to be made. In addition to this prob­

lem, if there are some missing or extra faces in one of the configurations these

missing or extra faces change the position of the plane centre and once the plane

centre of the configuration is changed, the radial distances of the points are also

changed and the configurations do not match perfectly with each other. Scaling

surface normals not only by the perpendicular distances from the origin but by the

surface areas as well partly solves this second problem but for big changes in the

position of the plane centre the problem does still exist. Some examples related to

this case and some further results are given in Appendix C.

168

7.8 Concluding Remarks

In this chapter, as the final step in the work described in this thesis, surface

descriptions of the measured component are matched to the surface descriptions of

the solid model under translation and rotation. Once the two descriptions are

matched, the faces of the measured component may be compared with the

corresponding faces of the model and any out-of-tolerance differences reported.

Also, if all faces within tolerance are discarded and the whole process is carried

out again on bits that don’t match, the parts of the component which are of the

right shape, but which are in the wrong place can be easily identified and their

position and orientation can be computed.

In the next chapter some suggestions will be given for future work. An alter­

native method which might handle cylinders and cones as well as planar surfaces

will also be mentioned.

169

CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

8.1 Introduction

This chapter includes the conclusion of the work described in this thesis and

some suggestions for future work.

As mentioned in the earlier chapters the major limitation that the algo­

rithms used in this research have is that most of them can only handle planar

surfaces. In this final chapter some suggestions will be given that would ex­

tend the research to handle cylindrical and conical components as well as

planar surfaces.

170

8.2 CONCLUSIONS

The motivation of the work described in this thesis was to design an automatic

inspection method which compares a set of measurements (taken from the surface

of an engineering component by a measuring machine) with a solid model of the

same component created by a CAD system. Since the aim of inspection is to find

any manufacturing errors, the two descriptions are then ready to be matched to find

defects (if there are any).

A group of algorithms were used or developed for this purpose. Some algo­

rithms which were used in this work already existed in the literature on Stochastic

Computational Geometry, but had not before been applied to this problem. The

new algorithms which were developed were to connect the extant algorithms so as

to serve the best solution to the problem.

The initial data were the coordinates of points lying on the surface of the

component gathered by a measuring machine (particularly a non-contact type laser

measuring machine such as that developed at Bath University [61]). Later on a

set-theoretic solid modeller (which was again written at Bath University by John

Woodwark [115]) was used to simulate the function of the laser measuring

machine. In order to simulate measurement errors the surface points were per­

turbed slightly by random numbers. Since the implementation was to use the laser

measuring machine the algorithms developed used the principles of a laser measur­

ing machine (such as tracing the laser beam backwards in the classification algo­

rithm, Chapter 5) but they could be used with any other sort of measuring machine.

171

Since the initial data were not suitable to be compared with the solid model

primitives (they were in a different forms), the three-dimensional Delaunay triangu­

lation algorithm devised by Adrian Bowyer [25] was used to form a volumetric

representation whose surfaces were in the same form as the solid model primitives.

The problem was then to find the surfaces.

This problem was solved by finding the triangular faces of the tetrahedral

packing (which formed the volumetric representation) that lay on the boundary of

the measured component. In order to do so this tetrahedra were classified as solid

or air.

Once the surface of the measured component had been found the next stage

was to find the real faces of the measured component to be matched with the faces

of the solid model. This was done by clustering the surface triangles lying on the

same surface. The algorithm dealing with this problem was quite an efficient one

but, since it was using scalar products to cluster the triangles, it was unable to han­

dle curved surfaces, such as cylinders or cones. Suggestions to improve the algo­

rithm so as to handle the cylinders and cones will be made in the next section.

The clustering algorithm was used not only for clustering the surface triangles, but

for deducing the topology between the faces and for finding the false chamfers

(which were the products of the measuring machine and needed to be got rid of) as

well. It fitted a plane to each cluster by using principle component analysis and

output the equations of the planes which represented the real faces of the com­

ponent. The next thing to do was to match these faces with the faces of the solid

model.

172

At this stage the two descriptions were ready to be matched (they were in the

same form: both were planar half-spaces). The only problem which was encoun­

tered here was that the descriptions were referred to different coordinate frames.

In order to solve this problem the Procrustean algorithm was used to match the

faces of the measured component with faces of the solid model. In order to do this

the surface normals of the faces were scaled and mapped onto extended Gaussian

spheres.

By matching the point patterns on their EGSs under translation and rotation

the measured component was compared with its solid model and any out-of-

tolerance differences were reported. This comparison allowed the manufacturing

errors of the component to be found.

8.3 Suggestions for Future Work

8.3.1 Dealing with Cones and Cylinders

Since the clustering technique described in this research uses the result of the

scalar product of the surface normals to cluster the surface triangles, it is unable to

handle curved surfaces, such as cylinders or cones. For this reason, only planar

faces of the measured component were represented on extended Gaussian spheres

and matched with the planar faces of the solid model.

In order to extend the work so as to distinguish cylindrical and conical parts

of a measured component and to match them with the corresponding curved faces

of the solid model the following method could be used:

173

Once the surface triangles and their surface normals are found, the surface

normals might be mapped onto a Gaussian sphere (or an extended Gaussian sphere,

EGS) before clustering the surface triangles. In this technique, as in the technique

described in Chapter 7, it might also be a good idea to scale the surface normals

by the perpendicular distances of the triangular facets from the origin (this would

allow the parallel planes to be clustered). After the mapping, the surface triangles

lying on the same surface will form small clusters on the ordinary Gaussian sphere

(as opposed to the extended one) whereas (as mentioned in section 7.5.1) triangles

lying on cylindrical faces will form unit radius circles and the triangles on conical

faces will form small radius circles. These different types of clusters would allow

the different shapes (such as cylinders and cones as well as the planar surfaces) to

be distinguished and different shapes could be matched by just matching the two

Gaussian spheres (or EGSs), one for the measured component and one for the solid

model.

Matching the planar faces by matching the two EGSs was explained in the

previous chapter. In this section some suggestions will be given for matching con­

ical parts and cylindrical parts. Firstly, matching the conical parts:

It is easier to distinguish a cone from its mapping on the Gaussian sphere (see

Figure 8.1). The included angle of a cone determines the diameter of the small

radius circle on the Gaussian sphere. By matching the two same-radius circles the

conical parts of the measured component could easily be matched with the parts of

the solid model (see Figure 8.2).

174

i n c l u d e d

Figure 8.1 Representation of cones on a Gaussian sphere

EGS of the solid nodel EGS of the neasuned conponent

Figure 8.2 Matching the conical parts

175

On the other hand, matching cylinders is rather difficult. The reason for this

is, that whatever their diameters, cylinders are represented as unit radius circles on

Gaussian spheres. However, if the links between the surface normals and their

corresponding surface triangles are kept, the diameters of the cylinder could be cal­

culated.

If there is more than one cylindrical part in a model, these cylindrical parts

might be matched by matching their axes. In order to match axes, first the center

point which is minimum distance away from the axes is found and the lines are

matched according to their distance from this centre point by using Procrustean

matching under translation and rotation. The algebra [26] which calculates the

centre point is given in Appendix D. Figure 8.3 shows the axes of cylinders and

their matching.

If there is more than one cone which has the same included angle, the same

technique could be used to find these cones, and the cones could again be matched

by matching their axes.

axis of a
cylinder

Figure 8.3 Axes of the cylinders and their mutually nearest point

176

8.3.2 Reducing Processing Time

One of the aims of modem production is to reduce inspection time as much as pos­

sible. Since the techniques described in this thesis deal with a large number of

surface points and processing these surface points is time-consuming, it would be

worthwhile investigating new methods which might reduce that processing time;

thus increasing efficiency and reducing inspection time.

In order to reduce processing time, parallel processing might be a useful tool.

Parallel processing is a technique for increasing the computation speed for a task,

by dividing the algorithm into several sub-tasks and allocating multiple processors

to execute multiple sub-tasks simultaneously. Current developments in parallel

processing are of increasing interest to those concerned with the creation, display

and analysis of pictures. It might also be quite useful in order to increase the

accuracy and to reduce the processing time when reconstructing the measured

engineering components from their surface points.

8.3.3 Dealing with Symmetry

Most real engineering components have symmetry about the axes (that is actually

how they are designed). The problem of symmetry was already mentioned in

Chapter 7. In some cases it is worthwhile to try the six possible 180 degree rota­

tions about the axes to find the best match. Possible three 180 degree rotations

around x, y and z axis were already tried in order to help to sort out the symmetry

problem but did not help much for the case given in Appendix C. The best match

177

here was defined as the match which minimises the sum of squared distances

between the faces of the measured component and the solid model’s after each

rotation.

As also mentioned in Chapter 7, the matching depends on the position of the

plane centres of both the solid model and the measured component. Since the

plane centre was the minimum distance away from the faces, extra or missing faces

changed the centre of the planes of the measured component and the faces some­

times failed to match. In order to solve this problem surface areas were also con­

sidered to scale the surface normals, but for big changes in the position of the

plane centre this did not help much either. For this reasons it is recommended that

some other measures be found to scale the surface normals which would allow the

technique to handle any amount of change in the position of the plane centre

because of the missing or the extra faces of measured component. These measures

could be the surface colour (if a colour television camera is assisting the measuring

machine), the grey level for a monochrome camera (as long as the angle of illumi­

nation is taken into account), the surface texture, the surface roughness, some bar

codes or markings on the surface and so on.

Alternatively, in order to handle the cases where symmetry or missing or extra

faces cause the matching algorithm to fail, the picture of the measured component

and the solid model (the picture of the measured component was already produced

by using the painter’s algorithm [55, 95, 110] and the faces were painted in

different colours - see Chapter 6) could be used. The faces that were mis-matched

could be corrected interactively by pointing at the faces which should be matched

178

on both the measured component and the solid model and asking the algorithm to

do the matching according to this information.

8.3.4 Dealing with Surface Roughness or Surface Alignments

Algorithms described in this thesis might also be used in checking the surface

roughnesses or the surface alignments of the measured engineering components.

Since the clustering algorithm produces the neighbourhood relationship information

between the faces of the measured component, the angles between the neighbour­

ing faces can be calculated to be compared with the solid model’s and any

misalignment can be found.

Besides, the roughness of the surfaces might be introduced by just perturbing

the measured points not by random numbers but by different sorts of distributions

(i.e. Gaussian distribution) and checked again by comparing with the solid model.

179

REFERENCES

1. Ahuja, N., Dot pattern processing using Voronoi neighbourhoods, IEEE

Trans, on Pattern Analysis and Machine Intelligence, Volume PAMI-4,

Number 3, May 1982, page 336-343.

2. Ahuja, N., Bridwell, N., Nash, C., Huang, T.S., Three-dimensional robot

vision, IEEE Workshop on Industrial Applications of Machine Vision,

Research Triangle Park, May 1982, page 206-213.

3. Anderberg, M.R., Cluster analysis for applications, Academic Press, New

York, 1973.

4. Baer, A., Eastman, C., Henrion, M., Geometric modelling - a survey,

Computer-Aided Design, Volume 11, Number 5, September 1979, page

253-272.

5. Bajcsy, R., Three-dimensional scene analysis, Proc. of the 5th Interna­

tional Conference on Pattern Recognition (Miami Beach, Florida,

December 1-4), IEEE, New York, page 1064-1073.

6 . Baker, H., Three-dimensional modelling, Proc. of the 5th International

Joint Conference on Artificial Intelligence (Cambridge, Mass., Aug. 22-

25), UCAI, page 649-655.

180

7. Ball, G.H., Classification analysis, Stanford Research Institute, SRI Pro­

ject 5533, 1971.

8 . Ballard, D.H., Sabbah, D., Viewer independent shape recognition, IEEE

Trans, on Pattern Analysis and Machine Intelligence, Volume PAMI-5,

Number 2, March 1983, page 653-659.

9. Bentley, J., Multidimensional-divide-and-conquer, Commun. Ass. Corn-

put. Mach., Volume 23, April 1980, page 214-229.

10. Bentley, J., Shamos, M., Divide-and-conquer in multidimensional space,

Proc. ACM Symp. Theory of Computing, May 1976, page 220-230.

11. Besant, C.B., Lui, C.W.K., Computer-aided design and manufacture,

Ellis Horwood Ltd., 1986.

12. Besl, P J., Jain, R.C., Survey: Three-dimensional object recognition,

Computer Surveys, Vol 17, No 1, March 1985, page 75-145.

13. Bhanu, B., Representation and shape matching of 3-D objects, IEEE

Trans, on Pattern Analysis and Machine Intelligence, PAMI-6 , May 1984,

page 340-350.

14. Bhanu, B., Faugeras, O.D., Shape matching of two-dimensional objects,

IEEE Trans, on Pattern Analysis and Machine Intelligence, Volume

181

PAMI-6 , Number 2, March 1984, page 137-156.

15. Black, S.P., Utilisation of 3-coordinate measuring machines, International

Metrology Conference Nelex 80, paper 2.3, 7-9 October 1980.

16. Bocquet, J.C., Tichkiewitch, S., An expert system for reconstruction of

mechanical objects from projections, Proceedings of the 6 th International

Conference on Pattern Recognition (Munich, W.Germany, Oct 19-22),

I APR and IEEE, New York, page 491-496.

17. Boissonnat, J.D., Shape reconstruction from planar cross-sections,

Proceedings of the IEEE conf. on Computer Vision and Pattern Recogni­

tion, San Fransisco, June 1985, page 393-397.

18. Boissonnat, J.D., Representing 2D and 3D shapes with Delaunay triangu­

lation, Proc. of the 7th International Conference on Pattern Recognition

(Montreal, Canada, July 30-Aug 2), IEEE, New York, page 745-747.

19. Boissonnat, J.D., Representation of object triangulating points in 3-D

space, Proc. of the 6 th International Conference on Pattern Recognition

(Munich, West Germany, Oct 19-22), IEEE, New York, page 830-832.

20. Boissonnat, J.D., Geometric structures for three-dimensional shape

representation, ACM Trans, on Graphics, page 266-286, October 1984.

182

21. Boissonnat, J.D., Faugeras, O.D., Triangulation of 3-D objects, Proc. of

the 7th International Joint Conference on Artificial Intelligence (Van­

couver, B.C., Canada, Aug 24-28), UCAI, page 658-660.

22. Boubez, T.I., Funnell, W .RJ., Lowther, D.A., Pinchuk, A.R., Silvester,

P.P., Mesh generation for computational analysis, part I- Electromagnetic

and technical considerations of mesh generations, Computer-Aided

Engineering Journal, Volume 3, Number 5, October 1986, page 190-195.

23. Boubez, T.I., Funnell, W .RJ., Lowther, D.A., Pinchuk, A.R., Silvester,

P.P., Mesh generation for computational analysis, part II- Geometric and

topological considerations for three-dimensional mesh generation

Computer-Aided Engineering Journal, Volume 3, Number 5, October

1986, page 196-201.

24. Bowyer, A., SID- Set-theoretic Input to Dora, a language for describing

solid objects, Bath University, School of Engineering, Internal Report,

1986.

25. Bowyer, A., Computing Dirichlet tesselations, Computer Journal, Volume

24, Number 2, 1981, page 162-166.

26. Bowyer, A., Personal communications, University of Bath.

183

27. Bowyer, A., Graham, D., Henry, G.K., The measurement of 3-D

features using laser triangulation, Proc. of the 7th International Confer­

ence on Automated Inspection and Product Control, Birmingham 1985,

IFS Publications, page 313-322. 1980.

28. Bowyer, A., Woodwark, J.R., Programmer's geometry, Butterworths,

1983.

29. Cakir, M.C., Bowyer, A., Matching measured components into solid

models, Proc. of the International Conference on Theory and Practice of

Geometric Modelling, (Blaubeuren, W.Germany, October 3-7), 1988.

30. Cavendish, J.C., Field, D.A., Frey, W.H., An approach to automatic

three-dimensional finite element mesh generation, International Journal for

Numerical Methods in Engineering, Volume 21, page 329-347, 1985.

31. Chiyokura, H., Solid modelling with DESIGNBASE, Addison-Wesley

Publishing Company, 1988.

32. Choi, B.K., Shin, H.Y., Yoon, Y.I., Lee, J.W., Triangulation of scattered

data in 3D space, Computer-Aided Design, Volume 20, Number 5, June

1988, page 239-248.

33. Choong, Y.C., Intelligent robot vision in automated surface finishing, Ph.

D. dissertation, University of Bath, 1982.

184

34. Cohen, H.D., A method for the automatic generation of triangular ele­

ments on a surface, International Journal for Numerical Methods in

Engineering, Volume 15, Number 3, page 470-477, 1980.

35. Coyne, B., Three-dimensional coordinate measuring machine survey,

Quality Today, January 1989, page 17-31.

36. Csendes, Z J ., Shenton, D., Shahnasser, H., Adaptive finite element mesh

generation using Delaunay algorithm, IEEE Transactions on Magnetics,

Volume MAG-19, Number 6 , 1983, page 2551-2554.

37. Dane, C., Bajcsy, R., An object-centered three-dimensional model builder,

Proc. of the 6 th International Conference on Pattern Recognition, IEEE,

New York, page 348-350.

38. Davis, S.L., Shape matching using relaxation techniques, IEEE Trans, on

Pattern Analysis and Machine Intelligence, Volume PAMI-1, Number 1,

January 1979, page 60-72.

39. Diday, E., Govaert, G., Lechevallier, Y., Sidi, J., Clustering in pattern

recognition, Digital Image Processing, J.C. Simon and R.M. Haralick, Eds.

Dordrecht, Holland, Reidel, Oct. 1981, page 331-370.

40. Dudani, S., Breeding, K.J., McGhee, R.D., Aircraft identification by

moment invariants, Trans. Computing, Volume C-26, page 39-45, 1977.

185

41. Duncan, J.P., Mair, S.G., Sculptured surfaces in engineering and medi­

cine, Cambridge University Press, 1983.

42. Eastman, C.M., Preiss, K., A review of solid shape modelling based on

integrity verification, Computer-Aided Design, Volume 16, Number 2,

March 1984, page 66-80.

43. Everitt, B., Cluster analysis, Halsted Press, New York, 1974.

44. Faugeras, O.D., New steps toward a flexible three-dimensional vision sys­

tem for robotics, Proc. of the 7th International Conference on Pattern

Recognition (Montreal, Canada, July 30-Aug. 2), IEEE, New York, page

796-805.

45. Faugeras, O.D., Ponce, J., Prism trees: a hierarchical representations of

3-D objects, Proc. of the 8 th International Joint Conference on Artificial

Intelligence (Karlsruhe, West Germany, Aug. 8-12), IJCAI, page 982-988.

46. Faugeras, O.D., Hebert, M., A 3-D recognition and positioning algorithm

using geometrical matching between primitive surfaces, Proc. of the 8 th

International Joint Conference on Artificial Intelligence (Karlsruhe, West

Germany, Aug. 8-12), UCAI, page 998-1001.

47. Faugeras, O.D., Hebert, M., Mussi, P., Boissonnat, J.D., Polyhedral

approximation of objects without holes, Proc. of the Pattern recognition

186

and Image Processing Conference (Las Vegas, Nevada, June 14-17), IEEE,

New York, page 593-598.

48. Farin, G., Smooth interpolation to scattered 3D data, in Barnhill, R.E.,

and Boehm, W. (eds) Surface in Computer-Aided Geometric Design,

North-Holland, Amsterdam, Netherlands, 1983.

49. Faux, I.D., Pratt, M.J., Computational geometry for design and manufac­

ture, Ellis Horwood, Chichester, U.K., 1979.

50. Fuchs, H., Kedem, Z., Uselton, S.P, Optimal surface reconstruction

from planar contours, Communications of ACM, Volume 20, Number 10,

October 1977, page 69-75.

51. Ganapathy, S., Dennehy, T.G., A new general triangulation method for

planar contours, ACM Computer Graphics, July 1982, Volume 16,

Number 3, page 69-75.

52. Gilheany, R., Treywin, E.T., Developments in three co-ordinate measur­

ing machines and associated software, International Metrology Conference

Nelex 80, paper 2.2, 7-9 October 1980.

53. Green, P.J., Sibson, R., Computing Dirichlet tessellation in the plane,

The Computer Journal, Volume 21, Number 2, page 168-173.

187

54. Groover, M.P., Zimmers, E.W., CAD/CAM Computer-aided design and

manufacturing, Prentice/Hall International Editions, 1984.

55. Harrington, S., Computer graphics, a programming approach, Me Graw-

Hill Inc., 1983.

56. Hartigan, J.A., Clustering algorithms, Wiley, New York, 1975.

57. Hawkes, B., The CADCAM process, Pitman Publishing, 1988.

58. Henderson, T., Efficient 3-D object representations for industrial vision

systems, IEEE Trans, on Pattern Analysis and Machine Intelligence,

Volume PAMI-5, No 6 , Nov 1983, page 609-617.

59. Henderson, T.C., An efficient segmentation method for range data, SPIE

Conf. Robot Vision, Arlington, VA, May 1982, page 46-47.

60. Henderson, T.C, Bhanu, B., Three-point seed method for the extraction

of planar faces from range data, IEEE Workshop on Industrial Applica­

tions of Machine Vision, Research Triangle Park, May 1982, page 181-

186.

61. Henry, G.K., Three-dimensional vision by laser triangulation, Ph. D.

dissertation, University of Bath, 1988.

188

62. Horn, B.K.P., Extended Gaussian images, Proc. of IEEE, December 1972,

page 1656-1678.

63. Horn, B.K.P., Ikeuchi, K., The mechanical manipulation of randomly

oriented parts, Sci. Amer. 251, August 1984, page 100-111.

64. Ikeuchi, K., Reconstruction of three-dimensional objects using the

extended Gaussian image, Proc. of the 7th International Joint Conference

on Artificial Intelligence (Vancouver, B.C., Canada, Aug. 24-28), IJCAI,

page 595-600.

65. Jambu, M., Lebeaux, M.O., Cluster analysis and data analysis, North-

Holland Publishing Company, Netherlands, 1983.

6 6 . Jarvis, R.A., A perspective on range-finding techniques for computer

vision, IEEE Trans, on Pattern Analysis and Machine Intelligence, Volume

PAMI-5, Number 2, March 1983, page 122-139.

67. Kargas, A., Cooley, P., Richards, T.H.E., Interpretation of engineering

drawings as solid models, Computer-Aided Engineering Journal, Volume

5, Number 2, April 1988, page 67-78.

6 8 . Keppel, E., Approximating complex surfaces by triangulation of contour

lines, IBM J. Res. Develop., Number 19, Jan. 1975, page 2-11.

189

69. Krouse, J.K, What every engineer should know about CAD/CAM, Marcel

Dekker Inc., New York and Basel, 1982.

70. Lawson, C.L., Generation of triangular grid with application to contour

plotting, California Institute of Technology, Jet Propulsion Laboratory,

Number 299, 1972.

71. Lee, D.T., Medial axis transformation of a planar shape, IEEE Trans, on

Pattern Analysis and Machine Intelligence, Volume PAMI-4, Number 4,

July 1982, page 363-369.

72. Lee, D.T., Schacter, B.J., Two algorithms for constructing a Delaunay

triangulation, Int. Journal of Computer and Information Sciences, Volume

9, Number 3, 1980.

73. Lewis, B.A., Robinson, J.S., Triangulation of planar regions with appli­

cations, The Computer Journal, Volume 21, page 324-332, 1978.

74. Little, J J ., An iterative method for reconstructing convex polyhedra from

extended Gaussian images, Proc. of National Conference on Artificial

Intelligence (Washington D.C., Aug 22-26), AAAI, page 247-250.

75. Little, J.J., Extended Gaussian Images, mixed volumes, and shape recon­

struction, Proc. First ACM Symposium on Computational Geometry, (Bal­

timore, 5-7 June 1985), page 15-23.

190

76. Lloyd, E.L., On triangulation of a set of points in the plane, Technical

Report MIT/LCS/TM-8 8 , Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, Massachusetts, May 1977.

77. Lorensen, W.E., Cline, H.E., Marching cubes: A high resolution 3D sur­

face construction algorithm, ACM Computer Graphics, July 1987, Volume

21, Number 4, page 163-168.

78. Lowther, D.A., Silvester P.P, Computer-aided design in magnetics,

Springer-Verlag, 1985.

79. McCollum, A.J., Bachelor B.G., Cotter, S.M., Three-dimensional optical

sensing, Proc. 7th International Conference on Automated Inspection and

Product Control, Birmingham 1985, IFS Publications, page 161-176.

80. Meguid, S.A., Integrated computer-aided design of mechanical systems,

Elsevier Applied Science London and New York, 1987.

81. Mullineux, G., CAD: Computational concepts and methods, Kogan Page

Ltd., 1986.

82. Newman, W.M., Sproul, R.F., Principles of Interactive Computer Graph­

ics, Me Graw Hill, 1979.

191

83. O’Rourke, J., Polyhedra of minimal area as 3D object models, Proc. of

the 7th International Joint Conference on Artificial Intelligence, IJCAI,

page 664-666.

84. Oxley, A., Surface fitting by triangulation, The Computer Journal, Volume

28, Number 3, page 335-339, 1985.

85. Parthasarathy, S., Birk, J., Dessimoz, J., Laser range-finder for robot

control and inspection, Proc. of the Society for Photo-Optical Instrumenta­

tion Engineers Conference on Robot Vision, Volume 336, (Arlington, Va.,

May 6-7), SPIE, Bellingham, Washington, page 2-11.

8 6 . Pavlidis, T., A review of algorithms for shape analysis, Computer Graph­

ics Image Processing, Volume 7, page 243-258, 1978.

87. Phelan, N.R., Personal communications, University of Bath.

8 8 . Piper, B.R., Visually smooth interpolation with triangular Bezier patches,

in Farin, G. (ed) Geometric Modelling: algorithms and trends SIAM, Phi­

ladelphia, USA, 1987.

89. Plummer, J.C.S., Making full use of a solid model database, CME

July/August 1985, page 20-24.

192

90. Potmesil, M., Generating models of solid objects by matching 3-D surface

matches, Proc. of the 8 th International Joint Conference on Artificial Intel­

ligence, UCAI, page 1089-1093.

91. Poulter, K.F., Computer-aided dimensional engineering metrology, advan­

tages and disadvantages, Proc. of the 7th International Conference on

Automated Inspection and Production Control, Birmingham 1985, IFS

Publications, page 37-44.

92. Preparata, F., Hong, S., Convex hulls of finite sets of points in two and

three dimensions, Commun. Ass. Comput. Mach., Volume 20, page 87-93,

1977.

93. Preperata, F.P., Shamos, M.I., Computational geometry - an introduc­

tion, Springer-Verlag, New York, 1985.

94. Rhynsburger, D., Analytic delineation of Thiessen polygons, Geographical

analysis, Volume 5, April 1973, page 133-144.

95. Rogers, D.F., Procedural elements for computer graphics, McGraw-Hill

Inc., 1985.

96. Rooney, J., Steadman, P., Principles of computer-aided design, Pitman

Publishing, 1987.

193

97. Sadek, E.A., A scheme for the automatic generation of triangular finite

elements, International Journal for Numerical Methods in Engineering,

Volume 15, page 1813-1822, 1980.

98. Schmitt, FJ.M , Barsky, B.A, Du, W.H, An adaptive subdivision method

for surface-fitting from sampled data, ACM Computer Graphics, Volume

20, Number 4, August 1986, page 179-188.

99. Shamos, M.I., Hoey, D., Closest-point problems, Proceedings of the 16th

Annual Symposium on the Foundations of Computer Science, page 151-

162, October 1975.

100. Shapira, R., Freeman, H., Reconstruction of curved surface bodies from

a set of imperfect projections, Proc. of the 5th International Joint Confer­

ence on Artificial Intelligence (Cambridge, Mass., Aug. 22-25), IJCAI,

page 628-634.

101. Sibson, R., Locally equiangular triangulations, The Computer Journal,

Volume 21, Number 3, page 243-245, 1978.

102. Sibson, R., SUNK: An optimally efficient algorithm for the single-link

cluster method, The Computer Journal, Volume 16, Number 1, page 30-

34, 1972.

194

103. Sibson, R., Studies in the robustness of multi-dimensional scaling: Pro­

crustean scaling, Journal of the Royal Statistical Society, Series B,

Volume 40, page 234-238, 1978.

104. Silverman, B.W., Using Kernel density estimates to investigate multimo­

dality, Journal of the Royal Statistical Society, Series B, Volume 43, page

97-99, 1981.

105. Staugaard, A.C.Jr., Robotics and AI: an introduction to applied machine

intelligence, Prentice Hall, Inc., 1987.

106. Toussaint, G.T., Pattern recognition and geometric complexity, Proc. of

the 5th International Conference on Pattern Recognition, IEEE, New York,

page 1324-1347.

107. Vemuri, B.C., Aggarwal, J.K., Three-dimensional reconstruction of

objects from range data, Proc. of the 7th International Conference on Pat­

tern Recognition, IEEE, New York, page 752-754.

108. Walker, L, Personal communications, University of Bath.

109. Wallis, A.F., Woodwark, J.R., Interrogating solid models, Proceedings of

CAD-84, Butterworths, 1984.

195

110. Wallis, A.F., Personal communications University of Bath.

111. Watson, D.F., Computing the n-dimensional Delaunay tessellation with

applications to Voronoi polytopes, The Computer Journal, Volume 24,

Number 2, 1981, page 167-172.

112. Woodwark, J.R., Computing shape, Butterworths, 1986.

113. Woodwark, J.R., Solid modelling - the set-theoretic approach, BCS

Displays Group, Fundamentals of Geometric Modelling - Review and

Potential, Cafe Royal, London, February 1986.

114. Woodwark, J.R., Shape models in computer integrated manufacture-a

review, Computer-Aided Engineering Journal, Volume 5, Number 3, June

1983, page 103-112.

115. Woodwark, J.R., Bowyer, A., Better and faster pictures from solid

models, IEEE Computer Aided Enginering Journal, Volume 3, Number 2,

1986.

116. Wordenweber, B., Automatic mesh generation of two and three-

dimensional curvilinear manifolds, PhD. dissertation, Computer Labora­

tory, Cambridge University, 1981.

196

117. Wordenweber, B., Surface triangulation for picture production, IEEE

Computer Graphics and Applications, Volume 3, Number 8 , November

1983, page 45-51.

118. Zahn, C., Roskies, R, Fourier descriptors for plane closed curves, IEEE

Trans. Computing, Volume C-21, page 269-280, 1972.

197

LIST OF PUBLICATIONS

Cakir, M.C., Bowyer, A.

Matching Measured Components into Solid Models

Proc. of the International Conference on Theory and Practice of

Geometric Modelling, Blaubeuren, W.Germany, October 1988.

198

APPENDIX A

USER INTERFACE

A.l Introduction

This appendix gives some idea about how to use the software. In the first part

the inputs and outputs of the triangulation and finding-the-surface-triangles

steps will be explained. In the later sections the inputs and outputs of cluster­

ing will be described. The matching algorithm will be explained in section

7.7.

199

A.2 Triangulation of the Surface Points

The input to the triangulation algorithm is the only information available at the

start: the coordinates of the surface points of the component. The algorithm first

asks the user if plotting the surface points is desired and if the answer is T, it plots

them onto a raster scan graphics display. Different views of surface points can be

obtained by simply asking the algorithm to plot the surface points again and again

and defining a new view point for each plot. The next question is whether the user

wishes to continue to triangulate the surface points or not (see Figure A l.l). If

the answer is Y the algorithm continues, otherwise it stops. In order to see what

the ray parameters are at the intersection points with each tetrahedron (to classify

the tetrahedra as solid or air), the fourth question in figure A l . l should also be

answered as Y.

As seen from the HELP screen there are a couple of steps to triangulate the

surface points and to find the surface triangles. The first command, EXT, finds the

maximum and minimum of the coordinates of the surface points. This information

is needed to form a structure around the surface points which guarantees all the

surface points are inside. The next command S starts the Delaunay triangulation.

The four points shown in figure Al . l (point 1 , point 2, point 3, and point 4) are the

vertices of the tetrahedron that encloses the surface points. For the given example

4077 surface points are processed to generate the volumetric representation of the

measured component. The Delaunay tetrahedra (that form the volumetric three-

dimensional structure) and the Dirichlet tessellation can be plotted if P is typed as

the next command. A windowing facility is also available for the close

200

Do y o u w a n t t o p l o t t h e d a t a ? : Y
M e a s u r e m e n ts f i l e : STEPS.MES

D a ta r a n g e i s (- 0 . 0 0 2 - 0 . 0 0 2 - 0 . 0 0 3) t o (8 .0 0 2 6 . 0 0 2 6 .0 0 2)

V iew p o s i t i o n : 4 , - 1 5 , 3
C e n t r e o f v i e w : 4 , 3 , 3
Top o f v i e w : 4 . 0 0 0 - 1 4 . 0 0 0 3 . 8 4 5
G r a p h i c s d e v i c e : B
PLTON: E r a s e t h e s c r e e n ? Y
Do y o u w an t t o p l o t t h e a g a i n ? : N

Do y o u w a n t t o c o n t i n u e ? : Y

Do y o u w a n t t o w r i t e t h e d a t a ?: N

I f y o u w a n t a n y h e l p p r e s s h :H

P r i n t e x t

P r e s s s
P r e s s P
P r e s s 1
P r e s s t

t o f i n d t h e maximum an d minimum o f t h e g i v e n d a t a an d
t o f o r m a c o n v e x h u l l
t o s t a r t t h e DELAUNAY TRIANGULATION
t o p l o t t h e t r i a n g u l a t i o n
f o r t h e l i s t o f n e i g h b o u r i n g v e r t i c e s
t o f i n d t h e t e t r a h e d r a w h ic h a r e AIR

P r i n t DORA t o r u n D ora f o r t h e s e c o n d t im e t o e l i m i n a t e t h e e x t r a t r i a n g l e s
P r i n t SURTRI t o make t h e l i s t o f t r i a n g l e s w h ich a r e on t h e s u r f a c e
P r i n t STOP t o s t o p t h e p r o g r a m

B u t e x c e p t l i s t i n g a n d p l o t t i n g t h e t r i a n g u l a t i o n ,
p l e a s e d o t h e s e s t e p s i n o r d e r !

Command ? : EXT
M e a su r e m e n ts f i l e : STEPS.MES

Minimum p o i n t : (- 0 . 0 0 2 - 0 . 0 0 2 - 0 . 0 0 3)
Maximum p o i n t : (8 . 0 0 2 ' 6 . 0 0 2 6 .0 0 2)

Command ? : S

P o i n t
P o i n t
P o i n t
P o i n t

- 1 . 0 0 2
2 5 . 0 1 2
- 1 . 0 0 2
- 1 . 0 0 2

- 1 . 0 0 2
- 1 . 0 0 2
2 5 . 0 1 2
- 1 . 0 0 2

- 1 . 0 0 3)
- 1 . 0 0 3)
- 1 . 0 0 3)
2 5 . 0 1 1)

Number o f p o i n t s 4077

Command ? : P
M e a su r e m e n ts f i l e : MODEL.MES
Do yo u w ant t o o p e n a w indow ? : Y
B o t t o m - l e f t c o r n e r : 1 , 1 , 1
T o p - r i g h t c o r n e r : 3 , 3 , 3
G r a p h ic s d e v i c e : A

Cont’d...

201

Command ? : T
F o r v e r t e x V 236 2 :
T h e r e i s NO i n t e r s e c t i o n w i t h t h i s t e t r a h e d r o n , t r y t h e o t h e r s

F o r v e r t e x V 5 6 2 8 :
I n t e r s e c t i o n i n f i r s t t e t r a h e d r o n
Ray p a r a m e t e r T(2) : .5 3 3 3 3 7 2 E + 0 0

F o r v e r t e x V 1 1 8 6 :
T h e r e a r e 2 i n t e r s e c t i o n s w i t h t h i s t e t r a h e d r o n an d t h i s t e t r a h e d r o n i s AIR
Ray p a r a m e t e r T(1) : .5 3 3 3 3 7 2 E + 0 0
Ray p a r a m e t e r T(2) : .6 9 5 6 4 8 6 E + 0 0

F o r v e r t e x V 2 1 2 9 :
T h e r e a r e 2 i n t e r s e c t i o n s w i t h t h i s t e t r a h e d r o n and t h i s t e t r a h e d r o n i s AIR
Ray p a r a m e t e r T(3) : .6 9 5 6 4 8 6 E + 0 0
Ray p a r a m e t e r T(1) : .1 0 0 0 0 0 0 E + 0 1

Now we a r e O U T S ID E ,try t h e o t h e r s t a r t i n g p o i n t

Command ? : DORA
Command (.DOR) f i l e : STEPS
I s t h i s y o u r f i r s t r u n n i n g o f DORA ?:N
How f a r aw ay d o y o u w an t t o g o (i n c m .) ? : 1 0 . 0
Your e p s i l o n : 0 . 0 0 1

Command ? : SURTRI
M e a su r e m e n ts f i l e : STEPS

Command? : STOP

FORTRAN STOP

Figure A l.l Triangulation and finding surface triangles

202

observations. The command L prints the list of neighbouring vertices for each

Delaunay vertex onto the screen.

Once the three-dimensional structure is formed from the aggregation of a set

of Delaunay tetrahedra (with the measured surface points as the vertices), the

tetrahedra which are solid are determined by typing T as the next command. Only

the ray parameters of the first ray (at the intersection points with the tetrahedra on

its way) are shown in figure Al . l to give some idea about the outputs of the algo­

rithm.

If DORA is typed next (which it normally should be), the process of eliminat­

ing the redundant tetrahedra is started. The algorithm reads the half-space informa­

tion of the solid model of the component and determines where the faces of the

component should be. The algorithm then asks if the user is running the solid

modeller for the first time and the answer should be N to this question. As men­

tioned in Chapter 5, in order to eliminate the redundant tetrahedra DORA needs to

be run for the second time (first run was to simulate the data gathering process and

this second run is to simulate the measuring machine’s being on-line). For the

example given in figure Al . l the distance which is used to find any redundant

tetrahedron is given as 10 cm. The algorithm moves away from the centroid of

each tetrahedron at this given distance in positive and negative x,y, and z directions

consecutively, and sends a ray onto the centroid of the tetrahedron to determine

whether this tetrahedron is redundant or not (see figure 5.3).

After eliminating the redundant tetrahedra, the surface triangles are found by

typing SURTRI as the next command. The output of surface triangles is written

203

into a given file.

This is how the algorithm triangulates the surface points and finds the surface

triangles. As written in the HELP menu, apart from listing the neighbouring ver­

tices and plotting the triangulation and tessellation all these steps explained should

be done in the given order. The program can be stopped at any stage by typing

STOP as the next command.

A.3 Clustering the Surface Triangles

The clustering algorithm first reads in the surface triangles from a given file (see

Figure A2.1). It then asks the user to define the constant which will be used in

clustering (it checks the scalar product of two surface normals, if the result is

greater than or equal to this given constant, it clusters these surface normals

together).

The mid-distance factor which is asked to be defined as the next factor is the

factor which determines the place of the mid-plane. Once the clusters were formed

the position of mid-plane of each cluster is determined by finding the difference

between the maximum and minimum distance values of each cluster and multiply­

ing this difference with the given mid-distance factor.

Next, the weighting factor needs to be determined. The clustering algorithm

uses this factor to decide to which cluster the surface triangle belongs when two of

its neighbours are in the same cluster and the third one is in different cluster. As

this factor gets bigger the chance of the surface triangle being clustered with its

204

.SUR file :STEPTE.SUR
C o n s t a n t : 0 . 9 8

Mid D i s t a n c e F a c t o r : 0 . 5 2

W e i g h t i n g F a c t o r : 4 . 0

Number o f s i n g l e c l u s t e r s : 36
Number o f c h a n g e d c o l o u r s : 322

Number o f s i n g l e c l u s t e r s : 0
Number o f c h a n g e d c o l o u r s : 0

W e i g h t i n g F a c t o r : 4 . 0

Number o f s i n g l e c l u s t e r s : 10
Number o f c h a n g e d c o l o u r s : 214

Number o f s i n g l e c l u s t e r s : 0
Number o f c h a n g e d c o l o u r s : 0

Number o f f a c e s : 9
A rea o f f a c e 1 : 1 9 . 2
A rea o f f a c e 2 : 3 2 . 9
A rea o f f a c e 3 : 4 8 . 0
A rea o f f a c e 4 : 1 3 . 8
A rea o f f a c e 5 : 3 2 . 9
A rea o f f a c e 6 : 1 2 . 0
A rea o f f a c e 7 : 4 2 . 0
A r e a o f f a c e 8 : 1 8 . 0
A rea o f f a c e 9 : 2 5 . 8

C l u s t e r 5 i s d o u b t f u l l . NO m e r g in g .
M ig h t b e a f a l s e c h a m fe r

C l u s t e r 8 i s d o u b t f u l l . NO m e r g in g .
M ig h t b e a f a l s e c h a m fe r

D o u b t f u l c l u s t e r 9 i s m e r g e d w i t h c l u s t e r 4

D o u b t f u l c l u s t e r 11 i s m e r g e d w i t h c l u s t e r 13

C l u s t e r 14 i s d o u b t f u l l . NO m e r g in g .
M ig h t b e a f a l s e c h a m fe r

W e i g h t i n g F a c t o r : 4 . 0

Number o f s i n g l e c l u s t e r s : 0
Number o f c h a n g e d . c o l o u r s : 1

Number o f s i n g l e c l u s t e r s : 0
Number o f c h a n g e d c o l o u r s : 0

Number o f c l u s t e r s : 9

Figure A2.1 Clustering the surface triangles

205

two neighbours gets higher. The algorithm also reports the number of surface tri­

angles whose three neighbours are in three clusters which are different from the the

surface triangle’s cluster (single cluster) and the number of surface triangles whose

clusters were changed. The algorithm asks for the weighting factor for the second

time when it re-organises the clusters after clustering the surface triangles which

are lying in parallel planes.

The algorithm then asks the number of faces of the solid model and their sur­

face areas. By using this information and calculating the surface areas of the

measured component, it finds which of the clusters are doubtful (they are the clus­

ters whose surface areas are much smaller than the minimum surface area of the

solid model). If the number of clusters which are found by the algorithm are more

than the number of the faces of the solid model, it either tries to merge the doubt­

ful cluster with any other cluster (it does this by fitting a plane to each cluster and

calculating the scalar product between the doubtful cluster and any other clusters.

If the result is greater than or equal to the given constant, the doubtful cluster is

the part of this cluster) or if no merging is possible it classifies this doubtful cluster

as a false chamfer. It organises the clusters again, tests single clusters, changes

their clusters and outputs the number of clusters (which is obviously equal to the

number of the faces of the solid model).

206

APPENDIX B

ROTATIONS

B.l Introduction

This appendix gives general information about the three-dimensional rotations

about x,y,z and arbitrary axes.

207

B.2 Rotations

In three-dimensions the axis about which the rotation will take place needs to be

determined. Rotation of a point about the z axis through an angle 9 is given by:

c o sG -sin 0 0
s in 0 c o s 0 0

0 0 1

where the rotation angle 0 is measured anti-clockwise about the origin when look­

ing at the origin from a point on the +z axis.

Thus, rotation about the x axis is:

[* ' y ' z '] = [* y z] ■
1 0 0
0 COS0 -sin 0
0 s in 0 COS0

and rotation about y axis is given by:

[* ' y ' z '] = [x y z] •
c o s 0 0 s in 0

0 1 0

-sin 0 0 c o s 0

In order to rotate in clockwise direction a negative angle is used.

When the objects are rotated sequentially about x , y and z axes, the rotation

matrix P can be calculated as:

c o s a -sin a 0 c o s p 0 s in p 1 0 0
P = s i n a c o s a 0 • 0 1 0 • 0 c o s y -s in y

. 0 0 1 . -sin P 0 c o s p 0 s in y c o s y .

c o s a c o s B c o s a sinjB s in y - s i n a c o s y c o s a s in B c o s y + s i n a s in y
P = s i n a c o s p s i n a s in p s in y + c o s a c o s y s i n a s in p c o s y - c o s a s in y

. -sin p c o s p s in y c o s p c o s y

For the given rotation matrix P:

P 11 P n P 13
P = Pn P22 P23

P31 P 32 P 33

208

the rotation angles about the axes are calculated as:

a = Atan(—)
P 11

P = Atan (~P 31
VPn+^21

)

P 32Y = Atan(—)
P 33

where y is the rotation angle about the x axis, p about the y axis and a about the z

axis.

If the axis of rotation is a general axis, the equivalent rotation matrix is given

by:

P =
kx kx v 0 + c 0 kx ky v 0 - kt sQ kx k ̂ v 0 + ky 5 0

kx ky v 0 + kz s& ky ky V® + c 0 ky kz v 0 - kx sQ
kx kz v 0 - ky sQ ky kz v 0 + kx s S kx kz v 0 + c 0

where c & = c o s 0 , 5 0 = s i n 0 , v © = 1 - c o s 0 ; kx, ky} kz are the coefficients of the gen­

eral axis 1? and 0 is the rotation angle about the axis.

If the rotation matrix P is given:

p 11 P l 2 Pl3
p = P 21 P22 P23

P 31 P 32 P33

then the rotation angle and the general axis can be calculated as:

o , A , P 11 + P22 +P33 ~ 1 .0 = A co s(- - - - - - - - - - -)

1

2sin0

P 32 ~ P 23
P13-P31
P 21 ~ P 12

209

APPENDIX C

FURTHER RESULTS

C.l Introduction

In this appendix some more results will be given on matching the measured

components with their solid model. These results include the cases where

symmetry or missing or extra faces of the measured component yields some

mis-matches and the cases where the measured component matches perfectly

with its solid model.

210

C.2 Other Results

The result of the reconstruction and the matching of another component is shown

in Figure C1.1. This measured component was also perfectly matched with its

solid model. No missing or extra face of the measured component and no rotation

or translation between the two was reported.

In the other result shown in Figure C1.2 the translation of 10 cm. and the

rotations of 60 degrees about x axis, 30 degrees about the y axis and 45 degrees

about z axis of the measured component were recovered, and the faces of the solid

model were matched perfectly with the faces of the measured component. Minus

sign in rotation angles indicates the clockwise direction of the rotations.

C.3 Symmetry Problem

In Figure C2.1 the result of matching a symmetric U-shaped measured component

with its solid model is shown. As seen from Figure C2.2, not only the perpendic­

ular distances from the plane centre, but also the surface areas of some of the

faces, are the same. Since the matching algorithm uses these measures to scale the

surface normals and the information to make the decision is insufficient, it fails to

find the best match when more than one face corresponds to a face of the solid

model. Thus it recovers the wrong rotation angle (although it recovers the right

translation). There is no rotation or translation between the measured component

and the solid model in figure C2.1. As discussed in Chapter 8 , possible 180 degree

rotations about x, y and z axes were tried to improve the results but no improve­

ment was observed. The default value for the rotation angles in figure C2.1 was

First .HSP file : stepte.hsp
Second .HSP file : stepteo.hsp
R e c o v e r e d o f f s e t : 0 . 0 0 3 7 - 0 . 0 0 8 9 - 0 . 0 0 2 1

Do y o u w ant t o s e e t h e o u t p u t ?: N

Do y o u w ant t o c a l c u l a t e t h e minimum d i s t a n c e
D Term : 0 . 0

Squared dist between modes: 0 . 0 0 0 0
Recovered angle around X axis: 0 . 0 3 3 9
Recovered angle around Y axis: 0 . 3 5 1 4
Recovered angle around Z axis: 0 . 1 1 4 3

Face : 8 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 5 2 2 4 9 1 5
Face : 3 (- 0 . 0 0 0 0 1 3 2 - 0 . 0 0 2 2 0 2 4 0 . 9 9 9 9 9 7 6 1 . 5 2 0 8 4 5 8

Face : 6 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 4 7 7 5 0 8 5
Face : 6 (0 . 0 0 2 2 3 6 9 - 0 . 0 0 2 6 0 8 0 0 . 9 9 9 9 9 4 1 - 3 . 4 6 9 7 6 7 7

Face : 9 (- 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0 . 7 0 7 1 0 6 8 - 1 . 7 1 7 9 9 0 2
Face : 4 (0 . 7 0 7 0 2 0 2 - 0 . 0 0 1 3 2 3 9 0 . 7 0 7 1 9 2 0 1 . 7 1 9 1 4 9 6

Face : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 0 9 2 8 8 6 9
Face : 9 (0 . 9 9 9 9 9 9 9 0 . 0 0 0 3 0 9 8 0 . 0 0 0 1 4 1 8 - 4 . 0 8 9 2 8 7 0

Face : 1 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 9 0 7 1 1 3 1
Face : 2 (0 . 9 9 9 9 9 9 9 0 . 0 0 0 3 9 3 5 0 . 0 0 0 1 9 5 4 3 . 9 1 0 7 7 6 5

Face : 7 (0 . 5 0 0 0 1 0 9 0 . 0 0 0 0 0 0 0 0 . 8 6 6 0 1 9 0 - 2 . 0 5 8 0 1 1 1
Face : 7 (0 . 4 9 9 9 6 3 1 - 0 . 0 0 1 6 8 6 0 0 . 8 6 6 0 4 5 1 - 2 . 0 5 7 9 8 5 3

Face : 5 (0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 2 . 9 9 9 9 9 9 8
Face : 8 (0 . 0 0 0 3 0 2 5 - 0 . 9 9 9 9 9 7 6 - 0 . 0 0 2 1 8 9 8 3 . 0 0 8 9 6 0 0

Face : 2 (0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 2
Face : 1 { - 0 . 0 0 0 2 8 2 3 0 . 9 9 9 9 9 7 6 0 . 0 0 2 1 8 3 7 2 . 9 9 1 1 0 5 1

Face : 3 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 5 2 2 4 9 1 5
Face : 5 (- 0 . 0 0 0 1 3 0 3 0 . 0 0 4 2 5 0 0 0 . 9 9 9 9 9 0 9 2 . 5 1 5 3 4 2 0

S a t i s f i e d ? Or d o y o u want t o t r y r o t a t i o n s a r o u n d t h e a x e s [1 8 0 . 0] : N

Do y o u w ant t o p l o t t h e r e s u l t s l a t e r on ?:N

Figure C l . l Matching of a measured component with its solid model

212

F i r s t .HSP f i l e : s t e p s o . h s p
S e c o n d .HSP f i l e : s t e p s r 3 t . h s p
R e c o v e r e d o f f s e t : - 0 . 0 0 5 1 - 0 . 0 1 6 2 1 0 . 0 0 1 6

Do y o u w a n t t o s e e t h e o u t p u t ?: N

Do y o u w a n t t o c a l c u l a t e t h e minimum d i s t a n c e : N
D Term : 0 . 0

S q u a r e d d i s t b e t w e e n m o d e s : 0 . 0 0 0 0
Recovered angle around X axis: - 5 9 . 8 6 9 2
Recovered angle around Y axis : - 2 9 . 8 7 7 0
Recovered angle around Z axis: - 4 5 . 0 5 8 2

Face : 10 (0 . 9 9 9 9 9 9 5 0 . 0 0 0 0 0 8 9 0 . 0 0 0 9 4 2 4 0 . 2 5 7 0 0 0 3
Face : 9 (0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0 . 0 0 0 1 1 7 5 0 . 2 5 3 5 2 3 6

Face : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 2 3 8 - 0 . 0 0 0 0 2 7 2 1 . 7 4 4 5 0 9 4
Face : 7 (0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0 . 0 0 0 1 1 7 5 1 . 7 4 6 4 7 8 4

Face : 13 (- 0 . 0 0 0 0 1 4 2 0 . 0 0 0 0 1 0 7 1 . 0 0 0 0 0 0 0 0 . 7 9 5 9 5 9 3
Face : 12 (0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 0 . 7 8 8 7 3 1 7

Face : 8 (- 0 . 0 0 0 0 5 7 5 0 . 0 0 0 0 0 6 1 1 . 0 0 0 0 0 0 0 1 . 2 0 3 9 1 9 9
Face : 10 (0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 1 . 2 1 1 2 6 9 3

Face : 14 (0 . 0 0 0 1 9 8 5 0 . 0 0 0 0 0 0 4 1 . 0 0 0 0 0 0 0 2 . 2 0 3 9 4 1 4
Face : 8 (0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 2 . 2 1 1 2 6 9 3

Face : 9 (1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 0 1 9 - 0 . 0 0 0 0 1 8 0 2 . 2 5 5 4 8 0 1
Face : 11 (0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0 . 0 0 0 1 1 7 5 2 . 2 5 3 5 2 3 6

Face : 3 (- 0 . 0 0 0 0 8 6 1 - 0 . 0 0 0 0 4 4 3 1 . 0 0 0 0 0 0 0 1 . 7 9 5 7 8 9 9
Face : 13 (0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 1 . 7 8 8 7 3 1 7

Face : 11 (- 0 . 0 0 1 4 7 9 7 0 . 0 0 0 0 4 2 2 0 . 9 9 9 9 9 8 9 3 . 2 0 7 7 2 3 8
Face : 6 (0 . 0 0 0 1 1 7 9 - 0 . 0 0 2 9 1 8 0 0 . 9 9 9 9 9 5 7 3 . 2 1 1 2 6 8 3

Face : 5 (- 0 . 7 0 8 4 4 1 0 - 0 . 0 0 0 0 0 7 6 - 0 . 7 0 5 7 7 0 0 1 . 8 0 0 8 1 0 3
Face : 14 (- 0 . 7 0 7 1 9 0 2 0 . 0 0 1 9 7 5 0 - 0 . 7 0 7 0 2 0 6 1 . 7 9 2 6 6 4 9

Face : 12 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 4 8 5 - 0 . 0 0 0 1 3 3 0 4 . 2 5 5 6 9 5 1
Face : 4 (0 . 9 9 9 9 9 9 9 0 . 0 0 0 1 2 4 9 - 0 . 0 0 0 1 1 7 5 4 . 2 5 3 5 2 3 6

Face : 2 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 1 0 8 1 0 . 0 0 0 0 4 2 2 3 . 7 4 3 5 5 0 9
Face : 1 (- 0 . 9 9 9 9 9 9 9 - 0 . 0 0 0 1 2 4 9 0 . 0 0 0 1 1 7 5 3 . 7 4 6 4 7 8 4

Face : 6 (- 0 . 0 0 0 0 1 8 7 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 3 5 2 2 . 9 9 0 7 4 6 7
Face : 5 (- 0 . 0 0 0 1 2 4 5 0 . 9 9 9 9 9 5 6 0 . 0 0 2 9 1 8 0 2 . 9 9 9 9 9 9 2

Face : 1 (0 . 0 0 0 0 4 0 4 - 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 6 2 6 3 . 0 0 9 4 7 1 7
Face : 2 (0 . 0 0 0 1 2 4 5 - 0 . 9 9 9 9 9 5 6 - 0 . 0 0 2 9 1 8 0 2 . 9 9 9 9 9 5 8

Face : 7 (- 0 . 0 0 0 0 7 1 6 0 . 0 0 6 5 2 4 0 - 0 . 9 9 9 9 7 8 7 2 . 7 5 2 4 7 7 4
Face : 3 (- 0 . 0 0 0 1 1 7 9 0 . 0 0 2 9 1 8 0 - 0 . 9 9 9 9 9 5 7 2 . 7 8 8 7 3 1 7

S a t i s f i e d ? Or do y o u want t o t r y r o t a t i o n s a r o u n d t h e a x e s [1 8 0 . 0] : N

Do you want t o p l o t t h e r e s u l t s l a t e r on ?: N

Figure C1.2 Matching of a measured component with its solid model

213

180 degrees.

C.4 Missing or Extra Faces of the Measured Component

As discussed in Chapter 7, the algorithm fails to match some faces of the measured

component with its solid model’s if the measured component has a different

number of faces from its solid model. Since the different number of faces change

the position of the centre point (which is minimum distance away from the faces),

the radial distances from the centre point were also changed and some mis-matches

occur. Figure C3.1 shows this sort of matching. The measured component in

figure C3.1 has an extra face, Face 15 and because of this extra face, 3 faces were

mis-matched (including the extra face) and the rotation angle is recovered by 2

degrees difference.

214

First .HSP file : samp.hsp
Second .HSP file : sampo.hsp
R e c o v e r e d o f f s e t : - 0 . 0 0 0 3 0 . 0 0 0 8 - 0 . 0 1 4 0

Do y o u w a n t t o s e e t h e o u t p u t ?: N

Do y o u w an t t o c a l c u l a t e t h e minimum d i s t a n c e : N
D Term : 0 . 0

S q u a r e d d i s t b e t w e e n m o d e s : 0 . 0 0 0 0
R e c o v e r e d a n g l e a r o u n d X a x i s : - 0 . 0 0 0 8
R e c o v e r e d a n g l e a r o u n d Y a x i s : - 0 . 0 0 0 3
R e c o v e r e d a n g l e a r o u n d Z a x i s : - 6 3 . 1 6 0 4

F a c e : 9 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0
F a c e : 2 (0 . 0 0 0 0 0 4 3 0 . 9 9 9 8 8 1 3 - 0 . 0 1 5 4 0 7 3 - 0 . 0 1 3 9 4 0 7

F a c e : 7 (0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0
F a c e : 7 (0 . 0 0 0 6 4 2 4 - 0 . 0 4 1 3 3 7 3 - 0 . 9 9 9 1 4 5 0 - 0 . 9 8 7 9 9 6 7

F a c e : 8 (0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0
F a c e : 5 (0 . 0 0 0 0 5 6 7 - 0 . 0 0 0 9 3 0 6 0 . 9 9 9 9 9 9 5 - 0 . 9 8 6 0 5 2 0

F a c e : 6 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 2 . 0 0 0 0 0 0 0
F a c e : 1 (0 . 0 0 0 0 0 3 8 0 . 0 1 5 3 8 5 7 0 . 9 9 9 8 8 1 6 - 3 . 0 0 0 8 6 8 3

F a c e : 1 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 5 . 0 0 0 0 0 0 0
F a c e : 4 (- 1 . 0 0 0 0 0 0 0 - 0 . 0 0 0 0 1 2 1 0 . 0 0 0 0 0 4 9 - 5 . 0 0 0 3 5 5 0

F a c e : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 5 . 0 0 0 0 0 0 0
F a c e : 3 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 6 2 - 0 . 0 0 0 0 0 8 0 4 . 9 9 9 6 8 0 1

F a c e : 2 (0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e : 6 (0 . 0 0 0 0 1 7 2 0 . 9 9 9 8 8 1 8 - 0 . 0 1 5 3 7 4 4 1 . 9 8 6 0 4 4 5

F a c e : 5 (0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
F a c e : 8 (0 . 0 0 0 0 0 2 0 0 . 9 9 9 8 8 1 6 - 0 . 0 1 5 3 8 9 6 - 2 . 0 1 4 0 2 9 3

F a c e : 3 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 0 0 0 0 0 0 0
F a c e : 9 (- 0 . 0 0 0 0 0 0 6 0 . 0 1 5 4 1 8 1 0 . 9 9 9 8 8 1 1 2 . 9 9 9 1 5 5 8

S a t i s f i e d ? Or do y o u w an t t o t r y r o t a t i o n s a r o u n d t h e a x e s [1 8 0 . 0] :

R o t a t i o n a n g l e a r o u n d X a x i s [1 8 0 . 0]
R o t a t i o n a n g l e a r o u n d Y a x i s [1 8 0 . 0]
R o t a t i o n a n g l e a r o u n d Z a x i s [1 8 0 . 0]

'S o r r y , r o t a t i o n s a r o u n d a x e s h a s NO u s e !

Do you w ant t o p l o t t h e r e s u l t s l a t e r on ?:N

Figure C2.1 The effect of the symmetry problem on matching

215

1

2
3
4
5
6
7
8
9

1

2
3
4
5
6
7
8
9

S o l i d Mode l

P l a n e C o e f f i c i e n t s o f SAMP Ax + By + Cz + D = 0

A B c D Areas
-0.1000000E+01
0.0000000E+00
O.OOOOOOOE+OO
0.1000000E+01
0.0000000E+00
0.0000000E+00
0 .0000000E+00
0.0000000E+00
0.0000000E+00

1
1

o
o
o
o
o
o
o
o
o

O
I-

'M
O

t-
'O

O
t-

'O
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

w
n
w
n
w
n
n
w
w

+
+
+
+
+
+
+
+
+

o
o
o
o
o
o
o
o
o

O
M

M
O

M
O

O
M

O 0.0000000E+00
O.OOOOOOOE+OO

-0.1000000E+01
0.0000000E+00
0.0000000E+00
0.1000000E+01
0.0000000E+00
0.0000000E+00

-0.1000000E+01

O.OOOOOOOE+OO
0 .0000000E+00
0.0000000E+00

-0.1000000E+02
-0.6000000E+01
-0.4000000E+01
0 .2000000E+01

-0 .4000000E+01
0 .2000000E+01

20.0000
40.0000
60.0000
20.0000
40.0000
40.0000
20.0000
20.0000
20.0000

M e a s u r e d Component

P l a n e C o e f f i c i e n t s o f SAMPO

A B

Ax + By + Cz + D = 0

C D

0 . 2 0 2 3 3 9 4 E - 0 5
0 . 9 2 3 2 7 3 0 E - 0 5
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 5 5 1 7 5 3 0 E - 0 4
0 . 3 6 4 5 7 1 4 E - 0 5
0 . 6 4 4 4 8 4 0 E - 0 3
0 . 1 1 5 4 7 7 4 E - 0 4
0 . 2 3 3 9 4 6 5 E - 0 5

■0.1 0 0 0 0 0 0 E + 0 1
0 . 1 4 9 4 6 1 7 E - 0 4
0 . 9 6 4 9 9 4 7 E - 0 5

- 0 . 2 9 7 5 5 5 9 E - 0 5
- 0 . 9 9 9 8 6 6 8 E + 0 0
■0.1 7 9 5 5 3 0 E - 0 4
0 . 9 9 9 6 6 2 9 E + 0 0

- 0 . 2 7 7 6 8 3 4 E - 0 5
• 0 . 1 0 0 0 0 0 0 E + 0 1

- 0 . 6 6 4 2 0 8 6 E - 0 5
0 . 10 0 0 0 0 0 E + 0 1

- 0 . 7 2 4 8 4 9 2 E - 0 5
- 0 . 2 5 6 8 6 8 6 E - 0 4
• 0 . 1 6 3 2 2 7 7 E - 0 1
0 . 1 0 0 0 0 0 0 E + 0 1

- 0 . 2 5 9 5 3 2 3 E - 0 1
0 . 1 0 0 0 0 0 0 E + 0 1
0 . 2 5 7 6 5 6 8 E - 0 4

0 . 1 2 1 3 1 5 0 E - 0 5
- 0 . 2 0 0 0 0 3 1 E + 0 1
- 0 . 2 8 4 9 8 6 2 E - 0 5
- 0 . 99 9 9 9 6 3 E + 0 1

0 . 2 0 4 7 0 8 7 E + 0 1
0 . 1 1 7 2 7 60E -03

- 0 . 3 9 3 3 0 6 6 E + 0 1
- 0 . 4 0 0 0 0 7 8 E + 0 1

0 . 5 9 9 9 9 3 9 E + 0 1

A r e a s

4 0 . 0 1 7 1
2 1 . 9 9 9 3
1 8 . 9 0 2 3
1 8 . 9 0 5 5
1 9 . 2 1 6 6
6 1 . 0 6 3 3
1 8 . 4 9 7 2
4 0 . 4 7 9 6
4 0 . 0 1 6 8

Figure C2.2 The plane coefficients of half-spaces and surface normals

216

F i r s t .HSP f i l e : s t e p s . h s p
S e c o n d .HSP f i l e : s t p p l o . h s p
R e c o v e r e d o f f s e t : 0 . 5 0 4 3 - 0 . 0 0 7 7 - 0 . 4 2 8 7

Do y o u w an t t o s e e t h e o u t p u t ?: N
Do y o u w an t t o c a l c u l a t e t h e minimum d i s t a n c e : N
D Term : 0 . 0

S q u a r e d d i s t b e t w e e n m o d e s : 0 . 0 0 0 0
Recovered angle around X axis: - 0 . 0 1 8 4
Recovered angle around Y axis: - 2 . 4 1 4 0
Recovered angle around Z axis: 0 . 1 5 5 7

Face : 9 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 2 5 3 5 2 1 2
Face : 11 (0 . 9 9 9 0 6 4 7 - 0 . 0 0 0 1 0 4 8 0 . 0 4 3 2 4 0 0 0 . 2 4 8 4 2 5 7

Face : 12 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0 . 7 8 8 7 3 2 3
Face : 1 4 (- 0 . 0 4 2 2 1 2 6 - 0 . 0 0 2 4 7 8 3 0 . 9 9 9 1 0 5 6 0 . 3 6 0 2 9 9 2

Face : 7 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 7 4 6 4 7 8 8
Face : 4 (0 . 9 9 9 1 2 3 0 - 0 . 0 0 0 0 6 2 6 0 . 0 4 1 8 7 1 5 2 . 2 5 1 5 7 7 9

Face : 10 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 1 . 2 1 1 2 6 7 7
Face : 9 (- 0 . 0 4 2 1 9 0 1 - 0 . 0 0 2 4 7 9 3 0 . 9 9 9 1 0 6 5 - 1 . 6 3 9 8 4 3 6

Face : 12 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 0 . 7 8 8 7 3 2 3
Face : 10 (0 . 9 9 9 1 1 5 7 - 0 . 0 0 0 0 6 3 0 0 . 0 4 2 0 4 4 8 - 1 . 7 4 9 1 4 8 5

Face : 11 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 2 . 2 5 3 5 2 1 2
Face : 13 (0 . 9 9 9 1 0 4 9 - 0 . 0 0 0 2 0 1 8 0 . 0 4 2 3 0 0 9 - 3 . 7 4 9 0 2 2 8

Face : 1 3 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 1 . 7 8 8 7 3 2 3
Face : 3 (- 0 . 0 4 2 3 4 5 2 - 0 . 0 0 2 4 6 1 7 0 . 9 9 9 1 0 0 0 1 . 3 5 9 4 4 2 3

Face : 8 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 2 . 2 1 1 2 6 7 7
Face : 1 5 { - 0 . 0 4 1 9 1 4 8 - 0 . 0 0 2 4 8 3 0 0 . 9 9 9 1 1 8 1 - 2 . 6 3 9 8 7 8 2

Face : 4 (1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 4 . 2 5 3 5 2 1 2
Face : 8 (- 0 . 7 3 9 0 9 5 4 - 0 . 0 0 1 7 0 7 6 0 . 6 7 3 5 9 8 5 3 . 6 1 4 9 3 8 2

Face : 6 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 - 3 . 2 1 1 2 6 7 7
Face : 12 (- 0 . 0 4 3 6 3 8 7 - 0 . 0 0 2 4 3 7 5 0 . 9 9 9 0 4 4 3 - 3 . 6 4 4 4 1 1 9

Face : 14 (- 0 . 7 0 7 1 0 6 8 0 . 0 0 0 0 0 0 0 - 0 . 7 0 7 1 0 6 8 - 1 . 7 9 2 6 6 5 3
Face : 5 (0 . 6 7 8 1 1 0 8 - 0 . 0 0 1 8 0 0 1 0 . 7 3 4 9 5 7 4 1 . 8 5 1 9 0 7 6

Face : 1 (- 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 7 4 6 4 7 8 8
Face : 2 (0 . 9 9 9 1 1 0 0 - 0 . 0 0 0 0 1 1 2 0 . 0 4 2 1 8 1 8 4 . 2 5 0 6 3 8 9

Face : 2 (0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
Face : 1 (- 0 . 0 0 0 0 2 0 8 0 . 9 9 9 9 9 7 2 0 . 0 0 2 3 6 6 7 2 . 9 9 2 2 7 1 3

Face : 5 (0 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 3 . 0 0 0 0 0 0 0
Face : 6 < 0 . 0 0 0 0 1 1 6 - 0 . 9 9 9 9 9 6 8 - 0 . 0 0 2 5 1 9 7 - 3 . 0 0 7 6 6 9 0

Face : 3 (0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 - 1 . 0 0 0 0 0 0 0 - 2 . 7 8 8 7 3 2 3
Face : 7 (- 0 . 0 4 3 1 2 0 7 0 . 0 0 3 8 1 9 5 0 . 9 9 9 0 6 2 5 2 . 3 5 3 0 8 8 2

Do you want to plot the results later on ? : N

Figure C3.1 The effect of an extra face of the measured
component on matching

217

APPENDIX D

MATCHING THE AXES OF CYLINDERS

D.l Introduction

In order to match the axes of cylinders under translation and rotation the same

technique which was used to match the planar faces could be used. One thing

that remains invariant under rotation is the distances of axes from the point

which is nearest to the axes. In this appendix the algebra which could be used

to calculate this nearest point is given.

218

D.2 Finding the Nearest Point to the Axes

The nearest point to the axes is the point which has the smallest sum of squared

distances from the axes (lines). This point is calculated as follows [26] :

1. Find the sum of squared distances from an arbitrary point to all the lines (see

[28]).

2. Partially differentiate that sum with respect to x,y and z coordinates of the

point and set the partial derivatives to zero to find the minimum (the squared

distance sum must be quadratic; therefore it can only have one minimum and

one maximum; the maximum value it can take must be infinite; therefore the

singular point must be minimum).

3. Solve the resulting linear system to obtain the position of the point. Accumu­

late the sums needed for the linear equations.

The linear system will be:

oq * + Pi y + Yi 2 + % = 0

®2 x + P2 y + Y22 + TI2= 0

CX3 x + P 3 y + Y 3 z + t] 3 = 0

where

= f 4 + (g2 + h2 - 2)-f2 + 1 and Oj = J kh
»=i

¥ 1 = g'f 3 + (g3 + (h2 - 2)-g) •/ and P i = E ¥ 1 *
» = i

o)1 = A / 3 + (A3 + (s 2 - 2) A) • / and Y, = t coi,
i=l

n

"H i = ~ E (K i » ‘ + ¥ 1 / ’ yoi + © I * • zoi)

*=1

219

k2 = / - s 3 + (/ 3 + (A2 - 2) /)•* and a2= £ kj,
i=l

¥ 2 = g4 + (f 2 + h2 — 2)-g2 + 1 and P 2 = E ¥2*
»= 1

co2 = / i - ^ 3 + (/ i 3 + (/ 2 - 2) ^)■* and Y2= £ ® 2i
»=i

n
% = ~E (K2i ' *0i + ¥2* ’ Y0» + ©2i ' z0i)

«=1

*3 = f 'h3 + (f 3 + (g2 - 2)-f) -A and a3 = i K 3i

i=l

¥ 3 = gfh3 + (g 3 + (f 2~ 2)-g) -h and P3 = E ¥ 3 ;
»=i

0*2 = h4 + (g2 + f 2- 2)-h2 + 1 and Yj = E ®3 i
1=1

n
^13 = “ E (K3« ' x 0i + ¥ 3 ; ■ y o i + © 3i ' z 0i)

»=1

where f , g , h are the line coefficients, x0, yo> and * 0 is the origin of each line and i

is the number of the lines.

If the intersection point of these three planes is calculated (see [28]), the coor­

dinates of the nearest point which is the minimum distance away from the axes is

determined. Once the nearest points of both the axes of the measured component

and the solid model’s are calculated, configurations are translated so that their

nearest points are both at the origin and matched by using the Procrustean algo­

rithm under translation and rotation.

220

APPENDIX E

PUBLISHED PAPER

This paper - which was given as reference [29] - will be published in the

Proceedings of the International Conference on Theory and Practice of

Geometric Modelling. The proceedings were in press during the preparation of

this thesis.

221

MATCHING MEASURED COMPONENTS TO SOLID MODELS

M . C e m a l C a k ir & A d r ia n B o w y e r

S c h o o l o f M e c h a n ic a l E n g in e e r in g ,
U n iv e r s it y o f B a th ,

B a th , E n g la n d B A 2 7 A Y

Tel: (4 4 4) 2 2 5 8 2 6 8 2 6
Email: c c l@ u k .a c .b a t h .m a t h s a n d a b < g > u k .a c.b ath .m ath s

Abstract

When components have been made they need to be inspected. In this paper some newly devised automatic methods
are described that compare a set of measurements of an engineering component taken by a coordinate measuring
machine with a master solid model of the measured component obtained from a CAD system. Once matched, the
two may then be compared to find any differences resulting from manufacturing errors and those manufacturing
errors can automatically be reported.

1. Introduction

W h e n a n e n g in e e r in g c o m p o n e n t h a s b e e n m a n u fa c tu r e d i t m u s t o f t e n b e c h e c k e d f o r d e f e c t s . I d e a lly
s u c h c h e c k in g s h o u ld b e d o n e a g a in s t th e o r ig in a l d e s ig n o f th e c o m p o n e n t a n d a n y o u t -o f - to le r a n c e
d if f e r e n c e s b e t w e e n th e tw o s h o u ld b e r e p o r te d .

T h is p a p e r w i l l d e s c r ib e a g r o u p o f a lg o r ith m s w h ic h a l lo w a c o l l e c t io n o f p o in t s o n th e su r ­
f a c e o f a m a n u fa c tu r e d c o m p o n e n t (s u c h a s m ig h t b e g a th e r e d u s in g a c o o r d in a te m e a s u r in g m a c h in e)
t o b e m a tc h e d a u t o m a t ic a l ly w i th a s o l id m o d e l o f th e c o m p o n e n t . F ig u r e 1 s h o w s th e g a th e r e d su r ­
f a c e p o in t s a n d th e s o l id m o d e l o f a s im p le s ta ir c a s e m o d e l . S o m e o f t h e s e a lg o r it h m s a r e e x ta n t in th e
l ite r a tu r e o n S to c h a s t ic C o m p u ta t io n a l G e o m e tr y , b u t h a v e n o t b e fo r e b e e n a p p l ie d t o th is p r o b le m ;
s o m e a r e n o v e l a n d d u e to d ie a u th o r s . T h e w a y in w h ic h th e m a tc h in g i s a c h ie v e d i s r o b u s t in th e
p r e s e n c e o f e rr o r s in th e c o m p o n e n t w h ic h c a u s e i t to d i f f e r s l i g h d y in s h a p e fr o m th e s o l id m o d e l . A s
th e th e w h o l e p u r p o s e o f m e a s u r e m e n t i s t o c h e c k fo r su c h e r r o r s , th is i s p a r t ic u la r ly im p o r ta n t

T h e a u th o r s ’ a lg o r it h m s h a v e b e e n d e v e lo p e d e s p e c ia l ly to h a n d le th e la r g e n u m b e r s o f s u r fa c e
p o in t s th a t m a y b e g a th e r e d fr o m a c o m p o n e n t u s in g a la s e r n o n - c o n ta c t m e a s u r in g m a c h in e d e v e lo p e d
b y o n e o f th e m a n d o th e r s [3] . H o w e v e r , th e y w o u ld a l s o b e q u it e s u ita b le fo r u s e w ith a c o n v e n t io n a l
c o o r d in a te m e a s u r in g m a c h in e .

T h e s o l id m o d e l le r u s e d b y th e a u th o r s fo r th is w o r k i s c a l le d D O R A . T h is i s a s e t - th e o r e t ic
s o l id m o d e l le r d e v e lo p e d a t B a th b y J o h n W o o d w a r k [8] . T h e a lg o r ith m s w o u ld w o r k j u s t a s w e l l w ith
a n y o th e r s e t - th e o r e t ic o r B - r e p m o d e l le r .

T h e a u th o r s ’ p r e s e n t s y s t e m i s im p le m e n te d to d e a l w i th fa c e t e d c o m p o n e n ts a n d s o l id m o d e ls
o n ly . T h e y a r e c u r r en tly e n g a g e d in e x te n d in g i t to w o r k w ith c u r v e d c o m p o n e n ts .

222

$ m i fit fit

Figure la . Gathered surface points

2. The Algorithms

2.1 Triangulation

The data to be matched consist of points in space. The only information about these data (which have
to be matched to a collection of solid model primitives) is the positions of the points which lie on the
surface of the object, no topological information is available. To obtain topological information about
the measured object the Voroni diagram or Dirichlet tessellation of the measured points is constructed.
This technique is substantially similar to one devised by Boissonnat [1], who used an algorithm due to
one of the authors (AB). The geometrical dual of the Voroni diagram, obtained by linking the points
whose Voroni polyhedra are adjacent across a common face, is called the Delaunay triangulation. Fig­
ure 2 shows the Voroni diagram and Delaunay triangulation for a small set of points (15 of them).

>

(

Figure 2. Voroni diagram (dotted lines) and Delaunay
triangulation (bold lines).

The authors use an efficient multi-dimensional algorithm devised by one of them to construct the
tessellation and triangulation [2]. In three dimensions the Delaunay triangles become a set of packed
tetrahedra with the measured points as vertices. They fill the convex hull of the measured points.
Some of the triangles that form the surfaces of these tetrahedra will form a complete triangulation of
the measured object’s surface. The problem to be solved is to find which ones.

2.2 Classification of tetrahedra

To answer this we note that some Delaunay tetrahedra will lie within the measured object and will thus
be solid, whereas some will lie outside it and will be air. If the tetrahedra may be so classified, then
any of their triangular faces that form a boundary between a solid tetrahedron and an air tetrahedron
will be part of the component’s surface. How may the tetrahedra be classified in such a way?

224

In order to measure each point a ray of light must have been directed at it or a measuring
probe must have touched it. If the path taken by this is recorded then any Delaunay tetrahedra which it
passes through must be air. The algorithm which deals with classification, traces a path (which was
used to detect the surface point) backwards from the point, and the tetrahedra which the path passes
through are classified as air. Since the point is on the surface and the path is traced backwards all the
tetrahedra which the path intersects on its way should be air.

The authors were particularly concerned to deal with data gathered by the laser coordinate
measuring machine mentioned in the introduction. Henceforth the path will be considered to be a ray
of light, but all the algorithms would work just as well with a mechanical probe path.

The algorithm takes the first surface point and start tracing its ray of light backwards. When it
finds the intersection between a triangular face of the first tetrahedron and the ray (since the starting
point is one of the forming points, there is always one intersection with the first tetrahedron) it classifies
this tetrahedron as air and continues tracing the ray into the tetrahedron which shares the intersected
face with the first tetrahedron. After this there are always two intersections with the ray and each
tetrahedron (unless the ray intersects an edge or a comer). Figure 3 shows the ray tracing algorithm in
two dimensions.

\

Figure 3. Ray tracing in 2D. P is the starting
surface point and dotted lines represents the Voronoi polyhedra.

Since the ray intersects the line P P (which corresponds a face in three dimension) the next
tetrahedra corresponding to the vertex to >̂e visited is V which is shares the line P P with V . After
the second intersection with the tetrahedra corresponding1 °to the vertex V , the next vertex is which
has the common edge PJP7 with V and so on. All the tetrahedra that tlie ray intersects are classified
as air until the ray is beyond the convex hull or when the next vertex visited is already air.

This process is repeated for every surface point and the majority of tetrahedra are thereby
classified. Any remaining ambiguities may be resolved by having the measuring machine (which is
most useful if on line) take extra measurements which pass through the tetrahedra about which there is
still doubt. The algorithm which deals with this problem finds the centroid of each solid tetrahedron,
moves a given distance away from the centroid and sends a ray of light towards the centroid. If the
surface of the object is beyond the centroid, the tetrahedron is classified as air, otherwise it is solid.

225

2 3 Clustering

T h e c la s s i f ic a t io n o f th e te tra h ed r a a s s o l id o r a ir a l lo w s th e s u r fa c e o f th e o b j e c t t o b e fo u n d b y f in d in g
th e tr ia n g u la r f a c e s o f s o l id te tr a h e d r a w h ic h fo r m a b o u n d a r y w ith a ir te tra h ed r a . In o th e r w o r d s i t
f a c i l i t a te s t h e tr ia n g u la t io n o f th e m e a s u r e d c o m p o n e n t ’s s u r fa c e . T h e n e x t p r o b le m to b e s o lv e d i s th a t
o f g a th e r in g th e t r ia n g le s to g e th e r in c o l l e c t i o n s , e a c h c o l l e c t i o n r e p r e s e n t in g a fa c e t o f th e c o m p o n e n t .

E a c h tr ia n g le fo r m s a l i t t l e p la n e in s p a c e . E v e n o n o n e f a c e t a l l th e tr ia n g le s w i l l n o t b e
e x a c t ly c o -p la n a r b e c a u s e o f m e a s u r e m e n t e r r o r s . T h e tr ia n g le s a r e s u b je c te d to c lu s te r a n a ly s i s to
g a th e r th e m to g e th e r in c o l l e c t i o n s r e p r e s e n t in g f a c e t s . W e h a v e u s e d th e S L I N K a lg o r ith m [6] w h ic h
i s b a s e d o n s in g le - l in k o r n e a r e s t n e ig h b o u r c lu s t e r a n a ly s i s , f o r a s m a ll n u m b e r o f s u r fa c e p o in t s b u t
s in c e th e la r g e n u m b e r o f s u r fa c e p o in t s c a u s e s u s t o e x c e e d th e m e m o r y c a p a c it y o f th e c o m p u t e r w ith
th e S L I N K a lg o r it h m , w e h a v e d e v e lo p e d a d i f f e r e n t c lu s te r in g a lg o r ith m . In th is a lg o r ith m , s u r fa c e
p o in t s (w h ic h a r e t h e v e r t ic e s o f s u r fa c e t r ia n g le s) a r e c lu s te r e d a c c o r d in g to th e n o r m a ls o f th e p la n e s
in w h ic h th e t r ia n g le s l i e , in o th e r w o r d s s u r fa c e n o r m a ls .

T h e s c a la r p r o d u c t o f s u r fa c e n o r m a ls o f t w o tr ia n g le s i s c a lc u la te d a n d i f th e r e s u lt i s g r e a te r
th a n a n u m b e r w h ic h i s c l o s e to 1 , t h e t w o t r ia n g le s a r e p u t in to th e s a m e c lu s te r . S i n c e th e s u r fa c e
n o r m a ls a r e n o r m a lis e d th e s c a la r p r o d u c t e q u a ls th e c o s i n e o f th e a n g le b e tw e e n th e p la n e s in w h ic h
th e t r ia n g le s (o r s u r fa c e p o in t s) l i e . I f th e r e s u l t i s c l o s e to 1 th is m e a n s th a t th e a n g le i s c l o s e t o 0 a n d
th e tr ia n g le s l i e o n th e s a m e p la n e o r o n p a r a l le l o n e s . T h e a lg o r ith m d is t in g u is h e s th e t r ia n g le s l y in g
o n p a r a lle l p la n e s b y c h e c k in g th e p e r p e n d ic u la r d i s t a n c e fr o m th e ir p la n e t o th e o r ig in (th e D te rm in
th e ir im p l ic i t p la n e e q u a t io n , A x + B y + C z + D = 0)

T h e a lg o r ith m d e f in e s a m id - p la n e b e t w e e n th e t w o p a r a lle l p la n e s a n d c lu s te r s th e t r ia n g le s
w h ic h a r e m o r e d is ta n t fr o m o r ig in th a n th e m id -p la n e in o n e c lu s te r a n d th e o n e s w h ic h a r e l e s s d is ta n t
in a n o th e r . In th e c a s e o f m o r e th a n t w o p a r a l le l p la n e s , f ir s t th e p a r a lle l p la n e s a r e s p l i t in to t w o c lu s ­
te r s , e a c h c lu s te r i s c h e c k e d t o s e e w h e th e r t h e y c o n ta in m o r e th a n o n e p la n e , i f th e y d o th e y a r e s p l it
a g a in a n d c h e c k e d a g a in a n d s a m e p r o c e s s i s r e p e a te d r e c u r s iv e ly u n t i l th e tr ia n g le s ly in g in e a c h p a r a l­
l e l p la n e a r e c lu s te r e d in s e p a r a te c lu s te r s .

S in c e th e a lg o r ith m p r o v id e s th e n e ig h b o u r h o o d r e la t io n s h ip b e tw e e n th e s u r fa c e tr ia n g le s (th a t i s
to s a y , fo r a n y g i v e n tr ia n g le , w e k n o w it s th r e e n e ig h b o u r in g tr ia n g le s) , a n y m is -c lu s te r e d tr ia n g le i s
c o r r e c te d b y c h e c k in g it s n e ig h b o u r in g tr ia n g le s . I f a l l th r e e n e ig h b o u r s a r e in th e s a m e c lu s te r b u t th e
tr ia n g le i s n o t , i t i s p u t in to th e s a m e c lu s t e r w i th i t s n e ig h b o u r s . I f t w o n e ig h b o u r s a r e th e s a m e th e n
th e s u r fa c e n o r m a ls o f a l l th r e e n e ig h b o u r s a r e in s p e c t e d a n d w e ig h t in g i s u s e d to d e c id e i f th e c e n tr a l
tr ia n g le o u g h t t o b e c lu s te r e d w i th th e p a ir o r n o t

N e x t , th e a lg o r ith m h a n d le s f a l s e chamfers. F a l s e c h a m f e r s a r e a r t if ic ia l fe a tu r e s w h ic h o c c u r
b e c a u s e o f th e la c k o f th e a b i l i t y o f m e a s u r in g m a c h in e to g e n e r a te th e p o in t s e x a c t ly o n th e m e a su r e d
o b j e c t ’s e d g e s (F i g u r e 4) . F o j e e

chon f ei
surface

Figure 4. False chamfer

226

They are products of the measuring system which need to be found to be get rid of. Since the false
chamfers should be one triangle wide, the algorithm finds the boundaries of each cluster and thereby
finds clusters which are one triangle wide. It classifies these as chamfers and does not consider them to
be real faces when matching.

As a result of all the processes the surface triangles (and the surface points obviously) are
clustered together in different clusters, each cluster representing a facet. Principle components analysis
is then used on the measured points making up the triangle vertices in each collection to obtain a best-
fit plane through them all. F ig u r e 5 shows the result of surface triangulation and clustering on a simple
staircase model (the missing lines on some steps are caused by a bug in the plotting program. This will
be fixed!). Green colour represents the false chamfers.

F ig u r e 5 . Surface triangulation and clustering

2.4 Matching

The measured data and the solid model are now more or less in the same form: two collections of plane
equations in space. Unfortunately they will, in general, be referred to different coordinate frames, so, in
order to compare them, it is necessary to translate and to rotate them to a best-fit with each other. The
authors have extended the technique of Procrustean matching [5] to allow this to be done.

The model and the measured planes are first translated so that their centroids are at the origin
of coordinates. Either the model or the measured data now have to be rotated. Standard Procrustean
rotation requires a known one-to-one correspondence between the two collections of points that are to
be matched. In Procrustean rotation, for two roughly similar given configurations, X and Y, each of N
points in K dimensional space, Sibson [5] shows that the best match under rotation is obtained by P Y
where orthogonal KxK matrix P is given by :

P=XYt(YXtXYt) 2

227

But in our case we don’t have points, we have planes; as yet there is no one-to-one correspon­
dence between the two collections; and there may (because of manufacturing errors) even be different
numbers o f planes in the model and the measured object

The rotation is performed upon the points in the two Extended Gaussian Spheres (EGSs) [4] of
the collections of plane equations. The Gaussian sphere of a collection of planes is the points formed
by their normals on the unit ball. The EGS is the pattern of points in space which is obtained by scal­
ing each of these normals by a factor obtained from the planes, for example each plane normal might
be scaled by the area of a facet lying in it. In our work we have used the perpendicular distance from
the planes to the origin to scale the normals. The EGS thus effectively become the set o f points (one
on each plane) that are closest to the origin. The authors also intend to try to use facet area for this as
well. A nice feature of this method is that any measurable characteristic of a face can be employed to
scale the EGS without affecting the rest of the process.

One thing that remains invariant under rotation is radius. The points in the two EGSs are
matched under radius and then rotated. Once this has been done most points will be correctly matched,
but some will have been mis-matched because of near-coincidences in radii (Figure 6).

i t

l i

N -
t r
i

i i
+ 1

%

-k

Figure 6. Matched and mis-matched pairs after rotation

Now there are two sorts of links between individual planes in the measured object and the solid model:
links that are short in length which represent correct matches and links that are longer representing
mis-matches. In the first approach to resolve this, a probability density estimate of the link length was
constructed by convoluting their histogram with an appropriate kernel function, the width of which was
increased until the density function had just two modes. Silverman [7] uses a Gaussian kernel, but a
simple triangle was adequate for this application. The first, sharp mode comes from the short links, the
second more diffuse mode comes from mis-matches. Figure 7 shows the density estimation; the verti­
cal scale is arbitrary.

228

Figure 7. Density estimation

All the links longer than the length corresponding to the minimum between the two modes were broken
and re-matched by using the Euclidean distance between them rather than radius as a matching cri­
terion. But later on the authors discovered that forming this sort of histogram to estimate the link
length did not improve distinguishing the mis-matches over the simpler technique of breaking all the
links and re-matching them using actual inter-point distances. After this, the rotation is done again to
make a fine adjustment in the relative orientation between the component and the model. The two are
now matched in such a way that the residual sum of squares between the two EGSs is minimal.

Faces of the component may now be compared with the corresponding faces of the model and
any out-of-tolerance differences reported. Also, all faces within tolerance can be discarded, and the
whole process carried out again on bits that don’t match. This allows parts of the component which are
of the right shape, but which are in the wrong place, to be identified and their position and orientation
to be computed.

3. Data Gathering

As was mentioned above the data to be matched consist of points in space. These data may either be
gathered by using a laser non-contact measuring machine or by using an algorithm which simulates the
process of this measuring machine. The modeller DORA uses a ray-tracer to generate its graphics.
The way in which the laser measuring machine works is exactly analogous to this: rays of lights are
directed at the object to be measured and the points where they strike the surface are calculated. In
order to conduct controlled experiments on the matching system data was created using DORA’s ray
tracer. This traced a ray of light back from the viewer into a model of the object being measured and
found the intersection point of the ray and a surface in the model. It recorded the coordinates of these
surface points into a measurements file. To simulate measurement inaccuracies these points were per­
turbed slightly using a random number generator.

229

Conclusion

T h e a lg o r it h m s e x p la in e d in th is p a p e r h a v e b e e n c o d e d a n d w o r k e f f ic ie n t ly a n d a c c u r a te ly . T h e y a r e
i m p le m e n t e d to d e a l w ith th e c o m p o n e n t s b u i ld u p o f f la t f a c e s a n d s o l id m o d e l s o n ly . T h e a u th o r s a r e
w o r k in g o n th e p r o b le m o f e x t e n d in g th e a lg o r ith m s t o c o p e w ith c u r v e d c o m p o n e n t s .

References

[1] B o is s o n n a t , J .D . Shape reconstruction from planar cross-sections P r o c e e d in g s o f th e I E E E c o n f .
o n C o m p u te r V i s io n a n d P a tte r n R e c o g n it io n , S a n F r a n s is c o , J u n e 1 9 8 5 , p p 3 9 3 - 3 9 7

[2] B o w y e r , A . Computing Dirichlet tessellations C o m p u te r J o u rn a l V 2 4 , N o 2 (1 9 8 1) p p 1 6 2 - 1 6 6

[3] B o w y e r , A . , G r a h a m , D . , a n d H e n r y , G . The measurement o f 3-D features using laser triangula­
tion P r o c . 7 th In te r n a t io n a l C o n f e r e n c e o n A u to m a t e d I n s p e c t io n a n d P r o d u c t C o n tr o l . B ir m in g ­
h a m (1 9 8 5) . IF S P u b lic a t io n s .

[4] L i t t l e , J J . Extended Gaussian Images, Mixed Volumes, and Shape Reconstruction P r o c . F ir s t
A C M S y m p o s iu m o n C o m p u ta t io n a l G e o m e tr y , B a lt im o r e , J u n e 1 9 8 5

[5] S ib s o n , R . Studies in the Robustness of Multidimensional Scaling: Procrustes Statistics J . R . S ta ­
t is t . S o c . S e r ie s B , V 4 0 , N o 2 (1 9 7 8) p p 2 3 4 - 2 3 8

[6] S ib s o n , R . SUNK: An optimally efficient algorithm for the single-link cluster method C o m p . J .,
V 1 6 N o 1 (1 9 7 2) p p 3 0 - 3 4

[7] S i lv e r m a n , B .W . (1 9 8 1) .Using kernel density estimates to investigate multimodality. J o u r n a l o f
th e R o y a l S ta t is t ic a l S o c ie t y (S e r . B) , V o lu m e 4 3 , p p 9 7 - 9 9 .

[8] W o o d w a r k , J .R . , a n d B o w y e r , A . Better and Faster Pictures from Solid Models IE E C o m p u te r
A id e d E n g in e e r in g J o u r n a l, V 3 , N o 2 (1 9 8 6)

230

