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Abstract

Higher-order parabolic equations are ever more important in applications. Despite 
their simple and familiar structure, few of the rigorous classical tools of analysis can 
be applied to study them. In this thesis we begin an investigation into the structure of 
singular solutions to some important canonical higher-order equations. Using a mixture 
of PDE and ODE methods including similarity transformations, matched asymptotic 
expansions and bifurcation theory we establish the existence of similarity solutions to 
problems both with blow-up and decay. Indeed, we show that the classical second-order 
heat equation with nonlinear reaction is a special case in not having exact similarity 
solutions. The well known centre-manifold behaviour observed there is a property only 
of the order of the problem, not of the semilinear structure.
In particular, using a mixture of spectral theory, asymptotics, and numerics we conjec­
ture the existence of at least 2 [m /2 j self-similar solutions to the higher-order semilinear 
parabolic equation

ut = —(—A)mu +  \u\p~lu, p > 1 , m  > 1 .

This is in stark contrast to the classical case of m = 1 where it is known there are 
no self-similar solutions. Using a combination of PDE and ODE analysis we prove the 
existence of a countable spectrum of the so-called very singular solutions to

ut =  —(—A)mu — |u|p-1u, p >  1, m >  1,

in the sub-critical Fujita range p < po = 1 +  2m /N  in space dimension N. Further, we 
consider the equation

ut =  (—A)(Au +  |u|p-1u), p >  1,

and prove the existence of a countable spectrum of similarity solutions for the critical 
exponent p = 3 in N  =  1. This family is then constructed using matched singular 
asymptotic expansions. Additionally, we prove the existence of a continuous family of 
global decaying solutions.
All our work is guided by careful numerical investigation and the construction of ef­
ficient and robust adaptive numerical schemes for the investigation of singularities in 
fourth-order nonlinear parabolic problems is a major component of this thesis. To 
this end we describe the construction and implementation of a conservative moving 
collocation method for problems of the form

f ( x , u ,  U j,U jj,U jjj,U {) =  (s ( r ,  u, Ujj;, Uqpj;, x  £ (x/(t), Xf (t )) t 0.
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Statem ent of results

No work is ever truly done alone and this is certainly the case in this thesis. Five 
publications have been submitted or are in preparation in connection with this thesis 
with five co-authors. It is important to be explicit from the beginning what results are 
contained within and where else they have appeared or have been submitted.

C h ap te r  1 We motivate many of the more mathematical questions in this thesis with 
the analysis of blow-up solutions to the Semenov-Rayleigh-Benard problem which 
models the interaction of convection and reaction in a reacting fluid and which 
is governed, in the limit of large solutions, by

Ut  =  Uxx x x  “b  P[(Ux' )  ] i  " t  6 .

Some of the results in this Chapter appear in ’On a higher-order equation from 
explosion-convection theory’ (Galaktionov and Williams 2002) accepted for pub­
lication in the European Journal of Applied Mathematics.

C h ap te r  2  A general purpose code named MovCol4 has been written to solve systems 
of fourth-order parabolic equations of the form

f ( x , t yU,Ux ,Uxx,\lxxx,Ut) = X X  J U x x x ) ) x '

This code is an extension of pre-existing work of R.D. Russell and Wheizhang 
Whang and some of the results of this Chapter will appear in Williams, Xu and 
Russell (2003).

C h ap te r  3 In this Chapter we establish the existence of exact self-similar blow-up 
solutions to the equation

Ut =  —(—A)mu +  \u\p~l u, p >  l ,m  > 1.

A bifurcation analysis suggests the existence of at least 2 |_m/2 j solutions, which, 
by numerical computation is shown to a be lower bound. The results of this 
Chapter appear in the paper ’Self-similar blow-up in higher-order semilinear 
parabolic equations.’, submitted to the SIAM Journal of Applied Mathematics 
(Budd, Galaktionov and Williams 2002). We also describe some centre manifold 
patterns of the SRB problem.

C h ap te r  4 We describe the so-called Very Singular Solutions (VSS) to the diffusion- 
absorption equation

ut =  — (—A)mu — \u\p~lu, p >  1, m >  1.
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Using a combination of PDE and ODE analysis the existence of a countable spec­
trum  of solutions for p < po = 1 +  2m /N  is established. This work has been sub­
mitted to the Journal of Asymptotic Analysis (Galaktionov and Williams 2003b).

C h ap te r  5 The existence of both blow-up and decaying solutions to

ut = (—A)(Au +  |u|p -1u), p > l

is established. For the critical exponent (in one dimension) p =  3, a countable 
spectrum of blow-up solutions is proven to exist and constructed using matched 
asymptotic expansions. Whereas for the decay problem a continuous spectrum is 
proven to exist. This work will appear as ’Blow-up and global asymptotics of the 
unstable Cahn-Hilliard equation with a homogeneous nonlinearity’ (Galaktionov 
and Williams 2003a). I gratefully acknowledge the assistance of Dr. J.D. Evans 
in the construction of the multi-scale asymptotic expansions employed in Chapter 
5 and particularly in the derivation of formula (5.3.26)

C h ap te r  6  This Chapter indicates how other current and ongoing work by the author 
fits into the framework of this thesis and what future work is suggested by the 
present study.



A human being should be able to change a diaper, plan an invasion, butcher a hog, 
conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a 
bone, comfort the dying, take orders, give orders, cooperate, act alone, solve equations, 
analyze a new problem, pitch manure, program a computer, cook a tasty meal, fight 
efficiently, die gallantly. Specialization is for insects!

- Robert A. Heinlein
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Chapter 1

Introduction: Models and 
M ethodology

In this thesis we shall investigate and exploit the intriguing relationship which exists 
between scaling, self-similarity, asymptotics and numerical discretizations in studying 
singularity formation in parabolic partial differential equations. We will treat a number 
of essentially new models with particular interest in higher-order equations. Many 
physical processes of great importance are modelled by such equations and we will use 
the underlying scaling structure for our analysis, be it rigorous, formal or numerical.

Higher-order semilinear parabolic equations arise in many physical applications such as 
thin film theory, convection-explosion theory, lubrication theory, flame and wave propa­
gation (the Kuramoto-Sivashinskii equation and the extended Fisher-Kolmogorov equa­
tion), phase transition at critical Lifschitz points, bi-stable systems and applications 
from structural mechanics. The effect of fourth-order terms on self-focussing problems 
in nonlinear optics has also recently been considered by Fibich, Ilan and Papanicolau 
(2002) and Ben-Artzi, Koch and Saut (2000). Indeed, fourth- (and higher-) order terms 
are increasingly recognized as being significant in many physical models, and this has 
lead to the burgeoning literature including the recent book by Peletier and Troy (2001) 
which lists a number of models and references. Therefore, it is important to know 
if higher-order semilinear equations exhibit analagous singularity behaviour to their 
classical second-order counterparts where exact self-similar behaviour is unavailable.

In this thesis we shall concentrate on two fundamental types of behaviour arising from 
diverse physical applications and as canonical mathemical models. The first is the 
formation of hot-spots, where, typically the solution u corresponds to a temperature 
and solutions can become unbounded in finite time. The second is of infinite-time decay 
wherein the long-time (not rescaled) behaviour is dominated by dissipative rather than 
reactive effects. In both cases the large time asymptotic behaviour is governed by 
simple similarity solutions.

1



1.1  A  TYPICAL HIGHER-ORDER MODEL: T H E  SEMENOV-RAYLEIGH-BENARD PROBLEM

The fundamental role of similarity solutions in studying partial differential equations 
(PDEs) stems from the covariance principle of physics, see eg. Barenblatt (1996) which 
states that the fundamental laws of physics are not affected by the co-ordinate system 
in which they are posed. From this deceptively simple statement follows dimensional 
analysis whereby we may simplify complicated models to their mathematical essence 
where only terms of the same importance remain. This balancing is a feature of scaling 
invariance wherein solutions are invariant under a group transformation (see Section 
1.3). Moreover the scaling structure of a problem often signals the existence of self­
similar solutions which, under many circumstances, are attractors for the system un­
der consideration and as such define the intermediate asymptotics, describing the key 
asymptotic behaviour of the problem at hand. That is, the behaviour of the problem 
at sufficiently large times that initial data axe no longer important but before bound­
ary conditions dominate the solution. Self-similar solutions also reduce the complexity 
of the problem by transforming partial differential equations into ordinary differential 
equations (ODEs) or lowering the number of independent variables.

Finite time blow-up is a typical problem in the study of dynamical systems theory, 
with second-order models having been well studied for the past thirty years. We are 
interested in new higher-order models for which the standard and well known mathe­
matical techniques do not apply. There is no order-preservation, Maximum Principle 
or gradient structure for most of these new problems. Consequently, we are interested 
in a mixture of asymptotic and numerical computation to determine the governing dy­
namics of these emerging problems. We begin by introducing the key concepts of this 
thesis in the context of a physical model.

1.1 A typical higher-order model: The Semenov-Rayleigh- 
Benard problem

As a motivating example for both this introduction and indeed the thesis as a whole 
we will consider a problem from explosion-convection theory due to Joulin, Mikishev 
and Sivashinsky (n.d.), the Semenov-Rayleigh-Benard problem, which describes the 
evolution of temperature in a reacting fluid contained between a heated plate below, 
and a cooled one above, see Figure 1.1. This is described by the fourth-order PDE

Ut =  U xxxx  [ ( 2  ( ^ x )  )^ a : ]a. "P i

where a, q and s are positive constants determined from physical parameters and u 
defined on x  G Iq =  (0, 2tt) satisfies periodic boundary conditions.

The above fourth-order one-dimensional semilinear parabolic equation (1.1.1) is de­
rived by studying the interaction between natural convection and the reaction of an

2



1 .2  S in g u l a r it y  f o r m a t io n  p h e n o m e n a : F in it e - t im e  b l o w - u p

Cool plate

Symmetry
Boundary

Symmetry
BoundaryConvection cell Convection cell

Hot plate

Figure 1.1: Geometry of the Semenov-Ralyleigh-Benard problem

exothermally reactive fluid confined between two isothermal horizontal plates. This is 
an evolutionary equation for temperature fluctuations in the presence of natural con­
vection (it is assumed that the Rayleigh number is marginally supercritical), small wall 
losses and chemistry. It can be considered as a formal combination of the equation 
derived in Gertsberg and Sivashinsky (1981) (see also Chapman and Proctor (1980) 
wherein the derivation is very similar except for the absence of reactive effects) for 
the Rayleigh-Benard problem and of the Semenov-like energy balance (Semenov 1935, 
Frank-Kamenetskii 1969) showing that natural convection and the explosion mecha­
nism may reinforce each other when the convection cells are large enough. In the 
statement of this problem the solutions u = u(x, t) are 27r-periodic in x with bounded 
periodic initial data u(x, 0) =  uo(x) for x  € /o =  [0,27r]. The previous authors were 
concerned with the stability of small solutions and the possibility of thermal runaway, 
they did not consider the spatio-temporal structure of blow-up solutions. Equation 
(1.1.1) can be considered to be a higher-order generalization of the famous Frank- 
Kamenetskii equation (1938) (the solid fuel model (Zel’dovich, Barenblatt, Librovich 
and Makhviladze 1985)),

ut = uxx + eu, x e R, t > 0. (1-1-2)

1.2 S ingularity form ation phenom ena: F in ite-tim e blow ­
up

While for a great many problems the solution and all its derivatives remain bounded 
for all time, that is the solution is globally solvable in time, it is a wonderful feature 
of nonlinear problems that this is not always true. One of the central concepts to 
reaction-diffusion equations is finite time blow-up (meaning explosion in Combustion 
Theory (Zel’dovich et al. 1985)), in the sense that there exists 0 < T  < oo such that

3



1 .2  S in g u l a r it y  f o r m a t io n  p h e n o m e n a : F i n it e - t im e  b l o w - u p

u(x , t) exists and is classical on any time-interval [0, T'] with T' € (0, T) and

sup |u(:r,t)\ -* oo a s t —*T~.  (1-2.1)
X

The fact that solutions of higher-order parabolic equations may blow up is well known, 
see the surveys by Levine (1990) and Galaktionov and Vazquez (2002) and more re­
cent results in the work of Egorov, Galaktionov, Kondratiev and Pohozaev (2002) and 
Chaves and Galaktionov (2001) for equations of the form ut =  —(—A )mu + f(u),  where 
the critical Fujita exponent and estimates on blow-up rates were established for any 
m > 1. The structure of these blow-up solutions is described in detail in Chapter 3.

A general treatment of blow-up processes occurred in the 1930’s - 1950’s in the context 
of N.N. Semenov’s chain reaction theory, adiabatic explosion and combustion theory 
(the first blow-up result was by O.M. Todes (1933)), see Gel’fand (1963) and Zel’dovich 
et al. (1985). On the other hand, in the same period there was a strong influence 
from the study of blow-up singularities in gas dynamics, in particular, the intense 
explosion (focusing) problem, admitting similarity solutions of the second kind, was 
considered by K. Bechert, K.G. Guderley and L.I. Sedov in the 1940’s; see Barenblatt 
(1996, p. 127) and Zel’dovich and Raizer (1966). Another classical area of blow-up 
processes which developed in the 1960’s is nonlinear optics, where the main model is 
the nonlinear (cubic) Schrodinger equation defined in R 2 or R 3 which is hyperbolic 
and admits blow-up self-focusing solutions; see references in the book by Sulem and 
Sulem (1999) and some comments Chapter 6  in this thesis. Finite time blow-up is often 
seen in the leading order equation of asymptotic expansions where it can represent a 
breakdown in the model. Therefore it is important to understand the structure of the 
singularity to determine whether or not small saturating terms ignored at the first 
level of approximation are truly significant before something physically catastrophic 
happens in the model.

1.2.1 T he SR B -p rob lem

To see that finite-time blow-up is not simply the consequence of pathological models 
we will first make some comments about the regularity and dynamics of the Semenov- 
Rayleigh-Benard problem. Equation (1.1.1) is uniformly parabolic with all spatial 
differential operators appearing in divergence form. For all intitial data in L°° it admits 
a unique classical local in time solution, see the standard parabolic theory in Friedman
(1983). The operator on the right-hand side of (1.1.1)

N(li) =  U xxxx  [(2 (ux) )ux]x OtU H" QG

4



1 .2  S i n g u l a r it y  f o r m a t io n  p h e n o m e n a : F i n it e - t im e  b l o w - u p

is potential in the sense that the equation admits the Lyapunov function 

m ( t )  = I  -  M 2 + |( « , ) 4 + \ u 2 -  | e s“ dx,

which is monotone on bounded orbits,

^ L[u](t) = ~ f j  (ut)2dx < 0.

For such smooth gradient systems, the a;-limit set of any bounded orbit {u(-, t), t >  0},

u;(u0) =  { / G C(Iq) : 3 {tfc} —> oo such that u(-,tk) —► f  uniformly},

is known (Sell and You 2002) to consist of stationary solutions: N (/)  = 0  in Iq for any 
/  G w(uo). Some results on bifurcation of stationary solutions were obtained in Joulin 
et al. (n.d.). If the subset of stationary solutions consists of isolated equilibria, the 
asymptotic behaviour of uniformly bounded orbits does not essentially differ from that 
for the second-order parabolic equation (1 .1 .2 ) where any bounded orbits are known to 
approach a stationary profile as t —>• oo. Despite the gradient structure, the proof of 
blow-up for the periodic initial value problem for (1 .1 .1 ) is straightforward.

Proposition 1.2.1. Let u(x,t) be a solution of (1.1.1) in Iq  x  R+ with periodic bound­
ary conditions and bounded continuous initial data u q { x ) .

(i) I f
a: <  sqe1'2*, (1.2.2)

then the solution blows up in finite time.
(ii) I f  (1.2.2) does not hold, then the solution blows up if the initial data is sufficiently 
large in the mean sense.

Proof. Denoting by u(t) = f  u(x,t)dx  the mean of the solution on I q and integrating 
equation (1.1.1) over I q , we obtain

«> =  qJ e ‘» d x - a u .

By Jensen’s inequality for convex functions (Hirsch and Lacombe 1999)

J  esudx =  2n J  esn^ d x  > 2nesa/2",

and we arrive at an ordinary differential inequality (ODI)

u' > F(u) = 2Trqes U / -  au. (1.2.3)

If (1.2.2) holds, then F > 0 in R. Hence, v! > 0, u(t) > u q  for t > 0 and (1.2.3) implies

5



1 .3  S in g u l a r it y  f o r m a t io n  p h e n o m e n a : F in it e -t im e  b l o w - u p

that u(t) (and u(x, t)) blows up at

oo
ds/F(s).

o

(ii) If a > sqel/2n, then similarly we have that blow-up occurs if uq > s+, where s+ is 
the maximal root of the equation F(s) =  0. □

25

_x_3

Initial data

0 0.5 1 1.5 2.5 32 3.5 4
x

Figure 1.2: Finite time blow-up of (1.1.1) in physical co-ordinates.

The use of ODIs is typical in the construction of blow-up estimates, see for instance 
Chaves and Galaktionov (2001) or Levine (1990). In Figure 1.2 we show typical profiles 
of the evolution, showing single-point blow-up at the origin and the formation of the 
singular final time profile. The numerical methods used for the approximation of this 
solution will be introduced in Section 1.6 and discussed at length in Chapter 2.

Blow-up is an essential feature of explosion-convection problems and the correspond­
ing parabolic equations under consideration. As for the solid fuel model (1.1.2), the 
structure of such a blow-up singularity formation is of importance in the present higher- 
order model. Finite time blow-up involves a delicate balance between the spatial and 
temporal derivatives and the reaction terms driving the blow-up. This balance is made 
naturally apparent by considering the scaling invariance of the underlying PDE.

T  < T0 = I
J U

6
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1.3 Scale invariance and similarity variables

Scaling and self-similarity have been known since the 1930’s to give fundamental insight 
into many systems which develop singularities in finite time. For example, consider the 
simple classical semilinear heat equation with a polynomial reaction term,

ut =  ux x +  up, i e R ,  t > 0  with exponent p > 1 (u (x ,t ') > 0). (1.3.1)

We define a group of scaling transformations by

1 1-* At, x  !->■ A1/2#, u i-» A~l^ p~l^u, A > 0. (1.3.2)

Then, equation (1.3.1) is invariant under (1.3.2) in the sense that solutions are mapped 
to solutions under this transformation. The existence of such a transformation means 
that there also exists a family of solutions of (1.3.1) of the form

u(x, t) =  (T -  t ) " 1/(p_1)/(» ). y = x / (T  -  t ) 1 /2  (1.3.3)

with an unknown blow-up time t =  T  and where f(y )  satisfies the ODE,

/ "  ~  \ y f '  — ~ r f  + f p = 0. (1.3.4)I p — 1

The simplicity of the geometric structure of (1.3.1) means that we can reduce the 
original PDE problem for u(x, t) to an ODE problem for f{y). As we shall see though, 
the existence of an equation for a similarity profile does not imply the existence of 
an admissable similarity solution to the full PDE! This can because the ODE has no 
solution with the appropriate boundary conditions, thus far not discussed, or because 
of other geometric constraints. However, even in the case that a complete similarity 
solution does not exist, the leading dynamics of the PDE my well be governed by 
operators associated with the similarity solutions.

1.3.1 S im ilarity  variables in  th e  SR B -prob lem

To see the asymptotic similarity structure in (1.1.1) we first rescale 

su i—̂ u, {qs)l!Ax  i->- x , and qst t 

in (1 .1 .1 ) to obtain the equation

ut =  A(u) -  7 uxx -  Su, 7  =  2/y/qs, 6 = a/qs, (1.3.5)

7



1 .3  S c a l e  in v a r ia n c e  a n d  s im il a r it y  v a r ia b l e s

where A is the fourth-order operator

A(it) =  - u xxxx +  (3[(ux)%  +  eu, P =  1/s2.

Here p  is an essential parameter which cannot be removed by scaling. The physically 
admissible range of the parameter is P G (0, oo), but we also include the limit case 
P = 0 which formally corresponds to s =  oo and leads to the fourth-order extended 
Frank-Kamenetskii equation

Ut — uxxxx -|- e . (1.3.6)

We begin our similarity analysis with the unperturbed equation

Ut = uxxxx P\{ux) ]x -|- e (1.3.7)

which is a natural simplification of (1.3.5) for large solutions as only the lowest-order 
(in a sense to be described below) terms have been neglected.

Without loss of generality, we assume that the solution u(x, t ) blows up at finite time 
t =  T  in the sense of (1.2.1) and that the blow-up set

B[u0] = {x E 1 : 3 {r*;} —> x , {^} -» T~  such that u(xk,tk) —> oo} (1.3.8)

contains the origin, 0 G B[uo\. We now observe that the reduced equation, (1.3.7), is 
invariant under the group of transformations

t ^ X t ,  1 4  A1/f4x, uy-^u — In A, with A > 0 . (1.3.9)

Therefore, motivated by the blow-up assumptions, replacing t i-» t — T  and setting 
A =  (T —t ) - 1  yields the following independent self-similar variables: y =  x / (T  — t) 1̂  : 
io -» R  is the new spatial variable, and r  =  — ln(T — t) : (0,T) —> ( t o , o o )  with 
To =  — In T  is the new time variable. Then the rescaled solution is given by

u(x,t) =  - l n ( T - J )  +0(y,r),  (1.3.10)

and substituting into (1.3.7) gives the rescaled equation

6t = —Oyyyy +  P [{Gy) ] y ~  d" e — 1 =  Al(0). (1.3.11)

Using these new variables for the full equation (1.1.1) gives that the rescaled function 
6 satisfies the following perturbed parabolic equation:

0T = Ai(0) +  C (0 ,t), (1.3.12)

where A i is the autonomous operator in (1.3.11) and C is a non-autonomous pertur­

8
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bation,
C(9, t ) =  - 7 e~T/20yy -  5e~T(r +  6),

which is exponentially small as r  -> 00 (i.e., as t —> T~) on bounded orbits. From this 
scaling analysis we see that C(0, r) is exponentially small near blow-up and we may 
ignore it, considering only the reduced model (1.3.7) in which all terms balance. This 
scaling structure is also important for the numerical methods employed in integrating 
the full PDE, see Section 2.2.3.

1.4 M odel reduction

In many physical problems the derivation will include terms which do not govern the 
asymptotic dynamics of the problem due to the fact that not all terms will balance 
over the time period of interest. This is particularly true of models which exhibit 
finite-time blow-up as we have just seen for the Semenov-Rayleigh-Benard problem 
and is typical of many problems where the long-time (possibly rescaled) dynamics 
are governed only by an operator with scaling symmetry. Hence the motivation for 
studying canonical scaling invariant mathematical models; they capture the essential 
asymptotic dynamics of many physical problems. However, it is not only the equation 
which greatly simplifies. Because of the localization phenomena inherent in blow-up, 
boundary conditions are asymptotically unimportant. Thus, in this thesis we will 
consider primarily only the Cauchy problem with suitable decay conditions at infinity 
(numerically we will still need to solve an initial boundary value problem). It is the 
model reduction property which motivates us, in Chapter 3, to consider the general 
higher-order parabolic equation with a reaction term of the form f (u)  = eu, \u\p or 
u|p -1u,

ut = - { - A ) mu +  /(it) (m > 1). (1-4.1)

1.4.1 T h e C auchy problem  for single p o in t blow -up

It follows from the scaling variable y in (1.3.10) that for arbitrarily small fixed |x| > 0, 
the corresponding \y\ —► 00 as r  —► 00 which, in general, corresponds to formation of 
a single point singularity. Therefore, it is natural to consider the Cauchy problem for 
equation (1.3.12) with bounded initial data at r  =  To given by

9o(y) = u0 (T1/4 y) -  t 0 in R.

The perturbed equation (1.3.12) suggests that we consider first the unperturbed rescaled 
equation

0r =  Ai(0) in Qq = R  x (to , 0 0 ), 6{y, t 0) =  $o(y) in R. (1-4.2)

9
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According to (1.3.10), 0(y,r)  is simply the rescaled solution of (1.3.7). However only 
exactly (rather than asymptotically) self-similar solutions have 0 independent of r. 
Hence we begin with the construction of blow-up self-similar solutions of (1.3.7) of the 
form

u*(x,t) = - l n ( T - t )  +  /(y), y = x / ( T - t ) 1̂ ,  (1.4.3)

where /  satisfies the following ODE:

A i( /)  =  0 in R+ (1.4.4)

supplemented with the symmetry conditions

/ ' ( 0 ) = 0 , /" '(  0 ) =  0

at the origin. The symmetry assumptions are quite natural in blow-up analysis for
various second-order parabolic equations. As is typical for blow-up problems, for stable
(generic) blow-up profiles are connected with the idea of infinite time symmetrization 
(as r  -> oo) in parabolic equations like (1.3.11) and (1.3.12) wherein solutions converge 
to symmetric profiles. We expect that these should be kept for higher-order equations, 
but we cannot prove that the ODE (1.4.4) does not admit suitable asymmetric profiles. 
We note that for the second order equations the proof of eventual symmetrization is 
usually proved using Alexandrov’s Reflection Principle, moving plane techniques and 
other approaches based on the Maximum Principle, which are not available for any 
m > 1. Due to the exponential nonlinearity purely anti-symmetric solutions are not 
permitted by the ODE.

The ODE (1.4.4) has a two-parametric bundle of admissible profiles f (y)  at infinity, 

f { y )  — ( - 4 In \y\ +  C +  o(l)) +  C\ ^e-o o y 4 /3  +  o(l)^ as y ->• oo, (1.4.5)

where ao =  3/44/ 3 and C, C\ G R  are arbitrary parameters (see the classical asymptotic 
methods in Coddington and Levinson (1955) and a detailed example in Section 3.2.2). 
The first coefficient, C, determines the actual far field behaviour of the blow-up solution 
such that the limit profile u*(x, T~) is bounded in a deleted neighbourhood of the origin 
(0 G B[uo\). Specifically, we have that for any x > 0 and any symmetric profile / ,  there 
exists a finite limit (i.e., the final-time profile)

- l n ( r - t )  +  / ^ r _X̂ 1/4^  =  — In |%| +  C. (1.4.6)

The second parameter, C\ in (1.4.5), has no role in the leading order structure of the 
solution, but specifies a complicated two-dimensional topology of the ODE solutions.

Numerical approximation of the solution of (1.4.4) subject to symmetry conditions at

lim u(x, t) = lim t->r t->r

10



1 .5  S im il a r it y  s o l u t io n s  in  c l a s s ic a l  h e a t  e q u a t io n s  w it h  r e a c t io n

Primary self-sim ilar solution Secondary self-sim ilar solution

P = 10

=  10

=  0

-4

- 0.1
10

y y

Figure 1.3: Two solutions for equation (1.4.4). The primary solution (found to be 
stable) has one maximum in R  while the secondary has two.

the origin and slow growth at infinity has uncovered two solutions, which are presented 
in Figure 1.3 and the asymptotic behaviour is shown in detail in Figure 1.4.

1.5 Sim ilarity so lu tions in classical heat equations w ith  
reaction

The results presented in Section 1.4.1 are at odds with what is known for both the 
Frank-Kamenetskii equation and the heat equation with polynomial reaction, (1.3.1). 
Because of their importance to many applications, canonical equations from Combus­
tion Theory such as the non-stationary semilinear one-dimensional Frank-Kamenetskii 
equation, (1.1.2), and its counterpart with power nonlinearity, (1.3.1), have been well 
studied for the past thirty years and it is known that these both exhibit singularities 
in finite time. While exact self-similar solutions are known to exist for the related 
second-order reaction-diffusion quasilinear problems (see the references to Chapter 4 in 
Samarskii, Galaktionov, Kurdyumov and Mikhailov (1995) and Budd and Galaktionov 
(1998))

Ut = (\ux \aux)x + eu or ut = {uaux)x + up with o > 0, (1.5.1)

it is somewhat paradoxical that none exist for the above semilinear problems (1 -1 .2 ) 
and (1.3.1). Instead the generic stable asymptotic blow-up behaviour is described by

1 1
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Figure 1.4: Asymptotic behaviour of solutions for equation (1.4.4) showing convergence 
to the behaviour described in (1.4.5).

approximate similarity solutions satisfying first-order Hamilton-Jacobi equations, see 
the references in the books by Bebernes and Eberly (1989) and Samarskii et al. (1995) 
and the surveys by Levine (1990) and Galaktionov and Vazquez (2002). For example 
in the quasilinear problem (1.5.1) with the power nonlinearity up, for any p > 1 and 
<t >  0  there exists an exact non-trivial self-similar solution of the form

us(x,t) = ( T - t ) - 1̂ f(y),y = )/2(p-U, (1 .5 .2 )

where T  is the finite blow-up time and /  is not identically constant and solves a related 
ODE; see Samarskii et al. (1995, Chap. 4).

In comparison, for the semilinear equation (1.3.1) looking for a similarity solution with 
the same structure

us (x, t) = (T — t r ' / W f f y ) ,  =  x /(T

yields that for the corresponding ODE the only non-zero similarity profile is the trivial 
constant one /  =  (3̂ , where p = l/(p  — 1). Such nonexistence results are known from 
the 1970’s, see Hocking, Stewartson and Stuart (1972) for p = 3, Ad’jutov and Lepin
(1984) for p > 1 and Giga and Kohn (1985) for the corresponding equation in 
with 1 < p < ps = (N + 2)/(N — 2)+. This means that for a wide “dense” subset 
of general solutions u(x ,t) blowing up at t =  T  at the origin x = 0, the similarity

12
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rescaling satisfies (Galaktionov and Poshashkov 1986, Giga and Kohn 1987)

0(y, t) = (T — t) —> (3@ as r  -> T~

uniformly on compact subsets in y. The spatial variation of the blow-up solutions can 
be observed on larger subsets, and the generic asymptotic behaviour is as follows:

u( x , t ) =  [ ( p - l ) ( T  - t ) ( l  +  C.n2)}1' ^  (1 +  0 (1 )) (1.5.3)

uniformly on compact subsets in 77 =  x/[(T — t)|ln (T  — t )I]1/2, where the constant 
C* =  (p — l)/4p does not depend on initial data (nor, in fact, on the space dimension). 
The non scaling-invariant “hot-spot variable” 77 with an extra logarithmic factor was 
first formally derived by Hocking et al. (1972) and was rigorously established twenty 
years later, see the references in the survey by Galaktionov and Vazquez (2002). The 
stable behaviour (1.5.3) is essentially equivalent to the fact that the ODE for the self­
similar solutions, which is obtained by a symmetry reduction of the original PDE, has 
no solution (other than the constant one) with an appropriate decay rate at infinity. 
Comparing (1.5.2) and (1.5.3) shows that nonexistence of non-trivial ODE similarity 
profiles implies a fundamental change of the basic spatial scale of singularity forma­
tion phenomena. The observation that the blow-up behaviour of these second order 
problems is only approximately self-similar (in dimensions N  = 1 and 2) with a new 
logarithmically perturbed backward heat kernel variable is an essential feature of many 
related reaction diffusion problems and the corresponding parabolic equations under 
consideration. Similar results are known for (1.1.2), see Bebernes and Troy (1987), 
Eberly (1988) and references in the book by Bebernes and Eberly (1989).

The analysis of both these problems is analagous and begins with a centre manifold 
expansion about a constant solution to the ODE for the similarity profile. Rigorous 
proof of this behaviour relies on the Maximum Principle and self-adjointness of the 
associated linear operators, (Giga and Kohn 1987, Filippas and Kohn 1992). Neither 
of these properties is available here hence the requirement for robust and reliable nu­
merical computations and asymptotic methods. Of course, while proof of non-existence 
of stationary similarity profiles implies the non-existence of full similarity solutions to 
the PDE, existence of stationary similarity profiles does not guarantee the existence of 
stable, attractive similarity solutions to the full PDE. To understand the dynamics of 
the full PDE problem we first need very careful numerical compuations. It should be 
mentioned that the history of the numerical investigation of blow-up is riddled with 
false starts. The first numerical study of the similarity solution to (1.1.2) suggested the 
existence of a similarity profile while the first computations of (1.3.1) and the nonlinear 
Schrodinger equation in the critical dimension both suggested the wrong blow-up rates.

13
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1.6 Geom etric integration

All of the problems under consideration have a natural scaling structure and many 
models exhibit finite time blow-up. As a singularity forms, there is convergence to a 
similarity profile in rescaled co-ordinates, however, in the natural co-ordinates, changes 
occur on increasingly small length scales and as the time T  is approached, on increas­
ingly small timescales. Because for many of the problems we examine, the long time 
behaviour was not known before this work, reliable and efficient numerical methods 
are essential. In order to preserve and utilize the underlying scaling structure and 
capture any emergent scalings we have chosen to use adaptive methods from the newly 
developing field of geometric integration.

Classical adaptive numerical methods are designed to make decisions based on esti­
mates of local truncation errors with no regard to global qualitative features of the 
system under examination. The basic philosophy of geometric integration is that the 
global properties of the solution such as conservation of mass or energy, or positivity 
of solutions are more important to the underlying problem than the local information 
given by the problem in terms of differentials. This philosophy, where applicable, can 
often generate algorithms which are more computationally efficient and robust than 
standard approches in that they guarantee the preservation of the key qualitative geo­
metric features, (Hairer, Lubich and Wanner 2002).

Given that we expect scale-invariant solutions to be attractors of most initial data it 
is natural to consider methods which axe also scale-invariant under the same transfor­
mations. Note that we are not enforcing similarity or a particular solution structure. 
Also for one of the problems we will need to ensure conservation of mass.

The key to the methods we use is to introduce a co-ordinate transformation from a 
computational variable £ to the physical variable re, governed by a monitor function 
M(x)  > 0 such that the moving grid, x(£,t), affords the same scaling transformation 
as the full PDE being solved on that grid. This means that in the presence of (asymp­
totically) self-similar behaviour computational nodes can move on the level sets of the 
(emerging) similarity variable. We now give an example of this in practice but delay a 
detailed discussion until Section 2.2.

1.6.1 N u m erica l so lu tion  to  th e  SR B -p rob lem

Knowing that solutions to (1.1.1) with suitable initial data will exhibit finite time 
blow-up, we need a numerical method which is adaptive in both space and time. We 
will also use a method which inherits any emergent scalings in the PDE but does not 
assume or enforce any particular solution structure. In Figure 1.5 we see the rescaled 
solutions converging as the blow-up time is approached. Recall from the rescaling 
(1.3.9) that this corresponds to localization at the origin. We are able to approximate
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IfccI

-10

Figure 1.5: Convergence of rescaled solutions to (1.1.1) to the similarity profile (1.4.4). 
These are the rescaled profiles seen in Figure 1.2 .

this solution very well because the mesh points are also converging to the origin at 
the appropriate rate, as is seen in Figure 1.6. Notice in this Figure that, close to 
the origin (the blow-up point), the mesh trajectories lie essentially on level sets of the 
similarity variable. Because we have a fixed number of points there is some drift due 
to boundary effects. The PDE profiles in Figure 1.5 are converging to the solution 
of (1.4.4) displayed in Figure 1.3. Because the blow-up time T  is not known a-priori 
we cannot immediately compare the solutions to the expected asymptotic profiles. To 
reconstruct the convergence onto the self-similar solution from time integrations of the 
PDE (1.1.1) we rescale under (1.3.10) in the following way. At each time t we define 
A = exp(u(0,t)) and set

0(?/>r ) =  — In A + u(a;A1//,4,t), where r  =  1/A.

Figure 1.5 presents a typical example of convergence of the rescaled solution 0(y,r) 
(shown with solid lines) to the first similarity profile f\(y) (shown with a dashed line 
[hidden below the rescaled PDE solutions]). Under this rescaling the profiles are defined 
on ever larger ranges of y = x / (T  — t)1/4 as is seen in Figure 1.6. In this figure, we see 
constant motion of some mesh lines in y which corresponds to clustering in the physical 
variable x.
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t-20

o 2 6 8 10 12 14 16 18 204
y = X/(T—1)1/4

Figure 1.6: Scale-invariant mesh trajectories. This is the mesh for the solution to 
(1.1.1) as seen in Figures 1.2 and 1.5.

1.7 O rganization o f the thesis

Numerical solutions complement all the analysis in this thesis and in some cases have 
even directed it. As such we first describe the numerical methods used, both the general 
philosophy of scale-invariant adaptivity and the practical implementation of the moving 
collocation method used for most of the computations discussed herein are described 
in Chapter 2.

In Chapter 3 we present one of the most significant contributions of this thesis by 
describing the existence of self-similar solutions for two canonical semilinear equations 
of arbitrary order. By careful examination of an associated linear operator we establish 
that there exist at least 2[m/2j ([a;J is the integer part of x ) non-trivial self-similar 
solutions to semilinear equations of the form

Ut = —(—A)mu + f(u)  where f{u) =  eu or \u\p~lu (p > 1). (1-7.1)

This is in stark contrast to the second-order equivalent of this problem. The asymptotic 
calculations are supported with numerical evidence. We also make detailed calculations 
regarding the spectrum of solutions to the Semenov-Rayleigh-Benard problem (1.1.1) 
constructing both nonlinear and linear patterns.

In Chapter 4 we continue the study of semilinear equations by analyzing the higher

1 6
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order absorption problem

Ut = — (—A )mu — \u\p~l u ( m > l , p > l )  (1-7.2)

wherein the dynamics are governed by, should they exist, the so-called very singular 
solutions (VSS) of the form

u(x,t) = t~ 1̂ p~1V(y), y = x / t x/4, V(y) —> 0 exponentially fast as y —> oo.

As opposed to solutions to (1.7.1) which can blow-up in finite-time, solutions to (1.7.2) 
decay in infinite time. While the theory for the heat equation with absorption

ut = Au — up (it >  0)

is essentially complete from the 1980’s, the lack of the Maximum Principle or a gradi­
ent structure for the corresponding rescaled equation to (1.7.2) means that the theory 
of asymptotic solutions to such higher-order problems is open. In Chapter 4 we use 
a combination of asymptotics and analysis to construct a countable spectrum of ra­
dially symmetric VSSs for general order of the derivative 2m and spatial dimension 
N.  Because of the more mathematically tractable nature of the absorption problem in 
this Chapter we are able to rigorously prove the existence of solutions (in a particular 
limit), rather than simply construct them asymptotically.

In Chapter 5 we consider the conservative divergent fourth-order equation

Ut =  —A(Au + |u|p-1u) (p > 1) (1.7.3)

paying particular attention to the critical exponent p =  3 (for N  = 1) for which the 
similarity solutions are conservative. This is the limit case of the ’unstable’ Cahn- 
Hilliard equation from phase transitions, which belongs to a class of pseudo-parabolic 
equations with well-known local properties. In Novick-Cohen (1992) and Bernoff and 
Bertozzi (1995) the authors analyzed a particular case, a model from solidification 
theory,

ut = —A(Au +  u2) x  € R  or R 2.

In Chapter 5 we show that in general, for all p > 1, solutions may either blow-up in 
finite time or decay in infinite time (essentially, there is no critical Fujita exponent) and 
that in all cases, regardless of conservation, the dynamics are governed by similarity 
solutions. The general equation (1.7.3) is of interest not only because of physical 
applications but because it represents an ’intermediate’ equation with connections to 
both the second-order problem (1.3.1) and the higher-order model (1.7.1).
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1.7.1 U n d erly in g  th em es

The key structural features linking all of these PDEs are the same, as are the math­
ematical tools for understanding them and the numerical methods for approximating 
them. We use a dynamical framework wherein the asymptotic behaviour (as t —> T~  or 
t —> oo) of all these problems approaches similarity solutions of rescaled problems. The 
solutions of these rescaled PDE problems are first understood by examining the associ­
ated ODE problems describing the profiles of exact similarity solutions. We construct 
spectra of both nonlinear and linear patterns through a combination of bifurcation and 
branching theory and parameter continuation in the underlying linear equations. Prom 
this recurring base we then analyze each problem as appropriate. Similarity solutions 
to equations of the from (1.7.1) are constructed using matched asymptotic expansions. 
Rigorous results from bifurcation theory are used to prove existence of VSSs to (1.7.2). 
Existence of solutions to (1.7.3) is proven via a shooting argument and blow-up profiles 
are constructed with a singular perturbation expansion. In all cases numerical experi­
ments are key and so we begin by describing the numerical methods developed to study 
all the PDE problems mentioned thus far.
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Chapter 2

MovCol4: A high resolution 
moving collocation scheme for 
evolutionary partial differential 
equations

2.1 Introduction

In each of the problems examined in this thesis, important structures occur at scales 
which change over the duration of the time-period of interest, and could even move. 
That is, no one computational grid will be appropriate at all times of interest. Many ap­
proaches have been brought to bear on the approximation of such problems numerically. 
For instance, Berger and Kohn (1988), Bernoff and Bertozzi (1995), Budd, Huang and 
Russell (1996), Sulem and Sulem (1999), Stockie, MacKenzie and Russell (2000) and 
Beckett, Mackenzie, Ramage and Sloan (2001) all have features in common with the 
one-dimensional approach implemented here. Our approach is based primarily on the 
work of Huang, Ren and Russell (1994a) and (1994b) and Huang and Russell (1996) 
and (1997). In the context of finite elements or finite differences, the most common 
approaches are static regridding (h-refinement) or moving meshes (r-refinement). The 
method of h-refinement is most commonly associated with a-posteriori error methods. 
These methods are applicable to a wide class of problems, but we do not believe them 
to be appropriate here because of the nature of blow-up problems. All a-posteriori 
methods will be plagued by the fact that any arbitrarily small error in time at any 
stage in the calculation will lead to an arbitrarily large error near the blow-up time. A 
proper a-posteriori method will recognize this error and try to correct for it by reduc­
ing the stepsize and refining the grid. The main problem is that a-posteriori methods 
will try and find a solution with precisely the same blow-up time as the exact solution
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without recognizing that such errors are not important. Instead we consider moving 
mesh methods and in particular we consider an approach from the emerging field of 
geometric integration: scale-invariant moving mesh methods. In this approach no ex­
traordinary effort to control the temporal error is made and thus there may be large 
errors in time compared to the exact solution. However, what really matters is the 
solution in the rescaled co-ordinates (displaying the key geometric features) and this 
should be excellent. This may at first seem odd, but shift errors in the prediction of the 
blow-up time are scaled out when solutions are examined in the similarity variables.

In this Chapter we describe the construction and implementation of the extension of a 
known method to fourth-order evolutionary PDEs. We also extend the error analysis 
in Huang and Russell (1996) from the discrete collocation points to all points in the 
interval of approximation. Lastly, we further the understanding of the advantages of the 
conservative collocation scheme introduced by Huang and Russell (1996) for problems 
on moving grids which may not have any inherent conservation structure.

Some of the contents of this chapter will appear in the paper ‘MovCol4: A high resolu­
tion moving collocation scheme for evolutionary partial differential equations’, (2003) 
in collaboration with X. Xu and R. Russell. Three codes which implement the method 
described in this Chapter have been written. The first two, of which I am the sole au­
thor, are based in Matlab; one uses DDASSL, (Brenan, Campbell and Petzold 1996), for 
the time integration via a MEX interface, the other uses the Matlab routine odel5 i .m. 
The final implementation is a port of the Matlab code to Fortran77 merged with an 
existing code by Huang and Russell (1996) performed in collaboration with X. Xu and 
R. D. Russell.

2.2 Scale invariant adaptivity for partial differential equa­
tions in one space dimension

In order to utilize the scaling structure of the PDEs under consideration we are inter­
ested in numerical methods which adapt to qualitative changes of the solution deter­
mined by the symmetry properties of that solution.

2.2 .1  E q u id istr ib u tion  and op tim al m eshes

Associated with the approximation of any infinite dimensional problem by a finite 
dimensional one is the notion of discretization error. When constructing error estimates 
based on finite difference or finite element methods, one often produces bounds based 
on a high derivative of the exact solution. It seems perfectly natural that the way to 
minimize the total error would be to commit the same error in each computational 
cell, or equidistribute, (de Boor 1973), the error and, in fact, it is optimal, as we show
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below. If we define a computational variable £ and a monitor function M{x) > 0, then, 
by definition, the equidistributed mapping satisifies

rx(£) p i
/  M(s)ds = £ /  M(s)ds. (2.2.1)

Jo Jo

Differentiating with respect to £ gives the differential form of the equidistribution prin­
ciple

Mxz  =  1 (2.2.2)

for a suitably normailized monitor function M  ( f  M  = 1). Note that this is a mapping 
with a specified Jacobian.

As a motivation for the use of a general equidistribution principle, we will now show 
that equidistributed grids are optimal (with regard to errors) if the monitor function 
is suitably chosen.

For an arbitrary indicator function Q(x) and a positive scalar a  suppose that we define

L = x£Q(x). (2.2.3)

For instance, the L 2 and H 1 errors of a second-order approximation to u(x) on a 
uniform grid in £ are both given by

E  =  (A£ ) Q_1 f 1 Ldx 
Jo

with a  =  5 and 3 respectively and Q(x) =  |u;/(®)|2.

Lemma 2.2.1. Equidistribution of errors produces optimal meshes.

Proof. To find the optimal mesh we use the calculus of variations. The Euler-Lagrange
equation associated to (2.2.3) satisfies

d_ f  d L \
d£ dx

Expanding directly, we have

+  a(a -  1 )x^~2x ^ Q  -  = 0,

or ax^~2x ^ Q + x ^ ~ l Q^ = 0. Multiplying by x$ and integrating yields x^Q = constant, 
hence , Mx% =  1 for appropriate M.  □

This result recovers the optimal mesh results of Carey and Dinh (1985) for finite dif­
ference methods applied to second-order boundary value problems but in this form is
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originally due to deBoor 1.

Solving (2.2.2) directly in concert with a PDE leads to a highly coupled nonlinear 
Differential Algebraic Equation with fully half of the variables being algebraic. To avoid 
this very difficult numerical problem various regularizations have been proposed. These 
are the so-called Moving Mesh PDEs (MMPDEs). Most importantly, the MMPDEs 
offer stabilization, (Huang, Ren and Russell 1994b), as (2.2.2) is only neutrally stable 
in time meaning that small errors can accumulate in time.

2.2 .2  M oving m esh  P D E s

If we begin with the equidistribution principle in integral form, (2.2.1), and consider a 
mapping in both time and computational space, x(£, t), we can write down an evolu­
tionary equation for the mesh:

(  rx(ZJ) /-i
r x t = — ( J M(s)ds ~  £ j  M(s)ds

(The sign indicates that the node concentration will increase in under-equidistributed 
regions.) Differentiating twice with respect to £ recovers MMPDE6 (Huang et al. 1994b)

x t t t  =  (2 -2 -4 )

The positive parameter r  <  1 is the relaxation time and defines the time-scale over 
which a mesh converges to steady-state (2.2.2). Another common MMPDE is MM- 
PDE4

(M*t£)£ =  (2.2.5)

which, for reasons of scaling, we will not use. From Huang et al. (1994b) we also have 
that, when solved exactly, neither MMPDE6 nor MMPDE4 produce mesh crossings. 
That is, the mapping is well defined for all time.

The key to a succesful MMPDE method is the proper choice of the monitor function. 
Methods based on error control have been used by Beckett et al. (2001), while monitor 
functions to cluster nodes based on qualitative solution properties have been used by 
Budd et al. (1996), Stockie et al. (2000) and Mackenzie and Robertson (2002) amongst
others while Guerra, Peletier and Williams (2003) use both. Because we are interested
in the scaling properties of our PDEs, we will concentrate on monitor functions which 
also make (2.2.4) invariant under the same scale transformation as the physical PDE.

1R.D. Russell, private communication 2003
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2 .2 .3  Scale-invariant m on itor functions

Because our PDEs are governed (at least asymptotically) by scale-invariant operators 
we will use methods which preserve the geometric structure of the dynamics. To do 
this we use not the error as the monitor function but rather a function of the solution 
chosen so as to preserve the scaling of the underlying system and cluster mesh points in 
the regions they will be required as the solution evolves in a possibly unknown manner. 
It is for this reason that we have chosen to use MMPDE6 rather than MMPDE4. For 
example, consider a general PDE invariant under the scaling

t*-^Xt, x  h* Xax , u X^u, X > 0, (2.2.6)

and a monitor function of the general form

M  =  M (x ,u ,u x ,uxx).

Then, for MMPDE6 to also be invariant under (2.2.6), we require

M(Xax, X^u, X^~aux, XP~2auxx) =  X~lM{x, u , it®, uxx). (2.2.7)

Given this, the complete system of the physical PDE and the moving mesh PDE are 
invariant under the same transformation, the transformation which governs the key 
underlying dynamics of the PDE. For blow-up problems, this also suggests a uniform 
relative error estimate. Defining the relative local truncation error estimate as

R  = (2.2.8)

we have the following observation for blow-up problems understood in a natural sense.

P ro p o sitio n  2.2.2. Given a scale-invariant monitor function M, and a discretization 
whose local truncation error is of the form

L T E = C h p\up |,

the relative local truncation error is asymptotically uniform in the blow-up region.

Proof. Given that h ~  x$ scales as x, x% ■-» XaX£ and that near blow-up solutions are 
asymptotically rescaled stationary profiles with A =  X(t), we have

RLTE -  A ^ ( ^ ) y A ^ | / W |  _  |/W |
KL1J1 M "  v* |/.| w  | / . |  (2'2'9)

for some reference similarity profile f s. □
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This property was seen in Figure 1.6 where the inner portion of the blow-up solution 
is resolved on a mesh which follows the level sets of the similarity variable y.

2 .2 .4  Scale-invariant sem i-d iscretiza tion s

The strategy described in this Chapter uses the semi-discretization based method of 
lines wherein a spatial discretization is introduced and then the coefficients defining 
this discretization are integrated forward in time. This approach has the advantage 
that existing robust adaptive ODE codes, eg DDASSL, (Brenan et al. 1996) can be 
used for this aspect of the problem. We denote Ui(t) as the approximation to u(x,t)  
at the mesh point X{(t),t), hence Ui(t) ~  u(Xi(t),t).

Given that the approximation (Ui(t), Xi(t), t)  is the solution of our semi-discrete ODE 
system, we have that the semi-discretization is scale-invariant if (in the absence of 
boundary conditions) the set of points

(XaUi(t),X^Xi(t),Xt) 

is also a solution of the semi-discrete system.

Our approach is scale-invariant in space because we are using scale-invariant monitor 
functions and from the fact that scaling and discretization commute. This means that 
our method admits scale-invariant similarity solutions should they emerge. However, 
this approach is not scale-invariant in time. To make it so we would need to introduce a 
transformation in time that would depend on the solution in such a way that the present 
algorithm would be insufficient. As a trade-off between complete scale-invariance and 
a simple and flexible code we have chosen to use a standard time-discretization of a 
spatially scale-invariant method.

In Budd and Piggott (2001) it is shown that scale-invariant methods for ODEs can 
generate uniform errror estimates, even in the case of singularities. Unfortunately this 
is not the the case for PDEs. The above estimate (2.2.9) holds only for h C  1. Clearly 
as mesh points concentrate in one region the remainder of the interval loses points. 
There are two possible remedies for this, one to compute on an ever shrinking domain 
as in the dynamic resaling method for the nonlinear Schrodinger equation, (Sulem and 
Sulem 1999). The other to construct an (hr)-method and add nodes as required. Both 
these approaches require an adhoc extension to the general method presented here 
which would vary from problem to problem. Due to the large number of problems 
considered in this thesis we have chosen to construct only one algorithm which is as 
flexible as possible.

Our approach differs from one of the earliest adaptive numerical methods for blow­
up problems due to Berger and Kohn (1988) in that they required knowledge of the 
structure of the particular solution being approximated. Bernoff and Bertozzi (1995)
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performed adaptivity based on scaling, but used a static approach. We will discuss a 
static regridding routine based, like theirs, on scale-invariance in Section 2.7.1. While 
our method makes no direct effort to predict the blow-up time exactly (as an a-posteriori 
method would), the solution in the rescaled co-ordinates should be very good, as demon­
strated in Chapter 1.

2.3 Adaptive m ethods for higher-order problems

Once decided on the continuous form our method will take we need next to choose 
upon a discretization. Because we are solving high-order problems on a non-uniform 
grid, a compact scheme is preferable to a wide finite-difference scheme. A scheme with 
a wide stencil will have errors which are dependent on the local mesh regularity over 
the width of the stencil. This can lead to the difficulties described in Saucez, Wouwer, 
Schiesser and Zegeling (2001), where large numbers of nodes (as many as 1000) were 
required to solve the problems

Ut +  (um)xx +  (un)xxx =  0,

Utt UXx  Uxxxx  “I” ( u  ) x x  =  0}

Ut d* lOuUxxx d“ 25UxUxx d* 20U Ux "I” Uxxxxx — 0*

They used finite differences and the same adaptive strategy we do and found that great 
care needed to be taken to reliably approximate the high-derivatives on a non-uniform 
grid. In this thesis we are also interested in solving a broad class of problems and thus 
would like a method which can easily be modified with the least possible effort to solve 
many different problems.

A natural choice satisfying these requirements is collocation. This discretization, com­
bined with the MMPDE (as described in Section 2.2.2) approach to adaptivity, has 
already been demonstrated to work for second-order problems by Huang and Russell 
(1996). Our objective in this Chapter is to develop a method which is an extension 
of their approach to fourth-order problems. Their original motivation was to create a 
scheme which was flexible and robust for a variety of parabolic problems on both static 
and moving grids, hence a collocation scheme and the moving mesh adaptive procedure 
(Huang et al. 1994b, Huang et al. 1994a, Huang and Russell 1997). This method has 
been used succesfully to compute solutions to second-order problems with finite time 
blow-up by Budd, Chen and Russell (1999), Budd, Rottschaffer and Williams (2003) 
and Guerra et al. (2003) amongst others. We now show how this method extends to 
higher-order problems in the most efficient way. In fact many of the strengths of the 
coupling of these two ideas, collocation and MMPDEs, are greatly enhanced for higher- 
order problems as we shall describe below. An additional reason to use collocation is 
that our problems may have boundary conditions depending (possibly nonlinearly)
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on as high as the third derivative. Such conditions are easily and reliably met with 
collocation but this is generally not true for a finite difference scheme.

Although at present we are only interested in problems of the form

Ut — f(t) x, u.Ux, Uxxxi i^xxxx) for t ^  0, x £ .1 =  (ex, 6), (2.3.1)

u(x,0) =  u0(x),

0  =  Qa\{o,i ^ ( ® ) j  • • • >  % n ( ® ) ) j  0  =  9a2 ( ^ 5  ^ 5  ^ ( ® ) j  • • • >

0  =  gbi{b,t,u(b), ...,uxxx(b)), 0 =  gb2 (b,t,u(b), ...,uxxx(b)),

the scheme described in this chapter is valid for systems of such equations which also 
depend nonlinearly on u t and its first three spatial derivatives.

We begin by collecting the required background material to describe the collocation 
scheme and to be able to establish error estimates for the non-standard conservative 
discretization used for the physical PDEs. This material all relates to ODEs because we 
axe using the method of lines. Although we are primarily interested in fourth-order (in 
space) problems, we consider the general case of m-th-order problems first. With a basic 
understanding of the coupling between the non-uniform grid and the collocation scheme 
the advantages of this approach over finite differences is made apparent. We conclude 
by discussing a sequence of test problems to highlight the features and advantages of 
our approach.

In the remainder of this Chapter the capital letters U and X  will be used to refer to the 
numerical approximations to the dependent continuous variables u and x respectively. 
The independent variables axe the time t and the computational spatial variable £.

2.4 M athem atical background

A collocation method is a Petrov-Galerkin discretization where the test functions axe 
Dirac-5 functions, (Bulirsch and Stoer 1980). One can also consider it as an implicit 
Runge-Kutta finite difference formulation (Ascher, Mattheij and Russell 1988). Con­
sider first a nonlinear ordinary differential equation of the form

N(u(x), x) = -f f (x ,  u, u ' , ..., it(m-1)) =  0 Vx £ /  =  (a, b), (2.4.1)

and boundary conditions

ga(a,u{a),u,{a),...,u^m~1){a)) =  0, tx(6), ^(fr), (6)) =  0,
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where ga : H m+1 —> R Ua, gb : R m+1 —>• R nb and na +  nb =  ra. We represent the 
approximation U(x) to the function u(x) as a linear combination of basis functions

U(x ) = Y l M * )
j

and determine the parameters specifying the basis functions by enforcing

N(U(xi)) = 0 (2.4.2)

at each collocation node X{. In the particular case of a piecewise polynomial represen­
tation we have that

71 — 1

u (x )
7—1

where Xh is the indicator function on the interval Ii = [xi,X{+1] and 4>i{x) is an inter­
polating polynomial over that interval. First, we describe classical interpolation which 
is at the heart of our basis functions. The choice of collocation nodes is related to 
optimal quadrature. Although standard, we now collect all the required details to con­
struct and analyze our method, see also Ascher et al. (1988, Sections 2.6, 5.4 and 5.6) 
or Bulirsch and Stoer (1980).

2.4 .1  In terp o la tion

Given n +  1 distinct data points {xj}, Lagrange interpolation, (Ascher et al. 1988),
defines the unique polynomial Ln(x) of a function y = f (x )  based on pairs {x^yi) such
that for all i = 0, ...,n, L(x{) =  f{xi),  whence,

n n~ «v 2)_2) •
Ln(x) = 22yiLi(x) ,  where Li(x) =    i =  0 ,...,n  . (2.4.3)

.  ^  ”  X <j
i= 0  j = 0 1 3

j ^ i

The error associated with (2.4.3) is

/ ( n+1)(C) TTE(x)  =  /(* ) -  L„(x) = , . J J (*  -  X i ) ,  (2.4.4)

with C =  C (x) E I.

With uniform subdivision this problem quickly becomes ill-conditioned as n becomes 
large. Also, for many of the problems under consideration, the exact (possibly weak) 
solutions have derivatives which become successively larger as n increases and hence 
this error estimate could become increasingly worse. To avoid the ill-conditioning of 
approximation with high-order polynomials, one typically uses piece-wise polynomials, 
see Figure 2.1, in which the interval I  is partitioned I  =  I* =  (xu x i+i)
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Global interpolant

Piecewise linear interpolant

Figure 2.1: Lagrangian interpolation

and a polynomial interpolant is fit on each sub-interval with some matching conditions 
across the interval endpoints {a^}. For the case of Lagrange interpolation with the 
subintervals defined by the nodes {rcj} this defines a piece-wise linear interpolant,

(xi+i -  x) (X-X{)
L i ( x )  —  , \V^ /  \ 2/ i + l >  1  •

( • E i + l  %{) ^ i )

Because we are interested in fourth-order problems a piece-wise linear representation 
is insufficient. Instead we will use Hermite interpolation which is a generalization of 
Lagrange interpolation to the case where the derivatives of /  are also known at the 
nodes {X{}. Let us suppose then that the given data are

{^i, f^k\x{)}  with i =  0,..., n and k =  0,..., ra*,

at distinct nodes. Defining N  = Yli=o(m i +  -0 ^  can sh°wn> (Ascher et al. 1988), 
that there exists a unique polynomial if/v-i satisfying

t f j v - i M  “  f o r  *  =  a n d  k  =  ° » • • • »  m i-

I
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iifjv- 1 is called the Hermite interpolation polynomial and takes the form

n  m i
.(*)

HN- 1(x) = ' £ l ' E y i L* ( x '>’ (2-4-5)
i=0 k=0

where for i = 0, k = 0, ...,mi.

The functions satisfy the relations

dp— Lik(xj) =  {
1 if i = j  and k = p, 

0 otherwise,
(2.4.6)

and are constructed recursively

Uj(x)  =  kj{x) -  ^  l \ j \ x i ) L ik{x), j  = rrii-  1,mi -  (2.4.7)
k=j+1

where the polynomials kj  are defined as

mfc+l
, i =

fc=ok^i

and Limi(x) =  limi(x) for i = 0, ...,n. In each sub-interval Ii, H ^ - i  satisfies the 
following error estimate:

f(W)(£\ n m*
f i x )  -  h n - i(x) =  -jy, n  n ( ®  -  Xi) 'ix G Ii , for some (]{x) G I*.

t=0 k—0

To combine the ideas of collocation with Hermite (and Lagrange, see Section 2.7) 
interpolation we divide our interval I  into cells defined by the nodes {a^} and construct 
an interpolating polynomial over each cell corresponding to the function value and its 
three derivatives at each node. In each cell, we pose a solution representation of the 
form

1 3

Ui(x) = Y , Y , y ki Li<‘ x e I i-
j=0 fc=0

This gives us a function which is C°°(Ii) and C3(/), and the error estimate for this 
representation takes the form

f (x )  -  Ui(x) =  ^ J ^ (x ~ Xi)*(x -  x i+1)4, x, C(x) G Ii . (2.4.8)

Note that this defines the lowest order polynomial which has a continuous third deriva­
tive on all I. One might expect that the high-derivative in the error term would suggest
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we use a lower order method for problems such as ours which exhibit finite-time sin­
gularities, and hence increasingly large derivatives. However, because of the adaptive 
method we are using the solutions are relatively smooth in the computational variable 
and this is not the dominant issue when the mesh is suitably chosen. In fact, as seen 
in Section 2.2.2 the relative error is essentially constant near a singularity throughout 
the time-interval of integration.

2 .4 .2  C ollocation , im p lic it R u n g e-K u tta  m eth od s and op tim al quadra­
tu re

Collocation can be thought of as a Petrov-Galerkin method, (Bulirsch and Stoer 1980), 
in the sense that the basis functions are determined by setting

(N(U(x)),SXi) =  0 for all i.

However, this does not give any insight into an appropriate choice of the collocation 
nodes, {a^}. For the special case of first-order problems, the connection between collo­
cation and implicit Runge-Kutta methods makes the choice evident.

Consider the first-order problem, y' = f (x ,y ) .  A A;—stage Runge-Kutta method is 
defined by

k

Vi+i = Vi hi ^   ̂Pjfiji 1 ^  ^  Af, (2.4.9)
j = l

where

The points Xij = X{ + hipj are scaled translations of the canonical points {pj} which 
satisfy

0 <  pi <  P2 <  . • • <  Pk <  1 •

From (2.4.3) the Lagrange interpolant to f (x ,y )  satisfies

y 'w  =  E E  y'(xu)Li ( r — )  + E(x). (2.4.10)
i 1=1 \  * /

To see that this defines a Runge-Kutta method, observe that integrating (2.4.10) re­
covers (2.4.9) with the coefficients defined as

pj = [  Lj(t)dt, otji — f  L i( t)d t .
J o Jo

The choice for the canonical points {pj} is now clear from the theory of optimal quadra­
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ture, (Ascher et al. 1988). For the case

0 <  pi <  P2 <  .. • < Pk <  1,

the error E(x) is minimized, in the sense of being of highest order in the interval length, 
by taking the Gauss points, whereas

Osspi <  p2 <  . . .  <  pk =  1,

specifies the Lobatto points. Both of these sets of points are determined by the zeros 
of certain orthogonal polynomials. For the Gauss points the j - th (of k) canonical point 
is the j-th  zero of the Legendre polynomial

= (2-4-n )

In the case of the Lobatto points, pj is the (j  — l)st zero of P^_1(s), 2 < j  < k — 1 
with Pk-\ again defined by (2.4.11). The first Gauss method is the mid-point rule with 
pi = 1/2 whereas the first Lobatto method is the trapezoidal method, pi = 0,p2 =  1* 
A sketch of the Hermite interpolant to a given function and the interior collocation 
nodes is given in Figure 2.2.

Piecewise Hermite interpolant

Figure 2.2: Hermite interpolation. The interval endpoints are indicated by V  while 
the collocation points (see (2.7.4) are marked by

To see that this formulation also defines a collocation method in the sense of (2.4.2), 
we observe that by construction (2.4.10) is exact at the points {a^}, thus satisfying
(2.4.2). Clearly this is an implicit method as the function f (x ,y)  depends on y at each 
collocation point in the interval. Normally when solving initial value problems one 
attempts to avoid implicit methods because they are much more difficult to solve. We 
are solving nonlinear boundary value problems thus explicit methods are unavailable 
and symmetric methods which have no preferred direction are more suitable.

For the more general case of higher-order problems, such as those that we are interested 
in, one can prove similar results, again using properties of orthogonal polynomials, see
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for instance, Ascher et al. (1988, Theorems 5.142 and 5.147), from which we have 
paraphrased the following theorem.

T heorem  2.4.1. Let u(x) be an isolated solution to (2.4.1) where f ,  ga and gb have 
continuous second partial derivatives and that the k canonical points, {pi}, satisfy the 
orthogonality conditions

fJo
II(t -  Pi)dt = 0 (2.4.12)
1 = 1

for all polynomials <f>(s) of order p — k, <f> = J2j=o 1 cj s7 • Then, the collocation ap­
proximation U(x) satisfies

|u(j)(z) -  U ^ \ x )  | =  0 ( h k+m~j ) +  0(h?), 0 < j  < m  -  1, 1 < i < N ,  (2.4.13)

being superconvergent at the mesh points,

| u ^ ( x i )  — U ^ (x i )  | =  0 (h p), 0 < j  < m  — 1, l < z < i V ,  (2.4.14)

with h = maxj hi, and, given that p > k +  m,

u ^ ( x )  — U ^ \ x )  = h i +m j u(k+m\ x i ) p W
X — Xi

hi J (2.4.15)
+  0 (h f+ro_i+1) +  C{hp), X i < x <  x i+u

where

p ^  = W ^ T y j y s r "  ]&(-«)*•
The importance of the Gauss and Lobatto points is clear also as, by construction, 
the Gauss points give the optimal value of p = 2k in (2.4.12) whereas the Lobatto 
points maximize p = 2k — 2 in the case pi — 0, pk =  1. These estimates, particularly 
(2.4.15), motivate what follows. The superconvergence property, (2.4.14), is one of the 
most important aspects of any collocation method but one which we are not taking 
advantage of here. Typically superconvergence can be used to control mesh adaptation 
in the solution of boundary value problems (Ascher et al. 1988).

2.5 A moving collocation m ethod

The preceding discussion deals exclusively with stationary in time boundary value 
problems and is the approach taken in the BVP solvers used for the construction of all 
the bifurcation diagrams presented in Chapters 3-5 (Doedel, Champneys, Fairgrieve, 
Kuznetsov, Sandstede and Wang 1997, Shampine and Kierzenka 2001). To solve time- 
dependent problems, we will use a method of lines approach, discretizing first in space
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2.5 A MOVING COLLOCATION METHOD

using Hermite collocation and then passing the resulting system of ODEs in time to 
an ODE solver. At each stage in time we have a problem of the form as described thus 
far where now a difference approximation to the time derivative contributes a spatially 
dependent forcing term to the problem.

Our method is made more complicated because of the singular nature of many of the 
problems under consideration. In order to be able to resolve finite-time singularities 
we couple the physical PDE of interest to the MMPDE as described in Section 2.2.2. 
Because we are currently considering problems in only one space dimension, solving 
the MMPDE and the physical PDE simultaneously for both the transformation x(£, t) 
and the physical solution u(x(£,t),t)  is reasonable computationally. This avoids the 
need to interpolate the solution between different grids and that a method of lines 
discretization for the entire system may be integrated with existing efficient codes. 
An alternate strategy is mesh decoupling in which the physical and mesh PDEs are 
solved in turn, see for instance Beckett et al. (2001). There is no technical requirement 
for the mesh and physical PDEs to be discretized in the same way. Following Huang 
and Russell (1996) we use Hermite collocation for the physical PDE but only central 
differences for the mesh. The mesh need not be solved as accurately as the physical 
PDE as errors here do not affect the order of convergence of the solution on a given 
mesh. Also, we do not want to introduce any additional stiffness to the full system of 
ODEs.

Collocation has many advantages over a standard finite difference approximation: it af­
fords a continuous representation of the solution and its first (m — 1) spatial derivatives, 
it provides a higher order of convergence, is simple and flexible to program, easily han­
dles arbitrary boundary conditions and provides error estimates independent of mesh 
grading. This last point is perhaps the most important for a moving mesh method, 
particularly for higher-order problems. By using collocation, we are able to avoid prob­
lems of approximating high-order derivatives via differences over a wide non-uniform 
stencil, see Saucez et al. (2001).

It should be noted that the existing code of Huang and Russell (1996) can, in theory, 
solve the problems as discussed in this thesis. It is a general purpose code to solve 
systems of the form

f  (t, X, Ut)Ux,Uxx, Uxt) ~  •£> j ^xt))x

using the same strategies as described in this Chapter. Clearly, a system of the form

U = (v,vxx)T

could be used to solve higher-order problems. However, this definition sets U2 — vxx
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2.5 A MOVING COLLOCATION METHOD

and hence means solving
(^l)xx =  u 2

for which u 2 is an algebraic, rather than a differential variable making the system much 
more difficult to both start and integrate, this is especially true on a moving grid. The 
alternate relationship

( u l ) t x x  =  ( ^ 2  ) t

recovers a completely differential system but is, in the general case, at best neutrally 
stable in time. Also, in the conservative case described below, any such system approach 
is less efficient in that it requires solving for extraneous unknowns. This method also 
means that our approximation has a continuous third derivative in all I  whereas a 
system approach would not. Additionally, because of the stability proeprties of the 
DAE computations of the Cahn-Hilliard equation on a moving grid using the system 
approach have been shown to fail (Williams et al. 2003).

2.5 .1  C ollocation  d iscretiza tion  o f  th e  ph ysical P D E

When considering a discretization with a coordinate transformation one can either write 
the PDE in terms of the physical variable x and discretize on a non-uniform mesh, or 
solve a transformed PDE in terms of the computational variable £ on a uniform mesh. 
The latter approach is typical of moving finite difference approximations. However 
with the flexibility of the collocation method it is simpler to discretize the PDE with 
respect to the physical variable x (this approach is only valid in one dimension).

Suppose at a time t € [0, tf] the mesh

xL(t) =  Xi(t )  <  X 2{t) <  ... <  X N+i{t) =  xR{t)

solves the MMPDE. The physical solution u(x,t)  is approximated by the piecewise 
septic Hermite polynomial

U{x,t)  =  Ui{t)L0fi{s) +  UXii{t)Hi{t)L0}i(s) +  Uxxj{ t )Hi( t )Lof2{s)

+ Uxxxj ( t )Hf  Lo^(s) +  Ui+i(t)Lifi(s) +  UXyi+i(t )Hi(t )Li}i ( s ) (2.5.1)

UXXji-\.\ W i ( t ) L  1 , 2 ^ )  “1“ UXXx,i+1 (t)H?Lh3(s), 

for x e  [Xi(t), Xj+i(t)], i = 1 ,...,iV , where Ui(t),Ux>i(t),Uxx>i{t) and UXXX}i(t) denote 
U(Xi( t ) , t ) ,Ux(Xi( t ) , t ) ,Uxx(Xi(t)j t)  and Uxxx(Xi(t), t)  respectively. The local coordi­
nate s is defined by

■ -  Hi(t) =  x i+1(t) - Xi(t).

The Hermite interpolating polynomials are given explicity in a form analogous to the
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2.5 A MOVING COLLOCATION METHOD

interpolating formula of Lagrange. Recall that the shape functions are determined 
recursively by the formula (2.4.7) which for n = 1 and mo =  m\ = 3 works out to

£ 0 ,0 (5 ) = (20s3 +  10s2 +  4s +  1) (s -  l )4

£o,i (s) = s (10s2 +  4s 4 -1) (s — l)4,

£ 0 ,2 (5 ) = y ( 4 s  +  l ) ( s - l ) 4,

£ 0 ,3 (5 ) = 6 (‘ - 1)4’
£ 1,0 (5 ) = -  (20s3 -  70s2 +  84s -  35) s4,

£ 1,1 (5 ) = s4( s - l )  (10s2 -  24s +  15),

£ 1,2 (5 ) = - y ( s - l ) 2( 4 s - 5 ) ,

£ 1,3 (5 ) =
COt-H1CO

** 
1®

The derivatives of the solution for x  6 [Xi(t), Xi+i\ are determined by direct differen­
tiation of (2.5.1), for instance,

dLot2
ds

+ Uxxx, i ( t ) H f ^ -  + Uw ( t +  Ux,i+1( t ) H i ( t (2.5.2) 

+Uxx,i+i ( t ) H ? ( t ) ^  + Uxxx,i+1( t ) H ? ^ }  ,

and

TT ( +\ T l ( d U x ,i rj TT d H { \  f  d U Xx,i  t j 2  I o  TT IT d H i \
~  ~d tLofi +  { ~ d T Hi + Ux'i~dt )  +  + 2U**'iHi~dt J L°'2

, ( dUXXXji ^3  ( or 2 dH{\  t dUi+1 T
+  \ ~ d T  { W x x x 'iH i  U T )  i o '3 +  ~ d T

+ L/,i +  )  i . . .

+  ( £ = * . „ ,  +  3 ( f  +  .

(2.5.3)

Additional mixed derivatives are computed analagously but have been neglected for 
brevity. The goal now is to write down an system of ODEs for the unknowns Ui(t), 
UXli(t), Uxx>i(t) and UXXXti(t). There are several ways to do this. The standard approach 
would be to minimize the local truncation error (by maximizing the order); this means 
collocation at the Gauss points and we describe this method first. However, we are 
also interested in methods which may be less stiff in time or provide some additional 
geometric property of the problem. In addition, we also describe a second scheme,
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2 .6  G a u s s ia n  c o l l o c a t io n

conservative collocation, which does both of these, though at the expense of losing 
detailed information about the error of the approximate solution and with twice the 
number of function evaluations.

2.6 Gaussian collocation

Given a problem of the form

Ut — A/”(t, X, Uj Uxj Uxxf Mm, 'U'xxxx)i t ^  0, X £ I  = (fl, &), (2.6.1)

supplemented with the initial condition

u(x,0) =  uo(x), x £ ( a ,  6), 

and separated boundary conditions

9a ,1 =  0, Qa,2 =  o, <76,1 =  0, <76,2 =  0> (2.6.2)

where gy^ — gy,i(t, y, Ut (y),U(y), Ux (y), Uxx{y), UXXx{y)), the standard approach would 
be to solve for the (4 +  l)(iV + 1) unknowns of the solution, U and its first three spatial 
derivatives as well as the (N  +  1) mesh points Xi(t) by enforcing the residual

Ut A/"(t, x, £/, Uxi Uxxi Uxxx? Uxxxx') ~  0 (2.6.3)

at the 4 Gauss points in each interval. The MMPDE, X t^  =  — J (M X f)^ is approxi­
mated with central differences at the (N — 1) interior points,

-  2Xt,i + Xt,i+1 = - i  {Mi+l/2(Xi+1 -  Xi) -  Mi_1/2(Xi -  X <_,)),

where M;+1/2 and Mi_i/2 are approximations to the average of the monitor function 
over cells Ii and I{-\ respectively. The system is closed by satisfying the boundary 
conditions (2.6.2) and X \  =  a,Xw +1  =  6. This gives a system of 5(N  +  1) equations 
in 5(iV +  1) unknowns. The spatial local truncation error of such a method can then 
be estimated from (2.4.15). Using m  =  4, k = 4 and p = 2k = k + m, we have

\u(x) — U(x)\ = 0 ( h 8) for all x  € I, where h =  max hi.i

Problems of the form
Ut =  (y( ?̂ U, UXt UXxi UXxx))x
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2 .7  C o n s e r v a t iv e  c o l l o c a t io n

occur regularly in applications and satisfy the obvious property that

j t J u  = g{b)-g{a).

On a fixed grid, the method as described satisifies this conservation law only for linear 
functions

g(u, Uxi Uxxj Hxxx) =  OiiU +  Oi2 llx *b Oi^Uxx “I- OL̂lLXxx‘ (2.6.4)

L em m a 2.6.1. Gaussian collocation conserves discrete linear integrals.

Proof. Denoting u \ k~lS) — Ui, Ux,i, Uxx,u Uxxx,i for k = 1,2,3,4, we have that 

=  ^  OL\Ux ”b Oi2UXx "b Oi^UXxx "b Oi^Uxxxxdx

=  W k~i+1 ( Ui k) [  ^ j L o , k(s)ds +  D gi j f 1 ^ L i ,k(s)ds

=  E E  Oij(u\3+1 1̂  — ^) (by definition of the basis functions, (2.4.6))

j
=  G ( XN+1) -  G{Xi).

□

This is quite a reasonable approach for many problems and we present examples of it 
in practice in Section 2.8. Clearly we would like a method which is conservative for a 
class of general equations rather than just the class (2.6.4). Also, for problems with 
singularity formation, each successive spatial derivative is considerably larger than the 
previous and the fourth derivative is represented the least well, both with the worst error 
and being only piece-wise continuous. Because we are solving evolutionary problems 
on a moving grid both of these issues add to the stiffness of the ODE system. To avoid 
computing with the fourth derivative directly, we now discuss an integrated form of 
our problem.

2.7 Conservative collocation

Consider the equation

/( t ,  X, Ut} It, Ux, UXxi UXxx) — ^xxx))x’ (2.7-1)

- fdt 7/ Udx
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2 .7  C o n s e r v a t iv e  c o l l o c a t io n

This satisfies the generalized conservation property

J ^ f d x  = g\x=b-  g\x=a- (2.7.2)

Any problem of the form

Ut = A/”(t, X, Ut , U, 't/a;, Uxxi Uxxx 5 Uxxxoc)

may be written (perhaps awkwardly) in the form (2.7.1). To enforce property (2.7.2) 
and to eliminate any dependence on Uxxxx in our system or ODEs we now construct a 
cell-averaged approach to (2.7.1).

We begin by approximating /  by its Lagrange interpolant as defined in (2.4.3),

3

Fi =  E M -  (2.7.3)
j = 0

where the canonical points are the four Gauss points on the unit interval

1 \/525T 70730  1 \/525 -  70^30 „ ,
Pl = 2 ----------- 7 0 -------- ’ P2 = 2 ----------- 70-------- ’ p3= p1’ P4 = 1 -  P2 (2.7.4)

and fij = f{x i  +  Hipj). Integrating equation (2.7.1) between the five Lobatto points 
on the unit interval,

_ 1 y/21 . 1 . 1  y/21 .  ,
Pi =  0> P2 =  2  j^p P3 =  2 ’ P4 = 2  +  "1 4 ”’ p5 =  ’ (2.7.5)

using the approximation to /  given by (2.7.3) gives a system in each interval Ii ,

AF; =  B G i/fli. (2.7.6)

The matrix A  is defined by

fPj+i .
Ajk — J Lkdt j, /c — 1 , 2 ,3,4

Jpj

and the matrix B  has the form 

(

Bjk — <

1 if j  = k,
-1  if k = j  +  1, for j  =  1, ...,4 and fc =  1,..., 5, 

0 else.

Finally, the vectors F i , G{ satisfy

(F  j)j =  F{(xi +  HiPj), j  = 1,2,3,4,
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2 .7  C o n s e r v a t iv e  c o l l o c a t io n

(Gi)j — Gi(x{ +  HiPj), j  — 1,2,3,4,5 .

Note that by direct construction (enforcement of cell-averaging), we have that

[  Fi =  G(Xi+1) - G ( X i)
Jh

and hence the following lemma.

L em m a 2.7.1. The collocation scheme (2.7.6) enforces discrete conservation.

Proof.

j r Fdx = ^ 2 ji Fidx =  £  G(Xi+1) -  G(Xi) =  G(XN+1) -  G(X ,).

□

To generate an approximation to u, we again approximate u by its Hermite interpolant 
U as defined in (2.5.1) and choose the coefficients Ui(t)yUX)i(t),UXXti(t),Uxxxj(t) such 
that in each interval

HiFi  =  WGi,

where the differentiation matrix W  = A~l B.  This again gives four equations in each 
cell, the same as the Gaussian method previously described. We now have a formu­
lation which does not rely on Uxxxx, however, if naively coded, it requires 9 function 
evaluations per interval, /  is evaluated at the 4 Gauss points and g at the 5 Lobatto 
points as opposed to 4 for the Gaussian case. Because the two extreme Lobatto points, 
pi =  0 and ps = 1 coincide at successive intervals an efficient implementation can be 
reduced to 8N  + 1 function evaluations, but this is still twice that of the Gaussian 
formulation.

2.7 .1  C onservation  on  adap tive grids

Unfortunately, on a moving grid conservation is not ideal. To see this, consider the 
conservation of an arbitrary discrete quantity M o n a  moving grid. Denoting H{M{ as 
the representation of integral of M  over Ii then

d_
dt J  M d x =

However if M  is equidistributed in the sense of (2.2.1) then

[TMdxHiMi = id-—  vi,Vt
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and thus we have discrete conservation if M  is the conserved quanitity g. However, if 
M  is not exactly equidistributed, or the monitor function M  is not conserved, then

j ty ,  H‘Mi = E
i i

and due to the magnitude of Htli (true for blow-up, but not always the case) small rel­
ative errors can lead to significant pollution of the conserved quantity due to numerical 
error. To overcome this when the conserved quantity is not a suitable monitor function 
we shall now consider a static regridding algorithm which is loosely based on preserving 
the scale-invariance (2.2.6). This algorithm is described pictorially in Figure 2.3.

Algorithm: Scale-invariant static regridding

1) Define the parameters
M(U)  - the monitor for regridding, eg. M  =  ||f/||oo 
Ao - the initial regridding parameter, eg. M { u q )
Ai - the regridding factor, eg. 2
I s -  the initial interval of support, eg /

2) Integrate the PDE on the fixed grid
3) If M(U)  > AiAo then

a) A0 = M
b) I, = M ^ aI,
c) Subdivide I s such that are at least N  nodes in the 

new interval of support I s .
d) Evaluate the solution on the new grid.
e) Goto 2.

While u(0,t) < solution is computed 

on nodes x. Then nodes * are added

Figure 2.3: Sketch of the static regridding procedure

This algorithm is only useful for the case of localization at a known point. As a 
singularity develops more nodes are added according to the natural scaling of the 
problem (as a and (3 are taken from (2.2.6)), so that the solution is resolved at all times.
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2 .8  C o n s e r v a t iv e  c o l l o c a t io n

Because of the need to restart the ODE solver this algorithm is considerably less efficient 
than the MMPDE approach, however it has better conservation properties. Note that 
conservation is exact under this algorithm only provided that we never remove nodes. 
This is due to the fact that when we add nodes we never interpolate but rather simply 
evaluate the continuous collocation polynomial at additional points. But, should we 
remove nodes there is no guarantee that the conserved quantity will remain unchanged.

2 .7 .2  Error estim a tes

Despite the non-standard fomulation, the classical theory presented in Theorem 2.4.1 
can still be used for error bounds for the conservative collocation scheme when exam­
ined in the proper way. We can find the local truncation error for our equations by 
considering the problem

9x =  f

as an equation for g. This approach extends the error estimate derived in Huang and 
Russell (1996) which is valid only at the Gauss points to a spatially global one.

T heorem  2.7.2. The conservative collocation scheme (2.7.6) is globally fourth-order 
accurate with superconvergence of order five at the Gauss points.

Proof. We can use the results of Theorem 2.4.1 to estimate Gx — g where there are 
k = 5 Lobatto points, with precision p = 2k — 2 =  8 to solve this first-order problem 
(m =  1). The error in the Lagrange approximation to /  is given by equation (2.4.4) 
and thus

(Gx - F )  = (Gx - g x) - ( F - f )
(6)  ̂ (5) ^

(2-7-7)
j = i  * j = i

for all points < x < X{, and s =  (x — Xi)/Hi. □

Here we have used the fact that the exact solution satisfies gx =  / .  For this method 
there is superconvergence at the Gauss points {pi}  at which this equation is enforced. 
For the standard Gaussian form we have error estimates for u — U specifically whereas 
for the conservative case we only have estimates for g — G which, in the general case, 
may not easily give information about u — U. Instead, however we have eliminated all 
dependence on Uxxxx in the ODEs and that we have enforced discrete conservation.

In addition to the standard local error estimates we have also satisfied the global 
geometric features of scale-invariance and conservation. We have chosen to enforce 
these additional conditions on the mesh and the discretization because they accurately 
describe the essential governing geometry of the problem.
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2.8 Examples

In this section we display the efficiency, accuracy and robustness of the moving colloca­
tion method by testing it on a variety of examples. These examples are mostly singular 
parabolic problems in keeping with those studied in the remainder of this thesis. How­
ever, the code is much more generally applicable and additional examples of different 
types of problems may be found in Williams et al. (2003). Unless otherwise indicated 
the following parameters have been used throughout this section

N  = 25, atol =  .01, rtol =  .0001, r  =  .001.

2.8 .1  F in ite  tim e  blow -up

In Chapter 3 we will analyze the following equation; introduced in Chapter 1 and given 
by

Ut — Hxxxx "t" |^|^» (2.8.1)

u(x, 0) == wo(a;) € C(R) such that lim uq(x) =  0, (2.8.2)
| x | —>oo

and show that it possesses a blow-up self-similar solution of the form

u(x, t) = (T — t)_1/f e ) 5 V = x /{T  -  t)1/4,

where T  is the finite blow-up time. In this section we are interested in studying how 
the use of conservative discretization affects the integration of this equation. Note that 
there is no natural quantity which is inherently conserved in this problem. However, 
the ODE problem is less stiff due to the lack of dependence on uxxxx. Equation (2.8.1) 
is invariant under the scaling

£ i-» At, x  A1/4# and u A_1u, A > 0,

hence from (2.2.7) we use the asymptotically scale-invariant monitor function

M  — 1 +  |u|.

The floor factor 1 makes the method easier to start as when the solution is small the 
grid is almost uniform but, as blow-up approaches it is incidental to the self-similar 
structure as it is vanishingly small in the rescaled variables. The initial data is given 
by

uq{x ) =  e~x2.
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2 .8  E x a m p l e s

Symmetry at the origin is enforced by requiring

ux(0,t) = 0 and ((),£) =  0.

Because of the single-point blow-up the far field boundary conditions are unimportant. 
We truncate the semi-infinite interval at L = 8 and impose

u(L,t) = 0 and ux(L,t) =  0.

In Figure 2.4 we present a typical set of solution profiles and the associated mesh

Solution profiles for ut = -u yyY> + |u|u

1°10

.510

.010
0.2 0.4 0.8 1.20.6

X

Mesh given that M = 1 + |u|
2.5

0.5

x

Figure 2.4: Solution and mesh for equation (2.8.1)

while in Table 2.1 we compare the properties of the standard Gaussian and conser­
vative discretizations. These results clearly show that the conservation structure is 
advantageous for the integration of this problem. As the singularity is approached 
the non-conservative equations become considerably more stiff with the ODE solver 
failing when the L°°-norm is two orders of magnitude less than for the conservative 
discretization.

2.8.2 F in ite  tim e blow-up w ith  conservation

To test the role of the conservative discretization, we now consider an equation related 
to a simplified model for the evolution of fronts in solidification theory, (Novick-Cohen
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2 .8  E x a m p l e s

u(0,t) Steps Fen. Jac.

Conservative
Discretization

3.11013 2505 7527 2922
1012 2311 6752 2535
1010 1412 3244 811
108 1175 2798 772
106 927 2367 724

Gaussian
Discretization

3.71011 8737 33162 16026
1010 3265 11272 1508
108 1730 1265 711
106 534 946 299

Table 2.1: Comparison of the computational complexity for (2.8.1).

(2.8.3)

d_
dt

1992)
Ut —— ( Uxx “I” ^  )xx'

Notice that for this equation

J  u(x, t)dx =  — J (uxx +  uz)xxdx =  0 

for solutions with sufficient decay as |x| —>• oo. We again take intitial data

uo(:r) =  e- *2, 

but now the monitor function takes the form

M  = 1 +  Id 3

to preserve the scaling invariance of the combined system. However, to compare the 
conservation properties of the method we will also test

M  = 10-4 +  M

which, for u > 0 and M  equidistributed should preserve u very well, because we are 
using MMPDE6 we expect at worst an 0(r )  error in the equidistribution of M.  Lastly, 
we will also test the static regridding algorithm. Because for this problem the scaling 
invariance is

t Xt, A1/4#, u i-> A-1/4u, A > 0,

whenever the u(0, t) doubles in magnitude we will halve a proportion of the cells closest 
to the origin.

Again we see from Table 2.2 that the conservative discretization is more efficient and 
can integrate (marginally) further into the blow-up regime. While in the L°° sense it

44



2 .8  E x a m p l e s

u(0, t) Steps Fen. Jac.

Conservative
Discretization

2517 1248 2234 184
1000 1116 1998 167
500 1008 1817 156
100 811 1470 137
50 681 1229 119

Gaussian
Discretization

2438 1731 3393 571
1000 1503 3171 496
500 1393 2967 487
100 1159 2555 455
50 711 1312 130

Table 2.2: Comparison of the computational complexity for (2.8.3).

may appear that we have not been able to compute solutions to this equation nearly 
as well as for (2.8.1), it should be noted that for (2.8.3) the self-similar profiles are of 
the form

u(x , t) = (T -  t)_1/4/(y), where y = x / (T  -  t)1/4, 

and thus we are able to integrate until (T — t) ~  10-12 in both cases. In Figure 2.5

Relative error in J u dx
10'

10
M = 1e-4  + u, Gaussian

.-210' M = 1 + u3, Gaussian

M = 1 e-4  + u, 
Conservative

M = 1e-4  + u , Conservative

10'
Static regridding

-1010'

-1210' 0 5 10 15 20 25
time, t =  -log(T-t)

Figure 2.5: Relative variation of f  u over time for (2.8.3)

we show the conservation of f  udx  over time. Clearly, the static regridding algorithm 
does the best and as expected using the conserved quantity as the monitor function
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does better than the scale-invariant monitor function. Also, we see that the conser­
vative discretization does a better job than the generic Gaussian case. In the case of 
Af =  |u| +  10-4, the final grids are completely insufficient to resolve the solution local­
ized near the origin, hence the eventual order one error in the mass. Qualitatively, the 
conservative solution is no better-it has simply managed to preserve the mass prop­
erly despite not representing the solution properly as can be seen in Figure 2.6. The 
continuous polynomial representation afforded by our method means that the solution 
is much smoother than those with M  =  \u\ + 10-4 seen in Figure 2.6, the piece-wise 
linear representation has been displayed to show more easily the lack of nodes in the 
blow-up region with this sub-optimal monitor function. Lastly we consider the time

Comparison of rescaled final time profiles

1.2
G aussian discretization, M = u

Conservative discretization, M = u

0.8

Self-similar profile and G aussian and 
conservative discretizations with 
M = u3® 0.4

0.2

150 5 10
y = x/(T-t)1/4

Figure 2.6: Comparison of final profiles for (2.8.3)

required to perform the calculations discussed in this subsection. In Figure 2.7 we 
present the timing for the four different moving mesh approximations to (2.8.3). In 
this figure we see that it takes the simpler monitor function, |it|, less time to generate 
an equidistributed mesh and that initially the Gaussian method requires less time. But, 
as the solution becomes more difficult to compute, despite the fact that each function 
evaluation requires twice as much work, the conservative discretization soon becomes 
quicker. Because of multiple restarts, the static re-gridding computation took hours 
rather than seconds.
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Timing for solution of ut = - ( u ^  + u3)^

Conservative discretization, M = |u |3
,310'

G aussian discretization, 
M = |u |3 _ _ _ _ _ _ _

,210*

Conservative discretization, 
M = |u|

1
10 '

G aussian discretization, 
M = |u|

G eneration of initial mesh

0 1 2 3 4 5 6
cpu time in seconds

Figure 2.7: Computational time.

2.8.3 Quasilinear fin ite-tim e blow-up

A simple quasilinear extension of the semilinear equations considered in Chapter 3 is 
the PDE,

Ut = u(—uxxxx +  it2), (2.8.4)

which is only parabolic for u > 0. We are interested in the numerical investigation of 
this equation to test whether or not our method will preserve positivity and whether or 
not the conservative discretization is at all helpful in this case when there is clearly no 
inherent conservation property. We will test two possible conservative representations 
for this equation

Ut U Ux Uxxx =  (’HUxxx)x  (2.8.5)

and
^  -  u 2 =  — («xxx)x  • (2 .8 .6 )u

To ensure parabolicity in the face of numerical error, i.e. preserve u > 0, there are two 
possible regularizations, first we could consider initial data of the form

uo(:r) =  e~x2 +  a2

or replace the quasilinear term u by |u| + e, where e > 0 (this approach is effective for 
the nonlinear diffusion equation (Budd, Piggott and Williams 2003)). We have tested

4 7
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both approaches and found that the performance of our algorithm depends highly on 
the value of a  and less so on e. In Table 2.3 we compare the results of the three 
discretizations taking a = 10-3 and e =  10-6 . Here we see that the conservative 
discretizations can integrate further into the singularity but require more steps, more­
over equation (2.8.5) performs better than (2.8.6). This is not surprising due to the 
term u t /u . For a = 1 the results in Table (2.4) tell a different story. Now both the

u(0, t) Steps Fen. Jac.
Conservative
Discretization
(u i Lxxx)  x

3.9106 1852 3536 415
106 1788 3394 402
104 1699 3156 385
102 1406 2443 250

Conservative
Discretization
{ u Xx x ) x

2.7106 1891 3959 581
106 1856 3883 575
104 1771 3654 558
102 1525 3378 536

Gaussian
Discretization

9.6105 1622 3017 307
104 1489 2732 286
102 1014 1915 143

Table 2.3: Comparison of the computational complexity for (2.8.4) with uo(x) =  
2e~x2 +  lO"4.

conservative discretizations beat the standard Gaussian one and now the rather unnat­
ural looking formulation (2.8.6) is the best, both in how far the numerical method can 
integrate and in the required number of steps taken by the ODE solver.

u(0,t) Steps Fen. Jac.
Conservative
Discretization
{ uUXXx ) x

2.59106 875 1859 293
106 832 1766 285
104 667 1455 264
102 336 626 55

Conservative
Discretization
( U x x x ) x

1.3107 744 1548 156
106 687 1357 141
104 554 1081 118
102 310 550 37

Gaussian
Discretization

2.4106 951 1985 309
106 888 1871 301
104 729 1543 282
102 359 668 58

Table 2.4: Comparison of the computational complexity for (2.8.4) with u q ( x ) =  

2e~x2 +  1.
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In all cases — (minw)/(maxu) e.

2.9 Conclusions

In this Chapter we have discussed the implementation of a high-resolution collocation 
method to integrate fourth-order evolutionary equations on adaptive grids. By carefully 
choosing the monitor functions we have been able to admit scale-invariant solutions 
such as are often seen as attractors in the long-time behaviour of our model problems. 
Also, by using a cell-averaged discretization we have been able to satisfy a general 
discrete conservation property and also reduce stiffness in the associated ODE problem. 
However, it is clear that each problem must be considered carefully to determine the 
appropriate adaptive strategy, monitor function and discretization.
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Appendix: Im plem entation

To solve the problems under consideration in this thesis an implementation of the 
strategy described above has been made in MatLab. The time integration arising 
from the method of lines semi-discretization is done using DDASSL (Brenan et al. 
1996) called through a MEX interface. DDASSL is a well known code for solving stiff 
differential algebraic equations of the form

F(^y,y') = 0

using backward differentiation formulae to approximate the first derivative term. The 
resulting method is efficient from both user- and run-time standpoints. There are three 
user editable routines, two of which we include here to highlight the advantages of this 
method when solving numerous problems.

File params. m

N = 20;
Tau = le-4; 
rtol = le-5; 
atol = le-5; 
m = 3;

File d river.m

fu n c tio n  so l = d r iv e r ( x ,x t ,u , ux,uxx, uxxx,uxxxx u t , t ,  FUNC);
% The pde i s  of the  form f  = g_x.
p = 1;
sw itch FUNC 

case 1 
7. The RHS of the  pde, f

so l = u t -  u .*abs(u )."p ; 
case 2 

7, The LHS of the  pde, g 
so l = -uxxx; 

case 3 
7. The i n i t i a l  da ta

v = 5*( .2+exp(-.5*x/2)) ; 
ders = ndiff(x,v,3);
sol = [v ders(:,l) ders(:,2) ders(:,3)];

7# number of nodes 
7* re la x a tio n  time 
7« R elative  to le ran ce  fo r  DDASSL 
7. Absolute to le ran ce  fo r  DDASSL
7. Number of neighbouring nodes to  smooth the monitor over
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case 4
'/, The initial data for the time derivs. 

v = 5*(.2+exp(-.5*x.~2)); 
ders = ndiff(x,v,4); 
v4 = ders(:,4); 
vt = -(v4-abs(v) /'(p+1)); 
ders = ndiff(x,vt,4);
sol = [vt ders(:,l) ders(:,2) ders(:,3)]; 

case 5
'/, The physical left BCs. Please use local conditions as a banded 
7# Jacobian has been assumed!

sol = [ux(l); uxxx(l)]; 
case 6

7. The physical right BCs
sol = [ux(end); uxx(end)]; 

case 7
The monitor function at t = 0. 

sol = le-4+abs(u)(p); 
case 8

7. The monitor function for t > 0. 
sol = le-4+abs(u)/ (p); 

case 9 
7, The mesh BCs.

sol = [x(l); x(end) - 8];
end;

The third user-editable file defout.m defines the output and stopping criterion and is 
not crucial to using the code. For more details or to download the code see 
http://www.bath.ac.uk/"mapjfw/work/MC4.
With this interface two completely different PDEs with different initial and boundary 
data can be integrated using different monitor functions with having to modify at most 
17 short lines of MatLab code.
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Chapter 3

Blow-up in higher-order 
semilinear parabolic equations

3.1 Introduction

In this Chapter we show that the higher-order generalizations of the second-order model
(1.1.2), the extended Frank-Kamenetskii equation,

ut =  (—l)m+1 D̂ .mu +  eu, x  G R, t  > 0 (Dx = d/dx),  (3.1.1)

and (1.3.1)
U t = ( -1  )m+1Dlmu +  Mp- y  x £ R ,  t  > 0, (3.1.2)

have exact, self-similar blow-up solutions and hence their evolution is somewhat sim­
pler than in the case m = 1, though, of course, for m > 1 the problem of rigorous
justification of the results becomes much more delicate. Fundamentally, we would like 
to understand the importance of the semilinear structure in these equations, (3.1.1) 
and (3.1.2), and its role in self-similarity. Additionally, we consider (1.1.1) in greater 
detail, constructing a countable spectrum of non-similarity blow-up profiles.

In Section 3.2 we introduce the relevant mathematical definitions, formulation of simi­
larity variables and rescaled equations. In Section 3.3 we present the properties of the 
underlying linearized operator which governs the “dynamics” of both equations (3.1.1) 
and (3.1.2) near certain blow-up solutions.

In Section 3.4 we consider an extension of the linearized problem which makes clear 
the structure of the nonlinear spectrum. In particular, we analyze bifurcation points 
associated with a linearized operator and present an argument for the existence of self­
similar solutions. This local argument is strengthened with numerical and asymptotic 
evidence. Section 3.5 is devoted to the asymptotic behaviour of solutions close to 
bifurcation points.
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Lastly, in Sections 3.6 and 3.7 we construct the blow-up profiles asymptotically and 
compare them with numerical solutions of both the ODE for the self-similar profile 
and rescaled profiles from simulations of the full PDEs. Here we use the methods 
constructed in Chapter 2 to give numerical approximations to the solutions.

This Chapter is mainly devoted to the study of self-similar blow-up for higher-order 
semilinear parabolic equations, though we discuss some related centre manifold struc­
tures. Countable spectra of other blow-up patterns which are approximately self-similar 
and are constructed by matching of different asymptotic regions are studied in Section 
3.8.3, see also Galaktionov (2001).

3.2 Finite tim e blow-up solutions and similarity variables

3.2 .1  S im ilarity  variables and rescaled  P D E s

Because of their semilinear structure, the PDEs (3.1.1) and (3.1.2) have similar scaling 
symmetries, so that (3.1.2) is invariant with respect to the scaling transformation

x i-> A1/2mr, u A f o r  all A > 0,

while (3.1.1) is invariant under the group of transformations

t !->■ \ t ,  x  i—̂ \ ll2rnx, u i—> u — In A.

As usual, we assume that the solution u(r, t) blows up at finite time t =  T  in the sense 
of (1.2.1) and the blow-up set B[uo], defined by (1.3.8), contains the origin. Motivated 
by this assumption and looking for invariants of the above groups of transformations, 
we introduce the following self-similar spatial variable:

y =  x / ( T  -  t )1/2m : R  R, t <E [0, T),

and the new time variable

r  =  — ln(T — t) : (0, T)  -» ( to , o o )  with to =  — InT.

Then for the polynomial nonlinearity we define a new dependent variable (the rescaled 
solution) 6(y,r)  by

u{x, t) =  (T — £)-1/(p_1)% , t ) ,  (3.2.1)

and for the exponential nonlinearity by

u(x, t) =  — ln(T — t) +  9(y, t ) .  (3.2.2)
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Rescaling (3.1.2) in terms of the new variables by substituting (3.2.1), we obtain the 
following PDE for the rescaled solution 9:

0T =  CO +  Gp(9), i / GR,  r  > to, where Gp(0) — \9\p~l0 — 9/(p — 1), (3.2.3)

and the linear differential operator C is given by

£  =  (~ l )m+1Dlm -  / -£ > „ . (3.2.4)
£TYb

Similarly, rescaling (3.1.1) leads to the PDE

0T = CO + Ge(0), y e  R, r  > ro, where Ge(9) =  ee -  1. (3.2.5)

It is important that unlike the well understood case m =  1, for any m > 1 the operators 
on the right-hand sides are not potential and equations (3.2.3) and (3.2.5) do not possess 
Lyapunov functions and hence the classical gradient dynamical systems stability theory 
is not applicable.

3 .2 .2  Prelim inaries: local and asy m p to tic  prop erties o f self-sim ilar  
so lu tion s

Exactly (not just asymptotically) self-similar solutions are those which are invariant 
under the group of transformations, i.e., correspond to suitable stationary solutions 
9(y) of which are independent of the rescaled time r. Any exact self-similar solution 
to (3.1.2) takes the form

us (x,i) =  ( T - t ) - 1/(p“ 1>/(y ), (3-2.6)

where f(y)  satisfies the ODE

£ f  +  Gp(f)  =  0 in R. (3.2.7)

It is natural to impose the symmetry conditions at the origin

/'(0 ) =  /'"(0) =  ... =  / ^ " ^ ( O )  =  0. (3.2.8)

Then the existence of a stable (generic) self-similar solution with a suitable similarity
profile /  in (3.2.6) means that for a sufficiently wide subset of global symmetric non-
stationary solutions to (3.2.3) there holds

Q(y,r ) f(y)  ^  t —>oo
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in a suitable metric (or even pointwise). For such a stable similarity solution (3.2.6) 
to have non-vanishing trace in the limit t —» T~  and to rule out constant solutions, 
we need to impose a special decay condition on f(y)  as y —> oo. In particular, we will 
demand that there exists a finite limit u(x,t) —> u(x,T~)  as t —¥ T~  for arbitrarily 
small fixed |z| > 0. This corresponds to looking for similarity solutions which are 
compatible with the Cauchy problem on for (3.1.1) or (3.1.2).

A sym ptotic behaviour at infinity

Because we are interested in the Cauchy problem for u with suitable decay at infinity, 
we need to understand the possible asymptotics of small solutions to (3.2.7) satisfying 
f(y)  —> 0 as y —> +oo. We will define as admissible similarity profiles those which 
tend to zero as y -* oo. The topology of such profiles is charaterized by the number of 
decaying solutions to the linearization of (3.2.7) about /  =  0,

£ f - f / ( p ~  1) =  0, y >  0. (3.2.9)

In order to determine the balance between the autonomous 2m—th order term and the
non-autonomous growing coefficient of j//2m, we set z = yv with v = 2m/(2m — 1)
to reduce (3.2.9) to

/<2m> -  O i / '  -  0 2 Z- 1 /  +  B (z)/ =  0, (3.2.10)

where a\ =  (—l)m+1v 1~2rn/2m, a2 =  (—l )m+1i'~2m/(p — 1). Here

2m—1
B (z)/ =  £  7J^ 2"7°')

3=1

is a linear operator with bounded and decaying coefficients as 2  —>• 0 0 , where the first 
coefficient of the derivative f  is of order 0 ( z 1~2m). By the perturbation theory of 
higher-order linear ODEs (see Chapters 3-5 in Coddington and Levinson (1955)), we 
have that the leading terms of exponentially decaying solutions are described by the 
operator in (3.2.10) with constant coefficients,

/ (2m) -  a i f  = 0. (3.2.11)

Setting f  = epz, p ^  0, gives the characteristic equation p2m — a\p — 0, whence

p2™-1 = a i  = ( - l ) m+1/2 mu2171- 1 = plm~l ( - l )m+1, where p0 > 0. (3.2.12)

For any m > 1, there exist 2m — 1 roots {po,pi, ...,P2m- 2 } given by

Pt =  />oei(2fc+1),r/(2ro‘ 1), m =  2Z; pit =  p0ei2' i:/<2m“ 1), m =  2I +  l, (3.2.13)
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where m — 1 roots have negative real parts (Rep*, < 0). These correspond to I < k < 
31 — 2 for even m = 21 and I +  1 < k < 31 for odd m — 21 +  1. The linearized equation 
(3.2.9) has an (m — 1)-dimensional subspace of exponentially decaying solutions as 
y -» oo. For the second-order case m =  1, it is empty.

On the other hand, equation (3.2.10) admits a solution with algebraic decay (rather 
than exponential) as z —> oo described by the first-order operator

- a i f  -  a2z - l f  =  0 = >  f(z)  = c z-(2™-i)/(p-i) .

The existence of solutions with such a decay for the perturbed equation (3.2.10) is 
established by a standard expansion analysis by calculating solutions via a Kummer- 
type series (generalized confluent hypergeometric equations) converging uniformly for 
z^> 1. For the linearized equation (3.2.9) the leading order behaviour is thus algebraic,

f(y)  =  C\y\2ml{jp~l\ \  +  o(l)) as y —»■ oo, with C ^ O .  (3.2.14)

In summary, these results yield that equation (3.2.9) admits an

m-dimensional subset of admissible solutions as y —> oo. (3.2.15)

Subsequently, for the nonlinear equation (3.2.7) we are going to look for profiles f(y)  
having the algebraic decay given by (3.2.14). Then for such similarity solutions (3.2.6) 
the limit-time profile is bounded for any x  ^  0 and is given by

us (x,T~) = C\x \-2m^ p~l). (3.2.16)

Asympotic and numerical computations suggest that the solutions of (3.2.7) which sat­
isfy (3.2.14) are isolated and that the constant C plays a role of a nonlinear eigenvalue. 
That is we expect there to be only a discrete set of possible solutions, which will be seen
to be a feature of the blow-up problems in this thesis, but not of the decay problems.

Likewise for (3.1.1), the self-similar solution is given by

us(x, t) = -  In(T -  t) +  f(y),  (3.2.17)

where the function f(y)  satisfies the ODE

C f  + Ge{f) = 0 (3.2.18)

with the symmetry conditions (3.2.8). We look for similarity profiles f{y) —► —oo
“slowly” as y —> oo. The limit as /  —> — oo in Ge( f ) =  —1 so we first consider the
“linearized” equation

C f  = 1. (3.2.19)
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Setting f ( y ) =  — 2mIn?/ +  g{y) for y > 0, we obtain

Cg =  1 + 2 m C ln y  =  2 m (- l)m+1^ mIn?/ =  0(y~2m) as y +oo. (3.2.20)

As above, the homogeneous equation Cg = 0 has an (m — 1)-dimensional subspace of 
exponentially decaying solutions. The inhomogeneous equation (3.2.20) has solutions 
g(y) = C +  o(l) as y —► +oo, so that (3.2.15) holds for equation (3.2.19) admitting an 
m-dimensional subset of solutions satisfying

f(y)  = —2m In \y\ +  C -1- o(l) as y -» oo. (3.2.21)

In this case the limit-time profile is given by

us(x ,T~)  =  —2m In |r | +  C,

where again the constant C G R  is a certain isolated nonlinear eigenvalue which can 
be approximated asymptotically, see Section 3.5.

Obviously, the ODEs (3.2.7) and (3.2.18) admit constant solutions /* e satisfying

<?,(/;) =  o, / ;  =  0> and G.(0) =  0, /„* = 0,

respectively (the trivial solution /  =  0 also solves (3.2.7) but plays no part in blow-up). 
The linearization of the operator C + Gp about (3̂  = 1 /  (p — 1)^1 /  (p — 1)) and C +  Ge 
about 0 coincide and are equal to C +  / ,  where I  is the identity operator. The spectral 
properties of this asymmetric operator in a weighted L2-space play an important part 
in our analysis and are necessary to describe the perturbation of the solutions from 
the constant state. They are essential to describe the long time dynamics of both of 
the PDEs (3.2.3) and (3.2.5) and so we briefly review them before moving on to the 
asymptotic analysis.

3.3 The spectral properties of C and its adjoint

In this Section we study the spectral properties of the linear differential operator C 
and its adjoint £* given by

C- = {- i r ^ + ± y ±  + ± I .  (3.3.1)

Both operators are not symmetric and do not admit a self-adjoint extension. To deter­
mine the nature of the stability of the constant solution and also to apply the Fredholm 
alternative to compute asymptotic solutions of the ODEs, it is necessary to determine 
the spectrum and corresponding eigenfunctions of both C and C*. We present some
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results from Egorov et al. (2002) and Galaktionov (2001) which describe these.

3.3.1 T h e fundam ental so lu tion

We start by determining the spectrum and the eigenfunctions of the adjoint operator
C*. To first find the null eigenfunction, we begin with the fundamental solution of the
corresponding linear 2mth-order parabolic operator. Consider the linear equation

ut = ( -1  )m+1Dlmu in R  x R+. (3.3.2)

The fundamental solution of (3.3.2) has the standard self-similar form

b(x, t) = t~xl2rnF{y), y = x / t ^ 2m. (3.3.3)

Substituting b(x, t ) into (3.3.2) yields that the radially symmetric profile F(y) is the 
unique even square integrable solution of the linear ODE

C*F = 0 i n R ,  (3.3.4)

and is the null eigenfunction of C*. Taking a Fourier transform leads to

roo
F(y) = a  e~s m cos(sy)ds. (3.3.5)

Jo

The coefficient a  is chosen to normalize f  F  =  1, so that

a = ( L T  e s2m cos (sy) ds dy 

The rescaled kernel F(y) then satisfies a standard pointwise estimate (Eidelman 1969)

\F{y)\ < d\e~d2̂ v i n R ,  where v =  ^  -, (3.3.6)
2m — 1

where d\ and c?2 are positive constants. Applying the Fourier transform to equation
(3.3.2) and performing the rescaling, we have

H K ;  *))(£) = e - ? mt and F(w) = T{F(-))(u>) = e""2™. (3.3.7)
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3.3 .2  T h e d iscrete  real sp ectru m  and eigen fu n ction s o f th e  adjoint 
operator C*

We describe the spectrum cr(C*) of the adjoint operator in the weighted space L2*(R) 
with the exponential weight

P, (y)  =  ea W  > 0  in R  (3.3.8)

where a < 2d,2 is a sufficiently small positive constant. Denoting by (',•)* and || • ||* 
the corresponding inner product and the induced norm respectively we introduce a 
weighted Hilbert space of functions H 2™(R) with the inner product and the norm

- 2m » 2m
(v,w)+= p * ( y ) ^ D kv{y)Dkw(y)dy,  |M|* = /  p* ( y ) ^ \ D kv(y)\2 dy.

•^R  fc=0 Jfc=0

Then H 2™(R) C L2* (R) C L 2(R), and C* is a bounded linear operator from H 2™(R) 
to L 2*(R). With these definitions, the spectral properties of the operator C are given 
by the following Lemma (Egorov et al. 2002, Galaktionov 2001).

Lem m a 3.3.1. (i) The spectrum of C* (and hence of C) comprises real simple eigen­
values only,

o(C*) =  {Afc =  - k /2 m ,  k = 0,1,2,...}. (3.3.9)

(ii) The eigenfunctions of C*, tpl{y) are given by

r k(y) =  {- ^ - D kF(y), k = 0 ,1 ,2..... (3.3.10)

and form a complete subset in L2(R) and in L2*{R). (Here F  is as defined in (3.3.5).) 
(Hi) The resolvent (£* — A/)-1 : L2*(R) —> L 2*(R) for A ^  cr(£*) is a compact integral 
operator.

Most importantly, the operators C* and C have zero Morse index (no eigenvalues have 
positive real part).

3 .3 .3  T he p o lyn om ia l e igen fu n ction s o f  th e  operator C

We now consider the operator C (3.2.4) in the weighted space L2(R) ((*,*) and || • || 
are the inner product and the norm) with the exponentially decaying weight function

p{y) = i/p * (y )=  e~a^ "  > 0, (3.3.11)

and ascribe to C the domain H 2m(R), which is dense in L2(R). Then C : H 2m(R) -> 
L2{R) is a bounded linear operator, C* is adjoint to C and denoting by (•, •) the inner
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product on L2(R), we have

(Cv,w) = ( v ,C w )  for any v e  w € (3.3.12)

The eigenfunctions of C take a particularly simple polynomial form and are as follows.

Lemma 3.3.2. (i) The eigenfunctions ipk(y) of C are polynomials in y of order k given 
by

1 L-̂ fcJ / -j\mj
4>k(y) =  E  — D2mjyk, k = 0,1,2,..., (3.3.13)

and form a complete subset in L 2(R). (Here |_'J denotes the integer part.)
(ii) C has compact resolvent (C — A/)-1 in L2(R) for A 0  cr(C).

Corollary 3.3.3. With the definition (3.3.10) of the adjoint basis, integrating by parts, 
we have that the orthonormality condition

i'fpk.fpi) = h,i for any k , l > 0 ,  (3.3.14)

holds where 8k,i is the Kronecker delta.

Corollary 3.3.4. I f  m  = 2, then there are coefficients aj (depending on k) such that 
for k = 4r +  2 and k = 4r

r r

ip4r+ 2  = V2^ 2  OLjyAj and ^ 4r =  ^  ajy4j, a 0 ±  0. 
j=0 j =0

For example, if m  =  2 (a case we consider in detail first), then the first four even 
eigenfunctions are

ip0(y) = 1, ip2{y) = y2/ V 2 , ip4(y) =  (y4 +  24)/V24, ip6(y) = y2(720 +  y4)/\/§\,
(3.3.15)

with corresponding eigenvalues 0, —1/2, —1, —3/2.

3.4 Local asym ptotic analysis: invariant subspaces and 
bifurcation points

In this section we use the spectral properties of the linearized operators to determine 
the local stability of the constant solutions of the rescaled PDEs (3.2.3) and (3.2.5). 
We begin with the linearized stability analysis and describe the invariant subspaces.
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3.4.1 Invariant eigenspaces

Since the nonlineaxities under consideration satisfy G'p(pP) =  G'e(0) =  1, let us consider 
solutions of (3.2.3) and (3.2.5) as perturbations of the constant solution of the form

r) = f* + g{y, t )  with \\g\\p <  1 .

In both cases g satisfies a perturbed PDE

gT =  (C + I)g + G(g), where G(g) =  G(f* +  g) -  g, (3.4.1)

with a quadratic nonlinear perturbation G

G(g)  =  c2g2 + c%g3 + ••• 85 p ~̂  o, (3.4.2)

with the coefficients depending on the nonlinearity, C2 =  1/2, C3 =  1/6,... for Ge and 
C2 =  p(p — l ) 1/ ^ -x)/2, c3 =  p(p -  1 )2/(p_1)(p -  2)/6,... for Gp.

In what follows we restrict our attention to symmetric in x  solutions u = u(\x\,t) and 
hence to symmetric in y rescaled solutions 6 = 0(\y\,r) and g =  g{\y\,r). In the space 
Lq p(R) of symmetric functions, it follows from (3.3.9), that C + I  has the spectrum

a(C +  J) =  {Afc =  1 -  k/2m, k = 0,2,4,...}. (3.4.3)

By the completeness of the eigenfunctions (Lemma 3.3.2) we have that

L l tP(R) =  E u(0) © E c(0) 0  E s(0),

where E u(0), E c(0) and E s(0) are the unstable, centre and stable subspaces of C  +  J, 
and for m > 1 are given by

E u( 0) =  Span{^0 , ^ 2 , . . . ,^ 2m_2},

E c( 0) = Span{^2m},

E;S(0 ) =  Span{^2m+2 , ^ 2m+4 ,-} -

In particular the dimension of the unstable subspace is precisely m.

Consider the two one-dimensional unstable subspaces corresponding to the first two 
positive eigenvalues of the operator C + 1  namely

A0 =  1 , ipo(y) = l  and A2 =  1 -  1 /m , ^ 2 (y) = y2/ V 2 . (3.4.4)

As is usual in blow-up problems, the first unstable mode with k =  0  corresponds to the 
instability of blow-up behaviour with respect to perturbations of the blow-up time T.
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In contrast, the second mode with k =  2 describes an actual instability of the constant 
solution which is in the direction of ̂ 2  (y) and is in the space of rescaled solutions having 
the same fixed blow-up time T. (The first odd mode with eigenvalue Ai =  1 — 1/2m  
corresponds to shifts of the blow-up point x  =  0.) From our asymptotic calculations and 
numerical experiments we expect that the orbits which arise from the instability of the 
constant solution in the PDEs (3.2.5) and (3.2.3) when m > 1 are uniformly bounded, 
and stabilize to one of the self-similar solutions. Namely, the first such unstable mode 
with A2 =  1 — 1/m > 0 gives a heteroclinic connection of f* with a non-constant stable 
(generic) similarity profile f\(y).

It is significant that when m  = 1 there is no such unstable mode. In contrast the 
dimension of the unstable subspace is one, corresponding only to the change in the 
blow-up time. The eigenfunction ^ 2  then has eigenvalue zero and the behaviour of the 
perturbations of the constant solution must be studied on the centre manifold. It is 
this which leads to the approximately self-similar behaviour (1.5.3) mentioned in the 
Introduction.

Before performing some formal invariant manifold analysis for higher-order PDEs, note 
that the basic properties of connecting equilibria and transversality of intersections of 
the corresponding stable and unstable manifolds are known for the one-dimensional 
second-order parabolic equations

ut = uxx -I- f i x , u) in (0,1) x R+, u = 0 at x = 0,1 for t > 0,

and were obtained in Henry (1985) and Angenent (1986) using Sturm’s Theorem on 
the non-increase of the number of zeros (intersections) of solutions to linear second- 
order parabolic equations. The general the structure of connecting orbits remains 
an important open problem as the Sturmian property is not true for the fourth and 
higher-order parabolic equations (owing to the lack of a maximum principle in these 
cases).

3 .4 .2  T h e centre subspace

Consider the centre subspace E c{0) in the case of general m. From Lemma 3.2, it 
follows that the null eigenfunction of the operator C is given by ^ 2m so that

A2m =  0  and ip2m{y) =  (y2m +  ( - l ) m(2m)!) /y /(2m)l.  (3.4.5)

We now present a simple calculation showing that the behaviour on the centre manifold 
is semi-stable.

P ro p o sitio n  3.4.1. Let </(-,r) E Hq™(H) exhibit the centre subspace dominance, so
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that
g(-, t ) = a2m{r)'ip2m(') +  w(-, t ) for t  »  1, (3.4.6)

where w €  C L and w (- , t )  =  o(||fl,( ',r ) ||/1,) =  o(\a2 m(T)\) as t  —> oo. Then

a2 m{r) = — —(1 +  o(l)) as r  ->• oo, where 7 0  =  c2 ((^2m)2, </>2m) 7̂  (3.4.7)
10T

It follows from (3.4.7) that 0 2 m(t) cannot change sign in any neighbourhood of r  =  0 0  

meaning a one-sided instability of the centre manifold behaviour.

Proof. We look for a solution of (3.4.1) via a uniformly convergent eigenfunction ex­
pansion

S(’> r ) = J 2  a*(T)<W')- (3.4.8)

Substituting this expression into (3.4.1) and taking the inner product with in L 2(R), 
we arrive at a dynamical system for the expansion coefficients

hk =  Ajtajt +  {G(g),^D, k = 0 ,2 ,.... (3.4.9)

Consider equation for the coefficient U2m with A2m =  0. In view of assumption (3.4.6)
and (3.4.2), assuming that |a2m(r )| 1, it follows that

«2m = (7 0  +  ° ( l ) ) a2m for T »  1. (3.4.10)

Calculating 7 0  by using the adjoint eigenfunction =  DymF/y/2m\  and (3.4.5), we 
obtain that

70 =  c2( - i r +1^ ! ) ( ^ j 5 - 2 ) .  (3.4.11)

Integrating (3.4.10) as a standard ODE, we deduce that any small solution for r  ^  1 
has the asymptotic behaviour (3.4.7). □

It follows from the quadratic “ODE” (3.4.10) that the centre manifold behaviour ex­
hibits a typical semi-stable (“saddle-node”) structure. Because the constant profile (3̂  
is only semi-stable small perturbations in the unstable direction may evolve to self­
similar solutions. Asymptotic support for this conjecture is presented in Section 3.5 
and numerical evidence in 3.6. An evolutionary argument may be found in Budd et al. 
(2002).

In view of the known spectral and sectorial properties of the operators C and C* 
(Egorov et al. 2002), (Galaktionov 2001), we expect that the centre (and stable, see 
Section 3.7) manifold behaviour can be justified by the invariant manifold theory posed 
in interpolation spaces, see Lunardi (1995, Chap. 9).
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3 .4 .3  B ifurcation  po in ts

In this subsection we extend the ODEs (3.2.7) and (3.2.18) for similarity profiles and 
consider the family of ODEs with a parameter /j l >  0

(_ l)m + iD2m^ _  ^ I y + = o for y > 0 with conditions (3.2.8). (3.4.12)

Recall that for single-point blow-up we need to impose an extra condition (of the type
(3.2.14) or (3.2.21) with l/2m  i-» y) on the decay of f (y)  at infinity.

If we take y  =  l/2m  and the appropriate nonlinearity, G = Gp or Ge, then we obtain 
the ODEs (3.2.7) and (3.2.18) for the rescaled self-similar profiles. More generally, 
suitable solutions of (3.4.12) are expected to depend smoothly upon y  «  l/2m  and 
coincide with the self-similar solutions when y  =  1/2m. In either case we define a 
corresponding linearized operator CM by

=  (-1 )m+l Dlm -  txyDy +  /  =  £  +  ( 1 - P  +  l/2 ro )/. (3.4.13)

Changing the independent variable to

y = z /  (2mfi)1/2m, (3.4.14)

we have

1 ■Clt = ( - l ) m+1Dlm - - ^ - z ^ -  + - ^ — I  = C + -^— I. (3.4.15)2m/i M 2 2m dz 2 m/i 2my

Hence C^ : Hq™(FL) -* Lq ^(R) is a bounded linear operator (with a change in the 
coefficient a in the weight function (3.3.11) if necessary). By Lemma 3.3.1 the spectrum 
Cfj, in the space Lq)/}(R) °f radial functions is given by

o{C,n) =  2m//<j =  {1 -  2 I = 0,1,2,...} , (3.4.16)

with eigenfunctions ^ 21 as before, rescaled according to the transformation (3.4.14).

We next compute bifurcation points from the constant solution /*. Since the weight 
function (3.3.11) is exponentially decaying as y -* oo, in general, the inclusion /  G H 2m 
does not imply the boundedness of /  unlike the adjoint case with the increasing weight 
(3.3.8) where H 2™ C C. The nonlinearity G(f )  is not uniformly Lipschitz continuous 
on bounded subsets from H 2m. To overcome this we truncate the nonlinearity in
(3.4.12) by replacing G by Gn satisfying

Gn{f) = G(f )  for | / |  < n, n =  1,2, ...

and Gn( f ) is sufficiently smooth and uniformly Lipschitz continuous in R. For G = Ge
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we need only perform the truncation for f  > n. We have

Gn(/)  —» G ( f ) as n —> oo uniformly on compact subsets.

Replacing the full problem by the truncated one,

( -1  -  n y f '  +  Gn(f) = 0- (3.4.17)

is permissible because we are interested in bounded solutions /  for which the nonlin­
earities Gp(f)  and Ge(f)  have finite range.

P ro p o sitio n  3.4.2. For any m  > 1, the values of p for which the spectrum of CM 
contains zero,

1 — 2pl =  0 pi =  1/2/, 1 = 1 ,2 ,..., (3.4.18)

are bifurcation points for problem (3.4-17).

Proof Using rescaling (3.4.14) and setting /  =  f* + g, equation (3.4.17) takes the form

(C — I)g =  pg +  (1 +  p)Gn(g), where p =  — 1 — 1/2mp. (3.4.19)

Consider the Hammerstein operator (C — I)~l Gn. By Lemma 3.3.2, (C — I )-1 is a 
compact operator in L qp with simple eigenvalues {—1/(1 +  l /m)  < —1, I =  0,1,2,...}. 
By construction, Gn is uniformly Lipschitz continuous, |Gn(<7)| < C\ H- <̂ 2 1̂ | in R, and 
hence Gn : L q p —> Lq p. Therefore, the product (C — I)~l Gn is a compact operator in 
L q p, see e.g. Krasnosel’skii (1964, Chap. 5). Hence, in the nonlinear integral equation 
written as a fixed point problem

g = A(g, it) = »{C -  I )~ lg +  (1 +  p)(C -  / ) - 1G„(g), (3.4.20)

bifurcation from the origin occurs if and only if p coincides with the characteristic values 
of — (simple eigenvalues of C — I ), i.e., at pi =  —1 — l /m  (Krasnosel’skii 1964). 
This yields (3.4.18). □

It is worth mentioning that in passing to the limit n oo, some of the bifurcation 
sub-branches (which are not of physical interest) may disappear, so that we always 
need to check which sub-branches are available for n — oo. On the other hand, it 
is interesting to know for which values of p, lesser or greater than pi , there exist 
non-constant solutions and how many. Since the spectrum of the Frechet derivative 
A'(0 ,pi)

a(A'(0,pi)) =  {(1 +  l /m ) / (  1 -I- k / m ), k = 0,1,2,...} (3.4.21)

always contains 1 (for k = I), the local asymptotic behaviour of bifurcation branches 
for p &  pi is a delicate problem, and often there exist at least two solutions even in the
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cases of analytic nonlinearities, see a general theory in Vainberg and Trenogin (1974). 
Therefore we will need an extra matching analysis to specify the “correct” branches 
which have the required behaviour at infinity and hence correspond to single-point 
blow-up similarity profiles.

It is important to mention another reason for extending the operator (3.2.4) in (3.2.7) 
and (3.2.18) to the operator in (3.4.12) parameterized by y,. Setting y = 0, in the case 
of the polynomial nonlinearity with G = Gp, we recover a well-studied Hamiltonian 
system, see Amick and Toland (1992) and the book by Peletier and Troy (2001), and 
the solutions considered in this case can, in principle, be followed as fi increases to the 
physically important value of 1/2m. Alternatively, by setting /i close to the bifurcation 
points (3.4.18) we can construct asymptotic descriptions of solutions which are local 
perturbations of the constant solution. This calculation is presented in the next section. 
Once we have constructed such solutions we may extend again varying fi to determine 
branches of solutions that extend to the value = 1/2m.

In other words, problem (3.4.12) for fi G [0, l/2m] describes the transition phenomenon 
between Hamiltonian systems for /i = 0 with a potential and leading self-adjoint differ­
ential operators and the singularity formation problem for fi = 1/2m  with no potential 
structure or symmetry properties of the operators involved.

3.4 .4  A  conjecture on  th e  ex isten ce  o f  a set o f self-sim ilar so lu tion s

For any m > 1, the questions of the solvability of problem (3.4.12) with ji =  l/2m  (with 
the appropriate decay of f ( y ) at infinity) and of the number of solutions seem to be 
very hard. It is a multi-dimensional problem of matching of the m-dimensional bundle 
of orbits as y —>• oo (see (3.2.15)) with the m-dimensional bundle at y «  0 depending 
on the parameters { /(O ),/"^ ) , .. .,/(2m-2)(0)} (a multi-dimensional shooting problem 
whose complexity increases dramatically as m  increases). For m =  1, such problems for 
quasilinear equations (1.5.1) are well understood in one dimension (see Samarskii et al. 
(1995) and Budd and Galaktionov (1998)), though a complete proof of the number, 
finite or infinite, of solutions for equations in R  and in H N is still missing.

We now use the above local bifurcation analysis to estimate the number of solutions 
from below. In view of Proposition 3.4.2 there exist branches of solutions 
emanating at n = 1/21 from constant solutions f  = f* for each value ofZ =  1,..., m — 1 
(though we still do not know which bifurcation branches correspond to single point 
blow-up profiles with the required decay at infinity). In particular, if we fix m, then 
a self-similar solution occurs at /im =  I/2m. However, there are m — 1 bifurcation 
points at m = 1/21 > /zm =  l/2m  for / =  1,..., m — 1. The numerical calculations of 
Section 3.6 strongly imply that each such bifurcation leads to a branch of solutions f (y)  
with far-field behaviour of the type (3.2.14) or (3.2.21), which persists until giving 
rise to a self-similar solution. Furthermore, due to the semi-stability properties of the
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centre manifold patterns and the positivity properties of the associated eigenfunctions 
(see further comments in Section 3.5) we expect from the observations of the previous 
section, that there is an additional solution of the ODE when m  is even. This detail 
is also supported by both the asymptotic calculations presented in Section 3.5 and the 
numerical calculations of Section 3.6. Combining these observations, let us state the 
following conjecture suggested by our understanding of the dynamics of the linearized 
operator, asymptotic constructions and a number of numerical experiments.

C on jectu re  3.4.3. For all m  > 1, the problems (3.2.18), and (3.2.7) have at least 
2[m/2j solutions.

Hence we conjecture that the non-existence of exact self-similar blow-up solutions is a 
feature only of the second-order semilineax equations, not of all the semilinear equations 
of the forms (3.1.1) and (3.1.2). This conjecture is indeed a lower bound and is based 
only on the properties of the linear operator presented in this Chapter. Numerical 
calculations imply the existence of more solutions not connected to the bifurcation 
problem (3.4.20), in fact, we expect that there may be up to m(m — 1) solutions.

Further, we note that bifurcations in the limit problem (3.4.12) hold for arbitrary 
^-solutions of (3.4.19), not necessarily satisfying the appropriate decay conditions at 

infinity. There may also exist non-constant solutions which correspond to stabilization 
as y —> oo to another equilibrium,

f (y)  -¥ ftP for G = Gp and f (y)  —> 0 for G =  Ge . (3.4.22)

One can see from (3.2.6) and (3.2.17) that these self-similar solutions create global 
blow-up, where

u(x , t) —> oo as T~  uniformly in R. (3.4.23)

Such behaviour is unavailable for m = 1 as the dimension of the stable manifold about 
f* is (m — 1) as there is no algebraically decaying mode . For m  > 1, no such solutions 
have yet been detected, numerically or otherwise.

3.5 The asym ptotic behaviour of the solutions close to  
the bifurcation points

In this Section we again consider p to be a continuous parameter in (3.4.12) and 
construct an asymptotic description of solutions f (y\  p) (with the appropriate decay at 
infinity, see a precise statement below) for p close to the bifurcation points at pi =  1/2/. 
We set

p =  pi +  aie with 0 < e < l  and of = 1, (3.5.1)
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and look for solutions to the ODEs in R+ for / =  1,2,...

(_ i r + i / ( 2m) _  (w +  aie) y } , + Gp{f) =  0j (3.5.2)

(_l)m +l/ (2n,) _  (w +  ait) y f , + Ge(/) =  0 (3.5.3)

We seek solutions with symmetry conditions (3.2.8) satisfying the decay condition 

f (y)  = Cy~1/(p~Vti(l + o( 1)) or f (y)  =  — y~ l \ny + C + o(l) as y -+ +oo. (3.5.4)

Here ai = ±1 indicates the direction that the branch departs from the constant solution, 
which we shall show depends upon I and m. Because of the polynomial structure of the 
eigenfunctions of the linear operator C (and hence of £ M) the asymptotic calculations 
are similar in spirit for each bifurcation point, y  = 1/21, although for each order 2m 
of the differential operator there are m slightly different types of expansion. As such 
we will illustrate the calculations by first considering the case m =  2 close to arbitrary 
bifurcation points, then close to the particular bifurcation points of interest to fourth 
order PDEs, namely y\  =  1/2 and y 2 = 1/4. Lastly, we construct solutions close to 
the specific bifurcation points y m =  1/2m  for the case of general m  to complement the 
calculations of the centre manifold behaviour described in the previous section and our 
conjecture regarding the existence of self-similar solutions of the ODE when y  =  1/2m.

3.5 .1  T h e case o f  fourth-order ODEs: m  =  2

We shall first consider the two ordinary differential problems, namely finding the slowly 
growing/bounded solutions of the fourth order equations with I =  1,2,...

-  /" "  ~ (ft + vie) y f  +  l / r 1/  -  f l i p  ~  1) =  0, (3.5.5)
-  f ' "  -  (yi + (tie) y f  + ef  -  1 =  0. (3.5.6)

The calculation proceeds by identifying three key regions (see Figure 3.1) in which 
asymptotic solutions of three different scalings of the above equations are derived. The 
three different asymptotic descriptions of the solutions are then matched together. The 
first region is given by considering solutions for which e1y is small and where

, 77 for I odd,
7 =  { 4i (3.5.7)

^  for I even.

Here the solution is near constant and we can express the solution in terms of the 
eigenfunctions of the linear operator C^ in (3.4.13). Next is a mid-range region for 
which £ - 7  < y < el/£ where the appropriately rescaled differential equations reduce 
to an integrable first order equation. Lastly, there is the region y > e1//e where the
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Inner region

Middle region

Far field

,1/ee

Figure 3.1: Sketch of the asymptotic regions.

solution coverges to the far-held behaviour (3.5.4).

The behaviour of f { y ) for

We begin by seeking solutions to (3.5.5) and (3.5.6) which are valid for small £7|y| and 
which are close to the constant solutions of the respective nonlinearities. Consider the 
corresponding equation (3.4.20) for fixed points. Since by (3.4.21), 1 is an eigenvalue of 
A'(0,fli) with the one-dimensional eigenspace Ei, according to the general branching 
theory in (Vainberg and Trenogin 1974, Chap. 5) in this special case we seek solutions 
in the form of the rational series

f(y) = h  +  e*/l(v) +  ... , (3.5.8)

where we denote /o =  /*. The exponent q = 1/n, with an unknown integer n > 1, 
is to be determined from the solvability of the corresponding nonlinear systems on 
the expansion coefficients (the branching equation). Since dim Ei = 1, the branching 
equation is always one-dimensional. The rational power q of the order parameter 
depends on the coefficients of the asymptotic expansion which are different depending 
on whether I is even or odd. Substituting the expansion (3.5.8) into the ODEs, (3.5.2) 
or (3.5.3), leads, at lowest order, to an ODE for fi{y) of the form

A /2iA = - S T  -  J t y f [  + /i = 0.
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Accordingly, the leading order approximation to f  — fo is given by a linear multiple of 
the eigenfunction foi((2/l)llAy), see (3.4.14). From the description of the spectrum of 
the operator C given in Lemma 3.1, using Corollary 3.2, we know that (as m  =  2) the 
transformed operator Ci/2i has null eigenfunctions foi which are polynomials and take 
the form

( / —1)/2  1/2

foi(y) = y2 X ]  aiy4j f ° r  * 0 (k* a n (* ^ 2i(y) = ^2ajy4j f ° r  * e v e n ’
.7=0 j —0

as defined by (3.3.13) after the change of variable y i-> (2/l)1/4y.

The difference between the cases of I even and I odd is important and arises as fol­
lows. In the asymptotic expansion, the higher powers of f i (y)  become forcing terms 
to equations involving the operator C\ / 2ifj- In the case of odd / these terms will al­
ways be polynomials in y4. Because of the separation of terms in the eigenfunctions 
these have no contribution which resonates with the null eigenfunction foi of C. In 
contrast, the powers of f \ (y)  for even I will always have contributions which resonate 
with foi(y). As a consequence, the cases I even and I odd lead to distinctly different 
forms of asymptotic expansion, in particular, q = 1/2 for odd I and q = 1 for even I, In 
other words, for I even and odd the expansion changes its type. Generically, there will 
be m distinct expansions in powers of £*/m, i =  1,2, ...,m, see a general classification 
in Vainberg and Trenogin (1974, Section 12).

A T h e  c a s e  of  m =  2 a n d  I o d d . We take / =  2r + 1 so that the bifurcation point is
at fi = 1/(4r +  2), r =  0,1, . . .  . We express f (y)  as an asymptotic expansion (q =  1/2)

/  =  fo +  +  ef2 +  £ 3^2 / 3  +  ••• • (3.5.9)

This expansion corresponds to the case of the branching equation as described in The­
orem 12.2 in Vainberg and Trenogin (1974) where there exist two solutions either for 
fi < m  or for / />/ / / .  Substituting the expansion (3.5.9) into either equation (3.5.5) or 
(3.5.6), gives a sequence of ODE problems of the form

0 (e 1' 2)-. £ i /2i/ i  =  - / r - ^ ^  +  / i  =  0, (3.5.10)

0{e) : A / 2 1 /2  =  -C2 / 12, (3.5.11)

0 (e3/2) : £ 1/21/3  =  aiyf i  ~  2c2 / i / 2  -  c3/ i , ..., (3.5.12)

where 0 2 , 0 3 ,... are as given in (3.4.2). In each case we seek solutions from H^rn(R). 
In view of the asymptotic properties of the linearized operators in Section 3.2, the 
solutions are assumed to grow slowly (at worst polynomially) as y increases and which 
will ultimately be matched to solutions of the ODEs (3.5.2) and (3.5.3) which have the
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correct behaviour at infinity, (3.5.4).

As observed above, it follows from (3.4.16) that the lowest order equation (3.5.10) can 
be solved in terms of a rescaling of the null eigenfunction ifoi of C 21. Applying in
(3.3.13) the scaling y  (2/(2r + 1))1/4^, it follows that there is a constant a  such that

h ( y )  =  ot f i (y) ,  where f i ( y )  =  ^  ^ D 4j y 4r+2. (3.5.13)

For example f \ { y )  =  oty2 when r =  0 and fi = 1/2. Here the constant a  is unspecified 
at this level of expansion and will be determined by a solvability condition for the 
higher order terms.

Applying the Fredholm alternative to the second equation (3.5.11) has a solution in 
H 2m(R) at order e only if the orthogonality condition.

</x2, « = 0 .  (3-5.14)

holds, where defined in (3.3.10) is the eigenfunction of the adjoint operator
C\j 2 i and y  t-> (2 / l ) 1/ 4y  . If r = 0 and I = 1 then the first three even eigenfunctions 
of C 1 / 2  are given in (3.3.15). Since ^  *s the null eigenfunction of it follows that 
(V>2»^o) =  0 and (^ 2  >^4 ) =  0. Hence (ip^V4) = Wh>/i) =  0 so that the orthogonality
(3.5.14) holds and there exists solutions of equation (3.5.11) at this order. This is the 
lack of resonance condition that we described earlier.

For arbitrary r, by (3.5.13),

f i (y)  = a 2 J 2  ajV43+4-
j = 0

We can construct an exact solution of (3.5.11) in the form of a particular polynomial

2 r

<*2h { y ) =  - o i a 2 bjy4j+4. (3.5.15)
j = - 1

Substituting it into the equation and equating the coefficients gives

&2r =  — Q-2ri &-i =  4! &o and (3.5.16)
2r +  l (  (8 +  47')! \

bi =  2 (7. -  1 (°* +  6' +1(4 +  4*)j) f O T  j  = 2 r ~  h  - , a  ( 3  5 - 1 7 )

Hence, the orthogonality condition (3.5.14) holds. The general solution of (3.5.11) is 
then given by

f 2(y)  = OL2f 2(y) +  a i f i ( y ) ,  (3.5.18)

where a\  is an extra real unknown.
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The unknowns a and oi are determined by applying the Fredholm alternative at the 
next orders of expansion. In equation (3.5.12), similar to (3.5.14), the solvability con­
dition is given by

{°l y f l  -2c2/ i  h  C3 V>2() =  0- (3-5.19)

Substituting (3.5.13) and (3.5.18) yields the algebraic equation

aA -  a3B  + a a xC = 0 , (3.5.20)

where A =  (cq?//{,^), B  =  {c$f3 +  2 0 2 / 1/ 2 ,^ 2/) and the third coefficient C vanishes 
by the first solvability criterion (3.5.14),

C = - 2 C 2( f l r 2i) = 0.(3.5.21)

Equation (3.5.20) is a cubic equation for the first unknown a only, a(a2 — 0 7 7 ) =  0, 
where 7  can be computed explicitly. The a = 0 case simply corresponds to the constant 
solution (the trivial expansion (3.5.9)) and can be discarded. Hence, we have two 
solutions

a =  ±y/ct/ 7  . (3.5.22)

The sign of 07 is thus the same as that of 7  while the sign of a follows from matching to 
the far field solution (see Section 3.5.2). In general, the second unknown a\  (together 
with an extra one a 3 obtained from the homogeneous equation (3.5.12), etc.) is to be 
determined from the solvability conditions of equations for the coefficients / j ,  /s,... of 
higher-order perturbations. Although not presented, higher approximations follow in 
a similar manner.

Exam ple. To illustrate this calculation, we now look at the two cases of Z = 1 and 
I = 3 for the quadratic nonlinearity with p =  2 , where Gp( f ) =  \ f \ f  — f . These are 
chosen so that the corresponding bifurcation points at p =  1 / 2  and p = 1 / 6  are on 
either side of the “self-similar” value of P2 = 1/4 =  1/2m.

n= 1/6 
I = 3f(0) = 1

ji= 1 /4  H=1/2

Figure 3.2: Sketch of the bifurcation points under consideration.

The f i r s t  b i f u r c a t i o n  p o i n t : pi =  1/2 (Z =  1, r = 0). As observed above, when 
Z = 1 we have /o =  1 and f \  =  ay2. A simple calculation then gives / 2 = ot2{y4 +  24)
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and expansion (3.5.9) takes the form

f(y)  =  1 +  ot.£ll2y2 + e (a2(y4 +  24) +  a iy2) +  e3/ 2 / 3 (y) +  ... . (3.5.23)

Observe that since C3 =  0, the solvability condition (3.5.19) for / 3 is then given by

To calculate a  we exploit the fact that by (3.3.7) and (3.3.10) = ~ uj2e wVn/2.

Taking =  ^ ( 2 1/i y) yields (21/4 2/)>S/6> =  —180/21/4,

The sign of a  will be determined by matching to the solution in the mid-range. We 
show presently that a < 0  so that

The resulting branch thus bifurcates to the left, and exists locally only for y  < 1/2, 
there is no possible matching to a decaying solution for /z > 1/2. The numerical 
calculations reported in the next section indicate that the branch persists globally, so 
that a solution exists at the self-similar value /z2 =  1/4.

T h e  t h i r d  b i f u r c a t i o n  p o i n t : /xi =  1/6 (I =  3, r  =  1). We again have fo = l  and 
now fi(y)  = a(y6 +  540y2) and f 2 = a2(y12 -  32400y8 -  164170800?/4 -  3940099200), 
so that the expansion is

{2aia y2 -  2a 3y V  +  24), V4) =  0, V4 =  ^ ( 2 1/4 J/). (3.5.24)

Recall also that if a function f(y)  has Fourier transform /(w), then

(3.5.25)

the solvability condition (3.5.24) reduces to the cubic equation 
hence

g \ ol +  156a3 =  0 and

(3.5.26)

so that (3.5.23) yields

(ik(s'4+24)+“iy2) (3.5.27)

f [ y ) = 1 ~ £l/2 + e  ( i ^ (y4+ 2 4 ) + a i y2 ) + -

and, in particular, since £ > 0

/(0) =  l +  2e/13 +  ... > 1 . (3.5.28)

f  = 1 + £l!2a  (y6 +  540y2)

+  e ( a 2 (y12 -  32400y8 -  164170800?/4 -  3940099200) +  a i / i )  +  ....
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A similar (but much longer) analysis of the orthogonality condition (3.5.19) with eigen­
function ^6((2/3)1/4y) =  (y6 +  540y2)/12\/5 then indicates that the branch again bi­
furcates to the left and exists locally for /x <  1/6.

B T h e  c a s e  o f  m  =  2 a n d  I e v e n .  In the case I =  2r  the bifurcation occurs at the 
point H2r =  1/4r. Because of the presence of a constant term in the eigenfunction ip2h 
the effect of the “forcing terms” y f  comes in at lower order than in the previous case. 
This leads to a standard asymptotic expansion for f(y)  of the form (cf. Theorem 12.1 
in (Vainberg and Trenogin 1974))

/  =  fo +  ef\  +  £2/ 2 +  .... (3.5.29)

Substituting this expression for /  into (3.5.5) or (3.5.6) gives

0(e)  : £ 1/ 21/1  =  -  j ^ y f l  + h  = 0, (3.5.30)

0(e2) : C 1/2i f2 = aiyf'i ~  C2 /1  • (3.5.31)

As before, we express f \  as a multiple of the (scaled) eigenfunction t/>2z(r-1/4y),

h (y )  = <*fi(y) = 7—p~ d 4jy4r- (3 .5 .3 2 )
3 = 0

The value of a  is determined by considering the solvability condition for equation 
(3.5.31) at 0 ( e 2). From the analysis above, it follows that for / 2  to exist we must have

(°iyfi ~  C2/i,'02/> =  0 with ^ 21 =  ^ 2z((2/ 0 1/4?/)- (3.5.33)

This leads to a quadratic equation in a  of the form a ( a  —  7 )  =  0, where 7  may again be 
determined explicitly. This is the case of a unique nontrivial solution existing for both 
fi > in and fx < m, and again we will need an extra matching argument to determine 
the correct sub-branch.

To illustrate this calculation we again take p = 2, Gp(f)  =  \ f \ f  — f  and now consider 
the case of I =  2. This is an especially important value as it corresponds to P2 =  1/4, 
at which the ODE is satisfied by the self-similar solution, if it exists. In this case we 
have fo = 1 and f \  =  a(y4 -1- 24). The solvability condition for a  is now

< ^2yf[ ~  f h ^ K y ) )  = (4cr2Q!y4 -  a 2{y4 +  24)2,ipl(y)) = 0.

We have that ^ 4 (0 /) =  a;4e_cj4/2 \/6  and it follows that the quadratic equation satisfied 
by a  is given by

96cr2a  +  39168a2 =  0 a = -<t2/408. (3.5.34)
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We show presently that to match with the mid-range, a  < 0 so that 0 2  =  1- Hence

f ( y )  =  1 _  4^8 (y4 +  24) +  e2 { j 2{ y )  +  <*1/1(2/))..., (3.5.35)

where the third term (actually we do not need to compute it) explains the spatial 
non-monotonicity of such a solution. If e > 0, then

/(0) =  1 -  e / l l  +  0(e2) < 1. (3.5.36)

T he m id-range e1 < y < el/£

The mid-range behaviour is governed by the solutions of a first-order equation, which 
is different for each nonlinearity. However, the calculation now takes the same form for 
both I even and odd and uses a regular asymptotic expansion. To study the mid-range 
in all cases we rescale the underlying ODEs in space according to the transformation

s = £ 1y >  0 ( 7  as in (3.5.7)). (3.5.37)

The outer limit of the inner region can be matched to the mid-range region by taking 
s to be small and y to be large.

A T h e  c a s e  G p ( f )  — | / | p -1 /  — f / ( j p  — 1)- Under the spatial rescaling (3.5.37), the 
equation (3.5.5) becomes

^  +  ai£j sj ,  +  _  / / ( p -  1) =  0, 1 = 1,2,... , (3.5.38)

where ' =  d/ds. To solve this we pose an asymptotic expansion of the form

/  =  /o +  e4T/ i  +  e8 7 / 2  +  - -  (3.5.39)

To leading order we have simply the first-order ODE — p/o/21+|/o|p_I/o—fo/(p~  1) =  0, 
which has a family of bounded positive exact solutions

/o(s) =  ((P -  1) +  «s2Z) /(P }, (3.5.40)

where k > 0  is a positive constant.

Note that for small s we have

/ o M  =  P13 ( l  -  J fZ ij2 s2‘ + 2 ^ 1 ) 4 ^  +  ° ( s 8 ' ) )  - <3 -5 -4 1 )

while for large s
fo{s) = « -i/(p -i)s-2i/(p-i) +  _  . (3.5.42)
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We now consider the next term in the asymptotic expansion, looking at the two cases 
of small s and large s separately. The function f \  satisfies the equation

~ h s f [ + ( ( p - i f w 1 -  ( r h j ) h = a i s f '°+ / r  ■

We consider for simplicity the case of p = 2, and look at the three cases of I = 1,2 and 
3.

If Z =  1, 4 7  =  1 and then for small s we have fo{s) =  1 — ks2 + ^ k2sa + ..., thus the 
leading order contribution to aisfg +  Jq" is simply 12k2 and hence we have, to leading 
order as s —> 0

f i(s)  = 12k2 +  ....

If I = 2, 4 7  =  1 and then for small s, fo(s) = 1 — ks4 + \ k2s8 +  ... so that, to leading 
order

fi{s) = -2 4 k +  ....

If I = 3, 4 7  =  1/3 and then for small s, fo{s) — 1 — ks6 +  \ k2s12 + ... so that, to leading 
order /q" =  —360ks2 and

f i { s) =  —540ks2 +  ....

We conclude that the small s limit of the mid-range solution is

/  =  1 — k s 2 +  k2s4/2  +  ... +  e(12«2 +  ...), if 1 =  1, (3.5.43)

/  =  1 -  k s4 +  k2s 8/2  +  ... - £ ( 2 4 k +  ...), if 1 =  2, (3.5.44)

/  =  1 -  k s 6 +  k 2s 12/ 2 +  ... -  £(540k2s 2 +  ...), if 1 =  3. (3.5.45)

In terms of the original variable y we have

f  =  l - £ 1/ 2Ky2 +  £K2(y4/ 2  +  12) +  . .. ,  if 1 =  1, (3.5.46)

/  =  1 — £K,(yA +  24) -I- e2K2y 8/ 2  +  . .. ,  if 1 =  2, (3.5.47)

/  =  1 — £1/ 2K(yQ +  540y2) +  £K2y 12/ 2  +  . .. ,  if 1 =  3. (3.5.48)

We can now consider matching the above expressions to the expressions given in the 
last sections for the overlap region of large y but small s.

If I = 1, then comparing with (3.5.27) we have a perfect match provided that k = —a. 
As k > 0 it follows that a = —1/^156. Thus in the mid-range when I = 1 we have

fo(y) =  (1 +  e1/2y2/ V l W ) ~ 1-

As remarked earlier, this bifurcation branch exists only if n < 1/2.
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If Z =  2, then comparing with (3.5.35) we again have a perfect match if k = —a > 0. 
Thus in the mid-range when I = 2 we have

fo(y) = (1 +  e1/V /4 0 8 )-1 .

Note, that this expression is only meaningful if e > 0. As in this case cr2 =  1 it follows 
that locally the branch of solutions which bifurcates from p = 1/4 exists only if p > 1/4. 
Numerically we observe that this curve continues globally for values of p < 1/4 and 
hence we conjecture the existence of a fold bifurcation at some point p = p* > 1/4, 
with a non-zero solution on the branch existing at p =  1/4. This corresponds to a 
self-similar solution distinct from that lying on the branch bifurcating from the point 
p =  1/2. The existence of such a solution is consistent with the semi-stability of the 
centre manifold determined in the last section. We generalize this result presently.

If I = 3 then comparing with the inner expansion, we again have a match if k = —a > 0. 
Thus in the mid-range we have

M y )  =  (1 “  ae1/2y6)-1 (a <  0).

Now consider the behaviour for s 1 when p =  2. For these values of s, to leading 
order, the function f \  satisfies the ODE — pisf[ — f i  — —2lai/ns21 +  ..., hence,

f i(s) = 412&i lns/«:s2i +  ... as s —> oo.

Or, returning to the original variable y,

f(y) = K£ij2y2i i1 +  41,2(71 lny  +  - )  ^  2 /-^°°- (3.5.49)

B The case of G = e? — 1. Under the same spatial rescaling as before, the equation
(3.5.6) becomes

—e f m  -  (pi +  die) s f  +  ef  -  1 =  0, 1 = 1,2,... .

Posing expansion (3.5.39), substituting into the ODE and solving the leading order 
equation gives

/o(s) =  — ln(l +  k s 21).  (3.5.50)

The analysis now proceeds as above, and again matching in the limit s -» 0 fixes k > 0, 
see similar calculations in Section 3.8.3.
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Far field behaviour

The correct far field behaviour is determined by assuming slow growth in both (3.5.2) 
and (3.5.3), f""(y) -> 0 as y -» oo and hence | / | /  /  for small /  > 0 in (3.5.5) while
e* 1 for /  <C — 1 in (3.5.6). In the case of (3.5.5) this gives

/  =  C y -l^ ( l  +  o(l)) =  C y-2,/<1+2,','£)(l + o(l)) as y -»• oo.

Expanding this for e <C 1, we have

/  = Cy~21 (1 + 4l2aie\ny) + ... (e|lny| 1).

This matches with (3.5.49) if C = 1/ks7.

3.5.2 B ifurcations from /im = l/2m for general m

As remarked, for m — 2 we can also postulate existence of the new profile fa from the 
shape of the branch associated with y 2 = 1/4 as the branch leaves the bifurcation point 
to the right and then is expected to fold back. In fact this behaviour can be understood 
for general m.

m odd

1/2m

H =  1 /2 m

m even

Figure 3.3: Schematic of the distinction between even and odd m.

For all m, the bifurcation point = 1/2m  is associated with a zero eigenvalue of 
the linearized operator C + I  in the PDE (3.4.1). Further evidence for the existence 
of a nonlinear pattern associated with this point comes from the local structure of the 
bifurcation diagram. Looking for small solutions near this point, we solve

D2ymf  -  iimyDyf +  /  +  a2m£yDyf  + G(f  -  fa) = 0,

where G is the quadratic perturbation (3.4.2). At /im = l/2m  we have the regular 
expansion (3.5.39) and expanding as before gives

Ci/2mfi = 0 = >  f i  =  a (y2m +  (—l)m(2m)!) with unknown a E R.
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At the next order we have

A / 2m / 2  = 0 2 myfi  ~  c2f 2 = - 2 m a 2may2m -  c2a2 ([(2m)!]2 +  2(2m)!y2m +  yAm).
(3.5.51)

By the Fredholm alternative this can be solved only if

(a 2ma2rny2m -  c2a 2 (((2m)!)2 +  (-l)™2(2m)!!/2m + yim) = 0.

By (3.3.10) i/>2m(co) = u>2me 2m/>/(2m)! so that, after a little manipulation, the solv­
ability condition becomes

cr2ma2m(2m)! +  C2Q!2 ( - l ) m + 1  ((4m)! -  2[(2m)!]2) =  0.

Thus the solvability condition implies that

„ - r _ n " V T  2m (2m)!
  V )  0 2 m 0 2  . . n //n \ t \ 2(4m)! — 2 ((2m)!)

and hence

/ ( » >  -  / .  -  < • * * + +  -  ■

But, to match with the mid-range, with a < 0 we require that f \  —> — oo as y —> oo 
which sets

0 2 m =  ( - l ) m for e > 0 .

Hence, for even m the branches initially increase in /i and thus, if they have folded 
back, contribute an extra similarity profile f m(y) at y, = I /2m  whereas there need be 
no such contribution for odd m. This agrees with the centre manifold calculation of 
Section 3.4.2.

3.6 Numerical calculations of the self-similar profiles

We next present a numerical calculation of the solutions of the problem (3.4.12) pa­
rameterized by y, and taking Gp(f)  =  | / | /  — / .  (As indicated from the analysis of 
the previous sections, the case Ge(f) = e* — 1 is fundamentally the same and has 
already been presented in the Introduction.) This calculation allows us to extend the 
asymptotic analysis of the last section, and in particular to study the global behaviour 
of the branches which bifurcate from the first two bifurcation points at =  1/2 and 
(j,2 = 1/4. The solutions were obtained using a collocation code which guarantees a 
small residual tolerance (Shampine and Kierzenka 2001). The initial points on each 
curve were obtained by setting y, = 0. The continuation of each solution was then done 
by using the pseudo arc-length routine in AUTO (Doedel et al. 1997). Symmetry con­
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ditions were imposed at the origin and minimal growth was enforced at the far field by 
solving the problem on the finite interval (0,1000) and setting the highest derivatives 
to zero at the right hand boundary.

3.6.1 The fourth-order case m  =  2

1

  Branches bifurcating from f ■ 1 at i* * 1/21

0.6

0 0 06 0.1 0.16 0.2 0.26 0 3 0.35 0.4 0.45 0.6

Continuation of solutions to -I*4* -  n  y f  - f  + |f|f = 0
2.7

26

2 5

2.4

  Branches bifurcating from f ■ 1 at « 1/212 3

2 2

2.1

2

1 9

Figure 3.4: Continuation of solutions to —f"" — y y f  — f  +  \ f \ f  = 0 in y. On the left 
(a) the measure is /(0) while on the right (b) the measure is the L2p-norm.

In Figure 3.4a we present the results of the numerical calculations for different values 
of the parameter y  looking at the fourth-order ordinary differential equations given by 
taking m = 2. In this figure we use /(0) as a measure of the size of the solution as 
it is easiest to compare this measure with the asymptotic calculations of the previous 
Section. The existence of branches bifurcating from each of the points yi = 1/21 
(displayed as solid lines) is clear. Also plotted in dashed lines are other solutions 
obtained from continuing solutions from y  = 0 which do not bifurcate from the constant 
solution /  =  1. In this format it is difficult to distinguish the solutions which bifurcate 
from the linear spectrum from the additional “nonlinear” solutions. To make this 
distinction clear we plot the same solutions in Figure 3.4b using the L^-norm as the 
solution measure.

We observe firstly that the curve bifurcating from y\  = 1/2 appears to exist for all 
values of y  G [0,1/2] and in particular there is a non-constant solution f s(y) (the 
subscript s denotes stable, see Section 3.7) for a numerical example of PDE evolution 
with the value of y 2 = 1/4. This solution gives a self-similar solution of the underlying 
PDE (3.1.2). In Figure 3.5 we compare the numerical solution to the boundary-value 
problem (3.2.7), (3.2.8) with the asymptotic construction (3.5.27). In Figure 3.6 we 
present an enlargement of Figure 3.4 close to the point y = 1/2 allowing a direct 
comparison with the asymptotic calculation of /(0) given by (3.5.28).

In contrast, the curve bifurcating from y  =  1/4 appears to exist for all y  £ [0,1/4 + <5],
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Numerical solution

Asymptotic construction (e = 1/4)

0.8

0.4

0.2

y

Figure 3.5: Comparison of asymptotic and numeric solutions.

where <5 is a small positive constant. This behaviour can be seen more clearly in the 
enlargement of Figure 3.4 close to /z =  1/4 which is presented in Figure 3.6. Again, we 
can compare this figure to the asymptotic calculation of /(0) given by (3.5.36), and the 
associated discussion on the unstable centre manifold behaviour in Section 3.5, which 
predicts the existence of the bifurcating curve for a range of values of e > 1/4. This 
asymptotic calculation is clearly only valid for a small range of values of /z > 1/4, and 
the curve of solutions folds back at /z ~  0.26841... .

In particular, we observe a second non-zero solution f u ( y )  (the subscript u denotes 
unstable, see Section 3.7) of (3.4.12) at /z =  1/4. The existence of this solution implies 
the existence of a further non-zero self-similar solution of the PDE. As remarked earlier, 
this result is consistent with the semi-stability of the centre manifold when m = 2. The 
profiles of the two distinct self-similar solutions f s ( y ) and f u ( y )  are given in Figure 3.7.

Observe that the form of f s ( y ) is qualitatively similar to the profile of the solution 
computed close to /z =  1/2 and described asymptotically in the last section. In partic­
ular, it appears to be a monotone decreasing function of y. In contrast the self-similar 
solution f u ( y ) is increasing for small values of y and decreasing for larger values. This 
possible small non-monotonicity is the expansion (3.5.35) is described by the terms at 
0(e2).

We also present in Figure 3.6 a detail of the neighbourhood of /z =  1/6. Although this 
branch does not lead to a self-similar solution, its local form is interesting. As predicted 
by the asymptotic analysis, it bifurcates to the left, but then folds back twice locally
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Figure 3.6: Detail of branches at p =  1/2,1/4,1/6. for m  = 2 and p = 2.
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Figure 3.7: The two self-similar profiles / s, / u for m = 2.
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before continuing backwards to p = 0. From these calculations we make the following 
conjecture.

C onjecture 3.6.1. I f m = 2, then each of the curves bifurcating from the point pi = 
1 /2l continues globally to include the point p = 0, and has I — 1 fold bifurcations in the 
vicinity of p = 1/21.

Such fold bifurcations may occur, (Krasnosel’skii 1964), if

O G ^  +  G 'f/)/) . (3.6.1)

This equation determines a difficult eigenvalue problem for higher-order operators with 
non-constant coefficients. The zero eigenvalues of this problem correspond to the turn­
ing points of the solution branches indicated in Figure 3.6.

Lastly in Figure 3.6 we compare our asymptotic construction of the bifurcation diagram 
with the numerical computations. Away from all folds the agreement is excellent even 
with only a linear approximation.

3.6.2 T h e  s ix th -o rd e r  case m = 3

A bifurcation diagram to similar Figure 3.4 but now for the case of the sixth order 
differential equations when m = 3 is presented in Figure 3.8. In this case the far field 
boundary condition is (3.5.4).

2 5

2

1.6

f
1

0.5

0
0.6 0.1658 0.1669 0.166 0.1661 0.1662 0.1663 0.1664 0.1665 0.1666

Figure 3.8: Continuation of solutions to f ^  — p y f  — f  +  \ f \ f  = 0. (a) Bifurcation 
diagram for m = 3. (b) Detail near p = 1/6.

This picture is qualitatively similar to Figure 3.4, with the solutions at p$ =  1/6 
of interest. As before, the monotone decreasing (in a neighbourhood of the origin) 
solution bifurcating from p = 1/2 extends backwards to p^ = 1/6 as does the solution 
bifurcating from p =  1/4. This leads to two self-similar solutions f s and f u. A detail

8 3



3 .7  N u m e r ic a l  s im u l a t io n s  o f  t h e  s o l u t io n s  o f  t h e  P D E

of Figure 3.8a in the neighbourhood of // =  1/6 is given in Figure 3.8b. As predicted 
by the asymptotic analysis of Section 3.5, this curve bifurcates to the left and there 
are no non-zero (and hence no self-similar) solutions on this branch when fi = 1/6. 
Consistent with the previous analysis we observe two self-similar solutions associated 
with the unstable sub-space and none associated with the centre subspace.

A plot of f s and f u is given in Figure 3.9. It is of special interest that for this value of 
m  we see four other self-similar solutions that arise from paths which start at // =  0. 
These are also plotted in Figure 3.9. Observe that 2 + 4 = 6 =  m(m  — 1) for m  = 3, 
cf. the second last comment in Section 3.4.

1.5

Solutions associated 
with linearized 
spectrum

O ther solutions
  not predicted by

linearized analysis

>.

0.5

10 20 30 350 5 15 25 40 45 50
y

Figure 3.9: Six self-similar profiles for m  =  3, of which two arise from the weakly 
nonlinear analysis and four do not.

3.7 N um erical sim ulations o f th e so lu tions o f the P D E

While the self-similar solutions of (3.1.2) and (3.1.1) are important, they only give a 
partial picture of the overall dynamical behaviour of the solutions of these systems. For 
example, we have not even established whether the self-similar solutions are stable in 
the rescaled sense (strictly speaking, existence is not even fully established). As we have 
mentioned, for m > 1, the operators in (3.2.3) and (3.2.5) are not potentials and do not 
generate gradient flows as in the second-order case. For m = l a  Lyapunov function 
exists and this essentially simplifies the asymptotic analysis, see the first results in 
Galaktionov and Poshashkov (1986) for N  =  1 and Giga and Kohn (1985) and Giga and
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Kohn (1987) for N  > 1. Moreover, compactness of the rescaled orbits { 0 (t) ,t > To} 
remains an open problem (the only known L°°-estimate for the blow-up rate is a lower 
one, (Chaves and Galaktionov 2001), (Galaktionov and Pohozaev 2003)). This makes 
the asymptotic stability for higher-order equations extremely difficult.

In this section we investigate the dynamics of (3.1.2) in the case of m = 2 by using 
the scale-invariant adaptive numerical method described in Chapter 2. The spatial 
grid is chosen to equidistribute the monitor function M (u ) =  Mp-1. By doing this 
mesh points are clustered where M(u) and hence u is large. This choice of M(u) also 
preserves the scale invariance of the underlying system.

Exam ple 1. For the first calculation we consider the polynomial nonlinearity (3.1.2) 
with as initial data the function

u q ( x ) =  2 e ~ x * .

2

1 5

I
1t

0 5

0

6 10 16 20 2600.8 1.2 14 1.6 1.8 20 0 2 0 4 0.6 1

Figure 3.10: The solution of (3.1.2) in the physical variables (a) and the rescaled 
variables (b).

Firstly, we present the evolution from this data in the original variables in Figure 
3.10a, here the formation of the singularity can be seen clearly. In Figure 3.10b we 
present the same data this time in the scaled variables 6 and y. Here, the blow-up 
time T  is estimated by a least squares fit of u(0,<) =  fo/(T — t)1/^ ” 1) with both fo 
and T  unknown. The most significant aspect of this figure is that the solutions rapidly 
converge (exponentially in r) to the first monotone function f s(y)- The solution of the 
ODE (3.2.7) is plotted on Figure 3.10 for comparison and is indistinguishable from the 
large r  solutions to the full PDE and we deduce that the self-similar solution is a stable 
atractor in this case.

Exam ple 2. For our final calculation we take as initial data the second solution to
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(3.2.7), the solution which extends from the bifurcation point m = 1/4.

u(a;,0) =  f u(x).

This is seen to be unstable. While remaining close to the initial data as the magnitude 
increases several orders eventually the rescaled solution converges to the primary profile 
as in Example 1, see Figure 3.11.

1.2

0.8

t0 .6

0.4

0.2

Figure 3.11: The solution of (3.1.2) in the rescaled variables.

3.8 Self-sim ilar profiles and generic blow -up in the SR B - 
problem

We now return to the Semenov-Rayleigh-Benard problem as first described in the In­
troduction. We use the general results of the previous Sections for the case m = 2 to 
understand this physical problem in greater detail. Let us write down equation (1.3.11) 
in terms of the linearized operator (3.2.4),

gT = (C +  I)g +  D(#) (3.8.1)

with the nonlinear operator

D (g) =  A 1 ( g )  ~ ( C +  I ) g  = /J[(5y)3]y +  e» -  (1 + g).
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On solutions g{-,r) G Hp(HN) the perturbation is quadratic,

D(s) =  ^02 +  ^03 +  /%y)y +  ... =  \ g 2 + 0(\\gfp. ) as \\g\\p* -> 0. (3.8.2)

Hence, all the analysis of Section 3.5 holds and we have two self-similar profiles. These 
were first seen in the Introduction in Figure 1.3.

3.8.1 C ountable fam ily  o f o th er blow -up pattern s

We now identify other types of blow-up patterns, which are not stable but can oc­
cur in the present explosion-convection problem creating special singularity formation 
phenomena and a discrete “spectrum” of final-time profiles. For equations (1.3.7) and 
(1.3.5) we construct such blow-up patterns generated by the invariant manifold anal­
ysis associated with the centre and stable subspaces of the linearized operator C* + 1 
in (3.8.1). It turns out that such an analysis can be done similarly to that for the 
semilinear equation with the power nonlinearity, (3.1.2), for arbitrary order 2m > 4, 
see Galaktionov (2001).

3.8 .2  C entre m anifold  pattern: so lu tion s tak ing  in fin ite  values on  
m oving boundaries

By virtue of Proposition 3.4.1 and assuming the asymptotic behaviour (3.4.7), on any 
compact subset {|y| < c}, c > 0 , the rescaled solution has the form

9(y,T) = (2/4 +  24) + o ( i )  > 0  as r  —>• oo. (3.8.3)

We now introduce the new rescaled variable

C =  y / r 1/4 =  x/[(T  - 1)| ln(T -  *)|]^4, (3.8.4)

so that (3.8.3) implies that as r  —» oo,

g =  7iC2m(l +  o(l)) > 0 for small £ > 0, 71  =  l/\/247o =  1/816. (3.8.5)

This extra rescaling forms a remarkable spatial variable (3.8.4) with an additional 
logarithmic factor. For the second-order heat equations like (1.1.2) a similar variable 
occurs with the exponent 1/2 instead of 1/4. The idea of such non scaling invariant 
hot-spot variable goes back to the beginning of the 1970’s in Hocking et al. (1972), 
where the equation ut = uxx +  u3 was studied.

Applying the scaling (3.8.4) in equation (1.4.2), we deduce that g =  </(£, r) satisfies the

87



3 .8  S e l f - s im il a r  p r o f i l e s  a n d  g e n e r ic  b l o w - u p  in  t h e  S R B - p r o b l e m

following perturbed equation:

Qr =  H 4 (p) +  -  F (g) for r  > r0, (3.8.6)r

with the first-order operator

H 4(s) =  -;jC g<; + e9 - l ,  and F(g) =  - p cccc +  0  (tec)3)c -  \CdO

As r  -> oo, (3.8.6) is an asymptotically small singular perturbation of order 0(1/r)  (it 
is of crucial importance that the perturbation is not integrable, 1 / r  ^  L1 ((l,oo))) of 
the first-order Hamilton-Jacobi equation

hT =  H  4(/i). (3.8.7)

Such singularly perturbed dynamical systems occur in several reaction-diffusion equa­
tions, see Galaktionov and Vazquez (1991), where a general stability theorem is avail­
able. The main hypothesis of this stability approach is the uniform Lyapunov stabil­
ity of the u;-limit set of the unperturbed equation (3.8.7) established in Galaktionov 
and Vazquez (1994, Sect. 3), for general equations such as (3.8.7) in a Banach space 
Cp(R+) with a singular weight. For such higher-order parabolic problems compactness 
of rescaled orbits is a difficult open problem and the analysis below is formal.

Assuming that we can pass to the limit in the singularly perturbed equation (3.8.6), 
we have that the orbit approaches the stationary profiles satisfying

H 4(/)  =  0 for C > 0, /(0) =  0.

Integrating this ODE in the class of nonnegative functions f  > 0, which is one of the 
matching conditions due to the positivity of expansions (3.8.3) and (3.8.5), we obtain 
a one-parameter family of the limit profiles,

/(£ ) =  — ln(l — A£4) with a parameter A  > 0. (3.8.8)

Since /(£ ) =  A ( 4 +  0 ( ( 8) as (  —> 0, comparing with (3.8.5) for the intermediate values 
of (  yields the unique stable profile (3.8.8), /*(£), with the constant A = 7 1 .

Thus, in terms of the new rescaled variable (3.8.4) with the extra logarithmic factor, the 
centre manifold behaviour is governed by a unique stationary solution of the Hamilton- 
Jacobi equation (3.8.7):

/* (0  =  - l n ( l  -71C4).

This means that in the original variables (r, t), the corresponding blow-up pattern takes
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the asymptotic form

u4{x,t) =  — ln(T - 1) -  ln(l -  <4/816) +  C =  x/[(T - 1)| ln(T - 1)|]1/4,

i.e., it blows up as t —t T in a shrinking domain { |r| <  4\/3[(T — t)|ln (T  — i)l]1̂ 4}
and it* =  + 0 0  on its lateral boundary. Such an infinite Dirichlet condition on moving 
boundaries is a typical feature for fourth-order PDEs like (1.1.1), (1.3.5) or (1.3.6) 
(unlike the second-order heat equation (1 .1 .2 ) where such initial-boundary value prob­
lems are not locally solvable in general in natural functional classes). Note that the 
ODE (1.4.4) admits solutions f(y)  blowing up as y —> yo ±  0 for any finite yo with the 
singularity given in the first approximation by the equation f " n =  e?.

3.8 .3  S tab le  m anifold  pattern s

We now describe the rest of the blow-up patterns associated with the stable subspaces 
of the linearized operator. The patterns on the stable manifold tangent to E s(0) are 
generated by the corresponding eigenfunctions with the following asymptotic behaviour 
of solutions of (3.8.1) for r  1. On compact subsets

g(y, t ) = C e^ -V ^ tP k iy )  +  ..., k = 6 , 8 ,... (hence Xk =  1 -  k / 4 < 0), (3.8.9)

where C 7  ̂ 0 depends on the initial data. The eigenfunctions given by (3.3.13), 
do not change sign. Therefore, as we will show, positive C in (3.8.9) correspond to 
blow-up patterns in shrinking domains as t —> T, while negative values of C generate 
blow-up patterns which are well-defined in R  x (0 ,T).

We concentrate on negative C and set C »->• —C. Then (3.8.9) yields for large y as
T  —Y OO,

g(y,r) = +  o(l)) +  ... =  -BC* +  - ,  ICl «  L (3.8.10)

and B  =  Cj\ fk \  >  0 ,where f  is the new spatial variable

C =  ye-T̂ ik =  |*|l (T -  t)Vk, * =  6,8,....

Then g =  g((, r) satisfies the exponentially perturbed equation

gr = H „(g) -  e-G-4/fc^ +  p  (,[g()3) J  _ (3.8.u )

with the Hamilton-Jacobi operator

H t (s) =  - i c %  +  e9 - l .
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Using the same stability arguments, similar to the above centre case k = 4, we conclude 
that, under necessary compactness hypotheses, the orbit {</(•, t)}  approaches the sta­
tionary subset of the unperturbed equation (3.8.11) corresponding to r  =  oo. Solving 
the ODE Hfc(/) =  0 in the class of nonpositive solutions, we obtain the family

/(£ ) =  — ln(l +  A£k) with a parameter A  > 0.

Matching the expansion /(£) =  — A£k +  0(C2fc) as £ —> 0 with (3.8.10), we obtain

a  =  b  =  c / V E .

We thus obtain the following approximate representation of the stable manifold pattern 
on compact subsets in

uk(x, t) = -  In ((T  -  «)(1 +  ACk)) + .... C =  W / ( T  -  t) l' k.

Passing to the limit £ —>• T, we derive a countable subset of final-time profiles created 
at t =  T  via such a blow-up evolution

Uk(x,T~) = —k \ n \ x \ — InA + ... as x  -> 0, =  6, 8, . . . .  (3.8.12)

Thus, the final-time profiles are not arbitrary and there exists only a countable family 
(3.8.12) of those which can occur in the fourth-order PDE (1.3.7).

3.9 Conclusions

It is clear from this study that the (self-similar) behaviour of the blow-up solutions of 
a relatively straightforward higher-order partial differential equation is quite different, 
and in a sense simpler, than that of related second order equations. It is very likely 
that similar behaviour will be observed in a much wider class of higher-order equations. 
The numerical and asymptotic calculations presented in this Chapter have suggested a 
number of open questions in analysis which deserve further investigation, in particular, 
a fully rigorous proof of the existence of the self-similar solutions and the uniqueness 
of the “most” monotone stable profiles. We leave this as a subject for future study.
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Chapter 4

Very singular similarity solutions

Given the detailed understanding of the operators C and C* and their role in describ­
ing the blow-up problem for higher-order parabolic equations, we now consider the 
absorption problem which admits global solutions decaying as time tends to infinity. 
In the classical second-order case study of these solutions led to the development of a 
significant amount of new mathematics. While we establish asymptotically that the 
behaviour of solutions for m > 1 is, unlike in the blow-up problem, not significantly 
different from m = 1, we show that fundamentally new mathematics will be required 
to prove this rigorously.

4.1 Introduction: very singular similarity solution

In this Chapter we consider the Cauchy problem for the 2m-th order semilinear parabolic 
equation

ut = - ( - A ) mu - u p i n R iVx R + , u{x,0) = u0{x) e L°°{TLN) D L ' i R " ) ,  (4.1.1)

where, in most cases the initial data uo(x) are assumed to decay exponentially fast as 
x  —> oo (see (4.1.12)). For convenience, we use the notation

up := |u|p-1u, p > 1.

The operator on the right-hand side of (4.1.1) is monotone, coercive, and affords a 
unique global weak solution (see the book by Lions (1969)), which is a bounded classical 
solution for a wide parameter range. We shall study the behaviour of such global 
solutions as t -> oo.

From the beginning of the 1980’s the problem of asymptotics for the semilinear heat 
equation (4.1.1) with m  =  1, which became a canonical diffusion-absorption equation, 
led to the study of a new class of similarity solutions called Very Singular Solutions
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(VSS). Various asymptotic techniques were developed to prove existence, uniqueness 
and global stability of the VSS in the subcritical parameter range 1 < p < po = 
1 +  2/ N  (for nonnegative solutions). Interesting new asymptotic phenomena were also 
discovered in the supercritical range p > po> and in the critical case p = po- We refer to 
the papers (Brezis and Friedman 1983, Kamin and Peletier 1985, Kamin and Peletier 
1986, Brezis, Peletier and Terman 1986, Galaktionov, Kurdyumov and Samarskii 1986, 
Escobedo and Kavian 1987, Kamin and Veron 1988, Bricmont, Kupiainen and Lin 1994, 
Bricmont and Kupiainen 1996) (this list of references is not complete and includes only 
the papers to be used herein); see also a survey in Samarskii et al. (1995, Chap. 2). 
Historically, the term VSS arose because the first solutions to be discovered for the 
second-order equation

Ut =  A u — up (4-1-2)

with a Dirac measure as initial data were termed ’singular solutions’ but are not as 
singular as the VSS (for which u(x, 0) is not a measure) as they did not arise from very 
singular initial data (Kamin and Peletier 1985).

The study of VSS-like asymptotics generated numerous barrier, comparison, reflection, 
Lyapunov and variational techniques based on the Maximum Principle and later applied 
to a wide class of semilinear and quasilinear second-order parabolic equations describing 
various reaction, diffusion, absorption and convection processes. The VSS asymptotics 
of nonlinear parabolic equations discovered in studying the model equation (4.1.1) with 
m  = 1 represented an important new class of stable generic asymptotics of evolutionary 
PDEs.

The structure of equation (4.1.1) dictates that the critical absorption exponent po es­
tablishes a certain balance between the elliptic “diffusivity” operator and the algebraic 
absorption operator, and this phenomenon is expected to exist for any order 2m > 2. It 
is of principal importance to reveal properties of higher-order equations similar to those 
which are well understood for their second-order counterparts. We present the results 
of asymptotic analysis for the 2m-th order semilinear equations where the semigroups 
are not order-preserving and the positivity of solutions is not an invariant property. We 
consider general initial data with exponential decay at infinity and classify the asymp­
totic behaviour of solutions by describing various countable and continuous subsets of 
special patterns. Our main goal is to show that the general portrait of asymptotic 
patterns remains the same for any m > 1 including the classical case m = 1 for solu­
tions which change sign, where some of our results are new. Indeed, the mathematics 
of higher-order equations becomes essentially more delicate (any self-adjoint, potential 
and order-preserving properties of the operators and semigroups involved are lost) and 
the rigorous justification of some of our conclusions remains an important open prob­
lem. Consequently, while our results extend the known behaviour for m = 1 to m > 1, 
fundamentally new methods will be required to fully justify our conclusions as we show
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that the classical methods no longer apply.

The organization of this Chapter is as follows. In the remainder of this section we 
introduce self-similar solutions and briefly describe our main results. The next three 
Sections contain some preliminary and auxiliary results. Section 4.2 is devoted to the 
asymptotic analysis of the ODE for similarity profiles and Sections 4.3-4.6 present a 
PDE analysis of (4.1.1). In Section 4.3 we describe three different types of asymp­
totic patterns formed, loosely speaking, by the unstable, stable and centre manifold 
behaviour of the rescaled PDE. In Section 4.4 we consider a related bifurcation prob­
lem for the ODE which motivates our estimate on the number of possible solutions. 
We also prove existence of a stable VSS profile for p «  and present supporting 
numerical evidence. In Section 4.5 we show that the rescaled equation is not a gradient 
system, and hence general stability results, such as those of Lyapunov and La Salle, 
do not apply, unlike the case m — 1. In Section 4.6, for completeness, we briefly dis­
cuss a continuous spectrum of similarity solutions corresponding to data with algebraic 
(non-exponential) decay at infinity.

4.1 .1  T he first critica l absorption  exp on ent

We begin by reviewing existing results concerning the asymptotic behaviour of global 
solutions with initial data decaying exponentially at infinity (see (4.1.12) with the 
precise functional setting in a weighted L2 space detailed in Section 3.3). It is known 
that in equation (4.1.1)

PQ = \ + 2m /N  (4.1.3)

is a critical exponent in the following sense:

(i) In the supercritical range p > po, for a class of sufficiently small initial data, the 
solutions behave, as t —► oo, as the fundamental solution (up to a constant multiplier 
C ^  0 which is specified by the initial data),

b(x, t) = t~N/2mF(y), y = x / t 1/2m, (4.1.4)

of the linear parabolic equation (3.3.2) The rescaled kernel F  is the unique radial solu­
tion of the elliptic equation (3.3.4). We refer to (Egorov et al. 2002) in which pertur­
bation techniques are applied to any equation like (4.1.1) with the lower-order term re­
placed by ± |u |p or ±\u\p~1u. For the reaction-diffusion equations ut =  — (—A )mu+\u\p, 
(4.1.3) becomes the critical Fujita exponent, (Egorov et al. 2002), (Galaktionov 2001).

(ii) The critical case p — po is studied in Galaktionov (2002) where it is established 
that for some initial data, global solutions have the following logarithmically perturbed 
fundamental asymptotic behaviour as t —» oo:

u(x,t) = ±C 0{ t \n t ) -Nl2m ( f  ( x / t1/2™) +  o(l)) . (4.1.5)
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The constant Co ^  0 depends on m  and N  but is independent of initial data.

For the semilinear heat equation with m =  1, (4.1.2), posed for solutions u > 0, these 
results were established in the 1980’s. In this case po =  1 + 2 /N  coincides with the 
critical Fujita exponent for the reaction-diffusion equation ut =  Au + up\ see Samarskii 
et al. (1995, Chap. 2) and an extended list of references therein. Moreover, a complete 
classification for this semilinear equation is available and in addition to (i) and (ii) 
above we have the following asymptotic property.

(iii) (m =  1) In the subcritical range p G (l,Po), the asymptotic behaviour of positive 
solutions is described by the unique VSS

u*(x,t) =  £-1/(p-1V (y), y = x / t 1/2, (4.1.6)

where V > 0 solves a nonlinear ODE (see below, (4.1.8)). We refer to Brezis et al. 
(1986) (an ODE proof of existence of the VSS), Galaktionov et al. (1986) (a PDE 
proof of existence and stability), Kamin and Veron (1988) (uniqueness of the VSS) and 
Kamin and Peletier (1985) (construction of the VSS by monotone approximation of 
“very” singular initial data).

4.1 .2  T h e m ain result: V SS s in  th e  su b critica l range

For the higher-order equation (4.1.1) with m  > 2, we study the existence and multi­
plicity of similarity solutions and show that in the subcritical range p G (l,Po) there 
exist VSSs of the form (cf. (4.1.6))

u*{x,t) = y = x / t 1/2m, (4.1.7)

where V  is a non-trivial radial solution of the elliptic equation

C \ V - V P = —(—A)mV +  7̂ -V V  • y +  — V - V p = 0 in R ^ , (4.1.8)
2m p — 1

V(y) decays exponentially fast as \y\ -> oo. (4.1.9)

The condition on exponential decay at infinity, (4.1.9), is most naturally enforced by 
introducing weighted L2 and Sobolev spaces, as described Section 3.3. The linear part 
of the operator C\  in equation (4.1.8) is connected with the operator (3.3.1) for the 
rescaled kernel F  in (4.1.4)

C\ = £* +  c i/, where ci =  N(po — p)/2m(p — 1). (4.1.10)
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One of the main goals of this Chapter is to show by analytical and numerical methods 
that in the radial setting, the ODE problem (4.1.8), (4.1.9) admits at least

M(m,p, N)  =  tteven (N (P0 ~  P)/{P ~  !)) (4.1.11)

different non-trivial radial solutions /  =  f(\y\), where Heven(̂ ) for z > 0 denotes the 
number of non-negative even numbers 0,2,4,... not exceeding the integer part [zj.

We also study the asymptotic stability of the VSS and describe a countable subset of 
other self-similar or approximately self-similar patterns in the Cauchy problem (4.1.1). 
We show that in the supercritical range p > po, no generically stable (see Section 4.3 
for a precise definition) non-trivial VSSs exist. On the other hand, there does exist 
an uncountable family of different similarity solutions which are not in L1 and have 
special stability properties.

Results on the global existence of solutions in the subcritical Sobolev range (Hirsch 
and Lacombe 1999), p < ps = (N  +  2m)/(N  — 2m)+, and satisfying a restriction on 
the initial data,

uq(x ) =  o(e~k\x\'') as x  —t oo {v = 2m/{2m — 1)), (4.1.12)

may be found in Galaktionov and Williams (2003b).

4.2 Preliminaries: the exponential bundle in the ODE as
y  -»  oo

In this section we describe the asymptotics of radial solutions of the ODE (4.1.8) such
that V(y) —> 0 as y —> + 0 0 , where y now denotes the radial variable, \y\ > 0. The
linearization of (4.1.8) about V — 0 gives

C{V = 0 for y > 0. (4.2.1)

On such decaying solutions, (4.1.8) is an asymptotically small perturbation of the linear 
equation (4.2.1). Proceeding as in Section 3.2.2, we begin with the ODE (4.2.1),

( _ l ) m + i  ( y { 2 m )  +  m ( N  -  1)  y ( 2 m - l )  +  \  +  J _ y ,  +  _ J _  y  =  Q, ( 4 . 2 . 2 )

V y J  2m  p - 1

and set z = yv, giving the following equation:

V(2m) -  aiV' -  z - ld2V  +  z~1C(z)Vr =  0. (4.2.3)
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Here ox =  ( - l ) mvl - 2m/2rn =  - 0 1 , a2 = ( -1  )"V -2m/(p -  1) =  - a x (cf (3.2.10)) and 
C(z)V = 7 jZ3+1-2mV ^ . Recalling the analysis of Section 3.2.2 with

q,i i—> —cti, and £i2 t—̂ ®2

we conclude that as y —► oo, there exists an m-dimensional bundle of exponentially de­
caying solutions. For the second-order case m  =  1, the bundle is only one-dimensional, 
making it possible to use a phase-plane analysis to prove existence of the VSS (Brezis 
et al. 1986), or apply a monotone parabolic method via simple super and sub-solutions 
of the PDE (Galaktionov et al. 1986).

In addition, (4.2.3) admits a solution corresponding to the characteristic root /i =  0 
with algebraic decay as z —> oo described by the first-order operator

- a i V '  -  z "1 a2V  = 0 =4- V(z) =

For the linearized equation (4.2.1) we obtain the algebraic asymptotic behaviour,

V(y) = C\y\~2rn̂ p~^  (1 +  o(l)) as y -» oo, with any C ^  0. (4.2.4)

Such solutions do not satisfy condition (4.1.9) and represent another family of asymp­
totic similarity patterns for the PDE (4.1.1) to be discussed in Section 4.6.

Comparing these results with those from Chapter 3, we see the essential difference 
between the similarity ODEs for blow-up and decay problems: the size of the decaying 
and growing exponential bundles is reversed. For the blow-up problems we have a 
larger unstable exponential bundle than stable, whereas it is the opposite for the decay 
problems. This increase in the number of free parameters at infinity leads to an un­
countable spectrum of solutions to the absorption problem. However, for VSSs we also 
require exponential decay and will again recover a countable spectrum of admissible 
solutions.

Summarizing this asymptotic ODE analysis, we have that if V  is a VSS profile satisfying 
problem (4.1.8), (4.1.9) with far field behaviour from the exponentially decaying bundle, 
then the following global estimate holds:

|^ (y)| < Z?1e -dlls/l‘' in H N, D u dx > 0. (4.2.5)

Passing to the limit t -» 0+ in (4.1.7), it follows that such VSSs satisfy

u*(x, t) —>• 0 for x ±  0, and \u*(x, t)\P —> const £(z), /3 = (p — l )N /2m  (4.2.6)

in the sense of bounded measures in R ^ . Solutions with algebraic decay (4.2.4) form
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the following initial data with uniform convergence only on [e, oo), e > 0:

u .(x ,0+) =  C |x |-2m̂ - 1). (4.2.7)

Formally, this coincides with the limit time profile of blow-up solutions as t -» T, 
(3.2.16) described in the previous Chapter.

4.3 Stability analysis and two types of asym ptotic pat­
terns

As (4.1.10) suggests, in order to study the VSS, we need to consider the spectral 
properties of C* and the corresponding adjoint operator C  which will play a role in 
the further asymptotic analysis of the nonlinear PDE. These operators are posed in 
weighted L2-spaces with the weight functions induced by the exponential estimate of 
the rescaled kernel (3.3.6) and are detailed in Section 3.3.

4.3 .1  T h e sta b ility  o f  th e  zero so lu tion

Following (4.1.7), we use the similarity scaling

u =  (1 +  t)-1/b,_l)«, y =  x/(l  +  f)1/2m, r =  ln(l + 1) : R+ —> R+ . (4.3.1)

The rescaled solution v = v (y , r ) then solves the autonomous equation

vT = C\v  -  vp for t > 0, v(y,0) =  v0(y) = u0{y). (4.3.2)

The VSS profiles satisfying (4.1.8), (4.1.9) are the stationary solutions of (4.3.2). We 
show that at p =  po the trivial stationary solution v =  0 changes its stability, which 
is a crucial characterization of the critical exponent. As is well known in the general 
stability and bifurcation theory (Krasnosel’skii and Zabreiko 1984), often this means 
that p =  po is a bifurcation point of equilibria (a result to be proved in Section 4.4).

P ro position  4.3.1. The trivial solution v = 0 of equation (4.3.2) is unstable for 
P € (liPo)i and is stable for p > po-

Proof It follows from (4.1.10), (3.3.9) that operator C\  in (4.3.2) (derived by linearizing 
about v = 0) has the discrete spectrum

a{C\) = {vi = c i -  I/2m, Z =  0,1,2,...}, (4.3.3)

so that vq > 0 for p G (l,po) (for which c\ > 0) and vq < 0 for p > po (when c\ <  0). In
view of the known spectral properties of C* (see Lemma 3.3.1 and (Egorov et al. 2002)),
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this stability/instability result in X  =  follows from the principle of linearized
stability, see e.g. Lunardi (1995, Chap. 9). □

4.3 .2  N o n ex isten ce  o f a generically  stab le  V SS for p >  Po

In the next sections we will show that the stationary problem (4.1.8), (4.1.9) can admit 
an arbitrarily large number of different non-trivial solutions {Vk, k =  0,1,2, ...M} (an 
estimate of M  is given below) together with the zero solution denoted by V° = 0. In
order to choose the “most” stable one, we use the following definition under natural
assumptions that each profile T4  has a stable manifold W s(Vk) (of finite co-dimension) 
and a finite-dimensional unstable one W u(Vk) associated with the stable, centre and 
unstable subspaces of the linearized operator

T>k = C \ - p \ V kr ' - I  (4.3.4)

having discrete spectrum, see Section 4.4.

Definition 4.3.1. We say that Vo is generically stable in X  if:

(i) W U(V0) =  0,
(ii) W u{Vk) ^  0 for all k =  1,2,..., M, and
(Hi) for any vq £  ( u J l1lVs(Vfc)) U W 5(0), v(r) —> Vo as r  -* oo.

Note that (iii) includes the global property of stabilization to a stationary solution 
in the dynamical system (4.3.2) on X ,  which is not known for general orbits since
(4.3.2) is not a gradient system, see Section 4.5. Therefore, we mainly study the usual 
(local) stability properties of the VSS for p < po (Section 4.4). The above definition is 
currently used to establish a “weak” nonexistence result for p > pq.

C orollary  4.3.2. For p > po, a non-trivial generically stable VSS satisfying (4.1.8),
(4.1.9) does not exist.

Indeed, according to Proposition 4.3.1, for p > po, the trivial profile V° = 0 is locally 
stable. This means that a connection {0} -» {Vo} in X  described by (4.3.2) does not 
exist. The same nonexistence result remains true in the critical case p = po- However, 
we will present below results on a centre manifold analysis showing that 0 is still stable 
at the critical exponent. In view of the rather complicated bifurcation structure for 
equation (4.1.8) which includes an arbitrarily large number of branches for p «  1+ 
(Section 4.4), the proof of actual nonexistence of VSSs for p > po and arbitrary m  
and N  is a hard problem. On the other hand, the following nonexistence result is 
straightforward but we do not believe it to be sharp.

Proposition 4.3.3. A non-trivial VSS does not exist for any p >  p* = 1 +  4m /N .
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Proof. Multiplying (4.1.8) by V  and integrating by parts over yields

- | | 5 m^  +  M, | |y | | l - | |V | | ^ ;  =  o,

where //* =  l /(p  — 1) — iV/4m < 0 for p > p*. □

4 .3 .3  A  first e stim a te  on th e  num ber o f  V S S s for p < po

It follows from (4.3.3) that in the subcritical case p E (l,Po)> there exists a finite 
number of unstable modes corresponding to the trivial equilibrium V° = 0 of (4.3.2). 
The Morse index of C\  is given by the cardinal number

M (m ,p ,N )  =  jj {/?: \p\ < 2mci = N{p0 -  p)/(p -  1)}. (4.3.5)

The operator C\v — vp is only known to be potential for m = 1, see Galaktionov et al. 
(1986), Escobedo and Kavian (1987) and Bricmont and Kupiainen (1996). Further­
more, equation (4.3.2) is not a gradient system for m > 1 (Section 4.5). The general 
properties of orbital connections for semilinear higher-order parabolic equations are 
unknown. For m  = 1 such a classification (Henry 1985, Angenent 1986) is based on 
Sturm’s Theorem on zeros associated with the Maximum Principle. Therefore, we 
cannot guarantee that each unstable mode generates stabilization to a non-trivial sta­
tionary profile (unlike the case m = 1 where this is actually true).

Nevertheless, completing this discussion, we expect that the number (4.3.5) character­
izes the total finite number of nontrivial stationary solutions of the problem (4.1.8),
(4.1.9), which are “nonlinear” asymptotic patterns for the PDE under consideration. 
This number of nonlinear patterns increases without bound as p decreases,

M (m,p, N)  -* oo as p -» 1+. (4.3.6)

In the radial setting, (4.3.5) coincides with (4.1.11). The critical (bifurcation) expo­
nents, at which M (m,p, N)  is discontinuous, are given by

ci — I/2m = 0 ==> pi = 1 +  2m/(I +  N), I — 0 ,1 ,2 ,.... (4.3.7)

Therefore, (4.1.3) is the first, maximal exponent corresponding to I =  0.

4 .3 .4  T he stab le  m anifold  behaviour: a countab le  su b set o f  lin earized  
pattern s

Unlike the nonlinear VSS patterns, the stable infinite-dimensional subspace E s = 
S p a n j^ , i/|£| < 0} of C\ generates linearized patterns decaying exponentially fast 
as t  -> oo. In view of the completeness and orthonormality of eigenfunctions of £J,
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for initial data vq €E X  we use the uniformly converging eigenfunction expansion of 
solutions which are sufficiently smooth by parabolic regularity theory (Eidelman 1969, 
Friedman 1983)

V(T) = '5 2 ap(T)'(Pp- (4-3-8)

The expansion coefficients satisfy the dynamical system

a!p = v\p\ap -  {vp,ipp) for any p. (4.3.9)

The diagonally dominant structure of the system (4.3.9) shows that if the nonlinear 
term vp forms an exponentially decaying perturbation as r  —> oo (say, if v is small), 
then there exist patterns with exponential decay as r  —v oo

v(y,r) = C eW ty Jfo ) +  o( 1)), C = C(u0) ?  0, (4.3.10)

where ^  is a suitable eigenfunction with < 0. In the asymptotic sense, these are 
exponentially decaying solutions of the linear equation vT =  C*v, and such results are 
well known in the linear perturbation theory, (Friedman 1983).

4.3 .5  T he cen tre m anifold  behaviour at p =  pi: logarith m ic scaling  
factors

It follows from (4.3.7) that at any p =  pi, C\  has a nontrivial centre subspace. 
We describe the corresponding behaviour of radially symmetric asymptotic patterns, 
cf. (Galaktionov 2002) and (Egorov et al. 2002). For arbitrary even I = 2,4,..., 
the operator C\  has the simple eigenvalue 0 with a one-dimensional centre subspace 
E c = Span{^*(|y|)} and a finite number of isolated positive eigenvalues. Assuming the 
existence of a local centre manifold, we look for a solution of (4.3.2) in the form

v (t ) = ai(T)ip*(y) + u ;(r) for r  >  1, w(r) =  o(ai(r)) w € (E c)± , (4.3.11)

and arrive at the asymptotic ODE

a[ =  -K /|a/|p_1a/(l +  o(l)) with = ((tp*)p ,^/).

The positivity of the coefficient k/ is of crucial importance (otherwise the behaviour is 
unstable) and is guaranteed at least for large I (see Section 4.4). This gives

ai(r) =  ±CiT~1/(p~1\  1 +  o(l)) as r  —> oo,

where
Q  = [2TUKlKk + jv)]-<i+JV>/2m.
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Transforming back to the original variables {x ,t ,u}  gives the following asymptotic 
patterns at p = pi (cf. (4.1.5) for 1 =  0):

u {x , t )= ± C i{ t ln t ) -V +N'»/2mL t ( \ x \ / t 1/2m) + o{lj)  for t »  1. (4.3.12)

At the first critical exponent p = po, solutions (4.3.11) take the form

v(y, r) = ±Cor~N/2m (f ( y ) +  o(l)) -> 0 as t  oo.

Since this behaviour is on the centre manifold, (and Wu(0) =  0), the trivial solution 
v = 0 of (4.3.2) is stable, implying nonexistence of a non-trivial generically stable VSS 
and extending Corollary 4.3.2 to p =  po.

The two types of asymptotic solutions described above combined with another detailed 
in (Galaktionov and Williams 2003b) are expected to form an “evolutionarily complete” 
countable subset of patterns in the diffusion-absorption problem under consideration 
in the sense that any nontrivial X - valued solution takes, as t —> oo, the form of one 
of these patterns. Evolutionary completeness remains a hard open problem for many 
second and all of the higher-order semilinear parabolic equations considered in this 
thesis.

4.4 Very singular similarity profiles in the subcritical 
range p e  (l,po)

We return to the VSS profiles V  satisfying the ODE problem (4.1.8), (4.1.9) in the 
subcritical range p E (l,po)- Based on the linear analysis of Sections 3.3 and 4.3, 
we consider bifurcation problems in which we can construct solutions by parameter 
continuation and study their stability near to the critical values pi.

4.4 .1  B ifurcation s at p — pi: local ex isten ce  and s ta b ility  o f th e  V SS

Taking p near the critical values as defined in (4.3.7), we look for small solutions to
(4.1.8). At p = pi the linear operator C\  has a nontrivial kernel, hence, the following 
result.

P ro position  4.4.1. Let, for an integer I > 0, the eigenvalue A/ =  —I/2m of the 
operator (3.3.4) be of odd multiplicity. Then the critical exponent pi = 1 +  2m/{I +  N) 
in (4.3.7) is a bifurcation point for the problem (4.1.8), (4.1.9).

Proof. For a moment, given an n >  1, we denote by {Vp)n a suitable uniformly 
Lipschitz continuous truncation of the nonlinearity V p such that (Vp)n =  Vp for |V| <
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n and
{Vp)n V p as n -> oo uniformly on compact subsets.

Consider in L 2 the truncated equation

C*v  = - (1  +  ci)V +  (Vp)n, C* = C \ -  (1 +  C l ) /  = C* — I. (4.4.1)

The spectrum of C* is a translation of that of C*, (4.3.3), cr(C*) = {—1 — //2m}, and
-  - l

consists of strictly negative eigenvalues. The inverse operator C* is known to be 
compact (Egorov et al. 2002, Proposition 2.4). Therefore, in the corresponding integral 
equation

V = A(V) =  -(1  +  c i)£ * ~ V  +  C '~ l {V’’)n, (4.4.2)

the right-hand side is a compact Hammerstein operator, (Krasnosel’skii 1964, Chap. 
5). Bifurcations in the truncated problem (4.4.2) occur if the derivative A'(0) =

-  - l
—(1 +  ci)£* has the eigenvalue 1 of odd multiplicity, see Krasnosel’skii and Zabreiko 
(1984) and Krasnosel’skii (1964). Since cr(A'(0)) =  {(1 +  c i) /( l +  //2m)}, we arrive 
at the critical values (4.3.7). By construction, the solutions of (4.4.2) for p «  pi are 
small in L 2 and, as can be seen from the properties of the inverse operator, in H 2™. 
Since the weight (3.3.8) is a monotone growing function as \y\ —>• oo, using the known 
asymptotic properties of solutions of the ODE (4.1.8) (Section 4.2), V  G H 2™ is a 
uniformly bounded, continuous function. [It is worth mentioning that for even m  solu­
tions of (4.1.8) may blow-up at finite y (in striking contrast with second-order ODEs) 
forming singularities L2 locally.] Therefore, for p ~  pi we only have bounded, small 
solutions. Hence the same bifurcations occur in the original non-truncated equation
(4.4.2) corresponding to n =  oo. □

Thus, I =  0 is-always a bifurcation point since Ao =  0 is simple. In general, for 
I =  1,2,... odd multiplicity occurs depending on the dimension N.  In particular, for 
I = 1, the multiplicity is N,  and for Z =  2, it is N ( N  +  l)/2 . In the case of even 
multiplicity of A/, an extra analysis is necessary to guarantee that a bifurcation occurs, 
(Krasnosel’skii and Zabreiko 1984). It is important that for key applications, namely, 
for N  = 1 and for the radial setting in R ^ , the eigenvalues (3.3.9) are simple and
(4.3.7) are bifurcation points defining the critical exponents.

Since the nonlinear perturbation term in the integral equation (4.4.2) is an odd suffi­
ciently smooth operator, we arrive at the following result describing the local behaviour 
of bifurcation branches, see Krasnosel’skii (1964) and Krasnosel’skii and Zabreiko (1984, 
Chap. 8).

P ro position  4.4.2. Let A/ be a simple eigenvalue of C* with eigenfunction ipi. De­
noting

=  ( ( # ) P»^). (4.4.3)

we have that problem (4.1.8), (4.1.9) has (i) precisely two small solutions for p «  p f
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and no solutions for p ~  p^ if ki > 0, and (ii) precisely two small solutions for p «  
and no solutions for p «  p f  if ki < 0.

The two possibilities arise from the need of the product ki (pi — p) to be positive.

In order to describe the asymptotics of solutions as p —> pi, we apply the Lyapunov- 
Schmidt method (Krasnosel’skii and Zabreiko 1984, Chap. 8) to equation (4.4.2) with 
the operator A being differentiable at 0. Since under the assumptions of Proposition
4.4.2 the kernel Eq = ker A'(0) =  Span {?/>*} is one-dimensional, denoting by E\ the 
complementary (orthogonal to ip*) invariant subspace, we set V — Vq +  Vi, where 
Vo =  eiip* e  E0 and Vi =  ekipk € E\. Let Po and Pi, Po +  Pi =  / ,  be projections 
onto P 0 and E\  respectively. Projecting (4.4.2) with n = oo onto Eq yields

7 iei = (C* 1(Vp),tpi), 7 / =  1 -  (1 +  c i) /( l + l/2m) = - { N  + l ) s / { p -  l)(2m +  J),
(4.4.4)

where s = pi~p . By the general bifurcation theory (see e.g. Krasnosel’skii and Zabreiko 
(1984, p. 355), noting that the operator A'(0) is a Fredholm operator with index zero), 
Vi =  o(ei) as ei —»• 0, so that ei is calculated from (4.4.4) as follows

7 t£i = e\ {C* 1(ip*)p,'ipi)+o{Ef) = >  |e/|p-1 =  q  ((pi -  p) +  o ( l) ) , Q =  (l+N)2/4m2Kh

where we have performed the calculations as follows

(£*_1 W F . V>i) = ( W ) p> (£ ) 'Vi> = + i/2m).
  \ A .

(here we have used the identity (C* )* =  (£) ). In view of the orthonormality
property (3.3.14), for p = 1 we have «/ =  1, so that by continuity we can guarantee 
that

ki > 0 at least for all p «  1+ . (4.4.5)

Thus, we obtain a countable sequence of bifurcation points (4.3.7) satisfying pi —> 
1+ as / —> oo, with typical pitch-fork bifurcation branches appearing in a left-hand 
neighbourhood, for p < p\. The behaviour of solutions in H^771 and uniformly takes the 
form

Vt{y) = ±  [ci(pi -  p)]1/(p-1) {'ipliy) +  o(l)) as p -» p f . (4.4.6)

We now prove the main result concerning “local” existence and stability of the VSS 
solution with the similarity profile Vo(y) corresponding to the first bifurcation point, 
p = pq. If Ko > 0, as expected (this has been verified numerically), then two bifurcation 
branches exist for p < pq.

T heorem  4.4.3. For p «  p$ , problem (4.1.8), (4.1.9) admits a solution Vq(y) provided 
that 2m / N  is small enough. Furthermore this is an asymptotically stable stationary 
solution of the rescaled equation (4.3.2).
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Proof. As we have shown, a continuous branch bifurcating at p =  pQ exists if

«o =  ((V’T .V 'o )  =  /  |F |2m/NF  > 0  («/>o = 1). (4.4.7)

In view of the positivity dominance of the rescaled fundamental solution F, f  F  = 1,
(3.3.5), we have that (4.4.7) holds by continuity provided that 2m / N  1. Therefore, 
in this case there exists a solution (4.4.6) with I = 0 satisfying for small s = po — p > 0 
uniformly

Vo(y) = (co s)1/(p-1)[/fe) +  o(l)], c0 =  iV2/4m 2K0. (4.4.8)

We now estimate the spectrum of the linearized operator of equation (4.3.2)

D 0 =  C\ —p\Vo\p~l I.  (4.4.9)

Some of the eigenvalues of (4.4.9) follow from the original PDE (4.1.1). For instance, 
the stable eigenspace with A =  — 1, tp =  +  2m VVfo ' V £ follows from the
time-translational invariance of the PDE. For N  = 1, translations in x yield another 
pair A =  —1/2m, =  Voy G L2p. F o r  N  > 1, in the non-radial setting, this A has 
multiplicity N  with eigenfunctions Voyi. These are not the first pair with the maximal 
real part.

Bearing in mind that the spectrum of the unperturbed operator C* is real, (3.3.9), and 
has the unique, non-hyperbolic eigenvalue Ao =  0, we use (4.4.8) to obtain

D 0 =  £* +  s(l +  o(l))C, (4.4.10)

where, as it follows from (4.4.7) and (4.4.8) at p — po, the perturbation has the form

c = £ ( i - S |F|2m/A,) / - (4-4-n )

Therefore, we consider the spectrum of the perturbed operator

D 0 =  C* +  sC. (4.4.12)

Since the operator (C* — / ) _1C is bounded,

(Do -  / ) _1 =  (7 +  s(£* -  J ) - ^ ) - 1^ *  -  I ) - 1

is compact for small |s| as the product of compact and bounded operators. Hence, 
Dq also has only a discrete spectrum. By the classical perturbation theory of linear 
operators (see e.g. (Gohkberg and Krein 1969)), the eigenvalues and eigenvectors of 
D 0 can be constructed as a perturbation of the discrete spectrum <j (C*) consisting 
of eigenvalues of finite multiplicity. We are interested in the perturbation of the first
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simple eigenvalue Ao =  0. Setting

Ao =  s/j,o +  o(s), fa = fa + s<po + o(s) as s ^ O

and substituting these expansions in the eigenvalue equation T)ofa =  Xofa yields

C*ip0 = { - C  + p0I)fa .  (4.4.13)

We then obtain the solvability (orthogonality) condition

( ( - C  + p0I ) f a , f a ) = 0  = >  /io =  (C /,l) .

Using (4.4.11) yields po = —N /2m  < 0. Therefore, ReAo < — siV/4ra < 0 for all 
p «  Po . Since, with these properties of the spectrum, the perturbation (4.4.9) of 
C* remains a sectorial operator with cr(Do) C {ReA < — siV/4m} and ||e^*lT||£ < 
Ce~N(po-p)T/4m jn norm of C(Hp™,Hp™) (Friedman 1983), Vo(y) is exponentially 
stable in H^™. □

We expect that condition (4.4.7) remains valid for any m  and N  so that Vo(y) is 
stable without the restriction 2m  <C N.  There is strong numerical support for this 
(see Section 4.4.3), but, as yet, no rigorous proof. Possibly, to check conditions such 
as (4.4.7) we must currently rely on numerical evidence and then, as often happens 
in spectral theory and applications, Theorem 4.4.3 can be established with a hybrid 
analytic-computational proof. We also expect that the whole branch bifurcating from 
p = Po remains stable for all p £ (l,po)> though the proof would require one to establish 
that the discrete spectrum <r(Do) never touches the imaginary axis. In particular, this 
difficult open problem means that a new (nonlinear) saddle-node bifurcation never 
occurs on this po-branch, i.e., it does not have any turning points.

Further, one can see that the other bifurcation branches are unstable. Taking any I > 1, 
instead of (4.4.10) we now have

D, =  JC ; - p |V 5 r 1/= = £ * +  [c1 - s p Ic,(|V’* r 1 +  o (l) )] /, S = p i - p .  (4.4.14)

From the definition of (4.1.10), c\ > 0 for all p ~  pi, thus Vi for I > 1 is unstable.

The transition to a subset of linear patterns at p =  1. By (4.3.7), the sequence of 
critical exponents converges from above to p = 1 corresponding to the linear equation

Ut = —(—A )mu — u. (4.4.15)

Therefore, the expansion (4.4.6) gives an exceptional opportunity to see the transition 
from the non-linear patterns for p > 1 to the linear ones for p = 1. For p «  1+ there
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exists an arbitrarily large number of nonlinear patterns which become unbounded linear 
patterns in the case p = 1 (this trend is seen in Figure 4.1 to be discussed below). Some 
simple computations reveal the scaling factors of such a transition.

It is easy to determine all the linear (radial) patterns. Setting u = in (4.4.15) yields 
the linear parabolic equation (3.3.2) with the known countable subset of asymptotic 
patterns, cf. (4.3.10). Hence, up to a constant multiplier, the subset of linear patterns 
is

u,(x,t) = y = x / t 1/2m-, 1 = 0 ,1 ,2 ......  (4.4.16)

It is important to note that due to the completeness of the eigenfunctions, Lemma 
3.3.1, the pattern subset (4.4.16) is evolutionarily complete (these notions coincide in 
the linear case). On the other hand, using expansion (4.4.6), we obtain the following 
nonlinear asymptotic patterns corresponding to the original PDE (4.1.1) for p «  1+:

ui(x,t) (ciijpi - p ) ) 1/(p-1) (4.4.17)

Then the scaling factors in the pattern transition as p —> 1+ are given by

{t~lci{pi -  p ))-1/(p-1) ui(x,t) xl?*(y) = ett^N+l^ 2mui(x, t).

For the ODE (4.1.8), the nonlinear VSS profiles are generated at p =  1+ by the eigen­
functions of a linear Sturm-Liouville problem for the non-self adjoint operator £*, cf.
(4.4.6).

4 .4 .2  N u m erica l ca lcu lation s o f  th e  global b ifurcation  p-diagram

Our counting argument on the number of available solutions for a particular value of p 
is based on the number of bifurcation points (the Morse index of C \ ) which are available 
for p < po. Because of the existence of infinitely many solutions in the linear problem for 
p = 1, we conjecture that each branch bifurcating from 1 < pi < po is defined on (l,p*) 
and contributes exactly one additional exponentially decaying solution. Numerical 
results presented in Figure 4.1 support this as the branches are monotone in p with 
no branch ever contributing more than one solution. This is simpler than the blow-up 
problem in Chapter 3.6, where some non-monotone branches were seen to contribute 
multiple solutions, see Conjecture 3.6.1. To compute numerical approximations we 
begin with numerical approximations to (4.4.6) near the critical exponents p/. These 
are then continued in p using the pseudo-arclength package AUTO (Doedel et al. 1997). 
All the numerically constructed similarity profiles V(y) have asymptotics from the 
exponential bundle described in Section 4.2. This was not enforced numerically but is 
simply a property of the initial profiles used for continuation. Such solutions correspond 
to sharp agreement in the number of available solutions described in the estimate 
(4.1.11).
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0.15

I
>

0.05

1+4/7 1+4/5 1+4/3

P
Figure 4.1: Bifurcation diagram with respect to p, m  = 2, N  =  1

4.4.3 V SS sim ilarity profiles for various p, N  and m

The two profiles with m = 2, p = 2 and N  =  1 are presented in Figure 4.2a. Qualita­
tively, the picture remains unchanged in higher dimensions. In Figure 4.2b we present 
radially symmetric profiles V(|y|) for N  = 2 and 3. Topologically, there is no great 
distinction between the computed solutions for different values of N  with all branches 
emanating from the bifurcation points of the associated linear operator. Further, the 
solutions and bifurcation diagrams are qualitatively similar for m = 3.

o 2 6 8 10
y

12 14 16 18 20
y

Figure 4.2: (a) Two similarity profiles Vo and V\ for m  =  2, p = 2, TV = 1. (b) The 
primary similarity profile Vq form  = 2 ,p  = 3/2, N  = 2 and 3.
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4 .4 .4  T he local p —bifurcation  diagram

Following the branching approach of Chapter 3, in which we continued the solution 
branches in the parameter //, we introduce the linear operator

£* =  —(—A)m +  py • V +  I / (p  — 1) with a parameter p  > 0, (4.4.18)

and consider the corresponding equation

C*pV — Vp = 0 in with condition (4.1.9). (4.4.19)

For p = 1/2m, we get the original VSS-problem (4.1.8), (4.1.9). This //-parameterization 
provides an additional approach to study the multiplicity of the VSS profiles. It is im­
portant for describing a transition to the elliptic problem occurring at // =  0,

—(—A)mV +  V/(p -  1) -  Vp = 0 in R * , (4.4.20)

which admits a variational formulation in terms of critical points of the functional 
$(V) = —i||D">YIII +  j^ jjIIV III -  j i i l |V | |£ ! .  For N  = l, (4.4.20) is a Hamiltonian 
dynamical system with known solution properties for m = 2, see Peletier and Troy 
(2001) and the references therein. In Chapter 3, //-bifurcation diagrams were shown to 
be quite effective in studying blow-up similarity profiles for the semilinear 2m-th order 
ODE occurring in the PDE (4.1.1) with the source term +up.

We now briefly describe bifurcation in the problem (4.4.19) from the trivial solution 
V° = 0. We find the spectrum of £* in L2p* by introducing the new independent 
variable y — z /  {2mp)1/2rn. Then Lemma 3.3.1 yields

C,j, = 2myC* +  (—//iV +  l / ( p -  1)) /  = >  cr(£M) =  { -//(V  +  I) +  l / (p  -  1)} ,

whence the following result, analogous to Proposition 4.4.2.

P ro position  4.4.4. Let the eigenvalue Xi =  —I/2m in (3.3.9) be of odd multiplicity. 
Then

/Z, =  1/(JV +  Z)(P-1) (4.4.21)

is a bifurcation point in the problem (4.4.19).

Indeed, denoting c =  l / (p  — 1) — p N  and C*fi =  — (1 -1- c)7, we have from (4.4.19)

C* pV = —(1 +  c)V +  V p.

The spectrum a(Cyf) =  {—1 — pi} consists of strictly negative eigenvalues. The proof is 
now analogous to that of Proposition 4.4.1 with the integral equation (4.4.1) replaced
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by
V  = A m(V) = - (1  +  c ^ - W  +  £ - \ V P ) .  (4.4.22)

Again, bifurcations occur if the derivative A^(0) = —(1 +  c)C~l has the eigenvalue 1 
of odd multiplicity. Since crfA^O)) =  {(1 +  c)/(l +  pi)}, this yields (4.4.21). Also, by 
construction, the solutions of (4.4.22) for p ~  pi are small in L2*, H 2™ and uniformly.

The local bifurcation structure in p is similar to that for p (cf. Proposition 4.4.2). 
Namely, if A/ is a simple eigenvalue of C *, then (4.4.2) has (i) precisely two small 
solutions for p ~  p~ and no solutions for p «  p* if ki > 0 and (ii) precisely two small 
solutions for p «  p+ and no solutions for p «  p~ if ki < 0. Under assumption ki > 0, 
pitch-fork bifurcations occur with branches appearing in a left-hand neighbourhood, 
for p < pi , with the behaviour

V(y) = ±[cl(m -pi)]1̂ [ lpt(y) + o( 1)], -> C( =  ( N +  /)/«,. (4.4.23)

We apply numerical methods to extend the local behaviour of the bifurcation diagram 
from the previous section. We will fix N  = 1 and m = 2, and using initial data near the 
bifurcation points, continue solutions in p using the numerical continuation code AUTO 
(Doedel et al. 1997). Taking p = 2, from (4.1.11) we expect at least two solutions. We 
conjecture that these solutions arise from the two unstable modes of the operator C\  in 
this case. Notice in Figure 4.3 that the two solutions available at p = 1/4 extend from 
branches connecting bifurcation points on either side of the value p = 1/4, 1 —> 1/5 
and 1/3 -> 1/7. There are no other bifurcation points available greater than 1/4.

All branches presented in Figure 4.3 leave the bifurcation points (4.4.21) as predicted 
by the asymptotics (4.4.23). However, for p =  0, the Hamiltonian system (4.4.20) does 
not admit any nontrivial solution (Peletier and Troy 2001). This gives rise to the closed 
orbits observed numerically in Figure 4.3.

4.5 For any m > 1 the rescaled operator is not potential

Let us return to the general problem of the stability of the similarity profiles constructed 
above locally close to bifurcation points. Assuming that 1 < p < po, we consider the 
rescaled PDE (4.3.2) having VSS profiles {Vi} as the stationary solutions. We have 
conjectured that, the first VSS similarity profile Vo(y), corresponding to the branch 
bifurcating from p — p$,  is the only generically stable one describing the asymptotic 
behaviour for a dense subset of initial data t>o G H 2m fl L°°. In other words, the stable 
branch which was proved in Theorem 4.4.3 to have originated from p = Pq remains 
stable for all 1 < p <po-  We have strong numerical evidence supporting this conclusion. 
For m = l ,  this is proved by various methods, see first results by the Lyapunov method 
(parabolic monotonicity) in (Galaktionov et al. 1986) and the references to Chap. 2
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0.8

* -  Solutions to VSS, n  = 1/4

0.6

> 0 .4

0.2

0.80.2 0.4 0.6

Figure 4.3: Bifurcation diagram with respect to p

in (Samarskii et al. 1995). Even for N  = 1 we do not know if equation (4.3.2) admits 
a Lyapunov function and is a gradient system. Moreover, we will present evidence to 
suggest that this is not the case for any m > 1.

G radient system s for m = 1.

For rescaled equations such as (4.3.2) with m — 1 written in symmetric form

Vr = i v  ■ (pVu) +  — p = eM2/“, (4.5.1)
P  P ~  1

the potential (variational) structure of the operator in L2 was used in (Escobedo 
and Kavian 1987) and in a number of subsequent papers; see additional references 
in Samarskii et al. (1995, Chap. 2). Indeed, since the linear operator in (4.5.1) is 
self-adjoint in L2, a Lyapunov function is obtained by multiplying by pvT and inte­
grating over R A . Moreover, for the second-order parabolic equations with one spatial 
variable (or in with radial symmetry), potential operators are dominant. Recall 
(Zelenyak 1968) that any quasilinear second-order uniformly parabolic equation with 
smooth coefficients

vT = P 2M  = a(y, 17, Vy)vyy + b(y, v, v y ) (4.5.2)

on a bounded interval with typical (nonlinear) boundary conditions is a gradient system. 
Namely, there exists a smooth multiplier p(y,v,w) > 0, w = vy, such that pl*2(v) = 
F'(v) is a potential operator. Hence, multiplying (4.5.2) by pvT and integrating in y

1 1 0
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yields a Lyapunov function, and for some function $(?/, v,vy) (F(v) =  f  4>(u) is the 
potential of pP 2 (v)), there holds

on bounded evolution orbits. Indeed, using formal integration by parts, we get

where Dy = d/dy is the full derivative. Then p and 4> satisfy the system of PDEs

PO/ — $  W W 1 p b  — 4* V 4? y jy  $  u jy U ).

Differentiating the second equation in w yields a linear first-order PDE for p

order PDE for P  and the existence of p is proved by the standard method of charac­
teristics.

H igher-o rder rescaled equations do no t possess a  g rad ien t s tru c tu re . It is
in striking contrast with the second-order equations, where Lyapunov functions often 
play a key role in the asymptotic analysis of blow-up and global solutions of quasilinear

7i =  1/2m, 72 =  7i +  ci.

P ro p o sitio n  4.5.1. The fourth-order parabolic equation

VT =  P 4( ^ )  =  ~ v y y y y  +  l \ . V v y  “b  72^  — VP =  ~ V y y y y  +  b { y i  Vy> v y y i  v y y y )  (4.5.6)

is not a gradient system in the sense that (4.5.3) does not hold for any <&(y,v,vy, vyy) = 
4>(t/, v, w, z) and p(y, v, vy, vyy, vyyy).

Proof Performing differentiation and formal integration by parts in (4.5.3), we obtain

Jp(-Vyyyy  +  &)«r =  / ( * .  -  +  (A»)2*.)®r =  / ( £ » *  +

where £ 3 $  contains derivatives of v up to the third order, vyyy. Comparing the terms

(4.5.3)

($w & w y  ^ W v V y  *&ww'Vyy')VTi

(pa)y +  (pa)vw -  (pb)w — 0 . (4.5.5)

Introducing the new dependent variable p =  ep > 0 leads to an inhomogeneous first-

heat equations that the gradient structure is lost for m > 1. Without loss of generality, 
we prove this negative result for equation (4.3.2) with m = 2 and N  = 1 denoting
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with higher-order derivatives gives a system of PDEs

P =  ~$zz, pb = £ 3$- (4.5.7)

The first equation shows that p =  p(y, v, tu, z) and then taking from the second equation 
the coefficient of the third-order derivative vyyy =  r yields the following linear first-order 
PDE:

py +  pvw +  pwz +  pzr/2  =  0.

Hence pz = 0, i.e., p =  p(y, v, w). Next, we get pw = 0, etc., and finally we have py — 0, 
i.e., p =  1, which does not satisfy equation (4.5.3) unless 71  =  0. This implies that the 
system (4.5.7) has no solution. □

Thus, it seems that the only way to establish stability of the first VSS is to use the 
linearized operator which requires an estimate of the spectrum of the corresponding 
2m-th order non self-adjoint operators with non-constant coefficients. We have proven 
this in Theorem 4.4.3 for all p «  po, provided that 2m / N  1. For arbitrary p G (l,po) 
this is an open problem, where sharp numerical methods can play a leading role, see 
further comments in Chapter 6 .

4.6 On continuous subsets of similarity solutions

By the asymptotic analysis in Section 4.2, the similarity ODE (4.1.8) admits solutions 
with algebraic decay (3.2.14) accompanying the multi-parametric exponential bundle 
of dimension m  +  1. Denoting such similarity solutions Va, one can see they form a 
continuous subset of asymptotic patterns. Note that Va 6  L 1 if p < po and Va £ L 1 for 
P > Po- Obviously with algenraic decay, Va £ L2p so that such similarity solutions have 
different domains of stability than the VSSs. In particular, the following simple but, 
in our opinion, typical characterization of their domain of stability holds.

P ro p o sitio n  4.6.1. Let p > p* = 1 +  4m / N  and let Va be a similarity profile in
(4.1.7) satisfying (4.1.8), (3.2.14) for some constant C ^ 0 .  Let u{x,t) be a solution of 
equation (4.1.1) such that u(-,t) — u*(-, 1 -f t) G H 2m for all t > 0. Then

0(y, t) = (1 + t)l^ p~lS>u(y{l  +  t)l/2m, t) ->• Va(y) in L 2 as t ->• 0 0 . (4.6.1)

Proof. Multiplying the equation for the difference w = u — u*, wt = —(—A)mw — {up — 
it*), by w and integrating over H N, we obtain

^ I M l i  = ~ J  IDmw\2 -  (up - u p, u -  u*) < 0,

so that ||tu(£)112 < C for t > 0. By scaling ||u — u*\\2 = (l + t)u\\d — Kill? exponent
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C_= 250, C+= 1 0 0
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Figure 4.4: Solutions with algebraic decay, m =  2, p = 2 and N  = 1

is = —2/(p — 1) + N/2m > 0, (4.6.1) follows. □

In Figure 4.4 we present examples of profiles from this continuous family, which is 
extremely wide. Namely, for N  = 1, we expect that there are asymmetric profiles 
Va{y) satisfying

ls/|2r”/(p—i) V (̂2/) -> C± as y —► ±oo, with arbitrary C± € R. (4.6.2)

4.7 C onclusions

In this Chapter we have begun the extension of the large body of work for the clas­
sical semilinear heat equation with absorption ut =  Au — up to the important case of 
higher-order parabolic equations with monotone operators ut =  — (—A)mit — up. While 
some of our results are incomplete, not being valid over all parameter values, we have 
established the key existence and stability results asymptotically and numerically. As 
we have demonstrated, the same dynamics governs equations of the form (4.1.1) for 
all m  > 1 but new ideas will be required to establish this rigorously throughout the 
whole parameter range in the absence of the self-adjoint, potential and order-preserving 
structures which are lost in the higher-order case.
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Chapter 5

Blow-up and global asymptotics 
of the unstable Cahn-Hilliard 
equation with a homogeneous 
nonlinearity

5.1 Introduction

5.1.1 T he m od el and d iscussion

In this Chapter we consider a fourth-order model combining features of the previous 
two Chapters which represents, in some ways, an intermediate model between those 
already studied and the classical second-order problems. In particular, we study the 
long-time and blow-up asymptotic behaviour of the fourth-order semilinear parabolic 
equation

ut =  —A(Au -1- up) in x R +, p > 1, up := |u|p-1u. (5.1.1)

We consider the Cauchy problem for (5.1.1) with initial data

u(z,0) =  iio(z) in R ^ , u0 e  L1(RiV) fl L°°(RN), (5.1.2)

assuming in most cases that uo(x) has exponential decay as x —» oo.

Equation (5.1.1) is a model connected with various applications. For instance, it arises 
as the limit case of the phenomenological, “unstable” Cahn-Hilliard equation for N  = 1 
and 2 and p = 3, see the references in Novick-Cohen and Segel (1984) and Elliott and 
Songmu (1986),

ut =  —(iuxx — u3 +  7 iu)xx -  7 2u.
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It is also a reduced model from solidification theory with N  = 1 or 2 and p = 2, 
(Novick-Cohen 1992, Bernoff and Bertozzi 1995). Equations of this form also arise in 
the theory of thermo-capillary flows in thin layers of viscous fluids with free boundaries, 
(Funada 1984).

Writing (5.1.1) in the form
Put =  A u + up (5.1.3)

with the positive operator P  = (—A)-1 on the right-hand side (u =  (—A)-1u means 
Au = —u in R ^ ) defines a pseudo-parabolic second-order equation. Many aspects of 
such equations are well understood with both the existence and uniqueness of local 
and global classical solutions and the blow-up of solutions known from the 1970’s; see 
the first results in (Levine 1973) and the references in the surveys (Galaktionov and 
Vazquez 2002, Levine 1990).

We are mainly interested in the study of blow-up behaviour of the solutions to (5.1.1),
(5.1.2). In this sense (5.1.1) is an exceptional model and (5.1.3) clearly indicates that, 
at least formally, we can expect some similarities of blow-up singularity formation 
phenomena with the classical semilinear heat equation from Combustion Theory (1.3.1). 
On the other hand, the unstable nonlinear operator in (5.1.1) is the classical porous 
medium equation but backwards in time

ut = —A up. (5.1.4)

It is not well-posed and leads to blow-up of solutions and all derivatives in arbitrarily 
small times; see the concavity techniques applied in (Levine and Payne 1974).

In standard form (5.1.1) (rather than (5.1.3)) is a fourth-order semilinear parabolic 
equation. In this sense, (5.1.1) can be treated as an “intermediate” canonical model 
between second and fourth-order parabolic equations. Another related class of fourth- 
order models admitting both blow-up and deacay comes from the theory of thin films 
and general long-wave unstable equations (Bertozzi and Pugh 1998), where a typical 
quasilinear equation takes the form

Ut — (^ ^ iu  “b u Ux}x' (5.1.5)

Equations of this form are known to admit non-negative solutions see (Witelski, Bernoff 
and Bertozzi 2003) and the references therein. Because there is no mechanism to 
preserve finite support in (5.1.1) (unlike in (5.1.5)) there are no compactly supported 
or steady-state solutions for p < ps = (iV -f- 4)/(iV — 4)+. Thus we will concentrate on 
solutions defined in H N x (0, T).

The primary goal of this Chapter is to present some general principles of formation of 
stable generic blow-up and global asymptotics for this Cahn-Hilliard equation. To this 
end, we construct various subsets of self-similar solutions of (5.1.1) in different ranges
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of the parameters p and N.  We establish that, in general,

(i) (5.1.1) admits a countable discrete subset of blow-up similarity solutions, and

(ii) there exists an unbounded continuous family of global similarity solutions decaying 
as t —> oo.

Lastly, we study the stability of some crucial branches of similarity solutions. Con­
struction of approximate self-similar patterns which can play an important part in the 
description of asymptotic properties of the PDE (5.1.1) may be found in Galaktionov 
and Williams (2003a).

In the remainder of this section we discuss some basic properties of (5.1.1). In Section
5.2 we introduce the blow-up and global similarity solutions, perform a local asymptotic 
analysis of the corresponding ODEs and pose the spectral properties of the linearized 
operators in the framework of Section 3.3. In Section 5.3 we present an existence 
proof of blow-up similarity solutions and show numerically that the minimal profile 
is an attractor for a wide set of initial data. A countable subset of solutions is then 
constructed via a singular perturbation expansion. In Section 5.4 we study classes 
of global solutions of (5.1.1) and show that, unlike the blow-up case, the family of 
similarity solutions is continuous and we rigorously determine the stable branch.

5.1 .2  A  p o ten tia l operator and gradient sy stem

Equation (5.1.1) is uniformly parabolic with all spatial differential operators appearing 
in divergence form. It admits a unique, classical, local in time solution and the standard 
parabolic theory applies, (Friedman 1983). The operator on the right-hand side of
(5.1.1), —A(Au +  up), is potential, with Lyapunov function

£ [“ ](*) =  ^l|V u ||2  -  u e H i (KN) n U ‘+1(R N), (5.1.6)

which is monotone on bounded orbits,

f t E[u](t) = - I M * , . ,  <  0.

For such gradient systems, the a;-limit set of any uniformly bounded orbit,

w(uo) =  { / e  C (R n ) : 3 {<*} —> oo such that w(-,tfc) —>• /  uniformly}

is known to consist of stationary solutions: — A (A / -I- f p) = 0 in for any /  G 
cj(uo)- If the subset of stationary solutions consists of isolated equilibria, the asymptotic 
behaviour does not essentially differ from the classical second-order theory where any 
bounded orbits are known to approach a stationary profile as t —> oo (Sell and You 
2002). However, one can see from (5.1.3) that for this problem the only admissible
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stationary solution is u =  0, so that the large-time (and of course blow-up for which 
E q < 0) behaviour is essentially non-stationary.

5.1 .3  F in ite -tim e  blow -up

Despite the gradient structure, from known results on pseudo-parabolic equations, 
(Levine 1973), it follows that classical solutions whose initial data satisfy an energy 
inequality,

E(u0) =  I l l V t i o I l l  -  <  0  ( 5 - 1 - 7 )

cannot be extended beyond a finite blow-up time T  < oo. In the particular case of 
p = 3, N  =  1 this can be interpreted as a condition on the initial mass of positive 
solutions, (Witelski et al. 2003),

^  r  4 ^M =  uq > Mc = —-— .
J-oo *

Finite-time blow-up is a well known phenomenon in long-wave unstable thin-film equa­
tions of the form (5.1.5), (Novick-Cohen and Segel 1984, Novick-Cohen 1992, Bertozzi 
and Pugh 1998, Bertozzi and Pugh 2000, Bernoff and Bertozzi 1995). Because not all 
initial data will satisfy this condition and because of the gradient structure, we will 
also look for decaying solutions. In the case of both decaying and blowing up solutions 
the role of similarity variables is key.

5.2 Preliminaries: similarity variables for global and blow­
up asym ptotics

Equation (5.1.1) is invariant under the group of scaling transformations

1 1-» At, x  *-» A1/4#, u i-» A-1/2(p-1)u, A > 0.

This symmetry suggests the introduction of the following rescaled variables

u(x, t) = [<j ( T —t)]_1/2(p_1)% , t) , y = x/[a(T -  t)]1/4, r  =  -  \n[a(T-t)],  (5.2.1)

where a — 1 corresponds to blow-up at the unknown blow-up time t — T~,  and 
a = —1 to infinite time decay as t —> oo with a reference time T  (generically, we 
will take T  — 0 in this case). Without loss of generality, we assume that the solution 
u(x,t) blows-up at the finite time t =  T  in the sense of (1.2.1) and the corresponding 
blow-up set contains the origin. Despite the inclusion of the Laplacian of a nonlinear 
term it is easily established from parabolic regularity theory that blow-up, if it occurs 
in any Sobolev norm also occurs in L°° (Friedman 1983) . Thus, we do not have
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the possibility, as in nonlinear diffusion (5.1.4), of blow-up only in a derivative of the 
solution (Henry 1985, Novick-Cohen 1998).

The rescaled solution 0(y, r) satisfies the semilinear equation

eT =  A(0) =  -A(A0 + 8?) - l y - v e -  2 ( ^ 3 1 ) ( 5 -2 -2 )

and we are interested in the possible asymptotic dynamics of solutions for r  ^  1.

An exact similarity solution to (5.2.2) is independent of r  giving an elliptic boundary 
value problem for the similarity profile / ,

A (/) =  0 in R ^ . (5.2.3)

Because A is not potential (see the example in Section 4.5), classical variational ap­
proaches do not apply.

We restrict our attention to the one-dimensional or radial geometry, where (5.2.3) is 
a fourth-order ODE and in most cases we impose symmetry conditions at the origin 
y = 0 and a suitable decay condition (possibly exponential) at infinity:

/ 7(0) =  0, /'"(0) =  0; and f(y)  0 as y ->• oo. (5.2.4)

5.2.1 C onservative s im ilarity  so lu tion s and th e  first critica l exp on en t

Under appropriate decay conditions at infinity (say, exponential), equation (5.1.1) is 
conservative as

-j- f  udx = — [  A(Au +  up)dx = 0. (5.2.5)
dt J R n  J r n

Given an exact similarity solution

us(x, t) = [a(T -  t)]_1/2(p_1)/(y ) (5.2.6)

and assuming that /  € L1(RiV), we have that

[  us(x,t)dx = [cr(T- t)]-1/2(p~1)+N/4 [  f (y )dy , (5.2.7)
J r n  J r n

which satisfies (5.2.5) only if p =  po, where

po = 1 +  2 /N  (5.2.8)

is the critical exponent in the problem (it is interesting that po coincides with the 
Fujita exponent for the semilinear heat equation (1.3.1)). In fact, it is the first critical 
exponent and in Section 5.4 we show that there exists a countable sequence of further
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critical exponents
p k = l  + 2 / (N  + k), k — 0 ,1,2,.... (5.2.9)

It follows from (5.2.8) that in the crucial one-dimensional case, N  =  1, we will con­
centrate on p = po = 3. However, we expect that similarity solutions will govern the 
dynamics for all p, regardless of the conservation property, see Section 5.3.6. More­
over, from (5.2.7) we have that, for N  =  1 any similarity solution for p < 3 must have 
f R fd y  = 0 for all initial data with bounded mass if it is to play a part in the long-time 
behaviour of (5.1.1) in the case of blow-up.

5.2 .2  L ocal a sy m p to tic  properties o f  self-sim ilar so lu tion s

First, we need to describe the possible asymptotics of small solutions to (5.2.3) sat­
isfying f(y )  —> 0 as y —> oo, see (5.2.4). Consider the linearization of (5.2.3) about 
/  = 0,

r + 2( ^ z l ) r + ^ r _ ^ / + | tf/,+ _ £ _ /  =  0> p =  ( iV -l)(N -3 ) . (5.2.10)

Proceeding as in Section 3.2.2, we set z = ya with a  =  4/3 reducing the above to

-  “i f  ~ a2z~xf  +  D (z )f  =  0, (5.2.11)

where a, =  c /4 a 3, a2 =  rr/2(p — l ) a 4 and

3

D M /  =  f {3)
3= 1

is a linear operator with bounded coefficients as 2  -» 0 0 . This equation has exactly 
the form of equations (3.2.10) and (4.2.3) for the particular case m = 2. From that 
previous analysis we immediately have that as y —> 0 0 , there exists

a two-dimensional exponential bundle for the global case o — — 1, and (5.2.12)

a one-dimensional exponential bundle for the blow-up case <7 =  1. (5.2.13)

Equation (5.2.11) also admits solutions with algebraic decay (rather than exponential)
as 2  —> 0 0  described by the first-order operator

- a \ f '  -  a2z~l f  = 0 = >  f ( z )  = cz~3/(2(p~l ) \  c /  0.

For the linearized equation (5.2.10) the leading order behaviour is algebraic,

f(y)  =  A\y\~2̂ p~l)(I +  o(l)) as \y\ 0 0 , (5.2.14)
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with a constant A  ^  0. For blow-up similarity solutions (5.2.6), the limit-time profile
is then bounded for any x ^  0 and has the form (cf. (3.2.16))

us(x,T~) = A\x\~2̂ v~l\

Clearly, this is not an admissible solution for the conservative case given finite initial 
mass and thus for p = po we must have C = 0 and exclusively exponential decay.

5 .2 .3  T h e sp ectra l p rop erties o f  th e  rescaled  linear operators

The structure of the rescaled equation (5.2.2) is very strongly related to the linear 
operators C (3.2.4) and C* (3.3.1) introduced in Chapter 3.2. In fact,

A'(0) =  - A» +  1 » . V  + 5 ^ / S  £  +  « ./, =  (5.2.15)

Thus we can use all the properties of the operators C and C* previously described but 
now we restrict m = 2. This means for instance that the first four eigenvalues and
eignevectors of C are given by (3.3.15).

5.3 Blow-up similarity profiles for p =  3  in one dimension

While the linear part of the ODE (5.2.3) coincides with those previously studied in 
Chapters 3 and 4, the dynamics simplify for the conservative case p =  po = 1 +  2/N  
as the ODE is integrable. Due to this integrability, we will not need to employ the 
//—bifurcation strategy of Chapter 3 to establish existence of solutions, instead we will 
prove it directly. The case, p = 3 and N  =  1 is of key importance in our analysis and 
highlights the typical techniques required to describe a countable subset of similarity 
blow-up patterns.

5.3.1 P relim in aries

The ODE for the similarity profile (5.2.2) can be integrated once to give (with a — 1 ) 

f ' "  + \ y f  + ( f 3Y = 0 for y >0,  / '(0 ) =  0, (5.3.1)

where we have removed the algebraically decaying mode (5.2.14), f(y)  = Ay~l {l +  
o(l)) y —> oo, by looking for L1-solutions satisfying the conservation of mass condition
(5.2.5). It follows from (5.2.13) that we are left with a one-parameter family of decaying 
solutions satisfying

f(y)  =  C,y_1/3 e_/?y4/3(l +  o(l)) as y —► +oo, 0  < C < oo; (3 = 3/44/3, (5.3.2)
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(this asymptotic bundle is generated by the linear part (5.2.10) of the operator). In 
order to construct a solution to (5.3.1) we will use a shooting type argument from 
y =  +oo. All admissible profiles have the asymptotic behaviour (5.3.2) and also satisfy 
the symmetry condition at the origin.

We will now study the behaviour of solutions on the manifold (5.3.2) parameterized by 
C . Denoting f{y \C)  as the function which satisfies equation (5.3.1) with decay from 
the bundle (5.3.2), the goal is to find the set of C, such that

G(C) = /'((); C) = 0. (5.3.3)

Because the function G{C) in (5.3.3) is analytic in C (see below), equation (5.3.3) has 
at most a countable subset of roots which can accumulate at C =  oo only, and this 
actually happens. We begin with the global existence of the family {/(y;C)}.

Lem m a 5.3.1. For any C > 0, the solution f{y \C) to (5.3.1), (5.3.2) is well defined 
for all y G R.

Proof. This follows from the local properties of the operator in (5.3.1) which are close 
to those for the second-order case f "  + f 3 = 0 which, obviously, does not admit blow-up 
of solutions at finite y. Integrating (5.3.1), f "  = —f 3 +  J /  fydy,  multiplying by f  and 
integrating again over a sufficiently small interval yields

\ f ' 2 =  -  j / 4 + \ J  f  j  f v  + const < i  J  | / ' |  J \ f y \  +  const, (5.3.4)

where the right-hand side is not more than quadratic in Therefore, f(y)  cannot 
blow-up at a finite point y* along a sequence since (5.3.4) guarantees that f'(y*) is 
finite. □

In fact, this holds for all p > 1.

5 .3 .2  E x isten ce  o f th e  first m on oton e b low -up sim ilarity  p attern

The proof that there exists a C\ such that (5.3.3) holds involves three steps. First, 
we show in the limit as C -¥ 0+ solutions are strictly monotone decreasing on [0, oo) 
and, second, that in the limit C -¥ +oo all solutions cannot be monotone. Then, 
by a standard continuity argument we have that there must exist an intermediate 
C = C\ > 0 corresponding to an admissible solution.

P ro p o sitio n  5.3.2. For all 0 < C 1, solutions f{y\C) are strictly monotone de­
creasing in y.
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Proof. Rescaling /  =  Cg, we have

9"' +  j 99 +  C2(g3)' =  0 in R+- (5.3.5)

In view of the behaviour at infinity (5.3.2), by standard results on continuous depen­
dence for ODEs (Coddington and Levinson 1955), it follows that as C —> 0+ ,

/(y; C) = C(0o(y) +  o(l)) uniformly in R + , (5.3.6)

where 0o solves the linear ODE <f>" +  \<f>y — 0 satisfying (5.3.2) with C =  1. All
the derivatives of /  converge similarly. Let us now show that 0o(y) is strictly mono­
tone decreasing. Assume that yi is the first (from y = 0 0 ) local maximum point of 
00 > 0o{Vi) — 0 and 0q(y) < 0 on (y ,̂ 0 0 ). Integrating over (y;, 0 0 ), we obtain the 
contradiction, 0q(yi) =  / y°° s<fro(s)ds > 0 . □

P ro p o sitio n  5.3.3. There exists a C* > 0 such that f {y \C *) has a local maximum
point at some y* > 0 and f{y \C *) > 0 on [y*,oo).

Proof. Assume for contradiction that f{y \C)  is strictly monotone decreasing in R+ 
for all C > 0, then /(0 ;C ) > 0. One can see from the rescaled ODE (5.3.5) that the 
solutions /(y ; C) cannot be bounded for y € R+ uniformly in C > 0. Therefore, there 
exists a sequence {Cfc} —>■ 0 0  such that =  /(0; Ck) —> 0 0 . Performing the scaling

9 = f / a k , z = yak, (5.3.7)

we arrive at a perturbed ODE for the sequence {g =  gk(z)}

9k +  {9kY = ~ ^ z9k for * > °> 9k(0) =  1, (5.3.8)

where 0 < gk{z) < 1 and gk{z) is monotone decreasing in 2 . Since {y*;} is a uniformly 
bounded sequence of solutions of the asymptotically perturbed ODE (5.3.8) with regu­
lar coefficients, by the Ascoli-Arzela theorem (Hirsch and Lacombe 1999) and standard 
ODE estimates (Coddington and Levinson 1955), we have that along a subsequence, 
gk —► g uniformly on compact subsets in 2 , where y, 0 < g < 1, must be a monotone 
decreasing solution of the unperturbed ODE

(s" +  a3)' =  o, 5(0) =  1. (5.3.9)

Since all the solutions of (5.3.9) are oscillatory, which is easily checked by integrating 
twice, this leads to a contradiction. Therefore, there exists a sufficiently large C* > 0 
such that /(y ; C*) is not strictly monotone in R + and has a local maximum point. □

T heorem  5.3.4. There exists a constant C\ E (0, C*) such that (5.3.3) holds for
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C =  C\ and fi{y) = f{y',Ci) is a strictly monotone decreasing symmetric positive 
similarity profile.

Proof. Introducing the subset

W\  =  {/i > 0 : f(y\  C ) is strictly monotone decreasing in R + for all C G (0, /x)},

we have that W\ ^  0 by Proposition 5.3.2 and W\  is bounded above by Proposition 
5.3.3. Hence, there exists

Ci = sup W\ < C*, (5.3.10)

where by construction f \(y)  =  /(y ; Ci) is monotone decreasing for y > 0, and it follows 
by inspection of the ODE that f[(y) must vanish at the origin, i.e., (5.3.3) holds. □

We now describe a countable subset of the similarity profiles satisfying (5.3.1) and
(5.3.2) with some C > C\. Similarly, we show that as C increases, the function f(y; C) 
becomes more and more oscillatory for y > 0. Indeed, performing the scaling (5.3.7) 
and passing to the limit C = Ck —>■ oo, we obtain a bounded solution g satisfying
(5.3.9) admitting oscillatory solutions only. Hence, f (y \C )  can have an arbitrarily 
large number of oscillations for y > 0 with C 1. As in the proof of Theorem 5.3.4, 
for any k = 2,3,..., we define the subsets

Wife =  {/i >  Ck- 1 : f(y\  C) has at most k local extrema for y > 0 for all C G [Ck-1, A*)}-

Then, once Ck-1 is known starting with k = 2, we have that Wk /  0 and by the 
oscillatory behaviour for C 1, Wk is bounded from above. Hence, we define

Ck = sup Wk > Cfc-i, k = 2 ,3 ,..., (5.3.11)

and by construction, fk{y) =  f(y\Ck)  satisfies the symmetry condition at the origin 
(otherwise, it is not the supremum in (5.3.11)).

Such a construction, while giving an infinite sequence of similarity profiles, does not 
describe the important properties of the functions fk{y), such as positivity (or at least 
“positivity dominance”) nor the actual distribution of local extrema and inflection 
points of the profiles. This will be done by a more delicate asymptotic matching pro­
cedure. These results are formal but some of them can be rigorously justified asymp­
totically, as k -> oo.
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F a s t-s c a ie  oscillations

Transition
region

Inner region Far—field behaviour

Figure 5.1: Sketch of the regions for construction of asymptotic profiles.

5.3.3 A sym p totic  construction  o f a countable subset o f sim ilarity pro­
files

As is common in matched asymptotics expansions, we will consider three regions (as 
described in Figure 5.1). The two primary regions are the inner region localized near the 
origin, where the solution is concentrated, and a far-field outer region as described by 
the asymptotic bundle (5.3.2). Joining the two is a narrow transition region. Because 
the characteristics of the family are determined by the far-field behaviour, we will begin 
by considering the refined aymptotics as y —>• oo.

O uter region: th e  far field behaviour. To determine the asymptotic behaviour as 
y —> oo in greater detail, we produce a refined asymptotic description of solutions from 
the exponential bundle (5.3.2). Because we are interested in the analyticity of G(C) 
we will write /  as a power series of the form

f ( y , c )  = Z ~ =0c 2n+lMy),(5.3.12)

where 0o is given in (5.3.6) and the rest of the terms are obtained from the relation 

£<fin =  4>n +  j y<f>n =  -  ^ 2  (<t>i<t>j<t>k)', n = 2 ,3 ,..., (5.3.13)

i+j+k=n+l

with the condition 4>n{y) = o((f)o(y)) as y —> oo. Using the expansion (5.3.2), it can be
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shown that for y »  1,

M v )  = [7» + o((i + y)-1)] 

with suitable constants |7 „| < 1. By direct substitution

(5.3.14)

7n + l
4(3

=  —(2 n +  !)■y  J 2
1 <i,j,k<n 

i+j+k=n+ 1

hence,

|7n + l  | <
(2n +  l ) f

<

\  -  ( (2 n d -1 )^ )

3322/3 1
13 (2n +  l)2

53 w j i k
1 <i,j,k<n 

i+j+k=n+ 1

5 ^  l i l j l k
l<i,j,k<n

i+ j+ f e = n + l

for n > 1.

However, there are (£) =  n(n  +  l)/2  terms in the sum, thus,

i | ^  33 n(n + 1 ) , 3 ^  33 . 3
l^n+il - 1 3 2 i / 3  (2n +  l ) 2 7  -  1 3  2 ?/ 3 7  ’

where 7  =  maxf<n |7 f| Since 33/(1327/3) <  1, taking 7 0  =  1 and recognizing that this 
formula is valid for all n >  1 we may take 7  =  7 0  =  1 implying |7 n| < 1 for all n.

Moreover, the right-hand side of (5.3.14) gives uniform estimates of </>n in R + , which 
establish convergence of (5.3.12) for y > yo 1. By the Weierstrass theorem (Hirsch 
and Lacombe 1999), the solution /(y ; C) in (5.3.12) obtained as a uniformly converging 
series of analytic functions is analytic in C at least for yo 1. Therefore, on extension 
to y G [0, yo)? as a solution of an ODE with analytic coefficients and analytic dependence 
on C in the Dirichlet boundary condition at y =  yo, it is analytic in C for any y € R+ 
(Coddington and Levinson 1955). Hence, (5.3.3) is an analytic function having isolated 
zeros only and we arrive at the following conclusion.

P ro p o sitio n  5.3.5. The problem (5.3.1), (5.3.2) has at most a countable subset of 
solutions.

From this Proposition we expect that the discrete nature of the function G(C) will be 
made evident by close examination of the inner and transition regions.

A singu lar p e r tu rb a tio n  problem . We begin by looking for possible solutions
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localized in a neighbourhood of the origin y = 0. We rescale as

f ( y )  =  ag(z)i y  = az, where a -  /(0; C), (5.3.15)

with a an as yet unspecified function of C (to be determined for the similarity pro­
files fk(y))- Under the assumption that a(C) —> oo as C —> oo (possibly along a
subsequence), we define

€ = a-4 <  1,

and under the rescaling (5.3.15), equation (5.3.1) leads to a singularly perturbed ODE

eg"' +  - z g  +  (g3)' =  0. (5.3.16)

We supplement this with the conditions

0(0) =  1, </(0) =  0, g"(0)=be-m, (5.3.17)

where b and m > 0 are as yet unspecified. In order to match to the known asymptotic 
behaviour, we will also require that g has the correct asymptotic behaviour as 2  —> oo. 
At first glance this problem may appear to be over specified as we have a third-order 
problem and four conditions. However, as there can be only a countable set of solutions, 
we also need a way to distinguish the admissible values of e and hence the set Ck such 
that G(Ck) =  0.

The specific requirement g"{0) = be~rn is arbitrary and made for convenience only. 
It indicates that a faster scale will be necessary to resolve the additional oscillatory 
structure as described by the perturbed problem (5.3.8). A standard single scale ex­
pansion can be carried out but gives the asymptotic expression G(C) =  0 which is 
clearly unsatisfactory.

T he inner region. In the inner region we pose an expansion of the form

9(z) =  go(z) +001 CM) +  o(0), |0| <  1 (5.3.18)

with the scale 0 and the variable t{z) as yet unspecified. The leading solution, go(z) is 
determined by

\ z g o  + (go)' =  0, 00 (0) = 1,

and hence
/  z2\  1/2

9o(z) =  ^  -  - J  . (5.3.19)

To leading order, this also satisfies </(0) =  <7q(0) =  0 but not the condition on the 
second derivative. Most importantly, this solution is only defined on z E (0, y/l2). In
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order to meet the condition g"(0) =  be 771, we introduce the fast scale 2  =  el!2Z  whence

£ 3  l  £l/2 3 2 ^ .  =Q
dZ* 4 y y dZ

and define
t = t(j st\ (5.3.20)

with the function to =  h(Z) as yet unspecfied.

Under this change of variables for g = g(z, t) we have

\ d t 3 (ft')2 dt2 (ft')3 d t j  4 (ft')3 (ft')2 d ^ S J  ̂ ^

where
dg _  d# e1/2
dt d t ~ ^ h ,(Z )d z '

Using (5.3.18) in (5.3.21) defines a sequence of problems at the various asymptotic 
orders:

S ! + ( i f F # - 0' (s“ 2)

|s“ >
0(6) ■ £ $ 1  + 3go a (gQgi) -  0  (5 3 24)
U(V) ■ at3  +  ( f t ' ) 2  at -  l 5 • '5 • 2 4 ,

l / 2 m  3  , *  (  d 29 l \  , 3 f n  d 90 , 2 d 9 l \ _ n ( r o o r )
° (e e): h/afidz  4^| ( Sl _  ~dt? J (ft7)3 (  So91 So s f )  (5-3-25)

By definition the leading order equation (5.3.22) is satisfied by go(z)- From the 0(9)
equation we have separation of the fast and slow scales only if

(ft')2 =  So2-

Thus, to leading order,

With this definition of t the 0(e)  equation, (5.3.23), is also satisfied by go(z). Further, 
the definition of t — h(Z) and the boundary conditions applied at t =  2  =  0 imply that 
the solution to (5.3.24) equation is given by

gi (z, t) = B(z) (1  — cos V s t ).
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Figure 5.2: Convergence of numerical solutions to * M .

The s ^ - v a r y in g  envelope S W is d e te rn .ned oi
 ̂ the final equation (5.3.25),

Combining all this together we have

S  -  -  hence * ( , )  =  *
3go(z)

9 90(Z) + °7oW (1 ~ C0S ^  +  o(9), (5.3.27)
where # =  m .:

reqmres m <  1 and we havfi ^  ^

The transition  reerion T’Vi
not satisfy the far-field * 6 (0, ^  and does

* and solution in the transition r e g ^ ^  “ “  * *

z  = Vi2 +  e>/»,,
(5.3.28)

In the transition region, gsolves

5? + tO/i2+<>/.,)5+J  (s, , , 0 

p”"‘ * " 5— « « •  -  »
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which has a one-parameter family of exponentially decaying solutions

s1/6*
g0 ~  A0e 21/3 as  ̂—> 0 0 , (5.3.31)

and a three-parameter family of slowly growing solutions,

9o -
- r \ 1/ 2

3V2 + a 1
(-zyn +  <22'

COS 33/ 4
( - 2 )1/2

+ <23 ( - * ) 1 /2
as z —* —0 0 .

(5.3.32)
This behaviour may be determined in the standard way by setting <70 =~0 o + 9h where 
I01I ^  \go\- The leading equation for g\ is

d3gi , V3_ (zgiY n
^  + ^ 91- ^ 7 T  = 0’

which has an exact solution in terms of the Airy functions Ai and Bi, 

gi = c\Ai2(z) -I- C2 Ai(z)Bi(z) + c$Bi2(z), q G R.

(5.3.33)

(5.3.34)

This fact is important for the reliable numerical integration of (5.3.30).

M atching. To determine the sequence {Cfc, k 1} and the corresponding values 
/ ( 0 ; Ck) =  a(Cfc), we match the inner and outer solutions to the asymptotic behaviour 
of the transition region. Expanding the components of the inner solution (5.3.27) near 
the transition point, we have

= e i/6 ( - J - )  ( l  +  ei / 3 _ ! _  +  )
V 3 V2 A  + 8 3 i / 2  / ’ (5.3.35)

9i =e~1/6b g.) 1/2
y/3to 2 - \3 /2  • y/sto . 2 - \3/2

1 ~ cos 7172"c o s  3 3 /4  ” Sln 7172"Sln ̂ 3 /4

(5.3.36)

Thus, in this region, g ~  go +  9g\ =  Ofe1/6) +  O(0e x/6) and g = 0(1) +  0(6e 1/3) 
which only matches completely for 9 =  e1/3, or m =  2/3. Re-defining the coefficients 
in (5.3.32) by

00 -

- ^ X 1/2

31/ 2 y ' ( - z ) 1*2 

we have agreement when

+
ai

1 ”  fl2 cos 5 ^ 4  (~ z ? /2 -  a 3 sin 7 ^ j z ( - z f /2 (5.3.37)

31/2*, 31/2*,
01 =  63 3/4, q2 =  cos 1/2/ , <23 =  sin —l7/,1 /2  ’ (5.3.38)
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where t f  =  y j  1 — yjdu =  -3-y - . Notice in particular that this demands

a\ + a\ = l .  (5.3.39)

To determine the values of the parameters Ai and ai we notice that equation (5.3.30) 
is translation invariant, as is the asymptotic behaviour for z —> oo, but not (to leading 
order) as z -> —oo. To see this we consider the solution to (5.3.30) as a shooting 
problem in the single parameter Ao. However,

21/ 3
g(z]A0) = g ( z - z 0',l), where zQ = - ^ \ n A o .

Clearly this translation does not change the ODE. To leading order, this same trans­
lation only affects the coefficient di in (5.3.32),

a\ i—> a\ +  ^ qi/ 4  5 ^  0 3 . (5.3.40)

However, such a translation generically destroys the rescaling from (5.3.32) to (5.3.37). 
Thus, we must look for Ao such that we have the exact form (5.3.37). From the 
translation argument we have that a\ is monotone increasing in A q and the constraint 
(5.3.39) implies, by simple algebra, that there are precisely two sets of solutions which 
are simply the negatives of each other. Hence there are two possible solutions satisfying

u  1 =  —0 1 , Q-2 =  —0-2, 0-3 =  —0-3,

where a\ — ai(ylo) and ai =  ai(A i) related by

A1 =  A0e -a,/'*1/*, ‘ .

Numerical computation gives these two values to be ...

Ao ~  .045..., A\ ~  .448..., ai ~  .341... .

Using this value for ai in the asymptotic expression (5.3.27) gives excellent agreement 
for z near zero to full numerical solutions, as seen in Figure 5.3.

In the far field, the behaviour has the form

g ^  C,e1/12z - 1/3e - 'sl24/324/3/£l/3 

and matching to the transition region gives

4 .  =  (5.3.41)

130



5.3 B l o w - u p  s i m i l a r i t y  p r o f i l e s  f o r  p = 3 i n  o n e  d i m e n s i o n

1

0.8

1 1 1 -- l l 1 1

oT0 6 A f t
d?

0.4 V  .

0.2 1 '
0

0.5 1 1.5 2  2.5 3 3.5 - 
y

t

Figure 5.3: Comparison of numerical and asymptotic solutions

which, recognizing that Ai =  0 (1 ) fixes 2

0 e 1 2 r>fi In In C 
- =  2  3  (In C)3 1 2 3  ( ln C T + -  3 8  C _>0°'

Most importantly, given that a<i and 0 3  are unique (up to a change in sign in both
coefficients), we have from (5.3.38)

3*7t
2£ i/2  =  k7r + (<̂  +  °(1))7r’ (5.3.42)

for an unknown phase shift (j)/n. Using this in the definition of e gives

[2k
aic = V ~3~ as « — 0 0 .

Also, the discrete spectrum is fixed

Ck ~  k l/*e*>'V'V3''>

Using the computed values of the coefficients and expansions we present a comparision
of the numerical and asymptotic solutions in Figure 5.3. Notice the phase lag in the to~
variable. This can be corrected by further terms in the expansion but, even to this order
captures the correct number of fast scale oscillations. The Z  variable over-predicts this
by about one half for this value of e.

2Further expansion of (5.3.41) also determines A i  but not a\. (J.D. Evans, personal communication, 
2003)
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N um erical solution in the  transition  region. Because of the fast oscillation in 
(5.3.32) and the slow convergence to this profile (the next terms are 0(1 /z)), the 
accurate numerical computation of the coefficients (5.3.41) is not straightforward, in 
many ways it is the most difficult ODE problem in this thesis. In fact, it is known that 
for second-order equations of the type

y"^)  +  g(t)y{t) =  0, g(t) oo as t ->• oo

(of which the Airy functions are particular solutions) standard Runge-Kutta or Linear 
Multi-step Methods are not only poorly suited, but are incapable of producing reliable 
solutions in double precision arithmetic for large t (Iserles 2002b). As such, the values 
were computed using a Modified Magnus Method employing Filon quadratures (Iserles 
2002a, Iserles 2003).

5.3.4 N um erical solution  of the ODE

In (5.3.3) we introduced the shooting function G whose zeroes correspond to admis­
sible blow-up profiles. By numerically integrating the ODE (5.3.1) with the far-field 
behaviour (5.3.2), we have been able to approximate this function, as seen in Figure 
5.4. Labelling, as above, the solutions to (5.3.1) corresponding to the n—th zero of G 
as /„ , we find that f n(y) has precisely n maxima on R. In Figure 5.5 we present the 
first profile / i  given in Theorem 5.3.4, which has the simplest bell-shaped form. It is 
evolutionarily stable for a broad range of initial data (see the next Section). For visual 
clarity we separately present the profiles {/i+4n} and {/2+4n} for n = 0,..., 15.

T h e  shoo ting  function

0.5

Oo'

-0 .5

-1 .5

C

Figure 5.4: Numerical approximation to G(C).
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Fundamental solution

>.

0.5

y
Sample solutions with f'(0) < 0

Sample solutions with f”(0) > 0

y

Figure 5.5: Various numerical solutions to (5.3.1)

5.3.5 E xponential asym ptotic  stab ility  o f th e first blow-up pattern  
w ith  profile f \ :  num erical evidence

Proposition 5.3.5 together with the above matching analysis for k 1 imply that there 
is a discrete family of solutions to the similarity ODE, and hence a discrete subset of 
admissible masses for the final time profiles

Mk = J  fk(y)dy, 1,2,..., . (5.3.43)

We now justify that the first blow-up pattern with profile f \  is the only stable one.

Returning to the rescaled evolutionary PDE (5.2.2) which for N  =  1 and p = 3 takes 
the form

0T = A(0) =  —Oyyyy ~ ~(0y)y — (0^)y, (5.3.44)

with initial data Oq we study the asymptotic behaviour of the global orbit {#(t)}. First 
we prove the following property of its a;-limit set u>(0q).

P roposition  5.3.6. With the definition (5.2.1) of the rescaled solution,

O £ lj{0o). (5.3.45)

Proof. We have from (5.3.44) that A'(0) = C — \ l  with known spectral and sectorial 
properties (see section 3.3) and by Lemma 3.3.1 <t(A'(0)) =  {—{k +  l)/4 , k > 0}. 
The principle of the linearized stability (Lunardi 1995, Chap. 9) implies that any 
sufficiently small solution 9{r) decays as r  —> oo exponentially fast and that for some
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constant Co > 0,
\6(y,r)\ < Coe-T/4 uniformly in R.

Then one can see that from scaling (5.2.1) with p = 3 we have \u(x,t)\ < Co for all 
t ~  T ~ , i.e., u does not blow-up at t — T  contradicting the choice of the scaling 
parameters. □

The linear part of the operator A, C  — is not self-adjoint and we do not expect 
that A is a potential operator nor that (5.3.44) is a gradient system. Therefore, the 
stability properties of the first similarity profile f i  depend on the spectrum of the 
linearized operator

A '(/i)  =  C -  1 /  -  (5.3.46)

, K  M f ! ) r  M d  2 <P
4 dy2 dy dy h  dy2’

where we use the functional setting similar to that for C  in Section 5.2.3.

P ro p o sitio n  5.3.7. A '( f i )  : Hp —¥ L2 is a bounded linear operator with the discrete 
spectrum <r(A'(h)) =  {«}•

Proof. We recall that by Theorem 5.3.4, f\(y)  has exponential decay as y -> oo, so 
that (5.3.46) is a lower-order perturbation with smooth, bounded and exponentially 
decaying coefficients of the operator (3.2.4) and hence A '(/i)  is a bounded operator; 
see (Gohkberg and Krein 1969). In view ofthe known spectrum of C  having a compact 
resolvent (C — A/)-1 in L 2p (Egorov et al. 2002) and taking (A '(/i) — c/)_1 with a con­
stant c »  1, we have that the additional terms in (5.3.46) form a compact perturbation 
of the integral operator. Hence, the spectrum of A '(/i)  is discrete. □

Note that the two first real positive eigenvalues of A7(/i) are easily calculated explicitly:

^o =  l, (f>o = { y h ( y ) ) '  and Mi =  1/4, <f>i =  f[(y), (5.3.47)

corresponding to the invariance of the original PDE (5.1.1) under the group of transla­
tions in t and x  respectively. As is usual in blow-up problems, since the blow-up scaling
(5.2.1) does not admit such translations (the time T  and the blow-up point x = 0 are 
fixed), these unstable modes are not available for the rescaled PDE (5.3.44).

An actual estimate of the real part of the remainder of the eigenvalues {pi, I > 2}  C C 
of A '(/i)  is non-trivial. Instead we present a numerical calculation, from directly 
simulating the PDE, in Figure 5.1.1a. We have chosen symmetric monotone decreasing 
initial data having a smaller mass

/  u0 < Mi =  J  f i
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than the similarity solution. Figure 5.1.1b shows the time-evolution of the mass of 
this solution for r  »  1 establishing convergence to M\ (recall from Chapter 2 that 
our numerical scheme was designed to preserve mass). From a variety of numerical 
experiments, we conjecture that the next eigenvalue satisfies

Re fi2 — —.51....

This calculation is based on measuring the L°° convergence in the rescaled co-ordinates 
over a compact set in the similarity variable y. Measurement over all of x shows

Re H2 — —1/4

instead. This is understood analagously to Propostion 5.3.6. Solutions with mass 
different from the final time profile cannot, because of conservation, lose that mass, 
but, similarly, it cannot contribute to the final-time profile in the rescaled co-ordinates. 
This extra mass (positive or negative) is damped to zero in the rescaled co-ordinates 
as described in Propostion 5.3.6 and hence with exponential rate —1/4. However, this 
is not a property of the linearized operator about the first similarity profile. This 
discrepancy is indicated in Figure 5.6. Numerical simulation of the full PDE with

—  10 '

slope -  .25

£ 10'

L = 5
slope -  - .49

L = 0
slope -  -.51

30
T

Figure 5.6: Rate of convergence to the similarity profile.

stationary profiles other than f \  shows them to be exponentially unstable and the 
linearized operator

A '( fk) = C - \ l - 3 - ^ ( f 2kI) (5.3.48)
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has eigenvalues with positive real parts. Ordering the sequence of eigenvalues {pi} such 
that their real parts are non-increasing, means that

Re > 0 for all k > 2. (5.3.49)

This has been checked numerically in a number of PDE experiments. For instance, 
Figures 5.1.1c and 5.1.Id display the unstable evolution given by the initial function 
Oo = /s with the larger mass f  0o = f  f  5 > f  f  l-

1 6

1.4

1 2

1
0 8

0 6
0.4

0 2

0

Motion of mass in resoaled coordinates

Evolution of unstable initial data in rescaled oo-ordnatos Motion of mass in resoaled coordinates
10

9

8
7

6€
5ar
4

3

2

1

10* 10* 104 10*30
i*y

Figure 5.7: Evolution of solutions to (5.1.1). (a) Convergence to f \  in rescaled co­
ordinates. (b) Motion of the mass for initial mass f  uo < f  fi- (c) Instability of f$. 
(d) Motion of the mass for initial mass f  uq = f  f  5 > f  f  1 •

5.3.6 G en era l p

The case of general p is more complicated than for the conservative case as without 
conservation the ODE remains truly fourth-order. One seeming exception to this is 
the second critical exponent p\ = 2 (recall (5.2.8)) for which one can also derive a 
third-order ODE. These are the solutions which conserve momentum. For simplicity
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we consider only N  = 1. Multiplying by x in the PDE (5.1.1) we have

0 = -  J^x(uxx + up)xxdx = ^ J ^ u x d x  =  (T -* )1/2(p 1)+1/2 f{y)ydy

Thus, pi =  2 defines the exponent for which momentum is conserved (generically, 
Pi = l + 2/(iV + l)). Multiplying the ODE (in R) with y and integrating we have

f"'y -  S" +  \v2f  + ( f 2) ' y - f 2 =  -/"(o) -  / 2(o) = c  R, (5.3.50)

where the constant C determines the size of algebraic decay at infinity. Recall that from 
(5.2.14) with p = 2 the asymptotic algebraic behaviour is f (y)  ~  4C /y2 for y^> 1. For 
the case C = 0, the far-field behaviour is purely exponential. However, for this case

/"(0) =  - / 2(0) < 0,

thus there are only such solutions with a local maximum at the origin (recall Figure 
5.5). This family, { / =  /p(p)}, may be investigated by integrating (5.3.50) from y = 0 
subject to

/(0  ) = / ! ,  /'(0) =  0, /"(0  ) =  - / i 2, MSR,

looking for p such that f (y)  —> 0 exponentially fast as y —> oo. Numerical experiment 
indicates there is only one such solution and that it has non-zero mass, f  > 0 and 
hence can play no part in the asymptotics of the full PDE.

1 5

1

Exponentially decaying solution

0
-0.50 05 1.6 2

y
2.515 1 3 3.5 4

Figure 5.8: Solutions to (5.3.50). (a) The solution with exponential decay and the 
fundamental algebraically decaying one. (b) Examples from the family of algebraically 
decaying solutions.

For C not identically zero solutions can again be constructed by continuation in C but 
now the condition of zero mass must be enforced creating, once again, a fourth-order
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system. For all C G R  we solve

f ' y  -  f "  + \ y 2f  + i f 2)'y - f 2 = c  

F' = f

F(0) =  0, lim F = 0, /  —> C ly2 as y -> o o
!/-> oo

for C such that /'(0 ; C) =  0. In Figure 5.8 we present example solutions with algebraic 
decay as well as the exponentially decaying profile. For the algebraic solutions, a 
similar rescaling and singular perturbation approach may be employed to construct the 
countable spectrum of solutions as for the case p =  3. Notice however that now the inner 
solution is defined on a region which is independent of C and that the inner solutions 
have oscillations whose amplitude is also independent of C, cf. Figure 5.5. By direct 
simulation of the full PDE with various values of p ^  3 we conjecture that solutions 
to (5.2.3) govern the blow-up dynamics for all p, not just in the conservative case. 
For instance, for p = 2 solutions converge, on compact sets in y, to the fundamental 
algrebraically decaying solution in Figure 5.8a.

5.4 Global similarity and approximate similarity patterns

Taking a = — 1 (and T =  0) in (5.2.1) yields the rescaling of global in time solutions. 
We now study the asymptotic behaviour as r  —> oo of solutions satisfying the parabolic 
PDE

eT =  a (0 )  =  -A (A 0  +  e”) + \ y - v e  + (5-4.i)

5.4 .1  S im ilarity  p a ttern s for th e  one-d im ensional equation  w ith  p =  3

As in the case of blow-up in Section 5.3, we begin with the analysis of global self-similar 
solutions

us{x, t) = t~1/4f ( y ), y = x / t 1/4, 

where /  satisfies the ODE obtained from (5.2.3), (5.2.2) by integration

f " ' - \ y f  + ( f ) '  = 0, / ' ( 0) =  0. (5.4.2)

We are looking for profiles /  with exponential decay at infinity, so that these are L 1- 
solutions satisfying the conservation law (5.2.5). Recall that unlike the blow-up case
(5.3.1), the ODE (5.4.2) admits a two-dimensional exponential bundle as y -» oo (cf. 
(5.2.12)). This essentially simplifies the existence analysis and implies a continuous 
subset of similarity profiles.
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T heorem  5.4.1. The ODE (5.4.2) has an unbounded continuous family of exponen­
tially decaying solutions.

Proof. Step 1: asymptotics as y —> oo. By a standard local analysis, one can check that, 
in addition to the two-dimensional exponential bundle of solutions (5.2.12) and those 
with the algebraic decay (5.2.14), (5.4.2) has a three-dimensional bundle of growing 
solutions as y -» oo

m  = 7 E +1y
Cl cos +  C2 sin ( + C 3 + ..., (5.4.3)

where Ci, C2 , C3 are arbitrary parameters.

Step 2: shooting argument. Fix a constant a > 0 and by f(y; C ) denote the solution of 
(5.4.2) with conditions

/  (0) =  a, /"(0) =  C.

As in Section 5.3, one can show that f{y\ C ) is globally defined. Using the stability of 
the three-dimensional bundle (5.4.3) concentrated around the stable explicit solution

f*(y) = y / ' / i 2 - + 0 0 , y-+  0 0 , (5.4.4)

we have that there exists a sufficiently large Ci > 0 such that /  (y; C) belongs to the 
bundle (5.4.3) for all C > C\. Such profiles may be constructed in the limit C -> 0 0  

using the rescaling g(z) = f{y)/a , z = yy/C/a.  On the other hand, via symmetry by 
reflection, for all —C »  1 , f(y )  approaches as y —> 0 0  the bundle around the explicit 
profile —f*(y). Introducing the subset

W  =  {p < Ci : f(y ;C )  belongs to (5.4.3) for all C G (//, Ci)},

we have that there exists a finite C =  inf W, and by construction, C =  C(a) provides 
us with a profile f(y\C(a))  which belongs to the exponential bundle (5.2.12) as y —> 0 0 .

□

Note that this implies that there exists a solution with all /(0) =  a G R. On Figure 
5.9 we present the bifurcation mass-diagram of this continuous family of similarity 
profiles. As we already know, there exists another case p = 2, N  =  1, where the fourth- 
order ODE (5.2.3) reduces to a simpler third-order one. The existence results here are 
quite similar and the family of solutions is continuous. The shooting approach may be 
extended to one-dimensional or radial ODEs for arbitrary p and dimension N,  where 
some critical cases occur to be studied next.
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Figure 5.9: Mass bifurcation diagram.

5.4.2 T h e  m in im al m ass-b ran ch  is e v o lu tio n a rily  s tab le

It follows from Figure 5.9 that for any fixed initial mass mo =  f  uo /  0 there exists 
a finite (or empty if |/u o | > m*) subset of similarity solution with the given mass. 
Moreover, for mo = 0 besides f ( y ) =  0, there exists a countable family of such solutions. 
The crucial problem for such a case is the stability of those solutions in the PDE sense. 
Let us show that the minimal branch in Figure 5.9 corresponding to the limit

/  -> 0 as m0 -+ 0 (5.4.5)

is evolutionarily stable at least for all small masses mo > 0 (or mo < 0 setting /  »-> —/). 
As a typical example, we perform such computations for the TV-dimensional case bearing 
in mind that the first critical exponent is now p = po = 1 +  2/TV. Consider the 
corresponding elliptic equation

A (/) =  - A 2/  +  l y  • V / +  -  A /p =  0, (5.4.6)

First, as an example, we establish a local result on the existence of such similarity 
patterns.

P roposition  5.4.2. Let p = po- For any sufficiently small mo, (5.4.6) admits a solu­
tion satisfying

f  = moF +  O(mp) (with F is as in (3.3.4)). (5.4.7)
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Proof. Setting /  =  tuqv yields the perturbed equation

C*v =  \m0\p- 1A vp, J v  = l- (5.4.8)

Using the spectral properties of £*, as described in Lemma 3.3.1, we look for a solution 
v =  F  +  w, where w G CL{F} (note that Ao =  0 is simple), and obtain solvability for 
sufficiently small masses as in the proof of Theorem 4.4.3. □

To study the stability of this branch, we consider the linearized operator

A'(/)Y = C Y  -  A(p|/p-'Y) = C Y  + |mo|2/wA(p|/|p-1y) + .... (5.4.9)

For small mo, A '( / )  is a perturbation of C* with the known spectrum (3.3.9). Similarly 
to Theorem 4.4.3 we have that A '(/)  has a discrete spectrum which is a perturbation 
of that of C*. Recall from the orthogonality condition (3.3.14) that ipQ = F  is the only 
eigenfunction of C* with non-zero mass (in fact it equals unity, see (3.3.4)). Thus, re­
quiring that the mass of profiles be preserved means that the eigenfunctions Y  of A '(/)  
must come from £*J~(F) and that the eigenvalues are perturbations of the eigenvalues 
of jC* for / > 1 i.e. no perturbation of the first eigenvalue Ao =  0 may occur as a 
change in this eigenvalue would lead to a change in time of the mass of the solution. 
Proceeding as Section 4.4 we have, by direct calculation, that, to leading order, the 
perturbed spectrum is given by

(̂A'CO) = + \ m 0 \2 / N  (A (p |« rV r^ i) ,i  = |

This guarantees that, in the limit of small mo the real parts of the eigenvalues are 
bounded away from zero from below and that this branch is stable. Note that this 
expansion is not valid near the subsequent zeros of mass seen in Figure 5.9 as the L°° 
norm is not zero and hence the form (5.4.7) does not hold.

5 .4 .3  T h e  p -b ifu rc a tio n  d ia g ra m  fo r s im ila r i ty  p ro files

In order to understand the global bifurcation diagram of similarity profiles, we need to 
determine the spectrum of critical exponents. Writing the elliptic equation (5.2.3) in 
the form

£ * f  +  c*/ =  A f  in R ^ , f(y )  —> 0 exponentially fast as y —> oo, (5.4.10)

we proceed as in Section 4.4.

P ro p o sitio n  5.4.3. Let, for an integer I > 0, the eigenvalue A/ =  —//4  of the operator
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(3.2.4) be of odd multiplicity. Then the critical exponents

Pi =  l +  2/(JV +  Z), Z =  0,1,2,... (5.4.11)

are bifurcation points for the problem (5.4.10).

After performing a smooth truncation of the nonlinearity A f p the proof follows anal- 
gously to that of Proposition 4.4.1.

By using the explicit representation of the resolvent of C* (Egorov et al. 2002), this 
differential equation reduces to an integral one with compact Hammerstein’s operators 
to which the classical nonlinear bifurcation techniques (Krasnosel’skii and Zabreiko 
1984) applies. Using this approach, asin Section 4.4, we briefly describe the results 
calculated directly from the differential equation.

By Lemma 3.3.1, the linear operator in (5.4.10) has the spectrum a(C* — c*I) =  
{c* — Z/4, I > 0}. Therefore, any p for which c* — 1/4 =  0, i.e., the critical exponents 
(5.4.11) are bifurcation points for problem (5.4.10) provided that A* =  —1/4 is of 
odd multiplicity (e.g., this is always true for N  =  1 or in the radial geometry where 
the eigenvalues are always simple). In order to describe the local behaviour of the 
bifurcation branches at p ~  pi, we fix an I and set

p = p i+ e  with pi =  1 4- 2 /(IV + 1).

It follows that c* =  Z/4 — me +  0 (e2), with m =  (N  +  I)2/ 8, so that equation (5.4.10) 
takes the form

(c* + \nf-  w e / +  0(£2) =  A /p. (5.4.12)

Using the Lyapunov-Schmidt method ((Krasnosel’skii and Zabreiko 1984), Chap. 8), 
we find that near the bifurcation point the solution takes the form

/  = tyi(pi ~  p)]-1^ p-1V* +  — as p -* p f , where vi =  (N  + 1)2/S ki (5.4.13)

and
ki = (A(ip*)Pl,ipi) = (('ipi)Pl, Aipi) . (5.4.14)

The expansion (5.4.13) is written down under the assumption that (5.4.14) holds, which 
is to be checked numerically. Notice however, that

kq = k\ = 0, for all N  > 1,

as ipo = 1 and 'ipi is linear. Thus the branches leave these bifurcation points vertically, 
suggesting a continuous family of solutions for these critical exponents. Of course, this 
is consistent with Theorem 5.4.1. Also, liml —>■ oo ki =  0.
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O n s tab ility  of th e  p2-branch . Let us now show that the first non-vertical branch, 
from p =  p2 , is stable for p «  p2 - This is done by estimating the real paxts of the 
eigenvalues of the linearized operator given in (5.4.10), which for / =  2 has the form

A'(/) = £* + i j  + £C + o(e), C = WJ +  P 2 V 2 & M Y * ,  (5-4.15)

where we substitute the expansion of /  given by (5.4.13). By {A/ =  Ai{s)}, e = P2 — p, 
we denote the discrete spectrum of A '( /) .

For N  = 1, due to conservation of mass (for any p < po = 3) and of momentum (for 
any p < p\ =  2), the first modes with positive unperturbed eigenvalues of C* +  \ l  
(e =  0), Ao(0) =  1/2 and Ai(0) =  1/4 are not taken into account and we need to 
check the perturbed third eigenvalue ^ (e ) . The same holds for N  > 1 in the radial 
setting deleting all eigenvalues corresponding to asymmetric eigenfunctions and hence 
Ai. Since this unperturbed eigenvalue vanishes, A2 (0 ) =  0, by the perturbation methods 
(Gohkberg and Krein 1969), the eigenvalue expansion takes the form A2 (e) =  ep, + o(e) 
with the eigenfunction tp(e) = fa  +  e<p +  o(e). Substituting these approximations into 
the eigenvalue equation

A ;(/)^2(e) =  A 2(e)^(e),

similar to computations in the proof of Theorem 4.4.3 we obtain from the orthogonality 
condition that p — — (N  +  2)/4. Hence, for small e — p2 — p > 0,

A2 (e) =  ~(P2 —p){N  +  2)/4 +  o(p2 - p ) ,  i.e., Re A2(e) < 0. (5.4.16)

This means the exponential asymptotic stability of the similarity patterns on the p2 ~ 
bifurcation branch for all p2 —p > 0 sufficiently small. We expect that the whole branch 
remains stable but this needs to be justified numerically (or otherwise).
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Chapter 6

Conclusions and further work

This thesis is devoted to the study of the general principles of singularity formation 
phenomena for higher-order nonlinear parabolic equations. This work has its roots in 
the long and important study of second-order quasilinear heat equations, with many 
important questions answered by the mid 1990s. While the main analytical tool for this 
original work, the Maximum Principle, is no longer available for higher-order problems, 
many of the known phenomena persist. We have undertaken this study with a mixture 
of analysis, asymptotics and numerical computation of both PDEs and ODEs. While 
this work is broad it is by no means complete. In fact, there are many directions that it 
can be continued. First and foremost, while we have achieved a certain understanding 
of these phenomena, many results remain unproven. For this, fundamentally new 
mathematics will be required as the current tools are insufficient. I do not see this 
occuring in the near future. There are however many areas of immediate concern.

6.1 Extension to quasilinear models

All the problems discussed have been semilinear. One natural continuation is to quasi­
linear and eventually fully nonlinear problems. The results of Chapter 3 generalize 
immediately to the problem

ut = u(—(—A )mu + up), x  G H N,u > 0,p > 1,

which is a generalization of a model from plasma physics for m  = 1 (Friedman and 
McLeod 1986) and of curve shortening flows (Angenent and Velazquez 1995). Looking 
for finite-time blow-up solutions, we introduce the rescaled co-ordinates

6 ( y ,T ) = u ( x , t ) l { T - t ) llr, y = x / ( T  -  t)(p-D/2̂ ,  r  =  - l n ( T - i ) ,
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whence 0 solves
eT = + O’’) + - V 0 + - .

2 mp p

Linearizing, as in Chapter 3, about the constant solution 1 /p llp shows that the spec­
trum of the new linearized operator is precisely a shift of that of C. Moreover, this 
shift gives a very simple estimate for the number of similarity solutions available, there 
should be at least k solutions for p > pk = k /(k  — 2m). In the limit case k -» oo,i.e. 
p ->> 1+ we can construct the countable spectrum of solutions exactly. These are 
regional blow-up profiles of the form (for m =  2)

u(x,t) = ( T - t ) _1/ W

where f (x )  solves

- f " n + f  = 0, x e ( - x k,x k), 

f  = 0 else,

f { ~ x k) =  f ' { - x k) =  f " { - x k) = f ( x k) = f ( x k) = f" ( x k) =  0,

and x k is the k —th  root of tan(rc) =  tanh(x). These structures need to be investigated 
in further detail.

Another obvious extension would be to generalize the results and methods of Chapter 
5 to consider models of the form

ut =  —(—A)mi (|u|pi-1u) ±  (—A)m2(|u|P2-1u) x € R/^rai >  m2 >  1,P2 > Pi >  L

Many similar features to those already described persist for such models with stable 
or unstable higher-order porous medium operators. The very optimistic goal of such 
work would be the eventual complete classification of operators of thin-film type

ht = - V  • (/i?1A V /i± A /iP2).

6.2 H yperbolic models

The problems of finite-time blow-up and localization are not unique to parabolic mod­
els. One hyperbolic example of great physical interest is the complex Ginzburg-Landau 
equation

i&t +  (1 +  i<5)A$ + (1 — z£)|$|2$  =  0, x  G R ^ , t > 0. (6.2.1)

A reduction of this equation with e =  S = 0 is the famous nonlinear Schrodinger 
equation which is known to exhibit many of the same blow-up phenomena as described 
in Chapter 3 (Sulem and Sulem 1999). The geometry of self-similar solutions for CGL is
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more complicated than for the models thus fax examined as can be seen in the similarity 
transformation

^  ^  Ltfj’ Jo 'dS' U ^  =  ^6 ' 2 , 2 ^

The rescaled solution u satisfies

iuT + (1 — ie) + ^ ) \ u \2u +  *a (T)(£u)£ =  0? (6.2.3)

where
dL 1 dL
dt L dr '

The simplest form of blow-up behaviour arises when a(r) is constant. These are the 
self-similar solutions and we have

L(t) = y/2a(T -  t) and r  =  ln(T -  t)/2a. (6.2.4)

The constant a above is a non-linear eigenvalue for the reduced equation, and its value 
needs to be determined as part of the solution process. Thus the transformation has 
an unknown essential parameter in it, unlike any of the previous parabolic problems. 
As for the NLS (Sulem and Sulem 1999), we look for self-similar solutions of (6.2.3) of 
the form u (t , £) =  etTQ(£) which leads to the following ODE for Q:

(1 -  ie) {Q(( +  - Q  + ia({Q)c + (1 + it)\Q\2Q = 0- (6.2.5)

Through a combination of matched asymptotics and WKB approximations applied to
(6.2.5) we have begun to understand the stability of similarity solutions to this problem, 
the structure of multi-bump profiles and the parameter ranges over which such solutions 
exist. Critically, we have an ODE non-existence argument of solutions at the critical 
dimension N  =  2 which agrees for a previous modulation argument and can extend 
our results (continuously in iV > 1) to the physically important region of AT =  3. 
An example of these results is summarized in Figure 6.1. Interestingly, it appears 
that there is a region of the parameter e where a multi-bump solution occurs, but not 
a ground-state solution. This is intriguing because in all the numerical experiments 
we have performed on various problems, only the profiles with the simplest shape have 
been found to be stable. However, no spectral theory for the associated linear operators 
exists and techniques from bifurcation theory have not been employed to consider the 
number of admissable solutions. In fact, whether this spectrum is finite, countably 
infinite or uncountable is an important open problem. Perhaps it can be tackled with 
a combination of bifurcation and spectral arguments as we did in Chapter 3 for the 
semilinear parabolic blow-up problem.
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Figure 6.1: Bifurcation curves for N  = 3.

6.3 A d ap tiv ity  in h igher-dim ension

All of the simulations presented thus fax have concentrated on calculations in one 
dimension or radially symmetric solutions in higher dimensions. This is not a severe 
limitation for the problems at hand as we have, in the first instance, concentrated 
on one-dimensional or radially symmetric patterns. To fully understand stability and 
more complicated patterns, in higher-dimensions we need to be able to extend the 
ideas of Chapter 2 to arbitrary dimension. Many strategies are currently competing 
in this area, see the survey (Huang and Russell 2001) and the references therein. We 
are working on another approach which we believe has certain key advantages and is 
based directly on the idea that equidistribution is a mapping with specified Jacobian 
(Budd and Williams 2003). In its simplest form this idea highlights the enormous leap 
in moving beyond one dimension. Unfortunately, the condition

J  = i k ) ' (6-3-1)

only specifies one equation in iV-dimensions, which appears to be satisfactory only in 
dimension N  — 1. One way to close this system is to look amongst all the solutions to
(6.3.1) for (the) one which minimizes

L[x}= j  \x(i)-(,\2d£. (6.3.2)
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Monitor function in physical coordinates

Monitor function in computational coordinates

Figure 6.2: Monitor function in computational and physical co-ordinates.

Heuristically, this is a very natural requirement from a numerical analysis point of 
view as this is, by definition, the map closest to the identity in the L2 sense. Further, 
this augmented problem has been well studied in the context of Optimal Transport 
(Villani 2003) dating back to Monge and Kantorovich. It is known that there exists a 
unique solution satisfying a Monge-Ampere problem

x = VP(S), \D2P\ = (®-3-3)

supplemented with the condition that the boundary maps to the boundary. This is a 
pure Neumann condition which takes the form

V.P-£ = £ -n  on d£l where 0  = [0,1]^.

In the context of meteorological fluid dynamics this transformation has been used to 
great effect by Cullen and Purser (1984) and co-workers to study the semi-geostrophic 
equations, see the references in (Piggott 2002). This formulation is also a natural 
geometric requirement as it requires the mesh to be irrotational, a property seen to be 
desirable in practice (Cao, Huang and Russell 2002). We have begun an extension of 
the MMPDE approach described in Chapter 2 by solving the parabolic Monge-Ampere 
equation

P, = In (M(VP)\ . ( 6 . 3 . 4 )

This has the nice properties that it preserves the convexity of P  (and hence the well- 
posedness of the mapping x  =  VP), and for M  = M(£) possesses a Lyapunov function
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Figure 6.3: Associated mesh.

whose minimizer is unique and is amenable to fast solution techniques. The key to the 
efficient implementation of adaptive methods in N  > 1 is the splitting of the physical 
and mesh PDEs in the solution process. This means that given a solution, a monitor 
function is defined in computational space and fixed. Once the new grid has been 
solved, the solution is updated on the new grid. This means that we can concentrate 
on the problem

Pt = In (M(Z)\D2P \) .  (6.3.5)

instead of the more difficult problem (6.3.4). An example of this in practice is presented 
in Figures 6.2 and 6.3. Here we have taken a monitor function representing singularity 
formation at two points in the region [0, l]2 and solved (6.3.5) until steady-state. In 
Figure 6.2 we present the monitor function in both physical and computational co­
ordinates. Here we can see the effects of adaptivity-solutions are ’smoother’ in the new 
variable. Lastly, in Figure 6.3 we show the associated mesh in which we can see the 
localization near the ’singularities’.

6.4 N um erical com p utation  o f spectra  for higher-order 
non-autonom ous non self-adjoint operators

Throughout this thesis the numerical solution of initial-boundary value problems for 
PDEs, initial value problems for ODEs and continuation of boundary value problems
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for ODEs has gone hand in hand with analysis, be it rigorous or formal. The one 
exception has been in the computation of spectra. Instead of an approximation of the 
full spectra of our linear operators we have only used PDE computations to estimate 
the magnitude of the real part of dominant eigenvalues. This is not due to lack of 
effort! Much progress has been made in this direction (in the context of the numerical 
evaluation of the Evans function) for operators for which all coefficients are bounded 
in the limit y —> oo. This is fine for travelling wave problems but, for all similarity 
transformations one must contend with operators of the form y • V for which all the 
existing theory and methods breakdown.

Generically we are interested in approximating the following problem:

(C +  C)(f> =

where C is a compact perturbation of the operator C~l whose spectral properties are 
known. Unfortunately, we know that the eigenfunctions of C oscillate at infinity, this, 
coupled with the growing first derivative term makes the computations very difficult. 
Because of the importance of equations of this form careful study needs to be under­
taken.
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