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N ota tion s and Standard A bbreviations

Some standard notations (e.g. meaning “defined to be”) are used throughout this work. 
We draw the attention of the reader to a small ambiguity in the definition of X n and X

General N otations

• LHS := Left hand side

• RHS := Right hand side

• =: := “RHS is defined to be LHS”

• w.r.t. := With respect to

• WLOG := Without loss of generality

• iff := If and only if

Spatial N otations

• 71 := The real numbers

• 7Z+ := The non negative real numbers {x £11:  x > 0}

• Z  := The integers

• Z + := The positive integers {n E Z 'n  > 0}

• Af := The natural numbers {n E Z 'n  > 0}

• [a, 6] := {x : a < x < 6}, a closed interval

• (a,b) := {x : a < x < b}, an open interval

• I a := The indicator function of A

• ||a;|| := The norm of x
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• < t ,  y > := The inner product of x and y

• Cn(X, Y )  := Functions from X  to Y  with a continuous nth derivative

• f (n) := The nth derivative of /

• Co'.= {x G C °([0 ,1], 72.) : x(0) =  0}, the real valued continuous paths on [0 ,1] starting 
at 0.

• C\\= { i G C °([0 ,1], 72) : x(0) = 0}, the real valued differentiable with continuous 
derivatives paths on [0 ,1] starting at 0.

•  O-n ^  bn  • =  l i n ^ - , 0 0  T 0 -  —  1

Probabilistic N otations

• p.d.f. := Probability density function

• m.g.f. := Moment generating function

• IID := Independent, identically distributed

• C% := n choose k , defined as C% = n\/k\(n  — &)!

• P(A)  := Probability of an event

• E ( X )  := Expected value of a random variable

• Var(X) := The variance of a random variable Var(X) =  E ( X 2) — E ( X ) 2

• X n := The mean of n IID random variables X n =  £ Yli<n

.  := (nVarpOH Ei<„ (*  ~ &&))

• f x  := The probability density function of X

• M(6)  := The moment generating function, M(6) = E(eex)

• c(6) := The log moment (cumulant) generating function, c(0) =  log M(0)
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• X  ~  N ( p , a 2) := The normal distribution. E( X)  = //, Var(X) =  a2

• X  ~  £(A) := The exponential distribution. E ( X ) =  Var(X) =  A 1

f x ( x )  — Ae-Ax for all x E 1Z+

• X  ~  B(n,p)  := The binomial distribution. E (X )  = np , Var(X) =  np(l — p)

P{X  = k) = C lpk( l - p ) n- k

• CLT := Central Limit Theorem

• BCL := Borel Cantelli Lemma

• BM := Brownian Motion

• BBM := Branching Brownian Motion

• BDP := Branching Diffusion Process
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Abstract

Tis thesis is concerned with the study of branching diffusion processes. These systems have 
ben studied extensively using the interplay between differential equations and probability 
tbory building on ideas by McKean and Neveu. These unite, for example, the analytical 
stidy of the Fisher-Kolmogorov-Petrowski-Piscounov (FKPP) equation and the study of 
nartingales associated with a branching Brownian motion. Although in chapter 3 we touch 
uon these ideas, this work takes a different path. We attempt to re-formalise our under- 
sindings of branching diffusion processes paths from a large-deviations theory perspective. 
Tis allows us to gain additional insight into the almost sure behaviour of such systems by 
rung ideas from Lagrangian dynamics. Chapter 4 investigates the paths of a BBM, chapter 
hollows this with the large-deviations principle associated with the integrated BBM’s path, 
fnally, in chapter 6 we partially explore the paths of branching diffusion processes with 
ivariant measures (e.g. the Ornstein-Uhlenbeck process).

Idependently, chapter 2 contains a refinement of Cramer’s theorem on 1Z.

Chapter 1

Shce this thesis is concerned mainly with large-deviations theory, we include a short intro- 
dction to  the subject in chapter 1. The chapter does not contain new results but reading 
ids advisable as we call upon most of the results proved in it.

Chapter 2

(hapter 2 is almost independent from the rest of the thesis. In it we present a new proof of 
arefined Cramer’s theorem. It is mainly concerned with expressions of the form

A n := J  en,^ d P n(x).

lere, Pn denotes the law of X n the mean on n IID random variables and I  denotes the 
(ramer ra te  function. Varadhan’s theorem tells us that if L is compact then the above 
quation is finite and has no exponential growth. We present a result concerning the power- 
lw governing A n.
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Chapter 3

Chapter 3 contains no new theory. It does contain a succinct introduction aimed at famil­
iarising the reader to the field of branching diffusion processes. A complete survey of this 
vast topic is beyond the scope of this work.

Chapter 4

The main result of this thesis is described in chapter 4 and is concerned with almost-sure 
path properties of a branching Brownian motion. It is well known that for a dyadic branching 
Brownian motion, the particles disperse at a rate proportional to the time elapsed. Work by 
[Uchiyama, 82] has allowed us to estimate accurately the growth rate, 1 — |A2, of particles 
along a ray x(t) = At. Our result extends this further. We consider a general path x in 
C^QO, 1],TV). We produce two rate functions J ( x ) and K(x).  These measure the rate of 
growth of particles along a path x both in expectation and almost surely. Interestingly, 
these functions are not identical. The almost-sure growth is obviously bounded by the rate 
of growth in expectations (J ( x ) < K(x))  though the rates agree if for example x is a convex 

function. By observing that supx(\)=\ J ( x )  = snPx(i)=\K(x ) =  1 ~  we see the 
difference does not manifest itself as different BBM wavefront speeds. In fact, we get back 
to the result by [Uchiyama, 82].

Chapter 5

Thinking of a Brownian motion as the speed of a particle, we integrate to get a differential 
random process representing its position. We demonstrate using current techniques that the 
almost-sure wavefront of this process is different from the expected wavefront even in the 
first order of magnitude. Using the large-deviations contraction principle and utilising J(x)  
and K(x)  derived in the previous chapter, we are able to explain this behaviour. We end 
this chapter by studying the phase-plane of a branching Brownian motion.

Chapter 6

We conclude this thesis with the study of a BBM with a drift fx towards the origin.

dU = d B -  p(U)dt.

10



Our first task is to demonstrate that the expectation wavefront and the almost-sure wavefront 
agree. Since the process is pulled increasingly towards the origin, its wavefront speed rt 
satisfies rt/ t  —► 0. The process is highly ergodic, which means that the past behaviour of 
the Brownian motion is not much correlated to the its current position Ut. We quantify this 
notion by proving a large-deviations principle for the phase-plane

Mt) =  •

We find that essentially, the two coordinates are independent not only in the sense that 

lim 7  log P (pi(t) £ (dx,dy )) =  lim \  \og P ( \B i ( t )  £ dx) +  lim 7  log P ( —Ui(t) £ dy)
t —yoo t t —yoo t t t—t-oo t rt

but also that almost surely, the number of particles in (dx,dy ) grows exponentially at a rate

1 -  lim 7  log P (pi(t) £ (dx , dy)) .
t—yoo t

Finally, we investigate the integral processes f  Utdt and f  p{Ut)dt. It turns out that the 
integral process f  fi(Ut)dt can be though of as a smoothed Brownian motion. This will allow 
us not only to apply results proved in chapter 4 but even to strengthen them by refining the 
topology on which the rate function is defined.
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Chapter 1 

Introduction to Large-Deviations 
Theory

Large-deviations theory is a way of studying the extreme behaviour of probabilistic systems. 
This chapter contains a brief outline of the classical results and techniques. More thorough 
expositions can be found in [Ellis, 85], [Dembo et ah, 95 ], [Varadhan, 84] and [Strook, 84].

1.1 Exam ple: M ean of IID  random  variables

Suppose I was in a fair casino, betting on the outcome of independent gambles. The bets 
being fair, one would expect me to neither win nor lose any money over a prolonged period 
of time. Large-deviations theory captures this idea by looking at the extreme behaviour of 
the systems (a gambler consistently over-performing is such an event) and measuring the 
exponential decay of the probability of such rare events occurring.

Let Pn be the measure on which corresponds to X n := ^ Yli<n my average ga-ins at 
time n. We assume X{ to be IID random variables satisfying E(X{) = 0. We wish to estimate 
P(Ay ), the probability of the rare event of having an average earning per bet greater than 
y > 0 after n bets.

a ;  := {u, e n : x n >  y ) .

12



1.1.1 Upper Bound

We let M{0) =  e° ^  =  E(eex) denote the moment generating function and the cumulant 
generating function. We ignore X{ which do not have a finite moment generating function 
and refer the reader to [Heyde, 68] and [Wentzell, 90] who analyse sub-exponential decays of 
random variables. It follows that E(eeXn) = M n(0/n) and hence by Chebychev’s inequality:

P ( X n > y ) <  inf M n(0/n)e~ey = e"nsupd

and so

lim sup — log Pn{[y, oo)) < - / ( y ) ,
n —foo f l

where we define the rate function I  to be

I(y) = sup {0y -  c(6)} . 
e

1.1.2 Lower Bound

Assume supfl {0y — c(0)} is attained by a point a  so that

I(y) = ay -  c(a)

Since sup0 {0y — c(0)} attains its supremum at a , d l / d a  = y — c(a) =  0. Indeed, this is 
another way of characterising a. We now define a new random variable X y with law P y 
using the change of measure formula

P y(A) := P ( X y G A) := M ( a ) - 1 f  eaxdP(x).  (1.1)
Ja

13



This new random variable has mean

E { X y) = E ( X e olX)/M(a) = M (a) /M (a)  = 6(a) = y. 

Consider now A(y ,c ),

A(y, e) = {x e fc ' .O  < x — y < e}.

If X n G A(y,  e), then using the change of measure n times, we deduce that

Pn(A(y,e)) = f  dP(x \ ) . . .  dP(xn),
J x e A ( y , t )

= f  e~naXn x eaxidP(x i ) . . .  eaXndP(xn),
J X e A ( y , e )

> M (o )ne -nay- nlal£ f  dPy(x i ) . . .  dPy(xn),
J  XnEA(v.e)’X n EA(y,e)

=  e  A(y,e)).

Since E ( X y) =  y, as n —> oo, using the Central Limit Theorem, P ( X yn G A(y, e)) converges 
to We conclude that

lim inf i  log Pn(A(y, e)) > - I ( y )  -  |a|e.71—+00

Letting e J, 0 we conclude that liminfn-.oo L log Pn([y, oo)) > —I ( y ).

1.1.3 The Large-Deviations Principle

We generalise the notion of X n to consider a family of measures Pn.

• We will also consider also families of measures indexed by a continuous parameter 
{Pt}t>o as well.

• Although X n was defined on 71, in general we will consider Pn to be supported on any 
complete separable metric space S.

14



• We assumed X n -^iaw $E( X) -  Maintaining this notion, we will assume that Pn converges 
weakly to 6So, the unit mass at s0 6 S.

Definition. We say that {-Pn} obeys the large-deviations principle with a rate function I(s), 
i f  there exists a function I : S  —► [0, oo] satisfying:

• I  is lower semi-continuous.

• For each I < oo the set {s : I(s) < /} is compact in S.

• U pper Bound. For each closed set D  C S

lim sup £ log Pn(D) < — inf I(s).
n—►oo seD

• Lower Bound. For each open set A  C S

lim inf M ogPn(A) > — inf I(s).
n —*oo s G  A

1.1.4 Cramer’s Theorem

Essentially, we have proved in sections 1.1.1 and 1.1.2 most of the following.

Theorem  1 (Cram er’s Theorem ). Let Pn denote the law of the mean X n of H-valued 
IID random variables X{. Assume that the moment generating function

M{9) := E(e>x) =  [  e6xdP(x) =: ec(e)
J n

is defined over an interval containing 0. Then, the sequence {Pn} satisfies the large-deviations 
principle with the rate function I  defined as

I{x) = sup{0:r — c(0)} 
e

Proof There are four properties in the definition which must be satisfied. The first two 
describe I  and follow from the convexity of c(0) and the properties of the Legendre transform. 
See [Ellis, 85] or [Dembo et a/.,95] for details. The upper bound and lower bound follow easily 
from previous discussion or from consulting [Varadhan, 84]. □

15



1.2 T h e C ontraction  Princip le

In this section we state two general results which allow us to transfer the large-deviations 
principle from one space to another. The following two theorems are straight forward to 
prove and can be found in [Dembo et a/., 95] or [Ellis, 85].

Theorem  2 (The Contraction Principle). Let Pn on X  satisfy a large-deviations prin­
ciple with rate function I . Also, let tt : X  —> Y  be a continuous map. Then, the family 
Qn := Pnir_1 satisfies a large-deviations principle with rate function J

=  inf I(x).
- 1(y)

Akin to the contraction principle is the Inverse Contraction Theorem.

Theorem  3 (The Inverse Contraction Theorem ). Let it : X  —> Y  be a bijection with 
7T—1 continuous. Let Qn be exponentially tight in Y  and assume Pn := Qntt satisfy a LDP 
with rate function I.  Then, Qn satisfy a LDP with rate function J  = I tt”1.

Let us re-examine Cramer’s theorem (assuming of course E (X )  =  0). It certainly implies 
the Strong Law of Large Numbers. For

lim ' y  P ( X m > e ) < y  < 00)
n —+oo /  ^ ^

m > n  m > n

and using BCL, almost surely lim supn_ 00 < e. Now, suppose we have a mapping w : 
7Z —* Y  and 7r was only continuous near 0. Although we do not have a large-deviations
principle on Y , it is clear that almost surely

lim 7r(Xn) = 7r(0).
n —► oo

This observation is entirely obvious and yet extremely useful. When we discuss almost- 
sure large-deviations type results in future chapters, we will use this argument to transfer a 
large-deviations principle from X  to Y  using maps which are almost-surely continuous.

16



1.3 A n  E xten sion  o f C ram er’s Theorem : T he paths o f  

a diffusion process

Let satisfy the conditions of Cramer’s theorem with rate function I.  We assume I  to be 
continuous, strictly convex, increasing on R + and decreasing on R ~ . Consider the random 
walk defined as We know ^Yn satisfy a large-deviations principle. We
wish to think of the path (0, —Vi, . . .  , ^Yn) that the Markov chain might take and try and 
deduce a large-deviations principle. Thus we define the (random) piece-wise linear function 
yn : [0, 1] -* 11 as

yn(k/n)  =  — V  Xi  0 < k <T) «- ̂ _  _  n.n L—4i<.k

This induces a probability measure Pn on the space of continuous functions satisfying y(0) =  
0.

T h eo rem  4. {Pn}n>o satisfy a large-deviations principle on C7°([0,1], 7̂ .) endowed with the 
supremum norm and with a rate function J(y),

1 oo otherwise.

The theorem can be seen as an application of the Inverse Contraction Theorem. A more 
general result is in fact true, consult [Russel, 1996] for more details. We give a sketch proof 
which utilises some ideas which will be used later in this work.

Sketch of Proof. Let m  be finite. Each coordinate in the expression { ^ -  X](i-i)n<j<m X}} i<.m 
is independent. Hence { ~  2(i-i)n<j<»n ^0}*'<»» satisfies a large-deviations principle in R m 
with a rate function

J  ( — x u . . .  , — =  — V ] I(xi).\  m  m J m  ''  i<m

For every 2: G C([0, 1],7£) let Jm(z) be defined as

17



Now let rrik =  2fc. Because I  is convex, Jmk are increasing. If z is differentiable lim ^oo Jmk(z) =  
J(z).  For a suitable z which is not differentiable on some interval, it can be shown that 
limfc-voo Jmk(z) =  oo (remember that {x : I(x)  < /} is a compact set). Consequently, for 
suitable closed D  C C([0,1], 7£),

limsup — log Pn(D) < — lim inf Jm(z) < — inf lim sup Jm(z) =  — inf J(z).
n->oo Tl m-foo z£D z£D m_,oo Ẑ D

Determining which closed sets are suitable and showing that they generate all closed sets is 
tedious and uninformative. Instead, let us look at the lower bound. For every y , define its 
open e-neighbourhood A(t/,e),

A(y, e) := {z : \z(t) — y(t)\ < e for all 0 < t < 1}.

We aim to show that liminfn-.oo ^ log Pn(A(y , e)) >  —J(y).  Consider first the linear function 
y = xt  (hence I(x) = J ( y )) and let E  =  A(0, x)cC\A(y1 e)°. Since Pn(A(0,ar)c) >  P ( X n > x ), 
using Cramer’s theorem and the assumed continuity of I  we have

lim inf — log Pn(A(0, x)c) > — inf I(z)  =  —I(x).n—*oo Tl z>x

On the other hand, in lemma 1 we will show that for some 6 > 0

lim sup — log Pn(E) < — J(y) — 6.
Tl—too Tl

Since A(0, x)c C E  U A (y , e) it follows that

lim inf — log Pn(A(y, e)) > - J ( y )
n —T oo Tl



as required. Finally, we easily extend lim inf^oo Mog Pn(A(y, e)) > —J(y)  to piece-wise 
linear functions and appeal to the fact that piece-wise functions are dense in C([0 ,1 ],'R) to 
complete the proof.

□
L em m a 1. For some 6 > 0

lim sup — log Pn(E) < — J(y) — 8.
n —t-oo Tl

Proof. Let E  = Ut<i{Ut U h }  where we define Ut and Vt to be the set of all functions that 
first “leave” A (y , e) at time t £ (0,1] from above or below respectively.

Ut := £ E  : inf{|z(s) — zs| > e} =  t, z(t) =  xt  +  e j ,
Vt := £ E  : inf{|2r(s) — xs\ > e} =  t, z(t) = xt — e j  .

For all z £ Ut, Vt, by considering 2(0) =  0, z(t) and z( 1) > x and using convexity of I  we see
that

inf{J(2) : 2 £ Ut} > J (u t), 

inf{J(z) : z £ Vt] > J(vt).

Here ut and vt are the piece-wise linear function satisfying u*(0) =  uf(0) =  0, ut(l) =  ^t(l) =  
x and

ut(t) = xt -f  e, u*(£) =  xt — e.

It now follows by strict convexity of I  and the lower semi-continuity of the function

t —► min{J(u*), J(u t)}

that snpzeE J(z)  > J(y)  +  6 for some positive 8 > 0.

19

□



By assuming Xi  ~  iV(0,1) in theorem 4 we get the following well known result first 
proved by [Schilder, 66].

Theorem  5 (Schilder’s Theorem .). Let yT £ CfO([0,1], IV) be the scaled path of a Brow­
nian motion.

yT(t) = ± B ( tT ) .  (1.2)

Then, the family of laws {Pt }t >o induced on C°([0, 1], It)  satisfy a a large-deviations prin­
ciple with rate function

J ( y ) =  f  \ y 2dt
Jo

1.4 M ore E xten sions to  Cram er’s T heorem

• Extending the space on which X  is defined.
By resorting to the minimax principle we can assume X  to be an 7£d-valued random 
variable. Using sub-additivity we can let X  be defined on a locally convex Hausdorff 
real vector spaces. We refer the reader to [Dembo et al., 95] for further details.

•  Ellis-Gartner Theorem.
In the proof of Cramer’s Theorem, we depended mostly on the properties of M (9 ), 
the moment generating function. The Ellis-Gartner Theorem makes this dependence 
explicit. It dispenses with the notion of IID random variables, and replaces them with 
a family of measures Pn, whose moment generating functions M n obey a convergence 
condition. We will state a slightly weaker version.

Theorem  6 (Ellis-G artner). Suppose we have a family of laws Pn on TZd, with the 
moment generating functions

Mn(A) :=  ec"<A> := £ n(e<A'I>),
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having (around a neighbourhood ofO), a well defined convex, differentiable limit

c(A) =  lim £cn(rcA). (1.3)
n —►oo

Then, Pn satisfy the large-deviations principle with rate function I(x),  the Legendre 
transform ofc(X),

I(x)  := sup {< x,X > —c(A)}. 
a  e 1Z d

Condition 1.3 seems obscure until we observe that for a family of IID random variables 
±cn(nX) = c(A).

• Improved “resolution”.
Although we know that Pn(A) decays exponentially, what is the polynomial correction 
term? We will discuss this problem in the next chapter.
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Chapter 2 

The Correction Term in Cramer’s 
Theorem

2.1 In troduction

We recall briefly Cramer’s Theorem. X, is a sequence of IID random variables. We let 
Pn denote the law of the mean X n := 2*<n This can sh°wn to satisfy the large-
deviations principle, with a rate function I  defined as:

I(x)  := sup{0£ — log E(edx)}. (2 .1)
e

Let us consider two concrete examples.

• Xi  ~  N (0 ,a 2)
The sum of normal random variables is normal. The probability distribution function 
of X n is given by

/ n W = g ) ^ - 1e-",(l), (2.2)

where I(x) = |(:c/cr)2.

• ^  -  5 (1)
The sum of exponentials is Gamma, X n ~  r ( n , n )  and f n is given by
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Substituting Stirling’s formula, we get

/ n ( x ) ~  0 ' x‘ le‘ "7W’ (2-3) 

where I(x) = x — 1 — log x. I ( x ) can also be evaluated using formula 2.1.

The keen reader may have spotted the similarity between equations 2.2 and 2.3. Of course, 
both distributions satisfy the large-deviations principle. More interestingly though, they 
share a similar correction term. This was identified by [Daniels, 54] who derived the following.

T h eo rem  7 (D aniels). Let Xi be a sequence of continuous IID random variables. Let f n 
denote the probability distribution function of X n. Then,

fn(x) = ^ ^ - e x p { - n l ( x ) } ( l  +  0 (n -1)), (2.4)

where I  is defined as in equation 2.1.

Sketch of Proof. Consider the Fourier transform of the probability distribution function f n. 
We let M(0)  =  eĉ  = E(eex) and assume that it is well defined on some interval T> 
containing 0. This implies that M (0) is an analytic function on the strip S  := {x-\-iy : x £ D} 
and that

n  f ° °  n
f n(x) = —  M n(i$)e~nix$d$ = —  e - ^ - ^ d e .  (2.5)

J —oo J6x  “ too

The constant 0X £ V  is chosen so as to maximise 1(9) =  c(9) — 9x and is therefore the 
solution of the equation c'(0x) = x. We then approximate the contour integral using the 
Taylor expansion of c(6) — 9x near 0X. It is not clear that the correction terms of increasing 
powers of n actually converge, but by deforming the path slightly and integrating equation
2.6 along the path of steepest descent, [Daniels, 54] arrives at equation 2.4 which is uniformly 
good in z. □



The approximation clearly does not have any meaning when X is a discrete random variable, 
but if A  is a lattice-valued random variable, [Daniels, 54] has extended the Fourier-transform 
method so as to estimate the size of each atom.

2.2 A  N ew  A pproach

2.2.1 A n Old Approach

Well, actually the new approach is probably not new at all. After reading some of the
references kindly provided J. D. Biggins, it seems to me that this chapter will simply reinvent
the wheel. In particular, the following scheme to arrive at an integral form of equation 2.4 
has been suggested by [Stone, 67] shortly after he stated a higher-dimensions version of 
equation 2.4 (Stone’s theorem 1). Nevertheless, there is some value in carrying out the 
scheme explicitly which is what we will do next.

2.2.2 Outline o f Approach

We present a method of deriving the integral-form of equation 2.4 and show that for a general 
class of random variables (including strongly non lattice-valued)

4 =  /  enI^ d P n(x) =  - £ =  [  J J ( x ) dx  x [1 +  O fa -1)]. (2.6)
y/n Jl V27t Jl v

Our method involves the following steps:

• Dissect L into smaller intervals L{.

• Think of the function en I as a change of measure on each Li .

• Rescale and use the Central Limit Theorem to evaluate the integral over Li.

We will need to assume that

• A  satisfies lim su p ^ ^  \E(eltX)\ < oo (strongly non-lattice).

• I (x)  is five-differentiable, I(x)  E C5(T,7^).

Let us consider a short example, demonstrating the approach we will be taking.
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2.2.3 Example

For simplicity, we assume that the X^s  satisfy E ( X ) =  0 and Var(X) =  1. Because Pn —qaw 
S0t the point mass at 0, for all smooth functions g ,

J g ( x ) d P n(x) -> g(Q).

Let us gauge how quickly this convergence occurs. Let X ^  := X% and let P^
denote the law of X The forgiving reader will observe an ambiguity in the sense that 
X ^ i  ^  X 2, but will ignore it.

j  g(x)dPn(x) = J g (3 .) d P ^ ( y )

We apply Taylor’s expansion to g. We also observe that by CLT, P ^ —qawA(0,1). We 
conclude that

J  g(x)dP„(x) =  J  g ( j . )  d P ^ ( y )

» J  (s(0)+ g( 0 ) j -  +  Lg(0)£ +  . . . ) d N ( y )

=  9(0) + ^ ( O )! .-1 +  . . .

This is not completely rigorous because we do not know how fast P ^  converges to N ( 0,1). 
We will review current results on this issue next.

2.2.4 A sym ptotic Expansion o f the Central Limit Theorem

We need results concerning the convergence of the CLT which are proven in [Petrov, 95]. Let 
Xi  be independent identically distributed random variables with M(it)  := eĉ  := E(etX) 
denoting the Fourier transform. Let X  be a random variable such that limsup^QQ <
1. The nth  cumulant of X  is equal to ĉ nl(0), the nth derivative of the log moment generating 
function at 0. We let 7n =  ĉ nl(0) and thus we have:

c(it) = log M(it) =
i>i h
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WLOG we may assume that 71 =  E ( X ) =  0, 72 =  Var(X) =  1. Let us also assume that 
E \ X p  < 00 for some integer m > 3. Define the Hermite polynomials as

Hr(x) : = ( - l y e P - j E e - i * .

Define also the following sequence of polynomials

Qr(x) := -(arj-ie-*** '

The summation is extended over all non-negative integer solutions ( j i ,7*2? - - - ,jr) of the 
equations 2 i<r = r i an(  ̂ 5 =  Finally? we define the cumulative distribution
functions Fn(x) := P  ^n- 2 Yl j<n < x ĵ and $(:r) =  P(N(0,1)  < x). We now quote 
results 1 and 2 from [Petrov, 95].

R esu lt 1 . Let Fn,Q r and $  be defined as above. Then uniformly in x we have

|F„(a:) -  $ (z) -  ] T  <2i(z)n->*| <  BOUND
i< r

where

BOUND = cT ^ 2 n ~ i (r+1̂ E (|AT+3) +  ^sup \M{it)\ + „j(’-+2>(’-+3> j .

cr is a universal constant independent of X  and 6~x = 12E(\X\3).

R esult 2. In addition, if f  is any Cfl(L,7^) function, then by partial integration,

J j f d F n - d N - Y : dQin - ' A  <  | | / ( o ) |  +  |/(6)| + * BOUND.

2.2.5 Statem ent o f Main Theorem

We formally state the theorem which we will prove in the next section.

Theorem  8. Let X{ be a sequence of random variables for which the moment generating 
function satisfies limsup^QQ \E(e%tX)\ < 00 . Let X n have a large-deviations rate function I
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with bounded continuous Zrd and 5th derivatives on (a possibly unbounded) interval L = [a , b]. 
Then,

- 7= f  enIdPn = ~^=  f  J I(x)dx  x [1 +  0(n  1)].
V n J l v  27r Jl v

2.3 P ro o f

We divide the interval L =  [a, 6] into small intervals of length at most 2kn, where kn < n -1 
is to be determined exactly later. We let K n denote the indexing set of these intervals. For 
each i E K n, we denote the corresponding interval by Li and let X{ be its midpoint. Clearly

We aim to evaluate the integral on each interval Li on its own. As mentioned, we wish to 
think of the function enI^  as an approximate change of measure. This idea was exploited 
before in proving the lower bound of Cramer’s Theorem. On each Li we let J(x)  denote the 
first three terms in the Taylor expansion of I  around Xi and let R(x)  denote the remainder.

J(x) = I(xi) +  I(xi)(x -  Xi) +  \ I(xi)(x  -  Xi)2 

R{x) = I(x)  -  J{x)

We employ the Mean Value Theorem twice and use the boundedness of ||/^ ||o o  to discover 
that for all Li and for all x £ Li we have |i?(z)| <  | | / ^ | | ^ .  Therefore,

sup sup |eni?(x) -  1| < Cnkl.  
i e K n x £ L i

Consequently,
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/  e"'M  _  enJ(x)dPn =  /  en'7(l)(e"fi(l) -  1 )dPn
IJ  L i | |  J  Li

< sup \enR{-z) -  1| x I enJ^ d P n,
* e £ i J l ,

< Cnkl  x f  enJ{x]dPn.
J  Li

Summing over all intervals we see that

f  enI^ d P n =  f  e ^ d P n  x [1 +  0{nkl)\ .  (2.7)
i eK n  J Li

2.3.1 Changing Measure Locally

Let &i be the unique constant in V  satisfying c(0*) =  X{. We have I(xi) = X{0{ — c(9i) and 
also I(xi)  =  Oi. We define the following new random variable X % with a law P x as

P{X '  e  A) := P i(A) := =  e_c(9<) J  z>iXdP(x).  (2 .8)

This transformation is identical to transformation 1.1, see [Varadhan, 84] for more details. 
The Laplace transforms of X  and X % differ by a translation of 0,. Consequently, the nth 
cumulant of X 1 is equal to c(n\$i),  the nth derivative at 0{. In particular, E ( X l) = X{. Since 
I  is the Legendre transform of c, it follows that c^(0{)  and I^n\ x i )  are intimately related. 
More specifically,

Var(X*') =  c(0i) = 1 /I{xi).

The law P'n of X'n := 1 x 'j is given by

P(X'n e  A) = e -"c(9i) f  ene'xdPn = I  e ^ - ^ d P n .  (2.9)
Ja J a
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We now observe that

J ( x )  =  I (xi )  +  I(xi )  x (x -  Xi) +  \  ' i (xi)(x -  Xi)2 

= $iXi -  c(0i) + Qi x (x -  Xi) +  \ I ( x i ) { x  -  x ^ 2 

= &iX — c(0i) +  — x ^ 2

and hence

I enJ{x)dPn = f  ejh*i)i*-xi)2dPln.
J  Li J  Li

Finally, if we define X \  a random variable of mean zero and unit variance

X* := (X* -  ,

then

f  enJ^ d P n = I t ^ d P l  
J  Li J  Li

where of course Li  := (Li — Xi ) I (x i )2.

2.3.2 Rescaling - Central Limit Theorem

We rescale the integral by >/n to arrive at the law of ^  E j<n ^ j m Since

f  enJ^ d P n{x) = f  _ e ' ^ d P ' r ,  (2.10)
J Li Jy/nLi

we would like to replace the law d P ^  with d N , the law of N ( 0,1), the normal distribution to 
which converge as n —> 00. We therefore recall results 1 and 2 concerning the asymptotic 
expansion of the Central Limit Theorem.
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2.3.3 Applying CLT-Expansion to the Law of X \

We need to

• Verify that the conditions of results 1 and 2 hold.

We assumed that X  has limsup^QQ \E(ettX)\ < oo. X % which is an exponential tilted with 
respect to X  (and hence X 1) must satisfy a similar condition. We conclude that we may 
apply the results.

• Estimate how good is the bound provided in results 1 and 2.

We recall that the bound provided in the these results satisfies:

BOUND =  cT ( |A T +3) +  (sup  +  n l<’,+2><’-+3) j  .

T h e  size of th e  second te rm . We assume that I ^  is bounded on L. Thus, 8 — 
12E?(|X*|3)-1 is bounded below. It follows that supt>5 \M(it)\ < 1 and the second term 
of the BOUND decays exponentially in n, uniformly in X \

T he size of th e  first te rm . Since the Laplace transform of X x is well defined on some open 
interval containing 0, all the moments must exist. Moreover, if / ( r+3) is uniformly bounded 
on L , then f?(|X l |T’+3) is uniformly bounded on L.

We now let F^(x) = P ^ ( ( —oo, x]) and deduce the following.

C oro lla ry  1 . Let I  be r +  3-differentiable with bounded derivatives on L. For all X{ 6 L 
there exists N  such that for all n > N  and for all x,

|F ‘(z) -  $ (z) -  < crn-5(r+1) ||/(r+3)||00.
i< r

Moreover, if f  is any continuously differentiable function, then
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< crn - i ( ^ ) | | / ( ^ ) | U  ( j / ( q ) | +  m ) l  +  j * \ f \ d ^ \  .

1 2 j
We substitute f ( x )  := e^x , —a{ =  f t =  knyjnl (x i ) 2 and compute the various terms in 

the above equation.

T h e  RHS: We need to make sure that f t is bounded, which implies the boundedness of
3 •  ”  1| / ( a ) | +  |/(/?)| +  /  \f\dx. Since f t =  kny/nl(x i )2, when we decide on the size of kn, we will

remember to impose kny/n <  1. Also, WLOG we may assume /a is bounded on X because...

• If L  is a bounded interval, then the continuity of I implies the uniform boundedness 
of 15 on L.

• If L  is unbounded then we dissect L  into the intervals {Lj = L  D [j, j  +  1] : j  € & • On 
each one of Lj  we simultaneously perform the analysis separately with different sizes 
of kI. Because I is bounded on the entire interval X, the convergence to the desired 
result is uniform across the entire of X. We will again get equation 2.12.

T h e  LHS: The first term on the LHS is the one we want to estimate. The second term 
is straightforward:

I  _ e ^ d N  =
J y/nLi V27T

We now consider the case when r = 1. The function Q\(x) is given by

Qi(x) = -(27r)"2e"2*2 x -  1)

Looking at f  e^x2dQ\ we see it is an odd function integrated over a symmetric interval which 
therefore must integrate to 0. We deduce therefore that
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f  enJWdPn - - ^ =  2ft ^ d n - 'H /W H
JLi v27T

(2 .11)

This estimate is almost sufficient for our purposes but not quite. We thus consider the case
3

where r — 2. We will not be interested in the correction term of order n~ 2. We simply wish 
to evaluate the correction term of order n~l precisely. Assuming 1 ^  is bounded we get

^7 4 (z2 -  1) +  I (x '5 “  10x3 +  15a:) •

1 2Splitting Q2 into its odd and even components and integrating it against f ( x )  = e*x we 
notice that the component containing 74 vanishes. After some manipulations, we are left 
with

Q2(x ) =  —(2?r) 2e 2*2 x

1/  - - ^ = 2f t  <  c2n - 1\\I{-3)\\l02pi.
\JLi v27r

We now sum over all the intervals L; to deduce that

I * t

2ft (2.12)

2.3.4 Evaluating ^  3,

We recall that f t  =  \ fn kn\ J Hence as n —* oo we must have

lim —= y ^ 2f t =  I i(x)*dx.
»-«» v/n "

(2.13)

There is of course an error term but we may choose kn such that the correction term in the 
above equation decays exponentially in n. Equation 2.12 now becomes
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y  f  enJ^ d P n — f  I ( x ) 2dx < C2J1 2 f  I ( x ) 2dx. 
i J  L i v  27r J l  J l

We divide by y/n and get

We combine this with equation 2.10

(2.14)

j  enI^dP „  = Y J f  enJ(x)dPn x [1 +  O(nfcJ)].

We let kn to be of size at most n -1 and as fine as required to allow an exponential convergence 
of the summation in equation 2.13. The proof of theorem 8 is now complete.

2.3.5 Two Related Observations

We first prove a direct extension of the above theorem and then look if we can ” invert” the 
result.

Suppose G and H  are any bounded continuous functions. [Varadhan, 84] showed that

lim — log f  HenGdPn = sup{G(:r) — I(x)}
n ^ ° °  n  J  r a V .eK

Assume supa,Ĝ {G (:r) — /(a;)} =  0. Let L be the compact set on which I  and G agree.

L := {x : G(x) = I(x)}

We let dL  denote the boundary L counting points which are not part of an interval twice. 
We assume that I(x) — G(x) is strictly positive for all x € dL. We further assume that
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L is composed of the union of closed intervals. Repeating the method of theorem 8 at the 
boundary points, we conclude that

[  Hen° d P n =  ^ L [  H( x ) I ( x ) Ux  +  i  £  H(x) (  *{x) \  ’ +  O ( n ^ ) .
J V2tt Jl “ fL \ I ( x ) - G ( x ) J

We have shown that the Central Limit Theorem can be used to prove the large-deviations 
principle. The reverse is also true. Let X  be a random variable satisfying the large-deviations 
principle with rate function I(x)  = sup0{^x — c(9)}. WLOG let E (X )  =  0 and Var(JQ =  1. 
Then X ^  ^  S i<n a ŝo satisfies a large-deviations principle, with a rate function 7n
satisfying:

In{y/nx) =  sup {y/nOx — =  nl(x).
e

Letting n —*■ oo we expand In(x) = n l ( ^ )  near 0 using Taylor’s expansion. Observing that 
7(0) = 7(0) =  0 and that 7(0) =  Var(X) =  1 we deduce that

7„(x) -> \ x 2

uniformly on compact subsets of 1Z. This implies the Central Limit Theorem either directly 
(using total variation distance) or by observing that by the properties of the Legendre trans­
form, cn(9) must converge to the moment generating function of a Normal random variable.

CnW -

2.4 F in a l C om m ents

Our new approach as it stands, is of limited interest. After all, the result we have proved has 
been proven already almost half a century ago. Nevertheless it is of interest to see if we can 
extend it to “improve the resolution” of other results. There are a few natural candidates.

• Cramer’s Theorem in higher dimensions.
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This should be relatively straightforward, as the Central Limit Theorem clearly holds.

• The Ellis-Gartner Theorem.
The Ellis-Gartner Theorem replaces independent random variables with convergent 
moment generating functions. We know that the rate of convergence of the moment 
generating function, controls the rate of convergence in law. Consequently, if £cn(nA) 
converges fast enough, this should provide us with a weaker version of the CLT. Oth­
erwise, our approach lends itself quite naturally.
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Chapter 3 

Introduction to Branching Diffusion  
Processes

In future chapters we study the almost-sure behaviour of branching diffusion processes using 
probabilistic methods. Indeed, we will almost exclusively ignore the two primary uses of 
branching diffusion processes:

• Modelling the spatial behaviour of a population.
The foundations of this branch of Mathematical Biology were laid by [Fisher, 37] and 
[Kolmogorov et al., 37]. We refer the reader to [Murray, 89] and [Stekel et al., 95] for 
current progress.

• Studying differential React ion-Diffusion equations.
The FKPP equation,

4>t = k<t>xx +  4>{(/> - 1) (3.1)

is an example of such a Reaction-Diffusion equation. It was [McKean, 75] who first
realised that the solutions to this equation can be expressed as integrals over P , a
probability space associated with a branching diffusion process.

The aim of this chapter is thus merely to acquaint the reader to our notations and direct 
him to areas where our results fit contextually. [Ikeda et al., 68], [McKean, 75], [Bramson, 
83], [Biggins, 77,79], [Uchiyama, 82], [Neveu, 87], [Chauvin et al., 88,90,91] and [Champney 
et al., 95] do more justice to this beautiful subject than this short chapter.
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3.1 C onstructing  a Branching D iffusion P rocess

A branching diffusion process is a conceptually simple model. It consists of a system of 
particles each breeding and diffusing. We assume each particle obeys the following “com­
mandments”

• Thou shall inherit your position at birth from your ancestor.

• Thou shall behave independently from all other particles.

• Thou shall diffuse in space according to diffusion process X(t) .

• Thou shall die after an exponential time r  ~  S(r).

• Thou shall give birth at death to 1 +  C offspring.

Throughout, we restrict ourselves to death-free continuous-time processes (see [Biggins, 77] 
for discrete-parameter BDP’s) on %. We formally construct the probability space for such 
a branching diffusion process.

3.1.1 The Branching Process (Galton-W atson)

Consider a Markovian birth process \Nt\ representing the number of particles alive. Each
particle lives for an exponential time of rate r and gives particle to 1 -f C particles, where
E(C)  =  /i and

cn := P(C = n).

The probability generating function H($), and the infinitesimal generator function a(x ), of 
the process are

H(0) := E(6°)  =  Y ,  cn6n (3-2)
n^Af

a(x) := rx{H(x)  — 1}. (3-3)

We note that u (l) =  u(0) =  0 and limxjia(:c) =  — rcoo. On 0 < x < 1, a(x) is convex and 
negative.
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3.1.2 The Probability Space

For simplicity we make the following assumptions about the breeding process.

• Assum ption: E(C\ogC)  < oo.
We want our process to be finite so that Cqq =  0 and a(x) is continuous at 1. If 
\Nt \ denotes the number of particles alive at time t , we would also like the martingale 
e~rfit\Nt \ to converge to a positive limit. This happens if and only if E(C log C) < oo.

• A ssum ption: For simplicity r  =  1.

We denote a typical path of the diffusion process by X(t).  At birth, the parent particle 
and its offspring share the same spatial position. Consequently, All particles share the same 
spatial law. From birth onwards, each offspring follows an independent diffusion path, but 
equality in law is maintained. We follow [Neveu, 87] ’s construction. A finite sequence i of 
numbers will label each particle, starting with the first particle labelled 0. Each particle i 
has 1 +  Ci descendants zO, i \  . . .  iC{. Let I  = Unej \ f Z +n be the space of labels. Let r t- be the 
lifetime of particle i (i G I). Particle i will thus be born at time

k= n —1

T i  =  ^  ^  Tj i —jk  I f  *  = =  i l  •  • ' j n -
k= 0

The T{ are assumed to be strictly positive random variables satisfying the non-explosion con­
dition: {i : T{ <  £} is finite for all t. The trajectories of particles are continuous maps Xi  of 
the time intervals [Ti, Ti+r;] into "R, such that Atc(Ttc) =  Xi(Ti~\-Ti) for every i € I  and c 6 Ci.

A point uj G is a collection {rt, A,-, Ci : i G 1} satisfying the above conditions. Let

Nt(u>) = {i : Ti < t < Ti +  n}

be the set of particles alive at time t. The filtration \T t  : t € R +} on Cl is generated by 
{Nt, (Xi(t), i G There exists a unique probability measure P  on (f^-Foo) such
that {X ; : i G 1 }  is an independent family of diffusion processes with each Xi  started at 
Xi(Ti), stopped after an exponential time Ti of mean 1, and giving birth to 1 +  Ci offspring 
at its time of death.
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3.2 B D P ’s and R eaction-D iffusion  E quations

One of the main difficulties in studying BDP’s is that the behaviour in expectation and 
almost surely do not necessarily agree. The behaviour in expectation is well understood 
because the following many-to-one picture holds: If A  C 7Z then the expected number of 
particles in A  satisfies

E Y , U ( X i(t)) = E Y , P ( X > ( t ) e A )  = E(\Nt \ ) P ( X ( t ) e A ) .  (3.4)
ieNt ieNt

Thus we can study the growth process and the diffusion process separately.

• Exam ple: A dyadic branching Brownian m otion.
Our system consists of particles performing independent Brownian motion, each parti­
cle splitting into two particles at death. The expected number of particles is E(|7Vt |) =  
e1 and B(t)  ~  N(0,t).  We define the expectation wavefront ut, by imposing

E  I  ^ t - 00) C ^ 'M ) } =  1I ieNt J

By substituting in equation 3.4 we see that

ut = t V 2 -  = log t -f- O(l). (3.5)

To study the almost sure behaviour of a BDP, we must study the associated Reaction- 
Diffusion equation using martingale theory. We give two examples of such an approach.

3.2.1 The Galton-W atson Process

We recall that \Nt\ is an integer valued Markovian birth process representing the number of 
particles alive, with a probability generating function H($) =  E(6C), and an infinitesimal 
generator function a(x) = rx{H(x)  — 1}. Suppose that for (j> : 11 —*■ 1Z, we wanted to solve 
the differential equation
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<i> =  a(</>)

under the boundary condition <̂»(0) =  u € (0,1). We would observe that M s, defined on 
[0, oo] as

M s = n  #  - s ) = w  -  s )i,v' i>
ieNs

satisfies

E{dMs) = ^ 2  ds{a(<j>) -  <4} J J  <j>{t -  s) =  0.
i€.Ns ijzj

More precisely, M s is a true martingale (see [Watanabe, 67] for more details). By the 
martingale property E(M t) = Mo, (f> is determined explicitly as

<t>{t) =  £(^(0)|JVl1) =

Letting t = 0 and running M s on (—oo,0] we deduce that

W  := — lim \NS\log(/>(—s)
S — VOO

exists and defines a non-negative random variable. With more care (see [Neveu, 87]) we 
can determine its Laplace transform. We deduce that as t —► oo, the function </>(£) —> 0 
exponentially, and that

e ^ lo g  (3.6)

always has a finite limit. We now prove a small lemma concerning G(X,t) := E ( X ^ ) .  

Lem m a 2. Let e > 0. Then,
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G( 1 — e r^ 1 ê ,£) —> 0 exponentially as t —> oo.

Proof. Fix A =  1 — e- 1̂-eF ^  and observe how G(A,s) behaves over time 5 £ [0,2]. We 
condition on the first time of birth to obtain:

fS 00
G(A,a) =  Xe~rs+ I re~r“ ^  c„G(A, s -  u)n+1du,

n = 0

=  Ae”"  +  e“rs f  reruG(\ ,u )H(G(\ ,u ))du.  
Jo

Differentiating with respect to time, we obtain

G = a(G) =  - r G (  1 -  H{G)).

We see that G\  and <f> are identical modulo translation, and we can evaluate G(A, t) using 
(j>. Since G(A,0) =  A =  1 — we can see using equation 3.6 that

G\(t) = </>{t -  t )

for some r  <  (1 — \e)t . We conclude that G(A,£) < (f>(̂ et) and both decay exponentially in 
time. □

The following corollary has been proved by (amongst others) [Dekking & Grimmmet,
1988] for discrete time, so here is the continuous version.

Corollary 2. For every e > 0, P(N t < erti(1~^t) decays exponentially.

Proof. Let nt = ev’/x(1-eF. We have

G(1 — —, * ) >  P(Nt < n t) ( l  -  —)  ' -  e~1P (N t < nt).
nt \  n t J

Since the LHS decays exponentially, so must the RHS. □
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A fixed travelling wave 0 =  a((/>)

G(0, A)

<j) —► 0 exponentially
+0

oo t  —  T  >  h d—  T



3.2.2 Dyadic Branching Brownian M otion

The dyadic branching breeding process has an infinitesimal generating function

a(x) = x 2 — x,

while the generator of a Brownian motion is given by Q f  = \ f xx. It was first observed by 
[McKean, 75] that if <l>(x,t) is a solution to

4>t =  Q<t> +  a(<̂ ) =  -  l)? (3-7)

with bounded initial conditions |</>(z,0)| < 1, then

M*(s) =  J] 4>(x +  Bi(s),t  -  s), (3.8)
i eNs

is a bounded (hence true) martingale on [0, t\. To see this, condition on both the position and 
time of the first birth and then differentiate to see that E(dM f)  = 0. Using the martingale 
property E ( M x(t)) =  M x(0), we get

<f>(x, t) =  E  JJ <l>(x + Bi(t), 0). (3.9)
i eNt

Thus we have found the unique bounded solution.

From an analysis point of view, we may be interested in finding travelling waves. These 
correspond to solutions of the form <j)(x,t) = w\(x  — At) : % [0,1] which solve Kol­
mogorov’s equation

\ib +  A w +  w(w — 1) =  0.
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Monotone solutions exist if |A| > \/2  (for studies on non-monotone solutions when |A| < y/2 
see [Britton, 86] and [Murray, 89]). See [Warren, 95] for a probabilistic investigation of the 
convergence of initial conditions to monotone travelling waves. From a probabilistic point 
of view, the most interesting initial condition is the step function. This is because of the 
following interpretation: Let R t denote the position right-most particle of the dyadic BBM,

R t := su.p{Bi(t) : i 6 Nt}.

By conditioning on the first dyadic splitting, we can show that

<j)(x,t) := P (R t < x)

satisfies equation 3.7. By studying McKean’s representation (equation 3.9) carefully, [Bram- 
son, 83] was able to show that <j>(x +  v(t), t)  converges to a travelling wave, where

v(t) =  ty/2 -  log t + 0(1).

This result seemingly contrasts with the faster expectation wavefront speed ut defined earlier 
in equation 3.5. We conjecture that almost surely

.. R , - t V 2  1
lim sup —  --------- =  — ■=

log t 2\/2

which agrees with the expectation wavefront. Our belief stems from the fact the P(Rt > 
Ut) ~  If we could use BCL we would then conclude that R t > ut infinitely often. Un­
fortunately, the experiments we perform are not independent and several attempts to prove 
the above conjecture have failed.

The FKPP can also be linearised near the equilibrium solutions (f> =  1 and <j> = 0. For 
example, when <j> is near 0 the FKPP equation is approximated by

<t>t --
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This is mirrored by the existence of a family of linearised martingales

Zx(t) =  e"‘
ieNt

For |A| < \/2 , these converge to Z a ( o o ) ,  strictly positive random variables which are ana­
lytical in A [Biggins, 92]. In fact, using Fourier expansion techniques not dissimilar to the 
ideas in [Daniels, 54], [Uchiyama, 82] showed that for a function g with compact support, if 
E (C 3) < oo then

e~* v f y ( 5 ,-(0  -  At ) e XBiW - t x2*
ieNt

converge. More details on this result can be found in the next chapter. However, mul­
tiplicative martingales contain more information than additive martingales. For example, 
Z ^ i t )  —* 0 almost surely near the wavefront, but the corresponding product martingale still 
converges to a non-trivial random variable. Similarly, when E(C\ogC) — oo the limit of 
product martingales exists but not the limit of linear martingales. This has promoted the use 
of tree methods as ways of investigating branching diffusion processes. Tree methods involve 
the study of the particles who first among their ancestors cross a space-time boundary lT. As 
we deform the boundary continuously in r ,  the set of particles crossing lT forms a branching 
process which we can study. To fully appreciate this technique see the pioneering paper by 
[Neveu, 87] and further work by [Chauvin, 91].

To summarise, we have seen how the study of BDP’s is intimately linked to studying the 
solutions to Reaction-Diffusion equations of the form

<t>t = &<!> +

In expectation, we can separate the “diffusion term” Q(j) and the “reaction term ” a{(f>) but 
not when studying the almost sure behaviour.
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Chapter 4

A lm ost Sure Path Properties o f a 
Branching Brownian M otion

4.1 In troduction

In this chapter we analyse the almost-sure behaviour of a dyadic branching Brownian motion 
using large-deviations techniques. We formulate a large-deviations principle for the almost 
sure rate of growth of particles along any (suitably scaled) path. The result follows directly 
from theorem 5 and work by [Biggins, 77], [Uchiyama, 82] and [Chauvin et a/., 88]. We 
combine Schilder’s Theorem with the many-to-one picture (equation 3.4) to deduce the 
expected rate function for each BBM-path. This provides the upper bound for the almost 
sure rate function. We then pull together the results by [Biggins, 77] and [Chauvin et al., 
88] to prove the lower bound.

4.1.1 Scaling The Branching Brownian M otion

At a fixed time T, let us scale the BBM by a factor of T  in both the space and time 
coordinates. We utilise the projection ttt defined in equation 1.2. We get a branching 
process on the time-parameter set [0,1]. Specifically, for every i £ N t , let x j  £ Co; the 
space of continuous functions from [0,1] to 7Z started at 0; be the T-scaled path of particle 
i, defined as

7rTXi(t) := x j ( t )  := %BatT(i)(tT).
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Here, a<r(0 denotes the unique ancestor of particle i at time tT.  If D C Co, then let M d(T) 
denote the set of particles at time T whose T-scaled path is in D. Also if D\g := {x £ 
C°([O,0],7£) : 3z  £ D, x(t) =  z(t) Vf £ [0,0]}, let M d (T,0) denote the set of particles
whose T-scaled path is in D\g up to time 9 < 1.

Md (T)  := {* €  N t  : x f  e  D } ,

M d ( T ,0) :=  {» e  iVeT : xfl*  6  D |»} .

The function £ C°([O,0],7£) is a; truncated at time 0.

4.2 R ate  o f  G row th in  E xp ectation

We denote the law of a standard Brownian Motion run until time 1 as Pi and the law of an 
individual T-scaled path x f  path by Py. Using Schilder’s Theorem (theorem 5), we know 
that P t  satisfy a large-deviations principle with rate function I.

I(x) = \  i fo i (t)2dt i f ie C '>-
1 oo otherwise

By running the BBM until time 9T where 9 £ [0,1], we get a slightly modified rate function

K x >9) = i /o  i2d t-

Let D  be a subset of Co. By applying the many-to-one picture (equation 3.4) we get

E{\Md (T,8)\) = £(|Ar,r |)P(j:T|9 e  D\e), 

whence the following result is immediate:

R esult 3. Let J(x,9)  : =  9 — I(x,9).  I f  A  and D are an open subset and a closed subset of
Cq\q respectively, then
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lim inf T 1 log E(\MA(T, 0)|) > sup«/(a:,0),T-+ 0 0  xeA

lim sup T -1 logE(\Md (T , 0)|) < sup J ( z ,0).
T—t-oo x£D

As a m atter of convenience, for all 0 and for all sets J3, we let

I (B,9)  := inf J(x,0),x£ti
J ( B , 6 ) := sup J {x , 0).

x£B

Also, the reader should always assume 6  = 1 unless otherwise specified. So I(x)  = I ( x , 1), J(x)  =
J(x , 1 ), We note that I  is lower-semicontinuous while J  is upper-semicontinuous in the
sense that limZ_ x /(z ) >  I(x)  and limz_ x J(z) < J(x).

4.3 R ate  o f  G row th A lm ost-Surely

We wish to transform the result in probability to an almost sure result, so that for some 
function K{x)  to be determined later (which we might hope looks like J(a;)), we have almost 
surely;

lim T -1 log \MA(T)\ >  sup/if (z),T^oo xeA

lim T~l \og \Md (T)\ < sup K(x).r —oo x€D

We certainly expect K(x)  < J(x) for all x £ C\. We can improve this upper bound by
considering the following: Suppose that for some 6  € [0,1] we have J (D , 6 ) < 0. Then, using
result 3 and Chebychev’s inequality, we deduce that as T  tends to infinity,

P(\Md (T , 6 )\ > 0) < exp{ T J ( D , 6 )} -> 0.

Intuitively, this implies that lim;r_KX) \Md (T, 0)| = 0 , and consequently also limr-foo \Md (T)\ = 0 
almost surely. This is a better indication as to how J  “controls” K.  It turns out that this
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upper bound is actually tight and distinguishes exactly between the different rates of growth. 
We now begin the rigorous study.

4.3.1 Upper Bound

Lem m a 3. Let D be a closed subset of Co. Then for every 0 £ [0,1], we have almost surely:

iim supT -1 log |Md(T, 0)| < J (D ,0 ) .
T —»-oo

Proof. Suppose that the result is false. Then there exists a 0 and an event W  with P { W ) >  0 
such that, for every lj £ W , l im su p y .^  T -1 log \Md (T , 0)| > J ( D , 0). Hence if

Wn := {uj £ 0  : lim sup T -1 log |Md(T, 0)\ > J{D, 0) +  n -1},
T  —t-oo

then P{Wn) > 0 for some n. It is now clear that

lim sup T -1 log E(\Md (T, 0)|) > J(Z>,0) +  n ' 1

contradicting result 3. □

In particular, we see that if for some 0 <  1 we have J(D , 0) < 0, then, almost surely, 
lim7\->oo \Md (T, 0)| =  0. Since x j  £ D implies that xJ\q £ D\q we must also have that 
lim ^oo \Md (T)\ = 0 almost surely. This leads us to the following definition and the upper 
bound result:

D efinition (The A lm ost Sure R ate Function). Let 0O 6 [0,1] U {oo} be the last time 
at which J (x ,0 ) is non-negative, 0q := inf{0 £ [0,1] : J(x ,0) < 0}. Define K(x ,0)  as:

* ( * ,* ) : = {  J(X' 9) i f 9 - 9°’ 
I — oo otherwise

R esu lt 4. Let 0 £ [0,1] and let D C Co be closed. Then,

lim supT 1 log \Md {T)\  < supK ( x ) .
T —»-oo x&D
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4.3.2 Lower Bound

We shall prove the lower bound in stages. We first consider open sets around linear functions, 
then open sets around piecewise-linear functions, and finally arbitrary open sets. We use the 
following definition of an open e-neighbourhood:

A(x,  e) := {z e C0  : \\z — a?|| < e} =  {z € C0  : sup \x(t) — z(t)\ < e}.
t

L em m a 4. Let x(t)  =  \ t  be a linear function with 0 < A < y/2. For every e > 0, we have 
almost surely,

l im in fr  1 log \MA(Xit)(T)\ > 1 -  |A2.
T  —>*oo

Our proof relies on a result by [Biggins, 77] which we quote again 

R esult 5. I f  E(C\ogC)  < oo then for a branching Brownian motion, i f  |A| < y/ 2 , then

Zx(t) =  e~* eABi<‘W A2<
i€Nt

converge to Z\(oo), strictly positive random variables.

Proof For every uj we define a sequence of probability measures Pt on CQO, 1],7£).

Pt(A) = |JV«(A)|/|JV«|

By the upper bound result, these actually satisfy a large-deviations principle, namely for all 
closed sets D

lim jlo g  Pt(D) < sup K(y)  -  1.
t^OO t  y£D

Following a scheme by [Dembo et a/., 95] for every x € C ([0,1], 77.) we define a large- 
deviations rate function L(x)  by taking A(a:,A)? a sequence of decreasing open intervals
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containing x and defining L(x) by

L(x) := -  lim lim - lo g P t(An).
n —*• oo t —*oo t

We remind the reader that this function may depend on the particular lj we chose. From 
above discussion we have that L(x) > 1 — K(x).  Now, for x = At, we notice that

Zx(t) =  e - ‘|JVt | f  e^<x'y>-'^<x'x>)dPt(y).
J y e C [  0,1]

By Varadhan’s theorem, we therefore have that

lim supylogZA(t) < sup{< x ,y  > — \  < x , x  > —L(y)}.
t—*• oo * y

From result 7 we have that for every uj the LHS is actually 0. Because L(y) > 1 -  K(y)  > 
I(y)  we have that the RHS is negative unless L(x ) =  \  < x, x >. We conclude that for every 
lj we have L(x)  =  |A2 and K(x)  =  1 — |A2. □

We now wish to glue together several linear functions.

D efin ition . Let x be a piecewise linear function. We say x satisfies the lower bound condi­
tion until time Oi > 0, if for all e > 0, almost surely

l im in f r - M o g lM ^ ) ^ ,^ ) !  >
T  —*-oo

Suppose x satisfies the lower bound condition until 6 \. If from 6 \ until 6 2 , x is a linear 
function satisfying x = A, then we wish to show that x satisfies the lower bound condition 
until 0 2 . We first assume |A| < y/2. We will run the process until time 0 \T , arriving at 
Ma(x,c)(T, 9i) particles. We will then run Ma(x,c)(T,9i) independent copies from time $1 T  
to time 02 T, and add them all together. We require the following two definitions. The first 
simply introduces the change in the rate function over the interval [01? 02]* The second defines 
a random variable, very much like MJ4(X)£)(T), for each i € N(Q\T) which simply counts the 
offspring of i whose T-scaled paths follow x closely over the interval [^1,^2]- Formally,
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rO 2

J(x,  0 i, 0 2) := 0 2  — &i — \ I  x 2 (t)dt,
J e  1

M'AiXyt)(T,eu e2) :=
{ j  e  N(0 2 T) : a(j)  =  z , \{xj(t) - x j ( 0 1)) -  (x(t) -  z(0i))| < e for all t € [^1,^2]} •

It is a simple m atter to verify that since all particles are independent, M* all share the same 
law and that

MA M (T,e2) 2  £  M'Mxb)(T,eu e2). 

ieAV . i,>(T'9l)

Also apparent is the additivity of the rate function:

J (x ,02) =  J(x,0i)  +  J(x ,0 i ,02),

L em m a 5. Let x € C\ be piecewise-linear satisfying the lower bound condition up until time 
0\. Let x = X on [0\,0^, with |A| < \ / 2 . Then, for every e > 0,

lim infT  1 log \MA^ e)(T, 02)\ > J (x ,02).1 —̂OO

Proof Let 6  > 0 be arbitrary. We use the Strong Law of Large Numbers. From previous 
discussion, we have

The IID random variables e~^J x̂,ei,6 2^~6 T̂ \M% ( L AT,0\ ,02)\ inside the summation tend a.s.A (x , 2 e)
to 00 as T  —>00 (lemma4). We average over an independent random number |MA x̂ i ê (T, #i)| 
of particles which tends to 00 a.s. as T  —> 00 so that the SLLN still holds. By the induction
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hypothesis, x satisfies the lower bound condition until time Oi, and thus the random variable 
e-(J{x,ei)-8)TM A(x ±c}{T,6 i) also tends almost surely to infinity. We conclude that the RHS 
(and hence the LHS) tends to infinity almost surely as T  tends to infinity, and hence for any 
sequence of increasing times, Tn j  oo, almost surely,

\ \ m m f T ~ 1 \og\MA{Xft)(Tn,d2)\ > J{x,02) -2 8 .
T n —"OO

To extend this result for all time T, we use the fact that for every open interval A, the map 
T  —» M a (T) is continuous almost surely. We use lemma 6 (see later) to deduce that almost 
surely

l im in f r_1log \MA{Xie)(T,Q2)\ > J(x ,02) -  28.
T  —"oo

Letting 6 [ 0 concludes the proof. □

We turn our attention to the case where x satisfies the lower bound condition until time 
while between 0\ and 02, the gradient x = A > y/2. We of course insist on J ( x , 02) > 0. 
Heuristics: The following proof is in principle the same as that of lemma 5 above. We run 
the process until time #i, arriving (using lemma 4) at an almost sure M J4(x,e)(T, 0i) particles. 
We then run independent copies on [0iT,92 T].

We replace the almost sure number of particles M A x̂ e)(T, 0\,02) produced by an independent 
copy, with P\{x e)(T, 0 2), the probability of an independent copy with x j { 0 \) = x{6 \ ), still
remaining close to x by time 6 2 T.  Formally, we define

J W r . f l i . f c )  :=  p  ( l A f W r ,* ,* ! ) !  >  °)

These probabilities are identical for all *, and are equal to the probability of finding a 
particle started at 0, at an e-neighbourhood of y = Xt at time (02 — 9\)T.  [Chauvin et 
a/.,88] showed that the probability of a particle starting at 0 ascending to level XT at time 
T  decays at the rate 1 — ^A2. We will need to modify her result slightly to prove that 
liminfT-^oo P %A x̂ ej(T, #i, 02) > J (x ,01, 02)- This will be done by a method analogous to the 
one used in lemma 4.
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We think of eJ x̂'ê T copies, each performing an independent trial, with probability of suc­
cess P l «  eJ x̂,ei,e^ T. We see that since J(x,0\)  +  J(x ,0 i ,02) — J (x ,02) > 0, the expected 
number of particles succeeding, increases exponentially. Using an estimate on the Binomial 
distribution, we show that the probability that the growth rate is less than J (x ,02) — 8 , 
decays exponentially for all 8 > 0. Finally, this result is true only in probability. To get an 
almost sure result, we have to use some sort of Borel-Cantelli Lemma. Basically, we show 
that if we had a particle inside A(x,r)  at time t , for some r < e. Then the particle was 
inside A (x , e) for some interval before t. This allows us to divide time into countably many 
intervals, and use BCL.

We state and prove the three supporting lemmas.

L em m a 6 . Let x £ C\ be a piecewise linear function. We claim that for every e > 0, there 
exists r > 0, such that, for all sufficiently large T, if x 1  £ A(x,r) ,  then xT £ A(x , t )  for all 
r  £ [ T - 1,T].

Proof. We define the look-back transformation for all r  < T:

Lr z (t) ■=

LT : A(x ,r)  —> A(L^x,  £r) and limj’_ 00 supT_1<r<T\\L^x — x|| =  0. We let r = \e. Pick 
T  sufficiently large such that supr _1<T<T ||Pfy  — y\\ < r and < 2. We deduce that for 
such T  sufficiently large,

L^A(x,  r) C A (x , 3r) C A(rr, e) for all t  £ [T — 1, T].

□
R esu lt 6 (R ig h t-M o st P a rtic le  A t T h e  S ubcritica l R egion - C h au v in ). Let A > y/2
and let R t be the position of the right-most particle of a dyadic branching Brownian motion 
at time T. Then

lim inf T~l log P (R t > AT) =  1 — £A2
T  —+oo
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C o ro lla ry  3. Let y(t) =  At where A > \/2 . Then for all r > 0

lim inf T  1 log P  (|MA(v,r)(r)| > 0) >  1 -  *A2.1 —>oo

It follows that i f x — A on then for all r > 0

lim m fr-M o g P ^  )(T,6>i,02) > J{x ,0u 02).1-+00 v ’

Proof. Define the closed set D := {z e  C0 \  A(y,r) : z(l)  > A2}• It is easy to show that 
J(D)  < 1 — |A2 and hence

lim sup T -1 \ogP(\Mr)(T)\ > 0) < 1 — |A2.
T  —t-oo

Since P (R t  > AT) < P(\Md (T)\ > 0) +  P ( \ M ^ ytr)(T)\ > 0), the result follows. □

Finally, an estimate on the binomial distribution B(n,p).

L em m a 7. Let a  < 1 and let p < \. Then, Mog P (B(n,p) < pna) < ~ 2(i-p)(I — a )2-

Proof. This is a consequence of the Cramer’s theorem for the Binomial distribution B(l ,p)  
with rate function b(x) which is a consequence Chebychev’s inequality.

i-lo g P  (^-B(n,p) e  [0,ap]^ < -b(ap).

We calculate b(x). If X  ~  B(l ,p)  then E(eex) = pe9-\-q. Hence b(x) = sup^^rr—\og(pe9 -\-q)} 
and hence

b(x) =  x log — + (1 — a?) log -— —.
P 1 ~ P

Differentiating 6(ir) we get b'(x) = log “jjzfJ • Differentiating once more we get b"(x) — x^ _ x  ̂
which when x < p < \  satisfies b"[x) > Integrating the inequality twice on [x,p] using
the boundary conditions b(p) = b'(p) =  0 we get b(x) > 2p(i-p)(x ~  pY  an(  ̂ putting x — aP 
completes the proof.
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□
Let us now state and prove the main result.

Lem m a 8. Let x £ C\ be piecewise linear satisfying the lower bound condition until time 
0\. Let x = X on [0i,#2]> with ^ > V% but with J (x ,02) > 0. Then, for every e > 0,

lim infT _1 log|M,4(rte)(T ,02)| > J{x ,02)-
1  —►OO

Proof Pick r  < e as in lemma 6. At integer times Tm := m  define the following events:

Um := {u € n : |MMx>_r)(Tm,e,)\ < 
Vm :={u e ( l \ u m: \MA(x,r)(Tm,02)\ <

Since x satisfies the lower bound condition until time #i, we know that almost surely, there 
exists M(u)  such that for all m > M, Um does not occur. To work out the probability of Vm 
we use lemma 7 with the values n >  e^J x̂,dl^~s T̂m, p > e(J(x^i^ 2 )-s)Tm an(j q, _  e~STrn. We 
take n to represent the number of particles which stayed within A(x,  |r )  up to time 9\Tm. 
Since we are not in Um we know that n is large (i.e. n > e^J x̂,6l^~s T̂). We take p to represent 
the probability for each of these particles that we could find a descendent in A (x , r) by time 
92Tm. This probability is decaying (and so p < yet is greater than P'A X̂ î> @2 ) which 
was evaluated in corollary 3.
We deduce that P(Vm) decays exponentially, and using BCL, Vm does not occur almost 
surely. Thus, almost surely,

lim inf T " 1 log \ M ^ xr)(Tm)\ > J (x ,02) -  36.
771—►OO

We now use lemma 6 to deduce that for all m  and for all r  (E [Tm_i, Tm]

lim inf r  log |M A^ r)(r)\ > J (x ,92) -  36.
t—kx>

□
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C oro lla ry  4. Let x 6 C\ be a piecewise-linear function such that K(x)  > 0. Then, for every 
e > 0,

l im 'm iT '1 \og\MA(x,e)(T)\ > K(x).
1 —►oo

Proof. Clearly, i(0 ) < y/2. Since A (x , e) is open, there is no problem of finding a piecewise- 
linear function in A (x , e) with i(0) < y/2. Now, proceed to glue together each linear segment 
of z using the previous lemmas. Please note that we avoided the case where K(x)  =  0.

□
We now have the lower bound result for the almost sure rate function. We ignored the case 
where K(x)  =  0 because if A  is any open set, and x (E A  satisfies K(x)  =  0, then for some 
0 < a  < 1 we have ax  £ A  and K(ax)  > 0.

T h eo rem  9. Let A be an open subset in Co. Then, almost surely,

lim inf T -1 log \Ma (T)\  > sup K ( x ) .
T-+oo x£ A

Proof. Since the piecewise-linear functions are dense in Co and I(x)  is lower-semicontinuous 
in the supremum topology, the result follows directly from the above corollary. □

4.4 N atural E xtensions

In this section we consider possible extensions to theorem 9.

• We aim to extend the rate of breeding r (x , t ), (currently assumed to be constant) to 
a time and space dependent function. Let us count the number of particles along
path x € Ci at time T.  For every s < 1, the breeding rate at time sT  is given
by r(sT,x(s)T).  We observe that if r(x, t)  = (f>(x/t), then the observed breeding is 
T  -independent.

• What is the correction term in theorem 9? More precisely, how does
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behave? This question corresponds to the question we asked about Cramer’s theorem 
in chapter 2.

4.4.1 Position & Tim e Dependent Breeding

We state and sketch-prove a more general result. Consider a BBM with a birth process C 
satisfying E(C) = 1 +  //. We also assume that P(C = 0) =  0 and E(C  log C) < oo. Let each 
particle die at an exponential rate r (B{(t) / 1 +  t). The breeding rate r > 0 is assumed to be 
a continuous function. For every x G Ci, the adjusted expectation rate function is defined 
as:

J(:c ,0 ):=  j  fir ( ^ j  -  \ x 2dt.

As before, let 60 := inf{0 : J(x,0)  < 0}. Also let the almost sure rate function K  be defined 
as

R ( x , 9 ) : = \  J[X’6) i f 9 - 00’
—oo otherwise.

T h e o rem  10. Let A ,D  be open and closed sets in Co. Then

lim supT 1 logE(\Md (T)\) < J(D),
T  —*-oo

lim inf J ’_1 log£(|M /i( r ) |)  >  J{A).
T  —t-oo

Also, almost surely,

lim sup T " 1 log \Md (T)\ < K(D),
T —t-oo

lim inf T -1 log \Ma {T)\  >  K(A).
T —+oo

Proof: Almost-sure lower bound. We prove the lower bound for an open neighbourhood of a 
piecewise linear function x. Take £>, a partition of [0,1]. T> := {0 = t0 < t i . . .  < tn — 1}. 
Over the interval [£t-,tfj+1], along the path {#(£) : t{ < t < ^+1} the process “observes” 
breeding at a rate greater or equal to inf{r(t^ r ) : U < t < £*+i}. Thus, using the lower
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bound lemmas 4, 5 and 7, almost surely,

l i in m fr  1 log|M J4( r ) |  >  — <;) inf r ( x ( t ) / t ) - f  |jrai t .
T  ►oo L '  ti< t< ti+1 / n

i< n  -----

Since x is piecewise continuous, by taking the supremumover all partitions we get the result. 
We cheated slightly, as we are only allowed to consider partitions which satisfy for all j  < n,

-  >  J  ' ^ d t -
*b+1

(ti+i -  > /
*'<J

Since ^ (:r , 0) > 0 for all 0, it can be shown that this constraint does not matter. □

4.4.2 The Correction Term in Theorem 9

This section is more about future possible research than actual results. We assume from now 
on that E(\C\3) < oo. Under this assumption a finer result than lemma 4 has been achieved 
by [Uchiyama, 82].

R esu lt 7. Let |A| < \/2 . Then, almost surely

\ i m V f e - ^ - i ^ T\NlXT. aAT+b](T)\ -> (2*)"* j J e ^ c f a }  x Zx(oo), 

where Z\{oo) is a strictly positive random variable defined as the almost sure limit:

Z\(oo) =  lim e~T exp{ARt(f) — |A2T}.
T  —►oo • ^

i e N T

Guided by it, we make the following definition.

D efin ition . For every x £ C\, let NXft(T) be the number of particles at time T, which are 
in the t \JT  log T  neighbourhood of x.
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NXit(T) := { i 6 N t : |Bi(t) -  Tx( t /T ) \  < ey 'T lo g T  for all t < t }  .

T h eo rem  11 . Let x be a piecewise linear function with K ( x ) > 0. Then almost surely

VTe~TK^ \ N XyC(T)\ -> +oo.

The proof is identical in structure to the proof of theorem 9, with M a(x,c) replaced by 
NXjC in all the supporting lemmas. The most difficult part is the new proof of lemma 4 which 
we outline below. We assume that x(t) = y/Xt where |A| < \/2.

Proof: Assuming x(t) = Xt. Fix k > 0. We know that almost surely

v/T|iV[AT-WT+it](J,) |e - rKW -  (2w)~i U \ - Xld x j  x Zx(oo).

.Consider now the set St defined as

St := N[\T~k,\T+k](T) \  NX>C(T).

This set St , contains particles who at time T  are inside [AT — k , XT +  k] but for some s < T  
have |i?;(s) — T x(s /T ) \  > ty /T  log T. Consider a single particle which is known to be inside 
[AT — k , AT +  k] at time T. Conditioned upon its position, it behaves like a Brownian motion 
with a drift of at most A +  and at least A — f-. Subtracting these drifts and using the 
reflection principle we can see that

P  f sup |£ i(s) -  T x ( s / T )I > e V r b g T |B r  € [AT -  k,XT + fc]J <  ce^ .

We deduce that for some constant d(e, k)

V f e - TK^ E ( \ S T\) < d (e :k ) ^ E (Z x(oo)).
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Looking at integer times and then applying a look-back argument, we see that almost surely

V T \S T\e-TKM -+ 0 ,

and thus almost surely

V f e - TK^ \ N X̂ T )  D iV[Ar. Mr+tl(T)| -  (2tt)-*{ f  e ^ d x }  x Zx(oo).
J - k

Finally, letting k j  oo we get the result. □

C o n jec tu re  1 . We conjecture that for all x € C\, if K(x)  > 0, then almost surely

e~TK(x)\NXfC(T)\ —y constant x oo).

We are still a long way from proving this conjecture.

4.5 A  F inal N ote

Recently, we discovered a book by [Revesz, 94]. He considered a split-at-integer-times branch­
ing Brownian motion and showed the space of paths to be the closure of { /  : K{ f )  > 0} 
without counting the actual growth rate along each path. His result is similar in nature 
although the methods he used are different.
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Chapter 5

The Phase Plane of an Integrated  
Branching Brownian M otion.

5.1 A n  O verview

As in the previous chapter we will concentrate on a dyadic branching Brownian motion. 
We will present an application of theorem 9 and result 3. These two results are concerned 
with the rate of growth of BBM particles along (scaled) paths. Our application is based on 
the simple observation, that we can project the path of a Brownian Motion, to the path of 
another diffusion process. We utilise this observation to study the following point process 
on 7Z2.

We take a BBM and assumes that for each particle, B{(t) represents the the particle’s 
velocity. Its position can then be obtained by integrating {-#a<(s)(>s)}s<f-

Yi(t) = (  B at(s)(s)ds,
Jo

where a;(s) denotes the ith  particle’s unique ancestor at time s. We arrive at a two di­
mensional point-process on the plane (P t(t), !»(£)). The process Y{t)  is an integral with 
respect to a continuous path and is therefore a differentiable finite-variation process. It is 
also Gaussian and its variance is given by
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= “̂ Jo Jr rdSdr = ̂
We will analyse the phase plane picture using theorem 9 and result 3. Before that though, let 
us demonstrate using current methods that there must be a difference between the behaviour 
in expectation and almost surely of Yi(t)). We do so by considering the wavefront
speeds.

5.2 T he W avefront Speeds o f  Y i ( t )

5.2.1 The Expectation Wavefront

If we let N[XfOQ)(t) = {z £ N t : Yi(t) > x}  by using the many-to-one picture (equation 3.4) 
we get

£ ( | W [ U„ ° ° ) M I )  =  E(\Nt\)P(Yt > ut) «  e * « p ( - J j t i ? ) .

We deduce that the expectation wavefront travels at the speed t2y j2/3 in the sense that

,lim  7^ =  V 5 7 3 - (5 -1)t—>oo t

5.2.2 The Alm ost-Sure Wavefront

[Neveu, 87] observed that almost surely R t, the rightmost particle of a branching Brownian 
Motion satisfies l im su p ^ ^  R t — ty/ 2 =  —oo. Because supiGjVt Yi(t) < f* R sds by integrating 
the bound on R t we get an instant upper bound on vt, the almost-sure wavefront speed.

lim sup < I / y/2. (5-2)
t-, oo t2

Before proving that equality holds in equation 5.2 we want to point out that the almost- 
sure wavefront speed is below the expectation wavefront speed already in the first order of
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magnitude! A more comprehensive explanation of this phenomenon will be offered when we 
study the phase plane.

T h e o re m  12 . Let vt denote the rightmost particle’s position of a branching integrated Brow­
nian motion. Then, almost surely,

lim ^  =  l /y/2.t->OO t2

Proof (Lower Bound). We look at the branching Brownian motion. We follow [Neveu, 87] 
and define Z f  to be the number of particles which first among their ancestors crossed the 
line x = s — \ t .

Z* = \{i e  1 : 3t e  [T{, T{ +  rt] Bi(t) > s — Xt, < Tt Bo(*)(0 < s — Ai}|.

R e su lt 8 (N eveu , P ro p o sitio n  3). For each X > y/2 the integer valued process (Z^,s  > 
0) is a Galton-Walton process without extinction whose infinitesimal generating function a 
is given by

a = if' o on (0, 1)

where ip : 7£ —► (0,1) is the solution of Kolmogorov’s equation

J0" -  A0 ' =  0  -  </>2. (5.3)

The result is based on the Brownian path decomposition by [Williams, 74]. We now 
consider what happens if 0 < A < y/2. Z^ can still be defined as a birth-death process. Since 
a Brownian Motion almost surely hits the downward sloping line x(t) =  s — Xt we see that Z f  
is without extinction. Reproducing [Neveu, 87]’s proof we arrive at Kolmogorov’s equation. 
From differential equations theory we know that Kolmogorov’s equation 5.3 does not have a 
monotone solution on (0,1). Looking at the definition of the infinitesimal generator function 
(equation 3.3), this implies that a possesses a discontinuity at 1 which means Oqo > 0. Thus 
the process explodes almost surely. We let T(lj) denote the explosion time. Spatially this 
corresponds to there being, at all times, a particle below the line x = T(uj) — Xt all of whose
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ancestors have also been below that line. (If after some time r , there is no such particle, then 
Zj> < N t < oo). Integrating the Brownian Path of this particle and its unique ancestors we 
deduce that almost surely vt(uj) > |A t2 — T(u)t  and hence, almost surely,

lim inf ^  > A/2.t-+oo t2 ~

We now let A j  y/2 to complete the proof. □

5.3 T he P h ase P lane P ictu re

We use the projection from the BBM to the Branching point process, to project the space 
of paths of BBM to the phase plane. We deduce a large-deviations principle for the phase 
plane, both in expectation and almost surely. We find the two rate functions to be different, 
and the difference explains the different wavefront speeds we observed earlier.

5.3.1 Scaling The Process

As before, at a fixed time T, let us scale the branching Brownian Motion by a factor of T  in 
both the space and time coordinates. We get a branching process on [0,1]. For every i G N t 
let x j  G C°([0,1],7£) and y f  G C°([0,1],7£) be defined as

z fW  :=  f B atf(tT) ,

y f ( t ) :=  J / f ( s ) d s  = ~ Y a{i)(tT).

We define the projection map I I : Co —► TV as

II(z) := (2(1), f  z(t)dt),
Jo

which is clearly continuous in the supremum norm. For every D C Co we let Mp(T)  denote 
the particles at time T  whose path is in D. For every D C 7£2 we define let IIM d {T) to be 
M n-^OT).
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Md (T ) ■- {i £ N t : z f  6 D},  

n M d(T) := {i € N t : U zf  € £ } .

We must apologise to the reader for the slight change of notations which is about to occur. 
From now on, we will use 2 G Co to denote a path of a BBM. x and y will now represent the 
coordinates in the phase plane.

5.3.2 The Expectation Picture

The Expectation large-deviations result tells us that if D C R 2 is closed and A  C R 2 is open 
then

lim sup£ \ogE\HMD(T)\ < sup J ( z ) =  sup sup J(z),
T  -t-oo z e l l - ' D  (x, y)£D  m =(a:,2 /)

lim in f^ lo g E\HMa {T)\ > sup J ( z ) =  sup sup J(z).
z e n - M  (x, y)eA Tlz=(x,y)

We recall that J(z)  = J(z,  1) is the expectation rate function for a branching Brownian 
motion:

J(z,0)  i = 0 f  z2(t)dt.
Jo

For every (x,y)  G R 2 we define IIJ(x, y)  := sup{J(,z) : II2 =  (^5y)} and use calculus of 
variation with Lagrange multiplier optimising procedure (see section 5.4.1) to find that there 
is a unique 2 maximising ILJ(x,y):

z(t) — 3(x — 2 y)t2 +  2(3 y — x)t.

Accordingly, UJ(x, y)  =  J ( z ) =  1 — \ x 2 — 6(y — %x)2. We immediately have the following 
result.
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R esu lt 9. Let D C H 2 be closed and let A  C H 2 be open. Then,

lim sup ± log E\ U M d {T)\  <  sup IIJ( x , y ) ,
T —> oo ( x ,y ) £D

lim in f ^log £'|IIMi4 (r ) | >  sup UJ( x , y ) .
T ~*°°  ( x . y ) e A

Before carrying on please take time to consider how natural this formula is. For particles 
whose Brownian position at time T  is xT  we know that their rate function is given by 1 — ±x2. 
Conditioning on their final position we know that the particles have the law of a Brownian 
Motion with drift x so that most of these particles arrive in a straight line xj ( t )  =' xt  yielding 
yf (  1) =  %x. Some of them will deviate from that path and are penalised by the amount 
6(y -  \ x ) 2.

C o ro lla ry  5. Let ut be the expectation wavefront speed. Then

lim ^  =  V/2/3.t—oo t2

Proof. The boundary of the region {(x,y)  : Il J ( x , y )  > 0} defines the expectation wavefront. 
In particular, maximising y subject to HJ(x,  y) > 0, we find x =  \/3 /2  and y = y/2/3.  Since 
V =  the result follows.

□

5.3.3 T he  A lm ost-Sure P ic tu re

We know from the large-deviations contraction principle that almost surely

limsup £ log \UMd (T)\ < sup K(z)  = sup sup Rr{z),
T —*oo z £ \ l ~ l D  (x , y ) £ D  Hz=(x, y)

lim inf £log \UMa {T)\ > sup K(z)  = sup sup K'(z).
T —*°° z e n - M  ( x , y ) £A  n  z=( x,y )
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Here K(z)  = K ( z , 1), is the almost-sure rate function for a branching Brownian motion. If 
0Z := inf{0 G [0,1] : J(z,0)  < 0} then K  is defined as

v ' \  -o o  02 < e < l

Finding HK(x , y )  := sup{iif(2:) : Hz =  (x,y)}  is more involved as in addition to Hz = (x,t/), 
we also impose that J ( z , 0) > 0 for all 0 G [0,1], but see section 5.4.2 for a solution. We find 
that for the half-plane {y > |x}  the following holds:

Let a , /? ,7 G %2 be defined as

q = (V5,i /V2), /? =  (—1 / \ / 2 , 0), 7 =  ( ~ A  - l / v ' I ) .  

Let f , g , h  be the functions defined as

/(* )  =  I® +  sjs* ^(x) =  la: +  i h(x) = \x.

Note that /  links a  to /?, the function g links (3 to 7 while clearly h links 7 and c*. So that 
they form a region D\  (also see diagram)

Dx =  j(x ,y )  : x G [-y/2, y/2], y G [h(x), f (x)  A p ( x ) ] | .

In addition let /(x) =  — ^ ( \ / 2  — x )2 be another function linking a  and (3 and let £)2 be
the region enclosed by /(x) and /(x ).

£2  =  {(®,y) : x G [-1 j  y/2, y/2],y G [/(x),/(x)]} .

We find that in D\ (and by symmetry in —D\ too) the almost-sure behaviour and the 
behaviour in expectation agree so that the z which maximises the expectation satisfies 
K(z)  = J(z)  and so HK  =  HJ.  Inside D2 we find that the 2 maximising is given by
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with

(\F i
9

We conclude that for (x,y)  £ D2,

f \/2  0 < t < 0
z( t ) =  <

1 y / 2 - n { t - o )  e < t <  i

0  —  1  —  3 ( - ^  —  y ) / { V 2  —  a ; ) ,

n K ( a r ,  y )  =  \ / 2 ( V 2  -  x )  f  1  -  | ( V 2  -  * ) 2 / ( l  -

Otherwise we find II/f(a:,y) =  —oo. We now do the same analysis for the other half plane 
{ y  < and get the almost-sure result.

R esu lt 10. Let D C I I2 be closed and let A <ZK2 be open. Then, almost surely

limsup ± log \HMd(T)\  < sup H K ( x ,  y) ,
T —t-oo ( i , j / ) e D

lim inf  ̂log \ UMa (T)\  > sup IIK ( x , y ) .
T^°° (*,y)ei4

C o ro lla ry  6. Let vt be the almost-sure wavefront speed, then

lim ^  =  1/  y/2.
t —oo

Proof. The boundary of the region DiUD2 = {(a;, y) : UK (x, y) > 0} defines the almost-sure 
wavefront. In particular, maximising y subject to ILK(x,y)  > 0, we find that j^ \ x = y / 2  =  0 
and the supremum is attained at x = y / 2  and y = I f  y / 2 .  Since y =  ^ j Y / T )  the result 
follows.

□
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5.4 O ptim isation  o f T he R ate Functions

In this section we explain briefly how the optimisations for I lJ (x ,y )  and H K (x,y)  were 
derived.

5.4.1 The Expectation Rate Function

If (x , y) G 'R? we wish to maximise {J(z)  : II(^) =  (x, y)}. Alternatively, we minimise \  f*  z 2 
subject to the constraint z(0) =  0, z( 1) =  x , z(t)dt = y. We get using Lagrange multiplier 
the unconstrained problem of minimising F.

F(z, z , t ) =  f  \ z 2 -  A(y -  z)dt.
Jo

From calculus of variations we have Fz — Fz = 0 from which we get that z — constant and so 
z(t) =  (x — a)t2 + at. Substituting f*  zdt = y we arrive at the optimal path in expectations:

2 =  3(x — 2 y)t2 +  2(3 y — x ) t ,

from which we deduce that

J (z ) =  1 “ I f  z 2(it =  1 ~ W  ~  %  “ \ x f -
Jo

5.4.2 The Almost-Sure Rate Function

Throughout, we assume that y > \ x . When y < \x  we use the symmetry H K (—x , —y) = 
IIK (x ,y ) .  Clearly if the 2 which optimises {J(z) : II(z) =  (^,y)} also has K{z)  =  J(z)  we 
are done. This amounts to ensuring i(0) < \/2 and we find that if (x,y)  G Di, this is indeed 
the case.

Outside D i, although we can not follow the same optimising procedure, some points are 
clear. Keeping x fixed, as y increases IIJ  and ILK are decreasing. To maximise y while 
keeping J  constant, we must have z as a non increasing function. Conditioning on the first
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time 9 when i  < v/2  we find that on [0, 1], the in-expectation optimisation must also be 
valid almost surely so that 2 must be of the form

, (> /2  0 < t < 0
z(t) =  <

\  y / 2 - n ( t - 0 )  9 < t < 1

which we integrate to get

(y /2 1  0 < t  < 9
z(t) — <

\  V2 t -  ( t - e f  e < t <  1

and finally we deduce that

f  z(t)dt = ^  — i//(l — 0)3.
Jo

We substitute boundary conditions z( 1) =  x and z(t)dt = y to complete the analysis.
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5.4.3 T he Phase Plane Diagram
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Chapter 6 

Brownian M otion with Drift

6.1 In troduction

In this chapter we study a BBM with drift /z which attracts the particles towards the origin. 
This is a branching process whose diffusion process satisfies

dUt = dBt — fi(Ut)dt.

We call this a /z-BBM which we set up as follows. We consider a BBM probability space 
(see section 3.1.2). The only assumption we make about the birth process is that E(C)  < oo 
and that by rescaling time, WLOG we assume that l?(|iVt|) =  el. We associate with this 
probability space, a family of diffusion process Ui(t) defined by

dUi(t) =  dBi(t) — fj,(Ui(t))dt,

under the boundary conditions that the initial particle starts at the origin and subsequent 
particles inherit their ancestor’s position at birth. Formally, for all i £ /  and for all c £ J\f,

Uic(Tic) = Ui(Ti +  rt).

This chapter contains three distinct sections. In the first (rather tedious) section we study 
the diffusion process without any breeding. We derive probabilistic and path-wise estimates
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on the rate at which the diffusion spreads in space. Under the assumptions that the particle 
is being “pulled” increasingly to the origin by the drift, we will be able to get some very 
reasonable estimates.
In the second section we prove that the almost-sure and expectation wavefronts first order 
behaviour are the same. This is quickly extended to an almost-sure large-deviations result 
about the number of particles in space. The result is very similar to the BBM result but is 
less informative in the sense that we count particles not along paths but simply according to 
their final position. Essentially, the diffusion process “forgets” its past so characterising the 
entire path is meaningless. We emphasise this point by proving that the diffusion processes 
and the Brownian motion driving it are essentially independent for large t. From a large- 
deviations perspective, the phase-space (Ut,Bt) satisfies a large-deviations principle which 
looks like a large-deviations principle associated with the product space of two independent 
processes.
In the third section we study the integral process dVt = fi(Ut)dt. This can be thought of as the 
“energy” (force applied over time) the particle expends. It will not be surprising therefore 
that the process dVt = fi(Ut)dt and dBt will turn out to share similar large deviations 
behaviour. More generally, we will study the BDP whose diffusion process satisfies

dVt = f(U t)dt

for some suitable / .

6.2 T he D iffusion Process

6.2.1 An Example

The example we have in mind is the Ornstein-Uhlenbeck process, which for the purposes of 
this work has drift fi(x) =  \x  and stochastic equation:

dUt = dBt — \U%dt.

The Ornstein-Uhlenbeck process has an invariant distribution A^(0,1) and an explicit solu­
tion:
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( u0 + j ‘ e l" d B ,Y  (6.1)U, =  e-i* It/,

To make our analysis work, we will impose an increasing amount of assumptions on the 
process Ut . All these assumptions can be demonstrated to hold for the Ornstein-Uhlenbeck 
process. To start with, we restrict // to be a differentiable, increasing odd function.

f i \ x )  =  f i ' ( - x )  >  0. (6-2)

Further, we impose that

lim fj,(x) — oo. (6-3)
X —fO O

The Ornstein-Uhlenbeck process with fi(x) = ±x satisfies all these restrictions. More gener­
ally, fia(x) =  |sign(:r)|:r|a satisfies these restrictions when a > 0.

N ote

The reason why we assume that limx_f00 fi(x) =  oo is that if /i := lim^oo fi(x) is finite, then 
essentially we have a Brownian motion with constant drift. We can project the paths of an or­
dinary BBM to study the paths of this process. The optimal path for the expectation/almost- 
sure wavefronts to travel is given by u(t) =  0 on [0, 0\ and u(t) = A(t — 0) on [0, 1] where we 
maximise u (l) =  A(1 — 6) subject to |(A +  /i)2(l — 0) = 1 and 0 < 6 < 1. The optimal value 
for A is ma,x(fi,y/2 — //), for large fi we have the expectation and almost sure wavefronts 
travel at speed d-U The problem is thus solved.

6.2.2 The Invariant Distribution

By considering the stationary solution of the differential equation P(Ut > x) satisfies, one 
can show that Ut tends to an invariant distribution U whose probability density function is 
given by

75



\ l x Xoĝ  = (6-4)

This can be solved with the constant of integration chosen to ensure f  (j)(x)dx = 1. For 
example, if fj,(x) = ±x, we have the Ornstein-Uhlenbeck process whose invariant distribution 
is given by N (0 ,1).

6.2.3 The Expectation Wavefront

Starting at the origin with Uo =  0, we define the expectation wavefront speed r(t) to be the 
solution to

P(v? > r.) =  e -‘. (6 .5)

We use the notation Uf to denote the process at time t started at Uq = x.

L em m a 9. The function rt is increasing in t but satisfies lim^oo ^  =  0.

Proof. Consider the reflected process Vt = \Ut\. Since fi is antisymmetric, this is a Markov 
process. Moreover, by symmetry, P(U^ > rt) =  \P{Vfi > rt). Conditioning on <f>tl the 
distribution of V̂ °, we have

y*oo

P(V°+, > T ,)=  M ^ )P (V :  > rs)dx
Jo

AOO

> /  <j)t(x)P(Vs > rs)dx 
Jo

= P{V° > r.) =  2e-s

> 2 e ~ s+t

=  P « s  > r t+s).

The first inequality follows from a coupling argument of two processes, one started at 0 and 
the other at x. Because Vt°+S is just a random variable have that rs < rt+s and rt is increasing.

Now, Vt° is in itself stochastically dominated by the process c + Wt. Here Wt is a reflected
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Brownian motion with a constant drift /z(c) towards the origin. Recall that for a fixed drift, 
the problem is essentially solved (see note above). We have that for every e > 0 there exists 
a level c such that /i(c) > J is sufficiently large to ensure that

lim — log P(V® > et) < lim -  log P(c + Wt > et) < —2 .
f —t-oo t t—+ OO t

We deduce that lim*-* ^  < e. Letting e I 0 completes the proof.
□

Since Ut —► U, the invariant distribution, we have that limt_oo = oo. We now get a 
tighter upper bound on the rate at which rt is increasing. We find the invariant distribu­
tion using equation 6.4. Let Uf  be the process started at the invariant distribution. By 
conditioning on i/o, we have

roo poo

P( Uf  > r t ) >  /  <j>{x)P{Uf >  rt)dx >  /  <f>{x)P{Uf >  r t)dx =  P(U >  0)P(U? > rt) =  ie " ‘. 
Jo Jo

Hence

lim -  log P(U > rt) > —1.t—t-oo t

For example, let jia{x) =  |sign(x)|ar|Q;. By equation 6.4 the invariant distribution <f)a satisfies

log <f>a{%)----- 7 7 — k |1+a-I + a

After some calculations we get that for some constant c,

_ i_
rt ~  ct i+<*.

On the other hand, the diffusion process is certainly positive recurrent and converges to the 
origin exponentially fast as the following results show. Recall that Uf denotes the process
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U started at x. The following gives us a comparison of Uf with the deterministic path ux 
which satisfies ux =  —p(ux) and ug =  x.

L em m a 1 0 . Let Uf and ux be as above. I f  B t is the Brownian motion driving Ut, with 
minimum m t and maximum M t denote W f  as the positive reflected Brownian motion W f  = 
B t — m t . Similarly, let W f  = B t — M t be the negative reflected Brownian motion. Finally, 
let U f be defined as:

U+(t) = u* + W+,  

U- ( t )  =  ttf +  W f .

Then, for all t < T X we have path-wise

u r  <  u ?  <  u + .

Proof. Stochasticly differentiating U f  we get

dU+(t) =  d W f  -  p(ux)dt.

Since W f  =  B t — m t >  0, we have U f > ux. Therefore, using the monotonicity of p., we 
have

dUf  > dBt ~ l*{Uf)dt.

It follows that whenever Uf = U f , we have dUx < dU+, and the upper bound follows. A 
similar argument yields the lower bound.

□
Suppose now we start the particle at x = r j .  While ut > erj the process is stochastically 

dominated by r j  + B\. Here B e is a Brownian motion with drift —//(ery). We get even after 
a short period ST
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P ( B y  > —\n{trT)6T) <

Since the diffusion process satisfies ^  —> 0, the drift of B e dominates the initial position and 
we get the following lemma.

L em m a 11. For every e > 0, define r  = inf{< : UlT < err] to be the first time the process 
UTt hits level erj- Then, for all S > 0 and for all c > 0,

lim — log P ( r  > ST) <1 —*00 1

Proof. If r  > ST, then

P  {UST > r T -  ±n(erT)6T} <

Pick T  large such that | p(erT)2S > c and ry — \p{erT)ST < 0 (this can be done because 
limT-KX) rr  — oo and r x /T  —>• 0 ). The proof follows because

P (T > ST) = P { t  > ST, UST >  0} 

<  P { U s t  > rT -  ±fi(erT)ST}
< e-i/x(err )25T<

□
Effectively the above lemma says that the diffusion process will not be below, level erx at 
some point during the interval [(1 — S)T, T] with a very small probability indeed. Hence we 
get the following corollary.

C oro llary  7. For every S > 0,

lim i lo g P ( f / s°x > r r )  =  - 1.1 —►OO 1

Similarily, supoose we start the process at the invariant distribution. Then, by condi­
tioning on the initial position of the particle (either bigger than r(1+e)x or smalller) we get
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the following corollary.

C o ro lla ry  8 . I f  f(0) = l i m * _ > o o  ^  is a continuous function at 1. Then,

lim ^ lo g  P(U% > r r ) =  1.
1 —*oo J

6.3 Large D eviations Theorem s

T h e o rem  13. Consider a p-BBM which satisfies

• The drift is differentiable with p'(x) =  p'(—x) > 0 and p(0) =  0.

• lim ^oo n(x) =  oo

• The increasing function rt satisfying P(Uf > rt) = e-t satisfies

f(B) := lim
t—►oo Tf

exists and is continuous in [0, 1]

Further, we assume that for every e > 0 there exists a sequence of increasing stopping 
times Tn f  oo which satisfy

• There exists a large N  such that for all n > N

rr  rr  ^  r Tn
- * 7 1 + 1  *  71 _  ^  '

K rTn)

• Tn grow sufficiently fast such that for all 8 > 0

e 6Tn < oo.
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• Tn grow not too fast in the sense that for all 8 > 0 for large n

rTn+i ~  rTn < 8rTn

Then, almost surely,

Rlim sup— < 1. [Upper Bound]
t —►oo r  t

R
lim in f—  > 1. [Lower Bound]

*—00 rt

Before we try to prove the theorem let us satisfy ourselves that the set of diffusions 
satisfying the above conditions is not empty. The drift p(x) =  |sign(z)|z |a satisfies the first 
two conditions imposed on the drift. We already saw that rt ~  t *+°. This implies that 
/ ( 0) =  ret/rt is continuous and tends to 1 as 6 —* 1. Further, consider the stopping times 
Tn =  rft which are increasing as long as (3 > 0. Certainly for all 8 > 0 we have

E e~Sn>> < oo.

We observe that

rrn -£ -«£-e— ---- - ~  n 1+a 1+a.
W Tn)

Since Tn+1 — Tn ~  by picking /? small enough to satisfy

-  1 < 1 +  a

the fourth condition (in the second part of the theorem) is satisfied as well.
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6.3.1  A Failed A pproach

We owe the reader an explanation why we do not attempt to prove this theorem using 
Theorem 9. When lim -̂t-oo n{x) is finite, we can do this. But if fi(x) increases to oo, for 
every T  we get a map C([0,1],7£) —> C([0,1],7£) where x —> u is defined by the differential 
equation

u = x — fi(Tu) for all t  < 1. (6-6)

Alas this map x —> u is not continuous under the supremum topology on Co which prevents 
us from utilising this approach. Interestingly, suppose we allow space-dependent rate of 
breeding. We believe that the rate function r(x) =  |/^(^)2 will yield a continuous projection 
of the Brownian paths to the diffusion paths. However, we leave further discussion on 
the m atter until a later time. Finally, watch out for section 6.4.3 in which we do use the 
contraction principle.

6.3.2  P ro o f  o f th e  U p p er B ound

Let 2e > 0. because f($) —* 1 as 9 —► 1 we have that for some 6 > 0

lim Hl+fli =  l + e.
<—►00 Tt

We get that for sufficiently large t

P (R t > (1 +  e)rt) < ^ 2  p (Nt = n)nP(Ui(t) > r(1+6)t) 
ieNt

< E (N t)e -^ +6̂  = e~6t.

Take a sequence Tn of increasing times and define the stopping time rn 6 [Tn,oo] when we 
first after time Tn have Rr > (1 + 2e)rT. If rn G [Tn,Tn+i], there exists at time rn a particle 
above level (1 +  2e)rTn. Using lemma 10 we can estimate the probability that by time Tn+1 
the particle will still be above level (1 +  e)7Yn. The deterministic path u(1+2dr"(#) is bounded 
above by
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U<1+2£K (T n+1) >  (1 +  2e)rrn _  (Tn+i _  Tn)/l((1 +  2e)rr„+1).

Therefore, as long as the RHS satisfies

(1 +  2e)rTn -  {Tn+1 -  Tn)fi(( 1 +  2e)rTn+1) > (1 +  e)rTn+1, (6.7)

the probability of the particle being above level (1 +  e)rTn+1 at time Tn+i is greater than 
some constant c. We deduce that

p  (r t„h  > (1 +  e)r rn+l) > c P ( t „  € [T„,T„+i]).

We pick the increasing sequence Tn which satisfies equation 6.7 and observe that

Y ,  p (r» € T"+i]) ^  -  E  e' STn < 00
n  C n

Hence almost surely

R
lim sup — < 1 +  2e.

t —t-oo P t

6.3.3 P roof of the Lower Bound

Let T  = TV Define the event A n as

A n = {w G i l :  |^ (i_ 2e)r| — n }

Define B n C A n as the event where one of these particles happened to be below —2 at 
time (1 — 2e)T. Assuming we are in A n \  B n, we say a particle ‘succeeds’ if

• A t som e tim e  r  £ [(1 — 2e)T, (1 — e)T] we have Ui > —ery.
Using lemma 11 we know that the probability of failure decays exponentially so that
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the probability of success is greater than 

and

• B y tim e T  we have Ui(T) > ( / ( l  — 5e) — e ) r r .

Because a particle started at time t  < (1 — e)T at a level greater or equal to — er^, we 
bound (from below) the probability of a particle succeeding by P(U®T > / ( I  — 5e)ry). 
Because r ^ / r t —> f(6)  we bound this below by

P(U% > r (1_4e)T).

Using corollary 7 we know this is eventually greater than e- (1-3e)T. 

and

• D uring a short period of tim e [Tk ,Tk+ 1] the particle stayed above level ( / ( l  — 
5e) - 2  e)rTt.
As in the proof of the upper bound, If (Tk+i — Tk)p(rrk) is small when compared to 
errn, the probability of success is greater than some constant c.

Combining the three independent experiments we see that

Pt := P {a particle succeeds) > |ce - 1̂-3^T.

Given A ni we say the system failed if either Bn occurred or all the particles failed. The 
probability that all n =  |AT(1_2£)t| particles in A n \  Bn failed is thus smaller than

P(system failed|An \  Bn) < (1 — pr) l̂v(1-2£)r l

Summing B n and over all A n \  B n separately, we get that the probability of a system failure 
is bounded above by

P(Bn) + E {{  1 -  p j.jW '-’OTl) =  P ( R ^ 2c)T > 2rr) + G(1 -  pT, (1 -  2e)T).
n,
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Both terms on the RHS decay exponentially in T. The exponential decay for the first 
term follows from the upper bound result, the exponential decay of the moment generating 
function G (\ , t )  = E ( \ \Nt\) follows from lemma 2.
Summing over the Tk we have that almost surely, eventually we will always succeed in finding 
a particle in the whole of the interval [T ,̂ T^+i] above level ( / ( l  — 5e) — 2e)Xfc. Because 
Tk+i — Tk< eTk, we know this level is above ( / ( l  — 5e) — 3e)!ZV|.i. Hence

p
lim inf — > / ( I  — 5e) — 3e.

t—t-oo Tf

Let e I  0 and use the continuity of /  to complete the proof.

6.3.4 A Large-Deviations Principle

By replacing rt with ret in the above proof of theorem 13 we get the following large-deviations 
principle.

Theorem  14. Consider the p,-BBM satisfying the same conditions as those in theorem 13. 
Let Ne(t) denote the particles whose position at time t is above ret.

Ne(t) := {i e N t : U^t) > ret}.

Then, almost surely,

lim y log |A^(/)| = 1 -  0.
t —► oo t

6.3.5 The Point Process in 7Z2 of a //-BBM

We conclude this section with another application of theorem 13. Suppose we associate with 
each particle a vector in 7£2, representing Ui(t) and Bi(t). Formally, we let

K(*)=
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Both theorems 13 and 14 hold for an arbitrary birth process satisfying only E (C ) < oo. 
Alas, to apply the large-deviations principle for a Brownian motion requires us to assume 
from now that E(C\ogC ) < oo. We let |A| < \/2. We now alter the steps in the proof of 
theorem 13 as follows.

• Run the process until tim e (1 — 2t)T  where T = Tn and e is small.
We now consider only particles which satisfy

{ i  6 N(i-2c)T ■■ IBi ((1 -  2e)T) -  A(1 -  2e)T\ < l}  .

We should get approximately particles.

• Perform an individual experim ent with each particle
We say a particle “succeeds” if it manages to
(I) Reach an ctt neighbourhood of the origin before time (1 — e)T.
(II) Satisfy at time T, Ui(T) > r 0(!_8e)T.
(III)  Stay above (1 -  t)re(i-8e)t for all t € [Tn,Tn+i].
(IV ) Its Brownian position at time t £ [Tn+ i , r n+i] satisfies

|R;(£) — Xt\ < 4et.

We now duplicate the proof of theorem 13. The only significant change we notice is that 
instead of of using result 2 to count the number of particles on which we perform the test, 
we use lemma 4. We deduce the following theorem.

Theorem  15. Consider a fi-BBM satisfying the same conditions as in theorem 13. For all
A  C 7Z2, define A^(t) as the set of all particles satisfying P i ( t )  £ A. Let us also define the
rate function I

= l - o - i A 2.

Since f  is increasing, this is well defined.



We claim that for all open sets A  C 7£2 and closed set D C 7Z2, almost surely

lim sup -  log \Nr>(t)\ < su p l(z ) ,
t—*■ oo t Z£A

lim i n f -  log |A^^(t)| > sup I(z).
*->°° t zeA

6.4 T he Integrated  /i-B B M

The final section of this work is somewhat analogous to chapter 5. It contains a beautiful 
proof of the large-deviations principle associated with the integral process of a //-BBM. It is 
our hope that the reader will not be put off by the abundance of notations.

6.4.1 N o ta tio n s

We associate two random processes Y  and Z  (henceforth referred to as the //-integral process 
and the integral process respectively) with each particle.

dYi(t) =  p(Ui(t))dt, 

dZ{(t) = Ui(t)dt.

We assume that both processes start at 0 and that offspring inherit their ancestral position. 
At time T, we scale both of these by T  in both the space and time coordinates.

y f ( 0  =  f Y i i t r ) ,  

z f( t )  = ^ Z i( tT ) .

These two paths are related using the map
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z ( t )=  f  n 1(y(s))ds. 
Jo

For every A  C C°([0,1] ,7Z) we define

(6 .8)

IiM a (T) = { i e  N t  : y f  € A}, 

Ma (T) = { i e N T : z f  € A}.

Finally, we let qi(t) be the point process on 1Z2

«(*)=

and for every A  C H 2 we let fiNA(t) := {z 6 Nt : qi 6 A}.

6.4.2 T he  //-In tegral P rocess

The following is a trivial yet a powerful observation. Integrating

dBi(t) -  dYi{t) = dUi(t)

and dividing by t, we deduce that

IN *)

and so almost surely, for all particles,

sup ||pi(t) -  qi(t)|| < j R t  -> 0. 
i£Nt 1

(6.9)

(6 . 10)
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C o ro lla ry  9. Theorem 15 still holds when we replace with pNA(t).

Proof. The family of projections Trt : pi(t) —> qi(t) is almost surely uniformly continuous. We
simply apply the contraction principle with Trt —► Id. □

6.4.3 T h e  P a th  Space

There is more to observation 6.10. We can project a particle’s entire scaled Brownian path 
to y j  and for all i, this will be almost surely uniformly continuous in the supremum topology 
on Ci := {y G C^QO, : 2/(0) =  0}.

C o ro lla ry  10 . Results 3, 4 and theorem 9 all hold when we replace Ma(£), M[)(t) and Co
with p.MA{t),pM D{t) and C\ respectively.

6.4.4 T h e  In teg ra l P rocess

The space of functions on which corollary 10 observed a large-deviations principle is C\ and 
not Co. Since Ci differentiable, we prove next that we can refine the topology on C\.
For every a  € 7£+ define ||y ||a on C\ as

\\y \\a := j j f  \y(t)\adt.

The topologies become finer as a  increases with || • ||i still finer than the supremum topology. 
We complete Ci with respect to this topology and arrive at the Sobolev spaces W 1,a([0,1]), 
the spaces of functions with o-integrable weak derivatives.

T h eo rem  16. Corollary 10 holds when we replace (Ci, || • ||oo) with (W 1,2, || • H2).

Proof. Let K n — B ^  be the compact ball

K n := {y e Ci : 21(y) = f  y2dt = \\y\\l < n}.
Jo

Clearly, if y G then K(y)  < J(y) < 1 — \n  and so the family of probability measures is still 
exponentially tight in the || • ||2 topology. The result follows from the Inverse Contraction 
Theorem applied to the identity map. □

}

1/Of
(6 .11)
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C o ro lla ry  11 . For every a > consider a pa-BBM where pa(x) is defined as

if x > 0,2 '

2

ua (x)  : =  .

I - \ \ x \ a if x < 0,

Then, under the supremum topology in C\, for every open set A and closed set D almost 
surely,

lim inf T  log \Ma (T)\  > sup p K ( z ) ,
00 z£ A

lim sup T  log \ Md (T)\ < sup pK(z),
T-*  oo z£D

and also

lim infT  1 log E \ M a {T)\  >  sup p. J(z),
T^oo zeA

lim supT -1 logE\M d (T)\ < suppJ(z).
T  —+oo z £ D

where

pK(z)  := I<(y), 

p j ( z )  := J(y).

J  and K  were defined for a BBM in chapter 4 and y z using the bijection map 6.8.

Proof. We endow C\ with the || • H2 topology. Looking back at equation 6.8, y —► z defined 
as

y -> j  ^ ( y ) ,

is continuous. As long as a > the topology on the RHS can be replaced with the supremum 
topology and the map will still be continuous. The result follows from the contraction
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principle. □
C o ro lla ry  12. For the p-BBM described in corollary 11, the almost-sure and the expectation 
wavefronts of the integral process Z agree in the first order. Almost surely,

lim T - 1supZi{T) = 23/2a.
T —t-oo i

Proof. Pick a given growth rate 1 — c. Optimising Jq subject to \ f  y2 =  c we
get the optimal linear path y = y/2c. Consequently f*  /i“1(y )^  =  2c3̂ 2a. Since these path 
exhibit identical behaviour in expectations and almost surely the equality of wavefronts 
follow. Letting c f 1 concludes the proof. □
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