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SUMMARY

Computer simulation is a powerful tool for the design, analysis and synthesis of hydr;iql_ié systems.
A simulation of system dynamic performance could be used as a basis for .automated condition
monitoring, a model reference for predictive control, or to tune the operation of existing plant to
improve efficiency.

Components in a computer simulation of a hydraulic system are often represented by ordinary
differential equations (ODE’s) and solved in the time-domain using conventional numerical
integration techniques. However, the solution of the wave equation in fluids gives rise to a form of
mathematical description known as transmission line modelling (TLM). Using the TLM approach
fluid volumes can be modelled by the propagation of pressure and flow waves at the speed of sound
in the hydraulic fluid. The finite transmission delay due to the limited rate of information propagation
across a fluid volume decouples the components at either end of the volume. It is therefore possible
to solve each component model independently, with an exchange of information at the end of each
solution step.

A significant advantage of allowing component models to be solved separately is that each
component model, or sub-circuits of component models, can be solved on separate "parallel"
computers. Each component model is entirely self-contained and numerically isolated from
components connected to it by finite transmission delays. In partitioning components onto separate
processors therefore, both the models that represent the circuit and the mathematical operations
required to compute the solution are fully distributed.

The research described in this thesis examines the use of TLM to decouple the solution of hydraulic
system component models, and moves on to describe the implementation of a TLM simulation
package, for the general prediction of hydraulic system performance. It has been demonstrated that
considerable improvements in simulation speed are possible using the TLM method on a single
processor, and that significant additional gains are possible by partitioning a TLM simulation onto
two or more processors.

Depending upon the numerical nature of the equivalent ODE simulation, the speed increase achieved
employing TLM ranged by an order of magnitude from approximately three to thirty times faster.

The algorithmic "speed-up" afforded by the TLM solution technique was found to be highly problem
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dependent.

The uneven distribution of processor computational loads, in addition to frequent communications
between sub-circuit "partitions" executing on different processors, was found to have a very
detrimental effect on the performance of the parallel TLM solver. A two or three fold increase in

execution speed compared to a single processor, using four processors, was the maximum attainable

for the simulation examples considered.
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FOREWORD

During the course of this study a total of four papers were written and presented by the author jointly
with Professors Kevin A Edge and Clifford R Burrows. Copies of these papers have been appended
to the back of this thesis for further information, and in some cases to avoid unnecessary repetition

of earlier work.
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NOMENCLATURE

A Area
a Acceleration
B Bulk Modulus
C Characteristic Pressure, Coefficient (orifice model)
c Speed of sound
d Pipe diameter
D Fluid displacement (of pump or motor)
F Force
G Shear modulus
g0 Denotes any general function
hQ Denotes any general function
| Fluid inertance
J Mechanical inertia
K Flow-pressure gradient, Orifice constant, Spring rate (use described in text)
L Length
M Mass
NO Loss function used in 2-port, 4-pole transmission line
n Gear reduction ratio
| Pressure
Flow

Laminar friction coefficient

r Pipe radius

s Laplace operator, Actuator stroke (use described in text)
T Transmission delay

t Time

u Time-varying input demand

A% Volume

v Velocity
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Subscripts

cav

ch

cyl

Linear displacement

Characteristic surge impedance for fluid-filled pipeline

Filter coefficient used in capacitive line model
Simulation time step

Ratio of new to old line impedance
Differential pressure

Impedance ratio

Convolution time

Dynamic viscosity

Kinematic viscosity

Fluid density

Time constant

Distributed laminar friction coefficient
Frequency-dependent friction dispersion coefficient

Frequency-dependent friction dispersion coefficient

Line end ’a’, Accumulator (in accumulator model)

Line end b’

Cracking (relief/check valve models), Clearance (pump model)
Cavity volume (cavitation)

Charged (accumulator model)

Cylinder (accumulator model)

Discharge (coefficient in orifice model)

Effective value (bulk modulus), Error (time step controller), End (cavitation model)
Coulomb friction (actuator and motor models)

Gas (accumulator model)

Integer index

Junction (to connect multiple component models)
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pm

ref

tol

Superscripts

Laminar (laminar resistor model), Externally applied load (actuator/motor models),
Transmission line (cavitation)

Motor (hydraulic motor model), Component model (cavitation)

Integer step number

Orifice

Pump (hydraulic pump model)

Prime mover

Resistor (laminar resistor model), Resistive (torque/force in motor/actuator model)
Reference value

Stiction (force/torque)

Start (cavitation), Slip (loss in pump/motor model), Shaft

Tank (reservoir model)

Tolerance (used in stick-slip friction modelling)

Vapour (cavitation), Volume, Valve (valve models), Viscous (loss in motor model)

Denotes a torsional system

Step controller exponent (accepted step)
Step controller exponent (accepted step)
Step controller exponent (step rejection)
Gas polytropic index (accumulator model)
Denotes a maximum value

Denotes a new value

[Note: some notation is described fully in the main body of the thesis where it appears and is not

referred to in the above list]
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CHAPTER 1

INTRODUCTION

§1.1 Requirement

Large and complex hydraulic systems are employed in a diverse range of high risk, high capital
investment applications, such as in the aerospace, marine and mobile equipment industries.
Consequently, safety, integrity and efficient operation are of critical importance. Computer simulation
is now used extensively in the analysis, synthesis and design of such systems, because the complex
interactions that may occur between components are difficult, if not impossible to examine otherwise.
The speed of a simulation is governed by the detail with which a component is modelled and the
number of individual components in a system. In order to analyze larger and more complex systems
within an economic time frame, faster methods of computation are required.

Typically simulation takes a serial approach to computing a solution, each numerical calculation is
performed in sequence by a single processor. Serial processing, even using a very expensive super-
computing platform, is limited to a theoretical maximum speed, dictated by the design of the central
processing unit (CPU). A faster simulation can be obtained if two, or more numerical calculations
are performed by different processors simultaneously.

Parallel computation using a number of separate, communicating processors represents a viable and
cost effective alternative to computers that employ a single but extremely fast processor.
"Supercomputers” can use several processors in parallel, using techniques such as pipelining to
schedule tasks to improve performance [Hockney & Jesshope, 1981]. This approach is not always
appropriate in engineering because many of the applications that would benefit from faster processing
cannot justify the cost (or physical size) of a supercomputer.

Sufficient gains in execution speed will enable real-time hydraulic system modelling, which has



significant implications in the areas of non-linear model reference adaptive control (MRAC),
sophisticated on-line condition monitoring and for examining the interaction of simulated plant with
real hardware, or human operators.

The majority of MRAC techniques so far developed rely on a simple discrete transfer function
representation of the system model, but significant limitations exist due to unmodelled dynamics
[Craig, 1988]. The increased performance offered by parallel processing will allow more complex
representation of the system model, incorporating highly non-linear effects such as flow through a
turbulent orifice, which would otherwise be linearised.

The potential benefits of on-line condition monitoring to engineering systems are considerable;
critical operating conditions can be detected in advance and automatic corrections, or warnings,
initiated. Conventional techniques involve monitoring parameters such as leakage rate, pressure
ripple, temperature and vibration signatures over long periods of time for nominally constant
operating conditions [Hunt, 1986]. Abnormal operation is detected only when a measured parameter
moves outside a specified window of operation. If parallel processing is used to provide an advanced
non-linear plant model at sufficient speed, then it will become possible to identify parameters such
as damping coefficient, friction, or leakage rate from the dynamic performance of the system in real
time [Sato et al, 1991). Such parameters can be determined by forcing the plant model to track the
real plant dynamics using a minimum of plant states, given significant but easily obtainable a priori
information about the real plant such as physical dimensions, mass, spring rates etc. Examples of
hydraulic plant condition monitoring using this technique include estimates of bearing wear from
friction, or seal condition from leakage rate.

Parameter identification using dynamic information from the plant can enable incipient faults to be
detected in advance of conventional methods that rely on steady-state measurements [Isermann,
1991]. Moreover, for a hydraulic system that undergoes a complex operating cycle, conventional
condition monitoring techniques are inappropriate and the direct comparison of the plant dynamic
performance with an advanced real-time dynamic model is likely to be the most reliable and effective
solution to the problem of unmodelled plant dynamics.

Another area of growing interest is that of multi-variable plant optimisation [Krus et al, 1991A].
Increasingly, genetic algorithms are employed in order to detect the existence of genuine minima,

or maxima (optimum values, given specified performance criteria) with respect to important plant
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variables, such as physical component sizes and control settings. This necessitates many (typically,
in excess of one thousand) dynamic simulations of the same plant model, with parametric variations
(eg. pump displacement, controller gain etc.). For large, complex hydraulic circuits the computer run
times required for a single simulation implies that optimisation is likely to be prohibitive.
Performance increases, obtained by restructuring the plant model into parallel processes, will improve
the viability of the optimisation process, notwithstanding the significant gains already obtained by
performing parametric variants of sequential simulations on separate processors [Donne et al, 1993].
In future, the use of a "massively parallel" machine could enable many different parallel simulations
to be executed simultaneously.

A material increase in performance will enhance the iterative design process, where dynamic
simulation forms an integral part of that process in order to reduce the number of costly prototype
tests. It is frequently very time consuming for the hydraulic system designer to investigate the
transient response of many different hydraulic systems using computer simulation.

The work described in this thesis is aimed at developing a parallel simulation methodology to
facilitate both the rapid and accurate dynamic analysis of large and complex hydraulic systems. An
important part of this research addresses the problem of the structure and design of such a system,
in conjunction with the mechanism for decoupling and hence partitioning the numerical simulation
into parallel tasks. The application of these techniques to example systems and investigating

performance for alternative parallel configurations are significant aspects of research contribution.

§1.2 Background

Most conventional serial process simulations are assembled from lumped-parameter component
models, using ordinary differential equations (ODE’s) and algebraic equations to represent the
physical circuit elements [Tomlinson, 1987]. Newton’s second law of motion, fluid compressibility
and turbulent flow through an orifice are typical of the phenomena that are modelled using ODE’s
or algebraic lumped-parameter equations. Numerical stiffness and frequent discontinuities are
common to lumped-parameter fluid power system simulation.

A stiff system is one where the dynamic behaviour is described by a set of coupled differential
equations, which have solutions with widely differing decay rates. The smallest time constant (largest

eigenvalue), however, dictates the maximum time step allowable for numerical stability [Lambert,
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1973] [Hairer & Wanner, 1991]. It is this characteristic of stiff systems that results in very small time
steps and correspondingly long computer run times. Irritatingly, it is the physical parameters
associated with this time constant that decay most rapidly and contribute least to the salient
dynamics.

A serious problem arises when the equations describing system behaviour are discontinuous in
nature, because of the occurrence of a physical discontinuity. A discontinuity is characterised by a
step change in a model parameter, which can cause instability in the numerical integration process
unless the algorithm is capable of detecting the discontinuity. Physical discontinuities may be divided
into two categories; a change in input demand at known times, or a model parameter reaching a
critical value, eg. when an actuator reaches its travel limits, or when a valve opens, resulting in an
instantaneous change.

The current state-of-the-art in the field of numerical integration is the variable method (type-
insensitive), variable order and variable time step integration algorithm, eg. LSODA ' [Petzold, 1983]
[Richards et al, 1990]. Such algorithms have been designed specifically for use with stiff systems
of differential equations.

The parallelisation of a system may take the simple approach of partitioning the current lumped
parameter models and integration algorithms to run on separate processors. This is termed functional
parallelisation, because the problem is decomposed into clearly identified functional blocks. The
limitations of this approach are that the partitioning may not be evenly balanced, resulting in one
processor performing the majority of the computational load. An alternative approach is algorithmic
partitioning, in which the parameter models and integration algorithm are written in a form more
suited to parallel computation. It is this algorithmic partitioning which is used in the transmission
line modelling approach (TLM).

TLM utilises the solution of the loss-less wave equations, thereby allowing for the transport delay
that occurs in transmission systems. The transport delay (which is the time required for a wave to
propagate along a transmission line) effectively decouples one end of the line from the other. This

is a distributed parameter model (lumped parameter models are actually derived as approximations

to distributed parameter models, where the transport delay is assumed to be negligible).

' LSoda uses either GEAR, or ADAMS integrators, depending upon system stiffness.
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Currently, there exists little research concerned directly with the application of parallel computing
to the dynamic simulation of fluid power systems. Krus et a/ [1990] demonstrated the use of two
personal computers linked via a serial data cable to perform the parallel simulation of a simple
hydraulic circuit example, using a fixed time step transmission-line modelling (TLM) algorithm.
More recently, Jansson et al [1992] described the use of a variable time step TLM algorithm, using
different time steps in different sub-system partitions. This approach was evaluated by employing
different processes for each sub-system on the same processor, communicating via shared memory.
The effectiveness of this procedure is very dependent upon the partitioning arrangement chosen,
because of the different time steps required by different partitions; some parts of the system may be
isolated artificially by the partitioning and critical interactions between partitions lost. To avoid such
difficulties relies to a large extent on significant a priori knowledge of the system dynamics.
Moreover, some very disturbing time step size oscillations were introduced, as a consequence of
synchronizing the partitioned processes.

A similar approach has been employed by other researches using conventional integration methods.
Harris [1990] used Gear’s method to solve the hydraulic part of system, whilst using simple Euler
integration to solve for thermal transient effects. This has proven to be an acceptable approach
because the coupling between the hydraulic and thermal parts of the system is weak; fast hydraulic
transients have little or no affect on the thermal transient behaviour of the system.

A stiff integrator could be applied to separate partitions in the hydraulic simulation if the coupling
between the partitions is relatively weak. If this were not the case then the error control algorithm
within each partition would interact with the other, forcing the use of small time steps. The nature
of the communications is also problematic if variable time steps are used; constraining the integrators
to synchronise may cause time step oscillations as in Jansson’s TLM algorithm; interpolation will

introduce additional errors.

§1.3 Scope

This thesis is aimed at a more in-depth evaluation of the TLM approach to the parallel simulation
of hydraulic systems. The current availability of low cost hardware platforms and the recent
development of software for parallel programming allows TLM to be developed in a true multi-

processor environment. However, this technology is constantly improving in terms of ever-increasing
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processor speed and as such this research is concerned with the relative performance improvements
possible using parallel processors, rather than any absolute measure of performance.

It is particularly important to compare the speed advantages of a multi-processor simulation against
the use of a single processor of the same type. A feature of parallel processing is that the partitioning
of a simulation onto several processors introduces a communications overhead, which can actually
reduce the speed of simulation below that of a single processor.

The concepts of processor load balancing and the communications penalty between processors are
presented and evaluated for specific test system simulations, and partitioning guidelines for efficient
parallel operation are reported. Larger and more complex systems, incorporating a diverse range of
component models, are investigated using TLM. Detailed models of complex systems are partitioned
into a number of sub-systems, placed on separate processors. Furthermore, a numerical scheme using
instantaneous signal links is devised for hydraulic systems that involve electro-hydraulic control,
whilst retaining the TLM representation of the hydraulic lines to facilitate the decoupling of hydraulic
component models. The constraints imposed when configuring a parallel implementation of such

systems are addressed and solutions evaluated.

§1.4 Organisation of Thesis

The remainder of this thesis is divided into a further six chapters, structured in the following way:

Chapter 2. Chapter two reviews the possible alternatives for the parallel, dynamic simulation of
hydraulic systems and establishes the essential criteria for an effective and efficient numerical

approach to the parallelisation problem. Reasons for adopting the TLM-based approach are discussed.

Chapter 3. Chapter three details the modelling of hydraulic lines using TLM, with reference to the
use of error control and time step size selection for efficient operation and for the treatment of
numerical discontinuities. The modelling of phenomena such as line friction, cavitation, variable
volume and variable bulk modulus using TLM-based algorithms is also discussed, in addition to the

mechanism employed for instantaneous control signals used in electro-hydraulic sub-circuits.



Chapter 4. This chapter describes the design of the TLM component models, central to the
formation of TLM hydraulic system simulations. Specific component model examples, used in the

system simulations of Chapters five and six, are detailed.

Chapter 5. Here, the structure and methodology devised for reconfigurable, component model
based simulations using a program generator is reported and the implications for parallel operation
outlined. A specific example system is simulated, the "two-actuator" circuit, using a multi-step TLM
algorithm. Explicit comparison with the lumped parameter equivalent simulation is undertaken and
evaluated in terms of the correspondence of results and computational performance on a single

processor.

Chapter 6. Chapter six evaluates the parallel TLM implementation, with reference to processor
configuration and the nature and topology of the hydraulic system being simulated. The methodology
adopted for circuit partitioning into sub-systems is described in greater detail. Specific example
circuits are partitioned and the performance of the parallel simulations quantified for different
numbers of processors and for different component model to processor mappings (partitioning
arrangements). Guidelines essential to efficient parallel operation are described, to ensure the
adequate balance of computational loads and to minimise the overhead associated with data transfer

between processors.

Chapter 7. Finally, chapter seven summarises the conclusions drawn from the various aspects of
this research, in particular the effectiveness and potential of TLM for parallel simulation.
Furthermore, the current status of the system is outlined and some possible areas for future

investigation are suggested.



CHAPTER 2

ALTERNATIVES FOR PARALLEL SIMULATION

§2.1 Introduction
Fundamentally important to parallel simulation is the efficient means of distributing the computation
onto multiple processors. This chapter evaluates alternative techniques to facilitate the partitioning

and hence the parallel simulation of fluid power system dynamics.

§2.2 Lumped Parameter Modelling

Realistic modelling of hydraulic plant frequently necessitates a large number of state variables, if all
dynamic elements in the system are to be represented by simultaneous first order differential
equations. These systems are often characterized by numerical difficulties, such as strong non-
linearities and highly coupled, stiff, differential equations. In addition, the numerical models may
incorporate severe discontinuities, with different modes of operation modelled by different continuous
equations [Richards et al, 1990]. As a consequence the numerical integration algorithms necessary
to deal with the stiffness problem have to locate each discontinuity and restart the integrator at this
point to avoid a numerical failure. Such numerical procedures usually result in long computer run
times. Moreover, severe variations in simulation speed are typical and are attributable to changes in
the stiffness of the simulated system as the simulation progresses. Such performance characteristics
are not well suited to real-time applications, where the plant model execution speed must be
predictable and preferably constant.

As an example consider the hydraulic circuit outlined in Figure 2.1, which shows an application that
involves the synchronized operation of two actuators. The simplest lumped-parameter model of this

circuit considers each group of inter-connected pipelines as a lumped volume, which accounts for



compressibility effects only. All components attached to the volume (pumps, valves, actuators etc.)
calculate flows in response to the same fluid pressure. Component models in the circuit are directly
connected by volume pressure and are therefore closely coupled. This coupling between component
models is highly dependent upon the line compressibility, or more precisely capacitance (ratio of
volume to effective bulk modulus) in the lumped line model;, very small volumes result in
correspondingly fast pressure transients. The requirements of a stable and efficient numerical
integration algorithm for such systems are therefore very demanding, particularly for large systems
of state variables. The lumped parameter simulation of the circuit shown in Figure 2.1 (described
more fully in §5.4) contains twenty-nine models, most of which include discontinuities and non-linear
elements, involving a total of eleven state variables. A simulation time of only two and a half

seconds, required approximately 4860 CPU? seconds of processing time on a SUN Sparc 4/370; very

much slower than real-time. Numerically, this is a highly stiff, non-linear lumped-parameter
simulation, which required 561 Jacobian re-evaluations with simulation time steps ranging from

3.16x10" to 2.6x10°? seconds.

§2.3 Distributed Parameter Modelling

Real-time simulation of the circuit described in Figure 2.1 is only feasible with substantially
increased processor speed, or by partitioning the simulation into parallel tasks on individual
processors. Parallel operation requires a convenient method for dividing a hydraulic system into
separate numerical tasks. Partitioning of the lumped numerical analysis, as mentioned above, is non-
trivial and highly system dependent. Links of weak coupling (large volume lumped lines, for
example) could provide convenient points at which to divide a simulation. However, the Jacobian
matrix describing the system dynamics changes significantly with strong non-linearities and at
discontinuity points, which in turn may change the nature of the coupling between components. Such
behaviour would require dynamic reconfiguration of the parallel implementation to remain efficient,
accurate and numerically stable.

A preliminary study of a variety of complex circuits [Burton, 1990] revealed that most processing

time is actually spent performing centralised integration, as opposed to solving the model equations

? Central Processing Unit



(ie. evaluating rates of change of state variables and passing these to the integrator). In the case of
the circuit shown in Figure 2.1, for example, tests revealed that approximately sixty percent of CPU
time was used for numerical integration alone.

There is some scope for parallelising the numerical operations within the integrator itself, for
example there exist parallel algorithms for L-U factorisations. A type-insensitive integrator such as
LSODA [Petzold, 1983] [Richards er al, 1990] is well suited to the lumped-parameter simulation of
hydraulic systems on a single processor, but is not readily parallelised due to its highly sequential
design. Thus only operations that relate to the component models facilitate paralle] implementation;
the resultant gain in performance would therefore not be significant owing to the computational
bottle-neck at the integrator. In practice there will be an additional communications penalty between
the partitioned models and the integration algorithm (even if it is to some extent parallelised), which
will make matters worse.

A far better approach is to distribute the integration throughout the problem domain into the
component models themselves, an option which is offered by Transmission Line Modelling (TLM).
This approach utilises the physical transport delay in the pipelines that connect components together.
If the transmission of information is restricted to the speed of wave propagation, then there is no
immediate communication of information between components connected by distributed parameter
line models. Consequently, there is no requirement to solve a large, monolithic system of coupled
differential equations at every discrete time step, as each component model is decoupled numerically
from its neighbouring components.

Some techniques for modelling the effects of distributed parameters do not strictly include a
transmission delay, such as in finite element and finite difference methods of solution. The finite
element technique, involves transforming the PDE’s’ for fluid momentum and continuity into an
arbitrary number of simultaneous ODE’s at specified longitudinal intervals, using the Galerkin
method for example [Paygude et al, 1985]. A lumped-parameter solver, such as LSODA, is then
required to obtain a time-domain solution.

The following distributed parameter methods can achieve numerical decoupling, by incorporating a

pure transmission delay into the pipeline model.

3Partial Differential Equation
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§2.3.1 The Method of Characteristics (MOC)

With this method each line is discretised into a series of internal points at the intersection of
characteristic lines; pressure and flow velocity is then calculated at each of these internal points
[Fox, 1977]. Skarbek-Wazynski [1981] investigated the application of this approach to general fluid
power systems analysis, but found the method of characteristics unable to model small trapped
volumes (eg. those associated with manifolds and fluid volumes in valves etc.) as accurately as the
lumped-parameter, compressibility-only model. A combinétion of MOC and lumped-parameter
simulation, with a central integrator to compute small volumes and administer boundary conditions

to MOC lines, was determined the most appropriate solution.

§2.3.2 Transmission-line Modelling (TLM)

In this case each line is represented as a four-port transmission-line element. The pressures and flows
are only evaluated at each end of the line [Auslander, 1968] [Karam, 1972] [Sidell & Wormley,
1977] [Boucher & Kitsios, 1986] [Krus et al 1990]. Transmission-line methods have been applied
to electrical, thermal and mechanical, as well as fluid power systems [Johns & O’Brien 1980] [Pulko
& Olashore, 1989] [Partridge er al, 1987]. Consequently, plant containing all these elements, may
be modelled using similar numerical techniques for the hydraulic, mechanical and electrical parts.
Figure 2.2 illustrates the example system; this time, however, the pipes are no longer combined into
lumped volumes (pure capacitances), but treated as individual transmission-line delay elements,
connected by line junctions and components. Computer models now only exist for each component
in the system (the line junctions are also types of component).

In most cases, TLM requires less computational effort than the method of characteristics, as no
internal points are calculated. Moreover, the number of component models forming a system is
reduced, as the equations relating pressure and flow at the transmission line ends are incorporated
into the model. The total number of models is then reduced, as the pipe models are not solved
separately, but incorporated into the component model ports. When using MOC each line model must
be solved first, using the boundary conditions provided by the connecting component models. This
allows individual components to be decoupled by the line models, but results in less numerical
stability than TLM, because the boundary conditions between pipe and component are not solved

simultaneously.
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§2.4 Closure

TLM is a very powerful approach for domain decomposition and hence parallel operation, as all
models are self-contained and are inherently decoupled by a transmission delay. Both the
computation of component models and the integration process may therefore be fully distributed.
This allows individual components, or component sub-circuits (topological groups) to be assigned

to separate processors and restructured into a partitioned simulation.
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FIGURE 2.1 "TWO-ACTUATOR" EXAMPLE CIRCUIT
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FIGURE 2.2 EQUIVALENT TLM CIRCUIT
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CHAPTER 3

TRANSMISSION-LINE MODELLING

§3.1  Introduction

In this chapter computationally efficient transmission-line models for pipelines and fluid volumes are
developed, to enable the decoupling of circuit components and facilitate the subsequent partitioning
of the problem into parallel tasks. In addition, transmission line models for some fundamental fluid
phenomena are outlined, including cavitation, variable fluid volume (eg. displaced liquid in an
actuator) and bulk modulus (eg. variation with pressure). Furthermore, the problem of modelling
control signals, such as the feedback signal to an electro-hydraulic servo-system, is addressed. This
latter problem places constraints on circuit partitioning by introducing an instantaneous (relative to
the line transmission delay) connection between component models.

To improve simulation efficiency and to deal with the problem of physical discontinuities, a variable
time step transmission-line modelling algorithm is developed. Finally, a line junction model is
introduced, which provides a mechanism for connecting multiple components to the same line

system, enabling a direct representation of the physical circuit layout.

§3.2 Hydraulic Line Modelling
Time-domain transmission-line equations may be derived from the hyperbolic 2-port 4-pole
equations, given by eq.(3.1) [D’souza & Oldenburger, 1964] [Viersma, 1980]. These equations relate

to the transmission line shown in Figure 3.1.

P,-Z/N)Q, = (pb +Z|/NGs) Qb) e STVNG)
P,-Z{N(5)Q, = (P, +Z/Ni) Q,) e *TVF® @.1)

z = PC
A
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where N is a time-dependent loss coefficient and T is the line propagation delay. The term Z is
referred to as the line characteristic surge impedance.

The symmetry of this configuration results in identical forms for the transmission-line equations
relating each end of a Joss-less transmission line, where N(s) in eq.(3.1) is unity [Blackburn, Reethof

& Sheerer, 1960]: (Pa _ ZQa)(t) = (Pb + ZQ,,) €-T)

(P,-ZQ,)(t) = (P,+2Q,)(t-T)

(3.2)

These equations describe each end of a distributed line in the time domain. In order to set up a TLM
component the line end equation is incorporated into the component model and solved
simultaneously. Thus there are no separate line models used in TLM, only component models which
have the line models embedded in the form of transmission line ends.

The symmetry of the line equations allows the same sign convention for flow direction at each line
end; flows out of the component model (into the line) are defined as positive. This feature enables
TLM component models to be connected together to form a system of models in a consistent manner
when building a circuit simulation from a standard library of components.

To simplify subsequent analyses it is convenien: to introduce a characteristic pressure, C, such that:

C, = P,+Z0Q,

(3.3)
C

a

Pa + ZQa

This represents the information that must be propagated at a finite transmission speed between
transmission line ends, ie. between connected TLM component models. The loss-less form of the

transmission-line equations is re-written in terms of characteristic pressures, as follows.

(P -2Q,)(t) = Cye-T) G4

To illustrate the solution of the TLM wave equations in the time domain, consider the simple circuit
shown in Figure 3.2. This circuit model consists of a constant flow source connected to a fluid-filled
transmission line, which discharges into an infinite, constant pressure reservoir (zero gauge pressure)
via a laminar restrictor.

The flow source and the inlet port of the laminar restrictor are connected by characteristic pressure
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waves, which propagate through the line at a finite speed. Hence there is a finite transmission delay
that decouples both right and left travelling characteristic pressure waves.

The flow source, Q,, is defined as positive into the transmission line. The corresponding pressure at
the source exit (transmission line end) is given by direct substitution of this flow into the

transmission line end to obtain the following expression:

P5) = Ct-T) + ZQ,{) (3.5)

where Cj, is the characteristic pressure wave propagated from the inlet port of the restrictor calculated
at the last time step.
From Q, and the pressure P, determined from the transmission line end equation, the flow source

characteristic pressure wave is calculated from the following equation:

C,) = P, + ZQ,() (3.6)

This characteristic pressure is received by the inlet of the laminar restrictor at the next time step.
The restrictor calculates flow as a linear function of differential pressure between inlet (transmission

line end) and outlet (zero pressure reservoir). Hence for the restrictor:

Q) = Ry(Pa(t) - Pyr) 3.7

where:

P,(t) =0
For the restrictor, flow direction is defined positive from the inlet port (left) to the outlet port (right).
For the transmission line end, flow is defined positive into the line, or out of the component, ie. in
the opposite direction to the restrictor "inlet" port.

Substituting for restrictor flow into the transmission line end equation and re-arranging:

Pit)~Z(-Quft)) = C,(t-T) (3.3
and in terms of inlet port pressure: C.lt-
P - S ¢
L

This is an explicit equation for restrictor inlet pressure. The flow Qp is then determined by

substitution into the equation for the laminar restrictor. The characteristic pressure to be propagated

-17-



back to the flow source must be computed as follows, noting the transmission line sign convention

for flow.

Chlt) = Pylt) + Z(-Qy) (3.10)

This characteristic pressure is received by the outlet from the flow source at the next time step.
Initial conditions for the characteristic pressures are set to the initial line pressure. Thus at time
"zero" the characteristic pressures are the same at each end of the line. (Initial flow conditions could
also be specified, although this has not been done for the simulations reported in this thesis).

It is clear that the numerical calculations relating to both the flow source and the laminar restrictor
models can be computed simultaneously.

Appendix 1 details the results obtained for a simulation of this TLM example circuit, which is

compared with the analytical solution of the same system, modelled using lumped parameters.

§3.2.1 Compressible Line

For the majority of industrial hydraulic applications, compressibility effects dominate the dynamic
behaviour of the pipelines and fluid volumes, owing to the relatively close proximity of components
in the system [Tomlinson, 1987] [Elleman et al, 1993]. The modelling errors introduced by such
lumped-parameter compressible fluid volume approximations are usually small when compared with
the magnitude of modelling errors due to other component models used in a hydraulic system
simulation, for example relief valve models that use a linear flow-pressure characteristic as an
approximation to the true valve dynamics [Palmberg, 1991] [Elleman et al, 1993].

For a compressible transmission-line approximation to have principally capacitive dynamic properties,

the capacitance of the transmission line as defined in the following equation must remain constant.
C=— 3.11)

In terms of the transmission-line equations this means that the wave propagation delay, 7, can be
adjusted to match any desired simulation time step, A, provided the line impedance, Z, is

correspondingly adjusted to maintain the same line capacitance according to the following equation.
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-pcl v
v L
(3.12)
2
_pcA [L=cA]
v
A B,
= — c: —_—
VIB P

This line model introduces a modelling error into the fluid inertance term, defined in the following

equation, as a result of the change in transmission delay.

=PL (3.13)
A

This is an acceptable approach, provided that inertia effects remain small in comparison with
capacitive effects by keeping the line delay within realistic limits; for example a 1m oil-filled line
corresponds to a line delay of about 1ms, and so the time step should be around 1ms or less.

Some level of inertance is a realistic effect, as all physical transmission lines, however small, have
some associated fluid inertia."Adjusting" each pipe length in a system in order to achieve the same
transmission delay, A, between components greatly simplifies the numerical procedure, as the same
time step may be used to numerically isolate all components connected via transmission lines.
Pipeline inertance can be expressed in terms of the simulation time step (or transmission delay) and

compressibility as follows.

7-PL
A
2
_pL” a=-Y
v L (3.14)
222
- PCVA [L=cA]
A? [ B,
o arrre— c: —_—
ViB, P

From eq.(3.14) above, the parasitic inertia term in the capacitive approximation is proportional to
the square of the time step. If the line delay is chosen such that the step size is too large, it is

possible that rapid flow transients occurring at either end of the line will be "sampled" at too low
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a rate, leading to some distortion of the computed dynamics; a small time step (line delay) is
associated with small but frequent characteristic pressure waves, whereas a large time step is
associated with less frequent but larger characteristic pressure waves.

To understand the introduction of this distortion due to unwanted inertia effects, it is instructive to
consider the transmission line as the sum of a Jumped compressibility term and a /umped inertia term.

Re-writing the transmission line equations with lumped parameters (omitting fluid resistance):

- 40 _ _pL
P, P“+Idt 0 [I A} (.15)

-0, +cZ-0  [c-vp

The additional pressure change due to fluid inertance is the product of the inertia term and the total
rate of change of flow into the line. Hence rapid flow transients, coupled with high fluid inertance,
results in a correspondingly large and distorted pressure change.

A completely loss-less capacitive transmission line may introduce high frequency resonances into
the system model, consistent with the undamped propagation of plane waves. If unrealistic
resonances are to be suppressed, then low-pass filtering of the characteristic pressures is necessary
and generally approximates the effect of frequency-dependent damping evident in real oil-filled
pipelines. The low-pass filtering method described by Krus et a/ [1990] for constant time steps, can

also be used with variable time steps [Jansson ef al, 1992], provided the characteristic pressure waves

are compensated as the time step changes (see §3.5). This approach has been used for the subsequent

simulation studies discussed in this thesis and is given by the following equation.

Pa,b_Z’Qa,b = C’b,a

Clha(t) =(1-a)Cy (1-4,) + «C', (t-A,-A, ) Z'=

From the numerical experiments of Krus et al [1990] a suggested value for the filter coefficient, a,
is 0.2. The use of this recursive algorithm means that the line impedance, Z, must be compensated
to achieve the same capacitance of the line without filtering.

Characteristic pressure is a combination of both pressure and flow information, which links each end
of a fluid-filled transmission line according to a finite delay. Circuit components, such as pumps,

valves and actuators, are connected hydraulically by propagating only the characteristic pressure

-20-



waves between them. Fluid friction is then most easily represented by the attenuation, or filtering of

characteristic pressure waves [Krus et al, 1991].

§3.2.2 Line Friction Modelling

The complex nature of line friction requires some simplification when constructing dynamic
simulations. A highly complex transmission-line model, involving both steady and unsteady friction
components [Trikha, 1975], which may be laminar, or turbulent, is often unwarranted when
comparing the relative accuracies of component and line models [Palmberg, 1991]. For most
applications frictional losses are dominated by flow controls, such as directional control valves and
relief valves. For longer lines where steady-state friction is significant, a lumped friction orifice
model in series with a compressible transmission-line element is often used [Tomlinson, 1987].
Much longer lines, however, require a more detailed treatment. Essentially, more accurate time-
domain solutions are required for eqs.(3.1). For distributed laminar friction the loss function, N(s),

is as follows [Krus et al, 1991][Viersma, 1980]:

NGs) = + 1 [R - 8_] G.17)

ZTs

Inverse transformation of the four-pole equations into the time-domain results in the following
transmission-line equations, involving a convolution integral at each line end, which are determined

by analogy to the electrical transmission-line problem analyzed by Carslaw & Jaeger [1963]

1
4R, Il(ég()ﬁ—ﬁ) 2

t
R ey 2 3.18
P, —2Q,, = kC, ,(t-D) + k_12‘,:__ be’a(t—A)e ze P —— dA ©@.18)
T (Az_Tz)z
where
ﬂ)
k = e( 2p

Krus et al [1991] suggest that eq.(3.19) is a good approximation to eq.(3.18), which models
distributed friction very closely. Bi-linear transformation of this equation (equivalent to trapezoidal
integration [D’azzo & Houpis, 1988]) can be used to obtain a discrete time-domain solution, which
was the approach used by Krus ef al [1991]. In their paper very close correspondence with analytical

results was reported for the pressure transient at a valve following sudden closure (classical water-
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hammer experiment).

_R
R soT e %2 3.19)
P . -7 T — —_  C, (t-
a,b Qs soT + IQa,b + sOT + 1 pa=T)

where ¢=1.25, which was determined by Krus et al [1991] from numerical studies.

Distributed laminar friction gives accurate steady-state losses, but ignores the contribution of
unsteady damping (frequency-dependent friction), due to non-plane waves [Brown, 1962] [Trikha,
1975]. The significance of non-plane waves depends upon the magnitude of the damping number for
the line (otherwise known as the non-dimensional transmission delay), given by the following

equation.

¢ = T (3.:20)

Goodson & Leonard [1972] suggest heuristics for selecting different line friction models based on
damping number (ie. for loss-less, distributed friction, or frequency dependent laminar friction line
model).

According to Viersma [1980] the loss function N(s) for frequency-dependent laminar friction is given

by:

(3.21)

where I, and I, are the modified Bessel functions of the zero’th and second kind respectively.

The following approximate loss function is also suggested by Viersma:

3

Ns) = R 1+ i
ZTs i TS+l
0.5 4.05 20 (3.22)
K = —_— = —— K = e—
1 K=" > 1000

ZT ZT

T3
25R 1000R

Further time-domain solutions to eq.(3.1) are possible, resulting in (computationally-expensive)

numerical convolution integrals that must be solved at each time step and at each transmission line
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end. Sidell & Wormley [1977] used this technique for predicting the fluid transients in lumped-
distributed pneumatic networks. If a truncetion error in the convolution weighting function is
specified such that small terms in the convolution integral are omitted, faster results may be obtained
at the expense of accuracy.

Alternatively, simple linear transfer function approximations can be derived for the line impulse
response, which is the weighting function used in the convolution integral. Reformulation of the
convolution into a recursive algorithm results in computationally fast long-line models. Karam &
Leonard [1973], Karam & Tindall [1975] and recently Krus ef o/ [1991] have developed such fast
pipeline models, but rely on a single first order lag term to model the unsteady friction component
(wave dispersion). Higher order approximaticns are possible using additional terms with improved
accuracy, although there is a compromise between increased accuracy and increased complexity.
Burton ez al [1992] achieved good results using three first order terms to approximate the unsteady

friction component, as shown in eq.(3.23).

__R
3 2Z
R XV | s¢Te ™ (3.23)
P, -7 = — + _
w0 " Sy % ,Z:l:(sw.-] sor+1 el

However, such approximations strictly apply for laminar flow conditions. Long-line models involving
turbulent flows are considerably more complex mathematically, when using the four-port
transmission-line representation. A more flexible approach to the above is to sub-divide the line into
discrete elements [Viersma, 1990], whereupon more complex friction models may be incorporated.
This also allows longitudinal variations in geometry, effective bulk modulus etc to be taken into

account.

§3.3 Cavitation Modelling

Detailed modelling of cavitation is highly complex, involving the prediction of liberated air, and
saturated vapour, which may be distributed throughout the line as bubbles, or concentrated in a
cavity, or a combination of both. A straightforward approach, capturing the most significant aspects
of the transient behaviour, is required if the effects of "cavitation" are to be are to be included in all
component models. Of all the various cavitation models, vaporous column separation is the simplest

to accomplish.
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Vapour-only cavitation models generally over-predict the most damaging pressure transients [Karam,
1974] and are attractive because of their inherent simplicity. Burton et al [1992] demonstrated the
application of such a void tracking algorithm by comparison with the experimental results obtained
by Kojima & Shinada [1984]. (To obtain good correlation between numerical calculation and
experimental measurements it was necessary to employ the frequency-dependent laminar friction
model, described in the previous section).

If the quantity of released air in the void is known, or calculable, the partial pressure of the air may
be incorporated into the pressure boundary condition, improving accuracy. This has not been
incorporated into the modelling algorithms so far developed. It is also possible to enhance the model
further by incorporating delayed air release [Karam 1974], although the added complexity and
uncertainty regarding the additional parameters limit this model’s usefulness and generality.
Tomlinson [1987] models cavitation by modification of the effective bulk modulus to account for
the release of dissolved air according to Henry’s Law. The air is assumed to come out of solution
as easily compressed pockets of gas the instant the line pressure is reduced below ambient pressure
(ie. the pressure at which air is initially dissolved into the hydraulic fluid). This procedure can be
adopted by TLM by incorporating transmission lines with variable bulk modulus (capacitance), as
described in §3.4. The validation of this aﬁd other models against experimental data is an ongoing
topic of research.

In this work, a void tracking algorithm is implemented by interposing a cavity between component
and line, illustrated diagrammatically in Figure 3.3. When the local pressure falls below the saturated
vapour pressure the transmission line boundary condition is changed. For example, if the component
model normally provides a flow, Q,,, to solve pressure from the transmission-line end equation, then
if P,<P, P, becomes the new boundary condition to the transmission-line end. The flow into the
transmission-line, @, is now calculated according to the saturated vapour pressure P,. The difference
between the line flow and the component flow is integrated to obtain a cavity volume, V,,,. Only
when the cavity volume is restored to zero will cavitation cease. The full equation set for the
vaporous cavitation algorithm is as follows.

No cavitation:
V.=0 and P,>P,:

P =P, (3.24a)
P,=C,(t-A)-2ZQ,
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Cavitation:
V.,.>0or P, <P,

P, =P,

P, =C,(t-A)-ZQ, (3.24b)
Vew = [ (Q-Q,)dt

[Note: in the implementation of the algorithm the cavity volume is prevented from becoming

negative by setting it to zero when the cavity collapses.]

§3.4 Variable Line Volume and Bulk Modulus

Many hydraulic components, such as actuators and accumulators, will change the working volume
of fluid in a transmission-line (these variable component volumes can be added to the constant line
volume). In addition, variations in effective bulk modulus with pressure, for example, will have an
effect on system performance; the effective bulk modulus is derived from the isentropic tangent fluid
bulk modulus and adjusted to account for the pipe wall stiffness. (Note that if the fluid bulk modulus
is assumed constant, the isentropic secant bulk modulus is used).

Using TLM the basic approach to account for changes in volume/bulk modulus is to modify the line
characteristic impedance, Z, according to eq.(3.12), as the line capacitance changes, where Z’ is the
new line impedance. Since the capacitance is varied as the pressure waves propagate along the
transmission line, these characteristic pressures must be adjusted to maintain "total pressure” and
"total flow" in the line [Jansson et al, 1992] [Pulko et al, 1990]. The total pressure condition is
satisfied if the sum of the characteristic pressures at each line end is the same both before and after

the change in line impedance from Z to Z’. For total pressure:

C,+C, =C/+C, (3.25)
Total flow through the line is conserved if the difference in characteristic pressures divided by line
impedance remains unchanged. For total flow:

c,-¢, C'-C/ (3.26)

To meet both constraints the "compensated" characteristic pressures become:
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. (3.27)
3

§3.5 Variable Time Step Modelling

Fluid inertance is the only mechanism that can result in a transient pressure differential between each
end of a "loss-less" transmission-line; filtering of the characteristic pressures according to eq.(3.16)
introduces frictional damping to reduce the magnitude of the pressure error, but gives no steady-state
pressure loss. Re-formulation into a lumped line model, given by eq.(3.15), shows clearly that any
flow transient introduced into the transmission-line results in a corresponding transient pressure
difference. Although fluid inertia effects are present in the physical system, an excessive time step
may exaggerate this effect greatly, owing to the square-law relationship between fluid inertance and
time step given by eq.(3.14).

For a "loss-less" line, the pressure difference can be treated as a pressure error, which indicates how
much the line behaviour has diverged from that of an ideal compressible volume. The degree of
divergence may be controlled by reconfiguring the TLM solver to use variable time steps. Adjusting
the time step and hence the line delay during the simulation, whilst maintaining capacitance constant,
implies that the line impedance, Z, must be adjusted in accordance with eq.(3.12). In common with
modifications to line impedance caused by volume changes, or bulk modulus changes, the
characteristic pressure pulses must be adjusted by applying eqs.(3.18). With the aim of reducing
simulation run times, Jansson et al [1992] proposed a variable time step TLM solver based on this
approach and on the previous work of Krus et al/ [1990] and Pulko et a/ [1990].

A variable time step scheme is often necessary to deal efficiently with the significant non-linearities
in fluid power systems. Physical discontinuities are often the most difficult non-linearities to handle,
and include valves opening or closing, time-varying input demands and actuator travel limits. When
an actuator hits its end stop, for example, the piston velocity and therefore the flows at each actuator
port undergo what is usually modelled as an instantaneous change. The effects of such discontinuous

and highly non-linear flow transients into a traasmission-line can be detected as a pressure "error",
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given by eq.(3.28), which is an indication of the magnitude of fluid inertia present in the line.

P =|P,-P,| (3.28)

Subsequently, the step size may be reduced for the next time step, in order to maintain the pressure
error within a prescribed limit. Alternatively, if the error is too large (an order of magnitude larger
than the specified limit, for example), then the completed step may be "rejected” and all of the
component models called again with a much smaller time step, as discussed below. The process of
step rejection can continue until a specified minimum step length is reached; this procedure is a
means of discontinuity detection and location.

The scheme used in this research employs a central error controller to monitor the pressure errors

associated with all of the transmission-line elements in the circuit model, as shown in Figure 3.4. The
maximum_value of all pressure errors is then used to determine the step size. The following step
selection algorithm has been used in the subsequent simulation studies. In this scheme there is a
choice between two different time step control laws, depending upon the magnitude of the maximum
pressure error during the simulation compared with the reference value specified.

For the simulation studies reported in this thesis a value of 0.1 bar was used. This figure was found
to give rapid operation of the TLM solver, without distorting fluid inertia to the extent that the TLM
simulation gave results unlikely to be representative of the physical hydraulic system dynamics (some
level of fluid inertia is realistic). Larger reference errors in excess of 1 bar or so result in faster
operation, but can give quite different transient results (§5.4.2).

For "normal” operation of the controller the maximum pressure error must be less than the reference
error. The current value of time is then increased by the magnitude of the last time step and all of
the model states updated. The following control law is then used to select the next time step, which
is similar to conventional integration algorithm step control laws [Hairer & Wanner, 1991] [Jansson

et al, 1992]: ,

PN B, |
B, <P |2 | [en| A
e(n) < Pe An+l [ A ,] ﬁ n (3.29)

P e(n) e(n)

[a=102  b=5x107]

This control algorithm allows the time step to change progressively within the limits prescribed by

the reference error. The coefficient values stated (¢ and b) have been derived empirically from
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numerical experiments and affect both the rate of change of time step and how smoothly that change
takes place.

For pressure errors that are much too large to be accepted (mostly at severe discontinuities), the
completed time step is "rejected", ie. the current time and the component model states are not
updated. In this case the following control law is used to reduce the time step very rapidly, often to
the minimum allowable time step set by the user [Hairer & Wanner, 1991] [Jansson et al, 1992]. A
minimum value of lps has proven to be sufficiently small for the examples investigated in this

thesis.

P ref\ ¢
p ref. - e
B, >P: A, -[ n ,] A, (3.30)

[c=0.7]

Following step rejection the simulation process is re-run with a smaller time step to determine a new
error and the cycle repeated. In this manner severe discontinuities, eg. a step change in pump
delivery, can be located very precisely, because of the very large pressure errors that occur following
the flow discontinuity.

Jansson et al [1992] recommend low-pass filtering the pressure errors to help smooth the selection

of simulation time; the simple filter used is given by the following equation.

P

P Py * Ponty (3.31)

¢ 2

The above procedure is very flexible (by modification of the exponents used in the algorithm) and
has been tuned for the hydraulic systems investigated by the author to give a good trade-off between
computational speed and "accuracy", although a detailed study was not conducted. In addition to the
exponent values specified, parameters such as reference pressure error and minimum time step have
a significant effect on operation of the variable time step computation.

Although only capacitive "loss-less" line models have been used with variable time steps in this
study, distributed friction "long-line" models may still be used, provided allowance is made for the
resistive component of the pressure error. The transmission delay will not, in general, coincide with
past data points due to the variable time steps and interpolation of the characteristic pressures will

be necessary.
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§3.6 Connecting Multiple Components

A potential difficulty exists when trying to connect more than two components to the same fluid
volume. To overcome this difficulty, Krus et a/ [1990] have proposed the following method that
isolates all components by one time step. All components connected to the transmission-line volume
element transmit characteristic pressures to and from each other. At any one of these components,
the combined characteristics propagated from the other components are simply averaged out, as
shown by eq.(3.32). In addition, the impedance of the transmission-line volume is set equal to that
given by eq.(3.33), noting that the divisor 1-c is used to accommodate the gain of the low-pass

characteristic-pressure filter [eq.(3.16)].

c.'=L[ ; c.-c.) (3.32)
i n-1\45 j i
7 - 1 ( A ] (3.33)
" ) (-e) | VB,

A different approach is adopted here. The connection between several components is handled by the
use of a junction, or node model, as depicted in Figure 3.5. The junction is therefore treated in the
same way as any other component model in the system, such as a valve, actuator, or pump. The
component equations must therefore be solved simultaneously with the transmission-line end
equations at each fluid port of the junction, as in the following three-port example.
Junction equations s
Z;Qia=0 P, =P, =P, =P, (3.34)
i

Transmission-line end equations (=1, 2, 3)

. = 2,0, = C,(t-4) (3.35)

Solving for the junction pressure by substituting the transmission line end equations into the

junction equations

3.C,(t-A) 1 31 (3.36)
P =2 1 A = = :
s 21: z, zZ, ,E zZ,
and subsequently for the respective flows (i=1, 2, 3)
Q, - Zi(P, - Cyt-2)) (3.37)
i

The filtered characteristic pressures at each port are then propagated back as inputs to the connecting

models [according to eq.(3.16)] ready for the next time-step, t+A. The above equations are easily
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extended to incorporate any number of ports for different junction models.

There are two arguments in favour of using this method over that proposed by Krus. Firstly, the
circuit model can map directly onto the physical topology, which will be of assistance when
developing different partitioning arrangements for parallel operation. Moreover, different line-type

models (compressibility, long-line etc) may be inter-connected using the line-junction model.

§3.7 Signals

The propagation of information at very high wave speeds, such as electrical signals used in feedback
loops, requires a slightly modified approach when using TLM. A typical example might be a valve-
controlled actuator with displacement feedback. In this case an instantaneous, uni-directional link
must be introduced between the component generating the feedback signal, the control process and
the modulating device. The correct component-to-model execution sequence is therefore very
important. The fluid lines are still separated numerically by the line delay, but components in the
feedback loop are instantaneously linked using signals. Burton e al [1993A] demonstrate the use of
this approach in the simulation of an electro-hydraulic position-control servo-system, using both
analogue and digital control.

However, this technique creates problems when partitioning a circuit containing these elements into
parallel tasks, owing to the instantaneous coupling between components in the feedback path. The
number of possible parallel configurations is thereby reduced, but this limitation may not necessarily
impede efficient operation, although this depends upon circuit size and complexity. This subject is

discussed more fully in Chapter 6, with reference to a specific case.

§3.8 Closure
In this chapter the basic tools for constructing TLM-based computer simulations of hydraulic systems
have been developed. These include:

@) Hydraulic line modelling using TLM

(ii) Cavitation modelling

(iii) Variable line volume and bulk modulus

>iv) Variable time-steps and physical discontinuity handling

v) Inter-connection of more than two components to the same fluid volume
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(vi) Control signals

These techniques have been implemented into a reconfigurable simulation program, that enables a
complete system model to be created from a circuit configuration file and a library of standard
components, such as pumps, motors, valves and actuators. The process of circuit model generation
using modular components is explained fully in Chapter 5. In the next chapter some standard

component model types are developed, which are subsequently employed in the simulation examples.
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CHAPTER 4

COMPONENT MODELLING

§4.1 Introduction

This chapter serves to illustrate the approach to modelling hydraulic systems and related components
in a systematic way; it is not the intention to present details of all the models developed by the
author.

Basically, a component model is implemented by solving simultaneously the component equation,
or system of equations, with the transmission-line end equations at each component port; each
transmission line end is incorporated into a separate component model (there are no separate line
models as in lumped parameter simulation). Each TLM component model can be represented

mathematically as the solution to the following system of equations:

g(Q) = h(P)
@.1)

(P-2Q)(r) = C(t-A)

For systems of components that contain algebraic equations, the solutions to eqs(4.1) are explicit and
unconditionally stable [Johns, 1977] [Kitsios & Boucher, 1986]. Each component model is decoupled
in time and is thus numerically isolated from its connecting component models by the finite delay
introduced by the transmission lines; the solution is computed in discrete time in accordance with
the analytical time-domain solution to the loss-less wave equations imbedded within each model.

For components that involve differential equations, a suitable time-difference form can be obtained
by numerical integration; in effect this transforms the ODE into an algebraic equation, which is then
solved simultaneously with the transmission line ends. Bi-linear transformation, equivalent to

trapezoidal integration, is used to solve equations of motion for the mechanical parts of models

-34-



reported in this thesis.

Trapezoidal integration is an "A-stable" method, closely related to the integration performance of
undamped transmission line modelling [Krus et al, 1990]. However, for equations with very short
time-constants that must be solved within a component model bounded by fluid-filled transmission
lines, numerical integration using the Trapezoidal Rule can prove erroneous; this is because
numerical approximations to large eigen-solutions decay only very slowly. Conversely, integration
using the Backward Euler method will result in the rapid decay of such eigen-solutions. Both
methods exhibit "A-stability", but only Backward Euler has the property of "L-stability" [Lambert,
1973] [Hairer & Wanner, 1991]. Trapezoidal integration has proven to be adequate for most
simulations, because when compared with the fluid transients the motion of actuators is often
considerably slower dynamically - an observation that applies to hydraulic systems in general.
Solving the equations of motion for the mechanical part of a system together with the hydraulic part
can sometimes present problems with respect to component modularity. For example, the transformed
differential equations describing a mechanical Jload acting on a component must be solved
simultaneously with the hydraulic TLM equations. This necessitates the assimilation of the
mechanical load model into the hydraulic component model. An alternative to the hydro-mechanical
combined model (and the use of numerical integration to solve the equation of motion) can be
provided by the use of mechanical transmission line elements in addition to hydraulic line elements,
where force/torque is analogous to pressure and linear/angular velocity is analogous to flow
[Partridge et al, 1987] [Krus et al, 1990]. In this research mechanical transmission line elements were
not strictly necessary for the circuit examples studied (combined actuator-load and motor-load models

have been used), which simplified the computer programming.

§4.2 Component Modularity

A modular approach forms the basis of simulating a system from generic component models and
makes the efficient partitioning of a circuit model into parallel processes much easier to achieve.
Modularity is not a problem with many hydraulic component models, such as constant speed pumps,
or valves, which are inter-connected only by fluid transmission-lines. However, for components that
involve the actuation of a mechanical system, component modularity can be more difficult to achieve.

As an example, consider the interaction between separate linear actuator and mass sub-systems, as
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in Figure 4.1. The actuator model requires an external force (provided by the external mass-system)
to calculate acceleration from the piston mass using Newton’s Second law. However, the external
mass system (eg. an articulated manipulator) requires an acceleration to determine the applied force.
This results in a causal, or algebraic loop, as each model requires these inputs simultaneously. For
simple mechanical systems, it is straightforward to refer the effective mass and load force to the
actuator model and eliminate the causality by solving the equations for the combined system, shown
schematically in Figure 4.2. For highly complex non-linear mechanical loads, such as those
associated with linkage systems and manipulators, the use of equations derived for constant effective
mass systems may be acceptable, provided that the referred masses and loads are constantly updated
by using linkage positions and velocities obtained from a past system state. In many circumstances
the sampling delay introduced can be tolerated when referring the mass/inertia terms back to the
actuation devices [Krus et al, 1991C]. Nevertheless, the geometry and the kinetic/potential energy
of the mechanical system are time-dependent, which will effect the accuracy of the mass and applied
force terms referred back. In some cases the simultaneous solution of the full non-linear equations
for both the load system and actuation device, or devices becomes unavoidable, as in the case of
elastic mechanisms [Davison et al, 1993].

Another technique is suggested by Krus et al [1990] [1991C]. In this approach the hydraulic
actuation device is decoupled from the mechanical system according to a stiff-spring mechanical
transmission-line element, where velocity is analogous to flow and force analogous to pressure, as
shown in Figure 4.3. The mechanical system now interacts with the hydraulic system through the
propagation of characteristic force waves, or pulses. Although the causality between the hydraulic
and mechanical systems has been removed (without solving the combined model), a new dynamic
element has been introduced. This element may be difficult to quantify in practice, as it relates to
the elastic connection between actuator and load system; a steel-on-steel pin joint, for example. As
the elastic element is described by transmission-line equations, it will have an associated inertia of
its own, depending upon the simulation time step, in much the same way as the hydraulic
transmission-line (§3.2.1). For very stiff distributed springs this may force the time step down to very
small values to achieve the correct dynamic response. The difference in applied forces at each
transmission-line end becomes an error term used in the variable time step TLM scheme, as the

differential force is representative of inertia effects.
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A possible alternative is the construction of an inertial line (as opposed to mechanical load model
linked via a stiff spring transmission line). In this case the inertia term is kept constant and stiffness
(analogous to fluid compressibility) is controlled by varying the simulation time-step; the parasitic
stiffness introduced by the inertial line is monitored by measuring the difference between velocity
at each end of the mechanical transmission line and controlled by changing the simulation time-step.
For the present study the hydraulic actuation device (ie. linear/rotary actuator, or motor) is combined
with a simple referred mass, or inertia system and the equations solved simultaneously. This
approach does not preclude the future use of separate mass/inertia systems with mechanical TLM

element connections, but provides a starting point for the parallel processing investigation.

§4.3 Model Simplification

The equations that describe the behaviour of a component should be subjected to critical evaluation,
in order to simplify the component model without significantly affecting the simulated behaviour of
the hydraulic system. Frequently, overcomplicated models lead to computational problems. The most
detrimental of which is to increase the computation time for no significant improvement in accuracy
[Innis & Rexstad, 1983] [Tomlinson, 1987]. Component models may be classified into (i) dynamic
models, (ii) semi-empirical models, (iii) pseudo-dynamic models and (iv) instantaneous-dynamic
models.

A full dynamic model is derived from first principles and involves modelling the individual internal
working parts component. Conversely, an instantaneous-dynamic model may be obtained by
neglecting internal component dynamics. These dynamics are assumed to be sufficiently fast that they
can be treated as instantaneous changes, hence steady-state algebraic correlations between input and
output variables are used. A typical example might be a pressure-compensated flow-control valve,
a quite satisfactory model may be derived using the empirical flow-pressure characteristic supplied
by the manufacturer, based on steady-state measurements. A fully-dynamic model of the working
parts is likely to result in a less accurate model, due to the difficulty in obtaining accurate parameter
values for the individual valve elements [Tomlinson, 1987].

Handroos [1991] adopts a semi-empirical approach that requires some experimental verification
before generating a component model. This has merit, because dismantling the component to obtain

accurate parameter values is no longer necessary.
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It is possible to construct a pseudo-dynamic model, by incorporating a typical first or second order
response into the instantaneous-dynamic model [Viersma, 1980]. Values for time constants to
approximate the valve dynamics may then be estimated and, if required, a parametric study
undertaken to determine the influence on the overall system performance.

In this research, instantaneous and pseudo-dynamic models are used as far as possible in order to
simplify the system simulations undertaken, but does not exclude the future use of other (more
detailed) component model types. The main exception are linear or rotary hydraulic actuators
(including motors), where movement is modelled by numerical integration of the equation of motion

within the component model.

§4.4 TLM Hydraulic Component Models
Component modelling involves the simultaneous solution of a set of algebraic, or differential-
algebraic equations representing the component with the hydraulic transmission-line equations at each

hydraulic connection. Seven typical component models will now be described in detail.

§4.4.1 Pressure Source (Reservoir/Tank)
To demonstrate the application of TLM to the most fundamental component type, consider the model
of a constant pressure reservoir, shown schematically in Figure 4.4. In this case the constant pressure,

P

» is substituted directly into the transmission-line equation to obtain the flow, Q, out of the

component, eq.(4.4).

Component equations:
P, =P Q, =0, “42)

a t

[Note: The first suffix of the line pressures and flows indicates the model port number (only

one port in this model) and the second indicates the transmission-line end.]

Transmission line end equation (ie. the end of the transmission line incorporated into the
pressure source model): 43)
P, -ZQ,=C,t-4) .

where C, is the characteristic pressure pulse input from the component connected to the

reservoir/tank and Z is the characteristic impedance of the connecting line.
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Component flow can be derived explicitly by substitution of the component equations into

the general transmission line end equation:

Q- % (P, - C,t-1)) (4.4)

§4.4.2 Positive Displacement Pumps
Figure 4.5 shows an instantaneous model of a hydraulic pump (connected to a fixed speed prime-
mover) that incorporates linear slip and compressibility-flow losses. Linearised losses can be used
to characterise the performance of positive displacement pumps over a specified range of operation.
(For further information on more complex loss models, see McCandlish & Dorey, 1983).

Pump flow equation, including inter-port leakage and compressibility losses:

(Ve Dy)
B

e

c.D
Qp = mepm - Su p(PZa_ Pla) - ©pm (Pza_Pla) (4.5)

[Note: the displacement may vary according to an time-varying input demand, or control
signal]
Assigning the internal pump flow (positive from port 1 to port 2) to the general transmission

line end flows (positive into the transmission line):

Qp = _Qla = Q2a (46)

General hydraulic transmission-line equations at each component port:

P, ,=C,,(t-A)+Z,Q
1 15 1¥1a @.7)
Py, =Cy(t-4)+2,Q,,
Inserting pump flow into transmission line end equations:
P _=C, (t-A)-ZQ
la lb( 1Xp (48)

P, =C,,(t-4) +Z,Q,

Substituting eq.(4.7) into eq.(4.5), to obtain an explicit function for pump flow, in terms of

the input characteristic pressures from connected component models (ie. C,, and C,;):
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¢,D, Vc+Dp
mepm - " + 3 Qo (CZb(t—A) - Clb(t—A))
Q,= £ (4.9)
c.D V +D
1+ ’p” +%wm (ZI+ZZ)
e

The pump flow is now an explicit function of the input characteristic pressures at the inlet and outlet
ports that have been propagated to the component from the connecting component ports of other
models. Once pump flow is determined the connecting pressures are calculated directly from eq.(4.8).
Consequently, the filtered characteristic pressures may be determined according to eq.(3.16) and
propagated along the transmission lines to the connecting components to arrive after a finite
transmission delay.

A fairly straightforward modification is the uni-directional pump model, which incorporates an
integral reservoir. Alternatively, if pump flow losses are not significant, a simple flow source model
may be employed. The flow source is derived in a similar manner to the pressure source model, this

time using a pre-determined flow to calculate pressure (the example in §3.2 uses such a model).

§4.4.3 Square-Law Orifice Model Restrictors and Directional Control Valves
Consider the turbulent orifice model shown in Figure 4.6, as an example of a highly non-linear
component model.

Flow correspondence:

Qo = _01,, = Qza (4.10)
Square-law orifice equation:
Q,=K/AP AP=P, -P,, .11
where
K= CDAo\Jz (4.12)
P
or from rated pressure-flow data: 0
K=—rf (4.13)
AP"f

Flow is determined explicitly by substitution of the following pipe-end characteristic pressure

equations into the orifice equation.
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P ,=C(t-4)-Z,Q, @.13)
P,,=C(t-4)+Z,Q,

When the flow is in the positive direction (port one to port two), the orifice flow is obtained from

the solution of the resultant quadratic equation:

Q, = —KTZ(zﬁzz) + %JK4(Z1+Z2)2 + 4K2(C,,(1-A) - C,,(2- D) (4.152)

The positive quadratic root has been taken, as the orifice flow must be zero when the differential
characteristic pressure is zero. Flow reversal occurs when the differential characteristic pressure
becomes negative; this is handled by the following equation, resulting in negative values for orifice

flow.

Q, = K?z(zﬁzz) - %\/K"(zﬁzl)2 + 4K*(C,,(1-4) - Cy,(t-A)) (4.15b)

§4.4.3.1 Numerical Difficulties

Square-law orifice models connected to compressible fluid volumes are well known to cause
numerical stiffness problems when modelled using lumped parameter theory, owing to the highly
non-linear behaviour of the orifice characteristic flow-pressure equation near the origin. It is for this
reason that in most lumped-parameter simulation packages, a linear flow-pressure region is included
in the model to remove the stiffness problem and allow the use of much larger time steps in the null
flow region. However, a discontinuity point may occur between the linear and non-linear/square-law
flow regimes, which forces the integrator to re-start.

The gradient of the orifice flow-pressure characteristic for small flows presents no difficulty for the
transmission-line implementation of the square-law orifice model, as the solution is explicit and
unconditionally stable. The same version of equations is used throughout the simulation and there

is no flow discontinuity.

§4.4.3.2 Directional Controls
Directional control valves can be assembled from the basic transmission-line orifice model, using
rated flow-pressure data between connected ports. Figure 4.7 shows an example valve (the external

arrow indicates a time varying input demand, or control input for valve spool position). If required,
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proportional control of the valve is achieved by assuming a linear variation in the orifice coefficient,

K, with opening, corresponding to a linear change in the annular flow area across the valve spool.

§4.4.4 Pressure Relief and Check Valves

A simple relief valve model (shown in Figure 4.8) assumes that the valve dynamics are
instantaneous. This valve model incorporates a very significant discontinuity point, as no flow takes
place until the differential pressure exceeds the pre-set cracking pressure, P,. Furthermore, the valve
flow is uni-directional. A linear flow-pressure characteristic, of gradient K, is then assumed once the
valve has opened. This straight-line characteristic is in accordance with most manufacturer’s flow-
pressure correlations, particularly those relating to two-stage relief valves.

Transmission-line end equations at each valve port:

P, = Cph(t-4)-2,Q, (4.16)
P,, = C(t-4)+Z,Q,
Valve flow to differential pressure:
(Pla _P20)>Pc Qv = K(Pla _PZa _Pc)
“4.17)

(Pla—P2a)SPc Qv =0

Flow is then determined explicitly by substituting the pipe-end (characteristic pressure) equations into

the valve equation, as follows:

P ,-Py, > P, Q, = K (C,,(t-4) - C,,(t-A) - (2,+Z,)Q, - P)
_ K(Cyy(t-8) - Cyy(t-A) - P)
Q, = T KEoZ) (4.18)
Pla_P2a < Pc Qv =0

The respective valve pressures are calculated by substitution of the valve flow into the transmission
line end equations at each port. Hence, the characteristic pressures at each port are determined and
transmitted to connecting components.

A sudden change in valve flow due to the sudden discontinuity at the cracking pressure, will be
detected as a significant pressure error in the connecting transmission-lines by the time step (error)

controller. Consequently, the time step will be adjusted until the discontinuity point has been located

-42-



to the level of accuracy specified by the system modeller (§3.5).

This model is equally applicable to check valves.

§4.4.4.1 Pilot Operated Valves

The analysis above also holds for pilot-operated relief valve and pilot-operated check valve models.
In this case the valve opening condition is modified to account for pilot operation from a third
hydraulic connection, instead of from the valve differential pressure alone. When the pilot pressure
exceeds the pre-set valve cracking pressure, for example, the valve opens and the calculation
proceeds, as before.

The pilot port is usually modelled as a hydraulic transmission-line with a blocked end at the valve,
which necessitates zero flow at the line termination, meaning the pilot pressure is equal to the
characteristic pressure. The zero flow condition is a reasonable modelling assumption, as the flow
at the pilot port will be negligible. Alternatively, a small leakage path may be incorporated,

depending upon valve construction and the level of accuracy required.

§4.4.5 Positive Displacement Motors and Loads

Figure 4.9 shows schematically the combined motor and inertial load model, with an externally
applied load torque duty-cycle input. The hydraulic motor incorporates linearised loss coefficients
in a similar manner to the linear-loss pump model (for the motor model the inter-port leakage is
positive).

Ideal flows plus leakage flow:

¢,D
Q,=D,o+ su = (Py, - P,,) (4.19)

Substitute transmission-line equations for port pressures:

c.D
D, o + ud "'(Clb(t—A)—CZb(t-A))
- K (4.20)
Q.
c.D
1+-=2 "'(ZI+ZZ)
m

Motor torque including losses:
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T, =D,(1-c)(P,~P,,) -c,D,po 421

Substitute transmission-line equations for port pressures:

D, (1-¢)(Cy,(1-8) -C,,(t-4))  (D,(1-c)(Z,+Z,
Tn = ¢,D, N (cst b (422)
1+ (2,+2,) 1+ " (2,+2)
1)

Inertial load equation:

Jo =T, -T,@f)- TRL“’i - (4.23)
®

where Ty and ¢, are the resistive torque and load damping rate respectively.

The connecting shaft speed is obtained by substitution of eq.(4.22) into eq.(4.23) and re-

arranging;
Jo = Pnll=¢)Crs(t-4)- Gy (2-8)) _ D,’(1-¢c)Z,+Z,) *(eyDy) Bt |@ -
1+ $Png gy 1+ 5Png .z
p et g 1t (4.24)

T, - Tkl%l - CLw

An explicit form of motor shaft speed for digital computation is obtained by substituting the bi-linear
transform, equivalent to the trapezoidal rule for integration, from which the other model parameters
can be determined. This process is explained as follows.

The bi-linear transform applied to motor speed (allowing for variable step length) is:

A

o, = 7"(«)" ro, )t e, (4.25)

Solving the resultant implicit equation for motor speed:

A A
—2(f(C,,(t A, ) -Gt - A - Tt - T, |m"| +(_£d)n+m”)
o o 22 a7 Rl A”( U (4:26)
1+ —2-‘5;-(]"Dm(2'1 +Z2) +D c u +C)
where D,(1 )
-c
= m f
f ¢, D,
1+(Z1+Z2) "
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§4.4.5.1 Rotary Actuator

It is a relatively straightforward process to extend the above analysis for a rotary actuator, simply
by integrating angular speed to obtain displacement and setting appropriate travel limits. The physical
discontinuity at either end stop is manifested by a corresponding discontinuous flow at the model
port, as speed is set to zero upon reaching the travel limit. This condition is detected as a significant
pressure error in the connected transmission-lines, causing the vmiablé time step controller to reject
successively smaller steps according to the step-size control algorithm used [eq.(3.30)], until the

discontinuity (high, or low travel limit) is located to the specified accuracy.

§4.4.5.2 Gear Reduction

Torque amplification can be achieved using a speed reduction ratio between a hydraulic motor and
the driven load. The load inertia, viscous damping, coulomb friction and load torques are referred
to the motor shaft and added to the corresponding parameters at the motor. In addition, a constant
mechanical efficiency may also be incorporated into the model to account for frictional losses.

For a reduction ratio, n (and neglecting friction losses):

J
J=J +*%
m n2
c=cm+££
n? 4.27)
_ RL
Te=Tgp* n
T:ﬂ
n

where subscript m refers to the motor side of the gearbox and L refers to the load side.

§4.4.5.3 Flow-divider

The flow-divider, as seen in the circuit example of Figure 2.1, can be modelled by treating it as two
hydraulic motors coupled by an inertial load. The equations of motion for both motors and the load
can then be solved simultaneously. Alternatively, an elastic stiff spring interface element (torsional
transmission-line) may be employed to link two separate motor models together via a separate inertial
load model [Partridge et al, 1987]. This is solved, as before, using the bi-linear transform. The now

separate motor models then have three transmission-line connections in total, two hydraulic and one
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torsional. The torsional element is of the form:

T-Zo =C,(t-A)
(4.28)

where the function of Z in brackets represents the torsional stiffness of the connecting shaft,
in torque per unit angular deflection.
As discussed in §4.2, component modularity is increased, at the expense of modelling additional and
possibly unnecessary dynamics. Error control of the stiff shaft (to ensure it does not become
"distorted" with too much inertia) may be included by monitoring the difference in torque at each
end of the torsional transmission-line. Nevertheless, very stiff shafts can force small simulation time

steps for significant changes in rotational speed.

§4.4.6 Differential Area Linear Actuator and Loads

This model of a differential area actuator incorporates a combined mass system, as shown in Figure
4.10, which includes the integration of two internal state variables: velocity and displacement. Non-
linear effects include the presence of slip-stick friction, contact of the load with a linear spring, or
the piston reaching an end-stop. The variable fluid volumes either side of the piston are accounted
for by adding the volume to the connecting transmission-line volumes, altering their compressibility
(§3.4). In addition, the load force may be an external time-varying input demand.

Transmission-line equations at the piston:

P, =C,,(t-4)-Z,Q,

4.29)
P,=C,,(t-4)+Z,Q,
Piston and rod end flow equations: y
=y

v (4.30)

Q,=vA,

Piston equation of motion
without spring force (x<x,):

M,v =PA, - P,A, - F,(t) - Fy %' -y 4.31)
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including spring force (x>=x,):
M,v =P A -P,A, - F,t)- FRM -cpv - K(x-xy) (4.32)
v

where F,, ¢, refer to the externally applied load force and load damping coefficient
respectively. Fj refers to the resistive (coulomb friction) force that opposes motion.
Displacement:
P v=3x (4.33)
Solving the transmission-line, flow and relevant equation of motion, the following equations
are obtained.

Without spring force (x<xy):
M,V = C A, - CyyA, - (Z,A7 +Z,A; +c,)v - F (1) - F 2 (4.34)
v

With spring force (x>=xy):

[-4

M,V = C,A, - Cy A, - (Z, A} +Z,A7 +¢,)v - Fy(1) - FR% - K(x-xg) (4.35)

Depending upon the region of operation, the above equations of motion are solved using bi-linear
transformation (trapezoidal integration) to obtain a pair of discrete time-difference equations (with
and without the spring force). This discontinuity may be detected and tracked by the step controller,
again because of the effect on flow transients and hence the pressure differentials in the connecting
transmission lines.

The discrete-time equations for piston velocity are obtained by substitution of the following bi-linear

transforms, and the solution of the resulting implicit equations:

A

Vo = _2"(\5" V)V, (4.36)
A

X,y = 7"(",. V) * X, (4.37)

Piston velocity without spring force:

A e (1~ By} ~ Coslts =By )4, - Fy(t) - F, [va]
2M¢ 16\"n n-1/"1 2b6\"n n-1)72 L\"n R vn

(5]
+| L2y +v
2 " ") (4.38)

n+l

A
1+ 211; (2,472 +Z,4;" + c)

e
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Piston velocity with spring force:

A, Vel [ A, A,
m Clb(tn - Arl—l)Al - CZb(tn - An-l )A2 _FL(tn) _FR -K Ve ¥ X, X || * 7 VatV,

e n

n+l ~

A
1+ 21&2 ZAP+Z A +c+ K"

[

(4.39)

§4.4.6.1 Stick-slip Modelling

A stiction force often exists in the moving parts of a component, such that a high break-away force,
or torque is required. A constant and usually much smaller force (the coulomb friction) resists motion
once the initial stiction force is exceeded. In terms of the component models, such as the combined

actuator-mass model, this is represented by the following inequalities:
|F

net

|<|F,| & |v|<sv, : v=v=0 (4.40)

In order to "stick", the piston velocity must be within a specified tolerance band v,,; about zero (in
this research a value of !mm/s has been taken). Furthermore, the net applied force F,,, (including
pressure forces, external load force and gravitational terms) must be less than or equal to the stiction
force Fj. If both conditions are satisfied then piston acceleration and velocity are set to zero. In order
to "slip", ie. for piston acceleration to be computed according to its equation of motion, then F,,
must exceed F,.

The phenomenon of stick-slip is a very significant non-linearity, responsible for highly oscillatory
start-up transients in actuation devices, which generally force the error control process to use very

small time steps in order to follow it accurately.

§4.4.7 Gas-type Accumulator

The final model to be considered here is the gas-type hydraulic accumulator model, shown in Figure
4.11. This is particularly interesting, due to the non-linearity associated with the gas expansion and
compression process. The following equation gives the initial charged accumulator gas volume, based
on the system gas volume (equal to the maximum accumulator gas volume ¥, and the volume of any
additional back-up bottles V), the accumulator pre-charge pressure P, and the charged pressure P,
The charging operation is assumed thermodynamically slow.

For the isothermal gas process during charging:
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Vet Vo) a (4.41)

The transmission-line equation at gas-liquid interface (typically a flexible diaphragm, or
membrane seal) is given by the following equation, assuming that gas pressure equals liquid

pressure and gas flow equals liquid flow:

P,-ZQ, = C,(t-4) (4.42)
where Z is the line impedance of the connecting (liquid filled) transmission line. [Note: in
this model the membrane between gas and liquid has negligible inertia and negligible

stiffness.]

For the polytropic gas process during charging and discharging in normal operation:

oh Von (4.43)

Because the accumulator dynamics are relatively slow, it is sufficient to use the previous value of
gas volume V, to determine the gas pressure from eq.(4.43). Hence flow at the gas-liquid interface
can be obtained from eq.(4.42). The updated gas volume is obtained by integrating the gas flow using
the trapezoidal rule. The volume of trapped fluid in the accumulator body is added to the connecting
transmission-line as the accumulator charges and discharges with oil.

Testing of this model by the author revealed this to be a satisfactory approach, with modelling errors
for volume typically less than two percent. The alternative is to solve the resulting polynomial using
an iterative solver, such as Newton-Raphson, every time step. This approach can be less reliable,
owing to limitations of the Newton-Raphson solver, and often leads to some variation in model run-
time because the number of iterations to convergence can vary.

This model could be enhanced by incorporating thermal effects in the accumulator model equations
[Harris, 1990]; thermal transients can be solved by numerical integration within the accumulator

model (Harris [1990] uses Euler integration).

§4.5 Cavitation Modelling

Individual component models handle cavitation by checking the pressure at each hydraulic
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transmission-line connection. The vaporous cavitation algorithm detailed in Chapter 3 (§3.3) is
initiated if the pressure falls below the fluid vapour pressure. This phenomenon will require small

time steps to locate the discontinuity regions and follow the subsequent pressure transients properly.

§4.6 Closure

In Chapter 4 several important hydraulic component models have been developed using the
transmission line modelling technique, illustrating the modular approach adopted for simulation.
However, in all but the simplest component models, the TLM approach can result in rather complex
(and not easily recognised) algebraic equations, eg. the motor-load model. The development of such
models might be aided by the use of symbolic algebra manipulation software, such as Mathematica
from Mathworks inc, to reduce the likelihood of errors in component model formulation.

The TLM components developed, taken in conjunction with the techniques explained in the previous
chapter, has enabled the development of an automatic code generation program to simplify and

improve the reliability of the modelling process. This process is described in the following chapter.
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Actuator Mass System

FIGURE 4.1 ACTUATOR ZMASS SYSTEM ALGEBRAIC LOOP

FIGURE 4.2 COMBINED ACTUATOR AND REFERRED MASS SYSTEM

Actuator Mass-system

T Characteristic pressure

"F  Characteristic force

FIGURE 4.3 ACTUATOR MASS-SYSTEM SEPARATED BY A STIFF-SPRING

MECHANICAL TRANSMISSION-LINE
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FIGURE 4.4 TLM CONSTANT PRESSURE RESERVOIR

pm

FIGURE 4.5 TLM LINEAR-LOSS PUMP

QO
zl ph p2 z2

~

ak Q

FIGURE 4.6 TLM SQUARE-LAW ORIFICE

u(t)

FIGURE 4.7 TLM 6-PORT, 3-POSITION DIRECTIONAL CONTROL VALVE (DCV)
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FIGURE 4.8 TLM RELIEF VALVE

FIGURE 4.9 TLM COMBINED MOTOR-LOAD

FIGURE 4.10 TLM COMBINED ACTUATOR-LOAD

FIGURE 4.11 TLM GAS-TYPE ACCUMULATOR
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CHAPTER 5

SYSTEM MODELLING

§5.1 Introduction

In this chapter, the process of automated program generation using pre-compiled component models
to represent the separate circuit elements, is described for the development of single-processor TLM
simulations (for use on the host processor of the Sun 4/370). To illustrate this approach, the "two-
actuator" circuit first shown in Figure 2.1 is used as a case study. Verification of the predicted results
was achieved using a standard package which employs an equivalent system of ODE’s, solved using
the Adams/Gear integrator "LSODA" [Petzold, 1983] [Richards et al, 1991]. The package has been
thoroughly tested against experimental data and hence provides a suitable "control". However, it
should be noted that the TLM algorithm can include additional wave propagation effects in the lines
that are unmodelled by the lumped parameter solver. The relative computational speed of the two

different numerical techniques is also compared.

§5.2 Automatic Program Generation

Automated generation of the simulation program enables the system modeller to develop large and
complex circuit configurations from much simpler modular elements; the approach adopted by the
author for the development of the TLM code generator adopts similar principles to conventional
lumped parameter simulation packages, such as "BATHfp" [Richards er a/, 1990] and "HASP"
[Tomlinson, 1987].

For the TLM code generator the models used in the simulation and how they are connected together
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are defined by the user in an ASCII* text file, subsequently referred to as a link file. This file is
usually written with the assistance of a /ink diagram; a manually drawn sketch, detailing circuit
layout in terms of model names and link numbers that represent connections between models. (The
concept of a link file is similar to that used in the simulation package HASP).

The completed link file is subsequently interpreted by the TLM automatic program generator, which
checks the consistency of the circuit defined, writes a control program and links together the relevant
component models (the modeller must insert these into the /ink file in the correct sequence for cases
involving uni-directional signals, §3.7).

In general, the use of automatic program generation leads to improvements in:

@) Efficiency. The time involved in building simulation programs is reduced greatly.
Modifications to the circuit configuration can then be achieved by altering the
simplified circuit description in the system model /ink file.

(ii) Reliability. New component models may be tested in isolation for correct
operation, before addition to the model database. Circuits of significant complexity
can then be developed with increased confidence, facilitated by linking together
validated model objects.

(iii) Simplicity. The analyst is separated from the task of creating models and writing
source code directly using a 4" generation language, such as C, or FORTRAN.
Only the development and validation of new models is a detailed and time-

consuming task.

Notwithstanding the potential benefits indicated, the development of a program generator is a
detailed and complex task. The program generator and all TLM component models have been
written by the author in the C programming language using the Sun 4/370 operating system SunOS
4.1. (The HASP program generator for example was written entirely in FORTRAN 77, and was
designed to generate FORTRAN 77 simulation code).

[Note: Burton 1994 gives a detailed listing of the (host processor) code generator and the operations

required to generate automatically the code used in the TLM simulation example discussed later in

* American Standard Code for Information Interchange
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the chapter. The following description outlines the main points of operation.]

§5.2.1 Simulation Process

Figure 5.1 shows schematically the complete simulation process. Firstly, the user-supplied /ink file

(of the form "filename"link) is interpreted by the code generation program in three stages,

corresponding to three different sections of the /ink file:

@

(i)

(iii)

System parametric_data. This first section of the /ink file contains data on fluid

properties, simulation start and end times, maximum pressure error and results print
interval.

Transmission-line data. Here the program generator reads in the individual link

numbers and the link type (either hydraulic transmission line, or uni-directional
signal). For hydraulic transmission line links, the pipe diameter, length, effective
bulk-modulus and initial pressure is also recorded by the program generator.

Component model data. In this final section the following information is detailed

for every component model used in the circuit: the unique model name, the
correspondence between model port connections and transmission-line/signal link
numbers, followed by a list of component parametric data. The parametric data is
entered into the /ink file in a specific sequence that corresponds with the parameter

argument list for the model.

When interpreting the /ink file the TLM program generator makes a number of checks to ensure that

a valid circuit model can be created. The checking procedure greatly improves the reliability of the

modelling process, and ensures that:

®

(i)

(iii)

Transmission-line and signal links are defined and are connected at both ends to
different component models and that the transmission-line/signal link references are
not duplicated elsewhere in the circuit.

Valid parametric data is specified; only non-zero transmission-line lengths are
accepted, for example.

Component models referenced actually exist in the model database (by cross-

referencing information obtained from the "model.attributes" file) and that all
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component ports have a corresponding transmission-line, or signal link reference.
The correct numbers of real and/or integer parameter data for each model case is

also checked.

For numerical simulations many of the source files written by the program generator have similar
structures and many common functions (procedures). It is for this reason that femplate files are read
by the program generator line-by-line and used to construct the simulation program source, header
and matke files, by inserting relevant code excerpts into the file templates. (The use of template files
as a means of simplifying the code generation process is not uncommon, and has been adopted in
both BATHfp and HASP program generators).

In the source program (ie. the top-level simulation control code) the appropriate model call argument
list must be written for every occurrence of a component, corresponding to each model entry in the
link file. Moreover, simulation data associated with each component model must be stored by the
control program during execution to ensure data integrity. This is necessary, as there may be multiple
occurrences of the same model; it is very likely that more than one relief valve model is used in a
circuit, for example, using the same component model code, but having different data.

The automatically-generated header file contains only very specific variable declarations, accessible
by all sub-programs in the source code (ie. global data statements). Finally, the system make file
contains all of the arguments necessary to build an executable file from all of the constituent
elements, ie. the source file, header file and all of the pre-compiled component models used in the
specific circuit model simulation. The make file is automatically invoked upon the successful
generation of the system model source and header files by the program generator. A single
executable file of the form "filename.ex" is produced which can be executed on the command line
within the SunOS (Unix) operating system on the host computer; the filename argument is the same
as in the "filename.link" file first supplied to the program generator.

Following completion of the simulation a binary results file is written (of the form
"filename.results"), containing simulation data saved by the separate component models during the
simulation. In a fully-integrated graphical environment, the user would simply select interactively

the relevant component model icon from an on-screen graphical representation of the circuit and
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choose the parameters required for plotting. At the present time, however, each model writes an entry
into an ASCII reference file during the initialisation phase of the simulation (this file is given the
name "filename.ref" by the program generator and referred to here as a ref file). The ref file details
every component model used in the circuit, the parameters saved by each model for user output (ie.
for plotting on-screen) and a unique integer number corresponding to parameter position in the binary
results file, including a description of the model the parameter came from and the model "instance"
number; this is a unique integer number that corresponds to the models position (from first to last)
in the /ink file written by the modeller. The use of a graphical post-processing utility in conjunction

with the reference file enables the system modeller to inspect the simulation results.

§5.2.2 Parallel Processing

Conceptually, the implementation of the TLM solution technique in parallel is straight-forward to
achieve. Separate component models or sub-circuits of component models can be partitioned on to
separate processors. The communication between sub-circuit partitions can take place at the end of
each solution step by the transfer of characteristic pressures. This kind of parallel algorithm is
sometimes referred to as "domain decomposition", because the component models which describe
the system can be mapped onto separate processors directly. The functional detail of the parallel
algorithm is discussed in the following chapter (§6.2).

The process of creating a system model by linking individual components on a single processor
should also take account of the following general computational requirements to enable efficient
multi-processor operation. The ability to use modular code elements, which for the most part can
operate independently of the host computer platform (the Sun 4/370 in this research), is an important
factor in the development of an efficient parallel implementation (in this case the Transtech
MCP1000 motherboard and associated T800 transputers connected to the Sun 4/370). Accessing data
on the host computer’s hard disk from a remote processing node is potentially very time consuming.
Consequently, all parametric data is included in the generated simulation program to avoid reduction
in execution speed, because of the latent delay in accessing data stored on hard disk, as opposed to
memory. This requirement also applies to the generation of results, which are stored in memory
(subject to memory size limitations) until the completion of the simulation run, when they are saved

to the host computer’s disk for later inspection. Making the maximum use of local memory is
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important for parallel computing, because separate processors cannot access the disk simultaneously

during program execution; this also applies to simulation on the host computer’s processor.

§5.3 TLM Numerical Algorithm

The key part of a TLM simulation is the algorithm by which the TLM models are solved. The
algorithm developed and used here is illustrated by the flow-chart of Figure 5.2. The algorithm draws
on two basic sets of equations - those which define the propagation of information between
component models (described in detail in chapter 3), and those which form the component models
(described in chapter 4); these equations are not repeated here.

The first stage of a simulation is to establish various global parameters, and those parameters which
require initial values. A simulation loop is then entered until the simulation is completed. The first
part of the simulation loop uses each component model to predict pressures and flows at each end
of each line, from the known characteristic pressures (determined at the previous time-step). For a
rapid simulation the time step is adjusted to be as large as possible, whilst maintaining the
instantaneous pressure differential across the loss-less lines below some user-defined limit (the

reference pressure error). Therefore before accepting the results of these initial calculations the solver

checks the pressure differential across each line. If the pressure differential for each line is greater
than the reference pressure error then the step is rejected. The time interval is reduced according to
the relationship of eq.(3.30) and the step repeated. Conversely if the pressure differential for each
line is less than the reference pressure error then the step is accepted. However, the time interval for
the next step may be adjusted according to eq.(3.29) (thereby ensuring a rapid rate of solution).
When the step is accepted the transmission line impedances must be recalculated in readiness for the
next step, using eq.(3.12). At this point a low-pass filtering algorithm is also applied to the
characteristic pressures using eq.(3.16). This filtering algorithm introduces an additional modification
to the line impedance. The characteristic pressures must also be compensated to allow for the change
in impedance, using eq.(3.27).

The procedure above must allow for the total volume of fluid associated with each line, and this may
include fluid contained within the components. However, as this volume is subject to change it is
important that the total line volume is recomputed at the start of each loop, and that at the end of

each loop the line volumes are reset to the pipe volumes only.
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The final part of the loop is to transfer the newly calculated characteristic pressures between
connected components. After this results may be stored to an external file, if the time has advanced
beyond the last storage time by the user-defined print interval. The simulation time is then

incremented by the time-step and, if the end-time has not been reached, the loop starts again.

§5.4 Simulation Example: Two-actuator Circuit

This example compares the TLM simulation of an actuator circuit with its ODE counterpart. There
are necessarily some differences in the results from the simulations (for example because a lumped
parameter pipe model must have the same pressure at both ends), and it is difficult to say which
model is most accurate, in the absence of verified experimental data. However, it is important to
examine how the user can affect the results of a TLM simulation (by changing the reference pressure
error), and how the speed of a TLM simulation compares with that of a simulation based on ODE
models. The purpose of this thesis is to investigate the TLM approach as a means of achieving faster,
parallel, simulations.

The two-actuator circuit, as shown previously in Figure 2.1, is an ideal example with which to
demonstrate the application of the TLM algorithm. Briefly, the purpose of this hydraulic system is
to use the coupled motors to divide the flow equally between each of the two actuators, both during
extension and retraction. The two pumps initially operate together, supplying maximum flow to the
actuators simultaneously. However, once a pre-defined pressure is reached the larger capacity pump
is unloaded, via the pilot operated relief valve. The smaller pump continues to supply flow
independently at the higher pressure until either the directional control valve position is altered, or
the high pressure relief is activated. This arrangement is intended to limit the maximum power
required from the prime mover. A potential drawback of this circuit design is the inability of the
flow-divider to supply precisely equal flows. Different leakages in the separate gear motors, which
constitute the flow-divider, result in different supplied flows. It is the function of the relief valves
connected to the actuator piston ends to facilitate re-synchronisation of position, should one actuator

stop before the other.

§5.4.1 System Model Generation

In order to construct the circuit model, it is necessary to define the individual component models and
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how they are linked together. Figure 5.3 shows the equivalent link diagram of the two-actuator
circuit. The terms in parentheses refer to the component model names given in the model index table
model.attrib (given in detail in Burton 1994). The different link numbers refer to the transmission-
lines, which connect the models. Table 5.1 (to be read in conjunction with Figure 5.3) gives the
corresponding system and model parameters used for this particular simulation example. Further
information is given in Burton 1994, which details the specific user-defined /ink file act2.link, used
in the generation of the single processor simulation. The automatically generated C code files act2.c,
act2.h and act2.make are also given in this report; in addition the model attributes file, model.attrib,
and the program generator template files used in the automatic generation of the C code files are

detailed in Burton 1994.

§5.4.2 TLM-ODE Comparison

The transmission-line modelling approach was tested against the results of a lumped-parameter circuit
simulation, performed using the ODE solver, LSODA. It must be remembered that the lumped
parameter line models used by the ODE solver are of the purely capacitive type, as indicated by the

following equation.

&[5
al=

c-Y (5.1)
BZ

where a positive value of Q; represents a flow into the fluid volume, V.

TLM on the other hand includes distributed inertia and compressibility in these fluid volumes
because of wave propagation effects. These effects can be physically realistic, provided the lines do
not become excessively distorted by the TLM solver. The line length of each pipe should not become
unrealistically long in comparison with its cross-sectional area in order to maintain the same
capacitance. The TLM results tend towards the ODE results for short lines, which may not be a
problem provided the modelling of inertia effects is not required by the user. Hence, although the
ODE solution is used as a "control” it is not an absolute measure of the accuracy of the TLM
solution with the physical system, but more of a guide to performance provided the two solution sets
are sufficiently close to be within acceptable modelling errors; a mathematical model can never be

an exact representation of the real system, neither can exact measurements be taken from the system.
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§5.4.2.1 Results Comparison

Figures 5.4a to 5.4f show a selection of computed results obtained from both the lumped parameter
and the transmission-line simulations. A transmission-line transient pressure difference (error) of 0.1
bar and a 1ps minimum time step were used for the TLM solution; these parameters give TLM
results nearly identical to the lumped parameter case. Smaller tolerance values for pressure error and
minimum time step did not significantly change the TLM solution (although it approached the
LSODA solution more closely), but did increase the simulation run time (see Table 5.2).

Figure 5.5a and Figure 5.5b show the magnitude of the time step and the corresponding maximum
transmission-line pressure difference used in the variable time step TLM simulation. To increase
simulation efficiency, only simulation steps that result in a transmission-line pressure error in excess
of 1 bar were rejected and repeated with a much smaller time step. However, the nominal 0.1 bar
error tolerance specified is still used in the control laws that govern a change in time-step size
following step acceptance. This explains the pressure differences above 0.1 bar that are evident in
Figure 5.5b. Moreover, if the error controller requires a time step less than the 1ps minimum
allowable, this will also cause spikes in the maximum pressure error transient. The process of step
rejection can increase significantly computer run-time for simulations that result in many rejected
steps, eg. in the case of very small tolerances (less than 0.01 bar).

Figure 5.4a shows the variation in the simulated actuator position with time, for both actuators. There
were negligible differences between the TLM and lumped parameter solution techniques. The
differences in displacement, as explained previously, are due to the different leakages incorporated
in the two coupled motors (the flow-divider) and hence the supplied flow to the two actuators is not
identical. The most significant change in gradient is a velocity change, as a result of the flow
redirected to the reservoir from the primary pump, when the pilot operated relief (unloading) valve
is opened. Figures 5.4b & 5.4c illustrate the corresponding actuator velocities.

The pilot and inlet pressure to the pilot operated unloading valve is shown in Figure 5.4d. This
shows an initial start-up transient and the small pressure differential between the pilot and inlet
pressure, due to losses modelled in the check valve. The pilot pressure steadily increases above that
of the cracking pressure, as a result of the linearly increasing spring load force. The lumped
parameter pressure transients are initially slightly greater than the TLM transients, owing to the small

levels of fluid friction modelled by the lumped parameter system; a pseudo-dynamic laminar, or
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turbulent line friction model is used, based upon well known steady-state pipe friction correlations.
The reduction in flow after unloading the primary pump reduces this effect. For completeness, the
flow-divider shaft speed and the actuator piston and rod end pressures, computed using both
techniques, are also shown in Figures 5.4e & 5.4f respectively.

It is interesting to compare the relative differences between the two simulation methods. Figures 5.6
show the relative difference curves for some salient transients. Figure 5.6a indicates the pressure
difference between the two methods at the unloading valve inlet, normalised against the lumped
parameter solution. The maximum relative difference, of approximately 2.5 percent, occurs at the
physical discontinuity where the actuators engage the stiff-spring load at 1.7m extension. The mean
deviation evident in the pressure transients is, in fact, due to the inclusion of fluid friction in some
of the lumped parameter pipe models. This inclusion is unavoidable for the lumped parameter system
owing to model linking requirements: in the lumped parameter system all components, including
compressible lines, are treated as separate models. Different components, such as valves and
actuators, are then linked via compressible line models. To connect the service port of a valve to an
actuator via a compressible line model, for example, requires that both the actuator and the valve
supply flow and receive pressure from the line, which is integrated centrally from eq.(5.1). Therein
lies a numerical inconsistency. The lumped parameter actuator model has internal variable volumes
(variable volume compressible lines) at the piston and rod ends, that also require flow. The only
means available to overcome this algebraic loop is to introduce an orifice model at the actuator end
of the line model (approximating the effect of fluid friction), which computes flow from differential
pressure. If line friction is not significant this can be unfortunate, as numerical stiffness can increase
substantially when very small amounts of friction are specified (§4.4.3). TLM, by its very nature,
has no such linking problems, as all communication between models is handled by the propagation
of characteristic pressures at a finite speed.

Returning to Figure 5.6a the steady-state pressures are identical, because there is zero flow and
therefore no frictional losses. Similar effects are observed in Figure 5.6b, which shows the
normalised pressure difference for the piston end pressure in actuator 1. The lower actuator piston
velocity presented by the lumped parameter approach (Figure 5.4b) and therefore flow, corresponds
to reduced pressure losses in the lumped parameter simulation because of the necessary, but small

amount of fluid friction modelled. Figure 5.6¢ illustrates the relative differences in piston velocity
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with respect to time for this actuator. There is a relatively large, but short lived, spike at the
discontinuity where the actuator encounters the spring-load; otherwise the differences are very small.
In general there is some evidence of wave propagation effects (fluid inertia), which explains the

transient disparity between the lumped and distributed parameter results.

§5.4.2.2 Performance Comparison

The most significant difference between the two methods is in the simulation time. The lumped
parameter simulation, running on a Sun 4/370 Sparc processor, required 4860 seconds of CPU time.
This was numerically highly stiff and discontinuous in parts of the simulation. With the usual relative
error tolerance of 10° the LSODA computation required time-steps in the range 3.16x107° to
2.60x10? seconds and some 561 Jacobian re-evaluations. A total of 71341 Adams steps (orders 1-7)
and 941 Gear steps (orders 1-5) were used and a substantial 20416 discontinuities processed.

The equivalent TLM solution required only 189 seconds of CPU time for comparable results, with
time-steps in the range 1x10° to 1.84x10 seconds. The TLM algorithm is an explicit solver with
very much fewer computational overheads than LSODA, thus a direct comparison of time step
between the two methods as the solution proceeds may be misleading; a better measure is the
recorded computation time against simulation time. The CPU times for both solvers as the solution
proceeds are shown in Table 5.3. This data clearly demonstrates that the TLM solver consistently
outperforms LSODA in this example, albeit with considerable variation in performance. The
algorithmic "speed-up" shown in Table 5.3 is defined as the ratio of LSODA run-time to TLM run-
time and is a measure of how much faster (or slower) the TLM solver is compared with the LSODA
computation, The most significant TLM speed-up occurs when LSODA numerically solves a highly
stiff system of ODE’s, in this case roughly between simulation times 1.25 and 1.75s. TLM also
requires much smaller time-steps to reduce the pressure error due to inductance in the transmission
lines, but the magnitude of the steps selected are significantly greater than the order 107s steps
employed by the LSODA integrator. The two-actuator lumped-parameter simulation changes its
numerical characteristics immensely during the simulation, from switching from stiff to non-stiff and
back again. The different speed-ups shown in Table 5.3 gives an indication of the likely performance
of TLM when used to solve hydraulic systems that are stiff or non-stiff when expressed as entirely

lumped-parameter systems. This example indicates algorithmic speed-ups ranging from approximately
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3 to 30 times, the greater the speed-up the stiffer the numerical integration (at these times LSODA
generally used first order implicit numerical integration and very small time-steps).

Section 6.5.2 describes the TLM simulation of a hydraulic "ring-main" circuit, which has also been
computed in parallel. For this example the TLM algorithmic speed-up compared with the lumped-
parameter computation ranges from approximately 7 to 20 times faster throughout the simulation.
Overall the ring-main lumped-parameter simulation is less stiff numerically and the ODE solution
is computed faster in comparison with the TLM solution, hence the overall speed-up is not as good
as the two-actuator example. However, the speed increases achieved using TLM for the non-stiff
parts of both example simulations are of the same order of magnitude, ie. about 3 for the two-
actuator circuit example, and 7 for the ring-main circuit example. This is also the case for the stiff
parts of the example circuits, ie. a maximum algorithmic speed-up of about 30 for the two-actuator
circuit and about 20 for the ring-main circuit. Thus, in practice the actual performance of the TLM
computation versus the lumped-parameter computation will be very much problem dependent.
Nevertheless, there is an improvement in simulation speed using TLM, which is likely to be even
more significant when the lumped-parameter computation requires the numerical solution of a stiff
system of ODE’s.

Figure 5.7 (Table 5.2) shows the variation in TLM execution time with different values of the
pressure error parameter and Figure 5.8 demonstrates how the pressure error tolerance used can
influence the simulated response; in this case the inlet pressure to the pilot operated unloading valve
is considered. Notwithstanding the variation in the predicted dynamics, the steady-state levels are still
predicted correctly. However, transmission-line pressure error tolerances in excess of about 5 bar
introduce significant distortion due to fluid inertia and are no longer comparable with the lumped
parameter system. (The real system will include some fluid inertia, and in the absence of fully
validated experimental data the lumped parameter model may be no more accurate in an absolute
sense than the TLM solution; it does however give a useful guide to overall performance).

Figure 5.9 and Table 5.4 show the variation in run-time for fixed time step TLM simulations. In
order to achieve results that correspond closely with the variable step method (ie. to locate
discontinuity points with sufficient accuracy and minimise wave effects), a fixed time step of the
order of 10us is required. A 10us simulation requires some 624s processor time. Although fixed time

step TLM simulations can be very rapid, it is necessary to repeat simulations with progressively
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reduced time steps to achieve confidence in the results obtained. With sensible values of
transmission-line pressure error in the variable time step scheme, simulations are both very fast and
have built-in error control. With a tolerance of 0.1 bar for example, the TLM simulation is
approximately 25 times faster overall than the lumped parameter equivalent. Even without the use
of parallel processing, remarkable speed-ups are possible using this distributed parameter modelling
technique. The main reason why the lumped parameter LSODA integration is so slow in this instance
is because the system is extremely stiff numerically when the pilot operated relief valve unloads the
larger capacity pump (roughly between 1.25 and 1.75s).

It is interesting to measure the change in the performance of the LSODA simulation, with changes
in global integration error tolerance. Table 5.5 shows the run-times obtained for different tolerances.
In this example the fastest LSODA simulation was obtained with an increase in tolerance to 107,
although the transients had changed significantly from those computed using the recommended
tolerance of 10°. Comparison of results between the 10 and 107 tolerance simulations showed no
apparent differences. Experience with the LSODA integrator in the Fluid Power Centre suggests that
the relationship between tolerance, numerical accuracy and speed is highly problem dependent.
Paradoxically, a larger tolerance can sometimes cause an increase in run time (this is probably due
to the propagation of numerical errors as the simulation proceeds making time step selection more

erratic).

§5.5 Closure

In this chapter the process of automatic system model generation has been described for the case of
single processor TLM simulations. The two-actuator test case example has been compared with an
equivalent lumped parameter simulation, using the ODE solver LSODA. Overall, the TLM simulated
transient results were very close to the lumped parameter solution, even during rapid transients. The
steady-states results were indistinguishable.

The most remarkable difference, however, was noted in the computational performance of the TLM
simulation employing the variable time step scheme. For the two-actuator example TLM
demonstrated an overall speed-up in excess of twenty-five times the equivalent lumped parameter
simulation; the speed-up varied by an order of magnitude as the simulation proceeded, from roughly

3 to 30 times faster depending on the stiffness of the lumped-paramter solution.
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These results have been achieved using a single processor only; suitably partitioned TLM
simulations, with separate sub-circuit elements running on different processors, should enable even

greater speed-ups. This topic is the subject of the following chapter.
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act1/act2:

Fg 100 [N]

Fr 50 [N]

d, 125 [mm]
d, 70 [mm]

M, 10 [Kg]

¢ 3000 [N/(m/s)]
x, 1600 [mm]
v, 0 [m/s]

X, 1700 [mm]
K 1.8 [KN/mm]
s 1850 [mm]

p1:
Q, 121 [I/min]

p2:
Q, 84 [I/min]

fd:

D,, 100 [cc/rev]
¢, 0.1

¢, 3x10°

¢, 2x10°

D, 100 [cc/rev]
¢, 0.231

c,, 5x10°®

c,, 3x10°

J 0.1 [Kg m?

¢ 0.1 [Nm/rpm]

rvi/rv2/rv3:
P_ 210 [bar]
K 600 [(/min)/bar]

system parameters:
p 890 [Kg/m?]
v 60x10° [m%s]

cvl:
P. 10 [bar]
K 100 [I/min/bar]

lines:
B, 8900 [bar]

P, O [bar]

d 25 [mm]

L+Ly+L, 4 [m]

L+L +L+L 4L, 4 [m]
LygtLy+Ly; 3 [M]
L+l +Lystl,,

+L,5 4 [M]
Lig*Lostloe
Loo*+Loetls,
Loy+Lotl,,

8 [m]
8 [m]
1[m]
L,;#+Lygtly, 12 [m]
tk:

P, O [bar]

cv2:
P_ .5 [bar]
K 100[l/min/bar]

dcv:
AP, 205 [bar]
Q,, 5 [bar]

u(t):
0[][t<0s]
1 [] [t=0-2.5s]

,(t)/F,(t):
0 [N] [t=0-2.5]

prv:
P_ 145 [bar]
K 600[l/min/bar]

TABLE 5.1

TWO-ACTUATOR CIRCUIT PARAMETRIC DATA

Pressure error Simulation Run-
Pe [bar] time
[s]
0.01 471.4
0.1 189.0
0.25 49.9
0.5 243
1.0 13.0
25 7.2
5.0 26

TABLE 5.2 VARIABLE-STEP TLM RUN-TIME
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Simulated Time LSODA CPU Time TLM CPU Time Speed-up
[s] [s] [s] [s]
0.25 - - -
0.5 250 (250) 17 (17) 15
0.75 - - -
1.0 281 (31) 18 (1) 31
1.25 311 (30) 20 (2) 15
1.5 3450 141 (121) 26
1.75 (3139) 160 (21) 30
2.0 4849 188 (1) 8
2.25 (1399) - -
25 4857 (8) 189 (1) 3

4860 (3)

TABLE 5.3 TLM/LSODA ALGORITHMIC PERFORMANCE

[Note: figures in brackets refer to processing times needed to compute the time interval]

Fixed Time-step

Simulation Run-

A [ps] time
[s]
10 624.4
100 62.8
250 23.6
500 11.7
1000 6.3
2500 24

TABLE 5.4 FIXED-STEP TLM RUN-TIME

LSODA tolerance

Simulation run-time

[s]

10 13136.4
10° 3320.9
10° 4860.0
107 9185.0

TABLE 5.5 LSODA RUN-TIME
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PRE-COMPILED
SYSTEM MODEL MOI%ELS

TEMPLATE LINK FILE
FILES MODEL
ATTRIBUTE

FILE

CODE
GENERATOR

\

EXECUTABLE
FILE

OUTPUT DATA RESULTS FILE
REFEIFI‘.ENCE (BINARY DATA)

SIMULATED
RESULTS
ON-SCREEN

FIGURE 5.1 SIMULATION PROCESS: AUTOMATIC CODE GENERATION
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INITIALIZATION:

SET GLOABAL PARAMETERS
INITIALIZE TRANSMISSION LINES
INITIALIZE MODELS

RE-CALCULATE
TRANSMISSION-LINE
IMPEDANCES

— COMPUTE MODELS [1]

RESET VOLUMES [2]

COMPUTE TRANSMISSION-LINE PRESSURE dh

ERRORS
FILTER ERRORS >> REJECT STEP <<
DETERMINE MAXIMUM ERROR REPEAT WITH SMALLER

TIME STEP

MAX. ERROR > REFERENCE YES
TIMESTEP > MINIMUM ?

NOTES

[1] MODELS MUST EXECUTE IN THE
CORRECT SEQUENCE IN THE

<< ACCEPT STEP >> CASE OF CONTROL/DUTY-CYCLE
SIGNAL LINKS
INCREASE/DECREASE
TIME STEP [3] [2] INDIVIDUAL COMPONENTS MAY
ADD VARIABLE VOLUMES TO
TRANSMISSION-LINES (eg.
TgAppeg VOLgMEs n; AN ST BE
X ACTUATOR). VOLUMES MU
A AT R AN MISSION RESET TO LINE VOLUMES ONLY
AT END OF EACH MODEL CALL
SEQUENGCE.
COMPENSATE CHARACTERISTIC [3] COMPONENT MODELS CAN ALSO
. SPECIFY A MAXIMUM TIME STEP
PRESSURES (re: IMPEDANCE CHANGE) 9. TO SYNGHRONISE THE
IMULATION WITH A CERTAIN
ENT)

RESET VOLUMES TO TRANSMISSION-LINE
VOLUMES ONLY [2]

PROPAGATE CHARACTERISTIC PRESSURES
BETWEEN CONNECTED COMPONENTS
YES

SAVE MODEL DATA

PRINT INTERVAL ELASPED ? TO LOCAL MEMORY

INCREMENT TIME

YES

TIME >= END TIME ?

FIGURE 5.2 TLM ALGORITHM

SAVE DATA TO DISK
>>>>> END <<<<<
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L19
L20
oy Bi (v2)
L8 L17
3 (mS) L15
L14
v3)
(cvl)
(n5)
L1l (CVZ)
L10 L7
(n3)
Li2 (prv)

(actl)
L28
(m3)
L25 L27
126 L29
m2
L23 (n3)
a1 124 122
actl/act2
cvl/ev2
dev

f1(t)/f2(t)
n3

(act2)

L32

£2(t)
L33
£1(t)
L30
MODEL INDEX

HACTL14 HNODES51
HCVLVOl  pl/p2 HFLOWO1
HPDCV31  rvl/rvArv3  HRVLVOI
HFDIV02  tk HTANKOI
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LSOOA (BOTH)
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FIGURE 5.4a ACTUATOR 1 & 2 DISPLACEMENT TRANSIENTS
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FIGURE 5.4b ACTUATOR 1 VELOCITY TRANSIENT
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0.2
0.18
0.16
0.14

0.12
Velocity TIM
[m/s] LSOOA

0.08
0.06
0.04

.02
0-0 0.5 1.5 2.5

Time [s]

FIGURE 5.4c ACTUATOR 2 VELOCITY TRANSIENT
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FIGURE 5.4d UNLOADING VALVE INLET & PILOT PRESSURE TRANSIENTS
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FIGURE 5.4e FLOW-DIVIDER SHAFT SPEED TRANSIENT
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FIGURE 5.4f ACTUATOR 1 &2 PISTON-END AND ROD-END PRESSURE TRANSIENTS
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1.6
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Time Step
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0.6
0.4
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Time [s]

FIGURE 5.5a TLM TIME STEP [Pe 0.1 bar]

0.6

0.5

0.4

Pressure 0.3
error
[bar]

0.2

0.5

Time [s]

FIGURE 5.5b TLM MAXIMUM TRANSMISSION-LINE PRESSURE DIFFERENCE
[Pe 0.1Dbar]
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Pressure
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Time [s]

FIGURE 5.6a TLM-ODE RELATIVE DIFFERENCE TRANSIENT: UNLOADING VALVE
INLET PRESSURE

X 10

Normalised
Pressure
Difference

0.5 2.5

Time [s]

FIGURE 5.6b TLM-ODE RELATIVE DIFFERENCE TRANSIENT: ACTUATOR 1 PISTON-
END PRESSURE
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FIGURE 5.6c TLM-ODE RELATIVE DIFFERENCE TRANSIENT: ACTUATOR 1 VELOCITY

Run-time
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FIGURE 5.7 RUN-TIME AGAINST TLM PRESSURE ERROR: VARIABLE-STEP TLM
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FIGURE 5.9 RUN-TIME AGAINST TIME STEP: FIXED-STEP TLM
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CHAPTER 6

PARTITIONED SIMULATION

§6.1 Introduction

The two-actuator example presented in Chapter 5 has provided a simple demonstration of the
computational speed increase that can be achieved by representing a hydraulic system using
transmission-line modelling (TLM). A numerical solver has been demonstrated which uses TLM to
distribute the solution algorithm throughout the problem domain, into the separate component models,
using a single processor. Conceptually, reconfiguration of the TLM scheme onto a parallel computing
surface is straight-forward, as the transfer of delayed characteristic pressures between component
models either takes place locally on the same processor via "on-chip" memory, or with connected

processors via serial data links.

§6.2 Partitioning
§6.2.1 Domain Decomposition
]

The highest level of decomposition that can be applied to a circuit is to place each component onto
its own processor. However, this is generally undesirable due to the communications overheads that
may be imposed. It is preferable to group components together on a processor; each group of
components representing a subsystem of the circuit; this approach is known as domain
decomposition. Each pipe between subsystems therefore represents an information transfer between
domains, each domain computed on a separate processor. Burton ef al [1993B] discuss this approach

applied to the two-actuator example of Chapter S for different numbers of processors and model-to-

processor partitioning arrangements, using fixed time-step simulation.
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§6.2.2 Simulation Control using the Master-Slave Configuration

If a variable time-step method is employed then an additional requirement is placed on partitioning;
only one processor can be allowed to determine the time-step. Consequently the simulation must be
partitioned such that one subsystem exchanges information with all others. The master processor
governs the operation of the slaves, by defining the simulation time-step used in the computation.
The value of time-step calculated by the master process is determined from error control information
obtained from both the master and the slave partitions.

The use of a master, or central control, process means that the predictions obtained will be identical
to those computed by an equivalent single processor simulation. This approach differs from the
parallel scheme first used by Jansson ef al [1992], in which each partition has its own individual step
controller. Synchronisation between the sub-systems is problematic in Jansson’s approach (owing to
the disparate time steps), resulting in time step oscillations as the separate controllers interact at the
communication time steps. Moreover, the simulation accuracy is reduced as the step rejection
procedure must be disabled for this scheme to operate (if a step is rejected it must be rejected for
all partitions).

The master-slave configuration overcomes these difficulties although quiescent, or slow dynamic,
parts of a circuit are subjected to the same (potentially) small time steps needed elsewhere in the
circuit model. This limitation does not affect adversely multi-processor efficiency, provided the
individual processor loads are balanced evenly throughout the distributed computation. The separate
controller technique will not be measurably faster, because of the unequal computational loads
evident when one partition requires a very small time step compared with the others; multi-processor

speed is always limited to the speed of the slowest partition, as with the master-slave scheme.

§6.2.3 Parallel Efficiency

The performance of parallel computations is governed largely by the ratio of compute-time to
communications-time for well-partitioned systems. For this reason full multi-processor operation (ie.
one processor per model) is unlikely to be an ideal (or possible) configuration. However, the process
of problem decomposition can often be very adaptable, as different models can be assigned to
separate processors in many different combinations. To improve efficiency, connected component

models should be partitioned together into sub-circuit topological groups, reducing the number of
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inefficient inter-processor data transfers. Moreover, balanced computational loads are necessary, if
parallel simulations are to increase simulation speed with the addition of further processors; the
maximum attainable speed will be dictated by the slowest partition, ie. the partition with the most
computations per step.

"Speed-up" is the term that refers to the increase in execution speed for a multi-processor
computation, compared with the equivalent single processor computation. The "ideal" speed-up is
equal to the number of processing elements, which implies exact load balancing and zero
communications delay. A measure of parallel efficiency is therefore obtained from the ratic of the
actual speed-up achieved to the number of processors used.

The optimum partitioning arrangement is very much dependent upon the increased parallelisation
afforded by the use of more processors, the distribution of computational loads across these elements
and the penalty of communications between them. Consequently, efficient operation is highly
problem dependent. Moreover, some models may change their computational requirements during
program execution, as different operating regions are encountered, upsetting the balance of processor

loads. This point is addressed further in subsequent simulation examples.

§6.3 Partitioned Variable-Step TLM Algorithm

The nucleus of partitioned TLM is the parallel variable-step algorithm. This numerical scheme relies
on a designated master to direct the process of error control and time step calculation for the
complete distributed simulation. Both master and slave processes compute separate sub-circuit
partitions concurrently. Figure 6.2 shows this scheme diagrammatically for a two-processor master-
slave system.

At each step, following the execution of each component model, the maximum transmission-line
pressure error in each slave is transmitted to the master together with the characteristics and pressures
of all connecting transmission-line links. From the maximum overall error the controller then either
accepts, or rejects the computed step and calculates the magnitude of the next step. This procedure
automatically allows for the effect of any discontinuity. Step control (an accept/reject flag plus the
new time-step) and characteristic pressure inputs are then transmitted to the slaves. This cycle is
repeated until the simulation is complete.

In summary, the simulation process is distributed throughout the component models, in the separate
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sub-system partitions. Multi-step control is facilitated centrally by use of a step controller (the master
process). It is this control process that maintains the synchronisation between the individual

partitions.

§6.4 Distributed Processing

§6.4.1 Hardware Description

The parallel computing surface used for this research comprised a Sun 4/370 host computer,
supporting a Transtech MCP1000 transputer motherboard, itself containing a total of eight processing
nodes, or "TRAMs". Each TRAM (an acronym for transputer plus random access memory) consisted
of an Inmos T800 transputer (a 25MHz CPU, cache RAM and four high speed serial data links)
attached to 2Mbytes of local memory, depicted in Figure 6.3. The schematic layout of the MCP1000
is shown in Figure 6.4 and illustrates the possible connectivity of the multi-processor system. There
are two TRAMs per site (out of a possible four), both of which are permanently wired together. The
remaining transputer links may be inter-connected via the link switch adaptor, to configure a wide
range of processor topologies, except for link 1, slot 1, which facilitates a connection to the host
computer (file and screen access, for example). The remaining free transputer links can be software
configured from the host by appropriate use of the Transtech "nt_ctl" utility. This configuration
software is supplied as standard with the Transtech MCP1000 transputer motherboard and described

fully in the Transtech user manuals.

§6.4.2 Software Description

Initially, the transputer operating system "Genesys" (© Transtech Devices) was used, consisting of
the operating system itself (a Unix-like system for transputers), in addition to the associated libraries,
"include" files and the Genesys C compiler, to enable message passing between processes on the
same and on separate processors. Preliminary investigations demonstrated conclusively that the
computational overheads associated with the Genesys system were very significant, increasing the
time required to send and receive messages between processors to an unacceptable level, even
resulting in multi-processor "speed-downs". A considerable amount of time and effort was expended
in setting up the Genesys simulations, only to discover that this approach was not a viable one. A

major problem was the lack of expertise and support from the vendors (Transtech) and the
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experimental nature of the Genesys transputer operating system.

Consequently, the Inmos "ANSI C ToolKit" and "Virtual Route Configurer" were applied to generate
the application-specific transputer object code used in the multi-processor examples discussed later.
This software enables executable code to be created without the need for a dedicated transputer
operating system; an executable "image" (operating system-like instructions plus application code)
is loaded onto the transputer system directly. The parallel software also included some additional
multiplexing algorithms to enable every transputer to access the host computer’s visual display
(screen) and hard disk; this is essential in order to monitor the parallel simulation in progress and
allow simulation results from each partition to be saved at the end of the run.

The Inmos T8 series transputer has a basic limitation of four bi-directional serial data links. For
master-slave processor topologies this means that a five-processor configuration represents the
greatest partitioning arrangement achievable using "nearest-neighbour" communications between
processors. The alternative is message "through-routing", which involves sending data via an
intermediate processor, or processors. This procedure is simplified (for the programmer) by the
automatic multiplexing routines imbedded intn the Inmos Virtual Route Configurer. Clearly, the
consequence of failing to use nearest-neighbour data transfers is an increase in transmission delay
and reduced efficiency. Figure 6.5 shows the range of possible processor topologies using both

nearest neighbour and through-routed processor links.

§6.4.2.1 Program Development
The construction of transputer executable code involves the specification of the following files:
(i) Hardware and software configuration file, a "filename.cfs" script
(ii) Application code segment files for each sub-circuit partition
Each program segment (one per processor) must be compiled and linked using the Inmos ANSI C
compiler and linker, "icc" and "ilink", respectively. Following compilation and linking, the program
segments must be configured appropriately using an appropriate configuration file, which describes
the connection between processors and processes. Subsequently, the Virtual Route Configurer,
"ieveonf", is invoked to produce executable code, in the form of a "filename.btl" file. This file is
loaded on to the hardware via the interactive file server and loading program "iserver".

The above sequence of operations is standard for all parallel implementations using the Inmos ANSI
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C Toolkit and Virtual Route Configurer and are described in detail in the user manuals supplied with
the software. Example files and the sequence of operations necessary to construct parallel TLM code
are given in Burton 1994, relating to the two-processor implementation of the circuit discussed in

§6.5.1.

§6.4.2.2 Data Transfer

The standard form of data transfer between partitions (program segments) is uni-directional. The
ANSI C Toolkit provides two functions tc enable message passing between partitions, "ChanQOut"
(send) and "ChanIn" (receive) function. In order to construct a software data link between sub-
systems over the hardware serial data link, one partition must contain a ChanIn and the other
partition a corresponding ChanQut function call. Hence to achieve bi-directional data transfers
between partitions, as required by the TLM algorithm, there must be two opposing uni-directional

software links.

§6.4.2.3 Code Generation

The development of a complete multi-processor code generator is a complex task beyond the scope
of the present investigation. However, the single-processor (host computer) code generator discussed
in the last chapter, with few modifications, has enabled individual partitions to be generated
automatically using separate sub-circuit /ink files; the multi-step controller (master process) and the
inter-processor communication functions were then added manually. It was also necessary to provide
an appropriate configuration file script to facilitate creation of an executable file, suitable for the

processor topology established using the configuration tool "nt_ctl".

§6.5 Multi-Processor Applications

The following examples have been restructured for multi-processor simulation using the multi-step
TLM algorithm developed. In order to test the applicability of this technique, two hydraulic circuits
of differing sizes and complexity were investigated. The basic criteria was to investigate
representative circuit models in order to test how well the parallel TLM algorithm scaled up (or
down) between circuits containing widely different numbers of similar components. The small and

large circuits studied are referred to subsequently as the "small-scale" and "large-scale" systems
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respectively.

§6.5.1 Small-Scale System: Electro-Hydraulically Controlled Two-Actuator Circuit

Figure 6.6 shows an electro-hydraulic circuit containing two position-controlled actuators, each
supplied by the same flow source (Burton 1994 details the single processor circuit /ink file, including
the physical data and component models used). Circuit functionality is similar in principle to the two-
actuator example evaluated in Chapter 5, except that position control of the actuator pistons is
governed electro-hydraulically via feedback control, as opposed to hydraulically by application of
a flow-divider. This circuit combines instantaneous control elements with variable volumes and

several discontinuities in the form of relief valves and actuator end-stops.

§6.5.1.1 Control Signals

Feedback control, as outlined in §3.7, is facilitated by the use of uni-directional signal links between
models [Burton et al, 1993A)°. Modelling electrical control signals requires component models in
the feedback loop to be called in the correct sequence, following the direction of information transfer
along the instantaneous signal link. In this example the correct sequence is: the feedback device (the
transducer model imbedded into the actuator), the controller duty-cycle (input demand), the
proportional controller and the modulating device (the 4-way, 3-position, closed-centre valve). This
sequence is inserted into the simulation /ink file by the user. This process can be automated at a later
date, as the connectivity of the feedback link is readily determined.

Other models with signal inputs and outputs may be included in the feedback loop, for example
signal nodes, or summing junctions. The remaining component models may be executed in an

arbitrary sequence, as they are decoupled completely by transmission-lines.

§6.5.1.2 Transient Response
Typical simulated transient responses of the system to a step input in actuator positional demand are
shown in Figure 6.7, for both the LSODA (Gear/Adams) and the multi-step TLM methods; these

simulations were performed on the host processor of the Sun 4/370 computer, which in absolute

Digital control can also be incorporated into the multi-step scheme, by forcing the step controller to
adjust the time step to coincide with the sample interval
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terms is approximately 35-40% faster than a single T800 transputer.

The use of multi-step TLM with P,=0.1 bar provides an overall algorithmic speed-up exceeding thirty
times that achieved using the lumped parameter model for comparable results. The variation in
processing time with simulation time for both solvers in shown in Table 6.1. This shows a variation
in TLM speed-up from barely 3 to almost 50 times that achieved using LSODA.

The LSODA computation was numerically very stiff in parts of the simulation. For the
(recommended) relative error tolerance of 10, 112 Jacobian re-evaluations were required and 2150
discontinuities processed. Additional statistical information includes a minimum time-step of
3.162x10"° seconds and a maximum time-step of 0.522 seconds, requiring 7027 explicit Adams
integration steps (orders 1-7) and 520 implicit Gear integration steps (orders 1-5). TLM on the other
hand is a single step explicit algorithm based upon wave propagation, which explains why TLM is
faster even though it sometimes uses smaller time-steps (for this example the time-steps used were
in the range 5.557x10° seconds to 2.5x107 seconds).

In order to obtain improved performance from the TLM solver, a multi-processor configuration must

be employed.

§6.5.1.3 Partitioned Simulation

Component model call ordering, as required for cases involving control signals, imposes certain
partitioning constraints, because the different sub-circuit partitions can only be inter-connected by
transmission-lines. Consequently, in this case, the feedback loop consisting of actuator (transducer),
duty-cycle (demand), controller and valve must be retained on the same processor to achieve correct
signal propagation.

The different sub-circuit partitions studied and the corresponding processor topologies employed are
illustrated in Figure 6.8 and the respective simulation speed-ups for each partitioning scheme detailed
in Table 6.2, where speed-up is defined as the single processor run-time divided by the measured
multi-processor run time. The speed-ups for a different input demand sequence (actuator positional
demand) are also given and these show little change. In the latter case the positional demand (to both
actuators) was changed to the fully retracted position (zero displacement) after two seconds of a four
second simulation run. Figure 6.9 shows the measured and the ideal speed-ups for this system plotted

against the number of processors employed. The corresponding parallel efficiencies are shown in
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Figure 6.10, where this measure of efficiency is defined simply as the measured speed-up divided
by the number of processors (the number of processors equals the maximum possible speed-up). The
range of measured speed-ups and efficiencies corresponds to variations in partitioning and/or duty-
cycle input to the parallel simulation. These results demonstrate that only a limited computational
advantage can be obtained for parallel simulation of such a small-scale system. A maximum speed-up
of 1.64° was obtained for the three processor simulation, using the T800 transputer. The equivalent
three-processor T80S5 transputer simulation demonstrated a more impressive speed-up of 1.92 (64%
efficiency), although no other configurations were possible using this transputer system.

Limited speed-up (reduced efficiency) is a consequence of problem "granularity", ie. the suitability
of the T8 series transputer to the "fine-grained" parallelism problems encountered with the small-
scale circuit simulation. Fine-grained, or procedural level problems, incur very frequent data transfers
compared with the computations performed between communications [Brawer, 1989]. This is an
undesirable property in parallel processing terms; from the simulation studies carried out efficiencies
over fifty-percent are rare. Conversely, "coarse-grained" problems contain far less data transfers
[Brawer, 1989], and any large messages can be buffered for greater efficiency, eg. computational
fluid dynamics or image processing problems.

Some informative conclusions can be drawn from the small-scale system investigation, notably the
effect of increased processors, computational load balancing and inter-processor communications on
performance. A measure of computational load was given by the individual processor run-times
required to execute the component models in each sub-circuit partition; the multi-step controller does
not affect the processor load balance, as step-control takes place after the simultaneous execution of
all component models. Table 6.3 details the component model run-times for the different
configurations investigated, and this is reproduced graphically in Figures 6.11a to 6.11e.

Circuit partition 2(i) exhibited a poor distribution of computational effort, but required the least data
transfer (one connecting transmission-line only). Re-configuration for improved processor load
balancing to partition 2(ii) resulted in better performance (speed-up from 1.06 to 1.25), which more

than compensates for the increased data transfer required’. The converse was demonstrated by the

¢ Data obtained courtesy of Transtech Devices Ltd
" Appendix 4 details the sub-circuit source programs for partition 2(ii)
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three-processor configurations investigated. Partition 3(ii) showed an improved load balance
compared with partition 3(i), but required more communications. In this case the data transfer
overhead outweighed the improved arrangement, causing a reduction in performance. The change in
duty-cycle input demand to the actuator controllers, for partitioned simulation 3(i), did not affect the
balance of computational loads. This is demonstrated by comparison of Figures 6.12a and 6.12b,
which show that the model run-times for each partition are more-or-less constant during the
simulation run.

The four-processor simulation afforded no net increase in speed over the three-processor
configurations, because the additional parallelism was offset completely by the very dissimilar
processor loads and increased data transfers. Further partitioning to five processors, or in fact an
improved four-processor arrangement, was complicated by the two feedback control loops that had
to remain intact within their separate partitions. This constraint implies that a five-processor
configuration is not worthwhile, because of the very significant imbalance in computational loads

and the further increased communications which would inevitably result.

§6.5.2 Large-Scale System: Ring-Main Circuit

A "large-scale" hydraulic system is detailed schematically in Figure 6.13. This circuit layout is
typical of the ring-main system configurations found in mobile hydraulic and marine equipment, but
is used here principally to test the performance of partitioned simulation (Burton 1994 contains the
single processor /ink configuration file, which includes the physical data set). To illustrate the nature
of the transient results Figure 6.14 shows the pump discharge pressure transient computed using both
TLM and LSODA. The differences between the two transients are difficult to detect using a TLM
pressure error of only 0.1 bar; the TLM solution is slightly more oscillatory at discontinuities, owing
to the wave propagation effects included in the modelling.

Table 6.4 indicates that less computational advantage is obtained using TLM than in the small-scale
system example, owing to the reduced numerical stiffness in the lumped-parameter system model of
the large-scale circuit simulation. Algorithmic speed-ups from about 7 to just over 20 times were
measured at different stages of the computation; TLM achieves the most significant computational
gains when LSODA encounters numerical stiffness. Based on the final run-times an average TLM

speed-up of approximately 12 was recorded.
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§6.5.2.1 Partitioned Simulation
With much larger circuit models it is to be expected that the larger sub-circuits will increase the
compute-to-communications ratio and consequently improve multi-processor efficiency.
The two, three, four and seven processor partitions are shown in Figure 6.15. The corresponding
speed-ups and efficiencies are illustrated in Figure 6.16 and Figure 6.17 respectively, and detailed
in Table 6.5; variations in valve and load duty-cycle inputs did not affect these results noticeably.
A maximum speed-up of 2.7 was obtained using the seven-processor configuration, a marginal
improvement on the four processor case; no performance data could be acquired for a T805
transputer system.
The performance of the seven-processor topology, although fastest, was severely impeded by

@) Processor through-routing (virtual circuits)
and (ii) Less-than-ideal load balancing, as seen in Figure 6.18 (Table 6.6)
Further improvements in performance (speed-up and efficiency) might be possible if the sub-circuit
partition containing the supply and metering valves could be further sub-divided. Unfortunately, this
is not feasible using the present scheme, because the sub-circuit partitions would no longer map onto
a master-slave processor topology directly. It is possible to restructure the algorithm slightly, but this
results in much greater use of virtual circuits. In this modified scheme the "slave" sub-circuit
partitions can communicate characteristic pressures directly according to the transmission lines
connecting them. However, communication between the remote slaves and the master (step
controller) must be handled via through-routed messages. The additional overhead and increased
complexity does not make this approach an efficient, or attractive solution, although it is more
flexible in terms of circuit partitioning; the domain decomposition used is not restricted to that
required by a master-slave processor configuration.
The rapid loss in efficiency shown in Figure 6.17 demonstrates clearly that partitioning above four
processors achieves little in performance. As expected, the efficiencies are higher for the large-scale
system, owing to the coarser grained nature of the parallel computation. This is an encouraging sign,
but in order to extract further potential from the parallel algorithm as it stands transputers with more
links per processor are required; this may be a distinct possibility with the arrival of the six-link T9

series transputer at some future date.
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§6.6 Partitioning Heuristics
The speed at which data is transferred between partitions, the relative distribution of computational
loads and the proportion of compute time to communications time are all important factors in the
partitioning process; inappropriate sub-circuit partitions and excessive data transfer will often negate
any potential advantage in parallel computing. Particularly inefficient are through-routed, or virtual
communications, which are sometimes necessary if the partitions do not map the processor
configuration exactly. The latency of nearest neighbour communications is very much less and should
be used wherever possible.
Computational load balancing of processors has been attempted in both of the examples studied by
placing, within the topological constraints of a master-slave system, roughly equivalent numbers of
component models into each sub-circuit partition. However, this approach is an oversimplification,
as the difference between the processor time required by two different models can differ by up to
an order of magnitude. An element of trial-and-error is therefore necessary in the partitioning process
to achieve the optimum configuration.
The results of both systems studied suggest that a minimum of typically four component models per
partition is required, which corresponds to the small-scale three-processor case. This gives an
acceptable compute-to-communications ratio, without compromising significantly circuit division into
parallel tasks. The use of virtual communications is also best avoided and as demonstrated by the
(rather disappointing) large-scale system seven processor case; there is often little to be gained in
using more than four processors. However, if roughly balanced partitions can be achieved then five
processors are likely to give the greatest speed-up, as this corresponds to the largest master-slave
configuration with nearest-neighbour data transfers.
In summary, the following guidelines should be implemented for best performance:
@) Use nearest-neighbour processor communications wherever possible.
(ii) Choose sub-circuit partitions for balanced processor loads (without violating (i))
(iii) Do not use less than four component models per sub-circuit to maintain efficiency
@iv) Generally use a three, or four-processor configuration for near-maximum speed-up
(but no more than five processors in a nearest-neighbour master-slave
configuration).

It is likely that these guidelines apply more widely to a range of similar master-slave algorithms that
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exhibit fine-grained parallelism, as these attributes characterise multi-step partitioned TLM.

§6.6.1 Automated Sub-Circuit Partitioning

These heuristic rules might form the basis of a parallel simulation pre-processor to generate,
automatically, well-balanced sub-circuit partitions. This requires an estimate of all component model
run-times. Subsequently, this information may be used to assess the computational effort required
for a given system at every simulation step. Dividing the effort value obtained by the number of
processors gives an ideal computational effort, or load, for each processor. At first the circuit may
be divided arbitrarily and the estimated processor loads calculated. The difference between the ideal
and measured loads then gives an indication of the computational imbalance. An optimization
function, such as the total root-mean-square error (the "error" being the difference between ideal and
measured processor efforts) must be minimised to obtain the best arrangement. A number of
partitioning arrangements must then be evaluated by a process of iteration, without violating the
topological constraints of the circuit. Penalties for data transfer may be included into the function,
by modifying the processing efforts of those models responsible for inter-processor communication.
Such an optimisation algorithm is sometimes referred to as "simulated annealing" and is similar in
principle to those used in optimal PCB design in the electronics industry [Vecchi & Kirkpatrick,
1983].

A more effective approach might be the application of neural networks, which are suited to problems
of non-linear optimisation. "Training" a neural network with a wide variety of circuit configurations
and processor topologies may result in an efficient pre-processor. This, in effect, simulates the
method the author used intuitively when configuring the examples studied in this chapter.
Currently, a less realistic option is the use of a performance profiler to monitor simulation speed "on-
line". To implement this, a type of feedback control must be used, enabling component models to
be transferred between sub-circuits automatically, as the simulation proceeds. This scheme is non-
trivial and will require very substantial processing itself, which may negate any potential advantage.
Moreover, the technology required for on-line profiling is very recent. In addition, the design of a

non-linear optimising controller is likely to be a complex task.
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§6.7 Closure

This chapter has shown that significant computational speed-ups can be obtained by restructuring
hydraulic circuit simulations for use with partitioned TLM. The most substantial increase in
performance was due to the TLM algorithm itself, although in the cases studied much faster
simulations were possible using parallel computing. Parallel speed-ups were much less than ideal,
owing to the fine-grained parallelism exhibited by partitioned TLM. Parallel efficiencies were very
much worse for the small-scale system investigated compared with the large-scale system, which
incorporated much larger sub-circuit partitions. This is to be expected as more computation can be
achieved per time-step for similar numbers of (expensive) data transfers between partitions.

This study suggests that the partitioning of hydraulic simulations using transputers is a difficult one
and that a great deal of care needs to be exercised to achieve reasonable results. An alternative
parallel computing architecture might prove advantageous, such as the Intel i860-based Quadputer,
for example. This system consists of four very fast floating point processors (approximately ten times
faster than a single T805) that communicate via shared memory, as opposed to serial data-link.
However, even this solution can be problematic, because the intensity of information transfer can
render the shared memory system highly inefficient for systems of more than four processors. In
future the six-link T9 series transputer may offer the best solution, with faster processor and
communications speeds.

To conclude, the algorithmic and parallel speed-ups combined can offer considerable performance
increases (something like fifty times faster) compared with the equivalent lumped-parameter

computation based on a single processor using a complex, centralised ODE solver.
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Simulated Time [s] LSODA CPU Time[s] TLM CPU Time [s] Speed-up
0.5 55.0 (565.0) 3.1 (3.1) 17.7
1.0 2.7 (37.7) 6.6 (3.5) 10.8
1.5 100.0 (7.3) 7.5 (0.9) 8.1
20 857.0 (757.0) 23.0 (15.5) 48.8
25 864.7 (7.7) 242 (1.2) 58
3.0 872.5 (7.8) 27.2 (3.0) 26
35 877.1 (4.6) 27.5 (0.3) 15.3
40 822.1 (5.0) 27.8 (0.3) 16.7

[Note: Figures in brackets refer to processing times needed to compute time interval]

TABLE 6.1 TLM/LSODA ALGORITHMIC PERFORMANCE COMPARISON FOR THE
CONTROLLED TWO-ACTUATOR CIRCUIT
T800 (25MHz) T805 (30 MHz)
TRAMs | Run-time [s] Speed-up Efficiency Run-time [s] | Speed-up | Efficienc
y

1 38 (41.8) 1 1 255 1 1
2(i) 358 (39.4) | 1.06 (1.06) | 0.53 (0.53) - - -
2(ii) 30.5 (33.8) 1.25 (1.24) 0.62 (0.62) - - -
3(3) 23.2 (26.2) 164 (16) | 0.55 (0.53) 13.29 1.92 0.64
3(ii) 23.3 (26.2) 163 (1.6) | 0.54 (0.53) - - -

4 23.6 (26.1) 161 (16) 0.40 (0.4) - - -

[Note: Roman numerals in brackets indicate different model-to-processor sub-circuit partitions.

Numbers in brackets indicate results for different controller duty-cycle inputs]

TABLE 6.2

CONTROLLED TWO-ACTUATOR CIRCUIT
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Sub-Circuit Component Model CPU Time [s]
TRAMs M s, S, S,

1 20.2 (22.3) - : )
2(i) 74 (82) 16.5 (18.2) - -
2(ii) 106 (11.7) 12.5 (13.8) - -
3(i) 5.7 (6.2) 9.4 (10.4) 9.3 (10.3) -
3(ii) 6.6 (6.2) 8.7 (10.4) 8.7 (10.3) -

4 4.0 (4.4) 8.3 (9.0) 8.2 (8.8) 2.4 (3.1)

[Note: Roman numerals in brackets indicate different partitioning. Numbers in brackets indicate
results for different controller duty-cycle inputs]
TABLE 6.3 SUB-CIRCUIT PARTITION CPU TIME FOR THE CONTROLLED TWO-

ACTUATOR CIRCUIT

Simulated Time [s] LSODA CPU Time[s} TLM CPU Time [s] Speed-up
1.0 145 (145) 14 (14) 10.4
20 173 (28) 17.7 (3.7) 7.6
3.0 502 (325) 38.6 (20.9) 15.6
4.0 733 (236) 496 (11) 215
5.0 956 (228) 71.2 (21.6) 10.6
6.0 997 (41) 749 (3.7) 111
7.0 1195 (198) 95.4 (20.5) 9.7
8.0 1422 (227) 109.7 (14.3) 15.9
9.0 1468 (46) 116.5 (6.8) 6.8
10.0 1515 (47) 122.0 (5.5) 8.6

[Note: Figures in brackets refer to processing times needed to compute time interval]
TABLE 6.4 TLM/LSODA ALGORITHMIC PERFORMANCE COMPARISON FOR THE

RING MAIN CIRCUIT
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T800 (25MHz)

TRAMs | Run-time [s] Speed-up Efficiency
1 583.4 1.0 1.00
2 363.7 16 0.80
3 290.5 20 0.66
4 2294 25 0.64
7 217.4 27 0.38

TABLE 6.5 MULTI-PROCESSOR SPEED-UP AND EFFICIENCY FOR THE RING MAIN

CIRCUIT
Sub-Circuit Component Model CPU Time [s]

TRAMs M S, S, S, S, S; Ss
1 3236 - - - - - -
2 185.0 173.4 - - - - -
3 121.2 137.9 364.0 - - - -
4 89.6 97.8 97.4 97.4 - - -
7 92.8 54.3 543 54.3 432 43.2 432

TABLE 6.6 SUB-CIRCUIT PARTITION CPU TIME FOR THE RING MAIN CIRCUIT
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FIGURE 6.8e SMALL-SCALE SYSTEM: FOUR-PROCESSOR PARTITION
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FIGURE 6.15a LARGE-SCALE SYSTEM: TWO-PROCESSOR PARTITION

FIGURE 6.15b LARGE-SCALE SYSTEM: THREE-PROCESSOR PARTITION
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CHAPTER 7

CONCLUSIONS

§7.1 Summary of Conclusions

This thesis has demonstrated the application of distributed-parameter transmission-line modelling
(TLM) techniques to complex hydraulic system simulation. A finite time delay is introduced by the
fluid transmission-lines to model the physical wave propagation delay, which allows the decoupling
of individual circuit elements (component models) in a system simulation. It is this property of the
hydraulic transmission-line that enables a system model to be sub-divided and hence computed in
parallel. Multi-processor operation of the lumped-parameter simulation was not considered
worthwhile, owing to the very considerable processing time allocated to central integration, and the
highly sequential series of numerical operations required.

Very significant improvements in execution time have been achieved using TLM compared with the
conventional approach to lumped-parameter modelling using piece-wise continuous ODEs. A stiff
numerical computation that required some 4860 seconds of processor time was simulated in only 189
seconds using an equivalent transmission-line circuit model. The differences between the results for
the different numerical computations were typically within one percent. Multi-step TLM in
conjunction with the optimum parallelisation of a TLM circuit model into sub-systems can effect
combined (algorithmic and parallel processing) speed-ups approaching fifty times. Lumped-parameter
simulations that are "stiff" when solved using conventional means of numerical integration, gave the
most substantial performance improvements when restructured for transmission-line modelling.

The even distribution of processor loads was found to be an important criteria for partitioned

simulation. Incorrect load balancing reduced the maximum speed up achievable (equal to the number

of processors employed), irrespective of the transmission delay associated with sending messages
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between the different circuit partitions at the end of each time step. "Large-scale" circuit models were
discovered to be more amenable to efficient sub-division. This is because (i) there are a greater
number of component models in each partition for a given number of processors and (ii) there is
greater flexibility in the choice of partitioning arrangement. These considerations can increase the
compute to communicate ratio and hence parallel efficiency.

It is the high frequency of inter-processor communications, the "fine-grained" parallelism, that limits
the efficiency to somewhere between fifty and seventy-five percent for the fastest partitioned
simulations. Moreover, the efficiency of parallel computing can reduce so rapidly, that a four-
processor simulation, giving a speed-up between two and three times, is about the maximum

attainable for the types of problem usually encountered in fluid power simulation.

§7.2 Present Status

A reconfigurable, model-based simulation program has been developed using transmission-line
modelling (TLM) to analyze the transient response of arbitrary hydraulic system configurations.
Individual component model equations are solved simultaneously with the transmission-line equations
at each fluid connection, such that every model is self-contained and numerically isolated by a finite
transmission delay. Differential equations for components may be converted into finite difference
form using bi-linear transformation (equivalent to trapezoidal integration) within the component
model. This approach represents a truly distributed solution technique, that is theoretically well suited
to parallel computation.

Multi-processor simulation can be achieved by dividing the circuit model into a number of connected
sub-circuit models. Concurrent operation is possible, as the inputs to each sub-circuit partition are
delayed outputs from connected partitions. This is the only criteria necessary for a fixed step TLM
solution. However, the use of an efficient multi-step TLM solver imposes certain limitations on the
way in which a circuit model can be sub-divided. To achieve sub-system synchronisation and
accuracy control with a solver that uses variable time-stepping, a "master-slave" processor topology
must be employed. The master process, in addition to computing a sub-circuit, collates accuracy
information from all partitions, in order to set the simulation time step and transfer this information
to slave processes.

Instantaneous, uni-directional signals can be propagated between component models by appropriate
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model call sequencing. This is an important development in the simulation of systems that employ
feedback control, for example. There are further implications for circuit partitioning, because the
"chain" of component models connected by (instantaneous) signal links cannot be broken, forcing
the affected models into a single sub-circuit. The difference in wave speed between electrical (speed
of light) and hydraulic transmission lines (speed of sound in fluid) means that the finite delay
between electrical components is incredibly small compared with the hydraulic components. The use
of instantaneous uni-directional links enables realistic propagation delays between the hydraulic parts
of a system without introducing unacceptable delays into the electrical parts.

This parallel processing scheme often results in many parallel configurations, both in terms of the
number of processors used and the exact nature of the circuit sub-division. Different arrangements
can lead to widely differing performance. Attention must be given to the distribution of processor
loads, in addition to the frequency of (inefficient) communications between them.

Computer simulations using the multi-step TLM solver are initiated by a process of program
generation. This involves automatically creating executable files using a purpose-designed program
generator. In its present form the program generator requires input from an ASCII data file, which
contains details of the standard component models used, their connectivity and associated parametric
data. Each component model must be selected from those contained within an expandable model
library, which now consists of some fifty-five items (see "model attributes" file detailed in Burton
1994). After checking to ensure valid circuit connectivity, code generation of the control program,
compilation and linking with the relevant models all takes place automatically to produce an
executable file.

Single processor program generation is straightforward to accomplish using this approach. Multi-
processor operation, by its very nature, is considerably more complex to achieve. Each sub-circuit
must first be generated independently and subsequently linked using a pre-defined configuration
script. This script file must contain details of the exact processor topology already established, in

order to map the respective circuit partitions onto the correct processors.

§7.3 Evaluation
Significant algorithmic speed-ups have been demonstrated using a multi-step implementation of the

TLM solver, compared with an equivalent lumped-parameter system, modelled using ODE'’s.
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Typically, for "stiff" lumped-parameter systems the simulation performance increase may be as much
as twenty, or thirty times for comparable accuracy. Although highly system dependent, this represents
a substantial improvement even without the use of parallel computing,.

More modest multi-processor TLM speed-ups have been recorded, compared with the equivalent
single-processor TLM computation. The balance of processor loads during parallel operation and the
frequency of communications between the partitions has a very detrimental effect on performance.
There may be some scope for reducing the communications between partitions to alleviate this
problem, provided simulation accuracy is not affected too severely. For example, there may be
certain easily identifiable sub-systems that are only weakly coupled by relatively large capacitive pipe
volumes, and less frequent data transfer between such partitions will improve the performance of the
parallel computation.

In general, the "fine-grained" parallelism of TLM problems means that efficiencies over fifty percent
are difficult to achieve using the T800 transputer system, owing to frequent communications. Large-
scale system simulations, incorporating many more component models, are more disposed to efficient
operation and consequently greater speed-ups. This is because of the much larger sub-circuit
partitions that can be established for a given number of processors, resulting in a more efficient
"coarse-grained”" simulation. Clearly, there is a finite limit to the number of processors that can be
applied to any given problem without data transfer tending to dominate the computational effort.
In the case of the small-scale system investigated (23 component models) a maximum speed-up of
2 was obtained using a four processor configuration. A maximum speed-up of 2.7 was demonstrated
by the large-scale system studied (85 component models) using seven processors. This latter
configuration required the use of highly inefficient "through-routed" message passing, ie. messages
sent between two processors via an intermediate processor, owing to the limitation of the T8 series

transputer to four serial data links. The four processor implementation of this circuit gave only a

slightly reduced speed-up of 2.5.

§7.4 Directions for Future Research
Throughout the progress of this research a number of areas for further investigation and development
were found. In the short-term this should include an increase in the diversity of component and

transmission-line models (although new models are more often developed as the need arises). An area
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of more substantial work is a fully automated program generator for parallel computing.

At the inception of this research project the transputer was ostensibly the only parallel device on the
market. Technological development over the last few years has lead to several alternatives that may
be more disposed to efficient operation, given the often fine-grained nature of TLM simulations. An
example is the Inmos 1860 Quadputer, which as the name implies contains four extremely powerful
floating point processors, linked via shared memory, as opposed to serial data link.

For a given platform, the very subjective area of automated sub-circuit partitioning should be tackled.
Initially, this may take the form of a pre-processor, employing non-linear optimisation techniques to
disseminate the circuit model. Allowing for development of the appropriate technology, the most
efficient operation may be achieved "on-line" via direct performance monitoring of individual
processors and automated reconfiguration, if necessary.

On-line condition monitoring and sophisticated control techniques using TLM reference simulations
for real plant are other important areas worthy of investigation. Fixed step TLM may be the only way
to guarantee predictable performance in terms of execution time, although not always in terms of
accuracy. The actual time taken to compute a given time interval can vary considerably for multi-step
TLM, from faster than real-time to slower than real-time, depending upon the nature of the external
disturbance(s) and the component models used.

For on-line condition monitoring, non-linear parameter identification techniques may provide the
necessary means to determine system integrity and to warn of incipient faults. In terms of advanced
control, assuming that a TLM reference model can be made sufficiently fast and accurate, there still
exists the problem of exactly how to use the reference states, derived from a non-linear observer, in

order to control the plant in a prescribed way.
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APPENDIX 1

LAMINAR ORIFICE SIMULATION EXAMPLE

§A1.1 INTRODUCTION
The purpose of this appendix is to illustrate the results obtained from the TLM solution of the simple
circuit example described qualitatively in §3.2 and compare the results with a simple analytical test

case derived using lumped parameters.

§A1.2 PIPE-ORIFICE CIRCUIT EXAMPLE
The pipe-orifice circuit is shown in Figure Al.1. The analytical solution to the pressure transient in
the volume P, for a step change in flow Q, is derived as follows.
For the finite volume (capacitance C): 1
sPy = —(Qs-Qy) All

and for the laminar restrictor of resistance R;:

Q;=R,P, Al2

[Note: resistor discharges into reservoir at zero gauge pressure]

Hence by direct substitution: p
v _uc Al3
Qs R,/C+s

For a step in flow of magnitude Q, into the finite volume at =0:
Py _vyc Al4
Qs  s(R/C+s)

From the inverse Laplace transform the pressure in the pipe volume P, has the following transient

response:
R
P, - %[1 -—exp(-—"t]) Al
R, C

For this example the TLM solution is obtained using the capacitive transmission line approximation
(§3.2.1). The sequence of numerical operations for this simple example is as follows (noting that
steps 3 and 4 can be interchanged, or computed simultaneously):

|4
STEP 1. Calculate line impedance from capacitance and time step: Z=A4/C [C = E]
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STEP 2. Set initial characteristic pressures at line ends: Cg=0 Cr=0
STEP 3. Determine conditions at flow source end of transmission line using characteristic
pressure propagated from laminar restrictor:
Flow: Qs
Pressure: Pyt) = Cy(t-T) + ZQ,1)
New characteristic pressure: C,() = P(8) + ZQ(0)
STEP 4. Determine conditions at laminar resistor end of transmission line using

characteristic pressure propagated from the flow source:
C, -7)

1+ZR,

Flow: Q) = R Px(®)

Pressure: Pgl(t) =

New characteristic pressure: Cr(t) = Pg(z) + Z(‘Qg(t))

STEP 5. Propagate new flow source characteristic pressure to laminar restrictor and
propagate new laminar restrictor characteristic pressure to flow source

STEP 6. Increment time by time step: A

STEP 7. Repeat steps 2 to 6 (until simulation complete)

Note that the above procedure can be easily programmed into a personal computer or programmable

calculator.

Using the following test data the TLM solution for pipe pressure is plotted against the analytical

result in Figure A1.2 for different fixed TLM time steps.

Flow source Qg 10 [/min]
Resistance R, 1 [/min/bar]
Pipe capacitance C 5.5x107 [m’/bar]

Figure A1.2 demonstrates clearly that the smaller the TLM time-step, the closer TLM becomes to
the lumped parameter analytical solution. The TLM solution with time-steps less than about 1ms

gave results indistinguishable from the analytical result.

§A1.3 SUMMARY
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A simple simulation capable of analytical solution has been computed using fixed step transmission
line modelling. This example demonstrates that even with quite large time steps (10ms) the transient

response computed using TLM is close to that given by the lumped-parameter analytical solution.
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ABSTRACT

pllel simulation of systems offers the benefit of increased speed of execution, n Weighting function exponent - dimensionless form

p requires the system model to be partitioned to enable numerical tasks to be P Pressure

Itifonned concurrently. Hydraulic systems are characterised by a transport delay P. Reservoir (tank) pressure

ilhe pipelines connecting physical components, which is due to the propagation P,v Saturated vapour pressure

(waves at the speed of sound through the fluid medium. The transmission delay Pi Junction pressure

jiflos component models to be decoupled for the current time step, enabling a Q Flow
lei solution; the inputs to each component model are delayed outputs from Qc Component flow

ted models. Q, Line flow
paper describes a simulation environment suitable for the simulation of Qm Hydraulic motor flow
ulic system performance, using the transmission line modelling approach for Q. Orifice flow*

[fepipelines, decoupling the component models in a hydraulic circuit simulation, Q, Reservoir (tank) flow
iputationally efficient models for cavitation and friction are developed and R Resistance coefficient, &(4P)ldQdx ( S\i/nr4 for laminar
luated. In addition, partitioning strategies for parallel operation are outlined, friction)

(though these Rave yet to be implemented. r Pipe radius

s Laplace operator
T Wave propagation time
OTATION TL Load torque
TR Resistive torque
Pipe cross-sectional area t T}me, Ue
Orifice cross-sectional area v Pipe volum.e
Effective fluid bulk modulus (including pipe wall compliance Vv VapO}lr c.aVIty 'volume .
and/or dissolved air) X Longitudinal pipe coordinate
Y Integral

Characteristic pressure, P+ZQ

Orifice flow coefficient

Acoustic velocity,

Hydraulic motor coulomb friction torque coefficient
Load viscous damping coefficient

y Recursive term in weighting function
z Line characteristic impedance

Zj Effective junction impedance

z z-transform operator, 7= *

Hydraulic motor slip loss coefficient

Hydraulic motor viscous damping coefficient Global tl'me step
. . Propagation operator
Hydraulic motor displacement .
. . Attenuation factor
Pipe diameter A .
. Convolution variable
Function b L
Inertance ynamic viscosity

Kinematic viscosity

Fluid density

Non-dimensional delayed lime, ¢~T)/XaT
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Modified Bessel function of order 1

Orifice constant

Pipe length
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Viscous transmission line impulse response (non-plane waves)
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Hydraulic motor angular speed
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INTRODUCTION

Numerical simulation of hydraulic systems is used extensively as a design tool,
but in order to investigate much larger and more complex systems, within an
economic time frame, faster software and hardware is required. A reduction in
execution time will improve the conventional uses of simulation and will provide
a potential real-time capability. For the latter case, non-linear model reference
adaptive control, sophisticated on-line condition monitoring and human interaction
with simulated plant all become possible application areas.
Lumped Parameter Modelling .-
Realistic modelling of hydraulic plant freiquently demands a large number of state
variables, if all dynamic elements arc represented as first order differential
equations. These systems are characterized by numerical difficulties, such as
strong non-linearities and highly coupled, stiff, differential equations. In addition,
the numerical models may be discontinuous, with different modes of operation
modelled by different continuous equations [Richards ct al, 1990], As a
consequence the numerical algorithms necessary to deal with the stiffness problem
have to locate each discontinuity point and restart the integrator at this point,
limiting the simulation speed.
As a practical example consider the hydraulic circuit in Figure 1, which shows an
application involving the synchronized operation of two actuators, simulated at
Bath University Fluid Power Centre. Each group of inter connected lines arc
combined to form a lumped volume, compressibility-only line model, causing all
components attached to the volume (pumps, valves, actuators etc.) to be
instantaneously connected and therefore very closely coupled. Coupling between
p t models is dependent upon the ratio of bulk modulus to volume in the
lumped line model; very small volumes result in very fast transients. The
requirements of an efficient numerical integration algorithm for such a system arc
therefore very demanding, particularly for large systems of state variables. The
computer simulation of Figure 1 contains twenty-nine models, most of which
include discontinuities and non-linear elements, incorporating eleven state
variables. Depending upon the actuator loads specified, a simulation time of
twenty seconds required approximately thirty-five minutes processing time,
running on a Sun3 68020 micro-processor, considerably slower than real-time.

Compressing
Actuators
Unloading'", Flow
Valves M Divider
w Directional
u Control
<2
v
< >7? Imiy
Figure 1  Synchronised Actuator Hydraulic Circuit

Distributed Parameter Modelling

Real-time simulation of such a circuit is only feasible with substantially increased
processor speed, or by partitioning the simulation into parallel tasks on separate,
communicating processors. Parallel operation requires a convenient method for
dividing a hydraulic system into separate numerical tasks. Partitioning of the
lumped numerical analysis, as mentioned above, is non-trivial and highly system
dependent. Links of weak coupling (large volume lumped lines, for example)
could provide convenient points at which to divide a simulation. However, the

Jacobian matrix describing the system is likely to change significantly with strong
non-linearities and at discontinuity points, which in turn may change the coupling
between components from weak to strong.

A study of a variety of complex circuits revealed that most processing time is
actually spent performing centralised integration, as opposed to computing code
specific to each component model. In the case of the circuit shown in Figure 1,
for example, numerical tests revealed that approximately sixty percent of CPU
lime was used for integration alone. As the integrator (described in Richards et
al [1990]) is itself not amenable to parallelization, due to its sequential design,
only the code relating to the components is amenable to a parallel implementation;
the resultant gain in processing speed would be quite small.

An alternative approach is suggested by Krus et al [1990], which utilises the
transport delay in the pipelines that connect components together. If the
transmission of information is restricted to the speed of wave propagation, then
there is no immediate communication of information between components
connected by distributed parameter line models. Consequently there is no
requirement to solve a large, monolithic system of coupled differential equations
at every discrete time step, as each component model is decoupled from its
neighbours.

LEGEND:

m COMPONENT MODELS (LUMPED
MODEL + TRANSMISSION LINE ENDS)

TOPOLOGICAL COMPONENT GROUPS
1 (LINKED MODEL GROUPS ON
SEPARATE PROCESSORS)

PROCESSOR COMMUNICATIONS
LINKS (LINKS BETWEEN MODELS ON
DIFFERENT PROCESSORS)

INTERNAL GROUP LINKS (LINKS
BETWEEN MODELS ON THE SAME
PROCESSOR)

Figure 2 Hydraulic Circuit Partitioned into Topological Groups

Two alternatives are possible if wave propagation is to be incorporated into the
line model:

(i) The method of characteristics (MOC), as described by Fox [1977],
With this method each line is discretised into a series of internal points
at the intersection of characteristic lines; pressure and flow velocity is
then calculated at each of these internal points. Wazynski [1981]
investigated the application of this approach to general fluid power
systems analysis, but found the method of characteristics was not able
to model small trapped volumes (eg. manifolds and fluid volumes in
valves etc.) as accurately as the lumped-parameter, compressibility-only
model. A combination of MOC and lumped-parameter simulation, with
centralised integrator control, was considered most appropriate.

(ii) Transmission line modelling (TLM). In this case the line is
represented as a two port, four terminal transmission line and the
pressures and flows are only evaluated at each end of the line [Karam
1972] [Boucher 1986] [Krus et al 1990]. Transmission line methods have
been applied to electrical and mechanical, as well as fluid power systems
[Johns & O’Brien 1980] [Kitsios & Boucher, 1896] [Partridge,
Christopoulis & Johns, 1987], Consequently, plant containing all these
elements, such as an electro-hydraulic servo control system, may be
modelled using the same numerical techniques for the hydraulic,
mechanical and electrical parts.



In general, TLM, requires less computational effort than the method of
characteristics, as no internal points are calculated. In addition, the
component models forming a system are simplified, as the equations
relating pressure and flow at the transmission line ends are incorporated
into the model. The total number of models is then reduced, as the line
models are not solved separately; in MOC each line must be solved first
using the boundary conditions provided by connecting models.

Figure 2 shows the previous example; now the pipes are not combined
into lumped volumes, but treated as individual transmission line delay
elements, connected by line junctions and component models. Computer
models now only exist for each component and line junctions. Groups
of connected components (topological groups) may then be assigned to
individual processors, four in the example shown in the figure.

HYDRAULIC LINE MODELLING

Inthis section computationally efficient and accurate transmission line models for
pipelines and fluid volumes arc developed, which enable the circuit components
o a computer simulation to be numerically decoupled and therefore easily
partitioned into parallel tasks.

Consideration of a lossless fluid element in a semi-rigid pipe of cross sectional
ae A, enables the derivation of partial differential equations for momentum and
continuity at a point [Streeter, 1961].

Continuity Equation:

30 _ £dP ()]
dx Bt dt

Momentum Equation:
3P _ pdoQ )
dx A dt

The momentum and continuity equations may be transformed into the Laplace
domnin and related to a finite length, L, of uniform conduit between two
locations, denoted a & b [Blackburn, Reelhof & Sheerer, 1960). The sign
convention for flow is positive in the positive x-direction, ie. from position a to
position b.

PR) - ZQ7) - P& e 'L~z Q9 e-'L
P9 *Z00) - PI) L * Z08) e 1

3)

where y -

However, for computer simulation purposes it is advantageous when modelling
iystems to consider flows into the line (out of the component) as positive.
Consider the time domain solution to the symmetrical transmission line, Figure

3

L=cT

Figure 3  Symmetrical Transmission Line

Thesymmetry of this configuration results in identical forms for the characteristic
equations relating each end of a lossless transmission line, eq.(4). Identical forms
of the equations describing the line allows the equation for each line termination
tobe combined with a component model and retain the same sign convention;
flows from the model are positive. This enables component models to be

connected to form a system without further regard to sign conventions for flow.

Pl ~ZQ)) - Pt - ) +Z0 - 7y - (- 1)
PHS - Z00) - PJt - 1) +ZQJt - ) - C(r - )

@

The right hand sides of eq.(4) are referred to as characteristic pressures,
representing delayed information from the opposite pipe end. The transmission
line is represented as a four-port terminal network, with four possible
configurations (pressure or flow input or output at either line end). An entire
system is now represented by a series of component models (reservoirs, valves,
pumps, actuators etc.) inter-connected via distributed parameter transmission lines.

Based on the above methodology, two alternatives exist for modelling pipes as
transmission lines:

(i) Consider the line to be predominantly capacitive (V/Be constant)
[Krus et al 1990]. In this case the pipe length, L, is adjusted in the
model such that L = cA, where A is the simulation time step; the pipe
cross-sectional area, A, is correspondingly altered such that A = V/L.
This model distorts the inertia term (pL/A) due to the change in
transmission delay, but is acceptable provided that it remains small in
comparison with the capacitive term.

(ii) Where the inertia and capacitive terms are important, in long lines
for example, it is possible to discretize the line according to A. The
overall pipe volume is maintained (to maintain the overall capacitance),
but the delay, T, is modified such that T is an integer multiple of A,
where T = nA. In this case, an integer number of integration steps, n, are
then required to propagate information from one pipe end to the other.
As n is increased less adjustment is required to maintain capacitance
(overall pipe volume), therefore less distortion is required in the inertia
term and the overall accuracy increases.

Distorting the pipe lengths in a system in order to achieve the same transmission
delay. A, between components simplifies the numerical procedure, as a single
fixed step may be used to isolate all components connected to lumped volume
transmission lines. Compressibility-only models are an approximation often
justified for short lines; discretization of the line is only necessary if the inertia
term, or the time delay is appreciable. Reducing the lime A, reduces further the
effect of inertance. I, resulting in a dynamic performance closely approximating
that of a purely capacitive line. Pipeline inertance is expressed in terms of the
pipe delay, A, and volume, as follows:

/ pi _ pi2 A
~A y~'
()]
pc2A2

COMPONENT MODELLING

Components may be linked by the characteristic equations to form a complete
circuit description. Each component model must provide either pressure or flow
to enable the other variable to be determined explicitly from the pipeline
characteristic equation. There always exists a relationship between the
characteristic equation and the equation describing the component at each port of
the rrtodel:

Pipe PJf) - ZQJt) - CJt - D

©)

component Pa) - fNOJ or Qak - fjfjj

Pressure Source

In order to explain how a component model is derived, firstly consider a simple
component, such as a pressure source. Figure 4. In this case the constant reservoir
pressure, P,, is substituted directly into the line characteristic equation to obtain



the flow, Q,, out of the component, €q.(7). The first suffix of the line pressures
and flows indicate the model port number (only one port in this model) and the
second, the transmission line end.

[ Q.

Figure 4  Constant Pressure Source Model
pipe P|¢(‘) - Zlok(t) = Clb(l - 7)
component P, - P, & Q, - Q Q)
1
Q- (B - Cylt-T)

Orifice Model
Now consider the turbulent orifice shown in Figure 5, as an example of a non-
linear passive component.

—
2 h| %R oz
P
Qn Qh
Figure 5 Transmission Line Orifice Mode!

The internal sign convention for flow within the orifice is from port 1 to port 2.
The orifice flow is related 1o the pipe flows by:

Q, - -Q,-Qy ®

Pressure differental and flow through the orifice are related by a square law
relationship:

APy - P

P

Q, - CoA, ®

Flow is determined explicily by substitution of the pipe-end (characteristic)
equations into the component (orifice) equation.

When flow is in the positive direction (port 1 to port 2) C,, > C,, the orifice flow

Ny, = Cult -7+ Z (-
P()ln lb( l( Qo) (10)
PO, = Cylt - 1) + Z,(Q,)
obtained from the solution of the resultant quadratic equation:
K? 1
Q- -2 - Z) + E,/1("(2, + Z) + 4K*(Cy, - Cy)
amn

where K = CoA, | %
p

The positive quadratic root is appropriate, as the flow, Q,, is zero when the
differential pressure, C,-C,, is zero.

Multi-port Junction Model

In order to construct more complex circuits, where many components are
connected to the same fluid volume, a multi-port line junction is required, as in
Figure 6. The boundary conditions to this idealized model are that pressure at
each port of the node is the same and the flows into the node satisfy continuity.

N

Figure 6 Transmission line Junction Model

For the junction:

Yo,m-0 Pf) - P - - P ) a2
=1
The characteristic equation for each pipe is:
Pt - ZQu 0 - Cult - T) 13)

Algebraic manipulation of eq.(12) and eq.(13) results in the following explicit
equation for junction pressure:

. Cu.(‘ -7

(14)

Where Z, is the effective junction impedance. Flows at the junction are
determined from eq.(15) and enable characteristic information (P, + ZQ)) from the
junction to be propagated back to connecting models at the next time step.

Qu = — (P, - C,-T) (15)

1
zl

"Hydromechanical Components

For components that involve differential equations, fixed step integration is
necessary, as fixed steps are imposed by the connecting fluid transmission lines.
An effective means of obtaining a digital form for such a component is z-
transformation, or as a good approximation bi-lincar transformation, of the model
transfer function. Bi-linear transformation is equivalent to trapezoidal integration
of the component differential equation and such a scheme is outlined in Krus et
al [1990]. Wazynski [1981] simply uses fixed-step Euler integration for
components connected by method of characteristics lines, although 4 order
Runge-Kutta is a more common method. If a distributed model of the load is
required for increased accuracy, the load system (stiffness and inertia) may be
considercd to be distributed and therefore governed by wave cquations, analogous
to those in the fluid lines [Partridge, Christopoulis & Johns 1987].



As an example, consider the hydraulic motor with linearized loss coefficients
[McCandlish & Dorey, 1983] and combined inertial load of Figure 7. The
characteristic line equations at both ports, the load transfer function and the
hydraulic motor equations are given in eq.(16) through to eq.(20).

Figure 7 Hydraulic Motor-load Model

Hydraulic motor ideal flow plus leakage flow:

On~Dm*m* — (Pa- " (16)
Pipe characteristic equations
a7
Motor flow to pipe flow: as)
Motor ideal torque less coulomb and viscous torque:
Tm - Dmfl ~ - PZ) ~ GDmF a9
Load transfer equation:
(20

[Combining eq.(16) through eq.(20), to obtain an overall transfer function for
motor flow, Q,,:

n + A (Js+ec,+cvD,>D)CH-C2)«-"r - Dm(Tr T

¢ D*f\l-cjrfa+Z§ * {Is+c,revDmli)

@n

An explicit form of eq.(21) for digital computation may be obtained using the bi-
linear transform, 2(1 -z~

" All +z-

FRICTION & CAVITATION

Utilizing transmission line methods for general hydraulic simulation depends upon

successful modelling of friction and cavitation. These models must be

computationally efficient (if real-time operation is to be achieved), as well as
being sufficiently accurate for the majority of engineering problems.

Distributed Friction

Modelling distributed laminar friction accurately requires the solution of
characteristic equations such as in eq.(22); these are the exact analogy to the
electrical transmission line problem analyzed by Carslaw & Jaeger [1963],

KTAR

P~-ZQnj, ~ KCh (t-T) + [C bA(1-X) e dax

[x2-122

where
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If only steady-state pressure loss associated with the line is important, then the
integral term on the RHS of eq.(22) may be neglected. Laminar (or turbulent)
friction is incorporated into the attenuation factor tc, which acts to reduce the
characteristic pressures at each wave reflection. Krus, Weddfclt & Palmberg
[1991] suggest a good approximation to eq.(22), which models distributed friction
quite closely.

The distributed approach gives accurate steady-state losses, but ignores frequency-
dependent friction due to radial effects (non-plane waves) (Brown (962] [Trikha
1975]. In simulation, the attenuation of high frequencies is desirable, as
distributed friction often fails to attenuate waves realistically, or quickly enough,
sometimes resulting in excessive oscillations that are unrepresentative of the real
system dynamics.

Frequency-Dependent Friction
The equations relating each end of the transmission line for general time-varying
inputs are convolution integrals:

(23)

Ry, ~ 2" *"Bf QIS - (> dX

The RHS represents pure line attenuation and the convolution of the characteristic
pressures with the line impulse response. According to Brown [1962] the short-
time approximation of the impulse response of a uniform transmission line is
given by the following:

1 1
toT 29%(T - x(f
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The basic limitation of eq.(24) for a liquid filled line is that the damping number,
X, is less than 0.1, which is adequate for the majority of industrial hydraulic
applications.

A numerical convolution at each time step would be computationally expensive,
in execution time as well as storage of past data points. Hence to avoid evaluating
a convolution integral at each time increment, a simple linear transfer function
approximation to the impulse response of the line is required to account for
frequency-dependent friction. Reformulation of the convolution process into a
recursive algorithm reduces the computational overhead; Karam & Leonard
[1973], Karam & Tindall [1975] and more recently Krus, Weddfelt & Palmberg
[1991] have all attempted this, but all rely on a single first order lag term to
model the wave dispersion and are all semi-empirical in approach.

Higher order approximations are possible to improve accuracy. Simplification of
eq.(24) is achieved by approximating it to the sum of three decaying exponential
terms, cq.(25), whilst maintaining the same integral area as the actual impulse
response, equal to unity. The integral area constraint is important, otherwise
artificial gains, or losses are introduced into the characteristic equations.

25



p a similar manner to Trikha [1975] for method of characteristics, a simple
jtaursive form is developed [eq.(26)] that only requires characteristic data from
Iklast time step (APPENDIX 1).

-ZON= £_yh)
H (26)

= A (1 - e"A) CbA(t - T) +ytt - Ae "l

Ths approach is general in application, due to the dimensionless form of the
ipproximation, which is easily converted to a specific weighting functions for any
ling, using the following relationships:

@7

iHaddition, there are no empirical steps in this approach, only the formation of
Reapproximate, non-dimensional weighting function, which may be refined by
teaddition of further terms.

Experimental Verification. Experimental verification of the above algorithm was
[achieved by comparing the computed and measured flows at two separate
(locations in a rigid pipeline connected to the delivery of an axial piston pump
I(equipment used for pump impedance measurement by the secondary-source
nethod [BS 6335 Pan 1, 1990]), illustrated in Figure 8. The flow ripple Fourier
[tyectrum and the effective fluid bulk modulus were determined experimentally
tom the measurement of pressure fluctuations at three locations in the line
[Johnston, 1988]. The Fourier components were combined to form the flow ripple
inthe time domain.

The test conditions are summarised as follows

i= 10mm

B= 1.65x10s Pa LL,
E=0%m P9
ps 855 Kg/ml

»= 16.2x10s m2s

Figure 8 Flow Ripple Experimental Rig

The first ten harmonics of the measured pressure histories at pump discharge and
he termination. Figure 9, were used as pressure source inputs to a transmission
lie model with frequency-dependent friction.

Figure 10 shows the measured and predicted flow at the two locations, in addition
tothe pressure at an intermediate point, computed by positioning a lossless 2-port
junction model at this point in the simulation.The measured and predicted results
show very close agreement.

Measured Pressure Ripple at Pump Delivery

Pressure
[bar |

Measured Pressure Ripple at Exit

Pressure
[bar ]

Time [ms]

Figure 9 First Ten Harmonics of the Measured Pressure Histories
[Note: All quantities are variations about a mean value]



Flow Ripple at Pump Outlet

Flow
Flow Ripple Downstream [1/s]
3
2
1
°0
0.
Flow
| ,°0
2
B
Pressure Ripple at Centre
simulation
o experiment
Pressure
[bar]
Time [ms] 1
Figure 10  Flow~Ripple Measurements Downstream of an Axial Piston

Pump During Constant Speed Operation
[Note: All quantities are variations about a mean value|

Cavitation

Detailed modelling of cavitation is highly complex, involving the liberation of
dissolved air, and saturated fluid vapour, which may be distributed throughout the
line as bubbles, or concentrated in a cavity, or a combination both. To model
vaporous column separation a simple void tracking algorithm is implemented by
interposing a cavity between component and line, illustrated in Figure 11. When
the local pressure falls below the saturated vapour pressure the transmission line
boundary condition is changed. For example, if the port of the component
normally provides flow , Qc, for the transmission line end to determine pressure,
then when P < P*, PAV becomes the new boundary condition to the line end;
flow into the transmission line, Q,, is calculated according to PQV. The difference
between the line and component flows is integrated to obtain a cavity volume,
which is then tracked. Only when the cavity volume is restored to zero is the
component port no longer cavitating.

Vapour-only cavitation models generally over-predict d ging pressure transient
[Karam 1974] and are attractive because of their inherent simplicity. If the
quantity of released air in the void is known, or calculable, the partial pressure
of the air may be incorporated into the pressure boundary condition, improving
accuracy. Delayed air release may be modelled [Karam 1974], although the added
complexity and uncertainty regarding parameters limit this models usefulness in
general simulation.

Qc 0,
Component Line
r=El& 0o
%
Figure 11  Idealized Vapour Cavity

The experimental results of Kojima & Shinada [1984] are compared with a simple
vaporous cavitation simulation with good agreement in Figure 12, using the
approximate frequency-dependent friction model of the previous section. These
results demonstrate that such a simple approach gives acceptable results for such
a complex process, although modelling difficulties exist when very high flows are
specified, as the cavity volume may become excessive and must be arbitrarily
limited; clearly it must not exceed the line volume.

Figure 12 Pressure Transient in a Short Line after an Instantaneous
Valve Closure
[Experimental data from Kojima & Shinada, 1984]
Experimental Pressure at Valve Face
x10
2
Pressure 1
[bar a]
0
Computed Pressure at Valve Face.
xl0 (Vapour-only Model)
2
1
Pressure
[bar a]
(1}

Time [ms] 10



NUMERICAL SIMULATION

Te development of reliable models for distributed lines, including good
jpproximations for friction and cavitation, has enabled the creation of a general
hydraulic simulation environment, which includes an extendible library of
tomponent models. A variety of models may be developed using the techniques
outlined, including empirical *black-box’ models, instantaneous dynamic (steady-
ttate) models and fully dynamic models. In common with many other numerical
simulation systems, die user determines the model selection for any given
application, balancing accuracy with computational constraints, in addition to the
availability of parametric data, for more complex component models.

Numerical experiments have revealed that significant computational speed
increases over conventional lumped parameter simulations are possible for
comparable accuracy, although the specification of an excessive time step
exaggerates line inertia terms, affecting the transient response.

Hydraulic Svstem Simulation Environment

To provide flexibility a code generator has been developed to construct and
Iassemble code for single processor applications (all models executed in sequence).
Acircuit description is supplied in the form of an input language, which details
Icomponent types and connectivity; this allows the configuration of an executable
file from a library of run-time component models (orifice, pump, junction, tank
etc). All component models are designed to be general to facilitate porting onto
other computer platforms and have been coded in C for this reason. A graphics
output utility has already been implemented; a graphical tool for circuit diagram
construction is envisaged at some future time to improve front-end usability.
This simulation environment has been used successfully to model simple systems
and to test the algorithms developed for friction and cavitation in the previous
sections. Extension of the model library to include conventional and digital
control elements, in addition to electrical transmission lines, is important if the
package is to achieve its full potential.

Partitioning into Parallel Tasks

Conceptually, extension of the above techniques into a parallel computing
environment is straightforward, as the transfer of characteristic information either
lakes place locally, or with distant processes running on other processors.
Information exchange and a limited number of processors implies that groups of
connected components should be partitioned together. Local data exchange within
each topological group is efficient, as exchange takes place within the local
process. This technique is adaptable, as individual models may be assigned to
individual processors as required. Complete multi-processor operation, ie. one
processor per model, is not envisaged to be the optimum condition, as message
passing will dominate the computation.

Referring once again to Figure 2, the models shown incorporate lumped models
of physical-components, in addition to the transmission line ends at each
component port; the pipelines merely indicate the connectivity between
components in the circuit The balance of computational loads on each processor
and the overall ratio of numerical processing to data transfer will dictate the
performance of the parallel computation. An optimum condition for minimum
execution time does exist, in terms of the allocation of models to processors, but
prediction of this arrangement relies on assumptions regarding individual model
complexity and the communications overhead between processors. Bench-marking
different components (according to a simple circuit and duty-cycle) will give an
indication of the relative computational efforts. Subsequently, this information
may be used to assess the computational effort of a given system, which may be
divided by the number of processors to give an optimum (or ideal) effort for each
processor. Connected components may, at first, be partitioned arbitrarily, ensuring
that the optimum effort is just exceeded for each partition. The last partition (or
group) to be assigned components will, of course, will have less than the optimum
processing effort. Initially a function to be optimi7.ed must be chosen and different
values of the function obtained by moving connected components into and out of
adjacent groups. Such a function, for example, is defined as the sum of the root-
mean-square differences between the ideal and actual processing efforts of each
processor; the nearest value to zero being the optimum condition. Penalties for
inter-processor communication are also included into the function by modifying
the processing efforts of those models responsible for data transfer across
processors. These partitioning algorithms are similar in principle to those used in
optimal PCB design in the electronics industry [Vecchi & Kirkpatrick, 1983],
Such algorithms assume the processing efforts for each model remain constant
throughout the simulation, which is not always true; when a model passes through
a discontinuity point, for example, the model equations change abruptly and so

does the processing effort. A more sophisticated partitioning algorithm may move
models onto different processors during the simulation, although this in itself will
require additional processor time. The principle aim within the duration of this
research is to develop a fast pre-processor, capable of near optimum model
partitioning and parallel code generation.

CONCLUSIONS

A technique using transmission line methods (TLM) to model hydraulic pipelines
has been developed to allow the convenient partitioning of component models in
a hydraulic circuit simulation into parallel processes. Parallel operation is easily
accomplished using transmission lines, as the topology of the circuit maps directly
onto an array of processors. The propagation delay in the lines modelled using
TLM allows components to be numerically decoupled, allowing each model to
proceed independently to the next time step; individual model input data is simply
the output data of connected components, passed through a filter incorporating the
wave delay, attenuation and dispersion of the fluid line. Accurate, but
computationally efficient models for simulating unsteady friction and cavitation
have been developed using TLM and verified experimentally, demonstrating that
transmission line modelling techniques are an appropriate foundation for parallel
simulation.

The allocation of models onto processors (partitioning) for maximum speed
increase is addressed and possible alternatives suggested, although this research
has yet to be evaluated in practice.
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APPENDIX 1
RECURSIVE APPROXIMATION TO ANALYTICAL
IMPULSE RESPONSE
Y@ - fqt-X)»(X)dX
! 28)

i-r
- [ C(X)o>t-X)dX

The approximate impulse response (weighting function) is of the form:

-1 W
11 ° 29)

where - me

Therefore consider each element of the weighting function separately and sum the
contribution of each convolution, such that:

W - £ ) @0
‘Where:
yir) - | CX)Uit-X)dX (€20]
Each component of the convolution after one propagation delay, T, is:
/
y,((+7) - fe(X)o,(t+T-X)dX 02)
0
After a small time increment. A, which is smaller than T:
1-4
yt(t+T+A) - f CX)cJi(t*T*A-X)dX
0
i*A
- f C(X)ai(t*T-rA-X)dX *
1
(33)

t
£ CMIuft+T*A-X)-
0

TE-F)] <«

ACEX)wi(t-rT-X)dX

Each integral of Eq.(33) is considered
The first term of eq.(33) becomes:

separately.

f C(X)ci(t+T+A-X)dX - [ u>(X)C{t+T+A-X)dX
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T
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The second term of eq.(33) becomes:

' '
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The third term of eq.(33) becomes:

t
| qX)ujl+T-X)dX - ypft+T)
0

Substituting these terms (eq.(34)(35)&(36)) back into eq.(33):

POHT+A) = — (1 - *A) CO+A) # y,(+D("A - 1) & ydr+

- — - e HOC(t*A) + y(f+T)e "4

Let t - f-T-A

* ) - -(l-e” Cit-T) * ytlf-A)e’"<A

The complete approximation is the sum of these recursive elements:
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PARTITIONED SIMULATION OF HYDRAULIC SYSTEMS
USING TRANSMISSION-LINE MODELLING
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ABSTRACT

This paper describes research into a distributed processor
scheme for time-domain simulation of hydraulic -circuits,
ultimately for use in real-time applications, involving control and
on-line condition monitoring. The approach adopted uses
transmission line models of the pipelines as a means of
decoupling the system components and implements the concepts
developed in the authors’ preliminary work [Burton, Edge &
Burrows 1992],

To assist this study a simulation program generator has been
developed which links models of relevant components contained
in a library. The program is executed on a multi-transputer
platform. Using this facility, a study has been undertaken to
assess the most appropriate number of processors and best
circuit partitioning strategy for the case of a particular hydraulic

circuit From this investigation, partitioning guidelines are

proposed.

NOMENCLATURE

A Area

B Bulk modulus

C Characteristic pressure, Capacitance

c Acoustic velocity sfBJP, Viscous friction
d Pipe diameter

F Force

f Function

i Integer

K Flow-pressure valve constant Spring rate
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FIGURE 1

INTRODUCTION

The sinrulation of complex fluid power systems often results
in unacceptably long computer execution times, partly because
of the close coupling between component models. This coupling
may result in numerically-stiff differential equations, which
ideally require special numerical integration algorithms for their
solution [Richards et al 1990]. An alternative approach is to
decouple the component models in a circuit simulation, utilizing
the inherent propagation delay modelled by a transmission line.
The benefits of this approach, which are well documented
[Sidell & Wormley 1977]{Johns & O’Brien, 1980){Boucher &
Kitsios, 1986][Krus et al 1990], include potentially significant
reductions in execution time. However, further reduction in the
time for simulation is possible through the use of Transmission
Line Modelling (TLM) combined with parallel processing: a
system may be divided into a group of connected sub-systems,
each simulated on a single processor as part of a multi-processor
array. )

In this paper a TLM approach to multi-processor simulation of

ACTUATOR CIRCUIT

bydraulic systems is presented, with particular reference to the
circuit shown in Figure 1. This example circuit, which involves
the synchronized operation of two cylinders, is particularly
demanding on processor time, when using classical numerical
integration methods to solve the highly stiff system differential
equations (the ODE solver LSODA [Richards et al, 1990] used
over 6300 seconds run time on a Sun Sparc 4/370 workstation,
for only 2.5 seconds simulation time). Consequently, it
represents an ideal case study with which to examine the
potential benefits of a TLM based multi-processor simulation.

This paper outlines the approach to the development of
cél;iponent models for the actuator circuit, shown in Figure 1,
and goes on to examine in detail the partitioning of these models
onto separate processors to reduce execution time.

THE TLM APPROACH
In order to illustrate the approach to modelling, it is
convenient to consider a lossless transmission line.



P,-2Q, = (P,+2Q,)e™ = C,e™T
(1)
P,-2Q, = (P,+2Q,)e™T = C,e™T

where C, and C, are defined here as characteristic pressures
and Z=pc/A.

The symmetry of this configuration (posttive flows into the
transmission line) results in identical equations for each end of
the line. A TLM component model is developed by combining
the component equation (pump, valve, actuator etc.) with the

transmission line equation at each port of the component. The

symmetry of the line equations ensures that the component
models are linked together consistently to form a system model.
Inputs to a TLM component model are delayed outputs from
connected models (characteristic pressures) and are therefore
decoupled in time.

Krus et al [1990] have demonstrated that in order to achieve
a global time step for the simulation, it is convenient to "adjust”
the lengths of the transmission lines, such that all lines have the
same propagation delay, A. Provided that compressibility effects
are dominant, the line may be considered predominantly
capacitive (V/B, constant). In this case the pipe length, L, may
be adjusted such that L=cA, where A is the simulation time step;
the pipe cross-sectional area, A, is correspondingly altered such
that A=V/L. This line model distorts the inertia term (pL/A)
due to the change in transmission delay. However, this distortion
is acceptable provided that the line inertia contribution remains
small in éomparison with the capacitive term. Line discretization
(sub-division of a line into a series of smaller elements) is only
necessary if the time delay is appreciable.

Lossless transmission lines introduce undamped resonances. If
unrealistic resonant effects are to be avoided, low pass filtering
of the characteristic pressures is necessary, which approximates
the frequency-dependent damping evident in actual pipelines.
The filtering method described by Krus et al [1990] has been
used in the simulation study of the example circuit.

Consideration of all the components connected to transmission
lines, requires a system of equations to be solved. Using the
convention that each component port is connected to a
transmission line at end a, we have the component equation:

Qg = f(Pa) (2)
[where the bar denotes a vector quantity]
and the transmission-line equations at each component port:

P, -3, = C,eh ®

-

It is then necessary to solve simultaneously the component
equation with the transmission-line equation at each component
port. The development of models for a range of components and
the approach required for their solution, have been dealt with in
other publications [Burton et al, 1992, 1993]. Burton et al [1992]
also discusses the use of a void tracking algorithm for modelling
vaporous cavitation.

Components in Figure 1 which have not been previously
considered comprise the directional control vaive, the flow
divider and the actuators. For completeness, details of how these
components have been modelled will now be discussed.

COMPONENT MODELLING
Directional Control Valve Model

The model of a directional control valve is a fairly simple
extension of the orifice model, described by Burton et al'[1992].
For each valve position a reference pressure drop and
corresponding flow are specified, to determine the square-law
orifice coefficient for each port combination. Proportional
control of the valve may be incorporated by assuming a linear
variation in orifice coefficient, equivalent to a linear change in
annular flow area across the valve spool.

Flow Divider Model

The flow divider is modelled by extending the motor model
[Burton et al, 1992]. If two motors are linked by a common
shaft then the torques provided by each motor may be solved
with the combined equation of motion for the shaft dynamics,
resulting in an overall transfer function for shaft speed. An
explicit time-difference equation for digital computation of the
resultant differential equation is obtained using the bi-linear
transform. Substitution of the shaft speed at each time step
enables calculation of pressure and flow at each motor port and
the respective motor torques.

Relief Valve Model

The relief, or check valve model (Figure 2) assumes that the
valve dynamics are instantaneous. For this type of model the
valve is uni-directional and no flow across the valve takes place
until the differential pressure exceeds the cracking pressure, P,.
A linear flow-pressure characteristic of gradient K is assumed
once the valve has cracked open. Transmission-line end
equations at each valve port, taking account of flow sign:

P, =Cue -2,Q,

Py, = Cyue™*+2,Q,

C
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FIGURE 2 RELIEF VALVE MODEL .

Equations relating valve flow to differential pressure are:
(Pla-PZa)>Pc Qv = K(Pla—PZG -Pc)

Q=0

&)
(Pla —P2a) Spc

Flow is determined explicitly by substitution of the pipe-end
(characteristic pressure) equations into the valve equation, as
follows:

Pla-Pza>Pc

Q, = K(Cpye™" -Ce™t -2,+2)Q, - P
K(Cyye™t - Cpye™® - P)

¢ T Txg)

(6)

Pla-P2a < Pc

The valve port pressures and characteristic pressures are then
readily determined from Q,.

Pilot Operated Valves. The above analysis also holds for
pilot operated relief and check valve models. However, the valve
opening condition is modified to account for pilot operation
from a third component port (port 3), instead of the differential
pressure across the valve. When the pilot pressure exceeds the
valve cracking pressure the valve opens and the calculation
proceeds, as before.

The pilot port is modelled as a transmission line with a
blocked end at the valve, corresponding to zero flow at the line
end. The pilot pressure, therefore, is equal to the characteristic
pressure (if Cy>P, the valve is piloted open). The zero flow
condition is a reasonable modelling assumption, as the flow at
the pilot port will be negligible.

Differential Area Actuator Model

This model of a differential area actuator includes the
integration of two internal state variables (velocity and
displacement) and accommodates discontinuities at the end
stops, stiction effects, and when the load contacts, or loses
contact with a linear spring. Figure 3 shows a schematic of the
actuator.

Transmission line end equations at the piston (accounting for the
sign notation relating piston velocity to line end flow):

Py =Clbe-SA—ZlQl

M
P,=Cyue™t+2,Q,

Piston and rod end flows:

Q, =vA
1 1 )
Q, =v4,
Piston equation of motion.
Without spring force (x<x):
PA, -P,A,-F, - F,lll —ev=Msy @
v

Including spring force (X>=xy):
P, ~PA,~F, - Fp - cv-Kiz-x,) =M, sV,

vl

Displacement:
P v =sx (11)

Solving the line, flow and relevant equation of motion, the
following equations are obtained.
Without spring force (x<xg):

Cppe ™04, - Cpe™ 4, '(ZlAlz +Z,A; *ejv -

(12)
v
FI. - FR—I;I- = Mcsv
Including spring force (x>=xy):
T et A - Che Tt Ay - (Z,AT 2 AT vc)v -
(13)

v
F, -FRW ~K(x-xg)=M,sv

The above equations of motion are solved using bi-linear
transformation to obtain a pair of discrete time-difference
equations (velocity and displacement) for each region of
operation.
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FIGURE 3 TRANSMISSION-LINE ACTUATOR-LOAD MODEL

End Stops. When the actuator displacement from the fully
retracted position, X, is less than, or equal to zero, the piston
displacement, velocity and acceleration are set to zero. Similarly,
when the displacement is greater than, or equal to the stroke
limit, s, the displacement is set to the stroke limit and the piston
acceleration and velocity set to zero.

Stick-Slip Modelling. Stiction in actuators (due mainly to
polymeric piston and rod seals) is modelled using a simple
discontinuity region. If the piston speed, v, is within a suitable
tolerance band (+1mmys, say) and the net piston force is less than
the static friction (stiction) force, Fg, then the piston is stationary
(velocity and acceleration set to zero). If the net piston force
exceeds static friction, then motion starts and the static frictional
force replaced by a (usually smaller) dynamic friction force, Fg.

Variable Piston and Rod End Volumes. The variable
volumes either side of the piston are handled by inclusion with
the connecting transmission line volumes, through medification
the respective transmission line impedances. This modification
of the line impedance has to take place whilst the characteristic
pressures are being propagated between component ports and
necessitates compensation of the characteristics to maintain the
total pressure and total flow in the line. This is also a useful
technique for incorporating variations in bulk modulus.

CIRCUIT SIMULATION
Circuit Operation

In this circuit, the coupled motors attempt to divide the flow
equally between each actuator, during extension and retraction.

The two supply pumps operate together initially, providing
maximum flow to the actuators. Once a preset pressure is
reached the larger capacity pump is unloaded, via the pilot
operated relief valve. The smaller pump continues to supply
flow at the higher pressure until either the directional control
valve position is altered, or the high pressure relief is activated.
This arrangement limits the maximum power required from the
prime mover.

One of the drawbacks of this circuit is the inability of the flow
divider to supply exactly equal flows. Different leakage rates
result in different supplied flows. It is the function of the relief
valves connected to the actuators to re-synchronise the actuator
positions, at the end of the stroke.

Single Processor Simulation

The salient parameters used in the following simulations are
identified on Figure 1 and listed in the Appendix.
A single processor simulation study was first performed to
validate the TLM approach. An equivalent lumped parameter
simulation was also built for this purpose, using the multi-step,
variable order stiff numerical integration algoritim LSODA
[Richards et al, 1990], with discontinuity handling. It must be
noted that the lumped parameter line models used were of the

Eu;élx capacitive type:

c=-Y (14)
B‘

Conversely, the TLM line incorporates a propagation delay
equal to the simulation time step and hence a (small) fluid
inertance. Nonetheless, this inertia term is a realistic effect. If
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too large a time step is used, however, the system dynamics
may become distorted due to a combination of excessive inertia
and "sampling" of the characteristics at too low a rate. Each
simulation run involved the prediction of behaviour over a 2.5
second operating cycle, in which the actuators were extending
against a spring load.

As an example of the predicted transient behaviour, the
velocities of the two actuators are presented in Figure *4.
Simulations were repeated for a number of TLM step sizes: only
very small differences were noted between the lumped and
distributed simulation predictions, even when using a TLM time
step of 100ps. Some evidence of wave propagation effects were
apparent on close inspection, although these superimposed
transients are rapidly damped, because of the low-pass filtering
used in the TLM compressible line model.

Figure 5 shows the variation in the single processor TLM
simulation speed as a function of the fixed time step used. The
transmission line simulations are normalised against the lumped
parameter simulation. From the figure, even the Ips step size
requires only 85% of the CPU time required by the lumped
parameter equivalent.

DISTRIBUTED SIMULATION

Conceptually, parallel operation of the TLM simulation is
straightforward, as the transfer of characteristic pressures
between models either takes place locally on the same processor,
or with models running on other processors.
With a limited number of processors and the time delay
associated with transferring data between them (latency), groups
of connected components should be partitioned together. Local
data transfer is very efficient, as information is exchanged using
shared on-chip memory. The number of processors, the balance
of computational loads between processors and the overall ratio
of computation-to-communication time will dictate the overall

performance of the distributed simulation.

Hardware

The system hardware consists of a Sun 4/370 host machine,
which supports a4x2 TRAM (Transputer plus 2 Mbytes RAM)
T800 processor array. Each TRAM incorporates a maximum of
four serial data links, to enable data transfer between the

processing elements.

Software
GENESYS is a transputer operating system, which provides a

UNIX-like interface together with a transputer C compiler and

library routines to facilitate message passing between processes
running on the transputer array.

Various levels of message passing are possible, which trade
flexibility and ease of use against message passing speed. The
most flexible transport procedure allows transparent message
passing, ie. message passing which may involve several
processor transfers, at a very significant time penalty. The
partitioned simulations discussed below were initially undertaken
using these functions., but caused the overall simulation to
execute slower than the single processor simulation!
Consequently, nearest neighbour communications between
processors, using very low level data transfer functions were

used subsequently.

Partitioning

The circuit of Figure 1 was mapped onto two, three, four, six
and seven processors. Nearest neighbour data transfer using low
level communication was essential to achieve an overall
simulation speed up. The circuit and processor topologies
therefore limited the possible configurations (the mapping of
components to processors).

The actual number of transmission line connections between
the partitions was not very significant, as all data transferred
between processors was combined into a single message, sent at
each time step. In this case, the latency of administering the
message itself was far greater than the length of each message.
Figures 6 and 7 illustrate examples of the circuit-to-processor
mapping which has been used to partition the circuit simulation.
Alternative partitioning schemes, also involving two, three, four
and seven processors were examined; examples of two processor
and four processor configurations are shown in Figures 8 and 9.
Figures 6 and 7 are subsequently referred to as the primary
processor mappings and Figures 8 and 9 as the secondary

processor mappings.

FIGURE 6 2 PROCESSOR PARTITION



FIGURE 7 4 PROCESSOR PARTITION

FIGURE 8 SECONDARY 2 PROCESSOR PARTITION

RGURE 9 SECONDARY 4 PROCESSOR PARTITION

The component models assigned to each partition were
divided as evenly as possible, subject to the nearest
neighbour constraint, in an attempt to balance the
computational load on each processor. This strategy
assumes that each model requires roughly the same

amount of execution time throughout the simulation.

DISCUSSION

Figure 10 shows the variation of run time reduction
(normalised against single processor performance) with the
number of circuit partitions (processors) for both the primary,
and secondary, model-to-processor mappings. The ideal run time
reduction (inverse of number of processors) does not include the
inefficiencies introduced when transferring data. The ratio of
observed speed up to the ideal speed up (number of processors)
is referred to as the simulation efficiency and is given in Figure
11. The most efficient distributed simulation is the two
processor case, at nearly seventy percent, as only one data link
is in use and the partitions are comparatively large. However,
the less efficient four processor simulation was much faster than
the most efficient two processor case (Figure 8), as the increased
parallelization was far more significant than the reduced
efficiency. For the six processor case (about three components
per processor) the drop in efficiency outweighed the increase in
distributed processing, the consequence of which was an overall
"speed down'. The increase in parallel operation to seven
processors was almost exactly matched by the further reduction
in efficiency, owing to increased communications and reduced
computation within each partition.

The secondary partitioning arrangements resulted in slightly
improved performance, because of better load balancing of the
processors. For example, the primary four partition scheme,
consisted of 5,5,6 and 7 component models in each, whereas the
alternative partitioning scheme had 6,6,6 and 7 component
models on each processor. This adds weight to the initial
assumption that each model is roughly equivalent in terms of
computational load.

It is interesting to examine the change in performance with
data transfer interval. Only the two processor case will be
considered here. The time step of IOps was maintained in each
partition, but the data transfer (or data exchange interval)
between the processors was reduced successively. Figure 12
clearly indicates the increase in performance possible with
reduced communications; the potential problem is of course
reduced accuracy. Loss of accuracy was assessed by examining
predictions of the inlet and pilot pressure transients of the pilot
operated valve, which are quite sensitive to changes in
simulation parameters. Noticeable deviations in the transients
were observed when the communication interval was increased
above 100ps.

Another, more attractive, scheme is to use different time steps

in different partitions. For example, a much larger time step is
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tolerated in the actuator partition, because of its relatively slow
transient behaviour. The characteristic pressures are propagated
along the transmission lines at intervals corresponding to the

the
steps in

larger time step in actuator partition. Between

the
characteristic pressure signals from the actuator partition are

communication time the pump partition,
held constant. Owing to the different time steps, the impedances
used when transferring characteristic data must be adjusted to

compensate. Line impedance is defined as:

as
m e

Here two time steps are used, in the pump partition (pO) and
Apj in the other (pi). To propagate characteristics from partition
pO to partition pi:

, (16)
PO o

and from pi to pO:

an

pi pi n pi

‘Where n=ApYApl

This technique works very well and dramatically increased the

speed up factor to 2.1 for two processors. [Note: the speed up

factor is relative to the single processor simulation using 10ps
throughout]. An examination of the predicted pilot and inlet
pressures to the pilot operated valve, using a 10ps and a 100ps
steps in the pump (pO) and actuator (pi) partitions respectively,
showed only a very small loss of accuracy.

PARTITIONING GUIDELINES
The speed at which data is transferred between partitions, the
relative distribution of computational loads and the proportion
of compute time to data transfer time are all important factors
in the partitioning process.
As stated earlier, message passing that requires transfers between
processors demands, in the system used, a high level of
resources, which negates any advantage in parallel computing.
The latency of nearest neighbour message passing, however, is
very much less.

Cdinputational load balancing of each processor has been
attempted here by placing equivalent numbers of component
models into each partition. This is only valid because, in the
example considered, each model executes almost the same
amount of code per step. This division of models must be
accomplished  whilst the

configuration, ie. that the partitions map directly onto the

retaining nearest neighbour

processor array.



The results of this investigation suggest that a minimum of five
component models per partition (corresponding to the four
processor case) gives an acceptable compute to data transfer
ratio, without compromising significantly the division of the
circuit into paralle] tasks.

In summary, the following guidelines should be implemented for
best performance:

-

(6] Nearest neighbour message passing only (component
model partitions that map directly onto the processor
array).

(1)

The same, or similar numbers of components per
partition (without violating (i)) :
No less than five models per partition to maintain
acceptable efficiency.

(i)

These heuristics could form the basis of a parallel simulation
pre-processor to generate automatically well balanced circuit
partitions. One of the simplifications made in assigning models
to processing elements was the equivalence, in terms of
execution speed, of each model. This assumption is not true of
all possible models and more sophisticated processor load
estimates for each component model may be needed.
Components that use iterative calculation, for example, may
require more compute time than components requiring readily
computed algebraic solutions.

CONCLUSIONS

A bydraulic circuit simulation using transmission line models
of the components has been evaluated and, for a sample circuit,
compared with its lumped parameter equivalent with excellent
results. [The TLM simulation required approximately one tenth
of the CPU for comparable accuracy].

Parallel processor implementation of the procedure has been
found to be straightforward, as each component is numerically
decoupled from connected components, owing to the propagation
delay modelled by the lines. This allows circuit partitions
(groups of connected components) to map onto a processor
array. The TLM simulation was partitioned onto two, three, four,
six and seven processors and a total of nine different partitioning
arrangements investigated. The speed up and efficiency of each
distributed simulation was quantified for each simulation. Only
nearest neighbour communications between processors was
permitted, allowing (fast) low level messages to be used. This
limited the number of possible configurations, as the circuit
partitions had to map directly onto a 2x4 transputer array. The

11

best speed up obtained was almost 2 for the four processor
simulation.

Reduced data transfer between processors and the use of
different time steps in different partitions for the two processor
simulation has also been examined. A speed up factor of 2.1 was
obtained for the two processor case, owing to the use of a much
larger time step in part of the simulation.

Partitioning guidelines for maximum speed up have been
proposed, although the load balancing recommendation (five, or
more models per partition) is limited to the computationally
equivalent models developed here. Careful consideration must be
given to the use of different time steps, as the proéessor loads,
as well as accuracy may be compromised.
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APPENDIX
actl/2: fdiv:
Fs 100 [N] ml:
FR 50 [N] Dm100 [cc/rev]
FL 100 [N] go.1
dp 125 [mm] ¢, 3x10"®
d,. 70 [mm] G 2x10s
M« 10 [Kg] m2:
¢ 3000 [N/(m/s)] Dm100 [cc/rev]
X0 1600 [mm] q 0.2
v0 0 [m/s] cs 5x10'8
xK 1700 [mm] ¢, 3x10s
K 1.8 [KN/mm]
s 1850 [mm] shaft:
J 0.1 [Kg m2|
rv1/2/3: ¢ 0.1 [Nm/rpm]

Pt 210 [bar]
K 600 [(1/min)/bar]

prv:
Pc 145 [bar]|
K 600 [1/min/bar]

pi:
Qpi 121 [1/min]

P2:
Qr> 84 [1/min]

TABLE 1 SYSTEM PARAMETERS

cvl:
Pt 10 [bar]
K 100 [1/min/bar]

lines:
d 25.4 [mm]
lj+tla+l, 4 [m]
A-tljHjHjHgtHp 4 [m]
lio+In+li- 8 [m]

4 [m]
Li9+12s+12s 8 [m]
720Hk+"27 8 [m]
In +123+124 1 [tn]
1z+I»+1» 12 [m]

system:

Be 8900 [bar]
p 890 [Kg/m3]
v 60x10's [m2s]
P00 [bar]

cv2:
Pc 3 [bar]
K 100 [1/min/bar]

dev:
APMM 205 [bar]
Qrrf 5 [1/min]

tk:
Pt 0 [bar]
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ANALYSIS OF AN ELECTRO-HYDRAULIC POSITION
CONTROL SERVO-SYSTEM USING TRANSMISSION-LINE
MODELLING (TLM)

JAMES D BURTON KEVIN A EDGE CLIFFORD R BURROWS
Fluid Power Centre
School of Mechanical Engineering
University of Bath
Bath, UK

ABSTRACT

This paper assesses the potential of a transmission-line modelling approach to the dynamic simulation of electro-hydraulic systems.
Numerical models are developed for the case of an electro-hydraulic position control system, which forms the basis for a
comparison between lumped parameter integration techniques and distributed parameter wave equation modelling using TLM.
The selection of simulation time-step for the TLM case and the effect on results is discussed. Potential difficulties simulating both
analogue and digital controllers are investigated and recommendations made for selecting appropriate simulation parameters. In
addition, the effects on simulated behaviour of different line models, ie. compressibility-only and distributed friction models, is also
examined.

KEYWORDS Transmission-Line Modelling, Electro-Hydraulic Systems, Simulation
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NOTATION
A Pipe cross-sectional area b'e Position
B Fluid Bulk Modulus Y/ Line impedance
C Characteristic Pressure Z, Line surge impedance, p¢/A
c Acoustic  velocity B, /p
Pump/Motor loss coefficient A Fixed time step for TLM simulation
Viscous friction 0 Angular position
Pump/Motor Displacement p Fluid dynamic viscosity
Demand signal P Fluid density
Controller error signal T Time constant
Function of, Feedback signal (0] Angular speed
Inertia
Valve flow-pressure gradient, Gain Subscripts
Fluid line loss function a Transmission-line end a
Pressure b Transmission-line end b, Boost
Flow c Cracking
Transmission reduction ratio e Effective
Laplace operator f Coulomb friction
Wave propagation time, Torque i Integral, Integer



In Input

J Junction

L Load

m Motor

out Output

P Pump, Proportional

pm Prime mover

s Shaft, Servo, Slip

v Valve, Viscous, Velocity

0 Positional

Superscripts v

in Input

out Output
INTRODUCTION

In this paper a technique is presented for the simulation of
hydraulic control system performance incorporating the
transmission-line modelling (TLM) approach for hydraulic lines
[1][(2]). An electro-hydraulic position control system outlined in
Figure 1 is used as an example to evaluate and compare the
method with established lumped parameter numerical
integration techniques and to examine possible problems in
modelling analogue and digital controllers. The motivation for
this work is to demonstrate the effectiveness of the TLM
method in solving fluid power problems, by encapsulating all
relevant calculations within a particular component model,
including numerical integration. Such an approach avoids the
need for a highly complex, centralized integrator capable of
solving numerically stiff differential equations [3] and,
although not specifically considered here, such an approach is
inherently suited to parallel processing [4]; each component in
the system is numerically isolated by at least one propagation
delay, equal to the integration time step, allowing the sub-
systems to become decoupled.

Components such as pipe junctions, pressure or flow sources,
restrictors, valves, actuators etc. are governed by combinations
of algebraic, discontinuous and differential equations. Bi-linear
transformation (equivalent to trapezoidal integration) is used to
solve the component differential equations.

To obtain an explicit solution at each time step, equations
relating pressure and flow at each component port are solved
simultaneously with the transmission-line wave equations that
represent the fluid lines connecting component models in the
system. The 4-pole, transmission-line equations are given by
eq.(1), where N(s) is a loss function dependent upon the type
of friction model employed [5].

Pl - Zomoa = (Pb + Z_,/'N_(.T) Qb) e-Txy/ATGS
P, - ZoM)Qb - (Pa + Z.\/—NE) Qa) e VG

In the time domain it is generally possible to develop two
transmission-line end equations of the form:

Pa - ZoQ¢ = b(t_T)

P, - 2,Q, - C,t-T)

Where T is the wave propagation time, L/c. Pressure and flow
at one end of the line is related to the past time history of
pressure and flow at the opposite line end; this past time-
history is referred to as the characteristic pressure, denoted C.

M
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HYDRAULIC TRANSMISSION-LINE MODELS

For a lossless pipeline N(s) in eq.(l) equals unity; the
characteristic pressures are then simply:

C,(-T) = P(-T) + Z,Q,6-T)

C,(t-T) = P,(t-T) + Z,Q,(¢-T)
Here the propagation operator is only a transmission delay of
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‘ Figure 1 Electro-Hydraulic Position Control System




duration T, which decouples the component models that form
the numerical simulation.

Compressible Pipeline

For the lossless case, an approximation to a compressible
pipeline is obtained by setting the transmission delay, T, to the
global integration time-step, A. This implies a modified line
length and consequently the pipe cross-sectional area must be
adjusted to compensate, thereby ensuring correct modelling of
- compressibility effects, as the capacitive term (V/B,) remains
~ constant. The time-step A must be relatively small, otherwise
the line dynamics will become excessively distorted due to the
inertance term (pL/A) becoming dominant. However, some
fluid inertance is always present and is a realistic effect.

If unrealistic resonant effects are to be avoided, low pass
fillering of the characteristics is useful and, in fact,
approximates the frequency-dependent damping evident in
actual pipelines. The filtering method described by Krus et al
(6] has been used in all of the simulations presented in this
paper.

Long Lines

In this case the line may be effectively discretized into an
integer number of integration time steps, retaining the actual
line delay, T. Various line models are possible, ranging from
distributed friction approximations [7] to frequency-dependant
friction algorithms incorporating convolution integrals of the
complete characteristic time history [2]. The distributed friction
line model proposed in [7] is used in this paper.

THE APPROACH TO SYSTEM SIMULATION

A complete system simulation is facilitated by linking the

various component models together within a control program,

which inter alia calls the models in a pre-defined sequence.

Component simulation data required for plotting are also

manipulated and stored for later inspection.

Information transfer between connected models is handled

differently, depending upon the type of component port, in this

case either hydraulic or signal ports. Signals are uni-directional

and are therefore propagated from one model to the next

instantaneously, achieved by ensuring that the correct call

sequence is observed. This sequence is:

1. Controller input demand duty cycle (signal input to
controller)

2. Motor-gearbox-load model
transducer signal)

3. Sample & Hold (digital controller only)

4. PI Controller (demand and feedback signals in and swash
servo signal output)

5. Variable Displacement Pump (swash servo input)

6. Other components (arbitrary order) ...

(velocity & position

Inputs to hydraulic ports are delayed characteristic pressures
and are thus unaffected by the call sequence, except, of course,
if the component also has electrical signal links. Initial values
. for the characteristic pressure at each hydraulic port must be
. specified to initiate the calculation process and this is normally
achieved by setting a constant pressure starting condition (zero
initial flows). In addition, due to the unique flow symmetry of

the transmission line element, hydraulic component ports may
be-linked consistently, as the characteristic pressures which
couple the hydraulic ports are scalar quantities.
Although not directly relevant to this investigation it is
important to be able to model cavitation; a suitable approach
based on column separation is described in [4].

COMPONENT MODELS

Hydraulic Components

For each component connected between transmission-lines, the
following system of equations must be solved. [Note: the
modelling convention used is such that each component port is
connected to a transmission line at end a]

The component equation: _
Q, - f(P,) @

[where the bar denotes a vector quantity]

and the transmission-line end equations at each component
port: _ :
P, -Z0Q, - Cbe-'r ©)

The component equation is solved simultaneously with the
transmission-line end equations at each port of the component,
whilst ensuring that the flow convention is observed. The
symmetrical configuration (positive flows into each end of the
line) is essential, as the component ports of models in a system
may then be linked consistently.

The following hydraulic components are used in the simulation
of the example electro-hydraulic circuit, shown in Figure 1.

Junction Model. To assemble circuits of the complexity
required in most real applications, junction (node) models are
needed. Taken in conjunction with the compressible line
approximation, the junction model represents an equivalent
fluid volume with multiple (in this case three) ports. Figure 2
is an example of a 3 port node.

P,
Pla P 3a
Zl QI- , QJ- ZJ
P, L
Q.
Z,

Figure 2 Hydraulic Junction

Junction equations:

3
>o-0 ©

PJ'Plc-PZa-PSa ~
Transmission-Line equations (=1, 2, 3):
Py - 2,Q, - Cye™™ ™
Solving simultaneously to obtain the junction pressure:
3 C.e* Ti 3
PJ-ZJE 2 i'El @)
-1 Z‘ Z[ -1 Z‘




and subsequently for the flow at each port (i=1, 2, 3):

Q- %(PJ - Ctb‘_'u) ®
1

The characteristic pressures C,,=P,+Z,Q,, at each port are
then propagated as inputs to connecting models for the next
time-step, t+A. These equations are easily extended to
incorporate any number of ports.

Relief/Check Valve Model. The simplest model of a relief

valve, or check valve (Figure 3) assumes that the valve
dynamics are instantancous. For this type of model the valve
is uni-directional and no flow across the valve takes place until
the differential pressure exceeds the cracking pressure, P. A
linear flow-pressure characteristic of gradient K is assumed
once the valve has cracked open.

Q.
z, P, P, Z,
—LH=
Q. L= Qa

Figure 3 Relief Valve Model

Transmission-line end equations at each valve port:

P, -C,e*1_Z
la 15 le (10)

Py = Cue™™ + 2,Q,
Equations relating valve flow to differential pressure are:
(Pra=Paa)>P.  Q, = K(Py,=Py,-P,)
(Prg—Pq)<P, Q-0

Flow is determined explicitly by substitution of the pipe-end
(characteristic pressure) equations into the valve equation, as
follows:

Pla-PZa > Pc

(11)

K(C\, e -C e ~P)

1+K(Zl+Zz)

Q-

Pla-PZaSPc Q-0

(12)
Valve port pressures and characteristic pressures are then
readily determined from Q,.

Motor-Gearbox-Load Model. This is a lumped-distributed
model of a hydraulic motor, with leakage and friction losses
[8], coupled via a rigid shaft to a reduction gearbox and an
inertial plus viscous load (Figure 4). The distributed part of the
description refers to the hydraulic ports (transmission-line ends)
connected to a lumped model of the motor mechanism, gear
reduction and load. To obtain a discrete solution the lumped
component must be solved simultaneously with the line ends.
The differential equation describing the load is converted to an
implicit difference equation using bi-linear transformation,
equivalent to trapezoidal integration; the resulting equations are
solved algebraically, as before. '

Motor ideal flow plus leakage flow:

c"D-I (13)

Q. -D,0, + (Pra=Pa)

Py |

er

A in)
P, |

Q.

Figure 4 Hydraulic Motor-Gearbox-Load Model

Motor Torque, including coulomb and viscous friction losses:
T, - D (1-¢)(P,,-P,)) - ¢, D pe, (19

Idealized transmission (lossless, infinitely stiff & zero
backlash): ®
- (15)
r

I; - Tlr QJ

Line-end equations at each port:
P, - Cye™T - Z,Q,

(16)
P2¢ = Zbe-‘n * Zzop
Mechanical load equation:
Jswg = Tg-T, - Ty sgnwg)-c, 17

First, derive an expression for the motor differential pressure:
C,p-C,,\-rD_w (Z
(Pra=Py) - (Cis=Cap)-r1 .‘:;s) 1+Z;)
1+ (Z1+Zz) F =
M

Further algebraic manipulation of the above equations results
in an expression for output shaft speed:

(18)

rD,(1-c)

1+ (Zl+Zz)

Jsw, = D (Cpe™™ - Cpe™™) -
¥

»n
n

rD}1-c)7,+2)

CSDﬂ
1+ (Zl+Z2) "

+c,Dprt + ¢ lo, -

T, - Tpsgn(w,)
(19)

and for the position: © _
8, - — (20)
s

Subsequently, it is quite straightforward to apply the bi-linear
transform and obtain a form suitable for digital computation of
@, and 0,. Back substitution gives (P,,-P,), Q.. T,, T, and
finally P,, and P,,. The characteristic pressures, C,, = Py,-
Z,Q, and C,, = P,,+Z,Q,,, are then calculated for propagation
to connecting component ports at the next time step.




Controllers and Electro-Hydraulic Components

For the circuit considered in this paper, components such as the
motor-load (incorporating transducer signals), the controller
(including the demand duty cycle) and the swash-controlled
variable displacement pump all involve the transmission of
electrical signals. The motor-load model calculates the output
shaft acceleration, velocity and position. The velocity and
position are transmitted as instantaneous signals to the
controller model, which in turn operates on these signals to
provide an instantaneous output signal to the pump swash
controller. Signal propagation is achieved using the correct
component model call sequencing within each time step.
Conversely, hydraulic port connections are provided with
output characteristic pressures from the ports of connected
models, calculated at the previous time step.

Proportional plus Integral (PI) Controller. The controller
shown in Figure 5 has an input demand signal d and a
feedback signal f. For the example system f, is the sum of the
position and velocity feedback signals, provided by the motor-
load model. E_ refers to the compensated error, propagated
instantaneously to the pump swash controller.

f

9
X" —<__]

Figure § PI Controller
Feedback signal: f- K8+ Ky @1)
Error: E - K (d-f) 22)
PI controller transfer function:

PO KM(KP . -I:—')E 23)

Sample & Hold. For the case of the digital PI controller
model a sampling mechanism is required. This is achieved
numerically by holding the control signal for n fixed time steps
of duration, A, resulting in a sampling interval of nA.

Variable Displacement Pump. This model (shown in Figure
6) assumes that a constant speed prime mover drives a pump
incorporating friction and leakage losses [8]. The pump model
is bi-directional and incorporates the dynamics of a swash
servo, represented by a first order lag. Pump inlet and outlet
are modelled as transmission-line ends. The input to the swash
servo is provided instantaneously by the controller output, at
each time step.

Pump swash servo mechanism:

n
Xs 4)
TS+ 1

X5 -

The pump flow equation, including lgsses:
c
Q, - X*D,0,, - -’T’(PIG-PM) (25)
Transmission-line end equations at each port:

P, ~C el - z,Q, 26

-T2
Py~ Cpe™™ + Z,Q,

.,

Figure 6 Variable Displacement Pump

Hence, the pump flow, Q,, in terms of the charactenistic
variables, C,, and C,,:

c,D
X5 D0,y - ——2(C, e -Cppe~T)

- L @27
Qp ] (Z Zz C,D,
- +
&)= .
After transformation into discrete time, X;** and subsequently

the other model variables, Q,, Py,, P,,, C,, and C,, may be
evaluated at each time step.

SIMULATIONS

The numerical experiments to be considered examine the
response of the system (Figure 1) to a step in positional
demand from zero to 180°. All state variables, eg. line end
pressures, line end flows, displacements, velocities and
accelerations were initialized to zero.

The parameters used for the simulation study, given in
Appendix 1, serve only as an example to illustrate the different
modelling approaches.

DISCUSSION

Lumped Parameter and Distributed Parameter (TLM)
Simulation (Analogue PI Control)

Figures 7a to 7c give some of the salient response
characteristics of the TLM circuit model, using a small time
step of 10ps. Figure 7a shows the smooth positional response

-of the inertial load to a the step change in demand. Time

responses for the fractional pump displacement and the
pressure at the hydraulic motor inlet are given in Figures 7b
and 7c, respectively. The results are virtually identical to those
obtained from a lumped parameter simulation of this system,
obtained using the Bathfp package {3]. A ten-fold increase in
the TLM simulation step size to 100ps had negligible effect on
the nature of the predicted behaviour. However, much larger
time steps, of the order of 1ms, or greater, result in significant
deviations. For these time steps the transmission lines no
longer represent compressibility approximations, but include
significant inertia effects; they are therefore no longer
comparable to the lumped parameter results.

If the line delay is such that the step size is too large, it is
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Figure 8 Motor Inlet Pressure [bar] vs. Time [s]:
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Figure 7b Pump Swash Ratio [] vs. Time [s]
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Figure 9 Motor Inlet Pressure [bar] vs. Time [s]:
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Figure 7c Motor Inlet Pressure [bar] vs. Time [s]



possible that rapid transients occurring at either end of the line
will be "sampled” at 100 low a rate, leading to distortion. To
- understand the introdyction of this distortion due to false inertia
effects, it may be helpful to consider the transmission line as
the sum of a lumped ¢ompressibility term (V/B,) and a lumped
inertia term (PL/A = pc2A%/v). The additional pressure due to
the fluid inertance. is the product of the inertia term and the
total rate of change: of flow into the line. Thus very rapid flow
transients, goupled'_ Wwith a high fluid inertance will result in a
correspondingly 1arge and incorrect pressure change.
In the system studied here, the shortest line length was 0.67m,
corresponding 10 a line delay of 0.67ms. According to the
simulation test results, a time step less than, or equal to about
one tenth of the shortest line delay appears to be a convenient
and reasonably Conservative starting point for step size
selection. The fluid inertance term, proportional to the square
of the time step, is in this case, likely to be negligibly small
and the compressible line approximation is therefore valid.
Furthermore the "Sampling" interval is then sufficiently small
n relam:.m to the modelled line dynamics to avoid distortion.
Alternatively, the line may be discretized and modelled as a
distributed friction line (with some computational overhead).
This ensures a higher "sampling” interval, in addition to more
accurate modelling of wave effects in the line.

TLM Distributed Friction Line Model

A 10m distributed friction transmission line was introduced
either side of the hydraulic motor model, whilst all other lines
were modelled by capacitive approximations. A simulation time
step of 10ps was used, 10 avoid distorting excessively the
compressible line elements in the system. The additional
transmission delay (approx. 10ms) introduced by the distributed
friction line did not agversely affect the predicted load motion,
but previously unmogelled wave effects were introduced into
the motor inlet pressyre response (Figure 8).

Digital PI Controlley Model

For the digital controller two digital sampling rates were
considered. A simulation time step of 10ps was used in each
simulation. The results for the 10ms sampling interval were
indistinguishable from those given in Figures 7a to 7c.
However, With a sampling period of 50ms, the system was
qnstable. This instability js clearly exhibited in the motor inlet
line pressure response, shown in Figure 9. Little deviation in
these results is observed with an order of magnitude increase
in time step (A = 100ys), Further orders of magnitude increases
in time step (>=1ms), however, invalidate the premise of
compressibility-only lines and the results are, therefore, no
longer comparable. The dynamics of the line system change
significantly with the larger time steps.

When using digital controller models with TLM circuit
simulations it is prudent firstly to verify the dynamics of the
e‘qmvalent. analogue circuit model, using a sufficiently small
time step in accordance with the above guidelines. The digital

sampling interval must then be an integer multiple of this time
step.

CONCLUSIONS

1. This paper has demonstrated the suitability of

transmission-line simulation methods to hydraulic system
modelling, including systems with control elements.
Provided that component models are called in the correct
sequence, electrical signals may be propagated
instantaneously between component models.

There is a close similarity between the TLM solution and
the lumped parameter test case, despite the very significant
modelling differences. The transmission line approach,
however, has clear advantages in simulating wave
propagation effects, as the transmission delay, realistic
fluid inertia and distributed friction are incorporated as a
consequence of the modelling technique.

For fixed time step transmission-line simulation the global
simulation time step, A, must be sufficiently small to
match the compressible effects in the line to an acceptable
level of accuracy. From the simulation studies A=T/10 for
the shortest line length is a convenient and reasonably
conservative heuristic, to ensure adequate "sampling” of
system dynamics and to minimise the effect of fluid inertia
in the case of the compressible line approximation. This
time step may need adjustment to accommodate distributed
friction lines and digital sampling models, which must
operate over an integer number of time steps.
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APPENDIX 1 SIMULATION PARAMETERS
pump/servo: motor-load:
D, = 100 [mUrev] r =20:1
T, = 75 [ms] J =15 [Kg m?)
¢, = 1x10°® D,, = 50 [ml/rev]
Oy = 1500 [rpm] c, = 2x10°
| ¢, = 50 [Nm/rpm]
- cross-line relief valves: ¢, = 8.4e5
P, = 150 [bar] ¢, = 0.02
'K = 600[Vmin/bar] Ty = 0 [Nm]
? TL =0 [Nm]
check valves:
P, = 0.5 [bar] tank:
K= 100 [Vmin/bar] P, = 0 [bar]

lines:

L, = 4+10 [m]
d, = 254 {[mm]
L, = 4+10 {m]
d, = 25.4 [mm]
L, =33 [m]
d, = 25.4 [mm]

V, = 7094 [ml]
V, = 7094 [ml]
V, = 1687 [ml]
B, = 8900 [bar]

controller:
K,=1

K,. = 1/180
K,=1

K =2
Ke=1

K, = 0.8333

boost flow:
Q=1 [Vmin]

boost relief:
P, = 15 [bar]
K = 600[Vmin/bar]
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ABSTRACT

This paper describes the application of transmission line modelling with variable time steps. Simulation
performance has been further enhanced by dividing the circuit simulation into separate sub-systems
according to circuit connectivity and executing these partitions on different processors in parallel. A
"master-slave’ processor configuration was adopted, consistent with the use of a centralized error and step
size controller, ensuring the same results for single and multi-processor simulations.

The efficacy of this approach has been demonstrated using an example hydraulic circuit simulation, using
one, two, three and four processor configurations. Efficient parallel operation is shown to be highly
dependent upon the relationship between communications (data transfer) and component model processing
within a sub-system, in conjunction with an acceptable balance of computational loads between the
respective circuit partitions.

NOTATION

A Pipe cross-sectional area T Wave propagation time
B Bulk Modulus - \% Line volume

c Acoustic velocity z Line impedance
C Capacitance p Fluid density

I Inertance

L Line length Subscripts

N Fluid line loss function a Line end ’a’

p Pressure b Line end ’b’

Q Flow e Effective

S Laplace operator
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INTRODUCTION

Transmission line modelling (TLM) of the pipelines in fluid power systems provides a unique mechanism
for decoupling component models within a circuit simulation, due to the modelling of the propagation
delay in the line [Sidell & Wormley, 1977][Krus et al, 1990][Burton, Edge & Burrows, 1992]. The 4-pole,
transmission line equations are shown in eq.(1).

P, | P, P,-ZQ, - (P,+Z/NG)Q,)e T*V"®
Q,— + F—aQ, M
P,-2Q, - (P.."Z\/N_EQa)e'T’m

Figure 1 Symmetrical Transmission
Line

where N(s) is a loss function dependent upon the type of friction modelled [Viersma, 1980].

Each transmission line termination is solved simultaneously with component equations that relate pressure
and flow at each port of the component model. Completely self-contained models may be developed-,
which have the potential to be executed in parallel, as model inputs are delayed 6utputs from connected
models. The symmetry of the transmission line equations enables component models to be linked
consistently when building a circuit model.

Pipeline networks that connect several component models are handled using a junction (or node) model.
The line junction is treated in the same way as any other component model. By summing the flows to zero
and solving simultaneously with the transmission line ends connected to each junction port, explicit
equations for junction pressure and the corresponding flows are obtained [Burton, Edge & Burrows, 1992].
The characteristic pressures (equal to P+ZQ for the lossless line) at the node are then transmitted to
connecting component ports at the next time step.

For many hydraulic system models a simple capacitive pipeline model is sufficient to capture the salient
dynamics. When using TLM to describe the pipelines the lossless form of the transmission line equations
(N(s)=1) is used to isolate numerically each component model (pump, valve, actuator etc.). To achieve
a capacitive approximation the line lengths are adjusted such that all components in the system are isolated
by the same propagation delay, thus ensuring synchronisation between all component models in the system
[Krus et al, 1990]. For constant line capacitance (C=V/B,) this is manifested by a corresponding change
in line impedance (Z=pL/A=T/C). In order to reduce the effect of resonant oscillations associated with
lightly damped wave propagation the low-pass filtering method of Krus et al [1990] has been employed;
this is an approximation to the frequency-dependent friction evident in real fluid transmission lines.

As the simulation proceeds, any source of pressure difference between each end of a lossless transmission
line must be due to the presence of the fluid inertance term (I=pL/A) implicit in the TLM solution. Any
flow transient introduced into the system therefore results in a related transient pressure difference. Fluid
inertance is representative of the physical system, although an excessive simulation time step may
exaggerate its effect greatly, because the inertance is proportional to the square of the time step
(I=pL/A=pc*T?/V).

The pressure error may be controlled by the TLM solver by changing the time step (line delay) during
the simulation, whilst maintaining a constant capacitance, C. With the aim of reducing simulation run
times, Jansson et al [1992] proposed a variable time step TLM solver based on this approach and the
previous work of Krus, Weddfelt & Palmberg [1990] and Pulko et al [1990].
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There are very significant non-linearities evident in fluid power system models, including discontinuities,
such as valves opening/closing and actuator end-stop limits. For example, if an actuator hits its end stop
the piston velocity and therefore the flows at each port will undergo an abrupt change. Such discontinuous
flow transients may be detected by the step-size controller as a pressure difference. The time step is then
reduced, or rejected accordingly to maintain this pressure difference within a predefined maximum limit,
as described by Jansson et al [1992]. In the scheme used here a central error controller monitors the
pressure errors associated with all lines to determine the maximum step size allowable.

PARALLEL SIMULATION

Significant reductions in execution time for large-scale, complex hydraulic circuits are feasible using
multipie processors. However, the partitioning problem (how models are assigned to processors) is non-
trivial. The number of processors and the nature of the partitioning results in many possible configurations.
To obtain the optimum increase in performance the computational loads on each processor must be
adequately balanced, whilst minimising the penalty associated with data transfer between processors.
The use of a variable time step TLM solver in conjunction with distributed processing should enable much
greater simulation speeds, by both distributing the component models and using the maximum step size
for a given accuracy. In the implementation developed here a master-slave configuration is adopted (see
Figure 2).

master
process
slave slave o slave
process X = — | process |3 — = —| process

Figure 2 Master-Slave Process Configuration

A single master processor is dedicated to error control and step size selection, as well as executing some
of the component models, whilst the other slave processors execute component models only. The slave
processors communicate pressure errors to the master step size controller, which determines the step size
for the entire simulation and therefore ensures synchronisation between processors. Delayed pressure and
flow information (RHS eq.(1)) is still exchanged between all of the sub-systems directly, according to the
circuit topology. The master process only collates the pressure errors in each transmission line and on the
basis of the maximum error, determines if the current step is acceptable, or if the step is to be repeated
with a smaller time step. In either case the error comroil‘ér calculates an appropriate step size with which
to continue, or repeat the computation, depending upon the relative magnitudes of past and present
maximum pressure error [Hairer & Wanner, 1991]. Jansson et al [1992] examined the use of different time
steps in two different partitions on the same processor, communicating via shared memory. This approach
required two separate step size controllers in each partition. However, severe oscillations in step size

selection may result, as the step length controller attempts to synchronise the separate sub-systems at the
communication time steps. This technique also requires the step size rcjection capability to be deactivated,
as a step must be rejected for every subsystem partition for the solution to be consistent numerically. Loss
of the ability to reject time steps may impair accuracy, as fast transients and sharp discontinuity points
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may not be detected rapidly enough.

The use of a central error controller overcomes these difficulties, although the time step size is then
limited to that required by the fastest transient in the entire system. However, process synchronisation is
always maintained and the results obtained from a multi-processor simulation will always be identical to
those of a single processor. Moreover, as the time step is set throughout the parallel system model the
efficiency of the partitioning arrangement chosen is less susceptible to variations in duty cycles in different
parts of the parallel simulation. To achieve computational load balancing with a different step sizes on
different processors would require the dynamic re-assignment of code during the simulation; with current
multi-processing software this is not a very efficient process.

EXAMPLE SYSTEM

In order to demonstrate the efficacy of this approach to parallel simulation, the circuit shown in Figure
3 is used as an example to illustrate the partitioning problems encountered to achieve maximum

improvement in simulation speed.

actl aet2

devl H m dev2 H

winch

dcv3

dev4

Figure 3 Example System
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This circuit is derived from a marine application, involving the operation of two actuators with meter-out
flow control and an accompanying closed loop hydrostatic transmission circuit, powered via the vessel’s
ring main. Most of the component models include significant non-linearities. The actuator model
incorporates stiction and coutomb friction, in addition to the travel limits and a time-varying load force.
These are also included in the hydraulic motor-load model (travel limits correspond to maximum and
minimum cable lengths) combined with a time-varying braking force. Relief and check valve models also
exhibit discontinuous behaviour, when opening/closing at a predefined cracking pressure, as well as uni-
directional operation. In addition, the directional controls include a square-law orifice model for the flow
passages and a time-varying input position.

SINGLE PROCESSOR SIMULATION

For comparison purposes, two reference simulations were performed on a single processor using the two
sets of valve duty cycles shown in Figures 4 & 5.

1
’ 1
devl | ‘ ‘ .

1

1

1
dcv2 o.__’_1 rh

dev2 e,
-1
-
Position
1 Position
1] _l—_& s
dev3 o {] dev3 , l
o]
: . L
1 1
dowy al I — dcvd "I , r v v —
1 2 ') '4 1 6 7 ] s l&o 1 2 3 4 H 3 7 ] s 10
Time [s] Time [s)
Figure 4 Control Valve Duty Cycles Figure 5 Alternate Valve Duty Cycles

The maximum pressure error permitted was 0.1 bar and a minimum allowable time step of 1ps was
selected. Figures 6 & 7 show the variation in time step used by the TLM solver and the corresponding
pressure error. At points of severe discontinuity (actuator travel limits, valve position changes etc.)
successive time steps are rejected until the minimum allowable time step is reached, as shown in Figure-6.
The simulated actuator positions and length of cable extended by the winch are shown in Figure 8 and
the corresponding pressures at inlet and outlet in Figures 9, 10 & 11. The computational results presented
here exhibit only minor differences from an equivalent circuit model developed using a lumped parameter
ODE solver [Richards et al, 1990].
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MULTI PROCESSOR SIMULATION

For the multi-processor study, the step rejection scheme was enabled and all sub-systems were
synchronized, through the implementation of a central error controller, which sets the step size throughout
the distributed simulation. The multi-processor simulation results are therefore identical to those obtained
from the single processor computation.

The parallel computing hardware used consisted of an array of eight T800 transputers, including 2Mbytes
available memory per processor (see Figure 12). To achieve the optimum increase in simulation speed
nearest neighbour communications between processing elements is desirable. To achieve this the
partitioned circuit must map directly onto the processor array. The software does permit the through-
routing of messages via intermediate processors, but this is very much less efficient than communications
over a single data link. The two, three and four processor configurations are shown in Figure 13. The
master processor in each case is connected to the slave processors directly via the serial data links to

ensure the fastest possible communications.

4 x Serial data link

T800 Processor

2 Mb Memory

Figure 12 T800 TRAM

For the two processor simulation the actuator circuits were placed on one processor and the hydrostatic
transmission on an adjacent processor. The step size controller was included in the latter partition. In the
three processor parallel simulation the actuator circuits were separated and the step size controller placed
onto the central actuator circuit to facilitate nearest neighbour data transfer between the respective
partitions in a three processor chain. In the final four processor case studied the supply systems and
directional control valves were placed onto the master processor, with the actuator and hydrostatic
transmission circuits placed on separate slave processors.

Figure 14 shows the measured and ideal speed increase for the distributed simulations. [Note: the ideal
speed increase for n processors is V). The results for the alternate valve duty cycles are also shown for
comparison, which indicates a marginal improvement in speed up and distributed simulation efficiency.
(Other valve duty cycles not shown differed only slightly from the results given). Figure 15 shows the
consequent distributed simulation efficiency, defined as speed up divided by the number of processors

(ideal speed up).

BH

2 Processor 3 Processor 4 Processor

Figure 13 Two, Three & Four Processor Topologies
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An indication of processor load may be obtained by measuring directly the time taken to compute all
component models in each partition every simulation time step. Figures 16a, 16b & 16¢c show the
computational load balance measured for each processor, for the two, three and four processor simulations
respectively, using the valve duty cycles of Figure 4. The master process in each case also has a relatively

small overhead associated with evaluating the accuracy of the current time step and calculating the next

time step.
m = master
s = slave
Mode! m Model
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Figure 16a Two Processor Load Balance Figure 16b Three Processor Load Balance
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Tune [ms]]
m

Time [s]

Figure 16c Four Processor Load Balance
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DISCUSSION

The ideal speed up, equal to the number of processing elements, assumes zero time for communications
between partitions and perfect balance of computational loads. In practice the data transfer between
processors is a significant overhead and the relative computational efforts are difficult to determine when
building the distributed simulation. Figure 14 clearly indicates the deviation of the measured from the ideal
speed up for the example circuit. Figure 16a shows the different computational loads on both master and
slave processors for the two processor simulation, measured in terms of the model calculation
(computation) time per simulation time step. From Figure 15 the two processor parallel efficiency is only
about 72 percent. This reduction in performance must be attributed to the unequal processor loads
(approximately 60:40), in addition to the penalty associated with data transfer between processors.

The three processor simulation gave the best performance increase. In this case, the computational loads
were reasonably balanced (see Figure 16b), yet the communications requirement was not excessive.
Figure-14 indicates that the use of four processors is off-set by the increase in data transfer time and the
imperfect computational load balance between the master partition (supply system and valves) and the
slave partition assigned the hydrostatic transmission (denoted s, on Figure 16¢). The re-partitioning to a
four processor simulation scarcely influenced the computational load of the hydrostatic transmission sub-
system from that of the three processor case (denoted s, on Figure 16b), in which case the consequent
performance reduction was not surprising.

It is possible to partition this simulation further, but a distributed simulation in excess of five processors
would require the use of virtual communications, because of the limitation to four serial data links per
processor. Virtual communication necessitates processor hops, which is much less efficient than a direct
data link. This configuration may be appropriate for even larger circuit simulations, but the increase in data
transfer and the comresponding reduction in computational load per processor would reduce the
performance. For satisfactory performance the ratio of model computation to data transfer must be large,
although this is difficult to quantify using the currently available transputer utilities.

Computational load balancing is a very important factor when partitioning TLM based simulations,
because of the nature of the simulation technique. TLM computations require all component models in
the simulation to be executed before progressing to the next time step, thus no single partition may be
more than one time step ahead of any other partition. Consequently, all partitions in the distributed
simulation are 'locked-linked’; that is the computational speed is dependent upon the slowest partition.
Fortunately, the data transfer requirement is typically small (only a few bytes), consisting of the
characteristic pressures, line end pressures, step size and control information (step accept/reject). The data
bandwidth is small, although the frequency may be quite high. Through the use of a software environment
that generates bootable transputer object code, without the need for a transputer operating system, the
communications penalty has been kept low.

The new generation of T9000 development transputers (not yet released) should enable much improved
simulation speeds, as a result of increased processo’r"power and data link speed, in addition to an
anticipated maximum of six links per transputer. This hardware should facilitate a fast and efficient multi-
processor simulations, incorporating up to seven processors in a master-slave configuration with direct
communications.
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CONCLUSIONS

A variable time step transmission line modelling (TLM) solver for the simulation of complex hydraulic
systems has been partitioned onto multiple processors, facilitated by the propagation delay introduced by
the pipelines. TLM enables hydraulic systems to be partitioned effectively onto master-slave type
processor configurations, consistent with the implementation of a centralised error and step size controller.
Ideally, the circuit topology should map directly onto the processor configuration, to avoid the use of
virtual communications across one, or more intermediate processors. Direct communications, however,
limits the master-slave configuration to a maximum total of five processors.

An example circuit was partitioned onto two, three and four processors. A maximum increase in
performance (speed up) of 2.2 was recorded for the three processor configuration. An efficiency of some
72 percent was attributed to the overheads associated with communications between processors, as the
processor loads were reasonably balanced. Extension to four processors had no effect on performance, as
the increase in parallel operation was almost entirely off-set by increased data transfer and rather poor
partitioning of two of the four sub-systems.

Changes in the duty cycle had little, or no effect on the performance of the distributed simulations,
because each partition performed roughly the same number of instructions per time step, regardless of
input conditions. If an iterative procedure had been incorporated into a model, however, this may have
had a more significant effect.
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