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SUM M ARY

This thesis describes a method for generating flower growth animation in 

which a petal surface and shape can be evolved in real time. Most plant modelling 

currently animates the plant development process by assuming a time interval and 

the corresponding growth direction, and cannot easily change the time step or 

deform the shape. This thesis presents a free-form model for surface deformation 

and growth. The novelty of the method proposed here is the use of a general 

framework that combines a mass-spring model with control points embedded 

in a bicubic patch formulation and the integration of the growth function with 

force control. The key component of this method is to enable the control points 

to move such that we achieve satisfactory results when the surface growth is 

constrained by an evolutionary formulation. The evolution theory should take 

account of natural and artificial perturbations in the growth cycle. This implies 

that the transient of the control points must be flexible and adaptable. In the 

model presented here we use a graphical representation for plant growth function, 

along with a new description of growth force control, to enable the user to obtain 

flexible parameters for surface control. In addition, genetic algorithm techniques 

have been used to optimise the collision avoidance among the flower organs and 

the environments. The model generates non-deterministic evolutionary results 

which give more realistic and varied growth than can be obtained using pre­

defined surfaces or interpolating between given initial and final shapes.
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Chapter 1

Introduction

The use of computer graphics method to simulate and animate biological entities 

has been continuously developed since computers became available to scientists 

in the second half of the last century. One of the early methods to animate mam­

malian life forms was the key frame method. Later, fractals were used to generate 

images of objects as diverse as landmarks and the human face. Early methods for 

the animation of plant forms were developed by Prusinkiewicz [Prusi90a], Here 

L-systems give fractal like images for branching structures such as trees.

The animation of flowers has been neglected, other than very simplistic meth­

ods that use libraries of pre-defined shapes and components for the user to build 

into completed entities. Surface shapes in flower components: petals, sepals, sta­

mens and carpels can vary from simple to very complex. But the most difficult 

problem to solve in flower animation is not a single component shape, but its 

evolution over its life-cycle from its embryonic state to its fully developed state 

and then its transformation to a seed bearer.

This thesis describes a method for generating flower growth animation in 

which a petal surface and shape can be evolved in real time. Most plant modelling
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systems currently animate the plant development process by assuming a time 

interval and a corresponding growth direction. Unfortunately, this method is 

restrictive in that one cannot easily change the time step or deform the shape. 

This thesis presents a free-form model for surface deformation and growth. The 

novelty of this method, proposed here, is the use of a general framework that 

combines a mass-spring model with control points embedded in a bicubic patch 

formulation. The key component of this method is to enable the control points 

to move, such that we achieve satisfactory results when the surface growth is 

constrained by an evolutionary formulation. The evolution theory must take 

account of natural and artificial perturbations in the growth cycle. This implies 

that the transient movement of the control points must be flexible and adaptable, 

thus the model generates non-deterministic results which give more realistic and 

varied petals than can be obtained by using pre-defined surfaces or interpolating 

between given initial and final shapes.

1.1 Background

When we build virtual environments, it is relatively easy to generate walls, desks, 

chairs, machines and other man-made objects because their shapes are designed 

by ourselves. However, it is quite hard to simulate biological processes because 

they grow and move according to highly complex natural principles, which can be 

very difficult to model. Of course, if we restrict ourselves to deterministic models 

of growth, we can find equations which will allow us to generate the final model 

of an organism. However, this approach will fail to provide the natural growth of 

organisms and miss the infinite perturbations found in nature and thus lose not 

only realism but also much of the natural beauty found in nature. In this work

13



we strive to find a non-deterministic method that accounts for natural growth.

The application we are interested in involves the animation of flower develop­

ment. This thesis focuses on the simulation of flower petals through all transient 

stages, from a bud to the fully developed flower. Thus, we need to develop 

methodologies that support this simulation, and we must also ensure that we 

achieve realistic results of all time transient behaviours.

Smooth surfaces are of great importance in geometric modelling and computer 

graphics. Classic mesh methods are widely used to model complex smooth sur­

faces such as those encountered in cloth and human character animation. How­

ever, these methods suffer from at least two drawbacks. First, calculation is 

expensive when the number of mesh nodes is very large. Second, it is difficult to 

maintain smoothness, especially when mesh nodes need to be repositioned as the 

model builder requires. Bicubic patches have the potential to overcome both of 

these problems: they have limited control points, and smoothness of the model is 

automatically guaranteed, even as the model animates. Bicubic patches, among 

other methods will be explored to judge if they offer the properties we require.

Simulation of surface deformation and growth is a key challenge in virtual 

environment animation. A realistic interactive surface model has been developed 

to make it possible to manipulate and control such surfaces. It is usual to generate 

surfaces using mathematical representations based upon polynomial functions of 

two parameters, such as Bezier surfaces, B-splines or rational B-splines. Such 

surfaces can be defined by an array of control points. However, it is a difficult task 

to enable the control points to move in such a way that we create a desired shape 

in an interactive environment. Since it is necessary to obtain a growing surface 

for representing petals or leaves, it is important to construct a suitable dynamic 

surface model. In this research, we will explore the combination of the control
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forces with the mass-spring model on the surface control points. These control 

forces are also related to the growth force. We should evaluate the necessary 

forces to enable the petal surface to grow to the desired shape.

Simulation of collisions between mature organs is also an important problem 

in the visualisation of structures with densely packed organs such as flowers. In 

nature, individual flowers touch each other, which modifies their positions and 

shape. Consequently, the mature organs should be carefully modelled and sized 

to avoid intersections. This is a feasible goal if modelling static structures, but 

proper simulation of collisions becomes difficult in the realistic animation of plant 

development. But it is crucial we achieve this simulation. We will investigate the 

incorporation of genetic algorithms for optimising the moving space for the control 

points, with the objective of avoiding collisions while the petals are growing.

1.2 Thesis Objectives and Overview

The objectives of this thesis are to:

• Present an interactive surface deformation and growth model, the purpose 

of which is to control the surface and meet perturbations in the growth 

period.

• Present the integration of growth theory and the control points forces 

model, with the mass-spring framework, to enable the surface to grow ac­

cording to biological growth theory.

• Illustrate step-by-step, the control for surface development with an analysis 

of the shape changes.
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• Describe the shape control by the implementation of a growth function, 

which gives a good description of surface development.

•  Investigate a genetic algorithm method for controlling surface collision and 

deformation.

Firstly, we describe the difficulties associated with surface modelling and 

growth, and explain why these difficulties can be solved by the model presented 

here. Secondly, we introduce a mass-spring model and the constraints on the 

deformation rates of the springs, and the growth rates in order to show the force 

effect. Thus a petal is approximated by a deformable surface composed of a net­

work of masses and springs, the movement of which evolves using the numerical 

integration of the fundamental law of dynamics and growth theory. We take 

these constraints into account using a low-cost method to implement the growth 

model.

We demonstrate that the combination of bicubic patches and the mass-spring 

model is an appropriate and efficient interface to physical simulation for ani­

mation, and the availability of a growth function enables our surface model to 

be used as an extremely effective tool in developing virtual environments. We 

will show that the introduction of growth functions and dynamic forces gives the 

resulting surface the appropriate motion and physical properties of a real petal.

Finally, we develop a genetic algorithm technique to optimise the collision 

avoidance among the flower organs and the environments. The essence of the 

method to be developed uses fitness function to meet the natural growth criteria.
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1.3 Thesis Structure

Here we use a diagram (Figure 1.1) to show all the components presented in this 

thesis and their relationships.

flower

flower - 
structure

growth J growth ^
n r . i m r . t i A r ,  \ fu n C t iO IIanimation

centre and petal position - phyllotaxis 

petal surface - surface modelling ^

mass-spring model to apply forces on control points for 

avoid

continue
growth

collision

optimisation 
V. algorithm

genetic
algorithm

change

Figure 1.1: The thesis structure and relationships

Our flower growth animation consists three areas: flower structure, growth 

function and optimisation algorithm. These three areas have developed differ­

ent contents. These components are related to each other. And the influences 

between them enable the flower to have realistic growth.

Initially we concentrate on flower structure, which consists of the flower centre 

and petal placement which is implemented with a phyllotaxis method and petal 

surface model. The second part is growth theory. We apply the growth function 

with a mass-spring model to control the petal surface growth. The third part in-
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volves an optimisation algorithm, which helps to implement the flower interactive 

growth. At this point in the flower development we must consider the methods to 

avoid petal intersecting with each other, and also neighbouring flowers must not 

intersect. Here, we apply collision avoidance method, introduced with a genetic 

algorithm.

1.4 Layout of the Thesis

The outline of the thesis is:

C h a p te r  2 gives the graphic background for the work in this thesis. The 

main terms and definitions of the subject area are described. It investigates the 

appropriate method for representing the fundamental surface model.The chapter 

also reviews the concept and importance of perceptually realistic generation for 

the developed model. Also we review the related work from free-form surface 

modelling for evolving surfaces, and the limitation and drawbacks from those 

techniques.

C h a p te r  3 reviews the theoretical background of phyllotaxis and presents 

the phyllotaxis structure for plant components. It also develops the spiral phyl­

lotaxis structure for flower centre and petals, and illustrates the position place­

ment method for the flower model.

C h a p te r  4 begins with an analysis of existing surface model and develops the 

surface representation for our flower petal model. It also presents the theory of 

flower petal shape, the purpose of which is to give an accurate description for the 

shape of plant components. It also illustrates step by step the petal development 

controls with analysis of the shape changes.
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C h a p te r  5 presents a theory of growth functions, the purpose of which is 

to give a good description of plant development. Then we develop a graphical 

representation for plant growth functions and introduce the integral equations for 

growth measurement, based on a specific time interval. The chapter concludes 

with the description of the shape control required by the growth function.

C h a p te r  6 extends the ideas of mass-spring model and present our improved 

structure for controlling growth. We develop an integration of growth theory 

with both the control points forces model and the mass-spring framework, to 

enable the surface to grow according to biological growth theory. We also present 

the appropriate collision detection and collision response methods for an evolving 

petal surface model.

C h a p te r  7 reviews the theoretical background of genetic algorithm and 

presents reasons for choosing this method for collision avoidance. We develop 

a fitness function for model. We end this chapter with a crucial review of what 

the use of genetic algorithm has achieved.

C h a p te r  8 presents the conclusions of the thesis and the recommendations 

for further research.

A p p en d ix  A reviews the whole implementation for flower growth generation. 

We discuss all the parameters and factors used in the system user interface, and 

review the other relevant algorithms and techniques applied in the animation 

system.
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Chapter 2

Background Theory

2.1 Introduction

In this chapter we introduce some important background materials which support 

much of the work in this thesis. We also present the motivation for doing this 

research and the goal of the presented model. We begin with defining the surface 

theory and conclude with the concept of perceptually realistic surface generation.

In addition, we review the related work in the area of surface modelling, 

such as B-spline surfaces, meshes and subdivision surfaces. We also examine the 

similarity of various techniques for surface growth.

2.2 Goal of the M odel

The goal of this thesis is to investigate theories and their implementation that 

allow a user to specify and animate a flower through its complete life-cycle. This 

is essentially the modelling of a free form surface.

Although there are aesthetic views associated with the animation of a flower,
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and particularly its petals, there still remains at the heart of this problem the 

need to represent a surface and its evolution. Therefore, we must first consider 

representation of surfaces and judge their relative merit in the context of bio­

logical modelling. We start by considering the approximation of lines and their 

generalisation to surfaces.

2.2.1 Curves

In computer graphics we can use several approaches for representing curves. One 

is similar in concept to the polygonal approximation technique. It approximates 

a curve through a series of straight lines and is consequently known as piecewise 

linear approximation. This has the advantage of being extremely simple concep­

tually as its representation is simply a series of points. However, it has several 

disadvantages: the first being that it can be very difficult to edit the shape of 

a curve, it may involve selecting each of many points and moving each point 

individually; the second disadvantage is that the number of points required to 

produce a good approximation of a curve may produce very large quantities of 

data, which may in turn slow down the interaction with the program; a final 

criticism is that the curve is never truly smooth.

In view of the above criticism, most computer modelling systems provide 

another technique which makes uses of splines to represent curves [Foley90]. One 

of two broad categories of splines is the interpolating spline. In this form, the 

spline curve passes directly through each of the control points. The obvious 

disadvantage is that this direct relationship makes it difficult to generate curves 

having a very smooth and gradual curvature. The second basic category of spline 

is the approximating spline. It places the control points by calculating the curve
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P 2

PO P 3

Figure 2.1: A Bezier curve and its control points

such that the curve goes near the control points, but not directly through all 

the control points. One of the most commonly used approximations is the B- 

spline, that is the Basic-spline. we should notice that the B-spline curve does not 

actually touch any of the control points. The Bezier spline is another very popular 

variety of approximating spline. A basic cubic Bezier spline segment is defined by 

four control points (see figure 2.1). There are a number of advantages for using 

parametric descriptions in computer graphics rather than implicit functions. As 

a particular form of parametric representation, the curve is usually specified by:

3

P(u) =  £ P i B , j , ( v )  (2.1)
i—0

where each term in the sum is a product of a control point Pi and a blending 

function Bi which in this case is a polynomial of degree three. These curves show 

the influence that each control point has on the final curve form [Farin88a].

2.2.2 Biparametric cubic surfaces

The treatment of parametric cubic curve segments, given in the foregoing section, 

is easily generalised to bi-parametric cubic surface patches. A point on the surface 

patch is given by a bi-parametric function and a set of blending or basis functions
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are used for each parameter. A cubic Bezier patch is defined as:

3 3

P(u, «) =  £ £  P M u ) B j ,  3(f) (2.2)
i=0 j=0

Mathematically these three-dimensional surfaces are said to be generated from 

the Cartesian product of two curves. More technically, since it is formed from 

two cubic splines, it is called a bicubic patch, “bi” meaning “two” and “cubic” 

referring to the fact that the mathematics of a spline curve involve powers of 

three. On a bicubic Bezier patch (see figure 2.2), its sixteen control points bear a 

relationship to the shape of the surface, in the same way that the characteristic 

polygon relates to a curve segment. It can be seen intuitively that twelve of the 

control points are associated with the boundary edges of the patch (four of them, 

that is Poo, ^ 0 3 , ^ 3 3 , ^ 3 0 , specifying the end-points) and the four interior points, 

that is P n , P 12, P2 2 , P2 1 , specify the internal shape. Only the corner points lie in 

the surface. The properties of the Bezier curve formulation are extended into the 

surface domain. A single displaced control point can be used to easily deform the 

whole patch surface. The intuitive feel for the surface through its control points 

and the ability to ensure first-order continuity are maintained. (The first-order 

continuity means that the tangent vectors at the end of one curve and the start of 

the other match to within a constant, which means the smoothness of the curve 

is maintained at the joint point.) The surface patch is transformed by applying 

transformations to each of the control points.

The way in which the control points work can be seen by analogy with the 

cubic curve. The geometric interpretation is naturally more difficult than that 

for the curve and, of course, the purpose of the Bezier formulation is to protect 

the designer against having to manipulate tangent vectors.
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Figure 2.2: Control points for bicubic Bezier patch

2.2.3 Parametric representation comparison

B-spline surfaces patches are related to B-spline curves in the same way that 

Bezier patches are related to Bezier curves. The advantages of B-splines over 

Bezier curves are possibly more important in the surface domain. The non­

localness of the control point influence in Bezier curves is a disadvantage in de­

forming or modelling contexts and the joining condition for multipatch segments 

imposes tedious constraints and makes user interfaces difficult. The non-localness 

implies that, although a control point heavily influences that part of the curve 

most close to it, it also has some effect on the whole curve. However, when we 

consider the growth of the flower petal surface, it shows that the growth happens 

over the whole surface at the same time. So the surface does not change locally 

and does not require the advantage of B-spline surface. Another of the major dis­

advantages of the sixteen-point Bezier patch is that it can only represent a surface 

element that describes a simple topography. In contrast, a B-spline surface has 

no limit placed on the number of points defining the characteristic polyhedron, 

and therefore it is possible to represent far more complex surfaces using a single 

B-spline patch compared to a single Bezier patch. However, again difficulties 

may arise for a user interface controlling object deformation or modelling as the
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number of control points increases, resulting in more complexity for the user to 

manage.

A more general problem arises when modelling with B-spline surface patches. 

Because a patch does not interpolate or pass through its control points there is 

a difficulty in obtaining an initial surface approximation, from say a network of 

modelling points, for use in subsequent deformation. This approximation has to 

be made by an initial process which thereby yields a set of control points.

Two important surface representation schemes exist that extend the control 

of shape deformation beyond that induced by the movement of control points. 

These are NURBS (non-uniform rational B-splines) and /3-splines. Both these 

curve approximation methods can be extended to tensor product surfaces in the 

same way that the Bezier and B-spline curve definitions were used as a surface 

basis. A singular disadvantage is that /3-spline curves do not pass through any 

control points (including the end-points). NURBS provide difficulties for the user 

as they introduce many control points.

2.2.4 Shape description requirements

Generally, shape representations have two different uses, an analytic use and a 

synthetic use. Representations are used analytically to describe shapes that can 

be measured; just as a curve can be fitted to a set of data points, a surface can 

be fitted to the measured properties of some real objects. The objective of such 

representations may be to achieve a precise fit, to minimise the number of mea­

surements required, to represent the shape in a very compact form, to simplify 

the computation of derived properties such as areas and volumes, etc. Synthetic 

uses of shape representation are encountered in design. A designer interactively
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creates or modifies a model of a shape, examining and improving the design until 

it is acceptable. The objectives for synthetic uses of shape differ from analytic 

objectives: we are primarily concerned with expressing shape modifications eas­

ily in an interactive program, with the freedom to explore many very different 

alternative shapes.

In this thesis, our treatment of the mathematical techniques applied to the 

modelling of shape will concentrate on the synthetic approach. In this approach 

we require a clear understanding of the user’s needs and the constraints of the 

application.

2.3 Related Work

The related work is in two main parts: the first part discusses related work in 

the area of surface modelling; the second part discusses models for the growth 

of surface features. We also present the limitations and restrictions of these 

modelling techniques.

2.3.1 Free form surface modelling

Free-form surfaces are proven to be important in computer-aided geometric mod­

elling and are met in many cases of practice. The goal for interactive modelling 

of free-form surfaces is to make it easy for the user to control the shape of the 

surface.

Recently, many attempts have been made to manipulate surfaces. Some in­

teresting results have been obtained using implicit equations [Seder95], mathe­

matical frameworks [Skala97], convex parametric surface patch fitting [Juttl98], 

partial differential equations [Ugail99], and boundary element methods [Doug99].
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However, all of these methods require many surface details and are not easily con­

trolled. The interactive design technique we defined here should allow the user 

to manipulate the surface effectively with a minimal number of control points.

Classic mesh methods are widely used to model complex smooth surfaces 

such as those encountered in cloth and human character animation [Provo95]. 

There are some differences between the nature of these two kinds of surface. The 

cloth is elastic, stretchable and distortable. However, a natural plant organ, such 

as a flower petal, is distortable, but not elastic, or stretchable. In addition, a 

plant organ is stiffer than cloth. The most important feature of a plant organ 

is that it grows, which is not equivalent to stretching. Growth involves size 

change, shape change and mass change, and maybe even distortions if there is 

any external intervention or any obstruction. It is therefore essential that our 

model is sufficiently rich to enable such growth to be animated.

The collision and deformation of a free-form surface model remains a chal­

lenging area because of the controlling flexibility of the surface. Therefore, we 

need to choose a surface model with easy access to collision detection and de­

formation. Let us look at the related work in the collision detection area. The 

algorithm in [Krish97] formulates the intersection problem algebraically, com­

putes the projection of the intersection curve as an algebraic plane curve, and 

evaluates it. The further detection involves the efficient computation of surface 

intersection. It proposes a matrix representation for the intersection curve and 

computes it accurately using matrix computations. It computes a start point on 

each component of the intersection curve, detects the presence of singularities, 

and finds all the curve branches near the singularity. The idea can be applied in 

our detection method. However, more efficient algorithms must be developed for 

interactive modelling.
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2.3.2 Growing surfaces

The other important requirement for our surface model is that it can grow. There 

are several related growing surface models. One major area of interest is for 

animals and its organs, the other is for plant growth.

Durikovic describes a growth model for the stomach. He presents the shape 

of the organ by a number of ellipsoidal clusters centred at points on the skeleton 

[Durik98a]. He also introduces several tables with which to store the database 

of statistical geometry of organs, such as size, growth speed, among others. The 

method simply uses the model to generate the shape from the stored data, thus 

it does not provide natural growth control. This method is therefore unsuitable 

for a continuous growth model.

Recently, many attempts have been made to simulate the development of 

plants, trees and botanical structures. Some interesting results have been ob­

tained using branching process constructions [Aono84a], particle systems [Demko85a], 

ramification matrix of trees [Vienn89a] and strand internal vascular structure on 

trees [Holto94a, Weber95a]. A virtual plant system has been generated by para­

metric L-systems, which is a recursive technique, and can model highly complex 

and irregular structures [Prusi90a]. Mech built a modelling framework to simu­

late and visualise a wide range of interactions at the level of plant architecture 

[Mech96a]. Fowler uses spiral phyllotaxis to model flowers [Fowle92a]. However, 

most of this work has focused on a target structure and ignored the transient 

stages of plant growth and development. The main problem with these systems 

is that they do not support level-of-scale simulation. In the main, zooming in 

would expose poor images. If we assume that the user is in complete control 

of level-of-scale operation, then we must carefully model the surface features of

28



the plant and all transient stages during the development of the plant. Level-of- 

scale operations are increasingly important in virtual environments, therefore we 

should reject any method which is unsuitable for this requirement.

2.4 Shape Representation

2.4.1 Major points for choosing the m odelling and repre­

sentational m ethod

Many factors need to be considered when choosing the right representational 

method for the model. These are:

• The generality of the representation. W hat are the limitations on the type 

of three-dimensional shape that can be represented?

• The relative difficulty in building or specifying the initial structure.

• The data storage requirements.

•  The ability of the method to accommodate an interactive editing scheme.

• The ease of rendering the object.

• The generality of the method with respect to applications.

2.4.2 Shape representation

From the related work described in the last section, we found drawbacks and 

limitations from those techniques implemented in their work and concluded that 

they are unsuitable for our flower petal surface modelling. W ith the criteria
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described above, there is an alternative technique for our petal surface. It is the 

bicubic parametric patch. We present the reasoning behind this choice below.

A real object (or a physical model of a real object) can be represented by a 

net or mesh of patches, but the representation may not be exact. It is possible 

to model subtly shaped objects such as a human face with a net of patches. An 

adequate representation of such an object using a polygon mesh would need an 

extremely high polygonal resolution. The real value of the representation here is 

that it can be used to transform an abstract design, built up within an interactive 

program, directly into a physical reality. The description can be made to control 

the petal surface growth without any human intervention. It is this single factor 

more than any other that makes bicubic parametric patches important.

The apparent advantages of this representation over the polygon mesh repre­

sentation are:

• It is an exact analytical representation;

• It has the potential of three-dimensional shape editing;

• It is a more economical representation.

To match all the factors considered in the last section when choosing the right 

representational method for our model, we make the following comments:

• A bicubic patch with sixteen control points can only represent fairly sim­

ple surfaces. However, we will show this is sufficient for our flower petal 

application in the area of perceptually realistic modelling.

• The way we position the control points on the bicubic Bezier patch provides 

easy access to the structure. The deformation of any part of the structure 

can easily be introduced by using the relevant control points.

30



• It is obvious that bicubic patches are very economical to store as only 

sixteen control points are used.

• By modifying the standard structural model with force control and mass- 

spring nodes, we are able to provide much better user control.

• Bicubic patches are easily rendered with ray tracing.

• With the particular growth feature for our surface model, the bicubic patch 

representation method will be an efficient way for our application.

Given these advantages it is somewhat surprising that this form is not the 

mainstream representation in computer graphics. It is certainly no more difficult 

to render an object represented by a net of patches and so we must conclude 

that perhaps its lack of popularity in mainstream computer graphics is due to 

the mathematical formalisms associated with it. However, with our improved 

structure modelling and biological force control, bicubic patches are shown to be 

a wise choice for our application. The details of the petal surface modelling will 

be discussed in the later chapters.

2.5 Perceptually Realistic M odelling

To understand our model completely requires knowing some general concepts for 

visual perception [Sekul94a] and the ways all the constituent components needed 

by our model interact with each other. A complete understanding of perception 

must include a thorough description of the appearances of objects or events. To 

describe how things appear to us, we must specify how our senses detect and 

recognise objects.
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The aim of an interactive animation system is to create an exciting and real 

experience for viewers, to give them a feeling of immersion, of “being there” . A 

visual experience must be created for them that mimics the events that happen in 

their real environment, or that matches their expectations of what might happen 

in an environment that they have never experienced (e.g. in space, or a high-speed 

racing car, or a virtual world that may not exist in the real world).

In this section, we build up the requirements for the generation of plant com­

ponents’ structure and their growth models. Because we are interested in per­

ceptually realistic models, we do not necessarily have to specify the requirements 

of that found in the real world. Measure of scale may also be taken into account 

in this specification.

2.5.1 Perceptually realistic generation

We are viewing perception as a dynamic process in which sensory messages play 

an integral but subordinate part. From visual perception theory [Bruce96a], we 

can build up the ideas about accuracy requirements for our generation model.

Firstly, human perceptions tends to perceive the shape and size of an object 

as constant, even when it is viewed from a different position, or when the object 

has changed slightly.

Secondly, humans perceive a moving object less well than a static object. The 

faster the object moves the less detail we can perceive. It means that we cannot 

catch very fast movement. Thus, we must choose a suitable time step for the 

growth animation in our model.

Thirdly, humans are better at perceiving changes in the continuous part of an 

object, than changes at discontinuity points. Thus we must ensure growth model
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can always generate a smooth surface.

Finally, we find it easier to perceive three dimensional objects with complex, 

asymmetrical and discontinuity features. So, in a group of 3D objects, we will 

perceive the one that is changing in a more complex fashion, faster than the ones 

changing in a simple fashion.

From the above relevant analysis for our visual perception, we can see that 

the acuity criteria for our model can be adjusted to match the specific computer 

simulation that we require. It provides the possibility, in some cases, to have 

realistic plant generation without considering the biology details.

It is known that the biological control mechanisms for plant growth are compli­

cated and cannot in general be formulated as a mathematical model. Therefore, 

it is unlikely that we can find a formulation that will enable us to simulate all 

the biological detail found in flower growth. Instead, we concentrate on finding 

simple methods, mathematical or empirical, that will give us plant simulations 

that are perceptually realistic. As surface changes in a flower are the most read­

ily perceived by a typical observer, we will concentrate our research on achieving 

realism in surface changes that occur during the growth cycle of a flower.

Perception is not the passive processing of information through specific chan­

nels; obviously it is an active process. Other models of perception—particularly 

those based on a computer simulation of the coding and encoding of input— 

have often failed to acknowledge the active role of the perceiver. We present 

the perceptual model with the lower acuity requirements for a smooth surface 

growth changing by the analysis from the visual perception system, which tends 

to perceive constant, slow, continuity and good shape characteristics.
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2.6 Conclusions

In this chapter, we have presented the goal of our model and the model design 

requirements for the user. With the illustrations of the curve and surface theory, 

we analyse and compare the advantages and disadvantages of the representation 

methods for surfaces. We emphasised the need for these surfaces to represent 

static flower models, and to be able to simulate a biological life-cycle for the 

plant.

From the considerations of mathematical, computational and complexity anal­

ysis, we have chosen bicubic Bezier patches for our surface model. The reasons 

are listed that show this choice is an efficient method for our application. In later 

chapters we will develop these arguments to demonstrate the utility of our choice.

Our reviews of related work have suggested that insufficient research has been 

previously undertaken in the flower growth animation for virtual environments. 

From the natural and biological standard point, existing techniques, such as L- 

systems, are inappropriate if the requirement is realistic biological animation. 

We must conclude that further research is needed to enable detailed animation 

of plant forms to be achieved.

We have initiated the discussion for the goal of the perceptually realistic 

model. By introducing certain structural cues, we have indicated that surface 

representations are an important component in the desire to achieve overall plant 

life-cycle events.
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Chapter 3 

Modelling for the Spiral 

Phyllotaxis

3.1 Introduction

This thesis focuses on the simulation of flower growth through all transient stages 

from a bud to the fully developed flower. Thus, we need to develop methodolo­

gies that support this simulation, to ensure that we achieve realistic results for 

time transient behaviours. In this chapter we introduce some important bio­

logical background materials which support the growth stages described in this 

thesis. Most of what we describe are related to flower centre and petals position 

arrangements.

A number of models have been introduced over the past few decades for pro­

ducing realistic images of organic structures such as trees, flowers, fruits and 

shells. Parametric L-systems are recursive algorithms that can model highly 

complex and irregular structures such as trees, while collision-based spiral phyl­

lotaxis systems [Fowle92a] can model complex but regular structures, such as the
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placement of petals and seeds on a flower head.

In fact, we live in a universe of patterns, just like no two snowflakes are ever 

exactly the same, but they all have sixfold symmetry. By using mathematics to 

organise and systematise the rules of natural processes, we can build the best 

models for interactive virtual environments.

Plant organs are often arranged in spiral patterns. This effect is termed spiral 

phyllotaxis. Weil known examples include the layout of seeds in a sunflower 

head and the arrangement of scales on a pineapple. In this chapter, we begin 

by defining the phyllotaxis theory for plant components and conclude with the 

application of these methods to the growth development of flower centres and 

petals that we simulate in this thesis.

The arrangement of leaves, petals, and other organs in plants has a large and 

distinguished literature. But early approaches to plant development are purely 

descriptive, they do not explain the physical characteristics of plant growth, they 

just describe the geometry of the arrangements of the plant organs. In the last 

ten years, some graphics researchers started to simulate plant development with 

different models. The collision-based model [Fowle92a] describes distribution of 

flower initial parts, or primordia, on a supporting surface, called the receptacle, 

which determines the shape of the entire structure. Although the model operates 

correctly for various combinations of receptacle shapes and primordia sizes occur­

ring in nature, it does not provide ready-to-use formulae relating the arrangement 

of spirals to the geometry of the receptacle and the sizes of primordia. In nature, 

individual flowers touch each other, which modifies their positions and shapes. 

This effect is not captured by the present collision-based model, since collisions 

are detected only for primordia. Consequently, the mature organs must be care­

fully modelled and sized to avoid intersections. This is feasible while modelling
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static structures, but proper simulation of collisions would become crucial in the 

realistic animation of plant development. We will extend the application of phyl­

lotaxis from seeds on the flower centre to the flower petals, which helps to arrange 

the petal in priority order and respond to petal surface collision correctly. We 

will explain these in detail from the basic phyllotaxis theory to implementations 

in the whole flower structure.

3.2 Basic Phyllotaxis Theory

If you look at the tip of the shoot of a growing plant, you can detect the organs 

from which all the main features of the plant develop, such as leaves, petals, 

sepals, florets, or whatever. At the centre of the tip is a circular region of tissue 

with no special features, called the apex. Around the apex, one by one, tiny 

lumps form, called primordia (figure 3.1). Each primordium migrates away from 

the apex -  or, more accurately, the apex grows away from the lump -  and even­

tually the lump develops into a leaf, petal, or the like. Moreover, the general 

arrangement of those features is laid down right at the start, as the primordia 

form. So basically all we have to do is explain why you see spiral shapes and 

arrangements that satisfy Fibonacci numbers in the primordia.

The first step is to realise that those spirals most apparent to the eye are not 

fundamental. The most important spiral is formed by considering the primordia 

in their order of appearance. Primordia that appear earlier in the formation 

migrate farther, so you can deduce the order of appearance from the distance 

away from the apex. W hat you find is that successive primordia are spaced rather 

sparsely along a tightly wound spiral, called the generative spiral. The human 

eye picks out the Fibonacci spirals because they are formed from primordia that
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Figure 3.1: Primordia on plant apex

appear near each other in space; but it is the sequence in time that really matters.

Phyllotaxis (alternative, phyllotaxy) is the term applied to the sequence of 

origin of leaves on a stem. The phyllotaxis of any one plant, or at least any one 

shoot on a plant, is usually constant and often of recognisable value. The relative 

positions of leaves on a plant must affect the interception of light and, more im­

portantly, the position of a leaf usually fixes the position of its subtended axillary 

bud. Thus the phyllotaxis of a plant can play a considerable role in determining 

the branching pattern of a plant, particularly for woody perennials. The study of 

phyllotaxis has led to an extensive terminology and also to a preoccupation with 

the Fibonacci series [Bell91]. This is because most natural phenomena show the 

relationships between phyllotaxis and Fibonacci series.

3.2.1 Spiral phyllotaxis

Phyllotaxis applied to leaves is very complicated. However, it is customary to 

describe the phyllotaxis of plants having the following patterns as: distichous 

(figure 3.2); tristichous (figure 3.3); and spiral (figure 3.4 and figure 3.5) in terms 

of a fraction, i.e .|, | ,  | ,  etc. This fraction is a measure of the angle around 

the stem between the points of insertion of any two successive leaves. Thus in
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Figure 3.2: Phyllotactic arrangement:distichous

Figure 3.3: Phyllotactic arrangement:tristichous

|  phyllotaxis (tristichous) there is |  * 360° =  120° between two longitudinally 

adjacent leaves, in |  phyllotaxis there is |  * 360° =  144° between two successive 

leaves (figure 3.6). An imaginary line can be drawn spiralling around such a stem 

which passes through the point of attachment of each next youngest leaf in turn. 

This is termed the genetic spiral (figure 3.6 and figure 3.7).

An estimate of the phyllotactic fraction can be found by following the genetic 

spiral around the stem from any one older, lower, leaf to the first younger leaf 

directly in line above it. Leaves seen to be arranged in a common longitudinal 

line are said to lie on the same orthostichy. The example of |  phyllotaxis (figure 

3.6) has five orthostichies. In figure 3.6 the lower leaf will be given the number 

0 and the leaf arrived at vertically above it will be found to be number 5. The 

genetic spiral will have been found to have passed twice around the stem giving 

a fraction of |  and hence an indirect measure of 144° between any two successive 

leaves.
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Figure 3.4: Phyllotactic arrangement:spiral

Figure 3.5: Phyllotactic arrangement:spiral
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144

Figure 3.6: |  phyllotaxis, the arrows follow the genetic spiral, positions 0 and 5 
lie on the same orthostichy.

2

Figure 3.7: |  phyllotaxis, the arrows follow the genetic spiral, positions 0 and 8 
lie on the same orthostichy.
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In figure 3.7 the phyllotactic angle is 135° ( | ,  i.e. leaf 8 is above leaf 0 

and reached by passing three times around the stem). The ease with which this 

measurement can be made may be more or less confused by the amount of intern­

ode twisting or leaf primordium displacement that has taken place as developing 

leaves become shifted away from initially precise orthostichies. These biological 

theories are also applied to the arrangement of flower petals. So our system has 

to cope with different angles for different petal numbers. The relationship be­

tween the phyllotactic angle and petal number is similar to the fraction described 

above. More details are followed in the next section.

The phyllotactic fractions almost invariably found in plants with spiral phyl­

lotaxis are:

1 1 2 3 _5_ _8_ 13
2 3 5 8 13 21 34 ........

which represent angles of:

180° 120° 144° 135° 138°28' 137°6' 137°39' .......

3.2.2 Fibonacci numbers and petal numbers

The presence of the Fibonacci series and hence the golden ratio in the phyllotaxis 

of plants has led to much investigation and many explanations. A logarithmic 

spiral can be extended indefinitely outwards or inwards and is therefore always 

of the same shape regardless of its dimensions. The shell of a snail forms such a 

spiral. As the animal increases in size it occupies a progressively larger volume. 

However, both the animal and its shell retain the same shape regardless of size. A 

similar growth phenomenon takes place at the apical meristem1 of a plant when

leaf primordia of initially small size develop but of necessity occupy the same

1 All plant growth originates in localised regions of perpetually embryonic tissues; these 
regions are called meristems. Meristems located at the tips of all roots and shoots are called 
apical meristems.



proportion of the apex surface. The consequence of this packing of enlarging 

organs can be seen on a pineapple fruit or on the inflorescence head of a sunflower. 

All the sunflower seeds are the same shape but not the same size. Furthermore, 

they are arranged in radiating spiral rows; two directions of rows are visible, one 

set clockwise and one set anticlockwise. These rows are termed parastichies and 

form logarithmic spirals. All the spaces between these intersecting logarithmic 

spirals are the same shape regardless of size.

Developing leaf primordia enlarging at a growing shoot apex similarly con­

tinue to fit comfortably together as they expand in basal area and will inevitably 

form two sets of interlocking parastichies in the process. This uniformity of shape 

resulting from logarithmic spirals does not occur unless the number of parastichies 

in each direction conforms to the Fibonacci series. Thus counts of rows on sun­

flower heads, or pineapple fruit, conform to the following series: 1, 2, 3, 5, 8, 13, 

21, 34 etc. in one direction and 2, 3, 5, 8, 13, 21, 34, 55 etc. in the other direction. 

Intermediate combinations do not occur and would result in distorted structures. 

This series is complementary to the series giving a measure of the angle between 

any two successive leaves on the genetic spiral as it gives a measure of the angle.

It seems that there is some kind of dynamic constraint on plant development, 

which naturally leads to Fibonacci numbers. That is the reason we take the 

Fibonacci numbers as the possible petal numbers and set their proper phyllotactic 

angels in the implementation. However, the user would have an asymmetrical 

flower if he requires an odd number of petals, such as seven. In the following 

sections, we start to describe the spiral model implemented on the flower head.
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Figure 3.8: Archimedes’ spiral

3.3 Spiral Model

3.3.1 Description for the models

A spiral is a plane curve traced out by a point which winds about its pole with 

continually increasing radius. We explain it here with a few functions. A mono­

tonic function p =  F(k) is any function for which increases in k correspond to 

increases in p. The increments by which k is increased at each time interval must 

be small enough to give the effect of a smoothly flowing curve. Here are three 

such spirals ( where C  is some constant ):

a. Archimedes’ spiral

p = C * k  (3.1)

b. The equiangular spiral

c. Fermat’s spiral

=  C* (3.2)

p =  s /c V k  (3.3)
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Figure 3.9: Equiangular spiral

Figure 3.10: Fermat’s spiral
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Spiral a (see Figure 3.8) increases its radius by the same amount on every turn. 

Spiral b (see Figure 3.9) is called the equiangular spiral because its path continues 

to make a constant angle with the radius. It is also called the logarithmic spiral, 

and each turn brings about a proportional increase in radius. Sea shells and snails 

display this shape very clearly. Spiral c (see Figure 3.10) has the property of 

enclosing equal areas with every turn, and we shall use this property to construct 

the phyllotaxis here. It is because the flower head expands at equal area with 

each turn, thus the Fermat’s spiral formulation is suitable for the flower head 

development.

3.3.2 Im plem entation of spiral models

The first implementation operates in a plane and was originally proposed by

Vogel [Vogel79] to describe the structure of a sunflower head. The formula is:

Q =  k * 137.5° (3.4)

p =  DVk (3.5)

where:

• D  is some constant.

• k is the ordering number of a seed on the sunflower head, counting outward 

from the centre.

•  6 is the angle between a reference direction and the position vector of the kth 

seed in a polar coordinate system originating at the centre of the capitulum.
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Figure 3.11: Phyllotaxis on a plane

It follows that the divergence angle between the position vectors of any two 

successive seeds is constant, 137.5°.

• p is the distance between the centre of the capitulum and the centre of the 

kth seed, given a constant scaling parameter D.

The divergence angle of 137.5° is related to the Fibonacci series and the 

golden mean (A fact first emphasised in 1837 by the crystallographer Auguste 

Bravais and his brother Louis [Stewa95]). Equation (3.5) is the same as (3.3). 

Our implementation uses the following equation with the right-handed coordinate 

system:

x  =  p cos 6 (3.6)

y = psinO (3.7)

z =  0 (3.8)

In the implementation (Figure 3.11), the small sphere represents the organ of 

the phyllotaxis structure. From our experiments, the value of constant D  must



Figure 3.12: A capitulum based on Archimedes’ spiral

be greater or equal to 1. And the distance between two spheres along the spiral 

and the gap of the spiral increases when D  is increased.

As a comparison, we tried using Archimedes’ spiral to construct the phyl- 

lotactic pattern (Figure 3.12), that is changing \ /k  to fc in equation (3.5). For 

the same value of constant D , its distance of spheres is much greater than using 

Fermat’s spiral. The difference of this pattern is that the sphere numbers appear 

twice as large as with Fermat’s spiral or with reality. From the observation of a 

flower head, the Fermat phyllotactic pattern is a more realistic method to model 

a compact flower centre.

The above implementations are planar models, as all the components are on 

the same plane (2=0). However, in nature, most flower heads are not on a flat 

plane surface. They normally have a slightly cone-shaped centre. In the following 

section, we start with the basic cylindrical phyllotaxis model, then describe how 

to generate a cone-shaped phyllotaxis.
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3.3.3 Cylindrical model

The spiral patterns evident in elongated organs such as pine cones, fir cones and

pineapples, can be described by models that position components, in this case

scales, on the surface of a cylinder [Prusi90a]. The formulas are:

6 =  k * a  (3.9)

p = const (3.10)

H  = h*  k (3-11)

where:

• k is the ordering number of a scale, counting from the bottom of the cylin­

der.

• 9, p and H  are the cylindrical coordinates of the kth scale.

• a  is the divergence angle between two consecutive scales (as in the planar 

case, it is assumed to be constant).

•  h is the vertical distance between two consecutive scales (measured along 

the main axis of the cylinder).

Our implementation of the above model is achieved by making a choice for 

the a  (we still can use 137.5°) and changing the equation (3.8) to:

z = H  (3.12)

Figure 3.13 shows the structure of a pineapple using spheres as organs.
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Figure 3.13: A cylindrical model

3.3.4 The whole spiral phyllotaxis on flower head

We now consider how to model a sunflower’s head using spiral phyllotaxis. The 

seeds of the sunflower head are not placed on a flat plane, therefore we cannot 

simply apply the spiral planar phyllotaxis model.

At first, we tried to generate the flower head model from the cylindrical model. 

The constant p is replaced by a function corresponding to the k. That is, the 

equation (3.10) is changed to:

Pk+1 =  Pk ~  C  (3.13)

where C is a small constant, the horizontal distance between two consecutive 

components.

However, we obtained a cone-shaped spiral phyllotaxis (Figure 3.14) which of 

course can be observed in some tree structures, but normally is not suitable for 

the flower head. It is because the flower head boundary is a curve shape, not two 

straight lines.
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Figure 3.14: Cone-shaped spiral phyllotaxis

The simplest method for this kind of model is the combination of the planar 

and cylindrical spiral models. The planar model is the basis of this model. The 

formulas are (3.4),(3.5)and (3.11):

9 = k*  137.5° (3.4)

p = Ds/k(3.5)

H  = h*k(3.11)

Where D and h are constants controlling the shape of the phyllotaxis.

Figure 3.15, 3.16 and 3.17 show the sunflower head generated from the pre­

sented model. Each small sphere represents the seed on the flower head. We can 

see from the figure 3.16 that the model is not on a plane surface and it has a 

natural cone centre.

This combination model is not limited to the surface of a disk or a cylinder. 

In contrast, it can implement different plants by adjusting the constants and the
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Figure 3.15: Spiral phyllotaxis on sunflower head

Figure 3.16: Spiral phyllotaxis on sunflower head, viewing from horizontal

Figure 3.17: Spiral phyllotaxis on sunflower head, viewing from above
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Figure 3.18: Flower: Rudbeekia Maxima

Figure 3.19: Cone flower head

characteristics of the components. For instant, we can obtain this flower head 

(figure 3.18) when h is increased which causes the increase of the curvature in 

the plane, as shown in figure 3.19.

We can also simulate the growth of the flower centre by connecting the time 

factor with the sphere radius and phyllotaxis constants. Figure 3.20 shows the 

change of a centre from a small bud (a) to a fully open flower (c). The combination 

of these centre growth and petal change shows a realistic whole flower growth.
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(c)

Figure 3.20: Growing flower centre

3.4 Phyllotaxis Applied in Flower Petals

Spiral phyllotaxis may be applied to flower petals in two main areas:

The first one is the arrangement of the petals, this includes the initial start 

point of the petal and the positions of all the petals. It is supposed that the 

whole flower head is under the spiral phyllotaxis rule. So the first petal will be 

put to the position after the last flower seed on the flower head. When we locate 

the flower petals, we also need to consider the angle and the priority of the order, 

which is essential for the collision detection and respond. For example, if the 

flower has five petals, the second petal should be located to the position when 

the angle with the first petal is 144°, as shown in figure 3.6, instead of 72° (which 

is 360° divided by 5).

The second use of phyllotaxis is for the petal collision and overlapping of 

petals. The phyllotaxis position of the petals will decide which petal has prior­

ity and which one will be overlapped depending on collision. Furthermore, the 

method automatically positions the petals according to this priority to meet the 

collision response.

3.4.1 Examples

As shown in figure 3.21, the whole flower grows with the growth of the centre 

and the petals. The flower centre expands in harmony with the growth of the
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Figure 3.21: Growing flowers with centre

petals. The petal starts to be located from the last seed on the head, then growth 

of the seeds on the flower centre is obtained using the phyllotaxis theory. The 

divergence angle between consecutively formed organs (measured from the centre 

of the structure) is close to the Fibonacci angle of 360°T-2 «  137.5°, where 

T  =  (1 +  \/5)/2. However, the angle between the consecutively formed petals is 

144° which is explained in the last section. There is no collision for the petals 

in this example, this phenomena will be shown after we describe the collision 

detection and respond in the later chapters.

3.5 Conclusions

Of course, nobody is suggesting that botany is quite as perfectly mathematical 

as the phyllotaxis model presented here. In particular, in many plants the rate of 

appearance of primordia can vary considerably. In fact, changes in morphology 

(whether a given primordium becomes a leaf or a petal) often accompany such 

variations. So maybe what the genes do is affect the timing of the appearance of 

the primordia. But plant do not need their genes to tell them how to space their 

primordia: that is done by the dynamics. However, by using a mathematical
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model to summarise the biological rule, it provides us with a possible method to 

build a natural virtual environment.

In this chapter, we have presented some important biological background 

materials for the whole model. With the comprehensive reviews of the phyllotaxis 

and Fibonacci theory for plant organs, we built the spiral phyllotaxis model for 

a flower head. This gave a simple explanation of how the positions are achieved 

for the seed on the flower centre and also the positioning of petals.

We concluded the chapter with illustrations of the growth development for 

the flower centre and petals using spiral phyllotaxis.
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Chapter 4

Surface Modelling for the Flower 

Petal

4.1 Introduction

In this chapter, we propose a method for generating flower growth animation in 

which petal surface and shape can be changed simultaneously in real time. We 

represent a flower petal as a set of control points defining a bicubic patch.

In the real world, changes of shape are very common. Although you might 

think that a change of scale also implies a change of shape, a change of scale does 

not constitute a change of shape in the sense meant here. Scaling an object makes 

it uniformly longer or shorter in one or more directions, but it does not alter the 

configurations of the surface. In order to achieve any kind of successful animation, 

we have to be able to animate changes in an object’s shape. Animating a shape 

change involves animating the positions of the points that define the surface of 

the object. So it is very important to choose a surface representation which is 

suitable for the animated object and with easy access to control points.
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It is obvious that petals or leaves change in shape and form during their life 

cycle, it is important to construct a suitable dynamic surface model to repre­

sent this life-cycle. Some such surface models have been developed over the past 

decade. Guo describes a method for reconstructing an unknown surface [Guo97a] 

from a set of scattered points. Welch presents a method [Welch92a] for the inter­

active modelling of free-form surfaces, where the user is free to manipulate the 

control points to obtain different shapes for the same surface with constraints. 

Durikovic presents the shape of the organ by a number of ellipsoidal clusters cen­

tred at points on the skeleton [Durik98a]. He also introduces several tables with 

which to store the database of statistical geometry of organs, such as size, growth 

speed, among others. However, these surface representations with predefined fi­

nal shape or data sets are not suitable for our petal surfaces. In our system, 

the final shape of the petal surface is not predetermined, and in addition, the 

surface can be constructed and controlled with the growth functions and user’s 

interventions. In order to obtain this flexible and controllable surface, we will use 

a bicubic patch with sixteen control points for the petal surface. We start with 

a basic description of a flower petal shape, then describe the petal surface model 

in detail, along with the controlling method and important model features.

4.2 Flower Petal Shapes

4.2.1 Flower structure

Most flowers contain two sets of sterile appendages [Holm79], the sepals and 

petals, which are attached to the receptacle below the fertile parts of the flower, 

the stamens and carpels (see figure 4.1). The sepals occur below the petals,
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Figure 4.1: Flower structure

and the stamens below the carpels. The sepals and petals are essentially leaflike 

in structure. Commonly, the sepals are green and the petals brightly coloured, 

although in many flowers both parts are similar in colour. The purpose of petals 

is to attract insects or animals. And in some cases, plants have evolved highly 

specialised flowers to attract only one species of insect or animal. Petals therefore 

vary enormously, and they tend to be more fully developed in flowers pollinated 

by animals.

A typical petal life-span is usually just sufficient until the flower has been 

pollinated. Then, they wither, usually quite quickly, and fall. But if pollination 

does not take place, the petals may remain on the flower for some time. Orchids 

have both the longest and shortest living flowers: nine months (Grammatophyl- 

lum multiflorum) and five minutes (Dendrobium appendiculatum, in which all 

the flowers open simultaneously and mass pollination occurs).
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Figure 4.2: Base leaf shapes

4.2.2 Petal shapes

There are two major petal shapes:

•  Leaflike shape petal

The base leaf shapes [Benso79] are shown in the figure 4.2:

Most of these shapes are easy to model with one bicubic patch. The diffi­

culty is to show the surface changing in detail especially the ruffled edge.

•  Evolutionary shape

This mainly includes non-divided or part-divided petals and pollinated 

shape petals (shape change involved structural features developed to ex­

clude some pollinators). For example, long strap-shaped petals in species 

such as the sunflower, daisy and black-eyed Susan. In addition this also in­

cludes the cuplike lip, a petal modified into a landing platform for insects, 

such as in the orchids 4.3.
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Figure 4.3: Orchid photo

In our system, we focus on a leaflike petal shape. In principle, our system 

could model evolutionary shapes, though this is beyond the scope of the work 

presented here. However, same issues involved in modelling evolutionary shapes 

are discussed in the conclusion.

4.3 Surface Representation

To achieve a realistic result for the development of a bud into a flower, it is in­

evitable that the petal model must possess aspects of the complexity of a real 

petal. The model needs to provide satisfactory surface continuity and smooth­

ness as the flower develops. This presents problems for the construction of the 

3D model for our simulation. Building a model of this complexity using tradi­

tional polygonalization techniques would involve prohibitive storage and process­

ing overheads, therefore alternative methods must be used.

4.3.1 Bicubic surface patches

Prusinkiewicz and Lindenmayer showed how plant components, such as stamens, 

petals, leaves, seeds, can be built out of bicubic patches [Prusi90a]. A patch is 

defined by three polynomials with degree three, with respect to parameters s and
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t .  The following equation defines the x  coordinate of a point on the patch:

3?(s, t) — CL\\S^t^ “h C L\2^t^ T 0 \% S^t +  tti45̂  H-

< 3 - 2 1 +  CL22S*t* +  0,23 +  fl24^2 +

tt31 St^ +  G32 St*  +  G33 S t  +  (I34 S +

^41  ̂T G42̂ 2 T O ^ t  -f- (X4 4

Analogous equations define y ( s ,  t )  and z ( s , t ) .  All coefficients are determined 

by interactively designing the desired shape. Complex surfaces are composed of 

several patches.

4.3.2 Bezier patch

Just as with two dimensional curves, three dimensional patches may use a variety 

of control strategies, including Bezier, Hermite, and B-Spline bases. As described 

in the previous chapter, a Bezier patch requires sixteen control points. The 

four corner points control the position of the patch and lie on its surface. The 

intermediate twelve points control the tangents to the patch along the edges and

at each corner and may be used by the designer to “pull” the surface of the patch

into the shape desired (figure 2.2) [Farin88a, Barte87a].

The Bezier form of the bicubic parametric patch has a very concise matrix 

formulation specifying a vector point, P (s, t ) ,  on the surface in terms of the 

sixteen control points. This relationship is expressed as [Fireb93a]:

P (s,t)  = S B P B t T t  (4.1)

where:
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s  =

B  =

s3 s2 s 1 (s parameter row vector)

-1 3 - 3 1

3 - 6 3 0
(Bezier coefficient matrix)

- 3 3 0 0

1 0 0 0

Poo Poi P02 Po3

Pio Pi 1 P12 P\3
(Control point matrix)

P 2 0 P21 P22 P23

P 3 0 P31 P32 P33

P  =

B T = Transposed B  matrix (switch rows and columns) 

t 3

T T =
i2 

t 

1

(Transposed t parameter vector)

For a regular and symmetrical petal, we can keep Poo, Poi, Po2> P03 one 

control point, thus making the control easier. To make it simpler, P30, P3 1 , P3 2 , P33 

could be combined as one point if the top of the petal is a discontinuity point. 

Then it forms the lanceolate shape in figure 4.2. However, spreading the control 

points enables more controls for more complex surface shapes. As shown in 

figure 4.4, four control points are located at the bottom of the petal while the 

base portion of the petal is simple. The other two groups of four control points 

usually control the middle part of the petal. The last four control points play an 

important role in shaping the upper part of the petal when they are located at the 

top of the petal. When we consider the structure for the petal surface, we need 

to pay attention to where the discontinuity points are, in which the two groups 

of the four control points can be joined, forming a corner control point. The part
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P  0 0 -0 3

Figure 4.4: Petal structure with sixteen control points

of the surface formed by the same group of four control points will generate a 

smooth and continuous curve. So the surface structure will be changed if the 

discontinuity points are different. We will show this effect in the next section.

4.3.3 Advantages

Bicubic Bezier patches have become a popular tool for surface modelling. The 

obvious advantages include:

• Ease of interactivity -  the control point effects are readily observed and 

understood, and the control points themselves are easily modified, either 

numerically or interactively;

• Representational efficiency -  complex surfaces are represented by a very 

small set of numbers.

So this approach is applied here as our preferred method for surface representation 

for our flower petal modelling.

64



Figure 4.5: Symmetrical petal: (a) four control points are at the top; (b) the top 
four control points generate the curve.

4.4 Petal Shape Examples

The bicubic patch allows us to model a wide range of petal shapes. It is therefore 

worthwhile to consider in more detail the shapes we can obtain by this method.

From graphics theory, we know that one group of four control points will form 

a curve (see figure 2.1). As shown in figure 4.5 with two symmetrical petals, one 

group of four control points give the representation of the bottom of the petal. 

In the left petal (a), four control points are on the top of the petal, superposed 

on each other, therefore representing only one position. So the petal will very 

much depend on the remaining two groups of eight control points to pull it into 

the desired shape. The figure 4.6 shows all control points from the back of the 

petal. In the right petal (5), the top four control points generate a curve, which 

will control the top part of the petal. So, the three groups of control points will 

determine the petal shape. From these two figures, it is obvious that the bicubic 

patch is effective in shape control for the petals.
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Figure 4.6: Symmetrical petal: four control points are at the top, four control 
points are on the bottom.

Figure 4.7: Symmetrical petal: (a) the top four control points pull down the 
curve; (b) the middle two control points on the top pull further down.

4.4.1 Controlling shape change

Figures 4.7 and 4.8 show how the control points control the shape of a petal. 

From the same initial bicubic structure, the petal surfaces can be varied from 

the simplest shape shown in figure 4.5(a) to a more complex shape shown in 

figure 4.8(a). This is simply achieved by pulling two control points downwards 

or inwards. Naturally, an asymmetric shape will be obtained when the control 

points are not located symmetrically, as shown in figure 4.8(b).
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Figure 4.8: (a) Symmetrical petal: two control points on the top end pull inward; 
(b) Asymmetrical petal: the position of two top control points are exchanged.

4.4.2 Discontinuities and control points

From the theory of bicubic patches, we know that a group of four control points 

will generate a continuous curve. Thus, if we want a discontinuity point, we will 

have to avoid placing any of the middle control points at the desired discontinuity. 

Instead we must place the corner control points at the discontinuity point. For 

example, if we want to generate the heart-shaped petal (see figure 4.9), there are 

two approaches we can consider when we use one bicubic patch to represent this 

shape. The first approach is to place a group of four control points together at the 

top as the discontinuity point. It is obvious that this will reduce the number of 

control points, which in turn leads to less control for the other part of the surface. 

The second way (shown in figure 4.10) is to use two groups of four control points 

on the left and right site of the petal separately and they are joined on the middle 

top and bottom of the petal as corner control points, just like a diamond shape. 

This has the advantage of retaining all the control points, but has implication 

for the growth of the petal. Thus it requires a slightly different growth rule for 

the surface as we need to make sure the relevant positions of the control points 

maintain a heart-shaped petal.
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Figure 4.9: Symmetrical petal: discontinuity on the top.

Poi

Figure 4.10: Diamond shape arrangement for petal control points

4.5 Description of Petal Surface Change

4.5.1 Factors controlling growth

With the theory for the growth rate, we need to consider what parameters are 

necessary for the petal shape control. However, to enable a non-expert user, 

with only a general understanding of the petal shape, to effectively control the 

petal growth we have restricted the control factors to three. These factors are 

the length, width and curvature growth factors. Increasing the parameter for the 

length factor will generate a longer petal for a given time interval. In a similar 

way, increasing the width factor will generate a wider petal. Finally increased 

curvature factor will accelerate the petal surface curvature growth. These three 

control factors are sufficient to achieve a wide variation of the growth rate and 

surface definition of flower petals.
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For a regular and symmetrical petal, we can locate the sixteen control points 

evenly around the petal. The growth between two groups of four control points 

will be considered as having the same growth rate. For example, if the top four 

control points grow 1 unit value for the time interval, the next group of four 

control points grows |  unit value. The third group grows |  unit value if the 

bottom group control points remain on the petal base.

In summary, the main three growth factors play an important role in changing 

the initial petal structure to the desired final form. For example, the three factors 

allow the user to control a bud growing into a flower with petals of different length, 

width and curvature at all stage of growth.

4.5.2 Im plem entation

In the early stages of this research, the implementation demands a large amount 

of artificial control. We need to set up the growth equation by setting the values 

of the growth rate. The growth rate value in length, width and depth and the 

growth factors for all the control points must be input to calculate the new 

positions after the specified time interval. The selections of all the values in 

these two steps depend upon the desired petal shape. The growth factors for 

some control points need to be reset if their desired surface growth tendency 

is changed. Then the new control points matrix will be generated, and thus 

the patch surface is formed. The coordination of moving the control points are 

controlled by the user. We will refine this user-intensive method and apply an 

improved model in the later stages of this research, as reported in subsequent 

chapters.
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Figure 4.11: Petal growth: length rate:0.8, width rate:0.6, depth rate:0.2.

Figure 4.12: Petal growth: length rate:0.0, width rate: 1.0, depth rate:0.1.

4.5.3 Growth examples

Figure 4.11 and 4.12 show examples of the growth processes. Generally, the 

petal surfaces are getting longer, wider and flatter, thereby opening away from 

the flower centre with increasing time. From these figures, we can see there are 

three major advantages in using our petal surface model. Firstly, varied surface 

shapes can be obtained easily by changing the growth rate value in length, width 

and depth direction or changing the growth function. Consider the flowers shown 

in figures 4.11 and 4.12. In figure 4.12 the flower has wider petals with a greater 

width growth rate. Secondly, the growth tendency can be interrupted by changing 

the growth rate for a particular factor at any time. Again, comparing figure 4.11 

and 4.12, which both have the same growth rate at the beginning of their cycles, 

we see that figure 4.12 terminates with a different shape as a result of increasing
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Figure 4.13: Flower petals at a mature stage

Figure 4.14: Flower petals development after the mature stage

the width growth rate. Thirdly, asymmetrical petals can be obtained by changing 

the position factors for the control points, that is, moving the relative positions 

between all the control points.

Furthermore, the easy user access to the control points and surface shapes 

provides the possibility of generating the petals from any intermediate stage, as 

shown in figures 4.13 and 4.14, with hanging and wrinkled petals. In summary, 

it provides a direct method of surface control. Compared to using predefined 

surfaces or generating surfaces from fixed original and final shapes, this method 

is more flexible and allows th user to exercise considerable creativity in surface 

development.
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4.5.4 Convex hull

As we mentioned previously, we must also consider collisions between petal sur­

faces when we are animating growth. Here we discuss an important feature of 

the petal surface for this task. A Bezier surface has an attractive convex-hull 

property which is very useful for our surface intersection test [Farin88a]. Each 

of the boundary curves of a Bezier surface is a Bezier curve. Considering the 

defining polygon net for the bicubic Bezier surface shown in Figure 2.2, it is easy 

to see that the tangent vectors at the patch corners are controlled both in di­

rection and magnitude by the position of adjacent points along the edges of the 

net. Consequently, the user can control the shape of the surface patch without an 

intimate knowledge of tangent or twist vectors (They are the cross-derivatives at 

the each end-point, specify the rate of change of the tangent vectors with respect 

to u and v (ref chapter 2). They are vectors normal to the plane containing the 

tangent vectors).

A Bezier curve is determined by a defining polygon. The curve generally fol­

lows the shape of the defining polygon, and the first and last points on the curve 

are coincident with the first and last points of the defining polygon. In addi­

tion, the curve is contained with the convex hull of the defining polygon. These 

properties mean that the curve is within the largest convex polygon obtainable 

with the defining polygon vertices. In Figure 4.15, the convex hull is shown by 

the shaded area. The convex hull for 2D curves is the convex polygon formed by 

the four control points. For 3D curves, the convex hull is the convex polyhedron 

formed by the control points.

Analysing the petal growth process from a theoretical viewpoint, we can see 

the control points moving through space and thereby changing the shape for the
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Figure 4.15: Bezier curves and convex hulls with defining control points.

petal by the intuitive definition of a surface. We will now formalise this intuitive 

concept in order to arrive at a mathematical description of a surface. First, we 

assume that the moving curve is a Bezier curve. At any time, the moving curve 

is then determined by a set of control points. Each original control point will 

move through space according to the growth function. Our next fact is that this 

curve is contained with the convex hull.

In Figure 4.16, small spheres represent the control points for the petal patch 

surface. In the first flower, the control points of the adjacent petals are crossed 

over, that is the control points are within the boundary of the adjacent petal, 

not within their own petal. The control points will be moving apart as the flower 

grows and the petal surfaces separate. In Figure 4.17 , the control points of 

the adjacent petals in the upper rectangle are moving apart, which implies that 

the upper part of the petals do not collide. However, in the lower rectangle the 

control points have crossed each other and are therefore out of order, indicating 

that the lower part of the petals may be intersecting. The four control points 

in the vertical boundary of the petal surface also form a convex polyhedron. 

Therefore the collision detection between the two adjacent petal surfaces can be
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Figure 4.16: Petals with sixteen control points

Figure 4.17: Control points crossed over

converted to two horizontal convex polyhedron tests (from the two middle sets 

of control points) and one vertical convex polyhedron intersection test.

If there is no intersection of these polyhedron, then there is no collision be­

tween these two surfaces. If there is an intersection of the polyhedron, then we 

repeat the test on the subdivision convex polyhedron which is closest to the side 

of the adjacent petal surface and recursively repeat this test. So this feature will 

be very useful in cutting the collision computation cost which is discussed in the 

later chapters.
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4.6 Conclusions

In this chapter, we presented the theory of flower shape, the purpose of which 

is to give a good description for the shape of flower components. We have also 

proposed a method for generating flower growth animation in which the petal 

surface and shape can be changed simultaneously in real time. In addition, we 

presented the flower petal shape and petal surface structure theory.

We introduced a smooth surface model with a bicubic patch for the petal, 

which can simulate the surface development with easy access to individual control 

points. At the same time, the factors in length, width and depth represent the 

principle growth for the petal.

This chapter also presented a description of various kinds of surface growth 

control, step by step with analysis of the petal shape changes, and illustrated 

the use and results of some growth factors in some common cases. They may be 

assumed to be fixed relative to the growth surface or to the body being generated.

We concluded the chapter with a discussion of the convex hull feature which 

will be useful for surface collision detection. In summary, we believe that the 

proposed surface modelling method and its extensions will prove useful in many 

applications of plant modelling, from research in plant development and ecology 

to the surface design of plant organs and in the production of animated plant 

models for use in virtual environments. We will discuss further how the flower 

grows with a natural growth function in the next chapter.
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Chapter 5

Flower Growth Functions

5.1 Introduction

In this chapter, we present the theory of growth functions, the purpose of which is 

to give a good description of plant development. In addition, we expand growth 

function theory to enable the growth rate to vary as the petal develops. We also 

develop a graphical representation for plant growth functions and introduce the 

integral equations for growth measurement based on the specific time interval. 

And we also describe the shape control given by the growth function.

We may ask the question: Why do we need a growth function?

Measurement, analysis, and visualisation of plant growth is of primary interest 

to plant biologists. Loomis [Loomi97] developed some software tools to support 

such investigation. Two forms of growth visualisations for plant roots and plant 

stems are presented in his work. Root growth is described by the image-space 

method, which is an adaptation of a parametric deformation method for image 

matching. In this model, a rubber-sheet mapping between two images is formu­

lated to contain the shape change information for the growth. Their plant model
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is a tubular object formed by a 3D spine with a thickness that can vary along the 

length, and provides some parameters to match growth features from the image. 

The growth model and function cannot be applied in the general case or other 

biological models. More complex deformation (such as development of leaves) is 

suggested as future work by the author.

Simulating natural tree features, such as leaves, branching, flowering, etc, that 

are acquired in a growth process still remains a challenging problem. A growth 

model having the abilities of growth-regulations for simulating the visual nature of 

botanical trees was developed by Chiba [Chiba94a]. Since an irregular botanical 

shape is always generated during a growth process by the growth environment, 

such as sunlight conditions and random pruning of branches (caused by storms 

or gardeners), not only do trees not have a regular shape, but no two trees 

are identical, even if they are the same species. In their research, they present 

an improved growth model while taking into account growth constraints, thus 

showing that the tree shape is significantly influenced by its growth environment. 

The presented growth functions demonstrate the effects of the growth constraints 

and its importance for the simulation. However, the work is only related to the 

shapes of tree skeletons, and the growth model is not suitable for the shapes of 

leaves, blossoms and fruits.

In the past, few researchers have focused on the plant organs, such as leaves 

or flowers. However, these organs are essential for giving natural and seasonal 

variation. In addition, these organs are particularly important when simulating 

a plant at close range. In the further work of Chiba [Chiba96b], he presented 

simulation methods for leaf arrangement and colour evolution based mainly on 

the estimation of the amount of sunlight and the brightest direction of each 

part of each leaf. The growth model described above is used to demonstrate the
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representation methods for leaves. However, this model has no ability to simulate 

the leaves’ growth process. So we have to find another method for our growth 

simulation, which will enable us to describe a realistic life-cycle for the evolution 

of a plant form..

Growth is a continuous process, but simulation models operate in discrete 

time steps, making it convenient to simulate the discrete addition of structural 

units. Consequently, the structural unit considered by a model, the time taken 

for a unit to appear, and the time step used by the model are usually related. A 

close approximation to continuous growth can be achieved by solving differential 

equations of very small time steps [Prusi93b], which solved problems associated 

with the growth of trees. In addition L-systems can be used to simulate con­

tinuous growth of plant organisms. Lindenmayer [Linde76] introduced parallel 

rewrite systems to describe the growth of living organisms. The theory related 

to these systems, called L-systems, developed very quickly. As L-systems are 

recursive solutions of sets of rewrite rules, we cannot offer a continuous solution. 

The end stage in a plant’s development must be defined by restarting the recur­

sion, for example, a six recursion must be developed from the previous five stage 

recursions. Because of the deficiencies of L-systems in modelling growth, we have 

chosen the differential equations as the method for solving all intermediate stages 

of flower growth.

We start with the description of the general growth function. After criticising 

the earlier growth function used in our previous plant development, we present 

our growth function along with same graphical illustrations. Then we conclude 

the chapter with an explanation of the controlling growth factors.
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5.2 General Growth Function

We wish to find a growth function which will give a good description of plant 

growth data, its life-cycle, over a whole season. If possible, the parameters of 

the growth equation should be physiologically meaningful, relating either to the 

environment or to the plant. Such an equation may be used to summarise data, 

and possibly to interpret growth data from experiments using plants of different 

varieties or with different environmental conditions.

If we think of an organism as being composed of a population of cells of fixed 

size, then the density-dependent model of population growth will describe an or­

ganism. This theory states that, as the number of cells increases, the amount of 

resources for cell division decreases, reducing organism growth rate. The differ­

ential equation for this is the familiar logistic equation. We need to make some 

assumptions when we solve the above problem [Thorn76a]:

1. The plant is completely defined by its dry weight W.  Thus the system is 

described by a single state variable W,  where IT is a dependent variable, 

and varies with time £, where t is an independent variable.

2. Growth occurs at the expense of a single substrate 5.

3. The rate of the growth reaction is linearly proportional to the substrate level 

S , and also to the plant dry weight W, so that the growth is autocatalytic 

(catalyses its own production or activates a substance that produces it). 

The rate of the growth reaction is k W S  where A; is a constant.

As a consequence of the above assumption (3), it follows that

dW
dt 
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This first-order differential equation cannot yet be solved, because the sub­

strate level S  will vary as growth proceeds. If W  and S  are measured in the same 

units, and there is no loss of material when converting 5  into W  by the growth 

reaction, then we can say

dW = - d S ; (5.2)

this equation states that an increment in dry weight is exactly matched by a loss 

in substrate. We also have the following equation:

W  +  5  =  Wi +  Si = constant, (5.3)

where Wi and Si are the values of W  and S  at time t =  0, and denote 

the initial conditions. Equations 5.2 or 5.3 simply express the conservation of 

matter. Since W  and S  are not allowed to be negative (such values would be 

physiologically meaningless), it is clear from equation 5.3 that W  will have its 

maximum and final value when there is no substrate left, and 5  =  0. Equation 

5.3 may be re-written as

W  + S  = Wf = Wi +  S i9 (5.4)

where Wf  is the maximum value of W.  Substituting for 5  from equation 5.4, 

equation 5.1 becomes:
dW
—  = k(Wf  -  W)W.  (5.5)

C tr l '

This equation is a statement of the model in differential form. As the sys­

tem has only one state variable, only one equation is needed. Dynamic models 

(that is, those in which time is an independent variable) are usually stated in
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terms of one or more first-order differential equations. Generally, these equations 

cannot be solved analytically (that is, an algebraic solution cannot be found), 

and it is necessary to integrate the equations numerically to obtain numerical 

solutions. We will present what we need from this mathematical model for our 

plant development in the later sections.

5.3 Plant Growth Function

As a similar case, continuous processes such as plant growth need to be described 

by growth functions. A popular example of the growth function is a sigmoidal 

type, monotonically increasing from minimum to maximum with growth rates of 

zero at both ends of time interval (To, T),  as shown in figure 5.1. The growth 

is slow initially, accelerating to reach a maximum, then slowing again and even­

tually ceasing. We apply the popular Velhurst’s logistic function, defined by the 

equation [Edels88]:

% = l*z{ 1 -  —— (5-6)UX Zmax

(;t: time; I: length growth rate; z: the growth in z axis direction)

Usually, bicubic parametric patch modelling suffers from lack of a high-level 

modelling abstraction for shape control. So the growth function can be applied 

in the x, y , z directions for each control point. It is presented in equation 5.6 for 

growth in the z axis direction.

The time interval is chosen by the user, according to the smoothness of the 

desired animation sequence. This time interval is then fixed during the recursive

81



Zmin

To T

Figure 5.1: General growth function

process to determine the surface features. The flexible growth rate curve allows 

variation for individual control points. It means that we can apply a different 

growth function for one control point or alternatively to a group of control points. 

A unique irregular petal will be generated when one or some control points have 

different growth tendencies. In our improved model, the growth function will be 

applied to the control points by the relevant force, which we describe at a latter

In the paper by Prusinkiewicz [Prusi93b], a cubic function of time was chosen 

as a growth function. As presented:

where A x  = x max — xmin and t E [0,T], The equivalent differential equation is:

with the initial condition xq = x min. In order to extend this curve to infinity, it 

is also defined:

stage.

x(t) * t 2 +  X.mm (5.7)

(5.8)

(5.9)
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Figure 5.2: Growth function from paper [Prusi93b]

for t 6 (T, + 0 0 ).

Equation 5.7 is shown by the figure 5.2. It produces xmax when t = T. The 

shape of the curve and the change rate of the growth rate depend on the value of 

Ax.  When A x  increases, the curve steepens, resulting in greater growth for the 

same time interval T. It is obvious that the curve is entirely defined by the value 

of A x , therefore the desired perturbation during the growth period is impossible. 

Thus for a chosen A x  we will always obtain a given life-cycle. However, in natural 

growth, different environments cause different growth curves for the whole growth 

procedure even though the plant arrives at the same final growth value, as shown 

in figure 5.3. This figure more accurately describes what we would find in nature.

From [Prusi93b], equation 5.8 and 5.9 are represented by the figure 5.4. These 

equations define a zero growth rate at both ends of an interval T, and within 

time interval T  its value increase from xmin to xmaa;. However, evaluation of 

these equations, as illustrated in figure 5.4 shows that the growth change rate
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Figure 5.3: Growth function with different growth rates

(that is, the second derivative) is maximum at the beginning and the final stage 

of the growth process. In addition, it has a discontinuity point at T. This is 

obviously completely unrealistic when compared against the biological principle 

in which the plant growth initially increases in value slowly, then accelerates, and 

eventually nears the maximum value or arrives at the level for this growth season. 

The end rate of change of the growth rate (the second derivative of the growth 

function) should slow down and not reach a maximum as shown in figure 5.4.

A more serious problem will become apparent if the plant continues growing, 

for example to display seasonal growth or daily growth. In figure 5.5, we can 

see that the growth change rate function has a discontinuity point between each 

growth cycle, that is if we suppose the plant keeps growing after one growth cycle. 

However, it is very common for the plant to start growing again after one night 

or one season, so again the formulation chosen by [Prusi93b] leads to completely
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Figure 5.4: Growth change rate in the paper [Prusi93b]

unrealistic results. So we have to find a proper growth function which presents 

the growth cycle correctly in terms of observed natural growth. All details are 

discussed in the next section.

5.4 Growth Function w ith Perturbations

In reality, the whole biological growth process includes a number of growth cycles, 

which vary from minutes to months. It also involves different kinds of perturba­

tions, such as climate effects, organic effects, and artificial perturbation caused 

by human intervention. In previous work [Prusi93b], the growth of a biological 

organism is determined by equations, which a-priori fixed the final form of the 

organism even before the growth starts. Here, we reject this approach and in­

stead seek methodologies that can enable the growth function to take account of 

natural perturbations.
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Figure 5.5: Continue growth will cause discontinuity point between two cycles

When we consider a growth function which consists of several growth cycles, 

we need to take account of how the growth cycles are connected, that is, how the 

plant grows from the last growth cycle, and the relationships between different 

growth cycles. Normally, the general growth function is only applied for one 

complete growth cycle, and cannot be used for any growth process with previous 

growth. As shown in figure 5.6, curve c is the general growth function with a 

very small minimum start value (near zero). The curve shows that the growth 

is slow initially, accelerating near the maximum value stage, slowing again and 

eventually ceasing. However, the curves b and a do not show this feature when 

the growth has already started and with large (greater than 1) minimum start 

value. So it is obvious that it will have a discontinuity if we apply this growth 

function with continuing growth from the previous growth cycle.

Continuing growth is quite common in the natural world. If we take the 

example of flowers, the growth of the petal slows down or even ceases during the
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Figure 5.6: Growth functions with different start values

night and then returns to growing again the next day. So a growth function with 

the feature of continuity from a growth cycle to the next cycle will be an important 

part of our research and implementation. Since the growth continues from a 

previous growth cycle, the concepts for minimum growth length and maximum 

growth length are changing, that is, the maximum growth length for a cycle will 

be the minimum length for the next growth cycle, and our growth function should 

therefore be changed to:

dz , A A z  .
— =  I * A z  * (1 -  — )

LAZmn/r
(5.10)

where Az  z zmin and Azmax — zmax zmin.

As shown in figure 5.7, curves a, b and c derived from 5.10 now all display 

correct growth feature, which has slow initial growth rate then starts to acceler­

ate. Compared to the growth function shown in 5.6, this function will provide 

a smooth connection with the previous growth value for each curve 5.9. Figure
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Figure 5.7: Growth functions with different start values, which still have slow 
initial growth rates.

5.8 shows the rate of change of the growth rate for the curves in figure 5.7. This 

growth change rate function will provide the description for the force value which 

applied on the surface control points and will be presented in the later chapters. 

This force is directly obtained from the growth function.

5.5 The A dvantages o f the N ew  G row th Func­

tion

The essential differences between our growth function and the general growth 

function [Edels88] are as follows: firstly, our growth function can keep the proper 

growth feature in any growth cycle and take the growth point from the last cycle 

as the start growth value for the current cycle. This means that our growth 

function can have continuous growth and the whole growth curve for all growth
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Figure 5.8: Growth change rate functions for figure 5.7

Z ,4

12

10

8

6

4

2

0 50 100 150 200 250 300 350 400 450 t

Figure 5.9: Growth curves in different cycles with smooth connection
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cycles will still form a general growth function. Secondly, the general growth 

function has a fixed growth tendency, while the one presented here can have 

various growth tendencies by using different growth equations. This means that 

our growth function is changeable. Thirdly, the general growth function has no 

control of the growth rates during a time interval while ours can show and change 

the values of all the growth rates.

The advantages of our new growth function are therefore:

•  The function can be changed at any moment during the development ani­

mation, that is, we can change the equation at any time. This means that 

the growth rate changing tendency and growth acceleration for the flower 

petal can be different for the same petal in one growth process. It provides 

the possibility of having unusual petals by breaking the growth tendency.

• The growth change rate is under control with the appropriate curve. This 

means that the shapes for the flower petal surface are fully controlled by 

this function. We can generate different petal shapes by setting appropriate 

growth rates with this function.

• Although the time interval is fixed for its recursive process, the specific 

time interval could be set with different equations. This means that we can 

control the adjustments to the growth rate by controlling the time interval. 

The specific growth process can be recalled by retrieving the time interval 

when the desired shape is not achieved.
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5.6 Conclusions

In this chapter we have introduced a new growth theory for a petal surface model, 

which can simulate the petal surface’s natural development. We also developed 

and explained our growth function for perturbations in growth.

Our growth function allows continuous growth from the last growth cycle. 

In addition, the presented growth function enables the growth rate to change at 

any development stage. A flexible growth change rate curve allows variation in 

the development tendency at a specific time interval, and therefore differs from 

other animations in which the plant grows according to a single growth function 

throughout its growth phase.

We believe our proposed growth function will prove useful for flower develop­

ment modelling. We now start to consider how to apply the growth function to 

the surface model. We have decided to apply it to the control points, which will 

be presented in detail in the next chapter.
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Chapter 6

Mathematical Framework Model

6.1 Introduction

Since petals or leaves change in shape and form during their life-cycle, it is im­

portant to construct a suitable dynamic surface model to represent this life-cycle. 

We have discussed the growth function which can be applied to the flower petal 

surface in the last chapter. Here we investigate how to construct a dynamic sur­

face model which uses the growth function to represent the natural growth, and 

is suitable for the petal surface represented by bicubic patch.

In recent years, various dynamic surface models have been developed for dif­

ferent applications and simulations. Tu [Tu94] demonstrated a framework for 

behavioural animation featuring an artificial fish model with some astonishing 

behaviours. The mechanics of the mass-spring model from the presented frame­

work can be useful in our system. However, the behavioural modelling for fish is 

different to our requirements, as it focuses on the fish surface deformation while 

we have to consider the petal surface growth. Terzopoulos [Terzo87, Terzo88] also 

presented physically-based models for elastically and inelastically deformable ob­
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jects. The models are fundamentally dynamic and realistic animation is created 

by numerically solving their underlying differential equations. The techniques of 

handling forces, constraints and obstacles can be useful for our system. Again, 

due to the different nature of a flower petal surface, different techniques and 

equations will be developed for our surface model.

Another popular dynamic surface model is the classic mesh method. This has 

been widely used to model complex smooth surfaces, such as those encountered 

in cloth [Provo95] and human character animation. However, these methods 

suffer from at least two difficulties. First, the computation is expensive when the 

number of mesh nodes is very large. Second, it is difficult to maintain smoothness, 

especially when mesh nodes need to be repositioned as the model builder requires.

Bicubic patches have the potential to overcome both of these problems: they 

have limited numbers of control points, and smoothness of the model is auto­

matically guaranteed, even as the model is animated. However, as we stated 

in chapter two, the bicubic patch is not the mainstream representation used by 

modellers, due to the mathematical formalisms associated with it. Thus, in order 

to make a bicubic patch surface a good dynamic surface model, we must find a 

suitable mathematical framework to describe it.

Most traditional methods for computer graphics modelling are kinematic, 

which means the shapes are compositions of geometrically or algebraically de­

fined primitives. Kinematic models are passive because they do not interact with 

each other or with external forces. The models are either stationary or are sub­

jected to motion according to prescribed trajectories. Expertise is required to 

create natural and pleasing dynamics with passive models. As an alternative, we 

can use active models, such as a physically-based model. Active models are based 

on principles of mathematical physics, they react to applied forces, to constraints
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or to obstacles as one would expect real, physical objects to react.

This chapter describes a physically-based model for animating flower petal 

growth that is derived from elastically deformable models, but additionally is 

improved to take into account the non-elastic properties of the petal surface. In 

this method the petal is first approximated by a deformable network of masses 

and springs, the movement of which evolves using the numerical integration of 

the fundamental law of dynamics and growth theory.

We also introduce constraints on the deformation rates of the springs and 

the growth rates in order to show the force effect, and we take these constraints 

into account using a low-cost method inspired by the classical dynamic inverse 

procedures.

We combine the bicubic patches and the mass-spring model with an appro­

priate and efficient interface to physical simulation for animation.

The use of the mass-spring and force models poses new challenges throughout 

the production process, from modelling to animation. However, this model frees 

the designer from worrying about which control points need to move to maintain 

a smooth, growing surface. With the introduction of a growth function and 

dynamic forces, the resulting surface has the appropriate motion and physical 

properties of a real petal. In the following sections, we present the theoretical 

background of the proposed physically-based model and discuss the techniques 

from modelling to animation in detail.

6.2 Mass-Spring M odel

In this section we introduce the background to the model which supports much 

of the work in this thesis. We also present the motivation and background for

94



applying the described model in this research.

We must first ask why the mass-spring model is appropriate for modelling a 

flower petal surface? According to the biological growth principle used in most 

growth theories [Edels88], the growth status is defined from the dry weight of the 

plant. So the mass of the plant plays an important part in the growth function. 

Here, we apply this concept to the flower petal surface, and distribute the whole 

petal mass between each of the control points evenly.

We begin by defining the model theory. Our model is a bicubic patch, which 

can be considered as a mesh of four by four virtual masses, each mass being linked 

to its neighbours by massless springs of natural length not equal to zero. In a 

regular framework, as figure 6.1, the linkage between neighbours is achieved in 

three different ways:

• springs linking masses [i,j\ and [z H-1, j], and masses [i,j\ and [z, j  + 1], will 

be referred to as “structural springs” ;

• springs linking masses [z, j] and [z-h 1, jH-1], and masses [z+ l,j] and [z, j+ 1], 

will be referred to as “shear springs” ;

• springs linking masses [z, j] and [z +  2, j], and masses [i,j\ and [z, j  +  2], will 

be referred to as “flexion springs” .

Under pure shear stresses, only the shear springs are constrained; under pure 

flexion stresses (i.e. bending), only the flexion springs are constrained; whereas 

under pure compression or traction stresses (i.e. stretching), only the structural 

springs are constrained. We only apply structural springs in our model because 

our petal surfaces are growth surface and it is unlikely that they are under pure 

shear stresses or flexion stresses.
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Figure 6.1: Regular framework of masses and springs used for our model

The mass-spring model is a simple technique for representing flexible objects 

such as cloth, which represents an object with mass-points and springs. The 

forces caused by the springs make the mass-points move. The springs can be 

constructed according to different circumstances. This mass-spring model is a 

very intuitive approach to the representation of surface deformation. A spring 

responds to a force by deforming elastically in an amount proportional to the 

force; when the force goes away, so does the deformation [Terzo88]. A grid of 

such a model deforms and stretches, subject to laws of physics (modelled globally 

by rigid-body dynamics, but locally by stress and strain rules related to the 

structure of the units, such as mass-points and springs, in the material in an 

internal coordinate system).

6.2.1 Model structure

Though our application is concerned with petal surface growth instead of surface 

deformation, we find the mass-spring model structure is very suitable for applying 

the growth function to our bicubic patch surface.
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1. We need to control the control points to enable them to move with the 

related growth function. The mass-spring model has similar control for its 

mass-points. So we can easily use control points as mass-points.

2. The most important feature of a plant organ is that it grows, but we must 

note that this is not equivalent to stretching. It includes size change, shape 

change and mass change, and maybe even distortions if there is external 

intervention or any obstruction. With all the links provided by springs, we 

can reposition the control points on the surface to enable such growth to 

be animated.

3. The petal surface has mass itself, therefore gravity is one of the forces help­

ing it to open. Gravity is also related to the shape change on the petal 

surface because it has a direct force effect on the control points. From the 

theory of growth function, we can take the natural growth as a kind of 

force to push all the control points apart (such as along the length growth 

direction or along the width growth direction to have a longer and wider 

petal surface). Of course, if there is an external intervention, another exter­

nal force is applied. So all the growth function can be converted to forces 

applied to the surface. These forces control will match the mass-spring 

model’s principle. Of course, the relevant forces equation will vary with 

each application.

4. Even though the forces may only apply to one control point of the surface, 

the growth forces will affect all the linked neighbour points. The plant 

organ is stiffer than cloth, but it certainly has constraints between all the 

control points. This structure is similar to a mass-spring model with much 

stiffer springs.
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Figure 6.2: Three-dimensional petal surface with mass control points and spring 
links (Note, apart from the discontinuity points, all control points are above the 
petal surface.)

From the above discussion, we have sufficient justification to introduce a new 

method which combines the bicubic patch with the mass-spring model. The 

specificity of this approach is that the model is not considered as a continuous 

surface, but instead will have to be discretised as a discrete structure of elements 

where each mass-point and each spring can be handled individually. In our ap­

proach, we start with a model composed of masses and springs, showing how to 

apply it to the petal surface.

6.2.2 Petal surface model description

The bicubic patch is applied here as the surface representation for our flower 

petal surface but also combined with a mass-spring model. As shown in figure 

6.2, the bicubic patch control points are replaced by mass-points, which evenly 

represent the whole structure of a petal surface. We also have structural springs 

linking mass-points [z, j] and [z +  1, j], and mass-points [i,j] and [z, j  -I-1]. Any
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force applied on a mass-point will have effects on all the other mass-points linked 

with that point.

At this point, we again emphasise that the springs connect the control mass- 

points of the bicubic patch. We also emphasise that apart from the corner dis­

continuity points, all control points are above the petal surface.

6.3 Dynamics and Forces

In this section, we investigate how the forces apply at mass-points. The use of 

physical modelling to animate clothing has been widely discussed in the past 

literature [Provo95]. For physical modelling, the basic properties of a material 

are generally specified by defining an energy function to represent the attraction 

or resistance of the material to a possible variety of deformations. Typically, the 

energy can be specified as a discrete sum related to forces which are functions 

of the positions of surface control vertices. Compared to artificially moving the 

control points to meet the growth requirements, this force controlling model can 

apply the growth functions, which were converted from the related growth forces, 

to the control mass-points. This model also considers all kinds of internal and 

external forces and the constraints of neighbours on the control points. We 

will therefore modify the traditional equations to deal with our flower growth 

animation.

The system under study is the bicubic patch of 4X4 masses, each mass being 

positioned at time t at the point Pij{t), where i =  0 ,1 ,2 ,3  and j  = 0 ,1 ,2 ,3 . 

The evolution of the system is governed by the fundamental Newton’s law of 

dynamics:

— u ♦ Uij (6.1)
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where u is the mass of each point and is its acceleration caused by 

the force F jj. Fij can be divided between the internal and external forces. The 

internal force is the resultant of the tensions of the springs linking Pij to its 

neighbours, which are called contact and constraint forces:

F i n t —c o n { .F i , j )  — ^  ^  F^i,j,k,l  *  ( ^ '^ )

(.k , l ) e R

where R  is the set regrouping all couples ( k j )  such that Pkj is linked by a 

spring to P ^ .  L ^ ^ jl is the vector from P ^  to P ^ ,  and Ki,j,k,i is the stiffness of 

the spring linking P^j and P ^ .

However, there is another important internal force in our model for the grow­

ing flower petal surface, that is, for the growth function of the petal surface. From 

the growth function, we have the growth rate function which, typically, is slow 

initially, accelerating to reach a maximum, then slowing again and eventually

ceasing. We take this growth into account via the internal force which push the

control points away from each other in the growth direction. According to the 

current growth function, the forces will act in three growth directions, which are 

related to length, width and curvature growth. This internal force is given by:

F in t—g r o w iP i j )  — ^ * &grow (^'^)

where agrow is the acceleration of the growth rate in the time interval T. The 

important feature for these forces is that they are integrated with the growth 

function. We reiterate that they are small initially, accelerating to reach a max­

imum, then decreasing and eventually ceasing. At this final stage, there is no 

growth force and the petal will only deform within the constraints applied by
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external forces.

A plant can be subjected to external forces in various ways, such as simple 

deflection, obstructing forces, periodic forces, etc. One obvious force will be 

gravity, let g be the acceleration of gravity, the weight of is given by:

Fgr{Pij)=u*g (6-4)

Other external forces may come from natural perturbations, such as collisions 

with other flower petals, and artificial perturbations, such as human intervention. 

These forces will apply to specific control points which will change the positions 

of some control points to generate the new growing surface.

In addition, we need to take into account the mass of each control point. In 

our model, these masses are not constant, but vary with the growth function. 

This is different from other mass-spring models. Most of mass-spring models 

are for flexible objects, such as cloth, where the mass normally remains constant 

during deformation. However, our petal surface is a growth surface, therefore it 

is obvious that its mass will increase according to the applied growth function 

until it reaches a maximum value. In the final mature period, the petal surface 

with maximum mass will be pulled down by gravity and will eventually fall to 

the ground.

6.3.1 Force model im plem entation

By using the implicit Euler method, the position of each mass point can be 

updated as:

Xt+h = Xt +  yt+h *  h ( 6>5)
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V ‘+h = v‘ + F ‘+h* T /mi (6.6)

where v\ is the velocity of the z-th mass point at time t , and F\ is the force on 

the mass point at time t. Similarly, X \  is the location of the z-th mass point at 

time t , mi is the mass and T  is the time interval between each animation step. 

Arnd Fl+h can be approximated with a first order derivative as:

r ) FF t+h = F t+  A x t+h (6.7)
uX

where F l includes all the internal and external forces described above on the z-th

mass point, F l — [F*, F j , ......., F^]T.

From these equations, we can calculate the force value on a mass-point after 

a specific time interval, the velocity of a mass point at any time and the moving 

distance or new position following the force applied at the mass point.

6.4 Analysis and Performance

In this section, we show how the forces affect the growth of the petal surface.

6.4.1 Influence on growth

It is difficult to model biological growth realistically. In our model, realistic 

growth has been placed in a mathematical framework which models both internal 

and external influences. The external influences will depend on the direction 

of external force, which is not easily predicted. However, the main external 

force is gravity, which also plays an important role in helping the petal open up 

throughout the whole growth process. The internal forces are integrated with the 

growth function and applied to three of the main features of the petal, that is,
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Figure 6.3: Petal forces directions at a mass point

its length, width and curvature. Of course, other internal forces are caused by 

the constraint forces from the mass-point’s linking springs to the neighbouring 

points.

Figure 6.3 gives an example of one mass-point with all related forces in relevant 

directions (except the constraint forces which are along the linked springs). Fg 

represents the gravity, F* represents the length growth force, Fw represents the 

width growth force and Fc represents the force from the curvature change.

6.4.2 Force effect

Figure 6.4 shows one petal with only the length growth force being applied. In 

this petal, the length growth causes a force along the length growing direction. 

As it does not have any other force, we can see the effect from the force will 

match the growth function. If we draw a curve on all the top points of the petals, 

it matches the general growth function curve.
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Figure 6.4: Growing petal with only the length growth force applied

Figure 6.5: Falling petal with only gravity

The figure 6.5 shows the effect from an external gravity force. When there is 

no other growth force, the mass on the petal surface which is distributed evenly 

across the control points will cause the petal to fall towards the earth. The mass 

of the petal is biased towards the centre of the petal. As a result, the downward 

force is also in this position. The effort on the petal is to distort its shape as 

shown in figure 6.5. Here, we see that the centre of the petal is pulled down, 

but the petal resists this motion, therefore, the edges of the petal lag the central 

motion. As the mass points are constrained to maintain their relative positions, 

the petal does not stretch. If we do not have this constraint then the petal would 

artificially stretch under the gravitational force.
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6.5 Advantages and Comparisons

Though we have discussed the reasons for choosing bicubic patch to represent 

our petal surface in the previous chapters, the question for surface representation 

might arise again when we show the combination of our surface representation 

with the mass-spring model. This is because the mass-spring model always comes 

with a mesh surface. We investigate this question from comparisons with the cloth 

model and mesh nodes surface, and show some examples from our surface model.

6.5.1 Comparison with the cloth m odel

It might appear that work done on modelling cloth in computer graphics may be 

directly applicable to modelling plant components such as petals. However, the 

models required for cloth do not display the necessary attributes.

The mass-spring model with a mesh has been widely used for cloth model 

[Provo95]. There are some features for cloth widely used in animation systems. 

Firstly, the cloth is homogeneous, isotropic and linearly elastic in its initial shape. 

Secondly, the cloth is in equilibrium at any time under a given applied force. 

Finally, the cloth is a perfectly thin surface and never expanded or contracted 

along its surface normal. However, in our petal surface model, the length, width 

and curvature changes will expand the surface in all growing directions under the 

constraints.

Thus, despite the fact that the cloth mesh model may appear to have attrac­

tive results in animation and simulation systems, we must choose an alternative 

appropriate surface to represent petals and leaves.
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6.5.2 Comparison to a mesh surface

Our model combines a bicubic patch surface with a mass-spring model. We must 

notice that the springs connect the control mass nodes of the bicubic patch and 

do not connect mesh nodes on the petal surface. This difference comes from the 

advantages of our bicubic patch method applied to the mass-spring model.

Compared with the mesh surface model, our bicubic patch method has the 

following advantages:

• The control points can be used to generate a growth surface. With the 

mass-spring and force model, the sixteen control points on the bicubic patch 

have all the growth information and can generate a smooth surface. While 

a simple mesh with few points may be sufficient for a small initial surface, 

more points must be added to that mesh when the surface grows larger. 

This means that a dynamic mesh is necessary for this kind of growth surface 

to remain smooth. As shown in figure 6.6, the initial mesh is enough to 

represent the small petal shown on the left, but it is not enough to describe 

the surface details when it grows to the larger surface shown on the right. 

The initial mesh must be subdivided as shown in the left corner of the larger 

petal. This dynamic mesh will also have to pass all the growing and control 

details to the sub-meshes. As the petal grows, more mesh nodes are needed 

for the surface to remain smooth. An example of this can be seen in figure 

6.7. If each mesh node has all the related force and growth information 

and some points need to be adjusted according to external forces which will 

involve more points being repositioned, the computation cost will make 

real-time animation difficult.

• The cost of computation is reduced dramatically. As a real-time simulation,
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Figure 6.6: Mesh surface for growing petal

Figure 6.7: As the plant grows, more mesh nodes are needed for the surface
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4
Figure 6.8: Petal surface with mass control points

it is very important to have all the information calculated for the model 

with a minimum computation cost. Even though the bicubic patch contains 

much growth information, the limited control points make it possible to 

cut the computation cost. However, with a mesh surface for the growing 

petal model, the extra growing force (including the internal forces from its 

neighbour points and the external forces) must be considered for each mesh 

point. All force vectors will add up to very costly algorithm even before 

we take account of the fact that the new dynamic mesh points might need 

more information.

6.5.3 Results from our model

As we can see from the figures 6.8, 6.9 and 6.10 (petal surface with mass con­

trol points), our method can generate a smoothly curved surface with only a few 

forces applied to the control points. However, if those control points are nodes on 

a traditional mesh, they cannot form a smooth surface without the key curvature 

points. Many extra mesh nodes must be added to the current mesh, each con­

taining details of forces and growth information, which is difficult for real-time
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Figure 6.9: Bending petal surface with mass control points

Figure 6.10: Growing petal surface with mass control points
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animation. Because of these difficulties we reject the traditional mesh method as 

inappropriate for animating petals.

However, the combination of bicubic patches and the mass-spring model deliv­

ers a very efficient method to represent the growth of a petal surface. In summary, 

our model provides a direct method of surface control, which is more flexible and 

creative,while at the same time requiring considerably less computation than a 

traditional mesh.

6.6 Collisions

Collision and deformation for free form surface modelling remains a challenging 

area because of the flexibility on the surface. Collision handling is an important 

task for any growing surface model, and must include both collision detection 

and collision response.

Simulation of collisions between mature organs is an important problem in 

the visualisation of structures with densely packed organs such as flowers. In 

nature, individual flowers touch each other, which modifies their positions and 

shapes. Consequently, the mature organs must be carefully modelled and sized to 

avoid intersections. This is feasible while modelling static structures, but proper 

simulation of collisions would become crucial in the realistic animation of plant 

development. This technique will be discussed in this section.

6.6.1 Collision detection

The collision detection of free-form surfaces and three-dimensional objects is a 

very difficult problem in geometric computation. The calculation of collisions, 

however, can be extremely time-consuming for a computer system, and our sys-
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tem therefore allows the user to select whether or not to calculate collisions for a 

given object.

There are different ways to carry out the collision detection. The simplest 

approach to detecting collision in a physical simulation is to test each geometric 

element, such as point, edge, face, against each other geometric element for a 

possible collision. To achieve practical running times for large simulations, the 

number of possible collisions must be culled as rapidly as possible using some 

type of spatial data structure. If the surface connectivity does not change, a two- 

dimensional surface-based data structure can be used for the elements. Another 

method is to distribute the elements into a three-dimensional volume-based data 

structure. However, it is too expensive in the computation and subdivision of the 

bounding boxes of all the elements, especially when all the elements are surfaces. 

This is because surface intersection has a very high computation cost and it is not 

easy to balance the three conflicting goals of accuracy, robustness, and efficiency.

A simple real-time collision detection method is described by DeRose [DeRos98]. 

This method tests every geometric element against every other geometric element 

for a possible collision using some type of spatial data structure. It is also a simple 

m atter for us to construct a suitable surface-based data structure for the petal 

surface. A hierarchy construction will be developed with the original convex hull 

property method [LuOl].

So our method will focus on how to construct a suitable surface-based data 

structure for the petal surface. As each surface patch has sixteen control points, 

we can use each group of four control points as a data structure. An efficient 

way for constructing the hierarchy of boxes is to compute the bounding surfaces 

using the convex hull property.

If there is no intersection between the two horizontal convex polyhedron (from
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the two middle sets of control points) and the vertical convex polyhedron, there 

is no collision between the two adjacent surfaces. If there is an intersection, it 

does not imply that a collision has occurred, the surfaces maybe has collision or 

maybe not. We have to calculate the exact surface points to find out the result 

(we could use forward differencing techniques to calculate the points).

6.6.2 Collision response

After the collision is detected, we must also consider how to deform and arrange 

the surface to avoid further intersections.

An underlying model [MacCr96] can be deformed by establishing positions of 

the points of the model within the converging sequence of lattices and then track­

ing the new positions of these points within the deformed sequence of lattices.

An efficient deformation process must be developed for the free-form surface. 

Firstly, the control points moving area is established from the above analysis 

result. That means we have a specific space for the control points, which makes 

it possible to search the optimisation position for the control points. Secondly, 

the optimal method should be applied for efficient deformation for the whole 

group of control points. Thus we need to develop a technique or function for 

all the control points. Thirdly, surface smoothness feature and growth principle 

should be met, which are also main concerns of the considerable elements from 

the collision analysis.

From the collision analysis and growth direction of the control points, we are 

going to suggest a more efficient deformation method to respond the collision. In 

that way, we could predict that the control points will form a collided surface and 

advise to avoid the collision, which makes it possible to have a natural growth
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surface. We will discuss how to implement this in the next chapter.

6.6.3 Summary

The improvements shown in this section are: The collision detection algorithm is 

more comprehensive and can be applied to Bezier surfaces for other applications, 

when surface intersection points are not required, in general. The algorithm is 

designed to be more efficient for interactive free-form modelling. In addition, the 

completed deformation process takes account of natural perturbation and surface 

feature.

6.7 Conclusions

In this chapter, we reviewed the concept of the mass-spring model and presented 

a new combined method for better surface control. We also investigated the 

integration of growth theory, the control mass-points, and forces control with 

the mass-spring framework, to enable the surface to grow according to biological 

growth theory.

Compared to conventional Bezier or B-spline patches, our model has more 

direct and visible control for the surface; compared to a dynamic mesh model, 

our model needs much fewer control vertices to obtain a desired shape. These 

features are quite attractive, especially when this model is adopted for animation 

work, during which vertices are moved with time and yet smoothness of surfaces 

for each animation frame must be maintained. Since the surface is represented 

by few control points, local control can be easily obtained by repositioning the 

control vertices and the generation of the surface is simpler and faster than other 

techniques such as implicit surfaces. When the surface responds to growth, only a
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few related control points need recalculation. Consequently, a substantial reduc­

tion in computation time is achieved. This feature is likely to make it a promising 

model for real-time natural animation.

We concluded this chapter with the presentation of collision detection and 

collision response. In the next chapter, we continue the important discussions 

of surface collisions and the related techniques for collision avoidance. We will 

introduce the optimisation techniques genetic algorithms for our surface control.
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Chapter 7

Genetic Algorithms for Surface 

Control

7.1 Introduction

It is often difficult to build interesting or realistic virtual entities and still maintain 

control over them. Sometimes it is difficult to build a complex world at all, if it is 

necessary to conceive, design, and assemble each component. An example of this 

trade-off is that of kinematic control versus dynamic simulation. If we directly 

provide the positions and angles of moving objects, we can control each detail 

of their behaviour, however, it might be difficult to achieve physically plausible 

motions. If, instead, we provide forces and torques that simulate the resulting 

dynamics, the result will probably look correct, but then it can be very difficult to 

achieve the desired behaviour, especially as the objects we wish to control become 

more complex. Methods have been developed for dynamically controlling specific 

objects for movement in character modelling, but a new control algorithm must 

be carefully designed each time a new behaviour or morphology is desired.
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As we described in the last chapter, the surface shape is converted into a 

mathematical framework with the controls from internal and external forces. 

However, these forces applied on the surface may not generate a natural surface, 

particularly if the surface is in collision. It is not very realistic to require the user 

to adjust the growth force to avoid all collisions, which means that the control 

points of the model must be placed and calculated very carefully. Fortunately, as 

an alternative, optimisation techniques offer possibilities for the automatic gener­

ation of complex systems. The genetic algorithm is a form of artificial evolution, 

and is a commonly used method for optimising complex systems. A Darwinian 

“survival of the fittest” approach is employed to search for optimal evolution in 

large multidimensional spaces. The use of genetic algorithms can permit virtual 

entities to be created by the user without requiring an understanding of the pro­

cedures or parameters used to generate them. These procedures and parameters, 

implemented by the system creator, remain hidden from the user. The measure 

of success, or fitness, of each individual entity can be calculated automatically, 

or it can instead be provided interactively by a user.

Genetic algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics [Goldb89]. They combine survival of the fittest 

among string structures with a structured yet randomised information exchange, 

to form a search algorithm with some of the innovative flair of human search. It 

means that the same algorithm may have various results according to different 

search rules and human stylishness.

Genetic algorithms can be used to explore the space of possible animations of 

a character model. The objective of a character animator in these methods is the 

specification of a controller for a character. They have proven useful for searching 

large spaces using simulated systems of variation and selection [Goldb89]. In

116



Sims’s work [Sims94], genetic algorithms have been used for the generation of 

controllers in physically modelled articulated figures.

The model we described in the previous chapter is much more flexible and 

controllable than most models reported in the literature. We control all growth 

by applying the appropriate forces. This is different from most previous work 

where the dynamic model of the simulation is predetermined by having the same 

procedural method controlling the forces. The obvious disadvantage of this latter 

approach is the loss of flexibility in the animation. Conversely the methods 

described here based on genetic algorithms are highly flexible.

Obvious, the user will sacrifice some control because the fitness function is 

procedurally defined. However, the potential gain in automating the creation of 

complexity can often compensate for this loss of control, and a higher level of 

user influence is still maintained by the specification of the fitness criteria. In 

addition, the involvement of the genetic algorithm is evolutionary and optimises 

the growth mode. In this chapter, we start with related work and then discuss 

how to combine genetic algorithms with our previous model, to avoid petal surface 

collisions.

7.2 Related Work

Genetic algorithms have been used recently in some computer graphics areas. For 

example, they have been used in free-form surface matching [Brunn97] and char­

acter animations [ZakarOl, Rana95]. The applications using genetic algorithms 

are always associated with the real world and dynamic environment modelling. 

In this section, we review some other methods used in artificial life animation 

and present the related usage of genetic algorithms in the similar area of real
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dynamic environment animation. The comparison will show the advantages to 

be gained from using genetic algorithms and explain why we have chosen to use 

them in the work presented here.

7.2.1 Anim ated artificial life

Computer simulations occurring in virtual spaces of computer memory enable 

great artistic flexibility and supply a context for basic research in adaptive be­

haviour. A number of physically based locomotion systems have been designed 

for animation to achieve realistic animal motion using forward dynamics, rather 

than kinematic methods. Early examples of using artificial life principles in com­

puter animation include Reynold’s distributed behavioural model [Reyno87], in 

which collective behaviours (flocking, herding, etc.) emerge from many inter­

acting agents. Other search techniques for physically based modelling include 

space-time constraints [Liu94], which automatically generate the motion over the 

whole animation sequence at once. This method is optimised in both space and 

time, but is computationally intensive and complex. In addition, the motion is 

entirely specified. For example the end target position cannot be modified with­

out rerunning the entire simulation. Simulated annealing is also used to search 

for a globally optimal solution. It uses a temperature parameter to determine the 

chance that a change in a parameter will be allowed to worsen the optimisation. 

However, its drawback is that it depends on a control system model with a fixed 

set of parameters to optimise [Ngo93]. So the topology of the control network is 

fixed and only its parameters change. The choice of these parameters is critical, 

and will decide whether the problem is soluble at all.
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7.2.2 G enetic algorithms in animation

Genetic algorithms have been used for evolving goal-directed motion in physically- 

based animated figures, including a technique for evolving stimulus response 

mechanisms for locomotion [Ngo93]. The stimulus is a function of sensors in 

the character, and the response is a list of desired angles for all the joints in 

the creature. A complete model of fish locomotion with perception, learning and 

group behaviours, which generates very realistic animations, was developed by Tu 

and Terzopoulos [Tu94]. The virtual creatures of Sims [Sims94] are well-known 

examples of artificial life entities. Sims has developed a comprehensive physical 

and 3D shaded model for defining a creature genetically. Creatures with con­

trollers evolved by genetic algorithms should allow more complex and realistic 

models from biology than have been previously explored. Genetic algorithms 

have also proved particularly useful in our flower growth animation.

7.3 M odel Description

7.3.1 Basic model

A genetic algorithm used to solve an evolutionary problem must have five com­

ponents:

1. a string representation of solutions to the problem (called a genome);

2. a way to create an initial population of solutions;

3. an evaluation function that plays the role of the environment, rating solu­

tions in term of their “fitness” ; this is usually called the fitness function;
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4. genetic operators that alter the composition of control factors during re­

production;

5. values for the parameters that the genetic algorithm uses (population size, 

probabilities of applying genetic operators, etc.).

7.3.2 Fitness function

A genetic algorithm needs a cost function or fitness function to be defined for a 

given problem. It is an evaluation function to decide if the search result is fit for 

the application. In this section we develop fitness function criteria appropriate 

for our surface controlling problem.

In genetic algorithms the choice of a fitness function needs careful considera­

tion. The convergence of the algorithm depends crucially on the relative search 

size of this whole solution space. A choice we make is to build up a cost function 

that has some meaning, in particular we aim to find an intermediate qualitative 

measure which counts the number of good controls. This will then be transformed 

into a function which will be the fitness passed to the genetic algorithm.

To build a simulated growth, we start with a model that supports geometric 

structure. From the analysis of the geometric structure, we can define the criteria 

for the fitness function of the petal surface model. We add behaviours that 

correspond to the opposing forces of collision avoidance and the urge to grow. 

The behaviours that lead to simulated growth for all the petals are:

1. Collision avoidance: avoid collisions with nearby petals as the petals grow 

and change shape;

2. Velocity matching: attem pt to match velocity with nearby petals when they 

are open together;
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3. Flower centring: the bottom part of the petals attem pt to stay close to 

nearby petals and the top part of the petals attem pt to open along the line 

to the flower centre.

Velocity is a vector quantity, referring to the combination of direction and speed. 

Static collision avoidance and dynamic velocity matching are complementary. 

Together they ensure that the petals of one flower are free to open within the 

constraints and growth functions without colliding with one another. Collision 

avoidance is the urge to steer away from an imminent impact. Static collision 

avoidance is based on the relative position of the petals and ignores their velocity. 

Conversely, velocity matching is based only on velocity and ignores position. It 

is a predictive version of collision avoidance: if the applied force does a good 

job of matching velocity with its neighbours, it is unlikely that the petal will 

collide with any of them at any time in the future. W ith velocity matching, 

separations between petal control points remains approximately invariant with 

respect to evolving geometric structure. That means the separation distance 

between petals remains in the geometric structure for the next time step frame. 

In other words, static collision avoidance serves to establish the minimum required 

separation distance between petals, whereas velocity matching tends to maintain 

it. Flower centring is another important rule to keep all the petals open within 

the constraints of the flower boundary and also provides the opening directions 

for the flower petals.

Genetic algorithms are general optimisation algorithms with a few components 

and do not specify an approach for any application and implementation. We 

therefore have to define the search rules and fitness functions according to our 

application and problems. All the behaviours, rules and criteria presented above
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lead to the discussion of how to implement the genetic algorithms for our petal 

surface model.

7.4 M odel Implementation w ith Genetic Algo­

rithms

7.4.1 Parameters to represent the problem

In this work we have chosen to use genetic algorithms to solve the problem of 

collisions avoidance between flower petals. The problem is if we allow the flower 

petals to grow with control parameters designed by the user, the petals are likely 

to collide with nearby petals. It is obvious that the solution is to adjust the 

parameters in the growth function while keeping the petals growing. As described 

in the last chapter, we convert the growth function to forces controlling a mass- 

spring model, thus we need to adjust the forces for the petal growth and collision 

avoidance.

As a result, the parameters required to represent the collision problem are the 

same as those controlling the surface change, which related to the changing forces 

applied to the surface control points. In our implementation, these parameters 

are length, width, surface curvature and flower opening speed.

7.4.2 Growth values for the parameters

We know that genetic algorithms work with a coding of the parameter set, not 

the parameters themselves. Thus we have to investigate how to encode the pa­

rameters. In order to find out the probabilities of applying genetic operators to 

the parameters, we need to provide the values for the parameters that genetic al­
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gorithms use. In this way we will be able to create the possible growth directions 

for all the control points in our petal surface model.

Growth simulation in Dobashi’s work [DobasOO] creates realistic cloud motion 

with only a relatively small amount of computation. Dobashi uses cellular au­

tom ata that can simulate the motion just by simple Boolean operations. Three 

logical variables are assigned to each cell. The state of each variable is either 

0 or 1. The value of the Boolean function is calculated by the status of action 

around the cell. Most of the functions relate to the fact that clouds grow upward 

and horizontally. Dobashi’s work is an efficient simulation method for realistic 

animation of clouds.

In our work we use a similar principle for encoding the growth parameters. 

However, it should be recognised that our petal surface growth control is more 

complex than the cloud growth presented by Dobashi. A Boolean function is 

insufficient to represent the petal surface growth and respond to collisions inter­

actively. This is the reason we need genetic algorithms for surface growth and 

collision response. However, the Boolean operations provide a simple encoding 

method for the surface model. In our system, we set the value of 0 or 1 for 

the forces parameters, which are in different directions according to the related 

growth parameters. The value 1 indicates that the growth can continue in its 

direction and the value 0 means the growth will not happen in that direction. 

For example, if in a specific time step, a control mass-point has growth in length, 

width, surface curvature and flower opening direction, the coding value for all the 

forces parameters applied on that point is 1111. However, if the petal will incur 

a collision if it continues to grow wider, we might like to have forces parameters 

code as 1011, that means the width growth will not happen. It is not always clear 

which factors will eventually cause a collision. Thus, searching for a suitable code
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is the task for genetic algorithms with the consideration of fitness function and 

changing codes is the task for genetic operation. This approach will be discussed 

in the following sections.

7.4.3 Fitness function

The fitness function determines if the forces applied with the code meet our 

criteria of natural growth without incurring collision. The fitness function varies 

with different applications and practical problems. In our application, we mainly 

consider the three requirements for realistic growth described in the last section: 

collision avoidance, velocity matching and flower centring. We have discussed 

in the last section that these criteria are sufficient for generating natural flower 

growth.

The fitness function attempts to place a penalty on the movement of the

surface that does not meet the criteria for collision avoidance. Different aspects

of the fitness function are described below:

(1) The collision penalty depends on collisions between petals in corresponding 

points on the petal surface model, thus the equation for collision avoidance factor 

S\ is given by:
N

S i = J 2 q  (7.1)
i=l

where i represents all the points on one petal model, from 1 to N . Ci represents 

the penalty on point i. It is 1 if there is collision, and 0 if there is not.

(2) The distance moved in a given direction during a unit of time determines 

the velocity. Thus velocity matching factor S2 is given by:

N

S » =  E  I A - D i l  (7.2)
i,j=1 
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where D{ is the distance that point % travel during a time interval, and Dj is the 

distance that point j  travel during the same time interval. We must emphasise 

that point j  is not from the same petal as point i , instead it is from the adjacent 

petal.

(3) Flower centring factor S3 is given by:

N

S3 = J2\V i • vc\ (7.3)
i —1

where Vi is the vector at point i, with the direction from the previous position 

pointing to the new position after the time interval. Vc is the vector along the 

horizontal line going through the flower centre (see figure 7.1). It is obvious that 

S3 will be 0 if these two vectors are perpendicular.

petal

flower
centre

V c

Figure 7.1: Flower centring vectors on growing petal 

So the fitness function F  is given by:

F  =  k\ * S\ +  k2 * S2 +  * S3 (7*4)

where hi, k2 and h$ are constants. The value of k\ is kept relatively higher, since 

collisions are to be avoided at all costs. The value of k3 on the other hand is
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kept very low, since normally the force already can keep the petal moving along 

the flower centre direction. It is obvious the algorithm should try to search the 

solution space for the lowest F  value for petal growth.

7.4.4 G enetic operation

The basic genetic operations for the genome include reproduction, crossover, and 

mutation. The reproduction operator determines how the genome is initialised. It 

is formed by the order of a list of parameters from the forces applied on the specific 

point on the petal surface model. The mutation operator defines the procedure for 

mutating each genome. A typical mutator for a binary string genome simply flips 

the bits in the string (see figure 7.2) with a defined probability. In our approach, 

we randomly perturb the control points force for opposite growth direction. That 

is because if there is a collision, an opposite force will be generated in the push 

the point to opposite direction. The crossover operator defines the procedure for 

generating a child from two parent genomes. Here, we use a standard single-point 

crossover to generate offspring (see figure 7.3). Given two individuals (possible 

solutions to a problem) in a population, the genetic algorithm generates a child 

solution by randomly taking some of the genes from one individual, and taking 

the remaining genes from the other.

before 1 0 1 1 0 0 0  1 1 1 1

after 1 0 1 1 0 1 0 1 1 1 1

Figure 7.2: Example of mutation in binary encoding
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■ h : : i

Figure 7.3: Single point crossover

7.5 Comparison

In this section, we compare the results from genetic algorithms with those results 

without the implementation of genetic algorithms. A traditional method without 

a space search optimisation algorithm will determine forces relative to the growth 

function chosen by the user. However, this growth force might move the control 

point too much and thereby generate a surface in collision with the neighbour 

growing surface. Thus the modification of the force is important for collision 

avoidance.

fa) fb)
Figure 7.4: Flower grows looser with collision

127



7.5.1 Flower growth result

We can see from Figure 7.4 that as the flower grows majority part of the three 

petals cross each other from status (a) to (6) if we allow the flower to grow with 

the parameters as set by the user.

However, with the genetic algorithm, the forces are changed at each time step 

during the growing period. The changes to the forces in both value and direction. 

The criteria of changes are determined by the fitness function, and the rules of 

changes are from the genetic operations presented in the last section. Figure 

7.5 shows the effect of using a genetic algorithm. Here at each stage of growth 

the petals have maintained a tight formation but without overlap of any petals. 

Without the use of the genetic algorithms this result would have been difficult to 

derive, even if the user modified the growth parameters at each time step. With 

the use of the genetic algorithms the forces have been automatically modified at 

each time step to ensure that overlapping petals cannot occur.

fa) (b) ( c )

Figure 7.5: Flower grows tighter and avoids collision
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7.6 Advantages and Comparison

Genetic algorithms (GAs) are different from more normal optimisation and search 

procedures in four ways:

1. GAs work with a coding of the parameter set, not the parameters them­

selves;

2. GAs search from a population of points, not a single point;

3. GAs use objective function information, not derivatives or other auxiliary 

knowledge;

4. GAs use probabilistic transition rules, not deterministic rules.

So they can help us not only optimising the petal growth space, but also gener­

ating evolutionary natural petal surface.

The advantages of applying genetic algorithms are:

1. The absolute fitness functions can be defined by the user. This allows 

automatic selection of fit individuals and allows large populations to evolve 

without user intervention. Then we might generate different flower patterns.

2. It is particularly useful for simulating biologically realistic creatures in vir­

tual environment, because the fitness is measured relative to each other 

which shows competition with other creatures and interaction with the en­

vironment in natural settings. So it is easily to match the flower growth 

functions.

3. The search is also guided by human creativity, through the choice of fitness 

functions to produce more interesting and acceptable results. So in some 

views, the user still has control over the flower shape.
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4. The search space does not have to be limited, genetic algorithms can com­

bine different factors in a control system. The use of a variable fitness 

function also allows for the design of a robust controller. This means we 

can add more controlling parameters for encoding the controller to enable 

a larger search space.

The summation of these advantages has enabled a flower to develop in a 

realistic manner.

7.7 Conclusions

In this chapter, we presented the theoretical background of genetic algorithms, 

and described a novel system for creating virtual flowers that grow and behave 

in simulated three-dimensional physical worlds. The modifications of the growth 

controlling forces on the surface are generated automatically using genetic algo­

rithms. Suitable fitness evaluation functions are developed to guide the simulated 

evolutions towards specific interventions such as collisions and artificial interrup­

tion.

The goals of this System are: (1) to abstract and rigorously explain the adap­

tive processes of natural growth systems, and (2) to design artificial systems 

software that retains the important growth features of natural systems. This 

approach will be of benefit in both natural and artificial systems science. We 

concluded the chapter with the advantages for adopting the genetic algorithm 

approach and the improved realistic results from the growth animation system.
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Chapter 8 

Conclusions and 

Recommendations

8.1 Conclusions

Throughout this thesis, there is an underlying assumption that the natural flower 

growth life-cycle is important for virtual environment animation. In this research, 

we have concentrated on the quality of evolutionary and realistic results from dif­

ferent aspects, varying from surface representation models to collision avoidance 

techniques.

We started with the model design requirements, which must be able to simu­

late a biological life-cycle for the plant. In chapter 2, we analysed and compared 

the advantages and disadvantages of the representation methods for surfaces with 

the objective of using these surfaces for modelling flower petals. From the consid­

erations of mathematical, computational and complexity analysis, we chose the 

bicubic Bezier patch for our perceptual realistic surface model.

Flower growth animation can never be realistic without consideration of the
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positions and arrangements of petals and seeds. W ith the comprehensive reviews 

of the phyllotaxis and Fibonacci theory for plant organs in chapter 3, we built 

the spiral phyllotaxis model for the flower head. This gave a biological rule for 

how the positions are achieved for the seeds on the flower centre and also the 

positioning of petals. Phyllotaxis methods were then used in all subsequent work 

involving the positioning of petals.

Petals are the most important components in our flower model. It is crucial to 

have a method for generating flower growth animation in which the petal surface 

and shape can be changed simultaneously in real time. In chapter 4, we presented 

the petal surface model with easy access to individual control points. In addition, 

we described various kinds of surface growth control, step by step with analysis 

of the petal shape changes, and illustrated the use and results of some growth 

factors in some common cases.

We introduced a growth theory for the petal surface model in chapter 5, 

which can simulate the petal surface’s natural development. The advantage 

of our growth function is that it allows continuous growth from the previous 

growth cycle. In addition, a flexible growth change rate curve allows variation in 

the development tendency at a specific time interval, and therefore differs from 

other animations in which the plant grows according to a single growth function 

throughout its growth phase.

The result shows the proposed growth function is useful for the flower de­

velopment modelling. Thus we needed to investigate how to apply the growth 

function to the surface model. In chapter 6, we introduced a combination method 

for better surface control. A promising model for real-time natural animation is 

generated by combining the mass-spring model with the bicubic patch surface. 

The integration of growth function, the control mass-points, and forces control
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with the mass-spring framework enables the surface to grow according to bio­

logical growth theory. This is a new method that has the benefit of a physical 

model, that obeys the laws of dynamics, being in combination with a surface 

model that has easily controllable shape and growth features. In addition, the 

physical model gives the user access to all the dynamic parameters involved in 

motion control. In particular, being able to calculate dynamic forces will give 

more realism to the animation.

Compared to conventional Bezier or B-spline patches, our model has more 

direct and visible control of the surface; compared to dynamic mesh models, our 

model needs far fewer control vertices to obtain a desirable shape. These features 

are attractive, especially when this model is adopted for animation work, during 

which vertices are moved with time, and yet smoothness of surfaces for each ani­

mation frame must be maintained. Since the surface is represented by few control 

points, local control can be easily obtained by repositioning the control vertices, 

and the generation of the surface is simpler and faster than other techniques such 

as implicit surfaces. When the surface responds to growth, only a few affected 

control points need recalculation. Consequently, a substantial reduction in com­

putation time is achieved. This feature is likely to make it a realistic model for 

real-time natural animation.

The combination use of our model allows model builders to arrange control 

points in a way that is natural to capture geometric and biological features of 

the model, without concern for maintaining the smoothness and continuity of 

the surface. This freedom has two principal consequences. First, it dramatically 

reduces the time needed for controlling the surface. Second, and perhaps more 

importantly, it allows the initial model to grow in such a way that the evolution 

of elements, such as petals, can be accurately and realistically represented and
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controlled. Thus, by developing the mass-spring bicubic patch for physical-based 

surfaces, we have removed two important obstacles found in classic mesh models. 

By introducing the force function connected to the growth function, we have 

made this surface model the choice for our petal growth simulation.

At the same time, we can not ignore that facts that individual flowers and 

their petals touch each other in nature. Simulation of collision between mature 

organs is an important problem in the visualisation system. After the discussions 

of collision detection and response in chapter 6, we determined to find a solution 

to avoid the collision beforehand, especially when we have so much control over 

the petal surface, flower structure and growth function. Thus, we introduced 

genetic algorithms in chapter 7 to optimise the controlling forces on the petal 

surface to enable the growing petal to avoid collisions. A suitable fitness function 

has been developed to guide the simulated evolution towards specific internal 

and external interventions. The ability to use genetic algorithms was a direct 

consequence of developing the mass-spring model in chapter 6. W ithout access 

to the dynamic forces involved in collision detection and collision avoidance, we 

would not have been able to build a relevant fitness function. Therefore, there is 

additional benefit in adopting the combined surface and mass-spring model.

Many previous models of plant growth avoid the modelling of surface detail, 

often resorting to imposing detail such as leaves and petals from a library of 

simplistic elements. Here, we have demonstrated that surface detail can be effec­

tively represented by dynamic elements that grow and deform naturally as the 

plant evolves through its life-cycle.

In summary, we believe that the proposed modelling method and its exten­

sions will prove useful in many applications of surface modelling, from research 

in plant development and ecology to the surface design of plant organs and in

134



the production of animated surface models for use in virtual environments.

8.2 Contributions of the Thesis

This thesis consists of two parts: one theoretical and one practical. In the first 

part, we analyse the surface model and the biological growth rules. In the second 

part, we apply the improved model for the flower growth animation. The following 

lists summarise our research contributions from these two activities:

1. Expand the spiral phyllotaxis theory from the flower centre to the arrange­

ment of the flower petals, and implement it.

2. Review and modify the growth function for our growth model.

3. Combine the mass-spring model with bicubic patch for the growing surface.

4. Apply the force model on the surface control points with the biological 

growth function and genetic algorithm fitness functions.

5. Surface collision detection and the following response and collision avoid­

ance using genetic algorithms.

6. The combinations of all the above for our interactive flower growth anima­

tion.

8.3 Recommendations

There are a number of aspects to the techniques presented in this thesis which 

could be developed further or be linked to other research areas:
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1. In order to allow non-expert user to have direct and intuitive control for 

the flower petal growth, we only included some important growth factors, 

such as length, width and curvature change, in the growth function. More 

factors and their growth directions could be considered and investigated to 

provide more complex control. A more detailed model could be developed 

for more growth factors and directions.

2. As we mentioned in chapter 4, our petal surface model only uses one bicu­

bic patch. It is suitable for the majority of leaf shaped petals. However, 

research into multi-patch surfaces is suggested for more complicated petal 

shapes, such as non-divided petals and pollinated shape petals (as in many 

orchids). Combining a multi-patch model with the mass-spring model will 

introduce some interesting technical problems at the interface of each petal. 

The solution to this problem will require further research.

3. In our growth model, the user can choose a growth function by setting the 

growth minimum value, maximum value and growth change rate. This is 

a rather mathematical description for the growth function curve. If these 

ideas are linked and applied in biological research, we suggest that the 

biologist makes this mathematical model more meaningful by connecting 

all the constants and parameters to biological terms, such as temperature, 

sunlight index and DNA. It is similar for controlling forces applied on our 

petal surface model. In the biological area, more internal forces, such as the 

one between cells, could be added and explained to meet biological needs.

4. As our model is designed for perceptually realistic growth animation, the 

collision detection started with a simple convex hull test. To improve the 

accuracy of the solution or quality of the collision detection, a high com­
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putation cost surface detection could be used, especially in non real-time 

animation applications.

5. Genetic algorithms are optimisation search algorithms. They are defined 

by distinguished components and genetic operations, not by the fitness 

function. The fitness function we applied is just one solution. A library 

of fitness functions can be built for different kinds of search solutions or 

results. The collision avoidance methods developed may have more general 

applicability, particularly in figure animation or even in robotics.

8.4 Final Words

Carrying out this research has led us to pose new problems for which solu­

tions have yet to be found. But in building this animation system we have 

demonstrated that adaptability can be combined with a mathematically 

correct physical model. Therefore, we believe that we have shown a path 

towards building a more comprehensive system in the future.
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Appendix A

Implementation

A .l Im plem entation Procedure

A .1.1 Procedure

The main procedures of the animation system are:

1. Choose an initial petal shape for a bud, with the the control points matrix 

for x, y, z axis individually. The system also has default data.

2. The user inputs in all the growth rate information and requirements for the 

petals and flower centre, with all the animation and rendering preferences.

3. The system will generate all the frames of the flower shapes according to 

the user design. The user can connect all the frames to flower growth 

animation.

A. 1.2 User Interface

The system user interface is shown in figure A.I. The details is as follows
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□  Rower Animation

Petal Growth Rate (Constant/Initial/Final)

Length 17.00 |0.1Q 0.40

Width 17.00 f o . ib 10.10

Open 17.00 jo . 10 10.20

Curvature j 7.00 |o 10 0.10

Mass 17.00 | 0.10 j 0.40

Bicubic Patch

Number of horizontal elements |0 

Number of vertical elements Q a

Petal Options

Number of petals [5  j |

Number of seeds [o

r  Show control points 

r  Enable collis ion detection

Animation Frames — 

Number o f frames [3 

Frame interval 0.10

Render

Display

WhirlGif

Quit

Figure A.l: User interface

• ‘Petal growth rates’ section provides the parameters related to the relevant 

growth function. The initial and final factors are the minimum and max­

imum value of the growth. The ‘constant’ is the growth change rate. It 

is easy to understand the factors related to length, width and curvature 

change. Factor ‘open’ is the flower opening speed. And ‘Mass’ is the petal 

mass, the petal mass increases as it grows.

• ‘Petal options’ is for the whole flower structure design. The user can choose 

the numbers of petals and seeds required. The arrangement of petals and 

seeds will depend on the phyllotaxis technique in the system.

• ‘Bicubic patch’ and ‘show control points’ options are there to help the user 

understand the surface structure by showing the patches or control points.

• ‘Animation frames’ option allows the user to choose the number of frames 

and the time interval between the frames.

The choice for ‘enable collision detection’ is to enable the genetic algorithm
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optimisation collision avoidance function.

• Click ‘render’ will allow the system to render it by POV-ray. And click­

ing ‘display’ will show all the frames one by one by using XV command. 

WhirlGif will connect all the frames to a GIF animation file.

A .1.3 Time step

Whereas in the real world time is continuous, so that there is no break between 

one instant and another, in dynamics time is treated discretely. That is, time is 

broken up into a fixed number of measurable increments. These increments are 

called time steps. The smaller the time steps, the more closely they approximate 

the continuous nature of time, and therefore the more accurately they simulate 

an animated scene. However, smaller time steps also mean more calculations. 

Consequently, our systems allow a user to define the size of the time steps, giving 

user the option of trading off accuracy of against speed of calculations.

A .2 Forward Difference

It is necessary to determine the optimal method for moving control points such 

that we avoid collisions between petal surfaces. As we use two sets of four control 

points to manipulate the body of the petal surface, we must first generate the 

two Bezier curves, one for each set of control points.

A basic way to draw a parametric cubic is by interactive evaluation of x(u), 

y(u) and z(u) for incrementally spaced values of u, and plotting lines between 

successive points [Foley90]. A much more efficient method for evaluating poly­

nomial equations is to recursively generate each succeeding value of the function
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by incrementing the previously calculated value for the cubic equation through 

the use of finite differences. Given:

f(u )  = a0u3 +  aiu2 -f a2u +  g3 (A.l)

and

fi+l — fi +  A fi  (A.2)

where A/* is the forward difference. The function fi is evaluated at Ui, and /j+i

is evaluated at ui+i =  Ui +  £, where S is the step size for incrementing u. For a

cubic curve, the forward difference evaluates to

A fi = 3clqSu2 -J- (3 0,8  ̂ elci\5^Ui 4- T oq$2 T &23 (-^•^)

which is a quadratic function of u. However, we can use the same incremental

procedure to obtain successive values of A /. That is ,

A / i + ^ A / i  +  A V i  ( A . 4 )

where the second forward difference is a linear function of u :

A 2 fi =  6ao 52Ui +  6a0<$3 +  2ai£2 (A.5)

Repeating this process once more, we can write

A 2/,+ i =  A 2/i  +  A 3/i  (A.6)
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with the third forward difference as the constant

A3/. = 6a053 (A.7)

and

A 4fi = A5/* =  ■ • • =  A " /i =  0 (A. 8)

Therefore only equations (2), (4), (6), and (7) are needed to incrementally 

obtain points along the complete curve from u = 0 to u = 1 with a step size S. 

The initial values at i = 0 and u = 0 are:

f o  =  ^3  (A. 9)

A f o  — T CL\S^ T 0 ,2 $  (A.10)

A2/ 0 =  6a0<53 +  2 M 2 (A .ll)

Calculations for successive points are then efficiently carried out as a series 

of additions. To apply this incremental procedure to Bezier curves, three sets of 

calculations are needed for the coordinates x (u ), y(u ), and z(u). For surfaces, 

incremental calculations are applied for both values of u and v.

A .3 Genetic Algorithms Im plem entation

The main genetic algorithms implementations are:

/ / s t a r t  w i t h  an i n i t i a l  t im e  

t  = 0;
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/ / i n i t i a l i s e  a  u s u a l l y  random p o p u l a t i o n  o f  i n d i v i d u a l s  

i n i t p o p u l a t i o n  P ( t ) ;

/ / e v a l u a t e  f i t n e s s  o f  a l l  i n i t i a l  i n d i v i d u a l s  o f  p o p u l a t i o n  

e v a l u a t e  P ( t ) ;

/ / t e s t  f o r  t e r m i n a t i o n  c r i t e r i a  ( t i m e ,  f i t n e s s ,  e t c . )  

w h i l e  n o t  done do {

/ / i n c r e a s e  t h e  t im e  c o u n t e r  

t  = t  + 1;

/ / s e l e c t  a s u b - p o p u l a t i o n  f o r  o f f s p r i n g  p r o d u c t i o n  

P ’ = s e l e c t p a r e n t s  P ( t ) ;

/ / g e n e t i c  o p e r a t i o n  c r o s s o v e r  

c r o s s o v e r  P ’ ( t ) ;

/ / g e n e t i c  o p e r a t i o n  m u t a t io n  

m u t a t io n  P ’ ( t ) ;

/ / e v a l u a t e  i t ’ s  new f i t n e s s  

e v a l u a t e  P ’ ( t ) ;

/ / s e l e c t  t h e  s u r v i v o r s  from  a c t u a l  f i t n e s s
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P = survive (P, P’ Ct));

}
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