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Summary

The first part of the thesis deals with the pricing of three very different types of option.

Firstly we look at Parisian options. These knock in or out when a barrier condition is 
met for a continuously occurring period of time. We derive expressions for the Laplace 
transforms in maturity of the prices of Parisian down-and-out put and call options. 
Prices are obtained by numerical inversion of the Laplace transform. We show tha t 
this method is accurate and extremely fast.

Secondly we consider continuous arithmetic-average Asian options. We give an expres­
sion for the double Laplace transform in strike and maturity of the option price and 
an efficient method for calculating this. Prices are obtained by numerical inversion of 
the Laplace transform and compared with results from the literature. We show tha t 
this approach is fast and accurate enough to be of practical use.

Thirdly we take an ab-initio approach to the valuation of options on multiple assets, 
in particular the ‘m in-put’ option. We characterize the behaviour of the minimum 
process, given by the smallest of the log-asset-prices. We price European min-put 
options exactly and use a trinomial tree based method to find a fast lower bound for 
the price of American/Bermudan options.

The second part of the thesis develops the study of two-sector growth models of the 
form introduced by Arrow and Kurz (1970).

Being purely deterministic, their original model was unable to distinguish between 
open-loop and closed-loop control of the economy; by allowing stochastic terms into 
the model, we are able to resolve this difficulty. Moreover, we find tha t in some cases 
the model can be solved explicitly in closed form, and we can write down expressions 
for tax  rates and interest rates. This leads to new one-factor interest-rate models, with 
related taxation policies; numerical examples show very reasonable behaviour.
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Chapter 1

Introduction to the thesis

1.1 Outline

The thesis is split into two unrelated parts. In Part I we attem pt to find prices for three 
very different types of financial option. In Part II we construct a two-sector stochastic 
growth model, which we use to model the behaviour of tax  and interest rates.

The emphasis throughout Part I of the thesis is on practical solutions to pricing prob­
lems. In particular, for a pricing method to be of use in the market a trader needs to 
be able to select the parameters of the model and obtain a corresponding price within a 
m atter of seconds. W ith this in mind we aim for the informal goal of computing prices 
in at most a second of CPU time, sacrificing a small amount of accuracy if necessary to 
achieve this. We check the accuracy of the prices we obtain from these computations 
by comparing them with both our own benchmark prices and prices from the literature.

In Chapter 2 we look at Parisian options. These knock in or out when a barrier con­
dition is met for a continuously occurring period of time. The work in this chapter is 
based on that of Chesney, Jeanblanc-Picque, and Yor (1997) who first defined Parisian 
options, although we improve on many of their results or obtain them by alternate sim­
pler means. We also give new explicit formulae for the Laplace transforms in maturity 
of the prices of Parisian down-and-out call and put options and show tha t these Laplace 
transforms can be inverted extremely rapidly and accurately numerically. The same 
techniques can be used to find the price of any vanilla Parisian option. This material 
is also presented in Hartley (2002b).

In Chapter 3 we consider continuous arithmetic-average Asian options. The material
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in this chapter is motivated by the work of Fu, Madan, and Wang (1998) who first 
considered the double Laplace transform of the Asian option price. However, the 
expression they gave for this Laplace transform was incorrect in several respects and 
they consequently failed to proceed any further with it. We give a correct expression 
for the double Laplace transform and then explain why this expression is very hard to 
calculate. We avoid this difficulty by providing an alternative method for calculating 
the Laplace transform numerically using a finite-difference scheme. Finally we obtain 
prices by numerical inversion of the Laplace transform that are substantially better 
than any prices previously obtained by Laplace transform methods and that compare 
well with prices obtained by other means. The material in this chapter is also presented 
in Hartley (2002a).

In Chapter 4 we take an ab-initio approach to the valuation of options on multiple 
assets, in particular the ‘min-put’ option, that is a put option on the minimum of 
several assets. We characterize the behaviour of the minimum process, given by the 
smallest of the assets, by finding the law of its distribution at a chosen time conditional 
on its position at an earlier time. This allows us to price European options exactly 
and we use a trinomial tree based method to find a fast lower bound for the price 
of American/Bermudan options. This chapter contains entirely new material some of 
which appeared in Hartley (2001).

Part II of the thesis develops the study of two-sector growth models of the form intro­
duced by Arrow and Kurz (1970). This part of the thesis is considerably more theoret­
ical than the first, although numerical methods do again feature strongly. Apart from 
a short section at the end of Appendix B.4 the whole of Part II consists of original 
material, some of which can also be found in Hartley and Rogers (2003).

Chapter 5 forms the theoretical foundation for this study. Firstly we set out the model 
and solve the central planning problem in which a communist style government, with to­
tal control of the economy, wishes to maximize a functional depending on consumption, 
levels of public services and leisure time. The resulting optimal choices are functions of 
the level of capital in the economy, i.e. open-loop control. Being purely deterministic, 
the original model of Arrow & Kurz was unable to distinguish between open-loop and 
closed-loop control of the economy; by allowing stochastic terms into the model, we 
are able to resolve this difficulty of interpretation. We then consider the more usual 
situation where the government controls the economy only through choice of tax  rates 
and the issuing of debt at a particular rate of interest. Can it induce the private sec­
tor, consisting of individual optimizing households, to follow the government’s original
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optimal policies? We give conditions on the tax  and interest rates for this to be the 
case. The final section of Chapter 5 deals with the question of what price the private 
sector would be prepared to pay for a zero-coupon bond.

In Chapter 6 we consider explicit solutions to the problems of the previous chapter. 
We find tha t in some important cases the model can be solved explicitly in closed form, 
to the extent that we can write down expressions for tax  rates and interest rates. This 
leads to new one-factor interest-rate models, with related taxation policies.

In Chapter 7 we demonstrate methods for finding numerical solutions to the central 
planning problem, given a full specification of the economy. As with the explicit solu­
tions we can then find taxation and interest-rate policies. Unlike the explicit case we 
are also able to find the stationary distribution for the level of capital in the economy 
and use finite difference methods to solve a partial differential equation for the price 
of a zero-coupon bond. The corresponding bond yield curves strongly resemble those 
found in real markets, with increasing, decreasing and humped curves all present.

In Chapter 8 we give graphs showing explicit and numerical solutions for particular 
examples and conclude our discussion.

1.2 N otation and abbreviations

We will use the following mathematical notation:

rsj Is distributed as, e.g. X  ~  N { n , a2)

Is approximately equal to

= Is equivalent to; is defined to be equivalent to

f The derivative of /  with respect to time

f The Laplace transform of the function /

(?) The binomial coefficent m \/k \(m  — k)\

The indicator function of A

0 The empty set

( X ) + The positive part of X , i.e. max(0, X )

X  A Y The minimum of X  and Y

( X , Y ) The quadratic-covariation process of X and Y

Cov[X, Y] The covariance of X and Y

3



E[X] The expected value of X

The expected value of X  conditional on the event A  having occured

The expected value of X  when event A  occurs too, i.e. E[X 1{J4}]

The working filtration; all processes are adapted with respect to T t

A normal random variable with mean \x and variance a 2

A (possibly unknown) function g(At)  such that, for all sufficiently 
small At ,  |</(At)| <  c f ( A t )  for some constant c. We also use the 
same notation with, for example, A t  replaced by some large value 
N.  The definition stands as above but with A t replaced by N  and 
the word ‘small’ replaced by the word ‘large’. It is always clear from 
the context which case applies.

The probability of event A

The real part of X

The variance of X

E[X | A] 

E[X ; A] 

( F t ) t >  o 
JV(jU,<T2) 

0 ( / ( A  t))

P(A)

Re(X)

Var[X]

We also use the following abbreviations:

CRRA Constant-relative-risk-aversion 

HJB Hamilton-Jacobi-Bellman 

ODE Ordinary differential equation 

PDE Partial differential equation 

SDE Stochastic differential equation

In Part I of the thesis the three chapters are each self-contained so any notation de­
veloped in one chapter does not carry through to the next. In particular, in Chapter 
2 the functions C  and P  denote the prices of vanilla call and put options respectively; 
in Chapter 3 the same function names axe used to denote the prices of Asian calls 
and puts. The measure IP also varies between chapters: in Chapter 2 it is the measure 
under which the log-asset price has zero drift, in Chapters 3 and 4 it is the risk-neutral 
measure and in Part II of the thesis it is the ‘real world’ measure.

In Part II of the thesis the notation does carry over between chapters. Unfortunately a 
stochastic growth and taxation model is a complex beast with a corresponding volume 
of notation. Although some of this is standard growth theory notation a lot of it isn’t. 
In an attem pt to preserve the sanity of the reader there is a separate summary in 
Appendix B.5 of the notation specific to Part II of the thesis.
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Part I

Three Option Pricing Problem s



Chapter 2

Pricing Parisian options by 
Laplace inversion

A bstract

This chapter is concerned with Parisian options. These knock in or out when a barrier 
condition is met for a continuously occurring period of time. We derive expressions for 
the Laplace transform in maturity of the prices of Parisian down-and-out put and call 
options. Prices are then obtained by numerical inversion of the Laplace transform. We 
show tha t this method is accurate and extremely fast.

2.1 Introduction

Parisian options knock in or out when a barrier condition is met for a continuously 
occurring period of time. In particular we will consider the Parisian down-and-out 
option, which becomes worthless if the underlying asset remains under a specified 
barrier level for a fixed duration of time, but otherwise has the same payoff as a standard 
European option.

Such options are now widely traded in the over-the-counter market, particularly on 
exchange rates. In practice the monitoring of the asset price will be discrete so that, 
for example, the option will knock out if the asset price is below the barrier for five con­
secutive observation times occurring daily at midday. We focus only on the continuous 
time results, corresponding to a small time between successive asset price observations.
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We follow closely the account of Chesney, Jeanblanc-Picque, and Yor (1997), from now 
on referred to as C JY, by considering the Laplace transform in maturity of the Parisian 
option. We show tha t the Laplace transform can be evaluated explicitly and inverted 
extremely rapidly using the Euler method described by Abate and W hitt (1995). Ches­
ney, Cornwall, Jeanblanc-Picque, Kentwell, and Yor (1997) require a double numerical 
integration to give accurate results for a Parisian down-and-out put.

Alternatively the problem can be formulated as a partial differential equation in three 
variables: time, the price of the asset and the duration of time it has spent below the 
barrier. Vetzal and Forsyth (1999) and Haber, Schonbucher, and Wilmott (1999) use 
finite-difference methods to numerically obtain Parisian option prices. Zhu and Stokes 
(1999) use Galerkin finite-element methods. Avellaneda and Wu (1999) solve a PDE 
numerically using trinomial lattice methods. One further approach is that of Kwok and 
Lau (2001) who use a forward shooting grid method; this is a variant on the trinomial 
lattice method where an auxiliary state vector is used at each node on the lattice to 
capture the path-dependent feature of the option contract; in this case the auxiliary 
vector is used to characterize the duration of time the asset price has spent below the 
barrier. All these approaches have one major benefit - they are flexible enough to be 
easily modified to price more general options. For example Haber, Schonbucher, and 
W ilmott and Zhu and Stokes consider a ‘Parasian’ or ‘cumulative Parisian’ option1, 
where the recorded duration is cumulative rather than continuous. The Laplace trans­
form approach is very specific to the problem, but we shall see that what it lacks in 
flexibility it more than makes up for in accuracy and speed of computation.

This chapter is organized as follows. In Section 2.2 we define the Parisian down-and- 
out option and establish some parity identities relating it to various other types of 
Parisian option. In Section 2.3 we show how to price options where the initial asset 
price is above or below the barrier level in terms of the option price at the barrier. 
In Section 2.4 we assume tha t the initial asset price lies on the barrier and obtain 
explicit expressions for the Laplace transform of the Parisian down-and-out density 
and for the Laplace transform of the corresponding option prices. In Section 2.5 we 
give some option prices obtained by numerically inverting these Laplace transforms. We 
conclude in Section 2.6. Appendix A covers the method used for numerical inversion, 
an alternative derivation of the Parisian down-and-out density and details of how to 
perform some of the integrations tha t appear in the chapter.

1 Again there is a discrete version of this option where, for example, the option knocks out when the 
asset price has been below the barrier on any five separate observation dates. In the currency markets 
this is known as a ‘baseball’ option as after a certain number of ‘strikes’ the option is knocked out.
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2.2 Parisian options

Let us assume that under the risk-neutral measure IP the asset price S t  obeys the 
stochastic differential equation

dSt = S t((r -  5)dt + crdWt) (2.1)

where r is the interest rate, o  the asset volatility and Wt a standard Brownian motion 
under P. The symbol 5 denotes the continuous dividend rate in the case where St 
models a stock price; if S t is a currency exchange rate then 6 will be the interest rate 
of the second country. We can solve the SDE (2.1) explicitly and write

S t = 50e(r- <-  

=  e°Xt

where
Xt  =  xo +  Wt +  mi

is a Brownian motion with drift m = ^ ( i —  S — 5̂ -) and starting from xq = £ log So at 
time 0. Under Black and Scholes (1973) assumptions a vanilla European call option on 
this asset, with strike price K  and maturity T  will have time-0 price2

C(T,xo; K )  =  e ° [ e ~ rT {<?Xt -  K ) +],

Here we write Ex to denote expectation under P with the process (Xt)o<t<T starting 
from Xo = x. The payoff (St  — K ) + of the call depends only on the terminal asset 
price; for a barrier option the payoff will also depend on whether the asset price has 
reach a barrier level during the lifetime of the option. For example, a down-and-out 
call option has the same payoff as the vanilla call at time T, provided tha t the option 
has not been ‘knocked out’ by the asset price hitting a level B  < So. If we write3 
7b =  inf{£ : X t  = b} where b =  £ log B,  then this option has time-0 value

D O C{T,x0; K,b)  =  [e-rT ( e ^  -  K ) + l {r<n}]

=  I?" [e-rT  (eaXr - K ) + ; T <  r j .

2 We use the obvious notation to distinguish between the prices of these various types of option, so 
for example ‘C’ stands for ‘call’, ‘PDOC’ for ‘Parisian down-and-out call’ and so on. We think of these 
prices as functions of the maturity T  and initial value xo; the other (constant) parameters will appear 
in the function only for clarity or when necessary to make a point.

3We follow the usual convention that sup{0} =  0 and inf{0} =  + 0 0 , where 0 denotes the empty set.



For K  > B  it is well known tha t this can be evaluated in terms of vanilla call prices as

DOC(T, x 0; K,  b) = C(T, x0; K ) -  e2m(t- J'°>C(T, 2b -  x 0; K).  (2.2)

The knock-out feature can substantially reduce the initial cost of a call option. However 
as the asset price only needs to touch the barrier for the option to be terminated this 
leaves the holder vulnerable to brief ‘spikes’ in the asset price or deliberate manipulation 
of the asset price by the writer of the option. Parisian options avoid this problem by 
allowing the buyer to specify a minimum amount of time that the asset price must be 
above/below the barrier in order to knock in/out.

We consider a Parisian down-and-out option which knocks out if the asset price process 
St spends a continuous duration D  of time below a barrier level B.  We will require 
tha t 0 < D < T.  If jD =  0 then we have a standard down-and-out barrier option. 
If D > T  then we axe effectively pricing a vanilla European option. If we define 
gj~t =  sup{0 < u < t : X u > 6}, the last time before t tha t the asset price was above 
the barrier level B , and hence r =  inf{t : t  — g^t > D }, the first time tha t the 
asset price spends a continuous time greater than D  under the barrier, then a Parisian 
down-and-out call option has initial value

PDOC(T,  z0) =  E">[e~rT (eaXT -  K ) + ; T  < r t“ ].

If we now make a change of measure so that under the new measure P, W t + mt  is a 
standard Brownian motion4 Wt and hence Xt — xo +  Wt, then

PD O C(T,  X0) = E*0 [e- r T em(XT- x o ) - ^ T  ^ a X T -  K ) + ]T < T^\

=  e - ( r + ± m 2) T - m x 0 jgro [ ( e**T  _  # ) +  e ™ X r . T  <  T~]

=  e- ( r+ X )r-m z o  ^rc [ /(X T); T  < Tfe-] 

=  e-(r+ jm J)T-m*0 *PDOC(T,X0)

where f ( z )  = (eaz -  K ) + emz and *PDOC{T,x)  = W [ f { X T )-,T < r~]. In Sections
2.3 and 2.4 we will show how to determine the Laplace transform of *PDOC(T , x) and 
hence evaluate the price of the option numerically. A wider class of options can then 
be valued by use of various parity relations.

Firstly if a buyer holds both an ‘ou t’ option and an ‘in’ option (which will only pay out 
if the asset price has stayed under the barrier for duration D ) then this is equivalent

4This is the Cameron-Martin-Girsanov Theorem; see, for example, 0ksendal (1998) for an account.
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to holding the vanilla option, so that for example

P D O C iT , xo; K,  b, D) +  P D I C { T , z 0; K , 6, D) =  C(T, z 0; If) (2.3)

where P D I C  denotes the price of a Parisian down-and-in call option. Similar identities 
hold for put options and up options (when the asset price has to stay above a barrier 
level B  to knock in or out).

Secondly consider a Parisian up-and-out put. Following the methodology above this 
has initial value

P U O P ( T , X q )  =  e - ( r + \ m 2) T - m x 0 jgxo _  e<rXT y +  <  r + ]

where rb = inf{t : t  — gbt >  D]  and gbt = sup{0 <  u < t : X u < b} . Using 
the reflection principle we can replace X t  by —X t  in the above and start the process 
instead at — xo, so that

P U O P (T , x 0) = e- ( r+ im2)T- m*° E-x ° [(K -  e~aXT)+ e~rnXT;T  < rZb]

— J(e(7x0 e - ( r + ^ r n 2)T+(m+cr)(-XQ) ] g - * o  [- ^ e <rXT  L ' j  e -(m+<r)XT . <  r~b].

It can be easily confirmed that

—(m -f a)

1 2 r +  —m  z

and hence

P U O P (T , z 0; K, b, D; cr, r, 6) = K e ax°P D O C {T , - x 0; , -6 , D; <j, <5, r),

or equivalently, abusing our notation slightly:

PUOP(T ,  So; K, B,  D; <7, r, i)  =  K  S0 PD O CiT ,  J--; i  i  D; a, S, r). (2.4)

Similar identities hold for the other types of option.

We can represent the relationships described above diagrammatically:

1 fx a ^  

S +  ^ ( m  +  <r)2
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PDOC

I
PUOP

PDIC

I
PUIP

Similaxly we have that:

PDOP * PDIP

I I
PUOC > PUIC

If we can value both types of Parisian down-and-out option (calls and puts) then we 
can find the price of any standard Parisian option.

2.3 Reduction to the case x  — b

We are interested in Parisian down-and-out option prices of the form

*PDO{T,x)  =  F [ / ( X r );T  <  r f ]

where f ( z )  = (eaz — K ) + emz for a call or f ( z )  = (K  — eaz)+ emz for a put. We could 
equally well determine the Laplace transform of this and then use numerical inversion 
to find the option price. In Section 2.4 we will show how to do this when x  =  6, i.e. 
when the asset price process St starts at the barrier B.  In this section we will show 
how to reduce the cases where the asset price starts above or below the barrier to the 
x  = b case. Firstly, a remark about Laplace transforms.

2.3.1 The Laplace transform  : an exam ple

Suppose that we have a function of the form

F (T ,x )  = E?[/ ( X r ) ; n  < T  <  r 2] (2.5)

where T  > 0, (Xt)t>o is some process and t\ and 72 are T *  adapted stopping times 
where {Ft')t>o denotes the natural filtration of the process X .  Laplace transforming
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(2.5) in T  yields for A in the right complex half-plane

roo
F ( A, x) =  /  e~XT P  [ f (X T); n  <  T  < r 2]

Jo

= ^ P  [ ^ “ Ae-AT/( X r ) l {T1<r<T2}dT 

= i p [ / ( X £);r1 < ^ < r 2]

where £ is an exponentially distributed random variable5 with parameter A. Crucially 
£ is independent of T *  and hence independent of the process X  and the stopping times 
T\  and 7 2 .

2.3.2 Case 1 : x  <  b

Here the Brownian motion X  starts below the barrier. Condition on the random time 
Tb =  inf { t : Xt  = b}, the first moment tha t X  hits b. This either occurs before time D 
and thus before or after time D  in which case the option knocks out and expires 
worthless as we assume that D < T .  Thus

P [ f ( XT) ;T < t 6-] =  P [ / ( X T ) ;T < Tt- , D < r„] +  P [ / ( X T);T  < r t" , n  < D]

=  P [ / ( X r ) ;r l, < Z ) ,T < r i-]. (2.6)

If we now condition on the exact time before D  tha t X  hits b we have that

Ex [ f (X Ty,T < t 6-] = f D n t ( b -  x ) ^ [ f ( X T)]T  < r6" \Xt = b]dt, (2.7)
Jo

where

nt iy)  s  m

denotes the entrance law of Brownian motion. This gives the distribution of the first 
hitting time of level y by a Brownian motion starting from 0. When the process X  
reaches b we can apply the strong Markov property and start the system again from 6,

5It’s not obvious that this is a well defined concept for complex A, but the intuition we have about 
exponential random variables proves to be very helpful in motivating the results that follow. All the 
calculations could equally well be performed explicitly using integrals involving Xe~XT rather than 
expectations involving £.
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so tha t equation (2.7) gives us

*PDO(T , x ) =  *PDO(T -  t, b) n t (b -  x) dt.
Jo

A similar identity appears in CJY. We have reduced valuation of the option starting 
from x  < b to an integral over options with x = b but different maturities. We can do 
much better however. We are interested in finding

*PDO(T,x)  = F ? [ f ( X Ty , n  < D , T  < r - ] .

We will define the function

F(T , x) EE r  [ f (X Ty  n  <  D ,  rb A  D < T  <  r f ] .

This function is identical to *PDO(T,x)  on the set {D < T}  and so we can compute 
prices using F(T ,x )  in the place of *PDO(T,x)  as we always know that D < T. 
Following along the lines of the example outlined in Section 2.3.1 the Laplace transform 
in m aturity of this expression is

F (  A, x)  =  i f i 1 [ / ( * { ) ;  Tb < D , T b K D < £ <  r f ]

=  i  f  e - xtn t ( b - x )  e  [f < rb \Xt = b , t  > t]dt

  rD
= *PDO(\,  b) /  e~xtn t {b -  x) dt.

Jo

=  * P D O { \ , b )  (O '/D  -  + e e(6- x)$ (2.9)

where 6 = \/2X and $(x) =  dy is the standard cumulative normal distri­
bution function. Note the considerable improvement! We condition on the time that 
the process hits b and that £ has not yet occurred (hence the factor of e~Xt). We can 
now use the lack-of-memory property of the exponential distribution and the strong 
Markov property to treat the entire system as having started again from b. Finally we 
can evaluate the integral on the second from last line explicitly. See Appendix A.3 for 
the details.

Suppose now that we would like to price an option tha t has already spent a duration 
of time Do < D  below the barrier. This is a case considered by Schroder (2002) who 
goes to some effort to modify the expressions given by CJY for the Laplace transform 
of the down-and-in density to allow for this. However, the modification needed to our
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approach is essentially trivial - we simply replace D  by D — D q in equation (2.9) above.

2.3.3 Case 2 : x  >  b

Again we can condition on the first hitting time of b. If T  <  tj, then clearly also T  < r b_ , 
so

F [ / ( X r ) ; T  <  r f ]  =  E *[/(X r );T  < n] +  EJB[/(X r ); rb < T  < r f ] .

The first term  corresponds to a standard (non-Parisian) down-and-out option so we 
can use the explicit formula (2.2) to price this component. The second term  can again 
best be treated by considering its Laplace transform

1 1 r°°
- V ? \ f ( X ( y,Tb <  f  <  r t-] =  -  I e - xtn t( x - b ) ^ [ f ( X s) ^  < T, \ X t = b , ( > t ] d t

poo
=  * P D O ( \  b) /  e~Afn ,(x  -  6) dt

Jo
= *RDO(\,  b) e~0(x~bh (2.10)

As in the x < b case we use the lack-of-memory property of the exponential distribution 
and the strong Markov property to treat the whole system as starting again from b if 
the exponential random time £ has not occurred before the process X  hits 6.

2.4 Valuation when x  — b

We wish to find

_____________  roo poo
•PDO(X,b) = /  /  e - x r f { y ) d , T ^ ( X T e d y , T < T b )

J —oo J 0

/ oo poo
/  l ( y ) e - XTgb(T ,y ) d T d y

■oo JO

where gb(T,y) is the density function of X t  on the event tha t T  < starting from 
X q = b and /  is the relevant option payoff function. Writing <)&(A, y) for the Laplace 
transform in maturity T  of gb{T, y) we have that

^  poo
-PDO(X,b)= f ( y )  gb(X, y) dy.

J —oo
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We wish to determine gi(X,y)] note that we only need consider the case where 6 =  0 
as then for general 6 we find by translation that

9 b { \y )  =  9 o(A, y - b ) . (2 .11)

This agreed, we wish to determine

A </o(A, y ) dy = P°(Xe G d y \ t < r b )

where X t  is now a standard Brownian motion and £ is an exponential distributed 
random variable with parameter A =  \ 6 2. We will use excursion theory to do this - see 
Rogers (1989) or Rogers and Williams (2000) for a full account. We think of the path 
of the Brownian motion Xt  as being decomposed into disjoint excursions away from 
zero, and we then mark these excursions with an independent Poisson process of rate 
A. The time of the first mark thus corresponds to the value of the random variable 
£. We follow the notation of Rogers (1989) and write n  for the excursion measure on 
the space U of excursions and for A  C M/{0} we denote the Laplace transform of the 
entrance law (2.8) by

The rate of positive excursions with first mark when the excursion is in dy is

e Xtn t (y)d tdy

P+(y) dy =  Um — An x{[y -  e, y +  e]) dy
e->o Ze

1 /  g-fl(v-e) e—0(y+e) \
=  lim — A --------------------- -----  I

e->o 2e y 9 6 J

= lim b  ( e dy

=  Ae 6y dy.
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The rate of negative excursions with first mark in dy before time D  is

I  fD  ry+ e
p~(y) dy =  lim — / /  Xe~ tn t {x )dxd tdy

e->o 2e J0 Jv_£'0 J y —E 
'D „ - \ t

=  lim «e—>0 2c

=  lim [e-+0 2 Jo

—A [  - —  (e 21t(J/+e)2 — e *t(y e)2N) dtdy
le Jo y / M \  J

D e~Xt

,-----    ̂ -  e 2i ’
\ /2nt  \  /  “

f - ? '± £ e ~ £ (y+e)2 -  ^ -Z £ e~ ^ (y~e)2>l dtdy

= x  [ D \y\e xt - x **2
7o \/27r t3

V^TTt V  ̂
1 2

e_ 2ty dtdy

e-»»$ j - 0 y /D  +  - |=  
y/D

+ e6y§ (eVD + ^ = \ dy.

See Appendix A.3 for details of the final step.

Finally, the rate of all negative excursions of duration greater than D and with no mark 
before D  is

lim
£->0

n ( { f  e u  : inf f ( s )  <  - e } )  p - £(inf{s >  0 : X s = 0} > D)  P(£ > D)
s>  0

1 f°°
= ^ o 2 1 J D n t{e)d t

= ie-*D r  _i
2 / d \/27rt3

,-AD

,-AD

Here we have used Proposition 2 from Rogers (1989) which states that

for each a > 0.

We know also tha t

and

n ( { f  G U : su p /(f)  >  a}) =  (2a) 
t> o

- l

/Jo
p+(y)dy = - 6

J  P - ( y )  dy = 6 ${eVD ) -  i
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by equation (A.8) of Appendix A.3. Assembling the various pieces:

A so (A, y)  d y  =  ¥ >( X ^ e  dy,  £ <  r6~) =  P+ 1 {v>o> +  P -  (y )1 {y<0> d
4 ‘ /o p + (y) dy +  Jloo p -  (y) dv  +  ^=5

and substituting in the expressions derived above and rearranging we find that 

„ , . y/2nDeXD ( _e
9o(A’y ) =  * ( W ( e lfa>0)

+

where

e- ^ ( - e V D  + ~M=) + ee^ ( s V D  + ^ )  1{„<0}) (2.12)

Z) =  1 +  zy/zirez*2 <&(z).

This expression is consistent with tha t obtained by CJY for the Laplace transform of 
the down-and-in density - see Appendix A.4.

2 .4 .1  E x a m p le  1 : C a ll  o p t io n  w i th  K  > B

We wish to find ^  r oo
PD O C{\ ,b )  = f ( y ) h ( \ v ) d y .

J  — OO

where f ( z )  = (eaz — K ) + emz and <7&(A,t/) is as defined in equations (2.11) and (2.12) 
above. We are interested only in the case where y > b as the call option we are 
considering only has value if the asset price exceeds K  > £?, so the density we need is 
given by

a .(A y) = e-Hy-l»
9b{ ' v) <Z(eVD)

Setting fc =  j  log K  the Laplace transform of *PDOC(T, b) is then given explicitly by 

*PDOC{\,  b) =
V2irDeXD / “  {eay -  K )  emye~l>('J- b'> dy 

V(0y/D)

^{Oy/15) \ 6  — m  — a  6 — m

under the assumption that

(2.13)

Re(0 — m  — a) > 0. (2-14)

This assumption does not pose a problem as we shall see in Section 2.5.
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2 .4 .2  E x a m p le  2 : P u t  o p t io n  w i th  K  > B

The only difference from the previous example is tha t the put option will be alge­
braically much more messy, as we will have to integrate over both the y > b and y < b 
parts of the density. As before

/ oo
f ( y )9 b (K y )d y

-oo

where this time we have f ( z )  = (K  — eaz)+ emz. Using equations (2.11) and (2.12) we 
find that

* P D O P ( \ , b ) =  f  f ( y ) g b(X,y)dy
J —oo 

nk-b
=  / f ( u  + b)g0( \ , u ) d u

J —  OO

=  [  ( e<rk+m(<t+b) _  eir(u+t)+m(u+6)^ £Q(A, u) du
J — OO

_ \Z2 x DeXp - m̂_ r k b _ e<,6+(a+m)u'\ e~6u du
4'(OVD) J o V >

j  ^Hm» _ g<r6+(ff+m)«̂  + \  + e«u$ +  \

v/27rDeXD+mb

'0
+

V(6VD)

,crfc

m  — 6
,crf>

(2.15)

" a + m - e  -  l) + eak ( l ( - 0 V D , m -6 )  + I(0VD,m + «))

—  ecb ( l ( - eVD, a  +  m  — 9) + 1 ($Vd , cr +  m  +  0) \

where

I(ot, 0) =  4  [$(«) -  e i /,2D-°‘ll'/ S $ ( a  -  /3\/D)].
See Appendix A.3 for more details on the integration. The other piece of information 
we need for valuation is the price of the conventional down-and-out put option which 
can be expressed as

DOP(T, x0; K ) =  P(T, x0; K) -  P(T, x0; B) -  (K -  B)PD{T, x0; B)
_  e2m(b-x0) [p (Ti 2b -  x 0; K) -  P(T, 2b -  x0; B) -  (K -  B)PD(T, 26 -  x0; B)]
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where P ( T , xq\K )  is the price of a vanilla put option with strike K ,  maturity T  and 
initial asset price So = eax°; P D(T ,xo;K)  denotes the value of the digital cash-or- 
nothing put which pays 1 if S t  < K  and 0 otherwise.

2.5 Numerical examples

We employed the Euler method of Abate and W hitt (1995) as described in Appendix 
A .l with parameters A  =  13.8, m  = 30 and n =  40. A  = 13.8 was chosen so tha t error 
in the Abate-W hitt approximation was at most one part in a million relative to the 
price of the corresponding European option. The other two parameters were chosen 
to ensure convergence to around 5 significant figures for the range of option prices we 
consider. See Table 2.4 at the end of this section for some examples of how prices vary 
depending on the choice of m  and n. Using the Euler scheme assumption (2.14) can 
be rewritten as a requirement that

a>s h +h
which holds comfortably when A  = 13.8 for all the cases we consider.

We implemented the above scheme in Matlab, using the algorithm for the error function 
described in Press, Flannery, Teukolsky, and Vetterling (1993) to calculate 4>(,z) for 
complex values of z. Table 2.1 gives a selection of different call prices; each line of the 
table took around 0.03 seconds to calculate on a 600 MHz PC. Figure 2.1 shows how if 
the duration is small the Parisian down-and-out call option behaves like a conventional 
knock-out option whereas for long durations its behaviour is like tha t of a standard 
European call option.

There are no Parisian down-and-out call prices in the literature for us to check our 
results against. However Avellaneda and Wu (1999) use a trinomial lattice to calculate 
the price of a particular Parisian up-and-out put which we can calculate via the parity 
relation (2.4). For an up-and-out put with parameters T  = 1, So = 100, K  = 100, B  =  
120,D  =  0.1, a — 0.3, r  =  0.1, g =  0 we obtain a price of 7.0428 which compares well 
with their answer of 7.0392.

We also replicated the results of Chesney, Cornwall, Jeanblanc-Picque, Kentwell, and 
Yor (1997) who consider an option on the Australian dollar/US dollar exchange rate 
with a face value of A$1 million and priced in US dollars. Figure 2.2 shows the price of
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D

Figure 2.1: Price of Parisian down-and-out call, against initial asset price So and 
duration D. T  = 1, K  = 100, B  = 80, r  =  0.09, 8 = 0, a = 0.25.

So D C PDOC DOC
70.0000 0.0100 1.4575 0.0000 0
70.0000 0.0500 1.4575 0.0510 0
70.0000 0.1000 1.4575 0.3124 0
70.0000 0.2000 1.4575 0.8217 0
70.0000 0.4000 1.4575 1.2911 0
80.0000 0.0100 4.0011 1.5948 0
80.0000 0.0500 4.0011 2.7981 0
80.0000 0.1000 4.0011 3.3248 0
80.0000 0.2000 4.0011 3.7330 0
80.0000 0.4000 4.0011 3.9517 0
90.0000 0.0100 8.3426 7.6072 7.0130
90.0000 0.0500 8.3426 8.0137 7.0130
90.0000 0.1000 8.3426 8.1742 7.0130
90.0000 0.2000 8.3426 8.2856 7.0130
90.0000 0.4000 8.3426 8.3352 7.0130

Table 2.1: Prices of vanilla call, Parisian down-and-out call, and the ordinary down- 
and-out call for varying initial asset price So and duration D. T  = 1, K  = 100, B  =  80, 
r =  0.09, 8 = 0, a = 0.25.
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Figure 2.2: Price of Parisian down-and-out put against spot price Sq and duration D 
in days. T  = 1 year, K  = 0.7, B = 0.69, r = 0.05, S =  0.08, a =  0.1.

a one year down-and-out Parisian put option as a function of spot rate and duration. 
This figure is essentially the same as the one in Chesney, Cornwall et al. As one 
would expect the calculations for this figure took longer than for the call option, with 
each price taking around 0.20 seconds to calculate. Table 2.2 gives a sample of the 
prices used in the construction of this graph along with the corresponding values for 
the vanilla put and the standard down-and-out and up-and-in put options. For small 
values of the duration D the Parisian down-and-out put behaves like a conventional 
down-and-out put option. For D close to T  the behaviour depends on the initial spot 
rate. If Sq > B  then the Parisian option has a similar price to the vanilla put option; 
on the other hand if So < B  then the Parisian option is basically an up-and-in put 
option for D close to T.

Zhu and Stokes (1999) give figures calculated by solving a PDE numerically and com­
pare these with values obtained directly from Dr. Glenn Kentwell. Table 2.3 gives 
prices of a down-and-out put option for two different maturities along with calculation 
times where available. Notice firstly that our results are exactly the same as those of 
Kentwell, who uses a similar Laplace inversion method but requires a double integra­
tion. Secondly our times are several orders of magnitude better than those obtained 
by Zhu and Stokes (1999) using PDE methods.
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So D  (days) P /104 P D O P / 104 D O P / 104 P /P /1 0 4
0.68 1 4.9220 0.0000 0 3.3480
0.68 50 4.9220 0.0862 0 3.3480
0.68 130 4.9220 0.5148 0 3.3480
0.68 210 4.9220 1.2233 0 3.3480
0.68 290 4.9220 2.0842 0 3.3480
0.72 1 2.7142 0.0041 0.0011 0
0.72 50 2.7142 0.2099 0.0011 0
0.72 130 2.7142 0.7648 0.0011 0
0.72 210 2.7142 1.4307 0.0011 0
0.72 290 2.7142 2.1696 0.0011 0
0.74 1 1.9148 0.0059 0.0017 0
0.74 50 1.9148 0.2299 0.0017 0
0.74 130 1.9148 0.7349 0.0017 0
0.74 210 1.9148 1.2630 0.0017 0
0.74 290 1.9148 1.7457 0.0017 0

Table 2.2: Prices of vanilla put, Parisian down-and-out put, and the ordinary down- 
and-out and up-and-in puts for varying spot price So and duration D. T  = 1 year, 
K  = 0.7, B  = 0.69, r =  0.05, S =  0.08, a  =  0.1.

Time T  
(years)

Laplace Inversion Zhu & Stokes
Hartley Kentwell Crank-Nicolson Implicit

0.25
1.00

0.3028 (0.21s) 
0.2748 (0.20s)

0.3028
0.2748

0.302217 (12.19s) 
0.274975 (47.91s)

0.299510 (10 s) 
0.265175 (41 s)

Table 2.3: Prices (and calculation times) for two Parisian down-and-out puts of different 
maturities. We give our Laplace inversion results, those of Kentwell and those from 
the two PDE methods of Zhu and Stokes. So =  K  = 10, B  =  8, D =  0.1, r =  0.08, 
S =  0, a  =  0.2.
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Sc =  0.72, D  =  130 days
m n P D O P / 104 Tim e/s
3 5 0.73291407879699 0.030
7 10 0.73469987948380 0.053
11 15 0.73487530485423 0.078
15 20 0.73487855310620 0.104
20 30 0.73487861482601 0.145
30 40 0.73487861605727 0.202
40 50 0.73487861608157 0.260
60 80 0.73487861608258 0.403

Sc =  0.68, D  =  290 days
m n P D O P / 104 Tim e/s
3 5 1.97314259531518 0.035
7 10 2.09701008258086 0.061
11 15 2.08781642122231 0.090
15 20 2.08073735678438 0.122
20 30 2.08420985948142 0.171
30 40 2.08422147058169 0.238
40 50 2.08419619067505 0.306
60 80 2.08420406313746 0.475

Table 2.4: Prices of Parisian down-and-out put and calculation times as m  and n vary 
for the Cornwall et al. example. A = 13.8; T  — 1 year, K  =  0.7, B  =  0.69, r  =  0.05, 
8 =  0.08, a =  0.1.

Finally Table 2.4 gives an idea of how the prices vary depending on the choices of the 
Abate-W hitt parameters m  and n. In the first ‘easy’ example we get extremely rapid 
convergence to a stable price, so we could speed up calculations by using smaller values 
of m  and n. However the second ‘hard’ example, with an initial spot rate below the 
barrier and a duration close to D  shows why we have chosen the values m  = 30 and 
n =  40 for all the other calculations in this section - convergence is much slower in this 
case. Note that the value these figures are converging to is not the true price but a price 
tha t is within the bound given by equation (A.2). In this second example the price is 
bounded by the price of an up-and-in put as given in Table 2.2 and so with A = 13.8 
the values in the lower part of Table 2.4 will converge to a price within US$3.4 of the 
true price (on a contract with face value of A$1 million), or around 0.02%.
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2.6 Summary and conclusions

In this chapter we defined a Parisian option, and gave parity relations to show tha t if 
we could evaluate Parisian down-and-out calls and puts then we could find the price of 
any standard Parisian option.

We showed that if we considered the Laplace transform of the price of any down-and-out 
Parisian option we could write this down explicitly in terms of the Laplace transform 
of the price of an identical option, but with the initial asset price Sq being equal to 
the barrier level B.  We also noted tha t we could do exactly the same thing for the 
Laplace transform of the price of an option where the asset had already spent a period 
of time Dq < D  below the barrier level. These relations are substantially simpler than 
the identities given by Chesney, Jeanblanc-Picque, and Yor (1997) or Schroder (2002).

We gave an excursion theory based derivation of the Laplace transform of the Parisian 
down-and-out density which is consistent with the expression obtained by Chesney, 
Jeanblanc-Picque, and Yor for the Laplace transform of the Parisian down-and-in den­
sity obtained by other methods. We used this to obtain explicit expressions for the 
Laplace transform of the price of Parisian down-and-out call and put options in the 
case where So = B  and K  > B.  Exactly the same techniques can be applied in the 
K  < B  case.

Combining the claims of the previous two paragraphs, we thus showed how to find 
explicit expressions for the Laplace transform of any standard Parisian down-and-out 
option. We showed tha t we could invert these Laplace transforms numerically using 
the Euler method of Abate and W hitt (1995) and hence find the price of any standard 
Parisian option. Furthermore the prices so obtained were both extremely accurate and 
very quick to compute - properties tha t are not simultaneously present in any other 
method described in the literature.
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Chapter 3

Pricing continuous Asian options 
by double Laplace inversion

A b s tra c t

This chapter studies continuous arithmetic-average Asian options. We give a new 
expression for the double Laplace transform in strike and maturity of the price of 
such an option, and give an efficient method for calculating this Laplace transform 
numerically using a finite-difference scheme. Prices are then obtained by numerical 
inversion of the Laplace transform and these are compared with other results from the 
literature. We show that this approach is fast and accurate enough to be of practical 
use.

3.1 Introduction

Asian options are those whose payoff depends on the average of an asset price over 
a given period of time. This feature makes the option less sensitive to manipulation 
of the asset price near maturity, as well as providing a convenient way for the option 
buyer to hedge against adverse asset movements over long time periods.

The option can be either a continuous average, or a discrete average where the asset 
price is sampled at regularly spaced intervals of time. The standard method of av­
eraging is to take the arithmetic average; a geometric average can also be taken and 
this leads to closed form solutions for vanilla Asian options, as under standard Black
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and Scholes (1973) assumptions the geometric average will itself be a log-normally dis­
tributed random variable. We will concentrate on the continuous, arithmetic average 
case with European style exercise and fixed strike. There is no closed form solution for 
the price of such an option. Pricing methods proposed in the literature fall roughly 
into four classes.

The first is Laplace transform methods. Geman and Yor (1993) derive an analytical 
expression for the Laplace transform in m aturity of the price of a continuous Asian call 
option. Eydeland and Geman (1995) attem pt to invert the Geman and Yor expres­
sion numerically using a fast Fourier transform - the resulting numbers are not very 
accurate. Fu, Madan, and Wang (1998) and Craddock, Heath, and Platen (2000) use 
numerical Laplace transform inversion methods on the same expression, although both 
have problems for short maturities and small volatilities.

Secondly there are Monte Carlo methods where thousands of asset price processes are 
simulated. Kemna and Vorst (1990) use the geometric Asian call option price as a 
control variate, an approach refined by Fu, Madan, and Wang (1998). In contrast to 
the Laplace inversion methods Monte Carlo techniques are particularly effective for 
short maturities and small volatilities since the variation from the sampling process 
is lower in these ranges. However they are in general slow to give results, although 
Lapeyre and Temam (2001) shows that the Monte Carlo approach can be competitive 
with other methods when high precision is required.

Thirdly there are various analytical approximations. Turnbull and Wakeman (1991) 
approximate the arithmetic average by a log-normal variable with matched moments. 
Curran (1992) conditions on another (highly correlated) random variable and then uses 
moment matching techniques. Rogers and Shi (1995) and Thompson (2000) use similar 
techniques to derive lower and upper bounds for the option price. Reiner, Davydov, 
and Kumanduri (2001) use density perturbation techniques for their approximation 
and Ju  (2002) develops a Taylor expansion around zero volatility. Some of these ap­
proximations are extremely accurate.

Finally there are PDE methods. Rogers and Shi (1995) derive a one-dimensional PDE 
but this proves hard to solve numerically. Zvan, Forsyth, and Vetzal (1997/98) use flux- 
limiting techniques from computational fluid dynamics to solve the same PDE more 
accurately. Vecer (2001a), (2001b) derives a similar PDE tha t is more easily solved 
numerically. Zhang (2001) finds an analytical approximate formula with the error in 
this formula solving a PDE with smooth coefficients tha t can be evaluated accurately 
using numerical methods. The PDE category also includes tree methods such as tha t
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of Klassen (2001) which seems to give extremely fast and accurate results.

The remainder of this chapter is organised as follows. In Section 3.2 we define the Asian 
put option and then follow closely Fu et al. in deriving an ODE for the double Laplace 
transform (in strike and maturity) of the price of this option. In Section 3.3 we derive 
an analytic solution to this ODE and show that it is hard to evaluate accurately. We 
also explain why the solution that Fu et al. give in their paper is incorrect. Section 
3.4 gives a much faster alternative way of computing the solution using finite-difference 
methods. We then utilize the Euler method described by Abate and W hitt (1995) to 
invert the double Laplace transform numerically and hence recover the original put 
price. Results of these computations are given in Section 3.5. We conclude in Section 
3.6. Appendix A .l summarizes the Euler method of Abate and W hitt and Appendix 
A.2 describes the accurate approximation method of Curran (1992) which we use as a 
benchmark.

3.2 The Asian put option

We wish to value the continuous arithmetic-average Asian put option, with value at 
time 0 given by

P(AT,T;50) =  E

S0e - rT
T

Soe~rT

e - rT I K  -
T  \  +' 

St dt

E

-P

( f - i >
( K T

+ '

V So
-,T (3.1)

where T  is the exercise time, K  is the strike price, r is the interest rate and under the 
risk-neutral measure P the asset price process St is given by

s t =  s0e(’-5 ‘72)‘+'’w'‘

with W t a standard one-dimensional Brownian motion. From the form (3.1) of the 
price of the Asian put we can see that valuation simplifies to computing expressions of 
the form

p(k ,T)  = E [ ( k - A T )+]
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under the condition Sq =  1 and where

■ 1A t  = / Su du.

As with vanilla options we have a put-call parity relation to allow us to obtain call 
prices from put prices. We are interested in finding the simplified call price expression 
c{k, T) = E [{At  — fc)+] • At time T

{At  -  k)+ - { k -  A t )+ = A T - k ,

hence

c{k,T) = p{k,T) + E[AT - k ]
-T

p { k , T ) +  [  E[St] d t - k  
Jo

=  P(*,T) +
jtT

— k

and so the price of an Asian call option is

=  P { K , T ]S0) +
S q{1 -  e~rT) 

r T
Ke -rT (3.2)

One might also wish to price Asian options at times other than 0. Suppose tha t at 
time t < T  the asset price is St, and that over the time up to t a total of A t = / 0* Sudu 
has accrued towards A t . The price at time t of an Asian put option with strike K  and 
m aturity T  is then

P { K , T - S t , t , A t) =  E

T - t

•v-') { k - ±  ( a ,  + jT S „ d u ) )  U

—r(T—t) ( K T -  A t _
+

T - t T t

= ^ P { ^ z ^ , T - t , S t , m  

and similarly the time-t value of an Asian call is

rp _ f A   fCT
C(K,  T; S t ,t,  A t) = T - t - ,  S t, 0,0).
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Note tha t if At > K T  then the put option is worthless, and the corresponding call 
option is certain to be exercised.

3 .2 .1  A  d o u b le  L ap lace tran sform

If we Laplace transform the reduced put price p(k, T)  =  E [(k — A t )+] in fc, we obtain 
for a  in the right complex half-plane

p(a ,T )  =  E 

=  E

=  ^ b ~ aAT\

' POO
/  e~ak (k -  A t )+ dk 

J  o
POO

e~aAT /  ue~au du
Jo

A second Laplace transform in the maturity T  gives

p(a, A) =  E fJo
e- \ T e-*AT dT

a 2X

o

/(I),

where A is in the right complex half-plane and

f ( x )  = E
■ POO

/  \ e ~ XTe~aAT dT Sq = X
.Jo _

is a decreasing function of x. Conditioning the expression inside the expectation on 
events up to time t we see that

M t = f Ae~XTe - aATdT + e - xte - aAtf { S t)
Jo

is a martingale. Applying Ito’s Lemma 

dMt =  e~xte~aAt 

and so f ( x )  solves

- a 2x 2f" (x )  +  r x f ( x )  -  (A +  a x ) f ( x )  = -A (3.3)

with boundary conditions /(0 ) =  1 and f ( x )  decreasing to zero as x  —> oo.
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3.3 A n analytic solution

Firstly, we wish to solve

]-a2x 2f" (x )  +  rx f ' ( x )  -  (A +  a x ) f ( x )  =  0, (3.4)
z

the homogeneous version of the ODE (3.3). If we make the change of variables u = \ f x  
so that

dx 2u du d:t?  4u2 \  du2 u du

then (3.4) can be written as

u2f ' ( u )  +  -  1^ u f ( u )  -  (A +  au2)f(u)  = 0. (3.5)

Let’s try  a solution of the form
f{u)  =  uT#(u)

so tha t the ODE (3.5) becomes

u2g"(u) +  ^  - 1  +  2 7 ^ Ug'{u) -  { ^ r  +  “T “  7 “  7(7 ~  1 )) ff(u) =  0.

If we now set
a2 — 2r 

7  =  ~ ^
this is

u2g"(u) +  ug'{u) -  +  v2^  g(u) = 0 (3.6)

where
J  (a2 — 2 r )2 +  8(J2A

^ 5------------ .

This equation has a solution in terms of modified Bessel functions (see,for example, 
Jeffrey (1995)) and hence the solution to the homogeneous ODE (3.4) is

/ ( * )  =  + B ,K „  t e j ) ,

where B q and B\  are constants and I v(x) and K u(x) denote modified Bessel functions 
of the first and second kind respectively.
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Secondly, the inhomogeneous ODE (3.3) has a series solution of the form

h i x ) = Y ^ anxU
ra>0

with the coefficients (an)n>o satisfying ao =  1 and for n  >  1 the recursion relation

(icr2n(n  -  1) +  rn  -  A)an = aan- 1 ,

or equivalently

where

(n -  p+)(n + p - )an =

P+ =  — , P- =
v  +  y  _  v  — 7
~ 2

Hence, we have for all n  that

r ( i  +  p - ) r ( i  - p + )  ( 2 a
Q>n — r ( l  +  n  +  p - ) r ( l  +  n  — P+) V 

and we can write f i {x )  in the form

v  r ( l  +  p - ) r ( l - p +) r ( l  +  n) J_ ( 2 a x \ n
1 ^  r (x +  n +  P-)T (l  + n - p +) n \ \  a2 J

= 1F2(U1 + P - , 1 - P +^ )  (3.7)cr-*

n>0

n . U n  1 _  n ,  • ^
r2

where 1F 2 is a generalized hypergeometric function.

W ith the relevant boundary conditions the general solution to (3.3) is then

f { x )  = f i {x )  + B 0fo{x)

where
\/8

/„(*) =  x ^ - ^ I v I ^  I (3.8)

and Bo is a constant. Fu, Madan, and Wang (1998) find a similar series solution1, 
and then claim tha t as it has the right values for both /(0 ) and /'(0 )  it must be the

1 Given by equation (38) in their paper, which is incorrectly derived from the steps above it. The 
factor of a 2/2(r — u) should not be present in the summation, or alternatively the factor of T(1 — 
a i)T (l — <2 2 ) should be replaced by T(2 — ai)T(2 — 0 :2 ).
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required solution to the ODE (3.3). However, note tha t for Re(i^) >  1 (which will hold 
in all the cases we consider),

dx
=  0 ,

x=0

and hence the solution given in the appendix of Fu et al. is not in fact the required 
solution.

We can obtain B q explicitly by considering the asymptotics of /o and f \ .  For | arg(^)| <  
|  we have as \z\ -> oo th a t2,

'•w-^k(i+oG
and for | arg(2 )| <  n  similarly3,

(1+0 (̂ ))
as \z\ —> oo. If we take square roots using the principal branch of the logarithm then 
the argument conditions needed above will be met and so for large x

i
1 /I I V&ocx \ 2

A W .  ( £ )  " ’ - ‘ W  ( l +  O ( - £ . ) )

We know tha t f ( x )  =  f i ( x )  +  Bofo(x) —> 0 as x  —> oo and so, as the powers of x  and 
e'S* match in the two formulae above, we deduce that we must have

/ 2 c A 7/2
B0 = -r ( i  + p_)r(i-p+) ^ J  (3.9)

and so the required solution to the ODE (3.3) is

f ( x )  =  ^ ( l i i + p - . i - p + i ^ - r a + ^ j r f i - ^ )  ( ^ ) 7/2/ ,  • (3-10)

From the analytic solution given by (3.10) we can see that an im portant factor in the

2http://functions.wolfram.com/03.02.06.0006.01
3 http .-//functions.wolfram, com/07.22.06.0005.01
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solution is a  jo2 . The real part of a/cr2, which will stay constant as we invert p (see 
Appendix A .l for details of the inversion method and the constant A),  is

c R e(a /cr2)
A

2ka2 
A  Sp
2 K T a 2'

c is inversely proportional to the parameter q = used by both Fu, Madan, and
Wang (1998) and by Craddock, Heath, and Platen (2000). The latter find that when q

the evaluation of hypergeometric functions, is slow to converge. The problem we have 
with computing / ( l )  from equation (3.10) is that when c is large the various components

magnitude. As we are seeking an accurate solution for / ( l ) ,  which we know to lie 
between 0 and 1, we would have to evaluate these components to a correspondingly 
large number of decimal places. For example, suppose we wish to find / ( l )  from (3.10) 
for the (fairly typical) parameter values r = 0.02, a =  0.1, a  =  6.9 +  \0iti and A =  6.9. 
Using Maple we find that (to 3 significant figures)

so it looks like we are going to need to evaluate these numbers to at least 50 decimal 
places to get an accurate answer. This turns out to be the case; Table 3.1 shows how 
varying the number of decimal places used for evaluation in Maple affects the answer 
we get. Unfortunately, at the required level of accuracy, Maple takes over a second to 
compute / ( l ) .  We will need to perform several thousand such calculations for different 
a  and A in order to get a good answer when we invert the Laplace transform, so clearly 
a more efficient way to compute / ( l )  is needed.

is small (corresponding to c large) their Abate-W hitt based method, which also requires

(3.7), (3.8) and (3.9) of the analytic solution at x  =  1 can be numbers of very large
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No. of decimal places R e(/(1))
20 -0.310 x 1031
30 -0.459 x 1021
40 0.327 x 1011
50 0.150
60 0.08091250643
70 0.08091250645
80 0.08091250645

Table 3.1: Value of R e(/(1)) obtained against the number of decimal places used to 
evaluate equation (3.10) using Maple.

3.4 A fast m ethod to com pute / ( l )

Another approach is to solve the ODE (3.3) by finite-difference methods. Construct a 
uniform mesh

Xi = i. A x

for i = 0 , . . . ,  N,  where we choose N  and x n  and hence A x  = x ^ / N .  Writing fi  = f(x i )  
a second-order-accurate finite-difference scheme for the ODE (3.3) is given by

i „ v  ( f o ' - y - ) +

for 1 <  i <  N  — 1 with boundary conditions /o =  1 and Jn  =  0. Solving for can then 
be done in the usual way by solving the corresponding tridiagonal system of equations. 
As one would expect the smaller the mesh size A x  and the larger the value chosen for 
x n  the more accurate the result.

Bearing in mind tha t we are interested only in the value of / ( l ) ,  we will employ a more 
sophisticated version of this scheme using two meshes. Firstly we pick a value of x ^  
considerably greater than 1 and solve the scheme above. We then pick points X-  and 
x+ on the original mesh such tha t X- < 1 < x+ and solve the same scheme on a finer 
mesh

Xi = X-  +  i. A x

for i =  0, . . . , M  where we pick M  and set A x  = (x + — X - ) /M .  The boundary 
conditions at x _ and will be taken to be the values of f ( x _) and f (x+)  from the 
first solution. In practice this scheme exhibits a much better tradeoff between accuracy 
and speed than a scheme based on a single uniform mesh.
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Scheme X N N X - M m a n a m \ n \

‘Accurate’ 8 400 0.5 1.5 400 20 30 20 30
‘Fast’ 3 36 0.75 1.25 36 10 14 9 12

Table 3.2: ‘Accurate’ and ‘fast’ scheme parameters. A  = 13.8 was used for both 
schemes.

3 .4 .1  C h o ice  o f  p a ra m eters

For the numerical inversion we employed the Euler method of Abate and W hitt (1995) 
as described in Appendix A .l with A = 13.8. Two parameter schemes were used, 
an ‘accurate’ scheme and a ‘fast’ scheme. See Table 3.2 for the values used. The 
parameters m a , n a and m \ ,  n \  respectively denote the Abate-W hitt parameters m, n  
used in the inversion of p(a, T)  with respect to a  and p(a,  A) with respect to A. The 
values of and N  have been chosen so that X-  and x + are mesh points for the first 
scheme and similarly M  has been chosen so x = 1 is always a mesh point so as to avoid 
interpolation issues.

The time taken for the numerical inversion can be halved by making use of the following 
result. Denoting the complex conjugate of a = a\ -I- ia-2 by a* =  a\ — ia^ we have that

A*) =
1

E
( a * ) 2 

a 2 
(a*)2 a 2

{(<*<*)')'
(a*)2 a 2

roo
/  e~x*Te~a*At dT

Jo

J ° °  (e~ AT)* (<e~aAT)* dT

J r (e~XTe~aA'r 'j* dT

E

E

E
I fJo

e - X T e - a A T d T
(a*)2 a 2 

( (a*)2E [ /0°° e~XTe~aAT dT]
(a*)2 a/

p{a, AY

and hence
Re A*)  ̂ =  Re (p(a, X)j
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3.5 Numerical examples

Our discussion so far has focused on Asian put options but the put-call parity relation 
(3.2) means tha t we can equivalently price call options. We shall price Asian call op­
tions on 25 parameter combinations, consisting of the 19 cases considered by Craddock, 
Heath, and Platen (2000) and 9 cases from Rogers and Shi (1995). 3 of the cases are 
common to both papers and the first 7 cases are also covered for various methods in 
Table 4 of Fu, Madan, and Wang (1998). The parameter values for the 25 cases are 
shown in Table 3.3 along with the corresponding values of c (with A = 13.8). We will

Case So K T r a c
1 1.9 2 1 0.05 0.50 26.22
2 2 2 1 0.05 0.50 27.60
3 2.1 2 1 0.05 0.50 28.98
4 2 2 1 0.02 0.10 690.00
5 2 2 1 0.18 0.30 76.67
6 2 2 2 0.0125 0.25 55.20
7 2 2 2 0.05 0.50 13.80
8 17 16 2.5 0.06 0.30 32.58
9 17 17 2.5 0.06 0.30 30.67

10 17 18 2.5 0.06 0.30 28.96
11 53 51 1.5 0.07 0.40 29.88
12 53 53 1.5 0.07 0.40 28.75
13 53 55 1.5 0.07 0.40 27.70
14 29 27 0.5 0.11 0.15 658.77
15 29 29 0.5 0.11 0.15 613.33
16 29 31 0.5 0.11 0.15 573.76
17 100 95 1 0.09 0.10 726.32
18 100 100 1 0.09 0.10 690.00
19 100 105 1 0.09 0.10 657.14
20 100 90 1 0.09 0.30 85.19
21 100 100 1 0.09 0.30 76.67
22 100 110 1 0.09 0.30 69.70
23 100 90 1 0.09 0.50 30.67
24 100 100 1 0.09 0.50 27.60
25 100 110 1 0.09 0.50 25.09

Table 3.3: The 25 cases we wish to price and the corresponding values of c.

compare our figures with those from the Curran (precise) method, which Reiner, Davy­
dov, and Kumanduri (2001) show to be an extremely accurate method of computing 
Asian option prices. Details of the Curran method are given in Appendix A.2.
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Case CHP RS Accurate Curran Fast CPU
1 0.194 0.1932 0.1932 0.1932 0.97
2 0.248 0.2464 0.2464 0.2464 0.95
3 0.308 0.3062 0.3062 0.3062 0.92
4 0.055 0.0560 0.0560 0.0559 0.96
5 0.222 0.2184 0.2184 0.2184 0.93
6 0.172 0.1723 0.1723 0.1724 0.94
7 0.340 0.3501 0.3501 0.3500 0.93
8 2.808 2.8159 2.8158 2.8158 0.91
9 2.305 2.3109 2.3109 2.3111 0.91

10 1.875 1.8791 1.8790 1.8789 0.94
11 7.903 7.8959 7.8957 7.8961 0.91
12 6.942 6.9356 6.9354 6.9360 0.96
13 6.077 6.0711 6.0710 6.0711 0.94
14 2.808 2.6979 2.6979 2.6984 0.93
15 1.129 1.1348 1.1347 1.1333 0.92
16 0.278 0.2854 0.2853 0.2863 0.92
17 8.91 8.9120 8.9118 8.9148 0.91
18 4.92 4.9151 4.9151 4.9075 0.93
19 2.07 2.0702 2.0701 2.0697 0.92
20 15.056 14.98 14.9841 14.9839 14.9857 0.98
21 8.964 8.83 8.8289 8.8287 8.8332 0.97
22 4.700 4.70 4.6969 4.6967 4.6941 0.99
23 18.18 18.1890 18.1887 18.1859 0.94
24 13.02 13.0284 13.0281 13.0288 0.97
25 9.18 9.1246 9.1244 9.1220 0.92

Table 3.4: Asian call option prices, and CPU time in seconds taken to calculate the 
‘fast’ results. ‘CHP’ denotes the figures from Craddock, Heath, and Platen (2000), and 
‘RS’ those from Rogers and Shi (1995).

Table 3.4 shows the Asian option prices obtained using the ‘accurate’ method, along 
with the results from the benchmark Curran method, from the Craddock et al. Abate- 
W hitt method and from Rogers and Shi’s lower bound method where relevant. The 
prices given by the Laplace transform inversion method agree extremely well with those 
from our benchmark method and (apart from case 25) with the lower bound given by 
Rogers and Shi. Reasonable agreement is also obtained with the results of Craddock 
et al. although comparison is not entirely fair as their results were (mostly) calculated 
in a few seconds. Note tha t good results are obtained regardless of the value of the 
parameter c. These ‘accurate’ prices took an average of 800 seconds each to compute, 
but very considerable speed improvements can be obtained without too much loss of 
accuracy, as can be seen from the last two columns of Table 3.4 which show the prices
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obtained using the ‘fast’ parameter scheme to calculate the Laplace transform values 
and perform the inversion. Also shown are the CPU times in seconds taken to perform 
each of these Laplace transform inversion calculations - an average time per calculation 
of 0.94 seconds (all calculations were done in Matlab on a 600 MHz PC), with each 
calculation taking less than a second.

3.6 Summary and conclusions

In this chapter we defined the Asian put option, gave a  put-call parity relation linking 
it to the Asian call option and showed how to price Asian options at times other than 
the start of the accrual period.

Following Fu, Madan, and Wang (1998) we derived an ODE for the double Laplace 
transform (in strike and maturity) of the Asian put price. We then derived a new 
analytic solution to this ODE in terms of a generalized hypergeometric function, gamma 
functions and a Bessel function of the second kind. However this analytic solution 
proved difficult to evaluate numerically so we proposed a method for solving the ODE 
numerically using finite-difference methods. This gave accurate answers extremely 
quickly.

The difficulties in pricing Asian options by inversion of a double Laplace transform 
come mostly from the evaluation of the Laplace transform itself rather than from the 
inversion procedure. We used the Euler method of Abate and W hitt (1995) to invert 
the Laplace transform twice numerically and the resulting prices compared extremely 
well with those from the method of Curran (1992). Unlike Craddock, Heath, and 
Platen (2000) we did not encounter problems for any particular ranges of parameter 
values. Moreover, we were able to fine tune our method to give accurate prices in 
under a second, showing that Laplace inversion methods could be used in practice for 
the pricing of Asian options.
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Chapter 4

Pricing a m ulti-asset American  
option

A bstract

In this chapter we take an ab-initio approach to the valuation of options on multiple 
assets, in particular the ‘min-put’ option, tha t is a put option on the minimum of 
several assets. We characterize the behaviour of the minimum process, given by the 
smallest of the assets, by finding the law of its distribution at a chosen time conditional 
on its position at an earlier time. This allows us to price European options exactly 
and we use a trinomial tree based method to find a fast lower bound for the price of 
American/Bermudan options.

4.1 Introduction

Multi-asset options are increasingly being used for risk management, and traded in the 
financial markets. Options on the maximum or minimum of several assets have been 
studied for some time. Johnson (1987) derives an explicit formula for the price of a 
European call option on the maximum of n  assets (a ‘max-call’ option) in terms of 
n-variate cumulative normal functions. Broadie and Detemple (1997) give valuation 
formulae in non-explicit form for American max-call options and characterize the cor­
responding optimal exercise regions. In this chapter we consider the closely related 
problem of pricing options on the minimum  of several assets. We will then apply the 
same methods to valuation of the max-call option.
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The valuation of an American option is a maximization problem over choice of exercise 
policy, and for a given exercise policy there is a corresponding lower bound to the 
price of the option. We will restrict ourselves to an exercise rule based solely on the 
level of the minimum asset, which means that we can model just the minimum process 
itself rather than all n  assets. The main advantage of this method is that it scales 
extremely well as the number of assets increases and we are able to calculate option 
prices extremely rapidly. The resulting lower bounds are found to be close to the true 
price of the option.

Standard tree, lattice and finite-difference methods are not feasible for finding the true 
price of multi-asset options as the computing time required increases exponentially with 
the number of assets. Hence the literature on pricing such options is entirely based 
on Monte Carlo techniques where multiple asset price processes are simulated. The 
main difficulty in applying Monte Carlo to American options is obtaining the optimal 
exercise strategy. In order to reduce the computational effort required, researchers 
often concentrate on pricing Bermudan options, where exercise is only allowed at a 
fixed number of equally spaced dates.

Raymar and Zwecher (1997) use Monte Carlo simulation and reduce the n  simulated 
asset prices at a particular time by assigning them to a particular ‘bucket’ region. 
Probabilities of moving between different buckets at different times are determined 
by repeated simulation and then a dynamic programming approach is used to iterate 
backwards determining optimal exercise. This is a similar approach to ours in tha t the 
choice of the ‘buckets’ determines a simplified exercise rule - for example they reduce the 
n  simulated asset prices to just the maximum, or to the maximum and second maximum 
asset, with the values in each case represented by 200 discrete regions - the ‘buckets’. 
Broadie and Glasserman (1997) develop a stochastic mesh method tha t allows them  
to generate both lower and upper bounds for an option price, with the property that 
these bounds converge to the true price as the numbers of paths simulated is increased. 
Rogers (2002) and Haugh and Kogan (2001) both independently propose a dual method 
for computing upper bounds using Monte Carlo by representing the American option 
price as the solution of a dual minimization problem. Haugh and Kogan simulate the 
sub-optimal exercise strategy implied by an approximate option price (i.e. the lower 
bound) as the basis for their calculations of the upper bound. Andersen and Broadie 
(2001) build on this dual approach and use an approximate exercise policy instead of 
an approximate option price to compute upper and lower bounds. This leads to tighter 
upper bounds but at a computational cost, particularly for a large number of allowed 
exercise periods.
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The layout of the rest of the chapter is as follows. Section 4.2 describes the type 
of options we wish to value. In Section 4.3 we derive a law for the position of the 
minimum process at time t +  A t  given its position at time t , and give a similar law for 
the maximum process. Section 4.4 explains the numerical methods we use for pricing 
the options. The resulting prices are given in Section 4.5. We compare these with 
values from the literature and show that we can obtain prices extremely quickly using 
our scheme. We conclude in Section 4.6.

4.2 Options on the minimum of n  assets

We consider a frictionless market with constant interest rate r and n  risky assets with 
prices S} , . . . ,  S™ at time t. We will assume tha t under the risk-neutral measure P  these 
asset prices obey the stochastic differential equations

dS lt = S lt ({r -  Si)dt +  (JidWl) i = 1 , . . . ,  n  (4.1)

where Oi is the volatility of asset i, Si the continuous dividend rate paid by asset i and 
are standard Brownian motions with covariance structure given by

We could in principle deal with correlated assets, so tha t (W l, W^)t = Pijt, but we 
would require an efficient way to calculate n-variate cumulative normal functions. At 
time t the price of asset i is

S\ =  s lQe(r~6i~ i a^ t+aiWt 

=  e ‘

where
XI = di + flit +  GiWl i = 1 , . . . ,  n

are the log-asset-price processes. Each X \  is a Brownian motion starting at a; =  log Sq 
with drift m  = r — Si — \ a \  and volatility 0 {.

We are interested in pricing an option with payoff f ( Z t) depending on the minimum 
process

Z t =  min X \ .
i= l,...,n
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In particular we will consider the ‘min-put’ option, a put option on the minimum of 
the n  assets; this will have a payoff given by f { Z t) = (K  — eZt)+ at time t. We will 
assume that the option expires at time T  and that exercise of the option is allowed at 
times in the set R  C  [0, T] which we will take to be

{U = iT /d  : i = 0 , 1 , . . . ,  d} when d > 0,

{T} when d =  0,

for d a non-negative integer. This covers European (d = 0) and Bermudan options
and provides a good approximation to American-style exercise as d grows large. Under
Black and Scholes (1973) assumptions such an option will have time-0 price

U(t, x 1, . . .  , x n) = sup E 
T£7kn[t,r]

e - ' W f i Z r ) X}  = x 1 X "  = x n

Here we write Ta to denote the set of all ^ -a d ap ted  stopping times r  which satisfy 
r  G A  almost surely. The conventional approach to pricing this option would be to 
use an n-dimensional scheme to model the evolution of the n  log-asset-price processes 
X } , . . . ,  X?.  The time taken to evaluate the price would then grow exponentially as n  
increases. We will avoid this problem by considering the law of the minimum process 
Z t directly, so that we only need to use a one-dimensional method and the value V(t,  z ) 
of the option at time t will depend only on the position Zt = z  of the minimum process 
at tha t time. In doing this we will lose information about the position of the individual 
X ls, which may cause us to exercise at a sub-optimal time in the non-European cases. 
However, in practice, we only slightly under price.

4.3 The minimum process Z t

We wish to derive the law

F(x\  t, At, z) =  P(Z t+At < x \Z t =  z) (4.2)

for A t < T  — t which we will do by finding F(x ' , t ,A t , z )  =  1 — F(x; t, A t, z), the 
probability that Zt+At is above a level x  given Z t = z. Firstly we will calculate the 
probability tha t a given process i is the minimal one at time t. We know the starting 
values and drifts of all the individual processes X \  =  a,{ +  m t  +  0 {WI and so the
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probability tha t the minimum is above a level x  at time t is

p(Z(>x)=n * ( £ ^ p j  (4.3)

where $(x) =  1 — $(:r) and 4?(:r) is the standard cumulative normal distribution func­
tion. Differentiating and changing the sign of equation (4.3) yields the corresponding 
density function

n

= ^ P i i t . x )
i—1

with the appropriate identifications. This density consists of a sum of contributions 
from the individual density of each X \  multiplied by the probability tha t the other log- 
asset processes are above it. The probability that a particular process is the minimum 
is thus

Pi( t , z ) = F ( Z t  = X i \Z t = z)

= Pi(t,z)

E"=i P o t t , * ) '

We are now ready to look at the law of Zt+At conditional on Zt = z,

F(x\  t , A t , z) = F(Zt+At > x\Zt = z)
n

=  ]V^Piit , z) P (Z t+At >  x \ z t =  x \  =  z)
i= 1

where

= j T p i { t , z ) $  ( - — Y [ F j ( x ; t , A t , z )  (4.5)
v n V A t  )  f*.

Fj{x\ t, A t ,  z) =  P ( ^ +At > x \ Z t = z < X { )

= F(Xl+ A t> x , X i > z \ Z t = z < X { )

=  ¥(X{  +  Aj  >  a ,X} > z \ Z t = z <  X})

43



and A j ~  N ( p jA t ,  a 2 At )  is independent of X 3t . X{  has a N (p j t  +  aj, a 2 t) distribution 
and so using conditional probability we find that

_  f ( x 3 + A  j > x , X 3 > z )

---------

p  /  y  x - p j ( t + A t ) - a j  v  z - ^ j t - a j  \
_ V gj-y/t+At ’ 1 > ajVi )

$  (  Z~fJ‘3t~aj ^
V CjVt )

where X , Y  are standard normal variables with correlation

E[XY] t  1
p =  Z7 TfV nrf =  " r ^ = f = - (4-6)y/F[X2 ]E[Y2} y/ty/t + A t  ^J1 + M

The earliest time we wish to evaluate this at is when t = A t  giving p2 = \  and hence 
p2 >  ^ for times t  > At ,  so the standard procedure of using the tetrachoric series 
(an expansion in powers of p) is not well suited to our purpose. A good numerical 
method for computing this bivariate normal is tha t of Vasicek (1998) which involves an 
expansion in terms of powers of (1 — p2) and so converges rapidly for the values of p we 
consider. Vasicek describes a method for computing the bivariate cumulative normal 
distribution function

/ x ry
/ n 2 (u ,v ,p )dudv  (4.7)

-oo J —oo

where the bivariate normal density is given by

. . 1 f  u2 — 2 puv +  v 2
n 2 {u, v, p) =   ----  exp -r V 2(1-#.*)

Substituting v! = —u,v' = —v into (4.7) we get

/•OO /'OO

N 2 (—x, —y, p) = I /  n 2 {u' ,v' , p) dvl dv’,
J x  Jy

and hence
N  (  x - ^ ( t + A t ) - aj z - u j t - a j  \

?,•(*; t, A t ,  z) = — i  ’ '  (4-8)

\  j

with p as given in (4.6). We are now able to evaluate (4.5).

We will be particularly interested in the first two moments of the distribution of the
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minimum process at time t +  A t given that Zt = z. We define the drift m(t, At, z) of 
Z t by the equation

m (t, At, z) A t =  E[Zt+At ~  Zt \Zt =  z]
/ oo

x F'{x\ t, At, z) dx — z (4.9)

-oo

where F'  denotes the derivative of F  with respect to x. Similarly we define the volatility 
s(t, At, z) of Zt via

s(t, A t, z ) 2 A t =  E [(Z*+At — E [Zt+At\Zt = z \ ) 2 \Zt =  z

=  E [(Zt+At -  z ) 2 IZ t = z] -  m(t, A t, z)2 A t2

= E \ Z 2+A.t\Zt = z \ ~  ^[Zt+At\Zt — z]

/
oo /  /•oo \  2

x 2 F'(x\ t ,  A t , z ) d x  — ( J  x F ' ( x ] t , A t }z ) d x )  . (4.10)

4 .3 .1  T h e  m a x im u m  p ro cess

The above calculations can be easily modified to give the equivalent distribution for 
the maximum process

Z™ax =  max X \ .  (4.11)
i= l,...,n

Instead of calculating the probability tha t all the processes are above a certain minimum 
level we now work out the probability that all the processes are below a given maximum 
level. We find tha t the corresponding cumulative probability distribution function is 
given by

F Tnax(x', t , At, z) =  P(Zt+At <  x \z ? ax =  z)

= a  ® n  Fr x(*; A t> a -

where
jyr I x - m ( t + A t ) - q , -  z —f i j t —aj  1 J

2 I ( Tjy / t+At  ’ <T j\/t ’ A  + A t  I

Fj™3̂ ;  t, A t, z) =  V ‘ 1$
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and

z) = P(Ztm“  =  X } \ Z r "  = z) 

p T x (t,z)
E"=i PT"(t,z)’

with

4.4 Calculation of option prices

4 .4 .1  E u ro p ea n  o p tio n s

In the European option case, where exercise is allowed only at the expiry time T, we can 
price the option price exactly from the law of the minimum process. If the option pays 
f ( Z r )  at time T  then, integrating this with respect to the time-T minimum process 
density g(x\T)  given by equation (4.4), gives the European option price

/ oo
f ( x ) g { x \T )  dx.

-oo

We can calculate this numerically using, for example, the ‘quad’ function of Matlab 
which performs quadrature to a requested level of precision. Answers to within an 
accuracy of 10-10 can be computed in around a tenth of a second.

4 .4 .2  A  tr in o m ia l tr e e  sch em e

We price American/Bermudan options using a recombinant trinomial tree. We will 
evaluate the option price at the N  + 1 times

tk = k .A t  k — 0 , . . . ,  N

where A t  = T / N  is fixed. If we are valuing a Bermudan option N  must be chosen 
carefully so tha t all the allowed exercise times lie on the lattice. We choose also the 
spacial points

z \  — cjt +  i .Az  i =  —k , . . . ,  k
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Figure 4.1: A section of the trinomial tree showing branches from ( tk ,zk).

where ck denotes the spacial point at the center of the tree at time t k and A z  >  0 is 
a fixed spatial discretization parameter. We will use the notation A c k =  ck+i — ck for 
the amount tha t the centre of the tree changes by between times t k and tk+i . We write 
Vk =  V ( tk , z lk) for the value of the option at time tk and with the minimum process 
at zk. Similarly we will abbreviate the drift (4.9) and volatility (4.10) of the minimum 
process by writing m \  =  m (tk, At, zk) and sk =  s(tk, At, zk).

Figure 4.1 shows one section of the trinomial tree. From the point (tk, z k) the tree 
branches to the points (tk+i,z\  +  Ac* +  A z), (tk+i,zk +  Ac*) and (tk+i,zk +  Ac*, -  
A 2 ) with probabilities puk, p m k and pdk respectively. Equating the first and second 
moments of the random variable described by this one section of the tree with m k and 
sk and noting that the probabilities sum to unity, yields the equations

m lkA t  = A ck +  (pul -  pdlk) A z ,

(m lk ) 2 A t 2 +  ( 4 ) 2A t =  (Acfc)2 +  2 (pulk -  p(fk)Ack A z  +  (puxk +  p<Fk) A z 2 ,

and so the probabilities we need are



In order for these values to be genuine probabilities lying in [0,1] we will require that

(si )2At + { m l A t -  AcO2
A z 2

and

< 1 ,  (4.15)

A z \m lkA t  — Ac*;| <  (sk)2A t  +  (mkA t  — Ac k ) 2 . (4-16)

Typically we will choose Ack to be 0 (A t) so these constraints are approximately

(4)2< ^ ,  (4-17)
(*i 2̂

A Z <  V f  11 . 1 , . (4.18)
|m \  -  Ack /A t \

The first of these constraints is a serious restriction - if we wish to improve accuracy 
by halving A z  then we must quadruple the number of time steps N.

We calculate the value of the option as follows. At the terminal nodes of the tree we 
set the price to the amount we get by exercising the option

V k  =  f ( ^ )  i =  - N , . . . , N

and then we work backwards in time through the tree calculating option values using 
the rule

^  =  f max (e~rA*(pi4v£J:J +  Pm kVk+1 +  p 4 4 + i ) > / ( 4 ) )  if *k 6  7?, ^  ^

\ e ~ T&t( p ^ y i X \  + prrtkV£+ l + pd}yV'k- \ )  otherwise,

so that the option price at time tk is either the discounted expected price of the option 
at time t^+i or the amount gained by immediate exercise if this is allowed and is more 
profitable.

4 .4 .3  In te r p r e ta tio n  as a  fin ite -d ifferen ce  sch em e

Let us suppose that we can approximate the dynamics of the minimum process by

dZt — m ( t ,Z t)dt  + s ( t ,Z t)d W t (4.20)

where Wt is a standard Brownian motion (independent of those previously considered) 
and m (t, z) and s(t, z) are suitably smooth functions. The time-t value of an option on
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the minimum process will now be given by

V(t , z) =  sup E 
r €TRn[t,r]

Z* = z

with the supremum being taken over stopping times adapted to the filtration of W.  
Suppose firstly tha t we wish to value a European option, so tha t R  =  {T}. Taking the 
expectation of the expression e~rTf { Z r )  conditional on events up to time t  we find that 
e~rtV(t,  Z t ) is a martingale and hence V(t ,z )  satisfies the partial differential equation

d V  1 , , 2 d2V  , , d V  Jr n
- m + 2 s ( t ' z )  - d ?  +  m ( -t ' z ) - ^ - r V  =  0 '

(4.21)

with boundary condition V (T, z) = f{z) .  If the option we wish to value is not European 
then V (t, z) will still obey the same PDE, but only on the region where it not optimal 
to immediately exercise.

In order to solve this PDE numerically we will need approximate values for m(t, z) and 
s ( t , z ) at various points {t,z).  Integrating equation (4.20) between times t  and t +  A t

r t+ A t r 1+n.i
Zt+At - Z t = m(u, Zu) d u +  s(u, Zu) dWu

Jt Jt

and so taking the expectation of this conditional on Zt = z  we find that

*t+ A t
(4.22)

r t+ A t ‘
1 m(u, Zu) du NII

J t
E [Zt+At — Z t \Zt =  z] = E

«  m(t, z) A t

for A t  small. Similarly, squaring equation (4.22) and taking expectations

E [(Zt+At ~  Z t)2 \Zt = z] »  m(t,  z ) 2 A t 2 4- s(t , z ) 2 At .

Hence we can approximate m(t ,z )  by the drift m (t, A t, z) and s(t, z) by the volatility 
s(t, At, z).

The trinomial tree scheme of section 4.4.2 can now be viewed as an explicit finite- 
difference scheme. We can set the centre of the tree at the constant level Zq so that 
A Ck = 0 for all k. From equation (4.19) and from the expressions (4.12)—(4.14) for 
the various probabilities it follows tha t if it is not optimal to exercise immediately VjJ
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satisfies the equation

Y L ^ i  + ( ' S - y ' S i ) + ( S J b S ! )  -  r v i .  a m .

Thus we have an explicit finite-difference scheme for solving the PDE (4.21). We solve 
the above equation (setting the right hand side equal to zero) for V£ and then replace 

by the immediate exercise price if it is bigger. The constraints (4.15) and (4.16) tha t 
had to be satisfied for the probabilities to lie in [0,1] are also the conditions necessary 
for this scheme to converge to a stable solution. See Wilmott (1998) for discussion of 
stability conditions for the explicit finite-difference scheme. In principal other types of 
finite-difference scheme could be used to solve the PDE (4.21).

4 .4 .4  Im p le m e n ta tio n  issu es

The trinomial tree scheme described above was programmed in Matlab with the mo­
ments m \ and s \  calculated by a compiled C subroutine called from Matlab, giving 
roughly a 100 times increase in speed over writing the code in Matlab alone. Two 
different routines for calculating F(x\ t , At ,  z) were used - one for the case where there 
are two assets with (possibly) differing initial values, volatilities and dividend rates and 
one for n  identical assets, when the expression (4.5) for F{x\ t, At ,  z) can be simplified 
considerably to

F(x; t, A t , z )  =  ¥  ( X ~ ^ £ A<))  A4>

T he centre o f th e tree : The obvious choice for the centre of the tree would be the 
expected value of the minimum process so that

Ck =  E[ZtJ-

However this choice leads to oscillatory behaviour for the price as N  increases. This 
sort of problem is common with trees, see for example Klassen (2001), and the solution 
is to centre the tree so tha t the strike K  is always in the centre of the tree at maturity. 
Hence we set cjt =  Z q +  k (log(.pL) — Z q) A t / T  so tha t Ack = (log(K) — Zq) A t / T  for all 
k. This ensures that the calculated price of the option increases as we increase N  and 
also means tha t Richardson extrapolation is viable as we shall see in Section 4.5.5.
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C onstraints : We require that the constraints (4.15) and (4.16) are satisfied every­
where on the tree. Looking first at (4.15) we require that

(,slk)2A t  +  {mkA t  -  Ac*;)2 < A z 2 ,

everywhere on the tree. For the minimum process the minimum upward1 drift will 
occur when all the asset prices are at the minimum point - we can calculate this 
numerically. The maximum upward drift will occur when just one asset price is a t the 
minimum and the others are well above this - this will have value maxj=i v..)n Hi. Hence 
we can find the maximum value of (m lkA t  — Ac^)2. Similarly the maximum value of 
the volatility will occur either when all the asset prices are together or when the asset 
with the highest individual volatility has a price well below that of the other assets. 
This gives us an upper bound Bo say on (sk)2A t  +  {mkA t  — A Ck) 2 and we initially 
choose A z = y/Bo- If we do this we find that violations of the second constraint (4.16) 
occur at some points on the tree. We overcome this problem by choosing a smaller A z 
as follows. Having picked A z = y/Bo we calculate the moments m*v_ 1 and s]v_ i for all 
i = —(N  — 1) , . . . ,  TV — 1 at the penultimate time step on the lattice. We can now find

B \ = max {(s)v_1)2A t +  (m Jy.iA t -  A c^ _ i)2}
t=l,...,n

then set A z = y/B \ and start the price computations from the beginning. Following 
this procedure no significant violations of either constraint were found for the examples 
we considered.

N um erical accuracy o f d istribution  calculations : There are very fast and ac­
curate ways to compute the cumulative normal distribution function $(x) for a given 
x  - we do this using the method for calculating the error function described in Press, 
Flannery, Teukolsky, and Vetterling (1993). However calculations of the bivariate nor­
mals N 2 (x, y , p)  are much slower. We sum the series as given by Vasicek (1998) and 
stop summing when we reach a term  smaller than 10~6; this provides a good balance 
between accuracy and speed of execution. When calculating Fj (x\  t, At ,  z) we will have 
problems when z is significantly bigger than (pjt + aj) so that both the numerator and 
denominator of the fraction (4.8) will be small. In order to avoid this sort of numerical 
error we will have to switch to some less accurate way of calculating the drift for large 
z. However

P (Zt > z) < min P(XJ >  z), (4.23)
i= l,...,n

1Of course the drift is likely to be downward - we use the word upward only to indicate the sign of
the drift.
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and so the region in which the denominator of (4.8) is less than e for some j  is precisely 
the region which the minimum process has a probability less than e of visiting. As we 
are pricing a put option this region also contributes least to the option price, so we can 
safely ignore it for a suitable choice of e. We choose e = 10-5 .

Q uadrature : We approximate the integral J  x F l( x \ t , A t , z ) d x  by an appropriate 
summation. We pick a positive integer M , set A x  =  mini=i )...)Tl a iy /A t /M  and write

Xi = z + A t  min fij +  iA x  

for i an integer. We find and ijj such that

i l  = max{z G Z : F(xf, t, At, z) <  e}, i\j =  min{i G Z : F(xf,  t, A t, z) > 1 — e}.
(4.24)

We then have that

r iu 1
J  xF'(x; t, A t ,  z) dx «  £  - { X i  + * _ ,)  [*(*; <, A t,,)  -  F t, At, *)] (4.25)

1=1 L

with a similar approximation holding for J  x 2 F'(x; t, A t, z) dx. Of course in practice 
the determination of the limits (4.24) is done during the calculation of (4.25), starting 
at a value between the limits and working outwards and the calculated values of F  
are reused for the calculation of f  x 2 F'(x; t, A t, z) dx. We also artificially double the 
number of F  points using simple cubic interpolation. If we have values Fo, F\, F2 

and F3 at equally spaced x  points xq, x\ ,  X2 and x$ then fitting a cubic to these 
can yield a further point midway between x\  and X2 (i.e. at \ ( x \  +  X2 )) with value 
(—Fo +  9Fi +  9 F2 — F3)/16. Repeating this for every group of 4 consecutive points 
doubles the number of values available for the quadrature. We choose e = 10-8 and 
M  = 100 although in Section 4.5.5 we will lower M  to obtain more rapid results.

Interpolation  o f drift and vo latility  : The main factor influencing the speed of 
the algorithm is the need to compute lots of (slow) bivariate normals. Some time can 
be saved by reducing the accuracy of these computations, but for substantial speed 
improvements it is best to do as few as possible. We can do this by reducing the 
number of computation points used in the quadrature els described above, but a more 
effective way is to interpolate values for the drift and volatility using M atlab’s cubic 
spline interpolation routine. We compute raj. and sj. at a  fixed time point tk for a subset 
of the points i = and then interpolate to find raj. and sj. at the other values
of i. We will not do this initially, but in Section 4.5.5 we illustrate how considerable
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computation time can be saved using this technique, with little loss of accuracy.

4.5 Numerical examples

4 .5 .1  E x a m p le  1 : A m e r ic a n  m in -p u t  o p t io n  o n  2 a s s e ts

As a first example we will find the price of an American min-put on 2 assets. We use 
a 200 step lattice with exercise allowed at every time-step. As a benchmark we will 
compare these with ‘true’ prices computed via a 200 x 200 two-dimensional tree that 
models the movements of both asset processes. Table 4.1 and Table 4.2 give the result­
ing prices for options on assets with various different volatilities and initial values. The 
‘European’ column is the price of the option with European-style exercise, calculated 
using the Matlab ‘quad’ function as described in Section 4.4.1. The ‘Tree’ column is 
the price calculated using a trinomial tree to model the behaviour of the minimum of 
the asset prices. The ‘2-D’ column denotes the benchmark results calculated on a tree 
modelling the behaviour of both assets. The prices obtained using our method are all 
lower than the benchmark prices - this is to be expected as we axe restricting ourselves 
to a simpler exercise rule based only on the minimum of the two asset prices rather 
than on the positions of them both. However the under pricing is not too large, with 
‘Tree’ prices within approximately 1% of the benchmark values.

4 .5 .2  E x a m p le  2 : A m e r ic a n  m in -p u t  o p t io n  o n  n  id e n t ic a l  a s s e ts

We will now price an American min-put option on the minimum of i = 1 , . . . ,  n  assets, 
all with the same initial value Sq, dividend rate Si and volatility We compare our 
results with those of Rogers (2002) who uses a dual approach to compute an upper 
bound for the option price using Monte-Carlo methods. Table 4.3 gives the prices - as 
we would expect our lower bounds for the prices are generally below, and fairly close 
to, the Monte-Carlo upper bounds. This is not true for the 15 asset result, but it is 
still well within one standard error. As the number of assets increases the American 
price gets closer to the European price. Again this is to be expected as with a large 
number of assets the likelihood of improving on the current minimum at any moment 
is increased and hence the early exercise premium of the American option is small.
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S'1 ^ 0
C2 European Tree 2-D

90 90 17.1232 19.925 20.137
90 100 14.8448 17.400 17.560
90 110 13.2854 15.827 15.951

100 100 12.2800 14.251 14.370
100 110 10.5091 12.237 12.321
110 110 8.5805 9.898 9.962

Table 4.1: Prices of American min-put on two assets with the same volatility. K  = 100, 
T  =  3, r  =  0.05, 6 i = 6 2 = 0, ai =  a2 = 0.2, N  = 200.

So1 European Tree 2-D
90 90 27.0174 29.460 29.659
90 100 24.4921 26.569 26.851
90 110 22.3922 24.214 24.578

100 90 25.3413 27.833 27.873
100 100 22.6268 24.652 24.771
100 110 20.3599 22.076 22.235
110 90 24.1929 26.723 26.693
110 100 21.3440 23.383 23.393
110 110 18.9580 20.619 20.678

Table 4.2: Prices of American min-put on two assets with different volatilities. K  = 
100, T  =  3, r =  0.05, 81 = 52 = 0, ai  =  0.2, <j2 = 0.4, N  =  200.

n European Tree MC SE
2 24.7703 24.864 25.16 0.057
3 31.2487 31.307 31.76 0.095
4 35.8092 35.858 36.28 0.081
5 39.1666 39.211 39.47 0.095

10 48.0214 48.064 48.33 0.100
15 52.1261 52.169 52.14 0.108

Table 4.3: Prices of American min-put on n  assets. MC denotes Monte-Carlo upper 
bound of Rogers (2002) with standard error given in the SE column. K  =  100, T  =  0.5, 
r =  0.06, N  =  200. S q = 100, Si =  0, =  0.6 the same for all assets.
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4.5.3 Exam ple 3 : Bermudan m ax-call option on n identical assets

We now price Bermudan max-call options. As the name suggests, the max-call option 
is a call option on the maximum of n  dividend paying assets. As with the min-put we 
denote the strike price by K  so that if the option is exercised at some time r  £ R  it 
has payoff given by f (Z™ax) = (ez ™“x — K ) +, and we take the set of allowed exercise 
times to be

R  = {U — iT /d  : i — 0 ,1 , . . .  , d}.

We use exactly the same trinomial tree method as we did for the min-put option, 
differing only in tha t we use the distribution F max{x\ t , A t, z) of the maximum process 
as given in Section 4.3.1 in place of F(x; t , At, z). We will be particularly interested in 
the cases where d = 3,6 or 9 hence we choose N  = 180 steps so that the corresponding 
Bermudan allowed exercise times occur on our tree. We also use d = 180 to approximate 
American-style exercise although this will be covered more thoroughly in Example 4.

One further difference from the min-put option is that we now see the reason for 
the inclusion of a dividend-yield-rate term  5i in the definition (4.1) of the asset price 
processes. It is well known (see for example Musiela and Rutkowski (1998), Corollary 
8.2.1) tha t if r >  0 an American call option on a non-dividend-paying asset is worth the 
same as the equivalent European call option; it is never optimal to exercise the option 
before the expiry date T. This is basically because under the risk-neutral measure the 
asset price St has positive drift so it is always better to wait and see if it increases 
rather than exercise immediately. If it isn’t optimal to exercise a call option on any of 
n  individual assets then it certainly won’t be optimal to exercise a call option on the 
maximum of these assets. In all the examples we will be interested in we will assume 
th a t all the assets are identical and hence to get non-trivial answers we must choose a 
value for the dividend yield <5 big enough that r — S is negative.

There are several sources of good max-call prices to use as benchmarks in the literature. 
The dual approach of Rogers is used by Andersen and Broadie (2001) to obtain upper 
bounds on Bermudan max-call options with d = 9 and they use conventional (i.e. 
primal) Monte Carlo simulation to also obtain lower bounds. Table 4.4 gives their 
95% confidence intervals for the price of such Bermudan options along with our lower 
bounds based again on the simplified exercise strategy of looking only at the minimum 
process. Also given for n  =  2 and 3 are binomial values that Andersen and Broadie 
determine from the multidimensional BEG routine of Boyle, Evnine, and Gibbs (1989). 
Our results are again all within around 1% of the BEG values and the lower end of the 
95% confidence interval of the benchmark results.
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n qi 
s 0 European Tree BEG AB 95% Cl

2 90 6.6551 8.065 8.075 [8.053,8.082]
2 100 11.1957 13.841 13.902 [13.892,13.924]
2 110 16.9286 21.183 21.345 [21.316,21.359]
3 90 9.5380 11.229 11.29 [11.265,11.308]
3 100 15.6807 18.529 18.69 [18.661,18.728]
3 110 23.1284 27.231 27.58 [27.512,27.663]
5 90 14.5856 16.492 [16.602,16.655]
5 100 23.0516 25.832 [26.109,26.292]
5 110 32.6852 36.271 [36.704,36.832]

Table 4.4: Bermudan max-call on n  assets with d =  9 exercise opportunities at times 
i T /d  where i = 0,. . . , d .  Prices axe from Andersen and Broadie (2001), their 95% 
confidence interval and also prices they have determined using the multidimensional 
BEG routine. K  =  100, T  =  3, r =  0.05, N  = 180. 5q, <5* =  0.1, cr» =  0.2 the same for 
all assets.

For the 5 asset case, Broadie and Glasserman (1997) compute a 90% confidence interval 
using a stochastic mesh method for Bermudan options with a range of exercise fre­
quencies. Table 4.5 gives their results along with those from our approximate method. 
Broadie and Glasserman also give European prices which agree exactly with ours, al­
though they don’t say how these are obtained2. Our lower bound is again close to the 
benchmark prices. As the initial asset price increases or the number of exercise periods 
grows the gap between our lower bound and the prices of Broadie and Glasserman also 
increases, reflecting the value lost through our choice of simplified exercise strategy in 
these cases.

Table 4.6 gives Bermudan max-call prices on 10 assets with d = 9 and gives results from 
Raymar and Zwecher (1997) for comparison. Raymar and Zwecher use Monte Carlo 
simulation and reduce the simulated asset price vector at a particular time by assigning 
it to a particular ‘bucket’ region. Probabilities of moving between different buckets at 
different times are determined by repeated simulation and then a similar procedure to 
our trinomial tree is used to iterate backwards determining optimal exercise. Their ‘200 
x 1’ results have 200 ‘buckets’ at each stage to represent the value of the maximum 
asset and so their results should be comparable to our method which is very similar 
in philosophy. This is indeed the case, although our prices are generally higher than 
those of Raymar and Zwecher for lower strikes and vice-versa for higher strikes. The

2Other authors give either Monte-Carlo European prices or inaccurate prices using an unspecified 
method, indicating that it perhaps isn’t well known that these options can be priced exactly in the 
European case.
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d qi Tree BG 90% Cl
3 90 16.000 [15.995,16.016]
3 100 25.227 [25.267,25.302]
3 110 35.568 [35.679,35.710]
6 90 16.364 [16.438,16.505]
6 100 25.674 [25.889,25.948]
6 110 36.097 [36.466,36.527]
9 90 16.492 [16.602,16.710]
9 100 25.832 [26.101,26.211]
9 110 36.271 [36.719,36.842]

180 90 16.733
180 100 26.127
180 110 36.621

Table 4.5: Prices of max-call on 5 assets with d exercise opportunities at times iT /d  
where i =  0 , . . . ,  d. Benchmark prices are the 90% confidence interval computed by 
Broadie and Glasserman (1997). K  =  100, T  =  3, r =  0.05, N  =  180. 5g, Si =  0.1, 
Oi =  0.2 the same for all assets. The European exercise prices are 14.586, 23.052 and 
32.685 for S q =  90, 100 and 110 respectively.

K European Tree 200 x 1 SE 50 x 4 SE
85 40.6463 40.966 40.931 0.045 41.216 0.043

100 26.4082 26.674 26.652 0.045 26.911 0.044
115 13.2807 13.482 13.486 0.041 13.695 0.039
130 4.8074 4.918 4.943 0.026 5.043 0.027
145 1.3658 1.403 1.426 0.014 1.466 0.015

Table 4.6: Prices of 10 asset Bermudan (d =  9) max-call option with exercise allowed at 
times iT /d  where i =  0 , . . . ,  d. 200 x 1 and 50 x 4 are Monte-Carlo results of Raymar 
and Zwecher (1997) with corresponding standard errors. T  =  1, r  =  0.05, N  =  180. 
S q =  100, Si =  0.1, Oi = 0 . 2  are the same for all assets.

‘50 x 4’ results are obtained using 50 ‘buckets’ to represent the value of the maximum 
asset and another 4 ‘buckets’ at each maximum ‘bucket’ to represent the value of the 
second largest asset, giving a total of 200 ‘buckets’ again. These results are based on a 
more complex exercise rule than our own and so are all higher in value. Note tha t the 
Bermudan prices are not much higher than the value of the European option, reflecting 
the fact tha t with 10 assets, all with the potential to rise in value, it will usually be 
optimal not to exercise until maturity.
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4.5.4 Exam ple 4 : Am erican max-call option on n identical assets

We can approximate American exercise by setting d large in the Bermudan example 
above. We compare our results with those of Haugh and Kogan (2001), who find prices 
of max-calls on 5 and 10 assets for d = 99, so that there are 100 exercise periods in 
total. We use a tree with N  = 198 time steps and compute the same prices for d = 99 
and d = 198. Table 4.7 and Table 4.8 show the results for 5 and 10 assets respectively. 
Doubling the number of exercise opportunities makes little difference to our prices 
which are below those of Haugh and Kogan, although only by at most 2%. We notice 
again tha t for 10 assets the early-exercise premium on the option is significantly lower 
than for 5 assets.

d Cl European Tree HK LB SE HK UB SE
99 90 14.586 16.729 16.962 0.0056 17.030 0.0218
99 100 23.052 26.122 26.611 0.0066 26.666 0.0184
99 110 32.685 36.612 37.332 0.0075 37.442 0.0247

198
198
198

90
100
110

14.586
23.052
32.685

16.740
26.135
36.623

Table 4.7: Prices of max-call on 5 assets with d exercise opportunities at times iT /d  
where i =  0 , . . . ,  d. Benchmark prices are the lower (HK LB) and upper (HK UB) 
bounds computed by Haugh and Kogan (2001) with the corresponding standard errors 
given in the SE column. K  =  100, T  =  3, r = 0.05, N  =  198. Sq, S{ = 0.1, Oi — 0.2 
the same for all assets.

d Cl European Tree HK LB SE HK UB SE
99 90 14.747 14.989 15.178 0.0039 15.283 0.0136
99 100 26.408 26.725 26.996 0.0045 27.070 0.0117
99 110 38.529 38.917 39.223 0.0050 39.306 0.0201

198
198
198

90
100
110

14.747
26.408
38.529

14.991
26.728
38.920

Table 4.8: Prices of max-call on 10 assets with d exercise opportunities at times iT /d  
where i = 0 , . . . ,  d. Benchmark prices are the lower (HK LB) and upper (HK UB) 
bounds computed by Haugh and Kogan (2001) with the corresponding standard errors 
given in the SE column. K  =  100, T  = 1, r = 0.05, N  = 198. Sq, 8i = 0.1, Oi =  0.2 
the same for all assets.

One advantage of modelling the maximum process directly is tha t the resulting exercise
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boundary is much simpler3; rather than having to consider the prices of all n assets 
when deciding whether to exercise, the holder of a max-call option need only consider 
the highest priced asset. The quickest way to calculate the optimal exercise boundary 
for a max-call option is to read it directly off the tree used for pricing, as at each node 
of the tree we know if the price of the option at that point is obtained by immediate 
exercise of the option. We thus obtain upper and lower bounds on the position of the 
optimal exercise boundary as shown in Figure 4.2 for a 5 asset American max-call - 
it’s easy to see where the exercise boundary will lie. Thus we have a simple exercise 
rule based on the position of the maximum in contrast to the true optimal exercise 
boundary for the problem which will be a surface in W1.

160

150

140

.130

120

110

100
0.5 2.5

Figure 4.2: Bounds on the optimal exercise boundary for an American max-call option 
on 5 assets. The holder should certainly exercise if the maximum goes above the solid 
line, and not exercise if the maximum is below the dotted line. K  =  100, T  = 3, 
r  =  0.05, N  — 1000, d =  1000. Sq =  100, Si =  0.1, Oi == 0.2 the same for all assets.

3Look at Broadie and Detemple (1997), Figure 7.2 to see how complicated things can get.
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4 .5 .5  C a lcu la tio n  t im e s

One benefit of our approach is the speed of calculation. The computation time is linear 
in the number of assets n  for non-identical assets, and independent of n  for identical 
assets. The speed of computation is also completely independent of the number of 
allowed exercise periods d for a fixed N.  In comparison the method of Haugh and 
Kogan has a computational effort tha t grows linearly with d while the method of 
Andersen and Broadie is quadratic in d.

The ‘Tree’ prices in Table 4.5 took around 4 minutes each to compute on a Sun 
UltraSPARC-Ill, but these times can be improved considerably. Firstly we can use 
cubic spline fitting of the drift and volatility curves as described in Section 4.4.4. Table 
4.9 shows the effect on the prices of 5 asset max-call options. The prices obtained are 
all within 0.01 of their original values but take only 15% of the original CPU time to 
calculate.

d Cl No spline CPU Spline CPU
3 90 16.000 221.03 16.004 32.94
3 100 25.227 219.81 25.232 32.85
3 110 35.568 218.67 35.575 32.66
6 90 16.364 221.03 16.367 32.94
6 100 25.674 219.86 25.679 32.85
6 110 36.097 218.73 36.104 32.67
9 90 16.492 221.05 16.496 32.94
9 100 25.832 219.86 25.838 32.84
9 110 36.271 218.73 36.279 32.65

180 90 16.733 221.03 16.736 33.00
180 100 26.127 219.88 26.133 32.88
180 110 36.621 218.77 36.627 32.70

Table 4.9: Prices of max-call on 5 assets with d exercise opportunities at times iT /d  
where i =  0 , . . . ,  d. Prices computed with and without cubic spline fitting of the drift 
and volatility of the minimum process and the corresponding CPU times in seconds. 
K  =  100, T  =  3, r  = 0.05, N  =  180. S q, 8i = 0.1, cq =  0.2 the same for all assets.

Next we consider the use of Richardson extrapolation as described in, for example, 
Klassen (2001). We have a good test case in the European-style max-call option - we 
can compute its value exactly as in Section 4.4.1, but we could also use a N  time-step 
tree to compute it. The resulting error will give us an idea of the errors we will get from 
using the tree to price more complicated options. Figure 4.3 shows how the price of a
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Figure 4.3: Price of European max-call option on 5 assets calculated on a tree with N  
time-steps. K  = 100, T  =  3, r =  0.05. Sq = 90, Si =  0.1, Oi =  0.2 the same for all 
assets.

European max-call computed on a tree varies as we increase the number of steps in the 
tree. We see that the price increases reasonably smoothly towards the true price of the 
option so that when N  = 300 the computed price of 14.583 is just under the true price 
of 14.586. We can think of the trinomial tree scheme as an explicit finite-difference 
method (see Section 4.4.3) with a theoretical accuracy of 0(A t ,  A z 2). The constraint 
(4.17) means that we must choose A z 2 to be of order A t  so the tree scheme should 
have a highest order error term proportional to 1/N.  This turns out to be almost the 
case for our European max-call example when we restrict ourselves to the range of N  
which we will want to use for extrapolation; a plot (see Figure 4.4) of the logarithm of 
the error against log AT produces a straight line with a slope of around —0.81. Given 
this, we will assume that the leading error term is of order 1/N.  If we compute option 
prices and V^2 on trees with Ni  and N 2 time-steps respectively and use Richardson 
extrapolation to get rid of the leading error term then we find that the option price 
should be

NiVNl -  N 2VN2 
N l - N 2 '

Taking N\ = 18 and N 2 =  36 we get the results in Table 4.10. The extrapolated 
results compare well with the more accurate results that we obtained earlier in Table 
4.5. The CPU times are now around a second, aided by a reduction in accuracy of
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Figure 4.4: The logarithm of the difference between the true price of a European max- 
call option on 5 assets and the price calculated on a tree with TV time-steps plotted 
against log TV. K  = 100, T  =  3, r =  0.05. S l0 = 90, Si = 0.1, cq =  0.2 the same for all 
assets.

d S'o TV = 18 TV =  36 RE Accurate CPU
0 90 14.4208 14.4994 14.5781 14.586 1.10
0 100 22.8884 22.9896 23.0908 23.052 1.07
0 110 32.5437 32.6114 32.6791 32.685 1.08
3 90 15.7466 15.8606 15.9746 16.000 1.09
3 100 24.8299 25.0367 25.2436 25.227 1.10
3 110 35.1280 35.3132 35.4983 35.568 1.08
6 90 16.0977 16.2292 16.3608 16.364 1.10
6 100 25.2542 25.4863 25.7185 25.674 1.09
6 110 35.5536 35.8353 36.1170 36.097 1.08
9 90 16.2274 16.3406 16.4538 16.492 1.10
9 100 25.4228 25.6384 25.8539 25.832 1.09
9 110 35.7717 36.0160 36.2604 36.271 1.09

Table 4.10: Prices of max-call on 5 assets with d exercise opportunities at times iT /d  
where i =  0 , . . . ,  d. Shown are the prices computed for 18 and 36 steps and the Richard­
son extrapolation price (RE). ‘Accurate’ denotes prices computed by quadrature in the 
case of the European options and prices from Table 4.5 computed using a tree with 
TV =  180 steps in the other cases. The CPU column is the total time in seconds taken 
to obtain the Richardson extrapolation price. K  = 100, T  — 3, r  =  0.05. Sq, Si =  0.1, 
Oi = 0.2 the same for all assets.
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the quadrature used to compute moments as described in Section 4.4.4, by setting 
M  = 10. This is extremely fast in comparison with Monte Carlo based methods which 
take several minutes to obtain results.

4.6 Summary and conclusions

In this chapter we looked at options on the minimum or maximum of several assets, 
in particular the min-put option. We gave an explicit formula for the distribution of 
the minimum process at time t +  A t , given its position at an earlier time £, in terms of 
cumulative normal and bivariate normal functions.

We described how to evaluate this formula rapidly using the expansion of Vasicek 
(1998) and gave a quadrature method for the exact pricing of European options and a 
trinomial tree method for finding a lower bound for the price of American/Bermudan 
options. We gave numerical examples for both min-put and max-call prices which 
compared well with benchmark prices and those from the literature. In contrast to the 
standard Monte-Carlo approach we showed tha t our method could give good answers 
in seconds rather than minutes. Another benefit of our approach is tha t the exercise 
boundary can be found in a much simpler form.

One possibility for future reseaxch would be to investigate the extent that a more 
complicated exercise rule leads to better lower bounds for the price of multiple asset 
options, for example exercise based on the value of the second lowest priced asset as 
well as the lowest priced asset. The evolution of the joint law of these two processes 
could be modelled on a suitable two-dimensional tree. Other possibilities would be to 
investigate the use of other finite-difference schemes or to consider the case where the 
assets axe correlated.
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Part II

A Two Sector Stochastic Growth
M odel
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Chapter 5

A two-sector stochastic growth  
m odel

A bstract

This part of the thesis develops the study of two-sector growth models of the form 
introduced by Arrow and Kurz (1970).

Being purely deterministic, the original model of Arrow and Kurz was unable to distin­
guish between open-loop and closed-loop control of the economy; by allowing stochastic 
terms into the model, we are able to resolve this difficulty of interpretation. Moreover, 
we find that in some im portant cases the model can be solved explicitly in closed form, 
to the extent tha t we can write down expressions for tax rates and interest rates. This 
leads to new one-factor interest-rate models, with related taxation policies; numerical 
examples, including calculation of zero-coupon bond yield curves, show very reasonable 
behaviour.

5.1 Introduction

The history of growth models is long and illustrious, stretching back at least to Ramsey 
(1928). Throughout this development, much attention has been devoted to single-sector 
models, where there is just one type of capital or good, which is produced at a rate 
depending on current capital levels, labour force and technology levels, and is then 
either consumed or reinvested into capital. One analogy is a farm producing corn
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which can either be eaten or used to produce more corn. There are two basic types 
of continuous-time single-sector growth model appearing in the economic literature. 
Firstly the Solow model as developed by Solow (1956) and Swan (1956). This is a 
growth model with an exogenously given savings rate which determines the proportion 
of capital reinvested (and hence also the proportion consumed). Denison (1961) showed 
tha t this model was able to explain trends in empirical growth data for the United 
States. Secondly there is the Ramsey model. This was originally conceived by Ramsey 
(1928) but the term  is now used to refer to the version as refined by Cass (1965) and 
Koopmans (1965). This is a growth model with consumer optimization - households 
choose their rates of consumption over time to maximize a utility functional. See, for 
example, the books of Romer (2001) and Barro and Sala-I-Martin (1995) for a more 
complete description of these models and their variants. Ramsey’s original model was 
actually more subtle than that of Cass/Koopmans in some respects, for example it 
included a disutility function to reflect the amount of labour supplied (i.e. the longer 
the hours worked the less the utility). We will adopt a similar approach.

The first two-sector model was developed by Uzawa (1961), (1963) who considered an 
economy with two produced goods, a consumer good and an investment good, produced 
by investment capital and labour. Again using the farm analogy, this is using labour 
and tractors to make corn and tractors. Uzawa (1965) then refined this model to one 
where the two goods are physical capital and human capital, both of which are required 
for production of further physical capital (by manufacturing) and human capital (by 
education). Arrow and Kurz (1970) chose public capital rather than human capital 
and our work in this chapter develops this model.

Arrow and Kurz proposed a deterministic model where there were two types of capital, 
government capital and private capital, which were both needed in the production of the 
single consumption good. They first set about solving the government’s optimization 
problem, where the government’s objective was to maximize the integrated discounted 
felicity from per capita consumption, where the felicity also depends on the per capita 
level of government capital. This feature of the model recognises tha t the felicity of 
the population is improved if the provision of education, health care, transportation, 
etc. is improved, and tha t such infrastructure is provided largely (if not exclusively) by 
government capital. Since Arrow and Kurz assume tha t private and government capital 
can be freely switched at any time, it is clear that the state of the optimally-controlled 
system at any time is completely described by the total amount of capital, the split 
between government and private sectors being dictated by optimality.
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The problem gets more interesting when it comes to the behaviour of the private sector, 
which is viewed as very large collection of identical non-collaborating small households, 
each individually optimizing its common objective, which is again an integrated dis­
counted felicity of per capita consumption and government capital, but not of course 
the same as the government’s objective. History and fashion have overwhelmed the 
centrally-planned economy, so we suppose that the government’s control of the economy 
is exercised only through levying various proportional taxes, and issuing and retiring 
riskless debt from time to time. The central question studied by Arrow and Kurz is: 
can the government manipulate taxes and debt in such as way as to induce the private 
sector to follow the government’s optimal policy?

The analysis of Arrow and Kurz is quite involved, but they are able to conclude that, 
under certain conditions, various combinations of taxes and debt can steer the economy 
onto the government’s desired trajectory. However, the solutions they find are in terms 
of deterministic trajectories for the various tax rates for all future times, and this leaves 
undecided the interpretation of the solution: is this open-loop or closed-loop control? 
T hat is, do we think of the solution for the income tax rate (which will be an explicit 
function of time) as something tha t the government commits to at time 0, or do we 
rather think of the income tax rate as being a function of the underlying state variable 
(the total amount of capital)? The former interpretation seems viable only if we assume 
tha t the world really is deterministic, and that the government can predict with perfect 
foresight for all time. Casual observation suggests tha t this is very unlikely to be the 
case, so we would prefer to have a solution where tax rates would be expressed in terms 
of the current state of the economy, rather than being set according to a centuries-old 
plan. In the deterministic model of Arrow and Kurz, these two cannot be distinguished. 
See Christiaans (2001) for further discussion on this point - he concludes tha t open- 
loop solutions of dynamic optimization problems are unstable and therefore provide no 
reasonable basis for a positive theory of economic growth.

Another feature of Arrow and Kurz’s solution is tha t we have little insight into the 
properties of the tax regimes the government would need to follow: in particular, axe 
the tax rates always between 0 and 1? If not, are the suggested values actually credible?

To address these issues, we plan in this chapter to take the model of Arrow and Kurz, 
and modify it in two respects:

(i) introduce random fluctuations in output and population size;

(ii) allow the population to choose their level of effort.
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The first modification allows us to distinguish between solutions which are functions of 
the underlying state of the economy, and solutions which are pre-determined processes. 
W ithout the second modification, we find that the effects of income tax axe unrealistic. 
Once again, it turns out tha t the optimal solution of the government’s problem can be 
expressed in terms of a single underlying state variable, the technology-adjusted per 
capita capital in the economy, which now follows a stochastic differential equation, and 
is thus a diffusion. We are then able to solve the private sector’s problem, and deduce 
relations which must be satisfied by the various tax rates and by government debt in 
order to induce the private sector to follow the trajectory desired by government. In 
particular, we look for (and find) solutions for the tax rates which are functions only 
of the state process.

As yet, these expressions for tax rates are still quite opaque, so we axe no better placed 
to decide whether they will always be between 0 and 1, for example. Our response to 
that is twofold. Firstly we find explicit examples which can be solved in closed form , 
and where it is possible to find the range of any of the tax rates, as these axe expressed 
now as explicit functions of the state variable. A collection of such examples helps us 
to build up a library of possible behaviours, may lead us to other interesting questions, 
and allows us to check further analytical and numerical work. The approach we use is 
simply to take the inverse problem; write down the solution we would like, and then 
see whether we can find a model to which tha t is the solution! So we obtain a simple 
solution to a possibly slightly complicated model, rather than no solution to a simple 
model. This approach applies even to the basic one-sector model, and we show in an 
appendix some of the solutions which can be obtained for that. Our consideration of 
explicit examples is similar to the so called “inverse optimal” problem first studied by 
Kurz (1968) of constructing the class of objective functions that could give rise to given 
specified consumption-investment functions. Chang (1988) solves a similar stochastic 
inverse optimal problem.

Secondly we use numerical methods to find tax  rates for an explicitly specified model. 
For the deterministic model of Arrow and Kurz we can use standard differential equa­
tion solving techniques. In the deterministic case there is an equilibrium point which 
the system tends towards and we can solve backwards in time from this. Similar meth­
ods for the Ramsey model are discussed in Judd (1998). For the full stochastic model 
no such equilibrium point exists and we must use more sophisticated techniques. We 
are interested in finding policies rules that depend only on the total capital and not on 
time, so we approximate our continuous model by a choosing a discrete set of points for 
the allowed values of total capital and calculate the probabilities of transitions (up or
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down) between these discrete levels, given a fixed policy, and the expected time these 
transitions will take. We then use dynamic programming to find the optimal policy for 
this approximate model.

A good review of the literature on dynamic programming applied to economic problems 
is given in the introduction to Chapter 14 of Amman, Kendrick, and Rust (1996). 
Previous applications of dynamic programming to growth models seem to have been 
on discrete time models (although usually with continuous state spaces for the levels of 
capital, consumption etc.) such as the model of Brock and Mirman (1972) which is a 
single-sector stochastic model with the volume of production at each time depending on 
a random variable as well as the levels of capital and labour. Taylor and Uhlig (1990) 
contains the results of a ‘horse race’ in which a number of alternative methods (from 
papers in the 1990 Journal of Business and Economic Statistics appearing immediately 
after the article of Taylor and Uhlig) compete in their ability to solve a more general 
version of the Brock and Mirman model. No conclusive winner was found.

Shortly after the work of Arrow and Kurz growth theory fell out of favour, not making 
a return until the mid-1980s. Lucas (1988) extended the work of Denison (1961) by 
showing tha t a two-sector model can explain not only the trends in growth data, but 
also diversity between countries in the data. Consequently much of the recent growth 
literature deals with economies with two capital goods, the first usually being physical 
capital and examples of the second including human capital, public capital, financial 
capital, quality of products and embodied and disembodied knowledge (Mulligan and 
Sala-I-Martin 1993).

Models considering directly the effects of public investment come in two formulations. 
The first considers how the rate of government expenditure on public services effects 
the productivity of the economy; see Aschauer (1988) for a discrete example or Barro 
(1990) for a continuous time model. The second type of formulation considers the 
total stock of public capital, invested in such things as roads and hospitals, as the 
key input to the production rate. This was the problem first studied by Arrow and 
Kurz, with the stock of government capital appearing in the utility function as well as 
the production function. This second approach is arguably more realistic but has not 
been widely adopted, although Futagami, Morita, and Shibata (1993) have extended 
the model of Barro to include government capital, and Fisher and Turnovsky (1998) 
have adopted a Ramsey style framework, although in both these models the public 
capital only appears in the production function and not also the utility. This is true 
for most other two-sector models too - usually the utility function is restricted to being
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a function of consumption and not of levels of capital or rates of investment. However 
Baxter and King (1993) do consider a discrete time model very similar to tha t of Arrow 
and Kurz.

Use of continuous time stochastic calculus in economic growth models first appeared 
in the papers of Bourguignon (1974), Merton (1975) and Bismut (1975). These extend 
the Solow growth model to a random setting by addition of a Brownian element to 
the labour supply (Bourguignon, Merton) or to the production process (Bourguignon, 
Bismut). Merton also considers a stochastic version of the Ramsey problem, again 
with Brownian motion appearing in the dynamics of the labour supply. Chapter 3 of 
Malliaris and Brock (1982) contains a good overview of these and similar models. More 
recent contributions building on Merton’s ‘Stochastic Ramsey Model’ include Foldes 
(1978), (2001) who adds Brownian motions to further parameters of the model, and 
Amilon and Bermin (2001) who allow the government to control the expected growth 
rate of the labour supply. We have been unable to find any continuous time stochastic 
two-sector (private sector and government capital) models anywhere in the literature.

One of the possible uses of a stochastic growth model is to study interest-rate dynam­
ics. Merton (1975) does this for the stochastic Solow model using a Cobb-Douglas 
production function and a constant savings ratio. Amilon and Bermin use a stochastic 
Ramsey model and generate a variety of interest-rate processes by considering different 
production and utility functions. Cox, Ingersoll, and Ross (1985a), (1985b) develop a 
simple stochastic model of capital growth which they use to determine the behaviour 
of asset prices including the term  structure of interest rates. Sundaresan (1984) builds 
on this work and tha t of Merton by considering multiple consumption goods with a 
Cobb-Douglas production function.

We will proceed as follows. In Section 5.2 we describe our model and consider the 
central-planning problem where the government has total control over the economy and 
wishes to maximize its own utility functional. We give conditions tha t the government’s 
optimal choices must obey. Section 5.3 introduces taxation and a private sector inde­
pendently optimizing its own utility functional subject to taxation constraints. We find 
expressions tha t the tax  rates must satisfy in order to force the private sector to follow 
the government’s optimal choices. In Chapter 6 we look at ways to find explicit solu­
tions to these problems and give an example. In Chapter 7 we show how to calculate 
numerical solutions to more generally specified problems. We give plots illustrating our 
explicit and numerical solutions and conclude in Chapter 8. Appendices B .l and B.2 
gives proofs tha t our explicit example satisfies various technical conditions. Appendix
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B.3 is a (very technical) discussion of the behaviour of the level of government debt. 
Appendix B.4 shows how our results simplify to the one-sector Ramsey model. Finally 
Appendix B.5 contains a useful summary of the notation used in this part of the thesis.

5.2 The governm ent’s problem

The dynamics of the total capital K t in the economy at time t evolves according to the 
equation

dK(t) = K{t)dZ t° +  F (K p(t), K g(t) ,T (t)L (t)7r(t))  -  SK(t) -  C(t) (5.1)

where Z°  is some multiple of a standard Brownian motion, L(t) is the size of the 
population at time t, ir(t) G [0,1] is the proportion of the population’s effort devoted to 
production, and K p(t) is the amount of private capital in existence at time £, K g(t) = 
K ( t ) — K p(t) the amount of government capital at time t. The parameter S is the 
rate of depreciation, a positive constant, the process C  is the aggregate consumption 
rate, and the process T  is the labour-augmenting effect of improvements in technology. 
We shall assume always that K , K g) K p and C  are non-negative. As a notational 
convenience we will use subscript and argument notations K t = K (t)  interchangeably 
throughout, and will omit appearance of the time argument where there is no risk of 
confusion. Concerning the production function F , we shall make the usual assumption 
of homogeneity of degree 1, which is to say that

F{XKP, AK g, XL) = XF{KP, K g, L) (5.2)

for any A >  0. We shall also suppose that

dLt =  Lt{dZt 4- (Ai/dt), (5.3)

dTt = nxTtdt, To =  1, (5.4)

where //£, and f ir  >  0 are constants, Z L is again a multiple of a standard Brownian
motion and we specify the covariance structure of the Brownian processes by

(Z \  Z j )t =  Vijt, «, j  G {0, L}. (5.5)
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The objective of the government is to maximise

E J ™ e~P!‘Lt u ( v  n  )  dt’ (5'6)

where the felicity1 U is strictly concave and increasing in the first two arguments,
decreasing in the last and pg > 0 is constant. The objective (5.6) depends on per capita 
consumption and per capita government capital, and the felicity is weighted according 
to the current population size. In order to have the prospect of a time-homogeneous 
solution, we require tha t U is also homogeneous of degree (1 — R g) in the first two 
arguments for some R g > 0 different from 1; this means that U can be represented as

U(C, K g, it) = i, 1r), £ =  C /K g (5.7)

for some C 2 function h. Our main results will be proved only subject to the assumption 
tha t h is either non-negative or non-positive. This restriction seems to be satisfied in 
many interesting cases, and is probably not really necessary; we require it to save us 
from over-clumsy statements of results.

As a consequence of the assumptions so far, it turns out to be advantageous to work 
with per capita technology-adjusted variables, rather than their aggregated equivalents. 
We define

7]t = L tTt = L 0 e x p | ZtL +  (pL -  i vLL +  pT)t j, (5.8)

and then define

kt =  K t/r)u kg(t) = K g(t)/r)t , kp(t) = K p(t)/r]t, ct = C t/m , (5.9)

and so forth. Applying Ito ’s Lemma to the definition (5.8) of % we find tha t the 
dynamics of rf[1 are given by

d m 1 =  *7t_1 (~ d z t +  Mo dt) (5.10)

where (iq = vll — Ml — Mt- The dynamics of kt =  r}^l K t follow from this and the 
dynamics (5.1) of K  and are given by

dkt = kt (dZt° -  d Z f)  + F ( k J t ) , k g(t),Trt) - y k t  -  ct dt, (5.11)

LIt would be nice to imagine that this expression was chosen for its dictionary definition ‘a cause of
happiness’. However it’s just economics jargon for ‘flow of utility’.
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where

7  =  6 +  vql  -  po 

— 5 +  P l  +  fJ'T +  vql  — v l l -

It is now necessary to also re-express the government objective (5.6) in terms of per 
capita technology-adjusted variables, and here the assumption that U is homogeneous of 
degree (1 — R g ) enters in an essential way. We find that the objective of the government 
can be expressed as

p oo
=  E  /  e~p’ tL t U(ctTt , kg(t)Tu *t) dt 

J o
poo

=  E /  e - ^ L t T t ^ i c u k g i t ) ,  n )  dt 
J o

=  L q E f°° e - P 9t e (H L- $ vLL) t +Z tL e H T ( l - R 9)t ZJ(ct ,kg(t), 7Tt ) dt
J o

poo
= L 0 Eg e- A>‘!7 (ct ,fc9 (0 , 7r()rfi (5.12)

Jo

where

^ 9  =  Pg -  — R g ) P T  — P L ,

and the final expectation is with respect to the measure P5 which is absolutely contin­
uous with respect to P on every Tt and has density

d F g

dP
=  exp(ZtL -  ^ v LLt).

Ft

The effect of changing measure from P to P5 is to introduce additional drift into the 
Brownian motions Z°  and Z L\ precisely, we have

Z t  =  z t +  VOLt,

Z t  =  z t +  VLLt ,

where (z ° ,z L) are two Ps-martingales possessing the same covariance structure as 
(Z°, Z L). This is the Cameron-Martin-Girsanov Theorem; see, for example, 0ksendal
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(1998) for an account. The dynamics (5.11) of kt under P become under ¥g

dkt = kt(dzt — dzfy  +

where the constant is given by

F ( k p ( t ) ,  k g ( t ) ,  7rt ) - n / g k t - c t dt, (5.13)

7 ff =  7  -  VOL +  V L L  =  £  +  M l  +  M T -

In order to maximise (5.12) with the dynamics (5.13), we can proceed to find the 
Hamilton-Jacobi-Bellman equation for the value function

V {k ) =  sup Eg
C ,k g  ,0<7T<1

ko = k (5.14)
roo
/ e~XgtU{ct , kg(t), Trt ) dt

Jo

Conditioning the expression inside the expectation on events up to time t we see tha t

f  e~XgSU(cs,k g(s),7rs) ds + e~XgtV (k t)
Jo

is a supermaxtingale, and a martingale under optimal control. Hence the HJB equation 
satisfied by V is

sup U(c,kg, 7r) — AgV(k)  +  -̂cr2k2V"(k)  +  [F(k — kg,k g, 7r) — 7 gk — c\V'(k) =  0,

(5.15)
C,fcff,0<7T<l

where
a 2 =  u q o  -  2 v 0L  +  v l l -

From this, we deduce the necessary first-order conditions for optimality: 

Uc(c,kg,7T) =  V'(k)

U g { c ,  k g ,  71") =  V  ( k ^ ( F p ( k p ,  k g ,  7r) F g ( k p ,  k g ,  t t ) )

XJ-jxic, k g ,  7r) = V  ( k ) F i r ( k p , kg,7r),

where we use subscripts to denote differentiation, as in the abbreviations:

rr d U  TT d U  rT d U  d F  d F  d F

d c ’ ~  ’ ~  a~ ’ ~  au ’ ~  au ’

(5.16)

(5.17)

(5.18)

dk, d'K d k r d k r, dir

The conditions (5.16), (5.17) and (5.18) arise from considering the optimization problem

sup U ( c , k g , i r )  + p [  F ( k  -  k g , k g ,Ti) — c ];
C ,k g  ,0<7T<1

(5.19)
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implicit in the statements (5.16), (5.17) and (5.18) is the following assumption:

For every p ,k  > 0, the problem (5.19) has an interior solution

which depends in a C 1 fashion on (p, k) (5.20)

This assumption does not always hold, but we shall make it for the sake of the simpli­
fications in the statements and proofs of results; no doubt similar conclusions can be 
reached without it, but we leave tha t as an issue for further research.

The observation that the optimizing values (c, kg,ir) are uniquely determined as func­
tions of (p, k) reduces the HJB equation (5.15) to a non-linear differential equation for 
V\ once the solution is found, we are able to express the optimal values of (c,kg,ir) 
as functions of (V(k),k) ,  or, more simply put, functions of k. We shall henceforth use 
the notation c*,k* and tt* for these optimal functions of the underlying state variable 
&, along with the notation k*, with the obvious interpretation k*(k) = k — k*(k). We 
shall also introduce the notation

$(fc) =  F( k; ( k ) , k ’ ( k ) X ( k ) )  -  Igk -  c*(fc) (5.21)

for the drift in the dynamics (5.13), which therefore are more compactly expressed as

dkt = kt{dzt — dzjf) +  $(kt)dt

=  crktdwt +  $(kt)dt,  (5.22)

where the P5-Brownian motion w is defined by w =  (z° — z L)/a.  Under the original
measure P  the dynamics (5.11) can be written as

dkt = kt (dZ? -  d Z f)  + $ (k t )dt,

=  aktdWt +  $ (k t)dt, (5.23)

with the identifications $(&) =  $>(k) +  (7 g -  7 )&, and W  =  (Z° — Z l ) / g . Under mild
conditions on <£, for example global Lipschitz (Rogers and Williams 2000, Theorem 
V.11.2.), the SDE (5.22) has a pathwise-unique strong solution, and the value function 
V  will satisfy the equation

£/(c*(fc),fc*(fc),?r*(fc)) -  \ gV{k) + \ a 2k2V"{k) + i ( k ) V ' ( k )  =  0. (5.24)

Although there may be some issues concerning smoothness of the (c, kg,7r) optimizing 
in (5.20), the following result is the starting point of our investigations.
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T h eo re m  1 (i) Assuming that the value function (5.14) is finite valued and C 3, and 
that assumption (5.20) holds then there exist differentiable functions c*, k*, rr* and 
twice-differentiable ^  =  V' such that the equalities

o =  -  7 j -  \ g) + $ '( $  +  a2k) + \ o 2k2%" (G l)

UC = V (G2)

U* = (G3)

Ug = (Fp - F g)V  (G4)

<& = F - lg k - c  (G5)

hold along the path given by (c*(k),k*(k),TT*(k))2.

(ii) Conversely suppose that there exist differentiable functions 4>, c*, k* and 7r* and 
twice-differentiable such that the equalities (G 1)-(G 5) hold along the path given by
(c*,k*,ir*). I f  k* is the solution to the SDE  (5.22) then provided the transversality 
condition

su p e~x’tk ,t ^ ( k ,t ) € L1, lim e“ A»‘fcr$(*r) =  0 (GT)
t

holds, the policy given by (c*,k*,ir*) is optimal for the government, the optimally- 
controlled economy follows the dynamics (5.22) and there is a value function V(k)  
given by

V ( k ) = f  * ( y ) d y  + V i

which satisfies the HJB equation

0  =  - X gV  +  V '$  +  \ a 2k2V"  +  U (G6 )
z

along the optimal path, where V\ is a constant that can be determined explicitly.

P r o o f  o f  T h e o r e m  1 : (i) follows from the discussion above; (G l) is obtained 
by differentiating the HJB equation (5.15) with respect to k and then making use of 
conditions (5.16)-(5.18).

(ii) Suppose tha t the process kt has dynamics given by (5.22) for some consumption 
process ct and some choice kg(t)/k(t)  of the proportion of capital held by the govern­
ment. We introduce a (Lagrangian) semimartingale e~x^t^ t  = e-Asf\I/(fc£) where k* is

2This means, for example, that Ug(c*(k),k*(k),TT*(k)) =  (Fp — Fg)(k*(k),k*(k),7T*(k))1$(k)  in the 
case of (G4).
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the conjectured optimal process, satisfying (5.22), and where

d ^ t = ^ tfa tdw  +  btdt).

We now consider the integral

f T e - ^ t d k t  
J  0

where r  is some stopping time. Firstly, from the dynamics of kt we know that

f e~Xgt^ tdkt = f  e~Xgt^ t (<rktdwt + [F(kp(t), kg(t), 7rt ) -  7gkt -  ct]dt) .
Jo  Jo

Secondly, integrating by parts, we find that

f  e~Xgt^ tdkt =  e~XgTkT'$'T -  -  f e~Xgt^ t (atktdwt +  (aat +  bt -  Ag)ktdt) .
Jo Jo

These two expressions must be equal, hence we have for any stopping time r  that 
(omitting explicit appearance of t in most places)

f  e XgtU(c, kg,7r)dt =  f  
Jo Jo

e~Xgt U(c, kg,ir) +  ^f(F(kp,k g, 7r) -  7 gk -  c)+

dt +  /cq^o —  ̂ XgTkT*$fT *{■ M t (5.25)

0

k^ (b  — A g) +  a a k ^

for some P5-local martingale M  starting at 0. We now consider the maximisation over 
k, c, kg and 7r of the integrand on the right-hand side of (5.25): the first-order conditions 
we obtain will be

^(k*)(Fp(kp, kg,ir) -  j g) = (Xg -  b -  aa)^/(k*)

Uc(c, kg,7r) =  *(£*)

U g  ( c ,  k g  , 7r) =  * ( k * ) ( F p - F g )

Uv (c,kg,TT) =  - * ( k * ) F w.

The last three of these are satisfied at c = c*(k*), kg = k*(k*), it = 1r*(k*) in view of
(G2), (G3) and (G4). The first is satisfied due to (G l), since from the Ito expansion
of ty(k*) we must have that

ak** '(km)a =
V(k*)

$(fc*)4''(fe*) + l<r*k* V'(fc*)
b =  —----------------- ------------------
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To summarise then: the integrand on the right-hand side of (5.25) is maximised at 
c  =  c*(k*), kp = k*(k*), kg = k*(k*), tv  = t v *(k*). Reversing the integration-by-parts 
argument by which we arrived at (5.25) we have for any stopping time r  that

f e ^ U i c M d t  < [ T k*g(k't ) ,* '(% )) dt
JO Jo

+e~x<’T{k; -  kT)V(k;) + Mr -  M r

< r  e - ^ U k ' i k t ) ,  % ( % ) ,* ' ( $ ) )  dt 
Jo

+e~>'’Tk*T^ { k ,T) + MT - M r

where M  is another continuous P^-local martingale starting at 0. Take a sequence of 
stopping times rn f  oo which reduce both M  and M  strongly. For example if Sn is a 
localizing sequence for M  and Tn is a localizing sequence for M  then T n  = Sn A Tn is a 
localizing sequence for both M  and M. We can now take expectations to obtain

[  e - ^ U i c ,  kg, ir) d t<  Eg /" " e“ V (7(c*(fct*),fc;(fc?),»r*(fct*)) dt 
Jo Jo

+  1̂  [e-x^ k l $ ( K j ]

then let the reducing time rn tend to infinity, and appeal to the transversality condition 
(GT) to give us the required optimality result.

Finally, suppose tha t we take V(k)  given by

•A:
V ( k ) = J  <Z(y)dy + Vi

where

Vl = TA 9

If we differentiate

-A gV(k) +  V ’(k)$(k)  +  ic r2 fc2 K"(fc) +  U(c(k), kg(k), w{k)) (5.26)

with respect to k, using the fact that V'(k)  =  W(fc) we obtain

t f ( - A s  +  ( 1  -  k'g)Fp +  k'gFg +  n 'F , - 7 g -  c')

+  $ '(0  +  <x2k) +  i a 2fc2$" +  c'Uc +  k'gUg + ir'U* =  0 
z

by (G1)-(G4). Hence expression (5.26) is constant and this constant is 0 by the con-
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struction of Vi. □
Theorem 1 characterizes the optimal solution to the government’s problem, but what 
can we do with it? Are there examples where the solution can be expressed in closed 
form? In view of the complicated way in which the optimizing values c*, k* and 7r* 
were defined, it appears at first sight unlikely, but we shall see in Chapter 6  th a t it 
is possible to exhibit explicit solutions by considering the inverse problem, where we 
postulate a form for the solution and seek a problem whose solution is as postulated. 
A contrasting approach is to explicitly specify the production and government felicity 
functions along with the coefficients Xg, and a. We can then use numerical methods 
to determine the government’s optimal path (c*,fc*,7r*) as a function of k along with 
the corresponding value function V(k). We deal with this in Chapter 7.

5.3 Government borrowing and taxation

The government’s optimal policy has been determined, but the issue now is how to 
implement that policy when the government cannot directly control the private sector, 
but can only shape its choices through taxation and the issuing of government debt. 
Since the optimal policy of the previous section was Markovian, in the sense th a t the 
total technology-adjusted per capita capital k was a Maxkov process (even a diffusion), 
we shall now seek Markovian taxation policies, which are defined by the property tha t 
the rates of tax are functions only of k.

Before we can understand the effects of government fiscal policy, we have to understand 
the behaviour of the private sector on which it acts, and we turn  to tha t now. We think 
of the private sector as made up of a very large number Lo of identical non-collaborating 
households; if one of these households receives a cash-flow process of (Ct)t>o while 
working for a proportion (7ft)t>o of time, then it values this cash flow as

E/ “ M l , (5.27)

and it wishes to maximise this. Here u is strictly concave and increasing in its first 
two arguments, and decreasing in the third, and pp > 0 is constant. The felicity 
u depends on the per capita level of government capital, and on the per capita rate 
of consumption for the household, which is assumed to be subject to the same size 
fluctuations as the entire population; it also varies inversely with the proportion of 
effort devoted to production. As with the government objective, we assume tha t u is
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homogeneous of degree (1 — Rp) in the first two arguments, where R p >  0 is different 
from 1, and typically different from R g.

We suppose that the objectives of the government and private sector are different, and 
tha t the government aims to set taxes and to borrow in such a way as to induce the 
private sector to follow the government’s desired path. We need now to decompose the 
dynamics (5.1) of the economy so as to understand the effects of the taxes. Homogeneity 
of order 1 of F  implies3 tha t we may express the output as the sum of three terms,

F (K P1 K g, txLT) = KpFp{Kp, K g, t t L T )  +  K gFg(Kp, K g, it L T )  +  n L T F ^ K p ,  K g^ L T )  

=  K pFp(kp,kg, 7r) +  K gFg(kp,kg, n) +  7rLTFir(kp,k g,TT) (5.28)

which are interpreted as the return on private capital, the return on government capital, 
and the return on labour, respectively. Including the random effects term  (dZ°) then, 
the returns on private capital, government capital and labour are (respectively)

KpdZ? +  KpFpdt, K gdZ? +  K gFgdt , tt LT F ndt. (5.29)

We shall suppose tha t the government is able to appropriate some fixed proportion 
1 — dp —6 1  of the returns to its capital by direct charging for services such as toll roads, 
university tuition fees, subsidized rail faxes, and some health-care costs, but it is in 
the nature of government expenditure tha t much of the return on government capital 
cannot be directly appropriated, so in practice this proportion may be near to zero. 
A proportion 0p of the returns to government capital axe included in the returns to 
private capital, and the remaining proportion 9 l  is included in returns to labour, so 
that from an accounting point of view we suppose that the returns on private capital 
and labour axe (respectively)

KpdZf +  KpFpdt -f- 0p(KgdZt +  K gFgdt), 0£J(^KgdZ^ -t- K gFgdt) +  t t L T F^dt, (5.30)

with the remaining (1 — 9p — 0L){KgdZ® +  K gFgdt) going directly to government.

The evolution of the levels of private and government capital axe determined by the

3Differentiate the identity (5.2) with respect to A to obtain the first line. For the second line
Q

Fp(kp, kg, 7r) =  - ^ -F (k p, kg, 7r)

d F(LTkp, K g, nLT)
~  dkp LT
=  Fp(Kp, K g,irLT)

and similarly for Fg and F*.
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equations

d K p = dlp — 5Kpdt, (5.31)

d K g =  dIg - S K g d t , (5.32)

where Ip(t) is the total amount invested in private capital by time t.

The government will issue debt and levy taxes; returns on private capital will be taxed 
at rate 1 — (3k, wages (return on labour) at rate 1 — (3W, consumption at rate 1 — (3C, 
and interest on government debt at rate 1 — /?r , so that the private sector’s aggregate 
budget equation is therefore

dlp + dD + f i - 'C d t  =  0k [K p{dZ? + Fpdt) + 6p(KgdZ° + K gFgdt) ] + rf)rDdt

+ pw[6L(KgdZ°t +  K gFgdt) + 7rLTF ,dt}  (5.33)

where Dt denotes the amount of government debt at time t. The interpretation of the
left-hand side is that this is the total outgoings of the private sector: the investment in
private capital, the investment in government debt, and the cost of consumption4. The 
right-hand side (5.33) is the after-tax income of the private sector: return on private 
capital plus interest on government debt plus wage income. Arrow and Kurz have also 
a tax on savings, which alters the term  dlp +  dD  in equation (5.33) to (d~l (dlp +  dD ). 
Since this could be absorbed into our formulation simply by reinterpreting the other 
P., we lose no generality by studying the equations as given.

The relation (5.31) can be used to eliminate dlp so tha t we can rewrite the private-sector 
budget equation as

dKp +  dD = K p [ fikdZt +  (PkFp — $)dt ] -1- r(3rDdt — (3~l Cdt

+pw7rrjF7rdt +  (PkOp +  PwOL)(KgdZ^ +  K gFgdt). (5.34)

This bears the simple interpretation that the change in private-sector wealth is ac­
counted for by the return on private capital (adjusted for depreciation) plus the return 
on government debt, less consumption plus the wage income and a share of the returns 
on government capital.

4If the private sector attempts to consume C  it will actually consume only /3cC after taxation, 
hence it must allow an amount (3 ^ 0  in order to consume the desired amount after taxation. This is 
in contrast to a conventional consumption tax, such as VAT, which adds a charge onto the original 
desired level of consumption. It is easy to move between the two types of tax specification so we lose 
no generality by assuming the form we do.

81



Recall tha t we seek tax rates as functions of k which will cause the private sector to 
follow the government’s optimal trajectory. So we shall suppose tha t such tax rates 
have been set, the economy as a whole is following the government’s optimal policy as 
discussed in Section 5.2, and shall consider the optimization problem faced by a single 
household. I f  any deviation from the government’s optimal path is suboptimal for the 
individual household, then we have an equilibrium in which all households follow the 
government’s optimal path; we shall suppose that this is what happens, and deduce 
the implications for the tax rates and borrowing policy. These are summarized in the 
following result.

T h e o re m  2 Suppose that the government sets proportional taxes 1 — (3C on consump­
tion, 1 — Pw on income, 1 — (3k on returns on private capital, and 1 — f3r on returns on 
government debt, all functions only of the total technology-adjusted per capita capital 
k in the economy at the time. I f  there exists a C 2 function ip, and a function r such 
that the equations

0 = ip(PkFp - ^  -  \ p + v0L{l - ( Ik ) )  (PS1)

+ ip'(§ +  Pk°2k + (1 -  Pk){l9 ~ l ) k )  +  i(J2APip"

uc = P~ V  (PS2 )

un = - p wFnip (PS3)

0 = ip(rpr + po -  Ap) + ip'{§ + (7g ~ 7)k) + r̂<J2k2ip" (PS4)

all hold along the government’s optimal path5, where Xp = pp — (1 — R p)pr , then the 
private sector faced with these tax rates will choose to follow the government’s optimal 
path, provided the transversality condition

supe-Ap<|:rt |t/>(/c*) € L l , lim e~Xptx tip(kl) =  0 (PST)
t t-*oo

is satisfied, where x  = kp + A p is the total technology-adjusted per capita wealth of the 
private sector, split between private capital kp and government debt A p =  D/r).

P r o o f  o f  T h e o r e m  2 : The strategy is firstly to discover the dynamics faced by a 
single household optimizing in an economy which is following the government’s optimal 
path. Next we rework the private household’s objective, expressing it in intensive 
variables. We then use the Lagrangian method to characterize the private household’s

5For example, in full (PS3) says u*(c*(k), k*(k),n*(k)) =  —/3w(k)F,r(kp(k),k*(k),7c*(k))'ip(k).
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optimal path.

We first derive a household budget equation analogous to the aggregate budget equation 
(5.34). Households are small relative to the size of the population and do not collaborate 
with each other and so the coefficients F. =  F9(Kp, K g, irLT) = F9(kp, kg,ir) which are 
functions of the total private sector capital, and total number of technology-adjusted 
man-hours worked will not be significantly affected by the choices of one household. 
Similarly the tax coefficients /?. are fixed as functions of k by the government. We 
will consider an individual household with K p invested in capital, D  in government 
debt, consuming at rate C  and devoting a proportion f f  of its effort to production; this 
household will thus have a budget equation given by

dKp +  dD = K p [{3kdZt +  (pkFp — 6)dt] +  r/3rDdt — (3~l Cdt

■f* PVi);k-y-F.Kdt +  -y^-{Pk@p +  Pw^L){dZf +  Fgdt). (5.35)
-ho ho

This agreed, the problem facing the typical private sector household is to optimize 
the objective (5.27) with the dynamics given by (5.35), where the tax coefficients (3% 
and the interest rate r are fixed functions of k and the partial derivatives F# and 
government capital K g are all evaluated along the government’s optimal path. As with 
the government’s problem, we first reduce to technology-adjusted per capita variables, 
expressing the objective as

e J ™  e- ^ f ^ , ^ , # t)  dt, =  E / ° °  e~PptT t~ Rru(ct,k*(t),TTt ) dt
r oo

=  E j  e~Xptu(ct ,k*(t),7tt ) dt, (5.36)

where \ p =  pp — ( 1  — Rp)pT- We are reserving starred variables (k*, k*) for the 
government’s optimal values, and using the notation

kp — K pLo/r], Ap =  DLo/rj, q  =  C^Lqfr\i.

The typical household will have capital K p =  K p/Lq, so as long as the household 
stays on the government’s optimal path we will have th a t kp = kp. Of course it will 
tu rn  out in the end tha t the private sector will choose ct = c*(k£), kp(t) =  k*(k*) 
and 7i =  tt*(k%). The dynamics (5.35) along with the dynamics (5.10) of 77- 1  imply 
the following dynamics under P for the (technology-adjusted per capita) private-sector
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wealth process x  = kp -f A p:

dx = xdr)~l +  Lor)~l (dKp +  dD) +  d{ 77“ 1 , L q{ K p +  D) )t

= (kp +  Ap) [- d Z L +  fjt0dt] +  kp [pkdZ° + (/%Fp -  S)dt] +  r(3rh pdt -  P~l cdt 

+  pwnFndt +  kl(/3k0p +  pw9i){dZ°  +  Fgdt) -  [kppk +  k*(pk9p +  Pw9L)]voLdt 

= kp [pkdZ° -  dZL +  (pkFp -  7  +  v 0l (1 -  Pk))dt] +  P ^ F ^ d t

+  K v [ - d Z L +  (/x0 +  rpr)dt] -  P~l cdt +  AdZ° + B d t , (5.37)

where we have used the abbreviations A  = (Pk9p +  Pw9L)k* and B  = k*(Pk9p +
Pw9l ){F9 — vol ) and made use of the identity 7  =  5  +  vql ~  Mo-

Let us now combine the objective (5.36) with the dynamics (5.37) using a Lagrangian
process e~Xptipl =  e~Xptip(kf), where by Ito’s Lemma

dip* = ip * [a* (dZ °-dZ L)+ b*d t] ,  (5.38)

using the notation a* =  a(k%), b* = b(k*), and where

a(k) = kip'[k) /  \p{k) (5.39)

W\k)

Again omitting superfluous appearances of the time variable and evaluating the integral 
JJ e~Xptip*dx in two different ways (see proof of Theorem 1) gives us for any stopping 
time r  that

f  e~Xptu(c, k* #) dt = f  e~Xpt u(c, k* tt) +  xip*(b* — Xp) +  ip*{pwTxF̂  — p ~ l c 
Jo Jo L

+  k p { P k Fp — 7  +  v q l ( 1 — p k)) +  A p ( r P r +  /x 0) +  B }

+  a*\p*{(pkkp +  A)(v00 -  v0l ) +  x {v Ll  ~  v q l ) }  

+ xoipo — xTe~XpTipl +

dt
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fJo
= I e~Xpt u(c , k*7r) -  V c  +  pwF^*TT + i>*(B + Aa*(v00 -  v0L))

+  ip*kp{pkFp -  7  -  Ap +  v q l ( 1  ~  A O  +  +  a * P k { v oo -  ^ o l )  +  a * ( ^ L L  -  ^ o l ) }

+  ip*Ap{rpr 4- n o  — Xp +  b* +  cl* { v l l  — vq / , ) } dt +  xqiPq — x Te XpTip* 4- M

fJo
= I e Xpt u(c , &* 7f) - /?c V *c +  PwF ^ * tt 4- ip*(B 4- Aa*(u0o ~ ^ o l))

4- kp{ip*{PkFp -  7  -  Ap +  v0l(1  ~  AO) +  2 ° 2k2^"(k*)

+ i p ' i k * ) ^  4- (Afc^oo -  v0l )  +  v l l  ~  v0L)k )}

+  A„{V', (r/?r +  mo -  Ap) +  i a W '( f c * )  +  + (vLL -  v0L)k)}

4- xqiPq -  x Te~XpTip* +  M T

dt

where M  is some continuous local martingale. We now consider the maximization of 
the integrand on the right-hand side of this equation over the household’s choices c, 
7r, kp and A p. For the maximization with respect to kp and A p to be non-trivial (and 
hence to lead to an interesting economic solution!) we require that

0  =  ip*{PkFp -  7  -  Ap + v0L{ 1 -  A O )  +  -cr2k2ip"(k*)

+  <//(&*)($ 4- (pk(voo -  v q L ) 4- v L l  ~  voL)k)

0  =  ip*{rPT 4- fio -  Xp) +  - a 2k2tp"(k*) -I- ^'(fc*)($ 4- (vll ~  voL)k).

These two equations hold due to conditions (G l) and (G4) of Theorem 2 and the 
identities vll — vql = l g —l  and t>oo — vol = <j 2 — (7 5 — 7 ). Writing c* and 7r* for the 
maximizing values of c and tt respectively, we require also that

Uc (c*,/c* ,7T *) =

«»(? ,* * ,# * ) =  - p wF „ r

where we shall assume tha t the maximum is attained uniquely. Now due to conditions 
(G2) and (G3) of Theorem 2 and the uniqueness of the maximum, we see tha t the 
maximum occurs when the household’s maximizing choices of c* and 7r*, are equal to

85



the government’s choices c* and 7r*. Hence we deduce that

f T e~Xptu(c, fc* #) dt < f T e - ^ ‘ [u(c\k*  tt*) - /J" V c *  +  A .JW ’V '
Jo Jo

+ip*(B +  Aa*(voo -  ^ol))] dt +  xqiPq -  x Te~XpTtp* +  M r 

e~Xptu(c*, k*, 7r*) dt +  (x * — x T)e~XpTip* +  M T

< [  e~Xptu(c*,k* 7r*) dt + x*e~XpTip* +  M T
Jo

fJo

for some other6 local martingale M.  Here we obtained the second line by reversing the 
integration-by-parts method used on the Lagrangian form. Choosing a r  that reduces 
M  strongly and taking expectations gives us that

E f  e Xptu ( c , k * T t ) d t < E f  e Xptu(c*,k*n*) d t+  Ex*e XpTip*,
J o  Jo

and the transversality condition (PST) allows us to let r  —> oo to conclude that

roo roo
E J  e~Xptu(c,k*,TT) dt < E J  e~Xptu(c* ,k*, 7r*) dt

as required. □

R e m a r k s , (i) Of course, the way we plan to use Theorem 2 is to enable us to find  the 
tax regimes which will persuade the private sector to follow the government’s optimal 
path. So if we suppose that the government’s optimal path has been determined, as in 
Section 5.2, we want now to know whether it is possible to have the conditions (PS1), 
(PS2), (PS3) and (PS4) all holding at the same time. But this is in fact quite easy: 
for example, if we choose the functional form of (3C and /?r , then (PS2) determines 
the function ij) and then fik, (3W and r are determined from (PS1), (PS3) and (PS4) 
respectively.

(ii) Note the similarities between conditions (PS1), (PS2) and (PS3) and the corre­
sponding conditions (G l), (G2) and (G3) of Theorem 1. If we set the tax rates to zero 
(so fik — 1 etc.) then these conditions of Theorem 2 axe identical in form to those of 
Theorem 1; however they depend on the private sector parameters Xp and 7  and on the 
private sector felicity function u  rather than the corresponding government quantities. 
Only if the private sector and government share identical values \ p =  Xg, 7  =  7  ̂ and 
u = U will the private sector follow the government’s optimal path under a no-tax

corresponds to the term M  — M  in the proof of Theorem 1.
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regime.

(iii) If we subtract equation (PS4) from (PS1) then, after some rearrangement, we 
obtain

Pk  -  v0L + ^ { v 00 -  V0L) k j  = rfir +  S. (5.41)

Thus the net return on private capital PkFp is equal to the net return on debt r(3r plus 
depreciation S and some ‘price of risk’ terms. In the formulation used by Arrow and 
Kurz (no uncertainty or depreciation and one tax rate on investment income so that 
Pk = pr in our notation) this equation tells us that Fp = r so that rates of return 
are equal on both capital and debt. Note tha t this equation has arisen naturally from 
our consideration; the private sector maximize over choices of both private capital and 
debt. On the other hand Arrow and Kurz assume tha t Fp = r  so th a t the private 
sector is concerned only with its total amount of material assets, i.e. capital and debt 
together. The debt is then just used as a further instrument to ensure correct levels 
of private sector capital - the private sector is assumed to hold exactly the amount of 
debt issued by the government. In our treatm ent the role of debt is more subtle, and 
arguably more realistic.

(iv) We do not claim (nor is it true in general) tha t the solution is fully Markovian, 
because the process Ap may fail to be a function only of k*. However, under certain 
conditions we can characterize the long-term behaviour of the debt, writing it in the 
form

A p(t) =

+ 1  ( j k )  {G 2{K)dW ^ + G3(ku)du} ,

where Go, C?i, G2 , G3 are given functions of k and W '  is a Brownian motion tha t is 
completely independent of the Brownian motion W  =  (Z°  — Z L)/(j tha t drives the 
dynamics of k. See Appendix B.3 for the details. This is the kind of condition we might 
wish for - the debt is partly a function of kt and partly a buffer for the fluctuations 
in the economy unrelated to changes in the level of capital. However this is still a far 
from satisfactory solution.

In a model with tax rates as proposed above we are unlikely to be able to find a solution 
with a Markovian debt process. If we require tha t A p is a function of k then x  = A p+ kp
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must also be a function of k and hence

dx = x'(&dt + k(dZ° -  dZL)) +  i a2k2x"dt. (5.42)

Equating the dZL term  in the above with that in the other expression we have for the 
private sector dynamics (5.37) we find that

x'k  = x

and hence x = Tk  for some constant I \  W ith this identification we can now equate the 
dZ° and dt terms in (5.42) and (5.37) giving (after some rearrangement)

(r -  p k)k =  { M l -  (1 -  Op)Pk}kg (5.43)

and

T<l +  p ~ xc -  Pw7rFn = kp [Pk{Fp -  Fg) - S  -  rPr\ +  Tk  [/x0 -  v 0l  +  rpr +  Fg] . (5.44)

We now effectively have six equations (PS1)-(PS4), (5.43), (5.44) in five unknowns ip, 
Pc, p k, rPr and p w so we are unlikely to be able to find a consistent solution to these, 
and even if we can the solution is likely to be highly dependent on exact choice of 
parameters.

One way round this might be to require that the proportions 6 p  and 6 l  are also functions 
of capital which the government is free to choose. However this is not very sound 
economically so we do not investigate this idea any further. It is interesting to note 
however tha t $p and 6 i do not appear at all in conditions (PS1)-(PS4) of Theorem 2, 
and affect only the amount of debt held by the private sector.

5.4 State-price densities, consum ption rates of interest 
and bond prices

So far we have established the government’s optimal policy and shown tha t through 
appropriate choice of tax  and interest rates the private sector can be persuaded to follow 
this optimal policy. Assuming tha t this is the case, what price would the government or 
the private sector be prepared to pay for a new claim introduced into the model? In this 
section we will informally derive the government and private sector state-price density 
processes, along with the corresponding (consumption) rates of interest. See Breeden



(1986) for more detail. We will then use these to find the price of a zero-coupon bond.

Suppose tha t at time t the government is offered an jF^-measurable (random) amount 
B t  at time T  by some outside source, for example the government of another country, 
in exchange for a payment of Bt at time t. We assume that both Bt and B t  are 
extremely small, so tha t they have a negligible effect on the economy, and that at time 
t the total capital in the economy is given by kt = k. We can find the maximum price 
Bt tha t the government would be prepared to pay by considering the change tha t this 
contract will make to the government’s overall expected future value at time t, V( k t ), 
where as before,

V(k)  =  ^
■ poo

J  e~XsiU(c*(kt ),k*(kt),iT>(kt)) dt ko — k

Similarly, if the government was taking the other side of the agreement and delivering 
B t  at time T  in exchange for Bt, we can find the minimum price B t tha t the gov­
ernment would accept. We will locate the indifference price, at which the government 
is indifferent between buying or selling the claim, or indeed doing neither. In time-i- 
discounted notation the amount B t  becomes B t / Pt 1 and so indifference valuation 
of the claim gives that

- l
0 =  V(kt +  Bt) +  e - A»<T- t>E9[V(fcr -  -4VBr ) -  V(kT)\Tt] -  V(kt)

Vt

=  BtV'{kt) -  +  0 (B t2) +  0 (B |.)

,  B M t )  _  + 0 ( b ; , + 0 ( B . , .
e A9trjt

It follows that, to leading order, the time-t price the government will assign to a claim 
paying B t  at time T  is given by

^ [ e - ^ r f U c i k T l B r W  
e~xntr)tl UrJ k t)

using equation (G2) and writing Uc(k) =  Uc(c*(k),k*(k),7r*(k)). We have thus identi­
fied the government’s state-price density process

Cgt  =  e - A» V * ( k )  =  e“ A» V U c ( f e ) .  (5.45)
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We can now proceed to find what Arrow and Kurz refer to as the government’s con­
sumption rate of interest, the rate of interest that the government would have to receive 
in order to exchange consumption now for consumption later, or vice-versa; we shall 
denote this by rg(kt). To find rg we use the identity

d( f  = ^ ( - r gdt + dMt),

where M* is some IP^-martingale. We can thus decompose the government’s state-price 
density process into a discount factor and a change of measure, writing

Ct =  exP r g(s ) d s ĵ Ct > (5-46)

where

dCf = HdM t.

Under IPfl the process 77^1 has dynamics

drJt_ 1  =  V7 1 { - d z f  +  (/iQ -  vLL)dt) 

and applying Ito’s Lemma to equation (5.45) we find tha t

= - \ gdt + + I ( +  k(dz0 _ dzL)) +  +  k<S'(vLL -
Q Vt w v 2  )

so tha t rg is indeed a function of k as stated, and

r 9 -  X 9 ~  Mo +  v l l  ~  ^  +  k{vLL -  v0L)) +

= Xg -  f iQ + vLL -  i  ( k ^ ' ( v LL -  v0L -  a 2) - ^ ( F p - j g -  Xg ))

=  F p - J g  -  P q +  V L l  ~  k —  ( v L L  ~  VOL ~  °  )

= F p - 6  + k — (v 00 -  v0L),

where we have made use of condition (G l) of Theorem 1 in moving from the first to the 
second line above. The consumption rate of interest is equal to the rate of return on 
private capital, minus depreciation and some ‘price of risk’ terms. In the Arrow-Kurz 
model this equation is simply rg =  Fp so tha t the government is happy with the same 
rate of return it has arranged for the population.
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The analogous state-price density process for the private sector will be given by

d  = e XptVt V(fct) =  6 XptVt 10c(kt)uc(kt) (5.47)

under P. The private sector’s time-t indifference price for a claim B t  delivered at time
T  will be given by

Notice that when valuing future claims the private sector is concerned about whether
tax rates on consumption will change during the interval, as well as the other factors 
common with the government. The claim B t  no longer needs to be thought of as 
coming from outside the economy; we view the private sector as a large number of 
independent households, each free to buy or sell claims to or from each other or the 
government without affecting the economy as a whole with their decisions.

We can calculate the private sector’s consumption rate of interest rp and find that

where we have made use of equation (PS4) and v l l  ~  v ol = l g  — 7 - The P-dynamics 
of are given by

they are receiving from government debt. If this was not the case then the private 
sector would not be investing in it!

R em ark s  (i) We can now easily derive a PDE for the price of a zero-coupon bond. 
We shall write B(t,  k\ T)  for the time-£ price of a zero-coupon bond paying one unit of

=  r(3r

r/3rdt — dZf' +  — crkdWt (5.48)

The private sector’s consumption rate of interest is exactly the same as the net rate

capital at time T, where kt — k at time t < T.  The price the private sector will be 
prepared to pay for such a bond is

B ( t , k ;T )  =
E[Cf.l|fc, = fc]

c?
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Conditioning ££ on events up to time t we see tha t

is a martingale. Using Ito’s Lemma we find tha t

I !
( d B

3t V dt
dB_
dk

<s
1
2

d2B
= Cf ( - z rd t  +  ^ f - d k  +  ~cr2 k2 H +  ^ 7-k { ^ a ^ k  +  v l l  — vql

BdCf , d B u ( ^ j i ,  
dkdk 2 dk

and hence the zero-coupon bond price B ( t , k ; T) satisfies the partial differential equation

dB  1 9 0 d2B  d B  ( ~ 9 nib1 .
^  + r  k m s  + M r  + a k  J  + { vLL- V o L ) k ] - r 0 r B  = o

(5.49)

with terminal condition B (T ,k]T )  = 1. In Chapter 7 we will show how to calculate 
the price of zero-coupon bonds numerically using this equation. We could equally well 
price more complicated assets using this method.

(ii) Decomposing the private sector’s state-price density in an analogous way to equa­
tion (5.46) we see tha t the price of a zero-coupon bond can also be written as

B(t , k]T)  =  E exp ( - / rs(3r (s) ds (5.50)

where the expectation is with respect to a measure P which is absolutely continuous 
with respect to P on every Tt  and has density

dP
dP =cr

Tt

where
d $  = t f ( - d Z { '  + ^ o k d W tY

If we set pr = 1 then equation (5.50) gives the conventional representation of a bond 
price given a short rate process rt and a pricing measure P. See, for example, Musiela 
and Rutkowski (1998, Chapter 12).

(iii) Our definition of the private sector’s consumption rate of interest rp differs from 
tha t of Arrow and Kurz in tha t our definition is a consumption rate in the presence 
of taxation whereas Arrow and Kurz use the rate tha t the private sector would use if
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there were no taxation, which we shall denote by rp K . Under the conditions of their 
model we then have tha t

A Krp =  Ap +  7  — — log uc

_  . U c
—  A p  jlQ ,

U c

which is related to our rate rp by the identity

(5.51)

If we now introduce taxation at rate 1 — (3S on savings as in the Arrow-Kurz model by 
replacing P~l by v =  PsPc1 and Pr by pspr , then equation (5.51) can be written as

r $ K =  PsPrFp -  
p  V

which is condition (a) of Proposition 1 on page 182 of Arrow and Kurz. This equation 
describes how the tax  rates are related to the consumption interest rate (without taxa­
tion) of the private sector. Other identities from Arrow and Kurz can be written down 
from our results if so desired.

a k  , Pc
r> = r * + 7c

— PrFp +
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Chapter 6

Explicit solutions

Theorem 1 tells us that provided there exist functions ’I', $ , c*, k* and 7r* satisfying the 
equations (G l)- (G5) and the transversality condition (GT), then we have a solution to 
the government’s original problem. In general, it will be hard to find explicit solutions 
for a given problem; nonetheless, we shall show in this chapter that explicit solutions 
abound, and can be manufactured readily by considering the inverse problem, where we 
postulate a form for the solution and seek a problem whose solution is as postulated.

We begin in Section 6.1 by assuming that instead of specifying a production rate 
function F(kp,kg,ir) we instead choose the government’s value function V(k)  and the 
desired optimal trajectory k*(k) for the level of government capital. As in the original 
problem the government’s felicity function U(c,kg,n)  will also be specified. We give 
a general characterization of the properties these chosen functions must have in order 
tha t we can construct a valid solution (and in particular a well behaved production 
function F)  for the government’s problem.

In Section 6.1.1 we show that choosing V(k)  to be CRRA leads to a considerable 
simplification of this characterization. We specialize further in Section 6.1.2 by choosing 
an explicit form for the government’s felicity function U and give a lemma listing the 
properties we now require from a certain function of k*(k) in order tha t we obtain a 
valid solution to the original problem. In Section 6.1.3 we give an example function 
tha t satisfies these properties.

Having shown how to obtain explicit solutions to the government’s problem we move on 
to considering the implications for tax and interest rates. In Section 6.2 we propose two 
possible approaches to taxation given explicit solutions as proposed in Section 6.1.2.
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In the first approach a clever choice for the consumption and wage taxes leads to a nice 
form for the interest rate r, which in a special case can be compared with an example 
previously studied by Merton (1975). In the second approach we are able to choose 
constant consumption and wage taxes.

6.1 An explicit solution to the governm ent’s problem

We will assume that we have chosen a form for the government’s felicity function 
U(c,kg,n)  which is decreasing in the last argument and strictly concave, increasing 
and homogeneous of degree 1 — R g in the first two arguments. This allows us to write

(7(c)fc9 ,7r) =  fci--R»fc(f,?r) (6 .1 )

where h(x,n)  = C/(rr, 1 ,7r), and £ =  c/kg. For U to have the properties listed above
we need h to be strictly concave and increasing in its first argument, decreasing in its
second and to satisfy the conditions

— (1  — R g)h <  0 ,

+  2Rg£h,£ — RgiX — Rg)h <  0,

Rgh\ +  (1 -  Rg)hh# <  0 . (6.2)

Differentiation of equation (6.1) gives

Uc(c,kg^ )  =  kg Rgh ^ ,7 r ) ,  (6.3)

Ug(c,kg,TT) = kgRg [ ( l - iy h ( £ ,7 r ) - £ / i£ ( £ ,7 T ) ] ,  (6.4)

U„(c,kg, tt) =  k lg~Rgh ^ i r). (6.5)

To find an explicit solution1, we first make a choice of the functions (equivalently V ), 
U (equivalently, h and R g), and kg. Not all such choices will result in soluble problems; 
for example, we will have to have that V  is concave. Moreover, we shall require of our 
proposed solution tha t

0  < kg < k (6 .6 )

to avoid the possibility that either of kp, kg should be negative2. However, we can from

1 Please excuse us if we do not use superscript asterisks in this discussion.
2Depending on the form of the production and felicity functions, negative values may be mathemat­

ically possible, but we shall restrict attention to more realistic situations where this doesn’t happen.
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these choices deduce what the solution (if it exists) must be, by solving the equations
(G1)-(G 5) and (6 .1 )-(6 .5). To see how this is done, first note that as F  is required to
be homogeneous of order 1 , we have a consistency condition

F  = kpFp +  kgFg +  ttFit , (6.7)

hence

$  4* 7 gk +  c =  kpFp +  kgFg +  7rFn

=  kFp -  (Fp -  Fg)kg +  IT Fn , ( 6 .8 )

by (G5). Since (G l) can be written as3

0  -  V ' ( - &  + Fp — lg ) -  U' (6.9)

where U' denotes the derivative with respect to k of the function

U(k) = U(c(k), kg(k), tt(fc)), (6.10)

we can use conditions (G l), (G3) and (G4) to rewrite (6 .8 ) as

V'(Q +  7 gk +  c) =  k(U' +  V ' lg +  V'&) -  kgUg -  ITU*•

Now as U is homogeneous of order (1 — R g) and from (G2) we know tha t (1 — R g)U =  
cUc +  kgUg = cV'  +  kgUg it follows that

V '$  = k(U' +  V'& )  -  (1 -  Rg)U -  ITU*

and so

('y • +  k V " )§  = kU' +  k(V'<f>Y -  (1 -  Rg)U -  irU*.

We can use equation (G6 ) to get an expression for $  and V'Q, giving 

/  k V " \  1 1
( 1  +  - y T  J  ( X g V - U -  T f 2k2V") =  W  +  k(XgV - U -  - a W V " ) 1 -  (1 - R S) U - irU„,

3To see this, note that if we differentiate equation (G6) with respect to k we find that

0 =  U1 +  i<r2fcV " +  V"(* +  a 2k) +  V \ &  -  \ g)

and subtracting this from equation (Gl) gives the desired result.
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which can be rearranged to give

AgV  - \ o 2 k 2 V"'
W ' k 2 V'

/ 1 Rg r kg

, kV"  , rT 
7tUv — ( Ra +  TTT" 1 U

V'

k2 V'
kV"

7rhn -  ( R g + - y j -  1 h (6.11)

(G2) gives us that
V' = Uc =  k ; R’h((t,TT). (6.12)

We will require that this equation along with (6.11) allows us to determine £(k ) and 
0  <  7r(k) < 1 for all k. As we originally chose a specific kg(k) we now also know 
c(k) = kg(k)£(k), and hence the form of the function U(k) = U(c(k) ,kg(k),Tr(k)). 
We can recover $(fc) from (G6 ) and we can express Fp, evaluated along the path 
(kp(k) ,kg(k) ,7r(k)), explicitly using (6.9). Similarly, combining (6.4) with (G4) gives 
the relation

F> - F s ~  I f n v  ’ { ]

expressing the difference Fp — Fg as a known function of k, and combined with our 
knowledge of Fp we get Fg as a function of k. Finally we obtain Fn from (6.5) combined 
with (G3). How near are we to a solution? Equations (G1)-(G4), (6.1), (6.3) and (6.4) 
hold along the trajectory by construction; equation (G5) could be used to define the 
value of F  along the trajectory as a function of fc, but is this consistent with the forms 
of Fp, Fg and Fn which we have just found? We have to check tha t if Fp, Fg and Fn 
axe obtained as above then

($  +  7sfc +  c)' =  F(kp(k) ,kg(k):n(k))

=  Fp -  (Fp -  Fg)k'g +  F^tt'.

Multiplying throughout by V ' , what we have to show is

V'Q' +  V 'd  =  V , ( F p - l g ) - k lgU g - 'K ,U1,

=  U' +  V ’&  -  kgUg -  n'Un

which is equivalent to proving

U' =  JU C +  k'gUg +  tr'Un,
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and this is immediate.

By this inverse approach we have constructed a trajectory {c(k),kg(k),ir(k))k>o, and 
have found the values of the production function F  along this path. W hat we still 
need to check is that the function F  can be extended off the path where it known to 
some concave function F ( K p, K g, L ) increasing in all its arguments, homogeneous of 
degree 1, tha t agrees with F  along the path {kp(k) ,kg(k),n(k))k>o. Let us abbreviate 
F(kp(k) ,kg(k) ,7r(k)) to F (k ), with similar interpretations of Fp(k), Fg(k) and Fn(k). 
Clearly, if there is such a concave increasing function F , we shall have to have at very 
least the conditions

Fp( k ) >  0, Fg( k ) >  0, Fv (k )>  0 Vfc >  0, (6.14)

along with the homogeneity condition (6.7), which holds by construction, and the 
‘tangent inequality’

F{k) < A(kp(k), kg(k) ,n(k)\w),  V k , w > 0  (6.15)

where

A(x ,y , z ;w)  = F(w)  +  (x -  kp(w))Fp(w) + (y -  kg(w))Fg(w) + (z -  7r(io))F,r(io)

=  xFp(w) +  yFg(w) +  zFn (w)

is the equation of the tangent plane to F  at (kp(w),kg(w),Tr(w)). However, these three 
conditions (6.14), (6.7) and (6.15) are already almost enough. Defining

F{x,V,z)  =  inf‘ A (x,y,z;ty), (6.16)
w>0

it is clear tha t F  is concave and increasing in all its arguments. If we assume also

the infimum in (6.16) is attained uniquely, (6-17)

then for a general (x, y, z) there exists a unique wo = wo(x, y , z) such that

F (x , y , z )  = A(z,y,z;u;o),

Fp(x ,y , z )  = Fp(w0),

Fg(x ,y , z )  = Fg(wo)t

Fn(x,y, z)  = Fn{w0)
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and so

F(x,  y , z) -  xFp{x, y, z) -  yFg(x , y, 2 ) -  y, z)

= A(®, y, z; wq) -  a:Fp(w;o) -  yFg(wo) -  zFn(wo) = 0

as required. The non-negativity of F  still needs to be checked, but because of the 
non-negativity of Fp, Fg and FWi it is immediate that k ( x , y , z \ w ) is non-negative for 
any x , y , z >  0, and so F  is non-negative.

Thus we see that in general if we propose kg, concave U homogeneous of degree 1 — R g, 
and concave V, we can construct a candidate solution: provided we can check (6.14), 
(6.15), (6.17), and (GT), then we have a solution. It may well be, of course, tha t the 
production function defined by (6.16) cannot be expressed more simply; in this sense, 
then, we will have built an explicit solution to a problem whose statement is somewhat 
implicit, which is arguably more use than an implicit solution to an explicit problem.

Taking the right-hand side of the tangent inequality (6.15) less the left-hand side and 
differentiating with respect to k gives us

k'p{k) [Fp(w) -  Fp(k)] +  k'g(k) [ F ,H  -  F*(fc)] +  7x'(k) [ F r H  -  Fw(fc)] (6.18)

as F* — kpFp +  kgFg +  7t'F^. If we can show tha t this expression is non-negative for 
k > w and non-positive for k < w then the tangent inequality (6.15) follows. We want 
a solution where kp and kg are increasing functions of k and 7r decreases with k so that 
means that a sufficient condition for the tangent equality to hold is that Fp and Fg 
are decreasing functions of k and Fn is an increasing function of k. In practice the 
following reworking will prove more useful. Using the abbreviation

[FPff  =  FPH - F p(fc)

and similar, (6.18) above can be written as

k'p(k) [ f y r  +  k'g(k) f t ] *  +  TT'(fc) [F ir]]"

=  [k'pFp +  k'gFg +  *>F,rk -  Fp(w) f t ] *  -  Fg(w) [k'g]wk -  F„(w)  [tt']]”

= [*T + (fpM ~ [k'9]k + [~Al ■ (6-19)

99



6.1.1 Specializing: V is C RRA

If we now suppose that
A A*1 - 5

v( fc)= ( f r ^ )

for some S  > 0  different from 1, and A g a positive constant, it turns out that the form 
of the candidate solution simplifies considerably. (G6 ) is now

U = V'
1 - 5  2

As + l a 2S l f c -$

where Q = A5/ ( l  — 5) +  \ cf2S  and (6.9) gives

Fp = lg + Q - ^ { Q k - $ ) .  (6.20)

W ith this form for V  the left hand side of (6.11) is identically zero, hence we require 
simply that

7rhn = (Rg — S)h. (6.21)

Equation (6.12) becomes
A gk~s = k g Rg he. (6 .2 2 )

W ith these simplifications it is now possible to follow the steps of Section 6  and obtain 
the following relations:

Fp = 7 g + Q — ——  (6.23)

f p - f ° = {±1 T 2)- v ; - Z  <6-24)

U_ 
V'

u

-F =  (7 g + Q)k +  c -  —  (6.26)

$  =  Qk -  —  (6.27)

where
U h h 
V' ~  9 h(
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As V'  is positive we will find it easier to ensure Fp > 0 if we consider U <  0. We have 

we will require this to be non-negative too.

Suppose tha t we now assume a form for h(£, 7r). Equations (6 .2 1 ) and (6.22) will then 
be used to determine k g , t t  and £ as functions of k  (we would have to assume the 
form of k g and possibly also tt  depending on the form of h).  The consumption rate c 
is given by c = £kg and equations (6.23)-(6.27) above determine the other quantities 
we require. We need to show that the conditions (6.14) and (6.17) are satisfied along 
with the transversality condition (GT). All tha t then remains is to check the tangent 
inequality holds which we will do by considering (6.18) or (6.19).

6 .1 .2  S p ec ia liz in g  further: h (£ , t t )  =

We will assume that h  is of product form, so that

h(£,7r)  =  h i ( £ ) h 2 (Tr)

where we assume that we know the form of the (monotone) functions hi and h 2 and 
also of kg . Equations (6.21) and (6.22) become

Trh'2 {TT) = (Rg — S)h 2 (Tr) (6.28)

A gk~s  = k J R’ h [ ^ ) h 2 (v). (6.29)

The first of these determines tt  as a co n s t a n t  value  f o r  al l  k  (there may be ambiguity
if h 2 solves the ODE on an interval). The second equation then determines f(fc) and
hence c. Finally

u
(6.30)

Let’s assume tha t we know k g and

M O  =  M tt)  =  ( 1  -  tt) k ,

101



so that

(6.31)

where u> = R g — 1 — v. We will assume that

v  >  0, uj >  0, k > 0, R g > S  > 1

so tha t U has all the required properties (concave and increasing in kg and c, decreasing 
in tt and the conditions (6 .2 ) are satisfied). U is negative so the derived value function
V  must also be negative, therefore S  > 1, and condition (6.28) then means that R g >  S. 
From (6.28) the optimal tt is given by

and the value of /12 at the optimal tt is thus

0 =  ( / t  +  i J j - s )  ■

Note that the specific choice of the function /^(tt) doesn’t really matter; the solution 
depends only on the parameter © which we can choose arbitrarily, e.g. by multiplying 
the choice of /12 above by a constant.

From (6.29) we obtain

R g — S  , >
n = K + R 9 - S

(6.32)

and hence
c =  (AgQ - l k~s k“ ) 17(1+10 (6.33)

We also find tha t
U_
V'

c
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and so from equations (6.23)-(6.27) we obtain

F P =  7s +  <9 +  -  £  (6-34)

Fp - F g = ^  (6.35)

Fn = ~ -  (6.36)
V  7T

F  =  (7j +  <3)fc +  (1 +  i ) c  (6.37)

$  =  Qfc +  ^ . (6.38)

As we will choose kg to be non-negative, c is also non-negative and thus Fni Fp and F  
are also non-negative for suitably large 7 g + Q-

The remaining problem is to make a good choice of kg. We may think of the problem 
as one of choosing a non-negative function

_  /  k 9 (k)
„(*) =  I I (6.39)

in such a way as to guarantee non-negativity of Fg together with the tangent inequality 
and the inequality (6 .6 ): 0 <  kg < k. The final inequality (6 .6 ) can be equivalently 
expressed by saying tha t we need to have ip(k) >  1. In terms of <p, we have more simply

c =  A k Bip (6.40)

£ =  A k B~l ipR9lu (6-41)

Fg =  7 g + Q + A k B- l (S<p-w<pRll“) l v  (6.42)

#  =  Qk + A k Bip/v (6.43)

where the parameters A and B  are related to the other parameters by

© A"(1+Id =  A g, (6.44)

(l  + v )B  = S - v .  (6.45)

Non-negativity of Fp will be guaranteed by

lg  +  Q =  lg +  Y ^~ S  +  2 °2^  ~  (6.46)

Non-negativity of Fg needs to be checked case by case. Note tha t equation (6.45)
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implies that
(1 -  B )(l + v)  = R g — S

and hence B  <  1. If we consider the limit as k 4- 0 of (6.42), we see tha t we must have

Scp(O) -ujip(0)R°lu} > 0, 

and since p  > 1 we conclude from this that a necessary condition to be satisfied is

S  > u>,

from which it follows from (6.45) tha t B  >  0.

The derivative (6.19) of the tangent inequality (bearing in mind we have 7r'(fc) =  0) is

( i  +  ^  (c'(w) -  c'{k)) +  ^  Z(w){h'g{w) -  k'g(k))

so if c'(k) and k'g{k) are decreasing functions of k then the tangent inequality will hold. 

Alternatively observe from (6.33) that

k' = -  -  ( 1 +  ^) CL
9 w k a) i

and so the derivative (6.19) can be written as

H M I H +
so tha t if c is increasing and kg/ k  and £ are decreasing functions then the tangent 
inequality will be satisfied. For the example we consider below this turns out to be 
a more restrictive condition on the range of parameters we can use than the previous 
condition.

We also need to check condition (6.17), tha t A(or, y, z ; w ) has a unique infimum over w 
for any fixed (x , 7/, z). In this case

A(x ,y ,z ]w)  = (x  + y)Fp(w) -  y(Fp(w) -  Fg(w)) +  zF„(w)
, w  _  S  c(w) . ,uj w  . .  . (Rg —  S) c(w) .

= (x + y)(7g + Q + - ^ 1) -  y ( - t M )  + V 1)-

We summarize the discussion above in the following lemma.
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L em m a 1  Suppose that we have suitable positive constants a, A, v , \ g, k and further 
constants satisfying the relations

R g > S  > 1, S > u )  = Rg — 1 — v > 0 ,

B =  frv ’ 7 p +  Q =  7 9 +  r ^  +  ^ 2 5 > 0 .

Take a function (p{k) > 1 satisfying

/  c \  W( 1+v)m  < (-) ,

define

c(k) =  A k Bip(k), £(k) = A k B~l (p{k)Ra^  ̂ kg(k) = c(fc)/£(fc),

and k* solving

dk* = crk*dw + $(k*)dt

= ak*dw +  (Qk* +  ip{k*t )k*B A/v)dt .  (6.47)

Assume also that the following following four conditions hold:

(LI) Fg = yg + Q + A ^ - ' i S t p  -  uj<p(k)Ra/u ) /v  >  0 for all k.

(L2) Either

v9

or

c" <  0 , fc" <  0

knY
c>> 0 , < 0 , £ ' < 0 .

(L3) The expression
(x +  S y ) j  — u>y£ +  z c  (6.48)

k
attains its infimum over k > 0  uniquely for all non-negative x, y, z.

(L4) k* satisfies the transversality condition (GT)

s u p € L 1, l i m e~Xatk t l~s  = 0.t i—>00
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Then we have constructed an explicit solution to the problem of Theorem 1 with

© A -^+^/c 1" 5  k - uc~u( 1 -  7r)"K
=  ( 1  _  S j ' ' U(c,kg,ir) =   L------

f (*,»,*) = WE {(* + V)(7, + Q + § + z [R \  S)

and constants n* and © given by

TT* =  R g ~  S  . . 0  /  K
k, 4~ R a — S  V k 4~ R q — S

6.1.3 A n exam ple

We now consider choices of ip of the form

p(k)  =  y?o(l 4- ak)£, (6.49)

and check the conditions of Lemma 1. We will take e >  0  and a > 0 (so that ip > 1), 
and <po > 1 will be chosen small enough so that

S p o >  locpQ9^-, (6.50)

this can always be done, since S  > cj. We will also choose e so that

The function ip is increasing and hence kg/ k  is decreasing. In order that we have Fg > 0 
we demand tha t

^ =  A<fig‘ ,wk B- l { 1 +  a k f ^

be decreasing (and for A  to be small enough in relation to j g 4- Q). This will be true 
provided

£ <

which follows from equation (6.51).

Rg

For the tangent inequality to hold we need c"(k) and k”(k) negative. In order for c"(k) 
to be negative, it is sufficient tha t e < 1 — B  which is guaranteed by inequality (6.51).
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This condition also ensures that c/k  is decreasing and hence, from equation (6.34), Fp
is decreasing. For k g ( k )  to be negative, it is sufficient tha t

u  _  cj(1 — B)
£  ~  1 + 1 /  R g  ~  S

which again follows from equation (6.51).

Finally, again under the condition (6.51), we can show that (L3) and (L4) hold - see 
Appendices B .l and B.2 for proofs.

One particular case included in this example is obtained by setting either a or e equal 
to zero so that ip(k) = <po is constant. The ratio of government to total capital kg/ k  will 
then also be constant and the consumption rate will be given simply by c{k) = AipokB.

6.2 Introducing taxes

The government’s choice of taxes will depend on the private sector’s preferences, which 
we will assume here are of the form

(« 2)
Vp

where vp > 0, cjp = Rp — 1 — vp > 0  and kp > 0. We modify the notation of the previous 
subsections by writing a)g in place of a>, vg in place of v  and so on, to emphasize the 
distinction between government and private-sector parameters in what is an otherwise 
similar specification. We shall assume that condition (PST) of Theorem 2 holds. W ith 
the private sector’s felicity function specified as above conditions (PS2 ) and (PS3) from 
Theorem 2 combined with the very similar conditions (G2) and (G3) from Theorem 1 
tell us that

m .  = UcUn
KpVg

(6.53)
g i'p
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Combining the expressions (6.39) for kg and (6.40) for c in terms of k and </?, and using 
condition (PS2) of Theorem 2, we have

=  A - {1+^ Q pk - s^(p-a (6.54)

where ©p =  ( 1  — 7r*)~Kp, Sp = Rp — (1 — B)(  1 +  vp) is defined in an analogous manner 
to Sg (6.45) and a  = 1 +  vp — u)p(l +  ug)/ujg. We shall assume the inequality

(6.55)
1 + Vp 1 4- vg 

which is easily seen to be equivalent to

a  — 1 + vp -  ujp (1 +  Vg)lwg > 0.

There seem to be two approaches we can take to taxation, depending on whether we
take equation (6.53) or (6.54) as our staxting point.

A p p ro ach  1 : Given the form of (6.54) and looking back at our choice of government
=  V'  of

$  =  Agk~s» =

it seems natural to pick an analogous function for the private sector’s function t/>(/c), 
i.e.

i/j = Apk -flp+U-JWH-^p) =  Apk~Sp, (6.56)

where Ap is a constant which we shall choose as follows. We will pick some j3w{0) G [0,1] 
and then equation (6.53) determines Pc{0). The consumption tax is then

&  =  & ( 0 ) ( —
V^o

and hence Ap = pc(0)ipQ aA~(l+Up>Qp. Similarly

Ad = Pw(0 ) ( ~ ~ j  ■

As a  > 0 we have automatically ensured the desirable property 0 <  pw < 1 where 
the tax rate on wages 1 — pw increases as k increases. We have also constructed a 
consumption tax 1 — Pc that decreases as k increases, eventually becoming a subsidy
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at high k (if it wasn’t already a subsidy to begin with). This is intuitively correct - in 
a poor economy the population should be encouraged to work more and consume less, 
whilst in a very rich economy the population should be taxed highly on their income 
to pay for better public services and should also be consuming more of their capital.

The main benefit of this approach comes when we wish to find fa  and r(3r from equa­
tions (PS1) and (PS4) respectively. We obtain relatively simple expressions due to the 
simple form (6.56) of the expression for ip. Solving (PS4) for rj3r gives us

rfa  =  A — k B~l (p(k) -f Ar, (6.57)

where
A r — Xp — (1q 4 - Sp(Q +  2 ( 7 g — 7 ) — —cr2(l -|- Sp)).

2

For large enough values of pp the constant A r will be non-negative, and thus r(3r will 
be non-negative and decreasing. A more enlightening way to express equation (6.57) 
is in the form

r(3r =  —  £  +  A r, 
vg k

so th a t the (taxed) rate of return on investment in government debt is equal to a 
constant rate A r plus a component proportional to c//c, the ratio between rate of 
consumption and total capital in the economy. When this ratio is high then interest 
rates must also be high to attract investment in preference to consumption.

Similarly we can obtain the tax coefficient Pk from condition (PS1) and find that

Pk(Fp -  SpVoo +  (SP -  l )v0L) =  rpr +  8. (6.58)

Thus the return  on private capital PkFp is equal to the return on debt rPr plus depre­
ciation 8 and some ‘price of risk’ terms. Substituting in the expression (6.34) for Fp 
we have that

A  =  6  + r0rlg + Q ~  Spv00 +  (Sp -  l)i>ol  +  Avg 1Sgk B~1(p(k) 
8  + A r + A v ~ 1SpkB~l ip(k)

Ak +  Avg 1SgkB~1(p(k) 

where Ak =  7 5 +  Q — Spv00  +  (Sp — 1 )vql will be positive for large enough 7 g.

(6.59)

If we make the plausible assumption that Pk = Pr, so that the tax  rates on investment in 
capital and bonds are the same, then there is an explicit expression for the interest-rate
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process r:

f 1 n 1 1 Ar +  A v ~ l SpkB~ V(fc)
r  =  { *  +  } ,  +  Ar +  ^ 4 ;fc). (6.60)

The interest rate r  is thus expressed as a function of the diffusion process k which 
solves the SDE

dk = akdW  +  [(Q +  7 ff — 7  )k +  A k B <p(k)/vg]dt.

Specializing further by assuming tha t y? is constant, this can be reduced to l i near  form 
by considering instead the variable £ =  k l~B, which solves

d£ = (1 -  B)[u td .W  + (Q +  7 9 -  7  -  \ B a 2) tdt]  +  A(1 -  B)<p0 dt/u3.

Merton (1975) finds structurally similar interest rate processes in a study of a single­
sector growth model, and Kloeden and Platen (1992) present this under the name of 
the stochastic Verhulst equation. We do not necessarily require that <p be constant so 
we have a more general form than both of these.

A p p ro ach  2 : Equation (6.53) tells us that PcPw is constant so we choose both pc
and pw to be constant for all k. Equation (6.54) gives

i> =  p c =  (6 .6i)

and then, as before, (PS1) and (PS4) can be used to determine Pk and rPr (and thus 
r  assuming pr =  Pk). These can again be given in explicit form, although due to the 
more complicated form of the expression (6.61) for ip the expressions for Pk and r are 
considerably less enlightening than those from the first approach (and hence we omit 
them). This is the price tha t we pay for the convenience of constant consumption and 
wage taxes. However we will see in Chapter 8  tha t we can get very reasonable values 
for the capital income tax and interest rates from this approach. This will also be the 
method we will tend to use when obtaining results by numerical means, as we shall see 
in the next chapter.
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Chapter 7

N um erical solutions

In this chapter we will show how to solve the government’s problem numerically and 
also describe how to then determine tax and interest rates. In Section 7.1.1 we look 
at the deterministic model of Arrow and Kurz (which is a special case of our model)
and find solutions to the government’s problem using numerical differential equation 
techniques. In Section 7.1.2 we will find optimal trajectories for the full stochastic 
model as described in Section 5.2 using policy improvement methods. One convenient 
result of the way we do this is tha t we can easily find the stationary distribution of 
the level of capital k and we show how to do this in Section 7.2. In Section 7.3 we 
look at the (considerably easier!) problem of finding the tax  and interest rates specified 
by Theorem 2. Finally in Section 7.4 we describe how to calculate zero-coupon bond 
prices and the corresponding yields.

7.1 The governm ent’s problem

Suppose tha t we are given a suitable production function F(kp, kg, 7r), a felicity function

and various constants as specified in Section 5.2; we can’t in general obtain explicit 
expressions for the government’s value function V(k)  and the functions c*(/c), k*(k) 
and 7r*(k) that give the optimal consumption rate, government capital and population 
effort for a given total capital k. However we can obtain these functions numerically.
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7.1.1 The Arrow-Kurz M odel

We can recover the (deterministic) model studied in Chapter IV of Arrow and Kurz by 
removing the Brownian motion terms (i.e. setting uoo =  vql =  v l l  — 0) and stipulating 
tha t the workforce dedicate maximum effort to production so that tt =  1. In the 
deterministic case j g = 7 so we will drop the subscript. Writing f ( k p, kg) =  F{kp, kg, 1) 
and dropping also the superfluous 7r from the government’s felicity function, the HJB 
equation (G6 ) and the optimality conditions (G2) and (G4) of Theorem 1 are now 
given by

0  -  -A gV(k)  +  V '(k ) ( f (k  -  kg, kg) -  7 fc -  c) +  U(c, kg) (7.1) 

Uc(c,kg) = *(k )  (7.2)

Ug(c,kg) =  ^(fc)(/p(fc -  kg,kg) - f g(k -  kg,kg)) (7.3)

where again \k(k ) =  V'(k).  The dynamics of the system are given by

k = f ( k  — kg, k*) —7 k — c* (7.4)

\i/ =  ^ (X g +  7 — f p(k — k*, k*)), (7.5)

where c* and k* are obtained by solving (7.2) and (7.3) given k and \£. Equation (7.4) is 
just equation (G5) and equation (7.5) follows from equation (G l) which, in full, states 
that

* ( f p(k -  k k ; )  -  x g -  7 ) +  * '( / ( *  -  kg, k*) -  7 fc -  c*) =  0 . (7 .6 )

To solve the system we can use an ODE solver such as Scilab’s ‘DASSL’ command
to solve (7.6), and then use (7.1) to find V{k).  DASSL requires a starting point 
(k°°, ^(k°°))  and for accurate results an initial value for ^'(k°°).  Fortunately in the 
deterministic case we have an equilibrium point k = 'F =  0 which we can locate. This is 
the point tha t the system will head towards eventually (as t —> 0 0 ), hence the notation. 
Suppose tha t we have Cobb-Douglas style production and felicity functions, e.g.

f { k p,kg) =  A k ^ k l
(r!

U(c,k9) =
(cak lg- a)l~R9

1 ~ R g

where we require tha t 0 <  a, (3, a  +  (3, a < 1 and Rg > 0, R g ^  1 for the various 
homogeneity conditions to be satisfied. We can now find expressions in closed form for
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the equilibrium point

fc„  =  / (A9 + 7 )g1- a y i- ° - g

=  6 k ~

b ° °  —  b ° °  4 - b ° °f t / --------------------  A I g  \ I X p

C°° =  (A9 +j ) fcP, _ 7fc°o

*°° =  Uc(c°°,k™),

where we write c°° =  c(k°°) etc. and

q _  ^  _ __________ a(aAg +  7)__________
”  k™ a(Xg +  7)/? +  (1 — a,)(\g +  7 — 0:7)'

To solve for ^'(fc00) we can differentiate (7.6) and the optimality conditions (7.2) and 
(7.3) with respect to k at the equilibrium point yielding (dropping the k°° dependence 
for convenience) :

tf ;((l -  k'g) fp +  k'gf g -  7 -  d)  +  t t ( ( l  -  k'g) fpp +  * J/W) =  0 (7.7)

and

c ' U c c  +  k ' g U c g  =  V  

c  Ucg + kg{ Ugg  + ^ ( f p p  ~  %fpg + f g g ) )  ~  ^ ( f p  ~  f g )  + ^ ( f p p  ~  f pg) -

These two equations can be solved simultaneously to determine c'(k°°) and k'g(k°°) in 
terms of ^ ( k00) and then substituted into (7.7) which then becomes a quadratic in 
y'(k°°).  We take the negative of the two roots as we know tha t V ( k ) is a concave 
function of k and hence V"(k°°) = ^/'(k00) <  0. This knowledge now allows us to 
use DASSL to solve away from the equilibrium point (i.e. backwards in time) in each 
direction to find \£(k ) for a much wider range of k , and hence V (k) from equation (7.1).

7 .1 .2  T h e  s to c h a st ic  tw o -se c to r  m o d e l

Numerical solution is more complicated for the full stochastic model as described in 
Section 5.2. We have a second order ODE given by (G l) to solve, and at each point 
(k, H/) we need to solve the three equations (G2)-(G4) in order to find the optimal c, kg 
and 7r. This adds a level of complexity, but the main reason we cannot use a differential
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equations approach similar to tha t we used for the previous two models is tha t there 
is no equilibrium point in this stochastic model. We have boundary conditions of sorts 
- the form of the felicity function may tell us that e.g. V(0) = 0  or V(0) =  —oo 
but we need to know also the first and second derivatives of V  at zero and these will 
usually either be infinite or impossible to determine. We will use instead a policy 
improvement method to calculate the government’s value function V(k).  As we wish 
to find optimal policies (and later optimal tax and interest rates) tha t are functions of 
k we will discretize the capital and then try  to find the optimal policy at each different 
capital level.

We will change the main variable we consider from k to x  =  log k. Firstly this will 
aid calculation, and secondly this fits the structure of the problem, as for small k the 
value function V  changes much more rapidly for a fixed injection of capital than it does 
for larger k. From the dynamics (5.22) of k and using Ito ’s Lemma we find tha t the 
P5-dynamics of x  are

dxt = 7-  dkt — k
F(k  —

= n(x',kg,c,ir) dt + adwt , (7.8)

with the appropriate identification. We wish to find V  and the corresponding optimal 
c, kg and ir at the points

Xi =  x 0 +  i A x  0 <  i <  N

for some suitable choice of xq and Ax.  We will use the notation ki = eXi, Vi =  V(k{), 
kg = kg(ki) etc. We proceed with the policy improvement as follows:

S te p  0 : Firstly we pick an initial value function. We will use the value function 
corresponding to the policy of disposing of all the capital in some suitable1 way. The 
homogeneity of F  (providing it has some dependence on capital and isn’t just a function 
of labour) then means tha t the economy will have zero capital in perpetuity, and the 
population will live in misery. Hence the initial value function is

K j =  / ” e - A» ‘ C / ( 0 , 0 , 0 ) d i  =  ^ l £ l 2 1  V t

JO

1 Dumping it into the sea, building a Millennium Dome with it, etc.

w ° k d t
k g ,  k g ,  IT) ~  C

k
dt +  adwt
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which will usually be zero for U a non-negative felicity function, and — oo for U a non­
positive felicity function. For the purpose of numerical calculations we will substitute 
a negative number of large magnitude for — oo.

S tep  1 : Given the value function (Vi)o< i < N  we now wish to find a better policy to 
follow. To find the new optimal policy (A;*, c*, 7r;) to follow at point Xi we proceed as 
follows. We will assume that the diffusion xt starts at value X{ at time 0 and continues 
until the process xt hits either the level above (i.e. Xi+i) or below (£i_i) at the random 
time

r  =  inf {t > 0 : x t G ^ i+ i) } •

We will approximate x t in the neighbourhood of Xi by the process x t which also starts 
at level Xi at time 0 , but obeys the stochastic differential equation

dxt = fbidt + adwt 

where pi is now a constant with value

j l i  — f l { X{ \  k g ,  C i, 7T{).

We define also the stopping time

fi =  inf {t > 0  : x t € Xi+i} } ,

denote by p f  the probability tha t Xf{ =  X{+\ and define the corresponding probability 
of hitting the level X{ - 1  before x»+i by p~ = 1 —pf .  We know the values Vi-i and V{+1 

and wish to find

max
k g ,C,  7T

=  max
fc9 ,C , 7T

n oo
/ e~X9 tU(ct ,kg(t),Trt)dt  

Jo

[  e~XgtU(ct ,kg(t),Trt) dt +  e~XgTV ( x T)
Jo

max U(ci,kg(i),TTi)
*o>c»>7r

=  max
U { C i ,  k g ( i ) , 7 T i )

j T ’ e - v J  + ^ i  (p ry i_ 1 + p+Vi+1)

( l  -  ^  [e -A»f<] (prVi- t  + p f V i+1). (7.9)

This maximization is not as straightforward as it may at first appear as f p f  and p~ 
are all functions of ft; and thus of klg, Ci and 7T{. However the whole expression to be 
maximized above can be written down explicitly using the following calculations.
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First note that a scale function for the process x t is given by s ( y )  =  —e ~ 2aiy  where 
a i  =  Ji i /cr2 and so the probability of the process Xt  hitting the level X i + 1 before the 
level X i - 1 is given by

_  s ( X j )  -  s ( X j - 1) _  e 2 a j A x  _  1

^  s(a:i+i) — s(xi_i) e2aiAx _  e - 2ctiAx

Secondly Proposition 1 of Rogers and Stapleton (1998) tells us that

cosh(<3:iAx)
E e XgTi

cosh(PiAx)
(7.10)

where pi = \J$  + 2Xgcr2/ a 2 > d*.

Computationally the maximization of (7.9) can be reduced to a maximization over 
just one variable by use of Theorem 1. For a small enough discretization the optimal 
solution to the policy improvement problem should be very close to the solution to the 
full problem given by Theorem 1 and so eliminating ^  from equations (G2)-(G4) tells 
us that

Un(c, kg, tt) =  -F n (k  -  kg, kg,ir)Uc(c, kg, tt) (7-11)

Ug(c,kg, 7r) =  (Fp(k -  kg, kg, it) -  Fg(k -  kg, kg, 7t))Uc(c, kg, 7r) (7.12)

and so, for example, if we have chosen a value for kg we can determine the corresponding 
optimal values of Ci and 1Vi from these two equations. The main example which we will 
consider is as follows. We will assume a Cobb-Douglas style production function of the 
form

F (K P, K g,L) = A K p K ^ L l~a~^ (7.13)

where 0  <  A  and Q < a ,P ,a  + P < 1 . We will also assume tha t the felicity function is 
CRRA of the form

U(c,kg,TT) =  k l ~ R9h(€,ir)

— ri'Q
* V

fc-wc -" ( l  -  tt) - *

V

where £ =  w = R g — 1 — u and either

R g > 1, v > 0, lj > 0, k > 0

(7.14)
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or
1 >  R g > 0, — 1 <  v < 0, — 1 < u  <  0, k <  0.

W ith these forms for F  and U then for a given k and kg (and hence also kp =  k — kg) 

equations (7.11) and (7.12) explicitly give t t  via

and then
c  = —  k^~l k̂ TTl~a~^ (akg — (3kp). (7.16)U) y y

Thus (7.9) is reduced to a maximization over kg alone which we solve numerically using 
Matlab, in the range

@ki ^  ui ^  u
i ft  —  9 —a  +  p  y

The left hand limit is what the optimal kg would be if kg didn’t appear in the felicity 
function, and so the optimal rate of production for a given t t  is obtained by finding 
kg such that Fp(k — kg,kg, t t )  =  Fg(k — kg,kg,Tr). Clearly picking kg less than this 
would be suboptimal as both the rate of production of capital and the felicity could 
be increased by increasing kg. Note also that this choice of lower limit for kg ensures 
tha t the expressions for the optimal t t  and c  given by equations (7.15) and (7.16) are 
always non-negative, and so also t t  is always in the interval [0,1].

The final issue we need to consider is boundary conditions. We will take 

V—1 =  ^ (0’0 ,0 ) , VN+1 = VN
A 9

so tha t if the level zo — Ax is hit all the capital is thrown away, and if the level x n  +  Ax 
above is hit enough capital is thrown away that the government has an amount k^  of 
capital again.

S te p  2 : Having computed a new optimal policy given the value function, we now 
compute a new value function given this optimal policy. This is simply a m atter of 
solving the relevant simultaneous equations, which follow from equation (7.9). Given a 
policy (ci,/c*,7Ti) and the corresponding quantities p f ,  p~ and E [e -AflT*] as computed 
above, we find the new value function (Vi)o<i<N by solving the linear system

Vi = ( i  _  E£i [e -A»f<]) +  E£‘ [e -A»f‘] (p rV U  + p fV i+i)
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for 0 <  i < N  and with the same boundary conditions as previously, i.e.

U( 0,0,0)
Vn + i =  Vn -

S tep  3: We now check for convergence. If

max | — Vi\ < e

for a suitable choice of e then we halt, and take the current V  as the correct value 
function and the corresponding policy as the optimal policy. Otherwise we set

7.2 The stationary distribution of k

Having calculated the government’s optimal policy and value function using the policy 
improvement method of Section 7.1.2 it is now easy to find the stationary distribution 
of k , or equivalently x  = log A;, under this optimal policy. We can approximate the 
process xt by a continuous time Markov Chain on the discrete state space

Xi = x o +  iA x  0 <  i < N,

with the non-zero entries in the Q-matrix given by

Vi := Vi Vi

and return to Step 1. In practice with e =  10 8 only around 5-15 iterations are needed!

0 <  i < N

0 <  i < N

Qi,i — Qi,i+1 Qi,i—1 0 <  i < N

with all quantities calculated as in Section 7.1.2 under the optimal policy. The quantity 
E[fj] can be obtained from equation (7.10) by differentiating both sides with respect 
to Ag and then setting Xg = 0, yielding

E[fj] =  tanh(diAa:). (7.17)
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Having constructed the Q-matrix we can find the stationary distribution

9 = [go 9i • • • 9n - i  9n ]

by solving the system gQ  = 0 subject to the normalising condition XliloS'* =  1* Thus 
we have obtained the probability gi of the chain being in state X{ in equilibrium, for 
all states.

7.3 The taxation problem

Tax and interest rates for the two-sector stochastic model can now be calculated from 
Theorem 2. If we choose the form of the consumption tax 1 — flc(k) then equation 
(PS2) gives ^(/c), and equations (PS1), (PS3) and (PS4) then allow us to determine 
Pk-, fiw and r/3r respectively. Alternatively we could follow a similar procedure having 
first assumed the form of the wage tax 1 — j3w. A more detailed example follows.

We will assume tha t the government felicity function U (c, kg,ir) is as given by equation 
(7.14), but we will modify the notation by writing vg in place of u, u>g in place of u> etc. 
We now define similarly the private sector’s felicity function by

( 7 . 18)
Up

where ojp = Rp — 1 — up and with restrictions on the parameters analogous to those 
for the government felicity function. Conditions (PS2) and (PS3) from Theorem 2 
combined with the very similar conditions (G2) and (G3) from Theorem 1 give

A A . =  ^
=  (7.19)

l^g Up

so th a t Pcfiw is a constant. We could choose constant so tha t is also constant, 
but we could equally well choose a more variable tax regime where, for example, the 
consumption tax falls as the amount of capital available to consume increases, with 
the wage tax then increasing to balance this. Assuming the form of /?c, equation (PS2) 
gives us if) = /?cuc(c*, fc*, 7r*), with (3W determined by (7.19) above. We can now proceed
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to finding fik. We again change variables to x =  log k so tha t

#  1 #  d2ip 1 I d 2ip dif>\ 7̂2Q^
dk k d x '  dk2 k2 \  dx2 dx

and so we can determine /?* from equation (PS1), on the mesh xi = xq + iA x  tha t we 
solved the government’s problem on in Section 7.1.2, by use of the following standard 
second-order-accurate finite-difference approximations:

^•{xq) = +  “  3^ o )

ip'(xi) = 

^ ’(x n ) =

2Ax
t l>(Xj+i )  -  l f ) ( Xj - 1 )

2Ax
TpjxN-2 ) -  4V>(a?jv-i) +  3 i( ; { x n ) 

2Ax
\ - i p ( x 3 ) +  44>(x2) -  5 i p ( x i )  +  2^ x 0)

*  {Xo) =  -----------------------
mr„ \ _  V’f e + i )  “  t y f a )  +  ip(xi-i)

P [Xi) ~  A x 2
„ - i p ( x N - s )  + 4 i p ( x N - 2) - 5 i p ( x N - i )  +  2if>(xN )

*  {XN) =   •

with 1 <  i <  (N  — 1) in the second and fifth of these equations. We can similarly find 
rj3r from equation (PS4). If we assume that the tax rates on income from capital and 
debt will be the same so that (3r = Pjt, then this enables us to find r.

7.4 Bond prices

Now tha t we have the (short-term) interest rate as a function of capital we can attem pt 
to find bond prices. In Section 5.4 we derived a PDE (5.49) for B(t,A;;T), the time-t 
price of a zero-coupon bond paying one unit of capital at time T, where kt = k at time 
t < T .  We need to change variables from k to x  = log k  in this PDE. We can write the 
P-dynamics of a? as

dxt =  fix (xt)dt +  adWt

where =  §(eXt)e~Xt — \ a 2- Now using identities similar to those in (7.20) we find
tha t the zero-coupon bond price B ( t ,x ; T ), written in terms of x , satisfies the partial 
differential equation



with terminal condition B(T,x-,T)  =  1 and fix as defined above. We can solve this 
PDE using the Crank-Nicolson finite-difference scheme over the range [ x q , x n ]  x  [ 0 , T] 
with the same spatial discretization as previously and a suitable choice for the number 
of time steps (e.g. 100). See, for example, Mitchell and Griffiths (1980) or W ilmott 
(1998) for a description of the Crank-Nicolson scheme.

Having obtained the prices of a bond paying out at time Tmax for a range of x  and all 
times 0 < t < Tmax the corresponding yields are given by

Y  (t, x\ Tmax)
1

log B(t, X'i Tmax)
max - t

for 0 <  t < Tmax. Time 
T  is given at time-0 by

Time-homogeneity then implies that the yield of a bond of m aturity

Y (0, X \ T )  — Y (Tmax -  T ,  X\ Tmax)

for 0 <  T  < Tmax• This allows us to plot yield curves for varying k.
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Chapter 8

Exam ples and conclusions

In this chapter we will illustrate the explicit and numerical solutions of the previous 
two chapters graphically. The aim of this chapter is to give a broad idea of the sort 
of features and behaviour exhibited by the model rather than an attem pt at anything 
more specific. This model could be used as the basis for investigations into a wide range 
of economic topics - obvious examples include allocation of capital or human capital 
resources, rates of time preference and risk aversion levels, fiscal policy and taxation 
issues and modelling of interest rates.

The remainder of this chapter is laid out as follows. We can use almost exactly the 
same basic model specification for both explicit and numerical solutions - we give this 
in Section 8.1. This approach will also allow us to compare the numerical and explicit 
results. In Section 8.2 we exhibit solutions to the government’s problem. In Section
8.3 we look at taxation policy and give plots of the policies arising from our numerical 
and explicit examples, along with bond yield curves. We conclude our examination of 
the stochastic two-sector model in Section 8.4.

8.1 M odel specification

We will take the growth rates of population and technology and the rate of depreciation 
of capital to be

fiL = 0.01, [lt = 0.05, S =  0.10,
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respectively. For the covariances between the two driving Brownian motions we will 
choose

vll = 0.01, vqq = 0.02, vql = 0.005, 

and for the discount rates of the government and the private sector we will take

p g = 0.10, p p = 0.15.

We now turn  to the specification of the felicity functions. In both our explicit and 
numerical examples these are given by

rr, , N ^ C - ^ ( l - T T ) - ^U(c,kg, 7T) = -----------------------------
P9

for the government, where cug = R g — 1 — ug, and

,  , ,u{c,kg,ir) =  — -------------------------
Up

for the private sector with a similar definition for up. Notice that we can write

where 6g = Vgf{Rg — 1) reflects the importance in the felicity function of consumption 
over government capital. We will take

Qg = 0.4, ep = 0.7,

with the obvious definition of 6p\ this means that the private sector’s felicity function 
places a greater importance on consumption, as opposed to general welfare levels, than 
the government’s does. Once we have chosen R g this along with 6g defines ug and hence 
ojg and similarly for Rp. Finally we will take

|/cfl| =  0.2, \k p \ =  0.1

with Kg positive if R g > 1 and negative otherwise, and similarly for k p .

The choice of the parameters made above is fairly arbitrary, but the choices can be 
justified as plausible. It is less obvious what a plausible value for the coefficient of 
relative risk aversion R  would be. Many studies have been conducted by economists in 
this area. Arrow (1971) summarizes a number of them, concluding tha t relative risk
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aversion with respect to wealth is almost constant and arguing on theoretical grounds 
th a t R  should be 1. Mehra and Prescott (1985) summarize several studies all of which 
suggest values for R  between 1 and 2. More recently Romer (2001) states that a value 
of 4 is ‘towards the high end of values that are viewed as plausible’, although he also 
shows tha t methods for calculating R  based on equity premiums can give values as 
high as 240! Anderson and Dillon (1992) give a classification scale for R, where 0.5 
corresponds to ‘hardly risk averse at all’, 1.0 ‘somewhat risk averse (normal)’ and 2.0, 
3.0 and 4.0 ‘rather’, ‘very’ and ‘extremely’ risk averse respectively. We shall pick values 
based on this sort of range.

To complete the specification of the examples, for the numerical examples we will take 
the production function specified as in (7.13) by

F (K P<K S,L) = K°pAK°g 3L 0-3.

In the case of the explicit example the production function is not known explicitly. 
Instead we specify the form of the government’s value function, defined as in Lemma 
1 by choosing values for A  and B  (and hence S ) tha t satisfy the various relations. We 
also need to pick the constants cpo, a and e that define our example 4>{k) =  </?o(1 +  ak)£ 
so tha t relations (6.50) and (6.51) are both satisfied.

Having specified the model we will use for the two types of examples, we can now move 
on to illustrate both  the numerical (Section 8.2.1) and explicit solutions (Section 8.2.2) 
to the government’s problem of choosing the optimal consumption rate c, work rate n 
and level of government capital kg for any given level of total capital k.

8.2 Solutions to the governm ent’s problem

8 .2 .1  N u m e r ic a l e x a m p le s

For the government’s problem we’ll look at three different examples and solve them  
using the method of Section 7.1.2; in the first we take R g = 0.8 (and hence vg =  —0.08, 
cjg =  —0.12, Kg =  —0.2) so that the government is not particularly risk averse and has 
a positive felicity function. In the second example we will take double the coefficient of 
risk aversion, so tha t R g =  1.6 (yg =  0.24, u>g =  0.36, Kg = 0.2) and the corresponding 
government felicity function is negative. The value functions calculated for these two 
examples are shown in Figure 8.1. Our final example will have a very risk-averse value
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Figure 8.1: The government’s value function V(k). The left hand plot corresponds to 
the numerical example with Rg = 0.8 and the right hand plot has R g =  1.6.

of R g = 3.2 (with vg =  0.88, u;g = 1.32 and ng =  0.2). The value function for this 
example is shown in Figure 8.6.

The government’s optimization problem is a balance between two factors. The first is 
the growth rate 4>(fc), which can be increased by a lower rate of consumption, higher 
effort and a higher proportion of capital in private hands. The second is felicity, which 
can be increased by a higher rate of consumption, lower effort and a higher proportion 
of capital controlled by the government. These two aims are in opposition to each other 
with the balance between them determined by how risk averse the government is. A 
government that is not particularly risk averse (in our examples R g =  0.8) strongly 
favours growth over felicity at low capital levels, whereas a very risk averse (Rg = 3.2) 
government desires higher felicity levels and consequently slower growth. The different 
growth rate functions 4>(/c) are shown in Figure 8.2 for our three examples and reflect 
the trends just discussed. The optimal values of 7r, kg/k  and c reflect the desired 
balance between felicity and growth, and are shown for the three examples in Figures 
8.3, 8.4 and 8.5 respectively. Also shown is g, the stationary distribution of k , scaled 
so that its maximum is 1.

Looking at how the optimal path changes over time, the contrast between Figures
8.3 and 8.5 is noticeable. In the first with R g =  0.8 the population’s work rate drops 
dramatically as the capital in the economy increases and emphasis changes from growing 
capital to gaining felicity. Similarly the proportion of government capital increases as 
total capital increases for the same reason. The rate of consumption of capital is 
roughly linear with k. In contrast when R g = 3.2 the government is so risk averse that 
the population actually works slightly harder as the total capital increases - in a poor
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Figure 8.2: Plots of the optimal growth rate $(/c) against k for the numerical example 
with coefficients of relative risk aversion Rg = 0.8 (solid line), R g = 1.6 (dashed line) 
and R g =  3.2 (dotted line).
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Figure 8.3: Plots of the optimal 7r (solid line), kg/k  (dashed line), c (dash-dot line) and 
scaled g (dotted line) against total capital k for the numerical example with R g = 0.8.
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Figure 8.4: Plots of the optimal 7r (solid line), kg/k  (dashed line), c (dash-dot line) and 
scaled g (dotted line) against total capital k for the numerical example with R g =  1.6.
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Figure 8.5: Plots of the optimal 7r (solid line), kg/k  (dashed line), c (dash-dot line) and 
scaled g (dotted line) against total capital k for the numerical example with R g = 3.2.
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economy one of the ways tha t a sufficiently high felicity can be obtained is through the 
population having greater leisure time. For the same reason the proportion of capital 
invested in government services is higher and the level of consumption in proportion 
to total capital is higher at lower capital levels. The stationary distribution of k  is also 
wider for the more risk averse government, as for low capital levels growth rates are 
lower and at high capital levels a more risk averse government will not burn through 
its capital so rapidly in order to gain a higher felicity.

8.2.2 The explicit exam ple

In this section we will give graphs to show typical optimal trajectories for the explicit 
example of Chapter 6 and we will compare these with the numerical example of the 
previous section. The explicit example is constructed so tha t k g / k  is a decreasing 
function of k  so we may get similar results to the numerical example above by trying 
the case when R g = 3.2. This turns out to be the case. We pick constants A = 0.25 and 
B  =  0.5 (so tha t S  = 2.26) along with po = 1.2, a = 1 and e = 0.02 to specify ip(k). 
All the relations of Lemma 1 and equations (6.50) and (6.51) are satisfied as required. 
Figure 8.6 shows the resulting value function V (k ) with the numerical example from 
the previous section for comparison, and Figure 8.7 shows the optimal 7r, k g / k  and c 
against total capital k  for the explicit example - note that tt is constant by construction. 
We see tha t this explicit example is very similar to the numerical example of Figure 8.5. 
This means tha t the explicit example is indeed useful to study as it shares many of the 
characteristics of the numerical example derived from a more conventional model, while 
being more tractable for analytic purposes. It also validates our numerical methods in 
tha t we get very similar numbers from our numerical optimization procedure as we do 
from the explicit model.

If we now lower R g the range of valid parameter values gets smaller. Picking R g =  2.0, 
for 7 5 +  Q to be positive we need S  to be at least 1.79 and hence B  to be at least 
0.85. We choose B  = 0.9. Equation (6.51) now restricts e to being less than around 
0.0155 - we choose e = 0.01 (in the previous example we could have chosen e as high 
as 0.12 without violating equation (6.51)). We pick a = 1 and cpo = 1.2 as before, and 
then choose A  = 0.07 so tha t the optimal choice of c is on a similar scale to tha t of 
previous examples. Figure 8.8 shows the optimal n, kg/k  and c for this example. For 
the model as specified in Section 8.1 it becomes impossible to find an explicit solution 
with parameters satisfying the requirements of Lemma 1 for choices of R g below around 
1 .8 .
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Figure 8.6: The government’s value function V(k)  for the explicit (left hand plot) and 
numerical examples when Rg = 3.2.
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Figure 8.7: Plots of the optimal ir (solid line), kg/k  (dashed line) and c (dash-dot line) 
against total capital k for the explicit example with Rg =3 .2 .
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Figure 8.8: Plots of the optimal 7r (solid line), kg/k  (dashed line) and c (dash-dot line) 
against total capital k for the explicit example with R g = 2.0.

8.3 Taxation policy

W hat would happen if the private sector was running the country instead of the gov­
ernment? The results of this would be given by solving the government’s problem as in 
Section 5.2 but with all the government specific quantities and functions (p5, U etc.) 
replaced by their corresponding private sector specific counterparts (pp, u and so on). 
Figure 8.9 shows the resulting optimal c, kg/k  and n computed numerically for the 
private sector with Rp = 0.8, 1.6 and 3.2 (and i/p, ujp and kp then defined as in Section 
8.1). The same general trends axe visible here as in the government’s choices as the 
coefficient of relative risk aversion increases. However, for a given level of risk-aversion, 
the consumption levels and proportion of time spent working are higher and the pro­
portion of capital invested publicly is lower. The population is also poorer, as shown 
by a narrower stationary distribution for the capital located closer to zero.

These are the values which the private sector would choose if  it was allowed to allocate 
its capital as it pleased. However the government will implement taxation policy to 
ensure this does not happen; the other plot in Figure 8.9 shows the values a government 
with R g =  1.6 would like for consumption etc. The choice of taxation policy, as given 
in Theorem 2, will ensure that the private sector, whatever their preferences, ends up
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Figure 8.9: Plots of the optimal 7r (solid line), kg/k  (dashed line), c (dash-dot line) 
and scaled g (dotted line) against total capital k for the numerical example with the 
private sector having total control. Rp =  0.8 (top-left), Rp = 1.6 (top-right) and 
Rp = 3.2 (bottom-left). The bottom-right plot is Figure 8.4 again for comparison - the 
government’s optimal policy when R g = 1.6.

following the government’s optimal policy rather than the one that they would prefer. 
We will see the taxation policy choices resulting from this in the next section.

8 .3 .1  N u m e r ic a l so lu tio n s  to  th e  ta x a t io n  q u e s tio n

We’ll stick with the second example of Section 8.2.1, with R g =  1.6 so that the govern­
ment is fairly risk averse. The government’s choice of taxes will depend on the private 
sector’s preferences which we take to be as defined in Section 8.1 along with different 
choices of Rp which we will choose as follows.

Firstly we’ll take Rp = 0.8 so that the private sector is less risk averse. We get 
PcPw — 0.857 and so we’ll pick (3C = 1, (3W = 0.857, so that there is no consumption 
tax and the tax on wage income is around 14%. Figure 8.10 shows the capital income
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Figure 8.10: Plots of the optimal capital income tax 1 — fik (left hand plot) and interest 
rate r (right hand plot) and scaled g, the stationary distribution of k (dotted line in 
both plots), against total capital k when R g =  1.6, R p = 0.8.

tax rate 1 — fa  and interest rate r  as total capital varies. Note that for small values of 
capital the income tax is effectively a subsidy. Looking at Figure 8.9 this corresponds 
to the region where the private sector wishes to consume less than the government and 
hence has to be given more income to persuade it to raise its consumption rate. The 
tax then rises as the capital in the economy grows and the capital flow to the private 
sector has to be reduced to lower its consumption rate. The interest-rate levels do 
the opposite - initially they are large, reflecting the similarly high returns available on 
capital, and then they fall as the economy becomes richer.

We will now take Rp =  1.6 so that the government and private sector share the same 
level of risk aversion (although they have different felicity functions still - the private 
sector’s is weighted more towards consumption for example). We find that 0cPw = 0.286 
and so take /3C = 0.65, (3W = 0.44 corresponding to a wage tax of around 56% and a 
consumption tax1 of around 54%. Figure 8.11 shows the capital tax rates and interest 
rates again. This time the capital tax rate does not become a subsidy for small k as the 
private sector always wishes to consume more than the government wants it to. The 
interest rate curve is steeper than before - the private sector needs a larger incentive 
to invest capital rather than consume it at low capital levels.

One final example. What if the private sector is more risk averse than the government? 
We take the government’s coefficient of relative risk aversion as Rg =  1.6 again, but 
change the private sector’s coefficient of risk aversion to Rp =  3.2. This gives (3C/3W =

1The consumption tax is given b y  (3~l — 1 as (3cc is the amount actually consumed if the private 
sector tries to consume c, whereas conventional consumption taxes (e.g. VAT) add a charge onto the 
amount that the private sector actually consumes.
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Figure 8.11: Plots of the optimal capital income tax 1 — (3k (left hand plot) and interest 
rate r (right hand plot) and scaled g, the stationary distribution of k (dotted line in 
both plots), against total capital k when R g = 1.6, Rp = 1.6.

0.0779 and we’ll pick /3C = 0.4 (a 150% consumption tax!) and (3W =  0.195. Figure 
8.12 shows the resulting tax rate 1 — Pk and interest rate. In this case the tax rate on 
capital income starts off high and falls as the capital in the economy increases, but the 
interest-rate curve is still of the same form as previously.

If we calculate bond prices for this example using the procedure of Section 7.3 then 
we get yields as shown in Figure 8.13. At high levels of capital the yield curve is a 
conventional increasing curve and at low levels of capital the yield curve is inverted. 
Figure 8.14 shows a selection of equally spaced (with respect to k) curves taken from 
the surface in Figure 8.13. We see that between the conventional and the inverted 
yield curves there is a (slightly!) humped yield curve. If we multiply all the covariance 
parameters by 4 in the specification of Section 8.1 (so that vll =  0 04, uqo =  0.08, 
vql = 0.02) and recalculate everything then the resulting yield curves are shown in 
Figure 8.15. The structure is much more visible in this diagram with three humped 
yield curves between the decreasing and increasing yield curves. These humped types of 
curve are occasionally spotted in the bond markets as the yield curve makes a transition 
from increasing to inverted or vice-versa, so it is good that they arise also in our model. 
One interesting experiment would be to try and choose the parameters of our economic 
model to fit yield data from the markets. We leave this for future research.
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Figure 8.12: Plots of the optimal capital income tax 1 — (3k (left hand plot) and interest 
rate r  (right hand plot) and scaled g , the stationary distribution of k (dotted line in 
both plots), against total capital k when R g =  1.6, Rp = 3.2.

Figure 8.13: Yield at time-0 of a zero-coupon bond of maturity T, against T  and time-0 
capital level k. R g = 1.6, Rp = 3.2.
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Figure 8.14: Yield at time-0 of a zero-coupon bond of maturity T, against T. Each 
line is for a different initial k with the line corresponding to the smallest k at the top 
of the picture. R g = 1.6, Rp =  3.2.

0.5

0.4

.2 0.3

0.2

0.1

50
T

Figure 8.15: Yield at time-0 of a zero-coupon bond of maturity T, against T. Each 
line is for a different initial x with the line corresponding to the smallest x at the top 
of the picture. R g = 1.6, Rp = 3.2. vll =  0 04, uqo =  0.08, vql =  0.02.
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Figure 8.16: Plot of the wage tax rate (solid line) and the consumption tax rate (dashed 
line) against total capital k for the explicit example using Approach 1. Rg = 3.2, 
Rp = 2.0.

8 .3 .2  T h e  e x p lic it  e x a m p le

We now look at taxation for the explicit example with values as in Section 8.2.2 so 
that Rg =  3.2 and for the private sector’s preferences we will pick Rp =  2.0 (and 
hence vp = 0.7, up — 0.3 and kp — 0.1). We then find from equation (6.53) that 
PcPw = 0.6286. The taxation policies arising from the two approaches given in Section
6.2 are as follows.

A pproach  1 : The consumption and wage taxes are given by

&  =  /?c(0)(l + ak)a£,

Pw =  Pw(0)(l +  ak)~ae,

where a  = 1 +  i/p — ojp( 1 +  Vg)/vg =  1.2727 is a positive constant as required. We 
choose (3W{0) =  0.8, so that (3C(0) =  0.7857; the resulting wage and consumption tax 
rates 1 — pw and (3~l — 1 are shown in Figure 8.16. These are very reasonable looking 
rates - the tax on consumption falls as more capital is available in the economy for 
consumption whereas the wage tax is larger for a richer economy.
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Figure 8.17: Plot of the capital income tax rate (solid line) and the interest rate 
r (dashed line) against total capital k for the explicit example using Approach 1. 
Rg = 3.2, Rp =  2.0.

The capital income tax rate 1 — fik, from equation (6.59), and interest rate r, from 
equation (6.60) are shown in Figure 8.17. The capital income tax rate is in fact a 
subsidy for all but very low values of k. This reflects the differences in risk aversion 
between the government and private sector - at higher capital levels the less risk averse 
private sector would prefer to consume more than the government would wish it to, and 
consequently invest less and the government thus has to subsidize the private sector’s 
income from capital in order to achieve its own objectives.

A pproach  2 : Here we choose both /3C and (3W constant for all k. We will take pc = 1 
and (3W = 0.6286 so that there is no consumption tax and the wage tax is just over 37%. 
Calculating the capital income tax rate and interest rate as described in Section 6.2 
gives the functions shown in Figure 8.18. The values obtained for this explicit example 
are very reasonable - the capital income tax rate is a  subsidy for small k to encourage 
investment, and then becomes an increasing conventional tax rate for higher k. Figure 
8.19 shows 1 — (3k and r again, for the numerical example as described in Section 8.3.1 
and with the same assumptions about R g, Rp, (3C and (3W as for the explicit example. 
The capital income tax rate is very similar for the numerical example, and here we 
can see that the tax rate will be a subsidy for a fairly small proportion of time in the 
long run by looking at the stationary distribution of k. The interest rates in both the
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Figure 8.18: Plot of the capital income tax rate (solid line) and the interest rate r  
(dashed line) against total capital k for the explicit example with constant wage and 
consumption tax. R g = 3.2, Rp = 2.0.

explicit and numerical example are also very similar again showing that this explicit 
example is worth investigating.

8.4 Sum m ary, conclusions and suggestion s for future re­
search

We have introduced stochastic terms into the model of Arrow and Kurz (1970) and also 
added a factor to account for the proportion of work devoted to labour, as in the original 
model of Ramsey (1928). W ith these modifications we have then found optimality 
conditions for the government’s central-planning problem, where the government has 
complete control over the economy and wishes to maximize a utility functional.

In the more realistic situation where the government’s control of the economy is through 
taxation and debt policy, we have found sufficient conditions on the tax rates so that 
the private sector, in maximizing its own utility functional subject to these tax rates, 
chooses to follow the government’s desired optimal trajectory. The resulting tax and 
interest rates are functions of per-capita capital, giving closed-loop control. Being
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Figure 8.19: Plot of the capital income tax rate (solid line) and the interest rate r  
(dashed line) against total capital k for the numerical example with constant wage and 
consumption tax. Also shown is a scaled version of <7, the stationary distribution of k 
(dotted line). Rg = 3.2, Rp =  2.0.

purely deterministic, the original model of Arrow and Kurz was unable to distinguish 
between open-loop and closed-loop control of the economy; by allowing stochastic terms 
into the model, we have resolved this difficulty of interpretation. We have also found 
the government and private sector’s state-price density processes and the corresponding 
consumption rates of interest. We can thus price any asset - we considered a zero- 
coupon bond and gave a PDE obeyed by the price of such a bond.

We have shown how to find explicit solutions to the government’s problem by consider­
ing the inverse problem, where the desired solution is chosen in advance and then the 
original problem that would produce such a solution is constructed. We have given an 
example of such a solution and shown that the consideration of such explicit solutions 
can lead to novel interest-rate models. These interest-rate models arise naturally from 
our model, in contrast to conventional models of the short rate which are generally 
chosen for convenience of calculation with little or no economic justification.

We described procedures for calculating the solution to the government’s problem nu­
merically for both deterministic and stochastic models. In the stochastic case the 
methods used allowed us to easily also calculate stationary distributions and bond
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prices as well as tax and interest rates. We gave illustrative example solutions to the 
government’s problem exhibiting reasonable behaviour and showed also tha t the ex­
plicit example solution exhibited similar behaviour. We similarly gave examples of 
tax rates and saw that in many cases these were sensible (i.e. between 0 and 1 or 
small subsidies). Numerical computation of yield curves revealed that the interest-rate 
models arising from this stochastic two-sector model displayed behaviour found in the 
markets, with increasing, decreasing and humped yield curves all present depending on 
the level of capital in the economy.

S uggestions for fu tu re  re sea rch

In a sense we have achieved very little here - we have built a model and shown it gives 
sensible answers but we have not actually used it for anything meaningful!

On the economic side, the model forms a good basis for investigations into a wide range 
of issues. I t ’s a growth model, so it can be used for a studying growth. I t ’s a two-sector 
model so issues of resource allocation can be considered - we have modelled public 
and private capital but the model could equally well be used to study, for example, 
physical and human capital. As a stochastic model, questions not even accessible to 
deterministic models can be asked. For example: how does the level of volatility of 
production affect the balance between consumption and investment?

The obvious application of the model is in the study of fiscal policy. The stochastic 
nature of the model has removed the difficulties of interpretation present in the original 
deterministic model of Arrow and Kurz and the study of how taxation rates vary with 
capital is interesting in itself. More complex questions could be asked. How does 
the private sector’s level of risk aversion affect VAT levels? In what circumstances is 
government subsidy of investment in industry necessary? In a more volatile economy 
are income taxes generally higher or lower? W hat about other taxation schemes? 
The assumptions we have made about the instruments of taxation available could be 
changed leading to results analogous to those of Theorem 2. In particular, it would be 
useful if we could find a taxation scheme where we could say something more useful 
about the levels of debt. Perhaps introducing the concept of money into the model 
would help with this, although again the study of the role of money in an economy is 
interesting in its own right. Modelling money is notoriously tricky but may be possible 
within the stochastic framework of the model; in a deterministic model, with capital 
growing risklessly, money is a dominated asset.

On the financial side, we have a new selection of interest-rate models th a t could be
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interesting to study. How are spot rates affected by the values of underlying economic 
variables? How do bond prices from the model compare with those from other short- 
rate models? Can we calibrate the model to the market yield curves?

All these issues could be investigated either numerically, using the techniques of Chapter 
7 or analytically using the examples, or general approach, given in Chapter 6. Either 
way this model seems to have a huge array of potential uses.
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Appendix A

A ppendix to Part I

A .l  The A bate-W hitt Euler m ethod

For numerical inversion of Laplace transforms we employ the Euler method of Abate 
and W hitt (1995). This uses a version of the Poisson summation formula to give 
an approximation with an explicit error bound. Suppose we have /(A ), the Laplace 
transform of / ,  and we wish to find the value of /  at a specific point f ( t ) .  Then the 
Abate-W hitt inversion rule says that

/ < * ) E  ( - D * * » ( / ) ( ^ ± ^ £ ) ■ (a -d
k=—oo

Note that the choice of line in the complex plane along which we sum is determined by 
the particular t for which we wish to find /(£). The error is given by

oo
ed =  ^ e - M /((2fc +  l)t)

k= 1

so tha t the size of A  controls the error made in the approximation. If f ( t ) is bounded, 
e.g. if 0 < /  <  B  for some fixed B  then the error is bounded by

D  - A

M  <  i r j  «  ■Be-'4. (A.2)1 — e ^

For example, if /  is the price of a put option it will be bounded by the strike price K\  
if /  is the price of a Parisian option it will be bounded by the price of the equivalent 
European option. Abate and W hitt recommend A  =  18.4 which gives a maximum
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error of B  x 10 8; we will use A  = 13.8 giving an error of at most B  x 10 6.

Euler summation can be used to accelerate the convergence of this alternating series. 
Let sn(t) be the approximation of f ( t ) in (A.l) with the infinite series truncated to 
2n +  1 terms, i.e.

The parameters m  and n  are chosen to give the desired level of accuracy. For example, 
Abate and W hitt recommend m  =  11, n =  15. Note tha t if the function we are 
inverting is symmetric in the sense tha t R e(/)(o  +  ib )  = R e (/)(a  — ib )  we need only 
compute 1 +  n +  m  terms of (A .l) rather than 1 +  2(n +  m), effectively halving the 
computation time.

A .2 Curran’s m ethod for calculating Asian option prices

Following Curran (1992) we consider the payoff of an Asian call option conditioned on 
the further random variable G t  =  Jq W* d t .  This is highly correlated with A t  and is 
normally distributed, G t  ~  N(0, ^ -).

k = —n

Then the Euler sum approximation to f{ t )  is given by

2 ~msn+k(t)

c(k,T) = E [(A r -fc)+ ]

=  E [ E [ ( 4 r - f c ) + |G:r =  z]]

J —oo
/  E  [(At  -  k)+ I Gt  =  z] P(GT €  dz). (A.3)

Now approximate At  conditional on Gt  =  2  by a log-normal distribution

log A t  ~  N (fiz , ol)
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where fiz, c z axe chosen to match the first two moments of A t , i.e.

1E [ A t \Gt  =  z \ =  e / i z + 2 ° *

Var [At \Gt  = z] = ( e -  l )

=  E[AT \GT = z ?  U " ' -  l )  ■

Given the conditional moments the above equations can be easily solved for fiz and oz 
and (A.3) can then be found by numerical integration of a series of standard Black- 
Scholes terms of the form

eW+/-* nh + aj-Jogk\ _ _

  y2 j2
where &(x) =  e dy is the standard cumulative normal distribution function.

To evaluate the conditional moments we make use of the following results from Rogers 
and Shi (1995):

E[W t\GT = z] =  j. =  m z
Cov[Ws,W t\GT = z) = 3 A t -  ^

and hence also
Var [Wt \Gr = z] = vttt — t — m 2t v 

where v = Var(Gr) =  Then

E[At \Gt  = z] = E  | j T  e{r~ ^ )i+,,Wtdt G t  = z

= [ T e<r- i ffa)‘E [ e ‘rWt |Gt  = z] dt 
Jo

rT
/  e(r~2cr2)te(TTntz+2<T2̂t~rnt v)dt

Jo*r
f  g<J7Tlt Z — ̂ a 2 77lj u - f r  t  ̂

Jo'0
and similarly

-T rT

'o Jo
Evaluation of (A.3) is thus effectively a triple numerical integration. However this can

r T  rT
Var [At \Gt  = z] = J j  (> V <  _  ^  dt dg.
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still be calculated in a reasonable amount of time - around a minute in Matlab on a 
686 PC. If a small loss of accuracy is acceptable then this time can be reduced to a few 
seconds.

A .3 Some integrals

This section contains details of how to perform various integrals. Of particular interest 
is the integration of K \ ^ { y )  which was done incorrectly by Chesney, Jeanblanc-Picque, 
and Yor (1997) in both the y > 0 and y <  0 cases. Throughout this section we assume 
tha t A is in the right complex half-plane and the principal branch of the logarithm is 
used to define 9 = V 2 \ .

In te g ra l 1 The first hitting time of level y by a Brownian motion starting from 0 has 
density

n ‘(y) 55 - & e~w -
We wish to evaluate

=  I e-% l f D ( +  J L )  e- dt
2 Jo \ V 27rt? y/2wt)  

+  I e *l»l f °  ( J ^ L  _  *  )  e - ^ + 2 % 1 + « 2< )d t
2 Jo \y/2Trt3 y/2n t j

1 „2 _I~2e 2 -/oo O~ox r°° o~ox
^ L . d :r  +  e % i  f  e- ^ = . dx

^ - oVd V2tr J ^ L +e^D V2tr

= e-»M <f> (eVD -  J J )  + e*M $ ( _ e v ^ - J J )  (A.4)

using the substitutions x  = ^  9 \f t  and the identity

1 -  $ ( 3 ) =  $ ( - 3 ). (A.5)

It follows immediately that

poo
I nt{y)e~Xt dt = e~6^ .

Jo
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In te g ra l 2 For any complex number z and for real numbers 0 <  x \ < X2 <  oo we 
wish to find

n  x e - i x2+*x dx = r \ x - z ) e ~ * x H z x dx + z H  e - ^ - ^ + l * 2 dx 
Jx 1 Jx 1 Jx 1

e-%x2+zx X2 nr- ^  f X2~z e ~ iu2 J +  zv27re2z / — du
X1 J x \ —z  v 2 7 T

1 , 2  I r - —  1 , 2— e 2xi+ZXl — e 2 x2 + z x 2 _(_ Zyp2̂ e i z ($(a;2 — z) — 4>(a:i — z)),

using the substitution u = x  — z. We can now put x \ = 0, x<i — oo and use (A.5) to 
confirm the calculation in CJY that

C 00
® ( z ) = /  xe~ sx + z x dx = l  + z V 2 n e lz $(z).  (A.6)

Jo

In te g ra l 3 We wish to compute the function

roo .
K \,d {v) = I xe~zdx ~\y+x\d dx

Jo

defined as in CJY. For y > 0, substituting x = u V D  and using Integral 2, we find tha t

r oo
K \,d (v)  = I xe~*Dx2~6xe~0y dx 

Jo
pOO

= De~ey /  ue“ 2 u2- e' /Su du 
Jo

= De~6y^ { - e V D ) .

Similarly if y <  0 then

r—y roo
K \ ,d { v )=  /  xe~™ x+ exeeyd x +  /  x e ~ ^ x - >xe~ey dx 

Jo  j - y

= Dedy [  ^  u e - 2u2+e^ u du + De~ey f ° °  ue~^u2- eVBu du
Jo J ~ ^ d

=  Deey | l  -  e ~ ™ -9y +  d V ^ D e XDm —^ =  -  0\/Z>) -  $ (-0\/Z>))

+  De~ey 

= De6yV (-0 y /D )

-  DOVfrrDe™

e~ 2i>+dy -  0V2^D eXD(l  -  $ ( - - ^ =  +  6\fD))

e~0y$(-6)y/D  +  -^ = )  -  eey$ ( - 0 y /D  -  ~^=) 
\ /D  y/D .
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Here we have made use of Integral 2 and equation (A.5). Combining the expressions 
above we have that

K \ ,o ( v )  =  D e - o M y i - e V D )

-  DeV2wDeXD

(A.7)

e - ey $ ( - 8 \ f D  +  - 1= )  -  eey$ t - 8 V D  -  -% =)
V d  VD'. L{y<o}'

In te g ra l 4 In order to find explicitly the Laplace transform of various Parisian option 
prices we will need to evaluate for real a  >  0 integrals of the form

m ( a , M ) =  f V2 e6y$ (a y  + /3) dy 
J 2/1

^ e 6y$ (a y  +  /?) 

- e 9y$(a'.y +  P)

V2 a  f 3/2 i  ^_i^ay+pj2+ey
fJ v  1 V̂ TT
f y2 1

J  y-y y /2 i r  

edy2$ ( a y 2  + P) — e6y i$ ( a y i  4- P)

1 *2 rcxy2+P-%; e - \ u 2

dy

dy

----------0  2 a  ̂ du
'ayi+P-^ V̂ 7T

= i  |e0y2$(a:y2 + P) ~  e9y i$ { a y i  +  /?)]
1  gi

—  — 0  2 a 2 <*
6

6 6 
$(ay2 + P  ) -  $(ayi +  P  )a: a:

Here we have used the substitution u = ay + p — 0 /  a. For convenience we will denote 
the integral we will most commonly wish to compute by

I(/3,6) = P_^( l ls fD,t3 ,8)

= i  [$(/?) -  e -  tfVP)] . (A.8)

A .4 An alternative derivation of y&(A, y)

In this section we determine the Laplace transform g b { \y )  of the Parisian down-and- 
out density when x  = b using the information given in Chesney, Jeanblanc-Picque, 
and Yor (1997). CJY give the Laplace transform in m aturity h&(A,y) of the density 
function hb{T,y) for a Parisian down-and-in option. We have a bit of translation 
between notations to do here. CJY have b c jy  = y log {B /S q) = x  — b. Also their
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density refers to a Brownian motion starting at 0 rather that x  =  6, hence we must 
also put y c j y  =  V ~  b. W ith these changes and writing 0 = \/2A we from CJY have 
that

I ( \  „ \ -  Kx’D ~  b)
D9V{0y/D)

where ^  and K \ ^  are as defined in CJY and our Section A.3. To obtain the Laplace 
transform of the Parisian down-and-out we make use of the in-out parity relation (2.3). 
The Laplace transform in maturity of the Black-Scholes density

- ( j/-6)2/2T

is given by
  e-8\y-b I
B S(X ,y) = -

so (doing the 6 =  0 case for notational simplicity)

9o{K y) = B S {A, y) -  h0(X, y)

^  e~0\y\*(9VD)  -  ± K x,D{y)
0^ (9VD )  

e-% l [$(0y/D) -  V{-Q>/D)\

~  0^{6x/D)

[e"® ^ (~6x /D  +  ( - B y / D  -  ^ ) ]

+  OV(0y/D) 1{3/<0}

- f S f  ('-'M+b *  ( -^ +* )  - ( -^  - *)] ■<-<•>)
,A D

■ * {y>0)

+  |e - 9y$  { - e V D  + \ +  eey$  fffy /D  + ~ = \ [{y<o}) (A.9)

where we use the correct evaluation (A.7) of K \ ^ ( y  — 6) along with definition (A.6) 
and equation (A.5). For general 6 we get

9 b ( K y )  = g o { \ , y - b ) .

This is the same as the density in equation (2.12) we obtained using excursion theory.
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Appendix B

A ppendix to Part II

B .l  P roof that condition (L3) holds for <p(k) =  <po(l +  a k ) £

We need to show tha t the expression

Ao(Ar) =  [(x +  S y ) ^ - u y £  + zc]

=  (x + S y )k B~l — cjykB~1(p(k)R'9^u +  z k B<p(k)

attains its infimum over k > 0 uniquely for all non-negative x, y, z. If x  = y = 0 it will 
a tta in  its infimum at k = 0 as c is increasing, and similarly if y =  z = 0 the infimum 
will be attained at k = oo as c /k  is decreasing. We will assume from now on tha t either 
y is non-zero or both x  and z  are non-zero.

Differentiating Aq with respect to k , and using the fact tha t R g/u> = 1 -1- (1 +  v)/u),
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gives 

A'0 (k) = k B~2ip' (x  +  Sy) ^ k  + (B  -  +  z ( ^ 2 +  ^ “ 7^

- c j y f  (B -  l ) ¥ - J k + v)lu +  k-£<p( 1+^)/w 
\  u

=  cpokB 2(1 +  afc)e—1 az(e )(1 — B  — e)) k

-  (1 -  B )(x  +  S y)  +  uW [,1+‘')/“ ( 1 +  a k f ' - W "  ( (1  -  B) +  a (l -  B  -  3 ^ ) f c

=  ip0k B~2(l +  a,k)£-1 az{s +  £)fc2 +  (zB  — a(x +  S y)( l  — B  — e))k

-  (1 — B )(x  +  Sy)  +  uy(po'+u^ UJ(1 +  ak)£°( 1 -  B  +  ao&)

=  </?0fcB_2(l +  ak)£~1f(k )

with the appropriate identifications. If we can show tha t the equation f ( k )  =  0 holds 
for only one point k then the minimum of Ao must be attained uniquely. Firstly observe 
tha t

/(0 ) =  - ( 1  -  B) [x + y (S  -

is negative due to equation (6.50). Secondly ao =  a (l — B  — eRgJuS) is positive because 
of (6.51) and so f ( k )  —> oo as k —> oo. Finally

f" {k )  =  u}yy^+u^ u {I +  ak)e°~2 [a0a2£0(eo +  1 )k +  ae0(2a0 +  (1 -  B)a(eo -  1))]

+ 2 az{e + B )

and so a sufficient condition for f  to be convex is

ae0(2 ao +  ( 1  -  £ )a (e0 — 1)) >  0

which is easily seen to be equivalent to

£ <
u)(l -  B) 
Ra + S

and this is assumption (6.51). Putting these three facts together we can conclude tha t 
f ( k )  has only one root and so Aq (k) does attain  its infimum uniquely. □
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B.2 Proof that condition (L4) holds for <p(k) =  +  a k ) £

We wish to show the transversality condition (L4), given here by

s u p l i m  e~Xstk?1~s  = 0, (B .l)I t—yoo

where (1 — 5) is negative. The dynamics of k* are

dk* = ak*dw +  (Qk* +  ip(k*t )k*B A /v )d t

=  ak 'dw  +  (Qk* +  <p0(l +  ak*)ek*B A /u)dt

so if we now introduce the process x  =  log(A;*), we see tha t x  satisfies the SDE

dx =  odw +  (Q — ^ a 2 +  h(x))dt ,

where

We are interested in

h(x ) = ^ £ ± ( l  + aex)ee(-B- 1'>x .

\ n t

e~Xgtk l l~s  =  e~(5_1)(x‘+f f i )

and our task is therefore to establish lower bounds on the process

-    ,
X t  =  X t  +  ■■ — .5 - 1

Now the process x  itself is not a diffusion; however, because e <  1 — B  from (6.51), 
it is readily seen tha t h is decreasing, and so h(xt) > h(xt). Using this, we can apply 
the Yamada-Watanabe stochastic comparison theorem1; the process x  dominates the 
process y which starts at the same value, but solves instead the SDE

dy = odw  +  (Q -  ^ a 2 +  +  h(y))dt

=  adw + (^-cr2(S — 1) + h(y))dt 
z

1 See, for example, Rogers and Williams (2000, V.43).
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The process y is a diffusion, with scale function s which satisfies

'y bcr2(S  -  1) +  h(v) \
a'(y) =  exp ( - 2

=  exp ( - ( S  -  1 )y + J "  ^  dv j  .

W ithout loss of generality we can set

roo

s {y) — ~  I s'(u ) du 
dy

so tha t the scale function has the properties s (—oo) =  —oo, s(oo) =  0. If we now 
denote Y  =  inf* yt we have for all b <  0 that

P °(y  <  b) = P°(inf{* > 0 : yt = 6} < oo) 

s(0) — s( oo) 
s(b) — s(oo)

=  5 (°) 
s(6)

-s(0)

Ib s'(u )

Writing a  =  2(j2Aipofv >  0 we find that

J  s '(u)du = J  exp (S — l)u  + a  J  (1 +  aev)ee~^1~B v̂ d v j  du

>  J  exp (S — l)u  +  a  J  dv'j du

_  exp (—{a +  S  — 1)6) — 1
a  + S  — 1

and so

n y < 6 ) < e_(a+/ _ 1)t_ 1 ,
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where /3 = —s(0)(o; +  S  — 1) is a positive constant. Hence, picking any B  > 0, we have 
tha t

IE?
oo

- ( S - l ) Y / oo
g - ts - ii tp o ^ y  <b)db

-OO

e-(a+S-l)t _  e-(a+S-l)(6+B/2)

- B f3eab db
e(S 1)B + (S’ l _ e-(a+S-l)B/2

<  OO

and (B .l) follows easily from this. □

B.3 The debt process A p

We define a P-Brownian motion W  by u W  =  Z° — Z L so that a2 =  z;oo ~  2^oL +  
and the dynamics (5.23) of A; are

dk =  afcdW +  $(fc)cft. (B.2)

From (5.37) and Ito applied to kp(k) the dynamics of A p are given by

dA p = A p [ - d Z L + {fi0 +  rpr)dt] -  kp{akdW  +  <1 dt) -  \ a 2k2k”dt +  AdZ°  +  Bdt

+  kp[pkdZa -  dZ L +  (fikFp -  7 +  i>ol(1 -  Pk))dt] +  (S^nFpdt -  0~l cdt.
(B.3)

We wish to express Z  and Z  in terms of W  so we write

dZL = adW  + bdW' 

where W '  is a P-Brownian motion independent of W  so that

aa = vol ~  vll a2 + b2 = vLL
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and then dZ° is given by dZ° =  (a -f a)dW  +  bdW'. Inserting these expressions into 
(B.3) and collecting Ap, d W , dW7 and dt terms gives

dA p =  Ap [ —adW  — frdlT' +  (/io +  rpr)dt ] 

+  [(>1 -fi pkkp)(a +  a) — akp — akk'p]dW  +  [Ab 4- bpkkp — bk^\dW'

+  [B  -  k'p$  -  i cr2k 2kp +  kp (PkFp -  7  +  u0l ( 1  -  /?*)) +  Pw^F^ -  P ~ l c\ d t

= A p [ - a d W  -  bdW' +  (/i0 +  rpr)dt] +  A 0(k)dW  +  Ai(fc)dW" +  T0(k)dt (B.4)

with the necessary identifications. To deal firstly with the A p term  we consider Z  
solving the homogeneous stochastic differential equation

dZ = Z [ - a d W  -  bdW' +  (fi0 +  r0r)dt]. (B.5)

The solution to this stochastic differential equation is given (up to a constant) by

Z t = exp ^ - a W t -  bWj. -  ^ (a 2 +  b2)t +  J  (/Li0 +  r(ks)pr(ks))ds^ . (B.6)

Observe tha t from (B.2)

,Trr dk $(fc) ,a d W  =    Y + d t
k k 

=  d(log k) +  i ^ a 2 -  j  dt

and so we can write equation (B.6) as

Zt =  k-t a' °  exp ( —bW[ -  +  J *  G0(fcs)rfs) , (B.7)

where Go(k) = /iq 4- r(k)pr (k) -fi ^b2 — \ vql -fi a$(k ) /a k .  Combining the dynamics for 
Ap (B.4) and Z  (B.5) gives

=  + vLLdt \ + aAo(k) + bAi{k) -  &pvLL)dt

= \  (A0(k)dW  + A i(k )dW '  +  (r0(fc) +  aA0(k) + bA^kfldt)
Zj

=  i  {Aa(k)d,W +  A^fcJdW' +  T iW d t)
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where T i(k) = To(k) +  aAo(k) +  bA\(k). Thus for s < t

A ^ t)  =  A^ s )  + r ‘ 2,_1 | Ao(fcu)dW-u +  +  r ^ k j d u } . (B.8)
6 S J s

We can re-express the dW  part of this integral. Define Gi(k)  so that

akG[(k) = kal a A(j(k)

and then we have that

dGi(k) = G [(k)(akdW  +  ${k)dt)  +  ^ t f G ' ^ d t  

=  ka/<TA 0(k)dW  +  CGi(k)dt

where C is the generator of the process kt . We can now rewrite the dW  term  in 
expression (B.8) as follows

f  Z Z 1A a(ku)dWu =  f ‘ {dGj(ku) -  CG\(ku)du}
J  s J  s

=  [G 1(fcu)fc -“/ ‘, -Z -1] ‘ -  J  K ^ Z - ' G x i K )  {bdWi +  (b2 - G 0(K))du}

-  f  k - a/', Z - 1CG1(ku)du. (B.9)

Hence expression (B.8) can be written as 

A p(t) A p(s) G x i k t ) ^  G x i k J k T ^
“ z T  =  - z T (+ — % ------------------z .—  ( a i0 )

+  f  Z Z 1 { A l (ku) - b k Z al'! G l {ku) ) d W ,u
J 8

+  J  z.-' {r0(M -  + o'GGyJ,,] - 62)} du
_  +  +  f  { C j ( t | „ ,  +  0 > ( i_w

6 S 6 t 6 S J s
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and Ap is given by

a /c r
p(t) =  Gi{kt) k f " ^  + (A p(s) -  G1{k,)kJa' c ) ( j A

J ‘ ( j - \  /e- b(w;-'Vi)-ii>2(.t-^+f‘Go(k„)dv [ a 2(ku)dW'u +  G3(ku)du} .+
Js \ k t  J

(B .ll)

Suppose tha t we start with zero debt so that Ap(s) =  0 at some time s in the past. Can 
we hold t fixed, let s —> —oo and get some meaningful limit? We would like something 
like

lim G l ( k s ) e b w - - ^ ‘ + f o ^ K ) d u  =  Q>
S —> 0 0  

OO
. o „  /    . 0  J,2„. 1 n  f “  r ^ . t b .  \ J .  .

<  OO ,
roo

FT /  k l al a G 2 (ku)2eh2u+2 K Go{ka)dsdu
Jo

roo
E* /  K /aG3{ku) e fo Go(k‘)dsd u < o o  

Jo
where 7r is the invariant law of k. An example of the sort of simpler (sufficient) condi­
tions needed for these to hold would be

Gi (k) , G2 (k), G3 (k) all bounded,

$(k)
k

- > —e < 0  as k 0 0  ,

sup G0{k) <  - i& 2 . 
k *

The condition on $  makes the tail of the invariant law of k like a Gaussian, so all 
moments exist, and the condition on sup Go makes the exponential term  decreasing, so 
then we do get convergence as s —> —0 0 , with

a  p(t) = G 1(fct )fct- ‘,/'’ (B .1 2 )

+  /  2(K)dW^ + G3(K )du}  .

B.4 The one-sector government problem

In a one-sector model there is no distinction between public and private capital, and 
we can follow a similar development; or we may alternatively deduce the one-sector 
results as special cases of the two-sector results. Either way, we will assume th a t the
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private sector works all the hours available to them (7r =  1 in the previous notation) so 
tha t the rate of production, which is now a function only of labour and total capital, is 
given simply by F (K ,L T )  = L T f ( k )  where f ( k )  = F (k , 1). As before the government 
is concerned with maximising expected levels of per-capita consumption

E J  e - ^ L t U  dt = L 0Eg e“ A»*t/(ct)dt

where we use exactly the same notation as in the two-sector problem, and again assume 
tha t U is homogeneous of order 1 — R g. This is a stochastic extension of the model 
considered in Chapter III of Arrow and Kurz (1970). The deterministic version of this 
model was originally proposed by Ramsey (1928) although the term  ‘Ramsey model’ 
generally refers to the version as refined by Cass (1965) and Koopmans (1965).

Returning to stochastic one-sector model just described the HJB equation for the value 
function V  (k ) is now

-A gV(k)  +  V '(k )( f (k )  -  7 , k  -  c) + ± a2k2V"(k) + U(c) = 0, (B.13)

and setting ty(k) = V '{k ) the optimality equations corresponding to those of Theorem 
1 are

0 =  IT( / '  -  7g -  x g) + $ '( $  +  o2k) +  i a 2k2^ "  (1SG1)

U' =  (1SG2)

$  = f - ' Ygk - c .  (1SG5)

We have assumed that U is homogeneous of order 1 — R g so (up to multiplication by 
a constant) it must have the CRRA form

17(c) =
C^-Rg

1 - R g

with R g > 0 and R g ^  1. Again it is possible to construct an explicit solution to the 
government’s problem; choosing V,  we find the optimal c from (1SG2), then deduce $  
from (B.13), and then deduce /  from (1SG5). It remains only to check that the /  so 
obtained is concave, increasing and non-negative.
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As a simple example, if we pick a value function tha t is also CRRA

A y ^ k 1- 3
V(*) = 1 - 5  ’

with A y  >  0, S  > 0 and 5 ^ 1  then (1SG2) gives us

c{k) = A v ks!R»

and then (B.13) yields

_ / l X  /  \ n  1  2 n \  1 A y k S/ Re$(fc) =  — 2— +  - a  S  ) k -
\ l  — S  2 J  1 - R g  

=  n h A v kS' Rs
-  Qk i - r 9 •

Finally (1SG5) gives

S(k) = (n9 +  Q)k  +  t  _ V  ) c

R gA v ks / R»
=  (79 +  Q)fc+ V _ f  •

For f ( k )  to be concave, increasing and non-negative we will require that

Q  +  Jg >  0 , Rg >  S  >  1.

Alternatively we can consider numerical solutions - the methods described in Section 
7.1.2 for solution of the two-sector stochastic problem can be easily adapted to the one- 
sector problem so we will consider only the deterministic case. From equation (1SG2) 
we find that c(k) =  I(^f{k)) where /( .)  is the inverse function of U'(c). The dynamics 
of k and ^  are then given by equations (1SG5) and (1SG1) respectively as2

k =  / ( f c ) - 7 f c - J ( \ &)

*  =  +  7 - / W ) .

1 In the deterministic case 7 S =  7  hence we drop the subscript.
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We can locate the equilibrium point k =  ^  =  0 by solving the equations

Xg + 7

/ ( f c ° ° ) -7 * “

U'(c°°).

The ODE for 'b(fc) we wish to solve numerically is

* (* )( / '(* )  -  A, -  7 ) +  * '(k ) ( f (k )  - 7 fc -  / ( * ) )  =  0 . (B.14)

Differentiating this with respect to k and evaluating at the equilibrium point yields

4'<x7"(fc“ ) +  $'(fc“ )(/'(fc°°) -  7  -  »'(fc“ ) / '( ’®00)) =  0 ,

which is a  quadratic in T^fc00) and hence

_  / '( f t” ) -  7  +  N/(/'(fe°°) ~  7 ) 2 +  4tt°°/'($°°)/"(fc°°')

Note tha t we take the positive root to ensure tha t we get a negative value for k00),

optimal ^(A:) by solving the ODE (B.14) working outwards (so that time is reversed) 
from the equilibrium point k°° using, for example, Scilab’s ‘DASSL’ routine with the 
initial conditions k = k°°, and ^ ( k )  = \£(k°°). Such numerical methods for
the Ramsey model axe well known; see, for example, Judd (1998).

B.5 Summary of notation

A t argum ent/subscript denotes a quantity at time t. O ther subscripts are used to 
denote partial differentiation in the case of functions of two or more variables (e.g

as J /(^f0°) <  0  due to U(c) being a concave felicity function. We can now compute the

Fg =  dF/dkg) .

Time-f price of a zero-coupon bond paying 1 at time T  given kt = k 

Consumption rate

= ?r l c

Optimal value of c for a given k 

Level of government debt

c

c*(k)

D
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E, E5 Expectation taken under P, P9 respectively

F (K p,Kg,7rLT) Production (rate) function 

g The stationary/equilibrium distribution of k

/ i ( f ,  tt) =  £ /(£ ,  1 , tt)

I g Amount invested in government capital

Ip Amount invested in private capital

K  Total capital

K g Government capital

K p Private sector capital

k , k g,k p Technology-adjusted per capita capital levels r]~1K , r)~l K g, r)~l K p

k*(k) Optimal value of kg for a given k

L  Labour force /  population size

P Real world probability measure

P9 Government’s valuation measure

R g U is homogeneous of order 1 — R g in c,kg

R p u is homogeneous of order 1 — Rp in c,kg

r Interest rate on government debt

rg, rp Consumption rates of interest for the government and private sector
respectively

T  Technology level

U (c, kg, 7r) Government felicity function

u(c, k g , tt) Private sector felicity function

V  (k ) Government value function

V{j Covariation (per unit time) of Z l and Z \  i , j  GO ,L

W  A P-Brownian motion defined by a W  = Z° — Z L

w A P9-Brownian motion defined by aw = z° — z L

X  Total private sector wealth K p -\- D

x  =  r)~l X

Z°, Z L Multiples of standard Brownian motions
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(z°, z L) Two Pg-Brownian motions with exactly the same covariance structure
as ( Z ° ,Z L)

1 —/?c Tax rate on consumption; if a household wishes to consume c after
tax then it must consume before tax

1 — Pk Tax rate on returns on private capital

1 — (3r Tax rate on returns on government debt

1 — (3w Tax rate on wages

7 = S + hl + Pt  + l — vll

l g  =  7  — VqL +  VLL

A p =  D/rj

S Rate of depreciation of capital

(?, ( [  State price density processes of the government and private sector

7] = L T

6p,6 i  Proportion of return on government’s capital included in returns to
private sector capital and labour respectively

Ag =  p g — (1 -  R 9 ) h t  — HL

A p =  Pp  ( 1  R p ) p , j '

po = vll — Pl — Pt - Exponential drift of 77“ 1

PL Exponential drift term  of labour

p x  Exponential growth rate of technology level

1 =  C /K g =  c /kg

7r Proportion of population’s effort devoted to production

7T*(k) Optimal values of 7r for a given k

Pg 5 Pp Government and private sector utility time-discount factors

0 2 = i>oo — 2t>o l +  vll

$(k)  = F(k*(k)Jk*(k),7r*(k))—Jgk —c*(k). The drift in A; along the optimal
path under

$(k)  = F(k*(k),k*(k),7r*(k))—ryk — c*(k). The drift in A: along the optimal
path under P

=  V ’(k). The Lagrange multiplier process corresponding to the gov­
ernm ent’s optimization problem.
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if) The Lagrange multiplier process corresponding to the private sector’s
optimization problem.
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