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Abstract

Computer algebra systems are large collections of routines for solving mathematical 
problems algorithmically, efficiently and above all, symbolically. The more advanced 
and rigorous computer algebra systems (for example, Axiom) use the concept of strong 
types based on order-sorted algebra and category theory to ensure that operations are 
only applied to expressions when they “make sense”.

In cases where Axiom uses notions which are not covered by current mathematics we
shall present new mathematics which will allow us to prove that all such cases are 
reducible to cases covered by the current theory. On the other hand, we shall also 
point out all the cases where Axiom deviates undesirably from the mathematical ideal. 
Furthermore we shall propose solutions to these deviations.

Strongly typed systems (especially of mathematics) become unusable unless the system 
can change the type in a way a user expects. We wish any type change expected by 
a user to be automated, “natural”, and unique. “Coercions” are normally viewed as 
“natural type changing maps” — this thesis shall rigorously define the word “coercion” 
in the context of computer algebra systems

We shall list some assumptions so that we may prove new results so that all coercions 
are unique — this concept is called “coherence”.

We shall give an algorithm for automatically creating all coercions in type system
which adheres to a set of assumptions. We shall prove that this is an algorithm and 
that it always returns a coercion when one exists. Finally, we present a demonstration 
implementation of this automated coercion algorithm in Axiom.
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Structure of the Thesis

Structure of the Thesis

The thesis can be viewed as decomposable into the following topics:

B ackground and ex istin g  th eo ry

Chapter 1 introduces computer algebra systems in general, strong typing and abstract 
datatyping. We introduce some of the problems that can occur in a strongly typed 
language which uses abstract datatypes. We present an analogy of the solution to one 
of the problems in such a system.

In chapter 2 we discuss and compare the type systems in several modern computer 
algebra systems. We also mention OBJ, a computer language which implements a type 
system based on abstract datatypes.

Both category theory (chapter 3) and universal algebra (chapter 4) may be used as 
the basis for systems of abstract datatypes. In these chapters we state all the current 
theory which we shall require in the later chapters.

We shall also compare how many of these theoretical notions are represented in the 
computer algebra system, Axiom.

N ew  th eory

Chapter 5 details some extra (mostly) new mathematics which allows for certain ex­
tensions to the theory of abstract datatypes (as currently implemented in Axiom) to 
be formalised in the language of order-sorted algebra.

We briefly look at the correspondence between the two approaches to abstract datatyp­
ing. This allows us to use either terminology when one may be more appropriate than 
the other.

Finally we formalise the meaning of the word “coercion” which is used widely in Axiom 
without any strict definition.

In chapter 6 we look at the work of Weber in the area of coherence. We adjust and 
extend his work so that we may sensibly restrict the type system of Axiom and still 
have unique coercions.

Chapter 7 introduces new definitions and assumptions on the type system which allow 
us to create coercions automatically. We provide a function to do so and prove that it 
is an algorithm which creates a unique coercion if and only if one exists.
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Structure o f the Thesis

D em o n stra tio n  im p lem en ta tio n

In chapter 8 we detail how the automated coercion algorithm may be implemented in 
Axiom. We mention where this prototype implementation disagrees with the theoretical 
algorithm.

C onclusions and fu tu re  ex ten sio n s

In chapter 9 we list the differences between Axiom’s current type system and the formal 
theoretical type system we have specified.

We draw conclusions from this work in chapter 10. We also state future directions 
research may take towards the aim of creating the perfect computer algebra system 
based on abstract datatypes.
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Chapter 1

Introduction

1.1 Introduction

This chapter introduces the reader to the main ideas behind this thesis. We give some 
background information, explain the context of the work, and say why the work is a 
“good idea”.

This work centres on types in computer algebra.

1.2 Com puter algebra

Computer algebra [DST92] is an all-encompassing term that covers performing any sort 
of mathematics on a computer. Numerical analysis (mathematics involving floating 
point numbers and a certain degree of error) is often excluded from this term, though 
most modern computer algebra systems are (at the very least) competent in this area.

Computer algebra systems may excel in various areas of mathematics. Some are masters 
of discrete mathematics (groups, rings, monoids, etc.); the more common systems deal 
with more mainstream concerns such as: indefinite integration; solving differential 
equations; matrices etc.

The important feature of all computer algebra systems is their ability to solve equations 
(like differential equations) symbolically. In other words, they may solve equations for 
the general case; they need not substitute values for the variables.

Modern computer algebra systems are large collections of routines and algorithms. 
These algebra systems often come with their own language(s) for user input. The user
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Chapter 1. Introduction 1.2. Computer algebra

is usually supplied with an interpreter which can usually read both input from the 
keyboard and from files. The more advanced computer algebra systems come with a 
compiler, too.

Common computer algebra systems are Axiom [JS92], Derive [Der97], GAP [GAP97], 
Macsyma [Mac97], Magma [Pla96], Maple [CGG+92], Mathematica [Wol92] and Re­
duce [Hea91]. We discuss the relevant details of some of these systems in chapter 2.

The user of a computer algebra system is usually someone who wishes to solve a math­
ematical problem. Mathematics is a formal subject and as such there is a need for 
rigour. Hence computer algebra systems need a rigorously defined language to avoid 
confusion and incorrect results.

Many of the more popular commercial computer algebra systems do not provide this 
rigour. Instead they trade rigour and strictness for ease-of-use (and hence mass-market 
appeal). This is not to say that they consistently supply incorrect results — merely that 
if the user has not given all the input that they can (or are allowed to by constraints 
of the system) then the system may misinterpret their input.

Being able to restrict the domain over which a variable may range, or from where a 
function may take its arguments can reduce the amount of confusion and ambiguity in 
any mathematics a user may enter.

For example, if a user enters a 1 then a computer algebra system has to judge whether 
this is the 1 from the integers, a constant polynomial 1, the identity of some group, a 
1 from the integers modulo some n, the distance which is not zero in a discrete metric 
space, etc.

Restricting variables to various “sets” of values is a useful concept and is called typing. 
For example, if one says that x is an integer and then declares x to be 1 then there is 
no confusion as to what x is. We are free to add x to x, safe in the knowledge that the 
answer is the integer 2 . If we did not know that x were an integer, then the answer 
could have been 0 (in Z2), 1 (in a group where 1 is the identity and the binary operator 
is +), or any other value in some contrived example.

Such restrictions on variables are usually called types. For example, declaring x to be 
an integer, is the same as saying that the type of x is an integer.

Mathematics written in books is usually stated formally, with all the context and 
meaning of certain symbols stated in the text. When mathematicians talk to one- 
another they may (and in practice, do) drop some of this formality since they can infer 
the meaning of certain symbols and the context from extra-mathematical factors (such

—  12 —



Chapter 1. Introduction 1.3. Strong types, categories, varieties and theories

as: with whom they are holding a conversation; previous conversations they may have 
had; etc.). They may even correct each other.

Computer algebra systems are not people and can fail to infer the type and meaning 
of terms successfully. They also can not understand paragraphs of English (or other 
natural languages) to gain the context from there. They are highly unlikely to correct 
the user. This is why their languages should be strictly defined, and yet fully expressive.

Guessing the type (intelligently) is called type inference. All the untyped systems 
effectively guess the “type” internally whenever a function is applied to any data. 
Entering 1+1 will result in 2, simply this is because this is the most common case.

A more intelligent approach (like type inference in Axiom) is to allow the user to say 
which + function they require. Axiom will then infer the types of the two Is from the 
fact it knows which types that + is expecting. Alternatively the user may state which 
Is they have inputted and what type they expect in return; Axiom will then use the + 
function uniquely determined by this information.

1.3 Strong types, categories, varieties and theories

In this thesis we are mainly concerned with the typing mechanisms in modern computer 
algebra systems. However this work is also relevant to type systems in general. Many 
languages (principally the so-called object-oriented languages) use a type system which 
may occasionally be viewed in a mathematical fashion.

Axiom and Magma are two of the best computer algebra systems and what sets them 
apart from their peers is the concept of categories (chapter 3) or varieties (specified by 
theories) (section 4.6). Some other algebra systems do possess the concept of types, 
and Reduce [Hea91] will allow new types to be introduced (section 2.4). GAP [GAP97] 
also claims to have a concept of categories, though they are not so deeply ingrained 
in the type system as they are in Axiom (section 2.5) and Magma (section 2.7). GAP 
will also allow new types to be introduced.

Certain forms of inheritance found in object-oriented languages follow the paradigms 
used in Axiom and Magma. However, most object-oriented languages (C ++ [Str97], 
Eiffel [Eif97], Java [Gra97], youtoo [Kin96], etc.) are more flexible and allow many 
different ways for types to re-use bits of code from each other. However, automated 
coercion (in any sense) is not a feature of these languages. OBJ [GWM+93] is not a 
computer algebra system, however this work is wholly suited to it since it uses a similar 
type paradigm to Axiom and Magma. We discuss OBJ further in sections 2.8 and 2.9.
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Chapter 1. Introduction 1.4. Abstract datatypes in general

The category (or variety) mechanism found in Axiom and Magma is a way of abstracting 
a further level away from mere types. The categories are used to type the types, and 
provide a “standard” interface and/or implementation for each type in a category.

Magma also abstracts one further level away, by allowing the existence of varieties of 
categories, in a similar way.

The concept of strong typing, is that every thing must have a type. Axiom and Magma 
are both strongly typed. Most of the other systems are not strongly typed. Indeed 
some do not even have any notion of types at all.

The categories (or varieties) of Axiom, Magma and OBJ are abstract datatypes. We 
shall detail this more in the next section.

1.4 Abstract datatypes in general

Abstract datatypes provide a way of specifying a type. As a (useful) side effect an 
abstract datatype can express how a whole collection of types may act.

An incredibly specific specification will only specify types which are all “the same” 
(isomorphic). A less exacting specification may result in types which are similar, but 
not the same.

This “side effect” of using a less exacting specification to collect similar types together 
forms the basis of strict categorical type systems like that in Axiom and many object 
oriented languages.

For example, we may say which operations are available on a certain family of types. 
We may also state certain facts about the structure of all types in a certain family. 
Most importantly of all, we can enforce relationships between various types (of different 
families), how they interact, and how they may depend upon each other (or not).

See section 4.2 for how we may specify types and what operations are available to them. 
Look at section 4.7 for the relationships between different types. Section 4.6 details 
how we may restrict the structure of certain types using sets of equations.

As a simple example, a polynomial ring depends for its specification on the underlying 
ring (from which the coefficients are taken).

As a more complicated example, a polynomial ring could also depend upon: the type 
from which it takes its variables; the type of the exponents; a boolean algebra; an 
ordered free monoid with one generator (the natural numbers adjoin {0} is often a
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Chapter 1. Introduction 1.5. The problem

good choice); and maybe a few others.

Another factor is the actual relationship between the various types. In our above 
example of the polynomial ring, we know that:

1. there is a ring monomorphism from the underlying ring to the polynomial ring.

2. there is an injection from the variable type1 to the polynomial ring. (In fact, an 
ordered-set monomorphism2.)

Other types often have more complicated lattices of relationships. These relationships 
are often able to be abstracted out to apply all the instance types of a particular 
abstract data type.

1.5 The problem

A commonly encountered difficulty in languages which utilise types is the following:

1. Given th ing , of type Typel, can we change the type of th in g  to be that of 
Type2? More accurately, can we create an element of Type2, which corresponds, 
in some natural way to th in g  of type Typel?

2. If so, how do we go about performing such an operation? Can we perform this 
task algorithmically?

3. Does there exist a way of abstracting this question or must every (Typel,Type2) 
pair be considered? Moreover, can we abstract such an algorithm (as mooted 
in 2, above) out to cover all cases?

Such type changes are often called coercions, conversions, or castings, with all three 
words having slightly different meanings.

In this work, we shall consider castings and conversions to mean any type change, 
regardless of mathematical rigour. We shall call a type change a coercion if it is in 
some way, “natural” . We will define this more rigorously later (in definition 5.5.2).

xThe type from which all the variables are taken. In Axiom, the variables are usually elements such 
as X, Y and Z which are from the type, Symbol.

2This is an injective function, </>, which is both a set-homomorphism (which is just a total function) 
and preserves order. So if a <  b then <p(a) <  <f>(b). Mathematicians often utilise the order on the 
variables and extend it to an order on polynomials.
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Computer algebraists often need to use coercions since informally most mathematicians 
alter the domain of computation without saying phrases like, “in the monomorphic 
image of A  in B n or, “forgetting that x  is a T  and viewing it as a U”.

For example, we often view the integers (Z) as polynomials (in Z[x\) rather than 
considering the constant polynomials of Z[x] as being a monomorphic copy of Z. This 
is the coercion Z —y Z[x].

Other simple examples of this sort of coercion are,

Z —y Q, Z[x] —y Z[y,x], Z —y Q[a;,f/], S(2) —>• S1̂ ) ,  Z[x\ —y Z(x) 

where S(n) is the symmetric group on a set of n symbols.

Coercions are useful when creating elements of quotient structures, such as Z —y Zn = 
Z /n Z  (where n G N). Other epimorphic (surjective) examples include,

Z25 -* Z5, G -» G/G'

where G is any group and G' is the commutator subgroup of G.

Under certain circumstances, coercions can be “lifted” into other constructors. We 
refer to these as “structural coercions” later in this work. As examples, consider,

L ist(Z ) —y L ist(Q ), L is t(Z 2s) —>• L ist(Z s), Z2s[x] -* Zs[:r],
M2,2(Z) -> M2,2(Z(x))

Examples of type-conversions which are not coercions include,

Q —y F loat, L is t(N ) —y S (n ), Z5 —y Z, Z5 —y Z3, —y Z[j/]

Natural type changes (coercions) can be created in the Axiom interpreter at the moment 
using a series of ad hoc measures. All of this occurs transparently to the user and works 
for most common types. However, it is not algorithmic. One of the aims of this thesis 
is to provide an algorithm (algorithm 7.4.1) to create unique (theorems 6.5.4, 7.6.7) 
coercions.
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Chapter 1. Introduction 1.6. Examples o f how Axiom coerces

1.6 Exam ples of how Axiom  coerces

Axiom knows (or believes) that all functions called coerce are coercions and will use 
them to “build” other coercions using certain rules, and special cases defined in the 
interpreter. Here we give examples of how Axiom coerces between certain common 
types.

S im p le  e x a m p le s  

E xam ple 1.6.1 Z —» Q:

In Axiom, Z is the type Integer and Q is the type Fraction(Integer). The type 
constructor Fraction(R : Ring) exports a function3,

coerce : R ->

which is the natural monomorphism including the ring R in its fractional field 
Fraction(R).

E xam ple 1.6.2 Z —> Z[X]:

In Axiom, the type U nivaria teP olynom ial(X ,In teger) typically represents Z[X].  
This is constructed by the type constructor,

UnivariatePolynomial : (S: Symbol, R: Ring) -> PolynomialCategory(R,
NonNegativelnteger, Symbol)

U nivariatePolynom ial exports a function,

coerce : R ->

which is the natural monomorphism including the ring R in the polynomial ring as the 
constant polynomials.

E xam ple 1.6.3 Z[X] -> Z [X,Y]  (where Z [X,Y] = Z [X][Y]):

This is the same as the previous example, [Y] is acting as a morphism Z[X] -» Z[X][y].

3Actually, defined in a Category to which F raction  belongs.
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Chapter 1. Introduction 1.6. Examples o f how Axiom coerces

Example 1.6.4 Z[X] Z[Y,X] (where Z[Y,X] = Z[Y][X]):

Axiom knows that Z —> Z[Y] is a coercion, and that the map [X] : Z[Y] —> Z fy ]^ ]  
(ie. U nivariatePolynom ial) lifts this coercion.

Example 1.6.5 Z -* Q[X, Y]:

This is built by the chain of coercions,

Z —>• Q —>• Q[X] —>• Q[X, Y]

Example 1 .6 . 6  S( 2 ) -» £(5):

These do not exist as domains in Axiom.

Example 1.6.7 Z[X] -)> Z(X):

This uses the coercion from F rac tio n  discussed above, since Z(X)  is represented in 
Axiom by, F rac tio n (U n ivaria teP o lynom ial(X ,In teger)).

Example 1.6.8 Z —> Z5:

This uses the function,

coerce : Z ->

defined in IntegerMod(n : P o s itiv e ln te g e r)

Example 1.6.9 Z25 -> Z5 :

Axiom cannot coerce from IntgerMod(25) to IntegerMod(5)!

S tru ctu ra l coercion s

The structural coercions are “lifts” of other coercions. In the case of L ists , one may 
perform a structural coercion as follows.

co erce( x : L ist(A ) ) : L ist(B ) == 
map( coerce , x )QList(B)

map( f  : L ist(A ) -> L ist(B ) , x : L ist(A ) ) : L ist(B ) == 
n u llp (x ) => n il( )$ L is t(B )  
cons( f ( c a r ( x ) )  , map( f  , cdr (x ) ) )
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Chapter 1. Introduction 1.7. Mathematical solution overview

In the case of Polynomials, a similar map function exists which uses + instead of cons.

In the case of M atrix a similar map function can be used (though since matrices are 
of fixed sizes - unlike sets, lists and polynomials - a default valued matrix (0) has to be 
created, then all the values substituted into (added to) it).

1.7 M athem atical solution overview

The solution to the questions raised in 3 of section 1.5 rely on abstract datatypes. 
These “collect” large numbers of types into collections of similar types. We shall be 
considering abstract datatypes in the language of universal algebra; specifically, order- 
sorted algebra (section 4.4).

Universal algebra has close links with the ideas of category theory. (See chapter 3 for 
category theory and section 5.4 for the links between the two theories). Indeed, Axiom 
uses the language of category theory to describe its algebraic design. Thus we shall 
also discuss the fundamentals of category theory in relation to this work.

Using the order-sorted algebra framework we shall show that there is indeed a strict 
mathematical definition (definition 5.5.2) which we may use to tell us which type 
changes are natural, and therefore, in our definition, coercions.

Moreover, we shall show that this approach allows us to create such coercions, algo­
rithmically (algorithm 7.4.1).

In section 1.8 we shall show an analogy with moving buildings to the solution of chang­
ing the type of (ie. coercing) something.

1.8 Constructing coercions algorithm ically

Consider the following analogy.

Suppose you have been given the job of moving London Bridge from one location to 
another. The bridge is too large to move in one piece.

You will merely be supervising the work and will not have to carry any of the bricks 
yourself, hence efficiency is not your concern.

You are also planning to move other different bridges in the future, and once you have 
a method for moving one bridge, you would like to be able to apply that method to the 
next. This means that next time a bridge needs moving, you won’t have to do much
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work at all.

Luckily for you someone has already worked out a way of moving any of the bricks 
at the very bottom of the bridge to their new location, regardless of any obstruction, 
which would normally leave civil engineers crying. This person was clearly a magician.

So here is your algorithm for moving London bridge, and hence any future bridge.

If the original bridge has no bricks left then finished.
Else,

take a brick from the top of the original bridge.
If this brick is a bottom brick then,

use the magical bottom brick mover, to place 
the brick in the corresponding location of 
the new bridge.

Else
hold the brick in place, in the corresponding 
location in the new bridge.

Endif.
Endif.
Repeat.

Indeed, you realize that this method will work for other brick-based constructions, or 
indeed anything that is “built” . (Obviously, there are other considerations, is the new 
location for the bridge a “natural” one? For example: Is it long or tall enough?)

The analogue of the bridge is a “thing” or “item” in our computer algebra system. The 
original location of the bridge is the original type of the “item” and the new location 
for the bridge is the analogue of the type to which we are coercing the “item”.

Thus what we need to know axe:

1. what are the foundations of a bridge?
(Analogue: what are the constants of our type?)

2. what is the length, width, strength of a bridge?
(Analogue: what are the parameters of the type?)

3. how do you alter the bricks to be of a new shape/material?
(Analogue: we need to be able to recursively call the coercion algorithm on 
types which are “recursively required for coercion”, (cf. Definition 7.6.5.) That 
is types which form the bits of the “item” once we have chopped it up.)
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This is our analogy (to algorithm 7.4.1) and we may consider many data types to 
be constructed (or built) similarly. For example, lists (in the Lisp-sense) are always 
constructed either by being the empty list, () , or by being the cons of something on 
to the front of another list.

As a more complicated example, polynomials are constructed via one of the following 
mechanisms:

1. by being a member of (the included monomorphic copy of) the underlying ring 
(a constant polynomial);

2. by being a symbol exponentiated to some positive power (a univariate monic 
monomial);

3. by being the product of a monic monomial and a univariate monic monomial (a 
monic monomial);

4. by being the product of a monic monomial and a member of the underlying ring 
(a monomial);

5. by adding a monomial to a polynomial.

So we see that at least two of the most basic types in computer algebra are constructed 
in this way.

1.9 Background of Axiom

Computer algebra is a subject which dates back to 1953, and has been described as 
“constructive algebra plus efficient algorithms” [Bra92], Towards the late 1960s, large 
collections of routines or programs were starting to become what one might think of 
as the first “computer algebra systems”.

Scratchpad I [GJ71] was born in about 1971, the principal architect being R.D. Jenks 
[JS92]. Scratchpad I took the best ideas from Reduce 2 [Hea71], and Mathlab, and 
with new ideas and a new language became IBM’s research computer algebra system.

In 1977 Jenks initiated the Scratchpad II project. Over the next couple of years, 
he, along with J.H. Davenport and Barton designed and implemented prototypes of 
a “sufficiently clever algebra system” - one which used the concept of “categories”. 
An idea which, (apart from research projects such as Newspeak [Fod83]) up until the
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release of Magma [Pla96] (November 1, 1994) made Scratchpad II unique amongst 
computer algebra systems.

The category inheritance mechanism is based on an original “abstract datatype” design 
by Jenks and B.M. Trager. The algebraic category hierarchy has subsequently been 
redesigned by Davenport with Trager.

The implementation of Scratchpad II commenced in 1982, and in 1991, support for the 
system transfered to NAG, and the name of the system changed to Axiom.

1.10 OBJ

The subject of data abstraction has not been monopolised by the computer algebra 
community. Indeed, much of the major work has been done by those who are almost 
completely disjoint from the computer algebra field.

A key player in the area has been Joseph A. Goguen. In 1976, Goguen designed OBJ as 
a language for dealing with algebraic abstract data types, errors, and partial functions 
in a simple, and more importantly, uniform way. (See [GWM+93] for more details.)

The current version of OBJ is OBJ3 Release 2 and is implemented in Common Lisp. 
OBJ3 is based on order-sorted equational logic, which provides a notion of “subsort”. 
OBJ3 also provides “parameterised programming” . Both of these notions are found 
in Axiom and Magma, but OBJ3’s idea of subsort is far more rigorous that that of 
Axiom. We shall discuss OBJ in more detail in section 2.8.

1.11 Aim s of the thesis

We shall lay down a strict mathematical foundation for a type system in a computer 
algebra system like Axiom. We state the mathematics which inspired Axiom’s type 
system (chapter 4).

Axiom’s type system uses ideas which are not explained using this basic mathematics. 
In section 5.2 we explain some current mathematics which models how we shall be 
viewing Axiom’s partial functions. In 5.3 we state some new mathematics to deal 
with Axiom’s conditional categories. In section 5.5 we formalise what is meant by a 
coercion. In chapter 9 we state the differences between Axiom and the mathematical 
theory.

However, the greater part of this work is dedicated to stating (sections 6.2 and 6.3) and
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creating (sections 6.4, 6.5 and chapter 7) enough mathematics to state an algorithm
for automatically creating mathematically correct coercions.

In Axiom coercions are defined by:

• being a (rare) special case, hand-coded in the interpreter;

• being an explicitly written coerce function, from a Category, Domain or occa­
sionally a Package; or

• being created via special interpreter tricks, which combine the above in an ad hoc 
manner.

These special interpreter4 tricks5 cover most cases, but not all. Users can not guarantee 
that coercions entered in the interpreter will exist.

It is also important to note that these special interpreter tricks are not available in the
Axiom compilers (for Spad and Aldor).

We shall present an algorithm which builds coercions (for a very large subclass of types) 
which should exist from a (potentially, but not necessarily) minimal set. This algorithm 
is implementable (chapter 8) in the Axiom interpreter. Subject to a set of conditions 
being met by the type system these coercions are unique.

We draw some conclusions about this work in chapter 10.

4The interpreter is the interactive interface to  the Axiom system.
5Special hand-written pieces of code which execute “behind the scenes” in the interpreter.



Chapter 2

T ypes in com puter algebra

2.1 Introduction

In this chapter we shall go into more detail about types in various computer algebra 
systems. We shall discuss how the different systems view the concept of typing in­
formation; from the simplest non-typed languages in the so-called “M&M-systems”1 
through Reduce’s type system2, to the full-blown mathematical beauty of systems such 
as Magma and Axiom.

2.2 M athem atica

Mathematica is one of the most popular computer algebra systems on the market, 
today. Priced very reasonably, and with an attractive user interface, it is easy to see 
why ordinary PC owners are attracted to this product.

In chapter 4 of “Mathematica, a System for Doing Mathematics by Computer” [Wol92] 
Wolfram states,

“At a fundamental level, there are no data types in Mathematica. Every 
object you use is an expression.”

Types may be created in Mathematica, but they are merely tags on which one can 
perform switches. (For example, the tag “L is t”.) This is an obvious approach, since 
Mathematica uses rule-based programming.

[JT94] Mathematica and Maple axe referred to as M&M.
2The ability to extend the type system of Reduce was inspired by Axiom (then called Scratchpad).
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Abstract data types for Mathematica are discussed in [Mae92], and inheritance for such 
a system in [Har94]. However, this approach is only marginally more sophisticated than 
that used in Reduce (described in [BHPS86]). There is some form of abstraction in 
this Mathematica abstract data type model, but function method selection is just as 
primitive as in the Reduce model.

2.3 Maple

Maple [CGG+92] is a small, fast, popular computer algebra system, and is well re­
spected both by users and experts in the area of symbolic computation. Maple (ver­
sion V release 3)3 does have some concept of “type” , but as you can see, this is not 
particularly well founded.

> x:=array(0 .. 1, 0 .. 1, [[a,b],[c,d]]);

x := array(0 .. 1,0 .. 1,, [
(0, 0) = a 
(0, 1) = b 
(1, 0) = c 
(1, 1) = d

])

> m:=linalg[matrix]( 2 ,3 ,[x,y,z,a,b,c] );

[ x y z ] 
m := [ ]

[ a b c ]

> eval(m[l, 1] ) ;

array(0 .. 1,0 .. 1,, [
(0, 0) = a 
(0, 1) = b 
(1, 0) = c 
(1, 1) = d

3 Maple V release 4 is now available.
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])

> type(m ,m atrix );

tru e

Notice that m is now a 2x3 “matrix” (in Maple’s view) whose (l,l) th  element is an 
a rray  of symbols. Three of these symbols are also in the second row of m. The array 
type does not form a ring and moreover, the elements of m are from different types.

It is ridiculous that one may create matrices over any type which does not form a ring! 
One learns at school that given two matrices A  and with the same number of rows, 
p, and the same number of columns, q, one may calculate

1. the p x q additive identity matrix

2. if p = q, Ip - the p x p  multiplicative identity matrix

3. the negation of a matrix, —A

4. their sum, A +  B

5. the product A B T (where B T represents the transpose of T).

However, should one create matrices over types which do not form rings, then one of 
the above may not be well defined (VA in case 3, and V A ,B  in cases 4 and 5). This is 
the situation in Maple — it lets one create objects of the type m atrix  which are not 
matrices in the mathematical sense4.

Maple will now also let one “assume” certain properties about, or types for elements, 
but these are entirely at the user’s discretion. This mechanism is based on “the alge­
bra of properties” as described in [WG91][WG92]. One can think of this assumption 
mechanism as an advanced way of declaring the type of a variable.

The algebra of properties is a fascinating and extremely clever way of assuming certain 
facts about a given symbol, and works very well in the context of saying, “We assume 
that a  is real and greater than zero”, and then deducing various facts about f(ot).

4Admittedly, Axiom does not always get these things perfectly correct. Martin [Mar97] points out 
that Axiom allows Matrix (F loat) as a type, yet the F loat type does not really form a ring.
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However, the algebra of properties does not work particularly well for typing sym­
bols/data. Type inference, for example, is problematic — given a, real and greater 
than zero, what are the types of a  — 1, 1 — a, a 2 — o; and i/log(o;)?

Inserting new elements in the property lattice is inherently difficult, and in a dynamic 
system means that binding operations to implementations is impossible at compilation 
time.

It could be argued that this method could run along side of Axiom’s more advanced 
notion of types. Part of the problem with the Maple system is a confusion between 
different classes of “unknowns”. There is no distinction between the importance of 
being a real number, and that of being greater than zero5. Surely “being a real” should 
be far more important than some statement regarding a symbol’s possible values.

Much work has been done on this subject with special emphasis on Axiom, and the 
definitive work is [DF94] which defines the different classes of “unknowns” and provides 
details of an implementation for Axiom.

2.4 Reduce

Reduce 3 (current release is 3.6 [Str95][ffi98][Neu96]) is a well-established Lisp based 
computer algebra system, and although the user interface is archaic, until recently, its 
algebra system was still one of the very best around6.

Reduce has a well-defined concept of “type” and indeed, new datatypes may be added 
and included at will. [BHPS86]

Reduce prototypes have also been developed [HS95] which take an order-sorted ap­
proach to algebra. This implementation seems to take some of the Axiom ideas and 
some of the algebra of properties ideas. It appears to be far cleaner and clearer than 
the model used in Maple.

However, in this prototype, it is still stated (in [HS95]) that:

“Mathematical structures can have several isomorphic representations. A 
good example is the representation of polynomials in a distributed or re­
cursive form. [...] For the simultaneous use of multiple representations,

5Being “greater than zero” is not just a proposition restricted to real numbers (or subsets thereof). 
Polynomial types axe often ordered, and zero is a constant polynomial.

6The commercial success of some of the other systems has forced them (and gained them the capital) 
to correct many of the bizarre bugs that used to abound in earlier releases. Thus the commercial systems 
now work as well as Reduce, have a friendly GUI and may well have consigned Reduce to history.
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explicitly defined coercions are necessary.” (My emphasis.)

This is not currently the case in Axiom where coercions can be built (in the interpreter) 
by clever tricks in the underlying code. Furthermore, it is the aim of this thesis to 
demonstrate that, using an order-sorted approach to algebra, one can “build” many of 
these coercion functions without explicitly defining the coercions themselves.

2.5 Axiom

Axiom [JS92] (nee Scratchpad II) is a Lisp-based, general computer algebra system. 
Axiom’s main view of things is that every object has a type, and that there are osten­
sibly four layers.

items E Domains E Categories E Category

For example,

3 E Integer E Ring E Category

and the top layer is the unique distinguished symbol, “Category”. In general, this top 
layer is never referred to, and the three lower layers are all that are ever considered.

Strictly speaking, if one considers Axiom’s Categories to be categories, and Axiom’s 
Category symbol, to signify the category of all the Categories7, then one should write,

3 E Integer, Integer E Obj(Ring), Ring E Obj(Category).

where 3 E Integer means 3 is an element of the carrier of the principal sort of the 
signature to which Integer belongs.
Users may extend the Axiom system by writing new Domains and Categories in the 
Axiom extension language, called Aldor8 [WBD+94a]. (They may also be written in 
an older Axiom language, called Spad. This is the language described in [JS92].)

Aldor can be complied into many languages: for use inside Axiom; to Lisp (currently 
AKCL [AKC97] or CCL [ffi97]); to C [WBD+94b]. This makes Axiom far more than

7Category is not one of the C ategories in Axiom.
8This language was sometimes referred to as Ajj in internal documents, and has often been referred 

to as Axiom-XL.
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just an algebra system, Aldor is also a first class language for writing fast, efficient, 
stand-alone applications.

A category is a collection of domains all of which are “similar”. In [DT90] the authors 
state that they designed the Scratchpad system of categories or “abstract algebras”9 
(qv. chapter 4) for the following reasons:

1. economy of effort (section 2.5.1);

2. interest (section 2.5.2);

3. functoriality (section 2.5.3).

2.5 .1  E con om y o f  effort

The most obvious reason for this is the view of inheritance. A category (in Axiom) is 
said to extend another if it inherits all the other’s functions, attributes and equations. 
This allows for a significant amount of re-use.

A more important issue in an algebra system is that if one can prove a theorem in some 
generality, ie. for all the objects in a category, then one does not have to go around 
proving the theorem for each object of the category.

2.5 .2  In terest

Some categories are interesting and some are not. For example, Ring and F ie ld  are 
particularly interesting. Many theorems can be proved for all F ields.

However (to borrow an example from [DT90]), the category of all rings which when 
viewed as Abelian groups, have an involution with precisely one fixed point, is not 
particularly interesting.

One may think of the designers’ concept of “interest” as congruent to “useful” (usually 
to the user, but occasionally to the designers).

2 .5 .3  F u n ctoria lity

This is called “higher order Polymorphism” in [Cro93]. There are operators which 
given objects of a category can create new objects of a given (potentially different)

9Axiom’s C ategories can also be thought of as order-sorted algebras, but the order on sorts is 
never explicitly defined and there axe some difficulties in the definition of the operator symbols. This 
is discussed in more detail in section 9.2
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category. For example List is a functor from SetCategory to ListAggregate.

List : SetCategory —>• ListAggregate 
S List(S)

Indeed, this target category may even be the distinguished symbol Category.
In Axiom, the Category constructors (often called functors) are functors from

JJ Category Category
neNUO

For example, the Ring functor takes no arguments and returns the Category of Rings.

Ring () —> Category
() *—>■ Ring

The special Category creation operation, Join is also a functor. Join is used to declare 
a new Category to be a subcategory of the intersection of two or more Categories. 
Here we illustrate the case of Join acting on two Categories.

Join (Category, Category) —» Category
(A, B) i y A fl B

More commonly in Axiom, and Axiom’s own use of the word “functor” covers cases 
as follows. This is similar to the case of Ring, only less trivial. ListAggregate is the 
Category of all types of finite lists.

ListAggregate : (SetCategory) —>■ Category
S ListAggregate(S)

Here we see the subcategory ListAggregate (S) of the Category, ListAggregate. 
When using Axiom, one usually thinks of one’s type as belonging to the smaller, con­
crete (sub)Category, ListAggregate (S ). Mathematically, one usually thinks of one’s 
type as being in the larger, more abstract ListAggregate.

2.6 N ew speak

As an aside from the main computer algebra systems listed in this chapter, a research 
system called “Newspeak;” [Fod83] (or more correctly, N ew sp ea k ) will now be dis­
cussed.
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Newspeak was a language written at the University of California at Berkeley in the 
early 1980s.

It differed from Axiom (then in the early stages of being Scratchpad II, otherwise called 
Newspad) by discarding the category mechanism and making a list of improvements, 
most of which are now in Axiom.

The differences are listed in [Fod83] and are summarised below. We shall also point 
out whether the differences still hold or not.

It should be pointed out that Barton (of the Scratchpad II design team) also had 
an implementation of Scratchpad II called Andante. Andante grew in parallel with 
Scratchpad II, but this chapter will refer mainly to Scratchpad II.

Specific advantages of Newspeak over Axiom which have not yet been incorporated 
into Axiom axe,

1. Axiom’s implementation language is not itself. Newspeak, however was written 
in Newspeak. This allowed the authors of Newspeak to write dedicated garbage 
collection, and fast function selection routines.

2. Function lifting: If one writes a Category in Axiom which has parameters from 
a very generic Category, such as Ring, then for certain functions to be available 
in the type one has to write code such as the following (from the definition of 
FiniteAbelianMonoidRing(R:Ring, E:OrderedAbelianMonoid))

if R has IntegralDomain then
"exquo": (7,,R) -> UnionC/,,"failed")
++ exquo(p,r) returns the exact quotient of 
++ polynomial p by r, or "failed"
++ if there is none exists, 

if R has GcdDomain' then 
content: 7, -> R
++ content(p) gives the gcd of the 
++ coefficients of polynomial p. 

primitivePart: 7. -> 7.
++ primitivePart(p) returns the unit 
++ normalized form of polynomial p 
++ divided by the content of p.

Newspeak’s “parameterised representationless types” (equivalent to Axiom’s
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Categories) get around this problem by extending (or in their doublethink word­
ing, “restricting”) the Polynomial constructor <  Poly > to < P oly ld  > (Polyno­
mials over Integral domains) etc.

To this author, this does not appear to solve the problem of having to know the 
category hierarchy of one’s parameters. It merely abstracts it and moves the 
problem to a less satisfactory place.

Problems Scratchpad II/Axiom then had which have since been fixed,

1. A domain could only belong to one Category. (This was not true even then for 
Andante.)

2. Functions declared in C ategories were only able to have their sources and targets 
from: a specific domain; an arbitrary type of this Category; the value of a 
parameter of this Category.

Although Newspeak allowed functions between categories (which it called, “pa- 
rameterised representationless types”) which cannot be written in Axiom’s Spad 
or Aldor languages; one could do this in Axiom’s Boot language, but this is not 
a desirable option.

3. Axiom’s items did not know their own type or that type’s position in the hierarchy.

In conclusion, Newspeak was a brave attempt at rewriting Scratchpad II/Axiom with­
out explicit categories, and solved many of the problems that the language then had. 
Fortunately (maybe thanks to Newspeak) these problems have since been redressed, 
and Axiom is all the more flexible and easier to use for it.

2.7 Magma

Magma, the system to replace Cayley, is a new and powerful computer algebra system. 
As with Cayley, the main purpose of Magma is to deal with discrete algebraic objects. 
While Cayley was useful as a tool for investigating groups, Magma can deal with many 
differing discrete algebraic objects.

Magma users are people more interested in branches of mathematics such as Semigroup 
theory, Group theory, Galois theory or other areas of modern algebra10. Magma does

10It should be noted that Axiom has some competence in all these areas, but for discrete mathematics, 
it can not match the pure speed of Magma.

—  32 —



Chapter 2. Types in computer algebra 2.7. Magma

have some ability to deal with the mainstream areas of computer algebra (polynomials, 
etc.) but this is not Magma’s raison d ’etre.

The design philosophy of Magma [BCM94] takes its cues from Axiom, but goes further, 
supporting algebraic structures as first class objects. This makes Magma far more 
powerful than Axiom when dealing with algebraic structures. Indeed, manipulating 
algebraic structures is as easy as dealing with their elements in Magma. In Axiom, this 
is simply not the case.

A fundamental design difference between Axiom and Magma is the following. Axiom’s 
designers took their cue from order-sorted algebra. Thus their definitions of types and 
their method of collecting them (Categories) focus on the operations which are valid 
on those types.

The Magma methodology is more representation centred. A category in Magma consists 
of all objects with a similar representation — the category of all permutation groups, 
for example. However, all the categories of different representations of an algebraic 
idea are collected together in a variety — the variety of groups, for example.

This is a subtle difference between Axiom and Magma, since Axiom views varieties as 
categories. At some future date, should Axiom ever support algebraic structures as 
first class objects, then the noticeable difference would be minimal.

Magma also supports the idea of order-sorted algebra more concretely than Axiom 
does. From the Magma WWW page [Pla96]:

“The primary concept in the design of the Magma system is ‘magma’. Fol­
lowing Bourbaki, a magma can be defined as a set with a law of composition.

“Thus, types correspond to magmas; a collection of magmas sharing a 
common representation forms a category (e.g. the category of permuta­
tion groups); a collection of categories satisfying the same set of identical 
relations forms a variety (e.g. the variety of groups). Functors may be 
used to move between categories, and the variety operations (substructure, 
homomorphic image, and Cartesian product) are available as uniform con­
structors across all categories.

“While every value in Magma belongs to a unique parent magma, the system 
provides a mechanism for automatic and forced coercion, to move a value 
from one magma to another. To take a simple example, when an integer 
is added to a rational, Magma automatically coerces the integer into the 
rational field, so that the addition operation can be carried out on two
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values with the same parent.”

This automatic coercion (also implemented in Axiom) is from the order on the sorts 
R:Ring -< Fraction(R), in the theory of fractional (quotient) fields. (^ , as we shall 
define in section 4.4 roughly means that there is some sort of “natural way” of mapping 
every element of R to one in Fraction(R).)

2.8 OBJ

In this section we shall discuss how OBJ implements the ideas of order sorted algebra 
in a more concrete way than Axiom or Magma. Much of the information in this section 
can be found in [GWM+93].

It should be noted that OBJ is not marketed as a computer algebra system, but as a 
comprehensive language with a strong mathematical foundation.

OBJ provides a strongly typed language based more closely on order sorted algebra 
than any other.

At OBJ’s top level, there exist three types of entity,

1. objects: These are described in the literature as an encapsulation of executable 
code, or an algebra. Though it should be noted that an OBJ algebra need not 
be a model of any theory. (Note: OBJ documentation sometimes refers to the 
objects as Modules.)

2. theories: In the literature, theories are described as varieties, but in our language, 
OBJ’s theories are indeed theories.

3. views: Views show how objects (algebras) satisfy or model certain theories.

In the next few sections we shall investigate these entities in more detail, so that we 
may compare them with Axiom’s top level forms.

2 .8.1 O b jects

An OBJ-object is an executable algebraic specification for an abstract data type. That 
is to say, an OBJ-object defines a sorted signature (or indeed a theory, since equations 
are allowed) and provides the initial object of that theory11.

11 The initial object of a theory is the term algebra factored out by the equations. This is equivalent 
to the category theory notion of initiality.
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The parameters of an OBJ-object can be typed, and forced to be models of particular 
theories. Indeed, OBJ-objects can be viewed as algebras modelling particular theories 
themselves, as we shall see in section 2.8.3.

2 .8 .2  T heories

OBJ-theories are indeed order sorted signatures with sets of equations. Semantically, 
OBJ-objects and OBJ-theories are very similar. However, one important difference 
is that the equations presented in a theory do not have to have to satisfy the same 
restrictions as those in an OBJ-object.

OBJ-objects must have equations which can be converted into rewrite rules, however, 
this restriction does not apply to OBJ-theory equations. This is because the OBJ- 
objects are executable, whereas OBJ-theories are not. (Remember that OBJ312 is 
based upon a rewriting system.)

2 .8 .3  V iew s

Views are the most exciting feature of OBJ. A view in OBJ is a method for stating 
that a particular OBJ-object models a particular OBJ-theory.

What makes OBJ unique is not the fact that the carriers may have different names to 
the sorts, but that the operator names may be different to the operator symbols.

2.9 Comparison

So how do our definitions of higher order entities, OBJ’s and the other systems’ com­
pare?

12The current implementation of OBJ is called OBJ3.
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U niversal
A lgebra

C ategory
T heory

O B J M agm a A xiom
(ab s trac t) (concrete)

Variety Variety

Theory Category Theory Theory 
defined 
in an 
object

Signature Category Category

Algebra Object View Object Magma Domain

In the Universal Algebra column, we have written variety in a different row to theory. 
This is not quite correct, yet the two are different. A theory is a specification of a type, 
and a variety is the collection of all types with satisfy or model that specification.

There is a difference between theories and signatures, since signatures contain no infor­
mation about equations. However, the difference is small; a theory with no equations 
is a signature.

We have slotted categories in as the equivalent of universal algebra’s theories. Yet 
since everything may be thought of as a category, this decision is merely arbitrary. The 
specification of a category could be the same as a theory (indeed this is the case in 
Axiom), but the collection of all objects of that category would form a variety.

In the OBJ (abstract) column we refer to genuine OBJ theories declared to be theories 
(as opposed to those mentioned in the OBJ (concrete) column). OBJ’s theories are 
most certainly theories (and the collection of views of a particular theory forms a 
variety). A view of an OBJ-theory is most certainly a model satisfying that theory, 
and hence an algebra of the signature of the theory, by definition.

In the OBJ (concrete) column the theories are those which exist by inference from an 
object definition. OBJ-objects define a singleton variety (defined by the inferred theory 
which the object models).This inferred theory is not an OBJ-theory. However, it is still 
a mathematical theory.

Magma has a view of varieties and categories matching in with the mathematical variety 
and signature definition. It should be noted that Magma’s categories neither have 
an explicit notion of sortedness, nor one for equations. Though certain assertions, 
assumptions and statements may be made.
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Axiom’s categories (written C ategories elsewhere in this thesis) are discussed at length 
in other chapters of this work.

—  37 —



Chapter 3 

Category theory

3.1 Introduction

As we have already hinted at, category theory is one of the main foundations of both 
Magma and Axiom. In this chapter, we shall give the necessary definitions to investigate 
this claim. We shall also investigate the claim in itself.

The definitive text on Category Theory is Mac Lane [ML71]. The amount of theory 
we require is relatively small. We define categories without worrying about Russell’s 
Paradox [Men87]. In appendix B we have a brief look at the complications which arise 
when one does.

3.2 Category theory

D efinition 3.2.1 A category, C, consists of two collections. The first collection is 
called the objects of the category, or Obj(C). The second collection is called the arrows 
of the category, or Arr(C).

Also, for each arrow, f ,  there exists two special objects with which it is associated. The 
first is the source of f ,  called source(/). The second is called the target of f ,  called 
target ( /) .

There also exists a "law of composition ” for arrows:

(Vg,f  arrows)((source(g) = target(/)) =>■
(3g o /  arrow) ((source (g o f )  =  source(/)) A (target^  o / )  =  target(^))))
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Next, for each object, c, there exists a unique arrow, called the identity arrow on c, or
idc.

Finally the following two axioms must hold:

(VAr, g , /  arrows)( ( g  o / ,  k o g  arrows) =>
((fc O ( g  o / ) ,  ( k o g ) o  f  arrows) A ( k  o ( g  o f )  = ( k  o  g )  o / ) ) )

(V/ arrows)((idtarget(/) ° /  =  / )  A ( /  o idsource(/) =  / ) )

Here endeth the definition.

To introduce the concept, here are some simple finite categories.

Example 3.2.2 0 is the empty category, it has no objects and no arrows.

Example 3.2.3 1 is the category with one object, and one arrow.

Example 3.2.4 2 is the category with two objects, a, b and one non-identity arrow, 
/  : a -> b.

Example 3.2.5 44- is the category with two objects, a , b and two non-identity arrows, 
f ,g  : a - t b .

Now, let is consider some more useful categories. The collection of objects in the 
following examples do not always form a set [ML71][Ber91][Dev79][BHFL73].

Example 3.2.6 Set is the category which has as objects, all sets, and has as arrows, 
all total functions between sets.

Example 3.2.7 Grp is the category which has as objects, all groups, and has as 
arrows, all group homomorphisms between them.

Example 3.2.8 Ring is the category which has as objects, all rings, and has as arrows, 
all ring homomorphisms between them.

Example 3.2.9 Poly is the following category. An object of Poly is a set of all 
polynomials with: variables from a fixed ordered set, V; coefficients from a fixed ring, 
R; and the exponents of the variables from an ordered free monoid with one generator, 
E .
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An arrow of Poly  is a Polynomial-homomorphism. That is, a Ring-homomorphism 
which also acts homomorphically on a certain set of functions which act on polynomials.

Some texts call the arrows of a category the morphisms of a category. Examples 3.2.6 
- 3.2.9 show us that for some naturally occurring categories, the arrows (or morphisms) 
are just the homomorphisms of the category. Indeed, an arrow of Set (a total function) 
is really just a homomorphism between sets.

So we see that the arrows preserve a certain set of properties for each element of the 
object.

We also see that every object of G rp  is an object of Set; every object of R ing  is an 
object of G rp; and every object of Poly  is an object of R ing.

Now similarly, replace the word “object” with the word “arrow” in the previous para­
graph and it still holds true.

Hence we see that in an algebra system, there is a certain amount of “inheritance” 
amongst the categories. The categories are the so-called abstract datatypes since they 
type the usual datatypes.

We can also see how the categories can collect together all similar types. This function­
ality can be used for the three design goals of Axiom: economy of effort — the code 
for many similar types need only be written once; interest — collecting similar types 
together gives the user an identical interface1 to similar types; and functoriality which 
is best left to be discussed after the following definition.

D efinition  3.2.10 Let B ,C  be categories, then a functor, T  : C  -+ B  consists of two 
functions:

1. T  : Obj(C) —> Obj(R) (the object function);

2. T  : A tt(C) —> Arr(R) (the arrow function).

These must obey the following:

1 Which has an entirely different, yet identical meaning in Java [Gra97]. Java does not allow multiple 
inheritance from classes, due to the usual problems. To work around this, Java provides “interfaces”.

An interface is just like a class (although declared using different syntax) except that it can not 
provide a method for any operation. It may declare many (signatures of) operations available to any 
class which implements the interface.

This is similar to abstract types (classes with all functions “pure virtual” and no data members) in 
C + +  [Str97].

—  40 —



Chapter 3. Category theory 3.2. Category theory

(V/ arrow)(T(source(/)) =  source(T(/)));
(V/ arrow)(T(target(/)) =  target(T(/)));

(Vc object) (T(idc) =  idT(c));
(V<7, /  arrows) ((source (<7) =  target(/)) =» {T(g o / )  =  T(p) o T (/))).

This is a very useful definition. It shows us that when we have two objects and an 
arrow between them in one category, then a “sensible” map of these objects to another 
category will induce the obvious map between these image objects.

In fact, one can see that if one were to define a category which had as objects “all 
categories”, and as arrows “all functors” then we would (set theoretical concerns aside) 
have a well-defined category.

Categories, just like many other mathematical constructs, may form products.

Definition 3.2.11 For two categories B  and C we may construct a new category de­
noted B  x C called the product of B  and C.

An object of B  x C is a pair (b, c) where b is an object of B  and c an object of C.

An arrow of B  x C is a pair (/, g) where f  : b —>• b' is an arrow of B , g : c —► d  is an 
arrow ofC,  the source of (f ,g) is {b,c) and the target of {f,g) is (2>;,c').

Composition of arrows { f \ g ’) : {b',<f) —> (b",cn) and (f ,g) : (b,c) —> {b',c') is defined 
via

{ f ' , 9 ' ) ° ( f , g )  =  ( f , o f , g ' o g )

Axiom makes use of such products implicitly in its functor definitions. For example, 
see the discussion of PolynomialCategory, below.

“Natural transformations” are another important part of category theory. They are to 
functors, as functors are to categories. Here is a more formal definition.

Definition 3.2.12 For two functors S ,T  : C B  a natural transformation r  : S —>T 
is a function which assigns to every c G Obj(C') an arrow t c = re : Sc Tc of B  such 
that

(Vc G Obj(C))(V/ : c - >  c' G Arr(C)){Tf  o rc =  re' o S f )

Now we may define the following interesting category.

Definition 3.2.13 For two categories B ,C , the functor category B c  is the category
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with objects the functors T  : C B  and arrows, the natural transformations between 
two such functors.

As another fairly abstract definition, consider the following.

Definition 3.2.14 Let S  : D  —>• C be a functor and c G Obj(C'). An universal arrow 
c —>• S  is a pair (r,u) G Obj(D) x Arr(C) where u : c —>• Sr such that

(V(d, / )  G Obj(D) x Arr(C)where/ : c —> Sd)(3\ f / : r —» d G Ari' (D))(Sfr o u = f )

Functoriality in a computer algebra system allows us to view objects of one category 
as object of another.

As we have already seen, an object of Poly is an object of Ring and hence an object 
of Grp and thus an object of Set. We have also seen this is true for their arrows. This 
relationship is called the subcategory relationship, defined formally as follows.

Definition 3.2.15 A category C is a subcategory of a category B  iff every object of 
C is an object of B  and every arrow of C is an arrow of B .

Functors from subcategories to the categories of which they are subcategories, are often 
called “forgetful functors”. This is more often true when the target of the functor is 
Set.
Axiom’s designers also use functors to create instances of abstract datatypes. 
PolynomialCategory (.,.,.) (Axiom’s equivalent of Poly) is in Axiom’s view a func­
tor,

Ring x OrderedAbelianMonoid x OrderedSet —> PolynomialCategory( .,.,.) 
(R,E,V) PolynomialCategory(R,E,V)

This functoriality provides the “glue” for Axiom’s type mechanism.

Now, trivially for categories A, B  if 3F : A —> B  a forgetful functor, then B  is a sub­
category of A. Equally trivially, a concrete instance of PolynomialCategory(R,E,V) 
is a subcategory of PolynomialCategory (R,.,.) which is a subcategory of Poly.
It is this first form of subcategory relation that provides Axiom’s inheritance mecha­
nism.

—  42 —



Chapter 3. Category theory 3.3. Categories and Axiom

3.3 Categories and Axiom

N otation 3.3.1 To distinguish between Axiom ’s internal structures and those com­
monly used in mathematics, things which belong to Axiom will be written in this 
font. Specifically,

•  Category will always refer to Axiom’s distinguished symbol, to which all Axiom’s 
Categories belong.

•  Hence, a Category is an Axiom object declared to be such an object, eg. Ring, 
PolynomialCategory(R,E,V).

• A Domain is an Axiom object declared to be a member of a particular Category. 
eg. Integer, Polynomial (Integer).

• An  item is an element of a Domain, eg. 1, 5*x**2 +1.

As stated in section 2.5, Axiom’s main view of things is that every object has a type, 
and that there are four layers.

items G Domains G Categories G Category

Categories also may inherit from or extend other Categories, forming an inheritance 
lattice. Thanks to the higher order polymorphism available in Axiom, Categories 
may also be parameterised by items2 or Domains.
This parameterisation may cause some confusion. For example,

List(S) : ListAggregate(S)

declares for each and every S, List (S) is in the category ListAggregate (S). For exam­
ple List (Integer) is an object of ListAggregate (Integer). However, 
ListAggregate (Integer) is a mere subcategory of “the category of all objects which 
are domains of linked lists”. This is ListAggregate(S).
So ListAggregate (S) contains, for example both List (Integer) and 
List(Fraction(Integer)) as objects, but what are the arrows of this category? This

2One may view a domain as a category, whose objects are the items, and whose arrows are either triv­
ial (ie. solely the identity arrows) or some other natural occurring meaning, eg. In P o s it iv e ln te g e r ,  
one may think that there is a natural map 35 —> 5, since 5 | 35. This would then mean that this map 
could be “lifted” to IntegerMod 35 -> IntegerMod 5.
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is something which is not made explicit in the Axiom literature, and is indeed the core 
of this thesis.

We shall discuss what it means to be a “natural map” and how this relates to categorical 
arrows, (section 5.4.)

3.4 Functors and Axiom

Axiom describes its domain constructors as functors, and this is true. After all, (ne­
glecting difficulties with constructors which take domain elements for arguments) these 
constructors are maps from a cross product of categories to another category.

The difficulties with constructors which take domain elements for arguments disappear 
when considering the argument used in footnote 2 of section 3.3.

3.5 Coercion and category theory

If coerce : A —► B, then we are going to have that A and B are objects of the same
category, ACat, and that coerce is an arrow of that category. (See definition 5.5.2.)

Also, if T is a functor from ACat to TCat, which in Axiom would look like,

T(A:ACat) : TCat

then T lifts the arrows of ACat to TCat, and in particular,

T : coerce: A -» B h-» coerce: TCat (A) —» TCat(B)

In many types (and some other languages) T is acting like the familiar “map” operator 
on the coerce function.

3.6 Conclusion

We have seen in this chapter how category theory and abstract datatyping especially 
with respect to Axiom’s Category mechanism are ideologically similar.

We have also shown how Axiom’s functors interact with coercions from a category 
theoretical perspective.
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Chapter 4

Order sorted algebra

4.1 Introduction

In this chapter we shall introduce the concepts of universal algebra. We shall look at 
the unsorted case to start with and then move on to the sorted case.

We then follow up with the equational calculus which allows us to consider sets of
equations which must hold in a concrete instance of an algebra.

All the work in this chapter is taken from [Dav93] except: example 4.2.8; the Perl
example in section 4.4; and section 4.7.

4.2 Universal Algebra

Universal algebra will provide us with a natural way of representing categories of types 
which possess certain functions. In the following lengthy section of definitions, keep 
in mind that what we shall define as a “signature” will be equivalent (in some sense) 
to our notion of a category (or abstract datatype). An algebra will be the ideological 
equivalent of an object (or type).

D efin ition 4.2.1 A sort-list S, is a (finite) sequence of symbols (called sorts,) normally 
denoted (si , . . . ,  sm).

D efinition 4.2.2 Given a sort-list of size m, a set A  of .S-carriers is an ordered m- 
tuple of sets A Si indexed by S.
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Example 4.2.3 One may consider the sort-list of a vector space to be (K , V ) where 
K  is to be identified with the underlying field and V  is to be identified with the set of 
all points in the vector space. Then considering C to be a vector space over R, the 
(K,V)~ carriers of C are (R, C).

So we see that the carriers of a particular type are a list of types which “have something 
to do with” the type in question. The sort list is a list of the same length where the 
ith  element is a symbol corresponding to a particular abstract datatype to which the 
zth carrier belongs1.

Definition 4.2.4 Given a sort-list S  and n  G N  U {0}, an S-arity of rank n is an 
ordered n-tuple of elements of S.

An arity is merely a list of elements of the sort list. This will be useful when we wish 
to type polymorphic (or abstract) functions.

Definition 4.2.5 Given a sort-list S, n € NU {0}, q =  {q\ , . . .  ,qn) an S-arity of rank 
n, and a set A of S-carriers, we define

A" := n  A «

This is the map of an arity to the list of carriers.

Definition 4.2.6 An iS-operator of arity q is a function from A q to one of the elements 
of A.

Definition 4.2.7 An S'-operator set or S'-sorted signature is a set E of sets En)9)S 
indexed by n G N  U {0}, q an S-arity of rank n, and s G S, such that Un,g,s ^ n,q,s a  

subset of some alphabet. An element of some En)9)S is called operator symbol.

The usual notation for such a signature is (E ,S).

So this defines us a set of sets of polymorphic functions2 for a particular sort-list. A 
signature is like a category in that it is an abstract datatype.

A signature collects together all types which share a similar family of operators.

1 Notice that the sort list is defined first and that the carriers depend on the sort list. One does not 
define a list of carriers and then fix a list of abstract datatypes post facto.

2Functions without methods.
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E xam ple 4.2.8 Monoids: NU{0} is an additive monoid, whereas N  is a multiplicative 
monoid.

The signature for monoids could be viewed as being

<T, U) =  <(M, B), ((e), (), (id), (ep), (), (), (6), ( ) . . . ))

where M  is the monoid sort, B  is the sort of boolean logic types. The operator symbol 
e is a member of Y(o,(),m) and corresponds to the function which always returns the 
identity constant of the monoid.

id is the operator symbol in Y(i ,(m ),m ) corresponds to the identity function.

ep is the operator symbol in Y^ ^ ) ,# )  which corresponds to the “is this the identity 
element?” function.

Last (in our example) but by no means least, b is the monoid’s binary operator from
Y(i

So in NU{0}, e, id, ep, b correspond to 0, id, 0?, +  respectively. Whereas in N , e, id, ep, b 
correspond to l , id, l?,  x respectively.

D efinition  4.2.9 A (multi-sorted, total) E-algebra is an ordered pair {A, a) where A  
is an S-carrier set and

a = {o:n)9)S|n E N  U {0}, q an arity of rank n ,s  E S}

a n,q,s =  { a n,q,s,<r ’■ A 9 —> -<4s}creEnigia

So if (Y, U) is the monoidal signature, then

((N, Boolean), ((1), (), (id), (1?), (), (), ( x ) , . . . ))

is an Y-algebra.

N o ta tio n  4.2.10 Let (A, a) be a 'E-algebra. For an operator symbol (Jn ,q,s of the sig­
nature (E ,S ) the function associated with this symbol in (A, a) is represented by either
&n,q,s,a Or CXan q 3 .

3 Constants are often represented by (if not compiled in the same way as) functions in programming 
languages, such as Axiom’s Spad language. This gives a homogeneous interface for providing constants.
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This second form of notation is useful for when we refer to operator symbols by names 
other than those in the form crn,g,s- For example, if r  =  o n ,q,a then

&n,q,S,l7  —  a (T n ,q ,s  =

Definition 4.2.11 Given {A, a), (B,(3) both 'E-algebras, then a E-homomorphism : 
{A, a) —> (B,/3) is an S -indexed family of functions <f)s : A s —> B s (for each s in S )  

such that:

(Vn 6 N  U {0})(V<7 arities of rank n)(V(ai,. . . ,  an) G A9) (Vs G S ) ( V o  G En,q,s) 

we have,
4>s ( a n,q,s,<r(a  1? • • • j dn)) — /̂ n,g,s,<r(0gi (°l)? • • • ? fiqn (an))*

As an example of a homomorphism, let us consider our monoidal case once more. The 
map if) from N  U {0} —> N  which maps4 n 4  2n is a homomorphism.

4.3 Term Algebras

Term algebras provide us with at least one example of an algebra for each signature. 
In some sense, it is the “freest” algebra of the signature and all other algebras are 
isomorphic to quotients of the term algebra.

Notice that given (T, U) the definition of the monoidal signature from example 4.2.8, 
the term algebra is not the free monoid, since we have not added in any “laws” or 
“equations” to the algebra. Thus we do not have associativity in the term algebra, 
whereas we do in the free monoid.

Thus we see that, as yet, universal algebra does not model real mathematics perfectly. 
However this situation will be remedied somewhat in section 4.6.

N otation 4.3.1 We shall define the set A to be the set containing three special symbols.

A : = { ( } U { ) } U { , }

A is a just a piece of notation that will make the following definition less verbose.

4We haven’t provided an exponentiation function in our monoidal algebra, but adding an extra sort 
and a function it is possible. Otherwise think of the map as taking 0 to 1; 1 to 2; 2 to 2 x 2; 3 to 
2 x 2 x 2 ;  and so on.
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D efinition  4.3.2 Let X  be an S-indexed family of sets disjoint from each other, from 
the set A and from jJn 9 S En>9)S. We define T^(X)  to be the S-indexed family of sets 
of strings of symbols from  Uses X s U A U Un,g,s ^ n,q,s, each set as small as possible 
satisfying these conditions:

1. (Vs e S)(E0,(),s c  TS(X)S)

2. (Vs e S)(xs c  TE(X)S)

s. (v<7 e E„,,,a)(Vi e { i , . . . ,«})(Vii e T^(X)qi)(a(tu . . . , t n) e ts (x )3)

We make T%(X) into a T>-algebra by defining operators <j t  on T^(X) ,  for each a E 
^n,q,s via:

• I f  n  =  0 then ot '■= o. (Guaranteed to be in Tx ( X) s by (1)).

• Else, define ox{ t \ , . . . , tn) to be the string . . .  , tn)

Tz (X)  is called the term algebra, and an element o f T ^ X )  is called a term.

4.4 Order-sorted algebras

Order sorted algebras extend the concept of of universal algebras by imposing an order 
on the elements of the sort-list. This can be useful if we know that all algebras of our 
signature (E, S) have the carrier of S2 as a subset of S4, say.

The ordering of sorts imposes a subtype lattice on the sorts (and hence their carriers). 
This can then be used in any algebra of the signature to either restrict a function 
already defined on one type to a subtype of that type, or extend a function on a type 
to a partial function on a supertype. Partial functions and order sorted algebra are 
discussed in section 5.2.

Firstly, we had better define what we mean by an “order”.

D efinition 4.4.1 A strict partial order on a set S  is a relation -< on S  which is 
transitive, antisymmetric and irreflexive.

A weak partial order on a set S  is a relation ■< such that, a ^  b <=> (a -< b) V (a = b). 
Such a relation is transitive.
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N o ta tio n  4.4.2 Let S  be a set of sort symbols, such that there is a partial order -< 
defined on S, and a “top” element u of S  such that s -<u for all s in S.

u provides us with a universe (see appendix B.2) in which to work. Equivalently, we 
could set u to be any class^, which is “big enough”. (The term class^ is defined in 
appendix B.2).

D efin ition  4.4.3 Extend ■< from S  to the S-arities of rank n by defining ( s i , . . . ,  sn) ■< 
{ t i , . . . , t n) iff (Vi G {1 , . . . ,n } ) ( s i  r< U).

D efinition  4.4.4 An order-sorted, total E-algebra is an ordered triple (A, {As : s G 

S'}, a , where A  is a class known as the universe, {A, : s G S} is an S-indexed family 
of subsets of A, known as the carriers of the algebra, and a  is a set of sets of functions 

&n,q,s = U<7e £ n , g , s ^   ̂ , such that:

1- Au = Aj

2. I f  s ■< s' in S, then A s C A s>;

3. I f  O’ G Sn,q,s Fl ^n,q',s') with S ^  S and Q ^  q,then OCn q̂tg^ |yl9/=  ^n,q',s',(T 

Strictly speaking, that last condition should be,

L A a - tA j °  a n,q,s,<r \A(J, =  a n,q',s',(T

(where las^ as, is the inclusion operator A s —>■ Ars) since otherwise the target of the 
left hand side would be A s and of the right hand side would be A s' .

This is typical of the sort of “abuse of notation” that computer systems often have to 
implement.

In a language like C [KR88], there is not much scope for such abuse. The compiler will 
complain if we attempt to change the type of any variable.

However, in a language like Perl [WCS96] where type changes are performed automat­
ically, abuse is everything. For example to convert the string "12" to a number, one 
simply adds 0 to it.

The following command line session shows the abuse Perl allows.
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[nic<9pangur-ban Tmp]$ p e r i  -e *
> $ a_ strin g  = "12";
> $a_number = 12 ;
> p r in t  $a_string ;
> p r in t  " \n";
> p r in t  $a_number;
> p r in t  " \n " ;
> p r in t  $ a_string  + $a_number;
> p r in t  " \n";
> $ a_ strin g  .= " te x t" ;
> p r in t  $a_string ;
> p r in t  " \n " ;
> »
12
12
24
12te x t

p r in t  " \n " ; means print carriage return, linefeed (as in C). See how $ a_ str in g  is 
treated as a number when added to $a_number and a string when we append (using 
the .= operator) some text to it.

Notice that the opposite can be performed, too. We may treat numbers as strings. We 
have already seen this with the line p r in t  $a_number; but as a more explicit example, 
we can append text to a number.

[nic@pangur-ban Tmp]$ p e r i  -e  ’
> $a_number = 12 ;
> $a_number .= " te x t" ;
> p r in t  $a_number;
> p r in t  " \n " ;
> *
12te x t

Perl is incredibly good at all such built in type changes. However, Perl is not a computer 
algebra system and does not have the vast number of types that Axiom has.

Perl also has a (fixed) universe (see appendix B.2 and definition 4.4.4) and knows how 
to retract any variable back to the universe type. From this it can see how to coerce
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any two objects to types over which an operator (such as p r in t ,  + or .) is valid.

The definition of order sortedness ensures some confluence5 amongst operators on sub- 
types. However, it does not provide enough for most sensible applications. The follow­
ing definition ensures a more confluent system.

D efinition  4.4.5 The order-sorted signature S is regular if whenever q is an arity and 
v  £ £ n,q,s with q ^  q, there is a least pair q ',s' such that a G £ n,g'',s' and q ■< q' and 
s' ■< s.

Now, we shall extend the definition of term algebras to the order sorted case.

D efin ition 4.4.6 Let X  be an S-indexed family of sets disjoint from each other, from 
the set A  and from |Jn g s En)9)S. We define T%(X) to be the S-indexed family of sets
of strings of symbols from  Use5 -X’s U A U (Jn,q,s^n,q,s> each set as small as possible
satisfying these conditions:

1. (Vs e  S ) ( E C  TS (X )S)

2. (Vs e  S )(X , C Te (X ),)

3. (Vs,s’ € S)((s d  s’) => (T z(X ), C TS(X)S.))

4. (Vct e  S„,,,s)(Vi 6  {1 ,... ,n})(Vtj e  Ts (X )qi)(a(tu . . . ,i„) e  T z (X )s)

We make T%(X) into a Yl-algebra by letting the first component be T z (X )u and defining 
operators ot on T%(X), for each o G S n>9>s via:

• I f  n = 0 then '■= or. (Guaranteed to be in T x (X )s by (1)).

• Else, define • • •, tn) to be the string a (t\ , . . . ,  tn)

Ty,{X) is called the term algebra, and an element o fT ^ X )  is called a term.

The following theorem proves the “freeness” of term algebras. That is to say all algebras 
are isomorphic to a quotient of the term algebra. In this way we see that all algebras, 
once represented as a term algebra and a set of rewrite rules are easily implementable 
in a rewrite system, such as OBJ6.

5Perhaps this is why OBJ is a rewriting system.
6W ith the usual caveats on being able to check whether two elements axe equal or not and other 

unsolvable problems.
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It also says something about the constructibility of types. That is, if Un,<7,s ^ n,q,s is finite 
then clearly only a finite number of functions in each and every E-algebra construct 
the whole algebra.

Moreover, suppose in every real algebra which we wish to study, a certain set of equa­
tions hold (see section 4.6). Then all our algebras are isomorphic to factors of the term 
algebra factored out by that set of equations.

Then if every element of this freest factor algebra is equal to one constructed by a 
(potentially very small, finite) subset of a (potentially infinite) Un,q,s ^ n,q,s, we may 
utilise this to construct elements of our algebra.

In the automated coercion algorithm (section 7.3) we utilise a small (but not necessarily 
minimal) set to construct all (or some) of the elements of one of the sorts of an algebra.

T heo rem  4.4.7 (F irs t un iversality  th eo rem ) Let (A, a) be any E-algebra, 9 any 
map (S-indexed family of maps) from X  into A. Then there exists a unique E- 
homomorphism 6* from T%(X) to A  such that (Vs G S)(Vx G X s)

0s(L(x )) = es(x)

The proof may be found in [Dav93].

4.5 Extension of signatures

In this section we shall formalise what we mean for one algebra to be an extension of 
another, or more importantly, from our point of view, for one algebra to be a portion 
of another.

More formally we are saying how the abstract datatypes (or categories or signatures) 
may inherit from each other. This sometimes corresponds to algebras depending on 
each other.

First, a piece of notation.

N o ta tio n  4.5.1 I f S  and T  are two sets of sets both indexed by the same set, I , we 
say that SC Tijf(\/i G I) {Si C T{).

This extends the definition of subsets to n-tuples of sets.

D efin ition  4.5.2 Let S , S' be two sort-lists, such that, as sets of symbols S  C  S', and
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that (Vs,t G S)((s ^<s t) ^  (s  -<s' t))- Let E be an S-sorted signature and T be a 
S'-sorted signature. I f  ECT, we say that E is a sub-signature of T and that T is a 
super-signature of E.

Thus we have the obvious definition of sub-signature. As an example, the monoidal 
signature is a sub-signature of the signature for groups. The notion of sub-signature 
corresponds directly with that of sub-category.

D efin ition  4.5.3 With S ,S l, E ,T  as in the previous definition, let {A, a) be an S f- 
sorted T algebra. Define (A, a) |s , called {A, a) restricted to E, to be the S-sorted 
E-algebra with carriers, those carriers of (A, a) which are indexed by sort symbols from 
S, and operators, n-ary operators otT of arity q, and result sort s, for every r  G En,q,s-

This is applying the forgetful functor (from the category (corresponding to) T to that 
(corresponding to) E) to {A, a).

4.6 The equational calculus

Again, we borrow heavily from Davenport’s lecture notes [Dav93]. Throughout this 
section, we assume that S  = { s i,. . . ,  sn} is our indexing family of sort symbols, and E 
=  {En)9)S} is a .S-sorted signature.

The equational calculus presented here applies to multi-sorted algebra. The reader will 
see that it clearly may be extended to the order-sorted case.

The equational calculus allows us to add “equations” to our signatures (and hence, 
algebras). This will allow us to assert facts about all the algebra in a signature. For 
example, we may wish note that one of the binary operators is always associative. 
Other more complicated expressions are available also.

The equational calculus does not allow us to define everything that we need: only those 
things that are easily definable as equations.

D efin ition  4.6.1 A S-indexed family of relations R  =  {R Sl, . . . ,  R Sn} on a 'E-algebra, 
{A, a), is called a E-congruence if it satisfies the following four families of conditions:

a G A Si => aRSi 0 (R)
aRSi b => bRSia (S)

aRSib and bRSic aRSic (T)
(V<7 G S n>g}S)(cii.Rg1&i,. . .  ,anRqnbn <j(fli,. . . ,  an)Rsa(bi, . . . ,  &n)) (Ca)
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The first three conditions imply that R Si is an equivalence relation on the set A Si, while 
the conditions (C ) explain how R  relates to the various operators of E. The operators 
of En)9)S are well-defined on the equivalence classes.

D efin ition  4.6.2 Let (A, a) be a E-algebra, and = be a E-congruence on (A, a). De­
fine {A, a ) /  = to be the "E-algebra (B,/3), where the carrier set B Si of B  is the set of 
equivalence classes of A Si under the equivalence relation =Si, and (3a is the operator 
defined by

A r ( [ ® l ] }  [ ® 2 ]? • • • 7 [ ® r a ] )  =  [ ^ < 7 ( ^ 1 7  • • • 7 a n ) ]

for every operator symbol o in every En^ s.

This is merely the quotient algebra, and to be sure, the following is a theorem.

T heorem  4.6.3 The operators (dp in the above definition are well-defined.

The following definition actually turns out to be very important.

D efin ition  4.6.4 We say that a sort s is void in the signature E */Ts(0)s =  0.

Basically, having a void sort s in the signature means that there are no constants of 
that type (£o,(),s =  0) and that one of the following is true,

• no operators have s as a return type: ((Vg, n)(En>9js =  0) where q is an arity of 
rank n)

• every operator with s as a return type has an argument whose sort is either void 
or s: ((Vg, n)((En>9)s 7̂  0) =»• (3« G { 1 ,... ,n})(qi is a void sort or s )) where q is 
an arity of rank n)

L em m a 4.6.5 I f  s is not void in the signature E, then in every E-algebra(A,a), A s 7̂  
0 .

Goguen & Meseguer suggest the following rules of deduction for a sound multi-sorted 
equational calculus.

N o ta tio n  4.6.6 Let X  be a S-indexed family of sets of variable symbols, such that 
each X Si is disjoint from all the others, from the operator symbols of E, and from any 
symbols in any particular algebras we may be reasoning over.
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We will be reasoning frequently with S-indexed families of sets, and wishing to perform 
operations on them. Let X  = (X \ , . . .  ,X n) and Y  =  (Y \,. . .  ,Yn) be two S-indexed 
families of sets, and define X U Y to be the S-indexed family (Xi U Y \ , . . .  ,X n U 1^). 
Similarly, we will write X Q Y  to indicate that each component of X  is a subset of the 
corresponding element of Y .

A final piece of notation is that the indexed family of empty sets will be denoted by 0.

Definition 4.6.7 A multi-sorted equation for the signature E consists of a triple 
(Y ,t i , t2), where Y C X , t\ and t2 are terms from the same carrier set of T ^(X ) (or 
Tz(X G A) if we are dealing with equations in a particular algebra {A, a)), and every 
variable occurring in t\ and t2 occurs in the appropriate member o fY :  t \ , t 2 € T^(Y). 
Such equations are written VY t\ =  £2*

I f  t\ and t2 come from the same carrier set of Ty,{X) we say that the equation is 
E-generic.

One should read the symbol VY  as meaning “for all values of all the variables of Y  in 
the appropriate sorts (and there had better be some values in those sorts)” . It is this 
interpretation that will solve the paradox mentioned earlier.

/

D efin ition  4.6.8 An equational system for the signature E is a set of equations for 
T x(X ) (or Ts(XUA) if we are dealing with equations in a particular algebra (A, a)).

We will tend to write e = f  for an equation from an equational system, meaning 
VY e = f  where Y  is the ^-indexed family of sets of variables consisting precisely of 
those variables occurring in e and / .

N otation 4.6.9 Xi/ti means substitute the variable xi with the term t{. We call this 
a substitution instance.

Definition 4.6.10 A proof in the multi-sorted equational calculus of the equation 
VY e = f  from the equational system £ is a finite set of equations VYi e* =  fi such 
that each equation is justified by one of the seven following rules of inference:

VY e [ x i / t i , . . . , x n/ t n] = f  [ x i / h , . . . , x n/ t n] (E )

where VX e = f  is an equation of S, the ti are terms of the appropriate sort o fT ^(X )  
and Y  is the S-indexed family of sets whose s-th component is the set of all variables
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of sort s in all the t{ and those variables of X s which have not been substituted for, i.e. 
which are not one of the xn

VY e = e ( R )

where Y  is the S-indexed family of sets whose s-th component is the set of all variables 
of sort s in e;

VY e = f  VY f  = e 

VY e = f  VY' f  = g VYUY' e = g

(S)

(T)

VYi e x = / i  . . .  VY„ e„ = f n VYiO...UY„ <r(ei,. . .  ,en) = a ( f i , . . .  ,/„ )

(<?„)
where a is any symbol of En gS, and each e* is a term of sort qa

VY e =  /  VY' e = f (A)

where Y C Y ';

(Q)

where y does not occur in e or f , and the sort i is non-void for E.

We use the notation b VY e =  /  (or \-£ VY e = f  if we wish to make clear which 
equational system is being considered) to mean that e = f  is provable in the equational 
system using the above rules of inference.

Definition 4.6.11 I f  VY e = f  is an S-sorted "E-equation (call it E ), and {A, a) is 
a E-algebra, then we say that (A, a) satisfies E, or that (A, a) is a model for E , if for 
all S-sorted maps 9 from Y  to A, 6*(e) =a 9*(f), where 0* is the map from Ty,(XuA) 
to (A, a), whose existence is guaranteed by theorem 4-4-7. We extend the notation to 
sets of equation S by insisting that (A, a) be a model for each equation in S.

Theorem  4.6.12 (The Soundness Theorem ) I f  {A, a) is a model for S, and \-£
VY e = f ,  then (A, a) is a model for S U (VY e =  /}

The proof of the soundness theorem may be found in [GM82],

D efinition 4.6.13 Let (A, a) be a E-algebra, and let £ be an equational system for 
{A, a). The congruence induced by £, denoted =£, on {A, a) is defined by A  =£ B  if, 
and only if, \~£ VY a = b, where Y  is the S-indexed family of empty sets.
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The following two definitions are very important. A theory specifies a type, and we 
define a variety to be the collection of all types which model that theory.

Definition 4.6.14 We define a theory to be the ordered pair ((£ ,S ) ,S )  where £  is 
an S-sorted signature and S  is a set of S-sorted £ -equations. We say that a "E-algebra 
models or satisfies the theory iff it is a model for S.

Definition 4.6.15 The collection of all models of a particular theory is called a vari­
ety.

Clearly, since a signature (E ,S) may be viewed as the theory ((E ,S),$) the collection 
of all £-algebras forms a variety.

When referring to the variety of all models of a particular signature, (for example, 
((E ,S ),S ))  we usually say the “variety defined by (or specified by) the signature

Theorem 4.6.16 (Second universality theorem ) Let X  be a S-sorted set of vari­
ables, £  an S-sorted operator set, E a set of equations for £ , (A, a) a E-algebra which 
is a model for E, and 6 a S-sorted mapping from X  to A. Then there is a unique 
E-homomorphism 6** from Ty,{X)/ =£ to A such that

6**{i*(x)) = 6{x) (**)

for all x  6 X , where l* is the map from X  into T%(X)/ =£ defined by x  ^  [a;].

Theorem 4.6.17 (The Com pleteness Theorem) I f  every E-algebra which satis­
fies the equation E also satisfies the equation VY e = f ,  then \-£ VY e =  / .

Again, the proof of this may be found in [GM82].

Finally, we state the definition of an extension and a protecting extension. Extensions 
are self-explanatory.

Definition 4.6.18 Suppose that E and £UT are signatures where E is S-sorted and 
£UT is S'-sorted where S  C S '.

Then £UT is said to be an extension ofE .

A protecting extension is an extension which preserves the equational system for a the­
ory. Combining the second universality theorem 4.6.16 with the definition of protecting
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extension allows us to view a model of a theory as a model of a protecting extension 
of that theory.

More importantly, if we have an algebra which is a model for a protecting extension of 
a theory, then we may view the algebra as a model of that theory (unextended).

For example, if the Ring theory is defined to be a protecting extension of the Group 
theory, then we may view any ring (Ring-algebra) as a group (Group-algebra).

D efin ition  4.6.19 With E, T, S  and S' as in definition 4-6.18.

Let £ be an equational system on E. Also let S O T  be an equational system on EUT. 

Such an extension is called a protecting extension if

t x Gt (x ) /  = £ u f  Is

is isomorphic to T ^ (X )/ =£ (isomorphism meaning “isomorphism as 'E-algebras”).

Notice that the definition of protecting extension is equivalent to the notion of enrich­
ment given in [Pad80] (although, this does not allow for the existence of S'). Thus a 
theory is a protecting extension of another Qo iff is complete and consistent 
with respect to f2o-

4.7 Signatures, theories, varieties and Axiom

Axiom’s type system uses the terminology from category theory, yet its design is based 
on order sorted signatures.

A Category definition in Axiom (ie. the source code that defines the Category) is 
equivalent to a signature or theory, being a specification of a type or types.

The Category viewed as a collection of objects (Domains) is the variety specified by 
the theory which defines the Category in the Category definition.

The sorts are */. for the (principal) sort (see definition 7.2.1), and the argument and 
return types of all the operator symbols of the Category7.

For example, PolynomialCategory(R,E,V) is a Category. is the (principal) sort. 
Other sorts include R, E, V a sort each for the Boolean and P o s itiv e ln te g e r  types.

The equations of a theory in an Axiom Category definition are either defined in the

7Unless they axe concrete types —  Domains. See section 9.6.
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comments or as certain “attributes” of operators. For example commutative (*) means 
that * is commutative and the traditional commutativity equation (for the operator *) 
is an equation of the theory. (There is currently no method for enforcing the equations 
to hold in any model.)

An algebra (or model for a theory) in Axiom is a Domain. Declaring a Domain to be 
in a Category is equivalent to saying that is an algebra of that signature (or model of 
that theory). Or in other words, a member of the variety defined by the theory which 
specifies the Category.
For example, Polynomial (Integer) is a model for PolynomialCategory(R,E,V).
An operator symbol in Axiom is a function declaration in a Category. An operator 
name in Axiom always corresponds to the operator symbol.

For example, + is an operator symbol in Ring. In In teg er, a model for Ring the 
operator name of + is (and has to be) +.

A carrier is the concrete type substituted for a parameter in any instantiation of a 
Domain.
In Polynomial (Integer), Polynomial (Integer) is the carrier '/,. Whereas Integer, 
NonNegativelnteger and Symbol are the carriers of R, E and V, respectively. (No sort 
is given for the Boolean and Positivelnteger types.)
All of Axiom’s extensions axe protecting extensions. That is, if a Category is declared 
to extend another then it is always a protecting extension of that Category.
In chapter 9 we shall discuss how Axiom differs from order sorted algebra and how we 
may remedy this situation.

4.8 Conclusion

In this chapter we have introduced all the basics of order sorted algebra and the equa­
tional calculus. We have also shown how these notions are represented in Axiom.

We have demonstrated that order sorted algebra combined with the equational calculus 
provides a sound basis for a computer algebraic type system.

A multi sorted signature is a specification for a type and hence is an abstract datatype.

Adding an order on the sorts to obtain an order sorted signature enforces relations 
between the sorts. It also guarantees sensible interaction between these carriers of 
these sorts and operators thereon in any algebra of the signature.
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Combining signatures with the equational calculus yields theories. Theories further 
enhance the usefulness of signatures by ensuring certain equations will hold in any 
model (algebra) of the theory (signature).



Chapter 5

Extending order sorted algebra

5.1 Introduction

In this chapter we shall discuss how partial functions and conditional signatures may 
“tie-in” with traditional order sorted algebra. This will mean that any facts that we 
may prove for or use from traditional order sorted algebra will also apply when partial 
functions and/or conditional signatures are considered, too provided certain extra facts 
hold.

Next, we shall look at the similarities between order sorted algebra and category theory. 
This will demonstrate why computer algebra systems such as Axiom use category theory 
terminology, whereas most of this thesis uses order sorted algebra as its framework.

Lastly, we define what we mean by a coercion. This definition is fundamental to the 
rest of this thesis.

All the work in this chapter is the author’s own except for section 5.2 which is based 
almost entirely on [Bro88] after a suggestion by [Ric97] and [Mar97],

5.2 Partial Functions

In this section we ask the question, “How do partial functions interact with classical 
universal algebra?” We need this in case some of the functions used to create our 
coercions later are only partial. This can happen (see definition 7.3.3). For example, the 
division operator in any quotient field is partial, but could be viewed as a constructor 
function.
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In our previous chapter on universal algebra, we defined an 5-operator of arity q, to 
be a (total) function from some Aq to some element of A. (Where A  is a set of 5- 
carriers.) Is it possible to redefine this so that the 5-operators are partial? Indeed, is 
this necessary? One of the original reasons for the “invention” of order-sorted algebra 
(definition 4.4.4) (rather than multi-sorted algebra (definition 4.2.9)) was so that all 
functions could be considered total. See, for example, [GM92].

For example, if a ai (P)T : Ap  —> Ap  were a partial function in an E-algebra, (A, a), 
then we could insert a new sort N  -< P , such that a ai (JV) T : A n  —> Ap  were a total 
function.

In the example of a quotient field, one would introduce a subsort of the integral domain 
which would represent all the non-zero elements of the domain.

We may proceed by either attempting to redefine all of universal algebra using partial 
functions, or through some different mechanism. The following mechanism which uses 
“virtual sorts” turns out to be flawed. Virtual sorts are an on-the-fly way of generating 
sorts to represent things like, the non-zero elements of an integral domain, or non-empty 
stacks.

D efinition 5.2.1 Let (E ,5) define an order-sorted signature. I f we define (A, L) to be 
the signature where

1. L = S  U { u i,. . .  ,u m} (a set of symbols distinct from all those in S )

2. (Vi e  { l,... ,m } )(3 sUi e  S ) (u i  -<L s Ui)

3. (Vn € N  U {0»(Vs € S)(Vg 6  S,n)(A„,,,s =

4- (3n G N )(3q G Ln \  S n)(3s G S)(AnyQ>s ^  0) (Note that there may be more than
one such triple (n, q, s))

then we say that the U( are virtual sorts of (E ,5) and Xn,q,s £ An>9)S(n G N )(q G

Ln \  S n)(s G 5) a virtual operator symbol of (E, 5).

Unfortunately, virtual sorts, virtual operators and homomorphism do not interact in a 
satisfactory manner. The introduction of a virtual sort in the source of a homomor­
phism may be meaningless in the target or vice versa.

For traditional examples, like the non-empty stack they are fine, since this has some 
meaning in all stack-algebras. But for types like, “all the elements which do not map
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to 5 under a particular coercion,” then it may be meaningless to create a virtual sort 
which attempts to represent this.

Broy [Bro88] defines E-algebras as having either partial or total operators. A (partial) 
E-homomorphism is then defined as follows:

D efinition 5.2.2 ((P a rtia l)  hom om orphism ) I f  (A, a) and (B,(3) are (E ,S ) al­
gebras1, and 'if) is a family of partial maps \jjs : A s B s then i)j is a (partial) E- 
homomorphism (A, a) —> {B , j3) iff the follow two conditions are fulfilled:
Firstly,

(Vn G N  U {0})(V<7 arities of rank n)(Vs G S)(Vcr G S W)9)S)

( V ( a i , . . . ,  a n ) G Aq)

if both ips(aan q a (o i,. . . ,  an)) and /3anq3 (V>91 ( a i) , . . . ,  ipqn (an)) are defined, then 

‘tPs(a <7n,q,s(a  1> • ' ’ ) ° n ) )  =  Pon,q,3 i'fiqi ( ° 1 ) J * * * > V’fln^n))*

Secondly,
(Vn G N  U {0})(V<? arities of rank n)(Vs G S)(Va G E n ,? , s )

( (V ai ,  o>\ £  A qi ) . . .  (Van , a n G A q n )

( / \  iffrqiip'i) “ strong ^ ( ^ i ) ) ) )
*€{l,. . . ,n}

^  ( a l> • • • ? a n ) )  “ Strong ^ s ( a ffn,g,j ( a l» • • • j a n ) )

Where “= strong” is the strong equality defined via

(a =strong b) ((a defined b defined ) A (a defined => a = b))

Broy’s definition of homomorphism (definition 5.2.2) is (as he states) rather liberal. A 
special factor which he notes is that the composition of partial homomorphisms need 
not be a homomorphism again.

The following two definitions turn out to be useful in distinguishing between types of 
partial homomorphism.

D efinition 5.2.3 Let (Er,S ') be a sub-signature of (E ,S). A E7-algebra (A, a) is said 
to be a E'-subalgebra of the E-algebra (B,/3) iff

:with partial operators, in our terminology
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1. (Vs G S'){As = B s)

2. (Vn G N U  {0})(Vg arities of rank n)(Vs G S)(Vo G S n)g)S)(a(T =  j3ff |a<?)

Definition 5.2.4 Let (E ',S ')  be a sub-signature o /(E , S). A E '-algebra (A, a) is said 
to be a weak E'-subalgebra of the E-algebra (B , (3) iff

1. (Vs G S ')(A s = B s)

2. (Vn G N  U {0})(Vg arities of rank n)(Vs G S)(Vcr G En)9)S)(o:<7 <± j3a |x«) 

where “<x is defined via,

f  <±.9 ^  (Vz)((/(#) is not defined) V (f ( x ) =  g(x)))

Broy notes that any partial homomorphism may be decomposed using the following 
methodology. A partial homomorphism <f> \ A  —>• B  defines a weak subalgebra A! of A  
defined via,

(Vs G S)(A 's = {a G A s : ip(a) defined})

with the functions taking the meanings a ’an a ( a i , . . . ,  an) = c¥o-„,,,3 (oi, • • •, Q>n) if (Vi G 

{ 1, . . . , n})(4>(ai) are defined) and (f>(ofan ( a i , . . . ,  an)) is defined. Otherwise, 

a '<Tn q s (a i> •' * ’ *s n0  ̂ defined.

By <// we denote the weak partial identity function A  —> A '. Then we define <j>: Ar B  
to be the total homomorphism which is the restriction of <f> to A'.

Being total, 0 induces a weak subalgebra B 1 of B  defined via,

(Vs G S )(B fs = { b e B s : (3a G A s)(i>(a) = 6)})

with the functions defined via (3'an g ( a i , . . . ,  an) =  if>(a„n^ a(a\ , . . .  ,a n)) where bi =  
4>(ai) and Pon,q,a (a i, . . . ,  an) is defined.

This then induces a total surjective homomorphism : A ' -> B 1. Also, by con­
struction B r is a weak subalgebra of B. Therefore there also exists a total injective 
homomorphism <f}m : B ' —> B  which is the natural inclusion operator.

As examples consider the following coercions. (We are only looking at the carrier of 
the principal sort (definition 7.2.1) in these examples.

Example 5.2.5 Q —► Z5 :
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Fraction Integer -> PrimeField 5

^'  =  Q \ { 9 f  l ? e Q \ { 0 } }

B ' = B

E xam ple 5.2.6 Q[x] -» Z(x) = Q W :

Polynomial Fraction Integer -> Fraction Polynomial Integer

A' = A

B r = Q[:r] =  {p \ p G Q(cc) A (3q G Q(x))(p — q A denom(g) G Q)}

E xam ple 5.2.7 Q[a;] -* Z^(x):

Polynomial Fraction Integer -> Fraction Polynomial PrimeField 5

A! = Q[z] \  {EiGNU{o}fe^) ^ Q[x] | (3i G N  U {0})(s G Q \  {0})(gi =  s^)}

B ' =  Z5[rc] =  {p | p G Z5(a;) A (3g G Z5(r))(p = q A denom(g) G Z5)}

These show that real examples of coercions may indeed cause A  and A ' to differ as well 
as B  and B '.

Notice that in example 5.2.5 above, we are considering a field homomorphism, and 
that A ' is a weak subfield of A. (For example /  is undefined on the pair (1,5) in A’.) 
Clearly, B ' is a subfield of B.

In example 5.2.6, it is an integral domain homomorphism that concerns us. So although 
B ’ is only a weak subfield of B  this does not matter, as it is sub-integral domain of B.

Similarly, in example 5.2.7 we are again considering an integral domain homomorphism, 
and both A' and B ' are sub-integral domains of A  and B, respectively.

As Broy notes, this definition of partial homomorphism allows the everywhere undefined 
function to be a partial homomorphism. Thus this definition is too weak for our 
purposes.

D efinition 5.2.8 A partial homomorphism, 4> is called strict iff,

(Vn G N  U {0})(Vg arities of rank n)(Vs G S)(V<7 G En;gjS)(V(ai,. . .  ,a n) G A q)
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1? • • • j ® n ) )  —strong (3a((f){ai), . . . ,  <f>{an))

Broy notes that a strict homomorphism ensures that B ' is a E-subalgebra of B  (and 
not just a weak E-subalgebra). <fi" is always strict, and if is strict, then B ' is indeed 
a E-subalgebra of B.

Our requirements for homomorphism are that it act strictly on a certain set of partial 
functions (the constructors, definition 7.3.3). In other words, we shall require that our 
coercion be a strict partial Ec -homomorphism (again, see definition 7.3.3).

In the rest of this work we shall not in general concern ourselves with the partiality 
of homomorphisms, operators or strictness. Since, provided our homomorphisms act 
strictly on the constructors of the type (and any type recursively required for construc­
tion (definition 7.6.5)) then the strong equality in the definition of strictness puts us 
in good shape.

5.3 Conditional varieties

Axiom contains the notion of “conditional C ategories” or in the language of universal 
algebra, “conditional varieties”. In this section we define and reconcile the notions of 
conditional and non-conditional2 varieties. This means that in future sections we shall 
be able to ignore the existence of conditional varieties in Axiom.

Notice that our choice of the word conditional here is similar to that used in the 
phrase, “conditional algebraic specifications”. The difference being that our conditions 
are predicates evaluated over arities not terms. Ours is a higher order notion and 
should not be confused with the ordinary lower order work.

We extend the definition of signature to conditional signature, via the following defini­
tion:

D efinition  5.3.1 A S-sorted conditional signature is a set CE of sets CEn?g)S indexed 
by n  G N  U {0}, q an S-arity of rank n, and s G S. Each element of CE is of the form

if P(w) then an^ s

where P  is a well-formed proposition in some language, and w is an arity of finite

2Unconditional may have been a better choice of word from an English language point of view. 
However, we axe not saying that an algebra is unconditionally an algebra of a variety; we are saying 
that it is an algebra of a variety which has no conditions.
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rank (if it is a tautology, it is always represented by T). The (Jn,q,s are the conditional 
operator symbols.

Firstly, we need to define a conditional term algebra.

D efin ition  5.3.2 Let X  be an S-indexed family of sets disjoint from each other, from 
the set A, the set { i f  P,then} and from {a  | (3 arity w)( “if P(w) then a ” G Un,9,s 
We define Tcy,{X) to be the S-indexed family of sets of strings of symbols from 
{ i f  P,then} U U A U Un,g,s ^ n,q,s? eac/i set as small as possible satisfying these
conditions:

1. (W seS )(E 0̂ s C T Cj:(X )s)

2. (Vs 6  S)(X s C T c z (X )s)

3. ( i “if P(w) then a ” G CE„)9)S)(Vi G {1 ,... ,n})(Vt* G Tc ^{X )qi) ( “if P(w) then 
o ” ( t i , . . . , t n) G TcePO s)

We make Tct,{X) into a conditional CE-algebra by defining conditional operators “if 
P(w) then ot on T cs(X ), for each “if P(w) then cr” G CT,n^ s via:

• I f  n = 0 then “if P{w) then c t t”'-— “if P { w ) then a ”. (Guaranteed to be in 
T c v (X )s by (1)).

• Else, define “if P(w) then a r { ti , . . . ,  tn) ” to be the string “ifP (w ) then cr(t\ , . . . ,  tn) ”.

Tct,(X) is called the conditional term algebra, and an element of Tc e (X ) is called a 
conditional term.

Associated with the notion of conditional signature are the notions of conditional the­
ory and conditional variety. However, we require a new definition for equations and 
equational systems.

D efin ition  5.3.3 A conditional (multi-sorted) equation for the conditional signature 
CE consists of a quadruple (P (w ) ,Y ,ti ,t2), where P  is a well-formed proposition in 
some language, and w is an arity of finite rank, (if it is a tautology, it is always 
represented byT) where Y Q X , t\ and t2 are terms from the same carrier set ofTcY,{X) 
(orTcE(XOA) if we are dealing with equations in a particular algebra (A, a)), and every
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variable occurring in t\ and t2 occurs in the appropriate member o fY :  t \ , t 2 £ Tcy,{Y). 
Such equations are more usually written (if P(w))(VY t\ =  £2)-

I f  t \  and t2 come from the same carrier set of Tcy,{X) we say that the equation is 
C  E-generic.

Note that this definition of conditional equation should not be confused with that 
found in work such as [KR91]. In that context, a conditional equation is a clause such 
as (if P(t))(VY t\ = 2̂) where t is a subterm of t\, for example.

Definition 5.3.4 An conditional equational system for the signature E is a set of 
conditional equations for T ce{X )  (or T c e (X u A )  if we are dealing with equations in a 
particular algebra (A, a)).

Associated with definition 5.3.1 are two special signatures E and E. The former is the 
extension of all the CEs; the latter is extended by all CEs. More formally,

Definition 5.3.5 Using the definitions of definition 5.3.1, we define E to be the S- 
sorted signature where Vn,q,s (n E N  U {0}, q an S-arity of rank n, and s E S)

^n,qf,s =  T.,q,s | if P{u)) then (Jn,q,s £ C En q̂̂s}

Now similarly, we define E to be the S-sorted signature where Vn,q,s (n E N  U {0}, q 
an S-arity of rank n, and s E S)

^ n,q,s = {^n,g,s | */ T then <Jn,q,s £ C En q̂jS}

where S  is the largest subset of S  such that E has no void sorts.

The algebras of conditional signatures are the same as ordinary algebras, except that 
the proposition P  is evaluated over A w, and iff this is true, there is an operator a n^ s,<r 
in that algebra. More formally,

Definition 5.3.6 An  order-sorted, total, conditional CE-algebra is an ordered triple 
(A, {As : s E S'}, a), where A is a class known as the universe, (As : s E S} is an
S-indexed family of subsets of A, known as the carriers of the algebra, and a is a set 
of sets of functions an^ s =  U<rei]n)9i3 {an,q,s,<r ■ A q ->• A s | P (A W)}, such that:

1 • Au =  Aj
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2. I f s < s' in S, then A s C A s>;

3. I f  “if P(w) then cr” G C T n^ s and “if P'(w') then a ” E C Tn q̂̂ si, with s ̂  s' and
q' z< q, and also P (A W) and P '(A W'), then an,q,s,(T U*' =  ^n,q',s',a

Clearly, if all the P  are tautologies then a conditional signature CT  is identical to its 
non-conditional partner, E. Therefore all conditional CE-algebras are (non-conditional) 
E algebras in this case.

In any case a CE-algebra is a E-algebra. Thus we can see that E is a minimal3 signature 
for CT.

D efinition  5.3.7 We define a conditional theory to be the ordered pair ((C T ,S ),S )  
where CT, is an S-sorted conditional signature and S  is a set of S-sorted conditional T- 
equations. We say that a CT-algebra (A, a) models or satisfies the conditional theory
iff it is a model for S  where S  I^q ) is defined as follows,

s  |(Aa>:= { (Y ,tu h )  I ((P (w ),Y ,t1, t2) e  S) A P (A W)}

A theoretical interpretation of a conditional theory ((CT, S ) ,S )  is a theory ((T t , S ) ,S T) 
equivalent to ((CT, S ) ,S )  with all the propositions P(w) evaluated in some consistent 
manner.

Finally we demand that for all possible pairs of theoretical interpretations ((So, S), So), 
((Ei, S), S \) where EoCEi and So C «Si that ((Ei,5),«Si) is a protecting extension of 
((T o ,S ),S0).

D efinition  5.3.8 The collection of all models of a particular conditional theory is 
called a conditional variety.

In fact the conditional variety defined by ((CE, S ),S )  is equivalent to the variety defined 
by ( $ , § ) , S).

Also, the variety specified by any theoretical interpretation of the conditional theory 
((CT, S ) ,S )  forms a subclass of the the conditional variety. Moreover, for a pair of theo­
retical interpretations ((Eq, S), S o), ((Ei, S ) , S i )  where EoCEi and So C Si, the variety 
specified by ((Ei, S'),«Si) forms a subclass of the variety specified by ((Eo, S),So).

3 Minimal in the sense that it has fewest operator symbols and sorts. The variety it specifies is 
maximal, if you consider the number of algebras that model it.
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If we consider two conditional algebras from the same conditional variety, then we wish 
to know whether there is a homomorphism from one to the other. For this we need to 
define “conditional homomorphism”.

A technical definition which will allow us to define homomorphisms more easily. 

Definition 5.3.9 Let {A, a), and (B,(3) be CE-algebras. For all n, q, s, we define

P a,n ,q ,s  • &n,q,s  ̂ ^ n,q,s

to be the map,
&n,q,s,(T °n ,g ,s

Similarly, define p p ,n ,q,s for {B,(3) .

The family of maps, pa (as we show in notation 5.3.11) map an algebra, (A, a) to a 
non-conditional signature which it models.

Definition 5.3.10 (j): {A, a) —> (B,(3) is a conditional CE-homomorphism iff it is a 
non-conditional EAB-homomorphism, where

=  {{^0,71,9,5(a n,q ,s,a ) | a n,q,s,cr £  <2n,g,s} H  {p p ,n ,q ,s (P n ,q ,s ,it) \ Pn,q,s,(T £  P n ,q ,s} | \

n € N  U {0}, q an S —arity of rank n ,s  G 5} J

EAB is a S-sorted signature where S  is the largest subset of S  such that EAB has no 
void sorts.

In fact, if we use the following piece of notation,

N otation 5.3.11 I f  {A, a) is a conditional CE-algebra, we define Y1NC^  to be the 
non-conditional signature

{ { ^ a ,n ,q ,s ( a n , q ^ t) I <Xn,q,s,a € a n ,q ,s}  | n G N  U {0},? an S -a rity  of rank n ,s  G S}

Ŷ n c (A) z-s a s_sortec[ signature where S  is the largest subset of S  such that 'ENC^  has 
no void sorts.

As an aside, notice that for each CE-algebra {A, a), there is an associated non-conditional 
term algebra T^nc(a) (X). This term algebra is the equivalent of evaluating each P(w) 
over A  in Tce(X).
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Then (A, a) is a non-conditional E ^ ^ - a lg e b r a ,  and

T>ab  =  { E ^ J ^  n | n E N U {0}, q an S —arity of rank n, s G S]

So, for any two conditional algebras of the same conditional signature, there exists 
a fixed (maximal) non-conditional signature of which they are both non-conditional 
algebras. (We may have to forget some operators and even some sorts, which may only 
exist in conditions).

Our definition of conditional homomorphism is that of the non-conditional homomor­
phism from this fixed non-conditional signature.

Hence, the concept of conditional signatures can always be reduced to one for non­
conditional signatures and therefore any results we prove or use need only be for non­
conditional signatures.

As we have seen in definition 5.3.7 this concept may also be extended to theories. In 
addition to adding new operators when certain propositions hold, we also allow for new 
equations to be added (conditionally). However, we demand that any such extension 
is a protecting extension of the minimal non-conditional theory (the theory over the 
signature (E ,5)).

More explicitly, let us define S  to be all those equations from S  which only involve 
arities from ENC(A) (as well as all equations not involving arities) 4. Similarly, define 
S  to be all those equations from S  which only involve arities from E (as well as all 
equations not involving arities).

If (A, a) is a conditional CE-model then ((ENC(A\  S ),S )  must be a protecting exten­
sion of ((E ,S ) ,S ) .

5.4 A Category theory approach

This section is an aside from the rest of the chapter. We are not extending the theory 
of order sorted algebra nor category theory, merely explaining why we cover both.

There is a great deal of correspondence between category theory (specifically, categor­
ical type theory) and universal algebra. There is not enough room here to cover this 
huge topic, but the reader is pointed to [Cro93],\ which covers categorical type theory 
in great depth.

4Alternatively, define S  to be those equations from S  for which (A,  a )  is a model, since it may not 
model all the equations in the definition of S  in the main text.
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As usual, Mac Lane [ML71] also contains a great deal of information on the correspon­
dence between universal algebra and adjoint functors in the chapter on “Monads and 
Algebras”.

All the ideas from multi-sorted algebra theory may be represented in the categorical 
type theory framework, although an equivalent for order-sorted algebra appears not to 
be covered. However, the author believes that the notion could be introduced.

One area which we shall discuss here is the concept of algebraic homomorphism and 
the arrows (morphisms) of a given category.

The correspondence between a categorical type theory C  and its associated algebraic 
type theory ((£, S ),S )  is the following,

Obj(C) =  all the £-algebras for a given £  which model S.
Arr(C) =  all (or a fixed sub-collection of) the £-homomorphisms.

The category of all algebras of a given signature (£, S) has as an initial object the term 
algebra, T%(X).

The category of all algebras which model a given theory ((£, S),c>) has as an initial 
object the free algebra T ^ (X )/ =£. (This is why the second universality theorem 4.6.16 
holds).

So we see that both categories and theories collect together similar types. This ab­
straction of information forms the basis of abstract datatyping.

5.5 Coercion

In this work we are interested in coercions which so far have been explained as being 
natural, type-changing maps. We may define them in a far more strict fashion.

The following would seem to be a good definition for coercion. However, in practice 
this definition is not well-defined enough since it does not state which theory a coercion 
should come from.

D efin ition  5.5.1 Let (A, a) and {B,/3) be algebras from the variety specified by some 
theory ((£, S), S). The map (f>: (A, a) —> (B,/3) is a coercion if it is a homomorphism 
of that theory.

Using the category theory correspondence above, we see that a function between two
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types of the category of all algebras which model a particular theory is a coercion iff 
it is an arrow of the category.

The only problem with this definition of coercion is that it does not specify from which 
theory (or equivalently, category) from which we should demand the homomorphism 
be taken. In general, we would like this to be the most specific, or smallest category 
to which both algebras belong.

If we just used the definition of coercion above (definition 5.5.1) then any total map 
between types would be a coercion! Any small category may be forgotten back to Set 
via the forgetful functor and any total function is an arrow of Set. Most types in 
computer algebra system are objects of Set (which is equivalent to SetCategory in 
Axiom - the second most basic Category in Axiom).

Richardson [Ric97] notes that we also require a fixed framework in which we define 
our coercions. If we were to attempt to define a coercion (A, a) to (5 , (3) to be “any 
map which is a homomorphism for all theories which both algebras model” then the 
definition would not be well-defined. We need to state a context.

We are attempting to reflect the situation that appears in a system like Axiom, Thus 
we must state that we have been given a priori a fixed collection of theories, and that 
given any type, we know precisely which theories it models.

This precludes a user from adding another theory which the algebras model which could 
redefine what “coercion” means for those algebras.

In the category theory correspondence, we say that Axiom’s Category is a fixed col­
lection of categories, and given any type we know of which categories it is an object.

D efin ition  5.5.2 (Coercion) Let T be a fixed collection of theories.

Let (A, a) be a model for theories ©j (for i in some indexing set I )  where (Vi € 7)(©i 
is a theory from T).

Similarly, let (B , (3) be a model for theories flj (for j  in some indexing set J ) where 
(Vy E J)(Slj is a theory from T).

Then we call a map (A, a) to {B,/3) a coercion iff it is a homomorphism for all the 
theories in

{S i | i e  1} n  {fij | j  e J }

In Axiom, Domains are only members of a fixed set of C ategories5.

5 A user could re-implement one of these C ategories and ruin everything.
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In fact, in Axiom we are in a slightly better position. If a Domain is an object of two 
Categories then there must exist a Category which extends (potentially trivially) 
both these Categories of which the Domain is an object.

Thus, in Axiom, definition 5.5.2 reduces to,

“A coercion in Axiom from a type A to a type B is a homomorphism of the 
most restrictive Category to which both A and B belong.”

It would be useful to have a name for maps which are “coercions” in the sense of 
definition 5.5.1. These maps are in a sense natural, and may be the next-most natural 
map between two types. However, as we have shown in the example using Set the map 
need not particularly “natural” from a realistic point of view.

As it stands, with our current terminology maps which satisfy definition 5.5.1 which 
are not coercions are merely “homomorphisms which are not coercions”.

If no coercion existed between two types, but a “homomorphism which is not a coercion” 
existed and a user required that homomorphism then either the user only required a 
conversion or the theory lattice for the algebra system has not been designed correctly.

5.6 Conclusion

In this chapter we have shown how classical order sorted algebra may be extended to 
encompass the notion of partial functions and conditional signatures. We have also 
stated how these notions interact with the equational calculus. These are important 
extensions due to the fact that these notions axe used extensively in Axiom.

We have also mentioned some of the correlation between category theory and universal 
algebra. Finally we have made the important definition of a coercion and demonstrated 
why the definition is necessarily strict.
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Chapter 6

Coherence

6.1 Introduction

In this chapter we will look at a conjecture of Weber which is important to our work. 
We shall state his assumptions and proof (which is incorrect).

We shall then add in some extra assumptions and truly prove the theorem. Finally we 
shall relax one of Weber’s assumptions and prove that the theorem still holds.

The assumptions made by Weber provide a strict formal setting for types in an algebra 
system. The theorem in itself proves confluence for coercions in this setting.

All the work in section 6.2 (except the explanation of “n-ary type constructor” which 
is by this author) and section 6.3 is taken from [Web93b][Web93a][Web95] . All the 
rest of the work is the author’s own.

6.2 W eber’s work I: definitions

This section contains the definitions from Weber’s thesis [Web93b] [Web93a] [Web95] 
required for the statement and Weber’s “proof” of Weber’s coercion conjecture 6.3.7. 
His assumptions are in the next section.

These statements will also be used when we correctly prove the coherence theorem 6.4.7 
in section 6.4.

It should be noted that Weber’s coercion conjecture only makes up part of one chapter 
of his thesis [Web93b] which also covers various areas of type classes, type inference 
and coercion in great depth and detail.
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Weber uses the phrase “type class” where we would use the terms “category” or “va­
riety” .

D efinition  6.2.1 A base type is any type which is not a parametrically defined type, 
(i.e. a 0-ary operator in the term algebra of type classes)

So for example, the In te g e r and Boolean types are base types.

D efinition 6.2.2 A ground type is any type within the system which is either a base 
type or a parametrically defined type with all the parameters present. Any non-ground 
type is called a polymorphic type.

As examples, we have In teg e r and P o ly n o m ia l(F rac tio n (In teg er)). As a non­
example, we have Polynom ial(R:Ring).

D efinition 6.2.3 I f  there exists a coercion from t to t f we say that t < t ' .

This definition places an order on the ground types.

Weber uses the phrase “n-ary type constructor” to mean a functor from the product 
of n categories to a specific category.

Equivalently, it is a function from the product of n varieties (specified respectively 
by the theories Q i , . . . , f in) to a variety (specified by the theory ((E,S'),S)). This 
is a function which, for all i maps the carrier of the principal sort (and potentially 
the carriers of some of the non-principal sorts) of a model of to one (for each sort 
mapped) of the non-principal sorts of a model of ((E, S), S).

If the model returned is (A, a), this function must map one and only one sort-carrier 
to each and every member of A  \  {As^} where S\ is the principal sort.

D efinition 6.2.4 For a ground type t we define com(t) to be 1, i f  t is a base type, 
or if t = f { t \ , . . . , t n) (an n-ary type constructor) then com(t) is defined to be 1 +  
max({com(tj)|i E {1 ,... ,n}}).

This defines the “complexity” of a ground type to be how far up the type lattice it is.

D efinition 6.2.5 (C oherence) A type system is coherent if  the following condition 
is satisfied:
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(V ground types t i , t 2)(((p,ip : t\ —Y t2 coercions) => ((p = ip))

This guarantees that there only exist one coercion from one ground type to another. 
This is a highly desirable feature of any type system. The main results of this chapter 
(the coherence theorem 6.4.7 and the extended coherence theorem 6.5.4) are that we 
may be able to guarantee that our type system is coherent providing some sensible 
assumptions hold true.

In the following definitions, all the o and o’ are type classes.

N otation 6.2.6 t : o means that the type t is an object of the type class o.

Definition 6.2.7 The n-ary type constructor f  (n 6 N ) induces a structural coercion 
if there are sets Af  C  { 1 ,.. . ,  n} and Mf  C  { 1 ,.. . ,  n} such that the following condition 
is satisfied:

I f  f  : ( ^ l v ^ n )  -> cr and f  : (o[ , . . . ,  cr )̂ -» o', and (Vi e  { l,...,n } )(V  
ground types ti : ai and t\ : (j[)(i 0  A f  U A t/ => U = t[) and there exist 
coercions:

(pi :ti -» t\ if i e  M f

(pi \ t’i t{ if i G A f

(pi =  id*i =  idt/ if i & A f  U M f

then there exists a u n i q u e l y  d e f i n e d  coercion

F f ( t \ l  • '  • 5 ^ 1  J • • • J ^ n )  • '  • 5 ^ n )  :  f  ( t \ l  • '  • J ^ 7 1 )  f  ( t i l  • • • 5 t n ) .

The type constructor f  is covariant (or monotonic) in its i-th argument if i G Mf .  f  
is contravariant (or antimonotonic) in its i-th argument if i £ Af

Note that if i £ Af  fl Mf  then ti = t\

As an example of covariance, the list constructor in Axiom, List (a functor Set —>• 
ListAggregateO) takes one argument in which it is covariant. Given types A and B, 
such that there exists a coercion (pi : A —► B then

•̂ List(A,B, (pi) : List (A) ->• List(B)
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Since Axiom’s type constructors are functors, then category theory states this more 
simply as

«^List (A, B, (f)\) — List(0i)

Contravariance is a rarer case. However, Axiom’s Mapping functor is contravariant in 
its first argument and covariant in its second. Mapping takes two types A and B and 
returns the type of all mappings from A to B.
As a concrete example for Mapping, suppose we wish to find the uniquely defined 
coercion

Mapping(Fraction(Integer),Fraction(Integer)) —>

Mapping(Integer,Fraction(Integer))

There exists a coercion

i  : Integer —> Fraction(lnteger) 

the inclusion operator, There also exists a coercion

id : Fraction(lnteger) —> Fraction(lnteger) 

which is the identity operation. The uniquely defined coercion is as follows,

^Mapping(Fraction(lnteger), Fraction(Integer), Integer, Fraction(Integer), l , id) : 
Mapping(Fraction(Integer), Fraction(lnteger)) —> 

Mapping(Integer, Fraction(Integer))

which sends /  »->• id o /  o t.

The following definitions shows that there is a homomorphic image of a parameter in 
the created type. For example there is a homomorphic image of the underlying ring in 
any polynomial ring.

D efinition 6.2.8 Let f  : (<ti, . . . ,  crn) cr be an n-ary type constructor. I f  (Vi £ 
{ 1 ,... ,n})( for some ground types t{ : cq) such that there exists a coercion

'U -*  f ( tu - - - , tn )  

then we say that f  has a direct embedding at its i-th position.
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Moreover, let

Vf = { i\f has a direct embedding at its i—th position} 

be the set of direct embedding positions of f .

The definition of Vf  is a technical definition of Weber’s, needed for one of his assump­
tions (6.3.5).

6.3 W eber’s work II: assum ptions and a conjecture

This section provides all the assumptions and results which Weber uses in his “proof” 
of Weber’s coherence conjecture 6.3.7 which we shall state and at the end of this 
section. The assumptions and results are also required in our proof of the coherence 
theorem 6.4.7.

A ssum ption  6.3.1 For any ground type t, the identity on t will be a coercion. The 
(well-defined) composition of two coercions is also a coercion.

This is clearly a sensible (if not-often implemented) statement. Since our coercions are 
always to be arrows of a category, then the above assumption must hold.

L em m a 6.3.2 I f  assumption 6.3.1 holds, then the set of ground types as objects to­
gether with their coercions as arrows form a category.

P r o o f . Immediate. □

The following assumption will provide us with the basis for a coherent type system. 
Our coherence is built by ensuring confluence amongst different paths leading to the 
same coercion. If we do not have coherence at the base types then we shall not have 
coherence amongst the general types.

A ssum ption  6.3.3 The subcategory of base types and coercions between base types 
forms a preorder, i.e. if t \ , t 2 are base types and (f),ijj : t\ —> t2 are coercions, then

The following condition states that T f  is a functor over the category of all / ( • , . . . ,  -)s.
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A ssum ption 6.3.4 Let f  be an n-ary type constructor which induces a structural co­
ercion and let f { t \ , . . . ,  tn), f{ t'i, . . . ,  t'n), f ( t '{, . . . ,  t") be ground types. Assume that the 
following are coercions.

i G M f  =>■ fa : U -¥ t ’i, fa : t\ —> t"

i G A f => & : t" —> t't, fa : t'i—t ti

i A fU  M f  => U = t'i = t" and fa =  fai = id^

Then the following conditions are satisfied:

1. J - f{ ti,. . . ,  tn, t \ , . . . ,  tn, idfj, . . . ,  idfn) =  ^f(ti,...,tn)

2. T f ( fa , . . . ,  tn, t’{,. .. , t^ ,fa  O fa, .. . ,(f)n o fan) =
T f { t i , . . . , t n, t ,l , . . . , t ’n, f a , . . . ,  <f)n) O T fit '^  . . . ,  t'n, t '[, ...,t'n,<i> I , . . . ,  fan)

This is a condition which stops direct embeddings “becoming confused”. Firstly, Weber 
declares that any type constructor can only have one direct embedding. (We shall show 
how to relax this condition in a later section (6.5).) Secondly, he states that direct 
embeddings, where they exist, are unique.

A ssum ption 6.3.5 Let f  be an n-ary type constructor. Then the following conditions 
hold:

1. \Vf \ =  1

2. Direct embedding coercions are unique, i.e. if ®lf,ti,...,tn • ti “  ̂ /(^ij---»^n) and 

®Uu-,tn : /(*i> •••>*»») then

The following assumption is highly technical and shows how direct embeddings interact 
with structural coercions. Basically, they commute.

Assum ption 6.3.6 Let f  be an n-ary type constructor which induces a structural coer­
cion and has a direct embedding at its r-th position. Assume that f  : (<ti, . . .  ,a n) a 
and f  : (a [ ,. . .  ,a'n) —► a , and (Vi G { 1 , . . . , n})(3tj : ai and t\ : a[) . I f  there are 
coercions : tr —> t'r, if the coercions tn and &rf t, t, are defined, and if f  is
covariant in its r-th argument, then the following holds:

°  Vv =  F f ( t u  • • • ,  t n ,  t [ ,  • • • , C  ^ i ,  • • • ,  o $ rf ) t l ,...,tn
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or equivalently, the following diagram commutes:

lpr

f  {th ■ • • i in)

However, if f  is contravariant in its r-th argument then:

or equivalently, the following diagram commutes:

f  (̂ 1? • • • i in)

We are now in a position to state Weber’s coherence conjecture and his “proof’. This 
attempts to show that when the aforementioned assumptions hold true, then we have a 
coherent type system. We shall give more assumptions and a proper proof in section 6.4.

tween ground types are only built by one of the following mechanisms:

1. coercions between base types;

2. coercions induced by structural coercions;

3. direct embeddings in a type constructor;

4- composition of coercions;

5. identity function on ground types as coercions.

I f  assumptions 6.3.1, 6.3.3, 6.3.4, 6.3.5 and 6.3.6 are satisfied, then the set of ground 
types as objects, and the coercions between them as arrows form a category which is a 
preorder.

C on jectu re  6.3.7 (W eber’s coherence con jec ture) Assume that all coercions be-
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This is the “proof” of this conjecture given in [Web93b] [Web93a] [Web95].

W eber’s “P roof” . By assumption 6.3.1 and lemma 6.3.2, the set of ground types 
as objects and the coercions between them form a category.

For any two ground types t and t' we will prove by induction on max(com(£), com(t')) 
that if <p, ip : t —>• t1 are coercions then cp = ip.

If max(com(£), com(^)) =  1 then the claim follows by assumption 6.3.3. Now assume 
that the inductive hypothesis holds for k , and let max(com(i), com(t')) =  k + 1. Assume 
w.l.o.g. that t < t' and that (p,ip : t —> tl are coercions.

Now t < tr =>■ com(t) < com(t') . So we may assume that t’ = f ( u \ , . . .  ,u n) for some
n-ary type constructor / .

By assumption 6.3.4 and the induction hypothesis, we can assume that there are ground 
types si, S2 and unique coercions fa  : t  ► s\ and fa  - t  S2 such that either

<t> = Ff(- • • . . . , s i , . . . ,  f a , ...)  (6.1)

or
(f> = f a o $ lf  )Sl) (6.2)

Similarly either,
if) =  T f {.. . ,  t , . . . ,  82, • • •, fa , • • •) (6.3)

or
i> = f a °  (6.4)

If 4> is of form 6.1 and if) is of form 6.3 then 4> =  if) by assumption 6.3.4 and the
uniqueness of T f.

If (f> is of form 6.2 and ip is of form 6.3 then <p = ip by assumption 6.3.6.

Analogously if <p is of form 6.1 and ip is of form 6.4.

If <p is of form 6.2 and ip is of form 6.4 then assumption 6.3.5 implies that i = j  and 
si =  S2- Because of the induction hypothesis we have fa  = fa  and hence <p =  ip again 
by assumption 6.3.5. □

6.4 The coherence theorem

In the above proof, there seem to be some irregularities.
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On coerc ib ility  and com p lex ity

Weber states in the proof that

t < t f => com(t) < com ^)

Weber does not prove this, and indeed it is not true.

Suppose that /  is an n-ary type constructor and that it is contravaxiant in its i-th 
position. If

•Ff (̂ 1? • • • 5 ti, . . . , £n, 01, . . . , 0n) : / ( s i ,  • • • , Sn)  ̂ /(^ l j • • • > tn)

and fa : ti Si with

com(sj) > max(com(si), . . . ,  com(sj_i), com(si+i), . . . ,  com(sn))

In other words, com(sj) is the unique, maximum member of the set

(com(sj) | j  <E { l , . . . , n}}

Then if com(U) < com(sj) and for all j  in {1, . . .  ,n} \  {i} we have that Sj =  t j , we 
have a counterexample Weber’s claim, that

com(/ (s i , . . . ,  s„)) > com(/ ( t i , . . . ,  tn))

Thus Weber’s assertion is invalid.

Stru ctu ra l coercions (in  th e  “p ro o f” )

In equation 6.2 (and similarly equation 6.4) 0 is given as a function

/ ( . . . , * , . . . )  - > / ( . . . , s i , . . . )

however, 0 is supposed to be a function from t.
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S tr u c tu r a l  c o e rc io n s  (sy n ta x )

Weber calls the structural coercion function from / ( s i , . . . ,  sn) to f ( t \ , . . . ,  tn)

F  ̂(si j . . . , Sji, t \ , . . . , tn , (j>\, . . . , (f)n)

where is from s* to t{ or ti to s* depending on whether /  is covariant or contravariant 
in its zth argument, respectively.

However, this is merely the functorial action of /  on the maps <f>i, . . . ,  (f)n and could be 
represented more compactly as

f  (^lj • • • 5 0n)

The source and target of each <f>i and knowledge of the sets A f  and M .f uniquely de­
termine the source and target of f{(j)i , . . . ,  4>n). This also demonstrates the uniqueness 
of f{(j)i , . . . ,  (f>n) and guarantees that assumption 6.3.4 holds.

Id e n t i ty  c o e rc io n s

Weber states in assumption 6.3.1 that the identity function is a coercion. However, 
he never proves this to be unique. Indeed, automorphisms are perfectly natural maps 
t —y t.

In a computer algebra system like Axiom, many automorphisms are not automorphisms 
of the smallest category to which a type belongs.

For example, the ring-automorphism Z[X , T] —> Z[Y, X] is not a PolynomialCategory- 
homomorphism since, for instance, the leadingMonomial function is not preserved 
under the map.

For some categories, like the category of groups, this may not be so easy to implement. 

We add the following sensible assumption.

A ssum ption  6.4.1 The only coercion from a type to itself is the identity function.

We shall of course allow any number of functions from a type to itself, including con­
versions. It is merely the number of coercions which we are restricting.
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C o m p o sitio n  o f  coercions

It is possibly symptomatic of the previous errors that Weber has neglected to cover all 
the possible cases of </> and i/j.

All our coercions are compositions of coercions (or just a single coercion) from the list

1. coercions between base types;

2. coercions induced by structural coercions;

3. direct embeddings in a type constructor;

4. identity function on ground types as coercions.

Suppose that (j) =  t \  o  ( f t  and that if)  =  T 2 o  where t \  and 7 2  axe single coercions, and 
(ft and if)1 are also (compositions of) coercions, (ft may be the identity coercion, as may 
be ift.

For a proof by induction on com, we need to cover all the cases of (ti, 72) pairs. Thus 
the list which we need to consider is

1. T\ is a coercion between base types. 72 is a coercion between base types.

2. t\ is a coercion between base types. 72 is a structural coercion.

3. T\ is a coercion between base types. 72 is a direct embedding.

4. t\ is a coercion between base types. 72 is an identity function.

5. T\ is a structural coercion. 72 is a coercion between base types.

6. r\ is a structural coercion. 7*2 is a structural coercion.

7. T\ is a structural coercion. 72 is a direct embedding.

8. T\ is a structural coercion. 72 is an identity function.

9. t\ is a direct embedding. T2 is a coercion between base types.

10. T\ is a direct embedding. 72 is a structural coercion.

11. 7*1 is a direct embedding. r2 is a direct embedding.

12. t i  is a direct embedding. T2 is an identity function.

13. r i is an identity function. T2 is a coercion between base types.
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14. r\ is an identity function. 72 is a structural coercion.

15. r\ is an identity function. 72 is a direct embedding.

16. ri is an identity function. 72 is an identity function.

Firstly notice we are only interested in the pairs as unordered entities. Thus some of
these cases are duplicates.

Indeed: case 5 is case 2; case 9 is case 3; case 10 is case 7; case 13 is case 4; case 14 is 
case 8; case 15 is case 12. So we may discard cases 5, 9, 10, 13, 14 and 15.

Now notice that a base type can not have a direct embedding, neither can it induce a 
structural coercion. If either T\ or 72 is coercion between base types then the target of 
4> and if) is a base type. Hence the other can not be a direct embedding nor can it 
be a structural coercion.

All the cases of this form are 2 (equivalently 5) and 3 (equivalently 9). Thus we may 
ignore these too.

Our remaining cases are 1, 4, 6, 7, 8, 11, 12 and 16.

To really prove the coherence theorem we axe going to require some more assumptions. 
Only one of them (6.4.5) is difficult to justify.

We shall replace this first assumption which uses Weber’s definition 6.2.8 of a direct 
embedding presently with our own definition 6.4.3. In our definition assumption 6.4.2 
shall always hold (trivially).

Assum ption 6.4.2 I f a type constructor f  has a direct embedding at its i-th position 
and / ( £ i , . . .  , t n) exists then $ %f itUmmmttn : U -> f { t \ , . . .  , t n).

Weber defines a /  to have a direct embedding (definition 6.2.8) at a particular posi­
tion if there exists some n-tuple of types (£1, . . .  , £n) for which £t- directly embeds in 

f (£l? • • • >£«)•

This seems sensible if we consider a type constructor to be a function which returns 
the carrier of the principal sort of the algebra. We are saying that direct embedding of 
a type in a constructor is equivalent to saying that a sort ■< the principal sort.

It is true that an Axiom type constructor returns the carrier of the principal sort of 
the algebra but Axiom is more specific than that. The type constructor furnished with 
full complement of arguments is the principal sort of the algebra.
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In fact it would be better to replace definition 6.2.8 and assumption 6.4.2 with the 
following definition.

D efinition  6.4.3 Let f  : (<ti, . . . ,  <rn) a be an n-ary type constructor. I f  (Vi G 
{1, . . . ,  n})(V ground types ti : <Ji) there exists a coercion

then we say that f  has a direct embedding at its i-th position.

Moreover, let

V f = { i\f has a direct embedding at its i —th position} 

be the set of direct embedding positions of / .

The next assumption is undesirable due to its difficulty to guarantee in any implemen­
tation. However, it is provable in the more common covariant case (and we shall prove 
it in the proof of the coherence theorem 6.4.7).

We are assuming that structural coercions behave confluently. The assumption below 
(6.4.4) is stated “too strongly”. We shall state the assumption we really need (6.4.5 — 
which is more complicated) immediately after. Assumption 6.4.4 gives the idea of what 
we require, whereas assumption 6.4.5 gives us what is necessary. It is an assumption 
about type constructors.

A ssum ption  6.4.4 Let the type constructor f  induce a structural coercion. I f (p ’ t -> 
f { s \ , . . .  ,s n), ip : t —> f ( u i , . . .  ,u n) are coercions and t' = f ( t [ , . . .  ,t'n) then if there 
exists

•^/(^l j • • • 5 • • • j I'ni Vl > • • * j Vn) • f  1 j • ■ • 7 &n)  ̂b

•FfiV’ 1? • ■ ’ 5 ̂ 715 j • • • j ^ni Clj • • • j Cti) ' f  1) • ’ • 7 ^n)  ̂b

the following holds

lj • • ■ j ^nj ■ , tn,7J\, . . . , Tfji) O (f) J-.j{u\,. . . , Un, , . . . ,  tn, ^1,. . . , C,ji) o ip

— 88 —



Chapter 6. Coherence 6.4. The coherence theorem

or equivalently, the following diagrams commute

<t> f  (5l7 • • • j sn)

•FfiV11? • • ■ j  ^i> • • • j  ^ru Cl j  • • • » C/i)

Now, what we actually require. Suppose that a type t is not constructed by the n-ary 
type constructor /  which is contravariant in its zth position at which it also has a direct 
embedding.

Suppose also that t is coercible to two types which may be directly embedded in /  (at 
the ith position). Let us directly embed them to gain two new types (constructed by 
/ ) .  If these new types (constructed by / )  can both be structurally coerced to the same 
type t' (also constructed by / )  then the two compositions of coercions t —¥ t1 are the 
same.

Succinctly: A structural coercion of a direct embedding of any other coercion is unique.

Assum ption 6.4.5 Let f  be a type constructor contravariant at its i-th position at 
which it also has a direct embedding, and let t be a type not constructed by f .

I f  (f)fa : t —> ai and if)'b : t —>• b{ are coercions and (f>a : f ( a \ , . .. ,an) —> f{ t [ , . . . , t'n) and 
ipb : f{ b \ , . . . ,  bn) —y f{ t'i, . . . ,  t'n) are structural coercions then

<t>a °  $ / , 0l>...,a„ °4>a=^bQ &f,bu...,bn ° b

or equivalently, the following diagram commutes
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t

f  (oi) • • • j Q>n)

/ (*! , . - - X )

Notice that assumption 6.4.5 is provable in the case that /  is covariant at i (and we 
shall prove this in the proof of the coherence theorem 6.4.7). In the contravariant case,

The following assumption is more easily ensurable. We merely require that for two 
types constructed by the same type constructor, if there exists a coercion between 
them then it equals the structural coercion between them which we now assume to 
exist. This is also an assumption on type constructors.

A ssum ption 6.4.6 If / ( s i , . . . ,  sn) < f ( t \ , . . . ,  tn) then there exists a structural coer­
cion / ( s i , . . . , s n) to f ( t \ , . . . , t n) and it is the unique coercion f ( s i , . . . , s n) to

We are now finally in a position to state and prove the coercion theorem.

Theorem  6.4.7 (Coherence theorem ) Assume that all coercions between ground 
types are only built by one of the following mechanisms:

1. coercions between base types;

2. coercions induced by structural coercions;

3. direct embeddings (definition 6.4-3) in a type constructor;

4- composition of coercions;

5. identity function on ground types as coercions.

there is no link between t and t[ and it is this which make it an assumption.

/(^1? • l"n)'
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If assumptions 6.3.1, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 6-4-1, 6-4-5 and 6-4-6 are satisfied, 
then the set of ground types as objects, and the coercions between them as arrows form  
a category which is a preorder.

P r o o f . By assumption 6.3.1 and lemma 6.3.2, the set of ground types as objects and 
the coercions between them form a category.

All our coercions are either an individual coercion or a composition of finitely many 
coercions from the list: coercions between base types; structural coercions; direct em­
beddings (definition 6.4.3) in a type constructor; and identity functions.

Thus we may decompose any coercion into such a finite composition. We define len((f)) 

(the length of p )  to be the minimum number of coercions in any decomposition of p .  

Clearly, there are infinitely many values of len(</>) but there is a minimum value.

For any two ground types t and t ' we will prove by induction on the length of the 
coercions between them that any coercions between them are unique.

Let p ,  p  : t —> t' be coercions.

If the length of p  and p  is 1 then (replacing the unordered pair (( p , i p )  with (ti, T2)) we 
need to look at our eight cases 1, 4, 6, 7, 8, 11, 12 and 16 defined above.

Cases 1 and 4: If ( p  is a base type coercion, then t and t' are base types and coercions 
between base types are unique by assumption 6.3.3

Case 8, 12 and 16: If <p is an identity function on a ground type then t =  t1 then by 
assumption 6.4.1 i p  =  ( p .

C ase 6: If ( p  and i p  are structural coercions then p  and i p  are equal by assumption 6.3.4.

Case 7:If p  is a direct embedding and p  is a structural coercion then there are two 
cases.

Case 7a: i p  is covariant. Then by assumption 6.4.6 p  =  p .

C ase 7b: p  is contravariant. Thus t = f { t \ , . . .  , t n) and there exists i and a coercion 
t ti. This can not happen since no composition of our four basic coercions can create 
such a coercion.

Case 11: If p  and p  are direct embeddings then by assumption 6.3.5 p  =  p .

We now may assume that any coercions of length less than or equal to k are unique.

Suppose that p ,p  : t -» t' are coercions and max(len(</>), lenf^)) =  k +  1. Also suppose 
that p =  T\ o pl and p  =  72 o p' where for i in {1,2} we have : si —>• t1 are single 
atomic coercions. Also p1 : t s\ and p ’ : t -» S2 are unique coercions since their

— 91 —



Chapter 6. Coherence 6.4. The coherence theorem

lengths are less than or equal to k.

If the length of (p or ip is 1 then we define (p' or ip' respectively to be the identity 
function on t.

As stated before, there are eight cases 1, 4, 6, 7, 8, 11, 12 and 16. (We may transpose 
T\ and 72 if we wish since their order is unimportant.)

C ase 1: T\ is a coercion between base types. r2 is a coercion between base types. Then 
£' ,si,S2 are all base types. Base types may only be the targets of base type coercions 
hence t is a base type. Thus <p and ip are coercions between base types and are thus 
equal by assumption 6.3.3.

C ase 4: t\ is a coercion between base types. r2 is an identity function. Again t and t' 
must both be base types and <p and ip are equal by assumption 6.3.3.

Case 6 : t\ is a structural coercion. 72 is a structural coercion. Let t' = f{ t \ ,  •.. ,t'n).

If t is equal to some / ( t i , . . . ,  tn) then <p and ip are structural coercions f ( t \ , . . . ,  tn) to 
t' =  / ( ^ i , . . .  ,t'n) and hence are equal by assumption 6.3.4.

Else, we may assume that t /  f { t i , . . .  , t n). Since all our coercions are built from 
compositions of the four basic types of coercion we may consider <p and ip to be chains 
of compositions. Without loss of generality, assume that the length of <p is k +  1 and 
the length of ip is I where I < k  + 1.

t = ho ^  h\ ••• hk ^  hk+i = t'

and

In both the composition chains of coercions from t to t' there must exist a minimal 
element of the chain which is constructed by /  and this (by assumption) can not be so 
or ho. Also because t\ and 72 are structural coercions, these minimal elements are not 
hk+1 or si.

In the 0-chain we shall assume that this element is ha. In the 0-chain we shall assume 
that this element is sj>.

Since ha is constructed by /  and ha-1 is not and (pa- i  is one of the four basic coercions, 
it must be a direct embedding. (It can not be a structural coercion since ha- \  is not 
constructed by / .  It is not a coercion between base types because ha is constructed by 
/ .  It is not an identity coercion since ha_i is not constructed by /  whereas ha is.)
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Similarly if tb-i  is also a direct embedding.

Now by assumption 6.3.5 the direct embeddings must be at the same position. We 
shall assume that this position is the ith.

Let ha = / ( a i , . . . , a n) and Sb =  /(&i, . . . ,  bn). Call the unique structural coercions 
<t>a '• ha —> t' and i/>b '■ sb tr- (Notice that ha- \  =  a* and Sb-i = hi.)

Call the maps (j)'a : t —>• ha_i and x̂ 'b : t —> Sb~\ where

<t>'a =  <t>0 °  • • • °  (f*a- 2

and
ip'b-^Po o  • • • o -06_ 2

(If a or b equal 1 then we may insert an initial identity coercion and lengthen the chain 
by one. This does not affect our induction on length since we are always in good shape 
with identity coercions. Neither a nor b may be 0 by our assumption on t.)

Thus we have the following diagram, and we wish to prove that it commutes.

t

ha — f ( a i , . . . , a n) Sb — f {b i , . . . ,b n)

m , . . . ,  4 )

Case 6a: /  is covariant in the zth position.

Consider the coercions ot : a* —> t[ and (3 : bi —► t[. (Recall that t' = f(t?l9...,t?n)). 
These must exist because (f>a and ipb lift them covariantly respectively.

The definition of direct embeddings 6.4.3 guarantees the existence of $ lj t, t, .
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Now by the definitions above

4> =  ^ °  n°4>a

By assumption 6.3.6

4>a ° °  “

Thus

By induction on length we know that the coercion t to t\ is unique. Hence

° (f>a = P o %p'b

So

° P ° ^ b

Assumption 6.3.6 gives us

i; t'n ° 0  = i>b° 4-/,6,...

Thus
(f) = 1pbO #*/)6lv..)6n o f//b 

which by definition means (f> = ip.

Graphically, the following is a commutative diagram.

ha— 1 — 0,i sb—1 — h

ha — f  (ui, . . . ,  fln) '/,tj ,...,t'n f(bh  • • • j hfi)

Case 6b: /  is contravariant in its ith  position
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There is nothing to link t and t[ in this case and we must resort to assumption 6.4.5.

Sb— 1 — hi

$* <J>*

Sb =

Case 7: Ti is a direct embedding. T2 is a structural coercion.

Case 7a: 72 is covariant. Then 0 = ip by case 6a above.

Case 7b: 72 is contravariant. Let S2 =  /(s2i ? • • • > s2n) and t' = f{ t[ , . . .  ,t'n). If 
k : t[ —> S2{ is the coercion lifted (contravariantly) by 72 where

72 = ? f ( -  • • , s 2 i , • • • . )

Also

n  = -A

The uniqueness of 0' implies that

4>' =  O K O V’'

By assumption 6.3.6 we have

S2j, . . .  , t < , O  $ ’As2[ S2n O =  $*/ ( , ....(!>

Thus

7 > ( . . .  , « 2 i , O  °  *  °  V1' =  $ / / „ . . . *  °  V1'
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and therefore
T / ( . . . ,  s2i, . • •, .. •, k, ■ • •) ° (f>' = ° $

Hence, (p — ip.

C ase 8: t\ is a structural coercion. T2 is an identity function. Let t' = f ( t [ , . . .  ,t'n). 
By viewing 72 as the identity function

• • • ,  C  * i ,  ■ • • > C  i d * i  > • • • > i d ^ )

Thus (f) = ip by case 6.

C ase 11: t \  is a direct embedding. T2 is a direct embedding. Assumption 6.3.5 implies 
that the direct embeddings must be at the same position, i. Therefore s\ = s2. So by 
the inductive hypothesis (p' =  By assumption 6.3.5 t \  =  72. Hence <p = ip.

C ase 12: t \  is a direct embedding. 72 is an identity function. Let t' = f ( t . . .  , t rn). 
By viewing 72 as the identity structural coercion

f  (^11 • • • 5 n̂> 1̂ j ' ■ ' 1 ^ni 5 • * • 5 d̂ i„ )

Thus (p = ip by case 6, above.

C ase 16: t\ is an identity function. ?2 is an identity function. Thus <p = <p' and 
ip =  ip'. However, since si =  S2, <p' =  ip' by the inductive hypothesis. Hence <p = ip.

Thus we have proved (p = ip for all coercions of length less than or equal to k +1. Hence 
the result hold for all coercions, by induction. □

In case 10b of the case when the length is 1 we claimed that there can not be built a 
coercion from a type constructor to one of its arguments.

Prom our description so far of Axiom, one might think that Axiom would permit the 
construction of the following type

Fraction(Fraction(Integer))

which is the quotient field of the quotient field of integers1. However, the quotient field 
of a quotient field is itself and hence,

Fraction(Fraction(Integer)) =  Fraction(Integer)
1The quotient field of the integers (Z) is more commonly known as the rationals (Q).
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For this reason, Axiom contains special code in the interpreter to stop such pathological 
types being instantiated. A Boot function (isValidType) checks to see if one is trying 
to create a type like the one above, or

Polynom ial(Polynom ial( In te g e r) )

But this is hand-crafted, special code covering a few cases and mentions the types by 
name. It is conceivable that a user could create a new type called MyFraction which 
is identical to F raction . This would not be picked up be isValidType and thus

M yFraction(M yFraction(Integer))

could be instantiated. Since the type is then isomorphic to one of its arguments, it is 
feasible that a coercion between the two could be defined, contradicting our claim in 
case 10b of the case when the length is 1.

This coercion can still not be built from our four basic types, thus defining such a 
coercion contradicts our assumptions for the coherence theorem.

6.5 E xtending the coherence theorem

Firstly, Weber’s “proof” of his conjecture 6.3.7 relies on induction on com(t). This 
assumes that there are no types of infinite complexity in our system. This is not the 
case in Axiom, since one could define the following types (in one file):

R(r : Ring) : Ring == r
D1 : Ring == R(D2)
D2 : Ring == R(D1)

(though calling 1()$D1 would be disastrous2!) So we add the following extra assump­
tion.

A ssum ption  6.5.1 There do not exist any types of non-finite complexity.

The proof of the coherence theorem 6.4.7 does not rely on type having finite complexity. 
However it is still a sensible assumption to make and can be easily guaranteed in a real 
implementation. It is also imperative that this assumption holds if the automated 
coercion algorithm 7.4.1 is to terminate.

2 This would try to create the constant 1 from the ring D1 which can not be evaluated.
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Assumption 6.3.5 states that we may have only one direct embedding into an algebra. 
However, in Polynomial Integer one would wish to perform the direct embeddings 
of both of Integer and Symbol, yet this violates assumption 6.3.5 and thus we would 
not be able to prove that our algebra system is coherent.

The reason for Weber’s assumption is to stop coercions like the following occurring. 
If A is a group, then being able to coerce A —> A  x A whilst potentially useful, is 
ambiguous. As he points out in [Web93b] [Web93a] [Web95], A  can be coerced into 
A x A  via the isomorphisms A = A x I  or A = I x A  (where I  is the trivial subgroup 
of A).

In this example the inclusions are ambiguous, since using either coercion, the target of 
the inclusion is a group. However, in many cases the types are “incomparable”, (eg. 
Integer and Symbol) and thus the assumption seems to be too strong. The question 
is what do we mean by “incomparable”?

Certainly, there is no coercion function Integer —>■ Symbol or Symbol —> Integer. But, 
for two distinct non-trivial, proper normal subgroups G, H  of A such that G D H  = I, 
then there is no coercion function A /G  -* A /H  or A /H  —> A /G , yet there then exists 
two distinct coercion functions A —> A /G  x A /H , and coherency is lost. (A /G  is the 
quotient group “A factored out by G” and is the set {aG | a E A} where aG = a'G iff 
a~l a! E G). Thus, the condition of there not existing a coercion function between our 
two types is not sufficient for our definition of “incomparability”.

However, we notice that there exists no type which can be coerced to both Symbol and 
Integer, but there does exist homomorphisms A —» A/G and A —> A/ H.  So if we 
choose the statement “Types A and B are incomparable if there does not exist a type S 
which can be coerced to both A and B” as a definition of incomparability then we are 
in good shape.

We state this in the language of Weber as follows. To replace the assumption we 
first need to alter definition 6.4.3 (our previous replacement of definition 6.2.8) to the 
following.

D efinition 6.5.2 Let f  : (<ti, . . . ,  an) —» a be an n-ary type constructor. I f  (V« E 
{1,. . .  ,n})(V ground types U : Oi) there exists a coercion

: t i ^  f { t i , - - - , t n) 

then we say that f  has a direct embedding at its «-th position.
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Moreover, let s be a ground type and i E {1, . . .  , n}  and define,

V(i , s)  := ((30 : s - +U)  A ( 3 $ :  U -> f ( t u . . . , t n))) 

where 0  is a coercion, and also define,

D f := {(t,s)|P(*\s)}

Note then that D f = {«'|(3s)(7^(z, s))}. We now alter assumption 6.3.5 to the following

A ssum ption  6.5.3 Let f  be an n-ary type constructor. Then the following conditions 
hold:

1. (i , s ) , ( j , s ) e D f  -> i = j

2. Direct embedding coercions are unique, i.e. if $ lf  tl ... *n : U —> f ( t \ , . . .  , tn) and

: **' •••>*«) then

So we may now extend the coherence theorem (theorem 6.4.7) by altering the assump­
tion list to our new relaxed set of assumptions. It is not necessary to reprove the entire 
theorem, but merely the cases which involved assumption 6.3.5

T heorem  6.5.4 (E x tended  coherence th eo rem ) Assume that all coercions between 
ground types are only built by one of the following mechanisms:

1. coercions between base types;

2. coercions induced by structural coercions;

3. direct embeddings (definition 6.5.2) in a type constructor;

4. composition of coercions;

5. identity function on ground types as coercions.

I f  assumptions 6.3.1, 6.3.3, 6.3.4, 6.3.6, 6.5.1, 6.4.6, 6.4-1, 6-4-5 and 6.5.3 are satis­
fied, then the set of ground types as objects, and the coercions between them as arrows 
form a category which is a preorder.
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P r o o f . The entire proof of theorem 6.4.7 is valid except where assumption 6.3.5 was 
used.
First we deal with the length of <p and ip being 1. The only case which relied on 
assumption 6.3.5 was case 11.

C ase 11: If (p and ip are direct embeddings then by assumption 6.5.3 ip = <p.

Now, the induction case. The only cases which relied on assumption 6.3.5 were cases 6 
and 11.

C ase 6: In the proof of theorem 6.4.7 in this case we relied on assumption 6.3.5 to 
show that the two direct embeddings ha~ i —> ha and s^-i —> Sf, were at the same 
position.

Now since t  < ha-1 and t < s&_i, by assumption 6.5.3 the direct embeddings must be 
at the same position.

Thus the rest of the proof of this case holds.

C ase 11: t \  is a direct embedding. 72 is a direct embedding. Since t < s\ and t < S2 
assumption 6.5.3 implies that the direct embeddings must be at the same position, 
i. Therefore si =  S2- So by the inductive hypothesis <p' = ip1. By assumption 6.5.3 
t \  =  T2- Hence (p — ip.

Inserting the rest of the proof of theorem 6.4.7 completes the proof. □

Thus we have relaxed an important one of the conditions of the coherence theorem 6.4.7 
and proved that the theorem still holds.

6.6 Conclusion

In this chapter we stated all the mathematics needed to state Weber’s coherence con­
jecture and give his proof.

We have also stated extra mathematics to correct the statement of the conjecture and 
then prove it; hence promoting it to a theorem. We have then relaxed one of the 
conditions and shown that the theorem still holds.

This theorem is the cornerstone for ensuring correct coercions.

By having a coherent type system, then provided we are careful in how we imple­
ment our type constructors (the must satisfy the assumptions) and how we create our 
coercions (compositions of the four basic types) all our coercions are then unique.
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Chapter 7

The autom ated coercion  
algorithm

7.1 Introduction

In this chapter, we shall introduce some extra mathematics which will allow us to state 
the automated coercion algorithm. Furthermore, this sound foundation will allow us to 
demonstrate that all coercions generated by the algorithm are, in fact, homomorphisms. 
Indeed, we may even guarantee that these are coercions in the sense of definition 5.5.2.

All the work in this chapter is the author’s own.

7.2 F initely generated algebras

In this section we shall define what it means to say that an algebra is finitely generated, 
and also what it means to say that a finitely generated algebra is decomposable.

D efin ition  7.2.1 Let S be an order-sorted S-signature. We say that S  has a principal 
sort if  (£, S) defines an algebra which has one sort (which without loss of generality, 
we shall always assume to be S \)  which is the “most interesting” of the algebra.

By “most interesting”, we mean that a more naive algebraist would consider this sort 
to define the entire algebra.

For example, if we define T to be the Group algebra with sorts,

( “the group”, “a boolean sort”, “an integer number system”)
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then the “most interesting” sort is the one for “the group” which would be carried by 
a set of all the group elements.

All Axiom algebras must have a principal sort, referred to as '/., in the source code. One 
can think of S\ = '/, as the sort that the Axiom code “constructs”. In the terminology 
of chapter 6 it is the type constructed by the type constructor. (Axiom views base 
types as type constructors with no arguments.)

D efin ition  7.2.2 We say that a theory ((£, S),S) ,  is finitely generated iff S  has a 
principal sort, S \ , and the following set is finite,

 ̂ U ^n,q,Si
n,q

This states that given a finitely generated £-algebra, {A, a) (which is a model for S) 
then there are a finite number of operators which can return an element of the carrier 
of the principal sort.

This means that only finitely many functions (directly) construct (the carrier of) the 
principal sort.

The next definition allows us to decompose any element of such a £-algebra into at least 
two pieces. Moreover, there exists such a decomposition for each one of the (finitely 
many) constructors. Furthermore, decomposing such an element and recombining using 
the corresponding constructor is equivalent to the identity function.

D efinition  7.2.3 A finitely generated theory ((£ ,5 ), S), is decomposable iff

(V<7 G £ )((a  G £„,*,*) =►

(Vi G {1 ,... ,n})(37rff>i)(7ra>i G Si,Si,9i) A ( M ^ i  H r - . v H )

=  id5l) e S ) )

For example, in a an algebra of lists, cons is a constructor. The corresponding functions 
which decompose an element are car and cdr. The following equation holds.

c o n s (c a r(x ) ,c d r(x ))  =  x

Notice that this equation is only well formed when x is not the empty list. For the 
empty list, which is constructed by the 0-ary function n i l  () , there are no decomposers, 
and the equation is as follows.
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nilO = x

It is important to note that the part functions i t are usually partial functions. For 
example car is not defined on the empty list.

Notice that we have not yet defined a way of differentiating between which constructors 
construct which element. We shall do this in the following section.

7.3 C onstructibility

We now come to the most important concept of this thesis. The aim of this thesis is 
to provide a method for creating coercions constructively. We now supply the means 
do so.

As usual, we need to make some definitions first. We will state what we mean by a(n) 
(algorithmically) (re)constructive algebra. What we really mean is that an algebra is 
(algorithmically) (re)constructive if some subset of the elements of the most interesting 
sort-carrier of that algebra can be “built up” from a finite family of operators.

This finite family consists of “constructors” used to create increasingly “large” elements 
of the principal sort.

We shall also have equations in the theory linking the constructors to “part functions” 
which we shall use to split large elements into an n-tuple of smaller elements. The con­
structor applied to its associated part functions acting on an element will be equivalent 
to the identity function.

We shall be able to tell how an element is constructed by using a “query function”. That 
is to say we must be able to know which constructor(s) may construct any particular 
element of the principal sort.

We require these definitions so that if an algebra is a model of some algorithmically 
reconstructible theory, and another algebra contains some of the constructors of the 
first algebra, then some subset of the elements of the most interesting sort-carrier 
can be “coerced” from the first type to the second. We shall show this to be a S- 
homomorphism, where H is a particular signature to which both algebras belong.

We demand our extensions to be protecting extensions so that performing operations 
on an algebra (or looking at equations of elements of that algebra) when viewed as a 
model of the original theory or the extension of the theory yield “the same result”.

D efinition 7.3.1 We call a theory ((E,«S'),<S) constructive iff E is a protecting exten­
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sion of a finitely generated theory. We then call E a constructing signature, and any 
model for the theory, a constructible algebra.

Similarly,

D efin ition  7.3.2 We call a theory ((E ,S) ,S)  reconstructible iffT, is a protecting ex­
tension of a decomposable theory. We then call E a reconstructing signature, and any 
model for the theory, a reconstructible algebra.

Moreover,

D efin ition  7.3.3 I f ( (E,X) ,X)  is the decomposable theory extended by the recon­
structible ((E, S),S) ,  we define the constructors of ((E, S) ,S)  to be

Ec  := 2

We define the constant constructors to be the constructors of arity 0, denoted by E° 
and the non-constant constructors to be the constructors of all other arities. We denote 
this set by Ec -°  := Ec  \  E°

We also define the part functions of ((E, S) ,S)  associated with a G E ^ -0 to be the ttaj,. 
(Constant constructors have no associated part functions.)

Finally we define the constructor equations to be the following set and demand it to be 
a subset of S  (and hence X ) given by,

{(<1(7^1 ,7ra>n(-)) =  id5l) | o' e  Ec_0}

We also need to ensure that certain other relationships between constructors which 
hold in our source algebra hold in our target algebra.

If an element of the source algebra may be constructed in more than one way, we require 
that reconstructing that element in the target algebra using any of those methods yields 
the same result.

Notice that since our theories are protecting extensions we are in good shape, since 
any equation that holds in the protecting extension which concerns only the sorts from 
the original (unextended) signature must hold in the original signature. Thus these 
equations will hold in the target algebra.

We call these equations that link different constructors together the secondary con­
structor equations.
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D efinition  7.3.4 We call a reconstructible theory ((E , S ) , S)  algorithmically recon­
structible iff : S  contains a boolean sort, B ; E contains a set of symbols, called the 
query functions, denoted and defined by

:= {Xc e Si,Sl,B | a e Ec };

and S  contains the following equations, called the query equations 

{V&n,q,Si £  )(Xo-n,9,s1 (an,q,Si (a l ? • • • j  an)) =  T)

We also demand that for each on,q,Si in %C,

{{fiau . . . ,  an)(u) = a n^ Sl (fli, • • • , an))) =» (x<rn,q,Sl M  =  F )

Finally we demand that all secondary constructor equations are defined in the theory.

A secondary constructor equation is any equation which has a constructor as the final 
symbol on both right and left sides.

We say “final symbol” to mean this is operator applied last. In our notation (functions 
written on the left) a final symbol is written to the left of all the other elements of a 
formula.

For example, <r() and cr(ei, cr/(e2, 63)) both have a as a final symbol.

In the algorithm we shall demand that the decomposable theory which both types model 
is the smallest theory which they both model. This is to ensure that the algorithm not 
only creates a homomorphism, but that it is a coercion (definition 5.5.2). The proof of 
this is given in corollary 7.6.8.

E xam ple  7.3.5 We shall take the variety of Lists as our example, and we shall assume 
that L is t  is a member of this variety. Then the constructors for the model are n i l  and 
cons, where n i l  is a constant constructor whereas cons is a non-constant constructor.

cons’ associated part-functions are cax and cdr. Thus we have the constructor equa­
tion:

cons(car(:r), cdr(ar)) =  id(a;)

The query functions are n u ll  and consp, and our query equations are,
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n u ll(n i l )  =  T  

and for any list I and any element of the underlying type, i,

consp(cons = T  

Notice also that consp(nil) =  F  and also, for the same I and i , n u ll(co n s(i,/)) =  F.

It is now worth discussing some of the finer points of homomorphism.

For (f> to be a homomorphism we require that the constructor functions are preserved 
by homomorphism. We do not require that the part or query functions are homomor- 
phically preserved; indeed we do not even require that they are in the signature of the 
algebra of the target of 4>.

Thus we do not require that both the source and target of (f> axe models of the same 
algorithmically reconstructible theory, but that the source is model of an algorithmically 
reconstructible theory, T, and that all the constructors of T  are functions of the target 
of <̂>, inherited from the same signature (theory).

This is an important point. As an example, we shall consider polynomial rings. A 
polynomial is a function such as

5a;2?/3 +  9xy45 — 34x +  7y2 — 12

That is a sum of products of an element of the underlying ring (which in the above 
example might be the integers) and variables raised to non-negative powers. A mono­
mial is a polynomial which is a product of a non-zero element of the underlying ring 
and variables raised to non-negative powers.

A polynomial ring is ordered by an extension of the order on the variables. In particular, 
in Z[x, y] if x > y then a monomial m \ is greater than another m 2 if the exponent of 
x  is greater in m \ than in m2. Should the exponent of x  be equal in both, then the 
exponent of y is compared in the same manner.

The leading monomial of a polynomial is the largest monomial of a polynomial. If 
x > y in the above polynomial then 5x2y3 is the leading monomial. Should y > x  then 
the leading monomial would be 9xy45.

The reductum of a polynomial is the polynomial less its leading monomial.
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Coercions between two polynomial rings need only use leadingMonomial as a part 
function (which is not preserved via homomorphism, since it depends on the order­
ing given to the variables) instead of some (unnatural) fixed (for all polynomial rings 
with variable from a fixed domain) “most-important-monomial” function which would 
choose the same monomial, regardless of variable ordering.

Also, this allows us to form the natural monomorphism from Q[r] to Z(x),  which in 
Axiom is

Polynomial Fraction Integer to Fraction Polynomial Integer

which are, in Axiom’s view (without clever hackery in the interpreter) two unrelated 
Rings. This may be constructed without having to force + to be a constructor of 
Fraction Polynomial Integer, or indeed leadingMonomial etc. to be available in 
Fraction Polynomial Integer.

7.4 The algorithm

We are now in a position to state the automated coercion algorithm.

The algorithm to create the coercion will be stated in English. It is too implementation 
dependent to state any finer.

The actual algorithm to coerce will be stated as Lisp pseudo-code. In Lisp, (a b c) 
means apply the function a to the arguments (b ,c ). cond is the like the sw itch 
statement in C or Java.

conds or switches are equivalent to “if-then-else” statements — if a condition is true, 
then we evaluate and return the following statement (and leave the cond block), else 
go to the next condition and repeat.

For example, the line

x)

means

i f  “ * > 0 ( x)  th e n  O

The final statement t, is the default statement, since t is always true. This line will 
only be reached when all the other conditions have not been satisfied, and shows that 
we have failed to build a total automated coercion function.
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This could happen if one fails to list all the constructors (and their queries) for a type. 

The lines of the form

( ( Q x .M ,Sl x )  ( & o

check for the constants of the type. For example, the constant polynomial 0 can 
not be constructed using a non-zero number of parts (using any normal construction 
methodology) thus coercing 0 from Q[r] to Z(x) we might say

i f  zero?(x)$Polynom ial F rac tio n  In teg e r 
then  zero ()$ F rac tio n  Polynomial In teg e r

returning the appropriate 0 in Z(r).

The lines of the form

(<£V . r f , Sl X) ( ° ^ n  X>)

are the constructing lines. For example, in a polynomial ring we might write

i f  x is the sum of a monomial and a polynomial 
then  coerce(leadingM onom ial(x)) + coerce(reductum (x))

where the addition function is that taken from the target domain.

In this case leadingMonomial(x) and reductum(x) are both polynomials. In general, 
the parts of the element need not be of the same type as the original element.

For example, in List algebras, coercing from L is t (A) to L ist(B ) where there exists 
(or we can build) a coercion from A to B then we have (back in Lisp terminology)

((consp x) (cons (coerce (car x )) (coerce (cdr x ) ) ) )

(ca r x) is the first element of the list and is of type A rather than L is t (A) — the type 
of x. So (coerce (ca r (x )))  is of type B and thus may be consed on to the front of 
(coerce (cdr x )) which is of type L ist(B ).

A lgorithm  7.4.1 (T he A u to m ated  C oercion A lgo rithm ) Let (A, a) be a model 
for the algorithmically reconstructible theory ((E, S) ,S) .
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Let (B,(3) be a model of ((A ,D) ,V)  where ((E,5),<S) is a protecting extension of 
((A, D),V)  and some (or all) of the constructors o/((E, S) ,S)  are in fact in ((A, D),T>).

Also we demand that there does not exist an extension of ( (A,D) ,V)  which both (A, a) 
and (B,(3) model.

Then the following is an algorithm to coerce from (A, a) to {B,(3).

The ifci for i /  1 are the (potentially automated) coercions from A{ to B{ from the 
abstract type of Si.

The entire morphism created thus is called ^  and not only is it a homomorphism, it is 
a coercion (definition 5.5.2).

i p l ( x )  : =  ( c o n d

^ 0 ,0 ,Si ^

: R e p e a t  f o r  e a c h crO 0 5l i n  E °.

^ a X<rn)(JiSl ^ n . 9 , 5 !  ^ 0 1  ^a ^ n,q,s x ,1 X^  * * *  ( a *<rn ,q,S l .»  ^

: R e p e a t  f o r  e a c h  (?n,q,Si i n  E^7-0.
( t  ( e r r o r ) ) )

The algorithm to create the coercion fa  is

c r e a t e C o e r c e ( ( A , a )  ,{B, (5)) : =
d e t e r m i n e  ((A ,D) ,V)  ( e r r o r  i f  d o e s n ' t  e x i s t )  

d e t e r m i n e  ((E,5),<S) ( e r r o r  i f  d o e s n ' t  e x i s t )  

d e t e r m i n e  E° 
f o r  a £ E°

d e t e r m i n e  a X(T 

d e t e r m i n e  /3a 

d e t e r m i n e  E*-7-0 
f o r  a E E c-° 

d e t e r m i n e  a X(T 

d e t e r m i n e  {3^

d e t e r m i n e  ot  ̂ t ( f o r  a l l  r e l e v a n t  i)  
c o n s t r u c t  a n d  r e t u r n  ipi a s  d e f i n e d  a b o v e

So the algorithm presented above allows us to algorithmically reconstruct elements of 
one type as elements of another.
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7.5 Existence of the coercion

Before we prove that the automated coercion algorithm constructs a coercion when one 
exists we must prove that it does not create some unnatural function when no coercion 
exists.

We shall use the terminology of algorithm 7.4.1 in this section.

In the simplest case, some of the functions will not exist in the target type and the 
algorithm will error at an early stage. This will be because there is no ((A ,D) ,V)  
which both (A, a) and (B , fi) model.

If a homomorphism exists but not a coercion then this means that there exists an 
extension of ((A, D),T>) which both (A , a) and (B , /3) model. In this case the algorithm 
will error at an early stage.

If all the constructors of (A, a) are available in {B, (3) but no homomorphism (coercion) 
exists then this could be because of the (at least one of the) following causes.

O ne o f  th e  coercions to  b e  u sed  does n ot ex ist

At least one of types which is required for construction or recursively required for 
construction (and which is not the carrier of the principal sort) may not be coercible 
to its counterpart in the target. Provided the algorithm checks at construction time 
that every coercion used directly or indirectly by ifri exists (or is constructible) then we 
may report an error at an early stage.

N on -h om om orp h ic  con stru ctors

The fact that ((E, S) ,S)  is a protecting extension of ((A ,D) ,V)  and that all sec­
ondary constructor equations hold in ((E,5 ), <S) guarantees that these equations hold 
in ((A ,D) ,V)  and hence in (B,/?).

This not only ensures that the order of the lines in </>i is unimportant but also that if 
a certain relationship holds in (A, a) it must hold in (B,/3).

For example, if someone defines that all finite field algebras are constructed by 0 and 
succ (the successor function) the automated coercion algorithm will not attempt to 
create the “coercion” Z5 -» Z3. This is because there exists a secondary constructor 
equation in the theory of finite fields of size n
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succn(0) =  0

So in this example (A, a) = Z 5 and (-B,/?) =  Z 3. The equation succ5(0) =  0 holds in 
the theory of finite fields of size 5. Z 5 is a obviously a model for this theory.

This equation is not true in any theory which the above theory extends and of which 
Z 3 is a model. Otherwise the equation would hold in Z 3 and that patently is not true.

Thus the automated coercion algorithm will error at an early stage from not being able 
to find ({A, D),V).

7.6 Proving hom om orphicity and coerciveness

We now make some notational definitions so that we may prove the final result of 
the chapter. That is, we shall show that algorithm 7.4.1 constructs a homomorphism 
(theorem 7.6.7) which is a coercion (corollary 7.6.8).

Recall notation 4.2.10. Thus for any constructor symbol &n,q,Si the associated construc­
tor function in (A,a)  is otan q the query function is &Xan  ̂s and for i G {1 ,... ,n} 
the part functions are a^

D efinition 7.6.1 For a term t in a term algebra T ^ X )  if

1. t G X s then length(t) =  1

2. t G S 0)())S then length(t) =  1

3. t =  <t(£i, . . . ,  tn) then length(t) =  1 -1- length(ti) +  • • • length(fn)

This definition of length of an element will form the basis of our inductive proof of the 
automated coercion algorithm. However, in general, we shall not be dealing with term 
algebras but their homomorphic images.

D efinition 7.6.2 For x an element of a T,-algebra, we define

length(a;) := min{£ G Tz(X)\9*(t) = x } 

where 6* is the unique homomorphism given in the first universality theorem
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Assum ption 7.6.3 I f  one of the part functions CL̂a  ̂s { corresponds to 
(thus qi = S \)  then we demand that,

(Vf e  IkC X hH leng thK  J f f ' m  <  length(6*(t))).

where 6* is the unique homomorphism given in the first universality theorem 4-4-J- 

A couple of technical definitions to make the next assumption easier to understand.

Definition 7.6.4 Suppose (A, a) is a constructed algebra, constructed by the S-sorted 
signature E. If for any i 6  {2, . . . ,  151} we have that Si appears in the arity of any of 
the constructors of E, we say that A{ is required for construction by A \.

So for example, in List (Integer) we have that Integer is required for construction 
since it is an argument of cons. Notice that List (Integer) is not required for con­
struction itself since it is the carrier of S\.

Definition 7.6.5 Suppose (A, a) is a constructed algebra, constructed by the S-sorted 
signature E. Let Ai be required for construction by A \. Now consider Ai as the carrier 
of the principal sort of (B,(3), a constructed algebra.

I f  Bj is required for construction by B \ = Ai (hence j  ^  1) then we say that Bj is 
recursively required for construction by A \.

Now suppose that the carrier D\ of the principal sort of a constructed algebra {D , 6) is 
recursively required for construction by A \. I f is required for construction by D\, 
then we also say that Dk is recursively required for construction by A \ .

So for example in List (List (Integer)), the only type which is required for construc­
tion is List (Integer) since this is the only argument of cons which is not the carrier 
of the principal sort, List (List (Integer)).
Thus the only types which are recursively required for construction are List (Integer) 
and the types which are recursively required for construction by List (Integer).
Since Integer is the only type required for construction by List (Integer) it is the 
only type recursively required for construction by List (Integer).
Thus the types which are recursively required for construction by List (List (Integer) ) 
are List (Integer) and Integer.
The following assumption is required so that we may prove that the automated coercion 
algorithm terminates.
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Assum ption 7.6.6 We demand that A \ is not recursively required for construction.

Theorem  7.6.7 Let ((E, S),S)  be an algorithmically reconstructible theory which is a 
protecting extension of the theory ((S, X), such that Y c  C S.

Let (B,/3) be a model for ({E,X) ,X)  and (A, a) be a model for ((E , S) ,S) .

Then the function ip given in algorithm 7-4-1 is a E-homomorphism {A, a )—> {B,/3).

P roof.

Let (p be the correct homomorphism which ip is attempting to emulate.

Since ip\ contains finitely many cases, and covers all cases of constructors for E, we 
need only consider one line from ip\. Also by induction on com(i) we can assume that
(v«e{2, . . . , |S |} ) (^  = ^).

Since ipi covers all cases of constructor for E we do not need to consider the error line 
since it will never be reached.

For ipi we may induct on length, and we are in good shape by assumption 7.6.3 (on 
length) and 7.6.6 (on the interaction between length and com).

Here is one line from ip\.

( i f  (CLaq a) (pac (ipci {aPl a ))  . . .  (0 Cn (ocPn a ) ) ) )

Now, assuming (a aq a), we know that,

(</>i a) =  (0 i (q ^  (aPl a) . . .  (aPn a ) ) )  

then since 0 is a E-homomorphism,

(01 ( a ffc (olp i a) . . . ( aPn a ) ) )  =  ((3ac (0Cl (aPl a))  . . .  (0Cn (aPn a ) ) )  

Now, we know that, by our induction argument

(Arc (0ci (.Oip i a )) . . . ( 0Cn (aPn a ) ) )  =  ( ^  (0 Cl (aPl a )) . . .  (ipCn CaPn
a ) ) )

whence for this line, and therefore every line and the entire function {ip\ a) = (0 i 
a ) . So by induction, 0  =  0  and thus ip is a homomorphism. □

Now by adding one extra condition, we may prove that the automated coercion algo­
rithm generates coercions in the sense of definition 5.5.2.
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C orollary 7.6.8 Let ((£ , S ) , S)  be an algorithmically reconstructible theory which is 
a protecting extension of the theory ((5, X ), X) such that Hc  C 5.

Let {B,(3) be a model for ((5 ,X ), X) and (A, a) be a model for ((E , S) ,S)  such that 
there does not exist any extension o / ((5, X ) , X )  which both (A, a) and (B,/3) model.

Then the function ip given in algorithm 7.4-1 is a coercion (A, a) —» {B,{3).

P r o o f. No other theories extend ( (E,X) ,X)  which both (A, a) and {B,/3) model so 
the only thing which could stop ip being a coercion would be for there to exist a theory 
which both (A, a) and (B,/3) were to model which was not extended by ( (E,X) ,X) .

So, suppose (for a contradiction) {A, a) and {B,/3) were to model a theory fI which 
((5, X ), X)  does not extend, then we may manufacture a new theory containing all the 
sorts, operator symbols and equations of both theories.

We may have some duplication of sorts and operators, so this manufacturing process 
would need to be performed intelligently. Explicitly, and ((E , X ) , X ) may both be 
extensions of some theory ©. We might (but not always1) only wish our manufactured 
theory to contain the sorts, operator symbols and equations of © once, not twice.

This new theory would clearly extend ((H, X ) , X )  and {A, a) and (f?,/3) would both 
model this new theory. Hence we have a contradiction and such an can not exist.

So ( (EjX),^)  must specify the unique “smallest” variety to which both (A, a) and 
{B,/3) belong. We already know by theorem 7.6.7 that ip is a 5-homomorphism; by 
definition 5.5.2 it must be a coercion. □

This is why algorithm 7.4.1 looks for ((A ,D) ,V) ,  since it must specify the smallest 
variety to which both (A, a) and (B,/3) belong.

7.7 Conclusion

In conclusion, we have shown that it is possible to create a homomorphism between 
two types from an important subset of types.

Moreover, this homomorphism may be constructed algorithmically and hence the gen­
eral construction of homomorphisms is implementable on a computer.

Furthermore, if the type system adheres to all the assumptions made, and the homo­
morphism is from the theory which specifies the smallest variety to which both types 
belong, then it is the unique coercion between the two types.

1The theory of rings inherits from the theory of monoids twice.
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Chapter 8

Im plem entation details

8.1 Introduction

In this chapter we shall discuss the implementation details of the automated coercion 
algorithm. Axiom (version 2.0a) was chosen as the computer algebra system for this 
work. The only other options would have been:

1. Magma;

2. writing an entirely new computer algebra system from scratch;

3. extending another computer algebra system (eg. Reduce).

These were the only options since a computer algebra system with a notion of types, 
and types of types, falling either into a category theory-like framework or a universal 
algebra set up was required.

Axiom and Magma are the only two systems which are currently based on these sound 
principles, and it was thought that either extending Reduce to be Axiom-esque or 
writing a new (order-sorted) algebra system were beyond the scope of the project. 
Since the source code for Axiom 2.0a was made available (by NAG) to the author, this 
was the soundest choice.

8.2 B oot and Axiom

Versions 1.0 to 2.0a of Axiom were based on Austin Kyoto Common Lisp (AKCL). 
Previous versions (of Scratchpad) were built on top of other Lisps, and since AKCL is
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now GNU Common Lisp (GCL) and covered by the GNU Public Licence (GPL), future 
versions of Axiom (including the current version, 2.1) are to be based on Codemist 
Common Lisp (CCL).

This has had a useful side effect. CCL is a far smaller, faster and more modern 
implementation of Common Lisp. This means that Axiom’s footprint is now far smaller 
than it has been in the past.

Axiom has been said to have been “born big” — it initially only ran on large IBM 
mainframes. With the advent of CCL based Axiom it now runs on the humble PC. 
This is true whether the PC is running an operating system like Linux or whether it is 
running Windows 95 or NT.

This research was performed on Axiom 2.0a, which is AKCL-based. The hardware 
used was usually an IBM RS6000 (running AIX 3.2.5) and occasionally a Sparc Server 
1000 (running Solaris 2.5.1).

Axiom is built in the following manner. Boot is a syntactically-sugared, interpreted (or 
compiled) form of Lisp. Boot retains all the functionality of AKCL, with a lot more 
thrown in. A lot of these extra features are there for historical reasons, for example, 
there are plenty of functions to allow code written in VM-Lisp to continue to run. Some 
are there to genuinely extend the usability of the language.

The Axiom interpreter is written in Boot, and hence, any alteration to the Axiom world 
must be written in Boot.

Compiled libraries of code (Packages, Domains, C ategories) are either written in Spad 
or Aldor. These are the strict languages which define the types, algebras and theories 
of Axiom. They may be compiled and loaded into the Axiom interpreter.

The Axiom interpreter itself contains many features not available to the Package, etc. 
writer. In both Spad and Aldor, strong types are the order of the day. The interpreter 
is meant to be a bit more user-friendly. Hence, type inference and on-the-fly coercions 
are available to the user in the interpreter

So for this research, the code had to be written in Boot.

8.3 The top level

The basic design was as follows. To perform a coercion from a Domain A to a Domain 
B, one needs to be able to ascertain which constants, queries, constructors and part 
functions are available to both A and B. These functions should all come from the same
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algorithmically reconstructible theory (Category).
The automated coercion function should be created and then compiled and stored 
away ready for fast access in case of future use. Such items are called “cached lamb­
das” or “clams”, for short, and are already part of the Axiom system. Thus this was 
implemented.

The automated coercion function should be integrated with the current coercion mech­
anism in Axiom. This was done by inserting the relevant line at the correct point of 
the Boot function, coercelnteractive.

8.4 Labelling operators

We had to decide on a mechanism to mark which operators were constructors, part 
functions, etc.

One method would have been to create sub-types of the Axiom Domain, Mapping, 
which would have been infeasible, requiring much rewriting of the Spad (and Aldor) 
compilers. This is also true of the method given in a later section.

A Spad Domain contains the following parts:

1. the name of the type constructor;

2. a (variable name, Category) pair1 for each2 of the parameters of the type con­
structor;

3. a Category or Join (intersection) of Categories to which the Domain belongs;

4. a list of additional operator symbols (functions) for the type;

5. a list of methods for (some of or all) the operator symbols of the type.

Every operator symbol definition in a Domain or Category (and hence available in a 
Domain of that Category) has a certain number of special comments called ++ com­
ments.

These ++ comments (as opposed to ordinary comments in most languages and Axiom’s 
other style of comments, — comments) are parsed by the compiler to produce the

1 Occasionally a (variable name, Domain) pair. For example, IntegerMod (p: Positivelnteger).
2This is not the same as all the sorts of the signature. One may declare extra unused sorts. Also 

we may declare a function where the source or the target may contain a ground type. For example, 
functions which return a boolean-like type are usually declared to return Boolean rather than a pair 
where the Category is the Category of boolean-like types.
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documentation for Axiom’s sophisticated on-line help system, HyperDoc. (HyperDoc 
was one of the first hypertext systems.)

This parsing of the ++ comments allowed us to enter special keywords for each special 
function which were read and stored at compile time for each Domain. We could then 
read them at run-time using the Axiom interpreter’s built in ++ comments reader.

8.5 G etting information from domains

The ++ comments were gathered for a Domain by recursion up the Category inher­
itance lattice, using the GETDATABASE function. We asked the database for all the 
documentation for each Category, and then asking which C ategories it extended. 
The documentation includes all the functions and their respective ++ comments. This 
allowed the automated searching for keywords, and hence, the special functions of a 
Domain.

Note that we only needed the comments for functions (operator symbols) declared in a 
Category. Functions declared in Domains are of no interest to the automated coercion 
algorithm. This is because these do not correspond to any of the special functions 
(constructors, part functions or queries) of a signature or theory.

The keywords were checked quite simply, being members of the following list:

l i s t ( ’ "co n s ta n t" , *"co n s tru c to r" , ’ " p a r t" , ’"query")

Part number checking was only slightly more difficult with each number having to be 
converted from a (Lisp) string to a (Lisp) integer. A restriction was placed on queries 
that they must be called the same as their associated constant (or constructor), but 
with a “?” appended. This restriction was not necessary and could have been worked 
around easily.

The special function lists from both Domains were compared and the required functions 
were extracted from both.

8.6 Checking information from domains

For each special function, a check was performed to see whether that function was 
really available in the Domain.
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The envisaged problem was that Axiom’s C ategories can be conditional: that is to 
say, some function definitions only exist if certain relationships hold for the Category’s 
parameters.

GETDATABASE ignores the parameters to a Category and returns all the functions which 
may be exported by a Domain of that Category. Hence, the extra check was necessary 
to ensure that the automated coercion function did not try to include these unavailable 
functions.

Thus the homomorphism created by the automated coercion algorithm was always 
equivalent to definition of a conditional homomorphism given in section 5.3.

8.7 Flaws in the im plem entation

The implementation was originally envisaged as a fully working piece of code of pro­
duction standard and hence shippable with a commercial release of Axiom. For various 
reasons outlined below, only a working prototype was implemented.

Deliberate restrictions placed by the author on the design were:

1. Query function names were restricted to be the name of their associated constant 
function with a “?” appended.

2. The number of (non 0-ary) constructors was limited to one.

3. Recursion through c o e rce ln te ra c tiv e  was achieved using naive means.

4. Neither the existence of ((£ ,5 ) ,5 )  nor ((A ,D),T>) were checked. (See algo­
rithm 7.4.1 for the meaning of these).

Both the first two items could have easily been worked around but would have required 
a more complex ++ comment reader. This was considered to be a minor detail, which 
would have required too much implementation time.

The third item was more problematic. Attempts were made to remedy this situation. 
However, the depth of knowledge needed to implement this correctly would have re­
quired too much time to learn. This was the main factor in the downgrading of the 
implementation to mere prototype status.

It was a certain amount of naivety on the author’s part to assume that a production 
standard implementation of the automated coercion Boot package was within the scope 
of this project.
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The method to work around the complexities of Axiom’s evaluation loop was to add a 
(Spad) Package which exported a function which then called the Boot function. The 
code for this Package (called NCoerce) follows.

— Coercion Package
)abbrev package NCOERCE NCoerce

NCoerce(Source : Type, Target : Type) : Exports == Implementation where

Exports ==> with

nCoerce: Source -> Target

Implementation ==> add

nCoerce(x : Source) : Target ==
nCreateCoerce(x,Source,Target)$Li sp

To call a function from a Package is relatively easy in Boot, and uses the same syntax 
as calling a function from a Domain.
The function (nCoerce above) then uses the Axiom $Lisp syntax for calling a function 
defined in Boot. This “breaking out” of the Boot code to call a Spad function (which 
then in turn calls Boot code) is most undesirable.

However, should an expert in the Axiom interpreter be given the Boot code for the 
automated coercion algorithm, then it is merely a matter of changing one line. This 
one line currently calls a function which creates lines of the form

nCoerce (x) $NCoerce (Source, Target)

This somehow needs to be changed to something which performs

coerce(x)©Target

© is the Axiom syntax meaning “the previous function should return the following 
type”. In this case, “coerce x to the type Target”.
The automated coercion Boot package was only implemented to deal with Spad code 
and not Aldor code. This is because Boot handles code written in the two different

— 120 —



Chapter 8. Implementation details 8.7. Flaws in the implementation

languages in a different way. There are different interfaces to the two internal repre­
sentations of a Domain (or a Category or Package).
This, again, could have been remedied, but would have required too much time com­
pared with the prospective gain in functionality.

Occasionally, Axiom’s modemap selection can get confused. Modemap selection is 
Axiom’s method for selecting methods from an overloaded operator name. This causes 
the automated coercion package to fall over at a premature stage.

The fourth item is a bit more difficult to solve. The existence of ({£, 5'),«S) is implicit 
if a Domain has special functions. It would also be possible to check if both source and 
target are both members of a common Category (using GETDATABASE). It would even 
be possible to check that all the constructors of the source are from this Category. 
Finally, it would be possible to ensure that this is the smallest such Category.
However, it would be most problematical to determine whether ((E, S) ,S)  is a protect­
ing extension of ((A ,D) ,V)  or not.

This is a more general problem than one which just applies to the automated coercion 
algorithm. This is due to the fact that Axiom believes everything that you say. One 
may produce a Category and claim that it extends another. Yet if Axiom’s Categories 
were really varieties, specified by theories there would need to be some way of checking 
whether the equations in the original Category still held in the new one. Similarly, 
Domains need not model the theory specifying the variety (Category) to which they 
have been declared to belong.

The current situation in automated theorem proving means that Axiom will believe any 
false assertions like those mentioned in the previous paragraph. This is not a design 
flaw of either Axiom or the automated coercion algorithm; neither Axiom’s designers 
nor I had any choice — automated theorem proving has not yet advanced sufficiently 
for us to take advantage of it. Similarly (and moreover) Axiom will believe that any 
function (which one may implement) called coerce is a valid coercion.

This means that in this implementation of the automated coercion algorithm in the 
current release of Axiom, it would be possible to create new “coercions” between (po­
tentially) unrelated types or non-homomorphically between similar types. Using the 
example from section 7.5 we could create a “coercion” Z5 —> Z3.

The present state of automated theorem proving technology with special reference 
to Axiom is detailed in [MS97]. This paper details recent research and near-future 
directions for the subject.
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Other flaws which shall be dealt with in chapter 9 include:

1. Some Axiom C ategories do not agree with our notion of varieties (specified by 
signatures or theories). (Sections 9.2, 9.4, 9.5.)

2. Axiom Domains have too much in common with their C ategories. There is a 
lack of distinction between operator symbols and operators. Similarly between 
sorts and carriers. (Sections 9.3, 9.6.)

8.8 Conclusion

We conclude that the automated coercion algorithm is probably implementable in the 
Axiom interpreter. It is certainly possible to create a version which works. However, it 
would take someone with deeper knowledge of the code to force a complete integration 
of the current implementation with the Axiom interpreter.

What we do have is a proof of concept. If Category authors correctly label their oper­
ators, then the coercion function does the right thing. It is only the perfect integration 
into the Axiom’s kernel that has not been demonstrated.
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M aking A xiom  algebraically  
correct

9.1 Introduction

In this chapter we shall discuss various details which need to be changed to make 
a computer algebra system (in this case, Axiom) more “algebraically correct”. By 
this, we mean, so that Axiom’s C ategories behave more like our concept of varieties 
(specified by order-sorted theories) and that the Domains act more like our notion of 
order-sorted algebras more correctly.

9.2 Explicitly defined theories

In Axiom, the C ategories were originally intended to be akin to varieties specified by 
signatures. The Domains were then meant to be like algebras of those signatures. This 
seems, in retrospect, to have been an over-ambitious aim.

The C ategories do behave and look to the casual observer like they were specified by 
multi-sorted algebraic type theories, but there are some clear differences.

9.3 Operator sym bols and names

In Axiom, if a category defines an operator symbol crn ,q,s then for all domains in that 
category, that operator name oca  a of <Jn ,q,s will be crn)9)S.
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It may appear to be not that much of a disadvantage to have such a restriction on 
operator names, but an important case in mind is that of the monoid. A ring, has two 
binary operators over which it forms a monoid. The only way in Axiom that we can 
ensure this is to have two different monoidal categories. A distinct disadvantage.

If we allowed operator symbols to differ from operator names then another Category 
could extend Monoid in two different ways.

Syntactically this would be most difficult. We would need a way of declaring the 
two operator symbols in Ring (traditionally + and *) as being from different operator 
symbols in Group (which extends Monoid) and Monoid.
For example we could write something like the following 

Ring : Category == with ( M : Monoid, G : Group )

—  Operators from Monoid 
* : ( * : (•/.,*/.) -> 7. )$M
1 : ( 1 : 0  -> 7. )$M

—  Operators from Group 
+ : ( * : (7.,7.) -> 7. )$G
0 : ( 1 : () -> 7. )$G
inv : ( inv : 7. ~> 7. )$G

This would identify * and 1 with the binary operator and identity element, respectively, 
from Monoid. Whereas +, 0 and inv would be identified with the binary operator, 
identity element and inverse function from Group.

Notice that both the operator symbol (eg. *) and both the source arity (eg. (7.,7.)) 
and target (eg. 7.) sort are needed to uniquely identify the operator. These correspond 
to a, q and s respectively. (We do not need to know n  since this is deducible from q).

A function in Axiom (in either a Domain or Category) is currently represented by (name 
(target source) comments). Function declarations in Categories are normally of 
the form1

(<r (s q) comments)
1s an d  q are  reversed  in  A xiom ’s in te rn a l rep resen ta tio n  of a  function .
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and once exported by a ground type (ie. genuine Axiom Domain with all parameters 
to the Domain fixed) it becomes

(an,q,s,<7 (A s Aq) comments)

where an,q,s,a = o-

For the coercion algorithm, we inserted special words in the comments field to try and 
mimic an operator symbol.

Another approach might have been to declare other types eg. C onstructor (a,b) which 
are sub-types of M apping(a,b).

A far better approach is to extend the information contained within the function con­
struct. For initial definitions in C ategories — that is new operators which have come 
from this Category, not ones which this Category may extend — then the current 
declaration method suffices.

However, as in the above Ring example for C ategories which extend others then a 
better method may be,

io ' (a (s q) E) comments)

where o' is the new operator symbol corresponding to a a member of En,q,s where this 
signature extends E.

We have used variable names to avoid confusion. One may wish to define a Category 
called DoubleMonoid where G is a Monoid instead of a Group. (Obviously no inv 
operator would be available to such a Category.)

The same terminology could also be used to define specific algebras (Domains). For 
example, for all n in N, nZ (whose elements is the set {nz \ z  6  Z}) is an additive 
group, whereas S(n)  (the symmetric group on n elements) is usually considered to be 
a multiplicative group.

So, for nZ we might write:

IntegersT im es( n : P o s itiv e ln te g e r)  : Group ==

+ : ( * : (*/.,•/.) -> 7. )
0 : ( 1 : ( )  ->  7. )

-  : ( inv : 7. -> 7. )
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However for S(n) we might write:

SymmetricGroup( n : P o s itiv e ln te g e r  ) : Group ==

* : ( * : -> 7. )
0  : ( 1 : 0  -> 7. )
inv : ( inv : 7. -> 7. )

In this example we can see the following proposed methodology for declaring operator 
names which correspond to operator symbols.

(otn,q,s,a (s ) comments)

The signature E does not need to be mentioned in each function definition since the 
algebra is only declared to be a model of one signature.

This does create more “unnecessary” confusion for Domain/Category writers, but cor­
rectness should overrule ease-of-use. It is also conceivable that this will have a negative 
effect on the amount of time it takes to compile a Domain. However, this is true of all 
type-checking compilers.

More importantly, it should not have any effect on run-time speed of execution. This 
should definitely be the case if the internal representation is moved to something ap­
proximating Axiom’s current order.

(an,q,s,a (s q) V comments)

This puts the target and source closer (and less operations away) from being discovered.

Clearly, in this proposed methodology the carriers of the source and target are not 
mentioned explicitly in the function representation.

To speed up function-type look-ups (modemap selection) each Domain could provide a 
hash of sorts and carriers. Indeed, then the internal representation could be

s,<r (A 3 Aq) o comments)

and then modemap selection would be as fast as in the current version of Axiom, but 
the hash could be used (going in the other direction) to determine s and q for the 
automated coercion algorithm.
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9.4 M oving certain operators

Another factor which stops Axiom acting totally homomorphically, is that certain oper­
ators appear in C ategories too far “up” the inheritance lattice. This is best illustrated 
by an example.

In Axiom, one often would like to be able to convert L ists  to Sets. (The Domain whose 
items are finite sets (or actually, sometimes classes), over some particular type is called 
Set in Axiom.)

Sets and L is ts  in Axiom are both certainly finite collections which can be built by 
adding in another element at a time. In L is t this may be achieved using either cons or 
append (though obviously, cons is far more efficient) whereas Sets can be built using 
the (sometimes non-effective) command in s e r t2.

Axiom knows that L is ts  are sorted whereas Sets are not. The problem, which is 
immediately obvious, is that adding in a new element to a L is t  will always increase 
the length of the L is t. This is not true of (Axiom’s finite) Sets. They both however get 
the same element-counting-operator from the same Category. This function, # comes 
from the the Category, Aggregate, which is the most general type of “collection” in 
Axiom.

Lis t (S)  (for some fixed S) is a model of ListA ggregate and Set(S) is a model of 
F initeSetA ggregate. Both of these theories are extensions of the theory Aggregate.

Therefore if we had a homomorphism, </> from L is ts  to Sets, then the following equation 
should hold, yet it clearly does not,

</>(#( [1 , 1] ) )  =  #(</>([l,l]))

since the left hand side is,

m  = 2

and the right hand side is,

#({1}) =  1

and unless the carrier sort of collection length is not NonNegativeInteger but a dif­
ferent type, one in which all elements are equal, we will not be able to create any 
homomorphisms from L is t  to Set.

2T h is  op era tio n  in serts  a  (p o ten tia lly ) new  elem ent in to  a  set. i n s e r t  (x , s)  =  s  U {x} =  s ; x

—  127 —



Chapter 9. Making Axiom algebraically correct 9.5. Retyping certain sorts

In section 7.3 we demanded that if the automated coercion algorithm was to be appli­
cable (in this case) from L is t(S ) to Set(S) then L istA ggregate would need to be a 
protecting extension of Aggregate3.

It is clear that in L istA ggregate the following equation holds

# (co n s(a ,b )) =  l+#(b)

If this were a protecting extension then this equation would hold in Aggregate. How­
ever, as we have already observed

# ( in s e r t( a ,b ) )  ^  l+#(b)

when a G b.

Thus ListA ggregate is not a protecting extension of Aggregate and the automated 
coercion algorithm can not be applied.

There are three obvious solutions:

1. Disallow coercions from L is t to Set. Although we would still allow a non- 
homomorphic convert operator;

2. Move the element-counting-operation further down the Category inheritance lat­
tice until it does not appear in any C ategories to which both L is t and Set 
belong. Or if they do both belong to this Category, ensure that none of the part 
functions, constants, queries or constructors are from this Category or any of its 
ancestors.

3. Move the adding-new-element-operation further down the lattice, in a similar 
manner. Thus cons and in s e r t  would not know anything about each other. In 
this case the automated coercion algorithm would still not be applicable.

This is merely one example of many such operators which could require moving.

9.5 R etyping certain sorts

As in section 9.4, this is best illustrated by an example.

In Axiom, the Category, Ring exports a function,

3Or an extension of Aggregate which both ListAggregate and FiniteSetAggregate extends.
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characteristic: () -> NonNegativelnteger

(remembering that Axiom does not differentiate between sorts and carriers). So imagine 
the natural ring-epimorphism 0 :  Z q —>• Z2. Then the following equation should hold,

characteristic (0()) =  (^(characteristic 0)

yet this is clearly is not the case, since 0 must send the Void sort to Void, and thus the 
left hand side must equal the characteristic of Z2, which is 2. Whereas, for the right 
hand side, we have 0(6). This 0 is the natural map from N  U {0} to itself. This is, of 
course, the identity map, and hence the right hand side has the value 6.

There is clearly something very wrong here. There are two solutions, the first of which 
is highly unsatisfactory:

1. Stop characteristic being a function. One could persuade it to be an attribute 
of the Ring;

2. Alter the carrier of the return type of characteristic from NonNegativelnteger 
to being a type with the same elements, but a different idea of equality.

This is one of many such cases in Axiom.

9.6 Sorts and their order

We have been discussing Axiom’s Category inheritance system as if it were a true 
attempt at modelling order-sorted algebra. There are, however, two areas which are 
distinctly missing from the Axiom model; these are, the sorts and their order.

There is a distinct confusion in Axiom between sorts and carriers. The author believes 
that all Category definitions (the signatures or theories which specify varieties) should 
not use genuine types at any point in the signatures, or any other point. These should 
only occur in the Domains of that Category.
For example, many Categories assume that the only boolean-like type is Boolean. 
Similarly the types NonNegativelnteger, Positivelnteger and Integer are often 
“assumed” and are not parameters of a type.

For the types Boolean, NonNegativelnteger and Positivelnteger this is not nor­
mally a complete disadvantage. There are not likely to be other algebras in our system 
which behave similarly enough to replace these types.
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However, there are coercions between NonNegativelnteger, P o s itiv e ln te g e r  and 
In teg e r (in the obvious directions). This then imposes some order on the sorts of the 
type which is not explicitly mentioned.

Some of the sorts of an algebra are defined. is always the principal sort, and any 
parameters of the Category are there, too. Others, however, are merely mentioned in 
function prototypes (signatures). All should be listed in a sort-list (and/or sort-lattice, 
see below).

Neglected sorts normally include those which are carried by the four types mentioned 
above. However, other types are often neglected too. These include L is t which is often 
present so that elements of the type may be constructed. (The underlying representa­
tion of most types in a Lisp-based system are often lists). More seriously, particular 
polynomial representations are sometimes present.

There is no real mechanism built into Axiom to order the sorts of an signature (Category) 
The order is implicit in C ategorica l inheritances, such as CoercibleTo and 
R etrac tib leT o , which give information on how the principal sort relates to some other 
sorts.

I believe that a more sensible way would be to declare a lattice like arrangement with 
the declaration of a Category. Indeed, this would then make the sort-list clear, too, 
since this is never explicitly defined either.

For example, we could add the syntax, SortOrder to be used as follows,

A Category(a:A ,b:B ,. . . )  : Category ==

w ith SortO rderf 
a < %;
7. < b;

>

exportedFunction : L is t A ->

or (better), SortO rder could be a Category which could be defined as (assuming this 
is compilable4),

4 According to [Bro97] “One problem is that it may not be possible for the compiler to figure out 
exactly what this construct will export” but it might still be implementable.
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SortO rder(Is : L is t P a ir  Type) : Category == {

fo r  p r in  I s  re p e a tf
coerce : f i r s t  p r -> second p r;

>

>

This fo r  loop would not build the entire sort lattice for any particular category. This 
would be better done by the compiler at compile time, on a per-Category or per-Type 
basis.

Thus, any Category which does not extend SortO rder would be a non-order-sorted 
signature.

9.7 Altering A xiom ’s databases

Axiom has many built in databases for looking up comments, functions, attributes, etc. 
from each Category or Domain. These are usually text files, with character number 
keys for faster cross-referencing.

Database and hash-table technology has certainly improved in vast amounts over re­
cent years, and is in fact, quite an evolving area of computing. Magma utilises many 
different, hand-written (in C) databases for the large number of pre-computed tables 
of facts, needed by the modern discrete mathematician.

Each Magma database utilises the fastest look-up method available to the authors for 
that particular task. While Axiom’s method is not excessively slow, it is also not 
particularly fast.

More importantly, from our point of view, Axiom could have some extra databases to 
aid the automated coercion algorithm. Specifically, there could be a database contain­
ing for each Category, a list (of lists) of special functions exported by that algebra, 
but not its ancestors. This could just be also be a compiled fact about each algebra, 
but the look-up overhead would be greater.

The restriction on only having functions from that Category and not its ancestors’ 
special functions allows for the dynamic nature of Axiom’s Category system. Without 
this restriction, altering a Category further up the lattice could cause the database 
information to become outdated for all of its descendants.
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9.8 Conclusion

Axiom behaves very similarly to a language based on order sorted theories and the 
algebras that model them. However, there are some key areas in which Axiom differs 
to the mathematical notions.

We summarise these areas in the following table.

M ath em atica l N otion Axiom

Operator names need not be the 
same as operator symbols

Operator names are always the 
same as operator symbols

Coercions are homomorphisms and 
hence act homomorphically on all 
operators

Coercions need not act like ho­
momorphisms at all. (If it were 
possible to implement a univer­
sal equation-checker then Axiom 
would be alright)

A signature depends on its sort- 
list, and hence a sort-list is part 
of its definition

Category definitions do not explic­
itly list their sorts

No algebras are mentioned in a sig­
nature definition, only sorts

Category definitions do depend on 
specific Domains

The order on the sorts is part of 
the definition of a signature

Category definitions do not explic­
itly order their sorts

We have presented methods for addressing all of these differences.
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Conclusions

10.1 Introduction

In this chapter we shall summarise the work we have done and what problems we have 
managed to overcome. We shall also say what future work may be performed to extend 
the ideas presented here.

10.2 Summary of work done

In this section we shall summarise the work done in this thesis and what problems 
these ideas overcome. We shall split this down into the following sections.

1. Category theory and order sorted algebra bases for computer algebra systems. 
Section 10.2.1.

2. Representation and syntax of order sorted algebra. Section 10.2.2

3. Coherence of a type system. Section 10.2.3

4. The automated coercion algorithm. Section 10.2.4.

10 .2 .1 C ategory  th eory  and order sorted  algebras as th e  bases for 
sound stron g ly  ty p ed  com p u ter a lgebra sy stem s

We have shown why both category theory and order sorted algebra both provide solid 
models for the types systems found in computer algebra.
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In sections 3.3, 3.3, and 3.4 we have demonstrated the correlation between a computer 
algebra type system and category theory. (See also appendix B.5).

In sections 4.7 and 5.2 we have shown how a computer algebra type system corre­
lates with order sorted algebra. In section 5.3 we extended the notion of order sorted 
signatures to cover conditional signatures which occur in Axiom.

We have mentioned some of the correspondence between category theory and order 
sorted algebra (section 5.4). We have usually used order sorted algebra as our model. 
This is because order sorted algebra more readily corresponds to the algebraic inheri­
tance mechanism. This is mainly due to the order on the sorts which is not available 
in category theory. Also category theory has more difficulty expressing higher order 
polymorphism.

10.2 .2  R ep resen ta tio n  and syn tax  issu es o f  an order sorted  algebra  
based  ty p e  sy stem

In chapter 9 we demonstrated various methodologies for extending Axiom’s current 
type system so that it may more closely model order sorted signatures and algebra.

In section 9.3 we showed how Axiom’s syntax may be extended so that a signature 
may extend another more than once1. We also showed that this syntax could be used 
to uniquely identify operator names with operator symbols. This then allows operator 
symbols to differ from operator names.

In section 9.6 we discussed how both the sort list and the order on the sorts could be 
introduced to Axiom’s signatures.

Sections 9.4 and 9.5 commented on how the Axiom signature tree may be altered to 
allow coercions to act more homomorphically.

Finally, we discussed how Axiom signatures could be compiled to contain extra informa­
tion which would enhance the speed of the automated coercion algorithm (section 9.7).

10.2.3 On coherence

In chapter 6 we first stated all the mathematics used by Weber to state and “prove” 
Weber’s coherence conjecture 6.3.7 (sections 6.2 and 6.3).

In section 6.4 we then showed that this “proof” is not correct. We showed that altering 
a definition and adding a couple of new assumptions that let us prove the coercion

1Thus this solves an interesting class of multiple inheritance problem.
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theorem 6.4.7.

In section 6.5 we then showed that it was possible to relax one of the'assumptions 
which Weber made, and still have a coherent type system. (The extended coherence 
theorem 6.5.4.)

10.2 .4  T he a u to m a ted  coercion  a lgorith m

In sections 7.2, 7.3 and 7.6 we provided enough mathematics to show that the auto­
mated coercion algorithm 7.4.1 (section 7.4) is an algorithm which returns a function 
which is not only a homomorphism, but a coercion which we defined in definition 5.5.2.

This homomorphism is unique in a coherent type system, which we can guarantee 
providing we can satisfy all the assumptions of the extended coercion theorem 6.5.4. 
The homomorphism created may be built from the four basic types of coercion given 
in the statement of that theorem.

In chapter 8 we showed that a demonstration implementation of this algorithm is 
possible in Axiom.

10.3 Future work and extensions

We have presented in this thesis the basis for a mathematically sound computer algebra 
system. We have also shown that it would be possible to implement the automated 
coercion algorithm in such a system.

At present there is no such system, though Axiom and Magma come close.

We have shown how Axiom’s syntax could be extended to allow it to model an order 
sorted algebra system, the author would be most interested in implementing either a 
future release of Axiom or maybe a freeware Axiom-like system.

To implement a totally new Axiom-like system, it would be nice to take advantage 
of a language which already supports objects. Thus such a system could be written 
in C ++  [Str97], youtoo [Kin96] (an implementation of EuLisp Level 1 [Pad95]) or 
Java [Gra97].

However, note that Java does not allow multiple inheritance amongst classes. It does 
allow multiple inheritance from interfaces though. Interfaces are always (effectively) 
abstract classes.

Thus a Java implementation of an Axiom-like computer algebra system would have all
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Domains as classes and all C ategories as interfaces.

Axiom’s categories are not always abstract - that is they may contain implementations 
of functions2. This is a good thing as it enforces certain truths about a particular 
function.

Forcing any important facts by making a class which implements a particular interface 
would then ruin any chance of reattaining multiple inheritance. This effectively means 
that Java would not make a sensible implementation language.

A more serious omission of Java is that functions are not first class objects. This means 
that the automated coercion algorithm would be unimplementable in an algebra system 
with Java classes for objects.

C + +  is a tempting choice, but the time for one person to implement the entire system 
in such a low level language might make it infeasible. (The source code for the Axiom 
interpreter alone takes up over 100,000 lines of Boot and Lisp code).

Youtoo is an implementation of EuLisp Level 1 which does allow some forms of mul­
tiple inheritance. So while the temptation of using a fashionable language (Java) with 
potentially many more users is there, to implement the new algebra system correctly 
we see that Lisp is still the sensible choice.

Access to OBJ and the Magma source code would also prove interesting. The author 
would like to see if the automated coercion algorithm is easily implementable for any 
system other than Axiom, which provided all the original inspiration.

Sticking with the current release of Axiom, it would be nice to spend a few hours 
with one of the few experts who truly understand the Axiom interpreter. This would 
undoubtedly lead to a successful integration of the automated coercion algorithm with 
Axiom.

However, this would be only available in the interpreter. An implementation inside the 
Aldor compiler would be far more difficult, and hence make a very interesting research 
project.

Future research by Martin [MS97] and research students of Davenport should ensure 
that Axiom’s theory lattice is guaranteed to be mathematically correct. Eventually, we 
may even be able to prove that one theory is a protecting extension of another (though 
this may be some years from now).

Until such research is completed, the accuracy of the automated coercion algorithm 
depends on the ability of Category and Domain authors to adhere to to the assumptions

2The “not equals” function is defined to be “not(equals( ))”.
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made in this thesis.

10.3. Future work and extensions
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Appendix A

Extra category theory

A .l Introduction

This appendix merely lists some extra category theory needed by appendix B.

A .2 Extra definitions

D efinition  A .2.1 The constant functor Ac sends all objects of J  to c and all arrows 
to l c.

D efinition A .2.2  The diagonal functor A : C CJ sends each object c i-> Ac the 
constant functor all arrows f  : c —» c' of C to the natural transformation A /  : Ac —> 
Ac7. A limit for F  : J  —>• C is a universal arrow (r,u) from A to F.

D efinition A .2.3 A category is complete if given any small category J , and any func­
tor F  : J  —¥ C, then F  has a lim it
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Set theory

B .l  Introduction

The work in this section and sections B.3, B.4 and B.5 is not strictly necessary for the 
rest of this thesis, however, the author believes that it is necessary if one wishes to have 
a strict foundation to one’s computer algebra system.

I also believe this work to be necessary if one wishes to form categories of categories in 
Axiom. (See section B.5.)

B.2 Basics

We need not go into a precise axiomatisation of set theory (or indeed class theory) in 
this thesis, but merely point the reader towards some suitable references: [Dev79] for 
Zermelo-Fraenkel set theory; [Ber91] for von Neumann-Bernays; and [BHFL73] for a 
deep exposition on many formulations of set theory.

Mac Lane [ML71] avoids this by letting categories only form over small and large 
sets (also known as sets and classes in von Neumann-Bernays set theory). Briefly, 
to formulate set theory in this fashion, one takes naive set theory and appends the 
existence of a fixed set U, called the Universe. The universe has the following properties,

1. X E u £ U = > X £ U

2. u, v E U =>• {u, v}, (u, v), u x v E U

3. x £ U => V(x), \Jy£Xy E U
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4. the set of all finite ordinals is in U

5. i f / :  a —> b is a surjective function with a E U  and b C U,  then b € U  

One then defines a set to be a small set iff it is a member of U.

Thus he refers to the “category” with all categories as objects, and all functors as 
arrows, as the meta-category of all categories. Meta-categories are (in his book) are 
what would be called categories, if only their objects and arrows formed (small or large) 
sets.

Mac Lane’s book being the definitive volume on category theory also refers to other 
formulations of set theory, and even mentions (in passing) Lawvere’s paper [Law64]. In 
that paper1, Lawvere formulates eight axioms for categories and proves that if one has 
a complete category (definition A.2.3) satisfying those axioms, then it is equivalent to 
the category of sets and mappings and moreover, is unique.

Lawvere continues further down this abstract path in his 1965 paper [Law65] which 
attempts to axiomatise all of mathematics without recourse to any form of set theory.

Herrlich and Strecker [HS73] use von Neumann-Bernays to overcome the difficulties 
of having categories and meta-categories. They consider (as we have) that a category 
may be defined over any “collection” of objects and arrows.

von Neumann-Bernays set theory introduces the notion of class in an attempt to over­
come the problems associated with trying to form the set of all sets. Any collection of 
sets is a class, but if A is a proper class (that is a class which is not representable as a 
set) then there exists no class which has A as a member.

It is for this reason that the authors of [HS73] introduce the notion of a conglomerate. 
They loosely define conglomerates to be “collections” of classes of conglomerates2 and 
say that they require that:

1. Every class is a conglomerate;

2. Conglomerates are closed under formation of ordered pairs, unions, intersections, 
complements, disjoint unions and Cartesian products.

However, they also state that there is no conglomerate of all conglomerates, and thus 
they introduce the term cartel for collections of conglomerates.

*It should be noted that Lawvere’s paper is extremely abstract in content, and that it does not even 
formulate a traditional form of the relationship . Indeed, A C B is  defined to mean that there exists 
a monomorphism A with codomain B , and x € A  is defined via (3!B D A ) ( x  : 1 -> B )(3x)(A (x) =  x)

2I believe that they may only mean collections of classes, (or conglomerates representable by classes) 
and will take this meaning from here on.
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Indeed, we see that if we define the author’s concept of “inductive classes” as follows, 
we will be in good shape.

D efinition B.2.1 (Inductive  classes) • An entity, X  is called a classo iff X  is 
a set.

• An entity, X  is called a class^ (where lj is any ordinal number) (3£ an ordinal 
number)(£ < u)(all members of X  are classes).

• (V£ ,lj ordinal numbers)((£ < u>) => ((X is a class^) =4> (X  is a classw)))

There is no reason for the following not to hold, but the author can not prove it from 
the definitions alone. Thus we state it here as an axiom.

A xiom  B .2.2 A finite collection of classes is a class^.

So if we now define C at^  as follows, we will always be able to find a category in which 
we can work, rather than a meta-category. Unless, of course, one still wishes to form 
a category of all categories, or a category with itself as an object. We are just saying 
that we can always find a category “large enough” in which we can work.

Many theoretical computer scientists do not believe that there really exists a problem 
at all. Davenport states in [Dav92],

“many mathematical sets are not represented in computing languages 
quite as we would like. For example the set Z, [... and m]ore seriously, no 
computer can really represent R ”

yet we often pretend that they can. For example, in most computer algebra systems 
allow the existence, calculation and manipulation of “bignums” (integers larger than
the largest representable within one machine word). In a lazily evaluated system, one
might even allow the creation of integers larger than the number of molecules in the 
universe, let alone the usable workspace of any current computer. Indeed, this is already 
commonplace.

So just because one’s computer cannot represent every element of Z does not mean we 
cannot have a type of all integers.

Davenport also states in [Dav93],

“One might think of [the universe] U as being the set of all possible data 
objects, or bit-patterns”
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Hence, since everything with which we work is finite, we would not be required to 
do any more work at this point. The author disagrees, simply because one’s machine 
contains only finitely may states does not mean that we may assume that all of our 
collections are (small) sets.

B.3 Inductive class approximation

In Axiom,

S : Set Any := { } ; S := insert(S,S)

defines S to be a finite collection, with itself as its sole element; however, it most 
certainly is not a (small) set. In fact, there does not exist an ordinal number3 l j  such 
that S is a classw.

So what use is the idea of inductive classes in this situation? The method of inductive 
class approximation allows us to identify the S’s on each side of a defining equation 
with different “approximations” to the value of S.

To demonstrate the method of inductive class approximation, let us fix C  to be a class^. 
Now alter <7, by letting

<7:=<7U{<7}

The operation on the right hand side is the traditional function and should be 
familiar to set theorists from one of the first three axioms of general set theory [Ber91]. 
It is also used to define successors in ordinal theory.

As before, there does not exist an ordinal 77 such that C  is now a class,,. What we may 
do is identify the Cs on the right hand side with a copy of the original (7, and thus the 
C  on left is now a classw+i. For those (myself included) who do not like the idea of 
the same symbol having different values in the same equation, then here is a different 
version,

Cu+i U {C ,̂}

We now have an l j  +  1 approximation to C. Given any ordinal rj > l j  such that is 
an 77 approximation to (7, then we define the (77 +  l) th  approximation via,

C77+1 *= Cf) U {Crf}
3 An ordinal is an ordinal number if it is a set [Men87].
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Thus we can always find an approximation to C, containing a “large enough” (but 
different) approximation to C.

In traditional notation,
Od(r/) —r* Crjff = Cf], Cfj

If we could continue inductively approximating ad infinitum then we would reach a 
limit ordinal Lim(c). However, Cum(c) may sfdl n°t be equal to C.

At first glance, this appears to be neither a usable nor implementable idea, however, 
for dealing with categories on a computer, it is in fact a useful concept as we shall see 
below.

B .4 Inductive classes and category theory

The following mathematics, presented here for the first time, defines a way for us to 
always have a category of “all the categories in which we currently wish to work”. It 
allows for Axiom’s Category to be a category, and indeed (by lazy representation) to 
be a member of Category.

D efin ition  B .4.1 For any ordinal number, l j , C at^  is the category which has as ob­
jects, any category C, for which both Obj(C) and Arr(C) are representable as classes. 
The arrows of C a tw are the functors between these categories.

P ro p o sitio n  B .4 .2 C a tw is an object of C a tw+i.

P r o o f .  (V£,u; ordinal numbers)((£ < l j ) =*> ((X  is a classy) =>• (X  is a class^))). 
l j  <  l j  +  1. Hence, trivial. □

So, for example, 0 is an object of Cato, and Set is an object of C a ti.

B.5 Inductive classes, categories and Axiom

Suppose we wish to define the identity functor for the category of all C ategories in 
Axiom. We shall call this functor CopyCat.

If we assume that Axiom’s Category is normally a C at^ , and we wished for a category 
which was parameterised by a Category, then the mathematical way of representing,

CopyCat(C : Category) : Category == C
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is that CopyCat takes C a C at^ , but the CopyCat () category is a C at^+i.

Thus we now have Category as both a C at^  and a C a tw+i, depending on whether we 
have any instantiations of CopyCat () or not. We may carry on inductively, changing 
the approximation of Category (to the category of all C ategories), should we have 
CopyCat (CopyCat (CopyCat ( . . . ) ) )  etc. ad, infinitum (and beyond, but we shouldn’t 
need that on a computer).

Obviously, this is only a trivial example. This mathematics is a “neat trick” and would 
allow category theorists to perform their research in Axiom.

However, Jo in  is a functor from

Category —> Category
nGNUO

in Axiom, so CopyCat (defined above) is equivalent to Jo in  acting on one argument. 
Axiom does not consider Jo in  to be a functor since it is only defined in the compiler(s) 
and acts solely as syntax in the construction of new C ategories.
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