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Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme which is involved in 

control of DNA excision repair. PARP-1 is implicated in the resistance of tumour cells to 

radiotherapy or DNA-damaging chemotherapeutic agents. Inhibitors of PARP-1 may 

therefore be of use in the treatment of cancer as potentiators of radiotherapy and 

chemotherapy. Most potent inhibitors of PARP-1 are analogues of the nicotinamide of 

the substrate NAD* and contain a carboxamide group in which the amide is 

constrained in an a/7f/-conformation to the aromatic ring.

Viable cells in hypoxic tissue present in many tumours are relatively resistant to 

radiotherapy and chemotherapeutic strategies. Previous studies have examined 

bioreductively-activated cytotoxins and prodrug systems which release drugs 

selectively in hypoxic tissue. The aim of the project was to develop novel hypoxia- 

activated N-oxide prodrugs of PARP-1 inhibitors. Synthetic approaches to 3- and 2- 
substituted quinoline-8-carboxamides and their corresponding N-oxides were studied.

A wide range of 3-substituted quinoline-8-carboxamides have been synthesised using 

3-iodoquinoline-8-carboxamide as a precursor to palladium-catalysed coupling 

reactions, such as, Suzuki-Miyaura coupling, Stille coupling, and Sonogashira coupling. 
The intramolecular hydrogen-bond required for PARP-1 activity between the 

carboxamide N-H and the nitrogen of the quinoline was demonstrated by 1H NMR 

spectroscopy and X-ray crystallography.

Suzuki-Miyaura coupling and Stille coupling of 2,8-dibromoquinoline proceeded in high 

regioselectivity for the 2-position. Lithium-bromine exchange, followed by quenching 

with trimethylsilylisocyanate led to the target 2-substituted quinoline-8-carboxamides.

A PARP-1 prodrug was designed based on N-oxide bioreduction. N-Oxidation of 3- 

phenylquinoline-8-carbonitrile with urea hydrogen peroxide complex and trifluoroacetic 

anhydride gave 8-cyano-3-phenylquinoline-1-oxide. Subsequent hydration with alkaline 

hydrogen peroxide gave the target 8-carbamoyl-3-phenylquinoline-1-oxide. Attempts to 

form 8-carbamoylquinoline-1-oxide and 8-carbamoyl-2-phenylquinoline-1-oxide are 

also discussed.

Quinoline-8-carboxamide and representative examples in the 3-subtituted and 2- 
substituted quinoline-8-carboxamide series were evaluated for their inhibitory activity 

against recombinant human PARP-1. Seven compounds displayed inhibitory activity



equal or better than our lead compound 5-aminoisoquinolin-1-(2H)-one (5AIQ), the 

most potent inhibitor being 2-methylquinoline-8-carboxamide ( I C 5 0  = 0.5 pM). 8- 

Carbamoyl-3-phenylquinoline-1 -oxide displayed inhibitory activity approximately equal 

to that of its non-oxide analogue 3-phenylquinoline-8-carboxamide.
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1. Introduction

1.1 Cancer

Cancer is a disease caused by the uncontrolled division of the body’s cells. Cancer 

cells may invade the surrounding tissue, or metastasise through the bloodstream or 

lymphatic system to other parts of the body. Cancer is the main cause of mortality in 

developed countries, with one person in three estimated to develop the disease in their 
lifetime. The most widely used cancer therapies are radiotherapy, surgery and 

chemotherapy. The effectiveness of these treatments is limited by the toxicity to normal 
cells in the body.

Surgical procedures are used to remove malignant tissue physically. The complete 

removal of cancer by surgery is only successful if the disease has not metastasised to 

other sites in the body prior to the surgical procedure. Consequently, a non-surgical 
procedure is often also required in the treatment of cancer.

During radiation therapy, cancer cells are exposed to ionising radiation and the 

resulting damage causes the death of the cell when it tries to divide. The radiation is 

focused like a beam of light on the treated area called a radiation field, but cancer cells 

that are outside of the irradiated area will not be damaged. The specific target of 
radiation damage is DNA. The radiation causes either single or double strand breaks in 

the DNA and cells are most susceptible to damage during the mitotic or actively 

dividing stage of the cell cycle. Both cancer cells and normal cells use the same 

mechanisms for cell division. Therefore, radiotherapy kills malignant cells as well as 

rapidly dividing normal cells. This results in acute side effects of radiotherapy, and cells 

that divide as fast as cancer cells are very sensitive, such as hair follicles, bone marrow 

and gut epithelia.

The use of chemotherapy began in the 1940’s with the discovery of nitrogen mustards 

as an effective treatment for cancer. Like radiotherapy, chemotherapy is designed to 

kill proliferating cells. However, chemotherapy has the advantage that it is a systemic 

treatment and therefore can be used to treat distant metastasis. A considerable 

number of anti-cancer drugs have been developed and all cell cycle phases can be 

targetted. Chemotherapeutic agents have been successful in improving the prognosis 

of many malignant conditions such as acute leukaemia, Hodgkin’s disease and 

testicular cancer.1 The disadvantage of these cytotoxic agents is their limited selectivity

1



towards cancer cells, which leads to the common side effects associated with cancer 
chemotherapy. Slow growing solid tumours such as carcinomas of the breast and lung 

respond poorly to chemotherapy, as the tumour cells are not dividing rapidly.

Investigators have made progress in understanding the basic cellular and molecular 
mechanisms of cancer therapy resistance. Many of these investigative efforts have 

focused on intrinsic cellular characteristics, such as the multi-drug resistance 

phenomenon, gene amplification, and radiation sensitivity. However, there is a second 

aspect of cancer treatment resistance that is related to the physiological state of the 

cell and not to intrinsic cellular properties. The physiology of solid tumour tissue is 

sufficiently different from that of normal tissue, mainly due to differences in the tumour 
vasculature. These physiological differences create both problems and opportunities in 

cancer treatment.

1.2 T umour hypoxia

Thomlinson and Gray2 first discovered and described tumour hypoxia. Tumours 

become hypoxic because the new blood vessels they develop cannot sufficiently 

supply oxygen and other nutrients to the cells. The normal vasculature is organised 

with vessels close to cells to ensure an adequate oxygen supply. In comparison the 

tumour vasculature is often highly irregular, with leaky vessels and sluggish blood flow. 
The first type of hypoxia is known as chronic or diffusion hypoxia.3 At a distance of 
about 150 pm from the capillary, cells tend to be well oxygenated. Beyond this 

distance, the oxygen tension becomes effectively zero and cells become necrotic. 
Hypoxic cells tend to occur at the interface regions between the well-oxygenated tissue 

and necrotic zones. Hypoxic cells are viable but sufficiently hypoxic to make them 

resistant to radiation. The second type of hypoxia is known as transient or perfusion 

hypoxia and occurs due to the opening and closing of blood vessels, placing sections 

of tissue under hypoxia for shorter time periods.4 Perfusion-limited hypoxia leads to 

‘reoxygenation injury’ and results in an increase in free-radical concentrations, tissue 

damage and activation of stress-response genes.

The pioneering work of Hockel et al.5 demonstrated that low oxygen tension in tumours 

was related to increased metastasis and poor survival in patients suffering from 

squamous tumours of the head and neck, cervical or breast cancers. They studied 

measurements of tumour oxygen levels using oxygen electrodes. More efficient, less 

invasive methods to measure tumour hypoxia in vivo have been developed. These
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include magnetic resonance imaging techniques,6 positron emission tomography 

scanning with 18F-labelled hypoxia-activated drugs,7 and radiolabelled hypoxia- 

activated bioreductive drugs.8

1.2.1 Hypoxia and Radioresistance

Ionising radiation kills cells by causing damage to the DNA, particularly DNA double 

strand breaks. Firstly, the target DNA radical (DNA ) is produced, either by direct 
ionisation or from radiolysis of neighbouring water molecules. Under aerobic 

conditions, reaction with oxygen (02) produces a peroxyl radical (DNA-02), which 

causes irreversible damage to the DNA. Under hypoxic conditions, reducing species, 
such as thiols (-SH), can react with the target radical by hydrogen (H ) donation, 

resulting in the restoration of the DNA to its original state (Figure 1). The ability of 

oxygen to act as a sensitising agent is described by the oxygen enhancement ratio 

(OER). The OER is quantified as the factor by which the dose in the presence of 
oxygen should be multiplied in order to obtain the same surviving fraction of cells for 
hypoxic conditions. Mammalian cells irradiated in the presence of air are 2.5-3.0 times 

more sensitive than are cells irradiated under conditions of severe hypoxia (low oxygen 

concentration). Consequently, hypoxic cells require a dose three times higher to kill 
them, which the surrounding normal cells cannot tolerate.

ionising
radiation

DNA-H

Restitution

DNA-H

R-SH Reduction in hypoxic conditions

-> DNA-

0 2 Oxidation in aerobic conditions

D N A -00 ► DNA breaks ......... ► Cell death

Damage fixation

Figure 1. Mechanism of radiation cell killing."
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Hyperbaric oxygen chambers were first used 50 years ago to increase oxygen delivery 

to tumours and thus to overcome hypoxia as a cause of radioresistance. The approach 

involves the administration of 100% oxygen at a pressure greater than 1 atmosphere 

(atm).9 Clinical trials using hyperbaric chambers have only had moderate success. 
However, significant benefit was found with head and neck cancer10 and carcinoma of 

the cervix.11

Another approach to target radioresistant hypoxic cells is the use of radiosensitising 

drugs. These drugs are given shortly before a patient receives radiotherapy and 

interact with short-lived radicals that are produced during radiation. Radiosensitisers 

are designed to mimic the sensitising effect of oxygen and act to restore the 

radiosensitivity of hypoxic cells. These drugs are capable of diffusing further than 

oxygen from the vascular capillaries and can penetrate hypoxic regions of tumour cells. 

The radiosensitising efficiency of a compound towards hypoxic cells has been 

demonstrated to be dependent on the one-electron reduction potential.12 The first 
clinical trial data published on hypoxic radiosensitisation used the electron-affinic 

nitroimidazole metronidazole 1, which was found to have an E \  reduction potential of 

-486 mV. Urtasun et a/.13 showed enhanced survival rates of patients with glioblastoma 

due to radiosensitisation of hypoxic cells. The large amount of this drug required to 

produce adequate enhancement ratios in vivo led to the search for more active 

nitroimidazoles. A more potent radiosensitising drug called misonidazole 2 was soon 

developed, which was found to have an EV reduction potential of -389 mV. In addition, 
misonidazole was found to be superior to metronidazole both in vitro and in vivo 

studies. Unfortunately, in clinical trials misonidazole was observed to have a dose- 
limiting neurotoxicity, limiting the dose of drug that could be used in radiotherapy.14 
Brown and co-workers15 developed a series of analogues of misonidazole with the 

same electron affinity but with reduced lipophilicity. The optimum compound chosen 

was SR 2508 (etanidazole, 3) due to its favourable in vitro radiosensitisation and 

toxicity properties. However, Phase III clinical trials comparing radiotherapy of head 

and neck cancer with or without etanidazole failed to show any significant benefits.16

HOH2CH2C

Me N02

1 2 R = CH2CH(OH)GH2OCH3
3 R = CH2NHCO(CH2)2OH
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1.2.2 Hypoxia and Chemoresistance

In solid tumours, a number of factors associated with tumour hypoxia contribute to 

resistance to drugs. Hypoxia can be a direct cause of therapeutic resistance because 

some anti-cancer agents require cellular oxygen to be maximally cytotoxic. For 
example, Teicher et a/.17 demonstrated that tumour cells in aerobic conditions were 

more sensitive to melphalan, in contrast to their hypoxic counterparts. Hypoxia can also 

cause cells to stop or slow their rate of progression through the cell cycle.18 The rate of 
cell proliferation decreases with increasing distance from the tumour vasculature. Most 

anti-cancer drugs are selective at killing rapidly proliferating cells. Therefore, non­

proliferating cells or slowly proliferating cells remain resistant to treatment. 

Furthermore, anti-cancer agents act mainly during DNA synthesis by causing damage 

to DNA. Studies by Walker et a/.19 demonstrated that DNA-damaging anti-cancer 
agents had a reduced efficacy due to an increased activity of DNA repair enzymes 

under hypoxic conditions.

Anti-cancer agents reach their target through the circulatory system. The fluctuating 

blood flow present in tumours due to arteriovenous shunts and dysfunctional blood 

vessels, which close and re-open, results in poor perfusion and a disordered blood 

supply. Subsequently, any cells surrounding closed blood vessels will be exposed to 

lower levels of anti-cancer drugs than those surrounding blood vessels with normal 
flow.4 In order for anti-cancer drugs to be therapeutically effective they must be able to 

access all viable cells within the tumour. As mentioned previously, solid tumours 

contain hypoxic cells that are usually located some distance away from the nearest 
microcapillary.20 The location of these cells creates a challenge to the physical delivery 

of anti-cancer drugs, as the large chemotherapeutic agents need to penetrate several 

layers of tissue to reach their target and cause lethal toxicity. The penetration of anti­
cancer drugs into tumour tissue has been studied by autoradiography and 

fluorescence. These studies demonstrated poor penetration for doxorubicin, vinblastine 

and methotrexate.20

There are also other ways in which hypoxia might contribute to drug resistance. 

Comerford and co-workers21 identified the P-glycoprotein as a pathway for tumour drug 

resistance and proposed that the multi-drug resistance gene (MDR1) was hypoxia- 

responsive. It has also been demonstrated that stress conditions, such as glucose 

starvation, hypoxia and low pH that induce stress proteins, are seen in most solid
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tumour cells. Hypoxic stress proteins appear to be responsible for cellular resistance to 

anti-cancer drugs, such as etoposide,22 doxorubicin,23 and cisplatin.21

1.2.3 Hypoxia-lnducible Factor-1

Mammalian cells respond to hypoxic conditions through the hypoxia-inducible 

transcription factor 1 (HIF-1). HIF-1 is a heterodimeric DNA-binding complex and 

consists of the hypoxic response factors HIF-1 a and HIF-1 p. HIF-1 acts as global 
regulator of oxygen homeostasis 24 HIF-1 p is an aryl hydrocarbon receptor nuclear 

translocator (ARNT) and its activity is independent of concentration of oxygen. 

Expression of HIF-1 a is induced by cellular hypoxia and is maintained at low levels in 

most cells with normal concentrations of oxygen. The molecular recognition of oxygen 

by HIF-1 is primarily determined by the a-subunit.25 The most widely studied 

mechanism of HIF-1 a protein regulation is the pathway mediated by the von Hippel- 

Lindau protein (VHL). Under normal oxygen concentrations, HIF-1 a is rapidly and 

continuously degraded by ubiquitination and proteosomal degradation. Degradation of 
HIF-1 a is dependent on binding with von Hippel-Lindau protein, which is mediated by 

hydroxylation of two specific proline residues (Pro402 and Pro564) by a prolyl-4- 

hydroxylase domain (PHD). PHDs are dioxygenases that require oxygen, Fe2+, and 2- 
oxoglutarate as substrates. Under low oxygen concentrations, the HIF proline residues 

remain unmodified, preventing binding of the von Hippel-Lindau protein, and HIF-1 a 

levels increase. HIF-1 a translocates to the nucleus, where it dimerises with HIF-1 p and 

activates transcription genes. These genes contain a hypoxia-response element (HRE) 
to which the HIF dimer binds. The activation of hypoxia-response genes enables cells 

to respond to hypoxic conditions by controlling metabolism, cell growth and 

angiogenesis.26

The von Hippel-Lindau protein pathway is not the only mechanism controlling levels of 
HIF-1 a. The MDM2 ubiquitin protein ligase is recruited to HIF-1 a by binding of the 

tumour suppressor p53, which results in a decrease in HIF-1 a levels. The loss of p53 in 

tumour cells enhances HIF-1 a levels and promotes neovascularisation and growth of 
tumour xenografts in nude mice27 The control of HIF-1 by oncogenic signalling has 

also been demonstrated. For example, the phosphatidylinositol-3-kinase (PI3K) 

pathway increases HIF-1 a-mediated transcription of the vascular endothelial growth 

factor (VEGF) in tumour cells lines.28
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Overexpression of HIF-1 a has been shown in a number of cancers and has been 

linked with poor prognosis of patients receiving cancer treatment. Zhong et al.29 

analysed HIF-1 a in 179 tumour specimens using immunohistochemical techniques. 
They demonstrated that HIF-1 a was overexpressed in 13 out of 19 common cancers in 

comparison to normal tissue. These included colon, breast, gastric, lung, skin, ovarian, 

pancreatic, prostate, and renal carcinomas. HIF-1 a protein was also expressed in pre- 
malignant tissue, such as colonic adenoma, breast ductal carcinoma in situ, and 

prostate intraepithelial neoplasia. This suggests that HIF-1 a may represent an early 

biomarker for aggressive disease.

HIF-1 a overexpression can occur due to hypoxia independent mechanisms. HIF-1a is 

expressed in the majority of tumour cells in haemangiobiastoma, despite the highly 

vascularised nature of this tumour. It has also been demonstrated that mutations in 

oncogenes and loss of function in tumour-suppressor genes, VHL, PTEN or p53 are 

associated with higher HIF-1 a expression in human cancers. For instance in renal 
cancer, mutations in VHL resulted in an accumulation of HIF-1 a.30,31 Overall, hypoxia- 
induced expression of HIF-1 appears to be essential for vascularisation and other 
aspects of tumour progression (Figure 2).

There is currently interest in the use of HIF-1 a as a target for the development of 
cancer therapy. A variety of anti-cancer drugs that directly and indirectly inhibit HIF-1 

have been reported. One approach to selectively targeting HIF-1 signalling is to inhibit 
HIF-1 a transcription or translocation32 PX-478, a novel inhibitor of HIF-1 a, decreases 

cellular HIF-1 a protein levels under hypoxic and non-hypoxic conditions. PX-478 

showed anti-tumour activity against a variety of human xenografts characterised by 

marked tumour regressions and prolonged tumour growth delays.33

NH
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Echinomycin, a cyclic peptide of the family of quinoxaline antibiotics, inhibits HIF-1 a 

DNA binding, thus inhibiting its ability to target genes transcriptionally. However, it has 

not been established whether echinomycin has potential therapeutic benefits in vivo.34

Oncogene _____ ^ Genome   Tumour Suppressor
Activation Instability Gene inactivation

Dysregulated Cellular Proliferation

HIF-1

Metabolic AdaptationAngiogenesis

Tumour Growth, Invasion, 
and Metastasis

Figure 2. Mechanisms and consequences of HIF-1 a overexpression in cancer.35

The National Cancer Institute’s drug library revealed that several camptothecan 

analogues, including topotecan, blocked expression of HIF-1 a. Studies have indicated 

that topotecan does not affect the half-life of the HIF-1 a protein or accumulation of 
mRNA but inhibits translation.36 Yeo et a t37 showed that YC-1 [3-(5'-hydroxymethyl-2'- 

furyl)-1-benzylindazole] demonstrated anti-tumour and antigiogenic effects. YC-1 

decreases HIF-1 a levels and shows anti-tumour activity against human tumour 
xenografts.
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Another class of compounds that affect HIF-1 activity are known as thioredoxin 

inhibitors. These compounds inhibit redox signalling by inhibiting Trx-1. Thioredoxin 

inhibitors decrease expression of HIF-1 a, tumour VEGF, and tumour angiogenesis in 

human tumour xenografts in mice.38

Finally, 2-methoxyoestradiol (2ME2) a microtubule-targetting agent has been reported 

to inhibit HIF-1 a stability. Mabjeesh et al,39 demonstrated that these microtubule agents 

inhibit the expression of HIF-1 a in normoxic and hypoxic cancer cells. It was also 

demonstrated that 2ME2 inhibits the expression of VEGF and other HIF-1 target genes. 

Overall, it seems that none of the anti-cancer drugs mentioned selectively target HIF-1.

1.3 Bioreductive Prodrugs

Adrien Albert first introduced the prodrug concept in 1958.40 A prodrug is defined as an 

inactive compound that is converted in the body by metabolism or spontaneous 

chemical breakdown to form a pharmacologically active species.41 There has been 

much interest in the use of bioreductive prodrugs in cancer therapy. The majority of 
clinically used anti-cancer drugs are not selective for cancer cells, and their therapeutic 

efficacy is limited by the damage they cause to normal cells in the body. The hypoxic 

cells in solid tumours exist in an environment that can be used to generate reduced 

derivatives of a variety of chemical groups, and bioreductive prodrug compounds have 

been developed to exploit such environments.42 In order to achieve success a 

bioreductive prodrug must meet four basic criteria:

(1) The prodrug must be able to distribute effectively to hypoxic regions in tumours.
(2) The bioreductive drug should have a half-life that allows diffusion to the 

surrounding non-transfected cells that may lack the ability to activate the 

prodrug (bystander effect).
(3) The prodrug must have minimal toxicity to aerobic cells and be stable to 

metabolism under aerobic conditions.
(4) The prodrug must undergo selective activation to release a cytotoxic species.

The general principles involved in the design of bioreductive prodrugs are shown in 

Figure 3. Bioreductive prodrugs can be considered as comprising of three domains that 

are the trigger, the effector and the linker41 The trigger unit serves as a substrate for 
tumour specific enzymes or a physiochemical activating event. If tumour-specific 

enzymes activate the prodrug, the trigger needs to show selectivity, so that the
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cytotoxic effector is generated only in hypoxic cells. If the prodrug is activated by 

radiation, the trigger must also act as a reducing agent. An important design feature of 

the trigger unit is its one-electron reduction potential. Compounds that are good trigger 

units include nitro-compounds, quinones, aliphatic N-oxides, aromatic N-oxides and 

transition metal complexes. The effector is the active species, which must be potent 

and kill cells rapidly under all cell conditions. A linker unit joins the trigger and effector. 

The main function of the linker is to deactivate the prodrug until metabolism of the 

trigger. The linker must be designed so that it quickly releases the active drug after 

activation of the prodrug.

Linker

Figure 3. General features of prodrugs.

1.3.1 Bioreductive activation

Bioreductive prodrugs require reductive activation in order to be functional. 

Bioreductive drugs act as substrates for various endogenous reducing enzymes in 

almost all cells.43 Initially the one-electron reductases add an electron to the non-toxic 

prodrug, converting the prodrug into a free radical. In oxygenated cells, the unpaired 

electron in the prodrug radical is transferred to molecular oxygen, forming a superoxide 

radical. This futile oxygen cycle regenerates the non-toxic prodrug and inhibits drug 

reduction in normal tissues. In hypoxic conditions, the prodrug radical undergoes 

spontaneous chemical breakdown or further metabolism to generate the cytotoxic 

species. The position of the equilibrium in Figure 4 depends on cellular oxygen levels 

and the one-electron reduction potential. Compounds that are more electron-affinic can 

be reduced to the one-electron adduct more easily. This has been demonstrated in the 

comparisons for the bioreduction of metronidazole with that of the more electron-affinic 

nitrofurazone.44
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Figure 4. Mechanism of prodrug activation under hypoxia.45

Recently, the focus has turned to the activation of bioreductive prodrugs by 

endogenous but tumour-specific enzymes. The enzyme-directed approach of activating 

bioreductive prodrugs looks at factors such as enzyme-substrate specificity and relative 

patterns of enzyme expression in tumour and normal cells. Robertson et a/.46 showed 

that the indolequinone E09 was selectively activated by the oxygen-independent two- 

electron reductase, DT-diaphorase.

NAD(P)H:cytochrome P450 reductase is a one-electron reductase which is believed to 

play a vital role in the activation of certain cytotoxins. The activity of cytochrome P450 

reductase is significantly higher in tumour tissue than in normal tissue. Studies by 

Workman and colleagues demonstrated that P450 reductase was important for the 

hypoxic activation of nitro-heterocyclic compounds and tirapazamine.47,48 Other 
activating enzymes include the one-electron reducing enzymes xanthine oxidase / 
xanthine dehydrogenase, and the one or two electron reducing enzyme carbonyl 
reductase.49-50

The use of exogenous (non-human) enzymes to activate prodrugs has been 

investigated. One approach is antibody-directed therapy (ADEPT) where an exogenous 

enzyme is attached to a tumour-associated antigen. A prodrug is then administered 

that is a good substrate for the non-human enzyme, and is catalytically activated in 

tumour cells. Gene-directed enzyme prodrug therapy (GDEPT) is a similar approach 

that uses a foreign gene in order to generate the enzyme selectively.

Bioreductive prodrugs can also be activated by ionising radiation via the reducing 

species produced from the radiolysis of water. The advantage of this radiation- 
activated approach is that selectivity can be achieved by restricting the radiation field 

on the tumour. The radiation-activated approach is a one-electron process and is 

independent of the expression levels of reductive enzymes in tumour cells. A number 
of bioreductive prodrugs that are efficiently activated by ionising radiation under 
hypoxic conditions have been developed, these include cobalt mustard complexes,
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nitrobenzyl quaternary ammonium salts, and oxypropyl-substituted 5-fluorouracil 
derivatives.51'53 However, none of these prodrugs have provided convincing activity in 

tumours.

1.3.2 Nitroaromatics

Nitroaromatic / nitroheterocyclic compounds have been widely studied, and have been 

used to characterise the design concepts for hypoxia-activated prodrugs. Under 
hypoxic conditions enzymes known as flavoproteins can reduce the nitro functionality 

of these nitro compounds.43 The complete reduction of the nitro prodrugs involves a 

series of one-electron reduction processes to form the hydroxylamine and amine as 

their activated species (Scheme 1). The one-electron nitroso anion may be back 

oxidised to the parent compound, restricting activation to hypoxic cells.

^  R-N02 R-NO
1e©

R-NOH

02 02

R-NH2
2e

©1e

R-NHOH

V V
release of a therapeutic drug

Scheme 1. Reductive activation of nitroaromatic prodrugs.54

Redox-related factors are key properties in the design of hypoxia-activated drugs. A 

reduction potential E?7 in the range of about -300 to -450 mV is considered desirable 

for hypoxia-selective cytotoxins.55 The reduction potential of nitroimidazoles makes 

them attractive triggers for hypoxia-selective drugs. The initial interest focused on the 

ability of the nitroaromatics to act as radiosensitisers. The first nitroaromatic hypoxia- 
activated prodrugs were the nitroimidazole compounds, misonidazole and etanidazole. 

These agents showed only moderate selectivity for hypoxic cells over oxygenated cells. 
Jenkins et al.56 reported the development of the nitroimidazole compound RB6145 that 

was found to be more potent than the simple nitroimidazole compounds. In pre-clinical
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trials, RB6145 was shown to cause irreversible retinal damage and the compound was 

not taken forward for clinical evaluation.57
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Everett et al.58 demonstrated the potential delivery of cytotoxins to hypoxic tissue using

2-nitroimidazole as a reductively activated ‘trigger1 (Scheme 2). Studies showed the 

reductive elimination of aspirin and salicylic acid from the 2-nitroimidazol-5-methylene 

moiety. The 2-nitroimidazoles were reduced by a one-electron donor, C02', which was 

generated radiolytically. The reaction kinetics revealed that the salicylic acid and 

aspirin conjugates required a four-electron reduction and subsequent elimination from 

a hydroxylamine intermediate.

OAc 0

5 ^
CH3

+4e‘
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OAc O
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OAc 0 H

OH + NHOH

— N

Scheme 2. Proposed mechanism for the reductive elimination of aspirin from (1- 

methyl-2-nitroimidazol-5-yl) methyl 2-acetoxybenzoate.58

In an attempt to improve nitroaromatic trigger efficacy, various other heterocyclic 

compounds have been explored. Firestone et a l59 outlined the synthesis and in vitro 

evaluation of a bioreductiveiy-activated nitroquinoline phosphoramidate mustard. The 

mechanism for the activation of the nitroquinoline prodrug under hypoxic conditions is 

shown in Scheme 3. The cytotoxicity of the target compound was assessed against 
HT-29 human colon carcinoma and was found to be 11-fold more toxic under hypoxic
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conditions compared with aerobic conditions. Additional studies by Mulcahy et a/.60 

reported the use of phosphoramidite-deactivated mustards in combination with a 

nitrobenzyl trigger.

OEt•OEt

Bioreduction

NH NH

O
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X= ” O—P—N(CH2CH2CI)2
nh2

Scheme 3. Proposed mechanism for the release of a cyclophosphoramide moiety from 

a nitroquinoline prodrug under hypoxic conditions.59
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Scheme 4. Bioreductive activation of prodrug 4 .61
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Sykes et a/.61 reported a reductively activated prodrug based on a A/-(2,6 -dinitro- 
phenyl)amino trigger system (Scheme 4). Compounds such as 4 were designed to

release effectors by a cyclisation-extrusion process. In compound 4, the ortho nitro

group can form an hydrogen bond with the neighbouring N-H group, this locks the 

molecule in the correct conformation, accelerating the rate of cyclisation. Compound 4 

did not show significant activity against hypoxic cells in RIF-1 tumours but was 

significantly activated by ionising radiation at low doses.

1.3.3 Aromatic N-oxides

Tirapazamine (TPZ, 5) is the lead compound in a class of potent hypoxic cell toxins, 

which shows highly selective hypoxic cell toxicity.3 The mechanism of activation of

tirapazamine under hypoxia is shown in Scheme 5. Tirapazamine is reduced by
NAD(P)H:cytochrome P450 reductase to the tirapazamine radical (TPZ*, 6 ), which 

leads to DNA strand-breaks by a mechanism which is only partly understood. It was 

first thought that the DNA damaging species was the TPZ radical itself. Recently, it has 

been proposed that, under hypoxic conditions, the TPZ radical undergoes spontaneous 

decay to an oxidising hydroxyl radical (OH*) or an oxidising benzotriazinyl radical 

(BTZ*, 7) and two-electron reduction product SR4317. Hydrogen-abstraction by the 

oxidising radical (OH* or BTZ*) gives rise to DNA double-strand breaks. In the 

presence of oxygen, the TPZ radical is back-oxidised to regenerate the parent 

compound. Tirapazamine is highly selective for hypoxic cells (100-200 fold) and cell 
killing extends over a wide range of oxygen concentrations.62

O' 6 OH

DNA
Strand
Breaks5 O f 02

Scheme 5. Bioreductive activation of tirapazamine.3
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Tirapazamine-based chemoradiotherapy has been studied in head and neck cancer 
and Phase II trials show promising results.63 Currently, the use of tirapazamine in 

combination with the chemotherapeutic drug cisplatin is being investigated. Phase III 

clinical trials in non-small-cell lung cancer showed an improved survival rate in the 

group treated with a combination of tirapazamine and cisplatin, compared with those 

treated with cisplatin alone.64

Monge et al.65, in 1995, developed a series of quinoxalinecarbonitrile 1,4-di-N-oxides 

as selective hypoxia-activated prodrugs. These compounds replace the 2-nitrogen in 

the benzotriazine ring of tirapazamine with a cyano group. It was shown that the 

presence of the cyano group in the second position of the quinoxaiine ring was 

important for biological activity. 7-(4-Nitrophenyl)-2-quinoxalinecarbonitrile 1,4-di-N- 
oxide was found to be 150-fold more toxic to hypoxic cells than is tirapazamine in vitro.

Pyrazine mono-N-oxides have also been reported as hypoxia-activated prodrugs.66 

RB90740 undergoes reduction by P450 reductase and cytochrome b5 reductase to 

generate one-electron-reduced free radicals. The radicals cause single, and possibly 

some double stranded breakage in DNA. RB90740 was found to be more toxic under 
hypoxic than aerobic conditions in cell culture.67

1.3.4 Aliphatic N-oxides

Aliphatic amine N-oxides have long been identified as non-toxic metabolites of DNA 

binding agents bearing cationic tertiary amine side-chains. Enzymatic reduction of the 

N-oxide trigger unit will generate the active parent amine. This principle has been 

adopted to develop the di-N-oxide 8 (AQ4N), a prodrug of the metabolite 1,4-bis[{2- 

(dimethylaminoethyl}-amino]5,8-dihydroxyanthracene-9,10-dione 9 (AQ4). AQ4 is a 

potent DNA intercalator / topoisomerase poison and is at least 100-fold more cytotoxic 

than S.66 AQ4N is selectively metabolised under hypoxic conditions by the CYP3A 

isozyme of NAD(P)H:cytochrome C (P450) reductase (Scheme B).69 This selectivity is

RB90740
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not due to back oxidation of the initial metabolite but rather by direct competition 

between oxygen and the drug at the enzyme active site. In AQ4N the N-oxide 

functionality masks the cationic charge of the anti-tumour intercalators and prevents 

DNA binding. Removal of the N-oxide gives a cationic amine, which can form crucial 
electrostatic interactions with phosphates of the DNA backbone.68 AQ4 can bind very 

tightly to DNA and is very cytotoxic because of its interference with the action of the 

topoisomerase II enzyme.70
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Scheme 6. Mechanism of activation of AQ4N.3

Combination studies of AQ4N and ionising radiation in a series of murine solid tumours 

in vivo showed that the prodrug potentiated the effects of radiation in a dose-dependent 

manner.71 Further evidence of the bioreductive nature of AQ4N was shown using the 

murine tumour in v/'vo; the anti-tumour effect was enhanced with AQ4N when 

administered in combination with cyclophosphamide. AQ4N is currently undergoing 

Phase I clinical trials.72

N-Oxide derivatives of other cationic DNA-intercalating agents have also been 

investigated. Wilson et a lP  reported a novel nitracrine-N-oxide as a bioreductively- 
activated prodrug. Nitracrine 10, is a potent DNA intercaiator that is activated to form a 

cytotoxic agent by reduction of the nitro group. However, nitracrine does not show 

significant activity against hypoxic cells in solid tumours, probably because of its limited 

extravascular diffusion into hypoxic zones.73 The N-oxide derivative was developed to 

provide a prodrug with a lower DNA binding affinity and improved extravascular 
properties. Nitracrine N-oxide, 11 can be considered as being a ‘bis-bioreductive’ 

compound, with reduction of both nitro and N-oxide moieties needed for full activation 

under hypoxia. The requirement of two reduction steps for full activation provides 

exceptional (ca. 1300-fold) selectivity toward AA8 cells in culture. However, compound 

11 shows activity against hypoxic cells in KHT tumours only above the' maximum
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tolerated dose. Studies with multicellular spheroids also suggest the extravascular 
diffusion of 11 is still restricted, possibly because of high rates of drug metabolism.74 

Modifications to stabilise either or both of the nitroaromatic and N-oxide redox centres 

against cellular metabolism were studied, but neither approach resulted in significant 
improvements of activity in vivo.74,75

Even more recently, Yin et al.76 reported a novel series of tertiary amine N-oxides of 

naphthalimides as potential anti-cancer agents against hypoxic solid tumours. The N- 
oxides showed hypoxic selectivity in A375 cell cultures.

1.3.5 Quinones

Certain quinones are able to act as bioreductively-activated prodrugs. The 

representative compound is the natural product mitomycin C 12, which cross-links DNA 

following enzymatic reduction of the quinone moiety and spontaneous elimination of 
the tertiary methoxy and C-10  carbamate groups.77 Mitomycin C is then able to bind to 

the N-2 of guanine in DNA via the C-1 site or via both the C-1 and C-10 reactive sites.78 

However, mitomycin C only shows marginal hypoxic selectivity. The analogue 

porfiromycin 13 shows higher preferential cytotoxicity to hypoxic cells than mitomycin 

C. Clinical trials have shown a benefit with concurrent use of porfiromycin and radiation 

therapy in the management of head and neck cancers.79

The general mechanism for the activation of quinone-based bioreductively-activated 

prodrugs is shown in Scheme 7. Quinone analogues can undergo a one-electron 

reduction by cytochrome C P-450 reductase to the semiquinone radical anion and / or 
a two-electron reduction to give the hydroquinone species. The latter occurs following 

reduction with DT-diaphorase, where the hydroquinone is formed via hydride transfer.80 

The semiquinone can be back-oxidised by molecular oxygen to the parent compound, 

suppressing activation in well perfused cells.
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Scheme 7. Reductive activation of a quinone bioreductive system.54

Similar bioreductive activating processes are involved in the activation of simple benzo- 
and naphthoquinones whereby the release of the therapeutic drug is attained via a 

methide intermediate. These compounds show selective toxicity towards hypoxic cells 

in vitro8'

The indolequinone E09 14, represents a related class of quinone-based hypoxia- 

activated prodrugs. Under aerobic conditions, E09 is primarily activated by DT- 
diaphorase to form the hydroquinone. However, it is suggested that the hypoxic 

selectivity of the prodrug is due to activation by cytochrome P450 reductase. In order 
for the indolequinones to undergo fragmentation selectively in hypoxic environments a 

balance needs to be established between the reactivities of both the semiquinone and 

hydroquinone and their redox-properties. Everett et al.82 reported that it was possible to 

control the rate of reductive fragmentation through 3-carbinyl substitution and ideal 
fragmentation rates were achieved with compounds such as 5-methoxy-1,2-dimethyl-3- 
[1-(4-nitrophenoxy)-1-(2-thienyl)-methyl]indole-4,7-dione and 5-methoxy-1,2-dimethyl-
3-[1-(4-nitrophenoxy)ethyl]indole-4,7-dione. The indolequinone E09 possesses 

selective toxicity towards hypoxic cells in vitro, and activity in vivo against syngeneic 

mouse neoplasm and human xenografts.83 However, E09 did not show clinical activity 

as a single agent in Phase II clinical trials.84
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1.4 Poly(ADP-ribose) polymerase

Poly(ADP-ribose) polymerase-1 (PARP-1), also known as poly(ADP-ribose) synthetase 

(PARS), is a multifunctional enzyme present in eukaryotic cells and is the major 
isoform of an expanding family of poly(ADP-ribose) polymerases (PARPs).85 PARP-1 is 

present in great abundance in organisms ranging from plants to mammals but is absent 
in yeast.86 The enzyme is predominantly found in the nucleus, where it is tightly bound 

to the chromatin. PARP-1 is involved in locating and repairing single and double DNA 

strand breaks. Activated PARP-1 catalyses the transfer of ADP-ribose units from its 

substrate nicotinamide adenine dinucleotide (NAD+) to nuclear acceptor proteins such 

as histones, topoisomerases, DNA polymerases, DNA ligases and PARP-1 itself. 

Current research has implicated PARP-1 activity in areas such as DNA replication, 
differentiation, sister chromatid exchange, cellular proliferation and cell death. In 

addition, studies in vivo have demonstrated the therapeutic benefits of pharmacological 

inhibition of PARP-1, against numerous pathophysiological diseases.

PARP-1 is a 116 KDa multifunctional protein that consists of three functional domains 

(Figure 5). These are the 46 KDa N-terminal fragment, the central 22 KDa fragment 
and the 54 KDa C-terminal fragment.

The N-terminal DNA-binding domain (DBD) contains two zinc finger motifs FI and FI I, 
the first interacting with double strand DNA breaks and the second with nicks 87 Zinc 

fingers are regions in the protein where zinc coordinates cysteine and histidine 

residues to form a loop in the polypeptide chain.88 They are responsible for DNA- 
binding and protein-protein interactions. Gradwohl et al “  demonstrated that damage of 

the first zinc finger resulted in complete loss of enzymatic activity whatever the type of 
DNA break, whereas destruction of the second zinc finger resulted in avoidance of 
PARP-1 activation in response to single strand breaks. The DBD also contains a 

nuclear location signal (NLS), which is responsible for the transportation of PARP-1 

into the nucleus.

The central region of the PARP-1 enzyme contains the automodification domain, which 

includes fifteen highly conserved glutamate residues that are thought to be involved in 

PARP-1 automodification.89 This domain contains regions for dimerisation, which may 

modulate the interaction of PARP-1 to DNA through its zinc fingers and the association 

with PARP-1 to proteins. Miwa and co-workers90 have identified a leucine zipper motif 
in the automodification domain of Drosophila PARP and proposed that this motif could
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be responsible for the homo- and hetero-dimerisation of PARP-1. This domain also 

contains the terminus motif of the breast cancer susceptibility protein C (BRCT). This 

domain is common in many DNA and cell cycle proteins. PARP-1 forms several 

protein-protein interactions through the BRCT motif.91

The catalytic domain of PARP-1 is located in the C-terminal region of the enzyme and 

contains the active site. The active site also known as “the PARP signature” is formed 

by a sequence of 50 amino-acids that is highly conserved in eukaryotes. The C- 

terminal region can be cut down to a 40 KDa C-terminal polypeptide (PARP-CF) 

without losing the basal activity.92 This region is responsible for the catalytic activities 

such as NAD+ hydrolysis, initiation, elongation and branching involved in the synthesis 

of poly(ADP-ribose).

DNA binding Automodification Catalytic
domain domain domain

FI Fll NLS BRCT Active site

HoN COOH

Figure 5. Schematic view of the three functional domains of PARP-1.89

1.4.1 PARP-1 activation and catabolism

PARP-1 is activated by strand breaks in DNA, caused by ionising radiation, alkylating 

agents as well as processes such as DNA repair, replication and recombination. Upon 

activation PARP-1 binds rapidly and specifically through the second zinc finger to 

single strand breaks (SSB) in DNA and the enzyme covers seven nucleotides 

symmetrically on each side of the break.93 This interaction stimulates the catalytic 

activity of PARP-1. The activation of PARP-1 induced by double strand breaks (DSB) is 

significant but less important than activation due to SSB.89 It has been shown by kinetic 

studies of the automodification reaction of PARP that the catalytically-active species of 

the enzyme is a homodimer.94 Therefore, two PARP-1 molecules concurrently interact 

with the site of DNA damage and simultaneously catalyse the synthesis of poly(ADP- 

ribose). The process of poly(ADP-ribosyl)ation consists of three stages: initiation, 

elongation and branching. Initially, the substrate NAD+ associates with the NAD+-

21



binding domain on the enzyme.95 It is thought that the carbonyl and amino moieties of 
the nicotinamide carboxamide group make important hydrogen-bond interactions with 

acceptor and donor residues in the enzyme active site. PARP-1 catalyses the cleavage 

of the N-glycosidic bond in NAD+, this is probably facilitated by the adjacent oxygen 

lone pair and leads to the formation of an intermediate oxocarbenium ion (Scheme 8 ). 

Nicotinamide is released in this process and the resulting ADP-ribose moiety forms an 

ester bond with a nucleophilic site (invariably a glutamate residue). This may be PARP- 

1 itself (automodification) or nuclear proteins involved in DNA repair 
(hetercmodification), such as histones, topoisomerases, DNA polymerases and 

ligases.89

Scheme 8 . Schematic representation of poly(ADP-ribosyl)ation.95

In the elongation stage, the anomeric carbon of an ADP-ribosyl moiety forms a a-(T'-2') 
glycosidic bond between the 2-OH group of a growing ADP-ribosyl residue bound to 

an acceptor protein (Figure 6 ). Eventually, a branched structure is formed through (1,H- 
2") glycosidic bonds between ribose residues. The ADP-ribose polymerisation reaction 

can catalyse linear polymers with up to 200  residues and with five to seven branching 

reactions.

0

ADPO-

Nuc = Glutamate residue (initiation) or 
ribose in ADP-ribosyl moiety (polymerisation)
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Figure 6 . ADP-ribosylation of a protein acceptor. The ADP-ribose moiety conjugated to 

the protein can act as an acceptor for the addition of another ADP-ribose by PARP.89

DNA damage is the most important element in the regulation of poly(ADP-ribosyl)ation 

reactions. During PARP automodification, the enzyme progressively becomes more 

negatively charged, resulting in electrostatic repulsion between DNA and the ADP- 

ribose polymers linked to the enzyme. This leads to the release of the automodified 

PARP from the DNA strand break and subsequent inactivation of the enzyme. This 

exposes the damaged site of DNA to repair processes. When DNA is moderately 

damaged, PARP-1 participates in DNA repair processes and the cell survives. 

However, in the case of extensive DNA damage PARP-1 overactivation occurs. This 

leads to a rapid depletion of NAD+ and ATP levels. The cell then attempts to 

resynthesise NAD+ that results in energy crisis and ultimately, cell death by necrosis.89

PARP-1 activation eventually results in autoinhibition through poly(ADP-ribosyl)ation. 

Removal of inhibitory poly(ADP-ribose) units from the automodification domain of 

PARP-1 is needed in order to reactivate the enzyme and allow for continuous NAD+ 

turnover. Poly(ADP-ribose) glycohydrolase (PARG) is the most important enzyme for 

the catabolism of poly(ADP-ribose) polymers. PARG cleaves bonds between ADP- 

ribose units of linear and branched poly(ADP-ribose). The Km value of PARG is much 

lower for larger (ADP-ribose) polymer units than smaller ones. Therefore, the enzyme 

probably removes bigger polymer units first by endoglycosidic cleavage and then 

switches to exoglycosidic cleavage to remove ADP-ribose units one by one. The 

proximal ADP-ribose monomer portion of poly(ADP-ribose) is removed from acceptor 

proteins by ADP-ribosyl protein lyase.96
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1.5 The PARP superfamily

Since the discovery of PARP in 1963 by Chambon et a/.97, it was generally accepted 

that there was only one type of PARP in each species. Shieh et al.98, in 1998 

discovered that PARP-1 deficient cells were able to synthesise ADP-ribose polymers in 

response to DNA damage caused by /V-methyl-A/-nitro-A/-nitroguanidine (MNNG). 

These findings indicated that PARP-1 is not the only enzyme capable of synthesising 

ADP-ribose polymers. In the last few years, an exhaustive research of the non- 
redundant protein database from the National Centre for Biotechnology identified 

eighteen members of the PARP superfamily." Currently, very little information is 

available on the structure and function of the non-classical PARPs. However, the 

biochemical and enzymatic properties of seven isoforms have been investigated: 

PARP-1, PARP-2, PARP-3, PARP-4 (also known as vault PARP (vPARP)), tankyrases 

I and II, and PARP-7 (Figure 7). PARP-1, the founding family member, has been the 

most extensively studied and this isoform is responsible for the synthesis of 90% of 

poly(ADP-ribose) in cells.86

1.5.1 PARP-2

PARP-2 bears the strongest resemblance to PARP-1 and is the only other isoform 

known to be activated by DNA-strand interruptions.100 PARP-2 was discovered as a 

result of the presence of residual DNA-dependent PARP activity in embryonic PARP-1 

knockout mouse fibroblasts. The PARP-2 is a 62 KDa protein and is localised on 

chromosome 14q11.2, which contains a number of genes involved in apoptosis, 
chromosome end maintenance and the immune system.101

The central automodification domain is absent from PARP-2. The DBD of PARP-2 is 

distinct from that of PARP-1 and could indicate different substrate specificities for 
PARP-2. Interestingly, despite the lack of zinc-finger motifs, PARP-2 is capable of 
binding to DNA that has been treated with DNAse I and catalyses the formation of 

poly(ADP-ribose) polymers.102 The basic amino-acid residues present within the N- 
terminal of PARP-2 may facilitate DNA binding properties and / or nuclear targetting of 
the protein. PARP-2 can poly(ADP-ribosyl)ate itself (automodification) or histones 

(heteromodification). PARP-2 preferentially modifies histone H2B, whereas PARP-1 

uses histone H1 as its main subtrate."
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Figure 7. Comparison of the domain structures of seven PARP isoforms 85

1.5.2 PARP-3

Human PARP-3 is a 540 amino-acid protein that comprises of a 54 amino-acid N- 

terminal domain and a catalytic domain of 489 amino-acids that has 39% identity (61% 

similarity) with the human catalytic domain of PARP-1. PARP-3 can catalyse the 

synthesis of poly(ADP-ribose) in vitro and in purified centrosome preparations.103 The 

N-terminal of PARP-3 is unique and contains a targetting motif that is able to localise 

the enzyme to the centrosome. The centrosome is a vital organelle in animal cells as it 

directs the nucleation and organisation of microtubules.104 Many human tumour cells, 

including those lacking the tumour suppressor p53, have an abnormally high number of 

centrosomes. Augustin et a/.105 reported that overexpression of PARP-3 or its N- 

terminal domain in HeLa cells interfered with the G^S cycle transition, but had no effect 

on centrosomal duplication or amplification. Therefore, PARP-3 might function in the 

maturation of the daughter centriole until the Gi/S restriction point. Kanai et a/.,103 in 

2003, demonstrated localisation of human PARP-1 to the centrosome. It has been
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suggested that PARP-1 and PARP-3 monitor the eventual presence of broken DNA 

that originate from tension forces between two daughter cells experiencing unbalanced 

chromosome segregation through a detection signalling pathway.

1.5.3 Vault PARP

Vault PARP, also known as PARP-4, is a 193 KDa protein and was identified as a 

component of the vault complex, a cytoplasmic ribonucleoprotein (RNP). Mammalian 

vaults have a unique barrel-shaped structure and consist of the 100 KDa major vault 

protein (MVP), the 240 KDa telomerase-associated protein (TEP1), and 193 KDa of 

untranslated vault RNA (vRNA). At present the biological role of the vault particle is 

unknown. Kickhoefer et al.,™6 in 1996, proposed that vaults play a role in cellular 

transport. Vaults have also been implicated in multi-drug resistance and as prognostic 

markers for cancer chemotherapy failure. Overexpression of MVP has been shown in 

many non-P-glycoprotein tumour cells lines, such as lung cancer and breast cancer cell 
lines.107 Scheffer et al.™6 showed that overexpression of MVP, is not sufficient alone to 

confer a drug-resistant phenotype, implying that there is a requirement of additional 
mechanisms for vault-mediated drug resistance.

The N-terminal domain of vault PARP contains a BRCT motif similar to the central 
automodification domain of PARP-1. The catalytic domain of vault PARP is a region of 
350 amino-acids that shares 29% identity with the catalytic subunit of PARP-1, and is 

capable of catalysing the poly(ADP-ribosyl)ation of MVP and to a lesser extent itself.

1.5.4 Tankyrases

Tankyrase-1 was first identified through its interaction with the telomeric repeat binding 

factor 1 (TF1), a negative regulator of telomere length. Telomeres, which are located at 

the end of chromosomes and contain simple repeat DNA sequences, are essential for 
chromosome maintenance and stability. They are maintained by telomerase, a 

specialised reverse transcriptase. The gene coding for tankyrase-1 is found on 

chromosome 8 and the protein consists of 1327 amino-acids and a molecular weight of 

142 KDa. The N-terminal of tankyrase-1 contains the HPS domain, which contains runs 

of histidine, proline and serine residues, and, so far, no work has been done to 

establish how important this domain is. The central domain contains 24 ankyrin (ANK) 
repeats, a 33-amino-acid motif that is responsible for interactions with proteins such as 

TF1, nuclear mitotic apparatus (NuMA) and Golgi-associated GLUT4 vesicles.109 These
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tankyrase-binding proteins play an important role in cellular processes, such as 

telomere and spindle organisation, Golgi dynamics and apoptosis. Adjacent to the ANK 

domain is the sterile alpha motif (SAM). The SAM domain is responsible for protein- 
protein interactions. The SAM domain can self-associate to form multiproteins.110 

Tankyrase function does not depend on DNA processes or the presence of DNA strand 

breaks but seems to be regulated by the phosphorylation state of the protein.111 

Tankyrase activity is best understood at telomeres, where it appears to act as a 

telomere-length regulator.112 TF1 has a binding specificity for TTAGGGTTAG 

sequences in DNA. It binds to the telomere and inhibits the function of telomerase, 

therefore contributing to the shortening of telomeres during replication. It is suggested 

that tankyrase-1 releases TF1 from telomeres by adding negatively charged ADP- 

ribose polymers, allowing access to telomerase. Overexpression of TF1 in a telomere- 

expressing cell line caused telomeres to shorten gradually and partial inhibition 

resulted in lengthening of the telomere.

Recently, the 127 KDa protein tankyrase-2 encoded by chromosome 10, has been 

discovered. The sequence of this protein exhibits 85% identity to the ankyrin repeats, 
SAM, and PARP catalytic domain of tankyrase-1 but lacks the HPS domain. 
Tankyrases 1 and 2 show remarkable functional overlap. They both exhibit PARP 

activity and bind to the same proteins. However, overexpression of tankyrases-2, but 
not tankyrases-1 , caused cell death by necrosis, demonstrating that the two proteins 

differ in regulation of activity and substrate specificity.113

1.5.5 PARP-7

Tetrachlorodibenzodioxin (TCDD) is a prototype for a class of dioxins and causes many 

adverse effects in mammalian species.114 A TCDD-inducible member of the PARP 

family (PARP-7) was recently identified. The human PARP-7 gene, consisting of six 

exons, is located on chromosome 3q25.31. The PARP-7 protein consists of a CCCH- 

zinc finger (a putative RNA binding module), a WWE domain (protein-protein 

interaction motif) and a PARP catalytic domain. The exact function of PARP-7 remains 

unclear. It appears to be involved in T-cell function and its induction by TCDD 

contributes to tumour promotion.114 The in vitro transcribed / translated protein exhibits 

PARP activity towards histones.
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1.6 PARP-1 inhibitors as chemosensitising and radiosensitising agents in cancer 
therapy

Current therapeutic strategies for the treatment of cancer exploit the hypothesis that 

sufficient amounts of DNA damage will result in the killing of cancer cells. Most 

chemotherapeutic agents and radiotherapy lack selectivity, meaning that many rapidly 

dividing normal cells, such as bone marrow and gastrointestinal epithelial cells, are 

damaged along with the cancer cells. A general feature of many successful cancer 

treatments is their ability to damage DNA directly. It is, therefore, not surprising that 

there has been considerable focus on the pathways of DNA repair as potential targets 

for improving cancer therapy. Due to the involvement of PARP-1 in base-excision 

repair of DNA, PARP-1 inhibitors have been investigated as radio- and 

chemosensitisers for cancer treatment. In regard to the involvement of PARP-1 in DNA 

repair, most studies have looked at monofunctional alkylating agents or ionising 

radiation, as these are the most potent activators of PARP-1.

The development of 3-substituted benzamides as inhibitors of PARP-1 in the 1980’s 

has enabled the investigation of the effects of DNA damaging agents in PARP-1- 
inhibited cells. The PARP-1 inhibitor 3-aminobenzamide (3-AB) has been shown to 

enhance the anti-tumour activity of bleomycin,115 cisplatin,116 chloroambucil,117 and 

cyclophosphamide118 against a variety of tumour cell lines in vivo. However, the 

benzamides lack specificity and potency and have been shown to modulate the 

cytotoxicity of some anti-cancer agents by PARP-independent mechanisms. The doses 

of 3-AB used to achieve chemopotentiation in vivo are ~500 mg kg'1. The use of such 

large doses of 3-AB significantly complicates interpretation of the data, because of the 

potential hypothermic effects of such doses.119 A chemosensitising effect is also 

observed when PARP-1 is absent from PARP (-/-) cells. However, it is still not clear 
what effects other PARP homologues have in decreasing cell susceptibility to DNA 

damaging agents.

A potential combination currently under evaluation is the application of PARP-1 

inhibitors to enhance the cytotoxicity of DNA topoisomerase I poisons, such as 

irinotecan (CPT-11) and topotecan. In pre-clinical studies, the potent PARP inhibitor 

CEP-6800, potentiated the cytotoxicity of CPT-11 in HT-29 colon carcinomoma.120 In 

addition, in vivo efficacy of PARP inhibition to potentiate CPT-1 1 against colon cancer 

was confirmed by another study using AG14361,121
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Researchers at the University of Newcastle identified quinazolin-4-[3H]ones (e.g. 
NU1025) and benzimidazole-4-carboxamides (e.g. NU1085) derivatives as two new 

classes of PARP inhibitors.122 NU1025 and NU1085 have been shown to potentiate the 

cytotoxicity of camptothecan (a topoisomerase I poison) but not etoposide (a 

topoisomerase II poison) in L1210 cells.123 In addition, NU1025 and NU1085 have been 

reported to potentiate the cytotoxicity of topotecan, a topoisomerase I inhibitor, in a 

panel of twelve human tumour cell lines.124
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Numerous studies in vivo have evaluated the potential role of PARP-1 inhibitors when 

used in combination with the monofunctional DNA-alkylating agent temozolomide 

(TMZ). TMZ is an agent of clinical interest with promising anti-tumour activity against 
brain primary tumours and metastases.125 In the first in vivo pre-clinical study, Tentori 

et al.125 demonstrated that the anti-tumour activity of TMZ against brain lymphoma is 

enhanced by the use of intracerebral injection of the PARP-1 inhibitor NU1025. The 

drug combination enhanced the survival of lymphoma-bearing mice with respect to the 

treatment with TMZ only. However, when delivered systemically, NU1025 does not 
improve the efficacy of TMZ, owing to its limited CNS penetration. Therefore, in order 
for a PARP inhibitor to increase TMZ efficacy, it needs to be able to be able to cross 

the blood-brain barrier. It was found that intravenous administration of GPI 15427, a 

novel PARP-1 inhibitor (Guilford Pharmaceuticals), enhances the efficacy of TMZ 

against glioblastoma multiforme, brain lymphoma and intracranial malignant 

melanoma.126 Curtin and colleagues121 developed the PARP-1 inhibitor AG14361 

(Pfizer/Agouron Pharmaceuticals) and showed that intraperitoneal administration of the 

inhibitor enhances the effects of TMZ, and radiation therapy in LoVo colorectal cancer 

cells.

Cancer cells have also shown increased sensitivity to radiation therapy in the presence 

of PARP inhibitors. Benzamides have been shown to sensitise tumour cells in vivo to 

both single and fractionated doses of radiation.127 Clinical studies of nicotinamide with 

carbogen breathing in combination with radiotherapy have been conducted for the 

treatment of malignant gliomas.128 However, the effectiveness of this treatment 
modality is limited due to the occurrence of toxic side effects.

A series of potent dihydroisoquinolinone PARP inhibitors, developed by Suto and co­
workers129 increased the radiation sensitivity of mammalian cells, by affecting both the 

shoulder and slope of the survival curve.

Recently, radiopotentiation by INO-1001, a potent PARP inhibitor, has been 

investigated in rodent and human cell lines. Combination treatment of INO-1001 and a 

single dose of radiation resulted in significant radiosensitisation of human fibroblasts, 

murine sarcoma line (SaNH), and Chinese hamster ovary AA8 cells (CHO). 

Enhancement ratios of 1.4 to 1.6 were obtained at 10 pM concentration of INO-1001. In 

addition, it was reported that CHO cells treated with fractionated doses of 4.0 Gy 

irradiation allowed sublethal radiation damage to be repaired by a factor of 5.3. In
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comparison, the treatment of CHO cells with fractionated doses of 4.0 Gy irradiation 

and 10 pM concentration of IN-1001, reduced the recovery ratio to 2.2.130

Current research has indicated that PARP inhibitors might be beneficial in cancer 

treatment as a single agent. BRCA-1 and BRCA-2 are important for DNA double strand 

break repair by homologous recombination. Farmer et a/.131 demonstrated that BRCA-1 

or BRCA-2 dysfunction sensitises cells to the inhibition of PARP activity, resulting in 

cell cycle arrest and apoptosis. The PARP inhibitors KU0058684 and KU0058948 

(KuDOS Pharmaceuticals) were used to treat BRCA-2 deficient cells and wild type 

cells. BRCA-2 deficient cells were extremely sensitive to KU0058684 and KU0058948 

compared with heterozygous or wild type cells. Therefore, suggesting that PARP 

inhibitors may play a role in the treatment of ovarian, breast and other malignancies 

that exhibit BRCA-1 and BRCA-2 mutations.131

1.6.1 Future clinical implications of the inhibition of PARPs in cancer therapy

As described previously, increased levels of MVP expression, vault-associated vRNA, 

and vaults have been linked directly to multi-drug resistance. The multi-drug resistant 
protein LRP is a major vault protein and is overexpressed in tumour cell lines that are 

resistant to chemotherapeutic agents such as doxorubicin, vincristine, and taxol.132 It 
has been suggested that LRP may be responsible for sequestration and subsequent 
exocytosis of drugs from the cell.108 Tentori et a/.,125 in 2002, indicated that inhibition of 
vault PARP might be a possible strategy to counteract multi-drug resistance due to up- 
regulation of vault proteins (Figure 8).

Inhibition of telomerase has also been proposed as a strategy for cancer treatment. 
Most cancer cells exhibit increased telomerase activity that is normally inactive in most 
somatic cells. This is a very attractive target for cancer treatment, as inhibition would 

lead to shortening of telomeres and eventual replicative senescence of cells. However, 
the time and number of cell divisions required to inhibit cell growth make it unlikely that 

telomerase inhibition will be effectively used as a single agent in cancer treatment. 
Therefore, it is more likely, that repression of telomerase would represent a novel 

strategy of cancer therapy following conventional treatment with surgery, chemo­
therapy or radiotherapy.133 Tankyrase-1 plays a major role in regulating telomere 

length, its inhibition would greatly impair poly(ADP-ribosyl)ation of TF1. TF1 is the 

tankyrase binding partner at telomeres and is involved in the negative feedback 

mechanism that stabilises telomere length.134 Inhibition of poly(ADP-ribosyl)ation of
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TF1 prevents the binding of telomerase to telomeres and the consequent telomere 

elongation (Figure 8).
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Figure 8. Potential clinical implications of vPARP and TANK-1 inhibitors.125
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1.7 The role of PARP-1 inhibitors in other pathophysiological conditions

1.7.1 Regulation of cell survival and death by PARP

PARP-1 is involved in two main mechanisms of cell death: apoptosis and necrosis, the 

mode of cell death being determined by the level of NAD+ and ATP. Cells that are 

exposed to DNA-damaging agents can enter three routes, based on the severity of 
DNA damage (Figure 9). In the first route, PARP-1, activated by mild genotoxic stimuli, 
facilitates DNA repair by interacting with DNA repair enzymes and DNA-dependent 

protein kinase. As a consequence, DNA damage is repaired and cells survive without 

the risk of passing on mutated genes. In the second route, more severe DNA damage 

induces apoptotic cell death, during which caspases inactivate PARP-1 by cleaving it 

into two fragments (p89 and p24). This pathway allows cells with severe DNA damage 

to be eliminated in a safe and efficient manner. The third route is induced by extensive 

DNA breakage that is usually caused by oxidative or nitrosative stress. The 

overactivation of PARP-1 leads to the rapid depletion of the substrate NAD+. As a 

result, the rates of glycolysis and mitochondrial respiration slow down, leading to an 

energy crisis. The severely compromised cellular energetic state prevents cell death 

via the apoptotic pathway and, ultimately, cell death occurs by necrosis. This final route 

also known as the “PARP suicide hypothesis” has been proposed to occur in a wide 

range of pathophysiological conditions. In conclusion, it appears that PARP can 

function as a switch between life and death by controlling energy metabolism of the cell 
in response to DNA damage. The suicide response acts as a safety mechanism, which 

prevents cells with severe DNA damage from attempting to repair themselves and 

consequently surviving with malignant transformations.
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Figure 9. Intensity of DNA-damaging stimuli determines the fate of cells: survival, 

apoptosis or necrosis.135

1.7.2 Role of PARP in ischaemia-reperfusion injury

Ischaemia is the condition suffered by tissues and organs when deprived of blood flow. 
Reperfusion injury refers to the tissue damage caused when blood flow is restored after 
an ischaemic period of more than about ten minutes. Ischaemia-reperfusion injury is a 

complex phenomenon that often occurs during surgery.

Reperfusion triggers the generation of multiple oxidants and free radicals, which 

include nitric oxide, hydroxyl radical and superoxide. These reactive species, in turn, 
lead to the generation of peroxynitrite (a highly reactive oxidant produced from the 

reaction between nitric oxide and superoxide). Peroxynitrite cytotoxicity occurs via 

multiple pathways involving the oxidative modification and inactivation of proteins and 

the generation of DNA single strand damage, with consequent activation of PARP-1. 
PARP-1 overactivation appears to be crucial in ensuing cell death. Ischaemic- 
reperfusion diseases where PARP-1 activation plays a pathogenic role include 

haemorrhagic shock, myocardial infarction, stroke and acute renal failure. The
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mechanism proposed for the protective action of PARP inhibition in ischaemia- 
reperfusion injury is the preservation of intracellular NAD+ and ATP levels through the 

interruption of the energy-consuming cycle of DNA damage / PARP overactivation. 

PARP-mediated reperfusion injury has been extensively studied in the heart and brain. 
Thiemermann et a/.136 demonstrated that the PARP inhibitor 3-AB reduced the infarct 

size caused by ischaemia-reperfusion of the heart and skeletal muscle in rabbit 

models. These results highlight the potential of PARP-1 inhibitors as cardioprotective 

agents. The inhibition of PARP-1 or PARP-1 genetic inactivation reduces myocardial 
necrosis in the acute and delayed stages of myocardial infarction.137,138 Zingarelli et 

a/.139 have indicated that PARP-1 inactivation resulted in suppression of neutrophil 

infiltration and a decrease in inflammatory cytokines. The application of the novel 
PARP inhibitor PJ34 was assessed after reversible hypothermic ischaemia in a 

heterotopic rat heart transplantation model. It was demonstrated that inhibiting PARP 

activity significantly reduced the size of myocardial infarcts.140

Eliasson et a/.141, discovered in 1997 that PARP-1 -/- mice were resistant to brain 

ischaemia. The PARP -/- mice showed reduced histopathological injury and improved 

functional outcome, as compared to the PARP +/+ counterparts. Cosi et al.U2 showed 

that PARP is activated in glutamate-induced death of cerebellar granule neurons in 

culture. In this study, the PARP inhibitors 3-AB and 3-aminophthalhydrazide were 

shown to possess neuroprotective potential in vivo. Cosi et a/.143 also demonstrated 

that PARP inhibitors (benzamide and 3-AB) were neuroprotective in vivo against 1- 

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in C57BL/6N 

mice. MPTP is a neurotoxin that replicates the motor signs observed in Parkinson 

patients and produces loss of dopaminergic neurons. Mandir et al.144 showed that mice 

lacking the PARP-1 gene were resistant to MPTP-induced dopamine neurotoxicity, 

suggesting novel strategies for the treatment of Parkinson’s disease.

More recently, Genovese et a/.145 investigated the role of PARP in the tissue injury 

associated with stroke and neurotrauma. It was demonstrated that the treatment of 

mice with the PARP inhibitors 3-AB and 5-aminoisoquinolinone (5-AIQ) significantly 

reduced the degree of spinal cord inflammation, tissue injury, neutrophil infiltration, and 

apoptosis. These protective effects are associated with the activation of the nuclear 

factor NF-kB in the inflamed spinal cord.
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The role of PARP-1 in ischaemia-reperfusion is not just confined to the heart and brain. 

Activation of PARP-1 has also been reported for the reperfused kidney, liver, gut, and 

eye. Selected ischaemia-reperfusion models are outlined in Table 1.

Table 1. PARP inhibition in animal models of ischaemia-reperfusion injury.

Organ Disease model PARP
inhibitors

Main result

Gastrointestinal
tract

Mesenteric l/R injury 3-AB146
NA,146
GPI-6150147
5-AIQ148

Protection against 
histological infiltration 
and mucosal barrier 
failure.

Kidney Reperfusion injury 3-AB136
5-AIQ149

Accelerated recovery 
of normal renal 
function.

Liver l/R PJ-34150
5-AIQ151

Reduction in hepatic 
necrosis and 
protection against 
leukostasis.

Eye Retinal l/R 3-AB152 Reduction in l/R- 
induced injury.

Many organs Haemorrhagic shock 5-AIQ151 Protection against 
haemodynamic 
decompensation and 
elimination of multiple 
organ injury and 
dysfunction.

3-AB, 3-aminobenzamide; NA, nicotinamide; 5-AIQ, 5-aminoisoquinolinone;

PJ-34, A/-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-A/,A/-dimethylacetamide; 

GPI-6150, 1,11b-dihydro-[2H]benzopyrano [4,3,2-c/e]isoquinolin-3-one; 

l/R, ischaemia-reperfusion

1.7.3 Role of PARP-1 in inflammation

PARP-1 overactivation plays a role in various experimental models of inflammation, 

including acute inflammatory diseases such as diabetes and septic shock, as well as 

chronic inflammation of the gut, joints, and various other organs.

Septic shock is a pathology related to inflammation. Gram-negative bacteria that form 

endotoxins cause septic shock. Endotoxins are associated with lipopolysaccharides 

(LPS) that activate NF-KB/Rel transcription factors, including a number of genes
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involved in endotoxic shock.153 Endotoxins and the free radicals produced during the 

inflammation process elicit DNA damage and cause PARP-1 overactivation. Recently, 

de Murcia and co-workers153 demonstrated that PARP-1 deficient mice are resistant to 

LPS-induced endotoxic shock. In the absence of PARP-1, NF-kB transcription is 

impaired and the production of multiple pro-inflammatory mediators is down regulated. 
It has been demonstrated that septic shock can be prevented by the use of 
nicotinamide and 3-AB.154

Type I diabetes of insulin-dependent diabetes mellitus is a chronic disorder resulting in 

destruction of pancreatic (3 cells. Destruction of the (3 cells in diabetes has been 

attributed to the production of NO and various other free radical oxidant species. 
Streptozotocin (STZ) selectively destroys insulin-producing pancreatic (3-cells and 

provides a model for type I diabetes. The PARP-1 inhibitor 3-AB prevented the 

development of diabetes in STZ-mice. Pieper et al.,155 in 1999, illustrated that PARP- 

deficient mice are protected from STZ-induced diabetes; therefore, PARP activation 

may participate in the pathophysiology of type I diabetes. Pharmacological inhibition of 
PARP-1 also suppresses the development of rheumatoid arthritis156 and colitis157 in 

rodent or mice models.
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1.8 Current status of clinical trials on PARP inhibitors

Several PARP inhibitors are currently being evaluated in clinical trials, and their current 

status is summarised in Table 2.

Table 2. PARP inhibitors in clinical trials.158

Company PARP Inhibitor Application Clinical status
Abbot Laboratories ABT-888 Refractory solid 

tumours and 
lymphoid 
malignancies

Phase 0

Pfizer / University of 
Newcastle

AG014699 Metastatic malignant 
melanoma

Phase II

Pfizer / University of 
Newcastle

AG014699 Advanced solid 
tumours

Phase I

BiPar BSI-201 Advanced solid 
tumours

Phase I

AstraZeneca /
k u d o s

KU-0059436 Advanced solid 
tumours

Phase I

Inotek INO-1001 Melanoma,
glioblastoma

Phase I

Inotek INO-1001 Thoracoabdominal 
aortic aneurysm

Phase I

Inotek INO-1001 ST-elevated 
myocardial infarction

Phase I

Inotek INO-1001 Ischaemia and 
reperfusion injury

Phase II

MGI Pharma GPI 21016 Solid tumours Phase I planned
Fujisawa
Pharmaceutical

FR255595 Parkinson disease Phase I

ABT-888 . ABT-888 is the first PARP inhibitor to be studied in a Phase 0 clinical trial. 

Phase 0 trials conducted by the National Cancer Institute under an exploratory 

Investigational New Drug application focus on extensive agent characterisation and 

target assay development in a limited number of patients.159 The aim of the Phase 0 

study is to determine the dose range at which ABT-888 inhibits PARP activity in tumour 

samples and peripheral blood mononuclear cells. The study also aims to assess the 

pharmacokinetics of ABT-888, and the time course of PARP inhibition in peripheral 

blood mononuclear cells. Phase I clinical trials of ABT-888 in patients with refractory 

solid tumours or lymphoid malignancies are due to start in 2007.

AG014699. AG014699, a potent tricyclic indole, was the first PARP inhibitor to be 

evaluated in human cancer clinical trials.160 The Phase I clinical study combined
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AG014699 and TMZ in patients with advanced solid tumours. A PARP inhibitory dose 

(PID) of AG014699 was determined by measuring the PARP activity in peripheral blood 

lymphocytes. Patients were treated with escalating doses of AG014699 in combination 

with TMZ on a five times daily schedule once every four weeks, until the PARP 

inhibitory dose was determined. Minimal toxicity was observed with the combination of 

the PARP inhibitory dose of AG014699 (12 mg m'2 d'1) and doses of TMZ up to the 

registered dose of 200 mg m'2 d'1.160 AG014699 pharmacokinetic studies indicated that 
the mean terminal half-life ranged from 7.4-11.7 h with clearance of 25 L/h. In the 

Phase II study, 40 patients with advanced metastatic melanoma were treated with 12 

mg m‘2 d'1 in combination with escalating doses of TMZ to establish the maximum 

tolerated dose of the combination. There was significant enhancement of TMZ- 

associated myelosuppression and no toxicity specific to the PARP inhibitor was 

observed.161

Currently, a Phase II clinical study of AG014699 as a single agent in metastatic breast 

and ovarian cancer in proven carriers of BRCA-1 and BRCA-2 mutations is in 

development.

BSI-201. The PARP inhibitor BSI-201 is currently being evaluated in a Phase I clinical 
trial in patients with solid tumours. There are no published data so far from the ongoing 

monotherapy trials. BiPAR Sciences announced in a press release (January, 2007) 
that it is due to begin a Phase lb study of BSI-201 in combination with four different 
cytotoxic regimens.

KU-0059436. The KuDOS PARP inhibitor KU-0059436 has a mean IC50 of 2 nM 

against PARP-1 and is currently being evaluated as a single anti-cancer agent.162 KU- 

0059436 is targetted at inherited breast and ovarian cancer (BRCA 1 and 2 mutations). 
The Phase I study initially began with daily dosing of KU-0059436 for 14 days of a 21- 

day cycle and is now evaluating twice-a-day dosing in patients with advanced solid 

tumours.162 Pharmacodynamic studies showed inhibition of PARP functional activity in 

peripheral blood mononuclear cells.

INO-1001. INO-1001, an indenoisoquinolinone-based PARP inhibitor, is currently being 

evaluated in a Phase I trial in patients with metastatic melanoma and glioma. A 

preliminary analysis of the pharmacokinetic data of INO-1001 in combination with TMZ 

found that the treatment was fairly well tolerated in patients with unresectable stage 

lll/IV melanoma.163 INO-1001 is also in clinical trials for the treatment of reperfusion
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injury induced by myocardial infarction, cardiopulmonary bypass and thoraco­
abdominal aortic aneurysm surgery.

GPI-21016. In pre-clinical studies the PARP inhibitor GPI-21016 was shown to 

enhance the anti-tumour efficacy of cisplatin in a murine leukaemia model.126 The 

PARP inhibitor was also shown to limit cisplatin-induced neuropathy.164 A Phase I study 

is planned to start in 2007.

FR255595. Fujisawa Pharmaceuticals have patented a series of quinazolin-4(3H)-one 

derivatives as PARP inhibitors. The most potent compound 2-{3-[4-(4-chlorophenyl)-1- 
piperazinyl]propy!}-4(3H)-quinazolinone (FR255595) was found to have an ICso of 10 

nM and to be 30 fold more selective to PARP-1 than PARP-2. FR255595 protected 

against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal 
dopa-minergic damage in an in vivo Parkinson’s disease model. FR255595 is currently 

in Phase I clinical trials for the treatment of Parkinson disease.165

1.9 PARP inhibitors

Most of the PARP inhibitors developed to date are competitive reversible inhibitors that 
bind to the NAD+ binding site of the enzyme. Selectivity for the individual PARP 

isoforms has not been studied in great detail; however, it is probable that potent PARP 

inhibitors will inhibit the activity of all the isoforms. Great progress has been made over 
the last few years in the synthesis of potent PARP inhibitors thanks to a better 
knowledge of the structure of PARP and its catalytic active site, which has allowed 

structure-activity relationships to be studied. However, there still remains a need for 
improvement in potency and selectivity of PARP inhibitors.

1.9.1 Nicotinamide and benzamide

Nicotinamide 15 is a natural compound, which is required for NAD+ synthesis and 

serves as a substrate for NAD+ metabolising enzymes. Nicotinamide is a weak PARP 

inhibitor (IC50 = 210 pM) and has poor selectivity. Nicotinamide behaves as a substrate 

for metabolising enzymes such as nicotinamide-N-methyltransferase deaminase and 

phosphoribosyl transferase. Shall et a/.166 first showed that benzamide, a structural 

analogue of nicotinamide, demonstrated inhibition of PARP-1. Purnell and Whish167 
generated a series of benzamides with an electron-donating group at the 3-position. In 

particular, 3-aminobenzamide 16 (IC50 = 22 pM) was more effective than nicotinamide.
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However, the benzamide series have a limited solubility in water as the 1° amide group 

present in these compounds forms hydrogen-bonded dimers in the crystalline solid. In 

the benzamide series, alkylation of the carboxamide or replacement with a carboxylic 

acid group greatly reduced the inhibitory activity. Both nicotinamide and 3- 

aminobenzamide have been widely used to study the physiological functions of PARP 

(Section 1.6 ). These studies have stimulated further research about the specificity of 

benzamide inhibitors.

1.9.2 Dihydroisoquinolinones and isoquinolinones

The encouraging results obtained in PARP-1 inhibition studies with nicotinamide and 

the benzamides and the knowledge of the therapeutic benefits of PARP inhibition led to 

the design of some structurally improved PARP inhibitors.

Ab initio molecular orbital studies carried out by Hong et a/.168 provided important 

information regarding the conformation of the carboxamide group of NAD+ in the 

enzyme active site. The ab initio calculations were based on the principle that the 

carboxamide group of NAD+ adopts one of two orientations relative to the catalytic 

groups within the enzyme’s active site (Figure 10). It was found that the conformation 

of NAD+ that binds to PARP-1 has the carboxamide group in an anti as opposed to a 

syn conformation. Evidence to support these findings was provided by Suto et a/.129, 

who designed conformationally restricted compounds. They synthesised a series of 

rigid benzamides, the 5-substituted dihydroisoquinolinones and isoquinolinones, by 

closing the amide nitrogen upon the benzene ring with an ethane bridge. The parent 
compounds 17 and 20, in which the carboxamide is in the biologically-active anti- 
orientation, were more potent than 3-aminobenzamide with IC50S of 1.5 pM and 6.2 pM 

respectively. Similarly, it was found that 5-hydroxy-3,4-dihydroisoquinolinone (18, I C 5 0  

= 0.10 pM) and 5-hydroxyisoquinolin-1-one (21, I C 5 0  = 0.15 pM) were potent PARP-1 

inhibitors. Studies indicated that, when the substituent in 5-substituted dihydro- 
isoquinolinone was moved to the 6 , 7 or 8 position, biological activity decreased. 

Therefore, Suto and co-workers129 concluded that the positioning of substituents on the 

benzene ring along with the restriction of the carboxamide rotation into the anti­

O O

15
NH2

16
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conformation was critical for potent activity. The most potent inhibitor identified in the 

dihydroisoquinolinone series was 5-methyl-3,4-dihydroisoquinolinone (19, PD128763), 

which was found to be 60-fold more potent than 3-AB against PARP. PD128763 was 

used to elucidate the tridimensional structure of the catalytic fragment (CF) of chicken

Figure 10. Representation of the restriction of the carboxamide group into either the 

anti- or syn- conformation.168

Banasik and co-workers169 at Kyoto University screened a large number of compounds 

and compared their abilities to inhibit PARP. They found that the compounds that had 

the carboxamide group incorporated within a ring system displayed very potent PARP- 
1 inhibitory activity. It was proposed that the controlling factor for inhibitory activity was 

the ability of the oxygen atom of the carboxamide group to donate n-electrons to the 

enzyme active site. In addition, it was found that all highly potent PARP inhibitors were 

polyaromatic heterocycles. These heterocycles included the isoquinolinone-related 

compounds 1 ,8-naphthalimide 22 and phenanthridinone 23. The IC50 values for the 

polyaromatic heterocycles varied between 0.18 pM and 0.39 pM.

Based on the studies by Banasik et a/.169 and on a better understanding of the 

molecular details of the active site of PARP-1, new highly potent PARP inhibitors have 

been synthesised.

PARP.

O NH2

nh2

Y
0

R R

Anti-conformation Syn-conformation

H
^ 0

17 R = H
18 R = OH
19 R = CH3

20 R = H
21 R = OH
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1.9.3 Benzoxazoles and benzimidazoles

Researchers at the University of Newcastle-upon-Tyne investigated an alternative 

approach of constraining the carboxamide group in the required anft-conformation. 

They designed a series of benzoxazole-4-carboxamides122 and benzimidazole-4- 

carboxamides170 with a 6/5 fused ring system, where the carboxamide group was 

restricted via an intramolecular hydrogen bond between the amide proton and the 

heterocyclic nitrogen. The benzoxazole-4-carboxamide series possessed good donor 
properties due to the electron-rich heterocyde and demonstrated IC50 values ranging 

from 2 to 10 pM. 2-Pheny!benzoxazole-4-carboxamide 24c was the most potent 

compound with an I C 5 0  value of 2.1 pM. A series of benzimidazole derivatives was then 

synthesised with alkyl and aryl substituents. The benzimidazole-4-carboxamides 25a 

and 25b showed sub-micromolar activity against PARP-1. A study of the structure- 

activity relationships (SAR) was carried out for a series of 2-aryl-1H-benzimidazole-4- 

carboxamides. The results showed that PARP-1 tolerates numerous electron-donating 

and -withdrawing substituents in the 3- and 4- positions on the phenyl ring. 2-(4- 
(trifluoromethyl)phenyl)-1H-benzimidazole-4-carboxamide 25i was found to be the most 

active inhibitor. It was also demonstrated that substituents with small groups could be 

tolerated in the 2 position on the phenyl ring; for example, 2-(2-chlorophenyl)-1H- 
benzimidazole-4-carboxamide 25f and its isomer 25e were found to have similar 
activity. 2-(4-Hydroxyphenyl)-1H-benzimidazole-4-carboxamide (NU1085, 25g, Ky = 6  

nM) potentiated the cytotoxic effects of temozolomide and topotecan.170 These findings 

indicated that, in the 2-aryl-1H-benzimidazole-4-carboxamide series, the intramolecular 
hydrogen bond constrained the carboxamide in the biologically active conformation 

and, in addition, the compounds possessed good donor properties due to the presence 

of an electron-rich heterocyclic ring.

Skalitzky et a/.171 synthesised tricyclic benzimidazole carboxamide potent PARP-1 

inhibitors containing a 5/6/7 fused ring system. In these compounds the intramolecular 
hydrogen bond is replaced with a covalent bond. The presence of alkyl substituents in 

the 2-position only had modest activity against PARP-1. The series was extended to 

include unsubstituted and monosubstituted rings. Of this series compounds 26b, 26f, 
and 26g were found to be chemopotentiators of temozolomide and topotecan against 

human lung carcinoma. These studies were extended to include tricyclic indole 

analogues that restrict the conformation of the carboxamide moiety within a seven- 
membered ring. The 2-phenyl tricyclic indole 27 has a K\ value of 6 nM suggesting that 

the lactam N-H participates in a beneficial interaction with the PARP-1 active site.
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Table 3. PARP-1 inhibitory activities of benzoxazoles and benzimidazoles.

---------------------- -----------------------  Compound R Kj (nM)
Compound R______ IC50 (pM) 25a H 95
24a CH3 9.8 25b CF3 350
24b C(CH3) 8.4 25c Ph 15
24c________ Ph 2.1_______  25d 4-CN-Ph 4.0

25e 3-CI-Ph 8.4
25f 2-CI-Ph 9.4
25g 4-OH-Ph 6.0
25h 4-OMe-Ph 6.8
25i 4-CF3-Ph 1.2
25j 3-CF3-Ph 8.0
26a Ph 4.1
26b 4-CI-Ph 5.7
26c 2-CI-Ph 7.7
26d 3-CF3-Ph 11.2
26e CH3 45

1.9.4 Phthalazinones and quinazolinones

The bicyclic phthalazinone and quinazolinone scaffolds have undergone elaboration in 

order to achieve better PARP-1 inhibitory activity. KuDOS Pharmaceuticals have been 

optimising the known 4-aryl-phthalazinones to improve their metabolic stability and 

potency. KuDOS tested a series of mefa-substituted 4-benzyl-2H-phthalazin-1-one 

PARP inhibitors. Most of the compounds tested showed low nanomolar inhibitory 

activity with IC 5o values between 5 and 50 nM. Compound 28, showed low nanomolar 

inhibitory activity (IC50 = 7 nM) and promising metabolic stability in v/'vo.172 Griffin et 

a lu3 reported a series of quinazolin-4-one PARP inhibitors. The most potent 

compounds were the 8-methyl-quinazolinones, with a 2-phenyl group substituted by a 

4-cyano, 4-nitro or 4-methoxy group. 8-Hydroxy-2-methylquinazolin-4-[3H]-one
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(NU1025) was found have an IC50 of 0.4 pM, and to enhance the action of topotecan 

and temozolomide in a panel of twelve human tumour cell lines.

NH

Iwashita and co-workers174 investigated PARP-1 and PARP-2 inhibitory activity of 
quinazolinone derivatives in vitro. The potency of these derivatives was found to be 

mostly dependent on the unique linker of the quinazolinone ring. Most of the 

compounds tested demonstrated high selectivity for PARP-1. Compound 29a exhibited 

strong potency against PARP-1 and 30-fold less potency against PARP-2. 
Phthalazinone derivatives 30a and 30b were also investigated.174 Both compounds 

showed similar potency for PARP-1 as the quinazolinone derivatives. However, they 

did not demonstrate selectivity for PARP-1 and PARP-2.

Table 4. PARP-1/2 inhibitory activities of quinazolinones.

,R2

NH

Compound R1 R2 PARP-1
ICso(nM)

PARP-2 
IC50 (nM)

Selectivity
PARP-2/1

29a H H 21 608 29
29b Cl H 23 610 27
29c Cl CN 3.0 87 29
29d Cl F 13 500 39
29e Me F 16 167 10
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Table 5. PARP-1/2 inhibitory activities of phthalazinones.

0

NH

30

Compound R PARP-1 PARP-2 Selectivity
I C 5 o ( n M ) I C 5 0  ( n M ) PARP-2/1

30a H 120 90 0.8
30b F 49 84 1.7

1.9.5 Quinoxalines

Iwashita and co-workers174 synthesised quinoxaline derivatives as selective PARP-2 

inhibitors. The quinoxaline series have a 6/6 fused ring system and the carboxamide 

group is restricted via an intramolecular hydrogen bond. Various electron-withdrawing 

and electron-donating substituents were tolerated in the para-position of the terminal 

phenyl. 3-(4-Chlorophenyl)quinoxa!ine-5-carboxamide 31b was shown to be about 5- 

fold more potent for PARP-2 than for PARP-1. The quinoxaline derivatives are PARP-2 

selective, with compound 31b demonstrating a selectivity of 0.21.

Table 6. PARP-1/2 inhibitory activities of quinoxalines.

H
I

31

Compound R PARP-1 
I C 5 0  (nM)

PARP-2 
I C 5 0  (nM)

Selectivity
PARP-2/1

31a H 131 14 0.11
31b Cl 33 7 0.21
31c CN 101 8 0.08
31d c f 3 118 11 0.09
31e OMe 71 8 0.11
31f n h 2 87 9 0.10
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1.9.6 PARP inhibitors acting at the zinc fingers

Rice et a/.175 proposed a class of PARP inhibitors that act selectively at one of the two 

zinc finger sites in the DNA binding domain. A series of C-nitroso substituted 

compounds was synthesised which uniquely oxidise one of the zinc fingers of PARP, 

resulting in ejection of the zinc ion. This results in the inactivation of PARP activity 

without halting the binding of PARP to DNA. Compounds 6-nitroso-1,2-benzopyrone 

and 3-nitrosobenzamide induce apoptosis in tumour cell lines through depression of a 

Ca2+/Mg2+ endonuclease. These compounds have also been shown to inhibit infection 

of HIV-1 in human lymphocytes without induction of metabolic changes at a 

concentration of 50 pM.

Bauer et a/.176 reported 4-iodo-3-nitrobenzamide (IN02BA) that can be selectively 

reduced to the nitroso compound INOBA within the E-ras 20 tumour cell line. It is 

proposed that the nitroso prodrug induces Zn2+ from the asymmetric zinc finger of 

PARP-1 and subsequently inactivates PARP-1. Studies demonstrated that the action of 
IN02BA could be improved by the simultaneous administration of buthionine 

sulfoxamine (a known inhibitor of glutathione (GSH) synthesis). However, in non- 

malignant CV-1 cell lines, there was complete lack of reduction of the nitro to the active 

nitroso prodrug.

1.10 Pharmacophore and structure-activity relationship (SAR) studies

So far it has been established that analogues of NAD", are effective inhibitors of PARP. 
PARP inhibitory activity appears to be associated with the following structural features:

(1) An unsaturated aromatic or polyaromatic heterocyclic system.

(2) The presence of a carboxamide group, which should be restricted to adopt the 

anti-conformation required for hydrogen-bonding with critical residues in the 

NAD+ binding site.
(3) A non-cleavable bond at the 3-position relative to the carboxamide group.
(4) Presence of at least one amide proton.
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Figure 11. Consensus pharmacophore for PARP-1 inhibition.

The consensus pharmacophore for PARP-1 inhibition is shown in Figure 11. Ruf and 

co-workers177 published the first crystal structure of the catalytic fragment of PARP-1 

with and without the PARP-1 inhibitor 3,4-dihydro-5-methylisoquinolin-1-one 

(PD128763). The elucidation of the crystal structure has allowed structure-activity 

relationships to be understood and binding predictions to be made. The crystal 
structure showed that the carboxamide group of the inhibitor forms important hydrogen- 
bond interactions with the amino-acids Gly863 and Ser904. The carboxamide must be 

in an antf-conformation in order for these interactions to occur with the active site. This 

supports the fact that compounds, in which the amide is constrained in this 

conformation, are significantly more potent than those with a free amide group. The 

nitrogen of the carboxamide must carry at least one hydrogen in order for the important 
hydrogen-bond interactions to occur in the active site. The aromatic portion of the 

inhibitor also participates in t t - t t  interactions with the phenyl rings of two parallel 
tyrosine residues (Tyr907 and 896) within the active site forming a “TT-electron 

sandwich”. This interaction may contribute to the increased activity of large planar 
fused-ring compounds.

Structu re-activity relationship studies of benzimidazole-4-carboxamide with the catalytic 

domain of chicken PARP revealed that the carboxamide group forms three important 

hydrogen bonds (Figure 12). It was shown that the carbonyl oxygen of the inhibitor 
accepted two hydrogen bonds, one from a Gly863 polypeptide amide N-H and the 

other from the side chain oxygen of Ser904. The amide N-H of the compound is a 

hydrogen bond donor to Gly863. The benzimidazole part of the molecule was found to 

lie between Tyr907 and Tyr896. The 2-aryl ring was reported to lie in the NAD+ binding 

pocket, with the substituents in the 3-postion having the most available space. Taking 

into account the mobility of Gln763 side chain space is also available in the 4 and 5 

positions.170
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Figure 12. Interactions of 2-(3-methoxyphenyl)benzimidazole-4-carboxamide with the 

NAD* binding domain, indicating the likely positioning of a substituent within the 

cavity.170

Kinoshita et a/.178 reported the crystal structure of the catalytic domain of human 

recombinant PARP-1 complexed with the inhibitor FR257517 (compound 29e). The 

quinazolinone part of the inhibitor binds tightly to the nicotinamide-ribose binding site 

and the 4-phenyl-tetrahydropyridine moiety provides secondary contacts to the 

adenosine-bihding site. The terminal 4-fluorophenyl ring of the inhibitor induces a 

conformational change at the bottom of the adenosine-binding site by displacing the 

side-chain of Arg878.

1.11 Bioreductive prodrugs of PARP-1 inhibitors

Ideally, PARP-1 inhibitors should be able to demonstrate tissue selectivity. One 

approach to deliver PARP-1 inhibitors selectively to the desired site of action includes 

the use of bioreductive prodrugs. Many of the disease states where PARP-1 inhibition 

is therapeutically beneficial are marked by acute or chronic tissue hypoxia. Such a 

physiological difference in the concentration of oxygen between normal and hypoxic 

cells was exploited through the design of hypoxia-activated prodrug systems, which 

release the PARP-1 inhibitors only in hypoxic cells. Several different redox-sensitive 

prodrugs have been designed to investigate the bioreductive release of isoquinolin-1- 
one PARP-1 inhibitors from nitroheterocyclylmethyl and 4,7-dioxoindole-3-methyl 
trigger units.
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Berry et a/.,179 in 1997, first proposed the 5-nitrofuran-2-yl-methyi group as a potential 
bioreductively-activated prodrug system. The nitro group in the nitrofuran prodrug 32 is 

selectively reduced to the amine 33a or hydroxylamine 33b. The consequential 
increase in electron-density results in the expulsion of the isoquinolin-1-one drug 34. In 

the prodrug 32 the pharmacophore required for activity of the isoquinolin-1-one effector 

34 is masked, and PARP-1 inhibitory potency is much weaker. In hypoxic tissue, 

bioreduction of the prodrug mediated by cytochrome P450 reductase should trigger the 

release of the effector. The reductant system sodium borohydride / palladium / 
aqueous propan-2-ol was used to mimic the bioreduction of the nitro group in hypoxic 

tissue. In these studies, the release of the drug was studied by thin layer 

chromatography (TLC) and high pressure liquid chromatography (HPLC). It was 

demonstrated that 34 was rapidly and quantitatively released from the nitrofuran 

prodrug (Scheme 9).

1-Methyl-2-nitroimidazole-5-yl-methyl prodrugs have also been studied in our 
laboratory. 5-Bromoisoquinolin-1-one 37 was chosen as the effector to be attached to 

the nitroimidazole trigger unit.180 The sodium borohydride / palladium reductive system 

was not sufficiently selective, in that the trigger released the effector but also caused 

hydrogenolysis of the OBr bond. A zinc / ammonium system was used as a mimic for 
bioreduction and this proved to reduce the nitro group selectively and trigger the 

release of the intact PARP inhibitor (Scheme 10).

NaBH4/ Pd 
Pr'OH

33b:R=OH

O

NH
Furan 

+ degradation 
products

34

Scheme 9. Reductive release of isoquinolin-1-one 34 from the prodrug 32.179
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Scheme 10. Reductive release of 5-bromoisoquinolinone 37 from the prodrug 35 180

Ferrer et a/.181 designed 4,7-dioxoindole-3~methyl prodrugs of isoquinolin-1-ones. The 

proposed mechanism for bioreductively triggered release of drugs from 4,7- 
dioxoindole-3-methyl prodrugs is shown in Scheme 11. Prodrug 38 is reduced by two 

electrons to the dihydroxyindole 39; the increase in electron-density at the indole 

nitrogen triggers the release of the isoquinolin-1-one drug.
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•n S
Me

O H

39

O H
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Scheme 11. Proposed mechanism of reductively triggered release of drugs from 

dioxoindole-3-methyl prodrugs.182
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Mitsunobu coupling of the trigger unit 1,2-dimethyl-3-(hydroxymethyl)-5-methoxyindole-
4,7-dione with various isoquinolin-1-one effectors gave O-linked 40 and N-linked 41 

prodrugs.181 In a chemical model system for bioreduction, SnCI2 in CDCI3 / CD3OD 

triggered release of the corresponding isoquinolin-1-ones from O-linked prodrugs but 

not from the N-linked prodrugs. These studies have indicated that there is the potential 
for the design of bioreductive prodrugs that release other structurally related PARP-1 

inhibitors.

Me

OMe
Me-

40

OMe

Me"
Me

41

Thus there has been some research effort on prodrugs for selective delivery of PARP 

inhibitors based on masking the pharmacophore with an external group. However, 
there are no reports of prodrugs where the pharmacophore has either been masked by 

an N-oxide within its structure or by distortion of the pharmacophore by such an N- 

oxide.
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2. Aims and Objectives

The main aim of the research is to develop novel chemo- and radiosensitising drugs 

and hypoxia-activated N-oxide prodrugs.

2.1 Design of substituted quinoline-8-carboxamides as novel PARP-1 inhibitors

Previous studies have indicated that benzimidazole-4-carboxamides and quinoxaline 

carboxamides are potent PARP inhibitors. Both these classes of compounds constrain 

the carboxamide moiety in the anf/-conformation using an intramolecular hydrogen- 

bond. On the basis of the structure activity relationship studies carried out on these 

PARP inhibitors, it is possible to propose quinoline-8-carboxamides as novel PARP-1 

inhibitors; a hypothesis for the interaction of the inhibitor with the enzyme active site is 

shown in Figure 13. Quinoline-8-carboxamides possess structural properties that are 

essential for significant PARP-1 inhibitory activity. In the quinoline-8-carboxamide 

targets, the carbonyl group should be a good hydrogen-bond acceptor to the amino- 
acid residues Ser904 and Gly863 within the NAD+ binding domain. The presence of 
one free amide proton is also important for hydrogen-bonding with the amino-acid 

residue Gly863. Conjugation to an electron-rich aromatic ring should enhance the 

acceptor properties of the carbonyl group. The design of the quinoline-8-carboxamides 

is derived from the concept of using an intramolecular hydrogen bond to control the 
carboxamide conformation, pioneered by Griffin and co-workers.170 It is predicted that 

an intramolecular hydrogen bond will arise between the amide N-H and pyridine 

nitrogen, forcing the required antf-conformation of the carboxamide group. The 

geometry of the 6/6 fused ring system should be optimal for the formation of the critical 

intramolecular hydrogen bond.

The synthesis of a series of 2-substituted and 3-substituted quinoline-8-carboxamides 

will establish whether the postulated hydrogen bond is real and enable the structure 

activity relationship studies of a variety of substituents to be explored. Studies on 

benzoxazole, benzimidazole and quinazolinone PARP inhibitors have indicated that a 

variety of aryl substituents are well tolerated within the enzyme active site (e.g. N02> 

NH2, OMe, halogen). In the target compounds, R2 and R3 will be (substituted) phenyl, 
(substituted) heterocyclyl, alkyl, alkenyl and alkynyl substituents, carrying solubilising 

groups if necessary. Individual compounds will carry only one aryl substituent. Groups 

at R4 will be used to modify the redox potential of the corresponding N-oxides (see 

below), and to modify the physiochemical parameters, if necessary. Preliminary
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modelling studies show that these substituents will lie in the NAD+ binding pocket 
occupied by the 2-aryl groups in the 2-aryl-1H-benzimidazole-4-carboxamide.

At least one 
free N-H group

Carbonyl group

Antf-conformation Intramolecular
hydrogen-bond

Electron-rich 
aromatic ring

NAD+ binding 
pocket

Figure 13. General structure of potential quinoline-8-carbOxamide PARP-1 inhibitors.

2.2 Design of hypoxia-activated N-oxide prodrugs of substituted quinoline-8- 

carboxamide PARP-1 inhibitors

Many disease states where PARP-1 inhibition is therapeutically beneficial are marked 

by acute or chronic hypoxia. Consequently, there is a requirement for tissue-selective 

PARP-1 inhibitors. It is proposed that the physiological difference in the concentration 

of oxygen between normal and hypoxic tissue can be exploited by developing a 

prodrug system which, when activated under hypoxic conditions, will release inhibitors 

of PARP-1 selectively in cancer tissue. As previously mentioned, the isoquinolin-1-one 

PARP inhibitor has been successfully released from the nitroheterocyclylmethyl and
4,7-dioxoindole-3-methyl redox-sensitive triggers. Studies have shown that aliphatic 

and aromatic N-oxides can be selectively bioreduced in hypoxic tissue. The concept of 
combining a PARP-1 inhibitor with an N-oxide trigger is novel. Denny et a/.43 described 

the modular nature of the design of prodrugs as comprising of a trigger, linker and 

effector. The proposed quinoline-8-carboxamide N-oxide targets fulfil the criteria which 

are considered essential for hypoxia-selective prodrugs. In the N-oxide the severe 

steric clash should force the carboxamide out of the plane of the quinoline. It is 

proposed that this steric clash deactivates the effector in aerobic conditions and 

disrupts the pharmacophore required for PARP-1 inhibition. However, in hypoxic 

conditions, the N-oxide trigger unit will be selectively metabolised by tumour-specific 

enzymes. It is hypothesised that, upon bioreduction, there will be a conformational
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switch from the N-oxide trigger 43 to the planar active PARP-1 inhibitor 42. The 

quinoline-8-carboxamide effector will then sensitise tumour cells to chemotherapeutic 

and radiotherapeutic treatments.

O
«NH

43
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3. Results and Discussion

3.1 Route (I): 3-Substituted quinoline-8-carboxamides

3.1.1 Retrosynthetic analysis

The first target compounds to be investigated were the 3-substituted quinoline-8- 

carboxamides. The structural core of quinoline has previously been synthesised by 

various reactions, such as Skraup, Doebner-von Miller, FriedlSnder, Pfitzinger, Conrad- 
Limpach and Combes syntheses.183 The classical approaches to quinoline compounds 

are based on the use of mono-substituted or ortbo-substituted anilines. However, these 

methods do not allow for adequate diversity and substitution on the quinoline ring 

system. These synthetic approaches also have considerable drawbacks such as harsh 

reaction conditions and highly acidic medium, which makes the isolation of products 

difficult. In designing our synthetic strategies, an effort was made to ensure that a 

variety of substituents with various electron-withdrawing and -donating groups could be 

attached at the 3-position via a common synthetic approach. Therefore, it was decided 

to use a quinoline ring system containing a functional group in the 8-position, which 

could be easily converted to the carboxamide moiety required for PARP-1 inhibitory 

activity. It was thought that electrophilic substitution of the 8-substituted quinolines 

would allow for the introduction of substituents in the 3-position via organometallic 

coupling reactions.

Suzuki-Miyaura

R FGI

‘N
COCI

'R FGI

45

FGI

I  T  —

Coupling

( T V ■V
K X N

c o2h c h 3

46 47

Scheme 12. Route (I) retrosynthetic analysis of 3-arylquinoline-8-carboxamides.

The retrosynthetic analysis for route (I) is shown in Scheme 12. We approached our 

retrosynthesis by first performing three functional group interconversions (FGI) on the 

target molecule 44 and this led us to the corresponding 3-aryl-8-methylquinoline 47. 

The conversion of a carboxylic acid to a carboxamide group is a well-established
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reaction. In our laboratory, the conversion of quinoline-8-carboxylic acid to quinoline-8- 
carboxamide has been previously reported. Parveen184 reported the conversion of 

quinoline-8-carboxylic acid to quinoline-8-carbonyl chloride following treatment with 

thionyl chloride. Treatment of the quinoline-8-carbonyl chloride with ammonia and 

C H C I 3  gave quinoline-8-carboxamide in 90% yield.

The carboxylic acid 46 can be made by oxidation of the corresponding 3-aryl-8- 
methylquinoline 47. The next step was to devise a strategy for the formation of 3-aryl-8- 
methyquinoline. A C-C bond disconnection occurs at the biaryl bond, which can be 

derived from organometallic coupling reactions. It was decided that the Suzuki-Miyaura 

coupling reaction be used for the synthesis of 3-arylquinoline-8-carboxamides because 

of its success in the formation of a wide variety of heterocyclic compounds. Many of the 

previously employed methods for the synthesis of C-C bonds involve the coupling of 
highly reactive organometallic reagents, such as Grignard, organolithium and 

organozinc reagents with aryl halides. These reactions usually require anhydrous 

conditions and an inert atmosphere and only certain functional groups are tolerated.

The Suzuki-Miyaura reaction generally involves the metal-catalysed reaction of an 

arylboronic acid with an aryl halide, or triflate.

3.1.2 Attempted syntheses of 3-aryl-8-methylquinolines

8-Methylquinoline 48 was chosen as the precursor to the formation of 3-arylquinoline-8- 
carboxamides. The synthesis of 3-bromo-8-(bromomethyl)quinoline 49 has been 

reported by Howitz et a/.185 This provides compound 49, in which the bromo is in the 

required location to add an aromatic substituent to the C(3)- position of the quinoline 

via Suzuki-Miyaura cross-coupling (Scheme 13). The reaction also converts the 8- 

methyl group into a CH2Br via a radical bromination reaction. Further reaction at this 

position was planned to give the carboxylic acid 46 and the acid chloride 45 and finally 

the carboxamide 44. However, two attempts to repeat the 1906 method of Howitz et 

a/.185 were unsuccessful and after heating at 200°C for 2 h, the 1H NMR spectrum 

showed only starting material.
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48 49 50

COCIc o n h 2

Scheme 13. Attempted synthesis of 3-bromo-8-(bromomethyl)quinoline.

An alternative approach to introduce an aromatic substituent in the 3-position was 

investigated. The oxidation of 8-methylquinoline 48 to prepare 3-hydroxy-8-methyl- 

quinoline 52 has previously been reported by Nakashima and co-workers.186 This 

reaction also gives the N-oxide 51 as a by-product. Oxidation gives the hydroxy group 

in the required 3-position to allow for further reaction. The hydroxy group can then be 

converted to a triflate group using trifluoromethanesulfonic anhydride. It was hoped that 

conversion to the triflate 53 and subsequent Suzuki-Miyaura coupling would give 

compounds such as 44 where R is a (substituted) phenyl group (Scheme 14). 8- 

Methylquinoline 48 was treated with hydrogen peroxide and acetic acid. TLC analysis 

showed two spots, neither of which corresponded to the starting material. It proved 

impossible to isolate either of these new compounds. It was decided that this route 

would not be convenient for the production of 3-substituted quinoline-8-carboxamides.
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Scheme 14. Attempted synthesis of 3-hydroxy-8-methylquinoline 52.

3.2 Route (II): 3-Substituted quinoline-8-carboxamides

3.2.1 Retrosynthetic analysis

After the failure of converting 8-methylquinoline to the halide or triflate precursors 

required for the Suzuki-Miyaura cross-coupling reaction, a different approach was 

sought. The presence of electron-withdrawing groups in the halide substrate is known 

to aid the Suzuki-Miyaura reaction. Therefore, it was felt that a quinoline with a nitro 

group in the 8-position would be a suitable precursor for the formation of 3- 

arylquinoline-8-carboxamides. Retrosynthetic analysis of our 3-arylquinoline-8- 

carboxamide targets gave route (II) (Scheme 15). Initially, three functional group 

interconversions (FGI) were carried out on the target molecule to give 3-aryl-8- 

nitroquinoline 56. The amine compound 55 can be synthesised by the reduction of the 

nitro group in 56 (e.g. via hydrogenation and acid / metal reduction). The carboxamide 

moiety is introduced into the 8-position of the quinoline ring by the conversion of the 

amine group in 55 to the nitrile compound 54 (via diazotisation and nucleophilic 

substitution), followed by hydrolysis to afford the final target 44. Disconnection of the 

aryl substituent in 56 gives the major synthons 57 and 58, which possess the requisite 

functionality to allow Suzuki-Miyaura cross-coupling reactions.

CONH2
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Scheme 15. Retrosynthetic analysis of 3-arylquinoline-8-carboxamides.

3.2.2 Synthesis of 3-aryl-8-substituted quinolines

The initial approach to the synthesis of 3-arylquinoline-8-carboxamides was made 

using 3-bromo- and 3-iodo-8-nrtroquinoline as the requisite precursors to the Suzuki- 
Miyaura coupling reaction. The first step in the synthesis was the electrophilic 

halogenation of 8-nitroquinoKne 59. The presence of a nitro group should deactivate 

the benzene ring in the quinoline system, so that the C-(3) position has a higher 
electron-density and therefore more susceptible to electrophilic attack. Initially, a 

bromination reaction was attempted using Br2 in 1,2-dichlorobenzene or Br2 in 

nitrobenzene. Neither set of reaction conditions proved successful and harsher 

conditions were considered. The use of N-bromosuccinimide (NBS) as an electrophile 

in hot acetic acid gave 3-bromo-8-nitroquinoline 60 in a modest yield (51%). Evidence 

for the formation of 60 was provided by the fact that the 3-H was no longer present in 

the 1H NMR spectrum. Due to the problems encountered in the synthesis of 3-bromo-8- 
nitroquinoline 60, the iodination of compound 59 was explored. The synthesis of 3- 
iodoquinoline-8-nitroquinoline 61 has previously been reported by the reaction of 59 

with N-iodosuccinimide (NIS) in acetic acid. Regioselective iodination of the C-(3) 
position was easily achieved in good yield (71%). Evidence for the formation of 
compound 61 was obtained using Fast Bombardment Mass Spectroscopy (FAB). In the 

mass spectrum, a protonated molecular ion was observed at m/z 301.9522 (M+H), and 

the peak (m/z 255) is the result of the elimination of iodine.
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Scheme 16. Electrophilic bromination and iodination of 8-nitroquinoline.

The reactions of 60 and 61 with phenylboronic acid in the presence of tetrakis- 

(triphenylphosphine)palladium(O), and potassium carbonate gave 8-nitro-3-phenyl- 
quinoline 62 in 68 and 97% yield respectively. In order to ensure high yields in 

subsequent Suzuki-Miyaura coupling reactions, it was decided to proceed with the iodo 

electrophile, as the bromo electrophile was less efficient. Miyaura et a/.187 proposed 

that oxidative addition of heterocyclic halides is the rate determining step, and relative 

reactivity decreases in the order of l>OTf>Br»CI. The mechanistic study of the 

Suzuki-Miyaura reaction will be discussed further in Section 3.4.2. The next step was to 

investigate the tolerance of the iodide precursor for the cross-coupling with electron- 
deficient boronic acids. The Suzuki-Miyaura coupling reactions of 61 with para-, meta- 

and ortho- trifluoromethylphenylboronic acids were explored (Table 7). The para- and 

mefa-trifluoromethylphenylboronic acids coupled to 61 in similar yields to phenylboronic 

acid. The steric hindrance of the arylation of 61 with orfho-trifluoromethylphenylboronic 

acid was sufficient to reduce the coupling rate and a moderate yield of 8-nitro-3-(2- 
(trifluoromethyl)phenyl)quinoline 65 was obtained. Interestingly, in the 1H NMR spectra 

of 8-nitro-3-(4-(trifluoromethyl)phenyl)quinoline 63 and 8-nitro-3-(3-(trifluoromethyl)- 

phenyl)quinoline 64 the 2-H is observed at 5 9.30. In contrast, in the ortho derivative 65 

the 2-H shifted upfield by ca. 0.3 ppm due to the inductive effects of the nearby CF3 

group.

It was decided to carry out a pilot study on 8-nitro-3-phenylquinoline 62 to investigate 

whether it was possible to convert the nitro group to the amine, nitrile and finally 

carboxamide.
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Table 7. Suzuki-Miyaura coupling of 60 and 61 with arylboronic acids.

+ R-B(OH)2
Pd(PPh3)4 

Toluene, EtOH, H20

Compound
number

X R Yield of 
products (%)

62

62

63

64

65

Br

*

*

*

c f3

CF,

97

68

74

97

66

CF,

The synthesis of compound 62 was confirmed using long range 1H-13C COSY also 

known as Heteronuclear Multiple Bond Connectivity (HMBC) characterisation, as the 1H 

and 13C NMR spectra proved insufficient. The long-range 1H-13C COSY pulse 

sequence gives a two dimensional spectrum with 13C chemical shifts on one axis and 

1H chemical shifts on the other. In the HMBC spectrum, the time delay in the pulse 

sequence is set to correspond to V*J where J is in the region of 10 Hz. This means that 

the 13C shifts are correlated with the chemical shifts of protons separated from them by 

two or three bonds. The partial HMBC spectrum is shown in Figure 14. Analysis of an 

exemplary proton (4-H) at 5 8.39 shows that it is three bonds from the 2-C (8 152.3), 5- 

C (8 132.5), and 8a-C (8 138.5), it also has two-bond cross peaks with the 3-C (8 

135.7) and the quaternary carbon 4a-C (8 129.0). Full assignments of the 1H and 13C 

NMR spectra of compound 62 are given in the Experimental Section.
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Figure 14. Partial HMBC spectrum of 8-nitro-3-phenylquinoline 62.

The next step in the synthesis involved the conversion of the nitro group to the amine 

group. Many reducing agents have been used to reduce heterocyclic nitro compounds; 

for example, the catalytic hydrogenation of 8-nitro-4-quinolinol to the corresponding 8- 

amino-4-quinolinol has been demonstrated.188 Price et a/.189 have reported the use of 

tin(ll) chloride in ethanol for the reduction of 5-chloro-8-nitroquinoline. Parveen et a/.180 

used a zinc / ammonium chloride system to reduce the nitro group in 5-bromo-2-((1- 

methyl-2-nitroimidazol-5-yl)methyl)isoquinolin-1-one. The nitro group of 8-nitro-3- 

phenylquinoline 62 was unaffected when palladium / carbon and hydrogen conditions 

were used. This may be due to quinoline being a known poison of palladium metal 

catalysts, as in the Lindlar catalyst.190 An alternative method reported by Price et a/.189 

as mentioned previously used tin(ll) chloride in ethanol. Treatment of 62 with tin(ll) 

chloride in ethanol gave the product 3-phenylquinolin-8-amine 66 in 82% yield. The 1H 

NMR spectrum of 66 showed a broad singlet at 5 4.96 corresponding to the amino 

group. A marked upfield chemical shift was observed for the 5-H and 7-H in 

comparison to the corresponding nitro compound 62, due to the shielding effect of the 

nearby amino group.
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Scheme 17. Route (II) synthesis of 3-phenylquinoline-8-carboxamide 69.

Conversion of the amine to 3-phenylquinoline-8-carbonitrile 68 was first attempted by 

diazotisation of compound 66 with aqueous hydrochloric acid and sodium nitrite, 
followed by treatment with copper(l) cyanide, via a Sandmeyer reaction. Monitoring the 

reaction by TLC showed numerous by-products and it was decided not to proceed any 

further with these reaction conditions. Interestingly, Fieser and Hershberg191 were 

unable to prepare quinoline-8-carbonitrile using the same Sandmeyer conditions on 8- 
aminoquinoline, as only tars were obtained. It is speculated that the failure of the 

Sandmeyer reaction to provide any desired product may be caused by the poor thermal 
stability of the diazonium salt. Roe et a/.192 reported the synthesis of 8-fluoroquinoline 

via a Balz-Schiemann reaction. They demonstrated that the intermediate 8- 

quinolinediazonium tetrafluoroborate salt could be isolated in 74% yield and was 

relatively stable. It was proposed that the Balz-Schiemann reaction might have 

applications in the synthesis of 3-phenylquinoline-8-carbonitrile. In our laboratory, a 

model Balz-Schiemann reaction was carried out on 8-aminoquinoline 70. The first step 

in the synthesis involved the diazotisation of 70 using fluoroboric acid and sodium 

nitrite. The resulting diazonium tetrafluoroborate salt 71 was isolated in 54% yield. Due 

to the high reactivity of compound 71, the intermediate was used without further 

purification. The second step in the reaction involved the decomposition of the 

diazonium salt, which was achieved by reaction of the diazonium salt with copper(l) 
cyanide and potassium cyanide. Therefore, in two simple and reliable steps quinoline- 
8-carbonitrile 72 was synthesised in 50% yield. In the IR spectrum of compound 72 a
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peak at 2232 cm"1 was observed, corresponding to the nitrile group. The mechanistic 

details of this reaction are not completely understood. Presumably the reaction 

proceeded via a radical mechanism as shown in Scheme 18.

(i) Diazotisation reaction

HBF,
NaN02

NH2

70

N
BF>N 4 

71

(ii) Decomposition of diazonium salt via copper (I) catalyst

+ Cu+

N +
III
N

+  CN-

N'

+  Cu2+

N'

+  e'

CN

72

e‘ +  Cu2+ Cu+

Scheme 18. Proposed mechanism for the synthesis of quinoline-8-carbonitrile 72.

The Balz-Schiemann reaction mentioned above was repeated on 3-phenylquinolin-8- 
amine 66. The solid intermediate 67 was easily isolated and was treated with copper(l) 

cyanide and potassium cyanide. The absence of the broad NH2 peak in the 1H NMR 

spectrum demonstrated the loss of starting material 66. Furthermore, the signals for the 

quinoline 7-H and 5-H were changed most distinctly from the starting compound 66, 

with downfield shifts of 8 1.2 and 8 0.9 respectively; this is due to the deshielding effect 

of the nearby nitrile group. An additional peak in the nitrile region of the 13C NMR 

spectrum also confirmed the formation of compound 68.
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Nitrile compounds can be hydrolysed to give either amides or carboxylic acids. 
Formation of the amide 69 is possible using sodium hydroxide and hydrogen peroxide. 

This method ensures that there is no further hydrolysis to the carboxylic acid. The 

controlled hydration of compound 68 was achieved using these conditions affording the 

target molecule 3-phenylquinoline-8-carboxamide 69 in 60% yield. A mechanism for 

this reaction is shown in Scheme 19. Initially, there is a nucleophilic addition of the 

hydroperoxide ion to the C=N group followed by transfer of a hydride ion from a second 

molecule of peroxide to the intermediate peroxyimine 73, giving the amide 69, 
molecular oxygen, and water. Surprisingly, this reaction only gave the desired product 

without the formation of any by-products. In theory, the quinoline nitrogen could have 

been oxidised by hydrogen peroxide providing easy access to the N-oxides required 

later. The lack of formation of 8-carbamoyl-3-phenylquinoline-1 -oxide is probably due 

to the “wrong” conformation of the peroxyimine intermediate being adopted, hence 

preventing the N-oxidation reaction.

H -Qwrong
conformation

•OH

'right*
conformation 69

Scheme 19. Proposed mechanism for the hydrolysis of 3-phenylquinoline-8-carbonitrile 

68 using H20 2 and NaOH.

In 3-phenylquinoline-8-carboxamide 69, a chemical shift difference of ca. 5 ppm was 

observed between the two N-H protons of the carboxamide moiety. This indicates that 
the rotation of the NH2 group is restricted and that the carboxamide moiety is 

constrained in the anft-conformation. Thus, the lone pair of the quinoline nitrogen
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serves as a good hydrogen-bond acceptor. The chemical shift of 8 10.95 is assigned to 

the N-H involved in the intramolecular hydrogen bond. The upfield chemical shift of 8 

6.17 is assigned to the N-H which is not hydrogen-bonded to the quinoline nitrogen. 

This supports the hypothesis outlined in the research aims (Section 2.1). In addition, 
the 7-H was observed as a doublet of doublets due to the ortho coupling being 

observed with the 6-H and meta coupling being observed with the 5-H. The 7-H signal 

shifted downfield in comparison to the spectrum of the nitrile 68, this may be due to 

anisotropic effects of the carbonyl and suggests that the carboxamide is in plane with 

the heterocycle. The 2-H of 69 was assigned to the signal at 8 9.20, i.e. downfield due 

to the electron-withdrawing effect of the heteroaromatic ring nitrogen.

Route (II) was beneficial in producing the first target PARP-1 inhibitor 3-phenyl- 
quinoline-8-carboxamide. The main drawback of this route is that the addition of the 3- 
substituent via Suzuki-Miyaura coupling occurs at the start of the reaction sequence. 

Ideally, diversification should occur at a late stage of the synthesis to avoid tedious 

repetition of synthetic steps. In order to efficiently synthesise a wide variety of 3- 
substituted quinoline-8-carboxamides efforts were focused on developing an alternative 

strategy.
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3.3 Route (III): 3-Substituted quinoline-8-carboxamides

3.3.1 Route (III): Synthesis of 3-phenylquionline-8-carboxamide

Route (II) was not a very efficient strategy for the production of compound libraries. An 

alternative synthetic strategy to the synthesis of 3-phenylquionline-8-carboxamides 69 

was investigated (Scheme 20). This strategy allowed for the introduction of diversity at 
a later stage in the synthesis, utilising phenylboronic acid in the final cross-coupling 

step. The first stage in the synthesis of 3-phenyl-quinoline-8-carboxamide was the 

reduction of 3-iodo-8-nitroquinoline 61 to give 8-amino-3-iodoquinoline 74. Initially, the 

tin(ll) chloride / ethanol conditions previously used in route (II) were employed for the 

reduction of 61. However, 1H NMR analysis indicated not only reduction of the nitro 

group to give the amine but also reductive removal of the iodine. Therefore, alternative 

methods were considered. Baik et a/.193 reported the use of bakers’ yeast as a 

biocatalyst for the reduction of aromatic nitro compounds to the corresponding amine 

compounds. They demonstrated that aromatic nitro compounds containing halide 

groups showed remarkable selectivity to give the amine product without giving 

dehalogenation. Treatment of 61 with bakers’ yeast did not give the required product. 

Zinc and ammonium chloride conditions were also unsuccessful and showed no 

reduction of the nitro compound. The tin(ll) chloride method was re-examined and it 
was decided to investigate the method by 1H NMR spectroscopy. Trial experiments 

were set up using CDCI3 as a solvent and increasing amounts of tin(ll) chloride added 

as a solution in CD3OD. After 6 h, using 3.5 equivalents of tin(ll) chloride, there was 

complete loss of starting material and signals indicating formation of the product, 8- 
amino-3-iodoquinoline 74, were observed. The reaction was successfully repeated on 

larger scale amounts of 3-iodo-8-nitroquinoline 61. It is thought that over-reduction of 
compound 61 was due to limited solubility of the starting material in the original tin(ll) 

chloride and ethanol conditions.
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Scheme 20. Route (III) synthesis of 3-phenylquinoline-8-carboxamide 69.

Diazotisation of compound 74 with tetrafluoroboric acid and sodium nitrite, followed by 

treatment with copper(l) cyanide and potassium cyanide, gave 3-iodoquinoline-8  ̂

carbonitrile 76 in 50% yield. In the 1H NMR spectrum the absence of the broad NH2 
peak indicated the formation of the product 76. Treatment of 76 with sodium hydroxide 

and hydrogen peroxide gave 3-iodoquinoline-8-carboxamide 77. The 1H NMR 

spectrum of 77 showed one N-H peak at 5 6.11 and the other at 8 10.53, indicating the 

formation of the carboxamide functional group. Cross-coupling of 77 with phenylboronic 

acid gave pale yellow crystals of 69. The structure of 69 was confirmed by X-ray 

crystallography (Section 5.2). 1H NMR studies of compound 69 confirmed the presence 

of the intramolecular hydrogen bond between the heterocyclic nitrogen and one of the 

N-H groups of the carboxamide (Section 5.1).

Route (III) demonstrated that the carboxamide functional group was well tolerated by 

the Suzuki-Miyaura conditions. However, a poor overall yield of compound 69 was 

obtained, which was mainly due to the problems encountered in the purification of 3- 
iodoquinoline-8-carbonitirile 76.
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3.4 Route (IV): 3-Substituted quinoline-8-carboxamides

3.4.1 Route (IV): Synthesis of 3-iodoquinoline-8-carboxamide

The disappointing overall yield of 3-phenylquinoline-8-carboxamide obtained by routes 

II and III, led us to modify our synthetic strategy. Experiments were conducted to 

investigate alternative methods of introducing the carboxamide functionality into the 8- 
position of the quinoline ring (Scheme 21).

The first synthetic strategy involved the use of the commercially-available 8- 
bromoquinoline. It was hoped that the bromo moiety could be easily converted to a 

nitrile moiety. As demonstrated previously nitrile compounds can be prepared by 

diazotisation of amines and subsequent Sandmeyer reaction. The main disadvantage 

of the Sandmeyer reaction is the requirement of stoichiometric amounts of copper(l) 

cyanide as the cyanating agent, which leads to equimolar amounts of heavy metal 
waste and results in problematic work-up procedures. A useful alternative for the 

preparation of nitrites is the palladium-catalysed cyanation of aryl compounds with 

NaCN or KCN. However, attempts to convert 8-bromoquinoline to compound 72 using 

Pd(PPh3)4 and KCN in DMF failed and only starting material was recovered. It was 

planned that hydration of compound 72 would give quinoline-8-carboxamide and 

subsequent iodination would allow the introduction of substituents into the 3-position of 
the quinoline ring.

An alternative strategy was sought to convert 8-bromoquinoline to quinoline-8- 
carboxamide. Suggs et a/.194 reported the preparation of 8-lithioquinoline 79 via 

halogen-metal interchange between lithium reagents and 8-bromoquinoline. 
Subsequent reaction of 8-lithioquinoline with various electrophiles afforded a series of 

8-substituted quinoline derivatives. It was proposed that lithiation of 8-bromoquinoline 

followed by treatment with trimethylsilylisocyanate may afford quinoline-8-carboxamide. 

It is generally known that the quinoline ring system is easily attacked by nucleophiles, 
this limits the conditions under which metal-halogen exchange can occur. For example, 
quinoline itself can add n-BuLi promptly to give excellent yields of 2-butylquinoline. 

Consequently, it was decided to use a short reaction time of 10 min and a low 

temperature of -79°C in the interchange reaction. Treatment of 8-bromoquinoline 78 

with n-BuLi, followed by quenching with trimethylsilylisocyanate, gave 80 in 48% yield. 
Although this method is a direct route to the synthesis of quinoline-8-carboxamide, the 

8-bromoquinoline starting material is very expensive. Therefore, we decided to
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investigate a more cost-effective means of producing large quantities of quinoline-8- 
carboxamide.

THF
nBuLi

78

Tf2Q 

pyridine

81

Zn(CN)2

NaOH
EtOH

Pd(PPh3)4

trimethylsilyl­
isocyanate

1 ^ 1

f
N

c o n h 2

80
NIS
FeCI3

- AcOH

T ^ ^ i

N

c o n h 2

77

Scheme 21. Synthesis of 3-iodoquinoline-8-carboxamide 77.

Quinolin-8-yl trifluoromethanesulfonate has previously been synthesised using the 

cheap commercially available starting material quinolin-8-ol 81.195 Furthermore, 
Anderson et a/.196 reported the palladium-catalysed cyanation of quinolin-8-yl trifluoro­

methanesulfonate, affording quinoline-8-carbonitrile in 87% yield. In our laboratory, 
trifluoromethanesulfonation of compound 81 was achieved using triflic anhydride and 

pyridine. A cyanation reaction of triflate 82 was used to obtain the corresponding nitrile 

72. Firstly, we used the previously-reported conditions: Pd(PPh3)4/ KCN / Cul / MeCN. 
Application of this method gave a low yield of 72 with recovery of significant amounts of 

unreacted 82 even after prolonged reaction conditions. Varying the solvent from 

acetonitrile to DMF had little effect on the overall yield. The use of NaCN as the 

cyanide source also gave a low yield of 72. A two-cycle process is proposed to explain 

the role of the copper co-catalyst. In the first cycle, the copper co-catalyst might serve 

as a carrier which transfers the cyanide ion between KCN and the Pd(ll) intermediate.
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The second cycle involves the activation of the substrate through Pd(0)-mediated 

oxidative addition-transmetallation-reductive elimination (Scheme 22).

ArCN

KCN

KOTf ArOTf

M=Co-catalyst

Scheme 22. Proposed mechanism of palladium-catalysed cyanation of aryl triflates in 

the presence of a copper iodide co-catalyst.196

Takagi et a/.197 pointed out that an excess of cyanide ions in solution inhibits the 

catalytic cycle. The excess cyanide reacts with palladium(ll) species, forming inactive 

Pd(ll) cyano compounds, which cannot be reduced to the active palladium(O) species. 
As a consequence the palladium catalyst is deactivated. It is proposed that the 

incomplete conversion of triflate 82 to the nitrile 72 was a result of high levels of 

dissolved KCN in solution, which in turn induced catalyst deactivation.

The use of Zn(CN)2 in cyanation reactions has become widespread, as it is less soluble 

in DMF than are KCN or NaCN.198 The reagent system Zn(CN)2, Pd(PPh3)4 in DMF has 

recently been shown to be efficient for the cyanation of aryl triflates.199 The reaction 

conditions Zn(CN)2 / Pd(PPh3)4 / DMF / 150°C were employed for the cyanation of 
compound 82. The conversion rate of the triflate 82 to the nitrile 72 was significantly 

improved. Column chromatography gave 72 in 73% yield. It is proposed that the 

Zn(CN)2 source might facilitate the cyanation reaction by providing a species which 

functions more efficiently in the transmetallation step with Pd(ll) than does either NaCN 

or KCN.
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Conversion of the nitrile 72 to the corresponding carboxamide 80 was achieved using 

sodium hydroxide and hydrogen peroxide. With quinoline-8-carboxamide now formed, 
efforts were focused on transforming 80 into a viable cross-coupling partner for the 

Suzuki-Miyaura reaction. Initially, quinoline-8-carboxamide was treated with NIS in 

boiling acetic acid to give 77 in 26% yield. 3-lodoquinoine-8-carboxamide was 

synthesised previously in 43% yield in route (III). It was proposed that the low yield of 

the iodination reaction was due to the deactivating effect of the carboxamide moiety. 

An optimisation study was carried out on the iodination of quinoline-8-carboxamide and 

the results are presented in Table 8. Even though iodination of aromatic compounds is 

a useful reaction for providing the precursors to organometallic species, there are still a 

limited number of protocols describing the iodination of deactivated aromatic 

compounds. Due to its low electrophilicity, elemental iodine is sometimes incapable of 

direct iodination of even electron-rich substrates. In contrast, iodine monochloride (ICI) 

is reported to be successful in the iodination of electron-deficient aromatic substrates. 

However, treatment of quinoline-8-carboxamide with ICI in acetonitrile failed to give the 

required product and only unreacted 80 was recovered from the reaction. Johnsson et 

al.200 reported the mild iodination of aromatic compounds using ICI in combination with 

the Lewis acid ln(OTf)3. On the basis of these results, we decided to investigate the 

activating properties of various Lewis acids towards the iodination of quinoline-8- 
carboxamide. Firstly, quinoline-8-carboxamide was treated with ICI and ln(OTf)3 in 

acetonitrile at room temperature for 5 h. TLC analysis failed to show the formation of 

the product spot. Consequently, the reaction mixture was then heated at 80°C for 12 h. 
However, a 1H NMR spectrum of the crude mixture indicated that only the starting 

material was present. Even when lnCI3 and FeCI3 were used as the Lewis acid catalyst, 
the iodination reaction failed.

Our attention then focussed on enhancing the electrophilicity of NIS for the reaction 

with the electron-deficient quinoline-8-carboxamide. Castanet et al.20' demonstrated 

that the iodination of electron-rich aromatics could be achieved using a combination of 
NIS and catalytic amounts of trifluoroacetic acid (TFA). Iodine trifluoroacetate 83 was 

proposed as the active species for the iodination reaction and was generated in situ 

upon treatment of NIS with TFA (Scheme 23). We were curious if the electrophilic 

nature of iodine trifluoroacetate could be extended to the iodination of the deactivated 

quinoline-8-carboxamide substrate. We considered that the highly reactive iodine 

trifluoroacetate would enhance the iodination of 80 through an electrophilic solvation 

effect. However, treatment of compound 80 with the NIS/TFA system failed to give the 

desired product and only unreacted starting material was recovered.
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Table. 8 The iodination properties of ICI and NIS in combination with various Lewis 

acids.

Starting
material

Iodinating
reagent

Solvent Catalyst Product Yield of 
products 
(%)

80 NIS AcOH None 77 26

80 ICI MeCN None - -

80 ICI MeCN lnCI3 - -

80 ICI MeCN ln(OTf)3 - -

80 ICI MeCN None - -

80 NIS None TFA - -

80 NIS MeCN TFA - -

80 NIS AcOH lnCI3 77 31

80 NIS AcOH FeCI3 77 40

80 NIS AcOH a ic i3 77 34

n— | + CF3CO2H

Scheme 23. Proposed formation of the iodine trifluoroacetate active species.201

Finally, the iodinating capability of the NIS/AcOH acid system in combination with 

various Lewis acids was investigated. Initially, quinoline-8-carboxamide was treated 

with NIS and 5 mol% of FeCI3 in AcOH and the reaction mixture was boiled under 

reflux for 24 h. 3-lodoquinoline-8-carboxamide was isolated in 40% yield and was fully 

characterised by NMR spectroscopy. In contrast, reaction of 80 with NIS in the 

presence of lnCI3 and AICI3 gave 77 in 31% and 34% yield respectively. Indicating that 

the NIS/FeCI3 system is superior for compound 80. The success of the reaction may 

involve the coordination of the Lewis acid (FeCI3) with the carbonyl oxygen of NIS 

thereby increasing the reactivity of the iodine atom (Scheme 24).
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Fe.

rC-i

H

Scheme 24. Proposed mechanism for the Lewis acid-catalysed iodination of quinoline- 

8-carboxamide with NIS as the iodinating reagent.

3-lodoquinoline-8-carboxamide serves as a vital synthetic precursor for the formation of 

C-C bonds through palladium-catalysed cross-coupling reactions (Scheme 25). There 

are three main advantages of using palladium cross-coupling reactions:

(1) Ready availability of starting materials.
(2) Simplicity and generality of the cross-coupling methods.

(3) The broad tolerance of palladium catalysts towards various functional groups.

Due to the synthetic power of the cross-coupling reactions, we believe that this type of 
method is well suited for the synthesis of libraries of 3-substituted quinoline-8- 
carboxamides. A wide diversity of substituents may be introduced into the 3-position 

via organometallic reagents such as organoboranes (Suzuki-Miyaura reaction), organo- 

zincs (Negishi reaction) and organostannanes (Stille reaction). It is also possible to 

cross-couple alkynes (Sonogashira reaction), amines (Buchwald-Hartwig reaction), 
alkenes (Heck reaction) and cyanide (palladium catalysed cyanation) with aryl iodides.
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Scheme 25. Proposed palladium-catalysed cross-coupling reactions with 3-iodo- 
quinoline-8-carboxamide 77.

3.4.2 The Suzuki-Miyaura coupling reaction

As discussed previously in Section 3.2.2, the Suzuki-Miyaura coupling reaction plays a 

vital role in the synthesis of the 3-substituted quinoline-8-carboxamide targets. It offers 

the formation of CSprCSp2 bonds through the metal-catalysed reaction of an arylboronic 

acid with an aryl halide, triflate or sulfonate. The key advantages of the Suzuki-Miyaura 

coupling reaction are the mild reaction conditions and the commercial availability of the 

boronic acids that are safer than other organometallic reagents. The inorganic by­
products are non-toxic and can be easily removed from the reaction mixture. A catalytic 

cycle for the transition metal-catalysed cross-coupling of organic halides and organo- 
boranes is shown in Scheme 26, and includes three steps. The first step involves the 

oxidative addition of the catalyst to the aryl halide to form the organopalladium halide 

Ar1[Pd]X, and is often the rate-determining step in the catalytic cycle. Secondly, 
transmetallation of an arylboronic acid gives a diarylated palladium complex Ar^PdJAr1, 

and finally reductive elimination forms the biaryl product and the palladium(O) catalyst,
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which re-enters the catalytic cycle. It is unlikely that organoboranes participate in the 

catalytic cross-coupling reaction, since they are only weakly nucleophilic and lack 

sufficient reactivity to transmetallate to palladium. It is reported that the addition of a 

base has a remarkable effect on the transmetallation rate of organoboranes. Sodium 

carbonate is the most commonly used base. However, Na2C03 can be ineffective with 

sterically demanding substrates and often other bases are used such as K2C03, 

Cs2C03, and Ag20.

Reductive
Elimination

Oxidative
Addition

Na

Transmetallation NaX
Ar2B(OH>2 0 H  . Ar2B(OH):

Scheme 26. General catalytic cycle for the Suzuki-Miyaura coupling of aryl halides with 

arylboronic acids.202

Tetrakis(triphenylphosphine)palladium(0), Pd(PPh3)4, is the most widely used catalyst 
in Suzuki-Miyaura reactions. Recent advances in Suzuki-Miyaura coupling reactions 

have focused on increasing the reactivity and stability of the metal catalyst through 

ligand modification. Examples of catalysts include: tris(dibenzylidene)dipalladium(0) 
acetone, Pd2(dba)3, palladium(ll) acetate, Pd(OAc)2 and [1,1'-bis(diphenylphosphino)- 

ferrocene] dichloropalladium(ll), PdCI2(dppf).

Recent improvements in Suzuki-Miyaura coupling reactions have relied on the 

increased reactivity and stability of metal catalysts by employing supporting ligands. 

Phosphine-based ligands are the most commonly used, although many other ligands 

have proved effective for a variety of substrates.187 A recent publication by Buchwald 

and co-workers203 reported that the Suzuki-Miyaura coupling of aryl chloride 84 with the 

electron-deficient arylboronic acid 85 was aided by the use of the phosphine ligand 2- 

(2',6'-dimethoxybiphenyl)dicyclohexylphosphine, SPhos.
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F,C Cl +  SP2hosba)3 / 3 C

K3PO4
Toluene

84
F
85

Scheme 27. Reported Suzuki-Miyaura coupling of 84 with the electron deficient 2,3- 

diflurophenylboronic acid.203

A variety of heterocyclic halides have been coupled with boronic acids, including 

thiophenes, thiazoles, pyridines, quinolines, pyrimidines and pyrazines.204 However, 
there have only been a small number of reports of Suzuki-Miyaura reactions involving 

N-heterocyclic systems containing a carboxamide functionality. Shao et a/.205 reported 

the synthesis of a series of 6-[4-(4-fluorophenoxy)phenyl]pyridine carboxamides using 

the Suzuki-Miyaura coupling reaction (Scheme 28). The bromo- and chloro- pyridine 

carboxamides 87 and 88 were coupled with 4-(4-fluorophenoxy)phenylboronic acid to 

give compounds 89 and 90 in 18% and 40% yield respectively. In contrast, our 

quinoline-8-carboxamide precursor contains an iodo substituent that should aid the 

Suzuki-Miyaura coupling reaction.

\NH,

87: 2-carboxamide, X=Br \ =  
88: 3-carboxamide, X=CI

Pd(PPh, 4
dmexh2o 
Na26c>3

B(OH)2

89: 2-carboxamide 
90: 3-carboxamide

Scheme 28. Reported synthesis of 6-[4-(4-fluorophenoxy)phenyl]pyridine carbox­
amides.205

Recently, Sicre et al.206 reported the regioselective Suzuki-Miyaura coupling of aryl and 

alkenyl boronic acids with 2,4-dibromopyridine. It was demonstrated that oxidative 

addition to Pd(0) selectively occurred at the 2-position of the pyridine ring. This 

regioselectivity can be explained by the difference in the electronic properties between 

the carbon centres with bromine atoms attached (C2 and C4).
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3.4.3 Suzuki-Miyaura coupling of 3-iodoquinoline-8-carboxamide with aryl and
heteroaryl boronic acids

For the arylation of 3-iodoquinoline-8-carboxamide 77, we initially chose a standard 

Suzuki-Miyaura reaction protocol: reflux in toluene / EtOH / H20  solution with Na2C03 

and Pd(PPh3)4. To evaluate the scope and limitations of this protocol, the cross­
coupling of 77 with a wide variety of aryl and heteroaryl boronic acids was carried out. 

The results are shown in Table 9. Arylboronic acids with electron-donating groups such 

as OCH3 and CH3 coupled with compound 77 in excellent yields (65-95%). In 

comparison, arylboronic acids with electron-withdrawing groups such as Br and CN 

afforded much slower cross-coupling rates.

The Suzuki-Miyaura coupling reactions with trifluoromethylphenylboronic acids were 

also successful. The cross-coupling of 77 with both meta- and para- 

trifluoromethylphenylboronic acids gave compounds 94 and 95 in 43% and 38% yield 

respectively. However, the coupling of 77 with o/fho-trifluoromethylphenylboronic acid 

gave compound 96 in a much lower yield of 27%. The low yield obtained by the ortho 

substituent was as anticipated. In the transmetallation step of the Suzuki-Miyaura 

catalytic cycle, the aryl group is transferred from the metal boron to the metal palladium 

system generating the aryl-Pd-arylB(OH)2 intermediate. The formation of this 

intermediate is sterically hindered by the ortho substituent of the arylboronic acid and 

the reaction is reduced. The last step, the reductive elimination, is probably also slowed 

because of this reason.

The presence of the CF3 group in compounds 94-96 was determined using 19 F NMR 

spectroscopy. Fluorine is monoisotopic with a nuclear spin of I = Yt so that organic 

fluorine compounds lend themselves to fluorine NMR spectroscopy. The meta 

compound 94 gave a singlet at 5 -62.56 which corresponds to the three fluorine atoms 

in the CF3 group. Similarly, in the para compound 95 a singlet at 5 -60.92 was 

observed. However, the presence of an ortho substituent dramatically affected the 

chemical shift in the 19F NMR spectrum with a singlet peak observed at 8 -56.70. The 

19F chemical shifts for compounds 94-96 suggest that the quinoline nitrogen acts as an 

electron-withdrawing group and is mefa-directing. The 19F chemical shift signal of the 

meta compound 94, is slightly more downfield than the 19F chemical shift signals of 
compounds 95 or 96. Thus, it appears that the quinoline nitrogen removes electrons 

from the ortho and para positions, leaving the meta position with the greatest electron 

density.
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Table 9. Suzuki-Miyaura coupling of 3-iodoquinoline with aryl and heteroaryl boronic

acids. (-) denotes unsuccessful attempts.

CONH

+ R-B(OH)2
Pd catalyst

base
solvent

Compound
number

Reaction conditions Yield of 
products (%)

69

91

92

X

Pd(PPh3)4) toluene, 
EtOH, H20,Na2C 03 
Pd(OAc)2, SPhos, 
toluene, K3P 04

Pd(PPh3)4, toluene, 
EtOH, H20,Na2C 03

Pd(PPh3)4, toluene, 
EtOH, H20,Na2C 0 3

78

93

95

65

93

94

95

96

97

98

X

X v

Pd(PPh3)4, toluene, 41
EtOH, H20,Na2C 03 
Pd(PPh3)4,K2C 03,THF, 48 
H20
Pd(OAc)2, SPhos, 78
toluene, K3P 04

Pd(PPh3)4, toluene, 
EtOH, H20, Na2C 03

Pd(PPh3)4, toluene, 
EtOH, H20, Na2C 03

43

Pd(PPh3)4, toluene,
EtOH, H20, Na2C 03 ^

Pd(PPh3)4, toluene, 97
EtOH, H20 , Na2C 03 “

Pd(PPh3)4, toluene, « 
EtOH, H20 , Na2C 03

41

CONH
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Table 9. Ctd

Compound
number

Reaction conditions Yield of
_________ products (%)

99

100

101

102a

■%l

X

X Br

T)H

* '  '

Pd(PPh3)4) toluene, 
EtOH, H20 ,Na2C03 
Pd(PPh3)4, DMF, 
Na2C 03

Pd(PPh3)4, Na2C 03, 
THF, H20  
Pd(PPh3)4, DMF, 
Na2C 03

Pd(PPh3)4, DMF, 
Na2C 03

Pd(PPh3)4, toluene, 
EtOH, H20, Na2C 03 
Pd(PPh3)4, Na2C 03, 
THF, H20  
Pd(PPh3)4, K2C 03, 
THF, H20

Pd(PPh3)4, K2C 03i 
THF, H20  
Pd(OAc)2) SPhos, 
toluene, K3P 04

Pd(PPh3)4, K2C 03i 
THF, H20  
Pd(OAc)2, SPhos, 
toluene, K3P 04

Pd(PPh3)4, K2C 0 3> 
THF, H20

Pd(PPh3)4, toluene, 
EtOH, H20, Na2C 03 
Pd(PPh3)4, K2C 03, 
THF, H20

Pd(PPh3)4, DMF, 
Na2C 03

26

40

52

The cross-coupling of 77 with 3- and 4-pyridylboronic acids using the standard reaction 

conditions failed to give the required products. It appeared that the failure of both these 

reactions was due to the poor solubility of the pyridylboronic acids in toluene. However, 

upon switching the solvent to DMF, the desired products were formed in moderate
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yields. Treatment of compound 77 with pyrimidine-5-boronic acid, Pd(PPh3)4 and 

Na2C03 in DMF failed to give the desired coupling product. It was expected that the 

electron-deficient pyridyl and pyrimidine boronic acids would be difficult coupling 

partners as they are less nucleophilic relative to electron-neutral boronic acids such as 

phenylboronic acid. Therefore, the transmetallation of the aryl-Pd-l complex is slowed, 

which, in turn retards the entire catalytic cycle.

In an attempt to investigate further the binding properties of the 3-substituted quinoline- 
8-carboxamides with the enzyme active site, the standard Suzuki-Miyaura protocol was 

applied to a series of substituted methylphenylboronic acids. Unfortunately the reaction 

of compound 77 with 3- and 4-(hydroxymethyl)phenylboronic acids did not give the 

required products and only starting material was recovered from the reactions. 
Additionally, we were unable to couple compound 77 with benzylboronic acid and 3- 

(bromomethyl)phenylboronic acid.

Surprisingly, the Suzuki-Miyaura coupling of 77 with 4-(bromomethyl)phenylboronic 

acid in toluene / EtOH gave 3-(4-(ethoxymethyl)phenyl)quinoline-8-carboxamide 103 as 

a white solid. Evidence for the formation of compound 103 was obtained by the 

presence of the OCH2 group in the 1H NMR spectrum, which was observed as a singlet 

at 5 4.59. The CH2 protons of the ethyl group in 103 were observed as a quartet at 8 

3.60 with a vicinal coupling constant of 7.2 Hz. The CH3 protons were split into a triplet 

and were observed at 8 1.28. A possible mechanism for the formation of compound 

103 is illustrated in Scheme 29. It is proposed that the Suzuki-Miyaura coupling 

reaction between 4-(bromomethyl)phenylboronic acid and 77 initially gives 3-(4- 
bromomethylphenyl)quinoline-8-carboxamide 101. The ethanol solvent then acts as a 

nucleophile and attacks the methylene carbon in 101. Ethanol then replaces bromide 

and forms the ether 103. This displacement is facilitated by the presence of the base 

Na2C03.

The Suzuki-Miyaura reaction conditions were modified, omitting ethanol, in an attempt 

to overcome this problem. The cross-coupling of 4-(bromomethyl)phenylboronic acid 

with 77 was repeated using Pd(PPh3)4 and K2C03 in THF and water. However, 

compound 101 was only isolated in 2% yield. However, it was possible to recover 33% 

yield of unreacted starting material from the cross-coupling reaction.
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Scheme 29. Proposed mechanism for the formation of compound 103.

As mentioned previously, Buchwald and co-workers203 developed the ligand ‘SPhos’ 

which has applications to the Suzuki-Miyaura coupling of difficult substrates, including 

aryl chlorides, under mild conditions. However, the reaction of 3-(bromomethyl)phenyl 
and 4-(hydroxymethyl)phenylboronic acids with compound 77 using the Buchwald 

protocol: SPhos / toluene I Pd(OAc)2 1 K3PO4 failed to give the required products and 

only unreacted starting material was recovered.

Treatment of phenyl and 4-methylphenylboronic acids with 77 using the Buchwald 

protocol significantly increased the rate of the cross-coupling reaction. An increase 

from 41% (standard protocol) to 78% (Buchwald protocol) was found for compound 93. 
The efficiency of the ‘SPhos’ ligand in the formation of compound 93 can be explained 

by both electronic and steric factors (Figure 15). The ‘SPhos’ ligand contains the 

electron rich trialkylphosphine PCy2 moiety which facilitates oxidative addition much 

more readily than the less electron-rich triarylphosphine ligand. The ortho substituents 

in ‘SPhos’ may also provide a stabilising interaction between the aromatic tt system 

and one of the palladium d-orbitals, thereby increasing the steric bulk around the 

palladium metal, which promotes reductive elimination.203

The Buchwald protocol also has the added advantage that it requires a much lower 

catalyst loading than the standard Suzuki-Miyaura protocol. There are certain 

advantages of performing cross-coupling reactions at low catalyst loadings. Firstly, it 
allows for the more cost-effective use of the Suzuki-Miyaura reaction on a large scale. 
Secondly, it minimises the effort required for the removal of palladium from the final 
product.
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Electron-rich moiety may 
facilitate oxidative addition

Ortho substituents increase steric bulk 
Oxygen lone pairs may stabilise Pd 
complex

Figure 15. Electronic and steric properties of the ‘SPhos’ ligand.

Due to the difficulties encountered in the coupling of 77 with benzyl boronic acid, we 

decided to turn our attention to the synthesis of the alkenyl compound (E)-3-(2- 

phenylethenyl)quinoline-8-carboxamide.

The palladium-catalysed vinylation of aryl halides is most commonly carried out via the 

Heck cross-coupling reaction. The Heck reaction usually proceeds through an addition- 
elimination cycle such that the reactant and product have sp2 hybridisation at the site of 
substitution. However, there is one severe limitation associated with this reaction. 
During the Heck catalytic cycle, reversible p-hydride elimination can lead to 

isomerisation of the alkene. Bumagin et a/.207 discovered that the Heck coupling of 3- 
bromoquinoline 104 and styrene 105 provided a mixture of E  and Z isomers (Scheme 

30). Other authors have also demonstrated the poor selectivity of the (3-hydride 

elimination step. Consequently, the Heck reaction was not chosen for the synthesis of 
(E)-3-(2-phenylethenyl)quinoline-8-carboxamide.

Br
+ PdCI2(PPh3)2

Bu3N
h2o +

104 105

Scheme 30. Reported Heck coupling of 3-bromoquinoline with styrene.207
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Recently, there have been publications on the use of the Suzuki-Miyaura reaction for 
stereospecific cross-coupling of aryl halides with (£)-2-phenylethenyl boronic acid. 

Buchwald and co-workers203 demonstrated that 2-bromomesitylene could be 

stereospecifically coupled with (E)-2-pheny!ethenyl boronic acid to give the trans 

product in 99% yield. Due to the promising results obtained by Buchwald and co­
workers, we decided to use the Suzuki-Miyaura coupling reaction to synthesise (E)-3- 
(2-phenylethenyl)quinoline-8-carboxamide. It was found that the (E)-2-pheny!ethenyl 

boronic acid was not soluble in the standard Suzuki-Miyaura reaction conditions and 

the solvent was switched to DMF. The coupling of 77 with (E)-2-pheny!ethenyl boronic 

acid gave (E)-3-(2-phenylethenyl)quinoline-8-carboxamide 102a in 52% yield. The 1H 

NMR spectrum of the isolated product in CDCI3 showed doublet peaks at 8 7.28 and 6 

7.35 with a mutual coupling constant of 19 Hz, confirming the formation of the E 

isomer. The NMR tube was then left in direct sunlight for two days. Interestingly, when 

the 1H NMR spectrum was retaken after this time period, two doublets corresponding to 

the Z isomer 102b were observed at 8 6.80 with a coupling constant of 10 Hz. By 

comparison with the original 1H NMR spectrum, the conversion ratio of 102a to 102b 

was estimated to be 4:1 E:Z. Column chromatography failed to separate 102a from 

102b.

It is generally known that the interconversion of E and Z alkenes is possible by 

breaking the TT-bond allowing rotation to occur. In order to break the TT-bond and 

promote the electron from the HOMO to LUMO, a considerable amount of energy is 

required. It is plausible that shining direct sunlight onto compound 102a would provide 

enough energy to promote an electron from its bonding t t  molecular orbital to its 

antibonding t t *  orbital, consequently breaking the i t  bond and allowing rotation to occur 
(Scheme 31). It is known that Suzuki-Miyaura coupling reactions usually progress with 

complete retention of stereochemistry at the alkene. Therefore, we concluded that the 

Suzuki-Miyaura coupling reaction stereospecifically gave the E isomer 102a and that 
the formation of the Z isomer 102b was due to a photoisomerisation reaction.
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Scheme 31. Photo-induced conversion of 102a to 102b.

3A A  Attempted Suzuki-Miyaura coupling of 3-iodoquinoline-8-carboxamide with 

alkylboronic acids

The Suzuki-Miyaura methodology was extended to investigate the coupling of 3- 
iodoquinoline-8-carboxamide 77 with alkylboronic acids. Accounts of the Suzuki- 

Miyaura coupling of alkylboronic acids with aryl halides are sporadic and the reported 

yields of products are usually very low. A similar situation exists for the coupling of aryl 
halides with alkylboronic esters, where low yields of products have been obtained 

unless highly toxic thallium compounds were used as bases in the reaction.208 With 

alkylboronic acids the most encouraging results have been described with Pd(PPh3)4209 
or PdCI2(dppf)210 conditions. Zou et a/.211 have reported the successful cross-coupling 

of alkylboronic acids with a variety of aryl and alkenyl halides. They showed that the 

palladium-catalysed reaction was significantly enhanced by using the additive Ag20 in 

combination with K2C03 and PdCI2(dppf).

Attempts were undertaken to synthesise a variety of 3-alkylquinoline-8-carboxamides 

using the conditions described in Table 10. Unfortunately, none of the reaction 

conditions proved sufficient to activate the alkylboronic acids towards the 

transmetallation reaction.
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Table 10. Reaction conditions for the attempted cross-coupling of 77 with alkylboronic

acids.

Boronic 
acid________

Reaction conditions Results3

Methyl Pd(PPh3)4, toluene, EtOH, H20, 
Na2C 03
PdCI2(dppf), Na2C 03, THF,Cs2C 03, 
H20
Pd(PPh3)4, 1,4-dioxane, K2C 03 
Pd(OAc)2, Sphos, toluene, K2P 04

starting material 77

starting material 77

decomposition
decomposition

Isobutyl Pd(PPh3)4, toluene, EtOH, H20, 
Na2C 03
PdCI2(dppf), Na2C 03, THF, H20  
Pd(PPh3)4, 1,4-dioxane, K2C 03 
Pd(PPh3)4, 1.THF, K2C 03 
PdCI2(dppf), K2C 0 3, THF, Ag20

starting material 77

starting material 77 
starting material 77 
starting material 77 
starting material 77

Isopropyl

a  -T-I___ _________ x : _____

Pd(PPh3)4, toluene, EtOH, H20, 
Na2C 03

starting material 77 

_______________ u . .  tttk

spectroscopy.

3.4.5 Stille coupling reaction

Due to the failure of the Suzuki-Miyaura reaction to provide a series of 3-alkylquinoline- 

8-carboxamides, we directed our attention to the use of the Stille cross-coupling 

reaction. The Stille reaction is a versatile C-C bond forming reaction, which involves the 

coupling of an aryl or alkenyl halide with an organostannane reagent. The use of the 

Stille reaction for the construction of substituted heterocyclic compounds has been 

widely reviewed212 and has simplified the synthesis of many medicinal products. 

However, there are two major drawbacks to the Stille reaction: (1) Removal of tin 

residues from the product after the reaction can prove tedious (2) Organostannane 

compounds are quite toxic and special care is needed when handling these 

compounds. Nevertheless, the use of organostannane reagents in our experiment is 

advantageous as they are compatible with electrophiles that contain sensitive 

functional groups, such as carboxamide.
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CONH2 conh2

Transmetallation

ISn(CH3)3 Sn(CH3)4

Scheme 32. Proposed mechanism for the Stille coupling reaction between 3- 
iodoquinoline-8-carboxamide 77 and tetramethylstannane.

The Stille coupling reaction between 3-iodoquinoiine-8-carboxamide 77 and tetra­
methylstannane was therefore attempted. The reaction was carried out in A/- 
methylpyrrolidinone (NMP) in the presence of (10 mol%) Pd(PPh3)4. Remarkably, the 

Stille reaction gave 3-methylquinoline-8-carboxamide 106 in 40% yield. The presence 

of the characteristic N-H peaks at 8 6.20 and 8 10.99 in the 1H NMR spectrum of 
compound 106 indicated that the carboxamide functionality was well tolerated in the 

Stille reaction.

As with the Suzuki-Miyaura reaction, the Stille reaction probably operates by an 

oxidative addition-transmetallation-reductive elimination mechanism, as illustrated in 

Scheme 32. A unique feature of the Stille coupling mechanism is that no base is 

required to activate the organostannane reagent. However, in the Suzuki-Miyaura 

coupling reaction, the organoboron reagent must be activated, for example with a base, 
to facilitate the transmetallation process.
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The Stille reaction was extended to explore the coupling of 77 with alkynyl, benzyl and 

alkenyl organostannane reagents (Table 11).

Table 11. Stille cross-coupling of 77 with organostannane reagents. (-) denotes 

unsuccessful attempts.

I

N

co n h2

RSnBu3
Pd(0)

CONH2

Compound
number

R Reaction conditions Yield of 
products
(%)

107 MeC=C P d (P P h 3)4, N M P 39

- P d (P P h 3)4, N M P -

111
n /  N /  1

h 2c =c h
>

P d 2d b a 3, P P h 3, Cul, 1 ,4- 
d ioxane

55

The cross-coupling of 77 with tributyl(prop-1-ynyl)stannane gave 107 in 39% yield. 1H 

NMR and TLC analyses of the crude mixture indicated that clean coupling had 

occurred with only trace amounts of the starting tributyl(prop-1-yny!)stannane present 

in the mixture. Analytically-pure 107 was isolated as a pale-buff solid by column 

chromatography. The IR spectrum of 107 showed a distinct peak at 2363 cm'1 

corresponding to the triple bond of the alkyne group. Particularly characteristic in the 

13C spectrum are the signals of the alkyne carbons at 8 90.6 and 5 118.3. Interestingly, 

even though the starting organostannane reagent contains four substituents around the 

tin atom, only the alkynyl group was transferred to the substrate 77. This can be 

explained by the rate of ligand transfer which proceeds as follows: 

alkynyl>akenyl>allyl=benzyl>alkyl.212 Therefore, the tributylstannane group (SnBu3) is 

generally transferred intact during the Stille reaction.

Organostannanes can be prepared by the reaction of an organometallic reagent such 

as lithium or magnesium with an organostannane electrophile. Tributylbenzylstannane 

was not commercially available and was prepared by the reaction of benzyl magnesium 

chloride 108 with tributylstannyl chloride 109 (Scheme 33). The mixture was stirred in 

dry THF for 30 min at room temperature. Aqueous work up and column
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chromatography afforded 110 as a yellow oil. Treatment of compound 77 with 

tributylbenzylstannane and Pd(PPh3)4 in NMP gave a mixture of coupled products. The 

1H NMR spectrum of the crude mixture indicated that the starting material had been 

consumed in the reaction. However, it proved impossible to separate the cross­

coupling products by column chromatography. The difficulty in the purification of the 

crude reaction mixture could be due to the low volatility and poor water solubility of the 

organostannane compound.

MgCI

110

Scheme 33. Synthesis of tributylbenzylstannane 110.

Farina et a l213 reported the Stille coupling of iodobenzene and tributylethenylstannane 

using tris(dibenzylideneacetone)dipalladium (Pd2dba3), Cul, triphenylphosphine (PPh3) 

in dioxane. They reported that the presence of a co-catalytic copper salt dramatically 

improved the cross-coupling reaction. This system was therefore thought appropriate 

for the coupling of 77 with tributylethenylstannane. In the reaction, the catalyst was 

generated in situ from Pd2dba3 and used in conjunction with the ligand 

triphenylphosphine. The Stille coupling of 77 with tributylethenylstannane gave 111 in 

55% yield. In the 1H NMR spectrum of compound 111, the alkenic protons were 

observed at 5 5.50, 5 6.60 and 5 6.89. A cis coupling constant of 11.0 Hz and a trans 

coupling constant of 17.6 Hz was observed for the terminal vinyl group in 111 (Figure 

16).

111

Figure 16. Structure of compound 111 and proton coupling constants (J).
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The exact role of the copper iodide salt in the Stille coupling reaction is not fully 

understood. It is proposed that the copper effect could be explained by the ‘ligand 

association mechanism’ as demonstrated in Scheme 34. Presumably, the active 

species 113 is formed by loss of a triphenylphosphine ligand from the initial 
palladium(ll) species 112 that is generated after oxidative addition. The triphenyl­

phosphine ligand is a strong electron donor and allows only minute concentrations of 
the reactive species 113 at equilibrium. Ligand dissociation from 112 is a key factor in 

the transmetallation step. Since the copper iodide salt has a high affinity for 
phosphines, it may function to facilitate the loss of the ligands which would otherwise 

cause an inhibitory effect.

PPh<

CONH2 co nh2

PPh-

CONH2
112 113

excess PPh3 S=Solvent
+
Cul

ICu(l)(PPh3)

Scheme 34. Proposed mechanism for the copper effect on the Stille coupling of 
tributylethenylstannane with 3-iodoquinoline-8-carboxamide 77.213

3.4.6 Sonogashira coupling reaction

The Sonogashira reaction involves the formation of CSp2-CSp bonds through the reaction 

of an aryl halide or triflate with terminal alkynes under palladium-catalysed conditions. 

The electron-rich nature and rigidity of the CsprCsp bond make alkynes structurally 

appealing. The alkyne moiety also provides a point of unsaturation for further 
transformation and / or derivatisation. A wide variety of heterocyclic compounds has 

been synthesised using the Sonogashira approach. The reaction is highly versatile and 

has a great tolerance for a range of functional groups. Consequently, we decided that 
the Sonogashira reaction would be appropriate for the introduction of alkyne 

substituents into the 3-position of quinoline-8-carboxamide. In order to establish 

whether 3-iodoquinoline 77 would be a good coupling substrate in the Sonogashira 

reaction, it was decided to synthesise 3-ethynylquinoline-8-carboxamide 114.
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A direct synthesis to alkyne 114 would be to couple 77 with ethyne gas. A major 
drawback to this synthetic strategy is that the alkyne 114 formed in the reaction may be 

more acidic than ethyne itself. This means that compound 114 may compete with 

ethyne for the coupling of the substrate 77. Subsequently, this could lead to the 

formation of the by-product 115.
c o n h 2

■H
Pd(0)

catalyst
CONH2

114

Scheme 35. Formation of by-product 115 from the Sonogashira coupling of 3- 
iodoquinoline-8-carboxamide 77 with alkyne 114.

Gulykina et a/.214 reported the synthesis of 3-ethynylquinoline using Sonogashira 

conditions. They approached their synthesis by first protecting one end of ethyne with a 

trimethylsilyl (TMS) group. Coupling of the free ethyne end with 3-bromoquinoline 116 

afforded 117 in 96% yield. Deprotection of 117 was achieved under basic conditions 

(Scheme 36). Therefore, an alternative method for the synthesis of alkyne 114 would 

be to couple 77 with trimethylsilylethyne, followed by TMS-deprotection of the resultant 

alkyne.

M eO H

Cul
116 117

Scheme 36. Reported synthesis of 3-ethynylquinoline.214

Sonogashira coupling of 77 with trimethylsilylethyne was performed in the presence of 

a catalytic amount of bis(triphenylphosphine)palladium(ll) chloride Pd(PPh3)2Cl2 and 

copper(l) iodide in diisopropylamine (DIPA) and dry THF. The mixture was stirred at 

45°C under argon for 2 h. The catalyst used in this reaction, Pd(PPh3)2CI2 was 

prepared by treating palladium(ll) chloride with two equivalents of triphenylphosphine in
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DMF at 80°C for 24 h. Pd(ll) complexes are often used in the Sonogashira reaction as 

they are usually more stable and less sensitive to air than their Pd(0) counterparts. It is 

known that triphenylphosphine ligands and amines such as DIPA can reduce Pd(ll) 
complexes to the active Pd(0) species. The presence of the copper(l) iodide co-catalyst 

has been shown to accelerate greatly the Sonogashira reaction, thus enabling 

performance of the alkynylation under mild reaction conditions.

The exact mechanism of the co-catalysed Sonogashira reaction has yet to be 

established. However, it is believed that the reaction proceeds through two 

independent catalytic cycles as shown in Scheme 37. The mechanism is similar to that 

of the Suzuki-Miyaura and Stille couplings. Initially, the Pd(PPh3)2CI2 is reduced in situ 

to give the catalytic species bis(triphenyiphosphine)palladium(0). Oxidative addition of 
the aryl iodide 77 to the Pd(0) complex gives the Pd(ll) intermediate. The next step is 

the rate-determining step in which the palladium-cycle connects with the copper co­
catalyst cycle. Transmetallation of the Pd(ll) intermediate with the copper acetylide 

species 118 gives the diorgano-Pd(ll)-complex 119. Reductive elimination with 

coupling of two organic ligands gives the final coupled alkyne 120 with regeneration of 

the Pd(0) catalyst.

The catalytic copper cycle is still poorly understood. It is believed that the base (DIPA) 
abstracts the acetylenic proton from the terminal alkyne, thus forming copper acetylide 

species 118 in the presence of copper(l) iodide. A second proposal is that a Tr-alkyne- 

copper complex shown in Scheme 37 is involved in the copper-cycle, thus making the 

alkyne proton more acidic for easier abstraction.215 Mechanistic studies, however, 
have not been reported yet. The alkyne 120 was obtained in 62% yield. In the 1H NMR 

spectrum the TMS group gave a singlet at 8 0.29 integrating for 9 protons. In the IR 

spectrum a peak at 2164 cm"1 confirmed the formation of the Csp2-Csp bond.
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Scheme 37. Proposed mechanism for the Sonogashira coupling between 3- 
iodoquinoline-8-carboxamide 77 and trimethylsilylethyne.

The next step in the synthesis was to desilylate alkyne 120. Numerous methods are 

available for the deprotection of trimethylsilylethynes. Classical methods for the 

deprotection of trimethylsilylethynes include the use of excess base or the presence of 

fluoride ions under various conditions.216 Removal of TMS protection from alkynes can 

also be achieved using silver(l) nitrate in the presence of cyanide ions217 However, 
Orsini et a/.218 have recently reported the selective deprotection of trimethylsilylethynes 

with silver(l) triflate in a biphasic solvent system at room temperature, thus avoiding the 

use of excess amounts of silver and cyanide sources. Woon et a/.219 reported that
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prolonged heating of the electron-deficient methyl 3-nitro-2-(2-trimethylsilylethynyl)- 
benzoate with silver(l) triflate in a mixture of methanol, water and dichloromethane 

gave good yields of methyl 2-ethynyl-3-nitrobenzoate. The alkyne 120 was treated with 

silver(l) triflate in a mixture of methanol, water and dichloromethane at room 

temperature for 24 h. A TLC analysis indicated that only the starting material was 

present in the crude mixture. Failure to achieve desilylation of 120 at room temperature 

led to the employment of harsher reaction conditions. Prolonged heating of 120 with 

silver(l) triflate in a mixture of methanol, water and chloroform gave 114 in 99% yield. 

The use of chloroform, methanol and water mixture (4:1:7) as the solvent allowed a 

relatively high reflux temperature for the reaction. The existence of compound 114 was 

supported by mass spectrometry. In the electrospray (ES) spectrum a signal 
corresponding to 114 (mfz. = 197.0702 M+H) was observed.

The mechanism for the desilylation reaction is not fully understood. It is proposed that 
the silver counter ion (TfO') acts as a nucleophile and attacks the silicon atom of the 

TMS group upon silver activation. This results in the cleavage of the C-Si bond and to 

the in situ formation of the alkynyl silver species 121 and the silyl-triflate species 122. 

In the aqueous methanol solvent, 122 is methanolised leading to a better proton 

source, strong enough to hydrolyse the alkynyl silver species. Silver ions are released 

and the catalytic cycle is then regenerated (Scheme 38).

M e 3S i— = — R 

120

M eO H

A gO Tf

H O Tf

114
R= quinoline-8-carboxamide

Scheme 38. Proposed mechanism for the Ag+-catalysed deprotection of 3- 
((trimethylsilyl)ethynyl)quinoline-8-carboxamide 120.218
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Having established a satisfactory route to the synthesis of 114, it was decided to 

reduce the triple bond to give the ethyl compound 123 as an additional PARP inhibitor. 

The alkyne 114 was reduced to the alkyl compound 123 via catalytic hydrogenation 

with Pd/C. Surprisingly, the alkyl compound 123 was produced cleanly in 64% yield 

without the presence of alkene by-products. Evidence for the formation of compound 

123 was obtained by the presence of the ethyl group in the 1H NMR spectrum, which 

was observed as a quartet at 5 2.88 and a triplet at § 1.37.

CONH

H- -SiMe^

Pd(PPh3 )2 CI2  

DIPA

THF CO NH 2

SiMe-:

AgOTf
f l

1 ^ 1

c h c i 3 K f
MeOH N

H20 c o n h 2

77 120 114

10% Pd/C  
DMF  
MeOH  
H2

CONH

Scheme 39. Synthesis of 3-ethynylquinoline-8-carboxamide 114 and subsequent 
reduction to 3-ethylquinoline-8-carboxamide 123.

Due to the success of the Sonogashira reaction in the synthesis of alkyne 114, it was 

decided to extend the methodology further. It was proposed that 114 could be 

functionalised by acting as a coupling partner in a second Sonogashira reaction. 4- 
lodotoluene was chosen as the substrate for the reaction because it was cheap and 

commercially available. Alkyne 114 was directly coupled to 4-iodotoluene in the 

presence of Pd(PPh3)2CI2, Cul, and DIPA in THF. The mixture was stirred at 45°C 

under argon for 24 h. Purification of the alkyne 124, was achieved by washing with 

water and separation using column chromatography. Alkyne 124 was obtained in 12% 

yield. The reaction was repeated but even after several days and adding fresh reagent, 
a low yield of 9% was obtained. However, the purification only required the separation 

of the product from unreacted starting material.
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Scheme 40. Sonogashira coupling of 3-ethynylquinoline-8-carboxamide 114 with 4- 

iodotoluene.

3.4.7 Palladium-catalysed cyanation of 3-iodoquinoline-8-carboxamide

As mentioned previously, the palladium-catalysed cyanation of aryl halides and triflates 

is a useful modem method to prepare aryl cyanides. Despite the problematic cyanation 

of quinoline-8-yl trifluoromethanesulfonate 82, we decided to explore the use of 3- 
iodoquinoline-8-carboxamide 77 in the palladium-catalysed cyanation reaction. 
Compound 77 was treated with Zn(CN)2 and Pd(PPh3)4 in DMF and heated at 150°C 

for 24 h. The 1H NMR spectrum of the crude mixture indicated that only unreacted 

starting material was present. Sakamoto et al-220 reported a novel method for the 

palladium-catalysed cyanation of both Ti-deficient and iT-efficient aryl iodides. In 

particular, they managed to synthesise quinoline-8-carbonitrile in 91% yield. The 

reported synthesis of quinoline-8-carbonitrile involved the treatment of 3-iodoquinoline 

with Pd2(dba)3, 1,1'-bis(diphenylphosphino)ferrocene (DPPF), and CuCN in 1,4- 
dioxane. These reaction conditions were applied to the cyanation of compound 77 

(Scheme 41). However, treatment of 77 with CuCN in the presence of Pd2(dba)3 and 

DPPF only gave 125 in 2% yield. In the 1H NMR spectrum of compound 125 the 

chemical shift values were very similar to that of the starting material 77. This was 

expected as the cyano functional group has a similar electron-withdrawing capacity as 

the iodo group. The mass spectrum of compound 125 indicated the presence of a 

pseudo molecular ion at m/z 220, corresponding to the molecular mass of 125 plus a 

sodium ion.



CONH

Pd2(dba)3

CuCN *
DPPF
1,4-dioxane

CONH

77 125

Scheme 41. Palladium-catalysed cyanation of 3-iodoquinoline-8-carboxamide 77 with 

CuCN.

Overall, we have successfully investigated the reactivity of 3-iodoquinoline-8- 

carboxamide, under palladium-catalysed cross-coupling conditions, for the synthesis of 

a series of 3-substituted quinoline-8-carboxamides (Table 12). A variety of different 
substituents with different electronic properties have been introduced into the 3-position 

of quinoline-8-carboxamide via Suzuki-Miyaura, Stille, Sonogashira and palladium- 

catalysed cyanation reactions. A selection of these target compounds will be tested for 
their PARP inhibitory activity in vitro. The inhibitory constants and SAR studies of the 3- 
substituted quinoline-8-carboxamides will be discussed further in Section 4.1.2.
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Table 12. Small compound library of 3-substituted quinoline-8-carboxamides.

H

Compound
number

R

69 Ph
91 4-MeOPh
92 3,5-Me2Ph
93 4-MePh
94 3-F3CPh
95 4-F3CPh
96 2-F3CPh
97 3-BrPh
98 4-NCPh
99 Pyridin-3-yl
100 Pyridin-4-yl
103 4-EtOCH2Ph
101 4-BrCH2Ph
102a E-PhCH=CH
106 Me
123 Et
111 H2C=CH
114 HC=C
124 4-MePhC=C
107 MeC=C
125 CN
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3.5 2-Substituted quinoline-8-carboxamides

Following on from the successful synthesis of a range of 3-substituted quinoline-8- 

carboxamides, we decided to direct our attention to the synthesis of 2-substituted 

quinoline-8-carboxamides. As mentioned previously in Section 1.10 SAR studies by 

Griffin and co-workers170 indicated that the PARP-1 enzyme has a relatively large 

NAD+-binding pocket. In addition, SAR studies on quinazolinone PARP-1 inhibitors 

demonstrated that even bulky substituents such as 4-fluorophenyltetrahydropyridine 

were well tolerated in the enzyme active site. The 2-substituted quinoline-8- 

carboxamides are of particular interest because the 2-substituent should occupy the 

same region of space as the 2-aryl substituent in the benzimidiazole-4-carboxamides. 
Therefore, it is highly probable that 2-substituted quinoline-8-carboxamides will be well 

tolerated by the active site and may enhance PARP-1 inhibitory activity. Our initial 

approach to the preparation of 2-substituted quinoline-8-carboxamides focused on 

extending the synthetic approaches previously employed, such as organometallic 

synthesis. Thus, allowing us to explore further the synthetic potential of the palladium- 
catalysed coupling reaction in providing quinoline-8-carboxamide derivatives.

3.5.1 Attempted synthesis of 8-cyanoquinolin-2-yl trifluoromethanesulfonate

Recently, Cottet et a/-221 reported the synthesis of a series of 2,8-disubstituted quinoline 

derivatives. In particular, they demonstrated that 8-bromo-2-chloroquinoline could be 

prepared by treatment of 8-bromoquinolin-2(1H)-one with phosphorus oxychloride. 8- 
Bromoquinolin-2(1H)-one 129 emanated from an unusual Friedel-Crafts-like intra­
molecular cyclisation of £-N-(2-bromophenyl)-3-phenylpropenamide 128 with 

aluminium chloride in chlorobenzene. We proposed that compound 129 could be used 

as an intermediate for the formation of 8-cyanoquinolin-2-yl trifluoromethanesulfonate 

131. The triflate 131 functions as a scaffold through which a diverse range of 

substituents may be introduced into the 2-position of the quinoline ring via palladium- 

catalysed cross-coupling reactions. Subsequent hydration of the nitrile group should 

give the necessary carboxamide functionality. Our synthetic strategy for the preparation 

of 2-substituted quinoline-8-carboxamides is outlined in Scheme 42.
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Scheme 42. Attempted synthesis of 8-cyanoquinolin-2-yl trifluoromethanesulfonate 

131.

In our laboratory, compound 129 was synthesised in two steps. The first step was the 

preparation of £-N-(2-bromophenyl)-3-phenylpropenamide 128 by the reaction of E-3- 

phenylpropenoyl chloride 126 and 2-bromoaniline 127 to afford 128 in 97% yield. 

Treatment of 128 with the strong Lewis acid aluminium trichloride at high temperature 

led to a 41% yield of the required quinolinone 129. A proposed mechanism for this 

unusual Friedel-Crafts-like reaction in shown in Scheme 43. Lewis-acid-catalysed 

addition of the bromobenzene ring into the conjugate electrophile gives the 

intermediate dihydroquinoline. The heterocycle is aromatised by elimination of a proton 

and of molecular benzene, a highly unusual leaving group.
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Scheme 43. Proposed mechanism for the Friedel-Crafts-like cyclisation of £-N-(2- 
bromophenyl)-3-phenylpropenamide 128 using AICI3 in chlorobenzene.

A palladium-catalysed cyanation reaction on compound 129 was undertaken. Initially, 
compound 129 was treated with Zn(CN)2 and Pd(PPh3)4 and heated to 150°C for 12 h. 
Although the reaction was successful, 2-oxo-1,2-dihydroquinoline-8-carbonitrile 130 

was obtained in only 6% yield. As a result, the reaction was repeated using CuCN as 

the cyanide source. However, in this procedure, compound 130 was obtained in a 

lower yield of 5%. Further reaction of 130 was planned to give the triflate 131. It was 

hoped that subsequent Suzuki-Miyaura coupling would give compounds where R is a 

(substituted)phenyl group. However, due to the persistent low yields obtained in the 

palladium-catalysed cyanation reactions, it was decided to investigate an alternative 

strategy to the formation of 2-substituted quinoline-8-carboxamides.
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3.5.2 Synthesis of 2-aryl and 2-alkyl-quinoline-8-carboxamides

In contemplating ways to synthesise 2-substituted quinoline-8-carboxamides, we found 

that one possible strategy would be to explore the option of regioselective palladium- 
catalysed couplings on 2,8-dihaioquinolines.

Handy et al.222 described a simple guide for predicting the order and site of coupling 

(i.e. Suzuki-Miyaura, Stille and Sonogashira) in polyhaloheteroaromatics based upon 

1H NMR chemical shift values of the parent non-halogenated heteroaromatics. In 

addition, the electronic preference for oxidative addition has been reported to parallel 

that of nucleophilic aromatic substitution in heterocyclic compounds.223 Due to the 

annelated benzene ring, quinolines possess only one highly electrophilic position at the 

carbon atom 2-C. Therefore, cross-coupling reactions for which the oxidative addition is 

the rate-determining step should show a preference in favour of the most electrophilic 

carbon atom in 2,8-dihaloquinolines. Consequently, we decided to exploit the electronic 

differences between the 2- and 8- positions of 2,8-dibromoquinoline 133.

Treatment of compound 129 with POBr3 gave 2,8-dibromoquinoline 133 (synthesised 

according to the method described by Mao et al.224) in 41% yield. The 13C NMR 

spectrum of 133 demonstrated that the chemical shifts of the carbon atoms bearing a 

bromo substituent (2-C and 8-C) differ slightly (5 145.8 and 8 123.6 respectively). 

Therefore, oxidative addition to Pd(0) should preferentially occur at the 2-carbon, 
ensuring regioselective coupling. Subsequent lithium-halogen exchange reaction and 

treatment with trimethylsilylisocyanate should afford the carboxamide functionality in 

the 8-position.

To investigate the regioselectivity and efficiency of the Suzuki-Miyaura coupling 

reaction of 133 and arylboronic acids to afford 2-aryl-8-bromoquinoline, the reaction of 

133 with phenylboronic acid was chosen as a model (Scheme 44). Treatment of 133 

with phenylboronic acid under standard Suzuki-Miyaura conditions gave the 

monocoupled product 134 in 43% yield. The 13C NMR spectrum of 134 showed that the 

2-carbon had moved downfield going from 2,8-dibromoquinoline 133 at 8 145.8 to 8 

156.8. This is due to the presence of the phenyl substituent in the 2-postion. HMBC 

analysis of compound 134 demonstrated that the phenyl protons (2\6'-H2) at 8 8.31 

showed three bond cross-peaks with the 2-C (8 156.8) and 4'-C (8 127.7), confirming 

the regioselectivity of the Suzuki-Miyaura coupling reaction. In addition, the 1H NMR 

and 13C NMR spectra of 134 were in agreement with the reported data by Mao et al.224
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The exclusive formation of 134 results from the higher reactivity of the bromopyridine 

compared to bromobenzene. Comins and co-workers225 suggested that the 

regioselectivity of coupling at the 2-postion of quinoline derivatives could also be due to 

the pre-coordination of the palladium metal to the quinoline nitrogen.

The Suzuki-Miyaura coupling of 133 with 4-methoxyphenylboronic acid was also 

explored. A TLC analysis of the reaction indicated the formation of two products. 
Column chromatography afforded the monocoupled product 135 in 84% yield, also 

isolated was the de-brominated compound 136 in 21% yield. It was thought that the 

formation of 136 was a result of the replacement of bromine with hydrogen during the 

Suzuki-Miyaura coupling reaction. Presumably steric retardation of the rate of 
transmetallation provided an opportunity for bromine-hydrogen exchange to take place. 
In the 1H NMR spectrum of 135, a singlet peak corresponding to the methoxy 

substituent was observed at 5  3.88. Compound 135 also provided 3J Ch  couplings 

available for HMBC correlation, and the 1D 1H spectrum revealed that the phenyl 

protons (2',6,-H2) at 8 8.28 showed three-bond cross-peaks with the 2-C (8 157.1) and 

the quaternary carbon 4'-C (8161.1). These results, in combination with the 13C NMR 

spectrum, provide a fully assigned structure for quinoline 135.
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Scheme 44. Regioselective Suzuki-Miyaura coupling of 2,8-dibromoquinoline 133 with 

arylboronic acids.

Comins and co-workers225 reported that 2,4-dibromoquinoline could be mono­
substituted with various terminal alkynes (Scheme 45). They demonstrated by HMBC 

analysis that the coupling reactions were selective for the C-2 position of the quinoline 

ring when one equivalent of the alkyne reagent was used. Accordingly, 2,8- 

dibromoquinoline should selectively form an alkynyl-carbon bond in the 2-position. The 

Sonogashira reaction on 133 was briefly examined (Scheme 46). Compound 133 was 

treated with one molar equivalent of trimethylsilylethyne, with Pd(PPh3)4, Cul and DIPA 

in THF at 45°C for 2 h. TLC and 1H NMR analyses indicated that the starting material 
had not been consumed in the reaction and there was no evidence of the formation of 
the monocoupled product 137. The reaction was repeated using 1.2 molar equivalents 

of trimethylsilylethyne. However, a mixture of products was obtained which could not 
be separated using column chromatography. It is proposed that the 2-alkynylquinolines 

may be unstable under the Sonogashira reaction conditions, thereby leading to the
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formation of a mixture of products through a polymerisation reaction. The identity of the 

products could not be ascertained from the 1H NMR spectrum. Due to the sensitivity of 
the Sonogashira reaction of 2,8-dibromoquinoline it was decided not to progress any 

further with the 2-alkynylquinoline derivatives.

P d(PP h3)2CI2
Cut
1,4-dioxane  
D IP A

Scheme 45. Reported regioselective couplings of 2,4-dibromoquinoline.225

SiM e3

Pd(P P h3)2CI2
Cul
1 ,4-dioxane  
DIPA SiMec

133 137

Scheme 46. Attempted synthesis of 8-bromo-2-((trimethylsilyl)ethynyl)quinoline 137.

Our attention turned to the regioselective Stille coupling of 2,8-dibromoquinoline 

(Scheme 47). To our knowledge, there have only been a limited number of studies on 

the regioselective Stille coupling of quinoline derivatives. The coupling of compound 

133 with one molar equivalent of tetraethyistannane was conducted using the standard 

protocol. The reaction was successful and gave the monocoupled product 138 in 50% 

yield. The 1H NMR and HMBC analyses also indicated that the coupling reaction had 

not occurred in the 8-position and was selective for the 2-position.

The methodology was extended to investigate the Stille coupling of 133 with one molar 

equivalent of tetramethylstannane. Unfortunately, the lower steric bulk of the tetra- 

methylstannane translated into a reduced discrimination between the C-2 and C-8 by 

the stannane and a mixture of the monocoupled 139 and disubstituted 140 products 

was obtained. Therefore, it appears that steric hindrance of the organostannane
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reagent has a distinct effect on the success of the regioselective coupling reaction. 
Column chromatography failed to separate 139 from 140.

According to the experimental results, the Suzuki-Miyaura coupling led to the highest 
regioselectivity. A similar finding was reported by Pereira et af.226 in the regioselective 

cross-coupling reactions with 2,3-dibromothiophene. They demonstrated that the Stille 

coupling of 2,3-dibromothiophene with various organostannanes was less convenient, 
since the disubstituted thiophenes were obtained in greater proportion than when using 

the Suzuki-Miyaura coupling. In addition, it was reported that the Sonogashira coupling 

reactions gave inconsistent results, depending on the structure of the alkyne 

nucleophile used in the coupling reaction.

133

SnEt4 
NM P  
Pd(PP h3)4

Br

Sn(C H 3)4
NM P
Pd(PP h3)4

138

CH

CH

139 140

Scheme 47. Regioselective Stille coupling of 2,8-dibromquinoline 133 and organo­

stannanes.

Due to the problems encountered in the Stille coupling reaction of 133 with tetra- 

methylstannane an alternative strategy to provide 2-bromo-8-methylquinoline was 

explored. The Doebner-Miller reaction was chosen for the synthesis of 139 (Scheme 

48). This method utilises a different mechanism to introduce the methyl substituent into 

the 2-postion of the quinoline. The Doebner-Miller reaction, also known as the Skraup- 
Doebner-Miller quinoline synthesis, involves the reaction of an aniline with an a,p- 

unsaturated carbonyl to form a quinoline. The serious drawback of the Doebner-Miller 
reaction is that the acid-catalysed polymerisation of a,(3-unsaturated aldehydes lowers 

the yield of the reaction and makes isolation of the products difficult. Leir227 designed 

an improved Doebner-Miller strategy for the synthesis of 8-bromo-2-methylquinoline, 
which involved the isolation of the quinoline derivative through a zinc chloride complex. 
Following the reported procedure, 2-bromoaniline 141 and E-but-2-enal 142 in 6 M
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hydrochloric acid were heated under reflux for 1 h. After the Doebner-Miller reaction 

was complete, an equimolar amount of zinc chloride was added to the reaction mixture, 
affording 143 as a yellow precipitate. Treatment of 143 with aqueous concentrated 

ammonia gave the quinoline derivative 139 in 59% yield. The melting point of 139 

matched the reported literature value.227 In the 1H NMR spectrum of 139, a singlet 

integrating for three protons was observed at 8 2.73 corresponding to the methyl group. 

In addition, the 3-H and 4-H were observed as doublets at 8 7.34 and 8 7.99, 

respectively, with a coupling constant of 8.2 Hz. Using the 1H NMR spectrum of 139 it 

was possible to fully assign the 1H NMR signals in 2,8-dimethylquinoline 140.

Presumably, the Doebner-Miller process involves the Michael addition of the aniline 

141 to a,|3-unsaturated carbonyl 142 followed by cyclisation and aromatisation under 

acid-catalysed conditions.

,C H O

Br

N H2

141

H,cr

142

0) aq. HQ!
(ii) ZnCI2 'N

Br

143

aq. N H 3

HCI.1/ 2 ZnC I2 Br

139

Scheme 48. Synthesis of 8-bromo-2-methylquinoline 139.

What remained to be done was to convert the 8-bromoquinoline derivatives into the 

corresponding quinoline-8-carboxamides. The 8-bromoquinoline derivatives 134, 135, 
138, and 139 were lithiated with n-BuLi and quenched with trimethylsilylisocyanate, 
yielding quinoline-8-carboxamides 144-147. The synthetic route is illustrated in 

Scheme 49 and the results are collected in Table 13.

(i) n-BuLi

(ii) trimethylsilyl- 
R isocyanate

C O N H

R

134 R = Ph
135 R = 4-OCH3Ph
138 R = CH3CH2
139 R = CH3

144 R = Ph
145 R = 4-OCH3Ph
146 R = CH3CH2
147 R = CH3

Scheme 49. Synthesis of 2-substituted quinoline-8-carboxamides.
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In all experiments, the reaction time and equivalents of n-BuLi and trimethylsilyl- 

isocyanate reagents were kept constant (12 h, 1 equiv., 3 equiv., respectively). IR, 

NMR and MS data showed evidence for the formation of the carboxamide group in 

compounds 144-147. Although the yields of the 2-substituted quinoline-8-carboxamides 

were moderate, the synthetic route only involved two steps from the starting 2,8- 

dibromoquinoline. The PARP-1 inhibitory activity of these compounds was compared 

with the activity of the 3-substituted quinoline-8-carboaxmide series and the results are 

discussed in Section 4.1.2.

Table 13. Yields of 2-aryl and 2-alkyl substituted quinoline-8-carboxamides.

Compound Yield of 
products
(%)

144 34
145 43
146 43
147 52
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3.6 Quinoline-8-carboxamide N-oxides

Quinoline-N-oxides can be prepared by the direct N-oxidation of the quinoline nitrogen 

or by a cyclisation reaction involving the formation of the quinoline ring containing the 

N-oxide group. A cyclisation method was considered to be the most appropriate 

strategy to the synthesis of substituted quinoline-8-carboxamide-1-oxides. It was 

thought that direct oxidation of quinoline-8-carboxamide may be impeded by the 

presence of the intramolecular hydrogen bond which was a designed part of the 

pharmacophore.

3.6.1 Attempted synthesis of quinoline-N-oxides via reductive cyclisation of (E)- 
methyl 2-nitro-3-(3-oxo-2-phenylbut-1 -enyI)benzoate

One original aim of the project was to synthesise substituted quinoline-8-carboxamides 

and their corresponding N-oxides. One possible route to the formation of substituted 

quinoline-8-carboxamide-1-oxides is shown in Scheme 50. The first stage in the 

synthesis involved the esterification of the starting material 3-methyl-2-nitrobenzoic 

acid 148 to give the methyl ester 149 in 56% yield. Sbderberg et al.226 prepared 2- 
methyl-1-nitrobenzenes via a radical bromination reaction. In the present work, 
bromination of 149 with NBS, light and a radical initiator gave the product 150. 
Attempts to oxidise 150 to the aldehyde 151 with DMSO and mild base in a Swern-like 

oxidation failed. It was thought that the failure of the reaction might have been due to 

the hydrolysis of the ester group in the starting material. Mohan et al.229 demonstrated 

that a-bromo-2-nitro-4-methoxytoluene could be oxidised to 2-nitro-4-methoxybenz- 

aldehyde by a 10-minute exposure to tetrabutylammonium dichromate. The direct 
oxidation of 150 using tetrabutylammonium dichromate was successful. TLC analysis 

showed the disappearance of the bromo starting material after 1 h, and the 1H NMR 

spectrum showed the presence of a CHO signal at 5 9.90 indicating the formation of 

the product 151. However, problems were encountered in the work-up of compound

151, and eliminating the tetrabutylammonium salts by filtering through silica proved 

difficult. This may explain the low yield obtained for compound 151. Condensation of 

the aldehyde 151 with an aliphatic ketone under basic conditions should give the enone
152. Baik et al.230 showed that reduction of 2-nitrocinnamaldehyde with bakers’ yeast 

and sodium hydroxide and subsequent cyclisation formed the quinoline-N-oxide. We 

proposed that reduction of the nitro group in compound 152 to the hydroxylamine using 

bakers’ yeast and subsequent cyclisation should give the N-oxide 153. This route has 

the advantage of introducing diversity late in the sequence.
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Scheme 50. Attempted synthesis of substituted quinoline-8-carboxamide-1 -oxides.

Abramovitch et a/.231 reported that the condensation reaction of 1-pheny!propan-2-one 

with benzaldehyde in the presence of piperidine and heptanoic acid took place at the 

methylene group i.e., through the thermodynamic enolate. It was thought that these 

reaction conditions might have an application in the synthesis of enone 152. Aldehyde 

151 was treated with methyl benzyl ketone, piperidine and heptanoic acid in toluene. 

The reaction mixture was heated at 80°C for 24 h. However, only unreacted starting 

material was recovered from the reaction. It is speculated that the hindered nature of 
both the ketone nucleophile and aldehyde 151 prevented the condensation reaction.
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Due to the failure of this reaction it was decided not to progress any further with this 

route.

3.6.2 Attempted syntheses of 8-carbamoylquinoline-1 -oxide by direct N-oxidation

The failure of the cyclisation reaction to afford substituted quinoline-8-carboxamide-1- 

oxides led us to investigate methods that would oxidise the N-heterocyclic aromatic 

system directly. Several oxidising reagents are available for the N-oxidation of N- 
heterocyclic compounds. Hydrogen peroxide and m-chloroperoxybenzoic acid 

(MCPBA) are the most commonly used reagents. Such peracid-based methods are 

very reliable for many N-heterocyclics, but usually less so for electron-deficient ones. 

N-Oxidation of N-heterocyclic compounds that are deactivated by the presence of 

electron-withdrawing groups usually requires the use of strong oxidants. The hydrogen 

peroxide urea complex, normally called urea-hydrogen peroxide (UHP), is 

commercially available and has been successfully employed for the N-oxidation of very 

deactivated substrates, including heterocyclic quinoline.232 Zhong et al.233 have also 

demonstrated that substituted pyridines could be converted to their corresponding N- 

oxides using trichloroisocyanuric acid [1,3,5-trichloro-1,3,5-triazine-2,4,6-(1H,3H,5H)- 
trione] in acetonitrile.

We decided to investigate the following methods for the N-oxidation of various 8- 
substituted quinoline derivatives.

• Method A- 30% Aqueous hydrogen peroxide and acetic acid, reflux, 5 h.

• Method B- Trifluoroacetic anhydride (TFAA), urea hydrogen peroxide, Na2C03 in 

DCM, reflux, 24 h.

• Method C- MCPBA in CHCI3, rt, 24 h.

• Method D- Trichloroisocyanuric acid, acetic acid and sodium acetate in acetonitrile.

The results of the N-oxidation experiments are reported in Table 14. As a model, initial 
attempts involved the oxidation of quinoline-8-carboxamide. However, neither method 

A or B yielded the corresponding N-oxide. It is proposed that the failure of the reaction 

was due to deactivation by the very strong hydrogen bond to the pyridine nitrogen 

which was a designed part of the pharmacophore. Both methods A and B oxidised 

unsubstituted quinoline to give quinoline-1-oxide 154. In the 1H NMR spectrum of 

quinoline, the 8-H signal was observed at 5 7.70 whereas, in quinoline-1-oxide, the 8-H
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signal moved sharply downfield to 5 8.71. This was due to the deshielding effect of the 

adjacent oxygen.

Table 14. Attempted N-oxidations of 8-substituted quinoline. (-) denotes unsuccessful 

attempts.

N-oxidation

Compound
number

R Method3 Yield of 
products(%)

- c o n h 2 A -

B -

- CN B -

C -

D -

- Br B -

154 H A 26
154 H B 62

a Method A = H20 2, AcOH; Method B = UHP, TFAA, Na2C 03, DCM; Method C = 

MCPBA, CHCI3; Method D = Trichloroisocyanuric acid, AcOH, NaOAc, MeCN.

Our attention was then focused on the N-oxidation of quinoline derivatives that 

contained a functional group in the 8-position which could easily be converted to the 

corresponding carboxamide. The presence of electron-withdrawing substituents in the 

8-position of the quinoline ring proved detrimental to the N-oxidation reaction. This was 

illustrated by the failure of the N-oxidation reaction for the substrates 8-bromoquinoline 

and quinoline-8-carbonitrile. These results support the findings by Fieser et al.234, who 

reported that N-oxides of quinoline derivatives could not be obtained with peracids or 

hydrogen peroxides, due to the low basicity of the nitrogen atom. In fact, a literature 

search demonstrated that N-oxides of quinoline and isoquinoline have usually been 

obtained through N-oxidation of precursors having electron-releasing substituents in 

the 5- or 8-position. It soon became apparent that the N-oxidation of 8-substituted 

quinoline derivatives was going to be a major challenge.

8-Hydroxyquinoline-1-oxide 155 is commercially available and it was proposed that this 

compound would make an ideal precursor for the synthesis of 8-carbamoylquinoline-1- 

oxide. However, treatment of compound 155 with trifluoromethanesulfonic anhydride
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and pyridine failed to give the triflate 156 and only unreacted starting material was 

recovered from the reaction. Further reaction at the 8-position was planned to give the 

nitrile 157 and finally the carboxamide 158 (Scheme 51).

Consequently, an alternative route was proposed. Ukai et al,235 claimed that (1- 

oxidoquinolin-8-yl)mercury(ll) chloride could be converted to 8-bromoquinoline-1-oxide 

by reaction with potassium bromide and bromine. We proposed that treatment of 8- 
bromoquinoline-1-oxide with CuCN, DPPF, and Pd2(dba)3 should give the nitrile 157, 

and finally the corresponding carboxamide 158.

Mercuration at the 8-postion of quinoline was achieved by treatment of quinoline-1 - 
oxide 154 with mercury(ll) acetate and sodium chloride in acetic acid. The mercurial 

159 was obtained in 86% yield. Electrophilic substitution of the chloromercuri group by 

bromine gave 8-bromoquinoline-1-oxide 160 in 2% yield (Table 15). In performing the 

experiment, we noticed that no by-products were recovered from the reaction, 
suggesting that the low yield might be due to difficulties in the isolation of 160. It should 

be noted that both the starting material 159 and product 160 demonstrated poor 

solubility in most organic solvents and water. However, it was possible to dissolve 

compound 160 in (CD3)2SO and this allowed for an NMR spectrum to be taken. In the 

1H NMR spectrum, the 2-H signal was observed downfield at 5 9.03 due to the 

deshielding effect of the adjacent N-oxide group. Therefore, due to the solubility issues 

encountered in the bromination reaction we decided to use a different approach. It was 

found that the mercurial 159 was readily soluble in the highly polar aprotic solvent 
NMP. The mercurial 159 was treated with one equivalents of iodine in NMP. Due to the 

high boiling point of the solvent a Kugelrohr distillation apparatus was required to 

remove any residual NMP. 8-lodoquinoline-1-oxide 161 was obtained in 44% yield. The 

molecular formula of 161 was derived as C9H7INO from the El mass spectrum (m/z = 

271.9567 M+H).

8-lodoquinoline-1-oxide 161 was treated with CuCN, Pd2(dba)3, and DPPF in 1,4- 

dioxane. A TLC analysis indicated the formation of numerous products, none of which 

could be isolated by column chromatography. It is believed that the N-oxide 161 may 

poison the palladium catalyst, thus preventing the cyanation reaction from taking place.

We decided to re-examine the use of (1-oxidoquinolin-8-yl)mercury(ll) chloride 159 as 

a precursor to the formation of 8-carbamoylquinoline-1 -oxide. It is known that organo- 

metallic compounds can be converted to ketones, aldehydes, carboxylic acids and
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esters by treatment with an appropriate carbon electrophile. In an alternative route, it 

was decided to investigate the reaction of 159 with various electrophiles. Acylation of 

159 with phenylchloroformate failed to give 8-(phenoxycarbonyl)quinoline-1-oxide and 

only unreacted starting material was recovered. In addition, both the more reactive 4- 

nitrophenyl chloroformate and cyanogen bromide electrophiles failed to react with the 

mercurial 159 in NMP (Table 15).

Table 15. Reaction of (1-oxidoquinolin-8-yl)mercury(ll) chloride with various electro­

philes. (-) denotes unsuccessful attempts.

HgCI 0

Electrophile

Compound
number

Reaction conditions Yield of 
products

m _____
160
161

Br

CN

-K °

NO:

Br2, KBr, rt 
l2, NMP, rt 
BrCN, NMP, rt

phenyl chloroformate, 
NMP, rt

4-nitrophenyl 
chloroformate, NMP, rt

2
44

An alternative strategy to introduce the carboxamide group into the 8-position without 

affecting the N-oxide group was also considered. It was proposed that metal-halogen 

exchange of 161 and treatment with trimethylsilylisocyanate might afford 8-carbamoyl- 

quinoline-1-oxide. Disappointingly, treatment of 161 with n-BuLi in THF and quenching 

with trimethylsilylisocyanate resulted in the formation of a complex mixture. This could 

be due to the competition of metallation at the C-8 position, reduction of the C-l bond, 

and addition of n-BuLi to the quinoline ring.236 The use of sec-BuLi as the lithiating 

reagent also resulted in the formation of complex mixtures.
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Scheme 51. Attempted syntheses of 8-carbamoylquinoline-1-oxide 158.

Overall, we have demonstrated that the direct N-oxidation of 8-substituted quinoline 

derivatives was not a feasible strategy for the synthesis of 8-carbamoylquinoline-1- 

oxide. In addition, owing to the solubility problems encountered with (1-oxidoquinolin-8- 

yl)mercury(ll) chloride 159 and 8-iodoquinoline-1 -oxide 161 it was decided to abandon 

the synthesis of 8-carbamoylquinoline-1 -oxide 158.

3.6.3 Attempted synthesis of 8-carbamoyl-2-phenylquinoline-1 -oxide

Our attention was directed to the synthesis of 2-substituted quinoline-1-oxides. As 

previously demonstrated the N-oxidation of quinolines is normally inhibited by the 

presence of bulky or electron-withdrawing substituents in the 8-position, so we decided 

to design a route in which the 2-substitutent was present in the oxidation step but the 8- 

position contained only hydrogen. It was hoped that the introduction of a 2-substituent
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might also improve the solubility and reactivity of the mercurial precursor towards the 

synthesis of 8-carbamoyl-2-phenylquinoline-1-oxide 168. A synthetic strategy for the 

preparation of compound 168 is outlined in Scheme 52. Quinoline-2-one 162 is a 

cheap and commercially available material and is the starting point in the synthesis of 

168. Treatment of compound 162 by treatment with POBr3 gave 2-bromoquinoline 163 

in 34% yield. A phenyl substituent was added into the 2-position via the Suzuki-Miyaura 

coupling of 163 with phenylboronic acid, giving 164 in excellent yield. The 1H NMR 

spectrum and melting point data for compound 164 matched those reported in the 

literature.237 N-Oxidation of 164 with MCPBA gave 2-pheny!quinoline-1-oxide 165 in 

87% yield. Mercuration of compound 165 with mercury(ll) acetate and sodium chloride 

afforded the chloromercuri compound 166. In the 1H NMR spectrum of compound 165, 

the 7-H signal was evident at 8 7.94 whereas in the mercurial 166 the 7-H signal 

moved sharply downfield to 8 8.64. In the next stage of the reaction, the mercurial 166 

was treated with one equivalent of iodine in NMP. Unfortunately, despite multiple 

attempts, only unreacted starting material was obtained from the reaction.

POBr3

N OH

PhB(OH)2

Pd(OAc)2 
N Br Toluene

162 163
SPhos
k3p o 4

AcOH

167 166

164

MCPBA
CHCI3

HgCI O

165

168

Scheme 52. Attempted synthesis of 8-carbamoyl-2-phenylquinoline-1 -oxide 168.
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3.6.4 Synthesis of 8-carbamoyl-3-phenylquinoline-1 -oxide

Simultaneous efforts were directed to the synthesis of 8-carbamoyl-3-phenylquinoline-

1-oxide. The initial approach to the synthesis of 8-carbamoyl-3-phenylquinoline-1-oxide 

is outlined in Scheme 53. 3-Phenylquinoline-1-oxide 171 was synthesised from 

commercially available 3-bromquinoline in two steps. Suzuki-Miyaura coupling of 3- 
bromoquinoline 169 with phenylboronic acid gave 170 in 75% yield. Subsequent N- 

oxidation of 3-phenylquinoline provided 171 in 22% yield. In an attempt to improve the 

yield of 3-phenylquinoline-1-oxide the first two steps in the synthetic strategy were 

reversed. N-Oxidation of 3-bromoquinoline with MCPBA gave 3-bromoquinoline-1- 
oxide 172 in 75% yield. A cross-coupling reaction was then carried out between 

compound 172 and phenylboronic acid affording 171 in 74% yield. The second 

approach has the advantage that it allows diversification at a later stage in the 

synthesis. Treatment of 171 with mercury(ll) acetate and sodium chloride gave 173 in 

75% yield. Replacement of the chloromercuri group in 173 by iodine gave 8-iodo-3- 

phenylquinoline-1-oxide 174 in 43% yield. Evidence to support the formation of 174 

was provided by mass spectrometry. In the ES mass spectrum a signal corresponding 

to 174 (m/z = 347.9869 M+H) was observed, and loss of iodine gave an ion at 221. 
However, treatment of 174 with sec-BuLi and quenching with trimethylsilylisocyanate 

failed to give the N-oxide 175 and the 1H NMR spectrum only indicated the presence of 

starting material, suggesting that the intermediate (1-oxido-3-phenylquinolin-8-yl)lithium 

had not formed. In addition, solubility problems were encountered with the use of dry 

THF as the solvent and this may have contributed to the failure of the lithiation reaction.
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Scheme 53. Attempted synthesis of 8-carbamoyl-3-phenylquinoline-1-oxide 175.

Finally, we turned to the direct N-oxidation of 3-phenylquinoline-8-carbonitrile as a 

promising alternative to the synthesis of 8-carbamoyl-3-phenylquinoline-1-oxide 

(Scheme 54). We have previously reported the synthesis of 3-phenylquinoline-8- 
carbonitrile 68 in Section 3.2.2. However, due to the problems encountered with the 

Sandmeyer reaction it was decided to use an alternative method to synthesise 

compound 68. lodination of quinoline-8-carbonitrile 72 with NIS gave 3-iodoquinoline-8- 
carbonitrile 76 in 35% yield. Suzuki-Miyaura coupling of 76 with phenylboronic acid 

gave 3-phenylquinoline-8-carbonitrile 68 in 86%.
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Scheme 54. Synthesis of 8-carbamoyl-3-phenylquinoline-1 -oxide 175.

Jain et a/.238 reported that sodium peroxycarbonate is an efficient oxygen source for the 

oxidation of tertiary nitrogen compounds to N-oxides in the presence of catalytic 

amounts of methyltrioxorhenium (MTO). Interestingly, they reported the synthesis of 4- 
cyanopyridine N-oxide and quinoline-1-oxide in excellent yields. It was proposed that 

similarly, it might be possible to oxidise 3-phenylquinoline-8-carbonitrile directly with 

sodium peroxycarbonate and MTO. However, following treatment with sodium 

peroxycarbonate and MTO, the 1H NMR spectrum indicated that only unreacted 

starting material was present. Oxidation of 3-phenylquinoline-8-carbonitrile with 

MCPBA also proved unsuccessful and only unreacted starting material was recovered, 
even after prolonged treatments.

Treatment of compound 68 with urea hydrogen peroxide, sodium carbonate, TFAA in 

dichloromethane, according to the procedure reported by Phillips,239 gave 8-cyano-3- 
phenylquinoline-1-oxide 176 in a low yield. Even after prolonged reaction times and 

after addition of fresh reagents, yields were still low ranging from 10-14%. However, 
unreacted starting material could be recovered and was re-used in subsequent 
reactions. In the ES mass spectrum a signal corresponding to 176 (m/z = 247.0865 

M+H) was observed, and loss of oxygen gave an ion at 231. In the 1H NMR spectrum 

of 3-phenylquinoline-8-carbonitrile 68 the 2-H signal was observed at 8 9.34 whereas in 

the N-oxide 176 the 2-H signal shifted upfield to 8 8.83. An upfield shift of similar 

magnitude was also found for the 2-H signal upon N-oxidation of quinoline to quinoline-
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1-oxide 154 (Section 3.6.2). In addition, the 4-H signal shifted upfield in the N-oxide 

176 by 8 0.45. The 13C NMR spectrum assignments for compounds 68 and 176 were 

achieved on the basis of HMBC experiments and comparison of the chemical shifts. 
The N-Oxidation reaction resulted in a significant upfield shift of most of the carbons. 
However, the 2-C signal deserves particular attention, due to the strong shielding that it 
undergoes upon N-oxidation. Oxidation of 68 to 176 causes an upfield shift of the 2-C 

signal from 8 152.1 to 8 139.0 (Figure 17). It also appears that the oxidation of 68 to 

176 results in an increase in the tt electron density at the 4-carbon centre, thereby 

shifting the 4-C signal upfield by 8 10.4.

Finally, treatment of 8-cyano-3-phenylquinoline-1-oxide 176 with sodium hydroxide and 

hydrogen peroxide gave the target compound 175 in 14% yield. Even though a low 

yield of the N-oxide was obtained the purification of the N-oxide only required the 

separation of the product from the unreacted starting material. It was thought that the 

time period of the reaction was insufficient for the hydration of nitrile 176 to the 

carboxamide 175 to take place. In an attempt to increase the yield of compound 175, 

the reaction time was extended to 2 h. However, increasing the reaction time resulted 

in the formation of 3-phenylquinoline-8-carboxamide. This suggests that the optimum 

reaction time was in fact 1 h and at a longer reaction period the N-0 bond of the N- 
oxide 175 was cleaved.

121



CN

68

8a
1 ' 3

4 i
CN

T~T_1iso 1 i 1 
115

1 I ' 
110

3’,5' 2',6'

ia

4a
CN

' I  .............  1 1 I        I ■   I I I I I I I I I I I 1 I I I I V I I I I
U S  l&o 145 140 115 110 U S  110 115 110 105 pr»

Figure 17. Assignment of 13C NMR signals of 3-phenylquinoline-8-carbonitrile, 68 (top), 

and its N-oxide 176 (bottom).
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The structure of 8-carbamoyl-3-phenylquinoline-1 -oxide 175 was characterised by 1H 

NMR, 13C NMR, HMQC, HMBC, MS, and CHN analyses. In the 13C NMR spectrum the 

presence of a peak at 8 170.4 provides evidence for the formation of the carboxamide 

moiety. In our original research proposal we hypothesised that in the presence of the 

N-oxide moiety the carboxamide would be tipped out of plane. The carbonyl out of 

plane should disrupt the pharmacophore required for PARP-1 inhibitory activity.

We have previously demonstrated that the carboxamide moiety is held in a restricted 

conformation in quinoline-8-carboxamide derivatives (Section 3.2.2). 1H NMR studies 

showed that when the carboxamide was in plane, one of the N-H was found to be 

hydrogen-bonded resulting in the signal being of a low field. The majority of the 

quinoline-8-carboxamide derivatives previously studied also demonstrated good 

solubility in many organic solvents and CDCI3 was predominantly chosen as the NMR 

solvent. Unfortunately, the N-oxide 175 was not readily soluble in CDCI3 so (CD3)2SO 

was used as the solvent. For comparison, it was decided to obtain a 1H NMR spectrum 

of 3-phenylquinoline-8-carboxamide 69 in (CD3)2SO. Significant differences were 

noticed between the 1H NMR data of compounds 69 and 175. For example, in 

compound 69 the 2-H signal was evident at 8 9.41, whereas in the N-oxide 175 the 2-H 

signal was evident at 8 8.92, providing evidence that the presence of an N-0 moiety 

induces a sizeable perturbation to the chemical shift of the 2-H signal of the quinoline 

ring system. The proton chemical shift of the 2-H signal of 175 was assigned easily as 

it appears at a lower field due to the adjacent pyridine nitrogen. The location of the 2-H 

was confirmed by a two-dimensional HMBC spectrum. We found that the 2-H signal at 

8 8.82 had 3J-HMBC correlations with 4-C (8 122.2), 1'-C (8 135.2) and 8a-C (8 136.2). 

The 4-H signal at 8 8.31 displayed 3J-HMBC correlations with 2-C (8 134.4), 1'-C (8 

135.2) and 5-C (8 129.7). Also the 5-H signal at 8 8.13 demonstrated a 3J-HMBC 

correlation with 7-C (8 130.9) and a 2J-HMBC correlation with 6-C (8 128.7). In the 

same manner the chemical shifts in the phenyl ring were assigned. In this case, the 

2',6' aromatic protons were coupled to 3-C (8 134.2) and 4'C (8 131.8). The 3',5' 

aromatic protons resonated as two-proton triplet at 8 7.56 which correlated with the T- 

C (8 135.2). On the other hand, the signals of the quaternary carbons 4a-C and 8-C 

were too weak and could not be assigned unambiguously.
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In this section of the project, we found that 8-carbamoyl-3-phenylquinoline-1 -oxide 

could be obtained by the hydration of 8-cyano-3-phenylquinoline-1-oxide. Therefore, 

we have successfully designed a synthetic route to the preparation of 3-substituted 

quinoline-8-carboxamide-1-oxides. Regrettably, we were not able to introduce a variety 

of substituents into the 3-postion due to the shortage in time. However, it is proposed 

that in the synthetic route outlined in Scheme 54 the phenylboronic acid could easily be 

replaced by alternative aryl substituents to give a library of 3-substituted quinoline-8- 
carboxamide-1-oxides. The next stage in the project was to evaluate the PARP-1 

inhibitory activity of the N-oxide 175 and the results are discussed in Section 4.1.3. 

Molecular modelling studies were also carried out to investigate the conformation of the 

N-oxide 175 and the results are presented in Section 5.3.
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4. Biological Evaluation

4.1 PARP-1 activity assay

A number of assay methods have been developed for the identification of inhibitors of 

the enzyme PARP-1. Most commonly, PARP activity is monitored by radioactive 

methods using either 32P- or 3H-labelled NAD+.240 There are several disadvantages with 

this methodology, including the requirement of using radioactive reagents and the 

inefficiency of washing steps to remove any unincorporated radiolabelled NAD+ from 

trichloroacetic acid (TCA) precipitates. In an alternative approach, ADP-ribose 

polymers, the products of the PARP-1 catalysed reaction, can be purified from cells by 

a tedious procedure involving boronate chromatography and the ADP-ribose polymers 

can be measured using HPLC analysis.241

An ELISA PARP-1 assay has also been developed for the assessment of PARP-1 

activation. This assay is more sophisticated than the standard radiolabelled methods 

and involves the detection of an antibody to poly(ADP-ribose).242

Recently, a novel colourimetric PARP-1 assay has been developed by Trevigen Inc. 
(Gaithersburg, USA) for the screening of potential PARP inhibitors. The assay is non­
radioactive and utilises a novel substrate 6-biotin-17-nicotinamide-adenine-dinucleotide 

(biotinylated NAD+) (Figure 18). We proposed that the commercially available 

colourimetric PARP-1 assay would be convenient for determining the PARP-1 activity 

of a selection of quinoline-8-carboxamide compounds in vitro. The assay takes 

advantage of the fact that the PARP-1 enzyme catalyses poly(ADP-ribosyl)ation of 

histone proteins in the presence of damaged DNA. The principles of the assay are as 

follows. Briefly, the test inhibitor is pre-incubated with the PARP-1 enzyme on a 96 

strip-well plate coated with histone acceptor proteins. A PARP-cocktail reagent, 

containing biotinylated NAD* and activated DNA, is added to the wells to initiate the 

reaction. Upon activation, PARP-1 cleaves biotinylated NAD* into nicotinamide and 

biotinylated (ADP-ribose) and synthesises biotinylated (ADP-ribose) polymers 

covalently attached to the acceptor histone proteins. The extent of biotin incorporation 

is measured using a conjugated streptavidin detection system. The PARP-1 activity of 
the PARP-1 inhibitors is assessed on the basis of their inhibition of biotinyl-(ADP- 
ribose) incorporation.

125



HN ,NH 0 H

< K

HN

NH

OH OH

Na+

N
</\

N
o - p - o - p - o -

OH OH

Figure 18. Structure of biotinylated NAD+.

Firstly, a standard curve using varying amounts of PARP-1 enzyme was produced for 

the biotinylated poly(ADP-ribose) polymerisation reaction. As shown in Figure 19, a 

linear relationship exists between the absorbance at 450 nm and the concentration of 

the PARP-1 enzyme. From the standard curve, it was established that 0.8 units of 

PARP-1 enzyme was sufficient to give an absorbance reading in the range of 2.0-2.5 in 

the absence of any inhibitor. In order to validate the assay, a negative control (no 

enzyme) was prepared to determine the background absorbance.

8
C
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1.5-

1.0 -

0.5-

0.0
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Figure 19. PARP-1 standard curve. Data are the mean of three experiments and are 

reported as mean ± standard error of the mean (SEM).
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4.1.1 Inhibition of PARP-1 activity by inhibitors

The inhibitory effects of 3-substituted and 2-substituted quinoline-8-carboxamides were 

examined using the colourimetric assay system. 5-AIQ was used as the benchmark 

inhibitor. In this evaluation, seven different final concentrations (100, 30, 10, 3, 1, 0.3, 

0.1 pM) of each inhibitor were used. The presence of biotinylated poly(ADP-ribose) 

generated by PARP-1 during the ribosylation of histone proteins layered on the 96-well 

plate was detected using streptavidin horseradish peroxidase (Strep-HRP) and TACS 

Sapphire™. The TACS Sapphire™ substrate generates a soluble blue colour in the 

presence of Strep-HRP with a maximum absorbance of 630 nm. The development of 

the colourimetric reaction was terminated by addition of 0.2 M hydrochloric acid, 

generating a yellow colour with an absorption maximum at 450 nm. A representative 

colourimetric assay plate is shown in Figure 20.

100 pM 

30 pM 

10 pM

3 pM 

1 pM 

0.3 pM 

0.1 pM

negative control positive control

Figure 20. Colourimetric readout of PARP-1 activity assay. Inhibitors 3-phenyl- 

quinoline-8-carboxamide (lane 1-3), 8-carbamoyl-3-phenylquinoline-1 -oxide (lane 4-6),

2-ethylquinoline-8-carboxamide (lane 7-9), 5-AIQ (lane 10-12) were tested in 

decreasing concentration starting with the highest concentration 100 pM at the top of 

the plate.

Inhibitor 1 Inhibitor 2 Inhibitor 3 5AIQ control

1 2 3 4 5 6 8 9 10 11 12
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Determinations for each PARP-1 inhibitor were performed in triplicate and their mean 

IC50 values are summarised in Table 16. The complete results for the evaluation of 

quinoline-8-carboxamide compounds for activity in the colourimetric assay are 

contained in the Appendices.

The unsubstituted analogue quinoline-8-carboxamide 80, which was also an 

intermediate in the synthesis, was tested for its effect on PARP-1 activity. The mean 

IC50 value of the inhibitor was estimated graphically from a plot of the log10 [inhibitor] 

versus absorbance. 5-AIQ has previously been reported as a potent PARP-1 inhibitor 

and was contained in the assay for comparison purposes. Figure 21 shows the PARP- 

1 inhibition curves of quinoline-8-carboxamide and 5-AIQ. The inhibition calculated for 

quinoline-8-carboxamide 80 was 1.9 pM. This result demonstrates that quinoline-8- 

carboxamide is an excellent PARP-1 inhibitor and has comparable activity to 5-AIQ 

(IC5o=1.8 pM) using the colourimetric assay conditions.

0.5-I
quinoline-8-carboxamide
5-AIQ0.4-

d)oc
£

0 . 3 -

0 . 2 -oV)-Q<
0.0

•2 1 3 4 50 1 2

log [pM]

Figure 21. PARP-1 inhibition curves for quinoline-8-carboxamide 80 and 5-AIQ 

generated using the colourimetric assay, as described in the Experimental Section.

It should be noted that a direct comparison of inhibition constants (IC50, from 

different laboratories should be undertaken with caution, since values for the same 

compound can vary, depending on the assay system employed. Suto et a/.,129 for 

instance, reported an IC50 value of 0.24 pM when 5-AIQ was evaluated using an in vitro 

cell-free preparation consisting of PARP-1 isolated from calf thymus. In contrast, using 

the PARP-1 colourimetric assay an IC50 value of 1.8 pM was obtained which is six-fold 

higher than the reported literature value. Nevertheless, the literature inhibition 

constants were used as a means of predicting general trends in PARP-1 activity.
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Table 16. Inhibition of PARP-1 activity by quinoline-8-carboxamides and 5-AIQ control.

0

NH2
5-AIQ (ICso = 1.8)

Compound
number

R2 R* IC50 (pM) Log IC5 0 (mM)

80 H H 1.9 0.27 ±0.11

69 H Ph 15 1.17 ± 0.15

94 H 3-CF3-Ph 52 1.71 ±0.16

91 H 4-OMe-Ph 62 1.79 ± 0.15

93 H 4-Me-Ph 43 1.63 ±0.25

98 H 4-CN-Ph 27 1.43 ±0.14

144 Ph H 0.9 -0.06 ±0.33

145 4-OMe-Ph H 1.1 0.03 ±0.13

123 H Et 3.7 0.57 ±0.05

106 H Me 3.4 0.53 ±0.08

1 1 1 H h 2c = c h 5.8 0.76 ± 0.07

114 H HC=C 2.3 0.36 ±0.17

107 H MeC=C 2.2 0.34 ±0.10

147 Methyl H 0.5 -0.30 ±0.08

146 Et H 0.8 -0.09 ±0.10

a Data are the mean of three experiments and are reported as mean ± standard error of 

the mean (SEM).
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4.1.2 Structure activity relationship (SAR) studies o f 3-substituted and 2- 

substituted quinoline-8 -carboxamides as PARP-1 inhibitors

Initially, we decided to investigate the effect of introducing aryl substituents into the 3- 

and 2-positions of quinoline-8 -carboxamide. 3-Phenylquinoline-8-carboxamide 69 was 

the first compound to be synthesised. The IC50 value determined for compound 69 was 

15 pM showing it to be a moderate PARP-1 inhibitor in comparison to the parent 

quinoline-8 -carboxamide 80 ( I C 5 0  = 1.9 pM). A series of 3-arylquinoline-8- 

carboxamides was therefore synthesised to enable the SAR for substituents on the 

phenyl ring to be explored. A number of substituents, with differing electronic properties 

were introduced at the 3-position. The results indicated that the introduction of para 

substituents into the phenyl group of 3-phenylquinoline-8-carboxamide was detrimental 

to PARP-1 inhibitory activity. 3-(4-Methoxyphenyl)quinoline-8-carboxamide 91 was >4 

fold less active than compound 69, suggesting that steric bulk and electron-donating 

groups in the 3-position are not well tolerated in the enzyme active site. Similarly, 3-(4- 

methylphenyl)quinoline-8 -carboxamide 93 showed poor PARP-1 inhibitory activity.

Griffin and co-workers170 reported a series of potent PARP-1 inhibitors based on a 

related benzimidazole scaffold. SAR studies indicated that various aryl substituents 

were well tolerated in the 2-postion of the benzimidazole-4-carboxamides. They 

reported PARP-1 inhibitory activity at nanomolar concentrations. In contrast to our 

findings, Griffin and co-workers170 demonstrated that the presence of para substituents 

on the phenyl group of the 2-phenyl-1H-benzimidazole-4-carboxamides, such as 

cyano, hydroxy, methoxy and trifluoromethyl (compounds 25d, 25g, 25h and 25i) 

markedly increased inhibitory potencies. It was also reported that 2-(3-trifluoromethyl- 

phenyl)-1H-benzimidazole-4-carboxamide 25j was well tolerated in the active site and 

was found to be 2-fold more potent than 2-phenyl-1H-benzimidazole-4-carboxamide 

25c.

Interestingly, the introduction of a trifluoromethylphenyl group into the 3-position of 

quinoline-8 -carboxamide resulted in loss of potency, as demonstrated by compound 

94, which was >3 fold less potent with respect to compound 69. This result suggests 

that the NAD+ binding pocket is limited in size at the 3-position. 3-(4-Cyanophenyl)- 

quinoline-8 -carboxamide 98 gave an I C 5 0  value of 27 pM, suggesting that electron- 

withdrawing groups are better tolerated in the 3-position than electron donating groups. 

In addition, the nitrile substituent is less sterically demanding than the bulky methyl or
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methoxy substituent, providing further evidence that there might be a size-limited 

binding pocket around the 3-position of the quinoline.

Table 17. PARP-1 inhibitory activities of the benzimidazole analogues.170

O

Compound R Kj (nM)
25c Ph 15
25d 4-CN-Ph 4.0
25g 4-OH-Ph 6.0
25h 4-OMe-Ph 6.8
25i 4-CF3-Ph 1.2
25j ..... 3-CF3-Ph 8.0

In the case of the 2-aryl substituted derivatives, 2-phenylquinoline-8-carboxamide 144 

was found to be >16 fold more active than 3-phenylquinoline-8-carboxamide 69, 

suggesting that substitution in the 2-position is preferred. This was supported by the 

preparation of 2-(4-methoxyphenyl)quinoline-8-carboxamide 145, which was >56 fold 

more potent than its 3-aryl counterpart.

Quinoline-8-carboxamides containing alkyl, alkenyl and alkynyl substituents were 

synthesised to further study the SAR. The introduction of a methyl group into the 3- 

position of quinoline-8-carboxamide demonstrated a higher affinity to the nicotinamide 

binding pocket of PARP-1 than the 3-aryl congeners. The 3-ethynyl compound 107 was 

the most potent inhibitor of the 3-substituted series with an IC50 value of 2.2 pM. It 

appears that relatively small substituents, which are not sterically demanding, are well 

accommodated in the enzyme active site. This is demonstrated by the fact that the 3- 

aryl substituted quinoline-8-carboxamides are >20 fold less active than the 3-alkyl and

3-alkynyl derivatives.

2-Methylquinoline-8-carboxamide 147 (IC50 = 0.5 pM) and 2-ethylquinoline-8-carbox- 

amide 146 (IC50 = 0.8 pM) were slightly more potent than the parent compound 80 and
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their 3-alkyl analogues 106 ( I C 5 0  = 3.4 pM) and 123 ( I C 5 0  = 3.7 pM). This demonstrates 

that substitution in the 2-position is most favourable for improving PARP-1 inhibitory 

activity.

It is proposed that the quinoline-8-carboxamide inhibitors bind to the nicotinamide sub­

site of the NAD+-binding domain of PARP-1 (Figure 22). The carboxamide moiety of 

the inhibitor forms three important hydrogen bonds with the enzyme active site. The 

inhibitor carbonyl moiety accepts two hydrogen bonds, one from the amino-acid 

residue Ser904, and the other from the Giy863 polypeptide amide N-hi. The third 

hydrogen bond is formed between the Gly863 carbonyl oxygen and the carboxamide 

N-H.

Gly863Ser904

Figure 22. Proposed enzyme-inhibitor interactions between the PARP-1 active site and 

quinoline-8-carboxamides.

The colourimetric PARP-1 assay identified seven compounds with PARP-1 inhibitory 

activity equal or better than the lead compound 5-AIQ. Overall several SAR trends 

were identified:

(1) Bulky para-substituents on the 3-aryl quinoline-8-carboxamides impaired 

PARP-1 inhibitory activity.

(2) The most potent compounds in the 3-substituted series were those containing 

sterically very thin substituents.

(3) The presence of 2-alkyl or 2-aryl substituents enhanced the potency of the 

parent compound 80.
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4.1.3 Structure activity relationship (SAR) studies of 8-carbamoyl-3-phenyl-

quinoline-1-oxide

The N-oxide 175 was designed as a potential prodrug for the PARP-1 inhibitor 3- 

phenylquinoline-8-carboxamide. In our original hypothesis, we proposed that, in the N- 

oxide, a severe steric clash should force the carboxamide out of the plane of the 

quinoline. The pharmacophore should thus be disrupted, inhibiting binding of the N- 

oxide 175 to the PARP-1 active site. The PARP-1 inhibitory activity for 8-carbamoyl-3- 

phenylquinoline-1-oxide is illustrated in Table 18. Surprisingly, the N-oxide 175 showed 

inhibitory activity approximately equal to that of its non-oxide analogue 69. This result 

suggests that the formation of the N-oxide may not twist the carboxamide moiety out of 

plane as much as initially proposed. Molecular modelling studies on 175 indicate that it 

may form a seven-membered hydrogen-bonded structure involving the N-oxide, 

causing the carboxamide moiety to only twist slightly out-of-plane and allowing binding 

to the NAD+ binding site (Section 5.3). The molecular modelling studies suggest that 

the N-oxide prodrug strategy may not be valid for this series of compounds against the 

PARP-1 enzyme target.

Table 18. PARP-1 inhibitory activities of 8-carbamoyl-3-phenylquinoline-1-oxide 175 

and 3-phenylquinoline-8-carboxamide 69.

Compound IC50 (pM) Log IC50 (pM)a
number
175 23 1.36 ±0.27
69 15 1.17 ±0.15

a Data are the mean of three experiments and are

reported as mean ± standard error of the mean (SEM).
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Researchers at the University of Newcastle reported tricyclic benzimidazole 

carboxamides as potent PARP-1 inhibitors.171 In the tricyclic inhibitors, the 

carboxamide moiety is held in the anti-conformation by incorporation into a seven- 

membered ring, allowing hydrogen-bond interactions to occur between the lactam ring 

and Ser904 and Gly863 of the PARP-1 active site. As constraining the carboxamide 

moiety into the anft-conformation by incorporation into a seven-membered ring is 

beneficial for PARP-1 inhibitory activity, the 8-carbamoyl-3-phenylquinoline-1-oxide 175 

may provide a new structural lead for PARP-1 inhibition.
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4.2 Sirtuins and NAD+ metabolism

The sirtuin family of enzymes, also known as SIRTS, constitute the class III histone 

deacetylases (HDACs). Yeast Sir2 (ySir2, yeast silent information regulator 2) is the 

founding member of the sirtuins and is essential for maintaining silent chromatin 

through the deacetylation of the histones.243 Sir2 has also been shown to enhance 

lifespan in yeast, worms and flies.243 Currently, seven mammalian sirtuins (SIRT1-7) 
have been identified, with SIRT1 demonstrating the greatest homology to Sir2. Unlike 

Class I and II HDACS. which remove the acetyl group by hydrolysis to acetate, class III 

HDACS require NAD+ as a co-substrate for deacetylation activity. The sirtuins catalyse 

the cleavage of the glycosidic bond between the ADP-ribose and nicotinamide moieties 

of NAD+, releasing nicotinamide and forming the positively charged O-alkyl-amidate 

intermediate. Subsequently, the acetyl group attached to Lys of substrate proteins is 

transferred to ADP-ribose forming the metabolite O-acetyl-ADP-ribose, as shown in 

Scheme 55.244 Nicotinamide inhibits the deacetylation reaction and is important for the 

regulation of sirtuin activity.

0

ADPOADPO

Protein

ADPOADPO

CH3

2'-OAc-ADP-ribose
H

+
H2N Protein

Scheme 55. Mechanism of SIRT catalysed deacetylation.244
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SIRT1 can also deacetylate non-histone proteins including p53,245 p300,246 NFkB,247 
and FOXO proteins 248 The SIRT1 homologue is the most widely studied of the sirtuin 

family. SIRT1 can be therapeutically applied to a variety of diseases. SIRT1 activators 

show promise for the treatment of diseases such as diabetes, obesity, age-related 

disease, and neurodegeneration 249,250 On the other hand, SIRT1 inhibition has been 

suggested for future cancer and anti-HIV treatments251

The therapeutic applications of the other Sir2 genes, SIRT2-7, have only recently 

begun to emerge. Studies indicate that SIRT2 may play a role in regulating the cell 
cycle. Dryden et al.252 demonstrated that SIRT2 protein levels increase during the 

mitotic phase of the cell cycle and SIRT2 overexpression delays mitosis. In addition, 
Hiratsuka et al.253 demonstrated that expression of SIRT2 is down regulated in human 

gliomas.

SIRT7 is associated with active rRNA genes (rDNA) and is a positive regulator of Po1 I 
transcription. Recent work has shown that SIRT7 expression is elevated in thyroid cell 
lines and biopsies.254

SIRT3 has been shown to deacetylate and activate acetyl-CoA-synthetase-2 

(AceCS2), a mitochondrial enzyme that catalyses the synthesis of acetyl-CoA from 

acetate.255 SIRT4 is also located in the mitochondria of mammalian cells and regulates 

energy usage. Haigis et al.256 demonstrated that SIRT4 has an important role in 

regulating amino-acid stimulated insulin secretion (AASIS) in pancreatic (3-cells by 

ADP-ribosylating and inhibiting glutamate dehydrogenase (GDH). A summary of the 

biological functions of the mammalian sirtuins is presented in Table 19.
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Table 19. Summary of mammalian sirtuins, their localisation, activities, interactions and 

biological functions.

Sirtuin Localisation Activity Interactions Biological
functions

SIRT1 Nucleus Deacetylase p53

FOXO proteins 

NFkB

Repression; 
reduced DNA 
damage; increased 
cell survival 
Repression; 
increased 
resistance to 
stress.
Increased
apoptosis

SIRT2 Cytoplasm Deacetylase a-tubulin, 

G2/M proteins

Cell structure, 
intracellular 
transport and 
mobility. 
Controls mitotic 
cell cycle exit.

SIRT3 Mitochondria Deacetylase AceCS2 Thermogenesis / 
metabolism

SIRT4 Mitochondria ADP-ribosyl-
transferase

GDH Insulin secretion / 
metabolism

SIRT5 Mitochondria Deacetylase Unknown Unknown
SIRT6 Nucleus ADP-ribosyl-

transferase
DNA Po1(3 DNA repair

SIRT7 Nucleolus Unknown Po1 I rDNA transcription

Several crystal structures of sirtuin proteins have been reported, either 

uncomplexed,257 or bound to substrates such as NAD+ and/or acetylated peptides.258,259 

These crystal structures have provided insights into the catalytic mechanisms of 

sirtuins, for example, the mechanism by which NAD+ cleavage occurs.

As previously mentioned, PARP-1 also uses NAD+ as its electrophilic substrate when 

SSB or DSB activate PARP-1. Therefore, NAD+ serves as a substrate for both SIRT1 

and PARP-1. Nicotinamide has been identified as a moderately potent SIRT1 inhibitor, 

with an IC5o<50 pM. Interestingly, nicotinamide also serves as a PARP-1 inhibitor, 

albeit at a high IC50 of >100 pM.

The pharmacophore for PARP-1 inhibition has been widely studied and numerous 

PARP-1 inhibitors have been developed. In contrast, the pharmacophore inhibition of 

SIRT1 activity is poorly defined and, as of yet, a crystal structure of SIRT1 has not 

been published. However, a pharmacophore comparative model for SIRT1 has recently
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been constructed using the crystal structure of SIRT2 as the primary template. 

Huhtiniemi et al.260 proposed the binding mode of the indole-based inhibitor EX527 (S- 

enantiomer) in SIRT1 (Figure 23). EX527 has been reported to be approxiametly 1000- 

fold more potent than nicotinamide.261 The site of interaction and the ligand 

conformation were predicted using molecular modelling studies. It was found that the 

amino NH2 moiety of EX527 donates a hydrogen bond to the carbonyl group of the 

D348 residue. In addition, the carbonyl oxygen of EX527 forms hydrogen bonds with 

the D348 and I347 residues. Therefore, SIRT-1 and PARP-1 appear to have a common 

pharmacophore, for example, the amide group in nicotinamide contains donor and 

acceptor functionalities that can bind to the active site of both SIRT1 and PARP-1. The 

quinoline-8-carboxamide series also contains an amide group that could potentially 

form binding interactions with the SIRT-1 active site. It is predicted that these 

compounds may show inhibitory activity towards the SIRT1 enzyme. In order to test 

this hypothesis, a series of our quinoline-8-carboxamide PARP-1 inhibitors were tested 

for their inhibitory activity against SIRT1 in vitro.

Figure 23. Proposed binding interactions of EX527 (S-enantiomer) with the SIRT1 

active site.260
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4.2.1 SIRT1 activity assay

The classical assay methods for monitoring sirtuin activity involve the use of either 
radiolabelled [3H] acetyl-histone or [3H]acetyl-peptides as substrates. These assay 

systems require tedious extraction procedures, using solvents that have a limited 

capacity to extract the radiolabelled acetate released in the assay, thereby reducing the 

range of detectable activity.262,263 Recently, the detection of human SIRT1 activity, 

using a commercially available Fluor de Lys™ fluorescence-based assay, has been 

reported. The SIRT1 fluorescent activity kit developed by Biomol® (Plymouth, USA) is 

non-radioactive and utilises a unique Fluor de Lys™ Substrate/ Developer system. The 

Fluor de Lys™ substrate is a peptide comprising of amino-acids 379-382 of human p53, 

which contains an acetylated lysine side chain. The assay system is based on a two- 

step reaction as shown in Figure 24. The first step involves the NAD+-dependent 
deacetylation of the substrate by recombinant human SIRT1. The second step involves 

the proteolytic cleavage of the deacetylated substrate by the Developer solution and 

generation of a fluorophore. Addition of nicotinamide to the assay ensures that the 

reaction is stopped. The measured fluorescence is directly proportional to the 

deacetylation activity of SIRT1.

As an initial study, 3-AB, 5-AIQ and several substituted quinoline-8-carboxamides were 

evaluated for their in vitro activity against recombinant human SIRT1. Seven different 

final concentrations (100, 30, 10, 3, 1, 0.3 and 0.1 pM) of inhibitor were used in the 

fluorimetric assay. Nicotinamide was also included in the assay as a reference 

compound. For each inhibitor, three independent determinations were performed and 

the raw data are presented in Appendix 3. It was found that none of the compounds 

tested had an inhibitory effect on SIRT1 activity at the micromolar level, although there 

was some indication that quinoline-8-carboxamide may show activity at higher 
concentrations (Table 20). 5-AIQ appears not to inhibit SIRT.
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Figure 24. Reaction Scheme of the SIRT1 Fluorescent Activity Assay. Deacetylation of 

the Fluor de Lys™ substrate sensitises it to the developer, which then generates a 

fluorophore (symbol).
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Table 20. Summary of the SIRT1 plate readings for quinoline-8-carboxamide and 5-

AIQ.

Concentration Quinoline-8-carboxamide 
(pM) fluorescence readings

(460 nm)
Run 1 Run 2 Run 3

100 896 781 894
30 1101 1144 1003
10 949 921 909
3 1100 1143 1061
1 1506 1012 895
0.3 1020 1227 1177
0.1 1363 1373 1173

As mentioned previously, the pharmacophore for SIRT1 is poorly defined. 

Nevertheless, the crystal structures of sirtuins complexed to nicotinamide may provide 

insights into the likely mode of binding of inhibitors to the SIRT1 active site. Structural 

studies of the Sir2Af2 and Sir2Tm enzymes show that nicotinamide can bind to sirtuins 

simultaneously in complex with a peptide, ADP-ribose or NAD+ that is in a non­

productive conformation, thus allowing binding of nicotinamide to the C-pocket of the 

active site.264 The carboxamide amino of nicotinamide forms a hydrogen bond with the 

Asp103 residue in the C-pocket of the enzyme active site. In addition, the carboxamide 

oxygen forms hydrogen bonds with the Ile102 residue. These hydrogen-bond 

interactions anchor the carboxamide moiety to the enzyme, yet allow the pyridine ring 

of nicotinamide to rotate around the C-pocket.

The pharmacophore for PARP-1 inhibition requires a carboxamide group that is 

restricted into the anf/-conformation. This is so that the carboxamide moiety can form 

important hydrogen-bond interactions with the amino-acid residues Ser904 and Gly863 

in the PARP-1 active site. As the carboxamide moiety in the quinoline-8-carboxamide 

compounds is in a restricted conformation it cannot freely rotate in the sirtuin active 

site. Therefore, it is possible that the carboxamide moiety in the quinoline-8- 

carboxamide compounds is not in the correct conformation in order to form the crucial 

hydrogen-bond interactions with C-pocket of the sirtuin active site.
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Zhang et al.265 suggested that there is a functional link between the PARP-1 and sirtuin 

pathway as both enzymes compete for NAD+ (Figure 25). The sirtuin enzyme can be 

suppressed by NAD+ depletion and nicotinamide increase due to PARP activation. The 

connection between the PARP-1 and sirtuin pathway might play a role in the regulation 

of cellular processes such as gene expression, DNA repair, cell cycle progression and 

chromatin remodelling. Recent work has demonstrated that the p53 substrate is shared 

between PARP-1 and sirtuins. The p53 protein is the product of the tumour suppressor 

gene and acts as an antiproliferative factor by controlling growth arrest, apoptosis and 

cell senescence in response to cellular stress. Activation of PARP-1 in response to 

DNA damage or oxidative stress results in decreased NAD+ levels and increased 

nicotinamide levels. As the deacetylase activity of SIRT1 is dependent on NAD+ 

availability and sensitive to nicotinamide production, it is feasible that poly(ADP-ribose) 
metabolism downregulates SIRT1.265 In fact, Vaziri et a/.245 demonstrated that SIRT1 

inhibition by nicotinamide enhances p53 acetylation. However, under normal conditions 

of high NAD+ levels, SIRT1 acts to downregulate p53 activity. It appears that the 

regulation of PARP activity and SIRT1 deacetylase activity may represent 
complementary therapeutic opportunities for the treatment of cancer. However, there is 

still a need for the design of selective sirtuin inhibitors in order to study the link between 

the poly(ADP-ribose) metabolic pathway and the protein acetylation/deacetylation 

pathway.
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Figure 25. Proposed functional interplay between PARP-1 and SIRT1 265

Overall, we have successfully evaluated in vitro a series of 3-substituted and 2- 

substituted quinoline-8-carboxamides. Their potency against PARP-1 is comparable 

with our lead inhibitor 5-AIQ. 8-Carbamoyl-3-phenylquinoline-1-oxide 175 has been 

shown not to be a useful prodrug in this series against this target but may provide a 

new structural lead for PARP-1 inhibition.
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5. Structural studies and molecular modelling

5.1 Structural studies of quinoline-8-carboxamides

Naphthalene-1-carboxamide has been synthesised previously in our laboratory. In the 

1H NMR spectrum of this primary amide, one N-H proton signal was observed at 8 7.74 

and the other at 6 7.99. In this compound, intramolecular hydrogen-bonding is 

impossible and the NH2 proton signals are only separated by ca. 0.25 ppm. In the 1H 

NMR spectrum of quinoline-8-carboxamide 80, one of the N-H protons resonates at 8

6.49 and the other at 8 10.95. Similarly, the signals for the NH2 protons in 3-phenyl- 

quinoline-8-carboxamide 69 were observed at 8 6.17 and 8 10.95 (Figure 26). The 

difference of ca. 5 ppm between the signals of the NH2 protons in both compounds 69 

and 80 indicates that one proton is in a very strongly intramolecularly hydrogen-bonded 

environment (giving the downfield signals), while the other proton is not intra­
molecularly hydrogen-bonded. Interestingly, the 1H-1H COSY spectrum of 69 in CDCI3 

showed a cross-peak between the two N-H signals of the carboxamide group (Figure 

27), suggesting that they are in slow exchange and thus can couple to each other. 
Thus the 1H NMR studies of 69 and 80 indicate that the carboxamide moiety is held in 

a conformation which is apposite for PARP-1 inhibitory activity.

Chloroform is a non-hydrogen-bonding solvent and the CDCI3 NMR solvent promotes 

intramolecular hydrogen-bonding, giving rise to the ca. 5 ppm difference in the NH2 
signals in 69 and 80. In contrast, DMSO is a powerful hydrogen-bond acceptor, with 

the potential to disrupt intramolecular hydrogen bonds. A 1H NMR spectrum of 
compound 69 was taken in (CD3)2SO (Figure 26); one of the N-H signals was evident 

at 8 7.99 whereas the other N-H proton signal was evident further downfield at 6 10.17. 

The difference in chemical shift of the two NH protons is diminished but is still 

significant at ca. 2.2 ppm. A similar A8 was seen for 3-(3-(trifluoromethyl)phenyl)- 

quinoline-8-carboxamide 94 in (CD3)2SO (Figure 28). This indicates that intramolecular 

hydrogen bonding is present even in this potentially powerfully disrupting solvent and 

points to the maintenance of the hydrogen bonds in aqueous biological media.
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Figure 26. Comparison of the N-H signals of 3-phenylquinoline-8-carboxamide in 

CDCI3 (top) and (CD3)2SO (bottom).
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Figure 27.1H-1H COSY spectrum of 3-phenylquinoline-8-carboxamide 69.
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Figure 28. 1H NMR spectrum of 3-(3-(trifluoromethyl)phenyl)quinoline-8-carboxamide

94 in (CD3)2SO.
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From the examination of the 1H NMR spectrum of 8-carbamoyl-3-phenylquinoline-1- 

oxide 175 in (CD3)2SO, it became apparent that the characteristic N-H peak usually 

found between 8 10.0 and 8 10.5 was not present (Figure 29). The 1H NMR results 

suggest that the carboxamide moiety in 175 is not held in a restricted conformation as 

in its non-oxide analogue 69.

7 . 88 . 8

Figure 29. 1H NMR spectrum of 8-carbamoyl-3-phenylquinoline-1-oxide 175 in

(CD3)2SO.
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5.2 X-ray crystallography of 3-phenylquinoline-8-carboxamide and 2-(3-(trifluoro- 
methyl)phenyl)quinoline-8-carboxamide

Crystals of 3-phenylquinoline-8-carboxamide 69 were grown in an EtOAc/hexane 

system and the X-ray crystallographic structure is shown in Figures 30 and 31. The 

phenyl group in 69 is twisted out of the plane of the quinoline ring by 46.9°. In addition, 

the structure shows the presence of the predicted intramolecular hydrogen bond 

between the heterocyclic nitrogen and one of the NH groups of the carboxamide. This 

hydrogen bond holds the carboxamide in the plane of the aromatic quinoline, as 

required for the pharmacophore of inhibitors of PARP-1. This hydrogen bond was also 

demonstrated in solution in CDCl3 and in (CD3)2SO by NMR spectroscopy (see above). 

An additional (intermolecular) hydrogen bond is seen in the crystal between the 

carbonyl oxygen on one molecule and the “exocyclic” N-H of an adjacent molecule. 

Figure 30 illustrates these interactions between a pair of molecules whereas Figure 31 

shows the longer range hydrogen-bonding and stacking arrangement of eight 

molecules.

X-ray crystallography of 3-(2-(trifluoromethyl)phenyl)quinoline-8-carboxamide 96 

provided supporting evidence for the formation of the predicted intramolecular 
hydrogen bond. As with 69, an intramolecular hydrogen-bond interaction was observed 

between the heterocyclic nitrogen and one of the N-H groups of the carboxamide, as 

shown in Figure 32. The steric bulk of the ortho substituent in 96 has a profound effect, 
in that the trifluoromethylphenyl group is twisted out of plane of the quinoline ring by 

55.8°, a dihedral angle some 9° greater than that in 69. The ortho substituent is 

prevented from being co-planar owing to the steric clash between the 3-substituent and 

the 2-H of the quinoline ring.

In compound 96, the length of the proposed intramolecular hydrogen bond is 2.03 A, 

with a bond angle (N-H-N) at hydrogen of 134.9°. Although the optimal angle for a 

hydrogen bond is 180°, hydrogen bonds in planar six-membered rings (e.g. enols of p- 
diketones) are common and relatively strong. This intramolecular hydrogen bond in 96 

creates a planar six-membered ring and thus could be expected to be strong.
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Figure 30. X-ray crystal structure of 3-phenylquinoline-8-carboxamide 69. The red 

colour refers to oxygen, the blue refers to nitrogen, the white refers to hydrogen and 

the grey refers to carbon.

Figure 31. Intermolecular and intramolecular hydrogen bonding present in crystals of 

69. The red colour refers to oxygen, the blue refers to nitrogen, the white refers to 

hydrogen and the grey refers to carbon.
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Figure 32. X-ray crystal structure of 3-(2-(trifluoromethyl)phenyl)quinoline-8- 

carboxamide 96, showing intramolecular hydrogen-bonding interactions. The red colour 

refers to oxygen, the blue refers to nitrogen, the cyan refers to fluorine, the white refers 

to hydrogen and the grey refers to carbon.
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5.3 Molecular modelling studies of 8-carbamoyl-3-phenylquinoline-1 -oxide

In our original hypothesis, it was proposed that the quinoline-8-carboxamide N-oxide 

targets would act as hypoxia-selective prodrugs. It was thought that, in the presence of 

the N-oxide group, the carboxamide would be tipped out of the plane of the quinoline, 
thereby disrupting the pharmacophore required for PARP-1 inhibition. However, 8- 
carbamoyl-3-phenylquinoline-1-oxide 175 showed inhibitory activity approximately 

equal to that of its non-oxide analogue 69 (Section 4.1.3). This result indicates that the 

formation of the N-oxide may not twist the carboxamide out-of-plane as much as 

originally hypothesised. To understand this result better, molecular modelling of 8- 
carbamoyl-3-phenylquinoline-1-oxide 175 was undertaken. Models were built and 

modelled in Sybyl 7.3.3 and charged using Gasteiger-Marsilli and Gasteiger-Huckel 

methods. The models were minimised and subjected to five picoseconds of molecular 

dynamics. During the first picosecond, the temperature was raised from 0 to 450 K and 

then held at 450 K for the next four picoseconds. It was found that there were two low- 
energy conformations of the N-oxide 175 with the amide and phenyl twisted out of the 

plane of the quinoline (Figure 33). These low-energy conformations arise from either 

two clockwise twists of the substituents or two anticlockwise twists and are 

enantiomers.

When calculations were performed in vacuo, the structure adopted an intramolecular 

hydrogen bond between one of the carboxamide N-H protons and the N-oxide oxygen. 
The intramolecular hydrogen bond was occupied 90-95% of the time, depending on the 

calculated charge distribution within the molecule. When the above calculations were 

repeated using a ten-layer water shell (a hydrogen-bond-accepting and -donating 

solvent) the intramolecular hydrogen-bond occupancy significantly reduced as the 

carboxamide group formed transient hydrogen bonds to the solvent (water) shell. In 

this case, the intramolecular hydrogen-bond occupancy was calculated to be in the 

range of 60-70%, depending on the calculated charge distribution within the molecule.

The molecular modelling studies of 175 suggest that it may form a seven-membered 

hydrogen-bonded structure involving the N-oxide, causing the carboxamide moiety to 

twist only slightly out-of-plane and allowing binding to the active site of PARP-1.
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Figure 33. Calculated enantiomeric minimum-energy conformations of 175. The upper 

structure corresponds to clockwise-clockwise rotation of the substituents and the lower 

to anticlockwise-anticlockwise rotations.

The postulated intramolecular hydrogen bond in the modelled structure of 175 

contrasts with that in 96, in that it forms a seven-membered non-planar ring. The 

hydrogen bond is long at 2.46 A (c.f. 2.03 A for 96) and the bond angle (N-H-O) is 

unfavourable at 90.1°. These factors point to a much weaker intramolecular hydrogen 

bond in the N-oxide 175 than in the quinoline-8-carboxamides.
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6. Conclusions

Several different approaches to the synthesis of 3-substituted quinoline-8- 
carboxamides were explored. In route (I), the use of 8-methylquinoline as a precursor 

for the introduction of an aromatic substituent into the 3-position was not a successful 

approach to give 3-substituted quinoline-8-carboxamides. Route (II) gave the first 
target molecule 3-phenylquinoline-8-carboxamide 69, which was characterised by X- 

ray crystallography. Suzuki-Miyaura coupling of 3-iodo-8-nitroquinoline with phenyl- 
boronic acid gave 8-nitro-3-phenylquinoline 62, for which the HMBC spectrum was fully 

assigned. Various methods were employed for the conversion of the nitro group in 

compound 62 to the amine, nitrite and finally carboxamide group. The intramolecular 

hydrogen bond in 69 was demonstrated in the X-ray crystal structure and in the 1H 

NMR spectrum. The latter showed that one of the carboxamide N-H protons was 

hydrogen-bonded to the lone pair of the nitrogen of the quinoline, resulting in the signal 
being very downfield. However, route (II) is not an efficient synthetic strategy for the 

generation of libraries. An alternative route (III), which introduced diversity at the final 
stage in the sequence, was investigated. An 8-cyano group was formed early in the 

route for later hydration to the carboxamide group. 3-Phenylquinoline-8-carboxamide 

69 was successfully synthesised but this route suffered from poor overall yield, owing 

to the difficult Sandmeyer step. A highly efficient route (IV) was finally developed to 

give a wide range of 3-substituted quinoline-8-carboxamides. The synthesis of 3- 
iodoquinoline-8-carboxamide 77 in route (IV) gave an ideal precursor for palladium- 
catalysed coupling reactions. Suzuki-Miyaura couplings of 77 with aryiboronic acids 

proceeded well, giving a series of 3-arylquinoline-8-carboxamides. Varying Suzuki- 
Miyaura coupling conditions were investigated, with different conditions being optimum 

for different groups of aryiboronic acids. Alkyl substituents could not be introduced by 

Suzuki-Miyaura coupling. However, a range of 3-alkylquinoline-8-carboxamides were 

synthesised by Stille coupling of 77 with alkyl stannane reagents. 3-alkynyl- quinoline- 

8-carboxamide derivatives were also obtained via Sonogashira coupling reactions. 

Therefore, we have developed synthetic methods that efficiently provide a diverse 

range of 3-substituted quinoline-8-carboxamides.

A series of 2-substituted quinoline-8-carboxamides was also explored. Attempts to 

convert 8-bromoquinolin-2(1H)-one to 2-oxo-1,2-dihydroquinoline-8-carbonitrile proved 

difficult using either palladium-catalysed methods, or more standard CuCN methods, 

thus preventing a sequence of palladium-catalysed coupling reactions to give the 2-
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substituted quinoline-8-carboxamide targets. In an alternative route, the formation of 
the precursor 2,8-bromoquinoline 133 allowed for successful regioselective palladium- 

catalysed cross-coupling reactions. We have carried out effective regioselective 

Suzuki-Miyaura cross-couplings between 2,8-dibromquinoline 133 and aryiboronic 

acids that furnished 8-bromo-2-aryl substituted quinolines. In addition, we carried out a 

regioselective Stille cross-coupling reaction between 2,8-dibromoquinoline 133 and 

alkyl stannane reagents that furnished 8-bromo-2-alkyl substituted quinolines. HMBC 

analyses demonstrated that the C-Br bond at position 2 of the quinoline ring was more 

reactive towards palladium-catalysed coupling reactions than at the position 8. Lithium- 

bromine exchange and subsequent quenching with trimethylsilylisocyanate led to the 

target 2-substituted quinoline-8-carboxamides in good yields.

Several routes for the synthesis of quinoline-8-carboxamide N-oxides were 

investigated. The synthetic route for the reductive cyclisation of (E)-methyl 2-nitro-3-(3- 

oxo-2-phenylbut-1-enyl)benzoate proved long and low yielding and failed to provide the 

N-oxide target compounds. Direct N-oxidation of quinoline-8-carboxamide with various 

oxidants also failed, due to deactivation by the intramolecular hydrogen bond which 

was designed as part of the pharmacophore. We demonstrated that the presence of 
bulky and electron-withdrawing substituents in the 8-position of quinoline inhibited the 

N-oxidation reaction. Synthetic routes in which the 2- or 3- substituent was present in 

the N-oxidation step but the 8-position carried only a hydrogen atom were attempted. 
Owing to the solubility problems and poor reactivity of intermediates (1-oxido-2- 
phenylquinolin-8-yl)mercury(ll) chloride and (1-oxido-3-phenylquinolin-8-yl)mercury(ll) 
chloride, it was not possible to synthesise the N-oxide targets via these synthetic 

routes.

Finally, it was found that 3-phenylquinoIine-8-carbonitrile 69 could be converted to the 

corresponding N-oxide using urea-hydrogen peroxide complex and trifluoroacetic 

anhydride as the oxidising agent, which generates peroxytrifluoroacetic acid in situ as 

the oxidant. Subsequent hydration with alkaline hydrogen peroxide gave the target 8- 
carbamoyl-3-phenylquinoline-1 -oxide 175.

In this project, we evaluated quinoline-8-carboxamide and representative 3-substituted 

and 2-substituted quinoline-8-carboxamides for their in vitro activity against human 

recombinant PARP-1. It was found that seven of the compounds had potency equal or 
better than our lead inhibitor 5-AIQ. Interestingly, the 2-substituted quinoline-8- 
carboxamides were slightly more potent than were quinoline-8-carboxamide or their 3-
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substituted counterparts. 2-Methylquinoline-8-carboxamide was found to be the most 
potent PARP-1 inhibitor in the series with an IC50 value of 0.5 pM. Biological evaluation 

of 8-carbamoyl-3-phenylquinoline-1-oxide 175 showed that it was not a useful prodrug 

strategy in this series against the PARP-1 target. 8-Carbamoyl-3-phenylquinoline-1- 
oxide 175 was found to have an I C 5 0  of 23 pM which was approximately equal to the 

inhibitory activity of its non-oxide analogue 69 ( I C 5 0  = 15 pM). Molecular modelling 

studies on 175 suggested that it may form a seven-membered hydrogen-bonded 

structure involving the N-oxide, causing the carboxamide moiety to only twist slightly 

out of plane and allowing binding to the NAD+ binding site. As constraining the 

carboxamide moiety into the anf/-conformation by incorporation into a seven- 

membered ring is beneficial for PARP-1 inhibitory activity, the 8-carbamoyl-3- 
phenylquinoline-1 -oxide 175 may provide a new structural lead for PARP-1 inhibition.

The quinoline-8-carboxamides were also tested against human recombinant SIRT1 for 
their in vitro activity. However, none of the quinoline-8-carboxamide compounds tested 

had an inhibitory effect on SIRT1 activity at the micromolar level.

During the course of the project several advances in quinoline chemistry have been 

made. In addition, the studies demonstrate the wide scope of the use of organometallic 

chemistry in the synthesis of libraries of compounds. Future work would involve the 

synthesis of 4-substituted quinoline-8-carboxamides and possibly disubstituted 

quinoline-8-carboxamides to further investigate the NAD+-binding pocket of PARP-1. 
Encouraged by the promising data for inhibition of PARP-1 in vitro, our main focus is to 

evaluate the quinoline-8-carboxamide compounds for their in vivo activity in various 

disease models.
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7. Experimental

General Procedures

All melting points were determined using a Reichert-Jung Thermo Galen Kofler block 

and are uncorrected. IR spectra were recorded on a Perkin-Elmer RXI FT-IR 

spectrometer, either as a liquid (film) or as a KBr disc (KBr). umax values are given in 

cm-1. NMR spectra were recorded on either JEOL-Varian GX 270 (270.05 MHz 1H;

67.8 MHz 13C) or Varian Mercury EX 400 (399.65 MHz 1H; 100.4 MHz 13C; 376.05 MHz 

19F) spectrometers. Tetramethylsilane was used as an internal standard for samples 

dissolved in CDCI3 and (CD3)2SO. Multiplicities are indicated as follows; s (singlet), br 

(broad singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet) and 

m (multiplet). Coupling constants (J) are expressed in Hz. Where indicated, 2-D 

experiments were used to assign 1H NMR and 13C NMR signals. Mass spectra were 

obtained by either Fast Atom Bombardment (FAB) (with 3-nitrobenzyl alcohol as the 

matrix) or Electrospray (ES) at the University of Bath Mass Spectrometry Service using 

a VG 7070 Mass Spectrometer, the University of Bath Department of Pharmacy and 

Pharmacology High Resolution Mass Spectrometry Service using a Bruker 

microOTOF™ and the EPSRC Mass Spectrometry Service, Swansea. Elemental 

analysis (CHN) was carried out at the School of Pharmacy, University of London, 
Microanalysis Service. Thin layer chromatography (TLC) was performed on silica gel 
60 F^-coated aluminium sheets (Merck) and visualisation was accomplished by UV 

light (254 nm). Flash column chromatography was performed using silica gel 60 (0.040- 
0.063 mm, Merck) as the stationary phase.

Boronic acids were purchased from Frontier Scientific, Inc. Other reagents were 

purchased from Aldrich, Lancaster or Acros chemical companies and were used 

without further purification. The Universal Colourimetric PARP Assay Kit was 

purchased from AMS biotechnology. The SIRT1 Fluorimetric Assay Kit was purchased 

from Biomol® International, LP. Milli-Q water was used in all the biological assays. THF 

and diisopropylamine were freshly distilled under nitrogen from sodium/benzophenone 

and calcium hydride respectively. Solutions in organic solvents were dried over 
magnesium sulfate and solvents were evaporated under reduced pressure. 

Experiments were conducted at ambient temperature, unless otherwise stated.
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General Procedure 1 - Pd-Catalysed Suzuki-Miyaura coupling of heteroaryl
halides with arylboronic acids.

The heteroaryl halide (1.0 mmol, 1 equiv.), Pd(PPh3)4 (10 mol %), Na2C03 (1.2 mmol,
1.2 equiv.) and arylboronic acid (1.1 mmol, 1.1 equiv.) in toluene : EtOH : H20  (10 mL :

1 mL : 1 mL) were heated at reflux at 80°C for 24 h under N2. The evaporation residue, 

in EtOAc, was washed with water and brine. The organic layer was dried with MgS04 

and the solvent was evaporated. The crude product was purified by chromatography.

General Procedure 2 • Pd-Catalysed Suzuki-Miyaura coupling of heteroaryl 
halides with 4-bromomethylphenylboronic and toluene-4-boronic acids.

The heteroaryl halide (1.0 mmol, 1 equiv.), K2C03 (3 equiv.), Pd(PPh3)4 (10 mol %) and 

arylboronic acid (1.0 mmol, 1 equiv.) in THF / water (10 mL : 1 mL) were heated at 

reflux for 24 h under Ar. The evaporation residue, in EtOAc, was washed with water 
and brine. The organic layer was dried with MgS04 and the solvent was evaporated. 
The crude product was purified by chromatography.

General Procedure 3 - Pd-Catalysed Suzuki-Miyaura coupling of heteroaryl 
halides with arylboronic acids using the ligand SPhos.

The procedure of Buchwald and co-workers203 was adopted. A dried flask was charged 

with Pd(OAc)2 (2.2 mg, 1.0 mol%), 2-(2',6'-dimethoxybiphenyl)dicyclohexylphosphine 

(8.2 mg, 2.0 mol %), arylboronic acid (1.5 mmol, 1.5 equiv.), powdered anhydrous 

KsP0 4 (424 mg, 2.0 mmol, 2.0 equiv.), and heteroaryl halide (1.0 mmol, 1.0 equiv.). Dry 

toluene (2 mL) was added and the reaction mixture was heated at 100°C for 24 h under 
Ar. The reaction mixture was allowed to cool to ambient temperature, diluted with 

diethyl ether and filtered through a pad of silica gel (eluting with diethyl ether). The 

solvent was evaporated. The crude product was purified by chromatography.

General Procedure 4 - Pd-Catalysed Suzuki-Miyaura coupling of heteroaryl 
halides with pyridine boronic acids.

The heteroaryl halide (1.0 mmol, 1 equiv.), arylboronic acid (1.6 mmol, 1.6 equiv.), and 

Pd(PPh3)4 (5 mol%) were sequentially added to degassed DMF and the mixture was 

stirred for 30 min. Degassed aq. Na2C03 (1 M) solution was added and the reaction 

mixture was heated under N2 at 80°C until TLC monitoring showed that the reaction
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was complete. The evaporation residue, in EtOAc, was washed with water and brine. 
The organic layer was dried with MgS04 and the solvent evaporated. The crude 

product was purified by chromatography.

General Procedure 5 - Stille coupling of heteroaryl halides with tetraalkyl 

stannane reagents.

The heteroaryl halide (1.0 mmol, 1.0 equiv.), Pd(PPh3)4 (10 mol %) and tetraalkyl 
stannane reagent (2.0 mmol, 2.0 equiv.) in NMP (5 mL) were heated at 80°C for 24 h 

under N2. The mixture was extracted with EtOAc. The extract was washed with water 

and dried. The evaporation residue was purified by chromatography.
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3-Bromo-8-nitroquinoline (60)

N-Bromosuccinimide (NBS, 356 mg, 2.0 mmol) was added in portions to 8- 

nitroquinoline 58 (348 mg, 2.0 mmol) in acetic acid (15 mL) during 1 h at 110°C. 

Heating under reflux was continued for 5 min and the mixture was stirred for 8 h at 

ambient temperature. The solution was poured into water with stirring and the pH was 

adjusted to 6 with aq. ammonia. The product was collected by filtration, washed with 

water and dried to give 60 (284 mg, 51%) as a pale yellow solid: Rf = 0.4 (hexane / 

EtOAc, 10:1); mp 119-120°C (lit.266 mp 123°C); 1H NMR 270.05 MHz (CDCI3) 5 7.65 (1 

H, t, J = 8.2. Hz, 6-H), 7.95 (1 H, dd, J = 8.2, 1.2 Hz, 5-H), 8.06 (1 H, dd, J = 8.2, 1.2 

Hz, 7-H), 8.43 (1 H, d, J = 2.4 Hz, 4-H), 9.05 (1 H, d, J = 2.4 Hz, 2-H); MS (FAB*) m/z 

254.9604 (M + H) (C9H661BrN20 2 requires 254.9592), 252.9607 (M + H) (C9H679BrN20 2 

requires 252.9613), 206, 208 (M - N02).

3-lodo-8-nitroquinoline (61)

'N
no2

8-Nitroquinoline 59 was treated with N-iodosuccinimide (NIS), as for the synthesis of 
60, to give 61 (71%) as a pale yellow solid: Rf = 0.47 (hexane / EtOAc, 10:1); mp 121- 

122°C (lit.267 mp 119-120°C); 1H NMR 399.65 MHz (CDCI3) 8 7.64 (1 H, t, J = 8.1 Hz, 6- 

H), 7.91 (1 H, dd, J =  8.1, 1.2 Hz, 5-H), 8.06 (1 H.dd, J=8.1, 1.2 Hz, 7-H), 8.64(1 H, 
d, J= 2.0 Hz, 4-H), 9.17 (1 H, d, J = 2.0 Hz, 2-H); MS (FAB+) m/z 301.9522 (M + H) 

(C9H6IN202 requires 301.9527), 255 (M - N02), 175 (M - 1).
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8-Nitro-3-phenylquinoline (62)

3 '

Method A: Compound 60 (506 mg, 2.0 mmol) was treated with phenylboronic acid 

(89.3 mg, 2.2 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 10:1) 
gave 62 (340 mg, 68%) as a white solid with properties as below.

Method B: Compound 61 was treated with phenylboronic acid and Pd(PPh3)4, as for 
the synthesis of 62 (Method A), to give 62 (97%) as a white solid: Rf = 0.18 (hexane / 

EtOAc, 10:1); mp 115-116°C (lit.268 mp 116-117°C); 1H NMR 399.65 MHz (CDCI3) 8

7.50 (1 H, tt, J = 8.2, 1.2 Hz, 4'-H), 7.56 (2 H, t, J = 8.2 Hz, 3',5'-H2), 7.66 (1 H, t, J =

8.2 Hz, 6-H), 7.72 (2 H, dd, J = 8.2, 1.2 Hz, 2\6'-H2), 8.06 (1 H, dd, J = 8.2, 1.2 Hz, 5- 
H), 8.11 (1 H, dd, J = 8.2, 1.2 Hz, 7-H), 8.39 (1 H, d, J =  2.3 Hz, 4-H), 9.34 (1 H, d, J =

2.3 Hz, 2-H); 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 123.7 (7-C), 125.8 (6-C), 127.5 

(2',6'-C2), 128.0 (4'-C), 129.0 (4a,8-C2), 129.5 (3',5'-C2), 132.5 (5-C), 133.0 (4-C), 

135.7 (3-C), 136.7 (1'-C), 138.5 (8a-C), 152.3 (2-C).

8-Nitro-3-(4-(trifluoromethyl)phenyl)quinoline (63)

CF

Compound 61 (600 mg, 2.0 mmol) was treated with 4-trifluoromethylphenylboronic acid 

(418 mg, 2.2 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 10:1) 

gave 63 (470 mg, 74%) as a pale yellow solid: Rf = 0.24 (hexane / EtOAc, 10:1,); mp 

120-123°C; 1H NMR 399.65 MHz (CDCI3) 6 7.67 (1 H, t, J = 7.8 Hz, 6-H), 7.80 (4 H, s, 

2',3,,5',6’-H4), 8.08 (1 H, dd, J = 7.8, 1.2 Hz, 5-H), 8.12 (1 H, dd, J = 7.8, 1.2 Hz, 7-H), 

8.42 (1 H, d, J = 2.1 Hz, 4-H), 9.30 (1 H, d, J = 2.1 Hz, 2-H); 13C NMR 399.65 MHz
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(HMBC) (CDCI3) 8 123.9 (q, J = 271.4 Hz, CF3), 124.2 (6-C), 126.1 (C-3), 126.4 (q, J =

3.8 Hz, 3',5'-C2), 127.9 (2 ',6 ’-C2), 128.7 (7-C), 130.9 (q, J =  32.9 Hz, 4'-C), 133.6 (5-C),

134.2 (4-C), 138.9 (8a-C), 140.2 (1'-C), 148.2 (8-C), 151.8 (2-C); 19F NMR (CDCI3) 5 - 

62.62 (s, CF3); MS (ES*) m/z 319.0686 (M + H) (Ci6H10F3N2O2 requires 319.0689), 249 

(M - CF3).

8-Nitro-3-(3-(trifluoromethyl)phenyl)quinoline (64)

Compound 61 (600 mg, 2.0 mmol) was treated with 3-trifluoromethylphenylboronic acid 

(418 mg, 2.2 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 10:1) 
gave 64 (620 mg, 97%) as a pale yellow solid: Rf = 0.26 (hexane / EtOAc, 10:1); mp 

119-120°C; 1H NMR 399.65 MHz (CDCI3) 5 7.62-7.76 (3 H, m, 5',6',6-H3), 7.88 (1 H, d, 

J = 7.4 Hz, 4'-H), 7.94 (1 H, s, 2'-H), 8.08 (1 H, dd, J = 7A, 1.2 Hz, 5-H), 8.13 (1 H, dd, 

J = 7.4, 1.2 Hz, 7-H), 8.42 (1 H, d, J = 2.3 Hz, 4-H), 9.30 (1 H, d, J = 2.3 Hz, 2-H); 13C

399.65 MHz NMR (CDCI3) 8 123.8 (q, J = 272.2 Hz, CF3), 124.2 (CH), 124.3 (q, J = 3.8 

Hz, CH), 125.5 (q, J = 3.8 Hz, CH), 126.1 (CH), 128.2 (q, J = 64.4 Hz, Cq), 128.7 (Cq),

130.0 (CH), 130.7 (CH), 132.3 (CH), 133.5 (CH), 134.2 (Cq), 137.5 (Cq), 138.8 (Cq),

148.1 (Cq), 151.7 (CH); 19F NMR (CDCI3) 8 -62.66 (s, CF3); MS (ES+) m/z 319.0674 (M 

+ H) (C16H10F3N2O2 requires 319.0689).

8-Nitro-3-(2-(trifluoromethyl)phenyl)quinoline (65)

CF

Compound 61 (600 mg, 2.0 mmol) was treated with 2-trifluoromethylphenylboronic acid 

(418 mg, 2.2 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 10:1) 
gave 65 (420 mg, 66%) as a white solid: Rf = 0.27 (hexane I EtOAc, 10:1); mp 85- 

87°C; 1H NMR 399.65 MHz (CDCI3) 8 7.38 (1 H, d, J = 7.8 Hz, 6 '-H), 7.60 (1 H, t, J =
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7.8 Hz, 4'-H), 7.58-7.72 (2 H, m, 5\6-H2), 7.82 (1 H, d, J = 7.8 Hz, 3'-H), 8.08 (1 H, d, J 

= 7.4 Hz, 5-H), 8.10 (1 H, d, J = 7.4 Hz, 7-H), 8.22 (1 H, d, J = 1.8 Hz, 4-H), 9.03 (1 H, 

d, J = 1.8 Hz, 2-H), 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 123.8 (q, J = 273.7 Hz, 

CF3), 124.2 (7-C), 125.9 (6-C), 126.5 (q, J = 5.3 Hz, 3'-C), 128.0 (3-C), 128.8 (4’-C),

129.0 (q, J = 29.9 Hz, 2'-C), 131.9 (5'-C), 132.1 (6'-C), 132.3 (5-C), 135.5 (4-C), 136.2 

(8a-C), 138.6 (1’-C), 148.2 (4a,8-C2), 152.8 (2-C); 19F NMR (CDCI3) 8 -56.63 (s, CF3); 
MS (ES*) m/z 319.0673 (M + H) (C,6H10F3N2O2 requires 319.0689), 249 (M - CF3).

3-Phenylquinolin-8-amine (66)

31

4 ‘

5‘

nh2

Anhydrous SnCI2 (3.04 g, 16.0 mmol) was stirred with 62 (0.80 g, 3.2 mmol) in EtOH 

(50 mL) for 6 h. The mixture was poured into water and the solution was made alkaline 

with aq. NaOH. The precipitate, in EtOAc, was dried and the solvent was evaporated. 
Chromatography (hexane / EtOAc, 9:1) gave 66 (0.61 g, 82%) as a pale buff solid: Rf = 

0.32 (hexane / EtOAc, 10:1); mp 74-76°C (lit.268 mp 74-75°C); 1H NMR 399.65 MHz 

(CDCI3) 6 4.96 (2 H, br, NH2), 6.92 (1 H, dd, J = 7.7, 1.8 Hz, 7-H), 7.20 (1 H, dd, J =

7.7, 1.8 Hz, 5-H), 7.35 (1 H, t, J = 7.7 Hz, 6-H), 7.42 (1 H, tt, J = 8.1, 1.9 Hz, 4'-H), 7.51 

(2 H, t, J = 8.1 Hz, 3',5'-H2), 7.70 (2 H, dd, J = 8.1, 1.9 Hz, 2',6'-H2), 8.20 (1 H, d, J =

2.4 Hz, 4-H), 9.02 (1 H, d, J = 2.4 Hz, 2-H).
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3-Phenylquinoline-8-diazonium tetrafluoroborate (67)

Compound 66 (500 mg, 2.3 mmol) in aq. HBF4 (40%, 10 mL) was diazotised by slow 

addition of NaN02 (250 mg, 3.6 mmol) in iced water (2 mL) at 0°C and the mixture was 

stirred for 30 min. The diazonium salt was collected by filtration, washed once with cold 

aq. HBF4, once with cold EtOH and four times with Et20  to give 67 (300 mg, 41%) as a 

yellow solid: IR umax (KBr) 2261 (N=N+) cm"1. This material was used without further 

purification or characterisation.

Quinolin-8-yl trifluoromethanesulfonate (82)

To quinolin-8-ol 81 (4.00 g, 27.6 mmol) in pyridine (10 mL) at 0°C was slowly added 

trifluoromethanesulfonic anhydride (9.32 g, 33.1 mmol). The mixture was stirred at 0°C 

for 5 min, then warmed to 23°C and stirred for 5 h. The mixture was poured into water 
and extracted with EtOAc. The organic extract was washed with water, 10% aq. HCI 
and water and dried. Evaporation and chromatography (hexane / EtOAc, 10:1) gave 82 

(5.61 g, 73%) as a pale yellow solid: Rf = 0.38 (hexane / EtOAc, 10:1); mp 61-62°C 

(lit 269 mp 61-62°C); IR umax (KBr) 1212 (CF), 1318 (S02) cm"1; 1H NMR 399.65 MHz 

(CDCI3) 5 7.50 (1 H, dd, J = 8.4, 4.3 Hz, 3-H), 7.54 (1 H, t, J = 7.9 Hz, 6-H), 7.61 (1 H, 

dd, J = 7.9, 1.5 Hz, 7-H), 7.84 (1 H, dd, J = 7.9, 1.5 Hz, 5-H), 8.20 (1 H, dd, J = 8.4, 2.0 

Hz, 4-H), 9.04 (1 H, dd, J = 4.3, 2.0 Hz, 2-H); 19F NMR (CDCI3) 8 -73.81 (s, CF3).

OTf
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Quinoline-8-diazonium tetrafluoroborate (71)

8-Aminoquinoline 70 (1.00 g, 6.9 mmol) in aq. HBF4 (40%, 10 mL) was diazotised by 

slow addition of NaN02 (940 mg, 13.8 mmol) in iced water (2 mL) at 0°C and stirred for 

20 min. The resulting diazonium salt was collected by filtration, washed once with cold 

aq. HBF4, once with cold EtOH and four times with Et20  to give 70 (910 mg, 54%) as a 

yellow solid: IR umax (KBr) 2227 (N=N+) cm-1. This material was used without further 

purification or characterisation.

Quinoline-8-carbonitrile (72)

Method A: Compound 71 (300 mg, 1.2 mmol) was added to CuCN (421 mg, 4.8 mmol) 

and KCN (632 mg, 9.6 mmol) in water (10 mL). The mixture was heated at 50°C for 1 

h, then stirred at ambient temperature for 8 h. The mixture was extracted with EtOAc. 
The extract was washed with water and dried and the solvent was evaporated. 
Chromatography (hexane / EtOAc, 10:1) gave 72 (170 mg, 92%) as a white solid with 

properties as described below.

Method B: Compound 82 (0.50 g, 1.8 mmol), Cul (34 mg, 0.18 mmol), KCN (0.23 g,

3.6 mmol) and Pd(PPh3)4 (0.10 g, 0.09 mmol) in dry MeCN (5 mL) were boiled under 

reflux for 25 h. The mixture was cooled to ambient temperature, diluted with EtOAc (10 

mL), and then filtered through Celite®. The filtrate was washed with water and brine 

and dried. Evaporation and chromatography (hexane I EtOAc, 10:1) gave 72 (48 mg, 

17%) as a white solid with properties as described below.

Method C: Compound 82 (3.00 g, 10.8 mmol), Zn(CN)2 (0.78 g, 6.9 mmol) and 

Pd(PPh3)4 (1.28 g, 1.1 mmol) in DMF (30 mL) were heated at reflux for 2 h. The 

mixture was diluted with water (200 mL) and 2 M aq. sulfuric acid (20 mL) (CAUTION)

CN
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and extracted with EtOAc. The combined extracts were washed with brine and dried. 
Evaporation and recrystallisation (hexane / EtOAc) provided 72 (1.24 g, 73%) as a 

white solid: Rf =0.34 (hexane / EtOAc, 10:1); mp 86-88°C (lit.196 mp 87.5-88.5°C); IR 

Umax (KBr) 2232 (C=N) cm‘1: 1H NMR 399.65 MHz (CDCfe) 8 7.48-7.58 (2 H, m, 3,6-H2), 
8.02-8.08 (2 H, m, 5,7-H2), 8.21 (1 H, dd, J=  8.6, 1.6 Hz, 4-H), 9.03 (1 H, dd, J = 4.3,
1.6 Hz, 2-H); MS (El+) m/z 154.0525 (M) (C10H6N2 requires 154.0531), 128 (M -  CN).

Quinoline-8-carboxamide (80)

conh2

Method A: Compound 72 (1.00 g, 6.5 mmol), in EtOH (10 mL), was treated with aq. 

0.5 M NaOH (12.7 mL, 6.5 mmol) and 35% aq. H20 2 (2.2 mL, 23 mmol). The mixture 

was heated to 50°C for 1 h and allowed to cool and was neutralised with 10% w/v aq. 
sulfuric acid. The evaporation residue, in CH2CI2, was washed with water and brine. 
Drying and evaporation gave 80 (0.87 g, 78%) with properties as described below.

Method B: To 8-bromoquinoline 78 (500 mg, 2.4 mmol) in dry THF (2 mL) at -79°C 

was added n-BuLi (1.6 M in hexanes, 1.7 mL, 2.6 mmol). After 30 min, 
trimethylsilylisocyanate (1 mL, 7.4 mmol) was added. The solution was stirred for a 

further 15 min at -79°C and for 12 h at 20°C. The evaporation residue, in CH2CI2, was 

washed with water and brine and was filtered. Evaporation and chromatography 

(CH2CI2 I EtOAc, 1:2) gave 80 (200 mg, 48%) as a white solid: Rf = 0.23 (CH2CI2 / 

EtOAc, 1:2); mp 170-172°C (lit.270 mp 171-173°C); IR i w  (KBr) 1593 (Amide II), 1654 

(Amide I), 3330 & 3468 (NH2) cm'1; 1H NMR 399.65 MHz (CDCI3) 5 6.49 (1 H, br, NH), 
7.44 (1 H, dd, J = 8.2, 4.4 Hz, 3-H), 7.63 (1 H, t, J = 7.9 Hz, 6-H), 7.94 (1 H, dd, J = 7.9,

2.2 Hz, 5-H), 8.23 (1 H, dd, J = 7.9, 2.2 Hz, 7-H), 8.82 (1 H, dd, J = 8.2, 2.3 Hz, 4-H), 
8.88 (1 H, dd, J = 4.4, 2.3 Hz, 2-H), 10.95 (1 H, br, NH); MS (FAB+) m/z 173.0717 (M + 

H) (Ci0H9N2O requires 173.0715); Anal. Calcd. for C10H9N2O: C, 69.76; H, 4.68; N, 
16.27. Found: C, 69.62; H, 4.77; N, 16.12.
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3-lodoquinoline-8-amine (74)

nh2

Anhydrous SnCI2 (1.10 g, 5.8 mmol) in MeOH (5 mL) was stirred with 61 (0.50 g, 1.7 

mmol) in CHCI3 (25 mL) for 8 h. The solution was diluted with CH2CI2 and washed with 

aq. NaOH (0.5 M). Drying, evaporation and chromatography (hexane / EtOAc, 4:1) 
gave 74 (0.21 g, 46%) as a pale yellow solid: Rf = 0.51 (hexane / EtOAc, 10:1); mp 

125-128°C (lit.267 mp 129°C); 1H NMR 270.05 MHz (CDCI3) 8 4.95 (2 H, br, NH2), 6.92 

(1 H, dd, J = 7.7, 1.2 Hz, 7-H), 7.02 (1 H, dd, J = 7.7, 1.2 Hz, 5-H), 7.29 (1 H, t, J = 7.7 

Hz, 6-H), 8.42 (1 H, d, J = 2.0 Hz, 4-H), 8.84 (1 H, d, J = 2.0 Hz, 2-H); MS (FAB+) m/z 

271.9766 (M + H) (C9H8IN2 requires 271.9766).

3-lodoquinoline-8-diazonium tetrafluoroborate (75)

Compound 74 (600 mg, 2.2 mmol) in aq. HBF4 (40%, 10 mL) was diazotised by slow 

addition of NaN02 (300 mg, 4.4 mmol) in iced water (2 mL) at 0°C and stirred for 20 

min. The resulting diazonium salt was collected by filtration, washed once with cold aq. 
HBF4, once with cold EtOH and four times with Et20  to give 75 (410 mg, 50%) as a 

yellow solid: IR umax (KBr) 2254 (N=N+) cm'1. This material was used without further 

purification or characterisation.
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3-lodoquinoline-8-carbonitrile (76)

CN

Method A: Compound 75 (300 mg, 0.80 mmol) was added to CuCN (290 mg, 3.3 

mmo!) and KCN (420 mg, 6.7 mmol) in water (8 mL). The mixture was heated at 50°C 

for 1 h, then stirred at ambient temperature for 8 h. The mixture was extracted with 

EtOAc. The extract was washed with water and dried and the solvent was evaporated. 
Chromatography (hexane / EtOAc, 10:1) gave 76 (113 mg, 50%) as a pale buff solid 

with properties as described below.

Method B: Compound 72 (650 mg, 4.2 mmmol) was treated with NIS (940 mg, 4.2 

mmol) in AcOH (10 mL) and heated under reflux for 3 h. The mixture was extracted 

with EtOAc. The extract was washed with aq. NaHC03 and dried. Evaporation and 

chromatography (hexane / EtOAc, 2:3) gave 76 (412 mg, 35%) as a pale buff solid: Rf 

= 0.41 (EtOAc / hexane, 1:10); mp 82-84°C; IR i w  (KBr) 2250 (C^N) cm'1; 1H NMR

399.65 MHz (CDCI3) 6 7.62 (1 H, t, J = 7.5 Hz, 6-H), 7.96 (1 H, dd, J = 7.5, 1.2 Hz, 5- 

H), 8.13(1 H, dd, J = 7.5, 1.2 Hz, 7-H), 8.62 (1 H, d, J = 2.0 Hz, 4-H), 9.19(1 H, d, J =

2.0 Hz, 2-H); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5 91.9 (3-C), 113.4 (8-C), 116.7 

(CN), 126.8 (6-C), 129.6 (4a-C), 131.7 (5-C), 135.9 (7-C), 144.1 (4-C), 145.6 (8a-C),
157.8 (2-C); MS (ES+) m/z 583 (2 M + Na), 280.9557 (M + H) (C10H6IN2 requires 

280.9570); Anal. Calcd. for Ci0H5IN2: C, 42.89; H, 1.80; N, 10.00. Found: C, 42.83; H, 
2.00; N, 9.78.

3-lodoquinoline-8-carboxamide (77)

Method A: Compound 76 (50 mg, 0.20 mmol) in EtOH (1 mL), was treated with aq. 

NaOH (0.5 M, 3.5 mL, 1.8 mmol) and 35% w/v aq. H20 2 (0.2 mL). The mixture was 

heated to 50°C for 1 h, allowed to cool and neutralised with 10% w/v aq. sulfuric acid. 

The evaporation residue, in CH2CI2, was washed with brine, dried and filtered.

C O N H 2
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Evaporation and chromatography (hexane / EtOAc, 3:2) gave 77 (23 mg, 43%) as a 

pale yellow solid with properties as below.

Method B: Compound 80 (700 mg, 4.1 mmol), NIS (910 mg, 4.1 mmol) in AcOH (7 

mL) and FeCI3 (5 mol%) were heated at reflux for 24 h. The mixture was then poured 

into water (100 mL) and extracted with CHCI3. Washing (aq. NaHC03), drying, 
evaporation and chromatography (hexane / EtOAc, 3:2) gave 77 (0.48 g, 40%) as a 

pale yellow solid: Rf = 0.51 (hexane / EtOAc, 3:2); mp 211-214°C; IR \ w  (KBr) 1562 

(Amide II), 1668 (Amide I), 3302 & 3420 (NH2) cm'1; 1H NMR 399.65 MHz (CDCI3) 5 

6.11 (1 H, br, NH), 7.72 (1 H, t, J = 8.0 Hz, 6-H), 7.89 (1 H, dd, J = 8.0, 1.5 Hz, 5-H), 

8.64 (1 H, d, J = 2.2 Hz, 4-H), 8.86 (1 H, dd, J = 8.0, 1.5 Hz, 7-H), 9.05 (1 H, d, J = 2.2 

Hz, 2-H), 10.53 (1 H, br, NH); ,3C NMR 399.65 MHz (HMBC) (CDCI3) 5 89.4 (3-C),

127.5 (6-C), 128.8 (4a-C or C-8), 130.2 (8-C or 4a-C), 131.4 (5-C), 134.8 (7-C), 143.8 

(8a-C), 145.2 (5-C), 154.9 (2-C), 167.0 (CONH2); MS (FAB*) m/z 298.9689 (M + H) 

(Ci0H7IN2O requires 298.9681).

3-Phenylquinoline-8-carbonitrile (68)

Method A: Compound 67 (200 mg, 0.60 mmol) was added to CuCN (203 mg, 2.0 

mmol) and KCN (290 mg, 4.5 mmol) in water (8 mL). The mixture was heated at 50°C 

for 1 h, then stirred at ambient temperature for 8 h. The mixture was extracted with 

EtOAc. The extract was washed with water, dried and the solvent was evaporated. 
Chromatography (hexane / EtOAc, 10:1) gave 68 (110 mg, 78%) as a pale buff solid 

with properties as described below.

Method B: Compound 76 (557 mg, 2.0 mmol) was treated with phenylboronic acid 

(364 mg, 3.0 mmol) by General Procedure 3. Chromatography (hexane / EtOAc, 3:2) 
gave 68 (390 mg, 86%) as a white solid: Rf = 0.51 (hexane / EtOAc, 10:1); mp 122- 

124°C; IR (KBr) 2230 (C=N) cm'1; 1H NMR 399.65 MHz (CDCI3) 8 7.47 (1 H, t, J =

7.4 Hz, 4'-H), 7.53 (2 H, t, J = 7.4 Hz, 3',5'-H2), 7.64 (1 H, t, J = 7.5 Hz, 6-H), 7.71 (2 H, 

d, J = 7.4 Hz, 2',6'-H2), 8.10 (1 H, dd, J = 7.5, 2.0 Hz, 5-H), 8.13 (1 H, dd, J = 7.5, 2.0

3 ’

2,^ \4

CN
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Hz, 7-H), 8.36 (1 H, d, J = 2.4 Hz, 4-H), 9.34 (1 H, d, J = 2.4 Hz, 2-H); 13C NMR 399.65 

MHz (HMBC) (CDCI3) 6 113.0 (8-C), 117.2 (CN), 126.3 (6-C), 127.5 (2 ',6 '-C2), 128.0 

(4a-C), 128.7 (4’-C), 129.4 (3r,5'-C2), 133.0 (5-C), 133.3 (4-C), 135.2 (7-C), 135.6 (3- 

C), 136.8 (1'-C), 146.5 (8a-C), 152.1 (2-C); MS (ES+) m/i 483 (2 M + Na), 231.0909 (M 

+ H) (C16H11N2 requires 231.0917); Anal. Calcd. for Ci6H10N2: C, 83.46; H, 4.38; N, 
12.17. Found: C, 83.39; H, 4.39; N, 12.09.

3-Phenylquinoline-8-carboxamide (69)

3 ’

Method A: Compound 68 (50 mg, 0.20 mmol) in EtOH (1 mL), was treated with aq. 0.5 

M NaOH (4.3 mL, 2.2 mmol) and 35% w/v aq. H2O2 (0.2 mL). The mixture was heated 

to 50°C for 1 h and allowed to cool; it was then neutralised with aq. H2S04 (10%). The 

evaporation residue, in CH2CI2, was washed with water and brine. Drying and 

evaporation gave 69 (32 mg, 60%) as a pale yellow solid with properties as described 

below.

Method B: Compound 77 (100 mg, 0.34 mmol) was treated with phenylboronic acid 

(46 mg, 0.37 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 10:1) 
gave 69 (64 mg, 76%) as a pale yellow solid with properties as described below.

Method C: Compound 77 (149 mg, 0.50 mmol) was treated with phenylboronic acid 

(91 mg, 0.75 mmol) by General Procedure 3. Recrystallisation (hexane / EtOAc) gave 

69 (115 mg, 93%) as a pale yellow solid: Rf = 0.53 (hexane / EtOAc, 2:3); mp 130- 

132°C; IR (KBr) 1600 (Amide II), 1674 (Amide I), 3270 & 3468 (NH2) cm'1; 1H NMR

399.65 MHz (CDCI3) 6 6.17 (1 H, br, NH), 7.48 (1 H, t, J = 8.0 Hz, 4'-H), 7.56 (2 H, t, J 

= 8.0 Hz, 3',5'-H2), 7.60 (1 H, t, J = 7.5 Hz, 6-H), 7.65-7.62 (2 H, m, 2',6'-H2), 8.06 (1 H, 

dd, J = 7.5, 1.4 Hz, 5-H), 8.42 (1 H, d, J = 2.3 Hz, 4-H), 8.86 (1 H, dd, J = 7.5, 1.4 Hz,
7-H), 9.20 (1 H, d, J = 2.3 Hz, 2-H), 10.95 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) 

(CDCI3) 5 126.8 (8-C), 127.3 (6-C), 128.4 (2',6'-C2), 128.4 (4a-C), 128.6 (3\5'-C2),

129.3 (4'-C), 132.7 (4-C), 133.8 (5-C), 134.1 (7-C), 134.6 (3-C), 137.1 (1'-C), 144.7
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(8a-C), 149.0 (2-C), 167.6 (CONH2); MS (FAB+) m/z 249.1030 (M + H) (Ci6H13N20  

requires 249.1028), 232 (M - NH2).

3-(4-Methoxyphenyl)quinoline-8-carboxamide (91)

OCH

Compound 77 (158 mg, 0.53 mmol) was treated with 4-methoxyphenylboronic acid (88 

mg, 0.58 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 10:1) 
gave 91 (140 mg, 95%) as a pale yellow solid: Rf = 0.30 (hexane / EtOAc, 10:1); mp 

190-192°C; IR i w  (KBr) 1607 (Amide II) 1657 (Amide I), 3200 & 3468 (NH2) cm'1; 1H 

NMR 399.65 MHz (CDCI3) 8 3.88 (3 H, s, CH3), 6.21 (1 H, br, NH), 7.06 (2 H, d, J = 8.6  

Hz, 3',5'-H2), 7.64 (2 H, d, J = 8.6  Hz, 2\6'-H2), 7.66 (1 H, t, J = 8.0 Hz, 6-H), 8.00 (1 H, 

dd, J = 8 .0 , 1.4 Hz, 5-H), 8.33 (1 H, d, J  = 2.3 Hz, 4-H), 8.80 (1 H, dd, J = 8.0, 1.4 Hz,
7-H), 9.16 (1 H, d, J = 2.3 Hz, 2-H), 10.96 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) 

(CDCI3) 8 55.4 (CH3), 114.8 (3',5'-C2), 126.8 (6-C), 128.4 (2’,6'-C2), 128.3 (1'-C), 128.4 

(4a-C or 8-C), 129.3 (8-C or4a-C), 132.5 (5-C), 133.5 (3-C), 133.6 (7-C), 133.7 (4-C),

144.3 (8a-C), 148.8 (2-C), 160.4 (4'-C), 167.6 (CONH2); MS (ES*) m/z 279.1129 (M + 

H) (C17H16N20 2 requires 279.1128), 261 (M + H -  H20), 235 (M + H -  CONH2); 

Anal. Calcd. for C17H,4N20 2: C, 73.37; H, 5.07; N, 10.07. Found: C, 72.92; H, 4.69; N, 
9.63.

3-(3,5-Dimethylphenyl)quinoline-8-carboxamide (92)

Compound 77 (100 mg, 0.34 mmol) was treated with 3,5-dimethylphenylboronic acid 

(56 mg, 0.37 mmol) by General Procedure 1. Recrystallisation (hexane / EtOAc) gave
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92 (61 mg, 65%) as a white solid: Rf = 0.30 (hexane / EtOAc, 3:2); mp 209-211°C; IR 

Umax (KBr) 1597 (Amide II), 1665 (Amide I), 3281 & 3468 (NH2) cm'1; 1H NMR 399.65 

MHz (CDCI3) 5 2.43 (6 H, s, 2 x CH3), 6.13 (1 H, br, NH), 7.11 (1 H, s, 4'-H), 7.32 (2 H, 

s, 2',6'-H2), 7.70 (1 H, t, J = 8.0 Hz, 6-H), 8.04 (1 H, dd, J =  8.0, 1.4 Hz, 5-H), 8.39 (1 H, 

d, J = 2.5 Hz, 4-H), 8.84 (1 H, dd, J = 8.0, 1.4 Hz, 7-H), 9.17 (1 H, d, J = 2.5 Hz, 2-H),

10.98 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5 21.4 (2xCH3), 125.2 

(2',6'-C2), 128.1 (4a-C or 8-C), 128.4 (8-C or 4a-C), 128.5 (6-C), 130.2 (4'-C), 132.6 (4- 

C), 133.9 (7-C), 134.0 (3-C), 134.5 (5-C), 136.1 (1'-C), 139.0 (3',5'-C2), 144.6 (8a-C),

149.1 (2-C), 167.6 (CONH2); MS (ES+) m/z 277.1334 (M + H) (Ci8Hi7N20  requires 

277.1335), 233 (M + H -  CONH2).

3-(4-Methylphenyl)quinoline-8-carboxamide (93)

CONH2

Method A: Compound 77 (100 mg, 0.34 mmol) was treated with toluene-4-boronic acid 

(51 mg, 0.37 mmol) by General Procedure 2. Recrystallisation (hexane / EtOAc) gave 

93 (43 mg, 48%) as a white solid with properties as described below.

Method B: Compound 77 (447 mg, 3.0 mmol) was treated with toluene-4-boronic acid 

(306 mg, 2.3 mmol) by General Procedure 3. Recrystallisation (hexane I EtOAc) gave 

93 (306 mg, 78%) as a white solid: Rf = 0.35 (hexane / EtOAc, 3:2); mp 176-177°C; IR 

Umax (KBr) 1599 (Amide II), 1675 (Amide I), 3283 & 3468 (NH2) cm'1; 1H NMR 399.65 

MHz (CDCI3) 6 2.44 (3 H, s, CH3), 6.17 (1 H, br, NH), 7.36 (2 H, d, J= 8.0 Hz, 3\5'-H2), 

7.63 (2 H, d, J = 8.0 Hz, 2',6'-H2), 7.69 (1 H, t, J = 8.0 Hz, 6-H), 8.04 (1 H, dd, J = 8.0,

1.5 Hz, 5-H), 8.39 (1 H, d, J = 2.0 Hz, 4-H), 8.83 (1 H, dd, J = 8.0, 1.5 Hz, 7-H) 9.19 (1 

H, d, J = 2.0 Hz, 2-H), 10.96 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5

21.2 (CH3), 126.8 (6-C), 127.2 (3',5'-C2), 128.4 (4a,8-C2), 130.1 (2',6'-C2), 132.6 (5-C),

133.7 (3-C or 1'-C), 133.8 (1'-C or 3-C), 134.1 (4-C), 134.2 (7-C), 138.6 (4'-C), 144.5 

(8a-C), 149.0 (2-C), 167.6 (CONH2); MS (ES+) m/z 263.1176 (M + H) (C17H15N20  

requires 263.1179), 219 (M + H -  CONH2); Anal. Calcd. for C17H14N20: C, 77.84; H, 
5.38; N, 10.68. Found: C, 77.54; H, 5.21; N, 10.47.
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3-(3-(Trifluoromethyl)phenyl)quinoline-8-carboxamide (94)

conh2

Compound 77 (158 mg, 0.53 mmol) was treated with 3-(trifluoromethyl)phenylboronic 

acid (111 mg, 0.58 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 
10:1) gave 94 (73 mg, 43%) as a white solid: Rf = 0.27 (hexane I EtOAc, 10:1); mp 

228-229°C; IR u max (KBr) 1571 (Amide II), 1669 (Amide I), 3058 & 3466 (NH2) cm'1; 1H 

NMR 399.65 MHz ((CD3)2SO) 8 7.78 (1 H, dd, J = 7.9, 7.4 Hz, 5'-H), 7.83 (1 H, d, J =

7.4 Hz, 6'-H), 7.86 (1 H, brd, J = 7.9 Hz, 4'-H), 8.00 (1 H, br, NH), 8.27 (1 H, d, J = 4.3 

Hz, 2'-H), 8.29 (1 H, m, 6-H), 8.30 (1 H, dd, J = 7.7,1.9 Hz, 5-H), 8.58 (1 H, dd, 7.7,1.9 

Hz, 7-H), 9.00 (1 H, d, J = 2.3 Hz, 4-H), 9.47 (1 H, d, J = 2.3 Hz, 2-H), 10.14 (1 H, br, 

NH); 13C NMR 399.65 MHz ((CD3)2SO) 8 123.9 (m), 125.1 (m), 127.0 (CH), 128.0 (CH),

129.5 (CH), 130.4 (CH), 131.3 (Cq), 131.4 (CH), 132.8 (CH), 133.1 (CH), 135.4 (CH),

137.6 (Cq), 144.2 (CH), 149.2 (CH), 166.3 (CONH2); 19F NMR ((CD3)2SO) 8 -62.56 (s, 
CF3); MS (ES+) m/z 655 (2 M + Na), 317.0881 (M + H) (C17H12F3N20  requires 

317.0896); Anal. Calcd. for C17H12F3N20: C, 64.56; H, 3.51; N, 8.86. Found: C, 64.78; 
H, 3.49; N, 8.84.

3-(4-(Trifluoromethyl)phenyl)quinoline-8-carboxamide (95)

CF

Compound 77 (158 mg, 0.53 mmol) was treated with 4-(trifluoromethyl)phenylboronic 

acid (111 mg, 0.58 mmol) by General Procedure 1. Chromatography (EtOAc / hexane, 
5:2) gave 95 (64 mg, 38%) as a white solid: Rf = 0.27 (hexane / EtOAc, 10:1); mp 184- 

185°C; IR umax (KBr) 1572 (Amide II), 1671 (Amide I), 3120 & 3469 (NH2) cm'1; 1H NMR

399.65 MHz (CDCI3) 8 6.18 (1 H, br, NH), 7.73 (1 H, t, J = 7.8 Hz, 6-H), 7.80 (2 H, d, J 

= 8.7 Hz, 2',6'-H2), 7.84 (2 H, d, J = 8.7 Hz, 3',5'-H2), 8.09 (1 H, dd, J = 7.8, 1.4 Hz, 5-
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H), 8.45 (1 H, d, J = 2.4 Hz, 4-H), 8.89 (1 H, dd, J = 7.8, 1.4 Hz, 7-H), 9.20 (1 H, d, J =

2.4 Hz, 2-H), 10.86 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 6 124.0 (q, J 

= 272.2 Hz, CF3), 126.3 (q, J = 3.8 Hz, 3',5'-C2), 127.3 (6-C), 127.7 (2',6'-C2), 128.2 

(4a-C or 8-C), 128.5 (8-C or 4a-C), 130.6 (q, J = 32.2 Hz, 4'-C), 132.4 (1'-C), 132.8 (5- 

C), 134.7 (7-C), 135.2 (4-C), 140.6 (3-C), 145.0 (8a-C), 148.6 (2-C), 167.4 (CONH2); 

19F NMR (CDCI3) 8 -60.92 (s, CF3); MS (ES+) m/z 317.0897 (M + H) (C17H12F3N20  

requires 317.0896), 299 (M + H -  H20), 69 (CF3), 273 (M + H -  CONH2).

3-(2-(T rifluoromethyl)phenyl)quinoline-8-carboxamide (96)

1 ^

V
conh2

cf3

Compound 77 (158 mg, 0.53 mmol) was treated with 2-(trifluoromethyl)phenylboronic 

acid (111 mg, 0.58 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 
10:1) gave 96 (46 mg, 27%) as a pale yellow solid: Rf = 0.25 (hexane / EtOAc, 10:1); 

mp 165-167°C, IR umax (KBr) 1571 (Amide II), 1669 (Amide I), 3468 & 3100 (NH2) cm-1; 

1H NMR 399.65 MHz (CDCI3) 8 6.21 (1 H, br, NH), 7.42 (1 H, d, J = 7.6 Hz, 6'-H), 7.60 

(1 H, t, J = 7.6 Hz, 4'-H), 7.66 (1 H, t, J = 7.6 Hz, 5'-H), 7.73 (1 H, t, J = 7.6 Hz, 6-H),

7.85 (1 H, d, J = 7.6 Hz, 5-H), 8.03 (1 H, dd, J = 7.6, 1.4 Hz, 3'-H), 8.24 (1 H, dd, J =

1.7 Hz, 4-H), 8.88 (1 H, d, J = 7.6 Hz, 7-H), 8.90 (1 H, d, J = 1.7 Hz, 2-H), 10.91 (1 H, 

br, NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 126.5 (q, J = 5.4 Hz, 3'-C), 127.0 (6- 

C), 127.5 (4a-C or 8-C), 128.6 (4'-C),128.9 (8-C or 4a-C), 129.1 (q, J = 30.6 Hz, 2'-C),

131.8 (6-C), 132.0 (5'-C), 132.7 (5-C), 132.8 (3-C), 134.6 (7-C), 136.6 (q, J = <2 Hz, 

r-C), 137.0 (4-C), 144.7 (8a-C), 149.6 (2-C), 167.5 (CONH2), CF3 peak not observed; 

19F NMR (CDCI3) 8 -56.70 (s, CF3); MS (ES+) m/z 655 (2 M + Na), 317.0884 (M + H) 

(Ci7H12F3N20  requires 317.0896).
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3-(3-Bromophenyl)quinoline-8-carboxamide (97)

conh2

Compound 77 (158 mg, 0.53 mmo!) was treated with 3-bromophenylboronic acid (116 

mg, 0.58 mmol) by General Procedure 1. Recrystallisation (CHCI3 / EtOAc) gave 97 (53 

mg, 31%) as a white solid: Rf = 0.28 (hexane / EtOAc, 10:1); mp 178-180°C; IR i w  

(KBr) 1597 (Amide II), 1665 (Amide I), 3282 & 3454 (NH2) cm'1; 'H NMR 399.65 MHz 

(CDCI3) 8 6.26 (1 H, br, NH), 7.42 (1 H, t, J = 7.8 Hz, 5'-H), 7.60 (1 H, dd, J = 7.8, 1.7 

Hz, 4'-H), 7.64 (1 H, dd, J = 7.8, 1.7 Hz, 6’-H), 7.73 (1 H, t, J = 7.7 Hz, 6-H), 7.86 (1 H, 

t, J = 1.7 Hz, 2'-H), 8.06 (1 H, dd, J = 7.7, 1.6 Hz, 5-H), 8.40 (1 H, d, J = 2.3 Hz, 4-H),

8.85 (1 H, dd, J = 7.7, 1.6 Hz, 7-H), 9.14 (1 H, d, J =  2.3 Hz, 2-H) 10.92 (1 H, br, NH); 

13C NMR 399.65 MHz (HMBC) (CDCI3) 8 123.4 (3'-C), 125.9 (6'-C), 127.1 (6-C), 128.2 

(4a-C or 8-C), 128.3 (8-C or4a-C), 130.4 (5'-C), 131.5 (4'-C), 132.4 (3-C), 132.8 (2’-C),

134.5 (5-C), 134.9 (7-C), 135.2 (4-C), 139.1 (1'-C), 144.8 (8a-C), 148.6 (2-C), 167.5 

(CONH2); MS (FAB*) m/z 329.0102 (M + H) (Ci6H1281BrN20  requires 329.0113), 

327.0119 (M + H) (C,eH1279BrN20  requires 327.0133); Anal. Calcd. for 
CieHnBrN20 .0.75 CHCI3: C, 48.28; H, 2.84; N, 6.02. Found: C, 48.55; H, 2.70; N, 6.03.

3-(4-Cyanophenyl)quinoline-8-carboxamide (98)

CN

CONH2

Compound 77 (158 mg, 0.53 mmol) was treated with 4-cyanophenylboronic acid (85 

mg, 0.58 mmol) by General Procedure 1. Chromatography (petroleum ether / EtOAc, 
3:2) gave 98 (58 mg, 40%) as white solid: Rf = 0.30 (petroleum ether / EtOAc, 3:2); mp 

209-211°C; IR i w  (KBr) 1598 (Amide II), 1674 (Amide I), 2363 (C=N), 3268 & 3467 

(NH2) cm’1; 1H NMR 399.65 MHz (CDCI3) 5 6.20 (1 H, br, NH), 7.74 (1 H, t, J = 7.7 Hz,

6-H), 7.82 (4 H, s, 2',3',5',6'-H4), 8.08 (1 H, dd, J = 7.7, 1.4 Hz, 5-H), 8.45 (1 H, d, J =
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2.3 Hz, 4-H), 8.85 (1 H, dd, J = 7.7, 1.4 Hz, 7-H), 9.18(1 H, d, J = 2.3 Hz, 2-H), 10.91 

(1 H, br, NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5 112.2 (4'-C), 118.4 (CN), 127.4 

(2',6'-C2), 127.9 (6-C), 128.0 (4a-C or 8-C), 128.3 (8-C or 4a-C), 131.8 (3',5'-C2), 132.9 

(7-C), 133.1 (4-C), 134.9 (5-C), 135.4 (3-C), 141.5 (1'-C), 145.1 (8a-C), 148.3 (2-C),
167.3 (CONH2); MS (ES*) m/z 274.0974 (M + H) (C17H12N30  requires 274.0975), 230 

(M + H -  CONH2)

3-(Pyridin-3-yl)quinoline-8-carboxamide (99)

Compound 77 (312 mg, 1.1 mmol) was treated with pyridine-3-boronic acid (206 mg,

1.7 mmol) by General Procedure 4. Chromatography (petroleum ether / EtOAc, 3:2) 
gave 99 (68 mg, 26%) as a pale yellow solid: Rf = 0.29 (petroleum ether / EtOAc, 3:2); 

mp 136-137°C; IR i w  (KBr) 1591 (Amide II), 1647 (Amide I), 3055 & 3436 (NH2) cm-1; 

1H NMR 399.65 MHz (CDCI3) 5 6.23 (1 H, br, NH), 7.48 (1 H, dd, J = 7.9, 4.9 Hz, 5'-H), 

7.74 (1 H, t, J = 8.0 Hz, 6-H), 8.02 (1 H, dt, J = 7.9, 1.5 Hz, 4'-H), 8.07 (1 H, dd, J = 8.0,

1.4 Hz, 5-H), 8.44 (1 H, d, J = 2.4 Hz, 4-H), 8.71 (1 H, dd, J = 4.9, 1.5 Hz, 6'-H) 8.88 (1 

H, dd, J = 8.0, 1.4 Hz, 7-H), 8.99 (1 H, d, J= 1.5 Hz, 2'-H), 9.17 (1 H, d, J = 2.4 Hz, 2- 

H), 10.83 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5 124.0 (5'-C), 127.3 

(6-C), 128.2 (4a-C or 8-C), 128.6 (8-C or 4a-C), 130.6 (1'-C), 132.7 (5-C), 132.8 (3-C),

134.6 (7,6'-C2), 135.0 (4-C), 144.9 (8a-C), 148.4 (2',4'-C2), 149.2 (2-C), 167.3 (CONH- 
2); MS (ES+) m/z 521 (2 M + Na), 250.0963 (M + H) (Ci5H12N30  requires 250.0975); 

Anal. Calcd. for C15HnN30: C, 72.28; H, 4.45; N, 16.86. Found: C, 72.38; H, 4.48; N, 

16.41.
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3-(Pyridin-4-yl)quinoline-8-carboxamide (100)

Compound 77 (104 mg, 0.35 mmol) was treated with pyridine-4-boronic acid (68 mg, 
0.55 mmol) by General Procedure 4. Chromatography (hexane / EtOAc, 3:2) gave 100 

(35, mg, 40%) as a pale yellow solid: Rf = 0.37 (hexane / EtOAc, 3:2); mp 190-193°C; 

IR (KBr) 1591 (Amide II), 1654 (Amide I), 3055 & 3462 (NH2) cm'1; 1H NMR 399.65 

MHz (CD3OD) 6 7.80 (1 H, t, J = 8.1 Hz, 6-H), 7.97 (2 H, d, J = 5.9 Hz, 2',6'-H2), 8.28 (1

H, dd, J=  8.1, 1.6 Hz, 5-H), 8.71 (2 H, d, J = 5.9 Hz, 3',5'-H2), 8.74 (1 H, dd, J = 8.1,

I.6 Hz, 7-H), 8.88 (1 H, d, J = 2.4 Hz, 4-H), 9.40 (1 H, d, J = 2.4 Hz, 2-H); 13C NMR

399.65 MHz (HMBC) (CD3OD) 8 123.4 (2',6'-C2), 128.2 (6-C), 129.7 (4a,8-C2), 131.9 

(3-C), 134.8 (5-C), 135.4 (7-C), 137.1 (4-C), 146.7 (8a-C), 146.8 (1'-C), 149.8 (3',5'- 

C2), 151.0 (2-C); MS (ES+) m/z 521 (2 M + Na), 250.0965 (M + H) (Ci5H12N30  requires 

250.0975).

3-(4-Bromomethylphenyl)quinoline-8-carboxamide (101)

CONH2

Compound 77 (80 mg, 0.27 mmol) was treated with 4-(bromomethyl)phenylboronic 

acid (58 mg, 0.27 mmol) by General Procedure 2. Chromatography (hexane / EtOAc, 
3:2) gave 101 as a white solid (1.5 mg, 2%): Rf = 0.60 (hexane / EtOAc, 3:2); mp 178- 

181°C 1H NMR 399.65 MHz (CD3OD) 8 4.89 (2 H, s, CH2), 7.56 (2 H, d, J = 8.1 Hz, 

3',5'-H2), 7.74 (1 H, t, J = 7.7 Hz, 6-H), 7.83 (2 H, J = 8.1 Hz, 2',6'-H2), 8.22 (1 H, dd, J 

= 7.7, 1.6 Hz, 5-H), 8.66 (1 H, d, J = 2.2 Hz, 4-H), 8.68 (1 H, dd, J = 7.7, 1.6 Hz), 9.31 

(1 H, d, J = 2.2 Hz, 2-H); 13C NMR 399.65 MHz (CD3OD) 8 29.3 (CH2), 127.4 (Cq),

131.9 (Cq), 132.0 (Cq), 132.5 (CH), 132.7 (CH), 134.0 (CH), 134.3 (CH), 134.5
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(CH),136.2 (Cq),137.7 (CH), 144.6 (Cq), 149.5 (Cq), 149.0 (CH), 167.6 (CONH2). 
Further elution gave recovered starting material 77 (26 mg, 33%).

(E)-3-(2-Phenylethenyl)quinorme-8-carboxamide 102a and 

(Z)- 3-(2-Phenylethenyl)quinoline-8-carboxamide 102b

CONH

'N 
CONH2

Compound 77 (100 mg, 0.34 mmol) was treated with (E)-2-phenylethenyl boronic acid 

(55 mg, 0.37 mmol) by General Procedure 1. Chromatography (hexane / EtOAc, 3:2) 
gave 102a (48 mg, 52%) as a white solid: Rf = 0.33 (hexane / EtOAc, 3:2); mp 158- 

160°C; 1H NMR 399.65 MHz 102a (CDCI3) 8 6.12 (1 H, br, NH), 7.28 (1 H, d, J = 19.8 

Hz, V or 2'-H), 7.35 (1 H, d, J = 19.8 Hz, 2' or 1'-H), 7.38-7.59 (5 H, m, Ar 2',3',4',5',6'- 

H5), 7.67 (1 H, t, J = 8.0 Hz, 6-H), 7.98 (1 H, dd, J = 8.0, 1.5 Hz, 5-H), 8.28 (1 H, d, J =
2.4 Hz, 4-H), 8.80 (1 H, dd, J =  8.0, 1.5 Hz, 7-H) 9.13 (1 H, d, J =  2.4 Hz, 2-H), 10.92 (1 

H, br, NH).

Photoisomerisation reaction gave 102a,b (4:1 E:Z); 1H NMR 399.65 MHz 102b 6.05 (1 

H, br, NH), 6.80 (2 H, q, J = 10.8 Hz, 1',2'-H2), 7.32-7.60 (5 H, m, Ar 2',3',4',5',6'-H5),
7.65 (1 H, t, J = 8.1 Hz, 6-H), 7.83 (1 H, dd, J = 8.1, 1.6 Hz, 5-H), 8.08 (1 H, d, J = 2.0 

Hz, 4-H), 8.74 (1 H, dd, J=8.1, 1.6 Hz, 7-H), 8.76 (1 H, d, J= 2.0 Hz, 2-H), 10.91 (1 H, 
br, NH).MS (ES+) m/z 275.1179 (M + H) (C18H15N20  requires 275.1179)

3-(4-Ethoxymethylphenyl)quinoline-8-carboxamide (103)

OEt

CONH2

Compound 77 (100 mg, 0.34 mmol) was treated with 4-(bromomethyl)pheny!boronic 

acid (80 mg, 0.37 mmol) by General Procedure 1. Chromatography (hexane / EtOAc,
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3:2) gave 103 as a white solid (32 mg, 31%); Rf = 0.33 (hexane / EtOAc, 3:2); mp 168- 

170°C; 1H NMR 399.65 MHz (CDCI3) 5 1.28 (3 H, t, J = 7.0 Hz, CH3), 3.60 (2 H, q, J =

7.0 Hz, CH2), 4.59 (2 H, s, OCH2), 6.18 (1 H, br, NH), 7.55-7.40 (2 H, m, 3\5'-H2), 7.72- 

7.60 (2 H, m, 2',6'-H2), 7.99 (1 H, t, J = 8.4 Hz, 6-H), 8.04 (1 H, dd, J = 8.4, 2.0 Hz, 5- 

H), 8.28 (1 H, dd, J = 8.4, 2.0 Hz, 7-H), 8.93 (1 H, d, J = 2.0 Hz, 4-H), 9.18 (1, d, J =

2.0 Hz, 2-H), 10.95(1 H, br, NH).

3-Methylquinoline-8-carboxamide (106)

Compound 77 (100 mg, 0.34 mmol) was treated with tetramethylstannane (122 mg, 

0.68 mmol) by General Procedure 5. Chromatography (hexane / EtOAc, 3:2) gave 106 

(25 mg, 40%) as a white solid: Rf = 0.43 (hexane I EtOAc, 3:2); mp 144-142°C; IR i)max 

(KBr) 1570 (Amide II), 1665 (Amide I), 3019 & 3468 (NH2) cm'1; 1H NMR 399.65 MHz 

(CDCI3) 6 2.53 (3 H, s, CH3), 6.20 (1 H, br, NH), 7.62 (1 H, t, J = 7.7 Hz, 6-H), 7.88 (1 

H, dd, J = 7.7, 1.6 Hz, 5-H), 8.01 (1 H, d, J = 2.0 Hz, 4-H), 8.73 (1 H, dd, J = 7.7, 1.6 

Hz, 7-H), 8.75 (1 H, d, J = 2.0 Hz, 2-H), 10.99 (1 H, br, NH); 13C NMR 399.65 MHz 

(CDCI3) 5 18.5 (CH3), 126.4 (6-C), 128.2 (4a-C or 8-C), 128.4 (8-C or 4a-C), 130.5 (3- 
C), 131.9 (7-C), 133.1 (5-C), 136.3 (4-C), 143.9 (8a-C), 151.4 (2-C), 167.9 (CONH2); 
MS (ES+) m/z 187.0866 (M + H) (CnHnNsO requires 187.0866), 143 (M + H -  

CONH2); Anal. Calcd. for C1rH10N2O: C, 70.95; H, 5.41; N, 15.04. Found: C, 71.00; H, 
5.69; N, 14.97.

3-(Prop-1-ynyl)quinoline-8-carboxamide (107)

CH

CONH2

Compound 77 (100 mg, 0.34 mmol) was treated with tributyl(prop-1-ynyl)stannane (224 

mg, 0.68 mmol) by General Procedure 5. Chromatography (hexane / EtOAc, 3:2) gave 

107 (28 mg, 39%) as a buff solid: Rf = 0.37 (hexane / EtOAc, 3:2); mp 109-110°C; IR
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U m a x  (KBr) 1590 (Amide II), 1674 (Amide I), 2363 (C=C), 3210 & 3470 (NH2) cm'1; 1H 

NMR 399.65 MHz (CDCI3) 5 2.13 (3 H, s, CH3), 6.13 (1 H, br, NH), 7.68 (1 H, t, J = 7.8 

Hz, 6-H), 7.90 (1 H, dd, J = 7.8, 1.6 Hz, 5-H), 8.24 (1 H, d, J = 2.3 Hz, 4-H), 8.84 (1 H, 
dd, J = 7.8, 1.6 Hz, 7-H), 9.05 (1 H, d, J =  2.3 Hz, 2-H), 10.75 (1 H, br, NH); 13C NMR

399.65 MHz (HMBC) (CDCI3) 5 4.5 (CH3), 90.6 (1'-C), 118.3 (2'-C), 127.0 (3-C), 127.7 

(6-C), 128.2 (4a-C or 8-C), 128.5 (8-C or 4a-C), 132.1 (5-C), 134.4 (7-C), 139.3 (4-C),
143.8 (8a-C), 151.6 (2-C), 167.4 (C0NH2); MS (ES+) m/z 211.0873 (M + H) (C13HnN20  

requires 211.0866); Anal. Calcd. for C13H10N2O: C, 74.27; H, 4.79; N, 13.33. Found: C, 

74.25; H, 4.85; N, 13.31.

Tributylbenzylstannane (110)

To tributylstannyl chloride (0.96 mL, 1.16 g, 5.0 mmol) in dry THF (10 mL) was added 

benzyimagnesium chloride (2.5 mL), and the mixture was stirred for 2 h. The mixture 

was extracted with diethyl ether and washed with water. The organic layer was dried 

and the solvent was evaporated to give 111 (1.27 g, 66%) as a yellow oil (lit.271 oil); 1H 

NMR 270.05 MHz (CDCI3) 5 0.90-0.94 (9 H, m, 3 x CH3), 0.96-1.37 (18 H, m, 3 x 

CH2CH2CH2), 2.34 (2 H, s, CH2), 7.00-7.16 (4 H, m, 2',3',5',6'-H4), 7.20 (1 H, t, J = 7.6 

Hz, 4f-H).

3-Ethenylquinoline-8-carboxamide (111)

conh2

Compound 77 (100 mg, 0.34 mmol), in degassed NMP (3 mL), was treated with 

triphenylphosphine (6.9 mg, 0.03 mmol), Pd2dba3 (3.0 mg, 0.005 mmol), Cul (3.6 mg, 
0.019 mmol) and tributylethenylstannane (108 mg, 0.34 mmol) at 80°C for 24 h under 

Ar. The mixture was extracted with EtOAc. The extract was washed with brine and was
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dried and filtered. Evaporation and chromatography (hexane / EtOAc, 10:1) gave 111 

(37 mg, 55%) a pale yellow solid: Rf = 0.47 (hexane / EtOAc, 4:1); mp 174-176°C; 1H 

NMR 399.65 MHz (CDCI3) 8 5.50 (1 H, dd, J = 11.0, 4.0 Hz, 2'-H), 6.60 (1 H, dd, J = 

17.6, 4.0 Hz, 2'-H), 6.13 (1 H, br, NH), 6.89 (1 H, dd, J = 11.0, 17.6 Hz, 1'-H), 7.68 (1 

H, t, J = 7.8 Hz, 6-H), 7.96 (1 H, dd, J = 7.8, 1.6 Hz, 5-H), 8.17 (1 H, d, J = 2.3 Hz, 4- 
H), 8.78 (1 H, dd, J = 7.8, 1.6 Hz, 7-H), 9.03 (1 H, d, J = 2.3 Hz, 2-H), 10.90 (1 H, br, 

NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 117.3 (2'-C), 126.8 (6-C), 128.3 (4a-C or 

8-C) 128.4 (8-C or 4a-C), 130.3 (3-C), 132.5 (5-C), 133.0 (1'-C), 133.8 (7-C), 133.9 (4- 

C). 144.9 (8a-C), 148.2 (2-C), 167.5 (CONH2); MS (ES+) m/z 199.0858 (M + H) 

(C12H11N20  requires 199.0866).

3-((T rimethylsilyl)ethynyl)quinoline-8-carboxamide (120)

SiMe

CONH2

The Pd catalyst, (PPh3)2PdCI2, used in this reaction was prepared as follows:
A mixture of PPh3 (375 mg, 1.4 mmol) and PdCI2 (130 mg, 0.70 mmol) in DMF (20 mL) 

was heated at 80°C for 24 h. Filtration and drying yielded (PPh3)2PdCI2 as a yellow 

powder (450 mg, 90%).

Compound 77 (200 mg, 0.67 mmol) in dry THF (10 mL) was added to a suspension of 

(PPh3)2PdCI2 (20 mg, 0.027 mmol) and Cul (27 mg, 0.14 mmol) in dry diisopropylamine 

(2.7 mL) and the mixture was stirred at 45°C for 30 min under Ar. Trimethylsilylethyne 

(72 mg, 0.72 mmol) was then added during 30 min and the mixture was stirred for 

another 2 h. Filtration (Celite®), evaporation and chromatography (hexane / EtOAc, 3:2) 
gave 120 (140 mg, 62%) as white crystals: Rf = 0.78 (hexane / EtOAc, 4:1); mp 152- 

155°C; IR (KBr) 1610 (Amide II), 1680 (Amide I), 2164 (C^C), 3131 & 3276 (NH2) 

cm'1; 1H NMR 399.65 MHz (CDCI3) 8 0.29 (9 H, s, 3 x CH3), 6.21 (1 H, br, NH), 7.68 (1 

H, t, J = 7.6 Hz, 6-H), 7.92 (1 H, dd, J = 7.6, 1.6 Hz, 5-H), 8.34 (1 H, d, J = 2.1 Hz, 4- 
H), 8.83 (1 H, dd, J = 7.6, 1.6 Hz, 7-H), 8.91 (1 H, d, J = 2.1 Hz, 2-H), 10.70 (1 H, br, 

NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 0.20 (3 x CH3), 99.4 (2'-C), 101.0 (1'-C),

117.4 (3-C), 127.2 (6-C), 127.4 (4a-C or 8-C), 128.6 (4a-C or 8-C), 132.2 (5-C), 134.8 

(7-C), 140.2 (4-C), 144.1 (8a-C), 151.5 (2-C), 167.2 (CONH2); MS (ES+) m/z 559 (2 M
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+ Na), 269.1097 (M + H) (C15H17N2OSi requires 269.1105); Anal. Calcd. for 
Ci5H16N2OSi: C, 67.13; H, 6.01; N, 10.44. Found: C, 67.35; H, 5.81; N, 10.30.

3-Ethynylquinoline-8-carboxamide (114)

H

CONH2

To a solution of 120 (100 mg, 0.34 mmol) in a mixture of CHCI3 / MeOH / water (4:1:7) 

(20 mL), was added silver triflate (9.5 mg, 0.037 mmol). The mixture was heated at 

reflux for 3 d. A saturated aqueous solution of ammonium chloride was added to the 

mixture. The mixture was extracted with CHCI3 and washed with water. Drying, 
evaporation and recrystallisation (hexane / EtOAc) gave 114 (72 mg, 99%) as pale buff 

crystals: Rf = 0.46 (hexane / EtOAc, 3:2); mp 252-255 °C; IR umax (KBr) 1639 (Amide 

II), 1687 (Amide I), 2099 (C=C), 3190 & 3468 (NH2) cm'1; 1H NMR 399.65 MHz (CDCI3) 

5 3.32 (1 H, s, 2'-H), 6.07 (1 H, br, NH), 7.71 (1 H, t, J =  8.2 Hz, 6-H), 7.96 (1 H, dd, J = 

8.2, 1.6 Hz, 5-H), 8.40 (1 H, d, J = 2.0 Hz, 4-H), 8.86 (1 H, dd, J = 8.2, 1.6 Hz, 7-H), 
8.96 (1 H, d, J = 2.0 Hz, 2-H), 10.67 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) 

(CDCI3) 8 80.0 (1'-C), 81.4 (2'-C), 116.4 (3-C), 127.3 (6-C), 127.4 (4a-C or 8-C), 128.7 

(8-C or 4a-C), 132.2 (5-C), 135.1 (7-C), 140.7 (4-C), 144.3 (8a-C), 151.5 (2-C), 167.1 

(CONH2); MS (ES+) m/z 197.0702 (M + H) (Ci2H9N20  requires 197.0709).

3-Ethylquinoline-8-carboxamide (123)

To 114 (70 mg, 0.36 mmol) in DMF/MeOH (1:1) (3 mL), a slurry of 10 % palladium on 

charcoal (0.05 g) in MeOH (1 mL) was added. The mixture was allowed to stir for 24 h. 
The mixture was filtered through Celite®. Recrystallisation (hexane / EtOAc) gave 123 

(46 mg, 64%) as pale buff crystals: Rf = 0.31 (hexane / EtOAc, 3:2); mp 121-123°C; IR 

umax (KBr) 1600 (Amide II), 1666 (Amide I), 2928, 3350 (NH2) cm'1; 1H NMR 399.65 

MHz (CDCI3) 8 1.37 (3 H, t, J = 7.8 Hz, CH3), 2.88 (2 H, q, J = 7.9 Hz, CH2), 6.08 (1 H,
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br, NH), 7.64 (1 H, t, J = 7.9 Hz, 6-H), 7.94 (1 H, dd, J = 7.9, 1.6 Hz, 5-H), 8.03 (1 H, d, 
J = 2.3 Hz, 4-H), 8.78 (1 H, dd, J = 7.9, 1.6 Hz, 7-H), 8.81 (1 H, d, J = 2.3 Hz, 2-H),

11.01 (1 H, br, NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5 15.1 (CH3), 26.0 (CH2),

126.4 (6-C), 128.3 (4a-C or 8-C), 128.5 (8-C or4a-C), 132.1 (7-C), 133.2 (4-C), 135.0 

(5-C), 136.6 (3-C), 144.1 (8a-C), 150.9 (2-C), 167.8 (CONH2); MS (ES+) m/z 201.1020  

(M + H) (C12H13N20  requires 201.1022).

3-(4-Methylphenyl)ethynylquinoline-8-carboxamide (124)

4-lodotoluene (105 mg, 0.48 mmol) in dry THF (6 mL) was added to a suspension of 
(PPh3)2PdCI2 (14 mg, 0.019 mmol) and Cul (19 mg, 0.10  mmol) in dry diisopropylamine 

(2.1 mL) and the mixture was stirred at 45°C for 30 min under Ar. Compound 114 (100 

mg, 0.51 mmol) in dry THF (1 mL) was added and the mixture was stirred at 45°C for 
24 h under Ar. Filtration (Celite^, evaporation and chromatography (CH2CI2 / EtOAc, 
2:1) gave 124 (17 mg, 12%) as buff solid: Rf = 0.33 (CH2CI2 / EtOAc, 2:1); mp 109- 

110°C; IR Umax (KBr) 1569 (Amide II), 1672 (Amide I), 2208 (C=C), 3294 & 3468 (NH2) 

cm'1; 1H NMR 399.65 MHz (CDCI3) 5 2.41 (3 H, s, CH3), 6.14 (1 H, br, NH), 7.21 (2 H, 

d, J = 8.0 Hz, 3',5'-H2), 7.50 (2 H, d, J = 8.0 Hz, 2',6'-H2), 7.71 (1 H, t, J = 7.7 Hz, 6-H),

7.98 (1 H, dd, J = 7.7, 1.4 Hz, 5-H), 8.40 (1 H, d, J = 2.2 Hz, 4-H), 8.85 (1 H, dd, J =

7.7, 1.4 Hz, 7-H), 9.00 (1 H, d, J = 2.2 Hz, 2-H), 10.77 (1 H, br, NH); 13C NMR 399.65 

MHz (HMBC) (CDCI3) 8 21.6 (CH3), 85.1 (1'-C), 93.8 (2'-C), 117.9 (3-C), 119.1 (Ar V- 

C), 127.2 (6 -C), 127.7 (4a-C or 8-C), 128.6 (8-Cor4a-C), 129.3 (Ar 3',5'-C2), 131.7 (Ar 

2',6'-C2), 132.2 (7-C), 134.6 (5-C), 139.3 (Ar 4'-C), 139.4 (4-C), 144.0 (8a-C), 151.4 (2- 
C), 167.3 (CONH2); MS (ES+) m/z 309.1005 (M + Na) (Ci9H14N2NaO requires 

309.0998).
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3-Cyanoquinoline-8-carboxamide (125)

CN

CONH2

Compound 77 (100 mg, 0.34 mmol), in dry 1,4-dioxane (2 mL), was treated with CuCN 

(120 mg, 1.4 mmol), 1,1'-bis(diphenylphosphino)ferrocene (29 mg, 0.05 mmol) and 

Pd(dba)3 (12  mg, 0.01 mmol). The reaction mixture was boiled under reflux for 24 h 

under Ar. The mixture was filtered through Celite® and extracted with EtOAc and 

washed with water. The organic layer was dried and the solvent was evaporated. 
Chromatography (hexane / EtOAc, 3:2) gave 125 (1.4 mg, 2%) as a white solid: Rf = 

0.21 (hexane I EtOAc, 3:2); 1H NMR 399.65 MHz MHz (CDCI3) 5 6.15 (1 H, br, NH), 
7.87 (1 H, t, J = 7.7 Hz, 6-H), 8.09 (1 H, dd, J = 7.7, 1.6 Hz, 5-H), 8.67 (1 H, d, J = 2.2 

Hz, 4-H), 9.04 (1 H, dd, J = 7.7, 1.6 Hz, 7-H), 9.10(1 H, d, J = 2,2 Hz, 2-H), 10.32 (1 H, 
br, NH); MS (ES+) m/z 220.0485 (M + Na) (CnH7N3NaO requires 220.0481).

E-N-(2-Bromophenyl)-3-phenylpropenamide (128)

A mixture of E-3-phenylpropenoyl chloride (5.51 g, 33.2 mmol), 2-bromoaniline (5.67 g,

33.2 mmol) and K2C03 (7.10 g, 51.5 mmol) in water (16.5 mL) and acetone (16 mL) 
was stirred vigorously at 0°C for 2 h. The mixture was then poured into ice-water (20 

mL). The precipitate was collected. Recrystallisation (hexane) gave 128 (9.8 g, 97%) 

as white crystals: Rf = 0.85 (hexane / EtOAc, 3:2); mp 145-146°C (lit.272 mp 148- 

149°C); 1H NMR 399.65 MHz (CDCI3) 5 6.58 (1 H, d, J = 15.5 Hz, 2-H), 6.98 (1 H, dt, J 

= 7.9, 1.5 Hz, 4'-H), 7.32-7.44 (3 H, m, Ar-3',Ar-4',Ar-5'-H3), 7.53-7.60 (4 H, m, Ar- 

2',Ar-6',5',6'-H4), 7.76 (1 H, d, J = 15.5 Hz, 3-H), 7.79 (1 H, br, NH), 8.50 (1 H, d, J =

8.2 Hz, 3'-H).

O
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8-Bromoquinolin-2(1H)-one (129)

Br

Compound 128 (9.78 g, 32.5 mmol) and AICI3 (26 g, 0.20 mol) in chlorobenzene (32 

mL), were heated to 125°C for 24 h. At 50°C, the mixture was poured onto ice and the 

precipitate was filtered and collected. Recrystallisation (ethanol) gave 129 (3.0 g, 41%) 

as white crystals: Rf = 0.43 (petroleum ether / EtOAc, 3:2); mp 194-196°C (lit.221 mp 

196-198°C); 1H NMR 399.65 MHz (CDCI3) 5 6.63 (1 H, d, J= 9.6 Hz, 3-H), 7.07 (1 H, t, 

J = 7.8 Hz, 6-H), 7.48 (1 H, dd, J = 7.8, 1.2 Hz, 5-H), 7.71 (1 H, d, J = 9.6 Hz, 4-H), 

7.71 (1 H, dd, J = 7.8,1.2 Hz, 7-H), 9.08 (1 H, br, NH); 13C NMR 399.65 MHz (CDCI3) 8

109.1 (Cq), 121.0 (Cq), 123.0 (CH), 123.3 (CH), 124.4 (Cq) 127.5 (CH), 133.6 (CH),
140.4 (CH), 162.1 (C=0).

2-Oxo-1,2-dihydroquinoline-8-carbonitrile (130)

Method A: To 129 (97 mg, 0.43 mmol) in DMF (2 mL) were added Zn(CN)2 (30 mg, 
0.27 mmol) and Pd(PPh3)4 (50 mg, 0.043 mmol). The mixture was heated to 150°C for 
12 h. The mixture was filtered (Celite®) and extracted with EtOAc and washed with 

brine. Drying, evaporation and chromatography (hexane / EtOAc, 3:2) gave 130 (4.3 

mg, 6 %) as a white solid with properties as described below.

Method B: To 129 (200 mg, 0.89 mmol) in DMF (3 mL) was added CuCN (158 mg, 1.9 

mmol) and the mixture was heated to 150°C for 12 h. The mixture was filtered through 

Celite® and extracted with EtOAc and washed with brine. Drying, evaporation and 

chromatography (hexane / EtOAc, 3:2) gave 130 (8.1 mg, 5%) as a white solid: Rf = 

0.44 (hexane / EtOAc, 3:2); mp 155-157°C; 1H NMR 399.65 MHz (CDCI3) 8 6.73 (1 H, 
d, J = 9.8 Hz, 3-H), 7.06 (1 H, t, J = 7.7 Hz, 6-H), 7.74 (1 H, dd, J = 7.7, 1.2 Hz, 7-H), 

7.78 (1 H, d, J = 9.8 Hz, 4-H), (1 H, dd, J = 7.7, 1.2 Hz, 5-H), 9.12 (1 H, br, NH); 13C

CN
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399.65 MHz NMR (HMBC) (CDCI3) 5 98.4 (8-C), 114.9 (CN), 120.2 (4a-C), 122.4 (3-C),

123.9 (6-C), 132.9 (5-C), 134.1 (7-C), 139.4 (8a-C), 139.9 (4-C), 161.5 (2 -C).

2,8-Dibromoquinoline (133)

^ 1

Br

POBr3 (1.07 g, 3.7 mmol) and 129 (0.41 g, 1.8 mmol) were heated at 140°C for 3 h. 

The mixture was then poured into ice-water. The precipitate was filtered and dried. 

Chromatography (CH2CI2 / hexane, 1:1) gave 133 (0.43 g, 41%) as a pale buff solid: Rf 

= 0.24 (CH2CI3 / hexane, 1:1); mp 118-119°C (lit.224 mp 118-119°C); 1H NMR 399.65 

MHz (CDCI3) 8 7.41 (1 H, t, J = 7.8 Hz, 6-H), 7.57 (1 H, d, J = 8.6 Hz, 3-H), 7.76 (1 H, 
dd, J = 7.8, 1.2 Hz, 5-H), 7.98 (1 H, d, J = 8.6 Hz, 4-H), 8.05 (1 H, dd, J = 7.8, 1.2 Hz,

7-H); 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 123.6 (8-C), 126.9 (3-C), 127.5 (6-C),

127.6 (4a-C), 128.2 (5-C), 134.1 (7-C), 138.7 (4-C), 143.1 (8a-C), 145.2 (2-C).

8-Bromo-2-phenylquinoline (134)

5 '

Compound 133 (340 mg, 1.2 mmol) was treated with phenylboronic acid (162 mg, 1.3 

mmol) by General Procedure 1. Chromatography (CH2CI2 / hexane, 1:10) gave 134 

(146 mg, 43%) as a pale brown oil (lit.224 oil): Rf = 0.28 (CH2CI2 / hexane, 1:10); 1H 

NMR 399.65 MHz (CDCI3) 6 7.35 (1 H, t, J = 7.9 Hz, 6-H), 7.48 (2 H, t, J = 7.9 Hz, 3',5'- 

H2), 7.54 (1 H, t, J = 7.9 Hz, 4'-H), 7.76 (1 H, dd, J = 7.9, 1.2 Hz, 5-H), 7.95 (1 H, d, J =

8.6 Hz, 3-H), 8.05 (1 H, d, J = 7.9, 1.2 Hz, 7-H), 8.18 (1 H, d, J = 8.6 Hz, 4-H), 8.31 (2 

H, d, J = 7.9 Hz, 2',6'-H2); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5 119.3 (3-C), 126.7 

(6-C), 127.0 (4a-C or 8-C), 127.4 (5-C), 127.5 (8-C or4a-C), 127.6 (1'-C), 127.7 (4'-C),

129.0 (2',6'-C2), 129.9 (3',5'-C2), 133.3 (4-C), 134.2 (8a-C), 137.3 (7-C), 156.8 (2-C).
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8-Bromo-2-(4-methoxyphenyl)quinoline (135) and 

2-(4-methoxyphenyl)quinoline (136)

OCH< OCH,

Compound 133 (350 mg, 1.2 mmol) was treated with 4-methoxyphenylboronic acid 

(244 mg, 1.4 mmol) by General Procedure 1. Chromatography (toluene) gave 135 (322 

mg, 84%) as a pale orange oil: Rf = 0.60 (toluene); 1H NMR 399.65 MHz (CDCI3) 8 3.88 

(3 H, s, CH3), 7.04 (2 H, d, J = 8.2 Hz, 3',5'-H2), 7.31 (1 H, t, J = 7.9 Hz, 6-H), 7.71 (1 

H, dd, J = 7.9, 1.2 Hz, 5-H), 7.86 (1 H, d, J = 8.8 Hz, 3-H), 8.01 (1 H, dd, J = 7.9, 1.2 

Hz, 7-H), 8.10 (1 H, d, J = 8.8 Hz, 4-H), 8.28 (2 H, d, J = 8.2 Hz, 2',6'-H2); 13C NMR

399.65 MHz (HMBC) (CDCI3) 8 55.3 (CH3), 114.2 (3',5'-C2), 118.7 (3-C), 125.2 (8-C),

126.1 (6-C), 127.2 (5-C), 128.0 (4a-C), 129.0 (2',6'-C2) 131.1 (4-C), 131.4 (1'-C), 137.0 

(7-C), 145.0 (8a-C), 157.1 (2-C), 161.1 (4'-C); MS (ES+) m/z 314.0163 (M + H) 

(Ci6H1379BrNO requires 314.0175).

Also isolated by chromatography was 136 (21 mg, 7%) as a pale buff solid: Rf = 0.20 

(toluene); mp 118-119°C (lit.273 mp 122-123°C); 1H NMR 399.65 MHz (CDCI3) 8 3.88 (3 

H, s, CH3), 7.05 (2 H, d, J = 8.0 Hz, 3',5'-H2), 7.49 (1 H, t, J = 8.1 Hz, 6-H), 7.71 (1 H, t, 
J = 8.1 Hz, 7-H), 7.81 (1 H, dd, J = 8.1, 1.2 Hz, 5-H), 7.83 (1 H,d, J = 8.6  Hz, 3-H) 8.12 

(3 H, m, 2\6\8-H3), 8.17 (1 H, J =  8.6 Hz, 4-H).

8-Bromo-2-ethylquinoline (138)

Br

Compound 133 (150 mg, 0.53 mmol) was treated with tetraethylstannane (125 mg, 
0.53 mmol) by General Procedure 5. Chromatography (hexane / EtOAc, 3:2) gave 138 

(62 mg, 50%) as a pale brown oil: Rf = 0.31 (hexane / EtOAc, 3:2); 1H NMR 399.65 

MHz (CDCI3) 8 1.43 (3 H, t, J = 7.6 Hz, CH3), 3.08 (2 H, q, J = 7.6 Hz, CH2), 7.30 (1 H, 

t, J = 7.9 Hz, 6-H), 7.34 (1 H, d, J = 8.4 Hz, 3-H), 7.73 (1 H, dd, J = 7.9, 1.4 Hz, 5-H),
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8.01 (1 H, dd, J = 7.9, 1.4 Hz, 7-H), 8.03 (1 H, d, J = 8.4 Hz, 4-H); 13C NMR 399.65 

MHz (HMBC) (CDCI3) 5 13.5 (CH3), 32.3 (CH2), 121.7 (3-C), 124.5 (8-C), 126.0 (6-C), 

127.41 (5-C), 128.0 (4a-C), 132.9 (7-C), 136.6 (4-C), 144.8 (8a-C), 165.1 (2-C); MS 

(El*) m/z 236 (M -  H) (CnH981BrN), 233.9911 (M - H) (CnH979BrN requires 233.9913).

8-Bromo-2-methylquinoline hydrochloride-ZnCI2 complex (143)

CH

(E)-But-2-enal (0. 61 g, 8.7 mmol) was added to 2-bromoaniline (1.48 g, 8.7 mmol) in 

refluxing aq. HCI (6 M, 4 mL) during 30 min. After addition was complete, the mixture 

was heated for a further 30 min. The reaction mixture was cooled to ambient 

temperature and washed with diethyl ether. To the solution was added ZnCI2 (1.20 g,
8.8 mmol) with vigorous stirring. The precipitate formed was filtered, washed with cold 

3 M HCI, and dried in air. The solid was washed with Et20  and dried to provide 143 

(0.62 g, 73%) as a yellow crystalline solid. This material was used without further 
purification or characterisation.

8-Bromo-2-methylquinoline (139) and
2,8-Dimethylquinoline (140)

CH

Method A: To a solution of compound 133 (108 mg, 0.38 mmol) and tetra- 

methylstannane (67 mg, 0.37 mmol) in NMP (2 mL) was added Pd(PPh3)4 (43 mg, 0.04 

mmol). The reaction was heated to 80°C for 8 h under Ar. The mixture was extracted 

with EtOAc and washed with water, brine, dried and filtered. Evaporation and 

chromatography (hexane / EtOAc, 10:1) gave a mixture (53 mg, pale brown oil)) shown 

by 1H NMR to comprise 139 (46% yield) and 140 (23% yield): 'H NMR (270 MHz) 139 

(CDCb) 5 2.73 (3 H, s, CH3), 7.34 (1 H, d, J = 8.2 Hz, 3-H), 7.44 (1 H, t, J = 8.0 Hz, 6- 

H), 7.67 (1 H, dd, J = 8.0, 1.2 Hz, 5-H), 7.98 (1 H, d, J =8.0, 1.2 Hz, 7-H), 7.99 (1 H, d, 

J = 8.2 Hz, 4-H); 1H NMR (270 MHz) 140 (CDCI3) 5 2.75 (3 H, s, CH3), 2.81 (3 H, s,
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CH3), 7,27 (1 H, d, J = 8.2 Hz, 3-H), 7.32 (1 H, t, J = 7.9 Hz, 6-H), 7.72 (1 H, J = 7.9,
1.2 Hz, 5-H), 8.00 (1 H, dd, J = 7.9, 1.2 Hz, 7-H), 8.09 (1 H, d, 8.2 Hz, 4-H).

Method B: Compound 143 was placed in a separating funnel and shaken with cold 

water (15 mL). To this slurry was added conc. aq. ammonia (5 mL). The resulting oil 
was extracted with diethyl ether, dried and evaporated to give 139 (280 mg, 59%) as a 

pale yellow solid: Rf = 0.67 (hexane / EtOAc, 10:1) mp 63-65°C (lit.227 mp 67-68°C); 1H 

NMR data as above.

2-Phenylquinoline-8-carboxamide (144)

To 134 (110 mg, 0.39 mmol) in dry THF (0.5 mL) at -79°C was added n-BuLi (1.6 M in 

hexanes, 0.53 mL, 0.82 mmol). After 30 min, trimethylsilylisocyanate (0.15 mL, 1.2 

mmol) was added. The solution was stirred for a further 15 min at -79°C and for 12 h at 
20°C. The evaporation residue, in CH2CI2, was washed with water and brine and dried. 
Evaporation and chromatography (CH2CI2 / EtOAc, 2:1) gave 144 (33 mg, 34%) as a 

pale yellow solid: R, = 0.68  (CH2CI2 / EtOAc, 2 :1); mp 209-210°C (lit.274 mp 210-212°C; 

IR o™x(KBr) 1600 (Amide II), 1674 (Amide I), 3270 & 3470 (NH2) cm'1; 1H NMR 399.65 

MHz (CDCb) 5 6.16 (1 H, br, NH), 7.52-7.58 (3 H, m, 3 ',5 ,5 '-H3), 7.66 (1 H, t, J = 7.6 

Hz, 6-H), 7.92 (1 H, d, J = 8.6 Hz, 3-H), 7.99-8.04 (3 H, m, 2 ',4 ',6 '-H3), 8.34 (1 H, d, J =

8.6 Hz, 4-H), 8.87 (1 H, dd, J =  7.6, 1.6 Hz, 7-H), 11.20 (1 H, br, NH); 13C NMR 399.65 

MHz (HMBC) (CDCI3) 8 119.2 (3-C), 126.2 (6-C), 127.4 (4a-C or 8-C), 127.7 (2',6’-C2),

128.4 (8-C or 4a-C), 129.2 (4'-C), 130.0 (3’,5'-C2), 132.2 (4-C), 134.6 (7-C), 138.5 (5- 

C), 139.2 (1'-C), 145.5 (8a-C), 157.3 (2-C), 167.8 (CONH2).

CONH
5'
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2-(4-Methoxyphenyl)quinoline-8-carboxamide (145)

conh2

To 135 (100 mg, 0.32 mmol) in dry THF (0.5 mL) at -79°C was added n-BuLi (1.6 M in 

hexanes, 0.41 mL, 0.64 mmol). After 30 min, trimethylsilylisocyanate (0.12 mL, 0.96 

mmol) was added. The solution was stirred for a further 15 min at -79°C and for 12 h at 

20°C. The evaporation residue, in CH2CI2, was washed with water and brine and dried. 
Evaporation and chromatography (toluene) gave 145 (38 mg, 43%) as a pale yellow 

solid: Rf = 0.37 (hexane / EtOAc, 10:1); mp 221-224°C; IR umax (KBr) 1602 (Amide II), 

1662 (Amide I), 3257 & 3448 (NH2) cm1; 1H NMR 399.65 MHz (CDCI3) 8 3.90 (3 H, s, 

CH3), 6.27 (1 H, br, NH), 7.07 (2 H, d, J = 8.0 Hz, 3',5'-H2), 7.63 (1 H, t, J = 7.9 Hz, 6 - 
H), 7.87 (1 H, d, J = 8.6  Hz, 3-H), 7.96 (1 H, dd, J = 7.9, 1.6 Hz, 5-H), 7.98 (2 H, d, J =

8.0 Hz, 2',6'-H2), 8.27 (1 H, d, J = 8.6 Hz, 4-H), 8.83 (1 H, dd, J = 7.9, 1.6 Hz, 7-H);

11.20 (1 H, br, NH), 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 55.5 (CH3), 114.6 (3’,5'- 

C2), 118.8 (3-C), 125.8 (6-C), 127.8 (4a-C or 8-C), 128.2 (8-C or 4a-C), 129.1 (2 ',6 '- 

C2), 131.6 (1'-C), 132.2 (7-C), 134.4 (5-C), 138.3 (4-C), 145.6 (8a-C), 156.9 (4'-C),

161.3 (2-C), 168.0 (CONHz); MS (ES*) m/z 279.1128 (M + H) (C,7H15N20 2 requires 

279.1128).

2-Ethyiquinoline-8-carboxamide (146)

conh2

To 138 (50 mg, 0.21 mmol) in dry THF (0.34 mL) at -79°C was added n-BuLi (1.6 M in 

hexanes, 0.28 mL, 0.44 mmol). After 30 min, trimethylsilylisocyanate (0.09 mL, 0.63 

mmol) was added. The solution was stirred for a further 15 min at -79°C and for 12 h at 
20°C. The evaporation residue, in CH2CI2, was washed with water and brine and was 

dried. Evaporation and chromatography (hexane / EtOAc, 3:2) gave 146 (18 mg, 43%) 

as a pale yellow solid: Rf = 0.68 (hexane / EtOAc, 3:2); mp 172-175’C; IR o m ax (KBr) 

1593 (Amide II), 1681 (Amide I), 3300 & 3469 (NH2) cm'1; 1H NMR 399.65 MHz (CDCI3)
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8 1.41 (3 H, t, J = 7.6 Hz, CH3), 3.03 (2 H, q, J = 7.6 Hz, CH2), 6.47 (1 H, br, NH), 7.34 

(1 H, d, J = 8.6 Hz, 3-H), 7.58 (1 H, t, J = 7.8 Hz, 6-H), 7.91 (1 H, dd, J = 7.8, 1.4 Hz, 5- 
H), 8.13 (1 H, d, J=  8.6 Hz, 4-H). 8.79 (1 H, dd, J = 7.8, 1.4 Hz, 7-H), 11.30 (1 H, br, 

NH); 13C NMR 399.65 MHz (HMBC) (CDCI3) 8 13.0 (CH3), 31.8 (CH2), 121.0 (3-C),

125.4 (6-C), 126.9 (4a-C or 8-C), 127.7 (8-C or4a-C), 132.2 (7-C), 133.9 (5-C), 137.6 

(4-C), 145.1 (8a-C), 163.4 (2-C), 168.1 (CONH2); MS (ES+) m/z 201.1016 (M + H) 

(Ci2H13N20  requires 201.1022).

2-Methylquinoline-8-carboxamide (147)

ch3 
conh2

To 139 (100 mg, 0.45 mmol) in dry THF (0.57 mL) at -79°C was added n-BuLi (1.6 M in 

hexanes, 0.61 mL, 0.94 mmol). After 30 min, trimethylsilylisocyanate (0.17 mL, 1.4 

mmol) was added. The solution was stirred for a further 15 min at -79°C and for 12 h at 

20°C. The evaporation residue, in CH2CI2, was washed with water and brine and dried. 
Evaporation and chromatography (hexane / EtOAc, 3:2) gave 147 (44 mg, 52%) as a 

pale yellow solid: Rf = 0.54 (hexane / EtOAc, 3:2); mp 170-171°C (lit.275 mp 170- 

171°C); IR (KBr) 1616 (Amide II), 1661 (Amide I), 3236 & 3480 (NH2) cm'1; 1H 

NMR 399.65 MHz (CDCI3) 8 2.77 (3 H, s, CH3), 6.40 (1 H, br, NH), 7.35 (1 H, d, J = 8.2 

Hz, 3-H), 7.60 (1 H, t, J = 7.9 Hz, 6-H), 7.93 (1 H, dd, J = 7.9, 1.6 Hz, 5-H), 8.15 (1 H, 
d, J =  8.2 Hz, 4-H), 8.82 (1 H, dd, J =  7.9, 1.6 Hz, 7-H), 11.25 (1 H, br, NH); 13C 399.65 

MHz NMR (HMBC) (CDCI3) 8 25.5 (CH3), 121.8 (3-C), 125.4 (6-C), 126.7 (4a-C or 8- 

C), 127.7 (8-C or 4a-C), 132.2 (7-C), 133.2 (5-C), 137.6 (4-C), 145.2 (8a-C), 158.7 (2- 
C), 168.0 (CONH2); MS (ES+) m/z 187.0857 (M + H) (CnH^NzO requires 187.0866).

Methyl 3-methyl-2-nitrobenzoate (149)

3-Methyl-2-nitrobenzoic acid 148 (5.00 g, 27.6 mmol) was boiled under reflux in MeOH 

(500 mL) and conc. H2S04 (5 mL) for 4 h. The evaporation residue, in CH2CI2, was
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washed with aq. NaHC03 and dried and the solvent was evaporated to give 149 (2.79 

g, 56%) as white crystals: Rf = 0.66 (EtOAc I hexane, 2:1); mp 71-73°C (lit.276 mp 72- 

73°C); 1H NMR 270.05 MHz (CDCI3) 8 2.35 (3 H, s, CH3), 3.88 (3 H, s, OCH3), 7.44- 

7.48 (2 H, m, 4,5-H2), 7.83 (1 H, dd, J =  7.0, 2.2 Hz, 6-H).

Methyl 3-(bromomethyl)-2-nitrobenzoate (150)

Compound 149 (392 mg, 2.2 mmol), dibenzoyl peroxide (24 mg, 0.10 mmol) and NBS 

(374 mg, 2.1 mmol) in CCI4 (4 mL) were heated at 90°C for 24 h and irradiated using a 

100W tungsten lamp. The mixture was washed with NaHC03, dried and concentrated. 
Chromatography (EtOAc / hexane, 1:19) gave 150 (301 mg, 53%) as a white solid: Rf = 

0.57 (EtOAc / hexane, 2:1); mp 90-91°C (lit.228 mp 90-90.5°C); 1H NMR 270.05 MHz 

(CDCI3) 8 3.90 (3 H, s, OCH3), 4.44 (2 H, s, CH2Br), 7.57 (1 H, t, J = 7.9 Hz, 5-H), 7.72 

(1 H, dd, J = 7.9, 1.5 Hz, 4-H), 7.94 (1 H, dd, J = 7.9, 1.5 Hz, 6-H).

Methyl 3-formyl-2-nitrobenzoate (151)

To 150 (0.73 g, 2.8 mmol) was added bis(tetrabutylammonium) dichromate (1.00 g, 1.4 

mmol) in CHCI3 (5 mL) and the mixture was heated under reflux for 1 h. The mixture 

was rapidly cooled in an ice-bath and filtered through a pad of silica (20 g); the silica 

was then washed with Et20  (20 mL). The solvent was evaporated to give 151 (193 mg, 

32%) as a pale yellow solid: Rf = 0.44 (EtOAc / hexane, 2:1); mp 94-96°C; 1H NMR

399.65 MHz (CDCI3) 8 3.87 (3 H, s, OCH3), 7.72 (1 H, t, J = 7.9 Hz, 5-H), 8.11 (1 H, dd, 

J = 7.9, 1.6 Hz, 4-H), 8.20 (1 H, dd, J= 7.9, 1.6 Hz, 6-H), 9.90 (1 H, s, CHO); 13C NMR

399.65 MHz (CDCI3) 8 53.5 (CH3), 123.8 (1-C), 127.4 (3-C), 130.9 (4-C), 133.7 (5-C),
136.3 (6 -C), 150.7 (2-C), 162.8 (C=0), 185.7 (CHO); MS (ES+) m/z 210.0397 (M + H) 

(C9H8N05 requires 210.0397), 178 (M -  OCH3)
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Quinoline-1-oxide (154)

Method A: To Na2C03 (628 mg, 5.9 mmol) and urea hydrogen peroxide (628 mg, 6.7 

mmol) in dry CH2CI2 (10 mL) at 0 °C was added dropwise trifiuoroacetic anhydride (0.46 

mL, 3.3 mmol). The solution was allowed to reach room temperature and quinoline (87 

mg, 0.67 mmol) was added. The mixture was stirred overnight at 40°C. The mixture 

was extracted with CH2CI2 and washed with water and brine. Evaporation and 

chromatography (EtOAc) gave 154 (60 mg, 62%) as a colourless hygroscopic oil with 

properties as described below.

Method B: To quinoline (10.0 g, 0.080 mmol) was added aq. H20 2 35% (24 mL). The 

solution was boiled under reflux for 24 h. The evaporation residue, in EtOAc, was 

washed with aq. Na2C03 and brine and dried. Evaporation and chromatography 

(EtOAc) gave 154 (3.23 g, 26%) as a colourless hygroscopic oil: Rf = 0.15 (EtOAc); 

lit.277 mp 61-62°C; 1H NMR 399.65 MHz MHz (CDCI3) 6 7.28 (1 H, dd, J = 8.7, 6.0 Hz,
3-H), 7.61 (1 H, ddd, J= 8.2, 7.0,1.4 Hz, 6-H), 7.73 (1 H, d, J= 8.7 Hz, 4-H), 7.75 (1 H, 
ddd, J = 8.7, 7.0, 1.4 Hz, 7-H), 7.84 (1 H, d, J = 8.2 Hz, 5-H), 8.50 (1 H, d, J = 6.0 Hz,
2-H), 8.71 (1 H, d, J = 8.7 Hz, 8-H).

(1-Oxidoquinolin-8-yl)mercury(ll) chloride (159)

I I 
HgCI O

To 154 (1.00g, 6.9 mmol) in AcOH (1 mL) was added Hg(OAc)2 (2.20 g, 6.9 mmol). 

The mixture was boiled under reflux for 5 h. The residue was poured into brine (10 mL) 
and the solid formed was collected by filtration and washed with water to give 159 (2.26 

g, 8 6%) as pale buff crystals: Rf = 0.10 (EtOAc); mp 236-237°C (lit.235 mp 235°C); 1H 

NMR 399.65 MHz ((CD3)2SO) 6 7.57 (1 H, dd, J = 8.3, 5.9 Hz, 3-H), 7.78 (1 H, t, J = 7.9 

Hz, 6-H), 8.03 (1 H, d, J = 7.9 Hz, 7-H), 8.06 (1 H, d, J = 8.3 Hz, 4-H), 8.11 (1 H, d, J =
7.9 Hz, 5-H), 8.74 (1 H, d, J = 5.9 Hz, 2-H).
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8-Bromoquinoline-1-oxide (160)

Bromine (0.51 g, 3.2 mmol), (1-oxidoquinolin-8-yl)mercury(ll) chloride 159 (1.08 g, 2.9 

mmol) and KBr (0.41 g, 3.4 mmol) in H20  (2.0 mL) were ground into a paste using a 

pestle and mortar. The residue was then extracted with EtOAc and washed with brine. 
The organic layer was dried and concentrated. Chromatography (EtOAc) gave 160 (17 

mg, 2%) as pale a buff solid: Rf = 0.3 (EtOAc); mp 97-99°C (lit.235 102-104°C); 1H NMR

270.05 MHz ((CD3)2SO) 5 7.57 (1 H, t, J = 7.8 Hz, 6-H), 7.65 (1 H, dd, J = 8.3, 5.9 Hz, 

3-H), 8.05 (1 H, d, J = 7.8 Hz, 7-H), 8.16 (1 H, d, J = 8.3 Hz, 4-H), 8.47 (1 H, d, J = 7.8 

Hz, 5-H), 9.03 (1 H, d, J = 5.9 Hz, 2-H).

8-lodoquinoiine-1-oxide (161)

To 159 (1.18 g, 3.1 mmol) in NMP (1 mL) was added iodine (0.79 g, 3.1 mmol). The 

mixture was stirred for 24 h. Chromatography (acetone / EtOAc, 1:1) of the evaporation 

residue gave 161 (0.37 g, 44%) as a pale yellow solid: Rf = 0.50 (acetone / EtOAc, 

1:1); mp 263-265°C; 1H NMR 399.65 MHz ((CD3)2SO) 5 7.32 (1 H, t, J = 7.9 Hz, 6-H),

7.47 (1 H, dd, J = 8.5, 6.2 Hz, 3-H), 7.92 (1 H, d, J = 8.5 Hz, 4-H), 8.05 (1 H, dd, J = 

7.9, 1.1 Hz, 5-H), 8.39 (1 H, dd, J = 7.9, 1.1 Hz, 7-H), 8.52 (1 H, dd, J = 6.2, 0.8 Hz, 2- 

H), 13C NMR 399.65 MHz (HMBC) ((CD3)2SO) 6 81.8 (8-C), 122.2 (3-C), 126.0 (6-C), 

129.6 (4-C), 129.9 (5-C), 132.1 (4a-C), 136.4 (7-C), 138.6 (8a-C), 145.1 (2-C); MS 

(ES+) m/z 271.9567 (M + H) (C9H7INO requires 271.9494).
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2-Bromoquinoline (163)

POBr3 (2.08 g, 7.3 mmol) and quinoline-2 -one (0.52 g, 3.6 mmol) were heated at 140°C 

for 3 h. The mixture was poured into ice-water. The precipitate was filtered and dried. 
Chromatography (CH2CI2 / hexane, 1:1) gave 163 (526 mg, 34%) as a pale yellow 

solid: Rf = 0.36 (CH2CI3 / hexane, 1:1); mp 49-51°C (lit.278 mp 50-51°C);.1H NMR

270.05 MHz (CDC!3) 5 7.33 (1 H, d, J = 8.5 Hz, 3-H), 7.42 (1 H, t, J = 8.1 Hz, 6 -H), 7.60 

(1 H, dd, J = 8.1, 1.8 Hz, 7-H), 7.62 (1 H, d, J = 8.1, 1.8 Hz, 5-H), 7.80 (1 H, d, J = 8.5 

Hz, 4-H), 7.90 (1 H, d, J = 8.1 Hz, 8-H).

2-Phenylquinoline (164)

Compound 163 (4.12 g, 19.9 mmol) was treated with phenylboronic acid (3.64 g, 29.9 

mmol) by General Procedure 3. Chromatography (EtOAc) gave 164 (4.03 g, 99%) as a 

pale yellow solid: Rf = 0.45 (EtOAc) mp 83-85°C (lit 237 mp 83-85’C); 1H NMR 270.05 

MHz (CDCI3) 5 7.44-7.55 (4 H, m, 3,3',4',5'-H4), 7.74 (1 H, t, J = 7.8 Hz, 6-H), 7.81 (1 

H, d, J= 7.8 Hz, 7-H), 7.86 (1 H, d, J = 8.5 Hz, 4-H), 8.12-8.21 (4 H, m, 2',5,6',8-H4).

2-Phenylquinoline-1-oxide (165)

To 164 (0.95 g, 4.6 mmol) in CHCI3 (8 mL) was added 77% 3-chloroperoxybenzoic acid 

(1.59 g, 9.3 mmol). The solution was stirred overnight. The insoluble 3-chlorobenzoic 

acid was filtered off and the filtrate was washed with NaHC03. The organic layer was 

dried and concentrated. Chromatography (hexane / EtOAc, 3:2) gave 165 (890 mg,
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87%) as a pale yellow solid: Rf = 0.31 (hexane / EtOAc, 3:2); mp 141-142°C (lit.279 mp 

142-143°C); 1H NMR 270.05 MHz (CDCI3) 8 7.47-7.52 (4 H, m, 3,3\4',5'-H4), 7.62 (1 H, 

t, J = 7.8 Hz, 6-H), 7.76-7.92 (4 H, m, 2\5,6',8-H4), 7.94 (1 H, dd, J = 7.8, 1.7 Hz, 7-H), 

8.87(1 H, d, J= 8.6 Hz, 4-H).

(1-Oxido-2-phenylquinolin-8-yl)mercury(ll) chloride (166)

To 165 (150 g, 0.68 mmol) in glacial AcOH (1 mL) was added Hg(OAc)2 (216 mg, 0.68 

mmol). The mixture was boiled under reflux for 5 h. The residue was poured into brine 

(5 mL) and the solid formed was collected by filtration and washed with water to give 

166 (87 mg, 28%) as pale buff crystals: Rf = 0.22 (EtOAc); mp 235-237°C; IR omax(KBr) 

1244 (N+-0 ‘) cm’1; 1H NMR 270.05 MHz ((CD3)2SO) 8 7.43-7.60 (3 H, m, 3',5',6-H3), 

7.66-7.89 (3 H, m, 2',4',6'-H3), 8.01 (1 H, dd, J= 8.0, 1.6 Hz, 5-H), 8.13 (1 H, d, J =  8.7 

Hz, 3-H), 8.64 (1 H, dd, J = 8.0, 1.6 Hz, 7-H), 8.85 (1 H, d, J = 8.7 Hz, 4-H). This 

material was used without further purification.

3-Phenylquinoline (170)

3-Bromoquinoline (310 mg, 1.5 mmol) was treated with phenylboronic acid (275 mg,
2.3 mmol) by General Procedure 3. Chromatography (EtOAc) gave 170 (230 mg, 75%) 

as a pale yellow oil (lit.280 oil): Rf = 0.30 (hexane / EtOAc, 3:2); 1H NMR 270.05 MHz 

(CDCI3) 8 7.42 (1 H, t, J=8.1 Hz, 6-H), 7.46-7.49 (2 H, m, 3',5'-H2), 7.51 (1H, t, J = 7.7 

Hz, 4'-H), 7.64 (2 H, d, J = 7.7 Hz, 2',6'-H2), 7.83 (1 H, d, J = 8.1 Hz, 5-H), 8.14-8.16 (2 

H, m, 7,8-H2), 8.25 (1 H, d, J= 1.8 Hz, 4-H), 8.83 (1 H, d, J=  1.8 Hz, 2-H).
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3-Bromoquinoline-1-oxide (172)

To 3-bromoquinoline (4.53 g, 21.9 mmol) in CHCI3 (40 mL) was added 77% 3- 

chloroperoxybenzoic acid (7.53 g, 43.8 mmol). The solution was stirred overnight. The 

insoluble 3-chlorobenzoic acid was filtered off and the filtrate was washed with 

NaHC03. The organic layer was dried and the solvent was evaporated. 
Chromatography (hexane / EtOAc, 4:1) gave 172 (3.64 g, 75%) as a pale brown solid: 

Rf = 0.46 (hexane / EtOAc, 3:1); mp 97-99°C (lit.281 mp 95-97°C); 1H NMR 270.05 MHz 

(CDCI3) 5 7.72 (1 H, t, J = 7.5 Hz, 6-H), 7.75 (2 H, m, 5,7-H2), 7.77 (1 H, d, J = 1.6 Hz,

4-H), 8.62 (1 H, d, J = 7.7 Hz, 8-H), 8.65 (1 H, d, J = 1.6 Hz, 2-H).

3-Phenylquinoline-1 -oxide (171)

Method A: To 170 (0.95 g, 4.6 mmol) in CHCI3 was added 77% 3-chloroperoxybenzoic 

acid (1.59 g, 9.3 mmol). The solution was stirred overnight. The insoluble 3- 
chlorobenzoic acid was filtered off and the filtrate was washed with NaHC03. The 

organic layer was dried and concentrated. Chromatography (hexane / EtOAc, 1:1) gave 

171 (223 mg, 22%) as a pale yellow solid with properties as described below.

Method B: Compound 172 (3.34 g, 15.0 mmol) was treated with phenylboronic acid 

(2.74 g, 22.5 mmol) by General Procedure 3. Chromatography (EtOAc) gave 171 (2.47 

g, 74%) as a pale yellow solid: Rf = 0.38 (EtOAc); mp 121-124°C (lit.282 mp 123-124°C); 

1H NMR 270.05 MHz (CDCI3) 5 7.47-7.51 (3 H, m, 3',6,5'-H3), 7.63-7.66 (3 H, m, 

2',4',6'-H3), 7.74 (1 H, dd, J = 7.9, 1.4 Hz, 7-H), 7.89 (2 H, m, 4,5-H2), 8.74 (1 H, d, J =

8.8 Hz, 8-H), 8.84 (1 H, d, J= 1.9 Hz, 2-H).
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(1-Oxido-3-phenylquinolin-8-yl)mercury(ll) chloride (173)

HgCI 0

To 171 (3.48 g, 15.7 mmol) in glacial AcOH (15 mL) was added Hg(OAc)2 (4.96 g, 15.7 

mmol). The mixture was boiled under reflux for 5 h. The residue was poured into brine 

(50 mL) and the solid formed was collected by filtration and washed with water to give 

173 (5.4 g, 75%) as pale buff crystals: Rf = 0.14 (EtOAc); mp 246-249°C; IR umax (KBr) 

1217 (N+-0 ‘) cm'1; 1H NMR 399.65 MHz ((CD3)2SO) 5 7.48-7.59 (3 H, m, 3',5',6-H3), 

7.78-7.94 (3 H, m, 2',4',6'-H3), 8.11 (1 H, d, J = 8.0 Hz, 7-H), 8.44 (1 H, d, J = 1.6 Hz,

4-H), 8.53 (1 H, d, J = 8.0 Hz, 5-H), 9.11 (1 H, d, J = 1.6 Hz, 2-H); 13C NMR 399.65 

MHz ((CD3)2SO) 5 118.8 (Cq), 125.5 (Cq), 127.1 (CH),128.8 (CH), 129.0 (CH), 129.1 

(CH), 129.3 (CH), 129.4 (CH), 130.4 (Cq), 134.0 (Cq), 135.0 (CH), 140.1 (CH), 141.9 

(Cq). This material was used without further purification.

8-lodo-3-phenylquinoline-1 -oxide (174)

To 173 (400 mg, 0.88 mmol) in NMP (0.8 mL) was added iodine (116 mg, 0.88 mmol). 

The mixture was stirred for 24 h. Chromatography (hexane / EtOAc, 1:1) of the 

evaporation residue gave 174 (132 mg, 43%) as a pale yellow solid: Rf = 0.56 (hexane 

/ EtOAc, 1:1); mp 162-165°C; IR umax (KBr) 1240 (N+-0') cm'1; 1H NMR 399.65 MHz 

(CDCI3) 5 7.18 (1 H, t, J = 7.9 Hz, 6-H), 7.42-7.48 (2 H, m, 3',5'-H2), 7.52 (1H, t, J = 8.2, 

4'-H), 7.61 (2 H, dd, J =  8.2, 1.6 Hz, 2',6'-H2), 7.82 (1 H, d, J= 1.6 Hz, 4-H), 7.84 (1 H, 

dd, J = 7.9, 1.4 Hz, 5-H), 8.36 (1 H, dd, J = 7.9, 1.4 Hz, 7-H); 8.76 (1 H, d, J = 1.6 Hz, 

2-H); 13C NMR 399.65 MHz (HMBC) (CDCI3) 5 109.9 (8-C), 123.8 (4-C), 126.9 (2',6'- 

C2), 129.2 (5-C), 129.4 (4'-C), 129.5 (3',5'-C2), 129.6 (4a-C), 132.4 (6-C), 135.0 (1'-C),
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135.1 (8a-C), 135.8 (7-C), 138.2 (3-C), 145.3 (2-C); MS (ES+) m/z 347.9869 (M + H) 

(CisHnINO requires 347.9880), 221 (M + H -  l+).

8-Cyano-3-phenylquinoline-1 -oxide (176)

CN

To Na2C03 (280 mg, 2.6 mmol) and urea hydrogen peroxide complex (280 mg, 3.0 

mmol) in dry CH2CI2 (5 mL) at 0°C, was added dropwise trifluoroacetic anhydride (0.21 

mL, 1.5 mmol). The solution was allowed to reach room temperature and compound 68 

(70 mg, 0.30 mmol) was added. The mixture was stirred for 24 h at 40°C. The mixture 

was extracted with and CH2CI2 washed with water and brine. Evaporation and chrom­
atography (hexane / EtOAc, 1:1) gave 176 (10 mg, 14%) as a white solid: Rf = 0.47 

(EtOAc); mp 212-214°C; IR umax (KBr) 1227 (N+-0 ‘), 2364 (CsN) cm’1; 1H NMR 399.65 

MHz (CDCI3) 5 7.48-7.56 (3 H, m, 3',6,5'-H3), 7.64 (2 H, d, J = 7.8 Hz, 2',6'-H2), 7.72 (1 

H, t, J = 7.8 Hz, 4'-H), 7.91 (1 H, d, J =  1.6 Hz, 4-H), 8.13 (1 H, d, J=7.4, 1.6 Hz, 5-H), 

8.14 (1 H, dd, J = 7.4, 1.6 Hz, 7-H), 8.83 (1 H, d, J = 1.6 Hz, 2-H); 13C NMR 399.65 

MHz (HMBC) (CDCI3) 5 106.0 (8-C), 117.7 (CN), 122.9 (4-C), 127.1 (2',6'-C2), 128.4 

(6-C), 129.6 (3\4',5'-C3), 131.1 (4a-C), 133.2 (5-C), 134.8 (1'-C), 136.2 (7-C), 136.9 (3- 
C), 138.9 (8a-C), 139.0 (2-C); MS (ES+) m/z 247.0865 (M + H) (C16HnN20  requires 

247.0866), 231 (M + H -  O); Anal. Calcd. for Ci6H10N2O: C, 78.03; H, 4.09; N, 11.38. 
Found: C, 78.05; H, 3.99; N, 11.12. Further elution gave recovered starting material 68 

(22 mg, 31%).
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8-carbamoyl-3-phenylquinoline-1 -oxide (175)

Compound 176 (283 mg, 1.2 mmol) in EtOH (3.7 mL), was treated with aq. NaOH (0.5 

M, 0.52 mL, 0.27 mmol) and aq. H20 2 (35%, 0.45 mL, 3.6 mmol). The mixture was 

heated to 50°C for 1 h and allowed to cool and was neutralised with aq. sulfuric acid 

(10%). The evaporation residue was purified by chromatography (EtOAc / MeOH, 5:1) 
to give 175 (43 mg, 14%) as a white solid: Rf = 0.19 (EtOAc / MeOH, 10:2); mp 264- 

265°C; IR omax (KBr) 1219 (N+-0'), 3420 (NH2) cm-1; 1H NMR 399.65 MHz ((CD3)2SO) 5

7.48 (1 H, t, J = 8.1 Hz, 6-H), 7.56 (2 H, t, J = 7.9 Hz, 3\5'-H2), 7.72 (1 H, t, J = 7.9 Hz, 

4'-H), 7.89 (2 H, d, J = 7.9 Hz, 2',6'-H2), 8.13 (1 H, dd, J = 8.1, 1.2 Hz, 5-H), 8.15(1 H, 

dd, J =  8.1, 1.2 Hz, 7-H), 8.31 (1 H, d, J=  1.8 Hz, 4-H), 8.92 (1 H, d, J =  1.8 Hz, 2-H); 

13C NMR 399.65 MHz (HMBC) ((CD3)2SO) 5 122.2 (4-C), 127.2 (2',6'-C2), 128.7 (6-C),

129.2 (4a-C or 8-C), 129.4 (8-C or 4a-C), 129.5 (3',5'-C2), 129.7 (5-C), 130.9 (7-C),

131.8 (4'-C), 134.2 (3-C), 134.3 (2-C), 135.2 (1'-C), 136.2 (C-8a), 170.4 (CONH2); MS 

(ES+) m/z 551 (2 M + Na), 265.0960 (M + H) (Ci6H13N20 2 requires 265.0972); Anal. 

Calcd. C16H12N20 2: C, 72.72; H, 4.58; N, 10.60. Found: C, 72.74; H, 4.46; N, 10.47.
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Experimental Details for Chapter 4.0.

P ARP-1 Colourimetric Assay 

Materials and Method

Inhibitor constants were determined using the Universal PARP assay kit (Trevigen). 
The assays were performed in 96 strip-well plates pre-coated with histones. The 

potencies of novel quinoline-8-carboxamide PARP-1 inhibitors were compared with that 
of 5-aminoisoquinolin-1-(2H)-one, a known PARP-1 inhibitor.129 Briefly, PARP inhibitor 

stock solutions (50 mM) were prepared by dissolving them in 100% DMSO. To 

generate inhibition curves, the PARP inhibitor stock solutions were diluted with 1 x 

PARP buffer to give seven different concentrations at 5 x stock solution such that the 

final concentrations in the assay were 100, 30, 10, 3, 1, 0.3, and 0.1 pM. The final 

concentration of DMSO in the assay was less than 0.2  % (v/v). A positive control 

(PARP enzyme with no inhibitor) and negative control (no PARP enzyme) were 

included in each assay. The PARP enzyme was diluted to 0.8units / 15 pi with 1 x 

PARP buffer. Diluted PARP inhibitor (40 pL) was mixed with diluted PARP enzyme (60 

pL), centrifuged and incubated for 10 min at ambient temperature. Then 25 pL of each 

solution was distributed into wells in triplicate. To initiate the reaction 25 pL of PARP 

cocktail [(10 x PARP cocktail, 10 x Activated DNA, 1 x PARP buffer (1:1:8) (v/v/v)] was 

added to each well using a multi-channel pipettor. In all cases the final reaction volume 

was 50 pL. The reaction was allowed to proceed for 1 h at ambient temperature. Plates 

were washed four times with PBS + 0.1 % (v/v) Triton X-100 (200 pL). Then 50 pL 

Strep-HRP (1000 fold with 1 x Strep diluent) was added to each well with a multi­
channel pipettor, and the plate incubated for 30 min at ambient temperature before 

washing with PBS + 0.1 % (v/v) Triton X-100 (200 pL). Substrate TACS Sapphire (50 

pL / well) was added with a multi-channel pipettor and the plates incubated in the dark 

for 30 min. Absorbance at 630 nm was measured using a Versamax microplate reader 

with SoftMax Pro 4.7.1 software. The colourimetric reaction was stopped by adding 0.2 

M HCI (50 pL I well), and the absorbance read at 450 nm.

Data were analysed using GraphPad Prism 2.01 software. The IC50 values were 

calculated by plotting log10 [inhibitor] versus absorbance for the replicant data. Quoted 

I C 5 0  values are an average for the three replicant curves.
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SIRT1 Fluorimetric Assay

Materials and Method

Inhibitor constants were determined using the SIRT1 fluorescent assay Biomol® kit. 

The assays were performed in black 96 strip-well plates. The potencies of novel 

quinoline-8-carboxamide inhibitors were compared with that of nicotinamide, a known 

Sirtuin inhibitor. The test inhibitor stock solutions (50mM) were prepared by dissolving 

them in 100% DMSO. To generate inhibition curves, the test inhibitor stock solutions 

were diluted with 1 x Sirtuin assay buffer (50 mM Tris / Cl, pH 8.0, 137 mM NaCI, 2.7 

mM KCI, 1 mM MgCl2) 1 mg / mL BSA) to give seven different concentrations at 5 x 

stock solution such that the final concentrations in the assay were 100, 30, 10, 3, 1, 
0.3, and 0.1 pM. The final concentration of DMSO in the assay was less than 0.2 % 

(v/v). A positive control (Sirtuin enzyme with no inhibitor) and negative control (no 

Sirtuin enzyme) were included in each assay. The Sirtuin enzyme was diluted to 0.84 

units /15  pL with 1 x Sirtuin assay buffer. The diluted test inhibitor (40 pL) was mixed 

with diluted Sirtuin enzyme (60 pL) and kept on ice. Then 25 pL of each solution was 

distributed into wells in triplicate. To initiate the reaction 25 pL of 2 x substrate {fluorde 

Lys-SIRT1, NAD+ and 1 x Sirtuin assay buffer) was added to each well using a multi­

channel pipettor (75 pM final concentration). In all cases the final reaction volume was 

50 pL. The assay plate was incubated at 37°C for 1 h. Then fresh 1 x fluor Lys™ 

Developer II plus 2 mM nicotinamide (50 pL / well) was added to each well to quench 

the reaction and the plate incubated at 37°C for 35 min. Fluorescence at Aex 355 nm 

and AEs 460 nm was measured using a BMG Labtech Fluorostar Optima microplate 

reader with Optima version 5 software.

Data were analysed using GraphPad Prism 2.01 software. The IC50 values were 

calculated by plotting log10 [inhibitor] versus fluorescence for the replicant data. Quoted 

I C 5 0  values are an average for the three replicant curves.

2 0 1



References

(1) Chabner, B. A.; Roberts, T. G. Nat. Rev. Cancer 2005, 5, 65-72.

(2) Thomlinson, R. H.; Gray, L. H. Br. J. Cancer 1955, 9, 539-549.

(3) Brown, J. M.; Wilson, W. R. Nat. Rev. Cancer2004, 4, 437-447.

(4) Brown, J. M.; Giaccia, A. J. Cancer Res. 1998, 5 8 ,1408-1416.

(5) Hockel, M.; Vaupel, P. J. Natl. Cancer Inst. 2001, 93, 266-276.

(6) Sipkins, D. A.; Cheresh, D. A.; Kazemi, M. R.; Nevin, L. M.; Bednarski,

M. D.; Li, K. C. P. Nat. Med. 1998, 4, 623-626.
(7) Aboagye, E. O.; Kelson, A. B.; Tracy, M.; Workman, P. Anti-Cancer

DrugDes. 1998, 13, 703-730.

(8) Siim, B. G.; Laux, W. T.; Rutland, M. D.; Palmer, B. N.; Wilson, W. R.
Cancer Res. 2000, 60, 4582-4588.
(9) Coleman, C. N. J. Natl. Cancer Inst. 1988, 80, 310-317.

(10) Henk, J. M.; Kunkler, P. B.; SmithfC. W. Lancet 1977, 2,101-103.

(11) Watson, E. R.; Hainan, K. E.; Dische, S.; Saunders, M. I.; Cade, I. S.;
McEwen, J. B.; Wiemik, G.; Perrins, D. J. D.; Sutherland, M. A. Br. J. Radiol.

1978, 51, 879-887.
(12) Adams, G. E.; Flockhart, I. R.; Smithen, C. E.; Stratford, I. J.; Wardman, 
P.; Watts, M. E. Radiat. Res. 1976, 67, 9-20.
(13) Urtasun, R. C.; Band, P. R.; Chapman, J. D.; Feldstein, M. L. N. Engl. J.

Med 1977, 296, 757-757.
(14) Dische, S.; Saunders, M. I.; Lee, M. E.; Adams, G. E.; Flockhart, I. R. 
Br. J. Cancer 1977, 35, 567-579.
(15) Brown, J. M.; Yu, N. Y.; Brown, D. M.; Lee, W. W. Int. J. Radiat. Oncol.

Biol. Phys. 1981, 7, 695-703.
(16) Lee, D. J.; Cosmatos, D.; Marcial, V. A.; Fu, K. K.; Rotman, M.; Cooper, 

J. S.; Ortiz, H. G.; Beitler, J. J.; Abrams, R. A.; Curran, W. J.; Coleman, C. N.; 
Wasserman, T. H. Int. J. Radiat. Oncol. Biol. Phys. 1995, 32, 567-576.
(17) Teicher, B. A.; Crawford, J. M.; Holden, S. A.; Cathcart, K. N. S. Cancer 

Res. 1987, 47, 5036-5041.
(18) Pallavicini, M. G.; Lalande, M. E.; Miller, R. G.; Hill, R. P. Cancer Res.

1979, 39, 1891-1897.
(19) Walker, L. J.; Craig, R. B.; Harris, A. L.; Hickson, I. D. Nucleic Acids 

Res. 1994, 22, 4884-4889.
(20) Adams, G. E.; Stratford, I. J. Biochem. Pharm. 1986, 35, 71-76.

2 0 2



(21) Comerford, K. M.; Wallace, T. J.; Karhausen, J.; Louis, N. A.; Montalto, 
M. C.; Colgan, S. P. Cancer Res. 2002, 62, 3387-3394.
(22) Hughes, C. S.; Shen, J. W.; Subjeck, J. R. Cancer Res. 1989, 49, 4452- 

4454.

(23) Shen, J.; Hughes, C.; Chao, C.; Cai, J.; Bartels, C.; Gessner, T.; 

Subjeck, J. Proc. Natl. Acad. Sci. USA 1987, 84, 3278-3282.
(24) Guillemin, K.; Krasnow, M. A. Cell 1997, 89, 9-12.
(25) Huang, L. E.; Arany, Z.; Livingston, D. M.; Bunn, H. F. J. Biol. Chem.

1996, 271, 32253-32259.

(26) Pugh, C. W.; Ratcliffe, P. J. Nat. Med. 2003, 9, 677-684.

(27) Ravi, R.; Mookerjee, B.; Bhujwalla, Z. M.; Sutter, C. H.; Artemov, D.;
Zeng, Q. W.; Dillehay, L. E.; Madan, A.; Semenza, G. L.; Bedi, A. Genes Dev. 

2000, 14, 34-44.

(28) Jiang, B. H.; Jiang, G. Q.; Zheng, J. Z.; Lu, Z. M.; Hunter, T.; Vogt, P. K. 
Cell Growth Differ. 2001, 12, 363-369.

(29) Zhong, H.; De Marzo, A. M.; Laughner, E.; Lim, M.; Hilton, D. A.; 
Zagzag, D.; Buechler, P.; Isaacs, W. B.; Semenza, G. L.; Simons, J. W. Cancer 

Res. 1999, 59, 5830-5835.

(30) Maxwell, P. H.; Wiesener, M. S.; Chang, G. W.; Clifford, S. C.; Vaux, E.
C.; Cockman, M. E.; Wykoff, C. C.; Pugh, C. W.; Maher, E. R.; Ratcliffe, P. J. 
Nature 1999, 399, 271-275.
(31) Stebbins, C. E.; Kaelin, W. G.; Pavletich, N. P. Science 1999, 284, 455- 
461.
(32) Li, L. M.; Lin, X. Y.; Staver, M.; Shoemaker, A.; Semizarov, D.; Fesik, S. 
W.; Shen, Y. Cancer Res. 2005, 65, 7249-7258.
(33) Welsh, S.; Williams, R.; Kirkpatrick, L.; Paine-Murrieta, G.; Powis, G. 
Mol. Cancer Ther. 2004, 3, 233-244.

(34) Kong, D. H.; Park, E. J.; Stephen, A. G.; Calvani, M.; Cardellina, J. H.; 
Monks, A.; Fisher, R. J.; Shoemaker, R. H.; Melillo, G. Cancer Res. 2005, 65, 

9047-9055.
(35) Semenza, G. L. Biochem. Pharmacol. 2000, 59, 47-53.

(36) Rapisarda, A.; Uranchimeg, B.; Sordet, O.; Pommier, Y.; Shoemaker, R. 
H.; Melillo, G. Cancer Res. 2004, 6 4 ,1475-1482.

(37) Yeo, E. J.; Chun, Y. S.; Cho, Y. S.; Kim, J. H.; Lee, J. C.; Kim, M. S.; 
Park, J. W. J. Natl. Cancer Inst. 2003, 95, 516-525.
(38) Welsh, S. J.; Williams, R. R.; Birmingham, A.; Newman, D. J.; 
Kirkpatrick, D. L.; Powis, G. Mol. Cancer Ther. 2003, 2, 235-243.

203



(39) Mabjeesh, N. J.; Escuin, D.; LaVallee, T. M.; Pribluda, V. S.; Swartz, G. 
M.; Johnson, M. S.; Willard, M. T.; Zhong, H.; Simons, J. W.; Giannakakou, P. 
Cancer Cell 2003, 3, 363-375.

(40) Albert, A. Nature 1958, 182, 421-423.
(41) Denny, W. A. Lancet Oncol. 2000, 1, 25-29.

(42) Workman, P.; Stratford, I. J. Cancer Metastasis Rev. 1993, 12, 73-82.

(43) Denny, W. A.; Wilson, W. R.; Hay, M. P. Br. J. Cancer 1996, 74, S32-

S38.
(44) Mohindra, J. K.; Rauth, A. M. Br. J. Cancer 1976, 36, 930-936.
(45) Denny, W. A. Eur. J. Med. Chem. 2001 , 36, 577-595.

(46) Robertson, N.; Stratford, I. J.; Houlbrook, S.; Carmichael, J.; Adams, G. 
E. Biochem. Pharmacol. 1992, 44, 409-412.

(47) Walton, M. I.; Workman, P. Biochem. Pharmacol. 1987, 36, 887-896.
(48) Walton, M. I.; Workman, P. Biochem. Pharmacol. 1990, 3 9 ,1735-1742.

(49) Kayyali, U. S.; Donaldson, C.; Huang, H. L.; Abdelnour, R.; Hassoun, P. 
M. J. Biol. Chem. 2001, 276, 14359-14365.
(50) Lopez de Cerain, A.; Marin, A.; Idoate, M. A.; Tunon, M. T.; Bello, J. Eur. 

J. Cancer 1999, 35, 320-324.
(51) Ware, D. C.; Palmer, B. D.; Wilson, W. R.; Denny, W. A. J. Med. Chem. 

1993, 36, 1839-1846.

(52) Nishimoto, S.; Hatta, H.; Ueshima, H.; Kagiya, T. J. Med. Chem. 1992, 

35, 2711-2712.
(53) Kriste, A. G.; Tercel, M.; Stribbling, S. M.; Botting, K. J.; Wilson, W. R. 
Br. J. Cancer 2002, 86, S30-S31.
(54) Jaffar, M.; Williams, K. J.; Stratford, I. J. Adv. Drug Deliv. Rev. 2001, 53, 

217-228.
(55) Denny, W. A.; Wilson, W. R. J. Med. Chem. 1986, 29, 879-887.

(56) Jenkins, T. C.; Naylor, M. A.; O'Neill, P.; Threadgill, M. D.; Cole, S.; 
Stratford, I. J.; Adams, G. E.; Fielden, E. M.; Suto, M. J.; Stier, M. A. J. Med. 

Chem. 1990, 33, 2603-2610.

(57) Lee, A. E.; Wilson, W. R. Toxicol. Appl. Pharmacol. 2000, 163, 50-59.
(58) Everett, S. A.; Naylor, M. A.; Patel, K. B.; Stratford, M. R. L.; Wardman, 
P. Bioorg. Med. Chem. Lett. 1999, 9 , 1267-1272.
(59) Firestone, A.; Mulcahy, R. T.; Borch, R. F. J. Med. Chem. 1991, 34, 

2933-2935.
(60) Mulcahy, R. T.; Gipp, J. J.; Schmidt, J. P.; Joswig, C.; Borch, R. F. J. 

Med. Chem. 1994, 37, 1610-1615.

204



(61) Sykes, B. M.; Atwell, G. J.; Hogg, A.; Wilson, W. R.; O'Connor, C. J.;
Denny, W. A. J. Med. Chem. 1999, 42, 346-355.

(62) Hicks, K. O.; Fleming, Y.; Siim, B. G.; Koch, C. J.; Wilson, W. R. Int. J.

Radiat. Oncol. Biol. Phys. 1998, 42, 641-649.
(63) Lee, D. J.; Trotti, A.; Spencer, S.; Rostock, R.; Fisher, C.; von 

Roemeling, R.; Harvey, E.; Groves, E. G. Int. J. Radiat. Oncol. Biol. Phys. 1998, 

42, 811-815.

(64) von Pawel, J.; von Roemeling, R.; Gatzemeier, U.; Boyer, M.; Elisson, L.
O.; dark, P.; Talbot, D.; Rey, A.; Butler, T. W.; Hirsh, V.; Olver, I.; Bergman, B.; 

Ayoub, J.; Richrdson, G.; Dunlop, D.; Arcenas, A.; Vescio, R.; Viallet, J.; Treat, 
J. J. Clin. Oncol. 2000, 1 8 ,1351-1359.

(65) Monge, A.; Martinez-Crespo, F. J.; Lopez de Cerain, A.; Palop, J. A.; 

Narro, S.; Senador, V.; Marin, A.; Sainz, Y.; Gonzalez, M.; Hamilton, E.; Barker, 
A. J. J. Med. Chem. 1995, 38, 4488-4494.

(66) Naylor, M. A.; Adams, G. E.; Haigh, A.; Cole, S.; Jenner, T.; Robertson, 
N.; Siemann, D.; Stephens, M. A.; Stratford, I. J. Anti-Cancer Drugs 1995, 6, 
259-269.
(67) Barham, H. M.; Stratford, I. J. Biochem. Pharmacol. 1996, 51, 829-837.

(68) Smith, P. J.; Blunt, N. J.; Desnoyers, R.; Giles, Y.; Patterson, L. H. 
Cancer Chemother. Pharmacol. 1997, 3 9 ,455-461.

(69) Raleigh, S. M.; Wanogho, E.; Burke, M. D.; McKeown, S. R.; Patterson, 
L. H. Int. J. Radiat. Oncol. Biol. Phys. 1998, 42, 763-767.
(70) Patterson, L. H.; McKeown, S. R. Br. J. Cancer2000, 83, 1589-1593.
(71) Patterson, L. H.; McKeown, S. R.; Ruparella, K.; Double, J. A.; Bibby, M.
C.; Cole, S.; Stratford, I. J. Br. J. Cancer2000, 8 2 ,1984-1990.

(72) Friery, O. P.; Gallagher, R.; Murray, M. M.; Hughes, C. M.; Galligan, E. 
S.; McIntyre, I. A.; Patterson, L. H.; Hirst, D. G.; McKeown, S. R. Br. J. Cancer 

2000, 82, 1469-1473.
(73) Wilson, W. R.; van Zijl, P.; Denny, W. A. Int. J. Radiat Oncol. Biol. Phys. 

1992, 22, 693-696.

(74) Lee, H. H.; Wilson, W. R.; Ferry, D. M.; van Zijl, P.; Pullen, S. M.; 
Denny, W. A. J. Med. Chem. 1996, 39, 2508-2517.

(75) Lee, H. H.; Wilson, W. R.; Denny, W. A. Anti-Cancer Drug Des. 1999, 
14, 487-497.
(76) Yin, H.; Xu, Y.; Qian, X.; Li, Y.; Liu, J. Bioorg. Med. Chem. Lett. 2007, 

17, 2166-2170.

205



(77) Li, V. S.; Choi, D.; Wang, Z.; Jimenez, L. S.; Tang, M. S.; Kohn, H. J. 

Am. Chem. Soc. 1996, 118, 2326-2331.

(78) Tomasz, M.; Lipman, R.; Chowdary, D.; Pawlak, J.; Verdine, G. L.; 
Nakanishi, K. Science 1987, 2 3 5 ,1204-1208.

(79) Haffty, B. G.; Wilson, L. D.; Son, Y. H.; Cho, E. I.; Papac, R. J.; Fischer, 
D. B.; Rockwell, S.; Sartorelli, A. C.; Ross, D. A.; Sasaki, C. T.; Fischer, J. J. Int. 

J. Radiat. Oncol. Biol. Phys. 2005, 6 1 ,119-128.
(80) Ross, D.; Beall, H. D.; Siegel, D.; Traver, R. D.; Gustafson, D. L. Br. J. 

Cancer 1996, 74, S1-S8.

(81) Flader, C.; Liu, J. W.; Borch, R. F. J. Med. Chem. 2000, 43, 3157-3167.

(82) Everett, S. A.; Naylor, M. A.; Barraja, P.; Swann, E.; Patel, K. B.; 

Stratford, M. R. L.; Hudnott, A. R.; Vojnovic, B.; Locke, R. J.; Wardman, P.; 
Moody, C. J. J. Chem. Soc., Perkin Trans. 2 2001, 843-860.

(83) Hendriks, H. R.; Pizao, P. E.; Berger, D. P.; Kooistra, K. L.; Bibby, M. C.; 
Boven, E.; Dreef-van der Meulen, H. C.; Henrar, R. E. C.; Fiebig, H. H.; Double, 
J. A.; Hornstra, H. W.; Pinedo, H. M.; Workman, P.; Schwartsmann, G. Eur. J. 

Cancer 1993, 29A, 897-906.
(84) Dirix, L. Y.; Tonnesen, F.; Cassidy, J.; Epelbaum, R.; ten Bokkel 
Huinink, W. W.; Pavlidis, N.; Sorio, R.; Gamucci, T.; Wolff, I.; Te Velde, A.; Lan, 
J.; Verweij, J. Eur. J. Cancer 1996, 32A, 2019-2022.

(85) Nguewa, P. A.; Fuertes, M. A.; Valladares, B.; Alonso, C.; Perez, J. M. 
Prog. Biophys. Mol. Biol. 2005, 8 8 ,143-172.
(86) Shall, S. Adv. Radiat. Biol. 1984, 1 1 ,1-69.
(87) de Murcia, G.; Schreiber, V.; Molinete, M.; Saulier, B.; Poch, O.; 
Masson, M.; Niedergang, C.; Menissier-de Murcia, J. Mol. Cell. Biochem. 1994, 
138 ,15-24.

(88) Gradwohl, G.; M6nissier-de Murcia, J.; Molinete, M.; Simonin, F.; Koken, 
M.; Hoeijmakers, J. H. J.; de Murcia, G. Proc. Natl. Acad. Sci. USA 1990, 87, 

2990-2994.
(89) D'Amours, D.; Desnoyers, S.; D'Silva, I.; Poirier, G. G. Biochem. J. 

1999, 342, 249-268.
(90) Uchida, K.; Hanai, S.; Ishikawa, K.; Ozawa, Y.; Uchida, M.; Sugimura, 
T.; Miwa, M. Proc. Natl. Acad. Sci. USA 1993, 90, 3481-3485.

(91) Bork, P.; Hofmann, K.; Bucher, P.; Neuwald, A. F.; Altschul, S. F.; 
Koonin, E. V. FASEB J. 1997, 11, 68-76.

(92) Simonin, F.; Hofferer, L.; Panzeter, P. L.; Muller, S.; de Murcia, G.; 
Althaus, F. R. J. Biol. Chem. 1993, 268, 13454-13461.

206



(93) Shall, S. Biochimie 1995, 77, 313-318.
(94) Mendoz-Alvarez, H.; Alvarez-Gonzalez, R. J. Biol. Chem. 1993, 268, 

22575-22580.
(95) Griffin, R. J.; Curtin, N. J.; Newell, D. R.; Golding, B. T.; Durkacz, B. W.;

Calvert, A. H. Biochimie 1995, 77, 408-422.

(96) Oka, J.; Ueda, K.; Hayaishi, O.; Komura, H.; Nakanishi, K. J. Biol. 

Chem. 1984, 259, 986-995.

(97) Chambon, P.; Weill, J. D.; Mandel, P. Biochem. Biophys. Res. Commun. 

1963, 11, 39-43.

(98) Shieh, W. M.; Ame, J. C.; Wilson, M. V.; Wang, Z. Q.; Koh, D. W.;
Jacobson, M. K.; Jacobson, E. L. J. Biol. Chem. 1998, 273, 30069-30072.

(99) Ame, J. C.; Spenlehauer, C.; de Murcia, G. Bioessays 2004, 26, 882- 

893.

(100) Ame, J. C.; Rolli, V.; Schreiber, V.; Niedergang, C.; Apiou, F.; Decker, 
P.; Muller, S.; Hoger, T.; Menissier-de Murcia, J.; de Murcia, G. J. Biol. Chem. 

1999, 274, 17860-17868.
(101) Ame, J. C.; Schreiber, V.; Fraulob, V.; Dolle, P.; de Murcia, G.;
Niedergang, C. P. J. Biol. Chem. 2001, 2 7 6 ,11092-11099.

(102) Menissier-de Murcia, J.; Niedergang, C.; Trucco, C.; Ricoul, M.;
Dutrillaux, B.; Mark, M.; Oliver, F. J.; Masson, M.; Dierich, A.; LeMeur, M.;
Walztinger, C.; Chambon, P.; de Murcia, G. Proc. Natl. Acad. Sci. USA 1997,
94, 7303-7307.

(103) Kanai, M.; Tong, W. M.; Sugihara, E.; Wang, Z. Q.; Fukasawa, K.; Miwa, 
M. Mol. Cell. Biochem. 2003, 23, 2451-2462.
(104) Lange, B. M. H.; Gull, K. J. Cell Biol. 1995, 130, 919-927.
(105) Augustin, A.; Spenlehauer, C.; Dumond, H.; Menissier-de Murcia, J.; 

Piel, M.; Schmit, A. C.; Apiou, F.; Vonesch, J. L.; Kock, M.; Bornens, M.; de 

Murcia, G. J. Cell Sci. 2003, 116, 1551-1562.
(106) Kickhoefer, V. A.; Vasu, S. K.; Rome, L. H. Trends Cell Biol. 1996, 6, 

174-178.

(107) Kickhoefer, V. A.; Rajavel, K. S.; Scheffer, G. L.; Dalton, W. S.; Scheper, 
R. J.; Rome, L. H. J. Biol. Chem. 1998, 273, 8971-8974.

(108) Scheffer, G. L.; Wijngaard, P. L. J.; Flens, M. J.; Izquierdo, M. A.; 
Slovak, M. L.; Pinedo, H. M.; Meijer, C. J. L. M.; Clevers, H. C.; Scheper, R. J. 
Nat. Med. 1995, 1, 578-582.
(109) De Rycker, M.; Venkatesan, R. N.; Wei, C.; Price, C. M. Biochem. J. 

2003, 372, 87-96.

207



(110) De Rycker, M.; Price, C. M. Mol. Cell. Biol. 2004, 24, 9802-9812.
(111) Chi, N. W.; Lodish, H. F. J. Biol. Chem. 2000, 275, 38437-38444.
(112) Smith, S.; Giriat, I.; Schmitt, A.; de Lange, T. Science 1998, 282, 1484- 

1487.

(113) Kaminker, P. G.; Kim, S. H.; Taylor, R. D.; Zebarjadian, Y.; Funk, W. D.; 
Morin, G. B.; Yaswen, P.; Campisi, J. J. Biol. Chem. 2001, 276, 35891-35899.

(114) Ma, Q.; Baldwin, K. T.; Renzelli, A. J.; McDaniel, A.; Dong, L. Biochem. 

Biophys. Res. Commun. 2001, 289, 499-506.
(115) Kato, T.; Suzumura, Y.; Fukushima, M. Anticancer Res. 1988, 8, 239- 

243.

(116) Chen, G.; Pan, Q. C. Cancer Chemother. Pharmacol. 1988, 22, 303- 

307.

(117) Petrou, C.; Mourelatos, D.; Mioglou, E.; Dozi-Vassiliades, J.; 
Catsoulacos, P. Teratog. Carcinog. Mutagen. 1990, 10, 321-331.

(118) Eliopoulos, P.; Mourelatos, D.; Dozi-Vassiliades, J. Mutat. Res. Genet. 

Toxicol. 1995, 342, 141-146.
(119) Horsman, M. R.; Brown, D. M.; Hirst, D. G.; Brown, J. M. Br. J. Cancer 

1986, 53, 247-254.

(120) Miknyoczki, S. J.; Jones-Bolin, S.; Pritchard, S.; Hunter, K.; Zhao, H.; 
Wan, W. H.; Ator, M.; Bihovsky, R.; Hudkins, R.; Chatterjee, S.; Klein-Szanto, 
A.; Dionne, C.; Ruggeri, B. Mol. Cancer Ther. 2003, 2, 371-382.
(121) Calabrese, C. R.; Almassy, R.; Barton, S.; Batey, M. A.; Calvert, A. H.; 
Canan-Koch, S.; Durkacz, B. W.; Hostomsky, Z.; Kumpf, R. A.; Kyle, S.; Li, J.; 
Maegley, K.; Newell, D. R.; Notarianni, E.; Stratford, I. J.; Skalitzky, D.; Thomas, 
H. D.; Wang, L. Z.; Webber, S. E.; Williams, K. J.; Curtin, N. J. J. Natl. Cancer 

Inst. 2004, 96, 56-67.

(122) Griffin, R. J.; Pemberton, L. C.; Rhodes, D.; Bleasdale, C.; Bowman, K.; 

Calvert, A. H.; Curtin, N. J.; Durkacz, B. W.; Newell, D. R.; Porteous, J. K.; 
Golding, B. T. Anti-Cancer Drug Des. 1995, 10, 507-514.
(123) Bowman, K. J.; Newell, D. R.; Calvert, A. H.; Curtin, N. J. Br. J. Cancer 

2001 ,84, 106-112.

(124) Delaney, C. A.; Wang, L. Z.; Kyle, S.; White, A. W.; Calvert, A. H.; 
Curtin, N. J.; Durkacz, B. W.; Hostomsky, Z.; Newell, D. R. Clin. Cancer Res. 

2000, 6, 2860-2867.

(125) Tentori, L.; Portarena, I.; Graziani, G. Pharmacol. Res. 2002, 45, 73-85.

208



(126) Tentori, L.; Leonetti, C.; Scarsella, M.; d'Amati, G.; Vergati, M.; 
Portarena, I.; Xu, W. Z.; Kalish, V.; Zupi, G.; Zhang, J.; Graziani, G. Clin. 

Cancer Res. 2003, 9, 5370-5379.
(127) Horsman, M. R. Acta Oncol. 1995, 34, 571-587.

(128) van der Maazen, R. W. M.; Thijssen, H. O. M.; Kaanders, J. H. A. M.; de 

koster, A.; Keyser, A.; Prick, M. J. J.; Grotenhuis, J. A.; Wesseling, P.; van der 
Kogel, A. J. Radiother. Oncol. 1995, 35,118-122.

(129) Suto, M. J.; Turner, W. R.; Arundel-Suto, C. M.; Werbel, L. M.; Sebolt- 
Leopold, J. S. Anti-Cancer Drug Des. 1991, 6,107-117.

(130) Brock, W. A.; Milas, L.; Bergh, S.; Lo, R.; Szabo, C.; Mason, K. A. 
Cancer Lett. 2004, 205,155-160.

(131) Farmer, H.; McCabe, N.; Lord, C. J.; Tutt, A. N. J.; Johnson, D. A.; 

Richardson, T. B.; Santarosa, M.; Dillon, K. J.; Hickson, I.; Knights, C.; Martin, 
N. M. B.; Jackson, S. P.; Smith, G. C. M.; Ashworth, A. Nature 2005, 434, 917- 

921.
(132) Schroeijers, A. B.; Siva, A. C.; Scheffer, G. L.; de Jong, M. C.; Bolick, S.
C. E.; Dukers, D. F.; Slootstra, J. W.; Meloen, R. H.; Wiemer, E.; Kickhoefer, V. 
A.; Rome, L. H.; Scheper, R. J. Cancer Res. 2000, 6 0 ,1104-1110.
(133) Faraoni, I.; Bonmassar, E.; Graziani, G. Drug Resist. Update 2000, 3, 
161-170.
(134) van Steensel, B.; de Lange, T. Nature 1997, 385, 740-743.
(135) Cosi, C. Expert Opin. Ther. Patents 2002, 1 2 ,1047-1071.
(136) Thiemermann, C.; Bowes, J.; Myint, F. P.; Vane, J. R. Proc. Natl. Acad. 

Sci. USA 1997, 94, 679-683.

(137) Halmosi, R.; Berente, Z.; Osz, E.; Toth, K.; Literati-Nagy, P.; Sumegi, B. 
Mol. Pharmacol. 2001, 59,1497-1505.
(138) Yang, Z. Q.; Zingarelli, B.; Szabo, C. Shock 2000, 13, 60-66.
(139) Zingarelli, B.; Salzman, A. L.; Szabo, C. Circ.Res. 1998, 83, 85-94.

(140) Szabo, G.; Bahrle, S.; Stumpf, N.; Sonnenberg, K.; Szabo, T.; Pacher, 

P.; Csont, T.; Schulz, R.; Dengler, T. J.; Liaudet, L.; Jagtap, P. G.; Southan, G. 
J.; Vahl, C. F.; Hagl, S.; Szabo, C. Circ.Res. 2002, 9 0 ,100-106.

(141) Eliasson, M. J. L.; Sampei, K.; Mandir, A. S.; Hum, P. D.; Traystman, R. 
J.; Bao, J.; Pieper, A.; Wang, Z. Q.; Dawson, T. M.; Snyder, S. H.; Dawson, V. 
L. Nat. Med. 1997, 3, 1089-1095.

(142) Cosi, C.; Suzuki, H.; Skaper, S. D.; Milani, D.; Facci, L.; Menegazzi, M.; 
Vantini, G.; Kanai, Y.; Degryse, A.; Colpaert, F.; Koek, W.; Marten, M. R. Ann. 

NY Acad. Sci. 1997, 825, 366-379.

209



(143) Cosi, C.; Marien, M. Brain Res. 1998, 809, 58-67.

(144) Mandir, A. S.; Przedborski, S.; Jackson-Lewis, V.; Wang, Z. Q.; 
Simbulan-Rosenthal, C. M.; Smulson, M. E.; Hoffman, B. E.; Guastella, D. B.; 
Dawson, V. L.; Dawson, T. M. Proc. Natl. Acad. Sci. USA 1999, 96, 5774-5779.

(145) Genovese, T.; Mazzon, E.; Muia, C.; Patel, N. S. A.; Threadgill, M. D.; 

Bramanti, P.; De Sarro, A.; Thiemermann, C.; Cuzzocrea, S. J. Pharmacol. 

Exp. Ther. 2005, 312, 449-457.

(146) Liaudet, L.; Szabo, A.; Soriano, F. G.; Zingarelli, B.; Szabo, C.; 
Salzman, A. L. Shock 2000, 1 4 ,134-141.

(147) Mazzon, E.; Dugo, L.; De Sarro, A.; Li, J. H.; Caputi, A. P.; Zhang, J.; 
Cuzzocrea, S. Shock 2002, 17, 222-227.

(148) Di Paola, R.; Genovese, T.; Caputi, A. P.; Threadgill, M. D.; 
Thiemermann, C.; Cuzzocrea, S. Eur. J. Pharmacol. 2004, 492, 203-210.

(149) Chatterjee, P. K.; Chatterjee, B. E.; Pedersen, H.; Sivarajah, A.; 
McDonald, M. C.; Mota-Filipe, H.; Brown, P. A. J.; Stewart, K. N.; Cuzzocrea, 
S.; Threadgill, M. D.; Thiemermann, C. Kidney Int. 2004, 65, 499-509.
(150) Ivanyi, Z.; Hauser, B.; Pittner, A.; Asfar, P.; Vassilev, D.; Nalos, M.; 
Altherr, J.; Bruckner, U. B.; Szabo, C.; Radermacher, P.; Froba, G. Shock 2003, 
19, 415-421.
(151) McDonald, M. C.; Mota-Filipe, H.; Wright, J. A.; Abdelrahman, M.; 
Threadgill, M. D.; Thompson, A. S.; Thiemermann, C. Br. J. Pharmacol. 2000, 

130, 843-850.
(152) Lam, T. T. Res. Commun. Mol. Pathol. Pharmacol. 1997, 95, 241-252.
(153) Oliver, F. J.; Menissier-de Murcia, J.; Nacci, C.; Decker, P.; 
Andriantsitohaina, R.; Muller, S.; de la Rubia, G.; Stoclet, J. C.; de Murcia, G. 
EMBO J. 1999, 18, 4446-4454.
(154) Szabo, A.; Hake, P.; Salzman, A. L.; Szabo, C. Shock 1998, 10, 347- 

353.

(155) Pieper, A. A.; Brat, D. J.; Krug, D. K.; Watkins, C. C.; Gupta, A.; 
Blackshaw, S.; Verma, A.; Wang, Z. Q.; Snyder, S. H. Proc. Natl. Acad. Sci. 

USA 1999, 96, 3059-3064.
(156) Miesel, R.; Kurpisz, M.; Kroger, H. Inflammation 1995, 19, 379-387.

(157) Jijon, H. B.; Churchill, T.; Malfair, D.; Wessler, A.; Jewell, L. D.; Parsons, 
H. G.; Madsen, K. L. Am. J. Physiol. Gastroint. Liver Physiol. 2000, 279, G641- 
G651.
(158) Ratnam, K.; Low, J. A. Clin. Cancer Res. 2007, 1 3 ,1383-1388.

2 1 0



(159) Kummar, S.; Kinders, R.; Rubinstein, L.; Parchment, R. E.; Murgo, A. J.; 
Collins, J.; Pickeral, 0.; Low, J.; Steinberg, S. M.; Gutierrez, M.; Yang, S.; 
Helman, L.; Wiltrout, R.; Tomaszewski, J. E.; Doroshow, J. H. Nat. Rev. Cancer 

2007, 7, 131-139.

(160) Plummer, R.; Middleton, M.; Wilson, R.; Jones, C.; Evans, J.; Robson, 

L.; Steinfeldt, H.; Kaufman, R.; Reich, S.; Calvert, A. H. Proc. Am. Soc. Clin. 

Oncol. 2005, 24, A3065.

(161) Plummer, R.; Lorigan, P.; Evans, J.; Steven, N.; Middleton, M.; Wilson, 
R.; Snow, K.; Dewji, R.; Calvert, H. Proc. Am. Soc. Clin. Oncol. 2006, 25, 

A8013.

(162) Fong, P. C.; Spicer, J.; Reade, S.; Reid, A.; Vidal, L.; Schellens, J. H.; 
Tutt, A.; Harris, P. A.; Kaye, S.; De Bono, J. S. Proc. Am. Soc. Clin. Oncol. 

2006, 25, A3022.

(163) Wang, C.; Bedikian, A. Y.; Kim, K.; Papadopoulos, N. E.; Hwu, W.; Hwu, 
P. Proc. Am. Soc. Clin. Oncol. 2006, 25, A12015.
(164) Lapidus, R. G.; Xu, W.; Spicer, E.; Hoover, R.; Zhang, J. Proc. Am. 

Assoc. Cancer Res. 2006, 47, A2141.
(165) Iwashita, A.; Yamazaki, S.; Mihara, K.; Hattori, K.; Yamamoto, H.; 
Ishida, J.; Matsuoka, N.; Mutoh, S. J. Pharmacol. Exp. Ther. 2004, 309, 1067- 

1078.
(166) Shall, S. J. Biochem. (Tokyo) 1975, 77, P2-P2.
(167) Purnell, M. R.; Whish, W. J. D. Biochem. J. 1980, 185, 775-777.
(168) Hong, L.; Goldstein, B. M. J. Med. Chem. 1992, 35, 3560-3567.
(169) Banasik, M.; Komura, H.; Shimoyama, M.; Ueda, K. J. Biol. Chem. 1992, 
267, 1569-1575.

(170) White, A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J.; Griffin, R. J.; 
Hostomsky, Z.; Maegley, K.; Newell, D. R.; Srinivasan, S.; Golding, B. T. J. 

Med. Chem. 2000, 43, 4084-4097.

(171) Skalitzky, D. J.; Marakovits, J. T.; Maegley, K. A.; Ekker, A.; Yu, X. H.; 
Hostomsky, Z.; Webber, S. E.; Eastman, B. W.; Almassy, R.; Li, J. K.; Curtin, N. 
J.; Newell, D. R.; Calvert, A. H.; Griffin, R. J.; Golding, B. T. J. Med. Chem. 

2003,46,210-213.

(172) Cockcroft, X. L.; Dillon, K. J.; Dixon, L.; Drzewiecki, J.; Kerrigan, F.; Loh, 
V. M.; Martin, N. M. B.; Menear, K. A.; Smith, G. C. M. Bioorg. Med. Chem. Lett. 

2006, 16, 1040-1044.

2 1 1



(173) Griffin, R. J.; Srinivasan, S.; Bowman, K.; Calvert, A. H.; Curtin, N. J.; 
Newell, D. R.; Pemberton, L. C.; Golding, B. T. J. Med. Chem. 1998, 41, 5247- 

5256.
(174) Ishida, J.; Yamamoto, H.; Kido, Y.; Kamijo, K.; Murano, K.; Miyake, H.; 

Ohkubo, M.; Kinoshita, T.; Warizaya, M.; Iwashita, A.; Mihara, K.; Matsuoka, N.; 

Hattori, K. Bioorg. Med. Chem. 2006, 14 ,1378-1390.

(175) Rice, W. G.; Schaeffer, C. A.; Harten, B.; Villinger, F.; South, T. L.; 
Summers, M. F.; Henderson, L. E.; Bess, J. W.; Arthur, L. 0.; McDougal, J. S.; 
Orloff, S. L.; Mendeleyev, J.; Kun, E. Nature 1993, 361, 473-475.

(176) Bauer, P. I.; Mendeleyeva, J.; Kirsten, E.; Comstock, J. A.; Hakam, A.; 
Buki, K. G.; Kun, E. Biochem. Pharmacol. 2002, 63, 455-462.

(177) Ruf, A.; Menissier de Murcia, J.; de Murcia, G. M.; Schulz, G. E. Proc. 

Natl. Acad Sci. USA 1996, 93, 7481-7485.

(178) Kinoshita, T.; Nakanishi, I.; Warizaya, M.; Iwashita, A.; Kido, Y.; Hattori, 
K.; Fujii, T. FEBS Lett. 2004, 556, 43-46.
(179) Berry, J. M.; Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. J. Chem. 

Soc., Perkin Trans. 1 1 9 9 7 ,1147-1156.
(180) Parveen, I.; Naughton, D. P.; Whish, W. J. D.; Threadgill, M. D. Bioorg. 

Med Chem. Lett. 1999, 9, 2031-2036.
(181) Ferrer, S.; Naughton, D. P.; Threadgill, M. D. Tetrahedron 2003, 59, 

3437-3444.
(182) Ferrer, S.; Naughton, D. P.; Threadgill, M. D. Tetrahedron 2003, 59, 

3445-3454.
(183) Kouznetsov, V. V.; Mendez, L. Y. V.; Gomez, C. M. M. Curr. Org. Chem. 

2005, 9, 141-161.

(184) Parveen, I. PhD thesis, Univeristy of Bath, 2001.
(185) Howitz, J.; Schwenk, W. Chem. Ber. 1906, 39, 2705-2711.
(186) Nakashima, T.; Suzuki, I. Chem. Pharnn. Bull. 1969, 17, 2293-2298.

(187) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
(188) Suzuki, H.; Watanabe, T.; Yokoyama, Y.; Murakami, Y. Heterocycles 

2002, 56, 515-518.
(189) Price, C. C.; Guthrie, D. B. J. Am. Chem. Soc. 1946, 6 8 ,1592-1593.

(190) Wade, L. G. Organic chemistry, Prentice Hall International: New Jersey, 

1999.
(191) Fieser, L. F.; Hershberg, E. B. J. Am. Chem. Soc. 1940, 62,1640-1645.
(192) Roe, A.; Hawkins, G. F. J. Am. Chem. Soc. 1949, 71, 1785-1786.

2 1 2



(193) Baik, W.; Han, J. L.; Lee, K. C.; Lee, N. H.; Kim, B. H.; Hahn, J. T. 
Tetrahedron Lett. 1994, 35, 3965-3966.

(194) Suggs, J. W.; Pearson, G. D. N. J. Org. Chem. 1980, 4 5 ,1514-1515.

(195) Li, H. C.; Chou, P. T.; Hu, Y. H.; Cheng, Y. M.; Liu, R. S. 
Organometallics 2005, 24, 1329-1335.

(196) Anderson, B. A.; Bell, E. C.; Ginah, F. O.; Ham, N. K.; Pagh, L. M.; 
Wepsiec, J. P. J. Org. Chem. 1998, 63, 8224-8228.

(197) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.; Hayama, N. 
Bull. Chem. Soc. Jpn. 1976, 49, 3177-3180.

(198) Marcantonio, K. M.; Frey, L. F.; Liu, Y.; Chen, Y.; Strine, J.; Phenix, B.; 
Wallace, D. J.; Chen, C. Y. Org. Lett. 2004, 6, 3723-3725.
(199) Sundermeier, M.; Zapf, A.; Belier, M. Eur. J. Inorg. Chem. 2003, 3513- 

3526.
(200) Johnsson, R.; Meijer, A.; Ellervik, U. Tetrahedron 2005, 61, 11657- 

11663.
(201) Castanet, A. S.; Colobert, F.; Broutin, P. E. Tetrahedron Lett. 2002, 43, 

5047-5048.
(202) Suzuki, A. J. Organomet. Chem. 1999, 576,147-168.
(203) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. 

Chem. Soc. 2005, 127, 4685-4696.
(204) Yang, Y. H.; Martin, A. R. Heterocycles 1992, 3 4 ,1395-1398.

(205) Shao, B.; Victory, S.; Ilyin, V. I.; Goehring, R. R.; Sun, Q.; Hogenkamp,
D.; Hodges, D. D.; Islam, K.; Sha, D.; Zhang, C.; Nguyen, P.; Robledo, S.; 
Sakellaropoulos, G.; Carter, R. B. J. Med. Chem. 2004, 47, 4277-4285.
(206) Sicre, C.; Alonso-Gomez, J. L.; Cid, M. M. Tetrahedron 2006, 62, 

11063-11072.
(207) Bumagin, N. A.; Bykov, V. V.; Sukhomlinova, L. I.; Tolstaya, T. P.; 
Beletskaya, I. P. J. Organomet. Chem. 1995, 486, 259-262.

(208) Sato, M.; Miyaura, N.; Suzuki, A. Chem. Lett. 1 9 8 9 ,1405-1408.
(209) Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem. 1994, 59, 

6095-6097.
(210) Guiles, J. W.; Johnson, S. G.; Murray, W. V. J. Org. Chem. 1996, 61, 

5169-5171.

(211) Zou, G.; Reddy, Y. K.; Falck, J. R. Tetrahedron Lett. 2001, 42, 7213- 
7215.
(212) Stille, J. K. Angew. Chem., Int. Edit. Engl. 1986, 25, 508-523.

213



(213) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. 

Chem. 1994, 59, 5905-5911.

(214) Gulykina, N. S.; Dolgina, T. M.; Bondarenko, G. N.; Beletskaya, I. P. 
Russ. J. Org. Chem. 2003, 39, 797-806.
(215) Bertus, P.; Fecourt, F.; Bauder, C.; Pale, P. NewJ. Chem. 2004, 28,12- 

14.
(216) Crouch, R. D. Tetrahedron 2004, 60, 5833-5871.

(217) Jackson, W. P.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1981, 1516- 

1519.
(218) Orsini, A.; Viterisi, A.; Bodlenner, A.; Weibel, J. M.; Pale, P. Tetrahedron 

Lett. 2005, 46, 2259-2262.
(219) Woon, E. C. Y.; Dhami, A.; Mahon, M. F.; Threadgill, M. D. Tetrahedron 

2006, 62, 4829-4837.

(220) Sakamoto, T.; Ohsawa, K. J. Chem. Soc., Perkin Trans. 1 1999, 2323- 

2326.
(221) Cottet, F.; Marull, M.; Lefebvre, O.; Schlosser, M. Eur. J. Org. Chem. 

2003, 1559-1568.

(222) Handy, S. T.; Zhang, Y. N. Chem. Commun. 2006, 299-301.
(223) Fauvarque, J. F.; Pfluger, F.; Troupel, M. J. Organomet. Chem. 1981, 

208, 419-427.
(224) Mao, L. S.; Moriuchi, T.; Sakurai, H.; Fujii, H.; Hirao, T. Tetrahedron 

Lett. 2005, 46, 8419-8422.
(225) Nolan, J. M.; Comins, D. L. J. Org. Chem. 2003, 68, 3736-3738.
(226) Pereira, R.; Iglesias, B.; de Lera, A. R. Tetrahedron 2001, 57, 7871- 

7881.
(227) Leir, C. M. J. Org. Chem. 1977, 42, 911-913.
(228) Soderberg, B. C.; Shriver, J. A. J. Org. Chem. 1997, 62, 5838-5845.

(229) Mohan, R.; Katzenellenbogen, J. A. J. Org. Chem. 1984, 4 9 ,1238-1246.

(230) Baik, W.; Kim, D. I.; Lee, H. J.; Chung, W. J.; Kim, B. H.; Lee, S. W. 
Tetrahedron Lett. 1997, 38, 4579-4580.
(231) Abramovitch, R. A.; Obach, A. Can. J. Chem. 1959, 37, 502-504.
(232) Couturier, M.; Le, T. Org. Process Res. Dev. 2006, 10, 534-538.

(233) Zhong, P.; Guo, S. R.; Song, C. S. Synth. Commun. 2004, 34, 247-253.

(234) Fieser, L. F.; Martin, E. L. J. Am. Chem. Soc. 1935, 57,1840-1844.
(235) Ukai, T.; Yamamoto, Y.; Ito, Y.; Yanagi, A.; Yotsuka, M. J. Pharm. Soc. 

Japan 1955, 75, 490-493.

(236) Mongin, F.; Queguiner, G. Tetrahedron 2001, 57, 4059-4090.

214



(237) Butler, D. E.; Bass, P.; Nordin, I. C.; Hauck, F. P.; L'ltalien, Y. J. J. Med. 

Chem. 1971, 14, 575-579.

(238) Jain, S. L.; Joseph, J. K.; Sain, B. Synlett 2006, 2661-2663.

(239) Phillips, V. A. PhD thesis, University of Bradford, 2003.

(240) Schraufstatter, I. U.; Hyslop, P. A.; Hinshaw, D. B.; Spragg, R. G.; Sklar, 
L. A.; Cochrane, C. G. Proc. Natl. Acad. Sci. USA 1986, 83, 4908-4912.

(241) Kiehlbauch, C. C.; Aboulela, N.; Jacobson, E. L.; Ringer, D. P.; 
Jacobson, M. K. Anal. Biochem. 1993, 208, 26-34.
(242) Decker, P.; Miranda, E. A.; de Murcia, G.; Muller, S. Clin. Cancer Res. 

1999, 5, 1169-1172.

(243) Gasser, S. M.; Cockell, M. M. Gene 2001, 2 7 9 ,1-16.
(244) Tanner, K. G.; Landry, J.; Sternglanz, R.; Denu, J. M. Proc. Natl. Acad. 

Sci. USA 2000, 97, 14178-14182.

(245) Vaziri, H.; Dessain, S. K.; Eagon, E. N.; Imai, S. I.; Frye, R. A.; Pandita, 
T. K.; Guarente, L.; Weinberg, R. A. Cell 2001, 107 ,149-159.

(246) Bouras, T.; Fu, M. F.; Sauve, A. A.; Wang, F.; Quong, A. A.; Perkins, N.
D.; Hay, R. T.; Gu, W.; Pestell, R. G. J. Biol. Chem. 2005, 2 8 0 ,10264-10276.

(247) Yeung, F.; Hoberg, J. E.; Ramsey, C. S.; Keller, M. D.; Jones, D. R.; 
Frye, R. A.; Mayo, M. W. EMBO J. 2004, 23, 2369-2380.

(248) Brunet, A.; Sweeney, L. B.; Sturgill, J. F.; Chua, K. F.; Greer, P. L.; Lin, 
Y. X.; Tran, H.; Ross, S. E.; Mostoslavsky, R.; Cohen, H. Y.; Hu, L. S.; Cheng, 
H. L.; Jedrychowski, M. P.; Gygi, S. P.; Sinclair, D. A.; Alt, F. W.; Greenberg, M.
E. Science 2004, 303, 2011-2015.
(249) Porcu, M.; Chiarugi, A. Trends Pharmacol. Sci. 2005, 26, 94-103.
(250) Anekonda, T. S.; Reddy, P. H. J. Neurochem. 2006, 96, 305-313.

(251) Pagans, S.; Pedal, A.; North, B. J.; Kaehlcke, K.; Marshall, B. L.; Dorr, 
A.; Hetzer-Egger, C.; Henklein, P.; Frye, R.; McBurney, M. W.; Hruby, H.; Jung, 
M.; Verdin, E.; Ott, M. PLoS. Biol. 2005, 3, 210-220.

(252) Dryden, S. C.; Nahhas, F. A.; Nowak, J. E.; Goustin, A. S.; Tainsky, M.
A. Mol. Cell. Biol. 2003, 23, 3173-3185.

(253) Hiratsuka, M.; Inoue, T.; Toda, T.; Kimura, N.; Shirayoshi, Y.; Kamitani, 
H.; Watanabe, T.; Ohama, E.; Tahimic, C. G. T.; Kurimasa, A.; Oshimura, M.
Biochem. Biophys. Res. Commun. 2003, 309, 558-566.
(254) Frye, R. Br. J. Cancer 2002, 87, 1479-1479.

(255) Hallows, W. C.; Lee, S.; Denu, J. M. Proc. Natl. Acad. Sci. USA 2006, 

103, 10230-10235.

215



(256) Haigis, M. C.; Mostoslavsky, R.; Haigis, K. M.; Fahie, K.; Christodoulou,
D. C.; Murphy, A. J.; Valenzuela, D. M.; Yancopoulos, G. D.; Karow, M.; 

Blander, G.; Wolberger, C.; Prolla, T. A.; Weindruch, R.; Alt, F. W.; Guarente, L. 
Cell 2006, 126, 941-954.
(257) Finnin, M. S.; Donigian, J. R.; Pavletich, N. P. Nat Struct Biol. 2001, 8, 

621-625.
(258) Hoff, K. G.; Avalos, J. L.; Sens, K.; Wolberger, C. Structure 2006, 14, 

1231-1240.
(259) Min, J. R.; Landry, J.; Sternglanz, R.; Xu, R. M. Cell 2001, 105, 269-279.

(260) Huhtiniemi, T.; Wittekindt, C.; Laitinen, T.; Leppanen, J.; Salminen, A.; 
Poso, A.; Lahtela-Kakkonen, M. J. Comput Aided Mol. Des. 2006, 20, 589-599.

(261) Napper, A. D.; Hixon, J.; McDonagh, T.; Keavey, K.; Pons, J. F.; Barker, 

J.; Yau, W. T.; Amouzegh, P.; Flegg, A.; Hamelin, E.; Thomas, R. J.; Kates, M.; 
Jones, S.; Navia, M. A.; Saunders, J. O.; DiStefano, P. S.; Curtis, R. J. Med. 

Chem. 2005, 48, 8045-8054.

(262) Grozinger, C. M.; Chao, E. D.; Blackwell, H. E.; Moazed, D.; Schreiber, 
S. L. J. Biol. Chem. 2001, 276, 38837-38843.

(263) Bedalov, A.; Gatbonton, T.; Irvine, W. P.; Gottschling, D. E.; Simon, J. A. 
Proc. Natl. Acad. Sci. USA 2001, 9 8 ,15113-15118.
(264) Avalos, J. L.; Bever, K. M.; Wolberger, C. Mol. Cell 2005, 17, 855-868.
(265) Zhang, J. Bioessays 2003, 25, 808-814.

(266) Hauser, C. R.; Bloom, M. S.; Breslow, D. S.; Adams, J. T.; Amore, S. T.; 
Weiss, M. J. J. Am. Chem. Soc. 1946, 68,1544-1546.
(267) Gershon, H.; Clarke, D. D.; McMahon, J. J.; Gershon, M. Monatsh. 

Chem. 2002, 133, 1325-1330.
(268) Case, F. H.; Sasin, R. J. Org. Chem. 1955, 20, 1330-1336.
(269) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 5478- 

5486.
(270) Prijs, B.; Gall, R.; Hinderling, R.; Erlenmeyer, H. Helv. Chim. Acta 1954, 

37, 90-94.

(271) Cooper, M. S.; Fairhurst, R. A.; Heaney, H.; Papageorgiou, G.; Wilkins, 
R. F. Tetrahedron 1989, 45, 1155-1166.

(272) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 7 1 ,1802-1808.

(273) Kundu, N. G.; Mahanty, J. S.; Das, P.; Das, B. Tetrahedron Lett. 1993, 

34, 1625-1628.
(274) Elderfield, R. C.; Gensler, W. J.; Bembry, T. H.; Williamson, T. A.; Weisl, 
H. J. Am. Chem. Soc. 1946, 68, 1589-1591.

216



(275) Browning, C.; Cohen, J.; Ashley, J.; Gulbransen, R. Proc. R. Soc. 

London, Ser. B 1932, 110, 249-260.

(276) Somei, M.; Saida, Y.; Komura, N. Chem. Phami. Bull. 1986, 34, 4116- 

4125.

(277) Tolstiko.G. A; Jemilev, U. M.; Jurjev, V. P.; Gershano.F. B; Rafikov, S. 
R. Tetrahedron. Lett. 1971, 2807.

(278) Schlosser, M.; Cottet, F. Eur. J. Org. Chem. 2002, 4181-4184.

(279) Endo, T.; Saeki, S.; Hamana, M. Chem. Pharm. Bull. 1981, 29, 3105- 
3111.

(280) Cadogan, J. I. G. J. Chem. Soc. 1962, 4257.

(281) Blank, B.; Ditullio, N. W.; Owings, F. F.; Deviney, L.; Miao, C. K.;
Saunders, H. L. J. Med. Chem. 1977, 20, 572-576.

(282) Kaslow, C. E.; Buchner, B. J. Org. Chem. 1958, 23, 271-276.

217



Appendices

Appendix 1. Raw data for PARP-1 colourimetric activity assay

3-Ethynylquinoline-8-carboxamide (114)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0700 0.0630 0.0700 0.06766666
1.5 0.1090 0.0930 0.0610 0.08766667
1.0 0.0950 0.1140 0.1390 0.1160000
0.5 0.1770 0.1700 0.1820 0.1763333
0.0 0.2320 0.2400 0.2320 0.2346667
-0.5 0.3240 0.3320 0.3060 0.3206667
-1.0 0.3850 0.3050 0.3490 0.3463333

3-(4-Methylphenyl)quinoline-8-carboxamide (93)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.2600 0.1530 0.1690 0.194000
1.5 0.2800 0.2010 0.2420 0.241000
1.0 0.3290 0.2680 0.4070 0.3346667
0.5 0.3410 0.3190 0.2780 0.3126667
0.0 0.4240 0.4230 0.3660 0.4043333
-0.5 0.4950 0.3870 0.4380 0.440000
-1.0 0.4730 0.5150 0.5020 0.4966667

3-Phenylquinorine-8-carboxamide (69)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0570 0.0540 0.0490 0.05333333
1.5 0.0840 0.0990 0.0980 0.09366667
1.0 0.1690 0.2290 0.1820 0.1933333
0.5 0.2240 0.2750 0.3000 0.2663333
0.0 0.3750 0.3150 0.3690 0.3530000
-0.5 0.3490 0.2530 0.2990 0.3003333
-1.0 0.2530 0.3410 0.3070 0.3003333
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Quinoline-8-carboxamide (80)

Log [|iM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0550 0.0460 0.0500 0.050300
1.5 0.0510 0.0570 0.0530 0.052800
1.0 0.0870 0.1030 0.0820 0.090700
0.5 0.1750 0.1960 0.2000 0.190300
0.0 0.2350 0.2770 0.2570 0.256300
-0.5 0.3240 0.3610 0.3370 0.340600
-1.0 0.3860 0.4050 0.4280 0.406300

3(3-(T rifluoromethyl)phenyl)quinoline-8-carboxamide (94)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.1800 0.2150 0.2230 0.206000
1.5 0.2470 0.3190 0.2660 0.2773333
1.0 0.2960 0.3470 0.3160 0.3196667
0.5 0.3910 0.4300 0.3440 0.3883333
0.0 0.4180 0.3970 0.5490 0.4546667
-0.5 0.4650 0.5000 0.4220 0.4623333
-1.0 0.4920 0.4280 0.4670 0.4623333

3-(4-Methoxyphenyl)quinoline-8-carboxamide (91)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.1260 0.1960 0.1650 0.1623333
1.5 0.1990 0.2270 0.2530 0.2263333
1.0 0.2890 0.2700 0.2930 0.284000
0.5 0.2540 0.3140 0.2940 0.2873333
0.0 0.3570 0.4200 0.3150 0.364000
-0.5 0.3380 0.3590 0.3980 0.365000
-1.0 0.3450 0.3980 0.3550 0.366000

3-(4-Cyanophenyl)quinoline-8-carboxamide (98)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.1670 0.1130 0.0940 0.1246667
1.5 0.2360 0.1920 0.1590 0.1956667
1.0 0.3090 0.3000 0.2620 0.2903333
0.5 0.3550 0.3270 0.3120 0.3313333
0.0 0.4280 0.3900 0.4070 0.4083333
-0.5 0.4000 0.3720 0.3400 0.3706667
-1.0 0.4920 0.4230 0.4160 0.4436667
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3-Ethylquinoline-8-carboxamide (123)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.1030 0.0730 0.0820 0.086000
1.5 0.1980 0.1470 0.1710 0.172000
1.0 0.4320 0.3900 0.4350 0.419000
0.5 0.7540 0.6870 0.7060 0.715700
0.0 1.1060 0.9770 0.8984 0.992333
-0.5 1.3680 1.2580 1.0540 1.226700
-1.0 1.3800 1.2030 1.2390 1.274000

3-Ethenylquinoline-8-carboxamide (111)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0900 0.0860 0.0860 0.087300
1.5 0.2210 0.2330 0.2040 0.219000
1.0 0.5660 0.4100 0.5030 0.493000
0.5 0.7430 0.7930 0.8240 0.786700
0.0 1.0440 1.2060 1.2890 1.179670
-0.5 1.2200 1.1970 1.1610 1.192670
-1.0 1.1880 1.2510 1.3000 1.246300

3-Methylquinoline-8-carboxamide (106)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0500 0.0490 0.0520 0.050300
1.5 0.0710 0.0550 0.0570 0.061000
1.0 0.1380 0.1270 0.1180 0.127700
0.5 0.2130 0.2490 0.2290 0.230300
0.0 0.3100 0.3110 0.3210 0.314000
-0.5 0.3770 0.3620 0.3640 0.368000
-1.0 0.4220 0.4040 0.4350 0.420300

3-(Prop-1 -ynyl)quinoline-8-carboxamide (107)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0500 0.0490 0.0550 0.051300
1.5 0.0580 0.0580 0.0590 0.058300
1.0 0.1330 0.1450 0.1090 0.129000
0.5 0.2130 0.2020 0.2250 0.213000
0.0 0.2840 0.2910 0.3250 0.300000
-0.5 0.4110 0.4490 0.4400 0.433000
-1.0 0.4500 0.4200 0.4550 0.442000
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2-Ethylquinoline-8-carboxamide (146)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0810 0.1760 0.0950 0.1173333
1.5 0.1360 0.1280 0.1510 0.1383333
1.0 0.3320 0.2170 0.6210 0.390000
0.5 0.5740 0.6210 0.7260 0.6240333
0.0 1.0400 1.4710 1.9620 1.491000
-0.5 2.9730 2.7680 2.6060 2.782333
-1.0 3.1500 3.1700 2.5020 2.940667

2-Methylquinoline-8-carboxamide (147)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0820 0.1800 0.0830 0.115000
1.5 0.1360 0.1080 0.0990 0.1143333
1.0 0.4580 0.1700 0.1200 0.2493333
0.5 0.7730 0.6580 0.1580 0.5296667
0.0 1.2950 1.0600 0.7640 1.039667
-0.5 2.5170 2.0870 2.2860 2.296667
-1.0 2.9140 2.7470 2.6970 2.786000

2-Phenylquinoline-8-carboxamide (144)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.1310 0.0990 0.1040 0.1113667
1.5 0.1250 0.1130 0.1350 1.243333
1.0 0.2130 0.2040 0.2520 0.223000
0.5 0.8740 0.8500 0.8890 0.871000
0.0 1.8930 1.7440 1.4340 1.690333
-0.5 2.5460 2.8490 2.6870 2.694000
-1.0 2.0880 2.2900 2.4930 2.903333

2-(4-Methoxyphenyl)quinoline-8-carboxamide (145)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.1810 0.1420 0.1450 0.156000
1.5 0.1940 0.2060 0.1940 0.198000
1.0 0.2560 0.2460 0.2100 0.237300
0.5 0.3310 0.3930 0.3570 0.360300
0.0 0.7100 0.5550 0.5080 0.591000
-0.5 0.8260 0.9370 0.7480 0.837000
-1.0 0.9380 1.0870 0.9660 0.997000

2 2 1



5-AIQ

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.1410 0.1620 0.0900 0.131000
1.5 0.3290 0.3060 0.2970 0.3106667
1.0 0.5720 0.5490 0.4340 0.5183334
0.5 1.0620 0.9940 1.0060 1.020667
0.0 1.3340 1.3150 1.1480 1.265667
-0.5 2.0220 2.0330 2.0100 2.021667
-1.0 2.3310 1.9850 2.1020 2.139333

8-Carbamoyl-3-phenylquinoline-1 -oxide (175)

Log [pM] Absorbance reading (450nm)
Data Set A Data Set B Data Set C Mean

2.0 0.0800 0.0630 0.0700 0.071000
1.5 0.3640 0.4280 0.3630 0.385000
1.0 2.0630 1.8350 2.2230 2.040333
0.5 2.4100 2.4180 2.2170 2.348333
0.0 2.2550 2.1580 2.1720 ,2.195000
-0.5 2.1590 2.0970 1.8490 2.035000
-1.0 2.0110 2.1190 2.0170 2.049000

2 2 2



Appendix 2. IC50 Data analysis for PARP-1 inhibitors

3-Ethynylquinoline-8-carboxamide (114)

0.4

I  0.3-
ow mean

0 .2 -

o.o
-2 -1 0 1 2 3 4 5

log [pM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.05313 0.03888 0.03737 0.04368
TOP 0.3947 03285 0 3384 0.3519
LOGEC50 0.1417 0.4745 0.4651 0.3560
EC50 1.386 2.982 2.918 2.270

Std. Error
BOTTOM 0.01949 0.01871 0.01934 0.01663
TOP 0.03653 0.02474 0.02581 0.02473
LOGEC50 0.1968 0.1863 0.1861 0.1650

95% Confidence Intervals
BOTTOM 0.003025 to 0.1032 -0.009231 to 0.08699 -0.01236 to 0.08710 0.0009220 to 0.08643
TOP 0.3007 to 0.4886 0.2649 to 0.3922 0.2721 to 0.4048 0.2884 to 0.4155
LOGEC50 -0.3644 to 0.6477 -0.004493 to 0.9534 -0.01349 to 0.9436 -0.06823 to 0.7802
EC50 0.4321 to 4.443 0.9897 to 8.983 0.9694 to 8.782 0.8546 to 6.029

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9545 0.9580 0.9581 0.9669
Absolute Sum of Squares 0.005551 0.004142 0.004455 0.003545
Sy.x 0.03332 0.02878 0.02985 0.02663

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3-(4-Methylphenyl)quinoline-8-carboxamide (93)

0 . 5 -

E
c
ow

0 . 4 -
mean

0 .3 -

0 . 2 -

o.o

log [pIVQ

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.01066 0 04686 0.004526 0.02085
TOP 0.4267 0.4396 0.4153 0.4237
LOGEC50 1.928 1.179 1.729 1.629
EC50 84 65 15.10 53.64 42.61

Std. Error
BOTTOM 0.06442 0.04986 0.07363 0.05627
TOP 0.03152 0.03598 0.03866 0.03088
LOGEC50 0.2679 0.2639 0.3127 0.2484

95% Confidence Intervals
BOTTOM -0.1550 to 0.1763 -0.08134 to 0.1751 -0.1848 to 0.1938 -0.1238 to 0.1655
TOP 0.3457 to 0.5078 0.3471 to 0.5321 0.3159 to 0.5147 0.3443 to 0.5031
LOGEC50 1.239 to 2.616 0.5006 to 1.858 0.9255 to 2.534 0.9908 to 2.268
EC50 17.33 to 413.4 3.167 to 72.04 8.423 to 341.6 9.790 to 185.4

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.8835 0.9091 0.8516 0.9041
Absolute Sum of Squares 0.02012 0.01722 0.02770 0.01679
Sy.x 0.06344 0.05869 0.07443 0.05795

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3-Phenylquinoline-8-carboxamide (69)

0.4

0.3-

mean
0.2-

o.o-

■1 1 1 1 1 1 1------------------
-2 -1 0 1 2 3 4 5

log [(iM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.008868 -0.003737 -0.001511 0.001397
TOP 0.3278 0.3127 0.3362 0.3247
LOGEC50 1.018 1.304 1.163 1.166
EC50 10.43 20.15 14.55 14.66

Std. Error
BOTTOM 0.04114 0.02893 0.02810 0.02246
TOP 0.03357 0.01913 0.02052 0.01636
LOGEC50 0.2880 0 1805 0.1742 0.1452

95% Confidence Intervals
BOTTOM -0.09691 to 0.1146 -0.07811 to 0.07064 -0.07376 to 0.07074 -0.05635 to 0.05914
TOP 0.2415 to 0.4141 0.2635 to 0.3619 0.2834 to 0.3889 0.2826 to 0.3668
LOGEC50 0.2777 to 1.759 0.8402 to 1.768 0.7152 to 1.611 0.7928 to 1.539
EC50 1.896 to 57.36 6.922 to 58.68 5.190 to 40.81 6.205 to 34.62

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.8983 0.9533 0.9585 0.9708
Absolute Sum of Squares 0.01323 0.005311 0.005534 0.003527
Sy.x 0.05143 0.03259 0.03327 0.02656

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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Quinoline-8-carboxamide (80)

0.4-

E

I  0.3- mean

0.2-

o.o
-2 -1 0 1 2 3 4 5

log [nM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.02995 0.02382 0.02654 0.02648
TOP 0.3920 0.4110 04226 0.4077
LOGEC50 0.2115 0.3540 0.2381 0.2728
EC50 1.627 2.259 1.730 1.874

Std. Error
BOTTOM 0.01297 0.009869 0.01642 0.01275
TOP 0.02247 0.01471 0.02763 0.02068
LOGEC50 0.1185 0.07805 0.1351 0.1069

95% Confidence Intervals
BOTTOM -0.003392 to 0.06329 -0.001551 to 0.04920 -0.01568 to 0.06875 -0.006309 to 0.05927
TOP 0.3342 to 0.4497 0.3732 to 0.4488 0.3516 to 0.4937 0.3546 to 0.4609
LOGEC50 -0.09322 to 0.5162 0.1533 to 0.5546 -0.1092 to 0.5854 -0.002150 to 0.5477
EC50 0.8068 to 3.282 1.423 to 3.586 0.7776 to 3.850 0.9951 to 3.530

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9828 0.9924 0.9778 0.9859
Absolute Sum of Squares 0.002360 0.001250 0.003723 0.002199
Sy.x 0.02173 0.01581 0.02729 0.02097

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3(3-(Trifluoromethyl)phenyl)quinoline-8-carboxamide (94)

0.5-

E
g  0.4-
3
<D
c  0.3-
2 
k .
O
a  ° 2- <

0 . 1-  

0 .0 -

-2 -1 0 1 2 3 4 5

log [uMI

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.02969 0.001136 0.02445 0.01525
TOP 0.4515 0.4366 0.4471 0.4424
LOGEC50 1.471 1.915 1.665 1.712
EC50 29.61 82.29 46.20 51.53

Std. Error
BOTTOM 0.04021 0.03971 0.07246 0.03836
TOP 0.02398 0.01951 0.03914 0.02029
LOGEC50 0.1772 0.1576 0.3027 0.1571

95% Confidence Intervals
BOTTOM -0.07370 to 0.1331 -0.1010 to 0.1032 -0.1619 to 0.2107 -0.08337 to 0.1139
TOP 0.3899 to 0.5131 0.3865 to 0.4868 0.3465 to 0.5477 0.3902 to 0.4945
LOGEC50 1.016 to 1.927 1.510 to 2.321 0.8865 to 2.443 1.308 to 2.116
EC50 10.37 to 84.55 32.37 to 209.2 7.700 to 277.2 20.33 to 130.6

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9519 0.9563 0.8625 0.9581
Absolute Sum of Squares 0.009261 0.007667 0.02746 0.007561
Sy.x 0.04304 0.03916 0.07411 0.03889

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0

mean
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3-(4-Methoxyphenyl)quinoline-8-carboxamide (91)

0.4-

E
c
o
3 0.3- mean

0.2-

0 . 1 -

o.o
-2 -1 0 1 2 3 4 5

log [|j.l\/q

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.003711 0.01522 8.9100e-005 0.006144
TOP 0.3335 0.3705 0.3437 0.3489
LOGEC50 1.688 1.758 1.915 1.791
EC50 48.77 57.34 82.25 61.75

Std. Error
BOTTOM 0.03164 0.04694 0.03372 0.02912
TOP 0.01691 0.02436 0.01656 0.01493
LOGEC50 0.1685 0.2296 0.1696 0.1471

95% Confidence Intervals
BOTTOM -0.07763 to 0.08506 -0.1055 to 0.1359 -0.08660 to 0.08678 -0.06872 to 0.08101
TOP 0.2900 to 0.3770 0.3079 to 0.4331 0.3011 to 0.3862 0.3105 to 0.3872
LOGEC50 1.255 to 2.121 1.168 to 2.349 1.479 to 2.351 1.412 to 2.169
EC50 17.98 to 132.3 14.73 to 223.2 30.13 to 224.5 25.85 to 147.5

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9525 0.9135 0.9497 0.9622
Absolute Sum of Squares 0.005188 0.01115 0.005529 0.004251
Sy.x 0.03221 0.04723 0.03325 0.02916

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3-(4-Cyanophenyl)quinoline-8-carboxamide (98)

0.5

o
If)Ti­ me an

0.3-

0 .2-1

0.0
-2 -1 0 1 2 3 4 5

log [pM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.02046 0.007823 0.01158 0.01488
TOP 0.4291 0.3931 0.3885 0.4038
LOGEC50 1.532 1.469 1.299 1.426
EC50 34.07 29.41 19.92 26.69

Std. Error
BOTTOM 0.04162 0.02187 0.02893 0.02938
TOP 0.02399 0.01306 0.01920 0.01799
LOGEC50 0.1859 0.1056 0.1519 0.1426

95% Confidence Intervals
BOTTOM -0.08655 to 0.1275 -0.04840 to 0.06404 -0.06280 to 0.08595 -0.06065 to 0.09042
TOP 0.3674 to 0.4907 0.3595 to 0.4267 0.3391 to 0.4378 0.3576 to 0.4501
LOGEC50 1.055 to 2.010 1.197 to 1.740 0.9088 to 1.690 1.060 to 1.793
EC50 11.34 to 102.4 15.74 to 54.97 8.105 to 48.94 11.47 to 62.07

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9461 0.9824 0.9666 0.9689
Absolute Sum of Squares 0.009608 0.002743 0.005329 0.005073
Sy.x 0.04384 0.02342 0.03265 0.03185

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3-Ethylquinoline-8-carboxamide (123)

E
c
oin■«* mean

0.5-

o.o-i--------- 1---------1--------- 1--------- 1--------- 1---------w--------
-2 -1 0 1 2 3 4 5

log [nM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.03926 0.01759 0.02745 0.02927
TOP 1 439 1.279 1.178 1.299
LOGEC50 0.5361 0.5614 0.6417 0.5731
EC50 3.437 3.642 4.383 3.742

Std. Error
BOTTOM 0.02445 0.03088 0.04202 0.02201
TOP 0.03046 0.03757 0.04743 0.02649
LOGEC50 0.04891 0.06770 0.09731 0.04770

95% Confidence Intervals
BOTTOM -0.02359 to 0.1021 -0.06180 to 0 09699 -0.08058 to 0.1355 -0.02733 to 0.08587
TOP 1.360 to 1.517 1.183 to 1.376 1.056 to 1.299 1.231 to 1.367
LOGEC50 0.4104 to 0.6619 0.3873 to 0.7354 0.3915 to 0.8919 0.4505 to 0.6958
EC50 2.573 to 4.591 2.439 to 5.438 2.463 to 7.797 2.822 to 4.963

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9970 0.9942 0.9881 0.9971
Absolute Sum of Squares 0.006763 0.01059 0.01847 0.005337
Sy.x 0.03678 0.04603 0.06078 0.03267

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3-Ethenylquinoline-8-carboxamide (111)

mean

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.01758 0.01237 -0.003473 0.009695
TOP 1.219 1.305 1.320 1.282
LOGEC50 0.8013 0.7103 0.7876 0.7635
EC50 6.328 5.133 6.132 5.801

Std. Error
BOTTOM 0.04484 0.04362 0.06341 0.03599
TOP 0.04386 0 04626 0.06277 0.03639
LOGEC50 0.09218 0.08704 0.1192 0.07116

95% Confidence Intervals
BOTTOM -0.09771 to 0.1329 -0.09977 to 0.1245 -0.1665 to 0.1595 -0.08283 to 0.1022
TOP 1.107 to 1.332 1 186 to 1.424 1.158 to 1.481 1.188 to 1.375
LOGEC50 0.5643 to 1.038 0 4866 to 0.9341 0.4812 to 1.094 0.5805 to 0.9464
EC50 3.667 to 10.92 3.066 to 8.593 3.029 to 12.41 3.807 to 8.840

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9891 0.9904 0.9819 0.9935
Absolute Sum of Squares 0.01860 0.01889 0.03758 0.01234
Sy.x 0.06099 0.06146 0.08670 0.04967

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3-Methylquinoline-8-carboxamide (106)

0 .4 -

E

§  0 .3 - mean

0.2-

o.o
-2 -1 0 1 2 3 4 5

log [|iM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.02707 0.01378 0.02019 0.02030
TOP 0.4204 0.3977 0.4247 0.4137
LOGEC50 0.4726 0.6272 0.4868 0.5311
EC50 2.969 4.238 3.068 3.397

Std. Error
BOTTOM 0.01255 0.01085 0.01303 0.01103
TOP 0.01662 0.01241 0.01702 0.01381
LOGEC50 0.09210 0.07576 0.09231 0.07871

95% Confidence Intervals
BOTTOM -0.005192 to 0.05934 -0.01410 to 0.04167 -0.01330 to 0.05368 -0.008059 to 0.04867
TOP 0.3776 to 0.4631 0.3658 to 0.4296 0.3810 to 0.4685 0.3782 to 0.4492
LOGEC50 0.2359 to 0.7094 0.4324 to 0.8219 0.2495 to 0.7242 0.3287 to 0.7334
EC50 1.721 to 5.122 2.706 to 6.637 1.776 to 5.299 2.132 to 5.413

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9894 0.9927 0.9893 0.9922
Absolute Sum of Squares 0.001865 0.001244 0.001989 0.001382
Sy.x 0.01931 0.01577 0.01995 0.01663

Data
Number of X values 8 8 8 8
Number of V replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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3-(Prop-1 -ynyl)quinoline-8-carboxamide (107)

0 .4 -

o
$ mean

0 . 2 -

0.0
-2 -1 0 1 2 3 4 5

log [pM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.03064 0.02896 0.02373 0.02771
TOP 0.4606 0.4566 0.4791 0.4653
LOGEC50 0.3070 0.3500 0.3572 0.3388
EC50 2.028 2.239 2.276 2.182

Std. Error
BOTTOM 0.01593 0.02121 0.01080 0.01447
TOP 0.02491 0.03173 0.01605 0.02190
LOGEC50 0.1163 0.1521 0.07252 0.1021

95% Confidence Intervals
BOTTOM -0.01031 to 0.07158 -0.02556 to 0.08348 -0.004047 to 0.05150 -0.009502 to 0.06491
TOP 0 3965 to 0.5246 0.3751 to 0.5382 0.4378 to 0.5204 0.4090 to 0.5216
LOGEC50 0.008154 to 0.6059 -0.04111 to 0.7412 0.1708 to 0.5437 0.07642 to 0.6012
EC50 1.019 to 4.036 0.9097 to 5.511 1.482 to 3.497 1.192 to 3.992

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9833 0.9717 0.9934 0.9871
Absolute Sum of Squares 0.003356 0.005788 0.001495 0.002716
Sy.x 0.02591 0.03402 0.01729 0.02330

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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2-Ethylquinoline-8-carboxamide (146)

4

3

mean

2

1

o
-2 -1 0 1 2 3 4 5

log [nM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.03320 0.03137 0.02640 0.04094
TOP 3.983 3.748 2.839 3.458
LOGEC50 -0.2862 -0.1755 0.2323 -0.09292
EC50 0.5174 0.6675 1.707 0.8074

Std. Error
BOTTOM 0.1416 0.06208 0.1296 0.08562
TOP 0.4838 0.1773 0.2195 0.2165
LOGEC50 0.1734 0.07282 0.1507 0.1019

95% Confidence Intervals
BOTTOM -0.3308 to 0.3972 -0.1282 to 0.1910 -0.3068 to 0.3596 -0.1792 to 0.2611
TOP 2.740 to 5.227 3.293 to 4.204 2.275 to 3.403 2.902 to 4.015
LOGEC50 -0.7319 to 0.1596 -0.3627 to 0.01169 -0.1551 to 0.6197 -0.3549 to 0.1691
EC50 0.1854 to 1.444 0.4338 to 1.027 0.6996 to 4.165 0.4416 to 1.476

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9691 0.9941 0.9725 0.9881
Absolute Sum of Squares 0.3619 0.06623 0.2329 0.1212
Sy.x 0.2690 0.1151 0.2158 0.1557

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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2-Methylquinoline-8-carboxamide (147)

E
c
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C
TOn
k_
o
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<

mean

log [nM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.08290 0.07714 -0.02522 0.05160
TOP 3.362 3.291 3.596 3.413
LOGEC50 -0.1443 -0.3090 -0.4325 -0.3037
EC50 0.7172 0.4909 0.3694 04969

Std. Error
BOTTOM 0.06763 0.04675 0.1050 0.05194
TOP 0.1842 0.1661 0.4692 0.1828
LOGEC50 0.08752 0.07200 0.1645 0.07606

95% Confidence Intervals
BOTTOM -0.09097 to 0.2568 -0 04306 to 0.1973 -0.2952 to 0.2448 -0.08192 to 0.1851
TOP 2.888 to 3.836 2.864 to 3.718 2.390 to 4.802 2.943 to 3.883
LOGEC50 -0.3694 to 0 08068 -0.4941 to -0.1239 -0.8554 to -0.009578 -0.4992 to -0.1081
EC50 0.4272 to 1.204 0.3205 to 0.7518 0.1395 to 0.9782 0.3168 to 0.7796

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9914 0.9946 0.9746 0.9940
Absolute Sum of Squares 0.07746 0.03984 0.2114 0.04905
Sy.x 0.1245 0.08927 0.2056 0.09905

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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2-Phenylquinoline-8-carboxamide (144)

4-i--------------------------------------------

c
sk.

<
0-

-1
-2 -1 0 1 2 3 4 5

log [nM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM -0.04404 -0.04681 0.008908 0.2935
TOP 2.540 2.818 2.915 3.311
LOGEC50 0.3243 0.2169 0.08665 -0.06008
EC50 2.110 1.648 1.221 0.8708

Std. Error
BOTTOM 0.1587 0.1703 0.1153 0.2503
TOP 0.2438 0.2932 0.2307 0.6046
LOGEC50 0.1910 0.1961 0.1418 0.3288

95% Confidence Intervals
BOTTOM -0.4521 to 0.3640 -0.4847 to 0.3911 -0.2876 to 0.3054 -0.3500 to 0.9371
TOP 1.913 to 3.166 2.064 to 3.572 2.322 to 3.508 1.757 to 4.866
LOGEC50 -0.1668 to 0.8154 -0.2873 to 0.7211 -0.2778 to 0.4511 -0.9054 to 0.7853
EC50 0.6810 to 6.537 0.5161 to 5.261 0.5275 to 2.826 0.1243 to 6.099

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9562 0.9543 0.9761 0.8875
Absolute Sum of Squares 0.3297 0.4058 0.2005 1.019
Sy.x 0.2568 0.2849 0.2002 0.4514

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0

1
2
3
mean
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2-(4-Methoxyphenyl)quinoline-8-carboxamide (145)
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0.75-
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0.25-

0.00 T T T
-2 -1 1 2 

log [jj.IV/q

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.1019 0.1164 0.1141 0.1099
TOP 0.9871 1.200 1.034 1.061
LOGEC50 0.2093 -0.06940 -0.08082 0.03425
EC50 1.619 0.8523 0.8302 1.082

Std. Error
BOTTOM 0.04510 0.03888 0.03693 0.03442
TOP 0.07834 0.09514 0.09180 0.07345
LOGEC50 0.1688 0.1432 0.1618 0.1339

95% Confidence Intervals
BOTTOM -0.01409 to 0.2178 0.01640 to 0.2163 0.01914 to 0.2090 0.02139 to 0.1984
TOP 0.7857 to 1.188 0.9558 to 1.445 0.7976 to 1.270 0.8720 to 1.250
LOGEC50 -0.2247 to 0.6433 -0.4376 to 0.2988 -0.4968 to 0.3352 -0.3101 to 0.3786
EC50 0.5960 to 4.398 0.3651 to 1.990 0.3185 to 2 164 0.4897 to 2.391

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9658 0.9766 0.9704 0.9789
Absolute Sum of Squares 0.02859 0.02470 0.02241 0.01836
Sy.x 0.07562 0.07029 0.06694 0.06060

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM 0.1381 0.1090 0.1023 0.1159
TOP 2.377 2.121 2.235 2.240
LOGEC50 0.2225 0.3419 0.1977 0.2564
EC50 1.669 2.198 1.577 1.805

Std. Error
BOTTOM 0.08561 0.07864 0.09635 0.08178
TOP 0.1465 0.1186 0.1695 0.1349
LOGEC50 0.1257 0.1204 0.1506 0.1242

95% Confidence Intervals
BOTTOM -0 08204 to 0.3582 -0.09317 to 0.3112 -0.1454 to 0.3500 -0.09439 to 0.3261
TOP 2.000 to 2.754 1.816 to 2.426 1.800 to 2.671 1.893 to 2.586
LOGEC50 -0.1007 to 0.5457 0.03231 to 0.6516 -0.1896 to 0.5850 -0.06298 to 0.5758
EC50 0.7931 to 3.514 1.077 to 4.483 0.6462 to 3.846 0.8650 to 3.765

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.9807 0.9821 0.9726 0.9811
Absolute Sum of Squares 0.1022 0.08003 0.1313 0.09135
Sy.x 0.1430 0.1265 0.1621 0.1352

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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8-Carbamoyl-3-phenylquinoline-1 -oxide (175)

mean

o-

-2 -1 0 1 2 3 4 5

log [pM]

Data Set-A Data Set-B Data Set-C Data Set-D
Best-fit values

BOTTOM -0.2252 -0.2093 -0.2271 -0.2232
TOP 2.342 2.319 2.209 2.288
LOGEC50 1.347 1.313 1.406 1.359
EC50 22.23 20.56 25.47 22.85

Std. Error
BOTTOM 0.3736 0.3050 0.4258 0.3603
TOP 0.2398 0.2004 0.2629 0.2305
LOGEC50 0.2822 0.2372 0.3312 0.2779

95% Confidence Intervals
BOTTOM -1.186 to 0.7353 -0.9935 to 0.5749 -1.322 to 0.8678 -1.150 to 0.7032
TOP 1.725 to 2.959 1.804 to 2.834 1.533 to 2.885 1.695 to 2.880
LOGEC50 0.6214 to 2.073 0.7034 to 1.923 0.5545 to 2.257 0.6444 to 2.074
EC50 4.182 to 118.2 5.051 to 83.73 3.585 to 180.9 4.409 to 118.5

Goodness of Fit
Degrees of Freedom 5 5 5 5
R2 0.8914 0.9218 0.8531 0.8941
Absolute Sum of Squares 0.8597 0.5863 1.075 0.7968
Sy.x 0.4147 0.3424 0.4636 0.3992

Data
Number of X values 8 8 8 8
Number of Y replicates 1 1 1 1
Total number of values 8 8 8 8
Number of missing values 0 0 0 0
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Appendix 3. Raw data for SIRT1 fluorometric activity assay 

Nicotinamide

Log [pM] Fluorescence reading (A160 nm)
Data Set A Data Set B Data Set C

2.0 971 803 1106
1.5 1151 1512 1074
1.0 1092 1525 779
0.5 1256 1138 1364
0.0 1495 1551 1314
-0.5 1241 1202 1017
-1.0 1046 909 1189

5-AIQ

Log [pM] Fluorescence reading [A160 nm)
Data Set A Data Set B Data Set C

2.0 1949 1661 1895
1.5 1153 1618 1711
1.0 1501 1037 1532
0.5 1017 1191 943
0.0 1473 1249 803
-0.5 928 1260 912
-1.0 1282 301 1231

Quinoline-8-carboxamide (80)

Log [pM] Fluorescence reading (4L60 nm)
Data Set A Data Set B Data Set C

2.0 896 781 894
1.5 1101 1144 1003
1.0 949 921 909
0.5 1100 1143 1061
0.0 1506 1012 895
-0.5 1020 1227 1177
-1.0 1363 1373 1173

3-AB

Log [pM] Fluorescence reading {A160 nm)
Data Set A Data Set B Data Set C

2.0 991 712 527
1.5 1154 1146 597
1.0 1289 985 1176
0.5 1119 1186 1212
0.0 1291 1358 1089
-0.5 1264 993 1009
-1.0 1324 1279 1206
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3-Methylquinoline-8-carboxamide (106)

Log [pM] Fluorescence reading [A160 nm)
Data Set A Data Set B Data Set C

2.0 960 885 980
1.5 1077 1309 957
1.0 1039 966 1188
0.5 1501 1370 743
0.0 1497 1644 1119
-0.5 1202 1475 1504
-1.0 1398 1313 1435

2-Phenylquinoline-8-carboxamide (144)

Log [pM] Fluorescence reading (A160 nm)
Data Set A Data Set B Data Set C

2.0 835 1140 876
1.5 1211 842 1233
1.0 806 1455 992
0.5 1039 1401 1406
0.0 1206 1295 893
-0.5 1256 1133 1505
-1.0 1148 1476 1411

2-Methylquinoline-8~carboxamide (147)

Log [pM] Fluorescence reading ( 160 nm)
Data Set A Data Set B Data Set C

2.0 1048 895 634
1.5 1054 1156 702
1.0 1443 618 1142
0.5 871 1390 989
0.0 1303 1239 1197
-0.5 1619 1577 1416
-1.0 1313 1479 1140
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Appendix 4. X-ray crystallography data for compound 69

Table A. Crystal data and structure refinement for 69.

Identification code Compound 69
Empirical formula C-|6 H12 N2 0
Formula weight 248.28
Temperature 150(2) K
Wavelength 0.71073 A
Crystal system Monoclinic
Space group C2/c
Unit cell dimensions a = 16.2950(4)A a = 90°

b= 11.1110(3)A 3 = 108.069(1)°
c= 14.3230(4)Ay = 90°

Volume 2465.34(11) A3
Z 8
Density (calculated) 1.338 Mg/m3
Absorption coefficient 0.085 mm'1
F(000) 1040
Crystal size 0.50 x 0.50 x 0.13 mm
Theta range for data collection 3.67 to 27.49 °.
Index ranges -21<=h<=21; -14<=k<=14; -18<=l<=18
Reflections collected 17583
Independent reflections 2827 [R(int) = 0.0610]
Reflections observed (>2o) 2037
Data Completeness 0.995
Absorption correction None
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 2827/2/181
Goodness-of-fit on Fz 1.036
Final R indices [l>2o(l)] R1= 0.0471 wR2 = 0.1141
R indices (all data) R1 =0.0712 wR2 = 0.1300
Largest diff. peak and hole 0.221 and -0.247 eA'3
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Table B. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A2x103)for 69.

Atom X y z U(eq)
0(10) 2768(1) 4066(1) 4685(1) 63(1)
N(1) ^3363(1) 2378(1) 2323(1) 35(1)
N(10) 2806(1) 2318(1) 3924(1) 45(1)
C(2) 3552(1) 1912(1) 1570(1) 35(1)
C(3) 3914(1) 2556(1) 938(1) 32(1)
C(4) 4066(1) 3757(1) 1131(1) 33(1)
C(5) 3957(1) 5562(1) 2090(1) 37(1)
C(6) 3748(1) 6073(1) 2854(1) 40(1)
0(7) 3421(1) 5349(1) 3460(1) 37(1)
0(8) 3290(1) 4136(1) 3314(1) 32(1)
C(9) 3502(1) 3585(1) 2511(1) 31(1)

_C(10) 2926(1) 3487(1) 4024(1) 36(1)
C(30) 4114(1) 1925(1) 122(1) 32(1)
C(31) 3517(1) 1154(1) -499(1) 36(1)
C(32) 3713(1) 559(1) -1251(1) 43(1)
C(33) 4515(1) 703(2) -1375(1) 47(1)
0(84) 5114(1) 1461(2) -766(1) 47(1)
C(35) 4915(1) 2084(2) -25(1) 40(1)
C(4A) 3850(1) 4313(1) 1910(1) 31(1)
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Table C. Bond lengths [A] and angles [°] for 69.

0(10)-C(10) 1.2366(17) N(1)-C(2) 1.3160(17)
N(1)-C(9) 1.3724(18) N(10)-C(10) 1.314(2)
C(2)-C(3) 1.4182(19) C(3)-C(4) 1.370(2)
C(3)-C(30) 1.4830(18) C(4)-C(4A) 1.4126(18)
C(5)-C(6) 1.366(2) C(5)-C(4A) 1.412(2)
C(6)-C(7) 1.404(2) C(7)-C(8) 1.371(2)
C(8)-C(9) 1.4368(18) C(8)-C(10) 1.5089(19)
C(9)-C(4A) 1.4206(19) C(30)-C(31) 1.392(2)
C(30)-C(35) 1.395(2) C(31)-C(32) 1.383(2)
C(32)-C(33) 1.383(2) C(33)-C(34) 1.376(3)
C(34)-C(35) 1.388(2)
C(2)-N(1)-C(9) 118.63(12) N(1)-C(2)-C(3) 125.02(13)
C(4)-C(3)-C(2) 116.58(12) C(4)-C(3)-C(30) 123.28(12)
C(2)-C(3)-C(30) 120.14(12) C(3)-C(4)-C(4A) 120.78(12)
C(6)-C(5)-C(4A) 120.46(13) C(5)-C(6)-C(7) 119.62(14)
C(8)-C(7)-C(6) 122.67(13) C(7)-C(8)-C(9) 118.44(13)
C(7)-C(8)-C(10) 116.27(12) C(9)-C(8)-C(10) 125.29(13)
N(1)-C(9)-C(4A) 120.65(12) N(1)-C(9)-C(8) 120.48(12)
C(4A)-C(9)-C(8) 118.87(13) 0(10)-C(10)-N(10) 122.49(13)
0(10)-C(10)-C(8) 119.08(14) N(10)-C(10)-C(8) 118.42(12)
C(31)-C(30)-C(35) 118.89(13) C(31)-C(30)-C(3) 120.84(12)
C(35)-C(30)-C(3) 120.26(13) C(32)-C(31 )-C(30) 120.46(13)
C(33)-C(32)-C(31) 120.10(15) C(34)-C(33)-C(32) 120.12(14)
C(33)-C(34)-C(35) 120.14(14) C(34)-C(35)-C(30) 120.27(15)
C(5)-C(4A)-C(4) 121.80(13) C(5)-C(4A)-C(9) 119.92(12)
C(4)- C(4A)-C(9) 118.28(13)
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Table D. Anisotropic displacement parameters (A2 x 103) for 69.

Atom U11 U22 U33 U23 U13 U12
0(10) 104(1) 46(1) 57(1) -13(1) 53(1) -10(1)
N(1) 42(1) 31(1) 35(1) -2(1) 17(1) 0(1)
N(10) 64(1) 39(1) 43(1) -8(1) 32(1) -9(1)
C(2) 41(1) 30(1) 35(1) -1(1) 15(1) 1(1)
0(3) 31(1) 35(1) 29(1) 1(1) 9(1) 3(1)
0(4) 31(1) 36(1) 30(1) 2(1) 8(1) -1(1)
0(5) 40(1) 33(1) 34(1) 2(1) 8(1) -4(1)
0(6) .48(1) 28(1) 39(1) -5(1) 7(1) -2(1)
0(7) 39(1) 37(1) 32(1) -6(1) 7(1) 3(1)
0(8) 32(1) 33(1) _29(1) -2(1) 7(1) 1(1)
0(9) 29(1) 32(1) 29(1) -1(1) 6(1) 2(1)
0(10) .38(1) 40(1) 32(1) -5(1) 12(1) -1(1)
0(30) 36(1) 31(1) 29(1) 5(1) 11(1) 7(1)
0(31) 41(1) 31(1) 37(1) 1(1) 15(1) 2(1)
C{32) 60(1) 31(1) 37(1) -1(1) 14(1) 2(1)
C(33) 66(1) 43(1) 38(1) 2(1) 25(1) 15(1)
0(34) 46(1) 56(1) 47(1) 8(1) 25(1) 12(1)
C135L 38(1) 47(1) 37(1) 1(1) 13(1) 3(1)
C(4A) 30(1) 33(1) 28(1) . .0(1) .5(1) 0(1)

Table E. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2 x 
103) for 69.

Atom X y z U(eq)
H(2) 3437 1080 1441 42
H(4) 4319 4222 735 39
H(5) 4176 6050 1677 44
H(6) 3824 6912 2974 48
H(Z) 3285 5716 3993 44
H(31) 2970 1035 -405 43
H(32) 3296 50 -1682 51
H(33) 4654 277 -1882 56
H(34) 5665 1558 -853 57
H(35) 5325 2620 384 48
H(10A) J 2914(12) 1947(16) 3416(12) 55(5)
H(10B) 2615(11) 1888(14) 4342(12) 46(5)
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Appendix 5. X-ray crystallography data for compound 96.

Table A. Crystal data and structure refinement for 96.

Identification code Compound 96
Empirical formula c 17h 11f3n2o
Formula weight 316.28
Temperature 150(2) K
Wavelength 0.71073 A
Crystal system Triclinic
Space group P-1
Unit cell dimensions a = 8.0440(3)A a = 83.548(1)°

b = 9.1370(3)A 6 = 81.155(2)°
c = 9.8910(4)A y = 76.326(2)°

Volume 695.77(4) A3
Z 2
Density (calculated) 1.510 Mg/m3
Absorption coefficient 0.123 mm'1
F(000) 324
Crystal size 0.35 x 0.20 x 0.15 mm
Theta range for data collection 3.86 to 28.33°
Index ranges -10<=h<=10; -12<=k<=12; -13<=l<=13
Reflections collected 10349
Independent reflections 3395 [R(int) = 0.0360]
Reflections observed (>2cr) 2602
Data Completeness 0.979
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 3395/2/217
Goodness-of-fit on F2 1.030
Final R indices D>2a(l)] R1 = 0.0432 wR2 = 0.1093
R indices (all data) R1 = 0.0629 wR2 = 0.1202
Largest diff. peak and hole 0.365 and -0.386 eA'3
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Table B. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A2x 103) for 96.

Atom X y z U(eq)
C(2) 16260(2) 3862(1) 2441(1) 28(1)
C(3) 7359(2) 2423(1) 2225(1) 26(1)
C(4) 8412(2) 2291(1) 993(1) 27(1)
C(4A) 8394(2) 3537(1) 15(1) 25(1)
C(5) 9435(2) 3422(1) -1275(1) 29(1)
C(6) 9427(2) 4661(2) -2182(1) 31(1)
C(7) 8400(2) 6073(1) -1823(1) 29(1)
C(8) 7336(2) 6244(1) -594(1) 26(1)
C(8A) 7291(2) 4947(1) 355(1) 24(1)
C(9) 6334(2) 7829(1) -332(1) 29(1)

|C(31) 7288(2) 1076(1) 3210(1) 25(1)
C(32) 7018(2) -197(1) 2688(1) 28(1)
C(33) 6913(2) -1510(1) 3511(1) 30(1)
C(34) 7060(2) -1580(1) 4892(1) 31(1)

..C(35) 7339(2) -342(1) 5441(1) 30(1)
C(36) 7461(2) 976(1) 4616(1) 27(1)

_C(37) 7777(2) 2257(2) 5288(1) 33(1)
0(1) 6766(1) 8907(1) -1066(1) 42(1)
N(1) 6219(1) 5065(1) 1576(1) 28(1)
N(2) 5015(2) 8008(1) 660(1) 32(1)
F(1) 8853(1) 3019(1) 4502(1) 40(1)
F(2) 6317(1) 3296(1) 5635(1) 47(1)
F(3) 8465(1) 1789(1) 6454(1) 51(1)
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Table C. Bond lengths [A] and angles [°] for 96.

C(2)-N(1) 1.3118(16) C(2)-C(3) 1.4184(17)
C(3)-C(4) 1.3726(17) C(3)-C(31) 1.4879(16)
C(4)-C(4A) 1.4076(17) C(4A)-C(5) 1.4141(17)
C(4A)-C(8A) 1.4231(16) C(5)-C(6) 1.3624(17)
C(6)-C(7) 1.4078(18) C(7)-C(8) 1.3756(17)
C(8)-C(8A) 1.4306(16) C(8)-C(9) 1.5103(17)
C(8A)-N(1) 1.3712(15) C(9)-0(1) 1.2420(15)
C(9)-N(2) 1.3224(17) C(31)-C(32) 1.3978(17)
C(31)-C(36) 1.4095(17) C(32)-C(33) 1.3842(17)
C(33)-C(34) 1.3816(18) C(34)-C(35) 1.3863(18)
C(35)-C(36) 1.3916(17) C(36)-C(37) 1.4976(18)
C(37)-F(3) 1.3383(15) C(37)-F(1) 1.3396(15)
C(37)-F(2) 1.3499(16)
N(1)-C(2)-C(3) 124.99(11) C(4)-C(3)-C(2) 116.49(11)
C(4)-C(3)-C(31) 120.57(11) C(2)-C(3)-C(31) 122.72(11)
C(3)-C(4)-C(4A) 120.89(11) C(4)-C(4A)-C(5) 121.98(11)
C(4)-C(4A)-C(8A) 118.17(11) C(5)-C(4A)-C(8A) 119.85(11)
C(6)-C(5)-C(4A) 120.51(11) C(5)-C(6)-C(7) 119.78(11)
C(8)-C(7)-C(6) 122.15(11) C(7)-C(8)-C(8A) 118.81(11)
C(7)-C(8)-C(9) 116.51(11) C(8A)-C(8)-C(9) 124.65(11)
N(1)-C(8A)-C(4A) 120.62(11) N(1)-C(8A)-C(8) 120.58(11)
C(4 A)-C( 8A)-C(8) 118.79(11) 0(1)-C(9)-N(2) 122.69(11)
0(1)-C(9)-C(8) 118.77(11) N(2)-C(9)-C(8) 118.53(11)
C(32)-C(31 )-C(36) 117.48(11) C(32)-C(31)-C(3) 116.78(10)
C(36)-C(31)-C(3) 125.74(11) C(33)-C(32)-C(31) 121.87(12)
C(34)-C(33)-C(32) 119.85(12) C(33)-C(34)-C(35) 119.81(11)
C(34)-C(35)-C(36) 120.52(12) C(35)-C(36)-C(31) 120.45(11)
C(35)-C(36)-C(37) 117.13(11) C(31 )-C(36)-C(37) 122.42(11)
F(3)-C(37)-F(1) 106.12(11) F(3)-C(37)-F(2) 105.70(10)
F(1)-C(37)-F(2) 105.75(10) F(3)-C(37)-C(36) 112.16(11)
F(1)-C(37)-C(36) 113.72(10) F(2)-C(37)-C(36) 112.76(11)
C(2)-N(1)-C(8A) 118.76(10)
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Table D. Anisotropic displacement parameters (A2 x 103) for 96.

Atom U11 U22 U33 U23 U13 U12
-C(2) 31(1) 26(1) _26(1) -1(1) 1(1) -7(1)
C(3) 28(1) 24(1) 26(1) 0(1) -5(1) -7(1)
C(4) 30(1) 22(1) 28(1) -3(1) -4(1) -5(1)
C(4A) 28(1) 25(1) 25(1) -1(1) -5(1) -8(1)

_C(5) 34(1) 26(1) 27(1) -4(1) -1(1) -6(1)
0(6). 37(1) 34(1) 22(1) -3(1) 0(1) -10(1)
C(7) 33(1) 28(1) _26(1) 2(1) -7(1) -10(1)
C(8) 27(1) 25(1) _26(1) 0(1) -7(1) -7(1)
C(8A) 26(1) 25(1) 23(1) -2(1) -5(1) -7(1)
C(9) 33(1) 26(1) 27(1) 2(1) -8(1) -5(1)
0(31) 24(1) 24(1) 26(1) -1(1) 0(1) -4(1)
C(32) 29(1) 27(1) 26(1) -1(1) -3(1) -5(1)
C(33) .30(1) 24(1) 34(1) -1(1) -2(1) -6(1)

...0.(34) 30(1) 26(1) 34(1) 6(1) -3(1) -6(1)
C(35) 29(1) 32(1) 26(1) 2(1) -2(1) -5(1)
C(36) 25(1) 27(1) 26(1) -1(1) -1(1) -4(1)

_C(37) 38(1) 33(1) .27(1) -1(1) -3(1) -8(1)
0(1) 53(1) 26(1) 40(1) 6(1) 6(1) -4(1)
N(1) 31(1) 25(1) ,_26(1) 0(1) -2(1) -5(1)
N(2) 36(1) 23(1) 34(1) 0(1) -3(1) -3(1)

_F11) 46(1) 41(1) 38(1) -2(1) -4(1) -22(1)
F(2) 46(1) 39(1) 54(1) -20(1) 5(1) -6(1)
F(3) _79(1) 48(1) 33(1) 0(1) -22(1) -24(1)

Table E. Hydrogen coordinates (x 104) and isotropic displacement parameters (A2 x 
103)for 96.

Atom X y z U(eq)
H(2) 5495 3963 3276 34
H(4) 9162 1346 797 32
H(5) 10145 2473 -1511 35
H(6) 10112 4572 -3054 37
H(7) 8443 6935 -2449 35
H(32) 6904 -160 1743 33
H(33) 6740 -2362 3128 36
H(34) 6971 -2473 5462 37
H(35) 7449 -393 6389 36
H(2A) 4840(20) 7207(14) 1222(15) 49(5)
H(2B) 4416(19) 8942(12) 766(16) 46(4)
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