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Short Abstract

In the last two decades financial time series econometrics has developed from a sub­
discipline to a key driver in mainstream econometric theory. Much of the work has 
been based around univariate and bivariate model specifications. High-variate ex­
tensions are often complex and difficult to estimate, even if model parameterization 
achievable then the results are often difficult to interpret and visualize. This work 
focuses on the design and implementation of linear and non-linear multivariate mod­
els, their system identification and model robustness. The work sets out several new 
models and demonstrates their usage in the financial context.
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Long Abstract

The need for aggressive analytical methodologies in the modern financial econome­

tricians toolbox has never been greater than today. Data is now omnipresent and 

massive in length and breadth, in fact modern data-sets are now so large it is al­

most impossible to visualize them in their entirety and draw any significant ad-hoc 

conclusions. In conjunction with this explosion in data is the criticality of decision 

making based on that data. The growth in complex investment instruments has 

meant that traditionally robust strategies are often sub-optimal in the current trad­

ing environment, this thesis sets out 8 chapters demonstrating a wide variety of tools 

that encompass many of the common problems that face financial practitioners and 

academics.

0.0.1 The M ultivariate Approach

The multivariate approach has often been shunned as too complex and too difficult 

to interpret. Limited to fundamental probabilistic assumptions, multivariate analysis 

has been ostensively left to extensions of the general linear models/covariance in dis­

turbances approach in the empirical literature. Whilst in macro-economics the vector



2

auto-regression methods in conjunction with theoretical structural models are now 

the primary modelling archetype, the situation in finance is more acute. Multivari­

ate models have until recently been shunned by financial practitioners in favour of 

detailed univariate models. A particular example of this apparent lack of interest is il­

lustrated by the extensive use of univariate GARCH models but the lack of interest in 

MV-GARCH models. Multivariate volatility models such as the MV-ARCH/GARCH 

specifications are obviously very useful in the analysis of volatility but suffer from the 

large number of parameters required to estimate them (and hence heavy data require­

ments), and a lack of financial decisions tools to interpret the information provided 

when the models are parameterized. Part of the objective of this thesis in conjunc­

tion with presenting several new model specifications is to focus on practical methods 

of identifying multivariate interactions and presenting useful approaches to system 

identification, model selection and decision making.

0.0.2 The Approach of this Thesis

This thesis is divided into five main chapters and a brief final summary. Each chapter 

has an introduction and review of the appropriate literature.

Synopsis o f Chapter 1

The first chapter offers a brief review of vector and matrix multivariate time series 

analysis, in conjunction with notation and some fundamental mathematical prelimi­

naries required to understand the later chapters. Whilst the majority of the chapter
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is a review of the current literature, the reader is drawn to some new specifications 

for multivariate recursive Kalman filter methodologies and random matrix processes. 

The chapter also review some of the continuous time literature in preparation for 

chapter 8.

Synopsis o f Chapter 2

Reviews the MV-GARCH literature and demonstrates the effective use of these mod­

els in the finance context, emphasis is made on parameter estimation and restriction 

testing and two brief empirical studies are undertaken to demonstrate the use of these 

models in the finance context.

Synopsis of Chapter 3

Addresses the use of copula type marginal/joint distribution frameworks in multi­

variate modelling of financial time series, the chapter concentrates on monte-carlo 

applications and methodologies. A new empirical copula model is suggested and 

demonstrated which offers a flexible means of estimating and generating monte-carlo 

pathways from multivariate data.

Synopsis of Chapter 4

Offers some empirical evidence for non-linear adjustments in co-movement between 

the excess returns of biotechnologies stocks in the UK, in particular the chapter 

focuses on the response to news events in the returns of listed bio-pharmaceutical
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companies. The empirical results show that the adjustment in co-movement after a 

news event is related to the magnitude of the shock of the event and interdependency 

of the companies involved.

Synopsis of C h ap ter 5

Focuses on volatility models and in particular a new approach to modelling dynamic 

covariation, by use of switching mixture models. The main model presented is a 

dynamic switching model which offers real time parameter estimation, even for very 

high-variate systems. The model is shown to be tractable even for systems of 100 

variables and is therefore very suitable for use in equity and interest rate analysis. 

Synopsis o f C h ap ter 6

Extends much of the material covered in the first section of chapter one, the chapter 

introduces the first new model, the integrated VAR(r)-MV-GARCH(p,g) model. This 

model utilizes an underlying vector auto-regression model and integrates it with an 

adapted BEKK model of conditional covariance. We demonstrate a robust maximum 

likelihood estimator and restriction tests, with monte-carlo analysis of the perfor­

mance of this estimator. An identification strategy using impulse responses in mean, 

variance and covariance is discussed and implemented.
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Synopsis of Chapter 7

This chapter departs from most of the previous work by assuming significant de­

viations from conditional normality in asset price returns. The chapter begins by 

presenting a model of asset returns with no predefined conditional or unconditional 

probability distribution. And then presents a toolkit for navigating through the non- 

multi-normality of both unconditional and conditional asset returns. The chapter uses 

multivariate-moment arrays to capture non-linearities in the dependency structure an 

demonstrates a simple asset allocation method.

Synopsis of Chapter 8

The final chapter presents a continuous time model of stochastic covariation and it’s 

application for the appropriate pricing of call options, which includes the volatility risk 

of the asset in conjunction with the rest of the market. The model is essentially two 

vector stochastic differential equations, whereby the volatility dynamics are modelled 

as a separate vector of Brownian motions. The chapter adds to the growing literature 

by first specifying a maximum likelihood approach to parameterizing such models in 

discrete time and second giving a systematic approach to hedging in the presence of 

stochastic covariation.



Chapter 1

Vector and Matrix Multivariate 
Stochastic Processes

1.1 C hapter A bstract

This chapter reviews the current literature and common results on vector and matrix 

dynamic processes and general discrete and continuous multivariate time series anal­

ysis, it begins with a review of notation, then proceeds to define the current state of 

the art in vector time series, the chapter concentrates on discrete time series, but the 

final section alludes to the useful contribution of multivariate continuous time models 

in financial engineering and multivariate rational expectations models. This chapter 

represents the bulk of the literature review and other chapters will feature only brief 

recaps of the relevant material.

6
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1.2 Introduction  and Focus

The current literature on multivariate time series is as vast as it is eclectic, this re­

view does not intend to be over-arching in terms of coverage, but restricts itself to 

the main results and important findings which will be used in later chapters. To this 

extent this chapter bypasses much of the main literature on vector auto-regressions 

(VAR) models and keys in on the main results, in terms of identification, specifica­

tion and robustness. This includes an extensive review of the Kalman filter approach 

and the state space vector as an unobserved variable, as this is useful in understand­

ing the structure and techniques used in the bounded dynamic covariance model in 

chapter four. Whilst not strictly in theme, the review of univariate ARCH/GARCH 

models features some of the asymptotic theory developed in the last decade and a 

half on these models. Whilst the author recognizes that the variety of the univari­

ate specification is vast, focusing on the properties of the basic model specification, 

it helps serves as a basis for understanding some of the effects of the difference in 

specifications of their multivariate extensions. To this end the review of multivariate 

ARCH/GARCH models includes the main specifications and a review of up and com­

ing innovations in this area. Interested readers are drawn to the extensive section on 

modelling disturbances via copulas, whilst the introduction to this section is a review 

of the current literature, the section also introduces two new estimation methods, the 

first in regards to empirical copulas uses Latin hypercube stratification to construct



n-variate empirical copulas, the second section proposes a new method of construct­

ing MV-ARCH type models with time invariant and time varying copulas, the section 

also suggests two empirical applications in analyzing derivatives and credit risk via 

copulas. The section on continuous time models restricts itself to a brief chronology 

of key literature in this area and the key results required when reading chapter 5, con­

tinuous time models are of prevalent importance in financial engineering. The brevity 

of this section does not do justice to their true importance, however an eclectic review 

is not in the scope of this work. In this respect the same accusation can be made 

at the review of estimation and optimization techniques, however lack of inclusion of 

large swathes of this fascinating literature is justified as our general focus is on those 

techniques directly applicable to time series modelling in finance.

This review has two major themes, first the specification and identification of the un­

derlying deterministic model and second the probabilistic properties of the stochastic 

processes that act as disturbances on this underlying model. The first section reviews 

specific notation and several important mathematical underpinnings required to un­

derstand the following section, including rewriting the lag operator as a vectorized 

tensor, with singleton time dimension, a very brief review of the continuous func­

tional mapping form of the multivariate central limit theorem is also presented here 

for completeness. The second broad section introduces multivariate general linear
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models and presents a complete derivation of the vector ARMAX model, in our spe­

cific notation. The Kalman model is also reviewed in preparation for the basic model 

presented in chapter four, which utilizes an unobserved state space operator to de­

scribe conditional covariance. The Kalman filter section also introduces the concept 

of incorporating a decomposition of covariance in the gaussian objective function. 

The final section briefly surveys the continuous time literature and provides several 

derivations in preparation for chapter 8.
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1.2.1 N otation  and Common R esults
The following basic mathematical notation nomenclature is used throughout this 
chapter,
{} braces
[] square brackets
() brackets
|A| vertical bars (matrix)

|a| vertical bars (vector)

|a| vertical bars (scalar)
< . > angle brackets

dijjt lowercase with subscript

a bold lowercase

A uppercase italics

A uppercase bold
£ Greek Uppercase Bold
V Nabla operator
e bold e
0 bold 0
R hollow capital
n Caligraphic capital

y t\r Caligraphic capital

X Hadamard Product

0 Khatri - Rao Product

0 Kronecker Product
e bold lowercase theta

bold uppercase theta

6* theta star
§ theta hat

specifies the elements of a set 
concatenation of scalars, vectors and matrics 
function ordering 
determinant of matrix

{norm (normative distance 1
from the center of the Euclidian ball) j 

absolute
cross variation of two functions 

single index represents vertical 
position in column vector two 
indices represents the coordinates 
in a matrix n - indices represents the 
coordinates in an n dimensional array (tensor) 

column vector
continuous process, 
subscript represents continuous time

 ̂superscript process index (ith process out of k)
Matrix
Coefficients matrix/non - negative Hermitian Matrix 
Gradient vector of partial derivatives of a vector function 
vector of ones of appropriate length 
vector/matrix of zeros of appropriate size 
set
array/tensor

array of the history of a vector 1 
or matrix process from t — r to t — 1J 
Element by element multiplication 1
of equivalent sized arrays (deviation from standard) J 
Element by element Kronecker Product 1 
of arrays with one equal dimension J 

See Kronecker Product 
vector of parameters

{ set of available valid parameters 1 
conditioned on the constraint g (0) j  

true parameter vector 
estimated parameter vector
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019 ( 0 )

bold lowercase theta 

bold uppercase theta

9* theta star
6 theta hat
mj n [ / ( 0 |0 (0))] min

m
T

w

Hb)

£0*0
&(x)
£{x)

H(a?)
LW
M(x)
F W

Fraktur capital L 
upper case T

vector power

uppercase H, with 
bracketed superscript 
Fraktur Capital F 
Fraktur Capital H 
Fraktur Capital C

Sans Serif H 
Sans Serif L 
Sans Serif M 
Sans Serif F

vector of parameters

{set of available valid parameters 1 
conditioned on the constraint g (6) J 

true parameter vector 
estimated parameter vector
the constrained minimisation of the objective function /
the evaluation of the objective function S 
Transpose operator

{ the m  - way vector multiplication 1 
of the column vector w, J

{J results in a m  -dim ensional 1
|  array with mth order supersymmetry J 

j th evaluation of the Hessian 1 
matrix of the function S  (9) J 

Probability density function 
Cumulative density function 
Characteristic function of $  (a;)

Generic H -function 
Laplace Transform 
Mellin Transform 
Fourier Transform

1.2.2 Introduction and Commentary

In their major text on stochastic processes Karatzas and Shreve (1991) [162] note 

that there are three main areas of study in discrete and continuous time stochastic 

processes for which there is a rigorous mathematical foundation, Brownian motion, 

Martingales and Stationarity. This chapter will look at all three of these concepts 

generally in reverse order, however it should be noted that because of their interwoven
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nature much of the chapter will refer in both a forward and backward manner. For 

example when understanding non-stationarity, an understanding of Weiner processes 

and central limit theorems which is inextricably linked to Brownian motion. Markov 

processes are briefly discussed in discrete time and these are strongly linked to the 

Martingale measure, a fundamental principle of finance in relation to portfolio repli­

cation and arbitrage free pricing. As such the reader is suggested to keep the table 

of contents in mind whilst reading and use this to navigate these inter-relationships.

A major theme of this chapter is notation and the importance of understanding 

how a little knowledge of consistent notation can be a very powerful tool in quickly 

understanding various concepts and approaches. For example the extensive use of 

the vectorization vec and transpose T operators in conjunction with n-dimensional 

structured arrays, (classical tensors). This is very helpful in that model specifications 

are no longer wedded to lag operators and deal simply in vectorized notational form, 

which is imperative in multivariate analysis in order to reduce functions to simple 

matrix, vector equations. As such stationarity conditions may be captured in a very 

concise and simple manner.

1.2.3 The Basic M ultivariate Time Series Object

The basic multivariate time series object is an n length random vector process y t, by 

measuring time in discrete increments, t G {1,2, ...,T}, then the current realization
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of y t G Mn is,

y  t [yi, ti • • • 5 2/n,t] ( 1.2 .1)

now consider the mapping of y4|nt|{t t 1} where is the set that contains

all the necessary information to form an unbiased estimate of y t, y t, the expected 

first moment deviation and second moment quadratic deviation will be,

Where Et is the expectations operator. If the process is in continuous time then the 

elements of y t, are now continuous time processes Ytl and as such no longer have 

specific co-ordinates therefore,

The index is shifted to a superscript to denote the process to show that there is no 

discrete coordinate for any realization of y t.

1.2.4 Comm only used M atrix Operators

The basic multivariate time series object is a vector process, as such the major mecha­

nism for manipulation is via matrix algebra and matrix differential calculus. Consider

E  { y t  ~  Y t  ) — 0 ( 1-2-2)

E  ^(y* — y t |^ t |{ t-r ,...,t- i}) ( y t — 9t (1.2.3)

(1.2.4)yt =

(1.2.5)
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a rectangular m x n  matrix A, the following operations are valid for any sized matrix,

/

A =

A t =

vec (A) =

<3-1,1 <2l,n ^

^771,1 J

G-1,1 • • • <2l,m  \

^71,1 j

<3-1,1

<2-n, 1

<3i ,2

<2-71,2

<2m,7i

( 1.2 .6)

(1 .2 .7 )

(1.2.8)

For a multidimensional array, the vec operator reshapes the array into a column 

vector, starting with the first integer dimension and slicing the array dimension by 

dimension stacking each slice column-wise. Now consider the n x n non-negative 

Hermitian Matrix £ , i.e. £  € Cnxn the following operations are valid,

£  =

i
£ 2

A

a a t

=  chol (S)

1
£ 2

£

A -

Ai ,2 • ' • A
0 ^2,2 ' ' • A:

0 0 •• • A,

2,71

(1 .2 .9 )

(1.2.10)

(1.2.11)

( 1.2 .12)

(1 .2 .1 3 )
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For any square diagonal matrix the unique elements may be extracted column-wise 

by use of the vech operator, a lower (or upper) triangular matrix may also be formed, 

from an appropriate length vector. For any given square diagonal matrix, of size n, 

the corresponding vector of unique elements will be \n (n  +  1) in length.

vech (A) =  a (1.2.14)

a  =

0 1 , 1

,71

0 - 2 ,2

0 - 2 ,n

0 - n — l , n — 1

0 > n ,n — 1

0 “n , n _

0 - 1 ,1 0 0 0

0 - 2 ,1 0 2 , 2 0 0

O - n — 1 ,1 O n — 1 , 2 O n — l , n — 1 0

O n O n O n , n — 1 O n , n

(1.2.15)

ivech{ a) =  : j ; j (1.2.16)

1.2.5 M atricizing

Matricizing has two major purposes, first to convert higher dimensional arrays into 

two dimensional matrices and second to reshape vectors into appropriately sized ma­

trices. Consider the higher dimensional array, A , which is an n x m  x p array, there
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are many different ways of matricizing A, for example,

mat I A
n x m x p —>nmxp \ n x m x p

mat I A
n x m x p —ynxmp \ n x m x p

A
nm xp

A
nxm p

(1 .2 .1 7 )

(1 .2 .1 8 )

For a vector matricizing requires consistency in the dimensions of the vector and 

matrix respectively for example,

mat (  a  ) =  A  (1 .2 .1 9 )
n m x  1—m x m  V n m x l J  n x m

Generating M ulti-normals via Cholesky factorization

Cholesky factorization is an extremely useful tool, as the following relationship be­

tween a random vector of i.i.d. standard normals and a random vector of zero centred 

multi-normals, exists,

e ~  N  (0 ,1)
1 ••• 0

I =
0 • • •  1

u ~  N  (0, £ )

( 1.2 .20)

( 1.2 .21)

(1.2 .22)

(1 .2 .2 3 )

In order to generate a valid random covariance matrix, i.e. a non-negative Hermitian, 

which may be factorized via the Cholesky method, then this may be generated from



17

a random vector using the ivech transformation.

2n(n+l)xl 2n(n+l)x^(rc+l)
(1.2.24)

n x n
A

£

ivech
n(n+l)xl

(1.2.25)

(1.2.26)
nxn nxn nxn

The lower diagonal matrix, when multiplied by its transpose yields a non-negative 

matrix which is in essence a random covariance matrix. Please note the following, in

a lower diagonal matrix, then under most circumstances A =  A T, does NOT hold.

1.2.6 A  M ultivariate Central Limit Theorem

Multivariate central limit theorems are the subject of extensive and ongoing academic 

work, the following is a summary of results from work by Davidson (1994) [66] and 

articles by van Zanten (1998) [257], Karatzas and Shreve (1991) and Kuchler and 

Sorenson (1996) [174]. This section provides some key results and propositions, the 

interested reader is directed to Davidson (1994) and Karatzas and Shreve (1991,2000) 

for more detailed descriptions. Consider a random vector yf, where yt 6 l n, the se­

quence of y t , { y i,..., yT}, is said to obey a multivariate central limit theorem if the 

joint distribution of, sT =  $3t=i Yt converges to the multivariate Gaussian distribu­

tion. A weighted summation of y t obtains a multivariate central limit theorem by 

showing that for a process y u the scalar sequence a Ty t, obeys an ordinary scalar

general, if A is the Cholesky factorization of a matrix £  and £  =  A A T, where A is
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central limit for any arbitrary vector a. This means that a multivariate central limit 

convergence maybe framed in terms of the Cramer-Wold device, see Davidson (1994) 

and Kuchler and Sorenson (1996), and furthermore define the conditions under which 

random variables converge asymptotically to the multivariate central limit theorem. 

T h e  C ram er-W old Device

For some arbitrary n length fixed column vector a, where a  /  0 the real valued 

process sr G Mn converges in distribution to a random vector s, iff a Tsr —> a Ts, 

where is the convergence in distribution operator. Now consider the n  x r  matrix 

Y  where Y  =  [yi, ...,yT]T, the covariance matrix E =  ^Y TY, is the sample covari­

ance matrix of the sequence of n-length vectors constituting Y. For the cumulative 

summation sequence ST, where S =  [ £ j=1 y<, £?=i £<=i y*]T, if S s,r =  7 STS,

by construction of this matrix is positive semi-definite (non negative definite) and

as such E S)T, maybe factorized as follows, £ S)T =  CS)TAS)TC jr =  AS)rA^r , where 
i

AS)T =  CS)TAs)T and CS)TC jT =  C jr CS)T — I. The matrices CS)T and AS)T are respec­

tively the eigenvector matrix and the diagonal, non-negative matrix of eigenvalues. 

M u ltiv a ria te  CLT as a  W einer P rocess

The relationship between a zero centred multi-normal distribution and a zero centred 

vector of i.i.d. standard normals is key to defining a multivariate central limit theorem 

as a continuous time process. Consider a continuous time vector process Wf, from 

an n-length continuous vector process W\ € wf, assuming that every innovation of
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w t, is drawn from a zero centred multi-normal distribution then, wt, is an n-length 

continuous time vector process,

Wf =  £ 2 w f 

w t ~  AT (0,1)

(1 .2 .2 7 )

(1 .2 .2 8 )

For any functional #  that has a continuous map onto the set of real numbers Mn, 

then, #  : Mn —» Mn, for some continuous mapping C, whereby an n-length vector of 

random variables x is mapped onto the real space Rn, then the following holds

Wt =  S  2 w f 

Wf ~  AT (0 ,1)
r  (w.?*) 
f  (w?*)

r  ( w n

Vr.xt S 2 Wt

(1 .2 .2 9 )

(1 .2 .3 0 )

(1 .2 .3 1 )

(1 .2 .3 2 )

Which implies that for a generic stochastic process x  there is a mapping which will
l

yield a process, that will converge to some probability measure S 2w (. for a sufficiently 

large T. The local martingale measure is discuss later in this chapter.

Some Com m on M atrix  D ecom positions

Other useful matrix decompositions commonly used in chapter six axe, Eigenvector 

decomposition, the Jordan canonical form, the Schur decomposition and the Moore- 

Penrose Inverse these are defined as follows,
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The Eigenvector problem, offers solutions to matrix polynomial equations of non­

negative matrices functions and is of the following form,

The Jordan decomposition,

J  -

J  =

> X II >•

j (̂nxn)

X -1AX
Oi

0
0 J2,2 ' * 0

l--
---

-
o 

•• 

o 
••

3n,n

The Schur decomposition

A G C(nxn) 

S*AS =  M  

S*S =  I

(1.2.33)

(1.2.34)

(1.2.35)

(1.2.36)

(1.2.37)

(1.2.38)

(1.2.39)

T he  Least Squares P rob lem , W ith  R ank  deficient M atrices and  th e  P seudo  
an  M oore Penrose Inverses

Consider the following problem, A x =  b, the solution to this problem, x ^ ,  is the full 

rank least squares problem. In order to tackle this problem two definitions are required 

first the orthogonalization conditions for a matrix and second the rank of the matrix, 

for more context on these definitions see references Golub and Van Loan (1996) [112] 

and Horn and Johnson (1999) [146] for the specialist linear algebra applications
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and Magnus and Neudecker (1998) [191] and Davidson (1994) for insight into the 

application to matrix differential calculus and stochastic limit theory respectively. 

The results used here are extensively utilized in 5.

Definition: Orthogonal M atrix

A matrix Q 6 Cnxn is said to be orthogonal iff QTQ =  QQT =  I In general the full 

rank least squares problem is satisfied when A =  QR, where Q is orthogonal and R  

is an upper triangular matrix.

M atrix Products

In general there are four commonly used matrix products, the basic matrix product, 

the Hadamard product, the Kronecker Product and the Khatri-Rao(Bro) product, 

these are defined as follows, defining,

A ee [ajj] (1 .2 .4 0 )

B  =  [&«] (1 .2 .4 1 )

C  =  [ c j ]  (1 .2 .4 2 )

= ••• j ®i,m] =  A =  [3-15 • • • 5 U-n] (1.2.43)
m x n

defining the various products as,
n

A B =  C matrix product citk = ^2 CLijbjtk
m x n n x p  n x m  j = \

A x B =  C Hadamard product Cij = (Hjbij
m x n  m x n  m x n
A <8> B — C Kronecker product ciyj = aitj B

m x n  p x q  mpxnq
A © B =  C Khatri - Rao - Bro product C =  [ai <8> b i , ..., a„ © b„]

m x n  p x n
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In general only the first three matrix/vector products are commonly used, the Khatri- 

Rao product is very useful in defining the contravariant indexing structure of high 

order tensors, when systematic indexing is difficult (i.e. when the tensor is greater 

than rank 4), this in a programming sense allows element operations in tensor prob­

lems to be vectorized, for example for an array, A, with 3 contravariant dimensions, 

d = 3 each, n = 3 elements in length, then there are a total of 27 elements to index, 

for element by element operations on this array systematic indexation requires a 3 

indexing dimensions by 27 elements matrix,

A  —

a = vec (.4)

a  =  [a.1,1 ,1 , ^1,1,2 , •••, cisn ••••> a3,3,3]T 

Converting the subscripts into rows of an nd x d matrix,

s* =  [i,j,k]

S =

n —

e =

(1.2.44)

(1.2.45)

(1.2.46)

S l S l

s 2 s 2

s nd S 27

[ 1 , 2 , n]T =  [1,2, 3]t  

[1.1,1]T

(1.2.47)

(1.2.48)

(1.2.49)

(1.2.50)

Then for a d = 3, n length cubic array the elements are indexed by a matrix, S, in 

terms of an n length unit column vector e and an n-length vector of natural integers,
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n =  [1, ...,n]T therefore,

S =  [(e ® e) 0  n, e 0  (n 0  e ) , n  0  (e 0  e)] (1.2.51)

More generally for a hyper-cubic with d dimensions each n in length then the indexing 

matrix is decomposed into the left and right terms of the Khatri-Rao product, the 

first being,

E  =  [ei 0  e2 0  ... 0  ed_i, ei 0  n 0  ... 0  ed- i , e i  0  e2 0  ... 0  ed_2 0  n] (1.2.52)

I
the second is therefore,

N =  [ei,...,ed_i,n] (1.2.53)

finally the indexing matrix, S is the product,

S =  E  © N  (1.2.54)

This algorithm is very simple to program and provides a mechanism for indexing d 

dimensional arrays and ensures that the process of applying functions to d dimensional 

arrays a simple and tractable task. See Anderson and Bro (2000) [9] and Moravitz- 

Martin (2004) [200], for a more extensive review of tensor and matrix operations.

1.3 Covariance Stationary V ector A R M  A  processes

It is possible to impose a wide variety of data generating functions on the conditional 

form of y t , most common functional forms utilize a linear or non-linear autoregressive
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framework, usually derived from the Euler scheme of some continuous time underlying 

process.

1.3.1 Basic M odel N otation

An n length auto-regressive process with p lags AR(p) maybe written out as follows,

y t = U%vec(yt) +  c + u t (1.3.1)

y t = (1.3.2)

ut =  5 ]2  et (1.3.3)

et ~  iv (0,1) (1.3.4)

E =  E (  u tu j )  (1.3.5)

Where IIo is an n p x n  matrix, of coefficients and c is an n length vector of constants.

A vector moving average process MA(g), is similarly defined as follows,

yt =  IIQvec (Ut) +  c + Ut (1.3.6)

Ut =  [u t_ i,...,u t_ j (1.3.7)

Ut =  E2 et (1.3.8)

et ~  N ( 0,1) (1.3.9)

E  -  E ( u tu j )  (1.3.10)

Putting these together then gives a V-ARMA(p,q) model as follows,

y t =  nJW C V t) +  r t f ’ vec (Ut) +  c + Ut (1.3.11)



25

Incorporating an exogenous component gives the V-ARMAX(p,g)

y t = II Qvec (yt) + U jvec (Ut) + II +  uf (1.3.12)

x t = [xht , x 2,t, ...,zm)t,eT]T (1.3.13)

1.3.2 Specifying the Objective Function

Assuming that the disturbances ut have a multi-normal distribution then the objective 

log-likelihood function is specified as follows,

6 = vec (no)T , vec (IIi)T, uec(Il2)TJ (1.3.14)

W E )  = ^/2Jn I s fexp ( ~ ^ yt ~  y )̂T S_1 (y« ~  y«)) (1.3.15)

Taking the logarithm of the multi-normal pdf yields,

lo g £ (0 ,£ ) =  —|n lo g  (27r) -  § log (|£ |) -  \  (yt - y t)TS _1 (yt -  yt) (1.3.16) 

For a sample set of r  observations, t G [1,..., r] the objective function is therefore,

T

£  (0) =  - | n r  log (2?r) -  | r  log ( |£ |)  -  (Yt ~  Yt |#)T E _1 (yt -  y t \6) (1.3.17)
t= l

Stationarity Conditions for the A R (p) Process

A series is said to be stationary if the consequences of any given event e eventually 

die out. For a univariate AR(p) process,

Vt = <piyt-i + V2Vt- 2  + -<Ppyt-p + <pce (1.3.18)
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The roots of the polynomial,

0 — tpiZ <p2 z2 +  ... +  <ppzp +  <pce

Must lie within the unit circle. Rewriting the vector AR(p) process,

yt = n T vec (yt) +  c +  u tnpxn

as the first step forward recursion of y f, then,

£*+1 — + vt

(1 .3 .19)

(1.3.20)

(1 .3 .21)

and,

Ct+inpxl

y t + 1

$npxnp

Vt
npxl

vec(y t+1) - \ i

[y*>y«-i> •••>yt-(p+i)]

c +  n T/i eTnpxl
n Tnpxn

I 0
n(p— l)xn(p— 1) n(p—l)xn

Ut 
0

n(p—l)xn

(1.3 .22)

(1.3.23)

(1.3.24)

(1.3.25)

(1 .3.26)

For an s-step ahead recursion,

€t+s — Vt+s +  ^ V f+(S_ 1 ) +  3? Vt+(s_2) +  ... +  Vt+ 1  +  3>S£t (1 .3.27)

For stationarity the effects of any given innovation of u t must die out after a finite 

number of steps. The common result is that for the AR(p) generating process of y t,
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the matrix 3>, must have all its eigenvalues within the unit circle. For an extended 

proof with slightly different notation see Fuller (1976) [101] or Hamilton (1994) [135]. 

S ta tio n a rity  C onditions for a  M A (q) P rocess

The stationarity conditions of a moving average process actually turn out to be much 

simpler than the AR(p) counter part, in fact any MA(q) process is in fact covariance 

stationary. Consider the rth auto-covariance matrix f2,

In a departure from the normal notation in the literature please note that, to

(1.3.28)

(1.3.29)

denote the rth rolling covariance matrix of the ith process.

r M =  vec (jUitt) vec (Ui,t)T (1.3.30)

(1.3.31)

(1.3.32)

If £  =  E  (yt — c) (yt — c)T is the variance/covariance matrix of u t, then formulating 

Qr in terms of the coefficients matrix II  and the covariance matrix,

y t =  n T vec (Ut) +  c +  u t
nqxn

(1.3.33)

n„ = nTz, (1.3.34)

(1.3.35)
nqxn
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As q —► oo then if each row of II  is sequence of scalars and tt* < oo then the 

MA(q) process will have ergodic mean and the variance will satisfy,

T

r Z y * < o o 1 (1.3.36)
\ t =i 
T

p  (y *Ty* ) <  00 1 (1.3.37)
t=i

The process will also have bounded fourth moments and in contrast to the AR(p) 

process the eigenvalues of the matrix,

are not bounded for stationarity.

1.3.3 N on-Stationary Vector Processes

Whilst non-stationary time series is not the major theme of this work, the continuous 

time stochastic covariance model has some intriguing results for the asymptotic the­

ory of non-stationary time series, in particular the local non-stationarity caused by 

the stochastic co-dependency, this section will very briefly describe the interrelation­

ship between multi-variate discrete time processes with unit roots and multi-variate 

Wiener processes. This section derives the discrete time non-stationary process.

The development of multivariate non-stationary models and the local non-stationary 

co-integration models has in many respects been the most important break though in 

modern econometrics. Formally introduced by Granger (1980) [119] and Engle and

(1.3.38)
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Granger (1987) [88], co-integration has an attractive appeal. A commonly observed 

feature of economic time series is that whilst particular indicators often exhibit uni­

variate unit roots, ratios of indicators are often stationary. Reviews of non-stationary 

vector processes, vector unit roots and cointegration, see Maddala and Kim (1998) 

[190], specialist book on this area. Philips (1985) in his article Time series regression 

with [a] unit root[s], gives the first systematic methodological approach to regression 

analysis of non-stationary time series models. Consider the multivariate difference 

data generating process,

yf =  &Tvec (T>t) +  &Tvec (yt) + c + u t (1.3.39)

V t =  [Ayt_ i,...,A yt_p] (1.3.40)

yt = [ y t - i . - .y t - J  (1.3.41)

The first difference operator A, operates over the vector process y t, and is defined as 

A y t =  yt — y t-i. If we assume that q = 1 can rewrite this in terms of first differences 

as follows,

y t = yt - 1  +  Ay t (1.3.42)

Ay* =  iJfTvec (Vt) +  c +  u* (1.3.43)

By implication a multivariate unit root, process is defined as a simple extension of 

the univariate equivalent as follows,

y t = ^ Tvec (Dt) +  Iy t-1 +  c +  u t (1.3.44)
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A review of underlying multivariate vector processes cannot be complete without 

reviewing the concepts of state space models and co-integration. The literature on 

Kalman filters and co-integration is vast, this section will cover some of the key points, 

which will be used briefly in chapter 3, the review will cover, much of the intuitive 

findings and again will cover co-integration from the standpoint of detecting unit 

roots and various tests

1.3.4 M odels w ith Dynam ic Coefficients: The Kalman filter 
approach

The approach of the discrete time state-space model forms the basis of the methodolo­

gies used in Chapters 4,5 and 6. In many respects this follows the deductive reasoning 

that led to the ARCH model, Engle (2003) [91] discusses the development of this 

model and explains how its derivation was a product of work on the Kalman filter as 

an attempt to explain the Friedman conjecture on inflation and business cycles. In 

this case the ARCH model described the evolution of a process with one unobserved 

time varying parameter, the volatility.

For the purposes of this thesis, the majority techniques will use inferred state spaces 

to model dynamic dependency in the first, second and order higher moments of dis­

crete and continuous time stochastic processes. Appendix IV offers a new innovation 

in multivariate time series modelling using a random matrix recursive coefficients ap­

proach, this model is then utilized to model the interactions of a set of global market
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indices and sheds new light in the decoupling of Hong Kong from the global market 

during the asian monetary crisis in the late 1990s. Before moving onto the more 

advance state space model, the chapter will derive the basic state-space model, con­

centrating on the recursion mechanism, which will be applied at several points in the 

remainder of this thesis.

The Kalman filter model, Kalman (1960) [159] has been extensively used in mod­

elling economic and financial time series since being adapted from the signal process­

ing literature in the late 1970s and early 1980s. In the continuous time literature 

the Kalman-Bucy filter, Bucy and Joseph (1968) [46], is a one dimensional linear 

filtering method, which is the direct analogue of the discrete time Kalman filter. By 

products of the methodology are the ARCH/GARCH family of volatility models and 

the random coefficients ARMA(p,q) models. The Kalman filter approach allows for 

exact identification of the maximum likelihood estimates of the model and is in gen­

eral a very effective method of smoothing time series with Gaussian noise white noise. 

Because of the mathematical rigor applied to the recursion process in Kalman filter 

models, this approach maybe used to identify the exact maximum likelihood specifi­

cation of vector-ARMAX processes, like those used in the previous section. Another 

attractive feature of the Kalman filter is the use of an unobserved variable of the state 

space operator, a concept which shall be used extensively in chapter 4, the recursion 

structure in chapter takes its inspiration from the Kalman filter approach, applied
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to matrix autoregressive processes. The Kalman filter has found many applications 

in finance and the main theoretical underpinnings provided the foundations of Engle 

(1986) [92] univariate ARCH model. Earlier work on Kalman filters can be traced to 

Duncan and Horn (1972) [147] and Anderson and Moore (1979) [8]. Harvey (1989) 

[141] looks at the Kalman filter approach with non-normal disturbances and Maddala

and Kim, (1997) and Hamilton (1994) [135] offer extensive derivations of the Kalman

filter approach.

D erivation o f th e  S ta te  Space K alm an F ilte r

This derivation follows closely the main Kalman filter literature and takes its direction 

and notation from Ristic, Arulampalam and Gordon, (2004) [224] which is the major 

engineering reference on the topic. For econometricians Harvey (1989), Hamilton 

(1994), Magnus and Neudecker (1998) [191] and Harvey and De Rossi (2006) [228] 

all offer useful derivations similar to the one presented here, however neglecting much 

of the useful properties of the recursion. Consider a vector equation system consisting 

of an unobserved state vector, and an observed vector process y t, assuming linear 

updating then the following state space and mean equations characterize the model,

V't+i = n 0 rl>t + v t+i (1.3.45)
(mxl) (mxm) (mxl) (mxl)

y t = A T X* +  \I>T l(jt+i +  Ut (1.3.46)
(nxl) (nxk)(kx 1) (nxm)(mx 1 ) (nxl)

Where, is an m  x 1, vector of state spaces, x, is a k x 1, vector of exogenous

variables, A, IIo and are matrices of parameters, Ut and v t are respectively n x l
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and m x l ,  vector disturbance processes. The expectations of this process are defined 

below,

f  f I t  =  T
E ( x tV?) = I (mxm) (1.3.47)

I 0 t * T
( S  t  = r  

£ ( u tuT) =  { (nxn) (1.3.48)
I 0 t + T

E (vt\ i?) = 0 (1.3.49)

Assuming that the state space is uncorrelated with the realizations of the vector 

process y t, then the following set of relations hold, see, Maddala and Kim (1997) 

[190], Hamilton (1994) [135]

= 0 (1.3.50)

E (  utipj) = 0 (1.3.51)

£ e  [1,-r] (1.3.52)

ipt — + n 0vt_! + iio2Vf_2 +... + iV  2V2 + n 0f 1ipi (1.3.53)

E ( v tt f )  = 0  t  =  [1, T]  (1.3.54)

E ( u t^ )  = 0 r  =  [£ — 1, £ — 2,..., 1] (1.3.55)

E  (vtYr) =  0 t  =  [£ -  1, £ -  2,..., 1] (1.3.56)

E  (uty?) = E  (u f (ATxr +  +  u r )T) (1.3.57)

=  0 (1.3.58)
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In the notation previously introduced the Kalman filter is derived as a recursion of 

the past projections of y* on y t.

4 m *  =  £ ( 4 m t l * « )  (1-3.59)

= [ y t ,y t - i , - ,y i ,x t,x t_i,...,x i] (1.3.60)

The error of the projections of the state spaces are as follows,

Pt+i|t =  E  ~  (^Pt+i ~  $t+i\t)  ^ (1.3.61)

One of the benefits of the Kalman filter is that it allows the derivation of the exact

recursion sequence for a vector process and as a consequence of this recursion it is

possible to construct exact identification of the structure of the maximum likelihood 

estimates, starting at the first iteration,

&|o =  (1.3.62)

Pi|0 =  £ j((v < i- £ ? ( & ) )  ( * - £ ( * ) ) T)  (1.3.63)
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Moving into the forward recursion of the state space operator, with vectorization, 

(Magnus and Neudecker (1998) [191], results in the following,

E('ipt+i) =  n 0 (E tyt)) (1.3.64)

( i - n o  )E(ti>t) = 0 (1.3.65)

E  (^t+i^t+i) =  E  ((IloV’t +  vt+i) {U0ipt +  v f+i)T) (1.3.66)

=  n o ( JB ( ^ i + i ^ 1) ) n 0T +  £ ;(v t+iv tT+1) (1.3.67)

M ., =  IIoM cri/)IIoT + (1.3.68)

vec (M ^ ) =  ( i - ( n o ®  no))-1 .wee (n) (1.3.69)

vec (P i|0) =  ( i - ( n o 0 n o))"1.uec(n) (1.3.70)

Once the recursion of the state space operator is defined then the projections of y t 

may be iterated,

E(i>t \xu Xt ) = E t y t  \Xt) (1.3.71)

=  (1-3.72)

ytlt-i = E (  y t \xt,X t ) (1.3.73)

=  A TXj +  (1.3.74)
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The law of iterated projections then guides the derivation of each step ahead projec­

tion of yt,

y t\t- i  =  A Txf +  \&T (E {'tpt |xf, Xt )) (1.3.75)

=  A Txt +  ^ T^ |t_i (1.3.76)

y t -y t |* - i  =  A Txf + +  u t -  ATxt +  (1.3.77)

=  4-T (v>,-Vit|(- i ) + u ( (1.3.78)

The squared errors of the projections are then defined as simply,

e  ((yt -y * it - i)  (y< - y t | t - i ) T)  =  e  1 ) )  (1.3.79)

+E (utu j )

E  (ipt -  ^ ^  +  £  (1.3.80)

The structure of the iteration sequence of 4>t\t > conditioned on the past projections of 

yt and the innovations of Xt is defined as,

$t\t =  E(ipt \yu x u Xt ) (1.3.81)

=  E ^ t \Xt ) (1.3.82)

$t\t =  $t\t-i +  ( e  ((ipt -  (y* -  y t |t- i)T) )  (1.3.83)

( e  ( ( y t -  y t\t-i) (yt -  y t |t- i)T) )  (yt -  y t|t-i)
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Therefore,

E  ( ( ^  -  V 'f i t- i)  ( y t  -  y t | t - i ) T )  =  E ^ t -  V ^ t - i )

(ij)t -  'tptit-i)  +  u t) ^ (1.3.84)

=  E  ^ (t/;t -  $ t\t- i)  fa t  -  iptit-i)  ^ 3 .8 5 )  

=  P t | t - i*  (1-3.86)

and the projection of the state space operator is therefore,

V>t|i =  4>t\t-i (1.3.87)

+ P t|t_ !»  (« 'TP,|,_1 *  +  S ) -1 (y, -  A tx, -  * TV>,|(- 1)

Updating the mean squared error of the state space vector, results in the following,

Ptit =  £ ( ( v > t - * | t )  (v > t-^ t |t)T)  (1.3.88)

=  E ^ f a t -  )  fa t -  ^ | t_ i )  ^ (1.3.89)

- E  ^ t  -  $ t |t- i)  fa t -  $ t |t- i)  ^

E  ( ( y t  -  y t | t - i ) ( y t  -  y t | t - i ) T )  

E  ( ( y t  -  y t | t - i ) ( y t  -  y t | t - i  ) T )

-  Pt|t_i - P t i t - ^ ^ P t i t —1^  + S ) " 1^ TPt|t_1 (1.3.90)
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Forecasting the forward recursion of the state space vector,

4>t+nt = E(i>t+1 \Xt ) (1.3.91)

=  n 0 ( E ( t t \Xt )) + E(-vt+1\Xt ) (1.3.92)

=  IIo 4 |t + 0  (1.3.93)

i ’t+m = H-oi’tit-i + IIo  (lPt\t-i^  ('^rTPt|t—1 + S ) (1.3.94)

(y f - A Txf - # T̂ |t_1) )

Kt =  nop*,*.! ^  ^  +  S ) _1 (1.3.95)

$t+i\t = Ih $ t \ t - i  +  K t ( y t -  ATxt -  (1.3.96)

and then update the projection error of the state space vector, for each step ahead,

Pt+l|t =  E  (j^Pt+1 — ( i ’t+l — 4 h |< ) T)  (1-3.97)

=  E  ( ( u 0i>t +  Vt+ 1  -  IloV’tit) (noV>« +  v,+i -  n 0vi(|()  )  (1.3.98)

=  n „ £  ( ( &  -  ( *  -  ^t|t ) T)  n „ T +  E  (vt+1vtT+1) (1.3.99)

=  n 0p t|tn 0T +  n  (1 .3 .1 0 0 )

The final update is therefore,

Pt+i|t =  Ho ^Pt|t—1 — P t|t—1 ̂  (1®rTP t|t- i 1̂ r +  S ) 1®rTP t|t_i^ IloT +  17 (1.3.101)

and then for s-steps ahead,

xt =  [yt-i>y*-2 ,- ,y i ,X i_ i ,x t_2,...Jxi] (1.3.102)

V7t+s =  n 0> t  +  n 0s +  IIos 2vt+2 +  ... +  IIo1Vt+ s —1 +  Vt+S(1.3.103)



The expectations of the s-steps is therefore,

= n 0sv>,

4>t+s\t =  E(ipt+s\Xt )

= n  0> t]t

and s-step error is therefore,

ipt+s -  $t+8\t = IV  {y>t -  $ t\t) + n 0s_1vt+i 

+IV  2vf+2 +... + n 01vf+s_i + vt+s

p t+,it = n 0sp tlt ( i v ) T + u 0s ln  ( i v -1)T

+n05"2fi (n0s-2)T +... + n 0fm0T + n

y t+s = A Tx t+3 +  1$fT^t+a +  u t+s 

y t+s|t =  E { y t+a\Xt )

=  A Txt+s|t +  

y t+s -  y t+8\t =  (ATxt+s + &Til>t+a +  ut+s) -  

A Txt+s|t +  ^ Tipt+S\t 

= (ipt+s -  i ’t u t )  +  u t+s

which yields,

E  ( (yt+a -  yt+s|t) (y t+s -  yt+s\t)T) =  ^ TP t+s\t ̂  £
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(1.3.104)

(1.3.105)

(1.3.106)

(1.3.107)

(1.3.108)

(1.3.109)

(1.3.110)

(1.3.111)

(1.3.112)

(1.3.113)

(1.3.114)
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From the recursion of the model, the maximum likelihood estimates for a Gaussian 

objective function is as follows,

y e |xt, X t ~ N  ((a t x ( + * T^ |e - i )  , ( * TP ,|(- i *  +  E ) )  (1.3.115)

Which yields the likelihood function,

—n  . 1rTi
£ y t [ x „ x , ( y t \ x t , X t )  =  (2x) 2 I*  Pe|e-i ^  +  E | 2

exp ( - §  (y t -  A tx( +  * T4 |t - i )

( * TP t|,-i 4- + E) (y, -  A tx, +  9 % ^ )  ) 

t  €  [ l, . . . ,r ]  (1.3.116)

Summation over the sample period [1,..., r], the log likelihood function reverts to the 

familiar objective function maximization,

£  (0) = - \n r  log (27r)
T

- i £ l o g | * TP t|t_1®' +  E | +
t= 1

(y* -  A Tx t +  )

( tfTP t | t - i * +  E ) " 1 

( y t -  A TXt +  ^ T^t|t_ i)

6 = ^vec ( ^ ) T , vec (A)T , vec (IIo)T

(1.3.117)

(1.3.118)
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1.3.5 M odels w ith Recursive Coefficients State Space R-V- 
A R M A X  m odels

The basic Kalman filter representation and model updating maybe extended to form 

a rich class of models with dynamic coefficients with random effects. The basic 

univariate discrete time recursive ARX model is as follows,

yt = b j z t + u t ( 1.3 . 119)

b f  =  I I q  b f _ i  +  Vt ( 1.3 . 120)

z< -  [X t , 1] T ( 1.3 . 121)

Here the coefficients h t exhibit a first order vector autoregressive process. This sim­

plest model sets IIo = I, and treats each coefficient as a random walk. The multi­

variate extension of the basic state space representation introduces a practical use for 

random matrix processes,

y  t
n x l

=  A j  z t +  <I>T
mxnTnx 1 ^x n fcxl n x l

( 1.3 . 122)

A t
m x n

=  m a t  ( a t ) 
\ m n x l  J

( 1.3 . 123)

a  t
m n x l

=  n j  a * _ i  +  Vf
mnxmnmnx 1 m n x l

( 1.3 . 124)

fa
fcxl

=  n J V t - i  +  w t
kxk kx1 fcxl

( 1.3 . 125)

Zt = vec  (3^ ) T , vec  (X t)T
T

( 1.3 . 126)

There are now two state space vectors, ai and (although they maybe treated 

as one under some specifications) the first is a matricized vector process for the
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coefficients and the second is the adjustment coefficient (sometimes referred to as the 

scale coefficient in the signal processing literature, see Grewal and Andrews [123] 

for a review of univariate specifications). Each disturbance term Uf,vf and w t are 

assumed to be drawn from a multi-normal distribution, with no autocorrelation, the 

overall disturbance is therefore,

E  (utuT) 

E  (vtvT) 

E  (wtwT) 

6
(n(l+m)+fc)xl

(t

£t

S , r  =  t 
0 , t /  t
f i , r  = t
0 , r ^ t  
S  ,T = t 
0 , T ^ t

= [u,T,v tT, wn '

E 0 0
o n  o
0 o s

1
A2 £t

(n(l+m)+&) x (n(l+m)+A;)

JV i o I
(̂n(l+m)+A:) x 1 (n(l+m)+A:) x (n(l+m)+A;)

1.3.127)

1.3.128)

1.3.129)

1.3.130)

1.3.131)

1.3.132)

1.3.133)

Appendix IV uses the recursive approach to model stock market integration and re­

sponse to cross market shocks. The Kalman filter approach, as an econometric tool 

in the modern finance literature, has been used recently to evaluate dynamic market 

models in Zalweska and Grout (2003) [124], where the dynamic coefficients are used 

to estimate the evolution of stock price beta’s. The use of state space representations 

are used in the identification of volatility models in Javaheri (2005) and by Chen,



Huang and Lin (2005) [104] to analyze stock market bubbles. Relaxing the normal­

ity assumption in the estimation of the model has been achieved in two ways, first by 

maximum likelihood estimation under different distributional assumptions e.g. the 

multi-t distribution, see Harvey and De Rossi (2006) [228] and second by GMM esti­

mation, i.e. setting objective theoretical moments from some system of disturbances 

and minimizing the parameter vector in terms of these moments over the sample, 

this is an appealing approach as it is possible to over-identify the variables in x and 

the length of the state-space vector 'ipt and begin to restrict both accordingly using 

Hansen’s (1982) [137] x 2 test. GMM estimation of random coefficient ARMA models 

will be covered in section 6.2.

1.3.6 M aximum Likelihood Estim ation

In order to construct robustness and parameter restriction tests for the models out­

lined an understanding the implications of various parameter specifications and the 

asymptotic properties of maximum likelihood estimates of the k length parameter 

vector 6 . Consider the following notation for a partitioned Jacobian matrix,
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For a log likelihood function, £ t (6 ) =  log $ t (0), where

t € [1,2, ...,r]

9 = [6 U .. , ^ ] T

The objective function for a given distribution is,

(1.3.136)

(1.3.137)

=  n & w
t= 1

T

£ (e ) =  iog(ff(e)) =  ^ i o g ( 5 t (e))

(1.3.138)

(1.3.139)
t= i

Taking the first derivative of the likelihood function gives the following gradient vector 

of partial derivatives,

V£*(0) =
d £ ( 0 ) d £ ( 0 )'

dOi
(1.3.140)

Taking the second derivative and forming the hessian yields, 

£ t ( 0 ) = V 2£,(0) =

a2£(fl) _  ̂# a2£(e)
dOidOi d$i dd'y

d2£(0) 
80790i

d2£{0) 
d61d61 j

(1.3.141)

From the Hessian the information matrix, see Magnus and Neudecker (1998) [191] is 

defined as,

E  = 3t (d) = -E (S)(e ))  (1.3.142)

The asymptotic information matrix is therefore,

Eoo =  3ooW =  Km -  &(0)
t—*oo \  T

(1.3.143)
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The previous section derived the Kalman filter and it now provides us with the three 

basic specifications for maximum likelihood estimation, with a multi-normal/Gaussian 

objective function, first one with parameters affecting the conditional mean only, sec­

ond one with overlapping parameters in mean and variance/covariance and finally a 

specification with separate parameters in mean and variance/covariance. The impor­

tance of the second and, in particular, third specifications will be shown in the next 

section on MV-ARCH/GARCH models. In their core text on the subject Magnus and 

Neudecker (1988,re 1999) [192] [191], bring together the work of Norden (1972) [211], 

Cramer (1986) [60], Holly (1988) [145] and Magnus and Neudecker (1980) [191], 

whilst the origins of this methodology dates back to Fisher (1966). The interested 

reader is directed to Srivastava (2002) [241] for a modern treatment, with accessible 

explanation and to Magnus and Neudecker (1999) [192] which is the main resource 

on this methodology. Consider the following general model, where fit and £ f are the 

conditional mean and conditional covariance, based on some set of parameters,

i
Yt — Ht (9)  +  (S f (6))  2 e t 

6 e  0  

e t ~  N  (0 ,1)

(1.3.144)

(1.3.145)

(1.3.146)
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In  m ean only m odels

Now consider a model whereby the covariance matrix is y t £ Mn and is ergodic, i.e.

p  {y jy t  < oo) =  1 .

S , =  So (1.3.147)

Therefore the covariance matrix for each vector draw from the sample is identical, 

So and conditionally invariant. For a sample matrix of observations of y t, i.e. y T — 

Y t  where t £ [l,...,r],

Y  -  [y i ,- ,y r ]T 

M  =  [/z1( ^ ) , . . . , /.T( n ] T 

U =  Y - M

£(0M) =  - |(n r lo g (2 7 r)  +  n l o g |E |+ t r ( U S - 1U T)) 

= min ( |  tr (U S _1U T))

(1.3.148)

(1.3.149)

(1.3.150)

(1.3.151)

(1.3.152)

We can now set up a constrained quadratic optimization problem, by imposing the 

following constraints, M q =  0 and a TS a  =  1, where a  € Rn is some unknown vector 

in the kernel of £ , the lagrangian function is therefore,

0  (0M) =  I tr (U S -1U T) -  \TM a  -  I (aTE a  -  l) (1.3.153)



47

Where A =  [i v r  , is a column vector of lagrange multipliers. The elements of the 

information matrix, E, are therefore,

(1.3.154)

Prom the Cramer-Rao inequality, see Cramer (1986) and for modern applications see 

Williams (2006), the inverse of the information matrix E -1, is utilized as follows,

Therefore, if =  diag (E x), then y/si is the standard error of the ith parameter.

1.3.7 R estriction Tests under M iss-specification

Another important use of the information matrix is in defining restriction tests, under 

model miss-specification. Consider the following example, if the density function 

of the model disturbances is drawn from a finite mixture distribution, i.e. y t — 

g,t = u t, where £  (ut) =  ^2=i (0, Si), 2"= i <*» =  1 and $(.), is the multivariate

normal density function. Foutz and Srivastava (1979) [98], suggest that under mild 

conditions, e.g. n = 2, and (— log |E i| +  log ( |S i| +  |S 2|)) > ot, the following test 

maybe used to test for over-identified parameters.

c (1.3.155)

C -  N  (0, S _1) (1.3.156)
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Over Identification under M odel M iss-Specification

Consider the following partitioned parameter vector 9 — [9j, #J]T, where 9i is the

true parameter vector and 02 is a vector of over identified parameters. For example

and q, over-estimated parameters, if the evaluated log-likelihoods, over t £ [1, 

of the restricted and unrestricted models are, $3t=i W  — Q and Ylt=1 (^1) =

the eigenvalues, A* G {Ai,..., Xp+q}, of the unrestricted information matrix Eu = 3 (9) 

maybe used to test the restriction of 9 against 6 1 . Foutz and Srivastava (1977) suggest 

the following likelihood ratio test,

Where <p E L i  A«x‘ (v = 1). Using this result, a hypothesis testing algorithm 

maybe designed for restrictions for over-identified models with possibly miss-specified 

distributional assumptions, in this case the density function being drawn from a mix­

ture of zero centered multi-normals. If the distribution is drawn from a distribution 

where a = 0, then the over-identification algorithm maybe defined as follows,

of degrees of freedom. When 0 < a < — \  (—log |E i| -h log(|5^!| +  |S 2|)), then the

if 9 = [9j, #J]T is the unrestricted parameter vector, formed by p true parameters

2 (log (g) -  log (0 1 )) =  ip (1.3.157)

ip>(f)(v = q,P) 
(p<(f)(v = q,P)

(1.3.158)
H i  : 9 =  9i

Where 4> is the inverse cumulative x 2 density function P  G [0,1] and v is the number
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following test maybe employed,

h q : 6 = [e j ,e l )T v > Y ! L \ =  r i 3 1 5 9 ^
H1 :e = e1 ^ < E L i A i 0 ( ^  = i,p)  ̂ ;

The eigenvalues of S  in effect weight the restrictions in order to account for the 

miss-specification of the density function.

M ean and  V ariance M odels w ith  Separa te  P aram eters

We can now generalize the previous method to problems involving conditional pa­

rameterization of the covariance matrix, consider 1.3.147, now assuming that the 

covariance matrix is conditioned on some set of parameters independent of the mean 

equation parameters,

y* = +  (1.3.160)

e  =  [ ( ^ ) t , ( 9 " ) t ] T (1.3.161)

6  € 0  (1.3.162)

et ~  IV (0,1) (1.3.163)

This is a specific case for various types of MV-GARCH models whereby the con­

ditional variance/covariance matrix is based upon a different set of parameters to 

the mean model, however the residuals from the mean model feed directly into the 

volatility model. As such the normal parameterization of multivariate ARCH models 

is done in two steps, first a mean model is constructed with time invariant covariance
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matrix and the residuals extracted. To these residuals a volatility model is then fit­

ted, with the assumption that the mean of the residuals is now restricted to being 

unconditionally zero.

Mean and Variance M odels with Overlapping Parameters

The final specification relies on models whereby the first and second moments are 

described by processes with parameters common to both. Consider,

the mean equation, the variance equation, and those that overlap, the 

maximum likelihood estimator of 0 , is therefore obtained by,

(1.3.164)

where, 0  = > here the subscripts represent the parameter belonging to

0 =  utS (“ (1.3.165)

where, the residuals are set out as,

ut =  yt  -  f t  ( ^ ,2 ,0?) (1.3.168)
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The information matrix is therefore,

F / / , / x£  F me 5/x£  F ^ e

0 F s )Ms  F s s
(1.3.169)

where,

-  f:d j i x /dii(ô ê y
m* )  \  Mu .

(1.3.170)

F^ s  \  de„ j  \
fd\i(gM,gM,s)\ T ! / d\i(ô ê y

F ^S ,/xS  ( o/i
\  c't///,s y \
+ , ( ( a u e c S P U ft ,) )  wec(s)T ( s _. a  ^  ^ j g = ^ ) v e c

=  1 ( ( ^ . ^ ) . e c ( s n s - . s - 1) ( ^ ecS^ ’^ ) t,ec(S )T)

F E E  =  1  ( ( a p e c S £ 8 ’ ^ ) )  v e c ( S ) T ( S -  8  S - 1 )  ( f t ^ ^ r . f a ) )

(1.3.171)

( dvec£( 0 » ,es ) \ v £c(s)1 
V C^e /

This is the generalized asymptotic information matrix for all multi-normal specifi­

cations and forms the basis of the restriction tests utilized hence forth. Neudecker 

and Liu (1993) [208] demonstrate that the asymptotic variance matrix, © =  is 

positive definite, therefore yielding positive standard errors for 9 G Md, where d is the 

length of 9 and t G [1,..., r]. This system then stands as the de-factor estimation for 

all specifications of the form,

y t ~  N  (iit , |0) (1.3.172)

i.e. for all linear and non-linear, multi-equation regression models.
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1.3.8 Random  M atrix Processes

In section 1.2.5 a random non-negative matrix was generated from a normally dis­

tributed random vector, using the ivech transformation and the outer product of 

a matrix with its transpose. (Note in this section the assumption is that all ma­

trix products are normalized, i.e. if diag (XTX) e, then the product A = XTX  

is redefined as |A  = B x qqT; B = XTX; q = [y/Wi~l\ nx1 5 P = (XTX) j). Now 

consider the zero centred sample of observations, generated from some covariance 

matrix, E, U { = {u i,...,u T}, where ut ~  N ( 0, E). The r  x n data matrix 

U, where U =  matUn  T\ , is then a matrix of multi-normals, which may then be
rxn *

defined in terms of an r  x n matrix of independent standard normals, E  and the up-
i l

per triangular (Cholesky) factorization, E 2 , of the covariance matrix as U  = E E 2 ,

asymptotically as the number of observations tends to infinity then the estimated

matrix, E , tends to the generating non-negative definite matrix E, more specifically

the following derivation (see Srivastava and Khatri (1979) [242] for more details)

illustrates how the uncertainty in estimates of a covariance matrix maybe derived in

terms of the uncertainty parameterizing the standard normal distribution.
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S ystem atic  C onvergent V ariability  in E stim atio n  of th e  Covariance M atrix

Consider a r  x  n data matrix E with elements drawn from a standard normal distri­

bution with the following properties,

E =  [e]TXB

M r x n  ~  * ( 0 , 1 )

E =  [e?,...,e£]

E  = [(£;)t , ( 4 ) '

ec ~  JV (0 , I
\  TX1

er ~  N  f  0, I
y nxn,

i  =  e te
n x n

I —> I : {t —> oo}

(1.3.173)

(1.3.174)

(1.3.175)

(1.3.176)

(1.3.177)

(1.3.178)

(1.3.179)

(1.3.180)
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Therefore defining a multi-normal data matrix U  in terms of E, recalling that u  =

e £  2 ,

u =  E £2

E  (utu j ) -  £

A II H

u  t ~  J V ( f tS )

£ =  U TU

£  =

£  =

£  -►

E £2  i E £2

/  i \ T I r( s n  i s 2 = ^ u (u?
'  '  t= 1

£  : {t —>oo}

(1.3.181)

(1.3.182)

(1.3.183)

(1.3.184)

(1.3.185)

(1.3.186)

(1.3.187)

(1.3.188)

Therefore given repeated draws of the data matrix E, the estimates of the matrix
A
£  will be distributed with a Wishart distribution £  ~  W  (£ ,r ,  A), more extensive 

coverage of the Wishart distribution and it’s moments is given in Kollo and Van 

Rosen (2005) [170] and Muirhead (2005) [202].
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1.3.9 Variability in the Quadratic Form

Consider a n n x l  vector a , where a  ^  0, for a non-negative matrix, E  =  U TU, the 

distribution of a TE a, for a set of random draws of the data matrix U  is as follows,

a TS a  =  a2 (1.3.189)

a TEa: =  a\ 2 (t) (1.3.190)

Where x 2 (r ) is a X2 distribution with n degrees of freedom. If fi ^  0, then a TS a  

is distributed with a non-central x 2 distribution with re-centering parameter S = 

trace (///i)T. Given that the matrix E  is drawn from a distribution of matrices, much 

like the sample variance is drawn from a distribution of variances and the fact that 

the distribution of the scalar a TS a  is drawn from a x 2 distribution the Wishart 

distribution is often thought of as a multivariate x2 distribution. However this is 

not strictly the case as to be considered a pure multivariate analogue each marginal 

distribution (single dimension projection of the multivariate density function) must be 

the univariate analogue, which in this case it is not. If each observation of the sample 

u f is drawn is multi-normal then the sample covariance matrix is drawn from the 

Wishart distribution. If the distribution u t ~  N  (//, E), and fi = 0, then the matrix

E, is drawn from the central Wishart distribution. If /x ^  0, then the non-central
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Wishart distribution, of E  is,

e x p f - t r f s - 1^ ) )
3 (* u )  =   i , , r V )J~ (1-3.191)

22n(n"1) | E | 2 r  n ( | r )

r „ ( H  =  7rl"(’- 1> n r ( i ( r  +  l - f c ) )  (1.3.192)
k — \

r ( i ( r + l - f c ) )  =  ( l ( r  +  l - f e ) - l ) !  (1.3.193)

where 3  is a fixed non-negative matrix and maybe estimated via maximum likelihood. 

Extending the expectations operator from a vector to a matrix process.

=  U t (1.3.194)
1 ....... t - 1 }  1 V ’

E ( V t) = 0 (1.3.195)
n x n

U t -  W ( £ ,t) (1.3.196)

This is very useful to as we can specify a matrix process for covariation, consider the 

simple stationary sequence of covariance matrices generated by the following process,

H* =  A x H  t-i +  Et (1.3.197)

~  W { Q , t  = v) (1.3.198)

Whilst it is possible to think of the E t term as analogous to a normal disturbance 

term, the stationarity conditions are somewhat different, first the diagonal elements 

of E t, are always positive by definition and as such the diagonal elements of the

parameter matrix are bounded to 1 > diag (A) > 0, and to ensure Ht is non-negative,

the parameter matrix A, must also be non-negative. The degree of variation in the
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covariance matrices, i.e. E ( E f — f t  |v), in 1.3.191 the variable t is the number of 

observations from the data matrix U, and as r  —»• oo, the matrix E  —► E. Now the 

generating matrix is f t  and as the velocity of the convergence is dependent on the size 

of the determinant |f2| and the effective sample size r  = v. The quadratic variability 

of the matrix is the second moment of the matrix process which is defined as follows,

E  ((0 1 ,1,t — ^ 1,1,t) (S t — ft)) ••• E  ((<7i,n,t — UJifnyt) (Et — ft))

E  (^ i — ^ ))  ' ' ' E ((crn^ t — U)n,n,t) ~  ^ ))

Random matrix processes are usually defined in terms of the matricized vector pro­

cess, however it is often necessary to ensure non-negativity in the random matrix, 

something which is often very difficult to build into a vector process without compro­

mising the degree of variability in the resulting process.

Exam ple of a  Set of B ivaria te  N orm al R andom  D raw s

A simple empirical test of the Wishart distribution requires the generation of multiple 

sets of draws from a multivariate normal distribution, then comparing the inner prod­

uct aSQ, to the anticipated y2 distribution using the Kolmogorov-Smirnov test. The 

distribution of the three unique elements of the estimated 2 x 2  matrix E, from 500 

experiments, with sample sizes varying from 10 to 10,000 in length. The distribution 

of the scalar a TE a



Brvanate Normal Density Plot

0.015

Figure 1.1: A Contour plot from one draw (10,000 observations) of a bivariate normal 
data matrix.
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Distribution of Diagonal Element o , y, from 10,000 repeat draws from mufti-normal samples
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Figure 1.2:
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Distribution of Off Diagonal Element c 12, from 10,000 repeat draws from multi-normal samples
14
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Figure 1.3:
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Distribution of Diagonal Element a2 2< from 10.000 repeat draws from multi-normal samples

 Sample Size t ■ 10
 Sample Size t  -  50
 Sample Size t  -  100

 Sample Size t  ■ 150

Abscissa Values of Diagonal o2 2

Figure 1.4:
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EmiricaHy estimated distribution of a T I  a  versus a  %2
0.1
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j 08

0 07

0 .06.

I
0 05

0.04

o 08

0 02

0.01

o

Figure 1.5: The empirically estimated distribution of a TS a , blue, versus the antici­
pated x2(v) distribution, with appropriate degrees of freedom. This is taken from a 
simulation using 10,000 repeated experiments from a multi-normal data population, 
of length 10. The plots are very nearly convergent, demonstrate the Srivastava and 
Khatri proof, (1979).
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Diagonal Elements of H(

Ni.,

Figure 1.6: The evolution of the diagonal elements of the matrix process H* 

Exam ple of a Simple 3 x 3  Dynam ic W ishart M atrix  Process

Using the matrix process from 1.3.197, with D =  I and v =  n +  1, for a tri-variate 

system figures 1.6 and 1.7 illustrate the evolution of the diagonal and off diagonal 

elements.
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Off Diagonal Elements of H(1

o

0

-0 .5
1600 1800 2000200 400 600 800 1000 1200 1400

Figure 1.7: The evolution of the off-diagonal elements of the matrix process
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1.3.10 Estim ating a W ishart Autoregressive Process

The final part of this review of random matrix processes looks at estimating the model 

proposed in 1.3.197, consider an autoregressive matrix process whereby the

A =  ivech I a  I ivech I a  1 (1.3.199)
\  |n (n + l)x l I \  ^n(n+l)xl I

E t ~  W ( n , v )  (1.3.200)

0  = [aT,u ]T (1.3.201)

Therefore the maximum likelihood problem maybe specified in terms of the following 

constrained optimization problem,

log (£(#•)) =  max (log ( f j 5  (Ht -  A x H ,^  \d)j  J  (1.3.202)

=  mjUc ( ^ ; io g ( 5 ( ( H e - A x H i_1) |e ) ) )  (1.3.203)
e \ t = i

Where $  is the Wishart density function, from 1.3.191. Kollo and Van Rosen (2005) 

[170] and Srivastava (2004) [241] show that $  is twice differentiable and as such 

should have a global maxima for most problems. Using the vector of likelihood scores 

the expectation of the Hessian maybe computed, and the diagonal of the Cholesky 

factorization of this matrix provides the model standard errors.
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1.3.11 Empirical Example: Estim ating A W ishart Auto-regression  
of the Conditional Covariation of a Vector of Equity  
Returns

Consider a subset of raw equity returns, y t, chosen at random from the S&P 500 

cross section. Assuming that the quadratic covariation of the returns is a Wishart 

Autoregressive process, then it is possible to postulate the following auto-regressive 

model of instantaneous autoregressive covariation,

l
y* II a 01 (1.3.204)

H t —  A x  H*_i S* (1.3.205)

A =  ivech (a) ivech (a)T (1.3.206)

s t ~  w ( n , v ) (1.3.207)

Where et ~  N (0,1) and A  is non-negative definite, via A  = ivecha.aT. Of course by 

not including all the other elements in the market, the model is incomplete however 

for practical purposes this model will be restricted to a 10-variate system. The price 

and return processes for the chosen assets are as follows, to visualize the variability 

in quadratic covariation, the evolution of the Eigenvector zeta* of the matrix formed 

by the outer product y t y j  is illustrated in figure 1.9, the largest Eigenvalue clearly 

dominates the rest, this is indicative of a very dense matrix.
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Firm Value Index (1-1. y-100)

Figure 1.8: The Indexed value of the randomly chosen stocks from the S&P 500.
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Figure 1.9: The Evolution of the Eigenvector of the instantaneous Quadratic Covari­
ation of y t
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Concluding Remarks on the W ishart Distribution and RM T

The most comprehensive review of the Wishart Distribution and its properties are 

in Kollo and von Rosen (2005) [170] and more formally in Muirhead (1982) [202], 

basic financial applications of the Wishart Auto-regression model maybe found in 

Gourieroux and Sufana (2004,2005) [118] and Gourieroux, Jasiak and Sufana (2004) 

[116]. The Wishart Distribution is also useful in testing the uniqueness of estimated 

covariance matrices, several tests based around the characteristics of the distribution 

to test for example an estimated covariance matrix £  «  I, which is very useful in test­

ing the effectiveness of dimension reduction techniques such as principle component 

and factor analysis methods. Srivastava (2004) [241] reviews the Wishart distribu­

tion in association with a variety of variance reduction techniques. The approach 

to the derivation of 1.3.8 is the foundation to the approach taken to understand the 

asymptotic convergence of the most common matrix processes found in finance, the 

MV-GARCH family, to which the next section is devoted.
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1.4 A  B rief R eview  o f C ontinuous T im e M odels  
and A pplications

Up until a series of articles by Merton in the 1970s the finance/economic time series 

literature was dominated by discrete time dynamics. Discrete time systems have a 

great deal to offer. First and foremost they are easy to characterize and almost all data 

is discrete data. Second they exhibit memory effects which are of great importance 

in the finance realm. Third discrete iterative systems can exhibit complex dynamics 

which offer an explanation for a variety of observed patterns. However continuous 

time stochastic models have emerged from their use in thermodynamics and signal 

processing to become an extremely useful tool in financial engineering. This review 

focuses on the contribution of continuous time models in the asymptotic theory of 

discrete time models and the interrelationship between discretized continuous time 

data generating processes and observed data. This section briefly recaps some of the 

major articles and reviews the continuous time literature stating some of the major 

results. The first sub-section reviews some of the underlying probability theory and 

notation. The second section reviews the important finance literature on continuous 

time stochastic processes from 1970 to the present innovations in this field of research.
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1.4.1 A Brief Overview of the Existing Continuous Tim e Lit­
erature

The basic split in the literature on continuous time models divides along the lines 

of pure mathematical concepts versus practical financial approaches. Karatzas and 

Shreve (1987) [162], Rogers and Williams (1980) [226] and Oksendale (1990) [212], 

present in descending order of complexity approaches to stochastic integrals and 

Brownian motion. These focus on the mathematical prerequisites and the finan­

cial uses emerge as an ancillary set of tools in addition to the technical concepts. 

The major financial tools such as optimal stopping and martingale measures are 

developed in detail in Musiela and Rutkowski (2002) [203], which presents very de­

tailed coverage of arbitrage free pricing theory. Moving into the pure finance arena 

the literature again subdivides into two major themes, those dealing with the mod­

elling of fixed income products and credit risk and those dealing with equity based 

modelling. Shreve (2000) [237] covers in some detail the modelling of both of these 

areas of research and builds on the mathematical concepts developed in Karatzas and 

Shreve (1987) [162]. Glassermann (2001) [109], Johannes and Poison (2003) [155], 

Yacine-Sahalia (2004,2005,2006) [3] extensively cover the relationship between con­

tinuous time models and discretely sampled data. Glassermann and Johannes and 

Poison focusing on monte-carlo methods and stratification of parameterized mod­

els. Glassermann covers a broad literature on monte-carlo methods and focuses on
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methods utilizing Latin hypercube stratification. Yacine-Sahalia (2005) [3] focuses 

on determining the appropriate diffusion model to apply to continuous time data and 

looks at the difficult issue of parameterizing generic stochastic volatility models.

The Continuous Time Equity Based Literature

Away from the general modelling approaches the most eclectic literature is based 

around the specification and parameterization of equity diffusion models. The pricing 

of contingent claims of these models has been the major focus of the applied finance 

literature for the last thirty years. In these sections option pricing models and hedging 

strategies will be addressed, however the major focus will be on the dynamics of the 

price evolution model and the implications for the parameterization of these models. 

The basic Black and Scholes (1973) [31]model, treats the stock price dynamics as 

a simple geometric brownian motion, described by a stochastic differential equation. 

The resultant log-normal process has been the focus of considerable attention in the 

financial econometrics literature and a considerable literature, starting with Mandel­

brot (1963) has developed rejecting this simple dynamics. However the attractiveness 

of the model, i.e. that it is a Martingale produces an arbitrage free pricing formula for 

European options, (those with a fixed strike date and no early exercise), has meant 

that it is still used extensively, despite the rejection of the core price process model. 

A major innovation has been in the pricing of American options by path-wise based 

methods. Beginning with McKean (1965) [158] who addressed the early exercise of
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American options and the concept of optimal stopping through to very sophisticated 

treatment in Bank and Follmer (2003) [16]. The essential result is that an Ameri­

can Call option with constant strike price written on a non-dividend paying stock is 

equivalent to the corresponding European option. The difference, however, is in the 

early exercise conditions for American put options. American options are path-wise 

instruments and as such have no closed form expression, numerical techniques usu­

ally involve the discretization of the time parameter and the application of backward 

induction and simulation to find the price distribution of the option, examples of 

this approach maybe found in Geske and Johnson (1984) [105] and Geske and Roll 

(1984) [106].

Probability Spaces and Continuous Random Variables

This brief recap is extensively paraphrased from Williams (1991), Musiela and Rutkowski 

(2004) [203], Glasserman (2002) [109], Cyganowski et al (2002) [62], Steele (2000) [243], 

Musiela and Rutkowski (2004) [203] and Williams (2005) [263]. We mentioned very 

briefly during the generic derivation of the multivariate central limit theorem the 

formulation of a continuous time probability space, which describes functional like­

lihoods of diffusion process on a set of potential outcomes. We now formalize this 

notation as follows, consider a set Cl of possible co-ordinates in the ^-dimensional 

Euclidean real space, R k, then for a set of functionals F, is a cr-algebra which is a 

family of subsets of Cl, 0ksendale (1997) [212], for any cr-algebra F, on Cl, there is a
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probability measure P such that P : F —> [0,1], therefore for any element outside of 

ft, 0, the probability P(0) — 0 and for the set of ft, P(Q) =  1. The tri-tuple (Q, F,P) 

is called the probability space. The probability space is said to be complete if F, 

contains all of the subsets of ft with P outer measure zero and therefore contains all 

possible zero probability elements of ft. An important result from this notation is 

that for any function g whereby, Y  — g (X), then if X, Y  : ft —> then if ® is the 

smallest subset of F, for which, P(B) =  1, ® is the Borel cr-algebra on ft, as such a 

function g, is Borel measurable if g : R k —> Rfe. Every random variable induces a 

probability measure 5 , on where

Therefore 5  is the distribution of X ,  furthermore, the expectation of E(X)  is,

For any space t € T,  a parameterized collection of random variables is called a k- 

dimensional stochastic process assuming that (Xt)t€T defined on some probability 

space, (fi,F ,P), with co-ordinates in Rfe, the parameter space T  is usually in the 

halfline, [0, oo). The conventional notation uses a variable u, which is the path of X t, 

therefore,

5(B ) = P  ( X - 1 (B)) (1.4.1)

(X)  := /  X  (u) dP(u) = J  xdS (x) (1.4.2)

u * A) (u) — (1.4.3)
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Therefore the evolution of a random process X  may be thought of in terms of the 

evolution in time of some continuous set of experiments u.

1.4.2 M ultivariate Ito and Stratonovich Integrals and M ar­
tingale R epresentations

The final part of this short review of the underlying mathematics of continuous time 

processes covers the multidimensional Ito formulation and introduces the global and 

local martingale measure. Stochastic calculus was introduced by the Japanese math­

ematician K. Ito in the 1940s, following Einstein’s interpretation of Brownian motion 

forty years earlier. He found that certain processes most notably Wiener Brownian 

motions exhibited a smooth auto-covariance pseudo spectral density. The Ito integral 

approach is to solve the following stochastic integrals,

The Riemann-Steitjes integral for such an integral would normally be as follows, for 

a function a : [0, T] x Q —> Mfc, assuming that a is continuous in t, for u G SI, as 

follows,

T T

(1.4.4)
0 0

for any evaluation point, G with partitions, 0 =  < ... <

^i+i =  however with the inclusion of the Wiener Brownian motion term the limit, 

£(n) =  max ftj+i — t j ^ j  0 , as n —► oo does not exist given the sample path
1 < j < n

i ( n )

'3

<  . . .  <
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irregularity, therefore there is no path-wise convergence limit. However there may be 

mean-square convergence of the pathway for a specific class of functions, therefore 

for an explicit set of evaluation points, =  (1 — A) t ^  +  the convergence of 

a (£, u) =  Wt (u) will be,

W l  -  ( |  -  A) T  (1.4.6)

Setting X = 0, i.e. as the lower evaluation bound, the summation becomes tractable,

n n n
£  WTI (rni+1 -  Wtj) = - i  £  (wh+1 -  wTjf+ \  £  (wrj+l -  wh ) 2 + w$- wg
j= 1 j =l j =l

(1.4.7)

therefore under expectations the properties of the stochastic function are,

E ( j  wtdw \ = 0

( T/» 2\
/  WtdWt

V j
0 /

1
I  e  (|W(|2) dt = | r 2

(1.4.8)

(1.4.9)

Which yields the famous Ito stochastic integral, 

T
/ tti

a (t , u) dt = ms — lim £  a (4 n) > “)  (%<”>, (“ ) -  wt<"> (“ )) (1 -4.10)
n

The Stratonovich Derivation

By contrast to the Ito form of the stochastic integral, the Stratonovich form uses the 

mid point of the partition interval, r jn  ̂ =  \  ( t ^  +  tj+i) , f°r a given function with
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convergent mean squared pathways, the Stratonovich derivation under the Riemann- 

Steitjes summation yields,

^  71

/  a (t , u) o (u) = X -  lim ^  cr (u) -  wt(«) (u)^ (1.4.11)
o J=1

T
Under the Stratonovich approach the integral, f W tdWt = §Wt2 — \ T  is now altered

o
T

to f W t o dWt = \  where o is used to symbolically represent the integration via the 
o

Stratonovich stochastic integral equation. We can now rewrite the general stochastic 

integral in Stratonovich notation as,

T T

xt =  Xo + J  f i ( t , xu)du+ J  a ( t , x u) odw u (1.4.12)

Solving Stochastic Differential Equations

A brief explanation is now required to suggest under which circumstances either of 

these two integrals should be used. In general the properties of the Stratonovich 

integral lend themselves to tractably analytic solutions, for example if the function 

cr is a smooth ’’high signal” function as deterministic tricks maybe used to solve 

Stratonovich type differential equations, in general these are problems which involve 

signal extraction and filtration, Stratonovich SDEs are used extensively in signal pro­

cessing and thermodynamics. The Ito integral lends itself to most general stochastic 

problems whereby the very nature of the noise process is the most prescient element 

of the analysis. In general in financial engineering solutions based on the Ito integral
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are the most commonly used when signal extraction is not critical, but an under­

standing of the potential richness of the sample paths is, i.e. an understanding of 

the dynamics of the volatility of a process, see Cyganowski (2002) [62], Musiela and 

Rutkowski (2002) [203] and Rebonato (2002) [223] for more discussion on this area.

1.4.3 Stochastic Differential Equations and Stochastic Inte-

The motivation of reviewing this area of the literature is in defining a fixed set of rules 

that cover a variety of functional forms which maybe defined in conjunction with an n-

motions w =  [ W1, W2, ..., where W1 ~  iV(0, of) feasibly valued on Rfc and there 

is a filtered probability space (Q, F, P) such that w is a vector of continuous random

dimensional Brownian motions, thus for any process 7  that is an Rn valued process 

the following condition applies,

Where |-| stands for the Euclidean norm in Rn. We are therefore dealing with pro­

metrics. The general form of the Ito stochastic integral of 7  with respect to w, is

grals

dimensional Brownian motion object. Let w (t) be the vector of zero centred Brownian

variables each drawn from an independent and identically distributed vector of one

(1.4.13)

cesses that exist exclusively within a framework that allows for symmetric covariant
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given as:
t

-ft (7 ) =  J  lu-dyfu (1.4.14)
0

Now consider a k dimensional random vector x  where x =  [X1, A2, ..., and let 

the t h process of x be defined as,
t t

X ( t f  = X'0+ f  oidu+ j  0J W U (1.4.15)
0 0

where a 1 are real value adapted processes a and j3l are Mnvalued processes. For a 

given function g = g(x,  t) the projection g : Rn x [0, T] —> M must implicitly hold.

To incorporate the broader form of covariation, consider that the function g is in a 

broader class of functions C(Kn, M). We can define the vector process in the Ito form 

as

k k k
dg(x(t)) = ~2gXi (x(t))a(t)l+ Y ^ g Xii (x(*))/?(*)*.dw(*)+§ ^  gXi,Xj (x(t)) (3{t)1 .(3(t)3 dt

i = l  i = l  i,j=1

(1.4.16)

More generally if the processes Xi  are in <SC(R) for i = 1 ,...,& then

Where <SC(R) is the space of continuous cross-variation of the vector of k martingales. 

We can therefore show that the derivative vector is as follows,

k k
dg (x(f)) =  ^   ̂gXi (xu) dX(t)  (1.4.18)

i= 1 i,j= 1

Consider a new noise vector z again real valued on(^,F , P) that constitutes a set 

of Brownian motions drawn from multivariate normal distribution. The relationship
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between z and the independent vector Brownian motion process w can be expressed

via a matrix E, i.e.z =  S 2 w where A A T =  E  .Where E  is a non-negative defi-
1

nite Hermitian matrix and A is a lower triangular matrix. Then E 2 is the upper 

symmetric square root (Cholesky factorization) of E. Therefore we can consider a 

subset of independent one dimensional processes that have zero co-variation and a 

transformation such that the transformed vector of these Brownian motions exhibits 

a fixed multi-normal quadratic co-variation, this concept is covered in significant de­

tail in Shreve (2004) [237], covers this in considerable detail and this result is used 

extensively in chapter 8 .

1.4.4 M ultivariate Finance in Continuous Time: Stochastic  
V olatility M odels

Continuous time models are used in both the academic and practitioner domains to 

model asset prices, exchange rates, interest rates and many macro-economic factors. 

It is interesting to note that continuous time models are fairly recent additions to the 

finance literature, generally originating from early 1970s, and two major contribu­

tions to the literature. In his article ’’Optimum consumption and portfolio rules in a 

continuous time model”, Merton (1971) [197], effectively introduced continuous time 

stochastic processes into a financial context and in effect created the discipline of fi­

nancial engineering. Black and Scholes (1973) [31] followed with their formulation of 

option prices and contingent claims. Merton (1991) [197] is the classic references for
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the continuous time literature, in Sahalia and Johansen (2 0 0 2 ) [1], several chapters 

are exclusively dedicated to continuous time processes, these include parameteriza­

tion of continuous time models using discrete data in Ait-Sahalia (2006) [1], analysis 

of Markov Chain Monte-Carlo routines and Bayesian updating in continuous time 

models in Johannes and Poison (2003) [155] and non-stationary continuous time

functions in Bandi and Philips (2002) [15]. This brief list shows that like a stochastic 

process the literature has taken a rich variety of paths. The answer to the question of 

as to why continuous time models are so important, is based around their analytical 

tractability. For almost any problem which requires optimal decision making based 

on some stochastic process, continuous time models are usually at the basis of the 

solutions to these problems. The major problems of continuous time models are the 

challenges of econometric estimation and empirical implementation, see Bandi and 

Philips (2002) [15]. However very recent advances in econometric theory in partic­

ular the novel use of GMM models in parameterizing continuous time models from 

discretely sampled data see Hansen and Scheinkman (1995) [138], Duffie and Glynn 

(1997) [78] and new approaches in maximum likelihood, see Yacine-Sahalia (2 0 0 2 ) [1 ] 

and (2006) have revolutionized the use of even the most complex continuous time 

models. The most basic continuous time stochastic differential equation is defined as 

follows,

dSt = fidt -I- adWt (1.4.19)
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Here dSt is a continuous time stochastic gradient described by a stochastic differential 

equation (SDE), on the real line, E, between, [0,T], St is usually considered to be 

the logarithm of an asset price. Wt is a one dimensional brownian motion whereby 

each innovation of Wt is a Gaussian process, i.e. Wt is drawn from a continuous 

normal distribution. In general fidt is usually described as the drift term and adWt 

is described as the diffusion term. Logical extension of this simple process into the 

multivariate domain is as follows,

dx.t = fidt +  adwt (1.4.20)

where x t is is a k +  1 length vector of continuous stochastic processes in the k +  1 - 

dimensional real Euclidean Space, where x t is the state of the system in E fc+1, w t 

is a A; length vector of continuous brownian motions drawn from a (multi)-normal 

distribution, and /i and a are appropriately sized vectors or matrices, which reshape 

the individual terms to a A; length column vector. In fact relaxing the constant drift 

and diffusion terms and formulate,

dxt =  n (xt |0) dt +  (f) (xf |0) dwt (1.4.21)

where fjL(x.t \<f>) and a (xf \0) are vector/matrix functions of the current realization of 

x f, with parameter vector 0.
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1.4.5 Stochastic Volatility M odels

The state space vector x t , encapsulates the stock price and the volatility components 

in one vector equation, defining the vector stochastic differential equations as follows,

dx.f = d H8 (log (St)) 
^  (yt)

dt + <t>8 (St ,y t )  
o (j>a (y t)

d W 8
w f (1.4.22)

Yields a generic stochastic volatility model, where y t G is the vector process 

of volatility components, and log (St) G R is the price process, the functions fj,8, 

/iCT, 4>s and <ff are continuously differentiable and f f  : R —> R, /j,a : R k —► Rfc, 

(f)s : Rfc+lxl R lx fc+ 1  and : Mfexl -> R kxk.

1.5 C oncluding Rem arks

This chapter has reviewed some of the current developments in vector processes in 

both discrete and continuous time. The chapter has also demonstrated several generic 

techniques such as the vector ARM A, ARM AX and state space Kalman filters and 

introduced a new type of matrix random effects model and demonstrated its use 

in modelling the dependency in international stock markets, see chapter appendix. 

These results form the basis for the second moment models in 5 and 6 . The continuous 

time section introduces the generic stochastic volatility model and its relationship to 

standard vector processes and a set of results that will be extensively used in chapter
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1.6 C hapter A ppendix: K alm an F ilter A pproach  
to  Cross M arket C ontagion

Using the Multivariate Kalman filter approach a dynamic model of the same nine 

international financial markets is estimated. The model attempts to capture in mean 

cross variation between the financial market. The following simple single output 

state space model is estimated via Gaussian maximum likelihood, the model is a basic 

market model with time varying coefficients. This type of model offers an alternative 

method to the MV-ARCH approach to understanding financial market integration. 

By appropriate choice of global market changes in relationships between individual 

country indices maybe elucidated in a simple and convenient manner.

r ijf =  ^tTxt +  ut (1 .6 .1 )

x t =  [rm,t,l]T (1 .6 .2 )

ipt = ^ T^ - i + V t  (1.6.3)

where x t, is the returns from the global stock market at t, i.e. and a constant to 

represent the excess returns. The algorithm used is the Kalman filter approach based 

on an algorithm by Grewal and Andrews (2001) [122] who present a convenient

method for a recursive Kalman filter approach to this type of model specification. The 

global index is generated using a value weighted index of more than 2 0 , 0 0 0  equities 

from the nine markets, mostly computed using the market value of the index. The

value and return series are as follows. The results show that the markets generally
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- HANG SENG -  PRICE INDEX (-US)
- DOW JONES WILSHIRE 5000 COMPOSITE -  PRICE INDEX (-US)
- FTSE ALL SHARE -  PRICE INDEX (-US)

MILAN MEX -  PRICE INDEX (-US)
- S&PfTSX COMPOSITE INDEX -  PRICE INDEX (-US)

S&P ASX 300 -  PRICE INDEX (-US)
- FRANCE CAC 40 DS -  CALC
- DAX 200 AVERAGE -  PRICE INDEX (-US)

NIKKEI 225 STOCK AVERAGE -  PRICE INDEX (-US)

Time/days

Figure 1.10: Re-based index for nine international stock markets, daily data from 05 
Jan 1994 to 05 June 2006, where 05 Jan 1994 = =  100, each of the indices listed has 
to contain at least 70% of the publicly listed companies in that country. Note 1: In 
keeping with trends with regards to mechanisms for raising capital, the number of 
components ranges from the DOW Wilshire 5000 and the FTSE All Share to the less 
well represented CAC 40 and MIB 30 indices for France and Italy respectively. Note 
2: that the Milan Stock exchange value has be interpolated on the 19th June 2000, 
3rd July 2000 and 19th July 2000, due to significantly erroneous data points. Note 
3: The Hang Seng is the most unbalanced exchange in terms of company weighting, 
with HSBC holding accounting for on average 30% of the total index value.
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International Stock Market Returns, Continuous Method

HANG SENG 
DOW JONES WILSHIRE 5000 COMPOSITE 
FTSE ALL SHARE 
MILAN MEX
S&P/TSX COMPOSITE INDEX 
SAP ASX 300
FRANCE CAC 40 DS -  CALC.
DAX 200 AVERAGE 
NIKKEI 225 STOCK A VERAGE

rum Idas i

Figure 1.11: Daily International Stock Market Returns for nine global indices, returns 
computed using continuous method, ri>t = log {p^t) — log (pi,t-i), where p^t is the index 
value of the ith stock market index at time t
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Daily Global Market Value Weighted, 05 Jan  1994— 100

260

24'

220

140

120

100
1998 2000 2002 2004 20061996

Daily Global Market Returns Value Weighted 
0.03i----------------------------------------1------------------------------------ p ----------------------------------------1---------------------------------------- r

-0.03

Figure 1.12: The Global Market Index, value weighted from more than 20,000, global 
equities, the value of S&P Wilshire 5000, (existing data daily 1974 - Present, this 
sample 05/01/1990 - 05/06/2006), which is the largest cross section of Equities in the 
states forms about \  of the stocks and around \  of the value weighting, which is in 
line with the NASDAQ Global Equity Market, which has available data from 1997 
onwards. The market generally follows the widely accepted global business cycle, 
with the Hi Tech bubble leading to a correction at the end of 1999. the bull market 
reforms in 2003 and accelerates past the Hi Tech peak at the start of 2006. General 
analyst predictions (see Bloomberg™, Global Analyst report global market 2006) 
suggest another correction is due late 2006 early 2007, in response to high energy 
prices and interest rate rises in the US.
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Kalman Filter Estimates of (
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0 8G
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Time Days

Figure 1.13: The Recursively Estimated 7r2)t, coefficient for the broad base Nikkei of 
225 Japanese Stocks, classified Japanese Titans. Over the sample period the NIKKEI 
225 coefficient varies between 0.85 and 1.35, but in general is well above 1, indicating 
that the volatility of the NIKKEI is normally well above the global index.

converge to unity and that the excess returns normally vary around zero.

1.6.1 E vidence o f Subsets w ith in  th e  G lobal M arket

Sub groupings are a stylized facts in equity markets, the following overlays illus­

trate two observed groupings, the continental European indices and the Anglo saxon 

grouping of Australia, Canada the US and the UK.
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Kalman Filter Estimates of x, (

1.1

1

09

0.8

0 7

0 6

o 5

2004 2006 20081994 1996 1998 2000 2002

Figure 1.14: The Australian Stock Exchange, compiled by Standard and Poors, over 
the sample period the markets 7̂  coefficient increases from 0.8 in 1994 to around 
1.1 in 2006. The Asian crisis has some effect from late 1997 to mid 1998, however the 
index reverts to the long run trend rapidly.
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Kalman Filter Estimates of >t11
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95
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Figure 1.15: The DAX index of 200 publicly quoted German companies, is a semi 
stable mean reverting process around 1.05.
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Kalman Filter Estimates of rr1 (

1994 1996 1998 2000 2002 2004 2006 2008

Figure 1.16: The Recursively Estimated n2)f, coefficient for the FTSE all share of 
companies covering between 98-99% listed in the UK, (Source: FTSE.co.uk, 2006), 
the coefficient varies between 0.75 and 1.25 around the global market.
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Kalman Filter Estimates of k, (

1 15

1.1
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1

0 95

0 9

1994 1996 1998 2000 2002 2004 2006 2008
Time Days

Figure 1.17: The DOW Wilshire 5000 Index, covers the largest cross section of US 
publicly listed companies. In keeping with US global dominance in terms of over­
all market capitalization, the DOW Wilshire 5000’s %2,t coefficient is very tightly 
clustered around 1 .
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Kalman Filter Estimates of t

 S&P/TSX COMPOSITE in d e x )

1994 1996 1998 2000 2002 2004 2006 2008
Time Days

Figure 1.18: The TSX index of the 276 largest companies on the Toronto Stock 
Exchange, index is compiled by Standard and Poors and the 7T2,t coefficient whilst 
more variable than the DOW Wilshire 5000, it has less variability than the FTSE All 
Share.
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Kalman Filter Estimates of ir1,

1994 1996 1998 2000 2002 2004 2006 2008

Figure 1.19: The CAC 40 of the largest companies listed on the Euronext Paris 
Exchange, the 7r2,t coefficient follows a similar pattern to the DAX in contrast to the 
FTSE All Share.
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Kalman Filter Estimates of it, (

20081996 1998 2000 2002 2004 20061994

Figure 1.20: The MIB 30 of companies quoted on the Milan Stock Exchange, the 7r2,t 
coefficient follows very tightly to the pattern seen in the CAC and DAX indices.
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Figure 1.21: The Hang-Seng Index of 33 Companies floated on the Hong Kong Stock 
Exchange. The Asian monetary crisis that stretched from late 1997 to mid 1998, is 
clearly shown as a decoupling of the Hang Seng from the global equity index.
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Kalman Filter Estimates of f

1994 1996 1998 2000 2002 2004 2006 2008

Figure 1.22: The Integration of the European Stock markets is illustrated in this 
overlay of the DAX, CAC and MIB
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Figure 1.23: The Integration of the Anglo Saxon Stock markets is illustrated in this 
overlay of the DOW, FTSE, ASX and TSX indices.
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1.6.2 A ppendix II: D ata Generating Simulations

Using the following global set of artificial parameter matrices,

n0 = 

i u  =

n2 -  

n3 =

-0 .2  0.9
0.57 -0 .3
2.31 0.6 
1.05 - 6  

1 0  

0 -1
0.5 
0.9

(1.6.4)

(1.6.5)

( 1.6 .6) 

(1.6.7)

The autoregressive coefficients are stationary but have one negative root in the kernel 

of F,

z =  [0.46798, —0.96798]t (1.6.8)

In general the recursive and dynamical systems literature relies on stable and semi 

stable chaotic systems to generate the deterministic variation, which often underlines 

many macroeconomic systems, such as the Philips curve, see Ljungqvist and Sargent 

(2004) [186], Stokey and Lucas (1989) [244]. For a review of deterministic linear 

and non-linear dynamical systems see the core text by Robinson (1998) [225].
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Figure 1.24: A Simple AR(p) model with negative roots, the chaotic effects are clearly 
visible and should not be confused for stochastic volatility or ARCH effects. y t =
Iljuec  (yt) +  £ 2 £t



Figure 1.25: An ARMA(p,g) model again with negative roots, in the Kernel of the 
AR Coefficient Matrix, note that the MA term dampens the Chaotic effects. y t =

Ti£vec(y t ) +  II Jvec(Ut) +  £ 2 £t
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200 400 600 800 1000 1200 1400 1600 1800 2000
Time Index

Exogenous Process, x,. Simulated Base Rate 
Williams and loanndis (2006) Regime Method
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Figure 1.26: ARMAX(p,g) model with single exogenous factor, the variable Xt, corre­
sponds to a simulated base rate using the method suggested in Williams and Ioannidis

2006c. y t =  n j v e c ( y t) +  IIJvec(Ut) +  Iljx* +  T,^£t
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ARMA(p) with deterministic trend

200 400 600 800 1000 1200 1400 1600 1800 2000
Time Index

Figure 1.27: An ARMAX(p,q)  model with deterministic common trend, y t =

ITj vec (yt) +  H jv e c  (Ut) +  Iljx*  +  II Jt +  £ 2  et



Chapter 2

Non-Linear Models: 
M V-ARCH /G ARCH  Models A  
Review

2.1 C hapter A bstract

In the previous vector models the general assumption is that the objective function in 

the optimization tends to an unconditional or conditional multi-normal distribution, 

identification of parameter estimates then proceeds with assumption in mind. In this 

section the assumption of unconditional multi-normality is relaxed, by construction 

of an autoregressive specification of the covariance matrix.

2.2 A uto-R egressive m odels o f C onditional Second  
M om ents

The ARCH model of Engle (1982) [?], was quickly followed by the GARCH model of 

Bollerslev (1986) [32] and the EGARCH model of Nelson (1985) [207], these specifi­

cations characterized the volatility of filtered economic time series as an autoregressive

104



105

system. In essence they treated these time series as an infinite mixture model of con­

ditional normals. At any given point the volatility parameter was conditioned on the 

past recursion of the disturbances.

yt =  bTx, + ut (2-2.1)

u t  ~  N ( 0 ,a t2) (2 .2 .2)

<71 =  f ( U u St,e)  (2 .2 .3)

Ut =  [«?_„ . . . , u l p ] (2 .2 .4)

5 ,  =  [CT(2_ 1,...,c r t% ] (2.2.5)

the conditional error in the univariate case is,

ut =  crt£t ( 2 . 2 . 6 )

£t ~  ^  (0,1) (2 .2 .7)

therefore the regression is specified as,

Vt =  bTxf +  atet (2.2.8)

The original ARCH specification was a simple autoregressive process, AR(p), the

GARCH model extended this to an ARMA(p,q) representation, First the ARCH

model,

= a2 +  ctTvec (Ut) (2.2.9)
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And second the GARCH type model

of — a2 +  a Tvec (Ut) +  (3Tvec (St) (2 .2 .10)

The parameter vectors are therefore respectively, for the ARCH model,

(2 .2 .11)

And for the GARCH model,

6 =  [<7,a'T,/?T] T (2 .2 .12)

The parameters must be bounded such that the following stationarity condition holds,

famous being the EGARCH of the Nelson (1991) [206], long memory effects, FI- 

GARCH, threshold transitions between volatility states TARCH and yet more have

tion mixtures, e.g. the t-distribution or the asymmetric t-distribution, such as in the 

ARCD model of Hanssen (1994) [139]. See Gourieroux (2001) [113] for the defini­

tive guide to univariate ARCH/GARCH models. In general the models focus on 

smoothed or asymmetric responses to shocks, the ARCD model permits deformation 

of the probability density mass, by allowing conditional freedom in two additional 

parameters. Appendix II. 1 demonstrates the estimation criterion under maximum 

and quasi maximum likelihood.

(2.2.13)

Other specifications have attempted to create non linearities in adjustment the most

rejected the conditional normality assumption and utilized other objective distribu-
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2.2.1 Taking the Univariate Specification into the M ultivari­
ate Dom ain

The generic multivariate approach is along the same lines, except that there is a 

significant complication, the dynamic volatility is now a matrix process, the basic 

model set up is as follows,

y  t =  n Tx f +  u* (2 .2 .1 4 )

u* ~  iV (0, Et) (2 .2 .1 5 )

=  # ( U t , S t ,6>) (2 .2 .1 6 )

U t =  [ U ? . ! , . . . , ^ ] (2 .2 .1 7 )

(2 .2 .1 8 )

Rearranging in terms of the factorized conditional covariance matrix £*,

yt =  n TX( +  s  ?et (2.2.19)
1

u* -  (2.2.20)

s t ~ AT (0,1) (2.2.21)

Multivariate extensions have been hamstrung by several problems, primarily as a 

result of the numbers of parameters in even a modest specification, first the large

number of parameters mean that the degrees of freedom quickly runs out, the mod­

els are quite restrictive as the conditional covariance matrices must be non-negative 

definite. Computing the model is difficult, the amount of computation time required
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explodes and as a result real time results and restriction tests are extremely difficult. 

Finally the inference from the parameter estimates is difficult to contextualize, it 

is hard to visualize the impact of a single parameter amongst a great many others 

and as such economic inference is hard to draw from such models. The first major 

multivariate extension of the basic ARCH/GARCH framework was put forward by 

Bollerslev, Engle and Wooldridge (1988) [40], they suggested using the ivech opera­

tor to formulate a vector process which could then be transformed into a non-negative 

Hermitian matrix. One of the simplest and most intuitive models was put forward by 

Bollerslev (1990), he assumed that the marginal components were univariate GARCH 

models coupled by a constant correlation matrix. The BEKK model of Engle and 

Kroner (1994) [89] was the first true Multivariate extension of the basic GARCH 

model, by use of the ivech transformation, parameter matrices could be converted 

into non-negative Hermitian matrices and as a result each of the conditional covari­

ance matrices is non-negative definite. Other specifications attempted to reduce the 

number of parameters by decomposing the vector processes into a reduced number of 

underlying components, the OGARCH model of Alexander (1992) [6 ] utilized a prin­

ciple component approach and then reconstructed the conditional covariance matrix 

from its factor loadings.



The Bollerslev, Engle and Wooldridge M odel

The Bollerslev, Engle and Wooldridge, MV-GARCH(p,g) model utilizes the vech 

representation to ensure that is non-negative,

1

y t — +  £ 2 et (2.2.22)

Ut =  Y>?£t (2.2.23)

<1<IIW

(2.2.24)
P Q

At = K  +  A kvech ^  B{vech (£*__*)
i=1 j=1

(2.2.25)

A =  [Ai,...,Ap] (2.2.26)

B =  [B1; (2.2.27)

6 = Jvec (K)t  , vec (A)T , vec (B)T j (2.2.28)

K  =  ivech (k) (2.2.29)

Give the assumption of conditional normality, the objective function is therefore,

T
£  (0) =  - | X } rilog(27r) +  1°g (lE *l) +  u?X _1Ut (2.2.30)

t=i

Imposing the normal constraints on the parameters to ensure the following station- 

arity condition is met,
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T h e  B E K K  m odel of Engle and  K roner

The BEKK model of Engle and Kroner, is similar in many respects to the Boller- 

slev, Engle and Wooldridge Model, but the model specification allows for a greater 

degree of freedom in capturing the dynamics of the conditional covariation. In the 

Bollerslev, Engle and Wooldridge Model, forming the conditional covariance matrix 

by matrix multiplying A t by its own transpose, the cross products in this formulation 

result in many of the subtle off main-diagonal dynamics being drowned out by the 

main-diagonal processes. In the BEKK model the only cross products are from the 

parameter matrices, therefore potential shocks in covariation, may propagate without 

being overly affected by the dynamics from the main diagonal.

Again parameter estimation is via maximum likelihood, using the log multi-normal 

density function. The basic BEKK specification is the true multivariate extension of 

the univariate GARCH(p,q) model, however the drawbacks mentioned previously are 

particularly acute in this specification. The numbers of parameters under extremely

y t = n Ttxt +  £ t2 et (2.2.32)
1

(2.2.33)
P

E t =  K K t  + K - . u L )  A, +  ^  (E t-j)  B (2.2.34)

6 = vec (K)t  , vec (.4)T, vec (B)T1 (2.2.35)

K =  ivech (k) (2.2.36)
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modest specifications is very large and computation times are similarly large. To 

this extent several modifications to the BEKK have been proposed that keep the 

same basic structure but reduce the size parameter matrices by incorporating various 

restrictions, these include the Scalar BEKK and the Diagonal BEKK. Additionally 

the BEKK has been specified in terms of a multivariate students t distribution to 

incorporate more complex dependency dynamics.

Correlation based M V-GARCH

The correlation based multivariate GARCH takes the following approach, volatility

is a product of the co-volatilities and either a constant or dynamic correlation. The 

first model by Bollerslev (1992) [34], the constant correlation MV-GARCH, (CCC) 

proposed the following two step algorithm, first the basic setup is the same as previ­

ously,

is dictated by the diagonal processes and the direction and magnitude of dependency

y  t =  n Tx t +  u t (2.2.37)

u t ~  N  (0 , E t) (2.2.38)
i

y t =  n T X i +  £ * 2 £ t (2.2.39)

et ~  N  (0 ,1) (2.2.40)
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However the conditional covariance matrix is now defined as a Hadamard product 

of a vector of conditional standard deviations and a time invariant normalized non­

negative Hermitian matrix, i.e. the separation of volatility from correlation,

S f =  R x  atcrj (2.2.41)

=  [0M,.-.,<7n,t]T (2.2.42)

The conditional standard deviations are the functional evaluation at time t of a vector 

univariate ARCH/GARCH processes. For example under the basic GARCH(p,q) 

specification,

<Ji,t =  \J&i + a jvec  (iUt) +  0[vec (S t) (2.2.43)

Ut =  (2-2-44)

St — •••? ai,t-q\ (2.2.45)

Of course there is no limitation on the specification of <7^ , any combination of the 

plethora of univariate models is valid.

D ynam ic C orre la tion

Engle (2002) [92] and Engle and Sheppard (2003) [235] proposed a new class of cor­

relation MV-GARCH the dynamic conditional correlation model (DCC), this model 

utilizes a two step method in the same way as the (CCC) however the correlations
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are treated as dynamic and modelled as an autoregressive matrix process,

y« =  n Tx t +  u, (2.2.46)

u, ~  N ( 0 ,E () (2.2.47)

yt =  n Tx, +  s? £ , (2.2.48)

e, ~  AT (0,1) (2.2.49)

=  [ffi.i, (2.2.50)

<r<,t =  \J&i + a jvec  (Ut) +  01 vec (St) (2.2.51)

Collecting the past observations of each the marginal variables from the vector pro­

cess, a normalized variable e^, with the volatility effects captured is then fed into the 

matrix process,

Ut = (2.2.52)

(2.2.53)

Q en,t] (2.2.54)

et ~  N  (0, R f) (2.2.55)

(2.2.56)

The vector process et, is then defined in terms of a dynamic correlation matrix as 

follows,

=  R  ht (2.2.57)
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This formulation may be rewritten in the following manner which is probably more 

intuitive,

E t =  atcrjRt (2.2.58)

u t = (a ta jR t ) 2 et (2.2.59)

yt =  n TXt + (ata j R t ) 2 et (2.2.60)

Engle (2000) specifies three different alternatives for the matrix process R t, first the

RiskMetrics™ exponential smoother,
r

PiJ,t =  —= = = —= =  (2.2.61)

Alternatively the matrix process R t maybe specified as the normalized form of some

autoregressive non-negative matrix Qt operating on the standardized residuals et.

pi j t  =     (2.2.62)

Qt = [%3,t] (2.2.63)

treating Qt as a conditional covariance matrix, using for example the BEKK repre­

sentation,

Q* =  Q +  E  A f a - i £ ,  a , +  E  BfcQt-tBi (2.2.64)
/=1 jfc=l

Or the MARCH model of Engle and Ding (2001),

/  p q \  p q
Qt = Q x I eeT — A * — B^ j  + A i x e t^ e j^  +  B& x Qt_fc (2.2.65)

\  1=1 k= 1 /  1=1 k=l
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Several authors have extended the basic methodology to incorporate various proper­

ties such as the incorporation of block dynamics in the correlation structure, using 

copulas to represent the interaction of the marginal variances with the dependency 

matrix. The major problem with this approach as noted in Alexander (2001) is the 

flattening of the objective function, which increases computation time and compli­

cating restriction tests.

D im ension R eduction  and  O rth o g o n a l/F ac to r G A R C H

The final multivariate ARCH model considered, is the Orthogonal GARCH model of 

Alexander and Chibumba (1997) [6 ], Bystrom (2004) [47] and Alexander (2001) [5]. 

Factor analysis and principle component decomposition are both dimension reduction 

techniques which attempt to summarize a large number of variables in terms of linear 

combinations of those variables. This is a useful technique in multivariate volatility 

models as in general the number of parameters increases significantly with the number 

of variables. Consider the following decomposition, of the covariance matrix of multi­

equation residuals from (2 .2 .2 2 ),

u* ~  AT(0,Et) (2 .2 .6 6 )

u t =  W  ¥ * e t (2.2.67)

E t =  W P fW  (2.2.68)
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Where W  is a matrix of factor weights, is the time varying covariance matrix of 

the principle components.

C om puting  th e  P rincip le  C om ponents

There are a variety of suggested approaches to factor GARCH models, this description 

is an amalgamation of the Alexander (2000) [5], Lanne and Saikkonen (2005) [176] 

and the Engle, Ng and Rothschild, (1990) [91] approach. Again consider a filtered set 

of residuals from some sample, [1,..., r], the r  x n  matrix U, with columns [u i,..., un] 

in the time dimension. The matrix U TU, is therefore an n x n matrix, normalizing 

by the diagonal, yields a matrix R, with all positive eigenvalues which sum to n, 

therefore, R  is a valid sample correlation matrix. Eigenvector decomposition of R  

yields the factor loading, i.e.,

w R  =  uw (2.2.69)

v e  {v i,..., vn} (2.2.70)

w €! {w i,...,w n} (2.2.71)

Where Vi is the ith eigenvalue and w is the ith eigenvector. The first principle com­

ponent explains the maximum amount of the total variation in the cross section of 

the sample U, the second explains any of the remaining variation and so on, the 

maximum number of principle components is equal to the number of variables, n.
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Rewriting 2.2.69 as a matrix of eigenvectors and a diagonal matrix of eigenvalues,

V  =  [vij = Vi] (2.2.72)

z e  {zi, ...,zn} =  Z (2.2.73)

Therefore the r  x p matrix of principle components is as follows,

P  =  U W  (2.2.74)

Selection of the optimal number of principle components maybe undertaken using 

Kaiser-Guttman rule, whereby the number of components used is equal to the num­

ber of Eigenvalues where u* > 1, i.e. the variance of the principle component is at 

least greater than a single column from U. An alternative approach has been sug­

gested by Kapetanios and Marcellino (2005) [160], which looks at the explanatory 

power of each of the factors. In this method the principle components are used to 

create linear predictions of the sample, the largest eigenvalue of the correlation ma­

trix of the residuals from this linear model then describes the degree of orthogonality 

introduced by the component, i.e. the degree of deformation of the euclidian ball of 

the residuals density. Kapetanios and Marcellino (2006a) [161] Kapetanios and Mar­

cellino (2006b) [160] suggest that if the largest eigenvalue of this correlation matrix

is greater than 4, then another component should be added. We can mathematically 

describe their procedure as follows, the optimal number of components p* belongs to
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the set of real natural positive integers from 1 to the number of variables n,

pi  (2.2.75)

correspondingly there is a set of components,

P t =  [PI>...,P fe,...,P„] (2.2.76)

For each possible set of components the following linear model is estimated

U  =  PfcbJ +  Ejt (2.2.77)

Where E* is the matrix of residuals from the multiple regression of P* onto U,

computing the correlation matrix of E*, yields,

EjE* =  H* (2.2.78)

& = y/&j .Ji=j/
(2.2.79)

Rk = E, x ( t e j )  1 (2.2.80)

The eigenvector decomposition of R*, yields,

zjfcRfc =  vi>kz k (2.2.81)

The optimization problem suggested in Kapetanios and Marcellino (2005) is very 

simple iterate, k until the largest eigenvalue, vijk is less than an exogenously imposed 

constant a ,

pi = arg min [max [vi}k] < a] (2.2.82)
Pk
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The suggested threshold for the largest eigenvalue is a = 4, this threshold is derived 

from Roy’s maximum root test, applied to normalized matrices, see chapter appendix 

II. 1. An alternative approach is to test to see the degree of significance to which the 

correlation matrix deviates from the identity matrix, given that the distribution of 

covariance matrices is defined by the Wishaxt distribution, therefore constructing a 

significance test for a, i.e. the construct a null hypothesis that the estimated matrix 

H0 : Rfc =  I, see Takemura and Kuriki (2000) [246] and Muirhead2005 [202]. They 

propose a simple maximization test, to distinguish between two covariance matrices, 

see Chapter Appendix II.2, along with a set of sample critical values.

M odel Selection w ith Orthogonal GARCH

In some ways the orthogonal GARCH approach is similar to the correlation GARCH 

model, i.e. a first stage that reduces the model to a simpler form and a second stage 

based around one of the standard models, Alexander (2000) [5] suggests modelling 

the dynamic covariance matrix of the principle components as an EWMA process 

is the same as that in Engle (2002) [83], suggests modelling the dynamics of the 

correlation structure in the Dynamic Correlation methodology. In general any of the 

models in this section maybe used to model the conditional covariances, the only 

restriction is generally computational, if the dimension reduction for the optimal 

number of principle components is very large (e.g. 500 variables to 15 principle 

components), then any of the models are reasonable to use and in general as the
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unrestricted BEKK model offers the greatest latitude in dynamics of the covariance 

matrix, this would generally be the most appropriate choice. Factor GARCH offers 

an impressive list of features to recommend it for use, first the fact that the reduction 

in dimensions allows for a greater degree concavity in form of the objective function 

due to the parameter reduction, second a systematic means by which to assess the 

optimal number of components and third the ability to forecast mean and variance 

using the standard Kalman filter forward recursion methodology on a reduced set of 

variables.

A sym ptotic Theory of the M ultivariate A R C H /G A R C H  Specification

Very little literature exists on the asymptotic behavior of multivariate ARCH/GARCH 

models, in comparison to the large literature devoted to the asymptotic theory un­

derlying the univariate specification. This section briefly surveys several key results 

which have been demonstrated in recent articles. The majority of asymptotic the­

ory surrounds the convergence of the fourth moment structure of the process u t. 

Generally asymptotic behavior is determined by the structure of the matrix autore­

gressive process underlying the second moments. However, several generalizations as 

to the asymptotic distribution of the resultant process maybe made. Two general 

approaches are first to utilize results from infinite mixture models to approximate 

the moment structure and second to define the distribution of the quadratic form 

of the second moment model, then utilize this inference in defining the structure of
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the result. Generally these approaches have been limited to applications relating to 

the most basic MV-GARCH framework, the Bollerslev CCC model. However sev­

eral more recent studies have attempted to reconcile the asymptotic properties of 

MV-GARCH models and drawn inference as to the consistency of ML and QML es­

timation. The most comprehensive assessment of the asymptotic properties of vector 

ARCH models is Ling and McAleer (2003) [185]. Using the Bollerslev CCC model to 

describe the disturbances from an autoregressive filtration, they show the consistency 

conditions for parameter estimates and asymptotic normality of the QMLE estima­

tors. Other work by Comte and Lieberman (2001) [54] suggests a multivariate central 

limit theorem approach which does not simply rely on the asymptotic normality as­

sumptions extending univariate work by Bollerslev (1995), Boussama (2000) [42] and 

existing work on the consistency of Multivariate GARCH estimators by Jeantheau 

(2001) [152]. Consider the following process,

i
u t =  S  }e t (2.2.83)

Where the n length random vector process u* G Mn and as previously stated the 

process et is an n length vector of independent standard normal variables under the 

normal Labesgue measures, i.e. et ~  AT (0,1), if F is the cr-field operating over the 

sample space R, then stating the following tuple, (f2,F,P), which contains the com­

plete Borel-cr field required to describe the evolution of u t, now consider the BEKK 

model from 2.2.32, in this model the matrix process is assumed to be an ARMA(p,q)
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where non-negativity is preserved as the result of pre and post multiplication of the 

past recursions of the covariance matrix £ t and the innovations of u tu j  with the 

time invariant parameter matrices, A 4 and Bj, for the parameter matrix. Consider 

the evolution of over some sample period of length r.

ST =

IcTi

T

(2.2.84)

=  £ S ;S r (2.2.85)

Comte and Lieberman (2001) demonstrate using the Jantheau consistency result,
i

that the process, u t = E t2£t, will have convergent fourth moment structure, under 

the BEKK (1,1) framework, that as r  —> oo, the matrix 4?t does converge to some 

matrix 1J', i.e. ;:S^ST —> Given this fourth moment convergence the estimator 9,

from the MLE methodology demonstrated in 1.3.170, will show strong consistency.

2.2.2 Some Empirical R esults for M V-G ARCH  m odels

This section details two empirical studies designed to test the effectiveness of the 

various MV-GARCH models outlined in the previous section. Given the parameter 

estimation difficulties inherent for high dimensional systems the dimensionality of the 

system is restricted to sets of n = 4. The first sample dataset utilizes stocks drawn 

randomly from the S&P 500 index, the second sample dataset utilizes market index 

data for 1 0  broad market indices from around the world, this data is commonly used 

in contagion and market integration analysis, data coverage is daily for 20 years. The
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continuous time returns are computed and filtered using n univariate ARX(p) filters,

Vi,t = +  ••• +  A2 Vi,t-p + 7 Txf +  t (2 .2 .8 6 )

X t = [xituX iitl...,xm,t]T (2.2.87)

Where A* G A and 7 j G 7  are model parameters. The order of the AR process

and inclusion tests on the library of exogenous parameters is undertaken using the 

generic likelihood ratio approach suggested in 1.3.157, to account for the possible 

miss-identification of the conditional variance. The residuals, u^t G u t, are collected 

in the array Ut =  [ut, u t_ i , ..., u f=i] and finally a data matrix over the sample period 

[1 ,..., r], mat (UT) = U, is constructed. The iterations of the evaluation of the
(nxl)xr-*rxn

likelihood functions are plotted as are the comparative evolution of the correlations, 

covariances and standard deviations. A comparative chart of the number of parame­

ters for the respective models is illustrated for the MV-ARCH/GARCH specifications, 

covered in this review.

2.2.3 D ataset 1: Random ly Sampled Stocks from the S&;P 
500

A typical requirement in modern portfolio analysis is to analyze the conditional co­

variation of a set of assets, this section looks at parameterizing models over a variety 

of specifications, for a group of asset from the S&P 500 composite. For computational 

reasons random subsets of four assets were taken from the S&P 500 composite, fil­

tered and the four MV-GARCH models are fitted. The possible exogenous variables
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Table 2.1: Exogenous variables, used in the first stage ARX(p), filter, the PEM-ARX 
approach uses the 1.3.157 approach test variable inclusion/exclusion restrictions.

X\ : Dividend Yeild

X2,t ’ Price to Earnings Ratio

x ^ t : Market to Book Ratio

x ^ t ' Gearing

xs>t • Results Dummy

X6j : 9/11 Dummy

I risk free rates, overnight Deposit Rate to 1 year rate 1 

t (scaled to daily returns continuous method) J

used in the ARX(p) model are defined in table 2.1.

*CCC Model Specification Refers to First Stage Univariate GARCH Model Specifi­

cation,

**DCC Model Refers to Univariate GARCH Model specifications and the Multivari­

ate MARCH Specification Underlying the Correlation Processes,

Table 2.2: A Comparison of Maximum Likelihoods Obtained with a Gaussian Objec­
tive Function

Model Specification p = l , q =  1 p = 2 , q=  1 P =  1,9 =  2 p = 2,q = 2
CCC* -8547.76 -4355.24 -8213.36 -4314.54
DCC** -8121.56 -4121.31 -8067.20 -3991.71
BEKK -5939.01 -5933.63 -5877.54 -5874.51
0  - GARCH** -6401.01 -6399.11 -6387.21 -6383.99
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Evaluations of the Gaussian Log-Likelihood Function for the BEKK Model. 4 Asset System. Optimiation Method: NL-SQP
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Figure 2.1: Comparison of the iterations of the evaluations of the BEKK model for 
different specifications, as the model specification increases the number of parameters 
the slope of the objective function flattens very quickly.

***0-GARCH, Specification Refers to the BEKK Model Specification Underlying 

the Principle Component Processes.

Table 2.2, illustrates the comparative log-likelihoods of the four models over a sample 

dataset, the BEKK model is clearly the optimal performer, from 20 sets of sub-samples 

from the S&P 500 the BEKK model consistently produced conditional covariance 

estimates that resulted in the largest evaluated likelihoods. However the difficulty 

in estimating the model becomes apparent when assessing the objective function, in 

comparison to that of the DCC model with MARCH type correlation dynamics. The
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Evaluations of the Gaussian Log-Ukdibood Function for the DCC Model. 4 Asset System. Optimiation Method: NL-SQP
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Figure 2.2: By comparison to the BEKK model the DCC with MARCH correlation 
structure, has a much steeper objective evaluation for the same parameter specifica­
tion.
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 P-1.Q-1

m>

e, -a<

Figure 2.3: Monte-Carlo Analysis of the MLE estimation of 0* =  aifi, from the general 
BEKK(p, q) model, as a deviation from the true parameter, 0*.

flat nature of the BEKK iterates is not in itself indicative of any particular deficiencies 

in the model estimation. However when undertaking monte-carlo studies the impact 

of this flatness emerges very quickly, the figure 2.3 indicates the joint error of one 

parameter from 1 0 0  monte-carlo experiments, as the lag operator is increased, the 

number of parameters jumps and the spread of the parameter estimates increases. 

Figures 2.4 to 2.7, illustrate the evolution of the variance/covariance matrix for some 

subsets of the S&P 500.
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3Mj-= ABBOTT UBS

ABBOTT I

x 10"4 P M* i*= 3M i-  ADC’ TELECOM
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.........

0 500 1000 1500 2000 2500 3000

X 10'**».>.« l“ ACE j-  ADC' TELFXOM

Figure 2.4: Subset 1 of four stocks from the S&P 500 Index.
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**«[?>= ABBOTT LABS j = ADO TELECOMABBOTT LABS ABBOTT LABS j -  ACE

Figure 2.5: Subset 2 of four stocks from the S&P 500 Index.
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Figure 2.6: Subset 3 of four stocks from the S&P 500 Index.
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ABBOTT UBS
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CCC
DCC
BEKK
Orthogonal GARCH

Figure 2.7: Subset 4 of four stocks from the S&P 500 Index
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fe s id iu k  Horn ARM W fihrabui i*

HANG SENG 
DOW JONES WILSHIRE 5000 COMPOSITE 
FTSE ALL SHARE 
MILAN MEX
S&PflTSX COMPOSITE INDEX 
S&P ASX 300
FRANCE CAC 40 DS -  CALC.
DAX 200 AVERAGE 
NIKKEI 225 STOCK AVERAGE

Figure 2.8: Residuals from ARMAX(p, q) filtration of nine global indices.

2.2 .4  D ataset 2: A nalysis o f In ternational Stock  M arket In­
dices

Another typical application of MV-GARCH models is in the analysis of the evolution 

of the quadratic covariation of global financial markets. Appendix IV, offers an alter­

native quicker approach using the recursive matrix Kalman filter suggested in 1.3.122, 

which models the dependency as a random matrix process. The first stage filter is a 

basic ARMAX(p, q), model as specified in 1.3.12 and uses the standard infinite order 

MA process approach. The filtered returns are as illustrated in figure 2.8. The evo­

lution of the variance/covariance matrix for two sample 4 x 4  sets, is illustrated in
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Figure 2.9: The evolution of the conditional covariance matrix, E*, for the Hang Seng 
(HK), Dow Jones (US), FTSE (UK) and Milan MEX (IT) Indices.

figures Table 2.3, illustrates the evaluated log-likelihoods from the optimization of 

a Gaussian objective function, using the covariance specifications for the four major 

model classes.

2.3  C h ap ter A p p en d ix: M on te-C arlo  T estin g  o f
O p tim iza tion  A p p roach es

The following is a simple monte-carlo evaluation of a univariate GARCH(p,<?) model. 

10,000 observations are drawn 1000 times from the basic model and the parameters 

estimated, the distribution of the point estimates under maximum likelihood. The
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Figure 2.10: The evolution of the conditional covariance matrix, E*, for the TSX 
(Can), ASX (Aus), DAX (GER) and CAC (FR) indices.

Table 2.3: Table of evaluated likelihoods for various GARCH specifications.

Model Specification p =  l , g =  1 P =  2, qr =  1 p =  1,9 =  2 p = 2,9 = 2
CCC1' -108952 —108841 -108320 -108200
DCC** -95457 —95298 -95362 -95130
BEKK -88721 -88604 -88702 -88511
O - GARCH*** -99411 -98193 -99397 -98177
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optimization algorithm used is the constrained SQP algorithm with BGFS Hessian 

updating, see Fletcher (1994), the parameter constraints are generated from the sta- 

tionarity and consistency conditions, which are as follows,

lj >  0 (2.3.1)

GL\ b\ <  1 (2.3.2)

ai >  0 (2.3.3)

&i >  0 (2.3.4)
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Figure 2.11: A single Price and Return process pathway for the ARCH(1,1) model, 
here the unconditional variance is imposed as u  =  0.001 and the lag coefficients are 
respectively a =  0.5, b =  0.4.
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Figure 2.12: The Surface density of the parameter estimates from 10,000 simulations, 
the true parameter values are labeled. For a simple model such as this the SQP 
method with BGFS Hessian updating is the industry standard constrained optimiza­
tion method and produces very consistent estimates.



Chapter 3

Non-Linear Dependency: in tim e 
series models: Copula Models

3.1 C hapter A bstract

The copula approach stems from Sklar’s theorem, published in (1959) [240], which 

treats a multivariate distribution as a set of marginal distributions coupled by some 

joint coupling distribution. This is an extremely intuitive design, by which the de­

pendency is generated by some multi-variate distribution such as a multi-normal 

or multi-t distribution, but taken in isolation marginal processes are drawn from 

some univariate distribution, such as an extreme value distribution or a non-central- 

/-distribution. This allows for a very easy system identification algorithm, identify 

individually the marginal distributions and parameterize them, then find joint inverse 

probability density function and fit this to a multivariate distribution.

138
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3.2 A  B rief R eview  o f th e  C opula L iterature

As previously stated the basic origin of the copula stems from Sklar (1959), up until 

1997 however the term copula was not widely recognized in the statistics literature, 

something dwelt on at length in the introduction to Nelson’s (1998) first real main­

stream review of the underlying statistical theory. However the concept of dependence 

has been a subject of considerable interest in statistics, Jogdeo (1982) [154] notes 

that dependency is arguably the most studied topic in statistics. As such the practical 

use of copulas in finance with its great emphasis on dependency was soon forthcom­

ing. A second review by Cherubini et al (2004) [51] offer a more finance orientated 

view to the basic theory, offering a variety of potential uses in the finance domain the 

most interesting being to the pricing of baskets of credit default obligations. However 

in the main they restrict themselves to the bivariate case and the main theoretical 

underpinnings. Moving away from the broad reviews of copula methods the first 

major practical applications for copula based methodologies were in the actuarial lit­

erature. Carriere (1994) [48] presents a compelling model of survival probabilities 

for coupled lives and uses this data to form an annuity portfolio. This well received 

work has formed the basis for a wide variety of insurance based applications. How­

ever an interesting off shoot in the finance based world is the idea of modelling the 

survival distributions of defaultable bonds. Which is covered in depth in Hamilton 

et al (2 0 0 2 ), who review the likelihood of changes in credit rating and default on a
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large database of bonds. The model uses a poisson based jump diffusion method to 

simulate arrivals in credit rating transitions. The model then utilizes an Ait-Mikhail- 

Haq copula to model the dependency between two bond processes and then calibrates 

the model against a real data-set. Monte-Carlo routines were then applied to price 

derivatives on single and multiple bond portfolios. Embrechts et al 2002 review the 

finance angle of dependency in terms of the value at risk approach discussing strong 

tail dependency in a variety of contexts. Patton (2005) [215] presents a portfolio 

model which utilizes skewness to capture some of the properties of dependency, he 

back tests his model using a bivariate portfolio with a skewed marginal distribution 

and measuring the conditional skewness using Hansen’s (1994) [136] ARCD model, 

which is effectively a univariate GARCH model with univariate normal objective func­

tion replaced by the non-central ^-distribution. The deformation parameter is then a 

function of the third moment of the distribution. Patton extends the work of Hansen 

by including a variety of bivariate copulae in constructing the dependency between 

the skewed marginal distributions. The logical extension to the conditional marginal 

distributions is the conditional copula proposed by Lee and Long (2005) who propose 

an extension of the dynamic correlation model of Engle (2001) [90] and Engle and 

Sheppard (2002) [89]. Their bivariate specification models the correlation between 

two variables, post standardization under the normal two step method. However 

unlike Patton, they now allow some of the copula parameters to be conditional and
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re-specify the likelihood function accordingly.

3.2.1 N otation

This section uses the following notation,

3
S3
€
0
£

U(lb, ub) 

N(p, a )

AT(p,S)

7 »

T ( v ,R )

e

Fraktur Capital F 
Fraktur Capital H 
Fraktur Capital C 
Fraktur Capital G 
Fraktur Capital L

don |

Non explicit probability density function 
Non explicit cumulative density function 
Non explicit joint density function 
Non explicit multivariate density function 
Log likelihood function

Uniform distribution between 1
upper bound ub and lower bound lb 
Univariate Normal distribution 
mean fi and variance a2 
Multivariate Normal distribution 
vector of means /i and 

covariance matrix £
Univariate t — distribution 1 
degrees of freedom v J 
Multivariate t — distribution 
degrees of freedom v and 

correlation matrix R  
Parameter vector 
Optimal parameter vector 
j Cohorts of draws from 1 
I a uniform distribution I

3.2.2 The Copula Approach

A generalized copula framework could be conceived as follows, consider a draw from 

the ith marginal distribution,

u j ~ 3 ( u i | 0 i )  (3.2.1)
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where, Ui is drawn from a vector, where each element has its own marginal distribu­

tion,

u * =  K , . . . ,< ] t  (3.2.2)

functionally inverting each of the marginal draws into a uniform [0 , 1 ] using the cu­

mulative density function analogue of the marginal probability density function,

Pi = S i(u ;|0 i)  (3.2.3)
b

Hi =  / y i K l f t ) *  (3.2.4)
a

Si € F (3.2.5)

Pi ~  17(0,1) (3.2.6)

Therefore the n-length vector p  is drawn from an n dimensional unit hypercube, 

[0 , 1 ] [0 , 1] x ... x [0,1]. Now consider that, each draw of the vector p  is a functional

transformation of some other random vector u, where,

p = j  £ e ( u |6<r)dt (3.2.7)

u
—  OO

~  ® (u |0 e ) (3.2.8)

£(p) =  5 (® ( u |«e)) (3.2.9)

p ~  c (p ) (3.2.10)

Therefore there is some continuous random vector u  and a transformation,
OO

j  S ^ d t  (3.2.11)
— OO
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that results in a random vector with dependent uniform elements. An example could 

be u is drawn from a zero centred multivariate Normal/Gaussian with normalized 

variance/covariance matrix S , i.e. unit variance and the function #£ is the standard 

normal cumulative density function. In this case p  is drawn from a Gaussian copula, 

which is an elliptical copula.

S k lar’s T heorem

The underlying concept behind the copula approach is the decomposition of a complex 

multivariate distribution into n marginal distributions and a single joint distribution.

u* =  K , . . .X ] t (3.2.12)

0(u*) =  C(F(u*)) (3.2.13)

Where (3 is some continuous multivariate distribution, C is a continuous n-variate 

joint distribution and F is a set of n continuous marginal distributions, where the ith 

marginal, 6  F.

E llip tical Copulas

Copulas are divided into two basic typologies, those which are based on identified 

multivariate distributions such as the multi normal/Gaussian or multi students-t, 

generally referred to as Elliptical copulas, and those based on specific invertible func­

tions, Archimedean copulas.
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Example: Generating Random numbers from an n-variate Gaussian Cop­
ula

To create a draw of random numbers drawn from a bivariate copula, with univariate 

normal marginal distribution and a multi-normal joint distribution is simple, first 

generate a multi-normal distribution, compute the cumulative marginal probabilities 

and then reconstruct the marginal’s from the inverse density function. Therefore 

to start with a vector of uniformly distributed random numbers £7(0,1), a common 

uniform generator is the linear congruential generator, however there is no such thing 

as a genuinely random set of numbers, power spectral density analysis on random 

double precision uniform [0 ,1 ] numbers generated by a linear congruential generator 

will yield distinct peaks from a very large number of draws.

[0, 1] (3.2.14)

L (3.2.15)

£  1 {ii | fa = 0, Gi =  1) (3.2.16)

f e  =  0,<7i =  1) =  ii) (3.2.17)

dt (3.2.18)

£ ~  JV(0,I) (3.2.19)
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Next generate the multi-normal draws in the usual way,

1
u -  +  (3.2.20)

u ~  N  ( // ,£ * )  (3.2.21)

£ (u ) =  7 ^ ] f ^ e x p ( _ 5  ((“  -  P*)T (S * ) _ 1  (u -# i* ) ) )  (3.2.22)

Decomposing the multi-normals by the diagonal of the covariance matrix and utilize 

the univariate Gaussian/normal cdf to construct a probability vector this may then 

be transformed by the inverse cdf of the marginal, in this the univariate inverse 

Gaussain/normal cdf.

K j ]  =  £* (3-2.23)

a* =  ^  (3.2.24)

Ui /  2 \
ft =  =  (3.2.25)

—OO '

<  =  f i i 1 (Pi IK, K ) =  f e  : #  (£i IK, K ) =  Pi} (3.2.26)

u* ~  0(u*) (3.2.27)

The vector draw u* is now drawn from an n-variate Gaussian copula with univari­

ate Gaussian/normal marginal distributions. There is no restriction to the nor­

mal/multinormal distribution and any joint/marginal combination may be used as 

long as the cumulative density function of the marginal distribution is invertible.
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Exam ple: G enera ting  R andom  num bers from  a  b ivaria te  copula w ith  dis­
tin c t m arginal d is trib u tio n s

Consider a bivariate case, where the joint distribution is a bivariate students t with 2  

degrees of freedom and the marginal distributions are respectively an extreme value 

distribution and a central /-distribution. The multivariate students-t is simple to 

generate, first generate a multi-normal distribution and then divide by a random 

vector drawn from a normalized central x 2 with appropriate degrees of freedom. The 

covariation in a multivariate students-t is defined by a correlation matrix, a normalized 

covariance matrix therefore,

(3.2.28)

(3.2.29)

An interesting note on the properties of a correlation matrix for R  to be a valid 

correlation matrix, the following must hold, \  = n, where A* is the ith eigenvalue 

of R. The first step is to generate two cohorts,C and i" of uniform random numbers,

t'i ~  U ( 0,1) (3.2.30)

i'i ~  U { 0,1) (3.2.31)

*' = t‘i  (3-2-32)

t" =  K ,. . .)t"]T (3.2.33)

R. =  [Pi,



147

The first cohort, will generate a zero centred n-length multi-normal vector and the 

second will generate an n-length vector of % 2 (v) random variables, where v is the 

number of degrees of freedom of the objective multi students-^ distribution.

A — 1 (<,' | f t  =  0 , =  1 ) (3.2.34)

= {et : ffieWiM =  0,<7i =  1 ) =  t'} (3.2.35)

° i ) = * / e x p H ^ / VaiV^TT J  I 2  (en) J
— OO

(3.2.36)

A r s j N (  0,1) (3.2.37)

e' rsj N  (0,1) (3.2.38)

u' = R V (3.2.39)

u' = < ] T (3.2.40)

A — s " - 1 Wl® =  2 ) (3.2.41)

= ii<MII"uT (3.2.42)

= 2 ) =
£r t 2 {v 2)exp ( - | f )

/ 2 5 T  ( | w)
(3.2.43)

A r o X2 (2) (3.2.44)
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Dividing the two newly constructed random vectors element by element yields a vector 

drawn from an n-variate multi students-^,

U( =  u'(<t'lT 1 (3.2.45)

u =  [ti1 ,...,u n]T (3.2.46)

u ~  T(v ,  R) (3.2.47)

<£(u|u,R) =  T(v ,  R) (3.2.48)

r ( ^ )  1______ 1_ 

r ( i )  V^(1 + E)
P =  \Pu-,Pn\ = \PuP2\ (3.2.50)

r p i i
Pi = $ ( u i \ v ) =  /  ------- - ^ d t  (3.2.49)J r  m  VVTT h  , t ± \ - t

From the cdf of the univariate students t the [0,1] uniform vector is computed and 

the inverse cdf’s of the marginal distribution is used to reconstruct the variable, in 

the bivariate case this yields,

ui = &I1 (Pi h>i,v2) =  {ui : (wi |^i, î 2) = P i}  (3.2.51)

Pi = Soi{ui\fi,a) (3.2.52)
U i

=  J  a - 1 exp exp ( -  exp ( ^ )  )  *
— OO

u 2 = &2 1 (P2 \vi,v2) = {u2 '■ f i2 (u2 \vu v2) = p2] (3.2.53)

P2 = f i2 (ui \v i ,v2) (3.2.54)
lio / Vi \

T ( ^ )  t ( a j a )
V i +  VO

M s ) * )  2

u2

/
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Therefore the vector, U * =  [itj, u2] has two marginal distributions the first drawn from 

an extreme value distribution u\ and the second u2 from a central /-distribution. 

C opula  E stim ation  M ethodologies for E llip tical Copulas

We have shown how it is possible to generate random draws from a variety of Elliptical 

copulae, the next step is to identify and parameterize Elliptical copulas from vector 

data. Consider a sample of vector data drawn from from some unknown multivariate 

distribution, u G l n, which maybe decomposed into n-marginal distributions and one 

joint distribution, under Sklar’s theorem.

Um (3.2.55)

Um G U (3.2.56)

u = [um=l) Um=r] (3.2.57)

Um ~  G(Um|Q) (3.2.58)

Q =  {01 , —,0n,0e} (3.2.59)

The set Q contains the parameter vectors for the n marginal distributions Oi and the 

joint distribution 0£. From the sample 7 / um is the m th draw from r  draws of the 

random vector u. Our objective is to form a likelihood function £  (Q) for which,

max (£ ( # 1  (0i), (0n) , <£ (0C))) (3.2.60)
Q

The simplest method is to breakdown the optimization into two distinct steps, first 

identify the marginal distributions, fit their parameters via maximum likelihood and
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convert the marginal distributions into n [0 ,1] uniform distributions, via the marginal 

cumulative density function.

In the second step each element of the vector of probabilities is then converted via the 

joint distributions univariate analogue’s inverse cdf and then the joint distribution is 

again fitted via maximum likelihood.

The parameter vector of the univariate inverse density function, $n, are free parame­

ters, although they should be uniform for each element of p.

3.2.3 Problem s w ith the two step Approach

The basic problem is system identification, i.e. which marginal/joint combination to 

use, once the system is identified then parameterization is simple, using the two step

& ( 0 *) =  max (log & (Qi))0i

Pi =  z>i ( * , 0;)

(3.2.61)

(3.2.62)

Pi ~  U(Q,1) (3.2.63)

P  =  \P l , - ,P n \T (3.2.64)

(3.2.65)

•Sii (Pi I On) =  K  : Sh (uj |0u) =  < } (3.2.66)

(3.2.67)

e r a
A

m a x ( £ ( £ ( 0 ) ) )u (3 .2 .6 8 )
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MLE method. The major difficulty when the length of u exceeds n = 3, is identifying 

the joint distribution. However there are only four viable multivariate distributions to 

choose from, the multi-normal, multi-t, the multi-gamma and in exceptional cases the 

Multivariate Dirichlet distribution. A comparison test between the fit of each possible 

joint distribution maybe undertaken using the stratification techniques, which will be 

addressed later in this chapter.

3.3 Em pirical C opulas

An alternative approach is to evaluate the copulas empirically, this maybe employed at 

either stage of the two step approach. Again the first step is to construct the marginal 

cdf and convert each vector innovation of the marginal distribution into probability 

vectors. This maybe undertaken via a simple histogram approach or via kernel density 

smoothing. Once the marginal distributions have been converted into [0,1] uniform 

densities the copula is then modelled directly. First the n dimensional hypercube is 

constructed, containing the stratification boundaries, second hypercube with elements 

containing the population abundances for each of the stratification cells. This gives 

an n dimensional probability array, to construct a Monte-Carlo routine, first generate 

a vector of independent U(0 , 1 ) draws and then couple those via the probability array. 

The discrete strata are made continuous by assuming that a draw from anywhere in 

the strata is equally likely. This approach has none of the drawbacks of the maximum 

likelihood approach, i.e. distributional assumptions, but is extremely computationally
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intensive and requires a large amount of data, for example a Monte-Carlo simulation 

of a 1 0 -variate system, with 1 0 0  stratifications, requires a stratified hypercube with 

1 0 0 ,0 0 0 ,0 0 0 ,0 0 0 ,0 0 0 ,0 0 0 , 0 0 0  elements, in addition to the 1 0 0  stratifications for each 

of the univariate empirical cdfs. The following example looks at a bivariate example, 

first consider the two marginal distributions,

u =  K u i ] T (3.3.1)

Ui ~  # 1  (ui) (3.3.2)

U2 ~  # 2  (U2) (3.3.3)

Pi = fil M (3.3.4)

P2 = 2(U2) (3.3.5)

P =  \Pu Pi]T (3.3.6)

The probability density array is therefore a matrix C, that operates over an array S,  

with S  stratifications,

<S =

(0,0 .2) 

(0, 0 .2)

(0.2 +  5,0.4) 
(0, 0 .2)

(0.8 +  <5,1)' 

(0 , 0 .2)

(0,0 .2)

(0 .2 + (5,0 .2 ) 
(0.2+  <5,0.4)' 
(0.2+ .5,0.2)

(0.8 +  .5,1) 
(0 . 2  +  5,0 .2 )

(0,0 .2)

(0.8 +  (5,1 ) 
(0.2 +  5,0.4) 
(0.8 +  5, 1)

(0.8+ 5,1)' 
(0 . 8  +  5 ,1 )

(3.3.7)
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assuming that,

S  = \shS \

c =
P(Sl,l) P(Sl,2) P(«l ,s) 
P (s2,l) P f e )  '•* P(S2,s)

P ( sS,l) P ( s5,2) P {SS,s)

Where <5 is the smallest double precision floating operator, the real minimum. More

generally for S  stratifications and an n-variate vector process, using the Khatri-Rao

product to vectorize the hypercube,

M O N
kxm Ixm

m i

ni

[mi O ni, ...,m m 0  nr

[mi,i,...,m*:)i]T

[niii , . . . ,n J)i]T

(3.3.8)

(3.3.9) 

(3.3.10)

The Khatri-Rao product allows for the creation of an indexing matrix, A which is 

then used to systematize the construction of C,

a* = e © sS * x l  Sx 1 e © s
S*x 1 5 x 1

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)
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The address matrix is characterized as,

A =
S n XTl

S
s

1

1

1

2
2

S -  1 
S

1

2

5
1

2

S
1

5  S  S - 1

5  5  5

(3.3.15)

Therefore each element of S  and C is indexed in terms of a vector Hj, which is a row

from A.

aj — •••» aj,n] (3.3.16)

therefore in vector notation,

(3.3.17)

(3.3.18)

(3.3.19)

each element of S  and C is therefore,

S n  =

(dj, 1 — 1) +  <5, iflj.i)
( 5  (flj,2 — 1 ) +  5 ^ , 2)

(s  1 ) “I" Saj’n)
C j =  P  ( S j )

(3.3.20)

(3.3.21)
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The following constraint is necessary to ensure C is a valid density array,

eTvec (C) =  1 (3.3.22)

Therefore if each element in the probability array C is given equal weight, the sum of 

those probabilities must be one. The probability density array C is then vectorized, 

the empirical cumulative density array, H  is then computed,

H = ^  |  vec (C) (3.3.23)

The symbol |  is used to represent the sorting of the vectorized array and ^  to 

represent the cumulative sum of the sorted array. Once the probability density array 

is estimated, generating random numbers is very easy, simply generate a 1 x 1 draw 

from a uniform U(0 , 1 ) density function, the closest element in the cumulative density 

array H  locates the position of the draw in <5, if any of the 7  elements are equally 

probable then there is an ^ chance of drawing them. Once we know which strata in 

S  we are in then we draw the vector from an n-variate uniform distribution, with 

limits defined by the strata array, e.g. if in the bivariate example C is found to be as 

follows,

C =

0  0  0  0  0

0 0.1 0.05 0.05 0.15
0 0.2 0.3 0.1 0
0 0.1 0.05 0.05 0

0.15 0 0 0 0

(3.3.24)
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Therefore the empirical cumulative density function is as follows,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . . '

H= 0.05,0.1,0.15,0.2,0.3,. (3.3.25)

0.4,0.5,0.7,1

Therefore a single draw from a U{0,1) of 0.65, will place the draw in the cell, desig­

nated s3i 3 ,

<53,3 =
(0.4 + £,0.6)

(3.3.26)
(0.4 -1- 8,0.6)

Therefore the resulting random vector will be a draw,

u m ~ U  (0.4 +  6,0 .6 ) 
u2 ~  U (0.4 +  <5,0.6) (3.3.27)

The more stratifications then the less pronounced the natural stepping effect caused 

by this type of stratification. This methodology is a specific extension of Latin hy­

percube sampling, which is commonly used in Monte-Carlo analysis to increase the 

convergence of sample paths of latent stochastic processes.

Empirical Example

A typical empirical copula application could be as follows, suppose a structurer has 

written a knock-out call option on a basket of bonds, the knockout option includes 

a complex set of n-clauses on a variety of macroeconomic and financial variables the 

counter-party wishes to know the probability that any of the knock-out clauses will 

be enacted over the lifetime of the option. This is a common problem in modern
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finance, as derivative instruments become more complex, analyzing the risk of such 

instruments becomes increasingly complicated. The following is a real trade between 

a large bank, the issuer, and a smaller bank from an emerging market, the counter­

party. The option is a call on a currency swap, in six months, the issuer incorporates 

a series of knock-out clauses which invalidates the option if at any given time over 

the period of the option they are activated. Suppose there are n-instruments, the 

clauses will activate if any of the instruments moves below a certain value, for ease 

of notation all of the clauses are specified as a floors. In addition to the individual 

clauses, if the total weighted value of the instruments drops below a certain level then 

another knock-out clause activates.

U t

UJ — [kh.t? •••j ^n,t.

Vt =  ^ TUt

£ -  K i, . . . } £n 5

(3.3.28)

(3.3.29)

(3.3.30)

(3.3.31)

The probability measure is therefore,

/

VI3V--- : {« =  !, \

u <

VI•wC
3 : { t  =  1, •••, t  = T } , >

k Vt — • {t =  1, ••, t  = T }  , /

(3.3.32)

Taking the sample history of u t, constructing the hypercube probability measure and 

then use Monte-Carlo simulation to construct a large number of sample paths, the
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proportion of sample paths that activate the clauses, gives the empirical probability 

of invalidation of the option.

3.3.1 Sm oothing the Hypercube

One of the major problems with this methodology is that as the number of dimen­

sions increases, the spacial density decreases, for a set number of observations, this will 

mean that blank spots in the hypercube are more likely which will result in more pro­

nounced stepping effects in the monte-carlo pathways. When estimating the marginal 

distributions and compute the cumulative density functions and their quadrature de­

rived inverses, a smoothing kernel is utilized to reduce the stepping effect caused by 

zero populated elements in the main probability mass. Given a suitable number of 

observations the mono-dimensional nature makes this smoothing largely redundant, 

however for the stratified hypercube the number of observations is soon outstripped 

by the number of elements in the hypercube itself. To this end we turn to a technique 

known as n-dimensional tensor produce splines. The proposed methodology tackles 

the smoothing issues in two ways, first by running a simple moving average smoother 

over the hypercube and re-normalizing the probability densities. And second by look­

ing at clusters of gaps, particularly prevalent in very high dimensional systems. The 

second method requires a variety of assumptions, first how many high probability 

mass centers there are in the hypercube, second the rate of functional decay to zero 

probability mass at the boundaries of these high mass centers. If the data generating
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process is from an elliptical copula then this is relatively simple, the decay is exponen­

tial and the number of high probability mass is under most circumstances normally 

one, unless the largest eigenvalue of the non-negative dependency matrix is very low 

and the probability mass is almost uniformly diffuse across the hypercube.

T h e  E xponen tia l Sm oother

Consider a window described by a hypercube W* with dimension of length, u  =  ^5, 

where S  is the number of stratifications of C and i is the ith element of the total 

elements of C, confining u  to being an odd number then at the center of W* is a 

unique element of C, W(. We can define the packing of the elements around to in 

terms of the address matrix A, described previously. We can now adjust smooth the 

value of W{ by means of an exponentially weighted average of itself and its nearest 

neighbours. For an element w with address vector, a*, the hypercube address matrix 

will be,

Aw, =

a*
a* +  $1

B-i +  62

B i  +  S u , n

(3.3.33)
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Where the vector Sj is the j  row of the matrix, A

A  =?nxn

where,

0 . . .  o
0 . . . 0

-c . . .  0 0
0 . . .  0 -? + l

-? + l . . .  0 0

0 . . .  0 0
0 . . .  0 1

s . . .  0 0

*=2 (w + l)

(3.3.34)

(3.3.35)

For those elements within of the boundary aperiodic (torus) boundary conditions 

for the smoothing are used, (i.e. dampened reflexivity).

un- l
Wi = ^ 2  a; exp (pw])

3= i
(3.3.36)

Chapter Appendix III illustrates the effect of smoothing on the empirical estimation 

of a bivariate t-copula and a bivariate Gumbel copula. The marginal distributions are 

both back computed from univariate normals. Its easy to see that the representation 

of the smoothed copula gives a much more realistic representation of the probability 

mass density function.
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Testing the Robustness of Monte-Carlo Pathways from an Empirical Cop­
ula

The reliability of pathways may be tested using a simple monte-carlo procedure, a 

random sample from an standard elliptical copula is used as the test data set, the 

empirical copula is then estimated and smoothed, a new large set of random draws 

is generated from the empirical copula and the original copula specification is pa­

rameterized from these draws using maximum likelihood, the velocity of convergence 

between the original and estimated parameters gives an indication of the power of 

the technique.

M onte Carlo Testing M ethodology

First generate sets of draws u^ € of varying lengths from a real t-copula with true 

parameter vector 6, second fit the stratified hypercube and generate a new fixed length 

(very large) set of draws u£ E Uq and then from this new set of draws estimate the 

parameters of the original copula specification, 0*, then compute the naive quadratic 

deviation from the true parameter vector, 9* — 6i and compare this to a maximum 

likelihood fit on the original sample, 6'* and its naive quadratic deviation from the 

true vector, O'* — 0*, where subscript i denotes the ith parameter.

M onte-Carlo Test

The example here, uses a 20-variate t-copula with a variety of marginal distributions, 

taken from the normal, log-normal, extreme value (basic Paretian) and /-distribution.
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The marginal cumulative density functions were estimated using kernel density esti­

mation with two hundred and fifty nodes and Epanechnikov smoothing, see Moral et 

al (2002). The copula was estimated using two hundred and fifty stratifications per 

variate dimension. This yields, 25020 elements within the stratified copula hypercube, 

(most of the elements are zero or near zero). The experiment was conducted on gen­

erated data of lengths between 10,000 and 10,000,000 observations. Estimation took 

6 days using a quad processor Xeon workstation, in Linux. Figure 3.1 clearly shows 

that as expected the MLE estimated parameters of the Monte-Carlo pathways from 

the stratified copula hypercube converge to the true value as the sample size increases 

past 10,000 observations. Figure illustrates the performance of the maximum likeli­

hood estimator with varying sample size and demonstrates that even with a known 

system identification, parametrization converges monotonically to the true estimates 

only for sample sizes of over 5,000.
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Figure 3.1: The cumulative parameter errors with increasing sample size for an em­
pirical copulas.



Figure 3.2: 3D Depiction of the Empirical Copula, the color designates the intensity 
of the density mass in the Unit Cube

3 .4  N on -S p h erica l C op u las, th e  A rch im ed ean  C op ­
ula

Archimedean copulas use generator functions to impart dependency between marginal 

distributions. Consider the Laplace transform,

= J  X ( t ) e ~ sidt (3.4.1)
o
oo

<P(„) =  J  <r(u)e-nvdu (3.4.2)
0
oo

<P(£(u)) =  J  £ { u )e ~ uvdu (3.4.3)
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For any given generator function the copula function is defined as follows,

n
C(u) =  3T1 j£(uj) (3.4.4)

i—1
n

i) < X(0) (3.4.5)
i=1

To be a valid copula generating function $  must be a positive Laplace transform 

of <£(w). The following, non-exhaustive, list gives the commonly used generating 

functions, their inverses and the bivariate form of the Archimedean copula, those listed 

here have been utilized in the finance literature and include copulas from Hamilton et 

al (1994) [135] and Patton (2002) [215]. For a fuller list of important Archimedean 

Copulas see Nelson (1991) [205].

T he C lay ton  C opula

Generator function,

X(u) =  (u~e -  1) (3.4.6)

3E-1(u) =  (l +  u)_5 (3.4.7)

Parameter domain,

9 > 0 (3.4.8)

The bivariate version is defined as,

d(ui,u2) =  (u +  U2 6 -  l)~Q (3.4.9)
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The Gumbel Copula

Generator function,

3C(u) = (— In it) 

£ -1(u) =  exp ( —u&

Parameter domain,

9 >  1

The bivariate version is defined as,

<Z(ux,u 2) = exp ( ( - ln (u i) )0 +  ( - ln (u 2))0)

The Franks Copula

Generator function,

^ )  =  - l n ( eXp(- y - 1)
V exp (9) — 1 J

3f-1(u) =  —|  (In 1 — exp (—u) (1 — exp (—0))) 

Parameter domain,

0>  1

The bivariate copula is defined as,

(3.4.10)

(3.4.11)

(3 .4 .1 2 )

(3 .4 .1 3 )

(3 .4 .1 4 )

(3 .4 .1 5 )

(3 .4 .1 6 )

t ( u u u 2 ) =  r M n  ( l  +  ( e x p ( M - l )  ^ p ( ^ 2) - l ) N 
v (exp (0) -  1) J

(3.4.17)
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Ait-M ikhail-Haq Copula

Generator function,

X(u) = In ( -— ^ ^  ) (3.4.18)

Parameter domain,

-1  < Q > 1 (3.4.20)

The bivariate copula is defined as,

(3A 21)

The Archimedean copulas can produce very complex tail dependencies in the bivariate 

case, however in the n-variate form much of the advantages break down. There is 

no cross dependency and each pair of the n-variate marginal distributions has the 

identical dependency structure.

3.5 C hapter A ppendix: Som e C opula D ependency  
E xam ples
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Three Independent Standard Normal Random Variables. Describing the Euclidean Ball

Figure 3.3: IID Tri-variate Normal distributions, i.e. u ~  iV(0,1), when plotted 
describe the contours of the Euclidean ball, deformations from this spherical struc­
ture are demonstrative of complex multivariate dependence. However extreme values 
maybe obtained even with no explicit tail correlation.



169

Tri-vahate Studenfe-t Distribution, with normal marginal distributions, colour gradient is horn Euclidean Norm

Figure 3.4: In this case the marginal distributions are IID normal and the joint 
distribution is a tri-variate students-t, however dependency structure is still defined 
by the identity matrix I, he nature of the H-function, from which the multi-t is derived 
means that there exists tail domains, where extreme values are far more likely than 
under the multi-normal



Chapter 4

Co-movement and Contagion: A  
Case Study of the UK  
Biotechnology Sector

4.1 C hapter A bstract

By use of the Biotechnology industry as a case study the definitions of co-movement 

and contagion are strictly rationalized in the context of market categorization. Build­

ing upon the ideas developed by Chan (2003) [50] and Barberis et al (2003a) [19] in 

order to investigate the impact of news events on changes in stock co-movement. 

In this chapter it is suggested that changes in the conditional correlation of assets 

need not always be thought of in terms contagion effects but as jump changes in the 

stochastic correlation structure.

170
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4.2 Introduction  and L iterature

This chapter adds to the existing research on the incorporation of information into 

asset prices and co-movement between assets. The contribution of this paper is to 

build on this research by examining the impact of news events specifically relating 

to just one firm on the remaining firms within a sector. The aim is to increase our 

understanding of how investors incorporate information into prices by measuring the 

response of firms to news that does not specifically relate to them. Changes in co­

movement may be explained in several ways, first of all by changes in volatility, second 

changes in the market value of assets, third by changes in the internal structure of the 

firms. In general finding out which of these processes is really at work when analyzing 

dynamic correlation structures is difficult. In the biotechnology sector in this sense 

is there is fairly widely available information as to the potential value of drugs and 

compounds currently being researched. Likewise there is also a substantial history of 

information pertaining to success and failure rates of potential drugs and compounds, 

so to a certain extent there is enough knowledge to assess the fundamental value of 

firms in this sector, to be able to fully specify and parameterize the processes which 

underlie the dependency structure of asset price processes.

The literature on the inclusion of news announcements into stock price dynamics is 

broad and generally focuses on individual stocks as opposed to the general effect on 

a sector of news announcements to a single element. Work by Bernard and Thomas
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(1989) shows that the information contained in earnings announcements takes some 

time to become fully incorporated into prices. Similar evidence of drift following 

announcements relating to stock splits and changes in analyst recommendations has 

been documented by Ikenberry and Ramnath (2002) /citelkenberryl33 and Michaely 

and Womack (1999) [198] respectively. Pritamani and Singal (2001) [221] suggests 

there is evidence of a similar lagged adjustment following large price changes, defined 

as an abnormal return more than three standard deviations from the mean. How­

ever, Chan (2003) [50] distinguishes between large price changes associated with news 

events and those that appear to be unrelated to news, and finds a lagged adjustment, 

or drift, only following a news event. Large price changes that are not associated with 

a news event result in reversal. Moreover, the drift is stronger for bad news events, 

implying that the adjustment to bad news is slower than for good news. Conrad, Cor­

nell and Landsman (2002) [55] document a further asymmetry. Examining the stock 

price response to earnings announcements, they show that the response to bad news 

is stronger when the market is rising. On the other hand, the response to good news 

decreases when stock prices are high. Underpinning this research is the increasingly 

widespread view that investors under-react to new information. This under-reaction 

may result from information only gradually becoming incorporated into prices, and is 

perpetuated by limited arbitrage due to transaction costs, particularly where there is 

bad news. At the same time, the reversal documented by Chan (2003) [50] following
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non-news related price movements suggests a tendency for investors to overreact to 

such price movements. In a similar approach, Daniel and Titman (2005) [65] dis­

tinguishes between tangible and intangible information, where intangible information 

is ’that part of the stock’s past return that cannot be linked directly to accounting 

numbers, but which presumably reflects changes in expectations about future cash 

flows.’ They argue that investors overreact only to intangible information. Chan 

(2003) [50] suggests his results are consistent with the model in Hong and Stein 

(1999). This model is based on two types of trader, one that focuses on news and one 

that focuses on price movements. Alternatively, the overreaction to intangible infor­

mation in Daniel and Titman (2005) [65] may be consistent with the overconfidence 

and self-attribution bias discussed in Daniel, Hirshleifer and Subrahmanyam (1998) 

[64]. Several studies have also examined the transfer of information between firms 

within an industry. These studies find that an announcement relating to one firm can 

have a significant impact on the prices of shares within the industry. Most notably, 

Lang and Stulz (1992) [175] find that bankruptcy announcements have a negative 

impact on rival firms within the industry. This effect can however be inverted where 

the industry is highly concentrated. Szewczyk (1992) [245] shows that rival firms 

respond negatively to an SEO announcement, whilst Tawatnuntachai and D’Mello 

(2002) [248] finds that rival firms respond positively to stock split announcements. 

This research is also related to the empirical studies of market co-movement and
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contagion. These studies examine the extent to which markets move together, and 

in particular how this co-movement is affected by a shock in one market. Whereas 

the focus of this research is on the transmission of a news shock from one stock to 

another, studies of market contagion focus on the transmission of shocks between 

different stock markets. In this context, Forbes and Rigobon (2002) [97] define con­

tagion as ’a significant increase in cross-market linkages after a shock to one country’. 

Thus contagion is more than simply co-movement in stock returns. A shock in one 

market that either induces, or occurs at the same time as, a shock in another market, 

is evidence of co-movement, not of contagion. Contagion requires that the extent of 

the co-movement between markets be impacted significantly by a shock. An early 

example of the research supporting the presence of cross-country contagion is that of 

King and Wadhwani (1990) [169]. They find that the cross-market correlations be­

tween the US, UK and Japan rose significantly after the crash in 1987. Lee and Kim 

(1993) obtain similar results for a larger subset of countries. Most recently, Forbes 

and Rigobon (2002) [97] concludes that there was no contagion during several major 

international shocks, including the 1987 crash . Studies focusing on co-movement 

(and changes in co-movement) among stock returns are also closely related to our 

study. Barberis et al (2003b) develops a model in which analysts and/or investors 

assign stocks to categories - what they term style investing. Additionally, they as­

sume that the allocation of funds among different styles is based upon their relative
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past performance. As a result, investors switching between styles create patterns 

in demand that generate return co-movement within a style that is independent of 

cash-flow co-movement. Consistent with this, Froot and Dabora (1999) [63] shows 

that twin stocks co-move most closely with the market in which they are traded. A 

further prediction of Barberis et al (2003b) [17] is that the reclassification of a stock 

into a new style increases the stock’s co-movement with that style. Research in this 

area has focused on the change in correlation, or co-movement, in returns between 

a stock and the market in which that particular stock is classified. There has been 

consistent evidence that a stock’s co-movement with an index increases after inclusion 

in the index, and reduces after deletion from the index (see, for example, Vijh (1994) 

[258], Greenwood and Sosner (2002) [121] and Barberis et al (2003a) [17]. Green- 

wod and Sosner (2002) [121] conclude that it is trading that induces the observed 

co-movement in returns.

4.2.1 Current literature on the Biotechnology Sector

The choice of the biotechnology sector to analyze stock co-movement is driven by 

the extent of the interdependency between the firms in the sector and a reasonable 

transparent dependency structure. Most obviously, the firms often engage in the joint 

licensing of candidate drugs and technologies, and as a result news impacting on one 

firm’s cash flows will have a clear and definite impact on other firms’ cash flows. In 

addition, companies can become inter-linked through product development. Complex
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drugs and treatments may use combinations of candidate drugs, often with patents 

held by a variety of companies, so that news affecting certain companies may have 

both direct and indirect effects on others within the sector. Perhaps less obviously, a 

news event that is firm-specific may cause a re-assessment of the prospects for other 

firms in the sector. For example, an announcement regarding the development of a 

particular compound by one firm may have important implications for the compounds 

developed (or in the process of being developed) by the other firms in the sector. Com­

panies often normally hold similar portfolios of licensed candidate drugs/compounds. 

More generally, a firm-specific news event may have sector-wide implications with 

regard to the way that the sector as a whole is perceived by investors. Lerner and 

Merges (1998) [179] identifies the biotechnology sector as one that is particularly 

prone to information asymmetries, and that as a result news affecting one firm can 

have a dramatic effect on the other firms in the sector. Lerner, Shane and Tsai (2003) 

[180] finds that ’unexpected events occurring at a single biotechnology firm e.g., the 

rejection of a promising drug candidate - had dramatic effects on all firms’ abilities 

to raise equity.’ In addition to the interdependencies that are likely to exist between 

firms in the sector, a further complication that investors face is simply the difficulty 

in assessing the potential impact of a news event. This is aggravated by the fact 

that the development of a new drug, from concept to delivery, can take a decade or 

more. Patent law in the US runs to around 80 pages for headline contents, whilst
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drug discovery alone has several hundred pages of law devoted to its complexities.

An additional uncertainty has also been introduced regarding firms’ ability to patent

some types of intellectual assets, particularly those relating to gene sequencing and 

DNA profiles. Moreover, complications can arise as a result of inconsistencies in leg­

islation between the EU and the US. Finally, in order to maximize profit from their 

drugs, firms have a strong incentive to attempt to limit the availability of information 

relating to them, as patent disputes tend to be very costly, therefore protection is not 

always assumed simply by patent ownership.

4.3 M odels o f D ynam ic C o-dependency W ith  Jum p  
D iffusions

Consider an k length stochastic vector price process st, driven by a set of common 

factors x t and k length vector noise process wf, J*,

1
dst = fi ((f) (xt)) +  d £ t2dwf +  dJt (4.3.1)

here the final term J  is a jump process, where,

(4.3.2)
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This type of model is commonly used to describe asset price dynamics. Now consider 

a second state vector of jump processes x f, where x t G 1", where n = n i+ n 2 +  ...+n*, 

where rii is the number of projects undertaken by company i. Each price process is a 

transformed Numeriare, (change if measure) of a value process that is the summation 

of some set of risky projects, in the biotechnology case the development of various 

drug projects. Again this state space is defined in terms of some sort of jump diffusion 

model as set of news events impact on the value.

dxt =  ii (xt) dt +  dSlf dwf +  dJt 

The integral price process is now,

t f  t
st = s0 + tyTj  Xfdxt +  £  2 i ^ TJ  x t

(4.3.3)

(4.3.4)

Where the matrix, \P, is partitioned with unit vectors e* to determine which com-
TliX 1

pany owns to which project, wf and wf are respectively an n-length and /c-length 

vector Wiener processes.

^  =
kxn

e ? 0  •• • 0
0 T

e 2 •• • 0

0 0  •• T
• e k

(4.3.5)

The non-negative matrices Q and £  determine the quadratic covariation between 

respectively the diffusion of the projects conducted by the companies in the sector 

and the actual companies themselves. The unfiltered quadratic covariation of the
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company processes is therefore,

E  (StSJ) = <a{E (xtx?)) * T (4.3.6)

Given a sequence of jumps, caused by news events to individual projects, the ex­

pected quadratic covariation will jump according to the change in the state process. 

Given this structure a series of inferences may be made about the structure of return 

processes in the biotechnology sector,

• There will be a deterministic shift (jump) in the covariation between assets 

within the biotechnology sector following a news event.

• This jump in covariation will be in some way proportional to the size of the 

jump caused by the news event to the original company.

• The return processes of companies not undergoing the news event will have 

jumps, even if the news event is not directly attributable to them, i.e. trans­

mitted through the state space xt .

Given that it is difficult to understand the exact properties of the balance sheet 

items, we assume that the state space is unobserved and as such must be inferred, 

using probabilistic models.
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4.4 A n Em pirical S tudy o f C o-m ovem ent in th e  
U K  B iotechnology Sector

We follow Barberis et al (2003) [17] and consider the pair wise co-movement between 

firms in the same sector, based on a two step regression system. Specifically we treat 

the abnormal returns to a firm undergoing an event as the explanatory variable in 

simple linear regression. For each asset over the event period the excess returns are 

computed from a Sharpe-Lintner CAPM model, as follows,

Where r i)T is the vector of returns over the sample window for the company undergoing 

an identifiable news event, the integer r  is the length of sample window before the 

event time t = 0, rJ;T is another company in the same sector and r m)T is the market 

return over the equivalent period. The symbol T = [—r, 0, r], in respect of a column 

vector over event time, is used to signify that the vector is measured in event time. 

Now consider a vector s^T of cumulative abnormal returns where

(4.4.1)

(4.4.2)

T (4.4.3)

(4.4.4)
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Once the cumulative excess returns are computed the second stage regression is as 

follows,

Sj,T =  U f j  (4.4.5)

Where,

E*,T =  [®j S*,r, ASj)T] (4.4.6)

A
2t + 1 x 2 t + 1

0 0
0 I

r + l X T + 1

(4.4.7)

and the linear coefficients b i)T =  [A,r,i> A,t,2 j A,t,3]Tj are estimated via OLS regression. 

The magnitude of the jump J*)T from the news event is therefore estimated by,

A,r — I ^ Z t=_T Sit  r ^ 2 t=0 Si>t (4.4.8)

For each news event the vector of estimated regression coefficients b jjt, is collected for 

all the other assets in the sector as is the magnitude of the jump. The third element 

of b, 3, is used to proxy for the degree of extra co-movement after the event time. 

Selected H ypotheses

The following hypotheses are proposed from the time series regressions,

{Hq :, /?3 —> 0, No Change in Co-movement post event;
H -i  : 5 < 0, Decrease in Co-movement post event;

Hi :, /?3 > 0, Increase in Co-movement post event.

By collecting a large number of significant events, the relationship between changes 

in co-movement and news events, maybe measured for an industrial sector.



182

4.5 Sam ple W indow  and N ew s E vents

Co-movement and the change in co-movement is measured between 16 companies for 

the period 1988 - 2003, a daily window of 61 days is used, i.e. r  =  30. This 15-year 

period yields 251 carefully selected drug discovery events from a potential sample of 

nearly 2000 events, the events selected specifically contained new information as to 

the success or failure candidates drugs and offered significant extra information to 

the market on the potential value of the candidate drug.

Daily closing returns and the risk free rate (the UK 6 month treasury rate, at the 

time of each event), were obtained from Thompson Financial DataStream™.

4.5.1 Event Selection Criteria

The firms within the sample made a total of around 2,000 announcements during the 

sample period. We apply a number of methods to filter the events and produce a 

sample of significant news events for this study. This selection is critically important 

to ensure the validity of the findings. A number of criteria were used to choose the 

news events. The news announcement must relate to products, and contain new in­

formation; the firm must hold intellectual rights to the candidate drug in question; 

subsequent announcements for a particular firm within the event window were ex­

cluded. The news announcements were then categorized in general terms of impact, 

positive or negative. This yielded a total of 251 usable news events. Our selection
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criterion for an event was designed to produce a catalogue of events that were pri­

marily significant to the valuation of the candidate drug project. We applied a series 

of tests to these events to evaluate their significance and filter them appropriately. 

These included expert evaluation of the content and econometric tests to the return 

series for the company stock price to analyze excess returns and the impact of the 

event on the stock price. The press releases were obtained either directly from the 

companies or from the data vendors used to distribute them. These include RNS 

[The London Stock Exchange news wire service), AFX [a wholly-owned subsidiary of 

Agence France-Presse (AFP)] and PR Newswire [United Business Media]. Generally 

the information flows from the company to the press release medium, often via third 

party media consultants who design the press releases. Whilst the date of conclusion 

of a clinical trial may be prior to release, the press release date is the date at which 

full access to the information is available and is therefore the date used. A test set of 

events based upon deviations from a standard multifactor linear model was compared 

to the event dates. All of the significant shocks for each company coincided within 

+ /-  5 days of the announcements within our catalogue.

4.6 Cross Sectional A nalysis and R egressions

The selected events were partitioned into two groups, those relating to positive news 

events and those relating to negative ones. To provide evidence for the underlying 

structure the following cross sectional regressions are proposed, for a set of m  events,



184

first or the fa coefficients,

j* =  (4.6.2)

b 2j ,r  =  3i <Aa2 +  v  ( 4 .6 .3 )
mxl mxl mxl

and second for the fa, coefficients,

»>W.T =  [ /S j . r .& .r . - . f l& .r f  (4-6.4)

ji =  (4.6.5)

bsj.r =  ji 4>ii3 +  v , (4.6.6)
771X 1 771X 1 777X1

Where v  is an m  length disturbance vector. The coefficient (f> is estimated using least 

squares regression and the standard diagnostic tests were carried out.

Cross Section Hypotheses

The cross sectional regressions attempt to infer the relationship between the mag­

nitude of shocks and the magnitude of the linear dependence between the abnormal 

returns exhibited by companies stock returns, the following cross sectional hypotheses 

are proposed,

j j  f Hq :, —► 0, no linear dependence: fa and shock size; , v
\  Hi <j)fo > 0, evidence for linear dependence: fa  and shock size.

and for the fa coefficients,

 ( Hq :, <j>p3 —► 0, no linear dependence fa and shock size; .
\  Hi :, (f)p3 > 0,evidence of linear dependence: fa  and shock size.



185

Positive Results Shock % p.s. (32 % p.s. (32 @2 U 03
Mean
Standard Deviation 
Sample Variance

0.591084
0.76208
0.145192

43.9721641
23.4712193
550.8981354

32.34314133
21.64117906
468.3406311

8.198111412
11.80533741
139.3659914

Negative Events
Mean
Standard Deviation 
Sample Variance

-0.5566741
0.5662177
0.0801506

40.83353912
24.6998481
610.0824961

37.45934351
23.95261722
573.7278716

7.123101617
12.75920723
162.7973692

Table 4.1: The events are split between positive and negative events, the percentage 
of positive significant, p.s. (3'2s illustrates the degree of integration in the sector, on 
average over the 251 sample windows, at lest 40% of the stocks had significant linear 
dependency, over the whole sample window. On average the number of p.s. (33s is 
around 30% for positive events and 23% for negative events from the sample. This 
resulted in a total of 1098 p.s. (3$ observations from 251 events, out of a total of 4096 
estimated.

The table gives the descriptive statistics for the number of positive and significant 

(p.s.) fa  coefficients as a result of a shock to one company in the sector. The sample 

size for the cross sectional regression is 1098 observations, from a possible 251 x 16, 

(4,096) observations.

4.6.1 R esults for Shock Size Against the M agnitude Coeffi­
cients

Table 4.6.1, demonstrates the dependence between shock magnitude and (3s. The 

regression results suggest that the (32 coefficient exhibits an insignificant linear rela­

tionship to the shock size and as such the null hypothesis from 4.6.7 is accepted. By 

contrast the results for the (33 coefficients suggest that there is a strong and significant 

linear relationship between shock magnitude and coefficient magnitude and as such
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Table 4.2: The magnitude of the (32 and (3$ coefficients regressed against the shock 
magnitude. Not all of the companies were floated over the whole period, however no 
news event had less than 12 companies in the cross section______________________

Coefficient Regression Model 4.6.1 Regression Model 4.6.4
Positive Events
s.e.
t-stat
Bootstrapped critical boundary

-0.118740191
0.097245724
-1.221032518
3.043416006

0.021794969
-0.186941943
-0.116586833
3.386314249

Negative Events
s.e.
t-stat
Bootstrapped critical boundary

0.469767274
0.082018289
5.727591754
3.041747044

0.605754163
0.169269747
3.578632174
3.243782724

the null hypothesis from 4.6.8 is rejected.

4 .7  C oncluding R em arks

This chapter lends evidence to the conjecture that the dependency between asset 

returns is dynamic. The case study demonstrates the change in co-movement between 

assets are a series of observed events which updated the information set. The size of 

the dependency adjustment is shown to be strongly correlated to the size of the jump 

that characterizes the event, which is in line with the theoretical model predictions 

outlined in section 4.3. The biotechnology sector, as a case study, offers a sector with 

highly interdependent firms that are constantly undergoing significant events which 

affect their firm specific valuation and the valuation of the many other firms in the 

sector. However the contribution of these project shocks to changes in dependency is 

non-uniform, as different projects share common properties between different firms. A 

model of linkages between firms is proposed, which suggests that such linkages may
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Magnitude of b2 for events where HO rejects no co-movement (habitat or category)

Shock ((rx-e<rx)fc))

Figure 4.1: The plot points represent the magnitude of the /?2 coefficients against the 
magnitude of the shock, there is no visible trend and the results appear to be as a 
perfect half Euclidean ball about the origin, this lack of pattern is in keeping with 
the regression results

Magnitude of b3 for events where HO is rejected for no co-movement (category)
0.9

I 0 5
2  0.4

0.3

0.2

0.1

-05 1.5

Figure 4.2: The plot points represent the magnitude of the /?3 coefficients against the 
magnitude of the shock, the trends represented in the regression results are immedi­
ately visible, as is a certain degree of asymmetry, which is only marginally significant.
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Figure 4.3: The plot points represent percentage of p.s. /3s coefficients against the 
magnitude of the shock, the trends represented in the regression are not as immediate 
visible as those for the magnitude plots as the sample size is cut to 251.
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strengthen or weaken depending on the tightness of the correlation of a particular 

project undergoing an event. The resultant change in the correlation structure is then 

related to the relative change size of the project in relation the remaining portfolio of 

drugs, therefore the dependency will jump in proportion to the size of the event.

4.8 C hapter A ppend ix

4.8.1 Companies and Events

1. Antisoma; Biopharmaceutical Products, Anticancer

2. Biocompaitbles; Biopharmaceutical Products, Polymer Science,

3. British Biotech; Biopharmaceutical Products, Anticancer, Antibiotics

4. CAT; Biopharmaceutical Products, Antibody Technologies

5. CANTAB; Biopharmaceutical Products, Anticancer

6. CellTech; Immunology

7. CENES; Biopharmaceutical Products, Anticancer

8. Amersham; Imaging, Analysis, Genomics,

9. Oxford Biomedica; Biosciences

10. Oxford Glycosciences; Custom drug discovery technologies

11. Powderject; Drug delivery systems
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12. PPL; Genomics + Cloning

13. Proteome; Proteomics

14. Provalis; Biopharmaceutical Products, Anticancer

15. Smithkline Beecham; Pharmaceutical

16. Xenova; Diversified Biosciences 

Table of E vents

1 24/10/2002 Pemtumomab gastric phase II preliminary results,

2 22/08/2002 Antisoma completes patient recruitment for phase I trial of TheraFab,

3 17/06/2002 Phase I data for Antisomas DMXAA presented at International Con­

ference on Vascular Targeting,

4 08/04/2002 Antisoma presents data showing Thioplatin active on cancer cells

resistant to cisplatin

5 10/09/2001 New product, Theranase, in-licensed into Antisomas Targeted Apop-

tosis programme,

6 30/08/2001 Antisoma in-licenses DMXAA, a promising tumour blood vessel tar­

geting agent in Phase I trials,
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7 06/06/2001 Recruitment to Phase III study of Antisomas lead product pemtu-

momab extended after initial target achieved,

8 30/04/2001 Humanised HMFG1, under development by Antisoma as Therex,

shown to be effective at harnessing components of the bodys immune system.

9 11/04/2001 Antisoma and Biolnvent sign BC-1 monoclonal antibody manufactur­

ing agreement,

10 01/03/2001 Antisoma appoints Medical Oncology Advisor,

11 29/01/2001 TheraFab, Antisomas latest product candidate starts clinical studies,

12 30/10/2000 Antisoma in-licenses Thioplatin, a novel, platinum-based, targeted

anti-cancer therapy,

13 11/07/2000 Antisoma resumes enrolment into its SMART Phase III pivotal trial,

14 13/06/2000 Antisoma pic Company share option plan grants,

15 22/05/2000 Theragyn Phase III Study Enrolment Temporarily Delayed,

16 03/04/2000 A gentler way to kill cancer cells,

17 16/03/2000 Antisoma announces adoption of Phase I clinical product Therex,

18 14/02/2000 Antisoma pic reports Q2 results and progress in development pipeline,

19 16/12/1999 Listing on the London Stock Exchange,
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20 21/08/2001 Commencement of clinical trial programme for the Batimastat Bio-

divYsio stent

21 24/05/2001 Biocompatibles Update on New Product Developments

22 03/10/2000 PMA Approval for BiodivYsio Coronary Stent

23 12/09/2000 Approvable Notification Received from FDA for BiodivYsioTM Stent

24 22/05/2000 Positive Results of US Coronary Stent Clinical Trial and Update on

US Product Approval Process

25 28/02/2000 BiodivYsio Stent Update

26 26/11/1999 BiodivYsio Drug Delivery Stent receives European Marketing Ap­

proval

27 29/06/1999 Placing and Open Offer, Stent Distribution Agreement for Japan,

Private Label Contact Lens initiative with Specsavers, CE Mark and Launch 

for Small Vessel Stent and Trading Update

28 27/07/1998 Biocompatibles Intl. - Re Clinical Results

29 01/10/2002 British Biotech and GeneSoft announce start of human trials for

first-in-class antibiotic BB-83698

30 08/08/2002 British Biotech and ImmunoGen start second Phase I study of BB-

10901
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31 20/05/2002 Data from ongoing Phase I/II clinical study of BB-10901/huN901-

DM1 presented at 2002 meeting of American Society of Clinical Oncology

32 26/03/2002 Novel thrombolytic drug cleared by FDA for phase II clinical testing

33 08/03/2002 Suspension of patient recruitment in the BRILLIANT II clinical trial

for the Batimastat BiodivYsio stent

34 12/02/2002 British Biotech and MethylGene sign agreement on Phase II antisense

drug for cancer

35 26/07/2001 British Biotech to start phase II trial of E21R in acute myeloid

leukaemia

36 29/05/2001 British Biotech and ImmunoGen to begin phase I/II trial of BB-10901

in small cell lung cancer

37 02/05/2001 Technical note on long term follow-up of marimastat Study 145

38 06/03/2001 Bresagen Ltd commences patient recruitment for E21R phase II study

39 19/01/2001 British Biotech announces update on marimastat Studies 140 and

117 in patients with small cell lung cancer

40 26/09/2000 Results of marimastat study 186 in patients with advanced overian

cancer
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41 23/06/2000 Results of marimastat Study 131 in patients with glioblastoma

42 05/05/2000 British Biotech in collaboration with ImmunoGen to develop and

commercialise huN901-DMl for the treatment of small cell lung cancer

43 06/04/2000 British Biotech in collaborative agreement with CareScience, Inc. to

develop the CareScript Oncology Extranet

44 23/03/2000 British Biotech pic and DevCo Pharmaceuticals Limited sign agree­

ment on lexipafant

45 25/01/2000 Results of marimastat Study 193 in advanced pancreatic cancer

46 07/09/1999 British Biotech in collaborative agreement with Schering-Plough to

develop matrix metalloproteinase inhibitors for cancer

47 26/08/1999 Results of marimastat Study 145 in gastric cancer

48 25/03/1999 British Biotech pic

49 15/02/1999 Results of marimastat Study 128 - pancreatic cancer monotherapy

trial

50 14/11/1996 British Biotech and Tanabe in $74 million agreement to develop and

market marimastat

51 30/09/2002 Cambridge Antibody Technology Partners with Chugai to Develop

Novel Human Monoclonal Antibodies
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52 08/05/2002 Cambridge Antibody Technology Announces Positive 12 Month Phase

II Results for CAT-152

53 14/11/2001 Cambridge Antibody Technology Announces Six Month Follow-Up

Results for CAT-152

54 01/11/2001 Human Genome Sciences Announces Phase I Trial of a Human Mon­

oclonal Antibody Discovered in Collaboration with Cambridge Antibody Tech­

nology

55 25/09/2001 CAT Announces Granting of Regulatory Approval to Start UK Pa­

tient Trials of CAT-213

56 22/08/2001 Cambridge Antibody Technology Announces Phase II Clinical Trial

Results Using CAT-152 in Combined Cataract and Glaucoma Surgery: Findings 

at Three Months Following Operation and Treatment

57 12/06/2001 Cambridge Antibody Technology Starts Phase I Clinical Trials of

CAT-213

58 30/04/2001 CAT Announces Further Information on CAT-152

59 15/01/2001 Cambridge Antibody Technology Granted Further Key Patent in US

60 04/05/2000 One Year Results for CAT-152 in Glaucoma Surgery
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61 04/02/2000 D2E7 Becomes the First Fully Human Monoclonal Antibody into

Phase III Clinical Trials

62 17/11/1999 New Data from Clinical Trials with D2E7 for Rheumatoid Arthritis

63 06/09/1999 CAT Receives Millennium Product Status for Two Products - CAT

Library and ProAb

64 09/06/1999 D2E7 - Further Clinical Data

65 24/05/1999 CAT Acquires Rights to Exclusive Gene Libraries

66 10/05/1999 Impressive Pre-Clinical Study Results with CATs Fully Human Mon­

oclonal Antibodies

67 27/04/1999 Cambridge Antibody Technology holds a granted US patent with

broad claims directed to human antibodies to human proteins isolated by phage 

display and to methods for producing human antibodies.

68 25/03/1999 Cambridge Antibody Technology Strengthens Intellectual Property

Position

69 09/11/1998 Impressive Clinical Data with CAT/BASF Human Antibody D2E7

in Rheumatoid Arthritis

70 25/09/1998 Cambridge Antibody Technology Initiates Patent Infringement Ac­

tion Against MorphoSys
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71 16/07/1998 Acquisition of Aptein Inc. Closed & Approval of European Patent

for Polysome Display Received

72 26/05/1998 CATs Monoclonal Antibody Approved to Enter Clinical Trials for

Glaucoma Surgery

73 02/03/1998 Cambridge Antibody Technology Announces Phage Display Agree­

ment with Dyax Corporation

74 05/11/1997 CATs Collaborative Partner Techniclone Receives FDA Permission

to Begin Clinical Trials with TNT for Malignant Glioma

75 08/08/1997 Approval to Start Clinical Trials for Human Anti-TGF-beta2 Mono­

clonal Antibody

76 08/01/1997 Cambridge Antibody Technology & Eli Lilly Enter into a Collabora­

tive Agreement Involving Antibody-Based Therapeutics

77 12/02/1996 Cambridge Antibody Technology Signs Several Million Dollar Agree­

ment with PFIZER

78 26/01/1996 Cambridge Antibody Technology Limited Licenses Rights to use Anti-

TGF-Beta Antibodies

79 18/12/1995 ObeSys and Cambridge Antibody Technology to Collaborate on Dis­

covery and Development of Antibody based Anti-Obesity Product
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80 01/02/1994 CAT Improves Binding Characteristics of Mercks HIV Neutralising

Antibody

81 05/12/1991 Antibody Breakthrough: Human Antibodies Made in Bacteria with­

out Immunisation

82 06/12/1990 CAT Scientists Develop New Method of Isolating Monoclonal Anti­

bodies

83 18/10/2000 Cantab Pharmaceuticals pic - Genital Warts vaccine clinical trial

results

84 15/06/2000 Cantab Pharmaceuticals pic - Cantabs Cervical Dysplasia Vaccine

Enters Phase I Clinical Trials

85 15/02/2000 Cantab Pharmaceuticals pic - Anti cancer findings with OX-401 in

the journal of immunology

86 03/02/2000 Cantab Pharmaceuticals pic - Received a notification of interference

on US patents for its DISC virus vaccine technology.

87 04/11/1999 Cantab Pharmaceutical pic - Phase II trials with DISC HSV genital

herpes vaccine begin

88 07/10/1999 Cantab Pharmaceuticals pic - Cantab licenses anti-OX40 antibodies



199

89 23/09/1999 Cantab Pharmaceuticals pic - Positive phase I clinical trial results

for DISC HSV genital herpes vaccines.

90 11/01/1999 Cantab Pharmaceuticals - Phogen - Report on new improved gene

therapy method

91 18/05/1998 Cantab Pharmaceuticals pic - Results for first human trials of DISC

HSV

92 08/05/1998 Cantab pharmaceuticals pic - Phogen VP22 technology

93 24/04/2002 Celltech And Biogen Announce World-Wide Collaboration, to De­

velop And Commercialise Phase III Crohns Disease Product

94 28/02/2002 Celltech Outlines CDP 870 Phase II Results in Crohns Disease

95 12/07/2001 Celltech Outlines CDP 870 Phase II Results in Rheumatoid Arthritis

96 05/03/2001 Celltech and Pharmacia Reach Worldwide Agreement on Develop­

ment and Marketing of CDP 870

97 22/01/2001 Celltech and Johnson & Johnson to Develop New Oral Treatments

for Cancer

98 18/05/2000 American Home Products Gains FDA Approval for Mylotarg(tm);

First Antibody-Targeted Chemotherapy Provides High Tech Cancer-Fighting 

Option
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99 22/03/2000 New Product Pipeline

100 10/01/2000 Celltech Announces the Disposal of Rapigene to Qiagen

101 11/11/1999 Celltech Chirosciences CDP 571 achieves positive results in CROHNS 

DISEASE Studies

102 18/05/1999 Potential to Develop New Treatments to Reverse Osteoporosis

103 03/11/1998 Medeva launches new dry powder inhaler product Asmabec Click- 

haler

104 27/06/1997 Chiroscience and Schering-Plough to Develop New Oral Treatments 

For Astma and Other Inflammatory Diseases

105 20/05/1997 Bayer Announce Disappointing Results With New Drug For Treat­

ment of Septic Shock

106 01/02/1996 Merck/Celltech Collaboration On PDE Type IV Inhibitors

107 15/05/2002 CeNeS Announces Further Progress in its Neuropathic Pain Phase 

II Programme

108 06/09/2001 CeNeS launches novel pain drug and establishes specialised hospital 

sales force

109 26/01/2001 Positive Phase II clinical trial results for M6G a morphine alterna­

tive
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110 08/01/2001 Cambridge NeuroScience Awarded a Phase II SBIR Grant

111 30/06/2000 Moraxen Approved for UK Market

112 18/05/2000 Positive results from its sleep disorders programme

113 10/04/2000 CeNeS Pharmaceuticals announces ion channel technology mile­

stones and aqcuisition of contract molecular biology company

114 18/02/2000 CeNeS Pharmaceuticals announces drug delivery collaboration with 

Swiss multinational 27/3/2000, Institutional Placing Raising 2.1 million of New 

Funds

115 31/01/2000 Bioglan and CeNeS Pharmaceuticals - Joint development and li­

censing agreement in pain control

116 13/01/2000 CeNeS Pharmaceuticals enters its first drug delivery collaboration

118 10/10/2002 Amersham in Metastron promotion deal with UKs Link Pharma­

ceuticals AFX

119 26/11/2001 Amersham wins US FDA approval for expanded use of MyoviewO 

coronary diagnosis AFX

120 29/10/2001 Amersham to market Corixas Bexxa drug for non-hodgkins Lym­

phoma in Europe AFX
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121 14/06/1999 Amersham Pharmacia Biotech signs 2 major deals AFX

122 10/12/1998 Amersham Pharmacia collaborate on study AFX

123 11/07/2002 Oxford BioMedicas Trovax Poised to Enter Phase II Trials

124 06/06/2002 Oxford BioMedica: Successful Preclinical Results for New Anaemia 

Product

125 20/02/2002 Interim Clinical Results - MetXia and TroVax

126 13/12/2001 Progress Made in Nerve Repair Programme - Issues of Shares to

Kings College London

127 12/11/2001 Positive Preclinical Results in Gene Therapy for Parkinsons Disease

128 15/10/2001 Successful Interim Phase I/II Trovax Results

129 10/07/2001 GTAC approval for development of METXIA clinical program

130 26/06/2001 Oxford BioMedica Obtains Fundamental Patent for Lentiviral Gene 

Therapy Technology

131 27/03/2001 Oxford BioMedica Obtains Gene Therapy Patent in the USA

132 05/02/2001 Oxford BioMedica: Acquisition of Novel Technology for Nerve Re­

generation and Issue of Shares

133 02/01/2001 Oxford BioMedica Commences Clinical Trial of TroVax
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134 06/11/2000 Oxford BioMedica Announces First Clinical Trial Results for its 

Cancer Therapeutic, MetXia.

135 16/10/2000 Oxford BioMedica Obtains Ethical Approval for TroVax to Enter 

Trials for Colorectal Cancer.

136 15/08/2000 Oxford BioMedica Presents Discovery of Novel Genes Relevant to 

Cancer, Heart Disease and Inflammatory Disease at Drug Discovery Conference

137 26/06/2000 Oxford BioMedica Announces Significant Advances in Gene Transfer 

to the Brain

138 06/06/2000 Oxford BioMedica Announces Collaboration Extension with Aventis 

Pharmaceuticals Inc. on Gene Therapy for Cardiovascular Disease.

139 18/05/2000 Oxford BioMedica: Acquisition of Therapeutic Genes and Issue of 

Shares

140 02/05/2000 Oxford BioMedica Acquires Novel Therapeutic Genes for Treatment 

of Cancer and Other Diseases

141 16/03/2000 Oxford BioMedica Comment on Human Genome/Patenting Issue

142 21/02/2000 Oxford BioMedica Signs Deal on Novel Tumour Vaccine

143 02/02/2000 Oxford BioMedica Annouces Successful Developments in MacroGen 

Cancer Therapy
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144 07/01/2000 Oxford BioMedica Announces New Developments in Cancer Ther­

apy

145 16/11/1999 Oxford BioMedica Develops Vector System for Gene Transfer in 

Therapy for Neural Diseases

146 06/07/1999 Oxford BioMedica Links Up With Modex Therapeutics To Develop 

Diabetes Therapy

147 10/06/1999 Oxford BioMedica Releases pre-Clinical Data on MetXia-P450, the 

Companys First Product to go into Clinical Trial

148 29/01/1999 Oxford BioMedica Announces Positive Preclinical Tumour Vaccine 

Data

149 16/12/1998 Gene Therapy Advisory Committee Gives Go Ahead for Oxford 

BioMedica Breast Cancer Trial

150 16/10/1998 Additional Commercial Opportunities For The Hypoxia Response 

Element Revealed At Gene Therapy Meeting

151 27/07/1998 UKs Leading Gene Therapy Company Awarded DTI Grant To 

Support Clinical Trial In Breast Cancer

152 20/05/1998 Lentivirus VectorsNew Gene Delivery Technology for Gene Therapy
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153 26/01/1998 OXFORD BIOMEDICA ANNOUNCES INTERACTION WITH 

RHONE-POULENC RORER Agreement is signed with leading pharmaceutical 

company

154 09/01/1998 MAKING HIV-BASED GENE THERAPY SAFER Oxford BioMed­

ica Develops a New Gene Delivery System to Extend the Applications for Gene 

Therapy

155 17/11/1997 OXFORD BIOMEDICA ANNOUNCES DETAILS OF ITS FIRST 

CLINICAL TRIAL IN CANCER Breast Cancer to be Targeted with Novel 

Gene Therapy.

156 20/10/1997 OXFORD BIOMEDICA ACQUIRES NOVEL ANTI-CANCER TECH­

NOLOGY Licensing Agreement is Signed with Leading US Researchers

157 12/09/1997 OXFORD BIOMEDICA RECEIVES GOVERNMENT GRANT 

FOR REVOLUTIONARY NEW TECHNOLOGY IN GENE THERAPY. New 

Technology Aims to Deliver Therapeutic Genes with the Highest Efficiency to 

Date.

158 30/04/1997 NOVEL MECHANISM IDENTIFIED FOR ANTI-CANCER GENE 

THERAPY Scientists Demonstrate the Potential for Delivery of Gene-Based 

Therapeutics Utilising Tumour-Specific Hypoxia.

159 05/11/2002 OGS announces the start of a Phase I Clinical Study with OGT 923
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160 19/09/2002 OGS and FDA to Evaluate Protein Markers Predictive of Drug 

Toxicity

161 26/07/2002 OGS Announces Positive CPMP Opinion for Zavesca*

162 24/04/2002 OGS temporarily halts Vevesca (OGT 918) treatment in Israel as a 

precaution pending investigation of an unexplained adverse event

163 21/08/2001 OGS announces completion of New Drug Application submission 

for Vevesca (OGT 918) with the US Food and Drug Administration. 24 month 

monotherapy data to be presented at ESGLD Conference

164 12/02/2001 OGS Reports Progress with Vevesca Clinical Trials in type 1 Gaucher 

disease. Plans to file NDA/MAA on schedule this year

165 25/10/2000 OGT 918 (Vevesca) Designated as Orphan Medicinal Product by 

EU Commission

166 05/10/2000 Oxford GlycoSciences discovers novel member of key cancer enzyme 

family

167 08/09/2000 Positive Results on Extended Use Vevesca (OGT 918) Reported at 

the European Working Group on Gaucher Disease Meeting in Jerusalem

168 19/06/2000 Oxford GlycoSciences Receives Fast Track Designation for OGT 918 

in Gaucher Disease from U.S. FDA
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169 28/04/2000 First Efficacy Data on OGT 918 in Gaucher Disease Published in 

The Lancet

170 04/04/2000 OGS Files Patent Application with Pfizer on Alzheimers Disease 

Markers

171 22/03/2000 OGS proteomics operations passes major protein patent filing mile­

stone

172 09/03/2000 OGS and Bayer partner in proteomics based respiratory disease 

research

173 29/06/1999 Incyte and Oxford GlycoSciences Announce Launch of Toxicology 

and Pharmacology Proteomics Database

174 26/04/1999 Incyte and Oxford GlycoSciences Announce Launch of Powerful, 

Integrated Proteomics Database Products

175 08/01/1999 OGS Completes Patient Accrual in Initial Trial of OGT 918 in 

Gaucher Disease Phase I/II in Fabry Disease to begin this month

176 10/06/1998 Oxford GlycoSciences Announces Orphan Drug Designation for 

OGT 918

177 13/01/1998 Incyte and Oxford GlycoSciences to Link Genomics and Proteomics

178 10/09/2002 PowderJect Initiates Clinical Trial of Powder Injection Flu Vaccine
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179 09/08/2002 PowderJect Voluntarily Recalls BCG Vaccine

180 24/10/2001 PowderJect Announces Successful Opposition of Vical Incs Core 

DNA Vaccines Patent

181 08/05/2001 PowderJect Awarded Key DNA and Conventional Vaccine Patents

182 24/04/2001 PowderJect DNA Vaccine First To Achieve Protective Immunity In 

Non-Responders To Commercial Vaccine

183 20/10/2000 PowderJect Clarifies Position on Oral Polio Vaccine

184 12/06/2000 Serono and PowderJect Announce Achievement of Development 

Milestone

185 02/05/2000 PowderJect Announces Promising Progress Towards Development 

of HIV DNA Vaccine

186 21/03/2000 Glaxo Wellcome purchases a further DNA vaccine licence from Pow­

derJect

187 29/11/1999 Positive Clinical Results Confirm Cellular Immunity With Powder­

Ject DNA Vaccine

188 01/09/1999 PowderJect Commences First European Clinical Trial In Healthy 

Volunteers With a DNA Vaccine
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189 30/03/1999 PowderJect Announces Positive Clinical Data Demonstrating Cel­

lular Immunity With a PowderJect DNA Vaccine

190 11/02/1999 PowderJect and Ares-Serono Sign $100 Million Agreement Covering 

Multiple Proteins In PowderJect System

191 07/12/1998 PowderJects Hepatitis B DNA Vaccine First to Successfully Elicit 

Protective Immune Response In Humans

192 29/09/1998 PowderJect and Chiroscience Announce Clinical Results

193 16/09/1998 PowderJect Scientific Collaborator Reports Cancer Vaccine Re­

search Results

194 20/04/1998 PowderJect Announces Advances With Needlefree Male Impotence 

Program

195 04/03/1998 PowderJect &; Glaxo Wellcome Sign DNA Vaccine Agreement

196 09/09/1997 PowderJect Vaccines Announces Preliminary Results of Phase I 

Clinical Trial With Novel Hepatitis B Vaccine

197 18/03/2002 Product Update AAT and Fibrin 1 more

198 05/12/2001 PPL Therapeutics pic (PPL) Announces Status of Phase III AAT 

Trial more
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199 06/09/2001 Positive phase II clinical trial result on tgBSSL in Cystic Fibrosis 

patients more

200 10/11/2000 PPL Therapeutics technology platform is to be extended into dia­

betes treatment. Creation of a new subsidiary company with potential to be 

separately listed. Board changes more

201 20/09/2000 PPL Therapeutics Pic Announces Positive Results from AAT Long 

Term Safety Study in Cystic Fibrosis Patients more

202 13/06/2000 PPL Therapeutics successfully expresses Novel Antimicrobial Pep­

tide Transgenically more

203 04/04/2000 Positive Clinical Trial Result on BSSL more

204 09/02/2000 PPL Therapeutics Pic PPL announces results from two additional 

Phase II trials more

205 29/11/1999 Successful Proof of Principle Trial of Aerosolised AAT in the Treat­

ment of Congenital AAT Deficiency, more

206 21/07/1999 Announcement of new groundbreaking technique - birth of Trans­

genic sheep with Targeted gene more

207 10/06/1999 FDA Orphan Drug Designation for AAT in the treatment of Con­

genital Deficiency more
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208 22/02/1999 PPL announces positive results from its Phase II clinical trial of 

AAT in cystic fibrosis patients more

209 15/01/2002 Proteome US affiliate successfully corrects gene defect for cystic 

fibrosis AFX

210 11/04/2001 Proteome Sciences, Israels Mindset receive 450,000 stg Alzheimers 

grant AFX

211 05/07/2000 Proteome Sciences says well placed to exploit human genome op­

portunities AFX

212 01/07/1999 Proteome Sciences finds new targets for diabetes, obesity AFX

213 01/03/1999 Gene Therapy advancement

214 18/01/1999 Proteome Sciences develops cystic fibrosis therapy AFX

215 13/12/2001 Granted US Patent

216 12/11/2001 Provalis GlycosalO Test Granted CLIA Waiver Status in the US

217 26/03/2001 Provalis launches Pennsaid(R) Topical Solution in UK

218 23/08/2000 Regulatory Approval

219 17/07/2000 Provalis Concludes Agreement With Bio-Rad Laboratories Inc,
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For Worldwide Distribution Of Glycosal(Tm),Files 510K Application For Gly- 

cosal(Tm) In The Usa, And Makes Shipments Of First Orders

220 15/03/2000 Launching of Glycosal, etc.

221 25/10/1999 Response to Press Comment, on sale of therapeutics division

222 22/07/1999 Collaboration Agreement Terminated

223 29/06/1999 Cortecs is today holding its scheduled research anddevelopment 

update, announcing progress in its two lead therapeutic products,MacrulinTM 

and PseudostatTM, its diagnostic programmes, and outlining the Companys 

business and scientific strategy.

224 25/05/1999 Phase III Trials

225 24/02/1999 Macritonin TM Trial

226 01/12/1998 Product News, board Changes

227 12/12/2000 (US/UK) SB Terminates Clinical Trial of Lotrafiban

228 14/11/2000 (US) SB Completes Enrollment and Initial Treatment Phase of 

PRESTO Trial

229 26/10/2000 European Commission Licenses New Hexavalent Paediatric Vaccine 

From SB For Use In All 15 EU Member States
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230 05/10/2000 (US) Coulter Pharmaceutical and SB Announce Priority Review 

Status for Bexxar

231 18/09/2000 (US) First Study to Confirm That Antibiotic Choice Significantly 

Impacts Long-Term Patient Outcomes for Acute Infections (ICAAC/Factive)

232 29/08/2000 (US) Groundbreaking Data From Major International Trial Pre­

sented Today at European Society of Cardiology Annual Congress

233 18/08/2000 Nice Delivers Positive Guidance For Smithkline Beechams Avandia

234 26/07/2000 (US/UK) Study of fat-reducing protein opens new path toward 

obesity treatment

235 03/07/2000 European CPMP Adopts Positive Opinion For New Pentavalent 

And Hexavalent Paediatric Vaccines From SB

236 21/06/2000 (US) Avandia Demonstrates long-term blood sugar control (ENDO)

237 10/06/2000 (US) New evidence suggests that Avandia improves beta cell func­

tion in the pancreas (ADA)

238 20/05/2000 (US) New Phase III Study continues positive results seen with Hy- 

camtin in first-relapse ovarian cancer (ASCO)

239 04/04/2000 (US) Study Shows drug combination may slow progression of type 

2 Diabetes (JAMA)
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240 21/03/2000 (US/UK) Major heart failure trial stopped due to significant survival 

Benefit

241 12/10/1999 New Study Shows Ariflo Improved Pulmonary Function In COPD

242 08/10/1998 Seroxat Approved In Social Anxiety Disorder/Social Phobia

243 19/05/1998 (UK) New Mmr Vaccine More Comfortable For Infants

244 24/02/1998 SB and SkyePharma Disclose Technology Agreement for Paxil

245 03/10/2002 Xenovas Tariquidar Granted FDA Fast Track Status

246 28/06/2002 Phase III Trials Begin For Tariquidar

247 02/04/2002 Patient Dosing Begins in Phase Ha Dose Escalation Trial for Anti- 

Cocaine Addiction Vaccine TA-CD

248 05/02/2002 Anti-cancer compound XR11576 enters clinical trials

249 26/10/2001 Results Phase Ha HPV, Phase I CIN and Start Phase II Prime

Boost Trials

250 10/10/2001 Results of TA-HSV Phase II Trial for the Treatment of Genital 

Herpes

251 10/09/2001 Anti-Nicotine Addiction Vaccine TA-NIC Enters Phase I Trials

252 12/05/2001 ASCO Phase II Clinical Results XR9576
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253 18/10/2000 Positive Results for XR9576/doxorubicin

254 01/06/2000 XR5000 Phase II Trial Data, Colorectal Study

255 11/05/2000 Q1 and Positive Interim PK data XR9576/doxorubicin

256 07/03/2000 Prelims and XR9576 to Phase III

257 24/11/1999IND Approval Received for XR9576 US Trials to Begin Immediately

258 11/11/1999 Third Quarter Announcement Interim Phase II PK Data XR9576, 

Plus selection next generation cytotoxic

259 12/07/1999 Sale of MetaXen to Exelixis

260 18/05/1999 Phase I Results XR9576

261 14/12/1998 European and US Phase II Trials Planned for P-gp Inhibitor XR9576

262 12/11/1998 Third Quarter Results Announcement, Phase II Efficacy Trials 

Planned for XR5000

263 12/05/1998 Phase I Clinical Trials begin for XR9576

264 18/02/1998 Lilly teams with Xenova Group to develop novel antithrombotic 

drugs for chronic use (UK +  US versions)

265 15/01/1998 Xenova Discovery and Institute of Grassland and Environmental 

Research Form Innovative Plant Chemistry Alliance



Chapter 5

A new approach to Conditional 
Multivariate ARCH problems: The 
Bounded Dynamic Covariance 
M odel

5.1 C hapter A bstract

One of the major goals of modern finance is to accurately model, test and forecast 

the conditional covariance of very large multivariate data-sets. This is of significant 

use in modelling forward rate correlations, FX returns, the dynamics of equity re­

turn correlations and the evolution of the cross section of macro-economic variables. 

Traditional methodologies have approached this problem by assuming a simple au­

toregressive framework, however for very large systems this requires the estimation 

of a large number of parameters and results in a very flat objective function. Our 

model strips down the modelling of conditional covariance into a simple two stage

216
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framework. First by filtering the data matrix and attempting to isolate different co- 

variance states and second applying a regime switching model, which then captures 

the transitions between these states. We demonstrate that this simple but robust 

approach is applicable to examining the evolution of the covariance of a large cross 

by applying the model and associated tests to a data matrix created from the filtered 

returns of the S&P 500.

5.2 Introduction  and L iterature

General models of multivariate conditional covariance utilize a vec/vech type rep­

resentation to construct a matrix process that describes the time evolution of the 

covariance matrix. This chapter introduces a new generalized type of model that de­

scribes the time evolution of the conditional covariance matrix as a set of deviations 

from a set of a priori computed state matrices. The model adds to the available tools 

utilized in analyzing these types of problems by suggesting a model that is analytically 

tractable, quick to implement and easy to interpret. A great deal of literature has 

focused on the statistical properties of individual univariate series, however far less fo­

cus has been applied to the multivariate domain, an anomaly which is commented on 

extensively in Chapter 3 of Rachev and Mitnik (2003) [222], regime switching models 

in variance have been proposed previously see Ding, Granger and Engle (1993) [73], 

however switching models in covariance have not been proposed in full, however this 

chapter presents evidence that this type of model maybe the most appropriate in
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modelling the probabilistic properties of equity returns. A modern treatment of cor­

relation and dependency is undertaken in Embrechts, McNeil and Straumann (2005) 

[82] who look at non-linear structures in terms of joint distributions or copulas. Re­

search into copulas has been extensive in the recent literature Patton (2002) [215] 

constructs a simple two asset scenario and models it utilizing various copulas and a 

threshold ARCH structure. The findings suggests that the correlation structure is 

indeed non-linear, however much more work needs to be undertaken in this area, in 

particular the issue or copula selection needs to be addressed, in a bivariate case sim­

ple visual inspection of historical returns will yield the dependency structure, however 

in larger scale multivariate systems there is no standard methodology to fully evaluate 

which of the multitude of available generator functions should be used. An additional 

note should be made in respect of the Archimedean copulas, a specific subset of joint 

distributions which exhibit many of the most promising properties. These functions 

are notoriously difficult to specify with regards to multivariate systems with more 

than two variables, see Williams and Ioannidis (2005b) [262]. Multivariate GARCH 

models, as previously stated, have not enjoyed the same success of their univariate 

analogues, in most part due to the prohibitive numbers of parameters required for es­

timation. This has two major effects first, in the practical sense is the time consuming 

nature of computation, second in a more abstract form is the difficulty in applying 

an intuitive rationale to the parameters. The majority literature concentrating on
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numerical implementation and asymptotic properties Alexander (2001) [5], Engle 

(2000) [91], Engle and Sheppard (2 0 0 2 ) [92] and on analysis and performance of 

the implied dynamic covariance matrix and ease of implementation, for example in 

Pelagatti and Rondena (2004) [216] and Brooks, Burke and Persand (2003) [44] 

respectively. The sheer technicality of the task involved in correctly specifying and 

computing the model has now detracted from the real value of the models, which is to 

better understand the market dynamics. As Green (2000) points out in chapter 18, 

page 808, with regards to the non-linear architecture of univariate GARCH models, 

” [at this point the programming] appears fairly complicated,,on the other hand its 

taken a fair amount of programming to get this far” . This is just for a univariate 

model, therefore in a multivariate context Bollerslev’s (1990) most simplistic mul­

tivariate GARCH model the constant conditional correlation, CCC, model has the 

most attractive attributes, in respect of intuition, given that we can apply the fol­

lowing logical hypothesis ’correlation does not change, only variance does, therefore, 

the off diagonal elements in the covariance matrix are solely affected by changes in 

the diagonal’. Bollerslev, Engle and Woodridge (1988) [40] had previously speci­

fied the vech type model which required a large number of parameters even under 

basic specification, but this had the advantage of including off diagonal dynamics 

in the covariance matrix, which were not solely dependent on the diagonal. The 

dynamic conditional correlation DCC algorithm of Engle and Sheppard (2 0 0 2 ) [89]
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offers some of the simplicity of the CCC model however offering time varying corre­

lations. Several interesting observations have come about in the last 5 years made 

about the nature of the dynamics of conditional covariance matrices, Silberberg and 

Pafka (2001) [238] prove that elemental multiplication of ordered sets of positive semi 

definite matrices definitely yields positive semi-definite matrices. Jerez, Casals and 

Sotoca (2001) [153] suggest that the likelihood function specified in MV-GARCH 

models is ill-conditioned when approaching the optimal parameter structure. They 

suggest a non-linear transform to the residuals in order to improve the speed of con­

vergence in the optimization process, as an interesting side note they suggest that the 

type of transformation improves the capturing of very short run correlation dynamics 

and aids in the system identification. A basic concern with this multivariate model 

and several others is ’what mechanism exists within asset markets, which creates these 

time varying correlations and are the dynamics proposed realistic and in line with the 

general market structure theory?’ The first commentary may be made in the context 

of the elegance of the multivariate form of time varying heteroscedasticity, which has 

overtaken its intuitive value, in that one would expect under a heterogeneous agent 

based market that correlation would in some form vary, Cont (2005) [57] suggests that 

correlation emerges from simple interactions and that correlation and variance and 

hence variance are not static but dynamic and in some ways stochastic about some



221

fundamental linear dependency structure. From a more empirical perspective Gal­

lant, Hseih and Tauchen (1991) [102] demonstrate that the conditional innovations 

of a generalized dependency model will in fact not have a consistent distribution. It is 

this finding to which we apply the concept which we will call ’categorized state space 

dependency’, which will be discussed in the following section. The theory of market 

categorization has been put forward strongly by Barberis and Schleifer (2003) [18]and 

Barberis, Schleifer and Wurgler (2002) [19], who suggest that investors will group 

assets into categories, before making investment decisions. Merton (1997) [197] ad­

dresses this categorization suggesting that it could be the result of transaction costs, 

international trading restrictions or simply un-informed agents. The interaction of 

these heterogeneous agents it is argued, creates complex time dependent correlation 

structures. Barberis and Schleifer, (2003) [18] suggest that there are two possible 

types of agent acting as investors or facilitators for investment within the market, 

category and habitat. Their names are somewhat self identifying, category traders 

tend act over the whole market, dividing it into subsets, habitat, tend to exist in one 

area of stocks, for example value stocks or biotechnologies. Williams and Ioannidis 

(2005) [263] suggest that correlation may be a consequence of investor response to 

past shocks and those positive shocks may actually produce alterations to the corre­

lations, between assets over and above changes in variance, due to realignment of the
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weighting applied to various balance sheet components. Finally time varying corre­

lation has been the subject of considerable interest in recent years in the derivatives 

literature, Joshi (2003) [157], Pelsser (2003) [218] and Rebonato (2004) [223] all 

address the pricing and hedging of derivative instruments based on implied correla­

tion in the underlying assets, be they FX, equity or interest rates. The literature 

extends into the idea of dependent and stochastic correlation, addressed in Hull et al 

(2005) [149] and Collin-Dufresney and Goldsteinz (2001) [53] respectively. This type 

of auto-correlation is in many respects orthogonal to the cross sectional correlation 

which we have discussed before in that correlation may be seen amongst forward rates 

of the same underlying asset (s), however the functional dynamics of this correlation is 

similarly enigmatic and difficult to isolate. In this article we construct a very simple 

general model of discrete time dynamic covariation and extend it into three separate 

but linked models.

5.3 Som e O bservable Em pirical E vidence

The major goal of the multivariate time series literature is to produce a simple and 

easy to estimate model of time varying covariance which captures the majority of 

the fluctuations in the conditional covariance matrix. Consider the following simple 

model, where y t is a vector of returns from the S&P 500 cross section, by applying a
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simple univariate ARX(p) model for first stage filtration, where,

Vi.t f  iyi,t—1? Ui,t—2i •••5 Vi,t—p) 9 (*̂ t» "h Ui,t (5.3.1)

and U{}t € ut , where u f is an n length column vector of residuals and x t is the 

market return at time £, zt an appropriate risk free rate and t € [l,...,r]. The es­

timated residuals u f from each model are collected, forming the data matrix U  =

u t  are the residuals from the simple filtration, 5.3.1, of daily data. From the 500 

firms, 423 have data available over the whole sample period. Now consider the evo­

lution of the largest eigenvalue of the instantaneous matrix u tuJ, from the S&P 500, 

The empirical distribution of the largest eigenvalue, (pmax of u (u^, is illustrated in, 

5.3, Compare this distribution to an empirically estimated one generated from using 

following method,

[ i i f = i ,  U i = 2 , . . . ,  u t = r ]T , the estimate of the unconditional covariance matrix is therefore 

S  =  ~T_JTU. Using Cholesky decomposition the vector of eigenvalues is computed. 

Consider the eigenvalues of ^U TU, plotted in for a sample period of 20 years, where

(5.3.2)

where,

(5.3.3)

et ~  N  (0 ,1) (5.3.4)

This evidence suggests that either the multivariate characteristic function generating
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Figure 5.1: A plot of the Eigenvalues of the sample covariance matrix, ^UTU, from 
423 firms out of the S&P 500, for daily data over 20 years.
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Figure 5.2: Evolution of the Eigenvalues of ututr , over 3000 days, original stock price 
data source: DataStream™.
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Figure 5.3: Empirical distribution of the largest eigenvalue of utu j
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Simulated Distribution of

Figure 5.4: Simulated distribution of the largest eigenvalue of utu j ,  where ut ~  
N  ^0, It is immediately apparent that for large covariance matrices the distribu­
tion of the largest eigenvalue for draws from a zero entered multi-normal distribution 
are far more tightly distributed than the distribution observed from 20 years of data 
from the S&P 500.
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the second moments of the distribution of the filtered asset returns is significantly 

different from a multi-normal distribution or more plausibly we are observing some 

form of mixture, most likely of multi-normal distributions. Prom this observed infor­

mation we can infer that u t ~  N  (0 , E (), where £ (, is a matrix process, furthermore 

that this process is conditioned on some information set Clt and as such,

=  (5.3.5)

Where ^  is a matrix function operating over Qf, and results in the non-negative 

definite matrix T>t. In general this is normally a matrix autoregressive process, under 

some specifications a vector process is used and matricized to form the conditional 

covariance matrix. The next section reviews two general specifications and outlines 

their uses and limitations.

5.4 C apturing th e  D ynam ic Covariance Effects

Two common specifications of the covariance process are the MARCH model of Engle 

and Ding (2002) [72] and the BEKK model of Engle and Kroner (1994) [?], the 

following section looks at both models in detail.

5.4.1 The M ARCH  M odel

The ethos of the MARCH model was to design a very simple and easy to use ap­

proach to modelling high-variate conditional covariance systems. The model offers 

a relatively simple set of dynamics, but despite this built in simplicity, it is still
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computationally very intensive to estimate for these largest systems.

p Q
Sf =  £  +  A i x jXYtt-j  (5.4.1)

i= 1 j—1

where, A * E Cnxn, B* E Cnxn and £  E Cnxn, these parameter matrices may be 

specified in an unconstrained optimization using the ivech transformation,

A i = (ivechai) (ivechai)T (5.4.2)

Bj =  (ivechhj) (ivechbj)T (5.4.3)

£  =  (ivechk) (ivechk)T (5.4.4)

And the individual parameter vectors are then k E Rn(n+1)xl, a, E Rn(n+1)xl and 

bj E Rn(n+1)xl? the full specification parameter 6 vector is therefore,

0 =  [kT,aJ’,... ,a J ,b J ’,.. . ,b J ]T (5.4.5)

The stationarity conditions, i.e.

P (tr ( £ t|f€[i,...,T]) < oo) =  1 (5.4.6)

are fairly simple and are defined as follows, using a tensor fibre based approach, where

A< =  {a,,j,k\ (5 .4 .7 )

B, =  [6U „] (5 .4 .8 )

and,

A  =  [A,, —, Ap] (5 .4 .9 )

B  =  [Bi, ...,B ,] (5 .4 .1 0 )
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a simple permutation and fibre extraction yields

(5.4.11)
pxl

1j,k =  •••■> bq,j,k\ (5.4.12)
qx 1

for stationarity the process underlying each fibre must have stationary roots, i.e. the 

roots of the following sets of polynomial pairs,

must lie within the unit circle, by setting a{ G M+ and bi G M+, this simplifies to, 

Y^=i Ai =  1 and Yli=i 7* =  1- The MARCH specification is typically of use in the 

construction of very large conditional covariance matrices, however even with the use 

of the simple element by element approach to the time varying dynamics, maximum 

likelihood estimation still requires the construction and inversion of a large number 

of non-negative matrices, coupled with the lack of cross variation in the diagonal and 

off-diagonal elements the model lacks some of the sophistication of it’s peers.

The BEKK Model

An alternative specification is the BEKK model of Engle and Kroner (1994), which 

whilst pre-dating the MARCH model offers a great deal more flexibility in the dynam­

ics of the conditional covariance matrices. This appears to be an attractive feature

1 — {^l,j,kZ +  ^2 ,j,kz2 +  ... +  Ap,j,kZP) — 0 

1 -  (~fl,j,kZ +  72,j\kZ2 +  -  +  7 p j ,* z p) =  o

(5.4.13)

(5.4.14)
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when considering fairly large scale covariance matrices. In particular the models in­

trinsic structure allows it to capture very localized effects in the off-diagonal elements 

and still ensure that E t is non-negative.

p Q
E t =  E  +  £  A? (u^iU^-i) A, +  y ]  E (_jBj (5.4.15)

2=1 j = 1

another attractive feature of the BEKK model is the simple partitioned structure 

of the parameter vector, only the parameters forming the unconditional covariance 

matrix E, need to be parsed via the vech transformation to ensure that it is non­

negative definite. As such if A* € M+Xn, B* € R”xn the parameter vector is therefore,

6 =  [kT, v e c A j , ..., vecAp, vecB j , ..., vecB j]T (5.4.16)

With E, being the same as in the MARCH specification. Both models treat the 

recursion of the covariance matrix as a matrix autoregressive moving average pro­

cess. Assuming that the conditional distribution has a multivariate normal density 

function, (ut), the natural log of which is,

logfo (ut \d) = —|nlog27r — |  log |E t | -  (5.4.17)

the overall objective log-likelihood function £  (9) is therefore,

T

= - |r n lo g 2 ? r -  | ^ l o g | E t | +  u ^ E f_1u f (5.4.18)
t=i

Estimation of the parameters proceeds using a standard non-linear optimization ap­

proach. The stationarity constraints on the BEKK model are very simple primarily
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due to the quadratic form of the model, if A  = [ A i , A p] and B = [ B i , B J  are 

the arrays of parameter matrices then for condition 5.4.6 to hold, additionally the 

following stationarity condition is required to ensure ergodic variance,

vec M )T vec (-4) +  vec (B)t  vec(B ) <  1 (5.4.19)

Where vec is vectorization operator. The BEKK model obviously offers a more wide 

ranging variability by utilizing the quadratic form, however under all but the simplest 

specifications the dimensionality of the parameter vector is very problematic and will 

lead to a very flat objective function. However both models treat the conditional 

covariance, has some form of functional dependence on the past evolution of the 

system. The quadratic form of each model and the necessary stationarity conditions 

mean that longer decays and rapid switches in the covariance structure may not be 

adequately captured using these models.

5.5 A n A ltern ative A pproach to  C onditional Co- 
variance: T he B oundary M odel

As an alternative to the direct matrix autoregressive approach, suggested in the 

MARCH and BEKK models, we suggest a methodology that simplifies the conditional 

covariance matrix to a weighted system of static matrices, the simplest specification of 

which is a regime switching boundary model. Consider the following multivariate lin­

ear model with disturbances drawn from a zero-centered conditionally multi-normal
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mixture,

y t = n T x* +  u t (5.5.1)
n x l  n x m m x l  n x  1

Where the disturbances u t, are drawn from,

=  £  }e t (5.5.2)

£t ~  N [ 0 ,  I ) (5.5.3)

Where £ t is a matrix process and £ 2, is the Cholesky or upper triangular factor­

ization, where £ f G Cnxn and is defined as non-negative definite Hermitian, i.e. 

symmetric with non-zero eigenvalues. A very simple decomposition of £* suggests a 

second moment model with two boundary states, designated by the subscripts u and

d,

£ t =  +  (1 -  1>t) (5.5.4)

Where the boundary matrices £ u and Ed are both non-negative definite Hermitian 

matrices. a T£ ua  > aT£da, where a  G M.n. We can treat the scalar process ipt as 

some form of dynamic process constrained to the unit field, now consider a function 

£ (0f; u) with parameter set a;, where (pt is some d dimensional process, 4>t G Rd, to 

be a valid switching function, the following must hold, £ : Rd —► [0,1]. For example 

if d = 1 the logistic function is a useful transition function,

£ (0t; a, /?, 6) = ( l  +  exp ( - a  (<& +  0 )* ^  (5.5.5)
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therefore,

yields,

A  = £ (<h\a , 0, <5)

? : R -  [0,1]

(5.5.6)

(5.5.7)

And as such constrains, fa G [0,1] to the unit field. The scalar process fa may now be 

virtually any linear or non-linear dynamic process of our choosing. For this example 

we choose the following autoregressive quadratic form,

fa = ^2 a? (ut-iufii) Xi + ^2
3=1

(5.5.8)
i=i

Where, A* and 7 * are parameters vectors. The model parameter vector 0 is therefore 

defined as follows,

A =  [Al5..., Ap] (5.5.9)

T =  [7 1 ,..., 7 g] (5.5.10)

9 — |a , /?, 8, (i;ecA)T , (vecV)T (5.5.11)

The parameters domains are as follows, 8 G N+, /3 € K, a  G K, Aj 6  R + Xl\  7 i G 

R ^ xl\  S u G Cnxn and G Cnxn. Where (Cnxn is the set of all non-negative n x n 

definite hermitian matrices and N+, is the set of positive natural integers. The model 

offers an extremely simple representation of dynamic covariation, however several 

attractive properties are immediately apparent. The first interesting aspect is that 

will always be non-negative hermitian under most common conditions, if the
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boundary matrices E u and E d are non-negative definite. This is easily demonstrated 

as follows, consider a subset M  with countable number of elements k > 2  from A/", 

where Af  is the countable set of n elements constituting the vector y t. If for all 

possible configurations of M. the matrix is non-negative definite then by extension 

any matrix E f from Af  must be non-negative definite. Consider the case when k — 2, 

P roposition

If the boundary matrices Qu and Qd are non-negative definite hermitian then Qt will 

have a real matrix square root.

P ro o f

Consider the following decomposition of the boundary matrices, Qu = K UK„ and 

nd = K dK j, where,

K u =

K d =

Ku,i ^

K d,j  €

K  U,1 

0
k u,2 

Ku,3
(5.5.12)

«d,3
0

Kd,2 

Kd, 3
(5.5.13)

(5.5.14)

(5.5.15)

By construction f l u and Qd are non-negative definite and maybe factorized by the 

Cholesky algorithm. Now consider the algebraic construction of f i t,

rit = Kl  1 +  Kl, 2 ku,2Ku,3 
.2f̂ u,2̂ u,3 u,3

+  (1 -  ^t) Kd,l +  ^ ,2  K d,2^d,3
.2Kd,2Kd,3 d, 3

(5.5.16)
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It is then relatively simple to show that has an analytic matrix square root and
1

as such maybe factorized using the Cholesky method, setting Q f =  Q 2 , the elements 

of Q f will be,

91.1 =  (kJ,i +  «£,2) -  (1 -  ipt) («d,i +  «d,2) ) 2 (5.5.17)

2 ^ u , 3  " t"  ^ d , 2  ( ^ d , 3  / c  K i n \91.2 =  -------------- :---- :------- !----- :---------- 2--------- r  (5.5.18)
( -  (1 -  lf>t) (rt^ + «5>2) + Tpt («2 ! + /cj>2)) 2

92,1 =  o (5.5.19)

/

92,2 — -  «d,3 (1 -  tyt) +  “  ••• (5.5.20)

V

( ( 1  -  f t )  ^,2*43 -

( -  (1 -  lpt) (K2d l +  «£2) +  fa (k^  +  «J>2)) 2

By definition, the diagonal elements of Qf must be > 0 and if they are then Qt must 

also be non-negative definite hermitian, QED. The analytic solutions to the elements 

of Qf maybe computed for any length of k > 1. By utilizing the Cholesky method 

an implicit ordering is introduced and subsequently the elements of Qf have some 

implicit structure based on this ordering, which may often result in order specific 

results.
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Proposition

If the boundary matrices i \  and Qd are non-negative definite Hermitian then f2t 

will be non-negative definite and by extension the matrix £ f, will be non-negative 

definite.

Proof

Given that any fcxfc matrix f2 G Ckxk, formed from subsets of N  is non-negative 

and by definition any sub-matrix from Ht G Cnxn must be non-negative, if is 

non-negative as k —> n (see appendix I), all matrices are non-negative then so is £*, 

See Horn and Johnson (1985) [146]. The standard proof of non-negativity, is whether 

the quadratic form of the matrix for an arbitrary real valued k = 2 -length vector a, 

is only valued on M+. It is relatively simple to demonstrate that if,

=  ( l  +  e x p (a (0 t +  ,3){) )  (5.5.21)

n( = i,tnd + ( i - i , t)nd (5.5.22)

Substituting 5.5.21 into 5.5.16 then the quadratic form, a = aTfifa, may be simplified 

to,

«s,iai +  (Kl,2ai +  2 +  exp (a  (<f)t +  /?)5) a\ +  iKd,2ai +  «d,3° 2) 2)

1 +  exp (a  ((j>t + /?)5)
(5.5.23)

Given that simple inspection demonstrates that both the numerator and denominator

of the expression of a cannot be negative then by extension fit, must be non-negative,
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QED.

5.5.1 Eigenvalues

For completeness the algebraic limit for the smallest eigenvalue of f2t, must always be 

> 0. Let q, be the smallest eigenvalue of f if, for k = 2 let the transition function be a 

generalized logistic function, £ (0*, a, /3,6), substituting for 0 t, and assuming 0* G l + ,  

the eigenvalue decomposition of Qt is therefore, if the diagonal of the matrix Qt, are 

guaranteed positive then matrix is by definition non-negative, therefore setting,

"U (5.5.24)

k d  =  «d,l +  «d,2 +  «d,3 (5.5.25)

(5.5.26)
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and using Gaussian the elimination to generate the eigenvalues and taking logs the 

following results are obtained for the conditional eigenvalues of

log fttt = ~  log 2 -  log (V>*-1) +  log (kd +  kd) (5.5.27)

log ^ —4  exp {2a (fa +  /?)*) -  4 K j t l « ^ 3

+  ((exp (a  (fa +  (3)6̂  kd +  fa)

-  4  exp (a  (fa +  /?)*) K2d,3 (««,i +  K1,2)

~ 2Kd,2Kh Kl,2Kl,3 +  Kl,3 ( Kd,l +  * £ 2) )

log ft,t =  -  log 2 -  log (^ _1) +  log (fed +  fed) (5.5.28)

+ |  log ^ —4 exp (2a (fa +  /?)*) «5,1«d,3 “  4«u,i«iU 

+ ((exp ( a  (fa +  0)5y )  kd +  kSj

-  4  exp ( a  (fa +  P)6>j  k \ z ( k ^  +  «Ji2)

- 2 « d ,2 « d ,3 « u ,2 ^ >3 +  * £ ,3  (« d ,l  +  Kd,2)  )

The 2 x 2  example used here maybe scaled to any size k x k example and will yield 

the same result.



239

5.5.2 M odel Properties

The model has two main operational modes, first when a  is very large, either by 

parameterization or through a priori specification the model has the effect of gen­

erating rapid switches between the boundary matrices. The alternative specification 

restricts the size of a and the conditional covariance is characterized by a continuum 

of matrices between E u and E d. However the criticality of speed of this adjustment 

is dependent on all the other parameters, 6 = [ \T,y T,a ,P , £]T. The asymptotic be­

havior of the first model is relatively simple to demonstrate as the extensive literature 

on finite mixture models is well developed and essentially resolves to the following 

problem,

PT̂<x> (Et Pa Ett) =  /  (A, 7 , a, /?, S) = vx (5.5.29)

Pt -kx> (Ef pa Ed) -  1 — Pt-kx> (E* =  Eu) =  1 — /  (A, 7 , a, (3,6 ) =  v2 (5.5.30)

Where P t - k x >  (Et ~  Eu) is the asymptotic probability of the conditional covariance 

matrix being the upper boundary. The asymptotic density function of the model, 

*P(.) will be as follows,

9* (ut) =  (u110, £ tt) +  v2$  (ut |0, E d) (5.5.31)

where #(.) is the multivariate normal density function, the probabilities are condi­

tional on the assumptions underlying the noise process et . More formally the i.i.d. dis­

turbance process is drawn from a matrix normal distribution, E  =  [ej=1,£j=2, ..., sJ=T]T,
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where the distribution of the rows and columns is matrix normal E ~  N  (0 ,1,1). 

Given this matrix normal assumption and the fact assumption that the distribution 

of the quadratic form (f)t is non-central x 2 distribution.

5.5.3 Relaxing Some of the Constraints

As previously stated once the assumption of rapid switching is rejected then the 

asymptotic properties of the model become more complex, however an interesting 

problem is the following limit,

lim (<p (uf) -► (u110, £ u) +  i/2S (u110, £ d)) (5.5.32)

2 I
At present the following ad-hoc inequality is proposed, a& > (AT7 ) 6, this accounts 

for the size of the second moment variation in (j)t and the speed of the adjustment 

factor, 5. During the following discussion models with this structure imposed on 

them will be designated as a boundary switching model BSM. The next problem 

to address is estimation, as previously illuded to, maximum likelihood methods are 

only adequate when the size of the system being considered is small, for problems 

involving large numbers of variables, (in this case large is considered to be > 1 0 0 ), 

then the objective function is far too flat to give reasonable parameter estimates and 

the amount of computation time is very prohibitive. One of the attractive properties 

of the BSM specification is that the boundary matrices, BM, maybe imposed prior 

to the optimization. Once the, BM, have been estimated, maximum likelihood can
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proceed as normal, however only two matrix inversions are necessary during the entire 

estimation, ensuring a quick convergence. Therefore the total number of parameters 

needed to estimate an n dimensional model is 2n+3, i.e a linear increase in parameters 

by contrast the BEKK and MARCH models have a quadratic increase in parameters. 

N ote  on S ta tio n arity

By construction the resultant vector process U* is always stationary if ipt £ [0,1]. 

However the only model specifications of interest are when, P (X)t=i 4% < 00) — 1>

i.e. when the underlying one dimensional driving process is ergodic. The following

restrictions are proposed to ensure stationarity in <f>t,

0 < At A < 1 (5.5.33)

0 < 7 T 7  < 1 (5.5.34)

5.6 Identification  o f B oundary M atrices

Consider a mixture distribution with the following conditional distribution, ^J(.),

k
9M X) =  (5.6.1)

i=i

and the log likelihood is,
T

■C(0) = £ > g < p t (x |0) (5.6.2)
t= 1

where Yli=i vi,t = 1 j #(•) 1S the zero centred multivariate normal distribution with 

covariance matrix X* and is the conditional weighting at time t. In a fully
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switching model then if i p i , t \ { t - i , t - 2 , . . . , t - p }  = 1 for all other j  G [1 ^  i , then

^ j , t \ { t - i , t - 2 , . . . , t - p }  • Thus for every t  G [ l , . . . , r ] ,  the system is instantaneously drawn 

from a single distribution characterized by parameters E* drawn from a finite set of 

distributions. This is the simplest case, which allows for direct inference of the mix­

ture components by some secondary filtration mechanism. A more complex model as­

sumes merely that =  T an(f vector process, -0 1 is some function of its past

evolution and some exogenous vector process z t , i.e. i p t  = f  (0 t-i> 0t-i> •••? 4 > t - p ,  z t)-

5.6.1 Estim ating the Switching m odel in Two Stages

Assuming that ipi,t\{t-i,t-2,...,t-p} — 1 for all other j  G [1,..., k], j  ^  i and setting the 

number of distributions in the mixture to two, k = 2 , by design 0 2,t =  1 — 0 i,t, then 

given that the uniqueness of the two components of the mixture is characterized by 

the covariance matrices S i and S 2, then it is first necessary to construct identify a 

test boundary of the following hypothesis,

H o  : S i  =  S 2 =  S  (5 .6 .3 )

For this purpose the Takemura and Kuriki (2 0 0 0 ) [246] test of sample covariance ma­

trix equality, is used. Consider a r  x n data matrix X, drawn from some conditional 

mixture of multivariate normal distributions. Now consider a T\ x  n sub-sample Xi 

and a t 2 x  n sub-sample X 2, selected through some systematic methodology, for ex­

ample the von-Mises step method, or via the distribution of the maximum eigenvalue
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W x of the set of matrices x tx^, were t G [ 1 , r]. The following assumptions apply, 

Tl +  72 = t  and if x i,t £ X i and X2,t G X 2 then Xi)t £ X 2 and X2 ^ Xi hold. Defining 

the subset sample covariance matrices as follows, £ 1  =  ^-X jX i, X2 =  ^ X jX 2 and 

£  =  ^XTX, the following test statistic is proposed by Takemura and Kuriki (2000) 

[246] as an extension to the method set out in Roy (1953),

=  maxa,b€.Rn

< \ 
( a ^ b )  (aTS 2b)

1
2\ 2

( ( r f 1 + T2"1) (aTS a ) (bT£ b )  + (aTE b )^

(5.6.4)

\ V W ' ' V 7 V  ~ )  V )  )  J

where a and b are real value parameter vectors, maximization is undertaken using 

a standard quadratic programming approach. The under the null the statistic ft ~  

X 2 (v), with v =  (n +  1) degrees of freedom, i.e. one degree of freedom for each 

unique element in £ . Therefore if ip > z, where,

z =  f j - 1  (p\u) = {z : f ) ( z  \v) =  p} (5.6.5)
z

p = S) (z\v) = J  $ ( z \ v ) d x  (5.6.6)
0

and p is some chosen probability and #(.) is the x 2 M  density function with degrees

of freedom parameter v, then Hi : S i ^  X2 is accepted. If there is stylistic evidence

to support the assumption that the number of distributions in the mixture is k > 2 ,

then the method is extensible to a kth-order mixture, forming the lower triangular

matrix, $  =  [#* »■]. In practice for k = 2 this approach is a reasonably tractable and
kxk

a computationally less intensive method of tackling conditional covariance problems
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than the normal MV-GARCH approaches. Take a large covariance matrix estimation 

problem, such as estimating the conditional covariance of the S&P 500, the major 

computational hurdles in this approach are the identification of the mixture com­

ponent matrices and the subsequent estimation of the parameters of the recursive 

function /(.) . After identifying possible data subsets Xx and X 2 the major compu­

tation difficulty is in the quadratic optimization that underlies the estimation of the 

test statistic tp. However this is a very conventional quadratic optimization problem 

and as such very large scale algorithms are available which can robustly approach 

this problem in a relatively small number of operations, the MIN-PACK (2000) [199] 

documentation, Fletcher (1994) [96] or Press et al (1997) [261]. Once the boundary 

matrices are identified then only k = 2  matrix inversions are required in order to 

partially parameterize the maximum likelihood function. Restriction testing for the 

exact identification of /( .) , is then relatively straight forward assuming a reasonably 

simple specification for the evolution of fa.

5.6.2 Empirical Exam ple of the Regim e Switching M odel

The BSM model is demonstrated using the filtered residuals from the S&P 500 dataset 

initially analyzed in 5.3, these residuals are filtered using the maximum eigenvalue 

approach and the boundary covariance matrices are estimated. The Takemura and 

Kuriki maximum equality test (MEQT) is then applied. Accepting the Boundary 

hypothesis, the boundary matrices are inverted and the model estimated using the
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Data Matrix of Residuals From Univanate ARX(p) Filtration of 100 Selected Asset Returns from the S&P 500,
1.5

1

0 5

0

- 0 5

■1
0 500 1000 1500

t
2000 2500 3000

Figure 5.5: 100 Randomly samples stocks from the S&P 500 over 3000 daily obser­
vations.

various parameter constraints. Assuming that the parameter estimates are normally 

distributed the information matrix is estimated and the parameter standard errors 

computed.

The D ata

For computational reasons a randomly sampled 100 asset sub-sample of the master 

dataset is chosen, figure 5.5 illustrates the residuals from the univariate filtration, 

Using the empirical distribution of the largest eigenvalues, a high-band filter is used 

to create two data matrices Ui and U 2 for MEQT stage, table The High Band filters
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Table 5.1: Table of MEQT statistics from a variety of filtration specification.

Filtration MEQT statisitic Degrees of Freedom v Threshold (95% )
High Band 1 283.5858 1 0 0 124.3421
High Band 2 238.3220 1 0 0 124.3421
High Band 3 97.3510 1 0 0 124.3421

Table 5.2: Estimation Results from the estimation of 0, using the BSM model struc­
ture.

Model Specification Parameters Log - Likelihood LR - Ratio versus Modi x 2 M
Modi q = l,p =  1 303 -437827.9359 N /A
Mod2 q = 2 ,p = 1 403 -437798.3894 -29.5465 124.3421
Mod3 q = l,p =  2 403 -437650.2673 -177.6686 124.3421
Mod4 q - 2 ,p = 2 503 -437648.9149 -179.0210 233.9943

are illustrated in figure 5.6,

M odel Estim ation

The next stage in the model estimation is the optimization that yields the estimated 

parameter vector 9. The model is estimated over a number of lags the basic specifi­

cation (Modi) uses one lag with 303 parameters,

Illustrating the Dynam ic Correlations

Figure 5.7, illustrates the evolution of the dynamic correlation, p ijj  — &i,j,t ,

between five randomly chosen stocks from the S&;P 500, the first line (blue) represents 

the BSM and the second (red), the STBM. Whilst the BSM model appear to capture 

the direction of the dynamics of the conditional correlation the STBM model appears
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P lo t o f  the la rg e s t eigenvalue, #  o f  i*u,

Largest Eigenvalue 
Filter Threshold |

Figure 5.6: The High-Band Filter Schemes are illustrated as a set of arbitrary lines 
differentiating the proposed residual states.
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Figure 5.7: The Dynamic correlations of 5 sample assets from the 100 chosen, against 
the estimated state of the system.
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Evaluation of the Constrained Objective FUnction, 3(0): Method NL-SQP

Iteration

Figure 5.8: The Iterations of the Objective function of the model

to capture the magnitude more effectively. Whilst the model cannot capture the 

variety of dynamics that the BEKK model, the major innovation is in the ability 

to tractably estimate a conditional covariance model for very large systems. Figure 

5.8, illustrates that even for a 100-variate system the likelihood function still has a 

reasonable gradient, compared to a 10-variate (p =  l , q =  1) BEKK and MARCH 

model.
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5.7 E xtensions to  th e  B asic M odel

As suggested in section 5.5.2, the specification has several useful properties, in partic­

ular the tractability in the modelling of large conditional covariance matrices. How­

ever the basic model lacks much of the variability of its major alternatives, namely 

the BEKK and MARCH models. In this section two alternative specifications are 

briefly outlined, that extend the original model to allow for a greater freedom in the 

dynamics of the elements of the conditional covariance matrix.

5.7.1 Boundary Volatility-Correlation M odel

The simplest approach is to separate the volatility and correlation dynamics, utilizing 

the standard decomposition,

Sf =  R t o H t (5.7.1)

essentially the correlation and volatility dynamics maybe separated, this gives a free­

dom in terms of the evolution of the dynamics of £ t. The boundary covariance 

matrices maybe estimated in the same manner as previously, the volatility (driven 

by the diagonal elements) and the correlation (driven by the off-diagonal elements), 

may then be modelled separately, as follows, first decompose the boundary matrices,
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using the standard notation,

— R y  o  H u E d  — R d  ° H d

= j sd=\

n  _  /  \PijAi=j = 1 R _  /  lPi,j,d}i=j = 1 (5-7-2)
1 [ P i l j v  =  <T‘rf'“ I \ P i i d \ ^  = - £ M A -\  <Ti,u<rj,u t  ai,d<Jj,d

j  j    f  \P'h3>u\ i= j  ®i,u  H d    \  ®i,d

\  [^ i,j ,u \i^ j ~  Gi,u& j,u  \  \h i,j,d]i^ :j ~  cri 4 (Tj 4

Now specify two separate dynamics, ^R,t and 'ipHj, for the correlation and volatility

processes respectively, for simplicity only the first order p = l ,q  = 1 version is

specified,

^R  ,t =  £  (0R,f |o !r ,/? r ,^ r ) (5 .7 .3 )

</>H ,t =  ^ (^H.t |o :h ,/? h ,^ h ) (5 .7 .4 )

0R  ,t =  A a£ t_ i e J . 1AR  +  ' ^ R <_ i '|n . (5 .7 .5 )

^H,t =  A r U i- iU ^ jA r  +  7 S H ( _ i7 r (5 .7 .6 )

where, e^t € et is the normalized residual, i.e. e^t = t^c^7/- As in the previous model 

there are two main model dynamics depending on the constraints placed upon the 

parameter vector, again for simplicity, only the case where the ad-hoc constraints
—  _1_ _2_ J _

an  > ( ^ r 7 r )  5r an(i a HH > (^h 7 h) is considered, asymptotically the process 

distribution will be,

<p(uf) =  ViB (ut |0, H u o R u) +  v2$  (ut |0 ,Hd o R d) (5.7.7)

+ ^ 3 #  (u* |0, H u o R d) +  v£$ (u* |0, H doR a)
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where, given the parameter vector, 9 = [A£, Ar , 7 JJ, 7 ^, a R, /3r, <5r , a H, Ph , £h] T, the 

asymptotic weights are,

i/j =  P ( E t « H u o R u |0) (5.7.8)

=  P ( E t « H d o R d |0) (5.7.9)

1*  =  P ( £ t « H u o R d | 9) (5.7.10)

1/4 =  P ( £ * « H d o R u |0) (5.7.11)

Again relaxing the ad-hoc constraints and allowing ifa j  and ipnj to vary in the 

continuum between [0 , 1], produces a far more complex asymptotic distribution.

5.7.2 M ultiple Regim e M odels

The second extension was alluded to in section 5.6.1, where the general finite mixture 

model distribution is as follows,

% (u ,)  =  3:( x |0 ,E i ) (5.7.12)
i = l

The general conditional covariance is therefore decomposed as,

m
=  (5-7-13)

i = l

where for the first order case,

K , Pi,8i) (5.7.14)

<f>itt =  \ J  \ i t - i u j _ i \ i  +  7iTS t_i7i (5.7.15)
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the following conditions are required, and > 0. This model has

the advantage of being able to capture a large degree of variation in the elements of 

however each additional matrix requires a filtration to extract that regime, the 

estimation of the asymptotic distribution weights becomes increasingly complex and 

the large number of parameters means that the model could cease to offer significant 

advantages over the alternative BEKK and MARCH specifications.

5.8 C oncluding R em arks

This chapter has presented a new method of estimating evolution of the multivariate 

second moments for high-variate models. The method has a well developed asymp­

totic theory and captures some of the covariance properties present in real asset return 

data. The model in it’s basic form is shown to be positive definite under the common 

parameter constraints and is fairly tractable in it’s estimation. Interestingly relaxing 

the core model constraints yields a very flexible model that can capture a great of 

variability on the diagonal and off-diagonal elements of the conditional covariance 

matrix. The innovative two stage structure also yields a very helpful mechanism for 

interpreting the definition of up and down states and this maybe useful in assigning 

risk bands to collections of assets.

The basic model is not only applicable to modelling the dynamic interdependencies in 

the asset market, but could also be used in evaluating forward correlations in interest 

rates and the dynamic dependencies in factors relating to credit markets. Another
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useful approach could be to model FX regimes, particularly when a priori information 

maybe utilized to identify the different boundary conditions, such as during imple­

mentation of crawling pegs and other policy driven FX market interventions. The 

model is parameterized over a very high-variate sample of stocks, i.e. 1 0 0  asset returns 

from the S&P 500, an analysis which would not be tractable using the alternative 

models, the BEKK model of Engle and Kroner and the MARCH model of Engle and 

Kim. Further developments of the model relate to a complete derivation of the alge­

braic relationship between the parameter vectors 6 and the asymptotic distribution 

weights v and further investigation of the asymptotic properties of the model when 

the ad-hoc switching assumptions are relaxed, i.e. ipt, varies continuously in [0,1]. In 

conclusion this model appears to offer a solution to the middle ground between the 

fully functional MV-ARCH models with their associated problems, regarding param­

eters and topology of the objective function and the totally ad-hoc methods such as 

the RiskMetrics™ smoother and the exponentially weighted correlation model.

5.8.1 O ptim ization of the O bjective Function

Maximum likelihood estimation requires optimization usually via a generic algorithm, 

we choose the Davidon-Fletcher-Powell (DFP) method for unconstrained optimiza­

tion and the Lagrange Newton method or Sequential Quadratic Programming (SQP) 

method in a constrained optimization framework utilizing a non-linear constraint to 

restrict the spacing of the boundary matrices via a penalty function acting on the
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boundary parameters. For either method the general optimization problem is as 

follows,

mm
0

T
A

£  (0 ) =  “ 5  S  (n l°g(27r) +  log ( |£ t |) +  u tTE t ^ t )
t=i

The analytical gradient is therefore,

(5.8.1)

V £(0) =
9£(0) 9£(0) 92,(0) (5.8.2)

90! ’ 901 90k

5.9 C hapter A pp en d ix  I: T he D F P  A lgorithm

Consider a matrix of second order derivatives H  of the likelihood function £  (0), where 

in general H  =  V £(0) VT£  (0). The following iterative mechanism is suggested, by 

utilizing a two stage matrix chain rule, (see Apostal (1967), page 273), the gradients 

of the state parameters is then found in relation to the transition parameters these 

matrices are concatenated and the resulting matrix multiplied by its transpose to 

produce the Hessian, this has proved more effective than simply formulating the finite 

differences. This is somewhat similar to Engle and Shepherd (2001) [89], however 

the general ethos of the regime mechanism is maintained. The first step forms the 

analytical first order derivative matrices via the matrix chain rule, a set of finitely 

differenced matrices, formed by multiplication of the vector fields by the vector field 

of the transition parameters, for precise details of the product rule for vectors and its
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inclusion in the gradient functional.

V £ ( 0 )  =  V £ ( 0 i )  +  ( 0 - 0 i ) - V £

V £

V £ ( 0 )

(6 -  6i)

H

- a - i o - O i )  

V£(flO +  © - ( « - ® i )  

- ( e - e t f a i e - B i )  < o  

n_1 (5.9.1)

The Hessian must functionally invert the gradient fields back to the original differ­

encing of the parameters:

9  — Qi — H j+ i  • V £ i+1 

The Hessian difference function is now of the following form,

(0i+i - < y ® ( 0 i+i - ( y
-H-i+l — H i  +

(5.9.2)

(9i+1 — Oi) • ( V £ j + i  — V £ » )

( H i  ( V £ i +1 -  V £ i ) )  0  ( H i  ( V £ i+ i  -  V £ i ) ) (5.9.3)
( V £ i +1 -  V f t )  • H i  • ( V £ m  -  V £ i )

The initial Hessian is formed via finite differencing, using the absolute smallest avail­

able floating point number the real minimum.

H,

8SLd £ t
d 26 1 dOodOl
d Z i d Z {

de2d0i d2e2

dSL dSL

a£,
dÔd̂ N
d02d0n

d£.
WOn

(5.9.4)

ddpjdO  i  d6  n  d 6 2

This is a quasi Newton type algorithm and may be poorly specified if the variables

are badly scaled, continuous miss specification of the optimal parameters may be
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dealt with utilizing the simplex method of Nelder and Mead, which does not require 

the formal approximation of the analytical gradient matrix, see Press et al (2002) 

[261], for a detailed discussion on implementing multi-variable constrained functional 

minimization and Fletcher (1986) [96] for theoretical background and discussion of 

optimization without gradients. Under fairly common conditions the proposed log 

likelihood function does exhibit this scaling issue, (particularly prevalent because of 

the discontinuous form of the vector 6), which may mislead optimization algorithms, 

we therefore propose the following strategy, compute u*u^, for each observation and 

then find the largest Eigenvalue within this matrix, sorting this list of eigenvalues 

an taking the largest an smallest (upper an lower boundaries) yields an estimate 

of the boundary matrices. In practice this methodology has two benefits, first it 

imposes a measurable distance between the boundary matrices and this significantly 

improves the models ability to capture both short persistence and long memory events. 

Furthermore if you accept this estimate of the boundary matrices

5.10 C hapter A pp en d ix  II: T he SQ P A lgorithm

A significant problem with regards to the unconstrained DFP method is that under 

fairly simple specifications the the last element of the eigenvector of the boundary 

matrices either collapses together or explodes apart, which results in unsatisfactory 

dynamics. We have suggested methods via which the boundary matrices maybe em­

pirically estimated, however this may also be unsatisfactory in terms of computation
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time and completeness. Therefore we specify the following general constrained pro­

gramming problem,

T

mm
6

£  =  log(2 7T) + log(|E t |) +uJ'E t V )
t=l

subject to the following constraints

(5.10.1)

Gi { 0 ) =  0 i =  1 , ...,m e

Gi(0) < 0  i = m e +  1 ,..., m  (5.10.2)

The Kuhn-Tucker representation is then as follows

£ (e ,7 )  =  V £ W  +  ^ 7 r G 3'W  (5-10-3)
3=1

The quadratic sub problem, is then simply,

min [ id TH 4d +  VT£  (0<) d] (5.10.4)
d

Where d  G and is the transient differencing vector, this sub problem is subject to 

the following linearized constraints,

VTGj (6) d +  Gi (6) =  0  i =  1,.., m e

V TGi (9) d -1- Gi (0) < 0 z =  rae + 1,..., ra (5.10.5)

The updated parameter vector is now simply,

9 k + i =  9k +  t'k d k  (5.10.6)
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Where i is finite step length parameter determined via line search. Utilizing the 

Broydon-Fletcher-Goldfarb-Shanno, (BGFS) formula, see Fletcher (1994), the Hes­

sian is updated as follows,

dkd j  HJH*
rik+i — -H-jfc +  ------ 7̂—- (5.1U.7J

Sk sk HfcSfc

Where, sk = 9k+i -  0k and,

n /  m \
dk = V S  (6k+1) + Y ,  IjVGi (0*+i) -  V S  (ffk) + £  h-VGj {$) (5.10.8)

j=i V j=i /

the non-linear constraint G (0), is in the form of the ratio of the last element of the 

eigenvectors of the boundary matrices E u and Ed, i.e.

E UXU — yxî -u

£ dXd =  Vd^d 

XJn,u = z (5.10.9)
•&n,d

Where z is an arbitrarily imposed value and in most cases z > 1. This is an extremely 

useful representation that allows a great deal of control over the optimization, whilst 

still allowing enough flexibility to reach a realistic estimated global minimum.



Chapter 6

Impulse Response M odels in 
Variance and Covariance

6.1 C hapter A bstract

This chapter presents a unified framework for the computation of impulse response 

functions for VAR models with MV-GARCH disturbances. By solving from the 

quadratic form as given by the second moment equations, it is demonstrated that 

these solutions should be used to adjust the impulse response functions from the 

mean equations. These adjustments often result in significant different time profiles 

for the unadjusted impulse responses. This approach provides for a system consis­

tent solution for multivariate linear autoregressive models, with time varying second 

moments.

260
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6.2 Introduction  and Literature

The response of possibly non-linear econometric structures to linear and non-linear 

shocks has been addressed in a number of papers, most notably Koop et. al (1996) 

[171] and Gallant et. al (1993) [103]. The first study develops the concept and derive 

rigorously what they term as ’generalised impulse response’ function, They suggest 

that such a concept can deal adequately with a series of problems that arise when one 

departs from the calculation of the responses of the simple univariate linear model. 

One of the most attractive features of this methodology is that the calculation of the 

impulse response within a multivariate linear system is independent of the order that 

the variables enter the structure. In a later paper Gourieroux and Jasiak (1999) [114] 

by extracting the nonlinear residuals as proxies for the non-linear innovations develop 

a set of test statistics that can be used in testing the specification of the underlying 

structure.

In an earlier study Gallant et al (1993) provided the ’basic’ methodology for com­

puting the impulse response function for non-linear time series by computing the 

differences between what they term as ’the baseline approach’ to the conditional mo­

ment profile using a semi-parametric approach. Among the different examples that 

this methodology can be used is the return volatility-trading volume relationship that 

it is postulated in term of the second moments of the returns and the first moments 

in volume.
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The growing popularity of the multivariate GARCH models has led to the requirement 

of calculating the impulse response analysis of the conditional volatility after a shock. 

Lin (1997) [183] derives and analyses such measure in the context of a multivariate 

GARCH model and evaluates the small sample properties of the standard errors that 

surround the IRF by means of a Monte Carlo study for a MV-GARCH(1,1). The 

purpose of this study is to provide an analytic framework for the computation of 

impulse response function for a multivariate linear model, that is accompanied by 

MV-GARCH set of equations that describe the conditional volatility of each/some of 

its elements. Unlike previous work this chapter does not delve into the computation 

of impulse response functions of non-linear models, as the systems which this chapter 

deals with are essentially linear structures that are related in both first (VAR) and 

second moments (MV-GARCH).

The macroeconomics literature has embraced the general r th order vector auto-regression 

models as a fundamental tool for the analysis of complex multivariate systems. The 

use of impulse response functions (IRFs) to graphically illustrate the interactions of 

sets of dynamic simultaneous equations models is a similarly well developed tech­

nique. By contrast MV-GARCH models have not found nearly as much popularity 

in the literature as their univariate precursors. Impulse response functions and MV- 

GARCH models have an even more limited history, the VAR-GARCH model of Sin 

(2005) [239] Polasek and Ren (1998) [219] and (2000) [220] illustrates a mechanism
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for implementing an impulse response function in variance for a general VAR model. 

Elder (2003) offers an extremely limited description of a proposed algorithm for defin­

ing impulse responses in variance. Hafner and Herwartz (2001) [128] demonstrate 

a model of impulse response in variance and apply it to exchange rates utilizing the 

responses as a guide to system identification. However none of the current deriva­

tions of impulse responses in variance incorporate the dynamics of a fully specified 

MV-GARCH model.

This paper attempts to specify the definitive mechanism that should be used to con­

struct a generalized impulse response function for a given VAR/GARCH combination. 

We show that the effect of innovations in variance/covariance should be computed 

in conjunction with the underlying model in means and that by solving a matrix 

polynomial function the complex interaction between the first and second moments 

of a dynamic model are understood in a tractable manner. The paper is organized as 

follows, in the following section develops the mean and volatility models and explore 

their interactions in the presence of random shocks. The third section provides a 

simulated bivariate example and demonstrates the difference in the impulse response 

functions when the interaction between the mean and volatility are taken into ac­

count and contrast it to the usual case where despite MV-ARCH effects the impulse 

response functions ignore it. Our brief conclusions are provided in the final section.
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6.3 T he G eneral M odel

Consider the general linear vector auto-regression model that may include a vector of 

forcing variables: where y t is an n length column vector process in Mn with discrete 

time increments t , where t € [1,2, x is an m  length column vector process of

exogenous driving variables, u t is a conditionally multi-normal disturbance term, IIo 

and IIi are parameter matrices, of n x nr and n x m  dimensions respectively.

The conditional expectations of the first two moments of the disturbance terms are 

as follows,

y t =  n Ivec (yt) + IXfxt +  u t (6.3.1)

The past evolution of y t is contained in the array yt, thus

(6.3.2)

E  (ut) =  0 (6.3.3)

E  (utu j )  = £ t (6.3.4)

Given the assumption of conditional normality the distribution of the disturbances is

as follows,

ut~N (0, S t) (6.3.5)
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The matrix process that describes the evolution of the conditional covariance matrix 

is described by a modification of the Ding and Engle (2002) MARCH model.

p Q
S t  =  S  +  ^   ̂A j  x \it-j\ij_j +  ^  ] Bt x S f _ t  (6.3.6)

j=i i=i

the use of x in the matrix equation represents the Hadamard product (element by 

element) between two identically sized arrays. The following stationarity conditions 

are applied to the VAR model,

F  =
n T0
nrxn

I 0
n(r—l)xn(r—1) n(r—l)xn

(6.3.7)

For stationarity the eigenvalues of F must lie within the unit circle. For the MV- 

GARCH specification, the stationarity conditions are as follows,

(6.3.8)

(6.3.9)

  C 1 (6.3.10)
3= 1

Consider the conditional predictor of y t,

= n 0 vec (yt) +  i i ix t  (6 .3 .1 1 )

The forecast error is therefore,

y * - y *  =  u* (6.3.12)

a =  vec(A)

b =  vec(B)
pn2 qn2

0 < ai + E
i=l 3= 1
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and by assumption,

E  (y« -  yti{<-i t-r)) =  e (  u ()

=  0 (6.3.13)

and,

E ((y t — ft\{t-l,...,t-r}) (y t — yt\{t-l,...,t—r} ) ) =  ^t\{t-l,...,t-p,t-q} (6.3.14)

1
Consider X 2 as the upper triangular Cholesky factorization, of the non-negative

Hermitian matrix X* and a second zero mean n length vector disturbance process,

e consisting of n standard normal i.i.d. elements, then the forecast errors can be 

expressed as,

Ut =  X 2et (6.3.15)

and,

et ~ N ( Q JI) (6.3.16)

where I is an n x n identity matrix. Substituting (6.3.15) into (6.3.6) obtaining,

p /  l \  /  i \ T 9
^t\{t-i,...,t-P,t-q} = S  + x  l'E?_j£t_j \ l'E?_j £t_j \ +  x Xt_j (6.3.17)

j = i  '  '  '  '  i= i

Therefore, VAR structure is updated as follows,

i
y* =  ... t - r )  +  e t (6.3.18)
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and the forecast errors maybe written as,

(£t)

0 (6.3.19)

From this basic structure the innovation of shocks in mean and variance maybe com­

puted.

6.3.1 Impulse Response Functions

The s step ahead impulse response is given from the following vector of partial deriva­

tives,

8dut
(6.3.20)

Substituting the conditional covariance representation yields,

fyt+s (6.3.21)

Using the factorized covariance matrix,

V 2 =  A
Ai,i ^1,2 ' ' ' ^l,n

0 A2,2 * ' ' A2,n
A,

0 0 A n,n
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We can now express the set of partial derivatives as,

(6.3.22)

where the unit shifts are,

a =  [<Si,<S2...,<yT (6.3.23)

the above specification defines the impact of an innovation in mean, whilst taking 

into account the covariance structure of the system, however it is not sufficient to 

integrate both the responses of the mean and volatility equations as it does provide 

us with an explicit response of the volatility system to an innovation. We now turn 

our attention in formulating the impulse response functions in variance to a single 

unit shock in e.

6.3.2 Im pulse Responses in Variance and Covariance

We define the response in variance to unit shock in £ as a matrix process instead of 

the usual vectorized process.

H i  y t + s  yt+s|{f— r}) (yt+s yt+s|{t—i,...,t—r
(6.3.24)

setting,

(yt+s yt+*|{t-i,...,t-r}) (yt+s yt+s|{t—i,...,t

F(Et)t+s = [ / y ( Et)}t+S (6.3.25)
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and

y>2 -

)(
1

E 2t| {t— p,t—q} 1

St =  fe,.jjt

(6.3.26)

(6.3.27)

To derive the analytical solution for 6.3.24 the derivatives for each of the innovations 

of the covariance matrix with respect to a matrix of shocks with respect to 6.3.23 

needs to be computed.

[ 0 / i , i ( E t ) / 0 & j , t  0 / i ,n  (E t)/0 & j\t

. 0 /n ,l  (Et)/d£ij,t ••• 0 /n ,n (S t)/0 C * j,t

This matrix forms the individual partitions for a larger matrix of the following set of

partial derivatives, for 6.3.29,

0 ^ (y t+s ~  y t+ s |p -i,...,t-r }) (y< + s— yt+ s|{t-i,...,t-r})  ̂ qy  ( 3 ^

(6.3.28)

' t-\~8
03*

(6.3.29)

and the matrix is therefore, 

0 F (3 ,) t+5
03*

d F ( 3 t ) /d tw  

OF (B t)/dCn,i,t

d F ( E t) / d b , q,t 

dF (S t) /^ „ ,n|t
(6.3.30)

defining,

S  (y*+s -  y t+fl|{t-i,...,t-r}) (yt+s ~  yt+a|{t-i,..,t-r})T =  (St) t+s (6.3.31)

Where D denotes the matrix differential (Jacobian) operator. Which is then expressed 

more compactly as,

(Hi),, =
dvecF (&t)t+s = 9<T

\ Td (vecS t)
(6.3.32)
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For a matrix of unit shocks in the quadratic form,

D =  S8t (6.3.33)

D =  [£i<y (6.3.34)

the s step ahead impulse responses are computed as,

A (yt+s -  y t+s) (yt+s -  yt+s)T] =  8\ f  d F ^ \̂ +  (6.3.35)
J i,j,t \  o a t J

- + s "S l ( ^ s f )  +
2 f  9F  (S t)

+ 8„ ,

dat

This set of equations fully describe the impact of an innovation on both the mean and 

volatility systems. More explicitly the eigenvalues of each partition of 6.3.30, corre­

spond to the adjusted elements in 6.3.22. For any given estimated model structure, 

of particular interest will be the responses to single unit shock in the second moments 

of model. This maybe of particular interest to models involving the transmission of 

volatility from shifts in macroeconomic variables to financial markets and the cross 

contagion transmission of volatility between international financial markets.
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6.4 T heoretical E xam ple

The following example is for a bivariate VAR(l), MV-GARCH(1,1) model with 2 

driving variables. The generic model is therefore,

2/1 ,4 =  n j 2/i , 4 - i +  n ? Xi,t +
Ml ,4

. v u  . 2/2,*—1 .  X2,t . .  U2,4 .

expanding the coefficients matrices forms,

yi,t _ * 1  , l 2 / l ,4 - l  +  *"1,22/2,4-1 + * " l,l# l,4  +  *"l,2^2,4 + M l,4
V2,t 7r2 ,l2 /l,* —1 +  *2 ,22 /2 ,4 -1 0 *2 ,1 ^ 1 ,4  +  *2 ,2^ 2 ,4 1 .  ^2,4 _

2/1,4 + M l,4
V2,t . .  U 2,4 .

this gives the full form of the model,

2/1,4 _ * 1 ,12 /1 ,4 -1  +  *"1,22/2,4-1 + *"1,1^1,4 +  *"1,2^2,4
.  ^2,4 _ *"2,12/1,4-1 +  *"2,22/2,4-1 0 * 2 ,1 ^ 1 ,4  +  * 2 ,2^ 2 ,4

setting up the recursive expectations structure,

E

M l,4
V M2,t
M i)tt42,4

U2,tUl,t
a l,t ° 1 ,2  ,4 

° 2 ,1  ,4 &2,t

(6.4.4)

(6.4.5)

Defining,

k =  [ku k2,k 3] 

K  = kl 0
k2 h

(6.4.6)
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The unconditional covariance matrix is thus defined as,

E  =  K K (6.4.7)

which subsequently yields,

E* = +

+

k\ h k 2 
k2k i k\ + k22

1̂,2̂ 1,2, 4-1 
&2,1̂ 2,1,4-1 ^2,2^2,t-1

°M W1,4-1 ^1,2^1,4-1^2,4-1 
02,1W2,4-1^1,4-1 ®2,2̂ 2,4—1

(6.4.8)

(6.4.9)

therefore the elements of the conditional covariance matrix are as follows,

E t = k\ + 0'l,lUitt-l  +  ^l,la l,4-l ^1^2 +  &1,2^1,4-1^2,4-1 +  61 ,201,2,4-1
k\k2 +  Oi,2Ui,t_iU2,4-l +  61,201,2,4-1 kf + k% + &2,2U2,t-l +  &2,202,4-1

(6.4.10)
1

defining that E 2 =  A*, using the Cholesky-Banachiewicz algorithm, the elements of 

At maybe found in terms of the recursive information of the system. See appendix 

1. And similarly analytical expressions for the disturbance terms u t  as the previous 

elements of A t and the i.i.d. standard normal vector process e as in 6.3.26. We now 

have an algebraic expression for the covariance matrix and its factorized counterpart, 

therefore computing the Jacobian matrix is a tractable process. For the forward 

recursion in mean we compute the following,

f)\r. .
(6.4.11)

dXjtEt d \ \ tst

where the impulses are as follows,

(6.4.12)
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For the variance process we simply need to partition the Jacobian and sum its com­

ponents to produce the response structure,

2/i, t+s 
2/2, t+s

yi,t+s
2/2,t+s

Vl,t+s 
2/2, t+s

2/l, t+s 
2/2 ,t+s =  s v ' d F { S t )

8162

6i6-

dSt

d F ( S t)
dEt

dF(Et)

+

+

+
dEt  

2 ( d F { E t) 
BE,

Each element of the matrix above represents the reaction of individual elements in 

the covariance matrix given the nature of innovation of shocks into the model. For 

example given an innovation in the first equation, only the first element of this matrix 

will be non-zero, the remaining three are therefore set to zero. We now proceed to 

provide the s-step ahead impulse responses from the above model under two alterna­

tive specifications. In this first specification the full interaction between the mean and 

volatility equations is permitted whilst in the second the interaction is suppressed.

6.5 N um erical S im ulation

The bivariate example is parameterized with a set of randomly drawn coefficients and 

then compute the impulse responses for a given set of exogenously applied shocks. 

6.4 and 6.3 present the impulse response functions for both the means and second 

moments when the MV-ARCH effects have been taken into account. In graph 3 

we present the imputed IRF of the correlation coefficient following a unit shock in
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the first ’mean’ equation. In 6.1 we plot the IRF for both ’mean’ equations for 

the same shock when the MV-ARCH effects are suppressed. The usually reported 

impulse response function, converge to equilibrium rapidly, given our assumptions of 

stationarity, within ten periods the shock has been fully dissipated in the structure. 

However when the MV-GARCH effects are taken into account the persistence of the 

same shock is far more pronounced. The I.R.F. becomes monotonic after 15 periods 

at the same time, there are pronounced changes in all the elements of the covariance 

matrix, that persist. The imputed correlation coefficient increases rapidly after the 

shock and then declines monotonically. In the context of a two asset portfolio model, 

the above result shows that following a once and for all shock in the expected returns 

of one asset the whole portfolio risk changes. If sets of asset returns exhibit MV- 

GARCH behavior despite the stationarity of the system, our model suggests dynamic 

re-balancing of the portfolio is required for the appropriate hedging of risk. In the 

context of macro-economic models that use VAR specifications, if the disturbances of 

one of the equations exhibits ARCH/GARCH effects, then a once and for all shock 

in this equation can propagate into the other equations and lengthen the number of 

forward steps that the model takes to return to the long run equilibrium.
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6.6 C oncluding R em arks

We have formulated in detail a methodology for constructing discrete impulse response 

functions in mean, variance and covariance for a multi-equation model exhibiting au­

toregressive conditional heteroscedasticity in its residuals. This model has many 

attractive properties and treats the modelling of the first and second moments in a 

unified and comprehensive manner. When the MV-GARCH effects are not taken into 

account in the context of a VAR model the usually reported impulse response func­

tions are distortions of the true adjustment path and in the context of our simulations 

severely under-predict both the magnitude of the disturbance to the system and the 

number of periods required for return to the long run equilibrium. Our results have 

relevance for both portfolio construction and macroeconomic policy evaluation. Our 

methodology suggests that even in a fully stationary environment dynamic portfolio 

re-balancing is required for controlling for the level of risk. Macroeconomic policy 

evaluation that ignores possible MV-ARCH effects will underestimate the size and 

duration of the impact of policy shocks on the economy.

6.7  C hapter A pp en d ix  I

The bivariate VAR-GARCH(1,1) conditional covariance matrix, as function of the 

impulses, £t~\ at the pervious innovation, is as follows, the variance of the disturbance
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of equation 1,

°\,t =  I a l , l2 (£2,t-1 01,2,4-1 +  £l ,t - l  ^ l^ - l ) 2 +  2 Oi,i a i ;2 £2,4-1

\ / crl , 4 - l  ( £ 2 ,4 -1 0 1 ,2 ,4 - 1  +  £ l , 4 - l  0 1 , 4 - l )  \ l ~  ( ^ 2,1 1 ^  +  0 2 ,4 -1  +

0 1 ,4 -1  ( ^ l 2 +  2  6 ^ 1  &1,2 0 1 ,2 ,4 -1  +  & 1,l2 0 1 ,4 -1  +  &1,22 0^2,*—l )  +

G l,2 2 £ 2 , t - l 2 ( — 0 1 ,2 ,4 - 1 2 +  0 1 ,4 -1  0 2 ,4 - l )  ^  ^CTi)t_ i ^

The covariance of the disturbances is therefore,

01,2,4 =  ^ 1 , 4 - 1  (&1 &2 +  ^1,2 &2,1 0 1 ,2 ,4 -1  +  &1,1 &2,2 0 1 ,2 ,4 -1  +  &1,1 &2,1 0 1 ,4 -1  +  &1,2 ^ 2 ,2 ^ 2 ,4 - l )  +

a l , l  (£2 ,4—1 01 ,2 ,4—1 +  £ l , 4 - l  0 1 ,4—1) I 02 ,1  £ 2 ,4 -1  0 1 ,2 ,4 -1  +  02,1  ^1,4—1 0 1 ,4 -1  +

0 1 ,2 ,4—l 20 2 ,2  £ 2 ,4 -1  V ^ M - 1  \ l  [ ~^~L- - -  ) 0 2 ,4 -1  ] +  0 1 ,2  £ 2 ,4 -1

02,1  y/CF\,t-l (£ 2 ,4 -1  0 1 ,2 ,4 -1  +  £ l , 4 - l  0 1 ,4 - l )  \ l  ~  ( ) + 0 2 , 4 - 1  +0 1 ,4 -1  
-1

02 ,2  £ 2 ,4 -1  1 — 0 1 ,2 ,4 - 1 2 +  0 1 ,4 -1  0 2 ,4 -1  1 I I I I 0 1 ,4 -1

The variance of the disturbance of the second equation,

01,4 =  I 0 2 ,1 2 ( £ 2 ,4 - 1  0 1 ,2 ,4 -1  +  £ 1 ,4 -1  0 1 ,4—l ) 2 +  2 0 2 ,1  0 2 ,2  £ 2 ,4 - 1  \ / 0 1 , 4 - l

(£ 2 ,4 -1 0 1 ,2 ,4 - 1  +  £ l , 4 - l  0 1 ,4 - l )  \ l  ~  ( ""'1’̂  1 '0 1 ,4 -1
/ 2 1 2 2 2 \+ 0 2 ,4 - 1  +  0 1 ,4 -1  (&2 +  + 2  62,1  ^2,2 0 1 ,2 ,4 -1  +  ^2,1 0 1 ,4 -1  +  &2,2 0 2 , 4 - l )

- 1

+02,22£2,4-l2 (—01,2,4-12 +  01,4-1 02,4-l) 1 I 01,4-1
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Using the Cholesky-Banachiewicz algorithm the covariance matrix is factorized around

pivot points along each diagonal and upper diagonal element, the three non-zero ele-
1

ments of the factorized conditional Covariance matrix =  A, consist of the first 

pivot element,

^1,1,f — ^a l , l 2 (£2,t-l Vl^t-l  +  £ l , i - l  &l,t-\)2+

(kl2 +  2 bit2 01,2,t-l +  &1,12 a l,t-l +  frl,22 a2,t-i) +

2^1,1 0*1,2 £2,t-1 (£2,t-l a l,2,t-l +  y / ~ al,2,t-l2 +  CTl,t-l &2,t- 1 +

fll,22 ^2,t-l2 ( —<̂ 1,2,*—l 2 +  01 ,t-l 0 2 ,t- l)^

The lower diagonal element is zero,

^2,i,t — 0
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The second pivot element factorizes to,

^1,2,4 =  ^  (&1 ^ 2 +  £>1,2 £>2,1 l ,2 ,t—1 +  £>1,1 £>2,2 <^l,2,t—1 +  £>1,1 £>2,1 l , t —1 +  £>1,2 £>2,2 0 2 , i - 1 )  +

®1,1 (£ 2 ,4 -1  0 1 ,2 ,4 -1  + £ l , f - l ^ l , t - l )

^02 ,1  £ 2 ,4 -1  0 1 ,2 ,4 -1  +  02,1  £ l , i —1 0 1 ,4 -1  +  0 2 ,2  £ 2 ,4 -1  \ / — 0 1 ,2 ,4 -1 2 +  0 1 ,4 -1  0 2 ,4 -1 ^  +  

0 1 ,2 ^ 2 ,4 -1  ^02 ,1  (^ 2 ,4 -1  0 1 ,2 ,4 -1  +  ^ 1 ,4 -1  0 1 ,4 - l )  \ J ~ 0 1 ,2 ,4 -1 2 +  0 1 ,4 -1  0 2 ,4 -1  +

0 2 ,2 ^ 2 ,4 -1  ( — 0 1 ,2 ,4 -1 2 +  0 1 ,4 -1  0 2 ,4 - l )  ^  ^

0 1 ,4 -1  ( 0 1 , l 2 ( £ 2 ,4 - l  0 1 ,2 ,4 -1  +  £ l , 4 - l  0 1 , 4 - l ) 2 +

0 1 ,4 -1  (& 12 +  2 6 ^ 1  £>1,2 0 1 ,2 ,4 -1  +  £>1,l 2 0 1 ,4 -1  +  £>1,22 0 2 ,4 - l )  +

2  01 ,1  0 1 ,2  £ 2 ,4 -1  (£ 2 ,4 -1  0 1 ,2 ,4 -1  +  £ l , 4 - l  0 1 ,4 - l )  y j ~ 0 1 ,2 ,4 -1 2 +  0 1 ,4 -1  0 2 ,4 -1  +

2 2 /  2 \0 1 ,2  £ 2 ,4 -1  { — 0 1 ,2 ,4 -1  +  0 1 ,4 -1  0 2 ,4 - l J

1
I \  2
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The final pivot element of A, is

^ 2 ,2 ,t =  ( a 2 , i 2 ( £ 2 ,4 - 1  0 1 ,2 ,4 - 1  +  £ 1,4 - 1  0 i , 4 - i ) 2 +

0 1 .4 -1  ( ^ 2 2 +  ^ 3 2 +  2 6 2 ,1  &2,2 C'"l,2,t—1 +  &2,12 0 1 ,4 -1  +  &2,22 a 2,t- l)  +

2 a 2 , l  0 2 ,2  £ 2 ,4 -1  (£ 2 ,4 -1  <̂ "1,2,*—1 + £ l , 4 - l  0 1 , 4 - l )  V ~ a l,2 ,t- l2 + 0 1 ,4 -1  0 2 ,4 -1  +

2 2 /  2 \  a 2,2 £ 2 ,4 -1  { — 0 1 ,2 ,4 -1  +  0 1 ,4 -1  0 2 ,4 - l J  ~

( ( 0 1 ,4 - 1  (&1 &2 +  ^1,2 &2,1 C'"l,2,t—1 +  &1,1 ^2,2 CTl,2,t—1 +  &1,1 ^2,1 <^"l,t—1 +  &1,2 &2,2 Cr2,£—l )  +

01 .1  (£ 2 ,4 -1  0 1 ,2 ,4 -1  +  C l , i—1 0 1 , 4 - l )

^ 02 ,1  £ 2 ,4 -1  0 1 ,2 ,4 -1  +  02,1  £ l , 4 - l  0 1 ,4 -1  +  0 2 ,2  £ 2 ,4 -1  \ / — 0 1 ,2 ,4 - 1 2 +  0 1 ,4 -1  0 2 ,4 - 1 ^  +

0 1 .2  £ 2 ,4 -1  ^ 2 , 1  (£ 2 ,4 -1  0 1 ,2 ,4 -1  +  £ l , t - l  0 1 , 4 - l )  \ / — 0 1 ,2 ,4 -1 2 +  0 1 ,4 -1  0 2 ,4 -1  +

® 2 ,2 ^ 2 ,t - l  ( — 0 1 ,2 ,4 - 1 2 +  0 1 ,4 -1  0 2 ,4 - l ) ) )  ( “  (<^1,2 <^2,2 ^ 2 , t - l 2 ^ l , 2 , t - l 2 )  +  &1&2 0 1 ,4 -1  +

61.2 ^2,1 0 1 ,2 ,4 -1  0 1 ,4 -1  +  &1,1 ^2,2 01 ,2 ,4—1 0 1 ,4 -1  +  &1,1 ^2,1 C T l,t - l2 +

0 1 .1  a 2 ,l  (£ 2 ,4 -1  0 1 ,2 ,4 -1  +  £ l , 4 - l  ^ l . t - l ) 2 +  &1,2 &2,2 0 1 ,4 -1  0 2 ,4 -1  +

2 10 1 .2  0 2 ,2  £ 2 ,4 -1  0 1 ,4 -1  0 2 ,4 -1  +

(0 1 ,2  02 ,1  +  01 ,1  <3.2,2) £ 2 ,4 -1  y/&l ,4 -1  (e 2,t-l  <^l,2,t—1 +  £ l , 4 - l  0 1 , 4 - l )  ~  ^  +  02,t - 1

( ( a l , l 2 (£ 2 ,4 -1  ^  1,2,«—1 +  £ l , 4 - l  0 1 , 4 - l ) 2 +

0 1 .4 -1  ( f c l2 +  2  6 i ti  &1,2 0 1 ,2 ,4 -1  +  6 l , l 2 <71,4-1 +  & l,22 <72,i—l )  +

2  01 ,1  0 1 ,2  ^ 2 ,4 -1  (£ 2 ,4 -1  0 1 ,2 ,4 -1  +  £ l , 4 - l  ^1,*—l )  \ J ~ < 7 l,2 ,4 -l2 +  0 1 ,4 -1  <72,4-1 +
1

®1,22 £ 2 ,4 -1 2 ( — 0 1 ,2 ,4 - 1 2 +  0 1 ,4 -1  0 2 ,4 - l ) )  ( 0 1 , 4 - l )  * )  2 

( 0 1 ,4 -1  ( a l , l 2 (£2 ,4—1 0 1 ,2 ,4 -1  +  £ l , 4 - l  0 1 , 4 - l ) 2 +

0 1 .4 -1  (& 12 +  2  61,1  6 1 ,2  0 1 ,2 ,4 -1  +  ^1,12 0 1 ,4 —1 +  frl,22 0 2 ,4 - l )  +

2  01 ,1  0 1 ,2  £ 2 ,4 -1  (£ 2 ,4 -1  0 1 ,2 ,4 -1  +  £ l , 4 - l  0 1 ,4 - l )  y j ~ 0 1 ,2 ,4 -1 2 +  0 1 ,4 -1  0 2 ,4 -1  +
1 \



280

6.8 A pp en d ix  II

Practical implementation of a comparison model between impulse responses with MV- 

ARCH effects and one with a time invariant covariance matrix, in this respect the

deviation from equilibrium does not need to be fully explained, only the deviation

each model specification results in, given a single unit shock,

yt =  yt +  Ut (6.8.1)

(y t  -  y t )  -  (6 .8 .2 )

E { y t - y t) = o (6.8.3)

E  ((yt -  yt) (yt -  yt)T) =  E t (6.8.4)

now construct two equations, one with a dynamic covariance matrix Et and one with 

a robustly estimated time invariant covariance matrix, E,

E  ((y t -  yt) (yt -  yt)T) -  Et =  0 (6.8.5)

E  ((yt -  y t) (yt -  yt)T) -  E  =  0 (6.8.6)
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The impulse responses may be characterized as the deviation in response from the 

equilibrium model, given a vector of shocks 6 ,

y?'1 = Y t \ { E  ((y t -  yt) (yt -  yt)T)  -  E t =  o }  (6.8.7)

y f  = yt | [ e  ((yt -  y t) (yt -  yt)T) -  £  = 0} (6.8.8)

V’t = yf* -  y f  (6-8.9)

=  [$t+l\8, —J ^t+a\s\ (6.8.10)

Elimination of E  ((yt — y f) (yt — yt)T^ , by subtraction, yields, the differences in the 

unconditional and conditional covariance matrices,

= ( e  ((yt -  yt) (yt -  y t)T)  -  -  ( e  ( (y t -  y t) (yt -  y t)T)  -  s )

=  S t - E

(6.8.9)

The eigenvalues of this matrix are anticipated deviations in mean between the MV- 

ARCH and the time invariant forms of the VAR. For the bivariate example, results 

in the following recursion,

6.9 Figures 1 - 4
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Figure 1.1: Response in all equations to a single unit shock in equation 1, with MV-ARCH Effects
1.6

response in y^t 

response in y ,t
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s -step s

Figure 6.1: The mean equation with ARCH effects suppressed.
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Figure 1.2: Impulse Response in Variance and Covariance
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R esponse in Covariance, o 121 
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s-step s

Figure 6.2: The Impulse Response in the Dynamic Correlation Coefficient, Pi,2,t =
& i , 2 (oi.tOi.t)
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Figure 1.3: Response in Dynamic Correlation coefficient, p1 2(
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Figure 6.3: The impulse response in variance and covariance from 6.3.24.
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Figure 1.4: Response in all equations to a single unit shock in equation 1, without MV-ARCH Effects
0.7
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response in y ,t
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s -step s

Figure 6.4: The mean equation with ARCH effects.



Chapter 7

Static and D ynam ic Sem i 
Param etric A sset A llocation  
Problem s: A sset A llocation  
M ethodologies w ith  Higher 
M om ents

7.1 C hapter A bstract

This Chapter suggests a new, non-parametric approach to static and dynamic asset 

allocation problems in terms of the moments of a multivariate distribution. By use of 

a general class of if-distributions, the portfolio density function is constructed from 

the moment sequence derived from the multivariate co-moments of its components. 

We use these high order dependencies in order to capture tail dependency, and the 

associated issues diversification failure and miss-estimation of portfolio risk.

286
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7.2 Introduction  and L iterature

This chapter contributes to the growing literature on asset allocation where the as­

sumption of unconditional or conditional normality has been relaxed. In order to 

accomplish this the probabilistic properties of a portfolio given an r  length sequence 

of measured moments, where r £ N+ is inferred. This chapter reviews both a static 

and a dynamic representation of these moments and suggest approaches to testing 

the performance of the methodology.

Asset allocation problems are at the heart of modern financial decision making. The 

Markowitz mean/variance paradigm, the Sharpe-Lintner CAPM through to APT type 

models have defined excess returns as a multi-normal/lognormal process, fully char­

acterized by the first two moments, see classic texts by Markowitz (1952,1959) [194], 

Sharpe (1964) and Ross (1976) [59]. Almost as soon as the mean/variance approach 

to asset allocation was introduced critiques appeared suggesting that the distributive 

properties of asset returns had marginal distributions which deviated strongly from 

normality and joint distributions which exhibited dependencies not full characterized 

by quadratic covariation, Mandelbrot and Taylor (1967) [193] through to modern 

treatments by Rachev and Mittnik (2000) [222]. Recent contributions to the litera­

ture by Athayde and Flores (2004) [11], Jondeau and Rockinger (2006) [156], Harvey 

et al (2005) [228] and Cvitanic, Polimenis and Zapatero (2005) [61] have looked at 

the inclusion of the first four moments into the distribution. The third and fourth
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moments are generally classified in relation to deviations from those expected under 

the normal distribution assumptions given the estimates of the first two moments.

functions will have existing moments of r > 2. Additionally the moment sequence

Laplace transform of the density function. The question is less whether higher mo­

ments should be included in the asset allocation problem, as to do they actually 

matter, under some coherent performance measure.

7.3 R andom  Variables and G eneralized D en sity  Func­
tions

Consider a random variable X , with some probability measure on the positive real 

line M+, where the probability measure is defined by a sequence of general H-function 

distributions, fo,

It should be noted that all distributions characterized by continuously differentiable

will be characterized by differentiation of the characteristic function derived by the

(7.3.0)

where the H is defined as,

(7.3.1)

and,

=  h  J
c



289

where i =  T, T is the Euler gamma function and the matrices A and B are 

partitioned as follows,

A =  [a i ,a 2]T (7.3.3)

B =  [b1;b 2]T (7.3.4)

the parameters n ,m ,p ,q  have the following boundaries and constraints, 0 < m  < q, 

0 <  n < p, a,2,j > 0 and b2tj > 0, for j  E [1,2, ...,p]. Here and bij are complex 

numbers such that no pole of T (bij — b2,js) for j  € [1,2, ...,n] coincides with any 

pole of T (1 — a ij  +  clijs) for j  € [1,2, Furthermore the set C is a contour

in the complex s-plane from —ioo to +ioo, see Springer (1979) for a more detailed

description of H functions. Furthermore the parameter matrices are constrained such 

that,
OO

dx = 1 (7.3.4)
0

This looks a little abstract but in reality this functional form offers a very flexible 

set of probability density functions, which underlines the majority of commonly used 

probability distributions. However an extremely useful generic property of these 

distributions is as follows, consider the characteristic function or Fourier transform 

of 7.3, € (x), which is given as,

00 00

C(ar) =  J  eitxf ( x ) d x =  /  [z (A, B)] <£r (7.3.5)
—oo 0

=  L_j t {fee™^[z(A,B)] (7.3.6)
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Where L-it is the inverse Laplace transform of 7.3.2 and k £ N+, assuming that the 

integral within the characteristic function converges absolutely to the definition of 

the 7.3.2, then the characteristic function of the 77-distribution can be given as,

C (x) =  [z ( a - \ B - l )] (7.3.6)

where, the new inverse Laplace parameters are defined as,

z =  - - t  (7.3.7)c

a("L =  1 —1>! (7.3.8)

a r L =  ± b 2 (7.3.9)

b r L =  [o, [ e -  a i]T] T (7.3.10)

b 2“l =  [l, [e — a2]TJT (7.3.11)

Here e represents an appropriately sized unit vector. If a random variable is drawn 

from a sequence of 77-distributions then the rth moment of these distributions is 

defined by the derivatives of the characteristic function 7.3, therefore if the moments 

of a distribution are defined as follows,
oo

lir = E  (xr) = J  x m$  (x ) dx (7.3.11)
— OO

Then if Mr£  (x ) =  E  (a:r-1), where Mr is the Mellin transform of 7.3.2, see appendix 

1. The moments of the 77-distribution are therefore,

= _k  n r= i r (&i,j +  , j r ) H U  r  (1 ~  a iJ ~  QiJ r ) r7 3 i n
^ T cr+1  I l j = m + i r  ( !  -  b i , j  ~  h j  -  b 2j r )  ] l j = n + i  r  ( a i >J +  ° 2>j +  a 2 d r )
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Where the ratio is an identity, such that c and k are either exogenously ap­

plied parameters or are free to vary when matching to a moment sequence. Given 

that a large number of common distributions are derived as special cases of the H- 

distribution and that by varying c, fc, A and B powerful mathematical framework 

will be generated, which maybe utilize to reconstruct an estimate of the characteristic 

function from sequences of integer moments of random variables and by extension the 

density function.

7.4 M ultivariate C haracteristic Functions and A s­
sociated  M om ents

Given an n-variate vector process x  6 Mn, the multivariate characteristic function, 

(m.c.f),f), is the Fourier transform of the multivariate probability density function 

therefore if, is the n-variate density function then the m.c.f. is characterized by 

the following multiple integral,

tion. In this respect co-moments are defined in terms of the expectations of products

OO OO OO

(7.4.1)
—oo —oo —oo

dx = [dxi, dx2 , ..., dxn\T (7.4.2)

Therefore the sets of co-moments are characterized as the rth derivatives of this func-
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of vectors, z which are subsets of x ,

/4 =  E ( r T ' ]  (7.4.3)

Zi €  z (7.4.4)

z C x  (7.4.5)

The number of co-moment conformations from the characteristic function will there­

fore be i = nr , and as such an array containing the rth co-moments will have i 

elements. Next consider a univariate process which is the weighted summation of the 

vector process x , therefore if x  = u;Tx , where u; is some set of arbitrary summation 

weights. The contribution to the rth moment in the univariate moment sequence 

H = [/xi, [i2 , •••, Hr, •••> Moo]T? by the ith co-moment is defined as,

s
i t = n Wi

i = 1

where, Wj G w  and w  C u .  We now have an expression which will yield the pa­

rameters of a generalized distribution which is the weighted summation of n marginal 

distributions, if these marginal distributions are drawn from some set of dependent H- 

distributions that characterize the distribution of the resultant distribution in terms 

of moments. Furthermore by assuming that the resultant distribution takes the form 

of some infinite or finite mixture then this approach offers the tools to deal with this 

type problem.
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7.5 Specifying H igher Order M om ents

Consider the following Hankel matrices of moments for a univariate random variable,

A (1) =

r̂+l

A*i M2
1̂ 2 1̂ 3

Mr+1 l^r+2

1 f  
/i a £1}

f-̂ r+l
l^r+2

f 2̂r+l

(7.5.1)

(7.5.2)

The Hankel matrix is constructed from a valid set of moments if, |A r | > 0 and for 

any continuation of the moment sequence if k > r, then { |A r | =  0 : |A/.| = 0}, for 

fc ,r€  N+, Shohat (1943) [236]. For a random variable x  where x = u;Tx, the moment 

sequence maybe defined e l s  follows, if A i r is an array of co-moments, where,

E  (xM) =  M , (7.5.2)

Specifying as the vector permuted outer product of the vector x with itself, for 

the second co-moments, this changes to the transpose operator, i.e. =  xxT. The 

resultant array M.r is an r dimensional array (classical tensor), with r th order super­

symmetry. Matricizing from a multidimensional array to a flat matrix, containing 

identical elements to A4r, the following definitions apply,

vec( M r) =  vec(M-r) (7.5.2)

In this case the vec operator stacks the fibre bundles of the array A4r, in such a 

way that the inverses are homeomorphic, i.e. for a pair of inverse transformations
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ivecr,ivec2 of an array, the following definitions hold,

ivecr(vec( M r)) =  M r (7.5.3)

ivec2 (vec ( M r)) =  M r (7.5.4)

Then defining the matrix M r in terms of Kronecker powers and first order permuta­

tions, (transposes) of x

£ ( ( x [®r-2])xT) — M r (7.5.4)

Imposing x  =  xf0Oh If for a given vector of weights, u, then the weights array 

is similarly defined as cjM =  Wr, again specifying following matricizing condition, 

vec (Wr) =  vec(Wr), therefore, (o;t0r 21) u T =  W r. From this definition r th moment 

Hr of a random variable x = u Tx, is therefore,

Hr =  W r • M r  (7.5.4)

Where •  is the inner tensor product of two identical arrays, rearranging this and 

reframing in vector notation as,

fir — vec (Wr)T vec (M r) =  vec (Wr)T vec ( M r) (7.5.4)

Therefore the rth moment of x  is maybe then defined in matrix notation as,

Hr = vec ((u;t<8>r-2l) a;T)Tuec (E  ((x^®r-2 )̂ xT)) (7.5.4)
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Table 7.5 illustrates the first 4 co-moments of x,

Moment Array by 
Vector Permutations
E
E
E
E

[xW1
;x[2r
[X ^

44]'

= Mi 
= M2
= m 3 
= m 4

Matrix 
Notation 
E  (x) =  M i 
E  (xxT) =  M 2 
E  ((x ® x) xT) =  M 3

Kronecker Power 
Notation 
E  (x) =  M i
£((*  ,
E lU & y

E  ((x 0  x  0  x) xT) =  M 4 E  ((xt®2l) x

= M 2

= m 3 

= m 4

Table 7.5

The first 4 moments of x = u;Tx, are therefore,

Mo = 1 
Hi =  u;Tx
M2 =  vec (a;u;T)T vec (E  (xxT)) =  coT (E  (xxT)) lj (7 .5 .4 )
fjL3 = vec ((a; 0 a;)a;T)Tnec (E  ((x 0  x) xT))
H4 =  vec ((a; 0  uj 0  uS) a;T)T vec (E  ((x 0  x 0  x) xT))

The moment sequence, [i may the be used to reconstruct the density function from 

the generalized .//-distribution density function. The essential task is a maximum 

likelihood problem, for a given set of sample moments, which /7-density function most 

appropriately fits. There are a number of differing approaches to this problem, the 

original method proposed by Hill (1969) in Springer (1979) suggests using a Gram-

Charlier type A (Hermite polynomial, i.e. mixture of normals) series or Leguerre

polynomial series. A second method suggests attacking the problem via estimation 

of the first four moments and fitting these to a Pearson system of probability'density 

functions.

*
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7.5.1 Transforming the Raw Aggregate M om ents into R+

The .//-function class defines a probability measure over R+, however the raw mo­

ment sequences operate over Mn. Therefore a transformation is necessary in order 

to satisfy, the portfolio distribution constraint. A simple method is to transform the 

multivariate sequence into the positive domain, for return sequences the lowest value 

is bounded to -1, therefore adding 1, to x, will yield a multivariate distribution, in 

Rn,+. Then the un-centered moment estimates will yield an aggregate distribution 

in R+. Alternatively for unbounded multivariate distributions, using the exponential 

function results in transformation to M+.

7.6 R econstructing  th e  D en sity  Function o f x

One of the oldest methods of reconstructing a density function from its moments is 

the Von Mises (1964) [260] stepwise approach, which proposes matching the moment 

sequence to the moments of some arbitrary density function. The more moments 

that are used the more unique the moment sequence and as such the better the 

identification of the density function. At the time of publication in (1964) nobody 

could have envisioned that one could realistically optimize a library of general H- 

function distributions and for example test the fit using quadrature density matching, 

without an a priori imposition of some distribution which is then parameterized via 

its moments. Given that the //-function serves as the basis for the half/log normal,
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Weibull, Gamma, Maxwell, Exponential, Chi-Squared, Rayleigh, Hypergeometric, 

Cauchy, Student, F distributions and many more then the choice was fairly eclectic. 

At present with access to more powerful computational resources and a an easier 

implementation paradigm, such as object orientated programming, it is possible to 

generalize from the ^-distribution, to finite sequence of moments the optimal density 

function based on some preset criterion. The first step is to deal with the information 

content that the moment sequence contains, recall the Hankel matrix A r from 7.5.1, 

this matrix maybe partitioned into sequences of moments as follows,

To obtain the abscissa values, {ẑ i, V2 , ..., ^2r-i} , the roots of the 2r  — 1th polynomial 

with coefficients described by c are evaluated. This system maybe rewritten as a

(7.6.0)

A new partitioned matrix, $  may now be formed,
T

M[0,r] /qo,r] * ' " /̂ [0,r] Â [0,r]
0  ^[l,r+l] ' ’ ' M[l,r+1] /^[nr+l]

$ =  o o - . ; (7.6.0)

0 0
/ [̂r,2r—1] ft[r,2i—1]

0  f̂ [r,2r]

where,

(7.6.0)

For a vector of coefficients c = [co,ci,C2 , ...,c2r]T the following simple linear algebra 

problem is then solved,

+  fl[r+ i,2r+l] — 0 (7.6.0)
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set of Legendre polynomials, see Devroye (1989) [68]. Using the definition in 7.3 a 

general //-function and generating the abscissa values via backward induction yields 

a generic representation of the density function.

7.6.1 Application: Generating M ultivariate Price Processes 
W ith  Higher M om ent Arrays

Consider the following monte-carlo problem, in order to replicate a sample multivari­

ate sample path a moment matching scheme is produced as follows,

•  First Estimate the Number of central co-moments needed to fully describe the 

characteristic function.

•  Measure the central co-moments.

•  Match the measured multivariate moments to a weighted finite mixture drawn 

from a known density function, e.g. multivariate normal.

•  Generate the sample paths, using a standard linear congruential quasi-random 

number generator.

This type of schema is a direct application of the standard sequential monte-carlo 

approach utilized in a variety of different areas, such as signal processing and tracking 

and control, See Ristic et al, (2005) [224].
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7.6.2 M om ent M atching

Consider a library of potential density functions, G #, which are all variants of a 

multivariate H distribution, the general multivariate density function of the mixture 

distribution, is given by,
k

! P ( x ) = 5 > A - ( 0 O  (7.6.0)
3=1

where otj G [0,1] and Ylj=i ai ~  1- h  the multivariate characteristic function, fj (x), 

of the density function (t), is r-differentiable then the kth, multivariate raw moment 

of x, is,
1 r1r

(7.6.0)M r (x) =' ' i r d t r  w t= 0

where, t  € Rn, where t  is dummy vector the same length as x. The central moment 

is similarly,

M r  (x) =  M r  (x -  E  (x)) =  ~ H  (t) -  E  (x)' (7.6.0)
t= 0

Now consider a measured set of moments, r G [1,..., p], from some multivariate 

dataset,

M  = (7.6.0)

matricizing, M r =  E  (x®71) =  A4r, yields a sequence of matrices M r G { M i,..., M p},

comparing these to the expected matrices, from the distribution,

A r =  M r — M r (7.6.0)
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substituting, 7.6.2 into 7.6.2 and rewriting as matricized arrays yields,

A r =  mat ^M r -  ^ ^ 7 H  (t) -  E  (x ) 1 ^ (7.6.0)

A loss function is now needed in order to optimize the parameters arrays {oij, G 0, 

the following basic loss function is proposed,

/  W = £  ^  ( WeC<A')T«rexl) (7'6'0)
r = l  '  '

where /  : Ed —»■ R and is r differentiable, the simplest case is when, /  (t) =

exp (—£ |t |) ,  where ft is a bandwidth parameter used to tune importance weight­

ing of various moments. Minimizing ^0^, subject to the parameter vector 0, yields 

the parameter estimates of the optimal mixture density function.

/ > * )  4  nun ( v e c ^ T „rex l) J  (7 '6 °)

7.6.3 Empirical Example, F itting a Bivariate M ixture using 
M om ent M atching Libraries

Consider the case of a bivariate portfolio, using the moment matching procedure for 

the library of distributions in table 7.1 Figures 7.1 and 7.2 demonstrate the higher 

multivariate moment system for a bivariate system of stock and index.

7.7  F iltration  Problem s

The previous two sections addressed the identification of a generic density function 

from its moments. In these sections the evolution of a random variable from a random
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Table 7.1: Distribution Library, for Moment Matching Procedure

Distribution Density Funcion

Fx (xx) =  2ir 2 |S |2 exp |  (x — E  (x))T £  1 (x — E  (x 

Fi/ (x y) =  r (a )m x i~l (*? -  ^ i)a_1 exp ( - e x 2)

Fz (xz) = FX1 (xi) FX2 (x2) exp ^ j— ^  1

fe )  =  exp ( -  exp (-x*))

Bivariate Normal 

McKay’s Bivariate 
Gamma
General Bivariate 
Extreme Value 
Distribution

(xi) log FX2 (x2)

-1

ABBOTT LABS. Returns versus SAP 500 Index Returns

Figure 7.1: Scatter Plot of Abbot Labs Returns versus the S&P 500 Index Returns.



Moment Matched Distribution of the returns of ABBOTT LABS and the SAP 500 Index

Figure 7.2: The bivariate density function, evaluated from the library.
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sequence of density functions is defined, in this following section a more specific 

notation is used and in particular the following problem of the dynamic evolution of 

a moment array is considered. If for a given set of polynomials conditioned in the time 

dimension, the moment sequence at any given innovation is then conditioned on the 

past evolution of the prior moments. More specifically the non-linear evolution of the 

moment sequence is considered, in the context of a simple autoregressive mechanism. 

Therefore the following moment problem for a given conditional moment sequence, 

/i[0jr],t, is specified in terms of the conditional distribution at time t and will therefore 

be defined as fo.

7.7.1 Dynam ic Specification

Consider the following random vector process u t, whereby u t, is the zero mean residue 

from some filtration,

y, =  nT x ( +  u, (7.7.0)
n x l  m x n m x  1  n x l

Where I I  is a matrix of coefficients, y t is the pre-filtered vector process, x t is some 

deterministic set of explanatory variables. For a given Borel measure of u* 6 Mn, 

the conditional density of u t is given by the conditional density function fo, and the 

epoch of the density function is described by some Labesgue measure on Ent, therefore 

there is a bounded functional set F, for which G F. For a conditional moment/co­

moment sequence [̂oj00],t> which fully describes the density function $ t then there 

exists a set M, for which /qo,oo],t £ M and as such there is some function g, for which,
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g : M —> F. In practice this means that if a sequence of random density functions 

is fully described by their conditional moment sequences then the parameters of the 

polynomial which underlies this sequence will be fully described the properties of the 

random variables generated from this distribution sequence.

7.7.2 Autoregressive Conditional M om ents

Consider the following general moment innovation, for the ith marginal distribution,

Now consider the conditional rth order co-moments, A4r, from the multivariate char­

acteristic function 7.4.3. The array maybe decomposed as follows,

Where x is the element by element multiplication of two identical arrays, when the 

arrays are matrices then x is the Hadamard product. The following structure is 

proposed,

Therefore for the ith variable the infinite moment sequence is described as,

(7.7.1)

(7.7.2)

vec {M.t) = vec ('Ht x 7Z) = vec (Ht x R t) (7.7.2)

i i T
(7.7.3)

(7.7.4)
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And the unconditional array is as follows,

vec =  vec (E  ( (u ^ r_2 )̂ u T)) =  vec (7.7.5)

d r =  sdiag (Mr'j  (7.7.6)

vec (Hr) = vec ((h|.<8)r-2l) h j )  =  vec(TZr) (7.7.7)

Where A i r = E  (u ^ ) is the unconditional expectation of the higher moment array 

and sdiag is the super diagonal of the r-dimensional array M.r.

7.7.3 Univariate M om ent Specification

Given the generic derivation suggested in 7.7.2, a more specific recursion assumes

that the moments are a linear progression,

j  E ( u i,t) = <  +  ' n = i a J v e c ( u ,t _ lKi\ r  =  2 k - l  
|  E  (ult) =  <T,r +  £ [= 2 ajvec  , r  = 2k

U 't~pV) =  (7-7-9)

Where k G N+ and a* G a  are parameter vectors, here the recursion between the odd 

and even moments is distinguished, to avoid dealing with possible complex roots in 

hr)f. A simplification of this specification is already implemented in the Power ARCH 

model of Ding, Granger and Engle (1993) [88].

[It,i,t = E  (uritt) =  a\  +  a? vec (Ul_p{r)) (7.7.9)

Kristensen and Rahbek (2005) [172] derive the quasi maximum likelihood estimation

for this model, with parameter space 6  = [a, a].
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7.8 A pplication  to  O ptim al Portfolio  Selection  and  
U tility  T heory

One of the basic problems in finance is the optimal allocation of risky assets in a port­

folio. Consider a risk averse investor with utility function u (v) — {u \v G M : u (v) —> R 

where v is the value of wealth, the investor must choose the optimal allocation of a set 

of n risky assets, with returns x  =  [X\,X2 , ...xn)T over two time periods and receives 

wealth of v = vq (l +  u;Tx) in the second period, where Vq is the initial wealth and 

u) is the portfolio weights. The ith derivative of the investors utility w.r.t. wealth is 

defined as,

t t (0  ( „ )  =  ( 7 .8 .0 )
dv

The expected utility in the second period E  (it)is defined in terms of the Taylor 

expansion with remainder about the initial wealth,

£ ( o )  =  ( g M e { v _ Vo)^ j  + ( u ^ ( v 0 + ^ v - v o)) E { v _ vo)i+l^  ( 7 g 0 )

assuming that, the portfolio moments maybe substituted into the expected utility 

function,

E{y  -  vqY = ( v Q ( l  + (Mi)1! !  (7.8.0)
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rewriting the expected utility as a function of the weight allocation and the portfolio 

moments,

E ( u \uj ) =  L (  l j )

/  m  

=  -  £
, i= 0

(7.8.1)

(7.8.2)

u(i+l> (v0 + 8(v — Vo)) (  1
-----------------  Vo ( !  +  (/«H )  *

The optimization problem is therefore defined as follows,

L (lj*) =  min (L (cu) \uj G 17) (7.8.1)

Where Cl is the set of all feasible portfolios. The gradient vector of partial derivatives 

w.r.t l j  is therefore,

VL ( l j )  =
dL ( l j )

dui
(7.8.1)

i=[l,...,n]

The second order matrix (Hessian) of partial derivatives are,

V2L (ui) =
d2L ( u )
dui duij

(7.8.1)

The optimal weighting is the global maxima at which,

VL ( l j )  — 0

7.8.1 U tility  Functions and their derivatives

(7.8.1)

A variety of utility functions are commonly utilized in financial decision making, the 

effect on the optimal investment allocation are strongly influenced by the nature of
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the curvature underlying the utility function. Risk aversion is characterized by convex 

preferences, however higher moments are dictated by the nature of this convexity. A 

commonly used utility function is the CRRA or power function,

l >  1
1 - 7

, log(v) 7 =  1

X  =  v  1

(7.8.1)u(v) = <

A standard HARA type function

u(v) = l - e " 7U (7.8.1)

A more exotic hyperbolic function

u(v) =  1 — ArcSinh  (v~7) (7.8.1)

And finally the Lamberts W function

u ( v ) = {  (7.8.1)

Where 7  is the risk aversion parameter.

7.8.2 Empirical Example

Figure 7.3 illustrates the tangency preference set (using a CRRA type utility function) 

and efficient frontier, solution using a three moment system, the frontier is computed 

using a standard constrained quadratic optimization algorithm, see Fletcher (2000) 

[96]. Figure 7.4, illustrates the impact of the inclusion of one extra moment in the 

decision system.
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t* i *

Figure 7.3: Three Moment Preference Set and Interpolated Frontier Moments for a 
multi-asset portfolio, the data is from a 4-variate Copula.
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Moment Rentier Projection, h , /$

10°

0.5 1.5 2.5

Figure 7.4: This diagram illustrates that the optimal solution for the efficient may be 
inside the mean-variance frontier when extra moments are included.
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7.9 C oncluding rem arks

This chapter has introduced a series of tools designed to utilize empirically estimated 

moments in the asset allocation problem. The tools utilize the empirically estimated 

moments and match those moments to a generalized density function. Furthermore 

an expected utility maximizing framework is demonstrated that combines the higher 

moments into a coherent framework, utilizing the Scott and Horvarth preference 

directions. This approach appears to be a simple method for increasing the infor­

mation used in asset allocation problems and dealing with observed deviations from 

multivariate-normality and it’s associated moment sequence that appear in many 

asset return series.

7.10 C hapter A ppend ix  I: P roperties H igher di­
m ensional arrays

For any rank-ra co-moment tensor there exists an ra-1 ranked tensor object which 

defines the symmetry of themth co-moment array. For any given tensor with di­

mensions J x K x L  the Tucker decomposition is for a 3 dimensional array is M. — 

£ ?= 1  Yl%i Ylk=i aijk (u* o Vj O w fc) where u* e  R d l , V j  £ Md 2 , w fc £  R d3 and the ten­

sor S c = (Jijk, is called the core tensor. If the vectors u , v , w  are column vectors 

from orthogonal matrices U, V  and W , then the tucker decomposition is called the 

Higher-Order Single Value Decomposition, HOSVD. The HOSVD can then be defined
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in terms of the matrices U, V  and W  as M. =  SU V  The rank of the tensor is not 

revealed unless the tensor has a diagonal core, the diagonal of the tensor is when the 

contra-variant indices are equal i.e. in a three dimensional array i = j  = k. The vector 

of the diagonal in a m th co-moment array is a line on the symmetry array, which is 

equivalent to E. Therefore an m th co-moment array is a tensor object, which exhibits 

high order super symmetry. Thus for each element [<2^7.] in a three dimensional array, 

the super-symmetry properties hold because =  ajki — &kij =  Qkji = aikj = &jik 

The super diagonal for an appropriate flattening of a co-skewness matrix (which is 

designated a super cube, due to its symmetry properties). M. =  Ylf=i Ui.Vj.w* Re­

writing this in terms of flattened matrices, gives M. =  U  (V © W )T Where © is the 

Khatri-Rao-Bro product finally we can rewrite this transformation in terms of the 

more familiar Kronecker product as M. = U I (V 0  W )T where I is an n way identity 

matrix with ones on the super diagonal, zeros elsewhere, if the tensor M. is for ex­

ample a co-skewness matrix with 3 assets, then the identity matrix is of the following 

form, where the ones specify the points on the super diagonal.

'  1 0 0 0 0 0 0 0 0 ‘

1 = 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

Finally we can describe the decomposition of the tensors in terms of sets of matrices, as 

well as columns, using the Kronecker (or tensor) product, this is useful as it allows us 

to create simple functions to construct the flat weights matrix. W =  J2 ? =1 ©(^©VFj), 

where R = rank(M .), conveniently as the weights matrix is self ascribed, by the
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column vector u  then:

W =  wT (w®w)IW n~11 (7.10.0)

So from these results we can flatten any m th order hypercube array and have a function 

that produces the equivalent weights array, in a flattened form.



Chapter 8

Continuous T im e Stochastic  
Covariance Problem s and option  
pricing models: M ultivariate A sset 
Price D ynam ics W ith  Stochastic  
Covariation

8.1 C hapter A bstract

This chapter illustrates the implications of multivariate stochastic covariation on the 

pricing of contingent claims on assets. Stochastic volatility models such as those of 

Heston (1993) [144] and Hull and White (1987) [149] are often used to model volatility 

risk in the pricing and hedging of contingent claims on risky assets. However some 

recent empirical evidence has shown that the models under general specifications often 

do not fully capture the volatility dynamics observed in situ. We suggest that some 

of the fitting issues maybe partially explained by correlation risk, with other assets 

in the market.

314
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8.2 Introduction  and R eview

In this chapter a multivariate approach to modelling volatility risk is proposed. Typ­

ical examples of the incorporation of stochastic volatility in the pricing of contingent 

claims on single assets are the Heston (1993) [144] and the more generalized Hull and 

White (1987) [149]models.

This chapter demonstrates that when the underlying asset exhibits quadratic co­

variation with a number of other assets and that this covariation is itself a multidi­

mensional diffusion then the estimation of the risk for holding this asset will not be 

captured by two dimensional brownian motion approaches. In particular much of the 

criticism presented in Hagan et al (2002) [133] on the lack of fit between general­

ized local volatility models and the observed smile surface can be countered if several 

other processes were interacting in the volatility equation. Although this is a valid 

criticism, it does not provide advice on the exact number of such processes.

In modelling the time evolution of the quadratic covariation of asset returns Barberis 

et al (2004) [17]demonstrate that the degree of co-movement observed amongst as­

sets, decomposed as variance and correlation, is a dynamic process affected by changes 

in the investors information set, chapter 4, similarly demonstrated that the degree of 

correlation between stocks in a sector. Similarly, in collateralized default obligations 

(CDOs) the correlation between defaults changes through time and is often driven
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by several interacting macroeconomic variables. These may not directly vary his­

torically with the asset price, therefore the interaction is ’hidden’ in the volatility 

component. See Berd et al (2005) [27], who utilize a threshold approach to modelling 

the volatility of synthetic CD Os.

Practical approaches to constructing a simple multi-asset multi-volatility are a 

relatively recent phenomenon, articles by Gourieroux (2005) [113], Gourieroux and 

Sufana (2003 [117], 2004 [118]) utilize the Wishart distribution to attempt to create 

a fully featured multivariate volatility model with closed form solutions. The model 

proposed here does not have a closed form solution, in keeping with many other 

stochastic volatility models.

The general approach to modelling multivariate risk would be to treat each of 

the elements of the covariance matrix as unique diffusion process. However the re­

sulting covariance matrix will not be guaranteed to be non-negative definite and as 

such may have negative eigenvalues. There are well defined approaches to generat­

ing guaranteed non-negative definite matrices using a variety of matrix transforms, 

such as the ivech transform utilized in Bollerslev et al (1988) [41] and Engle and 

Kroner (1994) [89]. One of the problems with this approach is that the elements of 

the factorized covariance matrix are functionally quite complex, particularly as the
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number of elements increases. The system presented in this paper is based entirely 

on functional products and square roots of standard integral stochastic processes and 

it is is algorithmically scalable, albeit algebraically inelegant.

The article is divided into three sections. The first section presents a review 

of generalized stochastic volatility models. In the second, the derivation of a matrix 

stochastic volatility model is presented, first as a basic autoregressive model in discrete 

time and then as a full continuous time model, for which the univariate form is 

a generalization of the standard stochastic volatility approaches. The final section 

addresses a hedging problem in the presence of stochastic covariance and demonstrates 

why the multivariate approach requires a different hedging strategy to fully encompass 

each of the diffusions acting on the observed process.

8.2.1 A Representation of Stochastic Volatility

Consider the evolution of a fc-dimensional vector stochastic process x  (t) , where x (t) E 

Mfc, defining the elements of x (t ) as,

Y ( t )  =  log S(t)

z (t) =  [Z1 ( t ) , Z 2 (t ) , . . .Zk- 1 (t)\T 

x (t)  =  |y ( t ) , z ( t ) Tl

(8 .2 .1)

(8 .2 .2)

(8.2.3)



318

Where S  (t), is the observed price evolution of a single asset and z (t) is a k — 1 vector 

of volatility processes, where z (t) G MK_1. A typical generic stochastic volatility 

model maybe set out as follows, first the process x  (t ) is a multidimensional stochastic 

differential equation,

dx (t ) =  (i (x (t ) |0) dt +  cr (x (t) |0) dw (t) (8.2.3)

where w (t ) =  [dW1 (t) , d W 2 ( t ) ,..., dWfc (t)]T is a vector of independent Brownian 

motions, where for every t , h >  0, w t+h — wf, has a Gaussian distribution specified as,

w (t +  h) -  w (t) ~  iV (0, Sft)

= /  fcj] 
\  [6j !

= h 
= 0

(8.2.4)

(8.2.5)

Based on this structure, the covariation between the stochastic processes will be 

conditional on the structure of cr(x(t) |0). Assuming that the functions, /x(x(t) |0) 

and cr (x (t) \6 ) = (x (t)) are simple matrix functions,

(8 .2 .6)

(8.2.7)

Then for a standard two dimensional problem, i.e 1 asset price process and 1 volatility 

process, the vector process may be specified as,

d -y(t)' ' <t>sY(i) ' dt T
.  . > Z2 (f)  .

V>M (y ( t) ,z (« ) )  iplt2 ( y ( t ) , z (t)) 
0 i>2,2 { Y ( t ) ,Z ( i ) )

d W l (t)
d W 2 (t)

(8.2.7)
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where,

* ( * M )  =  

* ( * W )  =

4>s o
0 (f>z

Y ( t )
Z( t)

0 lp2,2 {Z (t))

(8 .2 .8)

(8.2.9)

Many of continuous time stock price models maybe derived using this approach, such 

as the Heston (1993) [144] model,

(j)s = (r - d )

<t>z =  k {v - Z  {t)) 

< M y ( t ) , z ( t ) )  =  ((i - p f Y i t ) )

h  ,2 ( y ( t ) , z ( t ) )  =  P ( y ( 0 ) 5  

^ 2,2 (y  ( 0 ,^ ( 0 )  =

(8 .2 .10)

(8 .2 .11)

(8 .2 .12)

(8.2.13)

(8.2.14)

where, r — d is the real risk free rate and model parameterization proceeds via esti­

mation of the parameter vector 6 ,

(8.2.14)

This is a square root diffusion model and operates under the assumption that Y  (t) E 

R+. An interesting observation is that if cr =  0 and Yq =  v, then the model reverts 

to a Black and Scholes (1973) [31] type approach.
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8.3 T he M ultivariate A pproach

Consider a stochastic process with k assets, in order to fully describe the instantaneous 

quadratic covariation of those assets, \k{k  +  1), pieces of information are required, 

k variances and \k{k  — 1) correlations, to fully describe the volatility of the system. 

Structurally the instantaneous covariance matrix, maybe decomposed as follows,

£ ,  =  A ,  A ?  (8.3.0)

Where the k x k matrix A t, is composed of \ k (k  +  1) unique elements.

a\  0 •  • •  0
&2 CLk+l "  * 0

A t = (8.3.0)

.  ak a*+(*-D * '' a ±*(fc+D .

If A t = ivech(at) and at G M.2 k(k+l\  then S t G Ckxk, where Ckxk is the set of 

all non-negative Hermitian matrices. Therefore the Upper Triangular Matrix Square
l

Root, (UTMSR) £ f2 =  chol (E t) exists within the kernel of and the eigenvalues 

of q G { c i , ..., are all non-negative and chol is the functional result of the 

Cholesky-Banachiewicz algorithm. Using the ivech approach is a useful method of 

specifying the structure of a conditional covariance matrix and allows an algebraic 

representation of the elements of the UTMSR of £ f.

8.3.1 A D iscrete Tim e Autoregressive M odel

Consider the discrete time model of the evolution of a /c-dimensional process, uf 

where, ut G a* G M2 fĉ +1) and et and are uncorrelated noise drawn from a
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zero centered unit variance normal distribution. Using some of the results from the 

derivation of the classical Bartlett decomposition, see Kollo and von Rosen (2005) 

[170]a simple model of stochastic covariance is as follows,

u t =  E t2£, (8.3.1)

S  t =  A tA j  (8.3.2)

A t = ivech (at) (8.3.3)

a t =  IIa*_i +  0 2  £t (8.3.4)

[ e J ,g ] T ~  i v ( o ,  I ) (8.3.5)
y  |( f c ( * + 3 ) ) x |( f c ( f c + 3 ) ) /

Where, II is a ^k (k  + 1) x Ifc (fc +  1) parameter matrix and the disturbances are 

independent zero centered Gaussian processes with unit variance, if II = I then 

the process underlying a* is a multidimensional random walk. The static covariance 

matrix, O maybe estimated using a standard Wishart approach, the moments of the 

conditional covariance matrix is therefore,

u t =  ^ivech ( l la ,_ i  +  0 2 diag (£t)^ ivech ^IIaf_i +  O2diag (£*)^(^a§) 

=  ivech ( n a t_i) ivech (IIat_i)T (8.3.7)
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Therefore the quadratic variation of the covariance matrices is,

E  (vecHt\t vecJ}J\t ) = vec |'ivech ^ IIa f_i +  O^diag (1)^ ivech ^ IIa t_i +  O^diag (1)^ ^

T

vec ( ivech ( I Ia t_i +  O^diag (I) ) ivech I n a t_i +  diag (I)

(8.3.6)

Specifying the m th moment structure of the observed random vector is,

M t  =  E  ( u ,  (uT)®”- 1)  (8 .3.6)

Therefore the fourth moment of the resulting process is,

setting,

M 4 =  E (utu j  0  UfU^) (8.3.6)
k2xk2

= E  (vecEt\t-i v e c E j ^ ) (8.3.7)

H t =  u tu j  (8.3.8)

h t =  vecHt (8.3.9)

and expressing the expectation of the fourth moment in terms of the model compo­

nents yields,

E  (£teJ ® £tsJ)  =  $  (8.3.10)

E  (utu j  0  UtuJ) =  $ 2 ^ rf ^ $ 2 ^  (8.3.11)
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The fourth moment of a zero centered normal distribution is defined in Kollo and Von

Rosen (2005) [170]. The simplest method is to take the distribution of each element

and minimize the following score function over the fourth moment,

i  f  i (8.3.11)

over the sample period t G [l,...,r], it is simple to show that the maxima of this 

function attains estimates of I I  and 12, under the standard asymptotic normality 

assumptions.

£ w = - p ° g ( n
j=i

$ 2  \frt $ 2 + exp f - l h tT$ 2 ^ 4 ( $ 2  ) h t (8.3.11)

The proposed approach maybe reformulated by including the following decomposition, 

u* =  y* — yt\t-i,fit • For example a standard linear first order autoregressive model,

yt =  F y t- i  +  E f e

— IIa t_i +  1 2 2 ^

Sf — A tA J

A t = ivech (a.t)

(8.3.12)

(8.3.13)

(8.3.14)

(8.3.15)

This type of model appears to have a great deal of applications to the evaluation 

of multivariate risk analysis, in particular for the analysis of large portfolios of het­

erogenous assets. Interestingly the stationarity conditions for the first order model 

are extremely simple, i.e.

P ( £ t r S t < o o )  = 1  (8.3.15)
t=l
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and,

(8.3.15)
\ t = 1 /

are simply dependent on the eigenvalues of the square matrices II  and F lying within 

the unit circle.

The previous section demonstrated an approach to the specification and estimation 

of a simple discrete time model, where the degree of quadratic covariation of the dis­

turbance terms follows a simple discrete time multivariate matrix stochastic process. 

However, generally continuous time stochastic processes are more useful in the finan­

cial engineering context. Recalling the stochastic volatility model demonstrated in 

8.2.1, a multivariate continuous time analogue along the lines of the model illustrated 

in 8.3.12, should optimally simplify to 8.2.1 when k = 1. The following multivariate 

model is proposed,

is defined by a multidimensional stochastic differential equation. Setting, x (t) =  

[y (t) , z (t)]T and recalling,

8.4 A  C ontinuous T im e A pproach

y{t)  = [log S l ( t ) , log S 2 (t) ,..., log S'1 (t)]T 

z(t) =  [Z1( t) ,Z 2 ( t) , . . . ,Z 1(t)]T

(8.4.1)

(8.4.2)

Where y( t )  is a fc-dimensional vector of log stock prices S l (t), whose evolution

dx  (t ) = (i (x (t ) |Q)dt + a ( x  (t) |0) dw  (t ) (8.4.2)
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We define the terms as two matrix functions,

n(-x(t)\Q)dt =  <I>(x(i))

<r(x(O|0 ) = n (x (i))* (x (t))

(8.4.3)

(8.4.4)

For simplicity the following matrix operator is used,

X 1 (t) 0

Q (x (t )) =  idiag (x (£)) =
0 X 2 (t) 

0 0

0
0

X 2 (t)

(8.4.4)

Again for simplicity it is assumed that the processes underling x (t) and z (t) are not 

linked via the first term, // (x (t) \6 ).

AM n 1 T ir '
(8.4.5)*(x(t)) =

® ( * W )  =

o
0

y( t )
z (t)

ri ( d s  (t) 2 , x  (t ) )  o

0
1
2

(8.4.6)

Again the ivech operator is utilized to generate the instantaneous covariance matrix 

S ( t) ,

d £  (t) =  ivech (dz (t )) ivech (dz (t))T (8.4.6)

Again simplifying the covariance process,

n  (d E  (t)5 , X  (t)J =  dE (t)3 (8.4.6)

The general sde for the system is as follows,

d [ y M 1 0

i
<<

z (*) _

1

bo
i .  z w .

dt (8.4.7)

idiap (y (£)) 0 ( dE(t)  2 0 ' dwM (*) '
0 idiag (z (£)) I i

0 \I>2 dw" (t) _
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The Brownian motion is partitioned as follows,

w (t ) =  w M (t )T , (t)T

The system may now be rewritten as a pair of vector processes,

dy(t)  = $ My (t)d t +  f i(y ( t) )d S ( t)2 d w M(t) 

dz(t) = ^ z  (t) dt +  (z (£)) (t)

(8.4.6)

(8.4.7)

(8.4.8)

Using the Cholesky-Banachiewicz approach to factorizing non-negative definite her- 

mitian matrices, the k = 2 model is illustrated,

d ' Y 1 (t ) '
_ Y 2 (t) dt

+

01,l ^ 1 ( * ) + * ,2^2W
4>2,lYl (t)+4>2,2Y2 (t)

Y 1 (t) 0
0 Y 2 (t)

f ( ( Z l (t))2 +  (Z 2 (i))2)

(8.4.9)

((zHt))2HzHt))2) 2 i
(z1(t)2z3(«)2) 2 

----------------—r
( (Z H t) )2+ (Z 2 (t ) )2) 2

\

dW "-1 (t)
dW * 2 (t)

The structure of the volatility model is therefore,

z 1 (t) 1
d Z?(t) =

z 3(t)
dt (8.4.8)

0 1,1 “Z1 (̂ ) +  01,2^2 (0  +  01,3^3 (̂ )
02,1 Z1 (f) +  02,2-Z2 (t) +  02,3^3 (0  

_ 03,1 Z 1 (t) +  03,2^2 W + 03,3^3 W 
' Z 1 (t) 0 0

+  0 Z 2 (i) 0
_ 0  0 Z 3 (4)

Consider the general problem of pricing a call option in the presence of stochastic 

volatility, SV, the general approach is to form two separate hedges for each Brown­

ian motion underlying the price of the asset, see Rebonato (2002) [223], Musiela and

01,1 01,2 01,3 ' '  dW"-1
0 02,2 02,3 dW "̂’2

1COCO

oo

dVK"’2
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Rukowski (2004) [203]for overviews. However the appropriate specification of the 

volatility model has been the subject of some considerable discussion in the recent 

technical literature. Most approaches utilize a two dimensional Brownian motion 

approach. If the stock price dynamics exhibit some form of stochastic quadratic 

covariation then the the volatility process cannot in itself be explained by some arbi­

trary volatility process, but the dynamics must include the contribution of all of the 

other elements in the system. This is in essence the transmission of volatility from 

one component to another by a relative change in the level of correlation, correlation 

risk. The type of model suggested in 8.4.8, implicitly includes this type of risk and 

in effect once the diffusions underlying this extra risk are identified and they can be 

Delta hedged out in the appropriate manner.

8.5 A pplication , Portfolio  R ep lication  w ith  Stochas­
tic  C ovariation

Utilizing the bi-variate model a method of formulating a self replicating hedge is 

demonstrated, utilizing the stochastic covariation method. In this method a replicat­

ing hedge is constructed that includes the drift element of the price processes, the 

stochastic volatility and the off diagonal stochastic covariation. Let the price and 

covariance processes for three assets be as in 8.4.8, the value of a properly priced call 

option on the first asset will therefore be,

C (t) =  C (Y1 (t ) ,  Z 1 (t) ,  Z2 (t) , Z3 ( t) , t ) (8.5.0)
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Where C : Rd —► R, rewriting as a vector function yields,

X (t) =  [y 1 (t) , Z 1 (t) , Z 2 (t) , Z 3 (t)]T (8.5.1)

C(t) =  C(x( t ) )  (8.5.2)

Taking a Taylor expansion around a fixed price, Co,

C (t,x ( i))  =  C0 +  ^  +  V C ( x ( t ) ) T E ( x ( t ) )  (8.5.3)

+ |  ( s  (x « ))T V 2C (x (()) E (x (<))T)

In order to hedge out the Brownian motions in the volatility processes, a vector of 

volatility hedging instruments, v(t), is required,

v ( t ) =  [V1(t) ,V2(t) ,V3(t)]T (8.5.2)

setting, V % (t) = V 1 (Z l (t ) , dW* ( t ) , i), then the portfolio value of the stock, a bond, 

the call option and volatility instruments is as follows,

s (t) =  [Y 1 (t) , B ( t ) , C ( t ) , v  (i)T] T (8.5.2)

for a given set of weights, w, the portfolio value is therefore,

7r (i) =  o;Ts (t) (8.5.3)

7r (̂ ) =  max (o;Ts (t )) (8.5.4)u;

In essence the Brownian motion underlying the stock price and each of the Brownian

motions underlying the volatility processes need to be delta hedged out, if only one
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extra hedging instrument is included then the replication will not be complete and 

value may bleed in (or more likely out) of the hedge, see Rebonato (2003) [223]. 

A pplications to  Portfo lio  H edging

A major advancement of the proposed model is the ability to derive analytical so­

lutions to the weights that should be applied to the volatility instruments for each 

of the hedges and a schema for assessing how many volatility instruments should be 

included in hedging model, something which has not been addressed to any signifi­

cant extent in the option pricing literature, in fact Sahalia and Kimmel (2006) [2], 

briefly mention this problem and conclude that it should be a system identification 

issue. However using this approach the number of hedging instruments is immedi­

ately apparent and the only system identification issue is in the inclusion issue of how 

many assets should be included in the system, estimation of the system via 8.3.1, 

will automatically include a restriction test using a likelihood ratio type test. This 

methodology would appear to be a significant advancement over the current ad-hoc 

approaches currently suggested in the literature.

8.6 N um erical Sim ulations

Figures 8.1 to 8.1 demonstrate a single path from a stochastic covariance simulation 

for a tri-variate system, the system includes an exogenous driving variable, which is 

a single interest rate pathway generated by the Williams and Ioannidis (2006) [263]
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regime switching rate path method.

8.7 C hapter C oncluding Rem arks

This chapter has taken much of the ground work carried out in previous chapters 

and formulated an innovative approach to modelling multivariate stochastic volatility 

models. The major innovation is way in which the price processes and hedging maybe 

integrated into a unified replicating framework, which allows for the robust identifi­

cation of appropriate hedging instruments and their weighting. This is a very useful 

approach as it implicitly endogenizes volatility hedging in the manner of conventional 

’’out of model” vega hedging approaches. General extensions of this approach are the 

inclusion of non-linear functions in the asset price models to mimic the smile surfaces 

observed empirically in option prices, see Musiela and Rutkowski (2005) [203] for 

discussion.
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Figure 8.1: A Simulation of Three price processes, with Stochastic Covariance, the 
simulation demonstrates that the degree of quadratic covariation may even swap signs 
as the processes evolve.
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Figure 8.2: The diffusion of the three price process in three dimensional space.
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Concluding Remarks

This final section summarizes the core contribution to the literature of each of the 

preceding chapters and suggests some avenues for future work in this area.

8.7.1 N otes on Chapter 1

Chapter 1 reviewed the current multivariate time series literature and introduced sev­

eral new approaches to recursive modelling of dynamic systems. Abadir and Magnus

(2002) suggest a standardized notation framework for econometrics and this frame­

work provides the basis for the notation structure of this and subsequent chapters.

8.7.2 N otes on Chapter 2

Chapter 2 reviewed the current MV-GARCH literature and demonstrated some em­

pirical applications for these types of model. The chapter only briefly touched upon 

the asymptotic theory underlying these models and this is currently the main area of 

interest in this field. Future work needs to be directed at designing robust asymptotic 

tests of model fit to increase the robustness of diagnostics over and above the current 

information matrix, Wald, LM and LR test suite available,

334
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8.7.3 N otes on Chapter 3

Chapter 3 reviewed the copula literature and suggested several new approaches to 

monte-carlo simulation utilizing this extremely useful toolkit for designing multivari­

ate distributional models. The empirical copula suggested in the latter part of the 

chapter offers a very powerful and flexible tool for ’’Black Box” analysis of multivariate 

data.

8.7.4 N otes on Chapter 4

Chapter 4 is a case study of dynamic dependency in the UK biotechnology sector 

and lays some of the stylistic evidence of non-static correlation in asset returns. The 

biotechnology sector is a useful sector to study as the news and information updating 

process is fairly transparent and allows for the design of very simple event study 

experiments to test some of the stylized assumptions used in later chapters.

8.7.5 N otes on Chapter 5

Chapter 5 provides a new type of regime switching model of dynamic covariance and 

demonstrates that this model is one of a class of regime models. The model’s major 

attributes are its ability to comfortably deal with very high-variate systems. This 

type of model is extremely useful in risk management applications and provides a 

solid method of analyzing potential multivariate volatility risk. The chapter does not 

fully develop the asymptotic theory underlying this type of model and this is an area
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for future research.

8.7.6 N otes on Chapter 6

Chapter 6 covers the inclusion of multivariate higher moments in the asset allocation 

problem. The key goal of the chapter was to demonstrate an innovative toolbox of 

methods which may be used when standard distributional assumptions do not fully 

encapsulate the properties of asset returns.

8.7.7 N otes on Chapter 7

The final chapter addressed continuous time hedging in presence of multivariate 

stochastic volatility and adds to the growing literature on stochastic quadratic co­

variation models. The chapter’s main goals are the specification and estimation of 

a new asset price model which includes stochastic covariation implicitly within it’s 

structure and the impact that this has on portfolio replication strategies. The main 

are of development in this area is the inclusion of more sophisticated pricing struc­

tures and direct development of models of CDO and other credit based contingent 

claims, for which this model appears ideally suited.
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