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Abstract

The finite element and boundary element modelling of a medical ultrasound 

transducer and its resultant acoustic near-field are considered. The device is 

considered to be axi-symmetric and to radiate into an unbounded region of water.

A 1 MHz physiotherapy transducer with a ka value of 54 was designed and built in 

order to evaluate the model. The results of a series of experimental measurements are 

described and the device is shown to be a typical physiotherapy transducer. The near

field pressure region is seen to be highly variable close to the source and substantially 

different from that of an idealised plane piston.

The modelling of the structure and the surrounding fluid region are considered 

separately before a combined model is used to simulate the complete system. The 

device model requires the specification of a large number of parameters, in particular 

material properties, many of which are poorly defined despite a detailed knowledge 

of the transducer design. Three fluid modelling options are compared: two boundary 

element formulations (CHIEF and DAA2c), and the use of acoustic finite elements 

with ‘infinite’ wave envelope elements. An analysis of these options shows DAA2c 

to be practical and effective for realistic high ka systems. It is therefore used 

extensively here. The use of wave envelope elements is shown to be effective and 

reliable, but impractical for any substantial analysis of large systems. CHIEF is 

shown to become less accurate with increasing ka.

Despite the frequency dependence of the system and extreme pressure variations in 

the near-field, very good model-experimental agreement is observed for axial and 

cross-axial results, and for IEC standard parameters. The modelled structural 

vibrational behaviour is seen to be highly non-uniform. A sensitivity analysis of the 

system shows it to be very sensitive to the properties of the piezoelectric disc and the 

front matching layer.
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List of Key Symbols and abbreviations

The following is a list of the key symbols and abbreviations used in this thesis.

a source radius

radial distance from the virtual source of a wave envelope element to
ai

the finite element -  wave envelope element interface 

A d™ beam cross-sectional area
n C j

Aer effective radiating area

[B] strain-displacement matrix

BE Boundary Element

BEM Boundary Element Method

c acoustic wave-speed

[C] stress-strain matrix

CHIEF Combined Helmholtz Integral Equation Formulation

d displacement

[D] structural damping matrix

DAA Doubly Asymptotic Approximation

DAA2c second-order (curved) Doubly Asymptotic Approximation

d.o.f. degrees of freedom

E  Young’s modulus

/ {coi) (frequency dependent) load vector

FE Finite Element

FEM Finite Element Method

g  Green’s function

h unknown variable

k wave number, k  = 2 /r/A

structural stiffness matrix 

L Lagrange polynomial

[M] structural mass matrix



m.s.d. mean square difference

n normal direction

N  vector of shape functions

p  pressure

p ' trial function

q unknown coefficients

Q position vector

r, r distance between points

r radial distance from the virtual source of a wave envelope element

R residual

Rbn beam non-uniformity ratio

r.m.s. root mean square

S  surface

t time

U0 source velocity amplitude

vn normal surface velocity

V volume

Wt weighting functions

WEE wave envelope element

Z acoustic impedance

£ ,  f  local co-ordinate components of displacement

$  angle

X wavelength

P hysteretic damping factor

P volume density

cr Poisson’s ratio

<j) electric potential

co angular frequency



1 Introduction

1.1 Ultrasound

t l iThe use of ultrasound in medicine has its origins in the early part of the 20 century 

when the interaction of ultrasonic waves with living organisms was first observed 

during work on the detection of underwater structures by ultrasound (Meire & 

Farrant, 1995). Work in the field of medical ultrasound has progressed significantly 

in the subsequent 80 years to the stage where its use is now routine in hospitals and 

medical facilities for a wide range of diagnostic and therapeutic applications. This 

introductory chapter briefly reviews these applications and then describes the 

ultrasonic transducers used and the fields that they generate. The possible approaches 

to modelling such systems are then described enabling the contents of this thesis to be 

placed in context. Finally, the aims of this project are introduced.

1.1.1 Diagnostic applications

The diagnostic use of ultrasound is essentially founded on the same principles that 

were developed earlier for underwater acoustic sonar echo-ranging. A transducer 

directs a pulsed wave into the area under investigation and the same or additional 

devices measure reflected waveforms. Information can be derived from these 

reflections based on the characteristics of the radiated waves and propagating 

medium. Progress in electronics, transducers and processing techniques have led to 

significant advances in medical ultrasound devices and their applications. The 1950s 

saw the introduction of the first pulse-echo ultrasonic imagining equipment for 

medical applications in the form of A-mode and B-mode scanners. A-mode scanners 

record the amplitude of detected echoes as a function of delay time, whilst for B- 

mode scanners echoes are displayed as dots with a brightness proportional to the echo 

amplitude. Subsequent B-mode ‘compound’ scanning of the patient from a number of 

directions enabled the generation of two-dimensional images. From such ‘static’ 

systems, real-time scanners evolved utilising either arrays of transducers to generate a
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large number of scan lines or mechanical systems with the transducer(s) mounted in 

such a way that they could be swept over the area of interest automatically. The 

introduction of improved transducers and further developments in electronics have 

significantly improved the image quality and the rate at which frames can be 

displayed. Such imaging techniques are now widely used, most notably in the area of 

obstetric examination.

The development of the use of the Doppler principle to detect blood flow occurred at 

around the same time as the development of ultrasonic imaging systems. The Doppler 

effect is the apparent change in the observed frequency of sound produced by the 

relative motion between a source of sound and a receiver. This ‘Doppler shift’ - the 

difference between the transmitted and observed frequencies - can be exploited to 

measure flow. Early scanners simply used transducers to transmit continuous waves 

into blood vessels with Doppler shifted echoes measured by a separate device. Such 

devices do not provide range information but pulsed devices were subsequently 

developed enabling flow measurements to be made at a known depth. A variation on 

this type of device is a colour-flow imaging system where the standard ‘grey-scale’ 

images are replaced by colour images with different Doppler signals represented by 

different colours. Pulsed devices were later linked to real-time imaging systems, 

forming a ‘duplex’ system, with the blood flow data superimposed (in colour) on to 

grey-scale images of vessels. Again such systems are now commonly used for 

various imaging applications such as monitoring of the heart and analysis of blood 

vessels and tissue (Meire & Farrant, 1995; Hill, 1986; Ensminger, 1988; Hedrick et. 

al., 1995).

1.1.2 Therapeutic applications

From the earliest stages of the use of ultrasound for medical purposes the potential 

effect of ultrasonic waves on living tissue and its uses were considered. Rather than 

the echo-detecting techniques employed in imaging, therapeutic applications are 

based on the mechanical and thermal effects of a wave on the medium through which

2



it travels. Such effects are a direct result of the displacements of the medium resulting 

from the waveform propagation. Early attempts at using ultrasound as a tool for 

destroying diseased tissue were ineffective as they caused the destruction of a 

significant amount of normal tissue, but again much progress has been made in terms 

of the understanding and use of ultrasound, and the technology surrounding it. Today 

a number of therapeutic treatments are employed, such as physiotherapy, lithotripsy 

and ultrasound surgery (Meire and Farrant, 1995; Hill, 1986; Ensminger, 1988; 

Hedrick et. al., 1995; Duck et. al., 1998).

The processes by which physiotherapy ultrasonic treatment works are not well 

understood. However it is thought that temperature rises generated in the tissue are 

the most likely beneficial mechanism. Ultrasonic physiotherapy is now used for a 

variety of treatments such as soft tissue injuries, back and shoulder pain and the 

treatment of scar tissue. Lithotripsy involves the mechanical break-up of kidney and 

gallstones through the use of high amplitude shock waves, whilst techniques such as 

focused-ultrasound surgery exploit the thermal effects resulting from ultrasonic 

attenuation to ablate tissue.

One significant feature of some medical ultrasound applications is that the 

propagation of the wave through the media is non-linear (Duck et. al., 1998). In fact 

the equations defining propagation are inherently non-linear but in many cases the 

simplified linear wave equation is used. This linearised approximation has been used 

effectively in many cases for low-amplitude propagating waveforms and will be 

employed here. For the case of finite amplitude waves, however, the simplified linear 

wave equation is not sufficient. Nonlinear propagation results in the generation of 

harmonics of the fundamental wave and may therefore lead to the generation of 

extremely high frequency components. A comprehensive consideration of non-linear 

acoustics can be found in texts such as Hamilton and Blackstock (1998).
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1.2 Ultrasonic transducers

Although there are many different applications for which ultrasonic devices can be 

used the basic principle of any medical ultrasound transducer is the same. The device 

is required to have a vibrating surface that can be coupled to the area of the patient 

being examined/treated. Figure 1.1 shows a front-to-back section of a typical circular 

transducer with an active element, matching and backing layers, and inner and outer 

casings. For a piezoelectric transducer the active element in Figure 1.1 is a 

piezoelectric disc. The action of such a disc is based on the piezoelectric effect 

whereby there is a coupling between the mechanical and electrical properties of the 

material. When the element is deformed a charge is generated on its surfaces. This 

direct piezoelectric effect can be used to create a receiver. Conversely, when a field is 

applied across the disc it deforms. This indirect piezoelectric effect can be exploited 

to make a radiating device, as considered here.

Piezoelectric ceramics are given a principal piezoelectric axis by a poling treatment 

that involves applying electrodes to the surfaces of the component and applying a 

high voltage between them. Consequently applying a voltage to these electrodes 

results in a deformation in the same direction. In Figure 1.1 the piezoelectric disc 

would have electrodes on its planar surfaces. For a transducer operating at a given

frequency a disc thickness of ^  wiU theoretically induce optimum performance,

where X is the wavelength in the disc, with the disc deforming primarily in the 

thickness dimension (Hedrick et. al., 1995; Preston, 1991). This is based on the 

assumption that the vibrational behaviour of the disc is uniform, with a constant 

phase and amplitude of displacement across its face. For a real piezoelectric disc, 

however, this is not the case and in fact real elements have been shown to exhibit 

extremely non-uniform behaviour (Ikegami et. al., 1974; Guo et. al., 1992). Figure

1 . 2  shows an example of the potential vibrational behaviour of a piezoelectric disc 

deforming fundamentally in the thickness dimension. This is based on the work of 

Guo et. al. (1992), and shows the deformation of a radial section of a modelled PZT4 

disc operating at its main resonant frequency. Such irregular response is clearly very

4



Inner casing 
—

Piezoelectric
disc

Matching
layer

Outer casing Backing layer

Figure 1.1 Cross-section of a general circular transducer design.

rrrr

Figure 1.2 Vibrational behaviour of a PZT4 piezoelectric disc modelled using the finite element 

method and based on Guo & Cawley (1992). The disc deformation is exaggerated to emphasise the 

irregularity of the vibrational behaviour. The thickness of the disc is approximately 2mm whilst the 

magnitude of the deformation in the thickness dimension is of the order of 10e-6mm.
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different from the uniform phase and amplitude model and is a major reason why 

modelling techniques other than idealised approaches are needed.

The matching layer in Figure 1.1 is designed to provide optimum impedance 

matching between the piezoelectric element and the media into which the device 

operates so that energy is transferred as efficiently as possible. Theoretically this 

requires that the impedance of the matching layer is given by the following optimal, 

plane wave, normal incidence impedance relationship (Zagzebski, 1996)

zmI=4zpz w . (1.1)

Here Z is impedance and sub-scripts ml, p  and w refer to the matching layer, 

piezoelectric element and water into which the device is operating, respectively. The

optimum thickness is again based on the idealised case (Hedrick et. al., 1995;

Preston, 1991). Alternatively some devices use composite piezoelectric elements 

which inherently incorporate a matching layer, whilst others employ a number of 

matching layers for better impedance matching. If the transducer is to be used to 

produce short pulses a backing layer is included and designed to have similar 

impedance to the piezoelectric element so that energy will be transferred into it 

easily. It is also designed to be highly attenuating so that no reflections occur from 

the back of the layer. In continuous wave operation these features are unnecessary so 

the disc is air-backed.

The components mentioned so far are essential to the generation of ultrasound, 

however there are also practical considerations that influence the design. Specifically 

these relate to how the active element is mounted and how the device is housed. A 

real device is therefore likely to have a number of features not included in Figure 1.1 

such as glue layers, wiring and connectors. Furthermore as ultrasonic transducers are 

used for a variety of medical applications, design criteria and operating requirements 

will vary considerably. Criteria which can vary between devices and applications
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include the size and number of active elements; the mode of vibration in which the 

active element is designed to deform; operating frequencies and drive levels; 

operation in continuous wave or pulsed mode; pulse duration; and the use of 

focusing. Essentially, though, the principles of operation are the same as those 

described here.

1.3 The generated field

When a piezoelectric transducer is driven electrically by an alternating voltage 

applied across the electrodes, the piezoelectric coupling effect results in a mechanical 

vibration. The motion of the surface of the device in contact with the propagating 

medium causes an acoustic field to be radiated, with ultrasound waves propagating 

through the media as areas of alternately increasing and decreasing pressure. The 

equation describing sound propagation in a medium is obtained by combining the 

equations of continuity, motion and state. The equation of continuity expresses the 

principle of the conservation of mass, the equation of motion describes the 

conservation of momentum, and the equation of state relates the response of a 

medium to thermal and mechanical stress. By combining these equations a 

relationship is established between the pressure, density and local particle velocity in 

the medium during the passage of an acoustic disturbance. If the disturbance 

produces only small changes in the pressure, density and particle velocity, relative to 

their equilibrium values, then the equations of propagation can be simplified by 

considering only first order approximations (Kinsler et. al., 1982; Van Randeraat & 

Setterington, 1974; Verma, 1995). This linearised wave equation for pressure,/?, can 

be expressed as

= 0 .2)

where c is the infinitesimal wave velocity. For the steady-state case, where the system 

is assumed to operate with simple harmonic motion, the pressure is a harmonic
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function of time p.exp(-ia>t) . Suppressing the time factor results in the steady-state 

Helmholtz wave equation (Schenck, 1968; Francis, 1993):

V 2p  + k 2p  = 0 (1.3)

where k  is the acoustic wave number, I n j X . When the effect of fluid loading is 

significant, the solution of this equation for a radiating structure is a substantial

problem. A common approach is to express the pressure field as the integrated effect 

of point sources over the structure. The linear acoustic beam due to any radiating 

structure is frequently described as composing of two regions, the near-field and the 

far-field. The near-field is characterised by rapid variations in pressure and is 

generally limited to a region close to the source. The far-field is much less complex 

with the beam typically spreading with a gradual drop-off in pressure amplitude 

(Kinsler et. al., 1982; Zemanek, 1970). The solution to Equation 1.3, for the case 

where the radiating structure is a plane circular piston with the source vibrating with

uniform amplitude U 0e iat, can be obtained by considering the geometry shown in

Figure 1.3. It can be shown (Kinsler et. al., 1982) that the pressure is given by an 

integral over the surfaces of the transducer:

The pressure p , at any point in the field (r, $) is expressed in terms of the velocity

amplitude of the source, U0, and an integral of contributions over the source. An

exact solution to Equation 1.4 is not generally available, although there is one for the 

pressure on-axis:



where a is the radius of the piston. For the case of the circular plane piston a 

numerical solution to Equation 1.4 can be achieved using a double numerical 

integration. In this way the normalised near-field for an idealised circular source of 

radius 12.55mm and operating at a frequency of 1.030MHz (equivalent to a ka of 

approximately 54) was calculated, and is shown in Figure 1.4. This shows how the

1.4 highlights the complexity of the near-field region, particularly close to the source 

where extreme pressure fluctuations are clearly visible. It should be emphasised that 

the numerical integration used here was only possible due to the simplicity of the 

radiating source. For example, if  the source vibrates with non-uniform speed this 

must be included inside the integral. For more arbitrarily shaped structures expressing 

the solution as an integral over the surface of the source is likely to be much more 

complex than for the case of the circular source in Equation 1.4.

1.4 Modelling

It should be clear that in the interests of treatment safety, efficiency and efficacy, 

there is a very definite need for the modelling of real medical ultrasound devices and 

their fields. With the increasing use of ultrasound in medicine and its expanding 

applications the need for adequate models is growing. The passage of ultrasound 

through the human body inherently involves mechanical and thermal effects. 

Although there is little direct evidence of present techniques causing unwanted 

biological effects it is recognised that many applications have the potential to do so 

(Hekkenberg et al., 1994; Hekkenberg, 1998). In terms of treatment efficiency and 

efficacy it is important that the application of ultrasound is carried out effectively and 

that patients are receiving the diagnoses or treatment that they require, and indeed 

that they are believed to be receiving. Modelling real devices enables detailed

normalised pressure amplitude varies as a function of normalised axial

range \z/\a /X)j and normalised radial distance (x/a). The choice of operating 

conditions here is the same as those of a real device introduced in Chapter 3. Figure

9



X

Figure 1.3 Geometry for the radiation from a plane circular piston relating to Equations 1.4 and 1.5.

0
-0 .5  

-1
^  xRadial distance X  =  — 

a

0.5

Axial distance Z  =
a

Figure 1.4 Near-field of an idealised plane piston source with ka of approximately 54. The pressure 

amplitude is normalised so that the maximum value is one.
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consideration of how effectively they operate and also allows an investigation of 

realistic generated fields. Furthermore, a modelling technique that is capable of 

accurately predicting real field response is an ideal tool for use in studies aiming to 

establish and define internationally agreed standards on safety and performance. In 

addition to the implications for patient treatment, the simulation of realistic device 

behaviour should enable the investigation of device design to establish the 

significance of components and their effect on the generated field. This should lead to 

more effective and efficient devices as well as opening the way to novel designs and 

applications. Only a technique that is capable of modelling realistic behaviour can 

provide all of these potential benefits.

1.4.1 Modelling considerations

The simulation of a realistic medical ultrasound transducer and the field that it 

generates in a surrounding fluid media is a complex problem. The dynamical 

behaviour of the device, the fluid-structural interaction, and the effect on the 

surrounding fluid region must all be accounted for. Realistic medical devices 

generally operate at high frequencies and will have relatively large source-to- 

wavelength ratios, or ka values. If the near-field of the device is of specific interest 

then the simulation must be capable of accounting for the rapid pressure variations 

that occur close to the source. For a device with large ka this will mean accounting 

for variations on a very small scale. The complexity of the near-field for an idealised 

plane piston device was shown in Figure 1.4, and the difficulty of finding a direct 

solution to the Helmholtz equation even for simple sources has already been 

mentioned. Describing the field due to a realistic device with highly non-uniform 

source deformation is a much more difficult problem. The following are specific 

issues that are important when considering modelling such systems.

Firstly, a model of an ultrasound transducer will have a large number of independent 

parameters. The circular backed device in Figure 1.1 has over twenty-five material 

properties (densities, moduli, Poisson’s ratios and damping factors) in addition to
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dimensional and geometric parameters. Even if  the components in the device and 

their dimensions are known, which in practice is not always the case, details of some 

material properties may be limited. Some properties may be difficult to measure and 

quoted tolerances are often large. In some cases no information will be available on 

specific properties of specific materials. Furthermore, property values can be 

dependent on the dimensional/geometrical nature of the sample being measured. 

Inaccurate values may therefore be applied as a result of differences between 

measured samples and components used in the device.

Of all the components in an ultrasound transducer the piezoelectric element is likely 

to have the most significant effect on the overall behaviour of the device and 

subsequent field. Furthermore any highly non-uniform behaviour of realistic 

piezoelectric components is likely to lead to complex interactions amongst other 

components. The active element is also likely to be the most difficult feature of the 

system to model accurately as it is an anisotropic material. The piezoelectric disc in 

Figure 1.2 has 12 distinct elastic and piezoelectric material properties, many of which 

are difficult to measure and quoted within tolerances of the order of ± 2 0 % 

(Vemitron, 1976). In light of the non-uniform vibration of such elements and the 

difficulty of accurately measuring piezoelectric properties, the sensitivity of the final 

device to the properties of the piezoelectric component is of particular interest. This is 

likely to be more significant for air-backed devices where the vibration is not damped 

by a backing layer.

Secondly, when modelling a real system some consideration must be given to the 

generation of experimental results against which models can be compared and 

evaluated. For simplified systems the model may be compared with analytical 

solutions, but when field results are significantly different to an idealised case there is 

a need for experimental measurements on the real device. Consideration must then be 

given to what can be measured in practice, what the significant features of the system 

are for model comparisons, and under what range of operating conditions these will 

be obtained. Furthermore the comparison must be made with knowledge of how
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accurate and repeatable they are. Another concern for experimental measurements 

relates to how much direct, as opposed to indirect, evidence they provide. Consider 

electrical response measurements. Both model and real electrical measurements can 

be used to provide data on the position of resonances. For a piezoelectric disc, 

electrical data will indicate the resonance frequency and a consideration of the 

dimensions and properties of the disc may enable the type of modal behaviour to be 

determined at a given resonance. It does not, however, give the actual vibrational 

behaviour of the disc at that frequency.

So far modelling difficulties have been discussed in terms of the complexity of real 

device behaviour and field response, and the practical issues of accurately specifying 

parameter values or results for model-experimental comparison. One thing that has 

not been considered is the difficulty of establishing effective modelling techniques to 

accurately simulate specific features of the system. Within this category is the 

necessity to simulate an unbounded fluid region. In reality medical ultrasound devices 

will operate into bounded domains, whether it be a patient or a tank of water. 

However a common feature of some experimental measurements is the simulation of 

radiation into an unbounded fluid region, to avoid the effects of reflections. 

Experimentally this can be achieved by time-gating, the use of absorbent materials, or 

by making measurements in large but finite regions. To generate comparative 

modelling conditions there is a requirement to model an unbounded fluid region -  not 

a physical reality but a mathematical simulation. Ironically, modelling such a region 

is itself likely to introduce a number of difficulties that would not arise for simulation 

in a bounded region.

To summarise, the simulation of a real medical ultrasound transducer operating into 

an unbounded fluid region, and the generation of near-field pressure data is a 

substantial problem. Any model needs to accommodate realistic piezoelectric 

behaviour, complex structural interaction, fluid-structural interaction and the 

simulation of an unbounded surrounding fluid media. The model may well have a 

large number of ill-defined parameters. Simulations will need to account for highly
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irregular source behaviour and substantial field variations occurring on a small scale. 

The modelled systems source and field behaviour is likely to be sensitive to device 

parameters. For practical reasons only a limited amount of experimental 

measurements can be generated for model evaluation so the features that most 

comprehensively describe the field must be established in advance. Some account 

must be taken of the accuracy and repeatability of these experimental measurements. 

It must also be recognised that different types of source behaviour may produce 

similar indirect results, such as electrical response data. In practical terms the model 

must run relatively quickly, both to determine the electrical response of the system 

and so that a large number of models can be run for an analysis of model parameters.

1.4.2 Modelling options

Currently, device design often uses prototyping based on 1-D simulations such as 

equivalent electric circuit models. Such models use equivalent mechanical/electrical 

relationships to simulate the interaction between device components and the exterior 

media. They are restricted to 1-D behaviour only. As such they cannot account for 

the response of real piezoelectric elements or the complex behaviour due to the finite 

extent of components in the transverse direction. Such models can predict only axial 

field results and cannot therefore generate a comprehensive picture of the real near

field. They are, however, simple, cheap and quick to use. They can accommodate 

both the electrical and mechanical behaviour of the device in one model and 

accurately predict the position in the frequency domain of the main resonance of a 

device. In the case where the device operates in a manner close to the ‘ideal’ case 

they can generate reasonably accurate output. Such techniques have previously been 

successfully applied to the simulation of medical ultrasound devices, for example in 

Capineri et. al. (1993), and Wu & Chen (1999). Furthermore, some work has been 

approached on the issue of improving realistic device designs, eg. Lamberti et. al. 

(1997) and Turo et. al. (1999). From such work it can be seen that simplified 1-D 

models can be used effectively to direct some design features of some devices, 

however they have serious limitations.
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A second modelling technique that has been used successfully in some problems of 

radiating structures is the finite difference method (FDM). The FDM can be a very 

effective and efficient technique for the propagation of acoustic fields, particularly 

when the system is time-dependent. FDM only requires a limited amount of earlier

time information to propagate a waveform, as compared to say, the finite element 

method (FEM) where the entire solution domain is solved at each time step. 

Unfortunately at this time there does not appear to be any effective FDM option for 

modelling complex structural behaviour such as that of realistic piezoelectric 

components. As a technique in itself the FDM is not appropriate for the type of 

system considered here, however the combined use of an alternative technique for 

modelling the structure and the FDM for modelling the propagating field is an option.

1.4.3 The finite element method

A modelling approach that has been adopted for some acoustic simulations and which 

can accommodate a number of features that 1-D modelling cannot, is the finite 

element method. Using FEM a continuous system is approximated by a segmented 

one containing a finite number of points. Appropriate loads and conditions are then 

applied to the segmented system and the response calculated. The response at the 

discretised points is then taken as the approximate response of the real system. FEM 

has its origins in the area of structural analysis by engineers. Semi-discrete systems 

such as frameworks were ideally suited to a segmented approximation by a finite 

number of points. From this came the approximation of more obviously continuous 

systems such as plates and 3-D structures. The use of FEM has grown and expanded 

considerably over the last forty years. The solution of large systems of simultaneous 

equations, which is essentially what FEM involves, is ideally suited to solution by 

computer and so the method has been aided by rapid improvements in computing 

capabilities. The technique is now applied to a wide range of systems and complex 

engineering problems (Cook, 1995; Desai, 1979).
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FEM, along with the boundary element method (BEM), can accommodate all the 

features of the system under consideration here and outlined in section 1.4.2. Firstly 

FEM is well established for modelling complex structural behaviour. Secondly, the 

effective simulation of real piezoelectric components can be incorporated into a FEM 

package relatively easily. This is illustrated by the disc model response shown in 

Figure 1.2 which was generated by FEM. Thirdly, some packages have the capability 

of simulating acoustic regions and fluid-structural interactions. And fourthly, there 

are a number of options available in FEM and BEM for the simulation of unbounded 

fluid regions. In addition there are practical considerations such as the fact that many 

FEM packages can run on standard PCs and are relatively affordable. Furthermore, 

improving computing capabilities are likely to allow larger and more complex 

simulations to be approached. For these reasons FEM has been chosen as the 

modelling technique to be employed here.

Finally, some mention must be made to the specific FEM package used here. PAFEC, 

manufactured by SER Ltd., incorporates piezoelectric elements, acoustic elements, 

fluid-structural interaction, and several “infinite” fluid region options. In addition, the 

developers of PAFEC were willing to work in conjunction with both the Department 

of Physics at Bath and the Centre for Mechanical and Acoustical Metrology at the 

National Physical Laboratory (NPL) to improve and adapt software where required. 

PAFEC has been used for the simulation of radiating systems before, for example 

Macey (1996), Macey (1996) and Morgan et al (1999). However, to the author’s 

knowledge, it had not been applied to realistic medical ultrasound devices and fields.

1.4.4 Restrictions of the modelling presented here

The work considered here is concerned with the steady-state harmonic response of a 

system excited at a single frequency. The system(s) to be considered will assume 

circular symmetry and all applied forces will be axi-symmetric. The structure is 

assumed to behave in a linear elastic manner. All materials, with the exception of the 

piezoelectric element, are assumed to be isotropic. Furthermore, all material
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properties are assumed to be constant with frequency. The fluid is assumed to be 

homogeneous, isotropic and perfectly elastic. No dissipative effects are accounted 

for. Only acoustic waves of relatively small amplitude are considered so that linear 

propagation is assumed. All of these assumptions simplify the modelling 

requirements and are of practical significance in terms of making simulations and 

analyses feasible. The modelling techniques and conclusions drawn here are still, 

however, applicable to a large range of realistic ultrasound systems. Furthermore, the 

fact that the system under consideration here is assumed to be axi-symmetric does not 

mean that the techniques used cannot be applied to non-symmetric systems.

1.5 Aims

The main aim of this work is to assess the effectiveness of FEM for modelling the 

behaviour of realistic ultrasound devices of a type used in medical applications, and 

the subsequently generated near-field acoustic region. The issues raised in section

1.4.3 suggest that FEM has the capability for the successful simulation of such a 

system, however to date relatively little work has been carried out in this area. At 

least part of the reason for this are the modelling considerations outlined in section 

1.4.2. The simulation of such a system requires consideration of a number of complex 

modelling problems and modelling techniques to be applied simultaneously. 

Furthermore a number of practical issues, in particular long run times, are likely to 

complicate any analysis. The work presented here will investigate the main issues 

related to modelling such a system. Consideration will be given to which modelling 

techniques are appropriate, the difficulties of modelling such a system and what 

approaches can be adopted for a successful, practicable simulation. The features of 

such a system that are likely to require detailed analysis, and those that are likely to 

be of little significance to model output will also be considered. The intention here is 

to establish appropriate techniques to generate an effective model and to outline how 

such a task should be approached.
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1.6 Thesis layout

This chapter has introduced the basics of ultrasound transducers used in medicine and 

the nature of the field due to such devices. Consideration has been given to the need 

for modelling ultrasonic transducers and the difficulties in doing so. A number of 

modelling options have been described and reasons for choosing FEM given. The 

basics of FEM have been outlined and the aims o f this work described.

Chapter 2 will consider FEM in more detail and seek to establish that the technique 

does indeed have the capability of modelling real, high frequency devices and fields. 

An overview of each of the steps in the technique will be given. In conjunction with 

detailed FEM examples in Appendix 1, simple acoustic examples will be used to 

show how analyses progress. Some consideration will be given to how FEM 

accommodates dynamic structural behaviour, realistic piezoelectric components, 

fluid-structural interaction, finite acoustic regions, and the simulation of unbounded 

fluid regions. Examples of FEM and BEM simulations of systems similar to those 

considered here will be discussed.

Having established that the necessary modelling techniques are available, 

consideration will move on to the specific modelling approach adopted here. Chapter 

3 will consider a number of problems that were encountered when an initial attempt 

was made to model such a system. To overcome some of these issues a physiotherapy 

transducer was designed and built. Details of this: and the corresponding device model 

are presented here. The experimental measurements made on the device are also 

reported. These includes those made in accordance with IEC standards on 

physiotherapy devices and additional measurements aimed at generating a more 

comprehensive picture of the near-field of the device for comparison with models. 

The difference between the measured data and idealised 1-D predictions is 

emphasised.
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It will be discussed in Chapter 3 that before model-experimental comparisons could 

be made, some detailed consideration had to be given to the effective modelling of an 

unbounded fluid region. This is considered in Chapter 4. Here model results for 

idealised sources are compared against analytical results. Firstly an analysis of the 

use of “infinite” wave envelope elements (WEEs) is presented. The large number of 

parameters involved in a WEE analysis and the lack of references in the literature to 

similar work on large ka sources make a detailed explanation of these elements 

necessary. The intention is to establish the significance of the parameters in such a 

model with a view to establishing how they can be used most effectively. It will be 

seen that simulation run times and memory requirements are high for WEE models. 

Alternative “infinite” fluid region modelling options are therefore sought and two 

BEM options, CHIEF and DAA2c considered. Some description of these methods is 

given here. Comparison is then made for all three fluid-modelling options against 

analytical results for three idealised sources operating at three frequencies. 

Conclusions are drawn with respect to the modelling of unbounded regions, options 

and practical considerations.

Chapter 5 follows by combining the structural model with the fluid model to generate 

a combined model of the physiotherapy transducer operating into an unbounded fluid 

region. Firstly a model-to-model comparison is made for the device operating into 

each of the fluid options. Similar conclusions are drawn to those in Chapter 4. Model- 

experimental comparison follows for the near-field measurements given in Chapter 3. 

In general good agreement is observed however where comparability is poor the 

potential reasons for this are discussed.

Chapter 6  seeks to extend the model-experimental comparisons made in Chapter 5 by 

analysing the parameters in the model -  and therefore the real device. There are two 

reasons for this. Firstly to improve upon model-experimental comparison by 

investigating two potential sources of discrepancies -  differences between the 

components in the model and in the real device, and differences in the modelled and 

realistic parameters. Secondly is the desire to investigate the significant parameters in
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the model and their impact on the generated field. It will be seen that a 

comprehensive analysis of model parameters is beyond the scope of this work. This is 

mainly due to the practical limitations of running a substantial number of models with 

varying parameters but is also due to some extent to the difficulty of making 

conclusive model-experimental comparisons for some measurements. However some 

consideration of how sensitive the behaviour of the device and field are to the model 

parameters is made. The potential for improved model-experimental comparability is 

also discussed.

Finally Chapter 7 summarises the conclusions that may be drawn from this work. 

There is a comprehensive discussion of the modelling approaches that have been 

adopted, the techniques that have been investigated, the measurements used for 

model evaluation and the results of the analyses that have been performed. This is 

followed by a brief summary of the specific conclusions that can be drawn here. In 

addition a number of areas are considered where the work outlined here might be 

extended and other areas that might benefit from the application of the techniques 

employed here.

1.7 Summary

This chapter is intended as an introduction to the subjects of medical ultrasound 

devices and their fields. The features of such systems and the difficulties of modelling 

them effectively have been discussed. Having proposed FEM as having the potential 

for modelling a real device and field, Chapter 2 will consider FEM in more detail. 

The governing equations and formulations that can describe a realistic medical 

ultrasound piezoelectric device radiating into an unbounded fluid region will be 

considered. Reference will also be made to previous works where the simulation of 

related systems has been considered before. The modelling approach adopted here for 

simulating a real system be outlined in Chapter 3 and models of the device and 

surrounding fluid region will follow.

20



Chapter 2 

2.1 Introduction

The work presented in this thesis looks at the use of FEM and BEM for modelling 

medical ultrasound transducers and their fields. The first chapter considered the 

design of transducers and the nature of the near-field due to such devices, as well as 

the issues relating to modelling such a system. In particular it was considered why 

FEM is appropriate here. This chapter will attempt to give a comprehensive but 

concise overview of FEM and BEM and the issues and techniques involved in 

formulating and solving a finite element (FE) analysis. Some discussion of how these 

techniques have been applied elsewhere to the types of system considered here will 

also be presented. Subsequent chapters will consider the use of FEM and BEM in the 

simulation of a real medical ultrasonic device and the simulation of unbounded 

acoustic regions. In conjunction with the examples given in this chapter the same 

examples are progressed in Appendix 1 but include substantially more detail at each 

stage of the solution process.

2.2 The finite element method

When a direct solution to a problem is not feasible, some approximate numerical 

technique is employed. Here the problem is the response of a fluid-structure system to 

some forcing conditions, and the approximate technique to be considered is FEM. 

FEM approaches a solution by breaking the system down into a number of smaller 

segments (elements), each of which is represented by a finite number of points 

(nodes). The original system containing an infinite number of points is therefore 

approximated by a segmented system containing a finite number of points. Any 

individual parameter that may vary at a given node is known as a degree of freedom 

(d.o.f.). A node where a structure can displace in only the x  and y  directions, say, 

would therefore have 2 d.o.f.s at each node. Appropriate causes and conditions are
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then applied to this segmented system. The response calculated at nodal points is 

taken as the approximate response of the real system.

What follows is a fairly rigorous outline of the processes involved in a FE analysis. 

There are numerous texts available on this subject (Zienkiewicz & Taylor, 1989; 

Desai, 1979; Cook, 1995). Ihlenburg (1998) further gives a very good overview of 

many features of FEM and BEM for dynamic systems with a surrounding fluid 

region. Still some detailed explanation should prove useful here. It will be seen that a 

number of mathematical techniques may be employed in any individual FE analysis. 

Variational calculus or weighted residual techniques are used in the formulation of 

the equations that define an element and its potential response to applied forcing. 

Gauss quadrature techniques are used for numerical integration on terms appearing in 

element formulations. A number of matrix manipulation techniques may be used. 

These include re-numbering of nodal d.o.f.s to reduce the size of non-zero diagonals 

in global matrices, ‘banded storage formulations’ so that non-zero terms do not have 

to be retained, and re-adjustment of matrix components to reinstate symmetry - again 

to reduce storage and calculation requirements. Also Gaussian elimination and other 

such techniques are employed for the solution of the large systems of simultaneous 

equations that describe the modelled system. Any detailed exploration of such 

methods is beyond the scope of the work presented here. Further details are available 

from a number of references such as Zienkiewicz (1971), Desai (1979), or Cook 

(1995). The explanations given here and in Appendix 1 should clarify how some of 

these techniques are employed in FEM.

2.2.1 Approach to a finite element analysis

The first consideration in FEM is how to discretise the system into smaller, more 

manageable elements. The questions of how many elements, the geometric shape of 

those elements and the number of nodes in an element are partly problem dependent 

and partly a question of balancing solution accuracy with the complexity and solution 

time of the approximation. When approaching a problem for the first time it is
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advisable to follow any guidelines relating to similar problems whilst being aware 

that the discretisation process is likely to require regular reassessment. Consider, for 

example, Figure 2.1 due to Cook (1995). This shows a plate segmented into several 

elements, with a restraint enforced along A-E and a point force at C. Various element 

geometries and mesh intensities are used throughout the solution domain of the plate. 

It should be pointed out that this is by no means either a typical discretisation or an 

optimal approach. However this example shows that certain features, such as the 

geometry of the solution domain and areas where the response of the system is likely 

to be most or least extreme must be considered in advance to direct the discretisation 

process initially.

One point to be emphasised with FEM is that the solution of the modelled system is 

solved in its entirety by consideration of all features of the system simultaneously. 

For example, a structure radiating into a fluid might involve the dynamic behaviour 

of the structure in response to a forcing function, the interaction with/loading due to 

the fluid, acoustic radiation into the fluid, and boundary conditions such as structural 

restraints. The system is solved for all of these conditions simultaneously, so that 

although consideration may be given here to individual elements the simulation will 

only be effective once all features have been included.

2.2.2 Interpolating polynomial

Having made an initial discretisation of the system, consideration is given to how the 

system is expected to respond to applied conditions. This is another fundamentally 

important point in FEM. An educated choice must be made in advance of how the 

system is expected to respond. It follows from this that the modeller must possess 

some knowledge of the system under consideration, as well as a certain degree of 

insight into the expected results of the analysis. The response of the system can be 

considered in terms of how a particular sub-domain of the system, or element, is 

likely to respond. Another feature of FEM is that the solution is generated initially 

only at nodal points -  although post-processing may involve interpolation to generate
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values elsewhere within an element. In accordance with this, the analyst seeks to 

express the variation of the unknown, h(Q), at a point Q in the solution domain of the 

element, in terms o f the unknown only at nodal points. For the two-dimensional 

element shown in Figure 2.2a this can be expressed as (Ellis, 1994)

h(x, y) = N(x, y)h . (2.1)

Here h is a 4-term column vector containing the values of the unknown h at the 4 

nodes. A is a 4-term row vector termed the vector of shapes functions or basis vector 

relating the values of the unknown anywhere in the solution domain of the element, 

h(x,y), to the value of the nodal unknowns. N_ can be expressed as 

N (x9y) = [Nl9N 2tN 39N A],

A common approach to establishing such a relationship is to seek the unique 

polynomial that fits the nodes of an individual element. Lagrange interpolation 

techniques are frequently used to find a unique n th order polynomial that passes 

through a set of data points (x i,hi), i -0,1, 2,..., n. In two dimensions this polynomial 

takes the form

h = f j Ll (x).Lk(y)hl (2.2)
1=0

where j - 0, 1 ,2 ,..., w, £=0, 1 ,2 ,..., m and N=nm. Also n is the number of points in the 

x  direction and m the number of points in the y direction. Comparing Equations 2.1 

and 2.2 it can be seen that A, (jc, y) = Lj (x).Lk (y ) . So the vector of shape functions,

N , is dependent on both the geometry of the element under consideration and the 

number of nodes defining that element. The same principles applied here can be used 

to generate the shape functions for any FE.
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2.2.3 Local co-ordinates

A relationship between the unknowns within the element and the unknowns at the 

nodal points has now been established, however this particular formulation for N  is 

dependent on the position of the element. It is desirable to have a formulation for N  

that is not position dependent, in this example one that is appropriate for a generic 

linear 4-node quadrilateral element. Such a basis vector can be generated through the 

use of a local co-ordinate system. One such co-ordinate system uses a parent element 

defined in local co-ordinates f  and over the domains [-1 ,1 ] and [-1 , 1 ], as shown in 

Figure 2.2b. It will be seen that the integration of functions of the basis vector is a 

common part of FE analysis. Not only does the local co-ordinate system allow for the 

determination of a generic element basis vector, but the numerical integration of such 

functions is also made simpler by the definition of an element over the domains [-1 ,1 ]

A linear transformation in both co-ordinate directions for Figure 2.2 can be expressed 

as

Using the same Lagrange interpolation technique as outlined in section 2.2.2, a basis

and [-1 ,1 ].

(2.3b)

(2.3a)

vector expressed in local co-ordinates, N l , can then be generated giving a 

relationship

(h  \  n \

h(£,4) = (NLi N L2 N L3 N L, ) h* . (2.4)
3
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Figure 2.1 Example of the discretisation of a system due to Cook (1995).
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Figure 2.2 Geometry of (a) a 2-D quadrilateral element, and (b) the mapping of this 2-D quadrilateral 

element from global to local co-ordinates.
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Any integration over the domain of the element can therefore be performed in local 

co-ordinates. It will be seen in section 2.2.5 how the transformation from global to 

local co-ordinates is applied in practice.

2.2.4 Governing equations

The response of the unknown within an element with respect to the unknown nodal 

values has been considered. Now the fundamental equations that actually govern the 

behaviour of the element must be determined. Clearly the types of element that are 

used is problem dependent and numerous types of element have been developed to 

simulate the behaviour of various systems. Examples include 2-D ‘plate’ elements 

allowing in-plane x  and y  direction displacement as well as xy shear displacement, 

and acoustic elements with a single pressure d.o.f. per node.

Fundamental relationships defining the behaviour of the system over a given domain 

are employed to generate the equations governing the behaviour of an element. 

Consider the problem of generating an acoustic element. The Helmholtz wave 

equation governing acoustic propagation in 3-D space for the steady-state case where 

the system responds harmonically, was introduced in chapter 1, Equation 1.3:

V 2p  + k 2p  = 0 .  (1.3)

Generally the ‘fundamental’ equations are arranged in such a way as to be expressed 

in terms of the primary unknown in the analysis. Here this is already the case as the 

primary unknown is pressure.

2.2.5 Element equations

Having established the equation(s) that define the behaviour of a specific part of the 

system under analysis, there are primarily two techniques that are used to generate the 

equations that govern the response of an element. These are variational methods and
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residual methods. As previously mentioned the detailed consideration of such 

techniques is beyond the scope of this work. However, continuing with the example 

of the generation of an acoustic element, the Galerkin weighted residual method will 

be employed here to indicate how element equations can be formulated.

Equation 1.3 defines the response of the primary unknown, pressure, within an 

acoustic element, for which an approximate solution is required. The residual 

technique now proceeds as follows:

• A trial function, p  , is proposed as an approximation to the exact solution p.

• Expressions for the differences between the equations defining the behaviour of 

the pressure in the exact and trial cases are generated. This difference is the 

residual. Here this is simply the difference between equations in p  and p  for the 

single Equation 1.3.

• Residuals are now minimised. This minimisation process “forces” the residual to 

be zero thus making the trial solution p  equal to the exact solution p. It is this 

minimisation process that generates the equations defining the behaviour of an 

element which are subsequently solved for the primary unknown(s).

It will now be reiterated that when solving a problem by FEM the whole system is 

solved simultaneously. The response of the single acoustic element considered here is 

governed only by the Helmholtz wave equation. When this element is part of a 

system there will be other equations governing the behaviour of other elements, as 

well as a number of boundary conditions. Boundary conditions both restrict the 

response of the system to specific conditions and also express ‘natural’ conditions 

across elements. All such features combined govern the response of the system 

leading to a series of equations for which the residual method would be applied. The 

minimisation of all of these equations simultaneously generates a system of equations 

that can be solved to approximate the response of the entire system. Here the residual 

technique will be applied only to a single element governed by Equation 1.3.
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Of primary importance for the residual technique is the choice of trial function p  . In 

the Galerkin method it is proposed to be of the form

71

p  = Z ? i Ari (2.5)
1=1

Here N t are the known functions, q{ are unknown coefficients and z-0, 1, 2,..., n. 

Comparing Equations 2.5 with 2.1 it can be seen that taking the N { as elements of the 

known basis vector N , the values of the n nodal unknowns are given by qt .

The expression for the residual R for Equation 1.3 is

R = V2/> + k 2p' . (2.6)

Minimisation can be expressed as (Desai, 1979)

functions, z-0, 1, 2,..., n. For a 3-D problem this gives a system of n equations 

defined over the domain of the element, V:

(2.7)
D

where D  is the domain of the system under consideration and the Wt are weighting

v

Applying the divergence theorem to the first term in the integral to reduce the system 

to first order and re-writing, (Eaton & Regan, 1996; Astley et. al., 1998):



Jlf (Vp -V W ^ d V -k 2 JIf P W,dV = i f w [ ? f \ d S  . (2.9)
V V s  \ ° n )

The term on the right-hand side of Equation 2.9 is a surface integral representing the

element with domain V. Here n is a normal co-ordinate. The element equations can be 

written

where AK  and A M  can be described as (frequency independent) element matrices,

pressure. A f(co) is the (frequency dependent) element load vector, and is used to 

apply a forcing function (boundary condition) to the element. Typically this might 

involve the stipulation of the outward normal velocity, vn at specific nodes. The

relationship relating normal pressure to normal velocity can be described as (Cremers 

et. al., 1994; Astley et. al., 1998),

It is standard practice with the Galerkin technique to make the weighting functions, 

Wt , equal to the basis functions N t . The terms in Equation 2.10 are then given by

boundary conditions over the surface of the system, in this case the surface of the

[AK-co2 A M \q=  A f(co) (2.10)

and q is a vector of the primary unknowns at the elemental nodal points -  in this case

(2.11)

(2 .1 2 a)
v

(2 .1 2 b)
v

and Afi = -ico JJ pN{vndS 
s

(2.12c)
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2.2.6 Formulation of element matrices

To outline how such a system of equations would be formulated and solved in 

practice, consider now a simple example based on the use of 2-D, 4-noded 

quadrilateral elements as shown in Figures 2.2a and 2.2b. In local co-ordinates the 

element matrices A K  and A M  are of the form

l l

A K t -
- l - i a 2 J

dNLi dNLj ( A \*X tL

dC dS 

1 1

+
8NL, 8NLj

y P 2 )  * 4  8 4
l' d(x,y) ''

#£,4).

and A M ij = 1
n N L,N Lj

\ c J -1-1

d t fZ  (2.13a)

(2.13b)

where S{x,y) is the Jacobian of the transformation from global to local co

ordinates. This enables the integrals to be calculated over the domain of the local co

ordinates. Here S(x,y)

.3(6.4).
aft These terms are expressed in a manner ideal for

numerical integration by a technique such as Gaussian Quadrature. In 2-D this takes 

the form (Ellis, 1994):

where wk are weighting factors in the range 0  to 1 , and tk are quadrature points in 

the range -1 to 1. For four point quadrature, as here, n=2 and these values are given



In fact this four-point scheme in 2-D agrees with the exact integral as it integrates up 

to the third power of the independent variable in each co-ordinate direction (Ellis,

1994). Either directly, or by quadrature as above, the element stiffness and mass 

matrices can then be calculated.

2.2.7 Formulation and solution of system matrices

Consider now Figure 2.3 showing a 2-D system of four such linear quadrilateral 

elements of unit side length joined together. Element stiffness and mass matrices can 

be calculated from Equations 2.13a and 2.13b and an equivalent system equation

[K-co2M \q=  f(co) (2.15)

assembled element by element. This now expresses the potential o f the system. How 

the system responds to given conditions is dependent on the boundary conditions 

applied to it, such as the forcing functions at particular nodes or the specification of 

pressure values at specific nodes. For example a force applied at the central node 5 

only is equivalent to an infinitesimally small, infinitely long cylindrical source at the 

centre of the system and is the 2-D equivalent of a 3-D point source problem. For the 

case where the wave number, k=\, and [f(co)]T = (0 ,0 ,0 ,0 ,4,0 ,0 ,0 ,0 ) , assembly of all 

of the terms in Equation 2.15 gives:
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m
vu;

4 - 1 0 - 1 - 2 0 0 0 0
- 1 8 - 1 - 2 - 2 - 2 0 0 0

0 - 1 4 0 - 2 - 1 0 0 0
- 1 - 2 0 8 - 2 0 - 1 - 2 0

- 2 - 2 - 2 - 2 16 - 2 - 2 - 2 - 2
0 - 2 - 1 0 - 2 8 0 - 2 - 1
0 0 0 - 1 - 2 0 4 - 1 0
0 0 0 - 2 - 2 - 2 - 1 8 - 1
0 0 0 0 - 2 - 1 0 - 1 4

fa
fa
fa

fa
<16
(fa
(fa

fa

CO

4 2 0 2 1 0 0 0 0
2 8 2 1 4 1 0 0 0
0 2 4 0 1 2 0 0 0
2 1 0 8 4 0 2 1 0
1 4 1 4 16 4 1 4 1

0 1 2 0 4 8 0 1 2
0 0 0 2 1 0 4 2 0
0 0 0 1 4 1 2 8 2
0 0 0 0 1 2 0 2 4

fa 0
0

fa 0
04 0

fa = 4
(is 0

0
fa 0
fa 0

fa

(2.16)

Equation 2.16 can be easily solved by some Gaussian elimination technique to 

generate results for the pressure values at the 9 nodes.

A few points about the above system of equations are worth some mention. Firstly, 

the system matrices are themselves symmetric. This is clearly to be expected as the 

interaction between, say, nodes 2  and 6  is obviously the same as that between nodes 6  

and 2. Secondly, there are entries in the system matrices only at positions where the 

row/column reference relates an interaction between nodes. If there is no direct 

relationship between the nodes, i.e. they do not have a common element, then there is 

a zero in the corresponding position. Thirdly, a number of the entries in the matrices 

are zero, a feature common to FE problems. Finally, the matrices are banded; that is, 

non-zero entries appear along the main diagonals with upper and lower ‘triangles’ 

containing zero entries only. These last two features are generally exploited for the 

purposes of reduction in matrix storage requirements. It is worth pointing out that the 

numbering of the nodes in the four-element problem of Figure 2.3 is optimal for the 

purposes of matrix storage requirements. Most FE packages employ optimal node- 

numbering routines as standard to best exploit banded matrices.
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2.2.8 The use of symmetry

A final consideration here is the use of symmetry. Clearly the system shown in Figure

2.3 is symmetric about both the x  and y  (or C, and <J) axes. The requirement for

symmetry along a specific line or plane is zero gradient, in this case —  = 0. This is,
dn

in fact, the natural boundary condition for acoustic elements, so that no additional 

boundary conditions need to be included. Instead the problem can revert back to the 

format of Figures 2.2 with a forcing function term included at any node. Take, for 

example, A/J=l. This is the equivalent problem to the four-element case discussed in 

section 2.2.7. Note that in that case Af s =4, which in fact could be considered to be a

result of unit contributions from each element. The resultant system of equations 

corresponding to Equation (2.16) is then

T
4 -1  -1  - 2

-1  4 - 2  -1
-1  - 2  4 -1
- 2  -1  -1  4

-

? 2

- _ ? 4 _

-CO
\ c 2) v36y

4 2 2 1 
2 4 1 2  
2 1 4  2 
1 2  2 4

- r  i i
0
0
0

- _ ? 4 _

(2.17)

This gives the same nodal pressure values for nodes in similar positions to the 9-node 

example, with pressure values outside the 4-node system deduced from symmetry.

This completes the summary of FEM. This section has sought to explain how each 

part of the FE process works through the use of simple examples, and to consider 

how these individual parts combine for the solution of a modelled system. Clearly a 

system for which FEM is required will be considerably more complex than the 

problems considered here, nevertheless the solution of such a problem is based on the 

same principles.

In this section some detailed consideration has been given to acoustic elements. For 

the problem of an ultrasound transducer radiating into an infinite fluid medium a
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number of other elements are required to approximate the real system. Some 

consideration will now be given to these elements.

2.3 Other types of element

Section 2.2 outlined the formulation and solution of a simple FE problem but the 

same techniques can be applied to larger systems, such as those considered here. The 

aim is to formulate and solve element and system equations of the form of Equations 

2.10. On an element level, the difference between modelled systems is in the 

generation of the systems of simultaneous equations. This is determined firstly by the 

fundamental equations that describe the behaviour of the system, i.e. element 

equations for different types of element, and secondly by the technique used to 

express these equations into a form suitable for solution -  essentially variational or 

residual methods. In section 2.2 acoustic elements, described by the steady-state 

Helmholtz equation, were generated and the Galerkin weighted residual technique 

used to formulate an element relating the behaviour within an element to the 

behaviour at elemental nodes. For the systems considered here other types of element 

will be used.

The system to be modelled is that of a circularly symmetric ultrasound transducer 

radiating into an unbounded fluid media. Simulating this requires structural elements 

to model the transducer, piezoelectric elements for the active element and acoustic 

elements to model the fluid region close to the device. Specific elements for the 

simulation of an unbounded fluid region will be considered in section 2.4. The system 

modelled here is also understood to have circular symmetry, thus significantly 

reducing the size of the problem. The specific use of axi-symmetry in the system will 

therefore be considered. Specific details of element formulation for each of these 

types, including fundamental equations describing the element and the formulation of 

a set of simultaneous equations relating elemental response to elemental nodal 

response, can again be found elsewhere (Zienkiewicz & Taylor, 1989; Desai, 1979;
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Cook, 1995; Allik & Hughes; 1970). Here an overview of these elements and system 

equations will be given.

2.3.1 Structural elements

FEM has its origins in structural analysis and modelling. The terminology of 

‘stiffness’ and ‘mass’ matrices used for the element and system Equations 2.10, is in 

fact based on similar structural equations. Such equations describe the dynamic 

response of structures to applied forces, rather than the acoustic region considered in 

section 2.2. In section 2.2.4, the Helmholtz equation was used as the fundamental 

equation governing the response of a (steady-state) acoustic element. For a structural 

element the governing equations relate strain and displacement and stress and strain, 

so that the displacement of the elemental nodes - displacement here being taken as the 

primary unknown - can be derived for applied forces and conditions. For linear, 

elastic, isotropic materials the stress-strain relationship for an element can be 

expressed as:

M=[c]{f} . (2.18)

Here, {cr} is a vector of elemental stresses, {s} a vector of elemental strains, and [C] 

an appropriate stress-strain matrix containing material properties Young’s modulus 

and Poisson’s ratio. The nature of {<r}, {f} and [C] is dependent on the type of 

element (dimensions, geometry, number of nodes) and assumptions made about the 

response of the element. The strain-displacement relationship can be expressed as:

M  = (2.1.9)

where [5] is the appropriate strain-displacement matrix and {d} a vector of nodal 

displacements. Similarly the nature of [5] and {d} is dependent on the nature of the 

element and restrictions on the response of the element. As in Equation 2.1, the
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unknowns within an element (here displacements d(x,y) in 2-D) are related to nodal 

displacements through the (structural) vector of shape functions [Ns ]:

<*(*.?) = • (2 -2 0 )

2.3.2 Dynamic harmonic response

For a structure approximated by FEM, driven by a load vector {i?}, and with 

stiffness, damping and mass matrices [X|, [D] and [M\ respectively, the governing 

equation of structural dynamics is given by (Cook, 1995; Kinsler et. al., 1982)

[K] {d} + [D] {d} + [M] {d} = {R} . (2.21)

Here {r } is time-dependent. For the steady-state harmonic case, as considered here, 

Equation 2.21 becomes

[K + icoD -  o)2M] {d} = {/(*>)} . (2.22)

Note the similarity with Equation 2.15 except for the additional damping in the 

system here. It is necessary to include damping so that the response of the system 

does not become infinite when co corresponds to a natural frequency of the system 

(PAFEC, 1984). In PAFEC damping can be incorporated in structural models in the 

form of “hysteretic” damping terms. This is a mathematical technique that makes 

material moduli complex, eg. for Young’s modulus, E  (PAFEC, 1984)

E = E ( l  + Iii) . (2.23)

The over-bar is taken to represent complex terms. The system stiffness matrix [i^] 

includes material moduli terms so the hysteretic damping term can be incorporated in 

the form of a complex stiffness matrix. Equation 2.22 can then be given as
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[K'-CD2M]{d} = {f(a>)} (2.24)

where K  represents the complex stiffiiess matrix incorporating hysteretic damping.

2.3.3 Axi-symmetry

Axi-symmetry can easily be incorporated into the formulation of planar FEs, for a 

solid of revolution where the loading is also axi-symmetric. For a structural analysis 

the displacements in an axi-symmetric problem are still within the plane and can 

therefore still be accounted for by two components of displacement. The difference 

occurs in the stress and strain vectors, {cr} and {s} respectively in Equations 2.18 and 

2.19, and appropriate stress-strain and strain-displacement matrices [C] and [5] 

respectively. For plane strain and plane stress problems the vectors contain three 

terms each, x, y, and xy shear stresses/strains. For the axi-symmetric case the stress 

and strain vectors each contain an additional term, “hoop” stress/strain. Accordingly 

matrices [C] and [B] incorporate the appropriate additional material relationships 

(PAFEC, 1984; Cook, 1995).

2.3.4 Fluid-structure coupling/interaction

For the case where fluid-structural interaction is significant in the system under 

consideration, as here, the forcing vector [f{p))} in Equation 2.22 represents both 

fluid-structure interaction and all other external forces (Ergin, 1997; Matthews, 

1986). Hence

[K + icoD -  co2M] {d} = f {k) + f ip) (2.25)

where f {k) is a load vector of applied forces and f ip) is a load vector representing 

the fluid pressure at the fluid-structure interface. Combining Equation 2.25 with 

Equations 2.15 and 2.12c, describing the acoustic system matrices and nodal forcing
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vector on the surface of an acoustic element (and extending this to the surface of the 

acoustic system) respectively, it can be shown that (Macey, 1987; Morand & Ohayon,

1995):

(2.26)

Here [A] and [M] are the structural stiffness and mass matrices respectively, and 

[Ka] and [M a] are the acoustic stiffness and mass matrices respectively.[£2] 

represents the connection between the structural and acoustic systems and is given by

Here n is the normal at a point and [Ns ] represents the structural shape-functions.

2.3.5 Piezoelectric elements

As introduced in the Chapter 1, piezoelectricity is a property of certain materials 

where there is a coupling between the mechanical and electrical properties of the 

material. The electro-mechanical relationship for linear piezoelectric materials can be 

expressed in the matrix form (Van Randeraat & Setterington, 1974; Allik & Hughes, 

1970; Guo et al., 1992)

Here {T} is the stress vector, {5} the strain vector, {D} the vector of dielectric 

displacement, {E } the vector of field strength, [cE] the elastic constant matrix for 

constant electric field, [e] the piezoelectric stress coefficient matrix, and [£ 5] the

s

{r} = [c£]{5} ~[e\{E} (2.28)

{D) = [ef{5} + [£5]{£} . (2.29)
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matrix of permittivity of the medium at constant strain. Piezoelectric materials are 

anisotropic, therefore more complex expressions are necessary to describe the 

material properties of such elements. For example, the elastic constant matrix [c£ ], 

for an axi-symmetric linear piezoelectric element is of the form (Kagawa & 

Yamabuchi, 1976)

u 33 4 4 0
c *

13 4 4 0
13 4 4 0
0 0 0 4

Here the first subscript refers to the direction of the strain and the second gives the 

direction of stress (Van Randeraat & Setterington, 1974). For the FE formulation of 

piezoelectric materials the electrical potential, (j), is simply incorporated as an 

additional degree of freedom in the vector of displacement unknowns at each node. 

This leads to a system of equations similar to Equation 2.24 of the form

[ M d d ]  [0] 
[0] [0]

[Kdd]
[KTdA  IK*)

(2.30)

where the subscripts refer to the displacement and/or electrical potential d.o.f. which 

a given matrix is related to. A number of papers have been published including 

details of the terms in Equation 2.30 and/or containing FEM-experimental 

comparisons of the electrical response of (modelled) piezoelectric elements with real 

components. These include Guo et. al., (1992), Allik & Hughes (1970), Ostergaard & 

Pawlak (1986), and Locke et. al. (1987). Furthermore a number of publications on the 

simulation of realistic piezoelectric transducers have also been published, 

incorporating piezoelectric FEs and showing good model-experimental agreement. 

Examples of this are given in section 2.5.
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2.4 Modelling unbounded fluid regions

In reality no physical domain will extend to infinity, however it is sometimes useful 

to develop mathematical models where it is assumed that they do. One such case 

occurs here when making model comparisons with experimental measurements on a 

physiotherapy device in accordance with the EEC standard. In this case the tank in 

which most of the measurements are made is lined with acoustically absorbent 

material to avoid reflections. The region of the tank is then approximated as an 

unbounded region in the corresponding model.

A simple way of accounting for such an unbounded fluid region in FEM is to model 

up to some large distance where the influence of the radiating source is expected to 

be minimal. Alternatively some appropriate boundary condition can be applied at a 

boundary to reduce reflections from this surface (Wood, 1976; Astley, 1983; Astley 

& Eversman, 1983). These approaches suffer from two drawbacks. Firstly there is the 

difficulty of establishing what constitutes a sufficient distance at which some 

condition can be applied. Secondly there is the fact that in some cases boundary 

conditions would need to be applied at such a large distance from the source that the 

modelling of the fluid region would prove computationally expensive, if not 

prohibitive. A second approach is the use of BEM whereby the surface of the 

structure is meshed with elements that incorporate some fluid-structural relationship. 

The system is solved initially for the fluid-structural interaction, generating pressure 

and normal velocity results at the surface of the structure. The exterior problem can 

then be solved for individual points in the field by summing the contributions over 

the surface of the structure. This method will be considered in the section 2.4.2. A 

third commonly used technique is to employ some sort of “infinite” element that is 

used in conjunction with standard acoustic elements. This type of element 

incorporates both an exponential term and a decay term to approximate the features 

of outward travelling waves that decay with distance, thus simulating an unbounded 

fluid region.
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2.4.1 Wave envelope elements

The type of “infinite” element used in PAFEC is the wave envelope element. To use 

these elements the region immediately surrounding the radiating structure is modelled 

with acoustic elements out to some position in the near-field. A single layer of WEEs 

is then applied at this boundary. The geometry of this is shown in Figure 2.4. The 

WEE incorporates an appropriate asymptotic decay term as well as wave-like 

variation to account for both zero pressure at large distances and the existence of 

exclusively outward-travelling waves, as indicated in Figure 2.5. The inclusion of an 

exponential term in the basis function of the element, of the form e~lkr, provides the 

wave-like variation, whilst a polynomial in \/r  provides the decay term. The order of 

the polynomial in 1/r is dependent on the number of radial nodes included in the 

element, and will be seen to be very significant in terms of the effectiveness of the 

simulation. A mapping of the finite WEE onto an infinite region allows the pressure 

at the last radial node in the element to be defined as zero. This prevents reflections 

from the outer edge of the element thus ensuring that the wave within the element is 

outward travelling only. These are essentially the gross features of a WEE. A large 

number of parameters must be defined in a system using WEEs and there are a 

number of practical difficulties in using these elements for systems of the type 

considered here. For these reasons WEEs are considered in some detail in Chapter 4. 

This includes a detailed account of the formulation of the elements, which have 

undergone a number of changes from their origins as “infinite” elements.

The WEE has its origins in the work of Bettess (1977) and Bettess and Zienkiewicz 

(1977) who sought to accommodate unbounded solution domains within FE analysis. 

Their approach was to model the region close to the radiating source with standard 

acoustic elements and beyond this to introduce “infinite” elements at some boundary. 

At this time the emphasis was placed on generating elements that coincided with 

standard elements at their inner surface but radiate the wave-front outward and away 

from the source -  like a non-reflecting boundary condition -  so that an accurate 

solution could be obtained close to the source. It was not the intention to model the
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Figure 2.3 Four 2-D linear quadrilateral elements with a unit force applied at the central node, 5. 

Equivalent to an infinitesimally small, infinitely long cylinder.
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Figure 2.4 Typical geometry of a fluid-structural model incorporating WEEs. The structure (left blank 

here) is surrounded by acoustic finite elements up to some finite boundary. These elements are 

themselves then surrounded by WEEs incorporating outward-travelling, wave-like, decaying variation 

in pressure.
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exact solution within the “infinite” elements (Burnett, 1994). Much subsequent work 

on infinite and WEEs has been based on adapting and improving on these early 

formulations.

Bettess (1977) suggested a shape function for an element based on standard Lagrange 

polynomials but incorporating an exponential decay term, with the element 

effectively extending to infinity. Problems arising from having to integrate over 

elements that contain nodes at infinity were avoided by making such terms relatively 

very large, but Gauss Laugerre numerical integration techniques were required to deal 

with the exponential term in the integral. Bettess and Zienkiewicz (1977) extended 

this to a shape function incorporating two exponential terms, one representing the 

wave shape and the other the decay of the wave with increasing distance, and used a 

specially designed approximate numerical integration technique to accommodate the 

exponential terms. Bettess (1980) reviewed this work and also considered a 

reciprocal as opposed to exponential decay term in the ‘infinite’ element shape 

function. In this case Gauss-Legendre numerical integration could be used although 

this required the definition of a new variable so that integration over the region 

[-l,oo] could be represented in terms of integration over [-1,1] as required by the 

numerical integration technique.

Astley and Eversman (1983) applied an alternative type of “infinite” element, the 

wave envelope element, to the problem of acoustic radiation. This had previously 

been used in other problems involving unbounded regions (Astley & Eversman, 

1981). The WEE is used in a similar manner to the ‘infinite’ element in that it is 

compatibly matched to a region meshed by conventional FEs surrounding the 

radiating structure. There are however some differences in the element formulation 

and solution. Firstly, an amplitude decay of 1/r was used in conjunction with the

standard wave-like variation, e~lkr, where r was the distance from the source to the 

WEE/acoustic element interface. This meant that for large r the correct asymptotic 

behaviour of the pressure field was represented. Secondly, the weighting functions 

used in the integral generated for the minimisation of the residual in the Galerkin
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formulation (see section 2.2.5), were selected to be the complex conjugates of the 

shape functions. This was in contrast to the standard choice of the basis function as 

the weighting function, which had been used in “infinite” element formulations up to 

that point. This choice eliminated the exponential terms in the integral so that 

standard Gauss-Legendre numerical integration could be used. Here the WEE shape 

function was defined in a finite region. Also in this work some comparison between 

the use of ‘infinite’ elements and WEE elements was made against theoretical results 

for an axi-symmetric plane piston source with a = X , where a is source radius. Good 

agreement between theory and models was observed.

Zienkiewicz et al. (1983) improved on their “infinite” element by incorporating a new 

global-local mapping for the element domain. This mapped the global infinite domain 

onto a local finite one defined over the region [-1 ,1 ], making it ideally suited to 

solution by Gauss-Legendre techniques. Furthermore the mapping was such that the 

variation in the radial direction of the element, as usual described by a polynomial 

expression, became a series in powers of l/r .  This allowed for a much better 

approximation of the real behaviour of the field variable actually within the “infinite” 

element, so that the use of higher orders of shape function for these elements would 

allow the finite/infinite element interface to be moved closer to the source. Bettess 

(1987) subsequently introduced this mapping into the WEE formulation of Astley 

(1983).

Astley et al. (1994) fully incorporated this mapping into the WEE formulation and 

made a change to the weighting terms in the residual formulation. Both of these 

measures taken together enabled the outer boundary of the element to be moved to 

infinity whilst maintaining bounded terms (i.e. those not involving calculations for a 

term explicitly expressed as being at infinity) in resulting system matrix formulations. 

It is this formulation that is used for WEEs in PAFEC and here, and is considered 

further in Chapter 4 with specific relevance to the type of systems modelled here.
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2.4.2 The Boundary element method

The boundary element method is essentially a hybrid of the use of boundary integral 

equations and FEM. BEM involves expressing the equations that govern the 

behaviour of the system under consideration in terms of an integral over the surface 

of the system. Having done this, the surface of the system can be discretised, in the 

same way that the entire system might be discretised in a FE problem, and an 

approximate numerical solution sought to the integral problem. The technique is 

particularly useful in cases where an “infinite” region is to be modelled, as here. Only 

the surface of the radiating system needs to be considered initially with field values 

being calculated after the solution of the fluid-structural interaction problem at the 

boundary element (BE) surface. In practical terms this can make a significant 

difference to the number of d.o.f. in the modelled system, particularly for large 

systems. The combination of a structure modelled by FEM and a surrounding region 

modelled by BEM can easily be incorporated into the solution equations. The 

discretised pressure-velocity relationship of a boundary integral can be combined 

with similarly discretised force-displacement equations in a FE analysis. This system 

of equations can then be solved simultaneously (Ciskowski & Brebbia, 1991; Brebbia 

& Dominguez, 1989).

2.4.3 Classical formulation of the radiation problem

Interest in expressing the problem of a vibrating body of arbitrary geometry, radiating 

sound into an unbounded fluid medium as an integral formulation that could be 

solved numerically grew in the 1960s with the increased use of digital computers. 

The typical geometry of the problem as expressed by Schenck (1968) can be seen in 

Figure 2.6. Here an arbitrarily shaped object with total surface area S  is immersed in 

an infinite fluid region R0. The region interior to S  is . A point in the exterior

region is designated by a lower-case Latin letter (e.g. x), one on the surface by a 

Greek letter (e.g. y/ ), and one in the interior by an upper-case Latin letter (e.g. X).

46



wave-like
decaying
pressure
variation‘virtual” source

acoustic finite 
element -  wave
envelope element 
boundary

Figure 2.5 Geometry of an individual 2-D wave envelope element.

Figure 2.6 Geometry of the problem of an arbitrary structure vibrating in a fluid medium due to 

Schenck (1968).
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The classical formulation of the radiation problem is based on the equation governing 

pressure variation in the acoustic region for the steady-state case, the Helmholtz wave 

Equation 1.3

V 2p  + k 2p  = 0 .

Also from the “constituent” equation, introduced above in Equation 2.11, relating 

pressure on the surface of the structure to outward normal velocity, v(y/ ) , at a surface 

point y/ , by

—  = -icopv(y/ ) , y / e S  . (2.31)
dn

Furthermore, a “radiation condition” can be introduced

r
f  \

a —  + ikp —> 0 as r —> oo . (2.32) 
Kdr

This expresses that waves are radiated outwards and the pressure variation will 

diminish to zero at some large distance from the radiating source. In Equation 2.32, r 

is radial distance from the origin of co-ordinates and SR is a sphere of radius R 

centred at the origin, and surrounding x  and S, and a =  1/2 or 1, depending upon 

whether the problem is 2-D or 3-D.

Equation 2.32 can be replaced by a radiation condition imposed at some far field 

boundary, S2

Vp • n2 + ikp = 0 on S2 . (2.33)

The formulation and solution of the classical problem has been approached by a 

number of authors. Chen and Schweikert (1963) approached the problem by
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describing field values in terms of an integral over a distribution of surface sources of 

unknown strength, at the structure/fluid interface. The integral was formulated to 

satisfy both the wave equation and the radiation condition for an arbitrary function 

describing source strength, so that the function could be determined by forcing the 

integral to satisfy Equation 2.31 also. The problem was then solved by aiscretising 

the surface into a finite number of ‘elements’, each element having constant phase 

and amplitude, and solving the problem numerically to calculate the unknown source 

strengths. From this, field values were easily computed.

An alternative “direct” approach has been followed by a number of authors (Baker & 

Copson, 1950; Ciskowski & Brebbia, 1991). This involves generating an expression 

relating surface velocity, surface pressure and pressure in the exterior acoustic region, 

from Equations 1.3, 2.31 and 2.32 by the use of a Green’s function that satisfies these 

equations. Consider the Green’s identity, (Baker & Copson, 1950):

JJJ (uV2w -  w V 2u)dxdydz = jj (u  —  -  w —  dS . (2.34)
v s i  dnj

This expresses an integral over a volume in terms of a surface integral. Here 

denotes differentiation along the outward normal to S. If u and w satisfy the

wave Equation 1.3, it can be shown that mV2 w -w V 2m = 0 , s o  that Equation 2.34 

becomes

flY  dw duyJJ u  w —
s  { dn dnj

dS= 0 . (2.35)

Recalling that what is required here is a relationship between surface velocity, surface 

pressure and pressure in the exterior region, it can be seen that by taking u in 

Equation 2.35 as surface pressure, an equation will be formed involving surface

pressure p(y/) and the normal gradient of surface pressure • From Equation
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2.31 it is seen that this is the same as having an expression in terms of surface 

pressure and normal surface velocity. What is required of the term w in Equation 

2.35, therefore, is the introduction of an expression for exterior acoustic pressure. For 

such an expression consider the Green’s function

£(*>!/) = 7 — (2.36)
4 7ir

where r -  \x -  y/ \ , x  is a position vector in the exterior region and y/ is a point on the

surface. Replacing u and w in Equation 2.35 accordingly, and incorporating the 

radiation condition of Equation 2.32 to show that an integral over a sphere at infinity 

vanishes, the exterior Helmholtz integral takes the form

ikd(x,g)

d(x,g)
-icopv(g)

,ikd(x,g)

d(x,q)
>dS(g) , x e R 0, g e S . (2.37)

There are two other integral equations relating specifically to pressure on the surface 

of the structure and pressure within the volume enclosed by S, as opposed to the 

exterior pressure formulation of Equation 2.37. The first of these will be termed here 

the surface Helmholtz integral

p ( v )  = 2k ) :  I ̂ S n .

ikd{ y,g)

dip,*;)
-icopv(g)

, ikd (v,g)

d(y ,g)
>dS(g), i//, g e S . (2.38)

Chertock (1964) used this for problems of radiating structures with reasonably simple 

geometry. He solved Equation 2.38 by approximating the radiating surface as a finite
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number of points with known normal surface velocities, thus generating a system of 

equations that could be solved numerically for surface pressures. From this the 

exterior integral could also be solved numerically to generate field results.

The second integral equation will be termed here the interior Helmholtz integral:

p ( s )
,ikd(X,g)

d{X ,g)

ikd(X,g) ]

-  icopv(g) J dS(g) = 0  X e R n g e S .  (2.39)
d{X, g) J

This was solved numerically by Copley (1966) for the case of an axi-symmetric 

radiator, again by discretising the source and for known normal surface velocities. A 

problem encountered in this work, however, was one of uniqueness i.e. whether or 

not the true surface pressure was the unique solution to Equation 2.39 for known 

v(^). Copley (1966) stated that for known v(g), the true surface pressure was the 

unique function for which Equation 2.39 was satisfied at all points X in the volume V. 

For the cases considered by Copley, however, this condition was reduced to all 

interior points on the axis of symmetry, so that a numerical solution could be 

achieved.

In a second paper Copley (1967) established that both the ‘simple-source’ method as 

employed by Chen and Schweikert (1963), and the surface integral formulation used 

by Chertock (1964), failed at certain frequencies. The first due to non-existence and 

the second due to non-uniqueness, but both at the same frequencies -  the 

characteristic frequencies of the interior of the radiating structure. Schenck (1968) 

reiterated the problem of failure at certain frequencies. He emphasised that problems 

arise not only at interior characteristic frequencies but also close to these frequencies.
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2.4.4 CHIEF (Combined Helmholtz Integral Equation Formulation)

Schenck (1968) proposed an alternative technique for overcoming the problem of 

failure at, and close to, interior characteristic frequencies. This practical way of 

finding the unique surface pressure function that satisfies both the surface and interior 

Helmholtz integral equations is based on the fact that at any frequency there is only 

one solution that satisfies both of these equations. Additional “collocation” points are 

specified within the region surrounded by the BEs, to supplement the d.o.f. on the BE 

surface itself. The pressure function that satisfies both surface and interior integrals 

can then be established. From the surface results the exterior field values are then 

calculated by numerical solution of the exterior integral Equation, 2.37. More details 

of CHIEF are given in Chapter 4 where consideration is given to large ka systems. 

The method is also compared with the WEE option.

2.4.5 Doubly Asymptotic Approximations (DAAs)

An alternative approach to the exact solution of the discretised surface Helmholtz 

integral equation, Equation 2.38, for the calculation of surface pressure and normal 

velocities, is the use of an approximate relationship. As in the exact method, once the 

structural-fluid problem has been solved field values can then be calculated by the 

use of Equation 2.37. Doubly asymptotic approximations are a set of BE techniques 

used to supplement structural equations with an approximate fluid loading so that the 

system under consideration can be solved for the case o f fluid-structure interaction. 

The theory behind these techniques is based in the solution of transient problems, 

with the name “doubly asymptotic” being a reference to the fact that the 

approximations used make the method applicable only at early or late times. They 

are, therefore, a combination of early time approximations (ETAs) and late time 

approximations (LTAs). The corresponding approximations in the frequency domain 

mean that the techniques are only effective at high frequencies or low frequencies, 

respectively. There are a number of DAAs employing different structural-fluid 

interaction approximations. In the most basic case the “plane wave” approximation,
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z  = p c , is used for the ETA. As for CHIEF, this technique will be given more 

consideration in Chapter 4 where it will be applied to the modelling of unbounded 

fluid regions for large ka systems. The three methods WEE, CHIEF and DAA2c (the 

approximation available in PAFEC) will be evaluated and compared for a series of 

models.

2.5 Applications of FEM and BEM to realistic ultrasound systems

It is clear that the FEM and BEM offer the possibility of effectively simulating 

realistic ultrasound systems such as the one to be considered here. Indeed the 

techniques have previously been applied to acoustic systems on a number of 

occasions. In 1973 Smith et. al. considered the problem of a sonar transducer 

operating in an unbounded fluid media. This incorporated many of the modelling 

features outlined in this chapter - a piezoelectric structure modelled by FEM with the 

surrounding media modelled by BEM, with comparisons made against experimental 

results. Indeed this work also highlighted the problem of establishing accurate 

piezoelectric material parameters, a feature that will be shown to be quite significant 

in later chapters here. The system was, however, limited with the structure consisting 

of a small number ( - 2 0 ) of piezoelectric elements only and operating at a maximum 

frequency of 70 kHz. Also comparisons were mainly made for the electrical response 

of the system although some low frequency beam patterns were compared. The 

model and experimental results were in good agreement. In 1974 Hunt et. al. 

considered a similarly simple low frequency system (<10 kHz) and also showed 

good near-field agreement of model and experiment.

More recently Hansen (1997) has applied FEM to the problem of optimising the 

performance of a simple piezoelectric transducer operating at 20 kHz in air. Piranda 

et. al. (1998) have made a comparison of different BEMs that can be used to simulate 

a semi-infinite fluid region in conjunction with a FEM of a 2-D piezoelectric 

transducer. Again, however the structural model is a simple system incorporating at 

most 20 FEs. Gallaher et. al. (1999) have applied FEM and BEM to the problem of
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optimising the performance of arrays of ring transducers operating in a surrounding 

fluid region at frequencies up to 15 kHz. Whilst Morgan et. al. (1999) used FEM and 

BEM to analyse the response of systems of ring transducers in water as operating 

conditions and the system alignment varied. Comparisons were made for electrical 

results v/ith the system operating at frequencies up to 10 kHz.

1-D modelling techniques have been used for the consideration of optimising the 

performance of device front and back layers, as in Kocbach et. al. (2000) where 3-D 

FEM andl-D model comparisons for a piezoelectric disc and matching layer system 

operating in air close to 2 MHz have been made. Little work has considered 

components other than those in the primary direction of propagation. Han and Roh 

(1998) applied FEM to the problem of the effects of side layers on a 3-D shear wave 

piezoelectric transducer operating at 1 MHz, using the model to analyse the effect of 

varying side-layer parameters with the intention of improving device design. 

However some simplifying assumptions on the performance of the active element 

were applied, and a 1-D response of the front and backing layers was assumed. They 

reported limited model-experimental waveform comparisons, showing good 

agreement.

This brief outline of some FEM and BEM applications to acoustic systems 

emphasises that the techniques outlined here have the potential for modelling 

complex ultrasound systems. However to date many of the problems considered have 

been for systems operating at relatively low frequencies and incorporating relatively 

small numbers of FEs and BEs. Where systems operating at higher frequencies have 

been approached they have generally been substantially simplified with only limited 

model-experimental comparisons reported. Kocbach et. al. (2000) have presented 

work on the modelling of a piezoelectric disc operating into an unbounded fluid 

media modelled using WEEs. Exact details of this work are not available, however 

the abstract describes a piezoelectric disc/matching layer/fluid system of maximum 

ka value 30. Near-field comparisons are reported although the abstract gives little 

indication of the nature of these results. As far as the author is aware FEM and BEM
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have not been applied to systems where realistic 2-D/3-D piezoelectric behaviour and

2-D/3-D component interaction, including those at the edge of the active element, 

have been considered. In addition, the operation of such a device in an unbounded 

fluid region has not been tackled and nor have extensive near-field model- 

experimental pressure comparisons been approached. It will be seen in the next 

chapter that the system considered here has ka ~54, and again to the author’s 

knowledge no previous consideration of a realistic system of this size and its 

associated modelling problems has been reported.

2.6 Summary

This chapter has outlined FEM in some detail using simple examples to show how 

simulated systems are generated and solved. These examples are outlined in more 

detail in Appendix 1. Outlines of specific FEs that will be applied in this work has 

been given and the theoretical basis of element formulations discussed. BEM has also 

been considered, with specific reference to the solution of the ‘classical’ problem of a 

structure radiating into an infinite fluid region. Three alternative techniques for 

modelling unbounded regions have been introduced - the use of WEEs, CHIEF and 

DAA. These techniques will be considered in more detail in Chapter 4. Next, Chapter 

3 will look at the modelling approach adopted here to establish the effectiveness of 

FEM for modelling realistic medical ultrasound systems. The design, construction 

and modelling of a real medical ultrasonic device will be outlined and the 

corresponding device model generated. A detailed summary of the experimental 

measurements made on the device will also be given.
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Chapter 3

3.1 Introduction

Chapters 1 and 2 introduced the essential design of a physiotherapy transducer and 

looked at the FEM approach to modelling such a device including some of the 

features of a realistic model. The simulation of the surrounding fluid region was also 

considered. This chapter will start to consider the effectiveness of the FEM approach 

adopted here for modelling realistic medical ultrasound devices and their near-fields. 

The modelling is considered in two parts, with the investigation of the simulation of 

the surrounding unbounded acoustic region deferred to Chapter 4. This chapter will 

concentrate on the design and construction of a specific transducer and the 

experimental measurements made on it. The corresponding FEM model of the device 

will also be outlined. The building of a real device automatically meant that a large 

number of model parameters were known to some degree of accuracy, and made 

modelling the device significantly easier. Experimental measurements made on the 

real device were then used for testing and evaluating the model. Two sets of 

measurements are reported here. First, those made in accordance with IEC 

61689:1996, the standard on physiotherapy devices (hereafter referred to as the IEC 

standard). Second, additional measurements made to generate a more comprehensive 

picture of the near-field are reported. The intention of these measurements is to 

consider the robustness of both the experimental procedure and the model. Details of 

the measurement set-up, procedure and rationale are also included.

3.1.1 Modelling approach

Initially FEM models of “general” circularly symmetric transducers radiating into an 

unbounded acoustic region were considered, using acoustic FEs and WEEs for the 

fluid region. These devices essentially contained the components described in 

Chapter 1 and shown in Figure 1.1. Operation at relatively high frequencies resulted 

in these initial models having a moderate ka value. Unfortunately a number of
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problems were encountered. Firstly, the choice of model parameters and component 

parameters was made fairly arbitrarily based on limited references to realistic devices 

in the literature such as in Hill (1986) and Meire & Farrant (1995). Secondly, the 

model clearly indicated that the device vibration was non-uniform, and it was further 

obvious that the predicted field was significantly different from that generated by a 

corresponding plane piston model. This made comparison with idealised results 

inappropriate. Thirdly, there were significant concerns over the modelling of the 

acoustic region, specifically relating to the parameters for the WEEs and the meshing 

of this region. Inconsistencies could clearly be observed at the acoustic FE -WEE 

interface so that at least some of the irregular field response could be attributed to 

inaccuracies in the modelling of the fluid region. Finally, modelling was severely 

constrained by simulation run times. At this stage the use of a 90 MHz PC meant that 

models frequently required overnight runs to generate results for a single frequency. 

Later a 500 MHz PC would somewhat speed this up. The large run times were 

basically determined by the modelling of the acoustic region so it was clear that 

alternative modelling techniques for the surrounding unbounded fluid region would 

need to be considered.

To overcome these problems it was decided to initially consider the effectiveness of 

the modelling of the fluid separately from the modelling of the device. The use of 

structural models with idealised vibration enabled much of the uncertainty associated 

with a realistic device to be removed so that field comparisons could be made against 

easily generated analytical results. The WEE models for these ideal structures could 

also be compared with BEM options for the simulation of the fluid region. Although 

such techniques have been widely used for the simulation of infinite fluid regions 

outside of radiating structures, little work has been carried out for modelling the near

field of structures with ka values of the magnitude considered here. Chapter 4 will 

therefore consider idealised structures using WEEs, CHIEF and DAA2c for the 

unbounded fluid region. The effectiveness of these techniques will be evaluated and 

compared. Subsequent chapters will combine the fluid region models from Chapter 4 

with the structural model from this chapter to generate models of the full system.
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This chapter will concentrate on the design, construction, modelling and 

measurement of a real medical ultrasound transducer. The original criteria for the 

device was that it should be circularly symmetric, operate at a moderately high 

frequency with a relatively high ka value, and preferably that it should be designed to 

operate in continuous wave mode. A circular device would allow the investigation of 

the important features of many real devices whilst exploiting symmetry to reduce the 

computational requirements. A device operating around 1 MHz, although probably 

only classed as a ‘moderate’ frequency device, allows for the generation of a model 

that is practical to run in terms of run time and memory requirements. 1 MHz equates 

to an acoustic wavelength of approximately 1.5 mm in water and the ‘rule of thumb’ 

for meshing in FEM is generally taken to be that there should be at least 7 nodes per 

wavelength. A relatively large structure operating around 1 MHz therefore presents a 

significant but approachable challenge. The benefit of modelling a transducer 

operating in continuous wave mode is that the generation of field results is only 

required at one frequency, although some electrical response pre-analysis is required 

to determine the resonant behaviour of the device.

3.2 Physiotherapy transducer

A common design for a physiotherapy transducer is an air-backed, circularly 

symmetric device operating with a fundamental frequency around 1 MHz in 

continuous wave mode, meeting the modelling criteria here. Consequently a 

physiotherapy transducer was designed and the details passed to George Cattermole 

of S.I. Transducers for construction. It should be noted that a recent reassessment of 

the internationally agreed standards for the requirements of physiotherapy devices 

and associated fields also meant that there was a comprehensive and up-to-date set of 

guidelines around which the experimental measurements could be based.

Figure 3.1 shows the design of the device considered. A thickness poled Ferroperm 

Pz26 disc designed to have a thickness extensional resonant mode close to 1 MHz 

was mounted in a cylindrical ABS plastic inner casing. The disc was secured into a
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groove, cut into the front end of the inner casing, with epoxy so that the front face of 

the disc was flush with the edge of the casing. The diameter of the disc was slightly 

smaller than the diameter of the groove so there was a small gap here of the order of 

0.3 mm. A piece of flattened copper wire was passed across the front of the disc and 

held in place by a small amount of solder at opposite edges of the disc. On the back 

of the disc two leads of copper wire were attached at opposite edges using small 

amounts of solder. The back end of the inner casing had an ABS end cap with a hole 

drilled in the middle into which a Harwin pin was secured, by which electrical 

connections were made. The inner casing was housed within an outer casing made 

from a stainless steel tube with an inner diameter slightly larger than the outer 

diameter of the ABS casing. The inside surface of the outer casing was coated with 

epoxy and the ABS casing slid into it and secured. The face of the disc was not flush 

with the outer casing but secured at a depth equal to the thickness of the required 

quarter-wavelength matching-layer. The final part of the transducer construction was 

to pour the Araldite matching-layer into this recess and allow it to ‘cure* for 

approximately a week before machining it down so as to be flush with the outer 

casing. The remaining component was an UHF connector mounted in the stainless 

steel end-cap. The wire from the front of the disc was passed between the inner and 

outer casings and connected to the case at the stainless steel end-cap. The wires from 

the back of the disc passed through the Harwin pin and into the UHF connector.

3.2.1 Physiotherapy transducer model

Figure 3.2 shows the initial model of the transducer that gave successful results. The 

Pz26 disc, inner casing, matching layer and glue layer are all included, along with 

dimensions measured during construction. The recess on which the disc rests in the 

real device, and the end-caps were not included in this model as it was designed to be 

a simple as possible whilst incorporating the features that were expected to be of most 

significance. Wiring and soldering were not included because of the use of symmetry. 

Although this could have some minor effect on the generated field it was not 

expected to be significant. An earlier model had included a full-size stainless-steel
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Figure 3.1 Physiotherapy transducer, back-to-front slice. Piezoelectric disc (yellow), matching layer 

(mustard), glue layers (green), inner casing (light grey), outer casing (dark grey), wires & solder 

(black), and end-caps.

Inner casing 
thickness 1.165mm Glue layer thickness 

0.285mm

Inner casing length 
221.7mm

Inner casing end-cap 
length 49.7mm Disc thickness 

2.02mm

Disc radius 
12.55mm

Matching layer 
thickness 0.867mm

Figure 3.2 Physiotherapy transducer model. Back-to-front slice showing piezoelectric disc (yellow), 

matching layer (blue), glue layer (orange) and inner casing (green).
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outer casing, however, because of its length this caused a significant increase in the 

number of d.o.f. in the model and subsequently the run time. Before the outer casing 

was dispensed with a sequence of models was used to investigate its effect. It was 

established that removing the outer casing and applying a fixed boundary condition to 

the outside of the inner casing (corresponding to a rigid outer casing) had no 

significant effect on model output. This was not unexpected, as a thick stainless steel 

casing with high impedance would be expected to behave similarly to a rigid 

structural boundary condition. Acoustic FEs still surrounded the outside surface of 

the outer casing location, as a zero pressure-gradient here enforces the rigid restraint. 

Chapter 6  will consider the components not included here in more detail.

Table 3.1 lists the material parameters that must be defined to generate this structural 

model along with values and the source of these values. Stainless steel is included for 

completeness. At this stage in the modelling process a number of piezoelectric 

properties were not directly available from Ferroperm, the disc manufacturers. At a 

later date, however, all properties were specified. For the modelling results here the 

initial values outlined in Table 3.1 were used. The significance of the piezoelectric 

properties and the newly defined Ferroperm values will be investigated in Chapter 6  

when an analysis of all model parameters is considered. One final point should be 

made. A mistake occurred when calculating the required thickness of the 

matching layer due to the use of an incorrect velocity, so that the dimension shown is 

not for the material used. This should not effect the model however as the 

measured value is used.

3.3 Experimental measurements

Two sets of measurements were made for comparison with the model. Those 

specifically required by the EEC standard will be outlined in this section, while 

additional measurements intended to examine the repeatability of the experimental 

process and investigate the robustness of the model, will be presented in Section 3.4.
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PARAMETER UNITS VALUE SOURCE
Piezoelectric
S* (sxx) (syy) 10~12 m 2/N 13 Ferroperm (1995)

(szz) 1(T12 m 2/N 20 Ferroperm (1995)

S* (sxy) lO-12 m 2/N -4.23823 Madrid* (1999)
S* (syz) (szx) 10-12 m 2/N -7.0485 Madrid* (1999)

^ 6 6  (shxy) lO-12 m 2/N 34.47646 S- = 2 * ( S ' - S * )
(shyz) (shzx) 10-12 m 2/N 34.85 estimate Vemitron (1976)
(epzz type 2) 10"9 farads/m 6.34975 estimate Vemitron (1976)

£,5, (epxx type 2) 10“9 farads/m 7.35 estimate Vemitron (1976)
(ezx type 2) 10'12 C/N -130 Ferroperm (1995)

d„ (ezz type 2) 10"12 C/N 330 Ferroperm (1995)
d1S (exxz type 2) 10 “12 C/N 494 estimate Vemitron (1976)

P 103 Kg/m3 7.70 Ferroperm (1995)
P - 0.001 estimate Vemitron (1976)

Eccobond* 24
E 109 N/m2 2.70 Emerson & Cuming
P 103 Kg/m3 1.10 Emerson & Cuming
G - 0.25 estimate PAFEC (1995)
P - 0.01 estimate PAFEC (1995)

Araldite
E 109 N/m2 3.315058 calculation
P 103 Kg/m3 1.14 CIBA-GEIGY (1982)
G - 0.41 estimate PAFEC (1995)
P - 0.03 estimate PAFEC (1995)

ABS
E 109 N/m2 2.10 RS Components (1999)
P 103 Kg/m3 1.03 RS Components (1999)
G - 0.4 estimate PAFEC (1995)
P - 0.07 estimate PAFEC (1995)

Stainless steel

E 109 N/m2 195 PAFEC (1995)
P 103 Kg/m3 7.70 PAFEC (1995)
G - 0.3 PAFEC (1995)
P - 0.005 PAFEC (1995)

Table 3.1 Material properties of original physiotherapy transducer model. Sources of property values 
are given in the references section.
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All measurements were taken in the near-field of the device. It is in this region that 

the variation is most extreme and the maximum pressure values occur.

3.3.1 IEC standard measurements

The IEC standard is concerned with the characterisation of output performance, the 

requirements for safety due to the generated ultrasonic field, acceptance criteria for 

aspects of performance and the techniques for measuring all of these features. The 

parameters of significance here are acoustic working frequency, output power, 

effective radiating area AER, beam type, and beam non-uniformity ratio RBN 

(Hekkenberg et al., 1994; Hekkenberg, 1998).

3.3.2 Acoustic working frequency

Here the acoustic working frequency is taken as the fundamental resonance frequency 

of the device. This is the primary operating frequency of the device and it is at this 

frequency that the majority of measurements were made. To determine the resonant 

frequency of the transducer its electrical response was measured at Bath using a 

Hewlett Packard 4192A impedance analyser controlled by a PC. The face of the 

transducer was immersed in water and the device driven in continuous-wave mode at 

a range of frequencies around 1 MHz. Figure 3.3 shows a plot of conductance versus 

frequency. The measurement was repeated a number of times over the course of this 

work, each time producing a similar curve. The exact position of the resonance has 

been seen to vary by a few kHz, although the final working frequency was 

determined to be 1.027 MHz. Some consideration will be given to the effect of 

frequency on the generated field later in this chapter. Figure 3.3 suggests that the 

response of the transducer may vary significantly with frequency close to resonance.
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3.3.3 Output power

The output power was measured using a radiation force balance at NPL. The 

experimental set-up is shown in Figure 3.4. A Hewlett Packard (HP) 3336C 

synthesiser/level generator was connected to the transducer via an ENI 240L RF 

power amplifier (50 dB) and a HP 3403C true rms voltmeter. The transducer was 

held by a retort stand, boss and clamp and its face was submerged just below the 

surface of a beaker of de-gassed, de-ionised water (temperature approximately 2 0 0 C ) 

which rested on an EMS precision ultrasound radiation force balance. The device was 

centred over an air-backed conical nickel target of diameter 60 mm and any air 

bubbles were brushed away from the transducer face. There was an acoustic absorber 

around the inner curved surface of the beaker that is not shown in diagram. The 

acoustic power output was directly related to the force exerted on the target. The 

drive level was increased up to a value that was not expected to damage the 

transducer and decreased in the same way to establish the consistency of the response 

of the device. A series o f such measurements were made at frequencies around 1.027 

MHz and a maximum power output of 14.10 W was measured for an rms drive 

voltage of 26.4 V. This value will be used later to establish generated intensity levels.

3.3.4 Scanning tank measurements made at NPL

Unless otherwise stated all acoustic field measurements were made using the 

scanning tank equipment shown in Figure 3.5 in accordance with the IEC standard. 

The transducer was driven in continuous wave mode with a voltage that did not cause 

intensity levels to exceed 0.5 W/cm2 in order to avoid the possibility of cavitation in 

the water. The drive set-up was as for the radiation force-balance measurements with 

a HP true rms voltmeter connected across the amplifier. The transducer was held in a 

clamp that allowed it to be tilted and rotated, and was directed towards the Dapco 

0.6 mm needle hydrophone held in a second clamp. The movement of both transducer 

and hydrophone were controlled by a Mclennan stepper-motor PM 170 series control- 

unit that allowed movement in the three orthogonal directions parallel to the sides of
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Figure 3.3 Conductance of the physiotherapy transducer versus frequency. Based on several 

measurements of the conductance of the device an acoustic working frequency of 1.027 MHz was 

established for the purposes of making all IEC standard measurements.
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in beaker o f water

HP 33GC 
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HP 3403C true  
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P recision
ultrasound balance

Figure 3.4 Radiation force-balance set-up.
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Figure 3.5 Scanning tank set-up.
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the tank. A HP 9122 computer controlled the stepper-motor unit via a translator box. 

The same PC controlled the storage of data from the hydrophone that was recorded 

by a Tektronix 2430A oscilloscope. A 5564 amplifier amplified the signal from the 

hydrophone. Five pieces of acoustically absorbing material were placed in the tank to 

minimise reflections -  one at each end, one at the base and one at each side (not 

shown in Figure 3.5). The tank was filled with de-gassed, de-ionised water, at around 

20° C .

All of the field measurements were made using a Dapco 0.6 mm needle hydrophone, 

although in order to calibrate this device (to give absolute pressures) a few 

measurements were made with a reference membrane hydrophone. The use of a 

Dapco 0.6 mm hydrophone has been validated as providing field measurements of 

acceptable accuracy for devices with differing beam profiles (Hekkenberg et al. 1994; 

Hekkenberg, 1998). Furthermore the use of this type of hydrophone is generally 

recommended for a physiotherapy device operating in continuous wave mode 

(Preston, 1991). Of course there are limitations to the accuracy of such a device due 

to its finite size, and the measured signal will be proportional to pressure averaged 

over the receiver (Verma, 1995). Here the hydrophone element is less that half a 

wavelength in diameter for the source operating around 1 MHz. In areas where the 

pressure variation is most extreme, which is likely to be close to the source, the finite 

size of the hydrophone will make absolute results less accurate due to averaging. 

Hekkenberg et. al. (1994) covers the significance of spatial averaging and the 

directionality of the receiver on the IEC standard measurements, concluding that the 

standards are robust enough to account for such effects. For the additional near-field 

measurements it is expected that the absolute pressure values close to the source may 

be somewhat inaccurate but that the main features of the field will be represented 

accurately. Comparisons in the region close to the source are further complicated by 

the need to consider the variation with frequency (close to resonance) and in 

identifying the exact position of the hydrophone relative to the transducer.
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3.3.5 Beam alignment axis

In order to make the measurements outlined here it was first necessary to establish the 

beam alignment (or acoustic) axis of the transducer. This procedure needed to be 

repeated between measurements to ensure that the device was aligned correctly and 

also to take into account the fact that the acoustic axis may be somewhat frequency 

dependent. The procedure specified for the IEC standard (Hekkenberg et al. 1994; 

Hekkenberg, 1998), was used to establish the beam alignment axis for all of the 

measurements made here. The procedure was as follows:

Firstly the hydrophone was positioned touching the face of the transducer 

approximately at its centre. The hydrophone was moved out to a near-field position at 

a range a2 IX  where a is the radius of the element and k  is the wavelength. Here the 

oscilloscope signal was maximised by adjusting the horizontal and vertical positions 

of the hydrophone. Next the hydrophone was moved to a far-field position at 2 a 2 I k  

and again the signal was maximised, this time by adjusting the tilt and rotation of the 

transducer. The hydrophone was then moved back to a range a 1 I k  and the whole 

process repeated. This sequence was repeated several times until an alignment was 

reached such that no further increase in the signal could be achieved. The axis so 

established was taken as the beam alignment axis. This process could be 

supplemented by an ‘automatic’ optimisation if required. Here the software moved 

the hydrophone in increments of the order of 0 . 0 1  mm and measured the voltage 

output until it decreased by ~ 1 dB. It did this in the +/- horizontal and vertical 

directions around the initial axial position, establishing the peak as the axial position.

3.3.6 Calibration of needle hydrophone

Absolute pressure values were not required for establishing the values of any IEC 

standards parameters, as the voltage response of the hydrophone was adequate. 

However for absolute model-experimental field comparisons actual pressure values 

were required. The calibration of the needle hydrophone is described now so that IEC
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measurements of the acoustic field can be presented in terms of absolute pressure 

values.

The calibration process took a voltage measurement in the field using a calibrated 

membrane hydrophone and converted the voltage to a pressure value. The membrane 

was then replaced with the Dapco needle hydrophone and a voltage measurement 

taken at the same point in the field so a Dapco voltage-to-pressure conversion factor 

could be calculated. The membrane hydrophone used was a GEC Marconi PVDF 

bilaminar shielded model with a 0.5 mm element and was a direct replacement for the 

needle hydrophone in the experimental set-up. Comparative measurements were 

made at similar frequencies and for the same pre-amplified drive level o f -27.0 dBm. 

The actual drive voltages were read from the rms voltmeter. Table 3.2 shows the 

needle hydrophone receive sensitivities for several frequencies around 1.027 MHz.

Frequency (MHz)

--=—--------------------------i
Receive sensitivity 

M  (//V/Pa)

1.019 1.50654

1.023 1.62323

1.027 1.90125

1.031 2.09816

1.035 2.03642

Table 3.2 Dapco hydrophone sensitivity.

Here M  is the output voltage equivalent to 1 Pascal.

3.3.7 Effective radiating area AER

Physiotherapy transducers are capable of generating relatively high intensity levels 

with the potential for causing adverse biological effects, (Hekkenberg et al., 1994; 

Hekkenberg, 1998). It is therefore important to know power and intensity levels being
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delivered to a patient. Intensity is calculated by dividing acoustic output power by a 

characteristic area through which the majority of the ultrasound power passes. The 

IEC standard classifies this characteristic area as the effective radiating area AER .

The new EEC definition of AER was intended to make the parameter less sensitive to 

local variations in the acoustic field whilst relating it to the characteristics of both the 

source and the field. To achieve this an additional parameter, the beam cross- 

sectional area ABCS, is used in the derivation of AER such that:

Ae r=Fac*Abcs{ 0) . (3.1)

Here ABCS (0) is the beam cross-sectional area at the transducer face that is derived 

from a linear regression applied to four ABCS measurements made at different 

distances from the source and extrapolated back to the face. The use of four different 

planes of measurement has been shown to make AER less sensitive to field 

inhomogeneities (Hekkenberg et. al., 1994; Hekkenberg, 1998). ABCS is the minimum 

area in a specified plane perpendicular to the beam alignment axis which contains 

75% of the spatial integral of the total mean square acoustic pressure ( pmst) where

pms, = = T ^ H U> (3-2>M l w

and N  is the number of points in the scan, Ut is the hydrophone voltage (either peak 

or rms.) at the i th point in the scan, p. is the acoustic pressure at the i th point in the 

scan, and M L is the end of cable loaded sensitivity of the hydrophone.

Fac in Equation 3.1 is a conversion factor used to compensate for the fact that ABCS 

is determined from an area representing only 75% of the total mean square acoustic
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pressure. Although this should mean that FAC = 1.333, its value has been shown to be

dependent on the distances chosen for the raster scan measurement planes 

(Hekkenberg et al. 1994; Hekkenberg, 1998). The standard gives the value to be used 

as Fac = 1.354.

The measurement of ABCS and subsequently AER proceeded as follows. The beam

axis was found by alignment and the hydrophone moved along this axis to the point 

at which the planar raster scan was to be made. The peak signal in the plane 

/?(max)mj, was established - which should be close to the axis - by moving the

hydrophone horizontally and vertically in small increments or using the ‘automatic 

optimisation process’. Having established the peak the hydrophone was moved in one 

of the four orthogonal horizontal and vertical positions until the -28 dB limit of 

/?(max)rmj, equivalent to 4%, was reached. Care had to be taken to ensure that a 

global, as opposed to local, minimum was achieved. The hydrophone was then 

returned to ^ (m ax)^  and moved similar distances in the other three orthogonal

directions, establishing the -28 dB position in each direction. The maximum of these 

four distances was doubled to give the dimensions of the square plane to be scanned 

about ^ (m a x )^ , using a constant step size. In practice a square grid of 51 points by 

51 is scanned and the step size calculated accordingly.

The Abcs value in a plane was calculated by sorting the U, scan values into 

descending order and summing them to calculate the value of n that satisfies:

1 n 1 n+1

*  °-75Pms- < •  (3-3)
M l  j - l  M l  m

Then Ascs = nAs2 cm2, where As is the scan step size in cm. It should be noted that 

in practice M L, the voltage-to-pressure conversion factor, does not need to be 

calculated due to the definition of pmst in Equation 3.2.
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The IEC standard has designated 10 mm, 20 mm, 40 mm and 80 mm as the distances 

from the source at which raster scans should be made for calculation of ABCS (0). 

Figure 3.6 shows part of the contour plot for the scan at 40 mm. The full scan 

measured an area covering +/- 51.25 mm off-axis in both horizontal and vertical 

directions, with a step-size of 2.05 mm. The scan data not included here all lies 

within the lowest voltage contour range shown. It can be seen that although the 

overall nature of the field is symmetric about the acoustic axis there are definitely 

signs of asymmetry. This may be significant in terms of establishing the beam 

alignment axis and generating axial scans. It may also be of particular importance 

when making model-experimental comparisons. However the planar raster scan is 

clearly comprehensive in its assessment of the field in a plane and as such is ideal for 

establishing the nature of the generated acoustic field. Figure 3.7 shows the four 

Abcs field values and the extrapolation that establishes ABCS (0) as 2.24 cm 2.

Equation 3.1 then gives a value for AER as approximately 3.03 cm 2.

3.3.8 Intensity levels and beam type

It was shown in Section 3.3.3 that the physiotherapy transducer has the capability of 

generating power in excess of 14 W. Dividing this by the value of AER gives an idea 

of the effective intensity levels that can be generated by the device, which in this case 

is approximately 4.66 W/cm2. The “absolute maximum effective intensity” value 

defined in the EEC standard is 3 W/cm2. This value is of little significance when 

making model-experimental comparisons, as increasing the model drive level will 

just linearly increase field pressure values. However it does highlight the potential 

for physiotherapy devices to generate high intensity levels with implications for 

adverse biological and heating effects. In practice, of course, the device would not be 

operated at the high drive level used to generate output power of the order of 14 W.
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Figure 3.6 Contour plot of raster-scan data at 40 mm from the source. Plotted values are rms voltages, 

in volts, and measurements are centred about the beam-alignment axis.
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Figure 3.7 ABCS values at the four planes specified by the IEC standard -  10, 20, 40 and 80 mm. 

Extrapolation back to the y-axis gives a value of ABCS (0) as 2.24 cm leading to a value of 

3.03 cm2 for the AER.
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An additional parameter that can be determined from the ABCS measurements is the

categorisation of the beam type. This is based on the gradient (m) of the linear 

regression shown in Figure 3.7. The following 3 beam types are defined:

m > 1 divergent 

-  0.5 < m < 1 collimated

m < -0.5 convergent

The value of m for the physiotherapy transducer used here is approximately 0.19 

giving a collimated beam type.

3.3.9 Beam non-uniformity ratio RBN

potential for very high local acoustic pressures or ‘hot spots’ (Hekkenberg et al. 1994; 

Hekkenberg, 1998). Such hot spots may result in excessive heating in regions of the 

area being treated giving rise to potentially harmful effects. The evaluation of the 

non-uniformity of the generated field is therefore of considerable importance and to 

this end the beam non-uniformity ratio RBN is specified in the IEC standard as

where I SPTA is the spatial peak temporal average intensity, and I SATA is the spatial 

average temporal average intensity. Also

Physiotherapy devices can produce highly inhomogeneous ultrasonic fields with the

(3.4)

t  _  t 'S P  _  ~  SP
SPTA -  n. _  “  O J / 22 pc 2 M Lpc

_ 2 j  t 2
P s p  _  U  SP (3.5)
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and
power

(3.6)

Here / ^ i s  the acoustic pressure corresponding to USP (the maximum in-field 

voltage), p  is the density of sound in water, c is the speed of sound in water, and s 2 

is the area per raster scan measurement. For constant p , c and M L during the 

measurements this leads to

improved accuracy.

From Equation 3.4 Rm  is seen to essentially measure the ratio of the highest 

intensity in the field to the average intensity. The value of RBN therefore literally 

specifies the relative level of the hottest hot spot. The calculated value for RBN here 

is 4.77, which is well within the IEC maximum value of 8 . The IEC maximum is 

twice the value of the RBN calculated for a field due to an ideal plane piston source,

and is used to allow some deviation from the ideal case (Hekkenberg et al. 1994; 

Hekkenberg, 1998).

This concludes the measurements made in accordance with the IEC standard. 

Consideration will now be given to additional measurements made on the transducer.

U lASP̂ ER (3.7)

i=i

where the ^ U f s 2 term is averaged over the four ABCS measurement planes for
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3.4 Additional measurements

Additional near-field measurements provided further insight into the performance of 

the transducer and the nature of the generated near-field. They also offered the 

opportunity for a more comprehensive model-experimental comparison and some 

consideration of the robustness of the experimental measurement process as well as 

the robustness of model-experimental comparability. What follows is an outline of 

the additional measurements made, an explanation of why this was considered 

necessary and what additional information they gave.

3.4.1 Frequency variation

It was mentioned in Section 3.3.2 that the conductance response for the physiotherapy 

transducer suggested that the device was sensitive to drive frequency. Some 

consideration of the effect of varying the frequency around the main resonance was 

therefore useful in terms of establishing how close to resonance such devices must be 

driven for their behaviour to remain consistent. In addition the operating frequency 

might be significant from a modelling point of view if  the resonant frequency of the 

model was different from that of the real device. In more general terms a 

consideration of the operation of the real device off-resonance could be used for 

comparison with the model to test the robustness of the simulated system when 

operating off resonance.

With this in mind, a series of axial measurements were made at various frequencies 

close to the resonance of 1.027 MHz. In addition some cross-axial scans were made 

at 1.027 MHz and 1.031 MHz. Cross-axial scans were used here as an alternative to 

detailed raster scans in order to save time. These scans show off-axial data at 

orthogonal +/- horizontal and vertical directions about the axis. Figure 3.8 shows 

axial output at three frequencies: 1.023 MHz, 1.027 MHz and 1.031 MHz. Although 

there is some variation in the amplitudes of the various maxima and minima the 

features essentially remain consistent. Figure 3.9, on the other hand, showing axial
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Figure 3.8 Measured axial response of the device at 3 frequencies centred about the resonant 

frequency of 1.027 MHz. The pressure values shown here have been calculated using the hydrophone 

sensitivities shown in Table 3.2.
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Figure 3.9 Measured axial response of the device at 3 frequencies centred about the resonant 

frequency of 1.027 MHz. There are clear differences in the features of the plots, particularly at 

1.019MHz.
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plots at 1.019 MHz and 1.035 MHz in addition to 1.027 MHz, shows some clear 

variations in the characteristics of the field. Figure 3.10 shows horizontal cross-axial 

output at 1.027 MHz and 1.031 MHz, and again although the general shape of the 

plot is consistent there are some obvious differences. These plots highlight the 

sensitivity of the device to operating frequency and suggest that the operating 

frequency may be significant for making accurate model-experimental near-field 

comparisons.

3.4.2 Repeat axial measurements

It has already been mentioned that the IEC standard was designed not to be overly 

sensitive to source and field inhomogeneities. In the case of model-experimental 

comparison however, a direct comparison between specific sections of the acoustic 

field would provide a good indication of the accuracy of the simulation. It must 

therefore be established how robust the experimental measurements are in critical 

areas of the field, so that an effective comparison can be made. Despite the efforts of 

the IEC standards derivation some parameters do rely on fairly specific 

measurements. For example the beam-alignment axis must be determined and along 

with it the peak pressure value in the field. It was therefore reasonable to consider 

how repeatable the beam-alignment process was. Repeat axial measurements were 

therefore made at the same frequency after realignment of the transducer to establish 

the repeatability of the experimental process. Figure 3.11 shows comparisons of three 

axial scans at 1.027 MHz made at various times when the scanning tank equipment 

had been re-adjusted. It can be seen that there is the potential for significant 

differences in the definition of the axis, particularly close to the source. Although two 

of the scans are in good agreement the third is somewhat different. It is likely that 

some error was made in finding the acoustic axis in this case, something that will be 

considered more closely when looking at model results in Chapter 5. These plots 

would suggest that although the IEC standard procedure for establishing the acoustic 

axis may be acceptable for characterisation of the generated field, care must be taken 

when making direct model-experimental axial comparisons. The output shown here
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Figure 3.10 Horizontal cross-axial response at 10 mm from the source at 1.027 MHz and 1.031 MHz. 

The data has been re-centred for the purposes of comparison. Here the beam intensity is evenly 

distributed about the acoustic axis.
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Figure 3.11 Repeat axial scans at 1.027 MHz made at different stages during the experimental process.
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suggests that the position and amplitudes of the last on-axis minima and maxima are a 

feature that can be measured repeatedly with some success. However the position and 

amplitude of other maxima and minima close to the device are clearly less reliable. 

Axial comparison with model output in Chapters 5 and 6  will be made with this in 

mind.

There are two further points to note here. Firstly it will be seen that both real axial 

and cross-axial/planar scans shown here are significantly different from analytical 

output for an idealised plane piston source. This emphasises the need for a 

comprehensive assessment of the field due to a real device, as opposed to relying on 

idealised predictions, for the evaluation of models. Secondly, when the physiotherapy 

device was constructed there was some concern that it might not behave similarly to a 

“mass-produced” physiotherapy device used for medical purposes. In fact there are a 

number of reasons to believe that the device used here was behaving in a similar 

manner to ‘typical’ physiotherapy devices. Firstly the measured EEC parameters have 

conformed to standard physiotherapy transducer values. Secondly, comparisons of 

field measurements made here with those reported by Hekkenberg et. al. (1994) and 

Hekkenberg (1998) suggest that the main characteristics of field are consistent. 

Thirdly, these results were obtained at NPL, where such measurements are made on a 

regular basis; the field characteristics observed here are typical of those seen for other 

physiotherapy devices (private communication).

3.4.3 Repeat cross-axial scans

The potential for variation between successive raster scans raises different issues 

from the repeatability of axial scans. Clearly if a plane is scanned the overall 

characteristics of the field will be retained in the measurement even if the central 

point, about which the measurement is made, varies. What is significant here, 

however, is the accurate positioning of the hydrophone at a given distance away from 

the source where the planar scan is to be made. As the initial positioning of the 

hydrophone at the face of the transducer was made by hand, before it was moved a
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specific distance away, inaccuracies might be expected here. In addition the axial and 

cross-axial scans in Figures 3.8-3.11 suggest that the exact position of field features 

such as maxima and minima are highly sensitive to the operating frequency, 

particularly close to the source. All of this could again prove significant in terms of 

making model-experimental planar comparisons at specific distances away from the 

device. In order to investigate this a series of cross-axial scans were made at 4.0, 4.5, 

5.0, 5.5, and 6.0 mm from the source as well as at 9.0, 10.0, and 11.0 mm. Whilst 

rapid variations on a small scale might not significantly effect the IEC parameters 

measured they could clearly be significant if  the response of the model is somewhat 

different to that of the real device. Furthermore such scans provide considerable 

insight into the variation of the field close to the source. Figure 3.12 shows the 

horizontal scans at 4.0-6.0 mm, and Figure 3.13 shows the scans at 9.0-11.0 mm, for 

the transducer operating at 1.027 MHz in both cases. It can be seen in both cases that 

although the overall nature of the field is reasonably consistent there is some 

variation. In particular there are some noticeable pressure changes moving away from 

the source between 4.0 mm and 6.0 mm. Some account will need to be taken of this 

type of extreme variation close to the source when model-experimental comparisons 

are made.

3.4.4 Parallel axis measurements

The planar scan shown in Figure 3.6 clearly suggests that the generated field is not 

truly axi-symmetric. This is in contrast to the model where axi-symmetry is assumed. 

Some assessment of the potential significance of such asymmetry on the model- 

experimental comparison is therefore useful. A reasonably straightforward way of 

investigating this is to make a set of scans parallel to the axis to establish the effect of 

moving off-axis. Figure 3.14 shows the series of measurements that were made in 

succession, on the acoustic axis and at 0.5 mm, 1.0 mm and 2.0 mm parallel to the 

acoustic axis when the transducer was operating at 1.027 MHz. It should be noted 

that the axial scan used here is the one that is in very poor agreement with the other 

two in Figure 3.11. The 0.5 mm and 1.0 mm scans show good agreement with the
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axial one, however there is clearly some variation when measuring further off-axis. 

These results, along with the repeat axial scans again suggest that care will need to be 

taken when comparing the axial scan of the circularly symmetric model with that of 

the real device.

3.5 Summary

This chapter has considered the design and construction of a physiotherapy 

transducer and its corresponding transducer model. The real device has been shown 

to be an effective physiotherapy device, meeting the requirements of the IEC standard 

for physiotherapy transducers, and having field characteristics consistent with 

physiotherapy devices in general. It has also been observed that the generated field is 

considerably different from that of an ideal piston transducer. Furthermore it has been 

seen that there are a number of experimental considerations such as the location of 

the acoustic axis, the operating frequency, and distance from the source where minor 

changes have the potential for making a significant difference to the measured results. 

Care will clearly be required when making model-experimental comparisons for the 

near-field close to the transducer. This will be considered further in Chapter 5.

The following chapter will complete the assessment of the modelling process by 

establishing the effectiveness of the various techniques for modelling an unbounded 

acoustic region. Once an effective model of the unbounded fluid region has been 

generated, a complete model of the transducer radiating into such a fluid region will 

be generated. The experimental measurements shown in this chapter can then be 

compared with model output in Chapter 5.
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Figure 3.12 Cross-axial horizontal scans at 1.027 MHz. The output shown is made up of five cross- 

axial scans between 4.0 - 6.0 mm inclusive, in steps of 0.5 mm. The scans have NOT been re-aligned 

about the acoustic axis here.
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Figure 3.13 Cross-axial horizontal scans at 1.027 MHz. This output is made up of three cross-axial 

scans between 9.0 - 11.0 mm inclusive, in steps of 1.0 mm. Again the scans have NOT been re

aligned about the acoustic axis.
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Chapter 4

4.1 Introduction

A significant problem when considering solving the problem of a body radiating into 

an unbounded fluid region by FEM is that of how the unbounded region is to be 

modelled. As outlined in Chapter 2, one of three approaches is generally adopted. The 

first is to mesh with standard acoustic elements out to some (large) distance and apply 

an appropriate boundary condition. Often such an approach is computationally 

expensive, if not prohibitive, as is the case here. The second is to employ some sort of 

‘infinite’ element that radiates pressure outwards, incorporating both wave-like 

variation and a decay term so that the pressure decreases towards zero at infinity. 

PAFEC employs wave envelope elements as their “infinite” elements. The third 

approach is to use boundary elements. Here only the fluid region on the surface of the 

radiating structure is discretised, and some fluid-structure relationship used in 

conjunction with the structural force-displacement equations so that the entire 

problem can be solved. When the fluid-structure interaction has been solved, exterior 

field values can easily be calculated.

Chapter 2 introduced the basic features of WEEs and two BEM options, CHIEF and 

DAA2c. Within the literature there is little discussion of which of these techniques 

are appropriate for the specific types of problem considered here. This chapter will 

now consider and compare these methods for modelling the near-field of high 

frequency, axi-symmetric, idealised sources radiating into unbounded fluid regions. 

Consideration will be given to the practical use of the models including 

computational requirements and simulation run times. Particular attention will be 

given to the WEE models for which it will be seen that a number of features must be 

addressed correctly for a successful simulation. The formulation of WEEs will be 

considered to establish how its features effect the accuracy of a fluid-structure system 

modelled in this way. Having established which fluid modelling techniques are 

appropriate for use here Chapter 5 will combine the structural model generated in
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Chapter 3 with the fluid models used here to generate a model of the complete 

system.

4.2 Wave envelope elements

Possibly the most important features of the WEE, in terms of their practical use here, 

are the shape function and global-to-local mapping used to map an “infinite” element 

onto a finite one. These parts of the element formulation will therefore be considered 

in some detail. The formulations presented are based on the work of Astley et al. 

(1994), Astley (1996), Astley (1998), Astley et. al. (1998), Astley & Hamilton 

(2000), and Cremers et. al. (1994). In particular the work presented in Astley et. al. 

(1998) offers considerable insight into the practical issues associated with using 

WEEs.

4.2.1 WEE shape functions and global-to-local mapping

Figure 4.1a shows the geometry of an individual 2-D wave envelope element. As 

discussed in Chapter 2, shape functions must be generated that will relate the 

unknown in the element to the unknowns at element nodes only, as in

h(x,y) = N (x ,y)h  . (4.1)

Although the 2-D problem will be considered here the approach is applicable to the 

3-D case. In the simple quadrilateral problem, considered in Chapter 2, the shape- 

fimction is generated by considering the Lagrange polynomial that passes through the 

nodal points. Here, however, several other points must be taken into consideration:

• The element must incorporate wave-like variation in the radial direction.

• It must also incorporate an appropriate decay term in the radial direction so that 

the field value decays to zero as the radial distance, r, tends to infinity.
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• When using WEEs the approach is to use standard acoustic FEs between the 

source and the WEEs. Consequently at the acoustic FE-WEE interface the WEE 

must be compatible with standard acoustic FEs, in particular in the angular 

direction

As can be seen from Figure 4.1a the element is defined with two nodes on the 

acoustic-WEE interface, nodes 1 and 2 that are respectively distances ax and a2 

away from the “virtual sources” from which they originate. It is these base nodes at 

the interface that define the essential features of the element. Additional mapping 

nodes 3 and 4 at distances ax and a2 away from nodes 1 and 2 in the radial direction 

respectively, are used for the global-to-local mapping of the element and to define the 

nature of the decay term. If quadratic acoustic FEs were used here, nodes 1-2 in the 

angular direction would include another node between them. There would also be 

another node in the radial direction between nodes 3 and 4.

The wave-like variation in the radial direction can be accommodated by the inclusion 

o f an exponential term. The shape function for a node I can be defined as

<pl(x ,y) = Pl (x,y)e-'lf'-°’) (4.2)

where r is the distance along the radial edge measured from its “virtual source”. At 

the acoustic-WEE interface where r = at , (z-0, 1, 2), the exponential term reduces to

unity. Pt (x, y) corresponds to the “conventional” basis function relating the variation

in the element to the variation at the elemental nodes. The formulation of this term 

will be outlined shortly.

As in previous problems a global to local mapping will enable a generic element to be 

derived. In this case it is this mapping that enables the infinite region in Figure 4.1a to 

be mapped into a finite space. Consider Figure 4.1b, which shows the parent element 

used in Figure 2.2b. The mapping from the global to the parent element is as follows
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Node Global Parent

1 U i.y i) ( - i - i )

2  (x2,y 2) (-1.1)

3 (*3 ^ 3 ) (0,-1)

4 (^4 ^ 4 ) (0 ,1)

This can be expressed as

x = '2 ,M i(£>S)xi and y = '£ M i(C,£)yi , (4.3)
/=! (=1

where

(C - i)  2 ( f - i )

M = -(i- |)d +P and Mt = d i± i)0±O . (4.4)
2(f -1 ) 2(C -1)

It can be seen that this enforces the following mapping along the radial edge of an 

element

(4.5)
r

where /=0, 1,..., 4. For WEEs the decay term used in the 2-D case is a polynomial in 

l /V r , and for the 3-D case is a polynomial in l / r . From the mapping in Equation 4.5 

it can be seen that this is the same as polynomials in -yjl-£  and (1 -  f ) respectively. 

Consider the 2-D case of L™ ), a Lagrange polynomial in ̂ / l - f  , as defined in

Chapter 2, where m represents the number of terms in the polynomial and j  represents 

the node within that element. For the generic element in Figure 4.1b, the polynomial 

for the base node 1, say, would be



This is a first order polynomial in 1/ 4 r . Similar terms for base node 2 and mapping 

nodes 3 and 4 would also result. An extension to this formulation is to increase the 

order of the polynomial in 1] 4 r . Consider now Figure 4.2 showing a generic WEE 

with 5 nodes along each radial edge, equally spaced between f  = -1  and f  = 0. 

Using this formulation the same node, base node 1, would now have a polynomial

,  v (V1-? +̂l+}2 +̂ 7̂ ](vwr™vr)
L l [ 1 ~ C)= 2 -V i)

(4.7)

which is now a fourth order polynomial in 1/ 4 r . The element shown in Figure 4.2 is 

classed as a WEE with radial order 5, referring to the number of nodes (base and 

mapping) in the radial direction. It will be seen that increasing the radial order of an 

element will, in some cases, allow the WEE-acoustic FE interface to be moved closer

to the radiating source. A final point to note is that at a specific node j, Lj (^  1 -  f ) is 

unity for f . and zero at all other radial nodes.

So far consideration has been given to the wave-like term and the radial decay term in 

the WEE basis function. It was also mentioned above that the WEE and acoustic FE 

must be compatible at the WEE base nodes. Both the exponential term and

polynomial decay term in 1/ 4 r  have been shown to be unity at the base nodes of the 

WEE. To complete the definition of the WEE shape function, some account must be 

taken of the WEE-FE compatibility in the angular direction, defined by the £ co

ordinate in the generic formulation. An interpolated value of the “virtual source” is
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Figure 4.1 Geometry of an individual wave envelope element, (a) The geometry of the problem in the 

global system, and (b) The mapping that allows the infinite domain to be mapped to the finite domain 

of [-1,1], [-1,1]. This is for the 2-D case.
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Figure 4.2 Geometry of a (generic) WEE of radial order 5. Here nodes 1 and 6 are base nodes and 

nodes 2-5 and 7-10 are mapping nodes used for the definition of the decay term.
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therefore required. To this ends a continuous quantity a(£) is defined over the base 

of the element

<*(§) = £51, (§)a, (4-S)
(= 1,2

where S,-(§) are the shape functions defined over the base of the parent element. In

this case, for linear angular shape functions, there are two terms for base nodes 1 and 

2 in Figure 4.1b, or 1 and 6  in Figure 4.2. For Figure 4.1b, Equation 4.8 can be 

written as

a,. = flg )  = [ a - { ) /2 ] fll+ [0  + §)/2]fl2 • (4.9)

For a quadratic element the quadratic angular shape functions would be used. 

The “conventional” term Pt (jc, y ) , is now defined as a combination of the Lagrange 

polynomial term and the angular shape function

P, (x, y) = - ^ .5 ,  ( V w ) • (4.10a)

The additional term, ^ / l - f  , is included so that there are no constants in this 

expression. This ensures that the shape function is of the form

<Pi ~ + J L +  + . * «

■fr V72 .......
e -a < r-* ,i _ (4.11)

As multiplying by ^ / l - f  is equivalent to multiplying by ^ — L > from Equation 4.5. 

This ensures that —> 0 as r —><*>, i.e. f  —>1. The additional J / ^  in Equation
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4.10a is then required so that Pz0c,y) is unity at the base nodes (where f  = -1 ), as

required. The “standard” formulation, ensuring that the shape function is equal to 

unity at a given node and zero at all others, is lost here for mapped nodes by the 

inclusion of these terms. This is not significant, however, as the purpose of these 

elements is to provide strategic points for the formulation of the decay term. 

Combining Equations 4.2, 4.5, 4.8 and 4.10a then gives a complete basis function in 

local co-ordinates

<p, (x, >0 = -j=.S, • (4.12)

This formulation can be extended to three dimensions where the polynomial decay 

term would be in 1/ r  and the equivalent formulation for the “conventional” term 

would be

P,(x, j-) = | . S 1. ( | ) . ( l - ? ) .L " ( l - 0  . (4.10b)

One significant feature of a commonly used WEE formulation, and incorporated by 

PAFEC, is that the same virtual source and distance to the WEE interface, a . , is used 

for all elements. This means that the quantity a(£) in Equations 4.8, 4.9 and 4.12 can 

simply be replaced by the constant aw .

This completes the formulation of the shape functions for a WEE. From Equations 

4.2, 4.10 and 4.12 it can be seen that the formulation meets all necessary 

requirements. The exponential term accounts for the wave-like variation. The 

Lagrangian term accounts for the polynomial decay term with distance. The infinite- 

to-finite mapping accounts for a zero pressure condition at the outer edge of the 

element, making the wave-like variation exclusively outward travelling. And the final 

expression is formulated so that it is equal to unity at base elements, making it 

compatible with acoustic FEs.
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4.2.2 Element formulation

Having defined the shape functions for a WEE relating the pressure variation within 

the element to pressure values at nodal points, the element formulations can now be 

considered. As in Chapter 2, the equations governing the variation of the primary 

unknown within the element, pressure, must first be defined. In fact these equations 

are exactly the same as those for the classical radiation problem considered in 

Chapter 2, section 2.4.3. They are repeated here and shown in Figure 4.3. Firstly, 

pressure in the acoustic region, p, must satisfy the Helmholtz wave equation

Secondly, in the “classical radiation” problem, pressure on the surface of the structure 

is related to outward normal velocity. Here the corresponding expression relates 

pressure on the base of the element to outward normal velocity

on the interface surface Sx. Thirdly the radiation condition at the outer edge of the 

element is

V 2p + k 2p = 0 (4.13)

dp/dnf = -iw pvn( |) (4.14)

As in Chapter 2 this can be replaced by a radiation condition imposed at some far 

field boundary, S2,

Vp- n2 + ikp = 0 on S2 . (4.16)
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The formulation and solution of the system of equations describing the simulation 

now follows the procedure set out in Chapter 2, sections 2.25-2.27. Firstly, following 

the Galerkin residual process, a trial function p  , is proposed in terms of known basis 

functions (pt and unknown coefficients qt

P =%%«>,■ (4 -!7)
/=1

Here r] is the total number of nodes in the system. Next a residual is defined for each 

of the governing Equations, 4.13, 4.14 and 4.16 and these residuals are minimised 

thus forcing the trial solution to be equal to the real solution. It is this minimisation of 

all of the governing expressions for all elements and all nodes that generates a set of 

equations describing the behaviour of the system conforming to the governing 

equations. This produces a set of 3 77 equations in r\ unknowns, which are then 

combined to yield a system of Tj equations that can be described as

[K+ ik R- fc2 M] 5 =F, (4.18)

where

q = [qv q2, . . : , q j , (4.19a)

K „ = J  (VW, ■'V<pj )d V , (4.19b)
V

R 0 = l  (WrVj)dS,  (4.19c)

M 0=J Wrq>jdV, (4.19d)
V
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and F .=J  ikpc W, .vn dS . (4.19e)
51

The significant difference now between the standard Galerkin formulation and the 

technique used here is in the choice of weighting functions, Wt . In a standard

formulation, as in Chapter 2, the weighting functions are chosen to be the same as the 

basis functions giving symmetric coefficient matrices in the system such as in 

Equation 4.18. In the case of WEEs, however, the weighting functions are made up of 

a product of three terms:

c \ 2 ‘ a '

r  >

P,eik ( r -a , ) (4.20)

From Equation 4.2 it can be seen that the second and third terms here are similar to 

the basis function <pz except that the exponential term, elk{r~ai) is the complex 

conjugate of the term in the basis function. This eliminates the exponential from all

integrals making them easier to evaluate. The first term,
/  \ 2  ' a: '

, is included to make

the volume integrals in the “stiffness” and “mass” matrices in Equations 4.19b and 

4.19d respectively, and the “damping” matrix in equation 4.19c, finite as r — 

(Astley et. al., 1994).

The expansion of the system of Equations 4.18 follows. The WEE system equations 

are then easily combined with the standard acoustic FE formulation at coincident 

nodes. It should be emphasised that for the acoustic FEs the weighting functions 

remain the same as the basis functions, as described in Chapter 2. Again as in Chapter 

2 , this set of equations can be combined with structural equations to form a system 

simulating a source radiating into an unbounded fluid region modelled with acoustic 

FEs close to the source and a layer of WEEs outside this. Boundary conditions can
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then be incorporated and the full set of equations solved by Gaussian elimination or 

some such technique.

This completes the outline of the theoretical basis of WEEs. Next consideration will 

be given to how these elements are used in practice and how the parameters described 

in the formulation of the WEE equations effect such simulations.

4.3 Radiating systems incorporating acoustic FEs and WEEs

To begin, consider Figures 4.4 and 4.5 showing WEE model predictions for the axial 

variation and radial variation at a range of 5 mm from an ideal source, respectively. 

These predictions are for a 12.55 mm radius, axi-symmetric, ideal, plane piston 

source operating in continuous wave mode. The cylindrical structure here is 

31.77 mm long with a radius of 15.885 mm. The operating frequency is 1.030 MHz 

equating to an acoustic wavelength of less than 1.5 mm in water. These parameters 

were chosen to correspond to the equivalent physiotherapy device described in 

Chapter 3. An ideal source was generating by restraining the structural elements in 

the source to displace with uniform phase and amplitude in the direction of the 

acoustic axis only. A constant amplitude displacement of 1.0E-09 m was prescribed. 

This was an arbitrary choice but was of the order of the source displacement of a real 

device. All other structural elements were completely restrained. All model results 

were generated on a Viglen genie P3 500MHz PC. Here the model incorporates both 

acoustic FEs and WEEs. As discussed in Section 4.2.1, a number of parameters must 

be specified in order to generate the (unbounded) acoustic region of such a model. 

Figure 4.6 shows the features of the acoustic region that must be considered. Details 

of these features for the plane piston model considered here are:
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Figure 4.3 Governing equations for a wave-envelope element (WEE).
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Figure 4.4 Model/theoretical axial response for a 12.55 mm radius, ideal plane piston source operating 

at 1.030 MHz.
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plane piston source operating at 1.030 MHz.
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• The radial order of the WEEs is 9

• The axial distance from the source to the acoustic-WEE interface is 44.115 mm, 

and therefore the shortest distance from the structure to the WEE interface is 

37.535 mm at the top comers of the structure.

• The “virtual source” of the WEEs is in the centre of the structure on axis -  that is 

15.885 mm behind the face of the piston radiator.

• The angular mesh intensity along the acoustic-WEE interface is 3 elements per 

wavelength throughout the whole of this boundary -  this in turn determines the 

meshing on the structure which, by the nature of the geometry of the problem, is 

therefore significantly larger than 3 elements per wavelength (of the order of 

6 - 1 0  elements per wavelength).

• The acoustic element meshing in the radial direction is over 6  elements per 

wavelength.

• The total number of nodes in the model is approximately 236,000. Here this is 

very close to the total number of d.o.f. as the majority of the model is made up of 

acoustic FEs with only one d.o.f. per node.

• The run time of the model (for one frequency) is approximately 5 hours.

• Whilst running the PC requires in excess of 2 GBytes of memory space.

In Figures 4.4 and 4.5 the model results are compared with analytical predictions 

obtained using a numerical integral solution to Equation 1.4. Very good model- 

theoretical agreement is observed, although there are some signs o f reflections from 

the FE-WEE interface towards the edge of the axial output (for z > 30 mm). (It 

should also be noted that although axial data is only presented here up to the 

interface, propagating the source data using a simple routine can generate results 

further along the axis. This technique is used to generate output for the physiotherapy 

transducer WEE model in Chapter 5.) The accuracy of the model used here is due to 

the fact that all o f the above mentioned parameters were specified effectively. It 

should be noted that inappropriate choices of these parameters can give rise to 

erroneous results and that in practice it took significant effort to obtain the agreement
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shown. The effect of each of the model parameters on model output will now be 

considered in detail.

4.3.1 Radial order

It was observed earlier that the radial order refers to the order of the polynomial used 

for the decay term in the shape function of the WEE. Astley et. al. (1998) discussed 

how WEEs of radial order m are capable of exactly representing multi-pole fields of 

order m - 1. It has previously been discussed (Zienkiewicz et. al., 1983; Cremers & 

Fyfe, 1995) how a combination of higher radial orders for the WEEs and a relatively 

large region of acoustic FEs, allow the WEEs to better approximate the behaviour of 

standard acoustic elements. This allows for a better approximation to the unbounded 

field of a given source and emphasises the dependence of the accuracy of the solution 

on both the order of the WEE and the modelled acoustic FE region.

In practice, however, for many of the models considered elsewhere (Cremers et. al., 

1994; Astley et. al., 1998) radial orders up to orders 5 or 6  have been adequate for the 

successful simulation of the surrounding unbounded fluid region. Indeed there has 

been some discussion (Cremers & Fyfe, 1995; Astley et. al, 1998; Morgan et. al. 

2 0 0 0 ) of instability problems linked with models employing higher radial order 

WEEs. No such problems have been encountered here where models have been 

generated incorporating elements of radial order up to and including 10. In fact 

Figure 4.7, showing axial output for the same plane piston model considered above 

but this time with WEEs of radial order 6  and 8 , shows a clear reduction in the 

accuracy as the radial order is decreased. The implication here is that only higher 

radial orders are capable of effectively simulating the surrounding unbounded fluid 

region for the system considered here. Although the reduction in radial order could be 

countered by an increase in the region of acoustic FEs, for this model increasing the 

extent of the FE region pushes both simulation run time and memory requirements 

towards the limits of the PC. It can be seen that some balance must be sought
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between the position of the acoustic-WEE interface and the radial order of the WEE 

decay term.

4.3.2 Acoustic-WEE interface mesh intensity

Next, consider the angular mesh intensity requirement at the acoustic-WEE interface. 

The regularly quoted rule of thumb when using standard acoustic elements is that of 

at least 3 elements per wavelength, although significantly more intense meshing is 

also frequently advised. The original model, with radial order 9 restored, is now 

considered where the meshing is only one element per wavelength. The model axial 

output is compared with theory in Figure 4.8, where the accuracy of the agreement is 

again reduced. Having said that, considering the reduction in mesh intensity the 

corresponding reduction in accuracy is not overly concerning. However it must be 

emphasised that if  the acoustic-WEE interface were to be brought closer to the 

structure the significance of the angular meshing would be more prominent. Astley et. 

al. (1998) highlights this, showing the intensity of the transverse (angular) resolution 

to be of particular importance at high frequencies for all multi-pole solutions.

Three further points should be made with respect to angular meshing requirements. 

Firstly, the meshing requirement must be retained throughout the whole of the 

acoustic-WEE interface, even where little variation in the field value is observed or 

expected. Secondly, increasing the mesh intensity here to some value significantly 

higher than 3 elements per wavelength shows little improvement compared with 

using a meshing of 3. Thirdly, the effect of the angular meshing on the mesh intensity 

throughout the rest of the model must be considered. The meshing at the interface has 

a direct effect on the meshing at the structure, and therefore on the acoustic FE region 

between the structure and the interface. A constant meshing requirement of 3 

elements per wavelength at the interface is likely to mean a significantly more intense 

meshing requirement for both the acoustic FEs and the structure. This can lead to a 

significant increase in the number of d.o.f.s in the system, as here. Alternative 

meshing geometries on the structure are an option, however in practice this is
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Figure 4.7 Model axial response for a 12.55 mm radius, ideal plane piston source operating at

1.030 MHz for models using WEEs with radial order 6 and 8.
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Figure 4.8 Model axial response for a 12.55 mm radius, ideal plane piston source operating at

1.030 MHz for a model where the meshing at the acoustic-WEE interface has been reduced from 3 

elements per wavelength to one.
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complicated by the fact that the meshing of separate sections on the structure must 

then correspond to meshing at the interface. This problem is magnified in the case of 

the real physiotherapy transducer model where there are a number of separate 

sections along the face of the device, corresponding to the disc, glue layer, inner and 

outer casing.

4.3.3 Meshing in the acoustic FE region

Now consider the meshing requirements in the acoustic FEs. The radial meshing used 

in the above model is approximately 6  elements per wavelength. Figure 4.9 shows 

how the axial output is changed when the meshing is reduced to 4 elements per 

wavelength. It can be seen that the model agreement is again less accurate. Two 

points are raised here. Firstly, a mesh intensity of at least 6  elements per wavelength 

would appear to be required close to the source. It can be shown that the mesh 

intensity around the structure meets this requirement in the angular direction due to 

the 3 elements per wavelength specification at the WEE interface. However further 

out, it has been observed that at the WEE interface a meshing of 3 is sufficient. So 

further away from the source it is possible that the radial meshing could also be 

reduced in line with angular meshing requirements. Secondly there are some practical 

considerations. There are restrictions on the ratio of the size of the sides of the 

quadrilateral acoustic FEs used, and indeed keeping the ratio of the sides as close to 

unity as possible is a reasonable requirement. It must be observed that, due to the 

semi-circular nature of the WEEs, at the top comers of the structure where the 

structure is closest to the WEE interface these size ratios are likely to be of even 

greater importance. Care must be taken that meshing requirements are simultaneously 

met in both directions without violating FE side restrictions.

4.3.4 (Relative) Distance from the source to the acoustic-WEE interface

Next consider the distance from the source to the WEE interface on axis. Figure 4.10 

shows the results of a model where all parameters are kept the same as the standard
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Figure 4.9 Model axial response for a 12.55 mm radius, ideal plane piston source operating at

1.030 MHz for a model where the meshing in the radial direction has been reduced from 6 elements 

per wavelength in the original to 4.
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case except that the distance from the source to the acoustic-WEE interface is reduced 

from 44.115 mm to 29.115 mm. This equates to a shortest distance of approximately

22.5 mm at the top comers of the structure. Again some reduction in the accuracy of 

the agreement is observed, and although it is not excessive it must be reiterated that 

this is for the case where all other WEE parameters remain unchanged.

4.3.5 Position of the WEE “virtual source”

Finally consider a model where the “virtual source”, the central point about which the 

WEEs are defined, is moved closer to the active face of the source. Figure 4.11 shows 

the axial output, which would appear to be in better agreement than the original 

model. This is to be expected as moving the “virtual source” closer to the face of the 

structure means that the WEE interface is now the corresponding distance further 

away from the source on axis. This means that there is a much larger area of acoustic 

FEs in front of the source, and as discussed above this is likely to lead to an 

improvement in the approximation of the real field over the WEE interface. 

Considerations on the positioning of the WEE virtual source has been approached 

elsewhere (Cremers et. al., 1994). Frequently previous consideration has involved 

either point sources or spherical sources, where the geometry is ideally suited to the 

use of WEEs. Here Figure 4.12 shows the geometry of the model, emphasising that 

moving the position of the virtual source has a significant impact on the meshing 

considerations throughout the acoustic FE region. It should be noted that the number 

of elements in Figure 4.12 is substantially less than that in the idealised model for 

which axial and radial output have been presented.

There are three points to be considered here. First are the size ratios of the acoustic 

FEs. Because the “virtual source” has been moved closer to the source the acoustic 

FE region in front of the source is now larger, whilst the region behind the structure is 

now smaller. Increased meshing in the radial direction is required to accommodate 

the larger acoustic region in front of the source. However if the radial meshing is kept 

constant throughout the acoustic region this can lead to significant over-meshing in

105



25000

20000
(0

CL

J  15000
■q.
E
? 10000 
I
“ ■ 5000

I
I

mode!

theory

10 20 30 40

distance along the acoustic axis / mm

50

Figure 4.11 Model-theoretical axial response for a 12.55 mm radius, ideal plane piston source 

operating at 1.030 MHz where the “virtual source” of the model has been moved closer to the face of 
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Figure 4.12 Geometry of the model of a 12.55 mm radius, ideal plane piston source operating at

1.030 MHz where the “virtual source” of the model has been moved closer to the face of the piston. 

Increased mesh intensity is required in some areas, and angles within the quadrilateral acoustic FEs are 

affected.
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the radial direction at the back of the structure. The possibility of violating side-size 

ratio restrictions for the quadrilateral elements is therefore a distinct possibility. 

Although varying the mesh intensity in this region is an option it can be a complex 

task. Secondly there are the angles subtended in the elements at the face of the 

source. To define the WEEs the angles from their central point must be specified. 

These are dependent on the size of the structure and the distance to the interface. 

Again these angles must meet certain geometrical requirements for the variation in 

the quadrilateral element to be valid. In practice moving the position of the virtual 

source closer to the face of the structure, although beneficial in terms of solution 

accuracy, causes considerable increases in the angles here. Finally a mention must be 

made of the effect on mesh intensity on the structure. When the virtual source is 

moved closer to the face the angles generated in the FE region are larger and the 

distance to the interface in front of the source is greater, but the meshing requirement 

at the WEE interface remains 3 elements per wavelength. Therefore more elements 

will be required along the face of the source to accommodate these changes. This is 

not of great relevance here where only a face-plate is required for an ideal plane 

piston model. However when the physiotherapy model is considered, the structural 

meshing is much more significant and increasing the meshing here can significantly 

increase the number of d.o.f.s in the entire problem.

4.3.6 WEE parameters -  summary and guidelines

To summarise, it has been shown that modelling an unbounded fluid region for a 

large ka system (here ka~54) can be achieved effectively using acoustic FEs and 

WEEs. The system considered here was an ideal plane piston model with similar size, 

geometry and operating conditions to the real physiotherapy device outlined in 

Chapter 3. However, in order to generate an effective model a number of parameters 

must be considered and chosen correctly in order to generate a successful model. The 

choice of these parameters is by no means obvious. In addition the choice is by no 

means straightforward, not least because the parameters are generally linked so that 

changing one has an impact on another. There are also a number of practical aspects
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that must also be tackled and all modelling considerations are compounded by long 

simulation run times. Some general guidelines for the modelling of large ka systems 

using WEEs follows.

Firstly, as for the modelling of any system, it is advisable to have field data against 

which the model can be compared and evaluated. As is the case here, if  there is a lack 

of field results for the specific system under consideration, it is beneficial to model an 

alternative, similar system for which theoretical or analytical results are readily 

available. For the case of a circularly symmetric transducer, the corresponding ideal 

plane piston source is an obvious initial choice. Secondly, the modeller needs to be 

aware of the theoretical formulations of the modelling techniques. Here this 

specifically refers to the shape functions of the WEEs, as outlined in section 4.2.1, 

and the governing equations that dictate the behaviour within an element, outlined in 

section 4.2.2. Combining this knowledge with practical considerations gained by 

attempting to model a relevant system will lead to a good understanding of the 

features that are of significance when attempting a simulation. Here the important 

features are

• ka size -  structural dimensions, frequency and wavelength

• Radial order

• Distance to interface

• Angular mesh intensity at the interface

• Mesh intensity in the radial direction (for acoustic FEs)

• WEE virtual source position

• Element angle and size restrictions

• Number of d.o.f.

• Simulation run time and memory requirements

It should be appreciated that many of these features are linked, so that varying one 

will have an impact on others.

108



Finally, modelling of any system with a large number of d.o.f.s, will be adversely 

affected by long simulation run times. It is advisable to start by considering models 

with smaller ka values. This will enable many features of a modelling ‘protocol’ to be 

established without having to deal with excessive run times, particularly if  errors are 

made in simulation specifications. Errors are always likely when such a large number 

of parameters are concerned and where the geometry and meshing requirements of 

the systems are complicated. This is even more applicable here as many of the 

relevant parameters are difficult to establish correctly before performing a simulation, 

and the accuracy of models must be balanced against run times and memory 

requirements.

4.4 Boundary element models

Due to the excessive run times and memory requirements of the WEE models, 

alternative “infinite” fluid modelling approaches were sought. Specifically, two 

BEMs, CHIEF and DAA2c will now be considered. An outline of the BEM was 

given in Chapter 2. The essential idea is to express the equations that govern the 

behaviour of the modelled system in terms of an integral over the surface of the 

system. Having done this, the surface of the system can be discretised and an 

approximate numerical solution sought to the integral problem. When modelling an 

unbounded fluid region only the surface of the radiating system needs to be 

considered initially, compared with the WEE technique where some extensive fluid 

region must be included directly. Once the fluid-structural interaction problem is 

solved at the BE surface, field values are calculated using some additional integral 

expression. In practical terms, for large ka systems, the use of BEM has the potential 

for significantly reducing the number of d.o.f.s in the modelled system. In Chapter 2 

the full system of equations for a structure radiating into a fluid region was given in 

Equation 2.29 as

[K + icoD -  a)2M] {d} = f (k) + f ip) (4.21)
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where f (p) represents the fluid loading at the fluid-structure interface. For the BEM 

this term will be in the form of an integral over the surface of the structure involving 

surface pressure and normal (surface) velocity. Essentially, the system is solved by 

the simultaneous solution of the equation of motion of the structure and the integral 

equation at the fluid-structure interface (Huang & Wang, 1985).

The “classical” radiation problem was discussed in Chapter 2, and the equations 

governing the response of a system with a structure radiating into an infinite fluid 

region considered. The geometry of the problem is shown again in Figure 4.13. These 

governing Equations, 4.13-4.17 were repeated above in section 4.2.2 for the 

formulation of WEEs. In Chapter 2 the “direct” approach of generating an expression 

relating surface velocity, surface pressure and pressure in the exterior acoustic region 

from these equations, was considered. This led to three integral equations

and

J  { ' <

These three equations are commonly referred to as the exterior Helmholtz integral, 

the surface Helmholtz integral, and the interior Helmholtz integral respectively. Here 

x  is a point in the exterior region, X  a point in the interior region, and if/ and g are 

points on the surface. Ideally the surface integral, Equation 4.23, would be used as the

,ikd(X,g)

d(X, g)
- i<opv(g)

Jkd{X,g)

d{X,g)
dS(g)=0 ,  X e R t, g e S (4.24)

.ikd{y/,g)

d ( y ,g )
-icopv(g)

,ikd(i//,g)

d ( v , g )
>dS(g), y , g e S  (4.23)

p(g)
,ikd(x,g)

d(x,g)
-  icopv(g)

Jkd{x,g)

d(x,g)
>dS(g) , x g R0, g e S , (4.22)
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‘fluid-loading’ term in Equation 4.21 above, and solved simultaneously with the 

system of equations describing structural response. From the surface pressure and 

velocity results generated by this system, the exterior integral, Equation 4.22, could 

then be used to generate field values. The use of Equation 4.22 following the solution 

of the fluid-structure problem is the standard procedure for generating field results. 

Unfortunately solving Equation 4.23 is not so straightforward.

4.4.1 CHIEF (Combined Helmholtz Integral Equation Formulation)

A problem encountered in the solution of the surface Helmholtz integral, Equation 

4.23, is one of uniqueness, i.e. whether or not the true surface pressure is the unique 

solution for known v(^). The solution of Equation 4.23 is non-unique at an infinite 

number of values of k  related to the corresponding interior Equation 4.24 (Seybert & 

Rengarajan, 1987; Matthews, 1986). This is a purely mathematical problem, and not a 

physical one. In order to overcome the problem, Schenck (1968) introduced the 

Combined Helmholtz Integral Equation Formulation (CHIEF) which sought to find 

the unique surface pressures that satisfied both the surface and interior Helmholtz 

integrals. This is achieved by firstly taking the standard N  x N  system of equations 

generated from the surface integral. Then an additional N c equations, for the interior

integral at C points, are generated resulting in an over-determined (N+ N c ) x N  

system. This system can then be solved. Ciskowski & Brebbia (1991) give a good 

account of the formulation of the “fluid loading” term, f (p\  in Equation 4.21 above 

for the solution of a radiating problem where the surface is modelled using CHIEF.

The significant practical feature here is the specification of the additional C 

“collocation” points within the region interior to the BEs. Although when computing 

facilities are limited the specification of a large number of additional collocation 

points may be unwanted, here an excessive number of points is not a problem. Of 

interest is how many additional points are required to generate an effective model, 

and where they should be positioned. Schenck (1968) gave little indication of how to
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position the additional points but did state that only a small number of “good” points 

were required to generate good results. Here “good” points are those that do not 

coincide with a nodal surface of the interior problem -  i.e. points where the interior 

(homogeneous) problem gives zero pressure. Seybert & Rengarajan (1987) concluded 

that even if  five interior points are located on a nodal surface but one is not, then an 

accurate solution could be expected. In both of these papers reference has been made 

to the fact that with increasing frequency the eigen-frequencies of the interior 

problem become more closely spaced, and are therefore more difficult to account for 

by the inclusion of a finite number of additional collocation points. Results in section

4.5 will be seen to support this.

4.4.2 Doubly Asymptotic Approximations (DAAs)

An alternative approach to the exact solution of the discretised surface Helmholtz 

integral, Equation 4.23, for the calculation of surface pressure and normal velocities, 

is the use of an approximate relationship. As in the exact method, once the structural- 

fluid problem has been solved field values can then be calculated by use of Equation 

4.22. Doubly asymptotic approximations (DAAs) are a BEM option that are used to 

supplement structural equations with an approximate fluid loading so that the system 

under consideration can be solved for fluid-structure interaction. The advantage of 

DAA techniques is that the problem of non-uniqueness, as outlined in section 4.2.1 

above, are avoided, and furthermore, that the fluid matrices generated in the solution 

are frequency independent (Geers & Felippa, 1983; Huang & Wang, 1985). This is of 

particular significance where consideration is to be given to a system over a range of 

frequencies, as here for the analysis of model parameters.

There are a number of alternative DAAs, their differences being due to the structural- 

fluid interaction approximations used. For the case of high frequencies, of interest 

here, the first order DAA formula, DAA1, uses the plane wave approximation 

(Felippa, 1980)
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p  = pcd (4.25)

where d  is surface velocity. In the solution of a radiating structure, Equation 4.25 is 

used in place of the s u r f a c e  Helmholtz integral and incorporated into the fluid- 

structure Equation 4.21 so that the full set of (approximate) fluid-structure equations 

can be solved simultaneously. In PAFEC the c u r v e d  second-order approximation, 

DAA 2 is used, which, for the high frequency case, uses the following approximation 

(Felippa, 1980; Felippa, 1980)

p  -  Kcp*  =  p c d  . (4.26)

Here k  is described as the “mean curvature” of the tangent to the plane at the point on 

the structural-fluid surface that the approximation is applied to, and the asterisk in p *  

denotes temporal integration. It is clear that the plane wave approximation results if 

the “mean curvature” k  is set to zero. A comprehensive account of the formulation 

of the different DAA techniques in the frequency domain can be found in Nicolas- 

Vullierme (1991) or Ginsberg (2000).

4.5 Idealised model comparisons

There are relatively few references in the literature to comparisons of “infinite 

element” and BEM approaches to the modelling of unbounded fluid media for a 

radiating source. Seybert et. al. (2000) compares fluid modelling options for a 

specific structure operating at low frequencies, but certainly little comparison has 

been made in terms of large k a  sources where the near-field of the radiating structure 

is of interest. Burnett (1994) gives a good overview of the options available, whilst 

Everstine (1997) presents a summary of the theoretical formulations for a number of 

approaches including a consideration of exact and DAA BEMs and a look at the 

“infinite” element approach. However no reference is made to comparative field 

results. Consideration will now be given to the generation of near-field data for three
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idealised sources o f varying ka for each of the methods outlined above -  WEE, 

CHIEF and DAA2c. Comparison will be made for the accuracy of the solutions, run 

times and the practicality of using these methods here.

All models involve the same structure - the cylindrical, transducer-like, circularly 

symmetric structure used previously in this chapter and corresponding to the real 

physiotherapy device. Three different source variations will be considered, firstly the 

plane piston case, secondly the source amplitude will vary with radial distance as a

cosine function between 0  and ^  thirdly the source amplitude will have a

Gaussian variation with radial distance. Each of the source amplitude variations is 

shown in Figure 4.14. There is no phase variation at the source. The “cosine” and 

“Gaussian” source curves are considered because the real device will not include the 

sharp decrease to zero displacement occurring at the edge of the plane piston source. 

This is due to both the physical restraint of the real device at the edges of the disc and 

the non-uniform vibrational behaviour of the transducer face. These two sets of 

source data could be expected to be a compromise between the plane piston case and 

the real device and are therefore likely to give more insight into the effectiveness of 

each of the unbounded fluid modelling options. Finally, each of these models will be 

considered when operating at 300 kHz, 650 kHz, and 1.030 MHz. Models have been 

meshed according to ka size and models with alternative meshing intensities have 

been generated to establish that meshing plays no part in any model to model 

discrepancies observed here.

All of the WEE results were compared against analytical results. In each case the 

WEE model was in excellent agreement with predicted results, the worst agreement 

being for the plane piston case shown in Figures 4.4 and 4.5. Comparisons of 

different models will, therefore, be shown here as WEE results can be considered to 

be accurate. Only axial output up to the WEE interface will be included for the WEE 

models, however the accuracy of the DAA2c and CHIEF models should be clear 

from these comparisons. Only axial results are shown but radial results at 5 mm from
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Figure 4.13 Geometry of the “classical” radiation problem of a structure vibrating in a fluid medium 

due to Schenck (1968).
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Figure 4.14 Amplitude variation for three ideal models -  plane piston source, “cosine” distribution, 

and “Gaussian” distribution. The phase variation is constant for all models.
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the source were also generated. The accuracy of all radial results was comparable to 

axial results.

For all of the CHIEF models an additional 840 collocation points were included, 

positioned in fairly randomly spaced lines throughout the interior of the structure, 

including very close to the surface. This is a large number of additional points, 

although as discussed before, compared to the WEE models the run times of the 

CHIEF models is very short. This number of collocation points was chosen based on 

a number of runs of the 1.030 MHz plane piston model including varying numbers of 

points. The inclusion of further points affected output but did not substantially 

improve it. However no substantial optimisation of either the number of points or 

their positioning has been performed here. For the models operating at 1.030 MHz 

the run time (for one frequency) was approximately 5 hours for the WEE model, less 

than half an hour for CHIEF and around 10-20 minutes for DAA2c. Run times for the 

models operating at lower frequencies was substantially reduced as the meshing was 

varied in accordance with frequency.

4.5.1 Idealised models operating at 300 kHz

Figures 4.15-4.17 show model results for the plane piston, “cosine” and “Gaussian” 

models respectively, all operating at 300 kHz. The corresponding ka value is ~ 16. It 

is clear that the CHIEF and WEE models are in excellent agreement for all three 

models. DAA2c agreement is also generally very good although there are some 

discrepancies close to the source for both the piston and “cosine” models. The 

“Gaussian” model is in excellent agreement. There is some evidence to suggest that 

the DAA2c output is improving from the piston model to the “cosine” model to the 

“Gaussian” model.
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Figure 4.15 Model comparison for an ideal, circular plane piston source of radius 12.55 mm, operating 

at 300 kHz with a source displacement of 1.0E-9 mm as shown in Figure 4.14. Axial comparison of 

results for two BEMs, CHIEF and DAA2c, and a model incorporating acoustic FEs and WEEs is 

shown. CHIEF and WEE output is almost identical.
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Figure 4.16 Model comparison for the same model as in Figure 4.15, source of radius 12.55 mm, 

operating at 300 kHz, but here with cosine variation of source displacement amplitude as shown in 

Figure 4.14. Again axial comparison is shown for two BEMs, CHIEF and DAA2c, as well as a model 

incorporating acoustic FEs and WEEs. Again CHIEF and WEE outputs are almost identical.
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4.5.2 Idealised models operating at 650 kHz

Figures 4.18-4.20 show model results for the plane piston, “cosine” and “Gaussian” 

models respectively, now operating at 650 kHz. The corresponding ka value is ~ 34. 

Here similar, if  not better, agreement is seen for the WEE and DAA2c models 

compared to the 300 kHz case. The plane piston model is in reasonable agreement, 

although there are some significant discrepancies close to the source for DAA2c. The 

“cosine” model is in good agreement and the “Gaussian” in excellent agreement. Any 

improvement over the 300 kHz model is likely to be due to the fact that the DAA2c 

technique is more accurate at higher frequencies. Although excellent agreement is 

still observed for all three models for the “Gaussian” case, there are clearly some 

problems with the CHIEF plane piston and “cosine” sources. The previously 

mentioned closer spacing of the solutions for the interior problem with frequency is 

the likely cause of this, as the same number of collocation points does not now 

account for the non-uniqueness of the problem entirely. As expected, therefore, some 

of the CHIEF results are getting worse with increasing frequency.

4.5.3 Idealised models operating at 1.030 MHz

Figures 4.21-4.24 show model results for the plane piston (Figures 4.21 and 4.22), 

“cosine” and “Gaussian” models respectively, now operating at 1.030 MHz. The 

corresponding ka value is ~ 54. The operating conditions of this model correspond to 

the real physiotherapy device operating at its fundamental resonance frequency. 

Essentially the same progression that has been observed for the two lower frequency 

cases has continued here. For the plane piston case the DAA2c model is still showing 

some significant differences close to the source. Moving away from the source, 

however, but still well within the near-field, the results are in good agreement. The 

WEE and DAA2c results for both the “cosine” and “Gaussian” sources are in 

excellent agreement. The CHIEF model is now only in reasonable agreement for the 

“Gaussian” source and shows significant inaccuracies for the plane piston and cosine 

cases.
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Figure 4.17 Model comparison for the same model as in Figure 4.15, source of radius 12.55 mm, 

operating at 300 kHz, but with a Gaussian source displacement amplitude as shown in Figure 4.14. 

Again axial comparison is shown for two BEMs, CHIEF and DAA2c, as well as a model incorporating 

acoustic FEs and WEEs.
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Figure 4.18 Model comparison for an ideal, circular plane piston source of radius 12.55 mm, operating 

at 650 kHz with a source displacement of 1.0E-9 mm as shown in Figure 4.14.

119



8000

7000

6000

5000

4000

3000

2000

1000

0

0 20 40 60 80

distance along the acoustic axis / mm

CHIEF

DAA2c

WBE

Figure 4.19 As Figure 4.18 but for a source with a cosine variation of source displacement amplitude, 

operating at 650 kHz.
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Figure 4.20 As Figures 4.18 and 4.19 but for a source with a Gaussian variation of source displacement 

amplitude, operating at 650 kHz.
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Figure 4.21 Model comparison for an ideal, circular plane piston source of radius 12.55 mm, operating 

at 1.030 MHz -  these are the same features as the real physiotherapy device and equivalent to a ka 

value of ~ 54. Again source displacement is 1.0E-9 mm. Note the larger axial range.
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Figure 4.22 As for Figure 4.21 but now over a shorter axial range to emphasise the variation close to 

the source.

121



25000.00

0.00

20000.00

a- 15000.00

a> 10000.00

5000.00

0 20 40 60 80 100 120 140

distance along the acoustic axis / mm

CHEF

DAA2c

W E

Figure 4.23 As Figure 4.21 but for a source with a cosine variation of source displacement amplitude, 

operating at 1.030 MHz.
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Figure 4.24 As Figures 4.21 and 4.23 but for a source with a Gaussian variation of source displacement 

amplitude, operating at 1.030 MHz
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4.6 Summary

This chapter has considered three options for modelling an unbounded fluid region 

surrounding a radiating device, where the accurate simulation of the near-field is of 

particular interest. The techniques considered here are the use of acoustic FE and 

WEEs, the exact CHIEF BEM, and the approximate DAA2c BEM. A comprehensive 

assessment of the use of WEEs has been outlined, including a consideration of the 

element equations defining pressure variation within the element. Also some 

guidelines have been suggested for using these elements when modelling the near

field of a large ka device. Some consideration of the unwanted effects of specifying 

WEE parameters poorly has been reported. A theoretical outline of CHIEF and 

DAA2c has also been presented. The three options have been assessed on a 

comparison of idealised sources of similar dimensions and operating characteristics 

up to those of the real physiotherapy transducer introduced in Chapter 3.

It has been shown that the WEE approach is accurate for all models when all 

parameters are specified correctly. Unfortunately these simulations take a long time 

to run - of the order of several hours for a source with ka~5A and running at only one 

frequency. Also the parameter specification for the acoustic FEs and WEEs is fairly 

involved. CHIEF has been seen to be accurate for smaller ka devices but becomes 

highly inaccurate for larger systems. This is not unexpected due to the fact that the 

interior resonances of the structure become more densely spaced for increasing ka. 

CHIEF uses collocation points to overcome problems of uniqueness for the solution 

of the surface Helmholtz integral. The specification of these additional collocation 

points is somewhat arbitrary making the accuracy of the technique unpredictable, 

although it is significantly quicker than the WEE option taking only around 30 

minutes to run a similar model with ka-54. Finally the DAA2c method has shown a 

general improvement with increasing ka value, and for the largest model is in 

excellent agreement with the analytical solution for both the ‘Gaussian’ and ‘cosine’ 

models. Observed discrepancies with the plane piston model only occur close to the 

source. It is likely that, due to the approximate nature of the DAA method, it is not
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accurately accounting for the fluid-structure interaction at the edge of the plane piston 

source where the displacement abruptly falls from a maximum to zero. This type of 

discontinuity will not occur in a real device. The DAA2c takes only 10-20 minutes to 

run at one frequency and, because the matrices generated for the fluid are frequency 

independent, will run relatively very quickly over a range of frequencies. At this 

stage the proposed modelling strategy would be to use the DAA2c option for all 

models whilst continually assessing the accuracy of results against corresponding 

WEE models.

Some further assessment of the three modelling options will be made in the next 

chapter for the realistic physiotherapy transducer with the fluid models generated 

here being combined with the structural model generated in Chapter 3 in order to 

simulate the full system. It is expected that the WEE model will work effectively but 

extremely slowly, whilst the DAA model should be both fast and accurate. The 

CHIEF model of the real device should show some level of inaccuracy. Following 

this, model-experimental comparisons will be made based on the measurements 

outlined in Chapter 3.
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Chapter 5

5.1 Introduction

The previous chapters have introduced a real physiotherapy transducer and 

measurements made on it as well as separate models of the device and a surrounding 

unbounded fluid region. This chapter describes the combination of this work to 

simulate a complete physiotherapy transducer-fluid system and the comparison of the 

field predictions with experimental measurements. Firstly, the transducer structural 

response and consequent field results will be compared for the three fluid-modelling 

options considered in the last chapter. Then, having established an effective and 

practical model of the real system, a comprehensive model-experimental comparison 

will be made for the near-field results. It is emphasised that these are initial 

comparisons. Chapter 6  will consider variations in the basic structural model 

considered here in an effort to improve the model-experiment agreement and to 

investigate the significance of parameters in the transducer design.

5.2 Comparing modelling options

Comparisons of the unbounded fluid modelling options for idealised structures in 

Chapter 4 established that both the WEE and DAA2c options were likely to provide 

an effective model for a real transducer-fluid system, whilst CHIEF was likely to be 

somewhat inaccurate. Further consideration is now given to these fluid-modelling 

options for the simulation of the real physiotherapy transducer system.

The BE models were generated with a mesh intensity, on the surface of the structure, 

of approximately 6  elements per acoustic wavelength. The DAA2c model generated 

then had a total of around 9000 d.o.f., with the CHIEF model having an additional 

840 collocation points. The corresponding WEE model was meshed according to the 

three elements per wavelength requirement at the acoustic FE-WEE interface. This 

model, corresponding to the ideal model used in the previous chapter, had
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approximately 250,000 d.o.f.. The simulation run time for the WEE model was longer 

than for the idealised case, taking in the region of 5-7 hours to run on a 500MHz PC. 

This was due to the inclusion of a large number of additional structural elements. The 

CHIEF model took only around 20 minutes to run at one frequency whilst the DAA2c 

model took less than 15 minutes. In all cases this is for the model operating at one 

frequency, but for the BEM models this was for the generation of structural results 

only. Additional field results increased the computation time for the BEM models 

although not substantially if only a small area of the field was predicted. The 

modelled real device operated in continuous wave mode with an arbitrary drive 

voltage of 1 volt.

5.2.1 Source deformation

For a model to model comparison the first parameter to establish was the acoustic 

working frequency. As in the experimental measurement the model was run over a 

range of frequencies and the electrical response measured. Here the DAA2c model 

was used as it had the shortest run time. Figure 5.1 shows comparative conductance 

plots over the frequency range 0.9 MHz-1.1 MHz for the model and the real device. 

These plots show somewhat different features although the main resonance is in a 

similar position in the frequency domain. The model resonance is at 1.029 MHz 

compared to 1.027 MHz for the real device. 1.029 MHz will be taken as the acoustic 

working frequency for the model. The resonance at 1.029 MHz was chosen over the 

resonance at 0.974 MHz due to both the nature of the corresponding disc vibration at 

this frequency and the fact that the resonance of the device would be expected to be 

higher than that of the disc. This is the case for the real device where fundamentally 

the disc is designed to be resonant close to 1.00 MHz. The most likely explanation for 

the discrepancies between electrical results here is differences between the modelled 

disc and the real one. This will be considered in the next chapter where an analysis of 

disc parameters and their effect on the modelled transducer will be investigated.
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Comparisons could then be made between the predicted source deformations for 

models of the real device operating into each of the fluid options at resonance. For the 

WEE model contour plots of the pressure variation in the acoustic FE region and 

across the acoustic FE-WEE interface clearly showed up any reflections from the FE- 

WEE interface. Having generated a WEE model without such reflections it was 

therefore reasonable to accept it as accurately simulating radiation into an unbounded 

fluid region. The WEE option was therefore used as a benchmark against which the 

BEM models were compared. Figure 5.2 shows the structural displacement amplitude 

in the axial direction for WEE, DAA2c and CHIEF models operating at 1.029 MHz 

for a drive voltage of 1 volt. Overall all three models show good agreement although 

there are some discrepancies particularly close to the centre of the source. The source 

displacement is clearly highly non-uniform. The corresponding phase of the 

displacement is shown in Figure 5.3 and also shows good agreement for all models. 

Source displacement in the radial direction showed similarly good agreement.

5.3 Field results

It is useful to consider how the variation in source deformation shown in Figures 5.2 

and 5.3 effects acoustic output. The WEE model only generated accurate field results 

within its acoustic FE region so a propagation program was used to generate more 

extensive results. The FORTRAN 77 program was a variation on the double 

numerical integration routine used earlier for the generation of field results due to an 

ideal plane piston source. Now the source velocity was included under the integral in 

Equation 1.4 so that complex (axial direction) velocity results could be extracted 

from the FE structural model and propagated. Comparisons between propagated 

results and those generated directly by FEM or BEM showed excellent agreement for 

all three fluid-modelling options. From now on WEE field results will be those 

generated by the propagation routine whereas BEM results were generated directly. 

Figure 5.4 shows an axial comparison for all three models against one of the 

experimental scans shown in Chapter 3. The experimental scan was made for an 

r.m.s. drive-voltage of 2.43 V so the model output has been linearly scaled up
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Figure 5.1 DAA2c-experimental electrical conductance data showing a model TE resonance at 

1.029 MHz and experimental resonance close to 1.027 MHz. It should be emphasised that the 

experimental “acoustic working frequency” was established from a number of re-measurements of the 

electrical response of the device and 1.027 MHz chosen based on these results.
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Figure 5.2 Comparison of source displacement amplitude, in the axial direction, for WEE and BEM 

models running at 1.029 MHz for a drive level of 1 volt.
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accordingly. This particular axial scan was chosen because it is one of the two shown 

in Chapter 3 that are in generally good agreement. Figures 5.5 and 5.6 compare the 

model results at 5 mm and 10 mm from the source with experimental data for the 

same r.m.s. drive voltage, 2.43 V. Model data is generated every 0.5 mm compared to 

experimental results generally in steps of 0.25 mm.

Overall good agreement is shown between the three models for all acoustic output 

shown in Figures 5.4-5.6 . In particular it can be seen that the WEE and DAA2c 

models are in excellent agreement. There are some obvious differences for the 

CHIEF model. As far as the model-experimental comparison is concerned there is 

generally good qualitative and quantitative agreement for all three plots. Model axial 

plots show very similar features to two of the three experimental plots shown in 

Chapter 3. Similar maxima and minima are seen at reasonably similar axial positions, 

and the last axial maximum absolute pressure values are in very good agreement. It is 

the last axial maxima that are in good agreement for all the experimental 

measurements reported in Chapter 3. The most striking differences are in the 

magnitudes and locations of the minima and maxima close to the source. However, 

this is where most differences were reported experimentally. The axial results will be 

considered in more detail later in this chapter. There are also some differences in the 

spread of the radial data about the axis, as well as some differences in magnitudes. 

Overall, however, particularly for the 5 mm output, the model-experimental 

agreement is very good both qualitatively and quantitatively. It should be re

emphasised that there is a significant difference between these model-experimental 

measurements and corresponding ideal, plane piston field data shown in Chapter 4. 

Experimental radial data has been re-aligned to be centred about the acoustic axis.

These results show that WEE and BEM source displacement data are in good 

agreement. Likewise, the model field data is in reasonably good agreement, 

particularly for the WEE and DAA2c results. There are, however, some differences 

with CHIEF output. The acoustic field results are in reasonably good agreement with 

the experimental measurements made on the real device. All of these results
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Figure 5.5 Comparison of model and experimental field data at 5 mm from the source. As in Figure 

5.4, WEE output is generated from the propagation program whilst BE output is generated directly. 

Also the WEE and DAA2c output is again in very close agreement. The experimental result was 

aligned centrally about the acoustic axis.
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Figure 5.6 Comparison of model and experimental field data at 10 mm from the source. As in Figures 

5.4 and 5.5, WEE output is generated from the propagation program whilst BE output is generated 

directly. The WEE and DAA2c output is again in very close agreement, and the experimental result 

was aligned centrally about the acoustic axis.
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(including the fact that there are no signs of reflection at the FE-WEE interface in that 

model) would appear to suggest that the fluid-structural interaction is being modelled 

effectively by the WEE and DAA2c techniques and less effectively by CHIEF. This 

agrees with the results in the previous chapter. It is reasonable to conclude, therefore, 

that both DAA2c and WEE are available to us for accurate simulations and analysis 

of models. Although WEE output is in excellent agreement with DAA2c, large run 

times make it impractical to use for any extensive analysis. The modelling will 

therefore proceed using the DAA2c model with regular verification against the 

corresponding WEE model. Throughout the course of the modelling presented in this 

thesis the DAA2c-WEE comparability has been as good as that observed in Figures 

5.4-5.6.

5.4 IEC standard experimental-model comparisons

This section describes model-experimental comparisons made for the IEC standards 

measurements outlined in Chapter 3. Clearly there is no need to establish a beam 

alignment axis for the circularly symmetric model. In addition there is no real need to 

consider model power output, as increasing the amplitude of the voltage in the model 

will simply produce a linear increase in acoustic pressure values. Consideration will, 

therefore, be given to comparative pressure measurements.

5.4.1 Abcs , Aer and beam type characterisation

Firstly consider the calculation of the beam cross-sectional area, ABCS, at four planes.

Each value can be calculated by generating pressure results out to some large radial 

distance in the appropriate plane and establishing where the field reduces to 4% o f the 

in-plane maxima - taking care that it is a global maximum. Experimentally, once this 

distance is established, the distance is doubled and separated into 50 sections so a 

step size can be calculated. The ABCS value in a plane is then calculated by sorting the

U{ voltage values (or p t pressure values) into descending order and summing them
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to calculate the number of terms that include 75% of ^ U f  (or ). This number

is then multiplied by the step-size squared to give a value for ABCS in that plane. 

Once the four ABCS values have been generated they can be plotted and extrapolated 

back to the source to calculate ABCS (0). From this a value of the AER and a definition 

of the beam type can be made.

To generate similar results for the model some additional steps have to be included. 

Once the position where the field reduces to 4% of the in-plane maxima had been 

established the model radial data was converted into a square grid of data as in the 

experimental case. This was done using simple linear interpolation to estimate the 

grid values between model radial values. Experimentally the meshing is generally 

restricted to 51 by 51 points because of practical limitations. For the model no such 

limitations exist and ABCS values were calculated using a grid with approximately 90

by 90 points. The model ABCS values were then calculated as in the experimental 

process.

A comparison of the model-experimental ABCS values at the designated four planes is 

shown in Figure 5.7 along with the corresponding fitted lines. Table 5.1 shows the 

model-experimental extrapolated values for ABCS (0), along with the standard 

deviation in the intercept estimated from the linear regression. Also shown is the 

resulting AER values calculated as in Chapter 3.

The Abcs (0) values are in excellent agreement, certainly well within the standard 

error for both regression lines. Consequently the resulting AER results are also in 

excellent agreement. This is a very encouraging result. The nature of the calculation 

of the Aer suggests that the overall beam pattern is consistent between the model and 

the experiment. This is further highlighted by a comparison of the “beam type” which 

is based on the gradient (m) of the regression line used in the calculation of AER.
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Model and experimental results for m are also compared in Table 5.1 and they are 

also seen to be in good agreement. The beam type for both model and experimental is 

collimated, although it should be emphasised that the corresponding model- 

experimental values of m show a much closer agreement than is required for the beam 

types to be classified similarly from the definition in Chapter 3.

experiment model extra models

A„cs(.0) / c m 2 2.24 2.28 2.15

Abcs(0) standard error / cm2 0.08 0.15 0.09

m (gradient) 0.19 0.20 0.24

m (gradient) standard error 0.02 0.03 0.02

Aer / cm2 3.03 3.09 2.91

Table 5.1 Model and experimental calculations for ABCS(0) and a er from the plots shown in Figures

5.7 and 5.8. The column labelled “extra models” is calculated using 17 planes of data as opposed to the 

IEC standard requirement of four. The experimental results and original model results are generated 

using planes of data at 10 mm, 20 mm, 40 mm and 80 mm.

At this stage the model offered the opportunity to consider the IEC standard 

definition of the ABCS(0), and th e re fo re ^  and beam type, in more detail.

Specifically ABCS (0) is calculated based on the regression of four sets of planar data.

The specific choice of the positions of the four planes is outlined in Hekkenberg et. 

al. (1994), and Hekkenberg (1998), and is designed to best represent the nature of the 

beam whilst taking into account the practical limitations of how many physical 

measurements can be made. For the model no such practical limitations apply and a 

much larger region of the field can be considered. Figure 5.8 shows the results for the 

calculation of ABCS at seventeen planes, along with a fitted line. Table 5.1 shows, in

the column headed “extra models”, the resulting values of ABCS (0), m and AER . From

Figure 5.8 the variation in ABCS is obviously not linear, and provides a much better
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Figure 5.1 Model-experimental comparison of beam cross-sectional area a bcs • ABCS is calculated at

four planes specified by the IEC standard -  here at 10 mm, 20 mm, 40 mm and 80 mm so that the 

results can be extrapolated back to the source to calculate ABCS (0). From this the effective radiating

area A„ can be established.
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Figure 5.8 Model beam cross-sectional area a bcs at seventeen planes so that the results can be 

extrapolated back to the source to calculate y4ac5(0) and compared with the IEC calculation made 

using four sets of planar data.

135



indication of the overall variation in the beam than Figure 5.7. One set of planar data 

of particular interest is that at 1 0  mm which can clearly be seen to be significantly 

different from those at 5 mm, 15 mm and 20 mm. In practice only data at 10 mm and 

20 mm is used for the calculation of ABCS. From Table 5.1 it is clear that although

there is some difference in the calculated values for ABCS (0), m and AER, they are

essentially in very good agreement, both with model results based on the IEC 

standard and the corresponding experimental data. It is reasonable to conclude that 

the EEC definition of four planar measurements accurately accounts for the overall 

nature of the (modelled) beam in this case.

5.4.2 Rbn

Next the model beam non-uniformity ratio, RBN, was calculated. The pressure 

equivalent version of Equation 3.7 was used

(5-2)
UpW
1=1

Here p sp is the maximum pressure value in the entire field, N  is the total number of 

points in each scan plane, p t are the individual pressure values and s 2 is the area of a

square in the generated grid of pressure results. The denominator in Equation 5.2 is 

averaged over the four planes at 10 mm, 20 mm, 40 mm and 80 mm. The 

experimentally calculated value for RBN is 4.77. From the model the value is 12.4! 

Clearly there is a significant difference, and what’s more this value is much higher 

than the RBN maximum allowable value of 8  specified by the EEC standard. From

Figure 5.4 the axial maxima for the experimental measurement is seen to be close to 

80 kPa compared with nearly 120 kPa for the model. Because Equation 5.2 involves 

p \p this would make the model RBN value around 2.25 times greater than the
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experimental result, and as the actual difference is a factor of 2 . 6  it can be seen that 

this is the major cause of the difference between model and real RBN results.

There are several possible explanations for the lack of agreement between model and 

experimental Rm  values, including differences between the model and the real

device. It is also possible, however that there is an experimental issue related to 

finding the maximum pressure value in the field. In the next section model- 

experimental axial comparisons and field results very close to the source will be 

considered. It will be seen that there are some features of the beam-alignment process 

used in the EEC standard that could lead to misalignment close to the device. It will 

also be seen that extreme pressure variations close to the source make locating the 

maxima in the field very difficult. Furthermore, in the near-field hydrophone 

averaging effects may reduce the maximum pressure measured.

This concludes model-experimental comparisons for EEC standard measurements. 

The overall nature of the modelled field is in very good qualitative agreement with 

experimental results. Good quantitative agreement has also been observed for much 

of the field, and EEC measurements for the AER and the beam type are in excellent 

agreement. The model value fori?^ is much higher than the measured value for the

real device and exceeds EEC standards specifications. Some consideration of the 

reasons for this will be made in the next section where model-experimental 

comparisons will be made for other field measurements.

5.5 Non-IEC measurements

Additional measurements that were made to test the robustness of both the 

experimental process and of the model will now be considered.
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5.5.1 Model field variation with frequency

The variation of the model behaviour with frequency is potentially significant due to 

the narrow bandwidth of the source; the variation with frequency observed for the 

real device and the poor agreement obtained for the electrical response confirm this. 

The experimental results in Chapter 3, Figures 3.8 and 3.9, suggested that the field 

generated by the device was reasonably consistent within 4 kHz of the resonance but 

showed some significant variations only 8  kHz off resonance. Similarly, model 

results at 4 kHz off resonance showed little variation from those generated at 

resonance. However model axial output shown in Figure 5.9, for 1.021 MHz and 

1.037 MHz (either side of the model resonance at 1.029 MHz) still show relatively 

little variation with frequency. Similarly Figure 5.10 showing radial output at 5 mm 

from the transducer for frequencies at 8  kHz off resonance, again show little 

significant variation with frequency. Additional model runs, at frequencies further off 

resonance, showed similar features to the plots at and around resonance. Overall these 

results would appear to suggest that the model is not fully accounting for the field 

variation with frequency observed experimentally.

A further comparison should be mentioned. In Chapter 3, an experimental 

comparison for radial output at 1 0  mm from the source was shown for the device 

operating at resonance (1.027 MHz) and at 4 kHz above this. Here, Figure 5.6 

showed some reasonable model-experimental comparison for a similar plot where 

both the real device and the model were operating at resonance. Figure 5.11 now 

compares model output at 10 mm from the transducer for a frequency of 1.029 MHz, 

with the corresponding experimental result at 1.031 MHz. Excellent agreement, both 

quantitatively and qualitatively, is observed.

Overall it is clear that variation with frequency close to resonance is capable of 

causing significant changes in specific areas of the real near-field close to the source, 

making exact model-experimental comparison here difficult. It appears that the more
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Figure 5.9 Model axial comparisons at different frequencies for DAA2c model.
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extreme experimental pressure variation with frequency is not fully accounted for by 

the model.

5.5.2 Model output on and close to the acoustic axis

It has been observed experimentally that generating repeatable axial field results is 

not straightforward. In addition the calculation of the model RBN in section 5.4.2 has

shown that there are significant differences between the maximum pressure value in 

the model and the corresponding value measured for the real device -  both of which 

are taken as lying on or close to the axis. All considerations of axial variation are 

further complicated by the variation with frequency observed experimentally and 

discussed above. In order to examine the effect of mis-alignment experimentally, as 

well as to consider off-axis variation close to the axis, experimental measurements 

were made in lines parallel to the axis. In Chapter 3 the output for these runs was 

presented for 0.5 mm, 1.0 mm and 2.0 mm off-axis, and shown in Figure 3.14. 

Although the axial plot itself here showed significant disagreement with two further 

axial plots, the nature of the off-axis variation was fairly clear. At 0.5 mm and

1 . 0  mm off-axis little variation was observed, whilst at 2 . 0  mm the variation close to 

the source was significant but remained essentially unchanged around the last axial 

maxima. The corresponding model plots are shown in Figure 5.12, and generally 

show similar variations to the experimental case. Overall the results around the last 

axial maxima are consistent, and output up to 1 . 0  mm off-axis remains fairly constant 

although there are some clear reductions in amplitude close to the source. The

2 . 0  mm off-axis results are significantly different to that closer in.

It has already been discussed that the most significant factor for the model- 

experimental Rbn discrepancy is in the comparative axial maxima. An analysis of the

plot at 0.5 mm off-axis in Figure 5.12 shows that even this close to the axis the 

maximum value has fallen to a level approaching the experimental value, and indeed 

at 1.0 mm off-axis the maximum value has dropped significantly lower. It was 

discussed in Chapter 3 that the beam-alignment process involved maximising the
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the model run is at 1.029 MHz (resonance) and the experimental output is for a run at 1.031 MHz, 
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pressure around the theoretical position of the last axial maxima and at twice this 

distance. Whilst this may be accurate in terms of generating planar data for the 

generation of ABCS results, there is clearly some possibility that close to the source

there may be some mis-alignment. This is compounded by the extreme variation 

close to the source, which is clear for both the model and the real device. Also some 

variation with frequency close to resonance has been shown and the real device is not 

truly circularly symmetric. Furthermore there is fact that the main “hot spot” for the 

model appears to have dimensions of the order of less than a wavelength, 

undoubtedly making it difficult to locate in the experimental case, and measure 

accurately with a hydrophone of finite size (0.6 mm). Taking all of these points 

together it is reasonable to conclude that an alternative to inaccurate model 

parameters for the model-experimental difference in the RBN may be the difficulty of 

establishing the experimental field maxima.

To further consider the possibility that, experimentally, the transducer might be mis

aligned close to the source, field output was generated for a line running from the 

device off-centred by 1 mm to the axis at 120 mm. A comparison of the axial plot 

from this model with the experimental axial results used previously is shown in 

Figure 5.13. Much better agreement is shown both qualitatively and quantitatively. In 

particular the position and amplitudes of the maxima close to the source for the model 

are now closer to experimental results. Using the maximum result from this plot as 

the maximum in the field generates a model RBN value of 5.01; this is in comparison 

to 4.77 experimentally and 12.4 for the original model.

5.5.3 Planar and cross-axial results

In Chapter 3, Figures 3.12 and 3.13 showed cross-axial results at 4.0 - 6.0 mm away 

from the source, in steps of 0.5 mm, and at 9.0 -11.0 mm from the source, in steps of

1.0 mm. Similar results, generated for the model operating at resonance, are shown in 

Figures 5.14 and 5.15. Both model and experimental results only serve to highlight
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the fact that the region very close to the source is complex and involves significant 

variations in pressure over distances shorter than a wavelength.

A final model-experimental comparison is shown for planar results at 40 mm from 

the source. Figure 5.16 shows the full planar data over an area of 41 mm x 41 mm. 

From these plots it is clear that both the dimensions of the beam and the amplitude 

over the scan are in good agreement for model and experiment. However there are 

some differences, not least because the real data can be seen to be less than perfectly 

symmetric. The step size for the experimental results of 2.05 mm, compared to 

around 0.7 mm for the model, may account for the fact that considerably more detail 

can be observed in the model plot.

5.6 Summary

Source and field data for models of the physiotherapy transducer model operating 

into infinite fluid regions using WEE, DAA2c and CHIEF techniques have been 

compared. Overall very good agreement has been observed for all three models 

although there are some discrepancies for the CHIEF model. This is in agreement 

with the idealised models considered in Chapter 4 and leaves the WEE and DAA2c 

models as viable options for generating a successful simulation of a large ka device 

operating into an unbounded fluid region. The effectiveness of the WEE method has 

been shown for all types of sources considered here, as long as the large number of 

parameters considered in Chapter 4 are specified effectively. The fact that any 

irregularities in the fluid region can be clearly observed as reflections in a contour 

pressure plot at the FE-WEE interface also make this a desirable technique to employ. 

However the simulation run time of the WEE model is considerable, even for one 

frequency and is therefore impractical in terms of making any comprehensive 

analysis of model parameters. It can, however, be used for comparative modelling 

purposes when required, on the basis that the WEE solution can be accepted as an 

accurate simulation.
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(a)

Figure 5.16 Model-experimental axial comparison of planar data at 40 

mm from the source. The area covered in each case is 41 mm x 41 mm, 

and the contour limits used are the same for each plot and shown on the 

right, (a) The experimental output pressure equivalent to the voltage 

results shown in Chapter 3, Figure 3.6. (b) The corresponding model plot. 

The overall nature of the plots is in reasonable agreement qualitatively 

and quantitatively, although there are clearly more variations in the model 

output. This may in part be due to the relatively large step size (2.05 mm) 

used to generate the experimental results.
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The DAA2c model has been shown to be effective for large ka systems, although 

some inaccuracies were observed close to the source for the plane piston case in the 

previous chapter. No such problems have been encountered for the realistic source 

data considered here. The DAA2c model runs significantly faster than the WEE 

model and a scan over a range of frequencies can be accomplished quickly due to the 

frequency /^dependent fluid-loading matrices used in the technique. The generation 

of field results after the solution of the fluid-structural interaction problem is 

straightforward and fast. For these reasons all analysis shown here and in subsequent 

chapters use the DAA2c technique and have been regularly and successfully verified 

against WEE models.

Comparisons of model and experiment have been made for both the IEC standard and 

additional measurements shown in Chapter 3. The model has shown excellent 

agreement for IEC measurements of AER, ABCS, and beam type. The use of a large

number of planar scans to calculate the AER has been shown to give similar results to 

that calculated using only the four planes specified by the IEC standard. This 

confirms the effectiveness of the definition of the AER despite some non-linear 

variation in ABCS model measurements. A series of near-field cross-axial scans have

shown good qualitative and quantitative agreement with experiment. In particular, 

model-experimental comparison of radial data at 5 mm from the source for devices 

operating at resonance has shown very good agreement. Furthermore a model- 

experimental comparison of radial data at 1 0  mm from the source for the model 

operating at resonance and experimental result at 4 kHz off resonance have shown 

excellent agreement. The variation in axial and cross-axial scans with frequency close 

to resonance have shown some good agreement although further off-resonance the 

model is not accounting for the significant variations observed experimentally. Scans 

parallel to the acoustic axis have shown variation similar to that observed 

experimentally. Likewise planar scans at 40 mm from the source have shown 

reasonable model-experimental agreement overall. Cross-axial scans close to the 

source have shown evidence of extreme and rapid variations with distance away from
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the source, both experimentally and for the model. Overall both experimental and 

model field results have shown very significant differences from the corresponding 

ideal plane piston case. In addition the vibrational behaviour at the face of the 

modelled transducer is highly non-uniform.

There are some model-experimental discrepancies. Firstly the electrical response 

shows some significant differences although the main resonances are very close. The 

most likely reason for this is the inaccuracy of the model piezoelectric parameters. 

This will be considered in the following chapter. Secondly, in areas close to the 

source, the magnitude and exact position of the minima and maxima of the axial scan 

is somewhat different between the model and experiment. This was seen to be an area 

where the repeatability of experimental measurements was poor. Model results are in 

good agreement further out in the near-field where good experimental comparability 

was observed. Thirdly there is a significant difference between the model and 

experimentally calculated Rm  values, mainly due to differences in the axial maxima

value close to the source. In an attempt to investigate these last two points model 

output was generated for the case when the acoustic axis is mis-aligned by 1 . 0  mm at 

the source. The magnitudes, and to some extent, the positions of the maxima in the 

corresponding ‘semi’-axial scan showed a marked improvement. The RBN based on

the maxima from this ‘semi’-axial scan also showed a significant improvement in 

comparison to the experimental result.

There are a number of possible reasons for the model-experimental discrepancies 

seen here. The model is clearly an approximation of the real system and as such will 

involve some error. Secondly there will be some error in the experimental 

measurements. It is noticeable that the model and experiment are in good agreement 

for measurements of ABCS and AER, where averaging is involved and absolute 

pressure values are not calculated, but show poor agreement when relative magnitude 

values are more significant, as for the RBN. The likelihood of some mis-alignment of 

the device for the experimental case has been considered. It has been observed that
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the alignment process used does not favour measurements made close to the device. 

In addition in this area pressure variations have been observed to be both extreme and 

rapid, occurring on a scale of less than a wavelength. This not only makes the 

location of maxima difficult experimentally but also makes it difficult to measure the 

values accurately with a finite size receiver. The fact that the real device is not truly 

circularly symmetric further complicates the issue. Further out in the field, but still 

within the near-field, model-experimental agreement is better both qualitatively and 

quantitatively.

A further likely source of errors is in the differences between the parameters in the 

real device and the model parameters. Firstly there is the fact that a number of 

features of the real device were not included in this initial model, such as the recess 

which the disc rests on and some glue layers. Secondly there is the fact that a number 

of material properties were known only approximately, if  at all, particularly 

piezoelectric constants. Thirdly there may have been some discrepancies in the 

dimensions of the device. These are not likely to be significant as components were 

measured before the device was constructed; however, it is possible that minor 

variations in areas such as glue layer and matching layer thickness could have a 

significant effect.

Finally there are a number of areas of the structural model that have not been 

considered. Features such as wires and soldering were not included because of the use 

of symmetry in the model. Likewise irregularities in the transducer construction 

causing it not to be symmetric were not included. Also it is likely that some 

component material properties are affected by the dimensions of components within 

the device, or by the frequency at which the device operates. For example, it is 

reasonable to consider whether or not the Young’s modulus of a very thin glue layer 

is the same as that quoted by manufacturers from measurements made on a larger 

sample that was cured under significantly different conditions.
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Overall, then, there are a number of potential reasons for the differences observed 

here. It must be emphasised that very good qualitative and quantitative agreement has 

been observed for many measured field features, and that the consideration of the 

slight mis-alignment for the acoustic axis has led to a significant improvement in the 

results that previously showed most differences. Chapter 6  will consider the 

component, material and dimensional features outlined above as possible sources of 

discrepancy. This is with the intention of improving model-experimental comparative 

results and analysing the response of the device and field to variations in the basic 

design considered here.
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Chapter 6

6.1 Introduction

Output from the full transducer-fluid system model was compared with 

corresponding experimental measurements made on the real physiotherapy device in 

the last chapter. Generally good agreement was observed, with the model accurately 

predicting both the characteristics of the real acoustic near-field and often absolute 

pressure values. The near-field was shown to be significantly different to idealised 

theoretical and analytical 1-D predictions. However some results were not in good 

agreement, specifically the magnitude of axial results close to the device and the 

electrical response with frequency. A number of possible reasons for these 

discrepancies were considered in Chapter 5 -  experimental error, difficulties in 

accurately measuring some areas of the near-field, non-repeatability of specific 

measurements and modelling error. Further possibilities included differences between 

the real and modelled devices such as different components, the non-symmetry of the 

real device, and inaccurate model parameters. Some of these issues have been 

investigated and the results are described in this chapter.

This chapter will extend the modelling in Chapter 5 from its use for model- 

experimental comparisons to use as a tool for the analysis of model parameters. The 

analysis of the model will involve sensitivity analyses to examine the significance of 

the parameters in the model and their potential effect on the generated near-field. 

Investigating these differences between models will allow potential sources of the 

model-experimental differences to be identified. Such an analysis also has 

implications for device modelling and design in general. Differences between the 

original transducer model and the real device can be considered in several categories - 

components, component dimensions, geometry and material properties. The 

significance of the non-symmetry of the real device or non-symmetrical components 

will not be considered here due to the use of a symmetric model. This means that the 

wiring and solder will not be considered. All other components will be investigated.

151



6.1.1 Difficulties in analysing model parameters

Any analysis of model parameters is difficult for a number of reasons. Firstly, there 

are a number of other possible sources of differences between the model and 

experimental results that have already been mentioned. Secondly, many of the results 

used for comparison purposes are measured indirectly. There is no specific 

measurement of the vibrational behaviour of the real device, but ‘secondary’ 

measurements of the electrical response of the device or the generated acoustic field. 

Thirdly, the model has already shown that the behaviour of the device is significantly 

non-uniform and that there is complex interaction between components and some 

sensitivity to frequency. Fourthly there are a number of practical considerations -  the 

simulation run times, the extraction of results and difficulty o f extracting information. 

Add to this the large number of model parameters and the limited availability of some 

accurate material properties and it is clear that such an analysis is a difficult, if  not 

unfeasible task. In order to approach the problem, therefore, a number of concessions 

will be made.

6.1.2 Analysis limitations

Out of the large number of parameters in the models considered here, it is likely that 

a number of them are of relatively little significance in terms of the behaviour of the 

device and their effect on the acoustic field. Establishing which features of the device 

are of little significance is important in its own right for design criteria, but it will 

also be used here to significantly reduce the size of the “parameter spaces” that need 

to be searched more thoroughly. Without such a reduction the analysis required here 

would be unfeasible. This can be emphasised by considering a model of a disc alone, 

operating in vacuuo. Such a model requires 14 independent parameters to describe it 

and takes approximately two minutes to run over 100 frequencies on a Viglen genie 

500 MHz PC. A search of the entire parameter space for just two values per 

parameter would require 214 models and take approximately 23 days to generate the 

results. Any analysis of the output would be in addition to this.
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6.2 Differences between the model and the real device -  components

There are a number of features of the real device that were not included in the 

original model for reasons other than symmetry. This was either because it was 

expected that certain components would have little effect on the generated acoustic 

field or because the inclusion of these components would significantly increase run 

times and memory requirements. These components were:

• the outer casing;

• the inner-outer casing glue layer;

• the (disc) recess;

• the disc-recess glue layer;

• the inner and outer casing connectors.

Taking the DAA2c model used to generate the output in Chapter 5 as a basis, each of 

these components were added to the model individually to determine the effect on the 

generated field. Within this series of “additional component” models some variation 

in material parameters was also included for a more comprehensive analysis. 

Comparisons involved calculating the mean square difference (m.s.d) of the axial 

pressure results from the original model over the range 0.5 mm to 120 mm in steps of 

0.5 mm, the emphasis being on establishing the potential effect on the source and 

subsequent field.

Figure 6 .1 shows the axial output for the two models with the largest m.s.d. from the 

original model, and the original model axial results. The results are given for the 

resonant frequency of the individual model -  in this case all were resonant at 

1.029 MHz. All three models are in good agreement close to the source and it is only 

further out (but still well within the near-field) that differences occur. In fact the 

model which includes an 0 . 2  mm thick recess, and an 0 . 1  mm thick glue layer 

between the disc and recess, is generally in good agreement with the original model 

result. For this particular model the Young’s modulus of the glue has been increased
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by 30% from the original model value. This value for Eccobond *24, quoted in Table 

3.1, is based on information supplied by the manufacturers, but is not quoted directly 

on their data sheet (Emerson & Cuming, 1999). The model with the largest difference 

is that which includes both a stainless steel outer casing and a glue layer between the 

inner and outer casings. Here the glue layer is 0.2 mm thick and the outer casing is 

1.685 mm thick. Furthermore the Young’s modulus of the glue layers was reduced by 

30% from the original model value. The source displacement amplitude data, in the 

axial direction, for both of these models together with that for the original, are shown 

in Figure 6.2. It is clear that the source deformation for the three models differs 

relatively little, with the only significant difference being towards the outer edge for 

the model with the outer casing. Figure 6.3 shows the corresponding radial field 

results at 5 mm from the source.

Two main differences between the experimental and model results were identified in 

Section 6.1 above. The main issue as far as the electrical response of the device is 

concerned is likely to be the piezoelectric component. The fact that the resonance 

frequency of all three models shown in Figures 6.1 - 6.3 is the same would suggest 

that none of the features here have any significant effect on the electrical response of 

the modelled device. The second issue is the axial pressure close to the source. It is 

clear from Figure 6.1 that the model variations here have had little significant effect 

in this area, certainly in terms of “optimising” results towards experimental axial 

data. The results shown are for the models with the largest m.s.d.. In order to check 

that differences around the last axial maxima were not masking differences closer to 

the source the m.s.d. was also calculated for the first 30 mm of the axial response. 

The same two models, shown in Figures 6.1 - 6.3, were identified as those with the 

largest m.s.d..

From these results, it would seem reasonable to conclude that none of the additional 

components considered are of significance in terms of improving model-experimental 

comparisons. Furthermore, the modelled device appeared to be fairly insensitive to 

variations in and/or the inclusion of these components. It is worth mentioning that the
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Figure 6.1 Axial output for models with additional components compared with the output for the 

original model used in Chapter 5. The “o.s. & glue” model includes both a 1.685 mm thick stainless 
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Figure 6.2 Source displacement amplitude in the axial direction, for models with additional 

components compared with the original model used in Chapter 5. The two additional models are as 

described for Figure 6.1. All results are for an operating frequency of 1.029 MHz and a drive level of 1 

volt.
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inclusion of 0 . 2  mm thick glue layers at the outer edge of the inner casing and at the 

recess on which the disc rests does appear to have some impact on field results. 

Specifically, results generated here for a glue layer with a Young’s modulus ± 30% 

of the original value have produced some changes. This would indicate that the 

properties of such glue layers could be of some significance in device construction 

and modelling, however the effect is clearly limited.

6.3 Differences between the model and the real device -  inaccurate properties

A second source of differences between the model and real device are component 

parameters -  material properties, dimensions and geometry. The dimensions of all the 

components were measured before the construction of the device and the component 

geometry was known. Varying the dimensions and geometry was, therefore, unlikely 

to improve the model-experimental agreement; it was however considered in order to 

determine the significance in terms of device behaviour and field response more 

generally. However, the glue layer at the edge of the disc is relatively very small and 

its characteristics more difficult to ascertain accurately. In addition in the real device 

the disc may not be exactly centred leading to non-uniform glue thickness throughout 

the circumference of the disc. Such features can be considered here to some degree by 

investigating the significance of the thickness of this layer.

The most significant component parameters considered here are likely to be material 

properties. In has been emphasised that a number of material properties used in the 

model are either difficult to measure in practice or are quoted within large tolerances. 

The accuracy is likely to be further reduced due to variations between the samples on 

which measurements were made and those in the device. The material properties of 

the device make up the majority of the input parameters in the simulation -  24 in the 

model as outlined in Chapter 3.
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6.3.1 Components at the edge of the disc -  glue layer and inner casing

Components in the principle direction of propagation will be significant for the 

generated field. However, the model can also be used to investigate the behaviour of 

other components which cannot be accounted for by 1-D models. The deformation at 

the source has been seen to be highly non-uniform. This is essentially due to the 

irregular vibrational response of the piezoelectric element and restraints at the edge of 

the disc. The non-uniform behaviour of the device is compounded by subsequent 

interactions amongst the structural components. In this section the influence of the 

components at the edges of the active element, that is the inner casing and disc glue 

layer, will be investigated.

As in Section 6.2, the first task was to establish if  varying the parameters, within a 

range indicated by the tolerances, had a significant effect on the generated field. The 

results were compared with the original model axial output and experimental data, 

using the m.s.d., for a series of models where each parameter was varied on an 

individual basis. Each component was described by four material properties -  

Young’s modulus (E), Poisson’s ratio (cr), density ( p )  and a hysteretic damping 

factor ( ju ) - as well as its dimensions. For both components E  and p  were quoted by 

the manufacturers (Emerson & Cuming, 1999; RS Components, 1999) whereas cr 

and //were estimated (Kaye & Laby, 1992). The only glue layer dimension was its 

thickness, whilst the inner casing was defined by the thickness and length of the 

cylindrical section and the thickness of the end cap. The comparison with 

experimental results (shown originally in Chapter 3, Figures 3.8, 3.9 & 3.11, and used 

for model-experimental comparisons in Chapter 5) considered parameter variations 

over ranges relatively close to the original values. The more general sensitivity 

analysis was performed over larger ranges.
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6.3.2 Variations in the supporting (disc) edge glue layer

Models with varying glue thickness and material properties were run over ranges of 

up to ± 40% of the standard values, with parameters generally varied on an individual 

basis. As in Section 6.2, little variation was observed. Figure 6.4 shows the axial 

comparison for the two models with the largest m.s.d. compared to original model 

axial results. The model with the largest m.s.d. actually has the Eccobond material 

properties replaced by the matching layer material - Araldite. This was considered 

here as the curing process for the Araldite may have influenced the properties of the 

glue layer. The model with the second largest m.s.d. has NO glue layer. Once again 

the resonance of both models remains 1.029 MHz suggesting little impact on the 

electrical response of the modelled device. The nature of the axial variation again 

suggests that the changes considered here have little effect on either the axial 

variation close to the source or indeed the beam in general. A m.s.d. comparison of 

these results against the experimental axial output used in Chapter 5 showed little if 

any improvement. It seems reasonable to conclude that although the properties of the 

edge glue layer can have some effect on the device and field response, the model is 

relatively insensitive to the variation of these parameters.

6.3.3 Variations in the inner casing

Models were run with inner casing dimensions varied by up to ± 10% of the 

measured values. Variations in E  and p  of up to ± 25% of the quoted values were 

also considered, whilst cr was varied over the range 0.2 - 0.49 and p  over the range 

0.001 - 0.3. The axial results are compared with the original model results in Figure

6.5 for the two models with the largest m.s.d. compared with the original model 

results. The experimental axial output used in Chapter 5 is also shown to highlight the 

nature of the last axial maxima for these plots. One model has a value for p  25% less 

than the quoted value and the second has E 25% more than the quoted value. There is 

little significant effect on the axial variation close to the source and a m.s.d. 

comparison against experimental measurements showed no improvement. Similar
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compared with the output for the original model used in Chapter 5. Again all models are operating at

1.029MHz.
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results were again observed when the m.s.d. was considered for axial results up to 

30 mm only. The resonance remained at 1.029 MHz for both models suggesting little 

impact on electrical response. Overall then it is reasonable to conclude that variations 

in this component were unlikely to improve model-experimental comparability.

A further analysis of inner sleeve parameters was considered without restricting 

variation to values close to the original ones. Models where either E  or p  were 

varied by significantly more than 25% were observed to generate results with larger 

m.s.d.s than shown in Figure 6.5. The variation in both cr and p  still had little 

impact. Instead of considering a whole range of results for varying values of E  and p  

it seems more sensible to establish the effect of changing parameters to those of a 

material with significantly different properties. A model was generated where the 

inner casing has stainless steel properties, as for the outer casing. The axial plot for 

this is shown in Figure 6 .6 . Also shown is a model with a larger m.s.d. that has the 

thickness of the inner casing reduced by 25%. This is now resonant at 1.031 MHz 

whilst the model with stainless steel casing remains resonant at 1.029 MHz. Once 

again little variation is observed very close to the source for both models, however 

further out there are some clear differences. Overall, however, the characteristics of 

the plot remain fairly consistent. A calculation of AER and beam type was made for 

both of these models for a more comprehensive assessment of the effect on the 

overall field. The result of this is shown in Table 6.1 compared to the original model 

output.
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Figure 6.5 Axial output for models with varying material properties for the ABS inner casing. 

Comparison is made here against the original model (orig) and experimental results (exp). The model 

with the largest m.s.d (den -25%) has a density value 25% lower than the original quoted on the RS 

data sheet. The second largest m.s.d. (E +25%) is for a Young’s modulus 25% higher than the quoted 
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Figure 6.6 Axial output for models with significantly varying parameters for the ABS inner casing. 

The model with the largest m.s.d. (t -25%) has a thickness 25% lower than the measured value and is 

resonant at 1.031MHz. The second largest m.s.d. (s.s.) has had the ABS material properties replaced 

with those of stainless steel and remains resonant at 1.029MHz.
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Model Original
Inner casing thickness 

reduced by 25%

Inner casing 

stainless steel

m (gradient) 0.20 0.27 0.28

beam type collimated collimated collimated

Aer / cm2 3.09 3.01 3.25

Table 6.1 Model-to-model comparison of AER and beam-type for additional models showing 

significant differences in axial output from the original model.

It is clear that despite some fairly significant differences on the axial plot, the overall 

effect of varying the inner casing in this manner has had little effect on the nature of 

the field and the magnitude of the pressure maxima and minima within it. The results 

here for the glue layer and inner casing are quite significant as, along with the 

comparison of additional components in section 6.2, they suggest that the precise way 

in which the disc is mounted is not significant for the overall vibration of the 

transducer. Of course this applies to the mountings considered here, but the ranges 

considered indicates that alternative “edge” mountings are not likely to be significant.

A final point arises with respect to the length of the inner casing. It has been 

confirmed that the exclusion of the outer casing has little effect on the behaviour of 

the model. The exclusion of this casing allows for a reduction in the size of the 

overall modelled transducer structure, which in turn reduces the modelling 

requirements of the unbounded fluid region. The length of the inner casing therefore 

essentially determines the length of the modelled structure. Here an analysis of this 

dimension has revealed that a large reduction in the length of the casing has no 

significant effect on model output. Figure 6.7 shows axial variation for a model with 

inner casing length reduced from 23.0 mm to just 5.0 mm. The comparison with the 

original model result shows little effect on the response of the device and the 

resonance remains at 1.029 MHz, however model run time is significantly reduced to 

less than 5 minutes for one frequency. Such a model could therefore be used for a
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faster analysis of model parameters. The analysis of the matching layer in section 6.5, 

where some consideration will be given to a multi-dimensional parameter space for 

the full transducer-fluid system, will use this ‘reduced’ DAA2c model. Unless 

otherwise stated all other device model analyses will be based on the original full-size 

model generated in Chapter 3.

6.4 The piezoelectric disc

The piezoelectric element is likely to be very significant for the nature of the source 

deformation and subsequent field of any device. For an air-backed device where there 

is no backing layer to damp out some of the irregular vibrational behaviour in the disc 

the response of the disc is likely to be even more significant on source deformation. 

In addition, the piezoelectric component is difficult to model accurately for several 

reasons. Firstly there is the large number of parameters necessary to model the disc -  

14 altogether. Secondly, many of the disc parameters are quoted in the manufacturers 

literature (Ferroperm, 1995; Vemitron, 1976) within relatively large tolerances. Due 

to the difficulty of measuring some properties and the possible differences between 

piezoelectric samples, conversations with manufacturers have led the author to 

believe that even the quoted tolerances may err on the optimistic side. Thirdly, in 

general the modelling of the piezoelectric element must be evaluated against indirect 

experimental results, whether this is electrical response or field data generated by the 

full device. This is certainly the case here, as no measurement of the deformation of 

either a piezoelectric disc or the source of the device has been made. However when 

the physiotherapy device was constructed, a disc was taken from the same batch as 

that used in the device so that electrical measurements could be made on it. There 

were, therefore, three indirect ways of investigating the modelled response of the 

piezoelectric component that were available here:

• comparison with the electrical response of the reference piezoelectric disc;

• comparison with the electrical response of the transducer,;

• comparison with the experimental field of the transducer.
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The problem with the electrical and field predictions for the transducer is that they are 

clearly affected by a number of other model parameters. Furthermore the much 

shorter run times associated with an analysis of the disc alone strongly suggested that 

a direct analysis of the effect of the piezoelectric properties on the disc behaviour was 

much more realistic than that of a full transducer-fluid system model. For these 

reasons the analysis of the effect of the disc parameters will be based around 

comparisons with the experimental electrical response of a disc on its own. 

Comparisons, of a secondary nature, will then be made for a full transducer model.

6.4.1 “Optimisation” of electrical response data

Patrick Macey from PAFEC supplied batch code for a series of models to run with 

varying parameters. Here models were generated automatically based on specification 

of the parameters to be varied, limits for parameters values and incremental sizes. It 

should be emphasised that the parameter values must therefore be pre-determined -  

this is not an optimisation routine incorporating analysis of model output. Admittance 

results were output for each model run over a pre-determined frequency range. On 

this basis a Fortran 77 program was written to analyse conductance data and make 

comparisons with chosen ‘optimal’ data files -  either the standard disc model 

electrical response or experimental measurements on a real disc. The program was 

designed to identify results with conductance peaks close to the right frequencies and 

with similar amplitudes. This was achieved by analysing a data file of model 

electrical results, establishing the relative positions and magnitudes of peaks and 

comparing this against a similar analysis of the ‘optimal’ electrical response file. In 

addition an m.s.d. comparison of the model electrical response against the ‘optimal’ 

file was also made.

6.4.2 Initial model-experimental disc electrical response comparison

Figure 6 . 8  shows a comparison of the conductance of a disc model using data as for 

the standard model with the experimental measurements made on the real disc.
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Figure 6.8 Model-experimental comparison of electrical response of Pz26 piezoelectric disc. The 

experimental measurements are made on a disc from the same batch as the one in the physiotherapy 

transducer. Comparison is made against model results for the disc properties used in the original 

transducer model (orig) and those later provided by the disc manufacturers, Ferroperm (Ferr).
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Chapter 3 mentioned the fact that a number of property values not originally specified 

by Ferroperm were subsequently made available. The disc model with these property 

values is also included in Figure 6 .8 . The original and Ferroperm material property 

values are shown in Table 6.2. Experimental measurements were made with the same 

impedance analyser used for measuring the response of the transducer outlined in 

Chapter 3. The measurements have been repeated a number o f times.

The obvious concern resulting from the plots shown in Figure 6 . 8  is the significant 

differences between the curves. The original disc model has a main resonance at 

970 kHz and the thickness extensional mode at 1.018 MHz is the second largest. The 

resonance at 970 kHz is undoubtedly the reason for the secondary resonance apparent 

in the modelled transducer, considered in Chapter 5 and shown in Figure 5.1. The 

disc model based on Ferroperm data has two resonances at 1.042 MHz and

1.002 MHz, some distance either side of the experimental resonance at 1.024 MHz. 

Experimentally there is also a secondary resonance around 995 kHz. The 

inconsistency in these results is in contrast to the general accuracy of transducer 

model-experimental field  comparisons. This would seem to suggest either 

considerable good fortune with respect to the piezoelectric parameters in the original 

model, or some robustness in the behaviour of the full system compared to the 

electrical response of the disc. These results suggest that there is considerable room 

for improvement in the modelling of the disc. Unfortunately the differences between 

the two models would also suggest that the disc (model) might be sensitive to a 

number of parameters. A substantial analysis of the piezoelectric properties will 

therefore follow.

6.4.3 Initial disc model “optimisation” towards real (disc) electrical response 

data

As outlined in Section 6.4.1 the starting point for the analysis of such a large number 

of parameters was to try and identify those that were of least significance. To achieve 

this a series of disc models were run over a range of frequencies for models with
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parameters varying on an individual basis. The Ferroperm guide (1995) quotes the 

accuracy of measurement within limits of between ±2.5% and ± 10%, whilst other 

guides (Vemitron, 1976) quotes limits of ±20%. The initial analysis involved 

parameters varying by up to 10% from the Ferroperm data. Models of all 14 

parameters were run over five values each and comparisons made against the 

Ferroperm model output. Analysis by the program outlined in Section 6.4.1 

suggested that the results were sensitive to all parameters but highlighted the five 

independent elastic compliance parameters, , S33, Sf2, Sf3 and , as being most

significant. The extent of the variation in electrical response can be seen in Figure 

6.9. Here the Ferroperm disc model electrical response is compared with a similar 

model where the Sfx, S33 and Sf3 parameters are varied by —4%, -5% and +6 %

respectively. The fact that this analysis involved varying parameters by no more than 

1 0 % emphasises the difficulty of comprehensively analysing disc parameters.

Based upon these results it was decided to analyse the piezoelectric properties in 

more detail by initially varying the five elastic constants simultaneously. From the 

results of varying these five parameters, future runs would consider all of the material 

parameters at some stage. In this way some attempt to investigate a number of “multi

dimensional” parameters spaces of the disc model would be approached. No further 

analysis of the disc dimensions was considered as the disc on which experimental 

measurements were made was measured accurately.

6.4.4 Secondary disc model “optimisation”

A series of analyses were made using both the original piezoelectric properties and 

the Ferroperm values as starting points. Searches were made, over varying ranges, by 

initially altering the five elastic constants. Here the searches were over multi

dimensional spaces as opposed to the initial searches made by varying parameters on 

an individual basis. The data was analysed using the program described in section

6.4.1 with the experimental results as a reference. At subsequent stages, once an 

electrical response was achieved showing good agreement with the experimental

167



measurements, a small area around that set of parameters was chosen as the search 

space. During these searches the remaining material parameters were considered as 

additional variables or in place of one of the elastic constants. In all several thousand 

models were considered and all material parameters considered to some extent. After 

all of the simulations had been run the data was further analysed using a m.s.d. 

approach that allowed for some shifting in the frequency domain of the electrical 

results compared to experimental data. It should be pointed out that the earlier 

consideration of the search space for 14 parameters with 2 values per parameters 

would involve in excess of 16,000 models. So although some significant effort and 

computing power went into making this analysis, relatively small search spaces were 

analysed.

Figures 6.10 and 6.11 show the electrical response of four models compared with 

experimental measurements on the real disc. The models shown here are in best 

agreement with the experimental results. Overall the models generate similar features 

to the experimental electrical response. The material parameters for all of these 

models are given in Table 6.2. Figures 6.12 and 6.13 show the displacement 

amplitude variation (in the axial direction) along the “radial” face of the disc for all 

four models compared with similar results for the disc model used in the original 

transducer model. The deformation is for the resonant frequency closest to the 

experimental resonance at 1.024 MHz. Note that no experimental measurements have 

been made to generate real disc deformation data for comparison. Figure 6.14 shows 

the displacement phase variation (in the axial direction) along the same face of the 

disc for all four models. There are clearly some extreme differences between the 

model disc deformations, not least compared against the original disc used for the 

transducer model in Chapter 5. From Table 6.2 there are also clearly some significant 

differences between model parameter values.

Figures 6.15 and 6.16 show the electrical response for four modelled transducers 

operating into water and incorporating the disc model parameters shown in Table 6.2. 

They are compared with the experimental plot. Although agreement is not good no
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Figure 6.10 Model-experimental comparison of electrical response of disc in vaccuo-air. The models 

were generated from a large analysis of modelled disc parameters. The parameters for models ‘a’ and 

‘b’ are shown in Table 6.2.
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Figure 6.11 Model-experimental comparison of electrical response of disc in vaccuo-air. The models 

were generated from a large analysis of modelled disc parameters. The parameters for models ‘c’ and 

‘d’ are shown in Table 6.2. The experimental results are shown in (exp).
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Figure 6.12 Model-model comparison of the displacement amplitude (in the axial direction) for the 

face of the disc in vaccuo. The comparison is made against the disc from the original transducer model 

(orig). The parameters for models ‘a’ and ‘b’ are shown in Table 6.2 and the electrical response of 

these models is shown in Figure 6.10.
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Figure 6.13 Model-model comparison of the displacement amplitude (in the axial direction) for the 

face of the disc in vaccuo. The comparison is made against the disc from the original transducer model 

(orig). The parameters for models ‘c’ and d’ are shown in Table 6.2 and the electrical response of 

these models is shown in Figure 6.11.
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Figure 6.14 Model-model comparison of the displacement phase (in the axial direction) for the face of 

the disc in vaccuo. The comparison is made against the disc from the original transducer model (orig). 

The parameters for models ‘a \ ‘b \ ‘c’ and d’ are shown in Table 6.2.
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parameter original Ferroperm Model ‘a’ Model ‘b’ Model ‘c’ Model ‘d’ units

n E
^11

13 13 1 2 . 6 12.5 13 13.4 10"12 m 2 /N

<\E33
2 0 19.6 19.8 2 1 . 0 19.6 19.0 10"12 m 2 /N

12
-4.23823 -4.35 -4.45 -4.125 -4.45 -4.45 10"12 m 2 /N

~ E
13

-7.0485 -7.05 -6.90 -7.40 -6.95 -7.00 10'12 m 2 /N

S i 34.85 33.2 35.7 27.5 34.5 34.7 1 0 '12 m 2 /N

4 6.34975 6.1950 6.195 6.1993 6 . 0 0 6.195 10 9 farads/m

4 7.35 7.3278 7.20 7.165 7.20 7.20 10 9 farads / m

<*31
-130 -125 -115 -130 -115 -115 1 0 '12 C /N

<*33
330 328 285 310 285 285 10"12 C /N

<*15
494 327 300 533.4 300 300 10'12 C /N

P 7.70 7.70 7.70 7.60 7.70 7.70 103 k g /m 3

P 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 -

Table 6.2 Comparison of model piezoelectric properties. The second column gives the values used in the original model. The third 

column lists the values later made available by the manufacturers, Ferroperm. The four subsequent columns give the values 

used to generate the electrical results shown in Figures 6.10 and 6.11 following the analysis of the piezoelectric parameters.

Note that the omission of the S 66 values is due to the fact that this parameter is automatically calculated from other parameters.
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Figure 6.15 Model-experimental comparison of electrical response of transducer-fluid system. The 

transducer models are the same as the original one used in Chapter 5 except that here the piezoelectric 

material parameters for models ‘a’ and b’ are as shown in Table 6.2. The experimental result (exp) 

was presented in Chapter 3, Figure 3.3.
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Figure 6.16 Model-experimental comparison of electrical response of transducer-fluid system. The 

transducer models are the same as the original one used in Chapter 5 except that here the piezoelectric 

material parameters for models ‘c’ and d’ are as shown in Table 6.2. The experimental result (exp) 

was presented in Chapter 3, Figure 3.3.
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further consideration has been given to improving the model-experimental 

comparability of the electrical results of the transducer-fluid system. This is because 

electrical data is primarily used here to establish the working frequency of the device 

-  modelled or real -  and the main area of interest is the near-field pressure results and 

how sensitive they are to model variations.

Figures 6.17 and 6.18 further show the axial pressure plots due to these four 

transducer-fluid models operating at the resonant frequencies established from 

Figures 6.15 and 6.16, and again compared with experimental data. It can clearly be 

seen that the piezoelectric properties alone have a significant effect on the generated 

field. It can also be seen that in the areas where model-experimental comparability 

was least accurate, the very near-field, there is the potential for varying piezoelectric 

properties to have a substantial effect. No model-experimental m.s.d. comparisons 

have been made here as the “optimisation” of the disc parameters was made for 

model-experimental electrical results. A model-experimental near-field pressure 

optimisation for the piezoelectric parameters would be a much larger problem.

6.4.5 Disc modelling -  conclusions

The response of the piezoelectric disc model is very difficult to analyse 

comprehensively and effectively. A large number of parameters are required to define 

the disc model and a comprehensive analysis of such a parameter space is beyond the 

limitations of this work. The analysis of disc parameters is further complicated by the 

fact that manufacturers quote property values within wide tolerance limits, not least 

because of the difficulty of measuring many of these properties in practice. It has also 

been seen that the electrical response of the disc model is highly sensitive to all 

parameters. It is difficult to establish whether or not the “optimal” solutions achieved 

here are local as opposed to global optima even for the small parameter spaces 

investigated. This leads to a further point. The “optimal” solution is obviously 

dependent on the analysis of model-experimental electrical results. The analysis 

techniques used here are by no means definitive. Some compromise has to be
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Figure 6.17 Model-experimental comparison of axial pressure amplitude. The transducer models are 

the same as the original one used in Chapter 5 except that here the piezoelectric material parameters 

for models ‘a’ and ‘b’ are as shown in Table 6.2. The experimental axial results (exp) are those that 

have been used extensively both here and in Chapter 5.
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Figure 6.18 Model-experimental comparison of axial pressure amplitude. The transducer models are 

the same as the original one used in Chapter 5 except that here the piezoelectric material parameters 

for models ‘c’ and ‘d’ are as shown in Table 6.2. The experimental axial results (exp) are those that 

have been used extensively both here and in Chapter 5.
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accepted between how comprehensive the analysis is and how accurate the model- 

experimental comparison can be, so some inaccuracy must be expected.

It has been observed that different combinations of parameter values can achieve 

similarly accurate electrical results whilst producing significantly different vibrational 

results. This implies that model agreement for the electrical response of the disc is no 

guarantee that the model and real disc agree in terms of vibrational response. 

Therefore a comparison of disc electrical response alone is not sufficient to optimise 

the model disc performance towards real disc behaviour. Although it may be possible 

to analyse the real disc vibrational behaviour experimentally this has not been 

approached here. For a more comprehensive assessment of the disc such experimental 

measurements are likely to significantly improve both the modelled disc and the 

modelled transducer-fluid system agreement with experiment.

The analysis here involved searching a number of small multi-dimensional parameter 

spaces to optimise the electrical output of a disc model to corresponding experimental 

results. A feature that is not considered is exactly what parameter values are realistic 

as compared to what can be considered by a mathematical model. One conclusion, 

however, is that the piezoelectric parameters do not need to be known extremely 

accurately for the vibrational behaviour of the main resonance to produce fairly 

accurate results in the corresponding transducer model. Although the electrical 

response of the modelled disc is highly sensitive to a number of parameters the 

corresponding transducer-fluid system is not so sensitive, as far as the gross 

vibrational behaviour is concerned. This means that to accurately simulate the general 

response of the device and field, the modelled piezoelectric disc must just respond 

with what is primarily a deformation in the thickness of the disc around the desired 

frequency. The detailed vibrational behaviour of the disc with deformations occurring 

on a scale relative to a wavelength is likely to account for at least some of the specific 

features of the transducer behaviour and field response. It is therefore to be expected 

that some of the piezoelectric parameters are responsible for such features.
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This analysis of the disc should emphasise the complexity of modelling this 

component. An analysis of the disc parameters directly within a transducer model to 

try and improve model-experimental fields results would be significantly more 

complex and require an excessively large number of models and simulation run 

times. The more specific features of the field are likely to be more dependent on the 

piezoelectric properties but there are also a number of other factors likely to effect 

these features, including the matching layer parameters which will be considered 

next.

6.5 The matching layer

It is clear that the matching layer will have a significant effect on the nature of the 

generated field as its thickness and material properties are chosen with the intention 

of optimising the efficiency of the device. As before, the analysis will begin with a 

consideration of parameters on an individual basis to establish whether or not the 

transducer model is sensitive to these parameters.

6.5.1 Initial matching layer analysis

There are five matching layer parameters, the thickness and four material properties -  

E, p ,  cr and p . In the original model the thickness of the layer is known fairly 

accurately from measurements made during construction. The manufacturer provided 

the value for p .  E  was based on a calculation made after a measurement of the 

velocity of sound on a sample of the material provided by George Cattermole. cr and 

p  were both estimates. The nature of the ‘curing’ process takes approximately a 

week once the Araldite is applied to the transducer face, and the material is actually a 

mixture of two materials as specified by CIBA-GEIGY (1982). The properties of the 

material may depend on the curing process, especially as the layer used in the device 

is small (< 1 mm) compared to the dimensions of the sample used for the calculation 

of E. For these reasons the accuracy of all of these material properties is uncertain.
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On this basis a fairly wide range of values was considered for this initial analysis. 

The m.s.d. comparison for axial results against the original model output suggested 

that the system is sensitive to all of the five parameters. It was decided to proceed by 

analysing this five-dimensional parameter space in some detail. To reduce run times 

the reduced-size model mentioned in Section 6.3.3 was employed as the basis model. 

All other component parameters remain unchanged from the original model used in 

Chapter 5.

6.5.2 Analysis/”Optimisation” of matching layer properties

For the multi-dimensional analysis of the matching layer parameters, m.s.d. 

comparisons with both the original model axial pressure results and the experimental 

axial data were made. For the general analysis the emphasis was on the largest m.s.d. 

to determine the potential variation in field output due to relatively small parameter 

variations. In contrast, for the comparison with experimental results, the interest was 

in the smallest m.s.d. in order to try and improve on the experimental agreement. The 

m.s.d. calculation was made for both the full axial output (-130 mm) and just the first 

30 mm of axial output. The results of these analyses are shown in Figures 6.19-6.21.

Figure 6.19 shows the axial pressure amplitude for models with the largest m.s.d. 

compared with the original model. They emphasise the potential field variation due to 

relatively minor parameter variations. The material properties for the two models 

shown, models #1 and #2, are given in Table 6.3. In particular these results highlight 

the potential effect on the very near-field of the device, and specifically the maximum 

(axial) field value which is of significance for the calculated value of the RBN.

Figures 6.20 and 6.21 show model-experimental comparison of axial pressure 

amplitude for models #3, #4 and #5 having amongst the smallest m.s.d. compared to 

experimental axial results. They emphasise the potential improvement in field results 

due to relatively minor parameter variations. Properties for these models are also 

shown in Table 6.3.
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Thickness Young’s

modulus

Density Poisson’s

ratio

Damping

factor

original 0.867 3.315 1.140 0.41 0.03

#1 0.867 2.652 1.250 0.37 0.01
#2 0.911 2.983 1.140 0.39 0.01
#3 0.911 2.983 1.140 0.43 0.03
#4 0.867 3.978 1.030 0.43 0.01
#5 0.911 3.646 1.140 0.43 0.03

units mm 109 N/m2 103 kg/m3 - -

Table 6.3 Matching layer parameters for the five models shown in Figures 6.19 - 6.21 and the original 

model values for comparison.

In particular Figure 6.21 emphasises the fact that the axial variation close to the 

source can indeed be significantly reduced in magnitude to levels comparable to 

experimental results. These results re-emphasise the conclusion that matching layer 

parameters can have a significant effect on the generated field, including specific 

measurements such as RBN .

6 . 6  Summary

Following the generation of an effective transducer-fluid system model in Chapter 5, 

this chapter has looked at the potential significance of the modelled device 

parameters on the behaviour of the device and the generated near-field. A substantial 

optimisation towards experimental results or indeed a comprehensive search of the 

multi-dimensional parameter space of the modelled device is beyond the scope of this 

work. Nevertheless some analysis of individual components and individual 

parameters has been approached and provided useful information on the effect of 

specific parameters on the overall system.
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Figure 6.19 Model-model comparison of axial pressure amplitude for varying matching layer 

parameters. Models #1 and #2 properties are shown in Table 6.3 and they are compared against the 

original (reduced size) model output (orig). These models have amongst the largest m.s.d. from the 

original model results and emphasise the potential field variation due to relatively minor parameter 

variations.
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Figure 6.20 Model-experimental comparison of axial pressure amplitude for varying matching layer 

parameters. Models #3 and #4 properties are shown in Table 6.3. These models have amongst the 

smallest m.s.d. compared with experimental axial results (exp) and emphasise the potential 

improvement in field results due to relatively minor parameter variations.
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Figure 6.21 Model-experimental comparison of axial pressure amplitude up to the first 30 mm from 

the face for varying matching layer parameters. Models #4 and #5 properties are shown in Table 6.3. 

These models have amongst the smallest m.s.d. compared against experimental axial results (exp) for 

the first 30 mm of axial results.
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The conclusions of these analyses are that the gross field characteristics of the device 

are due to the response of an air-backed device with an active element operating in 

essentially a thickness-extensional mode and somewhat restrained at its edges. 

Although there is some potential for components such as the disc glue layer, inner 

casing and inner-outer casing glue layers to have some impact on the behaviour of the 

device and field, in general the modelled system in fairly insensitive to variations in 

these component parameters. By contrast the system is highly sensitive to variations 

in all piezoelectric and matching layer parameters. Models generated here have 

shown the potential for effecting the very near-field of the device so that it is more 

consistent with experimental results considered in Chapters 3 and 5. In addition, some 

models have generated results significantly different from experimental results, 

including regions of the near-field where the original model is in good agreement 

with experiment.

The analyses of model parameters presented here is only really a starting point for the 

consideration of the significance of parameters and their effect on the behaviour of 

the modelled device and subsequent pressure field. With reduced model sizes and 

improving computing facilities a more comprehensive analysis should be possible, 

leading to the pro-active design of medical ultrasound devices and fields.

This concludes the work presented in this thesis. The final chapter will now bring 

together all of the work presented here and discuss the conclusions that can be drawn 

and how they have been arrived at. The important issues and difficulties that have 

arisen during the course of this work will also be considered. Finally there will be a 

look at some of the ways in which this work can be continued or extended and some 

problems to which it might be applied.
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Chapter 7

7.1 Introduction

The preceding chapters have looked at the modelling of a real physiotherapy 

ultrasound transducer and its near-field using finite element and boundary element 

techniques. The design and construction of a specific transducer has provided 

considerable insight into the device components and allowed real measurements to be 

made for model comparison. However the techniques employed here and the issues 

encountered are likely to be applicable to the modelling of a range of real medical 

ultrasound systems. The modelled device contains a large number of parameters and 

radiates into an unbounded fluid region. Three fluid-modelling options have been 

compared for the simulation of the surrounding fluid medium. The near-field of the 

real device is seen to be complex with extreme pressure variations occurring on a 

small scale, however the transducer is both an effective physiotherapy device and 

fairly typical. The corresponding model has been shown to be generally capable of 

accounting for such non-uniform field results, even very close to the source, and 

some considerable analyses of the sensitivity of the system to device parameters has 

been approached. Where model-experimental discrepancies have been encountered a 

number of possible explanations have been considered.

What follows is a summary of the work presented in this thesis and the conclusions 

that can be drawn here. This will begin with a comprehensive discussion outlining the 

modelling processes and analyses that have been followed, establishing exactly how 

and why the work here has been progressed, and the implications for the future use of 

FEM and BEM for the simulation of real medical ultrasound systems. This is 

followed by a brief summary of the most significant conclusions that can be drawn 

from this work. Finally there will be a look at some of the areas that this work could 

be applied to and some of the considerations for further work.
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7.2 Discussion

This work has encountered a number of problems relating to the successful 

simulation of realistic medical ultrasound devices and fields, the use of FEM and 

BEM for this purpose and the assessment of the modelling methods. These can be 

considered in several categories:

• Practical issues;

• Modelling of the transducer;

• Modelling a surrounding unbounded fluid media - with particular interest in the 

near-field region;

• The generation of accurate, repeatable experimental measurements against which 

model results can be comprehensively tested and assessed.

Summarising these issues here should offer considerable insight into the problems 

associated with the simulation of real medical ultrasound systems using FEM and 

BEM, and how they have been tackled.

7.2.1 Practical issues

There are a number of practical features of the work presented here that should not be 

underestimated and are likely to be at least one reason why this type of modelling 

approach has not previously been considered in detail. In addition, such issues are 

likely to remain somewhat of a restriction to future work in this area.

FEM and BEM were chosen here because they offered the potential for modelling 

realistic device behaviour - specifically the realistic response of piezoelectric 

components - and could accommodate the simulation of a surrounding fluid media. 

PAFEC was specifically chosen because it was one of only a few packages that 

offered these options and was affordable. Whilst using PAFEC, however, two 

significant practical difficulties were encountered.
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Firstly there is the difficulty of actually using PAFEC. As with many such packages it 

is very difficult to learn how to use effectively. This issue should not be 

underestimated as it can lead to significant problems when generating a model of a 

system. Perhaps more significantly it can lead to problems in generating accurate and 

effective models. In addition to this a number of errors have been found in the 

package. This is undoubtedly not just an issue with PAFEC, and indeed the 

manufacturers have been extremely helpful when it came to such issues. Nevertheless 

it should be highlighted that when applying a piece of software such as this to 

problems not previously considered (and therefore problems for which the package 

has not been extensively tested), errors are very likely. This highlights the need for 

extensive testing and evaluation of models. An example of a specific bug that was 

encountered was one that generated a spreading wave from the front edge of the 

modelled device. The nature of the wave meant that it did not show up on axial near

field plots or radial plots within the radius of the device. In fact the problem only 

came to light during the calculation of the model AER where the analysis of large 

cross-axial planes is required. The bug turned out to be due to an inadequate number 

of points being used for the solution of the exterior Helmholtz integral in the 

generation of field results. This was a problem for the current work because of the 

relatively high frequency being used compared with previous studies. It should be 

noted that in this case the realistic nature of the additional wave made it difficult to be 

sure that this was an artefact. This highlighted the need for comparisons of different 

models.

A second issue is that of simulation run times and memory requirements. This has 

been of particular significance when considering models with large numbers of 

nodes. Here the biggest problem has been with the use of acoustic elements and 

WEEs for the simulation of the surrounding media. The run times for such models 

has been excessive -  of the order of 5 hours for one frequency on a 500 MHz PC, and 

reduced from -12 hours on a slower PC. In addition the memory requirements of 

such models have limited the extent of the acoustic region that could be modelled 

using acoustic elements and have therefore enforced the positioning of the acoustic-
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WEE interface at specific points. The use of WEEs will be considered in more detail 

shortly, however the successful simulation of WEE systems with a ka value much 

larger than the one considered here, ~54, has not been possible for the PC used.

The alternative BEM options for modelling the fluid region have substantially 

reduced the size of the problem, so that corresponding models can now take as little 

as 15 minutes to run for one frequency. Furthermore the nature of the DAA2c 

technique means that many of the systems matrices only have to be solved once, 

making runs over a range of frequencies much more approachable. However several 

facts must be kept in mind. The systems modelled here exploit circular symmetry to 

reduce the size of the problem and the operating frequency is around 1 MHz, which 

would be considered moderate, if  not low, in terms of many medical ultrasound 

devices. Also, for any comprehensive analysis of system parameters, including 

searching large multi-dimensional spaces, such run times would still be excessive if 

not prohibitive. On the plus side ever improving computing options, the reduction in 

the size of modelled systems through the omission of non-significant components and 

the possibility of linking parameters through mathematical relationships could help to 

overcome such difficulties.

7.2.2 Modelling the transducer

Here consideration will be given to the issues that have arisen specifically relating to 

the model of the device. These can be summarised as follows:

• The accuracy of quoted and estimated parameter values;

• The large number of parameters required to define the model of the device;

• The sensitivity of the model to specific device components and parameters;

• The indirect nature of experimental data for the assessment of the modelled 

device;

• The sensitivity of both the model and the real device to operating frequency;
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• Differences between the real device and the model - manufacturing irregularities 

and components not modelled.

The modelled physiotherapy device requires around 30 independent parameters to 

define it completely. A major reason for designing and building a real medical 

ultrasound device was to gain a comprehensive knowledge of the components in the 

device, their dimensions and the materials used. Therefore many device model 

parameters are accurately known. A number of others are not, specifically material 

properties of various components. Many material properties, in particular those of the 

piezoelectric element, are either difficult to measure accurately in practice or 

measured on material samples different to the components used here, and are 

therefore less accurate. Tolerances for piezoelectric parameters are quoted between 

±2.5% and ±20%, (Ferroperm, 1995; Vemitron, 1976). In addition some 

manufacturers simply do not report some material properties. For these reasons alone 

model-experimental comparisons are bound to encounter difficulties and some 

analysis of parameters is required to improve comparability.

A comprehensive analysis of parameters and the sensitivity of the modelled system to 

parameter variations would require consideration of a dimensionally large parameter 

space. The number of parameters in the system here and the relatively long run times 

for simulations make such a comprehensive sensitivity analysis unfeasible. Instead 

the approach adopted has been to initially vary parameters on an individual basis over 

a fairly small range of values and compare the near-field axial pressure response 

against that of the original model and experimental data. In this way the potential 

sensitivity of the model to each parameter is assessed. Where the system has been 

found to be particularly sensitive to certain components a more comprehensive 

analysis of the multi-dimensional parameter space of that component has been 

approached. Whilst such methods are by no means ideal they are practical for the 

number of model parameters to be considered here and associated run times.
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Analysis of parameters on an individual basis suggests that although all parameters 

can have an effect on the behaviour of the modelled system, most components are 

fairly insensitive to variation. The gross behaviour of the device would appear to be 

determined by the basic design features -  an air-backed disc deforming 

fundamentally in its thickness dimension and restrained at its edges. It is of particular 

interest that the vibration of the disc is fairly insensitive to variations in the mounting. 

The components to which the vibration is highly sensitive are the piezoelectric 

element and matching layer. An analysis of the five matching layer parameters was 

made by scanning through the five-parameter space for a few values for each 

parameter. Model-model and model-experimental axial pressure comparisons were 

made. This established that the specific features of the vibrational response of the 

modelled device and subsequent near-field are highly sensitive to variations in all the 

matching layer parameters. Furthermore it established that variations in these 

parameters could account for specific model-experimental discrepancies observed 

close to the source.

For the analysis of disc parameters a modelled disc in vacuuo was used instead of the 

full transducer-fluid system. Comparisons were then made for the electrical response 

of the model against experimental results made on a real disc in air. This process 

significantly reduced model run times enabling the running of several thousand 

models including searches of multi-dimensional parameter spaces. From this analysis 

several conclusions were drawn. Firstly, both the electrical and vibrational response 

of the model is highly sensitive to all piezoelectric parameters. Secondly, good disc 

model-experimental electrical agreement could be achieved for a number of models 

with varying parameter values and exhibiting different vibrational behaviour. This 

suggests that any disc analysis/optimisation based solely on electrical results is likely 

to prove ineffective for considering the effect on the vibrational behaviour of the disc, 

the disc in a transducer and the subsequent field. Experimental measurements of the 

disc and transducer face vibrational behaviour would therefore prove very useful for 

model-experimental comparison. In fact this can now be identified as an essential 

element of future work. Thirdly, the use of different disc models within the
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transducer-fluid model established that variations in piezoelectric parameters are 

capable of producing significant variations to the specific features of device response 

and generated near-field. Similarly to the case of the matching layer, results imply 

that inaccurately specified piezoelectric parameter values could account for observed 

model-experimental discrepancies.

The issue of the operating frequency for the model when making comparisons with 

experiment has arisen here. Comparisons have been made for models operating at 

their resonant frequencies against experimental results generally generated at 

1.027 MHz -  the ‘working frequency’ of the real device. In practice this has lead to a 

significant increase in run times as it has been necessary to first consider the electrical 

response of the system before the generation of field results. This approach was 

adopted partly because both the model and the real device are fairly sensitive to 

frequency variations due to their high Q nature. Also the sensitivity of the modelled 

system to parameter variations has meant that the position of the resonance can shift 

substantially between models - making model-model and model-experimental 

comparison at a pre-determined frequency ineffective here. For a comprehensive 

sensitivity analysis/optimisation of parameters the pre-specification of a frequency at 

which comparisons would be made could be used as an inherent part of the 

optimising function. For the limited analysis possible here this is not appropriate.

A final point concerns differences between the model and real device other than those 

relating to inaccurate dimensions or material properties. Firstly, the real device will 

not be truly circularly symmetric and therefore cannot be compared exactly to the 

model used here. Also a number of components in the real device such as wiring and 

soldering are not accounted for by the model due to the model’s symmetry. There is 

also the fact that the model is a discretised approximation of the real system, and that 

the finite elements used can only approximate the behaviour o f real systems that 

behave according to the somewhat idealised equations that define those elements. All 

of these issues make some model-experimental differences inevitable and may play a 

role in the poor agreement of some model-experimental field and electrical results.
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7.2.3 Modelling an unbounded fluid region

During this work the simulation of the surrounding unbounded fluid region has been 

investigated in some detail and at some stages considered separately to the modelled 

device. This is primarily because the initial techniques used to model the fluid region 

did not perform accurately. Furthermore the practical limitations of the use of 

acoustic elements and WEEs required that some further options be considered if any 

substantial analysis of the modelling of real fields and devices was to be undertaken. 

For these reasons three fluid-modelling options, WEE, CHIEF and DAA2c were 

compared. Comparisons were made for three idealised source profiles with the same 

dimensions as the physiotherapy transducer -  a plane piston source, a Vi cosine 

source and a Gaussian each operating at 300 kHz, 650 kHz and 1.030 MHz. Also the 

three options were compared for the realistic source behaviour of the modelled device 

operating around 1.030 MHz. The near-fields of the idealised sources were compared 

against analytical results and those for the real source against experimental field 

results.

The WEE model involves surrounding the structure with standard acoustic elements 

up to some boundary where WEEs are introduced. These elements are designed to 

simulate outward-travelling wave-like behaviour, so if they are matched to the 

acoustic elements correctly the surrounding fluid region effectively becomes infinite. 

A number of parameters must be defined accurately for this acoustic-WEE matching 

to be effective:

• the distance from the structure to the acoustic-WEE interface;

• the angular meshing along the interface;

• the meshing in the acoustic region;

• the radial order of the WEEs -  this determines the decay term within the elements

and therefore effects the compatibility at the acoustic-WEEs interface;

• the positioning of the ‘virtual source’ about which the WEEs are defined.
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The approach adopted here for the use of these elements has been as follows. Initially 

the acoustic region in front of the radiating structure is made as large as possible so 

the WEEs are implemented at the furthest boundary possible -  allowing for run time 

and memory requirements. Subsequent re-analysis can be concerned with reducing 

the size of this region. When all features are accounted for correctly an angular 

meshing of three elements per wavelength at the interface and three to six throughout 

the acoustic region has proved effective here. The position of the ‘virtual source’ 

about which the WEEs are defined would appear to be very much problem 

dependent. Here the source has been specified at the centre on the structure on-axis. 

Further comments on this will be made when considering geometrical issues when 

using WEEs.

There have been references in the literature to mathematical problems arising from 

defining a radial order as being too high for specific problems, (Cremers & Fyfe, 

1995; Astley et. al, 1998; Morgan et. al. 2000). This is in addition to acoustic-WEE 

mismatches occurring due to defining the radial order as being too low. No such 

mathematical problems have arisen here. In fact in contrast to models generated 

elsewhere (Cremers & Fyfe, 1995; Astley et. al, 1998) where the optimum radial 

order necessary to generate accurate results has been orders 5 or 6, here the use of 

radial order 9 has been essential for generating accurate results. Reports of 

mathematical problems have been for systems with (much) smaller ka values than 

those considered here. For a realistic medical ultrasound system the use of high radial 

orders is likely to be a necessity rather than posing a potential problem.

When all of these features discussed here are accounted for, and parameters specified 

correctly, the acoustic-WEE option for all three idealised source types operating at all 

three frequencies was in excellent agreement with analytical predictions.

Unfortunately the practical use of the WEE option has been shown to be fairly 

restricted for the type of problem considered. Firstly the parameters considered above 

must be specified accurately for the simulation to work effectively. Also there is an
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issue of geometrical differences between the definition of the WEEs and realistic 

devices leading to some potentially difficult balancing of meshing requirements with 

element size and angular restrictions. The positioning of the ‘virtual source’ also 

effects the geometry of the problem. It would be beneficial to have this source close 

to the radiating source, however this can lead to significant violations to the 

geometrical and size restrictions placed on acoustic elements for the structure 

considered here. It should be pointed out that some attempt to overcome such 

problems through the use of elliptically shaped WEEs has been approached (Astley & 

Hamilton, 2000)). Finally there is the issue of excessive run times and memory 

requirements of WEE models. Here memory requirements have almost been pushed 

to the limit for the modelling of the system on a 500 MHz PC and simulation run 

times are around 5 hours for one frequency, emphasising that the use of WEEs is 

severely restricted. The fact that the effectiveness of the WEE option can be easily 

established through the analysis of pressure variations across the acoustic-WEE 

interface, however, means that it can be used for the evaluation of other models. This 

is exactly how it has been used here.

The alternative to the use of some sort of ‘infinite’ element such as WEEs is the 

application of BEM, using an integral relationship at the structural surface relating 

normal pressure and normal velocity here. This type of approach has been considered 

many times before (Chen & Schweikert, 1963; Chertock, 1964; Copley, 1967; 

Schenck, 1968). Once the fluid-structure problem has been solved the generation of 

exterior field results is relatively trivial using an additional integral relationship. 

CHIEF and DAA2c considered here use the same exterior integral but different 

techniques for the fluid-structure relationship. The use of BEM requires that only the 

surface of the radiating structure is meshed, resulting in significantly reduced run 

times for larger models.

CHIEF uses the exact (Helmholtz) integral relationship for fluid-structure behaviour. 

There is a problem of non-uniqueness with this integral that CHIEF overcomes by the 

definition of additional interior points and the solution of an interior surface integral.
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Non-uniqueness occurs for surface pressures that are a solution to this interior 

problem. Solving both surface and interior problems allows for the unique solution of 

the correct surface pressure results. There are two main problems with the use of this 

method. Firstly, although there are some guidelines with respect to the positioning of 

the additional interior nodes (Seybert & Rengarajan; 1987), essentially this is a fairly 

arbitrary procedure. Secondly, the non-uniqueness is related to the interior resonances 

of the boundary element so that for increasing structural size or frequency the 

problem becomes more extreme. It has been suggested (Schenck, 1968; Seybert & 

Rengarajan; 1987) that for increasing ka the CHIEF option would not be effective 

and indeed that is exactly what has been observed here. For smaller ka values CHIEF 

models showed excellent agreement with analytical results but for ka values 

appropriate for the physiotherapy system agreement was very poor. Overall then the 

conclusion on the use of CHIEF is that it is ineffective for large ka devices such as 

those found in many real medical ultrasound systems.

The DAA2c method uses a Doubly Asymptotic Approximation for the fluid-structure 

surface relationship, as opposed to the exact Helmholtz integral used in CHIEF. The 

exact integral takes into account all the interactions between coincident fluid and 

structural points (on the structural surface) including the effect that each point has on 

all other points of the surface. The DAA2c on the other hand is an approximation of 

this and only completely accounts for interaction and the effect of this interaction 

between points on the surface close to the individual point where the fluid-structure 

interaction is being solved. Although some reference has been made to the fact that 

this technique should be effective for systems operating at high frequencies, the 

author has not come across any specific examples of this in the literature for radiating 

structures. Indeed it has previously been suggested to the author that such an 

approximate technique would not be capable of accounting for the rapid and complex 

near-field pressure variations that are of interest here.

For all three Gaussian source models with different ka values the DAA2c model 

showed excellent agreement with analytical predictions. For the other two source
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types the ka ~ 15.8 model showed some inconsistencies very close to the source 

although overall agreement was reasonable. For both the ka~  34 and ~ 54 models the 

results for the Vi cosine model were very good but for the plane piston case they were 

again much less accurate close to the source, although the minima and maxima were 

accounted for in the correct position on-axis. These results are interesting for a 

number of reasons. Firstly the accuracy of the DAA2c would appear to be confirmed 

for increasing ka size. Secondly the general inaccuracy of the plane piston models is 

likely to be a result of the inconsistency at the edge of the source for these models, 

where the deformation effectively goes from zero to a maximum over a very short 

distance. It would seem reasonable to conclude that the approximate fluid loading is 

not accurately accounting for the effect of this discontinuity. In fact the consideration 

of the Vz cosine and Gaussian models was to some extent considered to investigate 

this very feature of the DAA2c. It was recognised that although the DAA2c could not 

handle a plane piston source accurately the discontinuity at the source edge was 

clearly an unrealistic feature and so other models without this feature, and therefore 

presumably more consistent with realistic source behaviour, were considered.

The results of these ‘idealised’ sources were further confirmed when the 

physiotherapy transducer-fluid model was considered. The WEE and DAA2c models 

showed excellent agreement whereas the CHIEF model was less consistent. On the 

basis of all of these results subsequent modelling used the DAA2c option, although 

regular comparison against WEE models was used to ensure that the DAA2c model 

was operating consistently. It is the use of the DAA2c that has made the results 

generated here possible and enabled the analysis of model parameters and their 

effects on the field. It has also been seen that DAA2c is capable of accurately 

modelling systems with much larger ka values, making the modelling and analysis of 

other realistic medical ultrasound systems feasible. However it is also interesting to 

note that the use of WEEs helped to identify a bug in the BE implementation.
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7.2.4 Accurate, repeatable experimental results for model evaluation

The generation of accurate, repeatable experimental measurements on a real device is 

a fundamental requirement if  the corresponding model is to be tested and evaluated to 

a satisfactory level. The experimental measurements made here consist of 

measurements made on the basis of the IEC standard for the safe and effective use of 

physiotherapy devices, and additional measurements designed to more 

comprehensively investigate the variation in the near-field of the device. The IEC 

measurements showed the device used here to be typical, effective and safe. Model- 

experimental comparison of several IEC standard parameters -  the effective radiating 

area AER, the beam cross-sectional area in four different planes ABCS, and the beam

type -  are in very good agreement. Although all of these results are extremely 

encouraging the problem with them is that they are inherently designed to be robust 

with respect to the detailed variation in the near-field. There is one IEC near-field 

parameter for which model-experimental agreement is very poor, the beam non

uniformity ratio Rbn . In contrast the problem with the Rm  is that it is not robust at

all, being essentially the ratio of the maximum pressure value in the field to an 

average value. The accurate measurement of this parameter therefore requires the 

accurate measurement of the maximum value in the near-field. For the model this is 

easy to establish as it lies on the acoustic axis -  the true acoustic axis due to a truly 

circularly symmetric (modelled) device, however for the real device this is not such 

an easy measurement to make and accurate model-experimental comparison is 

therefore very difficult.

The experimental maximum field value was also measured on the axis, although 

some search close to the axis was undertaken to ensure that the true maximum was 

found. However there are several problems with this measurement. Firstly the 

acoustic axis of the device was established using an alignment procedure in the far- 

field. This is less than ideal and indeed model results have been generated showing 

that a misalignment of 1 mm at the face of the device, compared to the closest 

alignment position of 120 mm, would essentially account for the model-experimental
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disagreement observed in Chapter 5 for the Rm . Secondly is the fact that the real

device will not be truly circularly symmetric. This means that there isn’t a definitive 

acoustic axis, making a measurement of a specific point on it problematic. 

Furthermore the asymmetry is likely to have some effect on the maximum value in 

the field, although this is something that cannot be accounted for in the current 

model. Thirdly there is the difficulty of accurately finding and measuring the 

maximum value. The measuring hydrophone is of finite dimension and the maximum 

is likely to be very close to the face of the device - less than 3 wavelengths away from 

the face of the transducer for the experimental measurement. Also the area covered 

by the maxima may be very small - the modelled peak measured less than a 

wavelength in dimension in both the axial and radial directions. All of which makes it 

very difficult to get an accurate, non-averaged maximum value, assuming it can be 

located in the first place. Fourthly there is the frequency dependence of the real 

device which has been shown to generate different axial outputs when operating at 

frequencies only a couple of kHz away from the resonant frequency. The maximum 

field value has been shown to shift somewhat with frequency in the model, again 

making model-experimental comparison difficult when experimentally the value has 

been measured at only one frequency. And finally there is the possibility that 

inaccuracies in model parameters, specifically piezoelectric and matching layer 

material properties, could account for axial discrepancies close to the source. This 

was discussed earlier when it was observed that the analysis of piezoelectric and 

matching layer parameters suggests that the model is sensitive enough and variable 

enough to these parameters, that parameter values might be established that would 

significantly improve model-experimental axial comparisons near to the source.

All of these factors highlight the difficulty in making a specific comparison of a value 

in the very near-field, between the model and the measured data. The above 

comments have been made with respect to the measurement of the maximum value in 

the field. In addition to the IEC measurements a series of additional near-field 

measurements were made and many of the points raised above can be applied to the 

model-experimental comparison for these results. Essentially a number of cross-axial
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scans were made close to the face of the device (including some at different 

frequencies), as well as a number of repeat axial scans, axial scans at different 

frequencies and scans along lines parallel to the axis. All of the measurements were 

made because it was realised that model-experimental comparison close to the device, 

where pressure variation is extreme and rapid, would be difficult. For example, 

consider a model-experimental comparison of a cross-axial measurement at 5 mm 

from the device. Firstly to make an effective comparison at exactly 5 mm from the 

source the hydrophone has to be aligned and positioned. In addition the sensitivity of 

the model to a number of parameters and the fact that the model is an approximation, 

will all make it difficult to make comparisons at exactly 5 mm.

So a series of additional near-field measurements were made. Cross-axial scans were 

made at 4 mm, 4.5 mm, 5 mm, 5.5 mm and 6 mm from the source and at 9 mm, 

10 mm and 11 mm. At 9 mm, 10 mm and 11 mm the measurements were made at 

1.031 MHz in addition to the measurement at 1.027 MHz. These measurements were 

intended to give a much more detailed picture of the variation in the very near-field, 

and therefore some insight into how reliable model-experimental comparability in 

this region could be. Also the axial alignment of the transducer was repeated a 

number of times and three sets of results generated at 1.027 MHz. This was designed 

to see how robust the axial alignment process was and how reliable model- 

experimental axial comparison would be. Also a series of axial scans at frequencies 

around resonance were taken. As for the previous cross-axial scans at 1.031 MHz 

these measurements were intended to give some idea of exactly how sensitive the 

near-field is to small frequency variations. Finally some measurements parallel to the 

axis were made. These were made with the intention of again establishing how 

variable the real near-field was close to the axis, as well as how reliable the alignment 

process was.

The over-riding conclusions of these measurements are two-fold. Firstly, overall 

model-experimental comparability was shown to be very good where the 

experimental measurements were repeatable or where a comprehensive picture of the
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near-field variation had been established. And secondly, the complexity of the near

field along with the sensitivity of the modelled device to frequency and a number of 

model parameters makes model-experimental comparisons of specific pressure 

measurements very difficult. Consider the fact that the last axial maxima was 

consistently measured over three experimental scans, but consistent axial variation 

closer to the device could not be achieved. This is very significant in terms of making 

model-experimental axial comparisons here. Specifically this suggests that for 

repeatable axial near-field measurements the acoustic axis should be established 

using an alignment process in the very near-field of the device. This is as opposed to 

establishing the axis in the region of the last maximum, as for the case of making EEC 

measurements. The significance of this for the measurement of RBN follows.

The cross-axial measurement close to the device showed the near-field to be highly 

variable as expected, but by comparing, say, model output at 5 mm with the 

experimental results between 4 - 6  mm it is clear that the model is accurately 

predicting the complex behaviour here - both quantitatively and qualitatively. Again 

this is very encouraging but highlights the need for detailed and comprehensive 

measurements here. The variation with frequency was obvious from experimental 

axial scans over a range of frequencies, when again it was established to a certain 

extent that only the last axial maxima could be classed as consistent. Axial variation 

with frequency close to the device is highly variable. Furthermore the cross-axial 

scans made at different frequencies also showed the effect of frequency on the near

field results and only served to highlight the complexity of making model- 

experimental comparisons in this area. Finally the parallel-axial scans show that the 

model predicts the variation of the device as you move away from the axis very well, 

but again highlights the sharp variation in the near-field region over distances 

comparable to a wavelength.
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7.3 Conclusions

To summarise, FEM and BEM have been used to predict the near-field of a 

physiotherapy transducer operating close to 1 MHz with some accuracy. The field 

due to such a device has been shown to be highly complex, with extreme variations 

occurring on scales comparable to a wavelength, and is very different to the field due 

to an idealised plane piston source. Overall predictions of the near-field are 

reasonably accurate, both qualitatively and quantitatively. The IEC standard 

measurement of the effective radiating area AER has been shown to be robust and 

effective in accurately determining the nature of the beam due to a therapy device. By 

contrast the IEC beam non-uniformity ratio Rm  parameter has been shown to be

sensitive to misalignment, experimental error and variations in a number of device 

components and parameters. Some further consideration of the definition and 

importance of RBN is therefore recommended.

The vibrational behaviour of the modelled device has also been seen to be highly 

irregular. An analysis of device parameters suggests that the gross behaviour of the 

device and subsequent field are determined by its basic design features -  an air- 

backed piezoelectric disc deforming to some degree in its thickness dimension and 

supported at its edges. The vibration of the device is fairly insensitive to variations in 

the mounting but the specific features of the source response are highly sensitive to 

all piezoelectric and matching layer parameters. Some of the model-experimental 

discrepancies that have been observed may be accounted for by the inaccurate 

specification of these parameters in the model. Both the experimental results and 

response of the modelled system also indicate that the device is sensitive to variation 

with operating frequency, even within 10 kHz of the established working frequency.

The simulation of an unbounded fluid medium has been considered in some detail for 

a large ka system. The use of acoustic elements and WEEs surrounding a structure 

has been shown to be a highly effective option and some detailed consideration has 

been given to using these elements effectively for the type of problem considered
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here. It has been found that for large ka systems, such as the one considered here, the 

use o f  WEEs with radial orders of at least 9 is likely to be a requirement. However 

the large number of parameters required to define such a system accurately, the 

excessive number of nodes required and associated run times and memory 

requirements all make this option impractical for any substantial analysis. The fact 

that the accuracy of this option can be tested easily makes it an ideal source for 

model-to-model evaluation. The CHIEF BEM has been shown to be inaccurate for 

large ka systems. The approximate DAA2c BEM has, by contrast, been shown to 

generally be both accurate and substantially more practical to use than the WEE 

option. The run times for such a model make the consideration of the response of the 

device to frequency and the running of a large number of models approachable. The 

only high frequency source for which this option has been shown to be inaccurate is 

the plane piston case containing an unrealistic discontinuity at its edge.

Overall, then, this work has established that the simulation of realistic medical 

ultrasound systems is complicated by large numbers of model parameters, inaccurate 

material property specifications, the sensitivity of the system to many parameters and 

operating frequency, long run times, and difficulties in making definitive 

experimental measurements for model evaluation. Nevertheless it has been shown 

that FEM and BEM can be used to effectively simulate the realistic behaviour of a 

medical ultrasound device and its generated near-field, both of which have been 

shown to be highly irregular here. Furthermore it has been established that the use of 

the DAA2c option for modelling the surrounding fluid region enables some 

substantial analysis of the sensitivity of the modelled system to design variations, 

component parameters including a large number of material properties, and operating 

frequency.

7.4 Further work

In many respects the work presented has only been a starting point for the analysis 

and use of FEM and BEM for the modelling of medical ultrasound devices and fields.
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The ability of these techniques to simulate the complex behaviour and field variations 

of a real device offers the potential for modelling transducers and fields for a wide 

range of devices as well as the opportunity to investigate the effects of design 

variations without the need for prototyping. On the other hand the work presented 

here has also sought to highlight the many problems and difficulties involved in such 

modelling and analysis, and in doing so stress that there is still some considerable 

way to go with respect to refining and improving the processes and techniques 

employed here. What will follow is a summary of some of the areas that the author 

feels are worthy of further investigation.

With respect to the IEC standards on physiotherapy devices considered here it would 

certainly seem necessary to give some more detailed consideration to the 

measurement of the RBN and establishing the acoustic axis experimentally. The

results of the model calculation of the Rm  suggest that the small area of the

(modelled) hot spot may make it harmless, nevertheless this requires further 

investigation. Some consideration of establishing the acoustic axis specifically with 

the Rbn measurement in mind would be a starting point along with a more detailed

look at the effect of the finite hydrophone on the measurement of the maximum field 

value when it is very close to the source.

The results of the analysis of model parameters here, and specifically the sensitivity 

of the model with respect to piezoelectric and matching layer material properties, 

would suggest that some further investigation with respect to the sensitivity analysis/ 

optimisation of the modelled device is necessary. Whilst a comprehensive 

optimisation towards experimental measurements is probably both unnecessary and 

unfeasible at this time, certainly a more comprehensive look at the parameters space 

of properties would be useful. In practical terms this would require looking at the 

post-processing of PAFEC data in order to extract information to determine the 

search direction. The very action of establishing an optimal function for model- 

experimental comparison will in itself offer a considerable insight into the significant 

features of the field, the behaviour of the device and how these are important.
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Consideration would have to be given to which field and electrical measurements 

should be compared and the effect of frequency. The author would certainly 

emphasise that disc and transducer deformation data would be invaluable for the 

more accurate modelling of devices and fields.

In addition to the previous points there is undoubtedly a need for the model- 

experimental comparison of other physiotherapy devices to ensure that the techniques 

used here and the issues considered are applicable to other physiotherapy devices and 

fields. Such work would offer considerable insight into the behaviour and near-fields 

of such devices and their design requirements. Not only could such information be 

used to pro-actively effect the behaviour of the device and field response, but also 

this should allow more insight into the general characteristics of the field when it 

comes to establishing and investigating international standards for physiotherapy 

devices.

Leading on from all of these points is the consideration and simulation of other types 

of real medical ultrasound systems - including backed transducers driven in pulse- 

wave mode. A model of the physiotherapy device used here has already been run 

with a backing layer. Although such devices will undoubtedly require longer run 

times due to the additional d.o.f.s, the problem of high sensitivity to frequency 

variation should not be such an issue. Of course such devices are likely to be pulsed 

and therefore require analysis over a large range of frequencies - unless a transient 

response is considered - which will undoubtedly be time consuming. Nevertheless 

this approach has been adopted elsewhere for models operating at lower frequencies 

and is certainly something that could be approached. In reality devices are not limited 

to being circularly symmetric and a whole range of geometries and arrays of active 

elements are used in many devices. The fully 3-D simulation of such devices would 

undoubtedly be very time consuming if  not unfeasible, however the use of symmetry 

along with ever improving computing power should make such analysis more 

approachable in the near future.
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One of the most powerful uses of a modelling approach such as that adopted here is 

in terms of its use for investigating the design of transducers in general and the effect 

on the field with the intention of design improvement. Consideration here, for 

example, could be given to an analysis of the true optimal design of a matching or 

backing layer, as opposed to the 1-D theoretical prediction. Some analysis of how 

energy is dissipated throughout the device, possibly including the effect of heating on 

the device, could be approached and the effect of this on the behaviour of the device 

and its efficiency analysed. Source data from FE models might be used for 

propagation in non-linear models to consider the effect of realistic vibrational 

behaviour on finite amplitude propagation. Variations in design could be approached 

such as holes in the piezoelectric component, the optimal excitation and lay-out of 

arrays of active elements, multiple matching layers, and angled matching and backing 

layers. Furthermore novel design features could be considered such as original 

geometries of components and the use of restraints at the edges of the device to effect 

the field.

Further to the previous point is the potential for considering the use of ultrasound 

devices for original medical applications. With an effective model of realistic devices 

the potential for design variation with the intention of generating specific field 

characteristics with applications for other types of treatment and/or diagnostic 

purposes would not appear to be unrealistic.

Overall the potential for the use of FEM and BEM as modelling tools for the 

simulation of real medical ultrasound devices and fields is wide and varied. 

Undoubtedly the techniques offer the potential for a considerable amount of 

additional work on the performance and response of real devices.
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Appendix 1

This appendix presents a more detailed account of the examples used in Chapter 2 

to demonstrate how an FE problem is approached and tackled. The examples 

begin in Chapter 2, page 23, section 2.2.2 “Interpolating Polynomial”:

Al.2.2 Interpolating polynomial

Having made an initial discretisation of the system to be modelled, consideration 

is given to how the system is expected to respond to applied conditions. The 

response of the system can be considered in terms of how a particular sub-domain 

of the system, or element, is likely to respond. A feature of FEM is that the 

solution is generated initially only at nodal points -  although subsequently 

interpolation may be used to generate values elsewhere within an element. In 

accordance with this, the analyst seeks to express the variation of the unknown, 

h(Q), at a point Q in the solution domain of the element, in terms o f  the unknown 

only at nodal points. For the 2-D element shown in Figure A l.la  where the length 

of the element in the x  direction is a  and in the y  direction is /? , and the mid

point is (xmid , y mid) , this can be expressed as (Ellis, 1994)

h(x,y) = N (x ,y)h .  (A l.l)

Here h is a 4-term column vector containing the values of the unknown h at the 4 

nodes. A  is a 4-term row vector termed the vector of shapes functions or basis 

vector which relates the values of the unknown anywhere in the solution domain 

of the element, h(x,y) to the value of the nodal unknowns. N  can be expressed as 

N (x fy) = [Nl tN 29N 39N 4].

A common approach to establishing such a relationship is to seek the unique 

polynomial that fits the nodes of an individual element. Lagrange interpolation
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techniques are frequently used to find a unique n th order polynomial that passes 

through a set of data points ( x t, ht), z -0 ,1, 2 , In 1-D this can take the form

h = J]L,(x)hn  (A1.2)
1=0

where

L i { x ) =  .........( * - * . )  (A 1 3 )
(x, - x 0)(xi - x , )  (xi - x j

Here the ( x - x (.) term is omitted from the numerator and ( xf - x .) from the 

denominator. In 2-D this polynomial takes the form

J = (A 1.4)
i=0

Here j=0, 1,2, . . n and k=0, 1,2, . . m. Also n is the number of points in the x 

direction and m the number of points in the y  direction. Comparing Equations 

A l.l and A1.4 it can be seen that N t(x,y) = Lj(x).Lk(y) . Considering node 2 in

Figure A l.l a, where n=m=2, and j=2, k=l:

£,(*) = „  ^  Li(y)=  ?))
k a  + a / 2 ) -  (xmid - a / 2 )) ((ymU -  0 / 2 ) - { y mid +  0 / 2 ) )

Substituting into Equation A1.4 this gives

N 1(X,y )  = - {x~ {xM ~a/2)Xy~(y-  +/?/2)). (Al.Sb)
a p
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Similar calculations lead to:

N ,(x,y)

N ,(x ,y )  = -

and N A x ,y )  =

(x -  (xmld + a / 2 )Xy ~ (ymid + jg/2 )) 
a p

( x - ( x mid +a/2)Xy-(yma ~/?/2))
afl

(x -  {xmU -  «/2)Xy -  -  /V2))
aft

(A1.5a)

(A1.5c)

(A1.5d)

So the unknown at any point (xy) in the element, (Figure A l.l  a), can now be 

expressed in terms of the unknowns at the element nodal points

h(x,y)  = (jV, N 2 N } N<) hi (A1.6)

The vector of shape functions, N , is clearly dependent on both the geometry of 

the element under consideration and the number of nodes defining that element. 

The same principles applied here can be used to generate the shape functions for 

any FE.

Al.2.3 Local co-ordinates

A relationship between the unknowns at any position within the element and the 

unknowns at the nodal points has now been established, however this particular 

formulation for N  is dependent on the position of the element. It is desirable to 

have a formulation for N  that is not position dependent, in this example one that 

is appropriate for a generic linear 4-node quadrilateral element. Such a basis 

vector can be generated through the use of a local co-ordinate system. One such 

co-ordinate system uses a parent element defined in local co-ordinates f  and £
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over the domains [-1,1] and [-1,1], as shown in Figure A l.lb . It will be seen that 

the integration of functions of the basis vector is a common part of a finite 

element analysis. Not only does the local co-ordinate system allow for the 

determination of a generic element basis vector, but the numerical integration of 

such functions is also made simpler by the definition of an element over the 

domain shown in Figure A l.lb .

A linear transformation in both co-ordinate directions for Figure A l.l can be 

given as

£■ = - ( * - * „ * )  (A1.7a)a

and £ = (A1.7b)

Using the same Lagrange interpolation technique, as outlined in section Al.2.2, 

this leads to the following terms in the basis vector expressed in local co

ordinates

N L>=y4 ( i-<r (A1.8a)

N Lz = y 4 ( i + i ) d - 4 ) , (A 1.8b)

A £3 = } /( i-< r) ( i+ £ ) (A 1.8c)

and N l *= y4 (l+ C )(!+#). (A1.8d)

So there is a new relationship in terms of local co-ordinate basis functions



Any integration over the domain of the element can therefore be performed in 

local co-ordinates. It will be seen in section Al.2.5 how the transformation from 

global to local co-ordinates is applied in practice

Al.2.4 Governing equations

The response of the unknown within an element with respect to the unknown 

nodal values has been considered. Now the fundamental equations that actually 

govern the behaviour of the element must be determined. Clearly the types of 

element that are used is problem dependent and numerous types of element have 

been developed to simulate the behaviour of various systems. For example 2D 

‘plate’ elements allowing in-plane x  and y  direction displacement as well as xy 

shear displacement, and acoustic elements with a single pressure d.o.f. per node.

Fundamental relationships defining the behaviour of the system over a given 

domain are employed to generate the equations governing the behaviour of an 

element. Consider the problem of generating an acoustic element. The Helmholtz 

wave equation governing acoustic propagation in 3-D space for the steady-state 

case where the system responds harmonically, was introduced in Chapter 1, 

Equation 1.3:

V 2p  + k 2p  = 0. (A1.10)

Generally the ‘fundamental’ equations are arranged in such a way as to be 

expressed in terms of the primary unknown in the analysis. Here this is already 

the case as the primary unknown is pressure.

Al.2.5 Element equations

Having established the equation(s) that define the behaviour of a specific part of 

the system under analysis, there are primarily two techniques that are used to
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generate the equations that govern the response of an element. These are 

variational methods and residual methods. As previously mentioned the detailed 

consideration of such techniques is beyond the scope of this work. However, 

continuing with the example of the generation of an acoustic element, the 

Galerkin weighted residual method will be included here to indicate how element 

equations can be formulated.

Equation A1.10 defines the response of the primary unknown, pressure, within an 

acoustic element, for which an approximate solution is required. The residual 

technique now proceeds as follows:

• A trial function, p ', is proposed as an approximation to the exact solution p.

• Expressions for the differences between the equations defining the behaviour 

of the pressure in the exact and trial cases are generated. This difference is the 

residual. Here this is simply the difference between p  and p  for the single 

Equation A1.10.

• Residuals are now minimised. This minimisation process “forces” the residual 

to be zero thus making the trial solution p  equal to the exact solution p. It is 

this minimisation process that generates the equations defining the behaviour 

of an element which are subsequently solved for the primary unknown(s).

It will now be reiterated that when solving a problem by the FEM the whole 

system is solved simultaneously. The response of the single acoustic element 

considered here is governed only by the Helmholtz wave equation. When this 

element is part of a system there will be other equations governing the behaviour 

of other elements, as well as a number of boundary conditions. The boundary 

conditions both restrict the response of the system to specific conditions and also 

express ‘natural’ conditions across elements. All of these features combined 

govern the response of the system leading to a number of equations for which the 

residual method would be applied. The minimisation of all of these equations
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simultaneously generates a system of equations that can be solved to approximate 

the response of the entire system. Here, however the residual technique will be 

applied only to a single element, governed by Equation A 1.10.

Of primary importance for the residual technique is the choice of trial function 

p  . In the Galerkin method it is proposed to be of the form

(A l.ll)
1=1

Here N ( are the known functions, are unknown coefficients and 

z=0, 1, 2, ..., n. Comparing Equations A l . l l  with A l.l it can be seen that taking 

the A,, as elements of the known basis vector N ,  the values of the n nodal

unknowns are given by qt .

An expression for the residual R for Equation A1.10 is

R = V 2p' + k 2p' = 0 .  (Al.l 2)

Minimisation can be expressed as (Desai, 1979)

J R ( y W l(W)dD = 0,
D

where D  is the domain of the system under consideration and the W. are

weighting functions, /=0, 1, 2, ..., n. For a 3-D problem this gives a system of n 

equations defined over the domain of the element, V:

(y2p ‘ +k2p')vidv = 0 , i =0, 1 , 2 , (Al . l 3)
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Applying the divergence theorem to the first term in the integral to reduce the 

system to first order (Eaton & Regan, 1996; Astley et. al., 1998):

^ - \ d S  = 0. (A1.14)
8n Jv v s  \

The third term in this equation is a surface integral representing the boundary 

conditions over the surface of the system under consideration, in this case the 

surface of the element with domain V. Here n is a normal co-ordinate. Re-writing 

Equation A l . l4

Here AK and AM can be described as (frequency independent) element 

matrices, q is a vector of the primary unknowns at the elemental nodal points -  in 

this case pressure, and A / (co) is the (frequency dependent) element load vector. 

It is standard practice with the Galerkin technique to make the weighting 

functions, W. , equal to the basis functions . The elements of the matrices are 

then given by

(V/7 -VWt)d V -k
V V s vdn J

The element equations can be written as

[AK -co2 AM ]q=  A /(*>). (A1.15a)

(A l.l 5b)
v

(A l.l 5c)
v
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The element load vector, A / (co) , is used to apply a forcing function (boundary 

condition) to the element. Typically this might involve the stipulation of the 

outward normal velocity, v„, or acceleration, an at specific nodes. The

relationships relating normal pressure to normal velocity and amplitude can be 

described as (Cremers et. al., 1994; Astley et. al., 1998),

—  = -icopvn (A l. 16a)
dn

and —  = pan. (A1.16b)
dn

The terms in A / (co) are then given by

Al.2.6 Formulation of element matrices

To outline how such a system of equations would be formulated and solved in 

practice, consider now a simple example based on the use of 2-D 4-noded 

quadrilateral elements as shown in Figure A l.l. The element matrices AK and 

A M are of the form

(A l.l 6 c)
s

and A/ /  = JJ pN,a„dS. (A1.16d)
s



It is generally required that the system be expressed in a local co-ordinate system, 

such as in Figure A l.lb . Here the terms in the local vector of shape functions,

N_l , are given by Equations A1.8. The derivatives of these shape functions with

respect to ̂  and £ can easily be calculated:

84  4 ’ 84 4 '

8 N L3 1 ,, , 8 N L3 1 /.
= - t ( 1+^) 311(1 TZ ~"7\ 1 —£/»4

(A l.l 7a) 

(A l.l 7b) 

(A l.l 7c) 

(A1.17d)

Derivatives of Equations A1.7 with respect to x  and y  are given by

^ - 2  ^ L = 2  and K  = K  = 0 ,
dx a  dy p dy dx

Applying the chain rule, the VNi (x, y)  terms in the matrices can then be 

expressed in terms of local co-ordinates £  and £:

AK,=

l l

J f
- 1-1

4 ~\8NLi 8 N l j  f  4 ) d N l i 8 N l j

a 2J 84 84

1 1

■ +

P dg dg
S(x,y)

X 4 , 4 \

and A M l7 = 1 j j N Li N Lj

\ c J -1-1

d(x >y)

d£d%. (A l.l 8 a)

(A l.l 8 b)
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Here d(x,y)
Xu) is the Jacobian of the transformation from global to local co

ordinates. This enables the integrals to be calculated over the domain of the local

co-ordinates. Here
d(x,y))_ a /3

Xu). = -^ ~ . These terms are expressed in a manner ideal

for numerical integration by a technique such as Gaussian Quadrature. In 2-D this 

takes the form (Ellis, 1994):

I l

II / ( « ) ^  = I 2 > * v v , / ( ^ )
-1 -1  i= i j= i

(A l.l 9)

Here wk are weighting factors in the range 0 to 1, and tk are quadrature points in

the range -1 to 1. For four point quadrature, as here, n=2 and these values are 

given as

f*=± l/V3

and wk = 1 .

So for example, the term i=\,j=2 in the element stiffiiess matrix AK  would be 

evaluated as follows

l l

A K 12= j j  —  
-l-l L\a  J

4 Y Yl
' - - ( 1 - 0  - ( 1 - 1 ) 

4 A 4

+ ' 4 Y  1 Y  i
- t O - O  - 7 (1 + 0  A 4 4

(A i.2 0 )

For the very simple case where the element is a square of side unity, i.e. 

a =  P =  1, Equation A1.20 becomes
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11

K la= ^  JJ ( ( l - f 2) - ( l16 4 4

Applying four-point quadrature:

AKi2 = — 
12 16

1 -

/ /

16
1 -

\ v

_1_

_1_
' - f ’V3

+
/ - \ 2

1 - 2

vV3y 1 + " T
. S .

+

\ 2

1 -
V 3 .

+ 1 - '  i N2

S . \ V3 /

This agrees with the exact integral value, as the four-point scheme in 2-D 

integrates up to the third power of the independent variable in each co-ordinate 

direction (Ellis, 1994). The element stiffness and mass matrices are calculated 

either directly or by quadrature, giving

AK=

" 4 1 1 2" " 4 2 2 1 "

6 6 6 6 36 36 36 36
1 4 2 1 2 4 1 2
6 6 6 6 and A M= I 1 1 36 36 36 36
1 2 4 1 W 2 1 4 2
6 6 6 6 36 36 36 36
2 1 1 4 1 2 2 4
6 6 6 6 _ .36 36 36 36_

(A1.21)

As expected, both matrices are symmetric, as:

8 N \  dN^_ = d N \  d N \
d <;‘ a<r d (  a c

, N L, . N Li = N L2 . N \ , e t
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Al.2.7 Formulation and solution of system matrices

Consider now Figure A1.2 showing a 2-D system of four such linear quadrilateral 

elements joined together. For the simple case of a= j3= l, the element stiffness 

and mass matrices are as in Equation A1.21 above. Equations A1.14 and Al.l5a, 

defining the nature of the element equation, can be assembled element by element 

to generate an equivalent system equation, with corresponding system stiffness 

and mass matrices, and forcing function vector:

[K-<o2M ] q = f ( a >).(A 1.22)

The individual element stiffness matrices for the four elements, I, II, III, and IV 

are then:

2 1 1 1
0 0 0 0 0

3 ~ 6 ~ 6 _ 3
1 2 1 1

0 0 0 0 0
~ 6 3 ~3 ~ 6
0 0 0 0 0 0 0 0 0
1 1 2 1

0 0 0 0 0
~ 6 _ 3 3 ~ 6

1 1 1 2
0 0 0 0 0

~3 ~ 6 ~ 6 3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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Figure Al . l  Geometry of (a) a 2-D quadrilateral element, and (b) the mapping of this 2-D 
quadrilateral element from global to local co-ordinates.
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IV

4

1

Figure A 1.2 Four 2-D linear quadrilateral elements with a unit force applied at the central node, 5. 

Equivalent to an infinitesimally small, infinitely long cylinder.
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The corresponding element mass matrices and forcing function vectors are 

defined in a similar manner. Adding the element matrices together at coincident 

nodes generates system matrices. This gives the full system matrices:

" 1 N

4 -1 0 -1 - 2 0 0 0 0
-1 8 -1 - 2 - 2 - 2 0 0 0

0 -1 4 0 - 2 -1 0 0 0
-1 - 2 0 8 - 2 0 -1 - 2 0
- 2 - 2 - 2 - 2 16 - 2 - 2 - 2 - 2

0 - 2 -1 0 - 2 8 0 - 2 -1
0 0 0 -1 - 2 0 4 -1 0
0 0 0 - 2 - 2 - 2 -1 8 -1
0 0 0 0 - 2 -1 0 -1 4

0 1
0 2

03
04
05
06
07
08 
09

4 2 0 2 1 0 0 0 0
2 8 2 1 4 1 0 0 0
0 2 4 0 1 2 0 0 0
2 1 0 8 4 0 2 1 0
1 4 1 4 16 4 1 4 1
0 1 2 0 4 8 0 1 2
0 0 0 2 1 0 4 2 0
0 0 0 1 4 1 2 8 2
0 0 0 0 1 2 0 2 4

0 i r / , i

02 /a
03 /a
0 4 /«
05 = /a
06 / .
07 / ,
08 / .

_09 _ / ,

(A1.23)

This system of equations now expresses the potential of the system. How the 

system responds to given conditions is dependent on the boundary conditions 

applied to it, namely the forcing functions at particular nodes or the specification 

of pressure values at specific nodes, etc. Before solving the system for given 

conditions it is worth emphasising a couple of points. Firstly, the system matrices 

are themselves symmetric. This is clearly to be expected as the interaction 

between, say, nodes 2 and 6 is obviously the same as that between nodes 6 and 2. 

Secondly, there are entries in the system matrices only at positions where the 

row/column reference relates an interaction between nodes. If there is no direct 

relationship between the nodes, i.e. they do not have a common element, then 

there is a zero in the corresponding position. Thirdly, a number of the entries in 

the matrices are zero, a feature that is common to finite element problems.
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Finally, the matrices are banded, that is, non-zero entries appear along the main 

diagonals with upper and lower ‘triangles’ containing zero entries only. These last 

two features are generally exploited for the purposes of reduction in matrix 

storage requirements, an issue that will not be considered further here. It is worth 

pointing out, however, that the numbering of the nodes in the four-element 

problem of Figure A1.2 is optimal for the purposes o f matrix storage 

requirements. This can be observed by considering the case where the central 

node is numbered as 1 with the rest numbered in any manner. It should be clear 

that the central node is connected to all elements and, therefore, directly to all 

other nodes. There will, therefore, be non-zero entries in all positions of both row 

one and column one of the system matrices. This clearly removes the banded-ness 

of these matrices, increasing storage requirements. Most FE packages employ 

optimal node-numbering routines as standard to best exploit banded matrices.

Consider the solution of Equation A1.23 for the situation where a force is applied 

at the central node 5, only. This is equivalent to an infinitesimally small, infinitely 

long cylindrical source at the centre of the system and is the 2-D equivalent of a 

3-D point source problem. For the case where the wave number, k= 1, and the 

force at node 5 is defined as four, i.e. [f(a>)]T = (0,0,0,0,4,0,0,0,0), Equation 

A 1.23 can be easily solved by some Gaussian elimination technique to generate 

the following results for the pressure values at the 9 nodes:

qx = -1.1542, 

q2 =-1.3913, 

q3 =-1.1542,

? 4 =-1.3913, 

q5 =0.0632,

<?6 =-1.3913, 

q-j =-1.1542,
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# 8 =-1.3913 

and q9 —1.1542.

The symmetry of the results should be noticed, with ql = # 3 =q1=qg, and 

q2=^ 4 =^ 6 =4s as would be expected.

Dirichlet boundary conditions, such as q= y/  can be included easily as follows.

In the final system matrix, eg. Equation A1.23, the i th row is set to zero except 

for the diagonal term, which is set to unity. The ith term of the right-hand side 

forcing function vector, f{coi) , is then set to y /, so that the row now reads

X .q ^ y / . For an even simpler example of this, consider specifying zero pressure 

along the bottom edge of the system in Figure A1.2 so that

9i = 0 >

? 2 = 0  

and #3 =0 .

There are two options here. Firstly, the previous method could be used, with y/ =0

in the first 3 rows of / (co) . Alternatively, however, seeing as qx, q2, and q3 will

clearly play no part in the final solution, the system matrices can simply be 

reduced to 6  by 6  matrices, excluding rows 1-3:
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\ u/

8 - 2 0 - 1 - 2 0
- 2 16 - 2 - 2 - 2 - 2

0 - 2 8 0 - 2 - 1
- 1 - 2 0 4 - 1 0

- 2 - 2 - 2 - 1 8 - 1
0 - 2 - 1 0 - 1 4

1 04
05

- _?9_

CO'
A 1 N

\36y

8 4 0 2 1 0
4 16 4 1 4 1
0 4 8 0 1 2
2 1 0 4 2 0
1 4 4 2 8 2

0 1 1 0 2 4

h
f s
f e
f i

/ .
?9_ /*

(A1.24)

As in previous cases, Gaussian elimination can be used to solve the system.

Al.2.8 The use of symmetry

A final consideration worth mentioning here is the use of symmetry. Clearly the 

system shown in Figure Al .2, without a zero pressure restraint along the bottom 

edge, is symmetric about both the x and y  (or C, and £ ) axes. The requirement for

symmetry along a specific line or plane is zero gradient, in this case —  = 0. This
dn

is, in fact, the natural boundary condition for acoustic elements, so that no 

additional boundary conditions need to be included. Instead the problem can 

revert back to the format of Figures A l.l with a forcing function term included at 

any node. Take, for example, A/j=l. This is the equivalent problem to the four- 

element case discussed in section Al.2.7. Note that in that case Af 5 =4, which in

fact could be considered to be a result of unit contributions from each element, 

that is

Afs — A f 15 + A f115 + A f1115 + A fw 5 = 1+1+1+1 =4.

The system can then simply be expressed as
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4 -1  -1  - 2
-1  4 - 2  -1
-1  - 2  4 -1
- 2  -1  -1  4

0 2

03
04

VC2. 36

4 2 2 1 
2 4 1 2  
2 1 4  2 
1 2  2 4

<h~ r i i
Qi = 0
<h 0

0
_?4_

(A1.25)

This gives the same nodal pressure values for nodes in similar positions to the 9- 

node example in section Al.2.7, with pressure values outside the 4-node system 

deduced from symmetry.

This completes the summary of the finite element technique. This section has 

sought to explain how each part of the FE process works through the use of 

simple examples, and to consider how these individual parts combine for the 

solution of a modelled system.

233



Addendum

Despite generally achieving good model-experimental agreement for near-field 

pressure results in the work presented here, Chapters 5 and 6 (Figures 5.1, 6.15 

and 6.16) have shown fairly poor model-experimental agreement for electrical 

results. Following a discussion of these results it was suggested that this might be 

due to the use of the DAA2c fluid-modelling option (private conversation). 

Because of the excessive run times of the alternative acoustic FEAVEE option, the 

model electrical results reported in the main thesis were only generated using the 

DAA2c technique. However the subsequent use of a 1 GHz PC has enabled the 

corresponding WEE model to be run over a range of frequencies -  the model run 

time being around 3 hours per frequency. The WEE model was therefore run at 

37 frequencies, and the resulting electrical results are shown in Figure Ad.l.

3.50E-02

3.00E-02

2.50E-02

2.00E-02

1.50E-02

1.00E-02

5.00E-03

0.00E+00
9.00E+05 9.50E+05 1.00E+06 1.05E+06 1.10EK)6

frequency / Hz

 DAA2c

exp  

O WEE

Figure Ad.l Comparison of DAA2c-WEE-experimental electrical conductance data for the 

physiotherapy transducer/transducer model.

The DAA2c and WEE model results are clearly in very good agreement. This 

suggests that the poor model-experimental electrical agreement is not due to the
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fluid-modelling technique used. The most likely cause of this discrepancy 

remains the use of inaccurate material properties in the model, and in particular 

inaccurate piezoelectric properties.
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