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Abstract

Lineage-specific genes, especially those which are species- and strain-specific, are of 

special interest because they are expected to play a role in defining exclusive 

ecological adaptations to particular niches. Despite this, they are relatively poorly 

studied and little understood, in large part because many are still unique to a particular 

isolate (termed orphan genes), or only possess homologues in very closely related 

isolates. This lack of homology confounds attempts to establish the likelihood that a 

hypothetical gene is expressed and, if so, to determine the putative function of the 

protein.

The QuickMine software package and OrphanMine database were written to enable 

the identification and exploration of lineage-specific genes in bacterial and archaeal 

genomes. Analysis of this data indicates that, despite expectations to the contrary, the 

number of orphan genes in our collection of complete bacterial genome sequences is 

continuing to increase as more genomes are sequenced.

Additionally, it was found that genes restricted to a small number of isolates tend to 

have certain sequence properties that differentiate them from more conserved coding 

regions. The index, ‘Quality Index for Predicted Proteins’ (QIPP), was created for 

assessing the quality of a predicted protein, based on the combined features of its 

coding sequence (length, percentage low complexity, G+C content, amino acid cost, 

and neighbourhood distribution). These five criteria were selected for their ability to 

detect purifying selection and therefore, provide a means to gauge the probability that 

the sequence encodes a functional protein. This index can be used to prioritise genes 

for further experimental characterisation. The QIPP score can also provide an 

indication of the likely degree of conservation of a particular sequence. Additionally, the 

score correlates well with functional categories and can be used to estimate the 

amount of functional information available for a sequence.

The challenge of understanding orphan and poorly characterised genes will not be 

solved by simply generating additional sequence data. Instead, new methods need to 

be developed to help characterise proteins. QIPP, in the absence of homology, 

provides an important step forward in the standardisation and automation of identifying 

biologically important genes.
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1.1 Overview

In 1995, the sequencing of the bacterium Haemophilus influenzae represented the first 

step into the genomic era. Only twelve years later, there are now hundreds of Bacterial 

and Archaeal genomes publicly available. As this genome collection continues to grow, 

it presents an unparalleled opportunity to investigate the molecular basis of ecological 

adaptation through the use of computational analyses, combined with experimental 

investigation.

Most predicted genes in a newly sequenced organism encode proteins belonging to 

homologous families conserved in a number of organisms. However, there are also 

many families which display lower levels of conservation. In fact, a large number of 

families still contain just a single representative member, an orphan gene. As these 

genes are found in isolated lineages, it is plausible that they are responsible for niche 

specific traits.

It has been said that the number of orphan genes discovered in complete genome 

sequences is one of the biggest surprises of the genomic era (Doolittle, 2002). Prior to 

this discovery, it was generally accepted in the fields of biochemistry and genetics that 

science had succeeded in identifying most (approximately 80%) of the genes required 

for the normal life of a model organism, such as E. coli (Moxon & Higgins, 1997). The 

discovery of such unexpected genetic diversity has many implications, and interest in 

the subject is increasing. During this chapter, several explanations for the presence of 

orphan genes in bacterial genomes will be proposed, their biological significance will be 

described and the bioinformatics challenges that lie ahead if, as a community, we are 

to systematically study these poorly understood sequences will be discussed. In 

addition, the aims and objectives of this thesis will be introduced.

1.2 How many orphans are there?

It is important to quantify the scope of the orphan phenomenon before attempting to 

explain why the orphan genes exist. A useful way of estimating the current number of 

orphans is to determine the number of orphan genes in the complete bacterial and 

archaeal genomes. In terms of raw orphan numbers, the taxonomic uniqueness (how 

distant the closest complete genome is) of the genome being sampled, will be a key 

factor in the number of orphans found within a given genome. For example, if a 

genome from a new taxonomic division was sequenced, it would be expected that this
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genome would contain more orphan genes than a genome that was a member of a 

species that had already had several strains sequenced, presuming the genomes were 

of similar size and the species inhabited a similar ecological niche. To provide a 

measure of the taxonomic uniqueness of an organism, Fukuchi & Nishikawa (2004) 

introduced the ‘Isolation Index of Organisms’ (110). The index, based on the average of 

the logarithm of the best hit E-values collected over all the query sequences within a 

genome, was found to be proportionally related to the number of orphan genes in a 

genome (Fukuchi & Nishikawa, 2004). This relationship suggests that as more 

genomes are sequenced, the orphan number could plateau (Siew & Fischer, 2003a). 

Therefore the orphan genes could be the result of a lack of sequencing to a sufficient 

depth (Unger, Uliel & Havlin, 2003). It is known that selection of genomes for 

sequencing is highly biased (this situation is not unique to genome sequences, the 

American Type Culture Collection is similarly biased (Floyd et a/., 2005)), for example 

the over representation of pathogenic species (Wilson et al., 2005).

A more recent study investigated the accumulation of bacterial orphan genes using the 

proteomes of the first 122 published bacterial species (Wilson et al., 2005). The data 

was generated by comparison of each proteome to every other proteome using 

BLASTP (Altschul et al., 1990) with a cut-off of 10'03. The study found that the number 

of orphan bacterial genes was continuing to rise in a roughly linear fashion, despite the 

large number of genomes sequenced. After 122 proteomes of different bacterial 

species, the percentage of orphans as a total of predicted proteins was 12%. Of the 

122 species, 7 species represented the only isolate from a division. These 

taxonomically unique species provided approximately 13% of the total orphans. This 

finding reflected the limited nature of our sampling of bacterial diversity (although 

projects now exist that aim to increase the diversity of the genome collection (Eisen & 

Fraser, 2003)), but also suggested that orphans were a widespread occurrence in 

bacterial taxa, with the exception of endosymbionts and intracellular parasites, both of 

which possess very small genomes.

Comparative analysis of eight pathogenic isolates of Streptococcus agalactiae found 

that even after eight genomes, each new strain continued to add new genes. 

Mathematical extrapolation of these results predicted that new genes will continue to 

be found even if hundreds of strains are sequenced (Tettelin et al., 2005). This analysis 

led to the term ‘pan-genome’. The pan-genome includes a core genome, containing 

genes present in all strains and hence defining the species, and a dispensable genome 

comprised of a halo of genes that may be absent in some strains and genes that are 

unique to a given strain.

17



The structure of a species’ pan-genome will depend on factors such as the 

environmental niche occupied, the level of genetic exchange and the population size 

(Holden, Rajandream & Bentley, 2005). In a study to investigate genes subject to 

positive selection in uropathogenic strains of E. coli, the size of the E. coli core genome 

was predicted to be 2865 genes. This is a relatively small total when it is estimated that 

each new E. coli genome will contribute 441 new genes (Chen et al., 2006). Thus the 

dispensable genome in the case of the E. coli pan-genome is far larger than the core. It 

is thought that the dispensable genome may contain genes that are not essential for 

bacterial growth, but which confer selective advantages that may allow colonisation of 

a new niche (Medini et al., 2005). The power of a species’ pan-genome is indicated in 

Vibrio cholerae. Previously undetected toxin-like genes were discovered when a 

number of environmental isolates were analysed (Purdy et al., 2005). These findings 

supported the discovery that environmental strains lacking the ctxA and tcpA genes 

(typically responsible for the pathogenicity of V. cholerae) were still capable of causing 

disease in mammalian models (Faruque et al., 2004).

A similar method of referring to the different sections of the genome was proposed by 

Chiapello et al. (2005) in which they refer to a species backbone and strain specific 

loops. Investigation of the dispensable genes in Stretococcus agalactiae revealed that 

the majority were accounted for by hypothetical, phage and transposon related genes 

(Tettelin et al., 2005). Analyses of 5 strains of Streptococcus pyogenes revealed similar 

patterns (Medini et al, 2005).

As the number of complete bacterial genomes continues to increase exponentially (see 

Figure 1.1), so to will the number of genes of unknown function. In addition to the 

complete bacterial genome collection, metagenomic techniques are also discovering 

vast numbers of previously unknown genes. For example, 1.2 million previously 

unknown genes were obtained from the Sargasso Sea (Venter et al., 2004). More 

recently the results of the Sorcerer II Global Ocean Sampling Expedition (GOS) were 

released. This extensive dataset yielded 7.7 million sequencing reads with 6.12 million 

predicted proteins (Yooseph et al., 2007). Of the assembled sequence, 85% was found 

to be unique using a sequence identity cut-off of 98%, indicating the great diversity 

within the dataset (Rusch et al., 2007). When analysing the protein families, a linear 

trend in the discovery of new protein clusters was found. In addition, Yooseph et al. 

(2007) investigated the effect of the new dataset on orphan numbers. They obtained 

84911 orphans from the NCBI-nr database and found that they were able to home 

6044 of these orphans when compared to the GOS dataset. This implies that there are
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likely to be many more protein families remaining to be discovered (Yooseph et al., 

2007) and environmental sampling of this type will be able to place significant numbers 

of orphans into protein clusters.

Such studies indicate that the orphan gene phenomenon is not a self-solving puzzle. 

Instead, it is necessary to look at the issue more closely to try and determine the 

source of these genes. Several explanations have been suggested for the existence of 

orphan genes in microbial genomes. These will be discussed below, beginning with the 

possibility that they may not be genes at all.

Figure 1.1. Accumulation of complete archaeal and bacterial genome sequences. Data 

was obtained from GOLD v2.0 (Liolios etal., 2006) and plotted by year.
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1.3 Genes or Junk?

The first explanation for orphan genes is that they are not real protein coding genes. 

Instead they are random sequences of DNA that have been mis-annotated during the 

annotation process. Bacterial genome annotation has become, largely, an automated 

process. The most reliable method for identifying genes is through homology to a 

known gene. In the absence of such evidence, genes can only be identified de novo on 

the basis of structural features. These include the length of an open reading frame, the 

presence of a ribosome binding site in close proximity to the start codon and codon 

usage that is consistent with other genes in the genome (Pevsner, 2003).
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Programmes such as Glimmer (Salzberg et al., 1998) and GeneMark (Borodovsky et 

al., 1995) are used to find genes in the raw DNA sequence. Such gene finding 

applications use a variety of Markov models to predict where the genes are located. 

For example, Glimmer identifies coding regions using Interpolated Markov Models 

(IMM) (Delcher et al., 1999). The genome sequence is searched for all open reading 

frames (ORFs) above a threshold length. Glimmer then scores each of these ORFs 

using an IMM; if the score reaches a threshold value the sequence is judged to be a 

gene. Interpolated Markov Models are based on Markov chain models of the type used 

in programmes such as GeneMark.

The original GeneMark (more recent versions include GeneMarkS (Besemer, 

Lomsadze & Borodovsky, 2001) used a 5th-order model. A 5th-order model predicts a 

base by using the previous five bases. However, such a model can only perform 

accurately when there is sufficient training data, i.e., enough data to accurately 

estimate the probability of each base occurring after every possible combination of five 

preceding bases. Glimmer’s IMM model overcomes this problem by only using 

oligomers for which sufficient training data is available, ranging from 1 to 8 bases in 

length. This works on the principle that in a typical microbial genome, some 5mers will 

occur infrequently and not provide reliable probability estimates, whilst some 8mers 

may occur frequently enough to give very reliable estimates (Salzberg et al., 1998).

Whilst these systems work with a high level of accuracy, they are not perfect. The main 

issue is that of over-annotation. This is where the gene prediction programmes predict 

the presence of more coding regions than are actually present in the sequence. This 

results in a number of non-coding random DNA sequences being annotated as real 

genes. Such sequences will not find a match in sequence databases and so would be 

deemed, incorrectly, to be orphan genes. Data obtained from the Glimmer website 

(http://www.cbcb.umd.edu/software/qlimmer/q3.table4.iun01.shtml) shows the accuracy 

of Glimmer3.0 in comparison with the NCBI RefSeq genome sequences. 30 microbial 

genomes were used in the analysis. The NCBI RefSeq annotations produce 84865 

predicted coding regions; of these Glimmer3.0 predicts 81320 (95.82%). However in 

addition, it predicts 7938 coding regions not found in the RefSeq annotations. Some of 

these regions may be coding and therefore reflect errors in the RefSeq annotation, 

however many will be non-coding. It is also important to realise that many RefSeq 

annotations will be based on the output from gene prediction programmes and 

therefore, there may be inaccuracies in this data as well.
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In gene prediction programmes, such as Glimmer3.0, there is a trade off between 

correctly identifying all coding regions but falsely predicting a number of extra genes, or 

reducing the number of extra genes predicted but in doing so increasing the risk of 

missing real genes. Additionally, with no formal annotation guidelines or procedure, 

different annotation groups may choose to use different length thresholds in their 

analyses, resulting in different levels of accuracy in different projects.

The NCBI and EBI provide sequence data to much of the biological community. I 

performed a comparison of the number of proteins predicted in the first 122 sequenced 

bacterial species. The data for this analysis was obtained in October 2005. Of the 122 

genomes included in the comparison, only 7 were predicted to have the same number 

of proteins by both the NCBI and the EBI. Whilst these public resources are of massive 

value to the research world, it is clear that annotation errors persist in both these 

databases.

An example of annotation error can be seen in the genome of Agrobacterium 

tumefaciens C58. In this case, an identical strain (C58) was sequenced and annotated 

independently by two separate groups, Cereon (Goodner et al., 2001) and Dupont 

(Wood et al., 2001). The results of the two annotation efforts were published back to 

back in the same issue of the journal Science. In a perfect world these two sequences 

would be identical and neither would contain orphans. However this is not the case. A. 

tumefaciens C58 Cereon is predicted by the NCBI to contain 4554 proteins whilst A. 

tumefaciens C58 Dupont is predicted to contain 4661 proteins. The EBI echoes this 

discrepancy by predicting 4565 proteins in the Cereon sequence and 4662 proteins in 

the Dupont sequence. In addition, comparing the two proteomes resulted in over 100 

orphans in each sequence. Performing a tBLASTn comparison (a similarity search of a 

DNA sequence database using a protein query) of these orphans against the DNA 

sequence of each genome, homes all orphans. Therefore the apparent differences in 

the sequences were down to discrepancies in the annotation.

The average size in amino acids of the orphans was much less than the average size 

of other genes within the A. tumefaciens C58 genomes. This size differential is echoed 

when the orphan gene phenomenon is looked at as a whole. The discriminatory power 

of methods such as codon usage becomes less reliable for shorter ORFs. This, 

coupled with the large number of short random ORFs, could potentially lead to an over 

prediction of short genes. For example, E. coli K12 is believed to have approximately 

4300 genes, but it is claimed by Skovgaard et al. (2001) that a more likely estimate 

would be in the region of 3800 genes.

21



The problem of over prediction is likely to be increasingly prevalent as the GC content 

of the organism increases. This is due to stop codons being AT rich, hence an increase 

in the likelihood of an ORF, by chance, reaching the threshold size acceptable as a 

gene. The length distribution of orphans and non-orphans has been described in 

several papers (Charlebois et al., 2003, Siew & Fischer, 2003b, Skovgaard et al., 2001) 

and has been used to suggest that the majority of orphans are annotation errors.

Annotation problems are amplified by the lack of standard protocols. Different 

significance, size or overlapping threshold can be applied and likewise the level of 

human supervision also varies between different genome annotation projects (Alimi et 

al., 2000). Genomes are clearly annotated to different levels of quality. For example, of 

the first 150 bacterial genomes, 10% do not have their rRNA gene sequences 

annotated in their GenBank files (Ussery & Hallin, 2004). Further, once the initial 

annotation is completed, the predicted genes and their sequences are released into the 

public domain where any errors may potentially be perpetuated throughout the 

community. This process has been termed ‘error percolation’ (Gilks et al., 2005).

Thus, bacterial genome annotation is not a trivial exercise and it seems unlikely that all 

regions annotated as coding for an expressed protein are in fact genuine genes. Novel 

annotation methods are being developed that may assist in the identification of real 

genes. Examples include ‘genomic context’ methods (Doerks et al., 2004, Enault, 

Suhre & Claverie, 2005) and the systematic use of genomic data and scientific 

literature to associate genes to phenotypes (Korbel et al., 2005). Genomic context 

methods predict functional associations between protein coding genes, such as 

physical interactions, co-membership in pathways or other cellular processes (Doerks 

et al., 2004). Characterising protein function using this technique is not able to provide 

information about the exact function of a protein. A subsystems approach to genome 

annotation has been launched by FIG (Fellowship for Interpretation of Genomes) 

(Overbeek et al., 2005). This approach involves experts in a particular subsystem (a 

generalisation of the term ‘pathway’) annotating that subsystem over the complete 

collection of genomes, rather than having an annotation expert attempting to annotate 

all genes in a single genome. One outcome of this method was the discovery that 

genes that appeared to be missing from a subsystem in a particular organism, were in 

fact found to be present. However, the relevant ORF had originally been missed by the 

gene prediction programme (Overbeek etal., 2005).
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Techniques to prioritise genes for further experimental characterisation are much 

needed and, in the future, with concerted community effort may help to improve the 

current annotation situation. Unfortunately at the present time there is no straight 

forward way to determine which of the predicted genes are real and which are not.

1.4 On the Brink of Extinction or a Long Lost Relative?

If an orphan gene is not a result of annotation error, how can they be explained using 

traditional evolutionary theory? One possibility is that the orphan gene is the last 

remaining member of an otherwise extinct gene family. Alternatively, the orphan gene 

could be a lost member of a known gene family that has diverged beyond recognition.

Firstly I shall look at the possibility that an orphan gene represents a gene family on the 

brink of extinction, due to gene loss and genome degradation. It has been claimed that 

lineage-specific gene loss accounts for the majority of the differences in gene 

repertoires between genomes (Krylov et al., 2003). Gene loss is particularly common 

when bacterial lineages make the transition from a free-living or facultative parasitic life 

cycle to permanent associations with hosts (Moran et al., 2002). Such gene loss has 

been seen in many species, such as the Mycoplasma, Rickettsia, Buchnera aphidicola 

and Borrelia burgdorferi. Some genes that are lost from reduced genomes are those 

that are no longer required. Elimination of unnecessary pathways explains a large 

proportion of gene losses. For example, many genes involved in energy metabolism 

have been eliminated from Mycoplasma species and Rickettsia species (Moran et al.,

2002). However, it is also found that discarded genes encode products that seem as 

useful in an obligate pathogen as they would in a free-living organism. Such gene loss 

could be attributed to genetic drift and the fixation of mutations that inactivate 

potentially useful, though not essential, genes (Moran et al., 2002). An analysis by 

Snel, Bork & Huynen (2002) investigated the evolution of archaeal and proteobacterial 

gene content. They determined that gene loss was quantitatively the most dominant 

process in shaping the genome.

If this is the case, it is possible that divergence from a common ancestor could lead to 

an orphan in one genome and a pseudogene in another. Pseudogenes have been 

rendered non-functional due to frameshifts or premature (in-frame) stop codons that act 

to truncate full length proteins. In eukaryotes, surveys have indicated that pseudogene 

formation is more likely in younger, more taxonomically restricted protein families, often 

linked to the generation of functional diversity (Harrison & Gerstein, 2002).
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Historically, prokaryotic genomes have been perceived to be lacking in pseudogenes 

due to the small genome size and the influx of genetic elements such as bacteriophage 

(Lawrence, Hendrix & Casjens, 2001). This influx results in high deletion rates in most 

bacteria thus maintaining the compact genome size and paucity of pseudogenes. 

Exceptions to this are intracellular parasites such as Mycobacterium leprae (Cole et al., 

2001) whose sheltered lifestyle removes them from the danger of insertion elements 

and phage. Therefore, they have a lower deletion rate and higher pseudogene load 

(Lawrence et al., 2001).

However, this view has been challenged (Liu et al., 2004, Lerat & Ochman, 2004, 

2005). An analysis of 64 prokaryotic species resulted in the identification of 6895 

candidate pseudogenes. Of these pseudogenes, approximately 2300 overlapped 

annotated hypothetical genes (Liu et al., 2004). These results, once again, indicate 

erroneous gene annotations or sequencing errors in bacterial genomes. Work on E. 

coli MG1655, E. coli 0157:H7, E. coli CFT073 and S. flexneri 2a identified 98, 142, 98 

and 168 new pseudogenes, respectively (Lerat & Ochman, 2004). The genome of 

Buchnera aphidicola, the symbiont of Acyrthosiphon pisum, contains four genes that 

share no sequence similarity to its closest free living relatives. Further analyses led to 

the conclusion that these unique genes possess traits commonly found in 

pseudogenes (Mira, Klasson & Andersson, 2002). More recently, a study into the 

genomes of human pathogens and their close relatives found that all contained 

substantial numbers of pseudogenes. The data suggested that pseudogenes appear to 

be more common in the genomes of recent pathogens than in free living or benign 

relatives (Lerat & Ochman, 2005). The reason for this could be that previously useful 

genes are rendered useless when relying on nutrients from the host. These 

superfluous genes are knocked out to become pseudogenes. Another reason could be 

the reduction in population size on host infection. This would relieve selective pressure 

and result in an increase in deleterious mutations.

In prokaryotic organisms, pseudogenes are believed to arise from three processes. 

The first of these is the disablement of a native duplication. Secondly, it could be the 

result of the decay of a native single copy gene. Finally, it is possible that pseudogenes 

are a result of failed horizontal transfer events (Liu et al., 2004). It is possible that the 

decay of a single copy gene to form a pseudogene in one genome could have the 

effect of creating, what appears to be, an orphan in another genome. The relationship 

between horizontal transfer and orphan genes will be discussed in detail below.
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An analysis of orphans in Rickettsia conorii, found that the majority were short 

remnants of longer genes, present in the ancestor of the modern Rickettsia species 

(Amiri, Davids & Andersson, 2003). The ancestral species gene sequences were 

reconstructed using data from R. typhi and R. prowazekii (both members of the typhus 

group (TG)), and also R. montana and R. rickettsii (both members of the spotted fever 

group (SFG)). It was found that members of TG and SFG were both moving towards a 

similar gene set but at different rates. Therefore, proposed orphans in the SFG 

corresponded with pseudogenes in the TG, and pseudogenes in the SFG 

corresponded with extensively degraded gene remnants in the TG (Amiri et al., 2003).

In effect, fragments of genes are retained temporarily and have the appearance of 

multiple short ORFs. These short ORFs will possess nucleotide composition patterns 

similar to those of the full length ancestral sequences from which they were derived. 

However, they no longer code for functional proteins (Amiri et al., 2003). As more 

genomes are sequenced, the sequences of many closely related organisms will 

become available. Analysis of these genomes should provide more pseudogenes to 

compare orphan genes against whilst highlighting errors in the original genome 

annotations.

An alternative explanation for the presence of orphan genes is that they are members 

of known gene families that have diverged beyond recognition. In other words, the 

relationship may have faded to such an extent that our current sequence analysis tools 

do not possess the statistical power and recognition capabilities to detect it. In such 

cases, structural studies may be able to shine a light on these distant relationships and 

allow us to home some of the orphan genes. If orphans are distant members of known 

protein families, they will have similar functions and hence similar three-dimensional 

structures, even if the protein sequences have diverged beyond recognition. A study of 

the 3D structures of orphans found within the PDB (Protein Data Bank) (Berman et al., 

2000), identified that the majority of the orphans do possess previously observed folds 

(Siew & Fischer, 2004). This suggests that the orphans may correspond to distant 

members of known protein families. Further work has been performed on a family of 

sequences specific to Bacillus. Using methods such as fold recognition, it was possible 

to identify an a/|3 hydrolase fold and hypothesise that the orphans may belong to the 

haloperoxidase family (Siew, Saini & Fischer, 2005).

Several factors responsible for controlling the rates of protein evolution have been 

suggested, for example gene dispensability (Hirsh & Fraser, 2001, Yang, Gu & Li, 

2003), recombination rate (Pal, Papp & Hurst, 2001) and levels of gene expression
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(Pal, Papp & Hurst, 2003). In the case of the latter, highly expressed genes are 

expected to evolve more slowly. Since orphan genes are likely to encode an accessory 

function, it is speculated that they would be expressed at low levels. As such, orphan 

genes are candidates for rapid sequence divergence.

The pace of sequence divergence has been tested in Drosophila species. Sequencing 

of narrowly restricted genes shared by Drosophila species shows that orphan genes 

evolve, on average, significantly faster than non-orphan genes (Domazet-Loso & 

Tautz, 2003). Cai et al. (2006) investigated the divergence rates of genes with different 

degrees of lineage-specificity in the Ascomycota fungi. The results of this analysis also 

indicate that genes with greater lineage-specificity had accelerated evolutionary rates. 

This may reflect the influence of selection and adaptive divergence during the 

emergence of orphan genes (Cai et al., 2006). However, other data from the Domazet- 

Loso & Tautz (2003) analysis showed that some orphan sequences can have very low 

divergence rates. Additionally, the processes described may only be applicable in 

eukaryote species and not be transferable to bacteria.

An alternative evolutionary mechanism has been suggested that could explain some 

new gene families. This mechanism involves changes in the frames of translation. 

Research in this area suggested a frame-shifted evolutionary relationship between 

several hundred domain families (Pellegrini & Yeates, 1999). Whilst this study was 

focussed on relatively common protein sequence families, there is no reason why an 

investigation into the orphan genes may not provide similar results.

To solve the problem of homing orphan genes within the correct gene families, new 

techniques need to be developed, for example using functional domain composition to 

predict protein function (Cai & Doig, 2004). Methods are required that make use of 

alternative patterns and mine metadata within the sequence data, in doing so going 

beyond traditional approaches.

1.5 The New Gene Generators

In the section above, the process by which orphans could be generated through gene 

duplication and subsequent extreme diversification was described. Horizontal gene 

transfer provides a mechanism for bacterial isolates to obtain sequences (and traits) 

from both related and unrelated organisms. As these genes have already been refined 

by natural selection, the benefit to the organism could be instantaneous (Daubin & 

Ochman, 2004b). Such benefits have been seen in numerous bacterial lineages, the
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best publicised is perhaps that of antibiotic resistance, for example in Salmonella 

enterica (Carattoli et al., 2002).

There are several methods by which bacteria can obtain new genes, examples of 

which include: (i) transformation, which involves genetic material being taken up from 

the environment, (ii) conjugal transfer between bacterial species and (iii) transduction, 

when DNA is delivered by a virus i.e. gene insertions by phage (Medini et al., 2005).

The arrival of complete bacterial genome sequences revealed for the first time the 

importance of the phage-bacterium interaction. It was shown that, in certain bacteria, a 

substantial amount of bacterial DNA was of phage origin (Casjens et al., 2003). Such 

data has contributed to a shift in our understanding, from a straight forward host- 

parasite relationship to a co-evolution of bacterial and viral genomes (Canchaya, 

Fournous & Brussow, 2004).

A comparative analysis of 18 phage genomes from Pseudomonas aeruginosa revealed 

a high percentage of novel genes (55% were restricted to the phage they were found 

in), suggesting that phage store a vast reservoir of genetic diversity (Kwan et al., 2006). 

In another study, 10 mycobacteriophage genomes were sequenced and compared to 

each other and to 4 previously sequenced mycobacteriophage genomes (Pedulla et al.,

2003). A total of 1659 predicted coding regions were identified in the 14 genomes, 

remarkably in the region of 50% of these were unique when queried against current 

databases. Of the remaining 50%, three quarters only found matches in other 

mycobacteriophage genomes (Pedulla et al, 2003). The authors suggest that, if the 

data obtained accurately reflects the bacteriophage population, “bacteriophages 

perhaps represent the biggest unexplored reservoir of sequence information in the 

biosphere”. This claim is supported by the data obtained from the Global Ocean 

Sampling Expedition, in which a higher than expected proportion of sequences were of 

viral origin (Yooseph etal., 2007), reflecting the poor sampling of viral diversity.

Analyses suggest that horizontal gene transfer from phage may be responsible for 

contributing large numbers of orphan genes to bacterial genomes (Ohnishi, Kurokawa 

& Hayashi, 2001, Beres et al., 2002, Deng et al., 2002, Smoot et a/., 2002 and Hsiao et 

al. 2005). In Pseudomonas aeruginosa, genes encoding the tail of two different 

bacteriophages (P2 phage and lambda phage) have been converted to form 

bacteriocins (R-type and F-type). These can be used by the bacteria to kill its 

competitors (Nakayama et al., 2000). These regions within the P. aeruginosa genome
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are found to contain several orphan genes and those that are not orphans are found to 

have a highly restricted bacterial distribution.

The lack of homology could be the result of the poor sampling of phage genomes. 

Orphans are significantly shorter than native genes and are A+T rich when contrasted 

with the rest of the genome (Daubin & Ochman, 2004a). Phage also encode short A+T 

rich genes (Pedulla et al., 2003), and on average phage are 4% richer in AT than their 

hosts (Rocha & Danchin, 2002). The dinucleotide frequencies of E. coli orphans and of 

phage known to infect E. coli were found to be similarly biased in contrast with the 

native genes (Daubin & Ochman, 2004a). Research investigating proposed orphans in 

E. coli found that 54% of the orphans and the HOPs (genes with a heterogeneous 

occurrence in prokaryotes) are found in clusters of two or more genes. In addition, 

many of the clusters were in the vicinity of regions associated with lateral gene transfer, 

such as IS elements and prophages (Daubin & Ochman, 2004a).

However, questions remain. Why do phage provide bacterial species with useful 

genes? One theory is that by providing useful genes, the inevitable parasite host 

conflict can be avoided, in favour of a mutually beneficial symbiosis, in which the phage 

and bacterium can co-exist (Daubin & Ochman, 2004b). As Daubin & Ochman (2004b) 

wrote “one might view bacteriophages as start up entities whose existence is based on 

creating an innovation that has been overlooked by other organisms”.

It is also possible that ORFs transferred in by phage may be non-coding or, 

alternatively, of no functional use to the bacterial host. Many horizontally acquired 

genes are likely to cause deleterious effects in the bacterial recipient; therefore these 

bacteria will be lost from the population (Thomas & Nielsen, 2005). It has been 

estimated that there are 1031 bacteriophage on Earth which infect 1024 bacteria per 

second; it is therefore easy to imagine a constant flow of genetic material (Tettelin et 

al., 2005). In order to maintain an effective genome size in such conditions, the 

bacterial population must be able to remove the unwanted sequence from its gene 

pool. Therefore, our genome sequences could be considered as a snapshot (Daubin, 

Lerat & Perriere, 2003) of a constantly changing environment.

The hypothesis that phage are responsible for many of the bacterial orphan genes has 

been questioned by Yin & Fischer (2006). Using an analysis of orphans and non

orphans from 277 microbial genomes, searched against the public viral protein 

database, they showed only 2.8% of the orphans had viral homologues compared with 

7.9% of the non-orphans, suggesting the evidence for the viral origin of orphans is
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weak (Yin & Fischer, 2006). It is also worth considering that whilst orphan genes and 

phage genes generally have higher AT content than the host chromosome, this is 

equally true of intergenic regions of bacterial genomes (Binnewies et al., 2006).

As mentioned previously, horizontal transfer can take various forms. Plasmids could 

also be a source of orphan genes in bacteria. One example of a plasmid integrating 

with a bacterial chromosome is found in the Methanopyrus kandleri AV19 genome 

(Jensen et al., 2003). Two large regions within the bacterial chromosome were found to 

have an AT content significantly different to the rest of the genome. Further 

investigation led to the conclusion that the regions were formed from the integration of 

two plasmids into the chromosome. The two regions being investigated were also 

found to contain a large number of orphan genes. Examples of transfer between 

different bacterial species are also common. For example, species such as 

Thermotoga maritime and Aquifex aeolicus have a substantial number of genes 

showing greatest similarity to those found in the archaea (Ochman, Lerat & Daubin,

2005). As these are between known bacterial species, they would not be viewed as 

orphans, but they may still be of interest for their role in niche adaptation.

Another way in which new genes could occur is through the process of de-novo gene 

creation. De-novo gene formation refers to the idea of non-coding sequence 

undergoing a change that leads to it coding for something. It can then evolve into a 

gene. There is very little in the scientific literature discussing this possibility.

1.6 Proof of Function

Despite errors and incomplete sampling, it appears that at least a proportion of the 

orphans are real. Phylogenetic analysis can be used to test whether taxonomically 

restricted genes appear to be functional. An analysis of genes restricted to y- 

Proteobacterial clades indicated that the majority of the genes were functional proteins 

(Daubin & Ochman, 2004a). The analysis was performed using the Ka/Ks ratio. In 

addition to predicting that the genes were functional, it was found that the 

characteristics of genes restricted in the deeper clades (i.e., those that had been in the 

lineage longer), were approaching those of the native genes (in terms of base 

composition and evolutionary rates). In contrast, the younger genes tended to be 

clustered and adjacent to horizontally transferred regions (Daubin & Ochman, 2004a). 

Ochman (2002) also utilised the Ka/Ks ratio to predict that the majority of putative 

genes, including those that are deemed as being short, are genuine protein coding 

regions. However, the majority of ORFs that appeared likely to be mis-annotations

29



were short and of unknown function. It has since been claimed that the method used by 

Ochman could exclude legitimate annotations, such as leader peptides, in which only a 

small number of amino acids in the sequence are under selection (Lawrence, 2003). 

Furthermore, it has been suggested that, due to the use of arbitrary length thresholds 

for determining when an ORF becomes a predicted coding region, some small genes 

are not being annotated (Harrison et al., 2003). This is judged to be a manageably low 

number.

Increasingly, a range of experimental methods are also providing evidence for real 

orphans. One example validation of the pathogen-defining potential of orphan genes 

and their relationship with phage is found in Vibrio cholerae. The genome sequence of 

V. cholerae Tor N16961 revealed a single copy of the cholera toxin (CT) genes, ctxAB 

(Heidelberg et al., 2000). These genes are localised within the integrated genome of 

CTX* a temperate filamentous phage (Waldor & Mekalanos, 1996). The receptor for 

the entry of the CTX* phage into the bacterial cell is thought to be the toxin-coregulated 

pili (TCP). The TCP represent the critical intestinal colonisation factor of V. cholerae 

(Manning, 1997), allowing the cells to clump together and stick to the intestinal walls.

The genes involved in assembly of TCP are part of a pathogenicity island that includes 

genes sharing homology with bacteriophage proteins (Heidelberg et al., 2000). The 

majority of the genes located in the TCP cluster were classed as orphans until the 

sequence of V. fischeri (Ruby et al., 2005), a symbiotic bacterium of squid, was 

completed and orthologs were found. This surprising finding is made more intriguing by 

the suggestion that this region is native to V. fisheri but was acquired recently by V. 

cholerae, perhaps through phage mediated transfer. In addition, the ctxAB genes 

closest homologue is found in a pathogenic strain of E. coli and is therefore an 

example of a gene with heterogeneous occurrence in prokaryotes (HOP).

This example illustrates several points. Firstly, it shows that genes classed as orphans 

may be encoding proteins responsible for important biological phenotypes that play a 

major role in the lifestyle of an organism. Secondly, it indicates how gene delivery via a 

phage may be an important method for transferring these dispensable genes to 

different organisms. Finally, by sequencing more closely related genomes it will be 

possible to gain greater understanding of the evolution of these organisms and the 

factors that lead to their differentiation, through the homing of taxonomically restricted 

but phenotypically relevant genes into gene families (Field, Feil & Wilson, 2005a).
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In contrast to the example above of an unusual ‘orphaned locus’ with an obvious and 

critically important phenotype, there has been little in the way of experimental 

characterisation of orphans of unknown function. Such work is expensive and time 

consuming. An exception to this is the work of Alimi et al. (2000), who have provided 

reproducible evidence of transcription in 19 proposed orphan genes (25 orphan genes 

were conservatively selected for the experiment) from the E. coli K12 MG 1655 

genome. This high rate of mRNA detection suggests that a large majority of predicted 

genes of unknown function are of biological relevance. In the study, it was found that 

86% of the predicted 4290 E. coll genes exhibit detectable mRNA levels. Of the 4290 

predicted genes, 1352 were classified as hypothetical. mRNA was detected for 80% of 

these hypothetical genes. As previously stated 19 of the 25 strictly orphan genes (76%) 

expressed mRNA. Hence, hypothetical genes, both orphan and conserved, do not 

appear to be significantly less likely to be transcribed than known annotated genes 

(Alimi etal., 2000).

However, obtaining transcribed RNA does not confirm that the gene codes for a 

functional protein (Amiri et al., 2003). This has been demonstrated by Taoka et al

(2004), who found that horizontally transferred genes on the chromosome of E. coli 

rarely produced a protein product, despite the majority appearing to be transcribed to 

RNAs as efficiently as the native bacterial genes. Hence, confirmation of the 

expression of orphans remains speculative until evidence of protein products is given.

In a second project, genes unique to the halophilic archaea, Halobacterium sp. NRC-1, 

were investigated by RT-PCR (Shmuely et al., 2004). 39 novel predicted genes were 

used in the analysis, each of which had at least one homologue within the genome but 

no detectable homologues in other organisms. The 39 predicted genes represented 14 

paralogous families. RT-PCR identified mRNA from 30 of the 39 predicted genes, 

corresponding to members of 13 of the 14 paralogous families. Of the 9 targets which 

failed to yield evidence for expression, only 2 corresponded to proteins shorter than 

150 amino acids. Therefore, in this analysis, there was no indication that shorter 

predicted genes are less likely to be expressed (Shmuely, et al., 2004). However, as in 

the work of Amiri et al., (2003), further work is required to determine evidence of a 

protein product. Preliminary work from computational analyses, such as fold 

recognition methods, suggested that 8 of the 14 paralogous families may correspond to 

distant members of known families (Shmuely et al., 2004). Similar work has been 

performed on hypothetical genes in Haemophilus influenzae (Kolker et al., 2004) and 

Shewanella oneidensis (Kolker et al., 2005, Elias et al., 2006). In both studies, mRNA 

expression was found for the majority of these genes.
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Genomotyping (whole genome comparisons of microbes using microarrays) has been 

used on several bacterial species. Such studies provide a method for identifying genes 

associated with particular phenotypes, such as virulence. These candidates could 

include lineage-specific and orphan genes. Examples of genomotyping experiments 

include work on the pathogen Campylobacter jejuni (Champion et al., 2005) and 

Neisseria gonorrhoeae (Snyder, Davies & Saunders, 2004). Another genomotyping 

study was performed on 15 Helicobacter pylori clinical isolates. It was found that 22% 

of the H. pylori genes are dispensable in one or more strains (Salama et al., 2000). 

This number is expected to be an underestimate, as the array could only contain genes 

present in one of the sequenced strains. Distinct patterns of strain-specific gene 

distribution along the chromosome were found, this may be explained by mechanisms 

of gene acquisition and gene loss. In addition, candidate virulence genes from the 

strain-specific genes were identified and can now undergo further characterisation 

experimentally (Salama et al., 2000).

1.7 Do Orphans have a Future?

In the Roberts report (2004) for the American Academy of Microbiology, the need for a 

prioritised list of genes of unknown function was highlighted. The list should include all 

uncharacterised species- and strain-level taxonomically restricted genes. The need for 

such a list has been elevated by the recent recognition of the pan-genome concept and 

the realisation that genetic diversity has been vastly underestimated. As an increasing 

number of metagenomic projects report back their findings, it is becoming clear that we 

are still far from discovering all protein families in nature. A list of the top 10 conserved 

hypothetical genes was created in an attempt to encourage the experimental 

characterisation of these genes (Galperin & Koonin, 2004). The list was based on 

numerous criteria, the primary being phyletic spread, and illustrated how the 

bioinformatics community could interact with experimentalists to systematically tackle 

key issues in genomics. Lists of orphan genes have been produced previously; 

examples include the Orfanage (Siew, Azaria & Fischer, 2004) and CUPID (Mazumder 

et al., 2005). Both these examples are online databases that enable the user to 

generate lists of taxonomically restricted genes. However, in order for such resources 

to keep track of both changes in annotation and new genome sequences, substantial 

investment in time and capital is required.

The Roberts report also influenced the development of the Gene Trek in Prokaryote 

Space (GTPS) project (Kosuge et al., 2006), which aims to assign a degree of reliability
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to all predicted protein-coding genes in bacterial and archaeal genomes held by the 

INSDC (International Nucleotide Sequence Database Collaboration). Predicted coding 

regions are graded for quality according to a number of analyses, including BLAST and 

InterProScan results. Potential genes range in their grades from AAAA1-D3 (five main 

categories including orphans), thus providing the user with a means to estimate the 

quality of a potential coding region and prioritise candidates for further investigation.

More recently, a community call similar to that made by Roberts has been issued by 

Karp (2004). This proposal focussed on the inverse problem, i.e., functions with no 

associated sequence. Such proteins have been termed ‘orphan enzymes’. An example 

is shown in Prochlorococcus marinus CCMP1378 (MED4) in which there is no 

recognisable gene sequence for carbonic anhydrase (Fuhrman, 2003). If these 

proposals were followed, it is likely the work would have significant overlaps, with many 

of the hypothetical protein sequences being responsible for many of the orphan 

enzymes.

The ability to distinguish real and artefactual annotations would have several positive 

outcomes. It would improve the quality of genomic annotations, provide lists of 

candidate genes for further analysis and answer fundamental questions about the 

coding capacity of different organisms. For example, genomic islands are clusters of 

genes in genomes that show evidence of horizontal origins. A study by Hsiao et al. 

(2005) found that, not only do genomic islands contain a disproportionate number of 

genes of medical, agricultural and environmental importance, but they also contain 

higher proportions of orphan genes. This suggests that microbes have a larger 

‘arsenal’ of novel genes for niche adaptation than previously anticipated. However, an 

alternative explanation for this result is the fact that genes in genomic island regions 

are more likely to be predicted incorrectly by gene prediction software. This is because 

of the difference in composition properties, such as codon usage between genomic 

islands and the host chromosome (Hsiao et al., 2005). An index that can be used to 

accurately characterise the orphaned fraction of complete genomes would be of great 

use to the community (Wilson et al., 2007).

Galperin & Kolker (2006) recently called for new approaches to deal with the vast 

diversity of data that projects are uncovering. Indeed, it is clear that novel methods will 

need to be applied if the orphan problem is to be solved. Such methods could include 

the improved use of structure (placing orphans in folds) and information on protein 

interactions. Such data is currently scarce in comparison with the volume of sequence 

data, thus inference from both direct interactions (physical binding between proteins)
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and indirect associations (e.g. shared pathway membership) is lacking. Fortunately, 

headway is being forged in this area by the database STRING (von Mering et al.,

2006), which aims to collect, predict and unify both direct and indirect protein-protein 

interactions.

It is also clear that mechanisms must be put into place to systematically remove errors 

from current genome annotations. As part of this, it is important that any such resource 

is driven by the research community through direct contributions. Examples of 

successful community action include work in the structural genomics initiative (Stevens, 

2004). The number of structures, including many hypothetical proteins, solved within 

this initiative is already in the hundreds (Galperin & Koonin, 2004). Such a resource 

dedicated to taxonomically restricted genes in prokaryotes could offer an important 

step forward in the research community’s attempts to explore these unique predicted 

genes.

1.8 Aims and Objectives

I intend to utilise computational methods to investigate and contribute significantly to 

the analysis of orphan genes. To perform such analyses, it is necessary to design and 

develop suitable software. Firstly, software responsible for the analysis of the genomic 

data will be required. Due to the volume of data available, the software must be able to 

analyse the genomic sequences and produce output in a human readable format. In 

addition, the completed software should be made available to the research community 

for further use. Secondly, a database is required to store the data generated in the 

analyses. The database should have an intuitive interface that allows members of the 

research community to interact with it and access the data stored within it. It should 

also allow users to download the data in a standard format so that it can be integrated 

with data obtained from other projects, hence allowing informed research to proceed 

efficiently. Developing these tools will form a significant proportion of the work required 

to produce this thesis.

Initial research will seek to determine whether the number of orphan genes in our 

complete bacterial genome collection is still rising or whether the number has reached 

a plateau, as previously predicted. The bacterial genome collection is an important 

resource for scientists working in microbiology. It is therefore important to understand 

the nature of the genomes that comprise the collection with particular emphasis on
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determining the biases present. Such biases will have implications on the analysis of 

genomic data and, therefore, it is important that these are understood.

As described, there are many different explanations for the presence of orphan genes 

in prokaryotic genomes. Many of these ideas appear contradictory, hence it is 

important to realise that no single explanation can account for all the orphan genes 

independently, but each explanation might be responsible for a percentage of the 

orphans. Each individual orphan will need to be investigated in order to determine what 

it represents, for example, is it an annotation error, a pseudogene, a member of an 

existing family or could it be the result of a horizontal transfer event? Such an analysis 

is not possible due to the volume of data being produced and the economic and time 

costs associated. Therefore, it is necessary to prioritise the orphans for further 

characterisation.

Of the different explanations for the existence of orphans, that of errors in annotation is 

of the most immediate significance. Whilst not necessarily of interest from a biological 

perspective, it is a major issue that has limited exposure. This is largely due to the 

excitement of the possibilities opened up by the influx of genomic data. However, this 

excitement could become significantly diminished if annotation errors are found to be 

prevalent and responsible for the majority of the orphans. It is important to determine 

which of the orphan genes are most likely to be real coding genes and which are likely 

to be a result of errors in the annotation process. I aim to investigate the possibility of 

annotation errors and develop a method for ranking orphans according to their ‘quality’. 

The high quality sequences are those most likely to be coding, the low quality are those 

most likely to be errors. By obtaining expression data from public microarray resources, 

it will be possible to provide support for the ranking method. A successful ranking 

system should result in research focussing on the orphans of high quality.

Many genes are restricted in their distribution to a particular taxonomic group and 

hence can be termed as lineage-specific. Orphans found in taxonomically isolated 

genomes, may not be species or strain-specific, but instead could be division or family- 

specific, appearing as orphans due to sampling bias. It would be of use to the wider 

community to determine which of the orphan genes in isolated genomes are more likely 

to be found in other species and which are most likely to be unique to a given species. 

Experimental work to determine the functionality of a gene could be focussed on the 

genes that are likely to be found in numerous genomes.
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It is hoped that the methods developed and the results reported in this thesis will 

further our understanding of bacterial orphan genes and provide a platform for future 

analyses to take place.
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CHAPTER 2

Orphans as Taxonomically Restricted and Ecologically

Important Genes

Gareth A. Wilson, Nicolas Bertrand, Yatin Patel, Jennifer B. Hughes, 
Edward J. Feil and Dawn Field

(2005)
Microbiology 151: 2499-2501.
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2.1 Overview

The abundance of orphan genes, or genes without known homologues, is amongst the 

greatest surprises uncovered by the sequencing of a large number of eukaryotic and 

bacterial genomes. It is therefore important to determine how the number of orphan 

genes will change as we sample more genomes. There are three possibilities. Firstly, 

the number of orphans could continue to rise as we sample new genomes. 

Alternatively, orphan numbers could plateau, despite the sampling of novel taxa, as 

has been suggested in the past (Siew & Fischer, 2003a). Finally, the number could 

decrease by improving our annotation methods and the sensitivity of our similarity 

searching algorithms, thereby finding homes (gene families) for current orphans 

(Skovgaard et al., 2001).

Here we examine these possibilities using data generated for a set of 122 bacterial 

species for which we have complete genomes. We use this data to show that orphans 

are continuing to increase in number, emphasise further the importance of sequencing 

taxonomically diverse isolates (especially from environmental samples) and suggest 

that we now classify these predicted proteins as “taxonomically restricted genes” 

(TRGs), as this concept seems more useful for advancing our knowledge of these 

sequences and their potential ecological significance.

2.2 Numbers of Orphan Genes in Bacterial Genomes

We examined the accumulation of bacterial orphans using the proteomes of the first 

122 published bacterial species (Figure 2.1 A). The decline in orphans, over genomes 

sequenced, as a percentage of total predicted proteins in these proteomes (Figure 

2.1B) was also examined. Datasets ‘D1’ and ‘D2’ were taken from the OrphanMINE 

database (www.genomics.ceh.ac.uk/orphan mine). In order for these analyses to test 

the hypothesis that orphan number would plateau at 26,000 (Siew & Fischer, 2003a), 

we defined orphans in the following way, based on the methodology of Siew & Fischer 

(2003a). The datasets were generated by comparison of each proteome to every other 

proteome using BLASTP with a cut-off of 10'3. D2 was generated by removing all 

predicted proteins smaller than 150 amino acids in length or containing any regions of 

low complexity (>0% calculated by SEG using default settings (Wooton & Federhen, 

1993)), from D1. Genomes were added to the analysis in the order in which their 

sequence was published. These orphans are predicted genes found in only one
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genome in this set of bacterial genomes and are only orphans with respect to this 

dataset (a small proportion of these genes do have matches in phage and plasmids 

and among bacteria without complete genome sequences). Figure 2.1 A shows that the 

number of these orphan bacterial genes is continuing to rise in a roughly linear fashion 

despite the large number of genomes sequenced, and this trend shows no sign of 

levelling off. In fact, the last 30 species included in this study, provided 30% of the total 

orphans in our study (mean=441 +643 for dataset D1, despite the large standard 

deviation all species contributed orphans).

With the availability of relatively few bacterial genome sequences, the addition of new 

species removed a large percentage of orphans (Siew & Fischer, 2003b). However, as 

new species are added, the fall in the percentage of orphans slows and each new 

genome contributes very little to the decrease in orphans. In dataset D1, the 

percentage of orphans fell from 100% to 30% after the inclusion of the first 10 bacterial 

species, however after 55 species the percentage is only down to 15%, and the 

percentage drops only 3% further to a value of 12% after 122 species.

Trend lines were fitted and used to predict orphan gene levels after the sampling of 200 

species. For the more conservative dataset D2, the percentage of orphans after the 

inclusion of 122 species was 1.89% (6696 of 355079 ORFs) and after 200 species, 

1.16% (6751 of 582,000 ORFs). Therefore, although the percentage of orphans is 

falling, the actual number of orphans continues to rise, albeit very slowly. A similar 

pattern can be seen for D1 where 10% of all predicted coding regions in 200 species 

are predicted to be orphans. This is a far more significant percentage, but it is possible 

that this larger dataset contains genes which represent annotation artefacts 

(Skovgaard et al., 2001). However, it has also been recently shown that A+T rich, short 

proteins, which look like mis-annotated junk, may actually be derived from phage 

genomes by horizontal gene transfer (Daubin & Ochman, 2004a).

These trends reveal several interesting points. First, given our current dataset for 

bacteria, it is not possible to make an estimate of the maximum number of orphans, as 

orphan growth does not show evidence of reaching a plateau. This conclusion is also 

supported by examining the rate at which new protein families are discovered (Kunin et 

al., 2003).

Second, it appears that improved taxonomic sampling of distantly related genomes is 

continuing to reveal large numbers of orphans. These data suggest that the number of 

bacterial orphan genes will continue to increase for the foreseeable future, as long as
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Figure 2.1 A & B. The accumulation of bacterial orphans For this analysis, data on the 
number of orphans in complete bacterial genomes was taken from the ‘OrphanMine’ database 
(www.qenomics.ceh.ac.uk/orDhan mine). The dataset D1 represents all the orphans found in 
the bacterial genomes using BLASTP similarity searches and a cutoff threshold of 10'03 
(corresponds to dataset D3 in database). In addition we created a more conservative dataset 
(D2) in which all predicted proteins smaller than 150 amino acids in length containing any 
regions of low complexity were removed (corresponds to dataset D4 in database). A. A plot of 
the cumulative number of orphans versus non-orphans. The number of orphans in datasets D1 
(■) and D2 (□) are plotted showing that the number of orphans is continuing to rise in a linear 
fashion. Each data point represents the addition of a complete genome sequence in 
chronological order of publication (N=122 species). The two species contributing the largest 
numbers of orphans are shown. B. The decline in the number of orphans in datasets D1 (■) and 
D2 (□) as a percentage of all predicted proteins. A power curve was fitted and the R2 value is 
shown. An extrapolation of this curve is used to predict the percentage orphans after 200 
species have been sequenced (shown by the solid black line).
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we continue to assay novel branches of the microbial tree of life. Therefore, although 

improved taxonomic sampling is reducing the overall percentage of orphans, it cannot 

be used to assign all orphans to known gene families. Further, it is also likely that 

orphans will continue to be found in lineages that have already been heavily sampled 

(Hayashi et al., 2001, Perna et al., 2001).

Third, the number of currently known genes is undoubtedly a small proportion of the 

number of genes yet to be found as we sample more taxonomically and ecologically 

diverse species. It is well known that our selection of genomes for sequencing is highly 

biased. For example, nearly half of the species in this dataset are pathogens, and 76 

of the 122 species examined here are from only two divisions, Proteobacteria and 

Firmicutes. Of these 122 species, 7 represent the only isolate from a division. These 

taxonomically unique species contribute approximately 13% of the total orphans in our 

dataset. It is therefore expected that our current databases are a significant 

underestimate of the number of new genes that might be sequenced in the future. 

Fortunately, there are now projects aimed at maximizing the taxonomic diversity of our 

current genome collection (Eisen & Fraser, 2003).

The importance of a representative sample of genomes, especially from increased 

numbers of environmental bacteria, is underscored by the observation that the largest 

numbers of orphans are contributed by genomes that share one or more of the 

following characteristics: distant taxonomic relatedness, ecological uniqueness, or 

large genome size. For example, Pirellula sp.1, the first species belonging to the 

division Planctomycetes to be sequenced, produced 3576 orphan genes (49% of the 

total genes), despite being the 100th species to be sequenced. Leptospira interrogans, 

the third Spirochaetale to be sequenced and 92nd species, contains 2138 orphan genes 

(45% of the total genes). This genome contains two chromosomes, and the species 

can survive as either a saprophyte or as a facultative parasite. It is believed that L  

interrogans was originally an environmental bacterium that has subsequently emerged 

as an important human pathogen (Ren et al., 2003). The ability to inhabit two different 

environments, in addition to its past as an environmental organism, could help to 

explain the presence of such a large number of orphan genes. The two species 

described above are the two biggest sources of bacterial orphan genes in this dataset.
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2.3 Classifying Orphans as “Taxonomically Restricted Genes”
of Potential Ecological Importance

The cumulative number of orphans identified in complete bacterial genomes does not 

appear to be levelling off. This observation reflects both the small proportion of the total 

bacterial diversity sampled to date and the widespread occurrence of orphans in almost 

all bacterial taxa, with the exception of the very small genomes of intracellular parasites 

or endosymbionts. This suggests that, far from being non-coding “junk” DNA, these 

orphan sequences may be taxon-specific genes that, because of their restricted 

taxonomic distributions, may play an important role in bacterial adaptation. Databases 

are continuing to grow in size, and evidence is accumulating that orphans are often real 

genes (Daubin & Ochman, 2004a) rather than annotation artefacts (Skovgaard et al., 

2001). Therefore we should stop referring to orphans as 'mysterious' and start 

classifying them more appropriately as biologically significant "taxonomically restricted 

genes" (TRGs).

All genes are taxonomically restricted at some level. For example, any genes found in 

Eubacteria and not in Archaea or Eukaryotes are TRGs at the domain level. Genes 

restricted to Firmicutes or Proteobacteria are TRGs at the division level. The orphan 

genes reported in this study are TRGs at the species level because isolates of 122 

different species were included in the analysis. Orphans, defined as species- or strain- 

level TRGs may be of special interest for their contributions to ecological adaptation. 

The concept of cataloguing genes that define (are restricted to) a given taxonomic 

group is already established (for example, Graham et al., 2000), and we believe 

orphans firmly belong within this framework.

2.4 Conclusion

The availability of a large collection of complete prokaryotic genome sequences makes 

it possible to begin to explore in detail how the evolutionary diversification of gene 

content reflects the ecological needs and opportunities of different taxa. Surprisingly, 

few bacterial genes are truly universal (Charlebois & Doolittle, 2004), and many 

hypothetical coding regions appear to be unique to a given family, genus or species. It 

is also well known that strains within a species can vary greatly in their shared gene 

content (Lan & Reeves, 2000). The study of these ‘taxonomically restricted’ genes 

could reveal the genotypic basis of exclusive ecological adaptations. Furthermore,
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once the contributions of under-sampling of bacterial lineages and computational errors 

in gene prediction and assignment to gene families have been removed from our 

current estimated numbers of orphans, the number of orphans found in many genomes 

will likely become experimentally tractable. Therefore orphans, better defined as TRGs 

restricted to the species- and strain-levels, should be an important target of future 

study.

43



CHAPTER 3

QuickMine - A Computational Pipeline for the Analysis 

of Lineage-specific Bacterial Genes
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3.1 Overview

The explosion in the number of complete genomes over the past decade has spawned 

the new and exciting discipline of comparative genomics. Biologically interesting 

features, such as pseudogenes and orphan genes, often only become apparent when 

placed in a comparative genomic context. There are now vast collections of genomes 

in public databases, however to exploit the full potential of this data requires the 

development of novel algorithms and software. The ability to compare these genomes 

brings a series of challenges. Issues of data storage, file formats and computational 

speed all become more complex and of greater importance (Field, Feil & Wilson, 

2005b).

QuickMine is a suite of Perl scripts capable of the analysis of large volumes of genomic 

data. It has been written to interrogate such data, to find genomic features of interest, 

with particular emphasis on lineage-specific genes, including orphans.

In this chapter, I introduce the key concepts behind the functionality of the QuickMine 

pipeline and describe the development of the system. Section 3.2 outlines the aims and 

requirements of the QuickMine project. The design and implementation of the 

QuickMine system is described in 3.3, whilst the functionality of QuickMine is described 

in 3.4. Section 3.5 introduces a case study for the use of QuickMine in identifying 

orphan genes in bacterial genomes. Finally the performance of QuickMine is evaluated 

and future developments discussed in 3.6.

3.2 Project Aims and System Requirements

The purpose of QuickMine is to provide a computational pipeline for the analysis of 

lineage-specific genes in microbial genomes. The system requires, as input, sequence 

files for each chromosome. From these files, QuickMine generates a BLAST database. 

Every predicted protein in every proteome file will be BLASTed against this database to 

produce a BLAST report. QuickMine will allow users free access to modify the BLAST 

parameters to fit their particular analysis. Due to the volume of biological data stored in 

public repositories, it is no longer practical to manually examine all BLAST reports. 

Therefore the resulting BLAST reports will be parsed using Perl scripts to produce 

human readable output. For a detailed explanation of the functionality of BLAST, see 

Appendix 3.1.
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QuickMine will be designed to allow flexibility with regards to the analyses it can 

perform. Submission files, to be used by computer clusters (see Appendix 3.2), will be 

available. These will be required when performing large-scale analyses.

In order to provide maximum use to the community, QuickMine will be designed for use 

by researchers with a range of computational abilities.

3.3 Design and Implementation

3.3.1 Language

QuickMine was written using the programming language Perl. Perl is widely used in the 

field of bioinformatics, largely due to its data processing abilities and the ease with 

which it can run external programmes (Wall, Christiansen & Schwartz, 1996). 

Additionally there is an active community of open source developers writing Perl 

modules specifically for use in Bioinformatics, known collectively as BioPerl (Stajich et 

al., 2002).

3.3.2 Configuration File

Users interact with the QuickMine scripts through the use of a configuration file. This 

file contains all the arguments required to perform the QuickMine analysis. The 

configuration file:

• allows the user to determine which section of the pipeline they wish to run.

• is responsible for directing scripts to the relevant input files.

• selects the directory to which the output is written.

• allows the user to select the file endings for the output.

• provides a means for the user to adjust QuickMine’s default parameters, for 

example, the command used to format the BLAST database.

• is written in simple human-readable format and is easily extendable.

The QuickMine scripts make use of the Perl module Config::Simple. This module 

enables scripts to obtain user specified parameters from the configuration file and use 

them as variables. The scripts utilise the Config::Simple module in an object-oriented 

manner. For example, the code below creates a new object ($cfg) containing the 

parameters from the configuration file ($config_file):

my $cfg = new Config::Simple($config_file);
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User specified parameters are simple to obtain from the Config::Simple object. For 

example, the code to initialise a variable containing the path to print output to is shown 

below:

my $path2output = $cfg->param('path2output');

The configuration file used in QuickMine can be seen in Appendix 3.3.

3.3.3 QuickMine Input Sequences

QuickMine accepts input as DNA or protein sequence. It requires the input sequences 

to be in FASTA format. Each file may contain any number of FASTA-formatted 

sequences. When discussing QuickMine, each input file will be considered to be 

representing a genome, with each predicted coding region delineated by FASTA 

headers.

3.3.4 QuickMine and Condor

Due to the volume of biological data available, it is necessary to consider the time it will 

take to run QuickMine on a single machine. If QuickMine is being used to analyse 

several hundred viral genomes, running the process on a single machine is efficient. 

However, if QuickMine is used to analyse several hundred bacterial genomes, running 

on a single machine is not a viable option. The most computationally intensive stage of 

the QuickMine pipeline is performing the BLAST searches. Therefore, QuickMine 

provides the option of running the BLAST searches on a local machine or, alternatively, 

utilising a Condor cluster or the use of Grid technology through Globus. If a distributed 

computing environment such as Condor is selected, it needs to be specified in the 

QuickMine configuration file. The generation of submission files and monitoring of the 

jobs is the responsibility of the user. Once jobs are completed, the QuickMine pipeline 

can proceed. Perl scripts are available to assist the user in creating a submission file. 

In addition to using Condor for BLAST, it can also be used for running some of the 

more complex Perl scripts. Once complete, the output can be integrated with the 

remainder of the pipeline. This use of Condor needs to be managed independently by 

the user. For a discussion of both Condor and Grid technologies, see Appendix 3.2.
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3.3.5 Dependencies

In addition to the Perl modules that come with the distribution, QuickMine requires 

BioPerl to be installed. BioPerl (Stajich et al., 2002) is a comprehensive library of Perl 

modules developed in an open-source environment. The modules are designed for use 

in managing and manipulating biological data. QuickMine utilises Bio::SearchlO for 

parsing through BLAST reports and Bio::SeqlO for parsing through sequence files.

Another programme required for QuickMine to function successfully, is Gnuplot. 

Gnuplot is a command-line driven plotting utility. It is freely distributed and is available 

from http://www.gnuplot.info. QuickMine utilises Gnuplot for all data plots.

3.4 The QuickMine Pipeline

The QuickMine pipeline consists of eighteen Perl scripts and one configuration file. The 

Perl script quickmine.pl is the script executed by the user. This script is responsible for 

executing the other Perl scripts. It is also responsible for executing the BLAST 

searches. The script obtains all the variables from the configuration file. These values 

are used to determine which sections of the pipeline need to be run and also provide 

the parameters required by the processing scripts. The QuickMine pipeline can be 

broadly split into four groups:

1. Pre-processing

2. BLASTing

3. Parsing

4. Plotting

These are described below and can be seen diagrammatically in Figure 3.1.
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Figure 3.1. A Diagrammatic Representation of the QuickMine Pipeline. The left hand 

column lists the Perl scripts that constitute QuickMine, the right hand column lists the main 

output files produced at each stage of the process.
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3.4.1 Pre-Processing

The Perl script 2qmfasta.pl is responsible for formatting the sequence files ready for 

use further down the pipeline. This involves adding a unique identifier to the start of the 

FASTA header, in the format ‘file_idorf0000’. The files produced by the script are called 

‘.complete’ and are used to generate the self BLAST database. If the value of the 

‘write_fasta_files’ parameter, obtained from the configuration file, is equal to 1, 

2qmfasta.pl will generate a FASTA file for each predicted protein. The script 

fasta_html.pl will then generate a web interface (QM.html), allowing users’ access to 

each FASTA file. 2qmfasta.pl also concatenates all the formatted input files together, 

producing a single file called SELF_blast_database.

Quickmine.pl performs a system call, prompting the execution of formatdb using the 

parameters provided in the configuration file. Formatdb is a programme for formatting 

BLAST databases from either FASTA or ASN.1 formats; in this case it formats the 

SELF_blast_database FASTA file. Formatdb generates several files necessary for the 

successful execution of BLAST. In the case of a protein database, formatdb generates 

3 files: SELF_blast_database.phr, SELF_blast_database.pin and

SELF_blast_database.psq.

3.4.2 BLASTinq

When running the entire pipeline on a single machine, quickmine.pl is responsible for 

initiating the BLAST searches. The parameters used in the BLAST search are 

determined by the user input in the configuration file. An alternative is to stop the 

pipeline at this point and use Condor for performing the computationally intensive 

BLAST searches. The script make_cmd.pl is available for creating a Condor 

submission file. Once Condor has finished its jobs, the pipeline can be restarted from 

the first script in the parsing group (get_orphans.pl). In the event of the user having 

access to a Grid system, the script make_globus_cmd.pl is available for creating a 

Condor submission file that submits jobs to the globus universe.

3.4.3 Parsing

This section of the pipeline generates the majority of the human readable HTML output. 

The first script in this section is called get_orphans.pl. It utilises the BioPerl module 

‘Bio::SearchIO’ to parse through the BLAST reports. Get_orphans.pl generates five
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HTML files for each input file (or genome). The overview.html file (Figure 3.2) is the 

most important file created. It constitutes a matrix in which each row represents a 

predicted protein from the query genome and each column represents a different 

genome. The numerical value in the element XY indicates the number of predicted 

proteins in the genome represented by column Y that possess significant similarity to 

the predicted protein in row X. The final element in each row displays the total number 

of genomes containing a match to the predicted protein. This overview file is the input 

of several scripts further down the pipeline. The second output file, matrix.html, has the 

same matrix format as overview.html. However, in this file, element XY shows the best 

hit (the protein with the most significant match), from the genome in column Y to the 

predicted protein in row X. The third output file, rank.html, lists the predicted proteins in 

the query genome and shows the top hits from each of the other genomes in rank 

order. The fourth file, tophit.html, lists the predicted proteins in the query genome and 

shows the single best hit to each protein, the E-value of that hit and the FASTA header 

information accompanying that hit. The overview.html, matrix.html, rank.html and 

tophit.html files all provide a link to each predicted protein’s BLAST report. The final 

output file, scores.html, lists all the hits, and the E-value of each hit, to each predicted 

protein.

In some cases, there may be hundreds of thousands of BLAST reports to parse; hence 

get_orphans.pl can take a long time to run. An alternative to running get_orphans.pl as 

part of the pipeline is to run it on Condor. The script make_perl_cmd.pl is available for 

creating a suitable Condor submission file. Once get_orphans.pl has been run on each 

proteome, the QuickMine pipeline can be restarted from the next script (hits_parser.pf).

Hits_parser.pl produces a hits.html file for each genome. The file contains a list of all 

the genomes that the query genome has been compared against, and displays the 

number of predicted proteins in the query genome that hit each genome. It displays this 

value as a percentage of total predicted proteins. It also displays the number of total 

hits, i.e., some predicted proteins may hit more than one predicted protein in a 

particular genome.
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Figure 3.2. Example output from the overview.html file, generated by get_orphans.pl. The

left hand column (Query) lists the predicted proteins in the given genome (NC_000913); the 

right hand column (Total Libs with Hits) shows how many genomes contained a significant 

match to each predicted protein. All other columns represent genomes used in the analysis 

(NC_000913, NC_002655, NC_004431, NC_007946), and show how many significant matches 

were found to the predicted protein in column ‘Query’. For example, genome NC_002655 

contains 3 proteins with significant similarity to predicted protein NC_000913orf0002. In total, 4 

genomes contain one or more matches to this predicted protein.

Each column represents a different genome. A column 
exists for each genome included in the analysis.

Query NC 000913 NC 002655 NC 004431 NC 007946
Total Libs 
with Hits

NC 000913orf0001 1 0 1 1 3
NC 000913orf0002 3 3 3 3 4
NC 000913orf0003 1 1 1 1 4
NC 000913orf0004 1 1 1 1 4
NC 000913orf0005 2 2 2 2 4
NC 000913orf0006 1 0 0 0 1
NC 000913orf0007 1 0 0 2 2
NC 000913orf0008 4 4 4 4 4
NC 000913orf0009 2 2 2 2 4
NC 000913orf0010 1 1 1 1 4
NC 000913orf0011 1 1 1 0 3
NC 000913orf0012 1 1 0 1 3
NC 000913orf0013 1 1 1 1 4

The rows contain data for each 
predicted protein found in the given 
genome. In this case the genome is 
E.coli K12 (NC_000913). This 
column lists the predicted proteins.

The final column shows how many genomes 
each predicted protein has found a significant 
match in. If this column contains a 1, the 
predicted protein can be considered to be an 
orphan.

Orphan_count.pl parses through the overview.html files to determine which predicted 

proteins do not have significant similarity to any predicted protein in a different genome 

(classed as an orphan). It lists these orphan genes in orphan_list.html files and 

provides a summary of the number and percentage of orphans in each genome 

analysed, in orphan_count.html.

Orphan_size.pl produces orphan_size.html and ‘orphan.complete’ files. The BioPerl 

module Bio::SeqlO is used by orphan_size.pl to parse through the ‘.complete’ files and
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search for the orphans listed in the orphan_list.html files. Once identified, their 

sequence is printed out to the ‘orphan.complete’ files and the number of amino acids is 

counted. If an orphan sequence contains less than 150 amino acids, it is deemed to be 

a short orphan. If the sequence contains 150 amino acids or greater, it is classed as a 

long orphan. The number of each class of orphan is counted up for each genome and 

the average orphan size is calculated. This information is printed to the 

orphan_size.html file.

Paralogue_count.pl produces paralogous_orphans.html and paralogue_count.html. 

Paralogous_orphans.html lists the orphan genes in each genome that have significant 

similarity to another predicted protein in the same genome and displays the number of 

proteins the orphan is significantly similar to. Paralogue_count.html provides a 

summary of the number of paralogous orphans present in each genome.

lncremental_orphan.pl parses through the overview.html files to generate 

orphanJncrement.html files. These files show the same matrix as the overview.html 

files, however it has an additional indicator column for each genome. This column 

indicates whether the relevant predicted protein is still considered to be an orphan, i.e., 

does not possess a significant hit to any predicted proteins in this genome or any of the 

preceding genomes. If a hit has been found, the indicator column will contain an ‘N’ 

(representing non-orphan), if a hit has not been found, it will contain a ‘Y \ Once a hit is 

found, the indicator columns will be set to ‘N’ for the remainder of the row. The script 

orphan_time.pl uses the orphanJncrement.html files to generate orphanJime.html. 

This file contains a matrix. Each row and each column represents a genome. The 

number in the element XY3 represents the number of orphans in the genome X, after 

being BLASTed against genome Y3 and also genomes Y2 and Y1. Thus the matrix 

provides data illustrating the change in orphan number in each genome, as more 

genomes are added to the comparison.

Binary_matrix.pl converts all the values in overview.html files to a 0 (no hits) or a 1 (hit 

at least one predicted protein in the respective genome).

3.4.4 Plotting

All the scripts written to generate plots utilise Gnuplot. Genome_plot.pl generates a plot 

for each genome, describing the change in orphan number as more genomes are 

sequenced. It obtains the data from orphanJime.html. In order to produce the plot, 

several files are generated. Gene_plotter_commands.dat contains the Gnuplot

53



commands necessary for generating the desired plot. Gene_plotter.dat contains the 

data in a format that can be read by Gnuplot. Gnuplot creates the plot in png format. 

Genome__plot.pl uses a system call to convert png to jpeg. Finally, it generates 

orphan_plot.html to display the jpeg image. Genome__percent__plot.pl is identical to 

genome__plot.pl except it converts the data in orphan_time.html to a percentage of total 

predicted proteins in each genome.

Gnu__plotter.pl and gnu_percent__plotter.pl are very similar to genomejDlot.pl and 

genome__percent__plot.pl. However, instead of generating a plot for each genome, they 

generate a single plot displaying a line for each genome.

Dot__plot.pl utilises the data in matrix.html to produce a dot plot of each genome against 

every other genome. Such plots can give an indication of how closely related two 

genomes are, and can be useful in finding regions of inversion in closely related 

genomes. As in the other plotting scripts, it produces a data file, a command file, a png 

file, a jpeg file and a HTML file. As different files are created for every combination of 

genomes, it is easy to accumulate a large number of files very quickly.

The final script in the pipeline is summarizer.pl. This script generates the file 

index.html. By default, index.html will be loaded by web browsers when viewing the 

output directory. Summarizer.pl generates a list of all the HTML files created in the 

QuickMine pipeline and prints links to each output file in the file index.html. Thus, it 

provides an easy and simple method for the user to navigate through their results.

3.4.5 QuickMine and OrphanMine

Many of the files generated by QuickMine are parsed and formatted for use in 

OrphanMine. This will be discussed in more detail in Chapter 4.
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3.5 Using QuickMine for the Identification of Orphan Genes

Surprisingly, few bacterial genes are truly universal, and many hypothetical coding 

regions are unique to a given genus or species. It is likely that these sequences play a 

significant role in defining exclusive ecological adaptations. It has been stated that the 

frequency of orphan genes has been one of the most surprising results to come from 

the analysis of bacterial genome sequences (e.g. Doolittle, 2002) and explaining their 

abundance and functional relevance remains a key challenge in bacterial genomics.

QuickMine was used to generate a list of orphan predicted proteins that could be 

publicly displayed in the OrphanMine. In this section, the parameters used for the 

analysis will be described. The results of the analysis are described in Chapter 2.

3.5.1 Data Source

The analysis was performed on the complete genomes of 122 bacterial species. 

QuickMine required one input file for each chromosome analysed. These files were 

obtained from the NCBI (ftp.ncbi.nih.gov/genomes/Bacteria) and had the file extension 

\faa\ Each ‘.faa’ file contained all the predicted protein sequences from that particular 

chromosome. The protein sequences were in FASTA format. The NCBI produced 

these files from the original GenBank (Benson et al., 2006) record using three gene 

prediction programmes Glimmer (Delcher et al., 1999), GeneMark (Besemer & 

Borodovsky, 2005) and GeneMark.hmm (Lukashin & Borodovsky, 1998). The predicted 

proteins were searched against ‘NCBI-nr’ (the NCBI’s non-redundant sequence 

database). In the case of over-lapping genes, those showing higher sequence similarity 

to proteins in the database were retained. The collection of complete microbial genome 

sequences, obtained from the NCBI, is a part of the NCBI Reference Sequence Project 

(RefSeq), the aim of which is to provide curated sequence data and related information 

to the community (Pruitt, Tatusova & Maglott, 2005). The RefSeq accession numbers 

are formatted as two letters followed by an underscore, followed by six, eight or nine 

numbers. Different alphabetic prefixes indicate the process of generation and the type 

of molecule processed. This analysis was performed on complete microbial genomes; 

therefore all files were prefixed with ‘NC’. QuickMine was responsible for formatting 

these files, creating a BLAST database, performing each BLAST job and generating 

output files in human readable format.
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3.5.2 BLAST Param eters

As the input sequences were protein and were used to create the BLAST database, 

BLASTP was used to perform the alignments. The parameters used in a BLAST search 

can greatly affect both the sensitivity and the speed of the process. For an analysis of 

lineage-specific genes, it was necessary to search for distant relatives. Therefore 

sensitive parameters were required. By default, QuickMine used a significance 

threshold of 10'3 to define a hit. This cut off was chosen as it would permit predicted 

proteins to be matched with distant, potential homologues and is a threshold commonly 

used in bacterial genome annotation pipelines. Specifically, this threshold was used in 

the analyses of Siew & Fischer (2003a). They hypothesised that the maximum number 

of orphans would be 26,000. In order to test this hypothesis, it was necessary to use 

the same e-value. The neighbourhood word threshold was lowered from the default 

BLASTP value of 11 to 9 for use in QuickMine. This increased the chance of an 

alignment being seeded. The protein similarity matrix was also changed from the 

BLASTP default of BLOSUM62 to BLOSUM45. The BLOSUM45 matrix was generated 

by using blocks of proteins that possessed at least 45% sequence identity to another 

member of the block. This change allowed for greater sequence divergence between 

reported matches. By default, BLASTP masks low complexity regions in a protein. Soft- 

masking masks low-complexity sequence in the seeding phase, but allows the 

extension phase to see the sequence normally (as opposed to the low complexity 

region being replaced by Xs). Therefore, complexity filters were set to use soft- 

masking.

An example command used for running BLASTP in these analyses is shown below:

blastall -p blastp -i NC_000907.faa.complete -d 
SELF_blast_database -o NC_000907.faa.complete.blastp -e le-3 -b 
500 -f 9 -F 'mS' -M BLOSUM45

In the above command, blastall is the name of the BLAST command line executable. 

The -p  argument refers to the BLAST programme that will be run. The - i  and -o  

parameters refer to the input and output files respectively, -b is the number of 

alignments allowed in each report and -d  is the database to search against. The 

parameters that affect the speed and specificity of the BLAST search are -e  which is 

the E-value threshold, -f is the neighbourhood word threshold, -F designates the 

complexity filter and -M  determines the protein scoring matrix. All these parameters 

can be modified through the configuration file.
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3.5.3 Using Local Condor Cluster

Due to time constraints it was necessary to utilise the on-site Condor cluster to perform 

the BLAST searches. It required 51 hours and 47 minutes to search the 2950 predicted 

proteins of the Corynebacterium efficiens YS-31 4T genome (the genome closest to the 

mean value of 2910 predicted proteins in the dataset of 122 genomes) against the self- 

BLAST database. Hence, to perform the BLAST searches for all genomes on a single 

machine would have taken approximately 6318 hours or 263 days.

The Condor cluster at CEH Oxford was comprised of 48 nodes. Therefore, it was 

possible to complete the same number of BLAST jobs in under a week (263/48 = 5.48 

days), by submitting the jobs to the cluster. The performance of Condor will be 

discussed in more detail in Section 3.6.4

3.6 Evaluation and Future Developments

QuickMine was developed for the analysis of microbial protein files. The current system 

meets the requirements. However, there are issues related to QuickMine and the 

methods employed by QuickMine that need further discussion.

3.6.1 Time Constraints

The time taken to perform a QuickMine analysis varies, depending on the quantity of 

input data and the computer architecture performing the analysis. The time-limiting 

steps in the QuickMine pipeline involve performing the BLAST searches and parsing 

through the resulting BLAST reports using Bio::SearchlO. When dealing with large 

numbers of bacterial genomes, these two stages can take several months on a single 

machine. However, analysing several hundred plasmid or viral genomes on a single 

machine is not such an issue. There are a number of options available to speed up the 

analyses. Firstly, the BLAST search parameters can be altered. Instead of performing a 

slow sensitive search, the user can select to perform a fast but less sensitive search. 

For example, changing the neighbourhood word threshold so that fewer alignments are 

seeded will speed up the search. If matches are expected to be very similar, a different 

scoring matrix such as BLOSUM80 can be selected. It is also possible to reduce the 

number of results shown in the BLAST report by altering the search threshold E-value,
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or by setting a limit on the number of alignments displayed in the report. This will result 

in less data being generated and therefore will speed up the data parsing process.

If a faster, less sensitive search will not provide the results required, as was the case 

when searching for lineage-specific genes, it may be necessary to use a computer 

cluster, such as a Condor cluster. Scripts are provided with the QuickMine distribution. 

These scripts provide example submission files for the BLAST jobs and also for 

get_orphans.pl, the script that parses the BLAST reports. The increase in speed 

depends upon the size of the cluster. If the cluster is not large enough, it may be 

appropriate to obtain a Grid certificate and utilise Globus.

Reducing processing time is going to be a major challenge for bioinformatics software 

as the volume of sequence data continues to increase rapidly 

(http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html). New, more efficient 

algorithms may be developed, however increasingly efficient use of computing power 

may be a long term solution. Opening up Grid technologies to the wider community 

may enable pipelines such as QuickMine to run, without the need to compromise 

output due to time-constraints.

3.6.2 Data Storage

The issue of data storage is similar to that of time constraints. The extent of the 

problem is dependent on the data being analysed and the sensitivity of the BLAST 

reports. Performing all-against-all BLASTP searches using sensitive BLAST 

parameters, as described in section 3.5, will create more output. For example, 

performing QuickMine, using sensitive BLAST parameters, on 150 bacterial genomes 

generated approximately 195 gigabytes of data. Clearly, this volume of data cannot be 

stored on a typical desktop computer. As more sequence data becomes available, 

larger comparative analyses are likely to be performed. Before running such analyses, 

it is important to consider the output of the analyses and the storage of the output.

3.6.3 Use of E-values

The central element of the BLAST algorithm is the Karlin-Altschul equation (Altschul et 

al, 1990):

E = kmne‘AS
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The equation states that the number of alignments expected by chance (E) during a 

sequence database search, is a function of the size of the search space (m * n), the 

normalised score (AS) and a minor constant (k). The size of the search space is a 

product of the length of the query sequence (m) and the number of letters in the 

database searched (n). Lambda (A) is a matrix-specific constant responsible for 

converting the raw score to a normalised score. The lower the value of E, the less likely 

it is that the alignment is a result of random similarity.

For example, if Query A was searched against two databases of different sizes (for 

example, subsequent versions of the same database) that both contained Sequence A, 

the resulting perfect matches (100% identity) will have different expect (E) values. This 

is due to the positive linear relationship between the size of the database and the 

expect value. Therefore, if database size doubles, so too does the E-value (i.e., a 

decrease in significance). Hence, changes in database size can have a significant 

impact on the biological interpretations derived from similarity searches. This is 

particularly important when analysing genes, such as orphans, that are defined by their 

lack of significant similarity to other predicted proteins.

QuickMine utilises E-values to infer homology and create a list of orphan genes. An 

analysis was performed to determine the effect of a change in database size on orphan 

genes. The BLAST reports of 150 bacterial genomes were parsed to obtain the data 

required to calculate the E-value. The E-value was calculated for each predicted 

protein for the actual database and for 3 virtual databases. This was done by modifying 

the database size (n) in the Karlin-Altschul equation. The virtual databases represented 

different numbers of bacterial genomes. Based on the size of the real database 

containing 150 genomes, it was possible to estimate the size of databases, in amino 

acids, if they were to contain 300, 600 and 1200 bacterial genomes. The results show 

that as database size increases, so too does orphan number, despite using the same 

sequence data. This is because, low scoring matches, in a relatively small database 

(e.g. 150 genomes), are more likely to be deemed as statistically significant than the 

same low scoring match in a large database (e.g. 300 genomes). Figure 3.3 shows the 

results of this analysis. With the database size the equivalent of 300 bacterial 

genomes, 46367 predicted proteins were deemed to be orphans. This is an increase of 

1615 orphans when compared with the database of 150 bacterial genomes, which 

contained 44752 orphans. The database representing 600 bacterial genomes showed 

an increase of 2910 orphans and the database representing 1200 bacterial genomes 

had 48930 orphans, an increase of 4178. These results illustrate the relative nature of
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E-values. Hence when analysing output from QuickMine, these issues should always 

be considered.

A second issue involving E-values is that of query sequence length. It is theoretically 

possible for sequences of any length to fail to produce a significant match to self, in 

databases of large enough size. Again this property is a result of the algorithm used to 

calculate E-values. This issue is becoming a reality with smaller sequences. In a recent 

study of homology between the genomes of 18 complete baculovirus genomes 

(personal correspondence from Sarah Turner), it was found that several predicted 

proteins in each proteome (approximately 5%) failed to produce a significant match in a 

BLAST search, even though exact copies of these genes were present and the subject 

database was very small (2500 proteins). Scrutiny of these genes revealed that they 

were extremely short or contained regions of low complexity. In a dataset of 150 

bacterial genomes containing 430826 predicted proteins, 98 predicted proteins failed to 

match self. These predicted proteins were smaller than 25 amino acids in length (with 

two exceptions of length 96 and 104 amino acids, but with percentage low complexity 

of 95% and 90% respectively) and were annotated as hypothetical or as operon leader 

peptides. As databases increase in size, more sequences will fail to match themselves 

in homology searches. QuickMine would count these predicted proteins as orphans. 

Included in the QuickMine distribution is a Perl script, nojself_hit_count.pl, that can be 

run to determine how many orphan genes do not hit self. It also provides a list of these 

predicted proteins.

The issues described above are challenges beyond the scope of the QuickMine 

project. However, it is important that users of the QuickMine system are aware of the 

effect database size can have on their analyses.
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Figure 3.3. Change in predicted number of orphans obtained from 150 bacterial genomes 

at different E-value thresholds, as database size is artificially increased. The size was 

increased to represent 300, 600 and 1200 bacterial genomes.
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3.6.4 The Perform ance of Condor

As described in Appendix 3.2, the ability to utilise Condor and Grid technologies can 

save vast amounts of time. The analysis of 122 bacterial species would not have been 

feasible without access to a computing cluster. However, whilst a large amount of time 

was saved, the performance of Condor was far from optimal. Condor and Grid are new 

technologies and as such there is limited knowledge available in the area. This lack of 

knowledge can affect several stages of the process. For example, creating a 

submission file that will perform the relevant jobs optimally is not trivial. Also, 

determining whether or not an error has affected the submissions and, if so, 

determining the nature of the error, requires knowledge of the cluster and the ability to 

navigate through large log files. Increasing the general level of expertise in this area 

will make it more accessible to a greater number of researchers.

In addition, the application being run on the cluster can affect how efficiently the jobs 

will progress. In the case of QuickMine, the majority of work involves use of the BLAST 

executable, blastall. To run blastall on the Condor cluster requires the use of the vanilla 

Condor universe. If a job is dropped off a machine because, for example, a different 

user has taken control of the machine, all data generated for that job, up to that point,
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will be lost. This is because the vanilla universe does not permit jobs to undergo check

pointing (allows jobs to continue from a particular point). Obviously this lack of 

functionality can cause large time delays, particularly if the nodes in a cluster are not 

stable.

3.6.5 Integration of QuickMine into YAMAP

YAMAP, originally developed by Dr. Milo Thurston, is a Perl application created for the 

NERC Microbial Metagenomics programme (http://www.genomics.ceh.ac.uk/mm/). It 

utilises Perl TK to provide a graphical interface to the user. YAMAP is designed to 

allow users to run a selection of first pass annotation tools on their sequence data. 

Examples of these tools include Glimmer (Delcher et al., 1999) and tRNAscan (Lowe & 

Eddy, 1997). The application is available to Bio-linux users (Field et al., 2006).

In 2006, I was responsible for incorporating the QuickMine functionality into the 

YAMAP application. QuickMine was able to provide new options and improved 

functionality to users of the YAMAP system. The QuickMine code integrated into 

YAMAP has undergone slight modifications from the code that is available as a stand

alone command line programme. These changes are largely due to the restrictions 

imposed by the Graphical User Interface (GUI) or as a result of the requirement to 

make the output data from QuickMine suitable for further downstream analysis in 

YAMAP.

A major advantage gained from the integration of QuickMine into YAMAP, is the use of 

the GUI (see Figure 3.4). Command line programmes are often found to be intimidating 

to casual users and may discourage them from using QuickMine. In addition, whilst the 

configuration file is written in a basic text format, it is possible that less experienced 

users may introduce hidden characters (for example, line breaks) into the file. Such 

characters may cause problems when QuickMine obtains parameters from the file. 

Providing the ability to use QuickMine through a GUI reduces these problems. The GUI 

makes it a more attractive piece of software for people to use and provides a barrier 

between less experienced users and the configuration file, thus making the system 

more stable.

In addition, the GUI has made it possible to present options to QuickMine users that 

would not have otherwise been known. For example, QuickMine was initially designed 

for use with self BLAST databases. However, it is also possible to use QuickMine to
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BLAST sequences against public databases such as SwissProt. To perform this task 

using the command line version of QuickMine would require extensive knowledge of 

the code and the structure of the pipeline. In contrast, by using the GUI, it is possible to 

provide such tasks as options in the menu, thereby allowing inexperienced users to 

access extended functionality.

For users with large datasets, the command line version of QuickMine should still be 

the preferred option. It is more efficient in terms of disk space and time. In addition, it 

provides more flexibility, thus making it easier to integrate the use of computing 

clusters into the analysis.

Figure 3.4. YAMAP’s Graphical User Interface. On running YAMAP, the user will view (a) the 

main application window. From here it is possible to select which files to analyse and the types 

of analysis to be performed. Programme specific windows appear when analyses are configured 

to select suitable parameters, (b) shows the option window for QuickMine. One of the 

parameters that need to be entered involves BLAST, to set these parameters, the BLAST 

window (c) is launched from within the QuickMine window.
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3.7 Availability

QuickMine is available on request as a tar file. It is also distributed as part of the 

YAMAP Debian package available to members of the Environmental Genomics Bio- 

Linux community.



CHAPTER 4

OrphanMine -  A Database for the Analysis of Lineage-

specific Genes
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4.1 Overview

In the Roberts report (2004) for the American Academy of Microbiology, the need for a 

prioritised list of genes of unknown function was highlighted. The need for such a list 

has been elevated by the recent recognition of the pan-genome concept and the 

realisation that genetic diversity has been vastly underestimated. Many genes of 

unknown function are restricted to a particular species. Such genes can be referred to 

as lineage-specific or taxonomically restricted.

Lineage-specific gene lists are particularly sensitive to the dataset used in an analysis. 

Both the thresholds used in an analysis and the quality of input data have an effect on 

the output. The output, i.e., the list of lineage-specific genes, is comprised of real 

biological genes found only in one species or strain, real taxonomically restricted genes 

that appear as a result of incomplete sampling and, finally, sequences incorrectly 

annotated as coding (mis-annotation of the genomic sequence). Lists of orphan genes 

have been produced previously; for example the Orfanage (Siew et al., 2004) and 

CUPID (Mazumder et al., 2005). Such examples enable the user to generate lists of 

taxonomically restricted genes. However, it is important that resources provide a 

method for the user to obtain metadata which describes the orphan genes in an 

acceptable format. Previously available tools did not provide this function, thus any 

additional annotation was subsequently lost. Additionally, these resources sought to 

provide lists of lineage-specific genes without prioritising the genes for experimental 

characterisation.

OrphanMine, a web-based tool, provides a structured platform to share knowledge with 

researchers in a logical and natural manner. The underlying data is obtained from 

QuickMine and formatted for entry into the OrphanMine database. The web interface is 

generated using PHP, which communicates with the OrphanMine MySQL database. 

Task-specific help pages, designed to assist the user, have been implemented. 

OrphanMine provides the microbial community with a new online resource for 

investigating lineage-specific genes that may be involved in ecological adaptations. 

Any dataset of genes that a user is interested in can be ranked, according to the 

likelihood of being a real gene. Additionally, the genes and associated metadata can be 

printed out in GFF format. It is anticipated that the lists of sequences generated using 

this database will provide the starting point for subsequent characterisation of particular 

groups of predicted proteins, through empirical or in silico means.
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In this chapter, I will describe the design and implementation of the OrphanMine. 

Section 4.2 provides a brief discussion of knowledge sharing in the biological sciences. 

Section 4.3 introduces the aims of the project and the requirements of the system 

before a discussion of the design methodology in section 4.4. Section 4.5 describes the 

system prerequisites. The database design is described in 4.6 and descriptions of the 

database tables are provided in 4.7. Section 4.8 discusses the design and functionality 

of the systems web interface, whilst the evaluations of the OrphanMine system are 

described in 4.9. Finally a discussion of the system’s performance is found in section 

4.10.

4.2 Knowledge Sharing

The use of computers to store knowledge has led to the development of ‘knowledge 

bases’. One category of knowledge base is the scientific knowledge base. Their aim is 

to be a model of a domain of scientific investigation. These knowledge bases are 

regularly updated and require common sense knowledge to be understood but do not 

intend to capture it. They may constitute an exchange medium among researchers and 

may accelerate the scientific discovery process. Molecular biology is a very good 

example of a discipline which can benefit from knowledge base building. The primary 

role of a scientific knowledge base is to be a model that helps the researchers to 

structure their knowledge into a consistent consensual form; it must therefore offer 

good browsing facilities and allow complex requests (Rechenmann, 1995). It is also 

highly important that the links between pieces of formalised knowledge and 

experimental results or data are maintained in order for the scientist to evaluate the 

degree of validity of the knowledge, for example in scientific literature (Rechenmann, 

1995).

Studies in bioinformatics activity have led to the identification of eight distinct 

categories of science knowledge bases (McMeekin & Harvey, 2002). Three 

characteristics are used to determine to what class a knowledge base belongs. The 

combinations of these characteristics lead to the formation of the eight categories. The 

first characteristic refers to the extent to which the knowledge is accessible after it has 

been produced; a knowledge base is therefore either open or closed. The second 

characteristic refers to whether the knowledge is traded. The third characteristic refers 

to the type of institution that produced the knowledge i.e., private or public (McMeekin 

& Harvey, 2002). This project will involve the creation of an open knowledge base, 

developed in the public domain, in which the knowledge is not traded.
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In an ideal world, research groups distributed round the world working on similar 

projects would be in communication with each other. Such communication would 

enable results and data to be shared and reduce knowledge loss, thus resulting in a 

more efficient research environment. Previously, this would have been difficult to 

establish without incurring large travelling expenses, possibly outweighing the benefits 

gained from knowledge sharing. Information systems, in this case a relational 

database, enable communities to overcome time and space constraints in knowledge 

sharing and increase the speed and range of access to information (Ramarapu, Simkin 

& Raisinghani, 1999), thus forming a virtual community. In biological research, 

formation of these communities could have great benefits, specifically with regards to 

genome annotation. Quality genome annotation is currently a bottleneck in the 

progress of the genome projects. Much of the annotation is done automatically, 

however these methods provide only a baseline annotation. The problem faced by 

biologists is how to go beyond this basic level. As Hubbard & Birney (2000) discuss, no 

single collaborative group will be capable of annotating an entire genome consistently 

and to a high quality. One solution is to have a ‘monolithic single entity that invests 300 

person years into annotating the genome’ (Hubbard & Birney, 2000). A second and 

more attractive solution is ‘open annotation’, where the required annotation is 

distributed across a community of biologists.

OrphanMine encourages the community to improve upon the current standard of 

genome annotations. It does this by providing the user with the option of downloading 

their data of interest from OrphanMine in GFF3 (Generic Feature Format Version 3). 

Although there are many richer ways of representing genomic features, for example 

using XML, the preference in the community is for a simple format that can be easily 

edited either manually or through the use of a script 

(http://www.sequenceontology.org/gff3.shtml). Previous versions of the GFF format did 

not provide the required flexibility for many users, which led to different groups 

extending it in different ways. GFF3 allows users to add any feature of interest to the 

file whilst remaining in a standard format. Hence, users are able to utilise their files in a 

variety of different programmes, one example being Artemis (Rutherford et al., 2000). 

OrphanMine allows users to download their list of genes with additional annotation, for 

example, the gene’s rank score and criteria for ranking. These files can then be layered 

on top of one another in annotation programmes, such as Artemis, allowing the user to 

decide upon the validity of a particular annotation. Thus, OrphanMine encourages data 

sharing whilst preventing knowledge loss.
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4.3 Project Aims and System Requirements

The aim of this project was to develop a scientific knowledge base. The knowledge 

base, called OrphanMine, will take the form of a freely available web-based tool, thus 

ensuring the information will be immediately available. OrphanMine will provide access 

to all predicted proteins in all publicly available complete bacterial genomes. It will allow 

the user to explore the collection of predicted proteins using several search filters, 

specifically with the intention of assisting in the study of lineage-specific genes. The 

search filters will allow subsets of predicted proteins to be selected from the complete 

proteome dataset based on a number of different criteria, for example, the E-value, 

percentage low complexity, GC content or sequence length. It will also be possible to 

filter proteins, based on their occurrence in other genomes. Additionally, pre-computed 

datasets of lineage-specific genes will be available for browsing.

The user will have the opportunity to explore selected genes further by viewing 

associated metadata and BLAST reports. In addition, all predicted protein sequences 

will be annotated with supplementary information (see 4.8.3). It will be possible to 

visualise the distributions of selected proteins in a genomic context with either the 

Artemis application (Rutherford et al., 2000) or the CGView java applet (Stothard & 

Wishart, 2005). A search page will be available for basic text searches and an 

interface will be provided for advanced users to gain direct access to all the database 

tables using SQL. Users will also be able to BLAST new sequences against the 

OrphanMine, SwissProt (Boeckmann et al., 2003), COGs (Tatusov et al., 2003) and 

Pfam (Bateman etai,  2004) databases.

OrphanMine will be designed in a flexible manner allowing for a variety of analyses. For 

example it could be used to identify predicted proteins restricted to any group of 

interest, for example, a particular taxonomic group or an ecologically relevant group. 

An example query could be to find all predicted proteins in Mycoplasma pneumoniae 

that are taxonomically restricted to the genus Mycoplasma. The results page will 

display only the predicted proteins restricted to this genus.

A further requirement of OrphanMine is to provide the user with a method for ranking 

any selected subset of genes. It will be possible to rank according to any combination 

of five criteria (length, percentage low complexity, difference in GC content from the 

genome average, neighbourhood distribution and average amino acid metabolic cost). 

A score will be calculated for each of the genes and the genes will be ranked
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accordingly. Thus, the user will be provided with a prioritised list for experimental 

characterisation.

The final and essential requirement is to provide the option to download the currently 

selected subset of genes in a recognisable format such as GFF. By providing this 

option, OrphanMine will be able to share the metadata generated during the analyses 

and be used in combination with other annotation data in packages such as Artemis. 

This prevents the loss of data and knowledge that can often occur during 

computational analyses.

4.3.1 Currently Available Resources for the Study of Lineage- 
Specific Genes

Several resources have been developed for the exploration of lineage-specific genes in 

bacterial genomes. These include the Orfanage (Siew et al., 2004), CUPID (Mazumder 

et al, 2005), GeneQuiz (Andrade et al., 1999), Indigo (Nitschke et al., 1998) and the 

Neurogadgets Inc. Bioinformatics Web Service (Charlebois et al., 2003). For various 

reasons, none of theses resources fit the OrphanMine requirements discussed in 4.3 

above. In this section, I will provide a brief discussion of these resources and further 

highlight the motivation for the development of OrphanMine.

The Orfanage was developed specifically for the analysis of lineage-specific genes. 

Using the Orfanage it is possible to search for genes restricted to a user defined 

lineage, from the 85 genomes contained in the database. The parameters of the search 

cannot be defined and are as described in Siew & Fischer (2003a). The results of the 

search are not instantly available; instead they are e-mailed to the user. Further 

analysis of the results from the Orfanage was prevented by an error returned when I 

tried to access the data. CUPID provides a web interface to explore lineage-specific 

genes. However, the genomes contained in the database are limited to food and water 

based pathogenic species, thus preventing many analyses from taking place, for 

example, comparing a pathogenic strain of a species to a non-pathogenic strain. 

CUPID also fails to provide any genomic context to the results it displays, restricting 

easy investigation of the location of the genes within the genome. It does not provide 

files to download for further annotation, nor does it provide the option to automatically 

load data into annotation software such as Artemis. GeneQuiz provides lists of orphan 

genes. These genes are annotated with additional information, when available, such as 

functional and structural data. However, like many of these databases, the contents 

have not been regularly updated. In the case of GeneQuiz, the last update was in
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February 2002. Both Indigo and the Neurogadgets Inc. Bioinformatics Web Service 

are, despite being published, no longer accessible.

Other less specialised databases are available. Examples include the Integrated 

Microbial Genomes (IMG) system at the JGI (Markowitz et al., 2006) and TIGR’s 

Comprehensive Microbial Resource (CMR) (Peterson et al, 2001). Both these 

resources provide similar types of analyses. The strength of them lies in the fact that 

they are regularly updated with the most recent sequence data. However, they tend to 

provide summary statistics for a genome (e.g. the percentage of hypothetical genes in 

each genome), rather than providing detailed analyses of lineage specific genes.

In contrast, the OrphanMine will provide the ability to create datasets of taxonomically 

restricted genes from a pool of genomes larger than those found in other specialised 

datasets. Unllike the majority of the other resources, it will provide extensive meta-data 

for each predicted coding region and will provide access to tools that will allow further 

annotation and will allow the selected dataset to be viewed in the context of the rest of 

the chromosome. To allow for further use of the data stored in OrphanMine, users will 

be able to download their datasets in commonly used file formats. The OrphanMine 

will also allow users to create their own datasets by altering the threshold cut-offs for 

determining a significant relationship (using either e-value or percent identity), therefore 

the users will not be limited to the parameters described in Wilson et al. (2005). Finally, 

the OrphanMine will utilise a method for ranking sequences according to different 

criteria, therefore providing the user with a prioritisied list of sequences for further 

analysis. The majority of these functions are not provided in the currently available 

tools discussed above and will be unique to OrphanMine.

4.4 Methodology

In this section, the methodology used whilst developing OrphanMine is discussed. 

During the development of OrphanMine, an evolutionary (or incremental) model was 

followed. This method periodically produced a version of OrphanMine that was 

increasingly complete over time. The first iteration was not to be viewed as the main 

objective but instead as a stepping stone in the continual development of the system. 

The second iteration took the existing system from the first iteration, evolved it further 

and integrated it with new requirements. At the end of this iteration, a significantly 

greater proportion of needs were fulfilled. In the case of OrphanMine, the first iteration 

was a database that only contained metadata describing genomes and orphan genes. 

The second iteration provided the possibility of creating custom orphan datasets by
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introducing a table to hold all predicted proteins and their associated metadata. This 

development or evolution will continue until an optimal solution to the requirements is 

achieved (unlikely to be reached as requirements are also often evolving and changing 

(Avison & Fitzgerald, 2003)).

Evolutionary development is characterised, not only by its iterative nature, but also by 

the evolutionary nature of the system’s original creation (Orman, 1998). Therefore, the 

original design of OrphanMine was not a perfect solution to the user requirements, as it 

addressed only part of the required system. However, it was able to accommodate 

system changes. As the project progressed, more requirements were answered in the 

design. Several benefits were gained by using the evolutionary approach. Firstly, it 

provided quick results. The first implementation, although not a full solution, was 

developed more quickly than a full traditionally developed system. Secondly, changing 

requirements over time were expected and catered for.

4.5 System Prerequisites

4.5.1 Data Sources

The data stored in OrphanMine is obtained from a combination of the NCBI and the 

local output from QuickMine. The NCBI provides the proteome files (‘.faa’) necessary 

for running QuickMine. In addition, proteome table files (‘.ptt’), proteome files in DNA 

format (‘.ffn’) and GenBank files, for all the bacterial genomes stored in OrphanMine, 

are obtained from the NCBI. The proteome table files list all of the proteins included in 

the ‘.faa’ proteome files and displays the DNA co-ordinates for each of these proteins. 

The ‘.ffn’ file is used to calculate the GC content of each predicted protein. GenBank 

files are required for the Artemis applet to display annotations correctly. Numerous 

output files from QuickMine are used in OrphanMine, of particular importance are the 

*overview.html files. These files are described in detail in Chapter 3. Low complexity 

values were generated using SEG (Wootton, 1993). SEG divides sequences into 

contrasting segments of low-complexity and high-complexity. Low-complexity 

segments, defined by the algorithm, represent simple sequences or compositionally- 

biased regions. Analyses requiring statistical software utilised ‘R’ (http://www.r- 

project.org/). R is a language and environment for statistical computing and graphics.
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4.5.2 Formatting Data for Submission

The various data files require parsing before they can be entered into the OrphanMine 

database. Many of the scripts used to parse the data utilise Bio::Perl modules, 

particularly Bio::Seq, and Bio::SearchlO. The majority of the scripts used are small and 

were written for a single purpose. This allows flexibility in the use of the scripts and the 

way in which they are combined. It also accounts for the large number of scripts that 

constitute the pipeline. This modular style approach owes much to the incremental 

nature of the database design and implementation. Developing a structured system 

update pipeline at this stage would have been unnecessary due to the changing 

requirements over time. Work on designing such a system could take place in the 

future and would utilise many of the scripts currently used.

The update process, as it stands, can be divided into three stages. The first stage 

involves parsing through the BLAST reports generated during QuickMine. The second 

stage obtains data from the ‘.faa’ files formatted in QuickMine and also the ‘.ptt’ and 

‘.ffn’ files downloaded from the NCBI. The final stage utilises both QuickMine output 

and output from the previous two stages. In addition, it requires access to the ‘R’ 

statistics package and the manually created genome table file.

The final output comprises a text file for each table in the ‘orphandb__v2’ MySQL 

database. These text files can be loaded directly into the database. Additionally, all of 

the predicted proteins in the proteome files will have been formatted to include 

additional supplementary annotation in their header line. This includes the GC content, 

percentage low complexity, the number of genomes in the dataset containing a 

significant hit and the E-value and identity of the best match.

4.6 Database Design

This section discusses the processes and decisions taken in the design of the 

OrphanMine MySQL database. A relational database, simply defined, is a database 

made up of tables and columns that relate to one another. These relationships are 

based on a key value that is contained in a column.

4.6.1 Normalisation

An important aspect of relational database design is normalisation. The process of 

normalisation is performed to eliminate anomalies found in the data, thus leading to a
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more efficient and robust database structure. The degree of normalisation found in a 

database is defined by its normal form. In general, it is good design policy to have a 

database that conforms to 3rd normal form. Although a further four normal forms have 

been defined, they are rarely required. Below is a brief description of the criterion of the 

first three normal forms.

1st Normal Form: A database in first normal form must have an atomic value in each 

column, i.e., will only have one value per cell. Each column in a table must have a 

unique name. The table must have a set of values that uniquely identifies the row. This 

is known as the primary key of the table. No two rows can be identical and no repeating 

groups of data are allowed.

2nd Normal Form: A database is in second normal form when each table only stores 

data on a single entity. Each entity must be described by a primary key.

3rd Normal Form: 3rd normal form is concerned with transitive dependencies. A 

transitive dependency is a situation where a column exists that is not directly reliant on 

the primary key; instead the field is reliant on another field, which in turn is dependent 

on some other field.

When a database is in third normal form it must also have reached the criterion for first 

and second normal form. Throughout the design of OrphanMine, the aim was to 

conform to third normal form.

4.6.2 OrphanMine Primary Keys and Indexes

Both the names of the tables and the names of the fields within the tables were chosen 

to clearly describe the data that they contain. Each table has a unique identifier (the 

primary key), that is used internally in the database. The primary key is not a real world 

property and thus permits a change in the properties of an entity without affecting the 

identity of that entity. The primary key is generated automatically within MySQL by 

selecting the autojncrement command, when defining the primary key columns.

In addition to selecting columns to act as primary keys, indexes were defined in the 

tables. Relational databases, in particular MySQL, have the ability to query and sort 

vast amounts of information at great speeds. In order to achieve these speeds, 

MySQL, and other RDBMSs, make use of optimised data storage mechanisms, called 

indexes. An index allows the database server to create a representation of the indexed 

column, which it can search at great speed. They are particularly useful when 

searching for specific rows within a large table and they can also speed up table joins 

and aggregate functions (e.g. countO). In certain circumstances, an index can slow
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down processes, for example if there are too many indexes or if table data is being 

updated (Greenspan & Bulger, 2001). Indexes are automatically produced for primary 

keys. In addition, an index was defined for columns that would be searched against on 

a regular basis, for example ‘orf_name\

4.6.3 Public versus Private

During the course of my project, it became apparent that I would need to run additional 

analyses on the data stored in OrphanMine. The output of such analyses would need 

to be stored in OrphanMine to enable effective querying of the data. The analyses 

included performing RPS-BLAST on the orphan genes, performing TBLASTN on the 

orphan genes against the bacterial genomes in DNA format and BLASTing the orphan 

genes against UniProt (Apweiler et al., 2004). However, the data used in these 

analyses did not need to be regularly updated, which is in contrast with the public 

version of the database. OrphanMine was intended to be a publicly accessible tool that 

contained complete sequenced bacterial genomes. Thus, regular updates are 

necessary. With the resources available, it would not have been practical, from the 

view of both time and data storage constraints, to perform the additional analyses 

noted above. As an alternative, the option is provided that allows the user to BLAST 

their sequence of interest against a selection of databases including UniProt and the 

genomes in DNA format. Hence, two OrphanMine models were developed, the private 

‘orphandb_test’ and the publicly available ‘orphandb_v2\ The schema for orphandb_v2 

can be seen in Figure 4.1. The PHP interface for the two versions is essentially 

identical. The remainder of this chapter will focus on the design and functionality of the 

public version of OrphanMine (orphandb_v2).

4.6.4 OrphanMine Datasets

An important requirement, when designing OrphanMine, was the ability to support 

multiple orphan datasets. Currently, the database stores data on four different 

datasets. Dataset 1 (D1) contains data on all the orphans found when analysing all 

available genomes (currently 330). Dataset 3 (D3) contains data on all the orphans 

found when analysing the first available representative genome of a species (currently 

247 genomes). Dataset 2 (D2) and Dataset 4 (D4) contain a subset of the orphans 

found in D1 and D3 respectively. These orphans are all 150 amino acids in length, or 

greater, and contain no regions of low complexity. The orphans and associated data 

vary between datasets. In contrast, genomic data and taxonomic information remains
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constant. Thus, it became necessary to build both a genome table and a dataset table. 

The genome table has one entry for each genome contained within the database. The 

dataset table has as many entries per genome as datasets that the genome is found in. 

An additional requirement was for the database to support the idea of custom dataset 

building. For this to be possible, data describing all predicted proteins in the bacterial 

genomes needed to be captured and stored. This is in contrast to only storing data on 

those predicted proteins described as being orphans in one or more of the pre

generated datasets. To accomplish this, two tables were required. One table contains 

all the predicted proteins and their associated data, the other contains the identifiers of 

the orphan genes and the dataset in which they are an orphan. The latter table is used 

when querying the pre-generated datasets, the former when creating a custom dataset.
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Figure 4.1. orphandb_v2 database schema displaying the relationships between the different database 
tables.
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4.7 Table Descriptions

The following sections detail the table structures used in OrphanMine and describe the 

fields found within the tables. Table 4.1 summarises this information, indicating the 

number of fields each table possesses, the primary key of each table and the indexed 

columns of each table. Appendix 4.1 contains an SQL script detailing the tables and 

fields contained within the OrphanMine database.

Table 4.1. Summary of OrphanMine MySQL tables

Table Name Number of 

Fields

Primary Key Indexed

Columns

Genome3 13 Genomejd NC_number

Dataset3 9 Datasetjd Genomejd

Orf3 28 O rfjd Orf

Gi

Genomejd

Orphan3 4 Orphanjd Orf_name

Blast_summary Variable* Blast_summjd Genomejd

Orf

Para_blast 6 Parajd NC_query

Paths_dataset3 3 Dataset_n umber -

Join_dataset3 2 Datasetjd -

* Dependent on the number of genomes stored in OrphanMine. Currently there are 333 fields (3 

+ 330 genomes).

4.7.1 Genom e3

The genome table contains data describing genomic features that remain constant, 

regardless of the dataset being viewed. The data is obtained from a variety of sources 

and constructed manually prior to entry in the table. The majority of the fields come 

from a file downloaded from the NCBI

(http://www.ncbi.nlm.nih.gov/genomes/lproks.cqi). The taxonomic information which is 

not present in the downloaded file can be found on the Entrez Genome Project page 

for the relevant genome. The number of predicted proteins and the overall percentage 

low complexity of the genome are calculated using the script make_seg.pl on the 

output from the programme SEG. The genomejd field is the primary key (and hence is 

incremented automatically by the database), uniquely defining a set of details about a
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genome. Other identifiers, such as RefSeq identifiers, are not suitable as each bacterial 

chromosome is given a unique RefSeq ID. A bacterial species such as Vibrio cholerae, 

which possesses two chromosomes, has two RefSeq identifiers (NC_002505, 

NC_002506); hence one genome would have two entries in the genome table. 

Therefore, it was necessary to define a unique Genomejd for use within the 

OrphanMine system. Genomejd is an integer value and is therefore capable of 

creating table joins more efficiently than a text value such as the RefSeq. In addition to 

the primary key, the NC_number column is indexed, as it is common to search on 

these values.

4.7.2 Dataset3

The dataset table contains data describing features that vary according to the dataset 

being viewed. The majority of the fields refer to the orphan number for the genome of 

interest in a particular dataset. Additionally, the table contains the isolation index of an 

organism (NO) (Fukuchi & Nishikawa, 2004) for the genome. This value is dataset 

dependent, as different datasets contain different genomes and hence the isolation of a 

genome compared with the other genomes in the dataset will vary. The values for the 

different fields are calculated in the QuickMine and OrphanMine Perl scripts. 

Datasetjd is the primary key. Genomejd is the foreign key referencing Genomejd in 

Genome3. Genomejd is indexed in Dataset3 to increase the efficiency of table joins 

during queries.

4.7.3 Orf3

Orf3 is the most important table in OrphanMine as it is required for all three of the 

methods used by the PHP interface to interrogate the database. It contains data on 

every predicted protein in all the genomes contained within the database, currently this 

stands at 972526 predicted genes from 330 genomes. There are 28 fields in Orf3; the 

values for the different fields are calculated in the QuickMine and OrphanMine Perl 

scripts. In addition to fields that describe the sequence directly, such as GC, length and 

low complexity, the Orf3 table contains data necessary for the functionality of the 

Artemis and CGView applets. These include the start and stop co-ordinates, the 

direction of the predicted gene and the number of genomes in the database that 

contain potential orthologues. Also included are the values for the different ranking 

criteria (length, percent low complexity, GC content, neighbourhood distribution and 

metabolic cost) that enable the PHP scripts to rank the predicted proteins according to 

user defined criteria. Additionally, the table includes the E-value and percent identity for 

the best hit to another predicted protein. This allows users to create their own custom
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orphan datasets using a cut-off threshold of their choice. The Gl number is included in 

Orf3 as an additional identifier. It is used primarily when using fastacmd to retrieve 

protein sequences. Orfjd is the primary key. Genomejd is the foreign key referencing 

Genomejd in Genome3. Orf, Gi and Genomejd are indexed to increase the efficiency 

of table joins during queries and sequence retrieval.

4.7.4 Orphan3

The Orphan table is responsible for containing a list of predicted proteins and the 

dataset in which they are found to be orphans. Hence, the same predicted protein may 

be found in the table more than once, as it may be found to be an orphan in more than 

one dataset. Additionally, the number of true orphan paralogues associated with the 

orphan is recorded. Orphanjd is the primary key; Orf_name is the foreign key that 

references Orf in Orf3. Orf_name is also indexed.

4.7.5 Blast summary

The table Blast_summary contains a representation of the BLAST overview files 

produced by QuickMine. The overview files are formatted by the OrphanMine Perl 

scripts so that they can be entered into the database. The table contains three 

standard columns. These contain the Genomejd, the Orf_name and the 

Blast_summjd. Genomejd is a foreign key that references Genomejd in Genome3; 

Orf_name is a foreign key that references Orf in Orf3. Both these columns are indexed. 

Blast_summjd is the primary key. In addition to these columns, there is a column for 

each of the genomes contained in the database. Therefore, the number of fields in this 

table is dependent on the number of complete sequenced bacterial genomes. For each 

element in this table (effectively each predicted protein), there is a numerical value in 

each of the genome based columns, representing the number of potential homologues 

to the predicted protein, in that particular genome. These values are used to generate 

the user defined lists of lineage-specific genes.

4.7.6 Para blast

The ParaJ>last table consists of six fields. The purpose of the table is to allow the user 

to view the paralogues associated with the orphan genes. Not all the paralogous genes 

are also orphans. The data for this table is initially generated by QuickMine and 

formatted by the OrphanMine Perl scripts. Parajd is the primary key. NC_query is 

indexed to allow more efficient searching.
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4.7.7 Paths dataset3

Paths_dataset3 contains the information required to find the relevant data files for the 

different datasets. The PHP scripts need to be directed to files such as the BLAST 

database. Dataset_number is the primary key.

4.7.8 Join dataset3

The Join_dataset3 table was responsible for creating a normalised relationship 

between Dataset3 and Orphan3. It stores Dataset_number as a foreign key and 

Datasetjd as a primary key. This table is an artefact of the evolutionary methodology. 

In future iterations of OrphanMine, the table could be removed and an additional 

column representing Dataset_number could be added to Dataset3.

4.8 The Web Interface and PHP Query Pages

An elegant database is irrelevant if the end user cannot interact with it in a manner that 

maximises both usability and utility. For this reason, particular attention was paid to 

designing an intuitive user interface, which felt both logical and natural to the system 

users. The interface, whilst maintaining a simple design and therefore faster download 

speeds, provides both meaningful links and consistent navigation. The page content is 

controlled by PHP scripts embedded within the HTML. The PHP is responsible for 

performing the correct actions from the user input, querying the database, and 

displaying query results in the required manner. When the user submits the HTML 

form, having filled in the form elements, the browser sends an HTTP request to the 

web server. In OrphanMine, the user input is generally processed using the POST 

method.

A detailed description of the functionality of the PHP pages and their associated 

screenshots can be found in Appendix 4.2. The majority of OrphanMine’s web interface 

is written in PHP. However, Perl CGI scripts had previously been written to perform 

BLAST searches (blast.cgi) and to interrogate the MySQL database directly 

(orphanjsqicgi), therefore these scripts were utilised (see Appendix 4.2).

In some cases, a web page is not always a satisfactory user interface. The form 

elements defined for HTML are limited. An alternative is to use applets in web pages to 

make them look and function more acceptably (Coulouris et al., 2001). However, there 

is a consequent increase in download time. In the case of OrphanMine, a standard



HTML interface was deemed appropriate, primarily as this would provide the majority of 

the functions required. In addition, OrphanMine utilises two Java applications; Artemis 

(Java Webstart) (Rutherford et al., 2000) and CGView (Java Applet) (Stothard & 

Wishart, 2005).

4.8.1 Artemis Webstart

Using Java Web Start technology, standalone Java software applications can be 

deployed over the network. It enables developers to deploy full-featured applications to 

end-users by making the applications available on a standard web server. Unlike Java 

applets, Webstart applications do not run inside the browser. OrphanMine utilises 

Artemis through the use of Java Webstart. Artemis is a genome annotation tool created 

at the Sanger centre. It allows the visualisation of sequence features and the results of 

analyses within the context of the genome. The tool loads sequence files in EMBL, 

GenBank and FASTA format. Once the sequence is loaded, it is possible to annotate 

the sequence with additional features. This can be done by loading in annotation files 

in EMBL, GenBank or GFF format. Alternatively, the user can annotate the sequence 

manually.

OrphanMine users can view their datasets of predicted proteins in Artemis simply by 

clicking on the link provided. OrphanMine generates a JNLP (Java Network Launching 

Protocol) file. The JNLP file is read by the user’s Java Webstart engine, resulting in 

Artemis being loaded. The Artemis software is hosted at the Sanger Centre. The JNLP 

file also contains information necessary for the generation of relevant annotation files. 

The files are automatically created by OrphanMine when Artemis starts and are loaded 

into the Artemis viewer. The Artemis tool, coupled with the Java Webstart technology, 

allows users to view their datasets in a genomic context in a quick and simple fashion. 

It also permits users to study annotations obtained from other resources and compare 

them to the annotations in OrphanMine, thus enabling the community to efficiently 

interrogate their data, assisting in the formation of scientific conclusions.

4.8.2 CGView Applet

An applet is a software component that runs in the context of another programme. In 

the case of OrphanMine, this is a web browser. As an applet executes on the client 

side, it can provide functionality beyond the default capabilities of the web browser. 

CGView, or Circular Genome Viewer, exists as both a stand-alone application and as a
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Java applet. The primary purpose of the applet is to visualise dynamically generated 

sequence features. In the case of OrphanMine, bacterial chromosomes are loaded and 

features selected by the user, for example, orphan genes, are added to the map. 

CGView permits the user to zoom in on regions of interest and also to move the 

position of the viewing window in relation to the chromosome. Additionally, OrphanMine 

uses CGView to indicate how distributed a gene is amongst the other genomes 

included in the dataset. Therefore, each gene in a given genome has a pink bar 

associated with it. The height of the pink bar indicates the level of distribution of the 

gene. CGView is freely available from

http://wishart.bioloqv.ualberta.ca/cqview/index.html.

4.8.3 Annotation File Formats

The ability to download data in a variety of formats is provided by OrphanMine. Amino 

acid sequences of proteins of interest can be downloaded in FASTA format. These 

sequences have a modified header line, providing the user with descriptive metadata 

for each sequence. This metadata includes GC content, the number of genomes with a 

match to the sequence, the taxonomic uniqueness of the genome, the E-value at which 

the sequence would be deemed an orphan and the best match to the sequence. 

Additionally, dataset dependent annotation files can be obtained for each genome. 

These files can be downloaded in simple tab-delimited format or in GFF format. Tab- 

delimited files are commonly used and can be loaded easily into programmes, such as 

Microsoft Excel. GFF (General Feature Format) files are also relatively simple. 

However, they provide a structured framework for the annotation of sequence features, 

thus encouraging the development of software to utilise the files. The current version, 

GFF3, allows for greater flexibility in sequence annotation, whilst maintaining the file 

structure. Many software projects now utilise GFF files, for example GFF2PS (Abril & 

Guigo, 2000) and Artemis. The GFF files generated by OrphanMine are GFF3 and 

have been validated as keeping to the conventions of the format by the online 

validation system (http://dev.wormbase.org/db/validate qff3/validate qff3 online).

4.8.4 OrphanM ine ‘Help’ Pages

Every PHP page accessed in OrphanMine displays a link to a Help file. The help file is 

page specific, i.e., it gives information specifically associated with the page that the 

user is currently viewing, thus providing useful and relevant information to users and in
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doing so, increasing the level of usability of the system. The help appears in a pop-up 

window, initiated by JavaScript.

4.8.5 PHP Database Queries

Information displayed in OrphanMine is obtained by performing a query of the 

‘orphandb_v2’ database, through the PHP script. In order to do this, the script must 

open a connection to MySQL and select to use the database ‘orphandb_v2’, defined as 

the constant ‘DB’. The commands used are shown below:

$db = mysql_connect(HOST.":".PORT,USER,PASS); 
mysql_select_db(DB);

OrphanMine uses the file db.php to define the information required to connect to the 

MySQL database. Once a connection is open and the database is selected, the 

database can be interrogated using SQL (standard query language) and the PHP 

function mysql_query. The example shown below would query the database for the 

information that is displayed when viewing orphan.php:

$orphan = mysql_query("SELECT Orf_name, True_para_orphan, NC_number, 
Length, Description, Orf_id, truncate(Low_complexity,2), gc, gi 

FROM orphan3, genome3, orf3
WHERE orf3.genome_id = $genome_id and orf3.Genome_id 

genome3 .Genome_id and orf3.orf = orphan3.orf_name and 
orphan3.Dataset_number = $dataset",$db)

or die (mysql_error());

In order to get a meaningful result from the query, the function mysql_fetch_array is 

used. As the name of the function suggests, this retrieves the results of the query and 

enters them into an array. This array can then be accessed and the results displayed in 

HTML. Most of the output in OrphanMine is displayed in HTML tables. This provides an 

easy method of presenting the data in a neat and uniform style.

Processes similar to that described above will occur repeatedly as a user navigates 

through the system. It is these functions that enable OrphanMine to operate as a 

knowledge base.
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4.9 OrphanMine Evaluation

The following sections discuss the process of evaluation, the evaluation methods used 

and the results of those evaluations. Evaluation has three main goals: to assess the 

extent of the systems functionality, to assess the effect of the interface on the user and 

to identify any specific problems with the system (Dix et a/., 1993). Due to the 

evolutionary methodology followed during the development of OrphanMine, informal 

evaluation was performed continuously throughout the project. However, once it was 

felt that the resulting system met the majority of the requirements specified at the start 

of the project, formal evaluation techniques were utilised. The first technique evaluated 

the design, the second evaluated the implementation.

4.9.1 Evaluating the Design

To evaluate the design, a heuristic method was used. In this approach, a set of 

usability criteria or heuristics were identified and the design examined for instances 

where this criteria was violated. The goal of the heuristic evaluation was effectively to 

debug the design. The approach is simple and relatively fast. As specific criteria are 

used to guide the evaluation, the process is not subjective. However, in order to make 

the most of this type of evaluation more than one evaluator, assessing the design 

independently, is necessary, as a single evaluator is liable to miss problems (Dix et al., 

1993). Paul Swift and I performed the design evaluation of OrphanMine. The ten 

heuristics used in the evaluation can be found in Appendix 4.3.

4.9.2 Results obtained from Design Evaluation

In general, it was found that the system was natural and logical. The tool was found to 

be intuitive to use, although it was felt that a user would have to invest time to get the 

best from the system. This learning curve is largely a result of the intrinsic complexity of 

the concepts involved. The help system was described as extensive and highly 

specific. It was felt that the system would certainly be of benefit to researchers 

interested in analysing lineage-specific genes. In addition to these general thoughts, 

there were several points raised regarding the system and improvements were 

suggested. Table 4.2 displays a summary of the responses to the heuristic evaluation 

and indicates whether the feedback has been implemented.
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Table 4.2. Feedback obtained from Heuristic Evaluation

Heuristic Evaluation Response Implemented? How or Why?
When working with custom datasets, 
the menu bar reports information 
specific to Orphan Dataset 1. This 
needs to be changed to show that the 
user is working on a custom dataset 
or a TRG dataset.

YES Now prints ‘Custom 
dataset’ or TRG dataset’ in 
the menu bar.

Once a custom dataset has been 
generated, the parameters used to 
create the dataset are not displayed. 
This could lead the user to forget what 
they are working with. Add a box that 
contains a list of the parameters used.

YES Used dynamic HTML to 
produce a box displaying 
parameters when the 
mouse is moved over the 
dataset name in the menu 
bar

When viewing OrphanMine using 
monitors at low resolution, not all the 
information fits (horizontally) on the 
screen. Modify these pages so that a 
horizontal navigation bar is 
unnecessary.

NO The layout is appropriate 
for the majority of monitors. 
To cater for low resolutions 
would lead to the screen 
becoming too cluttered.

When navigating the site, users have 
to make use of the back button on the 
browser. Often this causes the web 
browser to ask the user to refresh the 
page. It is particularly noticeable when 
using Microsoft Internet Explorer.

NO The problem is associated 
with the use of forms and 
the POST method. 
Changing this would mean 
large scale changes to the 
PHP scripts. It is something 
that can be looked at in the 
future.

In some cases, the word orphans and 
predicted proteins are used 
interchangeably. These terms should 
be distinct to avoid confusion.

YES The terms have been 
checked and changed 
where appropriate.

Although the page-specific help is 
extensive, it would be useful to have a 
few lines of information at the top of 
most pages. This would give a better 
indication to the user of what it is they 
are looking at.

YES Explanations have been 
added to a number of 
pages to help guide the 
user.

It would be useful if all the page 
specific help files were also 
concatenated into one large help file. 
Currently there is no ‘Help’ index and 
no method for navigating from one 
‘Help’ page to another.

YES The help pages have been 
merged and placed in 
all_help.php. Users can 
reach this page through 
faq.php.

On the search page, the submit button 
is labelled ‘GO’. This could be 
confused with the GO -  Gene 
Ontology. The button should be 
renamed.

YES The button has been 
renamed ‘Submit’.

The ‘Pretty’ QuickMine matrix option 
seems superfluous to requirements. 
Takes a long time to download and 
occasionally seems to generate 
errors. Possibly remove the option.

NO Have decided to leave the 
option in place. However, 
have provided more 
warnings to inform the user 
of the long load times 
associated.
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4.9.3 Evaluating the Implementation

To evaluate the implementation, an observational technique was used, called Think 

aloud’ (Dix et al., 1993). This method involved providing the users with a set of pre

determined tasks. The user’s actions were watched and recorded. In addition to this 

observation, the users were asked to elaborate their actions by talking aloud and 

describing what they believe is happening and what they are trying to achieve. In the 

evaluation of OrphanMine, a variant on the ‘think aloud’ methodology was used known 

as co-operative evaluation (Dix et al., 1993). Users were asked questions and were 

able to ask questions. This relaxed version of the process provided several 

advantages; the process was less constrained, the user was encouraged to criticise the 

system and points of confusion could be clarified at the time they occurred.

The users evaluated in this manner were all scientific researchers but with varying 

levels of experience at dealing with databases, such as OrphanMine. The evaluation 

took place in the users working environment, i.e., on their own computer in their 

research laboratory. This allowed for the evaluation of the interaction as it occurs in 

actual use. It is likely, however, that the users were still influenced by my presence, for 

example, failing to utilise the system’s help functions. The tasks that the users were 

asked to complete are shown in Appendix 4.4.

4.9.4 Results obtained from Implementation Evaluation

Generally, users were able to navigate through the system easily and were able to 

complete the specified tasks. Issues that did occur were often due to limited knowledge 

with regards to the specific subject of lineage-specific genes. These problems were 

solved by looking at the options available on screen and using their initiative to choose 

the relevant route or by asking for my assistance. In my absence, it is assumed users 

would be forced to use their initiative or make use of the help system. Additional text 

has been added to several pages to help users navigate, without having to utilise the 

help pages. During the evaluation, the help system was largely overlooked by the 

users. Whilst this was anticipated, the degree to which it was ignored was surprising. 

Having spoken to users specifically about this point, it appears that this is down to habit 

rather than poor presentation by OrphanMine. However, in an attempt to raise 

awareness the help system has been highlighted on the OrphanMine home page. 

Table 4.3 displays a summary of the responses to the evaluation and indicates whether 

the feedback has been implemented.
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The system was praised for its general presentation. By keeping the individual pages 

as clear as possible, users were not intimidated by the volume of data. The use of 

colour on the white background was also praised, again because it prevented the 

screen from appearing too cluttered.

Of particular interest to users was the idea of a QIPP web service. QIPP (Quality Index 

for Predicted Proteins) is an index used to score potential coding regions and is 

calculated by analysing various sequence characteristics (length, low complexity, GC 

content, average amino acid cost and neighbourhood distribution). The development of 

QIPP will be discussed in more detail in Chapter 5. A QIPP web service would enable 

users to submit their own annotation files to the server and have output generated, 

scoring each predicted coding region. With this in mind, Web QIPP was developed. 

Web QIPP (www.genomics.ceh.ac.uk/orphan mine/qipp web.php) provides an 

interface to the qipp.pl Perl script. This script calculates QIPP scores for coding regions 

found in a GenBank file. The user submitted file must be in GenBank format and must 

contain a sufficient number of coding regions on which QIPP can be calculated. This 

version of QIPP is entirely homology independent and so does not calculate 

neighbourhood distribution. Once the scores have been calculated, the output is 

printed to screen in either GFF or tab-delimited format. The format can be selected by 

the user. Screenshots of Web QIPP can be seen in Appendix 4.2.
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Table 4.3. Feedback obtained from Implementation Evaluation

Implementation Evaluation Response Implemented? How or Why?
When searching for OrphanMine 
using the Google search engine, the 
user is directed to orphan_home.php 
instead of orphanmine.php. Want to 
re-direct to orphanmine.php.

YES Changed the name 
orphan Jhome.php to 
orphanjdatasets.php. 
orphan_home.php now 
automatically redirects to 
orphanmine.php

When ordering the genomes by 
publication date, it would be useful to 
see the date, or have a column to 
indicate they have been sorted.

YES The database does not 
currently store the publication 
dates of original genome 
papers. Instead, a column 
has been added that 
indicates what has been used 
to order the genomes.

It is not immediately obvious to users 
that columns on the search page are 
sortable.

YES Added a line of text 
highlighting this property.

When BLASTing a pre-selected 
sequence, it would be useful to carry 
the ID of the sequence to the BLAST 
page. This would make it easier to 
infer information from the BLAST 
report.

YES The orf_name is passed to 
blastcgi. It is printed to 
screen before the BLAST is 
performed and is also printed 
in the output page.

Not clear to users what method the 
system uses to rank predicted 
proteins. This can lead to confusion.

YES Added line of text stating that 
the QIPP method is used to 
rank the predicted proteins. 
Also provided a link to the 
relevant publication.

On customise.php, clarify the type of 
number that the user should enter as 
an E-value.

YES Put the text ’10-‘ in front of 
the E-value text box. 
Indicates an integer is 
required rather than a 
decimal number.

Make the ERROR message on 
customise.php larger and more 
noticeable.

YES Changed the font-size of the 
error message and made it 
bold.

Make it clear how to download 
sequences from the trolley. Users 
often ignore the checkbox and get an 
error message.

YES Added a line of text to clarify 
the process.

Location-specific help pages are 
under used. Users appeared more 
likely to look at FAQs.

N/A This is largely due to user 
habit. However, have 
highlighted the presence of 
the help pages in 
orphanmine.php and created 
heipjntro.php.
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4.10 Discussion & Conclusion

In this section I will discuss whether OrphanMine has succeeded in meeting the 

requirements set out at the start of the project. Possible enhancements to the system 

that could improve its functionality and usability are also discussed.

4.10.1 Has OrphanMine met the outlined requirements?

As the primary user of OrphanMine and the sole developer, I have ensured that 

OrphanMine has met the level of functionality that I required. The current version of 

OrphanMine meets the requirements and provides a system architecture that enables 

enhancements and modifications to be made. Generally, enhancements will be easily 

implemented. The tool provides an interface to the user that is both aesthetically 

pleasing and minimalist. The various functions are located easily by the users and are 

performed in a logical and natural manner. These features provide the user with a tool 

that enables knowledge sharing within the research community.

4.10.2 Future Enhancements to the OrphanMine system

The next stage in the evolution of OrphanMine is to facilitate community annotation of 

the lineage-specific genes. To create such a function restricted to OrphanMine would 

be relatively straightforward. However, I believe this would be short sighted and limited. 

Instead, universal gene function annotation data is required. OrphanMine could 

implement links to this data.

Currently, there is no universally accepted method or tool for community annotation, 

thus this demand has yet to be met. It is unlikely that scientists are going to be 

enthused by the idea of annotating a gene in one database only to find the annotation 

is missing in a different database. Therefore, a central repository of annotation data is 

needed. External databases, such as OrphanMine, could then link to this one resource. 

One idea is to create a gene function wiki (Wang, 2006). The majority of scientists are 

familiar with the idea of a wiki and so such a tool would not be intimidating to approach.

The NCBI has introduced GeneRIF (Gene Reference into Function) into their Entrez 

Gene Database (Maglott et al., 2007). GeneRIFs are always associated with specific 

entries in the Entrez Gene database and each GeneRIF has a pointer to the PubMed 

ID of the publication, providing evidence for the statement made by the GeneRIF
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(Mitchell et al., 2003). Whilst GeneRIFs do provide a service to the research 

community, it is generally the NCBI indexers that produce the GeneRIFs, rather than 

the wider biological community. Additionally, these annotations are restricted to the 

Gene database. An integrated and comprehensive resource for this genomic data is 

required. Whilst a wiki may not be perfect, for example, the idea of a random scientist 

editing the functional annotation of a gene will not inspire confidence, it does provide a 

stepping stone towards obtaining the annotation required. Another method that could 

be considered is the use of social-tagging as a method of annotation. The idea of social 

tagging, in essence, is that people add free-text tags to their content, in this case 

genes, and where people use the same terms, their content is linked.

A major issue preventing the use of such resources is the lack of a universal identifier 

for a gene. Different databases use different identifiers and update at different times. 

Hence, a universal annotation page for a particular gene would have the difficulty of 

maintaining mappings with the EBI and the NCBI, in addition to the multitude of smaller 

databases such as OrphanMine. This is a major issue that needs to be resolved before 

any community driven gene annotation project can truly succeed.

A different issue relevant to the future of OrphanMine is the exponential rise in genomic 

data. An initiative led by Rick Stevens and Eddy Rubin aims to produce draft genome 

sequences for all prokaryote type strains (Field et al., 2007a). Currently, there are over 

300 complete bacterial genomes, this project alone will add several thousand more 

genomes to that figure. As more genomes are sequenced, the updating times of 

OrphanMine will increase. In addition, the amount of memory required to store the data 

will also rise. Whilst the interface to OrphanMine and the design of orphandb__v2 will be 

able to manage this increase, there will come a point where the infrastructure at CEH 

Oxford will no longer be suitable. In order to secure the long term future of 

OrphanMine, it may be necessary to move the location of the data to somewhere more 

suitable. Alternatively, collaboration between OrphanMine and a larger biological 

database such as the IMG at the JGI (Markowitz et al., 2006) could see the 

OrphanMine interface over the top of the JGI data. Thus, continuing to provide the 

majority of the functionality of OrphanMine, without the danger posed by the volume of 

data.

4.10.3 Conclusions

During the creation of OrphanMine, I developed a scoring method that allows the 

prioritisation of sequences, according to certain qualities to ascertain the likelihood of 

the predicted proteins being real. In doing so, creating a list of prioritised genes for
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experimental characterisation. The data stored in OrphanMine is open to the public and 

easily downloadable in a variety of formats. Of particular interest is the use of verified 

GFF format (version 3). Providing the data in this format allows users to view the data 

transparently, i.e., they can load it into software and assess the quality of the data 

themselves. This property is much needed but is very rarely provided. Hence it is clear, 

just from these two examples, that OrphanMine was a worthwhile endeavour.

With the volume of sequence data increasing rapidly, there is a need to develop 

OrphanMine further. Such development could take the form of providing web services 

such as WebQIPP. This allows the user to enter their sequence data (in GenBank 

format) into the system and calculate QIPP scores on this data before printing the 

output in GFF. This work is done ‘on the fly’ due to the method being independent of 

homology, thus data storage is not an issue. Whilst there are clearly challenges 

associated with the future of OrphanMine in its current guise, there is little doubt of the 

benefits it can offer the research community. The purpose of OrphanMine, as clearly 

described, was to make a much needed initial step forward in working on the demands 

made in the Roberts Report. This target has been achieved.
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CHAPTER 5

Large-scale Comparative Genomic Ranking of 

Taxonomicallv Restricted Genes (TRGs) in Bacterial

and Archaeal Genomes

Gareth A. Wilson, Edward J. Feil, Andrew K. Lilley and Dawn Field
(2007)

PLoS-One
2(3): e324. doi:10.1371/journal.pone.0000324
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5.1 Overview

Lineage-specific or taxonomically restricted genes (TRGs), especially those which are 

species and strain-specific, are of special interest because they are expected to play a 

role in defining exclusive ecological adaptations to particular niches. Despite this, they 

are relatively poorly studied and little understood, in large part because many are still 

orphans or only have homologues in very closely related isolates. This lack of 

homology confounds attempts to establish the likelihood that a hypothetical gene is 

expressed and, if so, to determine the putative function of the protein.

We have developed “QIPP” (“Quality Index for Predicted Proteins”), an index that 

scores the 'quality' of a protein based on non-homology-based criteria. QIPP can be 

used to assign a value between zero and one to any protein based on comparing its 

features to other proteins in a given genome. We have used QIPP to rank the 

predicted proteins in the proteomes of Bacteria and Archaea. This ranking reveals that 

there is a large amount of variation in QIPP scores and identifies many high-scoring 

orphans as potentially ‘authentic’ (expressed) orphans. There are significant 

differences in the distributions of QIPP scores between orphan and non-orphan genes 

for many genomes and a trend for less well-conserved genes to have lower QIPP 

scores.

The implication of this work is that QIPP scores can be used to further annotate 

predicted proteins with information that is independent of homology. Such information 

can be used to prioritise candidates for further analysis. Data generated for this study 

can be found in the OrphanMine at http://www.genomics.ceh.ac.uk/orphan mine.

5.2 Introduction

The availability of hundreds of complete bacterial genome sequences has made it 

possible to explore how the evolutionary diversification of gene content reflects the 

ecological needs and opportunities of different taxa. It is well known that the gene 

content of bacterial and archaeal genomes can vary widely and that only a very few 

genes are truly universal (Tatusov et al., 2003, Charlebois & Doolittle, 2004 and 

Ciccarelli et al., 2006). As a consequence, genes can differ significantly in their 

taxonomic distributions, with more broadly conserved genes having ‘housekeeping’ 

functions and less conserved genes being responsible for the phenotypic differences
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observed between organisms. Lineage-specific, or “taxonomically restricted” genes 

(TRGs), are defined as being exclusively restricted to a particular taxonomic group 

(Wilson et al., 2005). In such a framework, genes may be TRGs at any taxonomic level 

(i.e. domain-, family, genus-, species- or strain-specific). TRGs at the species and 

strain-levels are of most interest in the search for genotypes which help define 

exclusive ecological adaptations to particular niches.

The study of narrowly distributed TRG’s is confounded by the fact that many are short, 

repetitive or have unusual A+T contents (Daubin & Ochman, 2004a), and the 

assumption that many such short coding sequences (CDS) represent annotation errors 

(Skovgaard et al., 2001). Over-annotation of genomes, resulting in an excess of small 

predicted proteins, is clearly evident in certain genomes (e.g. the initial annotation of 

Aeropyrum pernix (Kawarabayasi et al., 1999)) and is proposed to be an unfortunate 

feature of many genomic annotations (Skovgaard et al., 2001, Fukuchi & Nishikawa, 

2004 and Ussery & Hallin, 2004). This overannotation could mask intergenic regions 

containing small non-coding RNAs. It is also possible that many TRGs remain 

‘orphaned’ for no other reason than the sampling bias in public genome databases 

(Siew & Fischer, 2003a). It is well-known that the current collection is highly biased 

towards certain organisms (most notably pathogens, y-Proteobacteria, and Firmicutes) 

(Martiny & Field, 2005). This results in the trend that taxonomic isolation is correlated 

with an increased percentage of orphans (Fukuchi & Nishikawa, 2004). It is therefore 

expected that homologues for many orphan predicted proteins, in taxonomically 

isolated lineages that lack close relatives in genomic databases, will be found once the 

taxonomic gaps in the genomic database begin to be filled (Siew & Fischer, 2003a).

Despite potential errors in our current estimation of the numbers and identities of 

narrowly distributed TRGs, there is growing evidence that many, including those that 

are currently orphaned, are of biological significance. Hence, there is a growing need 

to untangle erroneous CDS from authentic species- and strain-level TRGs (Alimi et al., 

2000, Kolker et al., 2004 and Shmuely et al., 2004). Dispersed examples of the latter 

are most frequently found as the result of in depth in silico (Daubin & Ochman, 2004a) 

or empirical studies (Alimi et al., 2000) of a particular organism or small group of 

organisms. Increasingly, examples are being identified as the result of whole genome 

sequencing (Shmuely. et al., 2004). One example to come from complete genome 

sequencing is the TCP virulence locus of Vibrio cholerae Tor N16961. Once a cluster 

of largely orphaned CDS, a homologous region has now been found in the squid 

symbiont Vibrio fischeri (Ruby et al., 2005). The TCP genes code for the toxin co

regulated pili in V. cholerae and serve as its critical intestinal colonisation factor,
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Aproviding the receptor for entry of the temperate filamentous phage CTX , which 

contains the cholera toxin genes, ctxAB (Waldor & Mekalanos, 1996), into the cell 

(Manning, 1997). Likewise, the sequencing of many genomes is confirming the 

presence of many strain-specific genes which form the “pan-genome" of many species 

(Tettelin et al., 2005 and Medini et al., 2005).

Given the potential significance of orphaned and narrow-range TRGs and the 

confounding sources of error associated with currently annotated genomes, it is clear 

that a reliable objective measure of the potential ‘quality’ of a given CDS would be 

useful. This could be used to prioritise it, either as a candidate for further 

characterisation or as an error.

There are several methods that could be used to rank and prioritise CDS for further 

analysis. Previously such analyses and methods have focussed on the degree of 

conservation to a particular CDS, in other genomes. The greater the number of species 

a homologue is found in, the higher the rank of the CDS (Galperin & Koonin, 2004). A 

project called GTPS (Gene Trek in Prokaryote Space) aims to assign a degree of 

reliability to all predicted protein-coding genes in bacterial and archaeal genomes held 

by the INSDC (International Nucleotide Sequence Database Collaboration) (Kosuge et 

al., 2006). This method grades predicted coding regions according to the results from a 

number of, largely homology based, analyses. However, GTPS does not provide a 

quantitative measure and provides no means for ranking CDS in the absence of 

homology.

Gene prediction programmes such as Glimmer (Salzberg et al, 1998), calculate a score 

based on the calculated probability of an ORF being a gene. This score could be used 

to provide a rank to CDS within a genome. Programmes designed to locate 

pathogenicity islands utilise criteria such as dinucletide bias and GC content (in 

addition to non-quantitative criteria, e.g. mobility genes) (Hsiao et al., 2005). However, 

there is currently no explicit method for scoring and ranking CDS in the absence of 

homology. Motivated by this requirement, and with a specific focus on orphans and 

narrow-range TRGs, we have devised a scoring system that allows the ‘ranking’ of 

predicted proteins based on a variety of features, reflecting the likelihood that a given 

CDS encodes a protein.

We previously reported that the absolute number of single-copy TRGs from the 

complete and published genomes of Bacteria and Archaea is increasing (Wilson et al., 

2005). The most phylogenetically and ecologically unique species contribute the most
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unique genes, in part due to undersampling of these genetic lineages (Wilson et al., 

2005). For that study we generated two datasets. The first contained all orphans as 

defined by BLAST (using a threshold of 10'3), the second applied an arbitrary length 

cut-off of > 150 amino acids and excluded all CDS with low complexity (highly 

repetitive) regions to remove likely CDS enriched in artefacts. The method of scoring 

CDS described here extends this ‘selective filtering’ approach and is called the ‘Quality 

Index for Predicted Proteins’ (QIPP). We describe the use of QIPP as it is applied to 

the reanalysis of this dataset, based on the inclusion of five criteria selected for their 

presumed ability to detect purifying selection and CDS which are unlikely to occur by 

chance alone. These are length (Skovgaard et al., 2001), percentage low complexity 

(a measure of the degree of repetition) (Altschul et al., 1994), difference in G+C 

composition of sequence and genome (Navarre et al., 2006), average amino acid cost 

(Akashi & Gojobori, 2002 and Heizer et al., 2006) and neighbourhood distribution (ND) 

(Zheng et al., 2005).

5.3 Results

5.3.1 The orphan and non-orphan components of many proteomes 

have different overall characteristics

To examine whether orphaned CDS, which are expected to be on average smaller 

(Skovgaard et al., 2001) and more A+T rich (Daubin & Ochman, 2004a and Yin & 

Fischer, 2006) have significantly different QIPP scores than non-orphans, we re

examined our original dataset (Wilson et al., 2005). QIPP scores were calculated for 

each protein in this dataset of 122 proteomes (Wilson et al., 2005) as described in the 

Materials & Methods (5.5.2). In total, the distributions of all five criteria (length, low 

complexity, G+C content, amino acid cost and neighbourhood distribution (Table 5.1)) 

differ significantly between orphans and non-orphans in 61 of the 122 species 

examined (p < 0.05, Mann-Whitney). 3 or more criteria are significant in 117/122 

species. Four of the remaining five species contained fewer than 10 orphans, and 

when all such genomes (n=6) were excluded 115 of the remaining 116 species had 

orphans that differed significantly from the non-orphans for three or more criteria. The 

strikingly different values for Escherichia coli K12 can be seen in Figure 5.1 as an 

example of these trends. The distribution of the QIPP scores for orphan and non

orphan TRG’s were found to be significantly different for 119 of the 122 genomes (p < 

0.05, Mann-Whitney). The remaining three genomes contained 2 or less orphans and 

thus could not provide significant discriminatory power. Overall, the QIPP scores for all
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orphan (mean = 0.38, +0.14) and non-orphan (mean = 0.54, +0.14) TRG's were 

significantly different (p = 0.000, Mann-Whitney). These results confirm that the criteria 

used for the QIPP scores can reliably distinguish between “orphan-like” (less well 

conserved) and “non-orphan-like” (more widely conserved) genes.

Figure 5.1. Distributions of orphans and non-orphans in E. coli K12. The predicted proteins 

in E. coli K12 that were found to be unique (light grey) when compared to 122 bacterial 

proteomes (shown in Appendix 5.1) were designated as orphans (n=174). All remaining proteins 

(dark grey) were non-orphans (n=4137). Distributions of values for both groups were calculated 

as a percentage for (a) length, (b) percent low complexity, (c) G+C difference from the mean, 

(d) Cost and (e) Neighbourhood Distribution.
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Table 5.1. Criteria used for the calculation of QIPP

Optimality Criteria Desirable Values Ranked by

Length Long Distribution of absolute lengths of non
orphans

Complexity Complex Distribution of percent low complexity in non
orphans

Cost Low Distribution of the average cost per amino 

acid of non-orphans
G+C Composition Average composition Distribution of the difference in G+C content 

of non-orphans and the genome G+C 
composition

Neighbourhood Location among genes Average of the number of genomes with
Distribution with a broad distribution homologues to the 5 genes flanking either 

side of a gene.

5.3.2 Ranking orphan CDS using QIPP scores

The distribution of QIPP scores across the orphans in this dataset was examined to 

determine if there was sufficient variation to rank them. Figure 5.2a shows that QIPP 

scores range from 0.0 to 0.9 (out of a possible range from zero to one) and so the 

index does have discriminatory power. The overall QIPP scores for each proteome 

deviate from the normal distribution for all five reference genomes, with too few high- 

scoring CDS and a longer than expected left-hand tail of low-scoring proteins (Darling- 

Anderson p < 0.005). This is due to the fact that for each criterion (with the exception 

of low complexity) there are few proteins with very high ranks (Figure 5.2b-f).

We then examined the quality of the highest-scoring orphans to see if our list contained 

a significant number of potentially ‘authentic’ orphans -  i.e., those unlikely to occur by 

chance. The extreme right hand distribution of these QIPP scores contains a total of 

2,010 single-copy TRGs (> 95th percentile with a minimum score of 0.62), 1,260 are 

longer than 200 amino acids, a criterion that, when used in isolation, is generally 

accepted to signify ‘authentic’ CDS (Skovgaard et a/., 2001). Relaxing the QIPP score 

threshold, and using only length as a criterion, a total of 9858 (22.66%) single-copy 

TRGs are found in this dataset which are > 200 amino acids. A subset of these, 2,445 

(5.62%), are > 400 amino acids.
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Figure 5.2. QIPP and Criterion Distributions of orphans in 122 bacterial genomes The

orphans (n=43513) obtained from 122 bacterial genomes were scored and the distribution 

plotted according to (a) QIPP and the individual criteria that constitute QIPP: (b) length, (c) 

percent low complexity, (d) G+C difference from the mean, (e) cost and (f) neighbourhood 

distribution.

5000

8 4000

•5 3000

2000

1000

20000

18000

16000

14000

12000

10000

D O D D D c i d e i

QIPP Score (0-1)

& # 
Length Score (0-100)

| 20000 

^  15000

I 10000

B l i m  a ■ ■ a

% Low C om plexity Score (0-100)

9000

8000

7000

j( 6000

(5 5000 

.  4000 

|  3000 

2000 

1000 

0
d

tniiihuigfli
GC Difference Score (0-100)

7000 

6000 

( 5000

j- 4000

i
I 3000

: 2000 

1000 

0
e

<V «
Average Amino Acid Cost Score (0-100)

10000

Q JULuj]

Neighbourhood Distribution Score (0-100)

When interpreting the origins of such high-quality single-copy TRGs, the taxonomic 

uniqueness of each parent genome must be considered. Of those with QIPP scores 

above the 95th percentile (>=0.62), only 467 (23%) are from the 62 species (8 per 

genome) sampled down to the species level (i.e. another species from the same genus 

is available in the dataset) (average QIPP score = 0.66). In contrast, 1,543 (77%) 

originate from the 60 species which only have more distant relatives in this dataset. It 

is presumed that these genomes include many TRGs exclusive to higher taxonomic
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levels; 24 genomes are unique at the genus level (259 orphans, 11 per genome, 

average QIPP score = 0.66), 30 at the family level (931 orphans, 31 per genome, 

average QIPP score = 0.67) and 6 at the division level (353 orphans, 59 per genome, 

average QIPP score = 0.67). Of those larger than 200 amino acids, 2,878 (29%) are 

from 62 species (46 per genome) sampled down to the species with an average QIPP 

score of 0.43. The remaining 6,980 (71%), originate from 60 species unique at the 

genus level (1,439 total, 60 orphans per genome, average QIPP score = 0.44), the 

family level (4,263 total, 142 orphans per genome, average QIPP score = 0.48) and the 

division level (1,278 total, 213 orphans per genome, average QIPP score = 0.50).

When plotted against genetic similarity, more distantly related genomes contribute on 

average more high-quality, single-copy TRGs (Appendix 5.1 and Appendix 5.2). Chi- 

squared tests were used to identify genomes that made a greater contribution than 

expected to the top 50% of the ranked list (Figure 5.3). Genomes that did not contain 

enough orphans (>5) to perform a chi-squared test were removed from the analysis (n 

= 6). Genomes that contribute more high ranking QIPP scores are more distantly 

related (Figure 5.3, ANOVA p = 0.000) but only a low proportion of variability in top- 

ranking scores is explained by a regression analysis (p = 0.000, R-squared = 10.63%).

Figure 5.3. Genomes which are more taxonomically isolated have larger numbers of high- 
scoring orphan predicted proteins. Chi-squared tests were used to determine which 

genomes had significantly more predicted proteins in the top 50% of the list of ranked orphan 

predicted proteins, than would be expected by chance (-1 = significantly less orphans than 

expected in top 50% rank, 0 = no significant difference and 1 = significantly more orphans than 

expected in top 50% rank).
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5.3.3 Less conserved genes have low er QIPP scores

The difference between orphan and non-orphan QIPP scores suggests that it might be 

possible to predict a priori how conserved a particular CDS might be using QIPP 

scores in the absence of homology. To explore this further, we selected a subset of 

five reference genomes from the best-sampled taxa in our original dataset for which 

intra-specific comparisons yielding high numbers of strain-specific orphans were also 

available (Tabie 5.2). For each reference genome the taxonomic distribution of all 

predicted proteins at the Archaea/Bacteria level, domain, division, family, genus, 

species and strain level (Figure 5.4) was determined.

Table 5.2. Numbers and percentages of species-specific and strain-specific genes after 

the addition of a second strain in five bacterial species.
R eference G enom e S econd G enom e Orphan genes  

(N = 12 2 )

Species-specific

(N = 12 2 + 1 )

Strain-specific  

(orphan genes) 

(N = 12 2 + 1 )

Escherichia coli K12 

(N C _ 0 00 9 1 3 )

Escherichia coli UPEC- 

CFT073 (N C _ 0 04 4 3 1 )

174 52 (2 9 .8 9% ) 122 (7 0 .1 1% )

Helicobacter pylori 26695 

(N C _ 0 0 0 9 1 5 )

Helicobacter pylori J99 

(N C _ 0 00 9 2 1 )

2 58 181 (7 0 .1 6% ) 77  (2 9 .8 4% )

Neisseria meningitides 

MC58 (N C _ 0 0 3 1 12)

Neisseria meningitides 

Z2491 (N C _ 0 0 3 1 16)

431 222  (5 1 .5 1% ) 209  (4 8 .4 9% )

Prochlorococcus marinus 

CCMP1375 (N C _ 0 05 0 4 2 )

Prochlorococcus marinus 

MIT9313 (N C _ 0 05 0 7 1 )

291 4 0  (1 3 .7 5% ) 251 (8 6 .2 5 % )

Vibrio vulnificus CMCP6 

(N C _ 0 0 4 4 5 9 ,N C _ 0 0 4 5 6 0 )

Vibrio vulnificus YJ016 

(N C _ 0 0 5 1 3 9 ,N C _ 0 0 5 1 4 0 )

348 101 (2 9 .0 2% ) 247  (7 0 .9 8 % )

The average QIPP scores and percentages of predicted proteins exclusive to each of 

these taxonomic levels are given in Table 5.3. Overall, average scores are relatively 

uniform across the five genomes at each of the 7 taxonomic levels examined. Scores 

range from an average of 0.60 for proteins conserved across bacteria and archaea 

down to 0.35 for proteins conserved at the strain-level. These average scores are 

significantly different across TRG’s exclusive to different taxonomic levels (ANOVA, 

p=0.000 for every genome). The data show an overall decrease in QIPP score as the 

degree of conservation narrows (Figure 5.4). For the five genomes, when all CDS are 

taken into account, a regression analysis provides a p-value of 0.000 with R-squared 

values ranging from 20.3% to 36.3%.

102



103

Table 5.3 Table showing the average QIPP score for predicted proteins at each taxonomic level for five selected bacterial genomes.

Bacteria / 
Archaea

Bacterial
Domain Division Family Genus Species Strain

1sl- 3 ra
Quartile
Range

E. coli KM 0.59 (47.75) 0.54 (36.31) 0.47 (4.36) 0.42 (7.54) N/A 0.37(1.21) 0.34 (2.83) 0.45 -  0.65

H. pylori 26695 0.58 (43.04) 0.55 (30.58) 0.48 (4.70) 0.40 (2.42) 0.52 (2.86) 0.43 (11.51) 0.35 (4.90) 0.44 -  0.64

N. meningitides 

MC58 0.60 (41.85) 0.53 (35.98) 0.47 (0.58) 0.5 (0.87) N/A 0.37 (10.68) 0.35 (10.05)

0.42 -  0.64

P. marinus 

CCMP1375 0.61 (44.10) 0.55 (21.15) 0.44 (19.29) N/A N/A 0.37 (2.13) 0.37 (13.34)

0.42 -  0.65

V. vulnificus 
CMCP6 0.58 (44.06) 0.54 (36.96) 0.47 (6.46) N/A 0.46 (4.85) 0.42 (2.23) 0.39 (5.44)

0.44 -  0.64

The numbers in brackets show the percentage of proteins in that genome at that taxonomic level. Scores are highest for proteins which are most highly 

conserved and decrease across taxonomic categories. N/A = genome not available for comparison. The final column shows the values for the CDS of 

the 2 quartiles around the median QIPP score in each of the five genomes.



Figure 5.4. Calculated QIPP scores for 5 bacterial genomes split into taxonomic classes.

Every predicted protein in (a) E. coli K12, (b) H. pylori 26695, (c) N. meningitides MC58, (d) P. 
marinus CCMP1375 and (e) V. vulnificus CMCP6 was put into the taxonomic level at which it 

was restricted and scored according to QIPP. The numbers on the plots represent the mean QIPP 

score at each taxonomic level.
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The differences in mean QIPP scores between different groups of TRG’s are largest for 

comparisons between groups of CDS conserved above the level of division and those 

conserved at the species- and strain-level (Table 5.3). Still, average QIPP scores are 

significantly different between all higher TRG groups when compared to the average 

for species-level TRGs, while groups of species- and strain-level TRGs cannot be 

distinguished (Table 5.4). Interestingly, scores from the gene prediction software 

Glimmer could be used to separate only 7 of the 15 comparisons presented in Table 

5.4. Hence QIPP provides additional information which is useful for post-processing 

gene predictions such as those made by Glimmer, in the absence of homology.

Table 5.4. Statistical significance of QIPP (Q) and Glimmer (G) scores when 

differentiating between species-specific genes and a respective taxonomic rank.

Bacteria/
Archaea

Bacterial
Domain

Division Family Genus Species

Q G Q G Q G Q G Q G Q G
E. coli *** *** *** ** N/A N/A
H. pylori ★★★ *** *** ★★★ *** * ★★ ★

N. meningitides **★ *** ★★★ *** *★ ** N/A N/A
P. marinus *** ★★★ ★ ★★ *** *** N/A N/A N/A N/A
V. vulnificus **★ *** **★ ★★★ N/A N/A **★

*** = p <= 0.001, ** = p <= 0.01, * = p <= 0.05 , N/A = No representative genomes at that taxonomic level.

In addition to using QIPP to rank individual CDS, we also investigated whether the data 

had biological meaning. Using quartile analysis, 50% of the CDS in each of these 

genomes fall uniformly between the absolute values of 0.43 and 0.64 (Table 5.3), 

suggesting rule of thumb cut-offs for QIPP scores associated with the least (below 

0.43) and most (above 0.64) highly conserved CDS in a genome. The data further 

suggest that the most extreme values of QIPP have the highest degree of predictive 

power for level of conservation (Figure 5.4). For example, using a minimum threshold 

score of >0.8, 98% of all CDS are members of the most conserved gene families 

(above the division-level). A total of 58% of CDS with scores less than 0.2 are 

species- and strain-specific TRGs.

To observe the range of QIPP scores that might be expected from the most highly 

conserved CDS, we examined a subset of universally conserved genes (Ciccarelli et 

al., 2006). We found the homologues of these 31 previously defined protein families 

(Ciccarelli, 2006) in the E. coli K12 genome and examined their QIPP scores. These 

QIPP scores range from 0.5 to 0.87 with a mean of 0.69 (+0.099). A large number of 

these proteins are ribosomal proteins, which are all of shorter than average size for E.
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coli. QIPP score is very poorly correlated with the overall length of these proteins (R- 

squared = 0.012) suggesting that QIPP is not overly sensitive to any one component 

criterion. The two highest-scoring proteins, both with a QIPP score of 0.89, are 

extremely different in length (1,138 for the DNA-directed RNA polymerase, beta subunit 

versus 323 for the DNA-directed RNA polymerase, alpha subunit). When length is 

removed as a component criterion of QIPP, the scores of the shortest proteins increase 

by up to 0.16, while those of the very longest proteins decrease by a maximum of 0.09 

giving a new mean value of 0.75 (+ 0.14).

5.3.4 Validation of orphans with low QIPP scores using results from 

transcriptomic and proteomic studies

To test whether we could validate the expression of orphans with low QIPP scores in a 

well-studied model organism, we searched the MicrobesOnline database (Aim et al., 

2005) for E. coli K12 orphans identified in this study. This database provides 

experimental microarray results for this organism, for four stress conditions: heat shock 

(Gutierrez-Rios et al., 2003), pH (Kang et al., 2005), UV exposure (Courcelle et al., 

2001) and tryptophan metabolism (Khordursky et al., 2000). We examined the fifty 

highest and lowest ranked species-level TRGs (N=100). The scores of the top ranking 

CDS ranged from 0.41-0.64 and the bottom from 0.02-0.28. To illustrate the range of 

CDS involved, the top scoring CDS was 547 amino acids in length, zero percent low 

complexity, average G+C content, but was more costly than average and came from a 

poorly characterised region of the genome. By contrast, the CDS with the lowest score 

of 0.02 was only 60 amino acids in length, 35% low complexity, had a highly deviant 

base composition, it was also more costly than average and was found in a poorly 

characterised region of the genome. Of these 100 orphans, 17 had identifiers not 

found in the MicrobesOnline database and were excluded. Of the remaining 83, only 

one failed to show any change in expression levels in any of these experiments. In 

total there were 46 occasions (involving 35 of these 100 orphans) when one of these 

orphans was included in the list of the 200 proteins reported in Microbes Online 

showing the largest (up or down) fold change in expression in one of these 

experiments. Of particular interest was the pH stress experiment where 12 (three in 

the top and nine from the bottom 50) of the top 100 up-regulated genes were orphans 

(p<0.001, chi-square).

These results suggest that, despite opinions to the contrary (for example, Skovgaard et 

al., 2001), sequences that appear unlikely to be coding using both conventional
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methods (e.g. length) and QIPP, are found to be transcribed. Additionally, a number of 

these sequences show relatively large changes in their expression levels when 

exposed to environmental stress, highlighted in the results obtained from the pH stress 

experiment. Therefore, taking into account the limitations of microarray expression data 

and the implications of analysing a model bacterial species like E.coli, this data 

suggests that annotation artefacts are not as common as originally thought.

E. coli K12 proteomic datasets (Corbin et al., 2003, Gevaert et al., 2002 and Taoka et 

al., 2004) were also searched. When combined these investigations identified 

approximately 1,800 expressed proteins. While mRNA was found for 64 of the 174 

CDS in E. coli, only 4 proteins could be identified for all 174 single-copy TRGs in this 

dataset. These four CDS had an average QIPP score of 0.32 compared to mean score 

of 0.35 for all E. coli orphans. Due to the small number of proteins being found in the 

proteomic analyses, it is not possible to say anything conclusive about the ability of 

QIPP to rank CDS according to those most likely to produce a protein. However, it is 

interesting to note the small number of E.coli orphan sequences identified in the 

proteomic analyses.

5.4 Discussion

We have developed an index called “QIPP” (“Quality Index for Predicted Proteins”) 

which can be used to assign a value between zero and one for a CDS, compared to 

the rest of the genome on the basis of a set of selective criteria. This provides an 

objective measure of the probability that a given CDS either encodes a protein or is an 

annotation artefact. Very long CDS, with typical nucleotide and amino-acid 

compositions, no low complexity regions, and which are found in well conserved 

regions have the highest QIPP scores and are considered most likely to encode 

proteins.

The distributions of QIPP scores, and trends in the component variables, confirm that 

orphans show consistent differences when compared with well characterised protein- 

coding genes, i.e., they are short, repetitive, possess atypical G+C content, have high 

average cost for amino acids and are located in poorly characterised regions of the 

genome. The significant differences in the distributions of QIPP scores between 

orphan genes and non-orphan genes confirms that QIPP scores represent a valid 

means to rationalise and automate the identification of those CDS most likely to 

encode proteins (and find homologues among other available sequences). Because
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orphans generally have low QIPP scores it is also possible to meaningfully rank them 

as a subset of all CDS, selectively filter for high-scoring ‘authentic’ orphans, and begin 

to address the issue of correcting for the high percentage of orphans in current 

databases that are simply an artefact of sampling bias.

Our data show that the lowest-scoring CDS encode the least evolutionary conserved 

proteins, i.e., those orphans restricted to single strains or species. As such, this 

approach can also provide evidence on the likely taxonomic range of a CDS in the 

absence of any useful homology. This is particularly significant given the 

unrepresentative sampling of the current genomic databases. Low-scoring, 

taxonomically restricted orphans are most likely to be annotation artefacts: we tested 

this in the case of E. coli K12 by reference to online transcriptomic and proteomic 

expression data. Surprisingly, these data revealed that even these low-scoring CDS 

are potentially expressed (given the caveats associated with using microarray data to 

validate orphans (Skovgaard et al., 2001) and the fact that E. coli is one of the most 

thoroughly studied organisms) and therefore suggest that annotation artefacts may not 

be as common as previously suspected. It should be noted that the use of QIPP is not 

limited to trying to identify annotation artefacts. For example, it can also be used to 

indicate the dispensability of a coding sequence (for more details see 6.3.2). It is clear 

that empirical validation of genomic annotations is necessary and should be of the 

highest priority (Roberts, 2004, Roberts et al., 2005 and Galperin & Koonin, 2004). At 

a minimum, it would appear premature to dismiss all very low-scoring orphans as 

having little biological relevance without further evidence.

It could be argued that some of the criteria used in the QIPP score reflect the extent of 

purifying selection acting upon a sequence, which, in the absence of homology, 

precludes the use of more widely-used methods such as examination of dN/dS ratios 

(Nei, 2005). Over time, metabolically costly amino-acids should be preferentially 

purged through the process of purifying selection, thus lowering the average amino 

acid cost for the sequence (Hurst, Feil & Rocha, 2006). Similarly, mutation pressure 

tends to move in the direction GC->AT rather than vice versa (Petrov & Hartl, 1999 and 

Ochman, 2003) and AT enrichment has commonly been cited as a footprint for relaxed 

or inefficient purifying selection (but see Foerstner et al., 2005). This can explain the 

high AT content of obligate endosymbionts or intracellular parasites which are adapted 

to a restricted niche, undergo restricted gene exchange, and possibly mutate at a high 

rate due to the loss of DNA repair genes (Wernegreen, 2002). It is also well 

documented that phage and other mobile elements tend to show a higher AT content 

than the host bacterial genome (Daubin & Ochman, 2004a and Hurst et al., 2006). As
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highly conserved proteins are likely to encode essential housekeeping functions, and 

therefore be subject to high levels of purifying selection, the noted correlation between 

the taxonomic range and QIPP score can be partially explained within this selective 

framework. This phenomenon also provides further validation for the use of the QIPP 

score in identifying “real” genes, as it is expected that CDS which are simply annotation 

artefacts should be evolving neutrally and hence have low QIPP scores.

This analysis provides proof of principal that the combined use of different criteria can 

be a powerful approach to determining the biological relevance of putative CDS. The 

power of the QIPP score could be improved by the use of additional criteria which are 

likely to reflect purifying selection, such as codon bias, for example. It is acknowledged 

that the criteria presently used are unlikely to be independent, and multivariate analysis 

is required to determine the interactions between the variables and to put corrections in 

place to improve the predictive power of the index. Preliminary analysis on five 

reference genomes has revealed a significant correlation (p<=0.05) between sequence 

length and complexity, with longer proteins showing more low complexity regions. 

Further, a significant correlation between G+C content and amino-acid cost was noted 

in four out of five genomes (the exception being V. vulnificus; data not shown). 

Additionally, the possibility that some of the relationships explored in this chapter are a 

result of circularity in the methods used needs to be explored. For example, it is 

possible that short CDS have fewer homologues because they contain fewer functional 

domains than longer sequences and are therefore likely to significantly match fewer 

proteins when compared against a sequence database using BLAST.

There is a growing need for metrics that offer a deeper understanding of the detailed 

content of genomes, especially now that we have such large numbers (Galperin & 

Kolker, 2006). QIPP provides such a metric and can be used in combination with other 

in silico methods that can now be used to sift out potentially authentic orphans and 

improve genomic annotation. Such complementary methods include the analysis and 

removal of short CDS (Skovgaard et al., 2001), gene fragments (Amiri et al., 2003), 

and pseudogenes (Fukuchi & Nishikawa, 2004) and the ranking of CDS based on the 

availability of homology-based information (Kosuge et al., 2006). Integration of the 

information from such studies would provide the foundation for a single, global list of 

uncharacterised predicted proteins that could be used to systematically subject them to 

further in silico examination (Kosuge et al., 2006, Roberts, 2004 and Galperin & 

Koonin, 2004). This dataset could further be integrated with empirical evidence from a 

range of experimental studies, especially high throughput ‘omic studies, as is the case 

for databases like STRING (von Mering et al., 2006). In silico studies of predicted
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proteins can help identify candidates for further examination, but any validation of the 

biological relevance of a particular protein must be based on empirical evidence 

(Kolker et al., 2004, Roberts, 2004, Romine et al., 2004 and Kolker et al., 2005). In 

order to comply with the principle of the transparent access to data for the sake of 

integration (Field et al., 2007b), all of the data generated in this study is available online 

in a searchable database, the OrphanMine, a database that supports wide-scale 

downloads of data, including lists of CDS with rich annotations in GFF3 (Generic 

Feature Format Version 3) (http://sonq.sourceforge.net/gff3.shtml) format.

In conclusion, the QIPP index supports an objective rationale for prioritising predicted 

genes for further study, including ‘authentic’ single-copy TRGs. Although further work is 

required to refine the approach, this represents an important step in the standardisation 

and automation of identifying biologically important genes in the absence of homology.

5.5 Material and Methods

5.5.1 Processing of Genom es and Proteom es

All genomic annotations and proteomes as both amino acid and DNA were 

downloaded from the NCBI RefSeq FTP site. Orphans were detected as previously 

described (Wilson et al., 2005) using NCBI BLAST (Altschul et al., 1990) and a cut-off 

of 10'3 and then loaded into the OrphanMine database for post-processing. The 

OrphanMine interface was used to generate groups of TRGs for each taxonomic level. 

A custom Perl script was used to calculate length, G+C content and cost and to parse 

BLAST reports to generate a “neighbourhood distribution” (ND) for each CDS. All of 

the data used in this study is publicly available through the OrphanMine. The code 

used to generate lists of orphans from proteomes is available in the YAMAP package 

(www.genomics.ceh.ac.uk/yamap) and all other code (any additional Perl scripts) is 

available on request (gawi@ceh.ac.uk).

5.5.2 Calculation of QIPP scores

For each genome and for each of the five selected criteria, the distribution of non

orphans was generated and the percentiles for that distribution were calculated. For 

the criteria of length and ND, the absolute value of each component criterion (e.g. 

length of 200 amino acids) was transformed into a sub-score from 0 to 100 depending

no
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on the percentile in which it fell (e.g. the 35th percentile from the shortest CDS found 

would be given a score of 35). For low complexity and cost, where more of either 

actually suggests a less probable CDS, the score was subtracted from 100 (e.g. a 

protein with 50% low complexity might fall in the 70th percentile and therefore be given 

a low score of 30). G+C content had to be calculated as the deviation from the mean 

value. Values above the 50th percentile were corrected by the equation 100 minus the 

percentile value multiplied by two and values below had their percentile doubled.

Length was calculated as the total number of amino acids and percentage low 

complexity regions was calculated from regions masked with the SEG programme 

(Altschul et al., 1994) using default parameters. G+C content was calculated from the 

proteome as DNA. The average amino acid cost of a sequence was calculated using 

the relative costs for each amino acid according to the values given in Akashi & 

Gojobori (2002). Randomised proteomes (i.e., any sequence evolving neutrally) are of 

average cost, whilst purifying selection appears to select for amino acids that are less 

metabolically expensive (Akashi & Gojobori, 2002). ND was calculated by determining 

the level of conservation of the five flanking CDS on either side of a particular CDS. 

For each of these ten genes, the number of species in which a similar sequence was 

found was recorded (maximum of 121 for this dataset). Those numbers were then 

summed, averaged and percentiles generated for the distribution.

The scores from all five criteria are normalised with respect to each particular genome 

and can therefore be summed. To obtain a final QIPP score between zero and 1, the 

average is taken and divided by 100. Zero would be the worst possible candidate for a 

real gene while 1 would be ideal. Using the interface to the OrphanMine, it is possible 

to perform user-selected rankings of subsets of the CDS held in the database, on the 

basis of one or all of the component criteria used in QIPP. To compare QIPP and 

Glimmer scores, the five reference genomes were run through Glimmer (v2.13) 

(Delcher et al., 1999) with default settings.

5.5.3 Genetic Similarity of Genomes and the Taxonomic Distribution 

of TRGs

The Index of Isolation of an Organism (NO) similarity measure was calculated by 

averaging the logarithm of the best E-value for each CDS in a proteome, as described 

by Fukuchi & Nishikawa (2004). The taxonomic distribution of each CDS in the five 

reference genomes (Table 5.3) was obtained through interrogation of the OrphanMine
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database (Wilson et al., 2005). For each genome, appropriate queries were performed 

to find genes restricted to each taxonomic level. The output was scored and 

downloaded in a tab-delimited format. A Perl script was written to parse the output to 

ensure that every predicted protein was only counted once and each protein could be 

classed according to its lineage-specificity.

5.5.4 Obtaining Empirical Data from Microarrav and Proteomic 

Studies

The MicrobesOnline database (Aim et al., 2005) was queried for the E. coli orphan 

genes using their unique VIMSS ID. A file was provided by Keith Keller to map the 

GenBank IDs of the orphan genes obtained from OrphanMine to the VIMSS ID. 

EchoBASE is a database that curates information regarding the genes and gene 

products of the model bacterium E. coli K-12, including links to literature describing 

proteomic analyses of this bacterium (Misra et al., 2005). The ‘b number’ identifiers 

provided in the literature were used to map data from the proteomic analyses to the E. 

coli orphan genes obtained from OrphanMine. When ‘b numbers’ were not provided, 

the gene name, if present, was used.
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CHAPTER 6

Using the “Quality Index for Predicted Proteins” (QIPP)

to Explore the Global Properties of Genomes

Manuscript in preparation for submission to PLoS-ONE as:

Gareth A. Wilson, Eugene Kolker, Rob Edwards, Edward J. Feil and Dawn Field 
Using the “Quality Index for Predicted Proteins” (QIPP) to Explore the Global 
Properties of Genomes
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6.1 Overview

An index for assessing the quality of a predicted protein based on the combined 

features of its coding sequence (CDS) (length, percentage low complexity, G+C 

content, amino acid cost, and neighbourhood distribution) was recently proposed. 

These five criteria were selected for their ability to detect purifying selection and 

therefore provide a means to gauge the probability that the CDS encodes a functional 

protein. This index, called the "Quality Index for Predicted Proteins" (QIPP) expresses 

the 'quality' of a CDS as a number between zero and one. Using QIPP, it is possible to 

rank and prioritise taxonomically restricted genes (TRGs) for further characterisation 

and select those species-and strain-specific orphans most likely to represent authentic 

genes. In an analysis of Bacterial and Archaeal proteomes, a trend for more highly 

conserved proteins to have higher QIPP scores was found, suggesting that QIPP also 

contains information about the biological properties of authentic CDS. Here the use of 

QIPP to characterise the global features of genomes is explored further. Specifically, it 

is shown that QIPP scores are related to the level of functional information available for 

a given CDS and also its biological role, as demonstrated by an analysis of subsystem 

annotations in the SEED database. Secondly, QIPP scores differ between the stable 

‘core’ regions of genomes and CDS associated with the pan-genome. Third, lower 

QIPP scores are associated with less robust annotation. Fourth, QIPP scores provide 

a range of biologically meaningful predictions about the nature and evolution of 

individual proteins and groups of proteins in sequenced genomes. Finally and equally 

important, especially taking into account the large number of genes without known 

homologues in current genomes, these predictions can be made even in the complete 

absence of information on homology. A web server that calculates QIPP scores for 

GenBank CDS is available at:

http://www.genomics.ceh.ac.uk/orphan mine/qipp web.php

6.2 Introduction

The pressing need to introduce new metrics for better characterising sequenced 

genomes is well known (Galperin & Kolker, 2006). An index, “QIPP” (“Quality Index for 

Predicted Proteins”) was developed to further characterise the unknown portions of 

complete bacterial and archaeal genomes (Wilson et al., 2007). Lineage-specific, or 

“taxonomically restricted” genes (TRGs), are defined as being exclusively restricted to
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a particular taxonomic group (Wilson et al., 2005). TRGs are relatively poorly studied 

and little understood,- in large part because many are still orphans or only have 

homologues in very closely related isolates. This lack of homology confounds attempts 

to establish the likelihood that a hypothetical gene is expressed and, if so, to determine 

the putative function of the protein (Kolker et al., 2005).

QIPP scores the 'quality' of a protein without requiring access to direct information 

about homology for a given coding sequence (CDS). The original analysis was based 

on the inclusion of five criteria selected for their presumed ability to detect purifying 

selection and CDS which are unlikely to occur by chance alone (Wilson et al., 2007). 

These are length (Skovgaard et al., 2001), percentage low complexity (a measure of 

the degree of repetition) (Altschul et al., 1994), difference in G+C composition of 

sequence and genome (Navarre et al., 2006), average amino acid cost (Akashi & 

Gojobori, 2002 and Heizer et al., 2006) and neighbourhood distribution (ND) (Zheng et 

al., 2005). By combining information on the relative rankings of these features, QIPP 

was introduced to assign a value between zero and one to any protein based on 

comparing its features to other proteins in a given genome.

It has been shown that there are significant differences in the distributions of QIPP 

scores between orphan and non-orphan genes for many genomes (Wilson et al., 

2007). QIPP was used to rank the predicted proteins in the proteomes of Bacteria and 

Archaea and it was found that QIPP scores ranged from 0.0 to 0.9 (out of a possible 

range from zero to one). This ranking reveals that there is not only a large amount of 

variation in QIPP scpres but also allowed the identification of many high-scoring 

‘authentic’ (expressed) orphans. Perhaps most interestingly, a trend for less well- 

conserved genes to have lower QIPP scores was observed. This suggests that QIPP 

can be used not only to prioritise CDS which are likely to be authentic from those most 

likely to be non-coding but can be also used to provide an indication of the likely 

taxonomic breadth of CDS.

In this study, the use of QIPP to characterise the global features of genomes is 

explored further. Since QIPP shows a relationship with the level of conservation of a 

CDS, it should also be useful in defining several other aspects of CDS biology. For 

example, highly conserved gene families are often associated with the most functional 

information as they have been subjected to the most experimental studies. Likewise, it 

is expected that QIPP scores can provide a priori information about the amount of 

functional information available for a particular CDS. At the same time, low QIPP 

scores correspond to the isolate-specific genes that are characteristic of the pan
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genome and also, the dispensable regions of a genome, which can then be targeted in 

synthetic, reduced genome experiments (Posfai et al., 2006). QIPP has previously 

been shown to be useful in highlighting the regions of the genome most likely to 

contain artefactual CDS (Wilson et al., 2007). This study builds on this and shows that 

QIPP scores can be used to define the ‘brittle’ regions of genomic annotations most 

prone to change over time. Additionally it can highlight conflicts in annotation when 

different methods of gene prediction are being applied. To further facilitate these and 

other analyses, a new generally applicable version of QIPP is introduced. This version 

is entirely independent of any information on homology and is therefore far less 

computationally demanding. A web server to calculate QIPP scores for GenBank CDS 

is now available, free of service for the scientific community.

6.3 Results

QIPP was originally developed as a method to rank orphans and TRGs in an attempt to 

prioritise them for further characterisation and help distinguish ‘authentic’ (expressed) 

CDS from non-coding artefacts. Such narrowly distributed CDS constitute a significant 

proportion of all CDS in public genomic databases and are likely to be responsible for 

unique ecological adaptations, yet they are extremely poorly characterised (Wilson et 

al., 2005). An overall trend for more highly conserved CDS to have higher QIPP 

scores has been shown. Here, the type of information that could be contained in QIPP 

scores is explored further. Specifically, the hypothesis that QIPP scores scale with the 

amount of functional information available for coding regions is tested. Additionally, the 

hypothesis that low QIPP scores characterise CDS associated with the pan-genome, 

and also highlight conflicting gene predictions generated by different methods, is 

tested.

6.3.1 QIPP Scores are proportional to the amount of functional 
information available for CDS

Firstly, the expectation that QIPP scores are related to the amount of annotation 

available for a given CDS was tested, with low-scoring CDS being the least well- 

characterised. To do this, the annotations in the SEED database were examined. The 

SEED database uses a subsystem approach to gene annotation. Using this 

methodology, curators work with automatically processed data to generate expert 

curations of groups of genes (in a particular subsystem) across the entire genome
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collection (Overbeek et al., 2005). A subsystem is comprised of a set of functional roles 

corresponding to a real biological process or structural complex.

QIPP scores were examined to determine whether they could predict the quality of 

annotation for a given CDS in the SEED database, using QIPP scores from the 

published dataset of 122 genomes (Wilson et al., 2007). To do so, it was determined 

whether or not each CDS in this dataset belonged to at least one subsystem. For each 

possible QIPP score, the average number of subsystems (0 to a maximum of 24, mean 

= 0.57) to which CDS with that score belonged, was plotted. The results show a clear 

trend with CDS having higher QIPP scores generally belonging to 1 or more 

subsystems (Figure 6.1, R-squared = 0.76, p = 0.000).

Figure 6.1. Relationship between QIPP Scores and the number of subsystem 
annotations in the SEED database.
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Since QIPP scores correlate with the degree of annotation for a given CDS, it was 

examined whether average QIPP scores varied between different classes of 

subsystems. This was to test the hypothesis that CDS involved in core metabolism 

would have higher QIPP scores compared to those involved in more dispensable 

functions. Table 6.1 provides a list of parent subsystem classes and their average 

QIPP score for the dataset of 122 genomes. There is overall variation in average QIPP 

score across these classes and a clear trend for subsystems responsible for
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housekeeping functions to have the highest QIPP scores. Likewise, unclassified CDS 

had among the lowest scores. CDS belonging to prophage were the lowest.

Table 6.1. Average QIPP score for different parent classes of subsystems. For each 
parent subsystem the average QIPP score is given for an analysis of 122 proteomes along with
the median, variance, standard < 
belonging to that parent subsystem

deviation, minimum, maximum and thei number of CDS

Parent Subsystem Mean Median Variance Stdev Min Max Count
Amino Acids and Derivatives 0.63 0.64 0.01 0.11 0.14 0.91 11094
Nucleosides and Nucleotides 0.62 0.63 0.01 0.12 0.18 0.95 6345
Regulation 0.62 0.63 0.01 0.11 0.29 0.91 585
DNA Metabolism 0.62 0.64 0.02 0.13 0.07 0.93 6124
Cell Division and Cell Cycle 0.61 0.63 0.02 0.14 0.06 0.94 2801
Fatty Acids and Lipids 0.61 0.62 0.01 0.12 0.22 0.89 2109
Carbohydrates 0.61 0.62 0.01 0.12 0.14 0.92 12534
RNA Metabolism 0.6 0.61 0.02 0.13 0.09 0.94 4939
Cell Wall and Capsule 0.59 0.6 0.02 0.13 0.03 0.93 6463
Protein Metabolism 0.59 0.6 0.02 0.13 0.06 0.96 11831
Cofactors, Vitamins, Prosthetic 
Groups, Pigments 0.59 0.6 0.01 0.12 0.11 0.92 16732
Sulfur Metabolism 0.58 0.59 0.01 0.11 0.25 0.88 1010
One-carbon Metabolism 0.57 0.58 0.02 0.13 0.09 0.88 1058
Stress Response 0.57 0.57 0.02 0.12 0.05 0.9 2459
Metabolism of Aromatic 
Compounds 0.56 0.57 0.01 0.11 0.2 0.84 1748
Unknown 0.55 0.56 0.02 0.15 0.07 0.89 2897
Membrane Transport 0.55 0.56 0.02 0.14 0.1 0.89 1251
Motility and Chemotaxis 0.55 0.56 0.02 0.13 0.07 0.93 5050
Nitrogen Metabolism 0.55 0.57 0.02 0.13 0.15 0.85 1443
Phosphorus Metabolism 0.55 0.55 0.02 0.13 0.12 0.89 1282
Miscellaneous 0.54 0.55 0.02 0.13 0.11 0.91 1834
Virulence 0.54 0.55 0.02 0.14 0.04 0.93 768
Cell signalling 0.54 0.54 0.01 0.11 0.12 0.86 3288
Secondary Metabolism 0.52 0.515 0.01 0.11 0.33 0.75 6370
Respiration 0.52 0.53 0.02 0.14 0.06 0.93 44
No subsystem 0.49 0.49 0.02 0.14 0 0.92 235501
Photosynthesis 0.43 0.45 0.02 0.15 0.01 0.8 391
Sporulation 0.4 0.41 0.02 0.12 0.07 0.61 70
Prophage 0.34 0.35 0.02 0.14 0.1 0.53 16

To further understand the low-QIPP scoring portion of this dataset not assigned to any 

subsystem, it was examined whether different genomes are annotated to variable 

qualities. First, the density of subsystem annotations compared to the genetic 

relatedness of a given genome to the rest of this dataset of 122 species, was 

investigated. The percentage of CDS annotated within any subsystem for a given 

genome was plotted against Isolation Index for an Organism (IIO) (Fukuchi & 

Nishikawa, 2004) (Figure 6.2a). While there is a significant inverse relationship, the
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amount of variability explained is low (R-squared = 0.07, p = 0.001). Second, the 

percentage of annotated CDS was compared with genome size (Figure 6.2b). This also 

shows a significant inverse relationship with smaller, more compact genomes, having 

more CDS in annotated subsystems and the amount of variability explained is larger 

(R-squared = 0.30, p = 0.000). This suggests that, as would be expected, genomes 

that are taxonomically unique within this dataset, and are relatively large, contain a 

higher proportion of unannotated CDS than smaller genomes and genomes that are 

members of well-characterised taxonomic groups. Finally, the number of orphans in 

each genome was compared with the percentage of annotated CDS (Figure 6.2c). As 

expected there was a significant inverse relationship between the two (R-squared =

0.28, p = 0.000).

Figure 6.2. Relative densities of subsystem annotations in the SEED database.
Percentage of CDS in each of the 122 genomes found in one or more subsystems versus (a) 
IIO (b) genome size (c) the number of orphans (Wilson et al., 2007).
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6.3.2 The ‘dispensable’ CDS in a genome have lower than average
QIPP scores: using QIPP to define the Pan-Genome

In a second analysis, QIPP was applied to an analysis of the pan-genomes of different 

bacterial species. Escherichia coli was examined first. This species is of particular 

interest because, firstly, it is a model laboratory bacterium, secondly, many isolates are 

available (Liolios et al., 2006), and finally, streamlined E. coli K-12 isolates are now 

being generated using synthetic biology (Posfai et al., 2006). Figure 6.3 shows a 

genome plot generated by the Genome Atlas (Hallin & Ussery, 2004) showing 

homology shared between E. coli K-12 and 7 other isolates of E. coli. The regions 

deleted from E. coli K-12 to form the stream-lined strain are indicated around the 

outside of the plot. The outermost circle is a plot of QIPP scores for E. coli K-12. It is 

clear from this plot that low QIPP scores appear to correlate with regions of the 

genomes that are both dispensable in E. coli K12 and which correspond to components 

of the pan-genome. To further quantify this trend, the QIPP scores for CDS in the 

deleted regions of E. coli K-12 were calculated (mean = 0.45, s.d = 0.14) compared to 

the remaining CDS in the genome (mean = 0.56, s.d = 0.14). The QIPP scores for the 

two groups were found to be significantly different (t-test, p = 0.000). Of the 718 

deleted CDS, 41% (n = 296) were found in the bottom 20% (n = 847) of the E. coli K-12 

QIPP distribution and 77% (n = 555) were found in the bottom 50% (n = 2118). Chi- 

Square analysis shows both these results to be significant (p=0.000).

QIPP scores of all of the CDS in the pan-genome of E. coli and a range of other 

bacterial species were analysed. These six additional species were selected either 

because they were representative species selected in a previous study (Wilson et al., 

2007) (due to the availability of a wide range of related genomes from different 

taxonomic levels) or because they had 9 or more available published and complete 

genomes from other isolates. The former included, in addition to E. coli (n = 8), 

Helicobacter pylori (n = 3), Neisseria meningitides (n = 3), Prochlorococcus marinus (n 

= 9) and Vibrio vulnificus (n = 2) and the latter Streptococcus pyogenes (n = 11) and 

Staphylococcus aureus (n = 9). Figure 6.4 shows plots of the average level of 

conservation, within a given pan-genome, for CDS at each possible QIPP score (from 0 

-1, in increments of 0.01). In all cases, there is a clear trend for CDS which are not 

conserved among all isolates to have QIPP scores lower than the mean for that isolate. 

An ANOVA was performed on the distributions for each species. In each case there 

was a significant difference between the QIPP scores for CDS found in different 

numbers of isolates (p = 0.000).
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Figure 6.3. The Pan-Genome of E. coli. A Genome Atlas (Pedersen et al., 2000) image 
displaying the E. coli pan-genome based on the strains available at the NCBI (E. coli K-12 
(NC_000913), E. coli W3110 (AC_000091), E. coli 0157 RIMD (NC_002695), E. coli 0157 
EDL93 (NC_002655), E  coli 536 (NC_008253), E. coli CFT073 (NC_004431), E  coli UTI189 
(NC_007946) and E  coli APEC01 (NC_008563)). The two outermost circles display QIPP 
scores for CDS in K-12 and the regions deleted to make the artificial genome (Posfai et al., 
2006).



Figure 6.4. Relationship between the frequency of a CDS within a species pan-genome 
and QIPP scores. The species shown are (a) Escherichia coli, (b) Helicobacter pylori, (c) 
Neisseria meningitides, (d) Prochlorococcus marinus, (e) Vibrio vulnificus, (f) Streptococcus 
pyogenes and (g) Staphylococcus aureus
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6.3.3 ‘Brittle’ Annotations are characterised by low QIPP scores

While there is growing evidence that the pan-genome is an authentic phenomenon 

(Medini et al., 2005 and Tettelin et al., 2005), an alternative explanation for the lack of 

conservation of all CDS across strains of a species is mis-annotation or incomplete 

annotation. QIPP scores were analysed to determine whether they correlate with the 

portion of a genome most likely to contain CDS which give conflicting results when 

alternative gene prediction methods are used. For each annotated proteome in its 

RefSeq collection, NCBI provides access to the output files from two gene prediction 

programmes, GeneMarkHMM (Lukashin & Borodovsky, 1998) and Glimmer (Salzberg 

et al., 1998).

Outputs of these two gene prediction algorithms were compared. Four categories of 

gene predictions were defined and the average QIPP scores for CDS in each of these 

four categories are shown in Table 6.2. There is a clear trend for ‘ambiguous’ gene 

predictions unique to only one of these algorithms to have lower QIPP scores and for 

gene predictions for which the two algorithms reached a consensus to have higher 

QIPP scores. This trend was found to be significant (p = 0.000) in all 5 genomes.

Table 6.2. The Number of CDS and Average QIPP score for CDS predicted by Glimmer 
and GeneMarkHMM. All CDS were placed into one of four categories (1) shared start and 
stop, (2) same stop codon but a different start codon, (3) unique to Glimmer, (4) unique to 
GeneMarkHMM. Both the number of CDS in each category and the average QIPP scores are 
provided.

Identical Different Start, Unique to Unique to
_____________ Shared Stop______ Glimmer GeneMarkHMM

Number QIPP Number QIPP Number QIPP Number QIPP
E. coli 3695 0.59 521 0.57 260 0.38 172 0.39
H. pylori 1453 0.59 163 0.54 74 0.35 119 0.35
N. meningitides 1637 0.62 462 0.61 508 0.45 203 0.47
P. marinus 1457 0.59 399 0.57 122 0.41 52 0.42
V. vulnificus 4043 0.59 504 0.57 320 0.38 157 0.39

6.4 Discussion

These results provide further support for the use of QIPP as a genomic index. It can be 

applied to extract a range of information about CDS in the absence of homology. 

Specifically, it is shown that QIPP scores can be used to provide an indication of the 

amount of functional information likely to be available for a CDS and the type of 

function a CDS may encode e.g. a core house-keeping gene or an accessory gene, for
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example involved in virulence. Low QIPP scores also characterise the most 

dispensable regions of a genome. The fact that orphaned and narrowly distributed 

TRGs have low QIPP scores was further explored at the intra-specific level. These 

findings show that QIPP scores correspond to the regions of genomes more likely to be 

strain-specific and involved in the pan-genomes of several bacterial species. Those 

CDS found in all isolates of a species achieved significantly higher QIPP scores than 

those found in only a selection of the strains, suggesting such high-scoring regions are 

more likely to encode core functions shared at the level of species. Regions scoring 

poorly are likely to be coding for strain-specific accessory functions that may enable an 

isolate to inhabit a unique niche. Finally, it is shown that the most brittle regions of a 

genomic annotation, those for which gene prediction programmes provide conflicting 

results, have very low QIPP scores. CDS predicted by only one programme score 

significantly lower than CDS predicted by both Glimmer and GeneMarkHMM. CDS 

predicted by two independent algorithms are more likely to be correct than a CDS 

predicted by only one algorithm. QIPP scores reflect this tendency and hence provide 

an alternative measure of confidence in a particular annotation.

6.4.1 Extending QIPP and its application

In this study, QIPP was applied as originally described (i.e., the analysis of the SEED 

database) but it was also modified to make its calculation entirely homology 

independent (see Materials and Methods (6.5.2)). This makes QIPP less 

computationally intensive, more widely applicable, and far more easily implemented. It 

also removes the dependence on an appropriate database of relevant genomes from 

which to generate values for neighbourhood distribution (ND). For example, giant 

viruses (http://www.qiantvirus.org) and large environmental plasmids (Tett et al., in 

submission) have few related genomes available making the selection of an 

appropriate ‘background’ database challenging. A web server that calculates 

homology-independent QIPP scores from GenBank files has been created 

(http://wwww.genomics.ceh.ac.uk/orphan mine/qipp web.php).

Ideally, in the future, QIPP could be refined in a number of ways and methods could be 

developed to test the best fit of various ‘models’ of QIPP to real data. For example, the 

predictive power of QIPP with and without particular criteria, for example ND, could be 

assessed. The way in which particular criteria are calculated could also be studied in 

more detail. Currently, the determination of the percentage of low complexity in a CDS 

does not take into account predicted transmembrane domains. These biologically
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relevant regions could be ‘subtracted’ out of the low complexity estimates, thus 

perhaps improving the predictive power of QIPP scores.

6.5 Materials and Methods

6.5.1 Processing of Genom es and Proteom es

All genomic annotations and proteomes, as both amino acid and DNA, were 

downloaded from the NCBI RefSeq FTP site, along with Glimmer and GeneMarkHMM 

outputs (ftp.ncbi.nih.gov/genomes/Bacteria). Perl scripts were written to parse through 

these files and calculate QIPP scores. The protein sequences of the CDS, from the 

previously published dataset of QIPP scores for 122 bacterial and archaeal genomes 

(Wilson et al., 2007), were BLASTed against the SEED database (Overbeek et al.,

2005) to retrieve the number of subsystems associated with the annotations. A list 

providing the co-ordinates of the dispensable regions of the E. coli K-12 genome 

(NC_000913) was obtained from Posfai et al. (2006). Homology for the analysis of the 

CDS in the pan-genome was detected as previously described (Wilson et al., 2007) 

using NCBI BLAST (Altschul et al., 1990) and a cut-off of 10'3.

6.5.2 Calculation of QIPP scores

QIPP scores were calculated as previously described (Wilson et al., 2007) with the 

modifications introduced below. In brief, the general procedure behind the calculation 

of QIPP scores is the generation of distributions for selected quantitative criteria 

(continuous variables). For each criterion, the distribution of values and the 

corresponding percentiles are calculated. Subscores for each criterion, for each CDS, 

are calculated by converting the percentile in which a particular CDS is found, into a 

score between 0 - 1 0 0 .  These are then added together and divided by the number of 

criteria used. Finally, dividing by 100 provides a tractable QIPP score between 0 - 1 .  

Zero would be the worst possible candidate for a real gene, while 1 would be ideal. For 

more information on how the percentiles are converted to scores and the criteria used 

for the calculation of QIPP scores, see the previously published description of QIPP 

(Wilson et al., 2007).
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6.5.3 Modifications to QIPP

The original calculations of QIPP (Wilson et al., 2007) were based on the inclusion of 

five criteria: length (Skovgaard et al., 2001), percentage low complexity (a measure of 

the degree of repetition) (Altschul et al., 1994), difference in G+C composition of 

sequence and genome (Navarre et al., 2006), average amino acid cost (Akashi & 

Gojobori, 2002 and Heizer et al., 2006) and neighbourhood distribution (ND) (Zheng et 

a!., 2005). QIPP scores for the SEED database analysis were generated in this way. 

While this formulation of QIPP does not directly rely on information on homology for 

any given CDS, it does utilise homology-based information in two ways. First, the 

background distributions from which percentiles were derived were based on non- 

orphan CDS only. Second, Neighbourhood Distribution (ND) used information on the 

level of conservation of ten flanking CDS to calculate the QIPP score for a given CDS. 

In the generation of QIPP scores for both the analysis of pan-genomes and brittle 

annotations, QIPP calculations were modified to remove this dependence. Percentiles 

were calculated based on all CDS in a genome and ND was not used. These two 

modifications have the benefit of vastly reducing the computational overhead of 

calculating QIPP (i.e., no need for all-against-all similarity searches).

6.5.4 O ther Analyses

The Index of Isolation of an Organism (NO) similarity measure was calculated by 

averaging the logarithm of the best E-value for each CDS in a proteome, as described 

by Fukuchi & Nishikawa (2004). The number of orphans and the genome size of each 

genome were obtained from the OrphanMine (Wilson et al., 2007).

6.5.5 Softw are available for the calculation o f QIPP

QIPP scores for the 122 proteomes that originally included ND are available from the 

OrphanMine (http://www.genomics.ceh.ac.uk/orphan mine/orphan home.php) (Wilson 

et al., 2007). The Perl script used to generate the non-homology-based version of 

QIPP is now available as a web server at 

www.qenomics.ceh.ac.uk/orphan mine/qipp web.php. It accepts GenBank files and 

outputs QIPP scores in GFF or tab-delimited format. The code used to analyse the 

pan-genome is available in the YAMAP package (www.qenomics.ceh.ac.uk/vamap/).

126

http://www.genomics.ceh.ac.uk/orphan
http://www.qenomics.ceh.ac.uk/orphan
http://www.qenomics.ceh.ac.uk/vamap/


All other code (any additional Perl scripts) is available on request (qawi@ceh.ac.uk). 

All statistical analyses were performed using Minitab version 4.
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CHAPTER 7

A Re-assessment of the Orphan Gene Phenomenon 

and Directions for Future Research.
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7.1 Overview

During the course of this thesis, several advancements have been made in the study of 

lineage-specific genes.

• The QuickMine pipeline was designed and developed. This freely available 

open source software is capable of performing BLAST searches on large 

volumes of data. Additionally, it presents the output in a human readable format 

that is simple to navigate. It was designed to identify genes unique to a 

particular genome in a self BLAST database; however it can be applied more 

generally for analysing BLAST reports from any BLAST database. It has been 

implemented in the YAMAP system to perform a role in the first pass annotation 

of genomes. YAMAP is distributed in the NEBC Bio-Linux system (Field et al., 

2006) and is used by members of the NERC Environmental Genomics 

Program.

• The OrphanMine database is publicly available at 

www.genomics.ceh.ac.uk/orphan mine. It provides a user friendly interface to 

explore the data generated by QuickMine. In addition to providing access to 

pre-computed orphan gene datasets, it provides users with the opportunity to 

create their own custom dataset of orphan genes, using their defined 

parameters. Importantly, OrphanMine provides the opportunity to explore 

datasets of lineage-specific genes. This allows for several different analyses, 

from investigating genes unique to a particular bacterial division, to exploring 

the pan-genome of a well sampled species. Data of interest can be downloaded 

in a variety of formats, including GFF.

• In contrast to the predictions made by Siew & Fischer (2003a), I show how the 

number of orphan genes found in bacterial genomes has continued to increase.

• The Quality Index for Predicted Proteins (QIPP) was developed. This scoring 

system ranks proteins according to different criteria (length, low complexity, GC 

content, amino acid cost and neighbourhood distribution). Those proteins 

scoring highly were found to be most conserved amongst other bacterial 

species. Hence QIPP can be used to rank orphans from taxonomically isolated 

genomes and provide a prioritised list for experimental characterisation. 

Determining the function of such genes will assist future annotation efforts. 

QIPP can be calculated for any user-defined dataset, in addition to the four 

orphan datasets, in OrphanMine.
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• The prevailing paradigm regarding bacterial orphan genes was that the majority 

were annotation errors, caused by an over-annotation of small ORFs. I show 

that even the lowest quality predicted proteins, as ranked by QIPP, can 

potentially be coding. Results obtained from microarray analysis of E. coli, in 

different experimental conditions, showed the expression of both high ranked 

and low ranked orphan genes.

• It was shown that QIPP scores are related to both the level of functional 

information available for a given CDS and its biological role. This was 

demonstrated by an analysis of subsystem annotations in the SEED database. 

It was also found that scores differ for those CDS that comprise the different 

parts of the pan-genome. The core regions of a species genome, on average, 

scored more highly than the variable regions.

• The QIPP web server

(http://www/qenomics.ceh.ac.uk/orphan mine/qipp web.php) was created. This 

allows for the calculation of QIPP scores from GenBank files, in the complete 

absence of information on homology.

Throughout the course of this thesis, the software and resulting data analyses have 

been discussed in depth. This brief discussion will re-examine some of the 

observations made. In addition, it will focus on work that needs to be done in the future, 

in order to make further progress in this field.

7.2 Numbers o f Orphan Genes in Bacterial Genomes

In 2005, I examined the accumulation of bacterial orphans using the proteomes of the 

first 122 published bacterial species (Wilson et al., 2005). This dataset of 122 

genomes was found to be highly biased, with the Proteobacteria and Firmicutes over

represented in the collection. The analyses showed that those species that were 

taxonomically isolated from other species in the collection provided the largest number 

of orphan genes. This suggested that by sampling genomes to a sufficient depth, the 

number of orphan genes would fall. However, it was found that the number of orphan 

bacterial genes was rising on the addition of each new genome, and this increase was 

approximately linear. Hence, it was not possible to predict what the maximum number 

of bacterial orphan genes would be.

Since this analysis was performed, many more genomes have been sequenced. There 

are now over 300 complete genome sequences, obtained from bacterial species. This
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increase in genome number provides the opportunity to update the original analyses, 

using the proteomes of the first 247 completed bacterial species (Figure 7.1). The 

methods used to generate the data are as described in Chapter 2.

Figure 7.1 A shows that the number of predicted orphan genes is continuing to rise. The 

increase is linear (as it was after 122 species), however the value of the slope has 

dropped from 0.1279 (n=122, D1) to 0.1082 (n=247, D1). This shows that on average, 

there are fewer orphans per genome after 247 species (277 orphans per genome), 

than there were after 122 species (357 orphans per genome). A similar pattern 

emerges for D2 in which there were 48 orphans per genome after 122 species and 39 

orphans per genome after 247 species. Figure 7.1B shows the number of orphans as a 

percentage of total predicted proteins. It was estimated from the original dataset of 122 

species that after 200 species, the percentage of orphans would be 10%, if the trend in 

selecting candidates for genome sequencing continued. After 247 genomes, the 

orphan percentage is 9.39% and after 200, the percentage was 10.65%. Therefore 

these predictions were accurate, suggesting that the trend in genome sequencing has 

not changed.

7.3 Trends in Bacterial Genome Sequencing

The results show that calls for an increase in the selection of ecologically diverse 

organisms for complete genome sequencing, have not been heeded. On average, 

genomes are less taxonomically isolated (using IIO as a measurement) after 247 

species than after 122 (p=0.022, two sample t-test) with an average value for IIO of - 

179.19 and -164.64 respectively. The Isolation Index of an Organism (IIO) is calculated 

from the E-values obtained from BLAST reports, the closer to 0 this value is, the more 

isolated the genome (Fukuchi & Nishikawa, 2004).

Table 7.1 shows the number of genomes in each bacterial division after 122 and 247 

species were sampled. After 122 species, 6 bacterial divisions were represented by a 

single genome. The increase in genome number only improved this poor sampling in 

one of these divisions. In contrast, the over-representation of the Proteobacteria has 

been further amplified. The dataset of 122 species contained 46 Proteobacteria (37.7% 

of the total collection). Of the 247 species, Proteobacteria accounted for 119 (48.18%).
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Figure 7.1 A & B. The continued accumulation of bacterial orphans. For this analysis, data 
on the number of orphans in complete bacterial genomes was taken from the OrphanMine 
database (www.qenomics.ceh.ac.uk/orDhan mine). The dataset D1 represents all the orphans 
found in the bacterial genomes using BLASTP similarity searches and a cut-off threshold of 10' 
03 (corresponds to dataset D3 in database). In addition a more conservative dataset (D2) was 
created in which all predicted proteins smaller than 150 amino acids in length containing any 
regions of low complexity were removed (corresponds to dataset D4 in database). A. A plot of 
the cumulative number of orphans versus non-orphans. The number of orphans in datasets D1 
(■) and D2 (□) are plotted showing that the number of orphans is continuing to rise in a linear 
fashion. Each data point represents the addition of a complete genome sequence in 
chronological order of publication (N=247 species). B. The decline in the number of orphans in 
datasets D1 (■) and D2 '(□) as a percentage of all predicted proteins. A power curve was fitted 
and the R2 value is shown.
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Table 7.1. The number of species representing each bacterial division after 122 and 247 

bacterial species.

Division 122 species 247 species
Actinobacteria 9 (7.38%) 18(7.29%)
Proteobacteria 46 (37.70%) 119(48.18%)
Aquificae 1 (0.82%) 1 (0.40%)
Bacteroidetes/Chlorobi 3 (2.46%) 7 (2.83%)
Chlamydiae 3 (2.46%) 7 (2.83%)
Chloroflexi 0 (0%) 2(0.81%)
Crenarchaeota 4 (3.28%) 5 (2.02%)
Cyanobacteria 6 (4.92%) 8 (3.24%)
Deinococcus-Thermus 1 (0.82%) 2(0.81%)
Euryarchaeota 12(9.84%) 21 (8.5%)
Firmicutes 30 (24.59%) 48(19.43%)
Fusobacteria 1 (0.82%) 1 (0.40%)
Nanoarchaeota 1 (0.82%) 1 (0.40%)
Planctomycetes 1 (0.82%) 1 (0.40%)
Spirochaetes 3 (2.46%) 5 (2.02%)
Thermotogae 1 (0.82%) 1 (0.40%)

In order to obtain the genome of 122 unique bacterial species, 150 genomes had to be 

sequenced. Therefore, 28 genomes represented a species already sequenced. To 

have the genome of a new bacterial species available to the public, in total, 1.23 

genomes had to be sequenced. After 247 unique bacterial species, the genome 

collection contains 330 genomes. 83 genomes represent an already sequenced 

species, giving the ratio of 1 species to every 1.34 genomes. This suggests that, rather 

than expanding the ecological diversity of our genome collection, an increasing number 

of analyses involve searching for intra-specific differences in gene content. Intraspecies 

comparisons have enabled scientists to approach fundamental evolutionary questions 

with renewed vigour. The role of horizontal transfer events in bacterial species has 

been highlighted by such work, for example in Prochlorococcus marinus (Rocap et al.,

2003). Intraspecies comparisons have also led to further progress in the study of 

pathogenicity and drug resistance, for example in Staphylococcus aureus (Diep et al.,

2006). In the collection of 330 genomes, 43 species were represented more than once 

and 17 of these were represented more than twice. Staphylococcus aureus was 

sampled in the greatest depth (9 strains) followed by Streptococcus pyogenes (7 

strains), Escherichia coli (6 strains) and Prochlorococcus marinus (5 strains). Three of 

these four species possess pathogenic potential (the exception being P. marinus) as 

do another 31 of the 43 species with multiple representations (in total 79.07%).

Despite the increasing number of sequenced genomes, many remain taxonomically 

isolated. After 150 genomes, representing 122 species, Rhodopirellula baltica SH1
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(previously Pirellula sp.1) contained 3568 orphans (48.7% of the total predicted 

proteins). After 330 genomes, representing 247 species, it contains 3386 orphans 

(46.25% of the total predicted proteins). Therefore, the increase in complete genome 

sequences in the public domain has had minimal impact on the annotation of this 

organism (approximately 1 orphan is homed for every genome added). For scientists 

working with genomes that come from taxonomic lineages unlikely to be sequenced in 

depth, QIPP provides a useful tool. In the absence of homology, it is capable of ranking 

the predicted genes. This ranked list can provide researchers with a basis for the 

determination of candidates for experimental characterisation. The average QIPP score 

for the f t  baltica SH1 orphans, in the 150 genome dataset, that were homed in the 330 

genome dataset, was 0.49. In contrast, the remaining ft. baltica SH1 orphans scored 

an average of 0.39. The difference in scores was found to be significant (p=0.00, two 

sample t-test). This adds to the evidence suggesting that proteins scoring more highly 

in QIPP are more likely to find a homologue in the future and therefore be of greater 

benefit to the wider community.

7.4 Exploring D iversity through M etaaenom ics

It is likely that there are many million species of bacteria, yet only a few thousand have 

been formally described (in contrast to the 350000 described species of beetles) 

(Eisen, 2007). This discrepancy is largely due to inherent problems associated with 

studying organisms that can not, currently, be cultured. The promising new field of 

metagenomics provides the opportunity to study microbes directly in their natural 

habitats, thus bypassing the need for isolation and lab cultivation of individual species. 

Metagenomics makes use of shotgun genome methods to sequence random DNA 

fragments from microbes in an environmental sample. There are now more than 70 

such projects in various states of completion (Lioslios et al, 2006), assaying a range of 

environments, for example, from the human gut (Gill et al., 2006) to waste water sludge 

(Garcia et al., 2006).

The largest and most ambitious metagenomic projects have been carried out by Craig 

Venter. In 2004, Venter et al., performed shotgun sequencing on samples obtained 

from the Sargasso Sea. Their study resulted in the identification of more than 1.2 

million new genes, from the DNA extracted from approximately 1500 litres of surface 

seawater. The Sargasso Sea is one of the world’s most nutrient impoverished bodies of 

water, thus the fact that such a massive number of novel genes was obtained from so 

few samples provides an indication of the true scope of Earth’s genetic diversity
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(Falkowski & de Vargas, 2004). More recently, the results of the Sorcerer II Global 

Ocean Sampling (GOS) expedition have been released (Rusch et al., 2007). These 

environmental samples were found to contain 6.12 million predicted proteins, 

effectively doubling the number of known proteins (Yooseph et al., 2007). Known 

protein families now contain a greater diversity of protein sequence. In addition, new 

protein families are being discovered at a linear rate. 6044 sequences, previously 

described as orphans, were found to have matches to the GOS data (Yooseph et al.,

2007). Hence, the data coming out of metagenomic analyses will make a significant 

contribution to finding gene families for orphans, in environmental bacterial species.

QuickMine is suited for analysing metagenomic data. Since its incorporation into the 

YAMAP annotation package, it has been used for first pass analyses of sequence data 

obtained from the environment. Members of the NERC funded Microbial Metagenomics 

project (http://www.genomics.ceh.ac.uk/mm/index.php) have utilised QuickMine, as 

part of the YAMAP annotation package, to perform first pass annotation of sequence 

data obtained from water samples. As more researchers gain access to metagenomic 

sequence data, the demand for software such as QuickMine and YAMAP will grow.

7.5 The Future o f the Genom e Collection

The science of genomics is technology driven. As new technologies and methods 

evolve, more ambitious sequencing projects can be performed (Eisen, 2007). One 

example is that of ‘community whole genome sequencing’. A metagenomic approach 

has already been applied to the human gut microbial community (Gill et al., 2006), 

however, the Human Gut Microbiome Initiative aims to produce deep drafts of 100 

intestinal species

(http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/HGMISeq.pdf). 

This will be performed by utilising new technologies, such as pyrosequencing (often 

referred to as 454 sequencing). Such studies will allow scientists to perform a number 

of different analyses. For example, they could determine the total number of genes 

involved in producing the metabolic capacity of a community, or analyse the rates of 

horizontal gene transfer and investigate the role of the pan-genome in bacterial 

adaptation (Field, Wilson & van der Gast, 2006).

Given the current rate of genome sequencing, it has been estimated that by 2010, 

there will be over 4000 bacterial genomes available (Overbeek et al., 2005). Such a 

genome collection will be of great scientific importance and the financial investment
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required to generate it will be substantial. Therefore, as a community, we should make 

every effort to describe it accurately. This not only involves the annotation of the 

sequence data, but also of the genomic metadata.

It should be essential that metadata is captured accurately. This includes putting each 

genome sequence into its correct geospatial and temporal context (latitude, longitude, 

altitude/depth, date and time of sampling) and also providing details of the 

experimental method used (e.g. sequencing method) (Field et al., 2007b). Obtaining 

such data will allow many questions to be asked of the genome collection that are not 

currently possible. For example, analyses of different annotation methods may highlight 

biases in particular procedures, such as the over-prediction of genes. Currently, 

metadata describing a particular species or strain, for example the primary habitat and 

host associations, are often found only in the primary literature on a per-genome basis, 

or alternatively in reference works, such as Bergey’s Manual (Garrity, 2001). The 

distributed and patchy nature of this information creates great difficulties when trying to 

curate comparable data for hundreds of genomes.

The lack of accurate and complete genomic metadata, coupled with the questionable 

accuracy of genome annotation, acted as a major bottleneck in comparative analyses 

investigating factors affecting the numbers of orphan genes. The GSC (Genomic 

Standards Consortium) (Field et al., 2007b) formed in order to reach a consensus 

regarding the collection of genomic metadata. The goal of the GSC is to promote 

mechanisms that standardise the description of genomes and the exchange and 

integration of genomic data. Such standards will not be restricted to bacterial genomes, 

but will also be relevant for other projects ranging from viral genomes to large 

metagenomic projects. Only by developing such standards, with active involvement 

from the international research community, will it be possible to have a genome 

collection that can be interrogated with confidence. Once initiatives such as the GSC 

are fully supported by the community, it will become trivial to obtain necessary 

metadata. Additionally, QIPP scores could be used to act as a threshold value, 

therefore allowing only predicted coding regions scoring above a given value to be 

used in a particular analysis. The availability of the QIPP web server means that users 

can calculate QIPP scores for any genome and are not reliant on the updating of the 

OrphanMine. In the future, QIPP, in conjunction with reliable genomic metadata, could 

be used to perform interesting analyses. For example, it will be possible to accurately 

investigate the effect of habitat, or the effect of annotation methods, on the number of 

orphan genes. Such analyses will need to control for the effect of taxonomy. This could
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be done using quantitative measures such as IIO, which can indicate the taxonomic 

isolation of a sample within a given dataset.

7.6 Future Applications o f QIPP

As a stand-alone method, QIPP is still in the early stages of its development. However, 

both the results presented in this thesis and the support from the research community, 

suggest that further research to refine the technique would be of benefit. Such 

refinements could simply be the addition of new criteria, for example, dinucleotide 

frequencies. An analysis centred on the correlation between different criteria may 

highlight biases in the scoring. Additionally, correlations between criteria and real 

biologically relevant regions (e.g. low complexity and transmembrane regions) also 

need to be explored. Such work would be greatly enhanced by the availability of an 

experimentally verified dataset. This would allow for the accurate exploration of the 

value and meaning of QIPP scores.

QIPP could also be extended to other taxa, for example, to determine if the patterns 

seen in bacterial genomes hold true for eukaryotic genomes or large genetic elements. 

For example, giant viruses (http://www.aiantvirus.org) (Raoult et al., 2004) and large 

environmental plasmids (Tett et al., in submission) contain large numbers of orphans. 

For the analysis of such genomes, non-homology based metrics hold special appeal, 

because such taxa have relatively few related genomes available in public databases, 

making the selection of an appropriate ‘background’ database challenging.

Metagenomic analyses provide a different challenge. The calculation of QIPP scores is 

based on the distribution of the various criteria within a genome. Metagenomic 

analyses do not provide this genomic context. Therefore QIPP is not, as a complete 

method, transferable to metagenomic datasets. However, there is a need to develop 

methods to provide an indication of the likely coding potential of a given sequence. This 

is of particular importance in the large datasets generated by pyrosequencing. Using 

homology-independent criteria, such as those used in QIPP, may provide a starting 

point for the development of such a method.

It is possible, though purely hypothetical, that QIPP could also be used to provide an 

overall evaluation of the depth of annotation in a genome. This could be done by 

determining the proportion of orphans above a certain QIPP score, e.g. 0.7. It is
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plausible that an inverse relationship could exist, between the number of orphans 

above this threshold score and the level of knowledge regarding the given organism.

7.7 Conclusion

As both our knowledge and resources expand in the area of microbial genomics, we 

can begin to penetrate the issue of the orphan genes. As each new genome project is 

completed, more orphans are placed in families. The results of the large metagenomic 

analyses highlight the extraordinary levels of microbial diversity present in our 

environments, and in doing, so discover new gene families and find families for 

orphans to join (Yooseph et al., 2007). Whilst my data shows that the numbers of 

orphans are still increasing, it no longer seems so unexpected, given the vast levels of 

genetic diversity being uncovered. Hence, the majority of bacterial orphans appear to 

be an artefact of a lack of sampling depth.

Laboratory techniques, such as expression and proteomic analyses, can help in 

elucidating the accuracy of gene predictions. Such research is still in its early stages 

but results suggest that small CDS are expressed surprisingly often. Therefore, such 

regions may not be errors in annotation and should not automatically be regarded as 

such (Wilson et al., 2007). Further proteome based studies will assist in providing 

evidence of a protein product resulting from such sequences. The orphan sequences 

that arise as a result of annotation errors, may slowly be removed from the public 

databases by using such techniques.

Resources need to be developed to permit effective knowledge exchange. For such 

developments to be useful and widely used, the resources need to be centrally linked 

and easy for people to use. The community will be required to provide annotations in a 

structured format. Evidence for their annotation will need to be captured, as will their 

name and institution. It may also be necessary to provide links to the experimental data 

used to form their judgements. Capture of such data will help to provide good 

provenance to the annotations. This transparency, together with the evidence and 

associated metadata, should help with providing useful knowledge to the community. 

For such a resource to be fully utilised, a change in the way in which sequence 

identifiers are applied and used in databases is required. A universal gene identifier 

needs to be introduced. This will enable effective linking of the community annotations 

to all relevant databases. Such an initiative would facilitate more effective knowledge
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sharing and would permit more detailed analyses. In conjunction with a structured 

community led sequence annotation project, much progress could be achieved.

Despite these developments, sequence annotation accuracy remains a key issue. 

Whilst metrics, such as QIPP, can help assess the quality of predicted proteins, it 

appears more work needs to be done to stop the errors at their source. This could be 

achieved through the development of novel algorithms; however, it is through close 

integration of computational biologists and relevant experts (for example, a specialist 

on the genome of interest) that I see progress being made. Whilst this is not a novel 

suggestion (Mclnerney, 2002), it is one that is often over-looked. Breaking down the 

barriers between different disciplines and permitting knowledge sharing between 

groups should result in cleaner and more accurate annotations.
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Appendix 3.1 -  Detecting Hom ology using BLAST

BLAST (Basic Local Alignment Search Tool) (Altshul et al., 1990) is one of the most 

heavily used sequence tools available in the public domain (McGinnis & Madden,

2004) and is claimed to be the ‘single most important piece of software in the field of 

bioinformatics (Korf, Yandell & Bedell, 2003). It is commonly used via a web interface 

but can also be used as a stand-alone tool capable of performing batch analyses. 

BLAST was first developed in 1989 at the NCBI, since then several versions have 

become established. Examples include BLASTN, used for comparing a nucleotide 

sequence with a nucleotide database and BLASTP which compares amino acid protein 

sequences against a protein sequence database.

Sequence similarity is a powerful tool for providing putative functional assignments to 

newly obtained sequence data. Thus a major goal of sequence alignment is to enable a 

researcher to determine whether two sequences display sufficient similarity to infer 

homologous relationships between each other (Baxevanis & Ouellette, 2005). BLAST 

is a fast and reliable (both statistically and computationally (Korf et al., 2003)) method 

to analyse sequence similarity.

Amino-Acid Scoring Matrices

A scoring matrix is a two dimensional matrix containing all possible pairwise amino acid 

scores. In the PAM (Percent Accepted Mutation) matrix (developed by Margaret 

Dayhoff in the late 1960’s and early 1970’s), each element shows the probability that 

the original amino-acid will be replaced by another amino-acid over a defined 

evolutionary interval.

More recently a second type of scoring matrix was introduced. S. Henikoff and J.G. 

Henikoff (1992) developed the family of BLOSUM (Blocks Substitution Matrix) matrices. 

The goal was to replace the PAM matrix with a matrix that would perform better in 

identifying distant relationships (Lesk, 2005). BLOSUM matrices were constructed by 

extracting ungapped segments (known as blocks) from aligned protein families. These 

blocks were further clustered on the basis of their identity. For example, the blocks 

used to derive the BLOSUM62 matrix all have at least 62% identity to another member 

of the block. Generally, today, BLOSUM is more commonly used, as it is believed that 

BLAST searches employing BLOSUM matrices offer greater sensitivity (Korf et al., 

2003).
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The BLAST Algorithm

Broadly speaking, there are two methods for aligning two sequences. Sequences can 

be aligned globally or locally. Global similarity algorithms, such as Needleman-Wunsch, 

optimise the overall alignment of sequences. This method is best suited for finding 

matches in long stretches of sequence with low levels of similarity. Local similarity 

algorithms, such as Smith-Waterman, identify relatively short alignments. This is useful 

in biological sequences as there are often regions of local similarity (domains, active 

sites) but not global regions of similarity.

BLAST searches for local regions of similarity. However, unlike the Smith-Waterman 

method, it does not explore the entire search space between two sequences. This fact 

is key to its speed and sensitivity. The reason why BLAST can produce accurate 

alignments quickly comes down to the heuristic nature of its algorithm. The algorithm 

contains three heuristic layers: seeding, extension and evaluation.

Seeding refers to the initiation of an alignment. It assumes that significant alignments 

have ‘words’ in common. A word is a defined number of letters. When two sequences 

are compared, only those regions with word hits will be used as alignment seeds. In 

BLASTP, the idea of a ‘neighbourhood’ is introduced. The neighbourhood of a word is 

a list containing the word itself and all other words whose score is at least as big as a 

pre-defined threshold (T) when compared via a protein scoring matrix such as 

BLOSUM62. By adjusting the value of T, it is possible to control the size of the 

neighbourhood and therefore the number of word hits. The interplay between word size 

(W) and T is the most effective method for controlling the speed and sensitivity of 

BLAST (Korf et al., 2003).

Extension refers to the extension of the seeded alignment. The extension occurs in 

both directions. The endpoint of the alignment extension is calculated using the pre

defined value of X. X is a measure of how much the alignment score is allowed to drop, 

since the last maximum value. Once the score has dropped by the value of X, the 

extension is terminated and is trimmed back to the previous maximum score.

The final stage is the evaluation. This refers to the evaluation of the alignments to 

determine if they are statistically significant. A significant alignment is called a ‘HSP’ 

(high-scoring pair). The evaluation is not as simple as just using a score threshold 

because of the presence of multiple HSPs. Instead an alignment threshold is used. 

This threshold is set by the software and therefore is not a user definable parameter.
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The alignment threshold is an effective method for removing many random, low-scoring 

alignments. Once the HSPs have been organised they are evaluated using a final 

threshold. The final score calculated for a sequence is utilised in the Karlin-Altschul 

equation (see 3.3.3) to determine if the match is statistically significant. The output from 

the Karlin-Altshul equation is compared with the final threshold. The final threshold (E) 

is a parameter entered by the user. If the calculated value for E is less than the 

threshold value provided by the user, the alignment is printed out to the report (Korf et 

al., 2003).

Karlin-Altshul Equation

In 1990, Samuel Karlin and Stephen Altshul published a theory of local alignment 

statistics. The central element of this theory is the Karlin-Altshul equation:

E = kmne"AS

The equation states that the number of alignments expected by chance (E) during a 

sequence database search is a function of the size of the search space (m * n), the 

normalised score (AS) and a minor constant (k). The size of the search space is a 

product of the length (in amino acids) of the query sequence (m) and the number of 

letters in the database searched (n). Lambda (A) is a matrix specific constant 

responsible for converting the raw score to a normalised score. The lower the value of 

E, the less likely it is that the alignment is a result of random similarity.
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Appendix 3.2 -  Condor

Clustered computing at its most basic level involves two or more computers serving a 

single resource (Bookman, 2002). Many scientists, particularly in the field of molecular 

biology, are now involved in the type of research that needs a large amount of 

computational power over a long period of time. This form of computing environment is 

called a ‘High Throughput Computing’ (HTC) environment..

Condor is a system that takes advantage of resources that would otherwise be wasted. 

Condor is a result of the work of the Condor Research Project based at the University 

of Wisconsin-Madison (http://www.cs.wisc.edu/condor/). A long running job, expected 

to require the exclusive use of a workstation for several days, may produce results 

overnight using Condor (dependent on the size of cluster used). To utilise Condor, 

users submit their jobs through the use of a submission file. Condor places these jobs 

in a queue and chooses when and where to run the jobs based upon a pre-defined 

system, known as Class-Ads. The progress of the jobs is monitored and, when 

completed, the user is informed. Class-Ads allow machines to advertise resources 

available for use, and allow the submitted jobs to advertise for the resources they wish 

to use (Mausolf, 2005b).

The universe, under which the user wants their jobs to be run, must be specified during 

job submission. The universe refers to the run-time environment (Mausolf, 2005b). 

There are six different universes available: standard, vanilla, PVM, MPI, globus and 

java. The most commonly used are the standard and vanilla universe. The vanilla 

universe is generally used when users do not have access to the source or object file 

and thus the jobs can not be linked with the Condor library. This lack of access 

prevents the use of the standard universe. As a result, the vanilla universe cannot 

provide functionality such as job check-pointing. Check-pointing allows a job to resume 

from the most recent check-point if the job fails.

Condor and The Grid

The Grid refers to the networking of a potentially unlimited number of computer devices 

within a grid. This approach to computing has been likened to the electricity grid that 

serves electricity directly to our homes and businesses (Joseph & Fellenstein, 2003). It 

is believed that the Grid may be able to tap into a reservoir of computational power 

when and where it is needed. However, such a scenario is still some time in the future.
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Currently the easiest use of Grid computing is to run an existing application on a 

different machine. Even for this simple example, prerequisites exist. For example, the 

application must be executable remotely and the remote machine must meet any 

requirements such as specific hardware or software. Also, in order for a user to access 

a Grid, they must first enrol. This is likely to involve establishing identity with a 

Certificate Authority (Ferreira et al., 2003). In order to connect to resources over a Grid, 

computational tools will be required. The Globus Toolkit is a set of tools useful for 

building a Grid.

The Globus Toolkit was developed to enable resource sharing across administrative 

domains. It allows for job submission, monitoring and control in a heterogeneous 

environment. Over time, the Globus Toolkit has emerged as the standard for Grid 

infrastructure (Mausolf, 2005a). However, the Globus Toolkit does not include a 

scheduling component. A scheduler is responsible for determining when and where to 

run a job. The scheduler co-ordinates with Globus, this allows the job to run on the 

selected resource. Condor can act as the scheduler by using the Condor universe 

called globus. Using this universe, Condor submits jobs to remote Grid resources 

through the Globus Toolkit (Mausolf, 2005a).

Using Condor in combination with Globus is known as Condor-G. In effect Condor-G 

should provide a window to the Grid for users to access resources and manage jobs 

running on remote machines.
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Appendix 3.3  -  QuickMine Configuration File

# config file to be used with "quickmine.pl" script
# Cared for by Gareth Wilson (gawi@ceh.ac.uk)
#
# Notes:
# All the specified directories must exist before you run the
# "quickmine.pl" script
# End any lines that wrap to the next line with "\" or
# Config::Simple will throw an error (like: "can't call method 
#"param")

#
# Where are the proteomes located?
#

# Note: use no trailing / 
path2proteins = "/home/gawi/proteomes"
#
# What ending is used for the proteome files?
#

ext = "\.faa"

# What ending is used after 2qmfasta parses the proteomes
# (Should just leave as .fasta)
# (read by quickmine)
#

fasta_file_ending = "\.fasta"

#
# Where to write the website (all output)
#

# Note: use no trailing / 
path2output = "/home/gawi/output"

#
# Where to read blast from
#

path2blast = "/home/gawi/output"

#
# Where to run the scripts from
#

path2scripts = "/home/gawi/quickmine"

#
# Path to files to be viewed over network
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#

path2public = "/gawi/output"

#
# What record separator to use on all the output tables created?
#

#record_separator = ", 11 
record_separator = "tab"
#
# Which parts of the pipeline to run?
#

# parse input files to rename headers and create the 
#SELF_blast_database ?
parse = 1
# format the SELF_blast_database ? 
format = 1
# run quickmine to do all the blast searches?
# Alternatively stop the pipeline at this point, run your blasts using
# condor, then continue from split_blast below
quickmine = 1
# split each genome blast file into individual files and place them in
# a genome specific directory.
split = 1
# parse all blast reports to determine numbers of hits ? 
orphans = 1
# summarise these hits for each input proteome ? 
hits = 1
# create a matrix of shared genes between all proteomes ? 
genetable = 1
# detemine the number of orphans in each proteome ? 
orphan_count = 1
# determine the size of orphans in each proteome and create fasta 
files # containing the orphan sequences?
orphan_size = 1
# create list of paralogous orphans? 
paralogue_count = 1
# modify "overview files" to see number of orphans decline over time ?
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increment = 1
# modify "overview files" to see number of orphans decline over time ? 
time = 1
# create binary matrix? 
binary = 1
# All plot sections of pipeline require gnuplot to be installed
# create single plot containing all genomes?
plots = 1
# create a plot for each individual genome? 
indiv_plot = 1
# run dot_plot.pi 
dot lot = 0
# create a final "index.html" file that summarised all the results ?
summarizer = 1

#
# Write individual fasta files (2qmfasta.pl)
#

write fasta files = 1

#
# keep this value set to 1
#

condor_output = 1

#
# Is the BLAST against the SELF_blast_database? (If in doubt leave as 
#default value 1)
#

self hit = 1

#
# Command to format the SELF_blast_database?
#

# Note: make sure correctly set for either a protein or a dna database
formatdb = "/usr/software/blast/blast/bin/formatdb -i 
/home/gawi/quickmine_pack/sarah_output/SELF_blast_database -p T -o F"

#
# Command to run blast
#
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blast_command = "/usr/local/bin/blastall -p blastp -d 
SELF_blast_database -e le-3 -b 500 -f 9 -F 'mS' -M BLOSUM45"
#
# Significance threshold to use in detecting orphans? (get_orphans.pl 
#script)
#

sig_thresh = 0.001

#
# Which file ending to use in the genetable script?
#

end = "_SELF_blastp_overview.html.hits.html"

#
# Which file ending to use in the orphan_count script?
#

count_end = "_SELF_blastp_overview.html"

#
# Which file ending to use in the orphan_time script?
#

time_end = "_orphan_increment.html"

#
# Which file ending to use in the dot_plot script?
#

matrix_end = "_SELF_blastp_matrix.html"

#
# Which cascading stylesheet to use?
#

stylesheet =
"http://darwin.nox.ac.uk/gawi/quickmine_pack/quickmineoutput.css"
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Appendix 4.1 -  OmhanMine omhandb v2 SQL file

The SQL script below describes the tables created in OrphanMine and the indexes 

within those tables.

use orphandb_v2;
create table genome3 (NC_number char(29),

Publication int (4),
Genome_size float(8),
Orfs int(6),
Percent_lc float(5),
Gc_content float(5),
Species text,
Family text,
Division text,
Domain text,
Tax_id int (10),
Uniqueness text,
Genome_id int(4) not null primary key

auto_increment);
create table orf3 (Genome_id int(4),

Orf char(22),
Gi int(8),
Length int(5),
Description text,
Low_complexity float(5),
Length_j?ercentile int (3),
E_value char(6),
Comp_evalue int(3),
Identity float(5),
Closest_hit char(16),
Gc float (5),
Ortholog int(3),
Start int(9),
Stop int(9),
Direction int(l), 
length_rank int (3), 
lc_rank int(3), 
gc_dif f_rank int(3), 
cluster_rank int(3), 
cost_diff_rank int(3), 
cost_rank int(3), 
gc_diff float(5), 
nd float(20), 
cost_diff float(20), 
cost float(20), 
gc_rank int(3),
Orf_id int(7) not null primary key auto_increment);

create table orphan3 (Orf_name char(22),
Dataset_number int(3),
Truejpara_orphan int(4),
Orphan_id int(7) not null primary key

auto_increment);
create table paths_dataset3 (Dataset_number int(3) not null primary
key auto_increment,

Blast text,
Seq plot text);
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create table join_dataset3 (Dataset_number int(3),
Dataset_id int(5) not null primary key

auto increment);

create table dataset3 (Genome_id int(4),
Orphans int(5),
Small int(5),
Large int(5),
Mean_size float (5),
Percent_orphans float(5),
True_paralogues int(5),
Iio float (15),
Dataset_id int(5) not null primary key

auto_increment);
create table Para_blast (NC_query char(29),

Orf_query char(22),
NC_hit char(29),
Orf_hit char(22),
E_value char(6),
Para_id int(10) not null primary key

auto_increment);
create table blast_summary (Genome_id int(4),

Orf char(22),
NC_0 00907 int(1),
NC_0 00908 int(1) ,
NC_000911 int(1) ,
NC_00XXXX int (1), # require a column for each

genome in the dataset.
Blast_summ_id int(10) not null primary key

auto_increment);
create index index_on_nc on genome3(NC_number); 
create index index_on_Orf on orf3 (Orf); 
create index index_on_gi on orf3 (Gi);
create index index_on_orf_genome_id on orf3 (genome_id);
create index index_on_Orf_name on orphan3 (Orf_name);
create index index_on_genomeid on dataset3(genome_id);
create index index_on_nc_query on Para_blast(nc_query);
create index index_on_blast_Orf on blast_summary (Orf);
create index index_on_blast_genome_id on blast_summary(genome_id);
load data local infile
"/home/gawi/orphan_database/orphans_331/genome_table_330.txt" into
table genome3;
load data local infile
"/home/gawi/orphan_database/orphans_331/orf_table.txt" into table 
orf 3;
load data local infile
"/home/gawi/orphan_database/orphans_331/orphan_table_Dl.txt" into
table orphan3;
load data local infile
"/home/gawi/orphan_database/orphans_331/dataset_table_l.txt" into
table dataset3;
load data local infile
"/home/gawi/orphan_database/orphans_331/dataset_l_paths.txt" into 
table paths_dataset3; 
load data local infile
"/home/gawi/orphan_database/orphans_331/join_dataset_table_l.txt" into 
table join_dataset3;
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load data local infile
"/home/gawi/orphan_database/orphans_331/para_blast_table_l" into table 
Para_blast;
load data local infile
"/home/gawi/orphan_database/orphans_331/blast_summary_table.txt" into 
table blast_summary;
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Appendix 4.2 - OrphanMine Web Page Descriptions

orphanm ine.php
• Provides user with the option to enter OrphanMine in one of 3 ways. They can 

choose Custom, in which they create their own gene dataset. They can choose 

Orphans, in which they explore one of the pre-generated orphan datasets. 

Alternatively they can choose TRGs, this allows the user to search for lineage- 

specific genes in their genomes of interest.

• Provides user with the ability to enter one of the general pages (Search, SQL, 

BLAST, Download, Help, FAQ and Contact). These pages remain constant 

regardless of the section of the site currently being utilised (the exception being the 

page specific help files discussed in 4.8.4).

OiphanMme is • database designed to allow the exploration of patterns m bacterial gene Astnbution 
Thera an three different methods foe exploring the data in OrphanMine

Define your own dataset of predicted proteins using the fitters provided CUSTOM 3

' Explore the 4 prs-coaeputed orphan datasets. (  o n r t iw g

Search for taxononucally restricted genes m your genome of interest C_ TrtQs 3

For more information please read the FAQ or the context specific help pages.

i Cbelt here to view our older dataset. as reported in Wilson eta/ flOQfl.

orphanmine.php Implementation

On entry to the site the user will be directed to orphanmine.php, known as 

Home. The top section of the page is coded for by the script headerl.php and is 

included in every page in the OrphanMine system. In addition to the 

OrphanMine logo (which contains a link back to orphanmine.php), headerl.php 

codes for the navigation bar, from which the user can enter various parts of the 

system. The navigation bar remains constant throughout the system thus 

providing freedom of movement to the user in a familiar style. Three large
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buttons are found centrally on the page, these are labelled Custom, Orphans 

and TRGs and direct the user to customise.php, orphan_home.php and 

restriction_v2.php, respectively.

orphan hom e.php
• Allows the user to view details about the pre-generated orphan datasets and select 

the dataset they wish to explore.

• Displays a list of the genomes included in the currently selected orphan dataset. 

The list can be ordered alphabetically or chronologically. Each genome has a ‘More 

Info’ button associated.

• Permits the user to select a subset of genomes and view associated data such as 

Genome size and Orphan number in one table.

DATASET I  69770orphanfrom 330gtnom*s (972526prt&cUdprotons) H0U9 QtPF SEARCH SOL BLAST DOWNLOAD WLP FAD CONTACT

Thu section of OrphanMine allows you to axplon our pre-computed orphan dataset* (Wiboc «.♦ al y
Prom this page you can salact the dataset you wish to visw and select tha genome you would like to explore farther
Alternatively you are able to salact a list of genomes and view data describing each genome in a single table.

WARN1NC!
|tht mphwu here ace only psmicudsa bseng orphans rotative to yarwchoeenliiaa it

1 CnwmDaasai 1 ®D aunt O d k i m i  O d u » 1 O  Dataset 4

1 Create Custom Dataset 1 OPnduUdPieUtu ©TRC?s

I View Genomes in Order of Publication"!

Select GeNames: ®A1! Salad 4am: QOanoma toe □  « b .  D P ^ ^ u .

1 Vim* Selected Genomes Q  Protein number □  % orphans □  Mean orphan me

Inlb)

orphan home, php Implementation

The information in the table is obtained by performing a query involving the 

MySQL tables Genome3 and Dataset3. The query determines which genomes 

should be included in the table. The user can alter the query by selecting a 

different dataset. The final column in the table of genomes contains a checkbox, 

this allows the user to select that particular genome so that it appears in the 

output of compare.php. Clicking on the ‘More Info’ button leads to 

genome_info.php, generated for the genome selected by the user (due to the 

relevant Genomejd being passed in the URL as var).
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compare.php

• Provides the user with the list of genomes they selected in the checkboxes on 

orphan_home.php plus the data they selected to describe those genomes.

• Provides a ‘More Info’ button for each genome.

compare.php Implementation

The genomejd for each selected genome is passed from orphan_home.php to 

compare.php in an array via the POST method. The data types to be shown are 

also passed using this method. An SQL query is performed for each genomejd 

in the array and the results displayed in the HTML table.

customise.php

• Provides the user with the option of creating their own dataset of genes by selecting 

from a number of different parameters (E-value, low complexity, GC content, 

length, length percentile, best hit genome, number of genomes with a hit and 

percent identity). These parameters can be combined.

• Displays a table listing all the genomes, the number of predicted proteins in each 

genome that fit the user defined criteria and a bar chart illustrating the number of 

predicted proteins that fit the criteria as a percentage of the total number of 

predicted proteins in the genome.

• Provides links to enable the user to view the predicted proteins matching the criteria 

within a given genome and also view genomic level information with the predicted 

proteins matching the criteria.
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I y$er Defined Orphan l)at<

By default this page searches on aS predicted proteins m aS bacterial proteomes.
If no a-ralue is selected than your search will be ran on all proteins.
However if you want to search on a restricted dataset it is possible to enter an e-value cutoff Hence the search will only involve those proteins that have no matches at the given threshold.

Generating custom datasets is a data intensive process and may take some time. Please be patient as you wait for the page to load

Dene

customise.php Implementation

When the user initially loads the page, a query is performed against the 

Genome3 and Orf3 MySQL tables. This determines the number of predicted 

proteins there are in each genome when there are no restrictions imposed. 

Each criteria type has an associated form element allowing the user to enter 

their specific thresholds. To apply these thresholds, the button ‘Create Dataset’ 

should be selected. This causes the page to reload, however this time the user 

input is stored as session variables and integrated into the SQL query. Before 

the query is performed, each element entry is checked to ensure the user has 

entered an expected value e.g. numerical. If the value fails the check, an error 

is reported back to the user. The bar chart is constructed from 100 table 

elements. The number of elements filled red is calculated in the PHP once the 

query has been resolved. The user may follow the link to ‘View Predicted 

Proteins’ or ‘More Info’, with their selected thresholds stored as session 

variables for use in other PHP scripts.

restriction v2.php

• Provides the user with a drop down menu to select a reference genome with which 

to compare other genomes against.

• Displays a list of the genomes held in the database. Two checkboxes are 

associated with each genome, only one of which can be selected for each genome.

jAdattobuutti

r-nu:
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By selecting the left hand checkbox, the user is selecting to view those genes in the 

reference genome that are shared with the selected genome. By selecting the right 

hand checkbox, the user is selecting to view those genes in the reference genome 

that are not present in the selected genome.

0e Jflew

^  Getting Started Q  Latest Head!

Bookmarks look |jefc

Ktp://wvrw genomics.C  V J ©  So | print screen |

TRG DATASET HOHW OtPP SEARCH SOL BLAST DOWSJ OAD HELP FAQ CONTACT

Vfee.pfeaee rad the hr* page

Thu peg* allow* you to cnata your own list of taxonomic ally restricted genes (TROs) from the predicted proteins held m OrphanMine 
Select your reference genome from the drop down menu
Select the genomes you wish to find homologues in (left column) end select those you do not went to find shared genes in (right column). 
Pres* the Tind Restricted Oenes1 button at the bottom of the page

Please select a reference genome Corynebocterium diphtherias NCTC13129

i longum NCC27Q5
Corynebactenum drphthenae NCTC 13129

i gjutermcum A ICC 13032
Corynebactenum gtutarmcum A ICC 13022

Letftottu xyh subep. xyli sir CTCB07

iUyci*«U~«bo»i.AniZW7~“  
fMynmhiindil«p»—TW 

MjrcobuUsua tubaculoau CDCIJ5] 
~ iMyccfcirt—  lubwculoo. TOrT"

restriction v2.php Implementation

This page uses Javascript to attempt to prevent the user from selecting a 

combination of boxes that will return an error message. When the user selects a 

reference genome from the drop down menu, the ‘Shared by’ checkbox 

associated with that genome will automatically be ticked. Javascript is also used 

to prevent the user from selecting both the ‘Shared by’ checkbox and the ‘Not 

Present in’ checkbox for the same genome. Additionally, if the user tries to 

submit before selecting a reference genome, a Javascript box will pop-up and 

prevent them from proceeding. On submission, the relevant data is passed in 

arrays to restricted_genes6.php.

restricted genes6.php

• Provides a list of the genes and their associated metadata that matched the user 

generated query from restriction_v2.php.

• Provides the option to view the sequence of a gene of interest, or to BLAST the 

gene of interest against a selection of databases.
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• Allows the user to download the list of genes in tab-delimited or GFF format.

• Provides a trolley facility. Users may add genes to their trolley, empty their trolley, 

view the contents of their trolley or alternatively select a new reference genome.

1
O Go | Pjhuxprtnt screen j

TRG DATASET HOME OtPP SEARCH SOL BLAST DOWNLOAD HELP PAD CONTACT
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Corynebactenum effidens YS-314(NC_00436?), 2950 predicud genes 

b r M d O MM* Corynebactenum gulanucum ATCC 13032 (NC 003450), 2993 predicted genes
Corynebactenum tfutamicuraATCC 13032 (NC 006958). 3057 predicted genes 
Corynebactenum je&etum K411 (NC_007164). 2104 prtdicted genes

j| Add Genes to Trolley I I Select New Reference Genome I j| Empty Trolley |

Gene* currenUym Trolley -  315 Reference Genome* U*ed in Trolley- 1 [ View Trolley )

TRG-« r»«trict»d to Cerynabactgrmm diphrtrem- NCTC 13129 and 4 «*lecfrd gwiom»s (20 predicted gen»*)

I Download Ligt of Genas CqfQ 11 Download Liet ol Genes (tab) I]

jNCTC 13129]

Done

restricted aenes6.php Implementation

The NC number of the reference genome, the genomes that have shared genes 

with the reference genome and those that do not have the same genes as the 

reference genome are passed from restriction_v2.php in arrays. This data is 

used to perform the necessary queries. The MySQL table Blast_summary is 

central to the functionality of this page. This table contains data showing which 

genomes contain matches to which genes, therefore it is quick to query and 

obtain the lists of genes that match the user requirements.

If the user chooses to download the list of genes, the scripts download_trgs.php 

and download_trgs_tab.php are called. These scripts are never seen by the 

user but are responsible for managing the download of the data.

In order to implement the trolley functionality, PHP session variables were 

utilised. This enables the tool to keep track of what genes the user is interested 

in, allowing the user to add more than one reference genome to the trolley. The 

most important session variables are trolley and ref_trolley. Trolley stores all the

0le &<• tfew fio Bookmarks look t**>
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identifiers for the genes stored in the trolley and ref_trolley stores all the NC 

numbers of the reference genomes whose genes are stored in the trolley. If the 

user chooses to empty the trolley, the session variables are unregistered. If the 

user selects to view the trolley, the necessary data is passed on to trolley.php.

trollev.php

• Lists the NC number and species names of the reference genomes which have 

genes stored in the trolley. Also shows the number of genes from those reference 

genomes that are in the trolley. Provides a ‘More Info’ button.

• Each reference genome in the trolley has a checkbox associated with it. By 

selecting the checkbox and clicking on the ‘Download Orphans’ button, the user 

can download the protein sequences of the genes in their dataset.

trollev.php Implementation

This PHP script utilises the data passed in the trolley and ref_trolley session 

variables in order to make the necessary SQL queries. The ‘More Info’ button 

causes the trgjnfo.php page to load. By selecting to download the protein 

sequences of their genes of interest, the user initiates the script 

downloading.php. The header of the file generated by downloading.php is set 

so that a plain text file is produced as a file for download. The Gl identifiers for 

each of the proteins whose sequence is required is obtained from the MySQL 

table Orf3. This value is used by the programme fastacmd. Fastacmd searches 

an indexed version of the BLAST database generated in QuickMine for the 

retrieved Gl number. The output from fastacmd is the relevant protein sequence 

in FASTA format.

genome info.php, custom genome.php & trg info.php

• Provides the user with a summary of the information regarding their genome of 

interest, specific to the dataset they are using.

• Acts as a starting point for accessing much of the genome specific data. For

example the orphan plots (genomejnfo.php only), QuickMine matrix, paralogous

orphans (genomejnfo.php only) and protein sequences for the genes of interest.

• Allows the user to access pages to view their genes, rank their genes and permits 

downloading of the genes in GFF format.

• Provides access to the Artemis Webstart and the CGView applet.

• Provides links to the GenomeBank and to NCBI taxonomy.

159



Fie &ft ** *  fio Bookmarks Help O

’ V * ^  O  1 □  http://www.gBQ«rta.ceh.ac.ufc/orphjn_B»w/gBnonwJnfo.php?var"66 v j O Go [ jP f̂rux print screen |

^Getttng Started L i latest Headmes

DATASET 1 63770 orphans from J JO ginomti (972526pntbcudprotmni) HOUS OTP? SEARCH SOL BUST DOWNLOAD HELP FAQ CONTACT

NC Number iCJKB04NCJ033W | | Lood review || I Loodortem.s 1
Spaci.. Agrobactemun tumefacten. su C58

*ph«»P!ot Vi—  J Domain Bactana
ORot ® Percent Diviaion Alphapiotaobactana

Family Rhaobtacaae
Taxonomy ID p6299
Isolation Index

O.OO..S*. [547
3utckMm« Mtfoc View | % Low Complexity mORFa ]577
®  Quick 0  Pretty CSC content —-------------------------------------------------------------------------------------------------------------------------------------

Number of ORF i [4661
Number of Orphan* 597 |™owniond orpharw ||l View orphana ||[ Rank orphans ]
% of orphan* m Oenome 6 37
3mal Orphan. Ml

Drphan Sequence

/”>, r \ Q „
View | Large Orphan.

1Largs | W Small WAB
Paralogou. Orphan.

genome info, php, custom genome, php & trg info, php Implementation 

The main function of these pages is to extract all the information describing a 

specific genome within a specified dataset. The method used for extracting the 

data differs according to the PHP page. Genomejnfo.php extracts the data 

from MySQL tables Genome3 and Dataset3. Custom_genome.php uses the 

values selected to generate the dataset (from customise.php and saved as 

session variables) to interrogate the Orf3 table and count the output, in addition 

to extracting dataset independent information from Genome3. Trgjnfo.php 

utilises the genes stored in the trolley session variable, and the NC numbers 

stored in the ref_trolley session variable, to calculate the dataset specific data. 

This is done using a combination of the tables Genome3 and Orf3.

The information is displayed in tables and split into categories and colour 

coded. The taxonomic attributes of a genome, such as Species, Taxonomy ID 

and Isolation Index are displayed in a green table. The data describing the 

genomic content, for example, number of predicted proteins and genome size 

are shown in a pink table. Buttons linking to output from QuickMine, such as 

orphan plots, are shown in a yellow table. The colours chosen to represent the 

groups are all pastel shades; this is so that the users do not mistake the colours 

for warnings or error messages which may occur with sharper shades. By using 

pastel shades the colours are clearly present to differentiate the categories and
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break the information down into more digestible slices (prevent ‘information 

overload’ (Rechenmann, 1995)).

In addition to providing users with a route for selecting numerous pages, it also 

provides radio buttons for the user to decide how they would like some of the 

output to be formatted. Users can choose to view the orphan plot using raw 

numbers or percentages on the axis. They can choose to view the QuickMine 

matrix in a text format (quick to view and download for use in e.g. Microsoft 

Excel) or HTML format (longer to download but easier to view online). They 

may also choose to view all the sequences of the genes of interest, or view just 

the short (<150 amino acids in length) or the long (>=150 amino acids in length) 

sequences. The option to download the genes contained in their chosen 

dataset in GFF format is also provided. By pressing this button, the script 

download_gff3.php is loaded. This is not seen by the user, but is responsible for 

the necessary data being written to file.

orphan.php. custom orphans.php & trg listphp
• Provides a list of the predicted proteins in the current dataset along with their 

associated metadata.

• Allows the user to view a sequence of interest or BLAST a sequence of interest 

against a database.

• Allows users to download the predicted proteins in GFF format.

orphan, oh p. custom orphans, php & trg list oho Implementation 

These pages provide a list of the predicted proteins within a specified dataset. 

The method used to extract the data differs according to the PHP page. 

Orphan.php obtains its data from the MySQL tables Orf3 and Orphan3. In 

contrast, both customjorphans.php and trgjist.php only query Orf3, utilising 

the stored session variables to extract the correct data. By clicking on the 

‘Download’ button, the script down!oad_gff3.php is run. If the user elects to view 

the sequence, they will be directed to fastacmd.php. Alternatively, if they 

choose to BLAST, blast.cgi will load.

ranking.php, custom ranking.php & trg ranking.php

• Provides a method for ranking the predicted proteins, according to which predicted 

protein is more likely to be expressed and therefore be real. The score and rank is 

dependent on the criteria selected by the user. The criteria are selected by filling 

checkboxes.
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• Provides a list of the predicted proteins, ordered by their rank score, in the current 

dataset along with their associated metadata and the rank score.

• Allows user to view a sequence of interest or BLAST a sequence of interest against

a database.

•  Allows users to download the predicted proteins in GFF format with additional

information regarding their score and the criteria used for ranking.
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Done

ran kina, php, custom ranking & trg ran king, php Implementation 

These pages provide a list of the predicted proteins within a specified dataset. 

The method used to extract the data differs according to the PHP page. 

Ranking.php obtains its data from the MySQL tables Orf3 and Orphan3. In 

contrast, both custom_ranking.php and trg_ranking.php only query Orf3, 

utilising the stored session variables to extract the correct data. When the page 

is loaded, it checks to determine how many criteria have been selected to rank 

on. Initially this is zero, so the list of predicted proteins is provided in numerical 

order. When the user selects to rank on a particular criteria, or combination of 

criteria, the page reloads. Each criterion has a corresponding column in the 

MySQL table Orf3. In this column, a figure between 0-100 is given. This figure, 

for all the criteria selected, is obtained and summed. The total is then divided by 

the number of criteria selected (therefore will be between 0-100 again) and
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divided by 100. The final score is between 0 and 1. The predicted proteins are 

sorted according to their score and printed to HTML in the correct order. For 

more information regarding the ranking method used in OrphanMine, see 

Chapter 5.

The output can be downloaded in GFF or tab-delimited format. These files are 

generated by the downloadjist.php and download_list_tab.php scripts. If the 

user elects to view the sequence, they will be directed to fastacmd php. 

Alternatively if they choose to BLAST, blast.cgi will load.

fastacm d.php, orphan seg2.php, custom  sea.php & trg sea.php

• Displays the protein sequence or sequences of the selected protein or proteins.
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fastacmd.php, orphan seo2.php, custom sea, php & tra sea, php

Implementation

In these PHP scripts, the Gl value from MySQL table Orf3 is obtained for each 

of the proteins that the user is wishing to view. The programme fastacmd then 

searches an indexed version of the BLAST database generated in QuickMine 

for the retrieved Gl number. The output of fastacmd, i.e., the protein sequence 

with its FASTA header, is displayed in HTML.
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guickm ine.php

• Provides users with the opportunity to view and download the matrix on which 

much of OrphanMine is based.

• The data can be viewed in simple text format ready for download or in a HTML 

table.
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guickmine.php Implementation

Depending on the user’s choice, a variable is passed to quickmine.php that 

determines what format the matrix will be printed in. If the user wants to view 

the text version, the required overview.html file is retrieved from the dbase 

server. If the ‘pretty’ view is required the overview_table.html file is retrieved 

from the dbase server. This file takes much longer to parse and load. The file is 

parsed to add a link to the blast.cgi page for each predicted protein.

orphan plot2.php

• Displays a plot showing the change in orphan number over time in the selected 

genome for the current dataset. The user can select to view the plot in raw data 

form or with the data converted to percentage.
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orphan plot2.php Implementation

When selecting to view an orphan plot, the user must choose what type of plot 

they wish to view by selecting the relevant radio button. A variable representing 

this choice is passed to orphan_plot2.php. Orphan_plot2.php is responsible for 

obtaining text to go alongside the plot and formatting the HTML. The plot itself 

is obtained by the php page plot_link2.php. This script is called from within the 

<img> tag in orphan_plot2.php. plot_link2.php is responsible for obtaining the 

plot file from the dbase server. This is done by querying the Paths_dataset3 

MySQL table and utilising the PHP functions imagecreatefromjpegO, 

imagejpegO and imagedestroy().

true paraloques3.php

• Displays the gene clusters within a given genome that include an orphan.

• Allows the user to view a sequence of interest or BLAST a sequence of interest

against a database.

true paralooues3.php Implementation

The page displays tables containing several genes. Each table represents a 

gene cluster within that genome, containing an orphan gene. The colour of the 

table cells is dependent on whether the gene is an orphan or not. An orphan

gene will be coloured blue, a non-orphan gene will be coloured red. Therefore,



if a cluster contains only genes that are unique to the genome of interest, the 

table will be completely blue. The tables are arranged by the size of the cluster, 

larger clusters will be positioned nearer the top of the page.

To generate the data necessary to produce the clusters, true_paralogues3.php 

obtains a list of orphans from the genome of interest that are found to match 

genes within their own genome. This data comes from the MySQL table 

Orphan3. The next stage is to use the identifiers of these orphans to query the 

MySQL table Para_blast, one at a time. Each query will return a list of the 

genes found to significantly match that orphan. Each of these genes is queried 

against Orphan3. If a match is found, that gene is also an orphan and the table 

cell will be coloured blue. If there is no match, the gene is queried against Orf3 

to obtain its associated metadata. The table cells containing this data will be 

coloured red.

cpview .php & custom  cpview.php

• Displays the selected chromosome in the CGView applet (see section 4.8.2).

• Illustrates the chromosomal position of genes of interest.
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caview.php & custom caview.php Implementation

The main role of these scripts is to launch the CGView applet. In order to pass 

the necessary data as arguments to the applet, the scripts getcgv.cgi and 

get_custom_cgv.php are used respectively. These scripts are initiated within 

the <applet> tag. The output of both getcgv.cgi and get_custom.cgv.php is in 

text format and in the case of get_custom_cgv.php, is generated on the fly. This 

data is read directly into the applet. When a user is investigating the pre

generated orphan gene datasets, cgview.php is used. Otherwise 

customjcgview.php is used. If the genome of interest contains more than one 

chromosome, the file cgview_prompt.php is loaded. This file provides buttons 

for each chromosome, forcing the user to choose which chromosome they want 

to view. Once the choice is made, cgview.php or custom_cgview.php will load.

artem is3.php & custom  artem is2.php

•  Initialises the Artemis application, allowing users to view their genes of interest in a 

genomic context. Additionally, users can add their own annotation files for further 

analysis.
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artemis3.php & custom artemis2.php Implementation

The role of these scripts is to initialise the Artemis application. This is done by

loading makeJnlp.php and make_customJnlp.php respectively. These scripts
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generate a JNLP file containing the arguments required to load Artemis from 

the Sanger Centre server. In addition, they pass as arguments, the location of 

the relevant GenBank file, and the annotation file relevant to their dataset. The 

annotation files loaded by makeJnlp.php are pre-generated and stored on our 

server. The annotation files for custom datasets, loaded by 

make_customJnlp.php, are generated on the fly by get_customJab2.php.

orphan search.php

• Allows users to perform a free text search of the database

• Provides three categories of search. The user may search data at the genomic 

level or at the level of the predicted protein. Alternatively they may choose to limit 

their search to the pre-generated orphans in the dataset they are currently viewing.

• On performing a search, several fields of data relevant to the type of search 

performed are displayed.

• If the user chooses to view more information, they can select the ‘More Info’ link for 

the genome of interest. Alternatively, if the results of the search are individual 

proteins, the user may view the sequence or BLAST the sequence against a 

database.

• Columns displayed in the results table can be sorted by ascending or descending 

order.

' (JrphdnMinc Sfetrch Mo/illo i i<
fco Bookmarks look **>

- S  • ©  IQ  http://wŵ g

^  Getting Started £1 Latest Headhnes

p>psearcfi=toxn66ubriit=Submit&s«ar I ^  60 f>-!r>nuxp

DATASET I  6S770orphmiJkm 330gmomm (972526prtbcfdproNins) HOW Q3PP SEARCH SOL BLAST DOWNLOAD HELP FAQ CONTACT

This page allows you to search the OrphanMme database There are 3 types of search available
The ’Genomic’ search allow* you to search for information at the genomic level, for example a species name or totla number of predicted protein*
The ’Orphan’ search allows you to search for particular predicted proteins withm the currently selected pro-computed orphan dataset (by default, dataset 1) 
The ’Predicted Protest1 search allows you to search for particular predicted proteins in any of the genomes contained in OrphanMme

Sear ch term jtoxin [ Submit I O  Genorrac/Tai O  Orphan ©  Predicted pro tern Show All
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toxin-like outer membrane protein (Hehcobacter pylon 26693] 
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toxm-like outer membrane protein [Hehcobacter pylon 26693]
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orphan search, php Implementation

orphanjsearch.php is the main search page for the OrphanMine system. It is 

accessed from the ‘SEARCH’ option in the navigation bar. The search page 

allows users to search for data stored in OrphanMine using free text. The text 

entered will be used to search the majority of fields in the database. When 

search results are displayed, the query remains in the relevant text box, plus 

the term ‘Results for query “query”’ is printed above the results, in addition to 

the number of records found. The page displays 20 records at a time. A 

navigation bar is present at the bottom of the results table that allows the user 

to select the results they wish to view. The columns displayed in the results 

table can be sorted by ascending or descending order, this is achieved by 

clicking on the column headings. The section of the PHP script that is involved 

with the mechanisms of the search was generated by a tool called PHPMaker. 

The output from this programme was heavily modified to fit the requirements of 

OrphanMine.

When the user enters a search query the PHP script generates an SQL 

SELECT statement. The user query is utilised as the WHERE argument. An 

example of this is shown below, where ‘toxin’ was the query in a ‘Predicted 

protein’ search:

$user_Lquery = 'toxin'
$dbwhere = ("Orf" LIKE 1 %$user_query%' OR "Gi" LIKE
1%$user_query%1 OR "Low_complexity" LIKE
1%$user_query%1 OR 'Length" LIKE '%$user_query%1 OR 
"Description" LIKE '%$user_query%' OR "Species" LIKE 
1%$user_query%');

$strsql = "SELECT * FROM "genome3", 'orf3' WHERE 
genome3.Genome_id = orf3.Genome_id";

if ($dbwhere != "")
{

$strsql .= " AND ".$dbwhere;
}
$rs = mysql_query($strsql, $conn) 

or die(mysql_error());
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The same basic search mechanism is used for the ‘Genomic/Taxonomic’ and 

the ‘Orphan’ searches.

sequence download.php

• Allows the user to download protein sequences in FASTA format.

• The user can select the genomes and dataset from which the sequences should be 

obtained.

• Allows the user to download the protein sequences of more than one genome.

sequence download.php Implementation

This script lists the genomes held in OrphanMine. Next to each genome is a 

checkbox. By selecting these checkboxes, the user is selecting which genomes 

they wish to have sequences downloaded from. In addition, the user needs to 

select which dataset they wish to use, by selecting the relevant radio button. By 

clicking on the name of the dataset, a pop-up box appears describing that 

dataset. The exception to this is ‘Custom’. By clicking on ‘Custom’, a box 

appears displaying what the current custom dataset is, this is performed by 

customisejcheck.php. The sequences are downloaded using the script 

downloading.php, this is initiated when the ‘Download Orphans’ button is 

pressed.

faq.php

• Provides the user with answers to common OrphanMine related queries.

faq.php Implementation

At the top of the page is a list of the questions answered in the FAQ section. 

These questions are linked to the section of the page in which they are 

answered. The questions that make up the FAQ’s can be updated depending 

on user response.

contacts.php

• Provides contact details of people involved in the maintenance of OrphanMine.

• Initiates default e-mail editor to construct an e-mail to selected contact.

contacts.php Implementation

The contacts page provides users with contact details of those involved in the 

maintenance of the site. The page was initially generated by PHPMaker and 

was later modified for use in OrphanMine.
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Perl CGI Page Descriptions  

orphan sgl.coi

• Provides a text box for users to enter their own SQL queries, therefore allowing 

users to query the database directly.

• Prints the results of the query to screen in an HTML table.

• Allows users to download the output in tab delimited format to a text file.

O Go j >L»nu3t print «raen |http:/frww».;

HOME QIPP SEARCH SOL BLAST DOWHLOAD HELP FAQ CONTACTS

This page allows you to query the OrphanMme database directly To do so enter a relevant MySQL query in the text box 
The output is printed to the screen and can be downloaded in text format 
Example quenes are shown in the 'Help' file and on the VAQ' page.

jSubmiyyaggrJ_____ ____

Enter a custom SQL statement

select fam ily, species, nc_number from <jenome3

Number of rows returned: 330
iClick here lo download the d«U in tab detailed format download ]

| rowjrandbcT family' species nciuimber

1' Pasteurellaceae Haemophilus influenzae Rd KW20 [NC_000907

1* Mycoplasmataceae Mycoplasmagemlakum G37 NC.000908

P Chroococcales Synechocystis sp PCC 6803 jNC_000911

jMethanococcaceae Methasiocaldococcus jatmaschn DSM 2661 :NC_000909.NC_001732JJC_001733

|5 Mycoplasmataceae Mycoplasma pneumomae M129 |NC_000912

l‘ [HeEcobacteraceae Helicobacter pylon 26695 |NC_000915

[7
|8

jEnterobacteriaceae

Methanobactenaceae

Eschenchia coh K 12

Mcthanothermobacter thermautotrophicus str Delta H

|NC_000913

|NC_000916[I’ B i d k t i e (Bacillus subhlis subsp subhlis str 168 (NC.000964

[10 Archacoglobaceae Archaeogobus fulgidus DSM 4304 NC_000917

111 Sptrochaetaceae Borrelta burydorfen B31 In c  001318 V

D“ »

orphan sgl.cgi Implementation

The script was originally written by Dr Milo Thurston and was later modified for 

use in OrphanMine. Only SELECT queries are permitted. If a user attempted to 

submit a query that would alter the contents of the database, for example 

‘DROP table Orf3;’, an error message would be returned. The database 

schema is available in the FAQs and in the Help page, to assist users to form 

meaningful queries. The FAQ page also provides some example queries.

blast co i

• Provides a text box for users to enter their sequence. Alternatively, if the user has 

arrived at the page by selecting the BLAST link associated with a particular protein, 

the sequence of that protein will be pre-loaded in the box.



• Provides a choice of BLAST programmes and BLAST databases.

• Allows the user to configure their BLAST search by providing them with advanced 

options.

fc/cgrbin/c

HOME QIPP SEARCH SQL BLAST DOWNLOAD HELP FAQ CONTACTS

Blast form

Choose a program: BldStp v | b l n i l u t m :  Qrpton_BlttsLDotobass(P) * j>

Enirr v*ur srqwrnrr:
MEGFKMGKIUQGSESADNIDLRPSDRHKFDWWAKSGDDLVHGRNFSSL3GANDTISGANGNDVIYGHHGDDFL3GEGDSDTI

J t3 ‘
Sony, due to problems with our servers, we 
databases will be added at a later date

can only provide access to the OrphanMme Blast Database More

I W m  JW i

Done

blast, cai Implementation

This script was originally written by John Peden (OUBC) and was later modified 

for use in OrphanMine. When the script is loaded, a check is performed to 

determine if a Gl identifier of a protein has been passed as a parameter. This 

would occur if the user was following a link from a particular protein, rather than 

using the link in the page header. If a Gl identifier is found, the programme 

fastacmd is used to obtain the sequence for the relevant protein. This sequence 

is then printed to screen in the text box, ready to be BLASTed.

Drop down menus provide the user with a choice of BLAST programmes and 

BLAST databases. If the user wants to view the advanced options available to 

them, they should click on the Advanced Options’ button. This will load an 

additional table containing further options. When the user selects the ‘Submit’ 

button, the form element values are passed as parameters to the blastall 

command. Blastall performs the BLAST and returns the results to the user. If 

there is a problem with the input, an error message will be displayed explaining 

the problem.
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WebQIPP

aipp web.php

• The page provides an easy-to-use interface to access the qipp.pl script.

• Allows the user to select a GenBank file from their directory and select the criteria

by which they want to score the sequences in the file.

• Provides the option to produce the output as a tab-delimited text file, ranked by

QIPP score or as a GFF file suitable for use in Artemis.

• Provides a link to download the qipp.pl file for use locally.

© ID Ktp://*wM.gBn<

^  GeWno Started Q  Latent Heecftnes

We have developed QIPP (Quality Index for Predicted Protenu). an index that icorei the 'quality of a ptotem based on non-homology bated catena 
QIPP can be used to assign a value between zero to one to any protein based on comparing its feature5 to other proteins m a given genome
Tbu service allows you to calculate QIPP scores for CDS m any Oanbank file Sanply select which catena to include (by default all catena are used) and select your file 
The results wifi be duplayed in lab- da tainted format or OFF (dependmg on your preference), once the data has been calculated 
Calculating QIPP scores can take tone, particularly with large input files Please be patient

Plaase salact your QIPP cnUha BConplssty Bcoas | Boc

Picas* select your OenBank file ,CVjrpliw.»oi(cViipp\NC_001264 gbk 1 Blows e 1

|~Pleas* select your output tom* OTabdataaWd ©OFF

1 Run OPR 1

aipp web, php Implementation

The form elements capture the required information from the user. When the 

‘Run QIPP’ button is pressed, qipp_out.php is launched. This script obtains the 

parameters passed by qipp_web.php. Numerous checks are carried out to 

determine the authenticity of the uploaded file. Once the checks are complete, 

qipp.pl is launched. The output from this script is printed directly to screen. 

Finally the uploaded GenBank file is deleted from the server.
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WebQIPP Output -GFF

FIs £dt View £o Bookmarks loots Help

'  V '  ’  (9 ©  ©  1 p  http://www.gonocn.c5 ceh.ac.uWorphan_rnine/qW_c 

^  Getting Started £1 Latest Heodlnes

o Go [ ./-yimux print screen

##g£f-version 3 
#test_phpNlh3gX
NC_001264or£0001 
NC_0012 64oEf0002 
NC_0Q12 64or£0003 
NC_001264or£0004 
NC001264or£0005 
NC_0012 64or£0006 
NC~001264otf0007 
NC~001264or£0008 
NC_0012 64or£0009 
NC_001264or£0010 
NC_001264orf0011 
NC_001264or£0012 
NC_0012 64or£0013 
NC~001264orf0014 
NC_0012 64or£001S 
HC 001264or£0016 
NC 001264or£0017 
NC_001264or£0018 
NC_001264or£0019 
NC_001264orf0020 
NC_0012 64or£0021 
NC_0012 64oc£0022 
NC_0012 64or£0023 
NC 001264or£0024 
NC~0012 64oe f002 5 
NC_0012 64or£0026 
NC_001264orf0027 
NC_0012 64or£0028 
NC_001264or£0029 
NC_001264or£0030 
NC_001264or£0031 
NC_0012 64oc£0032 
NC_0012 64or£0033 
NC_0012 64ar £003 4 
NC001264oe£0035 
NC_001264oe£0036 
NC 001264orf0037 
NC~0012 64oE £0038 
NC_001264oe £003 9 
NC_0012 64or £0040 
NC~0012 64or £0041 
NC_001264oe£0042 
NC_0012 64or£0043 
NC_0012 64or£0044 
NC_001264or£004S 
NC_001264oe£0046 
NC_0012 64orf0047 
NC_001264or£0048 
NC_001264oe£0049 
NC_001264or£0050 
NC_001264orf0051 
NC 0012 64oe£00S2

CDS 653 1435 +
CDS 1432 2313 +

CDS 4024 4668
CDS 4719 5897

CDS 6839 7744 +
CDS 7861 8652 +

CDS 9816 10451 +

CDS
10477
11972

12030
13327

CDS 13432 15123 +
CDS 15120 15698 +
CDS 15685 16452 +
CDS 16S57 17720 +
CDS 17806 18312 +
CDS 18472

20095
20045

+
CDS 21138 21677 +

CDS 22683
22633
24833 +

CDS 2 4806 25720 +
CDS 25707 26216 +
CDS 2 6710 27255 +
CDS 27700 28083 +
CDS 282 66 29744 +
CDS 29748 30266 +
CDS 30295 31659 +
CDS 31738 33318 +
CDS 33474 34559 +
CDS 34788 35906 ♦
CDS 35903 37573 +
CDS 37578 39023 +
CDS 39026 40288 +
CDS 40439 41656 +
CDS 41643 42629 +
CDS 42632 43447 +
CDS 43517 44548 +
CDS 44545 45648 +
CDS 45652 46746 +
CDS 46743 47633 +
CDS 47626 48174 +
CDS 48171 48914 +
CDS 48918 49830
CDS 49835 50989 -
CDS S1064 52485 +
CDS 52507 53430 -
CDS 53466 53915
cps 53908 56175 -

56172 56767
CDS 56791 58176 r - -  = i

qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0

qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
qipp-0
q ipp-o
q ipp-0
q ipp-0
qipp-0
qipp-0

•p-o

qipp-0
qlpp-0
qipp-0
qipp-0
qlpp-0
qlpp-0
qipp-0
qipp-0
qipp-0
qipp-0

.47;lengch-39;
,52;length-47; 
56;length-79; 
,50;length-28; 
,53; length-67; 
64;length-40; 
,71;length-49; 
37;length-39; 
,64;length-55; 
58;length-27; 
,62;length-83;
,60;length-73;
, 66;length-87; 
67;length-24; 
71;length-38; 
,71;length-66; 
,46;length-17; 
79;length-83; 
,57;length-60; 
51;length-20; 
,38;length-31; 
66;length-94; 
,58;length-49; 
,48;length-18; 
47;length-22; 
62;length-9; 1 
63;length-79; 
35;length-19;
,61;length-73; 
56;length-85; 
50;length-61; 
48;length-63;
, 65;length-87; 
39;length-77; 
30;length-70; 
30;length-69; 
,38;length-53; 
36;lengtb-42; 
41;length-57; 
45;length-62; 
45;length-62; 
45;length-47; 
33;length-22; 
37;length-35; 
39;length-50; 
30;length-65; 
46;length-76; 
63;length-51; 
46;length-14; 
66;length-95; 
72;length-25; 
77;length-74;

lov_camplexity-58;amino_acid_coat*76;gc*16 
lov_camplexity-79; amino_acid_coat-73; gc-8 
lou_camplexity-100;amino_acid_co9t-39;gc-8 
low_caraplexity-21;amino_ac:ld_coat-74;gc-78 
lowcomplexity-95; amino_acid_cost*2 6; gc-2 4 
low_camplexity-62;amino_acid_cost-88;gc-66 
low complexity-99;amino acid_cost-93;gc-44 
1 o w_c o»p 1 e x i t y-16 ; am l no_ac 1 d_c o a t -15; gc - 7 8 
lov_complexlty-72;amino_aeld_cost-34;gc-96 
1ow_co»plexity-27;amino_acid_coat-93;gc-86 
lov_complexity-4S;amino_acid_cost-92;gc-28 
low_con>plexity-55;aniino_acid_cost-46;gc-66 
low_complexity-83;amino_acid_coat-32;gc-60 
lov_complexicy-100;amino_acid_coat-82;gc-60 
low_camplexlty-100;amino_acid_coat-62;gc-86 

r_complexity-100; aminoj
low_co»plexity-100;a 
lo w_conp le x i t y-89; ani ni 
low_conp lex lty-60; am in
low comp lex it y-3 3 ; ami n«
low_complexity-72; amim 
lov__camplexity-90;amlm 
low_camplexity-51;amin< 
low_comp lex ity-100;amii 
low_complex ity-28; amim 
ow complex ity-49;amino 

i_complexity-94;amim 
icomplex lty-100; amli 

low_comp lex ity-100; amii 
lov_complexity-63;amln< 
low_complexity-100; amli 
low_complexity-66;amim 
low_complexity-64;amim 
low_complex1ty-71;amim 
lov_complexity-47;amim 
low_complexity-50; amim 
low_complexity-94; amim 
low_complexity-100;amn 
low_complexity-100; amii 

»_complexity-100;a

cid ;-23;gc-44 
l_coat-65;gc-78 
l_coat-43 ;gc-66 
l_eost-6S;ge-86 
l_coat-39;gc-8 
l_coat-35;gc-44 
l_cost-88;gc-44 
d coat-8;gc-66 
lcoat-72;gc-66

cid
cid

-l;gc-2 
l_cost-l;gc-0 

-3;gc-0 
id_coat-2;gc-0 
id_coat-6;gc-2 

l7;gc-2
low_complex ity-100;aralno_acld_cost-13;gc- 
low_complexity-100;amino_acid_coat-20;gc-l2 
low_complex ity-100;aroino_acid_coat-5;gc-6
low_complexity-73;amino_acid_coat-21;gc-10 
low_complexity-20;amino_acld_coat-2 ;gc-34 
low_complexity-33;amino_acid_cost-S2;gc-24 
1ow_complex it y-100;amino_ac id_coat-68;gc-3 4 
low_complexit y-100;aminoacid_coat-3 5;gc-3 4 
low_complexlty-44;ammo_acid_coat-S8;gc-66 
low_complex i ty-100;amino_ac i d_cost-69;gc-9 6 
low complexity-77;amino acidcoat-90;gc-66

Done

WebQIPP Output- Tab-delimited

3e &<* tfe* &o Bookmarks lock **>
^  ^  |D  http:/ftmmgenomta.CBh.ac.;6forphanj»frmfappjx*.php

0b Getting Started £2 Latest Headlnes

Q
3o -E

:£ QIPP Length 
: 001264oe£0330 
:_001264orf0352 
:_001264ot£0342 
:_001264oe£0282 
:_001264oc£0351 
"~001264oe£0317 
:_001264oc£0231 
M301264orf0137 
f001264orf01B7 
:_001264ot£0201 
r~001264oc£0018 
)_0012 64oc£02 54 
; 001264or£0235 
:_0012 64ocf03 2 5 
:_001264ot£0053 
:_001264or£0052 
)_001264oe£0363 
: 001264orf0292 
:j)0l264orf0236 
:_001264oc£0068 
:_001264oe£03 14 
:_001264oc£0354 
:_001264oe£01B9 
:_001264oc£0353 
:_001264ot£0175 
:_001264or£0206 
:_001264oc£0172 
!~0012 64or f  0109 
:_001264oc£0263 
I 001264or£0154 
:~001264oc£0248 
:_001264or£0147 
r001264or£0074 
:_00l264or£0126 
: 001264orf0230 
’_0012 64or f 0051 
:_0012 64or£0015 
J)01264orf0131 
_001264oe£0334 
:_0012 64oc£0308 
!_0012 64or£0007 
: 0012 64oc£03 00 
~001264oe£0016 
■_0012 64ot£0056 
:_0012 64oe£02 59 
_001264oc£0127 
_D01264or£0322 
!~0012 64or £02 75 
:_0012 64or £03 03 
_001264ot£0077 
_00l2 64oc£0l80 

001264orf0107

LowComplexity 
0.88 80
0.86 96
0.85 77
0.84 94

0.75
0.75
0.74

0,74
0.74
0.73

0.71
0.70
0.70
0.70

0.69
0.69
0.69

BawLowComplexity
9.79 20.36 0.68
0.00 22.19 0.68
4.40 21.91 0.67

22.08
22.28
22.25

23.13
22.82
21.58

0.67
0.69
0.68

21.00 0.71

21.74 0.70

23.21
21.88
22.60
20.92

9.68
90.32
116.32

297.32 8.00
175.32 6.20
410.32 5.07

361.32 9.32
147.32 1.15
394.32 3.97
149.68 13.27
92.68 13.27

229.31
46.68
9.68 7.65 

32 13.27
.32 13.27

374.32 
96.68
232.32

91.32 8.71

0.28
0.60
1.12

0.61
0.52
0.32

0.34
0.81
0.29

0.00
0.00
0.03
0.01

0.03
0.01
0.02

0.02
0.01
0.03

SkewLowComplexity Skew<
hypothetical protein 
methyl-accepting chemotaxis-x 
auccinic-semialdehyde dehydrc 5 
serine protease, subtilase £e 
methyl-accepting cbemotaxis j 
urease, alpha subunit 
oxldoreductase
amino acid ABC transporter, ; 
exclnuclease ABC, subunit A 
superoxide dlsmutase (aodC),
5*-nucleotidase 
aculeaeln A acylase 
oxldoreductase 
chalcone synthase, putative 
succ iny1-CoA;3-ketoacld-CoA t 
acety1-CoA acetyltransferase 
oxldoreductase, short-chaln c 
hypothetical protein 
oxldoreductase
cleavage and polyadenylation 
hydrogenase expression/format 
CheA-related protein 
hypothetical protein 
methyl-accepting chemotaxis j 
thiamine biosynthesis proteir 
hypothetical protein 
thiamin biosynthesis ThiG 
hypothetical protein 
acyl-CoA synthase 
glucosamine— fructose-6-phosj 
rinc metalloendopeptidase, le
transposase, putative 
aldehyde dehydrogenase 
oxldoreductase 
Heme oxygenase
phosphoadenosine phosphosulfe 
hypothetical protein 
serine/threonine protein kine 
acyl-CoA synthase 
ABC transporter, ATP-binding 
methylamine utilization prote 
sulfate adenylyltransferase 
Terr-related protein 
branched-cbain amino acid ABC 
GHC oxldoreductase 
urea/short-chain amide ABC tx 
molate oxldoreductase 
hypothetical protein 
hypothetical protein 
guanine deaminase 
minor tail protein op26-relat

174

http://www.gonocn.c5


Appendix 4.3 -  Design Evaluation

Below are ten heuristics used as a guide to evaluate the usability of OrphanMine. 

These heuristics were obtained from the book ‘Human-Computer Interaction’ by Dix et 

al (1993).

1. Visibility of system status -  does the system always keep users informed 

about what is going on, through appropriate feedback, within reasonable time?

2. Match between system and the real world -  does the system speak the 

user’s language, with words, phrases and concepts familiar to the user, rather 

than system-oriented terms? Does the system follow real conventions, making 

information appear in a natural and logical order?

3. User control and freedom -  users often choose system functions by mistake 

and will need a clearly marked ‘emergency exit’ to leave the unwanted state, 

without having to go through an extended dialogue. Does the system support 

undo and redo?

4. Consistency and standards - users should not have to wonder whether 

different words, situations or actions mean the same thing. Does the system 

follow platform conventions?

5. Error prevention -  better than having good error messages, is a careful design 

which prevents a problem from occurring in the first place. Has the system 

created any problems?

6. Recognition rather than recall -  does the system make objects, actions and 

options visible? Do you have to remember information from one part of the 

dialogue to another? Are instructions for use of the system visible or easily 

retrievable, whenever appropriate?

7. Flexibility and efficiency of use -  Do you think the system would be easy to 

use by both inexperienced and experienced users? Does the system allow 

users to tailor frequent actions?

8. Aesthetic and minimalist design -  Does the system dialogue contain 

information which is irrelevant or rarely needed?
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9. Help users recognise, diagnose and recover from errors -  are error 

messages expressed in plain language? Do they indicate the problem, 

precisely, and constructively suggest a solution?

10. Help and documentation -  it may be necessary to provide help and 

documentation in such systems. Is such information easy to search? Is it 

focused on the user’s task? Does it list concrete steps to be carried out?
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Appendix 4.4  -  Implementation Evaluation

The aim of this evaluation process is to test the functionality of the OrphanMine 

database. By obtaining your feedback, I hope to identify any problems and design a 

better system.

This type of co-operative evaluation involves active participation by the users of the 

system, i.e., you. I would like to observe you interacting with the system by completing 

a set of tasks, which should last about 20 minutes. In this time, I will watch and record 

your actions. I would also like you to elaborate your actions by ‘thinking aloud’ to tell 

me what you think is happening, and what you are trying to do with each action. This 

will help to provide useful insight into problems with the interface and allow me to 

observe how the system is actually used.

I may ask you questions throughout the process and I would like you to raise any 

problems or suggestions you may have. Please feel free to criticise (or praise!) the 

system.

Tasks 

Orphans

1. Please go to the OrphanMine home page.

2. You will be presented with several choices. To begin with, I would like you to 

explore the pre-generated orphan datasets. You are particularly interested in 

finding out more about the first bacterial genome to have its genome completely 

sequenced. What species does this genome represent?

3. Please find more information about this genome, for example, how many 

orphans does it contain?

4. To get a better idea of how the number of orphans in this genome has changed 

as more genomes are sequenced, take a look at the plot.

5. Rank the orphans according to length and average amino acid cost.

6. Download the ranked gene list in GFF format.

Search

1. Determine which genome has the most orphan genes.
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2. Search for the word ‘virulence’ in all the predicted proteins in OrphanMine. How 

many proteins match this keyword?

3. Of these proteins, BLAST the longest against the Orphan_Blast_Database 

using default settings. What, apart from self, is the top hit?

Custom

1. Return to the home page.

2. Could you proceed to create your own ‘Custom Dataset’. You want to view 

genes that have significant matches to genes in all other genomes in the 

database. Look for more information about the Escherichia coli K12 genome.

3. View these genes in Artemis.

4. If you have a problem loading Artemis, how would you go about reporting the 

fault?

TRGs

1. Return to the home page.

2. You are interested in finding out which genes in Bacillus anthracis str. Sterne 

are only found in other Bacillus anthracis genomes. Please create this dataset.

3. Once the results have been generated, add the genes to your trolley and view 

your trolley.

4. Download the taxonomically restricted genes in your trolley and then view more 

information.

5. Take a look at the genome using CGView. Zoom in on one of the genes in your 

dataset and find its ID (NC_??????orf????).

6. What does the pink band represent?

178



Appendix 5.1 -  Chapter 5 Table S1

The number of predicted proteins, orphans, percentage orphans, isolation index and taxonomic  

uniqueness for each of the 122 bacterial genomes used in this analysis

S p e c ie s P red ic ted  P rote ins O rp h an s %  O rp h an s n o
T a x o n o m ic
U n iq u en ess

H ae m o p h ilu s  in flu e n za e  Rd 1 6 5 7 3 8 2 .2 9 -2 1 8 .0 2 S pe c ie s

M y co p la s m a  gen ita lium 4 8 4 2 0.41 -2 3 3 S pe c ie s

S yn ech o cystis  sp P C C 6 8 0 3 3 1 6 7 2 2 3 7 .0 4 -1 5 3 .9 9 G e n u s

M e th a n o c o c c u s  jan n asch ii 1 7 2 9 2 5 9 1 4 .9 8 -1 0 3 .8 3 Fam ily

M y co p la s m a  p n eu m o n ia e 6 8 9 6 7 9 .8 7 -1 8 8 .0 9 S pe c ie s

H e lic o b a c te r pylori 2 6 6 9 5 1 5 7 6 261 1 6 .5 6 -1 2 5 .9 7 S pe c ie s

E sch erich ia  coli K 12 431 1 174 4 .0 4 -2 5 9 .9 8 G e n u s

M e th a n o b ac te riu m  
th e rm o au to troph icum  D e lta  H 1 8 7 3 2 9 3 1 5 .6 4 -1 0 4 .1 4 Fam ily
B acillus  subtilis ,subsp . subtilis  str. 
1 68 4 1 1 2 4 6 0 1 1 .1 9 -1 5 0 .0 5 S p e c ie s

A rc h a e o g lo b u s  fulgidus 2 4 2 0 391 1 6 .1 6 -9 5 .4 7 Fam ily

B orre lia  burgdorferi 851 1 52 1 7 .8 6 -9 3 .4 9 G e n u s

A q u ifex  aeo licus 1 5 2 9 138 9 .0 3 -1 0 8 .1 5 D ivision

P yro coccu s  horikoshii 1 9 5 6 1 80 9 .2 -2 0 5 .4 7 S p e c ie s

M y co b acte riu m  tub ercu lo sis  H 2 7 R v 3 9 2 7 13 0 .3 3 -2 9 4 .9 3 S p e c ie s

T re p o n e m a  pallidum 1 0 3 6 2 4 8 2 3 .9 4 -8 6 .0 1 G e n u s

C h la m yd ia  trach o m atis  D /U W -3 /C X 8 9 5 4 6 5 .1 4 -2 0 9 .8 5 S pe c ie s

R icketts ia  prow azek ii 8 3 5 19 2 .2 8 -2 5 3 .8 2 S p e c ie s

C h la m yd o p h ila  p n e u m o n ia e  C W L 0 2 9 1 0 5 4 102 9 .6 8 -2 0 0 .7 5 S p e c ie s

A ero p yru m  pe m ix 1841 4 9 9 27.1 -7 8 .2 1 Fam ily

T h erm o to g a  m aritim a 1 8 5 8 2 2 4 1 2 .0 6 -1 0 8 .7 D ivision

D e inococcus  rad iod uran s 2 9 9 7 591 1 9 .7 2 -8 7 .4 7 D ivision

C a m p y lo b a c te r  je juni 1 6 3 4 161 9 .8 5 -1 3 4 .5 2 Fam ily

N e iss e ria  m en ing itid is  M C 5 8 2 0 7 9 4 3 4 2 0 .8 8 -1 3 8 .9 3 G e n u s

B acillus ha lodurans 4 0 6 6 4 5 6 1 1 .2 2 -1 4 3 .8 1 S pe c ie s

X y le lla  fastid iosa 2 7 6 6 8 2 4 2 9 .7 9 -1 4 6 .5 2 G e n u s

V ib rio  ch o le ra e 3 8 3 5 5 0 4 1 3 .1 4 -2 00 .1 S p e c ie s

B u ch n era  sp. A P S 5 6 4 2 0 .3 5 -2 3 4 S p e c ie s

T h e rm o p la s m a  acidop hilus 1 4 8 2 5 5 3.71 -1 9 7 .1 3 G e n u s

P s e u d o m o n as  a eru g in o sa  P A 0 1 5 5 6 7 3 0 6 5 .5 -1 9 8 .0 7 S pe c ie s

U re a p la s m a  u realy ticum 6 1 4 117 1 9 .0 6 -9 8 .9 2 G e n u s

H alo b ac te riu m  sp. N R C -1 2 0 7 5 4 8 5 2 3 .3 7 -7 5 .6 4 Fam ily

M eso rh izo b iu m  loti 6 7 4 6 8 6 4 12.81 -1 4 6 .7 Fam ily

T h e rm o p la s m a  vo lcan iu m 1 4 9 9 5 3 3 .5 4 -1 9 3 .6 5 S p e c ie s

M yco b ac te riu m  lep rae 1 6 0 5 8 9 5 .5 5 -2 4 5 .5 7 S p e c ie s

P a s te u re lla  m ultocida  P m 7 0 2 0 1 5 8 3 4 .1 2 -2 1 2 .2 3 G en u s

S trep tococcus  py o g en es  M 1 G A S 1 6 9 7 147 8 .6 6 -1 8 9 .5 6 S p ec ies
S taphy lo co ccu s  a u re u s  subsp. 
au reu s  N 3 1 5 2 5 9 3 2 0 5 7.91 -1 9 2 .0 7 S p ec ies

Lactococcus lactis  subsp . lactis 232 1 3 3 6 1 4 .4 8 -1 3 6 .4 5 G en u s

M y co p la s m a  pu lm onis 7 8 2 149 1 9 .0 5 -8 9 .7 9 S pe c ie s

C a u lo b a c te r  c rescen tu s 3 7 3 7 4 7 5 12.71 -1 2 8 .2 8 Fam ily
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S u lfo lo bus solfataricus 2 9 7 7 271 9.1 -1 4 8 .8 5 S p e c ie s

S trep to co ccu s  p n eu m o n ia e  T IG R 4 2 0 9 4 3 3 0 1 5 .7 6 -1 5 8 .4 2 S p e c ie s

S in orh izo b iu m  m eliloti 3341 140 4 .1 9 -1 9 8 .6 G en u s

C lostrid ium  acetobuty licum 3 6 7 2 5 5 6 1 5 .1 4 -1 2 7 .1 5 S p e c ie s

Sulfo lobus tokodaii 2 8 2 6 4 2 6 1 5 .0 7 -1 3 8 .9 5 S pec ies

R icke tts ia  conorii M alish  7 1 37 4 3 5 4 2 5 .7 6 -1 5 9 .3 8 S pe c ie s

Y e rs in ia  pestis  C 0 9 2 3 8 8 5 3 2 5 8 .3 7 -1 9 7 .2 5 G en u s
S a lm o n e lla  e n te ric a  subsp. e n te rica  
s e ro v a r Typh i 4 3 9 5 173 3 .9 4 -2 6 3 .6 4 S pe c ie s

S a lm o n e lla  typhim urium  LT2 4451 97 2 .1 8 -2 6 9 .5 8 S p e c ie s

Listeria  innocua 2 9 6 8 145 4 .8 9 -2 4 2 .2 7 S p e c ie s

Listeria  m ono cy tog en es 2 8 4 6 76 2 .6 7 -2 5 2 .9 7 S p e c ie s

N ostoc  sp P C C 7 1 2 0  (C y a n o b a c te r ia ) 5 3 6 6 8 92 1 6 .6 2 -1 2 8 .1 5 Fam ily
A g ro b a c teriu m  tu m e fac ie n s  (C 5 8  
C e re o n ) 4 5 5 4 3 56 7 .8 2 -1 8 4 .7 3 G en u s

B ru ce lla  m elitens is  16M 3 1 9 8 2 8 4 8 .8 8 -1 7 6 .8 3 Fam ily

C lostrid ium  perfringens  13 2 6 6 0 2 8 5 10.71 -1 4 4 .8 1 S p ec ies

P yro bacu lum  aerop h ilum 2 6 0 5 9 4 5 3 6 .2 8 -6 2 .3 9 Fam ily

R als to n ia  s o la n a c e aru m  G M 1 0 0 0 3 4 4 0 3 99 1 1 .6 -1 4 6 .9 5 Fam ily

P yro coccu s  furiosus D S M  3 6 3 8 2 1 2 5 142 6 6 8 -1 9 0 .1 7 S p ec ies

P yro coccu s  abyssi 1 8 9 6 59 3.11 -2 1 7 .2 1 S p e c ie s
C oryn eb ac te riu m  g lu tam icu m  A T C C  
1 3 0 3 2 2 9 9 3 3 04 1 0 .1 6 -1 9 6 .5 1 S p e c ie s

M eth a n o p yru s  kand leri A V 1 9 168 7 3 9 9 2 3 .6 5 -8 3 .6 3 Fam ily
Fu so b acte riu m  nu cleatum  subsp. 
nu clea tum  A T C C  2 5 5 8 6 2 0 6 7 3 3 5 16.21 -1 0 6 .1 2 D ivision

M e th a n o s a rc in a  ace tivo rans  str. C 2 A 4 5 4 0 6 9 5 15.31 -1 7 4 .1 2 S p e c ie s

T h e rm o a n a e ro b a c te r  te n g co n g en s is 2 5 8 8 3 3 5 1 2 .9 4 -1 2 0 .7 4 Fam ily

S trep to m yc e s  coe lico lor A 3 (2 ) 7 7 6 9 7 0 0 9 .01 -1 8 7 .5 6 S pe c ie s
X a n th o m o n a s  cam pestris  pv. 
cam p estris  str. A T C C  3 3 9 1 3 4181 159 3 .8 -2 4 9 .1 2 S pe c ie s
X a n th o m o n a s  axo nop odis  pv. citri str. 
3 0 6 4 3 1 2 2 3 9 5 .5 4 -2 4 2 .7 4 S pe c ie s
B uchnera  aph id ico la  str. Sg  
(S c h iza p h is  g ra m in u m ) 5 4 6 1 0 .1 8 -2 3 3 .8 2 S pe c ie s

C hlo ro b iu m  tep id um  T L S 2 2 5 2 5 4 5 2 4 .2 -9 7 .8 3 Fam ily

M e th a n o s a rc in a  m a ze i G o e1 3371 2 37 7 .0 3 -2 0 6 .0 7 S pe c ie s
T h erm o s y n e ch o c o c cu s  e lon ga tus  
B P-1 2 4 7 5 165 6 .6 7 -1 6 3 .8 9 G e n u s

S trep tococcus  a g a la c tia e  2 6 0 3 V /R 2 1 2 4 2 3 5 1 1 .0 6 -1 7 7 .0 9 S p e c ie s

O c e a n o b a c illu s  ih eyens is  H T E  831 3 5 0 0 3 1 0 8 .8 6 -1 4 7 .2 3 G e n u s

S h e w a n e lla  on e id en s is  M R -1 4 3 2 4 6 0 2 1 3 .9 2 -1 3 8 .4 7 Fam ily

S h ig e lla  flexneri 2 a  str. 301 4 1 8 0 110 2 .6 3 -2 5 6 .2 3 G en u s

W ig g les w o rth ia  b revipalp is 611 4 0 .6 5 -1 7 7 .0 1 G en u s

B ifidobacterium  longum  N C C 2 7 0 5 1 7 2 7 2 0 6 1 1 .9 3 -1 2 0 .1 3 Fam ily

S trep tococcus  m utans  U A 1 5 9 1 9 6 0 198 10.1 -1 7 4 .9 1 S p ec ies

M y co p la s m a  p e n e tran s  H F -2 1 0 3 7 2 3 7 2 2 .8 5 -8 8 .7 2 S p ec ies

P s e u d o m o n as  putida K T 2 4 4 0 5 3 5 0 4 2 8 8 -2 0 2 .6 3 S p e c ie s

V ib rio  vuln ificus C M C P 6 4 5 3 7 3 6 3 8 -2 1 0 .8 9 S p e c ie s

B radyrh izo b iu m  ja p o n ic u m  U S D A  110 8 3 1 7 106 0 1 2 .7 5 -1 5 5 .7 4 G en u s
S taphy lo co ccu s  e p id erm is  A T C C  
1 2 2 2 8 2 4 1 9 2 2 8 9 .4 3 -1 9 3 .8 S p e c ie s
C hlostrid ium  te tan i M a ss a c h u s e tts  
E 8 8 2 3 7 3 176 7 .4 2 -1 5 6 .3 6 S p e c ie s

Lactobac illus  p lan tarum  W C F S 1 3 0 0 9 4 0 8 1 3 .5 6 -1 2 6 .1 7 Fam ily

T ro p h e ry m a  w h ipp le i T W 0 8 /2 7 7 8 3 91 1 1 .6 2 -1 1 6 .1 6 Fam ily

180



V ib rio  parah a em o ly ticu s  R IM D  
2 2 1 0 6 3 3 4 8 3 2 6 3 4 1 3 .1 2 -1 9 9 .0 2 S pe c ie s
B acte ro id es  th e ta io tao m icro n  V P I-  
5 4 8 2 4 7 7 8 1 08 2 2 2 .6 5 -1 0 4 .3 5 Fam ily

E n te rococcus  faeca lis  V 5 8 3 3 1 1 3 5 46 1 7 .5 4 -1 3 0 .7 3 Fam ily

S trep to m yc e s  averm itilis  M A -4 6 8 0 7 5 7 5 671 8 .8 6 -1 9 1 .3 4 S pe c ie s

C h la m yd o p h ila  c av iae  G P IC 9 9 8 66 6 .61 -2 1 1 .6 9 S p e c ie s
Leptosp ira  in terrogans s e ro v a r lai str. 
5 66 0 1 4 7 2 7 2 1 3 8 4 5 .2 3 -5 4 .5 5 Fam ily

C o x ie lla  burnetii R S A  4 9 3 2 0 0 9 6 4 9 3 2 .3 -9 8 .6 6 Fam ily

N itrosom onas  e u ro p a e a  A T C C  1 9 7 1 8 2461 2 2 7 9 .2 2 -1 4 1 .8 7 Fam ily

B acillus  c e re u s  A T C C  1 4 5 7 9 5 2 3 4 2 8 8 5 .5 -2 1 9 .5 4 S p e c ie s

Bacillus  an th racis  A m e s 5311 471 8 .8 7 -2 1 3 .9 9 S p e c ie s
M y co b ac te riu m  bovis A F 2 1 2 2 /9 7  
(spo ligo typ e  9 ) 3 9 2 0 22 0 .5 6 -2 9 2 .3 9 S p e c ie s

H e lic o b a c te r hepa ticus  A T C C 5 1 4 4 9 1 8 7 5 3 6 8 1 9 .6 3 -1 2 9 .0 7 S p e c ie s

C o ryn eb ac te riu m  effic iens  Y S -3 1 4 T 2 9 5 0 2 8 9 9 .8 -1 9 8 .8 9 S p e c ie s

P ire llu la  sp. 1 7 3 2 5 3 5 7 6 4 8 .8 2 -4 9 .7 9 D ivision

H ae m o p h ilu s  ducreyi 3 5 0 0 0 H P 1 7 1 7 2 8 4 1 6 .5 4 -1 6 4 S p e c ie s

C an d id a tu s  B lo ch m an n ia  flo ridanus 5 8 3 1 0 .1 7 -1 9 3 .2 6 G e n u s
B ordete lla  pertussis  T o h a m a  I N C T C -  
13251 3 4 4 7 7 0 .2 -2 9 0 .4 S pe c ie s
B ordete lla  pa rap e rtu s s is  1 2 8 2 2  
N C T C -1 3 2 5 3 4 1 8 5 14 0 .3 3 -3 0 6 .0 4 S pe c ie s
B ordete lla  b ron ch isep tica  R B 5 0  
N C T C -1 3 2 5 2 4 9 9 4 117 2 .3 4 -2 8 3 .5 2 S p e c ie s
Proch lo ro co ccu s m arin u s  
C C M P 1 3 7 5 (S S 1 2 0 ) 1 8 8 2 291 1 5 .4 6 -1 5 5 .6 3 Fam ily

S y n e c h o c o c c u s  s p .W H 8 1 0 2 2 5 1 7 3 88 15 .4 2 -1 3 9 .0 8 G e n u s

M y co p la s m a  ga llisep ticum  R 7 2 6 76 1 0 .4 7 -1 0 8 .2 9 S pe c ie s
P s e u d o m o n as  s yrin g ae  pv. T o m a to  
D C 3 0 0 0 5471 5 73 1 0 .4 7 -1 9 4 .2 4 S pe c ie s

P o rp h yro m o n as  g ing iva lis  W 8 3 1 9 0 9 3 5 2 1 8 .4 4 -1 3 7 .1 4 Fam ily
C h ro m o b a c te riu m  v io lac e u m  A T C C  
1 2 4 7 2 4 4 0 7 5 77 1 3 .0 9 -1 3 8 .6 3 G e n u s

W o lin e lla  s u cc in o g en es 2 0 4 4 150 7 .3 4 -1 3 8 .6 4 G e n u s
P h o torhabdu s  lu m in e sc e n s  laum ondii 
T T 01 4 6 8 3 7 1 9 1 5 .3 5 -1 5 5 .2 9 G e n u s

G lo e o b a c te r  v io lac e u s  P C C 7 4 2 1 4 4 3 0 6 8 2 1 5 .4 -1 1 5 .0 8 Fam ily

N a n o a rc h a e u m  e q u itan s  K in 4 -M 5 6 3 167 2 9 .6 6 -6 4 .6 4 Division
C oryn eb ac te riu m  d ip h th e ria e  g ravis  
N C T C 1 3 1 2 9 2 2 7 2 2 5 9 1 1 .4 -1 6 8 .2 1 S p e c ie s

G e o b a c te r  su lfu rred u cen s  P C A 3 4 4 5 5 8 0 1 6 .8 4 -1 0 6 .0 3 Fam ily

R h o d o p s e u d o m o n a s  pa lustris  
C G A 0 0 9 4 8 1 4 3 36 6 .9 8 -1 9 1 .9 8 G en u s

P hytop lasm a asteris  O Y 7 5 4 2 2 9 3 0 .3 7 -67 .1 Fam ily

B dellovibrio  bac terio vo ru s  H D 1 0 0 3 5 8 3 1 11 3 3 1 .0 6 -7 3 .6 6 Fam ily
M yco b acte riu m
aviu m ,s u b s p .:p a ra tu b e rc u lo s is  K -10 4 3 5 0 211 4 .8 5 -2 0 0 .7 7 S p e c ie s
M y co p la s m a
m yco id e s ,s u b s p .m y c o id e s  S C 1 0 1 6 2 0 9 2 0 .5 7 -8 5 .6 5 S p e c ie s
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Appendix 5.2 -  Chapter 5 Figure S1

Relationship between the numbers of orphans and Isolation Index of an Organism. T h e  HO fo r  e a c h  

g e n o m e  in o u r  d a ta s e t  (fu ll list o f g e n o m e s  g iv e n  in A p p e n d ix  5 .1 )  is p lo tte d  a g a in s t  (a )  p e rc e n ta g e  o f  

o rp h a n s , (b ) th e  n u m b e r  o f  o rp h a n s  g re a te r  th a n  2 0 0  a .a ’s a n d  (c ) th e  p e rc e n ta g e  o f  to ta l o rp h a n s  g re a te r  

th a n  2 0 0  a .a ’s in le n g th . In a d d it io n , e a c h  g e n o m e  is c la s s e d  a c c o rd in g  to  th e  ta x o n o m ic  le v e l a t w h ic h  it is 

th e  o n ly  s e q u e n c e d  r e p re s e n ta t iv e .
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