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Sum m ary

We think the Configuration Space approach to spatial planning problem is good. 
The configuration space obstacles are geometric objects th a t can be represent 
using semi-algebraic CSG representation. Moreover, they can also be represent 
using existential quantifiers which correspond to geometric projections. If the 
projected variables only occur algebraically then it is possible to eliminate quan
tifiers and represent configuration space obstacles in the extended semi-algebraic 
form. We think this computation can be done more efficiently if it is preceded by 
spatial subdivision and pruning. However, no m atter how it is done the quantifier 
elimination is computationally hard, and the output in extended semi-algebraic 
representation is large and cumbersome.

It seems tha t we should learn to work directly with the representation of the 
configuration space obstacle as a projection in an extended CSG system. In 
any case, if the moving object or part of the obstacle is not algebraic, we must 
represent the C-space obstacle as a projection since elimination of quantifiers 
may not be possible. Therefore, we are looking into the use of an extended CSG 
system which has bounded projection and boundary formation as operators, as 
well as the usual Boolean ones.



Contents

A cknowledgm ents i

Summ ary ii

Table o f Contents iii

List o f Tables viii

List of Figures x

List of A lgorithm s xi

1 Introduction 1

1.1 Thesis O verview ...........................................................................................  1

1.2 Terms and Definitions .............................................................................. 5

1.3 Thesis O u tlin e ..............................................................................................  6

2 C-space Approach to  Spatial Planning 8

iii



2.1 Spatial Planning ......................................................................................... 8

2.2 C-space .........................................................................................................  9

2.2.1 Dimensions of C - s p a c e .................................................................  10

2.2.2 Reference P o i n t ............................................................................... 11

2.2.3 C-space O b s ta c le ...........................................................................  13

2.3 C-space Approach to  Spatial P l a n n i n g ................................................  16

2.3.1 Characteristics of C-space Approach ......................................  17

2.3.2 C-space R ep rese n ta tio n s ..............................................................  17

2.4 S u m m a r y ......................................................................................................  18

3 C onstructive Solid G eom etry 19

3.1 Constructive Solid G eom etry ....................................................................  19

3.2 M athematical Framework ........................................................................  21

3.2.1 Boolean Algebra ...........................................................................  22

3.2.2 Semi-Algebraic S e ts ........................................................................  23

3.2.3 Closure P r o p e r t i e s ........................................................................  26

3.3 Geometric Modeller: S v l i s ........................................................................ 26

3.4 CSG S y s te m s ...............................................................................................  28

3.4.1 Models and B oxes...........................................................................  30

3.4.2 E v a lu a tio n ......................................................................................... 34

iv



3.4.3 P r u n i n g ............................................................................................  35

3.4.4 Recursive Subdivision..... ................................................................  39

3.5 CSG Approach to  Spatial P la n n in g ....................................................... 41

3.6 S u m m a r y ......................................................................................................  42

4 Quantifier Elim ination 43

4.1 Quantifier Elimination P rob lem s.............................................................. 43

4.1.1 Existential Quantifiers as Geometric P ro je c tio n s ..................  45

4.2 Complexity Estim ates ..............................................................................  46

4.3 Application of Quantifier E lim in a tio n ...................................................  46

4.4 Cylindrical Algebraic D e c o m p o s itio n ...................................................  47

4.5 Quantifier Elimination Approach to Spatial P la n n in g .....................  48

4.6 S u m m a r y ...................................................................................................... 49

5 U sing Quantifier Elim ination 50

5.1 Representing C-space O b s ta c le s .............................................................. 50

5.1.1 Using Existential Q uantifiers......................................................  50

5.1.2 Incorporating Boundary F o rm a t io n .........................................  55

5.2 Quantifier-free C-space O b s ta c le s ..........................................................  58

5.2.1 Models and B oxes...........................................................................  59

v



5.2.2 Using Pruning and S u b d iv is io n ................................................  61

5.2.3 L im ita t io n s .....................................................................................  62

5.3 Com putational E x p e rim e n ts ....................................................................  62

5.3.1 Software Used and D e v e lo p e d .................................................... 62

5.3.2 Test P ro b lem s..................................................................................  64

5.3.3 C-space Obstacles R ep resen ta tio n .............................................  68

5.3.4 Subdivision A lgorithm s.................................................................  70

5.3.5 Complexity E s t im a te s ......................................  75

5.3.6 L im ita t io n s .....................................................................................  75

5.4 S u m m a r y ......................................................................................................  76

6 Extended CSG System  77

6.1 Extended Operators .................................................................................. 77

6.1.1 Boundary O p e ra to r ........................................................................  77

6.1.2 Projection Operator ..................................................................... 78

6.1.3 Relationship Between O p e ra to rs ................................................  80

6.2 Model and B o x e s ........................................................................................ 81

6.2.1 Projection of B o x es ........................................................................  84

6.3 Basic P ro b lem ...............................................................................................  84

6.3.1 Evaluation P r o c e s s ........................................................................  84

vi

ti



6.3.2 P r u n i n g ..........................................................................................  88

6.3.3 Recursive Subdivision ................................................................ 89

6.3.4 Normal F o rm s ................................................................................  94

6.4 Extended CSG Approach to Spatial P l a n n i n g ................................  94

6.4.1 Representing C-space O b s ta c le s ............................................... 94

6.4.2 Partial Solutions to Find-space and F ind-path Problems . 96

6.5 S u m m a r y ....................................................................................................... 101

7 Conclusions and Further Work 102

7.1 Implication for Further Research ........................................................... 104

A R E D U C E Procedures 105

A .l Grid Division P r o c e d u r e ............................................................................ 105

A.2 Recursive Subdivision Procedure ............................................................107

References 109



List o f Tables

3.1 Value of atomic formula according to the range of intervals . . . .  34

5.1 Computing Time (seconds) and number of atomic formulae of C- 
space obstacles............................................................................................... 69

5.2 Computing Time (seconds) of 1-dimensional C-space obstacles. . . 72

5.3 Number of atomic formulae of 1-dimensional C-space obstacles. . 72

5.4 Computing Time (seconds) of 2-dimensional C-space obstacles. . . 73

5.5 Number of atomic formulae of 2-dimensional C-space obstacles. . 73

5.6 Computing Time (seconds) of 3-dimensional C-space obstacles. . . 74

5.7 Number of atomic formulae of 3-dimensional C-space obstacles. . 74

viii



List of Figures

1-1 Fat man in the forest; Workspace and Configuration space............... 2

2-1 The choice of a different reference point result in a different C-
space obstacle................................................................................................. 12

2-2 A configuration of a polygon which may translate and rotate  can 
be specified by three parameters -  2 param eters correspond to the 
two dimensions of the translation and one param eter corresponds
to the ro tation...............................................................................................  13

3-1 M i, M2, M3 relative to the box B ............................................................. 38

4-1 Existential quantifier corresponds to  a geometric projection. . . .  45

5-1 A ladder in an L-shape corridor................................................................  60

5-2 2-dimensional movable objects...................................................................  66

5-3 Sets of 2-dimensional obstacles..................................................................  67

6-1 P r o je c t io n ^ ( S i  fl 5 2) /  P r o je c t io n ^ ( S i )  PI P ro jection{y}(52) . 81

ix



6-2 It is not always possible to subdivide the side th a t correspond to
the variables which is to be projected.....................................................  92

6-3 An object, the set of obstacles and the partia l Freespace.................. 99

6-4 Partial Freespace in 3-dimensions................................................................100

x

iL



List of Algorithm s

1 P ru n e (M , B ) ..................

2 SubD iv ide(M , B) . . .  .

3 RecurSubD ivision(M , B)

4 E x tP r u n e (M , B) . . .  .

5 E xtSubD iv ide(M , B) . .

6 E xtR ecurSubD iv is ion (M , 5 )

7 Findspace(M, B ) ....................



Chapter 1

Introduction

1.1 Thesis Overview

In this thesis we present methods for computing constraints on the position and 
orientation of an object due to the presence of other objects. These constraints 
problems arise in applications th a t require choosing how to arrange objects or 
how to move objects without collisions. We refer to this type of problem as a 
Spatial Planning problem.

One m ajor approach to solve spatial planning problems is to  use the concept of 
Configuration Space introduced by Lozano-Perez [41]. This approach simplifies 
the problem from having to deal with the intersections between set of objects 
to dealing with a point relative to a set of objects instead. The configuration 
forbidden to an object due to the presence of other objects can be characterised as 

regions in a configuration space which we refer to as configuration space obstacles.

We dem onstrate the idea of configuration space with the following example.

Consider trying to guide a fat man who was lost in a forest. Assume th a t the 
cross-section of this man is uniformly circular, whereas the cross-sections of some 
trees are square and some are rectangular in shape. The view from the sky above
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C-spaceWorkspace

Figure 1-1: Fat man in the forest; Workspace and Configuration space,

the forest is the view of our Workspace (Figure 1-1).

One way of solving the problem is to find the route for the man by measuring all 
gaps between the trees and identify the gaps tha t are bigger than his diameter. 
Alternatively, we can imagine tha t the man has lost weight so tha t his cross- 
section has shrunk to a point and all the trees have grown by the size of the 
radius of the man. Looking at the problem this way, we only have to guide a
single point around the ’grown’ obstacles.

We refer to this somewhat transformed Workspace as the configuration space or C- 
space. The point which represents the man is called the reference point. All grown 
trees are called configuration space obstacles. Each point in the configuration 
space corresponds to a position of the man in the Workspace relative to his 
reference point. Every point in the configuration space obstacle corresponds to a 
position in the Workspace where the man comes into contact with the tree.

In this thesis we consider the case of a single 2-dimensional object moving in the 
presence of several 2-dimensional static obstacles in a 2-dimensional Workspace. 
We allow the moving object and the obstacles to have curved edges and they 
may also be non-convex. Additionally, we allow both translational and rotational 
movements of the moving object, thus the moving object has 3 degrees of freedom.

In order to be able to represent a position and orientation of the actual object 
in the Workspace by a single point in the configuration space, we represent the 
rotational movement of the object by adding an extra dimension to the config
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uration space. In general, at least n  dimensions is needed for the configuration 
space so th a t each point in this configuration space represents a configuration of 

an object which has n  degrees of freedom.

Computing the C-space obstacles is an im portant process in the C-space approach 
to spatial planning. We think a good approach to represent the constraints of an 
object due to the presence of other objects is by constructing a configuration space 
obstacle using the idea of Constructive Solid Geometry (CSG) and semi-algebraic 

sets.

Model in CSG are built up from a Boolean combination of primitive geometric 
objects such as half-planes, cylinders and spheres. We call these base-objects 
primitives. Since an arbitrarily complicated geometric shape has semi-algebraic 
description, we can define most CSG primitives by using semi-algebraic sets which 
are subsets of some R n defined by a finite number of polynomial equations and 
inequalities [4]. Consequently, we can use these sets to represent n-dimensional 
object in n-dimensional space.

Additionally, semi-algebraic CSG representation allows the processes of pruning 
and subdivisions to be done on geometric objects [69]. Complicated CSG objects 
can be represented by a tree structure with Boolean operators on the internal 
nodes, and primitives a t the leaves. To answer a query about an object repre
sented in this way is computationally expensive since every node and leaf has 
to be consulted. One way to overcome this problem is to restrict the number of 
nodes and leaves th a t need to be considered. We can impose these restrictions 
by dividing the space th a t contains the tree into smaller spaces, and by pruning 
the tree for each space. Based on the assumption th a t ‘representation of objects 
may be globally complicated but locally simple’, pruning and subdivisions can 

lead to simpler representations of objects. Each time the subdivision occurs, the 
smaller sub-space may have simpler objects while the combination of all spaces 

still represent the more complicated original model.

Moreover, not only th a t semi-algebraic sets are closed under finite union, inter

section and negation, they are also closed under elimination of quantifier. A 
quantifier is denoted by one of the two symbols; V (for all) and 3 (there exist).
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We use quantifiers in the form, for example; (y x ) p { x ) which means ‘for all x, 
the expression p (x ) is tru e ’, or (3x)p(x ) which means ‘there exists x  such th a t 
the expression p(x) is true’. Given a logical expression containing quantifiers, 

the problem of quantifier elimination is th a t of finding an equivalent expression 
which does not contain any quantifiers.

Existential quantifiers correspond to geometric projections. We can regard a set 
defined by B  — (3x)A  as a set of points at which A  is true. The set of points 
defined by B  is a projection of a set defined by A. The projection is parallel to 
the x  axis onto the space of other variables of A. In theory, if the CSG primitives 
are semi-algebraic then the quantifier can be elim inated and the results are also 
semi-algebraic.

In addition to existential quantifier, boundary of semi-algebraic sets are also semi- 
algebraic. Thus we can also represent C-space obstacles using a combination of 
existential quantifiers and boundary of semi-algebraic sets. We dem onstrate tha t 
the configuration space obstacle is naturally a projection of a higher-dimension 
object onto the configuration space. Therefore existential quantifiers which cor
respond to geometric projections can be used to  represent C-space obstacles.

In order to represent semi-algebraic CSG objects w ith Boolean operators alone, 
one approach is to apply elimination of quantifiers. Although possible in theory, 
the process of quantifier elimination is com putationally expensive and quantifier- 

free results are often large and cumbersome and may not obtainable in a reason
able amount of time.

Since the process of quantifier elimination has com putational difficulty which 
increases much more than linearly with complexity of formula, we explore the 

possibility of using spatial subdivision techniques as a pre-process before applying 
quantifier elimination.

We can also extend the CSG primitives beyond the semi-algebraic. It is often 
useful in applications to consider trigonometric and exponential functions. We 
can extend the semi-algebraic sets to include these functions. We refer to these 
sets as Extended Semi-algebraic sets. Extended semi-algebraic sets have good



expressive power. Not only th a t they are capable of representing static objects, 
it is also natural to describe motion constraints of objects using these sets.

However, the subsets of R n which can be represented by Boolean combinations 
of the extended semi-algebraic sets as primitives do not have such good closure 
properties as the semi-algebraic set primitives. The projections of extended semi- 
algebraic sets are only guaranteed to be extended semi-algebraic if the variables 
being projected only occur algebraically. In this thesis, we restricted ourselves to 

these cases.

Another approach is to extend the set of operators to include projection and 
boundary formation as well as the usual set operators. This allows a more com
pact representation of C-space obstacles but also raises new difficulties. We do not 
yet fully understand how to compute with sets define with these new operators. 
We discuss how to compute with such extended system. We also investigate how 
the quantifier elimination process might be combined with pruning and recursive 
subdivision and extended to deal with the two new operators.

We also explore the possibility of applying the extended CSG system to spatial 
planning. The C-space obstacle, which is the solution to Find-space problem, can 
be represented using extended semi-algebraic sets with extended operators.

1.2 Term s and  D efinitions

In many occasions we use the term  object instead of ‘moving object’ to refer to 
the movable rigid-body. The term  obstacle refers to a static n-dimensional rigid- 
body whereas obstacles refer to a group of obstacles which may or may not be 
connected.

We also adopt some general standard notations and meanings. All geometric 
entities -  lines, edges, faces and objects will be treated as infinite sets of points. 
All of these entities will be in some R n, an n-dimensional Euclidean space. We 
denote points of R n by a, b, x, y , z and denote sets of points in R n by A , B , C, P
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and O. Additionally, we use i , j , k, I to denote integers.

1.3 T hesis O utline

This thesis is organised around 7 chapters which are outlined below.

In this C hapter, we give an overview of the thesis and define some key terms 
which will be used throughout.

Chapters 2-4 provides the background knowledge to this thesis. In Chapter 2 
we describe the concept of spatial planning problem and configuration space. 
We also outline the configuration space approach to spatial planning by means 
of constructing configuration space obstacles. In C hapter 3 we provide a brief 
description of CSG and a definition of semi-algebraic sets. We also summarise the 
m athem atical framework of the semi-algebraic approach to CSG. We then give an 
overview of Svlis geometric CSG modeller and describe in details the pruning and 
recursive subdivision technique. We also mention some existing semi-algebraic 
CSG representations of configuration space obstacles. In C hapter 4 we briefly 
describe the quantifier elimination method. We also explain how it can be used 
to construct configuration space obstacles.

C hapter 5 and C hapter 6 contains the main part of the work. In Chapter 5 we 
define the C-space obstacles of a 2-dimensional object translating and rotating 
freely among 2-dimensional obstacles using existential quantifiers. We then pro
vide simple algorithms to compute these C-space obstacles using the quantifier 
elimination technique of Cylindrical Algebraic Decomposition. We also suggest 
using pruning and subdivision process to simplify the problem before applying 
quantifier elimination. We then give details of the experiment and report the 
result. In C hapter 6 we give precise definition of Extended CSG System. We also 
outline how the pruning and recursive subdivision technique to this extended 
system. We describe in detail how we may construct configuration space obsta
cles using the two new operators of our extended system. We also investigate 
the use of pruning and subdivisions to conservatively generate Freespace and

6



dem onstrate the method of finding a partial solution to the Find-path problem.

Finally, in Chapter 7 we summarise the work of this thesis, highlight the original 

concepts which we introduced and outline some problems which remain unsolved.
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Chapter 2

C-space Approach to Spatial 
Planning

In this chapter we briefly describe the problem of spatial planning and describe 
in detail the concept of configuration space. We also give a brief survey of the 
configuration space approach to spatial planning.

2.1 Spatia l P lann ing

Spatial planning problems are a class of geometric problems which involve placing 
an object among other objects or moving an object from one place to another 
w ithout colliding with other objects in the process.

We refer to the problem of placing an object among obstacles as a Find-space 
problem and refer to the problem of finding a collision-free path  for an object as 

a Find-path problem.

Let A be an object and Bj be a set of, possibly intersecting, objects. Let R  be 
an object th a t completely contains A  and Bj. Find-space and F ind-path can be 
defined as follows.



1. Find-space -  Find a position for A  inside R , such th a t for all B j, A  C\ Bj

=  0 -

2. Find-path -  Find a path  for A  from position p0 to position pi such th a t A  

is always in R  and on this path  A  fl Bj = (f).

Spatial planning is a computationally difficult problem. Not only th a t the com
plexity of the com putation increases with the number of dimensions and the 
number of objects involved, it also depends on the representation and the com

plexity of objects. Much research has been devoted to the complexity aspect of 
the spatial planning problem. For example, it was studied by Canny [11], Dav
enport [14], Hopcroft et al. [32], Lozano-Perez [41], Reif [54] [55], Schwartz and 
Sharir [57] [58], Vanderstappen et al. [66].

2.2 C-space

In 1983, Lozano-Perez [41] introduced the formal idea of configuration space to 
spatial planning. The main idea of this approach is to map the original problem 
from lower dimension to a relatively simpler problem in higher dimension.

For example, consider a typical packing problem where the original problem in
volves the optim al orientation of identically-shaped polygons. We can reduce the 
problem of how to minimally pack polygons in a thin rectangular space, so th a t 
each polygon has the same orientation, to the case of finding the minimal width 
of the cross section of a torus defined by quadratic surface patches instead [54].

Based on the assumption th a t a set of param eters can represent the configuration 
of a solid object in space, this formalised approach represents a position and 
orientation of an object as a single point in the space of these parameters.

For example, consider a polygon which may rotate and translate freely in 2- 
dimensional space. We can represent its configuration as a point in 3-dimensional 
space using three param eters where 2 param eters correspond to each dimension

9



of its translations and one param eter correspond to  its rotation. Similarly, we 
can represent a configuration of a polyhedron which may rotate  and translate 
freely in space as a point in 6-dimensional space using six param eters where 3 
param eters correspond to each dimension of the translations and 3 param eters 
correspond to each dimension of the rotations.

A point in this created param eters space corresponds to a specific position and 
orientation of the actual object in the original space. Consequently, this parame

ters space is sufficient to represent every conceivable position of the actual object 
in the original space. We call the space of these param eters the Configuration 

Space or C-space and we refer to the original space as the Workspace.

2.2 .1  D im en sion s o f  C -space

We define the number of dimensions in which a particular object can ‘move’ in 
space to be its degrees of freedom. Since a ‘configuration’ of a particular object 
refers to both its position and its orientation, the degrees of freedom of an object, 
which allow to translate and rotate, is a combination of degrees of freedom of its 
translational and rotational movement.

The maximum degrees of freedom of an object depend on the dimensions of 
its Workspace. Consequently, the dimension of the Workspace dictates the di
mension of the C-space. An object in n-dimensional Workspace has a t most 
n -1- ( |n ( n  — 1)) degrees of freedom, where n-dimensions correspond to the trans
lations and (^n(n  — 1)) correspond to the rotations [6].

In general, the minimum number of independent param eters required to specify 
every conceivable position and orientation of an object, relative to a frame of 
reference, is equal to the number of its degrees of freedom. For example, a 

configuration of an object in n-dimensional Workspace may be regarded as a 
point in R d where d = n  +  ( |n ( n  — 1)). In other words, a configuration of an 

n-dimensional object which has d degree of freedom can be specified using d 
parameters. Thus, in general, the minimum dimensions of a C-space is equal to

10



the degrees of freedom of the object.

However, one may wish to represent the three degrees of freedom for rotational 
movement using quaternions which have 4 variables. Quaternions and their ap
plication in C-space were discussed in [11] [38] [39].

2.2 .2  R eferen ce P o in t

Define the reference point of an object as a fixed point in the Workspace coinciding 
with the origin of the global coordinate frame. Denote the reference point of 
an object A  by rpA• The configuration of an object is defined in terms of its 
reference point, relative to its initial configuration, by a number of parameters 
corresponding to the degrees of freedom of the object. We denote the initial 

configuration of A  in terms of rpA by A q and denote the position of A  in the 
configuration a  by A a.

Generally, an object is placed in the coordinate frame in such a way th a t the 
reference point is inside the object. However, the reference point does not have 
to be inside the object. It can be a point outside the object as illustrated in 
Figure 2-1.

By convention, a position of a translated object in the Workspace is specified 
by its reference point relative to its coordinate frame. A position is the distance 
from the origin of the coordinate frame to the reference point of the object in 
each translational dimension. In contrast, the orientation of the object is specified 
relative to the original orientation of the object itself. Generally, the orientation 

of an object is the anti-clockwise angle about the reference point of the object in 
each of the rotational dimension.

Figure 2-2 illustrates the C-space of a 2-dimensional object A  in R 2 with the 
translation of reference point rpA relative to the origin of the coordinate frame, 
and a rotation around rpA . The configuration of A  can be specified by three 
param eters (z, w , 9) where (z, w) is the position of rpA and 6 is the angle of 
rotation about rpA relative to A q.

11
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Figure 2-1: The choice of a different reference point result in a different C-space 
obstacle.

The C- space of A, denoted by CspaceA, can be regarded as the space R 3. How
ever, the space R 2 x [0 : 27t) suffices to represent the C-space of 2-dimensional 
moving object since the point (2 ,u>,0) corresponds to the object in the same 
configuration in the Workspace as the point (z,w , 2n) [17]. Similarly, if the ori
entation of A  is fixed then R 2 is enough to specify the configuration of A.
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Figure 2-2: A configuration of a polygon which may translate and rotate can be 
specified by three parameters -  2 parameters correspond to the two dimensions 
of the translation and one parameter corresponds to the rotation.

2.2.3 C-space O bstacle

An object and an obstacle cannot occupy the same point in the Workspace there
fore not all the points in the C-space are valid. Some points in the C-space may 
correspond to a configuration of the object in the Workspace where it intersects 
the obstacle. C-space obstacle is the collection of such points.

For example, consider an object which is only a point in space. If the reference 
point is inside the object, i.e. the reference point is the object itself, then the 
obstacle in the Workspace is identical to the C-space obstacle.
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We define C-space obstacles as follows:

D e fin itio n  1 Define Cspacea obstacles due to B , denoted by C O a {B) as: 

C O a {B) = {x  £ C space a \ A x fi B  ^  </>}

All points in the C-space which correspond to all the points where the object do 
not intersect any obstacle is called Freespace and the boundary between C-space 

obstacle and Freespace is referred to as the contact surface.

The choice of a different reference point results in a different C-space obstacle. 

Figure 2-1 illustrates the case of a 2-dimensional object A  in R 2, which may 
translate but not rotate. The constraint on the configuration of A  due to the 
obstacle B  is all the positions of rpA outside CO a {B). A different position of 
rpA results in the translation of C O a (B) relative to the obstacle B.

Lozano-Perez [41] dem onstrated th a t if an object is completely enclosed in an
other object then the C-space obstacle of the larger object alone suffices to rep
resent both object in C-space. Additionally,

C O a {Bx U B 2) =  CO a {Bx) U C O a (B 2).

M in k o w sk i S um s

The idea of C-space obstacles is closely related to th a t of Minkowski sums of sets. 

Define Minkowski sums as:

A  © B  = {a T b | a £ A, b £ B  j- 

where A , B c R 2 and a + b denotes the vector sums of the vectors a and b.
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If a =  (di, . . . ,  an) and b = (bi, . . . ,  bj) then

cl +  b = (aj -t- bi, . . . ,  bn +  5n)

and for a set A define
—A  — { —CL CL G A }

The C-space obstacles can be expressed as Minkowski sums as follow.

T h e o re m  1 Let A  be a translating polygon and let B  be an obstacle. The 

CspaceA due to obstacle B  or C O a (B) is:

{(x, y)  : {x,y)  G B  © - A 0}.

This theorem, which was proved by Lozano-Perez [41], extends to higher dimen
sion as long as the orientation of A  is fixed. Also, if A  and B  are convex polygons 
with m  and n edges respectively, the Minkowski sums A  © B  is a convex poly
gon with a t most m  + n  edges. However, the complexity of the Minkowski sum 
increase to 0 (mn) when one of the polygon is non-convex and become 0 (m 2n 2) 
when both polygons are non-convex [17]. Moreover, In the case of a convex 
polyhedron translating in 3-dimensional space amidst k convex polyhedral ob
stacles, Aronov and Sharir dem onstrated in [1] th a t the Freespace which is the 
complement of the union of the Minkowski sums has combinatorial complexity of 
0 ( n k \ o g k ), where n  is the to tal complexity of each k Minkowski sums.

Minkowski sums are also closely related to an im portant geometric notion of 
convolution which is the com putation of the sweep volume of an object moving 
along a trajectory. Convolution can also be represented as a C-space obstacle as 
shown by Kim in [37].

Although the idea of Minkowski sums does not extend directly to deal with 
ro tating object, it give us insight to what C-space obstacle of object which may 
rotate may look like.

15



S w eep ing  M inkow sk i S u m

Consider a 2-dimensional object which may translate and ro tate  avoiding some 
obstacles in xy-space. Denote the translation in x  and y dimension by z and 

w respectively. Also, denote the angle of the object when rotating around its 
reference point by 9. The C-space obstacle of this object can be regarded a 
3-dimensional object in zw9-space.

Each cross-section of this object along 9 axis correspond to  the translational C- 
space obstacle of this object a t a certain 9. On this plane, we are dealing only 

with a translational problem of a moving the object a t an angle 9 to its original 
orientation. Minkowski sums can be used to find the C-obstacles a t this 9.

T h e o re m  2 Let A  be a polygon which can translate and rotate. Let B  be an 
obstacle. The CspaceA due to obstacle B  or C O a (B) is:

{(x , 2/, 9) : (x, y) G B  © - A o(0)}.

A consequence of this is th a t we can find C-space obstacles with geometric op
erations of rotation and Minkowski sum. Regarding 9 as a variable, we get a 
representation of the C-space obstacle in (x, y, 9)-space. However, the obstacle is 
no longer linear.

2.3 C-space A pproach to  S patia l P lann ing

Since C-space was formalised, a great deal of spatial planning research using 
C-space approach has been carried out. Practical algorithms for many special 
cases have been implemented. For example, an efficient algorithm  known for 
generating C-space obstacles have been only for polyhedral object and obstacles 
using method of computing convex hull and Minkowski sums [41]. Many more 
were described by Latombe [40]. However, most algorithms are for polygons
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and polyhedra only since they rely on certain properties of polygons contact 

conditions.

2.3 .1  C h aracteristics o f C -space A pproach

A few prominent characteristics of C-space approach to spatial planning include:

Prior Knowledge Complete prior knowledge of the environment needs to be 
provided in order to do the calculation. The case of an unknown environ
ment was studied by, for example Chien et al. [12], Lumelsky [43], Skewis 
and Lumelsky [62],

O bject Solidity and R igidity To ensure th a t their configuration can be pa- 
rameterised with a few param eters and th a t they retain the shape while 
moving. The case of flexible object was studied by, for example Hopcroft 
et al.[31].

Static Environm ent The obstacles may not rotate or translate. The case of dy
namic environment was studied by, for example Fujimura [24] [25], Lumel
sky [42], Pan and Luo [47].

A rbitrary D irections Objects are treated as a free-floating bodies in space. 
The calculation does not take into account the constraints caused by the 
mechanics of the object such as, the turning circle of vehicles with wheels. 
The case of car-like robot was studied by, for example Bicchi et al. [5], 
Desaulniers and Soumis [18].

2.3 .2  C -space R ep resen ta tion s

An im portant aspect of spatial planning systems th a t use C-space approach is 
the m ethod of representing the C-space. The representation m ethod needs to  be 
able to classify regions of C-space into, a t least, 2 sub-regions; corresponding to
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where the object in the Workspace can and cannot go, and enable the search for 
positions within these regions [9].

Many C-space representations exist, each has advantages and disadvantages over 
the other. Recent surveys, for example, by Hwang [35], Wise [67] [68], described 

many techniques used to compute and represent C-space which can be classified 
into many sub-categories, in many different ways. For example, the com putation 
methods can be differentiate between global to localised approach, numerical as 
opposed to analytical computation, or approximate as opposed to  exact compu
tation.

One of the m ajor technique of representing C-space is cell decomposition which 
was adopted by, for example, Brooks et al. [10], Faverjon [23], Lozano-Perez [41], 

Schwartz and Sharir [57] [58] [59] [60], Sharir and Sheffi [61]. The technique is 
based on discretising the C-space into a finite number of cells and use some tests 
to classified each cells whether it belongs to the Freespace or the C-space obstacle. 
By building a connectivity graph which represent adjacency relation of these cells, 
path  planning become a graph-search problem in which many efficient algorithms 
exist [33]. Additionally, potential field techniques can be used in conjunction with 
the connectivity graphs for path  planning. Localised potential field technique was 
studied by, for example Barraquand and Latombe [2] [3] where the example of 
globalised version was studied by Hwang and Ahuja [34].

2.4 Sum m ary

In this chapter we described many background ideas. We gave the definition of 

spatial planning and explained the idea of configuration space. We also mentioned 
many previous works on configuration space approach to  spatial planning which 

gave us many insights into the nature and magnitude of the problem.

18



Chapter 3

Constructive Solid G eom etry

In this chapter we give a brief description of Constructive Solid Geometry (CSG). 
We also summarise the m athem atical framework of the semi-algebraic approach 
to CSG. In Section 3.3, we give an overview of a kernel geometric modeller -  Svlis, 
which uses semi-algebraic CSG representation to represent its models. We also 
outline the technique of pruning and recursive subdivision, employed by Svlis, in 
Section 3.4. In the last section we identify several semi-algebraic CSG approaches 
to spatial planning.

3.1 C onstructive  Solid G eom etry

Geometric models are artificially constructed geometric objects th a t make the 
investigation of the actual object easier. Models are useful because a study for 
certain characteristics can be carried out more easily on the model than  on the 
object itself. Moreover, geometric models are not restricted to represent only real 

objects, they can also represent artificial objects.

Configuration space obstacle of the moving object among obstacles can be re
garded as a geometric object. The solid part of the model could corresponds to 
the configuration th a t would cause the object to collide with the obstacles where
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empty space outside the solid corresponds to the possible configuration of the
object in the Workspace.

There are many methods available to represent geometric models. Some common
methods include:

Edge List which uses the list of edges to describe a 2-dimensional object. It can 

also be used to model a wire-frame of a 3-dimensional object.

Boundary R epresentation which represents the surface of an object explicitly 
but represent the interior only implicitly. Objects are represented as a list 
of faces as planar polygons. Each polygons are represented by its vertices 
and edges. O ther physical properties of the object may also be part of the 

representation. This is the most common m ethod of solid modelling.

Bicubic Surface Patches which represents curved surface patches using cubic 
polynomial functions with two parameters.

Im plicit Equation which describes curves and surfaces using implicit equa
tions. For example, the equation

ax2 +  by2 +  cz2 2dxy  +  2eyz  +  2 f x z  +  2gx  +  2hy  +  2j z  -f k =  0

defines the family of quadric surfaces. This implicit equation can define, 
for example, spheres, cylinders, ellipsoids or paraboloids depending on the 
values or the param eters a , . . . ,  k.

Sweep R epresentation which generates a model by sweeping a 2-dimensional 
cross-section along a curve. For example, a circle swept along a straight 
line generates a cylinder and a circle swept along another circle generates a 
torus. A useful technique is to vary the size of the cross-section as it sweep. 
For example, a circle sweeping along straight line with the radius linearly 
decreasing generates a cone.

CSG or Set-T heoretic M odelling which describes the geometry of a complex 

object by combining simple objects using operators of Set Theory. Compli
cated CSG objects can be treated as though they were a single object and
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can be combined to make more complicated objects in the same manner. 
CSG m ethod is useful both as a method for representing geometric object 
and as an intuitive user interface technique.

CSG is widely studied and CSG models are regarded as more stable than  others 
because the properties of its Boolean operators are well understood [27]. Addi
tionally, efficient 0(nlogn)  algorithm to convert boundary representation to CSG 
representation exists for a simple polygon of n  sides [19]. However, the algorithm 
does not extend to polyhedra.

Simple objects in CSG are referred to as primitives. In order to representing CSG 
primitives, we need to  consider a computable representation. Semi-algebraic 
sets, which will be defined in the next section, appear to be an appropriate 
candidate since they have good expressive power. For example, primitives such 
as half-spaces, spheres and cylinders are easy to represent in semi-algebraic form. 
Additionally, semi-algebraic is a natural way to describe geometric constraints
in ] .

Gomes and Teixeira [27] described in details, the m athem atical framework for 
computable CSG primitives using levels of decreasing abstraction from Boolean 
algebra of sets, set-point topology and geometry to semi-algebraic sets. The next 
section summarises this framework.

3.2 M athem atica l Fram ew ork

Since we are interested in a class of geometric objects which can be represented 

and processed in a computer system, the representation of geometric objects needs 
to be computable. The computability of geometric objects depends on the fact 

th a t it presents finite describability of the objects and capable of algebraically 
combine existing objects in order to generate new ones. The Boolean algebra of 
semi-algebraic sets is such an algebraic structure which provides these properties.
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3.2.1 Boolean Algebra

An algebraic structure is a set with operations denotes by a pair (5; fi) where S  
is a set and Q is a collection of operations defined on S.

A Boolean algebra is an abstract algebraic structure in which only the general 
properties are described but the sets and the operations are not defined.

D e fin itio n  2 A Boolean algebra with universe B  is an algebraic structure 
(B ; -F, •, —) with 0 and 1 as distinct elements of B ;  + , • are binary operations on 
B ; and is a unary operation on B  such that

1. a +  b — b T  a 6. a ■• b = b • a

2 . a +  (b +  c) =  (a +  b) -t- c 7. a ■ II"o'
-o b) • c

3. a +  (b - c) =  (a +  b) - (a +  c) 8. a ■• (b +  c) =  (a • b) +  (a • c)

1 0 +  a =  a 9. 1 • a =  a

5. a +  a = 1 10. a ' a = 0

The theory of Boolean algebra can be extended to the theory of sets. For example, 
a Boolean algebra which elements are sets and the operations on sets are union 
(U), intersection (n) and com plem ent(\) : (S; n , U, \ ) ,  is called a Boolean algebra 
of sets.

The above example of an algebraic structure is said to be a t a concrete level and 
is the level of abstraction concerning geometric modelling. Geometric modelling 
always require to know the element of the set S  and th a t there are rules to 

evaluate the operations of over S. The set S  need to  be known so th a t it 
defines the domains of objects and the collection of operations £7 are defined on 
5.

Boolean Algebra of semi-algebraic objects gives us a concrete algebraic structure 
which is computable. Thus the theory of semi-algebraic sets provides a com
putable model for geometric modelling.
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3.2.2 Semi-Algebraic Sets

The concept of Boolean algebra of sets is useful for geometric modelling since 
the basic idea of CSG is also to represent sets in R n by Boolean combinations 

of primitive sets. If the geometric objects th a t we want to represent can be 
considered as sets then we would have Boolean algebra of geometric objects which 
allowr us to define primitive geometric objects as sets and combining them  together 
using Boolean operators.

In general, we would like to allow, as a CSG primitive, any set defined by a 

polynomial inequality or equality.

Let Z [x i , . . . ,  x n] denotes the set of polynomials in variables a q , . . . ,  x n w ith inte
gral coefficients. A semi-algebraic primitive is a subset of R n which adm its some 
representation of the form

{( x i , . . . ,  x n) : p(x  i, . . . , x n) op 0}

where p (x i , . . . ,  x n) E Z[x i , . . . ,  x n] and op £ { 5L — > 7̂ 5 >> ^  }• An
expression of the form p (x i , . . . ,  x n) op 0 is called an atomic formula .

For example, {(x, y, z) : x 2 + y2 + z 2 — 4 <  0} is a semi-algebraic primitive in R 3 

with x 2 +  y2 +  z 2 — 4 <  0 being the atomic formula.

A semi-algebraic set is a semi-algebraic primitive or a Boolean combination of 
semi-algebraic primitives. The semi-algebraic sets of R n form a Boolean algebra 

with +  as set union (U), • as set intersection (fl), — as a set complement (—), 0 

as an empty set (0 ) and 1 as the universal set (i?n).

We can summarise the connection between Boolean logic and geometry as follow:
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Logic Geometry

Primitive Objects Conditions Subsets of Rn
Operators V U

A n
1

3 Projection

Boolean algebra of semi-algebraic sets provide a finite description of geometric 

objects and a set of operators capable of m anipulating them. Semi-algebraic sets 
can be used as a CSG primitive. Object in CSG can be viewed as a set-theoretic 
composition of elementary semi-algebraic sets in R n.

By definition, the Boolean combinations of semi-algebraic sets are closed under 
elementary set-theoretic operators; finite intersection, finite union and comple
ment. We can use these semi-algebraic sets and its operators to define geometric 
objects.

For example, we can define a solid cylinder which has 2 units radius and 4 units 
height in x y z -space as:

A n B n c

where

A =  { ( x , y , z )  : x 2 + y2 -  4 <  0}

B = { ( x , y , z ) : z >  0}

C  = { ( x , y , z ) : z <  4}

Not only th a t we can use semi-algebraic representation to represent solid objects, 
we can also use it to represent 2-dimensional object such as thin sheets or 1- 
dimensional object such as wires or objects with thin shell.

For example, we can define a thin-wall cylinder which has 2 units radius and 4 
units height in x y z -space as:

A n B n c



where

A  = { ( x , y , z )  : x 2 + y 2 -  4 =  0}

B  =  { ( x , y , z )  : z  >  0}

C = { ( x , y , z )  : z  < 4}

Extended Sem i-Algebraic Sets

We can extend the CSG primitives beyond the semi-algebraic. It is often useful 
in applications to consider trigonometric and exponential functions.

Let Z[x i , . . . ,  x n , s in (x i) , . . . ,  sin(xn), cos(rci),. . ., cos(xn), e x p ^ i , . . . ,  expo:n] 
denote the set of polynomials with integral coefficients in x i , . . . , x n, and the 
sines, cosines, and exponentials of these variables. An extended semi-algebraic 
primitive is a subset of R n which adm its some representation of the form

{(rci, —  , : p ( x u . . . 1x n) op 0 }

where

p (x i , . . . ,  x n) G Z[x i , . . . ,  x n, sin(o:i),. . . ,  sin(xn), c o s(x i), . . . ,  cos(xn),

exp x \ , . . .  ,exp x n\,

and op e  { < , < , = , +, > ,>  }.

An extended semi-algebraic set is an extended semi-algebraic prim itive or a Boolean 

combination of extended semi-algebraic primitives.

Boolean algebra of extended semi-algebraic sets, which includes trigonom etric and 
exponential functions, has good expressive power. Not only th a t it is capable of 
representing static objects but it is also natural to describe motion constraints of 
objects in this form.
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However, the subsets of R n which can be represented by Boolean combinations of 
the extended primitives do not always have good closure properties. For example, 
although we can represent the trigonometric functions, we cannot, as far as we 

know represent the primitive {(x, y) : y — sin(:r2) <  0}.

3 .2 .3  C losure P ro p ertie s

Semi-algebraic sets have good closure properties. For example, they are closed 
under:

•  Boolean operations

•  Algebraic change of coordinate system

•  Minkowski sum

•  Projection

Additionally boundary of semi-algebraic sets are also semi-algebraic. Thus the 
semi-algebraic framework is very powerful and flexible. In practice, it is useful for 
a geometric model maker to have a large tool-box of transform ations available.

On the other hand, the extended semi-algebraic sets as defined above are only 
seem to be closed under Boolean operations. Consequently, a CSG system with 
extended semi-algebraic primitives will have some structural limitations. This 
criticism applies to Svlis, described below, and almost any other system with 

non-algebraic primitives and only Boolean operations.

3.3 G eom etric  M odeller: Svlis

Svlis, developed by the Geometric Modelling Group a t the University of Bath, 
is a CSG modeller using extended semi algebraic primitives, as described above.

26



The working group first created Svlis 3-dimensional CSG kernel modeller to be 
used as a tool to perform research into CSG modelling techniques. It was also 
aimed to provide a kernel capable of dealing with geometric object for higher 
level systems such as Computer Aided Design system.

To exploit the dimensional-independent property of CSG, Svlis was further de

veloped so th a t it is capable of representing higher dimensional objects. The 
multi-dimensional Svlis is called Svlis-m but in this thesis we will refer to  it as 
Svlis since Svlis-m is a superset of Svlis. Wise dem onstrated in [68], the use of 
this multi-dimension CSG modeller to compute global C-space maps. This is 
only one application of Svlis, which is a general purpose system.

Svlis has a collection of built-in primitive shapes but also capable of representing 

geometric objects th a t can be expressed implicitly by polynomial inequalities. 
Object of zero thickness such as wires and sheets can be represented as well as 
solids. It also allows the use of sine, cosine and exponential functions when 
building descriptions of objects. More complicated objects are built by combin
ing simple objects using operators of set-theory. Svlis provides four set-theory 
operators namely; union, intersection, difference, and symmetric difference [7].

To aid the efficiency of calculations concerning its objects, Svlis subdivides the 
region of interest into a collection of smaller sub-regions. The idea is based on 
the assumption th a t “representation of objects may be globally complicated but 
locally simple” . The desirable outcome is tha t, each time the subdivision occurs, 
the smaller sub-region has a simpler object. Although it is likely, there is no 
guarantee th a t the object will be simpler in a smaller region of interest. It is 

also im portant th a t the union of all regions still represent the more complicated 
original model.

The m ethod th a t Svlis employs is by using a combination of two processes. The 
first divides the original region of interest into many regions, each has the origi

nal object inside. This process is called subdivision. The second process reduces 
the number of primitives which made up the object in each region by system ati
cally removing unnecessary primitives. This process is called pruning [69]. The 
subdivision process is applied recursively, each tim e with the pruning process to
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simplify the object to its region, until a certain condition is met.

In Svlis, the subdivision process of the original regions of interest, or boxes, takes 

the form of Binary Spatial Division (BSD). T hat is the region is divided equally 
into two adjacent regions along an axis. Regions in Svlis are n-dimensional 

coordinate-aligned boxes defined by n  closed intervals. These intervals are subsets 
of R  defined in term s of end-points a and b. A closed interval {x\x  E R  and a < 
x  < b} usually denoted by [a, b\.

Many operators are defined for Svlis intervals, namely addition, subtraction, mul

tiplication, division by real numbers, intersection, union and exponentiation to 
a positive integer power. The sine , cosine and exp are also defined. However, 
interval arithm etic is conservative so the resulting interval may be larger than  it 
should be. A rithm etic on intervals is covered in great detail in [46].

The division decision in Svlis is to divide the longest side of the box. Since 
n-dimensional boxes are defined by n  closed intervals, the division is done by di
viding the longest interval into two equal parts. The original representation of the 
object is pruned to each of these smaller boxes and, hopefully, can be simplified. 
Each time the subdivision occurs, the box gets smaller and the simplification is 
“more likely” to happen.

Taking the simplification m ethod of CSG objects from Svlis, the next section de
scribes CSG system which allow the process of pruning and recursive subdivision 
on extended semi-algebraic sets with Boolean operator, using interval arithm etic.

3.4 CSG System s

It is clear tha t, Boolean algebra of extended semi-algebraic sets provide a finite 
description of geometric objects and a set of operators capable of m anipulating 
them. Call this system CSG system.

Complicated geometric objects in CSG system are built using Boolean combina
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tions of simple extended semi-algebraic primitives and can be represented by a 
data  structure: a tree with Boolean operators on the internal nodes and extended 
semi-algebraic primitives at the leaves.

For example 
Cylinder

{(x , y, z) : z > 0} {(a?, y, z) : z < 4}

To answer a query about an object represented in this way can be computationally 
expensive since every node and leaf has to be consulted. One way to overcome this 
problem is to use the pruning and recursive subdivision technique using interval 
arithmetic.

In te rv a l A rith m e tic

A finite interval on the real line is a subset of R  defined in terms of end-points 
a and b. We are using closed interval {x\x e  R  A a < x  < b} denoted by [a, b] 
which means tha t both end points belong to the subset.

An interval can be regarded as a finite region of one dimension. We refer to 
a region defined in this way as a box. For example, two intervals, one along 
each Cartesian coordinate axes represent 2-dimensional coordinate aligned box, 
which is an area between 4 line segments. In the same fashion, three interval can 
represent a cuboid.

The division of the space can be done by dividing the intervals which represent the 
box and interval arithmetic [46] can be used to determine how a primitive relates 
to the box. By substituting the corresponding variables of the atomic formulae 
which form the primitives by intervals, the output interval can be evaluated
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according to the operator of the atomic formula. This process is called evaluating 
the primitive over a box which will be discussed later in Subsection 3.4.2.

3.4 .1  M od els and B oxes

In order to  use the pruning and recursive subdivision technique, we introduce the 

concept of models and boxes.

D e fin itio n  3 A CSG model M  is a tree structure with Boolean operations on 

the internal nodes and atomic formulae on the leaves.

Additionally, we will assume some list ( x i , . . . ,  x n) of variables which may appear 
in M .  CSG object trees define subset of R n but a CSG model trees such as M  
describe conditions of variable ( x i , . . .  , xn) available to them.

To distinguish between the two types of tree structure we introduce the following 

notations:

CSG Tree Model Tree
Primitives Semi-algebraic Sets Atomic Formulae
Operators U union

n intersection
— complement

The atomic formulae may define semi-algebraic primitives, or extended semi alge
braic primitives. We might also wish to restrict the primitives to a subset of the 
semi-algebraic, such as, for example, linear half-spaces and cones. The geometric 
operations are n-ary union and intersection and unary complement.

For example, for a variable list (x i , X2, xf )
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intersection

M  = x\ +  x2 < 1 intersection

sin(x3) >  0 s i n ^ )  <  1

Definition 4 Let B  be a list of m  closed intervals ([ai, &i],. . . ,  [am, bm]). Call B  

a box. Each interval in B represents a coordinate-aligned edge of the box. The 

correspondence is determined by the ordering of the intervals and the ordering of 

variables in a specified ordered list.

Suppose a box is m-dimensional and the ordered list of variables are X\ , . . . ,  xn 

where m  < n. By convention, the interval [a\,bi] corresponds to the variable 
X \ ,  the interval [02, 62] corresponds to x 2, and the correspondence carry on re
spectively to [ctmjbm] which corresponds to xm. The variables x m+i , . . .  yxn are 
ignored.

Additionally, the ordered list of variables also label the coordinate axes of this 
set in R n and if the length of the list of interval which defines the box is m, the 
box is said to be m-dimensional.

For example, suppose the ordered list of variables is (xi, x 2, £3, £4) and the box 
B  is ([ai,&i], [a2,b2]). B  is 2-dimensional coordinate-aligned box:

a2

a 1 b\ x\

The box can also be represented in semi-algebraic form. For example, sup
pose the ordered list of variables is . . . ,  xn and a box B  of closed intervals is

31



([ai, 6i ] , . . . ,  [am, bm]) where m  < n. The box B  can be w ritten in semi-algebraic 
form as:

(Xl ^  A X \  ^  &i) A . . .  A {Xfj i  ^  %m — ^m)*

D e fin itio n  5 Lei M  be a model with variable from x i , . . .  , x n and let B  be an 
m-dimensional box where m  < n. Define the model M  over the box B  to be the 

set of points in B  that satisfy M . Denote this set in R n by ( M, B) .

Since the set (M, B ) is the collection of points in B  th a t satisfy M , (tru e , B )  is 
the box B  itself and ( false,  B)  is the empty set.

We will use a pair (M , B ), where M  is a model and B  is a box, to define a 
subset of R n. This (M, B)  is our primitive CSG object; the building block of our 
geometric language which can be regarded as an extended semi-algebraic set.

For example, for a variable list (x \ , X2,Xz) :

1. M  = x i < 0, B  =  ([-1 ,1 ])

(M,  B)  =  {^i : X\ > — 1 A Xi < 0}.

2. M  = Xi < 0, B  = ([—1,1], [—1,1])

(M, B)  =  {(^i, x2)} : (^i >  — 1 A X\ < 0) A x 2 > — 1 A x 2 < 1}

3. M  = complement(xi < 0), B  =  ([—1,1]) defines

{:ei : X\ > 0 A X\ < 1}

4. M  =  complement(x < 0), B  = ([—1,1], [—1,1])

(M, B)  =  { ( x i , X2) : Xi > 0 A x\  < 1 A x i  >  — 1 A x 2 < 1}

5.

32



intersection

M  = Xi2 +  X22 — 1 <  0 intersection

X3 >  —6 xs < 6

B  =  ([0,3], [0,4], [0,5])

(M, B )  =  {(rci, £2, £ 3 ) : x \  +  x \  — 4 < 0 A x 3 > — 6  A X3 < 6  A

Xi  >  0 A X\  <  3 A X2 >  0 A X2 <  4 A X3 >  0 A <  5}

=  { ( x \ , X 2 )X$) : x 2 +  x \  — 4 <  0 A >  0 A i i  < 3 A  

x 2 >  0 A X2 <  4 A £ 3  >  0 A x 3 <  5}.

It can happen as in example 2 and 4 above th a t (M, B)  defines a set which does 
not depend on one or more of the variables from the variable list. Example 5 

shows th a t this is necessary if we want intersection to  be defined in a natural 
way. We have described a model as a tree. If we climb up the tree, the number 
of variables visible below us may change. We do not in general wish to change 
space every time this happens. Therefore, we work always in subsets of the box 
B. This will be discussed again later, when we consider projection.

The sets defined by (M, B)  form a Boolean algebra of the subsets of B .  This set 
definition is recursive on the structure of M .  T hat is, if M  is an atomic formula, 
( M , B )  will be the subset of B  in which M  is true  and it follows that:

•  (u n io n (M i , M 2) , B)  = ( Mi , B)  U (M2, B)

•  (intersection(Mi, M2), B) = (Mi, B)  D (M2, B)

•  (com plement(M ) , B) = B  — (M , B)
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[ - . 0] [0 ,+ ] [ - .+ ] [+5 +]
p = 0 undecided undecided undecided fa ls e fa ls e
p < 0 undecided fa lse undecided true fa ls e
p < 0 true undecided undecided true fa ls e

Table 3.1: Value of atomic formula according to the range of intervals 

3 .4 .2  E valuation

It is clear th a t, the box limit the scope in which the model is defined. Additionally, 
it also provides intervals which correspond to variables in the model from which 
we can determine the value of each atomic formula in the model tree by using 

interval arithmetic.

In order to reduce the number of atomic formulae of a model in a box, all the 
formulae th a t make up the model need to be evaluated. This is to determine 
the value of each atomic formula over the box and decide if it can be simplified. 
The evaluation is done by using interval arithm etic on each atomic formula. By 
substituting each variable of the formulae with the corresponding interval, the 
range of values of the function in the atomic formula can be calculated. This 
range will also be an interval. The value of the atomic formula can be evaluated 
according to the operator of the primitive. This process is referred to  as evaluating 
the formula over a box. The value of the atomic formula after the substitution is 
either tru e , fa lse  or undecided.

Table 3.1 shows the value of output intervals corresponding to the operator of the 

formula. The simplifications of models occur when some formula evaluate to  true  
or fa ls e  and there is no simplification when the formula evaluated to undecided.

Since this set definition is recursive on the structure of M , when M  is an atomic 
formula, (M, B ) will be the subset of B  in which M  is true. T ha t is, when the 
formula evaluated to true  it can be interpreted as M  is true  inside the box B. 
T hat is, the intersection of the model and the box is the box itself. In this case
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we replace the formula with true. W hen the formula evaluated to f a l s e , M  is 
fa ls e  inside the box B  and we can replace it with fa lse .  The original primitive 

is returned if the evaluation result is undecided.

For example, consider M  =  2x — 3 y+ 4z+ 12  <  0 and the box ([—1,4], [1,3], [0,4]). 

Over the box the M , in this case -  an atomic formula, is:

2([ 1,4]) — 3([1, 3]) +  4([0,4]) +  12 <  0 

[ - 2 , 8] - [ - 9 , - 3 ] +  [0 ,16]+  [12,12] <  0

[1,33] <  0

which evaluated to fa lse .

This process can be thought of as a function which take an atomic formula P  and 
a box B  as the arguments and return either a value true , fa ls e  or the original 
primitive along with the box:

Eval(P, B)  —> {(true, B), ( false,  B) ,  (P, B)} .

An atomic formula of a model M  will be evaluated to undecided  if the atomic 
formula has an instance of a variable which does not correspond to an interval.

3 .4 .3  P ru n in g

The evaluation process may replace some unnecessary formulae of the model in 
the box by true  or fa lse  which can lead to a reduction of the number of formulae 
th a t made up a model. This is because a model consisted of unions, intersections 
and complements of formulae. Once each formula in the model has been evaluated 
and some replaced with true  or fa lse  , we can work up the model tree applying 
the operators to each leaf and achieve some simplification.

The pruning process ensures th a t inside the box there are no unnecessary formulae 
while the simplified model is still representing the original one. We can simplify
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the model over the box by applying the rules of the operators to the primitives. 

The simplification rules of the CSG Boolean operators are:

•  union(undecided , true) =  true

•  union(undecided, fal se)  = undecided

•  intersection(undecided, true) = undecided

•  intersection(undecided, false)  = fa lse

• complement(true) = fa lse

• complement^false) = true

•  complement(undecided) =  undecided

The process of pruning the model to the box takes a model and a box (M, B)  
and produces another model over the same box (M ' , B ). In the box B,  M '  is 
either the same as M  or simpler than M.  Also, (M, B)  and (M ' , B)  define the 
same set.

The pruning procedure can be expressed in terms of a recursive algorithm (See 
Algorithm 1). It starts a t the root of the model and works down to all the 
leaves. While the node is still an operator, the evaluation is deferred by calling 
the procedure PruneQ  again.

Since CSG operators are n-ary union, n-ary intersection and unary complement, 
the algorithm  can exploit many known properties. For example, it can take into 
account the simplification th a t can be made in the case where one of the operand 
of union  simplified to true  and similarly, where one of the operand of intersection  

simplified to fa lse .  If the node is not one of CSG operators then we have reached 
the leaf and procedure E v a l () is called to evaluate th a t particular formula to the 
box.
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A lgorithm  1 P r u n e (M ,B )
Input: (M, B)
Output: ( M \  B)
Ensure: (M' ,  B)  defines the same set as (M, B)  

S  <— 4>
if (M =  u n io n { M ij . . . ,  M/J) then  

for i =  1 to k do
(Ml,  B)  Prune(M { , B)  
if  (Ml = true) then  

return(true, B)  
else if  (M[ /  f al se)  then  

S  <— un ion(S , M[) 
if  (S  =  <j>) then  

re tu rn ( fa lse , 5 )  
else

re tu rn (S , 5 )  
else if ( M — inter section{M u  . . . ,  M^}) then  

for z =  1 to  k do
(M l , B) P ru n e(M i , I?)
if  (Mt' =  fal se)  then  

r e tu r n ( f  alse , 5 )  
else if (Mz- ^  true) then  

5  intersection(S, Ml)  
if  (5 =  0) then  

re tu rn (true , B) 
else

re tu rn (S , £ )  
else if  (Af — comp/ement{Mi}) then  

P rune(M i, B)  
if (M{ =  true) then  

re tu rn ( fa lse , £ )  
else if (M{ =  fal se)  then  

re turn (true , £ )  
else

return(com plem ent{M [}, £ ))
else

re tu rn (E va l(M , £ ) ,  £ )
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For example, let consider M  = union(M\, intersection(M 2, M3)) where:

M l

M 2

M 3

y

inter section(x — y > 0, x < 3, y > 1) 

{x-  5)2 +  (j/ -  6)2 -  1 < 0 

intersection(x  > 4, x  <  6 , y >  4)

4 . . .

M2

m3

X

Figure 3-1: M 1? M2, M3 relative to the box B.

and the variable list is (x, y)  (Figure 3-1). Prune M  to the box ([0,2], [0,4]) by
evaluating each atomic formula:

Mi =  intersection(x — y >  0 ,x  <  3 ,y  > 1) where x = [0, 2] and y = [0,4].

Mi «  intersection^0, 2] — [0,4] >  0, [0,2] <  3, [0,4] >  1 

«  intersection(undecided, tru e , undecided)

«  intersection(undecided, undecided)

Hence Mi =  intersection(pc — y > 0, y >  1)

M 2 = (x -  5)2 -I- (y — 6)2 — 1 < 0

M2 «  ([0,2] — 5)2 +  ([0,4] -  6)2 — 1 <  0 

ss [9,25]+ [4 ,3 6 ]-[1 ,1 ] < 0  

«  fa lse
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Hence M 2  =  fa lse

M 3  =  intersection(x > 4, x < 6 , y > 4)

M3 «  in tersect ion^0,2] >  4, [0,2] <  6, [0,4] >  4)

«  inter section^false,  true, undecided)

«  fa lse

Hence M3 =  fa lse

Hence we have, M  =  intersection(x  — y > 0 ,y  > 1).

3 .4 .4  R ecu rsive S u b d iv ision

Since we are representing boxes using intervals, we consider using coordinate- 
aligned box division since it is straightforward to perform subdivision technique 
and to determine adjacencies between boxes.

We consider two simple subdivision techniques, namely, grid-divisions and recur
sive subdivision. For the grid division technique, a box is divided into two or more 
sub-boxes of a specified size. This size is usually referred to as grid resolution. 
For example, let B  be a box define by ([—1,7], [3,5], [0,2]). For a grid resolution 
of 2 unit, B  can be divided into:

Bi =  ([—1,1], [3,5], [0,2]) B2 =  ([1,3], [3,5], [0,2])
Bz =  ([3,5], [3,5], [0,2]) B4 = ([5,7], [3,5], [0,2])

In contrast, recursive subdivision usually divide a box into two sub-boxes and the 
divisions carry on recursively until the term ination conditions are met. There are 
two subdivision decision strategies; blind and adaptive. The blind strategy de
termines the position of the subdivision by relatively fixing the point for each 
sub-division. For example, subdividing a t a mid-point between two points. The 
adaptive strategy determine subdivision points by taking into account the con
tents of the box.
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Regardless of the division m ethod and strategy, when a box is divided, we get 
two or more adjacent sub-boxes with the same model inside. Each model can 
then be simplified over its own box by the pruning process and hopefully will 

be simpler than  the original model. In this way, a t any point, the union of all 
sub-boxes with their models results in the original box with the original model.

Since the set definition of (M, B)  is recursive on the structure of M, if B  = 

union(Bi,  B 2) it follows that:

(M, B)  =  un ion((M , B\) ,  (M, B 2))

For example, given a box B  and a model M  = union(in tersec tion(Mi , M2), M3), 
if the box is subdivided into two sub-boxes, Bi  and B 2 along one of its coordinate, 
then:

( M ,B )  = (union(intersection(Mu  M2), M3), B)

=  union  (

union(intersect ion((Mi, B\) ,  (M2, #1)), (M3,I?i)), 

union(intersection((Mi, B 2), (M2, B 2)), (M3, £2)))

The algorithm, which divides the longest side of the box, can be expressed in 
algorithmic form as in Algorithm 2.

A lgorithm  2 SubDivide(M, B )
Input: M, B
Output: ( M , B i ) , ( M , B 2)

position 4— MaxSidePosit ion(B)
interval P a r t ( B , position)
lower 4— LowerEnd(interval)
upper 4— UpperEnd(interval)
midpoint 4 r -  lower + Sizei in terval) /2
Bi 4 -  Par t (B ,  position) 4 -  [lower, midpoint]
B 2 4 -  Part{B,  position) 4— [midpoint, upper]
return  (M, B\) ,  (M, B 2)
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After the pruning process, the union of the sets defined by (M , B\)  and (M, B 2) is 
the same as the set defined by (M, B).  The division can be carried on recursively 
along with the pruning process until some conditions are met. There are a few 

options to consider as a term ination condition of the process. For example, as 
in Svlis, the recursive subdivision could stop when all the boxes are sufficiently 
small. It is also possible to determine if the model is simple enough th a t is there 
are a certain number of atomic formulae left in the model.

The Algorithm 3 recursively subdivides the longest side of the box until the box 
is small enough or the model is simple enough.

A lg o r ith m  3 Recur SubDivision(M, B)
In p u t :  M , B
O u tp u t:  (M i, B i ) , . . . ,  (Mfc, B k)

( M 1, B)  P r u n e ( M , B)
if  IsS im p le (M ')  or I sS m a l l (B )  th e n  

r e tu r n (M ' , B)  
e lse

(M, Bi),  (M, B 2) <- SubDivide(M, B)
re turn(RecurSubDivis ion(M , Bi) ,  RecurSubDiv is ion(M, Bi))

W hen we extend the primitive to extended semi-algebraic sets, pruning and re
cursive subdivision are still applicable. This is because the evaluation is done by 
interval arithm etic which s ine , cosine and exp functions are also defined.

3.5 CSG A pproach  to  Spatial P lann ing

A m ajor approach of CSG to spatial planning is to  construct C-space obstacles, 
which can be regarded as geometric objects in C-space, as a Boolean combination 
of CSG primitives. Each point inside this object represents the position of the 
actual object th a t causes collision with the obstacles in the Workspace. Given 
C-space obstacles, Find-space and Find-path correspond to  the simpler problems 
of finding a single point - a position of the object, and a path  - a sequence of
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position of the object, outside the obstacles.

The property of C-space obstacle in which:

COP(Oi U 0 2) = COp(Oi) U C 0 P(0 2)

where P  is the object and O* are obstacles, gives rise to the idea of generating C- 
space obstacle of many simple objects and combining the results together. The 
validity of this property holds regardless of convexity or connectedness of the 
obstacles [8]. This property is particularly useful with the CSG representation of 

the C-space obstacles since it is natural to build complicated object using Boolean 
combinations of many simple ones.

Wise investigated in [68] the application of CSG to  the problem of generating the 
global C-space map and dem onstrated two approaches which semi-algebraic CSG 
can be used to compute global map of the C-space for a system of rigid bodies. 
The first is an approximate calculation of C-space obstacles and the second is a 
precise representation of C-space obstacles by formulating the contact surfaces 
analytically. The potential for combining the two approaches are also highlighted.

Despite the dimensionally independent nature of CSG models, Wise and Bowyer 
[7] is the only map-maker to exploit the representation.

3.6 Sum m ary

We gave a brief description of Constructive Solid Geometry and summarised the 
m athem atical framework of the semi-algebraic approach to  CSG. The idea of CSG 
was also introduced along with the key technique used by Svlis CSG modeller. 
We gave an overview of semi-algebraic CSG approaches to  spatial planning by 

using CSG technique to represent C-space obstacles. The algorithm  for pruning 
and recursive subdivision the extended semi-algebraic models were also described.
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Chapter 4

Quantifier Elim ination

In this chapter we give an overview of the quantifier elimination problems and give 
a brief report on the complexity estimates of the quantifier elimination process. 
We also describe briefly the idea of Cylindrical Algebraic decomposition which 
can be applied to quantifier elimination. Finally, we introduce the quantifier 
elimination approach to spatial planning.

4.1 Q uantifier E lim ination  P rob lem s

Let L r  be the first order language of the ordered field of the reals. A formula 
of this language is the expression which are built up from atomic formulae using 
the logical operators A, V, -i. An atomic formula is the expression of the form 
p (x i , . . . ,  x n) op 0 where p (x i , . . . ,  x n) is a polynomial in variables a q , . . . ,  x n with 

integral coefficients and op G { > , > , / , < , < } •  Additionally, some or all of the 
variables in a formula may be quantified over the field by universal (Vx) and 
existential (3:r) quantifier.

For example,

A  = (3rri)(V:z2)[((pi(:ri,a;2,£3) < 0) V (p2(^i, ^2 ,x 3) <  0)) A {pz{xu  ^ 2, ^ 3) =  0)]
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is a formula of the language L r .

An occurrence of a variable a: in A is bound if it occurs in a sub-formula B  of the 
form (E3:r )B  or (\fx)B. An occurrence of a variable is free if it is not bound. In the 

above example, occurrences of variable x\  and X2 are bound and the occurrence 
of the variable x s is free. Suppose the formula A ( x i , . . .  , x n) has free variables 

among x \ , . . . , x n. This formula is semi-algebraic and defines a subset of R n: 
{ ( z i , . . .  , x n) : A ( x i , . . .  , x n)}.

A  formula in which all variables are quantified is called a sentence which has a 
definite tru th  value. W hen free variables are substituted by specific values leaving 

only bound variable in the formula, it becomes a sentence. A set of values is a 
solution for the formula if the sentence, obtained by substituting all variables in 

the formula by the values, is true. Two formulae are equivalent if they have the 
same solutions.

In 1930, Tarski showed in [64] th a t all quantified formulae can also be defined 
without quantifiers and presented an algorithmic quantifier elimination (QE) 
method. The algorithm accepts any formula of real closed field as an input and 
outputs an equivalent formula containing the same variables with no quantifiers. 
The output formula is true for the same values of its free variables as the input 

formula. If the input formula contains free variables then the output formula 
expresses a necessary and sufficient algebraic condition of the input formula to 
hold.

For example, applying the quantifier elimination to the formula of L r :

a / O A  (=kr) [ax2 +  bx 4- c =  0] 

produces the well-known necessary and sufficient condition

a /  0 A b2 — 4ac > 0

where a, 6, c are free variables.
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y

B

Figure 4-1: Existential quantifier corresponds to a geometric projection. 

4.1.1 E xistentia l Q uantifiers as G eom etric P ro jections

We use semi-algebraic sets which are subsets of some R n defined by a finite num
ber of polynomial equations and inequalities to represent n-dimensional object in 
n-dimensional space.

We can regard a set defined by a formula B  =  (3y)A  as a set of points a t which 
every atomic formula in A is true. In this way, existential quantifiers correspond 
to geometric projections. The set of points defined by B  is a projection of a set 
defined by A.

For example, let A  define an area inside the circle

A -  { (x ,y) : (x -  3)2 +  (y -  3)2 -  4 <  0}.

Suppose B  = (3y ) A . The set of points defined by B  is a projection of a set 
defined by A.  The projection is parallel to the y axis onto the space of other 
variables of A; in this case a 1-dimensional space of x (See Figure 4-1).
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4.2 C om plexity  E stim ates

Renegar presented in [56] a brief survey of some complexity highlights for quan
tifier elimination methods. We summarise the main result which concerns our 
application as follow:

The elimination of a block of n0 existential quantifiers has complexity bounded 
approximately by

(md)noniCCost

where C  is some constants, ri\ is the number of free variables and d is the max

imum degree of m  different polynomials involved. The Cost term  is generally 
negligible compare to (md)n°niC

Later in our practical experiments we are considering the case where Uq = 2. We 
do not have a good estim ate for the exponent multiplier C. We expect th a t C  is 
significantly larger than 1. We expect complexity for our problem to increase as 
some power of md.

Beyond linear case and a few variables, quantifier elimination is very difficult, 
or produces such huge output as to be hard to manage. Additionally, it is only 
possible in principle to eliminate quantifier if the bound variables only occur 
algebraically.

4.3 A pplication  of Q uantifier E lim ination

Here are some examples.

•  A unit square is defined by the formula:

r > 0 A r <  1 A t/ > 0 A ? / <  1
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An ellipse is defined by the formula:

x 2/4  +  y 2/ 9 — 1 <  0

We can define the Minkowski sum of the unit square and the ellipse as:
(3 x , y , z , w )
[it =  x + z  A v =  y+w A x > 0 A x < l A y > 0 A y < l A  z 2/ 4 + w 2/ 9 —1 <  0] 
According to the Tarski Theorem, this set can also be defined without 
quantifiers.

•  Let S' be a subset of R n which is defined by a formula A ( x i , . . . ,  x n). Define 
closure(S)  to be the set of points in R n which have points of S arbitrarily 
near. We can define this set closure(S) by a formula of L r  as:

closure(S) = {(yu  . . . ,  yn) : (Ve >  0 ) ( 3z i , .. . , x n)[A(xu  . . .  , x n) A 

(xi -  y i )2 +  • • • +  (xn -  yn)2 < e]}

Therefore, according to the Tarski theorem, if S  is semi-algebraic, so is 
closure(S)

•  Define boundary(S)  to be closure(S)  fl closure(complement(S)).  As be
fore, Tarski’s theorem implies th a t if S  is semi-algebraic, so is the boundary 
of S.

4.4 C ylindrical A lgebraic D ecom position

In 1973, Collins [13] has used Cylindrical Algebraic Decomposition (CAD) to 
eliminate quantifiers. The CAD method for quantifier elimination consists of 
three main phases.

The first phase extracts the polynomials occurring in the input formula and 
factoring them  into irreducible factors, assuming th a t each atomic formula of the 
input formula is of the form p = 0 or p < 0 where p is a m ultivariate polynomial 
with integer coefficients.
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The second phase constructs a decomposition of real r-dimensional space, where 
r is the number of variables in the formula, into a finite number of connected 
regions, called cells. Each polynomial in all cells is invariant in sign. These cells 
are arranged in a certain cylindrical manner. From this cylindrical decomposition, 

it is then quite straightforward to  apply the quantifiers by using a sample point 

from each cell to determine the invariant tru th  value of the input formula in th a t 
cell. This application of quantifiers reveals which cells in the subspace of the free 
variables are true.

The final phase constructs an equivalent quantifier-free formula from this knowl
edge. In Collins’ original method, this problem was solved by a m ethod called 
augmented projection th a t provided a quantifier-free formula for each of the true 
cells.

In 1990, Hong [29] has devised a generally more efficient m ethod but only appears 
to work in most cases. In 1995, Hong [30] also proposed and implemented a 
more efficient approximate quantifier elimination using interval arithm etic. The 
algorithm  was later improved and implemented by Ratschan [51] [52] [53].

4.5 Q uantifier E lim ination  A pproach  to  Spatial 
P lann ing

The m athem atical and com putational structures of the spatial planning problem 
when stated  in algebraic term s are reasonably well-understood [11] [58]. Objects 
defined by semi-algebraic sets are highly flexible and expressive but they are 
com putationally expensive to compute [11] [16].

Existential quantifiers, which correspond to geometric projection, and extended 
semi-algebraic sets with Boolean operators can be used to describe C-space ob
stacles and Freespace. Several methods based on generating a cylindrical cell 
decomposition of Freespace were first proposed by Schwartz and Sharir [58].
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We can outline the m ethod as follow:

1. Represent C-space obstacle in quantified form.

2. Decompose C-space into semi-algebraic cells so th a t each cell is either en
tirely contained in the C-space obstacle or disjoint from it.

3. Determine adjacency relation between cells in C-space obstacle. Represent 
obstacle connectivity as finite graph.

4. Solve Findpath problem by standard graph searching techniques.

Both step 2 and 3 are difficult in practice. For example, one approach to  step 
3 is to decide if cell C\ is adjacent to cell C2. Cell C\  and C2 are adjacent if 
closure(Ci)  intersects C2 or if C\ intersects dosure(C 2)• The closures can be 
expressed in quantified form, and then the quantifiers can be eliminated.

The set of collision-free points is a semi-algebraic set th a t can be determined by 
QE. It is then necessary to decide all cells adjacencies in the CAD in order to 
determine whether the two points are in the same component.

A ttem pts to solve simple two dimensional spatial planning problem using CAD 
to eliminate quantifiers, for example, by Davenport [14], Davenport et al. [15], 
Kalkbrener and Stifter [36], McCallum [45], Sturm and Weispfenning [63], were 
unsuccessful because of excessive com putational resource requirement.

4.6 S um m ary

We gave an overview of the quantifier elimination methods and the cylindrical 
algebraic decomposition. We gave a brief report on the complexity estimates of 
the process of quantifier elimination and introduced the quantifier elimination 

approach to spatial planning.
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Chapter 5

U sing Quantifier Elim ination

In this chapter we present methods of constructing C-space obstacle using existen
tial quantifiers and boundary formation. We introduce the applications of pruning 
and spatial subdivision techniques to speed-up the com putation of quantifier-free 
representation. We also present some experimental results and discussions.

5.1 R epresen ting  C-space O bstacles

Semi-algebraic sets are closed under finite union, intersection, and negation. Ad
ditionally, boundary and projection of semi-algebraic sets are also semi-algebraic. 
Thus C-space obstacles can be built not only from Boolean combinations of semi- 
algebraic primitives but also with quantifier and boundary operator.

5.1 .1  U sin g  E x isten tia l Q uantifiers

The idea is to characterise the position and the geometric constraints of the 
object due to the obstacles by some conditions imposed on the entire object by 
the presence of the obstacle in the same Workspace. This can be done by stating
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the conditions of every point of the object using quantifiers.

A n  E x a m p le

Consider the case of an object P  and obstacles O in R 2. Assuming th a t P  and 
O are in the same coordinate frame and the reference point is inside the object.

For a point z ,w  E R 2, define P  and O as subsets of the Workspace R 2 where:

P  = {(z, w) : p (z ,w )}  where p(z ,w)  is some conditions for (z , w ) and

O — {(z ,w)  : o(z, w)}  where o(z ,w)  is some conditions for (z , w ).

From the definition of C-space obstacle it follows that:

There exist a point in the object such th a t, if this point translated 
and rotated about its origin, then it will be in the obstacle.

The collection of such points form C-space obstacles. C-space obstacles can be 
defined using a combination of existential quantifiers and usual Boolean operators 
on semi-algebraic primitives. If P  is allowed to translate in each dimension by x  
and y  respectively, and rotate freely around its reference point by 6 then C-space 
obstacles of P  due to O can be defined as a combination of a translation and a 
rotation as:

COp(O) = { (z ,w ,6) : 3z3w\p(z, w) f\o{x + {zcosO — wsinO), y+  ( z s m 6 + w cos0))]}.
(5.1)

Consequently, we can obtain the equivalent quantifier-free semi-algebraic formula 
of the C-space obstacles by eliminating the quantifiers. In the above example, the 
quantifier-free result of C 0 p ( 0 )  defines a geometric object; the C-space obstacle, 
defined as a collection of points (x ,y ,Q ) E R 3.

Representing C-space obstacles in this way results in more variables than the 
degrees of freedom of the problem. The Boolean combination of the formulae
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with variables 2 , w, x, y , 0 th a t built up C 0 p ( 0 ) define a geometric object which 
we refer to  as the Omnimodeft  and the space as the Omnispace.

G e n e ra l C ase  in  R n

Let P  represent an object and O represent the obstacle in R m. Suppose the 

variables available to P  and O are ( z i , . . . ,  zm). Allow the object to translate 
freely in all directions by ( t \ , . . .  , t m). Also allow the object to  ro tate  freely 

about its reference point around all axis by (0i , . . . ,  0n) where n  =  |m (m  — 1)). 
We can represent the C-space obstacles C 0 p ( 0 )  in quantified form as:

i n  + a a  ̂ =n \\r>r /  £1 +  (2:1 cos0X -  22 sin0i), \{(£i , . . . ,£m, 0 i , . . . , 0 n) : 3{zu Z2)[P{z i , z2) AO . ]}
\  h  +  (*i sin0i +  Z2 cos0i) J

where m  =  2 and n  — 1, or

{(*i 0 1 , . . . , en) : 3 { z i , Z 2 , z 3) [ P ( z i , Z 2 , z 3) A

(  t \  +  (z \  cos 0i — Z2 sin 0 i) +  (2:3 sin 03 +  z \  cos 03),
O t2 +  ( cos 0 2 — Z3 sin 0 2) +  ( z  1 sin 0 i +  Z2 cos 0 i), | ]} where m  — 3  and n  =  3 , or 

V *3 +  (z3 cos 03 -  z i  sin 03) +  (z2 sin02 +  2:3 cos 02)

{ ( t i  0 1 , . . . ,  0n )  : 3 ( ^ i ,  2̂ 2 , 2 :3 , 2:4 ) [ P ( 2 : i ,  2:2 , 2 :3 , 2:4 ) A

 ̂ ti +  (2:1 cos 0i — Z2 sin0i) +  (2:1 cos 02 — 2:4 sin02) -I- (2:3 sin 04 +  21 cos 04), ^
t 2 +  (24 sin 06 -1- 22 cos 06) +  (21 sin 0i +  z 2 cos 0i) +  ( z2 cos 63 -  23 sin 03),
£3 + (23 cos 04 — 21 sin 04) +  (23 cos 63 — 24 sin 0s) +  (22 sin 63 +  23 cos 03),

y £4 + (23 sin 05 + 24 cos 63) + (24 cos 63 — 22 sin 06) -I- (21 sin 02 + 24 cos 02)

O ]}

where m  = 4 and n = 6.

Finally in the general case where there are m  degrees of freedom for the transla
tions and n = |m (m  — 1) degrees of freedom for the rotations, we can represent 
the C-space obstacles of the object due to the presence of the obstacle in quan- 

t Originated by Woodwark et al. [48] [49] [50]
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tified form as:

{(^1) • • • j trm ^lj • • • j 9n) • . . . , 2m)[-P(zi, . . . , £m)A
/  £i +  (zi cos 6i — z2 sin 6{) H 1- (zm sin 0n +  z\ cos 9n),

O ]}
\  tm 3- (zm cos 0n Z\ sin On) H- * ’ ■ “h (-̂ m—i sin 0n—\ H- zm cos Qn—\)

(5.2)

By using quantifier elimination on the representations 5.2 in the Omnispace 
i ?m+n5 we obtain the quantifier-free extended semi-algebraic representation of 

the C-space obstacle in ( t i , . . . ,  tm, 0 i , . . . ,  0n).

Special Cases

We may also consider special cases which may arise. For example, when the object 
may not rotate, when the object may not translate in all possible dimensions, or 
when the object is only a point in the Workspace.

Consider the following examples.

Exam ple 1 Let P  be the object and O be the obstacle, both in R 2. Assuming  
that P  and O are in the same coordinate frame and for a point (z, w ) G R 2 let P  
and O be a subset of R 2 where:

P  — {(2 , w) : z 2 +  w 2 <  1}

and

O = {(z, w) : (z — 5)2 + (w — 5)2 <  1}.

Allow P  to translate in z and w dimension by x and y respectively. C-space 
obstacle of P  due to O can be defined as:

C 0 p ( 0 )  =  {(x, y) : 3z3w[z2 +  w2 < 1 A (x +  2 3- 5)2 +  (y +  w +  5)2 <  1]}

which can be regarded as a geometric object in R 2.
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The equivalent quantifier-free semi-algebraic formula C-space obstacles after the 
eliminate the quantifiers is: {(x, y) £ R 2 : (x — 5)2 + (y — 5)2 <  4}b It is clear th a t 
when n-dimensional object may translate in all dimensions but may not rotate, 

the object has n  degrees of freedom, thus the C-space is also n-dimensional. The 
C-space obstacle can be defined by:

C 0 P{0) = {(a; i , . . . ,a;n) : 3zu  . . . ,  zn\p(zu  • • •, zn) A o(zi + x u . . . , z n + x n)]}

Exam ple 2 Let P  be the object and O be the obstacle in R 2. Assuming that P  
and O are in the same coordinate frame and for  a point (z, w ) £ R 2, P  and O 

are a subset of some R 2 where:

P  — {(z , w) : z2 +  w 2 < 1}

and
O =  {(z, w) : (z — 5)2 +  w2 < 1}.

Allow P  to translate in z dimension by x. C-space obstacle of P  due to O can be
defined as:

C 0 p ( 0 )  =  {x  : 3z3w[z2 + w 2 < 1 A {x +  z +  5)2 -1- (w +  5)2 <  1]} 

which can be regarded as a geometric object in R 1.

Exam ple 3 Let P  be the object and O be the obstacle in R 2. Assuming that P  
and O are in the same coordinate frame. For a point (z, w) £ R 2, P  and O are 

a subset of some R 2 where:

P  = {(z, w) : 2 =  0 A w = 0}

and
O =  {(z, w) : z 2 +  w2 < 1}.

Allow P  to translate in z and w dimension by x  and y respectively, and rotate

t Result from Partial Cylindrical Algebraic Decomposition Version 15 (Interactive) May, 1996 
by Hoon Hong (hhong@risc.uni-linz.ac.at), Research Institute for Symbolic Computation.
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freely around its reference point by 9. C-space obstacle of P  due to O can be 
defined as:

C 0 p ( 0 ) =  {(x, y) : 3z3w[z = 0 A w =  0 A

(x +  (zcos9  — w s in # ))2 +  (y +  (z s in 0 +  wcosO) )2 <  1]}

=  {(x, y) : 3z3w[(x +  0)2 +  (y +  O)2 <  1]}

=  { f a y )  ■ x 2 +  y 2 <  1}.

The equivalent quantifier-free semi-algebraic formula C-space obstacles after elim
inating the quantifiers is: {(x, ?/,0) E R 3 : x 2 +  y2 <  1}. Since a point object 
which may translate in n  dimensions has two degrees of freedom, the C-space is 
n-dimensional. The C-space obstacle of this n-dimensional case can be defined 
by:

C 0 P(0 )  =  0„) : 3(zu . . . ,  zn)[o(ti , . . .  , t n)}}

{ ( ^ 1 )  • • • ) ^ l j  • • • j @ t l )  • ® { t  1 ?  • • • j

5.1 .2  In corp oratin g  B ou n d ary  F orm ation

A set is closed if it contains its boundary. We may exploit the boundary formation 
to  form the C-space obstacles if we assume th a t the obstacles O defined by closed 
sets. By assuming th a t the object P  is connected and the reference point is 
inside the object it follows th a t the object is always either entirely outside the 
obstacle or entirely inside the obstacle or is intersected with a t least one edge of 
the obstacle. Thus the position of the object is impossible if and only if, either 

there is a point in the object such tha t, if this point translated and rotated around
the reference point, it will be on the boundary of the obstacle, or the object is
entirely in the obstacle. The collection of such point form the C-space obstacle.

The above statem ent implies th a t C-space obstacles consist of two disjoint sets, 
C 0 p ( 0 )  = Si  U S2 where S\  is the set of points which correspond to  the config
uration when the object intersect the boundary of the obstacle whereas S 2 is the
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set of points which correspond to the configuration when the object is entirely 

inside the obstacle.

We can describe Si  as:

There exist a point in the object such tha t, if this point translate and 
rotate  about its origin, then it will be in the boundary of the obstacle.

We can define Si  using existential quantifiers and boundary as:

obstacle which can be describe as:

There does not exist a point in the object such th a t, if this point 
translate and rotate about its origin, then it will not be in the obstacle.

We can define S 2 using existential quantifiers as:

However, it is not necessary to compute Si  U S 2 as two disjoint sets.

We can define another set, S 3, as the set of points which correspond to  the config
uration when parts of the object is intersect the obstacle. This set is equivalent 

to the case of point object as in Example 3, where the reference point of the 
object translate inside the obstacle.

{ ( tu  : 3(zu  . . . ,  zm)[P(zi , . . . ,  zm) A Boundary{

In contrast, S 2 define a collection of points where the object is entirely in the

\  tm +  (zm cos 9n — zi sin 0n) H b (zm_ 1 sin 0n_ 1 +  zm cos 0n_i)
(5.4)
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Ss can be represented as:

  {(^1? • • • 5 7̂715 ^lj • • • J ^n) * 3(^1) • ' • 5 ^'m)[p(^'l 0, . . . , 0) A

(o(tl, . • • , tm, 0i, . . . , ^n))]}

{ (̂ 1 J • • • 5 7̂71) • , . . . , 7̂7i) }•

It is clear th a t 62 C 53 but Si  U 5*2 =  Si  U 53 since it is true th a t if (t1}. . . ,  tm) 
is in C 0 p ( 0 )  and the translated reference point is not in the obstacle, then the 
object must intersect the boundary of the obstacle, since the object is connected. 
On the other hand, if the object intersects one of the boundary of the obstacle 
and the obstacle is closed or if the translated reference point is in the obstacle 
then ( t i , . . . ,  tm) is in C 0 p ( 0 ) .

T h e o re m  3 I f  the object is connected and the obstacle is closed then we can 
define C-space obstacle of P  due to O using quantifier and boundary operator as:

3 (2:1, . . . ,  Zm)[P(zu  . . . ,  zm) A  Boundary(
Q f  t\  3- (z\ cos 0i — Z2 sin 0 i) 3- • • • 3- (zm sin0n 3- z\ cos0n) , . . . ,  V  v  

Y tm 3- (̂ 771 cos 0n Z\ sin 0n) 3“ • • • 3“ sin 0n—\ 3- zm cos 0n_i) J  
O ( t i , . . . ,  .

(5.5)

As before, we can represent the C-space obstacle, as the result of a projection from 
the 2m  3- n-dimensional space with coordinates (z i , . . . ,  zmi t i , . . . ,  tmi 0 i , . . . ,  0n) 
to m 3- n-dimensional C-space, with coordinates ( t i , . . . ,  tm, 0 i , . . . ,  0m), by using 
quantifier elimination on the above quantified representations. T hat is, we project 
out the variables z i , . . .  , z m.

S 3 is a subset of the C-space obstacle which also intersects Si  bu t it is easy to 
compute. Additionally, this also works if instead of the boundary of the obstacle 
we use some approximation which contains all the boundaries of the obstacles 
and also is in the obstacle.

A possible advantage of representing C-space obstacle this way is th a t the bound
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ary of the obstacle is a union of line segments and curves if the obstacle is 2- 
dimensional.

Additionally, if the object may translate only in I dimensions, where I <  m, the 

C-space obstacle in this case is:

3(zu  . . . ,  zm)[P(zi , . . . ,  zm) A Boundary (
Q h  +  (zi cos 9i — z2 sin 9i) -| b (zm sin 9n +  zi cos 6n ) , . . . ,  V

\  +  (zm cos 9n -  zi sin 6n) -\ b {zm-1  sin (9n_i +  zm cos Qn- x) J
3(^i, . . . , Zm^\C){ti, . . . )ti, ti+i +  Zi+1, . . . , tm +  -̂ m)]

(5.6)

5.2 Q uantifier-free C-space O bstacles

We have established th a t the C-space obstacle can be defined by a block of 
existential quantifiers applied to a condition on a higher dimensional space or the 
Omnispace.

In order to represent the C-space obstacles using only Boolean operators we 
could apply elimination of quantifiers to the C-space obstacles representation in 
the Omnispace. Once the bound variables are eliminated we obtain the C-space 
obstacle in lower dimension. Additionally, in the case of quantified representation 
of C-space obstacle with boundary operator, we also have to apply to boundary 
operator to the primitives.

However, due to the high complexity of the quantifier elimination algorithm, it 

may be desirable to use pruning and spatial subdivision with quantifier elimina
tion.
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5.2.1 M odels and Boxes

In order to employ the pruning and subdivision technique using interval arith

metic, we use the above geometric notions of models and boxes developed in 
C hapter 3 to define the Omnimodel.

Let model M  be a tree structure of extended semi-algebraic atomic formula with 

variable from x i , . . . , x n at the leaves and Boolean operators a t the nodes. If B  

is an 77-dimensional box defined by intervals, the pair (M, B)  define the set of 
points in B  th a t satisfy M.

For a single m-dimensional object translate and rotate in the presence of several 
m-dimensional static obstacles in the same m-dimensional Workspace, we assume 
th a t the object is connected and th a t it is much smaller th a t the Workspace. Also 
assume th a t the object is contained, tightly, in an m-dimensional box Bp.

It is clear th a t the dimensions of the C-space which correspond to  the translational 
configuration of the object is m-dimensional. Thus we assume th a t it is bounded 
by an m-dimensional box. The size of this box is the same as the Workspace since 
the maximum space in which the reference point of the object may translate  is 
the entire Workspace. Call this translation box B t.

On the other hand, the dimensions of the C-space which correspond to the ro
tation configuration of the object is 77-dimensional where n = \ m { m  — 1). We 
assume th a t this space is bounded by an 77-dimensional box with the w idth in 
radians. Since the configuration of the object is the same at 0 and 2ir, each side 
of this box can be limited to the range [0, 27r) radians. Call this rotation box B r

The Omnispace is a (2m -I- 77)-dimensional space bounded by a box B p x B t x  B r 
and the C-space is an (m +  77)-dimensional space bounded by a box B t x B r.

For example, consider the case of a ladder of two unit length and of infinitesimal 
width in an L-shaped corridor of a unit width in 2-dimensional space (Figure 5-1).
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Figure 5-1: A ladder in an L-shape corridor.

The ladder can be defined by

P  = {(z ,w) : z > 0 A z < 2  A =  0} 

and the walls of the corridor by:

O — {(z , w) : (z  > 1 A w > 1) V z <  0 V w < 0}

If the ladder is allowed to translate in each dimension by x  and y respectively, 
and rotate around its reference point by 9 then C-space obstacles of the ladder 
due to the corridor can be defined as:

C 0 p ( 0 ) =  {(#, y, 9) : 3z3w[z > 0 A z < 2  A u; =  0 A

((2 cos(a) — w sin(a) +  x  > 1 A w cos (a) -I- z sin (a) +  y > 1) V 

z cos (a) — w sin (a) -1- x < 0 V w cos(a) +  z sin (a) +  y < 0)]}

Assuming tha t the Workspace is limited to 0 < z < 4 and 0 <  w < 4, we can 
bound the translation of the object by the box B t =  [0,4] x [0,4] whereas the 
ladder is contained in the box Bp = [0,2] x [0,1]. Since the ladder can rotate in 
one dimension, this can be contained in the box B r = [0, 2ir).

The Omnispace is the box ([0,4] x [0,4] x [0,2] x [0,1] x [0, 2n)) and the C-space 
is the box ([0,4] x [0,4] x [0, 27t)).



5.2 .2  U sin g  P ru n in g  and S u b d iv ision

We explore the possibility of using a spatial subdivision technique along with 
elimination of quantifiers to speed-up the calculation of quantifier-free C-space 

obstacles. This is based on the assumption th a t the objects and their obstacles are 
usually globally complicated but locally simple and th a t elimination of quantifiers 
has com putational difficulty which increases much more than  linearly v/ith the 
complexity of formulae.

We use coordinate-aligned boxes division since it is intuitively simple. It is also 
simple to perform subdivision techniques such as grid-divisions and recursive 
subdivision, on coordinate-aligned boxes.

For n-dimensional boxes which are defined by n  closed intervals, grid-division 
can be done on selected dimensions and the original box is replaced by a grid of 
boxes. The original model is then get pruned to each box. In contrast, recursive 
subdivision is done on one selected dimension at a time. The process divides the 
longest side of the box and the original box is replaced by two adjacent boxes. 
The original model is then get pruned to both boxes and the process continues 
until some conditions are met. W ith recursive subdivision, boxes are subdivided 
only when and where it is necessary.

Subdivision Considerations

C-space obstacle is the result of applying quantifier elimination to the Omni
model. We can subdivide the Omnispace and prune the Omnimodel to  each 
subspaces. The desirable outcome is th a t each subspace will have less compli
cated Omnimodel inside.

In our case the Omnispace is the box B px B t x B r. The box which corresponds 
to the bound variable, is generally small and fit the object snuggly therefore we 

need not subdivide sides of the box which correspond to bound variables.
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5.2.3 Limitations

W hether or not we can use the quantifier elimination to  obtain the quantifier-free 
representation of C-space obstacle depends on the representation of C-space ob
stacle in quantified form. The elimination of existential quantifier from extended 

semi-algebraic sets are only guaranteed to be semi-algebraic if the variables be
ing projected only occur algebraically. In order to represent the C-space obstacle 

with Boolean operator alone by using quantifier elimination, the existential quan
tifier in the representation of the C-space obstacle need to trea t the elementary 
functions s ine , cosine as parameters. W ith models consisting of atomic formulae 

from extended semi-algebraic sets, if we wish to eliminate quantifiers then the 
bound variables cannot appear in sine, cosine or exp  function.

5.3 C om pu ta tional E xperim ents

The simplest type of spatial planning problems are those th a t concerned with a 
single moving convex object among known static convex obstacles. In this thesis, 
we consider several example cases of a single 2-dimensional object avoiding several 
2-dimensional static obstacles in a 2-dimensional Workspace. The dimensions of 
the Omnispace is between 4 and 6, depending on the degrees of freedom of the 
object and the resulting C-space, after the elimination of quantifier, is a t most 3- 
dimensional. Additionally, the object and the obstacles are not limited to convex 
polygons, they may be non-convex and have curved edges.

5.3 .1  Softw are U sed  and D ev e lo p ed

The experiment in this thesis was conducted using computer logic system RED- 
LOG 2.0 implemented in REDUCE computer algebra system.

REDUCE is a powerful Computer Algebra system available for many operating 
systems. The elementary functions are easy to use and for non-interactive mode
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users can write new procedures using REDUCE syntax which is PASCAL-like. 
The system was described in more details in, for example [28] [44].

REDLOG [20] [22], which stands for REDuce LOGic system, provides an exten
sion to REDUCE computer algebra system so th a t logical expressions and quanti
fiers can be dealt with. It provides many functions for the symbolic manipulation 
of first order formula over some tem porarily fixed languages and theories. The 
focus of the system is on simplification of quantifier-free formula and effective 
quantifier elimination [21].

The algorithms implemented as REDLOG functions include:

•  Several techniques for the simplification of quantifier-free formula.

•  Quantifier elimination.

•  Linear optim isation using quantifier elimination techniques.

•  C N F/D N F computation.

Lim itations

The implementation of quantifier elimination functions in REDLOG is limited to 
a t most quadratic occurrences of quantified variables. The CPU time for each 
particular case is limited to 15 minutes.

Im plem entation o f A lgorithm s

We developed a system of REDUCE procedures using REDUCE syntax to im
plement our algorithms and conduct experiments. The procedures are relatively 

high-level which allow input of the form:

procedure_name(obj ect,
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o b s ta c le ,
box,
num ber_of_bound_varia lb le , 
v a r i a b l e ) ;

where o b je c t  and o b s ta c le  are semi-algebraic descriptions, box is a list of inter
vals, munber_of _bound_variab le  is an integer and v a r ia b le  is a list of variables 

available to ob j e c t  and o b s ta c le .

The test is performed a number of times. We measure the CPU-tim e taken to 
perform the calculation using the timing functions provided by REDUCE. The 
average of these times is taken, as the tim e taken to calculate the example prob
lems. The tim ing function which return the tim e in milliseconds, is system and 
implementation dependent. The system used in our im plem entation was a single 
processor Intel Pentium III 500 MHz with 128Mb of memory. The operating 

system was RedHat Linux 6.1.

In many cases, the results were om itted since the output in non-quantified form 
cannot be obtained. We denote the case where the calculation was not com
pleted due to the CPU-time required exceeded the limit by *??’ and denote the 
case where the result cannot be obtained due to the lim itation of the REDLOG 
quantifier elimination procedures by

5.3 .2  T est P rob lem s  

Variable List

Let ( z , w , x , y , a )  be the variable list available for both the object and obstacles 

throughout the experiment.
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D egrees o f F reedom

We consider three cases of different degrees of freedom of a 2-dimensional moving 
object. These are:

O ne d eg ree  o f freed o m  Object may translate in one dimension but may not
rotate.

Tw o deg rees  o f freedom  Object may translate in both dimensions but may 
not rotate.

T h re e  deg rees  o f freed o m  Object may translate in both dimensions and may 
rotate about the reference point.

B oxes

For each case in the experiment the bounding boxes used are:

DoF
1 2 3

Box Bp for Pi [0 , 1] x [0 , 1] [0 , 1] X [0,1] [0 , 1] x [0 , 1]
Box Bp for P2 [0,2] x [0,3] [0,2] x [0,3] [0,2] x [0,3]
Box Bp for P3 [ - 1, 1] x [ - 2 , 2] [ - 1 , 1] x [ - 2 , 2] [ - 1, 1] x [ - 2 , 2]
Box B p for P4 [ - 1, 1] x [ - 1, 1] [ - 1 , 1] x [ - 1, 1] [ - 1, 1] x [ - 1, 1]
Translation box B t [0,64] [0,64] x [0,16] [0,64] x [0,16]
Rotation box Br - - [0,7]

For example, the Omnispace of the object P2 which has one degree of freedom and 
the object O3 is the box [0, 2] x [0,3] x [0, 64], after the quantifier elimination the 
resulting C-space obstacle is bounded by a box [0,64], whereas the Omnispace 
of the object P3 which has 3 degree of freedom and the object 0 1 is the box 
[—1,1] x [—2 , 2] x [0,64] x [0,16] x [0 ,7] and after the quantifier elimination the 
resulting C-space obstacle is bounded by a box [0,64] x [0,16] x [0,7].
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Figure 5-2: 2-dimensional movable objects.

We also consider four different objects varying in their complexity (Figure 5-2). 
They are also differ in their convexity and by different degrees of polynomials of 
the semi-algebraic atomic formulae.

Pi is a convex object defined by a combination of four atomic formulae of degree 
one.

Pi =  intersection(z  >  0 ,2  <  l , w  > 0,w  <  2)

P2 is a non-convex object defined by a combination of eight atomic formulae of 
degree one.

P2 =  union( intersection(z  > 0, z <  1, w >  0, w < 3), 

intersection(z > 1, z < 2, w > 2, w < 3))

P3 is a convex object defined by an atomic formula of degree two.

P3 =  z2 +  - w 2 -  1 < 0

P4 is a non-convex object defined by a combination of two atomic formulae of 
degree two.

P4 =  intersection(z2 +  ^ w 2 — 1 <  0, z2 -I- — l )2 — 1 <  0)
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O b stac les

O i

0 2

Figure 5-3: Sets of 2-dimensional obstacles.

We consider three different sets of obstacles varying in their complexity (Figure 5- 
3). They are also differ in their convexity and by different degrees of polynomials 
of the semi-algebraic atomic formulae.

0 \  is a set of 16 convex objects, each defined by a combination of four atomic 
formulae of degree one.
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0 2 is a set of 16 non-convex object, each defined by a combination of eight atomic
formulae of degree one.

0 3 is a set of convex object, 3 of which are defined by an atomic formula of

degree two and 16 of which are defined by a combination of four atomic 
formulae of degree one.

5 .3 .3  C -space O b stacles R ep resen ta tio n

The main concern of this experiment is the comparison between two C-space 
representations.

R e s u lts

We present results of using quantifier elimination procedures provided by RED
LOG on two different C-space obstacles representations: the representation which 
uses existential quantifiers (Q) and the representation which uses existential quan
tifiers and boundary formations (Q & B). (See Table 5.1)

We examine the time taken to compute the quantifier-free C-space obstacles and 
the size of the quantifier-free output.

It is clear th a t representing C-space obstacles using only existential quantifiers 
resulted in faster computing time and generally more compact output than  in
corporating the boundary formation. This may due to  the fact th a t the naive 

boundary formation of the obstacles leads to an increase in the number of the 
input formulae.

D iscu ssio n s

There are two im portant considerations, the time for the com putation and the 
size of the output. Both of these vary in an unstable way depending on the precise
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Time No. of Formulae
Q Q & B Q Q & B

1 DoF t \ O i 0.2 0.4 9 7
P i 0 2 0.2 0.8 13 15
PiOs 0.4 1.4 26 32
P2O l 0.2 0.6 27 25
P2O2 0.3 1.0 42 42
P2O3 0.6 1.8 71 77
PsO! 0.4 1.5 64 79
P%0 2 0.8 3.3 120 155
P3O3 - - - -
PaO, 0.3 1.7 35 48
Pa02 0.5 3.8 79 113
Pa03 10.6 103.7 1304 5501

2 DoF P iOx 1.0 3.0 315 424
P i 0 2 2.0 6.3 704 916
PiOs 3.4 10.0 1183 1491
P201 1.0 2.9 418 522
t*2o 2 2.1 6.3 883 1106
P203 3.7 10.3 1515 1860
P301 15.0 58.7 5629 10179
Ps0 2 36.5 128.0 11208 18200
-P3O3 - - - -
Pa01 24.0 86.6 8067 15584
Pa02 59.7 194.9 16371 27811
P4O3 578.3 ?? 35093 60398

3 DoF P1O1 29.3 69.7 3852 3901
P i 0 2 70.1 161.0 6942 7009
PiO, - - - -
P201 35.7 76.8 4775 4824
p 20 2 83.1 176.0 8541 8608
p 2o 3 - - - -
PsO{ ?? ?? ?? ??
P s0 2 ?? ?? ?? ??
PsO, - - - -
P4O 1 ?? ?? ?? ??
Pa0 2 ?? ?? ?? ??
PaQ3 - - - -

Table 5.1: Computing Time (seconds) and number of atomic formulae of C-space
obstacles.



formulation of the problem.

However, we expected th a t the boundary formulation of the C-space obstacle 

would be better than  the basic formulation which uses existential quantifier alone, 
since the formulae is of lower dimension. We have not seen this improvement. 
It may be th a t we do not yet know how to compute and represent boundary of 
obstacles efficiently. We are certainly not ready to abandon this approach.

5 .3 .4  S u b d iv ision  A lgorith m s

We continue using quantifier elimination procedures provided by REDLOG but 

incorporate our pruning and subdivisions procedures. We consider two types of 
subdivision algorithms: the grid divisions and recursive subdivision. Moreover, 
for each subdivision algorithm we consider four different objects with varying 
complexity moving among three different sets of obstacles as in the previous 
example.

For the grid division technique, we consider 4 different grid sizes: 8, 16, 32 and 
64 units. Similarly, for the recursive subdivision, the term ination conditions of 
the algorithm are also based on the size of boxes. A lthough we stated in the 
Algorithm 3, we do not consider the case of IsS impleQ.  We also consider the 4 
sizes: 8, 16, 32 and 64 units.

For both subdivision technique, the size 64 implies th a t subdivisions do not occur 
though we perform the pruning process on the model tree. The time reported 
are the to ta l time of computing every sub-boxes. The number of atomic formulae 

are also the to tal number from every sub-boxes.

R e s u lts

The results of using quantifier elimination with pruning and subdivisions as a 

pre-process are as follow:
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Table 5.2 5.4 and 5.6 shows the computing time used to compute quantifier-free 
C-space obstacles and the Table 5.3 5.5 and 5.7 shows the number of atomic 
formulae of quantifier-free C-space obstacles for both division techniques.

Although recursive subdivisions seem to allow faster com putation than  the grid 
division the subdivision process does not improve the speed of the calculation. 
However, as the complexity of the problem increases both subdivision technique 

begin to improve the speed of the calculations. In some cases, the output can 

only be obtained in within the limited CPU time by using subdivisions.

The number of atomic formulae by both subdivision techniques are naturally 
the same throughout. However, in some circumstances the subdivision process 
reduces the number of atomic formulae of the output.

D iscu ssio n s

The main concern of this experiment is to gain an insight into how to use prun
ing and division technique as a pre-process to the quantifier eliminations. Alge
braically, we are eliminating 2 variables from the to ta l of 3 to 5 variables.

We have described and experiment two subdivisions techniques. The examples 
illustrate the methods but it does not seem possible to come to any definite 
conclusions about these methods a t this point but we can make a few remarks.

The time for the com putation vary in a quite unstable way depending on the 
subdivision technique, and also on the maximum size of of the boxes. We believe 
in general th a t spatial subdivision and pruning, if done correctly, can be useful 
as pre-processing to  quantifier elimination. In one of our examples, the quantifier 
elimination only succeeded if it was preceded by spatial subdivision and pruning.
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Grid Recursive
8 16 32 64 8 16 32 64

1 DoF PxO i 17.3 4.4 2.2 1.1 2.3 1.5 1.3 1.1
Pi02 33.4 8.4 4.2 2.2 3.9 2.8 2.5 2.2
P i0 3 36.1 9.1 4.7 2.4 5.3 3.4 2.9 2.5
P20 1 18.4 4.7 2.4 1.3 4.5 2.4 1.8 1.3
P20 2 34.7 8.7 4.5 2.4 7.2 4.1 3.2 2.4
P2O3 37.9 9.7 5.1 2.8 10.5 5.2 3.9 2.8
P3O 1 18.0 4.6 2.5 1.5 4.6 2.4 1.9 1.5
P3O2 34.7 8.9 4.8 2.7 7.2 4.1 3.4 2.8
P3O3
P4O1 18.8 4.8 2.5 1.4 5.2 2.6 1.9 1.4
P4O2 35.1 8.9 4.6 2.5 7.5 4.1 3.2 2.6
P4O3 39.2 10.3 6.1 4.2 10.9 5.4 4.6 4.2

Table 5.2: Computing Time (seconds) of 1-dimensional C-space obstacles.

Grid Recursive
8 16 32 64 8 16 32 64

1 DoF P iO i 12 6 6 7 12 6 6 7
P1O2 12 10 10 11 12 10 10 11
P1O3 16 12 13 14 16 12 13 14
P2Ol 40 18 18 25 40 18 18 25
P2O2 56 31 31 40 56 31 31 40
P2O3 110 55 55 62 110 55 55 62
P301 156 62 62 64 156 62 62 64
P3O2 298 123 123 120 298 123 123 120
P3O3
PaO x 50 23 23 35 50 23 23 35
P4O2 126 68 68 79 126 68 68 79
P4O3 282 146 302 352 282 146 302 352

Table 5.3: Number of atomic formulae of 1-dimensional C-space obstacles.
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Grid Recursive
8 16 32 64 8 16 32 64

2 DoF P iO i 22.4 6.1 3.5 2.3 13.9 7.5 4.8 2.4
P1O2 42.8 11.9 6.9 4.8 25.8 14.3 9.5 4.8
Pi03 47.9 14.1 8.6 6.6 30.9 17.2 11.7 6.7
P2Ol 23.9 6.5 3.7 2.5 16.1 7.9 5.0 2.5
P20 2 44.6 12.5 7.2 5.0 29.6 15.2 10.0 5.1
P2O3 50.7 15.7 9.6 7.5 35.3 18.6 12.5 7.2
PsO, 35.2 15.4 14.4 18.0 24.5 15.7 14.9 16.7
P3O2 73.5 35.3 33.5 40.5 46.5 33.3 33.1 37.6
P3O3 - - - -

PaO\ 39.6 20.5 21.3 28.1 29.7 20.7 21/2 26.2
Pi02 81.4 46.1 48.7 63.2 54.3 44.1 47.4 59.1
p * 0 3 ?? 616.2 699.2 908.6 296.0 379.5 ?? 567.3

Table 5.4: Computing Time (seconds) of 2-dimensional C-space obstacles.

Grid Recursive
8 16 32 64 8 16 32 64

2 DoF P iO i 304 286 304 360 304 286 304 360
P1O2 565 612 650 696 565 612 650 696
Pi03 1000 1049 1053 1154 1000 1049 1053 1154
P2O! 404 339 375 414 404 339 375 414
P2O2 828 755 807 879 828 755 807 879
p 2o 3 1508 1397 1375 1511 1508 1397 1375 1511
Ps01 4680 4354 4849 5629 4680 4354 4849 5629
P3O2 9596 9282 10093 10768 9596 9282 10093 10768
T3O3 - - - -

P4O1 5508 5910 6774 7977 5508 5910 6774 7977
P4O2 11466 12706 13997 15392 11466 12706 13997 15392
P4O3 22760 26717 30096 33580 22760 26717 30096 33580

Table 5.5: Number of atomic formulae of 2-dimensional C-space obstacles.
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Grid Recursive
8 16 32 64 8 16 32 64

3 DoF PiOi 107.9 41.7 33.7 35.0 69.3 41.3 34.9 33.1
P i 0 2 236.7 94.6 77.2 81.2 141.0 88.2 76.7 76.6
P i 0 3 816.7 - - - 629.1 - - -

P2O1 202.3 63.3 46.7 42.8 141.2 61.4 47.4 40.4
P2O2 ?? 150.0 111.1 101.5 291.2 134.9 106.2 92.5
P2O3 ?? - - - ?? - - -

P3O1 ?? ?? ?? ?? ?? ?? ?? ??
P3O2 ?? ?? ?? ?? ?? ?? ?? ??
P3O3 - - - - - - - -

P4O1 ?? ?? ?? ?? ?? ?? ?? ??
P4O2 ?? ?? ?? ?? ?? ?? ?? ??
P4O3 ?? ?? ?? ?? ?? ?? ?? ??

Table 5.6: Computing Time (seconds) of 3-dimensional C-space obstacles.

Grid Recursive
8 16 32 64 8 16 32 64

3 DoF 7953 5040 4324 3852 7953 5040 4324 3852
P1O2 14466 8985 7672 6800 14466 8985 7672 6800
P1O3 18504 11641 9723 8652 18504 11641 9723 8652
P20 1 18988 7719 5838 4775 18988 7719 5838 4775
P2O2 ?? 13987 10618 8541 33312 13987 10618 8541
P2O3 ?? - - - ?? - - -
P3O1 ?? ?? ?? ?? ?? ?? ?? ??
P3O2 ?? ?? ?? ?? ?? ?? ?? ??
P3O3 - - - - - - - -
P4O1 ?? ?? ?? ?? ?? ?? ?? ??
P4O2 ?? ?? ?? ?? ?? ?? ?? ??
P4O3 ?? ?? ?? ?? ?? ?? ?? ??

Table 5.7: Number of atomic formulae of 3-dimensional C-space obstacles.
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5.3 .5  C o m p lex ity  E stim a tes

As mention in Section 4.2 of Chapter 4 th a t eliminating a block of no existential 
quantifiers has complexity bounded approximately by

(md)n°niCCost

where C  is some constants, ni  is the number of free variables and d is the maxi
mum degree of m  different polynomials involved. We expect complexity for our 

problem to increase as some power of md.

The experimental results above showed th a t in many cases, pruning and subdi
visions of boxes, in some circumstances, may leads to a smaller value of m  and 

d.

5 .3 .6  L im ita tion s

In practice, is does not seem possible to compute quantifier-free C-space beyond 
linear case with a few variables. Quantifier elimination is com putationally expen
sive and there is an evidence th a t many sets which have a succinct representation 
with the projection operator are impossible to represent in any model of feasible 
size which only uses Boolean operators [65]..

Additionally, it is only possible in principle, to replace the quantified formulae 
with quantifier-free ones if the bound variables appear only algebraically. Even 
when it is possible to get rid of the projection operator using quantifier elimina
tion, it is by no means clear th a t it is desirable to do so.

Alternatively, we may consider working directly with the extended CSG repre
sentations by explore the possibility of using pruning and recursive subdivision 

directly with extended CSG representation.
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5.4 Sum m ary

We presented methods to construct C-space obstacle using existential quantifiers 
and boundary formation. The quantified C-space obstacle represents a geometric 
object in the Omnispace. We can obtain the quantifier-free C-space obstacle by 
applying quantifier eliminations.

We introduced the applications of pruning and spatial subdivision techniques to  
speed-up the com putation of quantifier-free representation. We presented some 
experimental results and discussed the effectiveness of the methods.
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Chapter 6

Extended CSG System

In this chapter we introduce an extended version of semi-algebraic CSG which 
has projection and boundary as operators, as well as the usual Boolean ones. We 
suggest how this idea can be applied to spatial planning by representing C-space 

obstacle using primitives from this system. We also suggest how to partially solve 
Findspace and Findpath problem using this system.

6.1 E x tended  O pera to rs

W hether or not we extend the semi-algebraic primitives to include trigonometric 
and exponential functions, we may wish to extend the set of operators. We now 
wish to add two new operators: boundary and projection when we represent 
complex objects using extended semi-algebraic primitives.

6.1 .1  B ou n d ary  O perator

D e fin itio n  6 Let S  be a subset of R n. Define Closure(S) to be the set of points 

which are either in S  or which have elements of S  arbitrarily near them.
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For example, if S  = {x : x  < 0} then Closure(S)  =  {x  : x  <  0} whereas if 
S  = {x  : x  =  1} then Closure(S)  =  </>.

D e fin itio n  7 Let S  be a subset of R n. Define

Boundary(S) = Closure(S)  D Closure(S)

where S  = R n — S. A point is in Boundary(S) i f  it is arbitrarily close to points 
in S  and also close to points in S.

However, since set complement operator depends on the universe, so does the 
boundary operator. If the universe is B  and S  C B  then

Boundary{S ) =  Closure(S)  fl Closure(B  — S).

Additionally, if S' is a semi-algebraic set then Closure(S)  and Boundary(S)  are 
semi-algebraic.

For example, for S i ,S 2 C R 2 the set Si =  { (x ,y )  : x 2 + y 2 — 1 <  0} defines 
a disc and Boundary(S i)  = { (x ,y )  : x 2 +  y 2 — 1 =  0} defines the circle in R 2. 
Similarly, the set S 2 = { (x ,y )  : y < x 2} defines a region below the parabola and 

Boundary(S2) = {{x ,y)  • y = xf2} defines the parabola in R 2.

We wish to add the boundary operator to our list of possible operators.

6 .1 .2  P ro jec tio n  O perator

Define the projection operator as follows:

D e fin itio n  8 Let S  be a subset of R n. Suppose V  =  { y i , . . .  ,yk} is a subset of 
the variables { ^ i , . . . ,  x n}. Let W  =  {iui , . . . ,  Wj} be the variables in {a?i,. . . ,  x n} 
but not in V.
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Define a projection of variables in V  of set S  as:

Project ionv(S) = { (wi , . . . ,  wf) : (x \ , . . . ,  x n) G S'} 

for some { y u . . . , y k}-

Define cylindrical projection of variable in V  of set S  as:

CylProjec tionv{S) — {(^i, . . . ,  x n) : ( ici , . . . ,  wf) G Projec t ionv(S)}

Both projection operators have two arguments, a subset of R n and a set of vari
ables to be projected out. The interpretation of Project ion  is as the usual pro
jection operator where the result of the projection is in the space of the remaining 
variables. On the other hand, the interpretation of CylProjec tion  projects the 
specified variables in the set S  and leave the result in the same space. The result 
of this projection is regarded as “cylindrical” . In other words, Project iony{S)  
is a subset of R k obtained by taking all points ( x i , . . . ,  x n) in S  and forgetting 
all coordinates of variables in V.  In contrast, C ylPro jec t iony{S) is the set of 
points (rci,. . . ,  x n) in R n which can be transformed into points of S  by changing 
values of variables in V.  Therefore C ylPro jec t ionv (S ) is a cylinder in R n whose 
base is Project ionv(S).

For example, the set S  =  {(x, y, z) : x 2 +  y 2 +  z 2 — 1 < 0 }  defines a sphere. From 
the definition above

Projection{z}(S ) =  {{x ,y)  : x 2 +  y 2 — 1 <  0}

is a disc in xy-space, whereas

CylProjection{zy = { ( x , y , z )  : x 2 +  y2 — 1 <  0}

is a cylinder in x y z -space which has the disc Projection{z}(S) as a base.
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6.1.3 Relationship Between Operators

Subsets of R n obtained from extended semi-algebraic primitives using combina
tions of Boolean operators; n-ary union, n-ary intersection, unary complement, 
and the two new operators; unary boundary and unary projection, provide finite 
description of geometric objects and a set of operators capable of m anipulating 
them. Call this system Extended CSG System.

The original CSG system is a Boolean algebra of extended semi-algebraic sets 
therefore CSG models is stable since the Boolean operators are supported by 

well-defined set of axiom. In contrast, we do not a t present know how to compute 
with this Extended CSG system.

However, we can establish some relationship between the two new operators and 
the usual Boolean operators as follow:

• Projection ̂ ( S i  U S2)) =  Projection^y^(Si) U Project ion{V}(S2)

• CylProject ion{y}(Si  U S2)) =  CylProjection^y^(S 1) U CylProject ion{y}(S2)

• Boundary(S) =  Boundary (complement (S))

• Boundary{4>) =  Boundary (universe) =  (f)

• Boundary(S\  U 52)) C (Boundary(S\ ) U Boundary(S2))

• Boundary(S\  fl S2) Q (Boundary(S\)  fl Boundary(S2))

Although the above expressions appear to be true, similar expressions are not. 
For example, as illustrated in Figure 6-1.

Projec t ion^}(S i  fl S 2) 7  ̂ P r o j e c t i o n ^ ( S i )  fl Project ion^ ( 82) 

Similarly,

•  Project iony(S \  fl 52) /  Project ion(Si)  fl Project ion^ )
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5 2 S  2

Si

<p X

Project ion^}(S \  fl 52) Projec t ion^} (Si) H Projection{y}(S2)

Figure 6-1: Project ion^} (Si fl S2) /  Project ion^}  (Si) fl Project ion^}(S2)

• Boundary(Si  U § 2) /  Boundary(Si)  U Boundary(S2)

• Boundary(Si  Pi S2) /  Boundary(Si)  D Boundary(S2)

6.2 M odel and Boxes

As in the case of CSG system, description of objects in Extended CSG system 
can be represented by a data  structure: a tree with operators on the internal 
nodes and extended semi-algebraic primitives at the leaves.

For example, an Extended CSG object defined by

CylProjection{z}(x2 +  y2 +  z2 — 1 < 0) D ({(x, y, z) : 2 >  0} U {(x, y ,z )  : z < 6}) 

can be represented as:

81



n

CylProjectiori{z} u

{ (x ,y , z )  : x 2 +  y2 +  z2 -  1 < 0} {{x ,y ,z )  : z > 0} {{x ,y , z )  : z <  6}

W ith these extra operators and primitives, we can represent geometric objects 
which are defined by projections and boundary formation in a succinct form. How 
to compute with these such representation is our Basic Problem which includes 
how to do the pruning on the model consisting of primitives from this extended 
CSG.

In order to use the pruning and subdivision technique on the models of Extended 
CSG system, we use the idea of models and boxes introduced in Chapter 5.

A model M  is represented by a tree with atomic formulae with variable from 
( x i , . . . , x n) at the leaves and geometric operators at the internal nodes. The 
atomic formulae in M  are those of extended semi-algebraic primitives. The ge
ometric operators are n-ary union, n-ary intersection, unary complement, unary 
boundary and unary projection all of which operate on sets.

Unlike extended CSG object tree which defines a subset of i?n, a model trees such 
as M  describe conditions of variable (aq, . . .  , x n) available to them. We distin
guish between the two types of tree structure by using the following notations:

Extended CSG Tree Model Tree
Primitives Semi-algebraic Sets Atomic Formulae
Operators U union

n intersection
— complement

Boundary B nd

Projectiony P ro jy  f
CylProjectiony C y lP ro jy
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For example, for a variable list (xi,X2 ,x$) a model

M  — inter section(CylProj {z}(x2 + y2 + z2 — 1 <  0), union(z > 0 ,2  < 6)) 

can be represented as:

intersection

C ylP ro j{z} union

x2 +  y 2 +  z 2 — 1 <  0 z > 0  z  <  6

Let B  be an m-dimensional coordinate-aligned box defined by a list of m  closed
intervals ([a1} £>i],. . . ,  [am, bm\) where m <  n. Each interval corresponds to an 
edge of the box. The set (M, B) is a set of points in B  tha t satisfy M. This 
set definition is recursive on the structure of M. If M  is an atomic formula then 
(M, B)  will be the subset of B  in which M  is true  and it follows that:

• (union(Mi,  M2), B) = (M 1} B)  U (M2, B)

•  (inter section(M\, M2), B) = (Mi, B)  fl (M2, B)

•  (complement(M) , B) = B  — (M, B)

• (Bnd(M),  B) = Closure(M , B)  n  Closure(B -  (M, B))

• (CylProjv(M),  B)  =  CylProjec tiony(M, B)

We will use a pair (M, 5 ) , where M  is a model and 5  is a box, to define a subset 
of R n. This set (M, B)  is our primitive Extended CSG object. For example, let 
B  be the box ([—10,10], [—10,10]). Let (x, y) be the variable list. That is B  is a
box in xy-space. Let M  be a model defined by y < x2. (M, B)  defines the region
inside the box and below the parabola, where M  is true. B oundary(M , B)  is the 
parabola inside the box.

Tn this thesis, we only allow the cylindrical interpretation for M .
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Additionally, suppose the ordered list of variables is x i , . . .  , x n and a box B  of 
closed intervals is ([ai, 61] , . . . ,  [am, bm]) where m  < n. Since, the set ( M ,B )  is 
a collection of points in B  where M  is true, (true, B)  is the box B  itself and 

(false,  B)  is the empty set.

6.2 .1  P ro jec tio n  o f  B oxes

In extended CSG representation, a model M  is a tree. We work always in subsets 

of the box B  since we do not wish to change space every tim e we climb up or 
down the tree. Consequently, for M ,  the only interpretation of projection is as 

cylindrical projection.

In some circumstances where it is possible, we may allow the usual interpre
ta tion  of projection operator. This can be done by defining P r o j y ( M , B ) =  
Projec t ionv(M )  fl Project ionv(B)  where Project ionv(B)  is a box which has 
intervals corresponding to variables in the variables list which are not in V , where 
B  is an m-dimensional box and the corresponding variables list is (aq, . . .  , x m).

For example, Let M  be a model x \  +  x \  +  x \  — 1 <  0. Suppose the variable 
list is ( x , y , z )  and a box B  = ([—8,8], [—9,9], [—10,10]). T hat is, (M , B ) de
fines a sphere in R 3. The usual interpretation of projection Proj{X3}(M, B)  =  
Projectiori{X3}(M)  fl Projectiori{X3}(B) will give a disc in Xi , a^-space whereas 
the cylindrical interpretation gives a cylinder in a?i, a;2, a;3-space which has the 
disc as a base.

6.3 Basic P rob lem

6.3 .1  E valuation  P ro cess

The evaluation process, which determines the value of each primitive over the box, 
is done by using interval arithm etic on the atomic formula of each primitives.
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In Extended CSG system, the evaluation process remain the same as in the CSG 
system since it does concern with the operator of the primitives. The process still 
able to replace some primitives in the box by true  or fa l se  in the same manner 
as in the CSG system. T hat is, the primitive can be evaluated over the box 
according to Table 3.1 in Section 3.4.2.

The evaluation process may be able to replace some unnecessary formulae of 
the model in the box which can lead to a reduction of the number of formulae 

th a t made up a model. Once each formula in the model has been evaluated and 
some replaced with true  or fa l se  , we can work up the model tree applying the 
operators to each leaf and achieve some simplification. Hence we need to know 
how to apply the two new operators to the model tree.

Sim plification R ules for Boundary Operator

Since we interpret the boundary operator to the box B , we ignore any point 
outside B.  W hen a formula evaluated to true  it can be interpreted as M  is true  
inside B.  T hat is, the intersection of the model and the box is the box itself. It 
is clear th a t in this case the box B  does not intersect the boundary of the set so 
we can replace the formula with false.  Similarly, when the formula evaluated to 
fa lse ,  no part of the set is inside B  which also means th a t the boundary of the 
set does not intersect B  and we can replace M  with fa lse .  The original primitive 
is returned if the evaluation result is undecided.

Thus the simplification rules of the boundary operators are:

1. (Bnd(true),  B) = fa lse

2. (Bnd(fa lse) ,  B) = fa lse

3. (Bnd(undecided), B) = undecided.
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Sim plification Rules for Projection  Operator

In the case of projection operator there are two possibilities.

In the case of cylindrical projection, the model remains in the same space. In 
other words, the projected model and the original box B  defines the set. There
fore, when M  evaluated to true,  every point inside the box B  is true. The 
geometric interpretation is tha t, B  is completely inside the model M .  It is clear 
th a t the cylindrical projection of M  will also contain B  so we can replace M  with 
true. On the other hand, when M  evaluated to fa lse ,  no points in side the box 
is true  for M .  T hat is, no part of M  is inside the box B  therefore the cylindrical 
projection of M  does not intersect the box and we can replace it with false .  The 

original model is returned if the evaluation result is undecided.

Thus the simplification rules for the cylindrical interpretation of projection op
erators are:

1. CylProjv{ true ,  B) = ( true ,B)  = true

2. C ylPro jv{ fa l se ,  B)  =  (false,  B) — fa lse

3. C ylP ro jv (M ,  B) = (undecided, B)  =  undecided.

In the case of the usual projection operator, the variable of the box is also pro
jected. T hat is, the projection of the model goes into a projected box. Thus 
simplification rules for the usual interpretation of projection operators are:

1. Projv( true ,  B)  =  (true, Pro jv (B ) )  = true

2. P ro jv ( fa l s e ,  B) = (false,  P ro jv (B ) )  = fa lse

3. P r o jy (M ,  B)  =  (undecided, Pro jv (B ) )  = undecided.
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Sim plification R ules for Extended CSG Operator

Pruning process ensure tha t, inside the box there are no unnecessary atomic for
mulae left in the model while the simplified model and the box is still representing 
the original set. We can simplify the model over the box by applying the rules of 
the operators to the atomic formulae of the model after the evaluation process.

The simplification rules for Extended CSG operators are:

•  undecided U true = true

•  undecided U fa lse  = undecided

•  undecided fl true = undecided

•  undecided n  fa l s e  = fa lse

• Complement [true) =  fa lse

•  Complement ( false) = true

•  Complement  (undecided) = undecided

•  Boundary  (true) — fa lse

•  Boundary  (false)  =  fa lse

•  Boundary  (undecided) = undecided

•  CylProjectionv(true)  = true

•  CylProjec tionv(  fa lse) = fa lse

•  CylProjec t iony  (undecided) — undecided
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6.3.2 Pruning

The pruning process can be done in Extended CSG in a similar m anner as in 
CSG. By evaluating each atomic formula at the leaf of the model tree, we can 

simplify the model over the box by applying the rules of the operators to the 
primitives and achieve some simplification. However, in the case of Extended 
CSG, the operators include the boundary and projection thus the simplification 
rules need to be carefully considered.

Boundary and projection operators can be dealt with in two ways. One way is 
to apply the operator to the models then use quantifier elimination, leaving the 
model with only Boolean operators. In the case of boundary operator, the result 

is a semi-algebraic form of the boundary of the model. Similarly for projection 
operator, by projecting out some variables, the result is a semi-algebraic form 
of the model with only Boolean operators. In this way, we are transforming an 
Extended CSG model to a CSG model.

The other way is to apply the pruning process w ithout applying the boundary 
or projection of the models but proceed to evaluate each atomic formula at the 
leaf of the model over the box first. The result from the evaluation could be 
either t rue , fa l s e  or undecided. Once each atomic formula in the model has 
been evaluated and some replaced with true  or fa l se  , we can work up the model 
tree applying the operators to each leaf and achieve some simplification.

Pruning A lgorithm

The pruning of a model to a box in Extended CSG, w ithout applying the bound
ary or projection operator, can be described in algorithmic form as Algorithm 4.

The algorithm  is recursive, starting  at the root of the model and working up to 
the leaves. The evaluation is deferred by calling E x tP ru n e i )  again if the node 

is still an operator. If the node is not one of our Extended CSG operators, we 
have reached the leaf and procedure E v a l () is called to evaluate th a t particular



formula to the box.

Note that, as in the case of CSG operator, after the pruning process, (M ' , B ) 
should define the same set as (M, B).

A lgorithm  4 E x t P r u n e ( M , B)
Input: M, B
O utput: M7, B

if  (M =  Boundary{M })  then  
(M7, B) 4— E x t P r u n e ( M , B)  
if  (M7 — true)  then  

re tu rn ( fa l se , B)  
else if (M7 =  false)  then  

re tu rn ( fa l se , B)  
else

re turn(Boundary(M') ,  B)  
else if (M =  Projection^}{-M}) then  

(M7, B) <— E x t P r u n e ( M , P) 
if  (M7 =  true)  then  

re turn( true , B) 
else if  ( M f =  fa lse)  then  

re tu rn ( fa l se , B) 
else
return(Projectzon{v}{M7}, B) 

else if (M =  umon{Mi,..., M^}) then 
. . .  as in Prune(M , B) 

else if (M =  intersection{Mi,..., M^}) then 
. . .  as in Prune(M, B)  

else if (M = comp/ement{Mi}) then 
. . .  as in Prune(M , B) 

else
re turn(Eval(M,  B))

6 .3 .3  R ecu rsive S u b d iv ision

The main purpose of the subdivision of boxes is to allow each model to be simpli

fied over a smaller box. Thus the model has more chance to be simplified. Note 
th a t the union of all sub-boxes with their models is supposed to  define the same 
set as the original box with the original model.
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As in the case of CSG, the subdivision can be carried on recursively along with 
the pruning process until some conditions are met. The set definition of (M, B)  
is also recursive on the structure of M .  T hat is, if B  = B \  U B 2 it follows that:

(M, B)  =  (M, Bi)  U (M, B 2)

In other words, when a box is divided, the model is pruned to its own box and 

the union of all these boxes with their models results in the original box with the 
original model.

For example, given a box B  and a model M  = P r o j ( M i n M 2)U B oundary(M 3) If 
the box is subdivided into two sub-boxes, B\  and B 2 along one of its coordinate, 
then:

(M, B)  =  (P ro j (M i  fl M 2) U Boundary (M3), B)

=  (Proj( (Mi ,  B)  n  (M2, B ) , B )  U Boundary (M 3, B ) , B )

= (P ro j ( (M u Bi)  n  (M2, B i ) , B i )  U Boundary (M 3, Bi),  B x) U 

(P r o j ( ( M i ,B 2) D (M2, B 2), B 2) U Boundary (M3, B 2) , B 2)

However, the two new operators introduced in Extended CSG need some special 
considerations.

Overlapping Boxes

Suppose there are some boundary operators in M . An unfortunate subdivision 
might lose some boundary points on the edge of the divided boxes.

For example, suppose the model M  — union(x > 0 ,x  < 1) and the box B  = 
[—1,1]. In B  there are some points below {1} but there are no points in B  above 

{1}. It follows th a t {1} is not arbitrarily close to (M , B ) hence (Bnd(M ),  B) = 
Boundary(M, B) = {0}. Suppose we split B  into B\  =  [—1,0] and B 2 = 
[0,1]. The set (M ,B \ )  is empty so (B nd(M ),  Bi)  is empty. ( M , B 2) is B  but 
(Bnd(M ),  B 2) is also empty. This happened just because there was a points on
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the boundary at the place where the split was done.

T h a t is, boxes need to be overlapping to ensure the correctness of the set defined 
by (M, B)  after the subdivisions.

Projected  Variables

Consider the case of a model M  with the variable list (x, y ). Let y  be the variable 
to  be projected out. M  =  in te rsec t ion (C y lPro jy ( M i ) , C y l P r o j y(M 2 )) inside the 
box B  defines the set A, an area above the line segment on x-axis (Figure 6-2).

If we subdivided B  along y-axis then:

A  =  ( in te rsec t ion (C y lP ro j {y } (M i) ,C y lP ro j {y} (M 2 ))i B)

B  =  un ion ( ( in ter sec t ion (C y lP ro j {y } (M i) ,C y lP ro j {y} (M 2 )), Bi) ,

( in te rsec t ion(CylPro j{y} ( M i ) , C y l P r o j { y} (M 2) ) , B 2))

=  4>

We cannot always subdivide the side th a t correspond to the variables which is 
to be projected. There are cases where splitting the side would be correct. For 
example, if M  =  u n io n (C y lP ro jy( M i ) , C l y P r o j y(M 2 ) but we do not consider 
these possibilities now.

In any case, in the application we will consider, the box Bp which correspond to 
bound variables is small relative to the box B t which correspond to free variables. 
In other words, the variable which are to be projected are bounded to a relatively 
small intervals. Consequently, we can subdivide the Omnispace down to relatively 
small boxes w ithout subdividing sides which correspond to bound variables.
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Figure 6-2: It is not always possible to subdivide the side tha t correspond to the 
variables which is to be projected.

R ecu rs iv e  S u b d iv isio n  A lg o rith m

Given a box B  and a model M, the subdivision process which divides the longest 
side of a box can be expressed in algorithmic form as in Algorithm 5. This process 
subdivides B  into two sub-boxes, B\ and B 2. The union of the sets defined by 
(M, B \)  and (M, B 2) is the same as the set defined by (M, B).

The process also look at special cases where M  contains boundary operators. So 
by increasing one of the box by some small number e >  0, two new boxes are 
overlapping.

Also we cannot subdivide the side which correspond to the projected variables. 
By obtaining the set of free variable first, the longest side of the box can then be 
determined from the set.
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A lg o r ith m  5 E x tS u b D iv id e (M , B)
In p u t :  M, B

O u tp u t :  ( M , B i ) , ( M , B 2)

f r e e v a r  4— F in d F r e e V a r (M )  

posit ion 4-  M a x S id e P o s i t io n (B , f r e e v a r ) 

in terval  4— P  ar t  (B, position)  

lower 4— LowerEnd(in terval )  

upper UpperEnd( interval )

midpoint  4— lower +  Size( in terval )  / 2  

.E?2 P a r t ( B , position) 4— [midpoint, upper]

i f  C onta inBoundary(M )  =  true) th e n

Bi P a r t ( B ,  position) <r- [lower, midpoint] 

else
-f- P a r t ( B , position) 4-  [lower, midpoint  +  c] 

re turn  (M, B\) ,  (M , B 2)

The division can be carried out recursively along with the pruning process until 
some conditions are met. A few options to consider as a term ination condition 
of the process are, for example, the recursive subdivision could stop when all the 
boxes are sufficiently small or when the model is simple enough th a t is there are 
a certain number of primitives left in the model.

A lg o r ith m  6 E xtR e cu rS u bD iv i s ion (M , B)
I n p u t :  M, B

O u tp u t:  (M i, B i ) , . . . ,  (Mk, B k)

(.M ', B)  4-  Pru n e (M ,  B)  

if  IsS im p le (M ')  or I sS m a l l (B )  th e n  
r e tu r n (M ' , B)  

else
(M, Bi) ,  (M , B 2) 4-  Ex tSubD iv ide(M ,  B)  

re turn(ExtRecurSubDiv is ion(M ,  B{) , E x t  Recur SubDiv is ion(M ,  Bi))
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6 .3 .4  N orm al Form s

Semi-algebraic CSG obstacles can be expressed in Disjunctive Normal Form 
(DNF) or in Conjunctive Normal Form (CNF), or in some mixed form. Pruning 
and QE are both dependent on the input form. Recursive subdivision could also 
be considered as pre-processing for conversion from CNF to DNF, as well as for 

QE; or for conversion from a mixed form into either CNF or DNF.

Define a model to be in normal form  (NF) if it is a union of projections of models 
with only boolean operators. A theorem due to Gabrielov [26] implies th a t any 

model over a box is equivalent to a normal form model over the same box. T hat 
is, for any (M, B) there exists (N F (M ) ,B )  so th a t N F (M )  is in normal form 

and (M ,B ) defines the same set as (N F (M ), B ).

The essential step in the proof is to show th a t the sets defined by normal form 
models are closed under compliment. Currently, we do not have any practical 
way to  construct these normal form representations.

6.4 E x tended  CSG A pproach  to  S patia l P lan 
ning

6.4 .1  R ep resen tin g  C -space O b stacles

In Extended CSG, an object is represented by a tree with Boolean operators and 
also with extra operators, namely boundary and bounded projection. We cannot 
always replace these operators by Boolean ones. For example, it is only possible 

in principle, to  replace the projection operator by Boolean operators applied to 
extend primitive if the variables which are to be projected out, occur algebraically 

in the atomic formulae.

However, we could work directly with the representation of the C-space obstacle 
as a projection in an extended CSG system. In any case, if the moving object or

94



part of the obstacle is not algebraic, we must represent the C-space obstacle as a 
projection, since elimination of quantifiers may not be possible.

Consider the following examples.

E x a m p le  4 Let B  be a box ([—10,10], [—10,10], [—10,10], [—10,10]) in zw xy  
space. Let M  be a model define by:

C ylP roj{z,w}

intersection

z 2  +  w 2  <  1 z +  y  — (w +  x )2 <  0

I f  we regard the unit circle z 2  -\- w 2  <  1 as an object in zw  space which may  

translate and regard the area below the parabola defined by w <  z 2  as an obstacle 

also in zw-space, then (M , B ) represents the C-space obstacle in zwxy-space.

Using the cylindrical projection interpretation of projection operator, a point 
(z, w , x , y) is in (M, B) if it is in B  and if there is a point (z', w') in the unit circle 
so tha t (z \ w ') translated by (x,y)  lies below the parabola. In other words, the 
translation of the unit circle intersects the area below the parabola. W hether or 
not a point (z, w , x , y) is in (M, £?), does not depend on 2 and w  at all as long as 
they are in the projection of the box onto xy-space.

If we use the usual projection interpretation, (M, B) defines a set in xy-space 
inside the projection of B. It is the set of points (x ,y )  whose distance from the 
region below the parabola is no more than one unit.

We can also use the boundary operator to define the C-space obstacles as shown 
in Chapter 5.
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Exam ple 5 Let B  be a box ([—10,10], [—10,10], [—10,10], [—10,10]) in zwxy  

space. Let M  be a model define by:

union

C y l P r o j {z,w} y <  x 2

intersection

z 2  +  w 2 <  1 Boundary

z +  y — (w + x ) 2 < 0

Regard the unit circle z 2  +  w 2  < 1 as an object which may translate and the 

area below a parabola defined by y <  x 2  as an obstacle in xy-space. The circle is 

connected so it is always either entirely inside the obstacle or is intersected with 

at least an edge of the obstacle. That is, (M, B) represents the C-space obstacle.

In both examples, (M, B)  can be defined as a semi-algebraic set without using 
projection or quantification. However, the process of finding the semi-algebraic 
definition, and the definition itself is complicated. It appears to be true tha t the 
most compact way to represent a set such as (M ,B ) is by using projection.

6.4.2 P artia l Solutions to  Find-space and F ind -pa th  P ro b 
lems

Consider an Omnispace with an Omnimodel inside. After a cylindrical projection 
of the Omnimodel, although the Omnispace does not get reduced to a lower 
dimension C-space, the cylindrically projected Omnimodel is free of the variables
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which were projected out. Therefore we can trea t the Omnispace as the C-space 
by ignoring coordinates which correspond to projected variables.

The pruning of a model to a box in extended CSG can be done w ithout applying 
the boundary or cylindrical projection operator. Suppose we apply only subdivi

sions and pruning to the Omnimodel over the Omnispace. Every sub-box which 

has no part of Omnimodel inside is not a part of the projection of the Omnimodel. 
Similarly, every sub-box which is totally inside the Omnimodel is also inside the 

projection of the Omnimodel.

Clearly, the result from this process is conservative. To obtain the exact value, 
we would need to evaluated boxes which are undecided  after we apply boundary 
and projection operators.

Find-space

Since the Freespace is a collection of all points outside the C-space obstacles, 
we can also represent the Freespace in the same way th a t we represent C-space 
obstacles.

Suppose we have an Omnispace, we can represent the Freespace as an Omnimodel 
in this space. If we apply pruning and subdivisions so th a t the Omnispace is 
divided into sub-boxes of a certain size, then sub-boxes which are evaluated to 
true  are in the Freespace. These sub-boxes are part of the Freespace thus they 
are solutions to Find-space problem. If there is no true  box then, a t this level of 
subdivisions, there is no Freespace.

We can describe this partial and conservative process to find Freespace in algo
rithm ic form as in Algorithm 7.

For example, consider a convex object P  defined by a combination of four atomic 
formulae of degree one as:

P  =  in tersection(z > 0 ,z  < l ,w  > Q,w <  2).
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A lgorithm  7 Findspace(M , B)
Input: M, B

O utput: B \ , . . . ,  Bk

boxlist =  {}
(M ' , B ) <— P ru n e(M ,  B)  

if  ( M 1, B)  =  true  then  
re turn(B)  

else if I sS m a l l (B )  then  
returnQ  

else
(M, B i ), (M, B 2 ) <— E x tS u b D iv id e (M , B)  

re turn(ExtRecurSubDiv is ion(M ,  Bi) ,  E x tR e cu rS u b D iv i s io n (M , Bi))

Also consider a set of 15 convex objects O, each defined by a combination of four 
atomic formulae of degree one as:

O =  union(

in tersection(z > 0, z < 1, w > 0, w < 1), 

in tersection(z > 4, z < 5, w > 3, w < 4), 

in tersection(z > 8, z  < 9,w  > 12, w < 13), 

in tersection(z > 16, z < 17, w > 6, w < 7),

in tersection(z > 20, z < 21, w > 5, w < 6),

in tersection(z > 24, z < 25, w > 4, w < 5),

in tersection(z > 28, z < 29, w > 7, w < 8),

in tersection(z > 32, z < 33, w > 8, w < 9),

in tersection(z > 36, z < 37, w > 2, w < 3),

in ter section(z > 40, 2 : < 4 1 , i y > l , i u < 2 ) ,  

in tersection(z > 44, z < 45,w  > 10, w < 11), 

in tersection(z  > 4 8 , z  < 49 ,w > l 4 , w <  15), 

in tersection(z  > 5 2 , z <  53 ,w > 1 3 ,w  < 14), 

in tersection(z > 56, z <  57, w > 11, w < 12), 

in tersection(z > 60, z < 61, w > 9, w < 10)).

98



Let (z , w , x , y , a ) be the variable list available for both the object and obstacles 
and [0,1] x [0,1] x [0,64] x [0,16] x [0, 7] be the box. After the pruning and 
subdivision which apply to only boxes corresponding to variables x  and y using 
the maximum box size of 4, we obtain 64 sub-boxes in which 20 were in the 
Freespace (Figure 6-3).

w

□ ,

z

P

Freespace

Figure 6-3: An object, the set of obstacles and the partial Freespace.

Additionally, we subdivide the box on sides which correspond to variables x , 
y and a using the maximum box size of 4. After the pruning we obtain 128 
sub-boxes in which 45 were in the Freespace (Figure 6-4).
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Figure 6-4: Partial Freespace in 3-dimensions.

F in d -p a th

Find-path problem concerns with moving an object from one place to another 
without collisions, hence a path within the Freespace is a solution.

After applying the process of pruning and subdivision to the Omnispace we may 
get a list of sub-boxes which correspond to Freespace. We can represent these 
sub-boxes using an adjacency matrix. Once we have the adjacency matrix, Find- 
path problem can be solved using standard graph searching techniques.

Denote these sub-boxes by B i , . . . ,  B k. For a box Bi and Bj in the Omnispace 
Bp x B t x B r, define Bi and Bj to be connected if their edges in B t and Br are 
overlapping. The adjacency matrix A  for k sub-boxes is a k x  k matrix [a*j]

However, B r represent the degree of rotations hence the edge 0 is overlapping 
with the edge 27r radians.

0, if Bi not connected to Bj.
1, \i Bi connected to B
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6.5 S um m ary

We introduced an extended version of semi-algebraic CSG which has projection 
and boundary as operators. We then showed how this idea can be applied to 
spatial planning by representing C-space obstacle using primitives from this sys

tem. In particular, we also suggest how to partially solve Findspace and F indpath  
problem using this system.



Chapter 7

Conclusions and Further Work

We are interested in spatial planning problems. In particular, we are interested in 
computing constraints on the position and orientation of a 2-dimensional object 
due to the presence of some obstacles.

We were first inspired by the concept of the Configuration Space (C-space) ap
proach to spatial planning. The C-space approach reduces the problem from 
having to deal with the intersections between a set of objects in the Workspace 
to dealing with a point relative to a set of objects instead. This new set of ob
jects, called the C-space obstacle, corresponds to all the impossible positions and 
orientations of the actual object in the Workspace. However, the dimension of 
C-space obstacles is at least the same as the degrees of freedom of the object in 
the Workspace.

To construct the C-space obstacles we employed the modelling technique used 
by Svlis geometric modeller. Svlis represents object using the concept of Con
structive Solid Geometry (CSG) and extended semi-algebraic sets which are di- 
mensionally independent. Moreover, the representation of objects in Svlis al
lows processes such as pruning and recursive subdivisions which are ‘divide and 
conquer’-type of simplification.

The second inspiration came from the quantifier elimination technique called
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‘cylindrical algebraic decomposition’. It was shown th a t in principle this quanti
fier elimination technique could be used to solve spatial planning problem which 
was represented in semi-algebraic forms.

O ur first contribution was to suggest constructing C-space obstacles in semi- 
algebraic form  using existential quantifiers and boundary form ations (see Equa
tion 5.2 and Equation 5.5, Section 5.1.1). This quantified representation of C- 

space obstacle is equivalent to the concept of the Omnimodel which was indepen

dently and simultaneously studied by Wise in [68].

In order to represent the C-space in CSG with Boolean operators alone, one ap
proach is to apply elimination of quantifiers. However, elimination of quantifiers 
has com putational difficulty which increases much more than  linearly with com
plexity of formula. Therefore, we introduce another original idea of using spatial 
subdivision techniques as a pre-process before applying quantifiers elimination.

We implemented the idea in REDUCE computer algebra system using REDLOG 
logic package. Our com putational results showed only slight benefit from pruning 
and subdivision process with large and incomprehensible output.

We concluded tha t, although possible in theory, using cylindrical algebraic decom
position to elimination quantifiers, is com putationally hard and the quantifier-free 
results are often large and cumbersome. Therefore, we introduce another origi
nal idea of constructing an extended Constructive Solid Geometry system  which 
would have both bounded projection and boundary formation as operators, as 
well as the usual Boolean ones.

Our application of Extended CSG to spatial planning leads to  a compact repre
sentation of configuration space obstacles. In particular, it allows the com puta
tion of partial solutions to Find-space and Find-path problems without applying 
quantifier elimination. Since the pruning and recursive subdivision can be done 

on an extended CSG representation, there is also a possibility to  apply quantifier 
elimination to limited regions efficiently.

It seems th a t we should learn to work directly with the representation of the
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C-space obstacle as a projection in an extended CSG system. In any case, if 
the moving object or part of the obstacle is not algebraic, we must represent 
the C-space obstacle as a projection, since elimination of quantifiers may not be 
possible.

Although the extended CSG system, a t present, does not provide a practical 
m ethod which solve the problem in all cases, it does, a t least, provide a compact 

semi-algebraic CSG representation.

7.1 Im plication  for F u rth e r R esearch

The current quantifier elimination software used in this thesis is somewhat lim
ited. However, quantifier elimination by cylindrical algebraic decomposition is 
difficult and there will always be a lim itation on the complexity of the formulae. 
Additionally, the algebraic description of the C-space obstacle, or the Freespace 
could be obtainable with a better quantifier elimination software but it maybe 
too complicated thus making it unusable.

Since we use interval arithm etic conservatively, the more precise interval arith
metic would enable a more accurate pruning process. This will have an im
plication on pruning and subdivisions when used as a pre-process to quantifier 
elimination. Find-path and Find-space using only pruning and subdivision would 
also benefit from this improvement.

Another consideration is to subdivide the moving object as well as the obstacles. 
Furthermore, the boxes which correspond to the bound variables can also be 

divided. However, the benefit of these approaches are still unclear.

Finally, there maybe other ideas which could be combined with other techniques 
to solve spatial planning problem with more efficiency and precision.
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A ppendix A

R ED U C E Procedures

A .l  G rid  D ivision P ro ced u re

7.  Quantifier Elimination using REDLOG.
7. -------------------------------

procedure apply_qe(form,nobv,v_list);
7. apply qe and return a quantifier free formula
7. v_list —  bound variable first
begin

scalar i,bv_list,non_quantified; 
write "Total number of terms: ",rlatnum(form); 
if (form = true) or (form = false) then 

non_quantified := form
else

begin
write "Apply QE to ",form, " ... ";
bv_list := for i := 1: nobv collect part(v_list,i);
non_quantified := rlqe(ex(bv_list,form));

end;
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return (rlsimpl(non_quantified));
end;

procedure QE_Grid(piano,obstacle,box,nobv,v_list,max_size);
7, Grid subdivision
7o - Chop ’til all sides of each box <= max_size
7. then put all the boxes into a list
7. - apply_qe to pruned boxes.
7.

7* - list_box is a list of boxes,
7. - piano in {z,w}
7. ~ obstacle in {z,w}
begin

scalar j,list_box,bux,result;
list_box := chop_freevar_to_size(box,nobv,max_size); 
result := for each bux in list_box mkor 

apply.qe(
tree2form(

{and,
box2mdl(bux,length(v_list),v_list),
prune({and,piano,w2c(obstacle,nobv,v_list)},

bux,
v_list)},

nobv,
v_list),

nobv, 
v_list);
write "Number of box(es) : ", length(list_box); 
write list_box; 
return(result); 

end;
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A .2 R ecursive Subdivision P ro ced u re

•/.---------------
procedure QE_Recur(piano,obstacle,box,nobv,v_list,max_size);
#/« recursive subdivision
begin

scalar model; 
model := {and,

p ia n o ,

w2c(obstacle,nobv,v_list)}; 
result := recur_sub(model,box,nobv,v_list,max_size); 
return(result); 
end;

1--------------
procedure recur_sub(model,box,nobv,v_list,max_size);
'/» recursive subdivision 
begin

scalar 1,fv_box,boxl,box2,result,pruned_model,value;
1 := length(box);
fv_box := for j:=(nobv+l):1 collect part(box,j);
pruned_model := prune(model,box,v_list);
value := rlsimpl(tree2form(pruned_model,nobv,v_list));
if (value = true) then
begin

write box," is solid."; 
result := 
apply_qe(

tree2form(
box2mdl(box,length(v_list),v_list), 
nobv, 
v_list), 

nobv, 
v_list);
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end
else if (value = false) then 
begin

write box, " is empty [",max_side_size(fv_box), ;  
result := false;

end
else if (max_side_size(fv_box) < max_size ) then 
begin

write "Prune and QE ", box; 
result :=

apply_qe(
tree2form(

{and,
box2mdl(box,length(v_list),v_list), 
pruned_model}, 
nobv, 
v_list),

nobv, 
v_list);

end
else
begin

boxl := part(chop_freevar(box,nobv,v_list),1); 
box2 := part(chop_freevar(box,nobv,v_list),2); 
result :=

recur_sub(pruned_model,boxl,nobv,v_list,max_size) or 
recur_sub(pruned_model,box2,nobv,v_list,max_size)

end;
return(result);

end;

#/.----------------
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