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Characterisation of Thermal Sprayed 
Hydroxyapatite Coatings for use as a Biological 

Attachment System for Prosthetic Devices.

Abstract.
Orthopaedic surgery has progressed at an amazing rate from the 

introduction of the cemented hip prostheses in the early 1960’s by Sir John 

Charnley. This prostheses gives thousands of people each year the 

opportunity to walk again after being crippled by the painful disease 

osteoarthritis. The clinical results have shown that this prostheses and 

generic copies using PMMA cement have a 90% success rate over a 10 year 

period for patients over 60 years of age. For younger more active patients a 

revision operation may be required in as little as 3 years. The main cause of 

post-operative failure is aseptic loosening which has been attributed to a 

change in the mechanical properties of the PMMA cement. To increase the 

life span of a hip prostheses a new method of fixing the implant to the bone, 

known as cementless fixation, has been developed. One of the cementless 

fixation techniques utilises an hydroxyapatite coating on the surface of the 

implant. Hydroxyapatite is the mineral component of bone and therefore 

when implanted in the body does not invoke an immune reaction and has 

been shown to encourage bone growth.

This thesis will look at three thermal spraying processes which have been 

used to produce hydroxyapatite coatings. Two conventional processes Air & 

Vacuum Plasma Spraying and the novel process of High Velocity Oxy Fuel 

thermal spraying. The morphology and composition of these coatings has 

been determined using many standard and novel characterisation 

techniques. The three coating processes produced coatings with different 

compositions and morphologies. The effect of heat-treatment and in vitro 

ageing on the coatings has also been investigated. One can conclude from 

this work that by selecting an appropriate process, powder and spraying 

parameters an hydroxyapatite coating can be produced to a given 

specification.
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1. Introduction.

Osteoarthritis is a crippling and painful disability which affects the mobility of 

joints in the body. The disease is associated with the elderly but can also 

affect young people. The Total Hip Replacement (THR) operation provides 

immense relief from pain and disability to around 40 000 patients each year 

in Britain alone [1]. With patients in the 65+ year age group there is a 90% 

success rate for a total hip replacement over a 10 year period but for those 

in the 16-24 year age group, who are generally more active than the elderly, 

it can be expected that a revision operation will have to be performed 

approximately three years after initial surgery [2]. The revision operation, for 

young or old patients, is a much more severe and complicated operation. 

With an increasingly ageing population, the demand for surgery to replace 

the hip joint will go on rising. Therefore improvements to increase the life 

span of hip replacement joints, especially in younger patients, would 

significantly reduce the number of revision operations required and free 

surgeons to undertake more primary surgery.

There are considerable stresses exerted on the hip joint and these need to 

be met by the artificial implant. The environment of the human body with a 

temperature of 37°C, pH 7.2, saline solutions and a host of other biological 

and chemical agents is extremely corrosive. Materials implanted in the body 

need to be biocompatible, corrosion resistant and withstand physiological 

forces such as fatigue and stress corrosion without failure [3].
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Failure of the total hip replacement is not generally associated with stem 

fracture or cup wear, but with infection or, in the majority of cases, with stem 

or cup loosening. A well fixed component has a bone-cement interface 

which displays a thin interfacial membrane, termed as the ‘quiescent’ 

interfacial membrane (QIM). The QIM consists of bland and densely textured 

collagenous tissue, with fibres oriented parallel to the surface. Sharpey like 

fibres emerge at irregular intervals from the bone and combine with the 

collagenous fibres of the QIM, which anchor the implant in position. A 

loosened joint replacement exhibits a thick pathological or aggressive 

interfacial membrane. This membrane is known as the ‘lytic’ interfacial 

membrane (LIM) because mediatory substances increase the inflammatory 

cell reactions therein causing bone resorption. The LIM consists of a three 

layered structure an inner synovial-like layer, a middle inflammatory- 

granulomatous layer and an outer scarified layer. The formation of LIMs is a 

result of many contributing factors. The friction between articulating surfaces 

results in wear debris which migrates to the implant bone interface. 

Macrophages act to encapsulate the wear debris and stimulate osteoclasts, 

giving rise to bone resorption and, thus, to loss of osseointegration and 

stability. The loss of stability leads to macromotion and the increase in the 

production of wear debris and hence the increase of the rate at which the 

LIM is formed. The wear debris is commonly from the polyethylene 

acetabular cup and also to a lesser extent from the degradation of the

2



PMMA cement in cemented prostheses. Other factors which are known to 

contribute to loosening are the mismatch of stiffness between bone and the 

implant materials and misalignment of the prostheses during implantation. 

The heat of polymerisation for the PMMA cement can cause necrosis of 

hard and soft bony tissues, and the presence of monomeric 

methylmethacrylate as well as N,N-dimethyl-toluidine would be expected to 

result in a functionally adverse interfacial membrane. The combination of 

these problems and the degradation of the cement after prolonged periods 

has lead to the development of the cementless prostheses [4],

Uncemented fixation is concerned with the close contact of the bone to the 

implant surface. It is essentially dependent on bone being able to form 

around the implant and maintain the bond. This has led to the study of the 

interface between bone and either an inert porous surface which allows 

bony ingrowth or a bioactive coating such as hydroxyapatite which promotes 

bony ingrowth [5].

The use of a bioactive coating is not confined to hip replacements; these 

coatings are used in other prostheses and dental implants [6]. 

Hydroxyapatite is used as a bone filler to bridge large breaks in bones and 

reconstructive surgery, research has also been carried out on impregnating 

hydroxyapatite with drugs to prevent infection and promote bone growth [7].
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1.1 History of prosthetic devices.

Materials have been used as orthopaedic implants for many years. First 

attempts at a hip replacement were by Gluck in 1891, which involved gluing 

an ivory ball and socket to the bone. Modern hip replacement began in 

1957, when Charnley designed his artificial hip joint consisting of a stainless- 

steel sphere articulating in a socket, or cup, made from PTFE. The stem and 

cup were fixed in position using an acrylic cement, which was a major break 

through in orthopaedic surgery. After initially good results he found that the 

PTFE cup was disintegrating due to the body environment accelerating 

wear. Charnley tested a wide range of materials using a machine he devised 

that would simulate the wear of the component over many years of use. He 

found that a high molecular weight polyethylene was best suited for use as 

the cup and developed the first acceptable prosthesis.

John Scales was also working on a total hip replacement at the same time 

as Charnley. His contribution to overcoming the wear and friction of an 

artificial hip joint was to give them a metal stem and a small ball in a 

polyethylene socket, a variation on Charnley’s design. Using the acrylic 

cement the modified Charnley prosthesis is the mainstay of today's artificial 

hip replacements. [2]
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1.2 Biomedical Materials

A definition of a biomaterial is given by D.F.Williams.[6]

"Biomaterials are those materials which come into intimate and sustained 

contact with tissues of the body, generally being implanted within the 

tissues. They may be distinguished from other materials in that they possess 

a combination of properties, including chemical, physical, and biological, that 

render them safe, effective and reliable for use within a physiological 

environment."

This definition gives a broad outline of the properties required of a material 

for it to be biocompatible. It covers all materials implanted in the body, for 

example hip and knee joints, total artificial heart, replacement of the lens in 

the eye, kidney machines and pacemakers. One of the oldest examples of 

the use of materials within the body is that of sutures, the thin fibres which 

hold tissue together after injury and during repair. Although occasionally a 

metal wire will be used for this purpose, it is polymers, either natural or 

synthetic, which dominate this field.

When it comes to the repair of bone the most commonly used materials are 

metals. The advantage of using metal is that it possesses adequate strength 

and rigidity for load bearing applications and also excellent fatigue 

properties. The metals which are commonly in use are austenitic stainless
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steels, cobalt chrome and titanium alloys [3]. These alloys show a high 

strength, corrosion resistance and fatigue life compared to other engineering 

alloys. Stainless steel alloys were used in the earliest implants and showed 

good results, although failures were reported due to stress corrosion 

cracking and metallosis of surrounding tissue. The cobalt chrome alloys are 

stiffer and more stable in the body than stainless steel. The disadvantages 

of cobalt chrome are its weight, being the heaviest of the three alloys, and 

the high stiffness causes a large disruption to the stress field in the bone. 

Bone has been shown to remodel to accommodate the change in stress 

distribution with greater bone losses proximally than distally [8]. The tissue 

reaction to cobalt chrome alloys is less severe than to stainless steel but the 

metal which has proven to be the most biocompatible is titanium. The 

titanium alloy which has become the standard alloy used in prosthetics is the 

Ti-6AI-4V, BS 3531. This alloy has excellent fatigue properties and was 

originally designed for use in the aerospace industries. The combination of a 

high strength to weight ratio and excellent biocompatibility has lead to this 

alloy being used for load bearing skeletal implants. The wear properties of 

the titanium alloy are poor compared to the cobalt chrome alloy and to 

overcome this problem ceramics or cobalt chrome alloy are often attached to 

the titanium at articulating joints. An example of this is a ceramic ball 

attached to a titanium hip stem to replace the femoral head. The ceramics 

used are alumina and yitria stabilised zirconia, which are very hard and 

exhibit good toughness.
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Other materials which have been considered for skeletal replacement have 

been designed to match the stiffness of bone. An example of this is a 

composite of polyethylene filled with particles of the bioactive mineral 

hydroxyapatite, the idea is to get a material with a similar structure to bone 

that can be osseointegrated [3]. Another example is a carbon fibre 

composite structure with a similar modulus to bone, the problem with this 

material is that fragments of carbon fibre in the body trigger a macrophage 

reaction and rapidly form a LIM. This material functions well until fatigue or 

wear generates particulate debris.

1.2.1 Implant/Tissue Attachment.

The highest incidence of failure of hip and knee joint prostheses is found 

with the loosening phenomena and this is attributed to the difficulty of 

obtaining and retaining a close apposition between implant material and 

bone. The main problem is that the natural reaction of the body to a material 

in the bone is to encase the material in a soft fibrous tissue. While some 

may say this is beneficial as a resilient shock absorbing component, it is 

generally thought desirable to have direct apposition or attachment to the 

bone [5].
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There have been two approaches to improving the bone/material interface. It 

has long been assumed that direct attachment to the synthetic, 

manufactured components of joint replacements is impossible under clinical 

conditions. This has led to the vast majority of prostheses being designed for 

use with a bone cement. The cement is used not as an adhesive but to fill 

the gap between the bone and the implant making a mechanical bond. The 

cement is typically a polymethyl methacrylate (PMMA) polymer. Although 

this gives quite satisfactory results this rather brittle polymer does eventually 

break down at the bone/polymer interface with resultant loosening of the 

implant. [3]

The other approach is towards uncemented fixation and three possibilities 

are being explored in this area. The first method involves the use of 

materials with extreme inertness in the body, producing a minimal stimulus 

to inflammation and subsequent generation of a QIM. For this reason 

titanium and its alloys have been the target of much interest. It has been 

shown that titanium produces good results because of its excellent corrosion 

resistance and the body’s reaction to the metal is to encapsulate it in a thin 

fibrous layer similar to the QIM [10, 11].

The second approach is an extension of the chemical inertness principle by 

incorporating a porous surface to create a mechanical bond with the bone. If 

the porosity is the correct size and interconnecting the bone can grow into
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the voids and thus produce an anchorage. Porous surfaces have been 

created using several techniques including sintering and plasma spraying 

and although bone ingrowth has been reported into several metals, titanium 

and its alloys are reported to be the best option. There are concerns about 

the corrosion resistance of the highly increased surface area of the implant, 

the strength of the porous layer and it's attachment to the substrate, and the 

fate of the bone once it has grown into the porosity [5, 12, 13].

The third possibility moves away from metals and looks toward materials 

which play an active part in controlling the tissue response. These materials 

are generally known as 'bioactive' materials, which encourage the growth of 

bone at the interface rather than fibrous tissue. The main group of materials 

being the ceramics and glasses of calcium phosphate, with hydroxyapatite 

Caio(P0 4)6(OH)2 showing the best combination of bioactivity and in vivo 

stability [14, 15, 16]. Hydroxyapatite (HA) is essentially chemically equivalent 

to the mineral phase of the bone and may be prepared synthetically. 

Although too brittle to be used as a monolithic component the material can 

be deposited on the surface of an implant to form a coating using primarily 

plasma spraying, as well as other coating deposition techniques.

9



1.3 Hydroxyapatite.

Hydroxyapatite is used as a bone substitute for filling bone defects and as a 

coating for orthopaedic and dental implants. Commercial hydroxyapatites 

are prepared from the coral exoskeleton of the Porites Goniopora [17] or by 

synthesis [18, 19], which involves a reaction between ammonium solutions 

of compounds like ammonium phosphate and soluble calcium salts.

Monolithic components of hydroxyapatite have the characteristic properties 

of ceramic materials, a low tensile strength and low resistance against 

fatigue failure, making them unsuitable for orthopaedic applications. The 

application of a coating of bioactive hydroxyapatite to implants is attracting 

considerable interest, with emphasis on the use of plasma spraying to 

deposit the coating [20]. This combines the superior mechanical 

performance of the metal component with the excellent biological response 

to hydroxyapatite. Plasma sprayed hydroxyapatite coatings with their 

macroporous surface can also significantly improve bone ingrowth. The 

hydroxyapatite should also act as a biological barrier to reduce concerns 

over the toxic responses caused by the release of metallic ions from the 

metal substrate into the body. The strength of the hydroxyapatite coating on 

the metal substrate is at its optimum when the coating thickness is < 100(i 

m. The reason for a thin coating being more favourable than a thick coating 

is that residual stresses are higher in thicker coatings which tend to fracture 

at lower stresses when subjected to bending or shear forces [21, 22]. Since
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bone bonding to the prosthesis can be enhanced by an hydroxyapatite 

coating in the early stages after implantation, bonding at the 

coating/substrate interface becomes more crucial in the long term for 

stability of the implant. The stability can also be strongly influenced by both 

the nature of the surface and the presence of phases which can be 

dissolved and therefore influence cell behaviour [23, 24].

Much work has been done on the biocompatibility of several calcium 

phosphates using in vivo [25—>39] and in vitro [40->49] testing. The results 

show that hydroxyapatite has been found to be totally biocompatible; it 

promotes bone growth and direct apposition to bone has been reported. The 

in vivo stability of bioactive materials has been investigated and the results 

show crystalline hydroxyapatite as the most stable bioactive material with 

these other bioactive materials, p-Tri Calcium Phosphate (p-TCP) > 

amorphous hydroxyapatite > a-Tri Calcium Phosphate (a-TCP) > bioactive 

glasses, listed in order of in vivo stability. The advantage of the less stable 

bioactive materials is that they tend to be more bioactive. In vitro testing has 

been used to study the cellular reaction and stability of calcium phosphates. 

These tests are designed to simulate the environment found in the body and 

expose materials to this environment without the use of animal test subjects. 

The reason behind in vitro testing is that scientists can achieve a good idea 

of how a material will react when implanted into the body. The advantage of 

in vitro testing over in vivo testing is the relatively low cost and short test

11



periods. Therefore most initial studies on a material to establish the bodies 

reaction are performed in vitro. The disadvantage of the in vitro testing is 

that it is almost impossible to simulate the body environment for a prolonged 

period. The body is constantly rejuvenating and reacting to changes in the 

environment which is almost impossible to mimic in the laboratory. Therefore 

in vitro testing can give scientists a good idea of how a material will react 

when implanted into the body although the true reaction of the body to an 

implanted material can only be established via an in vivo test. As the bodies 

environment is so complex simplified in vitro solutions have been devised 

which simulate the bodies environment. One such Simulated Body Fluid 

(SBF) is Ringers solution which has been used by many researchers and is 

also the solution used in this work. Ringers solution is used as a 

physiological buffer and has the composition shown in table 1.3.1. Ringers 

SBF contains no biological constituent and shows the corrosive resistance of 

the material and not the effect of biological agents. Ringers and other none 

biological SBF solutions have been used to study hydroxyapatite and other 

calcium phosphates. Researchers studied the dissolution of the different 

calcium phosphates and found the stability to be similar to the results 

obtained from the in vivo tests. In vitro tests to assess how bioactive, by 

measuring cellular activity, hydroxyapatite and related calcium phosphates 

have closely matched the results obtained from in vivo experiments. With 

the highly unstable calcium phosphates showing the highest cell growth 

rates. The dissolution of the material provides a local source of calcium and
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phosphorous that the body can utilise to form new bone. It has been shown 

that these less stable bioactive materials show new bone formation at an 

earlier stage than crystalline hydroxyapatite. The disadvantage of these less 

stable bioactive coatings is that the material is dissolved and eventually 

there is no coating attached to the implant, leaving the implant material 

exposed to the body environment. This can be an advantage where new 

bone needs to be encouraged to grow to fill a gap caused by a severe break 

or reconstructive facial surgery. For the coating of an orthopaedic implant it 

is generally considered to be advantageous for the coating to remain in 

contact with the implant for many years and therefore a crystalline 

hydroxyapatite coating is considered to be the ideal.

Chemical composition Quantity (g/l)

KCI 0.300

CaCI22H20 .200

NaCI 6.0

NaC3H20 2 3.1

Table 1.3.1. Chemical composition of Ringers solution.

The coating of implants with hydroxyapatite is usually carried out using the 

plasma spraying techniques. These spraying techniques involve using a high 

temperature plasma flame which reaches temperatures in excess of 

20,000°C. This high temperature can have a detrimental effect on the
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hydroxyapatite causing phase changes to occur. Another problem 

associated with the plasma spraying process is the inherent rapid cooling 

rate which can cause an amorphous phase to form on impact with the 

substrate [50->57]. Ellies et al. [51] investigated the air plasma spraying of a 

near stoichiometric and calcium deficient hydroxyapatite using an 

Argon/Hydrogen gas mixture. The current and percentage Hydrogen were 

varied and the subsequent crystallographic changes in the sprayed coating 

were measured using X-Ray diffraction (XRD). The effect of increasing the 

current and hydrogen percentage is to raise the temperature of the plasma 

flame. The results indicated that the calcium deficient hydroxyapatite powder 

produced predominantly p-TCP with «5% hydroxyapatite and as the 

hydrogen percentage and current were increased the formation of CaO rose 

to a maximum of 35%. The stoichiometric hydroxyapatite powder produced 

a >95% compositional hydroxyapatite coating at low hydrogen percentages. 

As the current and hydrogen percentage are increased the hydroxyapatite 

degrades to CaO, although there is >35% hydroxyapatite present. This work 

shows that by varying the plasma spraying parameters the composition of 

the hydroxyapatite coating can be altered. As previously stated the in vivo 

stability of the p-TCP, CaO and hydroxyapatite are different and therefore a 

coating which is stable or more bioactive can be designed by varying the 

plasma spraying parameters.
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With vacuum plasma spraying the loss of H2O can occur and this can lead to 

a transformation of hydroxyapatite into a-TCP if the temperature is > 1125°C 

and to p-TCP if the temperature < 1125°C. The transformation reaction is:

Caio(OH)2(P 0 4)6 — > 2Ca3(P04)2 + Ca4P2 0 g + H2O 

hydroxyapatite -> a-TCP + calcium oxide phosphate + water

If hydroxyapatite is heated in steam, it is stable up to 1400°C [54]. In an 

ordinary atmosphere crystalline hydroxyapatite is stable up to 1200°C, 

beyond 1200°C hydroxyapatite loses its (OH) groups gradually and 

transforms to oxyapatite. At 1450°C it dissociates into the products a-TCP, 

Ca2P207 and Ca4P20 9 [56]. If the hydroxyapatite is not totally crystalline and 

contains some amorphous calcium phosphate or other calcium phosphate 

phases the thermal stability of hydroxyapatite and the resultant phase 

transformations which occur are different to the pure crystalline 

hydroxyapatite [58]. The phase diagrams for calcium phosphate have been 

published in the American Ceramic Society Journal [59]. Figures 1.3.1 and

1.3.2 show the phase diagrams for calcium phosphate from 1200 to 1700°C, 

anhydrous and at 500mm water pressure.
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Figure 1.3.2. Phase diagram of calcium phosphate at 500mm water

pressure.[59]

The presence of water vapour has a marked effect on the phase diagram of 

calcium phosphate. Several authors have looked at the effect of heat- 

treating plasma sprayed hydroxyapatite coatings [50, 52, 53, 54, 57, 60, 61]. 

Chen et al. [50] used two particle size distributions of 1-75 and 1-125pm to 

obtain two coatings with different crystallinity. These coatings were then 

heat-treated at a temperature of 600°C for either 1 or 10 hours. The results 

showed that the original crystallinity of the coatings which ranged between 

23-30%, by XRD measurement, was increased by «5% after the 1 hour 

heat-treatment and «15% after the 10 hour heat-treatment. Zyman and
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Weng et al. [57, 60] also used a heat-treatment temperature of 630°C; they 

found a similar result to Chen in that the heat-treatment caused 

crystallisation of the amorphous phase in the as-sprayed hydroxyapatite 

coating. When the as-sprayed coatings and the heat-treated coatings were 

tested in an acidic solution, 0.15M lactic acid at 25°C, for a short period the 

authors observed efflorescent dicalcium phosphate dihydrate crystals on the 

surface of the as-sprayed coating and very little change on the heat-treated 

coating. The crystals were attributed to the dissolution and recrystallisation 

of the amorphous phase. Fillaggi et al. [52] and Ji et al. [53] heat-treated a 

plasma sprayed hydroxyapatite coating on a titanium substrate under 

vacuum at 960 and 950°C respectively. Fillaggi investigated the effect of the 

heat-treatment on fracture toughness and tensile bond strength, the heat- 

treatment showed promise by increasing the bond strength. At the interface 

between the titanium and the hydroxyapatite, there was diffusion of 

phosphorous 50nm into the titanium and a higher Ca/P ratio in the coating 

near the interface. The diffusion of phosphorous was also detected by Ji and 

by using transmission electron microscopy a titanium phosphide (Ti3P) 

phase was identified at the titanium/hydroxyapatite interface. An increase in 

mechanical strength, reported by Fillaggi, can be attributed to the formation 

of this chemical bond. Fillaggi also found that the heat-treated coating 

spontaneously debonded from the substrate if the sample was left in the 

laboratory atmosphere. This phenomena was attributed to either relief of the 

compressive residual forces at the interface, or tensile residual stresses
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being built up due to volumetric changes associated with the transformation 

at the interface. This heat-treatment also caused minor degradation of the 

hydroxyapatite coating with the formation of a-TCP, (3-TCP [53] and tetra 

calcium phosphate [52]. Zyman et al. heat-treated hydroxyapatite coatings 

between the temperatures of 100-1000°C. The results showed that 

crystallisation of the amorphous phase started to occur at 630°C and the 

hydroxyapatite transformed into other caicium phosphate phase (a-TCP, p- 

TCP and tetra calcium monoxide diphosphate) from 800°C. As the 

temperature or heat-treatment time increases the quantity of these other 

calcium phosphate phases increases and that of the hydroxyapatite 

decreases.

1.4 Thermal Spraying techniques.

There are several types of thermal spraying process all of which use a 

similar principle. A high temperature, high gas velocity flame is used to melt 

and accelerate powder particles towards a substrate and on impact they are 

cooled rapidly and adhere to the substrate to form a coating. This is a line of 

sight overlay process in which relatively thick coatings can be applied due to 

the rapid deposition rates achievable. Thermal spraying provides a near net 

shape production method for thin film ceramics and coatings [62].
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1.4.1 Air Plasma spraying.

The air and vacuum plasma spraying processes involve initiating a high 

intensity arc between a rod shaped cathode and a nozzle shaped water 

cooled anode (figure 1.4.1). Gas is then introduced alongside this cathode 

either axially or with an additional swirl component, which improves arc 

stability in the vicinity of the cathode and rotates the root of the arc, reducing 

anode erosion. The gas is heated to plasma temperatures by the arc and 

emerges from the (anode) nozzle as a plasma jet flame. The velocity of the 

gas is usually high enough to produce a highly turbulent jet with a visible 

length of a few centimetres. The maximum temperature depends on the 

design and operating parameters, i.e., arc current, mass flow rate, plasma 

velocity, operating voltage and type of gas used. The gases mainly used are 

argon and mixtures of argon and other noble or molecular gases 

(He,H2,N2,etc.). The effect of adding these gases to argon is to drastically 

increase the enthalpy of the plasma, affecting the arc voltage and the 

plasma "power", which is important for complete particle melting (figure 

1.4.2) [63],
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Figure 1.4.1. Schematic of a plasma torch
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Figure 1.4.2. Evolution along their mean trajectory of the mean surface 

temperature of Z r0 2 + 8 wt% Y2 O 3 particles injected in Ar (75slm) - H2 

(15slm) plasma jet at 31 kW or in an Ar (40slm) - Fie (60slm) jet at 23.4kW. 

[63]

Particle melting is a consequence of ionised and dissociated gas 

recombining on the particle surface and releasing considerable energy. The

21



plasma velocity is governed by the nozzle selected and the flow rate of the 

plasma gases. A high flow rate produces a high plasma velocity which gives 

a higher power or density of plasma. This also results in the powder particle 

having less dwell time in the plasma, which could result in the particle not 

completely melting and giving a low density coating. If the flow rate is too 

slow the density of the plasma may not be high enough to cause sufficient 

melting of the particle and again produce a low density coating.

The particle size and distribution is also important as these parameters 

determine the extent to which melting may occur. If particles are too big only 

the surface may melt, while if too small they may vaporise. Too wide a 

distribution will result in a fraction of the particles either vaporising or not 

melting.

The powder is suspended in a non reactive carrier gas and can be injected 

into the plasma jet either before or after it leaves the nozzle. The particles 

are melted and accelerated towards the substrate, both flow velocity and 

plasma temperature vary with distance from the nozzle as in Figure 1.4.3 

and 1.4.4 [63, 64]. The molten particles impinge on the surface of the 

substrate, producing a dense, layered coating of fused splattered powder 

droplets. The morphology of the flattened particle and hence the properties 

of the coating, are dependent on the velocity and temperature of the particle 

upon impact with the surface, because the wetting and flow characteristics 

of the droplets influence porosity. The flow and solidification of molten
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particles upon the substrate is subject to interactions between heat transfer 

and crystal growth.
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Figure. 1.4.3. Evolution along their mean trajectory of the mean velocity of 

Z r0 2 + 8wt% Y20 3 particles injected in Ar (75slm) - H2 (15slm) plasma jet at 

31 kW or in an Ar (40slm) - He (60slm) jet at 23.4kW. [63]
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Figure 1.4.4. Plasma temperature distribution in a controlled atmosphere 

chamber. Pressure 105Pa; l=450A; Ar=45slm; H2=15slm.[64]
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The main difference between vacuum and air plasma spraying is that 

vacuum plasma spraying is performed at a reduced pressure. This has 

several advantages over air plasma spraying:

(i) The plasma flame is longer giving more time for particles to melt.

(ii) Particles which are susceptible to oxidation can be sprayed without 

oxidising using this technique.

(iii) The velocity of the particles is increased.

The result of combining these three advantages is that a more dense, 

homogeneous coating can be produced, but the cost is significantly higher 

and it is not suitable for spraying all powders, especially volatile powders. 

Both air plasma spray (APS) and vacuum plasma spray (VPS) coating 

processes have been widely used for producing hydroxyapatite coatings. 

The VPS process produces a more dense coating than the APS process, 

but both processes suffer from phase changes of the hydroxyapatite during 

plasma spraying. This can be detrimental to the coating as it can be 

absorbed more rapidly when in the body. The coating is applied for several 

reasons:

• To provide a bioactive surface for rapid bone apposition.

• To shield the metal from environmental attack and prevent metal ion 

release.

• To be stable and provide a good fixation to the bone over many years. 

The first aim has been achieved with APS and VPS, it is the other two aims 

where improvements could be made. This would require increasing the
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density and homogeneity of the coating and with the inherently high 

temperature of APS and VPS the homogeneity could be difficult to achieve 

due to phase changes of the hydroxyapatite. This is where the new high 

velocity Continuous Detonation System (CDS) may have an advantage over 

plasma techniques.

1.4.3 High Velocity Oxy-Fuel Thermal Spraying

CDS is the Plasma Technik variation of the high velocity oxy fuel (HVOF) 

process. CDS is a thermal spray process in which the chemical reaction of a 

fuel gas with oxygen is converted into thermal and kinetic energy for heating 

and accelerating coating materials. The fuel gases used are propane (C3H8) 

and propylene (C3H6), depending on the local supply conditions. A 

supersonic gas jet is produced with velocities up to 1500m/sec using a 

specially developed gun shown in fig. 1.4.4. The supersonic gas jet is 

stabilised in the reaction zone of the CDS gun using continuously controlled 

fuel gas and oxygen flows. The powder particles are heated uniformly and 

accelerated to a very high velocity (350 - 1000 m/s) in a gas jet at 

approximately 2500°C. The CDS process can be controlled to give varied 

coating conditions by adjusting the oxygen to fuel gas ratio and also the gas 

speed passing through the gun. The coating builds up in a similar way to the 

plasma spraying techniques. The diamonds which can be seen in the gas jet 

(fig. 1.4.4) are caused by gas speeds exceeding the speed of sound and 

these are known as shock diamonds [65, 66, 67].
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Figure 1.4.4. Cross section of the CDS-100 gun.

The very high kinetic energy of the powder particles results in a CDS coating 

with the following properties:

• very high adhesion to the substrate.

• very high interparticle cohesion.

• minimal porosity.

The high velocity of the jet ensures a short particle dwell time in the jet. This 

gives a relatively shorter and lower temperature thermal cycle compared to 

plasma spraying techniques. This makes the CDS process especially useful 

for spraying materials which detrimentally change during high temperature 

plasma spraying. CDS is not suitable for materials with high melting points 

and those which require an inert atmosphere when spraying. Figure 1.4.5 

shows the thermal/kinetic energy diagram comparing APS, VPS, CDS and 

flame spraying.

It has been reported that since hydroxyapatite is unstable above 1300°C 

phase changes have occurred as a result of plasma spraying [54], The
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phases usually produced are (3-TCP and CaO, which are less stable in the 

body than hydroxyapatite and could lead to the coating spalling off. The 

lower temperature of the CDS process therefore makes it attractive as a 

process for spraying hydroxyapatite coatings.

Temperature

i
Thermal / Kinetic energy diagram

c APS VPS

(_E5 T )

( f l a m e )

Velocity

Figure 1.4.5. Thermal / kinetic energy diagram comparing 4 coating 

processes.

The HVOF process has been used to produce hydroxyapatite coatings in 

Japan by Hitoshi Oguchi et al. [68, 69, 70], They produced a high density 

coating with good adhesive strength to the substrate (18.2MPa) and showed 

by in vivo testing that the coating was biologically compatible. Terashima et 

al. [71] found similar results when using the Jet-Kot ll(Cabot Co. Ltd)
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spraying process, which is a HVOF thermal spraying gun, to produce a 

dental implant. They found the coating to have a good adhesion with the 

substrate and in vivo studies were very positive. Wolke et al. [72] compared 

hydroxyapatite coatings prepared by a HVOF, APS and VPS techniques. 

They used an hydroxyapatite powder with a particle size distribution of 1- 

125pm for all three spraying techniques. They showed that the VPS had the 

highest adhesion strength and the APS was the most dense. This was 

probably due more melting of the powder particles during spraying, 

compared to the HVOF process, allowing more flow and a closer contact 

with the substrate. It was apparent more melting had occurred in these two 

coatings from the XRD and the scanning electron microscope examination. 

The HVOF coating was the most crystalline and showed the least 

degradation from the spraying powder. This was probably due to the lower 

temperature of the process and this coating was also the most stable when 

subjected to in vitro testing.

1.5 Coating analysis techniques.

To characterise the hydroxyapatite coatings the two main techniques which 

are in common use are optical and Scanning Electron Microscopy (SEM) 

and X-Ray Diffraction (XRD). Other techniques which are used include Infra- 

Red spectroscopy (IR) [75, 76, 77, 78], Thermo-Gravimetric Analysis (TGA)
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[54, 56], X-ray Photon Spectroscopy (XPS) [78, 79] and electron microscope 

elemental characterisation techniques [29, 80, 81, 82].

Optical microscopy can be used to examine the coating morphology by 

looking at polished cross-sections. The coating thickness and porosity can 

be calculated using the optical microscope techniques. The surface of the 

coating is often too rough and translucent for an optical microscope to obtain 

sufficient resolution for a clear image. By staining the bone cells in vivo 

samples can be examined in cross-section to examine the cellular reaction 

to implants, and in the case of hydroxyapatite calculate the percentage of 

bone in contact with the coating [10, 13, 20, 21, 23, 26, 27, 28, 31, 33, 34, 

37, 83 - 87].

SEM has the advantage of a larger depth of field than optical microscopy 

therefore the surface of thermal sprayed coatings can be characterised. By 

examining the coating surface the extent of particle melting on spraying can 

be estimated and surface cracks and porosity measured. After in vivo or in 

vitro testing the coating surface can be analysed to examine new bone 

formation and to see where coating dissolution has occurred [29, 31, 32, 50, 

51, 53, 57, 73, 74, 81, 82, 88-93]. SEM and Transmission Electron 

Microscopy (TEM) can also be used to characterise the interface between 

the hydroxyapatite and the substrate. In one study TEM was used to show a 

TiP3 phase at the interface of the hydroxyapatite and titanium [53]. Other
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electron microscope analysis techniques can be used to calculate the 

calcium phosphorous ratio and look at the diffusion of elements across the 

interface between the hydroxyapatite and the substrate.

XRD is the main tool for analysing the purity of hydroxyapatite coatings. 

Using this technique the crystallinity, the quantity of other phases present 

and the residual stress in the coating can be calculated. By comparing the 

XRD diffractograms obtained from the powders and coatings with ASTM 

standard diffraction files the purity and phase composition can be 

determined. The lattice parameters and crystal groups for hydroxyapatite 

and other calcium phosphates are shown in table 1.5.1. XRD has been used 

by many authors to compare the powder used for spraying with the resultant 

coating. The effect of heat-treatment and in vitro testing has also been 

studied [18, 24, ,29, 42, 49, 50, 51, 53, 56, 57, 73, 75, 76, 81, 82, 90, 94- 

98]. Residual stress in thermal sprayed coatings is usually measured by a 

mechanical deformation process, for example deformation of the substrate 

or coating during spraying [99-103]. XRD can be used to measure the 

residual stress in coatings by calculating the strain at an atomic level [104]. 

This is a non-destructive technique and can be applied to coatings on thick 

substrates where the deformation due to spraying is too small to measure.

Acoustic emission analysis measures the energy emitted as noise when a 

material is stressed. The energy is detected by an acoustic emission 

transducer which is attached to the sample. The energy detected is caused
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by cracks propagating through the sample or some other failure mechanism. 

Acoustic emission analysis is a technique which has been employed by the 

composite scientist to measure failure mechanisms due to fatigue or large 

deformation of composites. The reason for using this technique for 

composites is that the two types of fibre failure possible in composites, fibre 

pullout and fibre fracture, produce very different acoustic emission signals. 

The pull out of a fibre produces a large number of low energy event, 

whereas fibre fracture produces a single high energy event [105]. This 

technique has also been employed to analyse the failure mechanism of 

plasma sprayed coatings [106], This work shows that large cracks produced 

high energy acoustic emission events and cracks which branched through 

the coating and ran along the interface produced low energy events. This 

technique is useful to predict the failure mode of the coating, which may be 

important when assessing whether an hydroxyapatite coating will perform 

well in the body under fatigue loading conditions.

Name Crystal
Structure

ASTM 
card No.

Lattice Parameters d (A)

a b c
Hydroxyapatite.
Ca5(P 0 4)3(0H)

Hexagonal 9-432 9.418 9.418 6.884

p-Tri Calcium Phosphate
p-Ca3(P04)2

Rhombohedral 9-169 10.429 10.429 37.38

oc-Tri Calcium Phosphate
a-Ca3(P 0 4)2

Orthorhombic 9-348 15.22 20.71 9.109

Calcium Oxide Phosphate 
Ca40 (P 0 4)2

Monoclinic 24-1137 7.018 11.980 9.469

Calcium Oxide 
CaO

Cubic 37-1497 4.81 4.81 4.81

Table 1.5.1. ASTM data for several calcium phosphate materials.
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2.0 Experimental techniques.

2.1 Powder Characterisation.

The three hydroxyapatite powders used to produce the hydroxyapatite 

coatings were:

(1 ) Powder HA044, supplied by Sultzer for use with the CDS process.

( 2 )  Powder Amdry 6020, supplied by Sultzer for use with the APS 

process.

(3) Powder XPT W 601, supplied by Sultzer for use with the VPS 

process.

2.1.1 X-ray diffraction.

The Phillips PW 1730/10 4kW X-ray generator, using Philips PC-APD 

diffraction software for data collection and analysis was used to analyse the 

hydroxyapatite powders. Standard ASTM powder analysis techniques were 

used.

The p-TCP percentage was calculated using the I100 peaks for p-TCP and 

hydroxyapatite in the following formula.

rP-TCP

%P -  TCP = cp x 100%
-MOO +  M O O

7,oo = Intensity of maximum hydroxyapatite peak.

I\qqCP = Intensity of maximum p-TCP peak.
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2.1.2 Particle size analysis.

The particle size distribution was measured for the APS, VPS and CDS 

hydroxyapatite powders using the Malvern Instruments System 3601 particle 

size analyser. This instrument uses a laser diffraction technique to 

determine the particle size distribution. The powders were dispersed in 

distilled water using the ultrasonic cell strirrers. The suspension was passed 

through a cell in the path of the laser and the data collected and analysed by 

Malvern Instruments computer software.

2.1.3 Scanning electron microscopy.

The hydroxyapatite powders were prepared for electron microscopy, by 

sprinkling the powder on to a conductive adhesive applied to an aluminium 

dish; the excess powder was removed by shaking. The samples were 

coated with carbon, to prevent charging of the powder particles during SEM 

examination. The Jeol 6310 scanning microscope was used for examination 

of particle size and morphology. The accelerating voltage used was either 10 

or 15kV.

2.1.4 Energy dispersive X-ray analysis.

EDX analysis was carried out on the hydroxyapatite powders. The SEM 

samples prepared in section 2.1.3 were used for analysis. The Joel 6310 

scanning microscope was used with the Link Analytical AN-10000 EDX 

system to obtain the EDX pattern for the powders. The software was used to

33



calculate the integrated intensities of the calcium and phosphorous peaks to 

obtain a calcium to phosphorous ratio.

2.2 Thermal Spraying of Hydroxyapatite coatings.

In all cases a 2mm thick sheet of Ti-6AI-4V alloy, BS3531, was used as the 

substrate.

2.2.1 Air Plasma Spraying.

The air plasma sprayed hydroxyapatite coatings were manufactured at 

Plasma - Technik Ltd, Newport. The titanium alloy sheet was cut into oblong 

samples measuring 75x20mm. To prepare the surface for plasma spraying 

the samples were grit blasted, using a 60 grit alumina at 80psi. Both sides of 

each sample were grit blasted to prevent distortion of the substrate caused 

by the grit blasting process. The samples were plasma sprayed in batches of 

at least 5 samples. The robot controlling the plasma spray gun was 

programmed to do a standard raster pattern. The spraying parameters used 

are shown in table 2.1. Six sets of parameters were produced with the aim of 

showing the standard conditions used and the extremes of over and under 

heating the powder by varying the gas ratio and applied current.
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Torch: APS F4 Powder: Amdry 6020 Nozzle: 6mm

Test 1 2 3 4 5 6

Ar (slpm) 20 20 30 30 20 25

N2 (slpm) 15 27 13 0 0 0

He (slpm) 0 0 0 60 80 50

Current (amps) 450 550 400 700 800 650

Voltage (volts) 69 68 40 52 53 49

Distance (mm) 75 75 75 115 115 115

No. Cycles 2 2 2 8 4 10

Thickness

(urn)

100 200 100 85 150 150

(SLPM: Standard Litres Perm Minute)

Table 2.1. Spraying parameters for air plasma sprayed coatings.

2.2.3 Vacuum Plasma Spraying.

The vacuum plasma sprayed (VPS) hydroxyapatite coatings were sprayed at 

Plasma - Technique AG, Switzerland. The substrate size and surface 

preparation was the same as section 2.2.2. The spraying parameters used 

are specified in table 2.2.
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Powder XPT W 601 Chamber pressure 100 mbar

Distance 275 mm Powder feed rate 18 g/min

Gas mixture Ar: 15 slpm H2: 4 slpm He: 30 slpm

Current 600 A

(SLPM: Standard Litres Perm Minute)

Table 2.2. Spraying parameters for vacuum plasma sprayed coatings.

2.2.4. High Velocity Oxy-Fuel Thermal Spraying.

The high Velocity Oxy-Fuel (HVOF) hydroxyapatite coatings were sprayed at 

Plasma - Technik, Newport using the Continuous Detonation System (CDS). 

Substrate size and preparation was the same as for section 2.2.2. Two sets 

of spraying parameters were used and these are shown in table 2.3 and 2.4.

Torch: CDS Material: HA044

Barrel: 3 inch Oxygen nozzle: standard

Powder injector: 2,0 Fuel nozzle: standard

Carrier gas: 20 slpm, N2 Powder feed setting 30

Powder spreading NL Suction piece: NL

Stirrer speed: «90 rpm Powder feed rate «6 g/min

Substrate cooling: Air, 2x90°

(SLPM: Standard Litres Perm Minute)

Table 2.3. CDS set up parameters.

36



Translation programme:

Surface speed (m/min): 30 Step (mm/pass) 4.5

Spraying Parameters Set 1 Set 2

Coating Distance, angle (mm : °) 250 : 90 225 : 90

Fuel gas C3H8 (slpm) 50 50

Oxygen (slpm) 200 250

No. of passes 6 6

Coating Thickness (nm) 160 140

(SLPM: Standard Litres Perm Minute)

Table 2.4. CDS spraying parameters.

2.3 Hydroxyapatite coating characterisation.

2.3.1 X-ray diffraction.

A Philips PW 1730/10 4kW X-ray generator, using Philips PC-APD 

diffraction software for data collection and analysis was used to analyse the 

coatings from all three plasma spraying processes. The coating thickness 

was sufficient to prevent penetration into the titanium substrate and hence 

no interference was caused by the substrate.
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2.3.1.1. Crystallinity of Hydroxyapatite coatings.

The Philips PW 1730/10 4kW X-ray generator, using Philips PC-APD 

diffraction software for data collection and analysis was used to obtain the 

XRD patterns for all thermal sprayed coatings. The XRD pattern was stored 

as an ASCI data file and imported into an Microsoft Excel spreadsheet 

where the XRD pattern could be generated as a digital image. This image 

was then transferred to the image analysis software package OPTIMAS and 

the total area under the peaks (area A) of the XRD pattern was calculated. 

The peaks were then manually erased from the background and amorphous 

hump in the pattern, and the area of the amorphous hump (area B) 

measured. The two areas can be seen in figure 2.1.
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Figure 2.1. XRD pattern showing areas used for % crystallinity calculation.
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A simple rule of mixtures formula can be applied to calculate the percentage 

of crystalline phase present in the coating, as shown in equation 2.3.1.

A — B%Crystallinity =  x 100% Equation 2.3.1.
A

2.3.1.2. Residual stress in hydroxyapatite coatings.

The Philips PW 1730/10 4kW X-ray generator, with Philips PC-APD 

diffraction software for data collection and analysis was used to obtain the 

XRD patterns for all thermal sprayed coatings. The residual stress in a 

coating can be calculated from the accurately measured position of a 

relevant peak in the XRD pattern. Using the PC-APD software for analysing 

XRD patterns the position of a peak can be accurately measured. It is 

important to select an appropriate peak, with a reasonable relative intensity 

to the l-ioo hydroxyapatite peak and simple hkl indices so that the calculations 

are not too complex. The peaks selected were for the 300 and 004 planes, 

which give the stress in the two major planes of the hydroxyapatite structure. 

Since the hydroxyapatite structure is hexagonal,

a = b *  c, the a and c lattice parameters can be calculated from the 

relationship

1 4 r h2 + M  + /n
V a 2

I2
+ —  Equation 2.3.2

d 2 3

using the plane 300 this simplifies to

a = yl\2d2 = 2y[3d Equation 2.3.3
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and similarly for the plane 004

c = V l6d2 = 4d Equation 2.3.4 

where d is the plane spacing calculated from the XRD pattern using Braggs’ 

law, which rearranges to

Xd -   Equation 2.3.5
SinO

where X is the wavelength of the incident beam and 0 is the measured 

diffraction angle.

Once the lattice parameters have been determined for the powder and the 

coatings, the lattice strain can be worked out and by using a suitable 

modulus for hydroxyapatite the residual stress in the coating can be 

calculated. The hydroxyapatite powders used for spraying the coatings were 

used as standards for the residual stress calculations.

2.3.2 Optical microscopy.

A Zeiss ICM 405 optical microscope using normal reflective light was 

employed to examine the cross-section of the coatings, as prepared in 

section 2.3.2.1. For increased contrast, differential interference contrast 

(DIC) was used to view the samples (See Appendix 1).

2.3.2.1 Sample preparation.

A cross-section of the coating was prepared by impregnating with a low

viscosity epoxy resin under a vacuum of 500mmHg to extract any air trapped

in the coating and then pressuring the resin into the pores and cracks of the
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coating. The pressure was maintained while the resin was curing. This 

procedure was followed to prevent the coating from cracking and flaking 

when cut into suitably sized pieces for microscopic analysis. The samples 

were polished using a Buehler Motopol 12 automatic polishing and grinding 

machine. Two polishing protocols have been used with the aim of 

highlighting different morphological characteristics of the coating, the 

sequence of grinding and polishing steps for both protocols are shown in 

table 2.5.

Polishing

route

Surface & abrasive Wheel 

speed (rpm)

Sample

rotation

Force per 

sample (lbs)

Duration

(mins)

S & D 240 grit SiC 150 comp 5 2

S & D Metlap 4, 9pm ♦ oil 

based

25 contra 5 6

S & D Ultrapol, 3pm ♦ oil 

based

200 comp 5 4

S & D Texmet 1, 1pm ♦ oil 

based

240 comp 5 4

D RAM cloth, %pm ♦ 

oil based

150 comp 5 15

S Texmet 1, coll. silica 

0.05pm

100 comp 5 10

S = Colloidal Silica Polishing route, D = %pm diamond polishing route, ♦ = diamond, comp = same rotation of 

polishing wheel, contra = opposite to rotation of polishing wheel.

Table 2.5. Polishing procedure for plasma sprayed hydroxyapatite 

coatings.
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2.3.2.2. Porosity measurements.

The percentage porosity of the hydroxyapatite coatings was measured by 

looking at the polished cross-section of the coatings, prepared in section 

2.3.2.1, using an optical microscope. A video camera connected to the 

microscope provided a digital image which was processed with a computer 

based image analyser (Data Cell Optimas image processing software in 

windows) and the percentage porosity measured for all the hydroxyapatite 

coatings.

2.3.2.3. Coating thickness measurements.

The image analysis system used in the porosity measurements (2.3.2.2) was 

also used to measure the hydroxyapatite coating thickness.

2.3.3. Scanning electron microscopy.

A Joel 6310 scanning electron microscope was used for examining the 

cross-section, as prepared in section 2.3.2.1, and surface of the 

hydroxyapatite coatings. The cross-sections and surfaces were coated with 

either gold or carbon to prevent charging of the samples during electron 

microscope examination.
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2.3.4 Surface roughness measurement.

The surface roughness characteristics of all the HA coatings was measured 

using a computer controlled Talysurf. The diamond stylus was moved over 

the HA surface a distance of 5mm and the computer software calculated the 

roughness measurement parameters.

2.4 Shear testing of HA coatings.

The test coupons prepared in section 2.2 were used for testing the shear 

strength of the coatings. A simple lap shear test was used to measure the 

shear strength of the coatings. The test samples were made by gluing a 

similar sized sample to the hydroxyapatite coating as shown in figure 2.4.1. 

A clamping jig was employed to align the samples and compress the 

adhesive. The adhesive was a heat-curing structural adhesive, Redux 312, 

manufactured by Ciba-Geigy Plastics.
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HA coated Ti

Grit blasted Ti

Thermosetting adhesive

Figure 2.4.1. Shear test sample.

The samples were tested using an Instron 1195 tensometer. The extension 

rate was set at 1mm/min. The force at failure was measured and used to 

calculate the shear strength of the coating as shown in equation 2.4.1.

F
shear strength = — Equation 2.4.1

A

F = Force at failure, A = Contact area of lap joint.

A minimum of 5 samples were tested for all coating types and the average 

shear strength was calculated.

2.5 Tensile testing of hydroxyapatite coatings.

The tensile bond strength of the hydroxyapatite coatings was measured 

using a variation of ASTM C633. The hydroxyapatite coating was sprayed
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onto the end of a titanium cylinder 25mm in diameter. The spraying surface 

was prepared by degreasing and grit blasting, as for previously sprayed 

samples. The spraying parameters used are shown in section 2.2. The 

tensile strength samples were prepared by gluing a titanium cylinder with a 

hydroxyapatite coating to an uncoated grit blasted cylinder, as shown in 

figure 2.5.1. A clamping jig was used to align the samples and compress the 

adhesive. The adhesive was a structural heat curing adhesive, Redux 312, 

manufactured by Ciba-Geigy. The tensile strength samples were tested 

using an Instron 1195 tensometer, the strain rate was set at 1mm/min. A 

minimum of 10 samples were tested for each set of spraying parameters 

and the force at failure was used to calculate the average tensile strength.
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Figure 2.5.1 Tensile strength test sample.

2.6 Acoustic emission of hydroxyapatite coatings.

The hydroxyapatite coatings prepared in section 2.2 were used for the 

acoustic emission test. The hydroxyapatite coated coupons were bent using 

a four point bend test, with the acoustic emission transducer in contact with 

the coating, as shown in figure 2.6.1. The rate of deflection was set at 

1mm/min. The ends of the hydroxyapatite test coupons were cleaned of
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hydroxyapatite coating to prevent noise being generated from the coating 

abrading the bars of the four point bend test rig.

The transducer was amplified by a 60dB preamplifier which had a frequency 

range of 100kHz to 1mhz. A Marandy MR1004 unit was used to collect the 

acoustic emission data. This system is a 25 channel amplitude sorter and 

ringdown counter which is used in association with an IBM compatible PC. 

The threshold on the MR1004 is variable but has a minimum value of 10mV 

at channel 1 and a maximum threshold of 10V at channel 26. Channels 1 to 

25 are 2.4dB wide and events of amplitude greater than 10V are recorded 

as over range in channel 26.

PTFE
Coated
bar

HA coating

Acoustic Emission Transducer

I

i >

*>  <®> t
A A T

FORCE

Ti substrate

2 0 m m 30 m m
^  W

2 0 m m

Figure 2.6.1 Acoustic emission test set-up.
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2.7 Heat-treatment of hydroxyapatite coatings.

The hydroxyapatite coated test coupons manufactured in section 2.2 were 

subjected to a heat-treatment process. A carbolite muffle furnace with an air 

atmosphere was preheated to 600°C. The hydroxyapatite coated test 

coupon was placed in the furnace for 30 minutes and then removed to cool 

in air. Two samples from each set of spraying parameters were heat-treated 

at this and all following heat-treatment temperatures. The furnace was then 

preheated to 700, 800 and 900°C and the heat-treatment repeated with 

previously unheat-treated test coupons.

These heat-treated hydroxyapatite coatings were then characterised using 

the procedures described in section 2.3.

2.8 In vitro testing of hydroxyapatite coatings.

The hydroxyapatite coatings prepared in section 2.2 were tested for in vitro 

stability by soaking in Ringers in vitro solution at pH 7.2 and 4.5. The pH of 

the Ringers solution was maintained constant by buffering with 1M 

hydrochloric acid or 1M tri(hydroxymethyl)aminomethane. The temperature 

was kept stable at 37.7°C by using a circulatory heater. For each set of 

spraying parameters a test coupon was soaked in the Ringers solution for 1, 

2 and 4 weeks at both pHs. The invitro tested hydroxyapatite coatings were 

then characterised using the procedures described in section 2.3.
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3.0 Results.

3.1 Powder Characterisation.

3.1.1 X-Ray Diffraction.

Figure 3.1.1 shows the XRD pattern obtained from powder Amdry 6020. The 

pattern was analysed for relevant peaks using the PC-APD software and 

was found to be characteristic of hydroxyapatite according to ASTM powder 

diffraction files. There were no peaks other than those corresponding to 

hydroxyapatite in this pattern.

Figure 3.1.2 shows the XRD pattern obtained from powder HA044. The 

pattern was analysed for relevant peaks using the PC-APD software and 

was found to be characteristic of hydroxyapatite according to ASTM powder 

diffraction files. A peak was detected at 20=31.05°, which corresponds to the 

strongest XRD line of p-TCP. Using the formula stated in section 2.1.1 the 

%p-TCP was calculated to be 2.32%.

Figure 3.1.3 shows the XRD pattern obtained from powder XPT W 601. The 

pattern was analysed for relevant peaks using the PC-APD software and 

was found to be characteristic of hydroxyapatite according to ASTM powder 

diffraction files. There were no peaks other than those corresponding to 

hydroxyapatite in this pattern.
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3.1.2 Particle Size Analysis.

The particle size distribution for powders Amdry 6020, HA 044 and XPT W 

601 are shown in figures 3.1.4, 3.1.5 and 3.1.6 respectively.

The main characteristics of particle size distribution for the three powders 

are shown in table 3.1.1.

d (0.5) 

(pm)

d (0.1)

(pm)

d (0.9) 

(pm)

Specific surface area 

(m2/g)

Amdry 6020 128.22 59.94 240.16 0.0867

HA 044 14.09 9.07 19.25 0.4695

XPT W 601 34.31 25.32 43.18 0.1861

Table 3.1.1. Summary of particle size distribution data, 

d (0.5) = Median particle size diameter, 

d (0.1) = Particle size of the 10% volume distribution cut off. 

d (0.9) = Particle size of the 90% volume distribution cut off.

3.1.3 Scanning Electron Microscopy.

Figure 3.1.7 shows a typical selection of particles from powder Amdry 6020. 

The particles range in size from 50 to 150pm and are very angular in 

appearance. A single particle of powder Amdry 6020 can be seen in figure

3.1.8. The particle looks as though it is an agglomerate of smaller particles 1 

to 2pm in size.
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A typical selection of particles from powder HA 044 are shown in figure

3.1.9. The powder appears to consist of two particle morphologies, a 

spherical particle and rectangular particle. The distribution of spherical and 

rectangular particles seems to be equal and both these particles appear to 

be of similar size ranging from 5 to 20pm. Figure 3.1.10 shows a single 

rectangular particle from powder HA 044. This particle looks like it is a dense 

agglomerate of smaller particles of size less than 1pm. The spherical particle 

is shown in figure 3.1.11. The particle appears to be a porous agglomerate 

of particles less than 1pm in size with interconnecting porosity of a similar 

size.

Figure 3.1.12 shows a typical selection of particles from powder XPT W 601. 

The particles are angular in appearance and range in size from 10 to 40pm.

A single particle of XPT W 601 can be seen in figure 3.1.13. The particle 

looks dense with finer particulate debris «1 pm in size adhering to the surface 

of the particle.

3.1.4 Energy Dispersive X-ray Analysis.

EDX analysis was carried out on the hydroxyapatite powders. The SEM 

samples prepared in section 2.1.3 were used for analysis. The Joel 6310 

scanning microscope was used with the Link Analytical AN-10000 EDX 

system to obtain the EDX pattern for the powders. The computer software 

was used to calculate the percentage of calcium and phosphorous present 

in the hydroxyapatite particles. The percentage of calcium and phosphorous
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and also the ratio of calcium to phosphorous are shown in table 3.1.2 for all 

three powders.

% Calcium 

± std

% Phosphorous 

± std

Ca/P mass 

ratio ± std

Ca/P molar 

ratio ± std

Amdry 6020 41.97 ±2.96 20.99 ± 1.55 2.000 ±0.014 1.545 ±0.011

XPT W 601 39.55 ± 2.26 19.62 ±0.96 2.015 ±0.020 1.557 ±0.015

HA 044 

rectangular*

40.12 ±5.85 20.31 ± 3.06 1.976 ±0.014 1.527 ±0.011

HA 044 

spherical*

36.72 ± 3.43 18.41 ± 1.94 1.997 ±0.060 1.543 ±0.046

* Powder HA 044 consisted of two particle morphologies and the EDX results are shown for 
both particle types
Table 3.1.2. EDX analysis results of hydroxyapatite powders.

3.1.5 Discussion of Results

The XRD results for powder Amdry 6020 and XPT W 601 showed a 

crystalline hydroxyapatite which is characteristic of a powder which had been 

manufactured by a precipitation, sintering and crushing route. The SEM 

examination showed the particles of both powders to consist of smaller 

sintered particles and had an angular appearance suggesting that the 

particles were produced by crushing. Powder Amdry 6020 has been used by 

other authors and the XRD results agree strongly with the published work 

[46]. The size distribution between Amdry 6020 and XPT W 601 is different 

as the two spraying techniques require powders with different thermal 

capacities. The APS spraying process uses a hot slow plasma flame, this
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means that a particle injected into the plasma will have a relatively high dwell 

time in the flame and absorb a large quantity of energy. Therefore a powder 

which is used with the APS process requires the particles to have a 

sufficiently high thermal capacity that it does not vaporise or detrimentally 

degrade during spraying. A large particle requires more energy to be melted 

than a small particle, if the particle does not melt sufficiently for it to flow 

when impacting the substrate it will bounce off and the coating will not be 

deposited. Therefore large particles are more suitable for the APS process. 

The VPS process uses similar temperatures to APS but the plasma gas 

velocity is significantly higher, therefore the particles have a shorter dwell 

time in the plasma and absorb less energy than the APS process. This 

requires a smaller particle size distribution, so that the particles can absorb 

enough energy to melt sufficiently for a coating to be deposited. The other 

advantage of a small particle distribution is that the coatings produced tend 

to be more dense and any porosity which is present is small and less likely 

to affect the properties of the coating. The high plasma velocity of the VPS 

process also aids the production of dense coatings.

The powder HA044 used to produce the CDS HA coating showed an 

impurity of 2.3% p-TCP, from the XRD results. The powder morphology is 

different to Amdry 6020 and XPT W 601, with two distinct particle shapes. 

Both these shapes are regular and are probably manufactured using the 

spray drying or powder precipitation production techniques. Spray drying and 

precipitation preparation routes are very sensitive to changes in temperature

53



and Ca/P ratio, and these parameters will dictate the phases which form. 

The pH of the reaction solutions also needs to be controlled when the 

precipitation preparation route is being used. Both these techniques are 

susceptible to other calcium phosphate phases being produced, which 

explains the presence of the (3-TCP impurity. The particle size is smaller 

than the other two powders. The CDS process has a much lower processing 

temperature of «2500°C, as compared to the APS or VPS plasma 

temperature of «20000°C, therefore the process requires a powder particle 

with a much lower thermal capacity. The CDS process utilises the high 

velocity of the flame, exceeding Mach 4, to accelerate the particle to a high 

velocity and use this kinetic energy as well as the thermal energy to deposit 

the coating.

The EDX analysis results of the hydroxyapatite powders showed that there 

is no significant difference in the calcium to phosphorous ratio between the 

different powders. The difference in percentage of calcium and phosphorous 

detected by the EDX technique can be attributed to the different 

morphologies of the particles. Although the particles were polished (as 

described in section 2.1.3) and apparently exhibited flat surfaces for the 

EDX analysis the density of particles varied. The spherical HA 044 particles 

had a sponge like structure and therefore a low density and hence a low 

calcium and phosphorous percentage. Powder Amdry 6020 was dense with 

only a small amount of porosity and hence gave a higher calcium and 

phosphorous percentage. The difference in calcium and phosphorous
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percentages had a minimal effect on the calcium to phosphorous ratio as the 

change in density would effect the quantity of emitted X-rays from the 

calcium and phosphorous to a similar extent. For stoichiometric 

hydroxyapatite the molar calcium to phosphorous ratio is 1.66 and the mass 

ratio is 2.148. Powder HA044 contained 2.32% p-TCP which has a Ca/P 

ratio of 1.5 and would therefore cause a small drop in the overall Ca/P ratio 

to 1.656. A 0.01 change in the Ca/P ratio is not within the measurement 

accuracy of the EDX technique and therefore powder HA044 would be 

expected to have a very similar Ca/P ratio to the other hydroxyapatite 

powders. The EDX results for calcium to phosphorous ratio for the 

hydroxyapatite powders are consistently lower by «0.12 than the calculated 

stoichiometric ratio. From the XRD results the powders are >97% 

hydroxyapatite and therefore the calcium to phosphorous ratio for these 

powder would be expected to be close to the stoichoimetric ratio. The 

difference between the measured and stoichiometric calcium to 

phosphorous ratio can be attributed to a consistent error caused by the 

calibration of the system. The calibration for the elements calcium and 

phosphorous is done using calibration standards such as calcite and galium 

phosphide. The calibration error occurs due to the calcium and phosphorous 

in the calibration standards having a slightly different emitance of X-rays 

caused by a difference in the surface roughness or density of the standard 

from the powder samples. To overcome this error an hydroxyapatite 

standard would need to be used, which was unfortunately unavailable.
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Although the measured calcium to phosphorous values are probably 

incorrect the results show that there is very little difference in calcium to 

phosphorous ratio between the different powders.
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Figure 3.1.1. XRD pattern of powder Amdry 6020.
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Figure 3.1.2. XRD pattern of powder HA044.
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Figure 3.1.3. XRD pattern of powder XPT W  601.
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Figure 3.1.4. Particle size distribution for powder Amdry 6020.
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Figure 3.1.5. Particle size distribution for powder HA 044.
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Figure 3.1.6. Particle size distribution for powder XPT W  601.
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Figure 3.1.7. SEM micrograph showing a typical selection of particles from 

powder Amdry 6020, mag. x150.

Figure 3.1.8. SEM micrograph showing a single particle of powder Amdry

6020, mag. x1500.
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Figure 3.1.9. SEM micrograph showing a typical selection of particles from 

powder HA 044, mag. x1000.

Figure 3.1.10. SEM micrograph showing a single blocky particle of powder

HA 044, mag.x5500.
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Figure 3.1.11. SEM micrograph showing a spherical particle of powder HA 

044, mag x 10000.

Figure 3.112. SEM micrograph showing a typical selection of particles from

powder XPT W  601, mag. x250.
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Figure 3.1.13. SEM micrograph showing a single particle of powder XPT W 

601, mag x1800.
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3.2 Hydroxyapatite coating characterisation.

3.2.1 X-ray diffraction.

After XRD, the coatings showed a slight colour change in the area which had 

been exposed to X-rays. The colour change varied, in that for the APS and 

VPS coating the colour was a pale greyish green and for the CDS coating 

the colour was pale brown. The common features in the XRD patterns for 

the air plasma sprayed coatings were a higher and noisier background and 

lower peak intensities than the XRD pattern for the powder Amdry 6020. 

There were some differences in the XRD patterns between the different 

spraying parameters and these are stated as follows;

APS1:- (Figure 3.2.1) This pattern had a CaO peak at 20=37.28°, this 

corresponds to the l100 peak for CaO. Approximately 5% p-TCP was present 

in this coating. The peak width for the l100 hydroxyapatite peak had

increased from 0.1°, in the Amdry 6020 powder, to 0.12°.

APS2:- (Figure 3.2.2) In this pattern the l100 peaks for p-TCP and CaO can

be found. The % p-TCP can be calculated using the formula stated 

previously and this gives the value 8.4%. The peak width of 0.1° for the l100

hydroxyapatite peak is the same as the powder Amdry 6020.

APS3:- (Figure 3.2.3) There was no detectable p-TCP found in the pattern 

but some CaO was present, similar to APS1. The peak width for the l100

hydroxyapatite peak was 0.2°, which is a larger increase than in APS1. 

APS4:- (Figure 3.2.4) This coating, as well as APS5 and APS6, had a 

higher background noise than the other coatings. There was no p-TCP or 

CaO detected in the pattern. The peak width of the l100 hydroxyapatite peak

is 0.12°, wider than for the powder Amdry 6020.

64



APS5:- (Figure 3.2.5) The pattern for this sample is very similar to APS4. 

APS6:- (Figure 3.2.6) The pattern for this sample is very similar to APS4. 

The XRD patterns for samples CDS1 and CDS3 were very similar, figure 

3.2.7. The background noise had increased, the peak intensities decreased 

and the peak widths had generally increased compared to the XRD pattern 

for powder HA044. A small peak was detected which corresponded to /100 p-

TCP peak, this was present in both coatings but fractionally larger in CDS1 

than CDS3. This peak was broad and represented approximately 4% p-TCP. 

All the other peaks in the pattern could be attributed to hydroxyapatite.

The XRD pattern for sample VPS1 showed mainly hydroxyapatite peaks, 

figure 3.2.8. The background noise had increased compared to that of the 

spraying powder and some p-TCP has formed due to spraying. The p-TCP 

peak in the XRD pattern for sample VPS1 corresponds to approximately 6% 

P-TCP.

3.2.1.1. CrystaMinify of HA coatings.

The crystallinity of all the HA coatings are shown in table 3.2.1 

The error on crystallinity measurements is «±3%.

APS1 APS2 APS3 APS4 APS5 APS6 CDS VPS

crystallinity % 59 68 63 67 76 74 62 70

Table 3.2.1. Crystallinity measurements or HA coatings.
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3.2.1.2. Residual stress in HA coatings.

The residual stress measurement for the HA coatings are shown in figure

3.2.9. The residual stresses in the coatings are calculated from the 

measurement of 2 peak positions in the XRD scan. The error in measuring 

the peak position is ±0.005° 2d, which corresponds to an error in residual 

stress of ±15 MPa. The highest residual stress is in the VPS coating and 

the lowest in the CDS coating.

The HA coating APS2 was polished back parallel to the substrate and XRD 

scans were acquired at different coating depths. The residual stress in the 

coating was calculated at each depth through the coating. The residual 

stress measurements through the thickness of coating APS2 are shown in 

figure 3.2.10.

3.2.2. Optical microscopy.

DIC optical micrographs are shown of all HA coatings, figures 3.2.11 to 

3.2.18. DIC was used rather than reflective light microscopy as the structure 

of the coating can be more readily seen using this technique.

In sample APS1, figure 3.2.11, there are splats running parallel to the 

surface and what appear to be unmelted particles containing fine porosity. A 

few lateral cracks can be seen running across the splats as well as from the 

surface. The interface between the coating and the substrate is good, with 

close contact between the two. Sample APS2, figure 3.2.12, has a much 

coarser structure with fewer unmelted particles than APS1. The flow lines
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caused by the particles splatting on the surface are broader than in other 

coatings. There are large lateral cracks in the coating and also some large 

pores. Sample APS3, figure 3.2.13, is very similar to APS1 but appears 

more porous. Samples APS4, 5 and 6, figures 3.2.14, 3.2.15 and 3.2.16 

respectively, are very similar. Porosity is present in all three coatings, 

although the pores are smaller than those found in samples APS1 - 3. The 

structure is finer than samples APS1 - 3, without long flow lines. The 

structure of APS6 is finer than APS4 and APS5.

It can be seen that the structure of the CDS coating, figure 3.2.17, is fine 

and there are two phases in approximately equal quantity. The coating 

appears to be relatively dense with close contact at the interface with the 

substrate. There are some small pores in the coating, which mainly appear 

in the lighter of the two phases present. A few cracks are present in the 

coating, which run from the surface to approximately two thirds of the way 

through the coating. Near the middle of the coating some of cracks branch 

and propagate parallel to the surface. These cracks were found along the 

coating length at approximately equal distance in both of the CDS coatings. 

The morphology of the VPS HA coating can be seen in figure 3.3.18. The 

coating is built up of parallel splats similar to samples APS1-3, but the 

structure is finer and there is less porosity. The coating to substrate interface 

is good with the coating being in close contact with the interface. There are 

some grit particles at the interface, which originate from the grit blasting 

process prior to plasma spraying.
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3.2.2.1. Porosity measurements.

The porosity in the HA coatings, measured by image analysis of the polished 

coating cross-sections, are shown in table 3.2.2.

APS1 APS2 APS3 APS4 APS5 APS6 CDS VPS

porosity % 10 11.7 12.00 12.9 15.4 12.7 7.5 5.6

Standard dev. 2.1 1.6 1.8 2.1 2.2 1.8 1.3 0.6

Table 3.2.2. Percentage porosity for HA coatings.

A graphical presentation of the percentage porosity of the HA coatings is 

shown in figure 3.2.19. The porosity in the CDS and VPS coatings is much 

lower than the APS coatings.

3.2.2.2. Coating thickness measurements.

The thicknesses of the HA coatings are shown in table 3.2.3 and graphically 

in figure 3.2.20. The coating thickness deposited for each thermal spraying 

cycle is shown in table 3.2.4 and graphically in figure 3.2.21. The coating 

thickness deposited per cycle is a measure of the efficiency of the different 

spraying parameters, as the powder feed rate is constant for all APS 

coatings.
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APS1 APS2 APS3 APS4 APS5 APS6 CDS1 CDS3 VPS

coating

thickness (|a.m) 96.2 212.4 112.8 108.7 126.4 156.0 148.0 167.2 128.4

STD (pm) 14.6 19.7 11.9 11.4 12.4 11.1 7.6 12.6 9.5

Table 3.2.3. HA coating thickness measurement.

APS1 APS2 APS3 APS4 APS5 APS6

coating thickness per 

cycle (pm) 48.1 106.2 56.4 13.6 31.6 13.0

STD (pm) 7.3 9.9 6.0 1.4 3.1 0.9

Table 3.2.4. Thickness of HA coating or 1 thermal spraying cycle.

3.2.3. Scanning electron microscopy of HA coatings.

The surface of sample APS1, figure 3.2.22, clearly shows splats of 

hydroxyapatite. It can be seen that the particles have melted and flow has 

taken place. Porosity is visible in the surface of the coating, ranging in size 

from 1 to 10(iim. On sample APS2, figure 3.2.23, it is even more evident that 

melting has occurred, the surface being quite smooth apart from some 

nodules. Cracks can also be seen on the surface of this coating. Sample 

APS3, figure 3.2.24, is very similar to sample APS1 but with far more 

nodules 1 to 4pm in size clustered on the surface. Sample APS4, figure 

3.2.25, has a very fine structure with many small fragmented particles on 

the surface. At a higher magnification, figure 3.2.26, it can be seen that 

melting has occurred and there are small pores on the surface ranging in

69



size from 1 to 10pm. Samples APS5 and APS6 are very similar to sample 

APS4.

The surface of samples CDS1 and CDS3 are very similar, figure 3.2.27, the 

coatings are made up of small melted particles and pores can be seen on 

the surface ranging in size from 1 to 10pm. Sample VPS, figure 3.2.28, has 

a molten surface with small nodules 1 to 10pm in size adhering to it.

The scanning electron microscope images of the cross sections of the air 

plasma sprayed coating showed no additional detail that had not already 

been observed using the reflected light and DIC optical microscope 

techniques.

The scanning electron microscope images of the cross sections of the CDS 

coating showed 2 different phases, figure 3.2.29. The cross section of the 

VPS coating, figure 3.2.30, shows the coating morphology in a similar way to 

the DIC technique. Also pores are shown more clearly using the scanning 

electron microscope image, indicating a higher porosity than apparent from 

optical microscopy techniques.

3.2.4. Surface roughness of HA coatings.

The surface roughness of the HA coatings, measured by talysurf, are shown 

in table 3.2.5. Several parameter were determined by the computer software 

employed to run the talysurf, these are:

Ra = Roughness measurement of mean peak height

Rp = Highest peak Rt = Peak to trough height

Rv = Lowest trough S = Mean peak spacing.
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From these results it can be seen that CDS and VPS coatings are smoother 

than the APS coatings. Samples APS1 and APS2 the Ar/N gas mixture APS 

coatings have the roughest surfaces, the other APS coating have similar 

roughness between 7pm and 8.2pm Ra.

Ra (pm) Rp (pm) Rv (pm) Rt (pm) S (pm)

APS1 10.87 41.45 34.79 76.24 45.38

APS2 9.59 33.46 28.26 61.72 42.14

APS3 8.19 28.38 26.71 55.09 38.35

APS4 7.07 31.71 28.59 60.30 35.06

APS5 7.99 27.34 26.78 54.12 39.06

APS6 7.78 26.78 20.79 47.58 32.23

CDS 4.03 21.51 15.02 36.54 26.68

VPS 3.91 15.93 13.88 29.81 25.77

Table 3.2.5. Surface roughness measurements of HA coatings.

3.2.5. Discussion of Results.

The microscopy of the air plasma sprayed coatings showed the morphology 

of the coatings and the differences between the spraying conditions. Sample 

APS2, with spraying parameters which used the Ar/N2 gas mixture, was

sprayed using the highest power plasma flame. This coating was thicker 

than any of the other coatings due to the high temperature plasma flame
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having sufficient energy to melt larger particles than with the other sets of 

spraying parameters. This can also be seen by the thicker flow lines in the 

coating. Image analysis proved this set of parameters to have the highest 

coating deposition efficiency. There were some large pores in the coating 

probably caused by gas being trapped in the coating during deposition, also 

there were some wide cracks running laterally across the coating and some 

fine cracks running laterally between flow lines. These are caused by the 

build up of residual stress in the coating, which is due to the different 

expansion coefficient and thermal conductivity between the coating and the 

substrate. Sample APS1 was produced using the normal spraying 

parameters with the Ar/N2 gas mixture to deposit the hydroxyapatite coating

. This produced a good coating with a reasonable coating thickness. There 

were some partially melted particles in the coating which can be recognised 

as round particles with fine porosity. Some lateral cracks are present in the 

coating caused by residual stress. These were not as large as some of the 

cracks in sample APS2, which is probably due to a thinner coating and the 

powder particles being cooler when impacting the substrate resulting in a 

lower residual stress. The interface between the coating and substrate is 

good with close contact between the substrate and coating for a majority of 

interface viewed. Sample APS3 was produced using the lowest powered 

plasma flame for the Ar/N2 gas mixture, there is very little difference between

APS1 and APS3. Sample APS3 may have fractionally more unmelted 

particles and there are more lateral cracks in the coating. The presence of a 

greater number of lateral cracks could be due to the powder particles being 

cooler than the particles sprayed using the APS1 parameters. The particles 

may not flow very well on impact due to being very close to their melting 

point and may solidify rapidly. When a liquid solidifies, in most cases, it
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undergoes a rapid volume shrinkage which can cause residual stress to 

build up. If there is not sufficient time for the stress to be relieved higher 

residual stress would build up in the coating. Samples APS3 and APS1 had 

very similar coating deposition efficiency, but in general coating APS1 was of 

a higher quality due to a lower porosity and more uniform coating structure. 

Samples APS4, APS5 and APS6 were very similar, these were sprayed 

using an Ar/He gas mixture which has a lower power than the Ar/N2 gas

mixture due to a lower enthalpy of dissociation and ionisation. All of these 

coatings have a finer structure than the Ar/N2 gas mixture coatings. This is a

result of the plasma not having sufficient power to melt the large particles in 

the powder and hence these would bounce off the substrate. The 

substrate/coating interface was good, with close contact at the interface for 

the majority of the interface viewed. A good interface should produce a good 

coating/substrate bond strength. Sample APS5 had a higher coating 

deposition efficiency than samples APS4 and APS6 and this was the highest 

power set of parameters for the Ar/He gas mixture. Samples APS4 and 

APS6 had very similar coating deposition efficiency. The Ar/He gas mixture 

coating had a higher porosity than the Ar/N2 gas mixture coatings with

sample APS5 having the highest porosity. The porosity in the Ar/He gas 

mixture coatings was finer than in the Ar/N2 gas mixture coatings. The higher

porosity was probably due to particles not flowing on impact with the 

substrate and the building up of pores between splatted particles where the 

impacting particle does not flow into the space between other particles.

The XRD patterns for the Ar/N2 gas mixture APS HA coatings all had CaO

present in the coating and the background noise had increased compared to 

the XRD pattern for spraying powder Amdry 6020. The increase in 

background noise can be related to an increase in amorphous calcium
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phosphate present in the coating; also the formation of CaO can occur when 

hydroxyapatite has been over heated and starts to dissociate. Sample APS2 

has some (3-TCP present, this has been reported to occur when the spraying 

powder has been significantly over-heated, and also at the interface with the 

substrate where the cooling rate is the fastest [29]. The variation in peak 

width between the samples can be attributed to an increase in residual 

stress [36], the larger the increase is, the larger the residual stress will be. 

The vacuum plasma sprayed sample showed a good quality coating with a 

high density, this is expected when using this technique. There was close 

contact at the coating/substrate interface but there were some grit particles 

at the interface which were probably left over from grit blasting of the 

substrate surface prior to plasma spraying. The XRD pattern for this sample 

showed a p-TCP peak, this has been reported previously and is a problem 

when using a reduced pressure atmosphere to spray hydroxyapatite.

The CDS sprayed samples showed a two phase structure, this could 

possibly have been caused by the spraying powder HA044 being made up 

of two different types of particle. The two phases were in approximately 

equal proportions like the two different particles in powder HA044. If this is 

the reason for the two phase structure, it is difficult to say why the particles 

,once they have been sprayed, still remain different. As the particles are 

required to melt, and if both particles have the same chemical structure, on 

impacting the substrate no memory of their previous form should be 

translated to the coating. Possibly the two particles experience different heat 

cycles in the CDS gas jet because the two particle morphologies have 

different thermal properties. This could explain the two phase structure 

observed. The coatings were relatively dense, with nearly the same porosity 

as the vacuum plasma sprayed samples. There was close contact between

74



the substrate and coating, indicating a good interfacial bond strength. The 

XRD pattern for the CDS sprayed coating showed that the background noise 

and peak width had increased compared to the powder HA044. This could 

be attributed to amorphous calcium phosphate being formed during spraying 

and also a residual stress increase. There was also a small peak which 

corresponded to a p-TCP phase, this phase was present in the powder 

HA044 and the increase in p-TCP from powder to coating was 

approximately 2-3%.

It is a well known phenomena in crystals of alkali halides that these crystals 

which would normally be clear appear to be coloured. The reason is that 

impurities and defects in the crystal alter the electronic structure by putting 

energy levels between the valence and conduction bands. Light, in the 

visible range, is absorbed by electrons being excited to these energy levels. 

The defects which cause the phenomena are called colour centres. The 

colour centre which absorbs the most visible light is known as the F centre. 

Colour centres are also seen in other materials, it has been reported that F 

centres can be readily generated in crystals that contain Ca2+ or hydroxyl 

ions. This would suggest that hydroxyapatite is particularly susceptible to the 

formation of F centres. Other defects such as interstitials and vacancies also 

cause colour centres. Defects are formed when the material is subjected to 

an external energy force. X-ray diffraction provides sufficient energy to 

cause the formation of F centres and other defects. This would explain the 

observed colour change of the plasma sprayed coating after X-ray 

diffraction. The different colour of the CDS sprayed sample to the APS and 

VPS sprayed sample could possibly be due to the start powders having 

minute differences in impurities, or the sprayed coating having a different 

composition due to the lower temperature and higher kinetic energy.
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The residual stress in the coating was measured using XRD. The X-ray 

beam penetrates only a few microns into the coating, therefore the values 

calculated for residual stress correspond to residual stress near the surface 

of the coating. This tends to be the maximum residual stress in the coating, 

as the maximum stress in a bent beam is always at the surface of the beam. 

The stresses are tensile for all the sprayed coatings, which is undesirable for 

a biomedical coating. Tensile stresses increase the chance of cracks 

forming in the coating, which can lead to seepage of body fluids and 

eventually cause the coating to spall off. There is a difference between the 

stresses calculated for the a and c directions, this is probably due to the a 

and c directions having different moduli and possibly some directionality in 

the coating. No values for the moduli of the crystallographic directions in 

hydroxyapatite have been reported in the literature. Thermal sprayed 

coatings are a non-homogeneous mixture of different phases of the sprayed 

material. The modulus used to calculate the residual stress using XRD was 

obtained from ultrasonic measurement of sintered HA. Therefore the 

modulus of the coating is probably considerably lower than the measured 

value of the sintered HA. This would cause all the residual stress 

measurements to be a factor lower than stated. The modulus of thermal 

sprayed HA coatings has not been published in the literature to date, and for 

comparative purposes the modulus of sintered HA will suffice. As the XRD 

technique measures strain at an atomic level similar to the ultrasonic 

technique, this value of modulus seems appropriate to use. Residual stress 

is related to coating thickness and this can be seen in figure 3.2.10 for the 

HA coating APS2. Ideally the lower the tensile residual stress the longer the 

coating should last, as the fatigue life would improve. The Ar/He gas mixture 

air plasma sprayed samples have lower residual stresses than the Ar/N2 gas
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mixture sprayed samples. This is probably due to the slower build up of the 

coating as more cycles of the plasma gun are required to deposit the Ar/He 

gas mixture coatings than the Ar/N2 gas mixture. The CDS sprayed coatings

appear to have a lower residual stress than the air plasma sprayed samples. 

Although the different spraying processes use different powders for 

depositing the coatings and it is the change in residual stress from powder to 

coating that is calculated and not the actual residual stress in the coating. 

The number and frequency of cracks in a coating is also a good comparative 

guide to how large the residual stress is. Using microscopy the size and 

frequency of cracks in the coating can be measured. The VPS coating has 

some of the largest cracks of all the sprayed coatings and it has the largest 

residual stress according to the XRD results. The VPS process uses a 

reduced pressure atmosphere which can cause problem when cooling the 

substrate material, as convection cooling is reduced. This can result in very 

different cooling characteristics and in this case has resulted in a high 

residual stress in the coating.
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Figure 3.2.1. XRD pattern of APS1 coating.
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Figure 3.2.2. XRD pattern of APS2 coating.
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APS 4
1200

1000

800

600

400

200

6020 30 40
2© Diffraction angle

50

Figure 3.2.4. XRD pattern of APS4 coating.
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Figure 3.2.6. XRD pattern of APS6 coating.

80



Co
un

t 
in

te
ns

ity
 

Co
un

t 
in

te
ns

ity
1400

CDS

1200

1000
P-TCP

600

400

200

0
20 30 40 50 60

20 Diffraction angle
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Figure 3.2.8. XRD pattern of VPS coating.
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Figure 3.2.11. DIC optical micrograph of HA coating APS1, mag. x400

Figure 3.2.12. DIC optical micrograph of HA coating APS2, mag. x400 .
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Figure 3.2.13. DIC optical micrograph of HA coating APS3, mag. x400

Figure 3.2.14 DIC optical micrograph of HA coating APS4, mag. x800 .
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Figure 3.2.15 DIC optical micrograph of HA coating APS5, mag. x800.

Figure 3.2.16. DIC optical micrograph of HA coating APS6, mag. x800.
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Figure 3.2.17. DIC optical micrograph of HA coating CDS, mag. x400 .

Resin

100nm
H----------------- N

Figure 3.2.18. DIC optical micrograph of HA coating VPS, mag. x 160.
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Figure 3.2.19. Percentage porosity in HA coatings.
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Figure 3.2.20. Thickness of HA coatings.

87



Coating thickness increase for 1 
plasma spraying cycle

120

^ 10° 
to| 80 
E
« 60 
CO 
(U

I  40
Lc h-

20 

0

Figure 3.2.21. HA coating deposited for each thermal spraying cycle.

Figure 3.2.22. Scanning electron micrograph of the surface of APS1. mag. 
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Figure 3.2.23. Scanning electron micrograph of the surface of APS2 

mag.x500.

Figure 3.2.24. Scanning electron micrograph of the surface ofAPS3. mag. 

x500.
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Figure 3.2.25. Scanning electron micrograph of the surface of APS4. mag. 

x500.

Figure 3.2.26. Scanning electron micrograph of the surface of APS4. mag. 

x2 0 0 0 .
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Figure 3.2.27. Scanning electron micrograph of the surface of the CDS 

coating, mag. x1000.

Figure 3.2.28. Scanning electron micrograph of the surface of the VPS

coating, mag. x500.
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Figure 3.2.29. Scanning electron micrograph of a cross-section through a 

CDS coating, mag. x1500.

Figure 3.2.30. Scanning electron micrograph of a cross-section through a

VPS coating, mag. x450.
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3.3. Shear Testing of HA Coatings.

The shear strengths of the HA coatings are shown in table 3.3.1 and 

graphically in figure 3.3.1. The coatings with the highest shear strength are 

APS2 and VPS, the lowest shear strength is the CDS coating.

3.3.1. Discussion of Results.

The shear test results approximately agree with shear and in vivo pushout 

test results published in the literature [22, 28, 32, 35]. Where the pushout 

test measures the adhesive shear strength of bone to an implant. The HA 

coated implants have typically shown values of «12MPa after 4 weeks of 

implantation, and failure is predominantly at the HA coating/implant 

interface. The shear test employed for the work in this thesis does not 

produce a true shear force at the coating/titanium interface due to the 

substrate bending and causing a peeling of the coating from the substrate. 

Although the shear strength is not a true measurement, the actual shear 

strength should be higher than this measured value, and for comparative 

purposes the test produces reasonably consistent results.

The difference in the shear test results between the different spraying 

parameters is possibly due to the temperature at which the particles impact 

the substrate. A high temperature molten particle would take longer to 

solidify than a low temperature molten particle as more energy needs to be 

absorbed by the substrate. This would give a longer time for the particle to 

flow and have a more intimate contact with the substrate and surrounding

93



particles giving a coherent coating and a high adhesive strength. The high 

temperature molten particle is more likely to form a chemical bond with the 

substrate, such as the TiP3 phase, which has been reported in the literature 

[53]. The higher temperature particles would also have a slower cooling rate 

and this would give a more crystalline coating. The crystallinity and shear 

strengths for the HA coatings are shown graphically in figure 3.3.2. A similar 

trend between the shear strength and crystallinity measurements can be 

seen. The highest energy Ar/N gas mixture APS coating, APS2, has the 

highest crystallinity for the Ar/N gas mixture coatings and the highest shear 

strength of all the HA coatings. The highest energy Ar/He gas mixture 

coating, APS5, has the highest crystallinity of all the HA coatings and the 

highest shear strength for the Ar/He gas mixture coatings. The reason for 

this coating not having as higher shear strength as the Ar/N gas mixture 

coatings is probably due to the lower temperature of the Ar/He plasma not 

melting the powder particles sufficiently to get a coating as coherent as the 

Ar/N APS coatings. The VPS coating also has a high shear strength and 

only an average crystallinity. The high shear strength of this coating is 

probably due to the increased velocity of the particles forming a more 

coherent coating compared to the APS process. The CDS coating has the 

lowest shear strength and this is probably due to the CDS process not 

melting the particles sufficiently to form a cohesive bond with the titanium 

alloy substrate. The CDS process relies on the high velocity of the particles 

rather than temperature to give enough energy to deposit a coating.
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APS1 APS2 APS3 APS4 APS5 APS6 CDS VPS

No. of 
tests

11 4 5 10 10 8 5 5

average
(MPa)

8.6 11.3 9.8 8.6 10.3 9.3 7.3 11.2

std
(MPa)

2.36 1.99 1.06 1.05 1.38 0.87 1.18 0.63

Table 3.3 1. Shear strength of HA coatings.
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Figure 3.3.1. Shear strength of HA coatings.
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3.4 Tensile testing of HA coatings.

The tensile bond strength of the HA coatings is shown in table 3.4.1. The 

average tensile bond strength is calculated from a sample of 10 tensile test 

results. The standard deviation is nearly 50% of the tensile bond strength in 

the case of APS5, APS6 and the CDS coatings. This degree of inaccuracy is 

too high to draw any valid conclusions from these results and therefore 

tensile bond strength measurement was not carried out on samples APS1, 

APS2 and APS3. The variability in the tensile bond strength is caused by a 

combination of factors, the main factor being alignment of the test sample 

during gluing. If a sample is misaligned the initial applied force will act to 

straighten the test sample, which effectively causes a bending moment and 

a high stress concentration at the edge of the bond line which can initiate a 

crack and lead to premature failure.

Unfortunately the alignment could not be improved within the time scale of 

this project and as previously stated the full program of tests was not 

completed.

APS4 APS5 APS6 VPS CDS

Tensile strength (MPa) 23.2 6.5 8.1 22.6 8.0

STD (MPa) 4.83 2.91 3.05 3.82 3.33

Table 3.4.1. Tensile bond strength of HA coatings.
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3.5 Acoustic emission of HA coatings.

The four point bend test was run for a duration of «400 seconds until the 

titanium alloy substrate was permanently deformed, which corresponded to 

a deflection of «6.6mm and «6% strain in the tensile surface of the 

substrate. Tests which were run past the elastic limit of the titanium alloy 

showed evidence of debonding of the HA coating and a rapid increase in AE 

events.

The acoustic emission (AE) events were recorded for the duration of the 

test. The computer software sorts the AE events by measuring the amplitude 

of the event and counting into channels of 2.4dB width. The number of 

counts in each channel is updated every second, which gives a cumulative 

event count for the duration of the test. The threshold was set at channel 2, 

excluding events with energy less than 4.8dB which where mainly noise 

created by the tensometer and surroundings. The number of events in each 

channel at the end of the test can be shown as a bar chart. Figure 3.5.1 

shows a typical cumulative event count for HA coating APS1. All HA 

coatings showed a similar cumulative event count to that of APS1, with a 

high number of low energy events and an almost exponential decay in the 

number of counts as the event energy increases.

The total number of events, low and high energy, for a given time period can 

be calculated from the AE results. The force at a given time was also 

recorded by the computer and the force and total number of AE events are 

plotted against time in figure 3.5.2 for HA coating APS4. All HA coatings
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showed a similar trend once the titanium alloy substrate had yielded, which 

was an increase in the rate of AE events. The total number of AE events 

recorded varied within sample batches and between different spraying 

parameters. Therefore the total AE event count was normalised for all tests 

to give a maximum of 1000 events for a test duration of 400 seconds which 

is just before the substrate yields. A correlation between samples with the 

same set of spraying parameters could be seen. Figure 3.5.3 shows 2 

independent tests on the HA coating APS1, the two curves have a similar 

shape with a high event count rate in the initial 100 seconds. A parameter to 

describe the shape of the curve was proposed to allow quantitative 

comparison of the different HA coatings. This parameter was calculated by 

generating a straight line from 0 seconds and 0 AE events to 400 seconds 

and 1000 AE events. The difference between the straight line AE events and 

the measured AE events at each second was calculated. The average of 

these differences gives the parameter which will be referred to as D. A 

positive value of D indicates a curve with a high AE event count rate in the 

early stages of the test. A negative value of D suggests a high AE event 

count rate near the end of the test. The magnitude of D indicates how much 

higher the initial or late AE event count rate is compared to other HA 

coatings. Figures 3.5.4 to 3.5.10 show the normalised AE event count and 

the calculated D value for HA coatings APS2, APS3, APS4, APS5, APS6, 

CDS and VPS. Table 3.5.1 shows the D values for all HA coating.
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APS1 APS2 APS3 APS4 APS5 APS6 CDS VPS

D +174 -200 +1 +52 +28 -50 +8 +107

Table 3.5.1. D parameter for HA coatings.

A cross-section through the HA coating was taken along the long axis of the 

deformed sample. The sectioning and polishing techniques used are 

described in section 2.2.3.1. Optical and scanning electron microscopy was 

used to characterise the morphology of the deformed coatings. Optical 

microscopy shows no obvious damage in the coatings, despite the 

permanent deformation in the substrate. Using electron microscopy the 

cracks in the coating are clearly defined. Figure 3.5.11 shows an optical 

microgaph of the deformed HA coating of APS1. At first glance the coating 

looks very similar to the as-sprayed coating, a closer examination shows 

small cracks traversing the coating approximately a third of the coating 

thickness in length. Using electron microscopy, figure 3.5.12, these cracks 

are shown to propagate to the HA/Ti interface. Compared to other coatings 

there are an average number of cracks spaced approximately 200 to 500}im 

apart. Optical microscopy shows that APS2 and APS3 are very similar to the 

as-sprayed coating, figure 3.5.13. The few cracks which can be seen using 

optical microscopy are hairline cracks and there are apparently fewer cracks 

than APS1. Using the electron microscope APS2 can be seen to have more 

hairline cracks than are apparent using optical microscopy, figure 3.5.14. 

Electron microscope micrographs of APS3 show a similar appearance to

100



APS1, figure 3.5.15. Cracks can be seen to have initiated at the surface and 

propagated to the interface and are spaced approximately 300pm apart. The 

optical microgaph of APS4, figure 3.5.16, has a similar appearance to APS1 

with cracks traversing the coating. Electron microscope micrographs of 

APS4 show similar images to the optical micrographs. At a higher 

magnification the coating layers near the surface of APS4 appears to have 

hairline cracks which do not proagate to the HATH inteface, figure 3.5.17. 

APS5 and APS6 are very similar to the as-sprayed coating with only a few 

small cracks in the coating. Electron microscope images shows that APS5 

and APS6 are similar with cracks running from the surface to the HA/Ti 

interface and also hairline cracks near the surface of the coatings, figure 

3.5.18. The CDS HA coating has some small cracks which appear to have 

initiated at pores within the coating, an optical micrograph of the CDS 

coating is shown in figure 3.5.19. The electron microscope micrograph, 

figure 3.5.20, shows a similar result to the optical micrograph. The electron 

microscope micrograph also shows that a crack appears to be running 

parallel to the HA/Ti interface, suggesting that the coating is debonding from 

the substrate. The VPS coating appears to be similar to the as-sprayed HA 

coating, there are some large cracks traversing the coating and also some 

small cracks within the coating, figure 3.5.21. The electron microscopy of the 

VPS coating confirms the optical microscopy results.
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3.5.1. Discussion of Results.

The acoustic emission and microscopy results for the HA coatings suggest 

that failure occurs by microcracking in the coating. If failure had occurred by 

the coating debonding from the substrate or large cracks propagating from 

the coating surface to the interface a high number of high energy AE events 

would be expected, as figure 3.5.1 shows this in not the case. Also from the 

microscopy of the deformed coatings debonding from the substrate and 

large cracks traversing the coating are not apparent.

The thicker of the coatings APS1, APS4 and VPS all had positive D values. 

The thinnest coating APS2 had the highest negative D parameter. This 

would suggest that a thicker coating would sustain more microcracking in the 

initial stages of deformation than a thin coating. The microcracking would 

probably initiate near the coating surface where the bending stress is 

greatest. For a thin coating the bending stress near the surface would be 

less for a similar deflection, therefore a lower microcracking rate in the initial 

stages of the test would be expected and hence a negative D parameter.

It has been shown previously that the Ar/He gas mixture APS coatings 4, 5 

and 6 have lower residual stresses than the Ar/N gas mixture coatings 

APS1, 2 and 3. This could indicate why APS4, although the thickest coating, 

has a lower D parameter than APS1 which showed a similar shaped curve 

for the normalised AE event count. A coating with a high tensile residual
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stress would be expected to fail earlier, as the deflection to achieve a critical 

stress limit would be less.

Cracks formed in the coatings at regular intervals are consistent with the 4 

point bend test. This is due to a uniform stress distribution at the coating 

surface. As the coating is deformed it will crack to relieve the stress when 

the stress reaches a critical value. The cracks will be approximately equal 

distance apart as the coating will relieve the stress in a uniform manor.

The D parameter may be useful in predicting the performance of an 

hydroxyapatite coating when subjected to a high load or cyclic loading. A 

coating with a low D parameter would be expected to have a good fatigue 

life as little damage is generated in the coating at low loads. Further work will 

be required to assess the usefulness of the D parameter.

In summary:

• HA coatings fail by microcracking when subjected to a bending stress.

• Thin coatings withstand higher deformation before substantial 

microcracking occurs.

• The higher residual stress in the APS Ar/N gas mixture coatings results 

in higher D parameters for similar thickness coatings.

• SEM results show APS2 to have a large number of hairline microcracks, 

probably due to the higher power of the APS2 plasma producing a glassy 

coating which is more susceptible to brittle fracture.
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Figure 3.5.4. Normalised total AE event count for APS2 HA coating.
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Figure 3.5.5. Normalised total AE event count for APS3 HA coatings.
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Figure 3.5.6. Normalised total AE evenicount for APS4 HA coating.
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Figure 3.b. (. Normalised total AE event count for APS5 HA coating.
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Figure 3.5.8. Normalised total AE event count for APS3 HA coating.
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Figure 3.5.9. Normalised total AE event count for CDS HA coating.
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Figure 3.5.10. Normalised total AE event count for VPS HA coating.

Resin

Ti substrate 100 microns

Figure 3.5.11. DIC optical micrograph of deformed HA coating APS1
Mag.x160.
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Figure 3.5.12. SEM micrograph of deformed HA coating APS1. Mag.x450.

Resin

100 micronsTi substrate

Figure 3.5.13. DIC optical micrograph of deformed HA coating APS3.
Mag.x160.
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Figure 3.5.14 SEM micrograph of deformed HA coating APS2. Mag.x450.

Figure 2.5.15. SEM micrograph of deformed HA coating APS3. Mag.x500.
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Hh H H
Resin

Ti substrate 100 microns

Figure 3.5.16 DIC optical micrograph of deformed HA coating APS4. 
Mag.x160.

Figure 3.5.17. SEM micrograph of the surface layer of the deformed HA
coatings APS4. Mag.x1500.
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Figure 3.5 18. SEM micrograph of the deformed HA coating APS6. 
Mag.x600.

Resin

Ti substrate 100 microns
I 1

Figure 3.5.19. DIC optical micrograph of deformed HA coating CDS.
Mag.x160.
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Figure 3.5.20 SEM micrograph of deformed HA coating CDS. Mag.x650.

Resin

100 micronsTi substrate

Figure 3.5.21 DIC optical micrograph of deformed HA coating VPS.
Mag.x160
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3.6 Heat-treatment of Hydroxyapatite Powders and Coatings.

3.6.1 Heat-treatment of HA Powders.

The powders used for thermal spraying were heat-treated as described in 

section 2.7. XRD was employed to characterise the powders after heat- 

treatment.

The XRD patterns for the powder HA044 after each heat-treatment showed 

a change in the percentage of p-TCP, which is illustrated in table 3.6.1. 

There was a small increase in the p-TCP % between 650°C and 750°C, and 

for the 850°C to 1150°C heat-treatments there is a significant increase in the 

% p-TCP. However above 1250°C there is a drop in the % p-TCP. At 1250° 

C to 1450°C the powder had sintered and required crushing for XRD 

analysis. Up to 1250°C the only two phases present in the powder were 

hydroxyapatite and p-TCP. At 1350°C a small amount of a-TCP is observed 

and the % p-TCP had decreased to 3.64%, figure 3.6.1. At 1450°C no p- 

TCP was detected and the two main phases present are a-TCP (Ca3(P04)2) 

and calcium oxide phosphate (Ca40(P 04)2), figure 3.6.2. Using the relative 

intensities of the peaks and assuming similar X-ray absorption coefficients 

between the phases there is approximately 13% hydroxyapatite present in 

the powder.

The peak widths decreased with increasing temperature up to 850°C after 

which no further change was observed. Between 1250°C and 1350°C some 

of the relative peak intensities had increased by 10-40 % in relation to the l100

hydroxyapatite peak.
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Temperature

(°C )

Intensity ( counts/sec)

% P - TCPHA P-TCP

650 2304 46 2.21

750 2088 55 2.57

850 2079 71 3.30

950 1962 98 4.76

1050 2162 132 5.75

1150 2080 130 5.88

1250 2314 112 4.62

1350 1325 50 3.64

Table 3.6.1. Percentage p - TCP at each heat-treatment temperature.

Powder Amdry 6020 was also heat-treated between 650°C and 1450°C. It 

was found that at 650°C there was no difference between the unheat-treated 

and heat-treated powders. At 750°C there was a decrease in the peak width 

from 0.1° to 0.08°. The peak width remained constant on consecutive heat- 

treatments up to 1250°C. At 1350°C the peak width widened to 0.13°. At this 

temperature there was considerable sintering. At 1050°C there was a small 

peak corresponding to p-TCP, suggesting there was less than 1% p-TCP 

present in the powder. This increased to nearly 2% at 1150°C but without 

further increase at 1250°C. However all traces of p-TCP had disappeared 

after heat-treating at 1350°C, but a small peak corresponding to CaO was 

detected. Also at this temperature there was a variation in the peak 

intensities similar to that found in the XRD pattern for powder HA044. At
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1450°C powder Amdry 6020 had decomposed into the same phases in 

approximately the same proportions to powder HA044, figure 3.6.3.

Heat-treatment of the VPS powder showed minimal change until the 

temperature of 1350°C was reached. At this temperature a small peak 

corresponding to a trace of a-Tri calcium phosphate was detected. At 

1450°C the powder had started to break down into a-TCP and calcium oxide 

phosphate, but not to the same extent as powders HA044 and Amdry 6020. 

The XRD pattern for VPS powder at 1350°C and 1450°C can be seen in 

figure 3.6.4.

The crystallinity of the powders before heat-treatment was greater than 95% 

and therefore any increase in crystallinity was not measurable using XRD.

3.6.2. Heat-treatment of HA Coatings.

The hydroxyapatite coatings prepared by the different thermal spraying 

techniques were heat-treated as described in section 2.7.

The coatings were characterised using XRD, optical and scanning electron 

microscopy.

3.6.2.1. XRD of HA Coatings.

The XRD patterns of the heat-treated standard Ar/N APS coatings ( APS1 ) 

can be seen in figure 3.6.5. The unheat-treated APS1 HA coating has 

approximately 5% p-TCP and a peak corresponding to CaO. As the heat-
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treatment temperature is increased the percentage p-TCP reduces to zero at 

700°C. The CaO is not affected by the heat-treatment and is still present 

after the 900°C heat-treatment.

The crystallinity measurements for the heat-treated APS1 coatings are 

shown in table 3.6.2. The error on crystallinity measurement using the XRD 

technique is approximately ±3%. The crystallinity increases as the heat- 

treatment temperature rises. This is evident from the XRD patterns as the 

background emissions are reduced and the HA peaks are narrower and 

have a higher intensity.

Sample Standard 600°C 700°C 800°C 900°C

Crystallinity % 70 75 82 88 92

Table 3.6.2. Crystallinity of heat-treated APS1 HA coatings.

The XRD patterns for the (004) peak of the heat-treated APS1 coatings can 

be seen in figure 3.6.6. This peak shifts to higher values of 20, which 

corresponds to a change in the residual stress in the coating. Using the shift 

of the (004) and the (300) peaks the residual stress in the coating has been 

calculated and these results are shown in figure 3.6.7. The tensile residual 

stress in the coating reduces as the heat-treatment temperature rises, apart 

from the 900°C heat-treatment where the residual stress has increased.
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The XRD patterns of the heat-treated standard Ar/He APS coatings ( APS4 ) 

can be seen in figure 3.6.8. This coating responded to the heat-treatment in 

a similar way to the APS1 coating. A trace of p-TCP and CaO are present in 

the as-sprayed coating. At 700°C the p-TCP is no longer present and there 

is a small increase in the quantity of CaO as the heat-treatment temperature 

rises.

The crystallinity measurements for the heat-treated APS4 coatings are 

shown in table 3.6.3. The crystallinity of the coating rises with the heat- 

treatment temperature similar to the result obtained from APS1.

Sample Standard 600°C 700°C 800°C 900°C

Crystallinity % 61 68 82 88 90

Table 3.6.3. Crystallinity of heat-treated APS4 HA coatings.

The XRD patterns for the (004) peak of the heat-treated APS4 coatings can 

be seen in figure 3.6.9. The peak shifts to higher values of 20 which 

corresponds to a reduction in the tensile residual stress in the coating as 

shown in figure 3.6.10.

The XRD patterns of the heat-treated standard CDS coatings can be seen in 

figure 3.6.11. The unheat-treated CDS coating has a small broad peak 

indicating approximately 2% p-TCP. As the heat-treatment temperature is
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increased this peak becomes sharper and larger, at 900°C the percentage 

p-TCP is approximately 8%.

The crystallinity measurements for the heat-treated CDS coatings are shown 

in table 3.6.3. The crystallinity increases by over 20% from the unheat- 

treated to the 600°C heat-treated sample. The crystallinity continues to rise 

to a maximum of 87% at 900°C.

Sample Standard 600°C 700°C 800°C 900°C

Crystallinity % 43 67 80 82 87

Table 3.6.3. Crystallinity of heat-treated CDS HA coatings.

The XRD patterns for the (004) peak of the heat-treated CDS coatings can 

be seen in figure 3.6.12. The peak shifts to higher values of 20 as the heat- 

treatment temperature rises until 900°C when the peak shifts back to near 

the original unheat-treated position. This result is similar to the APS coatings 

although the shift is not as large and the tensile residual stress in the 

coatings is smaller.

The residual stress measurements using XRD are shown in figure 3.6.13 for 

the heat-treated CDS coatings. The increase in residual stress observed at 

the 600°C heat-treatment is negligible as the peak position measurement is 

only accurate to ±15MPa of the residual stress. The 700, 800 & 900°C heat- 

treatments have resulted in compressive residual stresses in the coating.
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The magnitude of these residual stresses are small and not significantly 

different within experimental measurement error.

The XRD patterns of the heat-treated VPS coatings can be seen in figure 

3.6.14. The unheat-treated VPS coating only contained HA, no CaO or p- 

TCP was detected. CaO and p-TCP were not detected in any of the heat- 

treated coatings.

The crystallinity measurements for the heat-treated VPS coatings are shown 

in table 3.6.4. The crystallinity of the coating rises with the heat-treatment 

temperature similar to the result obtained from APS1. The 900°C heat- 

treated VPS coating showed large peak broadening, this does not 

necessarily indicate a reduction in crystallinity as the background noise 

around the peaks was very low. This result suggests that the coating is 

crystalline and the peak broadening was caused by another factor, i.e. 

residual stress.

Sample Standard 600°C 700°C 800°C 900°C

Crystallinity % 72 83 89 91 94

Table 3.6.4. Crystallinity of heat-treated VPS HA coatings.

The XRD patterns for the (004) peak of the heat-treated VPS coatings can 

be seen in figure 3.6.15. The (004) peaks for the 600,700 & 800°C heat- 

treatments have shifted to significantly higher 20 angles, this indicates a 

large reduction in residual stress which is shown in figure 3.6.16. The 900°C
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heat-treatment caused a phenomena unique to the VPS coating, with a 

negative 20 peak shift which gave a higher tensile residual stress than the 

as sprayed coating.

3.6.2.2. Microscopy of Heat-treated HA Coatings.

Figure 3.6.17 - 3.6.21 shows the optical micrographs of the cross-section of 

the as-sprayed and heat-treated APS1 HA coatings. As the heat-treatment 

temperature increases the coating becomes more homogeneous and 

appears flat using the DIC technique. The 800°C heat-treated coating 

appears very flat and dense with a good contact with the substrate. At 900°C 

there appears to be a thin interfacial layer between the HA and the titanium 

alloy substrate. The coating has also developed a number of cracks running 

from the surface of the coating to the interface. The porosity seems to have 

increased although this could be damage induced on polishing due to the 

coating being more fragile because of the cracks running through it.

Figures 3.6.22 - 3.6.26 show the optical micrographs of the cross-section for 

the as-sprayed and heat-treated coatings APS4. There is a small difference 

between the as-sprayed and the 600°C heat-treated coating. The structure 

of the coating is still visible in the 600°C heat-treated coating but the 

sharpness between particle splats has been slightly reduced. The 700°C 

heat-treated coating appears homogenous with a few cracks near the 

surface of the coating. The 800°C heat-treated coating is similar to the 

700°C heat-treated coating although there are larger cracks running from the
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surface of the coating to the interface with the titanium alloy substrate. At 

900°C more cracks are apparent and a thin interfacial layer between the HA 

and titanium substrate is visible.

Figure 3.6.37 - 3.6.31 show the optical micrographs of the cross-section for 

the as-sprayed and heat-treated CDS HA coatings. There is very little 

difference between the as-sprayed and the 600°C heat-treated coatings. 

The 700°C heat-treated coating looks more homogenous than the as- 

sprayed coating, there are a few cracks which run through the coating from 

the surface to the HA / titanium alloy interface. The 800°C heat-treated 

coating shows a few more cracks than the 700°C heat-treated coating, and 

appears to be more homogenous. The coating heat-treated at 900°C is 

similar to the 800°C heat-treated coating although with slightly larger cracks 

and a thin interfacial layer similar to the APS coatings.

Figures 3.6.32 - 3.6.36 show the optical micrographs of the cross-sections 

for the as-sprayed and heat-treated VPS HA coatings. The 600°C heat- 

treated coating is different to the as-sprayed coating, the coating appears 

more homogenous and the porosity and cracks are larger. The 700°C and 

800°C heat-treated coatings appear to be very similar to the 600°C heat- 

treated coating, the coatings appear to be homogenous and there are large 

cracks running from the surface of the coating to the HA / titanium alloy 

interface. The 900°C heat-treated coating has very large cracks traversing 

the coating and the porosity has increased. There is also a thin interfacial
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layer at the interface of the HA and titanium alloy substrate, similar to the 

other heat-treated coatings.

3.6.3. Discussion of Results.

It has been reported in several papers [54,56,57] that stoichiometric 

crystallised hydroxyapatite is stable up to 1250°C and p-TCP forms from 

amorphous calcium phosphate lower than 1250°C. This was found to be the 

case for powder HA044. The amorphous calcium phosphate could be 

present in powder HA044 from its preparation route. Electron microscope 

images of powder HA044 shows spherical particles and this morphology of 

particle is characteristic of spray dried powders. Spray drying has an 

inherently fast cooling rate which can cause amorphous material to form, 

and hence on heat-treating the powder, p-TCP is formed. A small amount of 

a-TCP is observed when powder HA044 is heat-treated at 1350°C, this 

could be due to either p-TCP or hydroxyapatite becoming unstable and 

transforming. Also at this temperature the percentage p-TCP had decreased 

to 3.64%, this suggests that p-TCP had transformed to a-TCP. This is 

confirmed when looking at the binary phase diagram for CaO and P20 5,

figure 4.2.1, the stable phase at this temperature is a-TCP. The peak widths 

decreased with increasing temperature up to 850°C, probably due to 

increasing crystallinity in the powder. It has been reported in several papers 

that hydroxyapatite will crystallise before 750°C [54.57]. Between 1250°C 

and 1350°C some of the relative peak intensities had increased by 10-40% 

in relation to the l 100 HA peak. This result has not been reported in other

work and could possibly be due to the hydroxyapatite gradually dissociating
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or as the powder sinters at these temperatures, it is possible that during 

sintering the grains grow in preferential crystallographic directions. This 

would have the effect of altering the intensities in the XRD pattern. At 1450° 

C no p-TCP was detected and the two main phases present are a-TCP 

(Ca3(P04)2) and calcium oxide phosphate (Ca40 (P 0 4)2), similar to the work

published by Zhou et al. [56].

Powder Amdry 6020 was similar to powder HA044 when heat-treated. The 

main difference was that no p-TCP was detected in the powder until 1050°C. 

It has been reported that when hydroxyapatite is heated in a vacuum the OH 

molecule can be lost and TCP formed [52]. Although the powder was not 

heat-treated in a vacuum, the Argon atmosphere does have a similar effect 

to a vacuum by reducing the partial pressure of water vapour in the 

atmosphere and the loss of the OH molecules becomes more favourable. 

This also suggests that powder Amdry 6020 is crystalline, as no p-TCP was 

formed before this temperature like powder HA044. The formation of CaO at 

1350°C is not reported in any other work, but the disappearance of the p- 

TCP suggests that the p-TCP has transformed into CaO. At 1350°C there 

was a variation in the peak intensities similar to that found in HA044, and the 

same explanation would apply. Powder Amdry 6020 dissociated into the 

same phases as powder HA044, as reported by Zhou et al. [56].

Powder XPT W 601 performed in a similar manner to Amdry 6020 when 

subjected to the heat-treatment temperatures in that no change was 

observed at the low heat-treatment temperatures. At 1350°C a small peak 

corresponding to a-TCP was detected and was probably caused by the 

degradation of hydroxyapatite, as according to the binary phase diagram of 

calcium phosphate, figure 4.2.1, a-TCP becomes more stable at this 

temperature. At 1450°C the powder degrades into the same phases as the
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other two powders, although more hydroxyapatite remains. This would 

suggest that powder XPT W 601 is the most stable of the three powders.

The APS coatings reacted in a similar manner when subjected to the heat- 

treatment process. The p-TCP reduced in quantity and the CaO remained in 

the coating. The heat-treatment results from the powders showed an 

increase in p-TCP at the lower heat-treatment temperatures. The heat- 

treatment of the powders and the coatings differed in that the powders were 

heat-treated using an Argon atmosphere whereas the coatings used an air 

atmosphere. The Argon atmosphere would have the effect of reducing the 

partial pressure of 0 2 and H20  increasing the probability of losing the OH 

group in the hydroxyapatite structure and encouraging the formation of TCP. 

When using an air atmosphere the partial pressures of 0 2 and H20  are 

higher and the loss of the OH group from the hydroxyapatite structure is less 

probable. Therefore when the amorphous phase in the coating crystallises 

hydroxyapatite is formed rather than TCP. The CaO present in the as- 

sprayed coating remains at a constant level for all the heat-treatments. CaO 

is a stable oxide and is unlikely to undergo a phase change or react with the 

coating elements at these temperatures. The crystallinity of the coating 

increases post heat-treatment and the higher heat-treatment temperatures 

cause a greater increase in crystallinity. There was an increase in 

crystallinity after the first heat-treatment of 600°C, which agreed with other 

authors work [50,55]. All the heat-treatments were for 30 minutes, if the 

heat-treatment was longer for the lower temperatures this would have the 

effect of increasing the crystallinity to a similar value to that of the 900°C 

heat-treatment. A coating with a high crystallinity would be expected to have 

a longer life span when exposed to body fluids, as it has been reported that
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crystalline HA is more stable than amorphous HA [23,24]. Therefore heat- 

treatment of the coatings should increase the longevity of the coating when 

used in the body. It has also been reported that hydroxyapatite is more 

stable than p-TCP and CaO when exposed to body fluids[33,34]. The heat- 

treatment of the APS coating reduced the quantity of p-TCP in the coating 

and this should also increase the longevity of the coating in the body. 

Residual stress in the coating has been reduced by the heat-treatment 

process. XRD has shown that the coating is crystallising and this would 

involve atomic rearrangement, therefore if atoms have sufficient energy to 

move and form crystalline HA then the atoms would also move to reduce the 

residual stress in the coating. Also at these temperatures stress in the 

titanium alloy substrate would be relieved. For the APS coatings the residual 

stress decreases gradually as the heat-treatment temperature increased. 

For the VPS and CDS coatings the residual stress decreases rapidly after 

the first heat-treatment and remains low for the 700 and 800°C heat- 

treatments. The VPS coating shows an increase in the residual stress 

similar to the APS coatings although this increase is much larger and puts a 

residual stress in the coating higher than the residual stress post spraying. 

Also at this temperature the peaks are very broad suggesting a high 

increase in the residual stress. The increase in residual stress at 900°C 

could be due to a combination of factors :

I. A difference in the thermal expansion coefficients of the titanium alloy 

substrate and the hydroxyapatite coating.

II. A reaction may occur between the hydroxyapatite coating and the 

titanium alloy substrate.

III. Formation of an oxide layer at the titanium alloy hydroxyapatite interface.

IV.Degradation of the hydroxyapatite coating.
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V. A phase transition in the titanium alloy substrate causing a change in 

thermal expansion coefficient.

Any one factor or combination of these factors could be contributing to the 

increase in residual stress, further work will be required to determine the 

main contributing factors.

The increase in p-TCP for the CDS coatings is unusual compared to the 

VPS and APS coatings. The VPS and APS spraying powders were similar in 

structure, although different in size, and showed similar properties when 

heat-treated. The CDS powder probably originated from a mixture of 

spraying dried and precipitated particles. Heat-treatment of these powders 

showed that the VPS and APS powders performed in a similar manner with 

only a small amount of TCP present. The CDS powder showed an increase 

in the TCP with heat-treatment similar to the heat-treatment of the coating. 

The CDS process is a lower temperature process than the APS and VPS 

techniques and therefore it is possible that the particles post spraying retain 

there original structural characteristics. The CDS coating was also the least 

crystalline of the coatings. Either of these factors could contribute to the 

increase in p-TCP observed when the CDS coating is heat-treated. The 

CDS coating also showed a negative residual stress after the heat-treatment 

process, this is effectively a positive compressive residual stress. The CDS 

coating has the lowest residual stress of the sprayed coatings and for an 

equivalent peak shift observed in the APS coatings a compressive residual 

stress would be observed. A compressive residual stress in the coating 

should be beneficial to the coating performance, as this stress would act to 

close cracks in the coating and improve the adhesion of the coating to the 

surface as spalling of the coating is less likely.
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Microscopy of the heat-treated coatings showed that the heat-treatment 

resulted in a similar effect on all the coatings. As the heat-treatment 

temperature increases there is an increase in the number of cracks 

traversing the coating and porosity. The 900°C heat-treatment caused all of 

the coatings to form an interfacial layer between the coating and the titanium 

alloy. This interfacial layer is probably due to the growth of a titanium oxide 

layer or a possible reaction between the titanium and hydroxyapatite. 

Microscopy of the cross-section of the heat-treated coatings showed an 

apparent increase in the homogeneity of the coating as the heat-treatment 

temperature rises. This is due to the increase in crystallinity of the coating, 

as amorphous hydroxyapatite has a faster polishing rate than crystalline 

hydroxyapatite, due to the higher solubility of the amorphous to the 

crystalline hydroxyapatite. For the as sprayed coating the faster cooled 

hydroxyapatite is formed around the outside of splatted particles, this would 

polish preferentially to the slower cooled more crystalline centre of the splat. 

This shows up in the cross-section of coatings as layers which built up 

during spraying to form the coating. As the heat-treatment temperature 

increases these layer are harder to distinguish and not visible at the 800 & 

900°C heat-treatment temperatures. The layers in the coating become 

harder to distinguish as the difference in crystallinity between the outside 

and centre of a spatted particles becomes less. The thickness of the layers 

in the coating will determine whether the morphology of the coating is still 

visible at higher temperatures. This explains why APS1 with a thicker 

layered structure than APS4 has a visible structure at 800°C whereas APS4 

does not.

There are some large cracks visible in the cross-section of the VPS coating 

and this observation would correspond to the large residual stress measured
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in this coating. The porosity increase observed in most of the coatings as the 

heat-treatment temperature rises is probably due the crystallinity increase 

causing a rise in the brittleness of the coating and hence more damage 

occurs to the coating in the polishing procedure.
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Figure 3.6.1. XRD pattern for powder HA044 heat-treated at 1350°C.
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Figure 3.6.2. XRD pattern for powder HA044 heat-treated at 1450°C.
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Figure 3.6.3. XRD pattern for powder Amdry 6020 heat-treated at 1450°C.
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Figure 3.6.4. XRD pattern for VPS powder heat-treated at 1350°C and

1450°C.
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Figure 3.6.5. XRD patterns for heat-treated HA coating APS1

XRD pattern showing (004) peak for heat-treated APS1 HA
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Figure 3.6.6. XRD pattern showing the (004) peak for the heat-treated

APS1 HA coatings.
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Residual stress in heat-treated APS1 HA coatings
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Figure 3.6.7. Residual stress measurement in heat-treated APS1 HA

coatings.

std 600 C 700 C 800 C 900 C
Heat-treatment temperature

Heat-treatment of HA APS4 coatings
7000

6000

900 C5000

4000
800 C

3000
700 C

2000

600 C
1000

B-TCP Std

40
0

CaODiffraction angle, 2 theta

Figure 3.6.8. XRD patterns of heat-treated APS4 HA coatings.
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XRD pattern showing (004) peak for heat-treated APS4 HA
coatings
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Figure 3.6.9. XRD patterns showing (004) peak for heat-treated APS4 HA

coatings.
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Figure 3.6.10. Residual stress measurement in heat-treated APS4 HA

coatings.
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Figure 3.6.11. XRD patterns of heat-treated CDS HA coatings.
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Figure 3.6.12. XRD patterns showing (004) peak of heat-treated CDS HA

coatings.
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Figure 3.6.14. XRD patterns of heat-treated VPS HA coatings.
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Figure 3.6.15. XRD patterns showing (004) peak for heat-treated VPS HA

coatings.
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Figure 3.6.16. Residual stress measurement in heat-treated VPS HA

coatings.
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Figure 3.6.17. DIC optical micrograph of the cross-section of the as-sprayed

HA coating APS1 mag x160.

Resin

Ti

100 runH---------M

Figure 3.6.18 DIC optical micrograph of the cross-section of the HA coating

APS1 heat-treated at 600°C. mag x160.

137



Resin

100 run 
h------—w

Figure 3.6.19 DIC optical micrograph of the cross-section of the HA coating 

APS1 heat-treated at 700°C. mag x160.
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Figure 3.6.20. DIC optical micrograph of the cross-section of the HA coating

APS1 heat-treated at 800°C. mag x160.
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Figure 3.6.21 DIC optical micrograph of the cross-section of the HA coating 

APS1 heat-treated at 900°C. mag x160.
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Figure 3.6.22. DIC optical micrograph of the cross-section of the as-sprayed

HA coating APS4. mag x160.
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Figure 3.6.23. DIC optical micrograph of the cross-section of the HA coating 

APS4 heat-treated at 600°C. mag x160.
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Figure 3.6.24. DIC optical micrograph of the cross-section of the HA coating

APS4 heat-treated at 700°C. mag x160.
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Figure 3 6.25. DIC optical micrograph of the cross-section of the HA coating 

APS4 heat-treated at 800°C. mag x160.
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Figure 3 6.26. DIC optical micrograph of the cross-section of the HA coating

APS4 heat-treated at 900°C. mag x160.
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Figure 3.6.27. DIC optical micrograph of the cross-section of the as-sprayed

CDS HA coating mag x160.
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Figure 3.6.28 DIC optical micrograph of the cross-section of the CDS HA

coating heat-treated at 600°C. mag x160.
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Figure 3.6.29. DIC optical micrograph of the cross-section of the CDS HA 

coating heat-treated at 700°C. mag x160.
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Figure 3.6.30. DIC optical micrograph of the cross-section of the CDS HA

coating heat-treated at 800°C. mag x160.
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Figure 3.6.31 DIC optical micrograph of the cross-section of the CDS HA 

coating heat-treated at 900°C. mag x160.
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Figure 3.6.32. DIC optical micrograph of the cross-section of the as-sprayed

VPS HA coating, mag x160.
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Figure 3.6.33. DIC optical micrograph of the cross-section of the VPS HA 

coating heat-treated at 600°C. mag x160.
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Figure 3.6.34. DIC optical micrograph of the cross-section of the VPS HA

coating heat-treated at 700°C. mag x160.
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Figure 3.6.35. DIC optical micrograph of the cross-section of the VPS HA 

coating heat-treated at 800°C. mag x160.
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Figure 3.6.36. DIC optical micrograph of the cross-section of the VPS HA

coating heat-treated at 900°C. mag x160.
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3.7 In Vitro Testing of Hydroxyapatite Coatings.

All the HA coatings were exposed in Ringer’s solution at 37°C and either 

pH4.5 or pH7.2, as described in section 2.8. These coatings were examined 

for degradation using XRD, optical and scanning electron microscopy.

3.7.1 XRD of In Vitro Tested HA Coatings.

Sample Ar/N standard APS HA coating (APS1):

The APS1 HA coating exposed to the 4pH4.5 Ringer’s solution showed an 

increase in crystallinity from 60% in the as-sprayed coating to >90% in the 1 

week aged sample. Figure 3.7.1 shows the XRD pattern for the standard 

and 1 week aged APS1 HA coatings. There was minimal change in the XRD 

pattern between the 1, 2 & 4 week aged samples. The p-TCP and CaO 

present in the as-sprayed coating can not be detected in the exposed 

coatings.

The APS1 HA coating exposed in the pH7.2 Ringer’s solution also showed 

an increase in crystallinity. The XRD pattern for the 1 week aged sample 

indicated a crystallinity of -75%, the 2 & 4 week aged samples showed an 

increase in crystallinity to >90%, figure 3.7.2. The 1 week aged samples had 

a trace of p-TCP which was not detectable in the 2 & 4 week aged samples.
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Sample Ar/N over-heated APS HA coating (APS2):

The as-sprayed APS2 HA coating was 68% crystalline, contained 8% p-TCP 

and a trace of CaO. The APS2 sample aged for 1 week at pH4.5 showed an 

increase in crystallinity to >90% and no p-TCP or CaO was detected, figure 

3.7.3. The 2 & 4 week aged samples showed no significant difference from 

the 1 week aged sample.

The APS2 HA coating aged at 1 week at pH7.2 showed an increase in 

crystallinity to >80% and the p-TCP had reduced to -3%. There was no CaO 

detected in this coating. The XRD pattern for the 2 week aged sample 

indicated a higher crystallinity of >90% and a trace of p-TCP was detected. 

The crystallinity of the 4 week aged sample had increased to >90% and no 

trace of p-TCP was detected. The XRD patterns for the APS2 HA coating 

aged at pH7.2 are shown in figure 3.7.4.

Sample Ar/N under-heated APS HA coating (APS3):

The APS3 HA coating exposed in the pH4.5 Ringer’s solution showed a 

similar result to coatings APS1 and APS2. The crystallinity increased from 

63% to >90% after 1 week of ageing and remained the same for the 2 & 4 

week exposure periods. Also the CaO present in the as-sprayed coating was 

not detectable in the aged samples. Figure 3.7.5 shows the XRD patterns for 

the as-sprayed coating and the 1 week aged sample.

The APS3 HA coating aged for 1 week at pH7.2 showed an increase in 

crystallinity to «80% and no p-TCP or CaO was detected. The 2 & 4 week
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aged samples showed an increase in crystallinity to >90%. Figure 3.7.6

shows the XRD patterns for the 1,2 & 4 week aged samples at pH7.2.

Sample Ar/He standard APS HA coating (APS4):

The APS4 HA coating exposed in the pH4.5 solution for 1 week showed an 

increase in crystallinity from 67% in the as-sprayed coating to >90%. The 

crystallinity did not change at 2 or 4 weeks of ageing. There was no p-TCP 

or CaO detected in the as-sprayed coating or any of the aged coatings. 

Figure 3.7.7 shows the XRD patterns for the as-sprayed and the 1 week 

aged at pH4.5 coatings.

The APS4 HA coating exposed at pH7.2 showed an increase in crystallinity 

to «80% after 1 week of ageing and >90% at 2 & 4 weeks of ageing. There 

were no other phases detected in the aged coatings. Figure 3.7.8 shows the 

XRD patterns of the 1, 2 & 4 week HA coatings exposed at pH4.5.

Sample Ar/He over-heated APS HA coating (APS5):

The APS5 HA coatings aged at pH4.5 showed an increase in crystallinity 

from 76% in the as-sprayed coating to >90%. There was no significant 

difference between the 1, 2 & 4 week aged samples. Figure 3.7.9 shows the 

XRD pattern of the as-sprayed and 1 week aged coating.

The APS5 HA coating aged at pH7.2 showed a similar result to APS4 aged 

at pH7.2. There was an increase in crystallinity to «80% after 1 week of 

ageing and >90% at 2 & 4 weeks of ageing. There were no other phases
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detected in the aged coatings. Figure 3.7.10 shows the XRD patterns of the 

1, 2 & 4 week HA coatings exposed at pH4.5.

Sample Ar/He under-heated APS HA coating (APS6):

The APS6 HA coatings exposed for 1, 2 & 4 weeks at pH4.5 all showed an 

increase in crystallinity from 74% in the as-sprayed coating to >90%. There 

were no phases other than HA detected in the as-sprayed and aged 

coatings. Figure 3.7.11 shows the XRD patterns of the as-sprayed and the 1 

week aged HA coatings.

The APS6 HA coatings aged at pH7.2 for 1, 2 & 4 week showed an increase 

in crystallinity from the as-sprayed to >90%. There was no detectable p-TCP 

or CaO in these coatings. The XRD patterns for the 1, 2 & 4 week aged 

samples are shown in figure 3.7.12.

Sample standard CDS HA coating:

The CDS HA coatings exposed at pH4.5 for 1, 2 & 4 weeks showed an 

increase in crystallinity from 62% in the as-sprayed coating to >90% and no 

p-TCP was detected. Figure 3.7.13 shows the XRD patterns for the as- 

sprayed and the 1 week aged coatings.

The CDS HA coating exposed at pH7.2 for 1 week showed an increase in 

crystallinity to «75%. The broad p-TCP peak which was present in the as- 

sprayed coating, and corresponded to «4% p-TCP, has sharpened and 

indicates «6% p-TCP. At 2 & 4 weeks of ageing the crystallinity has
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increased to >85% and there is no detectable p-TCP. Figure 3.7.14 shows

the XRD patterns of the 1,2 & 4 week aged samples.

Sample VPS HA coating:

The VPS HA coatings exposed at pH4.5 for 1, 2 & 4 weeks showed an 

increase in crystallinity from 70% in the as-sprayed coating to >90%. The p- 

TCP detected in the as-sprayed coating is not detectable in the aged 

samples. The XRD patterns for the as-sprayed coating and the 1 week 

exposed HA coating are shown in figure 3.7.15.

The VPS coating aged at pH7.2 1, 2 & 4 weeks showed an increase in 

crystallinity to >90%. The p-TCP detected in the as-sprayed coating is no 

longer detectable in the aged samples. The XRD patterns for the 1, 2 & 4 

week aged coatings are shown in figure 3.7.16.

The XRD results for the pH4.5 exposed HA coatings are summarised in 

table 3.7.1 and the XRD results for the pH7.2 exposed HA coatings are 

summarised in table 3.7.2.
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SAMPLE STD 1 week 2 week 4 week

APS1 59% crystalline 

CaO

5% p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

APS2 68% crystalline 

CaO

8% p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

APS3 63% crystalline 

CaO

Trace of p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

APS4 67% crystalline 

no CaO 

no p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

APS5 76% crystalline 

no CaO 

no p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

APS6 74% crystalline 

no CaO 

no p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

CDS 62% crystalline 

no CaO 

4% p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

VPS 70% crystalline 

no CaO 

6% p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

Table 3.7.1. Summary of XRD results for HA coatings exposed at pH4.5.
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SAMPLE STD 1 week 2 week 4 week

APS1 59% crystalline 

CaO

5% p-TCP

*75% crystalline 

no CaO 

trace p-TCP

>90% crystalline 

no p-TCP

>90% crystalline

APS2 68% crystalline 

CaO

8% p-TCP

*80% crystalline 

no CaO 

3% p-TCP

>90% crystalline 

trace p-TCP

>90% crystalline 

no p-TCP

APS3 63% crystalline 

CaO

Trace of p-TCP

*80% crystalline 

no CaO 

trace p-TCP

>90% crystalline 

no p-TCP

>90% crystalline

APS4 67% crystalline 

no CaO 

no p-TCP

*80% crystalline 

no CaO 

no B-TCP

>90% crystalline >90% crystalline

APS5 76% crystalline 

no CaO 

no p-TCP

*80% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

APS6 74% crystalline 

no CaO 

no p-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

CDS 62% crystalline 

no CaO 

4% p-TCP

*75% crystalline 

no CaO 

6% p-TCP

>85% crystalline 

no CaO 

no p-TCP

>85% crystalline

VPS 70% crystalline 

no CaO 

6% P-TCP

>90% crystalline 

no CaO 

no p-TCP

>90% crystalline >90% crystalline

Table 3.7.2. Summary of XRD results for HA coatings exposed at pH7.2

153



3.7.2 Microscopy of In Vitro Tested HA Coatings.

Sample Ar/N standard APS HA coating (APS1):

SEM analysis of the surface of the coating exposed at pH7.2 for 1, 2 & 4 

weeks showed very little change from the as-sprayed coating. Figure 3.7.17 

shows an SEM micrograph of the APS1 coating after 4 weeks ageing at 

pH7.2. The coating looks very similar to the as-sprayed coating, with little 

evidence of dissolution of the coating. Optical microscopy of the coating 

cross-section showed no noticeable change from the as-sprayed coating. 

The coating thickness was not reduced and the porosity remained constant. 

Figure 3.7.18 shows an optical micrograph of the cross-section of APS1 

after ageing at pH7.2 for 4 weeks.

SEM examination of the HA coating APS1 aged for 1 week at pH4.5, figure

3.7.19, shows a difference from the as-sprayed coating. The surface of the 

coating shows areas of coral like appearance, which are caused by 

dissolution of the coating. After 2 weeks ageing at pH4.5 the coating surface 

appears to have increased in roughness by valleys being etched between 

outcrops of larger particles. At 4 weeks this effect is more apparent, figure

3.7.20. Some areas of the coating have been preferentially etched, one such 

area is shown in figure 3.7.21. After 2 weeks ageing the surface of the 

etched areas appears to consist of small agglomerated particles «1fim in 

size. Optical microscopy of the cross-section of HA coatings APS1 aged at 

1, 2 & 4 weeks, figures 3.7.22, 3.7.23 & 3.7.24, showed a layer at the
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surface of the coating being etched by the in vitro solutions. As the ageing 

time increased the etched layer also increased in thickness. Figure 3.7.24 

shows the thickness of coating etched at each ageing time for all HA 

coatings. The layer of coating which has been etched is highly porous and 

probably has much lower mechanical properties than the as-sprayed 

coating. This was evident when the coating surface was rubbed gently with 

the thumb, a powder would fall off the coating suggesting the coating 

surface was disintegrating.

Sample Ar/N over-heated APS HA coating (APS2):

SEM examination of the surface of HA coating APS2 after ageing for 1, 2 & 

4 weeks in pH7.2 in vitro solutions, figures 3.7.25, 3.7.26 & 3.7.27, showed 

some etching of the surface of the coating. As the ageing time increased 

the amount of etching increased. The increase in etching is evident from the 

large areas of surface covered with agglomerates of particles «1fim in size 

rather than the smooth glassy appearance of as-sprayed HA. Optical 

microscopy of the cross-section of the APS2 HA coating aged in pH7.2 in 

vitro solution showed very little change from the as-sprayed coating.

SEM analysis of the surface of the APS2 HA coatings aged in pH4.5 in vitro 

solution showed a similar result to the APS1 HA coatings. The etched area 

on the surface consisted of an agglomerate of particles «1/im in size. An 

SEM micrograph of a etched area is shown in figure 3.7.28. Optical 

microscopy of the cross-section of the HA coating APS2 aged in pH4.5 in
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vitro solution showed a similar result to APS1 with a layer of etched coating 

increasing in thickness as the ageing time increased. The coating thickness 

of APS2 was less than that of APS1 and at 4 weeks of ageing the thickness 

of the etched layer had exceeded the thickness of the coating, figure 3.7.29.

Sample Ar/N under-heated APS HA coating (APS3):

SEM examination of the surface of the HA coating APS3 aged in pH7.2 in 

vitro solution showed a steady increase in the amount of surface etching as 

the ageing time increased. This is apparent form the large number of areas 

consisting of agglomerated V m  particles which are only present in small 

quantities in the as-sprayed coating. Figure 3.7.30 shows the HA coating 

APS3 after ageing in pH7.2 in vitro solution for 4 weeks. Optical microscopy 

of the HA coating APS3 aged in pH7.2 in vitro solutions shows no significant 

change from the as-sprayed HA coating.

SEM examination of the surface of HA coating APS3 aged in pH4.5 in vitro 

solutions showed a similar result to APS1. The 1 week aged sample showed 

areas which were etched and unetched, figure 3.7.31. As the ageing time 

increases the etched areas increased in size and number. Optical 

microscopy showed an increase in the thickness of the etched layer similar 

to that of APS2. Figure 3.7.32 shows the 1 week aged sample, with the 

majority of the coating intact and an etched layer on the surface. As the 

coating thickness is less than APS1 the etched layer had penetrated to the 

Ti interface after the 4 weeks of ageing, figure 3.7.33.
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Sample Ar/He standard APS HA coating (APS4):

SEM and optical microscopy analysis for both the pH7.2 and pH4.5 in vitro 

solution aged APS4 coatings showed very similar results to APS3. The SEM 

analysis of the pH7.2 aged coatings showed an increase of etched areas as 

the ageing time increased. The optical microscopy indicated a minimal 

change from the as-sprayed coating. The optical microscopy of the pH4.5 

aged coatings showed an increase in the thickness of the etched layer as 

the ageing time increased. After 4 weeks of ageing in the pH4.5 in vitro 

solutions there is still a thin layer of intact coating at the interface with the 

titanium alloy substrate, figure 3.7.34.

Sample Ar/He over-heated APS HA coating (APS5):

Sample APS5 showed very similar results to APS3. The thickness of the 

etched layer had penetrated the full thickness of the coating after 4 weeks of 

ageing in pH4.5 in vitro solution.

Sample Ar/He under-heated APS HA coating (APS6):

Using SEM microscopy the appearance of the surface of coating APS6 was 

very similar to APS5 for pH 7.2 & 4.5 at all ageing times. The optical 

microscopy examination was also similar to APS5 with the coating being 

fully etched after the 4 week ageing time in pH4.5 in vitro solutions.
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Sample standard CDS HA coating:

SEM examination of the surface of the CDS HA coating aged in pH7.2 in 

vitro solution for 1 week, figure 3.7.35, shows very little change form the as- 

sprayed coating. The 2 and 4 week aged samples shows evidence of some 

ageing although not as evident as the APS coatings, figure 3.7.36. The 

optical microscopy of the cross-section of the CDS coating shows very little 

change from the as-sprayed coating for the pH7.2 in vitro aged samples. 

SEM examination of the surface of the CDS HA coatings aged in pH4.5 in 

vitro solution showed large cracks appearing on the surface of the coating 

after 1 week of ageing, figure 3.7.37. After 2 weeks of ageing these cracks 

had enlarged and etching was evident. At 4 weeks the coating was to fragile 

to view using the SEM. Optical microscopy of the cross-section of the CDS 

HA coating after ageing in pH4.5 in vitro solution showed that the etched 

layer had penetrated «50% of the thickness of the coating after 1 week of 

ageing, figure 3.7.38. After 2 weeks of ageing the etched layer had 

penetrated up to 80% of the coating thickness and at 4 weeks of ageing the 

full coating had been etched and had detached from the substrate leaving a 

thin layer of HA remaining on the substrate, figure 3.7.39.

Sample VPS HA coating:

SEM examination of the surface of the VPS HA coating aged in pH7.2 in 

vitro solution showed very little change from the as-sprayed coating. The
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optical microscopy of the cross-section of the VPS coating aged in pH7.2 in 

vitro solution showed no change from the as-sprayed coating.

SEM examination of the surface of the VPS HA coating aged in pH4.5 in 

vitro solution showed etching of the coating after 1 week, figure 3.7.40. The 

etched areas increased in size as the ageing time increased. The optical 

microscopy of the cross-section of the VPS coatings showed the etched 

layer penetrating almost to the interface with the titanium alloy substrate, 

figure 3.7.41.

3.7.3. Discussion of Results.

It has been reported that hydroxyapatite and other calcium phosphates are 

less stable at lower pH values [24, 45] and therefore the pH4.5 in vitro test is 

effectively an accelerated version of the pH7.2 tests. Wound healing 

conditions in the body result in a local pH of 4.5 and therefore the pH4.5 in 

vitro tests would also simulate the conditions the coating would experience 

when initially implanted into the body.

The XRD data for all of the HA coatings exposed in pH4.5 Ringer’s solution 

showed very similar results. The crystallinity of the coating had increased to 

>90% and any impurity phases had been dissolved. The increase in 

crystallinity can be attributed to dissolution of amorphous calcium phosphate 

in preference to crystalline hydroxyapatite. The Ringer’s solution initially acts 

on the surface of the coating and as amorphous calcium phosphate is less 

stable than crystalline hydroxyapatite the amorphous phase is preferentially
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dissolved leaving crystalline hydroxyapatite on the surface of the coating. 

The X-ray beam penetrates «5jum into the surface of the coating and is 

therefore a surface orientated technique. The unexposed coating has a 

mixture of crystalline and amorphous hydroxyapatite at the coating surface, 

after exposure to the pH4.5 Ringer’s solution the majority of the surface is 

crystalline and hence the crystallinity measured by XRD increases. Although 

the unexposed coating below the affected zone probably has a similar 

crystallinity to the as-sprayed coating. The CaO and p-TCP have been 

reported to have a lower stability than hydroxyapatite when exposed in vitro, 

this explains the loss of these phases after exposure in Ringer’s solution. In 

a similar way to the amorphous hydroxyapatite dissolving from the surface 

the CaO and p-TCP will also be dissolved preferentially to crystalline 

hydroxyapatite.

The XRD results for the pH7.2 in vitro tests showed a similar result to the 

pH4.5 in vitro tests, although the dissolution of the phases was at a slower 

rate. The crystallinity increases and attains a similar crystallinity to the pH4.5

1 week aged samples after 4 weeks of ageing. The p-TCP present in the 

Ar/N2 gas mixture APS coatings and the CDS coating was not detectable at

2 weeks of ageing for all the coatings except for the overheated APS Ar/N2 

gas mixture coating (APS2) which had a trace of p-TCP at 2 weeks and this 

had dissolved by 4 weeks. The APS2 coating had the largest percentage p- 

TCP post spraying and this shows that the p-TCP dissolves at a relatively 

slow rate at pH7.2 and the more p-TCP present the longer it will remain in
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the coating post implantation. The CaO present in the Ar/N2 APS coatings 

had dissolved after 1 week of ageing. The XRD results show that after 4 

weeks of ageing at pH7.2 all the coatings have effectively the same surface 

composition. Hydroxyapatite coatings which have a high percentage of 

amorphous calcium phosphate or other calcium phosphate phases partially 

dissolve when implanted in the body. The rate of dissolution and quantity of 

coating dissolved depends on the ratio of hydroxyapatite to these other 

phases, the higher the percentage of other calcium phosphate phases the 

faster the coating will dissolve. One of the advantages of a coating which 

dissolves is that the new bone forming around the implant has a local supply 

of calcium and phosphate ions to aid bone growth. This can enhance the 

bone formation and speed of the fixation of the implant. The disadvantage of 

a coating that dissolves is that the structural integrity of the coating is 

reduced which can cause the coating to spall off the implant and produce 

potentially damaging wear particles.

The microscopy of all the HA coatings exposed at pH7.2 showed very 

minimal change to the as-sprayed coatings. There was no significant change 

in the coating thickness or an increase in porosity. The surface of the 

coatings when viewed using scanning electron microscopy showed minimal 

change despite the XRD results suggesting that some dissolution of the 

coating had occurred. Gross & Berndt [44] used Ringer’s solution to in vitro 

test amorphous and crystalline HA coatings. They found the amorphous
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coating reduced in weight by «20% after 4 weeks of ageing and the surface 

of the coating when examined using SEM showed significant disintegration . 

The crystalline coatings showed a very minimal weight gain and the surface 

of the coating did not disintegrate. The hydroxyapatite coatings used in this 

work are all semi-crystalline and showed minimal change for the ageing at 

pH7.2 which is similar to the result found by Gross & Berndt for the 

crystalline hydroxyapatite coatings. At pH4.5 the degradation of the coatings 

was significant with cracks and etching appearing on the surface and 

through the cross-section of the coatings. The pH4.5 result is similar to the 

result obtained by Gross & Berndt for the amorphous coating exposed to 

Ringer’s solution.

Scanning electron microscope images of the surface of the APS & VPS 

hydroxyapatite coatings which had been exposed in Ringer’s solution at 

pH4.5 for a couple of weeks showed etched areas which appeared to 

consist of agglomerated particles «1|um in size. The powders which were 

used to spray these coatings, Amdry 6020 and XPTW601, were formed by a 

sintering and crushing technique. SEM micrographs of the powder particles, 

3.1.8 & 3.1.13, showed that the particles were sintered from smaller particles 

«1 fim in size. The structure of the etched surface of the coatings and the 

powder particles show some similarities. APS and VPS coatings consist of a 

mixture of fully melted and partially melted particles. The partially melted 

particles have a molten surface and a solid core. The molten surface of the 

particles enables it to adheres to the substrate while the core of the particle
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would remain unchanged. The surface of a molten particle experiences a 

very rapid cooling rate when impacting the substrate which would cause the 

surface to be almost totally amorphous hydroxyapatite. When the surface is 

exposed to the pH4.5 Ringer’s solution the amorphous hydroxyapatite 

dissolves leaving the more crystalline core of the partially molten particle. 

This explains the correlation between the agglomerated etched structure on 

the surface of an exposed coating and the structure of the powder particles. 

The CDS coating exposed at pH4.5 showed the splats on the surface 

splitting and cracking, fig. 3.7.37. This is similar to the result found by Gross 

& Berndt [44] with the amorphous APS hydroxyapatite coating exposed in 

Ringer’s solution. The structural integrity of the surface layer of the CDS 

coating is severely reduced by ageing at pH4.5. This is evident when the 

coating can be rubbed from the substrate of the coating with a thumb. The 

cross-sectional microscopy of the CDS coating shows that the coating has 

rapidly dissolved, fig. 3.7.38. At 4 weeks of ageing the coating has 

completely detached from the substrate, due to dissolution, fig.3.7.39. The 

other hydroxyapatite coatings also show the dissolution of the coating at 

pH4.5, although not at such a rapid rate as the CDS coating. The dissolution 

appears to progress from the surface of the coating towards the 

hydroxyapatite/ titanium alloy substrate interface in a linear manner along 

the length of the coating. Cracks which propagate from the coating surface 

towards the hydroxyapatite / titanium alloy interface do not cause Ringer’s 

solution to dissolve the hydroxyapatite from the interface which could result

163



in the coating spalling off the substrate. For all of the coatings, the affected 

part of the coating is not completely dissolved and a highly porous layer is 

seen on top of a seemingly intact coating. The porous layer appears to have 

been etched around the edges of splatted particles which suggests that the 

amorphous hydroxyapatite around the edge of splatted particles is dissolved 

preferentially to the slower cooled more crystalline core.

The coating thickness dissolved in pH4.5 Ringer’s solution at 2 weeks and 

the crystallinity of the as-sprayed coatings are plotted in figure 3.7.43. A 

relationship is apparent in that the more crystalline coatings dissolve at a 

slower rate. Although there is not a large difference in crystallinity between 

the hydroxyapatite coatings the dissolution rate is affected. The fact that 

amorphous coating dissolves at a faster rate than crystalline coatings has 

been reported in the literature. This work shows that small differences in 

crystallinity can make a difference to the dissolution rate of the coating, and 

the dissolution rate is fairly independent of spraying technique.
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XRD pattern for standard and 4.5pH 1week aged APS1
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Figure 3.7.1. XRD patterns showing as-sprayed and 1 week aged in pH4.5 

Ringer’s solution APS1 HA coating.

XRD pattern for APS1 aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.2. XRD patterns showing 1,2 & 4 week aged in pH7.2 Ringer’s

APS1 HA coatings.
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XRD pattern for standard and 4.5pH 1week aged APS2
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Figure 3.7.3. XRD patterns showing the as-sprayed and 1 week aged in 

pH4.5 Ringer’s solution APS2 HA coating.

XRD pattern for APS2 aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.4. XRD patterns showing the 1,2, & 4 week aged in

pH7.2 Ringer’s solution APS2 HA coating.
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XRD pattern for standard and 4.5pH 1week aged APS3
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Figure 3.7.5. XRD patterns showing the as-sprayed and 1 week aged in 

pH4.5 Ringer’s solution APS3 HA coating.

XRD pattern for APS3 aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.6. XRD patterns showing the 1,2 & 4 week aged in pH7.2

Ringer’s solution APS3 HA coatings.
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XRD pattern for standard and 4.5pH 1week aged APS4
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Figure 3.7.7. XRD patterns showing the as-sprayed and 1 week exposed in 

pH4.5 Ringer’s solution APS4 HA coating.

XRD pattern for APS4 aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.8. XRD patterns showing the 1,2 & 4 week aged in pH7.2

Ringer’s solution APS4 HA coatings.
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XRD pattern for standard and 4.5pH 1week aged APS5
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Figure 3.7.9. XRD patterns showing the as-sprayed and 1 week exposed in 

pH4.5 Ringer’s solution APS5 HA coating.

XRD pattern for APS5 aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.10. XRD patterns showing the 1,2 & 4 week aged in pH7.2

Ringer’s solution APS5 HA coatings.
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XRD pattern for standard and 4.5pH 1week aged APS6
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Figure 3.7.11 XRD patterns showing the as-sprayed and 1 week exposed 

in pH4.5 Ringer’s solution APS6 HA coating.

XRD pattern for APS6 aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.12. XRD patterns showing the 1,2 & 4 week aged in pH7.2

Ringer’s solution APS6 HA coatings.
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XRD pattern for standard and 4.5pH 1week aged CDS coating
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Figure 3.7.13. XRD patterns showing the as-sprayed and the 1 week aged 

in pH4.5 Ringer’s solution CDS HA coatings.

XRD pattern for CDS coating aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.14. XRD patterns showing the 1,2 & 4 week aged in pH7.2

Ringer’s solution CDS HA coatings.
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XRD pattern for standard and 4.5pH 1week aged VPS coating
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Figure 3.7.15 XRD patterns showing the as-sprayed and the 1 week aged 

in pH4.5 Ringer’s solution VPS coating.

XRD pattern for VPS coating aged at 7.2pH for 1, 2 & 4 weeks
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Figure 3.7.16. XRD patterns showing the 1,2 & 4 week aged in pH7.2

Ringer’s solution VPS HA coatings.
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Figure 3.7.17. SEM micrograph of the surface of HA coating APS1 after 

ageing at pH7.2 for 4 weeks, mag. x1000.
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Figure 3.7.18. DIC optical micrograph of the cross-section of HA coating

APS1 after ageing at pH7.2 for 4 weeks, mag. x160.
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Figure 3.7.19. SEM micrograph of the HA coating APS1 aged for 1 week at 

pH4.5. mag. x1000.

10KU

Figure 3.7.20. SEM micrograph of the HA coating APS1 aged for 4 weeks

at pH4.5. mag. x1000.
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Figure 3.7.21. SEM micrograph of the HA coating APS1 aged for 2 weeks 

at pH4.5. mag. x2000.
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Figure 3.7.22. DIC optical micrograph of the cross-section of HA coating

APS1 after ageing at pH4.5 for 1 weeks, mag. x160.
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Figure 3.7.23. DIC optical micrograph of the cross-section of HA coating 

APS1 after ageing at pH4.5 for 2 weeks, mag. x160
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Figure 3.7.24. DIC optical micrograph of the cross-section of HA coating

APS1 after ageing at pH4.5 for 4 weeks, mag. x160.
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Figure 3.7.25. SEM micrograph of the HA coating APS2 aged for 1 weeks 

at pH4.5. mag. x1000.

Figure 3.7.26. SEM micrograph of the HA coating APS2 aged for 2 weeks

at pH4.5. mag. x1000.
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Figure 3.7.27. SEM micrograph of the HA coating APS2 aged for 4 weeks 

at pH4 5. mag. x1000.

Figure 3.7.28 SEM micrograph of the HA coating APS2 aged for 1 week at

pH4.5 showing an etched area. mag. x4000.
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Figure 3.7.29. DIC optical micrograph of the cross-section of HA coating

1 0 K U

APS2 after ageing at pH4.5 for 4 weeks mag. x160

Figure 3.7.30. SEM micrograph of the HA coating APS3 aged for 4 weeks

at pH7.2. mag. x1000.
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Figure 3.7.31 SEM micrograph of the HA coating APS3 aged for 1 week at 

pH4.5, showing etched and unetched areas, mag. x2200.
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Figure 3.7.32. DIC optical micrograph of the cross-section of HA coating

APS3 after ageing at pH4.5 for 1 weeks, mag. x160.
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Figure 3.7.33. DIC optical micrograph of the cross-section of HA coating 

APS3 after ageing at pH4.5 for 4 weeks, mag. x160.
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Figure 3.7.34. DIC optical micrograph of the cross-section of HA coating

APS4 after ageing at pH4.5 for 4 weeks, mag. x160.
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Figure 3.7.35. SEM micrograph of the HA coating CDS aged for 1 weeks at 

pH7.2. mag. x1000.

Figure 3.7.36. SEM micrograph of the HA coating CDS aged for 4 weeks at

pH7.2 mag. x1000.
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Figure 3.7.37. SEM micrograph of the HA coating CDS aged for 1 weeks at 

pH4.5. mag. x1000.
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Figure 3.7.38. DIC optical micrograph of the cross-section of HA coating

CDS after ageing at pH4.5 for 1 week. mag. x160

183



Resin

1 OOf-im 
h-------- w

Figure 3.7.39. DIC optical micrograph of the cross-section of HA coating 

CDS after ageing at pH4.5 for 4 weeks, mag. x160.

Figure 3.7.40. SEM micrograph of the HA coating VPS aged for 1 weeks at

pH4.5. mag. x2000.
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Figure 3.7.41. DIC optical micrograph of the cross-section of HA coating 

VPS after ageing at pH4.5 for 4 weeks, mag. x160.
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Figure 3.7.42. Thickness of etched layer from the pH4.5 in vitro solution

aged HA coatings.
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Relationship between % amorphous calcium 
phosphate and rate of dissolution of the HA 

coating aged in 4.5pH Ringers solution
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Figure 3.7.43. Relationship between % amorphous C a/P04 and the rate of 

dissolution of the HA coating aged in pH4.5 Ringer’s solution for 2 weeks.
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4.0 Summary & Conclusions.

4.1 Powder Characterisation.

• Powders Amdry 6020 and XPT W 601 showed a crystalline 

hydroxyapatite which is characteristic of a powder which had been 

manufactured by a precipitation, sintering and crushing route.

• Powder HA 044 consisted of two particle morphologies, sponge like 

spherical particles and rectangular particles, the crystallinity of this 

powder was >90% and the manufacturing processes used were 

probably spray drying and precipitation.

• The particle size of the three powders was different due to the three 

spraying processes having different thermal energies and requiring 

particles to have a certain heat capacity to prevent particles from 

vaporising or not melting.

• The EDX technique showed no significant difference in the Ca/P ratio 

for the three powders.

4.2 Hydroxyapatite coating characterisation.

• The three spraying processes produced coatings with different 

structure and morphology.

• The morphology of all the coatings consists of a polyphase structure of 

crystalline and amorphous hydroxyapatite.

• Varying the spraying parameters of the APS process produced 

coatings with different morphologies.
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• The VPS & CDS processes produced coatings with the lowest 

porosity.

• The highest power Ar/N APS coatings, APS2, showed the highest 

coating deposition efficiency and also the highest p-TCP %. 

Concluding that the higher the power of the plasma the greater the 

deterioration of the hydroxyapatite.

• By varying the spraying parameters the residual stress can be 

controlled.

• Residual stress increases with increasing coating thickness.

• The CDS process produced the lowest residual stress in the coating.

4.3 Shear Testing of HA Coatings.

• Shear testing of the hydroxyapatite coatings showed that the three 

spraying processes produced coatings with different shear strengths.

• The highest power processes APS2 and VPS produced the coatings 

with the strongest shear strength. The lowest shear strength was for 

the CDS process which is a relatively low temperature process.

• A relationship between crystallinity and shear strength has been 

shown. This relationship can be attributed to the power of the process 

effecting the molten state of the particles prior to coating deposition.

4.4 Tensile testing of HA coatings.

• Results obtained using this test method were inconclusive due to poor 

test sample alignment.
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4.5 Acoustic emission of HA coatings.

• HA coatings fail by microcracking when subjected to a bending stress.

• Thin coatings withstand higher deformation before substantial 

microcracking occurs.

• The higher residual stress in the APS Ar/N gas mixture coatings 

results in higher D parameters for similar thickness coatings.

• SEM results show APS2 to have a large number of hairline 

microcracks, probably due to the higher power of the APS2 plasma 

producing a glassy coating which is more susceptible to brittle 

fracture.

4.6 Heat-treatment of Hydroxyapatite Powders and Coatings.

• Heat-treatment of all the powders showed similar results above 

1350°C; all powders decomposed into a-TCP and calcium oxide 

phosphate with a small amount of hydroxyapatite remaining.

• Powder HA 044 showed an increase in p-TCP from 650°C to 1150°C, 

probably caused by crystallisation of amorphous calcium phosphate.

• Powders Amdry 6020 and XPT W 601 showed very little change until 

the temperature of 1350°C, where the hydroxyapatite showed signs of 

dissociation into a-TCP and calcium oxide phosphate.

• Heat-treatment of the coatings increased the crystallinity which would 

increase the longevity of the coating in vivo.

• Heat-treatment of the coatings below the temperature of 800°C 

reduced the tensile residual stress in the coating, which should 

improve the fatigue resistance of the coating.
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• Microscopy of the coatings shows an increase in homogeneity of the 

coating as the heat-treatment temperature rises, due to the 

amorphous phase in the coating crystallising and therefore having a 

similar polishing rate to the crystalline phase.

•  The 900°C heat-treatment temperature showed an increase in tensile 

residual stress and the formation of an interfacial layer at the interface 

between the hydroxyapatite and the titanium alloy substrate. The 

increase in residual stress could be due to a combination of factors:

I. A difference in the thermal expansion coefficients of the titanium alloy 

substrate and the hydroxyapatite coating.

II. A reaction may occur between the hydroxyapatite coating and the 

titanium alloy substrate.

III.Formation of an oxide layer at the titanium alloy hydroxyapatite 

interface.

IV.Degradation of the hydroxyapatite coating.

V. A phase transition in the titanium alloy substrate causing a change in 

thermal expansion coefficient.

4.7 In Vitro Testing of Hydroxyapatite Coatings.

• The pH4.5 in vitro test is effectively an accelerated test of pH7.2.

• The observed increase in crystallinity of the hydroxyapatite coatings 

aged at pH4.5 & 7.2 is related to dissolution of amorphous phase at 

surface of coating leaving the more stable crystalline hydroxyapatite 

exposed for analysis by the XRD technique..
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•  Hydroxyapatite coatings aged at pH7.2 showed an increase in 

crystallinity after 1 and 2 weeks and finally reached a similar 

crystallinity to pH4.5 after 1 week of ageing.

•  Other calcium phases present in the coating dissolve rapidly at pH4.5.

•  Other calcium phases dissolved at pH7.2 although at a slower rate 

than pH4.5.

•  Optical microscopy indicated no significant change in the morphology 

of the coating for the hydroxyapatite coatings aged at pH7.2. SEM of 

the surface of pH7.2 aged coatings showed minimal change at 1 week 

and a small amount of dissolution at 2 & 4 weeks.

•  Optical microscopy of pH4.5 aged coatings showed a partially 

dissolved layer on the surface of the coating which increased in 

thickness with ageing time.

•  SEM microscopy of the surface of the VPS and APS aged coatings 

showed agglomerated particles on the surface of the coating which 

resembled the structure of the spraying powders used to produce 

these coatings.

•  The aged CDS coating showed fracture of the particle splats on the 

surface of the coating and general coating disintegration.

•  For the duration of the pH7.2 in vitro test the coating thickness remains 

unchanged.

•  The coatings aged at pH4.5 show a partially dissolved layer of 

hydroxyapatite coating starting from the surface and progressing 

towards the interface.
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•  The rate of dissolution of the coating at pH4.5 is dependent on initial 

crystallinity of the coating.

In general :

•  Varying the spraying parameters produces a coating with different 

properties.

•  Varying the spraying powder can also effect the coating which is 

produced.

•  Characterisation of thermal sprayed HA coatings has been 

successfully achieved using several conventional and novel 

techniques.

•  By selecting a spraying process, an HA powder and varying the 

spraying parameters, one can achieve a coating with the structure and 

composition that is required.

•  The new CDS process produced HA coatings of equivalent quality to 

those achieved by the conventional APS and VPS processes.
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5.0 Further Work.

•  Investigate the effect of varying spraying parameters and powder 

morphology for the VPS and CDS spraying techniques.

•  Perform in vitro testing of heat-treated coatings to confirm that the 

increase in crystallinity results in a more stable coating.

•  Investigate the effects of fatigue on as-sprayed, heat-treated and in 

vitro tested samples.

•  Investigate the use of the acoustic emission D parameter for accessing 

the failure mechanism of other coatings and relate the D parameter to 

fatigue life of these coatings.

•  Compare the XRD measurement of the residual stress with another 

residual stress measurement technique and relate the residual stress 

to adhesion and fatigue strength of the coatings.
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Appendix 1

Differential Interference Contrast (DIC).

This can be described as phase contrast in colour. It converts the grey levels 

caused by optical path differences into chromatic differences. In reflected 

light it converts not differences in height but angles into colour differences. In 

transmitted light it is the refractive index difference that introduces the 

colours.

Principle of DIC.

Differential interference (after Nomarski) makes use of a birefringent beam­

splitter (see figure A1.(a)), where the incident beam is split into two; the 

ordinary ray and the extraordinary ray. The shear or separation between 

these two rays is less than the limit of resolution for the objective being 

used; therefore no double image should be orthoscopically observed. These 

two rays are polarised, the planes of vibration being perpendicular to each 

other. Figure A1.(b) shows the modified beam-splitter consisting of two 

wedge shaped uniaxial prisms, whose optic axes are at right angles to each 

other. The incident polarised beam is still split into two but this time the 

second prism causes the two rays to intersect at the objective back focal 

plane. The ordinary and extraordinary rays will when recombined have 

travelled different optical path distances. In order to equalise the intensities 

of the two rays, the wedge is placed at 45° to the incident polarised light
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direction. These two rays when combined in the primary image plane, 

although of different optical path difference (OPD), will not interfere because 

their directions of vibration are perpendicular to each other. In order to 

observe colours the analyser must be introduced.

When this technique is utilised in the reflected light microscope, the polars 

are crossed and the wedge is at 45°. The background colour will no longer 

be extinguished but exhibits a

Incident
light

. ! .
Shear

A

Ordinary ray 

Extraordinary ray

(a )

Incident
polarised
light

(b)

Objective
>
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BFP
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\  j
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(  v and • indicate the direction of the optic axis. )

Figure A1. Creating the optical path difference, (a) Single beam-splitter and

(b) modified beam-splitter.
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colour relative to the OPD of the birefringent wedge, the background colour 

changing with every lateral movement of the wedge. In order to have one 

single colour across the whole field of view, the plane of fringe localisation 

must coincide with the objective back focal plane. Figure A2 show the 

reflected light microscope set up.

Observations in reflected light shows the background colour as indicative of 

the wedge position. Changes to this coiour occur with every optical path 

difference. This being so the one will be able to detect slope or angle 

differences not, as is often portrayed, step difference.

Polars
crossed

Wedge

Object plane

Specimen

Figure A2. Reflected light Nomarski microscope.
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Fortunately most surfaces being investigated by the materialographer 

constitute a series of curves. These curves are inevitable when mechanically 

preparing a two- or multiphase material, due to preferential polishing.

This qualitative study renders a sharply defined relief-like image with an 

excellent variable range contrast of zero-order to first-order interference 

colours. The interference relief-like images exhibit different colours with the 

degree of relief and will all change with a change in background coiour.
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