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Sum m ary

Granular materials consist of many components packed together with a complex mi

crostructure of solid and fluid phases. A dense, random packing of spheres is one simple 

model that can be used to describe such a medium and which can help to predict its 

properties. This simplification has been used by many authors, including Walton [86] 

upon whose work this thesis is based. His work, along with relevant background ma

terial, is described in detail in Chapter 1. The work presented here concentrates on 

extending and developing Walton’s model, which predicts the macroscopic properties 

of a packing of spheres, using the known microscopic properties of the grains. In 

particular, the effective elastic moduli for the packing are derived.

Chapter 2 extends Walton’s model [86] to consider the effect of an initial biaxial com

pression applied to a packing of equal-sized spheres. The effective elastic moduli in 

this case are derived, first using precisely the same method as Walton and then also 

the results of Slade [76] who found that a modification to Walton’s theory is required.

In Chapter 3, a perturbation of Walton’s theory is considered in order to obtain mod

ified expressions for the effective elastic moduli of a random packing of equal sized 

spheres. Chapter 4 then discusses the numerical calculations tha t must be carried out, 

in order to calculate the value of parameters which arise in the theoretical expressions 

of Chapter 3. At the end of Chapter 4, the values predicted by the new theoretical 

expressions are compared with those of a numerical simulation by Jenkins et al. [43]. 

Chapters 5 and 6 continue to develop Walton’s method, extending the work to a binary 

packing of spheres, that is a random packing containing two sizes of sphere. Chapter 

5 applies Walton’s method directly, but in Chapter 6 a perturbation of this method is 

again used, thus combining the methods presented in Chapters 3 and 5.

C h a p t e r  0 2
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N otation

For easy reference later on, presented here is a summary of the main notation used in 

this thesis.

X(n) The position vector of the centre of the n th  sphere.

U(n) The displacement of the centre of the n th  sphere.

ljW  The rotation of the n th  sphere about an axis through its centre.

p(nn') force acting on the n th  sphere due to its contact with the n 'th .

j(nn') un-t vector directed along the line of centres between the n th  and n 'th

sDheres l(nn') =  ■spneres, 1 ||x(")_x(n#)||

R  is the sphere radius

N  is the total number of of spheres within the packing.

V  is the total volume of the packing.

r fn  ̂ is the average number of spheres in contact with the n th  sphere, 77 is the average 

number of contacts within the packing.

(j) is the volume concentration of the spheres, i.e. 0  =  47r̂ /v 

j(n) _  1 v  Ann')
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From chapter 3 onwards, <  . >  represents the average value within the packing, taken

over all contacts.
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B  = ^  ^  +  x+jl)’ ^ anc  ̂V are Lame moduli for the material
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A  ~  (1 4 B + 3 C )

R! =  R iR s(Ri + R s) 1, where i?/ and are the radii of large and small spheres, 

respectively.
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Chapter 1

Introduction

1.1 O verview  o f T h esis

There has been an increasing interest in the study of granular materials over the past 

decade and a half. It has become a widely inter-disciplinary work area. A series of 

conferences entitled ‘Powders and Grains’ has brought together some of the various 

research advances from many different groups. The first held in Clemont-Ferrand, 

France, in 1989 [7] has been followed by a further two, one held at Aston in 1993 [80] 

and the most recent at Durham, North Carolina in 1997 [3]. They have concentrated 

on the subject of particulate ensembles and have shown the rapid increase in knowledge 

and the varied applications that are possible in many research areas.

Another specific example of a compilation of work is the book, ‘Disorder and Granular 

Media’, edited by Bideau and Hansen [8]. This contains recent progress that has been 

made in the physics of granular material as well as some fundamental concepts and 

ideas about the field, such as the geometrical characterization of granular media and 

elementary approach to flow in porous media. The book is intended to be accessible to 

researchers from a variety of backgrounds.

Granular materials are met in a large number of situations. For example, in materials 

science, they occur in the initial stage of preparation of composites, ceramics and 

sintered materials. Their various qualities are critically dependent upon the condition 

of the initial setting. In chemical engineering, many processes involve the use of finely 

divided m atter, for example, anything from the combustion of solids, to heat exchangers 

and catalysers. W ithin agriculture and the food industry, the processes which make

11



1.1. OVERVIEW OF THESIS

use of natural granular substances and powders of very different grades, depend upon 

the heterogeneous structure. Probably the subject areas in which the most research 

has been done are mechanical and soil engineering and also the geophysical sciences. 

Naturally occurring geological structures can be observed to exhibit many effects of 

packing and flow of grains. Civil engineering should also be mentioned, particularly in 

the use of grains of variable size, mixed with a bonding agent.

There is a growing interest in the use of numerical simulations to predict the properties 

of granular media. These have again been used in a wide variety of applications. 

One approach is tha t in which the granular material is treated as an ensemble of 

particles, rather than as a continuum. Cundall [19] was one of the first to introduce 

this technique and since then it has been applied to statistical micromechanics, Cundall 

and Strack [24] and Bathurst and Rothenburg [2], the constitutive behaviour of granular 

soils, analysis of rock-support interaction [50] and other areas of soil mechanics [81]. It 

was the results of numerical simulation which motivated most of the work presented 

in this thesis. There was an apparent lack of agreement between the predictions of the 

simulation and those of the theory.

This thesis contains the modelling of a granular material as a system of spherical parti

cles and attem pts to predict the macroscopic properties of this packing, from the known 

microscopic properties. We concentrate on finding the effective elastic moduli from the 

known properties of the grains which include elastic properties of each individual grain, 

the density of the packing and the type of contact between one grain and another. We 

concentrate specifically on spherical grains. When the particles are not spherical, parti

cle shape is a further microstuctural known quantity, the effects of which will influence 

the overall behaviour. Several authors have considered non-spherical particles, includ

ing in particular Sackfield and Hills [69] and [70]. In his thesis, Slade [76], considered 

an oblique-oblique loading of two oblate spheroidal particles and then proceeded to 

use this to model a rondom packing of such particles. The purpose of his work was to 

attem pt to model pat kings of shale particles such as might be present in an ocean bed.

As well as concentrating on spherical particles, we also specifically consider contacting 

particles which have identical elastic properties. Much work has been done on composite 

materials, for example, Hashin [37] provides a useful survey to review the analysis of 

composites from the perspectives of applied mathematics and engineering science. He

C h a p t e r  1 12



1.1. OVERVIEW OF THESIS

considers the properties of three general types of composites: 1) statistically isotropic 

composites, this group includes the cases of random mixtures of two phases, m atrix 

containing spherical type particles or randomly oriented elongated particles and porous 

media, 2) fiber composites, and 3)cracked materials.

The contact between two spheres is a fundamental problem which we shall consider. 

Chapter 2 is an extension of the work found in Walton [86]. When Walton [86], orig

inally did the work he only considered the results for initial hydrostatic and uniaxial 

strains. Expressions for the effective elastic moduli axe calculated upon application of 

a further general incremental strain. Our Chapter 2 considers the same calculations for 

a random packing of equal sized spheres under an initial applied compressive biaxial 

strain.

Chapter 3 proceeds to look at the uniform strain approximation, described later in 

this first Chapter and the method used by Walton [86] amongst others. In fact, we 

also use it in Chapter 2 to describe the displacement of each sphere after the strain 

has been applied to the boundary of the packing. Chapter 3, however, attem pts to 

modify this approximation in order to obtain revised theoretical predictions of the 

elastic properties, when the average co-ordination number of the packing is fairly low. 

The effective elastic moduli are calculated and the results compared with the numerical 

results due to Jenkins et al. [43].

In Chapter 4, we discuss the numerical simulations performed in order to determine 

the values of those parameters which arise in the theoretical calculations. We briefly 

consider the results for 2-D packings although we are mainly concerned with those for

3-D. These parameter values allowed us to compare our new theoretical results from 

other chapters with previously obtained numerical simulation predictions.

Chapters 5 and 6 deal with a random binary packing of spheres, tha t is a random 

packing containing spheres of two different sizes. Chapter 5 incorporates the use of the 

uniform strain approximation, again in order to calculate the effective elastic moduli 

after considering initial hydrostatic, uniaxial and biaxial compressive strains. Chapter 

6 combines the methods of both Chapters 3 and 5 to determine the effective elastic 

moduli using our pen urbation of the uniform strain approximation, applied to a binary 

packing of spheres. Chapter 6 also contains a description of the numerical simulations

C h a p t e r  1 13



1.2. CONTACT PROBLEMS

Figure 1-1: The region 7Z on the boundary of the half-space z > 0

that were performed to calculate the values of parameters that arise in the theoretical 

expressions.

1 .2  C o n ta c t P r o b le m s

We begin in this section by presenting several results which will be required later in 

the thesis when discussing the problem of two elastic spheres in contact. We initially 

consider the deformations that occur when a semi-infinite, elastically isotropic half

space is loaded under normal and tangential tractions. Outside the loaded area, both 

the normal and tangential forces are zero. In general, the solutions to these half-space 

problems can be used when considering Hertz [39] theory of elastic contact. Restricting 

attention to the particular case of a circular region of applied traction, this can be 

applied to the specific case of Hertz theory for two elastic spheres in contact.

1 .2.1 H a lf-sp ace  P ro b le m s

Figure 1-1 shows the set of rectangular Cartesian axes Oxyz  which we shall consider, 

where the z-axis is directed downwards. The half-space z >  0 is bounded by the plane 

z =  0. Under the action of normal and tangential loadings, applied to the region 7£, 

deformations and stresses are produced. As the loading is zero outside TZ, we have a 

problem in which all the tractions are specified on the boundary z =  0. In the next 

sections we discuss the solutions of Boussinesq [11] and Cerutti [15], who use the theory 

of potentials to find the solutions to such problems.

Such solutions are often unique only to within an arbitrary rigid body displacement 

and rotation and thus we impose the condition that the displacement and rotation at

C h a p t e r  1 14



1.2. CONTACT PROBLEMS

infinity tend to zero.

1 .2 .2  B o u ss in e sq ’s P ro b lem

The problem of finding the surface displacements due to a concentrated normal force 

acting on the boundary of a homogenous isotropic half-space is known as Boussinesq’s 

problem. Several books include the derivation of the potential function of Boussi- 

nesq [11] and also that of the potential function of Cerutti [15], this latter problem be

ing described in the next section. Some such books include those written by Love [51], 

Mai and Singh [52] and Westergaard [90].

Here we do not present the derivation of the solutions, we simply list the results given 

by Walton [85] for a point force

N (x , y ) =  N 0 S(x -  x ')6 (y -  y') (1.1)

acting normally on the surface of the half-space 2 >  0 , in the positive 2-direction. N q 

is a constant and <5(.) is the Dirac delta function. This concentrated force acts at the 

point (x', y'), as shown in figure 1-1 and is of magnitude No. The surface displacements 

resulting from this force are

{B -  C )N oX  
ui{x,y) = --------^ 2 -------

, x (B -  C )N 0Y  , x
vi(x,y) = ------- 2^2-------  (L2)

wi(x ,y) = B N 0

The displacements ui(x,y),  vi(x,y)  and wi(x,y) are the surface displacements in the 

£-, y- and 2- directions respectively. We use the subscript I since when considering 

contact problems, these displacements will correspond to those of the lower half-space. 

The /, therefore, refers to a half-space with a positive 2 coordinate, that is, to the half

space 2 > 0. In the displacement expressions above we have defined local Cartesian 

coordinates O ' X Y , with origin (x' ,y'),  as

X  — x — x  and Y  = y — y' . (1.3)

C h a p t e r  1 15



1.2. CONTACT PROBLEMS

The value of S  is then determined by

S 2 = X 2 + Y 2 (1.4)

and the elastic constants B  and C  are given by

B  -  A f l  +
47r \ h  A + 11

°  =  (x-5) 47r \ f i  A +  n )

in terms of the Lame moduli of the material, A and fi. These may alternatively be 

written as

B =  * ~  1/2

c  =

7tE  ’ 

v( l  +  v)
7rE

in terms of Young’s Modulus, E  and Poisson’s ratio, v. Appendix D contains a table 

which shows the relationship between these and several other elastic constants.

1 .2 .3  C e r u t t i ’s P r o b le m

C erutti’s problem [15], is similar to that of Boussinesq, except that we now consider a 

tangential concentrated force, acting in the positive ^-direction on our half-space. This 

is described by

P{x,y)  = P0 5{x -  x' )8 { y - y ' ) ,  (1.6)

as shown in figure 1-1, where Po is a constant. The surface displacements tha t result 

from this applied force are given in Walton [85]. They are

, , f B  C X 2.
u i f a y )  = ( 's  + ' ~ s 0

, \ CPo X Yvi{x,y) = — ^ —  (1.7)

, N ( B - C ) P 0X
wi{x,y) = ------^ ------

where ui(x,y),  vi (x,y)  and wi(x,y)  represent the same directional displacements as in 

the previous section and X, Y, 5, B  and C are also defined as before.

C h a p t e r  1 16



1.2. CONTACT PROBLEMS

Figure 1-2: Two Spheres Initially in Point Contact 

1 .2 .4  D is t r ib u te d  N o rm a l a n d  T a n g e n tia l L oads

We can generalise the results quoted in the previous two subsections, to the situation 

where the stresses are due to distributed normal or tangential loads or both. Consider a 

general distribution of loading where N ( x , y) is the normal component of the traction 

and P(x,y)  and Q(x,y)  axe the components of traction in the tangential rr-and y- 

directions respectively, acting on the half-space z > 0. These can be thought of as a 

continuous distribution of point forces acting over part of the surface, in a region 71 

and are zero outside this.

In the last two sections, we imposed the condition that the half-space have zero dis

placement at infinit}'. We now wish to impose a displacement —wo) at infinity

on the half-space z > 0 and an equal and opposite one at minus infinity on z < 0. 

This will enable us to use our half-space results in the sphere contact problem. We 

shall see later, in section 1.2.7, that provided the contact area is small in relation to 

the size of each sphere, we can regard two contacting spheres as half-spaces thus ap

plying the results from this section. When two spheres are compressed together, the 

relative displacements can be obtained by considering the displacement that the centre 

of the lower sphere undergoes, (uo,0, —wq) and the upper an equal and opposite one. 

Figure 1-2, shows two spheres initially in point contact.

Integrating the expressions given for the surface displacements, it, v and w , due to the 

force distributions N , P  and Q over the whole region 1Z, equations (1.2) and (1.7) yield:

ut(x,y)  =  Uq +
R P j x W )  | c [X2P{x',y') + X Y Q (x ' ,y l)\

C h a p t e r  1 17



1.2. CONTACT PROBLEMS 

dy'

dy'

^ dx'dy' 

( 1.8)

For the particular problem that arises in the contact of two elastic spheres, the distri

bution of N(x ,  y), P(x,  y) and Q(x, y) acting on the lower sphere is equal and opposite 

to the traction that acts on the upper. Similarly, by integration, we can also obtain 

the total displacements acting on the upper sphere, uu(x , y ), vu(x, y) and wu(x, y).

Walton [85], states tha t for the force distributions arising in the problem of contact of 

two spheres, the configuration would be identical whether viewed from the upper or 

lower sphere. For the case of displacement of the centre of the lower sphere having the 

form (uo,0, — uio), the following symmetries hold:

1. P  and N  are symmetric and Q is antisymmetric in both x  and y and

2 . u and w are symmetric and v is antisymmetric in y.

{ B - C ) X N { x ' , y ' ) ^ dxi

{x’y) = /K(:
^ dx

2 S 2

Vl[x, y) =  ! ( B Q M )  + c [x y p M ) + £ q M ) ]

0B - C ) Y N { x ' , y ')
2S2

-  - ■ » + /  (<b  -  c ) \ x n . ' , , ' ) + r Q W , n  t  b w .o

We define u+(x,y),  the absolute displacement and U-(x,y) ,  the relative displacement, 

as follows:

1 1
u+{x,y)  =  ~(ui(x,y) + u u(xty)) and u - ( x , y ) =  ~{ui(x,y) - u u(x,y))  (1.9)

and similarly define v+(x,y),  v - ( x , y ) ,  w+(x,y)  and W-(x,y) .  This allows us to decou

ple the displacement equations into integrals containing the effects of the normal force, 

iV, only and those containing the effects of tangential loadings, P  and Q, only.

f BP(x ' , y ' )  , [X2P(x' ,y ' )  + X Y Q ( x ' , y ,)]\  , ,
 S  +  C -----------------p ------------------ U x d y ,u+{x,y) = Uq +

v - ( x , y )
■ /»!

w~(x,y)
- I dx'dy', (1.10)
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and

u~(x,y)  = ~ \ ( B - C )  X N ^ 2 ’y ^ dx'dy',

v+(x,y)  =  - | ( B  -  C) J  ^ ^ I d x ' d y ' ,
in

™+{x,y) =  -wo  + B  f  N ^X ’V  ̂dx'dy'. (1.11)
Jn

1 .2 .5  P re ssu re  A p p lied  to  a C ircu lar R eg io n

In his book, Johnson [46], considers the surface displacement and stresses due to a 

pressure distributed over a circular region of radius a. He states tha t solutions in 

closed form can be found for axi-symmetrical pressure distributions of the form:

N(r)  — Nq(1 — r 2 / a2)n. (1.12)

This is equation (3.27) of Johnson [46]. The coordinates (r, 0) are a system of plane- 

polar coordinates in the xy -plane sharing the common origin O (the xy-plane being 

as discussed in section 1.2 .1). We only concern ourselves with two particular cases, 

n  =  —1/2  and n = 1/ 2 , as these will be useful later in the problem of two spheres in 

contact. Johnson [46], however, also considers in detail the case n = 0.

U n ifo rm  N o rm a l D isp la cem en t

We look first at the case n = —1/2  in equation (1.12), that is we consider a normal 

pressure of the form:

N(r)  =  <
No(a2 — r2) 1/2, 0 < r < a 

0 , a < r

where No is a constant and since we wish to apply these results to two spheres in 

contact, the region 7Z is a circle of radius a and centred about O.

Johnson [46] shows that a pressure distribution of the form given in equation (1.13), 

causes a uniform normal displacement throughout the circular region of radius a , in 

the half space. This, therefore, would be the same pressure that would occur when a 

flat frictionless punch, of radius a, is pushed normally into an elastic half-space. The 

pressure at the edge of the punch is theoretically infinite.
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We find the displacements in the normal direction, for this distribution and see tha t

wi(x,y)  =  ir2B N 0

wu{x,y) = 0. (1.14)

For a tangential traction of the same form, that is

Po(a2 — r 2)-1/2, 0 < r < a
P {r) =  { (1.15)

0 , a < r

the traction produces a uniform tangential displacement in the same direction as the 

traction itself. These resulting displacements are

, . tt2(2 B +  Cl
ui{x,y)  =  ------- -------- P0

uu(x,y) = 0 . (1.16)

This type of tangential pressure distribution does not occur in the normal punch prob

lem, but we will need the displacement results later on.

H e r tz  P r e s s u r e  D is t r ib u t io n

We next consider the case when we have n = 1/2 in equation (1.12), that is a normal 

force distribution of the form

N{r) = <
No(a2 — r 2)1/2, 0 <  r < a

(1.17)
0 , a < r

where Âo is again a constant and (r, 9) as in the previous subsection. This is the 

pressure given by the Hertz Theory, which in particular can be applied when we have 

two elastic spheres in contact.

According to Hertz theory, tangential tractions do not occur when bodies having the 

same elastic moduli are compressed together normally and the displacements resulting 

from this force are given by:

t \ * N ° t n  ( « 3 — ( « 2 — r-2 ) 3 / 2 }“ /(*.!/) = ---- = - (B - C ) x ------------- 5-----------
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(1.18)

(  \  "^0 d / ' o  2 2 \wi{x , y ) = —^ —B{2a -  r ).

Similarly, for a tangential distribution, in the ^-direction of the form

P{r) = <
Pq(g,2 — r 2)1/2, 0 < r < a

(1.19)
0 , a < r

\

where Pq is a constant, the resulting displacements axe found from integrals (1.10) to

1 .2 .6  T h e  G e o m e tr y  o f  S u rfaces in  C o n ta c t

Before we examine Hertz theory for two spheres in contact, we consider the geometry 

of two non-conforming solids of general profile brought into contact. Johnson [46]

deformation. The non-conforming bodies we consider have dissimilar profiles and when 

initially brought into contact will touch at a point or along a line. They also have 

identical elastic properties, Gladwell [36], amongst others, discusses Dundurs’ mismatch 

parameters tha t occur in the calculations for the contact of two materials which possess 

different elastic properties.

A theory of contact is required that will predict what happens to a point or line 

of contact when a load is applied to the configuration. But first, we examine the 

geometry of the problem. We take the point of contact of the two bodies as O, the 

origin of rectangular coordinate axes Oxyz.  The 0-axis is chosen to coincide with the 

common normal to the two surfaces at O and is directed into the lower solid. The 

xy-plane is then the tangent plane to the two surfaces. By choosing the orientation of 

x and y such tha t the term  in xy  vanishes, Johnson [46] approximates the profile of the

be

ui(x,y)  =  ^ ( 2£  +  C )a2 - ^ { ( 4 £  +  C)x2 +  (4£  +  3C)y2},

( 1.20)

also considers contact of conforming bodies which, using his definition, are contacts 

where the surfaces of the two bodies ‘fit’ together exactly or even closely without
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lower surface as

where R[ and R"  are the principal radii of curvature on the surface at the origin. Also, 

using the same reasoning, the profile of the upper surface can be written as

22 =  - { i x i  +  2^ }  (L22)

where the axes X2 and y<i may differ from x\  and y\. To find the separation between

the surfaces, we need h = z\ — Z2 and this can be written, relative to a common set of

axes x  and y, as

h = A x 2 +  B y 2 +  Cxy  (1.23)

where A , B  and C  are constants which depend upon the radii of curvature of the two 

surfaces. Again, choosing alternative axes so that C  becomes zero, we have

h = A x 2 + B y 2 = — x 2 + ^ y 2. (1.24)

In this case R! and R"  are defined as the principal relative radii of curvature. If the 

x\  and X2 axes are inclined at an angle 0  to one another, in an appendix to his book, 

Johnson [46] shows that

-  -  ( —  —  —  —

+ 2 v #  +  R " )  ~  2 Vtf'i +  R'l + R '2 + R'i

- l { ( s ; +

and hence the values of A  and B  can be determined for a particular problem. At this 

point, for later convenience, we also introduce the equivalent radius, R e, defined by

R e = {R!R! ' ) l / 2  =  i ( A B ) - 1/2. (1.26)

From equation (1.24), it can be seen that the contours of constant gap h are ellipses 

whose axes are in the ratio (J5/A)1/2 =  (R 1 /R ”)1/2. For the particular example of 

two identical cylinders, each of radius R  and with their axes inclined at 45°, we have
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R[ = R'{ = R, R 2 = R% — 00 and 0 = 45°. Then equations (1.25), give A  +  B  = and

The relative radii of curvature are, R' = 1/2A  — y/2R /{\/2  — 1) and R" = 1/2B  =  

y/2R/{y/2  +  1) and the effective radius is thus:

In this thesis we shall deal with some problems relating to the contact between equal 

sized spheres of radius R. Hence we have, R[ = R 2 — R" =  R 2 = R  and 0 =  0, from 

which we find the values of A  and B  to be

However, the general geometry results will be useful later when we consider the contact 

of two spheres of different radii.

deformation, in figure 1-3. The initial configuration is not shown but we assume that 

the bodies were in point contact at O. Once a compression is applied (perpendicular to 

the common tangent of the two bodies), this causes a deformation in the neighbourhood

indicated by the dotted lines in the figure. A finite contact area therefore forms, which 

has purely normal tractions acting on it, provided the two bodies have identical elastic 

properties such as we wish to consider. If the elastic properties of the two bodies were 

different, tangential or shear tractions would occur which may cause the two surfaces 

to slip over each other.

We consider the configuration shown in the figure and the deformation that will occur 

in the vicinity of the point of initial contact, O, when a normal pressure is applied. A 

contact area will form that is small relative to the dimensions of the bodies. Points 

distant from the contact area, within the two bodies, will move parallel to the 2-axis 

and approach each other by an amount -f £2- The displacement of the surface points

from which we have

(1.27)

(1.28)

(1.29)

A cross-section of two bodies of general shape and elastic properties, is shown after the

of this original point of contact. If the bodies did not deform, they would overlap, as
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<52

Body 2

w

Body 1

Figure 1-3: Cross-Section of Two Non-Conforming Bodies in Contact

within the contact area is for the lower body and 82 — w^2\  for the upper

one, where and w ^  are as shown in figure 1-3. Thus after the deformation, for 

points within the contact area, we have

w/1) +  w + h = 81 + 82 = 8  (1.30)

where h is the initial separation of the two surfaces, as given in equation (1.24). For 

points that lie outside the contact area, they do not touch and so their displacements 

must satisfy:

-F h > 8 . (1-31)

These last two equations, written in terms of the constants A  and B  give us

+  w = 8 — A x2, — B y 2 (1.32)
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for the points within the contact area and

w +  it/2) > 8 — A x 2 — B y 2 (1.33)

for those outside the contact area.

In the next section we turn to the theory of elasticity to show how the contact area, 

stress and deformation, might grow with increasing load.

1 .2 .7  H ertz  T h eo ry  o f  E la s tic  C o n ta ct

Hertz [39] gave the first satisfactory analysis of the stresses at the contact of two elastic 

non-conforming solids. He formulated equations (1.32) and (1.33) which are satisfied 

by the normal displacements on the surface of the solid. He made the hypothesis that 

the contact area is in general elliptical and for simplification, approximated the elastic 

bodies as elastic half spaces.

In this thesis, the contacting bodies under consideration will be assumed to have the 

same elastic properties and to be isotropic. Johnson [46] also considers the contact of 

bodies of different elastic properties and the effects of anisotropy within the bodies is 

considered by Willis [91].

A number of assumptions are made in Hertz Theory. These are summarised in John

son [46] and are given as the following:

• The surfaces are smooth, continuous and non-conforming;

• The strains are small;

• Each solid may be approximated by an elastic half-space for the purposes of 

relating surface tractions to surface displacements, on the contact area;

• The surfaces are frictionless.

These assumptions ensure that each body can be regarded as an elastic half-space, 

loaded over a small elliptical region on its surface. They also ensure that the strains 

in the contact area are sufficiently small to be within the scopes of the linear elasticity 

theory. Approximating the bodies by half spaces enables the results from Section 1.2.4 

to be used and the boundary conditions are greatly simplified.
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The elasticity problem in which we are interested, reduces to finding the normal pressure 

distributions acting over the contact area, which produce normal displacements of the 

surfaces satisfying equation (1.32), within the contact area and (1.33), outside it.

Johnson [46], considers Hertz theory for the general case of two solids of revolution in 

contact. We are particularly interested in the contact of two identical elastic spheres. 

Initially, the spheres are purely in point contact, but upon application of a force along 

the line of centres, a small contact area is formed. The contact area is circular for two 

solids of revolution and so will be circular in our particular case. Let the radius of this 

circle be a. We find the values of A  and B  from Section 1.2 .6 , these are

the line joining the two centres. Therefore, as the spheres are identical and have 

equal elastic moduli, we have wq = =  6 2 , so tha t 2w q  = <$1 +  £2- The surface

So, we must find the normal pressure distributions, acting on the contact area, tha t will 

produce a normal displacement as given. In addition, we must check that it satisfies 

the condition of no overlap outside the contact area.

We want to find N(x , y ) ,  such that

where a  is constant for a particular sphere. Prom equation (1.18), we then have

(1.34)

The normal force causes a displacement wq of the centre of the lower sphere, along

displacements can also be written as 2 w+(x, y) = u / 1) +  u /2), where w+(x, y) is as given

in equation (1.10) and w- ( x , y )  =  0. The condition for contact (as in equation (1.32))

becomes
2 2

2 w + (x , y )  =  2w  ( 1 3 5 )(1.35)

(1.36)

One form of N ( x , y ) that satisfies this requirement is as given below:

N(x , y )  = a(a2 — r 2)a (1.37)

(1.38)
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which when substituted into equation (1.36) yields

— (2a2 -  r2) =  2w0 -  T— . (1.39)

By equating coefficients of r2 and the constant terms, then

B n 2a2a.
 2------=  w0 (1.40)

and also
B a n 2 1

Now, solving for a  and wq yields

2 R'
(1.41)

° = ^ R B  (1'42)

and

a2 = Rwo. (1-43)

Therefore, we can conclude that the normal traction distribution N( x , y )  is given by

N ( r ) =  ( L 4 4 )

and the radius of the Hertzian contact area, a, by

a2 = Rwo. (1-45)

This solution has been shown to be unique (see Walton [85]).

1 .2 .8  T h e  O b liq u e C o m p ression  o f  T w o E la stic  Sp heres

As mentioned above, when two bodies with identical elastic properties are compressed 

together normally, no tangential tractions arise. Mindlin [57], considered a distribution 

of traction in which a tangential component is imposed, in addition to the normal force 

that is already acting in the problem. If there is infinite friction, then Mindlin [57],

considering symmetry and continuity conditions, concludes that the normal component

of traction is unaffected by the extra applied tangential loading, providing the spheres 

have identical elastic properties. Also, the displacements of the contact surface in the 

xy -plane correspond to a shift uniformly in the x-direction without change in shape
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or size. Equation (76) of Mindlin [57] gives the tangential traction across a circular 

contact area as:

P  = ~  r 2)-1//2, r < a (1-46)
Z7T

with Pi constant. This is clearly of the form seen in equation (1.15); tha t is, it is 

proportional to (a2 — r 2)-1/2.

Walton [85], considered the general case of the relative compression of two elastic 

spheres, so similarly to Mindlin [57], he looked at the Hertz problem but included a 

tangential loading. How these two papers differ is in the application of the loading. 

Walton [85] considers the more general oblique problem, where both normal and tan

gential displacements occur simultaneously, rather than separately. By decoupling the 

problem, as for the half space in Section 1.2.4, the solution to the normal and tangential 

components of the system can be found and thus we obtain the distribution (P, Q, N)  

on the contact area.

After the initial compression, the centre of the lower sphere has undergone a displace

ment (uo, vq, —wo) relative to the original contact point (the origin O) and the upper 

sphere an equal and opposite one. Thus a finite contact area is formed, with radius a. 

Using the notation of the previous section, Walton [86], gives the following expressions 

for the force exerted by the upper sphere on the lower sphere, in the case tha t the 

spheres are infinitely rough:

Po =  _ . 2JI|2B  +  C )u * /“  ~ '  '

« •  -  ~ . 222(25 +  0 ) , . ^  M

* - ^
Mindlin and Deresiewicz [58] approach this problem by using a succession of incremental 

normal and tangential forces and then take the limit as these tend to zero, to obtain 

an approximation for the actual compression required.

In crem en ta l C om p ressio n

Later in this chapter and those following, we wish to calculate the effective elastic mod

uli of a random packing of spheres. In order to do this, following the initial compres
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sion, a further incremental compression is applied. Walton [86] discusses the solution 

of this in which the centre of the lower sphere has undergone a further displacement 

(Suq,6 vq,—8 wo). The problem is solved for the two cases 8 wq > 0 (compression) and 

6ruo <  0 (unloading) and if 8wq <  0, then it is so small that contact is not lost. The new 

force distribution will have the form (Pq + 8 P, Q0 + 8 Q, Nq + SN)  and we again decouple 

the governing equations to find the normal component. This is the same whatever the 

sign of 5wq and is given by:

N °  +  6 N  =  ^ B ( b 2  ~  r2)1/2’ (148)

where b is the radius of the new circular contact area.

Considering initially the case where the spheres have an infinite coefficient of friction 

and taking the case 8 wo <  0 first, there can be no relative displacement of the two 

parts of the final contact surface and the tangential tractions arising have the form:

P0 +  <5P =  Ki{a 2 - r 2 ) ^ 2 + K 2 (a2 - r 2 ) - 1^2

Q0 + 8 Q =  L i(a2 — r 2)1/2 +  L2(a2 — r 2)-1/2 (1-49)

the K 2 and L 2 terms being associated with the punch problem tha t we considered in

Section 1.2.5. Walton [86] omits details of the calculations to find the constants K 2 ,

L i, Z/2, however, we give a summary of these as the method is extended in Chapter 5 

to the case of different sized spheres. We consider the displacement u - ( x ,  y), as defined 

in Section 1.2.4, before and after the incremental compression. At the end of the initial 

compression this displacement on the contact area is given by equation (1.20)

2 2
u - ( x , y )  =  u0 +  ^ ( 2 B  +  C )K 3 b2 -  ^ K 3 {(4B + C)x 2 + (4B +  3C)y2} (1.50)

where

which is the force constant from equation (1.47). The displacement after the incremen

tal compression due to the distribution equation (1.49a) is found using equations (1.16)
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and (1.20). These give

2 2 2
u - ( x ,  y ) = U 0 + y  (2 B  + C)K\c?  +  y  (2 B  + C )K 2 -  y  ATi {(4 B  + C)x2 +  (45  +  3 C)y2}.

(1.52)

As we have imposed a no-slip condition on the problem, this displacement must be the 

same as the displacement at the end of the initial compression. Equating coefficients 

of x 2 and y2 and matching constant terms we see that

K 3 = K i  (1.53)
2 2 2 

«o +  ^ r ( 2 B  + C ) K 3b2 =  u0 + 6ua + ^ - {2 B  + C)Kia2 + \ { 2 B  + C )K 2 .“T T Z

Solving for K \  and K 2, equations (1.48) and (1.49) become

P o + 6 P  =  ^ R ( 2 i r c W o {2Mb2  ~ r2 )1 /2 + (a2ui ~ 62llo)(i>2 ~  r2)" 1/2}’

Qo +  i 0  =  ^ 5 ( 2 B 2+  C )Wo {2t,° (62 ~  r2)1/2 +  (q2>)1 ~  b2v°){l>2 ~  r2)" 1/2}’

JV» +  W  =  ^ ^ (f)2_r2)1/2- (1-54>

where b (< a) is the radius of the new contact area and satisfies

b2 =  i?(u;o +  fouo) (1.55)

and u\ = uq +  #uo, ui =  i?o +  5i>o. The radius of each sphere is R  and the moduli B  

and C  are as previously defined in terms of the Lame moduli.

When 6wo > 0 the contact area increases and as we again have no relative displacement 

of the upper and lower parts of the original contact surface, a similar condition will 

apply to the final contact surface. Walton [85] shows that this condition plus an energy 

flux argument are sufficient to ensure a unique solution. Considering the distribution

P0 +  <55 =  Ki(b2 -  r2)l/2 + K 2(a2 -  r2)1/2

Qo + SQ = L ^ b 2 - r 2)1/2 + L 2(a2 - r 2) ' /2, (1.56)

with No +  SN  as before, we calculate the displacements as above and matching them
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in the same way, we see that the force distribution is now given by

Po + SP
4

{(b2uo — a2ui)(a2 — r 2)1/ 2

+ (ui -  u0)a2(&2 -  r 2)1/2}, 

{(b2v o — a2v\)(a2 — r 2)1/ 2

+(ui -  v0)a2{b2 -  r 2)1/2},

tt2R 2{2B +  C)wqSwq

Qo +  8Q
4

n2R 2{2B + C)w0Sw0

7T2R B
(b2 — r 2)1/2. (1.57)

Slade [76], extends these results for the oblique compression of two elastic spheres to

the oblique compression of two spheroidal particles.

R e su lts  for th e  O b liq u e C om p ressio n  P ro b lem

In the sections above we looked at the problem of the oblique compression of two elastic 

spheres as presented in Walton [85]. The spheres are now pressed together in such a 

manner tha t the centre of the lower sphere undergoes a displacement (no, vq, — wo), 

during the initial deformation and the upper sphere an equal and opposite one, tha t is 

(—no, — vq, wo). Following this, in the incremental stage the centre of the lower sphere 

undergoes a further displacement (Suo,Svo, —Swo) and the centre of the upper one 

(—̂ no, —<5no,<5iuo)- Considering first the case when friction has an infinite value, the 

total force acting across the contact area is found by integrating the distributions given 

in equations (1.47). Hence, we have

R  is the radius of each sphere. For the incremental stage, two cases were considered in 

section 1.2.8. For 8wq < 0, integrating equations (1.54), over the contact area yields 

the total incremental force acting, these are equation (2.10) of Walton [86]:

include the effects of a non-zero value of the coefficient of friction. He also considers

— _  8u0(Ru>o)1/2 yj _  SuoORwo) 1/ 2 
0 "  3jt(2B  + C ) ' Wo ~  3tt(2B +  C)

(1.58)

and

(1.59)

The constants B  and C  are defined in equation (1.5) in terms of the Lame moduli and

8P
4

^3a2b8uQ — (a — b)2(2a +  6)uq | ,
3irR(2B +  C)wq
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6Q = 3*R(2B + C)w0 i 3a2bSV0 - {a~ ^  + M  ’
4(63 -  a3)W (L6°)

For the second case, if Swo > 0, equation (2.12) of Walton [86] gives us the total force 

acting this time, found by integrating equations (1.57)

j p  _ 8(63 -  a3)5u0
3irR{2B +  C)5wq1

j q  _  8(63 -  a3)Sv0
37rR(2B +  C ) 6 wq ’ 

m  =  (L61>

Notice that 5N  is the same in both cases. The radii a and b satisfy the Hertz relation

ships

a2 =  R wq (1.62)

and

b2 = R(wo -1- Swo). (1.63)

In general, the two sets of equations (1.60) and (1.61) will give different results for the 

incremental forces, but in the case of an infinitesimal increment they both reduce to

j -  A{Rw q) 1I25uq m  A{Rwq) 1I28vq

6 P  =  * (2B  +  C)  ' SQ =  n (2 B  +  C)  (L64)

and also
m = 2 ( R w o ) ^ v o  

7tB

These are the results for infinitely rough spheres.

The results for the case of perfectly smooth spheres are also listed in equations (2.15) 

of Walton [86]. As there will be no shear traction across the contact area, then the 

total force acting at the end of the initial deformation will be

— — - 4 R l / 2w l /2
P  = Q = 0, and N =  „ ° (1.66oirrS
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and the incremental forces will be

6P = SQ = 0 , and I N  =  2(fi™o)*/2flwo (li67)
ttB

1.3 G ranular M edia

In their book, Wang and Nur [89], bring together a range of theories that are used to 

predict the elastic properties of granular media. The first chapter of the book sum

marises some frequently used theories and models of elastic properties of effective media 

tha t are applicable in particular to rocks. However, this is not the only application of 

the theory, it is of interest to many research fields including material sciences and seis

mic exploration. The book is split into several chapters but the introductory chapter 

summarises them within just four areas. These are:

• I. Effective Medium Theories

• II. Wave Propagation and Self-Consistent Theories

• III. Contact Theories

• IV. Anisotropy.

We are purely interested in the first and third of these and principally with the third. 

However, below is a brief summary of each of these areas, before we focus upon contact 

models and how we can bring together the results from the previous section to say 

something about the properties of some types of granular media.

E ffec tiv e  M ed iu m  T h eories

A lot of effective medium theories were developed to study the elastic properties of 

composite materials such as cracked solids, porous media and multicomponent com

posite materials. One of the ways in which the properties of these materials can be 

determined is the method used by Wood [93], where the averaging is done by taking 

the sum of individual phase properties, weighted by their proportion of the total vol

ume fraction of the medium. Other methods include using an upper bound on the 

effective elastic moduli found by Voigt [83], whilst studying an aggregate of crystals. 

This assumes that the strain is uniform throughout the aggregate. Reuss [68], also 

found a bound on the moduli but this time a lower one by assuming that the stress
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is uniform throughout the medium. Since Voigt’s and Reuss’ models only give upper 

and lower bounds, Hill [40] suggested taking the average of these two solutions. This 

does not have any physical meaning but gives an approximate value for the effective 

moduli. Voigt’s and Reuss’ models often provide the highest upper bound and lowest 

lower bound respectively for the effective moduli and so are not very practical. Hashin 

and Shtrikman [38], however, using a variational approach, derived improved upper 

and lower bounds for the effective moduli of multiphase materials. They claim that 

the bounds calculated are the least upper bound and the highest lower bound, derived 

when only the phase moduli and volume fractions are known. In the limiting case of 

the highest upper bound and lowest lower bound, they recover Voigt and Reuss’ results 

respectively.

W ave P ro p a g a tio n  and  S e lf-C o n sisten t T h eo r ies

Two of the most widely used theories for modelling the effect of fluid saturation upon 

seismic velocities within rocks are those of Gassmann [35] and Biot [9] and [10]. Walton 

and Digby [88] also consider a medium saturated with fluid. The Gassmann equation is 

only valid at low frequencies, at higher frequencies some of the assumptions break down. 

Biot developed his theory to cover the whole frequency range. Kuster and Toksoz [49] 

have derived a more general model to describe the wave velocity for a continuum with 

inclusions. Wang and Nur [89] discuss in some detail the work contained in these five 

papers. They also discuss three self-consistent theories, including that of Hill [40] who 

developed his self-consistent theory for spherical inclusions.

C o n ta c t T h eo r ies

Contact theories are used mostly for studying the elastic properties of granular media, 

as they will be in this thesis. As we have already seen, there are several theories to 

describe the interaction between individual grains in the form of spheres. Both the work 

of Hertz [39], for the application of a normal compressive force between two spheres and 

Mindlin [57] who considers several initial loadings of the spheres, have been described 

previously in this chapter.

Modelling the grains as spheres is one approach to the problem and many authors 

have chosen to do this. Some have considered regular packings, while others random 

packings. In Section 1.3.1 we discuss the random packing model presented by Wal
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ton [86] as this will be further developed in other chapters. Slade [76] also considered 

random packings, but discussed the results for a packing of oblate spheroidal particles. 

The motivation for this was the application of the results to shale-like rocks which are 

made up mostly of clay, in the form of flat, plate-like particles. Other minerals are 

present in the shale but it is the clay that is the load bearing part and thus will have 

the largest effect on the elastic properties of the shale. In general, elastic properties 

of shale are anisotropic and Hornby et al. [41] have also done some work to predict 

the effective elastic properties of shales using spheroids. Their theory is based upon a 

different approach to that of Slade, they use a combination of self consistent (SCA) and 

differential effective medium (DEM) approximations. Another approach is considered 

by Marion et al. [53], they modelled the shale as an isotropic elastic solid. They justi

fied this from the experimental work of McGeary [55], who showed that the packings 

of binary mixtures depend upon the diameter ratio of the particles. For large diameter 

ratios, typically around 100, the mixture packing is close to ideal. That is, the small 

spheres do not affect the packing of the large and vice-versa. In the sand-shale model 

the diameter ratio is normally greater than 50.

A n iso tr o p y

For the random packings of spheres such as we shall consider in this thesis, the effective 

medium is only anisotropic upon application of a uniaxial loading. However, it is clear 

that in rock samples this will not be the case as there may be cracks, for example, 

which result in anisotropy. Even if these cracks were randomly distributed through 

the medium, the application of uneven or directional strains to the rock would give 

anisotropic effective elastic constants. The papers within Wang and Nur [89] discuss 

this in more detail.

1 .3 .1  T h e  E ffec tiv e  E la stic  M o d u li o f  a  R a n d o m  P a ck in g  o f  S p h eres

In his paper, Walton [86] considers the calculation of the effective elastic moduli of a 

dense random packing of spheres. Other authors have also considered this calculation, 

however many of them consider regular packings, for example, Duffy [31], Duffy and 

Mindlin [32], Deresiewicz [27] and Walton [84]. Brandt [12] did consider a random 

packing, as did Digby [28]. However, Brandt [12] only looked at the effective bulk 

modulus and Digby [28] assumed that the spheres were bonded together (we shall see
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how this bonding affects his results, as compared with those of Hertz, in the next 

section).

The methods presented in Walton [86] will be used extensively in this thesis, and so 

in this section we present the main results and techniques. In our later work, we 

extend the initial conditions and modify the main assumption of uniform strain for the 

displacement of the sphere centres, as made in the paper. Chapter 2, looks at a different 

initial loading, Chapter 3 attem pts to provide reasons why the numerical values given 

for the effective elastic moduli from the work of Walton [86], are so different from those 

found by experiment and numerical simulation. Chapters 5 and 6 continue along this 

path of thought and calculate the effective moduli in the case of a binary packing of 

different sized spheres.

We assume that the random packing of spheres occupies a large volume. It is a random 

packing in the sense that contact points axe distributed with equal probability over 

the surface of each sphere. The spheres are all identical in that they are the same size 

and have the same elastic moduli. The sphere material is homogeneous and elastically 

isotropic. In the initial state, the spheres axe in point contact with several of their 

neighbours. In theory, this could be as many as twelve but on average, for a dense 

packing, will be around eight or nine. When a confining strain is applied to the medium, 

this prevents separation of any spheres already in contact and creates small contact 

areas between neighbouring spheres. We assume, for simplicity, that no new contacts 

are formed during this process. Endres article [34], is an example of how the effects of 

contact generation can be considered within the model. The procedure for calculating 

the effective moduli is to then impose a further incremental strain on the material, 

that is one of much lower order than the original strain. The effective moduli are 

then determined from the relationship connecting the average incremental stress to the 

average incremental strain.

A lte r n a tiv e s  to  th e  H ertz  T h eo ry  W ith  T an gen tia l L oad in g

Several other authors since Hertz [39] have also considered the problem of describing 

the contact area formed when two identical spheres come into contact. In a recent 

paper, Norris and Johnson [60] consider the incremental relation between the forces
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and displacements of the form:

SN = Dn(wo)6wo, ST = Dt{wo)Suo ( 1.68 )

where the force has been decoupled into its normal component SN  and its tangential 

component ST and where Dn and Dt are the contact stiffnesses in the notation of 

Digby [28] and Winkler [92]. These take the form

Dn — Cnan{w o), Dt — Ctdt{w o) 

where Cn and Ct are actual stiffnesses,

(1.69)

Cn = 

Ct =

ifi _  8/z(A + n)
1 — v A +  2/x 

8// _  16/i(A + n)
2 — 1/ 3A +  4/i

(1.70)

and A and /i are the Lame constants for the spheres and u is Poisson’s ratio. The 

lengths an and at do not depend on the material properties of the spheres, but do 

depend on the type of contact. Several models are summarized in table 1 of Norris and 

Johnson [60] and are reproduced below.

Contact

Model

Description an(w) at{w)

(a) (b)

I Hertzian Contact (Rw0)1/* 0 CLn

II Initial Contact Radius b (Digby) + £)*/* + £ ] 1/2 b CLn

III Frictional Sliding 

(Mindlin and Dereseiwicz)

(Rwo)1/2 (JL + kdL\an c r
In all these models, the two sub-cases (a) and (6), correspond to (a) smooth contact 

with reversible slip; and (b) rough contact with no subsequent slip.

M indlin  and  D eresiew icz’ m odel

Mindlin and Deresiewicz wrote several papers analysing the mechanics near the contact 

region of two spheres, Mindlin [57], Mindlin and Deresiewicz [58] and Deresiewicz [26] 

and [27]. These extend the theory of Hertz to include tangential loading and oblique
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contact. The second of these papers concludes that the changes in traction and dis

placements depends not only upon the initial loading, but also upon the entire past 

history of the medium and the instantaneous relative change of tangential and normal 

forces.

Consider two spheres under a compressive load, iVo, resulting in a contact area of 

radius a. Expressions are found for a and for the normal displacement w. Now, an 

oblique force is applied with a tangential component T  and a total normal force N.  

The additional force is applied incrementally and

§ = f i > f  (1.71)

where /? is constant and /  is the coefficient of friction between the sphere surfaces.

Defining

9 = £  and c =  (1 -  T //iV )1/3a, (1.72)

the expressions found by Mindlin and Deresiewicz [58] for the normal and tangential 

compliances of the spheres can be expressed in terms of the notation of Norris and 

Johnson [60], as shown in the table above. If the spheres are perfectly smooth, then 

c =  0 and we have no tangential tractions acting across the contact area. Thus the 

conclusions are identical to those of the Hertz theory (case la  in the table). If the 

friction is infinite or 6 =  1 then we recover the results of Walton [86], as described in 

the next section.

D igb y’s M odel

Digby [28], modelled porous granular rock as a random packing of identical spheres, 

bonded together across small areas before the initial loading is applied. This initial 

contact area is circular and has radius b. Upon application of a compressive normal 

force N , acting on the particles, the contact area increases, having a new radius a which 

is given by:

a(a2 -  b2)1/2 = Rw.  (1.73)

This gives the entry for an = a in the table above.
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1 .3 .2  T h e  R a n d o m  P ack in g

We wish to consider the properties of a dense random packing containing many spheres. 

We assume that the spheres occupy a large volume. The spheres are all identical in that 

they are the same size and have the same elastic moduli. They are large enough that 

we need not consider interaction forces such as capillary forces, Van der Waals forces 

and electrostatic interactions, which would become im portant for particles of diameter 

less than 200 /im (Troadec and Dodds [82], page 141).

In the undeformed configuration, the centre of a typical sphere, the n th  say, will have 

position vector X^n), relative to some given origin. This sphere will be in point contact 

with several of its neighbours. The boundary of the medium is subjected to a displace

ment u  that is consistent with a uniform compressive strain e^, in order to reach the 

initial deformed configuration. Thus, the components of displacement have the form

Ui = eijXj (1*74)

where axe the components of a symmetric constant tensor relative to some chosen 

axes. Although the medium is not continuous, we take eij to represent the average 

strain within the medium.

Under this deformation, the centre of the n th  sphere say, will be displaced by an

amount . Initially in contact with the n th  we consider a second sphere, let this be

the n 'th . This also will undergo a displacement, u^n' \  from its original position, X^n 

We neglect sphere rotations for now, but in a later section of this chapter, will look 

at the work carried out by Slade [76] to include these effects. Rotations are in fact 

significant in one of the initial configurations considered in Walton [86].

The position vector of the initial contact point is

^ ( X ^  + X (n,)) (1.75)

and from the symmetry of the problem, this will undergo a displacement

I(U<"> +  U<"'>). (1.76)

Now the displacements of the sphere centres, relative to this point, for the n th  and
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n 'th  spheres are respectively

(1.77)

The initial applied strain compresses the spheres together and small contact areas arise 

where there was originally a point contact. We wish to calculate the average stress

contact areas.

Each sphere, as we have already mentioned, is in contact with several of its neighbours 

and we need to consider the effect of the displacements and forces of one contact on 

the other contact areas. The usual way to deal with contact problems is to assume 

tha t the contact area is small in relation to the size of the body, as in the Hertz 

theory. As previously discussed, this enables the body to be approximated by an 

elastic half-space. Walton [84], when considering a purely normal compression acting 

on a regular packing, actually determined the displacements everywhere on the surface 

of the sphere. He showed tha t the displacements in the neighbourhood of the contact 

area axe what would be expected under the Hertzian assumption. He also showed that 

for any physically interesting situations, the surface displacements are negligible apart 

from in the neighbourhood of the contact. Even though these results were only for a 

purely normal compression acting on the medium, it might be expected that this would 

also be the case for a general oblique compression. Thus to a good approximation, we 

assume that the contact areas can each be treated in isolation from one another.

For the contact we are considering, that is the one between the n th  and n 'th  spheres, 

we wish to find the resultant stresses across the contact area when the sphere centres 

have been displaced by — ^(u(n) — u(n/)) relative to the initial contact point. Initially, 

we again assume tha t the spheres are infinitely rough, the results for perfectly smooth 

spheres are given later. In section 1.2.2, we used the subscripts u and I to correspond 

to the half-spaces 2 < 0 and 2 > 0 respectively. We now take the lower sphere to be 

the n th  and the upper to be the n 'th . Introducing the unit vector, l(nn,\  along the line 

of centres of the two spheres we have

within the medium and hence need to consider the force acting across each of these

2 R
(1.78)
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To apply the results we have already found, we must split the displacement of the centre 

of each sphere into its normal and tangential components. Let the normal component 

of the relative displacement for the upper sphere be wo, then this is given by

Wo =  !(„ (" ') -  u (n>).I (nn,). (1.79)

As this is in the direction of the remainder of the relative displacement corre

sponds to the tangential part. Let this be so, then we have

So =  i(u < n,) -  u<">) -  i  ((u<"'> -  u<n>).I<nn'>) I<nB'>. (1.80)

The total force acting on the n th  sphere, due to its contact with the n 'th , can now be 

found using equations (1.59):

=  3 ^ 2 B  +  C ){2g[(U<n,) “  u(n)) 'l(nn')]1/2(u(n' ) -  u<n))
+ C [(u^ ') -  u W ) .! ^ ') ] 3/2^ " ') } .  (1>81)

To determine this force we must make some kind of assumption about the relative 

displacement (u^n^ — u(n)). Walton [86] follows the work of Digby [28] and Batchelor 

and O’Brien [1] in which the displacements of the sphere centres are assumed consistent 

with the applied uniform field. (In fact, Batchelor and O’Brien [1] deal with the problem 

of thermal and electrical conduction in a medium containing a large number of spherical 

inclusions). Thus we have

u<n) =  eijx f \  (1.82)

which is often referred to as the uniform strain approximation. This is clearly consistent 

with equation (1.74) and although it will not be exact for every sphere, it will hold on 

average and so is a reasonable first approximation to make.

Now inserting equation (1.82) into equation (1.81) and using the definition of I^nn^ we
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have

# n' ) =  - 5^ ^ r p y {2S (- ep ,/tnn')4 nn' ))1/2eti/ j nn')- C (- eP,/(" " ')/(" " '))3/24 nn',} .

(1.83)

This holds true for any general strain provided we ignore any rotation effects.

In order to calculate the effective elastic moduli of the medium we must determine the 

relationship between the average stress within the medium and the average strain, or 

equivalently, the uniform applied strain field e^-. If V  is the total volume occupied 

by the medium, tha t is the volume of both the spheres and the pore space, then the 

average stress <  &ij > , over this volume, is given by

< &ij > =  ~  f  C ijdV = i  E  /  4 )d V  (1-84)
V  Jspheres V  „ JVn J

where Vn is the volume of the nth sphere, are the components of the Cauchy stress 

within this sphere and summation is over all the spheres, within the volume of the 

medium, V.

In particular, for the n th  sphere, the integral on the right hand side of the previous 

equation can be re-written as an integral over the surface of that sphere. Thus,

[  &ijdV — x + x ,j t (-n))dS  (1.85)
JVn 2 Jsn J

where the components x\ = Xi — x \ n  ̂ refer to the position vector of a material point
(n)of the sphere relative to its centre and t\ , the components of the traction across the 

surface of the sphere, Sn. The traction t[n  ̂ will be zero across the surface, except 

over the, areas where the n th  sphere is in contact with its neighbours. As seen in a 

previous section, this contact area is small in relation to the size of the sphere and 

thus for the contact between the n th  and the n 'th  spheres, x\ can be approximated as 

\ { x \ n  ̂ — A ^ ) .  This is the position vector of the centre of the contact area, relative 

to the centre of the n th  sphere and the integral of the traction on the contact area then 

reduces to F^nn Hence equation (1.85) becomes

atjdV = 1 E  { \  i X i l') ~  *«W ) F\nn,) + I  (X jn'> -  ^ n)) f f  n'>)  , (1.86)
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the summation in this case taken over all spheres, n ', in contact with the nth.

Our original expression for the total stress, equation (1.84), can thus be rewritten as

<  aij > =  £ {4 nn' ) f f n,) +  / ‘" " ')f ;(nn')} (i.87)

in which the summation this time is taken over all contacts, between all the spheres 

in the packing. The operator < . >  represents average over the total volume, V.  

The factor 1/2, does not appear in this equation as each contact occurs twice in the 

summation over both  n and n ' . We have already seen the expression for F^nn^ in 

equation (1.83) and this can be substituted into equation (1.87). Similar expressions 

appear in the work of Christoffersen et al. [18] and Cambou [13].

We have assumed tha t the packing is isotropic and that the contact points axe uni- 

formally distributed over the surface of each sphere. Since the volume is large and 

contains many spheres, the summation that arises from equation (1.87) can be written 

in terms of averages to yield:

1
< <7ij > = + C )  ̂ ieiklklj + ejk,Ik,Ii))

- C ( { - e pqIpIqf l 2IiIj)}.  (1.88)

Here we have introduced 77, the average number of contacts per sphere, that is the 

average coordination number and 0 , which is the volume concentration of the spheres, 

defined by
, 4?tR 3N
$ = -  3y -  (1-89)

where R  is again the radius of each sphere and N  is the total number of spheres within 

the packing. The averaging operator, <  . > has different meanings, depending upon 

its position. On the left hand side it still represents average over the volume, but on 

the right hand side it represents average over all contacts within the packing.

Since our packing is dense then the porosity, 7 , which is the ratio of the volume of the 

voids between the grains to the total volume of the packing, is between 0.36 and 0.38, 

Troadec and Dodds [82]. If instead, we were to consider a loose packing, this would

be between 0.39 and 0.42. In fact, our particular calculations include the solid packing

fraction, 4> which is related to the porosity by </> =  1 — 7  and hence we are looking at a
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value for 0 of between 0.62 and 0.64, in our applications.

Equation (1.88), gives us the relationship we require between the average stress in the 

medium and average strain, which includes the effects of volume concentration and 

coordination number. These are properties of the packing and are assumed known. 

Scott [74] and Bernal and Mason [6] discuss the measurement of these quantities and 

statistical properties of random packings in general. There are several ways in which 

to determine the coordination number experimentally, for example,

• Acetic acid poured into a packing of lead spheres and then the liquid drained, the 

marks left on each sphere by lead acetate are counted, Smith et al. [78]. Careful 

examination allows real contacts to be distinguished from close neighbours. A 

similar experiment involves use of any kind of sphere and fast drying paint, Bernal 

and Mason [6].

• A sphere packing is impregnated with paraffin and the position of each sphere 

is then determined with precision as the packing is dismantled sphere by sphere, 

Bernal [5], Scott [75] and Mason and Clark [54].

• Bernal [4] used the method of compressing plastic balls together and counting 

the number of plane faces formed.

More recently, these quantities have been determined by numerical simulation.

Walton [86], only considers two specific cases of the application of an initial strain field, 

eij, as the expressions that arise in a general situation become very complicated. The 

two cases he considers are those of an initial hydrostatic strain and an initial uniaxial 

strain, although all the methods employed hold for any initial configuration.

Turning first then to the case of an initial hydrostatic strain, the applied strain field 

may be written as

eij — e5ij (1.90)

where e is a constant and thus upon substitution of this into equation (1.83) we find 

tha t the force acting on the n th  sphere due to its contact with the n 'th , reduces to the 

simple form
p(nn') _  4-R ( —e) / j(nn'^  (1.91)
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Now, from equation (1.88), we find the average stress within the packing for this par

ticular compression:
< CTij>=- M = p (/j/j.). ( 1 .9 2 )

However, as

(I{Ij) = -6ij  (1.93)

then

< Gij > =  - p S i j  (1-94)

where p is given by
M - e f /2 „ r ,

P =  t of l B ' (1'95)

Secondly, we consider the case of uniaxial compression in the ^-direction, then the 

strain field is given by

eij — e^i3^j3  (1.96)

where < 0 for compression. The resulting stress is then of the form

(< >) = diag{< cji > , < a \ > , <  g$ >) (1-97)

with
( f ) T } C { - e 3 ) 3 / 2  /|r |3r2v 

1 tt2B(2B + C ) ^  3' ^   ̂ ^

and

< CT3 > =  ~ 7 r^ ((2B +  C ){2g(|/3|/3> +  <1- " )

We require the value of the average terms and these are given in Walton [86] as:

24
1
4
1
6

< l^ l3/? >

< l̂ 2 >

< | / 3|/34 > =  ^ ( i .ioo)

and so
K ( - e 3)3/2

< > _  ~ 24tt2B(2B  +  C) ^ ' 101^
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and
M S B  + C) ( - e3f /*

K ff3  6tr2B(2B + C) ' (1'102)

These are the results in the case of infinitely rough spheres, if we now consider the 

case when they are perfectly smooth we observe that there will be no tangential forces 

acting across the contact area. By repeating all of the calculations above, but using 

equation (1.66) this time, we find the general average stress is given by

< ° ij > =  (1-103)

So, for an initial hydrostatic compression, the stress is the same as in the case of 

infinitely rough spheres. However, in the case of an initial uniaxial compression, this 

time we have
< n > _  ( i i m )

and
( —e ) 3/ 2

< CT3 > =  ■ (L105)

1 .3 .3  T h e  E ffec tiv e  M o d u li

To calculate the effective moduli, we further subject the medium to an incremental 

deformation. That is, after the initial deformation, in the same way we now impose

Sui = 5eijXj (1.106)

on the boundary, where 5u is consistent with a uniform strain deij. Now, using the 

same methods as in the previous section, we find that the incremental force is given by

/ n (2R )1/2f(u(n') -  u (n)).l(w )l1/2 , / \
' F<"n) = 2nB(2B + C) { 2 B ( i u d - i u M )

+ C [(W n') -  W " )).I(nn')]I(nn')}. (1.107)

As before, we assume that the centre of the nth sphere will undergo a displacement

8u\n) = 8eijXj n) (1.108)
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and then the average incremental stress is obtained in the same way as equation (1.88) 

and is given by:

<  6aij > =  27r2B ( 2 B  +  C) ^  ^   ̂ (&eiklkl j

+6ejk I kIi) > + C  < { - e vqlvl q)1!2I k h l j j  > 6eki}. (1.109)

This expression relates the average incremental stress to the average incremental strain. 

Since the effective moduli C*-kl are defined by

<  StTij >= C*jkl < 6ekl > (1.110)

then the general expression for the moduli is given by

C *ijkl = 2n2B ( 2 B  + C ) ^ B <  (—epg-fp ĝ)1/2I j Tk > 6it

+ B  < ( - e pqIpI q)1/2I i I k > 6ji + B  < ( - e pqIpI q)1/2I jI i  > 6ik (1.111)

+ B  < ( - e pqIpI q)1/2IiIi > 6jk + 2C < { - e p q l p I q f ^ U I j h l i  > } .

We want C*jkl to possess symmetries in:

i) i -H- j  ii) k  -B-1 Hi) (ij) B  (kl ) or equivalently i B  k  and j  B  I, (1.112)

and our expression clearly satisfies these. The elastic moduli are seen to depend on 

the initial strain and in general our medium is now no longer isotropic. We again 

consider our two cases of hydrostatic and uniaxial compression so that equation (1.111) 

simplifies. First, with an initial hydrostatic strain = eSij, equation (1.111) reduces 

to

3d>n(—c)
c tjki = 4J b \2B + c )  ( D < h h  > S u  + B <  I i h  > Sji + B  < I j h  >  Sik

-\-B <  Iili  >  6jk +  2C <  I i l j l kli > } . (1.113)

However, as before we have

< I il j >= (1-114)

and now also

^ I i l j l k l i  '>= "f" ^ik6jl T 6ii6jk). (1.115)

C h a p t e r  1 47



1.3. GRANULAR MEDIA

Thus,

C*jkl = X* fiijfikl +  +  fiildjk) (1.116)

where
< ^ g (~ e)1/2

10tt2B(2B +  C) 1 '

and
M S B  +  C )(—e)1/2 

M 10tt2B(2B +  C) ' ( • 18)

In this case the material is statistically isotropic.

Secondly, in the case of uniaxial compression, eij =  e^S^Sjs and the moduli reduce to

C i* ‘  =  J I2B(2B + ' c ) { B  <  l h l I j I k  > S «  +  B <  I W *  >  S i ‘  (L119)
+ B  <  \ h \ I j h  > 6 i k  +  B <  \ I 3 \ I i I ,  >  S j i t  +  2C <  \ h \ h l j h h  > }.

This time the material is statistically transversely isotropic and calculating the averages 

of the components of l(nn/) we see that the effective moduli are as follows:

C ? i  =  c r m = 3 ( a  +  2/ 3) ,

Ci*2 =  Cf122 = a  — 2/?,
C *__ _ s~i*____

13 ~  ° 1 1 3 3  — ° 2 2 3 3  ~  z o 12»

C3*3 =  C3333 =  8(a  +  /?),

C\ 4 =  0 ^ 3  =  2a +  5/ 3, ( 1. 120)

with

and

0 o (-e 3)1/2 ,  ,

“ =  32 ' (L121)

R =  ^ < - e3)1/2 (1 122)
P 327i3(2B +  C ) ' ( ’

We note that the modulus C44 is different to the incorrect one given by equation (4.14) 

of Walton [86]. These are the results when the spheres have an infinite coefficient of 

friction.

Looking again also at the case when the spheres are perfectly smooth, in the case of
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an initial hydrostatic compression the moduli are equal and are given by

x* _  * _  < M ~e)1/2
107r2J5

(1.123)

and in the case of an initial uniaxial compression,

C*n  = 3a, C*12 = a , C*13 =  C*u  = 2a, C3*3 =  8a (1.124)

where a  is again as given above in equation (1.121).

These results are extended in the work of Slade and Walton [77], where a finite, non

zero value of the coefficient of friction was considered for the particular case of an initial 

uniaxial compression, followed by an incremental uniaxial compression. The general 

form for the incremental strain when there is finite friction was also considered by

The above results for the moduli have been determined using the same methods as 

Walton [86], however Slade [76], has shown the need for consideration of the individual 

sphere rotations. When we do include rotations, we find that in fact the only moduli we 

have incorrectly calculated is C| 4 for the uniaxial case. The next section summarises 

Slade’s work on this problem.

1 .3 .4  S p h e re  R o ta t io n s  W i th in  R a n d o m  P a c k in g s

Walton [86] assumed that although the individual spheres in the packing might rotate, 

these rotations would be negligible. As we shall see, this is valid, provided particu

lar symmetries exist in the way the packing is initially deformed. In a further paper, 

Walton [87] did consider the effects of rotations when studying the problem of wave 

propagation through a random packing of spheres. Including rotations into the calcula

tions, the centre of the n th  sphere now undergoes a displacement (u 

and the n 'th  in contact with the nth, a displacement (u^n^ — u>(n^ A R l(n/n)). Thus, 

the modified equation for the initial force acting on the n th  sphere due to its contact 

with the n 'th  is given by equation (2.8) of Walton’s paper as:

Slade [76].

3ttB(2B  +  C)
+ (<>'> +  J n)) A J?!*”"')) +  C[(u(n,) -  u (")).I<nn' )]3/2I (W )},
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1.3. GRANULAR MEDIA

Figure 1-4: Initial Deformation of Two Spheres Including Rotations

( 1 . 1 2 5 )

where R  is again the radius of the spheres and l(nn/), the unit vector along the line of 

centres between the n th  and n 'th  spheres. The displacement of the centres of the n th  »’

and n 'th  spheres after the initial compression are u(n) and \  respectively and B  and 

C  are as before. The quantities u /n) and ) are the individual rotations of spheres 

n and n' respectively. Figure 1-4 shows the initial deformation of the n th  sphere in 

contact with the n 'th. We use the same notation as before so that the centre of the 

n th  sphere is initially at X(n).

Any packing we consider will be in equilibrium and so each individual sphere must also 

be in equilibrium. Hence we require that the sum of the forces and moments acting on 

a sphere must be zero. Thus, for the nth sphere, say,

^ F ( n n ')  =  0  ( 1 . 1 2 6 )

n'

and

l ( n n ')  A  F ( n n , )  =  0 . ( 1 . 1 2 7 )

n'
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These, along with equation (1.125) provide enough conditions, in theory, to calculate 

and for any sphere, n. In Walton [86], it was assumed that a good approx

imation was to take the rotation terms, as zero and the displacements, u  as 

given by the uniform strain approximation.

Now, from equation (1.127) it follows that

j ( W )  p j n n 1) _  y ^  j ( n n ' ) p ( n n ' )  

n' n'

and so
y ^  j ( n n ' )  p ( n n ')  _  j ( n n ' )  jp (n n ')

contacts contacts

Writing this in terms of the averaging operator, <  . > , we have

<  IiFj >=< IjFi > , (1.128)

which if not satisfied with the exclusion of rotations from equation (1.125) would suggest 

that rotations need to be included. We then assume that the displacements u(n) are still 

given by the uniform strain approximation but that the rotations, are the same for 

each sphere throughout the packing. An expression for can then be determined 

using equation (1.128).

Similarly, from the other equilibrium condition, equation (1.126), we have

< F i > =  0, (1.129)

which should be automatically satisfied, but can be checked for any particular case of 

initial compression as we shall see below.

T he In itia l D eform ed State

Slade [76], considers the same two cases of initial confining strain as did Walton [86],

that is he considers first a hydrostatic strain and secondly a uniaxial one. From equation

(3.6) of Walton [86] we have already seen that the general expression for the force
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without rotations is given by equation (1.83), that is

3nB(2B  +  C)
(1.130)

This then gives

<  IiFj >
4 R 2

{ 2 B { ( -e T„IpIq)l /2ejkI kIi) -  C ( ( -e p, V , ) 3/2/ i/ ,)}

(1.131)
37rB(2B +  C)

so tha t now we can consider the specific strain cases mentioned.

In the case of a hydrostatic compression we have

(1.132)

with e <  0 corresponding to compression. In this case, equation (1.131) becomes

and it is clearly symmetric in i and j .  Hence, the average stress due to an initial 

hydrostatic compression can be calculated as

metrical argument, the same conclusion could have been reached. Under a hydrostatic 

compression, the forces acting on an individual sphere to rotate it clockwise would be 

exactly balanced by those acting to turn it anticlockwise.

Considering also the second case, an initial uniaxial compression along the z-axis we 

have

<  UFj >= (1.133)

<  O ij > ~  — (1.134)

which is precisely tha t calculated by Walton [86] and seen in Section 1.3.2. By a geo-

(1.135)

in which e3 < 0. Again calculating <  IiFj > from equation (1.131), we find

< IiFj > =  - 4 R2(—e3)3/2 
3irB(2B +  C)

{2B  < \h \ I3Ii > Sj3 + C <  \h\*l i l j  >}. (1.136)
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The second term, with coefficient C, is seen to be symmetric in i and j ,  however we 

need to explicitly calculate the other term to decide if it too is symmetric. Slade [76] 

evaluates this as zero when i = 1 or i = 2 and 1/4 when i = 3. This enables us to 

rewrite the term as:

< 1-̂ 31-̂ 3-̂ i >  Sj3 = <  \I3 \I3 > (1.137)

which is clearly symmetric in i and j .  We find that the average stress resulting from an 

initial uniaxial strain remains unchanged from that which is given in equation (3.24) 

of Walton [86].

We have seen that in both the application of an initial hydrostatic compression and 

tha t of a uniaxial compression, the average rotation of the spheres was zero and did 

not have any effect on the expression for the average stress. This is not the case when

we consider the incremental stage of the problem, rotations are required to ensure

equilibrium of moments.

A pplication  o f an A dditional Increm ental Strain

Relative to the contact point with position vector (X(n) +  X^n ^)/2, the incremental 

displacement of the centre of the n 'th  sphere will be

h W " '5 -  iu M ) +  h.5u;(n') +  f c (n)) A (1.138)z z

This displacement can be split into its normal and tangential parts in the same way as 

considered by Walton [86] and as discussed in Section 1.3.2. The normal component of 

the relative displacement of the upper sphere 8w0, is found to be

too  =  l(S u (n' ) -  <5u(n>).l("n'> (1.139)z

The shear component, which is the remainder of the relative displacement, is then given 

as follows:

i s 0 =  h W " ')  -  <5u<n>) +  h fc * " ')  +  <Su/n)) A -  ituol1"”0 - (1-140)

The incremental force vector can be constructed from the incremental normal and 

tangential forces found from these displacements. This will be the incremental form of

C h a p t e r  1 53



1.3. GRANULAR MEDIA

equation (1.125):

6F =  2*B(2B + C)-------L -{2B('5u('*)-<SuW  (1.141)

+ (& > ')  +  8ujW )  A RI(nn,)) +  C [ { 8 u ^  -  W ^ ) . ! ^ ] 3/2! ^ 71')}.

We now make the same assumption as before, that the displacements of the centre of 

each sphere is consistent with the applied uniform field. Thus,

«jn) =  ey X<n) (1.142)

and

Su\n) = SeijX jn) (1.143)

and a similar assumption will be made about the rotations. Since we assume tha t the 

strain field is uniform throughout the packing then we also assume tha t the spheres all 

rotate by the same amount, that is

S j n> = SujW  = Suj. (1.144)

Again, as with the displacements, each sphere will not rotate by exactly the amount 

given, but it will be true on average. Now, using the definition of the unit normal 

vector, equation (1.78), we have from equation (1.141) the component form of the 

incremental force given as:

Sff"'")  = -  2R2J b (2B + C ) 2 <C<Se» W l  +  2B,Se*‘i! -  2 BeiuSukh}.  (1.145)

The superscripts (nn') of the vector components 7̂ , have been omitted for brevity, 

is the third order alternating tensor.

Equilibrium  C onditions

If the n th  sphere is to be in equilibrium we require the sum of all the incremental forces 

acting on it to be zero and the sum of the moments of those forces to also be zero. 

Hence, we have

^ l(r m ')  A <5F(nn,) -  0 (1.146)
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y ^ F (™') =  0. (1.147)
n'

Substituting from equation (1.145) into equation (1.146), after disregarding one term 

as it will be zero, the condition for equilibrium of moments reduces to:

y ]{-epqIpIq)l /2{8ik -  I ih ) f iuk = ^ 2  £irk{-epqlplq)1/2l rli5eki. (1.148)
n' n'

Summation is taken over all spheres n' in contact with the n th  sphere and by also 

summing over all spheres n, provided we have a dense enough packing the summation 

may be written in terms of averages yielding,

( { - e pqIpIq)1/2(8ik -  I i l k))8ujk =  eirk( ( - e PqIpIq)1/2IrIi)8eki (1.149)

from which the incremental rotation vector 8u may be determined in terms of the 

incremental strain Seij which is known. Slade [76] calculates the components of this as

8u i =  — -<Se23, <5^2 =  -8e  13, 8u)$ = 0. (1.150)

We also have the condition for equilibrium of the incremental forces, equation (1.147), 

which becomes

({-Cpqlplq)1/2 {C IkIiI{ + B5ikIi }8eki) =  2Beiki { ( - e pqIpIq)1/ 2Ii8ujk). (1.151)

Any initial compression would in fact satisfy this condition since we are averaging over 

odd quantities.

T he Increm ental Stress

Equation (1.109), gives the general form of the incremental stress and having deter

mined the rotation vector 5u> from equation (1.149), we can substitute the expression 

for the incremental force from equation (1.145) to find this incremental stress. We 

obtain,

<  5<Jij >  =  2n2B ( 2 B  +  C )  ̂ h l j l k h ^ k i )

+ 2B ({ -epqIpI„)1/2IiIiSejt) -  2Beikl( { -epqIpIq) l/2IihSu>k) \ l .  152)

C h a p t e r  1 55



1.3. GRANULAR MEDIA

from which the effective moduli can be found in the same way as before.

Slade [76], considers first the case of an initial hydrostatic strain for which we have 

eij = e5ij. The incremental stress is symmetric before inclusion of the rotation term 

above. Thus the calculations axe unaffected by rotations and so the moduli are as found 

by Walton [86] and seen in Section 1.3.2.

However, in the case of an initial uniaxial strain we have =  e^S^Sj^ and the incre

mental stress is found to be

T he N ew  Effective E lastic M oduli

As we have found the incremental rotation vector, we can proceed to find the incre

mental stress from which the revised effective moduli will be calculated. If we compare

term, €jpq < IiIq\I$\ > 8ljp. Slade [76] concludes tha t this is zero for i = j .  Since we

to be non-zero then we must have i = q which combined with the previous condition 

gives us i ^  j  for €jpq < IiIq\I%\ > 8usp non-zero. Hence, in fact only one of the five 

independent elastic moduli is affected by the inclusion of rotations.

The elastic moduli are defined by the relationship

< S<7ij > 2tt2B(2B + C)
3 r^ ( - e ) ‘/2

—  {(B < \h\IJt > Sjk > + B <  |/3|Ji4 >

+ C  < \ls\lil jlkli >) < Sew > —2Bejpq <  \I \̂IqIi >  8ljp} .

(1.153)

equation (1.153), the expression for the incremental stress including rotations with that 

found by Walton [86] without rotations, we see that equation (1.153) contains an extra

require the indices j , p and q to be distinct, then in particular j  ^  q. If <  I i lq\l2,\ > is

< 8&ij > — Cijkl ^  ^ (1.154)

and taking i = j  = 1 in equation (1.153) gives the three moduli

30r/(—e3)1/2(4 B  + C) 
327t2R(2R +  C) ’ 

0 r /C (-e3)1/ 2
32ir2B(2B  +  C) ’ 

(f>r}(-es)l/2C
(1.155)

16ir2B(2B  +  C)

C h a p t e r  1 56



1.3. GRANULAR MEDIA

Similarly, if i = j  = 3, then

r , <to(-es)1/2(3B + C)
° 3333 “  4 ^ B ( 2 B  + C) ' (1'156)

These four moduli, are identical to those calculated by Walton [86], however if we take 

i = l  and j  = 3 then the rotation term is non-zero and in this case the required moduli 

is found by Slade [76] to be

r ,  M ~ e 3)1/2(4B + C)
° 1313 -  16n2B ( 2 B  + C)  ' (L15?)

Re-writing all of these moduli in terms of a  and /3 as before, we see tha t we have 

the five independent effective elastic moduli needed to describe a transversely isotropic 

medium:

C?1 =  3(a +  2/?),

C?2 =  ( a - - 2/?),

SI CO = 2{a -2 /3 ),

<?33 = 8{a +  /3),

c i 4 = 2{a + 2/3).

The quantities a  and j3 are defined as before by

(1.158)

32?t2B  ’ P 32ir2(2B + C)  ̂ ^

Using a physical argument, these results are exactly what we would expect, that is only 

the modulus C44 =  C *313 is affected by the rotations that occur within the packing. 

Since we are considering an initial uniaxial strain, the contact areas created upon 

application of this strain will not all be of equal radius as they would in the case of 

an initial hydrostatic strain. Those that are created between two spheres whose line of 

centres is in the same direction as the strain, i.e. in the ^ 3-direction, will be the largest. 

These contact areas themselves lie in the xiX2-plane. Conversely, those contacts that 

lie in the same direction as the strain will be smallest.

First consider the moduli C *l5 C{2 and C *3 that arise from the relationship between
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the stress component o\\ and the strain components en , e22 and 633 respectively. The 

stress component a n  corresponds to a force acting in the sq-direction. If the contact 

distribution is uniform, as we have assumed, then this force will act on identical sized 

contacts on opposite sides of a sphere. Therefore we would expect the effects of rotations 

due to this force to ‘cancel’ each other out. Hence the corresponding moduli are also 

not affected. Similarly for C33, which is found from the relationship between <733  and 

633. However, the modulus C| 4 is determined from the relationship between <713 and 

ei3. The stress component <713 represents a shear acting in the x \  and x$ directions 

which will result in the same force acting on different sized contact areas. This will 

lead to imbalance, the moments will not now cancel and rotation effects will appear 

within the expression for this modulus.

1.4 A ltern a tiv es to  th e  U niform  Strain  A p p rox im ation

All the calculations discussed thus fax to find the effective elastic moduli have been 

based upon the uniform strain approximation. Several authors have considered alter

native approaches in effective medium theory. Here we mention briefly some of this 

work, although we will not use the ideas in this thesis. In particular, we mention a 

method that could be described as a ‘uniform stress approximation’.

In their work, Emeriault and Cambou [33], suggest three methods of deriving a macro

scopic elastic model from a microscopic contact law (Hertz-Mindlin). They consider 

a random packing of spheres, both isotropic and anisotropic, although we axe purely 

interested in their results for isotropic media. They consider the global variables, <7^  

and eij, these are the stress and strain tensors respectively, in the same notation we 

have used. The local variables are the contact forces, F{ and the relative displacement 

of contact points between particles, Ui. The first order approximations of these are Fi 

and Ui. The average diameter of the spheres is 2R.

The local variables involved in the homogenisation technique are only quoted in Emeri

ault and Cambou [33], the actual discussion of them can be found elsewhere, Cambou 

et al. [14]. These variables are:

StaticVariable : f(I) -  +^ N R P ( I)F (I) (1.160)
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MACROSCOPIC SCALE

Global Constitutive Law

LocalisationAveraging Averaging

Kine natic Analysis Stat c  Ana ysis

Local Contact Law

Relative 
Displacement 
at Contact pt.

Contact Force

MICROSCOPIC SCALE

Figure 1-5: Different Localisation and Averaging Operators

3______ __
Kinematic Variable : u(I) = —----- -——U( I) (1.161)

w  2(1-1- d)-KR v '  v '

where P(I) is the contact distribution function and is equal to 1/ 47T in the case of an

isotropic medium and d is the dimension of the space, so in our case d = 3.

All three methods discussed by Emeriault and Cambou [33], relate to finding the op

erators to describe various paths around the boxes in figure 1 of Emeriault and Cam

bou [33], shown here in figure 1-5. Different hypotheses are used to consider the local

isation and averaging processes in this diagram. The three approaches as described by 

Emeriault and Cambou [33] are as follows:

1. Voigt type process: e —b  u(I) and f(I) —b  a.

L s  A ^

2. Static localisation process: a —b  f(I) and u —b  e.

Z/k A s

3. Second Kinematic localisation process: e —b  u(I) and f(I) —b  a.

In each of these methods, A stands for an averaging operator, L for a localisation, s for 

static analysis and k for kinematic analysis and the numbers represent the process that 

uses the operator. Both the first and third approaches follow the same path around 

the diagram as the uniform strain approximation. In fact the first is identical, yielding 

the expressions we have already considered for the effective moduli. It is described 

by Emeriault and Cambou [33] as a Voigt type process, as the localisation operator

C h a p t e r  1 59



1.4. ALTERNATIVES TO THE UNIFORM STRAIN APPROXIMATION

relating the strain to the displacement is equivalent to the classical one used in Voigt’s 

homogenisation in continuum mechanics.

The second and th ird  approaches yield new expressions for the effective moduli. The 

second approach traverses the box diagram in the opposite direction to the uniform 

strain approximation and could be described as a uniform stress approximation. Using 

the representation theorem, Spencer [79], the operator L 2, is found, exactly, to be

f(I) =  /icrl +  -  tra)I. (1.162)

A simple linear contact model is assumed to connect the contact force to the displace

ment in the following way:

F  =  K nUnI + K tU t (1.163)

where Un is the magnitude of the displacement in the normal direction, U t is the 

displacement in the tangential direction and K n and K t respectively denote the normal 

and tangential stiffness. The averaging process, A* is described by

lU n i t  S p h e r e

/iu  A I +  ———[51 A I -  S] u .I d&, (1.164)

where dQ is the solid angle for each contact orientation I. The parameter /i is used 

to define the local operator, its value influences the orientation of the contact forces. 

From these hypotheses, the shear modulus is found to be

* 5077(—e)1/2
M =  B(25 — 30/x) -t- 3fi2(hB +  C) (1.165)

and the bulk modulus is found to be the same using all three approaches, hence

K =  6ir2B  ■ (L166)

Emeriault and Cambou [33] compared the theoretical values given by these results 

with some experimental work and found that a value of approximately fi* = 0 gives 

good correlation. However, a value /j, = 0.7 was found from numerical simulations 

to give a better description of the contact force distribution. Apart from the fact 

that this unknown variable is included, we decided not to consider a further use of this 

model because of the unrealistic linear relationship between the force and displacement,
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equation (1.163).

Returning to the third process discussed in this paper, an application of the repre

sentation theorem is again used, this time to find that the localisation operator, 

is

u(Î= h  { 1 +b - 0  eI+6 IeI - ftre]J} • (L167)
The averaging operator, is the same as that we use in the uniform strain approxi

mation to connect the average stress to the force:

3 r
o = — \  fA ld f t.  (1.168)

47T Jjjnit Sphere

The local operator contains another unknown parameter 6, when b = 0 we return to the 

first approach again. Emeriault and Cambou [33] connect this parameter b to the local 

rotation of particles and to the possible creation and loss of contacts in the medium 

and so the first approach eliminates any possible rotations. We have already mentioned 

the consequence of this in the previous section. The shear modulus in this third case 

is calculated as

, *T,(-e)1/2(5B +  C - 3 B 6  +  f(5B  +  C)i*.)
M = ------------------ 57r2B(2B +  C)------------------- (L169)

and the bulk modulus is as in the other two approaches. The shear modulus again 

contains the unknown parameters fi and b and for this reason we have not considered 

any further application of this method.

Several other authors have done some similar work, including Miilhaus and Oka [56] 

and Chang et al. [16]. Chang et al. [16] calculate the effective moduli by considering 

a kinematic and static hypotheses similar to the work of Emeriault and Cambou [33] 

discussed above. The expression for the effective bulk modulus is identical in all cases, 

it is only the effective shear modulus where there is some difference. Chang et al. [16] 

claim that the kinematic hypothesis, for example the one by Walton [86] discussed 

in detail in previous sections, provides an upper bound solution for a relationship to 

estimate the particle movement. It is also claimed that the static hypothesis provides 

a lower estimate solution. Chang et al. [16] compare the results obtained from both 

of these methods with the range of behaviour of isotropic and anisotropic packing 

structures. However, both this paper and that of Miilhaus and Oka [56] again assume
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that the relationship between the force on the contact area and the displacement is 

linear. Hence we do not consider them to be as realistic as the model by Walton [86].
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Chapter 2

Effective Elastic M oduli of 

Granular M edia Subjected to a 

General Biaxial Strain

2.1 In trod u ction

As we have mentioned in section 1.3.2, the work of Walton [86] employs a method that 

could be used to consider any initial deformed configuration, although specific results 

are only given for the two cases that correspond to an initial hydrostatic compression 

and a uniaxial compression. The work in this chapter is an extension of the method to a 

third case and we calculate the effective elastic moduli for an initial biaxial compression. 

Like Walton [86], for simplicity, we assume that the spheres are either infinitely rough 

or perfectly smooth.

The work of Schwartz et al. [73] has already extended Walton’s work by considering a 

perturbation of the strain for an initial hydrostatic compression. The paper looks at 

two types of model for predicting induced velocity anisotropy in rocks. It is the first of 

these methods that is concerned with a combined initial hydrostatic compression and 

uniaxial loading. That is, the initial strain has the form:

&ij — “I- A 63^ 3^ 3. (2 .1)

where Ae3 e. The models he uses for this were developed by himself, Schwartz [71],
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Schwartz et al. [72] and that of Walton [86], discussed in the previous chapter.

Firstly, we look at this case of applied strain and recalculate the moduli since Schwartz 

et al. [73] did not consider the effect of the inclusion of rotations on the moduli. Using 

the results in section 1.3.4 found by Slade [76], we calculate the effective moduli both 

including and excluding the effects of rotations. It turns out that in this case again 

only the modulus C{313 is affected by rotations.

Later in the chapter the case of a general biaxial compression is considered. Assuming 

a spatial coordinate system given by rci, X2 , and x3 our aim is to calculate the effective 

elastic moduli when we have an initial strain of the form:

e-ij =  +  63^ 3^ 3. (2 .2)

As in Schwartz et al. [73], relative to this state the material is transversely isotropic 

with five independent moduli C ii n , C*133, C3333, Ci313 and C{2n-  By considering 

the symmetry of the expression found for the average incremental stress we show that 

the sphere rotations do not affect the moduli C*111? CJ'133, C3333, and C{2i2) however 

they do affect C*313. Therefore C i313 will be calculated both including and excluding 

rotations. Schwartz et al. [73] use these moduli to calculate the ratio of the speeds of 

propagation of the P and S elastic sound waves in rock. That is, three independent 

{VpfVs)2 ratios: C'3333/C]Jt313, ^ 1111/^1212 an^ ^ 1111/ ^ 1313' The first corresponds to 

propagation along the pressure axis, that is the x3-axis, the second to propagation in 

the transverse direction with the shear wave polarised in the transverse plane and the 

third to transverse propagation with shear polarization in the axial direction.

Domenico [30] found that for systems whose elastic properties are isotropic under the 

application of a hydrostatic stress, the V p /V s  ratio, is often independent of the applied 

pressure. That is, the ratio of the velocity of the P and S waves may be independent 

of the applied pressure, even though the P and S wave velocities themselves may vary 

with this pressure. However, this is not the case when the applied strain is uniaxial 

as the systems exhibit transversely isotropic behaviour and the three V p /V s  ratios do 

depend on the applied strain. (See Nur and Simmons [61], Murphy [59], Zamora and 

Poirier [95] and Yin and Nur [94]).

We are considering a system of this second type and plot graphs of the three Vp/Vs
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ratios against the third component of stress for two values of Poisson’s ratio, 1/2 

and 1/4. We compare them with figure 1 of Schwartz et al. [73], which plots the 

experimental results of Murphy [59] and calculated Vp/Vs  ratios.

All the analysis in Walton [86] which leads to the general results that were summarised 

in Section 1.3.2, are initially completed for the general case. Thus we can quote some 

of the results without need for reworking of the calculations. We start by restricting 

ourselves to the case of infinitely rough spheres, the results for perfectly smooth spheres 

are given later.

The spheres are assumed to be elastically identical, all of the same radius and consisting 

of material that is homogenous and isotropic. To see the effects of sphere rotations 

which are non-zero we initially exclude them from the calculations. Equation (1.83) 

gives the contact force, without rotations, as

T?(nn') — _______________/o B ( —e j (nn')
* ~  2nB(2B + C ) \  ( q ’ l k k

- C ( - e p, 4 ’," ')/(nn'>)3/24 " " ')} , (2.3)

from which the average stress can be calculated. The average stress, at the end of the 

initial compression, is as given in equation (1.87), that is

<*«> =  - £  E (2.4)
c o n ta c ts

Since the volume is large and contains many spheres, the summation over all contacts 

within the packing volume U, can be replaced by the averaging operator < . > , as seen 

previously, thus

< ° H > = - ^ { ( I i F j ) + (I1F))} . (2.5)

Using equation (2.3) we find the average quantity < IiFj > , and then equation (1.88) 

is given as:

l
< (7{j  > =  7T2B (2B  +  C ) ^ { e i k l l c l j  +  e j k ^ k U ) )

-C { { -e p qIpIqf l 2h I 3)}. (2.6)

To calculate the effective moduli we further subject the medium to an incremental
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deformation. That is, after the initial deformation we impose an incremental displace

ment

Sui = SeijXj (2.7)

on the boundary, where 5iii is consistent with a uniform strain 6eij. We calculate the 

incremental force using equation (1.107) and the average incremental stress is then 

obtained in the same way as equation (2.6), that is we have equation (1.109)

Q 1
< 5<Jij > = 2tT2B (2B  + C ) ^  ^  i ~ epqlplq)  ̂ {feiklklj

^  T C  < ( Cpqlplq)  ̂ Ifclllilj >  Se^l}. (2.8)

This expression relates the average incremental stress to the average incremental strain 

and since the effective moduli C*-kl are defined by

< 5<Jij > =  Cij^Seki (2.9)

then the general expression for the moduli is given by equation (1.111) as

C^ kl =  2-k2B (2B  +  C ) ^ B  <  >  S«

-\-B < ( — epqlplq)ll2lilk > Sji +  B  < { — epqlplq)1!2I j l i  > 5ik (2.10)

+ B  <  ( — epqlp lq ) l l 2l i l l  >  Sjk +  2 C  <  ( — epqlplq)1!2I i l j l k h  > } .

since this possesses all the appropriate symmetries. We will include rotations into this 

analysis later in the chapter.

2.2 P ertu rb ation  o f an In itia l H yd rosta tic  C om pression

2 .2 .1  T h e  In it ia l S ta te

For a hydrostatic strain we have

6ij — cSij, (2 .11)

and as already seen, equation (2.1), we wish to calculate the effective elastic moduli 

when this strain is perturbed in one direction. Thus, we consider a strain of the form:

&ij — +  A&sSisfij'} (2.12)
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where Ae3 e. We assume, as did Walton [86], that the displacement of the centre of 

each sphere is consistent with the applied uniform field, so that

u ^  = etlX ^ .  (2.13)

We substitute this displacement into the general force expression which then allows us 

to calculate the average stress. For now, we still ignore any effects that sphere rotations 

may introduce and use equation (2.6) to find the average stress. This gives:

< a i j >  = + C ) {D <  ( - ( e  +
+ A e36i3h l j  +  e lj l i  4- Ae^dj^I^Ii) >

- C  < ( - ( e  +  / 32Ae3))3/2I i / ,  >}. (2.14)

But, working to first order only in Ae3/e,

(e +  j j A e s J ^ e ^ l  +  i j ^ l )  (2.15)

since Ae3 e, and similarly,

(e +  / 2Ae3)3/ 2 ~  e3̂ 2(1 +  ^ 3 ~ ~ ) -  (2-16)

We also have that

< I%Ij >  — g

<C h l j h h  >  — T  ( 2 * 1 7 )

so then the average stress < oij > reduces to

< * « >  =  « > B ( W  +  C) < ~(2B +  C)(~ e)3/2y  +

+ 4 ( 5  _  | c ) ( - e ) 1/2Ae3(5i3 +  2Sa Sj3)}. (2.18)
Id z

Hence we see that

(< dij >) =  diag (< o n  > , < tfii >, < <733 >), (2-19)
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where

^ ( 2 B  +  C ) 4 (2i? +  C)(_e)3/2 +  A (S  +  | ^ ) ( — )1/2^ 3 > .

M ( W  + C ) t - h 2B + C )^ f t  +  ^ 16B +  9C) ( - ) 1/2^ 3 } .

(2 .20)

These results apply to the case of infinitely rough spheres. Now considering the case 

when all the spheres are perfectly smooth there will be no shear force across the contact 

area. Repeating the analysis, then equation (2.6) for the average stress becomes:

< cTij >=  — epqlplq)  ̂ l i l j )  (2.21)

in the general case. In the case of a perturbed hydrostatic strain as we axe considering, 

equations (2 .20) reduce to

(f)7](-e)3/2 r 3 \—1/2 a i
< < 7 ll>  =  ^ - 3 ^ B _ { 1  +  l 0 (_e) Ae3>’

< ff33>  =  ~ ^ B ~ {1 +  ^ (~ e)~1/2Aei,}- (2'22)

2 .2 .2  T h e  In crem en ta l P ro b lem

We apply a further incremental displacement to the boundary

Sui = deijXj (2.23)

again assuming tha t the displacement of each sphere centre is consistent with this 

applied uniform field. This enables us to calculate the incremental force acting across 

the contact area between the n th  and n 'th  spheres, from which we find the incremental 

stress.

From equation (2.9) and again using the approximation in equation (2.15), the elastic 

moduli are given by:

C ^ ‘ =  4 7 ^ 5 ( 5  +  C ) V k > **+ < I i h  >  S’ l+  < W  >  **

+ < I ih  > Sjk ] +  2C ( - e ) 1/ 2 <  I i l j h h  >

< ^11 > =  

<  <733 > =
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+ —( - e ) _1/2Ae3{< i l l j h  > ■5,1+ <  IpJk > Sji+ < i j l jh > <5lt

+  <  I lh h  > Sjk} +  C A e s ( - e ) - 1/2 <  i l h l j h h  > }  . (2.24)

Using equations (2.17) and the further equality

{ l l h l j l k h )  = {Sij Ski +  hk&3i +  !>u6jk +  2(SijSk38i3

+8ik5j35l3 +  $il8j35k3 +  fii3($jkfil3 +  ĵl k̂3 +  ^kl^j3))} , (2.25)

and if we define

=  <h n =
1407T2B ’ P 140tt2(2H +  C ) ’

7  =  14a, S =  14(3, (2.26)

then we now have enough information to calculate the moduli and they can be written 

concisely as

C'u =  C?m  =  ( - e ) 1/2(37  +  4a) _  A e ^ - e Y ^ ^ o c  +  8/3),

Ci*2 =  C?i a  =  ( - e ) 1/2(7 -  2S) -  Ae3( - e r 1/2(a -  20),

Ci*3 =  C1*133 =  C2‘233 =  ( - e ) 1/ 2( 7 - 2 i ) - A e 3( - e ) - 1/2( 3 a - 6 / J ) ,  (2.27)

C3*3 =  C3*333 =  ( - e ) 1/ 2 (37  +  4 5 ) - A e 3 ( - e ) - 1/2(15o +  1 2 « ,

C4*4 =  Cr313 =  ( - e ) 1/ 2 (37  - S ) -  Ae3 ( - e ) - 1/ 2 (3a +  8 /8 ).

For completeness, we calculate the remaining non-zero modulus defined by

For a transversely isotropic medium such as the one we are considering, Mai and 

Singh [52], show tha t only the five moduli given in equation (2.27), are independent 

and this sixth modulus can be expressed in terms of the other elastic constants as

c 6*6 =  c ? 212 =  (—e) 1//2 (7  +  3<5) +  A e 3 (—e)-1 /2(a  +  50). (2.28)

C *__  ̂ \
66 — 2  ̂ 11 ~~ 12/ • (2.29)

A quick calculation shows that this relationship is confirmed and we have just the five 

independent elastic moduli in equation (2.27).
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We again use the notation

 p* /'I*___ _/'■t* /'--I* __ri*
°1111 “  L'll> °1122 — °12> L/1133 ~  °13>

^3333 — ^33> ^1313 — ^2323 =  ^55 =  ^44 ^1212 ~  ^ 66’ (2.30)

This is the notation used in Schwartz et al [73] and makes later comparison easier.

The results in equation (2.27) only apply for the case when the spheres are infinitely

rough. When we now consider the spheres as perfectly smooth we find tha t the moduli

are given by

c h  = 3 7 (-e )1/2 +  3aA e3( - e ) -1/2,

c i2 = 7 (—e)1/2 +  aA e3( - e ) _1/2,

c h  =  7 (~ e )1/2 + 3 a A e 3(—e)-1/2,

c h  =  37 (—e)1/2 +  15o!Ae3(—e)_1/2,

C44 =  7 ( - e )1/2 +  3aA e3( - e ) _1/2,

c 66 = 37 (—e)1/2 +o;A e3( - e ) _1/2, (2.31)

where a  and 7  are as defined in equation (2.26). Again, there are just the five in

dependent moduli, Cq6 can be expressed as a combination of C h  and C*2 (see equa

tion (2.29)).

2 .2 .3  In c lu s io n  o f  th e  E ffects  o f  R o ta tio n s

We now recalculate the elastic moduli for the initial strain given in equation (2.12), 

but this time include the effects of rotations of the individual spheres. For the initial 

problem, we need an expression for the term < IiFj >, which is found to be:

 4  z ? 2  1

C IiFj > = ^ B ( 2 B  + C ) {2B[~ e)ll2{< (e +  2 I*Ae3)IiIj > +AeiSj3  <  h h  >}

- C ( - e )1/ 2 <  (e +  Ae3/ 32 +  iA e 3/ f  ) / ^  >}. (2.32)

Clearly the first and last terms of this expression are symmetric in i and j .  If we 

consider Sj3 <  > , this is non-zero if and only if i =  j  =  3 and so this term is also

symmetric in i and j .  Thus < IiFj > is symmetric in i and j  and hence so is <  Oij >, 

and individual sphere rotations do not have any effect on this part of the problem.
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Thus, the average stress of the material after the initial compression is indeed given by 

equations (2.19) and (2.20), namely,

(< Gij >) =  diag (< a n  > , < a u  > , < a33 >), (2.33)

and

^ B t § T c ) t - 5 (2B +  c ) (- e)3/2 +  ^ (B +  l c )(- e)1/2Ae3> 

<CT33> =  J b $ b T c ) { - \ {2B +  c ) ( ~ e)3/2 +  ^ (16B +  9 g X - e>1/2^ } .
(2.34)

When we have perfectly smooth spheres the average stress is again as given in equa

tion (2 .22).

Results from the second chapter of Slade [76] are required to continue with the second 

part of the problem, the incremental stage. These are the conditions for equilibrium, 

which allow us to calculate the components of rotation and the general expression for 

the average incremental stress. These give the two equations:

< (—epqIpIq)l/2{CIkIiIi +  B8ikli}5eki > —2Beiki < {—epqIpIq)1̂ 2IiSuJk >=  0 (2.35)

and

< ( ^-pqlplq)  ̂ (8ik li^k) ^  k = €irk ^  ( Zpqlplq)  ̂ Ir^l ^  (2.36)

the first of which corresponds to equilibrium of the incremental forces, equation (1.151) 

and the second to equilibrium of moments equation (1.149). The incremental stress now 

contains an extra term, due to rotations, which was absent from our last calculation of 

the moduli. This stress is given by equation (1.109) as:

< 5aij > = 2'k2B{2B  +  C) ^  ^  ^^p-^g)1̂  h l j l k h ^ k i  >

+ 2 B  <  (—epqlplq)1/ 2IrfiSeji >  —2Bejki <  (—epqIpIq) 1̂ 2Iili5u)k >}•

(2.37)

We first check that equation (2.35) holds, that is that the forces acting are in equilib
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rium. Substituting for the strain field (2.12), into equation (2.35), gives

<  (—e)1/2 ( l  +  \ l l ^ )  { C h h l i  +  BSah} > Sett

<  ( - e ) 1/2 ( l  +  i / | ^ ) / ,  ><Swt =  0 (2.38)

By the symmetry of the components of I  on the interval over which they are averaged

we have

< I klili >=< I$IkIiIi >=< h  > =  0 (2.39)

and so clearly this equilibrium condition holds, irrespective of the components of rota

tion.

If we now take equation (2.36) and substitute for our particular strain field we can 

calculate the components of rotation,

<  ( - e ) 1/ 2 ( l  +  \ l l ~ - )  (&ik ~  h h )  >  Suk 

=  (irk <  ( - e ) 1/2 ( l  +  Irh > tekl (2.40)

which yields

<  Sit -  I ih  +  -  \ — % h h  > Su>k2* 6 m 6
1 Ae^ o

=  îrfc ^  Ir^l T ~ ~ ^  &Ckl" (2-41)

Putting i = 1 in this last we find tha t

SWI =  "2 (5 e + eAe3) 6e23 (2'42)

and similarly putting i = 2 and i = 3 respectively, we see that

=  2(5e +e Ae3)*ei3 (2'43)

and

5uj3 = 0. (2.44)

We can now use these in equation (2.37) to find the components of the incremental
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stress. Putting i = j  = 1 in (2.37) we can find the three moduli C{2 and C{3.

There are no effects due to the rotations for these three moduli and so using the same

notation as before, the moduli are:

CJi =  ( - e ) 1/2(37  +  4,5) +  Ae3( - e ) - 1/2(3a  +  8/3),

Ci*2 =  ( - e ) 1/2(7 -2< S )+ A e3( - e ) - 1/ 2( a -2 /3 ) ,  (2.45)

c h  =  (~ e )1/2(7 -  26) + Ae3( - e ) _ 1/2 (3a -  6/3).

Similarly, putting i = j  — 3 we have no effect due to the rotations and thus

C3*3 =  ( - e ) ^ 2(37  +  46) + A es (-e )~ ll2(lha  +  120). (2.46)

To find C44, we calculate <  <713 >  which is given by

<CT13> =  2 ^ B ( 2 B  + C) { [B(< h h  > + \ ^ T < 73/1/1 >)S*k 

+B(< Ikh  > + ^ —  < I l h h  >)6v 2 e

+C(< I l h h  1, > + ^ ~  < I l h h h  >)] < 6ekl >

-2 B (c32i[< I \  > < I I I  1 >] < 6u2 >

+C312[< h h  > + \ —  <  /2 h h  >] <  6W! > )}  . (2.47)
2 e J

The first of the terms due to rotation effects is not eliminated in this case and we 

recalculate C| 4 as

C44 =  ( - e )1/2(7  +  35) +  Ae3( - e ) “ 1/2 (3a +  80), (2.48)

where a , /3, 7  and <5 are as before.

In fact, this is the only modulus affected by considering rotations, C\2V2 is unaffected 

and so we again have our five independent moduli given by

C h  = (—e) 1̂ 2 (37  +  46) — Ae3(—e)- 1̂ 2(3a +  80),

C'a =  (—e) 1̂ 2 (7  — 25) — Ae3(—e)-1 2̂(a — 20),

Cl*3 =  (—e) ' / 2(7  -  2,5) - A e 3( - e ) - 1/2( 3 a - 6 0 ) ,  (2.49)
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C3*3 =  (~ e)1̂ 2(37 +  4(5) — Ae3(—e)-1/2(15a + 12/?),

C4*4 = ( - e ) 1/ 2 ( 7  +  3 i ) - A e 3( - e ) - 1/2(3a +  8J8).

These are the moduli for infinitely rough spheres.

In the instance when the spheres are perfectly smooth, the moduli are

c \\ =  37 (—e)1/2 +  3aAe3( - e )_1/2, 

c \2  =  7(~e)1/2 +  QfAe3( - e )_1/2

c h  =  7 (~e)1/2+  3aAe3( - e ) -1/2, (2.50)

c h  =  3 7 (-e )1/2 +  15o;Ae3(-e)~1/2,

C44 — 7(- e )^ 2 + 3aAe3( -e ) -1/2.

These are identical to those found in equations (2.31) since there is no tangential

traction with perfectly smooth spheres and so there are no rotations to include in the

calculations.

2.3 T h e E ffective E lastic  M oduli for an In itia l G eneral 

B iax ia l S train

We now extend the case considered in the previous section to that of a general biaxial 

strain. As already mentioned, we calculate an expression for the stress and the elastic 

moduli in the case of an initial strain of the form:

^ij =  e i ( 6 n S j i 6 i 2 5 j 2 ) e ^ S i s S j s

. =  e\Sij  +  (e3 —  e \ ) 5i38j 3. (2.51)

This is a generalisation of the strain in equation (2.12).

Assuming that the displacement of the sphere centres is consistent with the uniform 

strain field, as before, and from the subsequent general expression for the force derived 

by Walton [86], we find the force acting across the contact area on the n th  sphere due
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to its contact with the 77/th  from equation (2.3) is:

,(nn') _  4-R2( —ei)3/2
B {2 B - \

x(Ii  +

F r "  = ^ B ( 2B + n  i  2BoilHyJiJtS +  Oj I

(e3 -  ei)
ei

ei

* 3/ 3) -  c

1/2

l  +  £ 3 ^ £ i /32
ei

3/2
(2.52)

2 .3 .1  S tress  C o m p o n en ts

The general expression for the average stress is given in equation (2.6),

4>r) \ n ^ - e pqip±q) ■ V

- C ( ( - e p, / p/ , ) 3/2/ i/ i )}. (2.53)

Substituting in the expression for the general biaxial strain as given in equation (2.51), 

we can calculate the stress. A typical average arising in the calculation is

1 C2ir />7r
((—epqIpIq) l '2I 2) = —  /  d(f) (—e i s m 2 O — e3COS2 9)1'2cos2 6sm0d0. (2.54)

4 7 t  J o J o

This and other similar integrals that arise, may be evaluated using standard techniques 

(see Appendix A). We define

/ i ( z )  =  <

x 1/2 +
( I -xP/2 sin _1(1 — x ) 1!2 if x <  1

2 if x  =  1

x 1!2 +  (x_i)i/2 sinh-1 ^  — l ) 1/2 if x  >  1

(2.55)

/ 2M  =

/ 3(a) =  <

X * ' ~ ( L  —  Z X )

4 (1—x) + 1
4 (1—x ) 3/ 2

2/3
x * / 2 ( 2 x —1) 1

4 ( x —1) 4 ( x —I )3/ 2

x 1/ 2(3 —2x) + (3—4x)
4 (1 —x) 4(1 —x ) 3/ 2

4/3
x 1/ 2( 2 x —3) + H 1 W

4 ( x —1) 4 ( x —l ) 3/ 2

sin *(1 — x ) 1!2 if x  <  1 

if x =  1 (2.56)

if x  =  1 (2.57)

Then, also using equation (2.51), we obtain a stress tensor that has purely diagonal 

non-zero entries, as was the case earlier in this chapter,

(2.58)
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where

(<T3> =  " , S ( 2 B  I  C) { (^ 7  +  J ) h  ( J )  +  f  ( J )  } • (2’59)

So, in particular

For the case where Poisson’s ratio, v =  1/4, then B f C  = 3 and so

fci<ff3>=§ +5 )/2 © +Kt) ’ ( 2 - 6 i )

where
n2B (2B  +  C) 21n2

1 "  < ^ C (-e i)3/2 "  M ~ e i ) 3/2'

Similarly, for =  1/2, B f C  = 1 and

3 /2

where

M*3> -  ( ^  +  I )/2  ( ^ )  +  ^ ( J )  . (2.63)

7t2B{2B + C) _  3tr2
2 “ “ 0r/C(-e1)3/2 “ ~^(_ei)3/2- (2-64)

We will use this scaled version of (03) later when we come to plot the graphs.

For comparison with Schwartz et al. [73], we only need consider these results, that is the 

results for the case when the spheres are infinitely rough. However for completeness, we 

also find the average stress when the spheres are perfectly smooth. This is calculated 

to be:

((aij)) = diag ((<7i), (cri), (<r3)) (2.65)

where

<■» -

w ■ - ^ iS )  {;* s h  e r i  ™
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2 .3 .2  T h e  E ffec tiv e  M o d u li W ith o u t R o ta t io n  E ffects

To calculate the effective moduli we find the average incremental stress, equation (2.8). 

From this expression, which holds for any strain, we then have the following general 

expression for the moduli C*jkl, equation (4.6) in Walton [86] and previously given in 

equation (2.10),

C *
ijkl

3 4>r)
2tt2B{2B  +  C)

+ B ( ( —epqIpIq)1̂ 2IjIl)Sik +  B ( (  — tpqlplq)^^ IiIl)Sjk 

+ 2 C ( ( - e pqIpIq) l / 2Ii Ij IkI,)} .  (2.67)

The integrals that arise are similar to those met in equation (2.54) and using the 

subscript mapping defined in equation (2.30), we find that

3 0 r / ( - e i ) 1/2
C u  4tt2B (2B  + C)

C\2 =

° 1 3  “

C * _
44 —

C * _
66 —

3(fyqC{-ei)^2
32tt2B (2B  +  C)

3(f)r)C(—e i)1/2 
8it2B (2B  +  C) '

e i)1/2 
4ir2B ( 2 B  +  C) '

e i)1/2 
8ir2B ( 2 B  +  C)

3</>7/(-ei)1/2
Att2B{2B  +  C )

- )  + - c

s ( « )  ' + (5 -  It)  h  ( i t )

i  ( S ) 3/2+ Q -  I t ) h  (I t )

( i t - 1)

( I t - 1) 

♦ * ( ; )

+

-t(sr + (-! + S)A(S)l

e3

B

( i t - 1)

K i t ) 3/2- i / 2 ( i t )

(2

? * S K

( i t - 1 )

- 3  ( l t ) 3/2 + ( i t  ~ Q  h  ( i t )

( S - 1)

3 ( I t ) ^  + ( " I t  + 1 )  h  ( i t )

( i t - 1)
+ h

As the medium we consider is again transversely isotropic, these constants are related 

by Ci2 =  C h  — 2Cg6, leaving just five that are independent. These expressions were 

new at the time of derivation, however, shortly after, we discovered that they were 

simultaneously derived by Schwartz et al. through a private communication. Their 

work is discussed in more detail later in the chapter.

Two checks were carried out on the moduli. W ith e% = e\ the moduli reduce to

C h a p t e r  2 77



2.3. THE EFFECTIVE ELASTIC MODULI FOR AN INITIAL GENERAL

BIAXIAL STRAIN

those given by equations (1.117) and (1.118), for a hydrostatic strain, as is to be 

expected. The second check involved considering the situation when e\ —» 0, in this 

case they reduce to those due to a uniaxial compression and so give rise to the moduli 

in equation (1.120).

The three ratios we require are

Ch = 2  { ( g )  ( g  - x) +  [ j  f e ) 3/2 -  t e ) |  1  ( 2 6 9 )

°u { g  ( 1 / 3  ( I t )  +  / 2  ( f t ) )  ( i t  - 1 )  -  i  ( i t ) 3/2 +  ( i t  -  i )  / 2 ( i t ) } ?

{ § / 3  ( f t )  ( f t  -  l )  +  1 * ( S ) + M t )  ( i t - O ' }

[wh  ( i t )  ( f t _ 1 )  +  l [ ) ( f f ) * + ( - s + i )  A  ( f t )  +  h(i t )  ( f t  - 1 )

a, _ 2\[ § / a  ( i t )  1( i t - 1)  + 1
1
3 ( f t ) 3/2 +  ( l - i t ) / 2 ( i t ( l +  M f t )  ( i t - - 1 ) ] }

C 4 4  j
( §  ( ! / a  ( f t )  +  A  ( f t ) )  ( f t  “  0  ~  5 ( f t , ) 3/2 +  (

'§1 _  I,ex 2) / 2 ( i t ) }

and these correspond to three independent (Vp/Vs)2 ratios. As mentioned earlier 

in this chapter, the first of these corresponds to propagation along the a^-axis, the 

second to propagation in the transverse direction with the shear wave polarised in the 

transverse plane and the third to transverse propagation with shear polarization in the 

axial direction. The expressions given in equations (2.59), (2.68) and (2.69) axe valid 

for ANY biaxial strain.

The following figures show various plots of the elastic moduli ratios. Figures 2-1, 2-3, 

2-5, 2-7, 2-9, 2-10 and 2-11 correspond to Poisson’s ratio, v  =  1/4. Figures 2-2, 2-4, 

2-6, and 2-8 correspond to Poisson’s ratio, v =  1/2.

In figures 2-1 and 2-2 the elastic moduli ratios are plotted against £1(0-3) and £2 (0 3 ), 

respectively. For figure 2-1, £1(0-3), is as given in equation (2.61) and the range of values 

considered is that in which the ratio e$/e\ varies from 0 to 7.5. The corresponding 

range of values for £1 (0 3 ) is 7r/32 to 36.3997. For figure 2-2, £2 (0 3 ), is as given in 

equation (2.63) and the range of values considered is that in which the ratio e$/e\ varies 

from 0 to 13. The corresponding range of values for £2 (0 3 ) is 7r/32 to 32.5382. The 

monotonic increasing curves correspond to equation (2.69a), the essentially horizontal 

ones to equation (2.69b) and the monotonic decreasing curves to equation (2.69c).
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2.3
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O i lC44

Applied Stress

Figure 2-1: The three (Vp/Vs ) ratios versus k\ < <73 >, Poisson’s ratio is 1/4-

2.6

2.4

Applied Stress

Figure 2-2: The three {Vp/Vs) ratios versus h.2 < 0 3  >, Poisson’s ratio is 1/ 2 .
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Figure 2-3: Average of equations (2.69a,c) along with (2.69b) versus k\ < a3 > , Pois
son’s ratio 1/4-

In figures 2-1 and 2-2, the point through which all the curves pass is that at which 

e\ — ez- These figures suggest that Cxi/C q6 is approximately uniform and that C^3/C^4 

and C*n /C*u  are symmetrical about some horizontal value. This is considered in more 

detail in figures 2-3 and 2-4 where the elastic moduli ratio of equation (2.69b) and the 

average value of the two moduli ratios (2.69a) and (2.69c) are plotted against the third 

component of applied stress. These two figures show that in fact the average of the two 

is comparable in value to the third ratio Cxi/C q6. Also they show more clearly that 

the value of the ratio Cxi/C q6 does not remain constant but decreases slowly, which is 

consistent with figure 1 of Schwartz et al. [73].

Now in figures 2-5 and 2-6, the three elastic moduli ratios are again plotted, but this 

time against the additional stress, that is the difference between the stress we have 

applied and that of the hydrostatic pressure corresponding to e3 = ex. There obviously 

appears to be a closer correspondence between these and figure 1 of Schwartz et al. [73], 

than there was with our figures 2-1 and 2-2. However, since we do not know the 

conditions under which Schwartz’ graphs were produced we cannot say whether they 

should be identical or not.
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Figure 2-4: Average of equations (2.69a,c) along with (2.69b) versus k2 < 0 3  >, Pois
son’s ratio 1/ 2 .
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91
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Figure 2-5: The three {Vp/Vs) ratios versus additional stress, Poisson’s ratio is 1/4-
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Additional Stress
30 35

Figure 2-6: The three {Vp/Vs) ratios versus additional stress, Poisson’s ratio is 1/2.

Figures 2-7 and 2-8 are formed by taking an unnumbered expression given on page 3 of 

Schwartz et al. [73]. This expression gives Ae3/e, the increment in hydrostatic pressure, 

in terms of p3 which we believe to be the additional stress (see again explanation for 

figures 2-5 and 2-6),
A po 0.47»3

(2.70)

Then rearranging

P3 =

(1 +  0.058p3) ' 

Ae3/e
(2.71)

(0.47 — 0.058Ae3/e)

and p3 is plotted along with the additional stress &i(<73) — 7/3 or £2(03) — 7/3, respec

tively, against the range of values e3/e i — 1 between 0 and 6.5. We subtract 1 from 

e3/e i as this corresponds to the Ae3/e notation of Schwartz et al. [73] and subtract 

7/3 from ki(cr3) as this corresponds to the value of the scaled stress for a hydrostatic 

pressure. The dashed curve is the plot ofp3 in both figures. In fact, p3 becomes infinite 

at Ae3/e =  8.103 and after that becomes negative, whereas A;* (03) is continuous and 

monotonic increasing for all values of e3/e i — 1.

Figures 2-9, 2-10 and 2-11 show plots of the elastic moduli ratios C^3/C^4, Cu /C q6 and
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Additional Strain

Figure 2-7: Additional stress and k\ < 03 > versus the additional strain, Poisson’s 
ratio 1/4-

Additional Strain

Figure 2-8: Additional stress and &2 < 0 3  > versus the additional strain, Poisson’s 
ratio 1/2.
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2.7

2.6

2.3

2.2

Additional Strain

Figure 2-9: Comparing the values of our modulus C ^ / C ^  with those of Schwartz et
al. [73]

C[x/ C44 respectively, for both the moduli given in equations (13)-(17) of Schwartz et

al. [73] and those given in equation (2.69) of this work, against ezfe\ — 1. The dashed

lines represent the Schwartz et al. [73] ratios. For small values of e^/ei — 1, which is 

what is considered in Schwartz et al. [73], each graph shows that the two ratio plots 

take values that correspond very closely. However, although the shapes are clearly 

similar, there is no overall correspondence between the two plots.

Unfortunately, it is difficult to compare anything other than the shape of the curves 

with those of figure 1 of Schwartz et al. [73]. We do not know whether the values of 

stress used to obtain figure 1 in Schwartz et al. [73] are incremental values or not. For 

figures 2-1 and 2-2 which correspond to actual applied stress, we cannot even find a 

positive value of e$/e\ that gives a value of zero stress and so we will not be able to

start these e l s  figure 1 of Schwartz et al. [73] does.

Further comparisons could also be made if we knew the value of Poisson’s ratio used 

to obtain figure 1 of Schwartz et al. [73]. Taking larger values of Poisson’s ratio raises 

the initial value of our ratios, but even by taking v =  1/ 2, we cannot raise our starting 

value to that of fractionally above 2.2 as is the case in figure 1 of Schwartz et al. [73].
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Figure 2-10: 
al. [73]

Figure 2-11: 
al. [73]
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Comparing the values of our modulus C n /C ^  with those of Schwartz et
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Our work suggests tha t to allow us to take a value of approximately 2.2 for our ratios 

when there is zero stress, we would need to take v =  5/9 which we know is physically 

impossible for real materials. Even the initial values of the ratios found from Schwartz 

et al. [73] do not reach 2.2 as they will clearly be equal to those of our ratios and the 

hydrostatic case, tha t is 33/16 for v = 1/4 and 13/6 for v = 1/2.

Since there is such a lack of information in the work of Schwartz et al. [73] our problem 

throughout is tha t it is impossible to draw any firm conclusions upon comparison with 

our new results. As mentioned above, we have tried varying Poisson’s ratio to reproduce 

their results. However, it would seem that the best we can do is say tha t our figures 

2-5 and 2-6 appear to be consistent with figure 1 of Schwartz et al. [73].

2 .3 .3  R e c a lc u la t io n  o f  th e  E ffectiv e  E la stic  M o d u li w ith  th e  In c lu s io n  

o f  S p h ere  R o ta tio n s

As we have already seen, in chapter 2 of Slade [76] the equilibrium of a sphere in 

a random packing is investigated. Equations for the equilibrium of the sum of all 

the incremental forces and the sum of the moments are reduced to expressions that 

we can use here as we recalculate the elastic moduli and their ratios including the 

effects of individual sphere rotations. These rotations do not effect the expressions 

for the average stress found by considering the initial deformation. The stress is thus 

given by equations (2.59) and (2.66) for infinitely rough and perfectly smooth spheres 

respectively.

The condition for equilibrium of moments can be written as an average over all the 

spheres, provided the packing is dense enough and reduces to equation (1.149):

Cpqlplq)  ̂ {&ik = €irk Cpqlplq)  ̂ (2.72)

We can find the rotation vector Sui for our initial strain field from this equation and 

subsequently find (5oij) as given by equation (1.152):

=  2ir»B(2B +  C) {g ( ( ~ ^ V « ) 1/2* W i f e « )  (2-73)

+2B (^{-epqIpIq)l l2IJ idej i^  -  2Bejki l^(-epqlplq)1/2

from which we can determine the effective elastic moduli.
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We have our initial strain given by

£ij = ei(<5ii£ji +  Si28j 2 ) +  e^S^Sjs (2-74)

and so in this case equation (2.72) yields

( ( - e i  sin2 0 - e 3 cos2 8)l/2(otk -  hh)''/  (Suit) = eiTk ( ( - e i  sin2 8 -  e3 cos2 0)1/2IrI i /  (8eki)

(2.75)

and we again have to evaluate integrals of the kind mentioned earlier and seen in 

equation (2.54). Taking i = 1,2,3 in turn, we obtain the components of the rotation 

tensor in terms of the previously defined functions / i ,  / 2, and / 3,

doji

8uj 2 

Su> 3

h ie s /e i )  -  2/2(e3/ei) 
2/ i ( e 3/ e i ) - / 3(e3/e i)  623 
2/ 2(63/ 61) -  fz{ez/e\)  
2 /i(e3 /e i) -  h (e s /e i )
0.

<Sei3 (2.76)

Now the incremental stress from equation (2.73) is

(5aij) =
3077

2n2B (2B  + C) ( ^ _Cl Sin2 6 , - 6 3  COs2

+2B  ^(—ei sin2 9 — e3 cos2 e y ^ h h S e j , )  (2.77)

- 2Btjki ( [ - e 3 sin2® -  e3cos2 8)I/ 2hh&Uk'/}

Taking i= j= l  in the above yields

( ^ 11) =  27r2B^2B  +  C) { °  ( ^ “ 6l Sin2 0 - 6 3  COs2 0)1/2/i W rfek i)

+ 2J3 sin2 6 — e3 cos2 e ^ h h i e u ) )  (2.78)

from which we find

30t?(—e i ) 1/ 2
An2B{2B  +  C) B ^ i ) + \ c

3/2

Ks)3/2+(i - s)a (s)
( s - 0 +*(S)

c 13
3 4 ^ C ( - e i ) ^ 2 I ~ ? ( S )  +  ( ~ s  +  s ) - f2 ( s )
8jr2B ( 2 B  +  C)

( s - 0
(2.79)
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Similarly, the rotation term is zero in both (<$<733) and (<5tJi2) and so

3 /2

<?33 =

C * _
66  —

3</>ry(-ei)1/2 
4ir2B ( 2 B  +  C)

3<fo7(-ei)1/2 
4tt2B ( 2 B  +  C)

wh (?) 

?*(?)

+ C

+

1(g) -1Mg)
f e - 1)

1 ( f t ) '72 + ( ~ i t  + 1 )  h  ( i t )

( S - 1)

(2.80)

+  fz (?)
These last four are identical to those found previously in equation (2.68). However, 

taking i= l  and j= 3  the rotation term is non-zero,

(Soi l ) = + C ) (C (((~ei si°2 6 ~ ea cos2
+2 B ( (  —e\ sin2 6  — e3 cos2 e ^ h h S e u )  (2.81)

- 2  Be3pq ( ( - e i  sin2 0 - e  3 cos2 d)1̂ 2 I i l q6uip^

.

and the fifth modulus is calculated to be

C* — o 44 — y w  J AR  \z±J----------- —

8n2B (2B  +  C) |  2/ 2 ( ^ )  +  f 3 ( a )
+ C - » ( i f ) 3/2 +  ( t  ~  1) / 2 ( i t )

(s-0
(2.82)

This is not the same as the expression for C44 that we found in equation (2.68). We can 

do a check on this modulus by considering 63 = e\ when the modulus reduces to that 

of the hydrostatic case. Figure 2-12 shows a plot of the ratio of the two expressions 

for the c u  moduli found without and with the inclusion of rotations. Since the value 

of the ratio is always >  1, the modulus calculated without using the rotations must 

always takes a value greater than or equal to the value of tha t found with the inclusion 

of rotations.

The first and third of the three required ratios are effected by the inclusion of rotations, 

the second is not. Since Schwartz et al. [73] did not consider rotations in their work then 

upon application of a perturbed hydrostatic strain the only ratio that will be identical 

with those derived in Schwartz’ work will be the second. Using the new expressions for
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Figure 2-12: Ratio of equations (2.68e) and (2.82) versus applied stress, Poisson’s ratio
1/4-

our moduli, we now have

ch 2 '
( *

lh  ( t ) ( i t " 1) + l[ 5  ( i t . ) '  -  5 / 2  ( i t ) ] )

Cl4 |L b / 2 I
I c > M s ) ( i t - 1!i - m + t e - t ) / . ( s ) }

(2.83)

Cfi
^66

Ch
Cl4

,  v .  . .L)  h  ( g )  +  h  ( I t )  ( i f

-  0  + 1  [ l  ( f t ) 3 ' 2  +  ( - 1 ? + 1 )  h  ( i t )

. r. / vj /2  / v x v

)  ( i t - 1) ] }

\ 2 C J 3  ( f t )  ( i f  -  0  +  s  [ s  ( i t )  ' +  ( - f t  + 1 )  ( i t )  +  h  ( f t )  ( i t  

2  {l h  ( i t )  ( i t  ~  Q  + 1  [i ( i t ) 3 / 2  +  ( 1  -  i t )  A ( I t )  +  h  ( I t )  ( i t

f . „ . / x3/2 / . \ / x l

-)]}
"> ]}

Figure 2-13 has 2 plots of the ratios with Poisson’s ratio equal to 1/4. One plot includes 

the effects of individual sphere rotations, this is represented by the dashed line, while 

the other is a plot of the ratios considered in the previous section. We can see that with 

the inclusion of rotations the ratios C33/C%4 and Cxl/C 44 no longer appear symmetrical 

about the other ratio C*x/C q6.
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Figure 2-13: Comparing the {Vp/Vs) ratios with and without the effects of sphere ro
tations

2 .4  P a th  D e p e n d e n t  R e su lts

Shortly after completing this work, we received a communication from Lawrence Schwartz 

He, in conjunction with several other authors, has also done some work to calculate 

the effective elastic moduli for a general biaxial strain, when the spheres in the packing 

are infinitely rough, Johnson et al. [45]. In the work they show that the expression 

for the moduli, equation (2.10) of this chapter and derived by Walton [86], is valid for 

any applied strain and independent of the history of the medium. That is, the expres

sions for the moduli are path independent, they depend only upon the present state 

of deformation, that is the current state of strain but not upon how it was reached. 

Contrasting with this, Johnson et al. [45] also show that the elements of stress are 

explicitly path dependent. They illustrate this by considering three different cases of a 

combined hydrostatic and uniaxial strain.

In the analysis of Walton [86], it was assumed that the normal and tangential strain 

components increased in direct proportion to one another. Johnson et al. [45], however, 

refer to a paper written recently by Norris and Johnson [60]. In this latter paper, 2w
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is the relative approach of the two spheres along the line joining their centres. The 

relative tangential displacement between the two spheres is 2s. The force is decomposed 

into a normal force N  and a tangential force T. A small change in displacement (Sw,

8 s), leads to a small change in the restoring force (6N, ST) and all models considered 

can be written in the form:

6N = Cnan{w)8w, ST =  Ctat (w)8s. (2.84)

We are only concerned with Hertzian contacts and so

On(w) =  at (w) = (R w J1/2. (2.85)

It was Norris and Johnson [60], who initially found the expression for the second order 

elastic moduli associated with incremental displacements around a given state tha t is 

used by Johnson et al. [45]. It does depend upon the current state of strain but not

upon the strain history of the medium. Their expressions are identical to those given

by equation (2.10). However, as mentioned above the problem of finding the work 

done to bring a single contact to a given strain state is obviously path dependent and 

path dependent effects are well known in granular media. In his work, Deresiewicz [26] 

and [27], for example, has considered the effects when the packing is a simple cubic 

array of particles.

This would imply that although we also assumed that the strain components increased 

in direct proportion to one another when deriving our elastic moduli in this chapter, 

these results are valid for any strain history of the granular packing. Comparing our 

expressions for the elastic moduli, with those derived by Johnson et al. [45], we see 

that the results are in agreement.

To compare their results with experiment, Johnson et al. [45] calculate an expression 

for the stress tensor in terms of the strain. It is experimentally difficult to measure the 

strain in an unconsolidated sample, often it is the stress components that are measured, 

hence the need for this relationship. The three strain paths they consider are shown in 

figure 2-14. In all three of these cases the stress has the form

( ( ^ j ) ) = diag (2.86)

C h a p t e r  2 91



2.4. PATH DEPENDENT RESULTS

—63

Figure 2-14: Strain paths

Given below are the expressions Johnson et al. [45] found for the stress tensor, related to 

each strain path. We have rewritten their results in our notation for ease of comparison. 

In path 1, the system is first hydrostatically compressed and then an additional uniaxial 

compression is applied. Their stress expressions were calculated using equation (13) of 

their communication:

(f>n{-e 1)3/ 2 [4  /  ei \ 3/2
2n2B(2B + C) \ 3  Ve3 - e !

+ c ( A g ) ?1) _  I  ( f iY
e i /  3 \ e i /

+c(^ (S +KS3/2)}- (2-8T)
In the second path shown in figure 2-13, a uniaxial compression is followed by an 

hydrostatic compression. The stress is now given by:

+ C V/ l U J  +  W “ 2

(f)n(-ei)3/2 f 0 0 / l  , r ( e3^ , 2 ^ e 3^ 3/2
<  <t 3 >  =  —

4tt2B(2R + C) 2bu+/2(!)+!0)
+c(/2(I)+KI)3/2)} (2-88)
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Finally, for the third path, the two components are applied together as they were in 

our calculations and

As we would expect, this third set of results is identical to those we found (see equa

tion (2.59)).

Johnson et a l [45], plot the stress components for the different strain paths considered 

and conclude tha t the differences between the three sets of curves is quite small. Their 

work shows tha t the relationship between stress and strain is path dependent, even 

though the moduli are path independent.

< <7i > 4tt2B{2B + C) \ v 4 

</>n(—e i )3/ 2 \ / B e  3 C
it2B{2B  +  C)
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Chapter 3

A Perturbation of the Uniform  

Strain Approxim ation

3.1 C om parison  B etw een  E xp erim en ta l R esu lts , N u m er

ical S im ulations and T h eoretica l P red ic tion s

In their paper, Jenkins et al. [43] discuss three approaches to finding the effective elastic 

moduli of a packing of glass spheres - experimental studies, numerical simulations and 

theoretical predictions. They conclude that there is an apparent failure on the part 

of the theoretical approach in predicting numerical values for the effective shear and 

bulk moduli, under an initial hydrostatic confining pressure. In this and the following 

chapters, we highlight the differences between the approaches and then attem pt to 

modify the theory to incorporate these differences. In this way, we obtain revised 

predictions for the effective moduli.

The experiments considered by Jenkins et al. [43] were carried out in a true triax- 

ial/torsional device, in the form of a column. A variety of stress paths and loading 

histories were imposed. The results for further stress paths and loading histories are 

presented in both the paper by Chen et al. [17] and that by Ishibashi et al. [42]. These 

also give detailed descriptions of the experimental apparatus and method used.

The experimental set-up consisted of a hollow cylindrical sample containing a binary 

packing of glass spheres and water. The diameters of the larger of the two sizes of 

spheres were between 0.300-0.425mm and the smaller between 0.180-0.250mm, with
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around ten small spheres to one large sphere. The shear modulus of the glass was 

3.0xl07kPa, Poisson’s ratio, v = 0.21, the specific gravity (density/density of water) 

was 2.5 and the coefficient of friction /  between contacts measured to be 0.3.

The sample was brought to an initial porosity of 0.37 and the isotropic mean stress 

increased to 138kPa. The pressure was held fixed and deviatoric loading applied. We 

are purely interested in the values of the effective bulk and shear moduli. The value 

for the former is not given in the experimental data, but for the latter was found to be 

161MPa at the initiation of the shearing.

The numerical simulations were conducted using a distinct element method (DEM) 

tha t involved solving the equations of motion to find the displacements and rotations 

for a binary packing of spheres. The forces acting across the contact areas between 

spheres depend upon their geometry, elasticity and friction through a Coulomb-type 

friction law. Cundall and Strack [24] describe this DEM. The simulation was run on a 

periodic cell, so tha t any boundary effects would be eliminated. The sample consisted of 

432 spheres, 392 of which had radius 0.1075mm and 40 of which had radius 0.1825mm. 

The initial porosity was 0.368 and an isotropic stress of 138 kPa was again applied.

More detailed explanations about the simulations are given in Cundall [20] and [21]. 

Cundall et al [23], also describes the adjustments that need to be made to achieve the 

same porosity, at the same pressure as those in the experiments. However, this is as 

far as the similarity between initial conditions extends. In the experiments, the initial 

value for the shear modulus was measured from an initial state that was anisotropic 

due to the boundary effects. In the simulations there was an isotropic initial state and 

the calculated effective shear modulus before any shearing was applied to the cell was 

found to be 127MPa.

The theory considered for comparison is the work of Walton [86], that is the uniform 

strain approximation discussed in the introductory chapter of this thesis. From the 

theory the value for the effective shear modulus was calculated to be 338MPa, almost 

three times that found by the numerical simulation and twice that in the experiment. 

Also, calculating the effective bulk modulus the theory yielded a value of 245MPa, 

whereas the numerical simulations a value of 185MPa.

The numerical simulations and theory would appear to have the same initial conditions,
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so why this large discrepancy between the values for the effective moduli? As we have 

already mentioned, this is the first of three chapters in which we set about to try and 

bring closer correlation between these approaches and to suggest some reasons why we 

might not expect them  to be identical anyway. In this first chapter, we perturb  the 

work of Walton [86], the uniform strain approximation, described in Chapter 1.

We are particularly interested in bringing closer correlation between the values pre

dicted by the numerical simulation and the theory. The experimental conditions will 

not be exactly reproduced by either the numerical simulations or this particular theory 

as the experimental sample can never be truly isotropic. This is due to the boundary 

conditions that exist because of the walls of the sample container.

Two further papers by Cundall et al. [22] and Cundall and Strack [25], may hold part 

of the answer as to why the numerical simulations and theory give inconsistent results. 

The papers describe further results from the computer program BALL which is used 

for compaxison in Jenkins et al [43]. Both papers note that one of the microscopic 

observations made on the simulated packing is that forces are concentrated in chains 

of particles. They are never transm itted across a sample in a uniform way, so some 

particles may carry little or no load, while others take a substantial amount of load. 

Figure 1 of Cundall and Strack [25], shows a diagram of how these force chains might 

arise in a simulation.

The uniform strain approximation cannot incorporate this feature of the numerical 

simulation. After the application of an initial hydrostatic compression, eij = e6ij, we 

saw in Chapter 1 tha t under the assumption of uniform strain approximation, the force 

acting across a contact area is given by:

p(nn') _  (~e) / jfnn') ^

where R is the radius of the spheres. The magnitude of this will be the same at any 

contact throughout the packing. However, if we perturb the uniform strain approxi

mation, it may be possible that we will find a variation in the forces across the contact 

areas. Unfortunately, we will still not know whether these occur in the chains that we 

see in the numerical simulation.
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3.2 C orrection  Term s in th e  U niform  Strain  A pproxim a

tion

3 .2 .1  T h e  I n it ia l D efo rm ed  S ta te

We proceed as in previous chapters by first considering the packing as a whole and 

impose an initial confining displacement on the boundary. This displacement takes the 

form

U{ — (3.2)

Thus it is consistent with a uniform compressive strain and are the components 

of a symmetric constant tensor. In the undeformed material, the position vector of
(rc)the centre of a typical sphere n is denoted by X) . After the deformation, the centre 

of this sphere will have been displaced, let this displacement be u\ ' and its rotation,
( n )about an axis through its centre, be cj] ’.

We initially restrict our attention to the case of infinitely rough spheres, the results for 

those that are perfectly smooth will be given later. We can use the general expression 

given by equation (1.125), to calculate the force acting on the n th  sphere due to its 

contact with the n 'th , that is

rp(nn') _  (2-R) /2 f  B\(u^n,) r(nnqil/2
t i  ~  3irB(2B + C ) \  l( ” ” > ” 1

i(U|n,) - «Sn) + R e ijk( ^ n,) +  ̂ n,)4W)) + C[(u<"'> - ,
(3.3)

where R  is the radius of each sphere and B  and C  are the constants, previously defined, 

that can be written as combinations of the Lame moduli. We have the unit vector 

directed along the line of centres, l \ nn \  defined as:

4 " n > =  1 2fl 1 ■ (3-4>

To determine this force we again have to make some kind of assumption about the 

relative displacement (u[n  ̂ — u [n )̂ and the relative rotation +  tj \n )̂. We have 

already seen that, Walton [86] assumes that the displacement of the sphere centres is
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consistent with the applied uniform field. Thus

— eijX j , (3.5)

and also that the rotation of each sphere about an axis through its centre is the same. 

Thus

uj\n) = Qi. (3.6)

These last two equations constitute the uniform strain approximation.

As a first attem pt to modify the theory and hence improve the correlation between 

theoretical predictions and the numerical simulation results, we consider perturbations 

u\n) and of the rigid-body translation and rotation about an axis through the 

sphere centre, respectively. Then for the n th  sphere, we have that

«i") =  ei3-xjn) +  u|n) (3.7)

and

a;t(n) = f t i  +  d>!n). (3.8)

We consider the calculations for initial hydrostatic conditions as we only have numerical 

simulation data for such a compression. This gives us Qi = 0 and then

(n) - (n)cj; = u))

and also

e ij — c5{j •

3 .2 .2  E q u ilib r iu m  C o n d itio n s

In order to find approximations for any of the perturbations when the initial deforma

tion has any of the forms mentioned above, we consider the equilibrium of forces and 

moments on the n th  sphere. We require that the sum of all the forces and also that of 

the moments be zero. Thus

=  0 ,

n'
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=  ° <3-9)
n'

where the summations are over all spheres n' in contact with the n th  sphere.

For large co-ordination values, that is, each sphere has a large number of contacts, we 

would expect the uniform strain approximation to accurately predict the displacement 

of the centre of the n th  sphere upon application of a confining force. However, as the 

co-ordination number decreases the error in the approximation increases. The work 

of Walton [86], which is based upon this assumption has already been discussed in 

Section 1.3.2. However, the conditions for equilibrium of the n th  sphere are given in 

equations (3.9). Using the expression for F^nn^ given in equation (3.1), obtained using 

the uniform strain approximation, these will be satisfied exactly provided

£ l< " n'>= 0. (3.10)
n'

Summation is over all spheres n' in contact with the n th  sphere and if each sphere has

a large co-ordination number then we would expect this last equation to be a good

approximation. However, with decreasing co-ordination number the approximation 

becomes worse and so here we have modified the assumptions.

We calculate the force acting on the n th  sphere due to its contact with the n 'th , 

using equation (3.3). We must first expand the terms [(up1  ̂ — Up'^Ip171 ]̂1//2 and 

[{up1 ^- 4 n)) 4 nn ]̂3̂ 2 using the binomial expansion. In the case of an initial hydrostatic
(n) (n)compression, eij =  e6{j and since u\ — eijXj +  u\ then also using the fact that 

Ip in  ̂Ipnn  ̂ =  1, the first terms in the expansion of each are as follows:

-  u ^ ) l j >nn')}1/2 = ( - 2 Re)l /2 ( l - ^ ( u W - u W ) l j >nn''>

- 3 2 ^ 2  (4 n,) -  4 n)) (4 " ') -  4 n)) 4 n" ')4 n" '))  +  ° ( ( 4 n,))3) (3-“ )

and

[(«<"'> -  u<">)/<w >]3/2 = (—2fle)3/ 2 ( l  -  ^ ( 4 n,) -  4 n>) 4 nn,)

-  W ’ — « n')r ' ))  +  (3-12)

We also have — 0 and hence upon substitution of this and equations (3.11) and (3.12)
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into equation (3.3), we see that

_  2 R ( - e)1/2 r _  _  -(n)s r(nn')
* ~  3itB(2B +  C ) [  4i?e p ” 1 "

-;(»') _  f,(n)Vi7(n') -  fi(n)u (" " ')/(“»')
32 R 2e2 p p q q p q

X {2B (-2Be4""') +  -  fi<">) +  em R l i Mf\ UW  + 4">)) }

+ 2 flC (-e ) [l -  ^ ( 4 n,) -  4 n))/ p“n')

+ 3 2 ^ (^ n,> " -  4 n))4""')4 " ’*')] 4""') +  0 ((ii‘"'))3).

(3.13)

Substituting this general expression for into the first of the equilibrium condi-
fxO fn)tions, equation (3.9a) and retaining only terms of order u\ Uj ’ or lower, we obtain:

B  ( -2 R e l \nn,) +  u \n"> -  + eilclR l [ nn,)( +  £}<n)) + i ( 4 n'> -  4 " ))/<nn'>/!""')

-4fc(4’*') - 4">)(fiS"') - 4,°)4’m') - ^(4n,) - 4n))(4n,)+4n))4"n')4nn') 
+i^(4n,) - 4n))(4"') - 4n))4nn')4nn')4'm'))

=  £ „ , R C e  ( 4 W > -  5f e ( 4 ’*') -  4">)4"n')4 nn')
■ 3 (An') _ , - . ( n ) u , - . ( n ')  _  A n)\A nn') Ann') j{nn')\
' 32 i?2e 2 V P U P R W9 W9 /-*P * 9  ■*» J  •

(3.14)

Also, from the second condition of equilibrium, equation (3.9b), we obtain 

£ n, Betjkl f n,) ( - 2 +  4 n'> -  4"> +  e ^ R I ^ ^  +  4 n))

+ l ( 4 n,) -  4 n)) 4 nn,)4 nn,) -  3 fe (4 n,) -  4 n)) ( 4 n,) -  4 n)) 4 nn,)

- Js?(4“') - 4n))(<4n')+4n))4nn')4Bn')
+ 1 6 ^ (4 " '’ -  4 " ))(4"') -  4 n)) 4 nn'>4" n')/ f "'))

=  £ „ ' a j k n c e i w  (4 " n,) -  5f e ( 4 n') -  4 ,)) 4 n"')4 n"')
I 3 / y V )  _  f . W w f / " ' )  ~ ( n W n n q . ( n n q . ( n n ' ) \

+  3 2 f t 2e 2 v“ P U P ) \ U 9  9 >LP J(1 A k  )  •

One typical term arising in both of these is Yin'  ̂ and we define

•4n) =  4 TE 4 n"') (3.i6)
1 n'

and also
Aj(n) _ 1 r(nn') T(nn') T(nn')
" i j k  ~  Z(n) l j  *kI qnt

(3.15)
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sphere n’

(n n’)

spher<

Figure 3-1: A simple two-dimensional picture of the spheres in contact with the nth

where is again the number of spheres in contact with the nth. Note that we 

mentioned £ n/ i jnn  ̂ earlier in this section and in his work, Walton [86] assumed it to 

be zero, we now have X)n/ A  ̂ =  *7^ *4”  ̂• This would be zero for an ideal random 

isotropic packing. A simple two dimensional diagram of a typical sphere, with its 

contacts and some of the unit vectors which are summed to form j ( n\  is shown in 

figure 3-1 and similarly for .

In order to calculate approximations for u\n  ̂ and we consider the terms of lowest 

order that arise from equations (3.9). We must make some assumptions concerning 

the order of particular terms. These assumptions will be non-rigorously justified later. 

Thus, assuming for now that terms such as u\n  ̂ are of higher order than £ n, u\n  ̂ = 

r ) ^ u \n\  since we expect the u[n  ̂ to be uncorrelated, we proceed to find approximations 

for the perturbations from equations (3.14) and (3.15) above. To start, we consider the 

lowest order terms arising in this second equation, using our assumptions, these are

# ( 4 n) Y ,-  >7(n)# )) =  0. (3.18)
n'

Now, we require J2n' ^ nn ^l\nn  ̂ to first order only since it is multiplied by We

know that

<  > =

where the operator < . > represents the average over the sphere surface. Thus, we
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have

£ / ( “»'>/(»»'> =  ^ S i r + E i r  
n' 6

where Eir represents the correction term and so to leading order

37T

This allows us to deduce that to first order

<^n) =  0. (3.20)

Similarly, the lowest order terms in equation (3.14) are

B(-2Re^nh ^ )- V̂ u ^ )- W It n')Ij"n')̂ )) = RCe(r,^4nh ~ Y ^ I ^ n')l t ‘n')u f))
n '  n '

(3.21)

Using the approximation in equation (3.19) and defining

J 2 B  + C)_
(145 +  3 C) ( '

the perturbation u f 1̂ to first order, is found to be

u\n) = -1 2 A R e jjn).

( n )Since we require e <  0 for compression, then the perturbation u\ is in the same 

direction as j \ n\  Looking again at figure 3-1, the vector j ( n) is directed towards where 

there are ‘gaps’ around the n th  sphere. Thus, the perturbation of the displacement is

directed towards the gap, which is what we might expect.

We can see that equations (3.8) now give us

u\n) = e i jX W  -  12A R e j \n) (3.23)

and

u \n) =  0. (3.24)

We look back to our assumption that the order of Ylnf  ̂ 1S higher than that of
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J2n' • We very roughly justify this by noticing that we would expect a sum over 

n' of components of the j ( n% , connected with each sphere n ', to be uncorrelated and 

thus some of the elements may cancel. However, a sum over n' of ‘adds up’ to give

rj(n) j(n).

The expressions found in equation (3.23) and (3.24) can now be substituted back into 

equation (3.3) to give the following expression, for the force acting on the n th  sphere, 

due to its contact with the n 'th:

out to be significant. We checked the other terms but they are of higher order and so

have included are needed to ensure consistency for our results when later compared 

with those from the incremental stage of the problem, upon calculation of the effective 

moduli.

In the introduction to this chapter we noted that in the numerical simulation results 

we use for comparison with our theory, the forces occur in chains of particles within 

the packing. Looking at equation (3.25) with the additional terms, we see that it is 

possible for the forces to vary within our packing. Considering the two extremes, if 

j [ n  ̂ and are in the same direction then they will ‘cancel out’ in which case the ’ J ’ 

terms are fairly insignificant in comparison with However, if they are in opposite

directions they will ‘add up’, and it may be possible that both j ( n/) and j ( n) are of the

order of l ^ nn' \  Taking v = 1/4, we have 6A  «  1, so 6A(J^n^ — j ( n)) «  l(nn/) and then

3ivB(2B + C)

+ 3A ( j W  -  J ^ ) I ph  + 1 8 -  4 n))Ip

~ — ( 4 n/) - 4 n)x 4 " f) - Ji n)) W i

+c  [/< + 4 n>) -  4 n))v<

+f (j£n,) - 4 n)) ( 4 n>) - 4 n)) w ] } <3-25)
We have omitted the superscripts (nn') on the components of l(nn/) for brevity. We 

have left in the cross terms such as Jpn^Jqn\  which although they might appear to be 

second order in fact reduce to a first order contribution (for details see discussion later 

in this chapter). We have not included all second order terms only those which turn

we exclude them here so as to avoid undue complexity. The ‘second order’ terms we
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the additional terms make a very significant contribution to the expression. We still 

do not know whether the largest forces will occur in chains of particles or not, but we 

at least have the scope for significantly different magnitudes of force acting on different 

contact areas.

3 .2 .3  T h e  A v era g e  S tress

In this next section we use the equation above, (3.25), to find the average stress within 

the packing. Previously we introduced the notation < . >  to denote

< . > =  i  f  .d V  (3.26)
* J spheres

where V  is the total volume of the packing. When considering contacts this became 

equation (1.87), which is the following expression for the average stress within our 

packing,

K >  E  {/l""')F<“ ') + / j nn')4 nn')}
all contacts

3 1 ^ j ( n n ’ ) j p j n n ' )  j ( n n ' ) p ( n n ' ) y

8nR2 N  n ,n n i

where V  is large and N  is the total number of spheres in the packing. W hat we have 

actually considered is the limit as V  —> oo or equivalently N  —> oo in which case

<"«> =  - i f  X  £ { / r  ",) +  t " ' (3-27)
n  n '

In the limit this sum becomes

3 77
(&ij) — _  gTf-^2 ^  > (3.28)

where 77 is the average co-ordination number within the packing and < . > on the 

right hand side now represents the average over all directions of the vector l(nn/) or 

equivalently the integral over the surface of the unit sphere.

Now our expression for the force F(nn/) is not purely a function of l(nn/) and so the 

definition in this last equation does not hold. However, equation (3.27), does still hold 

and so we re-define the averaging operator <  . > as summing over all contacts, that is 

over both spheres n  and n ' . N  is the total number of spheres within the total volume
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V  and 77 is the average co-ordination number again. W ith < . >  re-defined we have

(atj) =  < /<““') p!""') +  > . (3 .2 9 )
IV  J J

We define the following typical packing parameters that arise in the calculation of this 

stress:

a  ,, — / r ( nn') r(nn') r(nn') r(n) \Pijkl — Vi 1jc I /

7 ;j k ,  = (3-30)

„  —  /  r ( n n ' )  A n n ’ )  J n n ' )  A n n ' )  T ( n )  , ( n )v
l i j k l m n  ~  V i  1 j  1 k  1 l  m  J n  h

We start by considering we expect it to be small and isotropic as there is no 

preferred direction for l[nn  ̂ or j [ n\  Thus, let

O t - i j  — O l & i j  •

In two dimensions it is possible to find a  analytically for some co-ordination numbers 

(see Chapter 4). However, in three dimensions, as we are concerned with, the question 

arises as to how to order the spheres and so analytical methods become extremely 

difficult. The value of a  is calculated using computer simulation instead. Its value 

decreases with increasing co-ordination number. In order to calculate a value for a , we 

notice that

1 <  > =  - l - E E 4 nn')^ n) =  ^ E ^ (n)4 n,4 " ), (3 .31)
1 n n> I n

where summing is over n ', the spheres in contact with the nth, and n  all the spheres 

in the packing. The calculations for both two and three dimensional problems are 

discussed in more detail in Chapter 4.

In a random packing the tensors in equations (3.30) are isotropic and satisfy certain 

symmetries. Pijki is a fourth order isotropic tensor which must be symmetric if we 

interchange any two of i, j  and k. Any fourth order isotropic tensor is a linear combi-
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nation of Sij8ki, 8ik8ji and 6u5jk- To satisfy the above symmetries the only combination 

we can have is:

Pijki =  (3{8ij8ki +  8ik8ji 4 - 8uSjk). (3.32)

However, since IpUn ^Ipnn  ̂ = 1 if we let j  = k in equation (3.30b) then

Pikki = < i t " ' )4 nn') 4 nn')j,(" ) >

=  < / f m') j[n) >

= olu 

=  aSu.

Now from equation (3.32) we have

Pikkl =  5(38u

so then (3 = a / 5 and hence

a
ftijki =  -jr(8ij8ki 4* SikSji +  SiiSjk)- (3.33)

Now, 7 ijki is also a fourth order isotropic tensor and it should be symmetric if we

interchange i and j  or k and I. The only combination which satisfies this is

Ifijki =  Ifi8ij8ki d - 72{8ik8ji 4 ” SuSjk). (3.34)

To determine 71 and 72 this time we consider the definition of the averaging operator 

which is the sum over all contacts. We can rewrite the expression for as given in 

equation (3.31), in terms of sums as follows:

=  (3.35)

and so similarly

_ 1 V* r(nn') /-(nn') 7-(n) r(n)
~~ 3Nr] ^  ^  * j k l

n  n '

= 4 z E 4 " , ^ n )E 4 nn' )i-‘"n' ). (3.36)
 ̂ n n'
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We wish to find J2n' ^i™ ^/jnn  ̂ to leading order since it is multiplied by J ^ .  Now

r(nn') Ann') b
^  i 1j ^

and so we approximate ^2n, l \ nn ^/jnn  ̂ by

(n)
Y ' r(nn') ji.nn') ^  11__ x ..
2 - * /  i  1 j  ~  Q

Thus to first order we have

 ̂ r x A j-(n) r(n)
lijkl ~  9Nr) j ^  k 1

=

Now in equation (3.34) we have 71 =  a /3  and 72 =  0 and so, to leading order,

Q!
'Yijkl ~  (3.37)

Both Cijkimn and rjijkimn are sixth order isotropic tensors and so are linear combinations 

of fifteen terms such as SijSkiSmn. In particular, we want Cijkimn to be symmetric upon 

interchange of any two from z, j ,  &, /, and m. The only combination that satisfies this 

is

Cijkimn — C ifiij^kl&mn  "P ^km^ln *P ^kn^lm) "P ^ik^ jl^m n  “I- fijm^ln "P SjnSim)

“P̂ iZ (fijk^ mn fijm^kn T  fijn&k m) "P &im (fijk^ln d- fijl&kn d- fijn^kl)

*P^ini^jk^lm d- ^jl^km "P <5jm^fcz)) • (3.38)

Again, using the fact that Ipnn ^Ip171  ̂ = 1 and the same method that was used to 

determine fiijki above we find

ot
Cijkimn =  {^iji^kl^mn  d- &km&ln d* &kn&lm) "P &ik{&jl&mn "P fijm^ln d~ fijn&lm) 

mn d- &jm&kn "P &jn&km) d- &im{&jk$ln d- ^jl^kn d” &jn&kl)

"P̂ in{^jk^lm d- fijl^km d- ^jm^fcz)) • (3 .3 9 )

This just leaves T)ijkimn which must be symmetric upon interchange of any two of z, j ,
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k and I and also upon interchange of m  and n. Hence it must be represented as follows:

'Hijklmn — d" fikmfiln "1“

+ m  {Sik{SjiS mn fijm.fiIn d* fijnfil ) +  fiil{fijkfi mn d" fijmfikn d" fijnfikm)

~^~fiim(fijkfiln d" fijlfikn d~ fijnfikl) d- fiin{fijkfilm d- fijlfikm d- fijmfikl)) • (3.40)

The same method tha t we used to find jijki enables us to calculate

a
Vijklmn = (fiijfikl d- fiikfijl d“ fijkfiil) i

but this time using the approximation ]T)n, l \ nn ^/jnn ^/£nn l̂j-nn ) = 2 ^ (fiijfiu d- fiikfijl d- 

fiufijk)■

At this point, we also define the parameter x :

X =  l <  >  (3.41)

which is not actually required in this stage of the problem, but will be needed in the next 

section, when we consider the application of an additional incremental deformation, to 

the boundary of the packing.

Returning to calculation of the average stress, we must also consider some of the prop

erties of the averaging operator. Considering first the n 'th  sphere it can be seen, from 

equation (3.4), that

and since

then

j ( n))

'>) =  _(/<""') (3.42)

Our aim is to find (crij) and we need all these results along with two that we have seen 

earlier. These are

/ T ( n n ' )  j ( n n ' ) \  _  1 * _
\xi Lj  /  — o°l]l
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(4 n" ')/]n" ')/ inn') / i(n„')> =  +  +  (3.43)

Having substituted for F^nn/) into equation (3.29) and using all the results above then 

after some manipulation, the expression for the average stress reduces to:

-  2™ (2 -  (3-44)

where (f> is again the volume concentration of the spheres, first met in Chapter 1 and 

given by
. 4tri?3iV

0 =  - g y ~ -  (3.45)

We note the extra terms introduced by our perturbation when compared with Wal

ton’s [86] expression for the average stress, found using the uniform strain approxima

tion:
, _ < h ( ~ e ) 3/2 ...

i j > _  3tr2fl ’ {3-46)

This was previously seen in Chapter 1, equations (1.94) and (1.95).

All of the above results apply for spheres that axe infinitely rough. We now consider 

the case when they are perfectly smooth, following the same methods used above. The

general expression for the force acting on the n th  sphere due to its contact with the

n 'th  is now given by:

p ( n n ' )  _  ( ^ ) _ ^ _ ^ u (n ') _  u (n)^ j ( Tm' ) j 3 / 2 j ( n n ' ) > ( 3 .4 7 )

We assume that after the initial hydrostatic compression has been applied to the bound

ary, the displacement of the centre of the n th  sphere is given by:

> ) _  v ( n) ,

and

i til \ r V ,L) iu\ = eijXj +  u)

(n) ~ (n)a;; — a;; .

Again, considering equilibrium of forces and moments acting on the n th  sphere allows 

us to calculate the perturbations, u[n  ̂ and lj[u\  to leading order. These are given by

u!n) =  - 4 R e ^ n)
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and

Hence

<4n) =  0.

f f n,) =  4* X f 2 { 4 nn,)+ 3 (j(n') -  jW )i( " n'>4’i,‘' )

|(jr<"'> -  J ^ ) ( J ^ n,) ~  (3.48)

37tB

+  ;

and from this, using the parameters defined above, we find the average stress to be

=  {i - i 5 a } . <3-49)

As we would expect, this is consistent with the expression derived from talcing the limit

^  —> oo in equation (3.44).

For completeness, we should also consider the case when we impose an initial uniaxial 

compression upon our random packing of spheres. However, the calculations are not 

so manageable. The strain now has the form

e ij  =

and we again let the displacement of the centre of the n th  sphere after the initial 

deformation be u\n  ̂ +  u^  and u)\n  ̂ = Q* +  We find the

expression for the force acting on the n th  sphere due to its contact with the n 'th  is:

F
{■nn') _  2 R ( - e 3)1/2

3irB{2B +  C)

r{nn') I
|4 W )I -  (4 n,) -  4 n)) A- - - |7 n- ^  { 2B { - ™ e 3S «linn,)

4iJe3|/3 '|J

+ (< T  > -  «<">) + +  4"> ))

+ 2 i? C (-e 3)[(4 "" '))2 -  ^ ( 4 n,) -  4 " ))/<""')] 4 nn' )} ■ (3.50)

Now, using the equilibrium of moments and forces we obtain first order approximations 

for and u>\n\  If i =  1 or i =  2:

~ ( n )u) =  —
32Re3CZn> l4 nn,)|( 4 nn,))24 nn,) 

r/(n)(16J3 +  3C)
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and when i =  3

-(»> =  16fle3(2B E „- l 4 nn'>l4 ml') + C £ „ ,  |
“ 3 3jjW (4B +  3C)

where 7/™) is the co-ordination number of the n th  sphere. For any value of i,

«s{") =  0.

From these we could continue by substituting back into the force expression and then 

calculate the average stress, proceeding by the same method discussed above for an 

initial hydrostatic compression. However, the algebra becomes extremely messy and 

involves many more unknown parameters and so we have not pursued this any further.

In the case of a biaxial strain, it would also be possible to work out the effective moduli 

when the strain takes the form:

B%j — “b (3.51)

However, the algebra becomes even more cumbersome and messy than in the uniaxial 

case, so although some attem pts were made to start upon this calculation, they were 

abandoned.

3 .2 .4  T h e  E ffec tiv e  M o d u li

To calculate the effective moduli, we suppose that our packing is now subject to a 

further incremental deformation. The boundary of the packing will undergo a further 

displacement

Sui = SeijXj. (3.52)

Walton’s work [86] again assumes that under this compression the centre of the n th  

will be displaced in accordance with the uniform strain approximation. We modify this 

approximation and then the centre of the n th  sphere is displaced by Su\n  ̂ and Su>\n  ̂

where

* 4 n) =  S e i j X ^  +  Su\n) (3.53)

and

8u\n) ^ 8 Q i  + 8Cj\n). (3.54)

C h a p t e r  3 111



3.2. CORRECTION TERMS IN THE UNIFORM STRAIN APPROXIMATION

In a packing of infinitely rough spheres, the incremental force on the n th  sphere due 

to its contact with the n 'th  sphere is given by equation (1.141) as

S F t n'] = 2 n B £ B  + C ) [{u? ) ~  < ))4 " n')]1/2 {2B(<M"') -

R t ij k { S u f ) + +  C [ ( H n,) -  <5u<n)) 4 nn' )]4 nn' )} .(3.55)

To calculate further an expression for this force, we must find approximations for 8u[n  ̂

and In order to do this, we initially consider just the first order terms of the

equations of equilibrium, in the same way as we did in the initial part of the problem, 

equations (3.18) and (3.21). We have

=  0,
n'

=  0. (3.56)
n ;

These yield two equations similar to (3.14) and (3.15) and in order to find first order 

approximations for 8 u ^  and 5u)\n ,̂ we must discard some of the terms and we make 

the same kind of assumptions which led to equations (3.18) and (3.21). From these we 

find that to first order,

6 R
i

+CSeu ( N $  -  3Av£>mj£>)} (3.57)

^  =  ~ (6B + C ) m i  ~  A)5eikJ^

and

The term  is defined by

=  0. (3.58)

E A n n ' )  A n n ' )  r (n n ') T ( n n ' )  

ri j  1k
=  — — > )  * ‘ (3-59>

( n )and since it is multiplied by Jm , we need only approximate it to leading order. Since

<  jinn') j i n n ' ) >=  ^ ^  +  ^  + ^
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(n)then we use the following approximation for

Vijkl ~  (fiijfikl +  fiikfijl +  fiilfijk)- (3.60)

The terms J ^  and are previously defined in equations (3.16) and (3.17).

Substituting equations (3.57) and (3.58) back into equation (3.55), we can now find 

5F^nn \  to leading order, which is given by the following lengthy expression:

^  =  - 2 ^ )  { 2B M  +  (6B~TC) (w ^  -  -  4 n))

+CSepq( N ^ ) -  -  3 -  V * £ ,j£ > )))  + 3 A S e ^ ( ( J ^  -  J ™ )I ,Ip

+
9A

(6 B  +  C)
(25(1 -  A)Seip( j W  -  J « )  +  C S ^ i N ^  -  jv£> 

- 3 A ( v£ I j £ ' ) ~  v g ^ j W j )  (J<"'> -  JW )/,

^  A * T t> \a . ( U '* J _  TKTl J _  TK.n ) \  .
' q  u q  / i p J - m i q

+ c

- - A 2iWCip(4 " ')  -  J ^ ) ( j f  > -  j W ) I pImIq 

Sep, I pIqIi + (6B 3+ c )  (25(1 -  A)6e,p( j W  -  J<">)

+C5e„,(N<$  -  JV&) -  3^(VjW  jrK) _  V $ mj W ) j )  1,1, 

+ 3 A S e p q I p I q I i I m ( J ^  ~  W )  +  ( J + C )  (2 S (! -  ~  ^ n))

+ C S e p g ( N ^  -  2V<"> -  3 A ( V & l j W  -  V $ m j W ) )  (J<n'> -  j f ] ) I , I t I ,  J 

- | a 25 ^ p, / p(4,"') -  4 n))(J t(n,) -  J t(n))/m /tV , / i ] } . (3.6i)
I*

Since this expression is long, we have omitted the superscripts (nn') from the compo

nents of l(nn' \  to keep it as concise as possible.

From this we proceed to substitute into the following equation to find average the 

incremental stress,

= - ^ - ( l \ nn')6 F f‘n') + l f n')5Flnn')). (3.62)

The terms that arise are similar to those in section 3.2.3 and after some manipulation 

we have

(fiaij) = B
3 07/(—e)1/2 

2ir2B{2B + C)
2 C \

H r~fiijfiki) — 3Ac*(2 4- A)(fiikfiji +  fiufijk)

r-(fiikfijl +  fiilfijk) -  7 ^ —3 (14B +  3C)
( 2 C

(2 B  +  — ) {fiikfijl +  fiufijk)

+ C {,fiijfikl ”1“ fiikfijl ~b fiilfijk)
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“  (6B T C j  ( 2i?<15 +  M * )  +  C ( ^ ( 2a  -  X) ^ 4 ,
1 \

®){fiikfijl P  fiilfijk') 25 flfiijfikl "P 2(fiikfijl P" fiilfijk)) J

6A a 12Aq: / / 0 r» r
g [fiijfikl P  OikOji +  fiufijk) +  5^J^gTp~3^y  5~)°*jfiki

p (2 B  +  — )(fiikfiji P fiufijk)^ ^ P  fiufijk) |  fieki, (3.

where a  and x  are defined in equations (3.30) and (3.41) respectively. In general, the

average incremental stress is related to the average incremental strain, (fieij) as follows,

(fi&ij) =  Cij^fieij) . (3.64)

For an initial hydrostatic compression, we know that

^ijkl = ^ fiijfikl P  /i (fiikfijl P  fiilfijk)i (3.65)

and thus we can calculate the effective moduli in this case. Hence, we have

H C { -e ) ' /*  f 72(1 - A ) B
10n2B (2B  +  C) \  (14B +  3C)

( | a - x ) }  (366)
36(1 -  A)(10B +  7C) 18C

H _ ^ :------ a  —5(145 +  3 C) (6 B  +  C)

and

M 5 B  + C ) ( -e y /*  f J A ( 2 |  A )a 72(1 -  A)(5B + C)
M 10tt2B(2B + C) {  1 ’ 5(14B +  3C)

54C2 1
“  10(65 +  C )(55 +  C) ~  J ’ 3̂'67^

where (j) is as given in equation (3.45). These are the main new results for this chapter, 

they give the modified expressions for the effective Lame moduli of a random packing 

of equal sized spheres, upon application of an initial hydrostatic compression.

We can also calculate the effective bulk modulus, for comparison with the results of 

Jenkins et al. [43],
2

*  \  *  i *

K = 3^
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and so

{1 -  27A(2 -  A)o:} . (3.68)

This is clearly consistent with the expression we found for the average initial stress in 

equation (3.44), which yields the same expression for the bulk modulus upon differen

tiation.

The expressions found for these moduli by Walton [86] are,

<f)T]C(—e)1/2
A* =

107r2H(2B +  C)  ’
^ ( 5  j? +  C ) ( - e)i/2 

M 107r2B(2B +  C)  ̂ ^

and
_ M ~ e ) 1/2 ,  .

6tt2B ( )

and so we can easily note the extra terms that occur in our new expressions. Assuming 

j ( n) to be zero as did Walton [86], then a  = x  — 0 and we see that our results axe 

identical to these.

These results apply only when the spheres are infinitely rough. For the case of perfectly 

smooth spheres the force acting on the n th  sphere due to its contact with the n 'th  is

S F ( n n ' )  =  ( 2 R ) ^ 2_  j [ ( u (n ')  _  u (” ) ) . l ( " n ' ) ] l / 2 ^ u (n ') _  f o W )  j f im ')  (3  ^
27tB  t J

If the displacement of the sphere centre is again given by a perturbation of the uniform 

strain approximation then

5 u ^  = S e ijX^n) + Su\n)

and

Su/jn) =  SQi +

Considering the equations of equilibrium to first order allows us to calculate

S u ^  = *e«*jn) -  6R6epq( N $  -  J ^ V ^ )  (3.72)

and

Scjjn) =  0. (3.73)

C h a p t e r  3 115



3.2. CORRECTION TERMS IN THE UNIFORM STRAIN APPROXIMATION

U sin g th is in turn, we find the increm ental force to first order. We have

^ ( W )  =  _ 2 f l2( - e ) 1/ 2 | S e r s I r I s I i  +  3 [ S e p r ( N ^  -  AfW -  -  J ^ V ^ . ) ) ] U i

+ 6 ers(J<n'> -  j W ) I p I r I 3 I i

-4-3\ S p  ( n ( u ' )  -  n W  -  ( 7(n' ) u ( n/) —  / W y W  n i f  j ( n /) -  j ( n h i  1 1■ °Lut’pr\iyprS iyprs \ uq vpqrs uq vpqrs))l\'Jm °m

- \ t e r , ( 4 n , )  -  4 n ) H 4 n , )  -  4 " ) ) W r I s h  

- f  ~  ( 4 n ' ) V p 0 r l  ~  4 ’, ) V P # M J £ ' ) -  •4")) ( 4 " ') -  4 n ) ) I m W i )j  ,

(3.74)

w here the superscripts (nn') on  th e  com ponents of l ( nn/), have again b een  om itted  for 

brevity.

T h e average increm ental stress follows from  th is, through equation (3.62) and is found  

to  be

<bn(—
{ S a i j )  =  - l 0 n 2 B -  { ( S i j 8 k i  +  S i k S j i  +  6 u 8 j k )  -  (2 9 S i j 5 k i  +  6 { 8 i k 5 j i  +  8 u 8 j k ) ) a

+ 9 (2 S i j S k i  -  3 ( 8 i k 8 j i  +  8 u 5 j k ) ) x ]  • (3.75)

T h e effective m oduli are th en  calculated as

v  =  ^

"* =  ^ B / 2 (1 +  6 a ~ 27x) - (3'76)

To calcu late the effective bulk m odulus we again use k * =  X *  +  |/x* , th is gives

< M -e)1/2 ri 1C^
=  ~ 6t? B  { ~  } ‘ ( }

W alton’s results for th e effective m oduli o f a packing o f perfectly  sm ooth  spheres are

_  * _  <M(-e)1/2 
^  lOit2B

and
* _  <M ~e)1/2

67r2R

and our results are again  clearly consistent w ith  these, w hen a  =  x  =  0-
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Poisson’s ratio can also be calculated for the two cases of friction considered. It is 

defined by:

v  =     (3.78)
2(A * + /i*)

and for the case of infinitely rough spheres is 

v* —
___________________ y  {(14 ~  111/)2 +  9(17I/2 -  292i/ +  324)a  -  (jja  - _x ) } _______________ ____

2 {(5 -  3i/)((14 -  111/)2 -  18(9!/3 -  271i/2 -  520u -  252)a) -  ((15 -  13i/)x -  ^ (1 5  -  1 4 i/)a )} '

(3.79)

When a  = x  — Oj we recover the result for Poisson’s ratio found by Walton [86], as we 

would expect.

For a packing of perfectly smooth spheres Poisson’s ratio is given by

1 — 29a +  18%v =
2(2 -  23a -  9x)

and this reduces to 1/4 when a  =  x — 0 35 deduced by Walton [86].

(3.80)

In the next chapter, we describe the simulations which enabled us to estimate values 

of the unknown parameters a  and x which occur in the modified expressions for the 

effective elastic moduli of the sphere packing. Using these, we were able to obtain 

revised predictions for the values of the moduli for comparison with the work of Jenkins 

et al. [43].
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Chapter 4

Num erical Calculation of a  and x  

Terms

This chapter deals with the calculation of numerical values for the parameters a  and 

X th a t occur in the equal sized sphere packings described in Chapter 3. In order to 

compare our new theory with the numerical simulation results of Jenkins et a l  [43] 

we must estimate the change to the numerical values predicted for the effective elastic 

moduli, caused by these unknown parameters.

For the specific results we require, the parameters were determined by computer sim

ulation. In this chapter however, we also consider analytical calculations, some work 

is done in both two and three dimensions. To be physically realistic we require that 

each sphere be in equilibrium, however for completeness we also consider collections of 

spheres that are not in equilibrium.

4.1 A  P ack ing o f  Equal S ized Spheres

Using just a first order perturbation of the uniform strain approximation, on a packing 

of equal sized spheres, we have to consider two parameters which arise in the calcula

tions. These are a  and Xi 35 previously defined in Chapter 3 by

a = i  <  >

and
1 Jnn') T{nn') Jnn1) M(n)

X ~  g 1j 1k iyijk >
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where ’ is the unit vector along the line of centres between the n th  and n 'th  spheres 

and
j(n) _  l v  Ann'̂

fi(n) 2 s  ti1

and
/u ( n ) _  * V '  r (n n ') r (n n ') 7-(n n ')

i y i i j k  -  „ ( n )  2 s  L 3  ■,n ( n )
' n '

The averaging operator <  . >  represents the average over all contacts within the packing 

and the sum over n ' is tha t over all spheres in contact with the nth. The operator <  . >  

is thus equivalent to summing over both n and n'. Both a  and x represent a measure of 

how much the behaviour of the packing deviates from that of an ideal random packing. 

If the behaviour were ideal then a  = x  = 0 and we would have recovered W alton’s 

results [86].

For our purposes it is easier to re-write a  and x as

« = 3 j ^ I > (">'4n)4 n) (4-1)

and

X =  (4-2)

where N  is the total number of spheres in the packing, is the co-ordination number 

of the n th  sphere, 77 is the average co-ordination number and the sum is taken over all 

spheres n  in the packing.

In two dimensions, it is simple to calculate by hand a value for a. Considering spheres 

in contact with the n th  sphere, these can be ordered and it is easy to ‘visualise’ the 

situation. However, in 3-D it is much more difficult to visualise. The question arises 

as to how to order the spheres. In this case we turn to computer simulation to help us 

calculate the expected value. In the next section we start by considering the expected 

value of the parameter a, for a random arrangement of discs in 2-D.

4 .1 .1  A n a ly t ic a l M e th o d s  and  S im u la tio n  in  2-D

In 2-D, it is possible to calculate the expected value of a  analytically and these values 

could then also be confirmed using computer simulation, if required. Even though these 

results were not used in the calculation of values for the new effective moduli, they were
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Figure 4-1: Condition for equilibrium of the nth disc in contact with just two others

carried out in order to build up a more complete picture about what influences the value 

of each parameter. We consider, for example, the effect of increasing or decreasing co

ordination number, noting any trend in the values. We would expect to find similar 

patterns when we later consider the 3-D case.

We are primarily concerned with equilibrium of each disc. However, we shall look at 

both the restricted case of each disc in equilibrium and also any general arrangement of 

contacting discs. In particular, we require equilibrium of the nth disc, say. In 2-D, we 

will need a minimum of four discs in contact with the n th  such that any combination 

we choose ensures equilibrium of the nth disc. If we have just three discs in contact 

with the nth then some combinations will be in equilibrium while others will not. We 

shall only consider values of the parameter a  at this stage.

Starting with just one disc in contact with the nth it is impossible to attain equilibrium, 

but we can still calculate that in this case | j (n) |2 =  1 and so a=  1/3.

With two discs in contact with the nth it is generally not possible to have equilibrium. 

The unique case when there is equilibrium arises when the two discs are on exactly 

opposite sides of the nth, see figure 4-1. In this special case the value of j ( n) is 0 and

so a = 0 .

Now, we consider any two discs in contact with the nth, see figure 4-2. We pick our
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Figure 4-2: Contact of any two discs with the nth in 2-D

axes such that the centre of the first disc has co-ordinates (1,0). The centre of the 

second then has co-ordinates (cos#, sin6). We have =  |( l+ co s# , sin#) and so 

|j(n ) |2 _  i(i-}-Cos0). Thus to find the expected value of | j (n) |2 we calculate the integral

JV3 1 +  cos 6d0
- 1  E  * (4 -3)

2 f* 3 ■ ldQ
3

the restricted limits ensure that there is no overlap between the two chosen and so 

the arrangement is physically realistic. The integral yields a value of 0.2933 and since 

a  =  0.2933/3, then a  =  0.0978.

Considering next an arrangement of three discs in contact with the nth, we can consider 

both equilibrium and non-equilibrium of the nth disc. We initially do the calculation 

for any arrangement of discs which may not necessarily be in equilibrium. We again 

let the centre of the first disc chosen have co-ordinates (1,0), that of the second have 

co-ordinates (cos#, sin#) and that of the third have co-ordinates (cos</>, sin</>). We 

require there to be no overlap between the discs and so § < # < X ’ I  < ^  < T  an<̂  

\6 — <f>\ > The region in which these last two discs can be chosen without overlapping 

either of the others is shown in figure 4-3. Solutions of no overlap are only possible in 

the two triangular areas containing dotted lines.

The triangle areas are symmetric and so to find the expected value of | j ( n) |2 we calculate
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7r 27r 4 n  5 i r
3 3 3 3

e

Figure 4-3: The (9, 0 / region corresponding to no overlap
5 n

4>

7r
3 3 7T 3 3

e

Figure 4-4: The (9, (f>) region corresponding to no overlap and each disc is in equilibrium 

the integral

2 /•¥  re~ f
— 5- / / [3-1-2 cos 9 + 2 cos 0 +  2 cos(0 -  (p)]d9d(f>. (4.4)
97^ Jo=2z- J<t>= f

The value of this is 0.1011 and so a = 0.1011/3 =  0.0337.

If we now consider the random selection of three discs in contact with the n th  so that 

the n th  is in equilibrium, we find the more restricted region in which 9 and 0  can be 

chosen, as shown by the areas containing dotted lines in figure 4-4. The integrand is 

the same as above but the limits are different and we find that the expected value of 

| j (n)|2 has decreased to 0.0965 and thus a= 0 .0965/3=0.0322.

Now we consider four discs in contact with the nth. Any chosen combination will
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ensure that the n th  sphere is in equilibrium. We again chose our axes such that 

the centre of the first disc has co-ordinates (1,0), the centre of the second then has 

co-ordinates (cos0, sin0), the third (cos0, sin0) and the fourth (cosip, simp). We 

integrate | |2 =  ^  [4 +  2(cos 0 +  cos 0 -1- cos ip +  cos(0 — 0) +  cos(0 — ip) + cos(<p — ip))]

over the six regions:

•  8 : 7T —̂ (p : ^  —y 8 — 7̂ , ip : ^ —y (p —

• 8 : 7r —y (p : ^ —y 8 — 0 : 0 - 1- ^ —y 8 —

• 0 '• T  T ’ $  : 0 + 1 ^  : 0 ~

•  8 : ^  ̂ 7r, (p : 0 -f- ^  ̂ ip : (p -I- ^ ^

• 8 :  ̂  ̂7r, 0:0-1-  ̂ 0  : 0 T  ̂  ̂(p —

This gives us an expected value for |j ( n)|2 of 0.0309 and then a=0.0103.

For six discs in contact with the n th  the calculation is very simple, j ( n) =  0 and so 

a= 0 . This is the maximum number of discs we can arrange around another in 2-D.

We have not attem pted the calculation of a  for five discs in contact with the n th . This 

is due to the fact tha t the integration becomes extremely cumbersome, we would need 

to integrate the following expression:

5 +  2(cos 0 -I- cos (p +  cos ip +  cos £ +  cos(0 — 0) +  cos(0 — ip)+  cos(0 — £)

-1- cos (0 — 0) +  cos(0 — £) +  cos (ip — £))

over 24 different orderings of the spheres (similar to those listed above for four discs). 

However, for completeness we estimate a value for a  from the plot of the values of a  

against co-ordination number shown in figure 4-5. The ’+ ’s on the graph represent the 

values of a  obtained when the spheres are not in equilibrium and the ’o’s the results 

when we do have equilibrium. We find that for five discs in contact with the nth, 

a  «  0.01.

We notice that the value of a  decreases with increasing co-ordination number. This is 

exactly as we would expect. We have already mentioned in previous chapters that the 

uniform strain approximation becomes a better approximation, as the co-ordination
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Figure 4-5: Plot of results for a  versus co-ordination number from the consideration of
2-D discs

number increases and a  represents deviation from this ideal behaviour. It therefore 

follows that a  should decrease with increasing co-ordination number.

4 .1 .2  A R an d om  P ack ings o f  Spheres

We consider the calculation of the expected values of a  and x  f°r a random packing 

of equal-sized spheres. These will be the results that can be used in the theoretical 

work of Chapter 3 to predict modified values of the effective elastic moduli. It would 

be very difficult to calculate the expected value of o for spheres in three dimensional 

space using similar analytical methods to those above. Hence values for both a  and \  

must be found from a numerical average using computer simulation. Matlab was used 

to perform these calculations.

We use computer programs to randomly pick spheres in contact with the n th  sphere. 

A typical example of one of these appears in Appendix B. By repeatedly running the 

simulation, it is possible to find an average of several hundred calculations, say, the 

number of calculations performed being dependent upon the time involved in each run. 

The more spheres to be chosen, the longer each calculation took and hence the fewer 

the calculations that it was possible to do within a reasonable amount of time.

Especially important in the calculations was to impose a condition of no overlap be
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tween spheres to ensure physically realistic answers. Also, for the particular results 

tha t will be used in the expressions found in Chapter 3 we require equilibrium of each 

sphere. However, similarly to the 2-D case, here we also consider the values obtained 

when the spheres are not necessarily in equilibrium. In 3-D, we require a minimum of 

seven spheres to ensure that any possible combination of chosen spheres are in equi

librium. However, it is possible to have several combinations of as few as four spheres 

in contact with the n th , such that this n th  sphere is in equilibrium. We must include 

checks within some of our programs to find these combinations.

The general algorithm for all the programs was to pick co-ordinates (r, #, 0) such that 

the centre of the n th  sphere was at (0,0,0) and # and 0 defined such that the centre 

of the first sphere chosen in contact with this always has co-ordinates (2,0,0). Then 

the unit vector directed along the line of centres was (1,0,0). A second sphere was 

then chosen such tha t 0  =  0, but with # picked randomly in the interval [7r/3,7r]. The 

remaining spheres were chosen at random, imposing the condition of no overlap which 

is described below.

The program asks the computer to choose a random number p say, this falls between 

[0,1] and so we let 0 =  p. Picking # correctly requires more thought, we need to 

ensure that the contacting spheres are distributed with an even probability density. 

As we have mentioned, we want # to be contained in the interval [7r/3,7r] and thus 

sin# G [ \/3 /2 ,1] or [1,0]. This is shown by the area to the right of the vertical line 

0 = 7t/3 in figure 4-6. We want the values to be chosen uniformly on these intervals. 

The size of the area [#,# +  56] is s'm656 and the number of values we pick in a given 

area must be proportional to that area. We notice that

sin Odd =  1 +  cos 6

and

From this we see that we require 1 +  cos 6 G [0, |]  which then gives the condition 

cos# G [—1,1/2]. Hence, to define a random # we let # =  cos-1 — 1 j ,  where q is 

a second random number within [0,1]. The unit vector l(nn>) joining the centre of the 

n th  sphere to the n 'th , is then found using l(nn/) =  [sin#cos0 ,s in # s in 0 ,cos#].
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Figure 4-6: Restricted Area Within Which to Pick sin 0 Uniformly

The next part is to check that the sphere that has been chosen does not overlap with the 

ones already present. The way we have chosen 0 for this sphere has already ensured 

that it does not overlap with the first sphere chosen, whose centre has co-ordinates 

(2,0,0). However, we must check all of the others as well. If the unit vector joining the 

centre of the n th  sphere to a contacting one is

11 =  [sin(0i) cos(</>i),sin(0i) sin(0i),cos(0i)]

and that of a second

1 2  =  [sin(02)cos(0 2 ),sin(02)sin(0 2 ),cos(02)]

then we must ensure that the angle separating these two is not less than 7r/3. This 

implies that we must check the cosine of this angle is not greater than 1/2. Now, the 

cosine of the angle between these unit vectors is given by

cos A = sin(0i) sin(02) cos(0i — </>2) + cos(0i) cos(02)

and if cos A > 0.5 then we throw away this last sphere. If cos A < 0.5 then these 

particular two do not overlap, but we must also repeat the check to ensure that there 

is no overlap between the current sphere and any of the others either. If the current 

sphere overlaps with any others then we throw it away and try to choose another which 

does not overlap any of the others. Sometimes it can be very hard for the computer to
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find a ‘gap’ to put another sphere into. If after one hundred tries it does not succeed 

then we throw away all the spheres we have already chosen and start again.

This process of picking random numbers and subsequently co-ordinates for the sphere 

centres, is repeated until the required number of non-overlapping spheres in contact 

with our initial one, has been found. The vector J  and matrix N  axe then determined, 

from which the the values of a  and x can be calculated. We run the program many 

times in order to obtain average values for a  and x*

We start with the very easy case of one sphere in contact with the nth. There is 

obviously no possibility of equilibrium in this situation and we have the unit vector 

along the line of centres of the two spheres given by (1,0,0). Thus j ( n) =  (1,0,0) and 

hence a  = 1/3. Similarly, it is very easy to calculate the entries in which axe all

zero except N ^ l  = 1. Thus, x  also equals 1/3.

For two spheres in contact with the n th  we have no equilibrium, except for a case very 

similar to that for the two, 2-D discs described above. That is, if the spheres are on 

exactly opposite sides of the n th  sphere, then the n th  sphere will be in equilibrium 

and when we sum the two unit vectors along the lines of centres they cancel each other 

completely and = 0 .  We have calculated only a  for this co-ordination number, 

its value is 0.1258. W ith three spheres in contact with the n th  we still cannot have 

equilibrium in the general case and find that a  takes the value 0.0602 and x =  0.0794.

For four spheres in contact with the nth, we can start to consider combinations of 

spheres in equilibrium as well as those not in equilibrium. Although there will be lots 

of cases where a randomly picked four will not be in equilibrium, these are thrown 

away when we wish to apply the values of a  and x to our theory. It is easy to know by 

looking at a picture of an arrangement of spheres whether it is in equilibrium or not. 

However, it is more difficult to enable the computer to make this decision.

When we have four spheres in contact with the nth, the test for equilibrium in the 

computer program started by selecting two of the spheres out of the four. The plane 

through their centres and through the centre of the n th  sphere was constructed, i.e. 

Iin A l2n found (using obvious notation). The remaining two spheres are tested to see if 

they are on the same side of this plane by finding both (Iin A l2n)-l3n and (Iin A l2n) .l4n 

and checking if they have the same sign, in which case they are on the same side of
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the original plane and equilibrium would not be possible. This was repeated for every 

possible combination of selection of the first pair. If the signs of the two dot products 

involving the remaining spheres are different for any of these combinations, then the 

four randomly selected spheres are not one-sided and equilibrium is possible.

For four spheres we have to find sgn{Ii„ A I2n-l3n) =  s i, sgn(Ii„  A l 2n-I4n) =  s2, 

sgn(I\n A I3n-l4n) =  S3 and sgn fcn  A I 3n-l4n) =  S4. The condition for the four spheres 

not one-sided is that the sequence si, S2, S3 and s4 alternates in sign. If it did not alter

nate the four spheres were discarded and the whole process repeated until a selection 

was found that were not one-sided. The values of and were then calculated. 

The value of a  for spheres in equilibrium was 0.0158. That of x  was 0.0457. Considering 

also the selection of any four spheres which may not be in equilibrium a = 0.0311.

We next consider the selection of five spheres which ensure the initial one with which 

they are in contact is in equilibrium. There will be fewer cases of no equilibrium than 

when we only choose four spheres. To test for equilibrium with five spheres, the above 

algorithm can again be used by selecting four of the five and testing these for one

sidedness. If all combinations of four that can be chosen are one-sided, then all five 

are one-sided. If any four are not one-sided, then all five are not one-sided. These 

result in ten conditions on the signs of the dot products calculated, but these can be 

reduced. Setting up a 5X5 table with the diagonal elements blank, (see below), where 

512 =  sgn{l3n A I4n-l5n), 513 =  sgn fcn  A Lm-Isn) etc., the conditions reduce to finding 

an alternating row in the table.

512 513 514 515

512 523 524 525

513 523 534 535

514 524 534 545

515 S25 535 545

Running the program with these equilibrium conditions and discarding any combi

nations which do not satisfy the criterion above we find a = 0.0132. We have only 

calculated x  when each sphere is in equilibrium and we find that x  — 0.0300. If we do 

not restrict our choice of spheres purely to those in equilibrium we obtain a = 0.0173.
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Figure 4-7: Plot of results for a  versus co-ordination number from the consideration of 
3-D spheres

For six spheres, there are fifteen conditions to ensure equilibrium if we chose two spheres 

out of the six and draw the plane through their centres, checking the remaining four 

to see if they are one-sided (this is the extension of what was described previously 

for four spheres). Fifteen checks would also have to be done if we chose combinations 

of four spheres again, extending the method used for five. Since there are now few 

combinations that will be one-sided the quickest way of checking is to use the former 

fifteen conditions, each will not have to be checked every time the program is run, as 

soon as one is found to be untrue then we know that the spheres are not one-sided. In 

the case of picking combinations of four, every condition would have to be checked each 

time. Now, a  takes a value of 0.0093 when there are no equilibrium restrictions and 

0.0091 with. The first of these values is plotted along with the other values of a  when 

there are no equilibrium conditions imposed, against co-ordination number in figure 4- 

7. These values obtained from six spheres confirm the fact that few combinations are 

still one-sided since these values are not significantly different. Again, we only calculate 

X with equilibrium conditions imposed, the simulation yields a value of 0.0190. A graph 

of the values of \  against co-ordination number are shown in figure 4-8, the spheres
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Figure 4-8: Plot of results for x  versus co-ordination number from the consideration of 
3-D spheres

will be in equilibrium except in the case of a co-ordination number between one and 

three, inclusive.

Once the number of spheres selected gets to seven or more, all of the combinations 

chosen will be in equilibrium. For seven and eight spheres the value of a  was therefore 

calculated without checking for equilibrium, a  was found to have a value of 0.0055 for 

seven spheres and 0.0042 for eight.

For nine, ten and eleven spheres in contact with the nth the computer programs take 

progressively more time to calculate a single value for a , this can as long as several 

hours. Hence it is not practical to try and run the program many hundreds of times 

to obtain an average. However, in the case of twelve spheres we have the simple result 

that o:=0. Hence we could estimate the missing values for these other three cases if 

we so wished from the graph of results for a  shown in figure 4-9. This graph shows 

the values obtained when our initial sphere is in equilibrium. It can be seen that the 

curve does not pass perfectly through the plotted points but this is probably because 

the values have not been calculated with the same accuracy. We mentioned previously
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Figure 4-9: Plot of results for a  versus co-ordination number from the consideration of 
3-D spheres in equilibrium

the fact that as the number of spheres that the computer must choose increases, the 

programs become slower and slower to run. Thus for a co-ordination number of eight it 

was only practical to run the simulation a few tens of times, whereas for a co-ordination 

number of four it was practical to run the program for thousands of arrangements.

All these values are approximate since, as we mention above, some of the calculations 

took so long to complete that it was not possible to repeat them as many times as some 

of the others. However, the general pattern seen in the values of a  that we had for 2-D 

discs, can be seen again here, that is decreasing a  with increasing number of contacts. 

This is true for both the values where equilibrium conditions were ignored and those 

where they were included. We also note that x  decreases with increasing co-ordination 

number.

4 .1 .3  F ix in g  T h ree Spheres in C ontact w ith  th e  nth

For interest, we also ran some further simulations to find numerical values for a  when 

the spheres in contact with the nth were not all randomly chosen by the computer. We
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Figure 4-10: Fix the Positions of Three Spheres in Contact with the nth

wished to see what effect this would have upon the numerical values of the parameters 

and hence how the predicted values of the effective elastic moduli were effected. We 

considered a particular example of a possible arrangement of spheres in contact with 

the nth. We take the first three spheres in contact with the nth, also in contact with 

each other. This gives us an arrangement like that in figure 4-10, where we are looking 

from below these three spheres. The dotted circle represents the outline of the n th  

sphere which lies above the three spheres shown by the circles with solid outline. Thus, 

we pick our axes such that if the centre of the n th  sphere is at (0,0,0) then we fix the 

position vectors of the centres of these other three spheres at (2>A3) , 0, ), (— V^3) ;

1, 2V^6-) and (— ^ 3--, -1, 2^ 6-)  in cartesian co-ordinates.

The required number of remaining spheres in contact with the n th  are then chosen 

randomly as before, ensuring no overlap with any of the others and checking to ensure 

equilibrium when appropriate. This arrangement of contacting spheres is highly un

likely to occur in the simulations, although it seems quite reasonable to think that it 

might occur in real packings. We do not have any idea as to what percentage of spheres 

within a packing might be arranged like this, but we shall speculate about some pos

sible values near the end of this chapter and calculate the new theoretical predictions 

for the moduli.

For five spheres in contact with the n th  sphere, the new value of a  is 0.0344 as compared 

with 0.0132 for five chosen randomly. For six we have 0.0328 as compared with 0.0091 

and for seven, a = 0.0127, compared with 0.0055 from earlier. Thus a  is significantly 

larger for this arrangement with three fixed spheres in contact with the nth, compared 

with that of a randomly chosen group.
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4 .2  C om parison  B etw een  T heory and N um erica l S im ula

tion s

We re-write our new expressions for all the moduli found in Chapter 3, equations (3.67) 

and (3.68), using the notation of Jenkins et al. [43]. This is for easy comparison 

between our new expressions and the Lame moduli found in equations (32) and (33) 

and also the bulk modulus of Jenkins’ paper. Jenkins’ equations (32) and (33) axe 

actually the same as the expressions found previously by Walton [86] but re-written 

for the purposes of Jenkins’ work. For a packing of infinitely rough spheres we have 

the following expressions for the effective shear modulus and effective bulk modulus, 

respectively,

and

2 (ikv 
57r (1 — v )

2 fihv

16
1/3 (5 -  4z/) 

( 2 - i z )

[3  (1 — i / ) P l1/3
37r (1 — v) 16

(4.5)

(4.6)

These equations include Poisson’s ratio, i/, co-ordination number, fc, solid fraction, i>, 

average contact force P , sphere diameter, a  and the shear modulus of the material /i. 

We represent our new theoretical expressions in terms of these parameters:

2 fikv 
57T (1 — v)

h -

3 ( l - i / ) P j 1/3 (5 — Av)
16 <j2[i J ( 2 - i / )

( 1 4 T 3 ^ T I ^ ( 9 ( 2  +  - - 2)(30 +  7 , - 2 3 ^ )

+  -^(12 +  2i/ — 10t/2)(5 -1- i/ — 4i/2)^ a  

54i/2(1 +  v)2
10(6 +  v — 5i/2)(5 +  v — 4i/2) (10X -  3a) (4.7)

and

k =
2 fikv 

37T (1 — v)
3 (1 - v ) P
16 a2fi

1 /3 f _  27(2 +  v -  i/2)(26 +  5V -  21*/2) 1 
|  (14 +  3i/ — H i/2)2 J a

(4.8)

Taking Poisson’s ratio v =  0.21, coordination number k = 5.36, solid fraction, v = 0.63, 

average contact force P  = 7xlO-3 N and average sphere diameter, o — 0.22mm, from 

Walton’s theory using equation (4.6), the bulk modulus is calculated to be 245MPa.
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The shear modulus from equation (4.5) is 338MPa. However, Jenkins et al. [43] found 

values of 185MPa and 127MPa respectively for these moduli from the numerical sim

ulations. We cannot specifically calculate a or x and hence recalculate the theoretical 

predictions using our new expressions, for a coordination number of 5.36. Instead, we 

use the values found for coordination numbers 5 and 6 and estimate a value of a  from 

the graph in figure 4-9. Alternatively, this could be calculated from the values given by 

4, 5, 6 and 7 contacts and then weighted so as to give 77 =  5.36. As we have not calcu

lated a value for x when there are 7 contacts, we estimate its value when 77 =  5.36, by 

assuming that its value linearly decreases as the co-ordination number increases from 

5 to 6 . Then we can say a  «  0.012 and x ~  0.026. Now from equations (4.8) and (4.7), 

we calculate that k* =  223MPa, which is a reduction of 9% on the previous theoretical 

value and /i* =  308MPa, a reduction of 9%.

The results are summed up in the following table.

Modulus Jenkins Simulations Walton’s Theory New Theory

Bulk 185MPa 245MPa 223MPa

Shear 127MPa 338MPa 308MPa

These new theoretical results are slightly closer to those of the numerical simulation, 

although the theoretical shear modulus is still more than twice that of the simulation. 

Obviously just modifying the uniform strain approximation to first order is not good 

enough to resolve the difference between these results which are so inconsistent. Further 

reasons are investigated and disussed in the following two chapters.

These are all results for infinitely rough spheres, the same methods can be used to 

calculate the moduli for perfectly smooth spheres. In this second case the expression 

for the bulk modulus was found, by Walton [86], to be the same as that when the 

spheres were rough. Our new results however predict that the expression for the bulk 

modulus in this case is

37r (1 — v)
3 (1  — t ') P ] 1/3 | _  15a}. (4.9)
16 <72 / i

Again, taking a = 0.012 and other values as given in Jenkins et al. [43] we see a 18% 

reduction of the bulk modulus found by Walton [86], which gives k* =  201MPa. It is 

interesting to note that this value is much closer to that found by Jenkins et al. [43],
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than the one found by considering the infinitely rough spheres. However, we cannot 

expect to model these simulations by smooth spheres when the coefficient of friction 

used wets 0.3.

As we have already mentioned, ct increases with decreasing co-ordination number. 

Hence, the effective elastic moduli will decrease as the average number of contacts 

decreases. This is consistent with what we have said about the uniform strain approx

imation - it becomes less accurate as the contact number decreases. Hence we would 

expect our correction term to produce larger changes in the effective moduli for low 

co-ordination values.

V a ria tio n  o n  th e  A rra n g em en t o f  S p heres

We return to consider the case of our three fixed spheres as discussed in section 4.1.3. 

If the spheres were all arranged in the packing as described in that section, then for a 

packing where the average contact number is 5.36, as in the one in Jenkins work and 

discussed in the previous section, we find that the new value for a  would be 0.0337. 

This is again derived by considering the values found for 5 and 6 contacts and assuming 

that the value of alpha decreases linearly between these two.

Now, if we guess that there might be 5% of the spheres in the packing with this feature 

then combining this with our previous value for a  we obtain the new value, or =  0.013. 

If we recalculate the effective bulk modulus using this value of a  there will clearly be a 

decrease in the values that we have already calculated. We have not investigated what 

effect this packing arrangement would have on the value of x  so we just consider the 

bulk modulus. We find a modified value of k* =220MPa. There is obviously no vast 

difference between this and the value calculated in the previous section. However, if 

we increase our guess to 10% of spheres in the packing with this property, then we now 

find a  = 0.014 and k* =218MPa and we have reduced the bulk modulus by around 11% 

as compared with the 9% of the previous section. It may be properties of the packing, 

such as this, that yield lower effective moduli than we have been able to calculate thus 

far. This particular arrangement seems to have little effect upon the values of the 

moduli and we do not have any data with respect to the proportion of contacts that 

may be like this. Unfortunately we cannot, therefore, draw any firm conclusions.
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4 .2 .1  D isc u ss io n  and  C on clu sion s

We have improved the correlation between the values for the bulk and shear moduli as 

predicted by Walton’s work with the uniform strain approximation and those predicted 

by the numerical simulations discussed in Jenkins et al [43].

We have used a perturbation of the uniform strain approximation as a first step. The 

shear modulus was initially almost 3 times that found by numerical simulation and so 

a small reduction in this of about 9%, will still not enable the theory to predict its 

value accurately. However, as the reduction required to improve the predicted bulk 

modulus was around 25% we have made a significant change with our perturbation. 

We reduced the value predicted for infinitely rough spheres by around 9% and that 

for perfectly smooth spheres by 18%. Unfortunately, although the prediction is closest 

to the numerical results using the smooth sphere calculations, it would be difficult 

to justify modelling the experimental glass spheres, as smooth spheres, since their 

coefficient of friction was 0.3.

Indeed, in order to find a value of 185MPa for the bulk modulus, k*, from our new 

theoretical expressions we would need a value of a  «  0.033, which is more than twice 

the value we have calculated in this chapter. Using the theoretical expression for the 

shear modulus and substituting for this value of a , we find a 25% reduction such that 

/i* =  256MPa. So, with this value of a, even though we have the exact value for the 

bulk modulus, the shear modulus is still double that calculated in the simulations.

We believe there are some reasons why we would not expect the theoretical results to 

be identical to the experiments and simulations. In the work by Jenkins et al. [43] 

the spheres considered are not all of equal size, with one sphere of average diameter

0.37mm for every ten of average diameter 0.22mm. Although this is a relatively small 

number of large spheres and is purely to prevent regular arrangements of the smaller 

spheres, we believe this could effect the results. The work in the next two chapters 

investigates the possible implications of the different sizes.

A second reason is connected to the coordination number. We would expect the uniform 

strain approximation to be accurate where there is a large coordination number. Equa

tion (3.5) becomes less accurate as the coordination number decreases, to be consistent 

with Jenkins et al. [43] we have taken between 5 and 6 contacts to be the average. This
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might suggest tha t our perturbations of the approximation are not so small as we have 

assumed and maybe second order terms should also be considered.

Some further work has been done recently by Jenkins, in collaboration with Koenders, 

this was presented at the Powders and Grains ’97 conference, Jenkins and Koenders [44]. 

They, like us, have tried to find a different way to tackle this problem and to determine 

why the theory and numerical simulations predict inconsistent results. Their paper does 

not actually give any completed calculations, but discusses an alternative method to the 

uniform strain approximation, for obtaining the incremental stress-strain relationship 

required to determine the effective elastic moduli for a heterogeneous medium. They 

study small local assemblies of identical discs and consider a pair in contact. To find a 

solution for the increments in the translations of the centres of the two discs and the 

rotations about their centres, they too consider force and moment equilibrium when all 

the surrounding discs are constrained to move in accordance with the uniform strain 

approximation. Unfortunately this is just a suggested method, these calculations have 

not been completed as yet, so we do not know whether the theoretical predictions are 

closer to those of the numerical simulation or not.

Koenders [48] has also questioned the use of mean field theories such as the uniform 

strain approximation, although not within the context that we are working. His paper 

is based upon methods described in Koenders [47] and concludes that such approxima

tions are acceptable at low stress ratios when the sphere contacts ‘stick’. However, he 

claims that for high stress ratios, (which he measures by the onset of slip), heterogenous 

effects must be included.

Both of these pieces of work still concentrate upon packings of equal sized spheres. In 

the chapters that follow we extend our work to cover dense, random, binary packings 

of spheres.
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Chapter 5

A Random Binary Packing of 

Spheres

As mentioned in chapter 3, we believe it is possible that a few large spheres in a packing 

of small spheres, could affect the values of the moduli. In both their experiments and 

numerical simulations Jenkins et al. [43] use random binary packings, a few larger 

spheres are included to prevent regular packings of the small. We also now include this 

size difference into the existing theory and use some numerical calculations by Dr. Luc 

Oger [62], to see how this affects the values of the effective elastic moduli. We hope to 

discover a closer correlation between theoretical predictions and numerical results.

In order to find a first approximation, we begin in this chapter by assuming that 

when the initial compression is applied to the packing, the spheres are still displaced 

in accordance with the uniform strain approximation. We derive expressions for the 

effective bulk and shear moduli, using the same methods as before. Once we have found 

these, we proceed in the next chapter to consider a perturbation of this approximation, 

in the same way tha t we have already done with a packing of equal sized spheres in 

Chapter 3.

5.1 O blique C ontact o f  D ifferent S ized Spheres in C ontact

In his book, Johnson [46] considers the geometry of non-conforming bodies in contact, 

this is discussed in section 1.2.6. We use these results to calculate the geometry of two 

spheres of different radii in contact.
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Figure 5-1: Initial Deformation of Two Spheres of Different Size in Contact

First, we define R' in terms of the two radii, /?/, the radius of the large sphere and i?s,
that of the small sphere by

1 1 1  , X
R' ~  Ri + R s ' ^

so that
, R iRs

R  ~  r T T R s ' (5'2)

Some contacts in the packing will be between spheres of the same size and in this case 

all of the previous theory still holds. However, there will also be contacts between 

spheres of different size and in the work that follows, we extend the theory to cover 

this situation.

Consider the oblique compression of two spheres in contact initially at a point, one 

sphere is large, the other small (see figure 5-1). We let the initial contact point be the 

origin of our rectangular cartesian axes and such that the 2-axis is directed along the 

line of centres into the lower sphere. The spheres are compressed together such that 

the centre of the larger sphere has undergone a displacement (u^ q, v^ 0, w^ q) and the 

centre of the smaller a displacement (—u^ q, — V(s)o, —u>(s)o)- Since we have imposed 

a compression on the spheres a contact area will form, the size of which is small in 

comparison with the size of the bodies.
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Using the results of Section 1.2.6, we recall that the points within the contact area of 

each sphere must satisfy:

W(s) +  W(i) = & — A x2 -  B y 2 (5.3)

where S is the initial separation of the two surfaces, and are the displacements 

of the surfaces points within the contact area on the bodies. The constants A  and B  

can be determined from the following relationships, equations (1.25):

1 J _ \  _  1 /  l_ J _  _1_ _L_\
+ “ 2 \ R "  +  R!") ~  2 \R '(  +  R '{' +  R% +  R '{')

where R !' and R '" are the principal relative radii of curvature. Hence for two spheres 

in contact and of different size, we find

A = B  =
( 5 - 5 )

Using the same techniques as in Chapter 1 we can then find, similarly to equation (1.45), 

that the radius of the contact area is given by

a2 = P'(w(i)o +  w(s) o)- (5.6)

In the case of infinitely rough spheres, the distribution of traction (P, Q, N )  acting on 

the smaller (lower) sphere over the contact area has the form:

p  2(“ (Q0 + __n (s)o)_______/  2  2\l/2
0 ^ R > ( 2 B  + C)(w{l)0 + w{s)Qy  } ’

n   ____ 2( (̂Q0 +  v (s)o) / 2 2\l/2 (r 7\
0 ir2R ' ( 2 B  +  C)(u>(/)o +  w {s)o)

N ° =  a 2 - ^ ' 2

where r = \ f{x 2 A y 2). The constants B  and C are as defined previously, that is

5  = 2L ( i  + I ^ }47r ( u A +  /i J
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C =  —  ( i ------—  \
47T t/x \  +  H)J l  A -h  H

and A and fi are the Lame moduli for the material. These are the analogous results 

to equation (1.47). The tractions acting on the upper (large) sphere due to its contact 

with the lower (small) sphere are equal and opposite to these.

We actually require the total force acting across the contact area and this is found by 

integrating the expressions in equation (5.7) and is denoted by (P , Q, N ). We find that

■p =  4(u(0p +  u {s)0)(R'{wil)0 +  MJ(j)o))1/2 
3tt(2 B  +  C)

—  _  4(^)0  +  V( s ) o ) { R l ( W {1)0 + ^ ( s ) o ) ) ^ 2  , r  oX

Q -  M 2 B  + C) ’ (5*8)

N  =  2-R,1/2(w(0° +  w(»)°)3/2 (5 9 )

As has been discussed several times already in this thesis, in the calculation of the 

effective elastic moduli we need expressions for the incremental forces acting. Thus, 

we now consider a further incremental displacement of the centre of the larger sphere, 

(6u(i)o,6v(qq, Sw^ q) and again the smaller one has a displacement in the opposite 

direction with components (—Su^ q, — Sv(s)q, —̂ ( s)o)- The contact area is still circular 

and now has radius 6, where

b2 = o + W(s)o +  6w( i)o +  8w(s)o). (5.10)

The problems for the two separate cases 8wo > 0 (compression) and £u;o < 0 (unload

ing) are solved and if 5wo < 0, then it is so small that contact is not lost. The new 

force distribution will have the form (P + 8P,Q + 6Q ,N  + 8N). The normal component, 

which is the same whatever the sign of S w q  is given by:

No + 6N = ^ B ^ - r2)l/2 <5-U )

where b is the radius of the new circular contact area, as given above.
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Considering first the case of < 0, the tangential tractions are calculated to be

Po +  SP  =  « * R '(W  +  c !(W(l)0 +  u,(s)0) {2(u(‘>o +  -M o)(t>2 ~  r2)1' 2

+ (a 2(u(0i +  u(s)1) -  b2(u(l)0 +  u {s)0)){b2 -  r2)_1/2},

Qo +  ^  =  * « ( W  + CU wvo +  w(s)0) (2(v<‘>° +  °W «>^  -  r2)1/2

+ (a 2(^(i)i +  v(a)1) -  b2(v(0o +  V(s)o){b2 -  r2)" 1/2} (5.12)

where u ^ i  = 0 +  6 u ^ 0, U(s)1 =  u ^ 0 +  6 u ^ 0, v(z)1 =  v ^ Q +  S v ^ 0 and U(s)1 =

v(s)o +  <fo(s)o* Hence, by integrating these equations an expression for the total force

acting across the contact area may be obtained, from which we find that the total 

incremental forces acting are:

W  =  3 v R ' ( 2 B  +  c l ( l )0  +  +  *“ Mo)

- ( a  -  b)2(2a +  b ) ( u ^ 0 -1- u ^ q ) } ,
2

* *  =  3 * m 2 B  +  C ) ( * w + ^ j  l 3a26(fo('>° +  H ) . )

- ( a  -  6)2(2a +  b ) ( v ^ 0 +  i>(s)o)} ,

2(63 -  a3)

For the second case, if Swo > 0, then the contact area increases in size and we find that

2

P o + S P  =  tP R P Q B  +  C)(u,(1)„ + w(s)0)(fe(!)o + i««Wo){ (0° + “(s)0)

- a 2(u{l)l +  u (s)1))(a2 -  r 2)1/2 +  (u{l)l +  u {s)l -  u (l)0 -  u{s)0)a2{b2 -  r 2)1/2},

Qo + SQ = *iRP(2B + C)(wm  + w(s)0)(Sw(l)0 + Sw(s)0) {b2{V(l)0 + ^ ’>o)

- a 2(v{l)i +  u(s)i))(a2 -  r 2)1/2 +  (v(z)1 +  v{s)1 -  v{l)0 -  v{s)0)a2{b2 -  r 2)1/2},

No + 6N  =  l ^ W B {b2~ r2)l/2- (5'14)

Then the total incremental forces acting are given by,

4(63 -  a3)(<fa(/)0 +  <5w(s)o)
SP =

3ttR ' ( 2 B  +  C)(6w(i)0 +  6w(s)0) ’ 
j q  = ^{b3 -  a3)(Svil)0 P 8v{s)0)

3,kR '{ 2 B  +  C)(5w(i) o + 8w ^ q) 5

C h a p t e r  5 142
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T— 2(63 — a3)
6N  =  3wW b ' ' 5-15)

In general, the expressions for both SP and SQ will differ. However, in the case of the 

increment being infinitesimal, these both reduce to the same form and we have

_  _  2(R'(w( i)0 4- W(s)o))1/,2(^u(0o +  ^M(«)o) 
tt(2 B  +  C)

—  4(R(u;(00 +  W(s)o))1/2(^(Z)o +  <fys)o)
SQ = ----------------- tt(2B + C) (5' 16)

and also

SN = ------------------------jtB------------------------ • (5' 17)

These are the results for infinitely rough spheres.

In the case of perfectly smooth spheres there will be no shear traction across the contact 

area. Thus the total force acting at the end of the initial deformation will be

P  = Q = 0, (5.18)

and _ =  2( f l ')1/2(i»(i)o +  W(s)q)3/2 (5

and the incremental forces will be

SP = 6Q = 0, (5.20)

and _ (f t 'H fjo  +  «'(s)0))1/2(*"(i)o +
SN =  ----------------------7rB------------------- ' (5’21)

5.2 In itia l C om pressive Force A pp lied  to  th e  B ou n dary

As we have done several times, we now continue by considering the packing as a whole. 

The initial deformed configuration is attained by the application of a displacement on 

the boundary of the packing, u. This is consistent with a uniform compressive strain,

i.e. U{ =  eijXj , and leads to a displacement of the centre of the n th  sphere whose centre

has position vector X(n).
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Let the displacement of this n th  sphere be u(n) and consider a second sphere, n7, in 

contact with the nth. In the case that both of these spheres are of equal size, either both 

small or both large, then the position vector of their contact point is ^(X^n^+X^n and 

this undergoes a displacement + u ^ )). Relative to this point, the displacements

of the sphere centres are ^(u(n) — u^n and ^(u^n  ̂— u ^ )  for the n th  and n7th  spheres 

respectively. These are as previously discussed in Chapter 1. However, if the spheres 

are different sizes, then with the n th  sphere small say and the n 'th  large we find that 

the position vector of the contact point is now given by

( F i y K l + ,y c M ) <5-22>

and upon application of the deformation on the boundary, the displacement it under

goes is

^ UW + U ( 0 ) )- ( 5 -2 3 )

Relative to this point, the displacement of the centre of the small sphere, n, is

^(uW - “(o') (5-24)

and that of the large sphere, n7, is

^ “ (O1 “ "("))• <5-25)

We continue by using the subscripts (/) and (s) to represent quantities relating to large 

and small spheres respectively. The extra brackets are inserted to try  to avoid confusion 

with component indices, although these will not be included for scalar quantities such
( n )as R s. Hence, the displacement of the centre of the n th  sphere is u ^ 7 for a small sphere 

and for a large sphere. To find the expression for the total force acting on the n th  

sphere due to its contact with another, we must also redefine the unit vector directed 

along their line of centres. For two small spheres in contact this is given by:

y (n)   Y^n'̂
A n n ' )  _  ( s ) i  ( s ) i

'(« )i -  2R
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and similarly, for two large spheres in contact it is given by

yM  _  v("')
Ann') A (i)i A (/)i (r
7(“)i “  2R t • (5-27)

We will also have the contacts between large and small spheres and the unit vector 

directed along the line of centres in this case will be

Y"(n)   y (n')
  (sh (0* /tr r»n\

W  -  R l + R s ■ (5-28>

Now using the results of Chapter 1, the total force acting on the n th  small sphere due 

to its contact with another small sphere n' is given by:

F (wi') _  (2R s ) 1/ 2 fg PIYt1(to/) t("w,)i1/2/11("/) „(n)
(ss) “  3TTB{2B + C y  w  (»)* (••) J ( w  _ U W

+ ( < > + u $ )  a  + c [ (U<:;> -  u<;>).i<™;>]3/2i<™'>} (5 .29)

and the total force acting on the n th  large sphere, due to its contact with the n 'th  large 

is

F (nn') _  (2R l ) 1/ 2 ronr^ ("') (™)\ y K )ll/2 / ("') (n)
F («) ”  3ttB(2B + C ) { “ (0 (0  ̂ («) J (u (0 _ U (0

+ ( , $ >  +  u $ )  A +  C[(u["') -  u<r))) .lS ^ ')]3/ 2lS ^ ') }. (5.30)

We also require the force acting due to a large sphere n', in contact with a small sphere 

n. The normal component of the displacement for the small sphere, relative to the 

contact point, is
1 / (n) (n') \  T(nn') t r  01 \

«'(.)o =  2  ̂ (*) _  u (0 ) J U  (5-3 l>

and the shear component of this relative displacement is thus

i(u<:> -  u<n'))(0 -  [ i ( u g  -  (5.32)

Also, the normal component of the displacement for the large sphere m! is

I / (n') (n) \  A n'n ) t r  o<-»\

w(i)0 — 2^U(0 U(s)^ (^) (5.33)
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and the shear component

(5.34)

so that
( ("') W(S) 0 +  W(J)0 =  (uj0 (5.35)

We now have all the information we need to calculate the total force acting on the

1. We use this check throughout the work that follows to ensure we are consistent at 

every stage with the earlier results described.

We need to find an expression for the displacement terms and as a first approximation 

we again assume tha t the displacement of each sphere centre is consistent with an 

applied uniform field and so if the displacement on the boundary is given by

The components of rotation about an axis through the centre of each sphere are

where £li is the average rotation of small and large spheres within the packing. Inserting

small sphere n  due to its contact with the large sphere n '. From equations (5.9), we 

thus have

3ttB(2B  +  C) lv (0 (*)'' I*

+  (* ,< $ >  +  R * > $ )  A I<™'>) +  C[(

which can be checked by setting R s = Ri and comparing with the results of chapter

U i  — & i j  X j

then

(5.37)

and

(5.38)

(5.39)
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these into equations (5.29), (5.30) and (5.36) we find

4 R 2S 
3ttB(2B  +  C)

p ( n n ' )   _________ ( g p f  r  r ( n n ' )  T ( n n ' ) \  1 /2  ( p . r ( n n ' )  _  q . t W N
r ( s s ) i  ~  37rB ( 2 B  4 - C )  V l { s s ) p 1 ( s s ) q  )  \ e ' 3 \ s s ) j

_ r , / _  A n n 1 )  T { n n ' ) } 3 / 2 T ( n n ' ) \

'  P9  (ss)p  ( ss)q ' ( s s ) i  J ’

pO™')  ______4^ 2 [of>(  r rfi1™') r(nTl')\l/2 ( p . . A nnl) _  q  . A nnt) \
(“)i “  3ttB{2B  +  C) V 1 eP̂ 1(H)pI W Q ) e'J*u j \u )k  )

r (n n /) r(n n /} \ 3 / 2  /■(««') \  
epgi (//)p J(«)g J i (H)i J »

p(nn') _  2( R l R s) l l 2 (Rl +  R s) r Jnn').(nn')u/2 /  r(nn')
w  ~  3ttB(2B +  C) I ^ ( - O p i (rf)9 '

Q . j(nn>)\ _  r*(_0 Ann') Ann') \3 /2T(nn,) \
- €i j k * h 1 (sl)k )  e pq1 { s l ) p l { s l ) q l  {sl)i  ]  '

(5.40)

For comparison with the work of Jenkins ef a/. [43], we are only concerned with the case 

of an initial hydrostatic strain. However, for a more complete study we will also discuss 

the calculations tha t arise from initial uniaxial and biaxial strains. For a hydrostatic 

compression the strain takes the form:

fijj — G-S{j, (5.41)

with e < 0 for compression. For a uniaxial compression it is

&ij = 63^ 3^3  (5.42)

with e3 < 0 for compression and for a biaxial compressive strain,

&ij — ei(< î<5ji +  Si2Sj2) +  esdisdjs. (5.43)

H y d r o s ta t i c  S t r a in

In the case of an initial hydrostatic strain, we use equation (5.41) and the fact that 

the average rotation term is zero, =  0. Then equations (5.40), the forces

acting on the contact areas reduce to

p ( n n ' )  _  4 -R g( — e ) 3 / 2 J n n ' )  p j n n ' )  _  4 R f ( ~ e ) 3 / 2  J n n ' )  . . .

*{ss)i ~  37rB V h ’ ~  37rB  w  [ }
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and
p(nn') _  2{RsRi)^^(Ri  +  R s) ( - e ) 3/2 j nn•) . .

~  37tB  W  ’

from which we can calculate the average stress within the medium.

We wish to find an expression for the connection between the average stress within 

the medium and the average strain. For a random packing of equal sized spheres this 

is determined from equation (1.88). The analogous general expression for the average 

stress in the packing of a binary mixture of spheres is given by

< (7{j >  2 y  {N»V*Ra(< I(ss)iF'(ss)j ^  "h <  I(ss)jF'(ss)i -'>)

+ N iT]iR i(< IyfyFyijj >  +  < /(//)jF(//)j >)

~̂mN 87)siRg(L<. I(sl)iF(sl)j T I(sl)jF(sl)i ^)

+ Nlr)isRi(< I(is)iF(ls)j > + < I(is) j F ^ i  >)} (5.46)

in which N s and Ni are the numbers of small and large spheres in the packing, respec

tively. Also, 77s ,  ?7/ , r}si and r)is are, respectively, the average co-ordination numbers for 

small-small contacts, large-large contacts, number of large spheres touching a typical 

small sphere and number of small spheres touching a typical large sphere. The angle 

brackets on the left hand side of this expression represent a volume average. Those on 

the right hand side represent average over all contacts in the packing as they have done 

in previous chapters, but in fact reduce to different sums for each expression. This 

is clear if we consider < I(Ss)iF(ss)j > , for example, which will only exist if we were 

concentrating on the particular contact of one small sphere with another. In this case,

. Y  p i  .  I
( s s ) r  (ss)j Total Number of Contacts ^  ŝs^ ’n small nr small

Using equations (5.40), the average stress, equation (5.46), is given in general by the 

following expression:

[2ATs77si?s < ( £pql(ss)pl(ss)q)  ̂ (i.^ikl(ss)kl(ss)j3irVB{2B +  C)

{^ikl^k^ss)l^(ss)j "h ^jkl^k^ss)l^(ss)i >) > 

+2Ni7]iRf < {-epqlyijplyijg)1/2 (j,eikl(u)kl(ii)j +  ejkl(ii)kl(ii)i) 

-{eikfokl(u)il(ii)j +  £jk&kl(ii)il{ii)i)) >
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+ N s'nsl(RiRs)1/2(Rs + Ri)2

< ( ^pq^(sl)p^(sl)q)  ̂ { î. îk^(sl)k^(sl)j T ^jkl(sl)k^(sl)i) 

~{eiklttkl(sl)ll(sl)j +  ejkl&kl(sl)ll(sl)i) >

C  îVs77s.Rs < ( €.pql{ ss)pl(ss)q)  ̂ I(ss)il(ss)j •'>

+Nir]iRf < { - e pqI(u)pI(u)q)3/21(ii)il(u)j >

+ N sr)si(RiRs)1/2(Rs +  Ri)2 < { - e pqI ^ pI^si)qY^2I^si)iI^si)j > j | .

(5.47)

Since the angle brackets on the right hand side of this last equation represent the 

average value over the whole packing then, for example, the values of some typical 

terms that arise axe as follows:

.  r r .  _  ________________ ______________________ c

> -  3(iV ,fe +  Vsl) + N,{m + Vls) y i j’

, r  T   N i r n ________ r . .
(ll)i (11)j 3(Ns{t)s +T)sl) + N i(7]i +T}ls)) 13 ’

^  T T .  N sT]sl_____ -
(s/)i (si)j 3(Ns(t)s +  T]si) +  Ni{r)i +T}ls)) l j '

Thus, in the particular case of an initial hydrostatic strain, =  edij, we find that the 

average stress within the medium is given by:

< a,, > =  -  . . 2(~ e>  - { 2 R lsN 2s rji + 2N?R]rft
*J ^ V B ( N , ( - n s + r ) si) +  Ni(m +  nu)) 1

H R t R ^ i R ,  + R , ) (R ,N W , i  + R i r f v l W i -  (5.48)

This is the average stress for the case of infinitely rough spheres, we also consider the 

result when the spheres are perfectly smooth. The analysis in this second example can 

be repeated in the same way and as there are now no shear forces acting across the 

contact area, equation (5.46) reduces to

(J i 7 — ^  ( €‘pql(ss)pl(ss)q)  ̂ ^(ss)i^(ss)j ^13 3ttV B
+Nir]iRf < ( - e pqI ^ pI ^ qY^2I(ii)iI(u)j >

+ N sr)si(RiRs)1/2(Rs + Ri)2 < ( - epqI^si)pI ^ qY^21(si)J(si)j >}

(5.49)
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Hence, when we apply an initial hydrostatic strain to a packing of perfectly smooth 

spheres,, the average stress is found to be identical to that for a packing of infinitely 

rough spheres.

U n ia x ia l S tra in

Now secondly, considering the case of an initial uniaxial strain applied to a packing of 

infinitely rough spheres we have =  63^ 3^3  and again find that the rotation terms 

are zero, =  0 and the general force equations (5.40) become

p (n n ')  _  4Rg(—e3)3/2 ( o D | r K ) | r K ) r  , Ann') .3 Ann1) }
(")< "  3ttB{2B +  C) I 1 M 3 li (-)3 3 +  ^  P ( SS)3  I \ss)i ] »

p(nn') _ 4i2j ( —63) ! f o o l  r ( n n > ) \ r(nn,)x 1 s~i\ j {nn>) |3 j{.nn') 1 /'r
F(“)i “  3ttB(2B + C) I 003 IV)3 +  C | / (H)3 I I {ll)i |  (5.50)

and

E i(nn ') _  <2 ‘ { R S R l ) l l 2 { R l  +  R a ) (  —  e 3)3^2 ( n p > \  Ann') I r (n n ') , p>i r (n n ')  ,3  U n n ') )
~  3ttB(2B  +  C) 17(-03 +  C |iM3 > '(.1)3 /  ■ ^-51)

To calculate the initial average stress from these we use equation (5.46). We also need 

the following expressions which arise in the calculation:

<  \ h s s ) 3 \ I ( s s ) 3 I ( s s ) j  > =  4 ( N a ( n s + 1 , s i )  +  N l { v i  +  r t l s ) ) 6 i 3

<  \I(u)3\I(u)3Im  > =  4 W f e  +  ^ ) ' ? M ( w +  , . ) ) ^

< i/(.i)3 i^ 0 3 ^ i)i > =  A m ^ + v s i n m n t + n , , ) ) 5*  {5-52)

and

<  | / ( ss)3l3/ ( ss) i / (ss)i > -  ( Ns (v „ + v si) + ’N , ( m + m . ) )  { 24^  +  s ^ 3^ 3 }

<  > =  ( Ns (Vs +  Vsa + lN l (m + ms)) +

<  |/( .i) i l3^ l ) i / (.lM >  =  ( N s (V,  +  Vsl) S+ N i ( r n + V u ) )  { 24^  +  8 ^ 3^ 3 }  '

(5.53)
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These are analogous to the equations (1.100) for equal sized spheres. Then we have 

the initial average stress due to an initial uniaxial strain given by:

< 0 i j >  =  ~  36irVB(2B + C)(Ns(va +r,„) + N,(m + Vi.)) + 2R^N ^ ‘
+ (R iRs)1/2(Ri +  Rs)(RsNgT] l̂ +  RiN?r]fs)}(C5ij +  (12 B  + 3C)<5{3£j3)

(5.54)

which corresponds to a stress of the form

<  Gij > =  diag(< o \  > ,  <  <ti > ,  <  cr3 > ) ,  (5.55)

with components

( 7 ( _ e )3 /2

<<Tl> ~36ttVB(2B + C ) ( N s (n, +  Va) + N,(m + m,)) +  2Rt N ? t f

+ (RiR ,) l/2(Ri + R . ) ( R . N ^  + R ,Nlr i l )}

and

^  ^ ______________ (3B +  C )( -e )3/2 i2 R 3N 2n2 -I-2/?3 AT2n2
3 367rVB(2B +  C ) ( N . t o .  +  Vsl) +  +  V i s ) ) {  ’ ' %  1 ‘

+  Rs)(RsNW,i +  R i N h l ) } -  (5.56)

If the spheres were perfectly smooth then as there are no shear forces acting across the 

contact area, we now have

37tB  

and

t̂ i(nn') _ 4fl2( - e 3)3/2 f (nn' ) 13 j{nn' ) 1 , .
t (ss)i -  ^ g  \  I (ss)3  I V ) i  J ’ (5-57)

Tp(nn') _ 4R2(—e3)3/2 f (nn1) r(nn')'\ .
F(u)i -  ( I W  1 w  ;  (5-58)

j-,(nn')   %(RsRi) I (Ri  +  -R s)(  c 3 ) ! ( | ( nn') | 3 j(nn') 1 ..
F(sl)i ~  ^ g  \ l  W  I 7 (sZ)3 J  * ( 5 -5 9 )

This again leads to the following form of the initial average stress:

< aij >= diag(< o\ >, < <ji >, < cr3 >), (5.60)
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but with

( - e )3' 2 { 2 R IN W .  +  ZRfN'frit3 j \r 2 _ 2

367rVB(Ns(r)s + T)sl) + Ni(rji +  77̂ ))

+(H,i?5)1/2(i?i + R , ) ( R SN W ,I + R i N ? v l ) }
and

< cr3 > = (—e)3/2
{2R3sN W , + ^ l N M3 A r 2 „ 2

36ttV  B ( N s{r]s + rjsi) + N t(r)i +rna))
+ (R,R ,)1/2{Rl +  R , ) ( R , N W sl +  R ,N?vl ) } .  (5.61)

B ia x ia l S tra in

Finally, we consider the case of an initial biaxial strain, =  e 1 1 <5j i +  ̂ 2^ 2)+ e3 <̂ 3^ 3.

For a packing of infinitely rough spheres, the force acting across the contact area on 

the n th  small sphere due to its contact with the n 'th  small sphere is:

2 B?(nn') =  4 itf(~ e i)3/2
3irB{2B +  C)

(e3 -  ei)
{

,  , ( e 3 — e l )  r2

+  e T  (ss)3

1/2

( T (e3 - e i )  \  [ (e3 -  ei) 2 l 3 /2 r \
•E ®t3-f(ss)3J O I +   ̂ (sa)3 *(ss)i r

(5.62)

and a similar expression holds for the force acting on the n th  large due to its contact 

with the n 'th  large. Rotations are again zero for the initial part of the problem and 

hence do not appear in these expressions. For the n th  small sphere in contact with the 

n 'th  large the force acting is:

r(nn') _  
r {sl)i —

( R s R ^ j R s  + R t i i - d ) 3/2 
3ttB(2B  +  C)

(e3 -  ei)
ei

, , (e3 — ei) r2 
1 +  el

3 / 2

(5.63)
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Calculating the initial average stress from these force expressions, we must reintroduce 

the functions / i ,  /2  and fo, met in Chapter 2. These are defined as:

/ i M  =  <
xl/2 +  (i-x)V* sin 1(1 “  x )1/2 if x  <  1
2 if x  =  1

x1/2 +  (g_}p/2 sinh-1 (x — l ) 1/2 if x > 1

/a t* ) =  <

A (x) =  -

+  4 ( i—j)3/2 sin Hi -  x )1/2 if X < 1

2/3 if x =  1

T l S r 1 -  4(x-i)»/i sinh-1 (x -  l ) 1/2 if x  >  1

X14(P -T ) +  4(1- ^  sin_111 _  x )‘/2 if x  <  1
4/3  if x  =  1

+  4 ^  (* -  ! ) l/2 if x >  1.

Then the average stress is found to have the form:

(5.64)

(5.65)

(5.66)

< Oij >= diag(< o\ > , <  a\ >, < <73 >), (5.67)

with

< o\ >

and

( - e i ) 3/2
{2R3sN W , + 2 R { N ? r i3 \ r 2 ^ 2

6nVB(2B + C){Ns{rjs +  rjsi) +  Ni{rji +r )ls)) 
+(/J,i?s)1/ 2(Bi +  R s){R ,N 2snl  + R i N t r i ) }

e i /

< 0-3 > =
2 (-e i )3/ 2

{2R?sN y s + 2 R i N f t i3 j \r 2 „ 2

37tV B ( N s(t]s +  77s i )  +  iV |(» 7 i +  7?fs ) )

+ (fl,B s)1/2(f?i +  R s ) ( R s N 2 v l  +  R i r f r i l ) }
Bes C
ex 4

3 /2 '
(5.68)

These expressions relate to infinitely rough spheres, for a packing of perfectly smooth 

spheres, we find that the average stress again takes the form of equation (5.67), but
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with components as follows:

<CT1> ~  67rVB(ATs(% +  J) + N,(m +  r,„)) +  2Rl N h l

+ ( R , R . ) V 2{R,  +  R s ) ( R s N ? v l  +  R i N f n l ) }

and

< <73 > =  - o ^  e ir „ ----------- { 2 f l ^ 527),2 +  2fl,3Af7},2
37rVB(JV,(»j,+.},,) + IV,(»ji +  »ji,))1

+ (iJA )1/2(i?i + R s) ( R , N 2r,2, +  R ,N ? V?S)}

• { M i n e r i
We can roughly check the validity of all of the expressions found in this chapter by 

assuming that the spheres are all the same size. This results in the same expressions 

as found in Walton [86], for the initial hydrostatic and uniaxial strains and those for 

the initial biaxial strain, found in Chapter 2 of this thesis.

5.3 T he Increm ental P rob lem

The second stage in the calculation of the effective elastic moduli is to apply an addi

tional incremental displacement to the boundary. Further to the initial state, we have 

a displacement of the boundary £u and this is consistent with a uniform strain, 8eij 

and so

8ui = 8eijXj. (5.70)

The centre of the n th  sphere will also undergo a further displacement <5u00. Considering 

a packing of infinitely rough spheres first, we calculate the incremental force acting on 

the n th  sphere due to its contact with the n 'th  sphere. If the n th  and n ' th  spheres 

are both small we have

(ss) 2ttB ( 2 B  4- \  V 00

01') _  T(nn')l
(s) ( s ) h  (ss) J

2nB(2B +  C)

+Rs^ { ^ + ■

(5.71)
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Similarly, the force acting on a large sphere n due to its contact with another large 

sphere n ' is:

m (nn ) V ' LV (0 (O' (“) J fop/r-.K) r„(n)
SFW  -  ------------2ttB(2B + C)-------------i2Bl4u(0 ~  4u(0

+ R sei jk( S ^ >  +  i u f o X v ' )  +  C W u g )  > -  ■

(5.72)

Also, the force acting on a small sphere due to its contact with a large is:

J r w ,  2 ( * y / ’ [(< >  -  r (l0 w
4FW  "  2nB(2B  +  C) i 2B (4u(i) ~  4u«

+R,eijk( ^  +  M X o ’) +  C K iu j^  -  iu [")))-l["o )] I ^ ' )} -

(5.73)

As a first approximation, we assume that the displacement of the centre of the n th  

sphere is again given by the uniform strain approximation for the incremental case. 

That is, assume that the centre of the n th  sphere is displaced by

faXn) — xP.. v (n)0U(s)i ~  0e*JA (s)j>

JC„.(n) _  Xp. . v(n) 
ou{l)i -  oe*JA (/)j>

for the n th  sphere small or large respectively and

4wMi =  4w($  =  Sn '-

This gives the incremental force acting on the n th  small sphere, due to its contact with 

the n 'th  small sphere as

A™1) T(nn')\ 1/2

K s »  = ------ 5 nB(2B + C ?  <2B (4ei4 " )? +  ^ i h «)*)

+ c s e kli i : ^ i i : : ; )4 : ^ }  (6.74)

and again a similar expression for the force acting on a large sphere n due to its contact 

with a large sphere n ' is found. The force acting on a small sphere due to its contact
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with a large is given by:

, i \  (RSR*)1/2(R< +  ^ ) ( - e pqL(n/?,)L(n/?,))1/2 , MXip(nn ) _  V ' V ' V Pq (sl)P (s09 ' r o n / r .  r H )
^(-O i “  ttB ( 2B + C) i z^ de^(s i )k

+eikM h ^ )  + (5'75)

In chapter 1, we discussed the work done by Slade [76] to include the effects of sphere 

rotations upon the moduli. Here we must consider the equivalent equations of equilib

rium, those of the forces and moments acting on each individual sphere. The general 

condition tha t arose from the equilibrium of moments upon consideration of equal sized 

spheres and which had to be satisfied by the rotations was given in equation (1.149) as

<C ( Cpqlplq)  ̂ I{Ik) X  8i0k >  — K. Gpqlplq)  ̂ Ir^l 8&kl ^  • (5.76)

We find that the two analogous expressions for our binary packing of spheres are, firstly 

from the equilibrium of moments acting on the n th  small sphere,

2R 2s (eirk <  ( ^pql(ss)pl(ss)q)  ̂ ^(ss)r^(ss)l >< 8ekl >

+ < ( ~  &pql(ss)pl(ss)q)  ̂ ik 7(ss)i7(ss)fc) 3^k  ^^

- (RsRj)  ̂ (R{ T Rs) (^-irk ( ^pql{sl)pl(sl)q)  ̂ ^-{sl)r^{sl)l ''><̂  8&kl ^

+  < { — epql(si)pl{s l)q)l ^2(fiik ~  I{sl)il{sl)k) > <  > )  (5-77)

and second, that from equilibrium of moments of the n th  large sphere 

2R? (eirk < {-epql(ii)pl(ii)q)l^2l(ii)rl(ii)i >< fieki >

+ < { — e.pql{ll)pl(ll)q)l ^2{8ik -  I(ll)il(ll)k ) > <  8 u k > )

= ( R sR l ) l / 2(Rl  4- R g ) £irk{ — epql{ls)pl(l s)g)  ̂ ^(ls)r^(ls)l >̂<'' fi^kl ^

d" < ( €'pql(ls)pl(ls)q)  ̂ ik ^(Is)i^(ls)k) '><  ̂ 8iJk . (5.78)

These allow us to calculate the components of the rotation for each sphere.
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In it ia l H y d r o sta t ic  C om p ression

Considering first the case of an initial hydrostatic strain, =  e5ij , we find from the 

equations above that the incremental rotation term 5wi is zero and then the forces 

acting across the contact area are given by:

ZF,nnv  =  {2B i e u l f y  + C S e u l W l W l W ) \  (5.79)(ss)z 7rB(2B + C)  1 iSS'J (ss'k 'ss>1 (ss'‘l J

and similarly,

srpinn1) e)1/2 fODjr r(nn') i nsi„ r(nn/) Ann>) 1 ir on\
SFi“» =  nB(2B +  c )  \ 2 m e ^ m  +  CSe^ W % ) i  ’Rim } • ( )

Also,

,rp(nn') _  ~ (R SRl )1//2(-Rs +  Rj)(—e)1//2 L m  r K )  , / i i  A™’) A™') Jnn')^
”  7rB(2R + C) +0de^ i (5i)fci (s/)z V)< /•

(5.81)

From these expressions, we calculate the average incremental stress using a similar 

equation to (5.46), tha t is

<C Sdij >  2 ^ r  {iVŜ SJRs(< I^ss)i^-^'(ss)j T ^  I(ss)j^-^(ss)i ^ )

+NirjiRi(< I(ii)i6F(u)j > +  < IyqjSFyQi >)

T-/Vs77sJ.Rs(<! ]> +  < I^sl^jSF^si î >)

+NirjisR l(< I(is)i6F(is)j > +  < I(is)j8F(is)i >)}, (5.82)

which in the general case amounts to:

2
< > — Q-ffVB(2B +  C) [^^Ys^s-^s < ( ~ epql(ss)pl(ss)q)  ̂ { i ^e,ikl(ss)k^(s3)j

“I~^jk^(ss)k^(ss)i) (€iklfi^‘kl(ss)ll(ss)j “I” ^jkl^^k^^ss)l^(ss)i ) ) >

+2NiriiRf < (

-(eikiSQ,kI(ii)iI(u)j +  ejkiSQ,kI(ii)iI(u)i)) >

+iVs77s/(R/Rs)1/2(Rs +  Rz)2

< ( 6pql(sl)pl(sl)q)  ̂ (^^^ikl(sl)kl(sl)j ~b ^jkl[sl)k^(sl)i)

+ {eikl&ttkl{sl)ll(sl)j +  ejki5ftkl(si)il(si)i) >]
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T C  ^2iV s 7ys R s <C ( & p q l ( s s ) p l ( s s ) q )  ^  ^ ( s s ) i ^ ( s s ) j ^ ( s s ) k ^ { s s ) l  ^

~\~‘2‘N i T)i R i <  ( C pql^u^pl^u^q} ^ ^ [ l l ) i ^ ( l l ) j ^ [ s s ) k ^ ( s s ) l  ^ k l  ^

+ N sr}si ( R lR s)1/ 2( R s + R l)2

< {~&pql(sl)pl(s i^{sl)jI(ss)kl(ss)l&€,kl  ̂ •

(5.83)

This enables us to relate the average incremental stress to the average incremental 

strain and this is what is required to compute the effective moduli.

Using the fact that

.  r r . .   ^ s l s ___________ ,
(ss)t (ss)j 3 (N s (r)s + 77Si) +  Ni(r)i + r]is)) 13’

.  j  , _______________  Wm _________________________c .

(«)* («)j 3(Ns(t]s -f 77s/) +  Ni(r]i +  rjis))

N s7]si
<  (sl)t (sl)j  >  3 (jV s (77s +  7]si) +  Ni(r] i  +  T}is ))  %3

and also

^  t j  j  t ^  ___________ N sr\s___________
<  > -  I5(jv.(r,. +  %,) +  Nt(m +  th.)) ’J’

< i ( U ) i i m i m i m k  > =  i s ( N M  +  v J  +  m m  + m , ) ) 6 * ’

<  W ( - l w W W  > =  l 5(JVs(„s + *?„)+'JV,(r7, +  T7fs) )5iJ’

we can now calculate this stress.

So, for an initial hydrostatic strain we find

< 5 a i i >  = 15wVB(2B + C)(Ns(rjs + m ) + JV,(t7, +  m.)) + 2F^ N ^

+(RsR l)ll2{Rs +  Ri)(RsN srjsi +  ifylVjrfo)}

x{5B(5ikSji +  fiil&jk̂  T (-'{fiij&jk T &ik&jl +  (5.84)
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The effective moduli are defined by:

< 8(iij > =  C*jkl < 8eki > (5.85)

and thus we can calculate them directly from the average incremental stress. We also 

note that the general expression for these moduli is found to be:

Cijkl =  37ry j5 (2 5  +  C ) f e N s7)aR s {< i ~ epql(ss)pl(ss)q)  ̂ ^(ss)k^(ss)j >  $il

“h ^  ( *'pql(ss)pl(ss)q)  ̂ ^(ss)k^(ss)i ^jl)

+2Nir)lR?(<  ( &pql{ll)pl(ll)q)^^I(ll)kl{ll)j > $U

+ < { - e p q l ^ p l ^ q ^ l ^ k l ^ i  > 8jl)

+ N srjsi ( R i R s ) 1/ 2( R s +  R i )2{< { - e pqI { sl)pl(sl)q)  ̂ I(sl)kl(sl)j ^  I 

T ^  ( ^pql(sl)pl(sl)q)  ̂ I(sl)kl(sl)i ^  ^ji)] 

+ 2 C  [Nsr)sR 3s (< ( 6pql(ss)pl(ss)q)  ̂ ^(ss)i^(ss)j^(ss)k^(as)l ^  

+NlTJlR? <  ( ^pql(j.l)pl{ll)q)^^ I[ll)il{IV) j  I{ll)k^{lt)l >  

~̂ ~NsT)sl ( R l R a) I ( R s + Rl)  < ( &pql(sl)pl(sl)q)  ̂ ^(sl)i^(sl)j^(sl)k^(sl)l ’

(5.86)

which is the analogue of equation (1.111) in Chapter 1. This latter equation gives the 

general expression for the moduli when the spheres are equal in size, provided rotation 

components are zero, as they are in the hydrostatic case.

Returning to our case of initial compression then, the hydrostatic case. Equation (5.86) 

reduces to:

Cijki =  37ry £ ( 2 £  +  C) { B  [2Ar^ SjR5(< I(ss)kI (ss)j > hi

“I” ^  I(ss)kl(ss)i •'> fijl)

+ 2NiT]iRf(< I(ll)kl(ll)j > 8il+ < I(Ll)kI{ll)i > Sjl) 

+ N sr]sl( R lR s) l / 2( R s + R l)2( < I { sl)kl(sl)j > &il+ < I{sl)kl(sl)i >  fy)]

+2C  [jVsr;s^ ( <  /( ss)il{ss)jl{ss)kl{ss)l > +NiT)iRf < >

+ N srjsi ( R lR s)1/2( R s + R i ) 2 < I (sl)il(si)jl(sl)kl(si)i >] } >

(5.87)
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and so

C*jkl — X* fiijfikl +  [J>*{fiik5jl +  fiilfijk) (5.88)

where the effective Lame moduli are

* _  (—e)1/2C 2 2 3
l5nV B (2B  +  C)(Ns(Vs + m ) + N,(,n + m, ) ) { s V s s

+2 Nfo fR?  +  ( R .R , )W (R .  + R,)(N^ntiR,  + N?T)t.R,)} (5.89)

and

„• =   __________( e)1/2(5B  + C) i 2 N 2n2R 3 (5 901
*  l5irVB(2B +  C) (N s(r,s + r , sl) +  N , ( n i + V u ) r  * 3 ’

+ 2 N f a f R f  +  ( R sR l)1/ 2( R s + R , ) ( N 2v 2slR s + N ? r , l R , ) } .

We can also calculate the effective bulk modulus from these which is given by:

2 „
-  A +  - M

( e)lJ 2_ ----------------{2B?s N W s+ 2 R ? l N ?rfi
3 n V B (N s(r]s + rjsi) + Ni(rn + rjia))

+ ( R lR , ) 1/ 2( R l +  R , ) ( R .N ? v l■, + R iN ' tv l ) } - (5.91)

The above expressions all relate to a packing of infinitely rough spheres. If we now 

consider a packing of perfectly smooth spheres, we find that the average incremental 

stress in the general case is

<  5(7ij > S n V B  ^   ̂ €pql(ss)pl(ss)q)  ̂ ^(ss)i^(ss)j^(ss)k^(ss)l •'><' ^ k l  ^

-hNlT]lRi <  ( Bpql^ii^pl^n^q)  ̂ ^(ll)i^(ll)jl(ss)k^(ss)l '■><̂  ^ k l  ■-'*

+ N srlsl(RlR s)1/2(Rs + R l)2

^  ( ^pql{sl)pl(st)q)  ̂ I(sl)il(sl)jl(ss)kl(ss)l ^ k l  •'>  ̂ •

(5.92)

For an initial hydrostatic strain, the effective moduli are then found to be

\*  _  ..* _  ________________ (  i cl N 2rn2 R 3
M 15tTVB(Ns(r}s + 'nsl) + N l(rn +rns) ) X ^  s

+2N?rftR} + ( R s R ^ i R s  +  R l) (N2r]2lR s +  N?rga R t)} (5.93)
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and n* the effective bulk modulus, is the same as that for the infinitely rough packing, 

see equation (5.91).

In it ia l U n ia x ia l C om p ression

Turning now to another of our initial conditions, that of an uniaxial compression, 

using equations (5.77) and (5.78), we can determine expressions for the rotations that 

occur for the individual spheres. Substituting for the strain initially in

equation (5.77), we find the components of S u i .  These are given by:

Suji = —~Se23

Su)2 =  ~^ci3 (5.94)

and

8u3 = 0. (5.95)

In fact these are identical to those found for a packing of equal sized spheres R s = Ri 

and are independent of the radii of the spheres.

We can now proceed to calculate the forces acting across the contact area. We have 

2R2(—e3)1/2
6F(ss)i =  — TtB{2B +  C ) l̂ (ss)3l-̂ (ss)fc — eijk8u)j |I(ss)3|- (̂ss)fc)

-\-C56kl \I^ss)k^(ss)l^(ss)i ̂  i (5.96)

2 # 2(_ e3)1/2
=  ~ n B (2B + C) { 2 B ^ eik\hup\h ll)k ~  ei3kSuJj\I(ll)3\I(ll)k)

+C8eki\I(ii)3\I(u)kI(ii)iI(u)i} (5.97)

and

(R,Rl) l '2{Ri +  R . ) ( - e 3)1f2 lr , ,
8F(si)% — itB ( 2B + C) Y ‘F(oelk\I^si ^ \ I ^ k

|I ( s t )3  |-^(sZ)fc) "b C S e ^ l  |I ( s { )3 \ I ( s l ) k I ( s l ) l I ( s l ) i  }  •

(5.98)

These allow us to calculate the average incremental stress. We need the average values
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found in equations (5.52) and (5.53) and also some further expressions:

^  I t it-2 ______________ N srjs______________
1 (S!)3' M 1  8(JVs f e + r , 5,) +  iV,(W +  r,Is) ) ’

< IV )3 l^ ..) i^ ,.)2  > =  48(JV.toJ +  r , , , )  +  Ar((»7i + * » .))’

I r4 . ________________ ^sTls________________
I («)3l M l  16(Ns{rls + Vs[) + Nl{r)l +  ms))>

<  l-fyl)3l-f(ii)i >  8 ( jv ,( j) s +  rjsi) +  N t (r]i +  1]1S))  ’

<  l-f(«)3l-f(I0 i ^ ) 2  > =  4 8 ( N s i v s  +  v T - lr n m  +  m s ) ) ’

< 1̂ (11)31̂ (11)1 > 16(7Vs(t).5 +  7]si) +  Ni(r i i  + r)i,)) ’

.  | r  I t2 . ___ ______________N sVsl
{si)3 {si) i  8 ( N s (r)s + r ] s l ) +  Ni( f ) i  + m s ) ) '

^  I r 11-2 r2 v   ___________N sTjsl___________
I MS] <■'» W  18(/V,(n, +  ^ )  +  N,(w +  W.)) ’

<  IA..).|J?.l|. > -  Nl(m +  (= «

We note further that,

ĴP<7 ^  l-^(ss)3|-^(ss)i-^(ss)q ^jpq ^  |-fy i)3 \^{ll)i^{ll)q ĵPQ ^  |-^(sZ)3 |-^(sZ)i-^(sf)g d ,

(5.100)

if z =  j  and so rotations will not effect the components < 8a\\ >=< 8(722 > and 

< 8 0 3 3  >, of the average incremental stress. Hence, rotation term effects will only occur 

in the modulus as we would expect for consistency with Slade’s results [76], for

equal sized spheres.

Now, combining all these results, we find the average incremental stress. In particular,

V 63 y f

< S a n >  =  48W B (2B  +  C)(Ns(r,s + >,,,) + N,(m + m,)) \ 2B- N ^  

+2R?N?rif +  (RsNsVsi + RiN,r,is)(RsRi)1/2(Rs + Ri)}

(12B  <  te n  > +C(6kl + 26klSn ) < 6ek, >), (5.101)
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which allows us to calculate the three moduli:

(4B +  C )(—e)1/2s~i*
° i i n

^1122

c r1133

16V'7iJ3(2J3 +  C ) ( N s(rjs +  r)sl) +  Ni{rji +  ms))

{2R3sN 2v2, +  ZRiNfr,? +  (RsN?r,l +  R ,N?vl ) (R ,R l)1/2(R, +  Rl)}  ,

________________C ( - e ) 1/2________________
4 8 V n B ( 2 B  +  C){Ns{r]s +  t?s/) +  N f a  +  r]is))

{2R3sN 2v2 +  2RfNfn? +  (R ,N 2v l  +  R iN fv l ) (R ,R l )U2{R,  +  JJ,)} ,

________________C ( -e )1/2________________
24 V n B {2 B  +  C ){Ns(r)s +  rjal) + N i f a  +  r)is))

{■ZRlNffi +  2RfN?r,f +  (R ,N 2s v l  +  RtN?vfs)(R,Rl)1/2(R,  +  R,)}

= 2 CJ122. (5.102)

Also,

<  S° 33 >  24VttB ( 2B +  C ) ( N , ( 1  +  V,l) +  N,(vi +  VI,)) ( 2R"N ^

+2 RfNfoi + (R ,N 2v l  + R,Ntms)(R,R,) 1̂ ( R ,  +  R i ) }

(1 2 B  <  Se33 >  -\-C(Skl +  3^/ti^zi) <  >)» (5.103)

from which we find

(35  +  C ) ( -e )1/2 
3333 -  6V itB(2B +  C)(Ns(v, +  v,l)

{ 2R \N W , +  2R?N?vf +  (R ,N 2v l  +  R,N?vl ) (R ,R i) l /2(R, +  f l ,) }  .

(5.104)

To find the last modulus we consider < <5<Ji3 >, which does involve the rotation terms. 

Recalling from equation (5.94) and (5.95), the rotation terms, we have

<fM >  =  _____________ ( ~ e ) ^ ( 4  B +  C)______________/r 2 p3w2„2
12V 7rB(2B +  C)(Ns(v ,+ V s l )+ N ,(v i  +  V l , ) ) ^  * s s
+ 2R fN iv f  +  (RsR,)l/2(Rl + Ra)(RsN 2v2,i +  R i N f v l ) }  • (5.105)

The fifth effective elastic modulus is found to be

c . =  ____________ ( - e ) 1/2(45  +  C)____________  r 3 2 2
1313 24VitB(2B +  C)(Ns(v, +  v,t) + N,(vi+Vis))   ̂ 5 ‘ ‘

+ 2 Rf Nf vf  + {RsRi)1/2(Ri + Rs)(RsN 2v2sl + R ,N ? v l ) }  ■ (5.106)
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We thus have our five independent elastic moduli and each has been checked by com

paring with the moduli for a packing of equal sized spheres.

We have considered a packing of infinitely rough spheres, but we can again also consider 

the effective moduli for a packing of perfectly smooth spheres. We find the average 

incremental stress, in order to calculate the moduli:

< Scrn  >  =  .0v;- 5V»,-7" -  ^ -\---- J77----------rr \ 2 R ssN 2ti2 + 2R.fN2r)2i $ V K B { N s{ns +  T ),i)+N i(rn  +  n u ) ) x
+ (RsN sr)si +  R iN i7]is)(RsR i) 1̂ 2(Rs +  i?j)} (Ski +  2Sk\Sn) < Sew > ,

(5.107)

from which we have

( - e ) 1/2
' m i  —

cr1122  —

c 1133 —

16V7tB ( N s(tjs + rjsi) + Ni(r)t -1- rjis))

{2R 3sN 2r,2 +  2R ? N 2V2 4- (R SN 2r,2sl + R ^ r j 2, ) ( R sR l)1/ 2(R s + #/)} ,

_____________ t e f P _____________
48V ir B ( N s (rjs + r}sl) + Ni(rji + rjts))

{2R 3, N 2ri2, +  2RfNfrf l  + (RsN?r,2sl + RlN fr^ , ) (R ,R l)1/2{R. + R t)} ,

_____________ ( ~ e )1/2_____________
24V i rB(N s (r)s + r j si) + Ni(r}t + r]is))

{ 2 R 3sN j n 2 + 2 R f N 2rjf +  (R ,N ? n 2sl +  R i N f n l W ' R , ) 1' 2^  +  R t) }

2 Ci*122. (5.108)

Also

<  5(733 >  =   ̂ . . . ------- -^ r  { 2 R l N 2r)2s +2R?l Nfr)'t
2 i V ■ n B ( N s (r)s +T)s i )  +  N i ( m  +  y i„) )  *■ 

-\-(RsN 2t]2i T RiNir]is) ( R sR i ) 1/ 2(Rs -f R i ) |  (Ski -I- SSkiSn) < Sem >

(5.109)

and so

C3333
(—e)1/2

6V-kB ( N s(t]s +r)si) + Ni(r)i +  77ia))

{2R l N 2r,2 +  2 R f N 2r,2 +  (R SN 2V2, +  fliiV,2.),2 K ^ i i , ) 1/2^  + R ,)} .

(5.110)
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The final modulus is again found from < <5cr13 >:

<<S<Tl3> =  1 2 V n B ( N s(Va{+  h )  +  +  yls)) { (2R' N ^

+ 2R }N ?v2 +  (R,NWsI +  R iN ? n l ) {R ,R l? /2j \  <  <Se13 >  ■ (5.111)

and is given by

r. = _____________( z *1 ! ! _____________
1313 48 V n B ( N s(v,  +  Vsl) +  Ni(rji +  Vis))

{ 2 R 3sN 2v2s +  2R f N f v f  +  (RsN 2v% +  R i N f v l ) ( R s R i ) 1/2(Rs +  Ri) }  ■

(5.112)

Thus, we have our five independent elastic moduli and these too can be checked by 

comparing with the moduli for a packing of equal sized spheres.

In it ia l B ia x ia l C om p ressio n

We must also consider the effects of rotation when we have an initial biaxial compres

sion. Again using equations (5.77) and (5.78), we can find expressions for the rotations 

of the individual spheres. Substituting in the initial strain to equation (5.77), we find 

an expression for 5u from which, using equation (5.78), we find the components of 

rotation for a typical sphere are given by:

W i  ( ? ) - / * ( ? )  y

( 2/2  ( f f )  — h  ( f f )  \
Scj2 =   P f  Sel3 (5.113)

2 /i ( f j )  - / 3 ( p )

and

Su3 = 0. (5.114)

Similarly to the expressions for an initial uniaxial strain, these expressions are identical 

to those for a packing of equal sized spheres and are independent of the sphere radii. 

To find the effective moduli we must now calculate the incremental average stress.

The general expression for the average incremental stress, < 5oij > , for this biaxial 

compression, including individual sphere rotations, is found from the expressions for
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the incremental forces acting across the contact areas. In fact, the rotations do not 

affect the components of this stress if i = j ,  this was also the case for the uniaxial 

compression. We find

< <5(711 >  =
(—e)1/2

{2 N sr]sRl

ei

+ C  < (1 +  3 ^  11{ss)z)1̂ 21{ss)\I{ss)kI{ss)l > <  $ekl >

-\-2NirjiRi 2B <  (1 +  —----- “^§1)3) ><: $eki >ei

+ C  < (1 +  3 ei 1 1(ii)iI(U)kI(U)i >< fieki >

+ ( R s) 1/ 2{R s +  R i) { R sN st)si +  RiNtf i s )

2B <  (1 +  — -I(sl)3,)l^2I(sl)kI(sl)l >< $ekl >
ei

+ c  <  (1 + 6 3  ~ - e i - / , 2
ei (2503)1/2 (̂2sZ)iA*0fc^0* > <  Sekl > } •

(5.115)

From this, we then find the three moduli C*U1, C{122 and C*133. These

(—ei)1/2
Cl111 =  2vV B (2B  + C)(Ns(r), + +  »#.)) 
{2^ JV S2^  +  2 R fN ir , f (R sR,)1/2(Ra + R ^ R . N 2^  + R,N?r , l)}

^ ( s +i4 5(sr^ ‘)M!f)̂ ( s
c .  =  ________________ C t - e ! )1/2________________

1122 16ttV B {2B + C)(Ns(rjs + Vsl) + AT, fa, +»»,))

+  2RlN?r, f(RsR l)1/2(Rs + Ri)(RsN 2t]2i + RtN?r, l)}

r ( j  — Sf)/2 ( i f )  +  5 ( i f )  / e 3>
i p i  + / 3 U

are:

(5.116)

and

^1133
C f-e O 1' 2

47rl/B(2B +  C ) ( N s(r]s +  7)5l) +  N t (r]i +  »;ls)) 

{2flJJV27j.2 +  2R?N?rt2( R sR l)1/ 2(R ,  +  R ,) (R ,N W „  +  R tN 2n2s)}
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ei

(5.117)

We also have

< £033 >  =
(—e)1/2

{2iVs77s#

2B  <  ( H ----------- I(ss)3)1/2l(ss)kl(ss)3 >< f>ek3 >
ei

+ C  <  (1 +  - ^ ^ / ( 2ss)3)1/2/(2ss)3/(ss)fc/(ss)z > <  6eki >

+2Ni7]iR^ 2B < (1 +  — 1{ii)kl{ii)s ><  ^efc3 >
ei

+ C  < (1 +  -^-7--- ^̂ (2f/)3)1̂ 2 (̂2H)3̂ (i0fĉ (i/)Z > <  >
ei

+(i?s)1̂ 2(i?s +  Rl){RsNs7}si + RiNilfts)

2B  <  (1 +  —----- - / (2s/)3 ) 1 /2 /(sZ )fc/(sZ)3 > <  <*e fc3 >
ei

+ C  < (1 +  ^ - ^ l f sl)3) l ' 2l l i )3I lsl)kI W i >< Seu  > ] }  .

(5.118)

and hence

Cl
( - e i ) 1/2

3333 27rFR(2R +  C)(Ns(r)s + r)sl) + Ni(rji +  r/zs))

{ 2 t f X r , s2 +  2I$N ?t f {RsR i) ll2{R, +  R,)(RsNWsi + R i N h l ) }

2B/2S) + c H s ) 3/2 +  - I  a ( s )
£1 _  1 
ei

. (5.119)

Finally, we calculate the fifth independent modulus from < 8<j\$ > which does include 

the effects of rotations:

< bo 13 > = ( - e ) 1/2 ^  \ 2 N srisR 3 
ttV B (2 B  +  C) 1 5

B  < (1 +  — —72ss)3)1/2(/(ss)^/(ss)3<5efci +  I(ss)kl{ss)ifiek3) >
ei

-J5  < (1 + ( £ ^ i ) /(2 s)3)1/2(eirfc/(ss)k^(ss)3 “I” ^3rfc-f(ss)fc (̂ss)l) ^
1̂

+ C <  (1 +
(e3 — ei) 2

ei ■̂ (ss)3 )  ̂ ^(ss)l^(ss)3^(ss)k^(ss)l '><̂  ^efcZ ^
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+2 N lVlRf B  < (1 + ( e 3 -  e i )  r2

—B  < (1 +  — ----- ~~ 1(11)3^^(.^lrkl(ll)kl(ll)3 +  e3rkl(ll)kl(ll)l) > <  >

+C  <  (1 + ( e 3 -  e i )  2

ei (̂2z)3)1̂ 2V )i^ (“)3^(i0fc^0^ ><: ^ekl >

+ (R sR/)1/2(Ri +  R s)(RsN sr]s + RiNirji)

B  < (1 + ( e 3 -  e i )  r2

ei (̂2Z)3)1̂ 2(^(s/)fc^Z)3^e*:l +  I(sl)kl(sl)lfiek3) >

- B < (*■ +   ^'^(2Z)3)1̂ 2(elrfĉ (sZ)it̂ (sZ)31̂

~̂ ~£3rkl(sl)kl(sl)l')

+C < (1 + (e3 -  ei) r2
ei (̂2Z)3)1̂ 2 (̂sZ)l̂ (sZ)3-f(sZ)fc-̂ (s/)Z > <  ^eifci >

(5.120)

and then

^1313  —

( - e i ) 1/2
4ttV B(2B +  C)(ATa(r/s +  rjsi) +  N t(rji +rjis))

{ 2 f lX 2»?s2 +  M lf N f 7,? +  {RsR,)1/ 2(R,  +  R M R sN '^ l +  R,N ?r , l ) }
t

r  f, ( _l n ( i t ) 3/2+ ( f t  -  0  ^  (f?)
>

-D/3 1 1 r Cv \e i  / a _ lei
/
*

—B  {2R3sN 2t,2s +  2R f N f o f  + ( R s R ^ i R ,  + R s)(RsN sVs +  R ,N m )}

( 2h  ( f t )  ~  A ( i t ) )

V2A ( i f ) - A ( S ) / '
(5.121)

Thus, we have the five independent effective elastic moduli, for an initial biaxial strain 

acting upon a binary packing of infinitely rough spheres.

Considering also the case of perfectly smooth spheres we see that the moduli now reduce 

to:

C1111 2ttV B ( N s{t]s + r)si) + N t{rfi + m*))

{2  R 3sN 2r,2 +  2Rf N 2r]f(RsRi)l/ 2(Rs +  R,)(RsN 2n% +  R i t f v f s ) }

! ( * ) *  + ( ! - * ) * ( * )
£* -  1 ei

+  h
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^1122 —
(—ei)1/2

167rV B ( N s(rjs +  r}si) +  Ni{r}i +  r]is))

{ 2 R ] N W , +  2RfN?n?(RsR l)1/2(R. +  R , ) ( R .N W . i  + R i N ? r , l ) }
(5 -  ? ) A  ( ? )  +  s ( l t ) 3/2

£2. _  I 
ei

+ f s [ -  .ei

C1133 47tUB(ATs(77s +  »/,i) H- Ni(rn + 77̂ ))

{ 2 f lX V  + 2fl?iViV (iJs.Ri)1/2(fls + Ri)(RsN̂ n% + RiNfol)}

' ( ? )  -  1)A  ( ? )  ~  5 ( ?
3 /2

« a _ lei

( - e i ) 1/2
'3333 2 n V B (N a(r)s + rjsi) + Ni(m + ms))

[2R) n W ,  +  2RfN?r,f(RsR,)l/2(Rs +  Rt)(R,N]r, l  +  RiNfof,)}

* ( - ) *  +  - * ( ? ) ■

ei

c 1313 AnVB(Ns (rjs + T)si) + N i{ m +  ms))

{2R3sN S i  + 2RfN?rit(R,Rl)1/2(R,  + R{) { R . N ^  + R i ^ h l ) }
3/2

4  ( it )  + ( it  -  t )  /* ( ? )
? - lei

.

(5.122)

5.4 C om parison  w ith  R esu lts  o f N um erica l S im ulation

In Chapter 3, we discussed the work of Jenkins et al. [43], their experimental, numerical 

simulation and theoretical results which gave the numerical values found for the effective 

elastic moduli of a random packing of spheres under prescribed conditions. Now, we 

wish to calculate the numerical values obtained from our new theoretical expressions 

for these effective moduli. The calculation of these expressions has been presented 

earlier in this chapter. For comparison with the values found by Jenkins et al. [43] we 

are only concerned with those values obtained after an initial hydrostatic strain.

The expressions we have found in this chapter cannot actually be compared directly
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with the values found by Jenkins from Walton’s theory [86]. Jenkins’ work only gave 

values to parameters for a random packing of EQUAL sized spheres (it was his ex

periments and simulations that involved different sized spheres). In the next section 

we discuss the work of Dr. Luc Oger [62] who kindly ran some simulations to help us 

determine these unknown values.

5.5 C alcu lation  o f th e  C o-ordination  N u m b er o f Each Sphere

In their paper, Oger et al. [63] deal with the mechanical and electrical properties of 

particle packings by reducing the problem to that of a random packing of spheres, 

both equal sized and binary mixtures. We make use of their results as it is necessary to 

differentiate between the different types of grain-grain contact within a binary packing.

In a binary packing of spheres it is necessary to distinguish between the different types 

of contact. Hence, in a mixture of two different sphere sizes 1 and 2, in the relative 

proportions n\  and 712, Dodds [29] defines the different co-ordination numbers as follows:

• the mean co-ordination number C, which is defined to be the average number of 

contacts per sphere

• the mean co-ordination number Ci which is the average number of contacts for a 

particular sphere of type i

• the mean partial co-ordination number pij, this is the average number of contacts 

on spheres of type i by spheres of type j.

These co-ordination numbers are then related by the following equations:

C = n ici +  712C2,

Cl =  P11+P12,

C2 =  P21+ P 22, (5.123)

n ip i2 =  n 2p2i.

Also introducing the relative fractions Uj of different types of contacts between the 

spheres, in a binary mixture such as we are considering

£11 +  ^12 +  t>22 = 1,
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t n  =

t \ 2  =  h i  =

n ipn
C

«22 =  (5.124)C
tiiPu  n2P2\

Oger et al. [63] made numerically simulated packings of binary mixtures of spheres 

with diameter ratios in the range 1 to 3.5 to find values for these quantities. These 

simulations were developed by Powell, whose work [64], [65], [66] and [67] describes 

the simulations in more detail. The packing was constructed one sphere at a time, 

positioning each in contact with a sphere already in the packing, chosen at random, 

and two other neighbouring spheres. Building this up layer by layer along the z-axis, 

periodic boundary conditions are imposed in the x- and ^/-directions. The porosity of a 

packing of two different sized spheres varies only slightly from 0.4 with the concentration 

of the small spheres. The mean total co-ordination number C  is around 6.

In a real packing it can be hard to obtain an exact number for the co-ordination number 

as it may not be clear if two spheres are actually in contact or just very close. Some of 

the experimental techniques mentioned in chapter 1 experience this problem, they all 

use different techniques and can lead to very different answers. In their paper, Troadec 

and Dodds [82] describe the different kinds of ‘contact’ that may occur. These are 

classed according to the distance L between the centres of two equal sized spheres and 

can be separated into 4 classes:

• A real contact, L = 2R,  where R  is the radius of the spheres. This co-ordination 

number is around 6,

• A near contact, 2R  < L < 2.1 R,  yields a co-ordination number between 7 and 

8.5,

• A close contact, 2R  < L < 2.217, yields a co-ordination number between 7.7 and 

9.3,

• A near neighbour, L < 2y/2i£, which gives a co-ordination number between 9 

and 13.4. The Voronoi tessellation which gives this maximum value of 13.4 is 

a theoretical model discussed by Dodds [29] in which the space is paved with 

polygons representing the sphere positions and without any gaps.
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Oger et al. [63] do consider these different type of contact, but here we are only con

cerned with the first class - real contacts. The maximum co-ordination number that 

can be attained in this situation is 12, it will only rise above this upon consideration 

of near neighbours.

A problem arises for sphere diameter-ratios greater than 6.46, in this case the small 

grains will start to fall through the gap formed by three large grains and segregation 

effects may become important. The packing would no longer be homogeneous. We will 

only consider sphere diameter-ratios less than this and so are not concerned with these 

effects.

To use these results for the comparison of our expressions derived in the previous 

section, with the results of Jenkins et al  [43], we require that the diameter ratio, 

di/d ,2 =  1.7, with the proportion of small spheres, ny = 0.91 and the proportion of 

larger spheres n 2 =  0.09 (there were 392 spheres of radius 0.1075mm and 40 of radius 

0.1825mm in the simulations discussed by Jenkins). However, to obtain a broader view 

on how the moduli change with different proportions of small to large spheres and 

different diameter-ratios, in the final section of this chapter we shall consider a range 

of different values for these.

Concentrating for now on obtaining comparable results to Jenkins, we note tha t in their 

paper, Oger et al. [63] only give some results for the diameter ratio dy/d2 =  3. Dr. 

Oger kindly sent the results of simulations to determine the values of the co-ordination 

numbers for dyfd2 =  1.7 as we require [62]. He found that in a packing of 16717 

small spheres and 1383 large then the average co-ordination number of each sphere 

is C = 6.00, thus it is indeed ‘close to 6’ as mentioned in the discussion above. This 

percentage ratio, 92.4% of the packing consisting of small spheres, is not quite the same 

as that used in the numerical simulations discussed by Jenkins et al. [43], there 90.7% 

of the spheres were small. However, even though the simulations are not identical, the 

results will still enable us to get some idea of how the large spheres alter the values of 

the effective elastic moduli.

The other values found from Dr. Oger’s simulations are given below, where the sub

script I refers to large spheres and similarly, s to the small spheres, to make the notation
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more consistent with what has already been done:

ci = 10.35936, cs = 5.64467,

pu = 1.49964, pss = 4.91260, pis = 8.85972, psi = 0.73207,

tu = 0.01908, tss = 0.75559, tla =  0.22533.

For comparison with our notation we see that q  =  rji +  rjis = 10.35936, cs = r)s +

T]si =  5.64467, Pu = 7)1 = 1.49964, pss = r)s = 4.91260, p ia = rjis = 8.85972 and

Psi = Isi = 0.73207, which can all be substituted into the new expressions we have

found for the effective moduli of the packing.

Thus, now recalling equations (5.91) and (5.90), we calculate the new values for the 

effective moduli. The expression for the effective shear modulus //*, is

* _  (—e)1/2(5 B  + C) 2 2 3
M "  15nVB(2B + C){N,(r,, +  Vsl) + Nt(Vl +  v u ) ) { ’ V’ ’

+2 Nf r j f Rf  + +  R,)(N]Vl R ,  + N f o l R , ) }

(5.125)

and that for the effective bulk modulus:

*’ =  „  ^ { 2r 2sn s V2s + ^RfN^Ttf
97T V B ( N s{r)s + T ) s l )  +  Ni(r)i +r)is ) )

+ (fi5fi,)1/2(fl. +  Ri)(R,N*ril  +  R iN fa l ) } .  (5.126)

Substituting in the values of each parameter, the first of these give us a value for the 

effective shear modulus of p* = 186MPa. The previous theoretical value, found by 

Jenkins et al. [43] using Walton’s theory, was 338MPa and so we have reduced the 

modulus by 45%. This new value is much closer to the 127MPa found by Jenkins et 

al. [43] in their numerical simulations.

We also find, from the second equation above, that the new value for the bulk modulus, 

«*, is 135MPa. Thus we again see a dramatic reduction in the value of the modulus 

predicted by the binary packing theory. In fact the new value is 55% of the previous 

theoretical value which was 245MPa, found from Walton [86]. Also, noticing that
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Jenkins et al. [43], found a value of k* =  185MPa, we appear to have ’’overshot” the 

target. The table below shows a comparison of the values.

Modulus

Numerical

Simulations

Walton’s

Theory

Theory (Different 

Sized Spheres)

Bulk 185MPa 245MPa 135MPa

Shear 127MPa 338MPa 186MPa

Both of these new predicted theoretical values clearly show that the affects of a small 

number of large spheres amongst a packing of small spheres can very significantly 

effect the theoretical properties of a packing. The new values then, are closer to those 

of Jenkins et al. [43], although the bulk modulus has decreased too much. In the next 

chapter, we will try to modify the results again. We shall again consider the influence 

of a perturbation of the uniform strain approximation upon these results. We would 

expect that the results found in this chapter using the uniform strain approximation 

for a binary packing would be significantly altered. We believe this to be the case due 

to the fact that the approximation becomes less accurate with decreasing co-ordination 

number. In this chapter we have been considering some co-ordination numbers as low 

as 0.7 for the number of large spheres in contact with a typical small one and 1.5 for 

the number of large spheres touching a typical large one. Thus, in the next chapter, 

we combine our two methods of calculation discussed in this chapter and chapter 3, in 

an attempt to make a further modification to the values of the predicted moduli.

5.5.1 V arying th e P rop ortion  o f Spheres and D iam eter  R atio

Before we continue with our attempts to modify the theory further, it is also interesting 

to briefly consider the effect the proportion of large spheres has upon the effective elastic 

moduli and also how these vary with the diameter ratio. Dr. Oger sent us some further 

results from his numerical simulations to enable us to do these calculations, these along 

with the new calculated value for the effective bulk and shear moduli are shown in the 

table below.

We have already concluded that for our particular parameters, a small number of large 

spheres amongst a packing of smaller spheres, significantly affects the values of the 

effective elastic moduli, when compared with those of a single size packing. The table
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on the following page clearly shows that this is true not just for the particular packing 

we have considered, but becomes more marked as we consider other proportions and 

diameter ratios.

As the proportion of large spheres increases, the effective moduli decrease in value. 

Hence, if we were able to consider an identical proportion of different sized spheres, 

that is a slightly greater proportion of large spheres, as considered by Jenkins et al. [43], 

then we would expect the moduli to decrease still further. This is good news for the 

shear modulus as we have dramatically reduced its value already and a further small 

reduction would bring the theoretical value even closer to that yielded by the numerical 

simulations. Unfortunately, this will also decrease the bulk modulus further which will 

not give the required result, its value has already decreased beyond the value found by 

the numerical simulations and so any further decrease will not improve the correlation 

between the two sets of results.

We can also note from the table that as the diameter ratio increases the effective moduli 

again decrease. Both of these conclusions show us that we must not discount the effect 

a size difference between spheres in a random packing has upon the properties of tha t 

packing.
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% of small spheres Diameter ratio N s Ni Vs Vsl Vi Vi s k* (MPa) (MPa)

100 1 5.36 0 0 0 245 338

88.0294 1.4 9229 1255 4.604182 0.998050 1.151394 7.098008 121 168

93.9389 1.4 11562 746 5.211036 0.541429 0.500000 8.087132 173 239

98.7533 1.4 7763 98 5.705526 0.134999 0.061224 8.704082 242 334

84.5810 1.7 11920 2173 3.903775 1.374832 2.174873 7.346986 92 127

91.1965 1.7 15228 1470 4.590885 0.917126 1.171429 9.173470 121 166

98.3625 1.7 20484 341 5.632884 0.211384 0.123167 11.173020 224 308

74.6299 2.0 9528 3239 2.800378 1.988140 3.548626 5.698981 68 94

84.0441 2.0 14111 2679 3.603076 1.480831 2.754013 7.577828 74 102

92.5529 2.0 21662 1743 4.635445 0.833118 1.598394 10.117040 112 155

84.5239 3.0 8531 1562 3.032470 1.643184 4.008963 8.160691 63 87

90.09059 3.0 10326 1033 3.793047 1.217897 3.359148 10.376574 65 90

95.1375 3.0 15398 787 4.428627 0.864528 2.468869 14.069885 88 121
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Chapter 6

A Perturbation of the Uniform  

Strain Approxim ation for a 

Binary Packing of Spheres

As has been previously mentioned, this chapter describes our attem pt to modify the 

expressions for the effective moduli by considering a combination of the method used 

in chapter 3 with tha t of chapter 5. We expect the results to be significantly different 

from both of these chapters for reasons we discuss below.

We consider a dense, random, binary packing of spheres and apply a compressive force 

to the boundary. We use the uniform strain approximation for binary spheres as a first 

approximation to describe the displacement of the centre of each sphere and the rotation 

of the sphere about an axis through its centre and then perturb the approximation. 

Using the equations of equilibrium, we calculate approximations to first order for the 

perturbations. In addition to these, we apply an additional incremental deformation 

to the boundary and again, using a perturbation of the uniform strain approximation, 

calculate expressions for the effective elastic moduli of the packing.

Chapter 3 considers a perturbation of the uniform strain approximation, for a packing of 

equal sized spheres. We showed in chapter 5 that a few large spheres can dramatically 

effect the moduli, hence we would expect significant changes here. Chapter 5 used 

the uniform strain approximation as a starting point, but some of the co-ordination 

numbers were very small and we know that the approximation becomes poor for such
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cases. Hence the reason we would again expect the results of this chapter to significantly 

differ from those of Chapter 5. Hopefully by the end of the chapter we will have

for the effective moduli using numerical simulations than those obtained using the 

uniform strain approximation.

We proceed in precisely the same manner as we have done throughout this thesis. To 

recalculate the effective moduli, we first apply an initial deformation to the boundary 

of the packing and calculate the forces acting across the contact areas. From these, the 

average stress is found. We further apply an incremental deformation to the boundary 

and again calculate the forces and average incremental stress. Then, from the relation

ship between this stress and the average incremental strain, we calculate the effective 

elastic moduli for the packing.

We consider a large dense random packing, containing spheres of two sizes. The position

discovered some of the reasons why Jenkins et al. [43] calculated such different values

6.1 T he In itia l P rob lem

(n)vector of the centre of the n th  small sphere is X ^ ' and the position vector of the centre 

of a typical large sphere, n, is . The displacement on the boundary, u  is consistent 

with a uniform strain and hence

u i — eij Xj . (6.1)

The previous chapter dealt with the assumption that the centres of the spheres are 

displaced consistently with this uniform applied field, =  & ijX^ .  and =  

e i j X and that the rotation terms satisfy and

We wish to consider perturbations of this uniform strain approximation, and 

for each small sphere and and for each large sphere. Thus, for a small sphere, 

the n th  say, after the initial deformation the centre of this sphere has been displaced 

by an amount:

(6 .2)

and

(6.3)
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and for the n th  typical large sphere

and

_  P.. v (n) if .W  
u (i)i ~  ^  (i)i

(n) i ~ (n)
“ (I)* _  <')* +  W(l)i'

(6.4)

(6.5)

Initially, we again restrict our attention to a packing of infinitely rough spheres.

We have already seen in Chapter 5, that the general expression for the force acting on 

the n th  small sphere, due to its contact with another small sphere, n ', is

(2R s)1/2 r2 B \(u (n') _  u (n) \ I (nn'h i / 2 f u (n') _  (n)
B(2B + C)< (s)p (ss)p̂  '  (*)* (s)*

" ? } .  (6-6)

p, (nn' )  _

(")* 3irB(2B +  C )

where B  and C  axe the constants determined previously in terms of the Lame moduli. 

Similarly, the force acting on a large sphere, n, due to its contact with another large

one, n , is

(2Ri)1/2 f .. („>) _  (n) u K ) ] l / 2 d « ')  _  H
B{2B +  C) V (Op u(0pJV ) p J ^(0* u (0*

-  uW (6.7)

rp{nn')  _

( “ )* 37tB (2 B  +  C)

and the force acting on a small sphere, n, due to its contact with a large sphere n ' is

2{ R ' ) l/2 l 2 B \ ( u {n>) -  u {n) ) I {nn,)} ^ 2(u{n,) -  n (n)
B(2B +  C) V [[ (*)p ( W ) p j ^(0* w(-)i

+£i, , ( f l iW(%> +  * * $  ) # £ ’) +  C [(„<$ -  u | : X " op l3/2/w }  •

p K )  _
(>')• 3nB(2B + C)

(6.8)

In order to calculate approximations for the perturbation terms we consider equilibrium 

of these forces and their moments.

In order to calculate the forces following, in particular, an initial hydrostatic strain, we 

must expand terms such as

M S  -  - { I ) ® ! 172 =  (* . +  *<)1/2( - e ) 1/2( s ) p /  ( sl)p
i ^________ f ~ i n ') ~ ( n ) \  r

2(RS +  Ri)e
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  1 _______ / ~(n ')  ~(n)  w - ( n ' )  ~(n)  \ r  T
S(Rs + Ri)2e2 (Op

(6.9)

and

[ ( “ ( $ - =  ( K s  +  R l ) 3/2( - e ) 3' 2

,(n ')  A ”)  \ ( A n>) A n )

1 ^ _______ / ~ ( n ' ) ~ (n )  x ^

2(RS +  Ri)e (U(1)p U(s)p}f (3l)P

I ( ~ \ n  ) ~\n) \ t  ~ \ n  ) ~(n) \ T  T

8(H s +  R i ) 2 e 2  9)p “ (»)p^“ (0« u ( s ) q ^ ( ‘ ‘ ) p l ( > l ) i  >

(6.10)

( n n ; )which both occur in the expression for '. Very similar expansions occur in the
r A n n 1) j  A nn')expressions for F ^ ' and F ^  \

Now, in particular for the n th  small sphere, we require equilibrium of the forces and 

moments acting, due to its contact with other spheres:

E <"'> + E *M0 = 0 (6.11)
n1 small  n '  large

and

E E (6.12)
n 1 small  n '  large

where f |”̂  and Fj”̂  are as given previously. Similarly, for equilibrium of a large 

sphere, we require

E F S m ' , +  E F<a ^ = °  (6-13)(ii) ^  (is)
n ' large n ' small

and

E A Iw’ + E f ^ ’ a i ^ ' ^ o .  (6.14)
n ' large n '  large

Following the same method used in chapter 3, we substitute the general force expres

sions for a binary packing, into the first pair of these equilibrium conditions, equa

tions (6.11) and (6.12). As in Chapter 3, we again have to make some assumptions 

about the order of terms, in order to try and reduce the equations of equilibrium to 

first order. This then allows us to find first order approximations for and

We restrict ourselves to consider an initial hydrostatic strain, this is the initial com

pression we require for comparison of our results with Jenkins et al. [43]. Thus, we
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have eij = eSij and also fty)* = Q(s)i — 0 and find that the first order approximation 

for U("jt is given by:

_(n) 6Ae(2fl2„sjW  . +  (R l R s ) ^ ( R ,  +  R . ) i b , j f % , )

“ (s)i (RsVs + (RiRs)l/2%,) ' ( ' ’

The definitions of and are very similar to that of j [ n\  which in chapter 3

was defined as:
r(n) _  1 r(nn')

fji71) '

We now define

and

^  =  4 )  E  ^  (6'16)
r?s n ' small

^  =  4 )  £  (6-17>
^ s i  n 'Z a r g e

All other quantities are as previously defined in other chapters, but as a reminder we 

have Ri and R s are the radii of large and small spheres, respectively and

2 B  + C
A  =

14B +  3C ’

where B  and C  are constants defined in terms of the Lame constants for the medium. 

Each 77 corresponds to a co-ordination number.

From the condition that ensures equilibrium of moments, we also find a first order 

approximation for this is

«("> =  0 . (6.18)

Thus now, we approximate the displacement of the centre of the n th  small sphere as

follows:

(n) v („) o M ^ R - h s  j fc ] ,  +  ( R i R s f ' 2{Ri +  Rs)vsi )
% )i  -  {R^  + {RlRsy , 2r!sl) 10.19)

and the rotation about an axis through its centre as

u (s)i ~  0- (6-20)
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Similarly, the displacement of the centre of the n th  large sphere is found by considering 

the equilibrium of a typical large sphere and we have

(») S A ^ R f n t J ^  + i R i R s ^ H R i + R J m s J ^ )
“ “  e,J (Rim +  ( R i R ^ v u )  ( )

and

=  0 . (6 .2 2 )

(n) (n)We define and in the obvious way:

J $  =  - £ o  £  (6 -2 3 )
Vl n '  large

and

^  =  4 )  E  4 " ) ^  ( 6 -24)
n '  small

Using these expressions for the displacements and rotations, we can find the force

acting on the n th  sphere due to its contact with the n 'th . Substituting these into the

general force equations (6.6), (6.7) and (6.8), we calculate very lengthy expressions for 

all the forces, f | ^  \  F^JJ" \  F j " ^  =  —F ^ n\  acting across the contact areas within 

the packing.

As the expressions for these forces are so lengthy, only one will be included here, f |”^ .  

In its entirety, this would still be too long for inclusion and so we leave the expression
(n)containing general displacement expressions such as and into which we substitute 

the approximation found above. We have

p ( n n ' )  _  ( R s R l ) 1 / 2 ( ~ e ) 1/2  f O D  f (T> , T , ~(n ')  „ ( n )
F W  -  Z T t B { 2 B  +  C )  V  L ( R s +  R t i e I ( s i ) i +  u {l)i u (s)i  

*^2^(0p ~  ^(s)p^(s0p^(s0*

______ I_____ (An') _  £>) Vu(n,) -  U(n) )L  n
2( Rs +  R i ) e [ (z)l u(s)i)[u(i)p u(s)p^(sl)p

1 ( ~ { n ' )  ~ ( n ) ~ ( n ) \  T T T

8( Rs + Ri)e u(s)p' (0? u(s)<r (sI,)p

+ c

3  /~ ( n' )  ~(n ) ~ ( n ) \ t  t  r  \
8{Rs +  Ri)e (l)p ~  “ (*)p^U(*)7 u(s)q)I (si)pI (si)<iI W  J*

( 6 . 2 5 )
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T h e  A v era g e  S tress

Having found the forces acting across each contact area, the next stage in the problem 

is to calculate the average stress throughout the medium. From equation (5.46), we 

have the following general expression for this stress

< a i j >  =  +
+NlrtlR l«  > + < I ^ F ^ P  »

+ N snslR s«  »

+Nm M (< >  +  < $ £ * £ £ >  » } .  (6.26)

Substituting in the lengthy force expressions just calculated, the resulting stress in

volves statistical parameters of the packing. These are similar to aij,  defined in equa

tion (3.30), although we have several this time. Assuming that they are isotropic as 

before, we define

® ( s s ) i j < T ( n n ' )  j ( n )  

( s s ) i  (s s ) j
> = O ^ s s & i j

a ( U ) i j  = < A n n ' )  J n )  

A ( l l ) i  J ( l l ) j
> = O i l l S i j

® ( s l ) i j < A n n ' )  j ( n )  

( s l ) i  ( s l ) j
> = ( X s l ^ i j (6.27)

< A n n ' )  A n )  

1 ( l s ) i  J ( l s ) j
> =

where the average value < . >  is calculated over all contacts. Thus, calculation of each 

a , reduces to a sum of j \ n  ̂ squared terms, for example, if N(s,l)r](s,l)  is the total 

number of contacts, N(s,l)r}(s,l) = N s(rjs +  r}si) +  N i fa  + 17*s), then

(n)
77

“ ss =  3 (6-28) 

summing over n, that is all spheres. Each of the as above can be written in this way.
(n)The summation over which each is taken reduces, since the various J ■ s will not exist 

for all types of sphere contact. For example, a ss reduces to

77(n)

We have cross terms which also arise and these cannot be defined in quite the same
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way. A term which we define as a sssi can in fact arise from two different terms. These 

are <  J(si)j •> and <  ^(ss)j but multiplied by different combinations of 

the co-ordination numbers. To allow for this and so that we do not have to use two 

separate parameters for each of these terms we define

" (sss,)y =  3 N ( s , l ) T i ( s , l ) ^ J^ ' l ' J ŝ‘')i = asssl5ij

" (,,is)« =  3 N (s , l )V( s , l ) ^ Jm iJ ^ i = a “l A i  (6-29)

The variations in multiples of co-ordination number are then included in the general 

theoretical expression at each stage, rather than in the numerical calculation on the 

computer. Hence, for example, we have

< ^(ss)i^(sl)j rlsassslfiij (6.30)

whereas

^  J(sl)i^J(ss)j > =  Vsl&ssslfiij- (6.31)

We calculate average values for each a  by using computer simulation. The programs 

are similar to those used to determine a  in Chapter 3 and will be discussed later in 

this chapter.

As in chapter 3 it is not just terms such as ( I ^^ i  J(ss)j) which arise in these cal

culations, but also more complicated averages, for example, ^{ss)j ^{ss)k ^{ss)i) ’

and H°wever- au the terms that ° ccur
at this stage of the problem can in fact be reduced to expressions in terms of the known 

as. In Chapter 3, we found expressions for similar terms to these three using the prop

erties of isotropic tensors. For example, assuming ^{ss)j ^(ss)k ^ s ) i )’ ls a fourth

order, isotropic tensor then it can be written as a linear combination of SijSki, Sikdji 

and 5u8jk. It must be symmetric upon interchange of any two of i, j ,  k and the only 

combination that satisfies this is:

< I( ss) i  I ( ss ) j  I ( ss)k  J(ss)l > — Cl{$ i j f i k l  + 8ik8j i  + S i lS j k)

where C\ is a constant. As in Chapter 3, since ^ s )p  =  1 then setting i = j  gives 

Ci =
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Determining the other expressions in a similar way then, in particular, the three aver

ages mentioned become

and

< > =  + S i k S j l  +  6 i l 6 j k ) '

A n n ' )  A n n ' )  („), („ )  S

( s s ) i  ( s s ) j  ( s s ) k  ( s s ) l  2

< j { n n ' ) j { n n ' )  J n )  J n )  X  ,

1 { s s ) i  1 ( s s ) j  J ( s l ) k J ( s l ) l  o „  .  ° * 3 ° k l -3r]sl

Some further manipulations with these averages and parameters must be done in order 

to calculate the average stress as we wish to do. It is not immediately obvious from 

the definitions of the as how a term such as < > can be written down.

However, with some rearranging and using the fact that

A n n ' )  _  

\ l s ) i  ~

(n'n)
( s l ) i

we find the following is true:

r (n n ')  j ( n ' )

— Tlsl&sssl' (6.32)

Now, putting all of these manipulations together, the expression for the average stress 

is thus given in terms of the a  parameters as:

< Oij > =

2(—e)3/2 j d2
3 ir V B

R i N ^
2R sN sr)s _  ^  ^ (2R%r)sa ss +  (RsRi)l/2(Rs +  Ri)rjsiTjsa sssi)

3 N (Rsrjs +  ( R s R ^ l )

+ 9A 2 (4R*rfiaSs +  4R2r)2risla sssl +  (R sR i ) ( R s + Ri)2Vsir]s^si)
2 R,

+ R t Nirji

{Rsrjs +  { R s R i Y ^ s i ) 2 

2RiNirji ^  ^  ^ (2R2f]iau +  (RsR i)1/2(Rs -I- Ri)r)i sVlOillls)

+

3 N (Rmi  + ( R s R i V ^ i s ) 2

9A 2 (^Rfr j fau  +  4Rfr]frjisaiiis +  (R sRi){Rs + Ri )2msm^ia)
2 Rt

+(RsRi) l/2{RsNsrisi +  RiNir]is)

(  (Rsr,s +  (R,Rt)l/2Vsi)

(Rm  + ( R M V ^ v u )2 
(Rs +  Ri)Ninis

3 N
9A ( 2R 2r)sa ss +  (R sRi)l/2(Rs +  Ri)risiasi +  2R fm ^ u +  ( R sR i) 1/2( R s + Ri)r}isais

(Rim +  ( R s R ^ r H s )
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+ 9 A 2 (  4R%rjsr)siaSs +  4 R2(RsRi)l/2(Rs + Ri^sV^asssi + (RsRi)(Rs + Ri)2'n*la si
2{R' + Ri) V (RsVs + (RsRi)l /2risi)2

4Rfrjir]isaii +  4Rj  (RSRQ1/2(RS + Rfirn^atuia + {RsRi){Rs +  Ri)2rjfsais
(R im +  (R sRi) l / 2ms)2

(6.33)

+  ■

This is the expression we require.

These results have all been calculated for the case of infinitely rough spheres but as 

has been seen already in previous chapters, the calculations can also be done for a 

packing of perfectly smooth spheres. In this case, the force expressions are not nearly 

so lengthy and the equivalent expression to equation (6.25) is

,(»„') _  (R sR ^H -e)1/2 f
(si)z — ----------- | - e ( R a +  R i ) I (si)i +  ~ ( u (l)p -  u (s)p) I (sl)pI (sl)i

3 ~ ( n ) ~ ( n ) \  T T T \
8(RS + Ri)e^UWp u(s)p' (u(1)<i u (s)q)I (si)pI (si)qI (si)i] »

(6.34)

with similar expressions also holding for F ^ )  and \  The average stress is now(ll)i

(7 ij —

2 ( - e ) 3/ 2 J . 2
37xVB R sN sr}s

2RsN sr]s (2 R 2r]sa ss +  (R sRi)l/2(Rs +  Ri)r}slr]sa sssl)
— b--------

3 N (RST}S +  (RsRty/Wsi)

+
1 (4 R j ^ a s s  +  4R2sT}2s7]siasssi +  (RsRi) (Rs +  Ri)2rjsir)sa si)

2 R s (RsVs +  (RsRi)l/2r)si)2

t AT r 2R1N WI a {2Rfr]iaii +  (RsR i) ^ 2(Rs +  Ri)msmauis) 
+ R ‘N ‘ni [“ SAT 6-------------( « , ,  +  ( R s R ^ n u ?

1 (4 Rfrifaii +  4R2r}fr]isaiiis +  (R sRi) (Rs +  Ri)2msm^is)
+

2 Ri

+(RsRi)1/2{RsN sr)sl +  RiNirjis)

( R w  + i R s R ^ m s ) 2 
(Rs -f Ri)Ninis

3N
(  2 R 2r)sa ss +  (RsR i)1/2(Rs +  Ri)r}siasi 2 Rfrjiau + (RsRi)l/2(Rs +  Ri)rjisais \
\  (RsVs +  {RsRiY^Vsi) (Rim +  (RsRiY^ms) J
1 /  4R2T]sr]siass +  4 R 2(RsR i) ^ 2(Rs +  Ri)r]sr]2la sssi +  (RsRi) (Rs +  Rjfrjhasi

+ 2(RS +  Rt) ^ (RsVs +  (RsRiV^rjsi)2

4R?r)ir)isa u + 4R? (RsRi)1/2(R3 + Ri)r)irj?saius + (RsRi)(Rs +  Ri)2r]fsais
(Rim + ( R s R ^ m s ) 2

(6.35)

+  -
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6.2  C alcu lation  o f th e  E ffective M od u li

As with all our previous work to calculate the effective moduli, we impose an incre

mental deformation upon the initial configuration. A small sphere on the boundary 

will undergo a further displacement

(6.36)

and similarly a large sphere will undergo a further displacement

’ (6.37)

The uniform strain approximation, as used in Chapter 5, assumes that the centre of 

the n th  small sphere would be displaced by an amount

=  teiirfSj (®-38)

and a similar expression holds for a large sphere. Again, perturbing this approximation 

as we have already done for the initial problem, then upon application of the boundary 

displacement, the centre of a typical small sphere, the n th  say, is displaced by an 

amount

(6.39)

and rotates about an axis through its centre by an amount

Su(s)i = 6Q(s)i +  Sujfy.  (6.40)

A typical large sphere, the nth, is displaced by

=  Je,,X (W +  «<"> (6.41)

and rotates by

&*>(i)i =  +  to ™ .  (6.42)

Again, we consider the equilibrium of forces and moments acting on each sphere. These 

conditions allow us to find approximations for the perturbation terms. For a small
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sphere the following equations must hold, we have

E iF("S) + E =° <6-43)
n ' sm all  n '  large

and

E E < 0 >AI M ) =  0 (6.44)
n' small  n ' large

and for a large sphere we have

(11) ^  (Is)
n '  large n '  small

and

E < F ^ ') A I|^ ', + E ^  A 1 ^  =  0. (6.46)
n '  large n' small

The incremental forces acting on the n th  sphere due to its contact with the n 'th  sphere, 

tha t is and \  are given in equations (5.71), (5.73)

and (5.72), respectively. We expand the terms in these expressions, as we did for the 

initial part of the problem, equations (6.6), (6.7) and (6.8) and then substitute these 

expressions into the equilibrium equations above. We again make assumptions about 

the order of the terms in order to enable us to calculate first order approximations 

for Su\n  ̂ and We find that to first order, the centre of the n th  small sphere is

displaced by an amount

0U(s)i — 0eiJ^(s)i

3 ( _    (2 R 2,nsJ \ : lk + (■RsRi)1/2(Rs + R i ) v s i J $ k)
2B ( l - A ) S e ik  L l i j f l i

(6B  +  C) |  1 R srjs +  (R sRi )1/2^

( 2 R h s N ^ ) t r i + ( R , R l y / \ R s  +  HQWVg&rt

+  6rt y R sr]s +  ( R s R i ) l 2̂Vsi

A , '  , . r r . , , J ^ R h s J l X  + ( R M ) 1/2{Rs + R,)nsIJ l X \
5 (StpSir + StrSip + SuSp r )  I + ( ^ 1 / 2 ^  I

(6.47)

where and N ^ tri are defined in an analogous way to , which was seen

previously in Chapter 3. However, the extra subscripts allow us to distinguish which
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size of spheres are used in the calculation. Thus we have

M-hO _  J_ Ann’) Ann’) Ann')
(ss)tri „ /  -j (ss)t (ss)r (ss)i V /

ls n' small

and
7\r(n) _  1 Ann>) A nn') r(nn') fa 4Q\
iy(sl)tri — 2 ^  1(sl)t (sl)r 2(sl)i '

' n’ small

In this chapter we are purely interested in hydrostatic initial conditions and from the 

equation for equilibrium of moments we then also find that to first order:

=  °- (6-50)

The displacement of the centre of the n th  large sphere is found in the same way by 

considering equilibrium of the n th  large sphere, we calculate:

=  S e a X $  (6.51)

2B(1 -  A)6eik 

+C5ert

(2RhsJ$)k  +  (RsRi) l/2(R* +
(6B +  C) |  v '  R m  + (RsRi)V2r)U

™ f a N (U)tri + (RsRi)1/2(Rs + R i ) v i , N $ )tr

A .  . (^RfviJ^u)p
^\*tpdir T OtrVip T vitupr) I

Rim +  {RsRiY^ms

(ls)pi R f a J m l  +  (RsRi)l/2(Rs +  Ri)msJ $
Rim +  (R sRi)1/2ms

and again

=  0, (6.52)

with and N $ )tri defined in the obvious way:

and

= -  y  4 r , ' )4 7 r ')4 7 v ) (6-53)(ll)tn „ /  -j {ll)t (ll)r \ll)i v >
n’large

n £ \ ,  = —  T  (6.54)(Is)tri  „  (ls)t  (ls)r  (ls) i  '  '
’ n’small

From these approximations for the displacements, it is now possible to find expressions 

for the incremental forces acting across the contact area. The actual expressions found
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are again all very lengthy and will be omitted here. However, the methods used to 

find them are all identical to those already described in previous sections. From the 

incremental forces, the average incremental stress is found in terms of the average 

incremental strain and from this the effective Lame moduli can be written down.

Next then, we need to calculate an expression for the average incremental stress and 

relate this to the average incremental strain. We have calculated the incremental forces 

acting and the general expression that relates these to this stress is given below:

Having substituted in the expressions for the incremental forces, we define further 

parameters. These are analogous to the x  introduced in Chapter 3 which was defined

as:

We also have some x  terms which are defined as a sum, similarly to a sssi and 

since they can again arise from two different averages. If we again let N(s,l)r}(s,l) = 

N s(rjs +r]sl) + Ni(rji +  rjls), then we define

< bOij > { N M < »

+ N m R l(< $?/> F {™ ? > + < ^ S F ^ P  »  

+ N ar,3lR , «  > + < I ^ S F ^ P  »

+NlrUsR l«  I ^ > S F ^  > + < i f f i S F f f i  » } .  (6.55)

Here we now have:

and

(6.56)

1
(6.57)
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and

XllU 3N(s,  I) ^  N (u)ijkN {is)ijk- (6-58)

The parameter Xsssi arises from the two average terms < ^"s".* rfs")k N (si),jk >

and <  > and we note th a t

r(nn ') r(nn ') r(nn ') N (n) Vsl
( ss \ i  (ssM (ss \k  ( s l ) i ik  oA7Y~ 7\ — i \ X s s s l

and

Similarly,

and

( s s ) i  ( s s ) j  ( s s ) k  ( s l ) i j k  3 N(s,l)r}(s,l)

J n n ' )  J n n ' )  A n n ' )  N ( n )  ^  V s

( s i ) i  ( s i ) j  ( s i ) k  ( s s ) i j k  3N(s,l)r}(s,l )X

J n n ' )  M i n ' )  J n r i )  N { n )  ^  _  V i s

Hu)j > ) *  JV(!s)«t 3N(s , l )n{s , l )Xm‘

A n n ' )  A n n ' )  J n n ' ) *r(n )__________________V l ________
<  \ i s ) j  " W i j k  3N(s, l)r i(s, l )X“h '

T h ese new defin itions allow us to  calculate the following expressions, th e first o f w hich is 

th a t for th e average increm ental stress. W e have, AT(s, l)r](s, I )  = N s(r/s +  r]si) +  N i ( m  +  

T}is) and we let Ri(sJ)ri i(s, l )  = R sr]s 4- (R3Ri) 1̂ 2iqsi- Sim ilarly, let R 2 {s,l)'H2 (s,l) = 

R i m  +  ( R s R i ) 1 / 2 m s  and hence

> =  . V B i w l o  {-3N $ k r : T )  K ^  +  jV̂

A-{RsN 2r]2i 4- R i N 2r]2s)(RsRi)1̂ 2(Rs 4- Ri)j 4- — )(5ikSji 4- 6u6jk) 4- — SijSki'j

_3 i  p 7 i\ b R l N h s W ^ s a s s  +  (RsR i)1/2(Rs +  Ri)r)s7lsias8sl)t R\  (s, l)T]i ( s ,I)

+{RsN sr]si 4- ^A rir?/s)(i?sHi)1/2(2i?s7?<i77sia sssZ +  (R sRi)1/2{Rs 4- i2()r/8ta 8f)]

+
1

2R2 N 2m (2R2moiu +  (R sRi)l/2(Rs + Ri)mmsomis)
R2{sJ)rj2(sJ)

+(RsN sr]si 4- RiNims)(RsRi)1/2(^RfmVMiis  +  (R sR i)1/2(Rs + Ri)msOisij\ }

1
6 B + C

L s ( l  -  A) ( b  + ? p )  -  (SikSjt + SuSjk)

+ % (4B(1 -  A) -  7CA)SijSkl 
o

3 C2

+  A  ( 5 i k & j l  +  f i i l f i j k )  +  - j r S i j S k l ' j  |

{ p ( /V ( n [2N^ R l10(6B +  C)
[2 ig r / 8 (2 (2 a  S S  X . S S  4" (3Xss ^ s s ) 4" $ i l f i j k ) )
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+{RsR l)l/2(Rs 4- Ri)rjsr]si(2(2asssl Xsssl)^ij^kl 4" (3*S ssl &sssl )(5ik8ji 4- Sirfjk))]

+ (RsN sr]si 4  R iN 1t}is)(RsR i)1̂ 2

[ 2 R s T]sTjsl{2{2asssl Xsss l) f i i j$k l  i^Xsssl Qisssl){.&ikfijl “I- ^il^jk))

+ { R sR i) 1/2( R s +  Ri)'Hsi{2{2asi -  Xsi)$ij?>ki +  (3Xsi ~  a si){Sikdji +

[2 N m Rf
\ R 2{s,l)r)2(s,l)

[2Rjr)i(2(2au — xu)^ij^ki 4  (3Xu ~~ &ii){fiik$ji +  Sitfjk)) 

+ ( R sR i)1/ 2( R s 4- Ri)r]irns(2(2aiiis -  xuis)^ij^ki +  (3xnis ~  auis){5ik8ji +  Sirfjk))]

+(RsN srisl 4  R iN iT}is)(RsR i)1̂ 2

[2Rirn7lis(2(2anus -  Xiisi)5ijfai +  (^Xuis -  auis){f>ik8ji + SuSjk))

+(RaRl)1t2(R, + Ri)r}si(2(2ons -  xis)SijSki 4- (3Xis — <*is)(SikSji +  ^ jjfc ))]]}

+3A ^  ^  ^ N s T j s R ^ R ^ a s s  4- R t{Rs +  Ri)2r]sr]siasi

1 ad ( t> t> \ 1/2 2 i , {RsNsr]si RiNir)is)(RsRi)^/2 ^
+4R s{RsRi) ' risr)sla sssl] + ------------- (R ~+ R fi--------------[4RsVsT1sL(Xss

+ ( R sR i) ( R s 4  Ri)2ri2iasi 4- 4R ^ R g R i )1/2 (Rs +  Ri)r}sr)2iasssi\] 

^N ir j iR ^R fr j f  an 4- R S{RS +  Ri^mmsOiis
{R2{s,l)r]2{s,l))2

I A T > ( T >  d  \ l/2  2 1 1 { R s N s TJs l  +  R l N l T ) l s ) { R s R l ) ^ / 2  r ̂  D444 Ri(RsRi) T)i T)isQtius\ 4 ------------- 7p T  5  \-------------- [4 H ?m aa!u(xt5 +  -/t/J

4-{RsRi)(Rs +  Ri)2r)fsais 4  4R f ( R sRi)1/2(Rs + i* 0 W s a i« j ] }

(
C7\2 C /  7 C \

B  4  — j  (SikSji 4- SuSjk) 4- — \6 B  4- SijSki

(J^B  4  {Sik^ji 4  SuSjk) +  — SijSki'j | |  Seki. (6.59)

(14B 4  3C)

Thus we have the relationship between the average incremental stress and incremental 

strain which allows us to calculate the effective elastic Lame moduli for the material. 

The initial deformation was hydrostatic and so we have

< Saij >= C*jkl < 6ekl >

where

C*jki — fiijfiki +  fJ>*{8ik5ji 4  SuSjk).
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Hence, the effective Lame moduli for a binary packing of spheres are given by

V  =  5 , V b S 1  C) { 15 I) i2N^ R ‘ +  N^ ‘ R ‘

+ (R ,N ? n l  + RiN?r, l) (R ,Rl)ll2(R,  +  fl,)]

“ F 1 p /" 7T~ ( ~'iT \2R2sNs'ns{2R2s'nsa ss +  (R sR i)1/2{Rs +  Ri)risriala sssi)

+ (RsN sr)sl +  R iN lrjls)(RsRi)1/2{2R2s'nsr]siasssi +  {RsRi)1/2{Rs +  Ri)rjsla si)  ̂

+  p  , , !  ; - . v  \2RfN?rn(2Rfrnau +  (R3Ri)l/2(R3 +  Ri)mmsOnus) 

+{RsN sr]si + RiNirHs)(RsRi)1/2 (2R2rnrnsams +  {R3Ri)l^2(R3 +  -Ri)?7(sQ:s/)j |

{ g b T c  [4B(1"  A) ~  7CA)  +  A{6 B  +  c)1}

“ 2(6B  + C) l)m(s, l) [2NaTI’R2‘

[AR2T}s{2ass -  Xss) +  2{RsR l)1/2(Rs +  Ri)ri3rial{2aas8i -  Xsssi) 

+{RsN sr}sl +  RiNirH^iRsRi)1/2

[ARsTisVsi(2oisssi Xsssi) -k 2(RsRi) I (R s +  R i)t]si(2qi3i Xs/)j

{ R 2(s,i)m(s, i)  [2NimR2 
[4R2T}i(2au — xu) + 2(R3Ri)1/2(Rs + Ri)r)ir)is(2onus — xuis) 

+{RsN st]si +  RiNiT]is)(RsRi) 1̂ 2[4Rir}iT)i3(2auis — XUsi) 

+2(RsRi)1/2{Rs +  Ri)r]3i(2ai3 -  xi*)]}

+3A { [2Nsr)8R 2s[4:R3sri2a ss +  R t{R3 +  Ri)2f]sT]3ia3i

I a p ( p p \l/2 2 l i { R s N 37]sl +  RiNiTJl3) ( R 3Rl)  ! |-/1 p4
+ 4 R s { R sR i ) L/zri;risla sssl\ + --------------(fl" +  R t)-------------- [4Hsr/s?7s/Q;ss

-\-(RsRl) (Rs +  Ri)2T)2ta si +  4H2(JRs.R/)1/2(.Rs +  Ri)r]377s/a sss/]]

+ ^ 2 N i r ] i R 2 [A R fr } 2 a i i  +  R S { R S +  R i ) 2 ViHsOUs
{ R 2 ( s , l ) r i 2 { s , l ) ) 2

, a p  / p  p \ l / 2  2  1 i { R s N 3 T]sl 4" R iN itji3) ( R 3R i) !  t A  p4
+ 4 /2 /( i2 si?z) ' T7Z r j i 3 a i i i 3 ] H----------------------------------^ ------------------- [4.R/77/77/5 0 ;//

+ ( i? s i?z)(i?5 +  R i ) 2<n 2s a i s  +  4i?2 (i?si? /)1 / 2 (i?s +  R d m ' n l s «///«]]}

f 4 L n  7C1 A U  r 
{ (14B +  3C) +  2 . 2 J J 6kl

and also

M irVB{2B + C) { 3 N(s,l)r){s,l) [2iV« ^ ^  +  ^ / 77/ i?f

(6.60)
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+ ( R sN W s i  +  R iN 2t]2s){r sr 1) ^ 2{r s +  Ri)} ( b  +

~ ' 3  ^ l ) r } \ ( s  l )  ^ s ^ ‘R ,s 'n s0iss  +  ( R s R i )  ^ { R s  +  Ri) 'H s 'ns io is s s i )

+ {R sN sr)si +  R lN lr}ls){RsR i)1/2{2R2srjsr]siOisssi +  (R sR i ) 1/2{ R s +

+ ~d ~ (— n— 1— n  +  { R s R i ) l l 2 { R s  +  R d v w i s O t u i s )
R2{s,l)ri2{sJ)  L

+ {RsN sr]si +  R lN l7]is){RsRi)1/2(2R2r)ir)isauis +  (JRsi?./)1/2(i^s +  i^ isO 'sz)] }

3C2 f 1 r 2
~  10(65 +  C) U i ( s , / h i ( s , / )

[2i?2r7s(3xss -  a ss) +  {R sR i)1/2{R s +  Ri)r}srisi{3Xsssi ~  < w )]

+ {R sN sr)sl +  RiNir}is){RsR i)1/2

f t R s ’n s 'H s l fo X sss l  & sss l )  "F { R s R i )  ^ { R s  T  R i ) r i s i { 3 X s i  ^ s z ) ]

[ r 2 { s  l ) r j 2 { s  I )  -  < x u )  +  { R s R i ) l / 2 { R s  +  R i ) m m s { 3 x u i s  -  a l l l a ) ]

+{RsN srisi +  RiNirjis){RsRi) 1̂ 2[2Rir]ir]is{3xiiis -  Oiuis)

+ { R sR l)1/2{Rs + Ri)r)si{3xis -  <*zs)]}

+ 3A  (  / p  > ~,<~ ~ T T \ \ 2 \2Nsr)sR 2[4:R3sr)2a ss +  R t{Rs +  R i)2r)srjsia si ̂(i?l(5,/j77i(s,/))

i a r> ( d d  \ l /2 2 i i {RsNs7lsl + RiNi1fts){RsRi)  ̂ r 4+4JRs(i?si2/)i/ r]srjsiasssi] + -------------------   r-------- [4Rsr}sr}siass
{Hs + Hi) 

+ { R sRi){Rs  +  R*)Ws{Otsi +  4 R 2s { R sR i ) 1/2{Rs + Ri)rj s^st^ssst]] 

[ ^ i m R l i i R f v I a u  + R , ( R ,  + R i f  m u m ,  

+4R i (R sRi) l/2vfvumu,]  +  (R *NsV,‘l + ^ N i i n $)(R,Rt)— [iRfrnriuau
yrCg ~r -tt/j

+ { R sR i ) { R s +  R i )2r)fsais +  4R 2{R sR i ) 1̂ 2{ R s +  Ri)r]irj2saiiis\  ̂j

{ ( l 4 B T 3 C ) ( B +  f ) 2 - l ( B + f ) } fc-
(6 .61)

These are the new results we wished to find.

From these two moduli we can also calculate the effective bulk modulus found using 

=  A* +  | n*. Thus we have

K. =  (~ e )1/2 f Ar f l2 ( 2N.V.R.
3v V B  \  sVs ‘ \3N(s, l)r)(s, l)
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—18A ( 2R%^s^ ss {^sRi)^^2{Rs ~i~ Ri)'Hs'nsia sssi\
\  R i { s , 1 ) t h { s , 1)  )

9A 2 ( 4 R ^ a ss +  (RsRi){Rs + Ri)2rjsirjsa si +  4R2(RsRi)l/2(Rs +  Ri)r]siin2a sssi \  \  
2 R s \  (JR1(s,Z)r7i(5,Z))2 ) ]

+ N ithR } ( 2NimRl _ \ $ a  ( 2 R fo ia u + (R sR i ) l /2 { R s + Ri)rimisai i is \
3 N{s,l)r}(s,l) \  R 2(s,l)r}2{s,l) J

9A 2  ( 4 R f r ] f a u  +  ( R s R i ) ( R s  +  R i ) 2 r ) i s ' n m s  +  4R f ( R s R i ) 1 / 2 { R s  +  R d m s r f a u i s
2R t \  (R2{s,l)r)2{s,l))2

(R sN s7]si +  NirjisRi)
+{RsN sr)si +  RiNirfis |

-9 A

3N(s,  l)rj(s, I)

(  2R2sr)s'0siasssi + (RsR i)1/2(Rs + Ri)ysi^si
y R i ( s }l)r)i(s,l)

| 2Rfrnr]isa iiis + ( i^ if r )1/2 (Rs +  Ri)r)is^is

+

R2{s,l)r}2{s,l) J
9 A 2 ( 4R*r)s7isiass +  (RsRi) (Rs +  Ri)2r\2sla si +  4R2(RsRi )l /2(Rs +

2(Rs + R i ) \  (i?i(s, l)r)i(s, I))2

4Rfrnr]isau + (R sRi){Rs 4- Ri)2ig,fsais +  4R f ( R sRi) 1̂ 2(Rs +  Rdrtf^iam,  
{R2(s,l)r}2(s,l))2

(6.62)

We check this expression for k* in two ways. First, we consider whether it is consistent 

with the initial part of the problem. If we differentiate the expression for the initial 

average stress, equation (6.33), then both expressions for k* are found to be identical. 

Also, if we let R s = R i , then k* reduces to the expression found in Chapter 3 for a 

packing of equal sized spheres. These are only simple checks but give us some indication 

as to whether our calculations are correct.

The results above again all apply only to a packing of infinitely rough spheres. If 

we consider instead a packing of perfectly smooth spheres then from the equations of 

equilibrium we find that the incremental displacement of the centre of the n th  small 

sphere is given by:

«nW =  <Se«4">

2^ < ) . r ,  +  (RsR i)1/2(Rs + R i h r i N l X
RsVs + (RsRi)l/2r)si

1 „  , . r , . , c J ^ V s J ^  + i R ^ H R s  + m V s i j l X  
lg ( M -  + StrSip +  Si tSpr) I + 1/2^,

(6.63)
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where all the terms are as previously defined. The rotation about an axis through its 

centre

**'(»)« =  0- (6-64)

Similarly, the displacement of the centre of the n th  large sphere is

= ^eijx u)\ (6.65)\i)i ~

/  2 R h l N $ tri +  (RsR,)1/2(Rs +  R d r i l s N ^  
Rtfi  +  {RsRi)l l 2r]is

1 „  t . ,  ,  . r . j 2 R f r tlJ ^ p + (RaR l) ^ ( R s + R l)Vl, J ^ p
15( M i r  +  StrSip +  « * V ) I RlVl +

and again

x"'wSu <"> =  0. (6.66)

By substituting back we can calculate the forces acting across the contact areas from 

which we can then find the relationship between the average incremental stress and the 

incremental strain. The effective elastic Lame moduli are calculated in the same way 

as above to be:

A* =
(—e)1/2 / ______1

H R .N jrfi,  +  RiN?rjt,)(R.Rl)1>,i(R, +  fl,)]

I  I D I 1\ r  T\ [2^ sWsr/s(2^ ,?s“ as +  (RsRl)1/2(Rs +  Rl)’hVsiaSssl)5 {Ri{s,l)T]i{s,l) L
+ (R sN st]si +  RiN lT1is)(RsRi)1/2(2R2srisr1sla sssl +  (RsR i ) ^ 2{Ra +  Ri)rjsia8i)  ̂

p .  (  .7 \ 2 R f N ? r n { 2 R f r n a u  +  (i?SJR/)1/2(i?s +  R C j m m s O t u i s )

+ (R sN sr)si +  RiNi7]is)(RsRi) 1̂ 2(2RiT]ir)isaiiis +  (i?si?/)1/2(Rs +  Ri)r]is “ si)]}

i{ 2Nst)sRl\
Ri{s,l)r}i(s,l)

[4R2rjs(2ass -  Xss) +  2(RsR i)1/2{Rs +  Ri)VsVsi{2asssi -  Xsssi)

+ (RsN sr)si +  RiNirjisj^RgRi)1/2

[ARsr)sr]si(2asssi -  Xsssi) +  2(RsR i)1/2{Rs +  Ri)rjsl(2asl -  Xsij\

{f l 2(s , 0  l2 N m R ‘

[4R2r)i{2au -  xu) +  2(RsRi)l/2(Rs +  Ri)rnms(2ocuis ~  XiUs) 

+(RsN sr]si +  RiNiT)is)(RsRi)l/2[4Rir]ir]is(2aius -  xiisi)
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+  ̂  (  ( u  ( i\ ( i\ \ 2 \^Ns7]sR 2s[4:R3sri2sa ss +  Ri(Rs +  Ri)2r}srjsiasi

+2(RsR l)l /2(Rs +  Ri)r]si(2als -  XZs)] }

9- \  L

, at* tr> r> \i/2„2„ ! , ( R s N sr]sl + R t N w ^ i R s R t ) 1/ 2 rAn 4_
+4i?s{R sR i)  risTlsiasssl] +  / - j~y \ [ -̂Rs ŝ ŝZ ŝs(fts +  Hi)

+ (RsRi) (Rs +  Ri)2rihasi +  4 R ^ R g R i ) 1̂ 2 {Rs +  Ri)r)s ̂ sZ^ssszjj

+ -2 [2AT/77/R 2[4Rfi]fan +  R S{RS +  Rifri ims^u(R2(sJ)T]2{s,l)y

. a d l r> r> \l/2 2 i , { R s N sT)sl 4~ RlNiTJis) { R sRi)  ̂ f/i d4+ 4 R i ( R sR i) ' r]i rjisaius] H--------------- ————r-------------- [^R^irnsOLu
\R S 4- Ri)

+ (R sRi){Rs +  Ri)2T)fsais +  4R f (R sRi)l^2{Rs +  Ri)mr)fsotms] \}}  8ekl

(6 .6 7 )

and also

H

+

=  l ^ T  { 1 5 +

+ ( R , N ? t f i  +  R i N h D i R s I k ) 1 ! 2 ^  +  B,)] ( b  +  | )

— — 7t— — jr \ 2 R j N 2r)s {2 R2s risa s,  +  ( R , R i) 1/2( R s +  Ri)r)sr]sla sssi)
(5, 4)771 (s ,/) 

+ { R s N stjsi +  RiNiT]is) { R sR i ) 1/2(2 R 2T]sT]si a sssi +  {R sR i ) 1/2{ R s +  jRzJ^/a,*)] 

D , - ,] - 7 - .T [2i??A^z277t(2^77ta Zi +  ( R sR i ) 1/2{R s +  R i )m m  skills)
R2{s,l)m{s R) L

+ (R siVs77s/ +  RiNir}is) ( R sR i ) 1/2(2Rfr]iT]lsaiiis +  {R sR i) 1/2{R s +  Rz)77ZsO!sZ)] }

' 1 0  [2Ar*’J*fl*

[2i7s 77s (3Xss c^ss) 4“ {R sR i)   ̂ {Rs  4~ Ri)risrisi{3Xsssl <Tsssz)]

+(R siVs77sZ +  R i N i r ] i s ) { R s R i ) 1 / 2 [ 2 R s r ) s r i s i { 3 x s s s i  -  a s s s i ) +  { R s R i ) 1 / 2 { R s  +  R i ) r ) s i { 3 x s i  ~  <*sz)]

{^ (s iy % (7 7 ) _ a«) + (RsRz)1/2(Rs + Ri)mms(Zxius -  <*zzz

4-{RsNsr]si + RiNirjis){RsRi)l 2̂[2Rir]ir}is{3xiiis ~ auis)

+ { R s R i ) 1 / 2 { R s  +  R i ) r ) s i { 3 x i s  ~  a/s)]}

4- —
1 I A ~Or.~3 2.

50 1 {Ri{s,l)r]i{s,l))2
2Âs77si?f[4i?5 772Q!ss + Ri{Rs + Ri) r]srjsiasl

1 a d ( r> d  ^1/2 2 1 1 {R s N sT]sI 4" RlNiT]is){ R sRi) ! [ , (  d 4+4Rs{RsR i) ' r]gT]siasssi\ + --------------— — --------------[4RSTjsr]siass
\ i i s  I -til)

+ {R sRi){Rs 4- Ri)2,n2sla sl + 4R2s{RsRi)l/2{Rs + Rz)77s772za sssZ]]

+  (B2( s , i ) l ( M ) ) 2 [2JV,’),'R?[4fl,3,"2“ " +  ^  +  i?,)2’m sa is
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, AnfTi  n> \l/2 2 l , {RsNsTIsI 4" RlNlT]is) ( R sRi )^ /2 r ̂  p4 
- \-4Ri{RsRi)  1 rji m soiaisJ 4 ---------------, p , p .-------------- [4R t misCtu

( x l 5 +  i t l )

+ ( R sR i ) ( R s + R i )2rifsa is +  4R 2( R sR i ) 1̂ 2( R s +  R^rjirj^ams]^ }} Seui- (6.

From these two moduli we calculate the effective bulk modulus, k* = \* + | fi*. We 

find

( - e ) 1/ 2 /  iV 77 E 2 { 2N ^ sR s__
ZnVB

g  f  ‘Z R 's 'H s& SS  4" { R s R l ) 1/  ( R s  d" R ^ V s V s l ^ S S s l ^  

y i?l(s,/)7/i(s,/) J

 1_ / 4R*r]2a ss +  (R sRi){Rs 4- Ri)2T}siT]sOcsi +  4R2(RsR i)1/2(Rs +  Ri)r]3ir]2a sssi \  1
2-Rs V (Ri{s, l )m{s, l))2 )  J

. Ar r,2 f 2NimRi c ( 2Rfmotu +  (R sR i)1/2{Rs + Ri)mms^ ius \+ N lrilR l < -n- -  63N{s,l)ri(s,l) \  R 2{s,l)ri2 (s,l) J

1 / 4 Rfrjfau -1- (RsRi ) (Rs + Ri)2r}isr)lais 4- 4R‘f ( R sR l)1/2(Rs +  Ri)rjisri}ama 
2Rt V (R2 (s,l)r}2 (s,l))2

, t n  at i d Ar„ f ( R . N . n ^ N i m M )
+ ( R * N s V . i  +  R i N i V i s  \  3 N ( s J ) v ( s j )

„ f  IRslsVsiotsssi 4“ (RsRi) / (fls 4“ Ri)risiasi 
y Ri(s,l)rji(s,l)

t 2R?r)ir)isonils +  (JRsi?/)1/2(i?s 4- Ri)r)lsa ls\

+

R2(s,l)7l2{s,l) J
1 (  4R*r)sr}stass +  (R sRi){Rs +  Ri)2r]2sloisl + 4 R 2(RsR i)1/2(Rs + R O r /^ass s i

2 (Ra + R i ) \  (Ri(s,l)rji(s,l))2

4Rfrnr)isau +  (R sRi) (Rs +  Ri)2rjfsais +  4R?(R8R l)1/2(Rs +  Ri)7]fsr}iauls\  \  \
(R2(s,l)rl2(sJ ) )2 ) } } '

(6.69)

We check this by setting a  = x  = 0 and Rs = Ri when the modulus reduces to 

previously obtained results.

In order to compare all of these new theoretical results with those of the numerical 

simulations of Jenkins et al. [43], we must determine the values of each a  and x • The 

computer simulations that are used to do this are described in the next section.
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6.3  T he as  and x s A rising in a B inary  Packing

In order to find numerical values for each a  and x  defined earlier in this chapter and 

occurring in the expressions for the effective elastic moduli we proceed as we did in 

Chapter 4 when considering a packing of equal sized spheres. We wrote computer 

programs to simulate the spheres in contact with one and then repeated the run many 

times to find an average value.

In order to do these simulations, we must know the average co-ordination number 

of each different size of sphere. As Jenkins et al. [43] only discuss the co-ordination 

number used for a packing of equal sized spheres, we must again use the work discussed 

in Chapter 5, tha t of Dr. Luc Oger [62], to determine the value of these. We recall 

that he simulated a packing in which there were 16717 small spheres and 1383 large 

spheres, that is 92.4% of the spheres were small. This gave the average number of small 

spheres in contact with a typical small sphere as 4.91260 and also 0.73207 large spheres 

in contact with this small sphere. For a typical large sphere, there were 1.49964 other 

large spheres in contact with it and 8.85972 small.

As in Chapter 4, we cannot specifically calculate the values of the a  and x  terms for 

these co-ordination numbers using our simulations. Instead, we calculate the parameter 

values for the two nearest whole number co-ordinations and then combine these in 

proportions to find an estimate of the values required. As we shall see, here we must 

simulate various different cases for the number of small and large spheres in contact. 

As was the case in Chapter 4, an especially important thing in the calculations is to 

impose a condition of no overlap between spheres. Also, we require equilibrium of each 

sphere.

The general algorithm for picking the co-ordinates of each sphere was very similar to 

that used for equal sized spheres. We again used the co-ordinate system (r, 0, 0) such 

that the centre of the first large sphere was at (0,0,0). Then 6 and 0 were chosen such 

that the centre of the first small sphere in contact with this had co-ordinates (2.7,0,0). 

The unit vector directed along the line of centres was then (1,0,0). A large sphere was 

then chosen to be in contact with the first large sphere such that 0 =  0, but with 0 

picked randomly in the interval [0.891, n\. The rest of the spheres in contact with the 

large were then chosen at random. These were mostly small spheres, so 6 was picked in
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the interval [0.759,7r] to avoid overlap with the first small sphere chosen. When another 

large sphere was also chosen, we again pick # G [0.891,7r], imposing the condition of no 

overlap (described later).

The program chooses a random number p say, this falls between [0,1] and so we let 

0  =  2np. In picking 0 correctly, we need to ensure that the contacting spheres are 

distributed with an even probability density. As we have mentioned for the large spheres 

chosen we require 6 to be contained in the interval [0.891,7r] and thus sin# G [0.777,1] 

or [1,0]. Similarly, for the small spheres chosen, we require sin# G [0.688,1] or [1,0] 

and we want the values to be chosen uniformly on these intervals. The size of the 

area [#,# +  66] is sin #<5# and the number of values we pick in a given area must be 

proportional to tha t area. We notice

sin 9 d 9  =  1 +  cos #

and that

f  sin #d# =  1.629J 0.89

and

[  sin 9 d 9  =  1.726.J 0.759

From this we can see that for a large sphere we must have 1 +  cos # G [0,1.629] which 

then gives the condition cos# G [—1,0.629]. Hence, to define a random # for a large 

sphere we let # =  cos-1  {1.629<j — 1}, where q is a second random number. Similarly, 

if we are trying to pick a small sphere, we must have cos# G [—1,0.726] and then let 

# =  cos-1  {1.726<7 — 1}. The unit vector l(nn/) joining the centre of the n th  sphere to 

the n 'th  is found using l(nn/) =  [sin#cos0 , s in # s in 0 , cos#].

We must check tha t the current sphere does not overlap with the ones already cho

sen. If the unit vector joining the centre of the n th  sphere to a contacting one is I I  =  

[sin #i cos 0 i , sin #i sin 0 i , cos #i] and that of a second 12 =  [sin #2 cos 02 , sin #2 sin 02 , cos #2] 

then we must ensure that the angle separating these two is not less than 7r/3  for two 

neighbouring large spheres, 0.759rads for two small spheres and 0.891rads for neigh

bouring small and large spheres. We check that the cosine of the angle between them 

is not greater than 1/2, 0.726 and 0.629 respectively. Now, the cosine of the angle
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between these unit vectors is given by

cos A =  sin(0i) sin(02) cos(0i — 6 2 ) +  cos(#i) cos(02)>

we throw away this last sphere if cos A is not within the required limits. We repeat 

this test until the current sphere has been tested against all the other spheres. It can 

be very hard for the computer to find a ‘gap’ to put another sphere into and so if after 

one hundred tries it does not succeed then we throw away all the spheres chosen at this 

point and start again.

This process of picking random numbers and subsequently co-ordinates for the sphere 

centres is repeated until the required number of non-overlapping contacting spheres 

has been found. In this case, in order to determine all the as and x s we must also 

consider a typical small sphere and so we randomly pick spheres in contact with one of 

the small spheres from the first part of the simulation. We chose to consider the small 

sphere whose centre is at (2.7,0,0) and pick the required number of small spheres in 

contact with this. This sphere is already in contact with one large and we do not pick 

anymore large spheres.

The small sphere we consider is already in contact with the initial large sphere and 

in order to chose random small spheres around the one in consideration and ensure 

no overlap with the large, we chose 6  uniformly in [0,7r — 0.891]. We let 6  = ir — 

cos-1 {1.629r — 1}, where r  is a random number between 0 and 1. We must also ensure 

that the current small sphere does not overlap with any of those in contact chosen in 

the first part of the simulation. Hence, we check that the distance between the centre 

of the current sphere and those touching the initial large sphere is greater than or equal 

to 2.

We proceed to chose the rest of the spheres in the same manner as before until we have 

chosen the required number. At each stage we check that there is no overlap between 

the current sphere and the other spheres touching the small sphere and also no overlap 

with those from the first part of the simulation. We throw away all the spheres chosen 

and try again if at any point we have attempted 100 times to place a sphere and do not 

succeed. We also check that the small sphere is in equilibrium using the same methods 

as those described in Chapter 4.

C h a p t e r  6 201



6.3. THE aS AND *S ARISING IN A BINARY PACKING

The vector J  and matrix N  can be determined by summing components or products 

of the components, of the unit vectors along the line of centres between spheres. From 

these the values of a  and x can be calculated. A typical program is shown as an 

example in Appendix C.

As mentioned above, we consider different combinations of small and large spheres in 

contact in order to determine estimates for the a  and x  terms. The average number 

of small spheres in contact with a particular small sphere is between 4 and 5, tha t for 

large spheres touching a small between 0 and 1. We have an average of between 1 and 2 

large spheres and between 8 and 9 small spheres touching a typical large sphere. Hence 

we must consider the following combinations of contacts:

• 0 large and 4 small spheres in contact with a small sphere,

• 0 large and 5 small spheres in contact with a small sphere,

•  1 large and 4 small spheres in contact with a small sphere,

• 1 large and 5 small spheres in contact with a small sphere,

• 1 large and 8 small spheres in contact with a large sphere,

• 1 large and 9 small spheres in contact with a large sphere,

• 2 large and 8 small spheres in contact with a large sphere,

• 2 large and 9 small spheres in contact with a large sphere.

The table below shows the results of the calculation of the as and xs. The combinations 

are abbreviated so as to be more compact, for example, (U4s)s, (ll8s)i represents the 

combination of items 3 and 5 from the list above. We notice that we have found 

negative values for some of the parameters. We did not find any negative values in 

Chapter 4, when considering equal sized spheres, but they are to be expected here. 

Calculation of the parameters in Chapter 4 reduced to finding the value of a squared 

term, for example, some multiple of |j ( n)|2 and thus, these were always positive. The 

parameters in this chapter cannot all be reduced in this way. Negative values arise in 

those parameters which consider the average over a product of two components which 

are related to different sized spheres in contact with the original sphere. For example, 

a sssi = 3jv(3,i1)r;(s i) J(ss)iJ(si)i? considers contact of a small sphere with both small
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and large spheres. For most sphere arrangements, this kind of product will consist of 

a combination of two components which are opposite in sign.
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Parameter (0/4s)s (0/5s)s (l/4s)s,

(l/8s)/

(l/5s)s,

(1/85)/

(l/4s)s,

(l/9s)/

(l/5s)s,

(129 )̂2

(l/45)s,

(2285)2

(l/55)s,

(2285)2

(1/45)5,

(2/95)/

(1/55)5,

(2/9s)/

(*ss 0.0153 0.0132 0.0234 0.0343 0.0211 0.0321 0.0248 0.0199 0.0239 0.0200

&sssl -0.0084 -0.0061 -0.0080 -0.0055 -0.0091 -0.0066 -0.0086 -0.0065

(*sl 0.0238 0.0222 0.0222 0.0208 0.0222 0.0208 0.0208 0.0196

Oils 0.0085 0.0078 0.0074 0.0069 0.0095 0.0084 0.0075 0.0075

OiUls -0.0029 -0.0028 -0.0027 -0.0025 -0.0024 -0.0022 -0.0021 -0.0019

ail 0.0238 0.0222 0.0222 0.0208 0.0176 0.0178 0.0172 0.0157

Xss 0.0457 0.0300 0.0236 0.0307 0.0216 0.0289 0.0237 0.0184 0.0228 0.0181

Xsssl -0.0177 -0.0165 -0.0177 -0.0143 -0.0199 -0.0191 -0.0175 -0.0184

Xsl 0.0238 0.0222 0.0222 0.0208 0.0222 0.0208 0.0208 0.0196

Xls 0.0092 0.0086 0.0076 0.0071 0.0096 0.0089 0.0079 0.0085

Xllls -0.0205 -0.0184 -0.0205 -0.0195 -0.0344 -0.0321 -0.339 -0.0312

Xll 0.0238 0.0222 0.0222 0.0208 0.0190 0.0182 0.0180 0.0168
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From the simulations of Dr. Oger [62] discussed in Chapter 5, we have that r]s = 

4.91260, r)i =  1.49964, r)si = 0.73207 and r]is = 8.85972. To find an approximate value 

for a Ss> for example, we take the following combination of the results

c*ss =  0.27(0.91a:ss(0/5s) + 0.09ass(0/4s)) +  0.73 (0.91{0.5 (0.86ass((l/5s)s, (U9s)i)

+ 0 .14a„((l/5a)„  (l/8s)z)) +  0.5 (0.86a„((l/5a)„ (2/9s)*) + 0 .14a„((l/5a)„ (2/8a)i))} 

+0.09(0.5 (0.86ass((l/4s)s, (l/9s)/) +  0 .14a„((l/4s)s, (1/8s)*))

+0.5 (0.86ass((l/4s)s, (2/9s),) +  0 .14a„((l/4a)„ (2/8s),))}), (6.70)

using obvious notation.

This yields a value of 0.0225 for a ss and similarly the other values are found and are 

given in the table below. We find

Ckss

0.0225

Qsssl

-0.0046

&sl

0.0150

«/s

0.0054

OiUls

-0.0016

an

0.0146

Xss

0.0257

Xsssl

-0.0122

Xsl

0.0146

Xls

0.0058

XlUs

-0.0186

XU

0.0058

Thus these approximate values for each can be substituted back into the expressions 

for the bulk modulus, «*, equation (6.62) and the shear modulus, //*, equation (6.61), 

in order to estimate the change in the values of the effective moduli. The modified 

values are shown in the fourth column of the table below which compares the results 

of this chapter with those obtained previously:

Modulus

Numerical

Simulations

Walton’s

Theory

Theory 

Chapter 5

Theory 

Chapter 6

Bulk 185MPa 245MPa 135MPa 116MPa

Shear 127MPa 338MPa 186MPa 171MPa

The values of both moduli have decreased again. This decrease is quite large, it shows 

that the uniform strain approximation is not particularly good for describing a binary 

packing of spheres. As we mentioned before, small co-ordination numbers make the 

approximation inaccurate and we have dealt with a lot of small co-ordination numbers 

in this chapter and Chapter 5, thus we would expect there to be a large change.
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Unfortunately, the bulk modulus has moved further from the value of 185MPa given 

by the numerical simulations, however the shear modulus has improved again, its value 

coming closer to the 127MPa predicted in the simulations.

6 .4  C o n c lu s io n s

Throughout this thesis we have tried to bring closer correlation between the predicted 

values of the effective elastic moduli from numerical simulations by Jenkins et al. [43] 

and those from theoretical methods. The results are all summarised in the table below:

Modulus

Numerical

Simulations

Walton’s

Theory

Theory 

Chapter 3

Theory 

Chapter 5

Theory 

Chapter 6

Bulk 185MPa 245MPa 223MPa 135MPa 116MPa

Shear 127MPa 338MPa 308MPa 186MPa 171MPa

In every chapter of this thesis there has been closer correlation between the theory and 

simulations than there was between Walton’s theory and the same simulations.

Our first modification to the theory was the work done for Chapter 3 which involved 

modifying the uniform strain approximation for equal sized spheres. This yielded im

proved predictions of the effective moduli, however the change was only around 9% for 

each modulus and so the correlation between the results were still not good. This is 

especially true of the value predicted for the shear modulus which from Walton’s the

ory was nearly three times that of the simulations. A possible further extension of the 

work in Chapter 3 would be to consider some higher order terms in the perturbation of 

displacements and rotations of the uniform strain approximation. However, this would 

still not result in a significant reduction in the shear modulus as is required.

In Chapter 5, we continued by extending the uniform strain approximation to binary 

packings of spheres. The results were significantly different from those previously ob

tained by Walton and our work in Chapter 3, the shear modulus was brought much 

closer to the simulations. We conclude that a few large spheres amongst a packing 

of small can make a big difference to the properties of the packing. Since many of 

the co-ordination numbers used in this chapter were small, we believed that using the 

uniform strain approximation was alright as a first approximation but that we must
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again look at first order perturbations of the displacements and rotations of the sphere 

centres. This idea was considered in this final chapter, where more new values for the 

effective moduli were predicted as seen above.

The results from the theory are still not identical with those of the simulations but 

we have made significant progress with the work we have done. It is possible that 

there are other factors in the simulations that affect the results but which would be too 

complicated to include in the theory. In real packings and simulations, for example, each 

sphere does not have the same co-ordination number and this can vary greatly across 

the packing. When Dr. Oger [62] sent the results of his simulations and gave results 

for the average co-ordination numbers of small and large spheres, he also included a 

table which identified the exact co-ordination number for each sphere. This is shown 

below.

Co-ordination No. of Large No. of Small Between Large Between Small

Number Spheres Spheres and Large and Small

1 0 0 527 87

2 0 0 359 533

3 15 257 131 1830

4 6 1619 16 3821

5 12 5517 1 4861

6 7 6373 34 3695

7 18 2405 21 1427

8 88 458 2 372

9 202 87 0 83

10 345 1 0 1

11 359 0 0 0

12 217 0 0 0

13 93 0 0 0

14 20 0 0 0

15 0 0 0 0

16 1 0 0 0

Then, for example, in a packing of 16717 small spheres and 1383 large spheres there 

are 345 large spheres with co-ordination number ten and just one small sphere with
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co-ordination number ten. Clearly, it would be extremely cumbersome to include these 

statistics into the theoretical results but it may be that this variation has an effect 

on the properties of the packing. We have shown how co-ordination number affects 

the accuracy of the uniform strain approximation in Chapter 4 when we discussed the 

numerical value of a  which gives a measure of the deviation from ideal behaviour. For 

a sphere with only three or four contacts the uniform strain approximation is poor 

and then maybe first order perturbations are not enough. The varying co-ordination 

number is automatically present in the simulation.

Presented in this thesis are a few ideas which have improved the correlation between 

the results predicted by theory and those found using numerical simulation. We should 

note however, that there are still a couple of concerns that remain unanswered within 

the work presented. The first is the fact that in the theory, we predict values for the 

bulk modulus which are less than those for the shear modulus, whereas the simulations 

by Jenkins et al. [43] predict the exact opposite, that is fi* < k*. At present, the author 

does not have any explanation of why this might be so. The second problem that has not 

been addressed completely, is tha t of the force chains tha t are present in the numerical 

simulation sphere packings, as discussed in Cundall and Strack [25]. In Chapter 3, we 

mentioned how our force expressions have the scope to lead to significantly different 

magnitudes of force, acting on different contact areas. However, we have not been able 

to predict exactly how these forces vary throughout a packing. It would perhaps be 

interesting to address both this issue and that concerning which of the effective moduli 

is larger, through further work, which could involve finding out in greater detail how 

the packings in the numerical simulations are constructed.

Other areas for future work might include, the calculation of higher order perturbation 

terms, continuing the work of Chapters 3 and 6, in order to see the effect of these upon 

the theoretical predictions. Another interesting option could be to consider the effects 

of a finite coefficient of friction. In his thesis, Slade [76] considers a finite coefficient 

of friction for a packing of equal sized spheres. This could be extended to a binary 

packing, such as is discussed in Chapters 5 and 6, in order to determine the impact of 

friction upon, in particular, the effective elastic moduli of the packing.
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Integral Calculations

Several integrals arise during the calculation of the effective elastic moduli upon ap

plication of an initial general biaxial strain to the boundary of our random packing. 

These were mentioned in Chapter 2 but details were omitted. Here we show all the 

integrals that arise and discuss in detail the calculation of just one, the methods for all 

the others being analogous.

In Chapter 2 we only mentioned the one integral

i p2n rn
<  ( - epqIpI qy / 2I i  > = —  d4> /  ( —e\ sin2 6 — e3 cos2 0) 1/ 2 cos2 6 sin ddO (A .l)

47r J0 J0

where e\ <  0 and also e3 < 0. This we label integral I. In fact there are nine integrals 

in total that must be evaluated, the other eight are as follows:

• II.

III.

IV.

V.

1 p2ir pir
—  d(p (—e\ sin2 0 — e3 cos2 6)1' 2 sinQdO, 
4 7 r J o J o

r 2n rir
/  dcf) ( —ei sin2 6  —  e $  cos2 0)1/ 2 sin3 6 d 0 ,  

J o  J o

1
47r

1 fZTT /*7T

—  /  dcf) ( —e \  sin2 9  —  cos2 Q ) 1 / 2  sin5 0 d 9 ,
4 7 r J o J o

1 r2ir rn
—  d ( f )  /  (—e \  sin2 6  —  e 3 cos2 0 )1' 2 cos2 9  sin3 8 d 0 , 
4 7 r  Jo Jo
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VI.

VII.

VIII.

IX.

1 rZ 7T r 7T
—  d(f) (—e\ sin2 0 — e3 cos2 0)1/2 cos4 OsinOdO,
47r Jo Jo

1 r2ir /*7r

—  / d(f> (—ei sin2 0 — e3 cos2 0)3' 2 sin0d0,
47r Jo Jo

1 r2n  /*7r

—  d(j) /  (—ei sin2 6 — e3 cos2 0)3' 2 cos2 0 sin Odd,
47t Jo J o

1 r2n  /*7r

—  / d(f> (—ei sin2 0 — e3 cos2 0)3' 2 sin3 OdO.
47r Jo J o

Fortunately, these do not all need to be evaluated as there are several relationships to 

connect them together. These axe as follows:

J  +  / / J  =  17, (A.2)

JV  +  V =  H I ,  (A.3)

V +  V J =  / ,  (A.4)

V JJ -  (—e i ) I I I  — (e3)Z, (A.5)

V 7 //  +  JX  = VI7, (A.6)

V I I I  = (~ e i)V  -  (e3)V I. (A.7)

Re-arranging these, we also find

I V  = I I I +  V I I I  + ^ ) 1 (A 8 )
ei -  e3

V =  >1L, (A.9)

v i  =  n n + M L .  ( A . 10)
ei -  e3

Hence, the values of all nine integrals can be calculated from the evaluation of just

integrals I, II and VIII. We look in detail at the steps involved in the calculation of I.

We consider the calculation of integral I,

 ̂ r 2n rn
—  dd> (—ei sin2 0 — e3 cos2 6)1' 2 cos2 6 smOdd.
47r Jo Jo
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Calculating the integration over 0 and splitting the interval over which we integrate 

with respect to #, we have

 ̂ r n / 2

/  =  -  * 2 /  (—e\ sin2 0 — e3 cos2 6)i/ 2 cos2 9 sin QdQ.
2 Jo

Now let

u =  cos #,

then

du = sin#

and when 6 =  0, u = 1, when 6 =  7r/2, u =  0. Thus we have

I  = J  — (—ei(l — u2) — e$u1)ll2u 2‘du

= f  (—e i(l — it2) — esti2)1/ 2!*2^ .  
Jo

We also let /1 =  — e\ and fo = —e3, so that

I = [  (/1  +  (/3 -  f i ) u 2)l/2u2du. (A.11)
Jo

We must consider the two cases f \  > and < f i  seperately.

For the first case f \  > fo, we introduce the further substitution

{ f 1 ~  h ) ll2u =  f l /2 sin©,

so then

(/1 -  f 3 )1/2du = f \ 12 cos QdQ.

This gives us:

1 = f~  ( t 7 -^-7 -t)3/2[/i - / i s in 2 0 ]1/2sin2 ©cos@d@ 
Jo U 1 -  / 3)

where

sinGo = ( ( /l A l ) i /2 
/1
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Thus

( / i  -  h f ' 2

This can be evaluated using the identities

^  / s n̂ ©cos2 0d©.
- h r '*  Jo

sin 20  =  2 sin © cos 0

and

1 — cos 4© =  2 sin2 20

so that

I  = A2
8(A - A ) 3'2

e - sin 40 ©o

o

So, for — e\ >  —e3 >  0. the integral is evaluated to be:

( - e i ) 21 =
8(e3 -  e i)3/2 { Sin 1 ( ei~ei~ ~ )  +  — (~ e3)1/2(2e3 -  e i ) | . (A.12)

Considering now the case when / 3 > f i  i.e. —e3 > —e\ we proceed in a similar manner. 

Recalling equation (A. 11), we have reduced integral I to:

I  = [  ( fi  + i f 3 ~  f \ )u 2)ll2u2du.
Jo

We let

{ f3 -  f i ) l/2u = f l /2 sinh©

and then

(/3 -  f i ) l/2du =  / i /2 cosh0d0 .

So the integral becomes

I  = [~  (— - ^ —— )3/2[ /1 + / i  sinh2 0 ]1/2 sinh2 © cosh 0d©
Jo U 3 - / l )  

where ©o is now found from

sinh 0 O =  ( i h - Z M )  1/2.
J1
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So we have

1 = f i /■© o

Jo(h - h )3/2

This can be evaluated using the identities

sinh2 @ cosh2 ©d@.

and

sinh 20  =  2 sinh © cosh 0

cosh 4© — 1 =  2 sinh2 2©

so that

1 = /?
8(/3 -  h ) 3/2

0  -

sin 4© 0o

o

So, for —e3 >  — e \  > 0. integral I is evaluated as:

'-5̂  C’-'1-  P, \  1/
ei J

If it were required, all the other integrals could be calculated in a similar

C h a p t e r  1
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manner.
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A ppendix  B

Calculation of and x f°r 

different sized spheres

Computer program used to calculate the values of a  and x  f°r a binary packing, from 

an initial large and small sphere in contact with each other. The large sphere is fur

ther surrounded by one large and eight small spheres and the original small sphere 

is surrounded by a further four small spheres. Both of the original spheres are in 

equilibrium.

function y * diffspl8140

g=100; h=100; i=100; j=100; k=100; 1=100;
while g==100 I h==100 I i==100 I j==100 I k==100 I 1=*100

clear

al=0;
bl=0;
11= [0; 0; 1]; '/.this represents a small sphere touching the large one 
m2=rand;
a2 = acos(l-629*m2 - 1); '/.pick large sphere next
b2=0;
I2*[sin(a2)*cos(b2); sin(a2)*sin(b2); cos(a2)];
K2*[3.4=sin(a2)=cos(b2); 3.4»sin(a2)»sin(b2); 3.4*cos(a2)-l.7] ;

Bl=3/4; B2=3/4; B3*3/4;
B4=3/4; B5=3/4j B6*3/4;
B7=3/4; B8=3/4; B9=3/4;
B10=3/4; Bll=3/4; B12=3/4;
B13=3/4; B14=3/4; B15=3/4;
B16-3/4; B17=3/4; 818*3/4;
B19=3/4; B20=3/4; B21=3/4;
B22=3/4; B23*3/4; B24=3/4;
B25=3/4; B26=3/4;
B27=3/4; B28=3/4;
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Know pick another 7 small spheres, not overlapping with the previously 
/.chosen spheres
while B1>0.629 Xcheck small sphere doesn't overlap with large
m3=rand;
a3 « acos(3*m3/2 - 1); 
b3-2*pi*rand;
Bl-sin(a2)*sin(a3)»cos(b2-b3) +cos(a2)*cos(a3);
13-[sin(a3)*cos(b3); sin(a3)*sin(b3); cos(a3)];
K3-[2.7*sin(a3)«cos(b3); 2.7*sin(a3)»sin(b3); 2 .7»cos(a3)-l.7] ; 
end; /.end of while Bl>0.629 loop

while B2>0.629 I B3>0.726
Xcheck sphere doesn’t overlap with those already chosen 
m4-rand;
a4 * acos(3*m4/2 - 1); 
b4-2*pi*rand;
B2=sin(a2)*sin(a4)*cos(b2-b4) +cos(a2)*cos(a4); 
B3=sin(a3)»sin(a4)*cos(b3-b4) +cos(a3)*cos(a4) ;
14-[sin(a4)*cos(b4); sin(a4)*sin(b4); cos(a4)];
K4=[2.7*sin(a4)*cos(b4); 2.7*sin(a4)»sin(b4); 2.7»cos(a4)-1.7]; 
end; Xend of while B2>0.629 i B3>0.5 loop

while B4>0.629 I B5>0.726 I B6>0.726 
mb-rand;
aS • acos(3*m&/2 - 1); 
b5-2»pi*rand;
B4=sin(a2)*sin(a5)*cos(b2-b5) +cos(a2)*cos(a5); 
BS=sin(a3)*sin(a5)»cos(b3-b5) +cos(a3)»cos(a5); 
B6=sin(a4)*sin(a5)*cos(b4-b5) +cos(a4)»cos(a5) ;
I5=[sin(aS)»cos(b5); sin(a5)*sin(b5); cos(a5)];
K5-[2.7*sin(a5)*cos(b5); 2.7*sin(a&)*sin(b5); 2.7»cos(a5)-l.7] ; 
end; Xend of while B4>0.629 I B5>0.5 I B6>0.5

while B7>0.629 I B8>0.726 I B9>0.726 I B10>0.726 
ro6-rand;
a6 - acos(3*m6/2 - 1); 
b6-2*pi*rand;
B7-sin(a2)*sin(a6)»cos(b2-b6) +cos(a2)*cos(a6); 
B8=sin(a3)*sin(a6)«cos(b3-b6) +cos(a3)*cos(a6); 
B9=sin(a4)*sin(a6)*cos(b4-b6) +cos(a4)»cos(a6); 
B10-sin(a5)*sin(a6)»cos(b5-b6) +cos(a5)*cos(a6);
I6=[sin(a6)»cos(b6); sin(a6)*sin(b6); cos(a6)];
K6-[2.7*sin(a6)»cos(b6); 2.7*sin(a6)*sin(b6); 2.7*cos(a6)-1.7] ; 
end; Xend of while B7>0.629 etc loop

while Bll>0.629 I B12>0.726 I B13>0.726 I B14>0.726 I B15>0.726 
m7=rand;
a7 - acos(3*m7/2 - 1); 
b7=2*pi*rand;
Bll=sin(a2)»sin(a7)*cos(b2-b7) +cos(a2)*cos(a7); 
B12=sin(a3)»sin(a7)*cos(b3-b7) +cos(a3)*cos(a7); 
B13=sin(a4)*sin(a7)*cos(b4-b7) +cos(a4)*cos(a7); 
B14=sin(a5)*sin(a7)*cos(b5-b7) +cos(a5)*cos(a7); 
B15-sin(a6)»sin(a7)*cos(b6-b7) +cos(a6)»cos(a7);
I7=[sin(a7)*cos(b7); sin(a7)*sin(b7); cos(a7)];
K7=[2.7*sin(a7)»cos(b7); 2.7*sin(a7)»sin(b7) ; 2.7*cos(a7)-1.7]; 
end; Xend of while Bll>0.629 etc. loop

g=0; h=0; i-0; j-0; k-0; 1-0;

while B16>0.629|B17>0.726IB18>0.726IB19>0.726|B20>0.726IB21>0.726 k g<100
m8=rand;

g-g+i;
a8 = acos(3*m8/2 - 1);
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b8=2*pi*rand;
B16-sin(a2)*sin(a8)»coa(b2-b8) +cos(a2)*cos(a8);
B17=sin(a3)*sin(a8)*coa(b3-b8) +cos(a3)»cos(a8);
B18-sin(a4)*sin(aB)*coa(b4-b8) +cos(a4)*cos(a8) ;
B19=sin(a5)*sin(a8)*cos(b5-b8) +cos(a5)*cos(a8);
B20=sin(a6)»sin(a8)*cos(b6-b8) +cos(a6)*cos(a8) ;
B21*sin(a7)»sin(a8)»cos(b7-b8) +cos(a7)«cos(a8)j 
I8=[sin(a8)*cos(b8); sin(a8)*sin(b8); cos(aB)];
K8*[2.7*sin(a8)*cos(b8); 2.7*sin(a8)*sin(b8); 2.7*cos(a8)-1.7]; 
end; Xend of while B16>0.629 etc. loop

if g'*100
while B22>0.6291B23>0.7261B24>0.7261B25>0.7261B26>0.7261B27>0.7261B28>0.726th<100

h-h+1; 
m9=rand;
a9= acos(3*m9/2 - 1); 
b9=2*pi*rand;
B22=ain(a2)*sin(a9)*coa(b2-b9) +cos(a2)*cos(a9);
B23=sin(a3)*sin(a9)*coa(b3-b9) +cos(a3)*cos(a9);
B24=ain(a4)*ain(a9)*coa(b4-b9) +coa(a4)*coa(a9);
B25*ain(a5)*8in(a9)«coa(b6-b9) +coa(a5)*co8(a9);
B26*ain(a6)*ain(a9)*coa(b6-b9) +co8(a6)*coa(a9);
B27»ain(a7)*ain(a9)»coa(b7-b9) +coa(a7)*coa(a9);
B28=ssin(a8)*ain(a9)»coa(b8-b9) +co8(a8)*coa(a9);
I9=[sin(a9)*cos(b9); ain(a9)*ain(b9); coa(a9)];
K9=[2.7»ain(a9)*coa(b9); 2.7»sin(a9)»ain(b9); 2.7*cos(a9)-1.7]; 
end; Xend of B22>0.629 etc. loop

if h'«100 
n=-l;
while n=*-l
a21=0;
b22-0;
I10*[0; 0; -l]j

kl=l; k2=l; k3-l; k4*l; kS*l; k6*l; k7*l; k8*l;
while kl<2.70 I k2<2 I k3<2 I k4<2 I kS<2 I k6<2 I k7<2 I k8<2 k i<100 

i=i+l;
m l l = r a n d ;

all = pi - acoa(l.629*mll - 1); Xpick amall spheres such that they don’t 
Xoverlap with large 
bll = 2»pi*rand;
Ill=tain(all)*cos(bll); sin(all)*sin(bll); cos(all)];
Kll*t2*sin(all)*coa(bll); 2*sin(all)*sin(bll); 2»cos(all)+l];
kl = nonn(Kl1-K2);
k2 = norm(Kl1-K3)j
k3 * norm(KU-K4);
k4 = norm(KU-K5);
kS * norm(Kll-K6);
k6 * norm(Kll-K7);
k7 = norm(Kl1-K8);
k8 = normCKl1-K9);
end Xend of while kl<2.70 etc. loop

B29=3/4; B30*3/4; B31*3/4; B32*3/4; B33*3/4; B34*3/4; 
k9=l; kl0*l; kll*l; kl2*l; kl3*l; kl4*l; klS-1; kl6*l; 
if i"=100
while k9<2.70l kl0<2l kll<2l kl2<2l kl3<2l kl4<2l kl5<2l kl6<2l B29>0.5 *j<100 

j“j+l:
ml2 *rand;
al2 * pi - acos(l.629*ml2 -1);
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bl2 -2»pi»rand;
B29=sin(al1)*sin(al2)-cos(bll-bl2) +cos(all)«cos(al2);
I12=[sin(al2)»cos(bl2); sin(al2)*sin(bl2); cos(al2)];
K12=[2»sin(al2)*cos(bl2); 2*sin(al2)»sin(bl2); 2*cos(al2)+l];
k9 = norm(K12-K2);
klO = nonn(K12-K3);
kll * norm(K12-K4);
kl2 * norm(K12-K5);
kl3 = norm(K12-K6);
kl4 « norm(K12-K7);
kl5 = nonn(K12-K8);
kl6 = nonn(K12-K9);
end; %end of while k9<2.70 loop

kl7=l; kl8«l; kl9=l; k20=l; k21»l; k22=l; k23=l; k24=l; 
if j'-100
while kl7<2.70lkl8<2lkl9<2lk20<2lk21<2lk22<2|k23<2lk24<2lB30>0.5lB31>0.5kk<100
k=k+l;
ml3-rand;
al3= pi - acos(1.629»ml3 - 1); 
bl3 -2*pi*rand;
B30=sin(all)»sin(al3)»cos(bll-bl3) +cos(all)*cos(al3); 
B31=sin(al2)»sin(al3)»coa(bl2-bl3) +coa(al2)*cos(al3);
I13*[sin(al3)»cos(bl3); sin(al3)*sin(bl3); cos(al3)];
K13=[2*sin(al3)»cos(bl3); 2*sin(al3)*sin(bl3); 2*cos(al3)+l];
kl7 « nonn(K13-K2);
kl8 « norm(K13-K3);
kl9 » norm(K13-K4);
k20 - norm(K13-K5);
k21 - norm(K13-K6);
k22 » norm(K13-K7);
k23 * norm(K13-K8);
k24 « norm(K13-K9);
end; %end of while while kl7<2.70

k25=l; k26=l; k27*l; k28-l; k29-l; k30=l; k31=l; k32=l; k33-l; 
if k~-100
while k25<2.701k26<21k27<21k28<21k29<2Ik30<2Ik31<2 Ik32<21B32>0.51B33>0.5 IB34<0.5*1<100 
1-1+1; 
ml4=rand;
al4= pi - acosd,629*ml4 - 1); 
bl4 -2*pi*rand;
B32=sin(all)*sin(al4)*cos(bll-bl4) +co8(all)*cos(al4) ; 
B33-sin(al2)*ain(al4)*cos(bl2-bl4) +cos(al2)*cos(al4); 
B34=sin(al3)»sin(al4)»cos(bl3-bl4) +cos(al3)*cos(al4);
I14=[sin(al4)»cos(bl4); sin(al4)*sin(bl4); cos(al4)];
K14=[2*sin(al4)*cos(bl4); 2*sin(al4)*sin(bl4) ; 2*cos(al4)+l];
k25 - nonn(K14-K2);
k26 = norm(K14-K3);
k27 - norm(K14-K4);
k28 = norm(K14-KS);
k29 - nonn(K14-K6);
k30 = nonn(K14-K7);
k31 - norm(K14-K8);
k32 - nonn(K14-K9);
end;
end;

cOl = crosadlO,IU) ; 
c02 = cross(I10,I12); 
c03 - crossd10, 113); 
c04 - cross(I10,I14);
cl2 - crooadll, 112) ;
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cl3 = cross(111,113) 
cl4 * cross(Ill,114) 
c23 = cross(I12,113) 
c24 * cross(I12,114) 
c34 - cross(I13,U4)

d o i2 -  co i* * H 2 :  

d013 * cOl1*113; 
d014 » cOl ’*114; 
d023 - c02'*I13; 
d024 = c02’*I14; 
d034 = c03**I14; 
dl23 » cl2’*U3; 
dl24 = cl2’*I14; 
dl34 - cl3’*I14; 
d234 * c23’*U4;

s(l,l)»0;
■(2,2)*0; 
s(3,3)-0; 
s(4,4)*0; 
s(5,5)=0;
s(4,5)=sign(d012); 
s(3,5)=sign(d013); 
s(3,4)=sign(d014); 
s(2,5)=sign(d023); 
s(2,4)-sign(d024); 
s(2,3)-sign(d034); 
s(l,5)*sign(dl23); 
s(l ,4)»sign(dl24); 
s(l,3)=sign(dl34); 
s(l,2)=sign(d234);

if ■(1,5)*»(2,5)<0 k s(l,5)*s(3,5)>0 k s(2,5)*s(4,5)>0

n-1;
m-5;
elseif s(l,2)*s(1.3)<0 k s(l,2)*s(l,4)>0 A s(1,3)*s(l,5)>0
n*l;
m*l;

elseif s(l,2)*s(2,3)<0 k s(l,2)**(2,4)>0 k s(2,3)«s(2,5)>0
n-1;
m *2;

elseif s(l,3)*s(2,3)<0 * s(l,3)*8(3,4)>0 & s(2,3)*s(3,S)>0
n-1;
m=3;
elseif s(l,4)*s(2,4)<0 k s(1,4)»s(3,4)>0 4 s(2,4)*s(4,5)>0
n-1;
m=4;
else n— 1;
m = 6 ;

end '/.end of if s(l ,5)*s(2,5)<0 loop

end '/.end of if k“ = 100 loop
end 7,end of if j~*100 loop
end %end of if i“*100 loop

end '/.end of while n**-l

end '/.end of if h" = 100 loop
end '/.end of if g" = 100 loop
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A p p e n d i x  b Calculation of a and \  f°r different sized spheres

if 1**100 ft 1**0 
Jls*(Il+I3+I4+I5+I6+I7+I8+I9)/8;
J11-I2;

Jss=(111+112+113+I14)/4;
Jsl-110;

y.N= N_s(eta_8+eta_sl) + N_l(eta.l+eta_ls) =

alpha.ns =4*Js s ’*Jsb/42; 
alpha.sssl =Jss'•Jsl/42;
'/.xi.sssl =J8S’*Js1/42;
Xxi.ssll *Jss'*Jll/42; 
alpha.nsl =l*Jsl’*Jsl/42;
Xxi.lssl =Jls'*J8l/42;
Xxi.lsll *J1b ’*J11/42; 
alpha.nls =8*Jls'*Jls/42; 
alpha.lsll=Jls»*Jll/42; 
alpha.nl =l*Jll'*Jll/42;

11111*0;
11112*0 ;

11113*0;
11122*0 ;

11123-0;
11133*0;
11222*0 ;

11223*0;
11233*0;
11333*1;

I2111*I2(1)*3;
12112* 12( 0 *2* 12( 2 ) ;

12113-12(0*2*12(3);
12122=12( 0 * 12( 2 ) *2 ; 

I2123*I2(1)*I2(2)*I2(3);
12133*12(1)*12(3)*2;
12222-12(2)*3;
12223*12(2)*2*12(3);
12233*12(2)*12(3)*2;
12333-12(3)*3;

13111*13(0*3;
13112=13(0*2*13(2);
13113-13(0*2*13(3);
13122*13(1)*13(2)*2;
13123*13(1)*13(2)*13(3);
13133*13(1)*13(3)*2;
13222*13(2)*3;
13223=13(2)*2*13(3);
13233*13(2)*13(3)*2;
13333*13(3)*3;

14111*14(0*3;
14112=14(0*2*14(2);
I4U3*I4(1)‘2*I4(3);
14122=14(0*14(2) *2;
14123-14(0*14(2)*14(3) ;
14133=14(0*14(3) *2;
14222=14(2)*3;
14223*14(2)*2*14(3);
I4233=I4(2)*I4(3)*2;
I4333=I4(3)*3;

1»(4+1) + l*(l+8) = 14
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A p p e n d i x  b Calculation of a and x f°r different sized spheres

ISlll-I5(l)-3;
15112*15(1)~2*15(2)i 
15113*15(1)"2*15(3); 
15122*15(1)*15(2)'2; 
15123*15(1)*15(2)*15(3); 
15133*15(1)*15(3)"2; 
15222=15(2)-3;
15223*15(2)*2*15(3);
15233*15(2)*15(3)*2; 
I5333*I5(3)"3;

16111*16(1)"3;
16112*16(1)*2*16(2); 
I6113=16(1)*2*I6(3); 
16122*16(1)*16(2)*2;
16123*16(1)*16(2)*16(3); 
16133*16(1)*16(3)*2; 
16222=16(2)*3;
16223*16(2)"2*16(3);
16233-16(2)*16(3)*2; 
16333*16(3)'3;

I7111»I7(1)*3; 
I7112-I7(1)*2*I7(2); 
I7113*I7(1)*2*I7(3); 
17122-17(1)*17(2)*2; 
I7123=I7(1)*I7(2)*17(3); 
17133*17(1)*17(3)*2;
17222-17(2)*3;
17223-17(2)"2*17(3);
17233-17(2)*17(3)*2;
17333*17(3)"3;

18111*18(1)*3; 
I8112-I8(1)*2*I8(2);
18113*18(1)*2*18(3); 
18122*18(1)*18(2)"2; 
18123=18(1)*18(2)*18(3); 
18133-18(1)*18(3)*2; 
I8222=I8(2)"3;
18223=18(2)-2*18(3);
18233*18(2)*18(3)"2; 
I8333=I8(3)*3j

19111=19(1)‘3;
19112=19(1)*2*19(2); 
19113=19(1)*2*19(3); 
19122=19(1)*19(2)“2; 
19123=19(1)*19(2)*19(3); 
19133=19(1)*19(3)"2; 
19222=19(2)-3; 
I9223=I9(2)*2*I9(3); 
19233*19(2)*19(3)*2; 
19333-19(3)*3;

I10111=I10(1)"3; 
I10112=I10(1)-2*U0(2) ; 
110113=110(1)"2*110(3); 
I10122= I10(1)*I10(2 )*2;

I10123=110(1)*110(2)*110(3); 
I10133=110(1)*I10(3)*2; 
110222=I10(2)*3;
110223=110(2)”2*I10(3);
I10233=110(2)*110(3)“2;
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A p p e n d i x  b Calculation of a and x f°r different sized spheres

110333*110(3)"3;

111111=111(0*3; 
111112* 1 1 1 ( 1) * 2* 1 11 ( 2 ) ;  

111113*111(1)”2*111(3); 
111122* 1 11 ( 1 ) * 1 1 1 ( 2 ) * 2 ; 

I11123-I11(1)*I11(2)*I11(3); 
II1133*111(1)*I11(3)*2;
I11222*111(2)*3; 
I11223*Ill(2)”2*Ill(3)i 
111233*111(2)*111(3)*2; 
111333=111(3)*3;

112111—I12(l)'*3; 
I12112=I12(1)‘ 2 * I1 2 (2 ); 

112113*112(0*2*112(3); 
112122-112(0*112(2) *2: 

112123*112(0*112(2)*112(3) ; 
112133-112(0*112(3) *2j 
I12222=112(2)*3;
112223*112(2)*2*112(3); 
I12233-I12(2)*I12(3)*2; 
112333*112(3)*3;

113111-113(0*3;
113112-113(0*2*113(2); 
113113=113(0*2*113(3);
113122-113(0*113(2) *2;
113123-113(1)*113(2)*113(3); 
I13133-113(1)*I13(3)*2; 
113222-113(2)*3; 
113223*113(2)*2*113(3);
I13233-113(2)*113(3)*2; 
113333*113(3)*3;

114111-114(0*3;
114112-114(0*2*114(2); 
114113=114(0*2*114(3); 
114122*114(0*114(2) *2;
114123=114(1)*114(2)*114(3); 
114133=114(0*114(3) *2;
114222=114(2)* 3; 
114223=114(2)*2*114(3);
I14233*I14(2)*114(3)*2; 
114333=114(3)*3;

Nslll =111111+112111+113111+114111;
Nsllll *110111;
Nllll *12111;
Nlslll =11111+I31U+I41U+I5111+16111+17111+18111+19111;

Nsll2 -I11112+I12112+I13112+I14112;
Nslll2 *110112;
N1112 *12112;
Nlsll2 -I1112+13112+14112+15112+16112+17112+18112+19112;

Nsll3 *111113+112113+113113+114113;
Nslll3 -110113;
N1113 =12113;
Nisi13 *11113+13113+14113+15113+16113+17113+18113+19113;

NS122 *111122+ 112122+ 113122+114122;

Nsll22 *110122;
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A p p e n d i x  b Calculation of a and x f°r different sized spheres

N1122 -12122;
Nlsl22 *11122+13122+I4122+I5122+16122+17122+18122+19122;

Nsl23 *111123+112123+I13123+I14123;
Nsl123 *110123;
N1123 =12123;
Nlsl23 *11123+13123+14123+15123+16123+17123+18123+19123;

Nsl33 *111133+112133+113133+114133;
Nsll33 *110133;
N1133 *12133;
Nlsl33 *11133+13133+14133+15133+16133+17133+18133+19133;

Ns222 =I11222+I12222+I13222+I14222;
Nsl222 =110222;
N1222 *12222;
Nls222 =11222+13222+14222+15222+16222+17222+18222+19222;

Ns223 *111223+112223+113223+114223;
Nsl223 =110223;
N1223 *12223;
Nls223 =11223+13223+14223+15223+16223+17223+18223+19223;

Ns233 *I11233+I12233+I13233+I14233;
Nal233 >110233;
N1233 -12233;
N1S233 =11233+13233+14233+15233+16233+17233+18233+19233;

Ns333 -II1333+I12333+I13333+I14333;
Nsl333 -110333;
N1333 -12333;
Nls333 -I1333+I3333+I4333+I5333+I6333+17333+18333+19333;

Ns*N«lli'2+3*(Nsll2-2)+3*(Nsll3*2)+3»(Nsl22‘2)+6*(Nsl23-2)+3»(Nsl33*2) 
+ N s222*2+ 3*(N b223*2)+ 3+ (M »233 '2)+ H s333‘ 2;

Nsl=Nsllll-2+3*(Nslll2-2)+3*(Nslll3-2)+3+(Nsll22'2)+6*(NBll23*2)+3+(Nall33-2) 
+Nsl222“2+3=(Nsl223“2)+3*(Nsl233'2)+Nsl333"2;
Nl-Nllll-2+3*(N1112“2)+3*(N1113*2)+3*(N1122"2)+6+(NU23“2)+3+(N1133“2)
+N1222‘2+3*(N1223‘2)+3+(N1233‘2)+N1333*2;
Nls=Nlslll~2+3*(Nlsll2*2)+3*(Nlsll3"2)+3*(Nlsl22"2)+6*(Mlsl23“2)+3*(Nlsl33*2)
+Nls222‘2+3»(Nls223~2)+3*(Nls233‘2)+Nls333-2;
N8Ssl=Nslll*Nsllll+3*Nsll2*NsU12+3*Nsll3*Nslll3+3*Nsl22*Nsll22+6*Nsl23*Nsll23
+3*Nsl33-Nsll33+Ns222»Nsl222+3*N8223»Nsl223+3»Ns233*N8l223+Ns333*Nsl333;
Nlsll=Nlslll-Nllll+3*Nlsll2=N1112+3*Nlsll3=N1113+3*Nlsl22»N1122+6*Nlsl23*N1123
+3*Nlsl33*N1133+Nls222*N1222+3*Nls223*N1223+3*Nls233*N1223+Nls333*N1333;

Cs=Ns/(4*42);
Csl=Nsl/(l*42);
Cl-Nl/42;
Cls=Mls/(8*42);
Csssl=Ns3sl/42;
Clsll=Nlsll/42;

y=[alpha.ns,alpha.assi.alpha.nsl,alpha.nls,alpha.lsll,alpha.nl,Cs,Csss1,Csl,Cls,Cl811,Cl]; 

end Xend of if l'-lOO t  l‘=0 loop

end Xend of while g=*100 I h==100 I i— 100 I j*=100 I k==l00 I 1=-100 loop
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A ppendix  C

Table of Isotropic Elastic 

Constants

A,// E, v B ,C

A \ E v C/\ ( l-2 « /) (1+ i/)(1-2 i/) n iB ' t-C '2)

V E
2 (l+ i/)

1
2tt(S+C)

K A + 2 u (l+ id E 2 S + C
3(1—2^) 3(1—2i/) 37r(B2- C a)

E fi(3A+2/x)
A+/i 2i/(l + 1') E B + 2C

tt(B+C)

V A V V C
2(A+M) B + C

B J_ ( l  +  - L .)
4n \ n  ' A+ n )

(i-*)
2nn

l —i/2 
n E B

C J_ (T _
An V/i A +/iy

V  
2ir/i

v ( \ + v )
nE C

A and [i are the Lame moduli, k the bulk modulus, E  is Young’s modulus and v 

Poisson’s ratio.
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