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Summary

Granular materials consist of many components packed together with a complex mi-
crostructure of solid and fluid phases. A dense, random packing of spheres is one simple
model that can be used to describe such a medium and which can help to predict its
properties. This simplification has been used by many authors, including Walton [86]
upon whose work this thesis is based. His work, along with relevant background ma-
terial, is described in detail in Chapter 1. The work presented here concentrates on
extending and developing Walton’s model, which predicts the macroscopic properties
of a packing of spheres, using the known microscopic properties of the grains. In

particular, the effective elastic moduli for the packing are derived.

Chapter 2 extends Walton’s model [86] to consider the effect of an initial biaxial com-
pression applied to a packing of equal-sized spheres. The effective elastic moduli in
this case are derived, first using precisely the same method as Walton and then also

the results of Slade [76] who found that a modification to Walton’s theory is required.

In Chapter 3, a perturbation of Walton’s theory is considered in order to obtain mod-
ified expressions for the effective elastic moduli of a random packing of equal sized
spheres. Chapter 4 then discusses the numerical calculations that must be carried out,
in order to calculate the value of parameters which arise in the theoretical expressions
of Chapter 3. At the end of Chapter 4, the values predicted by the new theoretical
expressions are compared with those of a numerical simulation by Jenkins et al. [43].

Chapters 5 and 6 continue to develop Walton’s method, extending the work to a binary
packing of spheres, that is a random packing containing two sizes of sphere. Chapter
5 applies Walton’s method directly, but in Chapter 6 a perturbation of this method is

again used, thus combining the methods presented in Chapters 3 and 5.
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Notation

For easy reference later on, presented here is a summary of the main notation used in

this thesis.

X(™) The position vector of the centre of the nth sphere.

u{® The displacement of the centre of the nth sphere.

w(™ The rotation of the nth sphere about an axis through its centre.
F("") The force acting on the nth sphere due to its contact with the n'th.

I(") The unit vector directed along the line of centres between the nth and n'th

/
(nn') _ X0 _X(()
spheres, 1 X0 X

R is the sphere radius
N is the total number of of spheres within the packing.
V is the total volume of the packing.

n{™ is the average number of spheres in contact with the nth sphere, 7 is the average

number of contacts within the packing.

. . . . 3
¢ is the volume concentration of the spheres, i.e. ¢ = W

I = s S 1
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n) __ nn') r(nn') ;(nn’'
NG = L5 S 1 1)

V(Zz = n(ln) En’ I’z(nn )I§nn )Ilgnn )Il(nn )

From chapter 3 onwards, < . > represents the average value within the packing, taken

over all contacts.

a=1< Ii(""')JJ("”') >

nn'} 7(nn') (nn') ;(nn’
L< NG (I pr)

X

B = ﬁ (ﬁ + ﬁ), A and p are the Lamé moduli for the material

_ _(2B+C
A= (_—14B+_ljsc

R' = RiRs(R; + R;)™!, where R, and R, are the radii of large and small spheres,

respectively.
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Chapter 1
Introduction

1.1 Overview of Thesis

There has been an increasing interest in the study of granular materials over the past
decade and a half. It has become a widely inter-disciplinary work area. A series of
conferences entitled ‘Powders and Grains’ has brought together some of the various
research advances from many different groups. The first held in Clemont-Ferrand,
France, in 1989 [7] has been followed by a further two, one held at Aston in 1993 [80]
and the most recent at Durham, North Carolina in 1997 [3]. They have concentrated
on the subject of particulate ensembles and have shown the rapid increase in knowledge

and the varied applications that are possible in many research areas.

Another specific examnple of a compilation of work is the book, ‘Disorder and Granular
Media’, edited by Bideau and Hansen [8]. This contains recent progress that has been
made in the physics of granular material as well as some fundamental concepts and
ideas about the field, such as the geometrical characterization of granular media and
elementary approach to flow in porous media. The book is intended to be accessible to

researchers from a variety of backgrounds.

Granular materials are met in a large number of situations. For example, in materials
science, they occur in the initial stage of preparation of composites, ceramics and
sintered materials. Their various qualities are critically dependent upon the condition
of the initial setting. In chemical engineering, many processes involve the use of finely
divided matter, for example, anything from the combustion of solids, to heat ext?hangers

and catalysers. Within agriculture and the food industry, the processes which make
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1.1. OVERVIEW OF THESIS

use of natural granular substances and powders of very different grades, depend upon
the heterogeneous stiucture. Probably the subject areas in which the most research
has been done are micchanical and soil engineering and also the geophysical sciences.
Naturally occurring geological structures can be observed to exhibit many effects of
packing and flow of grains. Civil engineering should also be mentioned, particularly in

the use of grains of variable size, mixed with a bonding agent.

There is a growing interest in the use of numerical simulations to predict the properties
of granular media. These have again been used in a wide variety of applications.
One approach is that in which the granular material is treated as an ensemble of
particles, rather than as a continuum. Cundall [19] was one of the first to introduce
this technique and since then it has been applied to statistical micromechanics, Cundall
and Strack [24] and Bathurst and Rothenburg [2], the constitutive behaviour of granular
‘soils, analysis of rock-support interaction [50] and other areas of soil mechanics [81]. It
was the results of nuerical simulation which motivated most of the work presented
in this thesis. There was an apparent lack of agreement between the predictions of the

simulation and those of the theory.

This thesis contains the modelling of a granular material as a system of spherical parti-
cles and attempts to predict the macroscopic properties of this packing, from the known
microscopic propertics. We concentrate on finding the effective elastic moduli from the
known properties of the grains which include elastic properties of each individual grain,
the density of the packing and the type of contact between one grain and another. We
concentrate specifically on spherical grains. When the particles are not spherical, parti-
cle shape is a further microstuctural known quantity, the effects of which will influence
the overall behaviour. Several authors have considered non-spherical particles, includ-
ing in particular Sackfield and Hills [69] and [70]. In his thesis, Slade [76], considered
an oblique-oblique loading of two oblate spheroidal particles and then proceeded to
-use this to model a random packing of such particles. The purpose of his work was to

attempt to modcl packings of shale particles such as might be present in an ocean bed.

As well as concentrating on spherical particles, we also specifically consider contacting
particles which have identical elastic properties. Much work has been done on composite
materials, for example, Hashin [37] provides a useful survey to review the analysis of

composites from the perspectives of applied mathematics and engineering science. He
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1.1. OVERVIEW OF THESIS

considers the propertics of three general types of composites: 1) statistically isotropic
composites, this group includes the cases of random mixtures of two phases, matrix
containing spherical type particles or randomly oriented elongated particles and porous

media, 2) fiber composites, and 3)cracked materials.

The contact between two spheres is a fundamental problem which we shall consider.
Chapter 2 is an extension of the work found in Walton [86]. When Walton [86], orig-
inally did the work lic only considered the results for initial hydrostatic and uniaxial
strains. Expressions for the effective elastic moduli are calculated upon application of
a further general incremental strain. Our Chapter 2 considers the same calculations for
a random packing of equal sized spheres under an initial applied compressive biaxial

strain.

Chapter 3 proceeds to look at the uniform strain approximation, described later in
this first Chapter and the method used by Walton [86] amongst others. In fact, we
also use it in Chapter 2 to describe the displacement of each sphere after the strain
has been applied to the boundary of the packing. Chapter 3, however, attempts to
modify this approxiniation in order to obtain revised theoretical predictions of the
elastic properties, when the average co-ordination number of the packing is fairly low.
The effective elastic moduli are calculated and the results compared with the numerical

results due to Jenkins et al. [43].

In Chapter 4, we discuss the numerical simulations performed in order to determine
the values of those parameters which arise in the theoretical calculations. We briefly
consider the results for 2-D packings although we are mainly concerned with those for
3-D. These parameter values allowed us to compare our new theoretical results from

other chapters with previously obtained numerical simulation predictions.

Chapters 5 and 6 deal with a random binary packing of spheres, that is. a random
packing containing spheres of two different sizes. Chapter 5 incorporates the use of the
uniform strain approximation, again in order to calculate the effective elastic moduli
after considering initial hydrostatic, uniaxial and biaxial compressive strains. Chapter
6 combines the methods of both Chapters 3 and 5 to determine the effective elastic
moduli using our perturbation of the uniform strain approximation, applied to a binary

packing of spheres. (‘liapter 6 also contains a description of the numerical simulations
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1.2. CONTACT PROBLEMS

Figure 1-1: The region 1Z on the boundary of the half-space z > 0

that were performed to calculate the values of parameters that arise in the theoretical

expressions.

1.2 Contact Problems

We begin in this section by presenting several results which will be required later in
the thesis when discussing the problem of two elastic spheres in contact. We initially
consider the deformations that occur when a semi-infinite, elastically isotropic half-
space is loaded under normal and tangential tractions. Outside the loaded area, both
the normal and tangential forces are zero. In general, the solutions to these half-space
problems can be used when considering Hertz [39] theory of elastic contact. Restricting
attention to the particular case of a circular region of applied traction, this can be

applied to the specific case of Hertz theory for two elastic spheres in contact.

1.2.1 Half-space Problems

Figure 1-1 shows the set of rectangular Cartesian axes Oxyz which we shall consider,
where the z-axis is directed downwards. The half-space z > 0 is bounded by the plane
z = 0. Under the action of normal and tangential loadings, applied to the region 7£,
deformations and stresses are produced. As the loading is zero outside 77 we have a
problem in which all the tractions are specified on the boundary z = 0. In the next
sections we discuss the solutions of Boussinesq [11] and Cerutti [15], who use the theory

of potentials to find the solutions to such problems.

Such solutions are often unique only to within an arbitrary rigid body displacement

and rotation and thus we impose the condition that the displacement and rotation at
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1.2. CONTACT PROBLEMS

infinity tend to zero.

1.2.2 Boussinesq’s Problem

The problem of finding the surface displacements due to a concentrated normal force
acting on the boundary of a homogenous isotropic half-space is known as Boussinesq’s
problem. Several books include the derivation of the potential function of Boussi-
nesq [11] and also that of the potential function of Cerutti [15], this latter problem be-
ing described in the next section. Some such books include those written by Love [51],

Mal and Singh [52] and Westergaard [90].

Here we do not present the derivation of the solutions, we simply list the results given

by Walton [85] for a point force

N(z,y) = Nob(z — =")o(y — /) (1.1)

acting normally on the surface of the half-space z > 0, in the positive 2-direction. Ny
is a constant and &(.) is the Dirac delta function. This concentrated force acts at the
point (z',7'), as shown in figure 1-1 and is of magnitude Ny. The surface displacements

resulting from this force are

B - C)NoX
w(zT,y) = —(—79#—
B — C)NyY
v(z,y) = _B-O)NY 2S3 ¢ (1.2)
BN,
wi(z,y) = <

The displacements w(z,y), vi(z,y) and w;(z,y) are the surface displacements in the
z-, y- and z- dircctions respectively. We use the subscript ! since when considering
contact problems, these displacements will correspond to those of the lower half-space.
The [, therefore, refers to a half-space with a positive z coordinate, that is, to the half-
space z > 0. In the displacement expressions above we have defined local Cartesian

coordinates O’ XY, with origin (z',v'), as

X=z—-2 and Y=y-v. ‘ (1.3)
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1.2. CONTACT PROBLEMS

The value of S is then determined by
S?=Xx%+Y? (1.4)

and the elastic constants B and C are given by

1 /1 1

B = E(ﬁ+/\+n)
1 /1 1

C = —(-—— :
47r(u A+u) (15)

in terms of the Lamé moduli of the material, A and p. These may alternatively be

written as
1-v2?
B=———-
wE "’
v(l+v)
C=—F=
wFE

in terms of Young’s Modulus, E and Poisson’s ratio, v. Appendix D contains a table

which shows the relationship between these and several other elastic constants.

1.2.3 Cerutti’s Problem

Cerutti’s problem [15], is similar to that of Boussinesq, except that we now consider a
tangential concentrated force, acting in the positive z-direction on our half-space. This

is described by
P(z,y) = Pod(z — 2')o(y — ), (1.6)

as shown in figure 1-1, where P is a constant. The surface displacements that result

from this applied force are given in Walton [85]. They are

B CX?

w(z,y) = (§+—§§—)Po
CPXY

u(z,y) = —gG— (1.7)
(B = C)PX

wi(z,y) = ——Fa

where w/(z,y), vi(z,y) and w(z,y) represent the same directional displacements as in

the previous section and X, Y, S, B and C are also defined as before.
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1.2. CONTACT PROBLEMS

Figure 1-2: Two Spheres Initially in Point Contact

1.2.4 Distributed Normal and Tangential Loads

We can generalise the results quoted in the previous two subsections, to the situation
where the stresses are due to distributed normal or tangential loads or both. Consider a
general distribution of loading where N (x,y) is the normal component of the traction
and P(x,y) and Q(x,y) axe the components of traction in the tangential rr-and y-
directions respectively, acting on the half-space z > 0. These can be thought of as a
continuous distribution of point forces acting over part of the surface, in a region 7/

and are zero outside this.

In the last two sections, we imposed the condition that the half-space have zero dis-
placement at infinit}'. We now wish to impose a displacement —wo) at infinity
on the half-space z > 0 and an equal and opposite one at minus infinity on z < 0.
This will enable us to use our half-space results in the sphere contact problem. We
shall see later, in section 1.2.7, that provided the contact area is small in relation to
the size of each sphere, we can regard two contacting spheres as half-spaces thus ap-
plying the results from this section. When two spheres are compressed together, the
relative displacements can be obtained by considering the displacement that the centre
of the lower sphere undergoes, (u0,0, —#0Q) and the upper an equal and opposite one.

Figure 1-2, shows two spheres initially in point contact.

Integrating the expressions given for the surface displacements, it, v and w, due to the

force distributions N, P and Q over the whole region /Z equations (1.2) and (1.7) yield:

. 12 ’ + ’
ut(xy) = Up+ RPjxW) | ¢ [X2P{x"'y') + XYQ(x",y)\
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1.2. CONTACT PROBLEMS

B-C)XN(,y)\ . ,.,
_( )232 (z y))dwdy
' ;g 9 .
u(z,y) = /R (BQ(;’y)+c[XYP(x,y)S+;Y Q=',y)]
(B-C)YN(@',y)\ , ..,
- 257 y))dwdy
wi(z,y) = —w0+/R((B_C)[XP(:c,y)z-Si—zYQ(x,y)]+BN(;,y))dxldyl

(1.8)

For the particular problem that arises in the contact of two elastic spheres, the distri-
bution of N(z,y), P(z,y) and Q(z,y) acting on the lower sphere is equal and opposite
to the traction that acts on the upper. Similarly, by integration, we can also obtain

the total displacements acting on the upper sphere, uy(z,y), vu(z,y) and wy(z,y).

Walton [85], states that for the force distributions arising in the problem of contact of
two spheres, the configuration would be identical whether viewed from the upper or
lower sphere. For the case of displacement of the centre of the lower sphere having the

form (uo, 0, —wyp), the following symmetries hold:

1. P and N are symmetric and @ is antisymmetric in both z and y and

2. u and w are symmetric and v is antisymmetric in y.

We define uy(z,y), the absolute displacement and u_(z,y), the relative displacement,

as follows:

ws(@9) = (u@y) tusy)) and u(@9) = S(ulzy) - w@y)  (19)

and similarly define vy (z,y), v—(z,y), wi(z,y) and w_(z,y). This allows us to decou-
ple the displacement equations into integrals containing the effects of the normal force,

N, only and those containing the effects of tangential loadings, P and Q, only.

!, 2 o !0
w(oy) = uO+/R{BP(;,y>+C[X P(x,y);XYQ(w,y)]}dw,dy,,
. U | a0 2 ! 7
o(ey) = /R{BQ(g,y)JrC[XYP(m,y)Sw;Y Q(w,y)]}dzldy,’
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1.2. CONTACT PROBLEMS

and

1 XN,
utay) = ~3B-0) [ KT gyrgy,
R
ve(z,y) = ——B C)/ YN(x’y dz'dy’,
. _ ,y) 1.1
wi(z,y) = —wp +B dz'dy’. (1.11)

1.2.5 Pressure Applied to a Circular Region

In his book, Johnson [46], considers the surface displacement and stresses due to a
pressure distributed over a circular region of radius a. He states that solutions in

closed form can be found for axi-symmetrical pressure distributions of the form:
N(r) = No(1 — r%/a?)". (1.12)

This is equation (3.27) of Johnson [46]. The coordinates (r,#) are a system of plane-
polar coordinates in the zy-plane sharing the common origin O (the zy-plane being
as discussed in section 1.2.1). We only concern ourselves with two particular cases,
n = —1/2 and n = 1/2, as these will be useful later in the problem of two spheres in

contact. Johnson [46], however, also considers in detail the case n = 0.

Uniform Normal Displacement

We look first at the case n = —1/2 in equation (1.12), that is we consider a normal

pressure of the form:

No(a? -r?)~12 0<r<a
N(r) = (1.13)
0, a<r

where Ny is a constant and since we wish to apply these results to two spheres in

contact, the region R is a circle of radius e and centred about O.

Johnson [46] shows that a pressure distribution of the form given in equation (1.13),
causes a uniform normal displacement throughout the circular region of radius a, in
the half space. This. therefore, wotld be the same pressure that would occur when a
flat frictionless punch, of radius a, is pushed normally into an elastic half-space. The

pressure at the edge of the punch is theoretically infinite.
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We find the displacements in the normal difection, for this distribution and see that

w(z,y) = w2BNp

wy(z,y) = 0. (1.14)
For a tangential traction of the same form, that is

Py(a?-r%)"Y2, 0<r<a
P(r)= (1.15)
0, a<r
the traction produces a uniform tangential displacement in the same direction as the
traction itself. These resulting displacements are
72(2B + C)

w(z,y) = TPO

uy(z,y) = 0. (1.16)

This type of tangential pressure distribution does not occur in the normal punch prob-

lem, but we will need the displacement results later on.

Hertz Pressure Distribution

We next consider the case when we have n = 1/2 in equation (1.12), that is a normal
force distribution of the form
No(a® —r?)1/?, 0<r<a
N(r) = ‘ (1.17)
0, a<r
where Ny is again a constant and (r,6) as in the previous subsection. This is the
pressure given by the Hertz Theory, which in particular can be applied when we have

two elastic sphercs in contact.

According to Hertz theory, tangential tractions do not occur when bodies having the

same elastic moduli are compressed together normally and the displacements resulting

from this force are given by:

m a’ — (a° — /
wlz,y) = ——NQ(B—C):I:{B (a? — r2)3/2}

3 72
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7N a3 — (a2 — r?2)3/2
ulzy) = ~T(B- o)yt ST (1.18)
2
wi(z,y) = T iVOB(Zaz —r?).
Similarly, for a tangential distribution, in the z-direction of the form
Pa2__,r21/2, 0<r<a
P(r) = ol ) -7 (1.19)

0, a<r

where P, is a constant, the resulting displacements are found from integrals (1.10) to
be

2p 2P
w(e,y) = 2B+ C)a’ - 2{(4B +C)a® + (4B +3C)y%),
2
P,
u(z,y) = —5—Cay, (1.20)
TP a3 — (a? — r2)3/2
wi(z,y) = *59(3—0)-"3{ ( r2 ) }'

1.2.6 The Geometry of Surfaces in Contact

Before we examine Hertz theory for two spheres in contact, we consider the geometry
of two non-conforming solids of general profile brought into contact. Johnson [46]
also considers contact of conforming bodies which, using his definition, are contacts
where the surfaces of the two bodies ‘fit’ together exactly or even closely without
deformation. The non-conforming bodies we consider have dissimilar profiles and when
initially brought into contact will touch at a point or along a line. They also have
identical elastic properties, Gladwell [36], amongst others, discusses Dundurs’ mismatch
parameters that occur in the calculations for the contact of two materials which possess

different elastic properties.

A theory of contact is required that will predict what happens to a point or line
of contact when a load is applied to the configuration. But first, we examine the
geometry of the problem. We take the point of contact of the two bodies as O, the
origin of rectangular coordinate axes Ozyz. The z-axis is chosen to coincide with the
common normal to the two surfaces at O and is directed into the lower solid. The
zy-plane is then the tangent plane to the two surfaces. By choosing the orientation of

z and y such that the term in zy vanishes, Johnson [46] approximates the profile of the
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lower surface as
1 5

21 = —Z
2R, !

+ (1.21)

2
2RI
where R} and RY are the principal radii of curvature on the surface at the origin. Also,

using the same reasoning, the profile of the upper surface can be written as

1 1
Zg = — {E.’E% + 5}?2,];%} (1.22)

where the axes x5 and y; may differ from z; and %;. To find the separation between
the surfaces, we need h = z; — 27 and this can be written, relative to a common set of

axes zr and y, as

h = Az? + By? + Czy (1.23)

where A, B and C are constants which depend upon the radii of curvature of the two

surfaces. Again, choosing alternative axes so that C becomes zero, we have

1
Y. (1.24)

1
— A2 2 _ 2
h = Az® + By = 5p® +2R”

In this case R’ and R" are defined as the principal relative radii of curvature. If the
1 and z9 axes are inclined at an angle 6 to one another, in an appendix to his book,

Johnson [46] shows that

(L+L)_1(L+L+L+L)
R "R') 2\R, R{ R, Ry
1 1)\2 1 1)\2
(mm) *(& =
1 1 1 1 1/2
+2 (R_'l - R_’l') (R_Iz - _R_’z’) cos 29} (1.25)

and hence the values of A and B can be determined for a particular problem. At this

A+B =

1
2
1
|A-B] = 3

point, for later convenience, we also introduce the equivalent radius, R,, defined by

R.= (R'R"'/? = %(AB)‘W. (1.26)

From equation (1.24), it can be seen that the contours of constant gap h are ellipses
whose axes are in the ratio (B/A)Y2 = (R'/R")Y/2. For the particular example of

two identical cylinders, each of radius R and with their axes inclined at 45°, we have
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R} = R{ = R, R} = Rj = 0o and 6 = 45°. Then equations (1.25), give A+ B = § and

B—-A= ﬁ from which we have

PEREENEL RPN () 20

The relative radii of curvature are, R' = 1/2A = /2R/(vV2—1) and R" = 1/2B =
V2R/(V/2 + 1) and the effective radius is thus:

R. = (R'R")'? = V2R (1.28)

In this thesis we shall deal with some problems relating to the contact between equal
sized spheres of radius R. Hence we have, R| = Rj, = R{ = Ry = R and § = 0, from
which we find the values of A and B to be

1

A=,

B= (1.29)

1
Ik
However, the general geometry results will be useful later when we consider the contact

of two spheres of different radii.

A cross-section of two bodies of general shape and elastic properties, is shown after the
deformation, in figure 1-3. The initial configuration is not shown but we assume that
the bodies were in poiﬁt contact at O. Once a compression is applied (perpendicular to
the common tangent of the two bodies), this causes a deformation in the neighbourhood
of this original point of contact. If the bodies did not deform, they would overlap, as
indicated by the dotted lines in the figure. A finite contact area therefore forms, which
has purely normal tractions acting on it, provided the two bodies have identical elastic
properties such as we wish to consider. If the elastic properties of the two bodies were

different, tangential or shear tractions would occur which may cause the two surfaces

to slip over each other.

We consider the configuration shown in the figure and the deformation that will occur
in the vicinity of the point of initial contact, O, when a normal pressure is applied. A
contact area will form that is small relative to the dimensions of the bodies. Points
distant from the contact area, within the two bodies, will move parallel to the z-axis

and approach each other by an amount d; + 2. The displacement of the surface points
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01

Figure 1-3: Cross-Section of Two Non-Conforming Bodies in Contact

within the contact area is 6; — w(!), for the lower body and d; — w(?), for the upper
one, where w(!) and w® are as shown in figure 1-3. Thus after the deformation, for

points within the contact area, we have
w +w® fh=6+8=4 (1.30)

where h is the initial separation of the two surfaces, as given in equation (1.24). For
points that lie outside the contact area, they do not touch and so their displacements

must satisfy:

w® +w® + b >4 (1.31)

These last two equations, written in terms of the constants A and B give us

w + w® =§— 4z? — By? (1.32)
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for the points within the contact area and
w + w® > § - Az? — By? (1.33)

for those outside the contact area.

In the next section we turn to the theory of elasticity to show how the contact area,

stress and deformation, might grow with increasing load.

1.2.7 Hertz Theory of Elastic Contact

Hertz [39] gave the first satisfactory analysis of the stresses at the contact of two elastic
non-conforming solids. He formulated equations (1.32) and (1.33) which are satisfied
by the normal displacements on the surface of the solid. He made the hypothesis that
the contact area is in general elliptical and for simplification, approximated the elastic

bodies as elastic half spaces.

In this thesis, the contacting bodies under consideration will be assumed to have the
same elastic properties and to be isotropic. Johnson [46] also considers the contact of
bodies of different elastic properties and the effects of anisotropy within the bodies is

considered by Willis [91].

A number of assumptions are made in Hertz Theory. These are summarised in John-

son [46] and are given as the following:
e The surfaces are smooth, continuous and non-conforming;

e The strains are small;

e Each solid may be approximated by an elastic half-space for the purposes of

relating surface tractions to surface displacements, on the contact area;
e The surfaces are frictionless.

These assumptions ensure that each body can be regarded as an elastic half-space,
loaded over a small elliptical region on its surface. They also ensure that the strains
in the contact area are sufficiently small to be within the scopes of the linear elasticity
theory. Approximating the bodies by half spaces enables the results from Section 1.2.4

to be used and the boundary conditions are greatly simplified.
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The elasticity problem in which we are interested, reduces to finding the normal pressure
distributions acting over the contact area, which produce normal displacements of the

surfaces satisfying equation (1.32), within the contact area and (1.33), outside it.

Johnson [46], considers Hertz theory for the general case of two solids of revolution in
contact. We are particularly interested in the contact of two identical elastic spheres.
Initially, the spheres are purely in point contact, but upon application of a force along
the line of centres, a small contact area is formed. The contact area is circular for two
solids of revolution and so will be circular in our particular case. Let the radius of this

circle be a. We find the values of A and B from Section 1.2.6, these are

1 1
=— B=_—.
A 7 7 (1.34)

The normal force causes a displacement wy of the centre.of the lower sphere, along
the line joining the two centres. Therefore, as the spheres are identical and have
equal elastic moduli, we have wy = &; = &2, so that 2wy = é; + d3. The surface
displacements can also be written as 2w, (z,y) = w +w?, where wy (z,y) is as given

in equation (1.10) and w_(z,y) = 0. The condition for contact (as in equation (1.32))

becomes

22 g2
2w, (z,y) = 2wp — S (1.35)

So, we must find the normal pressure distributions, acting on the contact area, that will

produce a normal displacement as given. In addition, we must check that it satisfies

the condition of no overlap outside the contact area.

We want to find N(z,y), such that

N@&\y) 2y
B// wa dy' = 2wy — R’ (1.36)

One form of N(z,y) that satisfies this requirement is as given below:

o=

N(z,y) = a(a® — r?) (1.37)

where « is constant for a particular sphere. From equation (1.18), we then have

1o 2
B//ﬂ-(a‘;’—y)dx'dy' = %(2&2 —r?) (1.38)
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which when substituted into equation (1.36) yields

(202 — r?) = 2wy — —. (1.39)

By equating coefficients of r? and the constant terms, then

Br%d’a
—— =W (1.40)
2
and also
Bor _ 1 1.41
2 - R' ( . )
Now, solving for o and wy yields
-2 1.42
~ m2RB (1. )
and v
a? = Ruwy. (1.43)

Therefore, we can conclude that the normal traction distribution N(z,y) is given by

2 2

N(r) = —z=(a® ~ r?)z (1.44)

and the radius of the Hertzian contact area, a, by

a? = Rwy. (1.45)
This solution has been shown to be unique (see Walton [85]).

1.2.8 The Oblique Compression of Two Elastic Spheres

As mentioned above, when two bodies with identical elastic propertiés are compressed
together normally, no tangential tractions arise. Mindlin [57], considered a distribution
of traction in which a tangential component is imposed, in addition to the normal force
that is already acting in the problem. If there is infinite friction, then Mindlin [57],
considering symmetry and continuity conditions, concludes that the normal component
of traction is unaffected by the extra applied tangential loading, providing the spheres
have identical elastic properties. Also, the displacements of the contact surface in the

zy-plane correspond to a shift uniformly in the z-direction without change in shape
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or size. Equation (76) of Mindlin [57] gives the tangential traction across a circular

contact area as:
P

P =
21

(@2 —r2)"12 r<a (1.46)

with P; constant. This is clearly of the form seen in equation (1.15); that is, it is

proportional to (a? — r2)~1/2,

Walton [85], considered the general case of the relative compression of two elastic
spheres, so similarly to Mindlin [57], he looked at the Hertz problem but included a
tangential loading. How these two papers differ is in the application of the loading.
Walton [85] considers the more general oblique problem, where both normal and tan-
gential displacements occur simultaneously, rather than separately. By decoupling the
problem, as for the half space in Section 1.2.4, the solution to the normal and tangential

components of the system can be found and thus we obtain the distribution (P, Q, N)

on the contact area.

After the initial compression, the centre of the lower sphere has undergone a displace-
ment (ug, v, —wp) relative to the original contact point (the origin O) and the upper
sphere an equal and opposite one. Thus a finite contact area is formed, with radius a.
Using the notation of the previous section, Walton [86], gives the following expressions
for the force exerted by the upper sphere on the lower sphere, in the case that the

spheres are infinitely rough:

4’U,0

_ 2 2\1/2
bo ZREB + O)mg® ")
_ 4vo 2 _ .2\1/2
o REB + Oy * ") (1.47)
_ 2 2 22
Ny = 7r2RB(a r)He.

Mindlin and Deresiewicz [58] approach this problem by using a succession of incremental
normal and tangential forces and then take the limit as these tend to zero, to obtain

an approximation for the actual compression required.

Incremental Compression

Later in this chapter and those following, we wish to calculate the effective elastic mod-

uli of a random packing of spheres. In order to do this, following the initial compres-
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sion, a further incremental compression is applied. Walton [86] discusses the solutién
of this in which the centre of the lower sphere has undergone a further displacement
(dug, dvg, —dwp). The problem is solved for the two cases dwp > 0 (compression) and
dwp < 0 (unloading) and if dwy < 0, then it is so small that contact is not lost. The new
force distribution will have the form (Py+ 40P, Qo +9Q, No+dN) and we again decouple
the governing equations to find the normal component. This is the same whatever the

sign of dwy and is given by:

2

Ny + 40N = ZRB

®* - )12, (1.48)
where b is the radius of the new circular contact area.

Considering initially the case where the spheres have an infinite coefficient of friction
and taking the case dwp < O first, there can be no relative displacement of the two

parts of the final contact surface and the tangential tractions arising have the form:

Py+40P = Kl(a2 - T2)1/2 + K2(a2 - ,,_2)—1/2

Qo+6Q = Li(a®—r)2 4 Ly(a® —r?)~1/2 (1.49)

the Ky and L, terms being associated with the punch problem that we considered in
Section 1.2.5. Walton [86] omits details of the calculations to find the constants K, K2,
L,, Ly, however, we give a summary of these as the method is extended in Chapter 5
to the case of different sized spheres. We consider the displacement u_(z,y), as defined
in Section 1.2.4, before and after the incremental compression. At the end of the initial

compression this displacement on the contact area is given by equation (1.20)
m? o, 2 2
u_(z,y) = up + —4—(2B + C)K3b® — iEKg{(LlB + C)z* + (4B + 3C)y*°} (1.50)

where
_ 4U()
- 7T2R(2B + C)’wo

K3 (1.51)

which is the force constant from equation (1.47). The displacement after the incremen-

tal compression due to the distribution equation (1.49a) is found using equations (1.16)
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and (1.20). These give

2 2 2
u_(z,y) = uo+%(2B+C)K1a2+ %(2B+C)K2— %Kl{(4B+C)m2+(4B+3C)y2}.

(1.52)
As we have imposed a no-slip condition on the problem, this displacement must be the
same as the displacement at the end of the initial compression. Equating coefficients

of 22 and y? and matching constant terms we see that

Ky = K (1.53)

2 2 2
uo + %(23 FOVKsb? = wug + dug + %(23 +C)K1d? + %(23 + C)Ko.

Solving for K; and K3, equations (1.48) and (1.49) become

2

_ IS 2, 32 2 . 2\-1/2
Py + 6P ZROB 1 C)u, {2uo(b* — )" + (a“uy — b°ug)(b* — r*)™"/<},
_ 2 2 _ . 2\1/2 2, 12 2, 2y-1/2
Qo +46Q = 71'2R(2.B +C)’U)0 {2’00(b r ) + (a v —b vﬂ)(b T ) }:
_ 2 o a2
No+dN = 7r2RB(b ré)He. (1.54)

where b (< a) is the radius of the new contact area and satisfies
b? = R(wg + dwp) (1.55)

and u; = ug + dug, v1 = vy + dvg. The radius of each sphere is R and the moduli B

and C are as previously defined in terms of the Lamé moduli.

When dwy > 0 the contact area increases and as we again have no relative displacement
of the upper and lower parts of the original contact surface, a similar condition will
apply to the final contact surface. Walton [85] shows that this condition plus an energy

flux argument are sufficient to ensure a unique solution. Considering the distribution

Po +6P = Kl(b2 - 7'2)1/2 + Kz(a2 - 7‘2)1/2

Qo+0Q = Ly(b? —r?)Y2 4 Ly(a® — r?)'/2, (1.56)

with Ny + 8N as before, we calculate the displacements as above and matching them
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in the same way, we see that the force distribution is now given by

4

— 2, _ 2 2 2\1/2
Py +oP m2R%(2B + C’)woéwo{(b uo—a yl)(a ™)
+(uy — up)a®(b? — r%)M/2},
_ 4 2, _ 2 2 2y1/2
Qo +46Q = 7(2R2(2B + C)'(U()(S’w(){(b vo — a”v1)(a %)
+(v; — vg)a? (b — 1"2)1/2},
_ 2 2 2\1/2
Ny +6N = 7r2RB(b r)te. (1.57)

Slade [76], extends these results for the oblique compression of two elastic spheres to
include the effects of a non-zero value of the coefficient of friction. He also considers

the oblique compression of two spheroidal particles.

Results for the Oblique Compression Problem

In the sections above we looked at the problem of the oblique compression of two elastic
spheres as presented in Walton [85]. The spheres are now pressed together in such a
manner that the centre of the lower sphere undergoes a displacement (ug,vo, —wp),
during the initial deformation and the upper sphere an equal and opposite one, that is
(—uo, —vg,wp). Following this, in the incremental stage the centre of the lower sphere
" undergoes a further displacement (dug,dvy, —dwp) and the centre of the upper one
(—dug, —6vg, dwp). Considering first the case when friction has an infinite value, the
total force acting across the contact area is found by integrating the distributions given

in equations (1.47). Hence, we have

— _ 8ug(Rwo)Y/? —  8ug(Ruwp)!/?
= 0 o= (1.58)
37(2B + C) 37(2B + C)
and 3/2
— 4R1/2w0
0= S (1.59)

The constants B and C are defined in equation (1.5) in terms of the Lamé moduli and
R is the radius of each sphere. For the incremental stage, two cases were considered in
section 1.2.8. For dwy < 0, integrating equations (1.54), over the contact area yields

the total incremental force acting, these are equation (2.10) of Walton [86]:

4 2 2
= — —b)“{2a 4
OP 3 R(ZB C) . {30, béu() (a ) ( a b)uo} P

CHAPTER 1 31



1.2. CONTACT PROBLEMS

4

N — 2 _ AV
0Q = 37R0EB T C)wg {3(1 bdvg — (a — b)*(2a + b)uo} ,
— _ A —add)

For the second case, if Jwp > 0, equation (2.12) of Walton [86] gives us the total force

acting this time, found by integrating equations (1.57)

3 _ 3

3rR(2B + C)dw’
- 8(b% — a3)dvq
3tR(2B + C)dwy’
— 4(b3 — a®)
W = “5EE (161

Notice that 3N is the same in both cases. The radii a and b satisfy the Hertz relation-
ships

a? = Rwyg (1.62)
and

b% = R(wo + dwp). (1.63)

In general, the two sets of equations (1.60) and (1.61) will give different results for the

incremental forces, but in the case of an infinitesimal increment they both reduce to

5P = 2Bw0) Fou oy A(Buwo) ovg (1.64)
7(2B + C) m(2B + C)
and also /
1/2
3N = 2(Bwo) oug (1.65)

These are the results for infinitely rough spheres.

The results for the case of perfectly smooth spheres are also listed in equations (2.15)
of Walton [86]. As there will be no shear traction across the contact area, then the

total force acting at the end of the initial deformation will be

4R1/2,wg/2

P=0 = d N=
P=Q =0, an 378

(1.66)
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and the incremental forces will be

— = 2(Rwp) 28wy

§P=3Q =0, and 3N = — (1.67)

1.3 Granular Media

In their book, Wang and Nur [89], bring together a range of theories that are used to
predict the elastic properties of granular media. The first chapter of the book sum-
marises some frequently used theories and models of elastic properties of effective media
that are applicable in particular to rocks. However, this is not the only application of
the theory, it is of interest to many research fields including material sciences and seis-
mic exploration. The book is split into several chapters but the introductory chapter

summarises them within just four areas. These are:
e 1. Effective Medium Theories
e II. Wave Propagation and Self-Consistent Theories
e III. Contact Theories
e IV. Anisotropy.

We are purely interested in the first and third of these and principally with the third.
However, below is a brief summary of each of these areas, before we focus upon contact
models and how we can bring together the results from the previous section to say

something about the properties of some types of granular media.

Effective Medium Theories

A lot of effective medium theories were developed to study the elastic properties of
composite materials such as cracked solids, porous media and multicomponent com-
posite materials. One of the ways in which the properties of these materials can be
determined is the method used by Wood [93], where the averaging is done by taking
the sum of individual phase properties, weighted by their proportion of the total vol-
ume fraction of the medium. Other methods include using an upper bound on the
effective elastic moduli found by Voigt [83], whilst studying an aggregate of crystals.
This assumes that the strain is uniform throughout the aggregate. Reuss [68], also

found a bound on the moduli but this time a lower one by assuming that the stress

CHAPTER 1 ) 33

- -



1.3. GRANULAR MEDIA

is uniform throughout the medium. Since Voigt’s and Reuss’ models only give upper
and lower bounds, Hill [40] suggested taking the average of these two solutions. This
does not have any physical meaning but gives an approximate value for the effective
moduli. Voigt’s and Reuss’ models often provide the highest upper bound and lowest
lower bound respectively for the effective moduli and so are not very practical. Hashin
and Shtrikman [38], however, using a variational approach, derived improved upper
and lower bounds for the effective moduli of multiphase materials. They claim that
the bounds calculated are the least upper bound and the highest lower bound, derived
when only the phase moduli and volume fractions are known. In the limiting case of

the highest upper bound and lowest lower bound, they recover Voigt and Reuss’ results

respectively.

Wave Propagation and Self-Consistent Theories

Two of the most widely used theories for modelling the effect of fluid saturation upon
seismic velocities within rocks are those of Gassmann [35] and Biot [9] and [10]. Walton
and Digby [88] also consider a medium saturated with fluid. The Gassmann equation is
only valid at low frequencies, at higher frequencies some of the assumptions break down.
Biot developed his theory to cover the whole frequency range. Kuster and Toksoz [49]
have derived a more general model to describe the wave velocity for a continuum with
inclusions. Wang and Nur [89] discuss in some detail the work contained in these five
papers. They also discuss three self-consistent theories, including that of Hill [40] who

developed his self-consistent theory for spherical inclusions.

Contact Theories

Contact theories are used mostly for studying the elastic properties of granular media,
as they will be in this thesis. As we have already seen, there are several theories to
describe the interaction between individual grains in the form of spheres. Both the work
of Hertz [39], for the application of a normal compressive force between two spheres and
Mindlin [57] who considers several initial loadings of the spheres, have been described

previously in this chapter.

Modelling the grains as spheres is one approach to the problem and many authors
have chosen to do this. Some have considered regular packings, while others random

packings. In Section 1.3.1 we discuss the random packing model presented by Wal-
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ton [86] as this will be further developed in other chapters. Slade [76] also considered
random packings, but discussed the results for a packing of oblate spheroidal particles.
The motivation for this was the application of the results to shale-like rocks which are
made up mostly of clay, in the form of flat, plate-like particles. Other minerals are
present in the shale but it is the clay that is the load bearing part and thus will have
the largest effect on the elastic properties of the shale. In general, elastic properties
of shale are anisotropic and Hornby et al. [41] have also done some work to predict
the effective elastic properties of shales using spheroids. Their theory is based upon a
different approach to that of Slade, they use a combination of self consistent (SCA) and
differential effective medium (DEM) approximations. Another approach is considered
by Marion et al. [53], they modelled the shale as an isotropic elastic solid. They justi-
fied this from the experimental work of McGeary [55], who showed that the packings
of binary mixtures depend upon the diameter ratio of the particles. For large diameter
ratios, typically around 100, the mixture packing is close to ideal. That is, the small
spheres do not affect the packing of the large and vice-versa. In the sand-shale model

the diameter ratio is normally greater than 50.

Anisotropy

For the random packings of spheres such as we shall consider in this thesis, the effective
medium is only anisotropic upon application of a uniaxial loading. However, it is clear
that in rock samples this will not be the case as there may be cracks, for example,
which result in anisotropy. Even if these cracks were randomly distributed through
the medium, the application of uneven or directional strains to the rock would givé

anisotropic effective elastic constants. The papers within Wang and Nur [89] discuss

this in more detail.

1.3.1 The Effective Elastic Moduli of a Random Packing of Spheres

In his paper, Walton [86] considers the calculation of the effective elastic moduli of a
dense random packing of spheres. Other authors have also considered this calculation,
however many of them consider regular packings, for example, Duffy [31], Duffy and
Mindlin [32], Deresiewicz [27] and Walton [84]. Brandt [12] did consider a random
packing, as did Digby [28]. However, Brandt [12] only looked at the effective bulk
modulus and Digby [28] assumed that the spheres were bonded together (we shall see
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how this bonding affects his results, as compared with those of Hertz, in the next

section).

The methods presented in Walton [86] will be used exténsively in this thesis, and so
in this section we present the main results and techniques. In our later work, we
extend the initial conditions and modify the main assumption of uniform strain for the
displacement of the sphere centres, as made in the paper. Chapter 2, looks at a different
initial loading, Chapter 3 attempts to provide reasons why the numerical values given
for the effective elastic moduli from the work of Walton [86], are so different from those
found by experiment and numerical simulation. Chapters 5 and 6 continue along this

path of thought and calculate the effective moduli in the case of a binary packing of

different sized spheres.

We assume that the random packing of spheres occupies a large volume. It is a random
packing in the sense that contact points are distributed with equal probability over
the surface of each sphere. The spheres are all identical in that they are the same size
and have the same elastic moduli. The sphere material is homogeneous and elastically
isotropic. In the initial state, the spheres are in point contact with several of their
neighbours. In theory, this could be as many as twelve but on average, for a dense
packing, will be around eight or nine. When a confining strain is applied to the medium,
this prevents separation of any spheres already in contact and creates small contact
areas between neighbouring spheres. We assume, for simplicity, that no new contacts
are formed during this process. Endres article [34], is an example of how the effects of
contact generation can be considered within the model. The procedure for calculating
the effective moduli is to then impose a further incremental strain on the material,
that is one of much lower order than the original strain. The effective moduli are

then determined from the relationship connecting the average incremental stress to the

average incremental strain.

Alternatives to the Hertz Theory With Tangential Loading

Several other authors since Hertz [39] have also considered the problem of describing
the contact area formed when two identical spheres come into contact. In a recent

paper, Norris and Johnson [60] consider the incremental relation between the forces

CHAPTER 1 36



1.3. GRANULAR MEDIA

and displacements of the form:
SN = Dn(wo)owo, ST = Dt{wo)Suo (1.68)

where the force has been decoupled into its normal component SN and its tangential
component S7 and where Dn and Dt are the contact stiffnesses in the notation of

Digby [28] and Winkler [92]. These take the form

Dn —Cnan{wo), Dt —Ctdt{wo) (1.69)

where Cn and Ct are actual stiffnesses,

ifi _ 8zA+n)
1—v A+ 2
8// 16/i(A + n)

L S AT (1.70)

Cn =

and A and /i are the Lame constants for the spheres and u is Poisson’s ratio. The
lengths an and at do not depend on the material properties of the spheres, but do

depend on the type of contact. Several models are summarized in table 1 of Norris and

Johnson [60] and are reproduced below.

Contact Description an(w) at{w)

Model (a) (b)
I Hertzian Contact (Rw0) I/* 0 n
11 Initial Contact Radius b (Digby) + £)¥/*+£]12 b 10/
11 Frictional Sliding (Rwo) 1/2 JL + k%rL]/'

(Mindlin and Dereseiwicz)

In all these models, the two sub-cases (a) and (6), correspond to (a) smooth contact

with reversible slip; and (b) rough contact with no subsequent slip.

Mindlin and Deresiewicz’ model

Mindlin and Deresiewicz wrote several papers analysing the mechanics near the contact
region of two spheres, Mindlin [57], Mindlin and Deresiewicz [58] and Deresiewicz [26]

and [27]. These extend the theory of Hertz to include tangential loading and oblique
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contact. The second of these papers concludes that the changes in traction and dis-
placements depends not only upon the initial loading, but also upon the entire past

history of the medium and the instantaneous relative change of tangential and normal

forces.

Consider two spheres under a compressive load, Ng, resulting in a contact area of
radius a. Expressions are found for a and for the normal displacement w. Now, an
oblique force is applied with a tangential component T and a total normal force N.
The additional force is applied incrementally and

dT
iN =0>f (1.71)

where G is constant and f is the coefficient of friction between the sphere surfaces.

Defining

6= % and c¢=(1-T/fN)"3aq, (1.72)

the expressions found by Mindlin and Deresiewicz [58] for the normal and tangential
compliances of the spheres can be expressed in terms of the no_tation of Norris and
Johnson [60], as shown in the table above. If the spheres are perfectly smooth, then
¢ = 0 and we have no tangential tractions acting across the contact area. Thus the
conclusions are identical to those of the Hertz theory (case Ia in the table). If the

friction is infinite or § = 1 then we recover the results of Walton [86], as described in

the next section.

Digby’s Model

Digby [28], modelled porous granular rock as a random packing of identical spheres,
bonded together across small areas before the initial loading is applied. This initial
contact area is circular and has radius b. Upon application of a compressive normal
force N, acting on the particles, the contact area increases, having a new radius a which
is given by:

a(a®? — b?)Y/? = Rw. (1.73)

This gives the entry for a, = a in the table above.
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1.3.2 The Random Packing

We wish to consider the properties of a dense random packing containing many spheres.
We assume that the spheres occupy a large volume. The spheres are all identical in that
they are the same size and have the same elastic moduli. They are large enough that
we need not consider interaction forces such as capillary forces, Van der Waals forces
and electrostatic interactions, which would become important for particles of diameter

less than 200 pum (Troadec and Dodds [82], page 141).

In the undeformed configuration, the centre of a typical sphere, the nth say, will have
position vector X(™), relative to some given origin. This sphere will be in point contact
with several of its neighbours. The boundary of the medium is subjected to a displace-
ment u that is consistent with a uniform compressive strain e;;, in order to reach the

initial deformed configuration. Thus, the components of displacement have the form
Ui = €T; (1.74)

where e;; are the components of a symmetric constant tensor relative to some chosen
axes. Although the medium is not continuous, we take e;; to represent the average

strain within the medium.

Under this deformation, the centre of the nth sphere say, will be displaced by an
amount u(™. Initially in contact with the nth we consider a second sphere, let this be
the n'th. This also will undergo a displacement, u(™), from its original position, X,
We neglect sphére rotations for now, but in a later section of this chapter, will look
at the work carried out by Slade [76] to include these effects. Rotations are in fact

significant in one of the initial configurations considered in Walton [86).

The position vector of the initial contact point is
Lxm 4 xt)

and from the symmetry of the problem, this will undergo a displacement
Lia® 4y

Now the displaceménts of the sphere centres, relative to this point, for the nth and
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n'th spheres are respectively
1 (n) (n") 1 (n") (n)
3 (u'™ —u'™’) and 5 (u'*’ —u'™). (1.77)

The initial applied strain compresses the spheres together and small contact areas arise
where there was originally a point contact. We wish to calculate the average stress
within the medium and hence need to consider the force acting across each of these

contact areas.

Each sphere, as we have already mentioned, is in‘contact with several of its neighbours
and we need to consider the effect of the displacements and forces of one contact on
the other contact areas. The usual way to deal with contact problems is to assume
that the contact area is small in relation to the size of the body, as in the Hertz
theory. As previously discussed, this enables the body to be approximated by an
elastic half-space. Walton [84], when considering a purely normal compression acting
on a regular packing, actually determined the displacements everywhere on the surface
of the sphere. He showed that the displacements in the neighbourhood of the contact
area are what would be expected under the Hertzian assumption. He also showed that
for any physically interesting situations, the surface displacements are negligible apart
from in the neighbourhood of the contact. Even though these results were only for a
purely normal compression acting on the medium, it might be expected that this would
also be the case for a general oblique compression. Thus to a good approximation, we

assume that the contact areas can each be treated in isolation from one another.

For the contact we are considering, that is the one between the nth and n'th spheres,
we wish to find the resultant stresses across the contact area when the sphere centres
have been displaced by r %(u(“) —u{™)) relative to the initial contact point. Initially,
we again assume that the spheres are infinitely rough, the results for perfectly smooth
spheres are given later. In section 1.2.2, we used the subscripts u and [ to correspond
to the half-spaces z < 0 and z > 0 respectively. We now take the lower sphere to be

the nth and the upper to be the n'th. Introducing the unit vector, I(") along the line

of centres of the two spheres we have

, XM - x®)
h 2R

1 . (1.78)
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To apply the results we have already found, we must split the displacement of the centre
of each sphere into its normal and tangential components. Let the normal component

of the relative displacement for the upper sphere be wp, then this is given by
1 I I
wo = E(u(") — u™) 1), (1.79)

As this is in the direction of I®), the remainder of the relative displacement corre-

sponds to the tangential part. Let this be sp, then we have

1 I 1 1 1
s0 = 5(u™) —u) - (™) — u) 1) o). (1.80)

B

The total force acting on the nth sphere, due to its contact with the n’th, can now be

found using equations (1.59):

o ARV2W? o 8(Rwo)? (1, oy n o
pom = M 4 ey (0 — ) et
(2R)1/2

_\ey (n') _ ,(n)y p(nn'N1/2(,(n') _ ()
3#B(2B+C){2B[(u u'™).1 1"“(u u'™)

+C[(u™) — u) 1P} (1.81)

To determine this force we must make some kind of assumption about the relative
displacement (u(®) — u(™). Walton [86] follows the work of Digby [28] and Batchelor
and O’Brien (1] in which the displacements of the sphere centres are assumed consistent
with the applied uniform field. (In fact, Batchelor and O’Brien [1] deal with the problem
of thermal and electrical conduction in a medium containing a large number of spherical

inclusions). Thus we have

u™ = ein,(-"), (1.82)

which is often referred to as the uniform strain approximation. This is clearly consistent
with equation (1.74) and although it will not be exact for every sphere, it will hold on

average and so is a reasonable first approximation to make.

Now inserting equation (1.82) into equation (1.81) and using the definition of I"™) we
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have

pom) AR

= ~ 5 BB 7o) 2B el ) e I —C e I AL},

(1.83)

This holds true for any general strain provided we ignore any rotation effects.

In order to calculate the effective elastic moduli of the medium we must determine the
relationship between the average stress within the medium and the average strain, or
equivalently, the uniform applied strain field e;;. If V is the total volume occupied
by the medium, that is the volume of both the spheres and the pore space, then the

average stress < o;; >, over this volume, is given by

! 1 (m)
<L 0 >O= — :dV = — / o, dv 1.84
I |4 /spheresaJ |4 ; Va 7 ( )

where V,, is the volume of the nth sphere, ag-") are the components of the Cauchy stress

within this sphere and summation is over all the spheres, within the volume of the

medium, V.

In particular, for the nth sphere, the integral on the right hand side of the previous

equation can be re-written as an integral over the surface of that sphere. Thus,
1
/ 0idV = = / (24t + o5t™)ds (1.85)
Sn

where the components z} = z; — Xi(n) refer to 'the position vector of a material point
of the sphere relative to its centre and tz("), the components of the traction across the
surface of the sphere, S,,. The traction tﬁ") will be zero across the surface, except
over the areas where the nth sphere is in contact with its neighbours. As seen in a
previous section, this contact area is small in relation to the size of the sphere and
thus for the contact between the nth and the n'th spheres, z} can be approximated as
%(Xi(n’) - Xi(")). This is the position vector of the centre of the contact area, relative
to the centre of the nth sphere and the integral of the traction on the contact area then
reduces to (™). Hence equation (1.85) becomes

/V oV = ;; {; (X0 - XY Fr 4 2 (309 - %) F;'m')} . (186)
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the summation in this case taken over all spheres, n', in contact with the nth.

Our original expression for the total stress, equation (1.84), can thus be rewritten as

R (nn') plnn') | p(nn') po(nn') ‘
in which the summation this time is taken over all contacts, between all the spheres
in the packing. The operator < . > represents average over the total volume, V.
The factor 1/2, does not appear in this equation as each contact occurs twice in the
summation over both n and n’. We have already seen the expression for F(**) in

equation (1.83) and this can be substituted into equation (1.87). Similar expressions

appear in the work of Christoffersen et al. [18] and Cambou [13].

We have assumed that the packing is isotropic and that the contact points are uni-
formally distributed over the surface of each sphere. Since the volume is large and
contains many spheres, the summation that arises from equation (1.87) can be written
in terms of averages to yield:

on

<o > = m{B((‘emIpIq)l/ (eI} + ejilili))

*C((—equpIq)S/inIﬁ}‘ (1.88)

Here we have introduced 7, the average number of contacts per sphere, that is the

average coordination number and ¢, which is the volume concentration of the spheres,
defined by

_ 4TR3N
3V

¢ (1.89)

where R is again the radius of each sphere and N is the total number of spheres within
the packing. The averaging operator, < . > has different meanings, depending upon
its position. On the left hand side it still represents average over the volume, but on

the right hand side it represents average over all contacts within the packing.

Since our packing is dense then the porosity, v, which is the ratio of the volume of the
voids between the grains to the total volume of the packing, is between 0.36 and 0.38,
Troadec and Dodds [82]. If instead, we were to consider a loose packing, this would
be between 0.39 and 0.42. In fact, our particular calculations include the solid packing

fraction, ¢ which is related to the porosity by ¢ = 1 —~ and hence we are looking at a
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value for ¢ of between 0.62 and 0.64, in our applications.

Equation (1.88), gives us the relationship we require between the average stress in the
medium and average strain, which includes the effects of volume concentration and
coordination number. These are properties of the packing and are assumed known.
Scott [74] and Bernal and Mason [6] discuss the measurement of these quantities and
statistical properties of random packings in general. There are several ways in which

to determine the coordination number experimentally, for example,

e Acetic acid poured into a packing of lead spheres and then the liquid drained, the
marks left on each sphere by lead acetate are counted, Smith et al. [78]. Careful
examination allows real contacts to be distinguished from close neighbours. A
similar experiment involves use of any kind of sphere and fast drying paint, Bernal

and Mason [6].

e A sphere packing is impregnated with paraffin and the position of each sphere
is then determined with precision as the packing is dismantled sphere by sphere,

Bernal [5], Scott [75] and Mason and Clark [54].

e Bernal [4] used the method of compressing plastic balls together and counting

the number of plane faces formed.
More recently, these quantities have been determined by numerical simulation.

Walton (86], only considers two specific cases of the application of an initial strain field,
eij, as the expressions that arise in a general situation become very complicated. The
two cases he considers are those of an initial hydrostatic strain and an initial uniaxial

" strain, although all the methods employed hold for any initial configuration.

Turning first then to the case of an initial hydrostatic strain, the applied strain field

may be written as

€ij = eéij (1'90)

where e is a constant and thus upon substitution of this into equation (1.83) we find

that the force acting on the nth sphere due to its contact with the n'th, reduces to the

simple form

) _ AR(=e)
3nB

) 1), (1.91)
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Now, from equation (1.88), we find the average stress within the packing for this par-

ticular compression:

gn(=e)*/?

<0y >= _W<Iin)' (1.92)
However, as
(LI;) = %‘iij (1.93)
then
< 045 >= —pbi; (1.94)
where p is given by "
p= @é;%—- (1.95)

Secondly, we consider the case of uniaxial compression in the z-direction, then the

strain field is given by

e’ij = 6361:36]‘3 (1.96)

where eg < 0 for compression. The resulting stress is then of the form

(< 035 >) =diag(< 01 >,< 01 >,< 03 >) (1.97)
with )
_ ¢nC(—e3)’/? 372
<oy >= 7r2B(ZB+C)<|I‘°’| I7) (1.98)
and )
__ ¢"7("‘@3)3 2 2 4

We require the value of the average terms and these are given in Walton [86] as:

, 1
<|LPE> = o
1
<|L|I3> = 7
1
<|L|I} > = 5 (1.100)
and so
¢nC(—e3)3/?
- _ 1.101
SO T BRB 1 C) (1.101)
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and
¢n(3B + C)(—e3)*/?
672B(2B + C)

<03 >=—

(1.102)

These are the results in the case of infinitely rough spheres, if we now consider the
case when they are perfectly smooth we observe that there will be no tangential forces
acting across the contact area. By repeating all of the calculations above, but using

equation (1.66) this time, we find the general average stress is given by

(n) ’ ' ] [
_ (:ZB ((—quI;()Tm )I(gnn ))3/2Ii(nn )Ij(nn )> (1103)

<0 >=

So, for an initial hydrostatic compression, the stress is the same as in the case of

infinitely rough spheres. However, in the case of an initial uniaxial compression, this

time we have

¢ (—e)3/2

<o >=-F (1.104)
and (
n)(_.\3/2
<oy > ST (1.105)

6m2B
1.3.3 The Effective Moduli

- To calculate the effective moduli, we further subject the medium to an incremental

deformation. That is, after the initial deformation, in the same way we now impose
du; = 56,‘7':1:]' ‘ (1.106)
on the boundary, where du is consistent with a uniform strain de;;. Now, using the

same methods as in the previous section, we find that the incremental force is given by

(2R)1/2[(u(n’) _ u(”)).I("”')]1/2
2rB(2B + C)
+C[(6u™) — sul?) 11y, (1.107)

5F(nn’)

{2B(6u™) — §u(™)

As before, we assume that the centre of the nth sphere will undergo a displacement

su{™ = ey X\ (1.108)

CHAPTER 1 46



1.3. GRANULAR MEDIA

and then the average incremental stress is obtained in the same way as equation (1.88)

and is given by:

39 2
079> = gEpepT oy < (ol e,

+oeidil;) > +C < (—epql, L) 2 ILLLI; > dey}.  (1.109)

This expression relates the average incremental stress to the average incremental strain.

Since the effective moduli Cjj; are defined by

< doi; >= C{jkl < deg > (1.110)

then the general expression for the moduli is given by

. _ 3¢n
gkl ™ 972B(2B + C)

+B < (—epglpI) 2 LIy > 65+ B < (—epg L) L;I > 6, (1.111)

{B < (—epglp )’ L; I, > 63

+B < (—epglpIg) 2 LI > 85 + 2C < (—epglply) 2 LI; LT, >}
We want Cjj, to possess symmetries in:
i)iej ) kel i) (i) ¢ (kl) or equivalently i > k and j« [, (1.112)

and our expression clearly satisfies these. The elastic moduli are seen to depend on
the initial strain and in general our medium is now no longer isotropic. We again
consider our two cases of hydrostatic and uniaxial compression so that equation (1.111)

simplifies. First, with an initial hydrostatic strain e;; = ed;;, equation (1.111) reduces
to
* 3¢”)(_6)1/2

ijk:l == W{B < I]Ik > 61:[ +B < IiIk > 6_7[ + B < IJI[ > 5,7;

+B < LI > 6jk +2C < LI; I I, >} (1.113)

However, as before we have

1
< L‘Ij >= 55,‘]' (1.114)

and now also

1
< LL;iI I >= 1—5((51']'5“ + 6ik5jl -+ 5i15jk)- (1.115)
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Thus,
Clikt = X0ij0kt + ™ (0ikdj1 + 6udjk) (1.116)
where /
* __ ¢nC(_e)1 2
N = 1mB@B T 0) (1.117)
and /
5B + C)(—e)!/?
»_ $nBB+C)(—e) . (L118)
10a2B(2B + C)

In this case the material is statistically isotropic.

Secondly, in the case of uniaxial compression, e;; = e36;30;3 and the moduli reduce to

* _ 3¢n(—63)1/2

k™ 472B(2B + C)
+B < |I3|IjI[ >0+ B< |I3|I,'I[ > 6jk +2C < |13|IinIkI[ >}.

{B < |I3|IjIk > +B< lIg|IiIk > (5]‘1 (1.119)

This time the material is statistically transversely isotropic and calculating the averages

of the components of I™) we see that the effective moduli are as follows:

Chi = Ch =3(a+2p),
Cl; = Clip=a-24,
Cis = Cfi33 = Ca33 = 2CY,

C3; = Cizss =8(a+p),

CZ4 = Cf313 =2« + 5[3, (1.120)
with
_ ¢n(—e3)!/?
a= "0 (1.121)
and )
¢n(—e3)'/?
=50 =7 1.
F= 2mo@B+0) (1.122)

We note that the modulus Cj, is different to the incorrect one given by equation (4.14)

of Walton [86]. These are the results when the spheres have an infinite coefficient of

friction.

Looking again also at the case when the spheres are perfectly smooth, in the case of
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an initial hydrostatic compression the moduli are equal and are given by

_\1/2
()

= 0B (1.123)
and in the case of an initial uniaxial compression,
C’lkl = 3a, sz = Q, Cf3 = CZ4 = 2a, C;S = 8a (1.124)

where « is again as given above in equation (1.121).

These results are extended in the work of Slade and Walton [77], where a finite, non-
zero value of the coefficient of friction was considered for the particular case of an initial
uniaxial compression, followed by an incremental uniaxial compression. The general

form for the incremental strain when there is finite friction was also considered by

Slade [76].

The above results for the moduli have been determined using the same methods as
Walton [86], however Slade [76], has shown the need for consideration of the individual
sphere rotations. When we do include rotations, we find that in fact the only moduli we

have incorrectly calculated is C§, for the uniaxial case. The next section summarises

Slade’s work on this problem.

1.3.4 Sphere Rotations Within Random Packings

Walton {86] assumed that although the individual spheres in the packing might rotate,
these rotations would be negligible. As we shall see, this is valid, provided particu-
lar symmetries exist in the way the packing is initially deformed. In a further paper,
Walton [87] did consider the effects of rotations when studying the problem of wave
propagation through a random packing of spheres. Including rotations into the calcula-
tions, the centre of the nth sphere now undergoes a displacement (u(™® —w(™ A RI(®))
and the n'th in contact with the nth, a displacement (u(”') - w™) A RI("'")). Thus,
the modified equation for the initial force acting on the nth sphere due to its contact
with the n/th is given by equation (2.8) of Walton’s paper as:
(2 R) 1/2

37B(2B + C)

+(w™) + w(™) A RI™)) 4 C’[(u("') _ u(n))_I(nﬂ’)]3/2I(nn’)}’

F() {2B[(u™) — u™) 1(m)]H/2 (4] _ ()
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Figure 1-4: [nitial Deformation of Two Spheres Including Rotations
(1.125)

where R is again the radius of the spheres and 1(nn/), the unit vector along the line of
centres between the nth and n'th spheres. The displacement of the centres of the nth
and n'th spheres after the initial compression are u(n) and \ respectively and B and
C are as before. The quantities u/n) and ) are the individual rotations of spheres
n and n' respectively. Figure 1-4 shows the initial deformation of the nth sphere in
contact with the n'th. We use the same notation as before so that the centre of the

nth sphere is initially at X(n).

Any packing we consider will be in equilibrium and so each individual sphere must also
be in equilibrium. Hence we require that the sum of the forces and moments acting on

a sphere must be zero. Thus, for the nth sphere, say,

AF (nn') = 0 (1.126)

and

I(nn") A F (nn,) = 0. (1.127)
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These, along with equation (1.125) provide enough conditions, in theory, to calculate
u™ and w(™ for any sphere, n. In Walton [86], it was assumed that a good approx-
imation was to take the rotation terms, w(™), as zero and the displacements, u{™), as

given by the uniform strain approximation.

Now, from equation (1.127) it follows that

Z Ii(nn')F](nn') _ Z \IJ(.nn')F,i(nn’)

n! n'

and so

z Ii(nn')F}nn’) — Z Ignn’)Fi(nn')'

contacts contacts

Writing this in terms of the averaging operator, < . >, we have
< IiFj >=< IjFi >, (1.128)

which if not satisfied with the exclusion of rotations from equation (1.125) would suggest
that rotations need to be included. We then assume that the displacements u(® are still
given by the uniform strain approximation but that the rotations, w(™) are the same for

each sphere throughout the packing. An expression for w(™ can then be determined

using equation (1.128).

Similarly, from the other equilibrium condition, equation (1.126), we have
< F;>=0, (1.129)

which should be automatically satisfied, but can be checked for any particular case of

initial compression as we shall see below.

The Initial Deformed State

Slade [76], considers the same two cases of initial confining strain as did Walton [86],
that is he considers first a hydrostatic strain and secondly a uniaxial one. From equation

(3.6) of Walton [86] we have already seen that the general expression for the force
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without rotations is given by equation (1.83), that is

(nn') _ 4R? 9B I(nnI)I(nnl) 1/2 I(nn’) C I(nn’)I(nn’) 3/2 y(nn')
R =~ map v o) 2B ety 1) ey I ~O—eng M 1)L,

(1.130)
This then gives

4R?
<LF> = ~350ET0) {2B((~epgLp1g)?esuliLs) — C{(—epglpIg)*/ L)}

(1.131)

so that now we can consider the specific strain cases mentioned.

In the case of a hydrostatic compression we have

ei; = edjj (1.132)

with e < 0 corresponding to compression. In this case, equation (1.131) becomes

4R (—e)/2

LF; >=
< hifi > 3B

< LI; > (1.133)
and it is clearly symmetric in ¢ and j. Hence, the average stress due to an initial

hydrostatic compression can be calculated as

¢n(—e)3/?

<0y >=— 2B

< LI; > (1.134)

which is precisely that calculated by Walton [86] and seen in Section 1.3.2. By a geo-
metrical argument, the same conclusion could have been reached. Under a hydrostatic
compression, the forces acting on an individual sphere to rotate it clockwise would be

exactly balanced by those acting to turn it anticlockwise.

Considering also the second case, an initial uniaxial compression along the z-axis we

have
eij = e30;30;3 (1.135)
in which ez < 0. Again calculating < I;F; > from equation (1.131), we find

4R2(_e3)3/2

LFj>=—— %
S8 2= T3 BB + O)

(2B < || I31; > 6j3 + C < |1PLI; >} (1.136)
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The second term, with coefficient C, is seen to be symmetric in 7 and j, however we
need to explicitly calculate the other term to decide if it too is symmetric. Slade [76]
evaluates this as zero when i = 1 or ¢ = 2 and 1/4 when ¢ = 3. This enables us to

rewrite the term as:

<\BIIL > 853 =< |I3|13 > bi3djs, (1.137)

which is clearly symmetric in z and j. We find that the average stress resulting from an

initial uniaxial strain remains unchanged from that which is given in equation (3.24)

of Walton [86].

We have seen that in both the application of an initial hydrostatic compression and
that of a uniaxial compression, the average rotation of the spheres was zero and did
not have any effect on the expression for the average stress. This is not the case when

we consider the incremental stage of the problem, rotations are required to ensure

equilibrium of moments.

Application of an Additional Incremental Strain

Relative to the contact point with position vector (X + X (™)) /2, the incremental

displacement of the centre of the n’th sphere will be
Lisu®) — su®) 4 Lisu™) 4 su™y A RIC™)
5(511 ~du'™) + 5(6(4) + dw'™) A RI'"™ ). (1.138)

This displacement can be split into its normal and tangential parts in the same way as
considered by Walton [86] and as discussed in Section 1.3.2. The normal component of

the relative displacement of the upper sphere dwy, is found to be
Lisa) — gty 10m)
dwy = E(Ju —6u™).I (1.139)

The shear component, which is the remainder of the relative displacement, is then given

as follows:
8sg = %(éu("') —su™) + %(&J"’) + 6w A RIC™) — gy 1™, (1.140)

The incremental force vector can be constructed from the incremental normal and

tangential forces found from these displacements. This will be the incremental form of
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equation (1.125):

, 1/2[(4(n") — () 1(mn"))1/2 ,
spemy — (2B) [(2‘;3 (QB“+ c)')l ] {2B(5u™) — ul™ (1.141)

+(0w™) + ™) A RI™)) + C[(6u™) — §ul™).1(*)]3/21 ()}

We now make the same assumption as before, that the displacements of the centre of

each sphere is consistent with the applied uniform field. Thus,

u” = e;; X" (1.142)

and

sul™ = bei; X\ (1.143)

and a similar assumption will be made about the rotations. Since we assume that the

strain field is uniform throughout the packing then we also assume that the spheres all

rotate by the same amount, that is
bw™ = §w(™) = fuw. (1.144)

Again, as with the displacements, each sphere will not rotate by exactly the amount
given, but it will be true on average. Now, using the definition of the unit normal

vector, equation (1.78), we have from equation (1.141) the component form of the

incremental force given as:

_2R2(_equpIq)1/2

(o) _
OF; +B@B + C)

{Cdekﬂkfl[i + 2Bédeyl; — 2B€ikl‘5wkIl}- (1.145)

The superscripts (nn') of the vector components I;, have been omitted for brevity, €;x,

is the third order alternatirig tensor.

Equilibrium Conditions

If the nth sphere is to be in equilibrium we require the sum of all the incremental forces

acting on it to be zero and the sum of the moments of those forces to also be zero.

Hence, we have

S 1) AGF™) = 0 (1.146)
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3 oF) =0 (1.147)

Substituting from equation (1.145) into equation (1.146), after disregarding one term

as it will be zero, the condition for equilibrium of moments reduces to:

Z(—equpIq)lﬂ(&ik — IiIk)éwk = Z ei,k(—equpIq)l/zIrIgéekl. (1.148)
n' n'
Summation is taken over all spheres n' in contact with the nth sphere and by also
summing over all spheres n, provided we have a dense enough packing the summation

may be written in terms of averages yielding,
(—epgIpIg) 2 (8ik — LiIk))owk = €irk((—epglply) /21, 1) exs (1.149)

from which the incremental rotation vector dw may be determined in terms of the

incremental strain Seij which is known. Slade [76] calculates the components of this as

1
dwy = —313-5623, dwp = de13, dws =0. (1.150)

We also have the condition for equilibrium of the incremental forces, equation (1.147),

which becomes
((—epgIpIg) Y {CT L I; + Béy I }oer) = 2Beini{(—epglply) /2 Lidwy). (1.151)

Any initial compression would in fact satisfy this condition since we are averaging over

odd quantities.

The Incremental Stress

Equation (1.109), gives the general form of the incremental stress and having deter-
mined the rotation vector dw from equation (1.149), we can substitute the expression

for the incremental force from equation (1.145) to find this incremental stress. We

obtain,

3¢n
<bni> = apomy oy Clemlol) P Luden)

+2B((—€qupIq)1/21'1[,‘66_7'[) — ZBeikg((—equpIq)1/2Ii116wk)}1.152)
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from which the effective moduli can be found in the same way as before.

Slade [76], considers first the case of an initial hydrostatic strain for which we have
ei; = ed;;. The incremental stress is symmetric before inclusion of the rotation term

above. Thus the calculations are unaffected by rotations and so the moduli are as found

by Walton [86] and seen in Section 1.3.2.

However, in the case of an initial uniaxial strain we have e;; = e3d;3;3 and the incre-

mental stress is found to be

3n¢(—e)/?
272B(2B + C)

+C < |I3|IinIkIl >) < deg > —2B£qu < |I3|Iqu > pr} .

<doy; > = {(B < |I3|I;I; > 61 > +B < |I3| ;I >

(1.153)

The New Effective Elastic Moduli

As we have found the incremental rotation vector, we can proceed to find the incre-
mental stfess from which the revised effective moduli will be calculated. If we compare
equation (1.153), the expression for the incremental stress including rotations with that
found by Walton [86] without rotations, we see that equation (1.153) contains an extra
term, €jpq < I,-Iq|13|‘ > dwp. Slade [76] concludes that this is zero for ¢ = j. Since we
require the indices j, p and ¢ to be distinct, then in particular j # q. If < LI, |I3| > is
to be non-zero then we must have ¢ = ¢ which combined with the previous condition
gives us @ # j for €jpq < Iil4|I3| > dw, non-zero. Hence, in fact only one of the five

independent elastic moduli is affected by the inclusion of rotations.

The elastic moduli are defined by the relationship
<00y >= C;jkl < deg > (1.154)

and taking ¢ = j = 1 in equation (1.153) gives the three moduli

3¢n(—e3)*(4B + C)
32n2B(2B +C)
C* _ ¢ﬂc(—€3)1/2
1122 ™ 3272B(2B + C)’
* _ ¢77(—€3)1/2C
Cliss = 1672B(2B + C)’ (1.155)

*
Cllll
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Similarly, if ¢ = 7 = 3, then

. _ ¢n(=e3)'/*(3B + C)
C3333 = 4?B2B+C) (1.156)

These four moduli, are identical to those calculated by Walton [86], however if we take -

1 =1 and j = 3 then the rotation term is non-zero and in this case the required moduli

is found by Slade [76] to be

» _ ¢n(=es)'/*(4B +C)
Ciaiz = 162B2B+C) (1.157)

Re-writing all of these moduli in terms of o and B as before, we see that we have

the five independent effective elastic moduli needed to describe a transversely isotropic

medium:

Ch = 3(a+20),
Cla = (a—20),
Cl; = 2(a-28), (1.158)
Cis = 8(a+p),

The quantities o and 3 are defined as before by

_ ¢gn(—e3)!/?

=

_ ¢n(—e3)!/?
3272B ' p= 3272(2B + C)’ (1.159)

Using a physical argument, these results are exactly what we would expect, that is only
the modulus C3; = Cf3,3 is affected by the rotations that occur within the packing.
Since we are considering an initial uniaxial strain, the contact areas created upon
application of this strain will not all be of equal radius as they would in the case of
an initial hydrostatic strain. Those that are created between two spheres whose line of
centres is in the same direction as the strain, i.e. in the z3-direction, will be the largest.
These contact areas themselves lie in the z;zs-plane. Conversely, those contacts that

lie in the same direction as the strain will be smallest.

First consider the moduli C};, C{, and C7{; that arise from the relationship between
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the stress component o;; and the strain components ej;, ez2 and ess respectively. The
stress component oy corresporlds to a force acting in the z;-direction. If the contact
distribution is uniform, as we have assumed, then this force will act on identical sized
contacts on opposite sides of a sphere. Therefore we would expect the effects of rotations
due to this force to ‘cancel’ each other out. Hence the corresponding moduli are also
not affected. Similarly for C3;, which is found from the relationship between o33 and
es3. However, the modulus Cj, is determined from the relationship between o13 and
e13. The stress component 03 represents a shear acting in the z; and z3 directions
which will result in the same force acting on different sized contact areas. This will
lead to imbalance, the moments will not now cancel and rotation effects will app.ea,r

within the expression for this modulus.

1.4 Alternatives to the Uniform Strain Approximation

All the calculations discussed thus far to find the effective elastic moduli have been
based upon the uniform strain approximation. Several authors have considered alter-
native approaches in effective medium theory. Here we mention briefly some of this
work, although we will not use the ideas in this thesis. In particular, we mention a

method that could be described as a ‘uniform stress approximation’.

In their work, Emeriault and Cambou [33], suggest three methods of deriving a macro-
scopic elastic model from a microscopic contact law (Hertz-Mindlin). They consider
a random packing of spheres, both isotropic and anisotropic, although we are purely
interested in their results for isotropic media. They consider the global variables, o;;
and e;;, these are the stress and strain tensors respectively, in the same notation we
have used. The local variables are the contact forces, F; and the relative displacement
of contact points between particles, U;. The first order approximations of these are F;

and U;. The average diameter of the spheres is 2R.

The local variables involved in the homogenisation technique are only quoted in Emeri-
ault and Cambou [33], the actual discussion of them can be found elsewhere, Cambou
et al. [14]. These variables are:

2(1+d)mNR

StaticVariable : fa) = TP(I)F(I) (1.160)
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MACROSCOPIC SCALE

Global Constitutive Law
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Kine natic Analysis Stat ¢ Ana ysis
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Displacement Contact Force
at Contact pt.

MICROSCOPIC SCALE

Figure 1-5: Different Localisation and Averaging Operators

3

Ki ticVariable : I = S pm—— g 1.161
inematic Variable u(W ) JKR (9 (V )
where P(I) isthe contact distribution function and isequal to 1/47lin thecase of an

isotropicmedium and d isthe dimension of the space, so in our case d = 3.

All three methods discussed by Emeriault and Cambou [33], relate to finding the op-
erators to describe various paths around the boxes in figure 1 of Emeriault and Cam-
bou [33], shown here in figure 1-5. Different hypotheses are used to consider the local-

isation and averaging processes in this diagram. The three approaches as described by

Emeriault and Cambou [33] are as follows:
1. Voigt type process: e —b u(l) and f(I) —b a.
2. Static localisation process: a ~b f(I) and u “be
3. Second Kinematic localisation process: e EIE u(I) and f(I) b a

In each of these methods, 4 stands for an averaging operator, L for a localisation, s for
static analysis and k for kinematic analysis and the numbers represent the process that
uses the operator. Both the first and third approaches follow the same path around
the diagram as the uniform strain approximation. In fact the first is identical, yielding
the expressions we have already considered for the effective moduli. It is described

by Emeriault and Cambou [33] as a Voigt type process, as the localisation operator
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relating the strain to the displacement is equivalent to the classical one used in Voigt's

homogenisation in continuum mechanics.

The second and third approaches yield new expressions for the effective moduli. The
second approach traverses the box diagram in the opposite direction to the uniform
strain approximation and could be described as a uniform stress approximation. Using

the representation theorem, Spencer [79], the operator L3, is found, exactly, to be
1—p
f(I) = pol + T(SIUI —tro)lL. (1.162)

A simple linear contact model is assumed to connect the contact force to the displace-

ment in the following way:

F = K, U,I + K, U, (1.163)

where U, is the magnitude of the displacement in the normal direction, U; is the
displacement in the tangential direction and K,, and K; respectively denote the normal

and tangential stiffness. The averaging process, A’2c is described by

e= [pu AL+ 1P 51 AT - sul| do, (1.164)
Unit Sphere 2

where d© is the solid angle for each contact orientation I. The parameter p is used
to define the local operator, its value influences the orientation of the contact forces.

From these hypotheses, the shear modulus is found to be

x __ 5¢"7(_e)1/2
~ B(25-30u) + 3u?(5B + C) (1.165)

I

and the bulk modulus is found to be the same using all three approaches, hence

* 4577(—8)1/2
K = ——a—

o (1.166)

Emeriault and Cambou {33] compared the theoretical values given by these results
with some experimental work and found that a value of approximately u* = 0 gives
good correlation. However, a value ¢ = 0.7 was found from numerical simulations
to give a better description of the contact force distribution. Apart from the fact
that this unknown variable is included, we decided not to consider a further use of this

model because of the unrealistic linear relationship between the force and displacement,
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equation (1.163).

Returning to the third process discussed in this paper, an application of the repre-

sentation theorem is again used, this time to find that the localisation operator, L%

u(l) = % {[1 +b (3?# - 1)] el+b [Iel - %tre] I} . (1.167)

The averaging operator, A3 is the same as that we use in the uniform strain approxi-

is

mation to connect the average stress to the force:

3
o= -—/ £ A TdS. (1.168)
4 Junit Sphere

The local operator contains another unknown parameter b, when b = 0 we return to the
first approach again. Emeriault and Cambou [33] connect this parameter b to the local
rotation of particles and to the possible creation and loss of contacts in the medium
and so the first approach eliminates any possible rotations. We have already mentioned

the consequence of this in the previous section. The shear modulus in this third case

is calculated as

. _ ¢n(—€)/?(5B + C — 3Bb + (5B + C)by) (1.169)
572B(2B + C) '

I

and the bulk modulus is as in the other two approaches. The shear modulus again
contains the unknown parameters . and b and for this reason we have not considered

any further application of this method.

Several other authors have done some similar work, including Miilhaus and Oka [56]
and Chang et al. [16]. Chang et al. [16] calculate the effective moduli by considering
a kinematic and static hypotheses similar to the work of Emeriault and Cambou [33]
discussed above. The expression for the effective bulk modulus is identical in all cases,
it is only the effective shear modulus where there is some difference. Chang et al. [16]
claim that the kinematic hypothesis, for example the one by Walton [86] discussed
in detail in previous sections, provides an upper bound solution for a relationship to
estimate the particle movement. It is also claimed that the static hypothesis provides
a lower estimate solution. Chang et al. [16] compare the results obtained from both

of these methods with the range of behaviour of isotropic and anisotropic packing

structures. However, both this paper and that of Miilhaus and Oka [56] again assume
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that the relationship between the force on the contact area and the displacement is

linear. Hence we do not consider them to be as realistic as the model by Walton [86).
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Chapter 2

Effective Elastic Moduli of
Granular Media Subjected to a

General Biaxial Strain

2.1 Intfoduction

As we have mentioned in section 1.3.2, the work of Walton [86] employs a method that
could be used to consider any initial deformed configuration, although specific results
are only given for the two cases that correspo‘nd to an initial hydrostatic compression
and a uniaxial compression. The work in this chapter is an extension of the method to a
third case and we calculate the effective elastic moduli for an initial biaxial compression.
Like Walton [86], for simplicity, we assume that the spheres are either infinitely rough

or perfectly smooth.

The work of Schwartz et al. [73] has already extended Walton’s work by considering a
perturbation of the strain for an initial hydrostatic compression. The paper looks at
two types of model for predicting induced velocity anisotropy in rocks. It is the first of
these methods that is concerned with a combined initial hydrostatic compression and

uniaxial loading. That is, the initial strain has the form:
€ = eéij + A63(5i3(5j3. (2_1)

where Aez < e. The models he uses for this were developed by himself, Schwartz [71],
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2.1. INTRODUCTION

Schwartz et al. [72] and that of Walton [86], discussed in the previous chapter.

Firstly, we look at this case of applied strain and recalculate the moduli since Schwartz
et al. [73] did not consider the effect of the inclusion of rotations on the moduli. Using
the results in section 1.3.4 found by Slade [76], we calculate the effective moduli both
including and excluding the effects of rotations. It turns out that in this case again

only the modulus C{3;5 is affected by rotations.

Later in the chapter the case of a general biaxial compression is considered. Assuming
a spatial coordinate system given by z;, 2, and z3 our aim is to calculate the effective

elastic moduli when we have an initial strain of the form:
eij = e1(0:1051 + 0i2dj2) + e30i30;3. (2.2)

As in Schwartz et al. [73], relative to this state the material is transversely isotropic
with five independent moduli C};1;, Cii33, Cissz» Ciai3 and Cjg1o. By considering
the symmetry of the expression found for fhe average incremental stress we show that
the sphere rotations do not affect the moduli Cf,y;, Cf)33, C3333, and Ciy;5, however
they do affect C3;3. Therefore Cj3,3 will be calculated both including and excluding
rotations. Schwartz et al. [73] use these moduli to calculate the ratio of the speeds of
propagation of the P and S elastic sound waves in rock. That is, three independent
(Vu/V5)? ratios: Ciza3/Cia1z, Chi11/Cizrz and Ci11/Clzs- The first corresponds to
propagation along the pressure axis, that is the z3-axis, the second to propagation in
the transverse direction with the shear wave polarised in the transverse plane and the

third to transverse propagation with shear polarization in the axial direction.

Domenico [30] found that for systems whose elastic properties are isotropic under the
application of a hydrostatic .stress, the Vp/ V5 ratio, is often independent of the applied
pressure. That is, the ratio of the velocity of the P and S waves may be independent
of the applied pressure, even though the P and S wave velocities themselves may vary
with this pressure. However, this is not the case when the applied strain is uniaxial
as the systems exhibit transversely isotropic behaviour and the three Vp/Vg ratios do
depend on the applied strain. (See Nur and Simmons [61], Murphy [59], Zamora and
Poirier [95] and Yin and Nur [94]).

We are considering a system of this second type and plot graphs of the three Vp/Vg
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ratios against the third component of stress for two values of Poisson’s ratio, 1/2
and 1/4. We compare them with figure 1 of Schwartz et al. [73], which plots the
experimental results of Murphy [59] and calculated Vp/Vs ratios.

All the analysis in Walton [86] which leads to the general results that were summarised
in Section 1.3.2, are initially completed for the general case. Thus we can quote some
of the results without need for reworking of the calculations. We start by restricting

ourselves to the case of infinitely rough spheres, the results for perfectly smooth spheres

are given later.

The spheres are assumed to be elastically identical, all of the same radius and consisting
of material that is homogenous and isotropic. To see the effects of sphere rotations
which are non-zero we initially exclude them from the calculations. Equation (1.83)

gives the contact force, without rotations, as

R - AR

nn' Y\1/2 ( I)
" = ~gBEp o) CBCeml) e

—C(—epgI{™ I IT™NM2IY - (2.3)

from which the average stress can be calculated. The average stress, at the end of the

initial compression, is as given in equation (1.87), that is

R ! ! ! nn'
(o) == 3 {{"E I EY (2.4)

contacts

Since the volume is large and contains many spheres, the summation over all contacts

within the packing volume V', can be replaced by the averaging operator < . >, as seen

previously, thus

<oy >= T {(LF) + (LR} (2.5)

Using equation (2.3) we find the average quantity < I;F; >, and then equation (1.88)
is given as:
¢n

< 0ij > = m{B((—equpIq)l/z(eikaIj + ejkaI,-))

~C((~epqlply)**LI;)}. (2.6)

To calculate the effective moduli we further subject the medium to an incremental
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deformation. That is, after the initial deformation we impose an incremental displace-

ment
du; = 0e;T; ) (2.7

on the boundary, where du; is consistent with a uniform strain de;;. We calculate the
incremental force using equation (1.107) and the average incremental stress is then

obtained in the same way as equation (2.6), that is we have equation (1.109)

3¢n 1/2
< 60'ij > = W{B < (—equpIq) / (JeikaIj

+53jkaIi) >+C < (—equpIq)llzIkIJIin > (56};[}. (2.8)

This expression relates the average incremental stress to the average incremental strain

and since the effective moduli Cj};, are defined by
< 50’,‘1‘ >= C:jkldekl (2.9)

then the general expression for the moduli is given by equation (1.111) as

. _ 3¢n
Ukl ™ 972B(2B + C)

+B < (—equpIq)l/zlifk > 5j1 + B < (—equpfq)l/zfjfl > ik (2.10)

(B < (—epglpIy) LI > 6,

+B < (—epglpIg) 2L > 851 + 2C < (—epglply) ALI I > ).

since this possesses all the appropriate symmetries. We will include rotations into this

analysis later in the chapter.

2.2 Perturbation of an Initial Hydrostatic Compression

2.2.1 The Initial State

For a hydrostatic strain we have

€;j = ed;j, (2.11)

and as already seen, equation (2.1), we wish to calculate the effective elastic moduli

when this strain is perturbed in one direction. Thus, we consider a strain of the form:

€5 = 651'_1' + A635i3(5j3 (2.12)

CHAPTER 2 66



2.2. PERTURBATION OF AN INITIAL HYDROSTATIC COMPRESSION

where Aez <« e. We assume, as did Walton [86], that the displacement of the centre of
each sphere is consistent with the applied uniform field, so that

u{M = e XM, (2.13)
We substitute this displacement into the general force expression which then allows us

to calculate the average stress. For now, we still ignore any effects that sphere rotations

may introduce and use equation (2.6) to find the average stress. This gives:

s = ¢n (e + Aex))/2(eL;
<0y > = ZBRB T C){B < (—(e+ I3Ae3)) ' (eL;I;
+A€35¢3I3Ij + teI.i + A636j313[i) >

—C < (—(e+ I2Ae3))’2LI; >}, (2.14)

But, working to first order only in Aes/e,

1 ,A
(e + I2Ae3)l/? ~ 1/2(1 + 513?) (2.15)
since Aeg < e, and similarly,
3 ,A
(e + I2Ae3)3? = &3/2(1 + E132-?‘331). (2.16)
We also have that
1
< Iin > = ‘3‘61'_1'
1
< LLLI > = Tg(éijfskz + 0k dji + 0idji), (2.17)
so then the average stress < o;; > reduces to
én 3720 | 2 1/2
i = ———{-(2B+C)(— — + =B(- Aegbizd;
< Uz] > 7T2B(2B+ C){ ( + )( e) 3 + 3 ( e) 63 36J3
1 3
+5(B - 5C)(—e)l/erg,(a,-,- +26:3653)} (2.18)
Hence we see that
(< 03j >) = diag (< 011 >,< 011 >,< 033 >), (2.19)
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where
_ ¢ 1 ez g3 1/2
<o > = 7r2B(ZB+C){ 3(ZB + C)(—e)*’* + 15(B+ 2C’)(—e) Aes},
_ ¢n 1 32 L 1/2
<o33> = BB+ C){ 3(23 + C)(—e)’* + 36(163 +9C)(—e)"/*Aes}.

(2.20)

These results apply to the case of infinitely rough spheres. Now considering the case
when all the spheres are perfectly smooth there will be no shear force across the contact

area. Repeating the analysis, then equation (2.6) for the average stress becomes:
< 01y >= ~ S (~epalp 1) L1}) (2.21)

in the general case. In the case of a perturbed hydrostatic strain as we are considering,

equations (2.20) reduce to

__¢n(—e)3? 3 ~1/2
<onn> = - 3725 {1+ 10(—6) Aes},
_ ¢n(—e)3/? 9 -1/2
)< o33 > = _Tﬂ'zB_{l + 16(—6) A€3}. (222)

2.2.2 The Incremental Problem

We apply a further incremental displacement to the boundary

ou; = 66,‘1'27]' (2.23)

again assuming that the displacement of each sphere centre is consistent with this
applied uniform field. This enables us to calculate the incremental force acting across

the contact area between the nth and n'th spheres, from which we find the incremental

stress.

From equation (2.9) and again using the approximation in equation (2.15), the elastic

moduli are given by:

* 3¢7? 1/2 . . . . . .
ikl = m {B(—C) {< IJIk > 5zl+ < I‘,Ik > 5Jl+ < IJIl > 61k

+ < LI > ij} + 20(—6)1/2 < LI; Ik I >
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B
—I-E(—e)_l/erg{( I??Ij[k >0t < IinIk >0+ < I%Ij[; > ik
+ < BLL > 6} + Ches(—e) V2 < BLLLL >} . (2.24)
Using equations (2.17) and the further equality
1

105
+06:1053013 + 010;30k3 + 8i3 (k013 + 6510k3 + 6k1dj3))}, (2.25)

(BLLIL) = {0350kt + ik 051 + 61105k + 2(0;50k3013

and if we define

__ 5 ¢n o _
=02 P T TaomeBro)y T Me =15 (2.26)

then we now have enough information to calculate the moduli and they can be written

concisely as

CHi = Chii = (—e)Y2(3y + 48) — Aez(—e)"Y2(3a + 85),

Cla = Chig = (—€)*(y — 28) — Deg(—€)™/(a - 2),

Cls = Chiss = Cips = (—€)/2(y — 26) — Aes(—e) /> (32— 68), (2.27)
Chy = Cizzz = (—€)/%(3y + 46) — Aez(—e) /2(15a + 120),

Cit = Ciyz=(-)"*(3y—3) — Aes(—e)/*(3a + 88).

For completeness, we calculate the remaining non-zero modulus defined by
Cis = Clara = (€)% (v + 30) + Aes(—e) ™ /*(a + 58). (2.28)

For a transversely isotropic medium such as the one we are considering, Mal and
Singh [52], show that only the five moduli given in equation (2.27), are independent

and this sixth modulus can be expressed in terms of the other elastic constants as
* 1 * *
Cos = 5(Cn1 — Cha)- (2.29)

A quick calculation shows that this relationship is confirmed and we have just the five

independent elastic moduli in equation (2.27).
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We again use the notation

* X * (% * el
C'1111 - Cll’ 01122 - CIZ’ Cll33 - Cl3’

Cisa3 = C33, Cinz = Cigp3 = Cf5 = Cy  Ciapp = Cgs. (2.30)
This is the notation used in Schwartz et al. [73] and makes later comparison easier.

The results in equation (2.27) only apply for the case when the spheres are infinitely

rough. When we now consider the spheres as perfectly smooth we find that the moduli

are given by

Cl = 3y(—e)'/? +3alez(—e) 2,
Cly = Y(—€)'? + ales(—e)™/?,
Cls = (-e)'/? +3ahes(—e)7'/2,
Ch = 3y(—e)/? +15ahe3(—e) "2,
Cis = 7(—€)'/? +30les(—e)7'/?,

Cés = 3v(—e)'/? + alez(—e)~ /2, (2.31)

where o and v are as defined in equation (2.26). Again, there are just the five in-
dependent moduli, Cgg can be expressed as a combination of Cf, and C7{, (see equa-

tion (2.29)).

2.2.3 Inclusion of the Effects of Rotations

We now recalculate the elastic moduli for the initial strain given in equation (2.12),
but this time include the effects of rotations of the individual spheres. For the initial
problem, we need an expression for the term < I;F; >, which is found to be:

—4R?

<Lf;> = $pGB+0)

1
{2B(—e)}/?(< (e + 5I§Ae3)1,-1rj > +Ae3djz < I3I; >)

1
—C(—e)V? < (e + Aesl? + §Ae3I§)IJj >}. (2.32)

Clearly the first and last terms of this expression are symmetric in 4 and j. If we
consider 83 < I3I; >, this is non-zero if and only if 7 = j = 3 and so this term is also
symmetric in 4 and j. Thus < I;F; > is symmetric in 7 and j and hence so is < o;; >,

and individual sphere rotations do not have any effect on this part of the problem.
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Thus, the average stress of the material after the initial compression is indeed given by

equations (2.19) and (2.20), namely,

(< 0ij >) = diag (< o1l >, < o011 >,< 033 >), (2.33)
and
_ & 1 P2+ L g1 3o (—e2
Sou> = (-5 (B+ O) -0V + (B + 20N (-0 Aer)
_ __m 1 _epzy L 1/2
<o33> = 7r2B(2B+C){ 3(2B+C)( e) | +30(163+90)(—e) Aes}.
(2.34)

When we have perfectly smooth spheres the average stress is again as given in equa-

tion (2.22).

Results from the second chapter of Slade [76] are required to continue with the second
part of the pfoblem, the incremental stage. These are the conditions for equilibrium,
which allow us to calculate the components of rotation and the general expression for

the average incremental stress. These give the two equations:

< (—epg I 1) "{C LI I; + BéypIi}0ew > —2Beiy < (—epglply) /2 Lidwi >=0 (2.35)

and

< (—e,,quIq)l/2(6,~k — IiIk) > 6wk = €k < (—equpIq)l/ZIrIl .> Jekl, (2.36)

the first of which corresponds to equilibrium of the incremental forces, equation (1.151)
and the second to equilibrium of moments equation (1.149). The incremental stress now
contains an extra term, due to rotations, which was absent from our last calculation of

the moduli. This stress is given by equation (1.109) as:

3né 1/2
P> = s —epgIp 1) 2 LI I 16
+2B < (—epglpIy) 2 iIide > —2Bejry < (—epglply) 2L Lidwy, >},

(2.37)

We first check that equation (2.35) holds, that is that the forces acting are in equilib-
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rium. Substituting for the strain field (2.12), into equation (2.35), gives

< (—6)1/2 <1 + %Igé;e_:i) {CIkIﬂi + B(Sikll} > deyy
1., A
—2Be€;k < (—6)1/2 (1 + :?:Ig-%"-) L >0, = 0 (2.38)

By the symmetry of the components of I on the interval over which they are averaged

we have

< LI >=< LI >=< I, >=0 (2.39)

and so clearly this equilibrium condition holds, irrespective of the components of rota-

tion.

If we now take equation (2.36) and substitute for our particular strain field we can

calculate the components of rotation,

1 ,A
< (—6)1/2 (1 + 51&——:—?-) (Jik - IiIk) > dwy

1 ,A
= €irk < (—e)'/? (1 + '2‘13??) LI > dey (2.40)
which yields
6']; Ae3 1 Aeg
<O — Ll + 13— — 5 =I5 Ll > bwy
1A
= e < LI + -2-—:—31§I,I, > dex. (2.41)
Putting 7 = 1 in this last we find that
Aeg
= ) .
duwn (50 + Aes) €23 (2.42)

and similarly putting ¢ = 2 and ¢ = 3 respectively, we see that

Aeg
=——" 9 .
Swo (e 1 Acy) €13 (2.43)
and
dws = 0. (2.44)

We can now use these in equation (2.37) to find the components of the incremental
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stress. Putting i = j = 1 in (2.37) we can find the three moduli C};, C}, and Cf5.
There are no effects due to the rotations for these three moduli and so using the same

notation as before, the moduli are:

CH = (—e)Y?(3y+48) + Aez(—e)"?(3a + 88),
Cla = (—e)/(y—20) + Aes(—e)7/*(a - 28), (2.45)
Cls = (—€)'/*(y—26) + Aes(—e) /%3 - 68).

Similarly, putting ¢ = j = 3 we have no effect due to the rotations and thus

Ciy = (—e)V2(3y + 46) + Aes(—e) V2 (15a + 124). (2.46)

To find C}4, we calculate < 013 > which is given by

3np(—e)l/? { 10e3

— 0 [B(< ] —— < I3I
372828 1 ) B Il > +5== <I5LD >)8a
1Ae3

+B(< It I; > +-2-—e—

<oply3> =

< 2L I} >)é3
' 1 Ae3 3
+C(< LI > +§—e— < LI I.I >)] < beg >
1A

€
—2B(€e321[< 112 > +§—e—3 < 132112 >] < dwy >

1A
teae[< Iy > +-2-—-§§ < 3L >) < bwy >)} (2.47)

The first of the terms due to rotation effects is not eliminated in this case and we

recalculate C}, as

Chy = (—e)Y2(y + 38) + Aez(—e) V% (3a + 80), (2.48)
where «, (8, v and § are as before.

In fact, this is the only modulus affected by considering rotations, Cjy;, is unaffected

and so we again have our five independent moduli given by

Ch = (—€)Y2(3y+45) — Aes(—e)"%(3a + 80),
Ch = (—e)*(y—20) — Aez(—e)"/*(a - 28),

Cls = (—€)'/*(y —26) — Aes(—€)"/*(3a - 6), (2.49)
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Cly = (—€)2(3y +45) — Aes(—e)"V/2(15a + 120),
Cia = (—)Y*(y+36) — Aez(—e)7/*(3a + 80).

These are the moduli for infinitely rough spheres.

In the instance when the spheres are perfectly smooth, the moduli are

Cii = 3v(—€)'/? +3ales(—e)™'/2,

Clhy = 7(=e)'/? + alez(—e)™!/?

Cls = Y(—€)'/* +30les(~e)7'/?, (2.50)
Ch = 3v(—e)Y? + 15aAe3(—e) /2,

Cl = v(—e)'? +3ahes(—e)"V/2.

These are identical to those found in equations (2.31) since there is no tangential

traction with perfectly smooth spheres and so there are no rotations to include in the

calculations.

2.3 The Effective Elastic Moduli for an Initial General
Biaxial Strain
We now extend the case considered in the previous section to that of a general biaxial

strain. As already mentioned, we calculate an expression for the stress and the elastic

moduli in the case of an initial strain of the form:
ei; = e1(di161 + diadj2) + e3d;30;3
= 61(51'1' + (63 - 61)5i35j3. (2.51)
This is a generalisation of the strain in equation (2.12).

Assuming that the displacement of the sphere centres is consistent with the uniform
strain field, as before, and from the subsequent general expression for the force derived

by Walton [86], we find the force acting across the contact area on the nth sphere due
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to its contact with the n'th from equation (2.3) is:

() _  AR(-e)’? [1 es — el 2]1/2
E " 37B(2B+C) 2B |1+ el I3

_ _ 3/2
o + =8 - € §15) — C [1 + 9‘6—6113] I,-} . (2.52)
1 1

2.3.1 Stress Components

The general expression for the average stress is given in equation (2.6),

én -
(06) = 2pEpTe) B (e (enlil; + einlili))

_C((‘equpIq)a/ZIin)}- (2.53)

Substituting in the expression for the general biaxial strain as given in equation (2.51),

we can calculate the stress. A typical average arising in the calculation is
272 1 2 N 2 2 \1/2 . .2
((—equpIq)l/ )= 1—7;/ d¢/ (—eq sin? 6 — e3 cos? 6)1/2 cos® sin 6d6. (2.54)
0 0

This and other similar integrals that arise, may be evaluated using standard techniques

(see Appendix A). We define

x1/2+ri)vz-sin_1(1—m)l/2 ifz<1
Al@) =14 2 fz=1 (2.55)
212 4 (—m:i—)-msinh_l(a: -DY2 ifr>1

( 1/2 1—2 . 1 .1 1/2 .
: 4(§_m)1‘) + 4(1—-z)372 sin™" (1 — z) / ifzr<1

fal@) = 2/3 ifzx=1 (2.56)
V/2(2z— o '
L 4(52—1)1) - 4(2—11)3/2 sinh™!(z — 1)1/2 ifz>1

( 21/2(3_9r 4z L .
20 | 69 1) e <t

fa(z) =4 4/3 ifz=1 (2.57)

| s ey sinh ! (z - )Y? iz >1

Then, also using equation (2.51), we obtain a stress tensor that has purely diagonal

non-zero entries, as was the case earlier in this chapter,

((%‘)) = diag ({01),{(o1), (03)) (2.58)
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where
—e)3/2 3/2
o) = -~ {(2B+ Dn(2)-ee+DHn(2)+5(2) }
_ ¢'r]( )3/2 B€3 C €3 C €3 3/2
(03) = ~B@B 1 O) {( + S (e—1> t5 (a) } (2.59)

So, in particular

7T2B(2B + C) B es 1 e3 1 es 3/2
“gmo(er 79 = (o T (;) +5 (;) : (2.60)

For the case where Poisson’s ratio, v = 1/4, then B/C = 3 and so

3/2
o) =2+ R (2)+5(2)7, e
where , \
_ _m™B(@2B+C)  2nr
= ey T (e (2.62)

Similarly, for v = 1/2, B/C =1 and

e 1 es 1 /e3 3/2 ‘
kalo) = (£ + D (el) s (q) , (2.63)
where
72B(2B + C) 372
2T O el (el (264

We will use this scaled version of (o3) later when we come to plot the graphs.

For comparison with Schwartz et al. [73], we only need consider these results, that is the
results for the case when the spheres are infinitely rough. However for completeness, we

also find the average stress when the spheres are perfectly smooth. This is calculated

to be:

({o35)) = diag ({01), (01), {03)) (2.65)

where

= I (0 () (=) 1(2)"),

_ ¢n(—e1)*? [1, (e3 1 (e3)%?
l0s) = ~2BEB+0O) {Zf2 (Z) "% (Z) } (2.66)
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2.3.2 The Effective Moduli Without Rotation Effects

To calculate the effective moduli we find the average incremental stress, equation (2.8).
From this expression, which holds for any strain, we then have the following general

expression for the moduli Cfj,;, equation (4.6) in Walton [86] and previously given in

equation (2.10),

. 3¢n
ikl = m{B((—equpIq)l/zijk)éiz+B((—6qupIq)1/2IiIk)5jz

+B{(~epalply) 2L 11) i + B{(—epgIpIg) 2 L11)6

+2C0((—epg 1) P LI L 1))}, (2.67)

The integrals that arise are similar to those met in equation (2.54) and using the

subscript mapping defined in equation (2.30), we find that

1 (e 3/2 1 e e
o = e Ly (e) i (@) +G-2)rE) (2)
1 = mBEB+0)) P \a 3 ’

(2-1)
o - demoteyn (@) G )n(E) (o))

+ €
3272B(2B + C) (2-1) o
/ _1(=)? _1 a) f, (@
Cly = Bffg((szl ) 02){ a(el) (é -21; 1) z(el) ’ o0
1(e 3/2_1 . .
G = ifg(;g;/g {2Bf2 (Z—‘Z’)+c 3(%)({\—?;2(;}) |
)1/2

1 (e 3/2 a1
i - s 20 () o () o [LE B0

1(ea\? (_ea 1) (e
Cés = 473;%((;1?)4:/;) gfa(%)*“% ia) el+2)fz(‘”)+fs (6—3)

As the medium we consider is again transversely isotropic, these constants are related
by C}, = Ct; — 2C¢, leaving just five that are independent. These expressions were
new at the time of derivation, however, shortly after, we discovered that they were
simultaneously derived by Schwartz et al. through a private communication. Their

work is discussed in more detail later in the chapter.

Two checks were carried out on the moduli. With es = e; the moduli reduce to
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those given by equations (1.117) and (1.118), for a hydrostatic strain, as is to be
expected. The second check involved considering the situation when el —» 0, in this
case they reduce to those due to a uniaxial compression and so give rise to the moduli

in equation (1.120).

The three ratios we require are

Ch = 29 (g) (g - x) + [j fe)3/2- te)| 1 (269)

o . o ) ) .
u g (1/3 (It) + /2 (ft)) (it - 1) - i (it)3/2 + (it - i) /2(it)} ?

{§/3 (ft) (ft - 1) + 1 *¥(S) + M t) (it-O'}

[Wh(it)(ft71)+l[)(ff)*+(-s+i)A(ft)‘*' h¢) (ft - 1)

1
a, 2{§/a (it) Lit-1)+1 3 (ft)3/2+ (1-it) /2(it(l+ M ft) (it-_ 1)y

€ j(§ (/a (ft) + A (ft)) (ft < 0 ~ 5 (ft,)3/2+ (,%)1(* &)/2(“) )

and these correspond to three independent (Vp/Vs)2 ratios. As mentioned earlier
in this chapter, the first of these corresponds to propagation along the a”-axis, the
second to propagation in the transverse direction with the shear wave polarised in the
transverse plane and the third to transverse propagation with shear polarization in the
axial direction. The expressions given in equations (2.59), (2.68) and (2.69) axe valid

for ANY biaxial strain.

The following figures show various plots of the elastic moduli ratios. Figures 2-1, 2-3,
2-5, 2-7, 2-9, 2-10 and 2-11 correspond to Poisson’s ratio, v = 1/4. Figures 2-2, 2-4,

2-6, and 2-8 correspond to Poisson’s ratio, v = 1/2.

In figures 2-1 and 2-2 the elastic moduli ratios are plotted against £1(03) and £2 (03 ),
respectively. For figure 2-1, £1(03), is as given in equation (2.61) and the range of values
considered is that in which the ratio e$/e\ varies from 0 to 7.5. The corresponding
range of values for £1(03) is 71/32 to 36.3997. For figure 2-2, £2(03), is as given in
equation (2.63) and the range of values considered is that in which the ratio e$/e\ varies
from 0 to 13. The corresponding range of values for £2(03) is 7r/32 to 32.5382. The
monotonic increasing curves correspond to equation (2.69a), the essentially horizontal

ones to equation (2.69b) and the monotonic decreasing curves to equation (2.69c¢).
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C33
2.5
cH
2.4
23
22

Applied Stress

Figure 2-1: The three (Vp/Vs) ratios versus k\ < <B >, Poisson’ ratio is 1/4-

2.6

2.4

Applied Stress

Figure 2-2: The three {Vp/Vs) ratios versus h2 < 03 >, Poisson’ ratio is 1/ 2.
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2.057
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2.055

Applied Stress

Figure 2-3: Average of equations (2.69a,c) along with (2.69b) versus k\ < a3 >, Pois-
sons ratio 1/4-

In figures 2-1 and 2-2, the point through which all the curves pass is that at which
el —ez- These figures suggest that Cx1/C @ is approximately uniform and that C*3/C"4
and Ch /C*u are symmetrical about some horizontal value. This is considered in more
detail in figures 2-3 and 2-4 where the elastic moduli ratio of equation (2.69b) and the
average value of the two moduli ratios (2.69a) and (2.69c) are plotted against the third
component of applied stress. These two figures show that in fact the average of the two
is comparable in value to the third ratio Cx7/C@®. Also they show more clearly that
the value of the ratio Cx1/C @ does not remain constant but decreases slowly, which is

consistent with figure 1 of Schwartz et al. [73].

Now in figures 2-5 and 2-6, the three elastic moduli ratios are again plotted, but this
time against the additional stress, that is the difference between the stress we have
applied and that of the hydrostatic pressure corresponding to e3 = ex. There obviously
appears to be a closer correspondence between these and figure 1 of Schwartz et al. [73],
than there was with our figures 2-1 and 2-2. However, since we do not know the
conditions under which Schwartz’ graphs were produced we cannot say whether they

should be identical or not.
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2.155
d

2.15

2.145

Applied Stress

Figure 2-4: Average of equations (2.69a,c) along with (2.69b) versus k2 < 03 >, Pois-
sons ratio 1/ 2.
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Figure 2-5: The three {Vp/Vs) ratios versus additional stress, Poissonk ratio is 1/4-
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28r
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o\o
By

10 15 20 25 30 35
Additional Stress

Figure 2-6: The three {Vp/Vs) ratios versus additional stress, Poisson} ratio is 1/2.

Figures 2-7 and 2-8 are formed by taking an unnumbered expression given on page 3 of
Schwartz et al. [73]. This expression gives Ae3/e, the increment in hydrostatic pressure,
in terms of p3 which we believe to be the additional stress (see again explanation for

figures 2-5 and 2-6),

A PO 0.47»3 270
(I +0.058p3)’ (2.70)
Then rearranging
Ae3/e
P3 2.71)

T (0.47 —0.058Ae3/e)

and p3 is plotted along with the additional stress &i(<73) —7/3 or £2(03) —7/3, respec-
tively, against the range of values e3/ei —1 between 0 and 6.5. We subtract 1 from
e3/ei as this corresponds to the Ae3/e notation of Schwartz et al. [73] and subtract
7/3 from ki(cr3) as this corresponds to the value of the scaled stress for a hydrostatic
pressure. The dashed curve is the plot ofp3 in both figures. In fact, p3 becomes infinite
at Ae3/e = 8.103 and after that becomes negative, whereas A¥*03) is continuous and

monotonic increasing for all values of e3/ei —1.

Figures 2-9, 2-10 and 2-11 show plots of the elastic moduli ratios C"3/C"4, CU/C @6 and
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Additional Strain

Figure 2-7: Additional stress and k\ < 03 > versus the additional strain, Poisson’
ratio 1/4-

Additional Strain

Figure 2-8: Additional stress and & < 03 > versus the additional strain, Poisson’
ratio 1/2.
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2.7

2.6

23

2.2

Additional Strain

Figure 2-9: Comparing the values of our modulus C"/C”" with those of Schwartz et
al. [73]

C/[x/ C44 respectively, for both the moduli given in equations (13)-(17) ofSchwartz et
al. [73] and those given in equation (2.69) of this work, against ezfe! —I1.The dashed
lines represent the Schwartz et al. [73] ratios. For small values of e”/ei — 1, which is
what is considered in Schwartz et al. [73], each graph shows that the two ratio plots
take values that correspond very closely. However, although the shapes are clearly

similar, there is no overall correspondence between the two plots.

Unfortunately, it is difficult to compare anything other than the shape of the curves
with those of figure 1 of Schwartz et al. [73]. We do not know whether the values of
stress used to obtain figure 1 in Schwartz et al [73] are incremental values or not. For
figures 2-1 and 2-2 which correspond to actual applied stress, we cannot even find a
positive value of e$/e\ that gives a value of zero stress and so we will not be ableto

start these «1s figure 1 of Schwartz er al. [73] does.

Further comparisons could also be made if we knew the value of Poisson’s ratio used
to obtain figure 1 of Schwartz et al. [73]. Taking larger values of Poisson’s ratio raises
the initial value of our ratios, but even by taking v = 1/2, we cannot raise our starting

value to that of fractionally above 2.2 as is the case in figure 1 of Schwartz et al. [73].

CHAPTER 2 84



2.3. THE EFFECTIVE ELASTIC MODULI FOR AN INITIAL GENERAL

2.062

2.061

2.06

2.059

2.058

2.057

2.056

2.055

2.054

Additional Strain

BIAXIAL STRAIN

Figure 2-10: Comparing the values of our modulus Cn/Cg6 with those of Schwartz et

d. [73]

14

3 4 5
Additional Strain

6

Figure 2-11: Comparing the values of our modulus Cn/C”" with those of Schwartz et

al. [73]
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Our work suggests that to allow us to take a value of approximately 2:2 for our ratios
when there is zero stress, we would need to take v = 5/9 which we know is physically
impossible for real materials. Even the initial values of the ratios found from Schwartz
et al. [73] do not reach 2.2 as they will clearly be equal to those of our ratios and the
hydrostatic case, that is 33/16 for » = 1/4 and 13/6 for v = 1/2.

Since there is such a lack of information in the work of Schwartz et al. [73] our problem
throughout is that it is impossible to draw any firm conclusions upon comparison with
our new results. As mentioned above, we have tried varying Poisson’s ratio to reproduce
their results. However, it would seem that the best we can do is say that our figures

2-5 and 2-6 appear to be consistent with figure 1 of Schwartz et al. [73].

2.3.3 Recalculation of the Effective Elastic Moduli with the Inclusion
of Sphere Rotations

As we have already seen, in chapter 2 of Slade [76] the equilibrium of a sphere in
a random packing is investigated. Equations for the equilibrium of the sum of all
the incremental forces and -the sum of the moments are reduced to expressions that
we can use here as we recalculate the elastic moduli and their ratios including the
effects of individual sphere rotations. These rotations do not effect the expressions
for the average stress found by considering the initial deformation. The stress is thus

given by equations (2.59) and (2.66) for infinitely rough and perfectly smooth spheres

respectively.

The condition for equilibrium of moments can be written as an average over all the

spheres, provided the packing is dense enough and reduces to equation (1.149):
<(—equpIq)1/2(5,-k — IiIk)> ka = €irk <(—€qupIq)1/2IrI[> (Sekl. (2.72)

We can find the rotation vector éw for our initial strain field from this equation and

subsequently find (do;;) as given by equation (1.152):

3
(boij) = mbg_l_—c){C<(—quIpIq)1/2IinIkIl(56k[> (2.73)

+2B ((~epgp1g) /*IiLides1) — 2Bejur ((—epgLplg) '/ Lilidwi ) }

from which we can determine the effective elastic moduli.
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We have our initial strain given by

eij = e1(di16;1 + diadj2) + e3dizdjz (2.74)

and so in this case equation (2.72) yields

<( eq sin® @ — e3 cos 6)1/2 (0;k — LI}, > (dwi) = €irk <(—e1 sin? 0 — e3 cos® 0)1/2ITI¢> (dexs)
(2.75)

and we again have to evaluate integrals of the kind mentioned earlier and seen in

equation (2.54). Taking ¢ = 1,2,3 in turn, we obtain the components of the rotation

tensor in terms of the previously defined functions f;, fo, and f3,

S = fa(es/e1) — 2f2(€3/€1)5e
' 2f1(es/er) — fs(esfer) =
_ 2fa(es/e1) — fa(es/e1)
5(4)2 = 2f1(63/€1) f3(€3/€1)6el3 (2.76)
dwy = 0.

Now the incremental stress from equation (2.73) is

B 3¢n .2 2 g\1/2
(0oij) = 3 BB+ C) {C <((—el sin“ @ — e3 cos” 0) I,-I]-IkIléekl>
+2B <(—61 sin? @ — e3 cos? 0)1/211.[,;(56]'[) (2.77)

—QBejkl <(—61 Sin2 0 — €3 COS2 9)1/2IiI15wk>}

Taking i=j=1 in the above yields

3 .
(don1) = W {C <((—€1 sin? 0 — e3 cos? 9)1/2112IkI166k4>

+2B <(—el sin? @ — e3 cos? 9)1/21111631[>} (2.78)

from which we find

1(es 3/2 L _ e e
o - g o () 1o AR
3¢nC(—e)/2 | =3 3

Cis = 3@BEB+ ) (2-1) : (2.79)
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Similarly, the rotation term is zero in both (do33) and (do12) and so

1(ea)¥? _ 1 (e
Cly = _47?;?;((;;{/;) 2Bf, (e_3> +c|3 (& )(gg - i)2 () (2.80)

: \ 3/2
. agn—e) | B c|i(8)  +(-8+3)n(8)
Ces = 47T2B(2gl+ C) PR (6_3) *3 La (gf _ 1) 2 + /s (:_?)

These last four are identical to those found previously in equation (2.68). However,

taking i=1 and j=3 the rotation term is non-zero,

3 .
(50’13) = 21!'2B(2¢g T C {C( —€] Sln2 6 — €3 0082 9)1/211I3IkI156kl>

+2B <(—61 sin? 6 — e3 cos® 9)1/211I1663¢> (2.81)
—2Bezpq <(—e1 sin? 8 — e3 cos? 6)1/211Iq5wp>}

and the fifth modulus is calculated to be

ey [ EHE) [ @) n)
7 812B(2B + C). 2fs (el) + f3 (g::) (g;} - 1)

(2.82)

This is not the same as the expression for C3, that we found in equation (2.68). We can
do a check on this modulus by considering e3 = e; when the modulus reduces to that
of the hydrostatic case. Figure 2-12 shows a plot of the ratio of the two expressions
for the C}; moduli found without and with the inclusion of rotations. Since the value
of the ratio is always > 1, the modulus calculated without using the rotations must

always takes a value greater than or equal to the value of that found with the inclusion

of rotations.

The first and third of the three required ratios are effected by the inclusion of rotations,
the second is not. Since Schwartz et al. [73] did not consider rotations in their work then
* upon application of a perturbed hydrostatic strain the only ratio that will be identical

with those derived in Schwartz’ work will be the second. Using the new expressions for
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1.04

1.03

1015
1.01

1.005

Applied Stress

Figure 2-12: Ratio of equations (2.68e) and (2.82) versus applied stress, Poisson’s ratio
1/4-

our moduli, we now have

ch 2'(*”1(”(“" ) 4 gs (it.)' - s (0]
a (2.83)
'L B I i
it- 1l - /.
[e s M s) (it- 11 m +te-t) (s)}
Cfi s V. ..D h (g) + h (It) (iift - D1}
66 ) _ , ' . h .
\2CJ3 (ft) (if = o #1s [$ (f) 32+ (-12+ 1) h (it) + h)]} 1) (it) + (ft) (i
-/ ovjn vV XV
Ch z{lh (it) (it ~ Q + 1 [l(it)3/z+ (1 - it) A(It) +h(lt) (it n>]}
aa f., . lox32 ) A /[ xl

Figure 2-13 has 2 plots of the ratios with Poisson’s ratio equal to 1/4. One plot includes
the effects of individual sphere rotations, this is represented by the dashed line, while
the other is a plot of the ratios considered in the previous section. We can see that with
the inclusion of rotations the ratios C33/C%4 and Cx//C 44 no longer appear symmetrical
about the other ratio C*vC (5.
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2.6 C*

2.5
2.4
2.3

2.2

M

Applied Stress

Figure 2-13: Comparing the {Vp/Vs) ratios with and without the effects of sphere ro-
tations

2.4 Path Dependent Results

Shortly after completing this work, we received a communication from Lawrence Schwartz
He, in conjunction with several other authors, has also done some work to calculate
the effective elastic moduli for a general biaxial strain, when the spheres in the packing
are infinitely rough, Johnson et al [45]. In the work they show that the expression
for the moduli, equation (2.10) of this chapter and derived by Walton [86], is valid for
any applied strain and independent of the history of the medium. That is, the expres-
sions for the moduli are path independent, they depend only upon the present state
of deformation, that is the current state of strain but not upon how it was reached.
Contrasting with this, Johnson et al [45] also show that the elements of stress are
explicitly path dependent. They illustrate this by considering three different cases of a

combined hydrostatic and uniaxial strain.

In the analysis of Walton [86], it was assumed that the normal and tangential strain
components increased in direct proportion to one another. Johnson et al. [45], however,

refer to a paper written recently by Norris and Johnson [60]. In this latter paper, 2w

CHAPTER 2 90



2.4. PATH DEPENDENT RESULTS

is the relative approach of the two spheres along the line joining their centres. The
relative tangential displacement between the two spheres is 2s. The force is decomposed
into a normal force N and a tangential force T. A small change in displacement (§w,

~ 83), leads to a small change in the restoring force (6N, 6T and all models considered

can be written in the form:
N = Cpan(w)dw, 6T = Crar(w)ds. (2.84)

We are only concerned with Hertzian contacts and so

an(w) = as(w) = (Rw)/2. (2.85)

It was Norris and Johnson [60], who initially found the expression for the second order
elastic moduli associated with incremental displacements around a given state that is
used by .johnson et al. [45]. It does depend upon the current state of strain but not
upon the strain history of the medium. Their expressions are identical to those given
by equation (2.10). However, as mentioned above the problem of finding the work
done to bring a single contact to a given strain state is obviously path dependent and
path dépendent effects are well known in granular media. In his work, Deresiewicz [26]
‘and [27], for example, has considered the effects when the packing is a simple cubic

array of particles.

This would imply that although we also assumed that the strain components increased
in direct proportion to one another when deriving our elastic moduli in this chapter,
these results are valid for any strain history of the granular packing. Comparing our
expressions for the elastic moduli, with those derived by Johnson et al. [45], we see

that the results are in agreement.

To compare their results with experiment, Johnson et al. [45] calculate an expression
for the stress tensor in terms of the strain. It is experimentally difficult to measure the
strain in an unconsolidated sample, often it is the stress components that are measured,
hence the need for this relationship. The three strain paths they consider are shown in

figure 2-14. In all three of these cases the stress has the form

({04;)) = diag ({o1),(01), (03))- (2.86)
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Figure 2-14: Strain paths

Given below are the expressions Johnson et al. [45] found for the stress tensor, related to
each strain path. We have rewritten their results in our notation for ease of comparison.
In path 1, the system is first hydrostatically compressed and then an additional uniaxial
compression is applied. Their stress expressions were calculated using equation (13) of

their communication:

(nf-e)32 [4 | e \32
2n2B(2B +C) \3 Vel -e!

+c(Ag) 21) 1 (fiy
ei/ 3 \ei/

(" (SHKSR- &

In the second path shown in figure 2-13, a uniaxial compression is followed by an

hydrostatic compression. The stress is now given by:

+CV/1IUJ + W “2

o R R 41 H0)
CADIKDIR} e
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Finally, for the third path, the two components are applied together as they were in

our calculations and

<> = —%{(23+%)h(2—?) B+ (2) + %(—)m},

B ¢>n(—el)3/2 Bes C €3 C [e3\3/?
<og3> = —7T2B(2B+C) {( o +z)f2 (a)-{-g(a) } (2.89)

As we would expect, this third set of results is identical to those we found (see equa-

tion (2.59)).

Johnson et al. [45], plot the stress components for the different strain paths considered
and conclude that the differences between the three sets of curves is quite small. Their
work shows that the relationship between stress and strain is path dependent, even

though the moduli are path independent.
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Chapter 3

A Perturbation of the Uniform

Strain Approximation

3.1 Comparison Between Experimental Results, Numer-

ical Simulations and Theoretical Predictions

In their paper, Jenkins et al. [43] discuss three approaches to finding the effective elastic
moduli of a packing of glass spheres - experimental studies, numerical simulations and
theoretical predictions. They conclude that there is an apparent failure on the part
of the theoretical approach in predicting numerical values for the effective shear and
bulk moduli, under an initial hydrostatic confining pressure. In this and the following
chapters, we highlight the differences between the approaches and then attempt to
modify the theory to incorporate these differences. In this way, we obtain revised

predictions for the effective moduli.

The experiments considered by Jenkins et al. [43] were carried out in a true triax-
ial/torsional device, in the form of a column. A variety of stress paths and loading
histories were imposed. The results for further stress paths and loading histories are
presented in both the paper by Chen et al. [17] and that by Ishibashi et al. [42]. These

also give detailed descriptions of the experimental apparatus and method used.

The experimental set-up consisted of a hollow cylindrical sample containing a binary

packing of glass spheres and water. The diameters of the larger of the two sizes of

spheres were between 0.300-0.425mm and the smaller between 0.180-0.250mm, with
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around ten small spheres to one large sphere. The shear modulus of the glass was
3.0x10"kPa, Poisson’s ratio, v = 0.21, the specific gravity (density/density of water)

was 2.5 and the coefficient of friction f between contacts measured to be 0.3.

The sample was brought to an initial porosity of 0.37 and the isotropic mean stress
increased to 138kPa. The pressure was held fixed and deviatoric loading applied. We
are purely interested in the values of the effective bulk and shear moduli. The value
for the former is not given in the experimental data, but for the latter was found to be

161MPa at the initiation of the shearing.

The numerical simulations were conducted using a distinct element method (DEM)
that involved solving the equations of motion to find the displacements and rotations
for a binary packing of spheres. The forces acting across the contact areas between
spheres depend upon their geometry, elasticity and friction through a Coulomb-type
friction law. Cundall and Strack [24] describe this DEM. The simulation was run on a
periodic cell, so that any boundary effects would be eliminated. The sample consisted of
432 spheres, 392 of which had radius 0.1075mm and 40 of which had radius 0.1825mm.

The initial porosity was 0.368 and an isotropic stress of 138 kPa was again applied.

More detailed explanations about the simulations are given in Cundall [20] and [21].
Cundall et al. [23], also describes the adjustments that need to be made to achieve the
same porosity, at the same pressure as those in the experiments. However, this is as
far as the similarity between initial conditions extends. In the experiments, the initial
value for the shear modulus was measured from an initial state that was anisotropic
due to the boundary effects. In the simulations there was an isotropic initial state and

the calculated effective shear modulus before any shearing was applied to the cell was

found to be 127MPa.

The theory considered for comparison is the work of Walton [86], that is the uniform
strain approximation discussed in the introductory chapter of this thesis. From the
theory the value for the effective shear modulus was calculated to be 338MPa, almost
three times that found by the numerical simulation and twice that in the experiment.
Also, calculating the effective bulk modulus the theory yielded a value of 245MPa,

whereas the numerical simulations a value of 185MPa.

The numerical simulations and theory would appear to have the same initial conditions,
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so why this large discrepancy between the values for the effective moduli? As we have
already mentioned, this is the first of three chapters in which we set about to try and
bring closer correlation between these approaches and to suggest some reasons why we
might not expect them to be identical anyway. In thié first chapter, we perturb the

work of Walton [86], the uniform strain approximation, described in Chapter 1.

We are particularly interested in bringing closer correlation between the values pre-
dicted by the numerical simulation aﬁd_ the theory. The experimental conditions will
not be exactly reproduced by either the numerical simulations or this particular theory
as the experimental sample can never be truly isotropic. This is due to the boundary

conditions that exist because of the walls of the sample container.

Two further papers by Cundall et al. [22] and Cundall and Strack [25], may hold part
of the answer as to why the numerical simulations and theory give inconsistent results.
The papers describe further results from the computer program BALL which is used
for comparison in Jenkins et al. [43]. Both papers note that one of the microscopic
observations made on the simulated packing is that forces are concentrated in chains
of particles. They are never transmitted across a sample in a uniform way, so some
particles may carry little or no load, while others take a substantial amount of load.

Figure 1 of Cundall and Strack [25], shows a diagram of how these force chains might

arise in a simulation.

The uniform strain approximation cannot incorporate this feature of the numerical
simulation. After the application of an initial hydrostatic compression, e;; = ed;;, we
saw in Chapter 1 that under the assumption of uniform strain approximation, the force
acting across a contact area is given by:

_AR (=€) om)

(nn')
F 35 (3.1)

where R is the radius of the spheres. The magnitude of this will be the same at any
contact throughout the packing. However, if we perturb the uniform strain approxi-
mation, it may be possible that we will find a variation in the forces across the contact
areas. Unfortunately, we will still not know whether these occur in the chains that we

see in the numerical simulation.
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3.2 Correction Terms in the Uniform Strain Approxima-

tion
3.2.1 The Initial Deformed State

We proceed as in previous chapters by first considering the packing as a whole and

impose an initial confining displacement on the boundary. This displacement takes the

form
U; = €;5T;. (3.2)

Thus it is consistent with a uniform compressive strain and e;; are the components
of a symmetric constant tensor. In the undeformed material, the position vector of
the centre of a typical sphere n is denoted by X J(-"). After the deformation, the centre
of this sphere will have been displaced, let this displacement be uﬁ"’ and its rotation,

about an axis through its centre, be w™.

i

We initially restrict our attention to the case of infinitely rough spheres, the results for
those that are perfectly smooth will be given later. We can use the general expression
given by equation (1.125), to calculate the force acting on the nth sphere due to its

contact with the n'th, that is

gl _ (2R)'/?
: " 37B(2B +C)

™ = uf” + Regr(™ + W)T™) + Cl(f) — w1 P}

{2B[(u§,"’) _ u;n))ll()nn’)]l/Z

J

(3.3)

where R is the radius of each sphere and B and C are the constants, previously defined,
that can be written as combinations of the Lamé moduli. We have the unit vector

directed along the line of centres, Ii("n’), defined as:

(n) (n)
I.(nn') X, - Xi
To determine this force we again have to make some kind of assumption about the
relative displacement (ugnl) - ui")) and the relative rotation (wz(n) + wl("l)). We have

already seen that, Walton [86] assumes that the displacement of the sphere centres is
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consistent with the applied uniform field. Thus
ugn) = e,'jX:En), (35)

and also that the rotation of each sphere about an axis through its centre is the same.

Thus

W™ = Q. (3.6)
These last two equations constitute the uniform strain approximation.

As a first attempt to modify the theory and hence improve the correlation between

theoretical predictions and the numerical simulation results, we consider perturbations

ﬁgn) and GJE") of the rigid-body translation and rotation about an axis through the

sphere centre, respectively. Then for the nth sphere, we have that
uE") = ein](-n) + ﬁgn) 3.7
and ‘
WM =+, (3.8)

We consider the calculations for initial hydrostatic conditions as we only have numerical

simulation data for such a compression. This gives us £2; = 0 and then

wgn) _ a)z(n)

and also

€ij = eéij.

3.2.2 Equilibrium Conditions

In order to find approximations for any of the perturbations when the initial deforma-
‘tion has any of the forms mentioned above, we consider the equilibrium of forces and

moments on the nth sphere. We require that the sum of all the forces and also that of

the moments be zero. Thus

Z Fi(nn’) = 01
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S ey EM = 0 (3.9)

where the summations are over all spheres n’ in contact with the nth sphere.

For large co-ordination values, that is, each sphere has a large number of contacts, we
would expect the uniform strain approximation to accurately predict the displacement
of the centre of the nth sphere upon application of a confining force. However, as the
co-ordination number decreases the error in the approximation increases. The work
of Walton [86], which is based upon this assumption has already been discussed in
Section 1.3.2. However, the conditions for equilibrium of the nth sphere are given in
equations (3.9). Using the expression for F(") given in equation (3.1), obtained using

the uniform strain approximation, these will be satisfied exactly provided

S 1) =0 (3.10)

nl

Summation is over all spheres n’ in contact with the nth sphere and if each sphere has
a large co-ordination number then we would expect this last equation to be a good
approximation. However, with decreasing co-ordination number the approximation

becomes worse and so here we have modified the assumptions.

We calculate the force acting on the nth sphere due to its contact with the n'th,
using equation (3.3). We must first expand the terms [(u,(pnl) - u},n))I,(,nnl)]l/ 2 and
[(ug") —uﬁ"))I,(,""’)]?’/ 2 using the binomial expansion. In the case of an initial hydrostatic
compression, e;; = ed;; and since ugn) = e X; + &En) then also using the fact that

I,(,m’)I,Enn') = 1, the first terms in the expansion of each are as follows:

' ' R ~(n nn'
() = a2 = (<2R0)2 (1= () - af )

1 ~(n' ~(n)\/~(n' ~(n nn') r(nn’ ~(n!
~3REe (ul(, ) u; ))(u‘(i ) _ ug ))I]g )Lg )) + 0((uz()n ))3) (3.11)
and
! ! 3 ! ~(n ’
[(u0") — u{™)[P/2 = (~2Re)*/? (1 - () — )i
3 ~(n' ~ ~(n' ~(n nn') r(nn' ~(n'
b ) — &) @) — ) ) + 0@ ). (312)

We also have €; = 0 and hence upon substitution of this and equations (3.11) and (3.12)
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into equation (3.3), we see that

(nn')  _ 2_R(i1/2__[ (') _ g(n)) (')
B = 5B@EB+O) 4Re(” iR

1 n’ n)y(~(n' ~(n nn') r(nn'
~smal )~ )@ - wLOL )]
T {ZB (—ZReIi(nn’) + (ﬂgnl) - ﬂgn)) + eiszIl(""’)(w,(C"I) + w,(c")))}
1
+2RC(—¢) [1 - om (@) — a{m)yrinm)
3 ’ U /
2 _ gy _ )y pan’) p(an’) | p(nn’) (n')
32R262( Uy ) (g g )" I ] L™+ O((i, ).

(3.13)

Substituting this general expression for F.("nl) into the first of the equilibrium condi-

tions, equation (3.9a) and retaining only terms of order u( " i ( ) or lower, we obtain:

S B (=2ReI™) + (™ — il + e RI™ @) + &) + L@l - af?) [ )

4Re( (n ) ..(n))(agn ) aSn))II()nn )y 45 (ug)n _ u}()n))(w,(cn ) + G)’(cn))I’(’nn )Il(nn’)

+rm () — i) @ — a)EmO )

= S RCe (I — g (a”) — af™) ™) 1)
) ﬂgn))(a‘(]n') _ ﬁgn))I’(,nn’)Ignn’)Ignn’)) )

+ 321%%! (ﬂ"(’

(3.14)
Also, from the second condition of equilibrium, equation (3.9b), we obtain
S Beil™) (=2ReI™) + (") — & + e RIM™ (@) + &™)
+1(@) — e O - @ - af) @l - e
%(ﬂg," ) _ ﬂgn))(a)f(‘n ) + ws.n))l-z()nn )Il('n.'n. )
L) gy @) — gy ) g (3.15)
+1re(Up  — Wig ' — g )p  'Ig I )
5 e ROLE™) (1) i — g )
+ (@) — )@ - a) ).
One typical term arising in both of these is ), Ii(nn/) and we define
m _ 1 (nn')
J™ = e} Z:Ii (3.16)
and also
N(n _ Z I nn )I nn’)I(nn’) (3 17)
ijk ) k .
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sphere n’

(nn’”)

spher<

Figure 3-1: 4 simple two-dimensional picture of the spheres in contact with the nth

where is again the number of spheres in contact with the nth. Note that we
mentioned £ n/ijnn "earlier in this section and in his work, Walton [86] assumed it to
be zero, we now have X)n/A "= *77*4” This would be zero for an ideal random
isotropic packing. A simple two dimensional diagram of a typical sphere, with its
contacts and some of the unit vectors which are summed to form j(n\ is shown in

figure 3-1 and similarly for

In order to calculate approximations for u|n” and we consider the terms of lowest
order that arise from equations (3.9). We must make some assumptions concerning
the order of particular terms. These assumptions will be non-rigorously justified later.
Thus, assuming for now that terms such as u\n ~are of higher order than £ n, u\n™ =
r)™u\nl since we expect the u/n “to be uncorrelated, we proceed to find approximations
for the perturbations from equations (3.14) and (3.15) above. To start, we consider the

lowest order terms arising in this second equation, using our assumptions, these are

#(4n) Y 3n# ))=0. (3.18)
Now, we require J2n' ~ nn M\nn ~to first order only since it is multiplied by We
know that

< >=

where the operator < . > represents the average over the sphere surface. Thus, we
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have
n)

Z I,'(‘nn')Ii(""') — n(

——0ir + Eir
3 +

nl

where E;, represents the correction term and so to leading order -

3o I ) = "T i (3.19)
nl

This allows us to deduce that to first order

™ =o. (3.20)

Similarly, the lowest order terms in equation (3.14) are

n’!

n) 7(n n)~(n 1 nn') y(nn’) ~ n 3 nn') (nn') ~(n
B(—2Ren( )Ji( ) _pf )ug )_5211_( )IJ(- )ugn)) =Rce(n('n)Ji( M&EZ,I’( )IJ(- ")u§ ).

(3.21)
Using the approximation in equation (3.19) and defining
(2B + C)
= 7 3.22
(14B +3C) (3:22)

the perturbation a,(") to first order, is found to be
i{™ = —12AReJ™.

Since we require e < 0 for compression, then the perturbation ™ is in the same

i
direction as Ji(n). Looking again at figure 3-1, the vector J( is directed towards where

there are ‘gaps’ around the nth sphere. Thus, the perturbation of the displacement is

directed towards the gap, which is what we might expect.

We can see that equations (3.8) now give us

1

u{™ = e; X" — 12AReJ{™ (3.23)

and

W™ = 0. (3.24)

We look back to our assumption that the order of ), aﬁ"') is higher than that of

CHAPTER 3 . 102



3.2. CORRECTION TERMS IN THE UNIFORM STRAIN APPROXIMATION

Son aﬁ"). We very roughly justify this by noticing that we would expect a sum over
n' of components of the J(™)s, connected with each sphere n/, to be uncorrelated and

thus some of the elements may cancel. However, a sum over n’ of J() ‘adds up’ to give

O (O

The expressions found in equation (3.23) and (3.24) can now be substituted back into

equation (3.3) to give the following expression, for the force acting on the nth sphere,

due to its contact with the n'th:

() _ ARV ) pr 64— g
s ~ 31B(2B +C) {23 [Iz +6A(JM) — g™y
+3A(J£n’) _ Jz(,n))Ile + 18A2(J;()n') _ Jz()n))(.]z(n') _ Ji(n))Ip
9A?

(I = I ~ JE”’)IpIqu]

94 . .
+C [Ii+?(J}, ) — JM) LI

27 e .
+7(J,(, ) — I () — g ))I,,qu,]} (3.25)

We have omitted the superscripts (nn’) on the components of I(™) for brevity. We
have left in the cross terms such as J,(,")Jgn), which although they might appear to be
second order in fact reduce to a first order contribution (for details see discussion later
in this chapter). We have not included all second order terms only those which turn
out to be significant. We checked the other terms but they are of higher order and so
we exclude them here so as to avoid undue complexity. The ‘second order’ terms we
have included are needed to ensure consistency for our results when later compared

with those from the incremental stage of the problem, upon calculation of the effective

moduli.

In the introduction to this chapter we noted that in the numerical simulation results
we use for comparison with our theory, the forces occur in chains of particles within
the packing. Looking at equation (3.25) with the additional terms, we see that it is
possible for the forces to vary within our packing. Considering the two extremes, if
Ji(nl) and J™ are in the same direction then they will ‘cancel out’ in which case the *J’
terms are fairly insignificant in comparison with I("*"), However, if they are in opposite
directions they will ‘add up’, and it may be possible that both J() and J() are of the
order of %I(""/). Taking v = 1/4, we have 64 = 1, so 6A(J(™) - J)) ~ 1) and then
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the additional terms make a very significant contribution to the expression. We still
do not know whether the largest forces will occur in chains of particles or not, but we
at least have the scope for significantly different magnitudes of force acting on different

contact areas.

3.2.3 The Average Stress

In this next section we use the equation above, (3.25), to find the average stress within

the packing. Previously we introduced the notation < . > to denote
1

<.>== .dV 3.26
|4 spheres ( )

where V is the total volume of the packing. When considering contacts this became

equation (1.87), which is the following expression for the average stress within our

packing,

R ] ] 'n.'n' nnl
o) = R T IR Ry

all contacts

_ 3 1 (nn') px(nn’) | p(nn’) p(nn)
= TmEy LA ET A TR
n n/
where V is large and N is the total number of spheres in the packing. What we have

actually considered is the limit as V' — oo or equivalently NV — oo in which case

3 n‘n nn nn nn
(03j) = — g7 Jim ~ ZZ{I( P ¢ fr pmy, (3.27)
In the limit this sum becomes
3n
(0ij) = ) < L;F; + LF; > (3.28)

where 77 is the average co-ordination number within the packing and < . > on the
right hand side now represents the average over all directions of the vector I"") or

equivalently the integral over the surface of the unit sphere.

Now our expression for the force F("") is not purely a function of I®) and so the
definition in this last equation does not hold. However, equation (3.27), does still hold
and so we re-define the averaging operator < . > as summing over all contacts, that is

over both spheres n and n’. N is the total number of spheres within the total volume
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V and 7 is the average co-ordination number again. With < . > re-defined we have

RnN nn' nn' nn' nn’
(o) = = < 1B+ IR > (3.29

We define the following typical packing parameters that arise in the calculation of this

stress:

a; = (I i(nn,) J J(n) )
Bt = Ii("n') I](_""') I’(cﬂ"') Jl(n)>
yigm = (I g gy (3.30)
Gisktmn = (I J(nn’) I I 1o g ()

Mijklmn = (I§nn’)1§nn’)I,Enn')Il(nn')ng) Jv(zn))

We start by considering o;;, we expect it to be small and isotropic as there is no

preferred direction for I™™) or J™. Thus, let
Q5 = acS,-j.

In two dimensions it is possible to find « analytically for some co-ordination numbers
(see Chapter 4). However, in three dimensions, as we are concerned with, the question
arises as to how to order the spheres and so analytical methods become extremely
difficult. The value of «a is calculated using computer simulation instead. Its value
decreases with increasing co-ordination number. In order to calculate a value for a, we

notice that

nn' / 1 n n
a=3 <[ 5= _.-3;”7 SX A = = Y0, @)
n p

n

where summing is over n’, the spheres in contact with the nth, and n all the spheres
in the packing. The calculations for both two and three dimensional problems are

discussed in more detail in Chapter 4.

In a random packing the tensors in equations (3.30) are isotropic and satisfy certain
symmetries. [j;x is a fourth order isotropic tensor which must be symmetric if we

interchange any two of i, j and k. Any fourth order isotropic tensor is a linear combi-
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nation of 6;;0x1, d;xd; and 6;9;. To satisfy the above symmetries the only combination

we can have is:

Bijkt = B(0ij0k1 + 0:ikbj1 + 6udjk). (3.32)

However, since I,(,"nI)I,(,""I) =1 if we let j = k in equation (3.30b) then

Bt = < I o) gn)
= <1y s
= ay

= a&,-,.
Now from equation (3.32) we have

Bikkt = 500,

so then 8 = /5 and hence

Bijri = %(51'1'51:1 + dikdjt + Sudjk)- (3.33)

Now, ikt is also a fourth order isotropic tensor and it should be symmetric if we

interchange ¢ and j or k£ and I. The only combination which satisfies this is
Yijkt = 110i50k1 + Y2 (Sirdjt + di1djk). : (3.34)

To determine «y; and < this time we consider the definition of the averaging operator
which is the sum over all contacts. We can rewrite the expression for o;; as given in

equation (3.31), in terms of sums as follows:

1

— (nn') 7(n)
Q45 = 3N7 Zn:%:li" J; (3.35)
and so similarly
1 nn' n' n
Yijkl 3N'r]ZZIz’( n)I](‘n )JIE )Jt(n)
n n!
_ 1 (n) 7(n) 5 7(nn’) p(nn')
= m;Jk J; %:Ii L. (3.36)
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We wish to find 3, Ii(""')I J("nl) to leading order since it is multiplied by J,E") Jl("). Now
(nn') y(nn')  _ 1 -

and so we approximate ), Ii(nnf) Ij(nm) by

Thus to first order we have

1 n n
Yijkt = 9Nn6i1'zn:‘]l£ )Jz( )

o
= géi,-ék,.
Now in equation (3.34) we have v; = a/3 and 7y, = 0 and so, to leading order,

a
Yijkt = §5ij5kz- , (3.37)

Both (;jkimn and 7;jximn are sixth order isotropic tensors and so are linear combinations
of fifteen terms such as 6;;0ki0mn- In particular, we want ¢;jkimn to be symmetric upon

interchange of any two from i, j, k, [, and m. The only combination that satisfies this

is

Cijkimn = € (835 (0ki0mn + OkmOin + Okndim) + 0ik(05i0mn + 0jmin + 65n0im)
+0i1(0jkOmn + 0jmOkn + 0jndkm) + Oim (0;k0in + 010k + 6;ndks)

+8in (0k01m + 0;10km + 0jm0ki)) - (3.38)

Again, using the fact that I,(,""’)I,(,""’) = 1 and the same method that was used to

determine f;;x; above we find

N A
Gijklmn = 5 (055 (8kt0mn + OkmOin + Oknlim) + ik (8510mn + 0jmbin + 6jndim)
+6:1(8;k0mn + 0jmOkn + 0indkm) + Gim (6;k0tn + 6510kn + 65n0k1)

+0in(0jk0tm + 010km + Ojmbki)) - (3.39)

This just leaves 7n;;ximn Which must be symmetric upon interchange of any two of 1, j,
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k and ! and also upon interchange of m and n. Hence it must be represented as follows:

Nijkimn = MO (0ki0mn + Okmbin + Okndim))
+12 (8ik(0j10mn + 8jmOin + 6jndim) + 0it(0kmn + 6jmlkn + 0jndkm)

+0im (0k0in + 0510kn + 05n0k1) + 0in(0k01m + 0;10km + 05mdr)) - (3.40)

The same method that we used to find -;;x; enables us to calculate

«
Nijklmn = E‘smn (030Kt + 6ikdj1 + 05kbit) ,

but this time using the approximation 3., I"™ )1 J(""')I ,ﬁ""')I l(""') = ﬂ%(dﬁ Okt +0ik b1+
0i10jk)-

At this point, we also define the parameter x:

1 n) y(nn’) y(nn') (nn'
x=73< NGO i (3.41)
which is not actually required in this stage of the problem, but will be needed in the next

section, when we consider the application of an additional incremental deformation, to

the boundary of the packing.

Returning to calculation of the average stress, we must also consider some of the prop-
erties of the averaging operator. Considering first the n'th sphere it can be seen, from
equation (3.4), that

(L) = )

and since

(n'n) 3w}y _ (glnn') 3(n)
(LT3 = (7 J57)

then

U9 =~ ), @42

Our aim is to find (0;;) and we need all these results along with two that we have seen

earlier. These are

L

(nn') p(nn')y

0ij,
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! nn' n') (nn' 1
(eI ey - £ (Bt + 8yt + Sus). (3.43)

Having substituted for F(") into equation (3.29) and using all the results above then

after some manipulation, the expression for the average stress reduces to:

_ gn(—e)*?

{oig) = 3m2B

{1-27A(2 - A)a}dy; (3.44)

where ¢ is again the volume concentration of the spheres, first met in Chapter 1 and

given by

ATR3N
b=—3y (3.45)

We note the extra terms introduced by our perturbation when compared with Wal-

ton’s [86] expression for the average stress, found using the uniform strain approxima-

tion:

—e)3/2
< i >= —"’"T(wzl)?—. (3.46)

This was previously seen in Chapter 1, equations (1.94) and (1.95).

All of the above results apply for spheres that are infinitely rough. We now consider
the case when they are perfectly smooth, following the same methods used above. The

general expression for the force acting on the nth sphere due to its contact with the

n'th is now given by:

(2R)/2
3B

Flnn') — [(u{™) — uf™) xmp/2gmm (3.47)

1

We assume that after the initial hydrostatic compression has been applied to the bound-

ary, the displacement of the centre of the nth sphere is given by:

and

wz(") = G)z(").

Again, considering equilibrium of forces and moments acting on the nth sphere allows

us to calculate the perturbations, ﬂgn) and cbz(”), to leading order. These are given by

i{™ = —4ReJ™
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and

Hence

(nn') _ 4R2(—6)3/2 (nn') n n nn') 7(nn')
F = T{Ii +3(J) — JMy ) I
3

' ' ‘e o) (it () )
+S ) = I I - T 1) I )} (3.48)

and from this, using the parameters defined above, we find the average stress to be

—e)3/2
(o33) = —@éﬁ;— {1-15a}. (3.49)

As we would expect, this is consistent with the expression derived from taking the limit

% — oo in equation (3.44).

For completeness, we should also consider the case when we impose an initial uniaxial

compression upon our random packing of spheres. However, the calculations are not

so manageable. The strain now has the form
eij = e30i30;3

and we again let the displacement of the centre of the nth sphere after the initial
deformation be u{™ = einJ(-") + @™ and W™ = @ + @™ = ™. We find the

1

expression for the force acting on the nth sphere due to its contact with the n'th is:

(nn')
(') _ M_ ') (~(n') _ ~(n) IP 2B (—2  H(nn')
g " 37B(2B+C) 57| = (g Up )“—4R63|I§nn')l { ( Re3d;313
+@™) — ™) + BRI (W) + w;(c")))
(n'n,l) 2 1 - n! ~(n nn, (nn,)
+2RC(—e3)[(I™”) ‘zzze3(“1(’ ) — a1 } (3.50)

Now, using the equilibrium of moments and forces we obtain first order approximations
()

™ and (™. Ifi=1ori=2:

for @ i

a(n) — _ 32Re3C zn’ |I§nn’) | (I,'gnn,))z.[i(nnl)
l ™ (16B + 3C) )
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and when i =3

_16Re3(2B T [ + C 50 111 (157)3)
3n™ (4B + 3C)-

ag) =

where n(™ is the co-ordination number of the nth sphere. For any value of i,

From these we could continue by substituting back into the force expression and then
calculate the average stress, proceeding by the same method discussed above for an
initial hydrostatic compression. However, the algebra becomes extremely messy and

involves many more unknown parameters and so we have not pursued this any further.

In the case of a biaxial strain, it would also be possible to work out the effective moduli

when the strain takes the form:
eij = ed;; + Ae3dzdjs. (3.51)

However, the algebra becomes even more cumbersome and messy than in the uniaxial

case, so although some attempts were made to start upon this calculation, they were

abandoned.

3.2.4 The Effective Moduli

To calculate the effective moduli, we suppose that our packing is now subject to a
further incremental deformation. The boundary of the packing will undergo a further

displacement

du; = dei;z;. (3.52)

Walton’s work [86] again assumes that under this compression the centre of the nth
will be displaced in accordance with the uniform strain approximation. We modify this
approximation and then the centre of the nth sphere is displaced by Juz(") and (Swl(")

where

Jugn) = 56‘in:'(~") + (Sﬁz(-n) : (3.53)

and

™ = 5 + 6™, (3.54)
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In a packing of infinitely rough spheres, the incremental force on the nth sphere due

to its contact with the n'th sphere is given by equation (1.141) as

(2R)Y/?

(nn')
F B 7 A
OF; 37B@2B + )

(™) — uf™) 1072 L2 B (6ul™ — su™+

Regje(0w{™) + 8w IT™)) + C[(0uf™) - suf) 1)1} (3.55)

To calculate further an expression for this force, we must find approximations for 6&&")

(n)

and d@; . In order to do this, we initially consider just the first order terms of the

equations of equilibrium, in the same way as we did in the initial part of the problem,

equations (3.18) and (3.21). We have

ZéFi(’mI) = 0,

Y eI MSEY) = o (3.56)

These yield two equations similar to (3.14) and (3.15) and in order to find first order
approximations for aﬂﬁ") and JGJ'("), we must discard some of the terms and we make
the éame kind of assumptions which led to equations (3.18) and (3.21). From these we
find that to first order,

_(n 6R n
+Ce (NG —3AV iy (3.57)
and
5™ = 0. (3.58)

The term Vzg'i)z is defined by

V(n) ~ an Il(nn )Ij(nn )Ilgnn )Il('rm )
ijkl =

ey (3.59)

and since it is multiplied by JT(,? ), we need only approximate it to leading order. Since

nn') r(nn') (nn') ;(nn' 1
< Ii( )IJ( " )I,E )Il( ) >é E(éijdkl + 0ikbj1 + 04djk)
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then we use the following approximation for Vlg','c)l,

‘65'3 5 (5ij<5kt + 0ikdj1 + 0adjk). (3.60)

The terms J,E") and Ni(,z) are previously defined in equations (3.16) and (3.17).

Substituting equations (3.57) and (3.58) back into equation (3.55), we can now find

6Fi(""’), to leading order, which is given by the following lengthy expression:

, 2(__ 1/2 ,
spem) — AR (o) {23 [ae,-,,z,,+ 3 5 (2B(1 - b (I - )

" 2rB(2B + C) (6B +C
+C8epg(NT) — N — 34V i) _ y(m) J(")))) +3A6eig (J) = I LI,

ipg ipq ipgm ipgm
94

———— (2B(1 — A)desp(JM) — I (=) _ (™)
+(GB+C)( (1 — A)dein( ) + Cdepg(Nw) — N,

rq tpq
—3A(VSh IS = VS TGN (I - I,

9 n' ! n
~ 5 A% Rbeip (J§) — I (I — I ))IpImIq]

+C [aepqz,,fqzi + (23(1 — A)degy(JM) — JiM)

6B+C)
+Cepq(Npd — N2 = BAVG LI = V) I L1,

n 94 N o
+3A8epg I, I LI (&) — J(M) 4 GE10) (2B(1 - A)degp(I5™) — I
+CBepg(NG) — NGy = BAVE I = VL IE) (U5 = I LLL ¢

—§A235epq1p(J§:’> — J ) - Jt("))ImItIpIqI,-] } : (3.61)

Since this expression is long, we have omitted the superscripts (nn') from the compo-

nents of I(™), to keep it as concise as possible.

From this we proceed to substitute into the following equation to find average the

incremental stress,

RnN

(50.27) 2V (I('n-‘l’l )(SFJ(nnI) + I;nn’)éFz(‘nn')> (362)

The terms that arise are similar to those in section 3.2.3 and after some manipulation

we have

3 1/2 1 12(1 — Ao 2C
- (boyy) = %{B[ (6ikdjt + 0udjk) — (ltl(T+?,)C'_)<(2B+ —)(6ix b1 + 6itdjk)

2C
+?6ij5kl) —3Aa(2 + A)(dixdj + Juéjk)] +C [ (050t + Gikdj1 + 0:10k)
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6 (23(1 - Ao
6B+ 0) 5
1 A

+o5Bx — a)(8ikdjt + 8udjk) — '2_5(761'3'6):! + 2(d;x 51 + 5iz5jk)))

——S—(Jijfskl + 6ik5jl + Jiléjk) + m

2C 3A2
+(2B + ?)(5ik6jl + 5iz5jk)) - =

1
((Sij(skz + 6ik6jl + 6i15jk) + C(g(?& - x)&,-,-dkl

7C
((23 + ?)5,'3'6“

(030Kt + Oirdji + 6i16jk)] } dexs, (3.63)

where a and x are defined in equations (3.30) and (3.41) respectively. In general, the

average incremental stress is related to the average incremental strain, (Je;;) as follows,

(b0i5) = ijkz(5éij>- (3.64)

For an initial hydrostatic compression, we know that

Clirg = A" 00k + p* (8idjt + 0adje), (3.65)

and thus we can calculate the effective moduli in this case. Hence, we have

and

. ¢nC(—e)/? 72(1 — A)B
A= 10mBEB 1) {1 ~94C+ Ao - mp g
36(1 — A)(10B + 7C) 18C (3
5(14B +3C) © (6B+0) (3"‘ - X)} (3.66) .
. _ ¢n(5B+C)(—e)/? 72(1 — A)(5B + O)
= T10n2B2B+0) {1 —9AQ+ Aa - — B 30)
- 54C (5x — 30) (3.67
10(6B + O)(5B + C) X : 67)

where ¢ is as given in equation (3.45). These are the main new results for this chapter,

they give the modified expressions for the effective Lamé moduli of a random packing

of equal sized spheres, upon application of an initial hydrostatic compression.

We can also calculate the effective bulk modulus, for comparison with the results of

Jenkins et al. [43],

2
* :A* - *
K + 3u
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and so

K = ‘“’é;—f;m {12742 - A)a}. (3.68)

This is clearly consistent with the expression we found for the average initial stress in

equation (3.44), which yields the same expression for the bulk modulus upon differen-

tiation.
The expressions found for these moduli by Walton [86] are,

¢nC(—e)!/2
10n2B(2B + C)’
. _ (6B +C)(—e)'/?
~ 10m2B(2B +C) (3.69)

A*

and

_\1/2
K= ———¢’7é7r26})3 (3.70)

and so we can easily note the extra terms that occur in our new expressions. Assuming

J™ to be zero as did Walton [86], then « = x = 0 and we see that our results are

identical to these.

These results apply only when the spheres are infinitely rough. For the case of perfectly

smooth spheres the force acting on the nth sphere due to its contact with the n'th is

! 1/2 1 1 ] ! ’
SF() = %— [(0™) — u™). 12 ((u™) — gu) 1 >)} ™) (3.71)
is

If the displacement of the sphere centre is again given by a perturbation of the uniform

strain approximation then

su{™ = ey XM + sa™

and

sw{™ = 6Q; + (™.

Considering the equations of equilibrium to first order allows us to calculate

sul™ = Gei; XM — 6Roepg (N — JIV) (3.72)

and

sw™ = 0. (3.73)

1
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Using this in turn, we find the incremental force to first order. We have

—2R2(_e)1/2

(nn')  _
OF; o B

{OersL I I; + 3[0epr (NG — N — (JTIVE) = SV
+0ers (S — I LI LI
+3[6epr (NS = N = IV = IVRNIED = I I LI

pqrs pqrs

] ™ n n n
~50ers(J§") — J§ NI = I LI L LT
S loepn (NG = N2 = (U§OV35) = SPVNIE) = FEI) = S ILLE},

(3.74)

where the superscripts (nn’) on the components of 1) have again been omitted for

brevity.

The average incremental stress follows from this, through equation (3.62) and is found

to be

¢n(—e)/?
(00i;) = o {(0ij0kt + ikdji + 0urdjx) — (290:0k1 + 6(8ikdji + 8iudjk))

10n2B
+9(26ij5kl - 3(5,‘;:5]‘[ + Juéjk))x} . (375)

The effective moduli are then calculated as

_o\1/2
o= %(1—29a+18x)

/2
. %(1+6a—27x). (3.76)

To calculate the effective bulk modulus we again use k* = A* + %u*, this gives

K = ‘i’"é"e)l 2 {1-15a}. (3.77)

Walton’s results for the effective moduli of a packing of perfectly smooth spheres are

_ ¢n(=e)"?
A= “1072B

and

. ¢n(—e)'/?
= " 6m2B

and our results are again clearly consistent with these, when oo = x = 0.
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Poisson’s ratio can also be calculated for the two cases of friction considered. It is

defined by:
. A*

V= 2(A* 4+ p*)

(3.78)

and for the case of infinitely rough spheres is

v{(14 - 110)2 + 9(17? — 292v + 324)ox — BOGIHWE (30— x)}
2{(5 — 3v)((14 — 11)2 - 18(9v3 — 2712 — 520 — 252)a) — el ((15 - 13v)x — §(15 - 14v)a) }
(3.79)

When a = x = 0, we recover the result for Poisson’s ratio found by Walton [86], as we

would expect.
For a packing of perfectly smooth spheres Poisson’s ratio is given by

. 1-29a+18y

Y T 22— 23a - 9%) (3.80)

and this reduces to 1/4 when a = x = 0 as deduced by Walton [86].

In the next chapter, we describe the simulations which enabled us to estimate values
of the unknown parameters o and x which occur in the modified expressions for the 1':
effective elastic moduli of the sphere packing. Using these, we were able to obtain

revised predictions for the values of the moduli for comparison with the work of Jenkins

et al. [43)].
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Chapter 4

Numerical Calculation of o and X

Terms

This chapter deals with the calculation of numerical values for the parameters o and
x that occur in the equal sized sphere packings described in Chapter 3. In order to
compare our new theory with the numefical simulation results of Jenkins et al. [43]
we must estimate the change to the numerical values predicted for the effective elastic

moduli, caused by these unknown parameters.

For the specific results we require, the parameters were determined by computer sim-
ulation. In this chapter however, we also consider analytical calculations, some work
is done in both two and three dimensions. To be physically realistic we require that
each sphere be in equilibrium, however for completeness we also consider collections of

spheres that are not in equilibrium.

4.1 A Packing of Equal Sized Spheres

Using just a first order perturbation of the uniform strain approximation, on a packing
of equal sized spheres, we have to consider two parameters which arise in the calcula-

tions. These are « and Y, as previously defined in Chapter 3 by

1 1

1 nn') (n
a=§<I-( )J()>

and

< 1M INED >

1
X=3
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4.1. A PACKING OF EQUAL SIZED SPHERES

where [ f”"’) is the unit vector along the line of centres between the nth and n’th spheres

and
m_ 1 (nn')
L= ZI,.
n
and
(m _ 1 (nn') (nan') y(nn')
Ny -‘,,(T)Zfi TS N

py
The averaging operator < . > represents the average over all contacts within the packing
and the sum over n' is that over all spheres in contact with the nth. The operator < . >
is thus equivalent to summing over both n and n’. Both a and  represent a measure of
hbw much the behaviour of the packing deviates from that of an ideal random packing.
If the behaviour were ideal then ¢ = xy = 0 and we would have recovered Walton’s

results [86].
For our purposes it is easier to re-write a and X as

1
- — (n) (n) ('n,)
a=z No E I J; (4.1)

n

and

_ 1 n) N7 (n) A7)
X= m ;W( )Nijk Nijk (4.2)

where N is the total number of spheres in the packing, n(™ is the co-ordination number

of the nth sphere, n is the average co-ordination number and the sum is taken over all

spheres n in the packing.

In two dimensions, it is simple to calculate by hand a value for a. Considering spheres
in contact with the nth sphere, these can be ordered and it is easy to ‘visualise’ the
situation. However, in 3-D it is much more difficult to visualise. The question arises
as to how to order the spheres. In this case we turn to computer simulation to help us
calculate the expected value. In the next section we start by considering the expected

value of the parameter «, for a random arrangement of discs in 2-D.

4.1.1 Analytical Methods and Simulation in 2-D

In 2-D, it is possible to calculate the expected value of o analytically and these values
could then also be confirmed using computer simulation, if required. Even though these

results were not used in the calculation of values for the new effective moduli, they were
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Figure 4-1: Condition for equilibrium of the nth disc in contact with just two others

carried out in order to build up a more complete picture about what influences the value
of each parameter. We consider, for example, the effect of increasing or decreasing co-
ordination number, noting any trend in the values. We would expect to find similar

patterns when we later consider the 3-D case.

We are primarily concerned with equilibrium of each disc. However, we shall look at
both the restricted case of each disc in equilibrium and also any general arrangement of
contacting discs. In particular, we require equilibrium of the nth disc, say. In 2-D, we
will need a minimum of four discs in contact with the nth such that any combination
we choose ensures equilibrium of the nth disc. If we have just three discs in contact
with the nth then some combinations will be in equilibrium while others will not. We

shall only consider values of the parameter a at this stage.

Starting with just one disc in contact with the nth it is impossible to attain equilibrium,

but we can still calculate that in this case |j (n)|2= 1 and so a=1/3.

With two discs in contact with the nth it is generally not possible to have equilibrium.
The unique case when there is equilibrium arises when the two discs are on exactly
opposite sides of the nth, see figure 4-1. In this special case the value of j(n) is 0 and

soa =0.

Now, we consider any two discs in contact with the nth, see figure 4-2. We pick our
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Figure 4-2: Contact of any two discs with the nth in 2-D

axes such that the centre of the first disc has co-ordinates (1,0). The centre of the
second then has co-ordinates (cos#, sin6). We have = |(1+cos#, sin#) and so

[j(n)]2 _ i(i-}-Gs0). Thus to find the expected value of |j (n)|2 we calculate the integral

JV3 1+ cos 6d0

! E * (4-3)
2 13 wdQ
the restricted limits ensure that there is no overlap between the two chosen and so

the arrangement is physically realistic. The integral yields a value of 0.2933 and since

a = 0.2933/3, then a = 0.0978.

Considering next an arrangement of three discs in contact with the nth, we can consider
both equilibrium and non-equilibrium of the nth disc. We initially do the calculation
for any arrangement of discs which may not necessarily be in equilibrium. We again
let the centre of the first disc chosen have co-ordinates (1,0), that of the second have
co-ordinates (cos#, sin#) and that of the third have co-ordinates (cos< sin<>). We
require there to be no overlap between the discs and so § < #< X’ <A < T an<®
16— > The region in which these last two discs can be chosen without overlapping
either of the others is shown in figure 4-3. Solutions of no overlap are only possible in

the two triangular areas containing dotted lines.

The triangle areas are symmetric and so to find the expected value of |j(n)|2 we calculate

CHAPTER 4 121



4.1. A PACKING OF EQUAL SIZED SPHERES

T 27r 4n 5T

Figure 4-3: The (9, 0/ region corresponding to no overlap

5n

© m)

Figure 4-4: The (9, (5 region corresponding to no overlap and each disc is in equilibrium

the integral

2 /°¥ re~f
—5 / 3-1-2cos 9 + 2cos 0 + 2 cos(0 - A9d(f>. 4.4
el AN © - @I (44)

The value of this is 0.1011 and so a = 0.1011/3 = 0.0337.

If we now consider the random selection of three discs in contact with the nth so that
the nth is in equilibrium, we find the more restricted region in which 9 and 0 can be
chosen, as shown by the areas containing dotted lines in figure 4-4. The integrand is
the same as above but the limits are different and we find that the expected value of

|j ()2 has decreased to 0.0965 and thus a=0.0965/3=0.0322.

Now we consider four discs in contact with the nth. Any chosen combination will

CHAPTER 4 122



4.1. A PACKING OF EQUAL SIZED SPHERES

ensure that the nth sphere is in equilibrium. We again chose our axes such that
the centre of the first disc has co-ordinates (1,0), the centre of the second then has
co-ordinates (cos#, sinf), the third (cos ¢, sin¢) and the fourth (cost, sine). We.
integrate |J™{2 = L[4 +2(cos 6 + cos ¢ + cosyh + cos(6 — ¢) + cos(8 — 1) + cos(¢ — ¥))]

over the six regions:
. 6:#—)%,(1&:%’—5—)6—%,1&:%-—)(}5—%.
. e:w45§,¢:§—>6—2§,¢:¢+§—>0—§.
¢« 0: ¥ T 0+ 5 T 01
¢ 0:F 5 $: T 20-F,¢:0+F L
e 0:Zm¢:0+F > p:p+T L
¢ 0: 2 om0+ LT X §:0+T 9T
This gives us an expected value for‘|J(")|v2 of 0.0309 and then =0.0103.

For six discs in contact with the nth the calculation is very simple, J(® = 0 and so

a=0. This is the maximum number of discs we can arrange around another in 2-D.

We have not attempted the calculation of « for five discs in contact with the nth. This
is due to the fact that the integration becomes extremely cumbersome, we would need

to integrate the following expression:

5 + 2(cos 8 + cos ¢ + cosp + cos€ + cos(6 — @) + cos(f — 1) + cos(d — &)
+cos(¢ — ) + cos(¢ — £) + cos(y — £))

over 24 different orderings of the spheres (similar to those listed above for four discs).
However, for completeness we estimate a value for o frorh the plot of the values of o
against co-ordination number shown in figure 4-5. The ’+’s on the graph represent the
values of « obtained when the spheres are not in equilibrium and the ’o’s the results

when we do have equilibrium. We find that for five discs in contact with the nth,

a ~ 0.01.

We notice that the value of a decreases with increasing co-ordination number. This is
exactly as we would expect. We have already mentioned in previous chapters that the

uniform strain approximation becomes a better approximation, as the co-ordination
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Figure 4-5: Plot of results for a versus co-ordination number from the consideration of
2-D discs

number increases and a represents deviation from this ideal behaviour. It therefore

follows that a should decrease with increasing co-ordination number.

4.1.2 A Random Packings of Spheres

We consider the calculation of the expected values of @ and x f°r a random packing
of equal-sized spheres. These will be the results that can be used in the theoretical
work of Chapter 3 to predict modified values of the effective elastic moduli. It would
be very difficult to calculate the expected value of o for spheres in three dimensional
space using similar analytical methods to those above. Hence values for both a and |
must be found from a numerical average using computer simulation. Matlab was used

to perform these calculations.

We use computer programs to randomly pick spheres in contact with the nth sphere.
A typical example of one of these appears in Appendix B. By repeatedly running the
simulation, it is possible to find an average of several hundred calculations, say, the
number of calculations performed being dependent upon the time involved in each run.
The more spheres to be chosen, the longer each calculation took and hence the fewer

the calculations that it was possible to do within a reasonable amount of time.

Especially important in the calculations was to impose a condition of no overlap be-
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tween spheres to ensure physically realistic answers. Also, for the particular results
that will be used in the expressions found in Chapter 3 we require equilibrium of each
sphere. However, similarly to the 2-D case, here we also consider the values obtained
when the spheres are not necessarily in equilibrium. In 3-D, we require a minimum of
seven spheres to ensure that any possible combination of chosen spheres are in equi-
librium. However, it is possible to have several combinations of as few as four spheres
in contact with the nth, such that this nth sphere is in equilibrium. We must include

checks within some of our programs to find these combinations.

The general algorithm for all the programs was to pick co-ordinates (r, 6, ¢) such that
the centre of the nth sphere was at (0,0,0) and  and ¢ defined such that the centre
of the first sphere chosen in contact with this always has co-ordinates (2,0,0). Then
the unit vector directed along the line of centres was (1,0,0). A second sphere was
then chosen such that ¢ = 0, but with 6 picked randomly in the interval [7/3, x]. The

remaining spheres were chosen at random, imposing the condition of no overlap which

is described below.

The program asks the computer to choose a random number p say, this falls between
[0,1] and so we let ¢ = 27p. Picking 8 correctly requires more ihought, we need to
ensure that the contacting spheres are distributed with an even probability density.
As we have mentioned, we want 6 to be contained in the interval [r/3, 7] and thus
sin@ € [vV3/2,1] or [1,0]. This is shown by the area to the right of the vertical line
6 = w/3 in figure 4-6. We want the values to be chosen uniformly on these intervals.
The size of the area [#,6 + 60] is sin 886 and the number of values we pick in a given

area must be proportional to that area. We notice that

/ sinfdf =1 + cos
0

/ s
u 2

3
From this we see that we require 1 + cosf € [0, %] which then gives the condition
cos@ € {—1,1/2]. Hence, to define a random 6§ we let § = cos™? {%q - 1}, where ¢ is
a second random number within [0,1]. The unit vector I™™) joining the centre of the

nth sphere to the n'th, is then found using I™**) = [sin § cos ¢, sin @ sin ¢, cos 6)].
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Figure 4-6: Restricted Area Within Which to Pick sin0 Uniformly

The next part is to check that the sphere that has been chosen does not overlap with the
ones already present. The way we have chosen 0 for this sphere has already ensured
that it does not overlap with the first sphere chosen, whose centre has co-ordinates
(2,0,0). However, we must check all of the others as well. If the unit vector joining the

centre of the nth sphere to a contacting one is

11

[sin(01) cos(</>1),sin(0i) sin(0i),cos(01)]

and that of a second

12 = [sin(02)cos(02),sin(02)sin(02),cos(02)]

then we must ensure that the angle separating these two is not less than 7r/3. This
implies that we must check the cosine of this angle is not greater than 1/2. Now, the

cosine of the angle between these unit vectors is given by
cos A = sin(01i) sin(02) cos(0i —2) + cos(01) cos(02)

and if cos A > 0.5 then we throw away this last sphere. If cos A < 0.5 then these
particular two do not overlap, but we must also repeat the check to ensure that there
is no overlap between the current sphere and any of the others either. If the current
sphere overlaps with any others then we throw it away and try to choose another which

does not overlap any of the others. Sometimes it can be very hard for the computer to
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find a ‘gap’ to put another sphere into. If after one hundred tries it does not succeed

then we throw away all the spheres we have already chosen and start again.

This process of picking random numbers and subsequently co-ordinates for the sphere
centres, is repeated until the required number of non-overlapping spheres in contact
with our initial one, has been found. The vector J and matrix N are then determined,
from which the the values of o and x can be calculated. We run the program many

times in order to obtain average values for a and Y.

We start with the very easy case of one sphere in contact with the nth. There is
obviously no possibility of equilibrium in this situation and we have the unit vector
along the line of centres of the two spheres given by (1,0,0). Thus J™ = (1,0,0) and
hence o = 1/3. Similarly, it is very easy to calculate Ni(;;z the entries in which are all
zero except Nég?), = 1. Thus, x also equals 1/3.

For two spheres in contact with the nth we have no equilibrium, except for a case very
similar to that for the two, 2-D discs described above. That is, if the spheres are on
exactly opposite sides of the nth sphere, then the nth sphere will be in equilibrium
and when we sum the two unit vectors along the lines of centres they cancel each other
completely and J(® = 0. We have calculated only o for this co-ordination number,
its value is 0.1258. With three spheres in contact with the nth we still cannot have

equilibrium in the general case and find that « takes the value 0.0602 and x = 0.0794.

For four spheres in contact with the nth, we can start to consider combinations of
spheres in equilibrium as well as those not in equilibrium. Although there will be lots
of cases where a randomly picked four will not be in equilibrium, these are throvs‘m
away when we wish to apply the values of & and x to our theory. It is easy to know by
looking at a picture of an arrangement of spheres whether it is in equilibrium or not.

However, it is more difficult to enable the computer to make this decision.

When we have four spheres in contact with the nth, the test for equilibrium in the
computer program started by selecting two of the spheres out of the four. The plane
through their centres and through the centre of the nth sphere was constructed, i..e.
I, Ay, found (using obvious notation). The remaining two spheres are tested to see if
they are on the same side of this plane by finding both (I1, Als,). I3, and (L1, Alyy,). 14y

and checking if they have the same sign, in which case they are on the same side of
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the original plane and equilibrium would not be possible. This was repeated for every
possible combination of selection of the first pair. If the signs of the two dot products
involving the remaining spheres are different for any of these combinations, then the

four randomly selected spheres are not one-sided and equilibrium is possible.

For four spheres we have to find sgn{li,, A I2n-13n) = si, sgn(li,, A 12n-14n) = s2,
sgn(l\n Al3n-14n) = S3 and sgnfcn Al3n-14n) = $4. The condition for the four spheres
not one-sided is that the sequence si, S2, S3 and s4 alternates in sign. Ifit did not alter-
nate the four spheres were discarded and the whole process repeated until a selection
was found that were not one-sided. The values of and were then calculated.
The value of a for spheres in equilibrium was 0.0158. That of x was 0.0457. Considering

also the selection of any four spheres which may not be in equilibrium a = 0.0311.

We next consider the selection of five spheres which ensure the initial one with which
they are in contact is in equilibrium. There will be fewer cases of no equilibrium than
when we only choose four spheres. To test for equilibrium with five spheres, the above
algorithm can again be used by selecting four of the five and testing these for one-
sidedness. If all combinations of four that can be chosen are one-sided, then all five
are one-sided. If any four are not one-sided, then all five are not one-sided. These
result in ten conditions on the signs of the dot products calculated, but these can be
reduced. Setting up a 5X5 table with the diagonal elements blank, (see below), where

512 = sgn{l3n Al4n-15n), 513 = sgnfcn ALm-Isn) etc., the conditions reduce to finding

an alternating row in the table.

512 523 524 525
513 523 534 535
514 524 534 545

Running the program with these equilibrium conditions and discarding any combi-
nations which do not satisfy the criterion above we find ¢ = 0.0132. We have only
calculated x when each sphere is in equilibrium and we find that x —0.0300. If we do

not restrict our choice of spheres purely to those in equilibrium we obtain a = 0.0173.
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Figure 4-7: Plot of results for a versus co-ordination number from the consideration of
3-D spheres

For six spheres, there are fifteen conditions to ensure equilibrium if we chose two spheres
out of the six and draw the plane through their centres, checking the remaining four
to see if they are one-sided (this is the extension of what was described previously
for four spheres). Fifteen checks would also have to be done if we chose combinations
of four spheres again, extending the method used for five. Since there are now few
combinations that will be one-sided the quickest way of checking is to use the former
fifteen conditions, each will not have to be checked every time the program is run, as
soon as one is found to be untrue then we know that the spheres are not one-sided. In
the case of picking combinations of four, every condition would have to be checked each
time. Now, a takes a value of 0.0093 when there are no equilibrium restrictions and
0.0091 with. The first of these values is plotted along with the other values of @ when
there are no equilibrium conditions imposed, against co-ordination number in figure 4-
7. These values obtained from six spheres confirm the fact that few combinations are
still one-sided since these values are not significantly different. Again, we only calculate
X with equilibrium conditions imposed, the simulation yields a value 0f0.0190. A graph

of the values of | against co-ordination number are shown in figure 4-8, the spheres
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Figure 4-8: Plot of results for x versus co-ordination number from the consideration of
3-D spheres

will be in equilibrium except in the case of a co-ordination number between one and

three, inclusive.

Once the number of spheres selected gets to seven or more, all of the combinations
chosen will be in equilibrium. For seven and eight spheres the value of @ was therefore
calculated without checking for equilibrium, ¢ was found to have a value of 0.0055 for

seven spheres and 0.0042 for eight.

For nine, ten and eleven spheres in contact with the nth the computer programs take
progressively more time to calculate a single value for a, this can as long as several
hours. Hence it is not practical to try and run the program many hundreds of times
to obtain an average. However, in the case of twelve spheres we have the simple result
that 0:=0. Hence we could estimate the missing values for these other three cases if
we so wished from the graph of results for ¢ shown in figure 4-9. This graph shows
the values obtained when our initial sphere is in equilibrium. It can be seen that the
curve does not pass perfectly through the plotted points but this is probably because

the values have not been calculated with the same accuracy. We mentioned previously
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Figure 4-9: Plot of results for a versus co-ordination number from the consideration of
3-D spheres in equilibrium

the fact that as the number of spheres that the computer must choose increases, the
programs become slower and slower to run. Thus for a co-ordination number of eight it
was only practical to run the simulation a few tens of times, whereas for a co-ordination

number of four it was practical to run the program for thousands of arrangements.

All these values are approximate since, as we mention above, some of the calculations
took so long to complete that it was not possible to repeat them as many times as some
of the others. However, the general pattern seen in the values of ¢ that we had for 2-D
discs, can be seen again here, that is decreasing a with increasing number of contacts.
This is true for both the values where equilibrium conditions were ignored and those

where they were included. We also note that x decreases with increasing co-ordination

number.

4.1.3 Fixing Three Spheres in Contact with the nth

For interest, we also ran some further simulations to find numerical values for ¢ when

the spheres in contact with the nth were not all randomly chosen by the computer. We

CHAPTER 4 131



4.1. A PACKING OF EQUAL SIZED SPHERES

Figure 4-10: Fix the Positions of Three Spheres in Contact with the nth

wished to see what effect this would have upon the numerical values of the parameters
and hence how the predicted values of the effective elastic moduli were effected. We
considered a particular example of a possible arrangement of spheres in contact with
the nth. We take the first three spheres in contact with the nth, also in contact with
each other. This gives us an arrangement like that in figure 4-10, where we are looking
from below these three spheres. The dotted circle represents the outline of the nth
sphere which lies above the three spheres shown by the circles with solid outline. Thus,
we pick our axes such that if the centre of the nth sphere is at (0,0,0) then we fix the
position vectors of the centres of these other three spheres at (2>A3), 0, ), (—V"3);

I, 2V*6) and (—" 3-,-1, 2% 6) in cartesian co-ordinates.

The required number of remaining spheres in contact with the nth are then chosen
randomly as before, ensuring no overlap with any of the others and checking to ensure
equilibrium when appropriate. This arrangement of contacting spheres is highly un-
likely to occur in the simulations, although it seems quite reasonable to think that it
might occur in real packings. We do not have any idea as to what percentage of spheres
within a packing might be arranged like this, but we shall speculate about some pos-

sible values near the end of this chapter and calculate the new theoretical predictions

for the moduli.

For five spheres in contact with the nth sphere, the new value of a is 0.0344 as compared
with 0.0132 for five chosen randomly. For six we have 0.0328 as compared with 0.0091
and for seven, a = 0.0127, compared with 0.0055 from earlier. Thus a is significantly

larger for this arrangement with three fixed spheres in contact with the nth, compared

with that of a randomly chosen group.
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4.2 Comparison Between Theory and Numerical Simula-

tions

We re-write our new expressions for all the moduli found in Chapter 3, equations (3.67)
and (3.68), using the notation of Jenkins et al. [43]. This is for easy comparison
between our new expressions and the Lamé moduli found in equations (32) and (33)
and also the bulk modulus of Jenkins’ paper. Jenkins’ equations (32) and (33) are
actually the same as the expressions found previously by Walt(;n [86] but re-written
for the purposes of Jenkins’ work. For a packing of infinitely rough spheres we have

the following expressions for the effective shear modulus and effective bulk modulus,

respectively,

« 2 pkv [3 (1—u)-P 173 (5—4v)
S i ] bl M o 49

and

oLk [30-nP)E (45)

K = ——
3In(1—-v) |16 o2p
These equations include Poisson’s ratio, v, co-ordination number, k, solid fraction, v,

average contact force P, sphere diameter, o and the shear modulus of the material .

We represent our new theoretical expressions in terms of these parameters:

« _ 2 pkv [_3_(1_,,)13]1/3 (5 — 4v)
1 ) \
- - 30+7v—2
{1 (14 + 3v — 1112) (9(2+” v%)(30 + 7v — 230°)
+Z52—(12 + 20— 100 (5 4+ v — 4u2)) a
54v2(1 + v)?
_ 10y — -
10(6+V—5V2)(5+V—4u2)( Ox — 3a) (4.7)
and
* l Il'k’U i (1 _ V)P]1/3 - 27(2 +v— V2)(26 + 5y — 21”2)
B 3m (1 - V) 16 0’2/_1, (14 +3v — 11”2)2 «.

(4.8)

Taking Poisson’s ratio v = 0.21, coordination number k = 5.36, solid fraction, v = 0.63,
average contact force P = 7x1073N and average sphere diameter, 0 = 0.22mm, from

Walton’s theory using equation (4.6), the bulk modulus is calculated to be 245MPa.
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The shear modulus from equation (4.5) is 338MPa. However, Jenkins et al [43] found
values of 185MPa and 127MPa respectively for these moduli from the numerical sim-
ulations. We cannot specifically calculate a or x and hence recalculate the theoretical
predictions using our new expressions, for a coordination number of 5.36. Instead, we
use the values found for coordination numbers 5 and 6 and estimate a value of @ from
the graph in figure 4-9. Alternatively, this could be calculated from the values given by
4, 5, 6 and 7 contacts and then weighted so as to give 7= 5.36. As we have not calcu-
lated a value for x when there are 7 contacts, we estimate its value when 7= 5.36, by
assuming that its value linearly decreases as the co-ordination number increases from
5to 6. Then we can say a « 0.012 and x ~ 0.026. Now from equations (4.8) and (4.7),
we calculate that k*= 223MPa, which is a reduction of 9% on the previous theoretical

value and /i* = 308MPa, a reduction of 9%.

The results are summed up in the following table.

Modulus Jenkins Simulations Walton’s Theory New Theory
Bulk 185MPa 245MPa 223MPa
Shear 127MPa 338MPa 308MPa

These new theoretical results are slightly closer to those of the numerical simulation,
although the theoretical shear modulus is still more than twice that of the simulation.
Obviously just modifying the uniform strain approximation to first order is not good
enough to resolve the difference between these results which are so inconsistent. Further

reasons are investigated and disussed in the following two chapters.

These are all results for infinitely rough spheres, the same methods can be used to
calculate the moduli for perfectly smooth spheres. In this second case the expression
for the bulk modulus was found, by Walton [86], to be the same as that when the

spheres were rough. Our new results however predict that the expression for the bulk

modulus in this case is

3(1 +")PJ13] _ 15a}. 4.9)
31 —v) 16 <nvi

Again, taking a = 0.012 and other values as given in Jenkins et al. [43] we see a 18%
reduction of the bulk modulus found by Walton [86], which gives k* = 201MPa. It is

interesting to note that this value is much closer to that found by Jenkins et al. [43],
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than the one found by considering the infinitely rough spheres. However, we cannot
expect to model these simulations by smooth spheres when the coefficient of friction

used was 0.3.

As we have already mentioned, a increases with decreasing co-ordination number.
Hence, the effective elastic moduli will decrease as the average number of contacts
decreases. This is consistent with what we have said about the uniform strain approx-
imation - it becomes less accurate as the contact number decreases. Hence we would

expect our correction term to produce larger changes in the effective moduli for low

co-ordination values.

Variation on the Arrangement of Spheres

We return to consider the case of our three fixed spheres as discussed in section 4.1.3.
If the spheres were all arranged in the packing as described in that section, then for a
packing where the average contact number is 5.36, as in the one in Jenkins work and
discussed in the previous section, we find that the new value for a would be 0.0337.
This is again derived by considering the values found for 5 and 6 contacts and assuming

that the value of alpha decreases linearly between these two.

Now, if we guess that there might be 5% of the spheres in the packing with this feature
then combining this with our previous value for o we obtain the new value, o = 0.013.
If we recalculate the effective bulk modulus using this value of a there will clearly be a
decrease in the values that we have already calculated. We have not investigated what
effect this packing arrangement would have on the value of x so we just consider the
bulk modulus. We find a modified value of k* =220MPa. There is obviously no vast
difference between this and the value calculated in the previous section. However, if
we increase our guess to 10% of spheres in the packing with this property, then we now
find @ = 0.014 and «* =218MPa and we have reduced the bulk modulus by around 11%
as compared with the 9% of the previous section. It may be properties of the packing,
such as this, that yield lower effective moduli than we have been able to calculate thus
far. This particular arrangement seems to have little effect upon the values of the
moduli and we do not have any data with respect to the proportion of contacts that

may be like this. Unfortunately we cannot, therefore, draw any firm conclusions.
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4.2.1 Discussion and Conclusions

We have improved the correlation between the values for the bulk and shear moduli as
predicted by Walton’s work with the uniform strain approximation and those predicted

by the numerical simulations discussed in Jenkins et al [43].

We have used a perturbation of the uniform strain approximation as a first step. The
shear modulus was initially almost 3 times that found by numerical simulation and so
a small reduction in this of about 9%, will still not enable the theory to predict its
value accurately. However, as the reduction required to improve the predicted bulk
modulus was around 25% we have made a significant change with our perturbation.
We reduced the value predicted for infinitely rough spheres by around 9% and that
for perfectly smooth spheres by 18%. Unfortunately, although the prediction is closest
to the numf_:rica.l results using the smooth sphere calculations, it would be difficult

to justify modelling the experimental glass spheres, as smooth spheres, since their

coefficient of friction was 0.3.

Indeed, in order to find a value of 185MPa for the bulk modulus, «*, from our new
theoretical expressions we would need a value of o = 0.033, which is more than twice
the value we have calculated in this chapter. Using the theoretical expression for the
shear modulus and substituting for this value of @, we find a 25% reduction such that
p* = 256MPa. So, with this value of o, even though we have the exact value for the

bulk modulus, the shear modulus is still double that calculated in the simulations.

We believe there are some reasons why we would not expect the theoretical results to
be identical to the experiments and simulations. In the work by Jenkins et al. [43]
the spheres considered are not all of equal size, with one sphere of average diameter
0.37mm for every ten of average diameter 0.22mm. Although this is a relatively small
number of large spheres and is purely to prevent regular arrangements of the smaller
spheres, we believe this could effect the results. The work in the next two cha.pi;ers

investigates the possible implications of the different sizes.

A second reason is connected to the coordination number. We would expect the uniform
strain approximation to be accurate where there is a large coordination number. Equa-
tion (3.5) becomes less accurate as the coordination number decreases, to be consistent

with Jenkins et al. [43] we have taken between 5 and 6 contacts to be the avérage. This
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might suggest that our perturbations of the approximation are not so small as we have

assumed and maybe second order terms should also be considered.

Some further work has been done recently by Jenkins, in collaboration with Koenders,
this was presented at the Powders and Grains '97 conference, Jenkins and Koenders [44)].
They, like us, have tried to find a different way to tackle this problem and to determine
why the'theory and numerical simulations predict inconsistent results. Their paper does
not actually give any completed calculations, but discusses an alternative method to the
uniforrﬁ strain approximatibn, for obtaining the incremental stress-strain relationship
required to determine the effective elastic moduli for a heterogeneous medium. They
study small local assemblies of identical discs and consider a pair in contact. To find a
solution for the increments in the translations of the centres of the two discs and the
rotations about their centres, they too consider force and moment equilibrium when all
the surrounding discs are constrained to move in accordance with the uniform strain
approximation. Unfortunately this is just a suggested method, these calculations have
not been completed as yet, so we do not know whether the theoretical predictions are

closer to those of the numerical simulation or not.

Koenders [48] has also questioned the use of mean field theories such as the uniform
strain approximation, although not within the context that we are working. His paper
is based upon methods described in Koenders [47] and concludes that such approxima-
tions are acceptable at low stress ratios when the sphere contacts ‘stick’. However, he
claims that for high stress ratios, (which he measures by the onset of slip), heterogenous

effects must be included.

Both of these pieces of work still concentrate upon packings of equal sized sphereé. In
the chapters that follow we extend our work to cover dense, random, binary packings

of spheres.
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Chapter 5

A Random Binary Packihg of
Spheres

As mentioned in chapter 3, we believe it is possible that a few large spheres in a packing
of small spheres, could affect the values of the moduli. In both their experiments and
numerical simulations Jenkins et al. [43] use random binary packings, a few larger
spheres are included to prevent regular packings of the small. We also now include this
size difference into the existing theory and use some numerical calculations by Dr. Luc
Oger [62], to see how this affects the values of the effective elastic moduli. We hope to

discover a closer correlation between theoretical predictions and numerical results.

In order to find a first approximation, we begin in this chapter by assuming that
when the initial compression is applied to the packing, the spheres are still displaced
in accordance with the uniform strain approximation. We derive expressions for the
effective bulk and shear moduli, using the same methods as before. Once we have found
these, we proceed in the next chapter to consider a perturbation of this approximation,
in the same way that we have alreddy done with a packing of equal sized spheres in

Chapter 3.

5.1 Oblique Contact of Different Sized Spheres in Contact

In his book, Johnson [46] considers the geometry of non-conforming bodies in contact,
this is discussed in section 1.2.6. We use these results to calculate the geometry of two

spheres of different radii in contact.
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Figure 5-1:Initial Deformation of Two Spheres of Different Sizein Contact

First, wedefine R’ in terms of the two radii, /?/, theradius of the largesphere and i7s,

that of the small sphere by

1 1 1 , X
R’ ~ Ri + Rs' N
so that
R RiRs
R ~ RTTRS' (5'2)

Some contacts in the packing will be between spheres of the same size and in this case
all of the previous theory still holds. However, there will also be contacts between
spheres of different size and in the work that follows, we extend the theory to cover

this situation.

Consider the oblique compression of two spheres in contact initially at a point, one
sphere is large, the other small (see figure 5-1). We let the initial contact point be the
origin of our rectangular cartesian axes and such that the 2-axis is directed along the
line of centres into the lower sphere. The spheres are compressed together such that
the centre of the larger sphere has undergone a displacement (U" @ v 0, w"* Q) and the
centre of the smaller a displacement (—&" 9 —¥{s)o, —>(5)o)- Since we have imposed
a compression on the spheres a contact area will form, the size of which is small in

comparison with the size of the bodies.
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Using the results of Section 1.2.6, we recall that the points within the contact area of

each sphere must satisfy:

W(s) +w(y =0 — Ax? — By? (5.3)

where 4 is the initial separation of the two surfaces, w(s) and w(;) are the displacements
of the surfaces points within the contact area on the bodies. The constants A and B

can be determined from the following relationships, equations (1.25):
1/1 1 171 1 1 1
A+B = E(R—+R—) ,:i(R_’l’+7%—'lﬁ+_R’2’+R_’2”)
1[/1 1\? 1 1?2
A-Bl = (= - — _
4=Bl = 3 {(R'{ R’{’) * (Rg Rg')

1 1\(1 1 12
+2 (R_’l’ - R_’1’7> (@ - @) cos 29} . (5.4)

where R” and R" are the principal relative radii of curvature. Hence for two spheres

in contact and of different size, we find

1 1 1
a=5=3(z+%) (5:5)

Using the same techniques as in Chapter 1 we can then find, similarly to equation (1.45),

that the radius of the contact area is given by

(12 = R’(‘U)({)o + ’UJ(S)()). (56)

In the case of infinitely rough spheres, the distribution of traction (P, Q, N) acting on

the smaller (lower) sphere over the contact area has the form:

2(uqyo + u(s)0) 2 .ol
P, = — —r2)1/2
b = TRREB+ O tuee - )
_ 2(v(1y0 + v(s)0) 2 . 2\1/2
@ = m2R/(2B + C)(w(yo + w(syo) (a® =5, (5:7)
1 2 . 2\1/2
No ZRB® ~7)

where 7 = /(z? + ¥?). The constants B and C are as defined previously, that is
1 (1 1
B=—{—4+—
4m {.u 3 + }
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1 (1 1
C=—{=——
47r{u /\+u}

and X\ and p are the Lamé moduli for the material. These are the analogous results
to equation (1.47). The tractions acting on the upper (large) sphere due to its contact

with the lower (small) sphere are equal and opposite to these.

We actually require the total force acting across the contact area and this is found by

integrating the expressions in equation (5.7) and is denoted by (P, @, N). We find that

4(uqyo + u(s)0) (B (wiyo + wis)0)) /2

P o= 37(2B + C) ’

] 4(vgyo + v(s)0) (R (wiryo + wisyo)) /2 58
3728 + C) : (5.8)

— 2R’1/2 ('w(l)o + W(3)0)3/2

N = .y . (5.9)

As has been discussed several times already in this thesis, in the calculation of thé
effective elastic moduli we need expressions for the incremental forces acting. Thus,
we now consider a further incremental displacement of the centre of the larger sphere,
(duyo, 0v(y0, Sw(ryo) and again the smaller one has a displacement in the opposite
direction with components (—Ju(s)o, —0v(5)0, —éw(,)g). The contact area, is still circular

and now has radius b, where

b’ = R’(’w([)o + w(s)o + dwgyo + Sw(s)0)- (5.10)

The problems for the two separate cases dwy > 0 (compression) and dwp < 0 (unload-
ing) are solved and if dwp < 0, then it is so small that contact is not lost. The new
force distribution will have the form (P+6P,Q+6Q, N +JdN). The normal component,

which is the same whatever the sign of dwy is given by:

2

N = —
o+ 0N =R B

(6% — 7)1/ (5.11)

where b is the radius of the new circular contact area, as given above.
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Considering first the case of dwgy < 0, the tangential tractions are calculated to be

1
Py+6P = 2 b2 _ p2y1/2
o 72R'(2B + C)(wgy + w(s)o){ 7(“(1)0 + u(5)0) (b — 1)

+(a® (ugy + ugsy1) — B (uqyo + u(sy)) (b2 — r?) 712},

_ 1 2, 2\1/2
Qo +0Q = T R(2B + O)(wap + W) {2(vqyo + V(o) (b° = 1%)
+(a® (vgy + v(sn) — B2 (vyo + v(syo) (0% — 1) 712} (5.12)

where ugy = u@po + dugy, Uy = Uy + S0, Yoy = vy + vy and b(a)l =
Y(s)o + 0v(s)0- Hence, by integrating these equations an expression for the total force
acting across the contact area may be obtained, from which we find that the total
incremental forces acting are:
P o= 2 {3a%b(6ugyo + Sugsy)
mR'(2B + C)(w(y + w(s)o)
—(a —b)*(2a + b)(ugyo + u(s)())} ,
2

30 = 2
JQ - 37I'R’(2B + C)(w(t)o ¥ w(s)o) {3(1 b(d’U(l)O + (5’0(3)0)

—~(a—b)*(2a +b)(vgp + v(s)0) }

2(b® — a?)

N = S FEB (5.13)

For the second case, if dwg > 0, then the contact area increases in size and we find that

2

Py+46P = b? (uyo + us
0 m2R2(2B + C)(wqyo + we)0) (Swgyo + aw(s)o){ (u@yo + u(s)o) |
—a®(uqy + ugsy))(a® = )M+ (uay + ugy — ugp — u(s))a?(B® — r2)2},
2
Qo+6Q = {6*(vyo + v(s)0)

m2R2(2B + C)(wqyo + w(s)o) (Swqyo + dw(s)o)

—az(v(m + v(s)l))(a,2 - 1"2)1/2 + (vay1 +Y(s)1 — vayo — U(s)O)GZ(bz - r2)1/2},

1
No+6N = W2R,B(b2—-r2)1/2. (5.14)

Then the total incremental forces acting are given by,

4(b* — a®)(duqyo + du(s)o)
3rR'(2B + C)(5’w([)0 + 6w(3)0) ’
- 4(b* — a®)(8v(ryo + dv(s)0)
3rR'(2B + C)(éw(,)o + éw(s)o) ’
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—  2(b®—ad)
6 - m- (5.15)

In general, the expressions for both §P and 3Q will differ. However, in the case of the

increment being infinitesimal, these both reduce to the same form and we have

—  2(R'(wayo + w(s)0)) 2 (Suqyo + 6u(s))

0P = (2B + C) ’
— _ 4(R(wgy + w(s))) vy + Sv(s)0)
Q= 7(2B+ C) (5.16)
and also 2
— 2R s ] + dw,
5N = ( (w(t)u + w( )ozr)B ( w(i)o w( )0)' (5.17)

These are the results for infinitely rough spheres.

In the case of perfectly smooth spheres there will be no shear traction across the contact

area. Thus the total force acting at the end of the initial deformation will be

P=Q=0, (5.18)
and /\1/2 3/2
~  2(R)*(w(y + wsyo)
N = ) (5.19)
and the incremental forces will be
0P =4Q =0, (5.20)
and 2
— (R + wy, dwyo + dws
N = ( (w(yo + w( )0)7)rB (dwayo ( )0). (5.21)

5.2 Initial Compressive Force Applied to the Boundary

As we have done several times, we now continue by considering the packing as a whole.
The initial deformed configuration is attained by the application of a displacement on
the boundary of the packing, u. This is consistent with a uniform compressive strain,
i.e. u; = e;;x;, and leads to a displacement of‘the centre of the nth sphere whose centre

has position vector X (™),
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Let the displacement of this nth sphere be u(® and consider a second sphere, n’, in
contact with the nth. In the case that both of these spheres are of equal size, either both
small or both large, then the position vector of their contact point is %(X(”) +X("')) and
this undergoes a displacement %(u(") + u("')). Relative to this point, the displacements
of the sphere centres are %(u(") —u() and %(u("') —u™) for the nth and n'th spheres
respectively. These are as previously discussed in Chapter 1. However, if the spheres
are different sizes, then with the nth sphere small say and the n'th large we find that

the position vector of the contact point is now given by

1

_ L  (rx™ (n')
BT (RX™ + R,X")) (5.22)

and upon application of the deformation on the boundary, the displacement it under-

goes is
1, (n n'/
§(u§s)’ +uy)). (5.23)

Relative to this point, the displacement of the centre of the small sphere, n, is

1oam )

3% ~ U ) (5:24)
and that of the large sphere, n/, is

L @)y (n)
5’ — )

(5.25)
We continue by using the subscripts (I) and (s) to represent quantities relating to large
and small spheres respectively. The extra brackets are inserted to try to avoid confusion
with component indices, althoﬁgh these will not be included for scalar quantities such
as R,. Hence, the displacement of the centre of the nth sphere is uE:)) for a small sphere
and ugg) for a large sphere. To find the expression for the total force acting on the nth
sphere due to its contact with another, we must also redefine the unit vector directed
along their line of centres. For two small spheres in contact this is given by:

(n) (n')
gy _ X = X

T (5.26)
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and similarly, for two large spheres in contact it is given by

oy _ X0t = X7
nn _ 2 1
Loy = 2R, . (5.27)
We will also have the contacts between large and small spheres and the unit vector
directed along the line of centres in this case will be

(n) (n")
gy _ Xy~ Xy

(sl)i — R, + R, (528)

Now using the results of Chapter 1, the total force acting on the nth small sphere due

to its contact with another small sphere n’ is given by:

) _ _ (2R,)1/? (m)y 7nn)1/2 )y () _ ()
Flan' = 5wB@E + C) 2Bl - u): I(ss) ¥ (ugy” - ugyy
+( ) + (n)) A R I(nn )) +C[( (n) ("’n) 3/21(""',) 5.2
Wiy + i) A RIG uly) —u)IGTPIEY (5.29)

and the total force acting on the nth large sphere, due to its contact with the n'th large
is
(m) _ __ QR W IO ) ol
Fiy = 5rppsto) Bl —u) I 1w - ui

+Howl) +wp) A RIG )+C[(u(;; — u{) IGMP2IENY. (5.30)

We also require the force acting due to a large sphere n/, in contact with a small sphere
n. The normal component of the displacement for the small sphere, relative to the
contact point, is

1 n n' nn'
Weyo = E(ugs)) —up )10 (5.31)

and the shear component of this relative displacement is thus
1 n n' n n nn
L =) - 0o ~ N o

Also, the normal component of the displacement for the large sphere n’ is

1 n' n) n'n
wiyo = E(ugl)’ — uf). 1 (5.33)
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and the shear component

L () _ (n 1 (n n'n)iy(n'n
5y —u®)) = [l - ufH I, (5.34)
so that
W(s)o + Wy = (ugln)) - §:))) I(:S ) (5_35)

We now have all the information we need to calculate the total force acting on the

small sphere n due to its contact with the large sphere n'. From equations (5.9), we

thus have
) (R)V? ) I/ )
Foy) = sepBTo)2Blun — w1V - u

+(Ruwp) + Rowlm) ATGE) + Cl(ulpy — ule) X121 (5.36)

which can be checked by setting R; = R; and comparing with the results of chapter
1. We use this check throughout the work that follows to ensure we are consistent at

every stage with the earlier results described.

We need to find an expression for the displacement terms and as a first approximation
we again assume that the displacement of each sphere centre is consistent with an

applied uniform field and so if the displacement on the boundary is given by

U; = €45T5 -
then
(n) _ (n)
ugyi = e Xy (5.37)
and v
u(y = e X(f)- (5.38)

The components of rotation about an axis through the centre of each sphere are
(n) _ () _
Wiey =Wy = Qi, (5.39)

where Q; is the average rotation of small and large spheres within the packing. Inserting
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these into equations (5.29), (5.30) and (5.36) we find

(n) _ AR o ) (' 1/2 [ p(ent) o r(nn)
F(ss)i = 37TB(2B T C) {23( eP'II(ss)p I(ss)q) (elJI(ss)j - 6"'JkQJI(ss)k)
L (nn') y(nn')\3/2 r(nn')
C( quI(ss)p I(ss)q) / I(ss)i }’
(nn') _ 4Rl2 _ (nn') y(nn') 1/2 _y(nn') . y(nn")
Fuy' = ~3:8@BT0) {2B(=epalli, T ' (ess Ty = skl )
~Cl=epn(i, Ty 105 }
() _ _ 2RiB)VP(RiARs) fn () ()12 (o)
(styi 3rB(2B + C) {ZB( epal(si)p I(sl)q) (C’JI(sl)j
—er 100 ) = Clem(in, T 1105}
(5.40)

For comparison with the work of Jenkins et al. [43], we are only concerned with the case
of an initial hydrostatic strain. However, for a more complete study we will also discuss
the calculations that arise from initial uniaxial and biaxial strains. For a hydrostatic

compression the strain takes the form:

eij = €dij, (5.41)
with e < 0 for compression. For a uniaxial compression it is
eij = €30:30;3 (5.42)
with e3 < 0 for compression and for a biaxial compressive strain,
eij = e1(di1051 + 0idj2) + e3dizdjs. (5.43)

Hydrostatic Strain

In the case of an initial hydrostatic strain, we use equation (5.41) and the fact that
the average rotation term is zero, (;); = Q(;); = 0. Then equations (5.40), the forces

acting on the contact areas reduce to

(nn') _ 4R2(—e)3% ()

4Rl2(_e)3/2 (nn')
(ss)e — 3rB (ss)i? Ta-p

(nn') _
Fuyi' = —35 Tw: (5.44)
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and

nn' 2(RsRl)1/2 (Rl + Rs)(-e)3/2 nn'
F((sl)i ) = 37TB I((sl)i)’ (5.45)

from which we can calculate the average stress within the medium.

We wish to find an expression for the connection between the average stress within
the medium and the average strain. For a random packing of equal sized spheres this
is determined from equation (1.88). The analogous general expression for the average
stress in the packing of a binary mixture of spheres is given by\

<0 > 2V NsnsRs(< I(5)iF(ss); > + < I(55)j F(s5)i >)
+NmR(< ImyiFuy; > + < IuyiFays >)
+NsnsiRo(< L(s1yiFisty; > + < Ist)i Fstyi >)

+Nims Ri(< Ls)iFis); > + < Is)iFsy >)} (5.46)

in which N; and N; are the numbers of small and large spheres in the packing, respec-
tively. Also, s, M, Ns1 and 75 are, respectively, the average co-ordination numbers for
small-small contacts, large-large contacts, number of large spheres touching a typical
small sphere and number of small spheres touching a typical large sphere. The angle
brackets on the left hand side of this expression represent a volume average. Those on
the right hand side represent average over all contacts in the packing as they have done
in previous chapters, but in fact reduce to different sums for each expression. This
is clear if we consider < [(,);F(,5); >, for example, which will only exist if we were

concentrating on the particular contact of one small sphere with another. In this case,

1
" Total Number of Contacts

(nn') p(
Z I(ssT;z F(::)l]
n small n' small

< (5)iF(ss5); >

Using equations (5.40), the average stress, equation (5.46), is given in general by the

following expression:

2 3 1/2
<oy > = 37TVB(2B T C) {B [2NsnsRs < (—quI(ss)pI(ss)q) / ((eikI(ss)kI(ss)j

+ejkI(ss)kI(ss)'i) - (e‘ilekI(ss)lI(ss)j + 6jk:lQk—[(ss)lI(ss)‘i)) >
 +2NmR} < (—epqIuypling)? ((eikI(ll)kI(ll)j + e Ly uyi)
—(ereS% Ly dny; + fjlekI(u)lI(ll)i)) >
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+Nena(RiR,)'*(R, + Ry)?
< (—equ(sz)pf(sz)q)l/ 2 ((eikI(sl)kI(sl)j + ekl stk (s1)i)
—(€artS sty L (st); + €18 (styid (s1)) >]<
-C [Nsnng < (—epglissypliss)a) * Iss)il(ss); >
+NimR} < (—epeluplung)® * TuyiIay; >
+Nenst(RiRs) 2 (Rs + R1)? < (—epglistypl(s1yg)* 2 I(styil (s1); >]} .

(5.47)

Since the angle brackets on the right hand side of this last equation represent the
average value over the whole packing then, for example, the values of some typical

terms that arise are as follows:

_ Nens 5
Ns(ns +na) + Ni(m +ms)) 2’

< L(s5)il(ss); >= 3

_ Nimy
3(Ns(77s + TIsl) + Nl("?l + 7)[3))

Nsnsl (5
3(Ns(ns +na1) + Ni(m +mis))

< IuyiIwy; >

51'j7

< Iiayil(sty; >=

Thus, in the particular case of an initial hydrostatic strain, e;; = ed;;, we find that the

average stress within the medium is given by:

B 2(—8)3/2
3nVB(Ny(ns + nst) + Ni(m + mis))
+(RiRs)*(Ri + R,)(Rs N2%, + RN )}oi5. (5.48)

<oij > {2RINZ7? + 2N} Rin}

This is the average stress for the case of infinitely rough spheres, we also consider the
result when the spheres are perfectly smooth. The analysis in this second example can
be repeated in the same way and as there are now no shear forces acting across the

contact area, equation (5.46) reduces to

2 3 3/2
<oy > =~ {NenaRS < (~epal(eappliss)) Tssyil(on)i >

+NmR} < (—epql(u)pf(u)q)3/2I(tz)i1(zz)j >
+Nyng(RiRs) (R, + Ri)* < ('_‘equ(sl)pI(sl)q)3/2I(sl)iI(sl)j >}

(5.49)
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Hence, when we apply an initial hydrostatic strain to a packing of perfectly smooth
spheres, the average stress is found to be identical to that for a packing of infinitely

rough spheres.

Uniaxial Strain

Now secondly, considering the case of an initial uniaxial strain applied to a packing of
infinitely rough spheres we have e;; = e30;3d;3 and again find that the rotation terms

are zero, £(;; = (;); = 0 and the general force equations (5.40) become

(nn') 4R§(—63)3/2 (nn')| y(nn') ] (nn') (3 y(nn')
Fagi = 3rB(2B + C) {23 (ssya H(as)s 933 + Cll(aa)s [T } ’
(nn') 4R12(—63)3/2 (nn')| (nn') ] (nn') (3 y(nn')
Fi' = 32505+ o) \2BHwe Wi 0 + OGS PG (5:50)
and
(nn'y _ 2RsR)V?(Ry + R,)(—e3)%? (nn') | 7(nn’) (nn') (3 (nn’)
Flay' = 37B(2B + C) {2BUCHIECE + CUGE PIC . (5.51)

To calculate the initial average stress from these we use equation (5.46). We also need

the following expressions which arise in the calculation:

Nsns 6‘3
Ns(ns + 773!) + Nl(nl + 77!3)) !

< |I(ss)3|I(ss)3I(ss)j >= 4(

Ny

< I T 1, s >= O
Hanal sl N T 1) + Nm )2
| Nsnst
< | IisnalIsnalisni >= 2 e 3; 5.52
| (5!)3' (st)314(sl)j 4(Ns(775 +'rlsl) +Nl("7[ +77[s)) 73 ( )
and
Nyns 1 1
< ss 3I il(ss)j >= {_6+—‘66 }
‘ ( )3| (ss)id(ss)j (Ns(ns+7lsl)+Nl(771+ms)) 244 8 13053
Nimy { 1 1 }
<\ TuniIany; >= —8:ii + 8,36
Wil Lail s (Ns(ms + ns1) + Ni(my +mis)) 12477 7 87353
Nsnsl { 1 1 }
< |1 i3IsiIs'> = —'(5+—5,(5 .
I (0 l (st)i (e (Ns(ns +77sl) +Nl(77£ +7][s)) 24 t 8 3933
‘ (5.53)
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These are analogous to the equations (1.100) for equal sized spheres. Then we have

the initial average stress due to an initial uniaxial strain given by:

(—e)3/?
367V B(2B + C)(Ns(ns + nst) + Ni(m + mis))
+(RR,)Y(Ry + Ry)(Rs N2n% + RINEnZ)}(C6ij + (12B + 3C) di303)

<035 >

{2R3N2n? + 2R}N?n?

(5.54)
which corresponds to a stress of the form
< Tij >= dzag(< 01 >,<01>,<03 >)a (555)
with components
C(—e)*? 3 Ar2
<o1> = - 2R3N?n? 4 2RI N?
1 TrVB@B + O)(Ns(is + 1) - Nl + 7)) i

+(RiR)V?(Ry + R,)(R;N2n? + RINZn2)}

and

(3B + C)(—e)3/? 379 9 R
<o3> = - 2R;N;n; + 2R} Nn}
3 367V B(2B + C)(Ns(ns + nst) + Ny(m + 77!3)){ Ns 1AV

+(RiRs)?(R; + R,)(RsN2n% + RINIZ)}.  (5.56)

If the spheres were perfectly smooth then as there are no shear forces acting across the

contact area, we now have

o) _ 4R2(—e5)*? {uemdprem,

(ss)i 37B (ss)3 (557)
( ,)_4R2( ) n'),3 y(nn')
i = ———3 {|I(z7)3 "Ly } (5.58)
and /
nn') 2(R3Rl)1 2(-Rl +R )(—63) (nn') 3 ( ")
Fis) = T (I P } - (5.59)
This again leads to the following form of the initial average stress:
< 0ij >=diag(< 01 >,< 01 >,< 03 >), (5.60)
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but with
<op> = — (=) {2R3N?Zn? + 2R3N n?
367V B(Ns(ns + nst) + Ni(m + mis))
+(RiR,)*(Ri + R,)(R.NZn? + RINPnZ,)}
and
_ (—6)3/2 3n2,.2 3 72,2
<03 > = {2R3Nsns +2R1Nl ™

 36mVB(N,(ns + 151) + Ne(m + ms))
+(RiRs)*(R; + Ry)(RsNn? + RINEMZ)}.  (5.61)

Biaxial Strain

Finally, we consider the case of an initial biaxial strain, e;; = e1(8;18;1+0:20;2)+e30;30;3.
For a packing of infinitely rough spheres, the force acting across the contact area on

the nth small sphere due to its contact with the n'th small sphere is:

‘ 1/2
(nn') _ 4R3(—'€1)3/2 [ (63 — 81) 2 :|
Fei' = 3:B@B+0) 2B |1+ = Lo

3/2
€3 — € ez — €
z (I(ss)i + %&3&35)3) -C [1 + %ﬁIgss)S] I(ss)i}

(5.62)

and a similar expression holds for the force acting on the nth large due to its contact
with the n'th large. Rotations are again zero for the initial part of the problem and

hence do not appear in these expressions. For the nth small sphere in contact with the

n'/th large the force acting is:

/2
() _  (RsR)'2(R,s + Ri)(—e1)*? [ (e3 — 1) ]1
Flans” = 37B(2B 1 C) 2B |1+ = Ty

3/2
€3 — € ez — €
T (I(sl)i + %&‘31’(31)3) -C [1 + %I&)a] I(sl)i} .

(5.63)
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Calculating the initial average stress from these force expressions, we must reintroduce

the functions f1, fo and f3, met in Chapter 2. These are defined as:

z/? 4 (T_—i)w-z—sin_l(l -2 ifzr<i1

filz) =< 2 ifz=1 (5.64)
o2 4 msinh—l(z -2 ifr>1

([ £1/2(1—2 . -
- 4(§—w)z) + 4(1-11)3/2 sin"!(1-2z)1/2  ifz<1

fa(z) =< 2/3 ifx=1 (5.65)
' oV/2(2a— L ,
\ 4(?—1)1) — e sinh Tz — D)2 iz > 1
r zlﬁfi—ﬁx) + 4((3__14)?/2 sin}(1-2)12 ifz<1
fal@) = 4/3 ifz=1 (5.66)
21/2(90— o L )
| S + 4((:-1)33)& sinh™!(z — 1)/2 ifz > 1.

Then the average stress is found to have the form:

< 0ij >=diag(< 01 >,< 01 >,< 03 >), (5.67)
with
(“‘31)3/2 3 72, 2 3nr2 2
> - 2R3N 2R3N,
<o 61rVB(2B+C)(Ns(ns+ns¢)+N[('rn+ms)){ sNss + 25 NEmi
+(RiR,)Y*(Ry + Ry)(RsN2n% + RiNEnZ)}
3C e3 C eg) C (33)3/2
2B + ==~ 3)Y-@eB+= Sy =22
{( B+ (2)-eB+a(2)+ 5 (2
and

_ 2(—61)3/2
37V B(Ns(ns + nst) + Ne(m + mis))
+(RiR,)* (R, + R,)(RsN2n% + RINEn},)}

(Eepa(@ ()7 o

These expressions relate to infinitely rough spheres, for a packing of perfectly smooth

<o3> {2RIN?n} + 2R} Nin}

spheres, we find that the average stress again takes the form of equation (5.67), but
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with components as follows:

(-‘61)3/2 3 Ar2, 2 3 nr2. 2
<op> = -— 2R;NZn; + 2R; N,
! 6V B(Ns(ns + na) + Ni(m + ms)){ s{Vs s A

+(RiRs)*(Ry + Ry)(Rs N2 + RINIE)}

L2 (2)-16(2)+5(2)")

and

2(—eq)3/?
3wV B(Ny(ns + nst) + Ni(m + ms))
+(RiRs)Y2(Ry + Ry) (R N2n% + RINEn,)}

{in () 1)) oo

We can roughly check the validity of all of the expressions found in this chapter by

<o3> = {2R3NZn? + 2R} Nin}

assuming that the spheres are all the same size. This results in the same expressions
as found in Walton [86], for the initial hydrostatic and uniaxial strains and those for

the initial biaxial strain, found in Chapter 2 of this thesis.

5.3 The Incremental Problem

The second stage in the calculation of the effective elastic moduli is to apply an addi-
tional incremental displacement to the boundary. Further to the initial state, we have
a displacement of the boundary du and this is consistent with a uniform strain, de;;

and so

du; = bey;T;. (5.70)

The centre of the nth sphere will also undergo a further displacement su™, Considering
a packing of infinitely rough spheres first, we calculate the incremental force acting on
the nth sphere due to its contact with the n'th sphere. If the nth and n’ th spheres

are both small we have

: 2R )1/2[( — u{M).rop2

(nn'y  _ ( (s) 7 (s9) (ny _ ¢ (n)

5F(ss) = 27r (ZB ey {ZB(éu(s) éu(s)
+Rseijk(6w§:)) + &ug:))) E:: )+ C’[(6u(n 5uE:))))IE::) )]Ig::))} .

(5.71)
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Similarly, the force acting on a large sphere n due to its contact with another large
sphere n’ is:

(2R,) /2[(u _ u( I("" )]1/2

SFM) (l) (1) () {2 B(Ju(",) — su™

w 2rB(2B + C) (” ®

(n') (n)yy(nn') n nn' nn')

(5.72)

Also, the force acting on a small sphere due to its contact with a large is:

1\1/2 _ 4, (n)y ylnn')11/2
spey 2BV - w@) I {285l — sul?)
(s) 27rB(2B +C) "o ()

+Raeige(buw + 8w + Cl(oufy — sul)). 101

(5.73)

As a first approximation, we assume that the displacement of the centre of the nth
sphere is again given by the uniform strain approximation for the incremental case.

That is, assume that the centre of the nth sphere is displaced by

(n) _ 5, ()
6“(3)1' = Je,JX(s)j,

é'u(")

(OMY

for the nth sphere small or large respectively and
(n) () _ 50.
5“(3)1' = 6“’(1)1' = 6Q);.

This gives the incremental force acting on the nth small sphere, due to its contact with

the n’th small sphere as

ZRZ(—equ(”" )I(‘nn ))1/2

(nn') (ss)p “(ss)q _ 7(nn') 8w
Feni' = T aBEBrC) DOkl + eksSuslison)
+Coenl R 1) (5.74)

and again a similar expression for the force acting on a large sphere n due to its contact

with a large sphere n' is found. The force acting on a small sphere due to its contact
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with a large is given by:

spom) _ BB RIC eI GG oy
(i~ mB(2B + C) (Oealiaye

+eiki0w;iL(sne) + C56k11((:,7;k I (:,7;[)1((;';,)} (5.75)

In chapter 1, we discussed the work done by Slade [76] to include the effects of sphere
rotations upon the moduli. Here we must consider the equivalent equations of equilib-
rium, those of the forces and moments acting on each individual sphere. The general
condition that arose from the equilibrium of moments upon consideration of equal sized

spheres and which had to be satisfied by the rotations was given in equation (1.149) as
< (—epglpI) 2 (8ik — LIk) >< dwi >=< €irk(—epglply) /2L >< dery > . (5.76)

We find that the two analogous expressions for our binary packing of spheres are, firstly

from the equilibrium of moments acting on the nth small sphere,
2R§ (Ez’rk < (_quI(ss)pI(ss)q)1/2I(ss)rI(.;s)l >< deg >
+ < (_quI(ss)pI(ss)q)1/2(6ilc - I(ss)iI(ss)k) >< dwg >) n
= (RsR))*(R; + Ry) (Eirk < (~epgl(stypl(sty) T sty I(sty >< Sexr >
+ < ("equ(sl)pI(sl)q)l/Z(51'1: - I(sljiI(sl)k) >< dwy >) (577)
and second, that from equilibrium of moments of the nth large sphere
2R} (Eirk < (_equ(ll)pI(ll)q)I/ZI(II)TI(H)[ >< deg >
+ < (_quI(ll)pI(ll)q)1/2(6ik — Imyiluyk) >< dwg >)
= (R,R))"*(R, + R,) (< eirk (—€pgl(15ypL15)0) /2 Lisyr Iasy >< depr >

+ < (—equ(ls)pI(ls)q)1/2(6ik - I(ls)iI(ls)k) >< bwy >) . (5.78)

These allow us to calculate the components of the rotation for each sphere.
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Initial Hydrostatic Compression

Considering first the case of an initial hydrostatic strain, e;; = ed;;, we find from the
equations above that the incremental rotation term éw; is zero and then the forces

acting across the contact area are given by:

—2R2(—e)1/2

SFi = b T G5+ 0) {2Bbes; (o) + Coen T 1) 1)} (5.79)
and similarly,
(nn') _ —2R}(=€)'/? ') (nn) p(nn) F (')
SFiy = ~BGE 1 C) {2Boes 10 + CoenI ) 151G} (5.80)

Also,

F(nn’) _ _(RsRl)l/z(Rs + Rl)(_e)l/2

OF ™ = ~B(2B+C)

_ g(nn) (nn’) p(nn) r(nn’
{236'311[(31)]' + Céesz(sl)k Iiay I(sl)i)

(5.81)

From these expressions, we calculate the average incremental stress using a similar

equation to (5.46), that is

1
_W{NsnsRs(< I(ss)i‘s-F(ss)j >+< I(ss)j‘SF(ss)i >)

+NmRi(< TyidFry; > + < Ly i0Fy: >)

<(50’,‘j > =

+NsnstRs (< L(a1)i0 Fisiy; > + < Ity 0 F(gpyi >)

+Nis Ri(< L10)i0Fis)j > + < L15)i0F (s >)}, - (5.82)

which in the general case amounts to:

2

. — 3 1/2
< 501] > = 37TVB(ZB T C) {B [2NsnsRs < (_,epql(ss)pl(ss)q) / ((5eikl(ss)kI(ss)j

+oejkl(ssykd(ss)i) — (€ikiOUL(s5)1L(55)5 T+ fjszQkI(ss)zI(ss)i)) >

+2NmR} < (—epgluplung)*’? ((56ik1(zz)kf(u)j + deje Lk L))
— (€t Ly Ly, + fjkl59k1(zz)zf(zz)i)) >

+Nonat(RiRs)Y?(Rs + Ri)?

< (—epg(styplisyg) '’ ((6eikI(sl)kI(sl)j + dejel(stye L (s0)i)
+(€iri0 L sty L (s1); + €k10 sty L (s1)i) >]
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+C [ZNSWsRE < (—epglissypliss)a) L (ssyil(ss)iL(ssyel(ssyt >< dext >
+2NmR} < (—epeluypTung) * Tayid i LssyrL(ssy >< dewt >
+Nanst(RiRs)2(Rs + Ry)?
< (=epalspl(se) Ll (sys l(ssyl(ssyders >| }

(5.83)

This enables us to relate the average incremental stress to the average incremental
strain and this is what is required to compute the effective moduli.
Using the fact that

Nins
< Iss iI 5); = 2
(s2)i(ss)s 3(Ns(ns + nst) + Ni(m + mis))

0ij,

Nimy
< Iuyidwy; >= i
U == 3(N,(ns + not) + Ni(m + m15))

— Ns"lsl
3(N5(173 + nsl) + M(nl + nls))

< Iyl (sty; > dij

and also

Ngns

< Iissviliss)il(ss)kd(ss)e >= Siis
(TR C ™ T8 (N, (me +1a0) + Nilm +115)) :
Nimy
< Iyl Iaoelane >= 5,
(a7 =k 15(Ns(ns + ns1) + Ni(m + ms))
Ns'rlsl
< Lanileani Lsoelise >= 5
(D03 “(OREDE = T5(N, (s + 151) + Nilm +m5))

we can now calculate this stress.

So, for an initial hydrostatic strain we find

(_6)1/2
157V B(2B + C)(Ns(ns + ns1) + Ni(m + mis))
+(RsR1)Y%(Rs + Ry)(RsNynst + RtNtms)}

<boy > {2RIN2A2 + 2R NP

a:{SB(éikéjl + 5,'1(5]‘1:) + C(5,’j(5jk + 5,‘1;5_7'1 + Jiléjk)}. (5.84)
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The effective moduli are defined by:
< boij >= Cjjy < bex > (5.85)

and thus we can calculate them directly from the average incremental stress. We also

note that the general expression for these moduli is found to be:

* 1 3 1/2
M T SV BEB10) {B [2NsﬂsRs(< (—epal(ssyplss)a)* Lias)I(ss)j > Bt

+< (—equ(ss)p,l(ss)q)” LsoyeI(ssyi > 0s1)
+2NmR} (< (—quI(ll)pI(ll)q)l/ 2TuyeIuy; > 0a
+< (-6pq1(u)pf(u)q)1/2I(zz)k1(éz)i > ;1)
+ Nt (RRs) 2 (Ry + R (< (—epqL(stypl(styg) sty sty > S
+ < (~epalaplone) T T > 51)|
+2C [NsnsR‘:'(< (—epgl(ss)pl(ss)a) 2 Liss)il(ss)jLissykI(ssy >
+NmR} < (—epgIuypIang) ™ * Iy Iy Iy >
+Nynst(RiRs)YV2 (R + Ri)? < (—epqd(stypd(stya) ' * IistyiI(styi Loty I sty >]} ,

(5.86)

which is the analogue of equation (1.111) in Chapter 1. This latter equation gives the
general expression for the moduli when the spheres are equal in size, provided rotation

components are zero, as they are in the hydrostatic case.

Returning to our case of initial compression then, the hydrostatic case. Equation (5.86)
reduces to:
(o)

* — 3 3
Wkl = 37VB(2B + C) {B [2Ns’75R3(< Laspiss)s > S

+< I(ss)kI(ss)i > 5]’!)

+2Nm R (< TuyeIy; > Sa+ < IuyeIy > 651)

+Nena(RiRs) 2 (R + Ri)*(< Il ony; > St < Inyel(sryi > 5jt)]
+2C [Nsﬂng(< Issyilss)iLissyedissy > +NmB} < IuyiIayi eIy >
+Nonu(RiRs) V3 (Rs + R1)? < Iy (styiLstye Tty >]} ,

(5.87)
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and so
Ciikt = N 0350k + 1* (8050 + 0utdj) (5.88)

where the effective Lamé moduli are

/\* — ( e)l/2c { 2R3
157V B(2B + C)(Ns(s + 1s1) + Ni(m + m1s)) s
+2N2nER} + (RsR)Y?(Rs + R)(N?n3 Ry + NI R)}  (5.89)
and
(—e)/2(5B + O) 2 253
* 2N*n“R .
W = TEVBEBT O N,in )+ Nilm F ) CNe e (5:90)

+2N?R} + (R,R)"?(R, + R)(N2n%R, + NPnZR)}.

We can also calculate the effective bulk modulus from these which is given by:

* * 2 *
KY = A +3»U'
(—6)1/2
3nV B(Ns(ns + nst) + Ni(m + mis)

+(RRs)2(Ri + Rs)(RsN2n% + RINP2)}.  (5.91)

(RN, + 2RI

The above expressions all relate to a packing of infinitely rough spheres. If we now

consider a packing of perfectly smooth spheres, we find that the average incremental

stress in the general case is

2
<doij > = —m {Ns"’ng < (—epglissypliss)a) P Iiss)yil(ss)iIssypl(ssy >< ders >
+NmR} < (_epql(ll)pl(ll)q)1/2I(ll)iI(ll)jI(ss)kI(ss)l >< beg >
+Nsnsi(RiRs)V? (R, + Ri)?
< (_quI(sl)pI(sl)q)1/2I(sl)iI(sl)jI(ss)kI(ss)l >< depy >} .

(5.92)

For an initial hydrostatic strain, the effective moduli are then found to be

A* * (_6)1/2
k= 157V B(Ns(ns + nst) + Ni(mi + mis))
+2NPER} + (RsR)Y*(Ry + Ry)(N2n%Rs + NEniR)}  (5.93)

{2N377?R§
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and «* the effective bulk modulus, is the same as that for the infinitely rough packing,

see equation (5.91).

Initial Uniaxial Compression

Turning now to another of our initial conditions, that of an uniaxial compression,
using equations (5.77) and (5.78), we can determine expressions for the rotations that
occur for the individual spheres. Substituting for the strain e;; = e3d;34;3, initially in

equation (5.77), we find the components of dw;. These are given by:

1
5(4)1 = —55623
1
dwy = 5(5613 (5.94)
and
6w3=0. (5.95)

In fact these are identical to those found for a packing of equal sized spheres R, = R;

and are independent of the radii of the spheres.

We can now proceed to calculate the forces acting across the contact area. We have

2R2(—e3)!/2 ,
0F(ss)i —W_BTF’?‘_B_::T)—C_)' {2B(6eik|I(ss)3|I(ss)k — €k0w; | [(55)3| L(ss)k)

+CBexil(ssyalL(ssyiI(ssy Iss)i } (5.96)

2R2(—eq)l/2

6Fuy: = —;_BL(%I%C) {23(56iklf(u)3|—’(u)k — €ijk0w;| I3 | Luyx)
+C‘53kl|I([l)3|I(ll)kI(ll)lI(ll)i} (5.97)
and
(R;R)Y*(R, + R,)(—e3)!/?
6Fy = —— TBRB+ SC) {23(56ik|f(sz)3|1(sl)k

—€ije0w; | Isa I(stye) + C56kzlf(sz)sII(sz)kI(sz)zI(sz)i} :

(5.98)

These allow us to calculate the average incremental stress. We need the average values

CHAPTER 5 161



5.3. THE INCREMENTAL PROBLEM

found in equations (5.52) and (5.53) and also some further expressions:

Nsns

< |3ty >= ’
| (ss)3| (ss)1 S(Ns(")s +nst) + N[(m + is))

< |I(ss)3|1(235)11(233)2 >= 48(N, (ns + T:’;T Ni(m + ms))’
< II(ss)3|I€ss)l >= 16(N,(ns + nﬁ:’;"_’: Ni(m +ms))’
< Tyl fGn >= 8(Ni(ns + nsll;’ TN! (m +ms))’
< Ml ay Luye >= 48(N,(n, + 1731:;”:i Nl +ms))’
< Tyl >= T6(V, (ms + ,,j,\;l:’f Ni(m +ms))’
Nsnst

< | Latyal oy >

= 8(N, (1 + 1121) + Ni(m + 7))

Ns"?sl
8(Ns(ns + nst) + Ne(mi + ms))’

< II(sl)3|I(281)II(23[)2 =1

Nsns!
Ms + nsl) + Nl(nl + ms))

< lI(sl)3|I(4.sl)1 >= IG(NS( (599)

We note further that,

€ipg < |L(ss)3lL(ss)il(ss)g >= €jpg < Luallyilyg >= €jpq < |I(styslL(styil(styg >= 0,
(5.100)
if i = j and so rotations will not effect the components < do;; >=< do2 > and
< do33 >, of the average incremental stress. Hence, rotation‘term effects will only occur

in the modulus Cf3,5, as we would expect for consistency with Slade’s results [76], for

equal sized spheres.

Now, combining all these results, we find the average incremental stress. In particular,

(_6)1/2
48VnB(2B + C)(Ns(ns + ) + No(m +mis)
+2B} NZn? + (RNyna + RiNimis) (RoRy) /(R + Ru) }

< bo11 >

) {2REN?n?

(12B < deyy > +C(0kl + 20x1611) < dewt >), (5.101)
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which allows us to calculate the three moduli:

(4B + C)(—e)/2

16VrB(2B + C)(N, ("73 +nst) + Ni(m + mis))
{2RIN?n} + 2R}NPE + (RN7nk + RiNPnZ) (R R)V(R, + Ry},
o C(—e)lﬂ

Hz 48V B(2B + C)(N,(ns + nat) + Ni(m + ms))

{2R§st7lf + 2R} NInf + (RsNYml + RuNPnj,) (Ro Ri)'?(R, + Rl)} )

. C(—e)'/2
Cim = 2VZBEB + O 1) + N + )
{2RINZn? + 2RINPn} + (RNl + RUNEnZ) (RoR)YA(R, + R}

* —
Cllll -

Also,

(=)'’
24V7VB(2B + C)(Ns(ns + nst) + Ni(me + mis))
+2RPNnf + (RaN7n%y + RuNimys) (R Ri)Y/*(R, + Ry) }

< do33 >

{2BN};

(12B < 5633 > +C(0kl + 30k1011) < dexs >), (5.103)

from which we find

o (3B + C)(—e)!/2
3333 — 6V7TB(2B + C)(N (ns + 775!)

(2R3N} + 2R} NPo? + (R,Nnk + RUNP) (R Ri)Y/*(R, + Ry) ).

+ Ni(m + mis))

(5.104)

To find the last modulus we consider < do13 >, which does involve the rotation terms.

Recalling from equation (5.94) and (5.95), the rotation terms, we have

(—e)Y/2(4B + C)
12V7TB(2B + C)(Ns (ns + nsl) + Nt(nl + s

+2RPNPn? + (RoR))V2(Ry + R,)(RN2n + RiNfn},) } . (5.105)

The fifth effective elastic modulus is found to be

(—e)}/?(4B + C)
24V7I‘B(2B + C)(Ns(ns + nsl) + Nl(nl + s
+2RINP1} + (RoR)'*(Ry + R,) (R, Nin} + RiNfnf,) } . (5.106)

Cik313 )) {(QRZ’NEUE
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We thus have our five independent elastic moduli and each has been checked by com-

paring with the moduli for a packing of equal sized spheres.

" We have considered a packing of infinitely rough spheres, but we can again also consider
the effective moduli for a packing of perfectly smooth spheres. We find the average

incremental stress, in order to calculate the moduli:

(=e)'/2
48V wB(Ns(ns + ns1) + Ni(m + mus)
+(RsNynst + RiNimis)(RsRy)Y2 (R, + Rz)} (0Kl + 26x1611) < dews >,

< do11 >

) {2RN?Zn? + 2R} NP

(5.107)

from which we have

C* (—6)1/2
L™ 16V aB(Ng(ns + ns1) + Ni(mt + mis))
{2RNZn? + 2RINPN? + (RN + RuNnl,) (R R)Y* (R, + R))}
ct (—6)1/2
1227 48V aB(Ny(ns + ns1) + Ni(mi + mi5))
{ZRngTIE + 2R} NInf + (ReNZnly + RuNEn) (RoRi) (R, + Rl)} ;
C* (—6)1/2
U337 24VrB(Ny(ns + ns1) + Ni(m + mis))
{2RNIn2 + 2RINPE + (R,N2n + RuNPnl,) (RoR)) (R, + R) }
= 2CT122' (5.108)
Also _
(—3)1/2 . 3 Ar2, 2 3 72,2
= 2R3N 2R3N,
<bon> = e ) T N ) (RN + 2B N
+(ByN2n% + RiNes) (RoRe) V2 (R, + Ry) |} (SkL + 366101 < dext >
(5.109)
and so
* _6)1/2
C3333 (

6V B(Ny(ns +nst) + Ni(m + i)
{ZREanf +2R}NI? + (RyN2n? + RINIn2) (R Ri)Y*(R, + Rz)} :

(5.110)
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The final modulus is again found from < do3 >:

(—e)*/2
12V B(Ns(ns + nst) + Ni(m + mus))
+2R} NPt + (R,N2n% + RiNIni)(RoR)Y?)} < ders > . (5.111)

< do13 > {(2R§N3n3

and is given by

(_e)l/2
48V B(Ns(ns + nst) + Ni(m + mis))
{2RINZn} + 2RINPn} + (RN} + RiNPL) (Re RV (R + Ry)}

£ 3
C'1313

(5.112)

Thus, we have our five independent elastic moduli and these too can be checked by

comparing with the moduli for a packing of equal sized spheres.

Initial Biaxial Compression

We must also consider the effects of rotation when we have an initial biaxial compres-
sion. Again using equations (5.77) and (5.78), we can find expressions for the rotations
of the individual spheres. Substituting in the initial strain to equation (5.77), we find
an expression for dw from which, using equation (5.78), we find the components of

rotation for a typical sphere are given by:

dwy = (f3 (2) —2f2 (%11)) degs,
2f1(2) - fs ()
2f2 (i?f) —f3 (%11)
(5&)2 = (2f1 (%%) _f3 (%)) 6613 (5.113)

and

Sws = 0. (5.114)

Similarly to the expressions for an initial uniaxial strain, these expressions are identical
to those for a packing of equal sized spheres and are independent of the sphere radii.

To find the effective moduli we must now calculate the incremental average stress.

The general expression for the average incremental stress, < do;; >, for this biaxial

compression, including individual sphere rotations, is found from the expressions for
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the incremental forces acting across the contact areas. In fact, the rotations do not
affect the components of this stress if ¢ = j, this was also the case for the uniaxial

compression. We find

_ (g ;
<don> = CypERTo) PN

€3 — €
: 11(253)3)1/21(ss)k1(53)1 >< begy >

[23 < (14
€1

o<1+ 834

e1 I(2.ss)3)1/21(253)1I(ss)kI(ss)l >< dep >]

+2Nm R} [23 <(1+3=

e
e 1'[(211)3)1/2‘I(ll)l6tI(ll)1 >< 6ek1 >

ez —

. _
+C<(1+ 11(211)3)1/21(211)11(11)k1(zz)z >< der >]

€1
+(Rs)Y*(Rs + Ry)(RsNyng + RINymss)
—e1

e
[23 < (1 + 3 el 1381)3)1/21(31)];1(31)1 >< 6€k]_ >

€3 — €]

+C < (1+ o) 2y TstyeI sty >< deg >] } :

(5.115)

€1

From this, we then find the three moduli C};;1, C{;99 and Cf;33. These are:

(—e)'/?
21V B(2B + C)(Ns(ns + nst) + Ni(m + mis))
{2R3N?n? + 2R} NPn? (R, Ri) M2 (R, + R))(R,N2n + RiNPit) }

t 3
Cllll

ez _
o 1 el

5 (%) +20 )2 ()" +(-2)n@), ()|,

C(—61)1/2
167TVB(2B + C)(Ns('rls + nsl) + Nl(nl + ms))
{2R3N2? + 2R} NPn? (R, R) (R, + Ry) (R.N2n% + RiNP2) }

*
Cliz

3/2
t-2)f(2)+1(2) s
g + f3 (E) , (5.116)
and
C(—ey)!?

*
C’1133

4rVB(2B + C)(Ns(ns + nst) + Ni(m + mis))
{2RN2n? + 2R} NPn? (R, R)V2(R, + R)(R,N212 + RiNZnR) }
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(2)- D (2)-1(2)"

(5.117)

We also have
(-e)/?
7V B(2B + C)

[23<(1+e3_e1
€1

< dos3z > {QNST]SRE

I(235)3)1/2I(ss)kI(ss)3 >< degg >

€3 — €1
€1

€3 — €
+2Nm R} [23 <@+ o 11(21:)3)1/21(11)k1(zz)3 >< bexs >

+C<(1+

I(233)3)1/2I(2$s)3I(ss)kI(ss)l >< den >]

€3 —
€1
+(Rs)Y?(Rs + Ry)(RsNynst + RiNimis)

e
+C < (1+ 1I(2u)3)1/21(21!)31(11)/‘:[(11)1 >< deg >]

€3

[2B<(1+

—e
e1 11(251)3)1/2I(sl)k1(31)3 >< degz >

+C<(1+

€3 — €1
e

) 1(231)3)1/21(231)31(31)1:1(31)1 >< dex >] } .

(5.118)

and hence

* (—6 )1/2
Cssss = 5VBEB 1 O)N. : N,
sins + nsl) + 1(771 + nls))
{2BENZn? + 2RINEn}(RoR) (R, + Ri)(R:N2n + RiNfnf,) }
3/2
1 (e 1 [
e3 3 (el) 2f2 (el)
2 — . .
Bfg(el)+0 5 (5.119)

€1

Finally, we calculate the fifth independent modulus from < do13 > which does include

the effects of rotations:

- (=e)'/2 3

<doiz3> = 7TVB(23+C) {QNST)sRs
) €3 — €

[B < (1 + ( 361 1)I(st)S)1/2(I(ss)kI(ss)356kl + I(ss)kI(ss)166k3) >

ez — €
( 3 - 1)I(233)3)1/2(flrkI(ss)kI(ss)I} + €3TkI(ss)kI(ss)1) >< Jwr >

(e3 —e1)
el

-B<(1+

+C<(1+ I 39) * Lssy I(ssys I (s L (ssp >< Sew >]
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+2Nn R} [B <(1+ (———lf(u)g) (kI aysdert + Iuye Ly Oexs) >

—-B< (1 (—81_)_
(es —e1)
€1

IGna) " (exrk Iuye Iy + €srrTayed ) >< dwy >
+C<(1+ ) Ty Ty Ik Ty >< Se >]

+(RsRi)"*(Ry + R,)(Rs Ny, + RiNim)
€
[B <(1+ LTl)Iz ) 2Ly (sty3dert + Istye(siy1exs) >
-B [< (1+ (T)*I(sz)a) 12 (exrr T sty (siy3
+esre(styk(sy1) >< dwr > ]

e
+C < (1+ %I?sz)s)1/2I(st)1I(sz)3I(sz)kI(sz)z >< dex >]
(5.120)
and then
C* (_61)1/2
B3 47V B(2B + C)(Ns(ns +ns1) + Ni(m + mi5))
{2RNZn2 + 2R} NP} + (R R)) V(R + Ry)(R,N2n% + RiNn,) }
: 3/2
1l (e eg __ 1 €3
~3 (81) +(e1—§)f2(e1)
Bfs ( ) re =y

—-B {2R§N32773 + 2R} Nin? + (RyR))'*(Ri + R,)(RsNyms + RlNl"Il)}

2f2 (e1) ~f3 (el)

. (5.121)
2£2(8) - £ ()

Thus, we have the five independent effective elastic moduli, for an initial biaxial strain

acting upon a binary packing of infinitely rough spheres.

Considering also the case of perfectly smooth spheres we see that the moduli now reduce

to:
cr (—en)'/?
1111 2nV B(Ns(ns + nst) + Ni(m + mis))
{2R3N2 + 2R} NZn? (R, R) (R, + R))(RsN2n?, + Rzszn?s)}
3/2 .
3 [3(2) +(%—el)fz(-:f)+f(e_s)
8 a-1 \el ’
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* (_61)1/2
C’1122 = VBN N
167V B(Ns(ns + nst) + Ni(m + mi5))
{2BN?n? + 2RPNPn}(RoR)V(R, + Ri) (R, N2n + RiNfnl,) }
e e e 3/2 -
- h(3)+5(8) s
+.f3 a) )

ez _
e1 1

12
c* — ( 61)
1133 47V B(Ng(ns + ns1) + Ni(m + Ms))
{2R3N2n? + 2R} Nn? (R, R) (R, + Ry)(RN2n + RiNfnd,) }
e e 3/2
& -9h(8) -5 (2)

e _ | ’
€1

c* _ (—61)1/2
3333 27V B(Ns(ns + nst) + Ni(m + mis))
{2BSN2n? + 2R} NEn (R R)V2(R, + Ri)(R,N2n% + RuNPnR) }
€ 3/2 e
(@) +-3n(2)

es __ )
e1 1

* (—61)1/2
Clziz = % N,
47V B(Ns(ns + nst) + Ni(m + mus))
{2R3N?n} + 2R} NP} (R R))'2(Rs + R)(RN2nfy + RiNPnf.) }
1 (e 3/2 e 1 e
“$(8) +(@-4)n(3)

e __
e) 1

(5.122)

5.4 Comparison with Results of Numerical Simulation

In Chapter 3, we discussed the work of Jenkins et al. [43], their experimental, numerical
simulation and theoretical résults which gave the numerical values found for the effective
elastic moduli of a random packing of spheres undér prescribed conditions. Now, we
wish to calculate the numerical values obtained from our new theoretical expressions
for these effective moduli. The calculation of these expressions has been presented
earlier in this chapter. For comparison with the values found by Jenkins et al. [43] we

are only concerned with those values obtained after an initial hydrostatic strain.

The expressions we have found in this chapter cannot actually be compared directly
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with the values found by Jenkins from Walton’s theory [86]. Jenkins’ work only gave
values to parameters for a random packing of EQUAL sized spheres (it was his ex-
periments and simulations that involved different sized spheres). In the next section
we discuss the work of Dr. Luc Oger [62] who kindly ran some simulations to help us

determine these unknown values.

5.5 Calculation of the Co-ordination Number of Each Sphere

In their paper, Oger et al. [63] deal with the mechanical and electrical properties of
particle packings by reducing the problem to that of a random packing of spheres,
both equal sized and binary mixtures. We make use of their results as it is necessary to

differentiate between the different types of grain-grain contact within a binary packing.

In a binary packing of spheres it is necessary to distinguish between the different types
of contact. Hence, in a mixture of two different sphere sizes 1 and 2, in the relative

proportions n; and ng, Dodds [29] defines the different co-ordination numbers as follows:

e the mean co-ordination number C, which is defined to be the average number of

contacts per sphere

e the mean co-ordination number ¢; which is the average number of contacts for a

particular sphere of type ¢

e the mean partial co-ordination number p;;, this is the average number of contacts

on spheres of type i by spheres of type j.

These co-ordination numbers are then related by the following equations:

C = njc1 + nocy,

€1 = pu+Ppi2

¢ = pa1+p2, ' (5.123)
npi2 = mn2p2i-

Also introducing the relative fractions ¢;; of different types of contacts between the

spheres, in a binary mixture such as we are considering

tn+tig+tn = 1,
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nip1
tin = ol
ty = ”Zg”, - (5.1249)
nipi2  N2pat
tip=tn = c - ¢

Oger et al. [63] made numerically simulated packings of binary mixtures of spheres
with diameter ratios in the range 1 to 3.5 to find values for these quantities. These
simulations were developed by Powell, whose work [64], [65], [66] and [67] describes
the simulations in more detail. The packing was constructed one sphere at a time,
positioning each in contact with a sphere already in the packing, chosen at random,
and two other neighbouring spheres. Building this up layer by layer along the z-axis,
periodic boundary conditions are imposed in the z- and y-directions. The porosity of a
packing of two different sized spheres varies only slightly from 0.4 with the concentration

of the small spheres. The mean total co-ordination number C is around 6.

In a real packing it caﬁ be hard to obtain an exact number for the co-ordination number
as it may not be clear if two spheres are actually in contact or just very close. Some of
the experimental techniques mentioned in chapter 1 experience this problem, they all
use different techniques and can lead to very different answers. In their paper, Troadec
and Dodds [82] describe the different kinds of ‘contact’ that may occur. These are
classed according to the distance L between the centres of two equal sized spheres and

can be separated into 4 classes:

e A real contact, L = 2R, where R is the radius of the spheres. This co-ordination

number is around 6,

e A near contact, 2R < L < 2.1R, yields a co-ordination number between 7 and

8.5,

e A close contact, 2R < L < 2.2R, yields a co-ordination number between 7.7 and

9.3,

e A near neighbour, L < 2v/2R, which gives a co-ordination number between 9
and 13.4. The Voronoi tessellation which gives this maximum value of 13.4 is
a theoretical model discussed by Dodds [29] in which the space is paved with

polygons representing the sphere positions and without any gaps.
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Oger et al. [63] do consider these different type of contact, but here we are only con-
cerned with the first class - real contacts. The maximum co-ordination number that
can be attained in this situation is 12, it will only rise above this upon consideration

of near neighbours.

A problem arises for sphere diameter-ratios greater than 6.46, in this case the small
grains will start to fall through the gap formed by three large grains and segregation
effects may become important. The packing would no longer be homogeneous. We will

only consider sphere diameter-ratios less than this and so are not concerned with these

effects.

To use these results for the comparison of our expressions derived in the previous
section, with the results of Jenkins et al. [43], we require that the diameter ratio,
dy/d; = 1.7, with the proportion of small spheres, n; = 0.91 and the proportion of
larger spheres ng = 0.09 (there were 392 spheres of radius 0.1075mm and 40 of radius
0.1825mm in the simulations discussed by Jenkins). However, to obtain a broader view
on how the moduli change with different proportions ‘of small to large spheres and
different diameter-ratios, in the final section of this chapter we shall consider a range

of different values for these.

Concentrating for now on obtaining comparable results to Jenkins, we note that in their
paper, Oger et al. [63] only give some results for the diameter ratio d;/d; = 3. Dr.
Oger kindly sent the results of simulations to determine the values of the co-ordination
numbers for d;/d; = 1.7 as we require [62]. He found that in a packing of 16717
small spheres and 1383 large then the average co-ordination number of each sphere
is C = 6.00, thus it is indeed ‘close to 6’ as mentioned in the discussion above. This
percentage ratio, 92.4% of the packing consisting of small spheres, is not quite the same
as that used in the numerical simulations discussed by Jenkins et al. [43], there 90.7%
of the spheres were small. However, even though the simulations are not identical, the
results will still enable us to get some idea of how the large spheres alter the values of

the effective elastic moduli.

The other values found from Dr. Oger’s simulations are given below, where the sub-

script [ refers to large spheres and similarly, s to the small spheres, to make the notation

CHAPTER 5 172



5.5. CALCULATION OF THE CO-ORDINATION NUMBER OF EACH SPHERE

more consistent with what has already been done:
¢ = 10.35936, c; = 5.64467,

pu = 1.49964, p,, = 4.91260, p,, = 8.85972, py = 0.73207,

ty = 0.01908, tss =0.75559, t;. = 0.22533.

For comparison with our notation we see that ¢; = n + m;; = 10.35936, ¢; = 0, +
51 = 5.64467, py = m = 1.49964, pss = ns = 4.91260, p;, = ms = 8.85972 and
pst = Nst = 0.73207, which can all be substituted into the new expressions we have

found for the effective moduli of the packing.

Thus, now recalling equations (5.91) and (5.90), we calculate the new values for the

effective moduli. The expression for the effective shear modulus u*, is

* (—6)1/2 (SB + C)
# 157V B(2B + C)(Ns(1s + 751) + Ni(m1 + s
+2N2n R} + (RsR)Y?(R, + Ri)(N2n3 R, + Nini Ri)}

) {2N2n2R}

(5.125)

and that for the effective bulk modulus:

(—6)1/2 2n72. 2 3 ar2,.2
* 2R.NInS + 2R} N,
8 GV BN, (rs + 1) ¥ Nl 7)) 7 L

+(RsR)Y*(Rs + R))(RsN2n% + RINEnZ)}.  (5.126)

Substituting in the values of each parameter, the first of these give us a value for the
effective shear modulus of p* = 186MPa. The previous theoretical value, found by
Jenkins et al. [43] using Walton’s theory, was 338MPa and so we have reduced the
modulus by 45%. This new value is much closer to the 127MPa found by Jenkins et

al. [43] in their numerical simulations.

We also find, from the second equation above, that the new value for the bulk modulus,
x*, is 135MPa. Thus we again see a dramatic reduction in the value of the modulus
predicted by the binary packing theory. In fact the new value is 55% of the previous
theoretical value which was 245MPa, found from Walton [86]. Also, noticing that
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Jenkins et al. [43], found a value of k* = 185MPa, we appear to have “overshot” the

target. The table below shows a comparison of the values.

Numerical ~Walton’s Theory (Different
Modulus Simulations  Theory Sized Spheres)
Bulk 185MPa 245MPa 135MPa
Shear 127MPa 338MPa 186MPa

Both of these new predicted theoretical values clearly show that the affects of a small
number of large spheres amongst a packing of small spheres can very significantly
effect the theoretical properties of a packing. The new values then, are closer to those
of Jenkins ef al. [43], although the bulk modulus has decreased too much. In the next
chapter, we will try to modify the results again. We shall again consider the influence
of a perturbation of the uniform strain approximation upon these results. We would
expect that the results found in this chapter using the uniform strain approximation
for a binary packing would be significantly altered. We believe this to be the case due
to the fact that the approximation becomes less accurate with decreasing co-ordination
number. In this chapter we have been considering some co-ordination numbers as low
as 0.7 for the number of large spheres in contact with a typical small one and 1.5 for
the number of large spheres touching a typical large one. Thus, in the next chapter,
we combine our two methods of calculation discussed in this chapter and chapter 3, in

an attempt to make a further modification to the values of the predicted moduli.

5.5.1 Varying the Proportion of Spheres and Diameter Ratio

Before we continue with our attempts to modify the theory further, it is also interesting
to briefly consider the effect the proportion of large spheres has upon the effective elastic
moduli and also how these vary with the diameter ratio. Dr. Oger sent us some further
results from his numerical simulations to enable us to do these calculations, these along
with the new calculated value for the effective bulk and shear moduli are shown in the

table below.

We have already concluded that for our particular parameters, a small number of large
spheres amongst a packing of smaller spheres, significantly affects the values of the

effective elastic moduli, when compared with those of a single size packing. The table
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on the following page clearly shows that this is true not just for the particular packing
we have considered, but becomes more marked as we consider other proportions and

diameter ratios.

As the proportion of large spheres increases, the effective moduli decrease in value.
Hence, if we were able to consider an identical proportion of different sized spheres,
that is a slightly greater proportion of large spheres, as considered by Jenkins et al. [43],
then we would expect the moduli to decrease still further. This is good news for the
shear modulus as we have dramatically reduced its value already and a further small
reduction would bring the theoretical value even closer to that yielded by the numerical
simulations. Unfortunately, this will also decrease the bulk modulus further which will
not give the required result, its value has already decreased beyond the value found by

the numerical simulations and so any further decrease will not improve the correlation

between the two sets of results.

We can also note from the table that as the diameter ratio increases the effective moduli
again decrease. Both of these conclusions show us that we must not discount the effect

a size difference between spheres in a random packing has upon the properties of that

packing.
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% of small spheres
100
88.0294
93.9389
98.7533
84.5810
91.1965
98.3625
74.6299
84.0441
92.5529
84.5239
90.09059
95.1375

Diameter ratio
1
1.4
1.4
1.4
1.7
1.7
1.7
2.0
2.0
2.0
3.0
3.0
3.0

Ns

9229
11562
7763
11920
15228
20484
9528
14111
21662
8531
10326
15398

Ni

1255
746
98
2173
1470
341
3239
2679
1743
1562
1033
787

Vs
5.36
4.604182
5.211036
5.705526
3.903775
4.590885
5.632884
2.800378
3.603076
4.635445
3.032470
3.793047
4.428627

Vsl

0
0.998050
0.541429
0.134999
1.374832
0.917126
0.211384
1.988140
1.480831
0.833118
1.643184
1.217897
0.864528

12
0

1.151394
0.500000
0.061224
2.174873
1.171429
0.123167
3.548626
2.754013
1.598394
4.008963
3.359148
2.468869

Vis
0
7.098008
8.087132
8.704082
7.346986
9.173470
11.173020
5.698981
7.577828
10.117040
8.160691
10.376574
14.069885

K* (MPa)
245
121
173
242
92
121
224
68
74
112
63
65
88

(MPa)
338
168
239
334
127
166
308
94
102
155
87
90
121
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Chapter 6

A Perturbation of the Uniform
Strain Approximation for a

Binary Packing of Spheres

As has been previously mentioned, this chapter describes our attempt to modify the
expressions for the effective moduli by considering a combination of the method used
in chapter 3 with that of chapter 5. We expect the results to be significantly different

from both of these chapters for reasons we discuss below.

We consider a dense, random, binary packing of spheres and apply a compressive force
to the boundary. We use the uniform strain approximation for binary spheres as a first
approximation to describe the displacement of the centre of each sphere and the rotation
of the sphere about an axis through its centre and then perturb the approximation.
Using the equations of equilibrium, we calculate approximations to first order for the
perturbations. In addition to these, we apply an additional incremental deformation
to the boundary and again, using a perturbation of the uniform strain approximation,

calculate expressions for the effective elastic moduli of the packing.

Chapter 3 considers a perturbation of the uniform strain approximation, for a packing of
equal sized spheres. We showed in chapter 5 that a few large spheres can dramatically
effect the moduli, hence we would expect significant changes here. Chapter 5 used
the uniform strain approximation as a starting point, but some of the co-ordination

numbers were very small and we know that the approximation becomes poor for such
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6.1. THE INITIAL PROBLEM

cases. Hence the reason we would again expect the results of this chapter to significantly
differ from those of Chapter 5. Hopefully by the end of the chapter we will have
discovered some of the reasons why Jenkins et al. [43] calculated such different values
for the effective moduli using numerical simulations than those obtained using the

uniform strain approximation.

We proceed in precisely the same manner as we have done throughout this thesis. To
recalculate the effective moduli, we first apply an initial deformation to the boundary
of the packing and calculate the forces acting across the contact areas. From these, the
average stress is found. We further apply an incremental deformation to the boundary
and again calculate the forces and average incremental stress. Then, from the relation-
ship between this stress and the average incremental strain, we calculate the effective

elastic moduli for the packing.

6.1 The Initial Problem

We consider a large dense random packing, containing spheres of two sizes. The position
vector of the centre of the nth small sphere is Xg:)) and the position vector of the centre
of a typical large sphere, n, is Xg‘)). The displacement on the boundary, u is consistent

with a uniform strain and hence

U; = €45T5. (6.1)

The previous chapter dealt with the assumption that the centres of the spheres are
displaced consistently with this uniform applied field, ug‘))z = e,-jX((:))j and 'u,g;)z =
i X ((l')l; and that the rotation terms satisfy “’E:))i = ""E:)’;) = Q(,); and w((gz = wg;;.) = Q).
We wish to consider perturbations of this uniform strain approximation, ﬁ%:))z and Qg:))i,
for each small sphere and ﬂEB), and &)g;z, for each large sphere. Thus, for a small sphere,
the nth say, after the initial deformation the centre of this sphere has been displaced

by an amount:
— (n) | ~(n)
“E:))i = e X(g; T “(:)i (6.2)
and

“’g:))i = Qi + ‘:’E:))i (6.3)
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and for the nth typical large sphere

(n) (n) , ~(n)
Uiy = e Xy; + gy (6.4)
and
n ~(n
‘*’éz)g = Qi + w(z)i- (6.5)

Initially, we again restrict our attention to a packing of infinitely rough spheres.

We have already seen in Chapter 5, that the general expression for the force acting on

the nth small sphere, due to its contact with another small sphere, n/, is

)y _ __(@R)VE )\ a2y, (W) L (n)

FoY = srpesT oy 2Bl — w1 e — u

™) 4 o™ ) L) ) 372 ')
+Racije(wy, + (@) ) + CluGy — w2100l } o (66)

where B and C are the constants determined previously in terms of the Lamé moduli.

Similarly, the force acting on a large sphere, n, due to its contact with another large
one, n’, is
(2 Rl 1 2

(nn'y  _ (n) (' )1/2 _ )
Fui' = 5:8eB¥0) {2B(x{y) - (t)p I 12wy = uf)

n nn' n (nn’ nn
+Rieije(wly, + oI + Ol —ui) Iy P20} (6.7)

and the force acting on a small sphere, n, due to its contact with a large sphere n’ is

)y 2(R)Y? o 2 ) ()
Fo' = spemTo (2B Uy~ U V(st PP gy — g
teir(Rusfy, + Raw(§)50) + Ol — ul) I, 1 1y

(6.8)

In order to calculate approximations for the perturbation terms we consider equilibrium

of these forces and their moments.

In order to calculate the forces following, in particular, an initial hydrostatic strain, we

must expand terms such as

1

n') (n) (nn' _
(53 — w17 = (ot ROVH=0 1= g 0~ G0
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1

Y 21 O I ) (n)
8(Rs + Ry)2e? (u(’ (S)P)(u(l)q (s)q)I(sl)PI(sl)q
(6.9)
and
(n) \ p(nn')y3/2  _ 3/2 3/2 3 (') ~(n)
[y — w17 = (Rs + R)*(=e) [1 3R 7 Re e~ Happ lanyp
3 () _ o(m) y=(n') _ o (n)
T3, 1 Ry2eE L~ U (Byg ~ (s)q)f(sz)phsz)q],

(6.10)

which both occur in the expression for FE 5 ") Very similar expansions occur in the

expressions for F%::)I) and FEZ;‘I).

Now, in particular for the nth small sphere, we require equilibrium of the forces and

moments acting, due to its contact with other spheres:

> Y+ Y F( -0 ¢1D
n' small ‘ n' large
and
Y FEOAIE + 3 FEO ALl <o, (6.12)
n! small n' large

where FE”)B and Fg‘l’;;) are as given previously. Similarly, for equilibrium of a large

sphere, we require

nn (nn')
Z Fgu )+ Z Flis = (6.13)
n' large n' small
and
> FEEOAIG) + S FEO ALy =0 (6.14)
) () (s) (ls) : :
n! large n' large

Following the same method used in chapter 3, we substitute the general force expres-
sions for a binary packing, into the first pair of these equilibrium conditions, equa-
tions (6.11) and (6.12). As in Chapter 3, we again have to make some assumptions
about the order of terms, in order to try and reduce the equations of equilibrium to

first order. This then allows us to find first order approximations for u% )) and wgl))z

We restrict ourselves to consider an initial hydrostatic strain, this is the initial com-

pression we require for comparison of our results with Jenkins et al. [43]. Thus, we
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have e;; = ed;; and also Q(y; = (,); = 0 and find that the first order approximation

for uE )) is given by:

w _ BAeBInJE) + (RiR,) V(R + Ry )TIstJ((s,))l) (6.15)
Uy v = .
()i (Rsns + (RiRs)Y2n4)

The definitions of J™ )) and J((sl% are very similar to that of Ji("), which in chapter 3

was defined as:
ny _ 1 (nn)
I = e} ; L.

We now define

g™ (nn
Jaayi = (n) o I (6.16)

s " n! small

and
m)y _ 1 (nn')
Jatyi = Ty > Il - (6.17)
Nst” ' large
All other quantities are as previously defined in other chapters, but as a reminder we
have R; and R, are the radii of large and small spheres, respectively and
2B +C

A=TiB 130’

where B and C are constants defined in terms of the Lamé constants for the medium.

Each 7 corresponds to a co-ordination number.

From the condition that ensures equilibrium of moments, we also find a first order

approximation for w(( )) , this is
o). = 0. (6.18)

Thus now, we approximate the displacement of the centre of the nth small sphere as

follows:
2 1/2
(n) e X(") 3 6Ae(2RsTis ss)z + (RIR ) (Rl + Rs)nle( ) (6.19)
e T SR (Rons + (RiRs)'?ng)
and the rotation about an axis through its centre as
Wi =0. (6.20)
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Similarly, the displacement of the centre of the nth large sphere is found by considering

the equilibrium of a typical large sphere and we have

) _ ) 6Ae(2RImJ(y); + (RiRs)/*(Ry + Ry JG),) 621
(O 1j (l)J (le + (Rle)l/zms) . i
and
Wi =0. 6.22
“i (6.22)
We define ((”))Z and J((lsgt in the obvious way:
n 1 nn'
J((ll))z o) Z I((ll)z) (6.23)
™ ~ nlarge
and |
n ( n'!
((tsgz (n) Z I(lr.:)i)' (6.24)

Mis ™ n' small

Using these expressions for the displacements and rotations, we can find the force
acting on the nth sphere due to its contact with the n’th. Substituting these into the
general force equations (6.6), ‘(6 7) and (6.8), we calculate very lengthy expressions for
all the forces, FE::)’), FEZ;’ ), FE";)‘ ) = —FE, s)n ), acting across the contact areas within
the packing,.

As the expressions for these forces are so lengthy, only one will be included here, Fg"l')‘ )
In its entirety, this would still be too long for inclusion and so we leave the expression
containing general displacement expressions such as u% )) and into which we substitute

the approximation found above. We have

o) _ (RsR)V/%(—e)!/?

_ 4 an) ()
b T aB@EB+O) {28 [ (B + Bl + 1)) -

u(s)z

~(n)
+3 (“(z)p U(syp) L(styp (s

1 n' ~(n ! ~(n
(i = 9000 Ey — E) o

‘——““(R T Rp)e i T et
~(n') _ ~(n) \(~(n) _ ~(n)
(R + R))e (@ Upp — U s)p)(u([)q - u( )a )I(sl)pI(sl)qI(sl)i]

c [—C(Rs + RI)I(sl it —(ﬁEZ‘),Z - ﬂg:)),,)f(sz)p-’(sz)i

— ~(m) 35 (n)
" 8(R, + R))e (u u(s)p)( Or u(s)q)I(sl I(sl)qI(sl)l] }
(6.25)
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The Average Stress

Having found the forces acting across each contact area, the next stage in the problem
is to calculate the average stress throughout the medium. From equation (5.46), we
have the following general expression for this stress
<oij> = —% NynoRy(< ITm) ) > + < ITH)FCT) >)

+NmRi(< IR FG) > 4 < IGP ) 5)

+NaaiRa(< I Fap) > + < IG ) FGR) )

+ N Ri(< I B > + < I Fnt) )}, (6.26)
Substituting in the lengthy force expressions just calculated, the resulting stress in-
volves statistical parameters of the packing. These are similar to o;;, defined in equa-
tion (3.30), although we have several this time. Assuming that they are isotropic as

before, we define

(nn) y(n)

Q(ss)ij = <I(ss)i (ss)j >= a“aij

omyi; = < I((;;: )J(({;))J >= auéij
aili; = < I((:l?i):f((:,% >= audij (6.27)
aus)ij = < I((lf.ls;i)‘]((tr.ls;j >= o505

where the average value < . > is calculated over all contacts. Thus, calculation of each
a, reduces to a sum of Ji(") squared terms, for example, if N(s,l)n(s,l) is the total

number of contacts, N(s,l)n(s,!) = Ns(ns + ns1) + Ni(m + mis), then

= G ) 2 e 629

summing over n, that is all spheres. Each of the as above can be written in this way.
The summation over which each is taken reduces, since the various Ji(")s will not exist

for all types of sphere contact. For example, o, reduces to

o
3N(3, l)n(s, l) Z (ss)id(ss)i

n small

Qss =

We have cross terms which also arise and these cannot be defined in quite the same
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way. A term which we define as o, can in fact arise from two different terms. These
are < I (:s';;) J((:g ;> and < I((:l')l;)‘]((:s)) i > but multiplied by different combinations of
the co-ordination numbers. To allow for this and so that we do not have to use two

separate parameters for each of these terms we define

_ 1 (n) §(n) _
Hssshis = ZN(s (s, 0) Zﬂ I(soyid(styi = Assstdis
1 ) (n) 1(n)

The variations in multiples of co-ordination number are then included in the general
theoretical expression at each stage, rather than in the numerical calculation on the
computer. Hence, for example, we have

< 5Ty >= necssal (6:30)

whereas
< I((;?i)-]((;))j >= N1 ssstdij- (6.31)

We calculate average values for each o by using computer simulation. The programs

are similar to those used to determine o in Chapter 3 and will be discussed later in
this chapter.

As in chapter 3 it is not just terms such as (I((::)L;)J((:s)) j) which arise in these cal-

culations, but also more complicated averages, for example, (I"%) (") [(nn) 5(n)

(ss)i “(ss)j “(ss)k (ss)l>’
(I ((Z:)‘i)I((:;;j) ((:s))kJ((;))l) and (I ((;‘;;i)l ((:s’; j) J((Z; kJ((:z))z>' However, all the terms that occur

at this stage of the problem can in fact be reduced to expressions in terms of the known
as. In Chapter 3, we found expressions for similar terms to these three using the prop-
erties of isotropic tensors. For example, assuming (I ((:;;;)I ((:;;;.)I ((:;)l’k) J((s'?)l), is a fourth
order, isotropic tensor then it can be written as a linear combination of 0ij0ki, aikésj,
and 6;0,k. It must be symmetric upon interchange of any two of 3, j , k and the only
combination that satisfies this is:

< I((:;;;)I((.:L;;’]‘)I((:S;)J((:s))l >=C) ((5,']'5“ + 6ik6jl + 61-{6]-,;)

where C is a constant. As in Chapter 3, since I((;LS;) I ((?ST;;) = 1 then setting ¢ = j gives

_«
Cl——éﬁ.
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Determining the other expressions in a similar way then, in particular, the three aver-
ages mentioned become

< I(nn')I(nn’)I(nn')J(n) U

(ss)i “(ss)7 “(ss)k “(ss)l >= ?(5ij6kl + 6ik6ﬂ + 6‘”‘5]"‘7)’

(nn') p(nn') 7(n) 1(n) __ @s
< I(s.:;i I(:s)j J(ss)k'](ss)l >= Tséi.’idkl

and
<ICRIE) I >= 5 00w
sl
Some further manipulations with these averages and parameters must be done in order
to calculate the average stress as we wish to do. It is not immediately obvious from
the definitions of the as how a term such as < I J) S can be written down.

(Ls)i “(ss)j
However, with some rearranging and using the fact that

(nn') _ _ (n'n)
I(ls)i - I(sl)i ’

we find the following is true:

< I((;.:;!i)‘]((;))j >= —NsiQsssi- (6.32)

Now, putting all of these manipulations together, the expression for the average stress

is thus given in terms of the o parameters as:

<oy > =
_——2(_6)3/2 RzN n 2RSNSTIS — 184 (2R§n5a55 + (RsRl)l/Z(Rs + Rl)nslnsasssl)
3rVB | T 3N (Roms + (Rs Ry)1/2m2)

+9A2 (4R2T]30135 + 4R§n§nslasssl + (RsRl)(Rs + Rl)2"7.sl7lsasl)
2R, (Rsns + (Rst)1/2Tlsz)2

2RINmy 184 (2RI may + (RsR)Y2(Rs + Ri)mismouus)
3N (Rimi + (RsRy)V2my,)?

+9A2 (4R{n?ou + AR misoqus + (RsRi)(Rs + Ry)2mismaus)
2R, (Rimy + (RsR1)Y?1u)2

+R} Ny [

R, + R))Nyny,
+(R3Rl)1/2(Rst7lsl + RlNlms) [E_E—I\II)_IL

_9A4 2R3"Isass + (RsRl)1/2(Rs + Rl)"]slasl 2R[2771all + (RsRl)l/z(Rs + Rl)nlsals
(Rsms + (RsR)Y214) (Rim + (RsRy)/2my5)
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+ 9A? 4R§nsnslass + 4R§(R3Rl)l/2(Rs + Rl)nsnglasssl + (RSRI)(Rs + Rl)2773[asl
2(Rs + Rl) (Rsns + (R.s‘}zl)l/znsl)2

4RI mymisay + AR (R, R)Y2 (R, + R)mnfcuus + (RsRy)(Rs + R)*nfau, )] }

+
(Rim + (RsRi)Y%my)?

(6.33)

This is the expression we require.

These results have all been calculated for the case of infinitely rough spheres but as
has been seen alréady in previous chapters, the calculations can also be done for a
packing of perfectly smooth spheres. In this case, the force expressions are not nearly
so lengthy and the equivalent expression to equation (6.25) is

! R.R)Y2(—e 1/2 3w n
Fop) = & l)gm lg ) {—G(Rs +Rz)I(sz)i + —(u&),f S AR

(n') _ ~(n) )(

—_— n)
8(R +Rl) (u(l)p u(S)P (s)q)I(Sl)PI(Sl)qI(sl)l},

(6.34)

with similar expressions also holding for F(( )') and F((l"l')" ). The average stress is now

<0y > =
_\3/2
_2(=¢) {Rstns [2Rstns

_ 6(2R§nsass + (RsRl)1/2 (Rs + Rl)"]slnsasssl)
3N (Rems + (RsRl)l/Z’l?l)
1 ( R4"73 Qss + 4Rsnsnslasssl + (RsRl)(Rs + R[)27731773O£31)
ZRS (Rsns + (RsRl)l/znsl)2
2 2RINmm  (2Rmon + (RsR)YV2(Rs + Ri)mismicuus)
+Rl le -6 172 5
3N (R + (RsRy)Y2my5)
1 (4R{nfou + 4R}mimiscuns + (RsR)(Rs + Ri)? ﬂlsﬂlals)
2R, (Rimi + (RsRy)Y?my5)2

3nVB

+

(Rs + Ri)Nynys
3N
_3 ZRgnsass + (RsRl)l/Z(Rs + Rl)nslasl + 2R1277101u + (RsRl)l/z(Rs + Rl)nlsals
(Rs'r}s + (RsRl)lﬂﬂsl) (le + (RsRl)l/znls)
+ 1 4R2775775{0133 + 4R3(RSR1)1/2 (Rs + Rl)"]snzlasssl + (RsRl)(Rs + Rl)2n§lasl
Z(Rs + Rl) (Rsns (R Rl)l/znsl)2
4Rz mmsou + AR} (R Ri)Y*(R, + R)mnfaws + (RsRi)(Rs + Ri)*nf ous

(Rym + (RsRy)Y215)? '

+(RsR)Y?*(RsNymst + RiNpmis) [

(6.35)
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6.2 Calculation of the Effective Moduli

As with all our previous work to calculate the effective moduli, we impose an incre-
mental deformation upon the initial configuration. A small sphere on the boundary

will undergo a further displacement

5U(s),~ = 6eijx(s)j (6.36)

and similarly a large sphere will undergo a further displacement

Ou(pyi = 0eiT();- | (6.37)

The uniform strain approximation, as used in Chapter 5, assumes that the centre of

the nth small sphere would be displaced by an amount
i = ses X0 630

and a similar expression holds for a large sphere. Again, perturbing this approximation
as we have already done for the initial problem, then upon application of the boundary

displacement, the centre of a typical small sphere, the nth say, is displaced by an

amount

M) _ 5.y ~(n)
5“(5)1' = 5‘321X(s)j + Ju(s)i (6.39)
and rotates about an axis through its centre by an amount

(n)

Jw(s)i = 6Q(s)i + (5(:)(5)1:. (6.40)
A typical large sphere, the nth, is displaced by
bufp) = b X(p) + by (6.41)

and rotates by

6w(l)i = 69(1)1’ + (5&381. (6.42)

Again, we consider the equilibrium of forces and moments acting on each sphere. These

conditions allow us to find approximations for the perturbation terms. For a small

CHAPTER 6 187



6.2. CALCULATION OF THE EFFECTIVE MODULI

sphere the following equations must hold, we have

(nn') (nn) _
Y. FGy’+ Y OF(y =0 (6.43)
n' small n' large
and
(nn') , y(nn') (nnf)  qlnn) _
Z ll‘sF(ss) Ay + lZ OF ) " ATy =0 (6.44)
n sma n’ targe

and for a large sphere we have

> FG+ Y o) = (6.45)
n' large n! small
and
> RGO AIGT + 3 oFGy) ALY =0, (6.46)
n' large n! small

The incremental forces acting on the nth sphere due to its contact with the n/th sphere,
that is JFE::)I), JFg‘{)") = 6F8‘)") and 5FEZ;’ ) are given in equations (5.71), (5.73)
and (5.72), respectively. We expand the terms in these expressions, as we did for the
initial part of the problem, eqﬁations (6.6), (6.7) and (6.8) and then substitute these
expressions into the equilibrium equations above. We again make assumptions about

the order of the terms in order to enable us to calculate first order approximations
(n)

for du; ’ and 6w(") We find that to first order, the centre of the nth small sphere is

displaced by an amount
(n)  _ x®)
Sui = deiXiy);

e L 2B(1 — A)de (2R3"5J((:s))k + (R R)'/?(R, + Rl)nsl-]((:l;k)
(6B +C) ik o R P

+Cb 2REn, N ,yi + (RsR)2(Ry + ROMaNG),.,
Ert Rsns + (RsR))Y2ng

2R2n,J™) + (ReR)Y2(Rs + R)nadim)
s (ss S (shp
(6tp(51,r + 6t7'61,p + 6zt5pr) ( Rsns (RsRl)l/z"]sl

(6.47)

where N((s s))trz and N((Z;m are defined in an analogous way to Nt(”), which was seen

previously in Chapter 3. However, the extra subscripts allow us to distinguish which
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size of spheres are used in the calculation. Thus we have

(") _ (nn') (nn' nn
(ss)trz B Z I(ss)t I(ss)r)I((ss)z) (648)
S n’ small
and
( (nn') (nn nn
(;gt” = Z I(sl)t ((sl)r)I((sl)z) (649)
Lt smail

In this chapter we are purely interested in hydrostatic initial conditions and from the

equation for equilibrium of moments we then also find that to first order:

('"') =0.

The displacement of the centre of the nth large sphere is found in the same way by

considering equilibrium of the nth large sphere, we calculate:

(n)

‘5"831 T (6.51)
e 2B(1 — A)de; k( Ren. (”))" + (R, R))/*(R, + Rl)nls']((lr;;k)
(6B +C) 4)de; e

+Cse, | 2 PNy (R R)Y2(By + RGN,
m Rim + (RsRy)Y?ms

PP o R G
5 \otplir trOip 1tOpr Ry + (R3R1)1/27"s

and again

bl =0, (6.52)

with N(({;))tr ; and N((, s;t'rz defined in the obvious way:

(ﬁ))m= > I T (6.53)
n’large
and
n 1 (nn') 7(nn') ;(nn')
N((lsgtri I Z Ly L1y L(1si - (6.54)
Mhts n'small

From these approximations for the displacements, it is now possible to find expressions

for the incremental forces acting across the contact area. The actual expressions found

CHAPTER 6 189



6.2. CALCULATION OF THE EFFECTIVE MODULI

are again all very lengthy and will be omitted here. However, the methods used to
find them are all identical to those already described in previous sections. From the
incremental forces, the average incremental stress is found in terms of the average

incremental strain and from this the effective Lamé moduli can be written down.

Next then, we need to calculate an expression for the average incremental stress and
relate this to the average incremental strain. We have calculated the incremental forces

acting and the general expression that relates these to this stress is given below:
(nn') ¢ (nn') (nn') ¢ (nn')
1§V{Ns77sRs(< Iy 0F () > + < L55); 0F(o3i” >)
< 60'ij > = —=

+Nim Ry (< I(({fﬁ-) F((;),;) >+< I((IT;)TLJ‘)‘SF((;)’:) >)

+NnaRa(< ITPISFS) > + < IGHSF) )

+Nm Bi(< IGnD8F G0 > + < IGSF() >)}. (6.55)
+1V!nlsﬂlk< 1(‘15)1-’01"(‘13)]-' >+ < 1(‘13)]-'0["(‘!8)':' >)i- (0.00)

Having substituted in the expressions for the incremental forces, we define further

parameters. These are analogous to the x introduced in Chapter 3 which was defined

as:
1 nn') (nn') p(nn’
x =3 <IMMIIING >
Here we now have: n
_ 1 _ ;an) p(nn’) p(nn') pr(n)
Xss = 3 <L) Loy Tissye Visspise >
1 nn') ;(nn’ ") ar(n)
Xu=3< I((u)ni )I((ll)j)I((;;)T;c)N(;)ijk >
1 _ (o) f(nn') p(nn) pr(n)
Xst =3 < I Lisnyg Listye Nstyije >
and
1 (nn') p(nn') p(nn') A (n)
Xis = 3 < I(ls)i)I(ls)j)I(ls)k Nsyije > - (6.56)

We also have some x terms which are defined as a sum, similarly to asss and ayys,
since they can again arise from two different averages. If we again let N(s,l)n(s,l) =
Ns(ns + nsl) + Nl(m + nls)a then we define

1

sssl = Sxr7r N7 9y Nssi' N.s i . 6.57
Xont = 5o Do, ) & ekt (657
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and

1
Xits = SN D) ; NayijkN(s)ijk- (6.58)

The parameter xsss; arises from the two average terms < [ ((:s';:)l((;';;;)l ((;';QN((sgijk >
(nn') f(nn')

and < Iy Iy I((:l')'k)N((:s))ijk > and we note that

< I((:S;)I((:s’;;) ((?;;;)N((:t;ijk >= M%Xsssl
and

< I((.:;;ltf)l((.:llr)l_;’)I((.:Ll')lllc)N((.:ls))ijk >= mxmz-
Similarly,

< Ifﬁ;l)léﬁg)l((g;;)N((Z;ijk >= m?;)sn_MXzzzs
and

(nn') r(nn') r(nn') Ar(n) — Y
< I(ls)i I(ls)j I(ls)k N(ll)ijk >= 3N(s,l)n(s,l)x”ls'
These new definitions allow us to calculate the following expressions, the first of which is
that for the average incremental stress. We have, N(s,l)n(s,l) = Ns(ns +nst) + Ni(m +
ms) and we let Ry(s,{)ni(s,l) = Rens + (RsR))Y/?ng. Similarly, let Ry(s,l)na(s,l) =
Rim + (RsR))Y/?n;, and hence

()2 { 1
"VBEB+C) \3NG, (s, 1) L
C c
+(RoN2n% + RiNEnL) (R RV (R, + Rl)] ((B + g)(tsikt%z +0ud k) + 'géij(skl)
1 2 a2 2 1/2
- Ao |12 s(2 sQXss R R s
3{R1(37l)"71(3,l) [ Rst’l'] ( Rsn Qs + (RsRl) ( s+ 1)77377 lasssl)
+(R5Ns’f]s[ + RlNlnls)(RsRl)1/2 (2R§'r]snslasssl + (1‘231-201/2 (Rs + Rl)nslasl)]
. 1
R2(5al)772(3,l)
+(R5Ns77.sl + RlNl'rﬂs)(RsRl)1/2(2R12'r]lmsams + (RsRl)1/2(Rs + Rl)nlsasl)] }

1 2C 2C2%A
— ) - 101+ 0110
{63 ~C {(23(1 A) (B + 5 ) 5 ) (5,k531 + 1(5]k)

C
+%(4B(1 — A) - 7CA)(5,']'(5H] +A ((B + %) (51'1\—,6]‘[ + (5il5jk) + E&'j(skl) }
3C? { 1
10(6B + C) | Ry (s,)m(s,1)
[2R2n5(2(2ass - Xss)(sijékl + (3Xss - ass)(dikéjl + 6il6jk))

<oy > = [2N2n2RS + NPng R}

[2RINPmu(2Rmow + (RoRy)V*(Rs + Ri)mimisous)

[2Nsnst
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+(R3Rl)1/2(Rs + Rl)nsnsl(z(zasssl - Xsssl)dijdkl + (3Xsssl - asssl)(‘sik‘sjl + 61'161'1:))]
+(R3Nsnsl + l'zll\/'l'rlls)(R.~2Rl)1/2

[2Rsnsnsl(2(2asssl - Xsssl)(sijékl + (3Xsssl - asssl)(aikéjl + 6116]k))

+(RsR)Y2(Ry + R0 (22051 — Xs1)0ij0k1 + (3xs1 — xst) (Sindijy + 5iz5jk))]]
1
{ Ra(s,)ma2(s,1)
[2R?m (220 — xu)dii0k + (3xu — o) (Gt + 6adjx))

[thﬂlRtQ

+(RsR)Y2 (R, + Ry)mms(2(2cuns — Xaus)0ii0kt + (3xus — uus) (6ixdjt + 8adji))]
+(Rst77sl + RlNlms)(RsRl)l/2

[2Rimmis (2(20uus — Xust)dii0kt + (3Xus — oaus)(dikdji + 6idji))

+(RsR)Y2(Rs + Ri)1at(2(20us — X15)0:50k1 + (315 — cuts) (i + 5u<5jk))]] }

1
4 { (Ri(s,D)m (s, 1))? PNS"’Rg [4RIn}ass + Ri(Rs + Ri)*namsicvs

R Nsnsl + RlNlnls RsR 1/2
( : (R + Rl))( l) [4R:nsnslass
]

+(R3Rl)(Rs + Rz)zﬂfzasl + 4R§(R8R1)1/2 (Rs + Rl)nsnglasssl]]

+4Rs (Rs Rl ) 1/27737’31 asssl] +

1
R2(s) l)n2(3a l))2

+4R)(RsR) 0t msonns) +

+ ( [2leRzz[4R?mz oy + Rs(Rs + Ri)*mimiscus

R,Nsng + RiNmis)(Rs Ry)/?
( Msl (Rl;}_l;]{ll))( s l) [4R2177l77!sall
S

+(RsR))(Rs + Ri)*ncus + 4R} (RsRy)Y*(R, + Rt)nmzzsatus]] }
C\? C 7C
(B + g) (6ik6jl + (5i[5jk) + E_ (63 + 7) Jijékl]

: C
—-/21 ((B + %) (Jikéjl + 5il‘5jk) + géijékl) }} dexl. (6.59)

4
(14B + 3C)

Thus we have the relationship between the average incremental stress and incremental
strain which allows us to calculate the effective elastic Lamé moduli for the material.

The initial deformation was hydrostatic and so we have
< 50,;1' >= C;jkl < deg >

where

ikt = A 00k + p* (0uk b5t + dudjk).
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Hence, the effective Lamé moduli for a binary packing of spheres are given by

A*

C(—e)l/? { 1
57V B(2B + C) L15N(s,l)n(s,I)
+H(R NI + RUNETL) (RoR0) V2 (R + )|

[2N2n2RS + NEn? R}

3 1
5 {Rl(S,l)ﬂl(S, )
+(RsNyns + RiNpis) (Rs Ry) 2 (2R nsngiauss + (RsR1) Y2 (R + Rz)nstasz)]

1
+R2(s,l)n2(s,l)
+(RsNsnst + RiNimis) (RsRy) 2 (2RI mimisouns + (RsRy)V2 (R, + Rt)msasz)]}

[2R§N52n8 (2R§7Isass + (RsRl)llz (Rs + Rl)nsnslasssl)

[2312 NZmi(2R moy + (RsRy)Y?(Rs + R)mmscuus)

{GBLCMBG—A)—RDD+A@B+CH}

_ 3C { 1
2(63 + C) RI(SJ)"’I(S,I)
[4R§77.s (2ass - Xss) + 2(RsRl)1/2(Rs + Rl)ns"lsl(zasssl - Xsssl)

[ZN,n,Rf

+(.-R5Nsnsl + RlNlnls)(RsRl)l/z
[4Rsnsnsl(2asssl - Xsssl) + Q(RsRl)l/z(Rs + Rl)nsl(zasl - Xsl)]
1
—_ _|2N R?
{Rz(S, I)n2(s, 1) [oNim
[4R}m(2au — xu) + 2(RsR1)?(Rs + Ri)mms(2cuus — Xuuts)
+(RsNyngt + RiNs)(Rs Ry) Y ?[4Rymymis (20015 — Xust)

+2(R, R0)/2(R, + Ri)mat(2e1, — x15)] }
1
(Rl (Sa 1)771 (37 l))2

+4Rs (RsRl) 1/2n3nslasssl] +

[2Ns"73RE [4R:s377§ass + Rl(Rs + Rl)277s77slasl

+34 {

(RsNaist + RINimis) (Rs Ry) M2
(Rs + Rl)

+(BsR)(Rs + Ri) o + 4RZ(R,R)Y2(R, + Ri)neniatsssl]|

[4R: NsNsiQss

1
T Ra(s, Dmas, D)2

[2NmtR¢2 [4R}nEoy + Rs(R, + Ry)*mmiscus

(Rstnsl + le\'rlms)(RSRI)I/2

1/2,2 RS
+4R(Rs i) “ni msouus) + E TR [4R:mmson
+(ReR1)(Rs + R1)*jyous + 4R} (RoRy)'/? (R, + Rl)nmlzsallls]] }
4 7C A
TR TIO el Y. .
{(14B+30) [GB+ 2 ] 2 }} ekl (6.60)
and also
(—e)l/? { 1 » 203 ) 23
To= ON2n2R3 + N,
K 7VB(2B + C) | 3N(s,)n(s,1) [ sMs By + Ninj R
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C
(RN + RNPE) (R R)V(Ry + R0 (B + 2)

1 2 2 2 1
B STy N, s . 12(R,
3{R1(s,l)n1(s,l) [2Rs sMs(2Rsmsass + (Ro Ri)*(Rs + Ri)nsmsitssst)

+(RsNanst + RiNimis) (R R))Y2 (2R2nsnsi0t55s1 + (Rs RV (R + Rz)nszasz)]

1
T Ro(5 Dmals, 1)
+(RsNenst + RiNimis) (RsR)Y2 (2R mmiscuns + (Rs Ri) Y2 (R, + R;)msasl)] }

{631+C (2B(1—A) (B+-2§-) - 2052‘4) +A<B+g)}

3¢ { 1 [
10(6B + C) \ Ri(s,)mi(s,0)
[2Rfﬂs‘(3Xss - 0{55) + (R3R1)1/2 (Rs + Rl)nsnsl(3Xsssl - asssl)]

+(RsNsnst + RiNpmis) (Rs Ry)Y/?

[2R12N1277z(2R12 mou + (RsR1)"?(Rs + Ri)mmiscuus)

2N,nsR?

[2Rs"ls7]sl (3Xsssl - asssl) + (RsRl)l/z(Rs + Rl)nsl(3Xsl - asl)]
o 279 2 _ 1/2 _
{ G Dm0 [ZNmsz 2Rim(3xu — au) + (RsRy) ™ *(Rs + Ry)mmus(3xuts — s ))
+(RsNynst + RiNimis) (Rs R)Y2[2Rymums (3xuus — cants)
+(R3Rl)l/2 (Rs + Rl)nsl(3X1s - als)]}

2Ns773R§[4R3773ass + Rl(Rs + Rl)2"737)slasl

1
*3A{(R1<s,z)m(s,l)>2 [

RyNyng + RiNymys)(RsRy)Y/?
+4R3(R3Rl)1/2nznslasssl]+( s VsTlsl L "”3)( l)

S

+(RsRl)(Rs + Rl)znzlasl + 4R§ (Rth)1/2 (Rs + Rl)'rls'rlzlasssl]]
1

R2(3,l)772(3,l))2
R,N,ng + RINmis)(RsRy)Y/?
+4R1(R3Rz)1/277¢2msams]+( s ol (Rl +l;72l[))( ) [4R}mmsau

+( [2NmzR12[4R?"712 oy + Rs(Rs + Ry)*mimisous

+(RoRi) (R, + Ri)*nfsous + 4R (R R)' (R, + Royminf,cune]] }

.

(6.61)

These are the new results we wished to find.

From these two moduli we can also calculate the effective bulk modulus found using

K* =" + %u*. Thus we have

* (_6)1/2 { 2 { 2NsnsRs
= N, __2%Tsts
& 5vE " 3N G, (s, )
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_184 2R§nsass + (RsRl)1/2(Rs + Rl)"’s"’slasssl
Ry(s,)m(s,1)

9A2 (4R3n?ass + (RSRI)(RS + Rl)2nsl"7sasl + 4R§(R3Rl)1/2(Rs + Rl)nsln?asssl) }

2R, (R1(s,1)mi(s,1))2
2N R, 2R may + (RsR)V2(Rs + Ri)mmiscuus
+NmR?{ ——" " _ _ 184
o ’{3N(s,z>n<s,z) ( Ra(s,D)ma(s, 1)

9A% (4R!nfay + (RsR)(Rs + R)*mymou; + 4R} R.R)V?(Rs + R)msniouus
2R, (Ra(s,)ma(s,1))?
(Rstnsl + Nﬂthz)
3N(s,l)n(s,1)
—94 2R21,ns10ssst + (RsRi)'/2(R, + Ri)ngrceg
Ry(s,0)m(s,!)
ZRlznlnlsallls + (RsRl)1/2 (Rs + Rl)nlsals
R2(s$ l)n2(31 l)
+ 9A2 4R:T]s773!ass + (RsRl)(Rs + Rl)znzlasl + 4R§(R3Rl)1/2(RS + Rl)nflnsasssl
2(Rs + R[) (Rl(s7l)nl(sal))2
4R}Mmmisan + (Rs Ri)(Rs + Ry)?nfcus + AR} (R,R))V/2 (R, + Ry)ndmouns
+ 2 .
(R‘Z(Sa l)nZ(sa l))

+(R3Nsnsl + RlNlnls {

+

(6.62)

We check this expression for k* in two ways. First, we consider whether it is consistent
with the initial part of the problem. If we differentiate the expression for the initial
average stress, equation (6.33), then both expressions for k* are found to be identical.
Also, if we let R; = R;, then «* reduces to the expression found in Chapter 3 for a

packing of equal sized spheres. These are only simple checks but give us some indication

as to whether our calculations are correct.

The results above again all apply only to a packing of infinitely rough spheres. If
we consider instead a packing of perfectly smooth spheres then from the equations of
equilibrium we find that the incremental displacement of the centre of the nth small

sphere is given by:

5u(”)

oy = O X()

(s):
g (BN + (RB)MER, + ROmaNG
rt Rs"]s + (RsR1)1/2T)sl

1
—E(Jtpair + 6t7'6'ip + 5“51,,.)

2R2n, (1, + (RaB)V2(Rs + RinaJ (),
Rsns + (Rth)1/2775t ’

(6.63)

CHAPTER 6 195



6.2. CALCULATION OF THE EFFECTIVE MODULI

where all the terms are as previously defined. The rotation about an axis through its
centre
S = 0. - (6.64)
Similarly, the displacement of the centre of the nth large sphere is
(n)  _ . y(n)
5”(!); = e Xy (6.65)

2Rl2mN((l1;))tm (RsRi)'*(Rs + Ri)mis N,
- Rum + (R, Rt)l/zm

—38e, (ls)tm

1 2Rl mJ, (u)p + (Rs Rl)l/z(R + Rl)ms (ls)p
_E(étpézr + (Str(stp + (szt(sp‘r) ( Rlnl + (RsRl)l/z'r)ls

and again
S = 0. (6.66)

By substituting back we can calculate the forces acting across the contact areas from
which we can then find the relationship between the average incremental stress and the

incremental strain. The effective elastic Lamé moduli are calculated in the same way

as above to be:

* (_6)1/2 1
N T 5B {15N(s DG D)

+(R, N2 + RNl (R R)'? (R, + R))|

[2NZn? RS + NEn? R}
3 1 2 Ar2 2 1/2
=YD /. N R R sTlslCsss
5{m@Jmu&nPRJﬂm@Rwﬂn+ﬂ&Rﬂ (Bs + Bu)nsmoictssst)
+(Rst"7sl + RlNlnls)(RsRl)l/2(2R§"75"7slasssl + (RsRl)1/2 (Rs + Rl)nslasl)]
1
t R Dm D) [2R12N127h(2312mau + (RsR1)'*(Rs + Ri)mmsouus)
+(RsNenst + RiNis) (Rs R1) 2 (2R mymisouus + (RsRy) Y2 (R, + Rz)msasz)]}
3 1 )
"2 {Rl(s,l)m(s,l) [2Ns773Rs
[4R§77s(2ass - Xss) + 2(R3R1)1/2(Rs + Rl)ns'r]sl(Qasssl - Xsssl)
+(Rst"’sl + RlNlnls)(RsRl)1/2
[4Rsnsnsl(2asssl — Xsssl) + 2(R5Rl)1/2 (Rs + Rz)nsz(2asz - Xsl)]
1
- R2
{Rﬂanme)PNm”
[4RZmi(2au — xu) + 2(Rs R1)Y2(Rs + Ry)mmis(20uus — Xuuts)

+(RsNsnst + RiNimis) (R R) 2 [4Rmymis (2005 — Xust)
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+2(RSR1)1/2(RS + Ri)na(2aus — Xls)]}
1
{ (Rl(sa l)nl (Sa l))2

+4Rs (RsRl)1/277.37’sl asssl] +

K
2

[2NsnsR§[4R§ns?ass + Rl(Rs + Rl)271s775101sl

(RsNyng + RiNmi,)(RsR))V? 4
(R +Rl) [4Rsnsnslass
S

+(RR1)(Rs + Ro)*i0ust + 4B (RoRi) (R + RO)naniiorsssil]

1
T Ra s, Dma(s,1))2

+4R, (Rs Ry ) 1/277;2"”.5 allls] +

[2Nim R [4R}nfow + Ro(R, + Ry mimiscus

(Rst"?sl + RlNl'rlls)(RsRl)l/2
(Rs + Rl)

+(RsR))(Rs + R))*n}.cus + 4R} (R.R))/*(R, + Rl)ﬂmzzsams]] }} dex

[4R?77mzsau

(6.67)

and also

* (—6)1/2 1
k= 2vB {15N(s,l)n(s,l)

C
RN + RN (RR) (R, + R (B+ )

[2N22R3 + Nin? B

1 1 2 ns2 2 1/2
5 {R1(s,l)711 (s,1) [2R3N3 Ns(2R5ns0tss + (RoR1) ' *(Rs + Ri)NsNs10tssst)

+(Rs Nomot + RiNiis)(RoR)) /2 2RIMsns1ts0st + (RsR))2(Rs + Ri)nsicral)|
1
Ry(s,D)na(s, 1)
+(RyNynst + RiNmis) (RsRi) /2 (2R} mimiscuns + (RsR)Y? (R, + Rt)msast)] }
_3 {_1__
10 L Ry(s,0)m(s,1)

[2R215(3Xss — ass) + (RsR1)Y2(Rs + Ri)NsMt (3Xssst — Cssst)]
+(RsNynist + RiNimus) (Rs Ri)Y2[2Rsmsnst(3Xssst — @ssst) + (RsR)Y2(Rs + Ri)na(3xst — ast))
{——————RZ o z)lm ) [2NmzR?[2R?m(3Xu — o) + (RsR)Y2(Rs + Ry)moms (3xuus — )]

+(Rs Nt + RiNmis) (Rs R) Y2 [2Rymimes (3xauts — oauts)

+(RsR)Y(Rs + R))nat(3x15 — als)]}
L { !
50 (31(3,1)771 (S,l))2

+4Rs (RsRl)l/Qn?nslasssl] +

[2R12N12m R?may + (RsR)V* (R, + R)mmiscuus) )

[2Non, R2 E

[2NsnsR?[4R§n?ass + Rl(Rs + Rl)znsnslasl

(RsNynsi + RiNimis) (R Ry) Y2
(Rs + Rl)
+(RsRi)(R, + Rz)znflas: + 4R3 (RsRl)l/2 (Rs + Rl)nsnflasssl]]

[4R2nsnslass

1
T Rals, Dma(s, )2

[ZNlan?[le?nlzall + Rs(Rs + Rl)znl"ﬂsals
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R,Nng + RiNimis) (R R;) /2
( Tl (R l+lgl))( l) [4R?"717hsau
]

+(RoR)) (R, + Ri)*niou, + 4R} (R, R)Y2(R, + R)minfyouss]) }} dew. (6.68)

+4R, (R, R) Y *n}misuns) +

From these two moduli we calculate the effective bulk modulus, k* = \* + %—u*. We

find

. (—e)'/? { ) { 2Ng7s Ry
K = sNsdity

3rVB 3N(s,)n(s,1)
-6 2R3nsass + (RsRl)l/z(Rs + Rl)nsnslasssl
R1(31 l)nl (Sa l)
+ 1 4R§n?ass + (RsRl)(Rs + Rl)z'rlslnsasl + 4R§(R3Rl)1/2 (Rs + Rl)nslngasssl
2Rs (Rl (37 1)721 (3, l))2

+Nym R} 2NmPBy o (2Rimou + (RsR)'%(Rs + Ry)mmsouuts
3N(S’l)’7(3, l) Rz(S,l)T)g(S,l)

1 (4R;‘n,2au + (RsR))(Rs + Ri)*msmaus + 4R} (RsR)Y?* (R, + Rl)nls'rhzallls) }

ﬁl— (R2(37 1)772(3, l))2

(RsNgnst + NymisRy)
3N(s,Dn(s,1)

-3 2R§nsnslass$l + (RsRl)l-_/z (Rs + Rl)")slasl
31(3,1)771(375)
+2R1277lnlsallls + (RsR)Y?(Rs + R))miscus
Rz(S,l)m(S,l)
+ 1 4R:"75"75!ass + (RsRy)(Rs + Rl)z"??lasl + 4R§(R3Rl)1/2(Rs + Rl)"?["?sasssl
2(RS + Rl) (Rl(sal)nl(s,l))z

+4R217hmsau + (RsR))(Rs + R)*n}.cus + 4R} (RsR)Y? (R, + Rz)ﬂfsmams) }}

+(R3Nsnsl + R Nimis {

(Ra(s,l)ma(s, 1))?
(6.69)

We check this by setting @ = x = 0 and R; = R; when the modulus reduces to -

previously obtained results.

In order to compare all of these new theoretical results with those of the numerical
simulations of Jenkins et al. [43], we must determine the values of each « and x. The

computer simulations that are used to do this are described in the next section.
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6.3 The as and xs Arising in a Binary Packing

In order to find numerical values for each a and x defined earlier in this chapter and
occurring in the expressions for the effective elastic moduli we proceed as we did in
Chapter 4 when considering a packing of equal sized spheres. We wrote computer

programs to simulate the spheres in contact with one and then repeated the run many

times to find an average value.

In order to do these simulations, we must know the average co-ordination number
of each different size of sphere. As Jenkins et al. [43] only discuss the co-ordination
number used for a packing of equal sized spheres, we must again use the work discussed
in Chapter 5, that of Dr. Luc Oger [62], to determine the value of these. We recall
that he simulated a packing in which there were 16717 small spheres and 1383 large
spheres, that is 92.4% of the spheres were small. This gave the average number of small
spheres in contact with a typical small sphere as 4.91260 and also 0.73207 large spheres
in contact with this small sphere. For a typical large sphere, there were 1.49964 other
large spheres in contact with it and 8.85972 small.

As in Chapter 4, we cannot specifically calculate the values of the o and x terms for
these co-ordination numbers using our simulations. Instead, we calculate the parameter
values for the two nearest whole number co-ordinations and then combine these in
proportions to find an estimate of the values required. As we shall see, here we must
simulate various different cases for the number of small and large spheres in contact.
As was the case in Chapter 4, an especially important thing in the calculations is to
impose a condition of no overlap between spheres. Also, we require equilibrium of each

sphere.

The general algorithm for picking the co-ordinates of each sphere was very similar to
that used for equal sized spheres. We again used the co-ordinate system (r, 8, ¢) such
that the centre of the first large sphere was at (0,0,0). Then 6 and ¢ were chosen such
that the centre of the first small sphere in contact with this had co-ordinates (2.7,0,0).
The unit vector directed along the line of centres was then (1,0,0). A large sphere was
then chosen to be in contact with the first large sphere such that ¢ = 0, but with 6
picked randomly in the interval [0.891,7]. The rest of the spheres in contact with the

large were then chosen at random. These were mostly small spheres, so § was picked in
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the interval [0.759, 7] to avoid overlap with the first small sphere chosen. When another

large sphere was also chosen, we again pick 6 € [0.891, 7], imposing the condition of no

overlap (described later).

The program chooses a random number p say, this falls between [0,1] and so we let
¢ = 2mp. In picking 6 correctly, we need to ensure that the contacting spheres are
distributed with an even probability density. As we have mentioned for the large spheres
chosen we require 6 to be contained in the interval [0.891, 7] and thus sin§ € [0.777, 1]
or [1,0]. Similarly, for the small spheres chosen, we require sinf € [0.688,1] or [1,0]
and we want the values to be chosen uniformly on these intervals. The size of the
area [6,0 + 60] is sinfd6 and the number of values we pick in a given area must be

proportional to that area. We notice

/ sinfdf =1 + cos@
0

and that

/ sin 0df = 1.629
0.89

and

/ sin6d0 = 1.726.
0.759

From this we can see that for a large sphere we must have 1 + cos§ € [0,1.629] which
then gives the condition cos§ € [—1,0.629]. Hence, to define a random 6 for a large
sphere we let § = cos™! {1.629¢ — 1}, where q is a second random number. Similarly,
if we are trying to pick a small sphere, we must have cos 8 € [—1,0.726] and then let

6 = cos~! {1.726¢ — 1}. The unit vector 1) joining the centre of the nth sphere to

the n/th is found using 1) = [sin 8 cos ¢, sin B sin ¢, cos 6].

We must check that the current sphere does not overlap with the ones already cho-

sen. If the unit vector joining the centre of the nth sphere to a contacting one is I1 =

[sin 6, cos ¢1,sin 61 sin ¢, cos 6;] and that of a second 12 = [sin 6 cos ¢3, sin 2 sin ¢3, cos O]

then we must ensure that the angle separating these two is not less than m/3 for two
neighbouring large spheres, 0.759rads for two small spheres and 0.891rads for neigh-
bouring small and large spheres. We check that the cosine of the angle between them

is not greater than 1/2, 0.726 and 0.629 respectively. Now, the cosine of the angle
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between these unit vectors is given by
cos A = sin(6) sin(6) cos(6; — 62) + cos(6;) cos(2),

we throw away this last sphere if cos A is not within the required limits. We repeat
this test until the current sphere has been tested against all the other spheres. It can
be very hard for the computer to find a ‘gap’ to put another sphere into and so if after
one hundred tries it does not succeed then we throw away all the spheres chosen at this

point and start again.

This process of picking rfmdom numbers and subsequently co-ordinates for the sphere
centres is repeated until the required number of non-overlapping contacting spheres
has been found. In this case, in order to determine all the as and xs we must also
consider a typical small sphere and so we randomly pick spheres in contact with one of
the small spheres from the first part of the simulation. We chose to consider the small
sphere whose centre ié at (2.7,0,0) and pick the required number of small spheres in
contact with this. This sphere is already in contact with one large and we do not pick

anymore large spheres.

The small sphere we consider is already in contact with the initial large sphere and
in order to chose random small spheres around the one in consideration and ensure
no overlap with the large, we chose 6 uniformly in [0,7 — 0.891]. We let 6 = 7 —
cos™! {1.629r — 1}, where r is a random number between 0 and 1. We must also ensure
that the current small sphere does not overlap with any of those in contact chosen in
the first part of the simulation. Hence, we check that the distance between the centre
of the current sphere and those touching the initial large sphere is greater than or equal

to 2.

We proceed to chose the rest of the spheres in the same manner as before until we have
chosen the required number. At each stage we check that there is no overlap between
the current sphere and the other spheres touching the small sphere and also no overlap
with those from the first part of the simulation. We throw away all the spheres chosen
and try again if at any point we have attempted 100 times to place a sphere and do not
succeed. We also check that the small sphere is in equilibrium using the same methods

as those described in Chapter 4.

CHAPTER 6 201



6.3. THE oS AND xS ARISING IN A BINARY PACKING

The vector J and matrix N can be determined by summing components or products
of the components, of the unit vectors along the line of centres between spheres. From

these the values of @ and x can be calculated. A typical program is shown as an

example in Appendix C.

As mentioned above, we consider different combinations of small and large spheres in
contact in order to determine estimates for the a and x terms. The average number
of small spheres in contact with a particular small sphere is between 4 and 5, that for
large spheres touching a small between 0 and 1. We have an average of between 1 and 2
large spheres and between 8 and 9 small spheres touching a typical large sphere. Hence

we must consider the following combinations of contacts:

e 0 large and 4 small spheres in contact with a small sphere,

0 large and 5 small spheres in contact with a small sphere,

1 large and 4 small spheres in contact with a small sphere,

1 large and 5 small spheres in contact with a small sphere,

1 large and 8 small spheres in contact with a large sphere,

1 large and 9 small spheres in contact with a large sphere,

2 large and 8 small spheres in contact with a large sphere,
e 2 large and 9 small spheres in contact with a large sphere.

The table below shows the results of the calculation of the as and xs. The combinations
are abbreviated so as to be more compact, for example, (1/4s);, (1/8s); represents the
combination of items 3 and 5 from the list above. We notice that we have found
negative values for some of the parameters. We did not find any negative values in
Chapter 4, when considering equal sized spheres, but they are to be expected here.
Calculation of the parameters in Chapter 4 reduced to finding the value of a squared
term, for example, some multiple of |[J(|? and thus, these were always positive. The
parameters in this chapter cannot all be reduced in this way. Negative values arise in
those parameters which consider the average over a product of two components which

are related to different sized spheres in contact with the original sphere. For example,

Q550 = W-s—}m > on J(ss)id(st)i» considers contact of a small sphere with both small
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and large spheres. For most sphere arrangements, this kind of product will consist of

a combination of two components which are opposite in sign.
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Parameter

(*ss
&sssl
(*sl
Oils
OilUls

ail

Xsssl
Xsl
Xls

Xllls

Xl

(0/4s)s  (0/5s)s

0.0153 0.0132

0.0457  0.0300

(1/45s)s,
(1/8s)/
0.0234
-0.0084
0.0238
0.0085
-0.0029
0.0238
0.0236
-0.0177
0.0238
0.0092
-0.0205
0.0238

(1/5s)s,
(1/85)/
0.0343
-0.0061
0.0222
0.0078
-0.0028
0.0222
0.0307
-0.0165
0.0222
0.0086
-0.0184
0.0222

(1/4s)s,
1/9s)/
0.0211
-0.0080
0.0222
0.0074
-0.0027
0.0222
0.0216
-0.0177
0.0222
0.0076
-0.0205
0.0222

(1/5s)s,
(1292
0.0321
-0.0055
0.0208
0.0069
-0.0025
0.0208
0.0289
-0.0143
0.0208
0.0071
-0.0195
0.0208

(1/45)s,
(2285)2
0.0248
-0.0091
0.0222
0.0095
-0.0024
0.0176
0.0237
-0.0199
0.0222
0.0096
-0.0344
0.0190

(1/55)s,
(2285)2
0.0199
-0.0066
0.0208
0.0084
-0.0022
0.0178
0.0184
-0.0191
0.0208
0.0089
-0.0321
0.0182

(1/45)5,
(2/95)/
0.0239
-0.0086
0.0208
0.0075
-0.0021
0.0172
0.0228
-0.0175
0.0208
0.0079
-0.339
0.0180

(1/55)5,
(2/9s)/
0.0200
-0.0065
0.0196
0.0075
-0.0019
0.0157
0.0181
-0.0184
0.0196
0.0085
-0.0312
0.0168
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From the simulations of Dr. Oger [62] discussed in Chapter 5, we have that 7ls =
4.91260, »i = 1.49964, rsi = 0.73207 and #fis = 8.85972. To find an approximate value

for a $> for example, we take the following combination of the results

c’ss = 0.27(0.91a:ss(0/5s) + 0.09ass(0/4s)) + 0.73 (0.91{0.5 (0.86ass((1/5s)s, (U9s)i)
+0.14a,,((1/5a),, (I/8s)2) + 0.5 (0.86a,,((1/5a),, (2/9s)*) + 0.14a,,((1/52a),, (2/8a)i))}
+0.09(0.5 (0.86ass((1/4s)s, (1/9s)/) + 0.14a,,((1/4s)s, (1/8s)*))

+0.5 (0.86ass((1/43)s, (2/9s),) + 0.14a,,((1/4a),, (2/8s),))}), (6.70)

using obvious notation.

This yields a value of 0.0225 for ass and similarly the other values are found and are

given in the table below. We find

Gess (kssl &sl «/s Qaus an
0.0225 -0.0046 0.0150 0.0054 -0.0016 0.0146

Xss Xsssl X5l Xis XUs XU
0.0257 -0.0122 0.0146 0.0058 -0.0186 0.0058

Thus these approximate values for each can be substituted back into the expressions
for the bulk modulus, «*, equation (6.62) and the shear modulus, //*, equation (6.61),
in order to estimate the change in the values of the effective moduli. The modified
values are shown in the fourth column of the table below which compares the results

of this chapter with those obtained previously:

Numerical Walton’s  Theory Theory

Modulus Simulations Theory Chapter 5 Chapter 6
Bulk 185MPa 245MPa  135MPa 116MPa
Shear 127MPa 338MPa 186MPa 171MPa

The values of both moduli have decreased again. This decrease is quite large, it shows
that the uniform strain approximation is not particularly good for describing a binary
packing of spheres. As we mentioned before, small co-ordination numbers make the
approximation inaccurate and we have dealt with a lot of small co-ordination numbers

in this chapter and Chapter 5, thus we would expect there to be a large change.
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Unfortunately, the bulk modulus has moved further from the value of 185MPa given
by the numerical simulations, however the shear modulus has improved again, its value

coming closer to the 127MPa predicted in the simulations.

6.4 Conclusions

Throughout this thesis we have tried to bring closer correlation between the predicted
values of the effective elastic moduli from numerical simulations by Jenkins et al. [43]

and those from theoretical methods. The results are all summarised in the table below:

Numerical Walton’s Theory Theory Theory

Modulus Simulations  Theory  Chapter 3 Chapter 5 Chapter 6
Bulk 185MPa 245MPa  223MPa 135MPa 116MPa
Shear 127MPa 338MPa  308MPa 186MPa 171MPa

In every chapter of this thesis there has been closer correlation between the theory and

simulations than there was between Walton’s theory and the same simulations.

Our first modification to the theory was the work done for Chapter 3 which involved
modifying the uniform strain approximation for equal sized spheres. This yielded im-
proved predictions of the effective moduli, however the change was only around 9% for
each modulus and so the correlation between the results were still not good. This is
especially true of the value predicted for the shear modulus which from Walton’s the-
ory was nearly three times that of the simulations. A possible further extension of the
work in Chapter 3 would be to consider some higher order terms in the perturbation of
displacements and rotations of the uniform strain approximation. However, this would

still not result in a significant reduction in the shear modulus as is required.

In Chapter 5, we continued by extending the uniform strain approximation to binary
packings of spheres. The results were significantly different from those previously ob-
tained by Walton and our work in Chapter 3, the shear modulus was brought much
closer to the simulations. We conclude that a few large spheres amongst a packing
of small can make a big difference to the properties of the packing. Since many of
the co-ordination numbers used in this chapter were small, we believed that using the

uniform strain approximation was alright as a first approximation but that we must
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again look at first order perturbations of the displacements and rotations of the sphere
centres. This idea was considered in this final chapter, where more new values for the

effective moduli were predicted as seen above.

The results from the theory are still not identical with those of the simulations but
we have made significant progress with the work we have done. It is possible that
there are other factors in the simulations that affect the results but which would be too
complicated to include in the theory. In real packings and simulations, for example, each
sphere does not have the same co-ordination number and this can vary greatly across
the packing. When Dr. Oger [62] sent the results of his simulations and gave results
for the average co-ordination numbers of small and large spheres, he also included a
table which identified the exact co-ordination number for each sphere. This is shown

below.

Co-ordination No. of Large No. of Small Between Large Between Small

Number Spheres Spheres and Large and Small
1 0 0 527 87
2 0 0 359 533
3 15 257 131 1830
4 6 1619 16 3821
5 12 5517 1 4861
6 7 6373 34 3695
7 18 2405 21 1427
8 88 458 2 372
9 202 87 0 83
10 345 1 0 1
1 359 0 0 0
12 217 0 0 0
13 93 0 0 0
14 20 0 0 0
15 0 0 0 0
16 1 0 0 0

Then, for example, in a packing of 16717 small spheres and 1383 large spheres there

are 345 large spheres with co-ordination number ten and just one small sphere with
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co-ordination number ten. Clearly, it would be extremely cumbersome to include these
statistics into the theoretical results but it may be that this variation has an effect
on the properties of the packing. We have shown how co-ordination number affects
the accuracy of the uniform strain approximation in Chapter 4 when we discussed the
numerical value of o which gives a measure of the deviation from ideal behaviour. For
a sphere with only three or four contacts the uniform strain approximation is poor
and then maybe first order perturbations are not enough. The varying co-ordination

number is automatically present in the simulation.

Presented in this thesis are a few ideas which have improved the correlation between
the results predicted by theory and those found using numerical simulation. We should

note however, that there are still a couple of concerns that remain unanswered within
. the work presented. The first is the fact that in the theory, we predict values for the
bulk modulus which are less than those for the shear modulus, whereas the simulations
by Jenkins et al. [43] predict the exact opposite, that is p* < k*. At present, the author
does not have any explanation of why this might be so. The second problem that has not
been addressed completely, is that of the force chains that are present in the numerical
simulation sphere packings, as discussed in Cundall and Strack [25]. In Chapter 3, we
mentioned how our force expressions have the scope to lead to significantly different
magnitudes of force, acting on different contact areas. However, we have not been able
to predict exactly how these forces vary throughout a packing. It would perhaps be
interesting to address both this issue and that concerning which of the effective moduli
is larger, through further work, which could involve finding out in greater detail how

the packings in the numerical simulations are constructed.

Other areas for future work might include, the calculation of higher order perturbation
terms, continuing the work of Chapters 3 and 6, in order to see the effect of these upon
the theoretical predictions. Another interesting option could be to consider the effects
of a finite coefficient of friction. In his thesis, Slade [76] considers a finite coefficient
of friction for a packing of equal sized spheres. This could be extended to a binary
packing, such as is discussed in Chapters 5 and 6, in order to determine the impact of

friction upon, in particular, the effective elastic moduli of the packing.
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Integral Calculations

Several integrals arise during the calculation of the effective elastic moduli upon ap-
plication of an initial general biaxial strain to the boundary of our random packing.
These were mentioned in Chapter 2 but details were omitted. Here we show all the
integrals that arise and discuss in detail the calculation of just one, the methods for all

the others being analogous.

In Chapter 2 we only mentioned the one integral
2m T
< (—epglp L) /212 >= % / d¢/ (—e1sin @ — ez cos? 0)/2 cos® Bsinfdf  (A.1)
0 0

where e; < 0 and also e3 < 0. This we label integral 1. In fact there are nine integrals

in total that must be evaluated, the other eight are as follows:

o IL
1 2w b
— / do / (—ey sin? 8 — e cos? 0) 12 sin 6d6,
0 0
o IIL
1 2n g
y / qu/ (—eq sin? 8 — e3 cos? 6)/2 sin® 6d6,
0 0
o IV.
1 2m g
Z——/ d¢/ (—e; sin® 6 — e3 cos? 6)'/2 sin® 6d6,
mJO 0
o V.

27 T
L / d¢>/ (—e1 sin? 0 — e3 cos? 0)1/2 cos? 0 sin® 040,
4r Jo 0
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Integral Calculations

e VI

e VII

e VIIIL

o IX.

1

2w g
. / d¢/ (—e1 sin? 8 — e3 cos? 0)1/2 cos* fsin 66,
4w Jo 0

2 L
ﬁ / qu/ (—ey sin? @ — e3 cos? 6)3/2 sin 6d6,
0 0

1

27 m
— / dd)/ (—ey sin® 0 — e3 cos® 8)3/2 cos? 0sin 6,
4 Jo 0

1

4z

2m T
/ d¢/ (—ey sin? 6 — e3 cos? 0)3/2 sin® 6d6.
0 0

Fortunately, these do not all need to be evaluated as there are several relationships to

connect them together. These are as follows:

Re-arranging these,

I+111

1I,
IV+V = III,
V4VI = I,
VII = (—e)III — (e3)l,
VIIT+IX = VII,

VIII = (—e)V —(e3)VI.

we also find

v o= III+VIII+(63)I,
€1 — €3
v - _VIII+(e3)I,
€1 — €3
vi = YHI+(es)l
€] — €3

(A2)
(A.3)
(A.4)
(A.5)
(A.6)
(A7)

(A.8)
(A.9)

(A.10)

Hence, the values of all nine integrals can be calculated from the evaluation of just

integrals I, IT and VIII. We look in detail at the steps involved in the calculation of I.

We consider the calculation of integral I,

1

4r

2n T
/ d¢/ (—ey sin? § — e3 cos? t9)1/2 cos? @sin 0d6.
0 0
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Calculating the integration over ¢ and splitting the interval over which we integrate

with respect to 8, we have

1 w/2 |
I= 2 * 2/ (—ey sin® 8 — e3 cos? 6)/2 cos? 6 sin 6d6.
0
Now let
u = cosf,

then

du = sinf

and when § =0, u = 1, when 8 = 7/2, u = 0. Thus we have

0
I = / —(—e1(1 — u?) — e3u?)%0udu

1
1
= (—e1(1 — u?) — e3u?)?u2du.
0

We also let f; = —e; and f3 = —e3, so that

1
I= /0 (F1 + (f3 = f1)ud)2u?du. (A1)

We must consider the two cases f; > fs and f3 < fi seperately. ",

For the first case f; > f3, we introduce the further substitution
(f1 — f3)Y?u = f}/*sino@,

so then

(f1 = £3)2du = £}/% cos ©dO.

This gives us:

% A g e 2 o122
I—/O ((f1—f3)) [f1 — f1sin* ©]"/sin® © cos OdO

where
sin©®g = (———(f1 _ f3))1/2.

h
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Thus
f?
[=__Ji
(f1 — f3)3/?

This can be evaluated using the identities

©o
/ sin? O cos® O©dO.
0

sin2@ = 2sin© cos ©

and
1 — cos40 = 2sin? 20
so that
2 : (SN
I fi 32[@_S1n46] .
8(f1— f3)*/ 4 Jo

So, for —e; > —e3 > 0. the integral is evaluated to be:

—e1)? e; — 1/2 ex —e 1/2
I= s(e;(, _16)1)3/2 {Sin_l (‘Lﬁ) + (3—21_)—(—63)1/2(263 - el)} . (A12)

61 61

Considering now the case when f3 > f; i.e. —e3 > —e; we proceed in a similar manner.

Recalling equation (A.11), we have reduced integral I to:

I= [+ (5= i) oulau,

0
We let '.
(fs—fl)l/ZU=f11/2sinh@

and then

(fs — £1)2du = 1'% cosh ©dO.

So the integral becomes

_ (% A s 12 AT1/2 12
I—/o ((f3_f1)) [f1 + fisinh® ©]"/ sinh® © cosh ©d©

where ©q is now found from

sinh ©g = (————(f3 — fl))l/g.
N
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So we have
L
(f3 — f1)3/?

This can be evaluated using the identities

9o
] sinh? © cosh? ©dO.
0

sinh 20 = 2sinh © cosh ©

and
cosh4© — 1 = 2sinh? 20
so that

_ f? _ sin4@ ©o
= 8(fs — f3)3/? [6 4 ] '

So, for —e3 > —e; > 0. integral I is evaluated as:

0

_ (—61)2 (er — 33)1/2 N2, i1 (63 — 61)1/2
I'= 8(e1 — e3)3/2 &2 (—e3)”/*(e1 — 2e3) — sinh B . (A13)

If it were required, all the other integrals could be calculated in a similar manner.
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Calculation of and X f°r

different sized spheres

Computer program used to calculate the values of @ and x f°r a binary packing, from
an initial large and small sphere in contact with each other. The large sphere is fur-
ther surrounded by one large and eight small spheres and the original small sphere
is surrounded by a further four small spheres. Both of the original spheres are in

equilibrium.

function y * diffspl8140

g=100; h=100; 1i=100; 3j=100; k=100; 1=100;

while g==100 I h==100 I i==100 I j==100 I k==100 I 1=*100

clear

bl=0;

11=1[0; 0; 11; '/.this represents a small sphere touching the large one
m2=rand;

a2 = acos(1-629*m2 - 1); '/.pick large sphere next

b2=0;

I2*[sin(a2) *cos (b2); sin(a2)*sin(b2); cos(a2)];

K2*[3.4=sin(a2)=cos (b2); 3.4»sin(a2)»sin(b2); 3.4*%cos(a2)-1.7] ;

B1=3/4; B2=3/4; B3*3/4;
B4=3/4; B5=3/4j B6*3/4;
B7=3/4; B8=3/4; B9=3/4;
B10=3/4; B11=3/4; B12=3/4;
B13=3/4; B14=3/4; B15=3/4;
B16-3/4; B17=3/4; 818%*3/4;
B19=3/4; B20=3/4; B21=3/4;
B22=3/4; B23*3/4; B24=3/4;
B25=3/4; B26=3/4;

B27=3/4; B28=3/4;
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Know pick another 7 small spheres,

/.chosen spheres

while B1>0.629
m3=rand;

a3 « acos(3*m3/2 - 1);
b3-2*%pi*rand;
Bl-sin(a2)*sin(a3)»cos (b2-b3)
13-[sin(a3) *cos (b3) ;
K3-[2.7*sin(a3)«cos (b3);

end;

while B2>0.629 I B3>0.726

Xcheck small sphere doesn't overlap

sin(a3) *sin(b3);

2.7*sin(a3)»sin(b3);

Calculation of ¢ and |

not overlapping with the previously

with large

+cos (a2) *cos (a3);
cos(a3)];

2 .7»cos(a3)-1.7] ;

/.end of while B1>0.629 loop

Xcheck sphere doesn’t overlap with those already chosen

m4-rand;

ad * acos(3*m4/2 - 1);
b4-2*pi*rand;
B2=sin(a2) *sin (a4) *cos (b2-b4)
B3=sin(a3)»sin(a4) *cos (b3-b4)
14-[sin(ad) *cos (b4) ;
K4=[2.7*sin(a4) *cos (b4) ;
end;

while B4>0.629 I B5>0.726
mb-rand;

as e acos(3*m&/2 - 1);
b5-2»pi*rand;

B4=sin(a2) *sin(a5) *cos (b2-b5)
BS=sin(a3) *sin(ab) »cos (b3-b5)
B6=sin(a4) *sin(a5) *cos (b4-b5)
I5=[sin(aS)»cos(b5);
K5-[2.7*sin(a5) *cos (b5) ;

end;

sin(a4d) *sin(bd);
2.7*sin (a4)»sin (b4);

Xend of while B2>0.629

sin(a5) *sin (b5);
2.7*sin(a&) *sin(b5) ;

Xend of while B4>0.629 I B5>0.5

+cos (a2) *cos (ad) ;
+cos (a3) *cos (ad) ;
cos (ad)];
2.7»cos (a4)-1.7];

i B3>0.5 loop

1 B6>0.726

+cos (a2) *cos (a5);
+cos (a3)»cos (a5) 7
+cos (a4) »cos (a5) ;
cos (a5)];
2.7»cos (a5)-1.7] ;

I B6>0.5

while B7>0.629 I B8>0.726 I B9>0.726 I B10>0.726

ro6-rand;

a6 - acos(3*m6/2 - 1);
bé6-2*pi*rand;
B7-sin(a2) *sin(a6)»cos (b2-b6)
B8=sin(a3) *sin(a6) «cos (b3-b6)
B9=sin(a4) *sin(a6) *cos (b4-b6)
B10-sin(a5) *sin(a6)»cos (b5-b6)
I16=[sin(a6)»cos (b6);
K6-[2.7*sin(a6)»cos (b6) ;

end;

while B11>0.629
m7=rand;

al - acos(3*m7/2 - 1);
b7=2*pi*rand;
Bll=sin(a2)»sin(a7) *cos (b2-b7)
Bl2=sin(a3)»sin(a7) *cos (b3-b7)
Bl3=sin(a4) *sin(a7) *cos (b4-b7)
Bld4=sin(a5) *sin(a7) *cos (b5-b7)
Bl5-sin(a6)»sin(a7) *cos (b6-b7)
I7=[sin(a7)*cos (b7);
K7=[2.7*sin(a7)»cos (b7);
end;
g=0; h=0; i-0; §-0;

k-0; 1-0;

sin(a6)*sin(b6);

2.7*sin(a6)*sin(b6) ;

I B12>0.726 I B13>0.726 I B14>0.726

sin(a7)*sin (b7);
2.7*sin(a7)»sin(b7) ;

Xend of while B11>0.629 etc.

+cos (a2) *cos (a6) ;
+cos (a3) *cos (a6) ;
+cos (ad)»cos (ab) ;
+cos (a5) *cos (a6) ;
cos (a6) ];

2.7*cos(a6)-1.7] ;

Xend of while B7>0.629 etc loop

I B15>0.726

+cos (a2) *cos(a7) ;

+cos (a3) *cos (a7) ;

+cos (a4) *cos (a7) ;

+cos (a5) *cos (a7) ;

+cos (a6)»cos (a7);

cos(a7)];
2.7*cos(a7)-1.71;

loop

while B16>0.629|B17>0.726IB18>0.726IB19>0.726|B20>0.7261B21>0.726 k g<100

m8=rand;

g-g+i;

a8 = acos(3*m8/2 - 1);
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b8=2*pi*rand;
Bl6-sin(a2)*sin(a8)»coa (b2-b8) +cos(a2)*cos(a8);
Bl7=sin(a3)*sin(a8) *coa (b3-b8) +cos(a3)»cos(a8);
Bl8-sin(a4)*sin(aB) *coa (b4-b8) +cos(ad)*cos(a8) ;
Bl9=sin(a5) *sin(a8) *cos (b5-b8) +cos(a5) *cos(a8);

B20=sin(a6)»sin(a8)*cos(b6-b8) +cos(a6)*cos(a8) ;
B21*sin(a7)»sin(a8)»cos (b7-b8) +cos(a7)«cos(a8)]
I8=[sin(a8)*cos(b8); sin(a8)*sin(b8); cos(aB)];
K8*[2.7*sin(a8)*cos (b8); 2.7*sin(a8)*sin(b8); 2.7*cos(a8)-1.7];

end; Xend of while B16>0.629 etc. loop

if g'*100

while B22>0.6291B23>0.7261B24>0.7261B25>0.7261B26>0.7261B27>0.7261B28>0.726th<100

h-h+1;

m9=rand;

a%= acos(3*m9/2 - 1);

b9=2*pi*rand;

B22=ain(a2) *sin(a9) *coa (b2-b9) +cos(a2)*cos(a9);
B23=sin(a3) *sin(a9) *coa(b3-b9) +cos(a3)*cos(a9);
B24=ain (a4) *ain(a9) *coa (b4-b9) +coa(ad)*coa(a9);
B25*ain (a5) *8in(a9) «coa (b6-b9) +coa(ad)*co8(a9);
B26*ain(a6)*ain(a9) *coa (b6-b9) +co8(a6)*coa(a9);
B27»ain(a7) *ain(a9)»coa (b7-b9) +coa(a7)*coa(a9);
B28=ssin(a8) *ain(a9)»coa (b8-b9) +co8 (a8) *coa(a9);
I9=[sin(a9)*cos (b9); ain(a9)*ain(b9); coa(a9)];
K9=[2.7»ain(a9) *coa(b9); 2.7»sin(a9)»ain(b9); 2.7*cos(a9)-1.71];

end; Xend of B22>0.629 etc. loop

if h'«100

while n=*-1
a21=0;
b22-0;

I10*[0; 0; -113

kl=1; k2=1; k3-1; k4*1; ks*1; k6*l; k7*1; k8*1;

while k1<2.70 I k2<2 I k3<2 I k4<2 I kS<2 I k6<2 I k7<2 I k8<2 k i<100
i=i+1;

mll=rand;

all = pi - acoa(l.629*mll - 1); Xpick amall spheres such that they don’t
Xoverlap with large

bll = 2»pi*rand;

Ill=tain(all)*cos(bll); sin(all)*sin(bll); cos(all)];

Kll*t2*sin(all) *coa(bll); 2*sin(all)*sin(bll); 2»cos(all)+1];

k1l = nonn(K11-K2);

k2

norm (K11-K3) j
k3 * norm(KU-K4);
k4 = norm(KU-K5);

kS * norm(K11-K6);

*

k6 norm(K11-K7) ;
k7 = norm(K11-K8);
k8 = normCK11-K9);

end Xend of while k1<2.70 etc. loop

B29=3/4; B30*3/4; B31*3/4; B32*3/4; B33*3/4; B34*3/4;

k9=1; k10*1; kll*1; kl12*1; k13*1; kl4*1; k1S-1; kl6*1l;

if i"=100

while k9<2.701 k10<21 k11<21 kl12<21 k13<21 kl4<21 k15<21 kl16<21 B29>0.5 *3j<100
ERSERE

ml2 *rand;

al2 * pi - acos(1.629*ml2 -1);
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bl2 -2»pi»rand;

B29=sin(all)*sin(al2)-cos(bll-bl2) +cos(all)«cos(al2);
I12=[sin(al2)»cos(bl2); sin(al2)*sin(bl2); cos(al2)];
K12=[2»sin(al2) *cos (bl2); 2*sin(al2)»sin(bl2); 2*cos(al2)+1];
k9 = norm(K12-K2);

nonn (K12-K3) ;

~
=
i

*

norm(K12-K4) ;

k12 * norm(K12-K5);

k13 = norm(K12-K6);
k14 « norm(K12-K7);
k15 nonn (K12-K8) ;
k16 nonn (K12-K9) ;
end; %end of while k9<2.70 loop

k17=1; k18«l; k19=1; k20=1; k21»l; k22=1; k23=1; k24=1;

if §'-100

while k17<2.701k18<21k19<21k20<21k21<21k22<2|k23<21k24<21B30>0.51B31>0.5kk<100
k=k+1;

ml3-rand;

al3= pi - acos(1.629»ml3 - 1);

bl3 -2*pi*rand;

B30=sin(all)»sin(al3)»cos(bll-bl3) +cos(all)*cos(al3);
B3l=sin(al2)»sin(al3)»coa(bl2-b1l3) +coa(al2)*cos(al3);
I13*[sin(al3)»cos(bl3); sin(al3)*sin(bl3); cos(al3)];
K13=[2*sin(al3)»cos (bl3); 2*sin(al3)*sin(bl3); 2*cos(al3)+1];

k17 « nonn(K13-K2);

~
o
@

norm (K13-K3) ;
k19 » norm(K13-K4);

k20 - norm(K13-K5);

norm (K13-K6) ;
k22 » norm(K13-K7);
k23 * norm(K13-K8);
k24 « norm(K13-K9);

end; %end of while while k17<2.70

k25=1; k26=1; k27*1; k28-1; k29-1; k30=1; k31=1; k32=1; k33-1;
if k~-100

while k25<2.701k26<21k27<21k28<21k29<2Tk30<2Tk31<2 ITk32<21B32>0.51B33>0.5IB34<0.5%1<100
-H;

mld=rand;

ald= pi - acosd,629*mld - 1);

bl4 -2*%pi*rand;

B32=sin(all) *sin(al4) *cos (bl1-bl4) +co8(all)*cos(ald) ;
B33-sin(al2) *ain(ald) *cos (bl2-bl4) +cos(al2)*cos(ald);
B34=sin(al3)»sin(ald)»cos(bl3-bl4) +cos(al3)*cos(ald);
I14=[sin(al4)»cos(bl4); sin(al4d)*sin(bl4); cos(ald)];
Kl4=[2*sin(ald) *cos (bl4); 2*sin(ald)*sin(bld) ; 2*cos(ald)+1l];
k25 - nonn(K14-K2);

k26 = norm(K14-K3);

k27 - norm(K14-K4);

k28 = norm(K14-KS);

k29 - nonn(K14-K6);

k30 = nonn(K14-K7);

k31 - norm(K14-K8);

nonn (K14-K9) ;

cOl = crosadlO, IU) ;
c02 = cross(I10,112);
c03 - crossdl0, 113);
c04 - cross(I10,I14);

cl2 - crooadll,112) ;
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cl3 = cross(111,113)

a
2
IS

*

cross(Ill,114)
c23 = cross(Il2,113)

c24 * cross(Il2,114)

a

w

IS
|

cross (I13,U4)

doi2 - coi**H2:
d013 * c011*113;

dold »

cOL "*114;
d023 - c02'*I13;
d024 = c027*I14;
d034 = c03**114;
d123 » cl2/*U3;
dl24 = cl2'*I14;
dl134 - cl137*114;

d234 * c23'*U4;

s(1,1)»0;
m220,
s(3,3)-0;
s(4,4)*0;
s(5,5)=0;
s(4,5)=sign(d012);
s(3,5)=sign(d013);
s5(3,4)=sign(d014);
s(2,5)=sign(d023) ;
5(2,4)-sign(d024) ;
s(2,3)-sign(d034);
s(1,5)*sign(d123);
s(l,4)»sign(dl24);
s(1,3)=sign(dl134);

s(1,2)=sign(d234);

if W(1,5)%»(2,5)<0 k s(1,5)%s(3,5)>0 k s(2,5)*s(4,5)>0

elseif s(1,2)*s(1.3)<0 k s(1,2)*s(1,4)>0 & s(1,3)*s(1,5)>0
n*l;
m*l;
elseif s(1,2)*s(2,3)<0 k s(1,2)**(2,4)>0 k s(2,3)«s(2,5)>0
n-1;
m*2;

elseif s(1,3)*s(2,3)<0 * s(1,3)*8(3,4)>0 & s(2,3)*s(3,5)>0

elseif s(1,4)*s(2,4)<0 k s(1,4)»s(3,4)>0 4 s(2,4)*s(4,5)>0

else n— 1;

end '/.ed of if s(1,5)*s(2,5)<0 loop

end '/end of if k=100 loop
end 7,end of if j~*100 loop
end %end of if i“*100 loop
end '/.erd of while n**-1

end '/.end of if h"=100 loop
end '/.erd of if g"=100 loop
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if 1**100 f£ 1**0
Jls* (I1+I3+I4+I5+16+I7+18+19)/8;

J11-12;

Jss=(111+112+113+114)/4;

Js1-110;
y.N= N_s(eta_8+eta_sl) + N_l(eta.lteta ls) = 1»(4+1) + 1*(1+8) = 14

alpha.ns =4*Jss’*JsB/42;
alpha.sssl =Jss'eJsl/42;
'/.xi.sssl =J8S'*Js1/42;
Xxi.ssll *Jss'*J11/42;
alpha.nsl =1*Jsl’*Jsl/42;
Xxi.lssl =J1s'*J81/42;
Xxi.lsll *J1B *J11/42;
alpha.nls =8*J1s'*Jls/42;
alpha.lsll=Jls»*J11/42;

alpha.nl =1*J11'*J11/42;

11111*0;
11112%0 ;
11113*0;
11122%0 ;
11123-0;
11133%0;
11222%0;
11223*0;
11233%0;

11333*%1;

I2111*I2(1)*3;

12112* 12(0 *2*%12(2);
12113-12(0*2*12(3);
12122=12(0 *12(2)*2;
I12123*%I2(1)*12(2)*12(3);
12133*12(1)*12(3) *2;
12222-12(2)*3;
12223%12(2) *2*12(3) ;
12233%12(2)*12(3)*2;

12333-12(3) *3;

13111*13(0*3;
13112=13(0*2*13(2) ;
13113-13(0*2*13(3) ;
13122*13(1) *13(2) *2;
13123%13(1)*13(2)*13(3);
13133*%13(1) *13(3) *2;
13222*13(2) *3;
13223=13(2)*2*13(3);
13233%13(2) *13(3) *2;

13333*13(3) *3;

14111%14(0*3;
14112=14(0*2*14(2);
T4U3*I4 (1) '2*14(3);
14122=14(0*14(2) *2;
14123-14(0%14(2)*14(3) ;
14133=14(0%14(3) *2;
14222=14(2) *3;
14223*%14(2)*2*14(3);
14233=I4(2)*I4(3)*2;

I4333=14(3)*3;
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IS111-I5(1)-3;
15112*15(1)~2*15(2) 1
15113%15(1)"2*15(3);
15122%15(1)*15(2) '2;
15123*15(1) *15(2) *15(3) ;
15133%15(1)*15(3)"2;
15222=15(2)-3;
15223%15(2) *2*15(3) ;
15233*%15(2)*15(3) *2;

I5333*I5(3)"3;

16111*16(1)"3;
16112*16(1)*2*16(2);
16113=16(1)*2*16(3);
16122*16 (1) *16(2) *2;
16123*16(1)*16(2) *16(3) ;
16133*16(1)*16(3)*2;
16222=16(2) *3;
16223*16(2)"2*16(3);
16233-16(2) *16(3) *2;

16333*16(3) '3;

I7111»I7(1) *3;
I7112-I7(1)*2*17(2);
I7113*I7(1)*2*I7(3);
17122-17(1) *17(2) *2;
I7123=I7(1)*I7(2)*17(3);
17133*17(1)*17(3) *2;
17222-17(2) *3;
17223-17(2)"2*17(3) ;
17233-17(2)*17(3) *2;

17333%17(3)"3;

18111*18(1)*3;
I8112-1I8(1)*2*1I8(2);
18113*18 (1) *2*18(3);
18122*18(1)*18(2)"2;
18123=18(1)*18(2)*18(3);
18133-18(1) *18(3) *2;
18222=18(2)"3;
18223=18(2)-2*18(3);
18233*18(2) *18(3)"2;

18333=I8(3)*3j

19111=19(1) '3;
19112=19(1)*2*19(2);
19113=19(1)*2*19(3);
19122=19(1)*19(2)“2;
19123=19(1)*19(2) *19(3) ;
19133=19(1)*19(3)"2;
19222=19(2)-3;
19223=19(2)*2*19(3);
19233%19(2) *19(3) *2;

19333-19(3) *3;

I10111=I10(1)"3;
I10112=T10(1)-2*U0(2) ;
110113=110(1)"2*110(3);
110122=T10(1)*T10(2)*2;
110123=110(1)*110(2)*110(3) ;
T110133=110(1)*I10(3)*2;
110222=I10(2)*3;
110223=110(2)”2*110(3);

I10233=110(2)*110(3)"2;
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110333%110(3)"3;

111111=111(0*3;

125 111(1)*2*111(2);
111113*111(1)”2*111(3);
THH122* 1111 *111(2)*2;
I11123-I11(1)*I11(2)*I11(3);
II1133*111(1)*I11(3)*2;
I11222*111(2)*3;
I111223*I11(2)”2*111(3)1
111233%111(2) *111(3) *2;

111333=111(3)*3;

112111-112(1) "*3;
112112=112(1)*2*112(2);
112113*112(0*2%112(3) ;
112122-112(0%112(2) *2:
112123*%112(0*%112(2)*112(3) ;
112133-112(0*112(3) *2j
112222=112(2)*3;
112223%112(2) *2*112(3) ;
I12233-I12(2)*I12(3)*2;

112333%112(3) *3;

113111-113(0*3;
113112-113(0%2*113(2);
113113=113(0*2*113(3);
113122-113(0*113(2) *2;
113123-113(1)*113(2)*113(3);
T13133-113(1)*I13(3)*2;
113222-113(2) *3;
113223*113(2)*2*113(3);
I13233-113(2)*113(3)*2;

113333%113(3) *3;

114111-114(0*3;
114112-114(0*2*114(2);
114113=114(0*2*114(3);
114122*114(0*114(2) *2;
114123=114(1)*114(2)*114(3);
114133=114(0%114(3) *2;
114222=114(2)*3;
114223=114(2) *2*114(3) ;
T14233*T14(2) *114(3)*2;

114333=114(3) *3;

Nslll =111111+112111+113111+114111;
Nsllll *110111;
N111l *12111;

Nlslll =11111+I31U+I41U0+I5111+16111+17111+18111+19111;

Nsl1l2 -T11112+T12112+I13112+4114112;
Nslll2 *110112;
N11l2 *12112;

N1sll2 -I11112+13112+14112+15112+16112+17112+18112+19112;

Ns113 *111113+112113+113113+114113;
Ns1113 -110113;
N1113 =12113;

Nisil3 *11113+13113+14113+415113+16113+17113+18113+19113;

NS122  *111122+112122+113122+114122;

Nsll22 *110122;
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N1122 -12122;

N1s122 *11122+13122+I4122+15122+16122+17122+18122+19122;

Nsl23 *111123+112123+113123+114123;
Ns1123 *110123;
N1123 =12123;

N1s123 *11123+13123+14123+15123+16123+17123+18123+19123;

Ns133 *111133+112133+113133+114133;
Ns1133 *110133;
N1133 *12133;

N1s133 #11133+13133+14133+15133+16133+17133+18133+19133;

Ns222 =111222+112222+113222+114222;
Nsl222 =110222;
N1222  *12222;

N1s222 =11222+13222+14222+15222+16222+17222+18222+19222;

Ns223 *111223+112223+113223+114223;
Ns1223 =110223;
N1223  *12223;

N1s223 =11223+13223+14223+415223+16223+17223+18223+19223;

Ns233 *T11233+I112233+113233+114233;
Nal233 >110233;
N1233 -12233;

N1S233 =11233+13233+14233+15233+16233+17233+18233+19233;

Ns333 -II1333+I12333+113333+114333;
Ns1333 -110333;
N1333 -12333;

N1s333 -I1333+13333+I4333+I5333+16333+17333+18333+19333;

Ns*N«l1li'2+3% (Ns112-2)+3* (Ns113%2)+3» (Ns122'2) +6* (Ns123-2) +3» (Ns133+2)
+N§222%2+3%(Nb223%2)+3+(M»233'2)+Hs333°2;

Ns1=Nsl1111-2+3*%(Ns1112-2)+3* (Ns1113-2)+3+(Ns1122'2)+6* (NB1123*2)+3+ (Nall33-2)
+Ns1222%2+3= (Ns1223%2) +3* (Ns1233'2) +Ns1333"2;

N1-N1111-2+43% (N1112%2)+3% (N1113%2)+3% (N1122"2) +6+ (NU23“2) +3+ (N1133%2)
+N1222'2+3% (N122312) +3+ (N1233°2) +N1333%2;
N1s=N1s111~2+3*(N1s112%2)+3*(N1s113"2)+3* (N1s122"2)+6* (M1s123%2)+3* (N1s133*2)
+N15222'2+3» (N15223~2) +3* (N15233'2) +N15333-2;
N8Ss1=Ns1l1*Ns1111+3*Ns112*NsUl2+3*Ns113*Ns1113+3*Ns122*Ns1122+6*Ns123*Ns1123
+3*Ns133-Ns1133+Ns222»Ns1222+3*N8223»Ns1223+3»Ns233*N81223+Ns333*Ns1333;
N1s11=N1s111-N1111+3*N1s112=N1112+3*N1s113=N1113+3*N1s122»N1122+6*N1s123*N1123

+3*N1s133*N1133+N1s222*N1222+3*N1s223*N1223+3*N1s233*N1223+N1s333*N1333;
Cs=Ns/ (4*42) ;

Csl=Nsl/(1*%42);

C1-N1/42;

Cls=Mls/ (8%42);

Csssl=Ns3sl1/42;

Clsll=N1lsll/42;

y=[alpha.ns,alpha.assi.alpha.nsl,alpha.nls,alpha.lsll,alpha.nl,Cs,Csssl,Csl,Cls,C1811,C1];

end Xend of if 1'-100 ¢t 1'‘=0 loop

end Xend of while g=*100 I h==100 I i— 100 I j*=100 I k==100 I 1=-100 loop
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Appendix C

Table of Isotropic Elastic

Constants

A/l

Vv

A+

fi(3A+2/x)

A+/i

A
2(A+M)

W Ay

o Ul -

A+/iy

E, v
Ev
(1-2«/) a+va-2v
E
2(1+i/)
2u(l+id E
31—=2%) 3(1=2i)
2i/(1 + 1) E
|4 4
1-* 1—i/2
(Znn) nE
v v(l+v)
2irfi nE

C
niB't-C'2)

1
21(S+C)

2S8+C
37r(B2-C a)

B+2C
T(B+C)

C
B+C

A and [i are the Lame moduli, ¥ the bulk modulus, £ is Young’s modulus and v

Poisson’s ratio.
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