

University of Bath

PHD

Toolpath verification using set-theoretic solid modelling

Wallis, Andrew Francis

Award date:
1991

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021

https://researchportal.bath.ac.uk/en/studentthesis/toolpath-verification-using-settheoretic-solid-modelling(898aed1f-f7ae-488a-9a32-9926bc30fe00).html

Toolpath Verification using Set-Theoretic Solid Modelling

Submitted by Andrew Francis WALLIS

for the degree of PhD

of the University o f Bath

1991

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been suplied on the condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no quo

tation from the thesis and no information derived from it may be published without

the prior written consent of the author.

This thesis may be made available for consultation within the University Library

and may be photocopied or lent to other libraries for the purpose of consultation.

UMI Number: U043924

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U043924
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

5o 58oll

Acknowledgements

Firstly, I would like to thank Dr. John Woodwark who was the original supervisor

of the research project described in this thesis. Dr. Woodwark introduced me to the

topic of solid modelling and provided much encouragement and inspiration both for

the work described here, and also in the wider field of solid modelling. I would

also like to thank my colleagues in the Manufacturing Group of Bath University

School of Mechanical Engineering for their patience, and to Dr. Adrian Bowyer in

particular for his advice during the final stages of the writing of this thesis. The

work was originally funded by the SERC and Delta CAE Ltd. (now DeltaCAM),

and I gratefully acknowledge this.

SUMMARY

The manufacture of components using Computer Numerically Controlled machine

tools is widespread in engineering industry. The checking of toolpath descriptions

for these machines before component manufacture begins is important if costly

mistakes are to be avoided. This thesis describes a technique for toolpath

verification using Solid Modelling. The basis of the work is the generation of a

spatially divided model of the component that results from subtracting a model of

the volume swept by the cutter from a model o f the component blank. An algo

rithm is presented for the control of the spatial division process. Techniques of

picture generation and model interrogation using raycasting are described.

Also presented is an algorithm for the input of facetted set theoretic models

from two dimensional contours.

Contents

CHAPTER 1: Introduction

Computer Representation of Shape 1

Applications of Solid Models 3

Representation Schemes for Solid Modelling 4

B-rep and Set-Theoretic Modelling Schemes Compared 5

Toolpath Verification 7

A Toolpath Verification System based on Solid Modelling 8

The Modelling Schemes used for this Project 9

CHAPTER 2: Evaluation of Set-Theoretic Models

Set-Theoretic Models 11

A Data-structure for Storing Set-Theoretic Models 12

Output from Set-Theoretic Models 14

Line Drawings 15

Membership Tests 17

Continuous tone Pictures 18

Raycasting 19

Shading the Picture 22

The Problem of Model Complexity 22

Primitive Complexity 23

Primitive Combination 23

Facetting 24

Model Size 26

Increasing the Efficiency of Model Evaluation 27

Boxing Tests 27

Spatial Division 29

Model Pruning 30

CHAPTER 3: Generating and Storing (Set-Theoretic)

Solid models in a divided state

Object division and Spatial model division 40

The Requirements of a Spatially Divided Data-structure 43

Regular (grid) Division 43

Tree Structures for Divided Models 44

Oct-trees 46

Binary trees 47

Creating a Binary Divided Model 48

Ideal Characteristics of a Spatially Divided Model 49

Sub-space Testing 51

Sub-space Testing: Geometric Tests 51

Sub-space Testing: Non-geometric Tests 52

Selecting a Node for Further Division 53

Deciding how to Split a Node 53

CHAPTER 4: Input to a Solid Modelling System

Alternative Input techniques 57

Language Input 58

Graphical Input 59

An Algorithm for Graphical Input of Set-Theoretic Models 62

The Interactive Input System 64

An Example 66

Building a Model from Outlines from a

Computer Aided Part Programming Package 67

CHAPTER 5: Toolpath Verification

Toolpath Generation 74

The Complexity of Toolpaths 76

The Need for Verification 77

Requirements of the Verification Process 78

Methods of Verification 79

Computer Verification 81

Toolpath verification by Solid Modelling 86

Problems with using Solid Modelling for Toolpath Verification 88

The Approach taken in this Project 90

CHAPTER 6: Construction of a Solid Mode! from a

Toolpath Description

Composition of the Model 97

Factors Affecting the Geometry of Machined Surfaces 98

The Toolpath Description 101

Generation the Model for the Swept Volume 105

Vertical Tool Movement 106

Horizontal Linear Tool Movement 107

Horizontal Circular Tool Movement 107

Three Axis Linear Tool Movement 109

Modelling Complicated Tools 110

Other Features of the Model Generator 111

CHAPTER 7: Creating the Divided Model

Requirements of the Divided Model 118

Method of Generation 119

The Division Process 121

Controlling Division 122

Creating the new Sub-spaces 126

The Load Function 127

Maintaining the Load Values 129

The Data Structures used in the Division Process 130

The Structure of the Divided Model 132

Half-space Pruning 133

The Performance of the Model Divider 134

CHAPTER 8: Examining the divided model

Picture Generation 148

The Raycasting Algorithm 148

Colouring the Pictures 140

Interrogating the Model 150

Inspection Requirements 152

Inspection Tools: Pointing 154

Inspection Tools: Stepping 154

Additional Features 155

Traversing the Spatially Divided Model Tree 156

Processing each Sub-model 158

Rootfinding for Polynomial Half-spaces 160

The Performance of the Raycaster 160

CHAPTER 9: Conclusions

The Verification System 167

Interactive Interrogation of Solid Models 168

The Solid Modelling Scheme based on Spatial Division 168

Graphical Input Techniques 169

Future Work

Extending the System 169

Incremental Cutting Simulation 169

Multi-processor Implementation 170

Detecting Collisions 170

APPENDIX 1: Examples of the Software in Use 171

CHAPTER 1

Introduction

Computer Representation of Shape

One of the main applications of computing in engineering is the representation of

the shape of engineering components. There are many ways of representing

shape [1], although most techniques may be classified into one of three categories.

One of the earliest uses of computer techniques to represent the shapes of engineer

ing components were Computer Aided Draughting systems. The simplest draught

ing systems store a list of lines and vertices in two-dimensions that are equivalent

to a manually produced engineering drawing. Although the computer-based system

offers many advantages over the manual approach in terms of ease of drawing

creation and modification, it does not (necessarily) contain any additional informa

tion.

Three-dimensional draughting systems were developed as extensions of these

two-dimensional systems. Vertices and lines in three dimensions are stored and

two-dimensional drawings are generated by projecting the three-dimensional data

into a two-dimensional plane. As in the case o f the 2D systems, the only informa

tion stored are the lines and vertices. The term wire-frame is often applied to such

systems since the data-structure contains the same information that could be used

to generate a physical model of the component from pieces of wire. It is important

to note that there may be no representation of the form of the faces of the com

ponent, and certainly no information as to which parts of the model are solid, and

1

which are not. This means that inconsistent and ambiguous models may be con

structed, one well-known example (shown in figure 1.1) consists of two nested

cuboids that can be interpreted as a block with a chamfered hole oriented in one of

three directions.

The second category of modelling systems arc the surface modelling systems,

which, as is implied by the name, arc used to model the surfaces of components.

They were developed mainly for describing surfaces that were be cut by

numerically-controlled machine tools. The surfaces modelled by such systems are

often curved (sculptured surfaces) and the approach used to model them is to

approximate the surface by a large number of patches [2]. Whilst these systems

model the surface form of a component, they still do not store any information as

to solidity. Also, there are often few or no checks to ensure that the surfaces used

to described a component are consistent Hence it is possible to describe shapes

that cannot exist in the real world. Nevertheless, surface modelling systems are

often capable of modelling a wide range of surface geometries, and with suitable

care, have a wide range of engineering and computer-graphics uses.

Another three-dimensional representation is the polygonal face-model. These

represent the surface of a model by a list of faces, each of which is a (possibly

convex) polygon. This may be regarded as an incomplete Boundary-representation

(B-rep). As such it is difficult to ensure consistency in such a model, and the gen

eration and maintenance of such structures may prove difficult. However they are

of importance partly because many algorithms for hidden-line and hidden-surface

elimination have been based on such models.

2

The third type of modelling scheme models not only the surfaces o f a com

ponent, but also contains information as to its solidity. These systems are referred

to as solid modelling systems. The solidity information enables solid modelling

systems to ensure that their internal models are represent real shapes. It also

allows them to answer queries such as the calculation of the volume or surface area

of a model. Whilst these systems have clear advantages over the surface modelling

systems, there are also a number of penalties associated with them when compared

to wire-frame and surface modelling schemes. Firstly, the internal data-structures

may be more complicated due partly to the additional data that has to be stored,

and also to the requirement to ensure that the model is unambiguous and con

sistent. Secondly the algorithms needed to allow users to generate solid models are

generally more complicated. Similar considerations apply to the generation of out

put from the modelling system. Lastly, the requirement to ensure consistency in

the data-structure means that many solid modelling systems are less generous in the

range of surface types that they can model than surface modelling systems.

The completeness of the information stored in a solid modelling scheme

means that such models may be used as the basis for a wide range of applications

(which are listed later). The absence of any ambiguity in the models allows many

of these applications to be performed automatically.

Applications of Solid Models

The principal engineering applications have been in the areas of component design,

analysis and manufacture. The ability to represent three-dimensional shapes in

3

complete and consistent manner, plus the capability of generating consistent sets of

two-dimensional drawings makes solid modelling systems very useful for design

purposes. Finite element meshes for thermal or mechanical stress calculations may

by generated automatically from solid models [3]. The automatic generation of

toolpaths for numerically controlled machine tools from solid models [4], [5], [6]

, [7] is a current research topic.

Representation Schemes for Solid Modelling

There are a number of ways of implementing a solid modelling system; a good

explanation of seven different techniques is given by Requicha [8]. Two tech

niques have emerged as being suited to most modelling requirements. These are

graph-based (boundary-representation or B-Rep) modellers; and set-theoretic

modellers, sometimes referred to as Constructive Solid Geometry (C.S.G.) systems.

The B-rep systems use a data-structure that stores the faces, edges and ver

tices of a model. Links between data items store the relationship between indivi

dual faces edges and vertices. One technique of arranging these links is to store

bi-directional pointers between each edge in the model, the vertices at the ends of

the edge, the faces that lie on either side of the edge, and those other edges that

share a vertex and a face with the edge. This ‘winged-edge’ data structure which

is shown in figure 1.2 was first used by Baumgart in the GEOMOD [9] modelling

system.

Set-theoretic modelling systems store a model as a hierarchical set-theoretic

combination of simpler objects [10]. At the lowest level, they are based on a set

4

of ‘simple’ shapes that are the primitives of the system. The internal data-structure

of these models is far-less complicated than that for the B-rep modellers, consisting

of a simple set-theoretic description of the model in terms of its primitives. Set-

theoretic models are dealt with in greater detail in Chapter 2.

Either representation scheme allows other, non geometric, information to be

stored in the model. Typically attributes may be attached to model primitives or

surfaces representing colour or texture. For engineering applications tolerances

may be useful, although maintaining consistent tolerances information over an

entire model [11] may be difficult. Other attributes may be used to record the

material that a component is made from, or to provide links to a company data

base of components.

B-rep and Set-Theoretic Modelling Schemes Compared

B-rep models require a complicated data-structure to store all of the point, edge

and face information together with the various pointers that link them together.

Care has to be taken when making incremental changes to B-rep models so that

invalid models are not generated. This is especially the case if the user is allowed

to locally ‘tweak’ the data-structure since he could, for example, move a vertex

through a face of the model. Another related problem is that the geometric data

has to be stored to a high level of precision, and care has to be taken to avoid

inconsistencies resulting from arithmetic rounding errors. Some errors may be

detected by applying Euler’s rule, although dummy edges may be required with

curved faces to maintain the data-structure. Since edge information is stored in the

5

model, B-rep modellers have to be capable of calculating and representing the

edges that result from the intersection between any pair of primitive shapes handled

by the system.

Membership testing (described more fully in the context of set-theoretic

models in Chapter 2) is not particularly efficient with B-rep modellers since it

requires intersection tests between a vector and each face in the model. The fact

that edges are present in the structure does mean that B-rep modellers are more

easily linked to draughting systems than set-theoretic systems; also simple line-

drawings are easily generated from the model. The B-rep data-structure contains

topological locality, although this does not guarantee spatial locality, indeed spatial

coherence within the B-rep model may be difficult to check.

Set-theoretic modellers have several advantages when compared with their B-

rep counterparts. Some of these, such as conciseness and rigor have been exten

sively documented by the University of Rochester Production Automation Pro

ject [12] in the context of their PADL system. The data-structure for a set-

theoretic model is very simple, especially when compared to the B-rep structure, it

is also directly related to the textual input languages often used to describe models.

Due to the nature of the representation, set-theoretic models are always valid.

Membership testing for set-theoretic models is simpler than for B-rep models,

requiring a point comparison with each half-space, rather than an vector-face inter

section test. The accuracy problems sometimes associated with B-rep modellers

tend not to arise with set-theoretic modellers since the models are stored in an

‘unevaluated* state (although consideration may be required as to the closed or

open nature of the primitives and set-theoretic operators used [12]). Constructing

B-rep models from set-theoretic models is a relatively simple process, indeed the

input system for B-rep modellers may use set-theoretic combinations; conversely

there are at present no algorithms for the reverse process of converting from B-rep

to set-theoretic representations for general three-dimensional models.

For these reasons a set-theoretic modelling scheme is used for the work

reported in this thesis. Chapter 2 describes various techniques used for the evalua

tion of set-theoretic models. One problem associated with this evaluation is that it

requires a large amount of computation; a technique which has shown much prom

ise in reducing this computational load is that o f spatial division and model prun

ing. The generation and storage of spatially divided models is discussed in

Chapter 3.

Chapter 4 describes an algorithm for the generation of set-theoretic models

from 2-dimensional outlines consisting of straight lines.

Toolpath Verification

The increasing use of computer numerically controlled (CNC or NC) [13] machine-

tools by engineering industry, and the increase in the complexity of the toolpaths

handled by such machines has lead to a requirement for checking of the toolpaths

prior to machining. Methods of performing this verification are described in

Chapter 5. The use of computers for toolpath verification has become very

widespread although many commercial verification packages simply display the

path followed by the tool centre, rather than the shape that would result from

7

machining. More sophisticated computer-based techniques are reviewed. One of

the most sophisticated approaches is to use solid modelling techniques to represent

the shape of the material being machined.

A Toolpath Verification System based on Solid Modelling

Chapters 6, 7 and 8 described a toolpath verification system that uses spatially

divided set-theoretic modelling techniques to allow the checking of toolpaths for

n.c. machine tools. The generation of the set-theoretic model from the toolpath is

described in Chapter 6. Chapter 7 describes how this model is spatially divided.

The interactive technique used to interrogate this model, allowing the user of the

system to check the toolpath is presented in Chapter 8.

For practical reasons it was decided to restrict the range of toolpaths that

would be processed. Toolpath verification for turning applications is a relatively

simple task, as the tool movements are essentially in only two dimensions. It is

hence suitable for a range of simple plotting techniques and has already been tack

led by a number of systems. It was decided to investigate the more complicated

problem of toolpath verification for 3-axis vertical milling machines. The tech

nique is clearly also applicable to the simpler problem of verification for lathes. It

is also capable of being extended for the verification any toolpath where the

volume swept by the tools is capable of being represented by implicit polynomial

surfaces of reasonable degree.

8

The Modelling Schemes used for this Project

During the period of research two versions of the toolpath verification system were

written. They both use the same overall technique, but differed in the choice of

model primitive, and in the details of the division and raycasting algorithms. In

the first system, models are constructed using planar half-spaces. All non-planar

surfaces are approximated by facetting using a number of planar half-spaces.

Rather than use a fixed number of half-spaces, which would be wasteful for

cylinders with small radii and result in large facets for cylinders with large radii, a

limit is placed on the maximum facet size. The number of facets used to model a

given cylinder (or part of a cylinder) is determined from the radius of the cylinder,

such that the maximum deviation of the faceted model surface from the required

surface is less than a predefined maximum acceptable error. Hence a compromise

can be reached between the number of half-spaces in the model and the maximum

surface deviation error. In the following chapters this modeller is referred to as the

faceted system.

The second verification system uses a geometric modelling scheme based on

general polynomial (in x, y and z) half-spaces. A modelling system based on these

primitives was written by the author and Dr. J.R. Woodwark as part of a project

investigating blends for set-theoretic models. The system is fully described in

reference [14] . The choice of primitive means that a wide range of surface

geometries may be modeled exactly without the need to approximate them by

facetting. In the following chapters this is referred to as the polynomial system.

9

Figure 1.1 Example of wire-frame ambiguity

Figure 1 2 Winged-edge data structure

10

CHAPTER 2

Evaluation of Set-Theoretic Models

Set-Theoretic Models

In a set-theoretic modelling scheme objects are defined as the set theoretic combi

nation of simpler sub-objects, which may themselves be constructed from even

simpler objects. The definition thus lends itself naturally to a hierarchical structure,

described more fully below. The operators used to combine the sub-objects are the

set-theoretic operators union, intersection and difference (shown in figure 2.1).

Obviously some objects are needed to form a starting point for this combinatorial

process. These objects are called the primitives of the modelling system.

The range of different primitives available to the user varies between systems

as does the technique used for their internal representation. One approach is to

provide a collection of bounded objects: for example, unit cubes, cylinders and

cones. These primitives may be stored as individual boundary-file models. Other

systems use unbounded solids (directed-surfaces or half-spaces). The simplest

half-space is the planar half-space which divides space into two regions, one

defined as solid the other as air, on either side of a plane. More complicated half

space geometries can also be used, and the set of primitive half-spaces can be

extended to include, for example, cylindrical spherical and toroidal half-spaces.

11

It should be noted that the difference operator is not strictly required. The

set-theoretic algebraic identity,

A i B = A n i l

means that the difference operator may be replaced by an intersection operator

and the complement of the object to be differenced. If B above is not a primitive

then de-Morgans Rules may be used to generate the complement in terms of the

constituents of B:

(B1 n B2) = BT u B2

(B1 u B2) = BT n B2

Note that in order not to restrict the range of shapes that may be modelled,

the complement of each primitive must also then be a primitive of the system.

This is not a problem for systems whose primitives are half-spaces, but may

present difficulties for those based on bounded primitives.

A Data-structure for Storing Set-Theoretic Models

The hierarchical model definition is most conveniently stored as a tree. The non

leaf nodes in the tree contain the set-theoretic operators. Leaf nodes contain the

primitive elements (which will be referred to in future simply as elements) of the

system. In order to construct a model it is necessary to be able to place the primi

tives into the required positions and orientations, and at the correct sizes. This

may be achieved by applying geometric transformations to a set of unit-sized prim

itives defined at the origin before combining them with the set-theoretic operators.

12

If the primitives are bounded solids then it is usual to include geometrical

transformations in the tree. Geometric operators such as rotations, transformations

and scaling are included as non-leaf nodes in the tree. In such a model the leaf

nodes contain either references to primitives, or arguments to these geometric

operators. Figure 2.2a shows a simple set-theoretic model built from a unit sized

cuboid primitive.

When the model is constructed from half-spaces it is convenient to transform

the half-spaces before including them in the tree. This avoids the need to include

the geometric operators in the tree. It is also computationally more efficient since

transformations are performed at model generation rather than at model evaluation

time. The additional storage requirement for the transformed half-spaces is more

than compensated for by the simplification in the tree structure. This pre-

transformation is not so desirable for models based on bounded solid primitives

since, if done, it precludes them from being stored in a canonical form. Figure

2.2b shows the same model as shown in figure 2.2a constructed from planar half

spaces.

If the primitives of the system are half-spaces then they can simply be defined

using implicit polynomial functions (see figure 2.3). For example, a planar half

space may be defined as the set of points (x,y,z) such that

a x + b y + c z + d < 0

where a, b, c , and d arc constants; and curved half-spaces may be defined by per

forming arithmetic operations on these planar half-spaces, for example a spherical

half-space or may be defined in terms of three planar half-spaces that intersect at

13

its centre:

sphere := hs l2 + hs22 + hs32 - radius1

When the model is evaluated (for example to generate a picture of it) it is

necessary to be able to evaluate the primitive elements. The form of the primitive

evaluation will depend on the required model evaluation. In the case of creating

pictures o f the model the intersection of lines and primitives, or the classification

o f points with respect to primitives may be required.

If the evaluation process is to first generate a B-rep model from the set-

theoretic description, and then perform the evaluation on the B-rep model it is

advantageous to use primitives represented by B-rep models since all of the faces

and some of the edges and vertices of the model are contained in the primitives

and hence do not have to be generated at evaluation-time.

Output from Set-Theoretic Models

One of the most common forms of output from a solid modelling system is

graphical. Solid modelling systems are used mainly in disciplines such as

engineering and architectural design, where the traditional method of communicat

ing information is via technical drawings. In most applications the objects being

modelled are at least partially manufactured by people. In all such cases some

form of graphical output is required. Even if this is not the case then some form

of graphical output is desirable in order to verify that the model is correct. If the

model is created by a person, rather than as the output of a computer program, then

some form of graphical feedback is essential.

14

Graphical output from solid modelling systems can be categorised into two

classes: line drawings and continuous-tone pictures, examples of which are shown

in figures 2.4 and 2.5.

Line Drawings

Line drawings display the edges of the model. In the case of set-theoretic models,

the edge information is not held explicitly and so has to be calculated before the

edges can be drawn. Edges may be formed along the intersection line of two or

more half-spaces, or, in the case of a model with bounded primitives, along the

intersection line of the faces of two or more primitives and also along the edges of

the primitives themselves. If a simple set-theoretic modelling scheme is used in

which the model is stored in a single tree, then, in order to generate those edges

resulting from primitive-primitive intersections, each primitive in the model must

be compared with every other primitive to see if they intersect. When such an

intersection is found, the intersection curve can be added to a list of candidate

edges. If the two primitives that form the edge have the same local surface nor

mal, then the surface is locally flat and a candidate edge should not be created.

(Such flatness may be detected by using a more complicated version of the

membership testing technique that is described later in this chapter.) Only some of

these edges will be real edges. Those edges that do not lie on the surface of the

object must be removed from the list. This may be achieved using a membership

test (explained in the next section).

15

The result of the membership test applied to a point is only certain to be valid

for those points that have the same classification relative to all of the primitives in

the model. Hence, before a candidate edge can be tested, it must first be divided

into segments bounded by the model primitives (see figure 2.6). Each segment can

then be classified by applying a membership test to its mid-point. Those edges

whose mid-points are in solid or air are eliminated from the list of candidate edges.

Note that if the system is based on bounded primitives, such as polyhedra, or

if the primitives have curved faces, such as tori, then the sets of edges created by

primitive-primitive intersections may be complicated.

A complication arises when the model contains non-planar surfaces. To be

realistic the line drawing has to include horizon lines. These occur where the sur

face normal changes from pointing towards, to pointing away from, the viewer.

These lines are not related solely to the geometry of the model, but also to the pro

jection and viewing parameters used. It is also sometimes useful to plot additional

lines that lie on the surface in order to display the curvature of the surface. For

example, in the case of a cylinder lines may be plotted parallel to its axis, or in the

case of a sphere, meridian lines may be added.

Tilove [15] describes an algorithm for the generation of wireframes from set-

theoretic models based on B-rep primitives. Once the list of real edges (ie those

that lie on the surface on the model) has been formed they can then be displayed

using the required projection. The projections most often used are orthogonal

(parallel), isometric and perspective.

16

It is often desirable not to display the edges that would not be seen by the

viewer. Their removal may be performed in two stages. A partial solution is to

remove those lines that face away from the viewer. This is a relatively simple pro

cess as it only requires checking the orientation of the primitives or half-spaces that

form the edge. If both faces that form an edge are oriented away from the viewer

then the edge cannot be seen. In practice, this check may be made at the whilst

candidate edges are being generated.

Full hidden line removal requires that each remaining edge be compared with

the model to check if the complete edge, or part of it, is hidden from view. Many

algorithms have been developed to perform this hidden line elimination task. Five

such algorithms (together with five hidden surface removal algorithms) arc com

pared in [16]. Others are described in [17] and [18]. All of the algorithms are, as

presented, suitable for hidden line elimination for polygonal face models although

they could be used with B-rep solid models.

One characteristic of all o f these algorithms, as well as Tilove’s wire-frame

generation algorithm is that they avoid the need to compare each edge with every

face or primitive in the model. To do this they exploit the coherence present either

in the model, or in the picture being generated from it.

Membership Tests

Membership tests are used to find out whether a given point lies inside or outside

the model, or on its surface. To so classify a point it is first compared against each

primitive or half-space in the model; the point will either be inside or outside the

17

primitive or half-space, or will lie on its surface. The contributions of each primi

tive (solid, air or surface) are combined using the operator tree. Starting at the leaf

nodes in the tree and working back to the root, each non-leaf node in the tree may

be classified by combining the classifications of each of its son nodes using a set of

rules. This results in a single classification for the root node which is also the

classification of the point. A simple set of rules is given in table 2.1, and an

example of a membership test in figure 2.7. Note that the surface-normal direc

tions of primitives classified as surface may be important if points are not to be in

classified incorrectly.

Continuous tone Pictures

Continuous tone pictures display the surfaces of the model rather than its

edges. The surfaces are shaded or coloured according to the colour of the primi

tive that contains the surface, modified by a suitable lighting algorithm. The elimi

nation of hidden surfaces is clearly essential (these pictures are meaningless

without it). Although all of the surfaces that are present in the model are con

tained in the set-theoretic description, they are stored in an unevaluated state. Thus

before the surfaces can be plotted the model has to be processed in order to find

which parts o f the surfaces of the primitives form real surfaces of the model.

(Only those model primitives that appear in the picture need to be tested, a fact

that the VOLE modeller [19] uses to advantage.)

One approach to generate continuous tone pictures is to create a boundary

model (or simply a polygonal face model) from the set-theoretic representation.

18

The faces in the model can then be coloured, projected and plotted. Sutherland et

aVs paper describes five algorithms for plotting polygonal face models with hidden

surfaces eliminated.

One of these algorithms, W amock’s [20], projects the polygons onto a rec

tangular window and then recursively divides it into a number of smaller rectangu

lar regions. At each stage of division the polygons are classified against the

regions as to whether they lie completely outside, cover the region, or partially

cover it. Division terminates when either 1) no polygons lie within the region, or

2) a single polygon covers the region lying in front of all other polygons, or 3) the

region is smaller than some limiting size (the size of a single pixel in the case of a

picture being created on a raster-scan display). In the second or third case, the

region is coloured in according to the front-most polygon

Other algorithms [21] and Bronsvoort [22] work in scan-line order and are

based on sorting the polygons into ascending x, y, and depth order and calculating

when, for each scan-line, each polygon starts and ends, since it is at these points

that the foremost polygon changes.

Raycasljng

An alternative technique is that of ‘ray-casting’. This technique may be used

to create perspective (and other) views on raster-scan displays. For each pixel in

the picture a ray vector is generated. The position and direction of each vector

depend on both the position o f the pixel on the display screen, and the projection

in use. (A good explanation of the raycasting process, and applications of

19

raycasting is given by Roth [23].)

The simplest (and most natural) projection is the perspective view. A view

point and a vector representing the direction of view are first defined in the coordi

nate system of the model. A notional regular grid of points having horizontal and

vertical resolution the same as that of the image to be generated is placed between

the view point and the model in a position and orientation such that the viewing

vector intersects its centre. Each point in the grid represents a pixel in the image.

The ray vector for each pixel is the vector that passes through the view point and

the point in the grid for that pixel (see figure 2.8). Views in parallel projection

may be generated using a similar technique, except that all the ray vectors are

parallel to the viewing direction and pass through points on the grid.

A simple and naive method of processing each ray vector for a set-theoretic

model directly, rather than working from a set of polygonal faces is given in figure

2.10. The intersections of the ray with all primitives in the model are found,

sorted, and then tested in order until either a real surface intersection is found, or

until all intersections have been tested. If no intersections are found or none of the

points lie on the surface then the ray does not intersect the model and the pixel

may be coloured in a background shade.

It should be noted that this simple scheme is not suitable for anything but the

simplest of models. Its performance is severely effected by model complexity

(described later in this chapter), and, in practice, more complicated processing

methods need to be used that have better order, and are hence more suited to com

plicated models containing large number of primitives, especially if the primitives

20

contain high degree surfaces. Techniques for increasing the efficiency o f raycast-

ing are described later in this chapter.

Roth uses a scheme that generates an ordered list along the ray vector of

regions that lie inside and outside each primitive in the model. These regions are

combined using the set-theoretic model definition to generate a list o f regions for

the entire model. The start o f the first region that lies inside the model

corresponds to the first surface hit by the ray. The efficiency of his raycaster is

increased by the use of ‘enclosures’; rectangular regions that surround each primi

tive (see the section on boxing tests). For each ray, only those primitives whose

enclosures are intersected by the ray need to be considered. Enclosures for non

leaf nodes in the set-theoretic model tree may be found by combining enclosures

for the siblings o f the node.

Bronsvoort et al [24] describe two methods of improving the performance of

raycasting set-theoretic models. Firstly by using scan-line intervals instead of

enclosures. These intervals are generated by projecting each primitive onto the

screen and calculating the limits of each interval on the current scan-line found.

The ‘ray intersects enclosure’ test is replaced with the simpler ‘point within inter

val’ test. The reported reduction in CPU time for scan-line intervals over boxing

enclosures is 5 to 15 percent. The technique is not suitable for casting secondary

rays, as required for generating shadows for example. The second method is to

cast rays on a coarse grid (every 4 pixels for example) and then recursively refine

the grid when this appears to be necessary. This can clearly reduce the number of

rays cast, but may result in errors in the picture.

21

Shading the Picture

When generating a continuous-tone picture, the pixel corresponding to any surface

may be coloured according to the colour of the surface modified using a lighting

model. One simple model uses Lambert’s Cosine Law [25] for diffuse illumina

tion: the colour for the pixel is generated by multiplying the red, green and blue

intensities for the surface colour by a factor proportional to the cosine of the angle

between the surface normal at the intersection point and a vector to a light source

(figure 2.9). More complicated lighting models also allow for specular reflections

and for the generation of shadows.

If a picture is to be created by ray-casting, then these effects are relatively

easy to create. Pixels that are in shadow may be detected by, having found a sur

face point, casting a second ray from the point to the light source. If the ray inter

sects the model then the surface point will be in shadow. Mirrored surfaces may

be modelled in a similar manner. Whilst the pictures generated for the toolpath

verification system described later do not usually contain these effects, the tech

nique of generating secondary rays is used.

The Problem of Model Complexity

Although the techniques used for generating line drawing and shaded images differ,

they both potentially suffer from three problems related to the ‘complexity* of the

model. These problems, which are always encountered when evaluating set-

theoretic models, are:

22

• The problem of primitive complexity,

• The primitive combinatorial problem,

• The model ‘size* problem.

The first two problems are discussed here, the third after the section on facet

ting.

Primitive Complexity

Some evaluation processes, such as the calculation of the intersection between a

vector and a primitive when raycasting, are affected by the geometric complexity

of any individual primitive in the model. If the surfaces of the primitives or half

spaces are planar, or are second, third or forth degree polynomials, then the inter

section of the ray vector with the primitive may be calculated directly. Higher

degree surfaces require the use of iterative techniques. These are often time con

suming, and for any fixed precision of arithmetic, are limited to a maximum degree

of surface that may be handled without errors occurring.

Primitive Combination

Other processes, such as the calculation of the edges of a set-theoretic model or the

generation of a boundary file model, are effected by the interaction between pairs

of model primitives. Edge generation requires that the curves of intersection o f the

primitives in the model be found. If there are no restrictions on the positioning on

the elements of the model, then intersections may occur between any two primi

tives, in any relative positions. Since intersections may occur between any two

23

types of primitive, the number of types of intersection curves, and hence the

number of different solutions to be coded, is equal to half the square of the number

of different primitives. Thus for systems with a large number of primitive types,

the number of different solutions to be coded becomes very large. The calculation

of these intersection curves for any but the simplest of primitive shapes is non

trivial. It is costly both in the amount of coding required to implement it, and also

in computation time when the edges are being generated.

Some early systems, PADL-1 for example [26] reduced the effect this prob

lems to some extent by restricting the user as to the orientation of primitives in the

model. (If there are restrictions in the positioning of primitives then they should,

as a general rule, be handled by the input processor, and not left to the user, other

wise the results are not predictable.)

It may be noted that ray-casting avoids problems caused by the interaction

between primitives (such as occur when the generating the edges of a model) and

so is less effected by the geometric complexity of the model primitives than other

image generation techniques.

Facetting

One way o f avoiding the first two problems is to replace all curved surfaces in the

model with a number of planar surfaces. This technique is called facetting. In a

bounded-primitive model this may be achieved by replacing primitives incorporat

ing curved surfaces with polyhedral primitives. In a half-space model, curved

half-spaces may be replaced by a number of planar half-spaces. Examples of

24

facetted models are shown in figure 2.11.

Facetting may be performed at the input stage by either the user or the model

ling system when defining the model, or by the modelling system at the evaluation

stage. A modelling scheme based on planar half-spaces is attractive for several

reasons.

If half-space facetting is performed at the input stage then the data structure

of the model is simplified as it contains only one type of primitive, the planar

half-space. The evaluation of such a model is also simplified. For example, the

calculation of edges requires only the calculation of the intersection of two planes.

Another advantage of facetting is that all surface geometries may be modelled,

albeit approximately. This limited accuracy of the facetted model is obviously

undesirable in some applications, such as the automatic generation of toolpaths

from a model. For other applications especially those whose output is approximate

in nature, such as the calculation of model volume using ‘Monte-Carlo’ techniques,

or applications whose output is of a graphical form it is not necessarily a problem.

Obviously the larger the number of facets used, the smaller the discrepancy

between the model and the object being modelled. However, if the number of

facets becomes very large then the advantages of the simplified data-structure and

coding may be outweighed by the sheer amount of data. If the level of facetting is

controlled by the user then it is possible for him to balance the needs of accuracy,

storage and computation overheads.

25

In general the number of facets does not become excessive if the model con

tains only planar and singly curved surfaces. This is the case for a large number

of engineering components, including all two-and-a-half dimensional objects.

The use of facetting does, however, increase the number of elements in the

model. This highlights the third model complexity problem, which results from the

relationship between the number of primitive elements in a model and the compu

tational load incurred during its evaluation. The problem is now considered.

Model Size

The valid, although naive, algorithms for the evaluation of set-theoretic models

described earlier in this chapter require comparisons between all of the primitives

in model. This is because of the unevaluated nature of the representation scheme,

and will therefore apply to all evaluation processes (examples include the genera

tion of wire-frame, polygonal face models or B-rep solid models, the generation of

line or continuous-tone pictures, or the calculation of the volume of the model).

The naive edge generation algorithm first compares each element in the model

with each other element in order to find the candidate edges. The membership

tests for each candidate edge requires it to be compared with each element again.

Thus the computational load for the generation of edges is proportional to the cube

of the number of elements in the model. The computational load to create a boun

dary model from the set-theoretic definition involves many of the same steps and

will also be proportional to the number of elements cubed.

26

The generation of a raycast picture from a set-theoretic model in also affected

by the number of elements in the model. The intersections of the ray vector with

each element in the model must be calculated and sorted. Then, on average, half

o f these must be membership tested before a real surface point is found. Thus the

computational load varies with the square of the number of elements in the model.

If the model contains a large number of elements, the time taken by any

evaluation process will grow to be very large. It is obviously desirable to reduce

this effect of model complexity. To achieve this reduction in evaluation time for

large models, it is necessary either to reduce the number of comparisons to be

made, or to reduce the time taken to perform them.

Increasing the Efficiency of Model Evaluation

Boxing Tests

One method of increasing the efficiency of model evaluation is to classify each ele

ment in the model spatially prior to its evaluation. In a model based on bounded

primitives this may be done using boxing tests.

For each element in the model, a surrounding enclosure is constructed. When

comparing two elements in the model to see if they intersect, the surrounding

polyhedra for each are first compared. If they are found not to overlap, then the

more detailed tests required to calculate the intersection curves need not be applied.

This reduces the computational load required to evaluate the model. Similarly,

when ray-casting, each ray can be tested to see if it intersects the enclosure prior to

calculating its roots with the primitive.

27

The enclosures that arc simplest to use are cuboids aligned with the coordi

nate system (a two-dimensional example is shown in figure 2.12). These may be

calculated by finding the minimum and maximum of each primitive along each

coordinate axis. The cuboids may easily be compared using a minimax test of

their coordinates. Testing for intersections of a ray vector with the cuboid and

generating cuboids for non-leaf nodes by combining other cuboids is also easily

done.

This simple boxing technique has two drawbacks. Firstly, if the elements in

the model are not positioned orthogonal to the axes, then the surrounding boxes

will include large amounts of space not occupied by the primitive. Secondly, the

effectiveness of the test is greatest when the model elements are mainly discon

nected. If the model consists of inter-penetrating elements then it is of limited

value.

The first of these drawbacks may be overcome, to some extent at least, by

using more sophisticated forms of surrounding enclosure (general convex polyhedra

for example). These could be constructed to fit closer to the outlines of the primi

tives. However this would impose a greater computational load both to calculate

the polyhedra and also to process them. Roth [23] suggests using spherical enclo

sures, but concludes that in most cases they perform less well than cuboids.

It should be noted that boxing tests are not suitable for models using

unbounded primitives. There is however an alternative spatial classification tech

nique that is applicable to such models: spatial division.

28

Spatial Division

The technique of spatial division and model pruning has been used in a number of

modelling systems developed at the University of Bath. The sole primitive of the

earlier of these systems (VOLE [27], [19], SODA [28], [29], and DORA [30]) is

the planar half-space. Non-planar surfaces are approximated by facetting. The

models are defined by a list of planar half-spaces and a tree structure comprising

references to these half-space and set-theoretic operators.

One of these systems, VOLE-2 [19] was developed for the purpose o f investi

gating the problem of the computational time required to generate continuous tone

shaded pictures from set-theoretic models, and in particular the relationship

between this time and model complexity (as measured by the number of half

spaces in the model).

The technique used by VOLE-2 to process a model is one of divide and con

quer. A cuboid object-space is defined surrounding the model and oriented with

the viewing direction. This object-space is recursively split into a number of sub

spaces. A sub-model is generated for each sub-space by pruning the original set-

theoretic definition of the model to the sub-space. This creates a simpler sub

model applicable to that sub-space alone. When a given level of sub-model com

plexity is reached the division is terminated and the sub-model is evaluated. The

details of this evaluation, which generates a part of the picture, which is valid for

the sub-model, are given in reference [19]. One important result obtained from

the VOLE-2s+2 modeller was that the relationship between model complexity and evaluation times

is better than linear.

29

A more recent modelling system (DODO) written by the author uses general

polynomial half-spaces rather than planar half-spaces. This modeller also uses spa

tial division and pruning to increase the efficiency of image generation. It is this

modeller that forms the basis of the toolpath verification system which uses poly

nomial half-spaces.

Model Pruning

The pruning process is an important part of the spatial division technique. In order

to create the pruned sub-model for a sub-space each half-space in the model is

compared with the sub-space. If the half-space passes through the sub-space then

the half-space is included in the sub-model for the new sub-space. If it does not

then the half-space is replaced with either air or solid in the sub-model depending

on which the half-space contributes to the sub-space. The following rules may be

applied in order to simplify the sub-model. X represents any single half-space or

part-model.

Air n X —» Air

Air u X -) X

Solid n X -> X

Solid u X —» Solid

Having classified each half-space against the sub-space, the rules may be

applied to the set-theoretic tree that describes the sub-model, working from the

leaf-nodes back to the root. At each stage, if either son of a node is air or solid,

then the corresponding rule may be applied to prune out one of the sons. In gen-

30

eral, as the size of the sub-spaces is reduced, fewer half-spaces pass through it, and

so the complexity of the pruned sub-model is reduced.

31

Table 2.1

Rules for simple Membership Test

Operator

Union

Intersection

Difference

Classification Classification of second primitive

of first primitive

Air Solid Surface

Air Air Solid Surface

Solid Solid Solid Solid

Surface Surface Solid Surface

Air Solid Surface

Air Air Air Air

Solid Air Solid Surface

Surface Air Surface Surface

Air Solid Surface

Air Air Air Air

Solid Solid Air Surface

Surface Surface Air Surface

32

Figure 2.1 The set-theoretic operators

(0) Union

ucube

Figure 2 2 a A primitive based set-theoretic model tree

33

h sl hs2 hs3 hs4 hs5 hsS h s l hsd

Figure 2 2 b A half-space based set-theoretic model tree

hsl ax * by + cz + d 4.- 0

Cylinder = hsl + hs2 -radius

Sphere = hsl +hs2 +hs3 -radius

Figure 2.3 A ‘polynomial’ cylinder and sphere

34

Figure 2.4 An example of line-drawing output

Figure 2 5 An example of continuous-tone output

35

Figure 2.6 Generating Line drawings, segmenting edges

hs3

hs2

hsl

air

sol id so

hs3

hs2hsl

so lid

so 1 id air

Figure 2.7 Membership testing on a point

36

Figure 2.8 Raycasting

Intensity observed by
v 1 ewer

E = I cosCi)

where
E = Modified intensity
I = intensity of surface colour
1 = lighting vector angle

of incidence

' fron light source

Figure 2.9 Determining surface colours: Lamberts cosine law

37

/* A procedure for casting a single ray into a set-theoretic model. */

procedure raycast()

{

Zero list o f intersection points

For each primitive

{

Generate intersection points of ray with primitive.

Add points to list of intersection points.

}
Sort point list

Repeat

{

Get next point in list

Classify point using membership test

}
C//m7(surface-point found or list empty)

IfQist empty)

Colour pixel as backgound

Else

Colour pixel according to primitive colour and lighting model

}

Figure 2.10 A Raycasting procedure

38

Figure 2.11 A Facetted cylinder and sphere

Figure 2.12 Boxing tests

39

CHAPTER 3

Generating and Storing (Set-Theoretic) Solid models

in a Divided State

In the last chapter some of the problems encountered in the evaluation of set-

theoretic models were raised, together with some techniques for minimising their

effect. One technique, as used in the VOLE [19] and DORA [30] geometric model

ling systems, is the use of spatial division and model pruning. In VOLE the divi

sion process was used as a method of generating a single picture from a set-

theoretic model, and was oriented to achieve this efficiently. The divided structure

was used and then discarded. This chapter will consider a more general form of

spatially divided model. Rather than use the divided model once only, the concept

of the divided model as a spatially divided data structure is introduced. Different

strategies for dividing models are discussed, together with techniques for generat

ing a spatially divided model stored in a tree structure.

Object Division and Spatial Model Division

The main objective of generating a divided model is to reduce the computation

time required to ‘evaluate’ the model. This evaluation may be, for example, the

generation o f one or more views o f the model or the calculation of its mass proper

ties. In all cases the computation load incurred when evaluating the model is

related to the complexity of the model (as described in the previous chapter). If

40

division of the model into a number of sub-models is to result in a reduction of

this computation load, then the complexity associated with model evaluation must

also be reduced. This may be achieved if the complexity of each sub-model is

reduced. When evaluating a model that has been divided into a number of sub

models there is an additional load associated with accessing the sub-models which

may also need to be considered.

It is important to differentiate between the two types of division: spatial divi

sion and object division.

Object division involves splitting the model itself into a number o f sub

models. This may be achieved by referring to the primitives used in the model

together with its set-theoretic definition. Tilove [15] and [31] describes how this

‘structural’ or ‘representational* locality can be used to reduce the amount o f com

putation required when generating a new B-rep model from a modified set-theoretic

model. By identifying the local region within complete set-theoretic model

definition where changes have taken place, the overall computational load (as com

pared to that required if using the complete description) is much reduced, since

only part of the complete tree needs to be considered.

In a spatially divided model, the volume containing the model is divided into

a number of sub-spaces. The half-spaces, primitives or sub-models that comprise

the various parts of the model are classified as to whether they occur within each

of these sub-spaces. The sub-model may then be pruned to form a simpler model

valid for the sub-space. Figure 3.1 shows an two-dimensional example of a spa

tially divided model which, although it divides the object-space into only three

41

suitable from models based on half-spaces. When a query is asked of a spatially

divided model, the spatially divided structure may be used to quickly localise the

sub-space(s), and hence the primitives upon which more detailed examination is

required (a point membership test for example).

Now consider the advantages and disadvantages of each scheme. Model divi

sion is the better strategy for answering queries that are model based, such as

requesting the spatial location of a part of the model. It is not so good, however,

at answering queries that are spatially based. In order to find which parts of the

model occupy a given space, for example, the list of sub-models will have to be

searched (unless an auxiliary spatial data-structure is maintained containing such

information). Also, if the model input definition is used as a basis of the division,

the actual division will depend on the way in which the model was constructed

rather than on its actual shape.

A problem with using structural locality is identifying the local region(s) of

the model that need to be considered for a particular operation. This is particularly

so since there need be little connection between the spatial positioning of primi

tives in a model and their position in the set-theoretic model definition.

The spatially divided model is more suitable for applications were the queries

are spatially oriented. Most solid modelling applications, examples of which

include the generation of pictures of a model, the calculation of the mass properties

of a model and the automatic generation of toolpaths from a model, have such

requirements.

42

For the toolpath verification system the queries (which will be considered in

detail later) are of a spatial nature; also, the structure of the model will usually be

unknown to the user of the system since it will have been constructed automati

cally; the model itself will be based on half-space primitives and will be potentially

very large. For these reasons a spatial division strategy is used.

The Requirements of a Spatially Divided Data-structure

Now consider the requirements of a spatially divided set-theoretic model for use as

a divided data structure. The most important consideration is that downstream

processes that use the model should be able to use the divided structure in order to

evaluate the model efficiently. The size and format of the structure should be such

that the generation time is not excessive. Also the structure should not be so large

that the memory requirements to store it become excessive. Each element in the

spatially divided structure has to contain the size and position of a region in space

(stored either explicitly or implied by its position in the data-structure), and a

model that is valid for that space.

Regular (grid) Division

The simplest form of spatial division is to divide the object-space evenly into a

number of regions or sub-spaces, each of fixed size positioned in a regular grid

pattern. Owing to the even nature of the division the location of the sub-space

within the data-structure that contains any given position in space is easily calcu

lated. This is advantageous at the evaluation stage, since, for a given point in

43

space, the sub-space that contains that point may be accessed directly. Also, the

neighbours of any sub-space may be found directly. The TBPS modelling sys

tem [32] uses an even grid against which primitives are classified, and, when per

forming any calculation at a location within a grid cell, those primitives that lie

completely outside that cell may be effectively ignored. Any form of even division

suffers from the disadvantage that (unless the complexity of the model is also

evenly distributed throughout the model) the divided structure is inefficient in that

some parts of the model are overdivided whilst other regions would benefit from

further division. Also, the size o f grid structure quickly becomes large since it

must be divided down to the smallest required resolution.

For some processes the large number of cells in a regular grid can have an

adverse effect on the efficiency of the process. An example occurs when raycast-

ing using such a data-structure which requires a partial traversal of the structure.

In this case many adjacent cells may have to be traversed whose contents are ident

ical and which have been created because of complexity elsewhere in the model.

Tree Structures for Divided Models

These disadvantages o f regular division can be overcome if the sub-spaces are of

variable size. Then the size of the sub-spaces can be adjusted to suit the complex

ity of the model in that region. Allowing variable size sub-spaces does however

increase the problem of finding which sub-space contains a given point in space.

One solution is to use a tree structure. The sub-spaces that contain the model

(and correspond to those in the even division scheme described above) form the

44

leaf nodes in the tree. The root node represents a region that surrounds the object

to be modeled (the object space). Other nodes in the tree are organised such that

the sub-space represented by each non-leaf node is identical to the union of the

sub-spaces represented by its son nodes. Thus at any depth in the tree the total

volume of the object space is represented. The spatially divided model of figure

3.1 can be simply stored as the tree-structure shown in figure 3.2.

The tree structure can be used to access the model. As stated above the com

bined volume for the sons of each non-leaf node represent the same volume as the

node itself. Hence in order to find which leaf node contains the model that is valid

for a given position in space, the tree structure can be descended by starting at the

root node and then repeatedly testing to see which son of the current node contains

the point. The process terminates when a leaf node is reached, and the sub-model

contained in the leaf node is valid for the point. This tree descent involves only a

few comparisons and hence is very quick to compute. As will be seen later, a

similar technique may be used to generate a list o f leaf nodes whose sub-spaces are

intersected by a vector.

The sub-spaces can be of any shape. As with boxing enclosures, there is a

trade-off between the greater level of model pruning that can be achieved with

complicated shaped sub-spaces, arbitrary convex polyhedra for example, and the

greater level o f computation required to access each sub-space (for example,

finding which leaf-node sub-space contains a given point). It is usual for the sub

spaces to tessellate the object-space such that they do not overlap, and at any level

of division they completely fill the object-space. (These properties are, however

45

not necessarily required; sub-spaces could, for example, overlap; although care may

be required when using such a divided structure.) Sub-spaces are commonly

cuboids aligned with the coordinate axes.

An alternative to the tree structure is used by Mantyla et al in their

EXCELL [33], [34] (extended cell) based modelling system. This approach uses a

hierarchical regular grid (called a directory) to point to a binary divided model

(called the data part). For regions of the object-space that are accessed using the

first-level directory, access is very quick; for regions containing more complicated

parts of the model, where several hierarchical levels of directory have to be des

cended, the computation required to access a data-part entry is similar to that

which occur if the model was stored as a simple binary tree.

Oct-trees

It is possible to generate trees of any valency greater than one (although for the

general purpose division of three-dimensional space binary and octant division

seem most natural). One commonly used division method defines the object-space

as a cube surrounding the model and aligned with the axes of the coordinate sys

tem. At each stage of division a leaf-node sub-space is split to form eight new

cubic sub-spaces by splitting the sub-space along three planes parallel to the axes

and passing through its center. The tree structure that results from this process is

called an oct-tree (see figure 3.3). The oct-tnee structure has the advantage of sim

plicity; also the size of sub-spaces decreases rapidly, thus generating a shallow tree

for any required size of leaf-node sub-space. One disadvantage of oct-tree division

46

arises from the fact that each sub-space is split into eight sons. It is quite likely

that several of these sons will contain the same model. Hence the model is over

divided, resulting in many sub-spaces that are smaller (and more numerous) than is

required.

Binary trees

The simplest form of tree structure is the binary tree (see figure 3.4). Binary trees

can be used to represent trees of any valency and their simplicity makes them an

attractive data-structure, widely used in computing. They may also be used to

store a spatially divided model.

One apparent disadvantage of the binary tree structure is that, in order to

divide a model to any given level (as defined, say, by the maximum volume of any

leaf-node sub-space not containing air or solid,) a greater depth of tree is required

when compared to using a tree of greater valency. When compared to an oct-tree,

the depth would be three times as great, and six additional non-leaf nodes are

needed in the binary-tree for each non-leaf node in the oct-tree. In practice this

does not occur since, except in the unlikely event of the complexity of the model

being ‘evenly’ distributed, the binary-tree is not divided to to same extent as the

oct-tree.

In addition to their simplicity, binary trees have the advantage when compared

to trees of higher valency that at any stage during their generation a sub-space is

split to form only two new sub-spaces. These are then tested independently as to

whether they should also be divided. Since only two new sub-spaces are created,

47

the over-division that can occur when using oct-tree division can be avoided. Such

over-division adds to the size of the divided model and is clearly undesirable.

When using raycasting to generate pictures of spatially divided models stored

in tree structures it is necessary to partially traverse the tree for each ray cast. All

leaf nodes whose sub-spaces are intersected by the ray vector, until the first real

surface of the model is reached, will need to be tested. In this application the

absence of over-division in the model is especially important, since otherwise the

length of the traverse is increased as is the number of leaf-node sub-models that

have to be tested. An algorithm for the traversal of a tree such that all nodes

whose sub-spaces are intersected by a vector are visited in order is given in

Chapter 8.

Creating a Binary Divided Model

There are two possible ways of generating a divided-model tree; using either a

breadth-first or a depth-first approach. The depth-first approach has the advantage

of requiring less storage during the division process. Also the data-structure

required to support it is less complicated. Breadth-first division, in which the com

plete tree is divided (if division is warranted) to ever-increasing levels of division

can potentially take advantage of ‘global* constraints and goals, such as the max

imum allowable size of the completely divided model tree. The technique which is

used for toolpath verification system is based mainly on a depth-first method, but

uses ‘local’ breadth-first division. A simple depth-first algorithm for generating a

tree structure may be implemented as follows.

48

To create a tree-structured divided-model, the tree is first initialised to contain

a single node whose sub-space is the object space for the model. The tree is then

recursively generated by selecting a leaf-node in the tree and dividing its sub-space

into a number of smaller sub-spaces, each of which forms new leaf nodes that are

sons to the selected leaf node. The sub-model for each new leaf node may be gen

erated from the sub-model for their father by pruning its sub-model to the sub

space for each new leaf-node. Note that sub-models for non-leaf nodes are not

required and can be deleted as the tree is generated.

The individual steps in the algorithm will be considered in more detail later in

this chapter. The strategy used to detect when the division process has finished, to

select which leaf node is to be split, and (in the case of a binary tree) where to

position and orientate the split plane, will affect both the time taken to divide the

model and also the overall shape of the divided structure.

Ideal Characteristics of a Spatially Divided Model

Ideally we would like the spatially divided structure to be in some way optimised;

every leaf node sub-space and sub-model should be in a state where further sub

division will not lead to any simplification in the model. Simplification may, in

this context, be defined as a reduction in the computational load imposed on a pro

cess that accesses the divided model. In practice the shape and size of the model

tree may well be influenced by other constraints, such as the amount of memory

available in which to store the divided structure.

49

In terms of the simple division algorithm outlined above, to generate an

optimally divided model it is necessary to decide whether or not a sub-model is

best left as it is, or whether further spatial division would lead to a reduction in

complexity. The computational load attributed to a sub-space and its sub-model

will depend on the process that is to use the divided structure. It will however

always be related to the complexity of the sub-model. When arriving at the deci

sion, the computational load required to perform the further division could also be

considered.

The physical dimensions of the sub-space should also be considered. The

smaller the sub-space, the less frequent it is likely to be accessed by any process

using the divided model and hence its contribution to the total computational load

is reduced. The exact affect that the size o f the sub-space will have on the compu

tational load will again depend on the use of the model.

Now consider a single sub-space that is a candidate for further division. If

the sub-space is divided, then the contribution to the total complexity of the

divided structure will be the sum of the complexities for the new sub-spaces (plus

an allowance for extra computation required to access the greater depth of tree.)

Thus a reduction in total complexity will occur only if the the new sub-models are

simpler than the original. This simplification will result from the original model

being pruned to the new sub-spaces. The degree of simplification (if any) is

dependent on the positioning of the constituent parts of the sub-model and also on

the set-theoretic operators that join them. Two points should be noted. Firstly, it

is not easy in advance to determine the outcome of even a single division stage.

50

Secondly, a number of divisions may be performed that result in an increase in

total model complexity, but one more division may result in an overall

simplification.

These two factors make it difficult to use the simple division process

described above to generate an efficiently divided model. Ideally a test is required

that can be applied to a sub-space (and sub-model) to decide if it requires further

division.

Sub-space Testing

Tests for deciding whether a sub-space should be split can be classified as either

geometric or non-geometric.

Sub-space Testing: Geometric Tests

The first class comprises tests that investigate the geometric structure of the sub

model. Since, in a set-theoretic model, the data is held in an unevaluated manner,

these tests usually involve the generation of geometric entities. A vertex test could

be used to generate and count the number of vertices in a sub-model. The division

process could then be controlled by limiting the maximum number of vertices

allowed within any sub-space. This is the scheme used in the SODA [28], [29]

solids database system which is based on planar half-spaces.

Geometric tests can be used to produce a divided model where the distribution

of geometric structure is well defined. The main disadvantage with geometric tests

is that they can add a large overhead to the division time; for the vertex test, the

51

computational load to generate vertices in a sub-pace containing n half-spaces is,

proportional to n4.

Sub-space Testing: Non-geometric Tests

Non-geometric tests are based on the unevaluated sub-space and sub-model. One

simple test is to count the number of half-spaces in a sub-model and and then con

tinue division until this drops below a predefined limit. Such tests are much

quicker to perform than the geometric tests. However, the distribution of real com

plexity in the resulting sub-spaces may be very unbalanced since there is no direct

relationship between the number of half-spaces in a sub-space and the geometric

structure it contains. Since these tests do not require the sub-model to be

evaluated, the computational load required to perform them in independent of the

complexity of the sub-model. They are more suited to applications where the

divided structure is used only a few times, where the model is very complicated, or

where the application which is to use the divided model is not highly dependent on

the actual geometric structure of the model.

Hybrid schemes which are based partly on both types of test can also be used;

using a simple half-space count for the initial division stages, and then switching to

a geometric test when the number of half-spaces drops below a specified level.

Care must be taken to avoid cases where the division process is non-

terminating. If for example the strategy is to continue division until there are

fewer than a certain number of half-spaces in a sub-volume, then division will con

tinue indefinitely if there are more than that number of half-spaces passing through

52

a point. This may be avoided by using additional tests to limit the minimum size

of a sub-space.

If the divided model is to be used for a single process then the tests used to control

division can be devised such that the measure of complexity is based on the

evaluation method used by the process. In this manner, the model division will be

optimised for the process. The model divider presented in Chapter 8 uses such a

test.

Selecting a Node for Further Division

If a simple test is used which is based on the contents of a single leaf node, then

the division technique given previously may be implemented as a recursive algo

rithm, thereby removing any requirement to select a node. One problem with such

an approach is that it may be difficult to control the size of the divided model since

it is impossible to tell in advance how large the model will be.

An alternative, which may be used for breadth-first division is to select a node

that has the highest computation load associated with it.

Deciding how to Split a Node

The simplest strategy for binary division is to always split the sub-space along its

longest side. A non-regular division scheme in which the orientation and position

ing of the split-plane for a non-leaf sub-space are determined by the layout of the

sub-model primitives can result in much quicker reduction in model complexity,

and a more efficient divided structure. This was done by Woodwark in a

53

modelling system [30] based on planar half-spaces. For modelling systems based

on polynomial half-spaces the calculation of the best position for the split-plane is

difficult. The model divider used in the toolpath verification system uses a tech

nique that restricts the range of choices to that of the orientation of the split-plane

which is located such that it always passes through the centre of the sub-space.

54

Figure 3.1 A Spatially divided model

sub'space represen
bu tree node

t e d

Figure 3 2 Tree-structure for the spatially divided model

55

Figure 3 3 Oct-trees

/ V f'^1r
!‘̂ i

1 1

"'H
s '

Figure 3.4 Binary trees

56

CHAPTER 4

Input to a Solid Modelling System

One of the important features of any solid modelling system, certainly from the

users’ viewpoint, is the techniques provided to define and manipulate shapes. This

is especially the case if systems are to achieve widespread use in industry. This

chapter will look at the various methods of input used by modelling systems, con

sidering their advantages and disadvantages, and then detail the design and imple

mentation of an input system implemented by the author.

First consider the requirements of the input system. Obviously it must allow the

user to describe the model that he wishes to create. Therefore it must allow him to

define shapes. The design process often consists of creating objects from other

objects. This leads naturally to a hierarchical model definition where models are

described as the combination of existing sub-models. Hence the input system must

also allow the combination of existing shapes. In order to avoid the repeated

definition of similar shapes it must also allow the geometric manipulation of exist

ing models. The input mechanism should be concise and unambiguous.

Alternative Input Techniques

Input methods to solid modelling systems can be divided into three categories:

1) Language input,

57

2) Graphical input,

3) Computer generated input.

Language Input

Language input was the only method used with several of the first solid modelling

systems. In a language input scheme models are described by a written definition.

Complicated models may be formed by combining simpler models and there is a

strong correlation between the language definition and the design process described

above.

Many systems allow the use of parameterised objects. These are sub-models

whose dimensions are set by user-supplied parameters. Thus a single parameter

ised model can be used to create a whole family o f similar models. Typically such

models are used for standard components such as nuts and bolts. Individual users

or companies who make frequent use o f specialised families of components may

also define them parametrically. In a language input scheme, parameterised objects

may be described using functions, with the parameters passed as arguments. Fig

ure 4.1 shows part of a model definition written in the SID [30] input language.

The shape manipulation statements found in an input language can be divided

into two types: transformations used for translating, rotating and scaling existing

sub-models; and joining operators used for combining those sub-models in order to

create more complicated shapes. The range of transformations available to the user

varies between systems. It may be limited by restrictions placed on the user by the

modelling system, the requirement for orthogonal placing in PADL-1 [26] (for

58

example). In order to be able to place a sub-model in an arbitrary position and

orientation two transformations are required: the ‘translate* transformation and the

‘rotate* transformation. To allow the convenient manipulation of existing sub

models further transformations are desirable. A scaling transformation allows for

the scaling of existing models and also mirroring.

The number of joining operators varies between systems. Some early systems

had a single ‘glue* operator, allowing two sub-models that have a common face to

be joined. Most modem modelling systems offer the three set-theoretic operators

union, intersection and difference.

Language constructs found in other computing languages (looping, testing and

conditional constructs constructs for example) are also useful in model definition

languages. For ease of use in defining shapes, a wide range of variable types for

handling points, lines, planes, surfaces and models is required, as are mathematical

and trigonometric functions for operating on them. An alternative approach to

defining a complete language is to provide a range of variable type declarations

and functions callable from an existing computer language, such as FORTRAN, C or

Pascal. This approach is used in the input system to the TIPS [32] modelling sys

tem.

Graphical Input

Graphical input facilities are offered on a number of commercial modelling sys

tems. A number of advantages are claimed for these in comparison with language

input. Design engineers, architects and other users of systems are used to working

59

with graphical data representations. Hence they adapt more readily to graphical

input techniques. Also many of these systems are offered as an upgrade to either

two or three dimensional drafting packages and hence it is sensible to utilise the

same user interface.

It would be ideal if it were possible for computers intelligently to recognise,

to interpret, and to query sketches. However, this goal is far from being achieved

at the moment. Programs [35], [36] and [37] which are able to address this task at

the moment do so in the context of limited shape forms (plane-faced polyhedra), or

place rigid restrictions on the style of the drawings used as input.

Those implementing practical systems have therefore tended to try to find

‘half-way houses* which allow some graphical input, but in a form oriented to the

requirements of the model’s structure. One commercial system (Medusa from

Cambridge Interactive Systems, now a division of Computervision Ltd.) allows the

user to draw pointers between a number of views of an object to express the rela

tionships between the views and to avoid the complexities of recognition. Less

elaborate schemes have concentrated on the ability to input graphically simple

sub-shapes which can then be combined by other (l in g u is t ic) means into more com

plex shapes. This may be achieved by instantiation of a range of commonly used

component features, each only slightly more complex than the primitives in the

system. Alternatively, facilities may be made available to design sub-shapes with

particular limitations. ‘Turned’ parts are one example of this. Another is the ‘per

imeter object’, a two-dimensional outline with a single thickness. These two facili

ties alone are widely applicable in the creation of models of mechanical

components.

The perimeter object was included by Braid in the early BUILD [38] system.

It is now also available in the commercial system that has followed BUILD

(Romulus [39]). Both these systems are B-rep modellers. The implementation of

graphical input is more straightforward in this type of modeller, in the author’s

opinion, because the lines that form the sketch can be more or less directly

translated into component edges in the model’s data structure. It is more difficult

to implement such input forms with set-theoretic modellers because in this case

edges must be reinterpreted as the result of combining half-spaces or primitives.

Set-theoretic modellers do however, as outlined in Chapter 1, have several

advantages however compared to their B-rep counterparts. Therefore it is worth

developing graphical input for these modellers.

Since the algorithm described in this chapter was first reported [40] several

other researchers have produced similar algorithms. Dobkin et al also report the

work of Peterson [41] who has proved that it is always possible to generate a set-

theoretic expression that contains a half-space for each edge that occurs only once

in the expression. Tor and Middleditch [42] have developed a more complicated

algorithm that is shown to have on average a near-linear time complexity.

Since the technique described in the next section was first reported, Peter

son [43] has developed an algorithm capable of handling two-dimensional laminae,

with boundaries constructed from straight lines and curved edge segments.

61

An Algorithm for Graphical Input of Set Theoretic Models

This section describes an algorithm for the graphical input of models to the set-

theoretic modelling systems written at the University of Bath. The algorithm is

capable o f generating perimeter objects, perimeter objects with a draft angle and

(faceted) shapes with rotational symmetry. It has been used in an interactive input

system for the systems, as an input processor for geometric data from a computer

aided part-programming package (SmartCAM [44]), and also used internally in the

model generation stage of the toolpath verification system described in Chapter 6.

The models created using the algorithm may be combined with other shapes within

the language already used to feed the system.

The algorithm is designed to be capable of generating models of objects

which may be described by closed curves in two dimensions (which is the reason

that they are suitable for interactive graphical input). Hence the problem of identi

fying the half-spaces and their relationships may be reduced to that of finding a set

of half-planes and a relationship between them which corresponds to the sketched

profile. These half-planes may be expanded into half-spaces depending on whether

the sketch represents a simple plate, a plate with a draft angle, or the cross-section

through a turned part. There are a number of approaches to this identification

problem. The one implemented is guaranteed to generate the minimum number of

half-planes needed to represent the sketch (and hence the minimum number of

half-spaces to represent the object). This reduces the complexity of the resulting

model and helps to reduce computation times. Indeed the technique may well out

perform a careless or hurried user using language input in the efficiency of

62

describing the object.

The algorithm works by decomposing the two-dimensional shape into a series

of convex polygons. These are not a decomposition of the solid interior of the

shape [45], which would add extra half-spaces to the description, but a relationship

between both ‘positive* and ‘negative’ regions. First the convex hull of the whole

outline is found. Unless the outline is itself convex, there will be one or more

regions of discrepancy between the hull and the original region. Further convex

hulls are then found for each of these ‘holes*. This may in turn leave undescribed

regions, which will be ‘solid’ again. This process is repeated until there are no

regions still to be processed. The shape can then be described as the outer hull,

with the next layer of hulls removed, the layer after that added, and so on. (Each

hull can be represented by the intersection of its constituent half-planes).

Using this method of arriving at a description would include artificially intro

duced half-planes. These are sides of the hulls that where not also parts of the ori

ginal contour description, such as that marked with an * in figure 4.2.

If however, the description of the shape is constructed using the ‘positive’ and

‘negative’ convex hulls in the reverse order to that in which the layers were gen

erated we find that, because the hulls are convex, the sides of the hulls that do not

correspond to parts o f the original definition may simply be omitted from the set-

theoretic description. In effect, their places are taken by parts of the hulls of the

opposite ‘sign’ from the next layer out. The resulting set-theoretic description uses

only half-planes that correspond to portions of the original contour, and must there

fore be minimal. Figure 4.2 shows a shape, its decomposition into a tree of hulls,

63

and the resulting set-theoretic algebraic description of the shape.

The problem of finding the convex hull o f either the initial shape, or any of

the nested sub-shapes, is essentially that of finding the convex hull of a set of

points. A number of algorithms are available for this puipose [46]. The one

selected is due to Jarvis [47]. It was chosen with a view to ease of implementa

tion, especially the ability to deal with collinear points without too much special-

case coding. The fact that this algorithm is not the most efficient is not considered

to be a dominant factor, in view of the smallness of the point sets being processed.

The Interactive Input System

In the interactive input system that uses this shape decomposition algorithm the

user sketches one or more outlines which are to become the cross-section of the

object or part-object he wishes to describe on a graphics tablet. Each outline is

described by a number of line segments. Because it will usually be necessary to

associate exact dimensioning with the cross-section, the input is drawn on a grid.

This has an initially regular pitch specified by the user, but individual grid lines

may be perturbed to accommodate dimensions which are not multiples of the pitch.

The pre-printed input sheet, which also has a menu of commands and a ‘keyboard’,

is shown in figure 4.3. The layout is mirrored on a raster scan display. This can

show the movement of the grid lines, and (by using separate pixel-planes for the

grid and the input) allows editing of the shape to be performed without the confu

sion that would occur if the stylus trace on the input sheet were the only indication

o f the current situation. The lines drawn by the user are also straightened between

64

the tablet and the graphics display. When the user is satisfied with the shape he

has created, he indicates that recognition should take place. The program links all

the segments he has created into one or more closed figures. If some of these

figures are nested inside one another, this is recognised and the nesting of these

oudines is superimposed on that o f the convex hulls. If any unclosed figures or

crossing lines are discovered the program signals that an error has been made and

returns the user to the figure input stage to correct these faults. If there are no

errors, the decomposition algorithm is then invoked for each polygon in turn, and

the entire structure of the cross-section is expressed in a form suitable for linking

with language input, and passing to the solid modelling system.

If the user’s input was to specify one or more flat plates, then it is simply

necessary to add a zero coefficient for the third axis to the half-plane equations,

and these become the description of a corresponding infinitely long ‘extrusion’.

The program asks the user to supply two planes perpendicular to the third axis to

bound this extrusion.

Alternatively, because the algorithm establishes which side of each half-plane

corresponds to the solid, this information may readily be used to modify the equa

tion of the corresponding planar half-space. In particular, if each half-space is

rotated through a constant angle, then a ‘draft’ angle may be applied to the shape.

The rotation is easily applied by setting each half-space direction cosine

corresponding to the direction which is normal to the drawing plane to a value with

constant magnitude, with its sign depending on the side of the half-space which is

solid. It should be noted that if the half-spaces are constructed in this manner, the

65

topology of the shape at the bounds of the ‘extrusion* may be different from that

drawn.

As a third alternative, the base line of the input grid may be interpreted as the

centre-line of a ‘turned* component. In this case, the centre line is used as a

dummy side in the recognition process, and then discarded. Half-planes parallel to

the centre line are interpreted as cylinder (which could be generated by a series of

planar half-spaces arranged around the centre line and intersected together to form

a faceted approximation). Lines at an angle to the centre line are interpreted as

cones (again faceted if this is required by the modelling system). Only lines per

pendicular to the centre line are interpreted as single planar half-spaces. If faceted

models are to be generated then the distance of the input points from the centre

line determines the number of facets on each curved surface. This is under the

overall control of the user, who specifies the degree of conformance he requires.

An Exam ple

Figure 4.3 shows a prepared input sheet with a sketch describing a plastic vice jaw.

The first stage of the input procedure is to specify the plotting grid. The grid and

the associated coordinate values are displayed on the screen. At this point the only

part of the tablet that is ‘live* is the menu command area. The user indicates that

he is about to sketch the outline of a component by making a mark in the ‘Draw*

box. He then sketches the outline, making certain that points with different dimen

sions in a coordinate are drawn on grid lines. If any errors are detected (such as

lines with the same start and end point or lines outside the plotting region) this is

66

indicated to the user and the line is discarded. Parts of the outline can be changed

by using the ‘Erase* command and then redrawing the required modifications.

As can be seen in figure 4.4, some of the grid lines have been moved in order

to dimension the component correctly. This is achieved by pointing first to the

‘Position’ command box, and then to the line to be moved by making a mark in

one of the boxes adjacent to the lower or left hand edges of the plotting grid. The

new value for the grid line is then entered using the numeric keypad on the input

sheet. If this value is acceptable (it does not overlap adjacent lines), the old grid

line is replaced by the new line and this is reflected on the display. When the user

has completed the input process he uses the ‘Finish* command to start the recogni

tion procedure. The ‘Wait* command may be used at any time to allow the user to

write comments on the input sheet (for example the name of the component). A

hardcopy of the display screen, together with the input sheet provides a permanent

record of the dimensioning of the component. Figure 4.5 shows a view of the

component as produced by the modeller. The transverse slot in the base of the

component was entered on a second sheet and then ‘differenced’ from the com

ponent in the language form.

Building a Model from Outlines from a Computer Aided Part Programming

Package

Computer Aided Design and Computer Aided Part Programming packages are in

widespread use for generating toolpaths for numerically controlled machine tools.

The algorithm described above has been used in a input processor that takes

67

graphical data, in the form of outline contours from such a system, and generates a

solid model from such data. An example of such use is shown in figures 4.6 and

4.7. Figure 4.6 shows the outline of a component in the SmartCAM system. Figure

4.7 shows the component as modelled by a solid modelling system, the model hav

ing been created from the graphical outline data.

It may be noted that this automatic generation of a model from graphical

input could be used as the basis of a toolpath checking system based on ‘subtract

ing* the swept volume model from the model generated from the outline. (This is

not the approach used in the verification system described in this thesis.) If this

approach were to be taken, then it would be of limited use since any curves in the

outlines imported from the system would need to be faceted. It would then be

difficult to avoid spurious discrepancies being detected between the facetted outline

model and that generated by the swept tool volume (for a more detailed description

of the process, refer to Chapter 5).

68

Sets {object}

FUNCTION box(minpt: Point, maxpt: Point): Set

; This generates a box aligned with its two leading diagonal comers at minpt and maxpt.

Sets {minxf, minyf, minzf, maxxf, maxyf, maxzf}

Points {x_vec, y_vec, z_vec)

{; Three coordinate unit vectors

x_vec := pt(1,0,0)

y_vec := pt(0,l,0)

z_vec := pt(0,0,l)

; Six box faces

minxf := space(-x_vec,minpt)

minyf := space(-y_vecjninpt)

minzf := space(-z_vecjninpt)

maxxf := space(x_vec,maxpt)

maxyf := space(y_vec.maxpt)

maxzf := space(z_vec,maxpt)

; Box is the intersection of the faces

RETURN(minxf & minyf & minzf & maxxf & maxyf & maxzf)

}

FUNCTION sphere(centre: Point, radius: Real): Set

; This generates a sphere centred at centre, with radius radius.

Sets {x_p, y_p, z_p]

{; Create three mutually perpendicular planes through the centre

x_p = space(centre + pt(1,0,0), centre)

y_p = space(centre + pt(0,l,0), centre)

z_p = space(centre + pt(0,0,l), centre)

; Build the sphere and return it

RETURN(x_p*x_p + y_p*y_p + z_p*z_p - radius*radius)

)

; ------------ Main program. Build a sphere with a box through it.

{

object = colour(sphere(pt(0,0,0), 1), 1) I colour(box(pl(4.5,-0.5,-l.5),pt(0.5,0.5,1.5)),2)

write(" sphere_box ".object)

Figure 4.1 An example of language input

69

Contour as
ske tched

Convex h u 11 of
entire contour

First layer
of deconposition

(ho 1es)

Second layer
of deconposition

(solid)

' \
' \
\ \

/ /
/ // I

h a l f -space
u sol id derived fron

convex h u 11
s ides

* d i scarded
convex h u 11
s i des

Figure 4 2 A graphical input algorithm

70

Figure 4.3

Univers i ty of Ba th
S c h o o l of E n g in ee r in g
M a n u f a c t u r i n g Group

SKETCH INPUT(7)

V i c e T A V J

•o
n~
\J)
oo
c
X

5

. .. -

/ V>

iA/ v . / V. s,

....

1_____ I I I I N I I M i l l 1 1 1 _ J

0 ® m in d] [Die]
(HI 0 0 0 0 0 0
(o] ® ® ® ® ® ®

0 0 0 0 0 0 0

0 0 ®
0 (0 ®
0 0 ®

® 0 0
St ar t Draw | Pos i t i on |

Finish E r a s e A l p h a

WAIT

Input Sheet for Graphical Input System

71

4 1 .8 9 0

39.680

35.200

33.000

38.306

28.600

26.400

34.200

22.000
19.300

17.600

15.400

13.200

11.066

5 .000

4.000

3.800

0.000

- 2.200

- 3.380

1 1 . 906

Figure 4.4 Screen Display for Graphical Input System

Figure 4 5 The shape as modelled using ‘DODO’

-156

ri*w i 1 i i i i 1 i i i ii i ii i I i i i ii i
Figure 4.6 A ‘screen-dump’ from SmartCAM

Figure 4.7 The shape as modelled using ‘DODO’

73

CHAPTER 5

Toolpath Verification

Tool path G eneration

Since the introduction of numerically controlled (NC) machine tools in the mid

1950s their use in engineering industry has increased rapidly, and at present they

are in widespread use. Many different machine tools may be fitted with numerical

control: most commonly lathes and vertical milling machines. Some of the first

numerically controlled milling machines were capable only of moving the tool such

that its motion was orthogonal to one of the machine axes. Other machine tools

were capable o f contour cutting (ie moving more than one machine axis simultane

ously), but many were restricted to simple point to point (linear) movements

because of the high price of control systems for contouring.

With these simple machines, programming was easily performed manually.

The limited tool movements meant that separate toolpath verification was not

required. Also, it was often the case that programming was done on the machine-

tool itself, by manually instructing the machine to move through the required

sequence of operations, whilst simultaneously recording the tool movements on

paper (or magnetic) tape. In this case, separate toolpath verification is not really

necessary.

The next generation of NC machine tools were capable of more complicated

tool movements. These included 2 or 3 axis linear interpolation and 2 axis circular

74

interpolation. Also automatic toolchanging mechanisms were added allowing the

cutting tool to be changed under program control. Components designed for

manufacture on such machines often have edges described by line and arc seg

ments that lie at arbitrary angles to each other and to the coordinate system. Fillet

radii that lie tangentially to these lines and arcs are also frequently specified. The

manual programming of toolpaths for the components involves many geometric

calculations (often calculating the positions of the centers of arcs that lie tangential

to other arcs and lines) and is extremely time consuming and prone to errors.

In the 1970s several computer assisted part-programming packages were

developed. Typical of these, and still in widespread use, is G.N.C. (Graphical

Numerical Control) written at the CAD Centre [48] . As originally written it

allows the user to generate toolpaths for machining two-and-a-half dimensional

components on vertical milling machines. (Two-and-a-half dimensional com

ponents are those which may be have an arbitrary outline in two dimensions, but

only step changes in the third and leave no undercuts.)

As with other computer assisted part programming packages, such as Pafec’s

DOGS-NC and Point ControTs SmartCAM [44], that are written for generating

two or two-and-a-half dimensional toolpaths, the generation process starts with the

user interactively defining the geometry of the outlines of the component in terms

of unbounded lines and circles. These may then be joined together to form con

tinuous outlines. Cutter paths may then be defined based on these outlines by

‘driving* a specified cutter along the outlines from between specified start and end

points, and with a specified offset direction. If a closed outline is defined, a

75

roughing operation may be automatically performed, generating a spiral, or linear

(zig-zag) toolpath that removes material from the region enclosed by the outline.

These cutter motions may then be joined together with other operations, such as

hole drilling, to form a complete toolpath.

Other packages such as Polysurf and Duct will generate toolpaths for three

dimensional curved surfaces.

One problem with all these packages is that - although they contain a descrip

tion of the geometry of the individual parts of the surface of the component - they

are not, in general, capable of detecting whether a given tool movement will cut

into other parts of the component. This results from both the nature of their inter

nal representation of the component, and the method of the packages use. Often

the representation scheme is not capable of answering queries such as whether a

point lies inside or outside the component. This may make it difficult to detect

intersections between the toolpath and parts of the component. When using these

packages, the user will specify a surface that is to be machined, together with a

number of ‘check* surfaces that contain the motion of the cutter. Other surfaces of

the component may be ignored, so if the tool cuts these surfaces, this may not be

detected.

The Complexity of Toolpaths

The increase in sophistication of both computer-assisted part-programming systems

and N.C. machine tools has led to an increase in the complexity of toolpaths.

There are several factors that contribute to the complexity of such a toolpath.

76

There may be a large number of separate, possibly simple, tool movements. This

is often the case where some form of three dimensional ‘sculptured* surface is to

be machined using a large number of small linear (or circular arc) cuts. Alterna

tively the tool motions themselves may be geometrically complex. Many modem

milling machines, for example, are capable of performing helical cutter motions.

Also, there are now many machine tools that are capable of performing 4 or 5 axis

motions. The shapes of the tools themselves may also be complicated; in milling

for example a barrel-shaped cutter with comer radii might be used. It should be

noted that the toolpath for even a simple shape may be complicated since several

passes may be required to remove material in roughing operations followed by one

or two finishing cuts. Also, if the surface geometry of the component is not well

suited to the range of cutter shapes and machine movements (or such movements

cannot be calculated) then a large number of short cuts may be required.

The Need for Verification

It is often desirable that these complicated toolpaths be checked before the machin

ing of an actual component is attempted. There are several reasons for this.

Firstly, if the toolpath is not correct then damage may be caused to the machine

tool, vice, fixtures and cutting tool. Incorrect machining can often mean that the

component blank has to be scrapped or requires expensive reworking. This is

especially costly if the blank is of high value either because of its size and/or

material, or because it has already undergone an expensive pre-machining process.

Manufacturing incorrect components also wastes machine time, especially if the

77

errors are not detected until after the component (or maybe several components)

have been machined. An N.E.L. report published in 1975 [49] surveying NC2+2

machining is the USA stated that up to four reworks were required to correct errors in toolpaths.

There are a number o f potential sources of error in toolpaths:

• Human error in specifying coordinate information, or in using the

computer-aided part-programming software.

• Errors in the computer aided part-programming software.

• Errors in the post-processing software.

• Incorrect tools loaded into the machine-tool tool magazine, or incorrect

fixture or tool offsets specified.

• The toolpath is geometrically correct, but an unwise choice of the order of

machining, poor selection of feedrates, spindle speeds or depths of cut results

in errors.

• Parts of the tool holders or machine spindle assembly collide with the com

ponent, fixturing or the machine bed.

Ideally a verification system should be capable of detecting errors from all o f these

sources.

Requirements of the Verification Process

Before looking at the various possible methods of performing toolpath verification

it is worth considering what is required of the toolpath verification process.

78

The most important requirement is that it should check that the shape of the

component resulting from the cutting operation is that which is required.

This means checking both in terms of its overall shape and also detailed

dimensional measurements. Verification should check for potential collisions

between the cutting tool and those parts of the machine tool that move with it, and

the component to be cut, any fixtures, and parts of the machine. The are also a

number of technological factors that could be checked. These include checking

that the speeds and feed rates are suitable for the depth of cut and the material to

be used, and also that the direction of travel of the tool is consistent with its func

tion (that a twist drill is not to be used to cut a slot for example).

Also, errors that generate the correct shape, but would also result in collisions

between the cutters or parts of the machine-tool should be detected.

Since errors may occur either before or after the post-processor, any system

should ideally be capable of use with output directly from the toolpath generation

stage, or after post-processing.

As far as is possible, errors caused by wrong tool loading, or wrong fixturing

should also be detected.

Methods of Verification

Toolpath verification can be performed in a number of ways. The simplest

(and probably most commonly used) methods requires only the machine tool that is

to be used to cut the component. The most basic of these is to set the machine

tool to perform all movements at a (predefined) slow feedrate. Alternatively it

79

could be set either to ignore z-axis movements or to machine the component blank

with the z-axis coordinates offset All tool movements should now take place

above the surface of the component blank. The toolpath may now be run on the

machine, possibly in ‘single block* mode and/or with a reduced feedrate under the

supervision of the operator. There are a number of obvious drawbacks with these

simple methods. The technique is only suitable for checking for any large errors in

the toolpath since there is no record of the path followed by the tool. It is only

applicable for checking toolpaths that involve mainly one or two dimensional cuts.

Toolpaths for machining ‘sculptured surface’ components may consist of many tens

of thousands of cuts, hence at reduced feedrates, the machining times for

verification purposes may become extremely large.

Another traditional method of toolpath verification is to use a substitute

material. The component blank is replaced by a similar shaped blank made o f a

material such as foam, wood or wax. The toolpath is checked by running it on the

machine tool.

Due to the good machinability of the substitute material the feedrates can be

increased, resulting in a verification time that is less than the actual machining

time. As with the previous technique, no extra capital cost is involved. Substitute

materials that are easy to machine, such as wax and foam, often display dimen

sional instability. This means that it is not possible to check the dimensions o f the

component accurately. Some substitute materials are also very messy to use. The

lack of mechanical strength of materials such as wax may also be a problem if thin

sections are to be machined; in many cases a blank that is larger than the actual

80

component blank is required to provide sufficient mechanical strength and stability.

Also, errors such as excessive cutting depths, or incorrect spindle speeds will not

be detected due to the much reduced cutting forces generated when machining the

substitute material.

In any technique that uses the machine tool, large errors in the program may

result in damage to the machine tool. Also, after machining, the resulting shape

displays the effect of all the machining steps. If there is an error in the shape then

it may not be obvious which part of the toolpath caused the error and little infor

mation is gained. For these two reasons the verification process must be watched

by the programmer or machine operator. Clearly, whilst being used for toolpath

verification, the machine tool is not performing useful production tasks. Proving

times of up to six hours per hour of machining time are not unknown.

Computer Verification

Early attempts at computer verification of N.C. toolpaths were hampered both by

the high cost o f computers of sufficient power, and also the unavailability of suit

able graphics output devices.

The fall in the cost o f both computers with sufficient power and of graphics

output devices has led to the development of computer based toolpath verification

systems. The simplest programs display the path followed by the tool relative to

the workpiece. This may be plotted as a line on a graphics screen or plotter, often

in two or more views, usually in either orthogonal or isometric projection.

Differing line types, and/or colours may be used to differentiate between rapid and

81

feed-rate movements.

Simple centre line plotting is often available as part of graphical computer

assisted toolpath generation packages. Many modem machine tool controllers are

capable of plotting simple orthogonal or isometric views the the tool motion, either

whilst the tool is moving, or, more usefully for toolpath verification, whilst keeping

the tool stationary.

There are several disadvantages to this simple approach. If the toolpath

includes three-axis movements, or a large number of cuts, then the display is

difficult to interpret. The plots are often far more complicated than the surfaces

that they represent. For example, a typical pocket roughing operation will move

the tool back and forth within the confines of the pocket. This will result in a

number of lines in the plot, but only one surface in the component. The apparent

advantages offered by having more than one view are lessened since it becomes

difficult to correlate the cuts between views. Also, unless block numbers are

printed alongside the lines, which further complicates the display, it is not easy to

relate the plot to toolpath that generated it.

The major disadvantage of the centre-line plot is that it only displays the path

followed by a point on the tool. In order to visualise the surface created by the

toolpath the user has to ‘add-on* the shape of the tool. The situation is further

complicated if more than one cutting tool is used.

A drawing of a simple component, drawn on a CAD system is shown in

figure 5.1. Figure 5.2 shows a tool centre-line plot for the component from the

82

Smart CAM part-programming system; even for this relatively simple two-and-a-

half dimensional shape, it is not easy to interpret the plot. The component was cut

in a substitute material, a picture of which is shown in figure 5.3. In order to pro

vide sufficient support for the foam during machining, large amounts of excess

material are left surrounding the limits of the actual component blank. The actual

component machined from aluminium is shown in figure 5.4. Figures 5.5 and 5.6

show a drawing of a more complicated component, and a centre-line plot of the

machining sequence for the upper side of a set of six components.

Several other, more complicated, graphical approaches have been tried. These

all attempt to model in some way the volume swept by the cutting tool. The tech

nique adopted by McGoldrick and Gibson [50] was to draw orthogonal views and

sections of the outline o f the cutter path. This was easier to interpret than the

centre-line plot and overcame some of its problems. Their system could handle

two-and-a-half dimensional toolpaths. Any other limitations imposed on the tool

paths are not given in their paper. It is not clear how the technique could be

extended to cope with more complicated tool movements. It is not possible to

extract accurate dimensional information from the views.

An alternative technique was developed by Anderson [51] to detect certain

types of errors in NC toolpaths for vertical milling machines. The technique will

detect fouling between the toolholder and the (partially machined) component. On

detecting a tool motion that would result in such a collision it will attempt to gen

erate a corrected tool movement. The toolpaths must not contain any undercuts.

The algorithm creates a two dimensional array of heights for points on an (x,y)

83

grid with each element initialised to contain the z height of the initial billet. As

each tool movement is processed the z heights for each element that the tool passes

over are updated to the height o f the tool base. Intersections between the tool-

holder and the current billet surface are detected by checking the height of ele

ments that the toolholder passes over. As Anderson states, the resolution of the

system is limited, and he suggests a grid with an element spacing of 10 to 20 per

cent o f the cutter diameter. The system is limited to cylindrical cutters, and

assumes that the toolholder (and any relevant parts of the machine head) may be

represented by a number of cylinders concentric with the cutting tool.

Chappel [52] describes a technique that represents the material removed dur

ing a milling operation using vectors. A mesh o f points are defined on the surface

of the required shape. Vectors are generated that pass through these point and lie

normal to the surface. These vectors are extended both into and away from the

surface, bounded by other parts of the required surface and the surface of the origi

nal b illet The cutting tool is modeled as a cylinder. In order to simulate machin

ing the cylinder is instantiated at discrete positions along the toolpath and the vec

tors that intersect the cylinder are clipped against it. Collisions between the tool

holder and machine head (modeled again by a number of concentric cylinders) are

detected by checking for intersections between each of these cylinders and the vec

tors. The checking is based on a general vector-cylinder test and is thus not res

tricted to toolpaths in two or three axis.

The main limitations of the approach are that it only checks the path at

discrete locations, rather than in its entirety. Also, as with the previous technique,

84

it it limited to cylindrical cutters and a cylindrical approximation to the toolholder

and machine head and spindle assembly. The feedback to the user of the system is

also limited. All the examples given are for relatively simple toolpaths.

The approach taken by van Hook [53] is based on a hardware Z-buffer.

Continuous-tone pictures of the (partially machined) component are generated on a

special raster-screen display. For each pixel in the image a linked-list is kept of

the distance to each surface of the component blank that lies behind that pixel. For

each tool position that is to be checked, the set of pixels corresponding to projected

image of the tool is found. The distance to the near and far sides of the tool for

this pixel are calculated and the linked-list is updated. If this results in a different

surface becoming the ‘front* surface then the screen pixel is updated. The algo

rithm is implemented in microcode and can display movements in real-time. As in

the previous two techniques, the toolpath is checked by instantiating the cutter at

discrete locations, rather than checking the volume that is swept by the cutter as it

moves.

All of these techniques suffer from the limitations that result from the choice

of data-structure used to represent the component and/or material removed by the

tool. One effect o f this is the absence of any facilities to allow the user to obtain

non-pictorial information. Another is that several of the techniques are limited

such that the tool position is checked only at discrete locations, which may lead to

some toolpath errors not being detected, and apparent errors being introduced. The

lack o f facilities to ask queries o f the system (for example by using a cursor to

point at features in the picture) increases the effect of these limitations.

85

Toolpath Verification by Solid Modelling

In order to represent the geometric component blank, the cutter, and the machine-

tool in a complete manner a data-structure is required that will represent the

geometry of these in three dimensional space. One method of representing such

volumes is to use geometric modelling techniques.

The simplest way of using solid modelling techniques to perform toolpath

verification is as follows. A model is constructed of the volume swept by each

individual cutter movement. These are then unioned together, resulting in a model

of the total volume swept by the cutter. A separate model is constructed of the

component blank. The toolpath model is then differenced from this model to give

a model of the resulting component From this model views of the component

may be generated. These views are then examined to see if the component, and

hence the toolpath, is correct.

If models of parts of the machine tool, clamps and so forth are unioned with

the component blank model then collisions between the tool and these can be visu

ally detected in the final model.

A verification system [54] of this type based on the TIPS [32] modelling sys

tem has been developed by Fridshal et al. This system used the user-definable sur

face features of TIPS to allows 4 and 5 axis tool motions to processed. In addition

to generating shaded pictures of the model resulting from subtracting the toolpath

from the model of the component blank, the system also allows the user to ask

queries of the modeller by pointing at a screen displaying the picture.

86

In a report issued by the Production Automation Project at Rochester Univer

sity [26] Hunt and Voelcker describe an experimental verification system based on

the PADL-1 geometric modeller. This system requires the user to create a solid

model of the component that is to be machined. This is then compared to the

model of the component that results from processing the toolpath and any

discrepancies are detected. If discrepancies do exist, then they are assumed to be

errors in the toolpath. The report also discusses a number of issues concerned with

implementing an incremental verification system, based on a general solid

modeller, that will perform verification on a block-by-block basis.

One of the advantages of the system is that the toolpath may by automatically

checked once the model o f the required component is defined, although this stra

tegy does have several potential problems. Firstly, the user has to construct the

model of the required component (in practice such a model may be available from

the CAD system used to design it). Secondly, if the component model does not

correspond exactly to that resulting from machining, then spurious errors may be

reported. Hence, even regions that are not to be machined have to be modelled

identically in both the model o f the original billet and in the component model.

The comparison of the two models requires that a ‘same object test’ or ‘null object

test’ be performed on the two models. Since the two models are constructed

entirely differently, and discrepancies between them may be very small, there is a

large scope for numerical problems occurring.

One of the conclusions reached by Hunt and Voelcker is that for an incremen

tal verification scheme, a pure set-theoretic modelling scheme is computationally

87

less suitable than either a pure B-rep or a dual representation scheme due to its ina

bility to use intermediate results.

Problems with using Solid Modelling for Toolpath Verification

In practice there are a number of considerations that make many ‘standard’

geometric modelling systems ill suited for performing toolpath verification. The

choice of representation scheme, the internal data-structure, and of the form of

graphical output all need consideration when choosing a modelling strategy.

The models generated from the toolpath tend to be very laige, much larger

than a simple model of the resulting component. This is because in order to gen

erate even a simple surface a large number of cuts may be required. The non

linear response of many geometric modelling techniques to model complexity leads

to long processing times.

A second potential problem is the wide range of differing surface and (espe

cially) edge geometries that are required to be modeled. The movement of a

cylindrical cutter in a straight line not orthogonal to any of its axes, for example,

requires the modelling system to be capable of representing planar, cylindrical and

elliptical prism surfaces. If a boundary-file is to be generated then the intersection

curves of all these surfaces must be representable. Fridshal [54] reports that

modifications were needed to the TIPS modelling system to make it suitable for

toolpath verification. The changes required were firstly to extend the range of sur

faces that could be modeled (employing the user-definable surface features of

TIPS), and also to remove limitations on the distribution of set-theoretic operators

88

in the set-theoretic model.

As explained in Chapter 2, line drawings are not particularly suitable for

displaying the curved surfaces that often occur in models generated by toolpaths.

If they are used, hidden line elimination will be essential to allow the user to

understand the images, owing to the large number of lines that would otherwise be

displayed. Tools with rounded ends or comers generate surfaces with few sharp

edges in the model. Therefore it is likely that additional lines will be required to

portray the curved nature of the surfaces.

As with all graphical verification techniques, the graphical output gives only

overall geometric information. There is also a requirement to be able to examine

in detail the model resulting from the verification process. This implies that the

user must be able to make queries of the modelling system, preferably in an

interactive manner with graphical feedback. The range of such queries should be

such that detailed geometric data may be extracted from the model (either the

model of the component resulting from the tool sweeping operation, or that result

ing from a comparison of such a model with the model of the ‘ideal* component)

so that potential errors may be checked.

If errors are found (either by being detected automatically by the system, or

during interrogation by the user) then it must be possible to relate these errors back

to the toolpath generation process so that the cause of the errors may be

discovered. This will typically mean that the block number or program line

number for the erroneous tool movement will be required.

89

If the verification process is based on the comparison of a model generated

from the toolpath swept-volume and a model of the required component then two

further problems have to be overcome. The first occurs when sculptured surfaces

are to be machined using a ball-nosed cutter. In this case, the designed surface

may be a smooth surface whereas the corresponding machined surface may consist

o f a number of separate surfaces, each generated by a small tool movement (The

surfaces would normally be smoothed after machining by hand-finishing.) The

verification system must therefore be able to distinguish between these discrepan

cies and genuine errors. The second problem occurs when surfaces to be machined

have tolerances specified. The surfaces resulting from machining may differ from

the designed surfaces, whilst remaining within the specified tolerances. In order to

overcome these problems the ‘same object test* or ‘null object test* would have to

take account of surface tolerancing. Clearly a modelling system using facetted

primitives is unsuitable for this approach.

The Approach taken in this Project

Despite these problems, the toolpath verification system described in the following

chapters uses solid modelling techniques. A set-theoretic modelling system is used,

using spatial division to reduce the effect of the size of the models generated from

the toolpaths. The approach adopted in the toolpath verification system described

in the following chapters is as follows (see also figure 5.7):

1 A geometric model is created of the volume swept by the cutting tools as they

follow the toolpath. This model is then combined with a model of the com-

90

ponent blank, together with models of any clamps etc. These processes are

described in the Chapter 6.

2 The combined model is then spatially divided for more efficient evaluation.

This process is described in Chapter 7.

3 A number of images of the divided model that represents the result o f the

machining operation are generated, using viewing parameters defined by the

user. At this stage, any gross errors in the component may be seen. This

stage, and the next are described in Chapter 8.

4 Facilities are provided for the user to interrogate the model, using a cursor to

point to features in the images. Thus detailed geometric information may be

extracted from the model.

91

PART NAME: B R A C KE T

-----1

r “ “ 1

10-.0510- .05

M A T E R I A L : A L U M I N I U M B A R

ALL DIMENSIONS nn

CENERAL TOLERANCE • / - 0 . 2 5 n n

Figure 5.1 A Drawing of a Sample Component

92

4 4

36

18

Figure 5.2 Vector-plot of toolpath centre-line

93

Figure 5.3 The Component cut in Foam

I

' f t l i i

’ f ^ ; N\ • "

Figure 5.4 The Machined Component

94

_ b 5 . 0 I
i 4 .0 « ICi’i

- 2 5 0 BLEnO
ibOR -

■ I 4 ,0 *

 r ° r

\

- 5 .0 R

H6 HOLE
D^ILL IN COHJ- vhT«
STEJT

10,0 R

iV;-

Z - (oP0 HCLtb
MA.F.WED T UJ5 - h
OR'H. ON t e o f

; 5-5,J(?HO».Eb
i H EVO I'Uvxt.O
Tnob 4 - DU«.u

; o h tvJo't.

1
£

_

—-
LL

1
10,0

?sp
__t.

SECTION B - B

Figure 5-5 A more complicated component

^ k ^ ' f " S S v i ^ ‘

B f t i i i j iM\MWk
m m t m m

P#J» tmmiMf
r l ^ M

Figure 5.6 Vector-plot of toolpath centre-line

95

Toolpath description

Tool geone”try definit

Component blank model Swept volume model

Model of machined component

Spatially divided model

Pictures of model

Visual inspection Detailed interroqationerroga

Figure 5.8 The solid modelling approach

ions

96

CHAPTER 6

Construction of a Solid Model from a Toolpath Description.

The first stage in the toolpath verification system is the construction of a

geometric model of the component that results from the machining operation.

The Composition of the Model

This model is composed of a model of the component blank combined with a

model of the volume swept by the tool(s) during the machining operation. Other

models representing vices, clamps and parts of the machine tool can be incor

porated in order to allow the detection of collisions between them and the cutter or

component blank.

The model of the component blank may be specified in one of two ways. If a

simple rectangular blank is specified (as is the case in many milling applications),

then the position and size of the blank may be specified, and the system will then

construct the required model. In other circumstances a more complicated model

may be needed. This may occur in one of two cases.

The first of these is when the blank has been created by some external pro

cess. It may, for example, be a cast or formed object, or it may have undergone a

machining process that is not to be verified. In these cases, the blank may be

described using a language input SID [30] and/or the graphical input system

described in Chapter 4. Pictures of the model may be generated using either the

97

modeller based on planar half-spaces (DORA [30]), or that based on polynomial

half-spaces (DODO).

The second case occurs when a sequence of toolpaths is to be verified and the

blank has undergone previous machining that is to be (or has already been)

verified. In this situation the model of the ‘blank’ will itself have been created by

the software described in this chapter. When the machining process uses multiple

set-ups in which the component is repositioned or inverted between machining

operations, the model of the blank is suitably rotated and translated before it is

included in the new model. These operations are easily performed using the model

definition language.

Models of objects that do not move relative to the component during machin

ing (parts of the machine bed, vices, clamps etc) may also be described using

language or graphical input, and unioned with the blank at this stage.

The rest of this chapter describes the process of generating the model of the

volume that is swept by the tools for the toolpath that is to be checked. The stra

tegy adopted when generating this model is to create a model for the volume swept

by each tool movement separately, and then to combine these to form a model of

the total swept volume.

Factors Affecting the Geometry of M achined Surfaces

As stated above, each tool motion is modelled separately. Ideally, the verification

system would be capable of modelling any tool shape and path. In practice the

range of shapes and paths is restricted by the geometric modeller that is used. In

98

the project described in this thesis two modellers were used (as explained in

Chapter 1), a facetted modeller and a polynomial modeller. For the verification

systems based on either modeller the choice of tools and motions that will be pro

cessed is based on the surfaces that need to be represented by the system in order

to model each motion. The geometry of the surface produced when a cutting tool

is moved relative to the workpiece is dependent on two factors.

The first o f these is the shape of the cutting tool itself. The tools most com

monly used in a vertical milling machine are end-mills, slot-drills, fly-cutters,

centre-drills and drills. (If sculptured surfaces are to be cut, then ball-ended slot-

drills are also used). If it is assumed that the tools always rotate sufficiently fast

relative to the feedrate then, for the purposes of toolpath verification, each shape of

a tool may be represented as the shape of the volume swept by the tool as it rotates

about its central axis. (It should be noted here that the model for each tool move

ment is not generated by sweeping a model of the tool along the path for the

cut [55], but rather is generated directly.) Hence the end-mill and slot drill may

be represented as a cylinder, and the drill as a cylinder and a cone. A centre-drill

may be represented either in the same manner as a drill, or as a more complicated

assembly of cylinders and cones. The fly-cutter may also be represented, slightly

less accurately as a cylinder. A ball-nosed cutter may be represented as a cylinder

and a hemisphere. Figure 6.1 shows models of a slot-drill, a twist-drill and a ball-

noded slot-drill.

The basic shapes of milling cutters are sometimes modified by adding comer

radii chamfers. In some instances it may be desirable to incorporate these parts of

99

the tool shape in the tool model. If this is the case, then the additional surfaces

that would be required are the torus and cone respectively.

The motion of the tool relative to the workpiece also affects the shape of the

surface produced by any individual cut. Modem vertical milling machines are

capable of one-axis, two-axis or three-axis linear movements and two-axis circular

movements (as well as more complicated three-axis movements such as helical

interpolation and also four or five axis motions). The surface forms generated

when the different surfaces used to model the cutter types are moved along a range

of paths are shown in figure 6.2. Note that the cylinder, cone and torus primitive

are assumed to have their axis of symmetry oriented vertically. (The shape of the

original blank only affects the edges of the cut surfaces. This is of no importance

in either of the set-theoretic modelling schemes since they do not store edge infor

mation.)

For the facetted modelling system, it was decided to limit the range of tool

types and motions that would be processed to those which would generate only

singly-curved surfaces. This is because it was considered that too great a number

of facets would be required to model doubly curved surfaces to the required degree

of accuracy. The system was implemented to handle tool motions corresponding to

two-and-a-half axis machining, and will therefore process horizontal linear motions,

vertical linear motions and horizontal circular motions for cylindrical tools; and

also vertical linear motions for cylindrical and conical tools.

In the case o f the polynomial system the limitation is one of the degree of the

polynomials generated by a given tool/motion combination. For reasons of

100

numerical stability, the system will handle polynomials of degree less than 14.

Referring to figure 6.2, it may be seen that the scheme is capable of modelling all

surfaces that may be generated by the toolpath generation system. In practice, res

trictions were made on the range of motions that were processed due to the avail

able time. Thus the polynomial system will process both linear motions in any

direction and horizontal circular arcs motions for any of the tool types shown in

figure 6.1.

It should be noted that for both systems, any restriction in tool movements

applies only to each separate tool movement. There is no reason why the work

piece (and model) should not be translated or rotated between cuts. The full range

of valid tool shape and motions is summarised in figure 6.3.

The Toolpath Description

Toolpaths that are to be verified may be described in one of two ways; either

as a CLdata file [56] (the format of which is defined by the BS 3625 and ISO/DIN

3592 standards), or as a ‘machine-level’ part-program file that has been generated

for a particular machine-tool and/or controller.

The CLdata file is a standard description of the path followed by the tool cen

tre (a point on the axis of rotation of the tool, usually positioned at the level of the

tool base), together with non-geometric information such as tool changing, speed

and feed rates etc. The file is composed of a number of data blocks. Each block

has a record type that defines the class of instruction that the block contains and a

sub-type that defines the exact function. These are followed by a number of

101

parameters, the meaning of which are dependent on the record type. In the case of

a linear cut, for example, there are a variable number of parameters, in triples, each

of which contains the (x,y,z) coordinates of a point through which the tool centre

will pass (ie the single record can define more than a tool motion).

CLdata files are generated by many computer assisted part-programming sys

tems, GNC [48] and APT and its derivatives [57] for example. Such files contain a

non machine-specific description of the toolpath which is normally post-processed

to generate a set of instructions for a specific machine-tool and controller. This is

essentially a translation process, which takes into account both the required

language for the machine tool controller, the geometric layout of the machine axes,

and any limitation of the machine as regards tool motions. (The post-processor for

a machine not capable of circular motion would, for example, approximate any cir

cular tool movements into a number of straight motions.) Hence if the CLdata file

is used as the toolpath definition, the toolpath verification system input is indepen

dent of any particular machine, although it should be noted that it will not detect

any errors that occur during post-processing.

The model-building stage of the toolpath verification system processes the

CLdata file sequentially, one block at a time. After reading a block from the

CLdata file its first action is to decode the record type. Records may be classified

into four groups for the purposes of the verification system. These are:

• Cutter selection.

102

• Cutter movements suitable for processing by the verification system.

• Cutter movements not suitable for processing by the verification system.

• Other instruction, such as the selection of spindle speeds and feedrates.

If the record is a tool selection command, then the new tool diameter and

length are extracted, and the tool number and CLdata block number recorded. The

CLdata file does not contain the type of tool. This information may be obtained

from some other source, or possibly from an ‘operator comment* record that

accompanies the tool load record. (The information must be available as it will be

required by the machine tool operator)

All other non-movement commands are ignored by the model generator,

except for coordinate offset instructions.

If the record is a tool movement instruction then the record sub-type is

checked to see if the motion is a linear or circular arc. The end point of the move

ment is extracted and, in the case of the circular arc, the position and orientation of

the circle centre axis and the direction of motion (clockwise or anticlockwise).

The data are now checked to see if they are suitable for processing by the system.

If not(for example they represent a circular arc with a non-vertical axis) then an

error is flagged. If the tool motion is capable of being modelled then the next

stage is to create the model of the volume defined when the tool-shape is swept

along the centre-line.

103

If the toolpath is defined as a machine-level part-program file, then a similar

process to that described above for the CLdata files is required. In this case the

verification system must emulate the particular machine-tool and controller for

which the program is written. Machine level part programs consist of a sequence

of blocks, each block containing a number of commands. There is no standard that

defines the meaning of all the commands used in part-programs; different

machine-tool controllers handle instructions in differing ways and the same

machine instruction can have a different meaning on two different controllers. (For

example, the /, J and K fields for circular motions may be contain either relative or

absolute values.) The verification system will handle input for two different con

trollers, a FANUC 6M controller used at the University of Bath, and also a

machining-centre at use at British Aerospace in Preston. The part-program file is

processed in a manner similar to the CLdata file. Each block is read in sequen

tially, the contents for the block are decoded, and tool movement instructions are

extracted for model generation. A record is kept of all ‘modal* command data as

well as information such as the current tool, whether motion is absolute (G90) or

incremental (G91), the plane for circles (G17, G18, G19) etc. The full list of com

mands capable o f being processed is given in figure 6.4.

For a machine-level part-program, a separate file is required that defines the

size and shape o f each tool to be used. Whenever a tool load record is read from

the part-program file, the details of the tool type (end-mill, slot drill, drill, ball-

ended cutter, com er chamfer or radiused comer), and diameter, height and any

length offset are read from the file. If they are not present, the user is prompted to

104

supply the information.

Generation the Model for the Swept Volume

The simplest way to model the individual tool motions, bearing in mind that they

are to be made up from planar or polynomial half-spaces would be first to con

struct a number of bounded primitives and use these to construct the model of the

swept volumes. A cylinder could be constructed with the same diameter as the

current tool, together with a rectangular cross-section bar with a width equal to the

tool diameter. These could then be combined to create the model for any linear

tool motion of the cylindrical tool in the xy plane, or parallel to the z axis. The

disadvantage with this approach is that it introduces redundant half-spaces, espe

cially when generating a facetted model. This adds to the complexity of the model

and so will increase the time required to generate pictures of it.

Additional redundant half-spaces will be introduced if the end components of

the model for each tool motion are the shape of the swept volume of the tool.

These half-spaces are always redundant since at the start of each tool motion, the

tool must be at the same position as at the end of the previous tool motion. Hence

that part of the model corresponding to the start o f any non-vertical motion may be

a single planar half-space aligned with the centre-line of the tool at that position

and oriented such that its surface normal lies along the tool motion vector. This is

shown in figure 6.5. Obviously the first cut after a tool load is a special case

(although this should be clear of the cutting region). The only disadvantage of this

approach is that information regarding that region of material that is swept by both

105

the end of one tool motion, and the beginning of the next is only attributed to the

first motion. In practice this does not cause any problems.

The generation of a model corresponding to the movement of a cylindrical

tool, such as an end mill or slot drill for each type of motion is now described.

The approach adopted when generating the models is never to introduce redundant

half-spaces into the model for any tool motion.

Each cut is in fact modelled as a hole in an infinite solid block rather than as

a solid volume. The individual models are joined together with the intersection

operator, and then the complete model is intersected with the model of the com

ponent blank. The resulting model has all the half-spaces oriented such that their

surface normals point from solid into air (ie it contains no difference operators).

This fact may be usefully employed during the later processing of the model.

Vertical Tool Movement

The simplest form of tool movement to model is the linear z-axis motion. This

may be modelled as a semi-infinite cylinder with its axis along the center-line of

the tool position and with a radius equal to that of the current cutter. In the facet

ted modelling system, this cylinder is constructed by unioning together a number of

vertical half-spaces. In the polynomial system it is generated from two vertical

half-spaces, in a manner similar to that shown in figure 2.3, except that in this case

the cylindrical half-space has solid to its outside. The lower end of the cylinder is

a single plane orthogonal to the tool axis and at a z height corresponding to the

base of the cutter at the lowest end of the motion (which may be the start or the

106

end of the motion depending upon whether the tool is being raised or lowered). If

a simple tool modelling scheme is used (see also the section on more complicated

tool models) then the upper end of the tool need not be modelled. Figure 6.6

shows the half-spaces used to model such a motion together with the set-theoretic

model definition.

Horizontal Linear Tool Movement

The next simplest tool movement to model is linear x-y motion. The model for

such a tool motion is comprised of two sides, a base, a ‘start* end and a ‘final*

end. The sides are both vertical planar half-spaces, each positioned at a distance

equal to the current tool radius from the centre-line of the tool motion, and

oriented such that they are both parallel to the tool motion and are positioned one

to either side. The base is a horizontal planar half-space positioned such that it is

at the height of base of the tool. The start end of the cut is another planar half

space, oriented such that it is perpendicular to the direction of tool movement, and

positioned such that it passes through the start point of the tool motion. In the

case of the facetted system, the final end o f the model for the tool movement is

constructed from a facetted semi-cylinder centered around the final position of the

tool, with a radius equal to the tool radius. The polynomial system models the

final end as a cylindrical. In this case and ‘extra’ planar half-spaces is required

define the model. The model for a linear x-y cut is shown in figure 6.7.

Horizontal Circular Tool Movement

107

The most complicated cut modelled by the facetted modeller is the x-y circular arc.

Depending on the relative radii of the tool and the cut, and also on the angle sub

tended by the movement, there are five possible shapes of cut that may be gen

erated. These are shown in figure 6.8. If the radius of the cutter is greater than

that of the tool center-line and the arc subtended is > 360 degrees then the volume

swept is a simple cylinder. If the angle subtended is less than 360 degrees then the

shape will be a as shown in figure 6.8b. If the cutter radius is less than the radius

of the arc followed by the tool then the plan of the shape will be either a hoop or a

cylindrically curved bar with a planar face at the start of the tool motion and a

semi-cylinder at its end. These ends may intersect or partially intersect with each

other depending on the angle subtended by the arc. These shapes are shown in

figure 6.8c,d and e.

The model generator detects these different cases and models them differently.

In cases (a) and (e), the models may be built simply from two vertical cylinders

and a horizontal planar base. The approach used to build models for the other

cases varies between the facetted and polynomial modelling systems. For the

facetted system, any simple approach will include redundant half-spaces. The tech

nique used to generate the model for such cuts is based on the algorithm used to

generate solid models from sketched input described in Chapter 4. It has the

advantage that it may be used on cuts that correspond to figure 6.8b, c and d, and

in each case, no redundant half-spaces are generated.

The technique is as follows. The outline of the cut consists o f three separate

parts. The main body of the cut is a flat-ended segment of a circular annulus. The

108

width of the annulus is the tool diameter and the radius of its center-line is that of

the c u t The ends of the cut are a plane and a semi-circle having the same radius

as the cutting tool. A set of points are generated around the boundary of the cut.

The recursive convex hull algorithm, described in Chapter 4, is applied to this set

of points to generate the model of the sides of the cut.

For the polynomial system, cuts of these types are modelled as shown in

figure 6.8. Note that the operator used to join the two planar ends of the cut will

vary depending on the angle subtended by the tool motion; for angles of less than

180 degrees the ends are unioned together, otherwise they are intersected. If the

radius of the cutter is less than the radius of the tool motion (case (b)), then the

inner cylinder may be omitted from the model.

Three Axis Linear Tool Movement

For all o f the models describe above, which correspond to Vh axis cutting, the

base of the model is a simple plane. In the case of three dimensional movement

this is not the case. The model for a three axis linear motion of a cylindrical tool

is composed from eight different half-spaces (see figure 6.9). The two sides and

the ends of the model are as for an x-y linear tool movement. The base of the cut

has three parts. At the lower end of the tool movement, which may occur at either

the start of the end of the cut, the base is a horizontal plane. Elsewhere the base is

of an elliptical form. The elliptical half-space is generated in a manner similar to

the cylindrical half-space of figure 2.3. It may be defined as follows:

109

base_e := radius2 - (■■; . base_ 22 + v/u2)sinitheta)

where

is the elliptical half-space,

radius is the tool radius,

0 is the angle of the tool motion to the horizontal,

basejl is the angled planar base to the cut,

vhs is a vertical half-space containing the tool centre-line motion.

Modelling Complicated Tools

The preceding descriptions of models for each type of tool motion have dealt with

model generation for basic cylindrical tools. Models for cutting tools with more

complicated shapes are constructed in a similar manner although they have more

complicated base and end elements. The model generator is written so that rou

tines for handling tools of new shapes may be added in an easy and consistent

manner. As long as the additions to the tool shapes are constructed from the prim

itives shown in figure 6.2, then the models generated by tool motions will be capa

ble of being modelled by the ‘polynomial’ modeller and hence all are suitable for

the toolpath verification system described in this thesis.

The tool models described above only model the cutting surfaces of each tool.

More complicated tool models may be used if collisions between non-cutting parts

o f a tool and the workpiece, clamps etc are to be detected. In this case, the addi

tional volume swept by the non-cutting part of the tool is also modelled for each

110

tool movement. These extra models may be combined with the model for the

volume swept by the cutter, but coloured differently to allow them to be easily dis

tinguished later. (Clearly any intersection between such a model and the com

ponent model is an error.) In a similar may, additional models of the volume

swept by the machine-tool head and spindle assembly may also be added to the

tool model.

The additional models needed to represent the volume swept by the tool hold

ers should add little to the complexity of the model after spatial division, since in

most cases, the extra model elements will lie within air and will be pruned out

during division. Those parts of the model that represent the shank of the tool are

expected to be pruned-out less well. Statistics of the effect of using more compli

cated tool models are given at the end of Chapter 7. Figure 6.10 shows a range of

more complicated tool models using cylinders, cones and spheres.

Other Features of the Model Generator

As an alternative to generating models of the complete component, models of part

o f the component may be generated either by initially modelling only part o f the

component blank, or by intersecting the final model with a required section-plane.

Sections may be defined by simple planes or by more complicated surfaces. These

allow internal features of the model to be easily seen for verification purposes.

When the complete input file has been processed, the model definition is writ

ten out to a disc file. This file contains two parts. The first a list o f planar half

spaces. Each half-space is defined by the three direction cosines of the vector that

111

is the outward-pointing normal to the half-space plane, and the distance from the

origin to the plane. Each half-space is also tagged with a colour which may be

used later to detect erroneous surfaces created by non-cutting parts tooling, or by

rapid tool movements or movements with the spindle not rotating. All half-spaces

except those that model the component blank are also tagged with a record of the

CLdata file, or part-program file, block-number that contains the tool motion that

the half-space partially models. This block number may be used later in the inter

rogation process to relate surfaces in the model back to the toolpath element that

generated them. Following the half-space list is a list of half-space references and

set-theoretic operators in Reverse Polish order that describes the model. In the

case of the polynomial modelling scheme, numeric constants and arithmetic opera

tors are also present, enabling the curved half-spaces to be generated from planar

half-spaces.

The model generator also writes out a file that contains a list of the current

block number at each tool-load operation. This allows the model interrogator

described in Chapter 8 to generate tool information from block numbers.

112

Figure 6.1 Simple tool models

Primitive Motion type

x-y straight z straight x-y-z straight x-y circle

cylinder plane

cylinder

cylinder plane
cylinder

ellipse

cylinder

cone plane

cone

cylinder

cone

plane

cone

cone

sphere cylinder

sphere

cylinder

sphere

cylinder

sphere

sphere
toms

torus plane

cylinder

torus

cylinder

torus

plane

cylinder

toms

plane

toms

Figure 6 2 Surfaces created by sweeping primitive shapes

113

Tool Motion type

x-y straight z straight x-y-z straight x-y circle

Twist drill F P * F P P * P *

Slot drill F P F P P F P

End mill F P F P * P F P

Fiy cutter F P F P * P F P

Ball-nosed cutter P P P P

Key

F: valid for facetted system; P: valid for polynomial system;

*: incorrect tool motion if cutting

Figure 6.3 Tool motions and shapes handled by the system

GOO - Rapid motion. G91 - Incremental programming.

G01 - Feedrate motion. G92 - Set origin.

G02 - Circular motion (clockwise). MOO - Program Stop.

G03 - Circular motion (anti-clockwise). M01 - Optional Stop.

G17 - Select xy-plane for circles. M02 - End of program.

G20 - Input in inch. M03 - Spindle on (clockwise).

G21 - Input in mm. M04 - Spindle on (anti-clockwise).

G28 - Return to reference point. M05 - Spindle off.

G40 - Cutter compensation cancel. M06 - Tool Load.

G80 - Cancel cycle. M08 - Coolant On.

G81 - Cycle drill. M09 - Coolant Off.

G89 - Cycle inhibit for current block. M30 - End of program.

G90 - Absolute programming.

Figure 6.4 List of G-codes handled by the system

114

previous nove

Figure 6 5 Modelling the start of tool motions

1 o o 1 no t i on

O '

b a s e

1 b a s e

Figure 6.6 Model of vertical tool move

115

□ □
s i d e 2 n

s i d e l ^ ^
^^1

u
e n d 2 : n d 1

b a s e

snd2

boso

Figure 6.7 Model for horizontal linear move

C a) C b)

(d)

C e)

(c)

b a s e

e n d 2Ci

e n d l

c y J o

^ s e e t e >

u

Figure 6.8 Model for horizontal circular move

116

q
s i d e 2 1 I

s i d e l ^ ^
) oyl2 (

u
e n d 2 e n d l

b a s e _ 2

e n d l
b a s e l

b a s e 2 b a s e

c y 1 2 e n d 2

Figure 6.9 Model for three-axis linear move

Figure 6.10 More complicated tool models

117

CHAPTER 7

Creating the Divided Model

The second stage of the verification system is the generation of the spatially

divided model from the component model.

Requirements of the Divided Model

As oudined in Chapter 3 there are a number of ways of applying a spatial division

strategy; the strategy best suited for any application is dependent on the intended

use o f the divided model. In the case of the VOLE modelling system for example

the division process could be oriented around the generation of a single view. In

the toolpath verification system the two uses of the divided model are the genera

tion o f several views of the model, and the interrogation of the model using these

views. At the division stage the number of views and their orientation may be

unknown. However there will almost always be several differing view-points.

Hence the division cannot be optimised for a single set of viewing parameters, but

should result in a divided model capable of efficient use from any direction.

The model divider generates a binary divided structure with the split-plane

dividing the sub-space for each non-leaf node oriented such that the normal to the

plane is parallel to either the x, y or z axis.

Both of the uses of the divided structure (image generation and interrogation)

use ray casting techniques. This involves projecting a ray from a given viewpoint

118

into the divided structure. The ray will pass through one or (usually) more sub

spaces. For each sub-space that the ray passes through before it reaches the sur

face of the model there is an overhead in computation time. Hence it is required

to keep the overall number of sub-spaces to a minimum. A potentially more costly

effect (from a computational viewpoint) is that of underdividing, since this will

result in sub-models that are over-complicated. This is undesirable in any spatially

divided model, but it is especially the case in the toolpath models since they con

tain a large number of half-spaces.

Method of Generation

A simple method of creating a binary divided structure was oudined in Chapter 3.

It was noted that it is not easy to control model division so as to create an

optimally divided model; two of the problems encountered in creating an efficiently

divided model are, first, that it is not possible to tell if the division o f a leaf node

will lead to a reduction in model complexity until after it has been split; and

second, that several levels of apparently unnecessary division may then lead to an

overall reduction in model complexity.

In order to overcome these problems it would be useful to be able, at a given

stage of model division, to assess the result of further division before incorporating

this further division in the divided structure. This could be achieved by creating a

tree structure that is capable of being ‘cut back* if it is apparent that it is over-

divided (the method of detecting such over-division is described later). This is

effectively what is done in the model division stage of the toolpath verification sys

119

tem. The logical tree-structure used by the divider is shown in figure 7.1. Each

node in the tree has a sub-space associated with it and leaf nodes also have sub

models. The nodes in the tree can be categorised into those that are definitely part

of the divided model, (divided-model nodes), and those that are still being con

sidered for possible further division or cutting back. This second category of

nodes will be referred to as sub-tree nodes since they form a number of distinct

sub-trees within the overall model tree. The root node of each of these sub-trees is

the equivalent of a node being considered for division in the simple division pro

cess described in Chapter 3. That simple process can now be modified so that at

each stage in the division process one of the following actions is performed:

1 Transfer the root node of a sub-tree into the divided model as a non-leaf

node and thereby create two new sub-trees, or

2 Write the root node of a sub-tree into the divided model as a leaf node (and

discard the rest of that sub-tree), or

3 Split one o f the leaf nodes of a sub-tree to form the two new nodes. (The

sub-model for each new leaf node is formed by pruning the sub-model for

the old sub-space to each new sub-space.)

Although the data-structure used in the division process is logically a single

tree that is grown and cut-back to form the final divided model, it is physically

stored as two separate types of tree structures. This is done because o f the

differing storage requirements for the divided-model nodes and the sub-tree nodes

(more fully described later). Also, the divided-model tree may be considered to be

120

a write-only structure for the division process, the sub-tree trees are read-write

structures. Note that each sub-tree is completely independent of the others. There

fore they can be processed individually. The logical data structure, shown in figure

7.1, may be modified to reflect this, and now consists of three categories of trees as

shown in figure 7.2:

• The partially complete divided model (the divided-model tree).

• A number of sub-trees awaiting processing (the co-trees).

• The sub-tree currently being worked on (the current sub-tree).

The Division Process

The method used to generate the spatially divided model is based on the simple

binary tree generation method already described in Chapter 3. The division pro

cess starts by initialising the current sub-tree to contain a single node representing

the object-space and model which is obtained from the model generator described

in the previous chapter.

The division process proper can now commence. The process repeatedly per

forms one of the actions listed above, which can be re-stated in terms of the data-

structure of figure 7.2. All actions are performed on the current sub-tree. They

are shown diagrammatically in figure 7.3.

• The current sub-tree is ‘beheaded* (see figure 7.3a): its root node is

transferred into the divided-model tree as a non-leaf node thus creating two

new sub-treest one of which is added to the the list of co-trees, the other

121

becomes the current sub-tree. (If the current sub-tree has only one node

then it cannot be beheaded.)

• The current root-node is written into the divided model as a leaf node (see

figure 7.3b). One of the co-trees is picked as the current sub-tree. If there

are no more sub-trees to be processed then division is complete.

• One of the leaf nodes in the current sub-tree is split to form two new leaf-

nodes (see figure 7.3c).

Controlling Division

A control mechanism is needed to enable the model divider to choose which of the

above actions to perform, and in the case of the second action, which node in the

current sub-tree to split. This mechanism is analogous to the sub-space testing

mechanisms discussed in Chapter 3. Since the only process that is to use the

divided model, both for picture generation and later interrogation, is raycasting, the

control mechanism can be tailored to this process.

Several control strategies have been tried. Each is based on storing additional

information for each sub-tree node representing various computational loads associ

ated with that node’s sub-space and sub-model, the overall goal of the control stra

tegy being to minimise the total evaluation load associated with the divided-model

tree. A simple strategy, used in the facetted verification system is explained

in [58]. The meaning and method of calculating the loads are discussed later.

First consider the effect of the three actions described above.

122

The first action to be considered is beheading. If the computational load for

evaluation of the current root node is greater than that at a lower level (ie a more-

divided state) in the current sub-tree then it is clear that the current sub-space and

sub-model would be better incorporated into the divided structure at a more divided

state. The action that achieves this is beheading.

If that option is not chosen then the choice of action is either to write out the

current root node, or to further divide the current sub-tree. This choice is not so

clear-cut as the previous one, since the effect of further division of the current

sub-tree in not known. Indeed, this ‘trial* division may be regarded as an informa

tion gathering action.

The control mechanism must control the amount of this trial division. If too

little is performed then the divided structure may be less efficient than otherwise

possible. If too much trial division is performed then the size of the sub-trees will

become excessively large; and the extra time taken by the division process will

possibly outweigh time saved at the raycasting stage.

One possible strategy is to consider the load associated with the current root-

node compared with the size of the current sub-tree. In this way, the maximum

level of trial division can be set for any given current root-node and so division

that can result only in minor savings can be curtailed. Another is to look at the

amount of simplification that has resulted from the current level of division. If lit

tle or no simplification has occurred then it may be best to write the current root

node as a leaf node in the divided model.

123

The chosen strategy combines both of these; trial division is allowed to con

tinue until the number of nodes in the current sub-tree exceeds a limit which is

calculated from the evaluation load of the current root node and the ratio of this

load, to the minimum load at a lower level in the current sub-tree (or until the

current sub-tree is beheaded).

Hence division is controlled using two tests. The first test compares the

evaluation-time load for the current root node and the minimum such load for the

lower levels in the current sub-tree. The second test compares the size of the

current sub-tree with a limit based on the two loads used in the first test. This

strategy may be summarised as:

t f (flower < I-1 roof)

behead current sub-tree

Else

{

L lowerIf (nnodes < a . Lno, - 1 - |3 . - 1)Lr

split leaf-node in current sub-tree

Else

write root-node of current sub-tree into divided model

j

where

nnodes is the number of nodes in the current sub-tree,

Lrool is the evaluation load for the current root node,

Lhwer is the minimum evaluation load for the current sub-tree at a level

124

below the root node,

a and p are tuning constants

This is shown graphically in figure 7.4. The graph may be divided into 3

regions, representing the 3 actions. The number of nodes in the current sub-tree is

plotted along the horizontal axis and the ratio Ljow*r- along the vertical axis. The
*-‘TOOt

status of the root node of the current sub-tree can be represented by a point on the

graph. If a current sub-tree is created containing a single node, its status may be

plotted as a point on the nnodes = 0 axis. As the sub-tree is split the number of

nodes increases and point moves to the right. If the complexity of the sub-models

for nodes at lower levels in the current sub-tree decreases, then the height of the

point above the Llower = l axis decreases. If it passes below the = 1 axis then
‘-'root ‘'root

it is definitely better to behead the tree. Otherwise it must eventually pass into the

‘write-out’ region and the current root-node is written into the divided structure. In

this way a limit is placed on the size o f the current sub-tree. As the ratio of

to Lnot approaches unity, then the maximum size current sub-tree increases. Hence

if it appears likely that it is going to be best to behead the tree, then exploratory

splitting is allowed to continue for longer than if no reduction in complexity is

noticed.

In the expression that controls the size of the current sub-tree there are two

constants. The first of these (a) controls the maximum size of the current sub-tree

(for any given root node sub-model complexity). As the value of a in increased so

125

does the size to which the current sub-model is allowed to grow. The second con

stant (p) controls the effect that lack of simplification has on curtailing this size.

As its value is increased, then the maximum size of the current sub-tree is reduced

when little or no simplification results from this ‘trial* division. In terms of the

graph of figure 7.4, increasing a moves the split/write-out boundary to the right,

increasing p swings the boundary in an anticlockwise direction. The effects that

changing the value of the constants has on the division process for an actual model

are discussed at the end of this chapter.

If the decision is to split a leaf node, then a suitable leaf node in the current

sub-tree has to be selected. The system chooses the node which has the largest

computational load associated with it, since this is the node likely to yield the

greatest reduction in complexity after splitting. The node is found by traversing

the current sub-tree; a process that is not overly inefficient since the tree will usu

ally be small.

Creating the new Sub-spaces

The sub-spaces for new leaf-nodes are always generated by splitting the sub-space

for chosen leaf node into two new sub-spaces. Four strategies for determining the

location and orientation of the split plane were investigated. The first of these

always splits the sub-space into two halves along its longest side.

The second strategy splits the sub-space into three separate pairs of new (tem

porary) sub-spaces. The split-plane for each pair passes through the centre of the

126

sub-space o f the leaf node. The three split-planes are oriented parallel to each of

the xy, xz and yz planes. After pruning, the pair of sub-spaces with the lowest total

load value are retained, and the remaining two pairs are discarded.

In the third strategy, the sub-space is split into nine pairs of new sub-spaces.

The split-plane is tested at locations lA, lA and 3A o f the way along each side of the

leaf node sub-space. Again, the pair of sub-spaces with the lowest total load value

arc chosen. A similar scheme is used in the forth strategy, the split-plane being

tested at seven locations along each side of the sub-space, generating twenty-one

pairs of sub-spaces.

The Load Function

The only computational load that is required for each sub-tree node by the control

strategy described previously is the ‘evaluation-time’ load which the node would

contribute to the overall computational load incurred when generating raycast pic

tures from the divided model if the node became a leaf-node in the divided model.

The evaluation-time load associated with a leaf node in the divided-model tree

is dependent on two factors: the geometric complexity of the node’s sub-model,

and the likelihood of a ray passing through the sub-space. The evaluation process

for the node, which is described in the next chapter, consists of finding the inter

section points o f the ray with each half-space in the sub-model, ordering them, and

then performing a membership-test on each point in turn until either a real surface

is found, or all points have been tested.

127

The load for finding the ray intersections with a polynomial half-space is

dependent on the degree of the polynomial: the higher the degree, the larger the

load to find its roots. The time to insert the points in a list is of order n log n were

there are n points. The time taken to perform a membership-test on a point is of

order n, and on average, half the points will need to be tested. The number of

roots for a polynomial half-space is dependent on the order of the half-space.

Several load-functions were tested of the form:

nhs
L = £(/>(/>,))- • nhsb

i=0

where

L is the load for a sub-tree node,

D(Pi) is the degree of the polynomial half-space,

nhs is the number of half-spaces.

a and b are constants

In practice the algorithm was found to be relatively insensitive to the exact

load function. The function finally chosen defines the load as:

nhs
l = £(X>(f,))2 . nhs

1=0

The likelihood of a ray passing through the sub-space is assumed to be pro

portional to the surface area presented by the sub-space to the ray vector. This is

proportional to the total surface area of the sub-space. In practice, the expression

used for this factor is:

128

QTCQ — Xs fa -ysid t y*id* ’Zside ^ tid t -^sUU

where x^ , y ^ and ztidt are the lengths of the sides of the sub-space.

Thus the load value for a node may be expressed as:

nhs
L = £ (D (Pi))2 . nhs . area

i=0

Maintaining the Load Values

In order to choose which action to perform, the division program has to compare

the load value for the current root node with values at lower levels in the current

sub-tree. This could be done by searching through the current sub-tree whenever a

decision is to be made, and calculating the minimum total value for any given

combination of nodes whose sub-spaces fill the volume of the current root node’s

sub-space. This would be computationally expensive as there are many possible

patterns of division to be considered. This inefficiency can be avoided by keeping

(for each non-leaf node) a record of the minimum total load value for the tree

below the node.

Note that the values only change if a leaf node in the sub-tree is split. When

this happens, the only nodes that will be affected are those that lie on the branch of

the sub-tree between that leaf node and the current root node. Therefore all that is

needed to maintain the values is to work from the leaf node back to the root, cal

culating the updated value for each node by adding the load values of its son

nodes.

129

When combining the load values for the two son-nodes of each node, a con

stant may also be added. This constant represents the computational load incurred

during the tree-descent stage of the evaluation process.

The Data Structures used in the Division Process

The data-storage requirements for nodes in the divided-model tree and those in

each sub-tree differ. Each sub-tree node has to store the limits of its sub-space.

The sub-model valid for that sub-space also has to be stored since any sub-tree

node may become a leaf node in the divided-model tree. The nodes also need to

contain pointers to maintain the tree structure.

Each sub-model consists of planar half-spaces (and arithmetic operators in the

case of the polynomial modelling system) and set-theoretic operators. The sub

models are stored as a Reverse-Polish ordered list of operators and references to

the planar half-spaces. Each half-space requires several fields to define its

geometry and also other information relating to its generation. Each half-space is

likely to appear in more than one sub-space, and, as the model is pruned to each

new sub-space, the half-spaces are not modified. Hence storing the model as refer

ences to a list of half-spaces is more efficient than incorporating the half-spaces

themselves in the model both in terms of data storage and computational efficiency.

The sub-models for leaf nodes in the divided model are not altered. Those for

sub-tree nodes need to be copied and pruned if the node is split, or deleted if the

sub-tree root node is written into the divided model. Extra ‘temporary’ pairs of

sub-models are created by the leaf-node division strategies that create multiple

130

pairs of sub-spaces. During the division process a large number of such sub

models will be generated and deleted. Hence some method of storing them

dynamically is required. The size of the models varies and the storage method

should allow for this. The technique used is to store the sub-models for all of the

sub-tree nodes in a single list, the RP-list. Each sub-tree node has a pointer to the

start of its sub-model record in the list. The sub-model record contains its length

(which may be used to find the start of the next record) and a pointer back to the

node, followed by the sub-model for the node.

Each sub-space entry in the sub-trees requires the same amount of storage.

They are therefore most conveniently (and efficiently) stored in a number of one

dimensional arrays. As the sub-trees are deleted the storage for the nodes in it

must be released. A free-list is used to access the unused entries.

As stated previously, each sub-tree is processed sequentially. A list of

pointers to their root nodes are stored in a stack. Each entry in the stack also has a

pointer to the node in the divided-model tree where the sub-tree is to be located

when it is written out.

The only data-structure in the model divider that requires dynamic memory

allocation and deallocation is the RP-list. (All other data-structures use either free

lists or stacks.) As sub-tree nodes are deleted, their sub-models are removed from

the list. This results in gaps. Two possible ways of reusing these gaps are either

to maintain them in a data-structure that reissues them as required; or to always

add new sub-models to the end of the RP-list, and then to ‘garbage-collect’ the list

when it becomes full.

131

The first solution has two disadvantages. Firstly, adjacent sections have to be

coalesced, which may be computationally expensive. This is especially so since

there may be a large number o f gaps. Secondly, the amount o f storage required for

a new sub-model is not known in advance. The second solution was thus used.

Since there are likely to be a large number o f gaps in the list, compared to a few

active sections, a copying garbage-collection scheme is used.

The Structure of the Divided Model

A diagram o f the tree-structure o f the divided-model tree is shown in figure 7.5.

Rather than store the position and size o f each sub-space in the tree, each non-leaf

node in the tree contains a record o f the the position and orientation o f the split

plane that divides its two sons. This is more efficient both in terms o f memory-

usage and also (as w ill be seen in Chapter 8) for raycasting into the model. Nodes

are written into the divided-m odel such that the sub-space for the right son o f each

divided-m odel non-leaf node is ‘more positive* than that for the left son. This

increases the efficiency o f the tree-descent code used when ray-casting.

The object-space for the m odel is also stored in terms o f its x, y and z limits,

as is a list o f half-spaces that form the model. L eaf nodes contain that part o f the

m odel that is valid for the sub-space as a reverse-polish ordered list o f half-space

references and set-theoretic (and, in the case o f the polynomial system, arithmetic)

operators.

132

Half-space Pruning

The exact pruning method differs between the two modelling schemes. The

method used in the planar system utilises the fact that, for any sub-space and sub

m odel, each half-space in the sub-model must pass through the sub-space. In order

to categorise the contribution o f any half-space to each o f the two son-nodes o f a

node, the half-space may be compared with the plane that splits the two sons. The

intersection o f this split plane and the sub-space forms a rectangle. The signed dis

tance from each o f the four com ers o f the rectangle to the half-space is calculated.

If all the distances are positive, then the half-space contributes air to one o f the

new sub-spaces, and passes through the other. Similarly, if they are all negative,

then the half-space contributes solid to one o f the new sub-spaces, and passes

through the other. If some o f the distances are positive, and some are negative,

then the half-spaces passes through both new sub-spaces. Having so classified

each half-space, the two new sub-models may be generated by pruning the sub

m odel using a scheme similar to that described in Chapter 2.

The pruning system for the polynomial half-space system is similar, although

the method used to categorise the contribution o f each half-space is different. The

classification technique, which is uses interval arithmetic is described in detail

in [14]. The classification uses the polynom ial half-space definitions which are in

terms o f planar half-spaces and arithmetic operators. For each such planar half

space, the interval o f distances from the half-space to the limits o f the new sub

space is found. These distance intervals are com bined using the operators in the

arithmetic half-space definition and interval arithmetic [59] . This results in a

133

distance interval which is valid for the polynomial half-space and the sub-space. If

this interval spans zero then the half-space may pass through the sub-space; if the

interval is entirely positive the half-space contributes air to the sub-space, other

w ise it contributes solid.

The Performance of the Model Divider

The divider has be tested on a range o f toolpath models varying in size up to a

maximum o f 31597 half-spaces for the second component example given in

Appendix 1.

Table 7.1 shows the effect that varying the value o f the tuning parameter a

has on the division o f the toolpath m odel for the first example component shown in

Appendix 1. The model contains 564 half-spaces, o f which 443 are planar, the

remaining being polynomial surfaces o f degree 2.

As the value o f a is increased so does the maximum size (and average size) to

which the current sub-tree grows before it is either beheaded, or its root written

into the divided modeL Allowing the size current sub-tree to increase results in

‘better* division o f the model. H ence the total load (the sum o f the loads calcu

lated for all the leaf nodes in the divided model) decreases. The better-divided

m odels are bigger, as measured both by the number o f nodes in their tree-structure,

and also the amount o f memory required to store them. The time taken for the

division process increases with the amount o f ‘trial* division performed.

Table 7 .2 gives the equivalent statistics for the m odel dividers that split leaf-

nodes in the current sub-tree into more than one pair o f sub-spaces and then

134

choose the pair that g ive the minimum load. For the same value o f a , the division

times are larger than those in table 7.1. This is because whenever a node in the

current sub-tree is split, the sub-model pruning must be performed several tim es.

The times are not, however, three, nine and twenty-one times larger than those for

the first divider since, in general, the average current sub-tree sizes are smaller

than those for the first divider (for any given value o f a). Figure 7.7 shows the

division times for the four schemes plotted as a function o f a.

The reduction in the average size o f the current sub-tree before the root node

is written into the divided model can only be caused by a reduction in the average

load for such nodes. The reduction in the average size o f the current sub-tree

before it is beheaded suggests that less ‘trial* division o f the current sub-tree is

needed before the minimum load at some lower level falls below that for the root

node.

Comparing the ‘Total Load’ values for the four division schem es, it is

apparent that as the number o f choices o f sub-space split-planes is increased, the

total load for the divided-model decreases (for the same value o f a). This is con

sistent with the reduction in the average load for nodes in the current sub-tree sug

gested above.

Figure 7.6 shows a graph o f division time plotted against total load in the

divided model (from the data in tables 7.1 and 7 .2). It may be observed that the

multi-way dividers are capable o f generating divided m odels with a low er total

load. For models that are to be divided to a lesser extent, the simple divider may

generate a divided m odel with a lower load.

135

It would thus appear that for applications where much use is to be made o f

the divided model, the extra time taken by the multi-way dividers may be

recovered if it results in a reduced computational time for the application. This

should occur if the load calculation is a valid measure o f the computational load

incurred by the application. The validity o f the load function is discussed at the

end o f Chapter 8.

It may be noted that at the initial stages o f division, the direction o f split is

often immaterial, and it is at this stage that the cost o f the ‘best o f n ’ strategies are

greatest. It may therefore be advantageous to use a regular division strategy for

the first few levels o f division, and use the more complicated strategies at lower

levels.

Table 7.3 shows the effect that using more complicated tool m odels has on

the division process. The same toolpath as generated the model w hose division

statistics are given in tables 7.1 and 7.2 was used with more complicated tool

m odels (each tool modelled as three concentric cylinders). This resulted in a

m odel o f the swept volume containing 1687 half-spaces, o f which 1324 are planar.

For the corresponding values o f a , the divided m odels based on the complicated

tool models have higher loads, and are larger than those based on the simple tool

m odels. As the level o f division (controlled by a) is increased, the additional load

caused by the complicated tool m odels is reduced. This may be attributed to the

fact half-spaces that lie in ‘air’ are more likely to be pruned out as the level o f

division is increased. If collisions between non-cutting parts o f the tool and the

component do not occur, then all o f the additional half-spaces in the complicated

136

tool model will lie in air.

Table 7 .4 shows the effect o f changing the parameter p for the same m odel

used to generate the data in table 7.1. Altering the value o f p would appear to

have little advantage over varying a, in terms o f the affect that it has on both the

division process or the divided model.

137

a Max. Ave. Max. Ave. Time Total Node Model Si:

(Write) (Behead) (secs) Load Count (bytes)

1 5 2.45 5 3.01 1.54 3412726 349 48440

2 5 3.02 7 3.04 1.70 2624841 497 55336

5 3 3.43 7 3.06 2.05 1875815 767 62672

10 5 3.46 7 3.09 2.36 1424922 1067 70356

20 9 3.55 7 3.11 2.70 1132646 1479 80928

50 19 3.86 15 3.21 3.32 886360 2297 103784

100 29 3.87 27 3.36 3.99 725231 3145 124920

200 37 3.90 29 3.47 4.68 605193 4379 157268

500 93 4.48 31 3.60 6.44 507056 6995 227972

1000 183 5.12 75 3.84 8.37 462269 10001 309112

2000 367 6.11 87 4.02 11.04 428110 14503 430416

5000 915 7.47 227 4.34 19.82 393041 24867 709560

10000 1831 8.97 281 4.79 34.98 375255 37769 1058268

20000 3661 10.49 281 4.98 73.92 361368 57139 1574172

Table 7.1 Division statistics for simple tool models

(regular division)

138

a Max. Ave. Max. Ave. Time Total Node Model Si;
(Write) (Behead) (secs) Load Count (bytes)

jst of three
1 3 2.19 3 3.00 3.48 2933068 349 44464
2 3 2.40 3 3.00 3.95 2083423 469 48328
5 5 2.67 7 3.02 4.57 1440546 709 56296

10 7 2.75 7 3.03 5.23 1113732 1011 65876
20 5 2.88 11 3.06 5.97 827616 1487 79060
50 11 2.66 11 3.07 7.17 578711 2419 102100

100 21 2.65 11 3.10 8.36 468833 3361 125320
200 39 2.73 15 3.13 9.91 393569 4805 163204
500 41 2.94 53 3.26 13.05 327664 8061 248688

1000 79 3.05 69 3.43 16.97 285970 12533 365772
2000 159 3.24 69 3.51 23.08 255472 19023 534160
5000 395 4.03 95 3.57 34.43 235317 28891 788364

10000 791 5.14 247 3.64 49.59 227080 38575 1037952
20000 1579 7.08 247 3.70 78.36 222020 50427 1347976

Best of nine
1 3 2.40 3 3.00 7.54 1604568 187 35488
2 3 3.05 3 3.00 8.08 1282508 255 38056
5 7 3.75 5 3.01 9.34 982943 405 43408

10 7 3.68 11 3.04 10.47 766987 633 50164
20 11 3.56 13 3.08 12.10 599182 963 59092
50 9 3.30 23 3.22 14.80 436735 1659 78284

100 15 3.10 23 3.21 17.14 354733 2431 99096
200 31 3.05 27 3.27 20.42 294983 3645 131188
500 75 3.25 27 3.32 26.91 240302 6061 195632

1000 147 3.33 69 3.42 34.69 211270 9063 274336
2000 213 3.79 277 3.63 45.56 194146 12809 372528
5000 407 4.71 277 3.58 68.99 182851 19763 553744

10000 813 5.96 277 3.64 99.84 178106 26847 738180
20000 1625 7.81 277 3.76 156.68 174793 36665 993884

Best of twenty-one
1 3 3.50 3 3.00 17.23 1764728 177 36708
2 5 3.68 3 3.00 19.24 1343670 251 38740
5 5 3.45 9 3.06 22.61 911122 421 43680

10 7 3.55 9 3.04 25.74 744185 653 50360
20 5 3.40 13 3.14 29.76 558002 1021 61532
50 11 3.14 13 3.15 35.44 391232 1703 79648

100 13 3.04 13 3.15 40.71 308425 2447 98912
200 23 3.27 13 3.13 45.93 264450 3271 120684
500 57 3.48 39 3.26 58.20 215972 5217 172416

1000 111 3.78 49 3.38 71.88 193268 7401 230312
2000 221 4.35 67 3.50 90.92 178435 10287 307192

5000 373 5.58 241 3.62 133.97 168851 15423 442072

Table 12 Division statistics for simple tool models

(with different division strategies)

139

a Max. Ave. Max. Ave. Time Total Node Model Si;

(Write) (Behead) (secs) Load Count (bytes)

1 3 2.39 5 3.01 3.92 3908772 435 107780

2 3 3.14 5 3.01 4.14 3097813 599 114480

5 5 3.20 5 3.04 4.58 2099940 897 121156

10 7 3.24 5 3.07 4.91 1508255 1249 129156

20 9 3.54 9 3.09 5.40 1202681 1677 140408

50 19 3.64 15 3.17 5.99 919370 2513 161420

100 19 3.69 27 3.31 6.68 750060 3407 183480

200 37 3.91 27 3.41 7.49 641894 4653 216556

500 93 4.41 31 3.59 9.22 530861 7541 295208

1000 183 5.05 75 3.81 11.37 484398 10807 385460

2000 367 5.93 87 3.99 14.78 447591 15719 519136

5000 915 7.08 251 4.43 24.37 407967 27529 841480

10000 1831 8.33 281 4.84 40.95 387237 42143 1241472

20000 3661 9.90 281 4.93 81.32 372564 62991 1799828

Table 7.3 Division statistics for complicated tool models

P Max. Ave. Max. Ave. Time Total Node Model Si;

(Write) (Behead) (secs) Load Count (bytes)

0.00 1831 8.97 281 4.79 35.30 375255 37769 1058268

0.10 1217 8.20 281 4.79 31.01 375362 37681 1055724

0.20 1137 7.64 281 4.81 28.19 375949 37169 1042668

0.50 913 6.61 281 4.81 24.88 376113 37021 1038596

0.75 813 5.94 281 4.79 22.78 376651 36633 1028292

1.00 739 5.56 265 4.63 21.37 377568 35983 1010540

2.00 561 5.01 229 4.25 14.82 408001 24713 706328

Table 7.4 Division statistics for simple tool models (a = 10000)

140

c ' d c ' d
CD

C t 3 C 'D t i ' f t f t ' ' f t

o divided node 1
non * 1ea f node

1=1 divided nodel
1ea f node

0 s u b ‘tree
n o n "1ea f node

CD s u b " tree
leaf node

Figure 7.1 The logical tree-structure of the model divider

Divided Model

Current sub"tree
C u r r e n t r o o t n o d e -

> s

C 'D

C o 'trees
AA nC D V

C 'D C 'D C 'D
✓ N

C 'D C 'D C 'D C ' D C t) C 'D

Figure 7.2 The actual tree-structure of the model divider

141

c u t h e r e

CD CD

Pant of Divided Model

Current sub"tree c D

Added to
co * trees

Figure 7.3a Beheading

> N

/

✓ N/ N
c'3 C3

CD

ivided Model

Current sub"tree

Figure 7.3b Adding to divided model

142

art of Divided Model

Current sub*tree
As / v ✓

/ \/ \
C 'D C 'D

CD

Figure 7.3c Splitting

At ^

C L) C 'D

Load
root

w r i t e • ou tsp 1 i t

nnodes

b eh ead

Figure 7.4 Graph of the division process

143

p 1i t piane

sub'space for
node

Figure 7 5 The structure of the divided-model tree

144

Regular division
3000000

Best of 3

2000000

Best of 9

1000000

Best of 21

Time (secs)

Figure 7.6 Division time vs total (calculated) load

145

Best of 9
1 150

Best of 21

100

Best of 3

Regular division
50

*5000
Alpha

Figure 7.7 Tuning parameter (a) vs division time

146

CHAPTER 8

Examining the divided model

The third and fourth stages o f the toolpath verification system provide facilities for

the examination o f the model. This is achieved by generating pictures o f the

divided model, and allowing the user to interactively interrogate the model. These

two functions are described separately, although, as w ill be seen, they share a com

mon technique. The interactive interrogation o f solid models is described in [60]

both as part o f a toolpath verification system, and also as a more widely applicable

tool for use with general solid models.

The pictures created from the divided m odel are displayed as shaded colour

images. They are generated by ray-casting. It was decided to use raycasting, as

opposed to the other methods o f image generation described in Chapter 2, for

several reasons. Firstly it is necessary to generate continuous-tone images o f the

model. This is required since the surfaces generated by machining operations lie at

arbitrary orientations, and with complicated components, line images would be

confusing. A lso, many o f the surfaces that are to be m odelled are curved. If these

are facetted, then the large number o f edges w ill make the picture difficult to inter

pret, if they are not facetted then, as explained in Chapter 2, they w ill be difficult

to visualise. Ray-casting is a sim ple, effective method o f generating continuous

tone images. Secondly, a range o f half-space geom etries may be easily handled by

the raycasting algorithm. The only requirements are firstly that it is possible to

find the intersections between the ray vector and the half-space, and secondly that

147

the surface normal at a specified point on the half-space surface may be calculated.

With polynom ial half-spaces neither o f these presents a problem. Lastly, raycast

ing may be used both for im age generation, and subsequent model interrogation, as

described in this chapter.

Picture Generation

Unless the toolpath to be checked is very simple it is probable that not all the

regions o f interest will be capable o f being view ed from a single view-point. A lso

it may be desirable to view certain parts o f the m odel at a larger scale than others.

One or more view s o f the com plete model w ill almost certainly be required. The

raycasting technique described in this chapter allow s images to be generated (from

the divided model) with the resolution and view ing parameters defined by the user.

For each view , the user specifies the viewpoint, center o f interest, im age resolution

and lens angle required. The system allows the user to specify as many sets o f

these view ing parameters as he requires. Up to eight different pictures may be

displayed at the same time on a Sun bit-mapped display. These may be chosen by

the user from a larger selection o f images as required.

The Raycasting Algorithm

A simple ray-casting technique is described in Chapter 2. In order to use the tech

nique on a spatially divided structure som e modification to the basic algorithm are

needed. Each ray that is cast w ill pass through one or more leaf-node sub-spaces

in the divided model. Each o f these leaf-nodes may be treated using the simple

148

algorithm, with the additional constraint that ray intersections that lie outside the

leaf-node’s sub-space are ignored. H ence the additional requirement is to detect

which leaf-node sub-spaces are intersected by the ray-vector, in increasing distance

along the ray. This addition to the simple algorithm may be regarded as a partial

traversal o f the leaf-nodes o f the tree.

In choosing a method there are two factors to consider. Firstly, only a (very)

small proportion o f the total number o f leaf-node sub-spaces are intersected by a

ray. Secondly, depending on the physical positioning o f the m odel, it will often

only be necessary to test the first part o f the total number o f sub-spaces intersected.

H ence the method o f accessing the sub-spaces should only consider those sub

spaces intersected by the ray, and should generate a list o f sub-spaces incremen

tally in the order required. If this is done then the complete list w ill not need to be

generated except for rays that do not hit the ob ject

The method for generating the list o f sub-spaces is similar to that used to

classify which leaf sub-space contains a given point which was described in

Chapter 3. The sub-spaces o f the two sons o f a non-leaf node combine to form the

sub-space for that node. Hence i f a vector, in this case the ray, passes through the

sub-space for a non-leaf node then it must pass through the sub-spaces for either

one or both o f the sons to that node. U sing this property, the tree structure o f the

divided m odel can be utilised to generate the sub-space references in the required

order.

Details o f the tree traversal algorithm and also modifications to the simple

membership-test and the handling o f polynom ial half-spaces are given later in this

149

chapter.

Colouring the Pictures

The half-spaces are shaded using a simple Lambert cosine law (a lighting vector

may be specified by the user). The choice of colours is left to the user. These

may be chosen so as to highlight the difference between those surfaces that are part

of the original blank, and those which have been produced by a cutter, or so as to

generate more realistic pictures. Those surfaces that are generated by rapid tool

movements, by non-cutting parts of a tool, or by intersections between parts of the

machine-tool and the component may be coloured distinctively, as may ‘section’

surfaces.

Interrogating the Model

Having generated the images, the final stage in the verification process is to pro

vide the user with adequate facilities so that he may using them to verify that the

model is correct Gross errors in the toolpath, (for example, resulting from speci

fying the wrong tooling) may be detected visually from the images. Other errors

may be undetectable from a visual examination of the model and require detailed

geometric information regarding the positioning of surfaces (for example the dis

tance between two surfaces) to be obtained from the model.

Therefore, there is a requirement to display geometric information, extracted

from half-spaces in the model, as requested by the user. Only certain geometric

information, mainly that which relates to the original component specification, will

150

be of interest to the user. Rather than try to extract this information, and display

it, for example by labeling the surfaces together with a list on the relationships

between them (which is not a practical method for any but the simplest of models),

it was decided to allow the user to interactively specify the information he needs.

The geometric information relating to a given surface may be obtained from

the geometric definition of the half-space that contains it. Other information is

usually related to the CLdata, or part-program, block number that contained the cut

that generated a given surface. Each half-space is tagged with the block number

that generated it. Hence all the required information relating to a part of the com

ponent model may be obtained from the half-space records.

A cursor is provided that can be positioned anywhere on the graphics screen.

Its position is controlled using a graphics tablet or mouse. In order to indicate a

feature that is of interest on the model the cursor is positioned so that it points at

the feature in any of the views.

When pointing at a feature on the model in this manner the surface of interest

is in fact the first surface that would be hit by a ray originating at the eye position

and passing through the pixel containing the cursor. This is the same geometric

construction as was used when ray-casting to produce the images. Hence, in order

to identify which half-space corresponds to the feature being pointed at, a single

ray is cast using the technique already described.

Obviously, the point on the surface hit by the ray lies directly behind the cur

sor in the image that contains the cursor. It is useful to display this point in the

151

other pictures on display. To achieve this a ray is constructed, for each of the

views, from the view-point to the point on the surface. If this ray reaches the point

without first intersecting another real surface then the point will be visible, other

wise the point is not visible. If the point is visible, then a symbol is plotted at the

point on the screen corresponding to the ray. The effect of displaying the point in

this way is that of a cursor that is moved in space so that it is always on the sur

face of the model.

Inspection Requirements

Having described the method of identifying surfaces of interest, now consider what

facilities are necessary or desirable for processing the information obtained.

The information that may be obtained directly from the model is the (x,y,z)

location being pointed at, together with the half-space equation of the surface. In

this form it is not easily compared with the relationships between surfaces that are

expected. One way of processing the information is to supply the user with a set

of routines for manipulating the surface equations (an approach that is used to pro

cess the point data obtained from coordinate measuring machines). This still

requires a certain amount of data manipulation by the user and does not seem to be

particularly satisfactory for much of the inspection requirements in a toolpath

verification application.

Geometric information that is of interest for toolpath verification is almost

always in the form of relative distances or angles between two points or surfaces.

In general, information relating surfaces that are pointed to is more useful than that

152

relating the actual points, firstly since it is difficult to point accurately, secondly

because properly designed engineering components have mainly distances or angles

between faces specified, rather than between arbitrary points on those surfaces, and

thirdly because, in a machining process, it is the surfaces that are generated In

some cases, other geometrical elements (mainly lines) may be o f interest. For

example, when dealing with cylindrical surfaces, the central axis o f the cylinder is

often o f interest. Angles and distances between the intersection-lines o f surfaces

may also be o f interest. Point and surface information is obtained directly by ray

casting, whenever information relating to lines is required, so lines are generated

either from a single half-space (as in the case o f the cylinder centreline), or else

from the intersection o f two half-spaces).

It is often the case that many o f the dimensions o f a component are specified

relative to a few (planar) datum surfaces. U se is made o f this fact, and rather than

the user having to specify a pair o f surfaces for each measurement, a datum surface

may be defined, and then measurements relative to that surfaces obtained by point

ing to any surface in the m odel.

The aim o f the interrogation stage o f the verification system is to provide a

number o f ‘software measuring too ls’ that m im ic, where appropriate, the physical

measuring instruments used in an engineering workshop. The tools provided allow

the measurements corresponding to those made with height gauges, internal and

external calipers, bore gauges and angle gauges.

153

Inspection Tools: Pointing

W henever the user points to a surface, the follow ing information may be displayed:

• the (x,y,z) coordinates o f the point specified

• the (x,y,z) coordinates o f the point relative to a user-specified origin.

• the number o f the block that created the surface.

• the number o f the tool that created the surface.

• the source line in the part-program that created the surface.

Depending on the type o f surface that the point lies on, additional information may

be displayed. If the point lies on a planar surface, then the characteristics o f that

surface are displayed. For horizontal surfaces the height o f the surface is

displayed. If the surface is vertical, then the orientation o f the surface, relative to

the positive x direction, is displayed. For surfaces at arbitrary orientations, the nor

mal vector for the surface is displayed, together with the minimum distance

between the surface and the origin. If a datum surface is defined, then the angle

between the surface and the datum surface and the distance from the point to the

datum surface are displayed, or if the two surfaces are parallel, the distance

between the surface and the datum surface is also displayed. If the point lies on a

vertical cylindrical surface then the additional information displayed is the x and y

coordinates o f its centre, together with its radius.

Inspection Tools: Stepping

154

Having pointed to the surface, the user is then given the choice as to whether to

perform further interrogations, based from this first surface point and half-space. If

required, a second ray may be generated from this point, normal to the half-space

and directed either into or away from the surface (see figure 8.1). Intersections o f

this ray with the model form the basis for further m odel interrogations. The user

may now step forward, or backward along the ray to any intersection o f this

second ray with the model. At each step, the same information is generated as for

a simple pointing operation, with measurements made relative to a ‘user origin*

defined as the initial surface point.

If both the first surface, and the new surface are planar, then the distance or

angle between the planes is displayed, otherwise, the distance between points is

displayed. This tool thus emulates the operation o f the engineer’s calipers,

although with much enhanced usability, since it allows both the distance between

opposite facing surfaces, the distance between like facing surfaces, and the angle

between any pair o f planar surfaces to be measured. It also allows in a single

operation, the inspection o f features that would otherwise need to be pointed to in

two separate views.

Additional Features

In addition to the directly accessible pointing features described above, there are a

number o f additional features that the user may invoke.

A t any stage, the current surface may be defined as a datum surface for future

measuring operations. The output may be displayed in either metric or imperial

155

units. Any surface, together with the actual point pointed at may be stored. Cal

culations may then be performed on this data. These functions allow the genera

tion of features such as intersection lines of surfaces, of data relating such features.

The functions are:

• Generation o f the line of intersection of two planar surfaces.

• Generation of the line of intersection between a vertical planar, and a vertical

cylindrical surface.

• Calculation of the distance between a line generated above, and a surface

(only valid if the line is parallel to the surface).

Traversing the Spatially Divided Model Tree

In the previous chapter, it was explained that each non-leaf node in the divided

model stores the position and orientation of the split-plane that separates its two

son-nodes (rather than each node storing its sub-space explicitly). This may be

used to advantage in the tree-descent stage of the ray-casting procedure. Figure 7.5

shows a two-dimensional spatially divided tree structure. In this example, all of the

leaf nodes in the tree are shown as containing air. Figure 8.2 shows a ray passing

through the structure; to traverse it, the leaf-nodes numbered 2, 7 and 5 (in figure

7.5) must be visited in order. Figure 8.3 summarises the traversal of the ray

though the divided model using the algorithm detailed here.

At each stage in the traversal algorithm, a record is kept of the distance from

the eye point along the ray to its intersection with the near-side and far-side of the

sub-space for the node under consideration. Traversal is started by calculating the

156

intersection o f the ray with the cuboid object-space, and recording the near and far

distances, marked nO and fO in figure 8.2. The node under consideration is set to

be the root-node o f the divided m odel tree.

The position and orientation o f the split-plane for the current-node are

extracted from the divided model. The distance to the intersection o f the ray with

split-plane o f the current-node (the point sO for the root-node) is calculated. This

may then be compared with the near and far distances. The result o f this com

parison indicates whether the ray passes though the nearest o f the two son nodes o f

the current node, the farthest son, or both o f them; ie:

7/(split_distance < near_distance) Then

Ray passes through farthest son only

£/.se//(split_distance > far_distance) Then

Ray passes through nearest son only

Else

Ray passes through both sons.

If the ray passes through the nearest son only then the distances need not be

updated, the current node is set to be the nearest son. If it passes through the

farthest son only then the near distance is set to the split-plane distance and the

current node set to be the farthest son. If the ray passes through both sons then the

farthest son, together with the far distance are stacked and the current far distance

is set to be the split-plane distance. This process is repeated until a leaf-node is

reached. If the node contains a sub-model (ie not air), then it is processed as

explained below . If a real surface intersection is detected, then processing for this

157

ray is terminated. Otherwise the near distance is set to be the current far distance

and a new node and far distance is pulled from the stack. Processing continues

until either a real surface intersection is found, or until the stack is empty. In this

case, the ray has passed com pletely though the divided model without hitting the

model (as is the case in figure 8.2).

Since sibling nodes are always written such that the sub-space for the right

node is more positive than that for the left, the nearest and farthest sons are easily

determined from the direction cosines o f the ray vector, ie:

7/(split_plane is normal to x-axis) Then

Iflx direction-cosine for ray is positive) Then

nearest son = left son

farthest son = right son

Else

nearest son = right son

farthest son = left son

Endif

Endif

(similarly for y and z direction cosines)

Processing each Sub-model

The intersections o f the ray-vector with im plicit half-spaces are found by substitut

ing the parametric equation o f the ray into the implicit equation o f the half-space.

This gives a univariate polynomial, the roots o f which give the distance along the

ray to each intersection. The first stage o f processing a sub-model is to generate

158

the intersections o f the ray vector with each half-space in the sub-model. In fact,

only those intersections that lie between the near distance for the current sub-space

and the far side o f the object-space are found. If, during subsequent processing o f

this ray, the same half-space occurs in another sub-model, then the roots o f the

polynom ial w ill not have to be re-found.

A ll roots that lie further along the ray than the near distance for the current

sub-space are inserted into an ordered linked-list. Once all the half-spaces for the

sub-model have been processed, the roots are checked in order until a root lying

beyond the far edge o f the sub-space is reached or a real surface is found. This

checking is performed using a membership test between the root point and the

sub-model. If a real surface is found then the surface normal vector for the half

space on which the point lies is generated by substituting the z, y and z coordinates

into the partial differentials o f the surface. Otherwise the tree traversal described

above is continued

W hen performing the membership tests, rather than each half-space being

classified for each point to be tested, half-spaces are classified once (when the roots

are found) with respect to the ‘eye* position. Whenever a root is tested and found

not to lie on a real surface, the contribution o f the half-space that generated the

root is inverted (ie solid becom es air and air becomes solid).

During picture generation, only root points whose half-space classifications are

air need to be tested, since those w hose half-spaces are currently classified as solid

are backward-facing. W hen casting secondary rays for measuring purposes then

either points on these backward-facing surfaces, or points on forward-facing half

159

spaces can be ignored depending on whether the ray is currently passing through

solid or air.

Rootfinding for Polynomial Half-spaces

The roots for planar and quadratic half-spaces are found directly. The roots for

half-spaces o f higher order are found using an interval-splitting root-isolation

method. This starts with an interval along the ray bounded by the point where the

ray first hits the sub-space under consideration and that where it leaves the object-

space. The interval is recursively split until a Sturmn sequence evaluation o f the

half-space polynomial reveals that a single root has been isolated. The exact root

is then found by binary-chopping the interval until the root is found to the required

accuracy.

This technique allow s roots to be found for polynom ials o f any degree up to a

limit imposed by the numerical stability o f the algorithm implemented in floating

point arithmetic. For the range o f tools shapes and motions capable o f being pro

cessed by the verification system described in this thesis, a direct method could be

used since the polynom ial surfaces are all o f degree less than five.

The Performance of the Raycaster

Tables 8.1 and 8.2 show the performance o f the raycaster for the divided models

summarised in tables 7.1 and 7.2. The ‘Time* colum n contains the elapsed time

for generating a single picture (one o f those displayed on the screen pictures in

Appendix 1) with a resolution o f 768 by 512 pixels. For all four division stra

160

tegies, the time decreases rapidly at first as the amount o f division in the divided

m odel increases. This may be attributed to the large reduction in the number o f

root findings and membership tests required, as shown in the last four colum ns.

Columns 6 and 8 in tables 8.1 and 8.2 show the number o f root-finding operations

that were actually performed when generating the picture, columns 7 and 9 show

the number that where not performed due to the roots already having been found

when processing a prior sub-model.

As the size o f the divided m odel grows, the time for each ray becom es nearly

constant This is because the rate o f reduction in the number o f root findings per

ray decreases, and the number o f sub-spaces that are traversed by the ray prior to

its hitting a real surface in the m odel increases. Figure 8.4 shows a graph o f the

ray-tracing times for different values o f the division tuning parameter a (a is plot

ted on a logarithmic scale). The data is taken from tables 8.1 and 8.2.

The total combined times for m odel division and ray-tracing a single picture

are plotted in figure 8.5 (data from tables 7 .1 , 7.2, 8.1 and 8.2). For small values

o f a , the total time values are similar to the time for raycasting alone since the

time taken for division is very small. A s the value o f a is increased, the increase

in the division time outweighs the decrease in raycasting time, and the total time

reaches a minimum, and then increases. The precise amount o f division that g ives

the lowest total time w ill clearly depend on the total number o f rays that are

required to generate pictures from the divided model. The relatively flat w ide

region in the middle o f each curve indicates that, to achieve near-minimum com

bined time, a precise value o f a is not required.

The time to process a single ray, whilst interrogating the model, is small

enough to allow the process to be performed interactively.

Figure 8.6 show s a graph o f the calculated total load o f a divided model (from

tables 7.1 and 7 .2) plotted against the actual time to generate a picture (from tables

8.1 and 8.2). The actual time taken to generate the pictures is not proportional to

the calculated loads. This may be due either the load function, as described in

Chapter 7 not being an accurate model o f the actual load incurred, or because the

calculated load takes no account o f the time required to traverse the sub-space tree

during raycasting. The relationship between calculated load and raycasting time

does appear to be approximately linear, and it is likely that a more accurate load

function could be derived. If this were done, then it is to be expected that the per

formance o f the m odel dividers would be improved since the decisions that they

make would be based on more accurate information.

162

a Time Sub-spaces hit Root Solvings Root Solvings
(secs) Non- (Degree 1) (Degree 2)

leaf Air Surface

1 640.99 15.98 4.61 1.00 4907417 1701726 919046 295158

2 476.60 16.67 4.74 1.00 3508760 1369712 574989 219243

5 359.40 17.39 5.01 0.95 2368661 990963 340460 141115

10 286.98 18.04 5.26 0.87 1534938 675840 205868 97345

20 254.05 18.58 5.47 0.81 1095759 517475 132841 76778

50 234.34 19.35 5.76 0.71 767073 373237 101866 64890

100 227.96 19.75 5.89 0.68 660147 288419 85449 41251

200 219.84 20.12 6.00 0.64 561878 220197 65336 24843

500 213.12 20.70 6.17 0.60 444808 180561 48842 19860

1000 209.97 21.18 6.25 0.60 390028 168662 41548 16791

2000 208.40 21.46 6.30 0.60 362636 161635 35766 13767

5000 207.68 21.98 6.42 0.60 320181 151348 26911 12101

10000 205.34 22.31 6.48 0.60 293646 150947 23302 10943

20000 206.96 22.64 6.55 0.60 272926 146792 21661 10486

Table 8.1 Raycasting statistics for simple tool models (regular division)

163

a Time Sub-spaces hit Root Solvings Root Solvings
(secs) Non- (Degree 1) (Degree 2)

leai Air Surface

Best of three
1 510.38 15.82 4.54 1.32 4334925 1368692 752288 151435
2 383.51 16.82 4.92 1.06 2787394 913149 452275 127642
5 294.90 17.77 5.25 0.86 1676330 623059 238074 88083

10 260.15 18.39 5.50 0.72 1172577 438901 164082 73565
20 234.71 18.96 5.69 0.63 813936 289165 109718 48262
50 219.18 19.64 5.93 0.55 577488 177122 64618 18283

100 212.26 20.04 6.06 0.51 481144 133859 47648 12538
200 209.29 20.45 6.20 0.48 406381 99778 38875 9520
500 205.05 21.12 6.42 0.47 316027 75155 31579 9165

1000 201.92 21.68 6.60 0.46 238238 57902 22954 9565
2000 199.63 22.05 6.72 0.44 196171 43952 16684 7955
5000 199.23 22.30 6.80 0.43 170734 36048 13514 6883

10000 197.63 22.46 6.85 0.42 158167 31767 11422 6399
20000 198.27 22.52 6.86 0.42 153502 30450 10466 5952

Best of nine
1 332.06 10.72 3.11 0.57 2243207 279954 429158 34226
2 277.92 11.10 3.15 0.58 1713271 316101 262082 33560
5 243.17 11.65 3.26 0.55 1276983 289996 156340 28798

10 222.07 12.19 3.41 0.52 969291 233474 110132 21550
20 207.43 12.61 3.50 0.51 765519 196312 76100 17296
50 192.07 13.26 3.68 0.48 527782 130335 48492 12025

100 187.39 13.68 3.80 0.46 415077 92452 39068 9665
200 182.17 14.21 3.96 0.44 315043 67157 29056 9882
500 179.68 14.68 4.11 0.42 227692 42436 21461 6924

1000 175.95 14.96 4.21 0.40 190912 31844 15844 5409
2000 175.71 15.12 4.26 0.39 171016 24267 13504 4414
5000 176.46 15.26 4.31 0.38 158501 20694 11758 3725

10000 175.12 15.36 4.34 0.38 152137 19694 10840 3541
20000 175.34 15.44 4.36 0.38 146921 18913 10314 3318

Best of twenty-one
1 370.09 7.53 2.39 0.54 2825674 375284 436890 34822
2 306.99 7.85 2.48 0.53 2122599 357693 310674 37650
5 230.78 8.47 2.69 0.49 1223437 256702 154428 37230

10 211.56 8.95 2.76 0.49 948643 236383 110055 34893
20 194.62 9.37 2.83 0.49 718722 178724 72331 27997
50 178.92 9.96 2.96 0.47 475873 99116 45012 14085

100 173.21 10.30 3.06 0.44 362218 64339 32645 11319
200 169.54 10.59 3.13 0.42 282282 48674 25717 9657
500 166.44 10.99 3.27 0.39 211433 30844 20056 5481

1000 164.94 11.19 3.34 0.38 185027 21990 15523 3987
2000 163.76 11.33 3.38 0.37 166481 18322 12741 3124
5000 163.28 11.45 3.42 0.37 154784 15800 11440 2558

Table 8 2 Raycasting statistics for simple tool models

(with different division strategies)

164

Figure 8.1

through cursoi

seconder
rau

Generating Secondary Rays

165

s i

Figure 8 2 A ray passing through a Spatially-divided Model

Sub-space Limits Test result Action
Near Far split < near near < split < far far < split

0 nO ro * stack far son and split dist.
2 nO sO leaf node process sub-model

Pull node from stack
1 sO ro * node becomes near son
4 sO ro * stack far son and split dist.
6 sO s4 * node becomes far son
7 sO s4 leaf node process sub-model

Pull node from stack
5 s4 ro leaf node process sub-model

Figure 8 3 Summary of the Traversal Algorithm

166

~ioooo
Ln(Alpha)

Regular
division

Best of 3

Best of 21

Best of 9

Figure 8.4 Tuning parameter (a) vs raytracing time

167

Regular
division

Best of 3

Best of 21

Best of 9

^0000

Ln(Alpha)

Figure 8 5 Tuning parameter (a) vs combined times

168

700

600

□ Regular division

O Best of 3

V Best of 9

A Best of 21

500

400

300

0̂0

100

'lOOOOOO •2000000 •3000000

Load

Figure 8.6 Raytracing time vs total calculated load

169

CHAPTER 9

Conclusions

The Verification System

Numerically controlled machine-tools are in widespread use in the engineering

industry. The checking of toolpaths for such machines is of importance if expen

sive machining errors are to be avoided. The work described in this thesis has

shown that a toolpath verification system based on solid modelling techniques is

capable of performing such checking.

The verification system has been tested on a range of toolpaths of sizes that

are representative of those in industrial use. It has proved suitable for detecting

geometric errors that would occur in the machined component that would result

from, for example, an incorrect toolpath or the specification of incorrect tooling.

Collisions between parts of the machine-tool and the workpiece may also be

checked for. Because the system uses human inspection of the automatically gen

erated component model, features such as thin webs (which are not errors as such)

that may lead to practical problems during machining may be detected.

In addition to being used for the generation of pictures of the proposed com

ponent, and the checking of its dimensions, the solid model of the component may

also be used to calculate the volume of model, or the volume of metal removed

during the machining process.

170

Interactive Interrogation of Solid Models

In addition to their use in checking models generated by the toolpath verification

system, the model interrogation tools based on ray-tracing have been found to be

useful for checking models generated by other means. The ability to check for

dimensional errors in models generated using language input has been found to be

particularly valuable.

The Solid Modelling Scheme using Spatial Division

The solid modelling scheme used to represent the components that would result

from machining - a set-theoretic modeller based on implicit polynomial primitives -

has been found to be capable of representing a wide range of useful shapes. A

spatial division strategy which incoiporates trial division as a technique for control

ling division has been shown to be capable of reducing the computational require

ments for the processing of large set-theoretic models to a level suitable for current

computers. One of the major problems associated with the use of spatial division

strategies to reduce the computational loads of solid modellers is how to decide

what level of division will enable the most efficient use of the divided model. The

technique developed makes the decision based on a knowledge of the potential

result of further division.

The level of model division may be tuned to provide a balance between the

time taken by the model divider, and that for the subsequent raycasting stage. The

spatially divided model provides a basis for much future work as outlined below.

171

Graphical Input Techniques

An algorithm is described for the input of models described by two-dimensional

contours. Although more efficient algorithms have been developed elsewhere, that

described in this thesis has the advantage of simplicity.

Future Work

Extending the System

Although the system implemented is restricted to the checking toolpaths for vertical

milling machines, the solid modelling scheme used is clearly extendible to perform

the verification task on toolpaths for other machine-tools. The only changes that

would be required are to the swept-volume model generators. If four and five axis

toolpaths are to be checked then the measuring tools provided at the model interro

gation stage may need to be altered.

Incremental Cutting Simulation

The verification system described in the thesis is suitable for checking complete

toolpaths (it could, of course, be used to check partial toolpaths). Its usefulness for

toolpath verification would be enhanced it the toolpath could be checked on an

incremental block-by-block basis. This could be done if models for each tool

movement were processed individually. The time taken to regenerate pictures of

the component could be minimised by making use of the spatially divided struc

ture. The model for each tool movement is incorporated into the divided model,

with additional division taking place if required. The region of each picture that

172

will need to be updated is bounded by the projected outline of the volume that is

both swept by the cutter, and also lies within sub-spaces in the divided model

whose sub-models have altered. As new surfaces are machined, some parts of the

model will be simplified. This will result in some sub-spaces in the spatially

divided model becoming airy which will reduce the computational load required to

process future tool motions.

Multi-processor Implementation

As with any model rendering strategy based on raycasting, the picture generation

stage of the verification system is suitable for a multi-processor implementation.

The time taken for model division may also be reduced using multiple processors.

Detecting Collisions

The automatic detection of collisions between non-cutting parts of the tool and the

workpiece for an individual cutter motion require a ‘null object test* to be per

formed between the volume swept by those non-cutting parts of the tool, and the

workpiece model that results from the cut. It will usually be the case that only a

small proportion of the workpiece model will be in the locality of the swept

volume. The spatially divided model may be used to restrict the null object test to

those regions of the model, resulting in a significant time saving.

173

APPENDIX 1

Exam ples of the Toolpath Verification System in Use

Figures A 1.2 to A 1.7 show the interrogation system in use on two components.

The first is the shape whose toolpath is shown in figure A 1.1. The actions that the

figures depict are :

Figure A 1.2: The verification system showing four views of the component, a

command menu at the lower left comer of the screen and an output

window in the lower right comer.

Figure A 1.3: Pointing at a feature on the model, in this case the hole in the mid

dle of the top-left view, results in the block number containing the

tool motion that created the hole and tool number being displayed in

the output window. The source code of the block, and the details of

the surface being pointed at are shown in the partially hidden text

window in the lower left comer of the screen.

Figure A 1.4: The point on the surface of the model lying behind the cursor in the

top-left window is now being displayed in the other windows,

(although in practice the point is not visible in those views).

Figure A 1.5: Having selected the Step and Out functions, a secondary ray has

been generated from the previous surface point, in a direction out

from the surface. This has resulted in a second point being

displayed (with a diagonal cross), together with the distance between

the points also being shown.

174

The next 2 pictures show a more complicated component, a drawing of which

is shown in figure 5.5, and for which a toolpath centre-line plot is shown in figure

5.6. Figure A1.6 shows the width of the web being checked. Figure A1.7 shows

the effect o f a large number of small tool movements used to create a three-

dimensional surface.

175

Figure A 1.1 Toolpath Centreline Plot

Current mouse button Function
i Porwr I f in/our l I patim 1

Other Functions
L'.sij& pts I f snug [^

In. fctc.I [&r owns I f war !
(DISP. SBC.? | P U T I

Surface is horizontal plane
Enter node for point p lo tt i
enter 0 for points not di
enter : for points in cur
enter ’ for points dlspla
enter 3 for points displa

Selection (curren t ealue is

Statue -
Data -
Cursor Loc.
Cursor Loc.
Block Ktaber
Tool Nunber

Units

Figure A1.2 The Verification System

176

IKTTEfiOCAXE MENU
Ciarent souse button Functions

1 p c i i r r i i i k / o p t I I mm I

Other Functions

I s a w PIS I 1 STORE 1 |PEL. OATBHl

I EXT. FWC.i !SET UHITS I I HELP I

1SUBF. DATA! 10ISP. SRC.I I EXIT 1

3CK IS : K83G00 Z27.0 Status - Ready
Data - deac
Cursor Loc. (M s)
Cursor Loc. (B e l>
Block Nusber . . .
Tool Kuaber ------

Units

surface is v e rtic a l cylinder
centre - *0.001 60.01
radius « 10.000

Figure A1.3 Pointing

UnitsStatus - Beady
Data - deno
Cursor Loc. (Abs':
Cursor Loc. (R e l):
Block Busbar . . .
Tool Nuaber -----
Angle to datun surface Current souse button Functions

r o il f f I I IE/OPT I 1 OATPH
T a T e r ^ T T o ^ o T n t s ^ s ^ ^ S ^ ^ ^
Selection (current value is 0) : C
JL0CK IS : N96CC8 250.0 M05

Other Functions

1 SHOW PTS 1 I STORE !

lEXT. F1WC. 1 ISET W ITS 1

ISUKF. BATA I lOISF SRC. I
face is v e rtic a l plane w ith norsal

shortest distance tb o rig in -

Figure A1.4 Cursor Displays Surface Point

177

Status - Ready Units - »
Data - deao
Cursor lo c . (Ab3j: 57.5000 -74.4780 22.8213
Cursor Loc. (R e li: -52.3624 25.5220 13.2103
Slock Nusber . . . : %
Tool Nusber : 6
Angle tc datus surface - 90.00 degrees

_Distance between points - 5.0000______________

shortest distance to o r ig in - 62.500
luXK IS : N96C28 250.0 M05

Current mouse button functions

Other Functions

I SHOW FIS I I STORE I I PEL. DATWl

ISXT. FUNC. j I SET UNITS I I HELP I*ce 18 v* r t ic a l plane w ith normal angle
shortwat distance to o rig in - 57. i

Figure A l .5 Measuring with Secondary Ray

! NO KKlXlAlT . STATUS/DATA
Functions

Ready
C74802d0(Abs)'.
(B e l):

U n its

Other Functions ?• x 1 • • 3
LsSBN FTS | i STORE I [DEL. DATUM I * ° * v 2

1* x' 2 * y 0
lEXT. FUNC.I [SET UNITS 1 [S E T □ B4Z-87303

f e . OATAl Id.ISP. SBC. I I EXIT I J24Z-90126

J & 9 H H R IlLOCK IS : N9610X283932Z->>3365

W M w w S B a k iL0CK Is : N l5315X309000

| | P i P H.0CK IS : Nl7690C0lX32520:Yl '.'499

Distance between points

Figure A1.6 A Complicated Component: Measuring

178

Carfro t Mouse button function*
ppiht t (m /o rr i i datxm l

Polynesia! is
Status *
Data
Cursor Loc.
Cursor Loc.
Block Huaber
Tool Humber

Ready
c74802d0
(Abs):(Rel):

Units

! u V e ' S : M ' w e e x ^ ' l V d -87303

IUXK IS : H I0190X28632<iZ-90136

Figure A 1.7 A Complicated Component: 3-axis cuts

179

References

1. J R Woodwark, Computing Shape, Butterworths, 1986.

2. I D Faux and M J Pratt, Computational Geometry for Design and Manufacture, Ellis Horwood,

1979.

3. A Kela, H B Voelcker, and J A Goldak, Automatic Generation of Hierarchical, Spatially Addres-

sible Finite Element Meshes from CSG Representations of Solids, p. Proc. Int. Conf. on Accuracy

Estimates and Adaptive Refinements in Finite Element Computation, Lisbon, Portugal, February

1984.

4. T W Stacey and A E Middleditch, “ The Geometry of Machining for Computer Aided Manufac

ture,” Robotica, vol. 4, pp. 83-91, 1986.

5. J E Bobrow, “ NC machine toolpath generation from CSG part representations,” CAD, vol. 17,

no. 2, pp. 69-76.

6. A R Grayer, The Automatic Production of Machined Components starting from a Stored

geometric Description, Shape data Ltd, Cambridge, England.

7. Dayong Zhang, “ CSG Solid Modelling and Automatic NC Machining of Blend Surfaces,” PhD

Thesis, University of Bath, 1986.

8. A A Requicha, “ Representations for Rigid Solids: Theory, Methods and Systems’,” ACM Com

puting Surveys, vol. 12, no. 4, pp. 437-464, December 1980.

9. B G Baumgart, “ Geometric Modelling for Computer Vision,” Stanford AI Lab. Report, no.

STAN-CS-74-463.

10. A Ricci, “ A Constructive Geometry for Computer Graphics,” The Computer Journal, vol. 16, no.

2, February 1972.

11. A A Requicha and S C Chan, “ Representation of Geometric Features, Tolerances, and Attributes

in Solid Modelers Based on Constructive Geometry,” IEEE Journal of Robotics and Automation,

vol. RA-2, no. 3, September 1986.

12. A A Requicha, “ Mathematical Models of Rigid Solid Objects,” Production Automation Project

Tech. Mem. 28, The University of Rochester, Rochester, New York, 1977.

13. B A Leatham-Jones, Introduction to Computer Numerical Control, Pitman/Wiley, 1986.

14. A F Wallis and J R Woodwark, “ A Set-theoretic Solid Modelling System based on Implicit

Blends,” Presented at Theory and Practice of Geometric Modelling Conference, Tubingen, Ger

many, October 1988. (Available from A F Wallis, University of Bath, U.K.)

15. R B Tilove, “ Exploiting Spatial and Structural Locality in Geometric Modelling,” Production

Automation Project Tech. Mem. 38, The University of Rochester, Rochester, New York, October

1981.

16. I E Sutherland, R F Sproull, and R A Schumaker, “ A Characterization of Ten Hidden-surface

Algorithms,” Computing Surveys, vol. 6, no. 1, March 1974.

17. J G Griffiths, “ Tape-oriented hidden-line algorithm,” CAD, vol. 13, no. 1, January 1981.

18. M Wittram, “ Hidden-line algorithm for scenes of high complexity,” CAD, vol. 13, no. 4, July

1981.

19. J R Woodwark and K M Quinlan, “ Reducing the Effect of Complexity on Volume Model

Evaluation,” CAD Journal, vol. 4, no. 2, pp. 89-95, March 1982.

20. J E Wamock, “ A Hidden Surface Algorithm for Computer-Generated Halftone Pictures,” Report

TR 4-15, Computer Science Dept., University of Utah, June 1969.

21. Atherton, “ A scan-line hidden surface removal proceedure for constructive solid geometry,”

Computer Graphics, vol. 17, no. 3, July 1983.

22. W F Bronsvoort, “ Techniques for reducing Booelan evaluation time in CSG scan-line algo

rithms,” CAD, vol. 18, no. 10, December 1986.

23. Scott D Roth, “ Ray Casting as a Method for Solid Modelling,” GM Research Publication, vol.

GMR-3466, General Motors Research Labs, Warren, Mitchigan 48090, October 1980.

24. W F Bronsvoort, J J van Wijk, and F W Jansen, “ Two methods for improving the efficiency of

ray casting in solid modelling,” CAD, vol. 16, no. 1, January 1984.

25. W M Newman and R E Sproull, Principles of Interactive Computer Graphics, McGraw-Hill,

1979.

26. W A Hunt and H B Voelcker, “ An Exploratory Study of Automatic Verification of Programs for

Numnerically Controlled Machine Tools,” Production Automation Project Tech. Mem. 34, The

University of Rochester, Rochester, New York, January 1982.

27. J R Woodwark and K M Quinlan, “ Derivation of Graphics from Volume Models by Recursive

Division of the Object Space,” Proc. CG80, Brighton, pp. 530-548, 1980.

28. K M Quinlan and J R Woodwark, “ A Spatially-Segmented Solids Database - Justification and

Design,” Proc. CAD82, 1982.

29. K M Quinlan, “ Utilising Spatial Locality in Solid Modelling,” PhD Thesis, Univerity of Bath,

1985.

30. J R Woodwark and A Bowyer, “ Better and Faster Pictures from Solid Models,” IEE Computer

Aided Engineering Journal, vol. 3, no. 2, 1986.

31. R B Tilove, A A Requicha, and M R Hopkins, “ Efficient Editing of Solid Models by Exploiting

Structural and Spatial Locality,” Production Automation Project Tech. Mem. 46, The University

of Rochester, Rochester, New York, May 1984.

32. N Okino, Y Kakazu, and H Kubo, “ TIPS-1: Technical Information Processing System for Com

puter Aided Design, Drawing and Manufacturing,” Computer Languages for Numerical Control,

pp. North-Holland Publishing Company, 1973.

33. M Mafttyla"and M Tamminen, “ Localised set Operations for solid modelling,” Computer Graph

ics, vol. 17, no. 3, July 1983.

34. M Tamminen, O Karonen, and M Mafttyla" “ Ray-casting and block model conversion using spa

tial index,” CAD, vol. 16, no. 4, July 1984.

35. G Markoswsky and M A Wesley, “ Fleshing Out Wire Frames,” IBM Thomas J Watson Research

Report, no. RC 8124, 1980.

36. B Aldefeld, “On Automatic Recognition of 3D Structures from 2D Representations,” CAD Jour-

naly vol. 15, no. 2, March 1983.

37. K Preiss, “ Constructing the 3-D Representation of a Plane-Faced Object from a Digitised

Engineering Drawing,” Proc CAD80, pp. 257-265, 1980.

38. I C Braid, “ Designing with Volumes,” PhD Thesis, University of Cambridge, 1973.

39. Shape Data Limited, Cambridge, England, ROMULUS: Introduction, Shape Data Limited, Cam

bridge, England, 1978.

40. A F Wallis and J R Woodwark, “ Graphical Input to a Boolean Solid Modeller,” Proc CAD82,

March 1982.

41. D Peterson, “ Halfspace Representation of Extrusions, Solids of Revolution, and Pyramids,” SAN-

DIA Report, no. SAND84-0572, Sandia National Labs, 1984.

42. S B Tor and A E Middleditch, “ Convex Decomposition of Simple Polygons,” ACM Transactions

on Graphics, vol. 3, no. 4, pp. 244-265, October 1984.

43. D Peterson, “ Boundary to Constructive Solid Geometry Mappings: a Focus on 2d Issues,” CAD,

vol. 18, no. 1, pp. 3-14, 1986.

44. Point Control, SmartCAM Reference Manual, Point Control Ltd, Eugene, Oregon, 1988.

45. B Chazelle and D Dobkin, “ Decomposing a Polygon into its Convex Parts,” Proc. 11th Annual

ACM Symp. on Theory of Computation, Atlanta, pp. 38 - 48, 1979.

46. P J Green and B W Silverman, “ Constructing the Convex Hull of a Set of Points in the Plane,”

Computer Journal, vol. 22, no. 3, pp. 262 - 266, 1980.

47. R A Jarvis, “ On the Identification of the Convex Hull of a Finite Planar Set,” Information Pro

cessing Letters, vol. 2, pp. 18 -21, 1973.

48. R G Francis, Graphical Numerical Control, p. National Engineering Laboratory, Glasgow, CAD

Centre, 1978.

49. Computer Assistance in Tape Proving, NEL, 1975.

50. P McGoldrick and R Gibson, “NC plotting made simple,” Proc. CAD80, 1980.

51. R O Anderson, “ Detecting and Eliminations Collisions in NC Machining,” CAD, vol. 12, no. 4,

pp. 231-237, July 1978.

52. I T Chappel, “ The use of vectors to simulate material removed by numerically controlled mil

ling,” CAD, vol. 15, no. 3, May 1983.

53. T van Hook, “ Realtime shaded nc milling display,” Computer Graphics, vol. 20, no. 4, pp. 15-

20, 1986.

54. R Fridshal, K P Cheng, D Duncan, and W Zucker, “ Numerical Control PArt Program Verification

System,” Proc. Conference on CAD/CAM Technology in Mechanical Engineering, MIT, 1982.

55. R R Martin and P C Stephenson, “ Arbitrary Sweeping of Three-Dimensional Objects,” Submitted

to CADJ, August 1989. (in press)

56. P Simkins, Description of CLdata records produced by GNC, CAD Centre, 1979.

57. IIT Research Institute, in APT Part Programming, McGraw Hill, 1967.

58. A F Wallis and J R Woodwark, “ Creating Large Solid Models for N.C. Toolpath Verification,”

Proc. CAD84, April 1984.

59. R E Moore, “ Methods and Applications of Interval Analysis,” Proc. SIAM Corf 1979, 1979.

60. A F Wallis and J R Woodwark, “ Interrogating Solid Models,” Proc. CAD84, April 1984.

