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Abstract

In modem manufacturing, effective CAD/CAM integration, especially for 5-axis 

machining, has not been fully implemented and current manufacturing systems still 

lack flexibility. In this thesis, attempts have been made toward developing an 

integrated strategy for product design and its downstream manufacturing processes, 

including scheduling for establishing an adaptive and flexible system.

To generate detailed operation instructions for transforming an engineering design 

into a final part, a Computer Aided Process Planning (CAPP) system (an essential 

linkage between CAD and CAM), has been developed for common prismatic 

components in a 5-axis CNC machining environment. Furthermore, an adaptive 

Integrated Process Planning and Scheduling system (IPPS) has been developed to 

generate an optimised schedule by optimising both the process planning and 

scheduling simultaneously.

The four major modules that form the prototype CAPP system, namely the Feature 

information input module, Operation selection module, Cutting conditions 

calculation module and Operation sequencing module, have been designed and 

implemented. The feature technology, heuristic rules and evolutionary algorithms 

have been used to enable these modules to work effectively and efficiently and a 

case study has been conducted to verify the ability of the prototype system.

Furthermore, an independent operation sequencing module for 3-axis machining and 

an independent IPPS module have been discussed and implemented. The 

representations of process plans and schedules have been given and the performance 

criteria to evaluate the generated process plans and schedules have been discussed. 

To provide an optimised solution to the process planning and IPPS problems, a 

modem evolutionary algorithm, the Particle Swarm Optimisation (PSO) algorithm, 

has been employed and modified. Through case studies, a comparison has been made 

between the result of the modified PSO algorithm and previous published results 

using the Genetic Algorithm (GA) and the Simulated Annealing (SA) algorithm 

respectively, and for these cases the PSO algorithm has been shown to outperform 

both the GA and SA in the majority of applications by consideration of the 

computation efficiency, optimisationability and robustness.
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Chapter 1 Introduction

Modem manufacturing faces several challenges such as stiff global competition, low 

volume, large variety production, the requirement of high productivity and product 

quality, shorter lead times from design to manufacturing and rapidly changing 

customer requirements (Patil and Pande 2002, Maturana et al. 1999). These 

challenges have acted as a driving force for the application of new technologies in 

industries. In respect to hardware, particularly as a development in the aeronautic 

and automobile industries, 5-axis NC machines have become widely used in 

machining of complex geometry surfaces such as turbine blades, impellers, 

propellers, 3D cams, moulds and dies. With two more degrees of freedom than 

traditional 3-axis machines, 5-axis machining offers many advantages over 3-axis 

machining, including better tool accessibility, low setup cost, and easier to machine 

complex surfaces (Mahbubur et al. 1997, Lo 1999, Ho and Hwang 2003). The 

software and hardware for many manufacturing methodologies have been developed 

such as Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), 

Flexible Manufacturing Systems (FMS) and Computer Integrated Manufacturing 

(CIM). CIM aims to integrate the highly fragmented manufacturing operations in an 

enterprise in order to utilise the resource and information more effectively. A lot of 

research has addressed CAD/CAM integration (the heart of CIM) in last several 

decades.

However, effective CAD/CAM integration, especially for 5-axis machining, has not 

been implemented and current manufacturing systems still lack flexibility. In order 

to overcome these drawbacks, an integrated strategy for product design and its 

downstream manufacturing processes, including scheduling for establishing an
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Chapter 1 Introduction

adaptive and flexible system, is imperative. In this thesis, attempts have been made 

towards this direction. A Computer Aided Process Planning (CAPP) system, an 

essential linkage between CAD and CAM, has been developed for 5-axis machining 

and an adaptive integrated CAPP and scheduling system has been implemented.

In this chapter, the background of research is presented in section 1.1. Then the 

overall aims of the research are described in section 1.2. Finally section 1.3 gives an 

organisational outline of the thesis.

1.1 Background

1.1.1 Computer Aided Process Planning (CAPP)

As described above, the focus of CIM is on information as the crucial element 

linking all facets of the manufacturing enterprise. While the geometry information is 

created in CAD, the manufacturing information is concerned with the production 

planning and plant operation (Kang et al. 2003). Information cannot be effectively 

transferred from CAD to CAM without a Computer-Aided Process Planning (CAPP) 

system as a linkage.

Process Planning, as defined by Chang and Wysk (1985), is the act of preparing 

detailed operation instructions to transform an engineering design to a final part. It 

involves determining the most appropriate manufacturing processes and the order in 

which they should be performed to produce a given part or product specified by 

design engineering. In general, a process plan contains routes, processes, process 

parameters, machines, set-ups, tools required for production of parts and the tool 

path. The process plan must be developed within the limitations imposed by 

available processing equipment and productive capacity of the factory (Groover

2



Chapter 1 Introduction

2002). Although the process-planning functions may be different according to 

different industries, they involve several or all of the following activities (Chang 

1990, Lee D.H. etal. 2001):

•  Selection of machining operations;

•  Sequencing of machining operations;

•  Selection of cutting tools;

•  Selection of machine tools;

•  Determining setup requirements;

•  Calculations of cutting parameters;

•  Tool path planning and generation of NC part programs;

•  Design of jigs and fixtures

The use of computer techniques to automate the tasks of process planning -  

Computer Aided Process Planning (CAPP), is taken to support process planners in 

the planning process and assist in taking decisions. As a key technology for 

CAD/CAM integration, CAPP strongly influences the cost of production and the 

quality of a product. The greater the degree of automation of a CAPP system, the 

shorter the time from design to manufacturing, and the better the quality of the final 

product owing to the elimination of human error (Yip-Hoi and Dutta, 1996, Groover 

2002).

/ Part fam ily /Lif  Standard A
n m o A c c  ( •I f"e Ir process 5 V plan file \ J

Other
application
programs

*

Derive GT
_____ 1-------

Search part
......

Retrieve Edit existing Process plan 
formatter

Process plan
code number 1 family file t- standard > plan or write i* (route sheet)

for part for GT code process plan new plan '

Figure 1.1 Operation o f a variant CAPP system (Groover 2002)
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Chapter 1 Introduction

The developed CAPP systems can be generally classified into two categories, 

namely, variant systems and generative systems. Variant systems use the 

classification and coding of Group Technology (GT) to select a baseline process plan 

for a part family. The process plan for a new part is created through retrieving the 

plan of a similar part that has been developed and stored in a database, and then 

modifying it as necessary (Bhaskara Reddy et al. 1999, Groover 2002). The variant 

systems may cut down process planning time dramatically, especially for similar 

components, so are currently dominant in industry. However, they are deficient in 

planning the processes of new products with many new features or structures. 

Figure 1.1 shows the operations of a variant CAPP system.

Or regular modeler 
with feature 

extractor
Either
feature
based
design

data

Route planner

Fixturing
method

Cutting
parameters

Raw material 
selection

Process
selection

NC machine

Tool selection

Cutter path

Tooling
knowledge

base

Machinability
database

Process
knowledge

base

Fixturing
knowledge

base

Raw material 
selection

Features with 
location (position 
and orientation)

Figure 1.2 Automated process planning - generative technique (Rembold 1993)
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Chapter 1 Introduction

Generative systems are based on heuristic reasoning and Artificial Intelligence (Al) 

technologies and can generate a new process plan for a part from scratch by applying 

intelligent decision rules to the part, based on the specific manufacturing conditions 

of companies. In comparison to the variant method, the generative method needs less 

human intervention and new parts can be planned as easily as existing components. 

Although it is time-consuming, costly and error-prone to acquire the expert 

knowledge and the decision rules, with keener global competition and the 

requirement of delivering new products more efficiently, the development of 

generative systems is imperative to facilitate process planning with higher flexibility 

and adaptability. As figure 1.2 shows, a generative process planning system 

comprises three main components:

1. Knowledge base: the technical knowledge of manufacturing and the logic used 

by successful process planners to make decisions on various aspects of process 

planning must be captured and coded into a computer program.

2. Computer-compatible part description: Part description forms a major part of the 

information needed for process planning. The description contains all the 

pertinent data needed to plan the process sequence. Two possible descriptions are 

(1) the geometric model of the part developed on a CAD system during product 

design, or (2) a group technology code number of the part defining its features in 

significant detail.

3. Inference engine: a generative CAPP system requires the capability to apply the 

planning logic and process knowledge contained in the knowledge base to a 

given part description. The CAPP system applies its knowledge base to solve a 

specific problem of planning the process for a new part. This problem-solving 

procedure is referred to as the “inference engine” in the terminology of expert

5



Chapter 1 Introduction

systems. By using its knowledge base and inference engine, the CAPP system 

synthesizes a new process plan for each new part presented to it (Groover 2002).

In the last two decades, many technologies have been introduced into CAPP systems, 

such as feature technology, Artificial Intelligence (Al) to improve the performance 

of CAPP systems and the integration of CAPP and other manufacturing activities 

especially scheduling has also been addressed.

1.1.2 Feature technology

The support of integrated product design and manufacturing entails two requirements:

(1) product design representation and reasoning capability from various product life

cycle considerations, such as manufacturability analysis, and (2) manufacturing 

process design capability to plan efficient and flexible manufacturing by exploiting 

the product information provided by these product design representations (Kim et al. 

2001). It has been universally recognised that the geometric model of a part designed 

using conventional CAD systems is not sufficient for process planning or other 

reasoning and planning purposes (Mantyla et al. 1996). Feature technology is an 

emerging tool for this purpose. Historically, the concept of a feature originated in the 

process planning of machined parts. It therefore follows that linking CAD to CAPP 

for machined products using features has become the focus of numerous research 

efforts in recent years (Wong and Wong 1995).

As figure 1.3 shows, the features refer to the design features and machining features 

(Fu et al. 2003). The viewpoints of a part are different for a designer and a process 

planner. For the process planner, the feature is commonly viewed as a machining 

feature (manufacturing feature). For example, a slot could be seen as a general slot
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milled by a milling machine; a hole can be considered as a drilled or bored hole. For 

the designer, design features are expressed in geometric terms. However machining 

features can express explicitly the methods of production while implying the 

geometry and function of the features.

A designed part Design features Bounding box Machining features

o I a
k~3

<2=D

(a) A designed part and design features (b) Bounding box and maching features

Figure 1.3 Design Feature and Machining feature (Fu et al. 2003)

Feature recognition and design by features are the two major approaches to create 

feature models (Bronsvoort and Jansen 1993). Feature recognition makes direct use 

of geometric models and generates application-specific feature models using various 

recognition rule sets regarding the application. A principal advantage of feature 

recognition is the possibility of using conventional CAD systems directly. However, 

there are problems with feature recognition such as feature interactions hindering its 

practical applications. With a design by features approach, the designer specifies a 

design model using a set of design features defined in a feature-based model system 

(Lee and Kim 1999). In contrast to feature recognition, design by features can 

capture the design and manufacturing information during the design stage. A feature 

has its specific geometry and must be associated with some feature attributes 

including dimensions, tolerance, etc. Also, features should carry information 

regarding process planning, manufacturing, and inspection. In other words, the 

designer can choose the manufacturing processes whilst working on the design. It
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reduces remarkably the amount of work for recognising features. Now more and 

more commercial CAD software support design by features. For example, 

Unigrphics NX2 enables users to model a part with holes, pockets, slots and boss 

features, etc.

1.1.3 Integration of process planning and scheduling (IPPS)

In manufacturing, both process planning and scheduling functions are responsible for 

the efficient allocation and utilisation of resources. As described above, process 

planning is used to plan manufacturing resources and operations for a part to ensure 

the application of good manufacturing practice and maintain the consistency of the 

desired functional specifications of the part during its manufacture. Scheduling is 

used to determine the most appropriate moment to execute each operation for the 

launched production orders, taking into account the due date of these orders, a 

minimum workshop inventory, a maximum resource utilisation, etc., in order to 

obtain high productivity in the workshop (Li and McMahon 2006, Kempenaers and 

Pinte 1996, Aldakhilallah and Ramesh 1999, Yang et al. 2001, Wong et al. 2006). 

Traditionally, in the batch working industry, process planning and workshop 

scheduling are done separately and sequentially, where the process plan is 

determined before the actual scheduling with no regard for the scheduling objectives. 

The process planning system first generates a reasonable process plan for each part 

including applicable manufacturing resources (machines and tools), set-up plans and 

a feasible operation sequence of the part. During the process, it usually assumes that 

all the applicable manufacturing resources are available for this part. The scheduling 

system then specifies the schedule of manufacturing resources on each operation (job)
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of the parts according to the importance of jobs, availability of resources and time 

constraints.

However, this simple sequential approach ignores the relationship between 

scheduling and process planning. If a process plan is prepared offline without due 

consideration of the actual shop floor status, it may become infeasible due to changes 

or constraints in the manufacturing environment and heavily unbalanced resource 

assignments. Also due to the different objectives of these two systems, it is difficult 

to produce a satisfactory result in simple sequential executions of the two systems. 

And because the process plan for each part is generated independently without 

consideration of other parts, when these generated process plans for different parts 

are taken forward for scheduling, they may not be schedulable to meet the 

requirement due to time and resources constraints. The merit of integrated process 

planning and scheduling (IPPS) is to increase production feasibility and optimality 

by combining both the process planning and scheduling problems (Huang et al. 

1995).

1.1.4 Optimisation of CAPP and IPPS

1.1.4.1. Optimisation of CAPP

In developing computer-aided process planning (CAPP) systems, one of the major 

difficulties is the selection of suitable setup plans and machining resources, and 

sequencing the machining operations so that the least machining cost of the part can 

be obtained (Qiao et al. 2000, Lee D.H. et al. 2001). Traditional CAPP approaches 

aim mainly at generating a single feasible plan for a given part. However, the 

introduction of new manufacturing technologies, (e.g. design for manufacturing
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(DFM) and integration of process planning and job shop scheduling (IPPS)), to 

support DFM, the best process plan for a given part in a designated machining 

environment must be generated and fed back to the designer for evaluation. To 

support dynamic scheduling, a CAPP system must be able to generate plans with 

alternative routes and sequences to suit the variable status of the shop floor (Ma, et al. 

2000).

As one of the most important tasks and also a bottleneck task in developing a CAPP 

system, the operations sequence generation problem can usually be modelled as a 

large-scale and combination optimisation problem with constraints. The complexity 

of solutions to the problem is highly dependent upon the shape and the number of 

features of a machined part. For instance, the process planning practice has shown 

that, for rotational parts, the topology relationships among most of the features 

comply with an explicit machining order of “from the left end to the right end’ or 

vice versa and “from internal to external’. It can greatly reduce the number of 

operation combinations so as to generate a smaller search space, leading to various 

types of heuristics for operations sequence generation with less difficulty (Du and 

Huang 1990, Usher and Bowden 1996). However, for a prismatic part, this problem 

is intractable, with difficulties in the following aspects (Li et al. 2002):

(1) The geometric relationships between features in a prismatic part are complicated, 

and the explicit heuristic rules for sequencing the operations corresponding to the 

features are deficient.

(2) Each feature might have several candidate Tool Approach Directions (TADs), 

cutting machines and tools to machine it. The decision processes of selecting 

machining resources and set-up plans as well as sequencing operations are
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sometimes contradicting. The evaluation criteria coming from some aspects, such 

as minimum usage of expensive machines and tools, minimum number of setups, 

minimum number of machine and tool changes, and achieving good 

manufacturing practice, are also conflicting in certain cases. To carry out the 

different decision processes considering the evaluation criteria simultaneously is 

imperative to a globally optimised solution. However, it is usually difficult for 

some reasoning approaches.

(3) For a part, there usually exist several alternative process plans that can achieve 

the predetermined optimisation objective. To generate and provide the alternative 

optimal plans can help process planners make a reasonable decision according to 

the workshop environment and fixture conditions. However, in the existing 

published approaches, few contributions have been made towards this direction.

It is necessary to develop an optimisation approach for the machining operations 

sequencing problem in CAPP considering the above factors in order to improve 

CAPP system’s performance and adaptability.

1.1.4.2. Optimisation of IPPS

As described in the previous sections, for a process planning system, the decision of 

which machine tool to select is usually made based on the objective of achieving the 

correct quality, the minimal manufacturing cost and ensuring good manufacturability. 

In this process, all the resources are assumed to be available. But in a real job shop, 

not all the generated process plans for a group of parts are schedulable according to 

the time and resource feasibility. In the traditional way to overcome this, it is 

necessary to iteratively re-invoke the process planning system to produce alternative 

plans for further trials until an acceptable scheduling solution is obtained. However,
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the above iterative process brings forth two serious problems in practical 

applications (Li and McMahon 2006).

(1) Firstly, it is quite tedious and time-consuming to search for a feasible solution 

to meet the requirements of process planning and scheduling simultaneously 

and an overall optimised target is even more difficult to achieve. Meanwhile, 

the value of a process plan can be severely discounted since the assumption 

that all resources are available during the process planning stage might not be 

fully valid in the scheduling stage. For instance, the generated process plans 

sometimes cause some machines to be overloaded, further to create bottlenecks 

whilst the capabilities of other machines are not fully utilised.

(2) Secondly, a job/batch shop is usually in dynamic adjustment due to the non

availability and maintenance of resources, or the arrival and release of new jobs. 

Such a dynamic shop floor brings challenges for the process planning system to 

accommodate the changes efficiently, and a new round of searching and 

compromise of the process planning and scheduling needs to be carried out 

again in their vast solution spaces.

So it is necessary to develop a closer integration of the process planning and 

scheduling systems to achieve an overall optimisation.

In the last decade, a number of research workers have addressed these two areas of 

optimisation using different Artificial Intelligence (AI) technologies such as Genetic 

Algorithms (GA), Simulated-Annealing algorithms (SA) and so on.
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1.1.5 Five-Axis m achining

Developments in the aeronautic and automobile industries brought new 

technological challenges, related to the growing complexity of the products and the 

new geometries modelled in CAD systems. These more complex geometries impose 

new challenging manufacturing situations for the development of new machining 

technology, namely 5-axis machining (Baptista and Antune Simoes 2000).

Figure 1.4 Worktable o f  5-axis CNC machining centre

The number of axes of a machine tool normally refers to the number of degrees of 

freedom or the number of independent controllable motions on the machine slides. 

The ISO axes nomenclature recommends the use of a right-handed coordinate 

system, with the tool axis corresponding to the Z-axis. A three-axis milling machine 

has three linear slides X, Y and Z which can be positioned anywhere within the 

travel limit of each slide. The tool axis direction stays fixed during machining. This 

limits the flexibility of the tool orientation relative to the workpiece and results in a 

number of different set ups. To increase the flexibility in possible tool workpiece
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orientations, without the need of re-setup, more degrees of freedom must be added. 

Five degrees of freedom are the minimum required to obtain maximum flexibility in 

tool workpiece orientation, this means that the tool and workpiece can be oriented 

relative to each other under any angle. For a conventional three linear axes machine 

this can be achieved by providing 2 extra rotational slides (Bohez 2002). A work 

table of a 5-axis machining centre is shown in figure 1.4.

Since 5-axis machines have two more degrees of freedom than traditional 3-axis 

machines, 5-axis machining offers many advantages over 3-axis machining, 

including better tool accessibility, faster material removal rates, low setup cost, and 

improved surface finish (Mahbubur et al. 1997, Lo 1999, Ho and Hwang 2003). It 

allows parts to be machined with geometry that would have been very difficult, if 

impossible on conventional 3-axis machines. Furthermore, it allows parts with more 

straightforward geometry to be machined with significantly fewer set-ups. 5-Axis 

CNC machines are widely used in machining of sculptured surfaces such as turbine 

blades, impellers, propellers, 3D cams, moulds and dies. Some examples are shown 

in figure 1.5.

5 Axis 
Manufacturing

Figure 1.5 Products machined by 5-axis machine
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Internationally, as the price of these machines has fallen over recent years, 5-axis 

machining centres have been used for machining normal prismatic parts. However, 

conventional 3-axis CAPP work has not been fully exploited in a 5-axis environment. 

Current research in 5-axis is focused on automatic tool path generation and in 

particular the activity of deciding the distribution of cutter locations to fulfil the 

requirements of machining high quality complex surfaces. There still remains a 

significant lack of knowledge in how to optimise the manufacturing process for 

conventional prismatic parts in a 5-axis environment.

1.2 Overall aims

The overall aims of this research are to develop a generative CAPP system for 

common prismatic components in the 5-axis CNC machining environment and 

develop an IPPS module to optimise the process planning and scheduling 

simultaneously.

The detailed aims and objectives will be discussed in chapter 3.

1.3 Organisation of the Thesis

The thesis is organized in 9 chapters as follows:

In Chapter 1, the background related to this research is introduced and overall aims 

of the research are given.

In Chapter 2, a review of the related research is discussed. Three topics that are 

relevant to this research -  feature technology, optimisation of operation sequence 

and of Integration of process planning and scheduling, are reviewed.
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Chapter 3 will give the aims and objectives and the methodology of this research is 

also given.

Chapter 4 presents the information philosophy of the system and gives the proposed 

system structure.

In Chapter 5, the feature-based model input to the system is first introduced. 

Meanwhile, feature representation using object oriented programming strategy is 

presented. Then the methods of selecting machining operations including tools, 

TADs, parameters are presented. Finally the calculation of machining time and 

output of machining operations are discussed.

In Chapter 6, a Particle Swarm Optimisation (PSO) algorithm is developed to 

optimise the process of machining operations sequencing using combined evaluation 

criteria, which include machining costs, cutting tool cost, machine changes, tool 

changes, and the number of setups. In this approach, some preliminary precedence 

constraints between features and operations are defined and manipulated. In this 

chapter, the difference between 3-axis and 5-axis process planning optimisation is 

discussed and PSO algorithms for both 3-axis and 5-axis are presented.

Chapter 7 presents a PSO algorithm for optimising the Integrated Process Planning 

and Scheduling (IPPS) problem. The problem is first defined, then the 

representations for process plans and schedules are given and different criteria of 

performance are discussed.

In Chapter 8, the implementations of the independent operation sequencing module 

and IPPS module are first presented and the corresponding case studies are discussed. 

Then the developed prototype CAPP system for 5-axis machining and its
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implementation are described. A case study is used to illustrate the capabilities and 

adaptabilities of the developed approaches.

Finally, Chapter 9 gives the conclusions and contributions of this research. The 

limitations of the developed systems are presented and Suggestions for future work 

are outlined.
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2.1 Introduction

As described in Chapter 1, process planning is concerned with the preparation of the 

procedure sheets that contain the processing steps by which the product should be 

manufactured. Since the concept of Computer Aided Process Planning (CAPP) was 

first conceived in the 1960’s (Niebel 1965 and Schenk 1966), it has been continually 

developed. The impetus for the interest comes from two sources: firstly, industry in 

an attempt to increase productivity (Wang and Chang 1987), secondly, the fast 

development of computer software and hardware (Wang and Wysk 1988).

In the initial CAPP systems, the approach was to find optimum machining 

parameters and cutting conditions. Then, the approach evolved into report generation 

and documentation retrieval. In the latter case, Group technology (GT) was used to 

help locate similar parts, thus becoming process plans. It was not until ten years had 

elapsed that some kind of generative approach was developed. Although the 

introduction of AI and expert systems boosted both the interest in the problem and 

the capability of the systems, the results are still far from desirable.

In this chapter, some of the relevant existing CAPP systems for prismatic 

components are reviewed and discussed. Feature technology, an important element 

in process planning, is also examined. Then machining operations sequencing 

optimisation is reviewed and Integrated Process Planning and Scheduling systems 

are finally discussed.
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2.2 Overview of CAPP approaches

There are two main approaches for developing a CAPP system: Variant and 

Generative. The variant technique uses the classification and coding of parts to 

initiate the process planning activity (Rembold et al. 1993). When a plan is to be 

generated for the production of a new product, a standard plan for a similar product 

is retrieved and modified for the new product. The plan may be a parameterised 

model of the part, and the user just enters the parameters of the part needed to be 

described. This approach is generally useful in cases where there are a lot of 

similarities between products. Typical examples include CAM-I’S CAPP, MIPLAN 

and MULTICAPP, which are described below.

CAM-I’S CAPP: is an acronym for “CAM-I’s Automated Process Planning system” 

developed by Me Donnell Douglas Automation Company (McAuto) under a contract 

from CAM-I (Link 1976). It is probably the first and also the most widely used of all 

process planning systems. CAPP is a database management system written in ANSI 

standard FORTRAN. It was developed primarily as a research tool to demonstrate 

the feasibility of computer assisted process planning, with logic based on group 

technology methods to classify and code parts. In CAPP, a structure is provided for a 

database, retrieval logic, and interactive editing capability. The coding scheme for 

part classification and output format are added by the user. A 36-digit maximum 

alphanumeric code is allowed. A coded scheme tailored to the user application is 

usually appropriate.

MIPLAN and MULTICAPP: Both MIPLAN (Schaffer 1980) and MULTICAPP 

were developed in conjunction with OIR (Organization for Industrial Research Inc.). 

They are both variant systems that use the MICLASS coding system for part
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description. They are data retrieval systems which retrieve process plans based on 

part code, part number, family matrix, and code range. By inputting a part code, 

parts with a similar code (user-defined similarity) are retrieved. The process plan for 

each part is then displayed and edited by the user. They are similar to the CAM-I 

CAPP system with MICLASS embedded as part of the system.

Since the 1990s, most research has focused on generative CAPP. But there are still a 

lot of variant CAPP and hybrid CAPP (variant and generative) being applied in 

industry. For example, IAI-CAPP proposed by Chang et al. (2000) combines variant 

and generative CAPP and is capable of generating plans that are either similar to 

existing workpieces or new plans. In IAI-CAPP, fuzzy logic (FL) and artificial 

neural networks (ANN) are integrated to perform the dynamic recognition and 

adaptive-leaming tasks of the workpieces and process plans. Also, it adopts the idea 

of the important (critical) feature concept for evaluating the suitability of existing 

process plans for incoming product designs.

The Generative approach, on the other hand, does not use any stored standard plan. 

When a plan is generated, the system uses information about a part’s geometry, 

machining or assembly data, machines (including robots) and their parameters, as 

well as process planning rules.

As figure 1.2 in Chapter 1 shows, the design data is transmitted to the planners by a 

modelling system which captures the design features, functions and general designer 

intentions for the product. This information along with process knowledge and raw 

material data are used to perform the process selection. The remainder of the 

processes are very close to the variant technique transactions. The major difference 

is that the CAD system data plays a major role in the generation of new plans and
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therefore the part description no longer needs to be done by codes which access pre

stored routes and plans. These can now be generated to fit the part geometry and 

manufacturing context of the geometry. Several generative process planning systems 

have been developed such as TIPPS (Chang 1985), BEPPS-NC (Zhang and Mileham 

1991), BEPPS-GSCAPP (Rustom and Mileham 1992), GF-CAPP (Gonzalez and 

Rosado 2003) and PSG-CAPP (Sadaiah et al. 2002), and these are described below.

TIPPS is an acronym for “Totally Integrated Process Planning System” developed 

by Chang and Wysk at Virginia Polytechnic Institute and State University (Chang 

and Wysk 1985). In a sense TIPPS is a new generation of APPAS and CADCAM. It 

integrates CAD and generative process planning into a unified system employing AI 

and decision tree approaches. The system uses a special language called Process 

Knowledge Information (PKI) to describe the procedural knowledge and a CAD 

boundary representation as part data input. Using the terminal’s cursor the user 

indicates the surfaces to be machined in order to determine manufacturing processes, 

sequence, machining parameters and time estimation.

BEPPS-NC is a generative process planning system for rotational parts developed at 

Bath University (Zhang 1991, Zhang and Mileham 1991, Zhang and Mileham 1989). 

It uses a 2D wire frame product model as an input, typical of various CAD systems 

in the format of DXF (Drawing Interchange File). The system is mainly composed of 

CAD interpreter, Process planner, NC code generator and BEPPS-NC viewer.

BEPPS-GSCAPP is a generative process planning system for prismatic parts 

developed at Bath University (Rustom 1992, Rustom and Mileham 1992, Rustom 

and Mileham 1990, Rustom and Mileham 1989). It is aimed at parts being produced 

on conventional machine tools in a batch manufacturing environment. The system is
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of particular interest since it was chosen as an application example to indicate this 

research work’s potential for direct interfacing with a CAPP package. The BEPPS- 

GSCAPP consists of four main options: User’s help, Process Planning, Decision 

logic modification and Database file modification. The options three and four enable 

the user to modify the decision logic files and database files when they need to be 

updated.

GF-CAPP system proposed by Gonzalez and Rosado (2003) generates the process 

plans. These constitute all of the alternatives for the required sequences and provide 

good flexibility in a standardized CAPP system that is claimed to be generally 

applicable in industry. These alternatives explicitly include feasible alternatives for 

machines and, as a consequence, alternative processes for operations.

PSG-CAPP proposed by Sadaiah et al. (2002) can be divided into three modules: the 

first module is concerned with feature extraction, the second and third modules deal 

with planning the set-up, machine selection, cutting tool selection, cutting parameter 

selection and generation of the process plan sheet. PSG-CAPP is claimed to have the 

ability to extract the majority of features from the CAD model and in generating 

process plans for prismatic components.

Compared with generative systems, variant systems are currently more mature and 

dominant in industry, but they are deficient in planning the processes of new 

products with many new features or structures. With keener global competition and 

the requirement of delivering new products more efficiently, the development of 

generative systems is imperative to facilitate process planning with higher flexibility 

and adaptability.
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In recent years, researchers have focused their efforts on the following areas to 

improve the overall performance of generative CAPP systems:

(1) Applying new concepts or technology to the more general issue of automated 

process planning such as object-oriented systems (Chep et al. 1999, Zhang et al. 

1999), feature-based systems (Patil and Pande 2002, Case and Harun 2000), 

agent-based systems (Sun et al. 2001, Wang et al. 2003, Gu et al. 1997, 

Maturana et al. 1999).

(2) Optimising specific aspects of CAPP systems mainly in operation sequencing. 

These include genetic algorithms (Qiao et al. 2000, Bhaskara Reddy et al. 1999), 

simulated annealing-based optimisation algorithms (Ma et al. 2000, Lee D.H. et 

al. 2001), Fuzzy Petri net algorithms (Wu et al. 2002) and some hybrid 

approaches (Li et al. 2002).

(3) In the area of integrating process planning with other production activities, a lot 

of research has been aimed at developing Integrated Process Planning and 

Scheduling (IPPS) systems, and includes work from Li and McMahon (2006), 

Yan et al. (2003), Zhang and Yan (2005), Morad and Zalzala (1999) and Kim et 

al. (2003).

The following sections will discuss current research in feature technology, 

optimisation methods along with some examples of CAPP systems and IPPS systems.

2.3 Feature Technology

As introduced in chapter 1, there are two key issues with CAD/CAM integration: (1) 

product design representation and reasoning capability from various product life

cycle considerations, such as manufacturability analysis, and (2) the capability of
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manufacturing process design to plan efficient and flexible manufacturing systems 

by exploiting the product information provided by these product design 

representations (Kim et al. 2001). Features encapsulate the engineering significance 

of portions of the product geometry and, as such, are applicable in product design, 

product definition, and reasoning about the product, in a variety of applications such 

as manufacturing planning (Shah and Mantyla, 1995). Thus, features have been used 

as a means of interfacing in computer integrated manufacturing (CIM) through 

computer aided process planning (CAPP), and feature technology has been 

considered an indispensable tool for integrating design and manufacturing processes. 

Feature recognition and design by features are the two major approaches to create 

feature models (Bronsvoort and Jansen 1993).

The features generally refer to the design features and machining features (Fu et al. 

2003). Design features are expressed in geometric terms, while machining features 

express explicitly the methods of production while implying the geometry and 

function of the features. For the process planner, the feature is commonly viewed as 

a machining feature (manufacturing feature) and can be used directly to plan the 

operations. Standard for the Exchange of Product (STEP) Application Protocol (AP) 

224 defines machining features as classes of shapes representing volumes to be 

removed from a part by machining (Step Tools Inc.).

The following sections will briefly review the main considerations in machining 

process planning, concentrating on part representation, feature definition, feature 

taxonomy and feature representation.
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2.3.1 Part Representation

As discussed previously, part description, the major component of generative CAPP, 

should consist of shape, dimension, tolerance, materials and surface conditions. 

Traditionally, this information is contained in engineering drawings, but 3-D 

geometric modelling in computer aided design (CAD) has developed as an 

alternative part representation in recent years. There are two main geometric 

modelling approaches. Boundary representation (B-rep) describes parts by the faces 

that bound them, in turn bounded by edges and vertices (Chang 1990). In the case of 

the CSG representation, the algorithms make use of the CSG tree made up of 

voluminal primitives. Purely geometric representations are, however, limited in their 

ability to support process planning. One of the techniques used by Shpitalni and 

Fisher (1991) is to convert the CSG tree into a Destructive Solid Geometry (DSG) 

tree so as to get primitives describing the position of the material, according to 

material cutting operations. Nevertheless, because of the limitations of conventional 

geometric models, high-level part representations have emerged based on features, 

which are modelling entities that combine geometric and other attributes with 

information about engineering intent (Shah and Mantyla 1995, Case et al. 1994).

The feature-based product information model (for manufacturing planning) identifies 

the design geometry in terms of holes, slots, pockets, bosses, fillets, chamfers and 

other design elements that can be machined. Manufacturing planning requires 

additional information such as the knowledge of the characteristic shape and features 

producible by the various processes and the process capability in terms of 

dimensions, locations, tolerances and surface roughness. The information should also 

cover more specialized factors such as tool accessibility, fixturing possibilities and
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the ability to be inspected (Sharma and Gao 2002). Many methods exist for creating 

feature models in a geometric-modelling context, for example Deneux et al. (1994) 

have listed three methods of workpiece feature representations:

(1) With the help of the manual definition of features according to a catalogue 

generally suited to the CAD system, possibly improved by the user.

(2) With the help of a direct design using design features stemmed from an 

expert system.

(3) With the help of automatic recognition of features from a solid model.

In the first method, the CAD model translates interactively in terms of geometric 

features. In the second method, the designer directly uses design features that allow 

generic forms of specific geometries with technical functionalities to be combined. 

In the case of design features, Gao and Case (1993) include the geometry, roughness 

tolerances, geometric relationships and material specifications, e.g. type of material, 

hardness and strength. In the third method, feature recognition is based on algorithms 

that extract geometric features from the CAD system database. The other 

information, that was previously proposed as comments (ASCII symbols), e.g. 

unusual tolerance or material, is presented as informative objects that can be more 

easily extracted from the CAD model.

In these three methods, the features used, extracted and recognised are not 

manufacturing features, as they do not take production processes into account. The 

first two methods of feature representation facilitate the inclusion of the activities of 

engineering design. The third method facilitates the inclusion of the manufacturing 

planner’s activities that consist of describing the tasks to be undertaken without 

defining the real details. The method based on primary feature recognition from a
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CAD model allows surfaces that cannot be split during the definition of detailed 

machining process, taking production means into account, to be defined. These 

surfaces are set according to three kinds of criteria: geometric, topological or 

tolerance and technological. These sets of surfaces have been called machining 

features. This solution allows the workpiece to be represented in terms of machining 

features. Thus, ..the methods of machining process design can be applied to each 

manufacturing feature independently.

2.3.2 Feature definition and Taxonomies

1. Feature definition

There are many feature definitions. One of the initial feature definitions is that 

proposed by Shah and Rogers (1988): A feature is a set of information related to the 

description of a part. And as described in the previous section, manufacturing 

features are what process planners are concerned with. To make manufacturing 

retrieval easier, four feature definitions have been specified by Chep and Tricarico 

(1999): form features, precision features, technological features and manufacturing 

features.

A form feature is a set of faces of the representation of the workpiece boundaries. 

These faces have topological links of concavity that form cavities in the product. For 

each form feature, it is possible to define a set of edges that are the limits of the form 

feature: boundary edges. The definition of the form feature is only based on topology.

A precision feature is a set of boundary faces which have tolerancing links. 

According to Jong et al. (1992), a precision feature can be divided into tolerance 

features and surface roughness features. Tolerance features define the tolerance
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deviations of nominal forms and measurements. Three sorts of tolerance features 

have been defined by Shah:

(1) Tolerance features that are coupled to one parameter of the form feature, e.g. the 

tolerance of the diameter of a hole.

(2), Tolerance features that affect the relationship between the geometric elements 

which are used to define a form feature, e.g. parallelism tolerance.

(3) Tolerance features coupled to relationships between form features.

With surface roughness features, surface processing can be linked to surfaces.

A technological feature is a set of boundary faces which have technological links. 

Technological features define material information of the workpiece, e.g. 

composition, physical and mechanical properties: heat treatments to be applied to the 

workpiece, and also surface treatments (thermal, thermo-chemical, mechanical).

Form features, precision features and technological features are called primary 

features. A manufacturing feature is a set of primary features. All form, precision 

and technological features that define a manufacturing feature are linked by 

constraints that can be of two types:

(1) Topological links that are links between different form features, characterized by 

a constraint.

(2) The existence of common boundaries (tolerancing or technological links) 

between different primary features is characterized by a constraint (Chep and 

Tricarico 1999).
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2. Feature taxonomies

Instead of specifying all the geometrical and topological information that defines a 

feature for every separate feature type, it is possible to group features with common 

properties into classes. These can then be further divided into sub-classes to form a 

tree structure, or hierarchy. These classification structures are commonly called 

feature taxonomies and since they are of a hierarchical nature, the properties of a 

class can be inherited by its sub-classes.

There are two major benefits of using feature taxonomies:

(1) By allowing large amounts of varied features to be classified into coherent 

groupings, it helps in the recall of previously defined features, their subsequent 

editing, and the design of new features. The hierarchical description of features 

also allows simple features to be combined into more complicated features, and 

hence the final model (Case and Acar 1989).

(2) Feature taxonomies can provide a framework for the parametric generation of 

geometry at the design stage. Without a rigorous taxonomy, it is difficult to 

produce analytic and predictable algorithms for the complex task of process 

planning (Requicha and Vanderbrande 1988).

Several different taxonomies have been developed by researchers. In Gindy (1989)’s 

feature taxonomy, features are characterized by the number of orthogonal directions 

from which the feature volume might be approached. These are known as External 

Access Directions (EADs), and all features will have between 0 and 6 EADs. The 

three external access directions for a through slot are shown on figure2.1. Further 

classification on the basis of the type of profile (open or closed) and whether or not 

the feature volume penetrates through the component gives the nine basic feature
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classes (bosses, pockets, holes, non-through slots, through slots, notches, steps, real 

faces and imaginary faces).

Figure 2.1 The topology and feature definition o f a through slot (Case and Harun 2000)

In Patil and Pande’s system (2002), features are primarily classified into two types:

(1) Gross Features. These resemble raw stock for CNC machining from which 

various feature shapes are machined out, which includes Rectangular and 

Contoured features.

(2) Local features. These represent families of features having varying geometries 

but the same topological characteristics (connectivity). Based on the manner in 

which features appear on the faces, the local features are further classified as 

follows:

•  Face-based features. Holes, pockets, feature pattems-arrays of holes.

•  Edge-based features. Slots

•  Comer-based features. Steps.

External Access 
Directions

Entry
Face
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2.3.3 Feature representation using Object Oriented Programming 

Strategy (OOPS)

After the feature taxonomies have been classified, the OOPS can be used in CAPP 

systems for the representation and hierarchical organization of feature data and 

associated process message services.

In IFPP developed by Patil and Pande (2002), OOPS is used to represent the features 

information. Figure 2.2 shows the information stored in the object oriented paradigm 

for a slot as an example feature. The feature object stores the location and 

identification attributes of the feature. It provides polymorphic user interfaces to 

input data for these attributes. The local object deals with the dimensional attributes 

of the feature (e.g. length, width, and the height for the rectangular slot). It also 

records the depth status (blind/through) of the feature. Information, such as 

tolerances and surface roughness, is stored as process data by this object. 

Polymorphic methods are used to validate the feature based on design and 

manufacturability issues.
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class Local 
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class Slot

class RectSlot

: Base Virtual Class

: Location { X, Y, Z )
Fold { Unique Identification Number)
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Cutter * Tool ( A pointer to the array of tools )

: DepthStatus ( Through/Blind )

: Allowance ( machining allowance)

Length

Sweep Pattern ( Line/Arc )

AngleWithXAxis

Locational Tolerance (Centre Plane)

Geometric tolerance (Parallelism, perpendicularity 

with respect to Datum feature)

: Width 

Depth

Process Data ( Surface Finish, Corner Radius )

 Dimensional Tolerance (width, depth)

Figure 2.2 Typical information of a slot in OOPS (Patil and Pande 2002)

The main advantages of the object oriented design strategy is it provides the 

capability to organize and represent the feature information for easy message 

processing and offers the flexibility to modify the definition of an object, its structure, 

message and linkup without affecting the rest of the system configuration.

2.3.4 Standard for the Exchange of Product (STEP)

Preparation of product (feature) data for computer aided manufacturing planning is a 

difficult task, as features are domain dependent. This implies that the same design 

needs to be expressed in different feature-based descriptions to satisfy different 

downstream applications (Sharma and Gao 2002). There have been attempts to 

extract data directly (feature-based design) or indirectly (feature recognition) from 

the CAD database. In order to develop a procedure for consistent, unambiguous data
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abstraction from a generic data structure, the foundation or the standard on which the 

procedure is based is very crucial. Among many data exchange formats developed, 

Drawing Transfer File (DXF), Initial Graphics Exchange Standard (IGES) and STEP 

model data are the most widely used formats. In contrast to DXF and IGES, STEP 

(standing for standard for the exchange of product model data) is officially titled ISO 

10303, and is aimed at defining a standard file that includes all information 

necessary to describe a product from design to production. It supports multiple 

application domains, for instance, mechanical engineering, electronics, architecture 

(Owen 1993). The following are some reasons for using STEP:

• STEP is a standard that can grow. It is based on a language (EXPRESS) and 

can be extended to any industry. A standard that grows will not be outdated 

as soon as it is published.

• The EXPRESS language describes constraints as well as data structure. 

Formal correctness rules will prevent conflicting interpretations. STEP CASE 

tools such as ST-Developer use these descriptions to create more robust, 

maintainable systems.

• STEP is international, and was developed by users, not vendors. User-driven 

standards are results-oriented, while vendor-driven standards are technology- 

oriented. STEP has, and will continue to, survive changes in technology and 

can be used for long-term archiving of product data.

In the STEP Application Protocols, Application Protocol 224 (AP224), the 

mechanical part definition for process planning using machining features, contains 

all of the information needed to manufacture the required part, including materials,
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part geometry, dimensions and tolerances, applicable notes and specifications, and 

administrative information.

Many CAD software packages now support the AP224 format drawing file and a 

new standard namely ISO 14649, recognised informally as STEP-NC, is being 

developed which represents a data model for Computer Numerical Controllers. It 

may integrate CAD, CAM and CNC more easily in the future.

2.4 Operation Sequence Optimisation

2.4.1 Introduction

In developing computer-aided process planning (CAPP) systems, the determination 

of the operations sequence is one of the most important tasks and also a bottleneck 

task in the process (Qiao et al. 2000). Traditional CAPP approaches mainly aim at 

generating a single feasible plan for a given part. However, with the introduction of 

new manufacturing technologies, e.g. design for manufacturing (DFM) and the 

integration of process planning and job shop scheduling, the best process plan for a 

given part in a designated machining environment must be generated and fed back to 

the designer for evaluation. To support dynamic scheduling, a CAPP system must be 

able to generate plans with alternative routes and sequences to suit the variable status 

of the shop floor (Ma et al. 2000).

The operation sequencing problem can be defined as the problem of determining the 

sequence of operations required to produce a part with the objective of minimising 

the sum of machine, setup and tool change costs, while satisfying the precedence 

constraints among operations (Lee D.H. et al. 2001). The operations sequence 

generation problem can usually be modelled as a large-scale and combination
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optimisation problem with constraints. The complexity of solutions to the problem is 

highly dependent upon the shape and the number of features of a machined part. For 

instance, the process planning practice has shown that, for rotational parts, the 

topology relationships among most of the features comply with an explicit 

machining order of “from the left end to the right end’ or vice versa and “from 

internal to external’. This can greatly reduce the number of operation combinations 

so as to generate a smaller search space, leading to various types of heuristics for 

operations sequence generation with less difficulty (Du and Huang 1990, Usher and 

Bowden 1996). However, for a prismatic part, this problem is intractable, with 

difficulties in the following areas (Li et al. 2002).

(1) The geometric relationships between features in a prismatic part are complicated, 

and the explicit heuristic rules for sequencing the operations corresponding to the 

features are deficient.

(2) Each feature might have several candidate tool approach directions (TADs), 

cutting machines and tools. The decision processes of selecting machining resources 

and set-up plans as well as sequencing operations are sometimes contradictory. The 

evaluation criteria coming from some aspects, such as minimum usage of expensive 

machines and tools, minimum number of setups, minimum number of machine and 

tool changes, and achieving good manufacturing practice, are also conflicting in 

certain cases. To carry out the different decision processes considering the evaluation 

criteria simultaneously is imperative to ensure a globally optimised solution. 

However, it is usually difficult for some reasoning approaches.

(3) In a part, there usually exist several alternative process plans that can achieve the 

predetermined optimisation objective. To generate and provide the alternative plans 

can help process planners make a reasonable decision according to the workshop
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environment and fixture conditions. However, in the existing approaches, few 

contributions have been made to how this should be achieved.

Whereas tremendous efforts have been made in developing heuristic approaches to 

operation sequence generation for prismatic parts (Karinthi et al. 1992, Zhang et al. 

1994), the sequencing problem is far from being solved (Qiao et al. 2000).

2.4.2 Optimisation Methods

Although a lot of CAPP systems have been reported in the literature, only a few have 

considered the optimisation of the operations sequence or the generating of 

alternative sequences.

In the knowledge-based reasoning approach, Chang (1990) and Chang et al. (1998) 

developed the QTC system, in which machining operations with the same TAD are 

aggregated as a setup. The sequence of the machining operations and setups is 

reasoned according to the precedence constraints, which stem from geometric 

interactions between operations, location tolerance requirements, reference or datum 

requirements, and good manufacturing practices. An optimum sequence is selected 

from several feasible sequences based on the minimum number of setups. Chu and 

Gadh (1996) expanded Chang’s aggregation concept by clustering the operations that 

are machined with the same cutting tool into a setup so as to reduce the number of 

tool changes. In the APSS system reported by Wong and Siu (1995), the operations 

sequencing algorithm consists of three consecutive algorithms, viz., the 

transformation, refinement, and linearization algorithms. The transformation 

algorithm works on the geometric and technological information of a part and 

generates preliminary precedence constraints between features according to the 

“surface priority” and “process capabilities” knowledge bases. A tree structure is
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created to represent the necessary precedence of the operations. In the refinement 

algorithm, the details of the operations in the generated tree are enhanced and refined 

using the “refinement” knowledge base. For example, for a general drilling operation, 

the central drilling or pilot drilling operations are determined and specified. In the 

linearization algorithm, the tree structure is linearized into the final required 

operation sequence.

In the research by Kruth and Detand (1992), a generic Petri-net is used to represent a 

parametric feature and its related operations. After being evaluated using 

manufacturing knowledge bases, such as general machine data, machine axes data, 

and manufacturing capability data, the separated Petri-nets for compound features or 

features with identical TADs are first joined together. The same procedure is then 

applied to the features located in the different TADs, and a large Petri-net is finally 

formed, in which all valid alternatives to machine the part are described.

Lin and Wang (1993) presented integer-programming models for selecting and 

sequencing operations and tools for process plans with the objective of minimizing 

tool changeovers and solving them with commercial integer-programming software. 

Irani et al. (1995) proposed a graph-manipulation approach for operations 

sequencing. The Hamiltonian Path (HP) analogy for a process plan was developed 

and the Latin Multiplication Method (LMM) for constrained enumeration of all the 

feasible HPs was implemented. The optimal process plan is an HP that corresponds 

to the least number of set-up disruptions required from start to finish to process each 

feature once and only once. Lee et al. (2001) suggested two branch-and-fathoming 

algorithms to obtain optimal and near-optimal solutions for operation-sequencing 

problems with the objective of minimizing the sum of machine, set-up and tool
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change costs. They considered the precedence constraints and suggested systematic 

procedures to remove unfeasible and unpromising solutions, respectively. Kim et al. 

(2001) proposed a feature recognition based method to generate machining 

precedence relations systematically, based on the geometric information of the part. 

Tolouei-Rad (2003) proposed an efficient algorithm for automatic machining 

sequence planning in 2.5D milling operations, which generates feasible machining 

sequences based on the bilateral precedence between machining operations and 

results in minimized tool changes.

Conventional local search techniques have also been applied to various operation- 

sequencing problems. However, they still have some deficiencies: (1) since they are 

based on heuristic inferencing and reasoning, the search is not global and optimum 

plans might be lost during the reasoning processes; (2) in a complicated machining 

environment, the reasoning efficiency is low; and (3) the alternative operation 

sequences generated by some methods are feasible but not the optimal process plans 

(Li et al. 2002).

To resolve these problems, Evolutionary algorithms which are capable of searching 

globally in the whole search space have been applied to operation sequencing 

optimisation. In last decade, a lot of research has investigated the use of Genetic 

algorithms (GA) and Simulated Annealing (SA) algorithms in process planning.

1. Simulated Annealing algorithm (SA)

The SA algorithm is derived from the Boltzmann statistical mechanics. Since a SA 

occasionally chooses points uphill from its current point, it can escape from a local 

minimum and more effectively search the function space to find the global minimum. 

Thus, SA is often well-suited for solving constrained non-linear optimisation
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problems in a global search strategy. Brown and Cagan (1997) used the generative 

SA algorithm to search for the optimal process plan for rotational parts. Chen et al. 

(1998) used SA to solve the set-up sequence problem. However, these developed SA 

algorithms focus their search space in a rather limited domain or space.

Ma et al. (2000) proposed a simulated annealing-based optimisation for the operation 

selection and sequencing problem with the objective of minimising the sum of 

operation processing costs and change costs. The SA-based search algorithm can be 

generally described as follows.

Step 1: Randomly generate a feasible plan (OpMl; OpM2; . . . ; OpMn), called the 

current-plan.

Step 2: Start from the initial temperature T=T0, while not reaching the final 

temperature T i o w e st- 

{

Step 2.1: Make a random change to the current-plan, let temp-plan be the plan after 

the change.

Step 2.2: Check to make sure that temp-plan is valid. Otherwise, go back to step 2.1. 

Step 2.3: Calculate the costs of current-plan (El) and temp-plan (E2).

If E2 < El

Let temp-plan be current-plan;

Else

Randomly generate X (0< X < 1);

If X < e (E1'E2yr

Let temp-plan be current-plan;

Else
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Let current-plan remain unchanged;

End if 

End if.

Step 2.4: Repeat steps 2.1-2.3 until a criterion is satisfied.

Step 2.5: Reduce the temperature to a new T.

}

Several important issues to be considered when applying a SA include:

(1) Representation schemes of solutions;

(2) Definition of the cost evaluation function;

(3) Definition of the neighbourhood mechanism for the generation of temporary 

solution;

(4) Design of a cooling schedule. The parameters in the cooling schedule are 

namely: an initial temperature, a temperature update rule, the number of 

iterations to be performed at each temperature step and a stopping criterion 

for the search.

2. Genetic Algorithm (GA)

Global search techniques like genetic algorithms (GA) for operation sequencing have 

been applied in Zhang et al. (1997), Qiao et al. (2000), BhaskaraReddy et al. (1999). 

The GA makes an analogy with the process of natural evolution by combining the 

'survival of the fittest’ among solution strings with structured, yet randomized, 

information exchange and creates offspring having desirable characteristics. GAs 

require a method for representing an operations sequence as a string whose elements 

define a list of machining operations by considering some or all of the manufacturing 

constraints. GAs generate the optimal or near optimal result by following these steps:
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(1) To generate the initial population (composed of strings called chromosomes, 

namely, operation sequences);

(2) To select chromosomes according to some reproduction strategies;

(3) To apply crossover and mutation operations.

These steps are repeated until an aspiration criterion is reached.

Several important issues to be considered when applying a GA to an application

problem include:

(1) The representation of the parameters of the problem under study as chromosomes. 

There are two common representation methods for numerical optimisation 

problems: binary string representation and integer/real number representation. 

The representation method to use is determined by the ease of modelling the 

problem itself as well as the performances of the algorithm in terms of accuracy 

and computation time;

(2) A suitable fitness evaluation function to assess the quality of output is a 

mathematical equation. Where this method cannot be used, a rule-based 

procedure can be constructed;

(3) In the designed chromosomes, there are usually some precedence constraints. 

The crossover and mutation operations employed in a GA might cause the 

precedence constraints to be destroyed. The method to handle constraints and 

conduct search in feasible space is a major difficulty in applying GAs;

(4) The selection of a suitable procedure for each genetic operator for improving the 

efficiency and quality of the search is another issue. For example, in the selection 

operator, there are mainly two alternative procedures: proportional selection 

(“roulette wheel”) and ranking-based selection. In the crossover operator, some
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common alternative strategies include one-point crossover, two-point crossover 

and cycle crossover.

The choice or design of the control parameters in GAs depend on the problem and 

the representation schemes employed. Important parameters include the population 

size, and the crossover and mutation rates. These parameters should be designed for 

a general condition for the problem instead of being specific for a certain case study.

3. Problems with current optimisation approaches

Besides GA and SA algorithms, a Tabu Search (TS) algorithm has also been 

introduced in Lee et al. (2001) and Li et al. (2004). Different from SA, it defines a 

set of moves that are tabu to avoid cycling in the solutions. All these algorithms have 

been developed in the last decade and have made significant improvement in solving 

operation sequencing optimisation problems. However, there still remains potential 

for further improvements. These can be concluded as following:

(1) The representation of process plans (Operation-Tool-TAD) is still not complete 

as they do not include sufficient information especially for planning 5-axis 

machining. In 3-axis machining, a TAD indicates a determined set-up, but in 5- 

axis machining, the TAD of an operation can be achieved from 5 possible set

ups. This increases the difficulty of operation sequencing and set-up selection.

(2) Precedence constraints between operations need to be considered thoroughly 

and carefully so as to keep the solutions feasible. Different constraint handling 

mechanisms should be selected in terms of different characteristics of the 

algorithms.

(3) The performance evaluation criteria of a process plan need to be handled 

carefully, different criteria should be selected accordingly for different
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objectives. For example, the process plan that can achieve the minimal 

machining time will often not be the process plan that has the minimal 

machining cost;

(4) Current algorithms are still not efficient. GA performs very well in the early 

optimising stage but later it is easy to be trapped into local optima so that it is 

not able to find an optimal solution especially for complex problems. SA 

converges fast and can find an optimal solution for most problems, but for a 

very complex problem, its probability of finding optimal solution is very low.

To improve overall performance, a more comprehensive representation scheme for 

the process plan needs to be developed, a more reasonable constraint handling 

mechanism needs to be developed and it is necessary to adopt a more agile, 

effective and efficient optimisation algorithm.

4. Particle Swarm Optimisation algorithm (PSO)

Particle Swarm Optimization (PSO) is a modem evolutionary computation technique 

based on a population mechanism. The PSO algorithm was inspired by the social 

behaviour of bird flocking and fish schooling (Kennedy and Eberhart 1995). Three 

aspects will be considered simultaneously when an individual fish or bird (particle) 

makes a decision about where to move: (1) its current moving direction (velocity) 

according to the inertia of the movement, (2) the best position that it has achieved so 

far, and (3) the best position that its neighbour particles have achieved so far. In the 

algorithm, the particles form a swarm and each particle can be used to represent a 

potential solution of a problem. In each iteration, the position and velocity of a 

particle can be adjusted by the following formulae that take the above three
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considerations into account. After a number of iterations, the whole swarm will 

converge at an optimised position in the search space.

Here, i is the index number of particles in the swarm; t is the iteration number; V 

and X  are the velocity vector and the position vector of a particle respectively. For 

an N-dimensional problem, V and X  can be represented by N  particle dimensions 

as equations 2.3 and 2.4 show. Pt is the local best position that the zth particle has 

achieved so far; Pg is the global best position that all the particles have achieved so

far; w is the inertia weight to adjust the tendency to facilitate global exploration 

(smaller w ) and the tendency to facilitate local exploration to fine-tune the current 

search area (larger w ); RandQ returns a random number in [0,1]; cx and c2 are two 

constant numbers to balance the effect of Pt and Pg.

The PSO algorithm was initially developed for continuous optimisation problems. 

Recently, there has been successful research focused on discrete problems such as 

the Travelling Salesman Problem (TSP) (Wang et al. 2003, Pang et al. 2004 and 

Onwubolu and Clerc 2004) and the scheduling problem (Jerald et al. 2005).

However, the current PSO algorithm has not been applied to resolve the operation 

sequencing optimisation problems. Besides the common difficulties mentioned 

above, there are two major reasons due to the following characteristics of the PSO:

V/*' = w * V ‘ +ct * RandQ * (P‘ - X ‘) + c2 * RandQ * (P j -  X ,’) (Eq 2.1)

X ,M = X '  + V,M (Eq 2. 2) 

(Eq2. 3)

(Eq 2. 4)
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(1) Due to the inherent mathematical operators, suitable schemes to represent 

process plans by particles and how to determine the sequence of each process plan 

(particle) needs to be developed. And it is difficult for the current PSO algorithm to 

consider the different arrangements of machines, tools and TADs for each operation, 

and therefore the particle is unable to fully explore the whole search space.

(2) The PSO algorithm also suffers the drawback of becoming trapped in a local 

optimum. So it is necessary to develop new operators besides its mathematical 

operators to help it to escape from the local optimum.

2.5 Integrated Process Planning and Scheduling (IPPS)

As discussed in chapter 1, in a complex manufacturing situation, it is ideal to 

integrate the planning and scheduling more closely to achieve a global optimum in 

manufacturing, and increase the flexibility and responsiveness of the system.

In the past decade, there have been several attempts to address the integration of 

process planning and scheduling. Tan and Khoshnevis (2000) presented a review of 

the research in the process planning and scheduling area and discussed the extent of 

the applicability of the various approaches. More recent work can be generally 

classified into two categories: the enumerative approach and the simultaneous 

approach.

In the enumerative approach, all of the possible alternative process plans for each 

part are first generated. A schedule is then determined by choosing a suitable process 

plan of each part from their alterative sets according to the current resource 

constraints of a job shop and scheduling performance criteria (Tonshoff et al. 1992, 

Zhang and Mallur 1994; Zijm 1995, Sormaz and Khoshnevis, 2003, Kumar and
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Rajotia 2003). Various strategies have been developed to exhaustively identify the 

possible alternative process plans based on multiple candidate manufacturing 

processes, set-up plans and manufacturing resources. In the FLEXPLAN system 

(Tonshoff et al. 1992), a Petri-net has been used to model and analyze the flexibility 

of process planning, and an AND/OR graph has been developed to represent the 

generated alternative plans. Based on the process plans, a strategy to pursue the 

minimum process time has been used to select the most suitable plan for each part 

from the scheduling point of view. The IPPM (Integrated Process Plan Model) 

system is another example with this approach (Zhang and Mallur 1994). A decision 

matrix has been first developed to represent and store all of the possible process 

plans generated using different set-ups and machine tools. In the matrix, the fuzzy 

logic technique has been incorporated to represent the imprecise information in the 

selection of the set-ups and machine tools. A scheduler then chooses a suitable 

process plan based on the shortest processing time principle.

Computer-Integrated Process Planning and Scheduling (CIPPS) developed by 

Aldakhilallah and Ramesh (1999) consists of four specific modules for automated 

feature recognition, the determination of minimal cover sets of all features of a 

product, the determination of an efficient and feasible process plan, and the 

generation of an efficient and feasible cyclic production schedule, respectively. 

Sormaz and Khoshnevis (2003) summarized a methodology for generation of 

alternative process plans in the integrated manufacturing environment consisting of 

four steps: selection of alternative machining processes, clustering and sequencing of 

machining processes, and generation of a process plan network.
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However, the common drawbacks of the above research work are: (1) it is quite 

time-consuming to randomly identify all possible alternative process plans for 

complex parts. (2) Cyclic scheduling with alternative process plans to refine and 

achieve an optimal result is tedious and not efficient. Through a number of 

experimental computations, Usher (2003) concluded that the advantage gained by 

increasing the number of alternative process plans for a scheduling system to choose 

from diminishes rapidly when the number of the plans reaches a certain level.

The simultaneous approach is more effective and efficient in integrating the two 

functions. In this approach, the process planning and scheduling are both in dynamic 

adjustment until specific performance criteria can be satisfied. To facilitate the 

process, intelligent evolutionary algorithms, such as GA, SA, and heuristic rules, 

have been employed to generate optimised solutions to satisfy the constraints and 

objectives of process planning and scheduling simultaneously. A bi-criterion 

hierarchical approach is proposed in Brandimarte and Calderini’s work (1995). The 

process planning module produces good process plans with low operation costs first. 

Then if a schedule generated based on the process plans is not satisfied using the 

makespan criteria, a heuristic procedure is invoked to reallocate some critical 

operations to alternative machines. In Zhang et al.’s work (2003), a facilitator is used 

to coordinate communications and interactions between the process planning module 

and scheduling module until both objectives of process planning and scheduling are 

satisfied. Through this guided refining process, the satisfactory solution can be 

achieved more efficiently than the enumerative approach.

To further enhance the algorithms performance, some unified optimisation models 

and algorithms have been developed (Morad and Zalzala, 1999, Kim et al. 2003;
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Zhang and Yan, 2005, Moon and Seo 2005). Morad and Zalzala (1999) developed a 

GA-based integration scheme, in which process plans were represented as 

chromosomes, and crossover and mutations operations were used to explore the 

alternative process plans to achieve different objectives including the minimum 

makespan, set-up cost, or tardiness. Kim et al. (2003) developed a single 

optimisation model to integrate the process planning and scheduling. In this work, 

three rules, which are operation flexibility, sequencing flexibility and processing 

flexibility, have been employed to generate multiple process plans. From these 

multiple plans, a symbiotic GA has been used to search for an optimised process 

plan that satisfies scheduling objectives, such as the minimum makespan or the mean 

flow time. Zhang and Yan (2005) developed an optimisation model to combine the 

considerations from process planning and scheduling, such as the production cost, 

the tardiness time, the set-up cost, and the early finish time. Based on these, an 

improved hybrid GA-based approach was designed to optimise planning and 

scheduling simultaneously. Moon and Seo (2005) proposed a mathematical model to 

formulate this integration problem and used a GA-based algorithm to determine the 

optimal schedule of machine assignments and operations sequences to achieve 

minimised makespan. A SA-based algorithm developed by Li and McMahon (2006) 

is used to optimise the process planning and scheduling simultaneously with a 

combined model.

From the review of current research, the following issues are still outstanding:

(1) First, in process planning and scheduling, different criteria are used to address 

specific practical cases. For instance, from the process planning perspective, 

the lowest manufacturing cost is usually a desired target, while the scheduling
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usually needs to look for the most balanced utilisation of machines, the 

minimum number of tardy jobs, the shortest makespan, etc. To meet the 

various requirements in practical situations, further improvement is required on 

the optimisation algorithm to make it more adaptive to accommodate diverse 

objectives for users to choose from.

(2) Second, both process planning and scheduling are NP-hard (Non-deterministic 

Polynomial) combinatorial optimisation problems. There are two major 

difficulties in IPPS Compared to optimisation of operation sequencing for a 

single part, (1) the search space of IPPS is much bigger than that of operation 

sequencing; (2) the optimisation problem becomes more complex as the 

number of parts increase, and which also needs to consider complex 

manufacturing constraints, such as operation precedence constraints and 

manufacturing resource constraints. All of these will increase the computation 

time dramatically.

(3) Third, current developed systems do not consider that dynamic changes of the 

shop floor’s situation, such as routine machine maintenance, machine break 

down and new orders arrivals, are able to be inserted into the current schedule 

to meet the deadlines. Any occurrence of these situations will probably make 

the current schedule infeasible and result in the need to replan the whole 

schedule. The process of replanning is more complex and time consuming due 

to new operation precedence constraints and manufacturing resource 

constraints.

The above issues need to be considered when building the IPPS model. And to 

improve system performance, the optimisation algorithm also needs to be more 

adaptive and efficient by adopting more intelligent heuristics and search strategies.
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2.6 Summary

In this chapter, the variant and generative approaches of CAPP, feature technology, 

operation sequencing, IPPS and related optimisation methods have been reviewed. 

As can be seen, the focus of developing CAPP systems has changed to applying new 

concepts or technology to current CAPP systems, optimising specific aspects of 

CAPP such as operation sequencing and integration of CAPP with scheduling and 

production planning etc. Much research has been carried out in these areas. However 

the practical implementations of these methodologies are still far from satisfactory. 

One of the primary reasons is that these problems involve complex decision-making 

processes, and current algorithms do not cover the whole range of these processes. It 

is necessary to adopt a more steady, adaptive and efficient algorithm to optimise the 

operation sequencing and IPPS problems. Furthermore, most of the research is based 

on 3-axis machining. It is known that with two more degrees of freedom, 5-axis 

CNC machining reduces the number of setups, but it also increase the difficulty of 

decision making in process planning. For every feature, the Tool Approach Direction 

(TAD) can be achieved by different setups due to the ability of the workpiece’s 

rotational movements. And there maybe more than one TAD for specific features 

such as steps and holes, which not only increase the complexity of decision making 

but also lead to more possible sequences to produce a part, which enlarge the search 

space considerably.

Therefore, it is necessary to create a flexible CAPP system for 5-axis CNC 

machining and develop an adaptive and efficient algorithm for optimising the 

operation sequencing and IPPS problems. This is the major objective of this thesis.
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This chapter presents the specific aims and objectives of the project, describes the 

options available to research this type of problem and why particular methods have 

been considered applicable to this research project.

3.1 Aims of the Research

The main aims of the research are:

a) To develop a CAPP system in the 5-axis CNC machining environment.

b) To develop a method to integrate CAPP and scheduling efficiently and implement 

it for a job shop manufacturing environment.

The main part of this research focuses on developing a CAPP system for the 5-axis 

CNC machining environment. As discussed in chapter 1, the use of 5-axis machining 

centres has grown such that they are now used for machining normal prismatic parts 

but the conventional 3-axis CAPP work has not been fully exploited in 5-axis. 

Current research in 5-axis is focused on automatic tool path generation and in 

particular the activity of deciding the distribution of cutter locations to fulfil the 

requirements of machining complex surface shape. There still remains a significant 

lack of knowledge in how to expand 3-axis CAPP methods into 5-axis and optimise 

the manufacturing process for conventional prismatic parts.

To support a job shop manufacturing environment that is characterized by the make- 

to-order operation and the demands of small volumes with a large variety, it is 

beneficial to integrate CAPP and scheduling systems to optimise the whole process
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simultaneously to meet the demands of customers quickly and reduce the 

manufacturing cost.

3.2 Objectives of the Research

To achieve the aims of the research the following objectives are identified:

• To specify a 5-axis CAPP system.

• To develop a 5-axis CAPP system that is based on the input of a feature-based 

model and which includes

• Routings which specify operations, operation sequences, work centres, 

standards and tooling.

• Optimised process plans which typically provide more detailed, step-by- 

step work instructions including dimensions related to individual 

operations, machining parameters and set-up instructions.

• In developing the CAPP system, the objectives will be to:

• Define the feature-based model to represent the part including all the 

dimensions, tolerances and roughness etc. as the input of the system.

• Determine the feasible operations based on the input.

• Determine machining parameters for generated operations and calculate 

the approximate machining time.

• Build the appropriate representation for the process plan.

• Optimise the operation sequence to achieve the minimal cost/time.

• To develop an Integrated Process Planning and Scheduling (IPPS) module that 

can optimise process plans and scheduling simultaneously to achieve an overall 

optimal objective.
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3.3 Methodology of the Research

This sub-chapter describes some of the available research methods and why 

particular methods have been considered applicable to this research project.

3.3.1 Overview of Research Methods

A lot of research of methodology has been done in last few decades (Clarke 1972, 

Rose 1982, Trafford 2001, Chatting 2001, Mebrahtu 2005). Research is a scholarly 

or scientific investigation or enquiry that requires thorough study so as to present 

findings in a detailed and accurate manner (University of Bath, Mechanical 

Engineering course in research methods -  ME50173, 2006). Doing research has two 

elements:

-  Empirical knowledge: acquiring data, observations, facts, cases, etc.

-  Theoretical knowledge: laws, principles, models, concepts, etc.

Generally, a research process follows either a deductive or inductive approach. The 

deductive approach first finds a theory (or proposal) and is then tested with data. 

This is more appropriate to most engineering types of research. The inductive 

approach gathers data and then thinks of a theory. The inductive approach is more 

suited to social sciences and humanities research.

There are a number of research classifications in the literature. Clarke (1972) and 

later, Howard & Peters (1990) classify forms of research as pure basic, basic 

objective, evaluative, applied and action. Alternatively, Philips and Pugh (1987) 

argued that the classification of pure and applied research is too simplistic and 

preferred to classify research as exploratory, testing out and problem solving 

research. However, within each of these classifications certain methodological
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problems have to be considered and resolved. These concern how to aggregate 

different clusters of independent data, the relative importance of analysing data 

gathered at different levels, and the wider issue of sampling frames for data 

collection (Bryman, 1989).

Trafford (2001) writes in appreciation of Kuhnian notion of paradigms which 

explain and produce significant shifts in understanding. Kuhn (1962A) suggested 

that scientific paradigms are examples of actual scientific practice, examples which 

include law, theory, application and instrumentation together ... to provide models 

from which spring particular coherent traditions of scientific research. According to 

Kuhn, paradigms are also the source of the methods, problem field, and standards of 

solution accepted by any mature scientific field at any given time (Kuhn, 1962B).

Burrell and Morgan (1979) present four assumptions about the nature of research: 

ontology, epistemology, human nature, methodological. This approach is more 

inclined towards research in social studies and includes the idea that hypotheses 

could be expressed which try to capture theoretical explanations of practice -  by 

researchers who have incorporated these assumptions about how their research has 

been designed.

Rose (1982) produced a model which is also represented by Traford (2001) that 

shows how the key components of research are systematically related to one another 

by linking theory and evidence. He developed an ABCDE model as shown in Figure 

3.1.

A. Theory: an explanatory statement about the phenomena.

B. Theoretical proposition: specific propositions to be investigated in the study.
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C. Operationalisation: decisions made on how to carry out empirical work; 

technique of data collection; sampling; concepts and indicators, variables; units.

D. Field work: collecting data, practical problems of implementing stage C 

decisions.

E. Results: data analysis leads to findings; interpretation feed back to C, B, A.

t Relationship to other theory 
and research

External validity

1
B

1

Theory < -

Theoretical
Propositions

Internal theoretical 
validity

i
D

I

Operationalisation < -

Field work

Results

Internal empirical 
validity

Figure 3.1 Rose’s ABCDE model and distinction between three kinds of validity in Research

(Trafford, 2001)

The model illustrates how researchers have justified progressing through each stage 

from theory to results. Rose developed the route further by indicating that by tracing 

back through the E-C-B-A route the validity of the research process can be evaluated. 

The significance of the model is that the C point in each model is central both to the 

developmental process as well as to the evaluative processes. The research 

assumptions from A to C relate to conceptual issues, whilst those from C to E relate 

to operational issues.
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An approach described by Walton & Gaffney (1991) specifies a research cycle that 

comprises the following stages:

(1) Identification of a study topic

(2) Operationalisation of a hypothesis

(3) Selection of an observation sample

(4) Selection of a research method, gathering of data and generation of findings

(5) Derivation and dissemination of the implications for theory and practice

3.3.2 Research methods in Engineering

Although research methods in science and in engineering have plenty in common, 

according to the University of Bath, Mechanical Engineering course in Research 

methods -  ME50173 (2006), they have some conceptual differences that include:

• Engineering incorporates science but also rules of thumb

• Engineering is “know how” not “knowing that”

• Engineering seeks safety but science seeks truth

• Engineering tries to avoid being refuted yet science tries to refute

Blockley & Henderson (University of Bath, Mechanical Engineering course in 

Research methods - ME50173 2006) describe engineering processes as having the 

following steps

• Encounter a problem

• Propose a solution

• Assess the consequences

• Decide how to embody the solution

• Embody it

• Test it
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• Learn how dependable it was

As an extension of Blockley & Henderson’s description of engineering processes, 

for a specific piece of engineering research, the slides of ME50173 (2006) show the 

following steps;

• Fix the basic area of the work

• Find out what is already known (review of previous work)

• Identify the problem or gap exactly (problem definition and hypothesis generation)

• Develop a precise objective

• Perhaps propose and build a trial artefact

• Collect data on its performance

• Analyse the data

• Draw conclusions

• Disseminate findings.

3.3.3 Methods for this research Project

This research project, as described in sections 3.1 and 3.2, deals with an applied 

manufacturing problem and thus falls into the engineering research category. The 

background and broad description of the research have been explained in Chapter 1.

Literature Review

Literature surveys include primary (such as archival journals, theses and 

dissertations), secondary (review journals, monographs and textbooks) and tertiary 

(indices, catalogues, encyclopaedias, bibliographies) literature (Chatting 2001, 

Mebrahtu 2005). The literature review conducted in this research included a current 

review from the academic and industrial points of view.

57



Chapter 3 Aims, Objectives and Methodology

As shown in chapter 2, literature on CAPP system approaches, feature technology, 

operation sequence optimisation, integrated process planning and scheduling systems 

and optimisation methods were thoroughly surveyed and those relevant to the 

research reviewed. The literature review has been used extensively to aid the 

understanding of current research activities of CAPP systems and technologies, to 

avoid repeating research, developing aims and objectives to aid in the construction of 

hypotheses.

Problem definition and hypotheses

A broad definition of a problem is posed in the introduction section and summarised 

at the start of this chapter. Following an extensive literature review, the gaps in the 

CAPP systems for the 5-axis CNC and integrated process planning and scheduling 

environments were clearly identified and hypotheses generated. The hypotheses can 

be summarised as:

1) The difference between the development of 3-axis CAPP and that of 5-axis CAPP 

systems can be identified and 5-axis CAPP methods can be derived from 3-axis 

CAPP with consideration of characteristics of 5-axis CNC machining.

2) Feature-based model can be used to represent the part efficiently and Object 

Oriented Programming (OOP) can help to organise and represent the feature 

information for easy message processing and make the system extensible which is 

easy for post-development.

3) A new optimisation algorithm, i.e. Particle Swarm Optimisation (PSO) algorithm 

can be used to optimise the operation sequencing to improve the performance of 

CAPP system.
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4) There is a need to build a model to resolve the optimisation of an IPPS system and 

it is necessary to apply a feasible algorithm to optimise it.

Developing precise objectives

The aims and objectives of the research have been described in section 3.1 and 3.2. 

Proposing and building a prototype system

To achieve the aims and objectives and realise the hypotheses, a prototype CAPP 

system structure is first proposed and then implemented. Also the IPPS model is 

developed and implemented.

The proposed CAPP system comprises of four main modules: part information input 

module, operation selection module, machining parameter determination module and 

operation sequencing module. The details of the proposed system and development 

of these modules are shown in chapter 4. The representation of the IPPS model and 

optimisation method is also proposed and then implemented, which is independent to 

the proposed CAPP system.

Data collection and analysis

This research focuses on building a 5-axis CAPP system with a generative approach. 

As discussed in chapter 1, knowledge base, part representation and inference engine 

are three main components of generative CAPP system. The system is required to 

make decisions on various aspects of process planning in terms of the technical 

knowledge of manufacturing and the planning logic contained in the knowledge base 

to a given part description. The knowledge needs to be collected from different 

resources such as experiences which have been summarised by other researchers or 

process planners, machinery’s handbooks, British Standards, tooling companies’
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catalogues and textbooks etc. Most of them are empirical and have been proved by 

real production. After the knowledge is organised, it can be stored in a database and 

coded into rules to help make decisions.

Case Studies

One of the most significant methods of research used to examine the industrial 

application of product development tools and methods is that of case studies 

(Chatting 2001, Mebrahtu 2005). The use of which, has been extensively 

documented by Yin (1993, 1994) and Johnson and Johnson (1997). In the context of 

this research, case studies are mainly used to test the validity of the system. It is 

imperative to ensure the validity of process plans generated by the CAPP system. In 

every step of the process of generating process plans, the data needs to be valid and 

feasible. Otherwise the rules and knowledge database need to be checked and 

modified to make sure output is correct. Also by using some well-known case 

studies by other researchers, the performance of the system can be identified. For 

example, by comparing performances of the PSO, GA and SA algorithms, the 

benefits of different optimisation algorithms can be identified and the parameters of 

the PSO algorithm can be determined and refined; which enhances the performance 

of the whole system.

Conclusion and dissemination of findings

Analysis and findings of experimental data from the case studies helped to conclude 

that the research substantiated the hypotheses. The findings are disseminated as a 

thesis, publications in conferences and journals.
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4.1 Introduction

The proposed system, in line with the aims and objectives, has an integrated 

generative 5-axis CAPP system and an independent IPPS module. The CAPP system 

is intended to generate an optimised process plan based on the input of a prismatic 

component from a CAD model. Note that optimised has been used to describe a best 

or towards optimal solution throughout this thesis. With the concentration on the 

operation selection, and operation sequencing optimisation for 5-axis CNC 

machining, the system does not include a feature recognition module which is 

replaced by a manually machining feature input module. The development of the 

feature recognition system is felt to be outside the scope of this thesis and represents 

an area for future study (see chapter 9). The IPPS module is designed to generate an 

optimised schedule including detailed process plans for a group of components in 

job workshop environment.

4.2 5-axis CAPP system

As described in chapter 1, when given a part description, a generative CAPP system 

uses an inference engine to generate process plans by applying the planning logic 

and process knowledge contained in the knowledge base. So a generative CAPP 

system is made up of functional modules and a knowledge database.

1. Proposed functional modules

As discussed in chapter 1 and chapter 2, there are several major activities in process
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planning, which also form the major functional modules of a generative CAPP

system:

i) Feature information input module - A part is described using commonly 

used machining features together with their technological attributes, such as 

tolerances and surface finishes. Geometric tolerances have not been considered 

in this research. As discussed above, for simplification, the system does not as 

yet generate the features automatically from the part drawing designed using 

Unigraphics instead. It is required to input the feature information manually. In 

this research, 5 basic features are used, i.e. Face, Hole, Pocket, Slot and Step. 

For each feature, the user is asked to input not only their shape specifications 

but also their quality specifications. The detailed feature classification, 

representation and information needed for the next stage of process planning 

are presented in chapter 5.

ii) Operation selection module -  This module aims to determine one or several 

operations required for each feature. This includes the selection of applicable 

machines, cutting tools, and tool approach directions (TAD’s) based on the 

feature geometry and available machining resource. In this module, the system 

uses knowledge-based heuristic rules to generate alternative machines, cutting 

tools and TADs for a specific operation.

iii) Cutting conditions calculation module -  When the operations including 

applicable machines, tools and TADs are generated, the cutting speed, spindle 

speed and feed rate can be selected and calculated. Then the machining time 

for each operation is estimated.

iv) Operation sequencing module -  This module comprises of two parts: 

precedence constraints determination and operation sequencing optimisation.
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The former will determine the precedence relationships between all the 

operations generated in module (ii). And the latter aims to determine the 

optimal sequence of all operations so that the precedence relationships among 

all the operations are maintained and the total machining time is minimised. In 

this module, a population-based Particle Swarm Optimisation (PSO) algorithm 

is developed to achieve this objective. Finally the optimal process plan is 

output.

2. Knowledge database

As a core part of a CAPP system, the knowledge database not only maintains 

machining resources, including the information of machines, tools and so on, but 

also maintains the machining technology knowledge which is used to help the 

function modules make decisions in generating the process plans. Also, the 

temporary information generated during the course of process planning needs to be 

maintained in the knowledge base.

A suitable database needs to be designed and requires a large amount of previous 

work including analysis, formalisation and representation of various manufacturing 

parameters and constraints, expert knowledge and experiences. To implement the 

above functional modules, the following databases have been designed:

1) Machining feature database: consists of the feature information for different 

parts, including feature type, feature dimension, tolerance, and surface 

roughness and so on. The feature information of a part is input into the 

system manually through a user interface and will be transferred to the 

operation selection module. The detailed design of the database is described 

in chapter 5.
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2) Machining resource database: This includes two major resources. A) Machine 

data: consisting of all the data about the 5 axis CNC machine such as its 

capability, assigned tooling, coolant, spindle/axis, and the range of workpiece 

speeds and so on. Note that all process plans in this research have been 

generated for a DMU 50 eVolution 5-axis CNC. All this data can be used for 

TAD selection, machinability checking, set-up planning and machining 

parameter calculation. B) Tool data: composed of available tool types, 

dimensions, tool conditions and so on. This can be used for selecting suitable 

tools for each operation based on the tool capability.

3) Machining technology knowledge base: including the machining process 

capability knowledge (shape producing capability, dimension, tolerance and 

surface properties capabilities), process constraints knowledge (geometric 

constraints and technological constraints) and process economics (machining 

time, machining cost, tool cost, tool change time et al.). The operation 

selection, tool selection, machining parameters calculation and precedence 

constraints determination are all based on this knowledge base.

There are two schemes to represent knowledge in this research:

1) Database scheme: A Relational database is the most popular tool to store the 

factual knowledge due to its convenient management. The factual knowledge can 

be updated and edited easily, which does not require revising the programming of 

the system. It is difficult and time consuming to revise the code of systems 

especially when the software has been packaged. So most knowledge is stored in 

relational databases, in this research, it is a Microsoft Access database.
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Part

End

All the features done?

A ll the operations done?

For each Feature

For each operation

Operation Sequencing

Operation Selection

Output optimal process plan

Calculate cutting conditions

Store the selected operations

Feature Information 
Input and store

Figure 4.1 Information flow o f  the proposed system

2) Production rule scheme: This is designed to control the decision making 

procedure in operation selection, tool selection, TAD selection, machining
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parameter calculation and operation sequencing base on the knowledge stored in 

the database. Also for the knowledge that can not be represented or stored in the 

database, is represented by rules and coded into system program.

User CAD

~Z\

CAPP interface

 XZ______
Operation Selection

Machining
Features

Precedence constraints 
determination

Machining
ResourcesAZ

Cutting conditions calculation

Machining
technology
knowledge I Z _______

Operation Sequencing

Supporting 
Knowledge base

Database maintenanceCAPP

UserOutput

Figure 4.2 General structure o f  proposed CAPP system
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The general information flow of the proposed system is shown in figure 4.1 and the 

structure of the proposed CAPP system is shown in figure 4.2. It can be seen that the 

procedure to generate a process plan for a part can be summarised in the following 

steps:

1) Feature information input. The features information of a part is input manually to 

the system and stored in a database through a user-computer interface.

2) Operation selection. In this stage, operations are selected by the operation 

selection module for each feature until all the features have been processed. The 

operation selection includes tools and TADs selection for each operation. All the 

applicable alternative tools and TADs are selected in this process. The output of 

this module is an operation list that contains all the operations information and is 

stored in a database.

3) Cutting conditions calculation. For each operation in the operation list generated 

by the operation selection module, the cutting speed, spindle speed, feed rate and 

machining time are calculated, and stored.

4) Determine the precedence relationship between all the operations according to 

the precedence constraints.

5) Operation sequencing. All the operations information and related machining 

parameters are represented in a representation scheme and the PSO algorithm is 

used to select the optimised resources among the alternatives for each operation 

and achieve an optimised operation sequence which can satisfy the precedence 

constraints between operations and minimise the total machining time or 

manufacturing cost.

6) Finally the optimised process plan is output to the user.
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4.3 Integrated Process Planning & Scheduling

This module is an independent module to the 5-axis CAPP system and aims to 

achieve the overall optimisation of process planning and scheduling. But it can be 

added into the CAPP system in future to achieve an integrated manufacturing 

environment.

As discussed in chapter 2, the simultaneous approach is chosen to realise the 

integration of process planning and scheduling. In this approach, the following two 

issues need to be considered:

(1) Representations of process planning and scheduling. A process plan for a part 

can be represented by a series of machining operations, applicable resources 

for the operations, set-up plans, operation sequence, etc. Here a set-up can be 

generally defined as a group of operations that are manufactured on a single 

machine with the same fixture. While the scheduling task is to assign the 

parts and their machining operations to specific machines to be executed in 

different time slots, aiming at good shop floor performance. Here time and 

available resources (machines, tools etc.) are the key factors. Therefore an 

integrated scheme needs to be developed to represent the problem of IPPS 

which not only includes the operations, resource and sequences information 

for all the parts, but also includes the start time, machining time and finish 

time of every operation and the availability of machines and tools at a 

specific time.

(2) Performance criteria. To optimise an IPPS problem, suitable criteria need to 

be determined so as to judge the performance of the system and lead the 

optimisation algorithm in right direction. Here criteria are considered
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including the manufacturing cost, the minimal tardiness, the makespan, and 

the balanced level of the machine utilisation.

Based on the representation of the IPPS problem and performance criteria, a Particle 

Swarm Optimisation (PSO) algorithm has been developed to make the optimisation.

4.4 Summary

In this chapter, a generative CAPP system for 5-axis CNC machining is proposed. 

The functions of modules in the CAPP system are described and the general 

information flow and structure of the system are given. The approaches and issues of 

implementing an IPPS module are also presented. Based on these, the detailed 

implementation of different modules of the CAPP system and IPPS module are 

extended and extensively investigated in ensuing chapters.
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As one of the most important activities of process planning, operation selection 

receives the geometric and technological information of the part and generates the 

possible operations that could be utilised to machine the part. In order to generate the 

operations effectively and achieve the optimised final process plans, the following 

issues need to be considered carefully:

1) Part data representation: The data needed to define a part in order to establish 

its process plan basically consists of all the information indicating its shape and 

therefore its geometry. It also includes information indicating the quality 

requirements of the part. This generally places restrictions on the geometry with 

respect to dimensions, shapes, positions and surface roughness. From a 

manufacturing point of view, however, the format of this information generated 

from CAD systems is not adequate. So a feature based model is adopted to 

represent the part data here.

2) Ability to generate alternative operations for each feature: Existing heuristic 

reasoning methods used to generate the process plan normally can not achieve 

the global optimal process plan because its search is limited in the local search 

space. To utilise a global optimisation method, such as PSO, to generate the 

optimal process plans, it is necessary to generate all the alternative operations 

which include alternative machines, tools and TADs at the operation selection 

stage.

This chapter presents the feature based modeller to represent the part data first, and 

then discusses the operation selection for different feature types based on the model
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in detail. Finally the selection of cutting conditions and machining time estimation 

are given.

5.1 Input of feature based part data

Preparation of product (feature) data for computer aided manufacturing planning is a 

difficult task, as features are domain dependent. This implies that the same design 

needs to be expressed in different feature-based descriptions to satisfy different 

downstream applications (Sharma and Gao 2002). There have been attempts to 

extract data directly (feature-based design) or indirectly (feature recognition) from 

the CAD database. In order to develop a procedure for consistent, unambiguous data 

abstraction from a generic data structure, the foundation or the standard on which the 

procedure is based is very crucial.

As described in section 1.1.2 of chapter 1, for the designer, design features are 

expressed in geometric terms. However for the process planner, the feature is 

commonly viewed as a machining feature (manufacturing feature). For example, a 

slot could be seen as a general slot milled by a milling machine; a hole can be 

considered as a drilled or bored hole. Machining features can express explicitly the 

methods of production while implying the geometry and function of the features. 

The objective of this module is to build a feature based modeller which can use 

machining features to represent a part data so that these machining features can be 

used directly for downstream activities of process planning such as operation 

selection. For simplification, the system developed in this research does not generate 

the features automatically from the part drawing designed by Unigraphics, it is 

required to input the feature information manually in this process.
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To achieve this objective, the following issues have been considered:

1) Feature taxonomy: Instead of specifying all the geometrical and topological 

information that defines a feature for every separate feature type, it is possible to 

group features with common properties into classes. These can then be further 

divided into sub-classes to form a tree structure, or hierarchy. Since they are of a 

hierarchical nature, the properties of a class can be inherited by its sub-classes. 

Although the number of possible features and feature classes is not finite, it may 

be possible to categorise feature classes into families that are relatively 

independent of the intended application domain of the features (Shah and 

Mantyla, 1995).

2) Feature representation: How to represent a feature and what information needs 

to be included are two major problems of feature representation in this research. 

An object oriented design strategy has been adopted to provide the capability to 

organise and represent the feature information for easy message processing and 

offer the flexibility to modify the definition of an object, its structure, message 

and linkup without affecting the rest of the system configuration. The machining 

feature information is determined based on the STEP AP224 standard (STEP 

1999).

5.1.1 Feature Taxonomy

There are a number of feature classification schemes. Among them are those based 

on geometrical properties of the features, such as the work of Gindy (1989). Others 

are based on machining methods associated with features that include rotational 

features created by machining operations on a turning machine, and prismatic 

features created by machining operations on a milling machine or a three-axis
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machining centre (Tseng and Joshi, 1998). There are also those based on the number 

of possible tool approach directions that can be used to machine the part: STAD 

(single tool axis direction) and MTAD (multiple tool axis direction) (Chu and Gadh, 

1996). These classification schemes have advantages in certain respects, but major 

problems (e.g. non-standard and incompleteness) hinder their practical applications 

in integrated environments for design and manufacturing.

STEP is introduced to define a standard file that includes all information necessary 

to describe a product from design to production. An ISO STEP application protocol 

specifies the manufacturing information and process plans using manufacturing 

features to machine discrete mechanical parts, and it supports multiple application 

domains, for instance, mechanical engineering, electronics, architecture (Owen 

1993). Some researchers have developed feature recognition methods based on 

STEP. For example, Bhandarkar and Nagi (2000) developed a Boundary- 

representation (B-rep) based feature extraction system that takes a STEP file as input 

and produces a form-feature STEP file; and Han et al. (2001) proposed a geometric 

reasoning feature recognition kernel using STEP as input and output formats. In ISO 

10303 STEP-AP224 (Mechanical product definition for process planning using form 

features), machining features are defined as a type of manufacturing feature that 

identifies a volume of material to be removed to obtain the final geometry from the 

initial stock (STEP, 1999). Sixteen machining feature classes are defined (Boss, 

Pocket, Hole, Slot, Protrusion, Rounded_end, Outer_round, Step, Planar_face, 

Revolved_feature, Spherical_cap, General_outside_profile, Thread, Marking, Knurl, 

General_volume_remove). These machining features contain all of the information 

needed to manufacture the required part, including materials, part geometry,
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dimensions and tolerances, applicable notes and specifications, and administrative 

information.

In order to simplify the algorithm generation and development time, the research 

work presented in this thesis has been carried out using a restricted set of 5 features. 

These features are namely: planar face, pocket, slot, hole and step. A hierarchical 

classification (see table 5.1) is proposed based on the following principles.

1) A machining feature is defined as a geometrical entity, which is related to a 

group of particular machining processes and can be mapped to a suitable 

machining method.

2) The feature classification and its validity are based on a multi-viewpoint 

considering manufacturing requirements with topological information.

3) If a set of features have similar geometric and topological characteristics and can 

be machined with similar processes, they are called a feature class. A sub-class 

is regarded as an instance of its main class.

4) The classification is hierarchical, where a subclass inherits common properties 

from a higher class. This reduces the number of properties that have to be 

independently specified for each new feature.

5) The TAD (Tool Approach Direction) to machine a feature needs to be 

considered. For example, Step and Through Hole features can be machined by 

tools from two directions. This can be classified into Single TAD (STAD) and 

Multiple TAD (MTAD) features.

6) The feature definition in the ISO STEP AP224 standard is considered as a 

guideline for industrial use.
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Table 5.1 Feature Classification

Feature Name Sub Classification TAD Type

Face STAD

Hole
Through Hole MTAD

Blind Hole STAD

Pocket
Open Pocket STAD

Close Pocket STAD

Slot
Through Slot STAD

Blind Slot STAD

Step Open Step MTAD

5.1.2 Feature representation

Based on the above classification, an object oriented design strategy has been used to 

represent the hierarchical organisation of feature data. Before using an Object 

Oriented Programming (OOP) language (C++ is used here) to represent the feature 

classes, it is necessary to decide the detailed information each feature class includes 

(in C++ class point of view, this information is called the member variable of a 

feature class and can be used directly or indirectly by downstream application). The 

member variables of a feature class are defined based on the requirements for 

process planning. A standard feature class can be explicitly defined with four kinds 

of member variables: identifier, dimensions, location and Technological

specification.

1) Identifier: A number of basic terms understandable to both the designers and 

the system, namely, feature name, feature ID and feature class type. If it is a sub 

class feature, the feature sub class type is also required. With the feature class 

type and sub class type, the geometric type of feature is defined.
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2) Dimensions: The dimensions including length, width, depth, diameter (for hole) 

and comer radius etc. are used to further specify the geometric information of the 

feature.

3) Location: is used to identify the spatial relationship between a feature and the 

stock. To determine the location of a feature, the original point of the feature 

needs to be determined. The selections of the original points for each feature type 

are different. The original points of Face, Slot, Step and Pocket features are 

defined as the point with the lowest coordinates in the X, Y and Z directions. 

While the original point of Hole feature is defined as the centre point of the hole 

with the highest coordinates in this hole’s centre line direction. Based on these 

definitions, the directions of feature’s length, width and depth is determined as 

the directions of feature extension from the original point.

4) Technological specification: Variables of tolerances and surface roughness are 

attached to each feature class to represent the technological requirement of 

features. Operation selection and tools selection will be based on this information.

A set of constraints need to be checked at the feature input stage to ensure the feature 

validity. There are three types of constraints: geometric and topological, machining, 

and interacting constraints which are described in the following:

• Geometric and topological constraints. Usually, these constraints appear as a 

standard range for specifying the size limits, which can be calculated using 

mathematical equations based on the shape parameters, class, and position and 

orientation of the feature. For example, the dimension of a hole cannot be larger 

than the size of the stock on which it is being placed; the depth of a blind hole
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must be restricted to be less than the size of the stock where the hole is to be 

added, otherwise the blind hole would become a through-hole.

• Machining constraints. It is possible that some features have valid geometric 

shapes and topology but still are invalid features because of their non- 

machinability. Different from other constraints, machining constraints mainly 

depend on the machining attributes of features and the specific workshop 

environment that features will be manufactured in (e.g. machine tools can be 

available). For instance, long and thin holes may be regarded as invalid if no 

machining methods are available for their manufacturing. At the design stage, 

the check for machining constraints is limited to constraints that can be defined 

by algebraic expressions, e.g. the ratio of height to radius. Other machining 

attributes (e.g. tolerance and accuracy) are examined at the process planning 

stage, i.e. during selection of machining operations.

• Interacting constraints. Geometrical, topological and machining constraints are 

insufficient to fully retain feature validity when feature interactions occur. As 

known, feature interactions can cause serious constraint violations of valid 

feature instances. Therefore, the constraints for feature interactions must be 

defined, such as the dependent properties between parent and child features. An 

example is shown in Figure 5.1 where pocket B is added based on pocket A and 

becomes a child feature of pocket A. Due to this interacting constraint, pocket B 

will be invalid if pocket A is deleted (Ding 2003).

Considering all the above information, table 5.2 shows the common member 

variables for all the five types of feature. Figures 5.2-5.6 illustrate the different 

information needed for these five features.
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ocket A
(added before pocket B)

ocket B 
(added after pocket A)

Figure 5.1 Example of interacting features (Ding 2003)

Table 5.2 Common member variables of features

Common member variables for all the features:

Data types Variables Descriptions

String PartName |
....................... !...............................I...........................

The name of the part

Long

String

String

Feature ID The id of feature

FeatureName j The name of feature comprised of feature type and id

FeatureType

String | FeatureSubType

i  The type of feature, e.g. Face, Slot, Step, Pocket and

Hole

The sub type of feature class, for example, rectangular 

slot

float DatumX The X coordinate value of original point of the feature

float DatumY The Y coordinate value of original point of the feature

float DatumZ The Z coordinate value of original point of the feature
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Diameter |0 Tolerance |o

Depth jo Tolerance jo 
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Figure 5.2 Interface o f hole feature information input
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Figure 5.3 Interface o f  face feature information input
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Figure 5.4 Interface o f pocket feature information input
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Figure 5.5 Interface o f  slot feature information input
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Step

r  Through Direction Tolerance
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Cancel
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Figure 5.6 Interface o f  step feature information input

After all the feature information is input into the system, it is automatically stored 

into a database. The design of the database will be described in chapter 8.

5.2 Selection of machining operations based on feature type

After the features of a component are created, it becomes possible to identify the 

operations that are executed to machine these features. This process can be achieved 

by determining the operations for each feature one by one. To achieve this mapping 

process, the following steps need to be executed:
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1) Extraction of feature information from the feature-based model. As described in 

the previous section, an object-oriented feature-based model is used in this 

research, which defines a component in terms of its features. From a process 

planning perspective, a feature can be made from raw material by one or more 

operations. In order to choose the operations suitable for meeting a feature’s 

specification, the following information in the feature-based model should be 

extracted and considered:

• Feature class

• Nominal dimensions

• Dimension tolerances

• Surface roughness (Ra) (Note that geometric tolerances have not been 

included in this research)

2) Find the operation types (OPT) that can achieve the attributes (shape-Feature 

class, dimensions, tolerances, and surface roughness) of the feature. An OPT 

refers to an operation without any attachment of tool (T), and tool approach 

direction (TAD), e.g., drilling and milling. When operation type is determined, it 

is necessary to be subdivided according to their capability, into rough, semi

finishing and finishing operations that form an operation-set. How to divide the 

operations depends on the dimension tolerance and surface roughness which 

rough, semi-finishing and finishing operations can achieve. This will be 

discussed in detail in the latter sections.

3) Tool selection. For each OPT, find all the possible tools with which the operation 

can be executed. In this research, the 5-axis CNC machine centre is used as the 

only machine tool and the effort is concentrated on cutting tool selection. 

Generally, the selection of a proper cutting tool depends on the machining

84



Chapter 5 Feature Based Operation Selection

operations necessary for processing the feature with regard to its size and 

finishing requirements. From the tools available on the market, a selection of 

different tool types and sizes have been selected and stored in the system’s 

cutting tool database file. They have been selected to cover the needs of the 

component features to be processed and the machine tool used. In general, tool 

information supplied by Sandvik and British Standards have been identified for 

use in the system. The system utilises both high speed steel (HSS) and carbide 

cutting tools.

The selection of the appropriate cutting tool type and size for machining the 

features used in this system is influenced by four main constraints: (1) 

Machining Process Constraint, (2) Feature Dimensions Constraint, (3) 

Machinability Constraint and (4) Economic Constraint. These constraints are 

used for the selection of the proper cutting tool and are summarised in the 

following stages:

Stage 1: Retrieve the machining operation and feature information and check the 

possible cutting tool types that can be used. As indicated earlier the machine tool 

is already selected, therefore, the search for the appropriate cutting tool type and 

size is concentrated on cutting tools which are related to the 5-axis CNC machine. 

More than one machine tool might be selected for the same operation depending 

on the feature types, sizes and finishing requirements. Here a “tool preference 

criteria” is used to select the applicable tool type. For each feature, every 

applicable tool type is given a coefficient to represent the degree of preference. 

The higher the coefficient, the higher the performance the tool of this type can
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machine the corresponding feature. Table 5.2 shows the Tool type 

recommendation for each feature in this system.

Table 5.3 Features and Cutting Tool Type Recommendation

ToolType Face Step Slot Hole
Closed

Pocket

Sideopen

Pocket

Drill 3

EndMill 1.3 1.3 1.4 1.5 1

FaceMill 1.5 1.3

Reamer 2

SlotMill 1.5 1.1

Stage 2: Check the feature dimensions to retrieve the cutting width in order to 

search for the applicable sized cutting tool from the tool list in the selected tool 

types indicated in stage 1. Tool size for all of the flat-feature operations could be 

bigger than the feature width except for slots and pockets. Therefore, this factor 

is taken into account at this stage to ensure the selection of the proper tool size 

especially for slots, pockets and holes features. In this stage, the range of tool 

size is determined for the operation.

Stage 3: Search for the applicable cutting tools in the cutting tools database in 

terms of selected tool types and tool size which falls in the tool size range 

determined in stage 2.

Stage 4: Eliminate the less cost efficient cutting tools. There might be more than 

one cutting tool selected and some tools may not be efficient. For example, to 

machine a 50mm wide face feature, all the tools whose diameter is less than 

75mm may be selected including 75mm, 50mm and 20mm diameter tools.
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Obviously, using a 20mm diameter tool to machine the face will probably cost 

three times more than a 75mm tool. In this case, the 20mm diameter should be 

eliminated from the selection list. Also, with too many tools in the selection list, 

for some tools, there maybe more than one TAD, and this will generate many 

more alternatives to execute the operation so as to make optimisation of process 

plans more difficult (There is possibility that this method may eliminate the 

optimum tools, for example, a less efficient tool might be used for machining 

other features so as to save the tool change time and save the total machining 

time. In this prototype system, this possibility is reduced because the tool change 

time is much less than the machining time for a feature in a 5-axis CNC machine 

centre.).

To select the most efficient tools for the operation, one of the methods is to 

estimate the machining cost using this tool and delete those tools that have high 

machining cost. This estimate requires details of materials, tools, work holding 

and details of the operations used to manufacture the component and is 

influenced by the cutting conditions selected. However, the data required to 

make these calculations is not readily available during the tool selection stage. It 

can be argued that machining cost is simply a factor of machining time which is 

influenced mainly by the choice of tools used (if the machine used has been 

determined). Rather than attempt to calculate machining costs per se, it is far 

more practical, in tool selection terms, to attempt to calculate machining time. If 

costs are required then machining times can be multiplied by a value of 

machining cost per unit time (Maropolous et al. 2000).

87



Chapter 5 Feature Based Operation Selection

But this process is still tedious and time consuming due to the large number of 

possible machining time calculations for several tools and the comparison of 

them. Actually, it is well known that the most important factors influencing the 

cutting conditions (cutting speed, feed) are the tool material, tool type and tool 

size. Component material, tool material and tool type can be used to select the 

suitable cutting speed and feed and tool size can determine the tool path length. 

So, for simplification, the less efficient cutting tools can be eliminated from the 

tool list with consideration of tool material, tool type and tool size. As indicated 

previously, different tool types have been given a coefficient to represent their 

degree of preference. The carbide insert tools can achieve more cutting speed and 

feed than HSS tools. The bigger the tool size, the shorter the tool path length and 

the more efficient the tool is. In this system, for simplification, the tools selected 

after the evaluation stage are limited to 2 tools for each operation.

4) Determination of all the feasible TADs for each cutting tool selected. A process 

plan for a part consists of operation types, applicable candidate machining 

resources, set-up plans, machining parameters, operation sequence, etc. A set-up 

can be defined as a group of operations that are machined on a single machine 

with the same fixture. In a 3-axis machining environment, a set-up is a group of 

features with the same TAD machined on a 3-axis machine. However, in 5-axis, 

different TADs can be achieved by the two extra degrees of freedom movements 

using the same fixture. Therefore, two different TADs do not necessarily mean 

two different set-ups. The feature can be machined with the same fixture only if 

the TAD of the operation for this feature can be achieved by the rotary or swivel 

motion of the work table. For a 5-axis machine, one single set-up (same fixture) 

can achieve 5 different TADS. On the other hand, one single TAD can be
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possibly achieved by 5 different set-ups. Although the TADs can not determine 

the set-up, it is necessary to determine the TADs at this stage so as to help the 

optimisation of the operation sequence and determine the final set-up to achieve 

the minimal machining cost or machining time.

o
z

X

j l
V

+z

O

Figure 5.7 Through hole with two TADs

-z

-x

z

X

Figure 5.8 Through Step with two TADs

Two special features in this system can be machined in two TADs. As shown in 

figure 5.7, a through hole can be drilled in two directions. Of the 6 major TADs, 

the through step feature shown in figure 5.8 can be machined from both the -x  

and - z  directions. A feasible TAD should satisfy the following conditions.
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• Tool accessibility: if a cutting tool for machining a feature along one of its 

TADs is blocked by other features on the part, or the cutting tool cannot be 

positioned in the part to machine the feature along the TAD correctly, the 

TAD for the feature is considered to be inaccessible and invalid.

• Fixture: if there are no valid fixture elements for holding the part on the 

machine along one of its TADs, the feature cannot be fixtured and machined 

along the TAD and the TAD is unfeasible.

• Availability of cutters: if the volume of a feature along a TAD is beyond the 

scope of any cutting tool available, the feature cannot be machined along the 

TAD and the TAD is unfeasible.

• Tolerance and surface roughness requirements: an operation should not 

violate the tolerance and surface roughness requirements when a feature is 

machined along one of its TADs. Otherwise, the TAD is unfeasible. (Li et al. 

2002)

5) Iterate step 1) to step 4) until all the operations for all of the features are 

generated. Here for one single feature, there may be one or more operations that 

are executed to machine it, i.e., rough milling, semi-finishing milling and finish 

milling a face feature. Each operation may also have several operation 

alternatives in terms of different tools and TADs. If there are two applicable 

tools and two applicable TADs for each tool, there will be four operation 

alternatives for this operation.

When all the operations are generated, they will be stored into the OperationList 

table in database.
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Figure 5.9 Work flow o f operation selection

6) Cutting conditions estimation and machining time calculation. Selecting the 

cutting conditions for each operation alternative means selecting the cutting 

speed, spindle speed and feed for the corresponding tool and TAD. Based on 

these results, the machining time for each operation alternative can be calculated.
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This step is repeated until the machining times for all the operation alternatives 

are calculated and stored.

The work flow of the above steps is illustrated in figure 5.9. As described previously, 

only the general operation selection method is discussed. The detailed operation 

selection and machining time calculation for different specific features will be 

presented in the following sections.

5.2.1 Operation Selection for Face feature

1. Operation types determination.

As described previously, when the feature information is extracted from the database 

and feature type is known, the first step is to determine the operations that can 

achieve the technological requirements of the feature. This process can be achieved 

by the following steps:

Step 1: Identify the surfaces where machining is required and check their dimensions 

(length, width and depth) and finishing requirements (tolerances and roughness).

Step 2: Check for finishing requirements. If either the dimensional tolerances or 

surface roughness can not be achieved by milling, the finishing operation of grinding 

is required. Because of the limitation in this research, only the 5-axis CNC 

machining is considered. So in this case, it is only required to leave the allowance for 

grinding by 0.25mm and reduce the total depth of cut by 0.25mm at the same time.

Step 3: Check for surface roughness. If the roughness Ra<0.8pm, the operation of 

finishing milling is required. An allowance for finish milling is 0.2~0.5mm is made 

and the total depth of cut for the semi-finishing and rough milling operations is
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reduced by 0.2-0.5mm at the same time. If the roughness Ra<3.2pm, the operation of 

semi-finishing milling is required. An allowance for semi-finishing milling is 

0.5-1.5mm and the total depth of cut for rough milling is reduced by 0.5-1.5mm. If 

the roughness Ra>3.2pm, only roughing is required. By this method, the operations 

are divided whilst the allowances and depth of cut for operations can be calculated. 

All the operations required to machine the feature form an operation-set.

2. Cutting tool selection.

Tool selection involves the determination of the following (Chang 1990):

• Tool type — drill, face mill, end mill, reamer, etc.

• Tool material — HSS, carbide, etc.

• Tool geometry — helix angle, rack angle, etc.

• Tool dimension — overall length, flute length, diameter

The tool type is determined by the operation type and feature type. Table 5.2 shows 

the cutting tool type recommendation for different features. The tool material 

selection is based on the raw material stock and its hardness. Suggested tool material 

data has been taken from Machinery’s Handbook (Oberg et al. 2004). If HSS tools 

can not machine the component according to its hardness, then Carbide insert cutters 

are selected. Otherwise, both HSS and Carbide insert tools are in the option list. Tool 

geometry is selected based on the feature geometry, raw material condition, and tool 

material. For simplification, this prototype system does not consider the tool 

geometry for the time being, suggested routes to achieve this are presented in 

Chapter 9- Future Work.
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The dimensions of the tools that are used to carry out the operation are extracted 

from the feature properties. For all operations, there are only three tool dimensions 

that are of interest at this stage of tool selection: overall length, flute length and tool 

diameter. Overall tool length is the length which ensures the spindle has a collision 

free movement. It is determined using the following procedure:

Step 1: Find the intersection of the intermediate workpiece boundary model with a 

cylinder which has the same diameter as the spindle, and align the axis of the 

cylinder with the feature.

Step 2: Do step 1 for the final part boundary model with the cylinder.

Step 3: The minimum overall tool length is the difference between the extreme point 

in the spindle approach direction from step 1 and the further point in the 

spindle approach direction from step 2.

The flute length is the actual height of the refined feature. The height is determined 

by the approach direction. The tool diameter, on the other hand, varies depending on 

the operation taking place and feature dimensions. Here a method by Maropoulos et 

al. (2000) is adopted to determine the tool diameter. For a face feature, the diameter 

of a tool used to carry out a facing operation is 1.35 times the width of the face 

feature (it is assumed that cutting takes place along the length of the feature and that 

the width is smaller than or equal to the length).

In the above process of tool selection, the tool type selection and tool diameter 

determination are the most important factors. When the tools have been selected, the 

overall length and flute length can be used to check the machinability of features 

using the selected tools.
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3. TAD determination.

As shown in table 5.1 and table 53, face is a feature with a Single TAD (STAD), a 

facemill and endmill can be used to machine it. So the TAD for the corresponding 

tool is of the opposite direction of depth. For example, the direction of depth of a 

face feature is +z, then the TAD is the opposite direction of +z, i.e. -z.

The above three major steps to determine the operations for machining a face feature 

is illustrated in figure 5.10.

5.2.2 Operation Selection for Slot feature

Figure 5.11 shows the work flow for the operation selection of a through slot feature. 

It can be seen that the operations required to manufacture a through slot are similar 

to those required to create a face feature. The differences between these two 

procedures are the tool diameter determination and tool type selection.

For a through slot, slot mills and end mills have the higher tool selection priority. For 

slots, the width of the feature is the upper bound of the tool diameter. To allow good 

manufacturing practice, the maximum diameter of the tool is selected as the width of 

slot minus a margin of 1 mm. The non-through slots mainly need the diameter of 

their finishing operation tool to match the comer radius of the closed end of the slot 

(In some cases, it can be achieved by smaller tool with circular path). However, to 

avoid a situation where the tool is “sucked” into the component through inadvertent 

climb-milling, the radius of the tool should be about a millimetre less than that of the 

comer.
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Figure 5.10 work flow of operation selection for face feature
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Figure 5.11 work flow o f operation selection for through Slot feature
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5.2.3 Operation Selection for Step feature

Step features can be machined from two TADs as figure 5.8 shows. For each of the 

TADs, the operation may be subdivided into roughing, semi-finishing and finishing 

operations. The depth of cut, tool diameters and cutting conditions for each TAD 

will be different unless the depth and the width of the step feature are equal. So it is 

necessary to consider these two TADs differently.

A definition of an operation-set is introduced here to represent the operations for one 

single TAD. So there are two alternative operation-sets for machining a step feature 

while only one operation-set for other features. For a through step, the operation 

subdivision, tool selection and tool diameter determination are similar to those 

required to machine a face feature. The only difference is that the first step of 

operation selection for a step is to divide the two operation-sets into the width and 

depth directions of the step feature. Then in the first operation-set, the TAD is in the 

opposite direction to the depth. The depth and width of the step in this operation-set 

are as same as the original depth and width of the step feature. In the second 

operation-set, the TAD is in the opposite direction to the width. Here the depth and 

width of the step in this operation-set are changed to the original width and depth of 

the step feature respectively. The work flow of operation selection for a through step 

feature is illustrated in figure 5.12.
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Figure 5.12 Work flow o f operation selection for through step
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5.2.4 Operation Selection for Pocket feature

Closed pockets are created in a similar manner to slots and steps, with the additional 

requirement of a drilling operation to allow the roughing tool access into the 

component. This, however, imposes a constraint in that the diameter of the milling 

tool is dependent on the diameter of the drilling tool used. A method of selection 

developed by Maropolos and Baker (2000) is used here. It is assumed that drills up 

to 50mm are readily available according to the range of drills supplied by the tooling 

manufacturers (Sandvik, Seco and Stellram). Thus, if a third of the width of the 

closed pocket is 50 mm or less, then an access hole with a diameter of a third of the 

pocket width should be drilled (minimum diameter is set to 20mm). A third of the 

width is used as the benchmark value to ensure that enough material remains for the 

subsequent milling operation. If the pocket width is larger than 150mm, then an 

access hole of 50 mm should be drilled. Except that the diameters of tools for the 

milling operation are constrained by the diameter of the drilled access hole. The 

milling operations that follow can be selected the same as for slots and steps.

Figure 5.13 shows the work flow of operation selection for a closed pocket feature.

5.2.5 Operation Selection for Hole feature

Compared to other features, the operation selection for hole features is easier due to 

the easy determination of the drill diameter which is precisely the same as the 

diameter of the feature. If the drilling operation can not achieve the dimension 

tolerances and roughness, reaming is required for the finishing operation. Here 0.4 

mm is left on the diameter as the reaming allowance.
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Figure 5.13 Work flow o f  operation selection for closed pocket feature

101



Chapter 5 Feature Based Operation Selection

Get Hole dimension, 
tolerance and roughness

rilling can achiev 
roughness?

grilling can achieve tolerance;

Y

allowance for reaming = 0

allowance for reaming 
= 0.4mm

*
Select no more than drills whose  

diameter equals 
(hole diameter -  allowance)

^ T h r o u g h  h o l e ? ^ .

1
Y N

________ 1f________
2 TADs 

(±direction o f  depth)
1 TAD  

(-direction o f  depth)
I

And the tool cutting 
length > hole depth

Store the information o f  
operations-tools-TAD

(  End )

Figure 5.14 Work flow o f operation selection for hole feature

Similar to the step feature, a through hole also has two possible TADs. However, it 

is not necessary to separate the data into two operation-sets to machine the feature. 

Unlike the step feature, both TADs for a through hole will be drilled with the same 

tool and same cutting conditions. So they are only considered as alternative 

operations with different TADs. The work flow of this selection procedure is shown 

in figure 5.14.
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Tool 1

Roughing operation

Tool 2

Tool 1

Semi-Finishing
operationFeature

Tool 2

Tool 1

Finishing operation

Tool 2

Figure 5.15 Operation alternatives

As discussed in the above sections, a number of common parameters have been 

determined through the procedure of operations selection. These were: (i) operation 

description (drilling, reaming, rough milling, semi-finish milling or finish milling), 

(ii) a list of applicable tools with their diameters, total length and flute length, (iii) 

Depth of cut for each operation and (iv) TADs for each operation. These parameters 

along with corresponding feature information make up alternative operations for 

machining a particular feature. For example, in figure 5.15, a feature needs roughing, 

semi-finishing and finishing operations. Each operation can be executed by two 

applicable tools and each tool can complete the operation in two TADs. Therefore, to 

machine this feature, three operations are required and each operation has 2x2 = 4 

operation alternatives. All of this information is stored into the operation list table in
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the database for use in cutting condition parameters selection and machining time 

calculation.

5.3 Cutting condition estimation and machining time 

calculation

Once the machine tool and tooling have been selected for the part under 

consideration, there are only three other parameters remaining that can influence the 

success of the machining. These are the cutting speed, feed rate and depth of cut to 

be used for each operation (Ludema et al., 1987). To accurately determine the 

precise data for any machining operation can be difficult without knowledge of the 

exact practicalities involved. But it is possible to give a good estimate of the speeds 

and feeds involved based on raw material and these estimates are considered 

satisfactory for the optimisation process. Once these are calculated, the machining 

times can be calculated for each operation and the total machining time determined.

5.3.1 Cutting condition estimation

There are numerous factors that should be considered when setting all three of the 

above process parameters. These included:

Operating constraints such as manufacturing practice, the manufacturing process, 

machine tool characteristics and capability and available processing time as specified 

by production planning.

Operating requirements such as the workpiece material and geometry, the operation 

being performed and the tooling data.

Tool performance factors such as the tool material and geometry and the use of 

cutting fluids. (Scallan 2003)
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As all of the above have been considered in detail for the selection of suitable tooling, 

they will not be considered again here. Only those factors that have a significant 

influence on the calculation of the process parameters will be considered in this 

chapter namely:

• The workpiece material and geometry

• The tool material and geometry

These two factors are to be considered when estimate the cutting conditions.

1. Surface cutting speed

The cutting speed for a machining operation refers to the speed at which the cutting 

edge of the tool passes over the surface of the workpiece. It is invariably also 

referred as the surface speed. It is always considered as the maximum relative speed 

between the tool and the workpiece and is usually quoted in metres per minute (m 

min’1). The cutting speed Vc is subsequently used to calculate the time taken for the 

operation, that is, the machining time T .

Generally, cutting speeds for specific combinations of part and tool material are 

stated in ranges as given in Table 5.4 (Scallan 2003). In practice, the high end of the 

range will be for light finishing and the lower ends for roughing cuts. The ranges are 

suitable for average metal cutting conditions.
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Table 5.4 Surface cutting speeds in metres per minute (Scallan 2003)

Part material
Surface cutting speed (m min'1)

HSS Carbide

Low-carbon steels 20-110 60-230

Medium-carbon steels 20-80 45-210

Steel alloys (Ni-based) 20-80 60-170

Grey cast iron 20-50 60-210

Stainless steels 20-50 55-200

Chromium nickel 15-60 60-140

Aluminium 30-110 60-210

Aluminium alloys 60-370 60-910

Brass 50-110 90-305

Plastics 30-150 50-230

2. Spindle speed

Typically the cutting speeds are determined by using handbooks and reference 

material. From these the actual spindle speed to achieve the desired surface speed is 

then calculated.

The actual spindle speed to be set, which will maintain the required surface speed, 

depends on the diameter of the cutter (for milling and drilling). Therefore, if a small 

diameter and a large diameter have to be machined at the same surface speed, then 

the smaller diameter must rotate quicker. The equation presented to calculate the 

cutting speeds can be used to calculate the spindle speed by simple transposition as 

follows:
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N  = - -̂ i ° 0Q (Eq5. 1)
7UJ

Where N  is the revolution of the cutter for milling/drilling, Vc the surface cutting 

speed (m min'1) and D the diameter of the cutter for milling and drilling (mm).

3. Feed rates

The feed rate of a machining operation is defined as the speed at which the cutting 

tool penetrates the workpiece. This is usually stated in either millimetre per spindle 

revolution (mmrev'1) or as millimetre per minute (mm min'1).

The manufacturers of milling cutters state recommended feed rates in mmrev'1 ( / r ) 

mm m in '^/^  ) or mm/tooth( f t ). For this research feed rates quoted in mm/tooth 

have been used and can be used to determine the mm rev'1 as follows:

f r = f tn (Eq5.2)

Where n is the number of teeth on the cutter.

From this, the feed f m in mm min'1 can be calculated as follows:

fm = f rN  = f tnN (Eq5. 3)

Some typical feed rates for milling are shown in table 5.5 for both HSS and carbide 

cutters.
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Table 5.5 Typical feed rates for milling in millimetres per tooth (Scallan 2003)

Surface cutting speed (m min'1)

Part material HSS Carbide

Face mills End mills and 
slot mills Face mills End mills and slot 

mills
Low-carbon

steels 0.2-0.5 0.1-0.25 0.1-0.75 0.15-0.40

Medium-carbon
steels 02.-0.5 0.1-0.25 0.1-0.75 0.15-0.40

Steel alloys (Ni- 
based) 0.2-0.8 0.15-0.4 0.3-1.2

'
0.2-0.5

Grey cast iron 0.15-0.65 0.075-0.3 0.15-0.75 0.075-0.4

Stainless steels 0.2-0.6 0.1-0.3 0.3-1.2 0.2-0.5

Chromium nickel 0.1-0.6 0.1-0.3 0.3-1.2 0.2-0.5

Aluminium 0.25-0.75 0.15-0.4
|  nrnn.in q

0.25-1.0 0.1-0.5

Aluminium
alloys 0.25-0.75 0.15-0.4 0.25-1.0 0.1-0.5

Brass 0.25-0.5 0.1-0.25 0.25-0.65 0.1-0.4

Plastics 0.2-0.8 0.15-0.4 0.2-1.2 0.1-0.6

HSS drills are used extensively for producing smaller holes. Since small diameter 

drills are liable to break, the feed rate is related to drill size as shown in table 5.6 

(Scallan 2003). For the production of larger drilled holes, carbide drills are preferred. 

The feed rates for these are similar to those for carbide endmill cutters (The Peck- 

drilling is not considered in this research at the moment). However, it should be 

noted that as the depth of the hole being drilled increases, the speeds and feeds 

should be reduced. Finally, the feed used will also depend on the surface roughness 

required.
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Table 5.6 Typical feed rates for HSS and carbide drills (Scallan 2003)

Drill diameter (mm)
Drilling feed rate f r (mm rev'1)

HSS Carbide

2 0.05 0.15
r • ■

4 0.10 0.15

6 0.12 0.15

8 0.15 0.18

10 0.18 0.25

12 0.21 0.25

14 0.24 0.28

16 0.26 0.32

18 0.28 0.32

20 0.30 0.32

The feed rate f m (in mm min'1) for drilling tools can be determined, using the feed 

f r in mm rev'1, from the equation:

f m = f rN  (Eq5. 4)

4. Depth of cut for milling

A general definition for depth of cut is that the depth of cut can be defined as the 

difference between the original surface and that being produced by the cutting tool. 

There are various factors that can affect the depth of cut. However, of these the most 

important are the tool and workpiece material and the tool geometry. General
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recommendations for depth of cut are given for a variety of processes in machinery’s 

handbook (Oberg et al. 2004).

For milling, general guidelines for both face and slot milling recommend a cutting 

depth of 1-4 mm, while end milling depths should be around 1-2 mm (Schey, 1987). 

However, in general a maximum depth of cut half the cutter diameter, up to 8 mm, 

can be used (Kalpakjian, 1995). For simplification, 8mm, 6mm and 4mm are 

selected for rough milling, semi-finish milling and finish milling operations 

respectively in this research.

5.3.2 Calculation of machining time

All three process variables described above will affect the time taken for machining. 

In turn the machining time will determine the output for the components being 

machined and have a direct bearing on the cost of manufacture. In job and batch 

manufacturing where there tends to be a high variety of work, the development of 

such data is difficult and for many jobs the times have to be calculated in order to 

accurately estimate the production rate/output and the cost. To calculate the 

machining times the speed, feed and depth of cut outlined above are used together 

with the type of feature and its dimensions.

The estimation of machining time for drilling operations is the most straightforward 

and is performed using the following equation:

where Td is the machining time for a drilling operation (min) and dc the required 

total depth of cut (mm). The above assumes that the drilling operation is continuous,
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rather than, say, a pecking operation. It is also assumed that the surface roughness of 

the drilled hole is not an issue.

In face milling, slot milling and end milling where the axis of rotation of the cutter is 

perpendicular to the bottom surface being machined. The main cutting action is from 

the teeth on the periphery of the cutting tool, while the tool face provides a finishing 

action. The machining time for these milling types can be calculated as follows:

L
fm

(Eq5.6)

d. *
(Eq5.7)

where Tm is the machining time for a milling operation (min), Im the length of tool 

path per pass for the milling operation (mm), f m the feed rate (mm min'1), npdr the

number of passes for milling operations, |x|+ the round up to the next integer number,

dc the required total depth of cut and dm the depth of cut in terms of operation sub

type. So it can be seen that all the parameters which are required to calculate 

machining times have been determined except lm , the length of tool path per pass

(mm).

The tool travel distance comprises the distance the tool moves in the tool approach 

direction and the length of the tool path in the local XY plane (the plane 

perpendicular to the approach direction). The operation for which tool travel is most 

easily determined is drilling. Cutting distance to drill a hole is shown in figure 5.16. 

The parameters required to determine lm for the milling operation are the length, L,
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width, W and the comer radius, r, of the feature, as well as the diameter, D, o f the 

cutting tool. Assumptions about how material is removed to create a feature have 

been used to develop the equations that define the lm length. The method developed

by Maropoulos et al. (2000) is used here to calculate the / value.

+z

V:

Cutting
distance

Figure 5.16 Cutting distance o f a through hole

Figure 5.17 shows the zigzag operations required for milling through slots, through 

steps and faces and the lm can be calculated using equations (Eq 5.8) and (Eq 5.9).

1l K 
1---------------— — — — — — •  — — —J

1
U t)U-------—------- i

1----------------li . = $ 1if —

(a) Through slot (b) Through step (c) Face

Figure 5.17 Zigzag cutting operation for milling through slots, through step and face
(Maropoulos et al. 2000)

w
D

(Eq5. 8) 

(Eq5. 9)

where is the number of passes required to cut the width of the feature and 

L ,W ,D  the dimensions described above and shown in figure 5.17.
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As shown in figure 5.18, for one end closed slots, lm can be calculated in equation

(Eq 5.10) and (Eq 5.11), where \x\+ is the round up to the nearest even number.

L= L {2  + n J + 2 W - 2 D

w
D

L  =L{l + n J + 2 W

(Eq5. 10)

(Eq5. 11) 

(Eq5. 12)

-1  (Eq5. 13)

For one end closed steps lm can be calculated using equation (Eq 5.12) and (Eq

5.13).
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Figure 5.18 Cutter movement during milling o f  non-through slots and steps 

(Maropoulos et al. 2000)

The cutter movement during milling of a closed pocket is shown in figure 5.19 and 

the lm can be calculated using equation (Eq 5.14) and (Eq 5.15).

L  =L{2 + nm ) + 4 W - D { \ 0  + n J

" p w  =

W_
~D

- 2

(Eq5. 14) 

(Eq5. 15)

114



Chapter 5 Feature Based Operation Selection

WD
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<b)
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(c)

Figure 5.19 Cutter movement during milling o f  a closed pocket 

(Maropoulos et al. 2000)

As described previously, several operation alternatives are generated in the operation 

selection module. Every operation alternative may require different tools to execute 

it, which results in different cutting conditions being chosen and may result in 

different machining time. Therefore it is necessary to select suitable cutting 

conditions and calculate the corresponding machining times for them. Figure 5.20 to 

figure 5.24 show the work flow of calculating machining times for different features.
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Figure 5.20 Work flow o f  machining time calculation for hole features
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Figure 5.21 Work flow o f machining time calculation for face features
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Figure 5.22 Work flow o f machining time calculation for slot features

118



Chapter 5 Feature Based Operation Selection

/  Read operations of 2 operation ' 
\  sets for machining a step feature ,

For each operation set

Get operations in this set

ican d id ate  is the number 
o f  candidates for 

executing this operation

-> For each operation

Get available tools and 
seti candidate=0

For each tool

Get recommend feed rate 
and cutting speed

Calculate spindle speed

Calculate length o f tool 
path and calculate time

-► For each available TAD

i candidate++

Store the candidate information 
(including time)

iere is still T A D

lere is still tool?

N ext operation?

Next operation?

 1____________
Store all the information into files

t

Figure 5.23 Work flow o f machining time calculation for step features
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Figure 5.24 Work flow o f machining time calculation for pocket features
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5.4 Summary

This chapter first discussed the part information required for process planning, then 

presented the feature taxonomy and developed a feature-based modeller to input the 

features information of a part for subsequent process planning. After using an Object 

Oriented Programming Strategy to represent the feature, the system selects the 

operations for each feature. In this procedure, the operation subdivision, tools 

selection and TAD selection are described in detail. Finally, the cutting conditions 

estimation and machining time calculation for operations are presented and 

discussed.
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Chapter 6 Operation Sequencing with Particle 

Swarm Optimisation algorithm

6.1 Introduction

Operations sequencing is one of the most important activities in generative process 

planning and it is used to determine the sequence of machining operations that are 

required to produce a part. In operations sequencing, it is necessary to apply good 

manufacturing practices and maintain the consistency of the desired functional 

specifications of a part. As discussed in section 2.4, a good sequence of operations 

can ensure low machining cost (affecting machine utilisation, setups, tool changes, 

etc.) and satisfy precedence constraints amongst the operations. However, for parts 

with complex structures and features, operations sequencing is well known as a 

complicated combinatorial decision problem. The major difficulties include: (1) the 

search space is usually very large, and many previously developed methods can not 

find optimised solutions effectively and efficiently, and (2) there are usually a 

number of precedence constraints in sequencing the operations due to manufacturing 

practice and rules, which make the search more difficult.

To address these issues, some optimisation approaches based on modem heuristics or 

evolutionary algorithms, such as the Genetic Algorithm (GA) (Bhaskara Reddy et al. 

1999, Qiao et al. 2000, Yip-Hoi and Dutta 1996, Zhang et al. 1997, Ding et al. 2005), 

Simulated Annealing (SA) algorithm (Ma et al. 2000, Lee et al. 2001) and Tabu 

search algorithm (Lee et al. 2001, Li et al. 2004), have been developed in the last two 

decades and significant improvements have been achieved. However, there still 

remains potential for further improvement, as discussed in chapter 2 and as follows:
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(1) Current representation of process plans (Operation-Tool-TAD) is still not 

complete and does not include sufficient information especially for 5-axis 

machining. In 3-axis machining, a TAD indicates a definite set-up, but in 5- 

axis machining, the TAD of an operation can be achieved from 5 possible set

ups. This increases the difficulty of operation sequencing and set-up selection.

(2) Precedence constraints between operations need to be considered thoroughly 

and carefully so as to keep the solutions feasible. Different constraint handling 

mechanisms should be selected in terms of different characteristics of the 

algorithms.

(3) The performance evaluation criteria of a process plan need to be handled 

carefully, different criteria should be selected accordingly for different 

objectives. For example, the process plan that can achieve the minimal 

machining time does not assure this process plan has the minimal machining 

cost;

(4) Current algorithms are still not efficient. GA’s perform very well in the early 

optimising stage but later it is easy for them to be trapped into local optima and 

not find the optimised solution, especially for complex problems. SA 

converges quickly and can find optimal solution for problems that are not very 

complex, but as the complexity of the problems increases, its possibility of 

finding optimised solution reduces.

To improve overall performance, a more comprehensive representation scheme of 

process plans needs to be developed, a more reasonable constraint handling 

mechanism needs to be developed and it is necessary to adopt a more agile, effective 

and efficient optimisation algorithm.
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In this chapter, a Particle Swarm Optimisation (PSO) approach has been developed 

to concurrently consider the processes of selecting machining resources, determining 

setup plans, and sequencing operations for a prismatic part as an optimisation 

procedure. The representation of the process plan and the evaluation criteria for 3- 

axis machining are first addressed. This is then extended to 5-axis machining. 

Finally the details of applying the PSO algorithm for operation sequencing are 

described.

6.2 Knowledge Representation of Process Plans for 3-axis 

machining

6.2.1 Introduction of PSO algorithm

As described in chapter 2, Particle Swarm Optimization (PSO) is a modem 

evolutionary computation technique based on a population mechanism. The PSO 

algorithm was inspired by the social behaviour of bird flocking and fish schooling 

(Kennedy and Eberhart 1995). Three aspects will be considered simultaneously 

when an individual fish or bird (particle) makes a decision about where to move: (1) 

its current moving direction (velocity) according to the inertia of the movement, (2) 

the best position that it has achieved so far, and (3) the best position that its 

neighbour particles have achieved so far. In the algorithm, the particles form a 

swarm and each particle can be used to represent a potential solution of a problem. In 

each iteration, the position and velocity of a particle can be adjusted by the following 

formulae that take the above three considerations into account. After a number of 

iterations, the whole swarm will converge at an optimised position in the search 

space.
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V'*' = w *V ' + c, *RcmdQ*(P,' - X ' )  + c2* RandQ*(Pg' - X , ‘) (E q 6 .1)

(Eq 6 .2)

(Eq 6. 3)

(Eq 6.4)

Here, i is the index number of particles in the swarm; t is the iteration number; V

an N-dimensional problem, V and X  can be represented by N  particle dimensions 

as Equations 6.3 and 6.4 show. Pt is the local best position that the fth particle has 

achieved so far; Pg is the global best position that all the particles have achieved so

far; w is the inertia weight to adjust the tendency to facilitate global exploration 

(smaller w ) and the tendency to facilitate local exploration to fine-tune the current 

search area (larger w)\ RandQ returns a random number in [0,1]; cx and c2 are two 

constant numbers to balance the effect of P( and Pg.

6.2.2 Representation of the process plan

To conduct process planning, parts are represented by manufacturing features. 

Figure 6.1 shows a part composed of m features. Each feature can be manufactured 

by one or more machining operations in operations in total for the part). Each 

operation can be executed by several alternative plans if different machines, cutting 

tools or set-up plans are chosen for this operation (Case and Harun 2000, 

Maropoulos et al. 2000, Carpenter and Maropoulos 2000). A set-up is usually 

defined as a group of operations that are machined on a specified machine with the 

same fixture. Here, a set-up is equivalently defined as a group of operations with the 

same Tool Approach Direction (TAD) machined on a machine. For example, in

and X  are the velocity vector and the position vector of a particle respectively. For
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figure 6.2, a through hole with two TADs is considered to be related to two set-ups 

(Li et al. 2004). A process plan for a part consists of all the operations needed to 

machine the part and their relevant machines, cutting tools, TADs, and operation 

sequences. A good process plan of a part is built up based on two elements: (1) the 

optimised selection of the machine, cutting tool and TAD for each operation; and (2) 

the optimised sequence of the operations of the part. Hence, the developed algorithm 

needs to address these two aspects.

Particle Dimension 1 ParticleDimension 2 ParticleDimension n

F e a tu r e  m

O p e r a t io n  n

P a r t ic le

O p e r a t io n  1

F e a tu r e !

O p e r a t io n 2

Applicable machines 
Applicable tools 
Applicable TADs 
Position 
Velocity

Figure 6.1 Representation o f a process plan (particle).

Second TAD .

Figure 6.2 A through hole with two TADs.

To apply the PSO algorithm to the process plan optimisation problem, two issues 

have to be handled first:

First TAD

Applicable machines
1 Applicable tools

Applicable TADs
Position
Velocity
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(1) Encode a process plan to produce a particle. As shown in figure 6.1, each 

operation is modelled as a particle dimension that includes information on 

machines, cutting tools and TADs, and the details are listed in Table 6.1. Here a 

position variable and a velocity variable are used to represent the position and 

velocity of an operation, respectively. All the particle dimensions (operations) 

executed to make the part form a particle (a process plan). As shown in table 6.2, 

the array variable Oper[n] represents a process plan which consists of n 

ParticleDimensions (operations). A particle can be initialised in the following 

steps:

• All the operations are given an Operation_id from 1 to n.

• Machine_list, Tool_list and TAD_list applicable for each operation are 

specified, and a machine, tool and TAD are randomly selected from the 

three lists to execute the operation.

• A random position between [0, 1] and a random velocity between [-1, 1] 

are initialised for each ParticleDimension in the particle. The sequence of 

operations is determined by the relative values of their positions.

In table 6.2, an initialised particle with 5 ParticleDimensions is shown.

(2) Decode the particle to get a sequenced process plan. In each iteration, when all 

the ParticleDimensions in a particle have been updated, the operation sequence 

can be determined by the relative positions of the ParticleDimensions (Cagnina 

et al. 2004). For example, in table 6.3, the sequence of the particle dimensions 

will be (operation3, operation4, operation5, operation2, operation 1) according to 

the descending order of their position values. By using a number of iterations to 

update the positions and velocities of the particle dimensions in each particle, an
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optimised sequence (i.e., an optimised process plan) can be achieved after a 

number of iterations.

Table 6.1 Class definition o f a particle dimension (an operation).

Class ParticleDimension: an operation

Data types Variables Descriptions

Int
int

Operationid  
Machine id

The id o f the operation 
The id o f  a machine to execute the operation

int Tool id The id o f  a cutting tool to execute the operation
int TAD id The id o f a TAD to apply the operation

Int[ ] Machine_list[ ] The candidate machine list for executing the operation
Int[ ] Tool list[ ] The candidate tool list for executing the operation
Int[ ] TAD list[ ] The candidate TAD list for applying the operation

double
double

Position
Velocity

The position value o f the operation 
The velocity value o f the operation

Table 6.2 Class definition o f  a particle (a process plan).

Class Particle: process plan
Data types Variables Descriptions

ParticleDimension

double

Oper[«]

TMC

Define a process plan Oper[n] based on the above class- 
ParticleDimension. n  is the number o f operations in the 

plan
Total Machine Cost o f the plan

Double TTC Total Tool Cost o f the plan
Double TSC Total Set-up Cost o f  the plan
Double TMCC Total Machine Change Cost o f the plan
double TTCC Total Tool Change Cost o f the plan
Double APC Additional Penalty Cost o f violating constraints in the 

plan
Double TC Total Cost o f the plan

ParticleDimension Pi[„] Store the best plan that the particle has achieved so far

Table 6.3 An initialised particle.

Operationid 1 2 3 4 5
Machine id 2 3 3 2 1

Tool id 5 4 6 3 4
TAD_id 3 3 -3 2 1
Position 0.1 0.2 0.5 0.4 0.3
Velocity 0.5 -0.3 -0.6 0.8 0.1

Relative Position 
(Sequence no.) 5 4 1 2 3
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6.2.3 Evaluation criteria

Machining cost is typically used to measure the quality of a process plan 

quantitively. The machining cost of a plan is comprised of machine utilisation costs, 

tool utilisation costs, machine change costs, set-up change costs, tool change costs 

and additional penalty cost (Li et al. 2002, Li et al. 2004). The costs can be 

computed as below.

The Total Machine Cost ( TMC). TMC is the total costs of the machines used in a 

process plan, and it can be computed as:

TMC = ^  (Oper[i\ Machine _ id * MCI) (Eq 6. 5)
/=1

where MCI is the machine cost index for a machine.

The Total Tool Cost (TTC). TTC is the total cost of the cutting tools used in a 

process plan, and it can be computed as:

TTC = ^  (Oper[i]Tool _ id * TCI) (Eq 6.6)
1=1

where TCI is the tool cost index for a tool.

Number of Set-up Changes (N SC ), Number of Set-up (NS),  and Total Set-up Cost 

( TSC ). After the particle is decoded to a sequenced process plan, in a 3-axis 

machining environment, a set-up change between two consecutive operations in the 

sequence can be defined according to table 6.4 (set-up change in 5-axis machining 

will be discussed in a later section), and the NSC can be computed as:

n-i
NSC = £ Q 2(Q! (Oper[i]Machine _ id, Oper[i +1]Machine _ id), ^

Qj (Oper[i\TAD _ id, Oper[i +1] TAD _ id))
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The corresponding NS can be computed as:

NS = 1 + NSC (Eq 6. 8)

The Set-up Cost (SC  ) is considered to be the same for each set-up. Hence,

NS

TSC = Y 1SC (Eq 6.9)
M

1 X * Y  0 X = Y = 0
where Q 1(X ,7) = f v  Q 2(X!7) = {I . .

0 X  — Y 1 otherwise

(4) Number of Machine Changes ( NMC) and Total Machine Change Cost (TMCC ).

n- 1

NMC = ]>] Qj (Oper[i] Machine _ id, Oper[i +1] Machine _ id) (Eq 6. 10)
i=l

The Machine Change Cost ( MCC ) is considered to be the same for each 

machine change. Hence,

NMC

TMCC = ^  MCC (Eq 6. 11)
/=i

(5) Number of Tool Changes (NTC)  and Total Tool Change Cost (7TCC). A tool 

change is defined in table 6.5. NTC is computed as:

n- 1

NTC = V  Q2(Q. (Oper[i] Machine _ id, Oper[i +1] Machine _ id),
t i 1 (Eq 6. 12)

Qj (Oper[i]Tool _ id, Oper[i +1 '[Tool _ id))

Similarly, the Tool Change Cost ( TCC) is considered to be the same for each

tool change. Thus

NTC

TTCC = £  TCC (E q 6 .13)
/=1

(6) Number of Violating Constraints (NVC)  and Additional Penalty Cost (APC).

During the optimisation process, it is difficult to ensure that each particle obeys
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the constraints. To solve this problem, a penalty method has been used to adjust 

an infeasible particle towards its feasible domain.

n - 1 7i

NVC = ^T ^  Q 3 (Oper[i].Operation _ id, Oper[j].Operation _ id)) (Eq 6. 14)
i= i  j = i +1

A fixed Penalty Cost (PC) is applied to each violated constraint. Thus

NVC
(Eq 6. 15)apc  = Y ,pc

i=2

where

1 The sequence of X  before Y violates constraints
j i  J — {

0 The sequence of X  before Y is in accordance to constraints

(7) The Total Cost ( TC ).

TC = TMC + TTC + TSC + TMCC + TTCC + APC (Eq6. 16)

Table 6.4 Definition of when a setup change is required in 3-axis machining

Conditions of Machining Two Consecutive Operations A Setup Change

Same TAD and same machine No

Same TAD and different machines Yes

Different TADs and same machine Yes

Different TADs and different machines Yes

Table 6.5 Definition o f when a tool change is required

Conditions Of Machining Two Consecutive Operations A Tool Change

Same tool and same machine No

Same tool and different machines Yes

Different tools and same machine Yes

Different tools and different machines Yes
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6.2.4 Precedence constraints

The geometric and manufacturing interactions (Faheem et al. 1998; Ong et al. 2001) 

between features as well as the technological requirements in a part can be 

considered to generate some preliminary precedence constraints between machining 

operations. The precedence constraints between operations are usually classified into 

seven types: (1) fixture interaction, (2) tool interaction, (3) datum interaction, (4) 

feature priority, (5) fixed order of machining operations, (6) thin-wall interaction and

(7) material-removal interaction. (Li et al. 2004) The classifications, definitions and 

illustrative examples of precedence constraints are given in Tables 6.6 and 6.7. A 

feasible operation sequence must comply with the precedence constraints.

Table 6.6 Definitions and classifications of precedence constraints.

Constraints Definitions

Fixture The clamping or supporting faces for machining a feature are
interactions destroyed by machining another feature earlier.

Tool The positioning faces required by a cutting tool to machine a
interactions feature are removed by the machining of another feature earlier.

Datum In order to locate a part for machining or inspection, some datum
interaction faces in the part are used as reference planes. A datum interaction 

occurs when machining a feature destroys the datum required for 
another feature.

Feature A feature should be machined before its associated features.
priorities Another case is that a feature should be machined first to provide 

entrance face for machining an interacting feature.

Fixed order This case includes some explicit precedence constraints, for
of machining 

operations
example, turning-grooving-chamfering prior to thread cutting.

Thin-wall A thin-wall interaction occurs when the distance between
interactions features is very small and causes precedence constraints in 

machining.

Material- For two features with geometric interactions, if the different
removal material removal sequences of features influence the cost or the

interactions quality of machining and cause precedence constraints between 
these features, a material-removal interaction occurs.
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Table 6.7 Examples o f  precedence constraints.

Constraints Examples Explanations

Fixture interactions Vice jaw

Chamfer Vice jaw

The hole should be machined before 
the chamfer, otherwise it cannot be 
fixtured.

Tool interactions Chamfer

 \
Hole¥

Datum interaction Datum feature 
(top face)

Mt ‘ening

Thin-wall interactions Slot Thin wall

Hole

Feature priorities Countersunk

Hole

In order to position a drilling tool 
correctly, the drilling o f the hole should 
precede the machining o f the chamfer.

The top face (the datum feature) should 
be machined prior to the base face.

The good practice should be drilling the 
hole, then machining the slot to avoid 
the deformation o f the thin wall.

The countersunk is an associated 
feature and should be machined after 
the primary hole.

Material-removal interactions

Fixed order o f machining 
operations

Hole

Operations for a hole:
(1) Drilling N
(2) Boring and
(3) Reaming

The step should be machined prior to 
the hole for achieving high machining 
efficiency (milling is faster than 
drilling) and surface quality.

A typical sequence o f machining a hole 
is drilling-boring and reaming.

6.3 The Modified PSO Algorithm

A traditional PSO algorithm can be applied to optimise the process plan in the 

following steps:
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(1) Initialisation:

• Set the size of a swarm, e.g., the number of particles “Swarm Size” and the 

max number of iterations “Iter Num”.

• To ensure the optimisation proceeds successfully, the initial populations of 

the swarm generated should be spread sufficiently over the search space to 

represent as wide a variety of solutions as possible. The method introduced in 

section 6.2.2 is used to initialise all the particles in the swarm. After the 

populations are initialised, it is required to decode every particle (process 

plan) in the swarm to get the operation sequence of each particle and then 

calculate the total cost (TC ) of each particle according to equations 6.5-6.16.

• Set the local best Pt[n] and the global best Pg with the lowest total cost TC .

(2) Iterate the following steps until IterJSfum is reached:

• For each particle in the swarm, and each ParticleDimension, (i.e., operation in 

particle), update ParticleDimension’s velocity and position values according 

to equations 6.1 and 6.2, i.e., Oper[l], Position, Oper[2].Position, ..., 

Oper[n]. Position.

• Decode the particle into a sequenced process plan in terms of new position 

values and calculate the TC of the particle. Update the local best Pt [n] and

the global best Pg if a lower TC is achieved.

(3) Decode global best Pg to get the sequenced process plan.

However, the traditional PSO algorithm introduced above is still not effective in

resolving the operation sequencing problem. There are two major reasons for this:

(1) Due to the inherent mathematical operators, it is difficult for the traditional PSO

algorithm to consider the different arrangements of machines, tools and TADs
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for each operation, and therefore the particle is unable to fully explore the whole 

search space.

(2) The traditional algorithm usually works well in finding solutions at the early 

stage of the search process (the optimisation result improves fast), but is less 

efficient during the final stage. Due to the loss of diversity in the population, the 

particles move quite slowly with low or even zero velocities. This make it is 

hard to reach the global best solution (Stacey et al. 2003). Therefore, and as 

with GA’s, the whole swarm is prone to be trapped in a local optimum from 

which it is difficult to escape.

To solve these two problems and enhance the ability of the traditional PSO 

algorithm to find the global optimum, new operators, including mutation, crossover 

and shift, have been developed and incorporated in a new modified PSO algorithm. 

Meanwhile, considering the characteristics of the algorithm, the initial values of the 

particles and Pg (the global best position of all the particles in Eq 6.1) have been 

well manipulated.

The important modification details are described below.

(1) New operators in the algorithm

• Mutation. In this strategy, an operation is first randomly selected for a 

particle. From its candidate machining resources (Machine_list[], Tool_list[] 

and TAD_list[]), an alternative set (machine, tool, TAD) is then randomly 

chosen to replace the current machining resource in the operation. The 

probability of applying this strategy is defined as Pm.
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• Crossover. Two particles in the swarm are chosen as Parent particles for a 

crossover operation. In the crossover, a cutting point is randomly determined, 

and each parent particle is separated as left and right parts of the cutting 

point. The positions and velocities of the left part of Parent 1 and the right 

part of Parent 2 are reorganised to form Child 1. The positions and velocities 

of the left part of Parent 2 and the right part of Parent 1 are reorganised to 

form Child 2. The probability of applying the crossover is defined as Pc.

• Shift. This operator is used to exchange the positions and velocities of two 

operations in a particle so as to change their relative positions in the particle. 

The probability of applying the shift is defined as Ps.

(2) Escape method for Pg

• Because the global best particle Pg influences every particle in the swarm,

during the optimisation process, if the iteration number of obtaining the same 

best fitness is more than 10, then the mutation and shift operations are 

applied to P to try to escape from the local optima.

The workflow of the modified PSO algorithm is shown in figure 6.3.
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Initialise Swarm_Size and Iter_Num, 
Initialise the particle swarm 

set the Pi as particle itself \

Calculate the fitness o f  particles, 
Initialise Pg, set N =0

Swarm_Size: the 
population o f  particles, 

Iter_Num: the max 
iteration number o f  PSO

N : Iteration index number

►j For each iteration

M: Particle index 
number

N>=Iter Num?

•= Swarm Size?

If cost o f  Pi <  cost o f  Pg?

:f current cost < cost o f  Pi?

N=N+1

Update the Pg with Pi

For each particle in swarm

Update the Pi with the current position

1. Update Mth particle’s position and velocity
2. Calculate the fitness o f  Mth particle_______

Select particles randomly to do mutation, 
crossover and shift operations, set M=0

Output current Pg and the cost J  

Figure 6.3 Workflow o f the PSO algorithm.

6.4 PSO algorithm application in 5-axis machining

There are 3 major issues that need to be considered when optimising the process 

plans for 5-axis machining:
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(1) Set-up plan determination. A set-up can be defined as a group of operations that 

are machined on a single machine with the same fixture. As discussed in chapter 

5, in a 3-axis machining environment, a set-up is a group of features with the 

same TAD machined on a 3-axis machine, so different machines or different 

TADs in two consecutive operations mean a set-up change (shown in table 6.4). 

Here set-up is determined by the current TAD. However, in 5-axis, different 

TADs can be achieved by the two extra degrees of freedom movements with the 

same fixture (set-up). Therefore, two different TADs do not necessarily mean 

two different set-ups. The feature can be machined with the same fixture only if 

the TAD of the operation for this feature can be achieved by rotating or 

swivelling the work table. For a 5-axis machine, one single set-up (same fixture) 

can achieve 5 different TADS. On the other hand, one single TAD can be 

possibly achieved by 5 different set-ups (In theory, if the TAD of operation x is 

ZO (-3), the possible set-ups for this operation can be located in any of 5 

directions except OZ (+3)). Therefore the representation of process plans for 5- 

axis machining and determination of set-up plans needs to be considered 

carefully.

(2) Different performance evaluation criteria. Due to the difficulty of determining 

the machining cost, it is easier to evaluate the performance of process plans by 

total machining time which has been calculated in the operation selection stage 

together with estimates of the set-up change time and the tool change time.

(3) Operation-set constraint. In chapter 5, an operation-set that may include rough 

milling/drilling, semi-finish milling/drilling or finish milling/drilling operations 

is introduced to represent the operations in one single TAD. So there are two 

alternative operation-sets for machining a step feature namely operation-set 0
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and operation-set 1. Different tools and TADs are selected for the operations in 

these two operation-sets. Therefore if an operation in operation-set 0 is selected 

in the process plan, the remaining operations in the operation-set should be 

selected and the operations in the operation set 1 must not be selected. The final 

optimal feasible process plan must comply with this constraint.

To solve these problems, the representation of process plans in 5-axis machining 

need to be extended from that in 3-axis machining and set-up determination needs to 

be considered more flexibly.

1. Representation of process plans in 5-axis

The class definitions of particle dimension (operation) and particle (process plan 

consisting of all the operations) are extended as shown in table 6.8 and table 6.9. 

This added information enables the algorithm to comply with the operation set 

constraint and helps determine the set-up plans.

Table 6.8 Class definition o f  a particle dimension (an operation).

Class ParticleDimension: an operation

Data types Variables Descriptions

Int OperationSet_id The id o f the operation set
Int Operation_id The id o f  the operation in OperationSet id
Int M achinejd The id o f  a machine to execute the operation
Int Tool id The id o f a cutting tool to execute the operation
Int TAD_id The id o f a TAD to apply the operation

Int[ ] Machine_list[ ] The candidate machine list for executing the operation
Int[ ] Tool_list[ ] The candidate tool list for executing the operation
Int[ ] TAD_list[ ] The candidate TAD list for applying the operation
Int

double
Setup

Position
The direction o f set-up 

The position value o f the operation
double
double

Velocity 
Machine time

The velocity value o f the operation 
The machining time for this operation
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Table 6.9 Class definition o f  a particle (a process plan).

Class Particle: process plan
Data types Variables Descriptions

ParticleDimension Oper[«] Define a process plan Oper[n] based on the above class- 
ParticleDimension. n  is the number o f operations in the 

plan
Int Operationset How many operation sets for each feature
Int OperationsInSet How many operations in the specific operation set

double TMT Total Machining Time o f the plan
double TMCT Total Machine Change Time o f the plan
double TTCT Total Tool Change Time o f the plan
double APT Additional Penalty Time o f violating constraints in the

plan
double TPT Total Processing Time o f the plan

ParticleDimension PiW Store the best plan that the particle has achieved so far

2. Evaluation criteria

With the input from the operation selection module, the total processing time can be 

used to evaluate the process plan quantitively. The processing time for a part is 

comprised of machining times, machine change times, set-up times, tool change 

times and additional penalty time. The times can be computed as below.

Total Machining Time ( TM T). TMC is the total machining time used for executing 

all the operations to machine the part, and it can be computed as:

TMT = ^ (Oper[i] M achine_ time) (Eq 6. 17)
/=1

Number of Set-up Changes ( N SC ), Number of Set-up ( NS)  and Total Set-up Time 

( TST ). After a particle is decoded to a sequenced process plan, in the 5-axis 

machining environment, a set-up change between two consecutive operations in the 

sequence can be defined according to table 6.10 and the NSC can be computed as:

w-1
NSC = ^  Q 2 (Q, (Oper[i].Machine _ id, Oper[i +1] .Machine _  id), ^  ^ j 

Q 3 (Oper[i] .TAD _  id, Oper[i +1] .TAD _ id))

The corresponding NS can be computed as:
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NS = l + NSC (Eq6. 19)

The Set-up Time ( ST)  is considered to be the same for each set-up. Hence,

N S

75T = £sr (Eq6. 20)
/= !

1 X * Y  0 X = Y = 0
where Ol(* , r )  = {() x  = y  0^ e •

Q3(X’y) _ <0 otherwise'

(4) Number of Machine Changes (NMC) and Total Machine Change Time ( TMCT).

w-l

NMC = (Oper[i\ Machine _ id, Oper[i +1] Machine _ id) (Eq 6.21)
/=i

The Machine Change Time ( MCT ) is considered to be the same for each 

machine change (in this research, only one machine is used). Hence,

NMC

TMCT = Y ,MCT (Eq 6* 22>
i=i

(5) Number of Tool Changes (NTC ) and Total Tool Change Time (TTCT ). A tool 

change is defined in table 6.5. The NTC is computed as:

w-l

NTC -  Q 2 (Q j (Oper[i\ Machine _ id, Oper[i +1] Machine _ id), ̂  ^ ^

Qj (Oper[i]Tool _ id, Oper[i +1] .Tool _ id))

Similarly, the Tool Change Time (TCT)  is considered to be the same for each

tool change. Thus

NTC

TTCT = Y  TCT (Eq 6* 24>
i=l

(6) Number of Violating Constraints ( NVC) and Additional Penalty Time ( APT ). 

During the optimisation process, it is difficult to ensure that each particle obeys
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the constraints. To solve this problem, a penalty method has been used to adjust 

an infeasible particle towards its feasible domain.

n -1 it

NVC = y  Q 4 (Oper[i].Operation _  id, Oper[j].Operation _  id)) (Eq 6. 25)
<=i j = j +1

A fixed Penalty Time ( P T )  is applied to each violated constraint. Thus

NVC
APT = % P T  (Eq 6. 26)

NVC

Ii=2

where

1 The sequence of X  before Y violates constraints 
Q 4(X,Y) = { h

0 The sequence of X  before Y is in accordance to constraints

(7) The Total Processing Time ( TPT).

TPT = TMT + TTCT + TST + APT (Eq 6. 27)

3. Determination of set-up plans

• The first set-up is important because if the first set-up has been decided, the 

following set-ups are the same as the first set-up until an operation can not be 

operated on this set-up. (Set-up change can be determined by checking if a 

machine is changed or the TAD of the next operation is opposite to the current 

set-up direction as shown in table 6.10). When the set-up has to be changed, 

then the next set-up is treated the same way as the first step.

• Because the set-up for the first operation can be determined as one of five set-up 

directions. It can be achieved by selecting the set-up randomly or 

deterministically. The following 4 methods can be used to determine different 

set-ups (shown in figure 6.4):

> Totally Randomly (TR): Randomly get set-up for every operation.
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> First Randomly (FR): Randomly get set-up for first operation, and then if 

needed, change the set-up, the set-up is set as the next operation’s TAD.

> Totally Set (TS): Set first operation’s TAD as the set-up for the first 

operation, then if needed, change the set-up, the set-up is set as next 

operation’s TAD.

> First Set (FS): Set first operation’s TAD as the set-up for first operation, then 

if needed, change the set-up, the set-up is set randomly in one of 5 possible 

directions.

Table 6.10 Definition of when a setup change is required in 5-axis machining

Conditions of Machining Two Consecutive Operations A Setup Change

Same TAD and same machine No

Same TAD and different machines Yes

TAD o f second operation is NOT opposite to the current set
up and same machine

No

TAD o f second operation is opposite to the current set-up and 
same machine

Yes

Different TADs and different machines Yes

• In reality, there may be some directions that can not be used for the next set-up, 

so it is necessary to limit the possible setups. For example, if a component can 

only be setup in 3 directions (-3, 3, -1) then these will be ZO, OZ, XO.

These methods of set-up determination will be compared and illustrated through 

case studies in chapter 8.
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Randomly get one setup for 
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Figure 6.4 Work flow o f set-up plan determination (TR, FR, TS, FS)

6.5 Summary

For a CAPP system in a dynamic workshop environment, the activities of selecting 

machining resources, determining set-up plans, and sequencing machining 

operations should be considered simultaneously so as to achieve the global lowest 

machining cost or lowest total processing time. Operation sequencing is one of the 

crucial tasks in process planning. However, it is an intractable process to identify an 

optimised operation sequence with minimal machining cost in a vast search space
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constrained by manufacturing conditions. In this chapter, the complicated operation 

sequencing process has been modelled as a combinatorial optimisation problem, and 

a modem evolutionary algorithm, i.e., the Particle Swarm Optimisation (PSO) 

algorithm, has been employed and modified to solve it effectively. Initial process 

plan solutions are formed and encoded into particles of the PSO algorithm. The 

particles “fly” intelligently in the search space to achieve the best sequence 

according to the optimisation strategies of the PSO algorithm. Meanwhile, to explore 

the search space comprehensively and to avoid being trapped into local optima, 

several new operators have been developed to improve the particles’ movements to 

form a new modified PSO algorithm. The operation sequencing in 3-axis machining 

was first discussed and a evaluation criteria of machining cost applied. Then the 

differences between operation sequencing for 3-axis and that of 5-axis were given 

and the model and developed PSO approach extended to 5-axis machining. The 

determination of the PSO algorithm parameters and case studies for both 3-axis and 

5-axis machining are described in Chapter 8.
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Scheduling (IPPS)

7.1 Introduction

The integration of process planning and scheduling is one of the most important 

functions to support flexible planning in a job shop manufacturing environment. 

Traditionally in the batch working industry, as described in chapter 1 and chapter 2, 

process planning and workshop scheduling are done separately and sequentially. 

Here the process plan is determined before the actual scheduling with no regard for 

the scheduling objectives. However, this simple sequential approach ignores the 

relationship between scheduling and process planning. The two functions are 

interrelated because both of them take part in the assignment of factory machines to 

production tasks (Moon and Seo 2005). If a process plan is prepared offline without 

due consideration of the actual shop floor status, it may become unfeasible due to 

changes or constraints in the manufacturing environment and heavily unbalanced 

resource assignments. Also due to the different objectives of these two systems, it is 

difficult to produce a satisfactory result in simple sequential executions of the two 

systems.

As discussed in chapter 2, the simultaneous approach has advantages over an 

enumerative approach. It is more effective and efficient to integrate the process 

planning and scheduling activities that are both in dynamic adjustment until specific 

performance criteria can be satisfied. Although a lot of effort has been made in this 

area, there are still several issues that need to be considered, such as performance
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criteria and objectives, constraints in the IPPS, algorithm efficiencies and replanning 

due to the dynamic change of the job shop floor (details in section 2.5 of chapter 2).

In this chapter, the problem of IPPS is first defined and a unified representation 

model developed to incorporate the two functions is described. Based on this model, 

a PSO-based approach has been developed to optimise the integration problem. 

Different performance criteria, such as makespan, total job tardiness and balanced 

level of machine utilisation have been defined in the optimisation approach to 

evaluate the performance of the schedule. The method to realise the replanning 

function is finally discussed.

7.2 Integrated Process Planning and Scheduling

7.2.1 Problem definition

Process planning and scheduling are both essential functional modules in product 

development and manufacturing. As presented in previous chapters, the major tasks 

in process planning include:

(1) Generating machining operations based on the features of a part to meet 

desired functional specifications and achieve good manufacturability,

(2) Identifying all the alternative applicable machining resources for the 

operations and calculating the machining times for all the alternative operations,

(3) Optimising the operation sequence to achieve the minimised manufacturing 

cost or manufacturing time, and

(4) Determining the set-up plan according to the optimised operation sequence 

and selected manufacturing resources.
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Figure 6.1 (Representation of a process plan) shows an unordered process plan for a 

part which includes a series of machining operations, together with applicable 

manufacturing resources for the operations. Operations sequencing is used to 

determine a sequence by exploiting a sequence space derived from the combination 

of all the operations whilst obeying the precedence constraints among them. In this 

research, only the 3-axis machining is considered, so here a set-up is specified as a 

group of operations with the same Tool Approach Direction (TAD) (it means the 

same fixture) executed on the same machine.

It can be seen from chapter 6 that optimisation of the operation sequencing can 

generate the optimal process plan by selecting alternative manufacturing resources 

(machines, tools and TADs) and determining an optimised sequence to achieve the 

corresponding objectives. Figure 7.1 and figure 7.2 show the two kinds of flexibility 

in this procedure (Li and McMahon 2006): 1) processing flexibility refers to the 

possibility of performing an operation on alternative machines with alternative tools 

or TADs, 2) operation sequencing flexibility corresponds to the possibility of 

interchanging the sequence in which the operations are executed.

Determined 
(Mac,, Tool,, 

TAD*)

O p e r a t i o n  i  

( O p e r  J

Applicable
machines Applicable

TADs
Applicable

tools

Figure 7.1 Example of processing flexibility (Li and McMahon 2006)
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Parti
Determined 
sequence o f  
operations

Figure 7.2 Example o f operation sequencing flexibility (Li and McMahon 2006)

Based on the generated process plans of the parts, the scheduling task is to allocate 

the time for all the operations that are required to machine the parts to specific 

machines with the objectives of minimising makespan, balancing machine utilisation, 

minimising total tardiness, etc. Scheduling flexibility which is shown in figure 7.3 

(Li et al. 2006) makes it possible to generate alternative schedules for the jobs by 

arranging the different sequences of parts to be machined.

Determined 
schedule o f  

parts

Figure 7.3 Example o f  scheduling flexibility (Li and McMahon 2006)

The objective of Integrated Process Planning and Scheduling (IPPS) in a job shop is 

to determine an optimal schedule with operation sequences for the jobs (Moon and 

Seo 2005). Therefore, the IPPS problem can be defined as: given a set o f  n parts 

which are to be processed on m machines with operations including alternative 

manufacturing resources (machines, tools and TADs), select suitable manufacturing
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resources and sequence the operations so as to determine a schedule in which the 

precedence constraints among operations can be satisfied and the corresponding 

objectives can be achieved.

Figure 7.4 is used to illustrate this problem. For instance, there are 3 parts that can be 

machined by 3, 2 and 3 operations on 3 machines respectively. For the different parts, 

there are precedence constraints among the operations to machine them (Parti: 

Operl—>Oper2—>Oper3, Part2: Oper4—»Oper5, Part3: Oper6—>Oper7—>Oper8). 

When all these 8 operations are sequenced (Operl—>Oper4—►Oper2—> 

Oper6—>Oper3—»Oper7—>Oper8—>Oper5 as shown in figure 7.4) and the 

manufacturing resources are specified (machine, tool and TADs), the schedule can 

be determined accordingly. The optimisation of IPPS is to optimise the operation 

sequence and selection of the manufacturing resources so as to achieve the optimal 

objectives (Makespan for instance in figure 7.4) whilst maintaining the schedule 

feasible with respect to the precedence constraints. It can be seen that the problem 

can be modelled as an extension of the operation sequencing optimisation problem 

(which relates to a single part described in chapter 6) into one of multi-parts with 

scheduling objectives. To achieve this, the representations of the process plans and 

schedule need to be extended and a related method of schedule determination based 

on the generated sequence and evaluation criteria needs to be considered.
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Part3

Makespan

Idle time & change time

Machine*

Machinel

Machine2

Machine3

Time

Figure 7.4 Illustration o f IPPS problem

7.2.2 R epresentation  of p ro cess  p lans and sch ed u les

To apply the PSO algorithm to the optimisation of the IPPS problem, the 

representation scheme of process plans needs to be extended to contain more 

information for the consideration of scheduling functions. Table 7.1 and table 7.2 

show the class definitions of Operation and Process plan respectively. Compared 

with table 6.1, several new variables including M acjim e, Change time, 

Machine _ s tim e  and M achinejejim e  are added to record and track the time related 

to the execution of the operation so as to determine the time allocation on the 

machines.
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Table 7.1 Class definition o f a particle dimension (an operation).

Class ParticleDimension: an operation

Data types Variables Descriptions

int Operationid The id o f the operation

Int Partid The id o f  part to which the operation belongs

int Machine_id The id o f  a machine to execute the operation

int Tool_id The id o f  a cutting tool to execute the operation

int TAD_id The id o f  a TAD to apply the operation

int[] Machine_list[ ] The candidate machine list for executing the operation

int[] Tool_list[ ] The candidate tool list for executing the operation

int[] TAD_list[ ] The candidate TAD list for applying the operation

double Mac_time The machining time for this operation

double Changetim e The change time required for this operation including 
tool change, set-up change and machine change

double Machine_s_time The start machining time o f executing this operation

double Machine_e_time The end machining time o f executing this operation

double Position The position value o f the operation

double Velocity The velocity value o f  the operation

Table 7.2 Class definition o f  a particle (a process plan).

Class Particle: process plan

Data types Variables Descriptions

ParticleDimension Oper[rt] Define a process plan Oper[«] based on the above 
class-ParticleDimension. n  is the number o f  

operations in the plan

double TC Total Cost o f the plan

double APC Additional Penalty Cost o f  violating constraints in 
the plan

To record the machine utilisation status and operations being executed on every 

machine at different time, a machine class is defined as shown in table 7.3. As 

discussed in section 7.2.1, when the sequence for all the operations is generated and 

the manufacturing resources are selected, the assignments of specific operations and 

machines are determined and therefore the schedule is obtained.
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Table 7.3 Class definitions o f a machine

Data types Variables Descriptions

int Machine_id The id o f  a machine

double Available_time The time when the machine is available (free) to 
execute operations

int Current_oper_no Record the current operation id

int Numoperation Record number o f operations executed on this 
machine

int Oper_no_list[] Record all the executed operations on this 
machine

int Oper_Part_no[] Record all the corresponding part id for 
Oper_no_list[]

double Oper_s_time[]
Record the corresponding start time for 
Oper_no_list[]

double Oper_p_time[] Record the corresponding preparation time for 
Oper_no_list[]

double Oper_e_time[] Record the corresponding end time for 
Oper_no_list[]

7.2.3 Evaluation criteria

As described in section 7.2.1, the IPPS problem can be modeled as an extension of the 

operation sequencing optimisation problem relating to a single part into a multi-part 

with scheduling objectives. When the sequence of all the operations is generated and 

the manufacturing resources are specified, it is required to determine the schedule 

based on this information and calculate the makespan, total tardiness etc. to check if 

these meet the objective.

Assuming there are m machines available in a job shop and there are n operations 

required for machining p  parts. Operation i is denoted as Oper[i\ , Machine j  is 

denoted as Machine[j], Part k is denoted as Part[k] and Operation I executed on 

Machine j  is denoted as Machine[j].Oper n o _ lis t[l] . There are five assumptions 

when determining the schedule:
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1) Every machine is available at time 0 and as soon as the current operation is 

finished, the machine becomes available again.

2) All the operations have been sequenced as (Oper\\\, Oper[2\,.. .Oper[n\).

3) The set-up time Tset_up, tool change time Ttool_change and machine change time 

Tmachine-change 310 considered to be the same for each set-up, tool change and 

machine change respectively.

4) L - , % ,  is contained in Tsa_up and Tsa_up is contained in

T'.adto'-cHng' ( <Ts„-v )■ This means if more than one type of

change occurs, only the bigger one is counted.

With these assumptions, the schedule can be determined by the following steps:

1) Initialisation:

•  Set the Machine[j].Available_time=0, j  = 1,2,...m .

•  Set the Oper[i\Machine_s_time = 0 , Oper[i\Machine_e_time -  0 , 

Oper[i\.Change_time = 0, i = 1,2,...w

2) Set the time and machine for the first operation Oper[ 1]:

•  Get the machine specified to execute the first operation 

Machine[j\ _ Oper[ 1] Machine _ id

•  Get the part to which the first operation belongs Part[k] = Oper[ 1] .Part _ id

•  Save the operation to the operation list Machine[j].Oper _no_ list[0] = 1 and 

the corresponding part id Machine[j] .Oper _ part _ no[0]=Part[k].

•  For the first operation, it is required to set-up first, so the preparation time for 

the operation on this machine is Machine[j].Oper _p_tim e[0] = Tset_up.
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•  Get and store the start time for the operation on this machine

Machine[j].Oper _ s  _time[ 0] = Oper\Y\ Machine __s _ time =0+

Machine[j] .Oper _ p _  time[ 0]

•  And end time for the operation on this machine

Machine[j] .Oper _e _ time[0\ = Oper[l] Machine _e _ time =

Machine[j] .Oper _ s _ time\§\ + Oper[ 1] Mac _ time.

•  Then get the available time for this machine 

Machine[j] .Available _ time=Machine[j] .Oper _ e _ time[ 0].

3) For Oper[i], i = 2,3,...n, iterate the following steps

•  Get the machine specified to execute the operation 

Machine[j] = Oper[i] Machine _ id .

•  Get the part to which the operation belongs Part[k] = Oper[i].Part _ id

•  Save the operation to the operation list Machine[j].Oper_no_ list[l] =

Oper[i] and the corresponding part id

Machine[J].Oper _ part _ no[l] = Part[k].

•  Check if it is required to change machine, set-up or tool. So the preparation

time for the operation on this machine is 

Machine[j].Oper_ p_time[l] = , where

^^macHm._cHanef.Tstt̂ T l00l_clm,ee') means the longest time of three. The 

definition of a set-up change is shown in table 7.4.
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Table 7.4 The definition o f a set-up change on a specific machine.

Conditions of Machining Two Consecutive Operations A Set-up Change

Same TAD and same part No

Same TAD and different parts Yes

Different TADs and same part Yes

Different TADs and different parts Yes

•  Get and store the start time for the operation on this machine

M achine[j].O per_s_ time[l] = Oper[i\.Machine_s time =

Latest (Machine[j\ .Available _  time, Part[k] .Last _ oper _ time) +

M achine[j].O per_p_tim e[0], where Part[k].Last_ oper_ time is the end 

time of the operation prior to the current operation for the Part[k] which 

can be derived from Machine[j].Oper _no _list[l}

 ̂ / = 1,2,...Machine[j].Num operation j  = l,2,...m ^

Latest(Machine[j].Available_ time, Part[k].Last_ oper_ time) denotes the 

latest time of Machine[j].Available _ time and Part[k].Last _  oper _ time .

•  Get and store the end time for the operation on this machine

Machine[j].Oper _ e  _time[l] = Oper[i].Machine _ e  _time =

Machine[j] .Oper _  s _ time[l] + Oper[i]M ac _ tim e.

•  Then get the available time for this machine 

Machine[j].Available _  time = Machine[j].Oper _ e _  time[l].

4) Calculate the Addition Penalty Time (APT) using the equations (25) and (26) in 

section 6.4.

When all the operations are processed in the above steps, the sub schedule for every 

machine is determined and the total schedule like figure 7.4 can be generated. With all
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the data and information obtained, three criteria of evaluating the schedules can be 

calculated as follows.

m
1) Makespan: Makespan = Max(Machine[j]. Available_time) .

y=i

2) Total job tardiness: The due date of a part is denoted as D D , and the completion 

moment of the part is denoted as C M . Hence,

0 if  DD is later than CM
Part Tardiness = ,

CM -  DD Otherwise

3) Balanced level of machine utilization: the Standard Deviation concept is 

introduced here to evaluate the balanced machine utilization (assuming there are 

m machines, and each machine has n operations).

n

^  (pperation[i\ Mac _ T)
Average _ Utilization = —------------------------------, ( j  = 1,.., m )

n

rn

y .  (Machine[j] .Utilization)

m

Utilization _ Level = n ?  (Machine[j\.Utilization -  x)2 (Li and McMahon 2006)
V y=1

7.3 The PSO algorithm with replanning ability

The modified PSO algorithm developed in chapter 6 has been applied to the 

optimisation of the IPPS problem with only two changes:

1) The objectives have been changed from the minimized Total Machining Cost 

(TMC) and Total Processing Time (TPT) to the least Makespan and total job 

tardiness.
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2) The schedule has been determined by the method discussed in section 7.2.3 based 

on the sequenced operations.

With consideration of the above two changes, the PSO algorithm can be used to 

optimise the IPPS problem before the jobs are processed. Current approaches do not 

consider that it is possible to make dynamic changes to the shop floor’s situation, 

such as routine machine maintenance, machine breakdown and new orders insertion 

to the current schedule to meet the deadlines. Any occurrence of these situations will 

probably make the current schedule unfeasible and require the replaning of the 

whole schedule. In this research, two types of changes are considered, namely 

machine breakdown and new order arrivals. The following will discuss these two 

situations respectively.

1. Machine breaks down.

If a machine breaks down, it will not only affect the part being machined on it, 

but also make other operations that are supposed to be executed on this machine 

unfeasible. Suppose Machine[j] breaks down at time Tbi and repairing the

machine requires time Tp. The following assumptions are made:

• The replanning generates a schedule from the next available times

forMachine[j] , j  = 1,2,...m.

• The available time of the machine that breaks down

Machine[j\ .Available _ time=Tb + Tp.

• The breaking down of Machine[j] does not affect the current operations of

other machines. If an operation Oper[i] is being executed on
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Machine[k](k * j )  when Machine[j] breaks down, then the available 

time of the Machine[k](k * j )  can be computed as follows: 

Machine[k] .Available _ time = Oper\i] Machine _ e _ time.

• If no job is being processed on Machine[k](k * j )  when Machine[j] 

breaks down, then the available time of the Machine[k](k * j )  can be 

computed as: Machine[k] .A vailable _ time = Tb.

• If there is a part being machined when the machine breaks down, it does not 

destroy the part and only the operation disturbed needs to be re-executed in 

one of two ways: a) to be machined on the current machine after it is repaired, 

and b) to be rescheduled to be executed on other machines.

• Only the operations that have not been executed and the operation being 

executed on the broken down machine need to be rescheduled from the 

machine available time obtained previously.

With the above assumptions, it can be seen in figure 7.5, when machine 2 breaks 

down at time Tbi the available times for three machines are Tx, T2 and T3 

respectively.
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Machine
T3

M achinel

Operl Oper3 Oper8

Machine2

Oper4 Oper7

Machine3 Idle time & change time
Oper6 Op sr5

Tb T1 T2

Figure 7.5 Determination o f machines available times when machine2 breaks down

Therefore, with these assumptions, the replanning of the scheduling problem can 

be resolved by two changes applied to the PSO algorithm described in section 

7.2:

1) Reduce the operations range to the operations that have not been 

executed.

2) Initialise the operations (particle dimensions) and machines with the 

new generated available time.

2. New order arrival.

Compared to machine breakdowns, the situation of the arrival of a new order is 

less complex. Suppose the new part arrives at time Ta . The following 

assumptions are made:

• The replanning generates a schedule from the next available times 

for Machine[j] , j  = 1,2,.. .m .
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• If an operation Oper[i] is being executed on Machine[j] when the new 

part arrives, then the available time of the Machine[j] can be computed as 

follows: Machine[j].Available _  time = Oper[i].Machine _ e _ tim e.

• If no job is being processed on Machine[j] when a new part arrives, then

the available time of the Machine[j] can be computed as:

Machine[j].Available _  time = Ta.

• Only the operations that have not been executed and the new operations that

are required to machine the new part need to be rescheduled from the

machine available time obtained previously.

With the above assumptions, it can be seen in figure 7.6, when a new order 

arrives at time Ta, the available times for three machines are Tx, T2 and T3 

respectively.

M achine

T3/T1

M achinel

O perl Oper3 Oper8

M achine2

Oper4 Oper7

M achine3 Idle tim e & ch an ge  time
O per6 Oper5

Figure 7.6 Determination o f available times for machines when new order arrives at Ta

161



Chapter 7 Integrated Process Planning and Scheduling (IPPS)

Therefore, with these assumptions, the replanning of the scheduling problem can 

be resolved by two changes applied to the PSO algorithm described in section 

7.2:

1) Increase the operations range, including the operations of old parts that 

have not been executed and the operations that are required to machine 

the new part.

2) Initialise the operations (particle dimensions) and machines with the 

new generated available time.

Method to improve the efficiency of the algorithm in replanning:

It is required to reduce the computation time for generating a new schedule quickly 

when encountering the above situations. But the process of replanning will take 

more time, especially when adding new orders as these increase the search space and 

there is a need to keep the schedule feasible with consideration of more precedence 

constraints. As presented above, the critical step to replan the schedule is the 

initialisation of the particle (including all the operations need to be scheduled). 

Furthermore the old schedule generated before the situation occured was feasible 

and optimised whilst complying with all the precedence constraints. For efficiency, 

it is better to minimise changes to the existing plan as some allocated resources may 

well already be in place, e.g. tools and materials taken to machines in advance. 

Therefore the strategy has been to use the old schedule with some modifications as a 

new particle:

• For situations of machine breakdown, it is possible to initialise a particle by 

three steps: a) deleting the operations that have been executed in the old 

schedule, b) keeping the velocity and position values to keep the sequence
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among the operations, and c) changing the corresponding available time for the 

machines.

• For situations of new orders arriving, it is possible to initialise a particle by the 

following steps: a) deleting the operations that have been executed in the old 

schedule, b) keeping the velocity and position values to keep the sequence 

among the operations in the old schedule, c) adding the operations that are 

required to machine the new part to the end of old schedule, d) initializing the 

new added operations by selecting alternative manufacturing resources and set 

the position and velocity values, and d) changing the corresponding available 

time for the machines.

With this method, the optimised sequence in the old schedule is mostly kept and this 

saves a large amount of computation, and hence reduces the time for replanning the 

schedule. The case studies for solving the IPPS problem with the PSO algorithm will 

be given in chapter 8.

7.4 Summary

In this chapter, the problem of IPPS was firstly defined and modelled as an extension 

of the operation sequencing optimisation problem (which relates to a single part 

described in chapter 6) into a multi-part with scheduling objectives. The method to 

determine the schedule from the generated operation sequence was presented and 

different performance criteria, such as makespan, total job tardiness and balanced 

level of machine utilisation were defined in the optimisation approach to evaluate the 

performance of the schedule. Based on this model, a PSO-based approach was 

developed to determine the optimised results from the complex search space
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effectively and efficiently. Finally the situations of machines breaking down and new 

order arrival were discussed and methods to replan the schedule under these 

circumstances presented.
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Chapter 8 System implementation and case studies

8.1 Introduction

The proposed system, its information flow and the functional modules have been 

discussed in chapter 4. The feature information input module and approaches of 

operation selection for 5 specific features have been proposed in chapter 5. To 

achieve the objectives of minimised machining cost or machining time, the 

optimisation of operation sequencing problems with a PSO algorithm for 3-axis 

machining and 5-axis machining environments were developed in chapter 6. The 

problem of Integrated Process Planning and Scheduling (IPPS) was defined and the 

optimisation of it with a PSO algorithm was discussed in chapter7.

In this chapter, implementation of the above functions will be described and case 

studies will be used to verify these functions. Firstly the implementation and case 

studies of operation sequencing for 3-axis and IPPS will be given respectively as 

independent modules and then finally the whole 5-axis CAPP system 

implementation and case study is illustrated.

8.2 Implementation and case studies for operation 

sequencing in 3-axis machining environment

8.2.1 Hardware and software requirement

In this research, the CAPP prototype system and independent modules have been 

implemented on a Pentium IV PC with 1 Gb DDR Memory and Windows XP 

operating system unless stated specifically.
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The operation sequencing module for 3-axis machining carries out the task of 

optimising the operation sequence to generate the optimal or near optimal process 

plans. The process plan representation and the PSO algorithm discussed in chapter 6 

have been developed using Java 1.5 SDK. Three sample parts are used to verify and 

compare the efficiency of the algorithm. The operations and applicable 

manufacturing resources form the alternative operations and are placed in a file 

“operation.dat”. The corresponding machine cost and tool cost are saved in a file 

“cost.dat”. There are two ways to represent the precedence constraints between all 

the operations in a part. One is a Precedence Relationships Matrix (PRM) (Zhang et 

al. 1997, Li et al. 2002) and another is a Precedence-directed Graph (PG) (Lee et al. 

2001) as figure 8.1 shows. The PG is easier to read but the PRM is easier to utilise in 

programs, so in this module, PRM is adopted to represent the Precedence constraints 

and all the precedence constraints in a part are saved in a file “sequence.dat”. As 

figure 8.1 shows, (opl, op2) equalling 1 means opl must be executed before op2, 

otherwise a violation of precedence constraint occurs and the operation sequence 

generated is not feasible.

opl op2 op3 op4 op5 op6
opl ! 1
op2 f
opj
op4 [

op5 1 1
opf» 1 0-KD

(b)PG(a) PRM

Figure 8.1 Two representations o f Precedence Relationships

8.2.2 Sam ple parts

Three parts are used here as examples. The first part (Part 1 shown in figure 8.2) 

consists of 11 manufacturing features. These features can be machined with 14
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operations (n = 14). The second part (Part 2 shown in figure 8.3) used by Zhang et al. 

(1997) consists of 14 manufacturing features and 14 operations (n = 14). The third 

part (Part 3 shown in figure 8.4) used by Shah et al. (1995) and Li et al. (2004) with 

more complex features and constraints consists of 14 manufacturing features and 20 

machining operations (n = 20). The relevant information of machining resources, 

features, operations, and precedence constraints for each part are given respectively 

in tables 8.1-8.3 (Part 1), tables 8.4-8.6 (Part 2) and tables 8.7-8.9 (Part 3).

z
O

/

Figure 8.2 A sample part with 11 features -  Part 1.

Figure 8.3 A sample part with 14 features -  Part 2.
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N r

l O

a

Figure 8.4 ANC 101 sample part with 14 features -  Part 3.

Table 8.1 Available machining resources and costs in a workshop environment for Part 1.
Machines

No. Types MCI

M, Drill press 10

m 2 3-axis vertical milling machine 1 40

m 3 3-axis vertical milling machine II 40

m 4 CNC 3-axis vertical milling machine 100

m 5 Boring machine 60

Tools

No. Types TCI

c, Drill 1 7

C2 Drill 2 5

C3 Drill 3 3

c4 Drill 4 8

C5 Tapping tool 7

C6 Milling cutter 1 10

C7 Milling cutter 2 15

C8 Milling cutter 3 30

c9 Reamer 15

Cjo Boring tool 20

C „ Slot cutter 15

C ,2 Chamfer tool 15

MCC = 160, SC = 120, TCC=  20, P C  =  650
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Table 8.2 The features, operations and candidate machining information for Part 1.

Features Feature Descriptions Operations (Oper_id) TAD
Candidates

Machine
Candidates

Tool
Candidates

F, A planar surface Milling (Operi) +z M2, M3, M, Q ,  C 7, C 8

f 2 A planar surface Milling (Oper2) -z m2, m3, m4 Q ,  C 7 , C g

f 3 A step Milling (Oper3) +x, -x, +y, -z m2, m3, m4 C 6 , C 7 , C 8

f 4 A step Milling (Oper4) +x, -x, +y, +z Mj, M2, M3, M4 c 2

f 5 A step Milling (Oper5) +x, -x, -y, -z m2, m3, m4 C g , C 7 , c 8

f 6 A step Milling (Oper6) +x, -x, -y, +z M2, M3, M» C 7 , c 8

f 7 A slot Milling (Oper7) +X, -X, - z m2, m3, m4 C 7 , C 8, C l ,

f 8 A slot Milling (Oper8) +X, -X, -z M2, M3, M i C 6 , C 7 , C g ,  

C n

f 9 A hole Drilling (Oper9) 
Reaming (Oper]0) 
Boring (Operu)

+Z, -z Mj, M2, M3, Mt 
M2, M3, Mt 
M2, M3j Mt, Ms

C 2, c 3, c 4 
C 9

C 10

F,o Four holes 
arranged in a 
replicated feature

Drilling (Oper12) 
Tapping (Oper13)

+ y . - y Mi, M2, M3, Mt 
M2, M3, Mt

C ,

C 5

Fn Two holes 
arranged in a 
replicated feature

Drilling (OperI4) +Z, - z Mi, M2, M3, M4 C 9

Table 8.3 The precedence constraints for Part 1.

Constraints Descriptions

Datum interactions Operi is the first operation.
Oper2 should be prior to Oper3-Oper,4.
Oper9, Operio and Opern should be prior to Oper7
and Oper8.

Material removal Oper3-Oper6 should be prior to Operi2-Oper14.
interactions

Fixed order Oper9-Oper10-Oper,,.
Operi2 should be prior to Operi3.
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Table 8.4 Available machining resources and costs in a workshop environment for Part 2.

M a c h in e s

No. Types M C I

Mi Drill press 10

' m 2 Milling machine 35

m 3 Three-axis vertical milling machine 60

Tools

No. Types TCI

c i Drill 1 3

c 2 Drill 2 3

c 3 Reamer 8

c 4 Boring tool 15

c 5 Milling cutter 1 10

C6 Milling cutter 2 15

C7 Slot cutter 10

C8 Chamfer tool 10

M C C =  160, S C  = 120, TCC = 20, P C  = 650

Table 8.5 The features, operations and candidate machining information for Part 2.

Features Feature
Descriptions

Operations
(Oper_id)

TAD
Candidates

Machine
Candidates

Tool
Candidates

Fi Two holes as a 
replicated feature

Drilling (Oper]) +Z, - z Mi, M2, M3 c,

f2 A chamfer Milling (Oper2) -X, + y ,  -y ,  -z m 2, m 3 Cg

f3 A slot Milling (Oper3) +y m 2, m 3 C 5 , C g

f4 A slot Milling (Oper4) +y m 2 C 5, c 6

f5 A step Milling (Oper5) + y , -z m 2, m 3 C 5 , C g

f6 Two holes as a 
replicated feature

Drilling (Oper6) +Z , -z M], M2, M3 C 2

f7 Four holes as a 
replicated feature

Drilling (Oper7) +Z, - z Mb M2, M3 C ,

Fg A slot Milling (Oper8) +x m 2, m 3 C 5, c 6

f9 Two holes as a 
replicated feature

Drilling (Oper9) - z M j,  M2, M3 C ,

F,0 A slot Milling (Oper10) -y m 2, m 3 c 5, C g

Fn A slot Milling (Opern) -y m 2, m 3 C 5 , c 7

F,2 Two holes as a 
replicate feature

Drilling
(Oper12)

+Z, - z M j,  M2, M3 C,

Fn A step Milling (Oper13) ■x, -y m 2, m 3 C 5 , C g

Fh Two holes as 
replicate feature

Drilling
(Oper14)

-y Mb M2, M3 Cl

170



Chapter 8 System implementation and case studies

Table 8.6 The precedence constraints for Part 2.

Constraints 

Tool interactions 

Datum interactions

Thin-wall interactions 

Material removal interactions

Descriptions

Operi should be prior to Oper2

Oper6 should be prior to Oper7. 
Oper10 should be prior to Opern. 
Oper]3 should be prior to Operi4.

Oper9 should be prior to Oper8. 
Opern should be prior to Oper10.

Oper8 should be prior to Oper9. 
Oper10 should be prior to Oper12. 
Operi 3 should be prior to Oper14. 
Oper3 should be prior to Oper4.

Table 8.7 The information of available machines and cutting tools for Part 3.

Machines

No. Types M C I

Mj Drilling press 10

m 2 3-axis vertical milling machine 40

m 3 CNC 3-axis vertical milling machine 100

M* Boring machine 60

C u t t in g  T o o ls

No. Types T C I

c, Drill 1 7
c2 Drill 2 5

c3 Drill 3 3

c4 Drill 4 8
c5 Tapping tool 7
C6 Mill 1 10

C7 Mill 2 15

C8 Mill 3 30

C9 Ream 15

Cjo Boring tool 20

M C C =  160, S C  = 120, T C C  = 20, P C  = 650
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Table 8.8 The features and operations information of Part 3.

Features Feature Descriptions Operations
(Oper_id)

TAD
Candidates

Machine
Candidates

Tool
Candidates

F, A planar surface Milling (Operi) +z m 2, m 3 Cg, C7, Cg

f2 A planar surface Milling (Oper2) -z m 2, m 3 Cg, C7, Cg

f3 Two pockets arranged 
as a replicated feature

Milling (Oper3) +x m 2, m 3 Cg, C7, Cg

f4 Four holes arranged 
as a replicated feature

Drilling (Oper4) +Z , -z Mi, M2, M3 C2

f5 A step Milling (Oper5) +X, -z m 2, m 3 Cg, c 7
f6 A protrusion (rib) Milling (Oper6) +y> -z m 2, m 3 c 7, Cg

f7 A boss Milling (Oper7) -a m 2, m 3 c 7, Cg

f8 A compound hole Drilling (Oper8) 
Reaming (Oper9) 
Boring (Openo)

-a Mi, M2, M3 
Mb M2, M3 
M3,M4

c2, c3, c4 
C9
Cio

f9 A protrusion (rib) Milling (Opern) -y,-z m 2, m 3 C7, Cg

F,0 A compound hole Drilling (Operi2) 
Reaming (Opern) 
Boring (Oper^)

-z Mi, M2, M3 
Mi, M2, M3 
M3,M4

c2, c3, c4 
c9
Cio

F,i Nine holes arranged 
in a replicated feature

Drilling (Opern) 
Tapping (Oper,6)

-z Mi, M2, M3 
Mi, M2, M3

C,
C5

F,2 A pocket Milling (Oper17) -X m 2, m 3 c 7, Cg

F,3 A step Milling (Operi 8) -X, - z m 2, m 3 Cg, c 7

F,4 A compound hole Reaming (Operi 9) 
Boring (Oper20)

+z Mi, M2, M3 
M3,M4

C9
Cjo

Table 8.9 Precedence constraints between machining operations for Part 3.

Constraints Descriptions

Datum interactions

Operi is the first operation.
Oper5 is prior to Oper4 and Oper7.
Oper6 is prior to Oper]2, Oper13 and OperH.
Oper7 is prior to Oper8, Oper9 and Operi 0.

Material removal

Opern is prior to Operi2, Oper]3 and Oper14.
Oper]2, Opern and OperH are prior to Oper^, Operig, Oper^ and Oper20. 

Oper2 is prior to Oper ,̂ Oper]3, Operi4, Oper^ and Oper]6.
interactions Operi 8 is prior to Oper4 and Operi 7.

Fixed order

Oper8 is prior to Oper9 and Operi0, and Oper9 is prior to Operi0. 
Operi2 is prior to Operi3 and Operi4, Operi3 is prior to OperM.
Operis is prior to Operig. 
OperJ9 is prior to Oper2o.
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8.2.3 Determination of parameters

The main parameters of the PSO algorithm can be classified into three categories:

• Swarm characteristics: when the complexity of the part, features, operations and 

precedence constraints increases, the number of particles in the swarm 

(Swarm_Size) and Iteration number (Iter_Num) are set increasingly to enable 

the swarm to explore the search space further. After many trials* Swarm Size 

has been set as 5000 and Iter Num as 200 which are large enough to get 

favourable results for all of these three parts.

• Adjustment of global search and local search: cx and c2 in formulas (Eq6.1) are

both set as 2.0 to balance the velocity tendency to local best (Pt) and global best

(Pg) (Clerc 1999). Two strategies to adjust the local exploration and global

exploration have been tested: A) the inertia weight of particles, w is set to 

descend incrementally to facilitate the local exploration of the space at the 

beginning stage and a global exploration at the later stage; B) w is set to ascend 

incrementally to facilitate the global exploration of the space at the beginning 

stage and a local exploration at the later stage. Figure 8.5 shows the 

comparisons of these two strategies. Through trials on different parts, strategy A 

is considered to be better than strategy B. When w is set to be from 1.4 to 0.6, 

the algorithm can get favourable results.

• Probabilities that help the swarm escape from local optima: many trials have 

been done to test the optimised values of three probabilities of mutation, 

crossover and shift operators. The following values (Pm = 0.65, Pc = 0.2, and

Ps = 0.3) have been shown to yield good performance of the PSO algorithm.
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Figure 8.5 Comparison o f two strategies to adjust global exploration and 
local exploration based on Part 3 

(a: w  is set to descend incrementally; b: w  is set to ascend incrementally).

8.2.4 Computation results and comparison with other algorithms

Experiments have been done for all the three parts and table 8.10 shows a final plan 

for Part 3. The sequence of operations is determined by relative positions of 

operations and the total cost is 2535.0. Figure 8.6 shows the optimised fitness value 

of P for Part 3. It shows clearly that the algorithm converges very well and the

adopted crossover operator improves the performance of the traditional PSO 

significantly.

Computation experience is usually used to verify and compare the efficiency of 

algorithms. The GA and SA algorithms developed by Li et al. (2002, 2004) have 

been used to compare their performance with this developed PSO algorithm. The 

experiments are based on 5000 iterations for each algorithm. The population of the 

GA is the same as that of the PSO algorithm. As shown in figure 8.7, at the initial 

optimisation stage, the GA optimises faster than the SA and the PSO (this is shown 

by a more rapid fall in figure 8.7). However, at the middle and late stages, the GA

174



Chapter 8 System implementation and case studies

converges while the SA and the PSO continue to decline to give better results. From 

table 8.11, it can be observed that the SA and PSO algorithms outperform the GA in 

all the experiments of all three parts and both the SA and PSO can achieve results 

that are nearer the optimum. Comparing the characteristics of the SA and PSO, the 

PSO is more robust as the parameters of the SA have been found to be more 

sensitive to optimisation problems and more difficult to control (Li et al. 2002, 

2004). Comparing the work flows of the GA (Li et al. 2002) and PSO (in chapter 6), 

it can be seen that the PSO needs to adjust the particle dimensions’ by updating the 

velocities and positions of them due to its intrinsic mechanism so that it needs more 

computation than the GA. As population based algorithms, the PSO and the GA take 

more time to complete the 5000 iterations than the SA (90, 50 and 30 seconds 

respectively for part 3).

Total C ost

8000

7000

6000
with crossover

5000
.without crossover

4000

3000

lter_no2000
501 1001 1501 2001 2501 3001 3501 4001 45011

Figure 8.6 PSO with and without crossover (Part 3).
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Total C ost
8000

7000
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PSO

5000
SA

4000
GA

3000

Iter no2000
1 501 1001 1501 2001 2501 3001 3501 4001 4501

Figure 8.7 Comparisons o f  PSO, GA and SA for Part 3. 

Table 8.10 A sample plan for Part 3 (total cost T c  = 2535.0).

Operation
No.

Relative
Position

(Sequence
no.)

1 9 10 11 12 13 14 15 16 17 18 19 20

Machine 2 2 2 1 2 2 2 2 2 4 2 2 2 4 1  1 2 2 2 4

Tool 7 7 7 2 7 7 7 3 9  10 7 3 9  10 1 5 7 7  9 1 0

TAD +z -z +x -z +x -z -a -a -a -a -z -z -z -z -z -z -x -x +z +z

2 20 3 11 15 10 12 13 16 18 19 14 17

Table 8.11 The comparisons o f GA, SA and PSO.

Part 1 Part 2 Part 3

Algorithm
Best cost 
achieved

Mean cost of 
10 trials

Best cost 
achieved

Mean cost of 
10 trials

Best cost 
achieved

Mean cost of 
10 trials

GA 1381.0 1459.4 1228.0 1340.0 2667.0 2796.0

SA 1421.0 1447.4 1088.0 1122.0 2535.0 2668.5

PSO 1361.0 1430.0 1068.0 1103.0 2535.0 2680.5

8.3 C ase stud ies for IPPS m odule

Two experiments are used here to verify the efficiency of the PSO algorithm for the 

IPPS problem. The first experiment is used to compare the efficiencies of the PSO, 

GA and SA algorithms. The second experiment is used to verify the replanning
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ability of the PSO algorithm under machine breakdown and new order arrival 

conditions. For simplification, the parameters determined in section 8.2 are used in 

the PSO algorithm for experiments in this section.

8.3.1 Experiment 1

The example parts and manufacturing resources from Li and McMahon (2006) are 

used here to verify and compare the efficiencies of the PSO, GA and SA approaches. 

The resources of a specific job shop are defined in Table 8.12.

Table 8.12 The resource of a job shop -  machines and tools (Li et al. 2006).

Machines

Types No. Cost ($)

Drilling press M, 1 0

3-axis vertical milling machine I m 2 40

3-axis vertical milling machine II m 3 40

CNC 3-axis vertical milling machine M, 1 0 0

Boring machine Ms 60

Cutting Tools

Types No. Cost ($)

Drill 1 c, 7

Drill 2 C2 5

Drill 3 C3 3

Drill 4 C4 8

Tapping tool C5 7

Mill 1 C6 1 0

Mill 2 C7 15

Mill 3 C8 30

Reaming tool C9 15

Boring tool Cio 2 0

Slot cutter Cn 15

Chamfer tool Cl 2 15

Setup Index - 120.0 (s), MCJndex = 140.0 (s), TCJndex = 20.0 (s)
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Two groups of parts are used for the experiment.

Group 1:

The first group consists of three parts, which are as the same as the parts used in 

section 8.2. These are taken from the works of Shah and Mantyla (1995) and Zhang 

et al. (1997). The relevant technical specifications of the three parts are defined in 

Tables 8.13, 8.14 and 8.15 (Here it is different to the information in section 8.2 due 

to the change of manufacturing resources).

Table 8.13 The technical specifications for Part 1.

Features Operations TAD
Candidates

Machine
Candidates

Tool
Candidates

Machining Time for Each 
Candidate Machine 

(seconds)

F, Milling (Operi) +z m 2, m 3, m « c<>, C7, C8 40,40, 30

f 2 Milling (Oper2) -z m 2, m3, m 4 Cg, c7, c8 40,40, 30

f 3 Milling (Oper3) +x m 2, m3, m4 06, c7, c8 20,20, 15

f 4 Drilling (Oper4) +Z, -z Mi, M2, M3, M4 C2 12,10,10,7.5

f 5 Milling (Oper5) +X, -z m2, m3, m 4 06, C7 35,35, 26.25

f 6 Milling (Oper6) +y,-z m 2, m 3, m , C7, c8 15, 15, 11.25

f 7 Milling (Oper7) -a m 2, m 3, m 4 C7, c8 30,30, 22.5

f 8 Drilling (Oper8) 
Reaming (Oper9) 
Boring (Oper10)

-a M j, M2, M3, M4
m 2, m3, ml» 
m 2, M3, M4, M5

c2, c3, c4
C9

Cio

21.6,18,18,13.5
10.10, 7.5
10.10, 7.5,12

f 9 Milling (Opern) -y,-z m 2, m3, m 4 C7, c8 15,15, 11.25

F,o Drilling (Oper12)
Reaming
(Oper13)
Boring (Oper14)

-z Ml, M2, M3, M4
m 2, m3, m 4

M2, M3, M j, Ms

c2, c3, c4
C9

Cio

48,40,40, 30
25.25, 18.75
25.25, 18.75,30

Fn Drilling (Opern)
Tapping
(Oper16)

-z Mi, M2, M3, M4  

M2, M3, Mt
C,
C5

26.4,22,22,16.5 
20,20, 15

F , 2 Milling (Opern) -X M2, M3, M i C7, c8 16,16, 12

Fn Milling (Oper18) -X, -z M2, M3, M4 06, c7 35, 35, 26.25

F14 Reaming
(Oper19)
Boring (Oper20)

+z M2, M3, Mi 
M2, M3, Mi, M5

C9
Cio

12.12, 9
12.12, 9,14.4
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Table 8.14 The technical specifications for Part 2.

Features Operations
TAD

Candidates
Machine

Candidates
Tool

Candidates

Machining Time for 
Each Candidate Machine 

(seconds)

F, Drilling (Operj) + z , -z Mj, M2, M3, M» c, 12,10, 10, 7.5

f 2 Milling (Oper2) -x, +y, -y, - 
z

m 2, M3, Mt Cl 2 20, 20, 15

f 3 Milling (Oper3) +y M2, M3, M4 C5, Cg, C,1 18,18, 13.5

f 4 Milling (Oper4) +y m 2, m 3, m 4 Cg, C7, Cg 16,16, 12

f 5 Milling (Oper5) + y , - z M2, M3, M» Cg, C7, Cg 15,15, 11.25

f 6 Drilling (Oper6) +Z , -z M1} M2, M3 ,M 4 c 2 30,25,25,18.75
Reaming (Oper7) +Z, -z M2, M3, Mt c 9 25,25, 18.75

f 7 Drilling (Oper8) +Z, -z Mj, M2, M3, Mt C, 14.4,12,12,9

Fg Milling (Oper9) +x M2, M3s Mt Cg, C7 , Cg 15,15, 11.25

f 9 Drilling (Oper10) - z M3, M2, M3j M4 Cl 9.6,8, 8,6

F , 0 Milling (Opern) -y M2, M3, Mt Cg, C7, Cg 10,10, 7.5

Fn Milling (Oper12) -y M2, M3, Mt Cg, C7, Cg 10,10, 7.5

F,2 Drilling (Oper13) +Z, -z Mi, M2, M3, M4 C, 9.6, 8, 8, 6

F,3 Milling (Operi4) -x» -y M2, M3, MLt Cg, C7 , Cg 16,16,12

F,4 Drilling (Operi 5) -y Mi, M2, M3j M4 C, 9.6, 8, 8,6

F,5 Milling(Oper16) +X, -X, + y ,  - 
y , + z

Mi, M2, M3, M4 Cg, C7, Cg 36,30, 30,22.5

Table 8.15 The technical specifications for Part 3.

Feature
s

Operations
TAD

Candidates
Machine

Candidates
Tool

Candidate
s

Machining Time for Each 
Candidate Machine 

(seconds)

F, . Milling (Operj) + z M2, M3, Mt Cg, C7, Cg 20, 20, 15

f 2 Milling (Oper2) - z M2, M3, Mt Cg, C7, Cg 20, 20, 15

f 3 Milling (Oper3) +x, -x, + y , -z M2, M3, Mt Cg, C7, Cg 15,15, 11.25

f 4 Milling (Oper4) +x, -x, + y , + z Mi, M2, M3, Mt C2 15,15,11.25,18

Fs Milling (Oper5) +x, -x, -y ,  - z M2, M3, Mt Cg, C7, Cg 15,15,11.25

Fg Milling (Oper6) +X, -x, -y ,  + z M2, M3, Mt c 7, Cg 15,15,11.25

f 7 Milling (Oper7) +X , -X, -z M2, M3, Mt C7, Cg, Cn 15,15,11.25

Fg Milling (Oper8) +X, -X, - z m 2, m3, m 4 Cg, C7, Cg, 
Cn
C2, c 3, c 4
C9

Cio

25, 25, 18.75

f 9 Drilling (Oper9) 
Reaming (Operi 0) 
Boring (Operu)

+Z, -z M,, M2, M3, Mt
m 2, m3, m 4

M2, M3, M , M5

30, 25, 25, 18.75 
20, 20, 15 
20,20, 15,24

F10 Drilling (Oper]2) 
Tapping (Oper13)

+y. -y Mlf M2, M3, M4  

M2, M3j Mt
C,
C5

9.6, 8, 8,6 
8, 8,6

Fn Drilling (Oper14) +Z, - z Mi, M2, M3, Mt C9 6, 5, 5, 3.75
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Two objectives described in chapter 7 are used here as the optimising direction, i.e., 

the makespan and the balanced machine utilisation (Eq 7.1 - Eq 7.5).

The optimisation results of the PSO algorithm are shown in figure 8.8 and figure 8.9 

respectively. From these two figures, it can be seen that the PSO can optimise the 

Makespan and balance the machine utilisation for group 1 successfully. The 

optimised schedule for minimised Makespan can be achieved after nearly 3000 

iterations and the optimised schedule for balanced machine utilisation can be 

achieved more quickly, after 200 iterations.

M a k e sp a n (s ec )

8000 n--------

6000

4000

2000

i Iteration0
1 501 1001 1501 2001 2501 3001 3501 4001 4501

Figure 8.8 The optimisation result o f Makespan for groupl

B a la n ced  level 

2000

1500

1000

500

0 Iteration

1 501 1001 1501 2001 2501 3001 3501

Figure 8.9 The optimisation result o f  balanced machine utilisation for groupl
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Two other evolutionary algorithms, GA and SA developed by Li (Li and 

McMahon 2006), are used to compare the optimised results, computation 

efficiency and robustness. Figure 8.10 and figure 8.11 show the optimisation 

results of GA, SA and PSO for two objectives respectively. The optimisation 

results are based on 5000 iterations for each algorithm (Here for SA, one 

iteration refers to an occurrence of current-plan replaced by a temp-plan; the 

current-plan and temp-plan are described in section 2.4.2). The population of the 

GA and the PSO are both set as 200.

Makespan:

Table 8.16 The comparisons o f  GA, SA and PSO o f Makespan for groupl.

Algorithm Time for 5000 iterations Robustness (successful optimisation 
trials out of 20 trials)

GA 19 min 40 sec 20

SA 59 min 14

PSO 7 min 40 sec 20

Makespan(sec)

8000

6000

4000

2000

Iteration0
1 501 1001 1501 2001 2501 3001 3501 4001 4501

Figure 8.10 Comparison o f GA, SA and PSO in Makespan for groupl (8 min’s run)

As table 8.16 shows, the SA takes 59 min to finish 5000 iterations, so figure 

8.10 shows the results after an 8 minute run. As shown in table 8.16 and figure
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8.10, with the same time period, the SA and the PSO can achieve better results 

than GA, but the SA is not as robust as the GA and PSO. For 20 random 

consecutive trials, the SA proceeds with optimisation successfully in 14 trials, 

the PSO and the GA can proceed with optimisation successfully in all 20 trials.

Balanced machine utilisation:

Table 8.17 The comparisons o f GA, SA and PSO o f Balance machine utilisation for groupl,

Algorithm Time for 5000 iterations Robustness (successful optimisation 
trials out o f 20 trials)

GA 16 min 15 sec 20

SA 45 sec 20

PSO 3 min 20

Balanced Level

4000

3000

2000

1000

0

3SO

/
/-SA

,O A

iteration

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Figure 8.11 Comparison o f GA, SA and PSO for groupl

From table 8.17 and figure 8.11, it can be seen that all three algorithms can 

achieve the optimized results in all 20 trials, but the GA and the SA algorithms 

approach the optimised result more quickly.

Group 2:

Eight parts taken from (Li and McMahon 2006) have been used to test the algorithm 

under more complex conditions. The relevant specifications of the parts are given in
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Table 8.18. The above two objectives have been used again, and the optimisation 

results are shown in figure 8.12 and figure 8.13. It can be seen that the PSO can 

optimise the Makespan after nearly 4000 iterations and the balanced machine 

utilisation after 3000 iterations.

Table 8.18 The technical specifications for the part in Group 2 (Li and McMahon 2006).

Parts Numbers of Operations (with Numbers of 
Alternative Machining Plans for Each Operation)

Numbers of 
Constraints

1 7 (9, 9, 27, 8, 8, 9, 36) 11

2 8 (9 ,9 ,3 6 , 18, 27, 8, 27, 18) 11

3 7 (9, 9, 36, 36,18, 6 ,6 ) 10

4 9 (9, 9, 27, 6, 36, 36, 6, 18, 18) 18

5 7 (9, 9, 36, 36, 36, 18, 6) 13

6 9 (9, 9, 36, 27,18, 6, 27, 6, 18) 20

7 5(9 , 27,27, 18, 9) 5

8 7 (9, 9, 27,36, 36, 6 ,6 ) 13

M a k e sp a n (s e c )  

8000 ---------

6000

4000

2000

Iteration0
1 501 1001 1501 2001 2501 3001 3501 4001 4501

Figure 8.12 The PSO optimisation result o f  Makespan for group2
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Figure 8.13 The PSO optimisation result of balanced machine utilisation for group2

The comparisons of the GA, SA and PSO designed for group 1 are used to compare 

the results, efficiencies and robustness for group 2 as well.

Makespan:

Table 8.19 The comparisons o f GA, SA and PSO o f Makespan for group2.

Algorithm Time for 5000 iterations Robustness (successful optimisation 
trials out o f 20 trials)

GA 16 min 45 sec 20

SA 45 min 6

PSO 7 min 20

Makespan(sec)

8000

6000
SA GA 'SO

4000

2000

■Iteration

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Figure 8.14 Comparison o f PSO, GA and SA for group2 (in 7 min)
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As shown in table 8.19 and figure 8.14, with the same time period, the PSO and 

the SA can achieve better results than the GA. But for 20 random consecutive 

trials, the SA can only proceed with optimisation successfully in 6 trials, the 

PSO and the GA can proceed with optimisation successfully in all 20 trials. 

Balanced machine utilisation:

Table 8.20 The comparisons o f GA, SA and PSO o f Balance machine utilisation for groupl.

Algorithm Time for 5000 iterations Robustness (successful optimisation 
trials out o f 20 trials)

GA 16 min 45 sec 20

SA 22 min 6

PSO 7 min 30 sec 20

Balanced Level

8000

6000
PSOGA

4000

2000

ite r a tio n0
1 501 1001 1501 2001 2501 3001 3501 4001 4501

Figure 8.15 Comparison o f PSO, GA and SA for group2

From table 8.20 and figure 8.15, it can be observed that all of the algorithms can 

reach good results, while different characteristics are shown due to the inherent 

mechanisms of the algorithms. The SA is much “sharper” to find optimised solutions 

than the GA and the PSO. The SA can achieve better results than the GA and the 

PSO. However, in 20 trials, the SA can only proceed with optimisation successfully 

in 6 trials but the GA and the PSO can proceed with optimisation successfully in all 

20 trials.
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From the comparisons of the GA, SA and PSO, especially from the performance of 

the SA, it can also be observed that the optimisation of makespan takes longer than 

the optimisation of balanced machine utilisation. Compare table 8.16 and table 8.17, 

5000 iterations of SA for optimising makespan take 59 min but the same number of 

iterations for optimising balanced machine utilisation only take 45 sec. As described 

above, one iteration in the S A refers to an occurrence of the current-plan replaced by 

a temp-plan. Therefore it takes longer (more trials) to generate a temp-plan which is 

better than the current-plan. This means that the optimisation of Makespan is more 

difficult than that of balanced machine utilisation (This can be also observed from 

the results of the PSO for both objectives).

Summary of GA, SA and PSO algorithms

As discussed in section 8.2 and section 8.3, the GA, SA and PSO algorithms are used 

to optimise the operation sequencing problem and the IPPS problem. All of them can 

yield good results, but they have different characteristics. The GA and the PSO are 

both population based algorithms but the SA is not. So the optimising processes of 

the GA and the PSO take a longer time than that of the SA in the examples of section 

8.2. It can also be observed that the PSO needs to adjust the particle dimensions’ by 

updating the velocities and positions of them due to its intrinsic mechanism so that it 

needs more computation time than the GA. For the optimisation results, the SA and 

the PSO both outperform the GA in all the above case studies. As the complexity of 

the problem increases (for example when optimising IPPS problems), the SA can 

achieve better results than the GA and the PSO in the case studies described in 

section 8.3.1. But as the complexity of the problem increases, the SA is not as robust 

as the GA and the PSO. This is probably because the SA is not population based, so
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the initial plan does not have enough diversity to enable it to search the space 

successfully. Also as the complexity of the problem increases, it can be seen that the 

optimisation speed advantages of the GA and the SA over the PSO diminish. It is 

well known that simple mathematic operations run much faster than other position 

changing operations. This can probably be attributed to the fact that each iteration of 

the PSO algorithm uses mainly simple mathematical operators that can be finished in 

a shorter time than for the GA and the SA algorithms with mainly complex position 

changing operators. In constraints handling, the GA and the SA can use the adjust 

method developed by Li et al. (2002) that keep the plan feasible, but the PSO can 

only use the penalty method to enable the results to comply with the constraints due 

to its intrinsic mechanism. The above discussion is illustrated in table 8.21.

Table 8.21 The comparison o f GA, SA and PSO algorithms.

Algorithm Population
based

Optimisation 
result (out of 

10)

Optimisation speed Constraints
handling

Robustness

GA Yes 6
Fast but get slow 

when complexity of 
problems increases

Adjust

Penalty
Robust

SA No 9
Faster but get slow 
when complexity of 
problems increases

Adjust

Penalty

Not robust when 
complexity o f  

problems increases

RobustPSO Yes 8 Fast Penalty

8.3.2 Experim ent 2

The parts in group 2 have been used to test the replanning ability of the PSO 

developed for IPPS under machine breaking down and new order arrival conditions. 

In this experiment, as new order arrivals and machine breakdowns occur, it is 

appropriate to set the total tardiness as the main objective, so as to make comparison 

under these two conditions.
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Figure 8.16 Results o f  optimization for first planning, replannings 

after new order arrival and machine breaks down

1. First planning

The 8 parts in group 2 consist of a total of 59 operations. Here the Due Date (DD) is 

set as 2700.0. Table 8.22 shows the first scheduling results of the complete time for 

individual parts in group 2. It also can be seen from figure 8.16, the process can be 

optimized to achieve the DD for all the parts.

Table 8.22 Complete time for individual part after optimisation

Part 1 2 3 4 5 6 7 8

Time 2272 ' 1958 2665 2355 2350 2505 2690 2697

2. Condition of new order arrival

At time 1000.0, a new order arrives (part 9 in this experiment which is the same as 

part 1) and the corresponding DD is set as 3500.0. At the time 1000.0, 18 operations 

have been finished and 41 operations are left. With part 9 added as a new part, 7 

operations are then inserted into the total operation list which includes 48 operations.
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The individual available time for all the machines is shown in table 8.23. The 

optimization result is shown in figure 8.16 and the individual complete time for all 

the 9 parts after replanning is shown in table 8.24.

Table 8.23 Machines available time when new order arrives

Machine 1 2 3 4 5

Available time 1000 1120 1078 1116 1000

Table 8.24 Complete time for individual part after replanning when new order arrives

Part 1 2 3 4 5 6 7 8 9

Time 2221 2513 2051 2659 2660 2689 2344 2654 3458

3. Condition of machine breaks down

At time 1500.0, machine 3 breaks down (repair time 300.0). Table 8.25 shows the 

available times for different machines. At that time, 16 operations have been finished 

and only 32 operations are left. The optimisation result is shown in figure 8.16 and 

the individual complete time for all the 9 parts after replanning is shown in table 

8.26.

Table 8.25 Machines available time when machine 3 breaks down

Machine 1 2 3 4 5

Available time 1500 1560 1800 1574 1500

Table 8.26 Complete time for individual part after replanning when machine 3 breaks down

Part 1 2 3 4 5 6 7 8 9

Time 1845 2651 2497 2484 2613 2659 2334 2634 3357
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Because the algorithm will not continue optimizing when it achieves the lowest 

objective (here total tardiness=0), it can find the earliest complete date for parts by 

reducing the DD. For example if DD(part 1-8) = 1500.0, DD(9) = 2500, the planning 

results are shown in table 8.27, 8.28 and 8.29:

Table 8.27 Complete time for individual part after first planning

Part 1 2 3 4 5 6 7 8

Time 1313 1914 2399 2242 1775 1488 1123 2095

Table 8.28 Complete time for individual part after replanning after new order arrives

Part 1 2 3 4 5 6 7 8 9

Time 1415 1738 2038 2226 1710 1572 1123 2539 2546

Table 8.29 Complete time for individual part after replanning when machine 3 breaks down

Part 1 2 3 4 5 6 7 8 9

Time 1415 1918 2063 2310 1844 1692 1123 2295 2502

From this case study, it can be seen that the modified PSO algorithm has the ability 

to replan when new order arrival and machine breakdowns occur. Figure 8.16 shows 

that with the method discussed in chapter 7, the replanning time can be reduced and 

the computation efficiency can be improved significantly.
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8.4 System  implementation and c a se  study for 5-axis p rocess  

planning

8.4.1 System  im plem entation

Feature information input 
moduleUser interaction

Information o f  
dimension, 

tolerance, roughness 
etc. for all the 

features o f  a part

  _

Operation selection module

________ 1 Z ________
Precedence constraints 

determination All the generated 
operations alternatives 

including selected 
tools, TADs

Cutting conditions 
calculation module

" All the 
precendence 

constraints among 
generated 
operations r '

Cutting conditions 
and machining time 

for all the 
operations 
alternatives r-

Operation sequencing module

Optimised 
t process , 

plans

Figure 8.17 Information flow between main modules o f CAPP
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As discussed in section 4.2 and illustrated in figure 4.2, the CAPP system for the 5- 

axis CNC environment is comprised of four modules: feature information input 

module, operation selection module, cutting conditions calculation module and 

operation sequencing module. The first two modules are implemented with Visual 

C++ 6.0 and the last two modules are implemented with Java SDK 1.5.0 (this is for 

comparison with the GA and SA approaches developed by Li with Java language). 

The information flow between these modules in generating a process plan for a part 

is illustrated in figure 8.17. To achieve this, the information shown in the stars is 

stored in different databases and files.

As figure 8.17 shows, the user inputs all the feature information including feature 

types, dimensions, tolerances and roughness into the system. This information is 

automatically stored into the feature.mdb database which is shown in table 8.30.

Table 8.30 Tables in feature.mdb

Table name Information stored

PartManage

Recording all the general information of the 
components that have been input into the system 

including part name, part number, material, 
production batch and part dimensions etc.

Part

Detailed features information for a specific part 
including feature type, sub type, all dimensions, 
dimension tolerances, roughness, feature original 

point, dimension directions and other related 
information

Table 8.31 Tables in Tools.mdb

Table name Information stored

Cutters

Recording all the general information of the cutting 
tools that have been input into the system including 
tool id, tool dimensions, material and tool holders

etc.

ToolTypeRecom Store the information as table 5.3 shows.
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Table 8.32 Tables in Featureagent.mdb

Table name Information stored

PartForOperate Store the information for the part needs to be 
processed.

FeatureForOperate Store the feature information transferred from 
feature.mdb.

HardnessAbility Store the hardness value of different tool material 
can achieve.

MaterialHardness Store the related hardness value for different 
materials.

RoughnessAbility Store the surface roughness different processes can 
achieve.

Tolerance Ability Store the dimension tolerances different processes 
can achieve.

CuttingSpeed Store the cutting speed ranges for different part 
materials and tool materials.

MillingFeed Store the milling feed ranges for different part 
materials, tool materials and tool types.

DrillingFeed Store the drilling feed rates for different hole 
diameters and tool materials.

OperationList

Store all the detailed information for generated 
operations including operation type, sub type, 

operation description, selected alternative tools and 
TADs etc.

All this information is used by the operation selection module to generate the 

operations for every feature of the part including the alternative tools, TADs and 

detailed operation descriptions etc. To implement this process, Machine.mdb, 

Tools.mdb and Featureagent.mdb are designed to include all the information needed 

by the operation selection module and the generated alternative operations list. 

Machine.mdb stores the specifications of the 5-axis CNC machine tool used in this 

research including its maximum work spindle speed, federate, maximum travel 

distance in X, Y and Z, and the maximum dimensions, weight of part it can machine 

etc. All this information indicates the capability of the machine and can be used to
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check if the part is machinable and the operation is executable. The design of 

Tools.mdb and Featureagent.mdb are shown in table 8.31 and 8.32 respectively.

The generated operations are stored in the OperationList table of Featureagent.mdb. 

With this information, the cutting conditions calculation module calculates the 

corresponding cutting speed, feed rate and machining time for all the alternative 

operations. This information is stored in file operation.dat, and is used by the 

operation sequencing module to generate the optimised process plan with the 

precedence constraints between all the operations determined by the user. The final 

optimised process plan can be output to the monitor or saved to file.

8.4.2 C ase study

Figure 8.18 Example part with 8 features
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Figure 8.19 Specifications o f  example part 

A part with 8 features is used as an example in this case study as figure 8.18 shows.

Table 8.33 shows the description of features and corresponding roughness and depth.

Other dimensions can be seen in figure 8.19.

Table 8.33 Descriptions o f features in example part

Features Feature Descriptions Depth(mm) Roughness (Mm)

F, A face at the bottom 5 6.3

f 2 A face at the right side 5 12.5

f 3 A face on the top 6 6.3

f4 A step 140 6.3

f 5 A slot 40 1.6

f6 A through hole 90 12.5

f 7 A pocket on the top 30 3.2

f8 A blind hole 30 12.5

The operation selection module generates all the alternative operation with all 

applicable tools and TADs as figure 8.20 shows.
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Figure 8.20 Generated operations list from operation selection module

Table 8.34 The generated operations for example part.

Features Operation
Set

Operations Depth To 
Cut/Diameter 

To Cut

Tool
Candidate

IDs

TAD
Candidates

F, 0 Rough Milling (OperJ 5 5 +z

f 2 0 Rough Milling (Oper2) 5 4 +x

f 3 0 Rough Milling (Oper3) 6 5 -z

f 4

0 Rough Milling (Oper4) 140 4 -z

1

....... ...........
Rough Milling (Oper4) 2 0 0 3 -X

f 5 0 Milling (Oper5) 39 12, 17 -z

SemiFinish Milling 
(Oper6)

1 12, 17 -z

f 6 0 Rough Drilling (Oper7) 90 2 0 -z,+z

f 7 0 Rough Drilling (Oper8) 30 23 -z

Rough Milling (Oper9) 29.6 11, 14 -z

SemiFinish Milling 
(Oper10)

0.4 11,14 -z

f 8 0 Rough Drilling (Opern ) 30 19 -z, +z
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Table 8.35 All the operations alternatives with machining time.

Feature
ID

Operation
Set

Operation
No.

Tool
ID

TAD M achining
tim e(m in)

F, 0 1 5 +z 1.60

f2 0 2.............. .... I.... 4 + x 1.49

f 3 0 3 5 -z 1.60

0 4 4 -z 12.14
f 4

1 4 3 -X 9.6

1 2 - z 9.2
5

17 -z 4.6
f 5 0

1 2 -z 1 . 8

6

17 -z 0.9

-z 0.42
f 6 0 7 2 0

..... ... -_ __  _J +z 0.42

8 23 -z 0.15

1 1 -z 4.18
9

f7 0 14 -z 1.98

1 1 -z 1.04
1 0

14 -z 0.49

-z 0.09
F8 0 11 19

+z 0.09

Table 8.34 shows the detailed generated operations information that is the input of 

the cutting conditions calculation module. Then the cutting conditions are selected 

and machining times for all the operations alternatives are calculated as table 8.35 

shows.

Table 8.36 Precedence constraints between machining operations.

Constraints Descriptions

Open is the first operation.
Datum interactions Oper2 is prior to Oper4, Oper5, Oper6 and Oper7.

Oper3 is prior to Oper4, Oper5, Oper6, Oper7, Oper8, Oper9, Oper]0 and Opern .

Material removal Oper5 and Oper6 are prior to Operu .
interactions Oper8 Oper9 and Oper10 are prior to Opern .

Feature priority Oper4 is prior to Oper5, Oper6 and Oper7.

Fixed order Oper5 is prior to Oper6
Oper8 is prior to Oper9 and Oper10, and Oper9 is prior to OperI0.
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The precedence constraints between these operations are stated in table 8.36. When 

considering these constraints, the task of the operation sequencing module is to 

generate the optimised process plan so as to achieve the least total machining time. 

In this process, four methods of set-up determination discussed in chapter 6 are 

tested. It is assumed that all 6 directions can be used as the set-up direction. The set

up change time, tool change time and table turn time are set as 1200 sec, 12 sec and 

3 sec respectively.

Figure 8.21 shows the optimisation process of total machining time in which the set

up is determined by the TR method (Total Random method presented in chapter 7). 

It can be seen that within 100 iterations the optimised result can be achieved. Table 

8.37 and table 8.38 show two optimised process plans. Neither process plan needs a 

set-up change and both require 7 tool changes.

TR

CD 20000E
•  T— 1
+ J

bC
C 15000

• rHc
• rH 10000

5000

o
§

1— 1

o 0E-h

1 24 47 70 93 116 139 162 185 208 231 254 277
I te ra t io n

Figure 8.21 Optimisation result o f total machining time (set-up determination by TR)
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Table 8.37 An optimised plan for the part (total machining time = 2673.0 sec).

Sequenced operation 
No. 1 3 8 2 4 9 10 5 6 11 7

Tool 5 5 23 4 3 14 14 17 17 19 20

TAD +z -z -z +x -X -z -z -z -z -z -z

Set-up -y -y -y -y -y -y -y -y -y -y -y

Table 8.38 An optimised plan for the part (total machining time = 2673.0 sec).

Sequenced operation 
No. l 3 8 2 4 9 10 5 6 7 10

Tool 5 5 23 4 3 14 14 17 17 20 19

TAD +z -z -z +x -X -z -z -z -z -z -z

Set-up +y +y +y +y +y +y +y +y +y +y +y

Similar optimisation result can be achieved when determining the set-up with FR 

method (First Random method presented in chapter 7) as figure 8.22 shows (the 

same optimised result 2673.0 can be achieved).

FR

20000

15000

5000

1 24 47 70 93 116 139 162 185 208 231 254 277
I te r a t io n

Figure 8.22 Optimisation result o f  total machining time (set-up determination by FR)
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Figure 8.23 Optimisation result o f  total machining time (set-up determination by TS)

Figure 8.23 shows the optimisation results using the TS method (Total Set method 

presented in chapter 7) to determine the set-up. It can be observed that even in 1000 

iterations, the algorithm can only achieve an optimised result 3870.0 which means it 

needs one set-up change in the process. Table 8.39 shows a generated process plan 

with the TS method.

Table 8.39 An optimised plan for the part with TS method (total machining time = 3870.0 sec).

Sequenced operation 
No. 1 3 8 2 4 5 6 7 9 10 11

Tool 5 5 23 4 3 12 12 20 14 14 19

TAD +z -z -z +x -X -z -z -z -z -z -z

Set-up +z -z -z -z -z -z -z -z -z -z -z
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Figure 8.24 Optimisation result o f  total machining time (set-up determination by FS)

Table 8.40 An optimised plan for the part with FS method (total machining time = 3870.0 sec).

Sequenced operation 
No. 1 3 2 4 8 5 6 9 10 n 7

Tool 5 5 4 3 23 17 17 14 14 19 20

TAD +z -z +x -X -z -z -z -z -z -z -z

Set-up +z +y +y +y +y +y +y +y +y +y +y

Similar results can also be achieved with the FS method (First Set method presented 

in chapter 7) to determine the set-up as shown in figure 8.24 and table 8.40. It can be 

observed that by constraining the first set-up direction, the flexibility of selecting the 

set-up directions is reduced so that the optimised result can not be achieved (here, 

with set-up as +2 or -2, the part can be machined within one single set-up). Therefore, 

when all the 6 directions can be used as set-up directions, it is better to determine the 

set-up with the TR or FR methods. However, there may be some directions that can 

not be used as set-up directions. For example, if it is assumed that only certain set-up 

directions can be selected in (-3, 3, -1), TR, FR, TS and FS can all achieve the 

optimised result of 3870.0 sec which means there is at least one set-up change. Table
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8.41 shows an optimised plan using the TS method. After operation 1 is executed, a 

set-up change is required.

Table 8.41 An optimised plan for the part with FS method (total machining time = 3870.0 sec).

Sequenced operation 
No. 1 3 8 2 4 5 6 7 9 10 11
Tool 5 5 23 4 3 17 17 20 14 14 19

TAD +z -z -z +x -X -z -z -z -z -z

Set-up +z -z -z -z -z -z -z -z -Z -z -z

8.5 Summary

In this chapter, the implementations of the operation sequencing module for 3-axis 

machining, the IPPS optimisation module and the CAPP system for 5-axis 

machining are illustrated. For the operation sequencing module for 3-axis machining, 

two experiments using three parts are designed to determine the PSO algorithm 

parameters and verify the efficiency of the PSO algorithm. Two groups of different 

parts are used to verify the efficiency of the PSO algorithm for optimising the IPPS 

problem. By comparing the GA, SA and the PSO algorithms for these two modules, 

the benefits and drawbacks of these algorithms are discussed. It can be seen that the 

PSO algorithm can obtain better computation results than GA in the operation 

sequencing problem and the IPPS optimisation problem and is more robust than the 

SA. At this point in time the conclusions are limited by this computational 

experience, and more theoretical analysis needs to be made in the future.

Finally the process of generating an optimised process plan for an example part by 

the developed 5-axis CAPP system is illustrated by a case study. From the case study,
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it can be seen that the system can generate the optimised process plan to achieve the 

minimised total machining time.
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Chapter 9 Conclusions and Future Work

9.1 Conclusion and Contributions

The developed CAPP system and the stand alone IPPS module are considered to 

meet the research objectives given in section 3.2. The primary aim of developing a 

prototype CAPP system for common prismatic components in a 5-axis CNC 

machining environment has been achieved. The workflow and general structure of 

the system has been given in chapter 4. The four major modules that form the 

prototype CAPP system, namely Feature information input module, Operation 

selection module, Cutting conditions calculation module and Operation sequencing 

module, have been designed and implemented. A case study shown in chapter 8 has 

proved that the representation model of process planning for common prismatic 

component in 5-axis machining environment works correctly and the optimised 

process plans can be achieved by using a Particle Swarm Optimisation (PSO) 

algorithm. Furthermore, a stand alone operation sequencing module for 3-axis 

machining and a stand alone adaptive IPPS module have been designed and 

implemented. Case studies have been used to verify and test these two modules and 

show that these two problems have been modelled properly and the sequence and 

schedules can be optimised with the PSO algorithm. Through case studies, a 

comparison has been made between the result of the modified PSO algorithm and 

previous published results using the Genetic Algorithm (GA) and the Simulated 

Annealing (SA) algorithm respectively, and for these cases the PSO algorithm has 

been shown to outperform both the GA and SA in the majority of applications by 

consideration of computation efficiency, optimisationability and robustness.
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The following contributions are considered to have been made.

(1) A generative CAPP prototype system for common prismatic parts in 5-axis

machining environment has been developed.

• A feature-based model has been developed to assist the user to input the 

features information from a CAD model of a part. This model can also help 

deal with adding, editing and deleting features to modify the information of 

apart.

• In order to simplify the algorithm generation and development time, the 

research work presented in this thesis has been carried out using a restricted 

set of only 5 features. These features are namely: planar face, pocket, slot, 

hole and step. By representing these features with an Object Oriented 

Programming Strategy (OOPS), it is possible to organise and represent the 

feature information for easy message processing which offers the flexibility 

to modify the definition of a feature, its structure, variables and functions 

without affecting the rest of the system configuration. Also it is easier to 

expand the system to include other feature types without affecting the 

existed feature types.

• The feature information required for downstream process planning activities 

has been summarised including Identifier, Dimensions, Location and 

Technical specifications that have been set as the variables for different 

feature classes.

• The logic and algorithm to select the machining operations for each feature 

have been discussed and organised in section 5.2. By executing the 

following steps: a) Feature information extraction, b) Operation Type (OPT)
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Selection, c) Tool selection and d) TAD determination, the operations 

including the selected tools and TADs can be determined for each feature.

• To support global optimisation of the process plans, the operation selection 

module can generate all the applicable operations including all the available 

alternative machining resources for each type of feature. For simplification 

and efficiency, only 2 tools will be selected in the procedure according to 

tools’ materials and sizes. The hierarchy for generating alternative 

operations is shown in figure 5.15.

• The cutting conditions including cutting speed, feed rate and machining 

time can be selected and calculated based on the knowledge generated from 

different literature (handbooks, catalogues).

• To support the operation selection module and cutting conditions 

calculation module, all the knowledge needed for decision making has been 

stored in the database which it is easy to modify according to the changes of 

the manufacturing environment. The rules for realising the logic have been 

coded in the program to generate the operations.

• Operation sequencing is one of the crucial tasks in process planning. 

However, it is an intractable process to identify an optimised operation 

sequence with minimal machining cost in a vast search space constrained by 

manufacturing conditions. The complicated operation sequencing process 

has been modelled as a combinatorial optimisation problem, and an 

expanded model to represent the process plans for 5-axis machining has 

been proposed.

• A modem evolutionary algorithm, the Particle Swarm Optimisation (PSO) 

algorithm, has been employed and modified to solve it effectively. Initial
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process plan solutions are formed and encoded into particles of the PSO 

algorithm. The particles “fly” intelligently in the search space to achieve the 

best sequence according to the optimisation strategies of the PSO algorithm. 

Meanwhile, to explore the search space comprehensively and to avoid being 

trapped into local optima, several new operators have been developed to 

improve the particles’ movements to form a modified PSO algorithm.

• The set-up determination for 5-axis machining is considered to be the most 

difficult problem in the move from 3-axis process planning. Four methods 

to determine the set-up directions have been proposed and discussed.

• A case study shown in chapter 8 is used to test and verify the CAPP system. 

Through the case study, it can be seen that the different modules proposed 

can achieve the expected results. The optimised process plan with suitable 

operations and machining resources can be achieved. A comparison of the 

methods to determine the set-up has been conducted, it can be observed that 

without set-up constraints, the TR and FR methods can both achieve the 

optimised result whereas the FS and TS can not.

(2) An independent operation sequencing module has been developed and the PSO 

algorithm is used to optimise the combinational operation sequencing problem. 

Three example parts have been used to verify the efficiency of the PSO and 

compare it with two other popular algorithms, the Genetic Algorithm (GA) and 

Simulated Annealing algorithm (SA). Through the case study, the parameters for 

the PSO have been determined and the benefits and drawbacks of different 

algorithms have been determined.
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(3) The problem of Integrated Process Planning and Scheduling (IPPS) optimisation 

has been defined as the optimisation of an extension to the operation sequencing 

problem with scheduling objectives. The procedure of evaluating the 

performance of the schedule from sequenced operations has been discussed. 

Through 2 case studies, the computation results and efficiencies of the PSO 

algorithm and the comparisons with the GA and the SA have shown the benefits 

and drawbacks of the different algorithms to be as follows:

• Compare the computation efficiency of the PSO, GA and SA, in the case of 

operation sequencing optimisation problem, the optimising processes of the 

PSO take a longer time than those of the GA and SA in the examples of 

section 8.2.

• As the complexity of the problem increases (for example when optimising 

IPPS problems), the optimisation speed advantages of the GA and the SA 

over the PSO diminish. The above two points can probably be attributed to 

the facts: a) The GA and the PSO are both population based algorithms but 

the SA is not; b) each iteration of the PSO algorithm uses mainly simple 

mathematical operators that can be finished in a shorter time than for the 

GA and the SA algorithms with mainly complex position changing 

operators.

• The SA and the PSO both outperform the GA in all the case studies 

experimented in chapter 8.

• As the complexity of the problem increases, the SA can achieve better 

results than the GA and the PSO in the case studies described in section 

8.3.1. But as the complexity of the problem increases, the SA is not as 

robust as the PSO and the GA.
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9.2 Limitations

The methodology presented and the system developed in the thesis has, however, 

got certain limitations, which are described below.

1) Restricted component geometry, i.e. only 3D prismatic components are 

considered.

2) Limited standard feature classes. Only five basic features, including planar faces, 

holes, slots, pockets and steps are included in the research currently. It has not 

yet been developed to plan interacting features and contoured 3-D surfaces which 

will be subject to future research.

3) Lack of an automatic validity check for features information input and 

precedence constraints determination.

4) Lack of consideration of fixturing.

9.3 Recommendation for future work

The proposed system works, but future work is still required to increase its 

capabilities:

(1) Automatic feature extraction from a CAD model

A feature modeller has been developed to input the feature information of the 

part for downstream process planning but it requires the user to input it manually. 

It is error-prone compared to automatic feature recognition or extraction from 

feature-based design tools.

(2) Automatic precedence constraints generation
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When generating the precedence constraints manually, it is possible to miss some 

constraints which will result in the optimised process plans being unfeasible. So 

it is better to be able to generate the precedence constraints between operations 

automatically according to the characteristics of features and operations. To 

make this happen, more information is required when inputting the feature 

information.

(3) Extension of component geometry and feature classes

It is required to find a method to represent contoured 3-D surface features and 

apply corresponding operation selection methods for it. The current feature 

classes are also needed to be further extended and the interacting features need to 

be considered as well.

(4) Consideration of fixturing

Fixturing may affect process planning dramatically. Future effort should be paid 

to fixturing constraints and corresponding clamping strategy. With automatic 

fixture selection, the set-up time can be determined more accurately so as to 

increase the accuracy of total machining time calculation and schedule 

determination.

(5) Improvement of PSO algorithm

The PSO algorithm can be further improved by employing a new sequence 

adjustment method to reduce the computation time in more complex operation 

sequencing and IPPS problems. It is possible to improve the algorithm efficiency 

and computation results by using hybrids of the algorithms introduced in this 

thesis.
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(6) Interfacing with NC program

The research can be extended to interface with NC systems to cover toolpath 

generation and generate the NC code which can be directly used on machines.

(7) Expand the IPPS module into the 5-axis environment

With the current methodology introduced in the 3-axis CAPP system and IPPS 

module, it can be easy to expand the IPPS module into the 5-axis environment 

with expanded representations for process plans and schedules and set-up 

determination methods.

(8) More flexible CAPP and IPPS systems.

The current system can be made more flexible with a distributed organisation. 

For a very complex component, it is possible to input the feature information 

collaboratively by different users on different computer at the same time (it is 

similar to collaborative design). The IPPS system should respond to the changed 

situations in real time so a distributed real-time structure should be applied.

(9) Application of the PSO to other Manufacturing problems

The results presented in this thesis have shown the merits of optimisation using 

the PSO algorithm compared with GA and SA. The application within this thesis 

has concentrated on one small area of the manufacturing paradigm. Other 

opportunities exist for the application of the PSO to increase the efficiency of 

search optimisation, such as supply chain optimisation and buffer size 

optimisation etc.
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