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EIT APPLIED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Abstract

This thesis focuses on body-support interface pressure measurement. The intended 
applications for interface pressure measurement are in the medical field, to study the 
pressure distributions of seated wheelchair patients or bed-ridden patients. In certain 
circumstances, these patients will be prone to pressure sore development. The required 
pressure measurement data will enable medical physicians to study the pressure 
distributions that lead to pressure sores. The data will also enable the assessment of the 
different prophylactic devices that alleviate and spread pressure. A system could also be 
placed in each hospital ward to estimate the probability of pressure sore formation in 
newly admitted patients.

This proposed pressure measurement system is unique in that it measures pressure over 
a continuum. Current pressure measurement systems are limited in that they only give 
pressure readings at certain points. The proposed system needs a thin carbon fibre felt 
mat placed between the body and supporting medium. The mat exhibits a change in 
resistivity at points at which a load is applied. Electrical Impedance Tomography (EIT) 
is a medical imaging technique that can be applied to reconstruct the resistivity 
distribution by applying currents to the mat. The usual applications for EIT are in 
imaging body organs, bones, tissues, etc. where access to the centre of the body is 
prohibitive. In the case of a resistive mat, access to the centre of the resistivity 
distribution is available. Central access reduces the effects of data measurement error on 
image accuracy. Additionally, the largest errors of three-dimensional current flow and 
variable electrode positioning are removed and reduced respectively.

The thesis concentrates on the modelling of the pressure sensitive mat and assessing the 
viability of applying EIT to pressure measurement. The computer model discretises the 
domain through the use of the finite element method. The finite element model is based 
on square bilinear elements and their choice is discussed. The model chosen allows the 
use of a nested dissection re-ordering algorithm. Combining this sparse matrix algorithm 
with the sparse vector method, the time required to reconstruct the pressure distribution 
is improved. Other techniques to reduce reconstruction time are also detailed; these are 
primarily based around the Jacobian matrix formation, a matrix required by the 
reconstruction algorithm.
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Simulations using medical pressure profiles, such as the foot and buttocks, are 
reconstructed by various least squares algorithms. The Gauss-Newton algorithm 
regularised by second finite differences is chosen as the most suitable for reconstruction. 
Reconstruction accuracy is examined and it is shown that image improvements are 
obtained when attaching electrodes to the centre of the resistive mat. Spectral analysis 
helps to determine the most pragmatic electrode configurations for data gathering. 
Using practical electrode configurations, the reconstructed profiles indicate great 
promise for implementing a real-world EIT system for interface pressure measurement.
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1. Introduction
The aim of this section is to give an overview of pressure measurement and pressure 
sores. The prevention of them is the target application for the use of a body-support 
interface pressure measurement system. Other medical uses for such a system are 
mentioned. Current pressure measurement techniques are analysed and the requirements 
for a good pressure measurement system are examined. The section is concluded with 
the proposed pressure measurement system.

RA Knight started the research in this field and the research contained within this thesis 
is a continuation of the work he initiated. Part of this first chapter is, in effect, an 
overview of the first two sections of his thesism. This chapter also includes further 
research into newly published work.

1.1. Pressure Sores

1.1.1. Introduction to Pressure Sores
A pressure sore is an ulceration of the skin and/or deeper tissues due to unrelieved 
pressure, shear force(s), and/or frictional force(s). Uninterrupted pressure on the skin 
above the capillary pressure of 32mmHg reduces blood flow to the area under pressure 
and so produces local ischaemia, which if prolonged will cause an ulcer. Modem 
research has analysed this further and shown that skin blood flow does not cease until 
the applied pressure is above diastolic pressure[2]. When an applied pressure is greater 
than capillary pressure, skin blood flow continues, but at a reduced level. With limited or 
no blood flow, tissue survives for a short time. It is of paramount importance to relieve 
pressure early in order to prevent pressure sore formation.

Pressure sores are a nasty infliction occuring in tens of thousands of patients in Britain. 
Pressure sore patients demand difficult and labour intensive nursing care, and suffer 
degrees of physical and mental discomfort which cannot be measured in purely 
economic terms. The most effective means of reducing the impact of pressure sores is by 
the prevention of them. Improved methods of treatment would at the most only have a 
marginal effect[3] on financial costs. Treatment should thus be concentrated on pressure 
sore prevention.

Page  1
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Surveys of hospital and community populations have shown that pressure sores account 
for 25% of the cost of treatment and maintenance of patients so afflicted. Indeed, 
pressure sores are a great financial burden on the NHS. Exton-Smith[3] estimated the 
cost to be £420 million p.a. To this must also be added the cost of treating sores outside 
hospital. In the USA, the medical costs associated with pressure sores are estimated to 
be US$2 billion[4]. 70% to 90% of sores occur in the over 75 age group[5] and with the 
ever increasing elderly population and life expectancy, the number of potential pressure 
sores sufferers and consequent cost is unfortunately also on the increase.

1.1.2. Causes of Pressure Sore Formation and the Persons 
They Affect.
Impairment of the body’s micro circulation due to pressure, automatically invokes 
certain biological and biochemical responses, one of which generates a neurological 
response of discomfort. In normal circumstances, Le. in healthy people, this provokes a 
voluntary movement of the body or limb to redistribute the load, thereby improving 
micro circulation before cell damage is irreversible. However, in abnormal circumstances 
this biofeedback signal cannot initiate any remedial action and irreversible cell damage 
will ultimately occur. Examples of such abnormal circumstances, where pressure sore 
formation is common, are in the aged, in operating rooms, in people who are physically 
injured and in paraplegics. Operating theatre tables are very firm and if the length of an 
operation is more than two hours, a pressure sore is likely to form. Movement is often 
not possible for physically injured patients, for example, those with bums or paralysis. 
Pressure sores are common amongst people who are permanently paralysed, especially 
those in wheelchairs who do not regularly sit up to relieve pressure on the buttocks. 
Until the widespread use of antibiotics, pressure sores were not such a problem in the 
elderly as they succumbed to the initial infection and did not have time to develop them. 
However, the formation of a pressure sore is often the cause of death in the elderly now. 
In fact, any patient with an illness impairing the natural protective mechanisms of 
movement is susceptible, especially if their physical condition is poor. Other examples 
include mental apathy, comas, clouding of consciousness, anaesthesia, senility, 
malnutrition, failing blood circulation and skin diseases; e.g. leprosy.

The most important single factor responsible for the development of sores is sustained 
pressure on the tissues which leads to obstruction of blood vessels, ischaemia and 
necrosis of tissueP]. The areas most at risk are mainly in the bony prominences, where 
the insufficiency of underlying tissue is unable to redistribute pressure. Pressure sores on

Page  2
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anaesthetised patients occur during short operations on hard operating tables and in 
immobile patients on soft beds who don’t move for a few hours. Versluyen[6] in his study, 
attributed the formation of pressure sores to the long periods during which the patients 
were immobilised on high pressure surfaces in casualty, wards and theatre before the 
repair of a fracture or the restoration of weight-bearing function. Pressure of sufficiently 
long duration to cause tissue damage, rarely occurs in healthy individuals, since 
abnormally high pressures are only sustained for short periods. Even in sleep, the limits 
of tolerance to pressure are seldom exceeded since position changes occur 20-60 times 
during the night. For example, in leg muscle, the threshold of lOOmmHg for two hours 
must be reached to produce definite microscopical changes, which ultimately leads to 
pressure sores; the effects are similar to those produced by 600mmHg for one hour. 
Exton-Smithpl concludes that high pressure maintained for short periods is damaging, 
but not as damaging as low pressure for long periods.

The various factors which cause pressure sores can be broken into two groups: 
1) intrinsic factors and 2) extrinsic factors. Intrinsic factors are concerned with aspects 
of the physical or medical condition of the patient and extrinsic factors are derived from 
the environment of the patient. These two factors are discussed further by Knight[1].

1.1.3. Prevention of Pressure Sores
Identifying those patients at risk and removing the causes of tissue necrosis along with 
subsequent patient monitoring is the ultimate goal Regular patient turning is the ideal 
solution to pressure sore prevention, but many underfunded and understaffed wards 
simply do not have the facilities to devote time to this task. Exton-Smith[3] concludes 
that it is now unrealistic to expect nurses to practise two-hourly turning, except in rare 
instances, and scarce nursing skills should now be deployed for the recognition of high- 
risk patients who require the use of specialised equipment for the prevention of pressure 
sores.

Although patient turning is the ideal method of prevention, this is not always possible. In 
these cases and to ease nurses’ workload, special airbeds, waterbeds, mattresses, 
cushions, sheepskins etc. are used to distribute pressure as evenly as possible. Pressure 
distributing devices are also needed on some operating tables and special cushions in the 
case of chair bound people.

Page 3
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There are many other techniques used in hospitals for the prevention of pressure sores; 
these are examined in more detail by Knight[1]. He noted that as a result of the increasing 
recognition of the cost of pressure sores, more and more hospitals are developing 
pressure sore prevention policies. He looked at various patient support systems in use at 
hospitals that reduce constant high pressures on the body. These include devices that 
mould to the body to redistribute pressure and those that move the areas of high 
pressure to different points under the body.

Clinical use suggests that pressure relieving support systems are quite effective, 
however, their expense excludes them from general hospital use and many of the designs 
and constructions inhibit patient handling. If these methods of prevention are not 
available, Knight[1] emphasised the importance that patients are turned regularly as a 
single failure to do so will subject a patient to the formation of a pressure sore.

To summarise, the management of pressure sores and their prevention can be seen to fall 
into three broad categories. Firstly and most importantly, is the removal of pressure. 
Secondly, there is a necessity to reduce the factors leading to pressure sores and finally 
to implement a wound care programme to treat those who do develop pressure sores. 
The costs that pressure sores incur on hospitals has been shown to be high, despite the 
proliferation of beds and support surfaces designed to prevent them occurring. The 
magnitude of the pressure sore problem appears to be so large and all pervading that any 
device or technique that leads to their prevention and to any saving of the costs involved 
would be beneficial to hospitals, but even more so to the poor sufferer of such sores.

1.2. Pressure Measurement.
The measurement of pressure in the clinical environment has not yet satisfactorily been 
completed. Much of the research into pressure sores has provided inconclusive or 
contradictory evidence for sore formation. Part of the reason for this is the inaccurate 
measurement of pressure, and it is this variable which is ultimately the underlying factor 
to sore formation. The following section gives an insight into previous pressure 
measurement systems.

1.2.1. Previous Pressure Measurement Systems
Knight[1] in his thesis, looked into previous measurement systems, both old and new. In 
all the measurements systems he researched, limitations were found. Grant[7] too has 
reviewed current interface pressure measurement systems that are of use. Both Knight

Page  4
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and Grant have similar conclusions in the limitations of these systems. These are that the 
readings have somewhat limited information content, non-repeatability and are not 
suitable for the environment needed e.g. the transducers are rigid. In the practical 
environment, according to Grant, interpretation of the readings to gain any sort of 
reliable information is a skilled task and an ideal solution still does not exist. It is in fact 
LJ Grant, Head of Medical Physics, Wessex Regional Health Authority, who brought to 
our attention, the need for a good pressure measurement technique and it is his 
department who inspired our research into this area.

Present pressure measurement systems are based on individual sensors. These sensors, 
due to their large physical size, measure point pressures. When placed in a matrix, they 
are known to miss out peak pressures, as well as interfere with the real pressure 
distribution. The required spacing of the individual sensors depends upon the radius of 
curvature of the anatomical site being studied. These sensors are also limited in their 
point pressure accuracy.

One type of commercially available pressure sensor is the Force Sensitive Resistor 
manufactured by Interlink Electronics. These sensors consist of a polymer sheet with a 
layer of their proprietary pressure sensitive ink screen printed onto it. Each sensor is 
flexible and can be manufactured to sizes of 4mm in diameter or larger and is just lOpm 
thick. They exhibit a log pressure-resistance characteristic. These sensors have been 
used in various recent applications and research results have been produced from these 
sensors, for example a 16x16 array in robot tactile sensing[8] and in an 8x8 pressure mat 
targeted at pressure sore prevention^. Colleagues at Odstock Hospital, Salisbury have 
used the sensors as footswitches, but found them to be unreliable after time. The sensors 
exhibited unworkable hysteresis and non-repeatability. One cause of this was the 
wearing away of the pressure sensitive ink from shear forces. The sensors also do not 
exhibit repeatable characteristics if they are bent. They are prohibitively expensive, 
particularly so if they must be replaced after wearing out.

Two other new pressure-sensitive devices have just recently been documented. The 
first[10] consists of an electropneumatic flat disc shaped sensor cell connected by a tube 
to a piezo-resistive pressure-sensitive device. The sensor cell is filled with vegetable 
cooking oil, transmitting the pressure from the patient to the piezo-resistive transducer. 
The results are quite promising as far as accuracy is concerned (pressures within 
0.5mmHg); furthermore, it gives a continuous electrical output, a failure in previous

Page  5
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systems. The system is cheap, which is very important, and is constructed of 
commercially available parts. This device shows very little hysteresis, minimal time and 
temperature drift and good linearity. However, as is typical of individual pressure 
sensors, it is quite large in diameter - 28mm. A pipe 3mm in diameter, is connected to 
the sensor and this interferes with the pressure profile of the subject being measured. 
The designers suggest, but never tested, using the sensors in a matrix configuration for 
multiple pressure measurements. This would have the limitations already mentioned.

The second recently published device is a pressure-sensitive mat for measuring contact 
pressure distributions of patients lying on hospital beds[11]. The system includes a flexible 
pressure sensitive mat, electronics to activate the mat, a small computer to process the 
data and a colour video display. The mat incorporates 1536 discrete capacitive nodes 
giving a spatial resolution of 25mm. The pressure-sensitive mat itself, includes two 
orthogonal arrays of ribbon-like conductors, composed of silver-coated nylon fabric, 
which are separated by insulating open-cell foam rubber. The system monitors the node 
capacitance between selected pairs of horizontal and vertical conductors. The node 
pressure is determined from the capacitance, which increases with the application of 
pressure. The mat is, unfortunately, liable to interfere with the pressure distribution at 
the interface due to its thickness - 5mm. It is one of the few large pressure profile 
measuring mats that have been developed, but the designers admit that a variety of 
problems remain to be solved before pressure-sensitive mats based upon capacitive 
transduction can be clinically useful tools. These problems are mainly to do with the 
hysteresis of the foam rubber and its variance in capacitance with ambient humidity.

The above design measures point pressures over a mat by calculating the change in 
capacitance when a force is applied. The same technique could be applied, but replacing 
the capacitive sheet with a conductive rubber which changes its resistivity with an 
applied load. The technique of Babb[11] could then be used to measure node resistance. 
This would involve the bulk of the sheet comprising strips of an insulator alternating 
with strips of force dependent resistive material, as shown in Figure 1.1. The force 
dependent material would then require a very thin conductive layer embedded into one 
surface. Access to a node would be completed by embedding perpendicular conductive 
strips into the opposite sheet surface. This method of measuring pressure over an area 
was rejected for the following reasons:

Page  6
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• The manufacturing process of the material would be complicated and thus expensive.
• The pressure map would not be a continuous one as only the pressure at nodes is 

obtained.
• A higher number of electrical connections to the mat would be needed to obtain the 

same resolution produced by the Electrical Impedance Tomography technique 
proposed in this thesis.

Figure 1.1 Possible pressure measuring mat construction showing alternating 
strips of insulators and pressure sensitive conducting polymers.

For the ideal pressure measurement of a patient on a support surface, an entire pressure 
profile of the area of interest needs to be mapped over a length of time. The 
aforementioned reasons leads Grantm to conclude that individual transducers, even if 
they are very accurate, do not fulfil the required needs in a hospital environment. What 
is needed is a thin, flexible mat to map the entire region of interest.

1.3. Medical Uses of Pressure Measurement.
The first use of a pressure measuring system, would be for medical physicians to use as 
a research tool to evaluate specialised beds and wheelchairs. Should the system be 
priced low enough, it would be used in most hospital wards throughout the country to 
monitor those patients who are most prone to a sore being developed.

Conducting

 * Insulator

Conducting polymer

Copper embedded 
into top surface of 

conducting polymer 
strips

Copper embedded into 
bottom surface of the 
alternating conducting 
polymer and insulator 

strips
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There are of course numerous other applications for such a device. Those that are in the 
medical field are summarised as follows:
• Individual wheelchair cushion design. These cushions need to spread the pressure, 

again to prevent pressure sores from forming.
• The design and adjustment of orthopaedic footwear and objective pressure 

measurement of anaesthetic feet
• Load distribution in the analysis of gait
• Balance aid and posture analysis obtained from pressure distributions of both feet.
• Device to ensure teeth meet correctly during jaw operations.
• Movement detector to monitor breathing of children for cot death prevention.
• Training paraplegic patients to stand, with the aid of muscle stimulation, by measuring 

their centre of gravity.

1.4. Requirements for the Pressure Measurement System
Garber141 gives a conclusive need for such a mat as an aid to pressure sore prevention:

"...In order to maximise the impact of technology in reducing the occurrence of pressure 
sores, it is necessary that users of technology - clinicians and engineers alike - reorient 
their efforts to develop instruments that can monitor tissue viability under a seated 
person or a person who is lying in bed. The technology must be able to detect when the 
tissue is in danger of dying while the process is still reversible so that appropriate 
measures can be initiated."

Knight[1] summarises a list of requirements which would fulfil the aims of Garbert4]; these 
are reproduced below.

• It must be flexible enough so as not to interfere with the body-support surface 
interface pressures. The ideal position for the sensor is clearly at the interface since this 
is the best location at which to observe the pressure distribution over the surface of the 
skin. If the sensor is placed beneath the supporting medium the interface pressures may 
be reduced or nullified by the effects of the supporting medium. Moreover, Reddy[121 
stated that the ideal interface pressure transducer should support all of the load, to 
reduce its effects on the interface characteristics.

• It must be able to locate, to a reasonable degree of accuracy, the positions on the 
surface of the body that are subject to unnaturally high pressures. These generally 
occur around the bony prominences of a lying or seated patient. Thus, a resolution of
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around 2cm, as used by Lindan[13], would appear to be suitable. Typical quantitative 
values of pressure that must be measured at the interface are given later in this thesis. 
[These were shown to be in the range 0-150mmHg.]

• If the system is to be used as an aid to the prosthetist, its ability to measure relative
pressure distribution is more critical than its ability to measure absolute pressure. The 
aim of the prosthetist and cushion designer is to provide a support surface that 
equalises pressure. However, if the sensor system is to be used as a real-time pressure 
monitoring system, that is, mainly as an aid in the field of pressure sore prevention, 
then absolute pressure measurement is essential. The values of pressure, along with its 
duration, could then be processed by a pressure sore prevention algorithm, designed to 
alert nursing staff, or the patients themselves, to the high pressure areas.

• The system should be microcomputer controlled. The data extraction and processing 
can then be performed automatically, allowing nursing staff to attend to other tasks. 
The provision of data should allow easy and effective interpretation by the nursing 
staff, the equipment should be portable and be as cheap as possible.

• The system must be fail-safe, conforming to the relevant British Standards, and must
have a low failure rate and recalibration requirement. As an aid to maintenance, the 
system should have test facilities and be based on an easily repairable modular design.

• The sensor itself must be durable, robust and impervious to bodily fluids and excreta.
• More particularly, it must be comfortable to lie on.

It must still be noted that the information obtained by measuring pressure does not 
completely characterise the body-support interface, but, even with this limitation, 
pressure measurements are important^41. Barbenel[14] also states that the clinical 
usefulness of pressure measurement has been most clearly established and that both 
pressure and time for which it acts are important variables in assessing the potential for 
producing tissue damage by any support surface.

1.5. The Proposed EIT Body-Support Pressure Measurement 
System
The Body-support pressure measurement system is quite simple in its structure. The 
pressure sensing mat is placed on the support surface (bed or wheelchair) and a number 
of wires connects it to the interface electronics. The interface electronics is connected to 
a computer with monitor for calculation and display of pressure maps.
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To
Interface Electronics

Figure 1.2 Top view of the mat showing electrical connections to 36 point
electrodes.

The mat must be very thin to reduce interference at the interface of the body and 
support surface. The ideal sensor mat is made from a sheet of conductive material, 
which exhibits known characteristics relating its electrical resistivity to the pressure 
exerted on it. Thus, by reconstructing the two-dimensional resistivity distribution on the 
conductive sheet, a distribution or "picture" of the applied pressure between the body 
and the supporting surface is known. Proposed mat materials are examined in Chapter 2 
and conform to the necessary requirements.
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To reconstruct the resistivity profile, electric currents must be applied to the mat and the 
resulting electric voltages need to be measured. To enable this a multiplicity of electric 
contacts to the mat must be made. Figure 1.2 illustrates the electrode positioning and 
wiring. Connections are made at the periphery as well as the central area of the mat. 
Those that are connected to the interior must be electrically isolated from the conductive 
mat, except at the end of the wire connector (electrode), where they are connected to 
the mat at a point. The internal wire connectors must be thin, preferably flat, in order to 
adhere to the requirement of minimal disturbance to the real pressure distribution.

The interface electronics must consist of high precision current drivers, high precision 
voltage measurement and a digital interface to the computer for control purposes and 
the exchange of data. The primary function of the interface electronics is thus to collect 
data from the mat and send it to the computer.

All the calculations required to produce the resistivity profile of the mat and hence 
pressure distribution need to be performed on a suitably powerful computer. The 
computer enables a good interface to the user by use of its monitor. The monitor can 
easily display an excellent visual description of the pressure distribution as well as an 
analysis of the distribution. This is necessary if the mat is used as a research tool. 
However, if it is being used as a patient monitoring system, with the correct pressure
time analysis, all that is needed is for an audible or visual alarm to be sounded when 
necessary. In this case, a dedicated microprocessor system could replace the computer. 
The calculations required to obtain the desired pressure distribution are based on a 
reconstruction technique called Electrical Impedance Tomography, and it is this 
technique that the bulk of this thesis addresses.

The following article by Andrew Watson was published in New Scientist, page 19, on 
14 December 1991 and is reproduced here with the kind permission of New Scientist.
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The perplexing puzzle posed by a pile of apples
I N A pyramid of apples at the greengro

cer’s, which apple is being crushed the 
most? The obvious answer is the one directly 
under the apex, at the bottom o f the pile. But 
the obvious answer is wrong.

In 1981, Czech scientists J. Schmid and 
J. Novosad used pressure sensors to measuie 
the forces acting at the base o f a pile of par
ticles, of which the pyramid of apples is an 
everyday example. They discovered an 
unexpected pattern of forces, which is 
proving hard to explain.

Schmid and Novosad found that the 
pressure is not greatest at the central 
point of the base, as might be expected. 
Instead, a ring of particles some distance 
from the centre of the base feels the 
greatest downward pressure.

In fact, at the central point of the base, 
the pressure shows a local minimum.
Its magnitude relative to the maximum 
pressure felt by particles depends on the 
size of pile. For the largest pile investi
gated by the Czech reasearchers, the 
local minimum was 30 per cent less.

Schmid and Novosad also found that the 
shear, or sideways, forces showed a mini
mum at the centre of the base. The forces in
creased for a while towards the outside of the 
pile, then tapered off again at the outer edge.

Now Kurt Liffman and his colleagues at 
the University of Melbourne are trying to 
devise a computer model for a particulate 
pile, which mathematicians call a “sand 
pile”. However, they are finding it difficult 
to duplicate the precise pattern of forces

Andrew Watson, Melbourne

discovered by the two Czech experimenters.
Liffman’s computer model starts with a 

two-dimensional pile of hundreds or even 
thousands o f particles distributed in the 
pattern of an equilateral triangle. The pile is 
then allowed to settle. This involves solving

the frictional and motion equations for each 
particle in an iterative way until the pile
is stable.

A dynamical computer model for a sand 
pile is hard to set up because the equations 
describing the dynamic forces between as 
few as three objects cannot be solved exactly. 
So-called N-body problems, where N is 3 or 
more, have long resided in the “too hard” 
basket of classical mechanics, and require 
some clever approximating techniques.

Sand pile puzzle: why is the greatest pressure not at 
the centre o f the base?

Liffman and his colleagues find that the 
shear forces predicted by their model agree 
with experiment, but they cannot yet explain 
the central dip in downward pressure. They 
speculate that extending the model from two 
to three dimensions may help, but there re
mains the possibility that a mechanism that 
they have not forseen is operating.

It is important to understand such piles of 
particles because they are widespread in 
industry. A pile of ore or fertiliser may

cake or fragment under its own weight, 
and it may be important to be able to 
predict the conditions under which this 
will happen. The mathematicians have 
submitted their work to the journal 
Powder Technology.

The Melbourne group’s sand pile is 
part of a broader project using similar 
techniques to explore the force patterns 
between particles in suspension. Their 
results may ultimately be o f interest to 
the mineral extraction industry. □

The main objective of this thesis is to assess the viability of using EIT to measure 
pressure in a practical medical environment. However, will it replicate the Czech 

scientists' perplexing pile of apples pressure distribution?
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2. Pressure-Sensitive Materials
The proposed EIT system requires a material which exhibits known pressure-resistivity 
characteristics. This chapter presents two such practical materials, namely conductive 
elastomers and carbon fibres. The characteristics of each are analysed and the chapter 
concludes with the most suitable mat construction for use in an EIT pressure scanner.

2.1. Theoretical Pressure-Sensitive Materials
Excluding the effects of shear, an interface pressure is directly attributable to the 
transverse force exhibited onto the subject and is defined by the following equation

where p is the interface pressure, A is the area over which the transverse force, F is 
uniformly applied. Knight[1] showed that if this force is applied to a thin conductive 
material, there will be a theoretical deformation in thickness of the material, which in 
turn will cause an increase in the material’s resistivity. In theory, any conductive material 
will have the necessary pressure-resistivity characteristics to implement an Electrical 
Impedance Tomography based pressure scanner. However, a search for a conductive 
material that will deform elastically and with measurable resistivity changes due to a 
change in the material's thickness only, has proved to be fruitless. Many conductive 
materials are metals, which do not deform easily with the types of loads expected in the 
targeted applications. The requirement for a flexible material also rules out the 
possibility of using such materials.

Piezoelectric materials have been used in pressure measurement. However, piezoelectric 
materials produce a signal (voltage) only under dynamic situations. As static pressures 
need to be measured, they are not suitable. The following sections examine how various 
other conductive materials change resistivity when a pressure is applied. The two types 
considered are piezo-resistive materials; materials based on conductive elastomers and 
carbon fibres.

2.2. Conductive Elastomers
Elastomers are polymers or rubbers that when subjected to a force, within their elastic 
limit, will return to their original shape after the force is removed. The rubber is made
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conductive by mixing in either carbon or metal particles at the time of manufacture. 
These rubbers are also pressure sensitive. The mechanism by which these materials 
increase their conductivity under a load, is the joining together of chains of the carbon or 
metal particles. An overview of these pressure sensitive rubbers, including their 
structure, historical development, manufacture and applications are given by 
Sakamoto[15] and Nagata[16]. Mokshagundam[17] provides an overview of various single 
pressure sensor constructions and discusses the advantages and disadvantages of 
conductive elastomers, which are summarised in the following paragraph.

The advantageous characteristics of conductive elastomers are their resilience or 
elasticity, durability and adequately wide operating temperature range. Silicone rubbers 
are not noticeably susceptible to ageing, oxidation and other weathering influences. 
However, there are a larger number of disadvantages in the important electrical 
characteristics. These include different values of resistance depending on whether the 
material is being loaded or unloaded. This hysteresis can be considerably reduced if the 
rubber is compounded properly. A closely related problem is the fluctuation of the no- 
load resistance after loading, also known as instability. Creep, the gradual change in 
resistivity under a constant load, is a further drawback. Another common difficulty is 
making reliable connections to the elastomer.

The possibility of using conductive elastomers was undertaken. An industrial company, 
Leyland & Birmingham Rubber Company, supplied a sample of epichlorahydrin doped 
with a superconductive carbon black. To overcome any connection problems, the 
sample was supplied with a thin layer of copper embedded into both top and bottom 
layers. The sample was loaded with varying weights, then unloaded. This cycle was 
repeated half an hour later, the results of which are shown in Figure 2.1. The sample 
exhibits hysteresis and large non-repeatability. A natural rubber would reduce the 
hysteresis and the company felt they could improve on the repeatability, through 
different mixing and processing methods. Other methods, such as mechanical 
preconditioning by cyclic loading1181, may also make improvements. However, it was felt 
that using carbon fibres would be a less expensive and more successful development 
route to take. The results from the sample confirmed many of the disadvantages given 
above.
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Figure 2.1 Loading and unloading tests on conductive elastomer sample

The Gates Rubber Company Limited supplied a Vivam thick sheet of silicone loaded with 
carbon black, which they called piezo-resistive elastomer. The sample came with 
resistance-pressure data curves similar to the Leyland & Birmingham sample when 
measured from top to bottom of the sample. Attempts were made to measure the 
resistance across the sheet. Copper clamped to two ends of the sheet acted as 
electrodes. However, no sensible results could be obtained. Resistance changes across 
the sheet were noticed whenever the material was stretched.

Basarab-Horwath[19] recently published a paper also suggesting the use of EIT to 
measure interface pressures. A conductive elastomer was proposed for use as the sensor 
element. The main problem they encountered was the formation of good reliable 
electrical connections to the elastomer. Their solution involved screwing flat ended brass 
screws down onto the elastomer's surface to ensure a firm connection. They found that 
voltage readings at the electrodes did change with varying loads and that they were 
repeatable. Their results were initial results into using EIT for pressure measurement and 
are encouraging. However, the following section describes a mat made from carbon 
fibres that would be more suitable for an EIT pressure measurement system.
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2.3. Carbon Fibre Felt
Carbon fibres are fine strands, cylindrical in cross section and are made by carbonising 
certain organic fibres. Carbon fibres are commonly used for their high strength to weight 
ratio in aircraft, boat, tennis racquet etc. construction. They are also electrically 
conductive and a single carbon fibre’s resistivity can vary from 106 to 10'3 £2 .cm[20]. 
Carbon fibres are produced by oxidising and subsequently graphitising acrylic fibre. This 
basically involves heating in air before heating and stretching the oxidised fibres in a 
nitrogen furnace.

The fibres can be manufactured into thread, felt, bundles or woven cloth. Felt displays 
useful pressure-resistivity characteristics and is almost exclusively used in carbon fibre 
pressure sensors[17]. Katahira[20] showed that the resistance of a piece of carbon felt 
versus applied force is logarithmic, when the resistance is measured in the same 
direction as the applied force. Pruskit21] shows that resistance also changes with applied 
pressure, when the resistance is measured across the felt, ie. orthogonal to the direction 
of force. It is this type of pressure-resistivity characteristic that fulfils the requirements 
for EIT pressure measurement. Carbon felt decreases its resistivity as pressure on it 
increases and the reasons are dependent on the degree of applied pressure1221. The 
structure of carbon felt, described below, explains this behaviour.

Carbon felt simply consists of many fibre strands of say 2mm in length and about 10|im 
in diameter, randomly intertwined or compacted into a matrix. This results in the same 
sort of structure as cotton wool and the felt can be manufactured as thick as required. In 
the initial stages of increasing load, a decrease in resistance is attributed to an increase in 
the number of current paths due to an increasing number of contacting fibres. At higher 
pressures there is an increase in the contact area between fibres. Carbon fibre felt has 
successfully measured force using individual sensors in gait analysis1231. Robot tactile 
sensing by multiplexing strips of carbon fibre felt has been achieved by Robertson1241 and 
Pruski[25].

2.3.1. Characteristics
Carbon felt has a very high dynamic range of resistance, at least 4 decades1221. The range 
of pressures over which it is sensitive is also very wide. The good elasticity and great 
strength of the fibres enable very high pressures to be measured before any mechanical 
breakdown occurs and also enable a smooth change in resistivity[22]. Larcombe[22] also
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found the material repeatable within 1% even after the felt had been subjected to a 
200MPa load. Katahira[20] also showed good repeatability and stability.

Katahira[20] looked at the voltage gain/frequency characteristics of his carbon felt sensor. 
The frequency response is a low order decay with a break frequency of 30Hz. The 
frequency at which current patterns can be applied to an EIT system will be limited 
because of the decreased response at high frequencies. This in turn limits the frequency 
at which entire pressure scans are taken. However, not many of the envisaged medical 
applications mentioned require scanning at high frequencies. Mokshagundam[17] 
examined conductive elastomers and carbon fibres for use as pressure sensors and states 
that carbon fibres have a low hysteresis, lower than conductive elastomers.

The following section discusses why carbon felt is the chosen material for the proposed 
EIT pressure scanner.

2.4. The Proposed Mat Construction
A mat constructed from carbon fibre felt which is encapsulated in a gel or silicon rubber 
is the most appropriate manner to measure pressure in an EIT system. Figure 2.2 
illustrates the mat construction. The mat would not be rigid and would thus conform to 
the shape of the interface at which the pressure is being measured. A flexible as well as 
thin mat introduces the minimal amount of distortion in the true pressure profile. Many 
available pressure sensors are rigid and are thus unable to measure pressure in the 
targeted applications.

Gel

Carbon fibre felt 

Gel

Figure 2.2 Proposed mat construction showing the layer of carbon fibre felt 
encapsulated by thin layers of gel.
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A mat constructed from carbon fibres would be inexpensive. Felt is fairly cheap 
(~£40m'2) and encapsulating the fibres within a rubber is a simple task. By comparison, 
conductive elastomers cost around £1200m"2. Accurate placing of the connections to the 
mat is not a problem and can also be done inexpensively. Larcombe[22] established the 
best electrical connection to the felt by using a light hardening adhesive; the same can be 
applied for the point electrodes required in the EIT system. The natural strength of 
carbon fibres ensures that a sensor mat made from them will be rugged. However, 
abrasive decay may occur if the fibres are not encapsulated in a rubber. This rubber must 
not react with the fibres as this would cause a change in their electrical characteristics^71.

Under very low loads, there is a certain amount of noise generated from microscopic 
movements between the fibres. However, with a lOPa load, Larcombe[221 almost nullified 
it. If the carbon felt is encapsulated within a gel, the weight of the gel will have the same 
effect. Two other reasons for using an encapsulating gel are to hold the fibres in place 
and to render it impervious to bodily fluids, ensuring easy cleaning of the mat.

Different sized mats may have different electrode spacings. The wide range of available 
fibre resistivities ensure an appropriate fibre resistivity can be selected. Optimal choice in 
resistance between mat electrodes will minimise implementational difficulties in the 
driving and sensing electronics.

In summary, carbon fibres have been chosen for the EIT system as they have the desired 
electrical properties to measure pressure. Additionally, they have low hysteresis, are 
thermally stable and give repeatable results. The fibre's mechanical properties give rise to 
a strong durable mat. The proposed mat construction will overcome the carbon fibre's 
limitations of noise and abrasive decay.
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3. Introduction to Electrical Impedance Tomography
Electrical Impedance Tomography is a technique which is able to construct an image of 
the distribution of electrical impedance, within an electrically conducting object, from 
knowledge of voltage and current conditions at various points on the surface or 
periphery of the object. This chapter gives an overview of EIT, covering some of the 
more popular algorithms in use. The algorithm which reconstructs the pressure 
distribution is introduced.

3.1. Background to Electrical Impedance Tomography
Electrical Impedance Tomography is a new field of imaging in which an increasing 
amount of research has been undertaken over the last decade. Impedance imaging has 
three primary applications, namely in the medical, geophysics and industrial fields. In 
industrial applications, Process Tomography uses EIT to image conducting fluids within 
vats or flowing within pipes[261. Typical geophysics applications are for obtaining core 
sample data, geophysical probing for detection of minerals at the earth's surface, and in 
borehole scanning. In the medical field, interest is primarily in imaging body organs, 
bones and other tissues by placing electrodes on the surface of the skin. This is possible 
as the various body tissues have different characteristic impedances or more specifically 
resistivities[27]. An image is obtained by taking one or more two-dimensional slices 
through a patient. EIT is one member of a whole class of imaging techniques in which 
the common objective is to non-invasively determine certain physical parameters within 
a region of interest. Some of these techniques include X-ray Computed Tomography, 
Nuclear Magnetic Resonance Imaging, B-scan Ultrasound and Positron Emission 
Tomography. A comprehensive comparative review of such techniques has been 
published by Bates[28].

Electric Impedance Imaging began as an offshoot from X-ray Computed Tomography to 
overcome its disadvantages of expense and biological hazard to the patient being 
imaged. The first attempt[29] based on X-ray Computed Tomography is flawed in its 
theoretical assumption that electric currents flow in straight lines, in the same manner 
that beams of X-rays[30] do. Since this initial attempt at impedance imaging, a whole 
range of image reconstruction techniques have been developed specifically for electrical 
current behaviour. A recent review of these has been published by Isaacson[31]. Many of 
these techniques are theoretical methods and it is only recently that in vivo images have
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been produced. A more comprehensive study of the evolvement of EIT may be obtained 
from Knight[1].

3.2. The Various EIT Reconstruction Algorithms
Reconstruction algorithms for conductivity imaging can be broadly divided into those 
that seek a full reconstruction using a Newton approach, and those that linearise the 
problem using a modified backprojection technique. The latter approach usually gives a 
less accurate, but a faster solution. The Newton routines are nonlinear methods and tend 
to give more accurate reconstruction, but this is on a theoretical level using computer 
simulations. Most of the images obtained from human data is obtained using the 
linearised backprojection method of Barber[32]. Conductivity images published using this 
method have not shown particularly good spatial resolution[27]. The method can be used 
for dynamic images with good contrast, good sensitivity to resistance changes, high 
speed and low cost[33]. However, it was for quite some time the only method to 
reconstruct in vivo images.

Recently Woo[34] published a paper using an improved Gauss-Newton reconstruction 
algorithm. The paper attempts to measure lung resistivity for detection and monitoring 
of apnoea and oedema. It is the first paper published which demonstrates the feasibility 
of this algorithm using a computer simulation as well as images from a human being. 
The backprojection method of Barber[32] has been used for the same application of 
imaging resistance changes during respiration by Harris[35]. However, the fundamental 
limitation of this system is that it cannot measure absolute resistance, only a change in 
resistance during the respiratory cycle[34]. The system of Woo[34] measures an absolute 
lung resistance, in an attempt to quantify the amount of air and water present in the 
lung. Despite the disappointing accuracy in lung resistivity that they measured, the 
authors have confidence in the method used and propose solutions for improvement. 
More recently, reconstructions using the Newton approach successfully monitored lung 
resistivity changes during the formation of pulmonary oedema[36].

There are limitations of the Newton approach for a practical implementation, as the 
inaccurate lung resistivities show. However, many of these are removed when using a 
conductive mat, as opposed to a human being, as the usual practical errors do not apply. 
These are discussed in the following section.
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3.3. Previous Work on EIT Techniques to Measure Interface 
Pressure
Knight in his thesis111 reviewed many of the EIT reconstruction techniques specifically 
for measuring pressure distribution on a conductive mat. He reviewed five different 
reconstruction algorithms for a pressure scanner. These were the reconstruction 
assuming a linear forward transformation of Yamashita[37], the Algebraic Reconstruction 
Technique of Kim[38], the Simultaneous Iterative Reconstruction technique of Yorkey[39], 
the Gauss-Newton method of Yorkey[40] and the backprojection method of Barber[32]. 
This last EIT reconstruction technique is also known as Applied Potential Tomography 
(APT).

The first three algorithms mentioned above gave very poor results in the computer 
simulations used. This, Knight concluded was due to the assumptions of these three 
methods, that there existed some kind of linear relationship between the changes in the 
resistivity profile and the voltages appearing at the peripheral nodes of the simulated 
profile. This nonlinearity was clearly shown by him and so these algorithms were 
discarded for good image reconstruction.

The latter two algorithms, which have already been mentioned, were the most hopeful. 
Out of these two, the Gauss-Newton method was concluded to be the most suitable for 
use in the proposed pressure measuring system for the following reasons:

• The Gauss-Newton method was the only one to give consistently reliable and accurate 
results over a wide variety of resistivity profiles, even with simulated voltage error 
measurement. Knight noted that the reconstruction is markedly affected by these 
errors. However, this thesis details refinements to the Gauss-Newton method which 
greatly improve its error susceptibility.

• The backprojection method is less susceptible to measurement errors than the Gauss- 
Newton method. One of the major causes of measurement errors is the use of 
two-dimensioned resistivity models in a three-dimensioned system. Three-dimensional 
current flow is removed when using a mat as opposed to a human subject when 
mapping resistivity. The modelling is thus more accurate for a resistive mat and the 
better error tolerance advantage of the backprojection method is reduced.
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An additional note on errors is that in vivo errors, normally introduced by variable 
electrode placement on human subjects, will be very low on a fixed electrode mat. Hu[41] 
when looking at all the physical errors in practical EIT systems, concluded that electrode 
position error is one of the largest sources of measurement error. They therefore 
suggested using a precise layout of the electrodes in any physical phantom model. This 
is possible using the proposed pressure measurement system in the clinical environment 
during the manufacture of the mat. For medical applications, Gencer[42] even suggested 
immersing the object/subject to be imaged into a cylindrical container filled with water 
of known conductivity. Electrode placement errors are minimised as the electrodes 
attached to the cylindrical container are in permanently fixed positions. Ultrasonic 
techniques are then used to detect the object's cross-sectional shape so that the varying 
distance between the object and the container wall can be measured and used. This extra 
effort demonstrates the importance of placing the electrodes in fixed positions.

3.4. Introduction to the Reconstruction Process
The reconstruction problem is to solve a resistivity (conductivity) distribution within a 
medium, given known voltages and current densities. The governing equations for this 
problem, when the medium is inhomogeneous and anisotropic, is given by

V-/?_1VV = 0 (3.1)

where V is the Poisson operator, p  is the resistivity and V is the voltage distribution 
within the region being studied.

The reconstruction process is broken into two problems, namely; a forward and inverse 
problem. Figure 3.1 shows the definition of the forward problem; find the internal 
voltage and current density distributions given the resistivity distribution and certain 
current and voltage distributions.

The inverse problem is defined by Figure 3.2; given the boundary voltage and current 
density distribution, solve for the resistivity distribution.
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Given the 
Resistivity Distribution

Find Voltages and 
Current Densities

Figure 3.1 Representation of the forward problem

Given Selected 
Voltages and 

Current Densities

Find the 
Resistivity Distribution

Figure 3.2 Representation of the inverse problem

To solve for the inverse problem (the defined problem), a numerical solution is 
employed, using iterative solutions of the forward problem. Solving for the internal 
resistivity distribution is a boundary value problem as only selected voltage and current 
density distributions are known. As many of these voltages and currents on the mat are 
unknown, the problem is a nonlinear inverse problem. To turn pressure measurement on 
a continuous resistive mat into a linear problem, wires to each node on a finite element 
mesh would be necessary. This might mean 441 wires for a 400 element mesh, a 
practically difficult situation. The EIT approach only requires a manageable 30-40 
electrodes to obtain pressure reconstructions.

The governing equation (3.1), is a complicated differential equation and it is impossible 
to find its general analytic solutioa The finite element method is a numerical technique 
to solve equation (3.1), given the appropriate boundary conditions. The following
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chapter describes the manner in which the finite element method is implemented to solve 
the forward problem. Optimisation techniques include the least squares method, under 
which the Gauss-Newton method can be classified. Chapters 5 and 6 study optimisation 
techniques and expand on the basic Gauss-Newton method so that the inverse problem 
can be solved in a practical environment. Chapter 7 examines electrode positions and is 
the final area to be studied in this thesis.
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4. The Forward Problem
In Electrical Impedance Tomography there is both a forward problem and an iterative 
inverse problem to solve. The forward problem is based on the Finite Element Method 
(FEM) and this chapter is concerned with the solution of the finite element equations. 
The finite element model is a mesh based on a square domain comprising square bilinear 
elements. Justification of this model and the implementation of the automatic mesh 
generator is discussed. The fast solution of the finite element equations is important as it 
reduces the total time required to solve for the pressure distribution. Both sparse matrix 
methods and sparse vector methods reduce the finite element equation solution time. 
The most appropriate sparse techniques are studied and implemented.

4.1. FEM Theory
The finite element method, rather than the finite difference method (FDM), is chosen to 
solve the forward problem from the arbitrary resistivity distribution. The FEM gives a 
piecewise approximation to the governing equation (4.1), whereas the FDM gives a 
pointwise approximation. Therefore, most EIT reconstruction algorithms use the FEM 
to solve the forward problem[43]. The FEM is also superior to the FDM when modelling 
arbitrary shapes and this is another reason why the FEM has been almost universally 
adopted by EIT researchers.

In the FEM, the calculus problem, defined in equation (3.1), is solved by changing it into 
the algebraic linear system of equations:

Yv = c (4.1)

where Y is the r x r  admittance matrix having units of conductance, v is the measured 
volts vector, c is the vector containing the applied currents and r is the number of points 
for which v and c are solved.

The FEM divides the continuum region or domain into a finite number of geometrical 
shapes or elements. In the implementation used the elements are square and the domain 
is the resistive mat. Each element is assumed to have an isotropic and homogeneous 
resistivity. This discretisation of the continuous problem expresses the unknown field 
variables in terms of certain interpolation functions within each element. An example of 
one of the meshes used with 25 elements is shown in Figure 4.1.
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Figure 4.1 A FEM mesh of 25 elements with the natural (row by row) node and
element numbering

A single isotropic homogenous element with node numbering is shown in Figure 4.2(a). 
A resistor network could be used to represent this element. Two such possibilities are 
shown in Figure 4.2(b) and (c).

When Knight[1] implemented the Gauss-Newton method to obtain his practical results, 
he chose to use the resistor network in Figure 4.2(b) to model the resistive mat. He used 
the physical procedures utilised in network analysis to obtain the associated element 
equations needed by the FEM. Huebnert44] called this the direct approach for determining 
element properties. A better finite element model for the resistive mat can be used. A 
mathematical approach to find this model could be to use the variational principle to 
derive the element equations. Another mathematical approach is the method of weighted 
residuals with Galerkin's criterion. Identical element equations are obtained for Poisson's
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equation when using either approach1441. The variational approach is now shown in some 
detail to produce a more accurate finite element model for an element. The model 
derived, is in fact an analogy to the resistor network in Figure 4.2(c) and is known as the 
bilinear element.

Figure 4.2 (a) Single element of resistivity p, with local numbering
(b) A resistor network used to represent the element in (a)
(c) A better resistor network to represent the element in (a)
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4.1.1. The Mathematical Interpretation of the FEM
In a physical interpretation of the FEM, the elements are thought to be individual 
segments or parts of the actual system. In the case of a resistive mat, the domain is 
imagined to be comprised of many linked resistor networks. The mathematical 
interpretation of the FEM requires a generalised definition of the elements and to 
approach the problem in less physical terms. Instead of viewing the element as a physical 
part of the system, the element is viewed as a part of the solution domain where the 
phenomena of interest are occurring. Once a mesh for the solution domain has been 
decided, the behaviour of the unknown field variable (voltage), over each element is 
approximated by continuous functions expressed in terms of the field variable at nodes 
of the element. The functions defined over each finite element are called the 
interpolation functions. The collection of interpolation functions for the whole solution 
domain provides a piecewise approximation to the field variable.

Appendix A4 details the Finite Element Method for obtaining the voltages at each node 
on the mesh. Variational principles are used to derive the element equations. Once the 
equations for each element are known, they must be assembled to represent the entire 
domain. In assembling the element equations to form the master stiffness matrix, the 
boundary conditions are implemented. The boundary is taken to be any node that is 
available for voltage measurement or current injection, Le. the electrodes. This includes 
those on the physical boundary or edge of the mat, as well as those used in the middle of 
the mat.

The bilinear element stiffness matrix is evaluated in Appendix A4 and shows that it has 
units of Siemens, the same as an electrical network admittance matrix[45]. Yorkey[46] 
showed that using such elements to assemble the master admittance matrix solves the 
FEM using an appropriate resistor network and that this matrix satisfies Kirchoffs 
Laws[47], even if the network is not physically realisable. The bilinear element stiffness 
matrix does in fact represent the network shown in Figure 4.2(c). The direct approach 
demonstrated by Knight[1] can also be used to derive the element stiffness matrix for this 
particular resistor network. The element equations have been derived from variational 
principles here and the resistor network that can be associated with these equations is a 
better representation of the resistive mat than the network in Figure 4.2(b).
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4.1.2. Discretisation of the Domain
When discretising the continuum by dividing it into a finite number of elements, the main 
aim is to achieve a good representation of this continuum. The type of element to be 
used is of importance. There are no set rules for achieving this aim, but some general 
guidelines are available from experience in finite element analysis. The best guideline is 
from previous work done in the same field of interest, as construction of suitable 
elements and meshes requires skill and ingenuity stemming from much experience^.

4.1.2.1. Element Shape
There are many competing types of elements that are used to model domains of interest. 
It is not clear whether it is more efficient to use triangles or quadrilaterals when 
subdividing the domain[48]. The most often used element is the simplest two-dimensional 
element, the three-node triangle. The reason for this is that an assemblage of triangles 
can always represent a two-dimensional domain of any shape. Much of the latest 
research in EIT uses triangular elements to model the curves in the human body. In 
doing so, the geometric error in the domain model is minimised. Hua[49] used a fairly 
complicated mesh of triangles, rectangles and quadrilaterals in his EIT model. This 
mixture of element shapes is quite normal in finite element modelling. Quadrilaterals and 
especially rectangles are enjoyed for use in the model’s interior as fewer are needed to 
fill a region and they permit simple elements of high degree with the added advantage of 
a 'twisting' term[48]. The pressure sensitive mat may be cut to any desirable shape and it 
would thus seem pertinent to use a rectangular or square shape so that quadrilaterals 
might be used to model it, both for the interior and at the mat edge. With accurate 
cutting of the mat, the geometric modelling error will be almost zero.

The continuum should be divided so that the elements have a well-proportioned shape, 
Le. avoiding long, narrow elements. For a given element in a given location, the 
optimum size and shape depends on the local gradient of the voltage[44], but this is 
unknown a priori. A conservative procedure would be to use the square elements which 
are well-proportioned.

4.1.2.2. Selection of Interpolation Functions
Polynomials are used as interpolation functions as they are easy to differentiate and 
integrate. Many different types of interpolation functions exist and Strang[48] examines 
the different rectangular elements that are in popular use.
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The simplest square element, shown in Figure 4.3(a), corresponds to a bilinear 
interpolation function. Improvements in modelling accuracy can be obtained if higher 
order interpolation functions are used. The next highest order interpolation functions are 
the 8 and 9 noded elements as shown in Figure 4.3(b) and (c). In EIT, the maximum 
number of elements is restricted by the number of electrodes being used, see the 
following section. The accuracy of the Jacobian matrix and the voltages which the FEM 
model produces is thus limited unless higher order interpolation functions are used. 
However, the low order bilinear elements are simpler to implement and require a smaller 
element stiffness matrix, which enables faster solution of the finite element equations and 
calculation of the Jacobian matrix. Errors in the finite element model may lead to the 
Gauss-Newton method converging to local minima. Any trade-off between accuracy and 
time to solution depends on how successful the interpolation functions model the 
domain. This is not known and indeed, a fine mesh comprising of many simple bilinear 
elements approach, may or may not provide a small enough modelling error. This 
depends on other errors, such as those in the electrical system or accuracy in electrode 
placement. Paulson[50] and Strang[48] show mathematically the rate of convergence in the 
modelling error for different order interpolation functions, but precise evaluation can 
only be achieved once the other errors are known. In other words, when the voltages 
measured from a real pressure-sensitive mat can be measured and compared to the 
calculated values. Most other EIT researchers have used first order interpolation 
functions (linear triangles and/or bilinear quadrilaterals) successfully.

Figure 4.3 (a) The simple 4 noded bilinear element
(b) The restricted biquadratic square element
(c) The biquadratic square element
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4.I.2.3. Mesh Coarseness
Greater spatial resolution is obtained near the surface than at the centre of a body in 
normal EIT applications. In this case, a finer mesh ought to be used at the surface and a 
course mesh at the centre, such as the one used by Paulson[50]. This is because the spatial 
resolution, defined as the smallest region of a medium into which the conductivity can be 
isolated1511, is much lower in the centre of the body than at the edge. In the design of a 
mesh for pressure measurement, the spatial resolution is more uniform across the mat 
due to the electrodes being positioned throughout it. The mesh will give a good 
representation of the real-life situation by using equi-sized elements across the domain.

The finer the mesh, the higher the resolution of the pressure distribution and the more 
superior the image. As the number of elements increases and the size of the elements in 
the mesh approaches zero, the finite element model approximation approaches that of 
the true distribution. In the real world, very high resolutions are unwarranted and 
impose unnecessary and difficult implementation problems. Finer meshes are 
computationally more expensive when using the Gauss-Newton algorithm. A trade off 
between resolution and pressure measurement intervals must be made. This is 
application dependent and for a hospital bed, a resolution of 5 to 10 mm square would 
suffice.

The maximum number of elements is also limited by the number of independent 
measurements. Where m is the number of elements and e is the number of electrodes, 
this maximum is[32]

max(m) = — g— (4.2)

Since this is equivalent to the maximum number of equations in the Gauss-Newton 
method, the number of maximum resistivity values is also limited by this number. So, the 
spatial resolution of the resistivity image is primarily limited by the number of electrodes. 
In a practical environment, the number of electrodes must be limited to reduce the 
number of undesirable electrode wires trailing from the mat. For a scheme of 32 
electrodes, the maximum possible number of elements is then 496. Even with this 
limitation, the computing time can be lengthy.
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Pi

P4

(a) (b)

Figure 4.4 (a) 4 bilinear elements
(b) 1 biquadratic element

The mesh coarseness chosen need not be this maximum and depends on computing time 
limits and the modelling error introduced, that is, the accuracy of the Jacobian 
calculation and the electrode voltage approximation. Two approaches could be taken. 
The first involves creating a finer mesh by dividing elements into four smaller bilinear 
elements as shown in Figure 4.4(a). The second uses the higher order biquadratic 
interpolation function for an element, as shown in Figure 4.4(b). Both have the same 
number of nodes and produce the same size master stiffness matrix, leading to similar 
forward modelling computation times. However, when the entire mesh is examined, 4 
bilinear elements give a higher spatial resolution of resistivity than 1 biquadratic element. 
Both reduce the modelling errors, but the latter has the disadvantage of a lower 
resolution in the resistivity solution. The former case requires the solution of 4 times as 
many resistivity equations and so the G-N update takes longer, but the advantage is a 
higher resolution. The division of each element into 4 further bilinear elements must take 
into account the maximum number of equations defined by equation (4.2).

The number of elements in the forward modelling is not restricted by equation (4.2) and 
so more elements could be used for this part alone. In other words, a fine mesh could be 
used for the forward modelling and a coarse mesh for the G-N resistivity calculation 
(inverse problem). Hua[43], in his circular mesh, used more elements than that allowed by 
the maximum for the forward problem. In the inverse problem he constrained elements 
in the outermost area of the mesh, where high resolution is not necessary, by assigning
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the same resistivity value to groups of elements. In this way, the number of elements in 
the mesh is, in effect, less than the maximum allowed.

4.2. FEM Implementation
This sub-section starts by examining the automatic generation of different sized finite 
element meshes in modelling the mat's resistive distribution. The validity of these models 
is established. The bulk of the sub-section covers the practical methods of solving the 
finite element equations produced by the FEM model. The steps to solution are broken 
into different stages and are looked at individually. Of prime consideration is the 
reduction in computer processing time in arriving at the equation's solution.

4.2.1. Mesh Generator
The chosen mesh comprises of square elements to model a square domain. A mesh 
generator is needed for flexibility so that different sized finite element meshes may be 
used to model the resistive mat. The mat can be discretised into a range of meshes, from 
a coarse to a very fine mesh. The implementation of different finite element meshes is 
laborious and is best done by an automatic mesh generator. A simple mesh generator 
was programmed to produce the required data files needed for the finite element model 
A uniform mesh composed of equi-sized square elements for a square shaped domain is 
produced. The mesh generator input is simply the desired number of elements down the 
side of the square domain.

The mesh generator produces two data files. The first holds the element stiffness matrix, 
as shown in equation (A4.15) and the node topology. The node topology is a table to 
transform the local node numbering to the global numbering for the assembly of the 
master stiffness matrix Y from the element stiffness matrix. This table is sometimes 
called the connectivity table for the mesh. All the nodes and elements in the mesh are 
numbered from left to right, working down the mesh from top to bottom and is known 
as the natural ordering. A typical mesh with node and element numbering is shown in 
Figure 4.1. The second data file produced is the initial estimate for the resistivity 
distribution of the mat. This is required by the reconstruction process. Test distributions 
can also be produced through simple modifications of this file.

A third data file contains the experimental set-up so that different current pattern 
configurations (called projections) may be chosen. This is entered by hand unless the 
computed diagonal or optimal currents of chapter 7 are used. The file contains
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information on the number of projections, the electrode node numbers, the current 
source nodes and the grounded node numbers. This important file is checked by the 
mesh generator to ensure that node numbers are valid and that the current nodes are 
actually electrode nodes.

4.2.1.1. Mesh Validity
The finite element mesh and equations must satisfy the completeness and continuity 
conditions defined by Bumett[52]. If these two conditions are met, then a sequence of 
approximate solutions, corresponding to a sequence of successively refined meshes, will 
converge to the exact solution as the element size is reduced to zero[52]. The finite 
element mesh chosen is valid, and has been correctly implemented, as this convergence 
at node voltages was observed when the mesh was subsequently refined from 25 to 100 
then 400 elements.

4.2.2. Solving the FEM equations
This section considers the practical methods of solving the finite element equations. The 
aim of this section is to find the fastest means of solving them. The theory presented 
here begins with a general matrix solution and leads on to reducing the solution times 
through the use of sparse methods. Obtaining and solving the sparse finite element 
equations is broken into six different stages. The two most important stages with regard 
to solution time are given most attention. This is firstly, the numbering of the nodes in 
the finite element mesh so that sparse matrix methods may best be taken advantage of 
and secondly, the use of sparse vector methods. Practical implementation of the sparse 
vector and sparse matrix methods are considered and finally the different equation 
solution times are presented in order to choose the fastest solution method.

4.2.2.1. General Matrix Solution
The finite element method produces the algebraic linear set of equations

Yv = c (4.3)

where Y is an rxr sparse symmetric positive definite coefficient matrix and is also 
known as the master stiffness matrix. The right hand side vector, c and the solution 
vector, v are of length r where r  is the number of nodes at which the voltages (v) are to 
be solved. This equation could be solved by inverting Y; v=Y1c. This form is not used 
as it is slow and Y'1 contains mostly non-zero values and is known then as a dense
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matrix. This occurs even when Y has a low percentage of non-zero entries, that is, when 
it is a sparse matrix. The well known technique of symmetric Gaussian elimination or 
Cholesky factorisation is used to solve for v. This involves decomposing or factoring Y
into the form LLT, where L is lower triangular, i.e. all the entries in L above the
diagonal are zero. Equation (4.3) becomes

LLTv = c (4.4)
The triangular systems

Lx = c (4.5)
then

LTv = x (4.6)

are solved. Solving equation (4.5) is known as forward substitution and solving 
equation (4.6) as backward substitution.

The above three equations can be solved as dense matrices, that is, not taking advantage 
of any special structure in Y. As Y is a symmetric sparse matrix, special sparse matrix 
techniques can be utilised. Sparse matrix techniques are now a well studied area of 
research and the various techniques in use are given a good overview by Duff1531 and 
George[54]. Details of the Cholesky decomposition may also be found in these books.

4.2.2.2. Sparse Equation Solution
The Y matrix structure results from the node ordering of the FEM mesh. The resulting 
Y matrix structure from a natural ordering on an 8x8 or 64 element grid is shown in 
Figure 4.5. In this and other similar figures, a non-zero value is represented by a black 
square and the white space represents zero values. The factorised matrix, L has added 
non-zero entries where there were zero entries in the original Y matrix and so has a 
slightly modified structure from Y. These added entries are known as fill-in and can be 
seen in the factorised matrix LYLT, (that is, L+LT) in this figure. In this particular 
example fill-in of the entire area between the diagonal and the Y matrix non-zeros has 
occurred. This does not always happen and judicious choice of the node numbering can 
reduce the percentage fill-in quite considerably. Renumbering nodes from the original 
ordering is equivalent to interchanging rows and columns of Y through the use of a 
permutation matrix, P. The permutation matrix is simply the identity matrix with 
permutated rows and Pv is simply a re-ordering of the vector v. Equation (4.3) can be 
re-written as
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(PYPt)Pv = Pc (4.7)

Sparse techniques avoid operating on zero matrix entries and some approaches attempt 
to reduce the fill-in; the amount of fill-in has obvious consequences on the number of 
floating point operations required to solve a set of equations. This leads to the main aim 
of using sparse techniques; to reduce the amount of storage space used and the time 
spent in solving a set of linear equations. In EIT, the finite element equations and the 
similarly solved inverse of Y must be solved many times over to obtain the mat pressure 
distribution. The prime consideration in this repetitive process is to reduce the time 
taken to solve one right hand side of a linear set of equations. The reduction in computer 
storage space is an added bonus even though modem computers have copious amounts 
of RAM.

81x81 Y Matrix 

Non-zeros: 625 Sparsity: 9.5%

81x81 L U / Matrix 

Non-zeros: 1521 Fill-in: 896 (13.7%)

Figure 4.5 Resulting matrix structures using the natural ordering on a 64 element
mesh

The six steps to solution of the finite element equations when using sparse techniques 
are shown in Figure 4.6.

Note that for each repeated solution of the right hand side vector, neither the master 
stiffness matrix nor the factorised matrix changes. This leads to fast solution times for
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different right hand side vectors. However, each Gauss-Newton (G-N) iteration uses a 
new master stiffness matrix, so must be re-assembled and re-factorised before solving 
for each right hand side. The structure of the master stiffness matrix is always the same 
with the same finite element mesh and so the first three steps are performed only once. 
These six steps are now considered individually.

Form new master stiffness
matrix at each G-N iteration

New right hand side
solution

Solution

Factorisation

Matrix Assembly

Pseudo-Assembly

Data Structure Setup

Node Renumbering

Figure 4.6 Steps to solution of sparse finite element equations

4.2.2.2.I. Pseudo-Assembly
The finite element assembly procedure produces the rxr master stiffness matrix Y. This 
matrix structure must be known for some of the node renumbering algorithms to be 
employed. The finite element assembly procedure is used solely to find the positions of 
the off-diagonal non-zero entries in the master stiffness matrix. This pseudo-assembly 
produces a one-dimensional array which has r segments, each corresponding to a 
column in Y. Each segment stores a list of the row numbers at which there is a non-zero
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in the Y matrix. A pointer array pointing to the first non-zero element of each column in 
the one-dimensional array is also needed.

Various matrix entries are referenced more than once during the assembly procedure, so 
the pseudo-assembly implements a search ensuring that entries are not duplicated.

4.2.2.2.2. Node Renumbering
As mentioned, careful numbering of the nodes can reduce the amount of fill-in during 
Cholesky factorisation. Numerous node numbering schemes exist and a selection of 
these are considered in detail in Section 4.2.2.3.

4.2.2.2.3. Data Structure Set-up
Once the matrix re-ordering is chosen, the sparse data structures must be set-up so that 
the coefficient matrix, Y and the factorised matrix, L can be stored. The storage scheme 
is linked to the chosen factorisation and solution methods and are split as follows:
i) Envelope Methods
ii) General Sparse Methods

i) Envelope Methods
The band structure, which is examined in the Section 4.2.2.3, has predictable fill-in 
which facilitates the use of simple data structures to store such matrices. The variable 
band structure consists of rows of different lengths within the band, see Figure 4.5. The 
area within the band is also known as the envelope. The data storage structure used is 
the envelope storage scheme[54]. This uses a one-dimensional array to store all elements 
within the envelope. Matrix symmetry enables storing of the lower triangle elements 
only. The elements within the lower triangular envelope are stored row after row in the 
one-dimensional array.

The envelope storage scheme is also suitable for the factored matrix, L as factorisation 
fill-in only occurs within the envelope, see Figure 4.5. No fill-in position calculations are 
necessary. Setting up the data structures is merely a matter of finding the envelope size 
and setting up an array holding pointers to the start of each row in the one-dimensional 
array. The position of the first non-zero of each row in the factored matrix is readily 
obtained from the information produced in the pseudo-assembly stage.
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ii) General Sparse Methods
The minimum degree and nested dissection orderings, which will be considered, produce 
a more scattered distribution of non-zero elements in the coefficient and factored 
matrices. A more complicated data structure is needed to access these elements. Linked 
lists[53] are often used, especially in general (non-symmetric) sparse matrices. However, 
the solvers used are obtained from George[541 and these need a data structure especially 
adapted to sparse symmetric factorisation and solution. This compressed sparse scheme 
uses a one-dimensional array to store the coefficient and factored matrices, along with 
the necessary pointer and element positioning vectors. Full details may be found in

The more general sparse orderings do not give the same factored matrix fill-in 
predictability that is associated with envelope structures (see Figures 4.8 to 4.10) . In 
order to find the positions of the fill-ins, a process known as symbolic factorisation must 
be performed. Symbolic factorisation simulates the numerical factorisation procedure in 
order to find the zero-nonzero structure of the factored matrix. The compressed sparse 
data storage scheme can be set-up simultaneously. Georget54] provides an efficient 
routine to implement this process.

4.2.2.2.4. Matrix Assembly
In equation (4A.14), the master stiffness matrix, K is the coefficient matrix Y. Only the 
lower triangle of Y is stored in the appropriate one-dimensional data arrays, so just the 
lower triangle need be assembled as follows:

The max{I,J) and min{I,J) are functions to find the maximum and minimum of I  and J. 
The last two summations translate into 2 computer program loops, both of which are 
very small. The loop overhead slows down the assembly process. The implementation 
time is decreased by replacing the 2 loops with 1 through the ifse of indirect addressing.

Once matrix Y in equation (4.3) has been assembled, the boundary conditions must be 
implemented before proceeding. The right hand side vector, c simply contains the nodal 
currents flowing into the mat, therefore, this vector holds the natural boundary 
conditions. These currents flow through the electrodes attached to the mat. Vector c

George[54].

max(/,7) min(/,/)

4

(4.8)
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thus contains the electric current, in Amps, at row numbers which correspond to the 
electrodes and zero elsewhere. Y is singular, so a reference node is supplied by 
grounding a node, k. To reference this node, set the kth row and column of Y equal to 
zero and the main diagonal element to 1 and set the kth row of c to zero. This is the 
equivalent of implementing the rigid boundary conditions, \ k = 0 into equation (4.3) i.e. 
grounding node k. The rigid boundary conditions must be implemented so that the 
assembled matrix Y becomes positive definite, before the finite element equations (4.3) 
can be solved.

4.2.2.2.5. Factorisation
The permutation matrix PYPT is factored into the form LLT using the Cholesky 
factorisation algorithm. The Y matrix is a positive definite symmetric matrix, which is a 
necessary condition for the Cholesky factorisation. Efficient implementation of the 
numerical factorisation algorithm is dependent on the storage scheme used. Appropriate 
library routinest54][55] optimise the numerical factorisations according to the data structure 
schemes used.

4.2.2.2.6. Solution
Equation (4.3) needs to be solved p  times. The different solutions are for the different 
current patterns injected into the electrodes. The p  different v vectors are each solved 
separately through forward and backward substitution. The factorisation of Y need only 
be performed once as the forward and backward substitution uses the same factorised 
matrix, L, for each of the p  right hand side c vectors.

The vector c is also sparse in some situations and further computational savings may be 
made by taking advantage of these zeros. Formally, this is implementing sparse vector 
methods and is examined further in Section 4.2.2.4.

4.2.2.3. Sparse Matrix Re-orderings
The sparse matrix technique, in effect, finds the permutation matrix in equation (4.7). 
This corresponds to relabelling of the node numbers in the finite element mesh. Three 
different approaches to ordering are examined, namely; the envelope ordering, minimum 
degree ordering and nested dissection.
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441x441 Y Matrix 
Non-zeros: 3721 Sparsity: 1.9%

441x441 L\L Matrix 
Non-zeros: 18921 Fill-in: 15200 (7.8%)

Figure 4.7 Matrix structure for the 400 element grid with the natural (nat)
ordering

:v

441x441 Y Matrix 
Non-zeros: 3721 Sparsity: 1.9%

\ . N

441x441 L\La Matrix 

Non-zeros: 14075 Fill-in: 10354 (5.3%)
Figure 4.8 Matrix Structure for the 400 element grid with the minimum degree

(MD) ordering
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u  r

441x441 Y Matrix 441x441 L\lT  Matrix
Non-zeros: 3721 Sparsity: 1.9% Non-zeros: 13461 Fill-in: 9740(5.0%)

Figure 4.9 Matrix structure for the 400 element grid using the irregular nested
dissection (IND) ordering

441x441 Y Matrix 441x441 L\lT  Matrix
Non-zeros: 3721 Sparsity: 1.9% Non-zeros: 12735 Fill-in: 9014 (4.6%)

Figure 4.10 Matrix structure for the 400 element grid using the regular nested
dissection (RND) ordering
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4.2.2.3.1. Envelope Orderings
Matrices can be ordered so that all the non-zeros lie within an envelope around the main 
diagonal. During factorisation, fill-in occurs within this envelope and so envelope (also 
called skyline/profile/variable-band) algorithms operate entirely within this area and 
ignore all the zeros outside the envelope. Some algorithms ignore the variable 
bandwidths that make up the envelope and operate on a fixed bandwidth. The band 
structure and predictability of fill-in facilitates the use of the envelope storage scheme to 
store such matrices. Envelope solvers take advantage of this simple data storage scheme 
and as a result are quite fast on a per matrix element calculation basis.

The row by row or natural ordering of the mesh produces the narrow band structure of 
Figure 4.7 for the 400 element grid. The row by row ordering is produced by the mesh 
generator. Algorithms that can automatically order matrices into a band structure exist 
and the best of these is known as the Gibbs-Poole-Stockmeyer algorithm. The aim of 
this algorithm is to reduce the size of the envelope. This will in turn reduce the number 
of fill-ins and subsequent operation count during the factorisation and solution stages. 
An efficient implementation of the Gibbs-Poole-Stockmeyer algorithm by Lewis[56] was 
used in an attempt to improve the mesh generator's row by row ordering. It did not 
reduce the envelope size any further.

4.2.2.3.2. The Minimum Degree Ordering
The minimum degree algorithm is also known as the Tinney Scheme 2 ordering as it was 
first published as scheme 2 by Tinneyt57] in 1967. Since then, the algorithm has been 
improved slightly and implemented more efficiently[58]. The interested reader is referred 
to this last reference for further details on the latest refinements to the minimum degree 
algorithm. The algorithm is specially tailored for a wide range of symmetric matrices and 
is a popular ordering for general sparse matrix solvers. In the next few paragraphs, the 
basic algorithm is presented along with an example of how the ordering is obtained 
when applied to a tiny finite element mesh. A basic knowledge of graph theory is 
assumed, but this can also be found in Appendix Al.

The minimum degree algorithm attempts to re-order the matrix for minimum fill-in 
during the factorisation stage of the Cholesky decomposition. It can be verified that 
when the graph has no loops (a tree graph), the minimum degree ordering introduces no 
fill-in. However, the algorithm does not necessarily always produce an ordering that 
gives minimum fill-int53]. The graph for the finite element mesh used is shown in
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Figure 4.11. This graph structure has loops and so cannot produce zero fill-in and the 
minimum degree algorithm cannot guarantee an ordering that will produce the minimum 
amount of fill-in. Tinney1571 describes the ordering as the numbering of the rows so that 
at each step of the process, the next row to be operated upon is the one with the fewest 
nonzero terms.

Figure 4.11 Graph of the single bilinear finite element

The minimum degree algorithm can be more explicitly stated through the use of graph 
theory:

1) Use the given symmetric graph, i.e. the unordered matrix structure as the current 
elimination graph.

2) Choose a node which has minimum degree in the current elimination graph. This 
node is numbered next. If more than one node has minimum degree, choose any 
node.

3) Remove this node from the current elimination graph to produce a new elimination 
graph.

4) This node elimination changes the degree of some uneliminated nodes so each node 
degree must be updated.

5) Repeat 2-4 above while there are still nodes that have not been eliminated 
(numbered).

An example of how the algorithm numbers a simple 4 element mesh is shown in 
Figure 4.12.

The Fortran algorithm used was obtained from Georget54] and the exact 
implementational details are fully described in this book. The re-ordered 400 element 
mesh produces the coefficient and factorisation matrices shown in Figure 4.8.
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Elimination Graph Chosen Node Node Number Node Degree
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Figure 4.12 Example of the minimum degree algorithm on a two element mesh
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Tie-breaking
The minimum degree algorithm here uses no tie-breaking strategy, that is, when two or 
more nodes have equal minimum degree, no strategy is used to choose between them. 
The choice of node is in effect random as it depends entirely on the initial ordering. The 
example in Figure 4.12 always picks the first letter of the alphabet when there is a choice 
between two or more nodes of equal minimum degree. Different tie-breaking strategies 
induce different orderings and so the amount of fill-in and success of the minimum 
degree algorithm depends on the tie-breaking strategy used. On a square grid, Duff531 
presents an example where a row by row initial ordering produces less fill-in than a 
spiral (numbering nodes spiralling towards the middle) initial ordering. George[58] also 
found that a row by row initial ordering was best, so this is the one used. The same 
author suggests that the next significant advance of the minimum degree algorithm will 
probably be the development of effective and practical tie-breaking strategies in the 
selection of minimum degree nodes. This is currently an active area of research.

4.2.2.3.3. Nested Dissection Ordering
Nested dissection is an ordering algorithm which first had applications in finite element 
problems. The algorithm is adaptable to meshes comprising both regularly and 
irregularly shaped finite elements. The regular square finite element mesh is the relevant 
case, but an irregular algorithm may also be applied to a regular problem. The regular 
algorithm is examined in greater detail here.

George[59] and Duff1601 have published nested dissection algorithms especially tailored for 
regular square finite element grids. The latter publication is an improvement over the 
first in that it gives a superior ordering for the square noon grid when m is not a power 
of 2. This superior algorithm is the one tested.

The nested dissection ordering algorithm hinges on dividing up the finite element mesh 
piece by piece. The mesh is separated into 4 subsets by a cross-shaped group of dividing 
nodes. The process is repeated on the remaining nodes in each subset until each subset 
can no longer be subdivided. The dividing group of nodes, or dissection sets, in each 
subset are numbered last. Thus, the mesh is repeatedly divided by the dissecting sets and 
hence the term 'nested dissection' is coined. The resulting 4 dissection sets for the 
100 element grid are shown in Figure 4.13, with a few sets shaded for clarification. The 
nested dissection algorithm numbers the nodes in set 1 first, followed by those in 
sets 2,3... and so on.
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Methods for numbering the nodes within each dissecting set can be optimised and was 
studied by Duff601. He found the minimum degree ordering to be best. This node 
numbering applied to the 100 element mesh using the dissecting sets of Figure 4.13 is 
shown in Figure 4.14.

The dissection sets were obtained by coding the algorithm of Duff601. The minimum 
degree numbering of the nodes within each dissection set was done by an adaption of 
the Fortran algorithm in the book by Georget54].

The non-zero matrix structure for the 400 element mesh is shown in Figure 4.10. As can 
be seen, the non-zeros are irregularly scattered throughout the matrix. The compressed 
sparse scheme is best for storing such a scattered matrix structure.

George[61] developed an automatic general purpose nested dissection ordering which can 
also be applied to irregular finite element problems. The authors claimed that the 
algorithm gives an efficient ordering for regular square finite element grids. The Fortran 
code for this algorithm was readily available in the book[54] by the same authors and the 
resulting ordering for the 100 element mesh case is shown in Figure 4.15. Comparisons 
with the regular mesh ordering of Figure 4.14 show that the dissecting sets are not quite 
the same. The effects of not using the theoretical regular orderings for a square mesh are 
examined in the Section 4.2.2.5.
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1 1 2 3 2 4 2 3 2 1 1
1 1 2 3 2 4 2 3 2 1 1
2 2 2 3 2 4 2 3 2 2 2
3 3 3 3 3 4 3 3 3 3 3
2 2 2 3 2 4 2 3 2 2 2
4 4 4 4 4 4 4 4 4 4 4
2 2 2 3 2 4 2 3 2 2 2
3 3 3 3 3 4 3 3 3 3 3
2 2 2 3 2 4 2 3 2 2 2
1 1 2 3 2 4 2 3 2 1 1
1 1 2 3 2 4 2 3 2 1 1

Figure 4.13 Regular nested dissection sets for the 100 element mesh. The 4th 
dissection set and 2 of the 3rd dissection sets are shaded.

1 4 29 73 52 121 22 92 17 8 5
2 3 28 72 53 120 23 93 18 6 7

25 26 27 71 54 119 24 94 19 20 21
70 69 65 68 67 113 95 97 98 99 100
30 31 32 66 63 112 64 96 35 34 33

118 117 116 115 114 106 105 104 103 102 101
36 37 38 79 61 107 62 88 41 40 39
74 75 76 77 78 108 87 86 85 84 83
42 43 44 80 57 109 60 89 49 48 47
12 11 45 81 56 110 59 90 50 16 15

9 10 46 82 55 111 58 91 51 14 13

Figure 4.14 Regular nested dissection ordering for the 100 element mesh using the 
dissection sets of Figure 4.13. The shaded sets are also the same.

90 91 100 86 85 121 73 72 75 70 69
88 89 99 87 84 120 74 71 78 77 76
92 95 96 97 98 119 83 82 81 66 65
64 94 60 62 58 118 55 56 80 68 67
63 93 59 61 57 117 53 54 79 52 51

104 103 102 101 110 111 112 113 114 115 116
41 43 39 38 109 25 26 37 18 22 17
40 42 45 44 108 23 24 36 19 20 21
50 49 48 15 107 28 27 35 13 14 12
10 11 47 16 106 7 30 31 32 33 34

8 9 46 5 105 6 29 3 2 4 1

Figure 4.15 Irregular nested dissection (automatic algorithm) ordering for the 100 
element mesh. A few groups within the dissection sets are shaded for distinction.
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4.2.2.4. Sparse Vector Methods
The incentive for using sparse vector methods[62] is to improve on the sparse matrix 
method by further reducing the number of unnecessary matrix operations. Achievement 
of this is possible in two instances; when the right hand side vector is sparse and/or only 
a subset of the solution vector needs to be known.

In the first instance, the forward substitution can be optimised by using a subset of the 
columns of the factorised matrix, L, and is known as fast forward (FF). Similarly in the 
second instance, a subset of the rows of LT speed up backward substitution and is 
known as fast back (FB). The ordered list of columns in L for FF, or rows in LT for FB, 
which are absolutely necessary for solution, define what is known as the sparse vector 
path. The path length in FF and FB is the number of these necessary columns in the 
ordered list. The path length of full forward and backward substitution is equal to the 
total number of columns in L.

The paths for FF and FB are usually different and are respectively, functions of the 
sparsity structures in the right hand side and solution vectors. The paths are also 
functions of the sparsity structure in L, which in turn is a function of the Y matrix 
ordering strategy used. The most important task for sparse vector methods is to find this 
path in an efficient manner. Tinney1621 explains methods to do this and how to implement 
FF and FB in a clear concise way. NAG[55] and George[54] provide library routines which 
are used for full forward and backward substitution. These were then modified, when 
appropriate, for implementation of FF and FB.

4.2.2.4.I. Voltage Solution
In the application of EIT to measuring pressure from a mat, a current source is used for 
current injection into and extraction from the mat. Each right hand side column vector c 
in the finite element equations only has non-zeros in positions which correspond to the 
electrode numbers used by the current source. In single current injection, current is 
injected into one electrode and extracted from one other and so c has two non-zeros. 
This is a prime candidate for using FF as c is highly sparse. When optimal currents are 
used, each and every electrode has an injected current. In this case, c is not particularly 
sparse. Additionally, the electrodes are not topologically clustered as they are spread 
fairly well all over the mat. Sparse vector methods (FF) are not considered in this case 
as these conditions are not ideal for using them[62]. The Gauss-Newton method needs all
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voltages on all nodes for the Jacobian matrix calculation so full backward substitution is 
necessary.

4.2.2.4.2. Matrix Inverse Solution
Another situation arises where very similar equations must be solved. This is in the 
implementation of the Gauss-Newton method where some columns of the Y inverse 
matrix are needed, see Section 5.4.1 for details. Large computational savings can be 
made by using the same factorised matrix, L. Forward and backward substitution are 
then used to solve for the inverse, Y"1, by using the appropriate column of the identity 
matrix, I as the equation right hand side:

Y Y 1 = I (4.9)

Each column vector in I is sparse with just one non-zero. Such a sparse vector is called 
a singleton by Tinney[62] and is the best condition for solution optimisation by FF. The 
Gauss-Newton method needs all the elements in only e columns of Y'1, where e is the 
number of nodes representing electrodes. Symmetry in Y enables the solution of all the 
elements in the e rows as an alternative. For a 400 element finite element mesh, e is 
approximately 7% of the total number of columns in Y.

The two ways of calculating the required elements in Y'1 are thus by rows or by 
columns. Calculating each column involves FF followed by full back substitution for the 
e electrode columns only. Calculating e rows requires FF and FB for every column in 
Y'1. FB would not give particularly significant improvements over full back substitution 
for the same reasons mentioned in Section 4.2.2.4.I. The obvious choice is then 
calculation by columns as only e FFs need be performed.

4.2.2.5. Choice of Solution Method
This section studies the node ordering and sparse vector method combinations for 
minimising the time to equation solution. The chosen method must be optimal for both 
the voltage solution and inverse matrix solution.

4.2.2.5.I. Timing Results
Timing minimisation is the final goal, but the CPU timing results taken vary by 
approximately 10% due to the multitasking environment used. To aid comparisons, the 
number of operations, Le. the number of multiplications and divisions, is used in addition
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to timing information. The majority of the time spent in solving the EIT forward 
problem related equations is in the factorisation and solution stages, as Figure 4.16 
shows. The time to complete these two stages need further examination as the remaining 
stages use negligible CPU time. All timing results in this section were taken on a Sun 
10/41 and averages taken to compensate for fluctuations.

Timings are for 5 
iterations with m=400 
using RND ordering

1% 1%
3%

20%

16 voltage solutions plus 
32 inverse matrix columns per iteration

□  Pseudo-Assembly 

W i Node Renumbering 

■  Data Structure Setup 

H  Matrix Assembly 

HI Factorisation 

EH Solution

Figure 4.16 Typical timing breakdown for voltage and inverse calculation in the
Gauss-Newton method

The factorisation times are dependent on the data storage scheme and the number of 
operations performed. Figure 4.17 compares the number of operations executed during 
Cholesky factorisation. In this and subsequent tables, Nat is the natural or row by row 
ordering, MD is the minimum degree ordering, IND is the ordering from the 
irregular/automatic nested dissection algorithm and RND is the regular square mesh 
nested dissection ordering. The mesh size is represented by m, where m is the number of 
elements in the square mesh. The most relevant results from this table are for the larger 
grid sizes as they provide a more accurate representation of the physical model. The 
nested dissection algorithms have superior operation counts and the algorithm specially 
tailored for the regular mesh (RND) is better than the more general irregular algorithm 
(IND). The IND algorithm still outperforms the MD algorithm for the larger meshes. 
The operation count improvements are bigger for the larger meshes. The amount of fill- 
in has a direct effect on the operation count. This is apparent in the percentage of fill-in 
shown with the matrix structures of Figures 4.7 to 4.10.

Page  51



EITAPPUED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

The solution stage produces similar results. The full backward substitution and full 
forward substitution / singleton FF count can be seen in Figure 4.18. The full forward 
substitution is applicable to the voltage calculation, but FF is used in the Y'1 calculation. 
The benefits of using FF are attributable to the shorter path lengths. The average 
singleton path length for calculating all columns in the Y'1 matrix is shown in 
Figure 4.19. The row labelled Full is not a singleton path length, but the full path length, 
that is, the path for full forward substitution. The natural ordering is not particularly 
suitable for FF as once the first right hand side non-zero is encountered, the path is full 
from then on. The more scattered non-zero distributions in the minimum degree and 
nested dissection ordered matrices lead to path lengths much shorter than that of the full 
path. These are more suitable for sparse vector methods. The effect of these FF path 
lengths is reflected in the operation counts of Figure 4.18.

m 25 64 100 256 400
Nat 990 4 496 9 580 50 336 113 560
MD 802 3 550 7 574 43 781 85 041
IND 936 4 232 8 546 35 929 71667
RND 808 3460 7 005 32 282 64 987

Figure 4.17 Operation count for Cholesky factorisation

m 25 64 100 256 400
Full FF Full FF Full FF Full FF Full FF

Nat 492 365 1602 1 195 2 882 2153 10 370 7 763 19 362 14 503
MD 436 288 1366 888 2 428 1502 8 590 5 391 14 516 8 661
IND 472 296 1506 903 2 606 1543 8 084 4 671 13 902 7 947
RND 438 281 1358 832 2 348 1425 7 618 4471 13 176 7 649

Figure 4.18 Average operation counts comparing full forward substitution and 
singleton FF. Operation counts include full backward substitution.

m 25 64 100 256 400
Full 36 81 121 289 441
Nat 18 41 61 145 221
MD 12 22 26 52 59
IND 10 17 23 39 50
RND 11 18 24 41 54

Figure 4.19 FF Average singleton path lengths

The RND ordering produces the lowest operation count for both FF and full forward 
substitution. This optimal ordering and the implementation of sparse vector methods is 
also reflected in the timing comparisons for one Gauss-Newton iteration, Le. calculating 
e columns in Y'1 and p  voltage columns. Figure 4.20 analyses these timing comparisons
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for the two larger grid sizes. The times shown use the full forward substitution for the 
voltage calculation, as would be the case with optimal currents. The smaller grid size 
timings are not considered as their modelling inaccuracies are not ideal for use in the 
Gauss-Newton method. The smaller grid size trends can be obtained from the operation 
count tables. Also included in this table for reference, is the time taken when not taking 
advantage of any sparse methods, i.e. using a dense matrix solver from NAG[55]. When 
using the largest grid, the dense solver is approximately 24 times slower than the general 
solver with RND ordering and indicates the relative advantage of using the best sparse 
method over standard dense methods.

The time to solution is dependent on the data storage schemes used by the different 
sparse solvers. This is demonstrated by comparing the envelope and general sparse 
solvers with an ordering (Nat) that they can both operate on. The benefits of using the 
simpler storage scheme are especially evident in the factorisation times but the solution 
times are very similar. However, when the envelope solver is compared with the general 
solver using the RND ordering, the envelope solver is slower. Another envelope solver 
from NAG[55] was implemented, but proved to be much slower than the aforementioned 
one.

The timing results already presented calculate all elements in e columns in the Y 1 matrix. 
The alternative method of calculating e elements in all columns, using FB, was also 
studied. The FB path length was approximately half that of the full path and considering 
this had to be done for all r columns, where the ratio r : e is -14 for the large mesh, the 
solution times are much greater. Another strategy is to number the electrode nodes last 
and to use the minimum degree ordering on the non-electrode nodes. This approach 
degrades the minimum degree algorithm's low fill-in, but gives the advantage that only 
the first e backsubstitutions need be performed, ie. a FB path length of only e. This 
ordering was implemented, but once again did not give very impressive results despite 
the short FB path length (0.45s for one G-N iteration, m -  400). This is because of the 
extra matrix fill-in, but largely due to FB being performed on all r columns.
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m 256 400
Dense 
Solver 

(Any ordering)

Factorisation 
Full Solution

0.21900 0.69600 
0.01480 0.05370

Total 0.929 3.274

Envelope
Solver
(Nat)

Factorisation 
Full Solution 
FF Solution

0.01230 0.03510 
0.00233 0.00475 
0.00159 0.00328

Total 0.100 0.216

General Sparse 
Solver 
(Nat)

Factorisation 
Full Solution 
FF Solution

0.01820 0.04490 
0.00266 0.00472 
0.00166 0.00334

Total 0.114 0.227

General Sparse 
Solver 
(MD)

Factorisation 
Full Solution 
FF Solution

0.01570 0.04060 
0.00201 0.00380 
0.00118 0.00203

Total 0.086 0.166

General Sparse 
Solver 
(IND)

Factorisation 
Full Solution 
FF Solution

0.01360 0.03570 
0.00196 0.00359 
0.00100 0.00184

Total 0.077 0.152

General Sparse 
Solver 
(RND)

Factorisation 
Full Solution 
FF Solution

0.01200 0.03050 
0.00186 0.00340 
0.00092 0.00166

Total 0.071 0.138

Notes:
Total time is that for 1 Gauss-Newton iteration, i.e.
Total = Factorisation + Full Solution * p + FF Solution * e, 
where e = 32 & p = 16. Times are in seconds on a Sun 10/41. 
The dense solver does not implement FF.

Figure 4.20 Timing comparisons for different solvers and different orderings

4.2.2.5.2. Discussion
Many different ordering strategies have been compared with each other in the various 
sparse matrix literature. The fastest solutions depend to a large degree on the matrix 
sizes, the original ordering and the degree number of each node i.e. the connectivity 
between nodes. Both the way the algorithms are coded and the type of computer used
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also have an effect. Consequently, it is difficult to foresee which matrix ordering method 
would be the best without testing the different ordering strategies.

The regular nested dissection algorithm proved to be the best ordering for minimising 
the equation solution times. Better tie-breaking strategies could be found to improve the 
present minimum degree algorithm. Tie-breaking strategies are currently being 
researched, but the nested dissection ordering is chosen as it can be viewed as a 
minimum degree ordering with a perfect tie-breaking strategy when applied to regular 
gridst58]. Another reason for the success of the nested dissection algorithm is that it is a 
global ordering strategy as the most important decisions are made on the entire matrix, 
whereas the minimum degree algorithm is a local ordering strategy1531.

A paper by Gomez[63] suggests three new matrix re-ordering algorithms to enhance 
sparse vector performance. The new algorithms are compared to the minimum degree 
ordering and are in effect tie-breaking strategies for it. The best algorithm shows an up 
to 20% improvement in the number of operation counts and path lengths for the test 
matrices used. The nested dissection algorithm with FF exhibits comparable 
improvements over the standard minimum degree ordering. For example, from 
Figures 4.19 & 4.18, the path length for the 256 element model is 21% shorter and 17% 
fewer arithmetic operations are needed. The algorithms in this paper also produce 
greater fill-in than the minimum degree, which results in longer factorisation times, 
whereas the nested dissection has a lower fill-in than the minimum degree algorithm.

The data structures used by the minimum degree algorithm and nested dissection 
algorithm are complicated due to the spread of non-zeros throughout the matrix. The 
envelope solvers access matrix elements faster due to the simpler data structures used. If 
the number of operations to be performed by an envelope ordering is similar to that of 
the general sparse solvers, then the envelope methods are quicker. However, in the 
situation studied here, the number of arithmetic operations required by the envelope 
ordering is greater and the net result is a faster solution time using the more complicated 
matrix orderings. The envelope orderings cannot take great advantage of sparse vector 
algorithms either.

George[64] and Duff1601 also showed that the nested dissection ordering is best for finite 
element meshes similar to that used for the pressure mat, but neither considered sparsity 
in the right hand side vector. One of the orderings not yet mentioned that George1641
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made comparisons against is the so called one-way dissection. The one-way dissection 
ordering is a compromise between band and nested dissection orderings. It dissects the 
mesh so that the dissected blocks may be stored and solved by envelope methods. 
However, it was shown to give poor factorisation times so was not considered.

Woo[65] considered envelope ordering methods and the three Tinney[57] schemes in his 
EIT system. He suggested using the minimum degree ordering, but this was for a 
circular finite element mesh comprised of triangular elements.

The solution methods considered are direct methods especially adapted to symmetric 
sparse matrices. Alternatively, iterative methods could be used, but were not considered 
as they are best for single solutions, are best for larger problems and are more efficient 
when a good starting vector is available.

Both Woo[65] and Paulson[50] have reduced EIT reconstruction times through 
implementation on parallel computers. Woo argues that the algorithms are easily 
parallelisable. However, Paulson found the porting of the algorithms to a parallel 
environment a formidable task; the implementational effort required was not worth the 
gain in speed considering the rapid rate of scalar processing power improvement. He 
recommends waiting for better tools for parallel implementation as parallel code is 
presently not portable and is difficult to maintain or modify. The operation counts shown 
in this chapter are a direct measure of processor time required when using the general 
sparse solver on a scalar computer, the Sun 10/41. The choice can be made largely on 
the operation count, as was shown in the timing results, but this would not necessarily 
be the case in a parallel environment

4.3. Conclusions
The time that one Gauss-Newton iteration takes has been reduced on a superscalar 
computer. In real-time applications, a reduction in reconstruction time enables better 
resolution in the final reconstruction pressure distribution as more elements may be used 
in the FEM mesh within a given time limit. The areas targeted for optimisation were in 
the forward solution and the calculation of the Jacobian matrix. These equation solutions 
are suitable for sparse matrix optimisation. The nested dissection algorithm is the best 
node renumbering strategy for a regular rectangular mesh comprised of square bilinear 
elements. Additionally, the nested dissection ordering was found to produce a singleton 
path length lower than that produced by the minimum degree ordering. These low path
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lengths further reduce the time to calculate the Jacobian matrix. The suitability of a mesh 
comprised of bilinear elements for optimisation by sparse methods, is one factor in 
choosing them to model the mat. Before the suggestions in this chapter were 
implemented, the total time spent in the forward problem and Jacobian matrix 
calculation dominated the reconstruction of the pressure distribution. Now it is a minor 
part of the Gauss-Newton inverse problem solution time.
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5. Optimisation Techniques for Solving the Inverse 
Problem
The inverse problem is classified as an optimisation problem, for which there are many 
different algorithms for solution. This chapter examines the suitability of many such 
algorithms and narrows the choice down to a select few for closer study. The final part 
of this chapter analyses efficient methods for the formation of the Jacobian matrix 
required by the optimisation algorithms.

Methods for solving a problem by optimisation fall naturally into two different classes[66]. 
The first class includes those based on a direct search and use function evaluations only. 
The second class consists of a collection of gradient methods which require gradient 
information in addition to function evaluations. The gradient methods include a special 
class when the function being minimised has a certain structure; namely, a sum of 
squares. The least squares approach, which uses a sum of squares, is particularly 
relevant to solving the EIT inverse problem and is studied in depth. Firstly, the 
suitability of direct search methods for solving the inverse EIT problem is examined.

5.1. Reconstruction by Direct Search Methods
Direct search methods use a strategy to minimise the objective function, which is based 
on the comparison of values of the objective function without any use of the derivatives. 
Most direct search methods have been developed from heuristic approaches, such as 
directing the search from results of conducted explorations down a set of defined 
independent direction vectors. Other approaches are based on the use of statistical 
designs. The primary interest in direct search methods is their generality and since they 
usually make no more assumptions other than continuity of the function, they can be 
applied to a very wide class of problems. They are particularly useful for cases where the 
function is non-differentiable and where the first partial derivatives of the function are 
discontinuoust67]. These conditions can cause difficulties with the more theoretically 
based gradient methods and so direct search methods can be very useful in these 
instances.

Since the problem considered in this thesis does not include any of the aforementioned 
criteria and since direct search methods often have a slow rate of convergence1671, the 
more theoretically based gradient methods are preferable.
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5.2. Reconstruction by the Least Squares Method
This section considers various least squares approaches to reconstruct the pressure 
distribution. The theory behind each approach is presented and explained in this chapter. 
The results using a computer simulation of the system are presented in the following 
chapter.

5.2.1. General Introduction
Knight111 showed that the Gauss-Newton approach for solving the resistivity distribution 
in EIT is very successful This approach is just one least squares optimisation technique 
to solve the forward problem. In this chapter a number of different least squares 
approaches are considered to improve the reconstruction. The least squares approach 
uses a sum of squares and is a special case of gradient optimisation methods. When the 
problem can be formulated in such a special way, it may or may not be better to use 
specific methods to solve it. The arguments for choosing a least squares method over a 
more general gradient method are discussed.

Numerical methods that attempt to find a minimum or maximum of any given nonlinear 
objective function are generally iterative and start from an initial estimate for the 
solution. Each iteration generates an improved estimate over the previous one. The 
iterative procedure is halted upon fulfilling some criteria indicating that no further 
improvements can be made. Different procedures are characterised by their approaches 
to each iterative improvement and the least squares approach is one such iterative 
procedure.

In the least squares approach, the objective function, is defined as a sum of squares of 
nonlinear functions. In our case the objective function is the sum of the equally weighted 
mean square difference between the measured and estimated voltages[46] and is 
represented by the equation

4> = X X [ f (/’) - v . l = X | f (/’) - v . | £ = K [ f ( / ’) - v . ] T[f ( /> ) -v 0] (5.1)
i=l

where f(p) is defined as a function mapping an m-dimensioned resistivity distribution 
vector into an ^-dimensioned voltage observation vector. The voltage observation 
vector is defined as v0 and contains the measured voltage readings at electrodes for sets
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of applied current patterns. The resistivity distribution vector corresponding to the 
discrete impedance distribution is defined as p  For any estimated p  and applied current 
pattern, a corresponding set of voltages, that is, vector f (/?), can be deduced from the 
finite element model of resistivity distribution.

The Vi in the minimising function of equation (5.1) is included merely to avoid the 
appearance of a factor of two in the derivatives. The residuals are the elements 
[f (/?) -  v 0 ]; and the least squares approach attempts to minimise the vector of residuals 
and does so by suitable selection of a resistivity distribution. So, when the two voltage 
distributions are close, the estimated resistivity distribution is accepted to be the desired 
one. The final resistivity distribution that minimises O in equation (5.1) is denoted p  . 
This is then the resistivity distribution that corresponds to the pressure distribution being 
sought.

The function f (/?), is actually not just a function of the resistivity distribution, but also 
of the current distribution and electrode location. The last two are chosen and are thus 
known. Optimal choice of these two is considered later in this thesis.

Equation (5.1) is an unweighted least squares minimising function. A weighted least 
squares EIT function has been considered by Woo[68]. He found that the weightings 
amplified contrasts in conductivities, but gave a less accurate reconstruction.

The least squares problem defined in equation (5.1) can be minimised by a general 
optimisation method, but the properties of equation (5.1) make it worthwhile to use 
methods designed specifically for the least squares problem[69]. These properties are 
shown in the following section on the Gauss-Newton method.

5.2.2. The Gauss-Newton Method
The well known Gauss-Newton method was first used in Electrical Impedance Imaging 
applications by Yorkey[40][46], who also termed it the modified Newton-Raphson Method. 
The Gauss-Newton method is the generalised least squares method, upon which the 
methods following this section are based. A brief derivation of the Gauss-Newton 
method follows where much of the terminology used is introduced.

To find the only unknown in the forward problem, p  , the objective function is 
minimised using standard mathematical procedures. That is, differentiating the objective
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function with respect to p  and setting the result to the zero vector, 0. This gives the 
gradient vector, g

g = <D'(p) = J T[ f - y o] = 0 (5.2)

The term J  is known as the Jacobian matrix and is an n x m matrix defined by

<5-3>

To linearise equation (5.2), as it is still a nonlinear function of p  a Taylor series 
expansion of equation (5.2) about an arbitrary point, p  = p k at iteration k is taken i.e.

<&'(p k + Ap k)«  <&'(p k) + p k )Ap k (5.4)

where

Ap k = p - p k (5.5)

The term O" is known as the Hessian matrix. Using the chain rule, the Hessian matrix is 
given by

<f>"(p) = J TJ + B (5.6)

Yorkey1* 1 gives B explicitly as

B = [f"]T[ l„ ® [ f - v (,]] (5.7)

where lm is the m x m identity matrix and ® is the Kronecker matrix product1701. These 
last two equations show that the Hessian of the least squares problem consist of a 
special combination of first and second order matrices. Yorkey[401 stated that B is 
difficult to calculate explicitly and is negligible relative to J TJ  and therefore the Hessian 
matrix is approximated by

® "(p )= JTJ  (5.8)
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This approximation is only valid within some small region about p  and Yorkey1461 
found this to be valid with his models. In fact, least squares methods are typically based 
on the premise that eventually, during the iterative process, the first order term J TJ  will 
dominate the second order term[69] in equation (5.6) and so the second order terms are 
neglected. This dominance occurs when the residuals at the solution are small.

Substituting equations (5.2) and (5.8) into (5.4), setting (5.4) to 0, the Gauss-Newton 
equation is obtained:

[[J‘ ]TJ*]a p ‘ = - [ j * f [ f ‘ — V0] (5.9)

To solve for Ap \  the approximated Hessian must be non-singular. Equation (5.9) 
defines the iterative procedure to estimate the final resistivity distribution p  . At 
iteration k, p k is updated from equation (5.9) to give

p k+l = p k + A pk (5.10)

A stopping criterion which indicates that p k+l is the best estimate for the resistivity 
distribution halts the iterative procedure, whereupon, it is said to have converged. 
Convergence criteria are considered later in this section.

The vector Ap k that solves equation (5.9) is called the Gauss-Newton direction and the 

method in which this vector is used as a search direction is the Gauss-Newton method. 
A diagrammatic summary of the Gauss-Newton method is shown in Figure 5.1. The
Gauss-Newton procedure converges and can achieve a quadratic rate of convergence
when the size of the second order term in equation (5.6) tends to zero[69].
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Start

No
Convergence?

Yes

End

Estimate initial resistivity,/?0 
Set iteration count, k=0

Calculate f k and J* by the FEM

Update resistivity estimate, 

p f +1 =  p k + A ( f

p = f t
Pressure distribution 

taken from p

Calculate search direction, Apk from

[[j‘]Tj ‘] V = - [ J ‘f [ f*-v.]

Figure 5.1 Flow Chart for the Gauss-Newton Method
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5.2.3. The Damped Gauss-Newton Method
The size of the step to proceed in from the current point, in an attempt to find a better 
approximation to the resistivity vector, need not be unity as defined by equation (5.10). 
The size, ct, of this direction is termed the step length and the updating equation (5.10) 
can be changed to incorporate the step length,

p k+l = p k + a kA pk (5.11)

where 0 < a k < 1. This then defines the damped Gauss-Newton Method1711. The step 
length is chosen so that the function being minimised is reduced along the search 
direction, Ap k , at each iteration, i.e.

®‘+1<<D‘ (5.12)

Satisfying this equation by selection of the step length can then prevent divergence that 
might occur with a unit step length. Computation of the step length could be optimal in
that it finds a minimum along the search direction, or it could be acceptable in that
equation (5.12) is satisfied by many different step lengths. Searching for a minimum 
along the search direction requires greater computation per iteration, but usually fewer 
iterations will be needed for convergence. However, the total computation is usually less 
if an acceptable value, as opposed to an optimum value, for the step length is used[71].

5.2.4. The Gauss-Newton Method with Second Derivative 
Approximations
The assumption that the Hessian's first order term will dominate the second order term, 
is not always justified. The Gauss-Newton method ignores this second order term, B in 
equation (5.7). As mentioned, this matrix is difficult to calculate explicitly, but there are 
methods which approximate matrix B.

Before looking at a method to approximate B, a definition is needed of when these 
second order terms are necessary. Loosely, this is when the residuals of the Hessian at 
the solution are "large". It can be seen from equation (5.7) that when the residuals, 
[f - v 0] are not zero at the solution, B can no longer be neglected. Gillt69] gives one of a 
few definitions in the available literature for a large residual problem as one in which the 
optimal residual exceeds the small eigenvalues of JT J . When the optimal residual is so
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large that it is comparable to the largest eigenvalues, Gill also suggests that no 
advantage is to be gained by exploiting the least-squares nature of the objective function 
and one may as well use a more general minimisation method. It must be noted that the 
residuals are large when the errors in the electrode voltage measurements are large. It 
was found that the appropriate eigenvalues indicate that the problem is a large residual 
one, but not too large to abandon the use of the least-squares objective function. This 
was for expected practical voltage errors in the region of 1%. Methods to approximate 
B need to be studied.

A method to approximate the second order derivatives is based on using a quasi-Newton 
technique. This is the suggestion of Gill1721. Quasi-Newton methods, also called 
variable-metric or secant methods by some authors, are a large class of general 
optimisation solution methods which are frequently used to solve general unconstrained 
minimisation problems. They are usually used to approximate the entire Hessian matrix 
and not just the second derivatives of the Hessian matrix. They were not considered for 
the entire Hessian matrix approximation for the reasons given in the previous paragraph. 
These same arguments hold for conjugate-gradient methods, which are closely related to 
quasi-Newton methods[69] and are another popular method for solving optimisation 
problems. Conjugate-gradient methods generate search directions without storing any 
matrices and so are particularly suited to very much larger problems. Artola[73] recently 
evaluated the BFGS quasi-Newton method on an EIT problem. Results comparable to 
the Gauss-Newton method were shown just for zero measurement error, a small residual
case. Unfortunately, these are unlikely to be replicated in the large residual conditions of
voltage measurement error.

The quasi-Newton method then attempts to construct the second derivative matrix by 
gathering information obtained from previous iterations. Given H \ the kxh quasi- 
Newton approximation to B \ the updated approximation for the next iteration, H*+1 is 
obtained by adding a correction or update matrix, U* to H* as follows

H*+1 = H* + U* (5.13)

There are various formula for calculating U \ but the one suggested by Gill1721 for second 
derivative approximations is widely used and is known as the BFGS update:

H° = 0  (5.14)
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so that the first iteration is equivalent to the first iteration of the basic Gauss-Newton 
method and for the following iterations,

< 5 ' 1 5 )

where

W ‘ = [J ‘+1]TJ ‘+1+ H ‘ (5.16)

and

y* = [j*+1]T[f‘*‘ - v 0]-[ j* ]T[f‘ - v 0] (5.17)

The interested reader is referred to Gill1721 for further information on quasi-Newton 
methods applied to approximating B and to one of Jennings1711 or Gill[69] for further study 
of the BFGS and other quasi-Newton updates.

5.2.5. The Steepest Descent Method
The steepest descent method replaces the approximated Jacobian matrix in the Gauss- 
Newton method by the identity matrix in equation (5.9) to obtain the new direction

Ap‘ = - [ j ‘ ]T[f‘ - v 0] (5.18)

The term on the right hand side is the gradient vector, g and so the steepest descent 
method moves in the direction of the negative gradient. As the second derivatives 
(Hessian matrix) in the Taylor series expansion of equation (5.4) are not used, the 
steepest descent is a first derivative method. The term 'steepest descent1 is obtained as a 
descent along the negative gradient maximises the reduction in the error generated by a 
first derivative method[66]. An optimal step length, as explained in the damped Gauss- 
Newton method, usually determines the amount moved in the steepest descent direction.

Progress of the steepest descent minimisation is fast far from the optimum, but slow 
near the optimum as a large number of steps are needed in the vicinity of the
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optimum1691. The method of steepest descent is not generally used in practice, but the 
Levenberg-Marquardt method discussed in the following section incorporates its best 
features.

5.2.6. The Levenberg-Marquardt Method
The Levenberg-Marquardt1741 method overcomes the limitations of both the Gauss- 
Newton and steepest descent methods and utilises the best features of each method. 
Yorkey[401 first suggested using it in EIT when reconstruction was attempted with noise 
contaminated voltage measurements. It is now used by many EIT researchers and is a 
popular solution method for many optimisation problems.

The Gauss-Newton theory is based on the next iteration point being in a small 
neighbourhood of the current point. As such, it is not very successful when the solution 
is far from the starting point. The advantages, however, are rapid convergence to the 
solution once in the neighbourhood of the solution and the ability to detect and move 
away from saddle pointst69]. This is largely due to the second derivative approximation it 
provides. The steepest descent direction’s progress is good when far from the solution, 
but its disadvantage is the lack of progress in the vicinity of the optimum. The 
Levenberg-Marquardt method combines the two (equations (5.9) and (5.18)) to form a 
new direction defined by

[[j*]V + Al]Ap‘ =-[j‘]T[f‘ -v„] (5.19)

where the Levenberg-Marquardt parameter or regularisation parameter, A is a positive 
scalar constant. If A is chosen to be large, then the unit matrix dominates the direction 
and so the search direction will tend towards the steepest descent. If A is chosen to be 
small, then the Gauss-Newton search direction dominates. A unit step length is used as 
A has effectively replaced the Gauss-Newton step length in equation (5.11).

There are various published strategies to choose A, but essentially A must be chosen to 
satisfy the convergence criteria of equation (5.12) for each iteration. Values for A could 
start off large, so that the steepest descent direction dominates, and end up small, so that 
the Gauss-Newton direction dominates in later iterations. Various algorithms to choose 
A are examined in a later section.
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Many texts treat the Levenberg-Marquardt algorithm as a trust region method. The 
basic idea of the model trust region approach is to accept a new search direction only if 
the linearised model adequately reflects the behaviour of the nonlinear function. It can be 
shown then, for some scalar rt related to A, the Levenberg-Marquardt equation (5.19) is 
the equivalent of solving the following linearised constrained optimisation subproblem at 
each iteration1691

minimise ||jA /?+ f-v J?
2 (5.20)

subject to ||A/j||2 < rt

This amounts to constraining the length of the new search direction to be less than rt. In 
other words, the search direction is restricted to be within a ball, of radius r,, around the 

current point. The new point arising from the search direction is thus only "trusted" to 
be within this region.

Dobson^51 examines the convergence of the Levenberg-Marquardt method in context of 
the inverse conductivity problem. In proving the convergence, he emphasises that 
convergence of the method does not imply successful reconstruction of the original 
distribution and as yet, nothing is known about the accuracy of the reconstruction 
obtained by the Levenberg-Marquardt algorithm. Reconstruction success on an EIT 
pressure mat is demonstrated in a later chapter, but first, another reconstruction method 
is examined in the following section.

5.2.7. The Scaled Levenberg-Marquardt Algorithm
Marquardt1741 recommends scaling the equations to improve the solution accuracy. This 
is done by normalising equation (5.19), which results in the following direction

+As]a/>‘ = - [ j ‘ ]T[f* — va] (5.21)

The only change is a new matrix S replacing the identity matrix. Matrix S depends on 
the type of scaling used and is diagonal in structure. Marquardt^41 used the following 
scaling

(5-22)
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where J, is the ith column vector in the Jacobian and the term ||J *1* simply equates to 
the ith diagonal element of J T J . Mor6[76] examined three types of scaling in his study of 
the Levenberg-Marquardt algorithm. The following was termed adaptive scaling and is 
given by

/ h „n  (5-23)
s';=m^s;ri,||j,iJ)’

He showed that adaptive scaling is theoretically and experimentally superior to the 
Marquardt scaling of equation (5.22) and others.

5.2.8. Regularised Gauss-Newton Methods
In the 1960's a number of Soviet mathematicians began research in a field of numerical 
analysis which used what they termed "regularisation". Regularisation methods are 
designed for solving ill-conditioned problems and much of the Soviet research is 
documented in a book by Morozov1771. Both Hua[78] and Breckon1791 point out that the 
Levenberg-Marquardt method is actually a regularisation method. In this section another 
regularisation method published by Hua[78] is considered.

The general regularisation method reduces the negative effects that noise has on the 
reconstruction. The objective function being minimised is altered by adding a penalty 
term to offset noise induced instability so that equation (5.1) becomes

«> = K ||f -  v01̂  + X A||e A/j||2 (5.24)

Expanding and defining S = ETE gives

<I> = K ||f-v 0||j+KA ApTSAp (5.25)

This new objective function leads to a search direction given by equation (5.21), which 
for a special case of S, is the scaled Levenberg-Marquardt direction. The second term in 
these last two equations is the penalty term and is a quadratic function of the step
direction, Ap . It is the objective function that is being minimised, so the role of the
penalty term is to penalise large steps from the current point. The regularisation
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parameter A, controls the amount that the step direction is penalised by. Methods to 
select A are considered later in Section 5.2.9.

In the general regularisation technique, S is any positive-definite matrix. In the unsealed 
Levenberg-Marquardt method, S is the identity matrix or a matrix of scale factors and 
corresponds to a penalty function of the form ||Ap f2. Hua[78] proposed using penalty
functions obtained from forward finite differences on the elements of the finite element
grid. The penalty term then either uses first differences as follows

EAp = Ap' (5.26)

or second differences,

EAp= Ap" (5.27)

where each element in A p' and Ap" is given by

A #  = 2Apj -  ApHX -  ApJta (5.28)

Ap"= 4Apj -  A/?>+1 -  Aphl -  Apha -  Ap_a (5.29)

and a is the number of elements across the rectangular finite element mesh. The above 
equations must use the natural or row by row numbering for the finite element mesh, as 
shown in Figure 4.1 The matrices E, and consequently S, are constructed from 
equations (5.26) to (5.29) for use in calculating the regularised search direction.

The penalty term based on A p  is used when the domain is known to be fluctuating, 
Ap' is used for a continuous domain, and Ap" is used when it is known to be smooth. 
Hua[78] showed the superiority of the latter two penalty terms over the first for one test 
distribution. A comprehensive study of reconstructions obtained through the use of 
regularisation applied to the set-up specially tailored to pressure measurement follows in 
Chapter 6. The regularised Gauss-Newton method is summarised in flow chart form in 
Figure 5.2.
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Estimate initial resistivity, p° 
Set iteration count, k=0 

Calculate regularisation matrix, S

Calculate f  and J* by the FEM

Select suitable X
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Calculate search direction, Ap k from 
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Update resistivity estimate, 
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Figure 5.2 Flow Chart for the regularised Gauss-Newton method.
Note that when S=I, the procedure reduces to the Levenberg-Marquardt method.
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5.2.9. Determining the Regularisation Parameter
There are a multitude of different published algorithms for finding the regularisation 
parameter, X. The first was due to Levenberg[80] who used a time consuming linear 
search to find the optimum value for X. Since then a few heuristic approaches have been 
published, but the most recent algorithms are based on a trust region approach. Since it 
is almost impossible to know which is best for the problem and regularisation in hand, 
and since it is not clear what other EIT researchers use and why; a few of these
algorithms are presented and tested. The chosen algorithms include those from the
simple, heuristic and trust region types.

5.2.9.1. Marquardt's Choice for the Regularisation Parameter
Marquardt[74] used a heuristic algorithm for obtaining X, which can be stated as follows,

Choose initial X°, a multiplier, vm and a divider, vd.
Set iteration counter, k=0 

Compute 0(A*)
If 0(A*-1), let Xk+l = t f /v d and accept
If 0(A*)>0(A*-1), let Xk+1 =vmXk and reject f t  

Increment k and repeat until convergence.

5.2.9.2. More’s Choice for the Regularisation Parameter
Mor6[76] adopts a trust region approach to the Levenberg-Marquardt algorithm. Hence X 
is found in terms of the trust region defined by rt in equation (5.20). The choice of rt at

each iteration is based on a ratio calculated for a particular search direction. The ratio is 
between the actual reduction in the function and the reduction predicted by the 
linearised model If the ratio is close to unity, that is, the two models are in close 
agreement, the trust region is increased. Otherwise, the trust region is decreased or kept 
constant, depending on the amount of agreement between the two models. Calculating 
the degree of change in the trust region is involved and the interested reader is referred 
to the paper by Mor6[76]. Mord's trust region approach is highly regarded in the 
optimisation literature and the source code is publicly available.

5.2.9.3. Davies' Choice for the Regularisation Parameter
Davies[81] points out that when the objective function is a quadratic, the end points of the 
search direction follows a spiral as X varies from zero to infinity, that is, starting at the

Pa g e 72



EIT APPLIED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Gauss-Newton point and ending at the current point. Davies[81] attempts to follow this 
spiral and finds an estimate for 2  which gives the point where the objective function is a 
minimum on the spiral. The algorithm is as follows:

At each iteration k, compute the gradient, g and the approximated Hessian, J TJ .
, 3gTJ TJg

Then use A -  T for computing the new search direction.
g g

5.2.9.4. The Dwindling Regularisation Parameter
The previous methods for estimating a good value for A are involved and require many 
iterations to convergence. To overcome the time taken to obtain an absolute minimum, 
the following approach can be taken. The search direction is progressively moved from 
the direction of steepest descent to the Gauss-Newton direction. The iterative procedure 
is terminated early, that is as soon as divergence occurs. An absolute minimum is not 
found, but experience showed that the resistivity distribution obtained was not too 
dissimilar from the best possible. The algorithm is then

Choose initial X° and a divider, vd.
At each iteration, use Ak = 2*_1/vrf .
Terminate iterative procedure on divergence, i.e. when 0(2*) > 0(2*-1)

5.2.9.5. The Constant Regularisation Parameter
Many EIT researchers seem not to vary the regularisation parameter, rather they use the 
following simple type of approach:

Choose 2° and keep constant for each iteration.
Stop on divergence or convergence, whichever is first.

5.2.10. Solution Bounds
The mat has a known resistivity with no loading. When a pressure is applied to the mat, 
the resistivity will only decrease in relation to the applied pressure. There is thus a 
maximum value for an element's resistivity. This maximum value is then used as a 
bounds constraint on the estimation of an element's resistivity after using equation (5.10) 
to update the resistivity estimation at any iteration.
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5.2.11. Convergence Considerations
A decision must be taken to stop the iterative procedure. This will depend on the 
algorithm used to determine the regularisation parameter. For many, the procedure is 
stopped when improvements in the reconstructed distribution are very small. The 
exception is the dwindling regularisation parameter method when the procedure is 
terminated on divergence. Many different stopping criteria could be used and in the 
implemented case the iterative procedure was halted when

where t is a tolerance level. A value of t = 0.001 was usually used as it gives an accuracy 
to 3 decimal places for conductivities in the region of unity. Any further accuracy was 
deemed unnecessary.

5.3. Solution of Forward Problem
To solve the forward problem, the vector f that will accurately estimate the voltages 
measured from the continuous resistivity distribution must be found. The FEM is needed 
to find f. The formation of this vector for many projection angles is discussed.

Obtaining a complete voltage measurement set requires placement of the current sources 
at several different electrodes. The voltages are measured at all the electrodes for each 
applied current pattern. Any one specific current source location or applied pattern is 
commonly known as a projection or projection angle. A total of p  projection angles are 
used. Electrical Impedance Tomography is an offspring from X-ray Computed 
Tomography and the term 'projection angle' actually originates from this type of 
tomography. In X-ray Computed Tomography a projection angle is taken as the angle of 
the X-ray transmitter from an origin as it moves around the subject being imaged.

The current patterns being applied could consist of point injection or optimal current 
patterns. In point injection, a current source is connected between two electrodes and 
voltages are measured between sets of other electrodes. However, in this case, if the 
current electrodes are used for voltage measurement, any electrode contact impedance 
will cause a voltage drop across the electrode. Some researchers use the four electrode 
method to avoid the introduction of this error. This involves using two isolated points at 
each electrode, where one is for voltage measurement and another for current injection. 
Alternatively, voltage measurements on the (two) current carrying electrodes can be

for all *, i = 1 to m (5.30)
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avoided by taking only n readings out of the e electrodes (n=e-2). With optimal current 
patterns, currents are injected into all electrodes and voltages measured from all 
electrodes so n = e.

Chapter 4 examines solving the FEM equations for one projection angle. However,
voltages must be solved for more than one projection angle and the following procedure
is used. From the FEM, the master stiffness matrix is assembled and the following 
equation is formed:

YV = C (5.31)

where Y is the r x r  master stiffness matrix, evaluated at p k , V is an r x p  matrix, and 
V. is a column vector containing the nodal voltages for the ith projection angle. C is an 
r x p  matrix, where C, contains the nodal currents for the ith projection angle. Thus C. 
holds the natural boundary conditions. Matrices Y and C are altered by implementing 
the rigid boundary conditions as shown in Section 4.2.2.2.4 on matrix assembly. By 
enforcing these boundary conditions, Y becomes positive definite allowing V to be 
solved. An /p-dimensioned vector v is formed from V,

v = vec(V) = [ V,T V2T-■ ■ Vj ]T (5.32)

Vector v represents the estimated voltage at each and every node for all projection 
angles. If only n electrode nodes are available for measuring voltages, the 
np-dimensioned vector f, containing the estimated voltage measurements, is formed

f = extractiy) (5.33)

The result of the function extract is the selected n rows of its argument, stacked one 
after another. In other words, the (r - n) unwanted rows or nodes for each projection p 
in v are removed. The resulting elements comprise a new vector f.

The vector f  is thus obtained via the master stiffness matrix Y, which in turn is formed 
from the m resistivity elements in the FEM.
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5.4. Jacobian Calculation
The Jacobian can be approximated or calculated accurately. The advantages and 
disadvantages of each approach needs examining in terms of time to obtain the Jacobian 
and the effect that an approximation has on the reconstruction algorithm.

5.4.1. Accurate Jacobian Calculation
An efficient method for accurately calculating the Jacobian matrix is presented.

The Jacobian matrix, J, is obtained from first derivatives by differentiating equation 
(5.33) with respect to fj as equation (5.3) shows,

J = f' = (extractiy)) (5.34)

or alternatively

J = f '  = extract(Q) (5.35)

where Q is an rp x m partitioned matrix comprising mp r-dimensioned vectors, q(>
calculated by differentiating each voltage solution vector in equation (5.31),

q = C = - Y _1— Y ’C = - Y _1— V (5.36)
" dPi dPj d Pi

There are p  partitions in total, each of which corresponds to a different projection angle. 
Yorkey1401 demonstrated this second method of forming the Jacobian matrix and called it
the standard method. Both Yorkey[40] and Woot65] solve for vector qtf by repeated

forward and backward substitution on

r )  Y
Y q , = - f i - V ( (5.37)

dpj

All elements are solved for, but only n elements in this r x 1 vector are required, so 
these are extracted and put into a new n x l  vector j^,

iij = extract(qij) (5.38)
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Then all the j (> vectors form the np x m partitioned Jacobian matrix as shown in 

Figure 5.3.

m

np

Figure 5.3 Jacobian matrix structure showing one j tf vector

An alternative method would be to use equation (5.34) to form the j (> vector directly, 
thereby avoiding the calculation of the unwanted elements in qy as only n rows out of r 
are needed in the Jacobian. Substantial savings over the previous method are possible as 
n « r  when using grids with large numbers of elements. Equation (5.36) is modified to 
calculate j (> directly:

r) Y
J » = - G f - V ,  (5.39)

3  Pi

where G is an n x r  matrix and contains just the required n rows of Y'1 to form jV. As 
Y'1 is a symmetric matrix, G can be formed from either the columns or the rows of Y 1. 
Columns can be obtained very efficiently through forward and backward substitution of 
the equation YY'1 = I, where I is the r x r identity matrix. This enables the calculation of 
just the required columns in Y 1 to form G through selection of the appropriate columns 
in I. Section 4.2.2.4.2. has already identified that sparse vector methods may also be 
taken advantage of during the forward substitution stage as the identity matrix consists 
of singleton vectors.
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Matrix G need only be calculated once for each Gauss-Newton iteration allowing it to 
be re-used over and over for each vector in equation (5.39). The reason being Y'1 is the 
same for all projection angles when the grounded node is kept in the same position for 
all projection angles, see Section 6.1.1.1. The factored matrix of Y is obtained during 
the electrode voltage calculation and so may be re-used here for the forward and 
backward substitution stage in the solution of G.

The matrices on the right hand side of equation (5.39) are not explicitly formed and full 
matrix multiplication is not performed on them. This is because, as Yorkey[40] points out, 
the matrix derivative, d Y f d  p} is sparse which allows for further computational savings 
to be made by only performing the non-zero multiplications. The bilinear interpolation 
function used produces the element stiffness matrix, equation (A4.15), which has 16 
elements and thus only contributes 16 non-zero elements to Y as well as its derivative. 
This is the case no matter how large the dimensions of either Y or d Y j d  p}.

The number of floating point operations show the computational savings that can be 
made. The direct method based on (5.34) needs ISmpfo + ty+nZi operations, whereas 
Yorkey's standard method based on equation (5.35) requires mp(16+z2). Each variable 
zx & Z2 contains the sum of forward and backward substitution operations in the 
appropriate sparse matrix/vector method. Full forward substitution must be applied to 
*2, whereas singleton FF can used be for zv The comparisons are more tangible with an 
example. The example chosen is from a practical situation which was also used in the 
timing results of Section 4.2.2.5.1; m=400, p=16, n -32 and using the regular nested 
dissection (RND) ordering counts from this section, ^=7649 and z2=13176. The floating 
point operation's ratio for the direct method to the standard method is then 23:1. For 
grids with larger numbers of elements (larger m), this ratio increases as then m and z are 
the dominant counts.

5.4.2. Approximate Jacobian Calculations
Yorkey4'1 also proposed the compensation theorem method which approximates the 
Jacobian matrix. It is more computationally efficient than the standard method when 
using single electrode current injection; approximately 15mn operation counts. It is, 
however, more efficient to use the standard method when using optimal current 
injection1471, Le. when applying current to all electrodes. The Jacobian matrix can also be 
approximated by using finite differences1711. In this approach, the value of the derivative
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of (f(/? )-v 0) with respect to p } is approximated by perturbing p } by a small amount, 
hj and evaluating (f(/? )-v 0) at this new perturbed point. The difference between the 
perturbed and unperturbed vectors divided by the perturbed amount gives an estimate 
for the appropriate entry in the Jacobian matrix. The ( i j)th element of the Jacobian is 
then

i ip+hj t^-Up)j  =  (5 4Q)
y hs

using forward differences, where e;. is the jth column of the unit matrix, or

3 i j J A p + h^ ) < p - h?>) (5.4i)

using the slightly more accurate central difference approximation.

Although an approximated Jacobian reduces the rate of convergence from quadratic to 
linear, it may still lead to a faster solution time as in some cases it is quicker to 
approximate the Jacobian using finite differences™. The ( f (p ) -v 0) vector is solved m 
times in the forward difference approach and double this using central differences. The 
forward difference approach then requires m(pz2+y) operations, where y is the sum of 
operations for the sparse factorisation and finite element assemblies. This can be 
compared with the number of operations given in the preceding section for accurately 
evaluating the Jacobian from first derivatives. It is quite clear that the finite difference 
approximation involves a greater number of operations and considering that the rate of 
convergence is not as fast, it is not worth using. However, the finite difference 
approximation to the Jacobian was used to verify that the Jacobian from first derivatives 
was being calculated correctly.

5.5. Summary
This chapter has looked at the theory required to implement the proposed pressure 
measurement system. Methods to solve the nonlinear problem of finding the mat 
resistivity distribution have been studied. Gradient methods are superior to direct search 
methods for the problem in hand. Gauss-Newton methods have been shown to be the 
best gradient method to base the reconstruction on. The three regularised Gauss-

Pa g e 79



EIT APPLIED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Newton methods under consideration are based on the Levenberg-Marquardt method 
and the first and second finite difference penalty functions. The choice of the 
regularisation parameter is important and five methods were presented. Other significant 
considerations when using the Gauss-Newton method are scaling and the use of the no- 
load bounds constraint. The second derivative term may be needed for problems with a 
large residual at the solution. The choice of algorithms has been narrowed down, but the 
most suitable choice for use in a pressure scanner EIT system cannot be explicitly 
determined from a theoretical basis. The following chapter analyses these differing 
methods in order to choose an appropriate method.

The Finite Element Method is used to solve the forward problem of calculating the 
voltage distribution needed by the Gauss-Newton method. Both accurate and 
approximate Jacobian matrix calculations which are also based on the FEM were 
considered. An accurate Jacobian matrix calculation that is very efficient was presented. 
The calculation takes full advantage of sparse matrix techniques and removes all 
redundant matrix element evaluations. Approximate Jacobian calculations have slower 
convergence rates and are not as efficient as the proposed accurate calculation when 
using optimal currents.
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6. Inverse Solution Implementation
This chapter primarily analyses the results of the Gauss-Newton methods described in 
the previous chapter. Details of a computer model of the mat to test the methods is 
described. The software required for obtaining the Gauss-Newton methods results is 
clarified. The results show which of the Gauss-Newton methods is the most accurate 
and covers further techniques for reducing the reconstruction time. Of prime 
importance, is the successful reconstruction in a practical environment of data 
measurement errors.

6.1. Computer Implementation
This section covers basic software details and computing environments used. Both 
algorithmic and implementational details of how the software was optimised for fast 
completion to reconstruction is described. One of the algorithmic methods details a new 
set of projection angles that minimises forward problem matrix calculations. The 
computer model of the pressure sensitive mat is also covered.

The reconstruction algorithms were implemented on Bath University’s mainframe 
computer, which changed during the course of the research. Initially the mainframe was 
a vector machine, the Gould NP1, which was upgraded to a superscalar computer - the 
Sun Sparc 10/41 and subsequently to a slightly faster 20/51. All development was done 
under the UNIX operating system and written in Fortran 77 along with a few of the 
Fortran 90 extensions. The routines were portable amongst the different computer 
compilers.

The Numerical Algorithms Group Fortran Library1551 was used for implementing some 
numerical functions. These NAG library subprograms provide an up-to-date, robust and 
numerically stable set of algorithms. They were generally easy to use and saved a lot of 
unnecessary coding, especially considering an optimal approach could not always be 
determined until after implementation. The source code for the NAG libraries are not 
available. This would cause problems for porting the algorithms elsewhere, but it turned 
out that the chosen algorithms did not require the use of this library. One exception 
occurred, (a dense Cholesky solver), but a source code replacement was found in the 
LAPACK library on the internet (http:/Avww.netlib.org/lapack). The NAG routines 
were also useful for study purposes, for example eigenvalue analysis. All library routines 
used are mentioned where applicable in the text.

Page  81



EIT APPUED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Most of the methods described in the previous chapter are implemented into one 
program. An easy to use interface for the different test conditions has been implemented 
through the use of command line options and help. The same object code may be used 
for different sized meshes even though Fortran 77 does not support dynamic array 
allocation. This is possible as all finite element information is placed into configuration 
files by the mesh generator (Section 4.2.1), and the program is compiled with the largest 
matrix dimensions required. The Fortran 90 standard supports dynamic arrays, but the 
available compilers unfortunately did not fully implement the standard. Different 
projection angles and different electrode positions can be easily implemented as this 
information is also held in a data file. Different test pressure distributions are effortlessly 
set up in data files.

6.1.1. Reconstruction Time Improvements
One aim after taking over the basic Gauss-Newton algorithm from Knight111, was to 
improve the time to convergence of the algorithm. Before any improvements were 
made, the actual time to convergence varied between two and four hours, depending on 
how loaded the mainframe was. This was in fact 29 minutes processor time. Waiting for 
these lengths of time made it difficult to test any program changes and would, in any 
case, be unacceptable in a clinical environment. The time that was needed for 5 
iterations on a 25 element FEM mesh. Larger meshes resulted in impractical times to 
reconstruction. The initial aim was to decrease the reconstruction time and then to 
increase the size of the FEM mesh to a more realistic one. The times have been 
decreased from 29 minutes to 1 second on the Gould computer for the 25 element mesh. 
The Sun 20/51 proved to be faster and this example took less than a twentieth of a 
second. A large contributing factor for the improvement is the implementation of the 
sparse techniques already covered for the forward problem. The gain in speed to 
reconstruction is greater for meshes with larger numbers of elements. Other reasons for 
this gain in performance are briefly discussed.

The most dramatic computer optimisations are due to algorithmic improvements. 
However, smaller increases in efficiency are also due to the following sensible 
implementational techniques.

• Minimise magnetic file accesses by reading data from disk just once then storing in 
RAM, which is now quite abundant in modem computers.
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• Use single arrays for n-dimensioned vectors, rather than nx 1 matrices.
• Expanding subroutines embedded within large time critical loops into inline code, 

thereby removing subroutine call overhead.
• Contiguous memory accesses when referencing many matrix elements.
• Storing variables in memory thus avoiding re-calculation.
• Implementing individual matrix multiplication routines that take advantage of any 

special structure. For example, the matrix J T need not be calculated from J  for the 
multiplication J TJ  and as this matrix is symmetric, just the upper triangle need be 
calculated via a Cholesky solver. Even after all optimisations, this matrix multiplication 
is the most expensive task in the regularised Gauss-Newton method.

6.I.I.I. Projection Angles
Most of the reconstruction time was spent in calculating Y and its inverse, so is an 
obvious target for optimisation. A major decrease in reconstruction time was due to the 
implementation of a new set of boundary conditions.

Two examples of the original natural boundary conditions are shown in Figure 6.1. In 
this configuration, the current is injected into one node and extracted at another earthed 
node. As can be seen, each projection angle has a different earth node. The voltage 
measurements are made between all non-current carrying electrodes and earth. In the 
new configuration, shown in Figure 6.2, the same node is earthed for each projection 
angle. Current is still injected into and extracted from the same nodes. No current flows 
down the earthed node as the same value of current injected into the mat can be 
extracted from it. This is done by floating the current source. One node must be earthed 
to satisfy the rigid boundary conditions. Voltage measurements are still taken between 
all non-current carrying electrodes and earth.
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Figure 6.1 Two different projection angles

The reason for using this new rigid boundary condition, is to keep the Y-1 matrix the 
same for each projection angle. This allows Y_1, which is used many times over, to be 
calculated just once for each iteration. In practice, Y is factored once and forward and 
backward substitution is performed for each different projection angle, as described in 
Section 5.4.1. After implementing this single fixed rigid boundary condition and the 
sparse matrix techniques, time spent in the forward problem changed from a major to a 
minor part of the reconstruction process.

Figure 6.2 Two projection angles with one earth connection and floating current
source
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6.1.2. Modelling the Pressure Sensitive Mat
The pressure sensitive mat is modelled through a computer simulation. The use of a 
simulation rather than actual readings in EIT is common practice and allows voltage 
'measurements' to be repeated, enabling proper analysis and development of the 
algorithms. The objective of the research work being undertaken is to establish the 
feasibility of using Electrical Impedance Tomography to measure interface pressure. The 
controlled modelling of the mat facilitates this objective.

The finite element method using bilinear square elements is the basis of the model, as 
discussed in Section 4.1.2. The mat's resistivity is modelled and it is a simple matter to 
translate the reconstructed resistivity distribution into the applied pressure distribution. 
A square mat is modelled as this is the shape required for wheelchair patient pressure 
measurement. Extension to a rectangular shape for bed-ridden patients is a trivial task, 
as square elements can still be used. Any shaped domain can be modelled with a 
combination of triangular and square elements if required.

The role of the model is purely to simulate realistic voltage measurement readings for 
any given applied current pattern and test pressure distribution. The computer code for 
this is very similar to the forward problem, which also obtains voltage readings for given 
current patterns and resistivity distributions. The modelling program is separate to the 
reconstruction program, but uses the same mesh configuration files. As with the 
reconstruction program, different set-ups are easily configured through command line 
parameters and data files produced by the mesh generator. The FEM produces exact 
voltages for any sized mesh model, but in a practical system these voltage measurements 
will be contaminated with noise. Noise was simulated by adding an error to each 
electrode voltage produced by the FEM, vFEM, to give a simulated voltage measurement 
with error, \ E

= yFEM (1 + (6 .1)

where ru is a random number between -1 and +1 with uniform probability density 

function and E is the error to be simulated as a percentage.
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6.2. Methods to Solve the Least Squares Equations
Every iteration requires a set of linear equations to be solved, for example, equation 
(5.9) for the Gauss-Newton direction. Two aspects of solving the linear equations are 
significant. Firstly, the speed with which they can be solved and secondly, the accuracy 
to which they can be solved. Speed is important as the solution of these equations plays 
a large part in the iterative process. A comprehension of matrix conditioning and 
eigenvalues is essential to the concepts presented in this thesis and is needed in this 
section covering equation solution. They are briefly covered in Appendix A2.

6.2.1. Cholesky Decomposition
The linear equations require the 'inversion' of a positive definite symmetric matrix. This 
matrix structure can be taken advantage of by factorising (J TJ  + AS) using a Cholesky 
decomposition followed by forward and backward substitution to solve for Ap*. The 
LAPACK routine dposv is a Cholesky solver and was used to solve the linear equations 
at each iteration. The iterative refinement it contained was removed as iterative 
refinement to machine precision is an unnecessary waste of time in a process that is 
already iterative, especially where the final solution has relatively large errors.

6.2.2. QR Decomposition
Another commonly used method to solve linear equations is through the QR 
decomposition, whereby a matrix is factored into the product of an orthonormal matrix, 
Q and an upper triangular matrix, R. For application to the least squares problem, the 
following augmented matrix is required

so that the regularised Gauss-Newton direction of equation (5.21) can be rewritten and 
simplified,

ATAAp* = RTQTQRAp* = RTRAp* = - J T[f -  v0] (6.3)

Forward and backward substitution will then solve for A pk. The QR decomposition is 
usually recommended for solving least squares problems and many implementations use 
it, for example Mor6[76]. It is favoured in order to avoid the matrix multiplication J TJ, 
thereby eluding possible computer underflow and overflow on ill-conditioned problems.
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These effects are most noticeable on highly ill-conditioned problems since, if the 
condition number of J  is k ,  the condition number of J TJ  is x2. This is particularly 
relevant to the unregularised Gauss-Newton equations where the condition number of 
J TJ  can be enormous for meshes with large numbers of elements. The Cholesky 
decomposition requires a non-singular matrix, so it breaks down in this case as J TJ  is 
singular to machine precision (see Appendix A2). When J  is singular to machine 
precision, the singular value decomposition (SVD) can instead be used to solve the 
equations; see Gill1721 for more information on the SVD.

Regularisation overcomes the singularities that are present in badly conditioned inverse 
problems. The identity matrix that the Levenberg-Marquardt algorithm adds to J TJ 
increases its eigenvalues by X. An ill-conditioned problem has relatively small 
eigenvalues and so with a relatively large X, regularisation can alter a set of equations 
from ill-conditioned to well conditioned. The final conditioning is highly dependent on 
the size of X for all types of regularisation. Experience showed that to obtain a direction 
of descent with errors in the measured voltages, X had to be large relative to the 
machine precision. A large X gives rise to well conditioned equations and any 
inaccuracies, due to rounding when using the Cholesky decomposition, were not 
noticeable. The QR approach requires larger equations to be solved. Compared to the 
QR decomposition, the Cholesky decomposition takes approximately a quarter the 
number of floating point operations1821 and thus is the preferred method for solving the 
regularised equations.

6.2.3. Hachtel's Augmentation
Woo1831 suggested using what is known as Hachtel's augmented matrix method to solve 
the linear equations for a circular EIT resistivity model Equation (5.21), sometimes 
termed the normal equation, can be simply re-written with the following augmented 
matrices,

~a\ J X o
>11i

J T -vS_ _Ap\ 0

where X — a v . The variable a  cancels out when solving this set of equations, but its 
choice affects the conditioning of the augmented equations to be solved. A near optimal 
value for a  is the smallest singular value of J [84]. The augmented matrices were formed 
and solved by a NAG[55] symmetric indefinite equation solver. When a  is set to 1 the
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conditioning was found to be similar to that of J TJ . With the near optimal value for a, 
the augmented matrix conditioning was closer to that of the Jacobian matrix. Hachtel's 
method also avoids the explicit matrix multiplication J TJ  and so the same accuracy 
arguments for using the QR decomposition can be applied. The regularised Gauss- 
Newton method produces well-conditioned matrices and the results are the same, to a 
large number of decimal places, (see Appendix A2), when comparing with the Cholesky 
solution. However, when solving the unregularised Gauss-Newton equations, the 
Hachtel results were accurate to a larger number of decimal places, depending on the 
conditioning. Woo[83] found that a much more accurate reconstruction arose as a result 
of using Hachtel's method as opposed to the normal equations. The results do not 
correlate as Woo also used regularisation, but his more accurate results might be due to 
a highly ill-conditioned J, less regularisation being applied, and floating point arithmetic 
performed with lower precision.

Woo[83] also found Hachtel's method more suitable and faster than Gaussian elimination 
for implementation on a parallel system. The augmented matrix is larger but sparse due 
to the diagonal matrix I and the band matrix S. Hachtel's method, with an appropriate 
sparse matrix solver, may be faster than the Cholesky method when using a scalar 
processor.

6.3. Reconstruction Results
This section examines the quality of the reconstructions given by the Gauss-Newton 
methods. The test conditions attempt to use pressure profiles and conditions that would 
be found in a real-world medical pressure scanner environment

6.3.1. Test ConGgurations
To determine the best reconstruction approach, a number of test distributions were 
tried. The test distributions used for analysing the reconstruction algorithms are 
presented. Methods by which error in the reconstruction can be measured are described, 
but firstly, the type of projection angles used are discussed.

The mat being modelled is square shaped and reconstruction of the pressure profile is 
ultimately reduced to finding the pressure or resistivity for each square finite element. 
The number of elements in the finite element grid determines the resolution in the 
reconstruction. The resolution required will depend on the application. Various meshes 
ranging from coarse to fine were considered, i.e., square meshes with 64, 100, 256 or

Page  88



EITAPPUED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

400 elements. The electrodes for the 64 and 256 element grids were placed in the same 
locations, on common grid nodes. Likewise for the 100 and 400 element meshes. 
Thirty-two electrodes were used for each configuration, as shown in Figures 6.3 and 
6.4.

The projection angles use point current injection patterns at the electrodes. Four 
projection angles were used for the 64 element grids and eight projection angles for the 
100 element grids. The larger 256 and 400 element grids used sixteen projection angles. 
This provided enough unique information for reconstruction except for the 400 element 
grid. Although further projection angles could be used in the latter case, it is interesting 
to see how the algorithms perform under these conditions.

The test profiles or test pressure distributions used in this chapter are called BLOCK, 
BUTTOCKS, FOOT and WHEELCHAIR and are shown in Figures 6.5 to Figure 6.8. 
The latter three tests are directly applicable to medical pressure measurement. Test 
BLOCK is included to see how well the algorithms perform on a pressure profile with a 
non-smooth pressure distribution.
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Figure 6.3 The 32 electrode configuration for grids with either 64 or 256 elements

m*

Figure 6.4 The 32 electrode configuration for grids with either 100 or 400
elements
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Test P rofile B LO CK

64 Element Mesh 100 Element Mesh

I

Pressure Range 
2.1+ ■  1.7 to 1.8 ' 1.3 to 1.4
2.0 to 2.1 I  1.6 to 1.7 1.2 to 1.3
1.9 to 2.0 ! |  1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 I  1.4 to 1.5 1.0 to 1.1

256 Element Mesh

....  .........

, ,,

1:: I I  . ::::::::::::::::::::::::

ill! 
: ; ;;

400 Element Mesh

Figure 6.5 Test profile BLOCK on 4 different meshes.
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Test Profile BU TTO CK S

64 Element Mesh 100 Element Mesh

---------------------------------------------------------------------
Pressure Range

12.1+ ■  1.7 to 1.8 H  1.3 to 1.4
2.0 to 2.1 H  1.6 to 1.7 | |  1.2 to 1.3

1.9 to 2.0 M  1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 |  1.4 to 1.5 1.0 to 1.1256 Element Mesh 400 Element Mesh

■

Figure 6.6 Test profile BUTTOCKS on 4 different meshes.
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T est P rofile  F O O T

64 Element Mesh 100 Element Mesh

• " M i l l ;  •

i l M M l

J B |
■
<:ii l B l i r ,;:ŵ ^̂ Xwjx:v

Pressure Range
2.1+ ■  1.7 to 1.8 1  1.3 to 1.4
2.0 to 2.1 1  1.6 to 1.7 1.2 to 1.3
1.9 to 2.0 I I  1.5 to 1.6 It 1.1 to 1.2

| 1.8 to 1.9 ■  1*4 to 1.5 1.0 to 1.1

256 Element Mesh 400 Element Mesh

111

Figure 6.7 Test profile FOOT on 4 different meshes.
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T est P rofile  W H E E L C H A IR  

64 Element Mesh 100 Element Mesh

Pressure Range
1 2.1+ ■  1.7 to 1.8 P  1.3 to 1.4

a  2.0 to 2.1 ■  1.6 to 1.7 1.2 to 1.3
1 1.9 to 2.0 ■  1 5  t0 1 6 1.1 to 1.2

|  1.8 to 1.9 ■  14 to 1-5 1.0 to 1.1

256 Element Mesh 400 Element Mesh

Figure 6.8 Test profile W HEELCHAIR on 4 different meshes.
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The initial estimate of the pressure distribution given to the reconstruction algorithms is
the uniform 'no-load' pressure. This is a reasonable starting point as the no-load
pressure/resistivity will always be accurately known.

The quality of the reconstructed pressure distribution can be measured through error 
analysis. The element error is defined as the average error in each element compared to 
the true distribution. Expressed as a percentage, the element error is then

m \ abs{p:: ^«  n
element error = ------ 5=1----- —--------  (6.5)

m

where m is the total number of elements in the FEM mesh and absQ is the absolute 
value, p  is the true resistivity distribution and is the resistivity at iteration k.

The normalised element error is the element error normalised to the initial estimate,

■jya b s ( t f - t f )
™  0 *

normalised element error = 100—----- ---------tt (6.6)
^ a b s ( p  - p ° )

h  a

where p° is the initial resistivity estimate. The normalised element error is used so that 
all test distributions can be compared together as all have a normalised element error of 
100% before the iteration starts.

Realistically quantifying the error in the image is difficult. Yorkey[47] used a two-norm 
error measurement to evaluate image error. However, the two-norm error does not 
always correlate to visible image error. The element error calculation overcomes this to 
some degree, but as it is an averaging function, large errors in single elements are not 
very noticeable. This highlights a problem with using error measurement values to judge 
reconstruction success. The element error value does not always correlate with the 
quality of the reconstruction, but it was found to be better than a two-norm error. The 
element error is used throughout this chapter for comparisons between various methods. 
The quality of the reconstructions generally relate well to the element error and the 
exceptions are noted where necessary.
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6.3.2. Gauss-Newton and Damped Gauss-Newton Method 
Reconstruction Results
The Gauss-Newton method was coded using the optimal programming techniques 
described so far. A NAG[55] library routine, e04fdfwas used to study the damped 
Gauss-Newton reconstructions. This implementation uses a search method, described by 
Gillt72], to obtain a step length which approximates the minimum along the Gauss- 
Newton direction. Although the NAG version was much slower per iteration when 
compared to the undamped version specially coded for the EIT pressure problem, it was 
a fast track route to test the usefulness of damping. The NAG routine did not have any 
options for implementing solution bounds and so this was added during the forward 
problem calculation function call, which has to be coded by the user.

100
Test Profile 

BLOCK
— BUTTOCKS 

-  FOOT
—  WHEELCHAIR2

2 3 40 1
Iteration

Figure 6.9 Gauss-Newton reconstruction errors on 4 different test profiles using 
error free voltage readings and the 100 element grid.

Monitoring the normalised element error at each iteration indicates the success of the 
reconstruction. This can be seen by the zero reconstruction errors at the final iteration, 
as shown in Figure 6.9 for the four test profiles using the 100 element mesh. Although 
the test profiles were perfectly reconstructed, this is in the ideal situation of zero error in
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the voltage readings. The real test is when a voltage error is present in the measured 
signals. Figure 6.10 shows the error in a reconstruction with a range of added voltage 
measurement errors. The element error is that on convergence. With the higher voltage 
errors, the reconstruction begins to diverge after initially converging. The iterative 
process is halted at this point and the element error shown is then that before divergence 
occurs. This graph shows the rapid degradation in the reconstruction as the 
measurement error is increased.

1 2 0 -1

'w'
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a
I—i
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0.01 0.1 1 10
Error in Voltage Measurements ( %)

Figure 6.10 Graph of the average error in each element at the final iteration using 
the Gauss-Newton method for a range of added voltage measurement errors. 

Results are for test profile WHEELCHAIR on the 100 element mesh.

Figure 6.11 shows the final reconstruction of test WHEELCHAIR on the 100 element 
mesh. The reconstruction with 1% voltage error is shown as this is the amount of 
expected error in a practical system. As Figure 6.10 shows, the final reconstruction has 
an average element error of 17%. Although the average element error is not particularly 
high, the reconstruction clearly demonstrates that the Gauss-Newton method is of no 
use in a practical environment. The reconstruction bears no resemblance to the actual
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distribution and the same was found for all test pressure distributions tried. This 
reconstruction is on the 100 element mesh. Reconstructions were either worse or failed 
to reconstruct on meshes with larger number of elements.

Figure 6.11 Reconstruction of the 100 element test WHEELCHAIR by the 
Gauss-Newton method with 1 % error in the voltage readings.

Yorkey1401 first demonstrated the success of the Gauss-Newton method over others in 
EIT. The Gauss-Newton reconstruction is very disappointing in the presence of noise. 
This is well known in the EIT field and is why researchers have been trying to improve 
the Gauss-Newton method. The methods considered in this thesis use many of the 
improvements, but also considers other methods not mentioned in the literature. One of 
which is the effect of damping on the Gauss-Newton method, which is now examined.

Figure 6.12 is a typical example of the improvements that damping has when the Gauss- 
Newton method begins diverging. The use of a step size less than unity restrains the 
reconstruction so that divergence doesn't occur. As the damped Gauss-Newton method 
uses a search to find the optimum step length, the results are better, but all it effectively 
does is prevent divergence. Little or no improvement occurred if the damped Gauss- 
Newton method continued for many more iterations than the 5 shown in Figure 6.12. 
The next possible improvement studied is the inclusion of the second derivative term.

Pressure Range

1.0 to 1.1
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Figure 6.12 Reconstruction errors comparing damped and undamped Gauss- 
Newton reconstructions. The test profile is WHEELCHAIR with 0.5% added 

voltage error on the 100 element grid.

6.3.3. Reconstruction Results by the Gauss-Newton Method 
with Second Derivative Approximations
The BFGS approximation to the second derivatives were programmed into the 
Gauss-Newton Fortran program. The results using second derivative approximations 
were very disappointing. The Gauss-Newton method diverged resulting in poor or 
unrecognisable reconstruction.

The conditions for "large" residuals, as defined by GiH1721, occur in the presence of noise. 
The greater the noise, the larger the residuals will be at the solution. The principal 
assumption of the Gauss-Newton method is that the first derivatives accurately 
approximate the Hessian. This is valid with error free data, but when there is noise in the 
voltage measurements the first derivatives do not fully approximate the Hessian matrix. 
The optimisation literature urges the use of second derivative approximations and this is 
one area which has not been covered by the EIT literature. The disappointing results 
indicate that the approximation to B is no good. Gillt72] indicates that the BFGS
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approximation to B can be poor. An accurate calculation of the B matrix would be an 
extremely CPU intensive task and the regularisation method in the following section are 
fast and more promising.

6.3.4. Reconstruction Results using Regularisation
Regularisation improves the reconstruction quite considerably. Yorkeyt40] first showed 
the Levenberg-Marquardt regularisation improvements applied to EIT. Hua[78] showed 
that the finite difference type of regularised Gauss-Newton algorithm can be applied to 
EIT. As most EIT research is geared towards body tissue measurements or industrial 
process tomography, the domain being modelled is inevitably irregularly shaped, where 
the use of finite difference regularisation is more difficult. To the author's knowledge, 
this regularisation is not used in any practical EIT systems and no extensive study of 
different regularisation methods has been published. The aim of this section is to 
compare the Levenberg-Marquardt regularisation with the first and second difference 
regularisation methods. Results on different sized meshes are examined and tested with 
the particular type of electrode scheme used, ie. with the use of internal electrode 
nodes, detailed in the next chapter.

The results concentrate on voltage measurements with a conservative measurement 
error of 1%. Hu[41] suggested that an electrode positioning error of less than 3% led to 
an average measured voltage error of less than 1%. The theoretical data he obtained was 
from the FEM, but no detail on the number of elements or type of elements was given. It 
is, however, an indication of the practical system errors, and a 3% electrode positioning 
error must be a maximum figure for the proposed resistive mat. The electrode 
positioning error is the greatest source of measurement error in most EIT systems.

All regularisation methods were coded into the Fortran Gauss-Newton program and use 
the Marquardt choice for the regularisation parameter. This choice of regularisation 
parameter is detailed in the following section. Figures 6.13 to Figure 6.16 show results 
using the three regularisation methods on four different grid sizes for the four different 
test profiles of Figures 6.5 to Figure 6.8. The success of the reconstruction is indicated 
by the normalised element error on the final iteration. The reconstructed distributions 
can be seen in Figures 6.17 to 6.20.
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Regularisation Method 
I I  Levenburg-Marquardt 
fU First Finite Differences 
11 Second Finite Differences

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (64 element mesh)

Figure 6.13 Regularisation method comparisons on the 64 element mesh with 
added voltage measurement error of 1 %.

Regularisation Method 
U Levenburg-Marquardt 
§§§ First Finite Differences 
|  Second Finite Differences

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (100 element mesh)

Figure 6.14 Regularisation method comparisons on the 100 element mesh with 
added voltage measurement error of 1 %.
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Second Finite Differences

Regularisation Method 
1 ! Levenburg-Marquardt 
11 First Finite Differences

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (256 element mesh)

Figure 6.15 Regularisation method comparisons on the 256 element mesh with 
added voltage measurement error of 1 %.

Regularisation Method 
Uj Levenburg-Marquardt 

First Finite Differences 
Second Finite Differences

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (400 element mesh)

Figure 6.16 Regularisation method comparisons on the 400 element mesh with 
added voltage measurement error of 1 %.
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Actual Distribution Levenburg-Marquardt
(3.24%)

Pressure Range

12.1+ ■  1.7 to 1.8
2.0 to 2.1 |  1.6 to 1.7

1.9 to 2.0 f l E  1.5 to 1.6
1.8 to 1.9 |  1.4 to 1.5

j |  1.3 to 1.4 
1.2 to 1.3 

11 1.1 to 1.2 
1.0 to 1.1

First Finite Differences Second Finite Differences
(2.37%) (2.59%)

Figure 6.17 Test profile BLOCK on the 400 element mesh and the reconstructions

obtained using the 3 different regularisation methods (1 % voltage error). The final

element errors are shown in brackets for each method.
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Actual Distribution Levenburg-Marquardt
(3.31%)

Pressure Range
2.1+ ■  1.7 to 1.8 1  1.3 to 1.4
2.0 to 2.1 ■  1.6 to 1.7 • 1.2 to 1.3
1.9 to 2.0 ■  1 5  t0 1 6 1 1.1 to 1.2

| 1.8 to 1.9 §§ 1.4 to 1.5 1.0 to 1.1

First Finite Differences Second Finite Differences
(2.12%) (1.65%)

Figure 6.18 Test profile BUTTOCKS on the 400 element mesh and the

reconstructions obtained using the 3 different regularisation methods (1 % voltage

error). The final element errors are shown in brackets for each method.

P a ge  104



EITAPPU ED  TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Actual Distribution Levenburg-Marquardt
(4.05%)

I

Pressure Range 
2.1+ ■  1.7 to 1.8 K  1.3 to 1.4
2.0 to 2.1 m  1.6 to 1.7 1.2 to 1.3
1.9 to 2.0 H  1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

First Finite Differences Second Finite Differences
(2.71%) (2.37%)

Figure 6.19 Test profile FOOT on the 400 element mesh and the reconstructions
obtained using the 3 different regularisation methods (1 % voltage error). The final

element errors are shown in brackets for each method.
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Actual Distribution Levenburg-Marquardt
(5.94%)

iiiip

i
2.1+
2.0 to 2.1 
1.9 to 2.0 
1.8 to 1.9

Pressure Range 
1.7 to 1.8 
1.6 to 1.7 
1.5 to 1.6 
1.4 to 1.5

First Finite Differences
(5.04%)

1.3 to 1.4 
m  1*2 to 1.3 
I 1.1 to 1.2 

1.0 to 1.1

Second Finite Differences
(4.50%)

Figure 6.20 Test profile WHEELCHAIR on the 400 element mesh and the 
reconstructions obtained using the 3 different regularisation methods (1 % voltage 

error). The final element errors are shown in brackets for each method.
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Figure 6.21 Reconstruction comparisons on test profile WHEELCHAIR, 400 
element mesh, over a range of voltage measurement errors.

The first conclusion from these results is that the Levenberg-Marquardt regularisation 
always gives a reconstruction inferior to those produced by the other two. The second 
difference regularisation generally produced a lower element error than first difference 
regularisation. There are two notable exceptions, namely test profile BLOCK on the 256 
and 400 element meshes. This is due to the greater smoothing of the second difference 
regularisation on the sharp edges that are present.

The regularisation method comparisons were checked over different noise levels. The 
error in the reconstruction over a range of voltage measurement noise levels is typified 
by test profile WHEELCHAIR on the 400 element mesh and is shown in Figure 6.21. 
The second difference regularisation is again the best over all noise levels. Even though 
the Levenberg-Marquardt regularisation gives a lower element error than the first finite 
difference regularisation at higher noise levels, the reconstructions it produced were not 
necessarily better. Figure 6.22 demonstrates this when the voltage error is 10%.
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Actual Distribution Levenburg-Marquardt
(13.4%)

I

Pressure Range 
2.1+ ■  1.7 to 1.8 ■  1.3 to 1.4
2.0 to 2.1 ■  1.6 to 1.7 1.2 to 1.3
1.9 to 2.0 ■  1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

First Finite Differences
(16.2%)

Second Finite Differences
(12.5%)

rnm & M

Figure 6.22 Test profile WHEELCHAIR on the 400 element mesh and the

reconstructions obtained using the 3 different regularisation methods (10%

voltage error). The final element errors are shown in brackets for each method.
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The Levenberg-Marquardt method increases all the eigenvalues of J TJ  by X, and so the 
conditioning of the matrix to be 'inverted' is improved. Similarly, the other two 
regularisation methods improve the conditioning of the equations being solved. Noise 
has less effect on the quality of the reconstruction as the degree of regularisation 
increases and so regularisation using second finite differences is the most effective. 
There is a stronger binding of one element to its neighbours when using penalty terms of 
higher orders, effectively smoothing the results. In essence, regularisation acts as a 
spatial low-pass filter and improves the results produced by the Gauss-Newton method, 
but at the expense of spatial resolution. This lower spatial resolution is apparent in 
Figure 6.19, where the toes cannot be differentiated from the rest of the foot.

6.3.5. Regularisation Parameter Variations
Five different methods to choose the regularisation parameter at each iteration were 
discussed in the previous chapter; these were the Marquardt, Davies, dwindling, 
constant and Mor6 regularisation parameter methods. In this section, the first three are 
compared against each other, followed by an examination of the latter two. 
Consideration is given to the speed of reconstruction and accuracy of the reconstruction.

Before comparing reconstructions by the Marquardt, Davies and dwindling parameter 
methods, the effect on the reconstruction of any predefined parameters needed by each 
method needs to be known. The Davies method is entirely automatic and does not 
require any predefined parameters. The Marquardt method requires a multiplier, vm, a 
divisor, vd and an initial regularisation parameter, A0, to be pre-set. The dwindling 
method only requires the latter two of these. Although there are a number of variables to 
be pre-set in these last two methods, reconstructions were fairly insensitive to variations 
in them. A conservatively large X  = 0.1 was used on all test profiles and mesh sizes so 
that the first step is biased towards the steepest descent direction and far away from the 
Gauss-Newton direction. This is chosen as the steepest descent direction is superior to 
the Gauss-Newton direction on the first iteration, ie. when far from the solution point. 
It was found that A0 > 0.1 gave no improvement nor change in the final reconstruction 
error. However, the number of iterations to the solution increased, albeit insignificantly. 
If this value was set too low, a degraded final reconstruction would occur, hence the 
conservatively large value. Variations in vd and vm gave small changes in the final 
reconstruction error. As these minor improvements are dependent on the pressure 
profiles and the mesh size used, it does not warrant optimisation due to the wide variety
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of pressure distributions that the mat must reconstruct. The values suggested by 
Marquardt are used for all tests, namely vm = vd = 10.

Using the values mentioned, the Marquardt, dwindling and Davies methods were 
compared using the meshes and test profiles mentioned earlier in this chapter. The final 
reconstruction errors for the four test profiles on the 100 element mesh are shown in 
Figure 6.23 and for the 400 element mesh in Figure 6.24. The general trends are quite 
clear. The Davies method does not perform as well as either of the Marquardt or 
dwindling parameter methods. The Marquardt method gives the lowest reconstruction 
error and is slightly better than the dwindling method. However, the Marquardt method 
requires the greater number of iterations of these two. This can be seen in Figures 6.25 
and 6.26.

For a real-time system, the extra accuracy may be traded off for a faster reconstruction. 
In this case the dwindling parameter method would be a preferable choice. Alternatively, 
the convergence tolerance could be increased for the Marquardt method. A typical 
reconstruction history is shown in Figure 6.27 for the BUTTOCKS test profile on the 
100 element mesh. This figure clearly shows that the dwindling method is essentially a 
Marquardt method which has been terminated early (at the point at which divergence 
would first have occurred). The figure also shows that by lowering the convergence 
tolerance level, the Marquardt iterative process could be terminated earlier. This would 
require correctly estimating the tolerance level at an appropriate level so that the process 
is terminated early. This varies from one pressure distribution to the next, but would be 
a good compromise between accuracy and time to reconstruction. The dwindling 
method is more reliable for fast reconstruction as divergence usually occurs after 5 or 6 
iterations.
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Regularisation Parameter Method 
IS Marquardt B  Dwindling B  Davies

l i i i l

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (100 element mesh)

Figure 6.23 Reconstruction errors on 4 different 100 element mesh test profiles 
using regularisation with second difference penalty terms. The added voltage 

measurement error is set at 1 %. Comparisons are made between three different 
methods for choosing the regularisation parameter.
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Regularisation Parameter Method 
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BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (400 element mesh)

Figure 6.24 Reconstruction errors using the same set-up as Figure 6.23 but on the
400 element mesh.
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Regularisation Parameter Method 
Marquardt U  Dwindling U  Davies

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (100 element mesh)

Figure 6.25 Number of iterations to convergence for the 100 element test profiles
of Figure 6.23

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (400 element mesh)

Regularisation Parameter Method 
■  Marquardt 11 Dwindling U| Davies

Figure 6.26 Number of iterations to convergence for the 400 element test profiles
of Figure 6.24
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Regularisation Parameter Method 
Dwindling100 Marquardt  Davies

&

100 120 140
Iteration

100

Iteration

Figure 6.27(a) Reconstruction progress of the BUTTOCKS test profile used in
Figure 6.23.

(b) The first 20 iterations of (a).

6.3.5.I. Using the Constant Regularisation Parameter
Using a constant value is a simple approach for choosing the regularisation parameter. 
This also proved to be an effective approach, but with a limitation. In contrast to the

Page  114



EIT APPLIED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

previous three dynamic methods, the reconstruction is very sensitive to the choice of the 
regularisation parameter. The 4 test profiles on the 100 element mesh were 
reconstructed using the constant regularisation parameter method. The final normalised 
reconstruction errors are shown in Figure 6.28 for a variety of regularisation parameters. 
This graph highlights the problem with the constant regularisation parameter method. 
The optimum regularisation parameter value is dependent on the pressure distribution 
being reconstructed. With two of the test distributions, BLOCK and WHEELCHAIR, 
the optimum constant regularisation parameter gives a reconstruction that is slightly 
more accurate than the Marquardt method of Figure 6.23. However, the constant 
regularisation parameter method is quite sensitive to the choice of X. The Marquardt 

method is the preferred choice as it is more consistent at providing low errors in the 
reconstruction.

100 Element Test Profile 
— ♦—  BLOCK

BUTTOCKS 
♦ FOOT 

-  ♦ -  WHEELCHAIR

lx lO 5 lx l  Cf4 lxlO'3 lxlO'2
Regularisation Parameter -X

Figure 6.28 Reconstruction errors with various constant regularisation 
parameters. Regularisation parameter method excluded, the set-up is the same as

Figure 6.23.
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63.5.2. Using the More Regularisation Parameter
Mor6[76]'s trust region approach to finding X is implemented with the Levenberg- 
Marquardt method in a library routine called LMDER in MINPACK[85]. The source code 
is obtainable from a public domain software base on the internet 
(http.VAvww.netlib.org/minpack). Unfortunately this approach is not well suited to the 
problem in hand. For the extensive test distributions tried, the reconstructed results 
rarely improved on the Levenberg-Marquardt algorithm with X chosen by the other 
algorithms. The size of the trust region is dictated by the variable rt and an initial

estimate for it is required by the algorithm. The results produced were very sensitive to 
the initial trust region size. For recognisable reconstruction images to occur, especially 
with the larger grids, the initial trust region had to be much smaller than the 
recommended range. A small trust region is equivalent to a large regularisation 
parameter. With larger trust regions, the search direction tended towards the Gauss- 
Newton direction. The net effect was convergence to false minima as not enough 
regularisation was introduced. The regularisation parameter is based on an estimate of 
the trust region size obtained from the previous iteration. Even when a good initial trust 
region size was used, the algorithm tended to over-expand the trust region for the 
following iteration. This constant bias towards the Gauss-Newton direction, usually led 
to reconstructions converging towards false minima. The conditions under which this 
algorithm proved to be superior was when the simulated voltage measurement error was 
too low for practical purposes. The conclusion must then be that the trust region 
approach is best for small residual problems.

6.3.5.3. Summary
A general trend can be observed amongst the different methods for selecting X. When 
any of them used an initial X that was very small, the procedure would not reconstruct 
any pressure distribution particularly well The necessary larger values of X° move the 
search direction away from the Gauss-Newton direction, indicating the importance of 
regularising the Gauss-Newton method for this ill-conditioned problem. The most 
consistently accurate method proved to be the Marquardt method. Although, the trust 
region method is a more modem approach, and is very well regarded in the optimisation 
literature, it failed to produce useful results with any degree of practical voltage 
measurement error. Mor6's trust region approach was too heavily biased towards the 
Gauss-Newton direction for successful reconstruction in the presence of noise.
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Some systems require a fast reconstruction, e.g. a real-time pressure scanner. In this 
case, a minimal number of iterations to a reasonably accurate solution is required. The 
early termination of the Marquardt method, that is, the dwindling parameter method, 
provides a good balance between speed and accuracy in the solution. The method 
usually stops after 5 or 6 iterations. This is with the initial estimate set at the 'no-load' 
pressure distribution. In a dynamic real-time pressure scanner, the previous pressure 
distribution can be used as the initial estimate for the following scan. In this situation, 
slightly fewer iterations will be required to arrive at a reasonably accurate solution.

The table in Figure 6.29 summarises the times taken to solve the regularised 
Gauss-Newton test problems using the dwindling regularisation parameter on a Sun 
20/51.

Mesh Size Time (s) Iterations
64 0.6 5
100 1.9 5
256 20.2 6
400 63.5 6

Figure 6.29 The times and number of iterations required for reconstruction of the 
different sized test profiles on a Sun 20/51. Reconstruction is with the second finite 

difference regularisation and dwindling regularisation parameter method.

6.3.6. Scaling
The results shown in this thesis use well-scaled equations. That is, the resistivities are all 
of similar magnitude and are in the region around unity. Although, a pressure sensitive 
material has not been manufactured, the no-load resistivity can be manufactured to any 
value by varying the degree of carbonisation of the fibres. No scaling is used in this 
thesis as scaling the well-scaled equations actually gave worse results. However, a few 
experiments with resistivity values in the region of 1000 required scaling for successful 
reconstruction. Woot83] implemented the Marquardt scaling and also found it very 
important to improve the solution accuracy. When a pressure sensitive material with 
known resistivity characteristics is manufactured, scaling may well have to be examined 
more closely.
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6.3.7. Effects of the Bounds Constraints
Reconstruction errors with and without the bounds constraints are shown in 
Figure 6.30. The bounds constraints have a noticeable improvement on the success of 
the reconstruction. These results on the 400 element mesh using second difference 
regularisation are typical of other mesh sizes and reconstruction algorithms. As such all 
reconstruction algorithms results shown in this thesis have used these simple bounds 
constraints.

Bounds Constraints 
■  With 
l l  Without

BLOCK BUTTOCKS FOOT WHEELCHAIR 
Test Profile (400 element mesh)

Figure 6.30 Reconstruction errors with and without bounds constraints on the 
400 element test profiles using second difference regularisation. Voltage 

measurement error is set at 1 %.

6.4. Conclusions
The Gauss-Newton and derived methods were examined for suitability of solving the 
pressure EIT problem. The damped and undamped Gauss-Newton methods work very 
well in ideal conditions of zero measurement error, but the Gauss-Newton direction
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tends to false minima with noise contaminated data. The problem is completely altered 
from a zero residual problem to a large residual problem when realistic measurement 
errors are introduced. Regularisation is needed to tackle the solution when the residuals 
are no longer zero. It was found that regularisation based on second difference penalties 
was best in these circumstances. The regularisation parameter that consistently gave 
good results was the Marquardt choice. For a compromise between accuracy and speed 
of solution, the dwindling parameter method should be used. A number of algorithmic 
and software implementational techniques have also decreased the time of each iteration. 
The use of a single earthed node removed the need for recalculation of the master 
stiffness matrix inverse for each and every projection angle.

The voltage measurement errors usually associated with medical EIT applications will 
not be as large when applied to a resistive mat; electrode placement will be permanently 
fixed and currents will stay two-dimensional The problem is ill-conditioned, which 
causes the solution to be highly sensitive to any voltage measurement errors. However, 
the bounds constrained regularised Gauss-Newton method reconstructs the pressure 
distributions very well even in the presence of realistic noise levels.
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7. Electrode Positioning
This chapter demonstrates the reconstruction improvements that can be obtained with 
the use of electrodes distributed throughout the pressure sensitive mat, as opposed to 
attaching the electrodes entirely on the mat’s edge. The optimal positioning of the 
electrodes is studied.

The reconstruction accuracy is dependent on a number of factors. These include the 
reconstruction algorithm employed, the current patterns applied to the object, the 
pressure distribution itself, the positioning of the electrodes and voltage measurement 
and other system errors. This chapter examines the effects of the electrode positioning. 
For an objective comparison between a variety of electrode positions, the 
aforementioned variables will be kept constant. However, the applied current patterns 
depend on the electrode positioning and cannot be kept the same for two different sets 
of electrode positions. To obtain the most objective comparisons, the so-called optimal 
current patterns are used. These current patterns are optimal in that they are the best 
currents to apply for minimum degradation in the reconstruction in the presence of 
noise. The first part of this chapter examines optimal current patterns. The second part 
of this chapter studies various electrode positions using the optimal current patterns. 
The study analyses distinguishability and the Jacobian matrix conditioning, showing the 
effects on reconstruction error.

7.1. Optimal Current Patterns

7.1.1. Projections
A single projection or current pattern is simply the set of electrode currents applied to 
the mat. In EIT, a set of voltage measurements is then taken from the electrodes for 
each projection. A number of different current patterns are applied to the mat in order to 
gain enough information for the reconstruction to succeed. Many types of current 
patterns can be applied to the mat. The neighbouring current patterns of Brown[86] are 
commonly used. Current is injected into one electrode and extracted from a 
neighbouring electrode. This is repeated for all adjacent pair electrodes. Huat87] presents 
and compares other current patterns which involve two current carrying electrodes per 
projection. However, it is the current patterns which utilise all electrodes in each 
projection that produce the best results.
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7.1.2. Distinguishability
The optimal current patterns involve applying currents to all available electrodes and 
were proposed by Isaacson1881. Considering two different resistivity distributions, px and 
p 2, the electrode voltages resulting from an applied current pattern, c, are v(pj) and 
\ ( p 2) respectively. The two distributions are said to be distinguishable when

.  1Ka ) - v(a 1 
H

is greater than the system error measurement tolerance or noise, £. The 
distinguishability, S , is a function of the applied current pattern as well as the two 
resistivity distributions and is merely a measure of the voltage differences at the 
electrodes normalised by the applied currents. Optimal current patterns maximise the 
distinguishability so that S > e  even when the two resistivity distributions are very 
close. This is important for the least squares reconstruction method. If v(/71) is the 
vector of measured voltages and the estimate at any given iteration is v(/?2) , then the 
numerator in equation (7.1) is the basis of the reconstruction method, see equation (5.1). 
As soon as e > 8 , then voltage measurement error will dominate the next iteration in 
the reconstruction update. By maximising S , the signal to noise ratio is increased and 
the effect of measurement error is reduced. Optimal currents are thus optimal in that 
they minimise the error introduced into the reconstruction method simply by maximising 
the distinguishability.

7.1.3. Calculation of Optimal Currents
The calculation and implementation of the optimal currents is a CPU intensive task and 
is described in this section. A few reconstructions comparing results using optimal 
current and other current patterns follows.

7.I.3.I. Difference Matrix Calculation
The equation v(p) = R(/?)c describes Ohm's law, where R is the transfer impedance 
matrix for some resistivity distribution p. If all nodes in the FEM mesh were used as 
electrodes, R would then be the generalised inverse of the admittance matrix, Y. For the 
same current pattern applied to two different distributions, the distinguishability 
equation (7.1) can then be rewritten as
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where D is the difference matrix,

D = R(a ) - R ( a ) (7.3)

Isaacson[88] showed that the maximum distinguishability is obtained when the currents 
are the eigenvectors of D relating to its largest eigenvalues. The entire set of 
eigenvectors then make up the optimal current patterns. Note that the optimal currents 
are a function of the unknown resistivity distribution and as such different optimal 
currents exist for different resistivity distributions.

7.1.3.2. Finding the Eigensystem
The matrix, D, is a square symmetric matrix and so the eigensystem can be found from 
the Singular Value Decomposition (SVD). The SVD decomposes the exe D matrix as 
follows[89]

D = UZZT (7.4)

where Z is a diagonal matrix of decreasing positive singular values, c x > c 2 >■ ■■> c e 
and U & Z are orthogonal matrices. The columns of U and Z are respectively the left 
and right singular vectors. As D is square and symmetric the singular values are the 
same as the eigenvalues and the left and right singular vectors are the same.

Note that as R, and therefore D, is singular of rank e-l, where e is the number of 
electrodes, the last singular value is zero. The optimal currents are the first e-l left 
singular vectors. The following section explain how the D matrix is obtained.

7.1.3.3. Transfer Impedance Matrix Calculation
The transfer impedance matrices of two resistivity distributions must be found to 
calculate D. The admittance matrix is singular and so the transfer impedance matrix 
cannot be obtained by simply inverting it. Gisser[90] describes an experimental method to 
find D. This involved an iterative process of repeated measurements from the resistivity 
domain. Hua[91] overcame the time consuming nature and practical difficulties of this
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process by suggesting a direct method to find R. This faster, as well as more accurate 
method of finding D, can be summarised as follows.

• Choose a set of independent current patterns or bases.
• Inject these current patterns into the actual resistivity distribution, p 1 and measure 

the voltage response.
• Find the transfer impedance matrix, R(a ) using Ohm's law, Kirchoffs current law 

and the fact that the matrix is indefinite. An example is given in Appendix A3 for the 
so-called diagonal current patterns.

• Repeat using the same current patterns for the resistivity estimate (usually the 
previous iteration in the Gauss-Newton based methods) to find R(/?2). This time, 
however, the voltage response is obtained from the FEM.

• Matrix D is the difference between R(a ) and R(/?2).

7.I.3.4. Optimal Currents and Synthesised Voltages
Injecting optimal currents into the domain necessitates a programmable current source 
on each and every electrode. This can be avoided by using a current basis that uses a 
single current source, e.g. the diagonal current patterns detailed in Appendix A3. 
Optimal currents are calculated from D, and because R is known, the voltage response 
to the optimal currents can be synthesised because v = R c[91]. The optimal currents’ 
better distinguishability give superior reconstructions. So, even though diagonal current 
patterns are injected into the domain, the optimal currents and corresponding 
synthesised voltages can be used for the reconstruction process.

True optimal currents involve calculating and injecting optimal currents into the mat at 
the start of each and every iteration of the Gauss-Newton method. Each calculation 
requires the time consuming SVD. The reconstruction method is a fairly lengthy 
procedure in itself. Thus any single pressure distribution reconstruction requires the load 
to remain static for many seconds. This is likewise in the more common EIT applications 
and no known practical systems employ the full use of optimal currents. Some of the 
leading EIT researchers use spatial trigonometric current pattems[50][90]. Trigonometric 
currents turn out to be the optimal currents when considering a single, centrally located 
conductivity disturbance in a circular domain using equally spaced electrodes around the 
domain’s edge. These patterns have proved to be very good in their applications and do 
not necessitate time consuming calculations in order to obtain the more ideal optimal 
currents. This approach requires the same single current pattern for all iterations.
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However, as the electrodes are not evenly distributed around the edge of the pressure 
sensitive mat, spatial trigonometric currents cannot be applied in this case. Instead, a 
similar approach, detailed in the next paragraph, is used.

Diagonal currents are injected into the mat and voltage measurements taken for the test 
resistivity distribution. The optimal currents are calculated using these voltages and 
those from the initial estimate used in starting the regularised Gauss-Newton method. A 
sensible initial estimate is the constant resistivity distribution arising from the no-load 
pressure. This optimal current pattern and corresponding synthesised voltage 
measurements are used throughout the reconstruction. The current is then only optimal 
for the first iteration and near optimal for the remaining iterations. This has the 
advantage of a minimal time penalty incurred for each reconstruction.

7.1.4. Reconstruction Results using Optimal Currents
EIT researchers have always applied optimal currents to electrodes attached to the edge 
of a domain. Results showing the optimal currents’ superiority over other current 
patterns using these edge electrode configurations already exist, for example Hua[49]. The 
reconstruction results in this section show optimal current improvements over other 
current patterns for an internal electrode configuration.

The optimal currents using diagonal currents, as described above, have been 
implemented in Fortran. The SVD is calculated using the NAG[55] library routine f02wef. 
All results are obtained from the computer simulation of the mat using the FEM. These 
optimal currents are injected into the mat and the resulting electrode voltage 
measurements are used for all iterations. The non-optimal current patterns with which 
comparisons are made are the diagonal currents. 32 electrodes are used and so the 
maximum of 31 independent projections for both current patterns are then fairly 
compared. The current patterns in Section 5 use fewer (16) projections which results in 
less maximally independent information, leading to slightly inferior reconstructions.

Many experiments on different sized meshes, using both optimal and diagonal current 
patterns, showed that the optimal currents always produced superior results. A selection 
of reconstructions for the 400 element mesh are shown in Figures 7.1 and 7.2. The test 
distributions and electrode positioning are those portrayed in Section 6.3.1. These 
typical results show a lower element error at reconstruction and visible superiority of the
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optimal current patterns. One observation worth noting is the sharpening of the edges in 
the least smooth test, BLOCK.

The dwindling rather than the superior Marquardt regularisation parameter method was 
used. This is done for a secondary purpose; to show the quality in the reconstruction 
using this prematurely terminated, but faster approach. Despite errors in the 
reconstruction, the results are good and very usable. As expected, the optimal currents 
produced a higher distinguishability than those from the diagonal currents. In 
conclusion, optimal current theory can be applied to internal electrode configurations to 
produce improved reconstructions.
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Reconstructions on Test Profile BLOCK  
Diagonal Currents Optimal Currents

(5.8%) (4.0%)

Pressure Range
J  2.1+ H  1.7 to 1.8 | |  1.3 to 1.4
9  2.0 to 2.1 I  1 6  t0 1 7 ■  1-2 to 1.3

I 1.9 to 2.0 I  1 5  t0 1 6 1.1 to 1.2
|  1.8 to 1.9 ■  L4 to 1.5 1.0 to 1.1

Reconstructions on Test Profile BUTTOCKS

Diagonal Currents Optimal Currents
(2.9%) (1.6%)

Figure 7.1 Diagonal and optimal current reconstructions comparisons using test 
profiles BLOCK and BUTTOCKS on the 400 element mesh. Added voltage error 

is 1 % and the final element errors are shown in brackets.
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Reconstructions on Test Profile FOOT 
Diagonal Currents Optimal Currents

(5.1%) (2.9%)
. :  ... ................ ........

1 1  ii ii i
i n H B : :
S n f l n H

l |||f P

•;''iiPI

Pressure Range
1 2.1+ ■  1.7 to 1.8 I 1.3 to 1.4
1 2.0 to 2.1 ■  1.6 to 1.7 1.2 to 1.3
1 1.9 to 2.0 1  1.5 to 1.6 1.1 to 1.2

|  1.8 to 1.9 ■  14 to 1.5 1.0 to 1.1

Reconstructions on Test Profile WHEELCHAIR

Diagonal Currents Optimal Currents
(5.1%) (3.7%)

Figure 7.2 Diagonal and optimal current reconstructions comparisons using test 
profiles FOOT and WHEELCHAIR on the 400 element mesh. Added voltage 

error is 1 % and the final element errors are shown in brackets.
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7.2. Optimum Electrode Positioning
A study to examine the effects on reconstruction using different electrode configurations 
is done through spectral analysis. How spectral analysis can help in determining the most 
reliable reconstruction is shown and then applied to different electrode configurations.

7.2.1. Spectral Analysis
This section examines the importance of the set of Jacobian singular values on the 
solution accuracy. This set of singular values is commonly known as the spectrum. The 
well known Singular Value Decomposition (SVD) will find the spectrum and can also be 
used to solve the least squares problem. It is a time consuming solution method and the 
Cholesky decomposition is the preferred choice for the actual equation solution. 
However, the SVD demonstrates the effects of the spectrum on the solution accuracy.

The importance of the spectrum on the accuracy in the reconstruction is most easily 
demonstrated solving the least squares problem with Levenberg-Marquardt 
regularisation, as shown in equation (5.20). The SVD solution is described in Golubt89],

• Compute the SVD of the Jacobian matrix, J  = UXZT, where U and Z are 
orthogonal matrices, whose columns, U,&Z,., are respectively the left and right 
singular vectors. The diagonal matrix X contains the set of positive singular values, 
crl > c 2 >■■■> <Jm or the spectrum. The number of elements in the FEM mesh is m 
and for all m singular values to be greater than zero, the projection angles must 
provide enough independent information.

• Form the vector, b = UT [f -  v0 ].
• The new update at iteration k, Ap k is solved using

where the regularisation parameter is denoted by X and u>. is a scalar weighting factor:

m

Apk = ^ w , - Z i (7.5)
1=1

(7.6)
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Equation (7.5) shows that the resistivity update is the weighted sum of the right singular 
vectors. Our interest lies in the weighting factor. With no regularisation, that is X = 0, 
when any of —> 0 then vv( —» ©o. The summation then includes a very heavy 
weighting of the right singular vector. However, both the right singular vectors and b, 
include practical system errors. The errors are magnified by the weighting factor, 
swamping the solution with the errors. By introducing the regularisation parameter, the 
weighting factor is controlled to some degree so that large errors are not introduced into 
the summation. However, the larger the regularisation parameter, the more the true 
information becomes masked. The choice of the regularisation parameter has already 
been discussed to balance these effects for optimum solution. It becomes clear that the 
larger the singular values, the less the effects of noise and the less regularisation that 
needs to be introduced.

The spectrum is said to indicate the degree of conditioning in the problem. Well 
conditioned problems will have an even spread of singular values. Ill-conditioned 
problems include small singular values in the spectrum. The condition number is 
important in studying the conditioning as it is equal to the ratio of the largest to the 
smallest singular value, see Appendix A2. However, a graphical display of the full 
spectrum gives a better indication of the conditioning in the problem and the likely 
success in the reconstruction. The full spectrum will be graphed in later sections when 
examining different electrode configurations.

7.2.2. Initial Study
An initial study was undertaken which examined the effects of using internal electrodes. 
This study used a small square 25 element mesh and the unregularised Gauss-Newton 
method for reconstruction. Two different electrode configurations were compared. The 
Edge electrode configuration uses 20 electrodes around the periphery of the mat. The 
Internal configuration uses the same 20 electrodes, except 4 of them are replaced by the 
4 most central mesh nodes. Some of the projection angles use the central electrodes for 
current injection. The results are shown in Figures 7.3 to Figure 7.5 for a load spread 
throughout the centre of the mat with a low voltage measurement error. Figure 7.8 
compares the quality of reconstruction for a single centrally perturbed element in the 
presence of higher noise.
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Figure 7.3 The 25 element test profile

Figure 7.4 The 25 element test reconstruction errors using the Internal electrode 
configuration. Voltages have a 0.3% measurement error.

.a
5

Figure 7.5 The 25 element test reconstruction errors using the Edge electrode 
configuration. Voltages have a 0.3% measurement error.

Page  130



EIT APPLIED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Figure 7.6 The single centrally perturbed element test profile.
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Figure 7.7 Reconstruction for the single centrally perturbed element test using the 

Internal electrode configuration. Voltage measurement error is 3%.
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Figure 7.8 Reconstruction for the single centrally perturbed element test using the 
Edge electrode configuration. Voltage measurement error is 3%.
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It is quite clear that by placing a mere 4 electrodes in the centre of the mat, the 
reconstructions improve dramatically. Experimentation with the position of the pressure 
distribution showed that the improvements were large, but not as impressive for 
distributions near the edge of the mat. The test distributions shown here are for pressure 
distributions based in the centre of the mat. Unlike the Internal configuration, many of 
the test distributions failed to converge using the Edge configuration and single digit 
voltage measurement errors. In this case, the error destabilised the Gauss-Newton 
method, but can be stabilised through regularisation. A complete study using practical 
pressure distributions and regularisation on larger meshes follows in the next section.

Fulton[92] showed similar results with the larger square 64 element mesh and correlated 
the improved accuracy with an improved matrix condition number. Results presented by 
Moskowitz[93] at the same conference, used a limited number of invasive electrodes in 
the application of EIT to medical thermal imaging. A sharper, more accurate 
reconstruction of the change in conductivity with temperature of a heated solid phantom 
in a conducting liquid was obtained.

Pilkington[94] examined the distinguishability in impedance imaging problems when a 
single intracavity reference electrode is used in addition to those on the surface of the 
body. The intracavity electrode was intended to be placed on the heart or lungs. A two- 
dimensional circular model examining single centrally placed targets of different radii 
produced theoretical distinguishability calculations. These showed that the 
distinguishability increased by a factor greater than 6 for targets less than 10% in radius. 
Although no results using reconstructions have consequently been produced, the 
discussion on optimal currents in Section 7.1.2 shows that distinguishability 
improvements should lead to better reconstructions. The results in the following section 
compare different electrode configurations examining the reconstructed pressure 
distributions and their associated distinguishabilities.

7.2.3. Electrode Positioning Results
The variables which have an effect on the reconstruction success are outlined at the 
beginning of Chapter 7. The experiments in this section compare different electrode 
positions by keeping the other variables constant. The aim is to find the best set of 
electrode positions for use in an EIT pressure measuring system.
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7.2.3.I. Set-up
The Gauss-Newton method with second finite differences regularisation has been shown 
to be the best for an EIT pressure sensitive problem and is the solution method used 
from here on. Similarly, the optimal current patterns, described earlier, are used in order 
to reduce the effect of differing current patterns on reconstruction. As mentioned, the 
currents are optimal for the first iteration as this will be the most likely practical 
approach to using optimal currents. The practical environment simulated, is the same as 
the one used in Section 6.3.2, that is, one with a 1% voltage error measurement. The 
experiments were carried out using meshes that provide reasonably good spatial 
resolution, namely, the 100, 256 and 400 element grids. The greater the number of 
electrodes used, the better the conditioning of the problem. Any electrode configuration 
used in a comparison thus uses the same number of electrodes; either 36 or 37.

1.23.2. Optimal Electrode Positions
Knighttl] examined the sensitivity of each electrode to resistivity perturbations in each 
element. He concluded that the sensitivity of an electrode is a function of the distance of 
the electrode from the conductance change that it attempts to detect. Paulson[50] also 
notes that the sensitivity drops off dramatically as perturbations are made further from 
the surface in his imaging of the body using surface electrodes. In an EIT pressure 
scanner system, the electrodes can be placed anywhere on the mat. All electrodes 
connected to the mat are point electrodes, including those connected to the interior of 
the mat. The wires leading to the internal electrodes must, of course, be electrically 
isolated from the mat. The wires must also be thin and flat so that they do not introduce 
a disturbance to the pressure distribution being profiled.

The ideal or optimal electrode position configuration would then be one where there is 
an electrode below any load on the mat. This can be verified by setting up test electrode 
configurations. Flexibility in placing the electrodes anywhere on the domain is taken 
advantage of and the Concentrated electrode pattern shown in Figure 7.9 is used. Test 
pressure profiles needed are those directly on top of the concentrated electrodes, as well 
as those varying in distance from these electrodes. Such a set of distributions and the 
resulting reconstructions are shown in Figures 7.10 to 7.12. Each of the test profiles are 
identical, merely moved to different positions.
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The reconstructions show quite distinctly that the more electrodes there are in the 
vicinity of the test profile, the better is the reconstruction. Profile TOPLEFT is directly 
over the electrodes and produces the most accurate reconstruction. The test OFFSET 
has half the distribution over the electrodes and produces the next best reconstruction. 
The BOTTOMRIGHT distribution is furthest away from the electrodes and looks the 
least like the actual test pattern. The element errors graphed in Figure 7.13 quantify this 
trend.

The distinguishabilities measured at the first iteration are graphed in Figure 7.14. The 
graphs show that there is a lower error in the reconstruction when the distinguishability 
is higher. The larger distinguishability leads to better reconstructions as there is a larger 
signal to noise ratio in the voltage measurements. These results confirm that the 
distinguishability is higher for test distributions in close vicinity of electrodes.

Figure 7.9 The 37 Concentrated electrode configuration. The mesh used has 256
elements.

Pag e  134



EIT APPLIED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Test Profile T O P L E F T  
Actual Distribution Reconstructed Distribution

Pressure Range
J  21+ ■  1.7 to 1.8 |  1.3 to 1.4
8  2.0 to 2.1 ■  1*6 to 1.7 1 1.2 to 1.3U 1.9 to 2.0 8  15 to 1.6 1 1.1 to 1.2
|  1.8 to 1.9 ■  L4 to 1.5 1.0 to 1.1

Test Profile T O P R IG H T  
Actual Distribution Reconstructed Distribution

llillli

Figure 7.10 Test distributions TOPLEFT and TOPRIGHT with the reconstructed

distributions using the Concentrated electrode configuration.

Pa ge  135



EIT APPUED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Test Profile BOTTOMLEFT  

Actual Distribution Reconstructed Distribution
■ 1 ;....................................

f l
#

---------------------------------------------------------------------
Pressure Range

12.1+ ■  1.7 to 1.8 |  1.3 to 1.4
2.0 to 2.1 ■  1.6 to 1.7 1.2 to 1.3

1.9 to 2.0 H  1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 1  1.4 to 1.5 1.0 to 1.1Test Profile BOTTOM RIGHT  

Actual Distribution Reconstructed Distribution

Figure 7.11 Test distributions BOTTOMLEFT and BOTTOMRIGHT with the

reconstructed distributions using the Concentrated electrode configuration.
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Test Profile  O FFSE T  

Actual Distribution Reconstructed Distribution

Pressure Range
J  2.1+ ■  1.7 to 1.8 i  1.3 to 1.4
1 2.0 to 2.1 ■  1.6 to 1.7 1.2 to 1.3

4  1.9 to 2.0 1  1 5  10 1 6 1.1 to 1.2
■  1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Test Profile M ID D LE 
Actual Distribution Reconstructed Distribution

Figure 7.12 Test distributions CENTRE and OFFSET with the reconstructed

distributions using the Concentrated electrode configuration.
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MIDDLE TOPRIGHT BOTTOM LEFTBOTTOMRIGHTTOPLEFT OFFSET

Figure 7.13 Reconstruction errors for 6 test distributions on the 256 element grid 
using the Concentrated electrode configuration.

600 
550 
500 

*  450
|  400 
jS 350
*1 300

M 250 
“  200 

150 
100 
50 
0

v>
5 WWW---

!7 T “ ~T
TOPLEFT OFFSET MIDDLE TOPRIGHT BOTTOMLEFTBOTTOMRIGHT

Figure 7.14 Distinguishabilities for 6 test distributions on the 256 element grid

using the Concentrated electrode configuration.
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1.233. Practical Electrode Positions
The importance of having the electrodes in close proximity of the pressure distribution 
has been established. However, in any practical system, this is not possible as the 
pressure distribution is constantly changing. In standard EIT applications, the electrodes 
are distributed around the edge of the domain, however, the region of interest is usually 
towards the centre of the domain. The most practical approach for the average pressure 
profile, would be to distribute the electrodes uniformly throughout the mat. This section 
looks at the improvements this type of electrode configuration has over traditional EIT 
configurations of edge electrodes. The underlying reasons for improvements are 
examined in the following section.

The Edge electrode configuration used is shown in Figure 7.15 for test patterns on the 
256 element mesh and in Figure 7.17 for the 100 and 400 element meshes. The 
proposed practical electrode positions using the entire mat area are shown in 
Figures 7.16 and 7.18. These are named the Internal electrode configurations. Note that 
for any particular mesh, the number of electrodes used is the same for both 
configurations. The 100, 256 and 400 element mesh test distributions of Section 6.3.1 
are the main test patterns utilised. The resulting reconstructions are shown in Figures 
7.19 to 7.32 with a voltage measurement error of 1%.

Studying the reconstructions, it can be seen that the Internal configuration always results 
in a superior reconstruction. The element errors indicate this, even when some of the 
reconstructions look' fairly similar. The narrowest gap in reconstruction errors is with 
the 400 element FOOT distribution. In this case, the Edge reconstructed foot is perhaps 
a better looking foot, but on closer inspection, the reconstruction with the Internal 
configuration is closer to the test shape. The Edge configuration tends to smooth the 
distribution and this is most clear in the BLOCK profiles. There is also more sign of the 
big toe in the 256 mesh FOOT Internal reconstruction. The Internal configuration 
always gives greater accuracy in the central areas. This can be seen, for example, in the 
area between the buttocks in the WHEELCHAIR profiles. The best verification of this is 
the reconstruction of Figure 7.27 which uses a tiny central test profile; TINYCENTRE. 
The Internal test produces an image almost identical to the actual distribution, whereas 
the Edge test is almost a total failure.
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Figure 7.15 The 37 Edge electrode configuration for grids with 256 elements

Figure 7.16 The 37 Internal electrode configuration for grids with 256 elements
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Figure 7.17 The 36 Edge electrode configuration for grids with either 100 or 400
elements

Figure 7.18 The Internal 36 electrode configuration for grids with either 100 or
400 elements
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Reconstructions on Test Profile BLOCK

Actual Distribution

Pressure Range
H 2 1 + ■  1.7 to 1.8 B  1.3 to 1.4
1 2.0 to 2.1 I  1-6 to 1.7 1.2 to 1.3
j  1.9 to 2.0 U  1.5 to 1.6 r  1.1 to 1.2

|  1.8 to 1.9 ■  1-4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(2.9%) (0.9%)

Figure 7.19 Reconstructions on the 100 element mesh using test distribution
BLOCK comparing the Edge and Internal electrode configurations. The element

error is shown in brackets.
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Reconstructions on Test Profile BUTTOCKS

Actual Distribution

Pressure Range
■  2 1 + ■  1.7 to 1.8 m 1.3 to 1.4

1 2.0 to 2.1 1  1 6  t0 1/7 1.2 to 1.3
m  1.9 to 2.0 1  15to  1 6 11 1.1 to 1.2
|  1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(3.1%) (0.8%)

Figure 7.20 Reconstructions on the 100 element mesh using test distribution
BUTTOCKS comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.
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Reconstructions on Test Profile FOOT 

Actual Distribution

Pressure Range
1 2.1+ ■  1.7 to 1.8 ■  1.3 to 1.4

3  2.0 to 2.1 ■  1.6 to 1.7 ■  1.2 to 1.3
m  1.9 to 2.0 H  1.5 to 1.6 1.1 to 1.2
|  1.8 to 1.9 ■  1-4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
( 1.8%) (0.8%)

Figure 7.21 Reconstructions on the 100 element mesh using test distribution
FOOT comparing the Edge and Internal electrode configurations. The element

error is shown in brackets.
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Reconstructions on Test Profile WHEELCHAIR  

Actual Distribution

Pressure Range
—

is 21+ ■  1.7 to 1.8 IB 1.3 to 1.4
J  2.0 to 2.1 B L6 to 1.7 1.2 to 1.3
; |  1.9 to 2.0 ■  1.5 to 1.6 7 1.1 to 1.2
■  1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(2.5%) (1.3%)

Figure 7.22 Reconstructions on the 100 element mesh using test distribution

WHEELCHAIR comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.
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Reconstructions on Test Profile BLOCK  

Actual Distribution

Pressure Range
2.1+ ■  1.7 to 1.8 f |  1.3 to 1.4
2.0 to 2.1 I  1 6  to  1 J 1.2 to 1.3
1.9 to 2.0 1  1 5  t0 1 6 1 1.1 to 1.2
1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(3.4%) (1.6%)

Figure 7.23 Reconstructions on the 256 element mesh using test distribution

BLOCK comparing the Edge and Internal electrode configurations. The element

error is shown in brackets.
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Reconstructions on Test Profile BUTTOCKS 

Actual Distribution

l

Pressure Range 
2.1+ ■  1.7 to 1.8 1.3 to 1.4
2.0 to 2.1 I  1.6 to 1.7 §1 1.2 to 1.3
1.9 to 2.0 ■  1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(2.4%) (1.2%)

Figure 7.24 Reconstructions on the 256 element mesh using test distribution

BUTTOCKS comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.
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Reconstructions on Test Profile FOOT 

Actual Distribution

'

■

Pressure Range

12.1+ ■  1.7 to 1.8 |  1.3 to 1.4
2.0 to 2.1 H  1.6 to 1.7 11 1.2 to 1.3

1.9 to 2.0 H  1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 |  1.4 to 1.5 1.0 to 1.1Edge Configuration Internal Configuration

(2.6%) (2.0%)

Figure 7.25 Reconstructions on the 256 element mesh using test distribution
FOOT comparing the Edge and Internal electrode configurations. The element

error is shown in brackets.
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Reconstructions on Test Profile WHEELCHAIR

Actual Distribution

Pressure Range
2.1+ ■  1.7 to 1.8 | 1.3 to 1.4
2.0 to 2.1 ■  1.6 to 1.7 f 1.2 to 1.3
1.9 to 2.0 ■  L5 to 1.6 f 1.1 to 1.2
1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(3.2%) (1.9%)

Figure 7.26 Reconstructions on the 256 element mesh using test distribution
W HEELCHAIR comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.
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Reconstructions on Test Profile TINYCENTRE  

Actual Distribution

Pressure Range
m  2 1 + ■  1.7 to 1.8 S 1.3 to 1.4
4  2.0 to 2.1 1  1 6  t0 1 7 1 1.2 to 1.3
m  1.9 to 2.0 ■  1 5  t0 1 6 1.1 to 1.2
■  1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration
( 1.22%)

Internal Configuration
(0.89%)
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Figure 7.27 Reconstructions on the 256 element mesh using test distribution

TINYCENTRE comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.
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Reconstructions on Test Profile TINYEDGE  

Actual Distribution
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1  21  + fjj 1.7 to 1.8 ■  1.3 to 1.4
f l  2.0 to 2.1 I  1*6to 1/7 1.2 to 1.3
m  1-9 t o 2 ° 1  15 to 1.6 1.1 to 1.2
|  1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration
(1.01%)

Internal Configuration
(0.41%)

•x

Figure 7.28 Reconstructions on the 256 element mesh using test distribution

TINYEDGE comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.
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Reconstructions on Test Profile BLOCK  

Actual Distribution

Pressure Range
■  2.1+ ■  1.7 to 1.8 ■  1.3 to 1.4
■ 2 0  10 2 1 ■  1.6 to 1.7 1.2 to 1.3
i 1.9 to 2.0 ■  1.5 to 1.6 1.1 to 1.2
|  1.8 to 1.9 11 1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(4.6%) (2.4%)

Figure 7.29 Reconstructions on the 400 element mesh using test distribution

BLOCK comparing the Edge and Internal electrode configurations. The element

error is shown in brackets.
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Reconstructions on Test Profile BUTTOCKS 

Actual Distribution

I

Pressure Range 
2.1+ ■  1.7 to 1.8 |g  1.3 to 1.4
2.0 to 2.1 B  1.6 to 1.7 11 1.2 to 1.3
1.9 to 2.0 If 1.5 to 1.6 1.1 to 1.2
1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(3.0%) (1.2%)

Figure 7.30 Reconstructions on the 400 element mesh using test distributioi

BUTTOCKS comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.
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Reconstructions on Test Profile FOOT 

Actual Distribution

Pressure Range
1 2.1+ ■  1.7 to 1.8 1 1.3 to 1.4

J  2.0 to 2.1 I  16 to I-7 1 1.2 to 1.3
I 1.9 to 2.0 1  15 to 1.6 1.1 to 1.2

■  1.8 to 1.9 ■  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(2.6%) (2.4%)

Figure 7.31 Reconstructions on the 400 element mesh using test distribution

FOOT comparing the Edge and Internal electrode configurations. The element

error is shown in brackets.

Page  154



EIT APPLIED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

Reconstructions on Test Profile WHEELCHAIR  

Actual Distribution

!!!!!

Pressure Range
2.1+ U  1.7 to 1.8 S t 1.3 to 1.4
2.0 to 2.1 1  1 6  1 7 1.2 to 1.3
1.9 to 2.0 m  15 to 1.6 m  l . i  to 1.2
1.8 to 1.9 m  1.4 to 1.5 1.0 to 1.1

Edge Configuration Internal Configuration
(3.9%) (2.8%)

Figure 7.32 Reconstructions on the 400 element mesh using test distribution
W HEELCHAIR comparing the Edge and Internal electrode configurations. The

element error is shown in brackets.

P a g e  155



EITAPPUED TO BODY-SUPPORT INTERFACE PRESSURE MEASUREMENT

7.2.3.4. Analysis
A spectral analysis gives an insight into why the Internal configuration is superior to the 
Edge configuration. The spectrum for all 3 meshes is shown in Figures 7.33 to 7.35. The 
Internal configuration has a more even spread of Jacobian singular values and the all 
important higher singular numbers have larger singular values. The improved 
conditioning results in less error in the resistivity distribution when using the regularised 
Gauss-Newton method.

The improvements in reconstruction of the Internal over the Edge electrode 
configuration spans a wide range of voltage measurement errors. The degree of 
improvement was found to be larger on the smaller meshes as typified by the two graphs 
in Figures 7.36 and 7.37. This can be attributed to the larger relative differences in 
conditioning when comparing the 100 element and 400 element electrode placement 
configurations, as shown in Figures 7.33 and 7.35.

The Concentrated electrode configuration of Section 1.23,2 has also been plotted in 
Figure 7.34 and illustrates how ill conditioned this electrode configuration is. It is, in 
fact, almost singular to machine precision (~1015). For any given electrode configuration, 
it has been observed that there is very little change in the spectrum for a wide variety of 
resistivity distributions. There can, however, be a large difference in distinguishabilities, 
as demonstrated in the Concentrated electrode configuration study. The reconstruction 
success of a resistivity distribution does not only depend on the conditioning, but also 
the distinguishability. Summarising, the best electrode configuration will be one that is 
best conditioned as it will give superior results over a wide range of differing 
distributions. However, it is not necessarily the optimum configuration for any one 
particular electrode pattern. This is clear from the Concentrated electrode configuration, 
which is terribly conditioned, but the TOPLEFT distribution is reconstructed quite 
accurately.

The distinguishabilities for the pressure distributions of Figures 7.19 to 7.32 are graphed 
in Figures 7.38 to 7.40. Comparing distinguishabilities between the Edge and Internal 
configurations, there is not much difference, apart from a few exceptions. The BLOCK 
profiles have more of a central load, whereas close inspection of the WHEELCHAIR 
profiles shows that much of the distribution is close to the mat's edge. The
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distinguishabilities for the WHEELCHAIR tests are thus better with the Edge electrode 
configuration, whereas the BLOCK tests have better distinguishabilities with the Internal 
electrode configuration. Although WHEELCHAIR distinguishabilities are better on the 
Edge electrode configuration, the problem is not as well conditioned. The better 
conditioning dominates the distinguishability, resulting in superior results with the 
Internal electrode configuration. Test profiles FOOT and BUTTOCKS have 
perturbations both near the edge and towards the centre, resulting in distinguishabilities 
that are similar on both electrode configurations. Although the distinguishabilities are 
similar, the superior reconstructions are with the Internal electrode configuration as the 
conditioning is superior.

The best electrode configuration is one that combines a superior conditioning and 
superior distinguishability. The TINYCENTRE test distribution of Figure 7.27, is an 
example of this. It provides one of the best improvements of the Internal configuration 
over the Edge configuration. It is this type of resistivity distribution that previous EIT 
systems have not been able to reconstruct accurately. The TINYEDGE test distribution 
of Figure 7.28, is a repositioned TINYCENTRE distribution and was devised to monitor 
performance of the Internal configuration with small objects near the edge of the mat. 
The electrode positioning in relation to this distribution has, in fact, resulted in slightly 
better distinguishability for the Internal distribution. Consequently, the Edge 
configuration produces an inferior reconstruction.

One final set of spectrums to examine are those in Figure 7.41. This example shows that 
the conditioning of the problem is better with 36 electrodes, as opposed to 32. The tests 
in this thesis always make comparisons using the same number of electrodes. This 
example also shows that when the number of electrodes is constant (32), the optimal 
currents provide the best conditioned system with a fixed electrode configuration. The 
Neighbouring[86] currents shown are one of the first current patterns used by EIT 
researchers and, by comparison, are poorly conditioned.
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Figure 7.34 Jacobian singular value comparisons on the 256 element mesh using 
different configurations of 37 electrodes
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Figure 7.35 Jacobian singular value comparisons on the 400 element mesh
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Figure 7.36 Graph of the average error in each element at the final iteration for a
range of added voltage measurement errors. Results are for test profile 

BUTTOCKS on the 100 element mesh.
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Figure 7.37 Graph of the average error in each element at the final iteration for a 
range of added voltage measurement errors. Results are for test profile 

WHEELCHAIR on the 400 element mesh.
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Figure 7.38 Distinguishability comparisons for the 100 element mesh test patterns
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Figure 7.39 Distinguishability comparisons for the 256 element mesh test patterns
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Figure 7.40 Distinguishability comparisons for the 400 element mesh test patterns
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7.2.4. Discussion and Conclusions
A change in resistivity in a particular place on the mat will lead to the smallest voltage 
changes occurring at electrodes that are furthest away. Should some area of the mat 
have a low density of electrodes, then the system is less sensitive to resistivity changes in 
this area. Optimal currents on an edge electrode configuration ensures, to a certain 
extent, that currents flow throughout the domain. Placing electrodes throughout the 
domain takes this one step further. The intuitive reason for the superiority of internal 
electrode configurations is that the currents are forced into all parts of the mat. 
Information can also be measured across the entire mat area. When electrodes are used 
solely on the edge of the mat, any resistivity changes in the centre will not produce very 
large voltage measurement changes at the electrodes. The signal to noise ratio in this 
case is very low and voltage measurement errors swamp the signal. These errors result 
in the Gauss-Newton method taking a step in the wrong direction. This is kept under 
control, to some degree, by regularisation, however, too much regularisation smoothes 
the reconstructed distribution quite considerably. The preferred option is to have the 
minimum regularisation possible and the use of internal electrodes facilitates this.
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A spectral analysis of the Internal and Edge electrode configurations gives an insight 
into the resulting reconstruction differences. Combining this analysis with an 
examination of the distinguishability, shows that the Internal configuration has the edge. 
Not only is this over a wide range of practical pressure profiles, but also over a wide 
range of measurement errors. It has been shown that the best electrode configuration is 
one where the electrodes are placed directly beneath the pressure distribution. However, 
this is an impractical solution for a system that is meant to measure a variety of pressure 
profiles. The solution has proved to be one with electrodes scattered throughout the 
mat. The resulting Jacobian matrix conditioning is superior and the distinguishability is 
good for all pressure distributions, especially small centrally located distributions. The 
net effect is a more accurate reconstruction.

The inability to distinguish small resistivity distribution in the centre with an edge 
configuration is a consequence of EIT's low spatial resolution in this region. The 
centrally located electrodes increases EIT’s usually very low spatial resolution in the 
central region. Consequently, the FEM mesh can be made finer in the important central 
area, and the smoothing of many pressure distributions no longer occurs.
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8. Conclusions and the Future of EIT Interface 
Pressure Measurement
This chapter is a summary and conclusion of the results presented in this thesis. The 
clinical usefulness and viability of using an EIT based pressure scanner is analysed. 
Further work to obtain a working interface pressure scanner is yet to be done and this is 
briefly outlined.

8.1. Summary and Conclusions
The proposed EIT pressure scanner requires a mat exhibiting known pressure-resistivity 
characteristics. The preferred solution for this requirement is a carbon fibre felt 
encapsulated in a gel or silicon rubber. Carbon fibre felt exhibits good electrical 
characteristics in that it has low hysteresis, is thermally stable and gives repeatable 
results. The mat would be both thin and flexible, and would conform to the body- 
support interface. Point electrodes can be accurately attached to any required position 
on the mat. This solution would also be inexpensive and extremely durable due to the 
physical properties of carbon fibres.

The pressure sensitive mat is a square domain and is modelled by square bilinear 
elements. These elements provide the optimal combination of spatial resolution, 
accuracy and solution time for the EIT system. Cutting the mat to the shape of the 
domain can be accurately achieved, minimising geometric modelling errors. These 
elements lend themselves well to sparse matrix methods, as the nested dissection matrix 
ordering provides a faster solution than the more commonly used minimum degree 
ordering. The nested dissection ordering is better optimised by the sparse vector method 
and full exploitation of the lower path lengths has minimised the finite element equations 
and master stiffness matrix solution time. An accurate Jacobian matrix calculation that is 
very efficient has been described. This calculation takes full advantage of sparse matrix 
techniques and removes all redundant evaluations in the master stiffness inverse matrix. 
Projections have also been chosen, whereby the current source can be floated; this has 
important repercussions as the grounded node is kept in the same position, thus avoiding 
recalculation of the master stiffness matrix for each projection. Before these 
optimisations were implemented, the finite element equation and inverse master stiffness 
matrix calculations completely dominated the reconstruction. They have now been 
reduced to a minor part of the regularised Gauss-Newton inverse problem solution time.
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A reduction in time has enabled the use of a larger finite element mesh to simulate the 
mat resistance, thereby increasing the overall image accuracy.

The optimisation technique which most successfully reconstructs the pressure 
distribution has proved to be the Gauss-Newton method regularised by second finite 
differences. This was shown in the special EIT application of pressure measurement, 
where the electrode positions and element type can be defined by the designer. The 
choice of square bilinear elements enables easy implementation of the superior second 
finite difference regularisation. A good starting estimate can be provided for the 
regularised Gauss-Newton method as the no-load resistivity is accurately known. These 
combinations result in good pressure reconstructions, albeit with a slight smoothing 
effect. The smoothing effect removes details such as the toes on the foot. However, as 
far as the medical field is concerned, this sort of resolution has never been achieved and 
is not necessarily needed. The proposed pressure scanner provides enough detail for 
many useful environments, for example, it obtains the peak pressure distributions of the 
bony protuberances under the buttocks.

The practical application of EIT to a pressure measuring environment has accuracy 
advantages over the more usual EIT applications. These are the flowing of currents in 
two-dimensions and accurate placing of the electrodes, however, there will be errors in 
the voltage readings. These will be due to slight inaccuracies in electrode placement, 
finite element modelling errors, noise in the electronics and quantisation error when 
digitising the voltages. Reconstruction in a real-world environment turns the 
optimisation problem into a large residual problem. Regularisation is needed when the 
residuals are not small. The regularisation parameter method that consistently gave good 
results was the Marquardt choice, however, this choice requires many iterations to 
solution. Slightly inferior, but faster reconstructions can be obtained when using the 
dwindling parameter method.

The optimum electrode configuration for practical pressure distributions in the medical 
field has been studied. The best configuration proved to be one with the electrodes 
distributed throughout the mat. The resulting superior conditioning is a consequence of 
the currents being forced into all areas of the mat and the accessibility of the central area 
for voltage measurement. The net effect is successful reconstruction over a wide range 
of pressure distributions and over a wide range of voltage measurement errors. 
Compared to a configuration of electrodes on the edge of the mat, the most impressive
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improvements are those with small pressure profiles in the centre of the mat. 
Regularisation is a form of solution stabilising technique, but does not remove the 
inherent ill-conditioning. The only effective means of combating ill-conditioning is to 
improve the system conditioning and this has been achieved through the use of internal 
electrodes.

8.2. Viability of an EIT Pressure Scanner
This thesis has presented all the theory and solutions for implementing a real-world 
interface pressure scanner. Computer simulations using practical voltage measurement 
errors have shown that reconstructions are possible and that they are fairly accurate. 
More importantly, they are usable by the medical profession for pressure sore analysis 
and could be incorporated into a pressure monitoring device. A single reconstruction 
currently takes between half a second and one minute, depending on the resolution used. 
Constantly improving computing power and further algorithm optimisations, such as 
those listed in the following section, will ensure that a number of reconstructions will be 
possible per second. High resolution analysis will then be possible in real time, rather 
than off-line.

The practical voltage measurement error used throughout has been set to a 
conservatively large figure of 1%. With accurate electrode placement and low noise 
electronic design, it is most likely that measurement errors will be lower; the 
consequence will be superior reconstructions than those shown in this thesis.

No pressure scanner can be implemented without a material that exhibits the proposed 
pressure-resistivity characteristics. Moreover, a material which has low hysteresis, gives 
repeatable and accurate results in a practical environment is required. A carbon fibre 
based mat fulfils these requirements, thereby ensuring the viability of an EIT based 
pressure scanner.

8.3. Future Work Required for an EIT Pressure Scanner
The viability of using EIT techniques in a practical pressure scanner has been 
established. The computer simulations must now be implemented into a successful 
working pressure scanner; everything is in place to achieve this. The reconstruction 
algorithms work well and the important pressure sensitive material has been found. 
Carbon fibre felt is inexpensive to manufacture and the next step would be to obtain
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samples. Prototype electronics to inject currents and measure the resulting voltages must 
be built to interface with a PC. Clinical trials would then fully assess a working system.

Large reconstruction speed optimisations have been presented in this thesis. Previously, 
no results on meshes larger than 25 elements could be obtained as the reconstruction 
was too lengthy. Presently, the solution of the least squares equation dominates the 
reconstruction speed. A faster solution of these equations may be possible through a 
sparse implementation of Hachtel's method. Paulson[50] describes a more promising 
method which reduces the size of the least squares equation, resulting in a faster 
reconstruction. This method is based on the use of optimal current patterns as well as 
optimal voltage measurement patterns. Currently, the starting estimate for a 
reconstruction is the no-load resistivity. Fewer iterations will be possible when the 
previous reconstruction is used as the initial estimate.

Seagar[51] analysed the maximum or best theoretical spatial resolution obtainable with 
edge electrodes only. The best resolution turned out to be zero at the edge and just 50% 
at the centre of the domain. The resolution at the centre is incredibly high and ultimately 
necessitates the use of huge FEM elements in the centre of the mat. Theoretical limits 
could also be studied for an internal electrode configuration. This would define a limit 
for mesh refinement between electrodes, in addition to the limit defined by equation 
(4.2).

Should a silicon glue be used to attach the electrodes to the mat, the contact impedance 
of these point electrodes will be low. However, there are other electrode contact effects 
which have been studied when modelling the contact impedance. Hua[491 developed a 
finite element model for the contact impedance as he used large electrodes. Large 
electrodes used by Gisser[90] achieved a more uniform distribution of current through the 
domain, i.e. they improved the distinguishability. A large electrode differs from a point 
electrode in that it has shunting and edge effects which cannot be modelled by a single 
resistor. The FEM models developed, took account of these effects. A study on large 
electrodes will conclude whether or not they will be necessary for use in an internal 
electrode configuration.

8.4. Pressure Measurement in the Clinical Environment
Pressure sores are for many, an unfortunate consequence of being hospitalised or 
disabled in some form. They generally occur in patients who are in operating theatres for
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the short operating time needed, in the elderly, the physically injured and disabled. Most 
of these pressure sores need not occur if the correct care is given to the patient. 
However, with the increasing demands made on nursing staff, the recommended patient 
turning of at least every two hours, is not strictly adhered to. The consequent pressure 
sore formation is a huge drain on hospital finances. The prevention of pressure sores is 
of utmost importance in the management of patient care and it has been established that 
any device to aid this will be most welcomed by the medical field and the sufferers of 
such sores.

If a good body-support interface pressure monitoring device is cheap enough, it would 
be incorporated into most hospital wards throughout the country, to monitor patients 
who are most at risk of sore formation. Pressure measurement data is also needed for 
research purposes, to aid wheelchair cushion designers and to evaluate specialised beds 
and wheelchairs. Other medical uses for interface pressure measurement include gait 
analysis, denture alignment, orthopaedic footwear design, posture analysis and in the 
control of paraplegic walking. The interface pressure measurement devices that are 
available, do not fulfil medical requirements, mainly in that they are inaccurate, interfere 
with the body-support surface interface pressure characteristics and only measure 
pressure at certain points. The requirement is for a thin, flexible mat to map distributed 
pressure over a region. The proposed EIT measurement system fulfils this criterion and 
the viability of measuring practical pressure distributions has been shown. It will be 
capable of monitoring pressure over time to obtain the important pressure-time 
characteristics needed in aiding pressure sore prevention. Although pressure 
measurement does not completely characterise the body-support interface, its clinical 
usefulness and necessity in assessing potential tissue damage by any support surface, is 
most clearly established.
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Appendix A 

A l. Graph Theory
A few basic graph theory concepts aid in visualising matrix manipulations and describing 
matrix algorithms. Some of the basics required for this thesis are presented here, but 
further analysis for sparse matrices may be found in George[54] and Duff1531.

A l.l. Basic Graph Theory and Terminology
A symmetric matrix can be represented by an undirected graph, also known as a 
graph. A graph consists of a set of nodes and edges between nodes. An example is 
pictured in Figure Al.l(a). For each non-zero entry in the matrix there is an associated 
edge in the graph. For a non-zero entry atj in any symmetric matrix A, there is an 
implied non-zero entry afi and an edge from node i to node j. The edge is represented 
diagrammatically as a line between the relevant nodes. For example, the entry in 
Figure A 1.1(a) has an edge between nodes 2 and 4.

(a)

X  X  
X X Xx x x xx x x x

X X

X  denotes a 
non-zero entry

(b)
X X  X X  
X X X  X  

X X  
X  X  
X X  X

23 1 4

Figure Al.l(a) A symmetric matrix example and its associated graph

(b) Re-ordered matrix and its associated graph

The aim in using sparse matrix theory is to find a matrix ordering to reduce the matrix 
storage and solution times. In graph theory, a re-ordered matrix has the same structure 
as the unordered matrix, but the node numbering is different. This is illustrated in
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Figure Al. 1(b), a re-ordering of the matrix shown in Figure Al. 1(a). So the aim of 
finding a good matrix ordering, corresponds to labelling the associated graph. This is 
what the minimum degree algorithm, for example, does.

The finite element matrix used in this thesis is a full matrix and its associated graph is 
shown in Figure A1.2.

2
XXXX \ / 'x x x x vx x x x / \x x x x 1/  \%

3

Figure A1.2 Finite element matrix and associated graph

In the two examples already given, there are loops in the graphs. A special case can 
occur when there are no closed loops in the graph. This particular case is when the 
graph is a rooted tree and is illustrated in Figure A1.3(a).

The degree number of a node i can be seen as the number of connected edges to i or the 
total number of off-diagonal non-zeros. For example, in Figure A1.3(a), node 1 has 
degree 3 and node 5 has degree 1.

Graphs are good for showing what happens when adding or subtracting matrix rows. 
Referring to the matrix in Figure A1.3(a), row 3 can be altered by subtracting row 2 
from it and similarly column 3 can be altered by subtracting column 2 from it. This 
produces the graph in Figure A1.3(b). Notice how a new edge from node 1 to node 3 
has been produced, corresponding to the new entries a l3 and a3l.
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(a)

(b)

(c)

(d)

XX XX 
XXX 

XX 
X X 
X X

x x x x x
XXX 
XXX 
X X 
X X

x x x x x
XX 
X X 
X X 
X X

X XXX 
X 

X X 
X X 
X X

2

Figure A1.3(a) A tree graph and matrix
(b) Result after row/column subtraction on (a)
(c) First step in the elimination of node 2 from (a)
(d) Completing the elimination of node 2 from (a)

A1.2. Elimination Graphs
Sometimes, for example in the minimum degree algorithm, it is desirable to eliminate a 
node from the graph. The example below shows how node 2 in Figure A1.3(a) can be 
eliminated.

In a row or column subtraction, a multiple of row 2 or column 2 could be subtracted 
from row and column 3. Using the tree graph in Figure A1.3(a); if this multiple is chosen 
so that the subtraction produces a zero value in positions an and a32, then the new 
graph is as pictured in Figure A1.3(c). Using the same technique to remove entries 
and a21, the resulting graph is shown in Figure A1.3(d). Note that the transformation
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from Figure A1.3(a) to (c) to (d), removes all of node 2's edges and creates a new edge 
between node 2's original connecting nodes, i.e. 3 & 1. The removal of this node from 
the graph is termed elimination and the resulting subgraph is called the elimination 
graph. Note that in this case only 2 row and column subtractions were performed to 
eliminate node 3 as there were 2 off-diagonal zeros in row/column 3. If node 1 was to 
be eliminated from Figure A1.3(a), new edges would be created between nodes 2 & 4, 2 
& 5 and 4 & 5.

A2. Matrix Conditioning
The subject of this appendix is matrix conditioning and how matrix eigenvalues are 
related to the conditioning. The effects of matrix conditioning on digital computer 
matrix calculations are examined.

A2.1. Eigenvalues and Matrix Conditioning
An eigenvalue and corresponding eigenvector of an n x n matrix A, satisfy the property 
that the eigenvector multiplied by the matrix yields a vector proportional to itself,

The constant of proportionality, is the eigenvalue and can also be viewed as one of 
the n roots of A's characteristic polynomial. Matrix A will thus have n eigenvalues, of 
which not all may be distinct, since it is possible to have multiple roots, e.g. If A
has fewer than n distinct eigenvalues, the matrix is singular. The rank of a square matrix 
is equal to the number of non-zero eigenvalues. In general, the eigenvalues of a real 
matrix are complex numbers. However, when A is symmetric, all the eigenvalues of A 
are real When all the eigenvalues of a symmetric matrix are strictly positive, the matrix 
is positive-definite.

The condition number is a norm-dependent property and is commonly based on the 
2-norm. When A is a square and symmetric matrix, the 2-norm condition number, k2, is

the ratio between the maximum and minimum eigenvalues,

Au, = A,u, (A2.1)

(A2.2)
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For any general matrix A, the condition number is the ratio between the first and last 
singular values,

K2(A) = f i i  (2.3)

A matrix is said to be ill-conditioned or ill-posed if the condition number is very large.

A2.2. Effects of Matrix Ill-conditioning
Stuart1951 shows that if E is a matrix of small errors, the relative error in A + E (square 
matrices) may be magnified by as much as x*(A) in finding (A + E)"1. Clearly, if the 
condition number is large, then the inverse of a matrix is sensitive to small perturbations 
in it and the calculation of the inverse can be seriously affected by ill-conditioning. 
Stuart[95] puts this in context with the following breakdown.

Suppose a f-digit approximation B to A is available, that is, ||A-B||/||A|| = 10_/. If 
zr(A) = 10*, then the relative error in B_1 is approximately 10p_f. When the elements of 
A-1 are about equal in magnitude, they will be accurate to about t-p digits. This applies 
directly to solving a set of equations Ax = b using finite-precision arithmetic. The 
relative error in x can then be x(A) times the relative error in A and b.

The Sun Sparc 10/51 used to obtain the results in this thesis has a machine precision of 
l.lx lO '16, that is, any double precision number can be stored accurately to just under 
t= 16 digits. Thus any matrix which has conditioning in excess of ~1016 is going to have a 
meaningless inverse when calculated on this computer. Any matrix with conditioning of 
this size and larger is then singular to machine precision.

A3. Transfer Impedance Matrix Calculation
This appendix summarises Hua's1911 method to find the transfer impedance matrix, R for 
any given resistivity distribution so that the optimal currents can be found. The diagonal- 
based currents are used as the basis current patterns.

Diagonal based currents use the same chosen electrode for sinking current. The source 
electrode is changed for each possible combination. For e electrodes, the diagonal basis 
patterns are then ^-dimensioned vectors:
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Cl = [ X f2 ’0’0- 0’~ X l i \

C^ [ 0’X j 2 ’° - ° r X ^  (A3-1)

C < - i = [ 0 ’ 0 ’ 0  ’"'XJ2'~Xe\
Note that all the elements in each basis sum to zero, satisfying KirchofFs law. These 
current patterns, C,,j = 1,2 - 1  are applied and the voltage responses collected from all 
electrodes, Vf,/ = Using the current bases in equation (A3.1) and Ohm's Law,
y = R C , ,  a matrix of all the measured voltages is formed and simplified as

V = [V1,V2, - ,V <_1] = - ^ [ R 1- R e,R 2 - R « ,- ,R _ 1- R e] (A3.2)

where R. is an e-dimensioned column vector in the exe matrix R. R is an indefinite 

matrix and so all the elements in a row sum to a constant. The same voltages arise for 
any given current pattern no matter what this constant is. Zero is chosen for 
simplification,

£ k , = 0  (A3.3)

Summing the elements in each row in equation (A3.2) gives the following vector

Y y i = 7 j ( ( Ri + R 2+" + R< - .H e - 1)R«) (A3.4)

Substituting equation (A3.3) into (A3.4) and re-arranging, the expression for the last 
column in R in terms of measured voltages is

<A3-5>

The first i-e - \  columns of R are easily found by re-arranging equation (A3.2)

R , = V 2V ,+R . (A3.6)
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Each vector of measured voltages, V, uses the grounded node as the voltage reference. 

Note that because of the zero constant chosen in equation (A3.3), each vector of 
measured voltages must be adjusted to a new voltage reference value, by imposing the 
constraint

E V „ = 0  (A3.7)
1=1

A4. Finite Element Method
This part of the appendix derives the element equations using variational principles. The 
FEM assembly process and the element stiffness matrix for the bilinear element is given.

To find the voltages at the various nodes using the mathematical approach, the
governing equation (3.1) is assigned, for convenience, by different variables and is
rewritten as

V-p‘1V0  = O (A4.1)

where (pis the field variable or voltage and p  is the known resistivity of the mat

The description of the field problem is not complete until boundary conditions are 
specified i.e. the governing equation must be solved subject to additional constraints 
imposed on the boundary. The boundary, in this case, is the electrodes. The relevant 
boundary conditions are

(p = (p on dA0 (A4.2)

and

= (A4.3)
dv

where <p and (pv are the voltage and current density at the boundary region; dA0 and 
dAv are the parts of the boundary where (p and d(p/dv are respectively chosen. The 
boundary of the resistive mat or domain A is denoted by dA = dA0 +dAv . The term
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dQ/dv is the gradient of the potential distribution normal to the boundary, v denotes 
the unit outward normal vector on the boundary. Both the voltages and current densities 
are given functions along the boundary.

Equation (A4.2) is known as the Dirichlet[96] or rigid[97] boundary conditions, i.e. 
boundary conditions requiring the potential to take on prescribed values, and equation 
(A4.3) is known as the natural[97] boundary condition. If a variational approach is used to 
construct an approximate solution, the rigid boundary conditions must be satisfied in 
order to obtain a unique solution[97].

A4.1. Variational principles
Equation (A4.1) is Poisson's equation and represents a differential formulation. The 
problem is to integrate this differential equation subject to the boundary conditions given 
in equations (A4.2) and (A4.3). This differential formulation for the continuum problem 
has an equivalent variational formulation. In the classical variational formulation, the 
problem is to find the unknown function that minimises or maximises a functional 
subject to the same given boundary conditions. Before the variational approach can be 
used to derive the finite element equations, a variational statement for the continuum 
problem must be obtained. A functional 7P((p) is sought such that its first variation with 
respect to (j> vanishes. Variational principles yielding functionals for physical processes 
are found through classical variational calculus or by well established theorems in 
physics. The variational formulation for the differential equation and boundary 
conditions in hand, is obtained from Huebner[44] and Tong[97] as follows

where dA-dxdy and ds is a line segment along the boundary of A. The resistivity, p  is 
taken to be isotropic. The variational functional n, is the potential energy.

A4.2. Element Equations
The elements used are rectangular in shape, or more specifically square-shaped and are 
represented by the one in Figure 4.2(a). This element has 4 nodes and the value of (j> at 
the 4 nodes are denoted by </>v (pv (j>z and 04, where the subscripts are the local node
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numbers for the element. The potential is chosen to vary linearly along all 4 sides and 
can be shown[97] to be represented by

0(x’y )= ^ t 0,f(x<y) (A4.5)
f=l

where the function f t is called the interpolation function and has the value 1 at the ith

node and the value 0 at the other three nodes. The interpolation function is an 
approximate solution within the element for the given boundary conditions that 0= $  at

node i and varies linearly along the boundaries.

In the finite element method, the potential energy in equation (A4.4) can be summed 
over each element,

h=l

where m is the total number of elements in the domain, and

(A4.6)

r
\ d x j \ d y j

dA - <j)ds (A4.7)

with Ah equal to the area of the hih element and (dAv)h is the portion of the boundary of 
the h\h element into which the current is injected or extracted.

To obtain the element equations, differentiate equation (A4.5) with respect to x and y 
and substitute the result, as well as equation (A4.5), into equation (A4.7). The element 
equations are thus

A =i't>»TkA -<kTQ, (A4.8)

where
[Q/L = \<t>vfAx’y)ds 

(*»)»
(A4.9)

and k h is called the element stiffness matrix and is defined as
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fc»L=J a ' 1
d f  d f  , d f  d f
d x  d x  dy  d y  _

dA (A4.10)

If each element is regarded as homogeneous, p  is a constant and equation (A4.10) 
becomes

df, d f  | d f  d f  
d x  d x  dy  d y  _

dA (A4.ll)

In equation (A4.9), Q represents the applied currents. Unless the ith node is the position 
of an injected or extracted current, (Q)h is zero, otherwise it is the value of the

injected/extracted current.

A4.3. Assembling the Element Equations
Substituting equation (A4.8) into equation (A4.6) yields

(A4.12)
A=1

With algebraic manipulation, this equation can be written as

(A4.13)

The matrix, K, is the master stiffness matrix of the entire domain and is symmetric and 
positive semi-definite[97]. When the model grows with an increasing number of elements, 
not all nodes are connected to each other, rather only to their adjacent nodes. This leads 
to K being very sparse.

This manipulation procedure is known as the assembling of the element matrices into the 
master matrix. In other words it is forming a larger model, shown in Figure 4.1, from the 
separate elements in Figure 4.2(a). Each element has its own local node numbers, as in 
Figure 4.2(a). In the assembly procedure, each node is given a unique global number, for 
example, those of Figure 4.1. The same value of 0  is used for all the elements at the 
common nodes so that the approximate (j) is continuous over the entire domain. In the 
variational formulation, (/> must be at least continuous because n  will not be
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mathematically defined where (f> is discontinuous1971. Assembling the element stiffness 
matrix into the master stiffness matrix is a standard procedure:

m 4 4

k = £ [ k ] * = X X X M ,
h=  1 i'=l ; =  1

(A4.14)
h = l

where m is the total number of bilinear elements. The element stiffness matrix, [KL has 
elements These matrix elements are those in equation (A4.ll) where I  & J art
respectively the global node numbers of the local node numbers i & j.

When the element stiffness equation (A4.ll) is assembled for a bilinear element, the 
element stiffness matrix is

" 4 - 1  2 - 1
1 4 - 1 2

6ph sym 4 -1
4

K  = (A4.15)

The solution of 0is obtained from the variational principle by applying[44]

(A4.16)

to equation A(4.13) to give

K<() = Q (A4.17)

This is the same as equation (4.1) in Section 4 of the thesis.
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1) WS Fulton and RT Lipczynski. Electrical Impedance Tomography Applied to Body- 

Support Interface Pressure Measurement. Abstract from presentation to Biological 
Engineering Society 33rd Annual Scientific Meeting, University of Bath, 13-15 
September 1993.

2) WS Fulton and RT Lipczynski. Body-Support Pressure Measurement Using 
Electrical Impedance Tomography. Proceedings of the Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, 
USA, 28-31 October 1993, Volume 15 pages 98-99.

3) WS Fulton and RT Lipczynski Optimising the time to solution in electrical 
impedance tomography. IEE Proceedings - Science, Measurement and Technology, 
Volume 142, Number 6 , November 1995, pages 433-441.
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Electrical Impedance Tomography Applied to 
Body-Support Interface Pressure Measurement

W S Fulton & R T Lipczynski 
School of Electrical Engineering 

University of Bath

Abstract

The research focuses on the implementation of a body-support interface pressure 
measurement system. The intended applications for interface pressure 
measurement are in the medical field to study the pressure distribution of seated 
wheelchair patients or bed-ridden patients. In certain circumstances, these 
patients will be prone to pressure sore development. The pressure measurement 
data that will be produced will enable medical physicians to study the pressure 
distributions that lead to pressure sores. The data will also enable the assessment 
of the different prophylactic devices that alleviate and spread pressure, as a 
comprehensive evaluation of these has not yet been undertaken. A system could 
also be placed in each hospital ward to estimate the probability of pressure sore 
formation in admitted patients.

This proposed pressure measurement system is unique in that it measures 
pressure over a continuum. Current pressure measurement systems are limited in 
that they only give pressure readings at certain points. The proposed system 
needs a Vi mm thin piezo-resistive mat placed between the body and supporting 
medium. The mat exhibits a change in resistivity at points at which a load is 
applied. Electrical Impedance Tomography (EIT) is a medical imaging technique 
that can be applied to measure the resistivity distribution. The conventional 
applications for Electrical Impedance Tomography are in imaging body organs, 
bones and tissues and access to the centre of the resistivity distribution is 
prohibitive. This access enables the large effect that data measurement errors 
have on image accuracy to be overcome. The largest errors introduced by three- 
dimensional current flow are removed and those introduced by variable electrode 
positioning are reduced. Reconstruction results showing these improvements will 
be shown.



BO DY-SUPPO RT PRESSURE M EASUREM ENT USING ELECTRICAL  
IM PEDANCE TOMOGRAPHY
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Claverton Down, Bath, BA2 7AY, U.K.

ABSTRACT
This paper presents a computer simulation of a system to 
measure the interface pressure distribution between a patient 
and support surface. This is required for the analysis and 
study of pressure distributions of seated wheelchair or 
bed-ridden patients who are prone to pressure sore 
development. The proposed system uses Electrical 
Impedance Tomography techniques to obtain the
conductivity distribution of a pressure sensitive resistive mat 
placed between the patient and support surface. Good results 
are obtained when utilising access to the centre of the mat 
for data measurement.

INTRODUCTION
Pressure sores are an unpleasant infliction, yet they are 
commonplace in most hospitals and nursing homes. In the 
U.S.A. the medical costs associated with pressure sores were 
estimated to be US$2 billionfl]. The only means of reducing 
the incidence of pressure sores is by the prevention of them. 
Improved methods of treatment would at the most only have 
a marginal effect[2]. Regular patient turning is the ideal 
solution to the prevention of pressure sore formation, but 
many underfunded and understaffed wards simply do not 
have the facilities to devote time to this task. Exton-Smith[2] 
concludes that it is now unrealistic to expect nurses to 
practise regular two-hourly turning, except in rare instances, 
and scarce nursing skills should now be deployed for the 
recognition of high-risk patients who require the use of 
specialised equipment to take over these tasks.

There are many different prophylactic devices that alleviate 
and spread pressure, but a comprehensive evaluation of these 
is yet to be undertaken. Barbenel[3] explains that the 
information obtained by measuring pressure does not 
completely characterise the body-support interface, but, even 
with this limitation, pressure measurements have a most 
clearly established clinical usefulness and that both pressure 
and time for which it acts, are important variables in 
assessing the potential for tissue damage by any supporting 
surface. Other requirements for pressure distribution data is 
in the design of wheelchair cushions and in the analysis of

gait. Presendy available clinical pressure measurement 
equipment can only produce point readings, whose 
information content is somewhat limited and whose sensors 
interfere with the true pressure distribution. The proposed 
system enables a pressure distribution over an entire area to 
be realised.

PRESSURE MEASUREMENT METHOD
The measurement system requires a flexible pressure sensing 
mat placed between the body and supporting surface. The 
mat must have known transverse resistivity characteristics 
under an applied normal load. Piezo-resistive materials 
satisfy these requirements and are fabricated from either 
carbon fibres or carbon loaded elastomers. Data is collected 
from the mat via simple electronics and then passed on to a 
personal computer for processing. The electronics is required 
to inject currents through point electrodes connected to the 
mat and to measure the resulting voltages at other electrodes. 
Thus, by reconstructing the two-dimensional resistivity 
distribution, a profile of the applied pressure is obtained.

Figure 1. The FEM mesh of the test distribution

The resistivity distribution is discretised by the Finite 
Element Method (FEM), as shown in Figure 1. Electrical 
Impedance Tomography (EIT) is an imaging technique 
which is then used to reconstruct the resistivity profile. TTie 
problem of resistivity reconstruction is non-linear and 
different EIT reconstruction methods have been 
developed[4]. Our chosen method is that which uses a 
Gauss-Newton reconstruction, first developed for EIT



imaging by Yorkey[5]. The Gauss-Newton algorithm has 
been programmed to reconstruct the resistivity/pressure 
profile from simulated voltage readings obtained from the 
FEM. To simulate practical measurement errors, the true 
voltage signals were contaminated with random noise. Two 
electrode configurations have been used. The first utilises 32 
electrodes connected to the edge of the mat. The second uses 
the same number of electrodes, 28 connected to the edge and 
4 connected to the central area of the mat. Four different 
current patterns inject current between two diagonally 
opposite electrodes. In the second electrode configuration, 
one central electrode replaces an edge electrode.

RESULTS
A range of resistivity distributions were reconstructed, one of 
which is shown in Figure 1. The algorithm converges to the 
true solution with no simulated voltage error. With an added 
error of 0.03% of the average voltage, the reconstruction 
errors for the two different electrode configurations are 
shown in Figures 2 and 3. Similar results were obtained for a 
range of added error levels. In the practical environment, the 
pressure would be in the central area. Various other profiles 
of central pressure perturbations produced similar results.

50.0%  5

40 .0% . 

30 .0%  |  

2 0 . 0 % ^  

10 . 0 % 2  
0 .0% 2

Figure 2. Reconstruction errors using the edge electrode 
configuration

50.0%  5

40.0%

30.0%  2

2 0 . 0 %

10.0%  S
0.0% o

Figure 3. Reconstruction errors using the internal
electrode configuration

DISCUSSION
The benefit of moving just four of the current injection and 
voltage measurement nodes towards the centre of the mat is 
quite clear. The limited spatial resolution in the central 
region[6] leads to the high error in these elements when 
using edge electrodes only. The Hessian matrix 
approximation in the Gauss-Newton algorithm is ill- 
conditioned. This causes a low tolerance to measurement 
error and matrix inversion to be inaccurate. The Hessian 
matrix 1-norm condition number for the profiles shown is 
7xl08 when utilising the edge configuration and 9xl06 for 
the internal configuration. The use of internal electrodes for 
current injection and voltage measurement improves the 
matrix conditioning and consequently the tolerance to error 
in the voltage readings. The Gauss-Newton method is still 
susceptible to errors, but can be improved further through 
the use of regularisation[4]. The source of errors would be 
due to electrode positioning, inaccuracies in the finite 
element model and those in the electrical system. The errors 
are, however, expected to be low for a fine FEM mesh and 
accurately placed electrodes.

In a practical environment, the pressure profiles are expected 
to be with the load in the central area. Under these 
conditions, we have shown that by placing electrodes in the 
central area, the matrix conditioning improved, leading to 
good reconstruction results.
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Optimising the time to solution in electrical 
impedance tomography

W.S. Fulton 
R.T.Lipczynski

Indexing terms: Electrical impedence tomography, Sparse matrix methods, Nested dissection

Abstract: Electrical impedance tomography (EIT) 
is an inverse imaging technique used to 
reconstruct resistive distributions. Some EIT 
inverse methods, such as the Gauss-Newton 
method, use the finite element method in the 
forward problem to solve for the Jacobian matrix. 
The paper details methods to improve the 
solution time in the forward problem and 
accurate Jacobian calculation. The first 
suggestion is to keep the same node grounded for 
all projection angles by floating the current 
source. Details o f an optimised Jacobian 
formation are also presented including full 
exploitation by sparse vector methods. The 
application o f EIT to interface pressure 
distribution measurements makes use o f a 
pressure sensitive resistive mat that can be cut to 
any shape or size. This flexibility can be taken 
advantage o f and a square or rectangular domain 
comprising square bilinear elements is chosen. 
The sparse matrix nested dissection node 
renumbering algorithm then gives further speed 
advantages and also enables best optimisation 
with sparse vector techniques.

1 Introduction

Electrical impedance tomography is a technique which 
is able to construct an image o f the distribution o f elec
trical impedance, within an electrically conducting 
object, from a knowledge o f the voltage and current 
conditions at various points on the object. Electrical 
impedance tomography has applications in a number 
o f fields. Typical geophysics applications are for 
obtaining core sample data, geophysical probing for 
detection o f  minerals at the earth’s surface and in bore
hole scanning. Process tomography uses EIT to image 
conducting fluids within vats or flowing within pipes 
[1]. In the medical field, body organs, bones and other 
tissues have different impedances enabling EIT to 
image them [2]. A fourth application o f EIT is in the 
measurement o f interface pressure. Interface pressure 
measurement has many applications, e.g. monitoring 
and studying pressure sore development in wheelchair-

© IEE, 1995
IEE Proceedings online no. 19952083 
Paper received 30th November 1994
The authors are with the School of Electronic and Electrical Engineering, 
University of Bath, Claverton Down, Bath BA2 7AY, UK

bound or bed-ridden patients. In pressure measurement 
a thin, flexible pressure-sensitive mat exhibiting known 
pressure-resistivity characteristics is used [3,4], The 
pressure distribution is simply mapped from the mat 
resistivity that the EIT technique reconstructs.

The reconstruction o f the domain’s resistivity distri
bution is broken into a forward and an inverse prob
lem. The forward problem involves finding voltage 
distributions given the resistivity distribution and cer
tain boundary conditions. The inverse problem solves 
for the resisitive distribution given measured voltages 
and current density distributions. To solve the inverse 
problem (the defined problem), a numerical solution is 
employed, using iterative solutions o f the forward 
problem. The Gauss-Newton or modified Newton- 
Raphson method [5] is chosen for the inverse solution, 
primarily for its accurate reconstructions when the sys
tem errors, i.e. electrode placement errors, finite ele
ment method modelling errors, electronic noise etc. are 
low. Interface pressure measurement, a primary target 
of this paper, has lower system errors than most EIT 
applications as the electrodes can be accurately placed 
and the currents are not three dimensional. Errors in a 
pressure EIT application also have less negative effect 
on the Gauss-Newton reconstruction as electrodes may 
be utilised throughout the domain [6].

The EIT problem is ill-conditioned. This leads to 
small errors in the Jacobian destabilising the Gauss- 
Newton method. Regularisation [7] o f the Gauss-New
ton method is used to offset these noise induced insta
bilities, thereby reducing the reconstruction error. The 
iterative regularised Gauss-Newton method is defined 
by a resistivity vector p* updated at any iteration k

pk+i _  pk + ^ pk ^

V  =  -  [[f']Tf' +  AS]-1  [f']T[f -  V„] (2)
where f  is a function mapping the m-dimensioned resis
tivity distribution vector into an n-dimensioned voltage 
vector. The voltage observation vector, \ 0 is obtained 
from voltage measurements at electrodes connected to 
the pressure mat or domain. The matrix, f ' is called the 
Jacobian matrix, S is the regularisation matrix and X is 
a parameter dictating the amount o f regularisation 
used. When X is zero, no regularisation is introduced 
and eqn. 2 then defines the plain Gauss-Newton 
method. The finite element method (FEM) solves the 
forward problem. The solution o f the finite element 
equations and the solution o f the Jacobian matrix are 
closely related. The efficient solution o f these equations 
is desirable as this has a dramatic decrease on the time 
to solution of the iterative Gauss-Newton method, 
making real-time pressure scanning more feasible.
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2 Solving th e  finite elem ent equations

This Section explains the sparse solution of the finite 
element equations as a six stage process.

The finite element equations are solved for each pro
jection angle

Y v  =  c  (3)
where Y is the r x r symmetric master stiffness matrix 
evaluated at p* and v and c are r-dimensioned vectors, 
which hold the nodal voltages and currents, respec
tively, for any one projection angle. The finite element 
mesh contains r nodes and the finite element equation 
solves the nodal voltages for all r nodes. The vector f is 
obtained by extracting just the electrode voltages for 
each projection angle. The well-known Cholesky 
method is the standard approach for solving the nodal 
voltages in eqn. 3. The Cholesky decomposition fac
tors Y into the form LLT, where L is lower triangular, 
eqn. 3 becomes

LLt v =  c (4)
The following triangular systems are then solved by 
forward and backward substitution

L x =  c (5)

Lt v =  x  (6)
The master stiffness matrix, Y is also called the coeffi
cient matrix and is a symmetric positive definite matrix. 
It is also sparse and consequently eqns. 4-6 are suitable 
for sparse matrix solution. Good overviews o f sparse 
matrix techniques have been given by Duff et al. [8] 
and George and Liu [9]. The Y matrix structure results 
from the node numbering in the FEM mesh. The Y 
matrix structure resulting from a natural (row by row) 
ordering on a 20x20 or 400 element grid is shown in 
Fig. 2. In this and other similar diagrams, nonzeros are 
represented by black squares. The white space indicates 
where the zero elements lie in the matrix. The matrix 
structure is evident from the positioning and the 
number of these nonzeros. Fig. 3 shows the factored 
matrix, L, which has added nonzero entries (fill-in) 
where there were zero entries in the original Y matrix 
and so it has a slightly modified structure from Y. In 
this particular example, fill-in of the entire area 
between the diagonal and the Y matrix nonzeros has 
occurred. This need not always happen and judicious 
choice o f the mesh node numbering can reduce the per
centage fill-in. A reduction in fill-in is desirable as it 
leads to fewer floating point operations when using 
sparse techniques to solve the equations.

The sparse solution o f the finite element equations is 
broken into the six steps shown in Fig. 1. Note that for 
each repeated solution o f the right hand side vector, 
neither the master stiffness matrix assembly nor factor
isation is repeated in any one Gauss-Newton iteration 
as the structure o f the master stiffness matrix is the 
same for the same finite element mesh. The first three 
steps are performed only once for any number o f itera
tions. The six steps are briefly considered individually.

2.1 Pseudo-assembly
The finite element assembly procedure produces the rxr 
master stiffness matrix structure which must be known 
for some of the node renumbering algorithms to be 
employed. The finite element assembly procedure is 
used solely to find the positions o f the offdiagonal 
nonzero entries in the master stiffness matrix. This 
pseudo-assembly produces a one-dimensional array

new master stiffness matrix assembled
at each G-N iteration

new right-hand side 
vector solution

solution

factorisation

matrix assembly

pseudo-assembly

node renumbering

data storage structure set-up

Fig.1 Steps to solution of sparse finite element equations in the Gauss- 
Newton method

which has r segments, each corresponding to a column 
in Y. Each segment stores a list o f the row numbers at 
which there is a nonzero in the Y matrix. A pointer 
array which points to the first nonzero element o f each 
column in the one-dimensional array is also needed. 
Various matrix entries are referenced more than once 
during the assembly procedure, so the pseudo-assembly 
implements a search ensuring that entries are not dupli
cated. The resulting one-dimensional array is needed 
for the node renumbering schemes used.

2.2 Node renumbering
Numerous node numbering schemes exist and the 
choice o f a suitable numbering scheme is an essential 
part o f the sparse matrix technique as it determines the 
numerical operations count. This, in turn, determines 
the time taken for the factorisation stage and also 
affects the sparse vector operations count in the for
ward and backward substitution stages. Renumbering 
nodes from the original ordering is equivalent to inter
changing rows and columns o f Y through the use o f a 
permutation matrix, P. The permutation matrix is sim
ply the identity matrix with permutated rows and col
umns. eqn. 3 strictly needs rewriting as

(P Y P t )P v =  P c  (7)

and the Cholesky decomposition is applied to these re
ordered equations. For simplification, P is not used in 
this paper and Y, v and c refer to the re-ordered 
matrix/vector. The node numbering schemes are con
sidered in detail in Section 4.

2.3 Data storage structure set-up
Once the matrix re-ordering is chosen, the sparse data 
storage structures must be set up for storage o f the re
ordered coefficient matrix and the factored matrix, L. 
The storage scheme is linked to the type o f sparse fac
torisation and solution method used as follows.

(1) Envelope methods produce a band structure with 
predictable fill-in which facilitates the use o f simple 
data structures for matrix storage. The variable band 
structure consists o f rows o f different lengths within the
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band, as shown in Figs. 2 and 3. The area within the 
band is also known as the envelope. The data storage 
structure used is the envelope storage scheme [9] and 
stores all the elements within the envelope.

Fig. 2 Y matrix structure for 400 element grid with natural ordering 
3721 nonzeros. 1 .9% snarsitv

matrix

Fig-3 L/LT matrix structure for 400 element grid with natural ordering 
18 921 nonzeros, 15 200 (7.8%) fill-in

(2) The more general minimum degree and nested 
dissection sparse matrix orderings, which will be con
sidered, produce a more scattered distribution of 
nonzero elements (Figs. 4-9). A more complicated data 
storage structure is needed to access these elements. 
The solvers used require a data storage structure espe
cially adapted to symmetric sparse factorisation and 
solution. The compressed sparse scheme [9] uses a one
dimensional array to store the coefficient and factored 
matrices, along with the necessary pointer and element 
positioning vectors. These more general sparse matrix 
orderings do not give the same factored matrix fill-in 
predictability that is associated with envelope struc
tures. To find the positions of the fill-ins, a process 
known as symbolic factorisation [9] must be performed 
to find the zero/nonzero structure of the factored
IEE Proc.-Sci. Mens Technol., Vol. 142. No. 6. November 1995

matrix. The compressed sparse data storage scheme is 
set up during the symbolic factorisation stage.

v»

• *•,

£

Fig.4 Y matrix structure for 400 element grid with minimum degree
ordering
3721 nonzeros, 1.9% sparsity

Fig.5 L'Lt  matrix structure for the 400 element grid with minimum 
degree ordering
14075 nonzeros, 10354 (5.3%) fill-in

2.4 Matrix assem bly
The coefficient matrix is formed from the FEM assem
bly process. Only the lower triangle of Y is stored in 
the appropriate one-dimensional data arrays, so only 
the elements in the lower triangle must be assembled, 
as follows:

m  4 » m  4 i

^  = ^2 ^2 = ^2 ̂ 2
h=l i= l j= 1 h= 1 t= l j= 1

(8)
where m  is the total number of bilinear elements in the 
mesh, k,y is an element in the FEM element stiffness 
matrix, and I  and J  are the global node numbers for 
element h s  local node numbers / and j ,  respectively.

Standard FEM techniques require the boundary con
ditions to be implemented after Y has been assembled. 
The vector c in eqn. 3 contains the natural boundary 
conditions, that is, the currents applied to the mat. This
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F,!9 6  Y matrix structure for 400 element grid using irregular nested
dissection ordering
3721 nonzeros, 1.9% sparsity

«J *

4. •

Fig. 7 L/Lt  matrix structure for 400 element grid using irregular nested
dissection ordering
13461 nonzeros, 9740 (5.0%) fill-in

vector thus holds the current in amperes at row num
bers which correspond to the electrodes and the rest of 
the vector contains zero elements. Y is nonsingular, so 
a reference node is supplied by grounding a node k. 
This is the equivalent of implementing rigid boundary 
conditions, v k  -  0 into eqn. 3.

2.5 Factorisation
After the boundary conditions have been implemented, 
Y is a positive definite symmetric matrix, which is a 
necessary condition for the Cholesky factorisation. 
Matrix Y is factored into the form LLT using the 
Cholesky factorisation algorithm. Efficient implementa
tion of the numerical factorisation algorithm is depend
ent on the storage scheme used. Appropriate library 
routines [9] optimise the numerical factorisations 
according to the data storage structure scheme used.

2.6 Solution
Eqn. 3 is solved once for each projection angle. The 
different v vectors are each solved separately through

<  <

it
Fig. 8 Y matrix structure for 400 element grid using regular nested dis-8 Y matrix structure
section ordering
3721 nonzeros, 1.9% sparsity

-■\V

€ <

ft
Fig-9  IVLT matrix structure for 400 element grid using regular nested
dissection ordering
12735 nonzeros, 9014 (4.6%) fill-in

the forward and backward substitutions of eqns. 5 and 
6. Section 5 shows that c is sparse in some situations 
and the sparse vector methods examined in this Section 
enable further computational savings to be made dur
ing the solution stage.

3 Solving for the Jacobian matrix

This Section suggests projection angles which allow the 
Jacobian to be calculated once per Gauss-Newton iter
ation. An optimised solution of the Jacobian matrix 
that eliminates redundant calculations is also presented. 
The Jacobian is an n p  x m  partitioned matrix, the 
structure of which is shown in Fig. 10. The number of 
elements in the finite element mesh is denoted by m  
and the number of projection angles used is denoted by 
p .  Each partition corresponds to a projection angle. 
The Jacobian matrix is comprised of m p  n-dimensioned 
vectors, f'y as shown in Fig. 10.

Woo [10] has derived a method to solve for the Jaco-
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bian matrix through the use o f an rp x m partitioned 
matrix Q  by differentiating the finite element equation 
eqn. 3 for each projection angle. Matrix Q has the 
same structure as the Jacobian, but is comprised o f mp 
/■-dimensioned vectors, q,y calculated by forward and 
backward substitution using

v  d Y
Yq« = ~dp'iVi (9)

where v,- is the v column vector for the ith projection 
angle. Only n elements in the r-dimensioned q;y vector 
are required and so the redundant elements are 
removed to form the relevant f '(y vector in the Jacobian 
shown in Fig. 10.

np

Fig. 10 Jacobian matrix structure showing one f  y vector and p 
partitions

A more efficient method to obtain the Jacobian is to 
form the F,y vector directly, thereby avoiding the calcu
lation o f  the unwanted elements in q,y. In eqn. 9, only n 
rows out o f the r calculated are needed. Substantial 
savings are possible as n « r when using grids with large 
numbers o f  elements. Eqn. 9 is modified to calculate 
f  ,y directly

t'ij =  —G g —Vj1 dpj
(10)

where G is an n x r matrix and contains just the 
required n rows o f Y'1 to form f  ,y. As Y*1 is a symmet
ric matrix, G can be formed from either the columns or 
the rows o f  Y‘l. Columns can be obtained very effi
ciently through forward and backward substitution o f 
the equation YY'1 = I, where I is the r x r identity 
matrix (see Section 5). Only the required columns in Y'1 
to form G are solved for.

The factored matrix o f  Y is obtained during the finite 
element equation calculation and so is re-used here for 
the solution o f G for all projection angles. Re-use for 
all projections is only possible if the grounded or refer
ence node is kept in the same position for each projec
tion, i.e. the rigid boundary conditions are kept 
constant. Two types o f commonly applied projections 
are optimal current patterns [11] and point current 
injection. Optimal current patterns usually keep the ref
erence node fixed and apply current to all other elec
trodes. In point current injection, each projection angle

involves the current source being attached to two dif
ferent electrodes. EIT researchers use one o f these elec
trodes as the grounded node. Alternatively, if the 
grounded node is left in the same place for each projec
tion angle for voltage measurement, a floating current 
source can be attached to two other nodes. In this way 
all the current injected by one node can be extracted by 
the second and Y'1 remains the same for each projec
tion angle. More unique information is obtained for 
greater numbers o f projection angles. Keeping one 
node grounded for all projection angles decreases the 
amount o f unique information gained per additional 
projection angle. If maximum unique information is 
required, then p -e  projections must be used, where e is 
the total number of electrodes. The accuracy in the 
reconstruction is dependent on the amount o f unique 
information in the Jacobian, but often e/2 or fewer pro
jections are used. It was found that this reduction in 
unique information had a minimal effect on the quality 
of the reconstruction as regularisation is used. Usually 
with point current injection, the rows in G that relate 
to the two current carrying electrodes are not used. 
Then n - e - 2  electrode rows are used so that the volt
age drop, due to the electrode impedance on the two 
current carrying electrodes, does not introduce any 
measurement error.

Yorkey et al. [5] noted that the derivative, dY/dpj is 
sparse which allows for further computational savings 
to be made by only performing the nonzero multiplica
tions when multiplying by v,- in eqns. 9 and 10. The 
bilinear interpolation function used produces an ele
ment stiffness matrix which has 16 elements and thus'* 
only contributes 16 nonzero elements to both the glo
bal impedance matrix and its derivative. This is the 
case no matter how large the dimensions o f either Y or 
dY/dpj.

4 Sparse  m atrix re-orderings

The sparse matrix technique, in effect, finds the permu
tation matrix in eqn. 7. Use o f the permutation matrix 
corresponds to relabelling o f the node numbers in the 
finite element mesh and gives rise to the matrix struc
ture. An optimal matrix structure is sought as this will 
reduce the number o f fill-ins and subsequent operation 
counts during the factorisation and solution stages. 
Two commonly used approaches to node renumbering 
are the envelope orderings and the minimum degree 
ordering. These are briefly examined along with a more 
detailed explanation of another approach using nested 
dissection.

4.1 Envelope orderings
Matrices can be ordered so that all the nonzeros lie 
within an envelope around the main diagonal. During 
factorisation, fill-in occurs within this envelope and so 
envelope algorithms operate entirely within this area, 
ignoring all the zeros outside it. The natural or row-by- 
row ordering o f the mesh produces the narrow band 
structure o f Figs. 2 and 3 for the square 400 element 
grid. Algorithms that automatically order matrices into 
a band structure exist and the best o f  these is known as 
the Gibbs-Poole-Stockmeyer algorithm. This algo
rithm attempts to reduce the size o f the envelope, but 
fails to decrease the size that the natural ordering pro
duces.
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4.2 The minimum degree ordering 
The minimum degree algorithm is also known as the 
Tinney scheme 2 ordering and was first published by 
Tinney and Walker [12] in 1967. Since then, the algo
rithm has been improved slightly and more efficiently 
implemented [13]. The algorithm is specially tailored 
for a wide range o f symmetric matrices and is a popu
lar ordering for many sparse matrix problems.

The minimum degree algorithm attempts to re-order 
the matrix for minimum fill-in during the factorisation 
stage o f the Cholesky decomposition. However, it does 
not always produce an ordering that gives the mini
mum amount o f fill-in [8]. A symmetric matrix can be 
represented by an undirected graph in graph theory. It 
can be verified [8] that when the graph has no loops (a 
tree graph), the minimum degree ordering introduces 
zero fill-in. The graph for the bilinear element used is 
shown in Fig. 11. Zero fill-in is not possible as this 
graph structure has loops and the minimum degree 
algorithm cannot guarantee an ordering that will pro
duce minimum fill-in. Woo [10] recommended using the 
minimum degree ordering but this was on a circular 
EIT domain comprised of triangular elements. Its per
formance needs analysing on a square domain with 
square bilinear elements. The resulting renumbered 400 
element mesh produces the coefficient and factored 
matrices shown in Figs. 4 and 5.

Fig. 11 Undirected graph of single bilinear finite element

The minimum degree algorithm used has no tie- 
breaking strategy, that is, when two or more nodes 
have equal minimum degree, no strategy is used to 
choose one for numbering next. The choice of node is 
then entirely dependent on the initial ordering. Differ
ent tie-breaking strategies induce different orderings 
and so the amount o f fill-in and the success of the min
imum degree algorithm depends on the tie-breaking 
strategy used. George and Liu [13] found that a natural 
initial ordering on a square grid was best for minimum 
fill-in and so this is the one used.

4.3 Nested dissection orderings 
Nested dissection is an ordering algorithm which can 
be adapted to meshes comprised o f both regular and 
irregular shaped finite elements. The regular square 
finite element mesh is the relevant case, but an irregular 
algorithm may also be applied to a regular problem. 
DufF et al. [14] published a nested dissection algorithm 
especially tailored for regular square finite element 
grids.

The nested dissection ordering algorithm is based on 
dividing up the finite element mesh piece by piece. The 
mesh is separated into four subsets by a cross-shaped 
group o f dividing nodes. The process is repeated on the

remaining nodes in each subset until each subset can 
no longer be subdivided. The dividing group of nodes, 
or dissection sets, in each subset are numbered last. 
The resulting four dissection sets for a 10x10 or 100 
element grid are shown in Fig. 12, with a few sets 
shaded for clarification. The nested dissection algo
rithm numbers the nodes in set 1 first, followed by 
those in sets 2,3... etc. Methods for numbering the 
nodes within each dissecting set can be optimised and 
have been studied by Duff et al. [14]. He found the 
minimum degree ordering to be best. This node num
bering applied to the 100 element mesh using the dis
secting sets o f Fig. 12 is shown in Fig. 13. The resulting 
nonzero matrix structure for the 400 element mesh is 
shown in Figs. 8 and 9.
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produced by automatic algorithm; A few groups within the dissection sets 
are shaded to identify them

George and Liu [15] developed an automatic general 
purpose nested dissection ordering algorithm which can 
also be applied to irregular finite element problems. 
The authors claim that it gives an efficient ordering for 
regular square finite element grids. The ordering pro
duced for the 100 element mesh case is shown in 
Fig. 14. Comparisons with the regular mesh ordering
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of Fig. 13 show that the dissecting sets are not quite 
the same. The consequences of these differences is 
examined in Section 6. The resulting matrix structures 
for the 400 element grid are shown in Figs. 6 and 7.

5 S p a rse  vector m ethods

The incentive for using sparse vector methods [16] is to 
improve on the sparse matrix method by further reduc
ing the number o f unnecessary floating point opera
tions. This can be achieved in two instances: when the 
right hand side vector is sparse and/or only a subset of 
the solution vector needs to be known. In the first 
instance, forward substitution can be optimised by 
using a subset o f the columns o f the factored matrix, L 
and is known as fast forward (FF). Similarly in the sec
ond instance, a subset o f the rows of LT speeds up 
backward substitution and is known as fast back (FB). 
The ordered list o f columns in L for FF, or rows in LT 
for FB, which are absolutely necessary for solution, 
define what is known as the sparse vector path. The 
path length in FF and FB is the number of these neces
sary columns in the ordered list.

The paths for FF and FB are usually different and 
are, respectively, functions o f the sparsity structure in 
the right-hand side and solution vectors. The paths are 
also functions o f the sparsity structure in L, which, in 
turn, is a function o f the Y matrix ordering strategy 
used. The time spent in the forward and backward sub
stitution stages is small in comparison to the factorisa
tion stage. Sparse vector methods are thus only worth 
using when many solutions using the same coefficient 
matrix are needed. Both the finite element voltage and 
Jacobian solution use the same coefficient matrices 
many times over and the following subsections examine 
whether FF and FB should be used.

5.7 Finite element voltage solution 
Vector c can only contain nonzeros in positions that 
correspond to the electrode numbers used by the cur
rent source. In single current injection, current is 
injected into one electrode and extracted from another 
and so c has just two nonzeros. This is a prime candi
date for using FF as c is highly sparse. When optimal 
currents are used, each and every electrode has an 
injected current. In this case, c is not particularly 
sparse. Additionally, the electrodes are not topologi
cally clustered. Sparse vector methods (FF) are not 
considered in this case as these conditions [16] are not 
ideal for using them. The Jacobian matrix calculation 
needs all voltages on all nodes for the Jacobian matrix 
calculation so full backward substitution is necessary.

5.2 Jacobian matrix solution
Section 3 details an optimised method to solve for the 
Jacobian matrix. This method needs a total o f e col
umns in Y'1 and all the elements o f each column. The 
equation Y Y 1 = I is solved to obtain the rows in G. 
Each column vector in I is sparse with just one 
nonzero. Such a sparse vector is called a singleton by 
Tinney et al. [16] and is the best condition for solution 
optimisation by FF. As all elements in the solution vec
tor are required, full backward substitution is neces
sary.

6 R esults and  analysis

This Section analyses the sparse matrix node number
ing and sparse vector method combinations for mini

mising the solution time. A method must be chosen 
that is optimal for both the voltage solution and the 
inverse matrix solution used in the formation of the 
Jacobian. A second analysis is on the computational 
savings o f the improved Jacobian matrix calculation.

6.1 Sparse solution results 
The algorithms were programmed in Fortran 77, many 
of which were available as efficiently coded library rou
tines [9]. The number of operations, i.e. the number of 
multiplications and divisions, are used to examine the 
algorithms’ efficiencies. These are then tested on a 
superscalar computer, a Sun 10/41. The time spent in 
the factorisation and solution stages dominates the 
time spent in all six stages. The time spent in the 
remaining stages is negligible and thus is not shown.

Table 1 compares the number o f operations executed 
during Cholesky factorisation. It shows that the nested 
dissection algorithms have superior operation counts 
and the algorithm specially tailored for the regular 
mesh (RND) is better than the general irregular algo
rithm (IND). The IND algorithm still outperforms the 
minimum degree (MD) algorithm on larger meshes. 
Operation count improvements are larger on larger 
meshes. The amount o f fill-in has a direct effect on the 
operation count. This is apparent in the percentage fill- 
in shown with the matrix structures o f Figs. 2-9.

Table 1: Operation count for Cholesky factorisation

m 25 64 100 256 400
Nat 990 4 496 9 580 50 336 113 560
MD 802 3 550 7 574 43 781 85 041
IND 936 4 232 8 546 35 929 71 667
RND 808 3 460 7 005 32 282 64 987
Nat natural or row by row ordering 
MD minimum degree ordering
IND ordering from the irregular/automatic nested dissection 
algorithm
RND regular mesh nested dissection ordering
number of bilinear elements in the square mesh is denoted by
m

The solution stage produces similar results. The full 
backward substitution and full forward substitution/ 
singleton FF counts can be seen in Table 2. The opera
tion count reduction by FF is largely due to a reduced 
path length. The average singleton FF path length for 
calculating all columns in Y*1 is shown in Table 3 
along with the full forward substitution path length for 
comparison. The natural ordering is not particularly 
suited to FF as once the first right hand side nonzero is 
encountered, the path is full from then on. The more 
scattered nonzero distributions in the minimum degree 
and nested dissection ordered matrices lead to path 
lengths which are much shorter than those o f the full 
path. These orderings are more suitable for sparse vec
tor methods. The nested dissection algorithms have 
shorter path lengths than the minimum degree algo
rithm and are thus particularly suited to FF.

The RND ordering produces the lowest operation 
count for both FF and full forward substitution. This 
is reflected in timing comparisons for one Gauss- 
Newton iteration. An example comparing the two 
larger grid sizes is shown in Table 4. The times shown 
use the full forward substitution for the voltage calcu
lation, as would be the case with optimal currents. The 
three smaller meshes showed similar timing trends, but
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Table 2: Average operation counts com paring full forw ard substitution 
and  singleton FF

m

25

Full FF

64

Full FF

100

Full FF

256

Full FF

400

Full FF
Nat 492 365 1 602 1 195 2 882 2 153 10 370 7 763 19 362 14 503
MD 436 288 1 366 888 2 428 1 502 8 590 5 391 14 516 8 661
IND 472 296 1 506 903 2 606 1 543 8 084 4 671 13 902 7 947
RND 438 281 1 358 832 2 348 1 425 7 618 4 471 13 176 7 649
Operation counts include full backward substitution 
see Table 1 for key

Table 3: Forw ard substitu tion  path lengths

m 25 64 100 256 400
Full 36 81 121 289 441
Nat 18 41 61 145 221
MD 12 22 26 52 59
IND 10 17 23 39 50
RND 11 18 24 41 54
Nat, MD, IND, RND and m  are defined in Table 1 and show sin
gleton FF path lengths
Full is the full forward substitution path length

their modelling inaccuracies are not ideal for accurate 
reconstruction.

The time to solution is also dependent on the data 
storage scheme used by the sparse solver. This is evi
dent from the lower factorisation time o f the envelope 
solver when compared to the MD general sparse solver, 
even though the operation count is higher. However, as 
Table 4 indicates, the majority o f time spent in one 
iteration is in the solution stage. The RND ordering 
has shorter path lengths and this overrides the advan
tage o f the envelope solver’s fast access to its simpler 
storage structures.

Table 4: Timing com parisons for different orderings 
using appropriate  solvers

m 256 400
Envelope Factorisation 12.30 35.10
solver Full solution 2.33 4.75
(Nat) FF solution 1.59 3.28

Total 100 216
General Factorisation 15.70 40.60
sparse solver Full solution 2.01 3.80
(MD) FF solution 1.18 2.03

Total 86 166
General Factorisation 13.60 35.70
sparse solver Full solution 1.96 3.59
(IND) FF solution 1.00 1.84

Total 77 152
General Factorisation 12.00 30.50
sparse solver Full solution 1.86 3.40
(RND) FF solution 0.92 1.66

Total 71 138
e = total number of electrodes 
p = number of projection angles
Times are in milliseconds on a Sun 10/41. Total time is for one 
Gauss-Newton iteration, i.e.
total = factorisation + full solution * p + FF solution * e, where 
e=32 and p=16 
see Table 1 for key

6.2 Computational savings of the improved 
Jacobian matrix calculation
The number of floating point operations show the 
computational savings for the proposed Jacobian cal
culation o f Section 3. The improved method based on

eqn. 10 has 16mp{n + 1) + nzx operations, whereas the 
method based on eqn. 9 requires mp{ 16 + z2). Each 
variable zx and z2 contains the sum of forward and 
backward substitution operations in the appropriate 
sparse matrix/vector method. Full forward substitution 
must be used for z2, whereas FF can be used for zx. 
The comparisons are more tangible with an example. 
The example uses the largest mesh for good spatial res
olution, i.e. m=400, p = 16, n=e-32. The regular nested 
dissection has been shown to be the optimal sparse 
matrix and vector approach, so the RND counts in 
Table 2 are used for z x and z2. The floating point oper
ation’s ratio for eqns. 9 and 10 is then 23:1. The reduc
tion in redundant calculations is clearly demonstrated 
by this example. The ratio is larger for meshes with 
many elements (large m) as then m and z are the domi
nant counts. Yorkey et al. [5] proposed a method to 
approximate the Jacobian matrix which they estimated 
to take 15mn operations. However, this approximation 
is less efficient than the method based on eqn. 9 when 
optimal current patterns are used [17]. This Jacobian 
approximation is not suited to optimal current patterns 
as the method is based on point current injection. The 
improved method suggested in this paper is thus most 
suitable for use with optimal current injection.

The more elements there are in the mesh, the larger is 
the problem and the greater is the effect o f using the 
suggested sparse techniques and removal o f redundant 
calculations. This is evident from the combined time 
spent calculating the voltage vector and the Jacobian as 
a percentage of the total time spent in one Gauss- 
Newton iteration. For the example set-up described in 
the previous paragraph, this figure is 11% and for the 
smaller 25 element problem, 70%. Previously, this time 
completely dominated one iteration but has now been 
reduced to a minor part for the more accurate larger 
problems.

6.3 Further discussion
Many different ordering strategies have been compared 
with each other in the sparse matrix literature. The 
fastest solutions depend to a large degree on the matrix 
sizes, the original ordering and the degree number of 
each node [14] (type o f element used). Both the way the 
algorithms are coded and the type o f microprocessor 
used have some effect on the solution time. Conse
quently, it is difficult to foresee which combination of 
sparse vector and sparse matrix method is best without 
physically testing the various algorithms. Woo [10] 
examined envelope ordering methods and three Tin- 
ney-Walker [12] schemes in his EIT system. He sug
gested using the minimum degree ordering for a 
circular finite element mesh comprised of triangular 
elements. The irregular nested dissection algorithm is 
better than the minimum degree algorithm on the

440 IEE Proc.-ScL Meets. TechnoL, Vol. 142, No. 6, November 1995



square domain, but could be used for any mesh as it is 
independent on the mesh structure and is more suited 
to sparse vector methods.

Better tie-breaking strategies might be able to 
improve the minimum degree algorithm. Tie-breaking 
strategies are a topic o f recent research [18]. However, 
the nested dissection ordering can be viewed as a mini
mum degree ordering with a perfect tie-breaking strat
egy when applied to regular grids [13]. Another reason 
for the success o f the nested dissection algorithm is that 
it is a  global ordering strategy as the most important 
decisions are made on the entire matrix, whereas the 
minimum degree algorithm is a local ordering strategy 
[8]. The solution methods considered in this paper are 
direct methods especially adapted to symmetric sparse 
matrices. Iterative methods are alternative approaches 
to a solution, but were not considered as they are best 
for single solutions, are better for larger problems and 
are more efficient when a good starting vector is avail
able. The work described here is independent of 
whether or not regularisation is used, as regularisation 
merely involves including matrix S in the updating 
eqn. 2. In fact, any inverse EIT method that requires a 
Jacobian matrix or uses the FEM to solve for the nodal 
voltages can use the optimising techniques described.

7 C onclusions

In real-time applications, a reduction in reconstruction 
time enables better resolution in the reconstructed dis
tribution as more elements may be used in the FEM 
mesh, for any given time limit. Optimisations in the 
forward problem solution and the calculation of the 
Jacobian matrix have been presented. A method which 
removes redundant Jacobian matrix element calcula
tions has been put forward and is most appropriate for 
use with optimal current patterns. This method and the 
finite element equations used in the forward problem 
are suitable for sparse matrix and sparse vector optimi
sation. The regular nested dissection algorithm has 
been shown to be the best node renumbering strategy 
for a regular rectangular mesh comprised o f square 
bilinear elements. Additionally, the nested dissection 
ordering was shown to produce singleton path lengths 
shorter than those o f the minimum degree ordering. 
The suitability o f a mesh comprised o f square bilinear 
elements for optimisation by sparse methods is one fac
tor in choosing them to model the mat in our pressure 
scanner. Grounding one node for all projection angles 
allows the master stiffness matrix inverse to be calcu
lated just once per iteration. Previously, the time spent 
in the forward problem and Jacobian matrix calcula
tion completely dominated the reconstruction of the 
pressure distribution. This paper’s suggestions have 
reduced it to a minor part o f the Gauss-Newton 
inverse problem solution time.
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