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Abstract

Image reconstruction is used in a wide range of practical applications. The 

most general form of the problem is to obtain a reconstruction x  from a set of 

data values y  which convey imperfect information about the unknown true scene 

x* . Statisticians have only recently become involved in image reconstruction, 

modelling the true scene as a spatial process. The prior model which is normally 

used is the Markov random field model which, loosely speaking, corresponds to a 

belief that neighbouring pixels (picture elements) in the true scene tend to be of 

the same or similar colour.

Chapter 2 of this thesis introduces the Markov random field model and the 

mathematical formulation of the problem that will be used. In Chapter 3 we 

describe several existing reconstruction techniques, and examine the basic 

properties of each alongside an example. Chapters 4 and 5 examine the 

possibilities of reconstructing the image on a different scale than that on which 

the data values were recorded. In Chapter 4 reconstructions are produced on 

different levels of the grid using an algorithm which enables the reconstruction of 

both large and small scale features of the image. In Chapter 5 reconstruction 

below the pixel level, known as subpixel refinement, is considered. The form of 

subpixel solutions is examined and a subpixel technique is proposed and 

implemented with good results.

If unsuitable parameters are used in the prior model then the resulting 

reconstruction may be oversmoothed. In Chapter 6 we propose a test which aims 

to detect oversmoothing in binary reconstructions.

In Chapter 7 we describe a grey level technique which combines a technique 

for finding exact binary MAP reconstructions with a method which divides a 

multi-level problem into several two level problems.
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Chapter 1: Introduction

Image reconstruction has a wide range of practical applications, for example 

medical imaging, computer vision, satellite imaging and optical astronomy. Some 

of the medical applications include thermal imaging, ultrasound, tomography, and 

nuclear medicine. In general, a set of data values relating to the true unknown 

image are observed, and a reconstruction of the image is obtained. The way in 

which the reconstruction is used depends on the application. In LANDSAT (land 

satellite) imaging, areas of the earths’ surface are scanned and reconstructions are 

used to classify land use or rock type. In computer vision, image processing is 

used to classify shapes and identify features. Image processing may be used in 

medical imaging to establish the existence of unwelcome features such as 

growths. The sensing mechanisms which are used to collect the data vary greatly 

and the work in this thesis concentrates on one particular case, developing 

methods and approaches which generalise to other cases.

1.1 The problem

We concentrate on the case where the data have been directly observed. This 

case may be considered as a prototype for the indirectly observed case. Consider a 

two dimensional rectangular region partitioned into picture elements known as 

pixels. For each pixel a value or intensity, known as a record, is observed which 

conveys imperfect information relating to the true colouring of the pixel. The 

collection of all the individual records is known as the record for the scene. Given 

the complete record the problem is then to obtain a reconstruction which is as 

close as possible in some sense to the true scene. It is common to assume that the 

record for each pixel depends only on the colouring of that pixel, although there 

are techniques which are capable of handling any blurring or similar degradation.

1.2 The statistical approach

Statisticians have only recently become involved in image reconstruction, 

modelling the true scene as a spatial process. The prior model which is normally 

used is the Markov Random Field (MRF) model which, loosely speaking, 

corresponds to a belief that neighbouring pixels in the true scene tend to be of the 

same or similar colour. The key property of this model is that the distribution of 

the colouring of any pixel is conditionally independent of all other pixels, given
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the colouring of its neighbours. The MRF model is described in Section 2.1.

The prior information is combined with the record and the problem 

reformulated as the minimisation of an objective function of two terms. The first 

of these measures the infidelity between the record and a given reconstruction; the 

second is a measure of the roughness of the reconstruction. In many of the 

applications that have been mentioned the size of the region will be large e.g. 256 

by 256 pixels. Each of these pixels may be coloured with any of the grey levels 

available giving a very large number of different configurations. It is clear that the 

reconstruction necessitates the use of some kind of algorithm. The complexity of 

the reconstruction procedure will depend on the way in which the problem is 

formulated. Grenander (1983) and others have used a method of maximising 

marginal posterior modes (MPM) in which the most likely colouring of each pixel 

is sought. The majority of the statistical techniques search for the maximum a 

posteriori (MAP) estimate of the true scene as being that which has maximum 

probability in the Bayes’ formulation. Geman and Geman (1984) propose a 

method which attempts to find the global minimum of the objective function 

(which corresponds to the MAP estimate) using the method of simulated 

annealing. The method of Iterated Conditional Modes (ICM) proposed by Besag 

(1986) searches for a local minimum of the objective function and convergence is 

faster. Both of these techniques are described in Chapter 3.

In addition to techniques which use MAP estimation there are several 

smoothing techniques which avoid the use of a formal prior, choosing instead to 

use filtering, maximum entropy, regularization or deconvolution. Such techniques 

are discussed by Hall and Titterington (1986).

1.3 Pixel size

The size of the pixels that are used, relative to the size of the features in the 

image, is often determined by the sensing mechanism. In some cases the pixels 

may be too large, so that two regions meet within a pixel; or the pixels may be 

unnecessarily small. In the application of SPET (single photon emission 

tomography) there are no predefined pixels, and the structure of the region may 

be freely chosen.

In Chapter 4 a technique which uses aggregation is developed, enabling the 

reconstruction of both the large and small scale features of the image. In Chapter
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5 reconstruction below the pixel level, known as subpixel refinement, is 

considered. One example of the need for refinement is in the processing of 

LANDSAT data where each pixel may measure up to an acre in size. In this 

context Switzer and Venetoulias (1985) and others recognise the problem of 

classifying mixed pixels. Jennison (1986) used a modification of ICM which, for 

the two colour case, reconstructed the image on a finer grid than that on which 

the record had been collected. Each pixel was divided into 4 subpixel quarters and 

a separate colour allocated to each subpixel. In Chapter 5 of this thesis we extend 

the refinement process to the continuum, examine the theoretical properties of the 

solution and propose a technique for finding an approximation to this solution.

1.4 Other topics considered

As stated in Section 1.2, the reconstruction process can be regarded as the 

minimisation of an objective function of two terms. The trade off between the 

terms is controlled by a smoothing parameter which is built into the prior model. 

If this parameter is too large then the resulting reconstruction may be 

oversmoothed. In Chapter 6 we propose a test which aims to detect 

oversmoothing in binary reconstruction.

In Chapter 7 we describe a technique for reconstructing grey level images 

which combines a way of finding exact binary MAP reconstructions with a 

method which divides a multi-level problem into several two level problems.
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Chapter 2: Notation and model

The notation that we will use follows closely the notation used by Besag 

(1986). We consider a two dimensional rectangular region S partitioned into 

pixels labelled 1 ,2 ,...,« . Each pixel has a true colour or grey level which is 

denoted by x* for pixel i. The true colouring of the region is denoted by 

jc* = {jc*;/=1,...,/z) and this is interpreted as the realisation of a random vector 

X= {X l ,X2 ,...,X n}, where X t denotes the colour of pixel i. The x* are 

unobserved. Instead we observe the record at pixel i which conveys imperfect 

information about the true colouring x* at pixel i. Throughout this thesis we shall 

assume that the records yt are independently distributed as Gaussian with mean x* 

and variance a 1. The set of records is denoted by y = {yt-; i= l , . . . , / i ) .  A 

colouring of pixel i (not necessarily the true colouring, x*) is denoted by jct- and a 

specific colouring of the whole region is denoted by x -  z = 1, . . . , h }. The

sample space of x  is Q.

2.1 Setting up the Markov random field model for the true scene

A pixel j  is defined to be a neighbour of pixel i (=|=j) if 

P (Xt- =Xi IXi =Xi, . . . ,X,-_l =Xi_I ,Xi+! =xi+1, . . .yXn=xn) depends on Xj.

The set of neighbours of pixel i is denoted by Note that the above 

definition does not imply that pixels which are neighbours are geometrically close, 

although this would be the case in an imaging context.

A colouring of the region S , denoted by x  is a realisation of a Markov 

Random Field (MRF) with respect to the particular neighbour relation if

(i) P(X=x)>0 for all x  in Q.

(ii) P(Xr=xr \Xt=xt ,t$r) = P(Xr=xr |X'=xn tear)

Cross and Jain (1983) include a further constraint of homogeneity:

(iii) P(Xr= xr \Xt=xt ,tedr) depends only on the configuration of 

neighbours and is homogeneous within the region.

The crucial condition is (ii), the Markov property. Given these conditional 

distributions, Besag (1974) demonstrates that the function P(X=x),  which we will 

write as p(x),  may be directly derived and gives the most general form of this 

distribution. In image processing applications a pairwise interactive MRF model is 

often used and the probability density is given by
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p ( x ) ** exp<
n n

’Z G , ( x i) +  ’Z ’£ l G ij( x h Xj)
i= i  i= y = i

where G,y=0 unless pixel i and j  are neighbours and all other G functions are 

arbitrary. The choice of the G functions will depend on the application as well as 

the number of different colours and their ordering. Where the neighbourhood 

relation only exists between pixels that are geometrically close to one another the 

model is known as a locally dependent Markov Random Field Model. Besag 

(1986) gives examples of the G functions which might be used for different 

applications. The Ising model (Ising, 1925) is a simple case of this, which is used 

to model ferromagnetism. The model is given by

p(x)  exp « Z * i + ' L xixi
i=  1 i = l j e d t

for some fixed parameters a  and p  which measure the external field and bonding 

strengths respectively. In this example xt takes the value -1  or 1 only.

We now give the models for two simple cases used in image applications. 

The first of these is for a scene where each pixel takes one of c unordered colours 

and two pixels are considered neighbours if they are horizontally, vertically or 

diagonally adjacent. At pixel i, given the colouring of the rest of the scene, 

colour k occurs with probability

(*)
P{Xi=k\xj9f t i )  = —----------

y ePMD
;=i

where Afik)  is the number of neighbours of pixel i which are coloured with 

colour k and p  is a fixed parameter. The strength of association between 

neighbouring pixel depends on the choice of p. Choosing p  large implies that 

there is strong neighbouring dependence while choosing p=0 implies that there is 

none. The above model has been expressed in terms of conditional probabilities 

but from these the probability density for the whole scene may be derived as

p(x)  «= exp B n

z i=i

Pixels are now defined to be first order neighbours if they are horizontally or 

vertically adjacent to each other and second order neighbours if they are 

diagonally adjacent. Another example is given for the two colour case, in which
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all pixels are either black or white. The prior distribution for the true scene may 

be given by

p(x)  ~  cxp[ -{ faZ l (x)+p2f a M } ] .

where Z x ( j c )  is the number of discrepant first order pairs in the scene x t i.e., the 

number of pairs of first order neighbours which are of opposite colour, Z 2 ( j c )  is 

the number of discrepant second order pairs and fa and fa  316 fixed positive 

constants.

2.2 The Bayes’ formulation

There are several ways in which the prior model may be combined with the 

observed record. Bayes’ Theorem can be used to combine the information 

supplied by the record with the prior model. Recall

The way in this which this formulation is used will depend on the qualities that 

are required of the reconstruction. Where we might wish to construct a crop 

inventory from satellite data, Besag points out that it may be pertinent to 

maximise the expected proportion of correctly classified pixels. This corresponds 

to the maximisation of P(Xi=x* |y), the marginal posterior probability of jq at i 

given the record y. By Bayes* Theorem we may write

P i X - x *  |>) -  £  Ky\x)p (x)
xeS'.Xi—̂i

where /(y|jc) is the conditional likelihood of the observed record y, given the 

colouring x  and p(x )  is the prior probability of jc.  This method is known as 

maximising marginal probabilities and its use in imaging is limited by the severe 

computational difficulties encountered in maximisation. This kind of estimation is 

done by simulating from the marginal distribution at each pixel. A more widely 

used formulation is that of MAP estimation. The maximum a posteriori (MAP) 

estimate of the true scene is the value of jc which maximises P(x\y) ,  the 

conditional probability of jc given the record y. Again the Bayes* formulation is 

used and we write

P (x \y )  ~  Ky\x)p(x) .
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Chapter 3: Existing methods

In this chapter we describe a few of the statistical reconstruction techniques 

used for MAP estimation. Two of these, Simulated Annealing (Geman and 

Geman, 1984) and Iterated Conditional Modes (Besag, 1986) have proved 

fundamental in this area and have been fully implemented by the author; an 

example is used to demonstrate these methods. Other techniques have been 

developed which incorporate these methods and these shall be discussed later in 

this chapter. The intention of this chapter is to summarise these methods in a clear 

and concise manner, observing limitations, advantages and peculiarities while 

referring the reader to the works of the given authors for the detailed theoretical 

support.

3.1 The example

Figure 3.1 shows a 64 by 64 binary image.

Figure 3.1

Each pixel is coloured black or white and the colour of pixel i is denoted by x*  

which takes the value 0 for white and 1 for black. The records y,- are 

independently distributed as Gaussian with mean x *  and variance cr2=0.25. 

Thus the likelihood of the record y given x  is given by

K y \ x )  = n / 0 - i  I*;) = exP
1=1 _ i= 1

The prior model which will be used in reconstruction is given by
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p{x)  oc exp[ - { p i Z l {x)+p1z 1{x)}'\

where Z 1(x) is the number of discrepant first order pairs in the scene x, i.e., the 

number of pairs of first order neighbours which are of opposite colour, Z2(x) is 

the number of discrepant second order pairs and p 1 and /?2 are fixed positive 

constants. Hence the posterior probabilities may be calculated from

P(x\y) oc l(y\x)p(x) oc exp - A s o - i - * . ) 2 
2 0  1=1

The maximisation of the posterior probability may be reformulated as the 

minimisation of the objective function

A - i o ’i - xi)2 + W z ^ + f o  Z2U)1 (3.2)
20 i=l L J

over values of x.

The first term of the objective function is a measure of the infidelity between 

the record and the reconstruction and the second is a measure of the roughness of 

the reconstruction.

At this point some comment on the choice of the ft values is required. There 

are several different methods for establishing a "good" value but a "try it and see" 

approach is commonly used. If large values of fii and f$2 are used then the 

objective function is dominated by the roughness term and the reconstruction 

which minimises (3.2) will be smooth. If small values of and p 2 are used then 

the reconstruction which minimises (3.2) will correspond closely to the record. 

Some inference as to the correct ratio of p\  to p2 has been made by Silverman, 

Jennison and Brown (1989) for the second order model. They have shown that 

using p 2- f i i l^2  minimises the rotational variance of the prior model with respect 

to the positioning of the pixel grid on a given scene. In Chapter 6 of this thesis 

we propose a technique for detecting oversmoothing in image reconstruction.

Before describing any techniques we define the closest mean classifier as 

being the image which contributes least to the first term of the objective function 

i.e. the image which has most fidelity with the record. Each pixel is coloured 

with the colour which has mean closest to its record e.g. if yj=0.4 then pixel / is 

coloured white since

0 .4 -0 .0  < 0 .4 -1 .0  .
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In iterative methods it is usual to use the closest mean classifier as an initial 

estimate of the true scene.

3.2 Iterated conditional modes

Besag (1986) proposed the method of Iterated Conditional Modes (ICM) 

which finds a local maximum of the objective function (3.2) in the following way: 

The closest mean classifier is used as an initial estimate of the true scene. The 

region is scanned and at each pixel i say, the colouring jq is chosen to minimise 

(3.2) over all possible jq with all other pixel colourings fixed. This is equivalent 

to choosing jq to minimise

+ IfcZiOO+AZjC*,)]

where Z^jq) and Z2(jq) are the number of first and second order neighbours of 

pixel i which are opposite colour to jq. Inspection of (3.1) shows that this choice 

of jq maximises

Kyi I *;)P(X; Us\<).

where xs\i is the colouring of all pixels except the colouring at pixel z. This is 

equivalent to choosing jq to maximise

KyiUdPix^XjJedi).

It follows that this choice of jq gives the most likely colouring at each pixel based 

only on its record and the colouring of its neighbours.

Each scan in which every pixel is considered for updating once is known as 

an iteration. The order in which the region is scanned is arbitrary if updating is 

synchronous since only the neighbour information from the last iteration will be 

used. It is, however, more convenient to scan the region in a raster fashion, 

storing only the current colouring of each pixel. When updating a pixel, the 

neighbours which are to the left or below the pixel have been more recently 

updated than those to the right or above the pixel. Besag (1986) notes that small 

directional effects may be introduced if the region is scanned in this way and 

suggests that these effects may be lessened if the raster is changed after each 

iteration. In the example that follows a straightforward raster scan is used for 

convenience and storage reasons. When a raster scan is used, the objective 

function must decrease or remain constant at each updating and because there are
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a finite number of possible colourings a local minimum will be achieved in a 

finite number of iterations.

Besag (1986) uses p l =p2 = l .5  for reconstruction but our experimental 

results suggest that this value is too high. This conclusion has also been reached 

by Ripley (1986). Another approach used by Besag was to increase the value of 

the smoothing parameter during reconstruction, settling at a value of 1.5. This 

encourages fidelity with the record in the early stages of reconstruction and avoids 

using what may be misleading spatial information early in the process. A similar 

approach has been adopted by Stander (1989) who has found that stopping the 

process much earlier, when /?=0.75, has given superior results. Using the closest 

mean classifier as an initial estimate of the scene corresponds to using p \= p 2 = 0  

for the first iteration.

In the example we use a constant value of p  for all iterations. Figure 3.2 

shows the closest mean classifier for the record. In this initial estimate of the 

scene approximately 16% of the pixels are misclassified. Below each of the 

displayed reconstructions we give the number of misclassified pixels when 

compared to the true scene. Ripley (1986) warns of the dangers of using 

misclassification rates as a measure of goodness of fit and these figures should 

only be regarded as a rough guide to the quality of the reconstruction. Figure 3.3 

shows the reconstruction obtained using ICM with Pi = l and P2 -O. Setting /?2=0 

is equivalent to using a first order model in which pixels are considered 

neighbours only if they are horizontally or vertically adjacent. A more interesting 

reconstruction is shown in Figure 3.4 which was obtained using ICM with p \ - 0  

and /?2 = 1. Reconstructing the image in this way corresponds to reconstructing 

two independent images, each containing 32 x 32 pixels diagonally connected 

(like the black squares on a chequerboard). The two separate regions cannot 

interact and this leads to the unusual reconstruction shown in Figure 3.4. A more 

sensible model using Pi = l and p2=P\l^2 gives Figure 3.5 which appears 

satisfactory. Figure 3.6 is obtained using ICM with Pi=4 and P2=Pi/^2', using 

such large values discourages sharp edges or protrusions in the image and this is 

illustrated clearly here.

Although Besag suggests the use of the closest mean classifier as the initial 

estimate ICM may be applied using any colouring as the initial estimate and the 

effect of this can be seen in Figures 3.7 and 3.8 which were obtained using ICM
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Figure 3.2 
The closest mean classifier 
Number of pixels misclassified : 673

Figure 3.3 
Reconstruction technique: ICM 
Parameters: p x = 1.0

/?2= 0 .0  (first order model). 
Initial estimate: Closest mean classifier 
Number of pixels misclassified : 93

2

Figure 3.4 
Reconstruction technique: ICM 
Parameters: p x = 0 .0

02 =  1.0
Initial estimate: Closest mean classifier 
Number of pixels misclassified : 164



3-6

Figure 3.5 
Reconstruction technique: ICM 
Parameters: fii = 1.0

Pi
02 =

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 62

Figure 3.6 
Reconstruction technique: ICM 
Parameters: /?i=4.0

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 142

Figure 3.7 
Reconstruction technique: ICM 
Parameters: ^ = 0 .8

hV2 
Initial estimate: All white scene 
Number of pixels misclassified : 178

Figure 3.8 
Reconstruction technique: ICM 
Parameters: ^ = 0 .8

/? =*L

Initial estimate: All black scene 
Number of pixels misclassified : 244
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with Pi =0.8, P2=P\/^2 and initial estimates which were all white and all black 

respectively. When larger values of Pi and p 2 were used the reconstruction 

varied little from the initial estimates in both cases.

When processing large images we avoid unnecessary computation by storing 

the coordinates of pixels whose colourings have changed in the current iteration. 

If the number of these is small, only pixels whose neighbours have changed 

colour in the last iteration are considered in the next iteration. In general, only 

two complete iterations are required in reconstruction although Figures 3.7 and

3.8 required 6 complete iterations before the number of changes became 

sufficiently small.

3.3 Simulated annealing

Geman and Geman (1984) liken images to physical systems in which the 

states of atoms or molecules interact in a lattice-like structure. In the physical 

context of annealing an energy is minimised by gradually reducing the 

temperature in the system; a gradual cooling is essential to avoid ending in a local 

minimum. The objective function is viewed in a similar way and random changes 

are allowed in the reconstruction process which increase the objective function in 

the hope that a better minimum will eventually be achieved. The essence of their 

approach uses a "stochastic relaxation" algorithm which generates a sequence of 

images that converges to the MAP estimate with probability 1.

The image is scanned in what is typically a raster fashion although the pixels 

may be considered for updating in any order as long as all pixels are visited 

infinitely often. Each n visits is known as a sweep of the image. Considering 

one pixel at any given time, the posterior probability pi(l)  of colouring / at pixel i 

given the current colouring of the rest of the region is calculated for each of the 

1=1,.,.,L  different colourings. Simulated annealing requires that colouring k is 

then assigned to pixel i with probability

lPi(k)}T

L —
5 > / ( 0 } r

1 = 1

where T  is the "temperature" of the process. The use of a temperature and cooling 

schedule follows directly from the physical analogy where gradual cooling isolates
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low energy states which correspond to the most probable states in the posterior 

distribution. Theoretically the algorithm must run for an infinite amount of time 

with a logarithmic decrease in T  for convergence to the global maximum to be 

guaranteed (see Gidas, 1985a). In practice a sensible cooling schedule must be 

used and truncated at some point in order that a reconstruction may be obtained. 

Geman and Geman advocate the use of the schedule

T(k)  = f  1 Sk<K
log(l +k)

where *  is the total number of sweeps and C is a fixed constant, usually taken to 

be between 2 and 5. Geman and Geman recommend the use of C=3 or 4.

The example is used to illustrate the effect of these parameters and the use 

of the closest mean classifier as an initial estimate of the true scene. Figure 3.9 

shows the reconstruction obtained using the objective function (3.1) with ^  = 1.0, 

P i=P i ^ >  C - 3.5, *=1000 and the closest mean classifier as an initial estimate 

of the true scene. These are typical values which we have found to give good 

results in most cases.

We first examine the effect of the C parameter. If the temperature is large 

then changes in pixel colourings depend less on the posterior probabilities and are 

more random. If the temperature is small then the changes are biased towards 

colourings which reduce the value of the objective function. When C is large the 

temperature is very high at the start of the process, increasing the likelihood that 

groups of pixels will change colour, leading to a different minimum of the 

objective function. If in the final sweep, the temperature remains comparatively 

high, changes may occur which significantly increase the value of the objective 

function, producing an image which has lower probability. This is illustrated in 

Figure 3.10 where C=7.0; the isolated pixel colourings occur as a result of 

changes made in the final sweep.

The value of * , the total number of sweeps, is also of interest. The theory 

which is used to justify the use of annealing suggests that the process should be 

allowed to run for as long as possible to maximise the chances of reaching the 

MAP estimate. In practical applications, where the size of the region and the 

number of different colourings of each pixel increase the computational burden, 

truncation must occur at some point. Figures 3.11 and 3.12 show the images 

obtained using *=33 and 10000 respectively. (We use the value *=33 in order
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Figure 3.9
Reconstruction technique: Simulated Annealing 
Parameters: ft  = 1.0

»_Pi

C=  3.5
a:= iooo

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 57

Figure 3.10
Reconstruction technique: Simulated Annealing 
Parameters: f t  = 1.0

C= 7.0
a:= iooo

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 88

Figure 3.11
Reconstruction technique: Simulated Annealing 
Parameters: ft  = 1.0

B - Pl~̂2
C=3.5
K=33

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 68

Figure 3.12
Reconstruction technique: Simulated Annealing 
Parameters: f t  = 1.0

R - Px
C=3.5  
K=  10000

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 56
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that the temperatures at the final sweep for this reconstruction and the 

reconstruction shown in Figure 3.10 were approximately equal.) In general we 

have found that better reconstructions are obtained when K  is chosen as large as 

possible.

We have already demonstrated the dependence of ICM on the initial 

estimate. Figures 3.13 and 3.14 show the reconstructions obtained by simulated 

annealing using all white and all black initial estimates respectively. Although 

these scenes differ slightly the initial estimate does not appear to have had a 

detrimental effect in either case. Clearly, if the process was terminated earlier 

any effect would be more obvious.

Isolated pixel colourings like those shown in Figures 3.10 and 3.11 may be 

avoided if, after the K  sweeps, an additional sweep is executed with T - 0. This is 

equivalent to one iteration of Iterated Conditional Modes and can only reduce the 

value of the objective function. Figures 3.15 and 3.16 show the reconstructions 

when this extra sweep has been applied to Figures 3.9 and 3.11 respectively.

3.4 Exact MAP estimation for binary images

Grieg, Porteous and Seheult (1989) show that for a two colour scene the 

MAP estimate may be found exactly. The problem is reformulated as a minimum 

cut problem in a capacitated network and the Ford-Fulkerson labelling algorithm 

is used to find the solution.

The likelihood function l (y \x )  is rewritten as

IT/O'; I*;) = f i f t y  U,-=i)J4/CVi k/=0)1-x*
1=1 i= 1

and the prior model as

p ( x ) oc exp 4- i  £/Vk=*;)
i- 1 ;e<?i

where Pij=Pji and l(xi=Xj)=l if x,- -Xj and 0 otherwise. Ignoring an additive 

constant we may write

ln/’C tb) = L ( x \ y )  = 2 > ,A ,+ ^ X  'LPijl (xi=xj )
i= l  j=1 j ed j

where A{=  ln{/(yx- |x/ = l) / /(y {- |xt=0)}, the log-likelihood ratio at pixel i.
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Figure 3.13
Reconstruction technique: Simulated Annealing 
Parameters: f t  = 1.0

a - A

C = 3.5
a:= iooo

Initial estimate: All white scene 
Number of pixels misclassified : 61

Figure 3.14
Reconstruction technique: Simulated Annealing 
Parameters: f t  = 1.0

C= 3.5  
K=1000 

Initial estimate: All black scene 
Number of pixels misclassified : 51

Figure 3.15
Reconstruction technique: Simulated Annealing 

including an additional sweep with 7=0  
Parameters: ft  = 1.0

* 4
C=3.5
AT=1000

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 51

Figure 3.16
Reconstruction technique: Simulated Annealing 

including an additional sweep with 7=0  
Parameters: f t  = 1.0

C=3.5  
K=  33

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 51
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Consider a capacitated network containing a source, a sink and n interior 

vertices called nodes. There are a number of arcs from the source to interior 

nodes which allow flow in that direction. A number of interior nodes are 

connected to the sink by arcs which allow flow in that direction. In addition to 

these arcs, flow is permitted along arcs between interior nodes. Each of the arcs 

in the network has a capacity. This is the maximum flow in either direction along 

the arc. An example of a network is shown in Figure 3.17 although the capacities 

of the arcs are not shown.

Figure 3.17

We define a cut of the network to be a partition of all the nodes into two sets. 

The first of these sets, contains the source and the other, S2, contains the sink. 

Every interior node is contained in just one of the sets. The value of the cut is 

given by

C(‘S’i *^2)= 2
keSi leS2

where c# is the capacity of the arc between node k and node /.

The maximum flow problem is to maximise the flow from the source to the 

sink, using the arcs in the network. Ford and Fulkerson (1962) show that the 

maximum flow is equal to the minimum cut and provide an algorithm for finding 

the maximum flow.

In the context of imaging, the problem may be reformulated in the following 

way. The n pixels are regarded as interior nodes. Node i is connected to the 

source by an arc with capacity At- if At> 0, otherwise it is connected to the sink by 

an arc with capacity -A,-. Node i is connected to node j  by an arc with capacity 

fiij. We refer to the source and sink as nodes s  and t respectively. For any binary 

image x  we may form the sets £= {s}u{/;x , = l} and W = {t}v{ i ;x i=Q}. These
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two sets define a partition of the network which is a cut. The value of the cut is

CW=C(fifW)=2
ksB leW

which may be written as

J^Xi max(0,-A{) + 2 ( l - x t) max(0,At)+ X  'ZPijl (xi$ xj)
t=l i= 1 t= 1 ;e^,

which differs from - L ( x \y )  by a term which does not depend on x. The image x  

which maximises L (x \y )  corresponds exactly to the partition which gives the 

minimum cut, the set containing nodes corresponding to black pixels and S2 

containing nodes corresponding to white pixels. Hence, the MAP image estimate 

may be found by maximising the flow in the related network problem.

The Ford Fulkerson labelling algorithm for maximising the flow through a 

network

We use fij to represent the flow from node i to node j  and denote the excess 

capacity of this arc by d ^ c ^ - f y .

Step 0. Set fij=  0 Viy. Define the index of the source to be 0.

Label the source with the ordered pair ( -1  ,«>).

Step 1. We form the set Ni of nodes which are connected to the source

by arcs with positive excess capacities. We use the index m for 

a general node in A^. Label each of the nodes in with the 

ordered pair (em,pm), where

^m=^0m

Pm=Q

Step 2. We form the set N2 of all unlabelled nodes which are connected

to nodes in A^ by arcs with positive capacities in the following 

way: Choose the node in A/j with the smallest index; say it is 

node k. Add to N2 the unlabelled nodes which are joined to 

node k by arcs with positive excess capacities. We use the 

index m  for a general node in N2. Label node m  in N2 with the 

ordered pair (em ,pm), where 

em=rnin{d*m>et )

Pm=k
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Observe that em is the minimum of the excess capacities of the arcs from the

source to node k and from node k to node m. Also, pm denotes the node which

led to node m. Repeat this for all nodes in N l .

Step 3. Repeat Step 2 with Nr replacing N2 and Ar-1 replacing A^, for

r= 3 ,4 ,... After a finite number of steps, we arrive at one of two 

possibilities:

(i) The sink has not been labelled and no other nodes can be labelled.

(ii) The sink has been labelled.

Step 4. If we are in case (i), then the current flow can be shown to be

optimal and we stop.

Step 5. If we are in case (ii), we may now increase the flow. If the sink

has the label (er ,pr) then the flow may be increased by er\ the 

second label p r indicates the node which led to the sink. Thus 

the route may be retraced back to the source and the flow

increased by er in every arc along the route from source to sink.

Step 6. Remove all of the labels from the nodes and return to Step 1.

3.4.1 Improvements in the algorithm when used for MAP estimation.

The Ford Fulkerson labelling algorithm may be applied to general networks.

In the context of imaging, the networks that are derived have a particular structure 

and it is this that may be exploited to reduce the amount of CPU time required to 

find the minimum cut. Figure 3.18 shows another network which may be 

compared with the network in Figure 3.17. The differences in the structure of 

these networks is clear. The network in Figure 3.18 is of the type that will be 

encountered in imaging problems. All internal nodes are connected to either the 

source or the sink and typically approximately half will be connected to each.

The main disadvantage of the algorithm is that once a path from the source 

to the sink has been found and the capacities updated, other incomplete paths will 

be discarded as the process begins again. Figure 3.19 shows the paths that have

been found up to Step 3 of the algorithm, unused arcs are shown as dotted lines.

The information supplied by all but one of these will be discarded. When the 

number of pixels in the region is large Step 1 of the algorithm must be repeated 

many times and the bulk of the information which is found is not used. Figure
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3.19 illustrates that there were several paths which would have reached the sink 

had the process been continued. Notice also that most of these paths would have 

been unaffected by updating the capacities of the successful path.

Grieg, Porteous and Seheult achieved a twelve fold reduction in CPU time 

by using the algorithm to find the MAP estimate for sub-regions of the image; 

they combine these sub-regions and then find the MAP estimate for the whole 

scene. In terms of the network, sections are considered in isolation and the flow 

maximised in that section. (Each section includes the source and the sink.) When 

the flow in each section is maximal all previously restricted arcs are opened and 

the flow increased in the original network. Figure 3.20 shows a way in which the 

network in Figure 3.18 may be divided up. Note that some of the arcs between 

internal nodes have been omitted. It is easy to see why this modification reduces 

the CPU requirement: if the region is small then Step 1 of the algorithm is 

shortened significantly.

We now propose a modified version of the labelling algorithm which 

exploits the special structure of the networks found in the image analysis context.
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Figure 3.19

Figure 3.20
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The Modified Algorithm

Step 0 Set fij =0 V//. Define the index of the source to be 0.

Label the source with the ordered pair (-1  ,©<>).

Step 1 We form the set of nodes which are connected to the source

by arcs with positive excess capacities. Label each of the nodes 

in Ni with 0.

Step 2 We form the set of all unlabelled nodes which are connected to

nodes in Ni by arcs with positive capacities the following way:

Choose the node in N± with the smallest index; say it is node k. Add to N2 the 

unlabelled nodes which are joined to node k by arcs with positive excess 

capacities. If N2 contains the sink then remove the sink from N2 and add k to the 

set T  of nodes which are the penultimate nodes on successful paths from the 

source to the sink. Consider all nodes in N± in this way. Label each unlabelled 

node in N2 with k, the node which led to that node.

Step 3 Repeat Step 2 with Nr replacing N2 and Nr_i replacing N±, for

r= 3 ,4 ,... After a finite number of steps no other nodes can be 

labelled.

Step 4 If the set T  contains no nodes then the current flow can be

shown to be optimal and we stop. Otherwise we increase the

flow in the following way:

For the first node in T we retrace the path that led to this node and and find the 

minimum of the excess capacities of the arcs on this path and the capacity of the 

arc from this node to the sink. The excess capacities on this path may now be 

updated. Consider now the second node in T, we again retrace the path and find 

the minimum excess capacity of the path from the source to the sink for which 

this is the penultimate node. Note that this minimum excess capacity may have 

been reduced in updating the path to the first node in T. If the minimum capacity 

is greater than zero then we update the excess capacities on this path. All the 

remaining nodes in T  are also considered in this way.

Step 5 Return to Step 1.

The reduction in CPU time that will be achieved using this algorithm will 

depend chiefly on the number of paths that are found from the source to the sink 

whose minimum flow is unaffected by increasing the flow in other paths.
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Suppose that two complete paths share a common arc and that this arc has the 

minimum capacity for one or both of the paths. When the flow is updated in the 

first path the minimum capacity of the second path has been reduced and thus the 

flow may not be increased by as much. We use the network in Figure 3.18 to 

illustrate this difficulty. Figure 3.21 shows the paths that have been found to Step 

3 of the algorithm, unused paths are shown as dotted lines. If the capacities of all 

the arcs are equal then of the nine paths that we have found we can increase the 

flow in only 4 of these. We now propose a further modification to Step 2 of the 

algorithm.

Step 2 Let N2 denote the set of all unlabelled nodes which are joined to

nodes in Ni by arcs with positive excess capacities. N2 is 

formed in the following way:

Choose the node in A  ̂ with the smallest index; say it is node k. Add to N2 only 

one unlabelled node which is joined to node k by an arc with positive excess 

capacity. If N2 contains the sink then remove it from N2 and add k to the set T  

of nodes which are the penultimate nodes on successful paths from the source to 

the sink. Consider all nodes in in this way. When all the nodes in A  ̂ have 

been considered for one connection to an unlabelled node we return to the 

beginning of the set and consider all nodes for a further connection. We repeat 

this until no more connections are possible. We use the index m for each node in 

N i . Label each unlabelled node in A  ̂ with k, the node which led to node m. 

Observe that this modification will give identical sets A ^ ,...,Nr to those found 

using the previous algorithm. It will, however, lead to different choices of paths 

between these nodes. Figure 3.22 shows the paths that may be found if this new 

method is adopted. In the example that we have shown, all of the complete paths 

are distinct and this increases the efficiency of the algorithm.

Results

Figure 3.23 shows the MAP estimate for the example discussed earlier in 

this chapter. It was obtained using fii = 1.0 and p2= p and has only 49 

misclassified pixels. The computer program that has been implemented is capable 

of using the raw Ford-Fulkerson algorithm, the partitioned version suggested by 

Grieg et al. and the modified algorithm both with and without partitioning. The 

estimate shown in Figure 3.23 can be obtained in each of these 4 ways and Table
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Figure 3.21

Figure 3.22



Figure 3.23

3.1 below shows the CPU requirement on a Sun 4 workstation for each case.

using the 

partitioned version

using the 

modified algorithm

Yes No

Yes 19.6 15.1

No 73.0 770.0

Table 3.1

Seconds of CPU time required for a 64 by 64 binary image 

where <r2= 0.25, ^  = 1.0 and /?2= /W 2 .

In the partitioned version the flow is first maximised in separate 4 by 4 

regions followed by 16 by 16 regions and then on the whole region. For the 

general m by n region we use approximately ml 16 by nl 16 regions followed by 

ml A by nlA regions and then the whole region, although if the sub regions are very 

small then we progress directly to the next level. Grieg et al. point out that any 

sensible choice will lead to a substantial reduction in CPU time. A larger example 

was considered to illustrate the massive reduction that may be obtained using the
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modified algorithm. A 128 by 128 binary scene was perturbed by additive 

Gaussian noise with zero mean and variance 0.9105. This level of the variance 

gives a 30% misclassification rate in the closest mean classifier and was used in 

the examples shown in Grieg et al. (1989). The results are obtained using a 

second order neighbourhood with equal weightings for all of the neighbours and 

with p=0.3.

using the 

partitioned version

using the 

modified algorithm

Yes No

Yes 115 111

No 630 15921

Table .2

Seconds of CPU time required for a 128 by 128 binary image 

where <j 2=0.9105 and A  = /?2=0.3.

In both of the examples shown above the fastest results were obtained using 

the modified algorithm alone. Combining the partitioned version with the 

modified algorithm has little effect on the CPU requirement. The reduction 

obtained by Grieg et al. using the partitioned version can also be seen here. Both 

the variance and the value of 0  that is used affect the time required for 

processing. Where the variance is small the arcs from the source and sink to the 

internal nodes have smaller capacities and hence the flow may be maximised 

quicker. When 0  is small the capacities of the arcs between internal nodes are 

small and again the flow may be maximised quicker. For a 128 by 128 example 

with variance 0.1 and 0=0.3 the modified algorithm takes only 49 seconds.

3.4.2 Comparing the approximate MAP reconstructions with the exact MAP 

estimate.
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In Sections 3.2 and 3.3 we have compared the reconstructions that have been 

obtained with the original true scene. In addition we may now compare these 

reconstructions with the exact MAP estimate shown in Figure 3.23.

Figure

Number of 

different pixels

3.5 23

3.9 18

3.12 13

3.13 16

3.14 18

3.15 8

3.16 8

Table 3.3

Comparing earlier reconstructions with exact MAP estimate

These numbers allow us to assess directly the capability of different methods to 

find the MAP estimate, independently of whether the MAP estimate is itself a 

good estimate of the true image.

3.5 Other methods

The methods that have been described are not the only techniques for MAP 

estimation, although many recently developed techniques do incorporate ICM or 

Simulated Annealing. We now describe two MAP estimation techniques which 

use alternative approaches to the maximisation.

Derin et al. (1984) consider horizontal strips of the image and uses a 

dynamic programming algorithm to find the MAP estimate for each strip. These 

overlapping strips are combined to give a near optimal MAP estimate of the true 

scene. This technique depends heavily on the correlation between the colourings 

of pixels dropping rapidly as the vertical distance between them increases. If the 

strips are naiTow then it is more likely that vertical correlations will exist and 

since the method can only feasibly be operated with a strip width of 2 to 4 pixels 

this may be a drawback. In subsequent work Derin et al. (1985) show that the
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computational burden usually incurred when processing images containing several 

different region types may be avoided to some extent if the region types may be 

ordered. Consider a region which contains 4 region types with means r 1? r2, r3 

and r4; with r i< r2<r3<r4. Derin et al. first assume that the image contains only 

2 region types and that these have means r2 and r3. The dynamic programming 

algorithm is applied and a reconstruction is obtained. The pixels which have been 

coloured with r2 are then considered in isolation and the algorithm applied 

assigning colours r* and r2. The region which was coloured with mean r3 is then 

reconstructed using the colours r3 and r4. This gives a 4 colour reconstruction for 

the whole scene. Good results are obtained using this method. The examples that 

are shown in Derin et al. (1985) consider up to 8 levels but clearly the method 

may be extended to handle any number of levels. Combining this technique with 

exact MAP estimation (Greig et al.) as described in Section 3.4 we may obtain 

the exact MAP estimate at each two colour stage as compared with the near 

optimal estimate offered by Derin et al. (1985). Although the exact MAP estimate 

may be obtained at each stage, combining these estimates in this way will not 

give the global MAP estimate for the k level case. A method which uses this 

approach is described in Chapter 6.

Gidas (1989) proposed a "coarse-to-fine" method which reconstructs the 

image, using simulated annealing, on a coarser grid than that on which the record 

was collected. This reconstruction is then used in turn to supply information to the 

process at a finer level. This process is repeated until a reconstruction has been 

obtained at the scale at which the record was originally collected. Gidas states 

"The intuitive basis o f the method .... lies in the fact that in image 

processing problems, .... as well as in many other massive

computational tasks we are facing today, one deals with cooperative 

features that occur over many spatial (or temporal) scales with various 

interscale interactions." 

and continues

"Furthermore, it is intuitively clear that multilevel multiresolution 

processing can reveal useful information for representation, 

interpretations, or recognition tasks."

The method uses a renormalisation group algorithm which provides consistency 

between the model at different grid scales. We shall not describe the algorithm in more
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detail here but in Chapter 4 of this thesis we propose a method which uses a similar 

"cascade" approach which incorporates ICM at each stage.

3.6 Parameter estimation

In the context of imaging there are in general two parameter vectors that 

may be unknown. The first of these is the noise parameter; where the distribution 

of the noise is known, say it is Gaussian, the mean and variance of the 

distribution must be estimated. For this case the mean is usually zero and where 

the variance is unknown it can often be accurately estimated from the study of 

training data.

In addition to any noise parameters that must be estimated we require a 

suitable value of p, the "smoothing" parameter which affects the smoothness of 

the reconstruction.

Coding methods

Cross and Jain (1983) generate Markov Random Fields using the Metropolis 

algorithm and have notable success in simulating binary and grey scale textures 

using parameters which have been estimated from observed textures. They use 

coding methods, first introduced by Besag (1972), to estimate the parameters. 

Given a colouring of the region, the pixels are divided into sets which do not 

contain neighbours, this division does not depend on the colourings of the pixels.

For each set, estimates are obtained which maximise the product of the 

conditional likelihoods of the colourings of the pixels given the colourings of their 

neighbours. The advantage of this method is that under the assumptions of the 

model, the colourings of each of the pixels in any set are conditionally 

independent of one another given the colourings of all other pixels, and thus 

maximum likelihood estimates can be obtained from the conditional likelihoods.

For a first order model the pixels are coded 1 or 2 such that pixels which are 

horizontally or vertically adjacent are coded differently, giving a chequerboard 

effect. Each coded region is then treated separately giving two sets of 

observations, each providing one estimate of the parameter. The estimates from 

the two sets may then be combined in an appropriate way to give one estimate. 

Higher order models require different codings and the estimates for different 

codings are obtained in the same way.
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Besag (1986) suggests that a neater and more efficient procedure is to use 

maximum pseudo likelihood, which finds the estimate which maximises the 

product of the conditional likelihoods over all the pixels in the region. When 

maximum pseudo likelihood is used, Besag suggests that boundary pixels are 

excluded from the likelihood because of the artificiality of the model there. A 

more detailed overview of maximum pseudo likelihood is given by Geman and 

Graffigne (1986).

Pseudo-likelihood and maximum likelihood methods may be easily used in 

iterative reconstruction techniques. Such techniques are sometimes known as 

adaptive methods and are used in conjunction with simulated annealing by 

Lakshmanan and Derin (1989) and Geman (1985). Besag (1986) outlines a 

procedure for estimating both the noise parameters and a suitable smoothing 

parameter during ICM. Frigessi and Piccioni (1988) consider the case of the 

binary channel, where each pixel changes colour with unknown probability e, 

independently of the others. They propose a method for finding estimates of both 

e and P which they show are consistent if the region is regarded as having a free 

boundary. The consistency of maximum likelihood and pseudo likelihood 

estimates for MRF parameters is also examined by Gidas (1986).

As we have mentioned earlier a "try it and see" approach is commonly used 

and, where the method is computationally inexpensive, it may be desirable to 

produce several reconstructions using different ft parameters.

It is important to understand the influence of the method which is being used 

to provide the reconstruction when considering values of p. Often very different 

reconstructions can be obtained from different methods using the same 

parameters. With a local technique like ICM, the reconstruction process is such 

that pixels which are far apart can rarely influence one anothers colourings. 

Where exact MAP estimation is used long range dependencies in the model can 

have a large affect on the resulting reconstruction.

In addition to the works that have already been mentioned the following 

references are considered useful texts in this area. For general overviews of the 

statistical problem see Grenander (1983), Ripley (1986) and Ripley (1988a). On 

the use of MRF models as priors see Besag (1974), Kashyap and Chellapa (1983) 

and Ripley (1988b). For an introduction to parameter estimation see Grenander

(1985), Grenander and Osborn (1983) and Gidas (1985b). See also Hall and
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Titterington (1986) on more general parameter estimation.
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Chapter 4: Aggregation and the cascade algorithm

4.1 Aggregation

It is common for the record to be collected on very fine pixel grids; digitised 

images often measure 256 by 256 pixels or even larger. The size of such images 

allows the use of aggregation, a technique whereby sets of 2 by 2 pixels are 

replaced by a single large pixel with record equal to the average of the original 

four. This also corresponds to viewing the original image on a coarser grid. 

While the variance of the new record is one quarter that of the original, the range 

of the pixel colourings remains the same; thus the signal to noise ratio is 

substantially increased. The aggregated record may then be treated as the original 

and reconstructions obtained in the usual ways. The effect of reconstructing the 

image from an aggregated record rather than the original record depends on the 

reconstruction technique that is used. Because ICM is a local updating procedure 

pixel colourings are often only influenced by their close range neighbours. If we 

use the same MRF model on the aggregated record, pixels on the original grid 

(which now form part of the larger pixels) are more likely to be affected by pixels 

some distance away. Where simulated annealing or exact MAP estimation is 

used, pixels which are further apart can still have a substantial influence on each 

others’ colourings. For this reason the effect of aggregation is not as apparent 

when these techniques are used. Whichever technique is applied, it can be seen 

that aggregation is a form of smoothing in itself, since it forces 2 by 2 squares of 

pixels to be the same colour. In this chapter we shall be concentrating on the use 

of aggregation when applied in conjunction with ICM, a technique which we have 

already shown to be fast and effective in handling moderate noise levels. We 

demonstrate that ICM can encounter severe problems when dealing with very 

noisy data and propose a technique which exploits the dependence of ICM on the 

initial estimate of the image.

We illustrate the use of aggregation with an example. Figure 4.1 shows a 

256 by 256 binary scene. Gaussian noise with variance 4 is added to the data and 

the closest mean classifier is shown in Figure 4.2. Attempting to reconstruct the 

image at this grid level produces the very different reconstructions shown in 

Figures 4.3 and 4.4. Figure 4.3 was obtained using ICM: although the image 

appears blotchy, increasing the value of J3{ has little effect on the reconstructions
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Figure 4.1 Figure 4.2
The true scene The closest mean classifier
Size 256 x  256 Number of pixels misclassified : 26341

Figure 4.3 
Reconstruction technique: ICM 
Parameters: f t  = 1.0

h=
Initial estimate: Closest mean classifier 
Number of pixels misclassified : 4077

Figure 4.4 
Reconstruction technique: exact MAP 
Parameters: f t  = 0.3

&=/)i/V 2
Initial estimate: Closest mean classifier 
Number of pixels misclassified : 1348
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obtained at this noise level. The exact MAP estimate is excellent, and has a 

misclassification rate of 2%. However, MAP estimates of such large regions are 

not easily obtained and we have added to the computational burden by searching 

for the value of Pi which gave us a good estimate of the known true scene. The 

256 by 256 record may be aggregated to give a 128 by 128 record with variance 

1.0. Using the aggregated record we obtain the reconstructions shown in Figures

4.5 and 4.6. Repeating the aggregation process a 64 by 64 record with variance 

0.25 is obtained. Figures 4.7 and 4.8 show the reconstructions for this record. 

Again the MAP reconstructions shown in Figures 4.4 and 4.6 have been obtained 

using a value of fii which gave a reconstruction which was close to the known 

true scene. In addition to the benefits of an increased signal to noise ratio there is 

also a significant reduction in the amount of processing required.

It is important to understand that the MRF models that are used at different 

levels of aggregation are not equivalent. There is a major change in the 

neighbourhood structures that are used at the two levels when considered in terms 

of the smaller pixel. Figure 4.9 shows the neighbours which are included in the 

MRF specification of the model at two levels of aggregation. For the finer grid, 

the shaded pixels are the neighbours of the black pixel. For the coarser grid, the 

black pixel must be coloured the same colour as the other subpixel which share 

the common larger pixel, and its colouring is affected by the colourings of the 

shaded pixels.

Figure 4.9

The two models are not equivalent, neither can they be made equivalent by a 

simple change in the parameters but a more detailed analysis is required. Gidas

(1986) uses a single MRF model defined on the finest pixel grid and employs the 

"renormalisation group" approach to compute the models implied for the coarser 

grid. The models at the aggregated level are very complex and we would argue 

that, given the approximate nature of the MRF model, it is not unreasonable to
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Figure 4.5 
Reconstruction technique: ICM 
Parameters: f t  = 1.0

A=A/'5
Initial estimate: Closest mean classifier 
Dimensions: 128 x 128 
Record: 256 x 256 aggregated

Figure 4.6 
Reconstruction technique: exact MAP 
Parameters: f t  = 0.5

ft= ft/V 2
Initial estimate: Closest mean classifier 
Dimensions: 128 x 128 
Record: 256 x 256 aggregated

*

Figure 4.7 
Reconstruction technique: ICM 
Parameters: f t  = 1.0

2
Initial estimate: Closest mean classifier
Dimensions: 64 x 64
Record: 256 x 256 aggregated twice

Figure 4.8 
Reconstruction technique: exact MAP 
Parameters: f t  =0.8

&=A/V2
Initial estimate: Closest mean classifier
Dimensions: 64 x 64
Record: 256 x 256 aggregated twice
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reduce computation at the expense of a less rigorous treatment of the model.

In some cases aggregation may not be helpful. For example, if the true scene 

contains regions of colour which are only a couple of pixels wide then 

aggregation may lead to their obliteration. However, scenes of this type are 

unlikely to give good reconstructions if the variance is high. The example 

illustrates that the reconstruction of large regions of colour may be greatly 

assisted using aggregation.

4.2 The cascade algorithm

In Section 3.2 we demonstrated the dependence of ICM on the initial 

estimate. In the above example we have seen that aggregation may be helpful in 

reconstructing the larger features of an image. We now propose a method which 

uses the reconstructions obtained on coarser grids as the initial estimates for ICM 

at finer levels.

A reconstruction is obtained by aggregating the record until it is one pixel in 

size. This is then used as the initial colouring for the ICM method on the 2 by 2 

grid. This reconstruction is in turn used as the initial colouring for ICM on the 4 

by 4 grid and we continue in this way, obtaining reconstructions right up to the 

level of the original record. We illustrate the success of this technique with two 

examples. The first of these is based on the scene shown in Figure 4.1 for which 

the closest mean classifier is shown in Figure 4.2. Recall that Gaussian noise with 

variance 4.0 has been added. The cascade reconstructions are shown in Figures 

4.10 to 4.15. The true scene for the second example is shown in Figure 4.16. 

Gaussian noise with variance 8.0 is added to the data and the closest mean 

classifier is shown in Figure 4.17. The cascade reconstructions are shown in 

Figures 4.18 to 4.23. For both of these examples the reconstructions for the 

single pixel, the 2 by 2 grid and the 4 by 4 grid are not shown.

The algorithm works well in the first example. Figure 4.11 gives a good 

indication of the structure of the image and this structure is preserved through 

subsequent stages. We shall comment in Section 4.3 on the relatively small 

changes occurring in the final stages of the algorithm. The second example has 

been chosen to show the limitations of the method. The variance for this record is 

extremely high and some of the regions of colour are only a few pixels wide. 

The algorithm is successful in reconstructing the largest of the regions but fails to



Figure 4.10 
Reconstruction technique: Cascade, ICM 
Parameters: ft  = 1.0

ft= ft/V 2 
Initial estimate: 4 x 4  cascade 
Dimensions: 8 x 8
Record: 256 x 256 aggregated 5 times

Figure 4.12 
Reconstruction technique: Cascade, ICM 
Parameters: f t  = 1.0

2
Initial estimate: 16 x 16 cascade (Fig 4.11)
Dimensions: 32 x 32
Record: 256 x  256 aggregated 3 times

Figure 4.11 
Reconstruction technique: Cascade, ICM 
Parameters: f t  = 1.0

ft=ft/V 2
Initial estimate: 8 x 8  cascade (Fig 4.10)
Dimensions: 16 x  16
Record: 256 x  256 aggregated 4 times

Figure 4.13 
Reconstruction technique: Cascade, ICM 
Parameters: f t  = 1.0

Initial estimate: 32 x  32 cascade (Fig 4.12)
Dimensions: 64 x 64
Record: 256 x 256 aggregated twice
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Figure 4.14 
Reconstruction technique: Cascade, ICM 
Parameters: f t  = 1.0

ft=ft/V2
Initial estimate: 64 x 64 cascade (Fig 4.13) 
Dimensions: 128 x 128 
Record: 256 x 256 aggregated

Figure 4.15
Reconstruction technique: Cascade, ICM 
Parameters: f t  = 1.0

ft=ft/V2
Initial estimate: 128 x  128 cascade (Fig 4.14) 
Dimensions: 256 x  256 
Record: 256 x 256 (original)
Number of pixels misclassified : 1928
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Figure 4.16 Figure 4.17
The true scene The closest mean classifier
Size 256 x  256 Number of pixels misclassified : 28109

Figure 4.18 
Reconstruction technique: Cascade, ICM 
Parameters: = 1.0

Initial estimate: 4 x 4  cascade 
Dimensions: 8 x 8
Record: 256 x 256 aggregated 5 times

Figure 4.19 
Reconstruction technique: Cascade, ICM 
Parameters: f}\ = 1.0

&=/M'5
Initial estimate: 8 x 8  cascade (Fig 4.18)
Dimensions: 16 x 16
Record: 256 x 256 aggregated 4 times
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Figure 4.20 
Reconstruction technique: Cascade, ICM 
Parameters: = 1.0

h= P J<2
Initial estimate: 16 x  16 cascade (Fig 4.19)
Dimensions: 32 x  32
Record: 256 x 256 aggregated 3 times

•
Figure 4.22 

Reconstruction technique: Cascade, ICM 
Parameters: A =1.0

Initial estimate: 64 x  64 cascade (Fig 4.21) 
Dimensions: 128 x  128 
Record: 256 x 256 aggregated

*

Figure 4.21 
Reconstruction technique: Cascade, ICM 
Parameters: /?i = 1.0

/?2=A/V2
Initial estimate: 32 x 32 cascade (Fig 4.20)
Dimensions: 64 x 64
Record: 256 x 256 aggregated twice

*

Figure 4.23 
Reconstruction technique: Cascade, ICM 
Parameters: A  = 1.0

h=fiiht2
Initial estimate: 128 x 128 cascade (Fig 4.22) 
Dimensions: 256 x 256 
Record: 256 x  256 (original)
Number of pixels misclassified : 2075
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reconstruct the smaller regions. It is interesting to note that one of the smaller 

regions appears in two of the intermediate stages but is later obliterated. This 

apparent phenomenon can be explained. In the early stages of the process the 

cascade reconstructions are very close to the closest mean classifier (in this 

example the variance for the 8 by 8 record is 8/45 =0.0078125) and so a region 

will not become apparent until it covers at least one half of a pixel. As the grid 

size increases so too does the variance and the trustworthyness of the individual 

records becomes more suspect. When the variance is large, as in the last two 

stages of the example, this leads to the obliteration of small regions of colour.

One might try to develop theoretical arguments to produce a "correct" 

sequence of values of Pi for use at different stages of the cascade algorithm. In 

the context of edge processes, where the line edges which separate regions of 

colour are modelled as an alternative to discrepancies, Silverman, Jennison and 

Brown (1989) interpret the prior as a penalty and suggest that it should be chosen 

to be approximately independent of the pixel grid superimposed. They suggest 

that this penalty should approximate a constant multiple of the total boundary 

length in the image. In our application this would imply that the parameter p i be 

halved as the pixel sizes are quartered. However if we wish to preserve 

correlation between 2 points fixed in the image, then we would need to increase 

Pi as the pixels get smaller. In Section 4.1 we found it best to use smaller values 

of Pi at finer grid levels when exact MAP reconstruction was used. ICM behaves 

very differently and we have not found using smaller values at finer levels to be 

very successful. Although in some cases the range of "suitable" values of Pi 

appears to change at different levels of aggregation, these ranges overlap and we 

have obtained good results using the same value of Pi at all levels.

Again we can use the faster version of ICM to avoid unnecessary 

computation. Here we store the coordinates of pixels whose colourings have 

changed in the current iteration. If the number of these is small, only pixels 

whose neighbours have changed colour in the last iteration are considered for 

updating in the next iteration. For each of the cascade reconstructions one 

complete iteration plus some minor changes was all that was required. Summing 

a geometric series, we see that the total computation required is approximately 

equivalent to 1 j  complete iterations of ICM on the finest pixel grid.
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In this section we have incorporated ICM into the cascade algorithm. The 

reasons for this were the strong dependence of ICM on the initial estimate and the 

intuitive appeal of using an aggregated reconstruction as the initial estimate. In 

addition, the computation required for processing the image is significantly 

reduced. It is possible that a different technique such as simulated annealing 

could be incorporated into the cascade algorithm but the initial estimate has little 

effect on the reconstruction obtained unless the number of sweeps is very small.

4.3 Early stopping of the cascade algorithm

Looking at the Figures 4.13, 4.14 and 4.15, we can see that although there 

are small changes in the details the overall structure of the image remains 

unchanged as finer levels are used. The Table 4.1 shows the number of changes 

in pixel colourings which occur at each stage for both of the examples. These 

figures are also shown as a percentage of the size of the region.

1st example 2nd example

Grid

level

Number 

of changes

Percentage

change

Number 

of changes

Percentage

change

8 by 8 11 17.2 7 10.9

16 by 16 37 14.5 20 7.8

32 by 32 48 4.7 41 4.0

64 by 64 94 1.2 78 1.9

128 by 128 143 0.9 115 0.7

256 by 256 177 0.3 150 0.2

Table 4.1

These figures may be used as a subjective guide as to whether the 

continuation of the algorithm to next grid level is worthwhile given the additional 

computational burden. In both of the examples it is reasonable (with hindsight!) 

to consider stopping the process after the 128 by 128 reconstructions have been 

obtained.



4-12

4.4 Cascade and grey level reconstruction

We now consider the use of the cascade algorithm when the image contains 

more than 2 colours, now thought of as grey levels. We introduce a prior which 

may be used in conjunction with ICM to successfully reconstruct certain types of 

grey level images. We then incorporate this method into the cascade algorithm 

and obtain very good results.

4.4.1 A grey level problem and prior

Consider a scene in which each pixel takes one of R grey levels; typically 

R = 64 or 256. The record y-t at each pixel is perturbed by additive independent 

Gaussian noise with mean 0 and variance a 2. For problems of this type the 

choice of the prior can prove crucial. Different priors exhibit different qualities in 

reconstructions and the choice of the prior will depend on the expected qualities 

of the true scene. We assume that in the true scene there are k underlying levels 

/ i , /2 ,...,/jt and that the region is separated into smaller regions, where each sub 

region takes one of the underlying levels with possibly some within level 

fluctuation, i.e. inside an area which takes one of the underlying grey levels, lr 

say, there are pixels which are coloured with grey levels very close to lr. We aim 

to reconstruct the regions and are not concerned with the preservation of any 

fluctuations. These assumptions will not apply to all applications; e.g. if we 

expect very smooth transitions between grey level regions. Because of the nature 

of the problem we choose to use the prior given by

_ J _____
1+aiXj-Xi)2 ^

This prior was introduced in the context of single photon emission tomography

p ( x ) ~  e x p -l-^ 2  £
i= 1 jeB,

1 - (4.4.1)

(SPET) by Geman and McClure (1985). Inspection of the term

11 -
1+a(xj - x i)2

shows that while it is quadratic close to jc;—jcy=0 it penalises all large 

discrepancies to the same degree. Thus the prior avoids the problems of "over

penalising" very large discrepancies which might occur as a result of a natural 

boundary.
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A simpler problem

We shall now simplify the problem a little and describe the reconstruction 

procedure. We assume that the underlying levels are known to be m ,2m ,...,km  

where m and k are known integers. This simplifies the problem in two ways; 

firstly the underlying levels are known and we can produce a reconstruction in 

which every pixel takes one of these colours. Also the underlying levels are 

equally spaced, we will see later that this assists us in the choice of the parameter 

a. The ICM method is used to find a local maximum of the posterior distribution, 

choosing at each stage the colouring of pixel i which minimises

1
2 a 4

<yi-Xi)2 + / ? £
jedi

1 1
1 +a(xj-Xi)

Once a reconstruction has been obtained with values *{e{m,m-l-l,...,£m}, 

each pixel is assigned the underlying grey level from the set {m,2m,...,£m} 

which its value is closest to, i.e. if pixel i has colouring jq in the reconstruction 

then it is assigned level pm  such that \p m -x t | is at its minimum over p= 1,...,£. 

This is called the "binning" stage. As is common in most applications of ICM, 

we use the closest mean classifier as the initial estimate of the scene.

Choosing the parameters

The parameter /? is used in the same way as for binary reconstruction and is 

not discussed here. In the examples that follow the second order neighbours have 

been down weighted by a factor of 1/V2 as in previous experiments. The choice 

of a  is important. It determines the amount of variation that is permitted within 

regions. Clearly we desire a value which allows maximum variation within 

regions but is not detrimental to the reconstruction process at the region edges. 

Consider the effect of the prior on a pixel which has half of its neighbours 

coloured pm  (0<p<k) and the remainder coloured (p+l)m. The prior should 

favour either pm  or (p+ l)m  against pm+ml2. This characteristic is achieved if

1 - 1
l+a(ml2)2

1 - 1
l+ am 2

which occurs if and only if

a >
m ‘
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There are arguments which suggest that the prior should be much more likely to 

assign one of the underlying levels pm  or (p+ l)m  in the case of the pixel that we 

have described above. This corresponds to choosing a value of a  much larger 

than 2/m2 and restricts the variability within regions. The danger of this is that 

small clusters of pixels appear in the reconstruction inside regions which will be 

binned to a different grey level. Because ICM chooses the modal value at each 

stage of the process, the choice of a  is not as crucial as it would be if simulated 

annealing was used. We have found that using a=(2/m 2) x l . 1 gives good results.

An example

Figure 4.24 shows a 128 by 128 4 colour scene in which the pixels take 

values 0, 11, 22 and 33. The true value for each pixel is perturbed by adding 

independent Gaussian noise with mean 0 and variance 20. In order that the 

variance of the record may be compared with binary and other examples we 

introduce the signal to noise ratio which is the difference between the mean 

levels divided by the standard deviation of the noise. For this example the signal 

to noise ratio is 11/^20=2.46. Figure 4.25 shows the closest mean classifier for 

the record which is used as an initial estimate of the true scene. The unbinned 

ICM reconstruction obtained using a=0.02  and /?=1.0 is shown in Figure 4.26. 

Figure 4.27 shows the corresponding binned reconstruction. These results are far 

superior to those obtained using other priors. The priors which we experimented 

with were

p (* )~ e x p { - f  S  Z 7(*i+*/)}
i=lj€di

which penalises all discrepancies equally and

p ( jc )“ e x p { - | - 2  E  (•*/“ •*y)2 )-
i=ljedi

which penalises the difference between pixel colourings and the mean colouring 

of their neighbours.

The original problem

We now return to the original problem, where the underlying levels are 

unknown. The method that we have described may still be applied but there are



Figure 4.24
The true scene
Size 128 x  128
Levels: 0, 11, 22, 33. R=33

Figure 4.26
Reconstruction technique: ICM, known levels

(unbinned)
Parameters: p x = 1.0

/*2=/S,/V2
a=  0.02 

Initial estimate: Closest mean classifier

Figure 4.25 
The closest mean classifier 
Number of pixels misclassified: 3159

Figure 4.27
Reconstruction technique: ICM, known levels

(binned)
Parameters: p x = 1.0

a =a n z
a= 0.02 

Initial estimate: Closest mean classifier 
Number of pixels misclassified : 134
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two additional considerations. First, a  must be selected in a different way, since 

the choice depends on the unknown separation of the underlying levels. Also, the 

values which are used as bins in the final stage of the process are unknown and 

must be estimated. Reliable estimates of these values may be obtained if an 

adaptive approach is adopted and we shall describe the procedure by means of an 

example. Figure 4.28 shows a 128 by 128 scene in which each pixel takes one of 

the values 8, 16 29 or 55. The range of possible pixel colourings is [0,63]. 

Gaussian noise with variance 50 is added to the true value for each pixel and the 

closest mean classifier is shown in Figure 4.29. Note that the underlying levels 

are unknown and so in the closest mean classifier each pixel is assigned the value 

in [0,63] which is closest to its record. We first obtained a reconstruction using 

a=0.01 in the prior (4.4.1), a value which corresponds to a separation of about 15 

grey levels between the underlying levels. Although this initial estimate was not 

a good one, the unbinned reconstruction obtained is fairly good and is shown in 

Figure 4.30. The fitted values from this reconstruction are shown in the histogram 

in Figure 4.31 which indicates that the separation between the underlying levels is 

as small as 8. For a separation of 7 to 8 grey levels in the underlying scene we 

would choose to use a=0.038 and Figure 4.32 shows the unbinned reconstruction 

obtained using this value. The histogram of the fitted values is shown in Figure 

4.33 which suggests that the bins are at the levels 9, 16, 29 and 55. Notice that 

the peaks are much better defined in the histogram in Figure 4.33 than in Figure 

4.31. This is because fewer pixels are classified as being between levels. The 

binned reconstruction is shown in Figure 4.34.

4.4.2 Using the cascade algorithm

The ICM method that we have described works well in the examples that we 

have shown. Where the variance of the noise is larger, reconstructions obtained 

using the ICM method are unsatisfactory. Recall that this was also true for the 

binary examples that were shown earlier in this chapter. We shall again use the 

cascade algorithm to reduce the the variance of the data and to assist in the 

reconstruction process. Figure 4.35 shows a true scene where each pixel takes a 

value 10, 25, 40 or 55 and the range of possible values is [0,63,]. Gaussian 

noise with variance 900 is added to the true value at each pixel and the closest 

mean classifier is shown in Figure 4.36. This variance corresponds to a signal to
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Figure 4.28
The true scene
Size 128 x  128
Levels: 8, 16, 29, 55. R= 65

rM mm.

B u mK&. A

Figure 4.29 
The closest mean classifier

Figure 4.30
Reconstruction technique: ICM, unknown levels 
Parameters: = 1.0

a=0.01

J Lrff L
0 10 20 30 40 50 60 70

pixel grey level

Figure 4.31
Histogram plot of fitted values for Figure 4.30



Figure 4.32
Reconstruction technique: ICM, unknown levels 
Parameters: f t  = 1.0

h=Px!'ft 
<*=0.038

Figure 4.33
Histogram plot of fitted values for Figure 4.32

' I f e

Figure 4.34
Reconstruction technique: ICM, estimated levels

(binned)
Parameters: as for Figure 4.32 
Estimated levels: 9, 16, 29, 55.
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Figure 4.35
The true scene
Size 256 x  256
Levels: 10, 25, 40, 55. R = 65

Figure 4.36 
The closest mean classifier 
Number of pixels misclassified : 39147

Figure 4.37
Reconstruction technique: ICM, known levels 
Parameters: A = 1 .0

h=fi,N2
a=0.01

Figure 4.38
Reconstruction technique: ICM, unknown levels 
Parameters: A  = 1.0

a=  0.01 
Initial estimate: unbinned l x l  cascade 
Dimensions: 2 x 2
Record: 256 x 256 aggregated 7 times
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noise ratio of 0.5. The underlying levels are unknown and so in the closest mean 

classifier each pixel is assigned the value in [0,63] which is closest to its record. 

The ICM reconstruction shown in Figure 4.37 was obtained with the underlying 

levels known but is still of fairly poor quality. However we can incorporate the 

ICM technique into the cascade algorithm in a similar way as for binary images 

to obtain excellent reconstructions for this record. Figures 4.38 to 4.45 show the 

cascade reconstructions at different stages of the process which were obtained 

using cir=0.01. This estimate of a  was obtained by first executing the cascade 

using a sensible guess for a\ the histogram of fitted values was inspected at the 

final stage and interpreted in the same way as for the previous example. The 

value a=0.01 corresponds to a separation of 14 to 15 between the underlying 

levels. The bins which were eventually used were 11, 25, 40 and 55 and Figure 

4.45 shows the binned reconstruction. During the cascade process the unbinned 

reconstructions are used as an initial estimate for the next level. Initially we 

experimented with using the binned reconstructions at each level as the initial 

estimates but the results were poor.

In the binary example we considered the possibility of an early stopping 

criterion for the algorithm. The criterion may also be applied to the grey level 

cascade and we observe that only 1.2% of the pixels shown in the 256 by 256 

reconstruction have changed colour at that level of the cascade.

4.5 Summary

In this chapter we have introduced an algorithm which enables the large 

scale features of an image to be successfully reconstructed even when the noise 

level is high. The cascade algorithm successfully uses aggregation to exploit the 

dependence of the local updating procedure ICM on the initial estimate of the 

scene.

The technique that we have described for grey level reconstruction requires 

intervention at several stages. There may be difficulties with the interpretation of 

the histogram and the choice of a, but in the experiments that we have conducted 

these tasks have not proved arduous. The examples that we have shown illustrate 

the potential of the technique to deal with realistic problems.



Figure 4.39
Reconstruction technique: ICM, unknown levels 
Parameters: A  = 1.0

o=0.01
Initial estimate: unbinned 2 x 2  cascade (Fig 4.38) 
Dimensions: 4 x 4
Record: 256 x 256 aggregated six times

Figure 4.40
Reconstruction technique: ICM, unknown levels 
Parameters: f t = 1 .0

&=A/VZ
a=0.01

Initial estimate: unbinned 4 x 4  cascade (Fig 4.39) 
Dimensions: 8 x 8
Record: 256 x 256 aggregated Five times

Figure 4.41
Reconstruction technique: ICM, unknown levels 
Parameters: ft  = 1 .0

&=/»i m  
o=0.01

Initial estimate: unbinned 8 x 8  cascade (Fig 4.40)
Dimensions: 16 x  16
Record: 256 x 256 aggregated four times

Figure 4.42
Reconstruction technique: ICM, unknown levels 
Parameters: f t = 1 .0

ft= ft/V 2 
a=0.01

Initial estimate: unbinned 16 x  16 cascade (Fig 4.41) 
Dimensions: 32 x 32
Record: 256 x 256 aggregated three times



Figure 4.43 Figure 4.44
Reconstruction technique: ICM, unknown levels Reconstruction technique: ICM, unknown levels
Parameters: A  = 1.0 Parameters: fa = 1 .0

f a r t 2 P i = f a N 2
a=0.01 a=0.01

Initial estimate: unbinned 32 x 32 cascade (Fig 4.42) Initial estimate: unbinned 64 x  64 cascade (Fig 4.43)
Dimensions: 64 x 64 Dimensions: 128 x 128
Record: 256 x 256 aggregated twice Record: 256 x 256 aggregated once

:

Figure 4.45 Figure 4.46
Reconstruction technique: ICM, unknown levels Reconstruction technique: ICM, unknown levels
Parameters: fa = 1.0 binned to estimated bins

p2= f a l ^  Parameters: as for Figure 4.45
a=0.01 Estimated levels: 11, 25, 40, 55.

Initial estimate: unbinned 128 x  128 cascade (Fig 4.44)
Dimensions: 256 x 256 
Record: original 256 x 256 record
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Chapter 5: Subpixel refinement

5.1 Introduction

So far the images that we have considered have contained only pixels which 

are wholly one colour. In practical applications this will rarely be the case, for 

example, LANDSAT (land satellite) data, used to classify rock types or land use, 

may be collected over very large areas of land. Switzer (1983) deals specifically 

with LANDSAT data and uses an example where each pixel measures about an 

acre in size; the problems of classifying pixels which are on the boundaries of 

class types are recognised. In the context of edge detection Huertas and Medioni 

(1986) extend masking methods to attain subpixel precision. Single photon 

emission computer tomography (SPECT) and positron emission tomography 

(PET) are applications in which the data are indirectly observed and the 

orientation and size of the pixel grid may be chosen freely. This will often lead to 

many split pixels, i.e. pixels which contain more than one region type. Jennison 

(1986) extends the method of Iterated Conditional Modes to a subpixel level: we 

shall describe this technique in detail and develop it to greater generality.

5.2 Quarter-pixel Iterated Conditional Modes

This technique was developed for binary imaging although there are 

possibilities for extending the method to handle more classes. At this point we 

must introduce more notation since the true value x*  at pixel i no longer takes 

values 0 or 1. We use zz- to denote the colouring which uniquely defines the 

configuration of the black and white areas within pixel i, z={zi ) defines a 

colouring of the whole region and we use pn(z{) to denote the proportion of pixel 

i which is coloured black when the colouring is z-r  The true colouring of pixel i 

is denoted by z * . We assume that the record yt at pixel i is Gaussian with mean 

pn (z* )  and variance a 2. The problem is to estimate z* = [z*}  from the set of 

records, y,-.

Jennison (1986) considers reconstructions in which quarter pixels are 

coloured individually. Each pixel is divided into 2x2 square quarter pixels and a 

MRF model is constructed which penalises discrepancies between quarter pixel 

neighbours, i.e. quarter pixels are treated in the same way as full size pixels have 

previously been treated. Notice that each quarter pixel has neighbours which are
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both inside and outside of its larger parent pixel. The prior model which is used 

is

p(x)  ~  e x p - ^ - J  2  £ z (*y/t) (5.1)2,= 1 j = \ k = 1

where corresponds to quarter pixel jk  of pixel i and takes the value 0 or 1; 

Z(Xijk) is the number of discrepant quarter pixel neighbours of quarter pixel jk  of 

pixel i. The factor 1/2 is included as each neighbour pairing will be counted 

twice. The pixels are updated in a similar way to ICM, at each pixel the 

colouring of its 4 quarter pixels is chosen to minimise the contribution to

1

i=l 2cr'

i  2 2
y i— r 'L ' L x ijk

j= l k = l

2 a  n 2 2
(5.2)

z  i=l y=U=l

The initial colouring at each subpixel is determined from an ICM reconstruction 

which is first obtained in the full pixel grid. As with the cascade algorithm no 

attempt is made to reconcile the models at the two levels.

An example

Figure 5.1 shows the true scene. A 32 by 32 grid is superimposed on the 

image and the proportion pn(z{) of black in each pixel is recorded. The record y,- 

at pixel i is distributed as Gaussian with mean pn{z{) and variance 0.04. The ICM 

reconstruction is shown in Figure 5.2 and this is used as a starting point for the 

quarter pixel technique which gives the reconstruction shown in Figure 5.3. The 

circle in the top left of the image has been well reconstructed. The star shape 

contains points which are not even a pixel in width and it is not surprising that 

this shape has not been well reconstructed.

In general we have obtained good results using the same value of at both 

grid levels, i.e. for both the initial full pixel ICM and the subsequent quarter pixel 

technique. When the signal to noise ratio is high both methods are fairly robust 

and the choice of the parameter will not be crucial.

5.3 Further refinement

The success of Jennison’s method suggests that further subpixel refinement 

may be beneficial. The obvious progression would be to consider the m xm  

breakdown of pixels in which each pixel is divided into m 2 square pixels and
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¥

Figure 5.1
The true scene

*

Figure 5.2 
Reconstruction technique: ICM 
Parameters: = 1 .0

2
Initial estimate: Closest mean classifier

Figure 5.3
Reconstruction technique: Jennison’s quarter 

pixel technique
Parameters: A  = 1.0

h a i l 'd
Initial estimate: ICM reconstruction (Figure 5.2)



5-4

each of these subpixels is coloured individually. Denoting by the colouring of 

subpixel jk  of pixel /, [ x ^ } is chosen to minimise

i n  i m m  a  n m m
A K J i  - - j E S  xijk) + f  X  X  X  2{xijk). (5.3)
2a i= i m j— 1 1(— i L i=\ j— i *=i

If all m 2 subpixels of one pixel are to be updated in one step of the ICM method,

the number of different colourings of a pixel grows exponentially with the number 

of subpixels and the minimisation will become computationally prohibitive. We 

shall not consider this approach further. Instead we consider the limit of the 

process, in which an arbitrary colouring of each pixel is allowed. Rather than 

specify a MRF model for the true scene in the continuum, we interpret the 

minimisation of the objective function as a form of penalised maximum 

likelihood. In the pixel model, the second term of the objective function is, 

approximately, a multiple of the total boundary length in the image. Thus, an 

analogous objective function for a general reconstruction, z, is

1 XO ’i - p n U i ) ) 2 +  r U z )  (5.4)
to *  iTi

where L(z) is the total edge length in scene z and y  is a fixed constant. All pixels 

have dimensions l x l .  An advantage of using edge length as a measure is that it 

is rotationally invariant, a property that is impossible to obtain using pixels grids, 

however fine.

5.4 Finding subpixel colourings

In this section we investigate the form of the scene {z, } which minimises the 

objective function given by (5.4) and we propose an approach which may be used 

to find a local minimum.

5.4.1 Theorems relating to the form of the global solution

By considering the form of the solution locally, properties of the global 

solution may be discovered. In any solution the areas of black and white are 

separated by edges. We refer to sections of edge as paths and present two 

important theorems concerning the properties of paths in the global solution. We 

shall show:
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1 Any path inside a pixel separating regions of colour is an arc of a circle or a 

straight line.

2 There are no discontinuities in the direction of the tangent to the path.

Thus, the solution might be of the form shown in Figure 5.4

Figure 5.4

Theorem 1

Suppose that the solution contains a path, between two points a and b, which 

lies wholly inside a pixel, except possibly at the points a and b which may lie on 

the pixel edge. This path must be either a straight line or the arc of a circle.

P roof:

Suppose a and b are interior points of the pixel. Let c be any point on the 

path ab. We shall show how to construct a small interval on the path around c in 

which the path is a straight line or the arc of a circle. We can consider the set of 

such intervals which may be constructed on the path ab which provides an open 

cover for the path ab and, since the path ab is closed and bounded, by the Heine- 

Borel Theorem there is a Finite subcover of the path for which each overlapping 

interval is a straight line or the arc of a circle. It follows that the whole of the 

path ab must be either a straight line or the arc of a circle. If a and b are not 

interior points of the pixel then, by the above argument, for any points a' and b '
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on the path ab, the path a 'b ' is a straight line or the arc of a circle; taking the 

limit as a '—>a and b '—>b we see that the path ab must also be a straight line or 

the arc of a circle.

It remains to show that for every point c on the path ab we may construct a 

small interval on the path ab which is a straight line or the arc of a circle.

If there are points d and e, one either side of c, such that the path between d 

and e is a straight line then we take the interval (d ,e ).

If the path at c is not locally a straight line, it is easily seen that we can find 

points d  and e, one on either side of c, such the path P between d and e is all on 

one side of the straight line de. For example, if the path lies to one side of the 

tangent at c in a neighbourhood of c, as in Figure 5.5, then we may translate the 

tangent at c by some distance e, giving the points d  and e as shown in Figure 5.5.

Figure 5.5

If the path at c lies above the tangent at c to one side of c and below this tangent 

to the other side, as shown in Figure 5.6, then the points d and e may be found by 

rotating the tangent by e radians, giving the line Llt and then translating L x by 

distance e to give the line Li and the points d  and e. For both of these cases the 

distance e must be chosen to be sufficiently small so that the points d  and e occur 

between the points a and b. There is an additional constraint which must also be 

satisfied and this is explained later in the proof.

Having found points d and e we now show that the path between d  and e 

must form the arc of a circle. Suppose that the path P between d  and e is not the 

arc of a circle (see Figure 5.7). Let Z be the area enclosed by the path P and the 

straight line de. Because P is part of a solution it has minimum length of all paths 

between d and e enclosing area Z with the line de. We construct the unique circle
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Figure 5.6

d

Figure 5.7

and let the total area of the circle be Y. Consider the path formed when the path P 

is combined with part of the circle C as shown in Figure 5.8b.

e

Figure 5.8a Figure 5.8b

This path also encloses total area Y. Pars (1962) proves that the object which has
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minimum boundary for coverage of a given area is a circle. It follows that the 

circle C has a smaller perimeter than the path in Figure 5.8b. Since the only 

difference between these paths occurs between d  and e it follows that the path P 

is inferior to the path given by the arc of the circle C.

Although we have constructed a path which is superior to the original the 

new path must also satisfy an additional constraint. It must remain inside the 

pixel and may not interfere with other colourings inside the pixel. This constraint 

is satisfied if e is chosen sufficiently small so that the path between d  and e, 

which encloses the same area with the straight line de as the path P, remains 

inside the pixel and may not interfere with other colourings inside the pixel. That 

the constructed path is superior to the original is a contradiction and so the 

original path P cannot form part of a solution. Thus, our supposition that the path 

between d  and e was not the arc of a circle is shown to be false and this 

completes the proof.

Theorem 2

There are no discontinuities in the direction of the tangent to the path.

P ro o f:

Suppose a solution contains a discontinuity in the direction of the tangent to 

the path, as shown in Figure 5.9.

X

Figure 5.9

We consider the effect on the objective function of a small change in the path 

close to the discontinuity at X. Construct the points a and b on the two lines such 

that both are distance e from the point X  (see Figure 5.10a). Let the path between 

a and b change to a straight line as shown in Figure 5.10b. The reduction in the 

length of the path is of order e. The first term of the objective function may 

involve as many as 4 pixels (since the point X  may lie on the vertex of 4 pixels),
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X

a b

Figure 5.10a Figure 5.10b

but for each pixel there will be a change in the objective function of order e 2.

Thus, for sufficiently small e there will be a decrease in the overall value of the

objective function as the result of this change. We have constructed a path which 

is superior to the original and thus the original path may not form part of the 

solution. So the solution may not contain discontinuities in the direction of the 

tangent. □

5.4.2 Other results

Theorems 1 and 2 are crucial to the understanding of the nature of the global 

solution. There are some more results which also increase this understanding 

although they refer to particular cases. Rather than present formal proofs for each 

of these, an informal justification is given.

(a) If a pixel in the solution has a boundary which is all one colour then the

pixel will either:

• be all one colour,

• contain a circle of opposite colour (this follows from Theorem 1), 

or

• contain a shape made up of straight lines along pixel edges joined by

quarter arcs of circles, as shown in Figure 5.11; the quarter arcs having 

a common radius. (This follows from Theorems 1 and 2 combined with 

some more detailed analysis involving symmetry.)

(b) Where a pixel in the solution has a neighbouring boundary as shown in 

Figure 5.12a the path between a and b will be the arc of a circle (Figure 

5.12b) or will be made up of straight lines on the pixel boundary joined by 

arcs of circles which have common radius, (two possible solutions are shown 

in Figure 13).



Figure 5.11

Figure 5.12a

Figure 5.13

(c) A solution may contain several separate areas of the colour. However, if any 

of these areas may be moved, within the region, so that they touch another 

area of the same colour without increasing the value of the objective function 

then neither colouring may be a solution. This is illustrated in Figures 5.14a 

and 5.14b. If the colouring in Figure 5.14a is a solution, then so is the 

colouring in Figure 5.14b, but Theorems 1 and 2 demonstrate that Figure 

5.14b cannot be a solution. This is a contradiction and therefore 5.14a 

cannot be a solution.
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Figure 5.14a Figure 5.14b

(d) Pixels in the solution may have neighbours which have colourings which 

split the boundary into more than 2 sections of colour (see Figure 5.15a). 

The colourings of such pixels must still adhere to the conditions found in 

Theorems 1 and 2 and an example colouring is shown in Figure 5.15b.

5.4.3 Finding the solution

We have seen some of the properties of the global minimum of (5.4), and it 

is not clear that such a solution is directly attainable. Instead we may search for a 

local minimum using an ICM type approach. As part of an iterative scheme we 

may consider pixels individually, finding the best colouring for each given the 

colourings of all other pixels. The neighbour information which is used involves 

only the immediate neighbourhood, the colouring of the boundary of the pixel. 

As an example, we consider the configuration at pixel i as shown in Figure 5.16. 

The record for pixel i is y t which is known; the lengths a and b to the points / 

and m are also known. The area D is a simple function of a and b and the area E

Figure 5.15a Figure 5.15b



m b
Figure 5.16

is a function of (p and the distance c between the points I and m. In fact

„2
E =

4sin2^
(p-sin^cos^)

and the arc length is c<p/sirup.

So the contribution to the objective function from pixel i is

1
2cr

(D + E -y ij2 + ycrp
sinp

1
2(7'

D+
4sin2^

(^-sin^cosp)-y,- ycrp
sin̂ ?

(5.5)

For the configuration shown in Figure 5.16, D = a + (b -a )/2 and c=^l l+ (b -a )2. 

For this and other cases the value of <p which minimises (5.5) may not be found 

directly as the expression may have two local minima. However, this value of <p 

may be found quite easily using numerical techniques.

This provides the optimal arc for this single pixel given the colouring of its 

neighbours. However, iteratively updating all of the pixels in this way will not 

necessarily lead to to a local minimum of (5.4) satisfying the conditions of 

Theorem 2. Figure 5.17 shows the arcs for a pair of neighbouring pixels each of 

which is optimal given the pixel’s neighbours. The tangent of the path at the join 

P is discontinuous and so this configuration may not form part of a solution. If 

the point P is allowed to move on the common pixel edge then the arcs which
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Figure 5.17

together minimise the contribution to the objective function, given the colourings 

at all other pixels, will join with a continuous tangent. Repeatedly updating the 

pixels in pairs around an area of colour will give a local minimum of the 

objective function which does satisfy Theorems 1 and 2. Because the objective 

function is reduced or remains constant at every updating, convergence, at least to 

a local minimum, is guaranteed. We shall not pursue this form of minimisation 

further, rather we shall consider an approximate method which avoids many of the 

complexities of this type of solution.

5.5 Implementation of a method for subpixel refinement 

5.5.1 Introduction

In Section 5.4 we investigated the properties of the global minimum of (5.4). 

In this section we describe a method for obtaining an approximate solution which 

avoids many of the complications of an "arcs and lines" type solution, providing a 

practical technique for subpixel refinement. The technique is implemented and 

favourable results are obtained.

There are many difficulties encountered in the consideration of an "arcs and 

lines" minimisation. Firstly, for any region which is more than a few pixels in 

size the global minimum will, in general, be very difficult to find. If a local 

minimum is required then problems are caused by pixels whose boundaries are 

split into more than two sections by the colouring of their neighbours. Also, 

when a pixel needs a colouring which involves more than a single arc then the 

calculation of the correct colouring is complex. We impose constraints on the 

form that the solution may take to obtain a workable and practical method.
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The constraints

• Each pixel may be either a single colour or separated into areas of 

different colour by a single straight line.

• Each pixel may contain at most one straight line.

• The image is regarded as a collection of line segments forming 

closed areas of colour, i.e. every line segment joins with another or 

meets with the boundary of the region.

The minimisation is local with pixel colourings updated in pairs by changing 

the point on the common edge at which a pair of line segments meet. Each area 

of black (an arbitrary choice) is considered in turn and the pixels which contain

the edge of the area are registered, giving a list of pixels which form a route

around the area. We define the route to be a collection of pixels which are 

ordered in a particular way, corresponding to a path (of pixels) which separates an 

area of black from an area of white. All routes must form closed circuits around 

areas of black and in some cases this may require that the route travels through

imaginary pixels outside the region. Figure 5.18 shows an example of a solution

together with the closed route showing which pixels were used in the procedure. 

The route outside the region is shown but updating only occurs inside the region. 

Once established, each route is considered in turn and the line segments within 

each pixel on that route are updated so that a local minimum is attained.

Figure 5.18
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5.5.2 Finding the routes

An initial reconstruction is obtained using Jennison’s quarter pixel method 

and this reconstruction is used to find the routes around areas of black in the 

region. Starting at a comer pixel the region is scanned in a raster fashion until a 

pixel is found which has quarter pixel neighbours which are not all the same 

colour. This pixel is labelled as the starting point for that route. Working around 

the area of black, each pixel is labelled as being on that route and its details are 

stored. At some stage the route will return to the starting pixel and it is then 

complete. The raster scan then continues but only unlabelled pixels are considered 

and other routes are found in a similar way. As we have already seen, the route 

will in some cases travel outside the region boundary. This is allowed because it 

ensures that all routes form closed circuits and simplifies the updating stage. We 

illustrate the route finding with an example. Figure 5.19a shows a quarter pixel 

reconstruction. From this the route is obtained and the pixels which lie on the 

route are shown in grey in Figure 5.19b. Initially the line segments join each 

other in the centre of the common pixel edge or an arbitrarily small distance (we 

used 0.05) from the ends of the common pixel edge, as shown in Figure 5.19c.

"Tm
__

1

— Ia

Figure 5.19a Figure 5.19b Figure 5.19c

Line segments are not permitted to join at a vertex of the pixel grid as this may 

lead to an undesirable local minimum in the early stages of updating.

For some quarter pixel configurations there are different routes that may be 

chosen. To avoid ambiguity and ensure that the route returns to its starting point, 

the pixels which are white are used whenever there is a choice. Each pixel may 

be part of only one route as only one line segment is permitted within each pixel 

in the reconstruction. Pixels in routes are labelled so that they are not used twice, 

either by the same route or other routes. Although this reduces the complexity of 

the procedure in the later stages, problems are encountered at the route finding
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stage. Consider the quarter pixel reconstruction shown in Figure 5.20.
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Figure 5.20

The algorithm that we have proposed would attempt to find the route abcbd and 

would fail since the pixel b cannot be used twice. Through the consideration of 

many special cases the program has been developed to handle some obstructive 

cases. For the configuration shown the route the modified algorithm would find 

the route abced.

5.5.3 Updating the line segments

Once the routes have been established, only pairs of pixels occurring on the 

routes need be considered for updating. Circuits of each route are repeated until 

convergence is achieved. At the start of the updating all the line segments join 

close to the ends or exactly in the centre of the common pixel edge, depending on 

the quarter pixel reconstruction from which the routes are found. Only rarely does 

the inaccuracy of the initial positionings of the line segments have a noticeable 

effect on the reconstruction obtained.

There are only 4 distinctly different ways in which the line segments may 

pass through a pair of pixels and these are shown in Figure 5.21 All other cases 

may be reduced to one of these by means of exchanging and/or inverting the 

pixels and their colours. We shall refer to the distance from the black end of the 

common pixel edge to the join of the line segments as the cut value, which takes 

a value in [0,1]. The contribution to the penalty for a particular cut value W is 

given by g(W ). The value of W which minimises g(W ) cannot be found directly
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Figure 5.21

for any of the cases but an iterative numerical technique is used. An expression is 

found for Ws in terms of the parameters of the configuration and an estimate 

Ws_i. Starting from any sensible initial value W0, accuracy to 3 decimal places 

was achieved after at most 4 iterations. In practice we take W0 to be the value of 

W prior to this update. The derivation of the equations used for finding W are 

shown in Section 5.5.10.

Updating also takes place at the region edge, where the line segment which 

joins with the region edge may change its position. There are 2 distinctly 

different ways in which the line segment may pass through the pixel and these are

shown in Figure 5.22.

Figure 5.22

The equations for these cases are also shown in Section 5.5.10.
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5.5.4 Choosing y

The parameter y  is used in a similar way to the way that p  is used in full 

pixel reconstruction. As is true with p  there no single "correct" value of y  but we 

have found that using y - 4 gives good results in many different examples. 

Although this value of y  is recommended, its effectiveness and suitability will 

depend on the record and the nature of the true scene. Once the routes have been 

found from the quarter pixel reconstruction much of the processing has been 

completed and so, since it is only the updating stage of the process which relies 

on the value of y, several different reconstructions may be quickly obtained for 

different values of this parameter. The effect of the choice of this parameter is 

illustrated using examples in Section 5.5.7.

5.5.5 Introducing an example

We shall use an example to demonstrate the effect of different levels of the 

parameter y  and to show the behaviour of the reconstruction at high and low noise 

levels. The example image shown in Figure 5.23 was first used by Jennison 

(1986) to demonstrate the quarter pixel technique. A 16 by 16 grid is 

superimposed on the image and the record for each pixel is obtained by adding 

Gaussian noise with mean 0 and variance <72 to the proportion of black in each 

pixel. We shall use ^  = 1.0 and p2-  1/V2 for the full pixel and quarter pixel 

reconstructions in all of the examples.

Figure 5.24 shows the quarter pixel reconstruction obtained when ct2=0.3. 

Given the level of the noise, this is a very good reconstruction. From this 

reconstruction the routes are obtained and Figure 5.25 shows the pixels (in grey) 

through which the routes travel. Figure 5.26 shows the line segment 

reconstruction for y - 4.

5.5.6 A development in the line fitting algorithm

The quality of the reconstruction that is obtained depends, to a certain extent, 

on the routes that the line segments take. Because these routes are fixed 

throughout the process other routes which might prove more successful are not 

considered. This is illustrated to a small degree by the example in Figure 5.26 

where it can be seen that the pixels which have been used for the line segments 

are not the most suitable. We now propose a development in the line fitting



5-19

Figure 5.23
The true scene

Figure 5.24 
Reconstruction technique: Jennison’s quarter 

pixel technique
Parameters: f t  = 1.0

&=A/V2 
Initial estimate: ICM reconstruction

Figure 5.25 
Pixels on the routes shown in grey

Figure 5.26 
Reconstruction technique: Line fitting 
Parameter: y=4 .0
Initial routes obtained from Figure 5.24
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algorithm which allows the routes to vary during the process.

Each time a line segment join is updated, alternative routes are considered. 

There are several distinctly different cases which must be treated separately and 

these are shown in Figure 5.27. Two different routes are shown in each case, and 

changes from one to the other are considered when appropriate.

Figure 5.27

The contribution of the total penalty from all 4 pixels is calculated for each of the 

two routes, with the line segments chosen optimally for that route. The points at 

which the line segments enter and leave the 4 pixels are fixed and convergence to 

a local minimum is reached within a few iterations. Although we are considering 

only small changes in the route, changes to routes further afield may take place as 

a result of several small changes.

Returning to the example, we see in Figure 5.28 the reconstruction obtained 

when the route changing development is included in the algorithm. Because the 

route is only changed when it leads to a reduction in the penalty, reconstructions 

obtained in this way have penalties no greater than those obtained without route 

changing.

The updating process in the above line fitting procedure has the general 

characteristics of an ICM method: the penalty is minimised with respect to one 

component of the boundary whilst everything else is held fixed. This method will
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Figure 5.28

generally yield a local minimum of the penalty and it is possible that the final 

reconstruction could be improved further by making a number of route changes 

simultaneously. For example, the penalty might be reduced by moving a long 

vertical edge one pixel to the left whereas it would increase initially if only one 

route change were made at a time.

To allow further exploration of alternative routes we have implemented a 

form of simulated annealing. This method retains the property that for a given 

route the point on a pixel edge at which two line segments meet is chosen 

optimally. However, when comparing the minimum penalties for different routes 

we allow the route with the larger penalty to be chosen with non-zero probability. 

Suppose two routes, A and B, have minimum penalties penA and penB, then, when 

the annealing process is at temperature T  we select route A and its optimal edges 

with probability

e (-penA/T) 

e (-penAIT) + e (-penBIT)

otherwise we choose route B. Of course, only the contribution to the total penalty 

from the four pixels concerned need actually be calculated.

By restricting the random choice to the route alone, we ensure that, 

effectively, the annealing process is applied to a fairly low dimension problem, 

the number of variables being of the order of the number of boundary pixels.
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Theorem B of Geman and Geman (1984) demonstrates the convergence of their 

simulated annealing method. In its stated form, this theorem does not apply to our 

hybrid procedure whose iterative steps combine a random choice of route with a 

deterministic choice of line segments given that route and currendy fixed end 

points. Perhaps a sufficiently general result could be proved but this would, 

presumably, still only apply for gentle cooling schedules. However, we prefer to 

think of the annealing method simply as a convenient numerical procedure with 

which to search a little further afield than the ICM approach.

The best results were obtained using a cooling schedule in which T 

decreased logarithmically from 3.5 to 0.5 over several hundred sweeps and 

linearly from 0.5 to zero over several hundred more. We then continued to update 

using 7=0 until convergence, which usually required only a few sweeps. This 

corresponds to ICM and guarantees convergence to a local minimum. Although 

simulated annealing often produced a lower penalty, we have found that the 

computational extravagance of the method is not justified by the very small 

difference in the reconstructions compared with those obtained using the local 

minimisation procedure.

5.5.7 Some more examples

Using the true scene shown in Figure 5.23 we experimented with different 

levels of noise and values of the parameter y. The results are most interesting and 

provide an insight into the mechanics of the program, particularly with regard to 

the route changing. Where the value of y  is small the process attempts to find the 

line segments which give a proportion of black very close to the record for each 

pixel. This is illustrated by the reconstruction in Figure 5.29 which was obtained 

using the version of the program which did not include the route changing 

development with y=0.1. When the route changing is included the reconstruction 

in Figure 5.30 is obtained. This is an amazing reconstruction which demonstrates 

that by considering only small changes in the route it is possible to find routes 

which are much further afield. When larger values of y  are used, more emphasis 

is placed on reducing the length of the edge in the reconstruction. Figures 5.31 

and 5.32 show the reconstructions obtained using y=20 without and with the route 

changing respectively. Although objects may become very small, they are 

constrained to remain as the routes surrounding them may not disappear
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Figure 5.29 
Reconstruction technique: Line fitting

without route changing 
Parameter: 7=0.1
Initial routes obtained from Figure 5.24

Figure 5.30 
Reconstruction technique: Line Fitting

with route changing 
Parameter: 7= 0 .1
Initial routes obtained from Figure 5.24

%

4A
Figure 5.31 

Reconstruction technique: Line Fitting
without route changing

Parameter: 7=20
Initial routes obtained from Figure 5.24

Figure 5.32 
Reconstruction technique: Line Fitting

with route changing
Parameter: 7=20
Initial routes obtained from Figure 5.24
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completely. At larger noise levels the reliability of full and quarter pixel 

reconstructions becomes suspect and they may lead to unsatisfactory routes for the 

line fitting stage. This is illustrated by the reconstruction in Figure 5.33. Because 

the quarter pixel reconstruction contains only one area of black just one route is 

found and the line segment reconstruction consequently suffers. Although it 

would add to the computational complexity, it is possible that the program could 

be further developed so that routes could be introduced and removed during the 

process. In general, where the variance is low, the quarter pixel reconstruction 

provides a good estimate and any routes which are found are fairly reliable 

starting points. Figure 5.34 shows the reconstruction obtained using y - 4 when 

(72=0.01. Figure 5.35 shows the reconstruction obtained using y=200 when 

(T2 =0.0001 which demonstrates the ability of the method to reconstruct this 

image almost perfectly where the noise is very low.

In testing and developing the program we have experimented with many 

different examples. The best results are obtained from those scenes which do not 

contain jagged points or irregularities. Also when the pixel grid is very coarse the 

quality of the reconstruction can depend quite heavily on the positioning of the 

colourings relative to the pixel grid, particularly if it leads to a pixel containing 

more than 2 areas of colour.

5.5.8 Programming the line fitting

The programming for the line fitting process was done in several stages. The 

first of these was to decide the general approach and data storage techniques that 

would be used. In this section we give a brief outline of this stage. The next 

stage was to convert the quarter pixel reconstruction into a route form, this proved 

more complex than was originally envisaged and involved making provision for 

many special cases. The final stage involved programming the actual updating, 

including the route changing and simulated annealing. Again this proved a 

painstaking procedure involving the consideration of many problems caused by 

special cases.

The eventual output of the program is a file which contains the coordinates 

of the region, the number of routes within the region and the coordinates of the 

joining points of the line segments. This file is then used to reproduce the 

reconstruction either on a computer screen or as a hard copy. The line fitting



Figure 5.33 
Reconstruction technique: Line fitting

with route changing 
Parameters: cr2= 0.5

7=4

Figure 5.34 
Reconstruction technique: Line Fitting

with route changing 
Parameters: cr2=0.01

7=4

Figure 5.35 
Reconstruction technique: Line Fitting

with route changing 
Parameters: cr2=0.0001

7=200
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program was written in FORTRAN as was the postscript conversion filter which 

produces the hard copy pictures. The computer display program was written in C 

and uses the SUN CGI graphics package.

The general approach and data storage techniques

As we have already stated, the image is regarded as a series of line segments 

dividing white and black areas of colour. The routes are found and we choose to 

update the pixels around each route until convergence. An alternative technique 

would be to store the information locally for each pixel and to update pixels in a 

raster fashion. Such a technique has the advantage of avoiding much of the 

complexities of setting up and storing the routes. However, the main advantage of 

the route tracing approach that we have described is that when route changing is 

used, the directional changes of the route are already available and do not need to 

be recalculated at every updating.

Three structures provide the basis of the storage used in the program: 

EdgeInformation(MAXM7M££>G£S, 3) 

StartofRoutesiMAXNUMROUTES, 4) 

and A\ready\Jsed(NumberofRows, NumberofColumns)

where MAXNUMEDGES is the maximum number of line segments which are 

allowed and MAXNUMROUTES is the maximum number of different routes 

which are allowed.

For each edge, 3 pieces of information are held in Edgelnformation:

(i) The relative direction (0-3) to the pixel on the route which 

will be visited next.

(ii) The distance along the join (of this pixel and the next on 

the route) at which the edge cuts, measured from the black 

side. This value is referred to as the cut value.

(iii) The pointer to the next cell in Edgelnformation which 

holds information relating to the next pixel on the route.

Before the route changing was incorporated (iii) was not required since each 

pixel led to the next cell in Edgelnformation.

For each route, 4 pieces of information are held in StartofRoutes:

(i) The horizontal coordinate of the first pixel on the route.
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(ii) The vertical coordinate of the first pixel on the route.

(iii) The direction (0-3) that the route moves to the 2nd pixel 

on the route.

(iv) A pointer to the position in Edgelnformation that holds 

the information for the 2nd pixel on the route.

When the route changing is incorporated this array may be updated, as 

starting pixels will sometimes be eliminated from the route.

AlreadyUsed is a flag array which indicates whether or not a pixel has 

already been used. This is required because each pixel may only lie on one route 

in a reconstruction and then only once on that route.

5.5.9 Extending the line fitting method to k colour scenes

So far we have demonstrated the effectiveness of the line fitting method in 

reconstructing 2 colour images. In this section we propose an extension of the 

technique which handles images containing more than 2 colours, and use a simple 

example to illustrate how the technique may be used.

In any full pixel reconstruction the region contains areas which are all one 

colour, areas which contain boundaries between two colours and areas where three 

or more colours meet. If the areas which contain two colours split by a boundary 

are identified then the line fitting method may be applied to these areas, one by 

one.

We illustrate this possibility by a simple example. Figure 5.36 shows the 

true scene which contains 3 colours, each pixel taking value 0,1 or 2. A 16 by 16 

grid is superimposed on the image and for each pixel the average colouring is 

recorded. (This is equivalent to using the proportion of black for 2 colour 

scenes.) Gaussian noise with mean 0 and variance 0.05 is added to the true value 

for each pixel, giving the record. Figure 5.37 shows the ICM reconstruction 

obtained using =1.0 and The prior model which is used for the

ICM penalises all discrepant pairs equally, although this may not be the "best" 

prior for this particular case the level of noise is small and it is unlikely that using 

other more intricate priors would give superior results. Inspection of this 

reconstruction reveals that the region may be partitioned into areas containing just 

one colour and areas which contain boundaries between two colours. By
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Figure 5.36
The true scene

Figure 5.37 
Reconstruction technique: ICM 
Parameters:

A = l-0
A=A/V2

Initial estimate: Closest mean classifier

jggg

••

I L x

M i l
Figure 5.38 

Reconstruction technique: Jennison’s quarter 
pixel technique

Parameters: p x= 1.0
&=/MV2 

Initial estimate: ICM reconstruction

Figure 5.39 
Reconstruction technique: Line fitting

with route changing
Parameter: y=4.0
Initial routes obtained from Figure 5.38
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considering the areas which contain two colours we may find routes which will be 

used for the line fitting method. As an intermediate step, quarter pixel 

reconstructions are found for each of the areas. These are shown (in a combined 

form) in Figure 5.38. The two colour line fitting method is then applied to each of 

the routes with y - 4, giving the reconstruction shown in Figure 5.39.

We have treated this example in a special way, avoiding the complexities of 

identifying the different areas of the region. The technique has not been 

implemented, a modification of the 2 colour program was used to obtain the 

reconstruction. However the success of the technique in reconstructing the image 

demonstrates the potential of the method to handle more intricate cases.

5.5.10 The equations for different line segment configurations

As we described in Section 5.5.3, updating the line segments involves using 

an iterative procedure to obtain the point on the common pixel edge at which the 

line segments should meet. In this section we show the equations which are used 

for each of the six different cases.

Case 1.

P ix e l  i P ix e l  j

Figure 5.40

The contribution to the objective function for the case in Figure 5.40 is given

8(W ) = (W - a ) (W - b )O '; -a -  , — ) H  — ) + y{Vl+(lV-a)2+Vl+(W'-6)2}

Differentiating we obtain

(2W +
aW 4(7

{W -a )  (W -b )
Vi+(W-a)2 Vl
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Given an approximate solution Ws_j we solve 

1
4<r2 

to obtain

(2Ws + a - 2 y i + b - 2 y j )  + y
(W s - b )

V l + ( ^ _ ! - a ) 2 V i+ c w '.- i - i ' ) 2
=  0

=

4(7 2y + (2y,— fl+ 2^ —6 )
V l + ( W s_ , - a )2 V l

2+ 4cr2y
1 1-- T---- ----------- ----4. _ ------ Û*--------"

V l + O ^ - i - * ) 2 V l+ ( H ,S- 1- * ) 2 .

Case 2.

P ix e l  iP ix e l  j

Figure 5.41

The contribution to the objective function for the case in Figure 5.41 is given

by

g(W ) =
2(7'

WaO';—  z~) + ( y j - b -
(W-b) + y{Vw,2+ a 2+Vl+(W -Z))2 }.

Differentiating we obtain

= - L ^ (Wa2-2ayi+
d W  4(7

Given an approximate solution Ws_i  we solve

• +
( W - b )

'Jw2+a2 V l +(W -&)2

4 a
( Wsa2 + W s + = 0

to obtain
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4cr2y b
+  ( 2 a y i + 2 y j - b )

V i+ ( ^ _ i - i> ) 2

( l+ a 2)+4cr2y 1 , ....... 1
' J w ^ + a V i + ( w s_, - f t>2 _

Case 3.

Pixel jP ix e l  i

Figure 5.42

The contribution to the objective function for the case in Figure 5.42 is given

by

g ( W )  =
2(7

( y r ^ - )  Hyr ^ - )  ) + y{'-Jw2+a2+ ^ w 2+b2

Differentiating we obtain

=  —V  ( Wa  2 - l a y , + W b 2 -  2by j ) +  y  
a w  4(jz J

Given an approximate solution Ws_i  we solve

1 W„

W  W

'J\V2 + a 2

4 a 2 

to obtain

\ W sa l - 2 a y ^ W sb L- 2 b y j ) + y +  ■

V ^ - i + a 2 V ^ - i  + *2
= 0

2ayi+2byj

(a2+b2)+4a2y 1 + 1
< W l x+a2 V ^ - i+ f e 2
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Figure 5.43

The contribution to the objective function for the case in Figure 5.43 is given

by

g (W )  = 1
2a

a - a - i l z E k j + r l^ l ( i - w ) 2+a2+ ^ w 2+b2} .

Differentiating we obtain 

dg(W ) _  _1
dW 4 a

Waz - 2 a ( l - f  -y i)+ W bA-2byj + y
w - 1 w+

V(1 -W )2+ a 2 Vw^+fc2

Given an approximate solution Ws_i we solve 

1
4a ‘

Wsa —2a(l — ̂ r —yi)+Wsb —2byj + r
w s- 1

+  ■

^ ( l - W s_ 0 2+a2 ^ W s_ l+ b 2
= 0

to obtain

2byj-2 a  (1 -  -y ,)+ ------- 4<T- -t
2 V (l-W ^-i)2+ a 2

(<32+Z?2)+4(T2y Vd-M',-1)2+a2 Vwf-!+i>2

Case 5

The contribution to the objective function for the case in Figure 5.44 is given

by

g(W ) = 1
2cr

y,-a- + >W l+(W -a)2 .
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P ix e l  i

Figure 5.44

W

Differentiating we obtain

a s m  = - L - ( ^ a - 2yi) + / (W- a)
dW  4<t Vl+ClV-a)2

Given an approximate solution we solve

4cr

1 7 (Ws-a )
l - r iW s + a - ly i )  + -----------*----------- =Q

Vi+(W'J_1- a )2

to obtain

4cr2yq

V l+ C ^ - i - a ) 2
+(2y,-a)

1 +
4a 2/

Vi+dv,- ,-^ )2

Case 6

The contribution to the objective function for the case in Figure 5.45 is given

by

*12
*(W) = 1

2(7'
-y t- + y'lw2+a2.

Differentiating we obtain

d f j ( W)
dW 4(7

1 (Wa2-2ayi) r w
Vw2+ a 2



5-34

P ix e l  i

w

Figure 5.45

Given an approximate solution Ws_i we solve

4 a

1 9 yws
(Wsa -2ayi)+

y fw l^ + a 1

to obtain

2 ay

^ l w l l+a 2

5.6 Combining the cascade algorithm with the line fitting method

When the variance of the record is high there is often little point in using 

any form of subpixel refinement. However, as we have demonstrated in Section 4, 

the variance of the record may be reduced using aggregation and the quality of 

reconstructions improved. In this section we consider an example in which the 

noise level is high and show how the cascade algorithm may be successfully used 

in conjunction with the line fitting method to produce high quality reconstructions.

The example

Figure 5.46 shows the true scene. A 256 by 256 pixel grid was superimposed 

on this scene and the record was obtained by adding Gaussian noise with variance 

4 to the proportion of black in each pixel. Figure 5.47 shows the closest mean 

classifier for this record. Progressing through the cascade algorithm produces the
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Figure 5.46 Figure 5.47

reconstructions shown in Figures 5.48 to 5.53; reconstructions obtained on the 

coarsest grids are not shown. As we have found in previous examples, it is not 

necessary to complete the cascade as satisfactory reconstructions may be obtained

at coarser levels. The 32 by 32 record has variance 1/16 and we can use this

record to obtain a subpixel reconstruction. Using the 32 by 32 cascade

reconstruction as an initial estimate, Jennison’s quarter pixel technique is applied 

and the resulting reconstruction is used as a starting point for the line fitting 

method. This 3-step process may be applied at any grid level although the best 

results are obtained when the variance is low and the cascade reconstruction has 

retained many of the features of the image. Figures 5.54 and 5.55 show the line 

segment reconstructions for the 32 by 32 and 64 by 64 records respectively. 

Given the level of noise in the original record and the irregular nature of parts of 

the true scene, these reconstructions are very good and demonstrate both the 

power of the proposed method and its limitations.
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Figure 5.48 
Reconstruction technique: Cascade, ICM 
Parameters: px = 1.0

Initial estimate: 4 x 4  cascade 
Dimensions: 8 x 8
Record: 256 x 256 aggregated 5 times

Figure 5.49 
Reconstruction technique: Cascade, ICM 
Parameters: Pi = 1.0

Initial estimate: 8 x 8  cascade (Fig 5.48)
Dimensions: 16 x  16
Record: 256 x 256 aggregated 4 times

Figure 5.50 
Reconstruction technique: Cascade, ICM 
Parameters: px = 1.0

Initial estimate: 16 x  16 cascade (Fig 5.49)
Dimensions: 32 x  32
Record: 256 x 256 aggregated 3 times

Figure 5.51 
Reconstruction technique: Cascade, ICM 
Parameters: f t  = 1.0

Initial estimate: 32 x  32 cascade (Fig 5.50)
Dimensions: 64 x  64
Record: 256 x 256 aggregated twice
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Figure 5.52 
Reconstruction technique: Cascade, ICM 
Parameters: p x = 1.0

Initial estimate: 64 x  64 cascade (Fig 5.51) 
Dimensions: 128 x 128 
Record: 256 x 256 aggregated

Figure 5.54 
Reconstruction technique: Line fitting with

route changing, via cascade
Grid size: 32 by 32 
Parameter: y =4

Figure 5.53 
Reconstruction technique: Cascade, ICM 
Parameters: p x = 1.0

&=A/V2
Initial estimate: 128 x  128 cascade (Fig 5.52) 
Dimensions: 256 x  256 
Record: 256 x  256 (original)

Figure 5.55 
Reconstruction technique: Line fitting with

route changing, via cascade
Grid size: 64 by 64 
Parameter: y - 4
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Chapter 6: A test for detecting oversmoothing

6.1 Introduction

When some reconstruction techniques are used, small changes in the value of 

P can have large effects on the reconstruction obtained. This is particularly true of 

exact MAP reconstruction, described in Section 3.4, where areas of colour can be 

obliterated as a result of oversmoothing. For any reconstruction we may calculate 

the difference between the fitted value xt at pixel i and its record yr  This value 

is known as the residual at pixel i. If an area of colour has been obliterated as a 

result of oversmoothing then the residuals at those pixels which have been 

misclassified are expected to be larger than those occurring at pixels which have 

been correctly classified. We present a graphical aid which assists in the 

subjective analysis of the grouping of the residuals, and propose a statistical test 

which aims to detect any significant groupings. The idea of the test is that by 

inspection of the spatial positioning of the largest of the residuals for a given 

reconstruction, we may establish whether there are any grounds to suspect that the 

image has been oversmoothed. We deal specifically with the two colour case, 

where each pixel jcf- takes value 0 or 1, representing white and black respectively.

The residuals

We define a residual ri as being

yt - x t if Xi=0

-(y t-X i)  if* j= l 

or equivalently

ri = O'/”  Xi){l-2Xi)

The residuals are calculated in this way so that the colouring of any pixel which 

has a residual greater than 0.5 has been affected by the smoothing that has been 

employed, and were P to be reduced sufficiently the colouring of the pixel would 

change to that of its closest mean. For example, consider two pixels i and j  

which are classified as black in the reconstruction (i.e. xL = 1 and Xj=1) and have 

records y ,= -1 .0  and yy= 3.0. Although both may be correctly classified, the 

colouring of pixel i has been affected by level of smoothing whereas the 

colouring of pixel j  would not change were a smaller value of P used.
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We are particularly interested in those pixels with large residuals. In looking 

at the significance of a residual it is natural to consider the variance of the record 

and to use the likelihood ratio as a measure of closeness of fit. The likelihood 

ratio for the additive Gaussian case is given by

/O ',-i*r=!-•*,•)

/ k  k  =*;)
e x p [(y,— (1 -X,-))2 -  O’,—jc,-)2 ] |

= exp

Pixel i is then defined to house an informative residual if the log-likelihood 

ratio is greater than some specified value k. i.e.

- -k (2 y ,~ l) (2 x (- l )  > k.
2<J

An alternative and equivalent definition is that r,- is informative if r,- > 0.5+&<r2.

Oversmoothing

Figure 6.1 shows a true scene in which each pixel is coloured wholly one 

colour.

Figure 6.1

Gaussian noise with mean zero and variance 0.3 is added to the true value for 

each pixel and a MAP reconstruction is obtained using ^ = 0 .8  and (31=P\I'&\ 

this is shown in Figure 6.2. Several small areas of colour have been misclassified 

in this reconstruction. The residuals for this reconstruction are calculated and
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Figure 6.2

Figure 6.3 highlights the informative residuals when k - 2. From this plot it is 

fairly clear that the informative residuals are grouped together in certain parts of 

the region. It is more helpful to look at the residuals alongside the reconstruction 

and the two may be combined in the form shown in Figure 6.4, where areas of 

black in the reconstruction have been outlined. The number of informative 

residuals which appear depends on the value of k that is used. In this example 

there are 390 informative residuals for k - 2. Figures 6.5-6.8 show the plots for 

k -  0, 1, 3 and 4 respectively. This method of displaying the residuals provides 

an excellent graphical aid for diagnosing oversmoothing. However, although we 

may suspect that the record has been oversmoothed, we have no statistical 

evidence to justify this. We now propose a test which uses a Monte Carlo 

simulation technique to establish the significance of the grouping.

6.2 The test

We set up the following hypothesis:

Hq\ The reconstruction is essentially correct, certainly away from the edges 

of areas of colour in the reconstruction.

H i m. The record has been oversmoothed, resulting in the obliteration of 

areas of colour.

When the null hypothesis is true the raw residual at each pixel is nearly 

independent of neighbouring residuals. This is because the colouring jq at pixel i 

will, in general, be equal to the true colouring x* at pixel /. This implies that
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Figure 6.4
Reconstruction Parameters:

Technique: exact MAP 
A =0.8 
p2= p 1N2

Residual Parameters:
k=2
390 informative residuals



6-5

■ ■ i l  ; iw ',
•V ‘.V. kO V: -*:?■■ V

Figure 6.5
Reconstruction Parameters:

Technique: exact MAP 
Pi  = 0.8 
/>2=AW2

Residual Parameters: 
k=0
2652 informative residuals

■. .v / ^ 1 •<&■:
-"v-V^ ... •

' . 3 » a '.v

Figure 6.6
Reconstruction Parameters:

Technique: exact MAP
Pi = 0.8
P i= P il< 2

Residual Parameters:
k=  1
1151 informative residuals



6-6

■ rT— u*3 ■
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Figure 6.7
Reconstruction Parameters:

Technique: exact MAP 
A  =0.8 
/*2=A/V2

Residual Parameters: 
k = 3

93 informative residuals

C b = ,

0  - O Q

O f i  « /

o'Q i

: a
9

o

a o -

c ?

o ' -

C? .

■ *

Figure 6.8
Reconstruction Parameters:

Technique: exact MAP 
A =0.8

fi2= p,m

Residual Parameters:
k=4
25 informative residuals
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yi~Xi will usually be equal to y^-x*  which is independently distributed as 

Gaussian with mean zero and variance a 2. Thus the occurrence of informative 

residuals within the accepted region (which excludes pixels on the edges of areas 

of colour) is uniformly random. The test is based on the size of the largest 

grouping of informative residuals occurring away from the edges of areas of 

colour. We define a grouping as being a set of informative residuals which are 

connected to each other, either directly or via other informative residuals in the 

set. The connection may be to horizontally, vertically or diagonally adjacent pixel 

sites although the connecting criteria may be chosen to correspond to the 

neighbourhood system that is used in reconstruction. For example, if a first order 

model (in which only horizontally and vertically adjacent pixels are regarded as 

neighbours) was used in reconstruction, then only groupings in which the 

connections are horizontal or vertical are considered.

Informative residuals which occur on the edges of areas of colour in the 

reconstruction are not included in any analysis, nor are they shown in graphical 

plots. This is because the residuals at edges offer little information about 

oversmoothing. Inherent in the choice of the value of /? that is used is the 

acceptance that certain edge configurations will be smoothed. For example, 

suppose the current reconstruction contains a straight line edge and that P\ = l, 

Pi and a 2 = 1 .0 . A white pixel which lies on this edge will change to

black if its record is greater than 2.5. If this is not acceptable then the values of 

the parameters must be changed accordingly. This approach for the choice of 

these parameters is shown in more detail in Ripley (1986).

We refer to the part of the region which does not include pixels on the edges 

of areas of colour as the acceptable space for informative pixels for that particular 

reconstruction.

For a given reconstruction and value of k the size of the largest grouping is 

calculated. In fact the sizes of all groupings are calculated as these might be 

needed in the event of a tie. For the image in Figure 6.4 the sizes of the 

groupings were found and are shown in Table 6.1.

To test for significance a Monte Carlo simulation technique is used. Within 

the accepted space Nir(k) pixels are chosen at random without repetition, where 

Nir(k) is the number of informative residuals for the particular case. These pixels 

are marked and the sizes of the groupings are calculated in the same way as for
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size of 

grouping

number of 

occurrences

1 293

2 21

3 11

4 4

5 0

6 1

Table 6.1; size of groupings for Figure 6.4.

Figure 6.4. If the random allocation contains a grouping which is bigger than the 

largest of the groupings found for the reconstruction then it is recorded as being 

more grouped. If it is smaller then it is recorded as being less grouped. If there is 

a tie then the second largest groupings are compared and so on, until a decision is 

made. This procedure is repeated for N  random allocations and the number of 

times that more grouping is found is recorded. Under the null hypothesis the 

positioning of the informative residuals is uniformly random within the accepted 

space, so may be compared with the generated sample to give an indication of the 

significance of the grouping.

The choice of k is important. When k is small the number of informative 

residuals is large and so the test will be good at detecting the obliteration of large 

areas of colour. When the area that has been obliterated is small, k must be 

chosen to be large to increase the chances of getting a significant result from the 

grouping of the informative residuals which may lie in its place. Since the sizes 

of any obliterations (which may or may not exist) are not known, we test using 

several different values of k. We test at the 1% level of significance for k -  0 ,1 , 

2, 3 and 4. If a significant result is obtained at any of the 5 levels then we have a 

result which is significant at at least the 5% level. In fact the test is slightly 

conservative because of the way that the five tests are combined.
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6.3 Results

For the example in Figure 6.2 a test is carried out for 5 values of k. The 

results are shown in Table 6.2.

k N largest grouping significance

0 2652 56 0 .1  %

1 1151 36 0 .1  %

2 390 6 0.4 %

3 93 3 1 .6  %

4 25 2 13.7 %

Table 6.2. Results for Figure 6.2; <t2 =0.3; ^ = 0 .8 ;  fi2= Pil^l.

We now introduce another example as shown in Figure 6.9. The true value at 

each pixel is perturbed by Gaussian noise with mean 0 and variance 0.5. The 

exact MAP reconstruction is obtained for ^ = 0 .9  and p2= fiil^ l ^ d  this is 

shown in Figure 6.10. Figures 6.11-6.14 show the plots for k= 0, 1, 2 and 3 

respectively. The results of the tests for these plots are shown in Table 6.3.

k N largest grouping significance

0 3736 90 0.5 %

1 1342 21 0 .2  %

2 338 10 0 .1  %

3 55 3 0 .2  %

4 6 1 -

Table 6.3. Results for Figure 6.10; cj2 =0.5; ^  =0.9; fi2= P i/^l.

The results for both examples indicate that there is evidence to reject the null 

hypothesis in favour of the alternative, that the record has been oversmoothed, 

resulting in the obliteration of areas of colour. Using the same examples we 

reduce the values of the smoothing parameters used in reconstruction and test for 

oversmoothing in the same way.

Figure 6.15 shows the exact MAP reconstruction obtained using fix =0.6  and 

p2 = f il l 'l l  in the first example. The results of the tests for this reconstruction are 

shown in Table 6.4 and we can see that there is no evidence to reject the null
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Figure 6.9 
The true scene

Figure 6.10
Reconstruction technique: 

exact MAP 
Parameters: A  = 0 .9
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Figure 6.11
Reconstruction Parameters:

Technique: exact MAP
A =0.8
/?2=A/V2

Residual Parameters:
*=0
3736 informative residuals

■ - • L  y  V # _r-̂  • •  »- /
V 'T  •• ^5* •*. ^ n  •

.* .v ^  <, r •

Figure 6.12
Reconstruction Parameters:

Technique: exact MAP 
A =0.8 
ft=A/V2

Residual Parameters:
*=1
1342 informative residuals



Figure 6.13
Reconstruction Parameters:

Technique: exact MAP 
A  =0.8

Residual Parameters: 
k= 2
338 informative residuals

Figure 6.14
Reconstruction Parameters:

Technique: exact MAP 
A =0.8 
&=A/V2

Residual Parameters:
k=3
55 informative residuals
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hypothesis.

k N largest grouping significance

0 2441 19 67.3 %

1 1081 7 65.1 %

2 307 4 13.2 %

3 51 1 -

4 1 1 -

Table 6.4. Results for Figure 6.15; <t2 =0.3; /?j= 0.6;

For the second example we obtain the exact MAP reconstruction shown in 

Figure 6.16 using fii =0.6 and /?2 =/V^2- There is still evidence of 

oversmoothing and this is shown in Table 6.5. The null hypothesis is rejected and 

the alternative is accepted.

k N largest grouping significance

0 3567 90 0.3 %

1 1241 12 1.7 %

2 286 4 7.6 %

3 38 2 30.9 %

4 0 0 -

Table 6.5. Results for Figure 6.16; <t2 =0.5; ^ = 0 .6 ;  /?2 = /V ^ *

This is chiefly due to the obliteration of one of the tadpoles during reconstruction, 

as can be seen from the residual plot for fc=0, shown in Figure 6.17. Figure 6.18 

shows the exact MAP reconstruction for this record, obtained using ^ = 0 .5 5  and 

P2 - P 1 /^ *  We can see that an area of black has appeared which represents an 

attempt to reconstruct the third tadpole. The test does not reject the null 

hypothesis for this reconstruction.

6.4 Concluding rem arks

We have recorded the size of the largest grouping of informative residuals 

and compared this with the largest groupings of random allocations. This measure 

has been used to determine whether more or less grouping occurs. Clearly there
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Figure 6.15
Reconstruction technique: 

exact MAP 
Parameters: p \ =  0 .6  

02

Figure 6.16
Reconstruction technique: 

exact MAP 
Parameters: 0\ = 0 .6

2
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» V W  
■ v  ■ ■u - ’V r

Figure 6.17
Reconstruction Parameters:

Technique: exact MAP 
A =0.6 
&=/t,W2

Residual Parameters: 
k=2
3597 informative residuals

Figure 6.18
Reconstruction technique: 

exact MAP 
Parameters: f t  =0.55  

A=A/VZ
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are many other ways in which grouping could be measured in this context. For 

example the average size of the m largest groupings could be measured or a 

weighted average used. The system that we have adopted is intuitively sound and, 

as is demonstrated by the results, appears to work well.

We have not discussed the problems of finding an initial estimate for /?, nor 

have we given a strategy for the reduction of the P parameter when 

oversmoothing is detected. However we have provided a procedure which, for a 

given reconstruction, provides a graphical aid and a statistical test which helps to 

determine whether oversmoothing has occurred.
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Chapter 7: An approximate grey level MAP technique

For any reconstruction problem involving more than two colours there is 

currently no recognised technique for finding the exact MAP reconstruction, other 

than by considering all possible configurations. In general, simulated annealing or 

ICM are used although the quality of the reconstruction will depend on the nature 

of the true scene, the level of noise and the suitability of the chosen prior. In this 

chapter we combine the approach used by Derm et al. (1985) which divides the 

problem into several problems, each involving only two colours, with the exact 

MAP reconstruction technique proposed by Grieg, Porteous and Seheult (1989) 

for binary images. These methods have been described in Section 3.5 and 3.4 

respectively.

7.1 The method

The basis of the method is to identify parts of the region which contain only 

two colours and to obtain a reconstruction on this subregion using the exact MAP 

technique for binary reconstruction. Combining several subregion estimates 

provides a multi-level reconstruction on the whole region. The method is capable 

of handling as many grey levels as are required but we shall describe it for the 

simple case of only three underlying levels, 0, 1 and 2. We obtain a 

reconstruction on the whole region S using the exact MAP technique where each 

pixel is assigned a colouring 0 or 1. We denote this reconstruction by *s(0 ,i)- 

Although this reconstruction is not applicable for a three level problem it is used 

as an intermediate reconstruction. We have assumed that the true 3 colour scene 

is the realisation of some form of Markov random field (MRF). If all the 2’s in 

the true scene are changed to l ’s then the resulting scene contains only two 

colours. A binary MRF is used to model this scene and the reconstruction *$(0 ,1) 

that has been obtained may be regarded as an estimate of this scene. Consider all 

the pixels in the original true scene which are coloured as l ’s and 2 ’s and denote 

this subregion by S12- We assume that the configuration of l ’s and 2’s in this 

subregion is a realisation of a binary MRF and obtain an estimate of this 

subregion in the following way. Form the set of pixels Si which are coloured 1 in 

the reconstruction *s(o,i> and obtain the reconstruction *^(1,2) on the subregion Si 

where each pixel may be coloured 1 or 2. Combining this reconstruction with the 

pixels which were coloured 0  in *s(0 ,i) provides a three level reconstruction on



7-2

the whole region S. This is unlikely to be the exact MAP reconstruction for this 

problem but may provide a useful reconstruction. The order in which the levels 

are considered is referred to as the splitting schedule. In the above case the 

splitting schedule was to find *s(o,i) and then ,2) but a level

reconstruction could be obtained equally easily by finding xS(\t2) and then Xs^o.i)- 

Additional splits may be added in the final stages of reconstruction. For example 

the schedule *5 (0 .i)> ^ ( 1.2) may be followed by *sol(o,i)> *s12(i,2) where S/,m 

denotes the region of pixels coloured / or m. The third and fourth splits of this 

schedule may be regarded as confirmation splits where hopefully very few 

changes take place.

We shall illustrate the use of this technique with a simple four level example 

in which each pixel is coloured 0, 1, 2 or 3. Figure 7.1 shows the true scene. 

Independent Gaussian noise with mean 0 and variance 1.0 is added to the true 

value at each pixel and the closest mean classifier is shown in Figure 7.2, where 

over 47% of the pixels are misclassified. Figure 7.3 shows the reconstruction 

^ ( i ,2), obtained using ^ = 0 .8  and P2=Pil^ly where each pixel takes the value 1 

or 2. The sets and S2 are then formed and, using the same parameters, the 

reconstructions *Sj(o,i) and *s2(2 ,3) are found. These reconstructions may then be 

combined and Figure 7.4 shows the resulting four colour reconstruction. The time 

required to obtain the estimate is less than twice that required to find the exact 

MAP estimate for a black and white scene under similar conditions.

The prior which is used in this example is

pCx)<*exp[-{/J1Z1(jc)+/J2Z2(.x)}] (7.1)

where Zj(jc) and Z^Cx) are the number of first and second order discrepant pairs 

in the scene x. It is interesting to compare the reconstruction that we have 

obtained with Figure 7.5, which is the ICM reconstruction for Pi =1.3, p 2=P\ly&  

and the prior given by (7.1). The p  parameters that were used gave the "best" 

results for the method but it is clear that the approximate MAP reconstruction is 

superior.

Because the final reconstruction is not necessarily the MAP reconstruction, it 

is not unique and if different splitting schedules are used then different 

reconstructions may be obtained. In the example that we have shown the 

triangular shape on the right hand side of the image in Figure 7.1 has been eroded
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Figure 7.1
The true scene 
Size 64 x  64 
Levels: 0, 1, 2, 3.

Figure 7.2 
The closest mean classifier 
Number of pixels misclassified : 1946

Figure 7.3 
Reconstruction technique: Exact MAP, 

for levels 1 and 2 
Parameters: =0.8

02=fliN2

Figure 7.4
Reconstruction technique: Approximate MAP, 

see text
Parameters: /?!=0.8

Initial estimate: Figure 7.3 
Number of misclassified pixels: 101
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in Figure 7.3. This is partly due to the 2’s and 3’s being grouped together against 

the l ’s at this stage of the process. One way in which the effect of this may be 

limited is to include an extra split at the end of the reconstruction process in 

which the set S1>2 of pixels coloured 1 or 2  is formed and the reconstruction 

xSi 2(i,2) obtained. This step may seem unnecessary but Figure 7.6 shows the 

reconstruction obtained when this extra step is included and we can see that it has 

helped, reducing the misclassification rate to less than 2%. Notice that pixels 

coloured 0 or 3 in Figure 7.4 have not been affected by this extra step, this is 

because they are not included in the subregion S1 2  being reconstructed in the 

final split.

7.2 The formulation of the subregion problem

We now give details of how exact MAP estimates may be obtained on 

subregions of the image. This involves showing that the maximisation problem 

over a subregion A of the region S may be expressed in such a way that the 

network flow formulation may be used to find the estimate. Consider a grey level 

region S in which pixels are coloured one of / levels 0 , . . . , / - l .  The pixel 

colourings are perturbed by some noise, the record at each pixel having the same 

known conditional density function f ( y x | *,), dependent only on xr  The prior is 

given by

p (x )~ e x p { - f  L  »■*/))
i= l jedi

where O is some function of xx and Xj. For the first part of this section we 

assume that 0(.xt-,Xj)=I(Xi^Xj). (Recall I(x^X j)= 0  if x t-Xj and 1 otherwise.) We 

might wish to find the MAP estimate of the scene, i.e. the value of x  which 

maximises

KyU)p{x)

or equivalently

l n / ( y |x ) - f £  YJM x h xj ). (7.2)
i=lje3i

Suppose A is a subregion of S and that we wish to find the MAP estimate on the 

region A such that pixels in A only take the value a or b for some positive 

integers a ,b  where a<b<l. Suppose also that the set S\A of pixels which are not
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Figure 7.5 
Reconstruction technique: ICM 
Number of pixels misclassified : 1946 
Parameters: f3x = 1.3

h=
Initial estimate: Closest mean classifier 
Number of misclassified pixels: 517

Figure 7.6
Reconstruction technique: Approximate MAP, 

see text
Parameters: /?i=0.8

h  =Pil'G
Number of misclassified pixels: 83
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in the set A does not contain any pixels which are coloured a or b. We denote a 

colouring of the region A in which the pixels are coloured a or b by xA(a by  We 

denote the exact MAP estimate by £A(a,b) a°d note that it is the colouring of A 

which maximises (7.2) with all other colourings fixed. We may rewrite (7.2) as

E ln/(:y-i I*<)+ E ln/k  k )  _ f  E E »*y)
i e A  ieS\A i eA

- / } £  X  I  E  .*,•). (7-3)
ieA  _/e(^,-nS\A) ieS\A  y'e(<?,nS\A)

Observe that the second and fifth terms of (7.3) remain fixed through all 

colourings of A and so may be ignored at this stage of the process. The fourth 

term of (7.3) can be regarded as a boundary term. This term also remains constant 

since 0(;t;,xp= /(jq  =(=*/)> S\A contains no pixels coloured a or b and A contains 

only pixels coloured a or b. So we require the value of xA âby which maximises

£ ln /(y 4- k ) “ f  E E ® ( X h X j )
i eA  i eA  ./€(<?, n A )

= E ln/0'i l*i=*)/<x,=6)/0 ’i \ X i = a ) l ~ n x ‘=b) -  | e  E
i eA  i eA  ye(<9,nA)

=£/(*;=Wi - | E  X  <£(*;>*,) (7-4)
ieA ieA j e f a n A )

where A ^ ln t / ty  |*;=&)//(?/ |*/=fl)]. Replacing 0(jff ,jcy-) by /(* f+*j) in (7.4) 

the expression is now in such a form that the network flow formulation may be 

used to find $A(a,b)- Details of how this may be done are shown in Section 3.4.

Dealing with more intricate priors.

We have shown the formulation of the problem for the simple case where 

O(jct- , X j ) = I  (X{ ̂ X j ). We now consider the maximisation where the function 

<S>(xi,Xj) may take any form, although we shall assume that O(jtitjCy- )= 0  if *,=*/. 

Using (7.4) we may rewrite (7.3), and we require the estimate xA(ab) which 

maximises

E /( * ;= W ;+  E  taJCVik) - f  £  E  <KXiJCj)
i eA ieS\A i eA  ye(<?,nA)

- / 5 £  E  “ 4  £  X  ®(Xi’Xj)
i eA  j e ( d i n S \ A )  ieS\A j e ( d i n S \ A )

where At=ln[/(y,- k ^ V / k  |jt,=a)]. Again the second and fifth terms of the
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expression may be ignored. However the fourth term must now be included in the 

maximisation since it may be affected by the colouring of the region A. We may 

rewrite the fourth term as

~ /? E  E  l(x i = b )W b ,x j )-<t>(a,xj ) \ - P 'Z  E  (7.5)
ieA je(dir>S\A) ieA je(dinS\A)

The second term of (7.5) remains constant over all colourings of A and may 

therefore be ignored. It follows that the map estimate %A(a,b) value of

xA(a,b) which maximises

'£ I (x i=b)(Xi-0 k i) - | e  E
ieA ieA jetfinA)

where

A/=ln[/(y; \xi= b)lf(yi |Xi=a)\

and

*i =  X  [ 0 ( ^ , ^ ) - 0 ( a , ^ ) ] .
je(djnS\A)

We may rewrite this as

'£ I (x i=b)(Xi -l3ki) - |< £ ( a , 6 ) 2  E  '(* ;** ,)
ieA ieA ;e(<?fnA )

and this form may be used to construct the network flow formulation.

7.3 Concluding Remarks

Although the method that we have described does not provide the exact grey 

level MAP estimate, the reconstruction produced may be of good quality. The 

example that we have shown illustrates that where there are few grey levels, 

satisfactory reconstructions may be obtained, even when the noise level is high. 

We have implemented a version of the program which is capable of handling any 

form of the function G>(jq , X j )  in the prior and have found that the quality of 

reconstructions obtained depends on the suitability of the splitting schedule as 

well as the prior, particularly when the number of grey levels is high. At the very 

least the method may be used as a final tidying up step for reconstructions 

obtained using other methods such as ICM or simulated annealing. Subregions 

containing adjacent colours in the reconstruction can be identified and isolated 

and the exact two colour MAP method applied.
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It is interesting to note that the final stages of this method involves 

reconstruction on subregions which contain only two levels. A natural extension 

of the method would be to consider these subregions in turn, and use the subpixel 

refinement process which was described in Section 5.5 to get a subpixel grey 

level reconstruction on the whole region.
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