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TO MARION AND MY PARENTS

And if the world were black or white entirely 

And all the charts were plain 

Instead of a mad weir of tigerish waters,

A prism of delight and pain,

We might be surer where we wished to go 

Or again we might be merely 

Bored but in brute reality there is no 

Road that is right entirely.

Louis MacNeice



Graph-theoretic Multivariate Nonparametric Procedures 

Summary

The difficulties of extending the concept of ordering for multivariate data are 

responsible for the lack of multivariate generalizations of some well known 

nonparametric tests. An approximation to an ordered list for the multivariate case 

consists of linking each data point to other individuals which are regarded as being 

near to it. There are, of course, many possibilities for deciding when any pair of 

observations are considered to be near enough so that they may be linked. Our interest 

is to investigate the adequacy of procedures based on graphs in hypothesis testing and 

initial analysis of multivariate observations.

Chapter 1 presents the elements of graph theory which appear in the following chapters. 

In Chapter 2 we study a generalization of the multivariate runs test to the AT-sample 

case and discuss some approximations to its null distribution. In Chapter 3 we explore 

multivariate tests of hypotheses based on ranks. We use two multivariate ranking 

methods proposed by Friedman and Rafsky (1979) together with several univariate 

rank tests. We also describe the approach advocated by Puri and Sen (1971) for 

constructing multivariate rank tests. Chapter 4 describes tests based on contingency 

tables based on partitioning the graph nodes. We also discuss the usefulness of 

such tables in initial multivariate data analysis. Chapter 5 has some examples of the 

power of the tests described in the previous three chapters against location and scale 

alternative hypotheses. Chapter 6 examines two measures of multivariate association 

and prediction and discusses to what extent the normal approximations previously 

proposed hold for small sample sizes. In Chapter 7 we demonstrate the usefulness of 

the procedures studied in practice by analyzing three real data sets. In the last chapter 

we present some concluding remarks and outline several lines for further research.
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Chapter 1

Introduction

1.1 Preliminaries

The problems considered in this thesis arise from the question how can we generalize 

K-sample nonparametric tests for multivariate data? Such generalizations may be 

an important tool whenever the usual assumptions (e.g. normality and homogeneity 

of variance-covariance matrices) required for parametric multivariate tests are not 

satisfied by the data. Besides, often due to small sample sizes, in many cases it is 

not possible to establish accurately to what extent the data fit the said assumptions or if 

it is adequate to use a large sample approximation to the null distribution used for the 

parametric test statistic. In these situations, which are frequently found in the practice, 

the usefulness of a nonparametric alternative is evident.

The literature on nonparametric multivariate tests is scarce. Books concerning either 

nonparametric statistics or multivariate analysis usually do not mention the subject 

at all —with some exceptions, for instance, the texts by Du Toit et al. (1986), and 

Kzranowski (1988), which devote a few pages to it.

The book by Puri and Sen (1971), Nonparametric methods in multivariate analysis is 

practically the only text on the subject. Its central idea is to construct nonparametric 

tests whose only difference with the usual likelihood ratio tests based on normal 

theory lies in substituting the observation matrix by a rank matrix —the ranks being 

determined within each variable. This approach assumes the absence of ties in the
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observations. Thus the tests derived from it are not an adequate tool for non-continuous 

data, in whose analysis an important role is played by univariate nonparametric 

techniques.

Having this kind of problems in mind it is natural to look for tests which would use 

dissimilarity measures, as these can be defined in very general terms for a wide variety 

of data. Mielke et al. (1976, 1981), Mielke (1978, 1979), Berry and Mielke (1983, 

1984), and Berry, Mielke and Wong (1986) have extensively studied an approach, 

known as Multi-Response Permutational Procedures. MRPP, which advocates the use 

of statistics based on weighted sums of distances. The reason for using the term 

Permutational in the name is that the MRPP are distribution free, and so their exact 

permutational null distribution may always be calculated. Of course, this quickly 

becomes impossible as the sample sizes grow, even for quite small sample sizes. The 

convergence to a distribution which is easy to calculate is usually very slow, so Mielke 

and coworkers, in a long series of articles, have proposed several approximations to 

the permutational distributions of their statistics by matching their first three or four 

moments. Besides, the MRPP have the drawback of requiring the use weights for the 

distances involved in the test statistics. It is not clear which sort of weights would be 

more adequate for any particular situation.

Another approach, which contains the MRPP as particular cases, is the Generalized 

Correlation Coefficients (GCC) theory. The seminal work in this area is the paper by 

Daniels (1944). A thorough account of this theory appears in Kendall’s book Rank 

Correlation Methods (1962).

Knox (1963) used graph theory to define a generalized correlation coefficient in order 

to study the space-time clustering of children with leukemia in the North of England. 

Barton and David (1966) outlined a general method for computing the moments of 

statistics based on the number of edges which are common to two graphs based on 

different distance matrices. Much before, Moran (1948) had addressed essentially the 

same problems.

Figure 1-1 shows the basic idea of Knox’s work. The temporal graph has its links 

defined by pairs of cases detected within a certain time interval of each other; the spatial
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configuration shown could correspond to the spread of an epidemic within a region.

Spatial dataTemporal links

Figure 1-1: An example of space-time clustering

Mantel (1967) and Mantel and Valand (1970) proposed a general permutation statistic, 

enhanced Barton and David’s methods, and obtained explicit expressions for the third 

and fourth moments of a particular space-time clustering statistic.

We focus our attention on constructing multivariate nonparametric procedures using 

graph theoretic concepts within the framework of GCCs theory. This is an adequate 

field to work in order to construct all-purpose multivariate tests.

We would like our procedures to have the following features:

1. they should work for virtually any kind of multivariate data

2. they should have distributions that can be easily approximated, in particular for 

small sample sizes

3. they should give a further insight of the relations amongst the multivariate 

observations

4. they should be easy to calculate, with a minimum of numerical problems.

5. they should have good power against a wide range of alternative hypotheses.

Our first point of reference are the papers written by JH Friedman and LC Rafsky (1979, 

1981 and 1983). These authors applied graph theory concepts to some multivariate 

analysis problems. Their areas of interest may be summed up as follows:
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1. Hypothesis testing.

Friedman and Rafsky gave generalizations of some well known nonparametric 

tests (Wald-Wolfowitz runs test, Smirnov test) concerning the null hypothesis of 

homogeneity of two populations.

Many univariate nonparametric tests are based on the ranks of the pooled sample. 

The ordered list of observations can be seen as one in which each of its elements 

is contiguous to points which should have similar values to its own. For 

multivariate data the construction of a similar relation amongst the observations 

can be achieved by calculating the distance between every pair of points in order 

to link those pairs which are “near”. Statistics conditioned on the observed links 

would lead to nonparametric tests. Whatever the criterion is for selecting a set 

of neighbours, the notion of linking pairs of points corresponds to a graph; thus, 

graphs are a natural tool for generalizing well known nonparametric tests to the 

multivariate case.

2. Planing.

Sometimes a planar or tridimensional representation of multivariate observations 

is desirable. As a follow-up technique to their two-sample tests, Friedman and 

Rafsky (1981) introduced a two-dimensional mapping technique called planing. 

Many techniques used to obtain low dimensional representations make use of 

projections algorithms. Such is the case of plots based on the few first principal 

components or on projection pursuit methods. They may produce very good 

results evaluated either in terms of an overall discrepancy measure (stress) 

between the original distance matrix and the distance matrix obtained for the 

low dimensional configuration, or by means of the proportion of total variance 

contained in the data projections on the first few principal components. However, 

these low dimensional configurations can be computationally expensive to obtain 

and may be affected by numerical difficulties.

Another possibility would be to use multidimensional scaling techniques e.g. 

those proposed by Kruskal (1977) or non linear mappings like the one originally

4



proposed by Sammon (1969). In this case, one attempts to construct a planar 

representation of the observations that minimizes a stress function. Instead of 

looking for configurations such as those indicated above, the planing technique 

of Friedman and Rafsky (1981) constructs a two-dimensional configuration that 

preserves exactly, by means of a triangulation method (Lee etal., (1977)), only a 

few of the distances. For /^-dimensional configurations it is possible to preserve 

the distances amongst p + 1 points. Such distances are chosen from those that 

define links on a certain class of graphs, and the order in which the points are 

plotted can be used to highlight the distance relations existing in the data with 

respect to some particular point.

3. Probability-Probability Plots.

Another use of the list of ranked univariate observations for the pooled sample 

is the construction of P-P plots. In the univariate two-sample case, if X  and Y  

denote the values for each sample, a P-P plot for samples of sizes n\ and n2 is 

a plot of the + « 2  points (F x(z), Py(z)), where Fx and F Y are the empirical 

distribution functions and z takes values over the pooled sample; the points are 

connected in order of increasing z. If the samples were identical, then the plot 

would be like the graph of /(x) = jc; location differences would be reflected by 

plots lying predominantly above or below that line and scale differences would 

tend to produce plots that lie on either side of that line, cross it and remain on 

the other side for the remainder of the plot. Again, a possibility for generalizing 

the concept of an ordered sequence of values to the multivariate case, is to link 

points which are “near” in the multidimensional space and has been explored by 

Friedman and Rafsky (1981).

4. Multivariate measures of association and prediction.

Daniels (1944) defined a generalized correlation coefficient between two data 

matrices X and Y as
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N N

r = ££a*A ai)
i=i j=i

where ay and by are scores determined by the values of the data points on X 

and Y, respectively and N  is the sample size. Examples of these statistics that 

may be expressed as generalized correlation coefficients include Pearson’s r, 

Spearman’sp  and Kendall’s t, which correspond to the scores choices ay = x —x j,  

by = yi-yy, ay = rank(jt,)- rank(jt7), by = rank(y,)-rank(y;) and ay = sign(x,-x7), 

by = sign(y,- -  yj), respectively.

It is possible to use T for multivariate observations, as the scores ay, by can be 

defined for vectors. But, once more, one needs some multivariate analogy to the 

concept of ranking which defines correlation coefficients like p  and t . Friedman 

and Rafsky (1983) studied two multivariate correlation coefficients. They are 

suitable for assesing the significance of the correspondences between two data 

matrices.

In this thesis we are concerned principally with the first and last points of those covered 

by Friedman and Rafsky, as our central interest is to address the problem of hypothesis 

testing for multivariate observations in a nonparametric context.

Graph theory is a convenient framework to present and study relations amongst 

multivariate observations. Most of its applications in statistics are based on graphs 

whose nodes represent the sample points and whose edges link individuals which 

are “near” to each other. The relation of “closeness” is defined with respect to a 

dissimilarity (or similarity) matrix calculated on the multivariate observations. Every 

edge of the graph has an associated weight which is usually a monotone function of the 

dissimilarity between the pair of nodes defining the edge.

Most of the applications of graph theory in statistics have been in cluster analysis. 

It is possible to provide rigorous definitions of a cluster using graphs. For instance, 

consider the construction of dendrograms. First one obtains a graph using the nodes 

to represent the individuals under study, and defining an edge in it if a pair of nodes
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satisfies some relation of interest based on a distance matrix, e.g., if one of them is the 

nearest neighbour of the other. Then, it is possible to proceed to group subsets of the 

data in such a way that the distances between pairs of individuals in a group are always 

less or equal than some threshold distance, which corresponds to a certain edge in the 

graph.

Figure 1-2 illustrates these ideas. For the dendrogram shown there, the threshold 

distances are defined by the following pairs of nodes: (2,3), (2,4), (3,5), (3,1). This 

sequence of pairs of nodes corresponds to the single linkage method, in which the 

threshold distance between two groups corresponds to the shortest distance amongst 

those defined by pairs of nodes from different groups. If instead we define the threshold 

distances to be those which are the largest distances between pairs of nodes from 

different groups, then the sequence defining the dendrogram would be (2,3), (3,4), (2,5) 

and (4,1). These procedures consider N  groups with 1 individual each and end up with 

1 group with N  individuals within it.

00

CM

O
0.2 1.00.0 0.4 0.6 0.8

in

CO

Figure 1-2: A dendrogram based on a graph

The book by Jardine and Sibson (1971), and the papers by Ling (1972), Matula (1972) 

and Hubert (1974), amongst others, provide a theoretical basis for cluster analysis. 

The contribution of Friedman and Rafsky (1979) is to stress that graphs with edges
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defined by pairs of points which are “near” can be used to generalize ideas like the 

ranking of univariate data to the multivariate case. The use of the ranks obtained 

from these graphs have received little attention. The number of papers with specific 

applications of the Friedman-Rafsky multivariate runs tests is very small. They have 

been applied in the analysis of a clinical diagnostic classification process by Brohet 

et al. (1984). Smith and Jain (1984) used these tests to provide a test for uniformity 

for multivariate data. Karlin et al. (1983), Seber (1984) and Miller (1985) mention the 

Friedman-Rafksy tests as an alternative approach useful to analyze multivariate data 

with complex structure.

There is, however, some evidence that the tests thus derived may have good 

power against a wide range of alternatives in various dimensions. Friedman and 

Rafsky (1979) studied the performance of tests based on sequences of orthogonal 

spanning trees and stated their usefulness for multivariate normal and nonnormal data. 

Whaley (1983) showed that these tests are equivalent to the procedures derived by Cliff 

and Ord (1973) for spatial autocorrelation tests and to the MRPP proposed by Mielke 

et al. (1976).

Whaley and Quade (1985) used graphs which have an edge defined if and only if the 

distance between any pair of points is less than some specific threshold value. They 

found that, in some cases, the power of such nonparametric tests can be as high as the 

one obtained with parametric tests. A drawback of this approach is that it is not clear 

how to choose an optimal threshold value to define the graphs used by Whaley and 

Quade. However, they showed that the runs tests thus defined may have greater power 

than Hotelling’s T2 test. They also compared the threshold-graph tests with Friedman- 

Rafsky’s original tests and found that, in general, the latter have better power. 

Schilling (1986) considered two-sample tests based on the nearest neighbours from a 

Euclidean distance matrix. He worked with the weighted proportion of all n-nearest 

neighbours in which observations and their neighbours belong to the same sample. 

He found that for several alternatives his tests’ performances were similar to that of 

the Friedman and Rafsky’s tests. Henze (1988) extended Schilling’s results to any 

distance generated by a norm on Rp. Although both authors obtained expressions for
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their optimal weights, it is not clear how these would be generalized to the AT-sample 

case.

Friedman and Rafsky, Whaley and Quade, Schilling and Henze worked only with 

graphs derived from nearest neighbours graphs and from minimum spanning trees and 

left aside a few extensions of their ideas. We explore the application of a wider range of 

graphs to enhance their approach and study in greater detail some points mentioned by 

those authors. Of particular interest is the construction of small sample approximations 

to the null distribution of the statistics discussed in the Friedman-Rafksy papers. 

The asymptotic normality for statistics of the form (1.1) was proved by Friedman 

and Rafsky (1983) for very general conditions using the results of Daniels (1944) 

on the distribution of generalized correlation coefficients over the space of sample 

permutations.

In the rest of this chapter we introduce some graph theory concepts and discuss some 

graphs and algorithms that will be used throughout the following chapters.

1.2 Graph Theory Concepts

The terminology and notation in graph theory texts are far from being uniform, so 

we devote this section to present the graph-theoretic machinery used in the rest of the 

thesis.

A graph Q is an ordered pair (V, E), consisting of a finite, non empty set V{ Q ) of 

vertices (also called nodes) and a (possibly empty) set E{ Q) of edges, whose elements 

are defined by pairs of vertices. We say that an edge links the two nodes defining it and 

that it is incident on both of them; a node is adjacent to all its incident edges. Figure 1-3 

shows an example of a graph.

In this section, Q and H  denote graphs; V{Q) and E{Q)  are the node set and the 

edge set, respectively. A path between any two different nodes vi,V2 e V{ Q ) is an 

alternating sequence of nodes and edges of Q having vi as its first element and V2 as 

the last one; the edges in the path must be adjacent and the inner nodes must be different. 

If Vi = V2 , we call that path a cycle. The length of a path is the number of edges included

9



Figure 1-3: A disconnected graph

in it. A connected graph has a path between every pair of nodes. The degree of a node 

is the number of edges incident on it.

A graph H  is a subgraph of Q if V{H) c V ( ^ )  and E(K) (= E{Q); if V(H) = V(Q), 

then Ti is a spanning subgraph of Q . A complete graph is one in which every two 

nodes are adjacent; the complete graph with N  nodes, will be denoted by Kn. The 

empty Nth graph, £N, has N  nodes and no edges (Figure 1-4).

Figure 1-4: JC5 and £ 5

A tree is a connected graph without cycles. For a graph with N  nodes, a tree has N -  1 

edges. An edge weighted graph has a real number assigned to each edge. A minimum 

spanning tree (MST) of an edge weighted graph is a spanning tree for which the sum 

of the edge weights is minimum. The eccentricity of a node P in a tree is the number 

of edges in a path with greatest length beginning in that node; the node at the other 

end of such a path is called an antipode of P. The path between a node with largest 

eccentricity and one of its antipodes is called a diameter. A centre of the tree is a node

10



for which the eccentricity is minimum (Figure 1-5). The antipodes of a diameter are 

called its ends.

centre

Figure 1-5: A minimum spanning tree, its diameter, and its centre

A rooted tree has one of its nodes labelled as its root (Figure 1-6). For every node in 

a rooted tree, its depth is the length of the path between it and the root; the height of a 

rooted tree is the maximum depth in it. The parent of any node P is the penultimate node 

on the path beginning with the root and ending with P; the nodes which are different to 

P in such a path are its ancestors. The daughters of any node P are those nodes that are 

not its parents but are linked to it; its descendants are all the nodes for which P is an 

ancestor. To traverse a tree is a procedure in which all the nodes are visited according 

to some order, usually specified in relation with a sequence of roofings.

Two graphs are orthogonal if they have the same node set and the intersection of their 

edge sets is empty. The complement of a graph Q , denoted by G , has node set equal 

to V(G)  and (u, v) e E{ Q), if and only if (u, v) € E{Q ). The intersection and the 

union of two graphs Q and H  which have a common node set are the graphs with the 

same node set and the edge sets E(Q ) n E{H) and E(Q)kjE(H),  respectively.

A graph is planar if it can be embedded in the plane without crossings, i.e. in a way 

such that distinct edges intersect only at nodes. A straight line planar embedding of 

a planar graph determines a partition of the plane called planar subdivision or map.

11



root

Figure 1-6: A minimum spanning tree rooted at its centre

A representation of a planar graph in the plane is called a plane graph. Let v, e, and 

f  denote respectively the number of vertices, edges and regions (including the single 

unbounded region) of a map. These three parameters are related for a connected plane 

graph by the classical Euler’s formula

v - e  + f  = 2

The incidence matrix of a graph with N (N> 2) nodes is the N  x N  matrix A = [ay] in 

which an is the degree of node i and ay = -1 if there is an edge defined by the nodes i 

and j  and 0 otherwise. This matrix can be used to study some interesting properties of 

graphs.

Given a connected graph Q with N  nodes and e edges, its complexity c{Q) is the 

number of spanning trees contained within Q ; the matrix tree Theorem (Wilson, 1972) 

establishes that

c(Q) = a(  A) (1.2)

where a  denotes the cofactor of any of the entries of A. Another useful property of A 

is that rank (A) = N - s ,  where s is the number of connected components within Q .
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Given N  and e, every graph which is possible to form with these parameters can be 

regarded as a point in a probability space which has elements, where M  = I (^). 

Moon (1971, p. 45) showed that the expected value of c( Q) over the elements of this 

space is

Moon (1971) also obtained a formula for var (c( Q N,e)\ but it is much more difficult to 

calculate than the mean, and in general, it does not provide useful information in this 

context, as it is asymptotically of order 0((Ec(QN.e))2), as Janson (1986) proved. 

The distribution of the complexity of a graph is not known.

We shall use these concepts in the following chapters. The graphs considered have 

their nodes corresponding to the data points; the edges are defined by pairs of points, 

with edge weights determined by a dissimilarity matrix V  = [dy]. Given this set up, 

the way of defining the edges is determined by the graph in question.

1.3 Nearest Neighbours Graphs

The concept of «-order nearest neighbourhood has been widely used in Statistics: 

cluster analysis, bivariate splines, image analysis, and spatial statistics are only some 

fields in which it plays an important role. A definition of nearest neighbourhood of 

order n (n-NN) follows. Let d be any distance function. The n-NN to the point x, 

is the point xy such that < dij for exactly n -  1 values of k, with (1 < k < N) and 

k*i,j. If we assume that the off-diagonal elements of the distance matrix are all distinct, 

then the nearest neighbour of every order for each point is unique. In many cases, we 

can think that ties within the distances occur with probability zero. However if ties 

do occur, mainly due to rounding or measurement limitations effects, it is possible to 

handle them in the following manner, suggested by Schilling (1986): suppose that Q 

observations are equidistant from with other n -  1 points strictly closer to jc,-; assign 

a random permutation of the appropriate ranks n, n + 1,..., n + Q -  1 to these Q points
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in forming the NN list for The ^-nearest neighbour graph (n-NNG) is obtained by

linking the nodes of i-NN, with 1 <i<n.

The nearest neighbourhood relation is not symmetric. If two points are such that one 

is the rath NN of its own nth NN, then they are called reflexive nearest neighbours o f 

order (ra, n). Pickard (1972), Cox (1981) and Henze (1988) amongst others, provided 

some interesting results concerning this relation.

Friedman et al (1975) obtained an efficient algorithm to calculate n-NN in 

p dimensional spaces; it may be applied to any distance measure. The efficiency of 

this algorithm depends on the dimensionality of the data as well as on the distance 

function used. Its authors gave some lower bounds for several distance measures and 

showed that it compares favourably to the usual brute force type algorithms.

Figure 1-7 shows the first two NNG obtained for 50 points in the plane. The number 

of links of each graph is also shown.

The n-NNG is not necessarily a connected graph; however, for Euclidean distances 

over points on R̂ , as p increases, the proportion of connected n-NNG also increases for 

every order of nearest neighbourhood.

1 -NN; 34 links 2 -NN; 70 links

Figure 1-7: Nearest Neighbours Graphs
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1.4 Orthogonal Minimum Spanning Trees

A minimum spanning tree is an edge weighted tree for which the sum of the weights is 

a minimum over the set of all the spanning trees with a fixed number of nodes. If we 

take the edge weights to be associated with a distance matrix calculated for the N  data 

points, then an MST connects all the nodes with N — 1 edges and these edges represent 

pairs of points that are close together.

It is possible to apply the definition of MST to construct orthogonal spanning trees. 

Thus, the 2-MST is the union of the 1 -MST and the spanning tree obtained, if edges 

from the 1 -MST are excluded, by minimizing its total length. In general, an n-MST is 

formed as the union of the first (n -  l)-MSTs and the MST obtained without including 

any edge belonging to the previous MSTs.

Two properties of the first MST are expressed in the following theorems.

Theorem 1 1-NNG^l-MST

Proof: If N  = 2, the theorem is true; this is the basis of the induction. Now suppose 

that for A -  1 nodes, 1-NNG c  1 -MST; if we add another node, then to be sure that the 

resulting tree has still minimum sum of edge weights, we must join the new node to its 

nearest neighbour.

Theorem 2 I f  any edge of an MST is deleted, thus dividing the points into two disjoint 

subsets, then the deleted edge weight corresponds to the smallest interpoint distance 

between the two subsets.

Proof: Let Q = (V,E). Let N  be the number of nodes in Q , and U a  V be any subset 

of V; consider e to be an edge of minimum length amongst those edges connecting 

nodes in U with nodes in V -  U. To prove the theorem it suffices to show that there is 

an MST which contains e. Let T0 be an MST. If e € T0, then add e to To, thus forming a 

cycle that contains e and at least one more edge, e\ which connects nodes from U and 

V-U.  Deleting e from T0 u  e we obtain another spanning tree, Ti, as it is a connected 

graph with N - 1 edges. But length (e) < length (e), and so the total length of T\ is less 

or equal to that of T0, implying that T\ is an MST.
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There is a large variety of algorithms to construct MSTs. The following one was 

proposed by Kruskal (1956):

1. Sort the elements of the distance matrix V  in ascending order.

2. Follow that sorted list and select edges making sure that no cycle is formed.

3. Stop when (N -  1) edges have been selected. They form an MST.

Cayley’s Theorem (Moon, 1971) establishes that the number of different trees that is 

possible to construct from N  nodes is Nn~2. In view of this fact, the construction of the 

MST seems remarkably simple. Prim (1957) obtained a better algorithm, based on two 

principles for MST construction. Let an isolated node be a node which has not been 

linked to the MST at some stage of the MST construction. A. fragment is a spanning 

tree of a subgraph and an isolated fragment is a fragment which, at some stage of the 

construction, has not been linked to the rest of the graph. The distance between any 

node and a fragment of which it is not a member is defined as the miminum interpoint 

distance between that node and the nodes in the fragment. A nearest neighbour of a 

node is another one whose distance to the specified node is as small as that of any other 

node. A nearest neighbour of a fragment is a node which has a distance as small as 

that of any other node from the fragment. Prim’s principles are:

1. Any isolated node can be linked to a nearest neighbour.

2. Any isolated fragment can be linked to a nearest neighbour by a shortest edge 

not included in any other fragment.

Using these principles, Prim’s algorithm can be enunciated as follows:

1. Begin with any arbitrary node. Link it with one of its nearest neighbours; this 

constitutes the first fragment tree.

2. Find the smallest interpoint distance between a point that does not belong to any 

fragment and a point already linked to the MST; link this pair of points.

3. Repeat step 2 N - 2  times.
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FORTRAN programs implementing Prim’s algorithm for any distance matrix (without 

ties) appeared in Ross (1969) and Whitney (1972). They both run in O (N2) time. 

Shamos and Hoey (1975) presented an algorithm to obtain MSTs in the plane which 

is at most O (N log AO; it is based on the Delaunay triangulation of the data points. 

Bentley and Friedman (1975) and Yao (1982), amongst others, proposed algorithms 

for MSTs in higher dimensions for which the computation time is, in average, of lesser 

order than O (N2). However, all these algorithms assume that a variety of geometrical 

properties hold for the data points in order to run in less than O (N2) time. In general, 

for pooled sample sizes of a few hundred points, Prim’s algorithm still gives the most 

efficient and general way of finding MSTs.

Friedman and Rafsky (1979) gave the following O (N) algorithm to find a centre of an 

MST:

1. Choose an arbitrary node as root.

2. Find the node in the MST of greatest depth; this is an antipode.

3. Choose this antipode as the root and find its antipode.

4. These two nodes form a diameter of the MST. With one of them as a root, find a 

node on the diameter whose depth is as close as possible to half the depth of its 

antipode; this is a centre of the MST.

An algorithm to construct an n-MST is as follows:

1. Calculate the l-MST.

2. do n -  1 times

(a) Assign a value of °o to the entries of the distance matrix which correspond 

to an edge included in previous MSTs.

(b) Obtain an MST for that modified distance matrix.

Figure 1-8 shows the two first orthogonal MSTs for 50 points in the plane.

Zahn (1971) proposed a great variety of data analysis techniques using the 1 -MST; 

his main interest was to develop methods that define clusters for 2-dimensional data
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1 -MST links= 49 2 -MST links= 98

Figure 1-8: Orthogonal Minimum Spanning Trees

sets. Zahn pointed out that edges in the MST tend to follow steepest gradients in 

point density. The centre of the MST tends to lie near the geometric centre of the 

multivariate data points and can be regarded as analogous to the median of a univariate 

data set. These two remarks mean that, if we root the MST at its centre, then for 

spherically symmetric distributions (and their transformations), the depth of every 

node is a quantity similar to the distance between every point and the mode of the 

distribution.

Some problems may occur in the specification of the n-NNG or the n-MST if there were 

some pairs of points which have the same distance —usually this possibility is ruled 

out by assuming that ties occur with probability zero. For the former of these graphs, 

we can just consider that any point may be allowed to have more than one nearest 

neighbour of any order.

For the MSTs, the solution is not as obvious because there might be as many minimal 

spanning trees as the number of pairs points with the tied distances. However, if this 

number is relatively small, the possible MSTs should not differ much with the one 

finally chosen. Chatfield and Collins (1980, §11.4) mentioned a suggestion made by 

Sibson in order to deal with this problem. The idea is to define an invariant graph
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using the ultrametric distances. This graph coincides with the MST if there are no ties, 

but may have cycles as well as a total weight larger than the one of the MSTs. This 

advice is ad hoc for cluster analysis problems. As we will see, in some applications 

we specifically require the tree structure. Other times, we are mainly interested in 

orthogonal MSTs, and these would pick up these distances eventually. In general, 

unless we were examining the neighbourhood structure as such with an MST, we 

followed the convention of picking the first spanning tree obtained, regardless of the 

tied distances involved in it. If there are relatively few of them, the results should not 

be affected very much. Otherwise, we followed Sibson’s suggestion.

1.5 Exodic Trees

Gilbert (1964) defined the exodic tree (ET) as a “not quite minimal spanning tree”. 

He proposed this graph in order to calculate an upper bound to the total edge length 

of the minimum spanning tree; we will follow this approach later on. Roberts (1968) 

enhanced Gilbert’s results. The term exodic was given to this tree because some paths 

contained in it radiate outwards from the root. It has not been used in hypothesis 

testing, where it may increase power against scale alternatives. In another application, 

it may provide a convenient framework to construct low dimensional representations 

of multivariate observations in a way that highlights the relationships of the points with 

respect to any selected location in the sampling window.

An at most O (N2) algorithm to obtain ETs is as follows:

1. Choose any point as the root of the ET and label it as X(i>.

2. Label the rest of the points as X(2) , ,*(ao according to the ascending distances 

between these points and X(i).

3. Link x^  (i > 2) to the point x® e {*(i>, Jt(2), ..., *(:-i)} chosen to minimize the 

distance between x@ and x^.

It is easy to see that this construction leads to a tree: by induction on i, if the edges made 

at jt(2), ..., X(,-i) form a tree, then adding an edge containing x@ induces no cycles. The
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total length of an ET is usually not much larger than that of an MST, as from all the trees 

containing paths going from jc(d to x®, for each i > 2 through nodes with increasing 

distances with jc(i), the ET rooted atX(i) has minimal length.

centre -EXOTREE; end -EXOTREE; end -EXOTREE;

Figure 1-9: Exodic trees rooted at the centre and at the diameter extremes of the MST

Figure 1-9 shows three different exodic trees for 50 points in the plane. The first 

was obtained taking the centre of the corresponding 1 -MST as the root; the other two 

proceed from rooting the ET in each of the ends of the diameter of the \-MST.

1.6 Relative Neighbourhood Graphs

There are many possibilities for considering two points in the p dimensional space as 

being “relative neighbours”. Using the concept of relative close neighbours in the form 

first proposed by Lankford (1969), Toussaint (1980) investigated some aspects of the 

relative neighbourhood graph (RNG). His definition is as follows:

two points Xi and xj define an edge of the RNG iff

d ( x ifXj) < max max [ d f a ,  Xk), d(xj ,  Jt*)] > 
k*i,j

which is equivalent to say that
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two points x, and xj are not an edge of the RNG iff

d{Xi, Xj) > max max [d(xj, Xk), d(xj, x*)],
k*i,j

Intuitively, this means that two points define an edge in the RNG iff they are at least 

as close to each other as they are to any other point. The following formulation is 

equivalent:

Two points Xj, xj are linked in the RNG iff the intersection of the open 

hyperspheres with radii d(xit xj) centered at x, and xj has no point in it.

Toussaint (1980) enunciated the following theorem for a planar configuration. It gives 

a relation between the 1-MST and the RNG.

Theorem 3 1-MST c  RNG

Proof: Let C denote the interior of the intersection of the spheres with centres at any 

points x,, Xj and radii d(xj, xj), and let B be the boundary of C, as shown in Figure 1-10. 

Suppose any third pointx* lies outside B , i.e., the MST is unique; thus, x* must be either 

in C or in C = (C u  B)c. Ifx* e C, then d(xi,xk) < d{xi,xj), and d(xj,xk) < d(xit x7), so 

xjx] £  l-MST. This gives a necessary but not sufficient condition for an edge being 

in the 1-MST: all the other points must lie in C, and this is a necessary and sufficient 

condition forxpc] e RNG, as claimed.

The obvious way of calculating RNGs is the O (N3) brute force algorithm proposed 

by Toussaint (1980):

1. Compute the distance matrix V  = [dij]

2. For each pair of points (x„ xj)

(a) compute ax = max{*4,-, dkj] for k = 1 ,..., n, k * i, k -tj

(b) search for a point, x*, such that d ^ x < dgi if no such x* is found, then define 

an edge with points x, and xj.

Urquhart (1980) presented an algorithm to obtain RNGs which is at least O  (N2):
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j

Figure 1-10: 1 -MST c  RNG

1. Compute the distance matrix V  = [dy] = [d{xit *,)]

2. For each pair of points (jc*-, xj) that has not been rejected as an edge of the RNG, 

compute d^ax = max{dki, dkj} for k -  1 ,..., n, k * i, k * j

(a) if dij > dkmax then reject xJx] as an edge of the RNG

(b) if d^ < dkm&x then reject the pair of points separated by d ^  as an edge of

the RNG

(c) if dy < d?̂ ax, Vk, then xfx] e RNG.

Some algorithms which are more efficient for particular cases have been proposed. 

O’Rourke (1982) discussed algorithms for RNGs that run in O (N2 log AO considering 

the L\ metric in the plane and the metric in higher dimensions. Urquhart (1980, 

1982) and Supowit (1983) gave algorithms for Euclidean metrics in the plane that 

run in O (N log AO time. Supowit (1983), proving rigorously the adequacy of his 

own algorithms, corrected Urquhart’s work for this case and presented a review of 

algorithms for calculating RNGs. The chief interest of this author was to investigate 

in which conditions an MST for planar configurations could be obtained in linear time 

by deleting edges of the RNG. In this line, he found an algorithm which runs in O (N) 

time for points enclosed within a convex polygon. Supowit (1983) pointed out that 

the fastest general algorithms for RNGs so far known are still those presented by 

Urquhart (1980,1982).
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Lefkovitch (1985) proposed a generalization to construct higher order RNGs which 

may be expressed as follows:

the edges on the n-RNG (n > 1) link points which were not already linked 

in previous RNGs and which have at least one common relative neighbour 

of lower order.

1 -RNG; 60 links; 2 -RNG; 152 links;

Figure 1-11: Generalized Relative Neighbourhood Graphs

Consider an N xN  boolean matrix R  with value TRUE at entry i-j if the nodes i and j  define 

an edge in the graph and FALSE otherwise. Then, the matrix of this type corresponding 

to the nth order RNG  can be obtained by

R„ = R 2 a  R  (1.4)

where R  is the boolean matrix formed with the union of the first n - 1  RNGs, R  denotes 

its complement and a  is the Boolean matrix AND operation. Obviously, R m a  R„ = 

[FALSE], for all m * n. Figure 1-11 gives an example of this generalization.

Figure 1-12 contains an example of a more qualitative comparison between the NNG, 

the M ST  and the RNG. Using Euclidean distances for 100 configurations of uniform
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random numbers, it shows the percentage of the total number of nodes which were 

leaves, i.e. that had degree 1. Clearly, this may change for other distributions.

70-i
1-NN. p=2

60-

50- 1-MST, p=20

</>
■ooc

40-

30-

■MSL
20-

■RNG.10-

2010 50 100

num of nodes

Figure 1-12: % of leaves

1.7 Gabriel Graphs

This graph was first proposed by Gabriel and Sokal (1969) to define connectedness for 

a set of localities within geographical regions. Preparata and Shamos (1985) mentioned 

some properties and applications in pattern recognition problems. The definition of a 

Gabriel graph (GG) is as follows:

two points Xi, xj are linked in GG iff the open hypersphere with diameter 

d(xi, xj) centered at the midpoint of the segment joining x, and x) contains 

no other point.

This is equivalent to say that jc, and x) define an edge in the GG iff 

d2 (xi,Xj) < d2(xi,xk) 4- d2{xj,xk), V k * i , j
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To compute a GG from a set of N /^-dimensional points, we use Urquhart’s (1980,1982) 

general algorithm as described in the previous section. The only difference is that, for 

each pair of points jc„ xj, instead of testing if there is any other point in the intersection 

of the two hyperspheres with radii dij centred in x, and Xj, as we would do for an RNG, 

we look for points inside the hypersphere with diameter equal to d(xi, xj) and centred 

in the midpoint between x, and xj.

Matula and Sokal (1980) called the GG the least squares adjacency graph, studied 

some of its properties in the context of pattern recognition, and obtained some 

interesting results, but only for 2 dimensional observations.

It should be noted that the above definition of GG implies that the observations are 

in an Euclidean space, unlike those for the RNG, the M ST  or the NNG . However, it is 

possible to obtain GG by applying least squares adjacency criterion to the data distance 

matrix.

It is straightforward to use Lefkovitch’s ideas for RNGs to obtain generalized GGs. 

The method summarized in equation (1.4) can be used for this purpose. An example 

showing the first two GGs for 50 points in the plane appears in Figure 1-13.

1 -GG; 86 links; 2 -GG; 246 links;

Figure 1-13: Generalized Gabriel Graphs
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Urquhart’s (1980,1982) algorithm usually runs in much less than C(N3) time. In order 

to assess its behaviour we generated one hundred graphs over a set of N  uniformly 

distributed points in p dimensions. Table 1.1 presents the average number of operations 

needed to calculate an RNG and a GG using Urquhart’s algorithm.

N P 1 -RNG 1-GG
10 2 133.54 165.27
10 3 135.23 194.03
10 5 137.35 241.49
10 10 140.63 304.19
10 20 142.15 349.08
20 2 756.67 987.19
20 3 758.29 1220.66
20 5 788.28 1673.16
20 10 823.94 2511.66
20 20 846.02 3177.15
50 2 6031.28 8330.20
50 3 6427.96 11591.90
50 5 6930.73 18476.50
50 10 7201.66 33607.30
50 20 7564.91 50823.00

100 2 27634.93 38720.91
100 3 29771.20 56974.06
100 5 32633.21 100266.91
100 10 36532.80 221026.10
100 20 37992.21 386974.04

Table 1.1: Urquhart’s algorithm performance: RNG and GG

It appears that for the GG, increasing the dimension of the data points has a detrimental 

effect on the performance of the algorithm. For the RNG there seems to be an increase 

in the efficiency of the algorithm for higher dimensional configurations. For GG 

Urquhart’s algorithm is far from being efficient; however, it is still feasible to use it 

for moderately large sample sizes.

The complexity of the GG increases with the dimensionality of the data much faster 

than it does for the RNG. Indeed, we observed that for higher dimensions, and for 

moderately large number of points, it almost coincides with the complete graph. Thus, 

in that case, it is not uncommon to have very few differences in the edges of 1-GG and

26



the 2-GG.

1.8 Families of Limited Neighbourhood Graphs

The RNG and GG can be expressed in terms of a region of influence, 1Z . In order to 

have two points linked in an associated graph S  , the 1Z corresponding to that pair of 

points must be empty. For instance the 1Z for the GG is a hypersphere; for the RNG it 

is a “lune”. Urquhart (1982) proposed the following generalization to obtain families 

of graphs S  / based on influence regions 7Zi: 

two points Xi and xj are linked in 5  / iff

Xk<£ 1Zi{xitXj), V/: = 1, . . . , n ,k * i  and k * j  (1.5)

where the 7Z / defining S  / can be written as:

11 fa ,  xj) = {x\f [d(x, Xi), d(x, xj)] < d(xi, Xj), i * j )  (1.6)

where

d(Xi, Xj) = 0 <= 7li(Xi,Xj) = 0  (1.7)

and

%  i(xi, Xj) = 11 i{xj, Xi). ( 1.8)

i.e. f  is well behaved in the sense of yielding a finite nonempty region for d(xi, Xj) > 0.

The RNG and the GG can be defined in this way given the following regions of

influence:
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R r n g ^ X j )  = {x\ max[d(x,xt), d(x,xj)] < d(xitXj), i * j ]  (1.9)

and

1ZGG(Xi,Xj) = {x\d2 (x,Xi) + d2(x,Xj) < d2(Xi,Xj), i* j}  (1.10)

The regions described in equations (1.9) and (1.10) are referred as the lune and the disc 

for points xuXj (Figure 1-14).

Figure 1-14: 7Zrng J^gg 

Urquhart (1982) proposed three specific families of limited neighbourhood regions:

'R i{xi,Xj, cr) = R rng u  {x\ c min [d(x,Xi), d(x,xj)] < d(xi,xj)} (1.11)

R 2(Xi,Xj,(j) = R gg u  {x\<7mm[d(x,Xi),d(x,Xj)] < d(xifxj)} (1.12)

R  3 (xit xJf &)= {x\ [d\x, Xi) + cf(x, Xj)] (1 + cr) < d2{xi, Xj)} (1.13)

Examples of 2-d regions of these families appear in Figure 1-15. The third region 

corresponds to concentric hyperspheres with radii
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and centred at the midpoint along the line connecting x, and xy.

Figure 1-15: fti(0.25) 7e2(0.25)

It is interesting to note that the the mutual nearest neighbour graph of order 2, 

S  maw(2) e S is generated from the region of influence:

71 mnn(xi, xj, 2) = {x | min [d(x, xi), d(x, xj)] < d(xit xj)} (1.14)

This region produces graphs with very few edges, as only points which are mutual 

nearest neighbours will be linked (Figure 1-16). Clearly,

71 mnn(Xi, xj, 2) = 711 (Xi, Xj, 1) = 7 l2 (xi,Xj, 1)

Another family may be defined as:

7Z^{Xi,Xj,e) = {x\[d{x,xi) + d{x,Xj)\£ < d{Xi,Xj)} (1-15)

where 0 < e < 1 is a parameter analogous to the eccentricity of an ellipse with foci in 

Xi and Xj

Cluster analysis methods are a natural field of application for these families of graphs. 

By associating with each edge of the RNG or the GG a dissimilarity d* = 1/cr*, cr* 

being the value of the parameter which causes the edge to be deleted, it is possible
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Figure 1-16: 1 I m n n

to define dendrograms based on these families of graphs. As these graphs usually 

produce a disconnected graph S  /, the connected subgraphs within it induce a partition 

of the observations. Urquhart (1982) has shown that the resulting clusters will satisfy 

several consistency and stability criteria that make them an interesting alternative to 

other clustering procedures. Some examples appear in Figures 1-17 and 1-18.

1 -RNG; 48 links; sigma= 0.45 1 -RNG; 40 links; sigma= 0.6

Figure 1-17: S  \

The following lemma, due to Urquhart (1982), gives an interesting property for the

RNG.
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1 -GG; 56 links; sigma= 0.45 1 -GG; 41 links; sigma= 0.6

Figure 1-18: S 2

Lemma 1 'JZr n g  is the maximal region of influence 7Zi e. 1Z that is guaranteed to 

give a connected graph S  /.

Proof: From equation (1.6), we have that a necessary condition for S i  e S  to

be connected is that every point is linked to its nearest neighbour; so, S  / will not 

necessarily be connected. Now, the RNG is the largest region that guarantees links 

between nearest neighbours.

A consequence of this lemma is that any graph S /, where Hi n  1Zr n g  * 0  may be 

disconnected, and thus such graphs may be useful for detecting clusters as well as points 

from different samples which are close together.

Indeed, these graphs might not be spanning graphs, i.e., some points can appear isolated 

in the graph. This is not an advantage in the context of hypothesis testing, although it 

could be possible to construct a family of graphs by modifying Urquhart’s definitions 

in order to have the 1-NNG as the most disconnected graph allowed.

A method for obtaining S  i and S  2 is to delete the edges (jc„ xj) of the RNG or the 

GG if the ratio of d(xi,Xj) to min [d(xit xa), d(Xj, Xb)] is greater than cr, where xa and 

Xb denote the nearest neighbours in the RNG or the GG to x, and Xj, respectively, and

X a *  X j, X b  ± X i .
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If we also preserve in S  i and S  2 those edges linking xa, x„ xj, we obtain graphs 

whose changes with respect to the parameter <r are described in the following table.

<7 Si s 2
1 1 -MNNG l-MNNG

0 RNG GG

The families of graphs resulting from 7£3 and 714 have the following behaviour:

£ 3  (1) = JCn S a{ 1) = K,n

S  3 (0) = GG <S4(0) = En

s  3 (-1) = En

Urquhart’s families of graphs are useful tools to define clusters. However, there is an 

element of arbitrariness in the selection of the parameter cr, and thus, we do not use 

them to define test statistics. The insight that they provide as a framework for the RNG 

and the GG justifies their discussion in this chapter.

1.9 Delaunay Triangulations

A triangulation of a metric space is a planar subdivision in which all its bounded 

regions are simplexes. A triangulation of a finite set S of points is a planar graph on S 

with the maximum number of edges. This is equivalent to saying that the triangulation 

of S is obtained by joining its points by nonintersecting straight line segments so that 

every region internal to the convex hull of S is a simplex. Suppose we have N  distinct 

data points with positions xi, ..., xn in a metric space. If we assign to each data point 

the territory that is nearer to it than to any other data point, we will induce a partition 

of the whole space. If the N  points, denoted by X, are in the plane, let Tt denote the 

subset of R* which contains all the points closer to x,- than to any other element of X. 

Clearly, Tt is an the open convex polygon and can be expressed as QHij, where Hy is 

the open half plane containing x, bounded by the perpendicular bisector of x, and Xj. Tt
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is the Voronoi polygon corresponding to x The Dirichlet tessellation is the collection 

of these polygons. The Delaunay triangulation, DT, is the graph obtained by joining 

the points which share a side of their Voronoi polygons with length greater than 0.

For p dimensional Euclidean space, the Delaunay triangles are simplexes with p  + 1 

data point as vertices. Each vertex in the Dirichlet tessellation is the point where p  + 1 

territories meet and is the centre of the hypersphere passing through all the vertices of 

the associated simplex. In two dimensions the vertices of the tiles occur where three 

territorial boundaries meet; also, each of these vertices is equidistant from the three 

data points associated with the territories defining it. There are degenerate cases for 

this condition. For instance, in the plane, if the points are positioned in a regular square 

lattice, then the vertices correspond to points where four boundaries meet. In higher 

dimensions there are many more possibilities for having degenerate points in a DT. 

Preparata and Shamos (1985) mentioned the following theorem for planar 

configurations.

Theorem 4 GG c  DT

Proof: Let xixj e GG and let V  be the interior of the sphere with diameter d(xit xj) 

and £  its boundary. Then there is no other point of the pattern inside V. To see that 

this implies that xjxj e DT consider two any other points Xk and jq. If both of them are 

on £, then, no matter how close Xk and x/ are to, say, there will always be a side of 

non-zero length between xt and Xj in the tessellation. Furthermore, if at least one of the 

other points lies in V  = ( Vk j  £)c, the length of this common side will be even greater 

Figure 1-19 illustrates this point. The dotted lines in that Fig. represent the boundaries 

of the tiles defined by the Delaunay triangulation.

The DT can be constructed from any distance matrix. However, the vast majority of 

its applications have been to 2 dimensional data sets using Euclidean distance. Green 

and Sibson (1978) presented an algorithm to construct the DT of a set of points in the 

plane which runs in 0{N\ogN)  time. Sibson (1980) reviewed some applications of 

the DT in data analysis. Boots and Murdoch (1983) gave an extense bibliography on 

applications of this graph to several subjects. Hinde and Miles (1980), and Quine and 

Watson (1984) have presented detailed simulation studies of the distribution of several
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Figure 1-19: GG<zDT

attributes of DTs in the plane. They have provided approximations to the distributions 

of the number of sides, perimeter, area and inner angles of the polygons generated by 

the D T  with respect to a planar Poisson process.

Bowyer (1981) and Watson (1981) gave algorithms for computing DTs for p- 

dimensional points. Their algorithms run in 0 ( a pN^l+1,p) + bp N)  and 0(N ^2p~l /̂p) 

times, respectively. However, for Bowyer’s algorithm, its author mentioned that the 

coefficient bp grows very quickly as p  increases.

DT; links= 123

Figure 1-20: Delaunay Triangulation

Both algorithms are difficult to use and can be computationally very expensive for high 

dimensional data. Bowyer’s algorithm requires the specification of a /^-dimensional 

simplex enclosing the sample points in order to begin to compute the DT. This
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introduces an element of arbitrariness in the resulting graph, as some links between 

points near the edge of the convex hull of the observations may change according to the 

initial simplex. Figure 1-20 was produced using the package TILE4 of the University 

of Bath (Sibson (1981)). A dual problem for the DT is the construction of the p- 

dimensional convex hull for a set of points. A general algorithm to solve this problem 

is still an open question in computational geometry. JoZik (1983) outlined an algorithm 

to find multivariate convex hulls, but imposing several geometrical conditions on the 

data.

Figure 1-21 shows the average number of links for selected graphs based on applying 

Euclidean distance to 100 configurations of uniformly distributed points in 2 and 20 

dimensions.

For every combination of the number of nodes and of dimensions considered, the 

observed number of spanning trees is always larger than the expected number 

(equations (1.2) and (1.3)). This does not happen for the n-MST or the n- 

NNG. Furthermore, the RNG has the largest ratios between observed and expected 

complexities of all the graphs, suggesting a more efficient selection of the edges. 

Although it has been proved that 1 -MST c= 1 -RNG, both graphs very seldom coincide. 

This happens only for configurations with about 10 points or less. The proportion of 

coincidences observed for these configurations decreases with the dimensionality of 

the data. These facts were observed by Lefkovitch (1984).

As our interests are in general procedures, and in view of the difficulties encountered 

to calculate the DT for higher dimensions, we did not use this graph to construct tests. 

As in the case of the Urquhart’s graphs, the insight gained by briefly reviewing the DT 

justifies its inclusion in this chapter.
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Chapter 2 

Generalizations of the Multivariate 

Runs Test

2.1 Introduction

The first kind of multivariate tests to be discussed is based on the Friedman and 

Rafsky (1979) version of the Wald-Wolfowitz (1940) runs test. In this chapter we also 

examine some aspects of the theory of generalized correlation coefficients (GCC). We 

do so as the notation and some results from GCCs will be used later on. We begin by 

presenting a brief discussion of the nonparametric approach to hypothesis testing for 

multivariate data.

Methods based on ranks provide alternative procedures to the classical parametric 

approach to test the null hypothesis of homogeneity of K populations

H0 :FXl = FX2 = ... = FXk. (2.1)

Rank tests have null distributions based on the permutations of the ranks over the 

sample values. These tests do not require one to assume that the distribution of the 

data belongs to some family of distribution functions specified by a finite number 

of parameters. Rank tests are usually constructed by conditioning on the minimal
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sufficient statistic, that is, by regarding the order statistics as fixed and using the 

consequences that under the null hypothesis all permutations of the ordered values are 

equally likely (Cox and Hinkley, 1974).

Many univariate nonparametric ^-sample tests for general alternatives are based on 

statistics computed over the ranks induced on the observations by sorting the pooled 

data. For nonparametric multivariate statistics, a common choice is to condition on 

the ranks calculated separately for each variable. This method has been extensively 

studied in the book by Puri and Sen (1971).

There are not many nonparametric multivariate tests which are conceptually different 

from those encompassed by Puri and Sen. As an example, of a different approach, 

Chung and Fraser (1958) presented a randomization procedure for a two-sample 

multivariate test, which does not seem likely to be generalized for the AT-sample 

homogeneity problem.

The nonparametric multivariate tests we are interested in do not follow Puri and Sen’s 

or Chung and Fraser’s approaches. Instead of working with the ranks obtained for 

each individual variable, we condition on the relationships generated between pairs of 

observations by means of some graph constructed without any reference to the sample 

identity of the data. This is analogous to conditioning on the ranks of the sorted pooled 

data, as we might expect that the graph employed conveys the relationships of nearness 

which would be reflected by the ranks of the pooled observations in the univariate case. 

Following this approach, we obtain distribution free statistics.

We are interested in testing the null hypothesis of homogeneity for K populations 

against the class of alternatives that violate it. In the multivariate case, it is important 

to provide a distribution free alternative to parametric procedures, as these are usually 

based on the assumption of multivariate normality for the particular data. Testing the 

goodness-of-fit for normality, or other particular conditions, for example, the equality 

of variance-covariance matrices, can be difficult.

If it is found that the assumptions do not hold, or if it is not possible to evaluate to what 

extent they do. So, there are three possibilities:

1. To assume that the parametric procedure is robust enough to handle violations
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of the assumptions. If this is not the case, the significance level of the test may 

be severely affected.

2. To transform the data in order that they may fit the method’s assumptions.

3. To use a nonparametric procedure.

We advocate the use of the third way of proceeding.

Following Scholz and Stephens (1987) we distinguish three important features 

involved in methods for testing the ^-sample homogeneity hypothesis against general 

alternatives.

1. They are useful aids for establishing differences in several sampled populations 

with particular sensitivity towards the extremes of the pooled sample.

2. They are a natural way forjudging if several samples are homogeneous enough 

in order to be pooled together for further analysis.

3. They can be more effective than these methods designed to be consistent only 

against a rather restricted set of alternatives; this is of chief importance for 

multivariate data, as the precise characterizations of alternatives can be a difficult 

task to achieve.

The Friedman-Rafsky (1979) multivariate runs two-sample test uses the number of 

edges linking points from different samples on the minimal spanning tree of the pooled 

sample as a proper analogue for the number of runs in a univariate sequence.

In another paper, four years after their first one, these authors outlined a slight 

modification to this test: working with the number of edges on an interpoint distance 

graph which links points with the same sample identity, they proposed an equivalent 

statistic to the one used in the multivariate runs test. In the next sections, we specify 

the class of hypotheses we are interested in and some alternatives to them. Later on in 

this chapter, we discuss a multivariate A'-sample generalization of the runs test. This 

is done in the context of statistics based on the intersection of graphs written as GCCs. 

Such a procedure proved to be an efficient way of presenting the calculations needed
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to obtain the higher moments of the test statistic, so we start with a description of these 

statistics.

2.2 Hypotheses Specification

In this section we establish the framework that will be used in further sections, and 

discuss the null hypothesis and the alternatives of interest. In doing so, we follow the 

notation and conventions used by Puri and Sen (1971, §5).

We assume that we observe individuals from K  p-valued populations. The j -th sample
K

size will be denoted by r i j ,  and the total sample size by N = ^2  nj-
7=1

Let

{X®= )'}.

where a -  1 = 1 ,..., K, be a set of independent multivariate random values. 

The cumulative distribution function (cdf) is denoted by FXj (x). It is assumed that 

each of these cdfs belongs to some class of distributions functions C.

We now assume that C is the class of all continuous distribution functions. This is done 

mainly in order to keep the notation consistent with that used by Puri and Sen. In actual 

fact, the continuity assumption is not at all essential for the generalized runs tests, as 

the only requirement is that a distance measure can be obtained from the data.

The mean vector of the j -th population will be denoted by

\»p )

and its ip xp)  covariance matrix by If the p components of are uncorrelated
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for a  = 1, . . .  rij ,  then

(«?)
E0) = : I,

P /

where \p identity matrix of order p.

The hypothesis of homogeneity to be tested, say H0, can be written as:

H0 : FXl (x) = ... = FXk (x ) = F(x) (2.2)

for all x, for some F e C.

The alternative to H0 is the hypothesis that specifies that (2.2) does not hold. Two types 

of hypotheses contained in this class are the location shift and the scale alternatives. 

For the first type, let

H i] : FXj (x) = F (x + 6 j ) ,  for all j=  1,... K  and for F e C; (2.3)

then, the hypothesis of homogeneity can be written as:

= ... =/i® (2.4)

against the alternatives that (5*11, ..., £ *  are not all equal. 

For the latter type, if

FXj (x) = FX; (x), with X* = (  Xl • • •, Xp Mp
\  Gi O p

(2.5)

and cr® = (cr®,..., cr®), for ally = 1, then the null hypothesis corresponds to

Za) = ... = Z"° (2.6)
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against the alternatives that <7(1), are not all equal. It should be noted that

the scale type alternatives assume the homogeneity of the location vectors of the 

distributions FXx,. . . ,  FXk .

These ideas apply if the data are measured with a scale at least rational. For ordinal 

and nominal data, the runs tests would still work, although the alternative hypothesis 

of interest would be the heterogeneity of the populations.

2.3 Generalized Correlation Coefficients

In many nonparametric methods, the test statistic can be expressed in terms of the 

number of common edges shared by two graphs, each of them containing relevant 

information about the neighbourhood relationships existing within two different sets 

of variables.

We now discuss some concepts concerning this kind of statistics. The easiest way of 

doing so is within the framework of generalized correlation coefficients. The theory of 

GCC was first presented by Daniels (1944). A comprehensive reference is the book by 

Kendall (1962).

Consider a sample (jt„y,)> i = 1» ••• of ordered pairs, and let and by be scores 

for every pair (i,j) of X  and Y observations respectively. Then, up to some form of 

standarization, a GCC has the form

r  = E E ^  bt] (2.7)
i J

As it is well known, for a suitable choice of the a# s and bij s, Pearson’s r, Spearman’s 

p , and Kendall’s t  correlation coefficients may be expressed as T. If we condition on 

the observed values of X  and Y, it is possible to test the null hypothesis of no correlation 

by ranking the observed value of T within the distribution of

a ij b^i)x(j) (2.8)
* J
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where n is a permutation of the integers ( 1 , N). This is an adequate procedure, 

since under the hypothesis of no correlation between X  and Y all the permutations 

(i.e. X, Y pairings) are equally likely. This permutational distribution determines if 

the observed value of T is significant: too large or too small values of it would be 

evidence against the null hypothesis.

To test the hypothesis (2.1), no correlation refers to relationships between closeness 

in the multivariate space (X) and sample identity (7): if they are positively correlated, 

then there should be evidence against the null hypothesis.

Although the scores ay , by , and thus T, can be defined for pairs of multivariate 

observations (jc„ yt), it is not possible to give straightforward generalizations for the 

notion of ordering used to define nonparametric correlation coefficients like p and t. 

To overcome this difficulty, Friedman and Rafsky (1983) suggested the use of a GCC 

depending on the intersection of interpoint distance graphs.

Let Qx and Qy be graphs defined over the X and the Y observations, respectively. The 

test statistic TR is the number of edges in the intersection of the two graphs. Clearly, 

the value of this statistic will tend to be large if observations which are close in X also 

happen to be close in Y.

Let

d i i  —

1 edge (i,j) e Qx 

0 otherwise
(2.9)

and

by =
1 if edge (i,j) e Qy 

0 otherwise
(2.10)

then the statistic
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r *=  i  E X > « ^  (2-n)
* j

is the number of edges in the intersection of Qx and Qy.

The set up introduced in this section will be used later on in connection with 

multivariate nonparametric association and prediction measures. In the following 

sections of this chapter we obtain the moments of TR and discuss its null distribution. 

In the next two sections we present the Wald-Wolfowitz runs test and a ^-sample 

generalization of the Friedman-Rafsky multivariate version of the two-sample runs test.

2.4 Wald-Wolfowitz Runs Test

Let Fx, and be two distribution functions. The null hypothesis can be specified 

as Ho : Fxx = Fx2', the general alternative hypothesis is Hi : Fxx ^ F*2. The total 

sample size is N  = n\ + W2 . The Wald-Wolfowitz (1940) runs test requires sorting the 

pooled observations in order to count the number of groups of individuals from the 

same sample which appear contiguously in the sorted list; each of this groups is called 

a run. The total number or runs, R, is the test statistic. Ho is rejected for small values 

of R, as it should indicate that the two samples are well separated. It is possible to 

obtain the exact permutational distribution of R . Under H0, all the permutations of the 

sample identities over the pooled data have the same probability of occurring. The 

permutational distribution function can be written as:
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/

if z -  2 k

Pr (R = Z) =

if z = 2 k + 1

(2. 12)

for z = 2 ,3 ,..., N  and k e Z \ To find the critical value for a type I error a, one has to 

obtain the integer zo such that

has, asymptotically, a standard normal distribution. It is well known that the normal 

approximation is remarkably accurate, even for quite small total sample sizes.

The test is consistent if the ratio « i / « 2  is bounded away from 0 and <» when nu 

n2 —» oo. Mood (1940) was the first to generalize the distribution (2.12) to the K- 

sample case. The book by David and Barton (1960) discusses in detail many interesting 

generalizations of the concept of runs.

It has been noticed by Smith (1953), Blumenthal (1963) and Capon (1965), amongst 

others, that the univariate Wald-Wolfowitz runs test is not very powerful in comparison 

with other two-sample nonparametric tests. However, Friedman and Rafsky (1979) 

found that their multidimensional generalization has good power in some cases and 

that it can be increased by a proper selection of the graph used to define the scores a#

£ P r [ S  = z] = a

as nearly as possible.

In addition, the quantity

W =
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and bij of equations (2.9) and (2.10). This has been confirmed by a modification of the 

Friedman-Rafsky test proposed by Whaley and Quade (1985). The difference with the 

original multivariate runs test is that the latter authors linked all pairs of observations 

whose distance is less or equal than a given threshold. Whaley and Quade (1985) 

remarked that better performances can be achieved by using orthogonal MSTs instead 

of graphs based on threshold distances.

For the univariate case, Whaley (1987) presented a modification of the runs test based 

on threshold distances. His aim was to eliminate two possible drawbacks of the 

ordinary Wald-Wolfowitz test:

1. If there is an outlier, it has to be linked with another observation.

2. An observation can be linked only to one observation, even if it is very similar 

to more than one of them.

This author tried to find an optimal tolerance threshold distance in terms of the power 

of the two-sample test for shift alternatives. He also showed that the power of the 

univariate test does increase when observations are linked using these threshold-based 

links instead of the ones induced by simply connecting any point to its adjacent 

neighbours in the ordered list. However, his way of proceeding in order to find optimal 

threshold distances seems too complicated to be generalized.

2.5 A -̂sample Multivariate Runs Test

2.5.1 Multivariate Runs

We now present a ^-sample version of the multivariate runs test. We discuss the 

exact and asymptotic distributions of the test statistics. Later in this chapter we 

study some approximations to the null distribution of 17?. To do so, we followed two 

approaches: one involves generating a sample from all the possible permutations of 

sample identities and obtaining the value of the statistic for each of them; in the other, 

we fit a Pearson distribution based on the values of the first four moments calculated 

under the null hypothesis.
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There are some antecedents of multivariate nonparametric tests using interpoint 

distance graphs, but all of them have only addressed the two-sample problem. 

Schilling (1986) proposed a two-sample test for multivariate observations based on the 

n-nearest neighbours graph. He considered only Euclidean distances in /7-dimensional 

spaces. His results concerning the power of this test, together with those of Friedman 

and Rafsky (1979) indicate that it is possible to achieve good power for some 

alternatives using the two-sample multivariate generalization of the runs test or some 

similar test.

Henze (1988) generalized Schilling’s results for the two-sample problem, using 

weighted proportions of nearest neighbours based on any distance measure in R̂ .

We extend Friedman and Rafksy’s ideas for K samples using MSTs and NNGs and also 

other graphs which have been described in the previous chapter.

To test the null hypothesis (2.1) of homogeneity of K populations, we can think of 

f o a s a  spanning graph constructed from a distance matrix defined over the pooled 

observations X  and of Qy as

K
Gy = \jK,nj (2.13)

j = 1

where JCnj is the complete graph formed by linking all the observations in the j  - th 

sample; i.e. its edges are defined by nodes from the same sample. This allows us to 

write the test statistic as a generalized correlation coefficient between points linked in 

Qx (which should be points close together in the p  - dimensional space) and sample 

identity. To do so, we define scores ay to be equal to 1 if the nodes i and j  form an 

edge in Qx and to be 0 otherwise. The scores by are equally defined for the edges of 

Qy-

Suppose we have observations from K samples with sample sizes n\, ri2, • • •, nx from
K

distributions FX], FXl , , FXk. The pooled sample size is N  = rij.
7=1

Define the r.v. Zt to be
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z i = <

Equation (2.11) may be written as:

1 if i e Qy, 1 <i <ex
(2.14)

0 otherwise

r* = £  z -
i = l

where ex is the number of edges of Qx- is the number of edges which are common 

to both graphs. Under H0, we should not observe a close correspondence between the 

nodes linked in Qx  and those linked in Qy. Thus the values of T* that would lead us to 

reject H0 will be relatively large. The multivariate runs test statistic is defined to be 1 

plus the number of edges on an interpoint distance graph which link observations from 

different samples. This is a direct analogy to the univariate runs statistic. The original 

Friedman-Rafsky multivariate runs test statistic R can be seen as based on a graph 

Q'y whose edges correspond to pairs of nodes from different samples. The value of R 

is equal to 1 plus the number of edges in Qx  that link nodes from different samples. 

Rejection of H0 is indicated by observing relatively small values of R. In fact, the 

relation between TR and R is expressed as:

R = ex -  Tr + 1.

We chose to work with T R defined using Qy rather than Q'Y as the algebra necessary for 

the higher moments of the statistic is much more easily handled with the former graph. 

As Whaley (1983) pointed out, other statistics may be expressed, as we did with 

T/?, in the form of a GCC. Amongst them we can mention Mantel (1967) and 

Mantel and Valand (1970) space-time clustering statistics, Cliff and Ord (1981) spatial 

autocorrelation index 1  and some cases of Mielke et al. (1976) MRPP statistics. 

Several approximations to the null distributions of this class of statistics have been 

proposed. Constanzo et al. (1983) have discussed higher moments approximation for a 

spatial autocorrelation index. Whaley (1985) worked out an approximation for his run

48



test based on a# 2 distribution fitted using the first three moments. Semyaticki (1978), 

and Cliff and Ord (1981) obtained four-moments approximations to the distributions 

of the Mantel and Valand statistic, and to J , respectively. Tracy and Tajuddin (1985), 

and Mielke, Berry and Wong (1986) did the same for MRPP-type statistics. All those 

authors mentioned that normal approximation should not be automatically taken for 

granted. Actually, for some of these statistics, the sample sizes required for the latter 

approximation to work satisfactorily seem to be rather large.

In the following subsection we discuss the limiting distribution of T*. There we apply 

the arguments developed by Friedman and Rafsky for the multivariate runs test statistic, 

which can be used to prove that TR has, asymptotically, a normal distribution.

2.5.2 Limiting Distribution of TR

In view of well known results about the fast convergence to the normal distribution for 

the univariate runs test statistic, it would be plausible to expect that the null distribution 

of TR should tend to the normal distribution fairly quickly. In order to have some form 

of evaluating how quickly is the convergence to the limiting distribution achieved, as 

well as having a way of fitting more exact approximations, we obtain the first four 

moments of the sampling distribution of TR in the next subsection.

We now present Friedman and Rafksy’s arguments to show that the permutational 

distribution of Tj? approaches the normal distribution as N —> <», provided that some 

assumptions about the degree sequence of the observed graph and about the sample 

sizes are fulfilled. These ideas are based on the main result of Daniels (1944) which 

says that, under very mild conditions, the limiting distribution of GCC-type statistics 

is normal.

Daniels’ result depends on the conditions

N N
a{j aik ~ N 3 and by b * « N3 (2.15)

i,j,k i,j,k

which may be replaced by the weaker conditions
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lim ^2 (ciij dikdiif /  J2 ( aij = 0 (2-16)
i.j.k

with similar conditions for the scores bij.

In the context of GCC with scores defined as in equations (2.9) and (2.10), if di denotes 

the degree of the z-th node in any graph, conditions (2.15) and (2.16) can be written as

N

as N->o° (2.17)
1=1

and

& (i>0’ /  -* ° <ii8>
respectively, for both Qx  and Qy. These conditions put some restrictions on the topology 

of the graphs in order to insure a limiting normal distribution for TR.

Condition (2.17) implies that the spanning subgraphs should be dense, i.e. they should 

contain a large proportion of the edges of the complete graph. To insure this, it is 

sufficient that the degree of each node grow linear', with N. As the sum of the degrees 

is twice the number of edges in any graph, and if ex> ey and eXN denote the number 

of edges in Qx , Qy and K N, respectively, we have that, in order to insure asymptotic 

normality of Tr, ex and ey must grow quadratically in A, or linearly in eXff.

Even if the spanning graphs are sparse, condition (2.18) allows Daniels’ results to hold. 

This is the case for zz-orthogonal MSTs and n-NNG, in a /^-dimensional Euclidean space 

when n is fixed while N  grows: both graphs are very sparse, having a maximum degree 

bounded by a constant independent of N , depending only on the dimension p. In this 

case, the expression in the l.h.s. of equation (2.18) is bounded by AT1, thus assuring 

that Daniels’ conditions hold.

As Friedman and Rafsky (1979) pointed out, in order to have a limiting normal 

distribution it is important that when N  increases, the number of edges should remain 

distributed amongst the nodes in such a way that it avoids the situation of a too rapidly
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decreasing proportion of the nodes defining a too rapidly increasing fraction of the 

edges.

It is possible to find sequences of sparse graphs which do not satisfy these conditions. 

For example, graphs like ‘fan’ trees with N  nodes and having its edges defined in such 

a way that one node has always degree N - I  and the rest of the nodes have degree 1. 

On the other hand, if ne is the number of nodes with degrees equal to (N - l ), with / > 1 

and there are (N -  ne) nodes with degree /, with N  much larger than /, it is sufficient to 

have ne growing linearly on N  in order to achieve asymptotic normality, as in this case 

expression (2.18) is again bounded by AT1.

Clearly, graphs for which the necessary conditions to attain an asymptotic normal 

distribution do not hold would not produce homogeneity tests with good power, as 

too many edges considered in the graph will basically give redundant information 

excluding a large proportion of edges that should highlight important features of the 

samples’ situation. On the other hand, if we make Qx = then we would not be able 

to discriminate between useless and useful links according to the class of alternatives 

which we are interested to test against the homogeneity of the K  populations. Graphs 

like orthogonal sequences of MSTs or low-order generalized relative neighbourhood 

graphs provide a convenient balance between these two extremes.

All the lower order spanning graphs based on a distance matrix (Qx) that were 

mentioned in the previous chapter satisfy condition (2.18), as they all are based on 

principles that forbid any node to have relatively large number of neighbours while a 

substantial proportion of them are isolated or have very few neighbours as the number 

of nodes grows.

I*  is constructed as the intersection of graphs defined by some neighbourhood 

relationships based on interpoint distances (Qx) with graphs defined as the union of 

complete graphs defined within the K  samples (Qy). To insure asymptotic normality of 

rk, the scores based on this last graph have to satisfy the conditions discussed above. 

Basically, this means that the proportion of nodes from each sample has to be bounded 

away from 0 and 1 when N  tends to infinity. This condition is a necessary one for getting 

a limiting normal distribution for several other nonparametric multisample tests (Puri
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and Sen (1971)).

So we have seen that TR has an asymptotic normal distribution under the null hypothesis 

of no correlation between the edges in the intersection of Qx and Qy. To have a better 

idea about the adequacy of the normal approximation, for smaller sample sizes, we 

now present the construction of the first four moments of I*.

2.5.3 Moments of TR

The moments of TR can be calculated in a straightforward manner. The methodology 

used here is similar to those presented by Moran (1948), Barton and David (1966), 

Cliff and Ord (1981) and Friedman and Rafsky (1983).

The expected value of TR offers no problems.

^ ,( r R) = K(rR\ex,e Y) = E ( f ^ Z ^ j  = ex Pr[Zs = 1] = ex eY( ^ j  (2.19) 

and ex and ey can be expressed as:

«x= I E " , degx(v,) £,=, (?) (2-20>

where v, denotes the z-th node in the pooled sample, and degx(-) denotes the degree of 

any node in Qx•

Note that E (H?) is independent of the topology of Qx and is conditioned only on the 

number of edges of each graph. This does not happen for the higher moments of the 

statistic: in general, the moment of order r can be expressed in terms of the K  sample 

sizes and of the observed numbers of different subgraphs of Qx that can be formed 

using r edges.

The second central moment of VR is obtained as:

2 = fh ~
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ex 2

= E ( E z ‘j  -  A

=  f ;  E(Z,2) + 2 E  E (Z, Zj) -  p \
1=1 i<j

= Ht + 2 £ e ( Z ,Z , )  -  ti\ (2.21)
i<i

The value of E (Z, Zj) depends on whether or not the two edges i and j  have a common 

node on a graph.

We need to consider two configurations:

•  •  •

•  •

Ci C2

Thus we have

E  E(Z,Zj) = Pl Pr[ZSZ, = l|Cx] + P i  Pr[ZsZ, = 1|C2] (2.22)
i<j

where pm is the number of observed pair of edges appearing as in configuration Cm 

within the spanning graph Qx, and s, t denote any two edges in QY. These numbers can 

be expressed as

Pi = \  Y ,  degx(v») (degx(vi) -  1) = Cx and p2 = \  ex (ex -  1) -  Cx (2.23)
Z i= 1 Z

Pr[ZsZt = 11 Ci] is the probability that any pair of randomly chosen edges shares a 

node, and this is just the ratio of the number of edges with a common node in Qy, to 

the number of edge pairs in the complete graph with N  nodes.

As Qy = Knp the degree of each node on this graph is rij -  1, and for )CN, it is N -  1.
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fN \
The latter graph has e>cN = I ^ J edges. For these two graphs, the numbers of pairs of 

edges sharing a node are:

C y =  -
1  j=i

(2.24)

Cjcn = ^ N ( N - l ) ( N - 2 )

So, if edges s and t have a common node:

P r ^ Z ,  = 11C, ] = (2.25)
Cx* N ( A - l ) ( iV - 2 )

If edges s and t do not share a node, we have

' ^E (n ]) Y J£(nk- 2 S]k)
Pr[Zs Z, = 1|C2] = — — t l ---------------  (2.26)

ÎCn-2

where e (n) denotes the number of edges in a complete graph with n nodes, and 8$  is 

Kronecker’s delta.

Equation (2.26) is simply the ratio of the number of disjoint edges in Qy to the number 

of disjoint edges in the complete graph )CN. After some algebra, it can be written as:

r> r v  7  _  1 \n l  _  4  £y  (tfy -  1) -  8  C y nPr[ZsZ, -  1|C2] -  N(N _ 1)(Af _ 2){N _ 3). (2.27)

Hence, combining these results with equation (2.22), we can write the variance of 

as:
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var (T* | ex, ey, Cx, Cy) =

Hi + 2 2Cy Cy 
N(N -  1) (N -  2) + (Px ~ Cx)

4ey(ey — 1) — 8 Cy
N ( N -  1 ) ( N -  2 ) ( N -  3) -Mi

2 ex ey
N(N  -  1)

1 -

2 ex eY
N ( N -  1)J JV(N- 1) (Â -  2)

■ Cx Cy + {ex{ex ~ 1} ~ 2Cx} {{eAer 2Cy}1 (2.28)N -  3 J

(N \In the particular case where Qy = KN, we have that eY = I I ,  and

CY -  ^ N ( N —1) ( N -  2), and, consequently, p,\ -  ey, and var (r/?) = 0. This is what 

we should expect, as there would be no variation in the degree sequence of Qy once 

that N  and the sample sizes are fixed.

Steele et al. (1987) proved that for the 1 -MST constructed with the usual Euclidean 

distance the number of nodes of any degree tends to a constant which depends only on 

the dimension of the space where the nodes lie. This result has an application in the 

context of multivariate runs tests. We now enunciate the main theorem of the paper by 

Steele et al.

Theorem 5 I fX it 1 < i < °o are i.i.d. with density f  in Rp, and if denotes the 

number of nodes of degree k in an 1-MST with N nodes, then, with probability 1:

lim Vw = ahp
N -*©o

for p > 2  and k > 1

As half the sum of the degrees on 1 -MST equals to N -  1, we have that:
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C x = \  f > g , ( d e gi- l ) =  \  Y . ^ v^ - N + l
Z /=1 L k

As fj,2 depends on Qx only through ex and Cx, and this last parameter is asymptotically 

independent of the topology of Qx, then the variance of TRj and thus, also the tests 

based on a Normal approximation to the distribution of T/?, are, w.p. 1, asymptotically 

unconditional on the topology of Qx, when this graph is the l-MST.

Important as it is, Steele et al.’s result has little practical application in the context 

of the multivariate tests we are interested in, because the constants a^p are unknown, 

except for a few particular cases, and its proof depends crucially on some geometrical 

properties of the 1 -MST which do not seem liable to be extended for other kinds of 

graphs.

The third central moment is obtained using the expressions:

to = to ~ 3/*2/Zi + 2n\ (2.29)

with f/ 2 and /*i as in expressions (2.21) and (2.19), and

ex 3

fh = E ( £ Zi

= E ( f ; z ?  + 3 f ]ZfZj + 6 £  Z,Z;Z*
\  t=l i*j i<j<k

= (it + 3 f ;  E (Z ,Z j )  + 6 f ;  E (ZtZjZt) .  (2.30)
i<j i<j<k

ex
We can now calculate ^  E (Z, Zj) from equations (2.25) and (2.27).

i<j
ex

The value of ^  E (Z, Zj Zk) depends on the form in which any three edges are linked
i<j<k

(or not) on a graph. Now we calculate this expectation conditioning on the five
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configurations that can be formed with three different edges, which are (Cliff and Ord, 

1981):

f )  E [Z,Z,Z*] = £  qm Pr[ZsZ,Z„ = l |D m] (2.31)
i<j<k m= 1

where is the observed number of groups of three edges appearing as in configuration 

Vm within Qx and s, t and u are any three edges in Qy. Pr [ZsZt Zu = 11 Vm], is the 

ratio of the number of configurations T>m that one can form in QY to the corresponding 

number of such configurations found in the complete graph 

So we have

Pr [ Zy Z, Zu = 11 X>! ] =
Y  nj (fij - l ) ( r i j - 2 )  (rij -  3)
j=1____________________

N ( N - l ) ( N - 2 ) ( N - 3 )

Pr[ZsZtZu = \ \ V 2] =
Yj£(nj)(nj -  2)(rij -  3)
7=1_____________________________

eKN( N - 2 ) ( N - 3 )

Pr [ Zs Zt Zu = 11 X>3 ] =
Y l e (nj) \ ^ 2 £{nk - 2 Sjk)
j= 1 I k= 1

Y M n i - 2  Sn -  2  Sg)
i i=i

&ICft €]Cn_ 2
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£ < * , £ « ( » * - 3 * )

Pr[ZsZ,Zu = 1 \V S] = ^  P - ---------------
'~'£n ÎCn~3

It is not possible to obtain simple expressions for the qms in terms of the degree sequence 

of Qx as it was done for p\,p2 in equation (2.23), and so this numbers have to be 

calculated by direct enumeration over the edges of Qx.

Combining the expressions obtained for P r[ZsZtZu = 11 Vm] for the five possible 

configurations V m with equations (2.30) and (2.31), we can now calculate

5

M ^ r \ e x,eY, {pm}, {qm})=Pi  + 6 p2-  3p2pi + 2p\ + 6  ^ 2 q m P r[ZsZtZu = l \ V m]
m= 1

The fourth central moment is obtained using the following identities:

p4 = fi\ ~ 4/4/Z! + 6p2p\ -  3/4 (2.32)



ex ex
= Mi + 14 £  E (Z, Zj) + 36 £  E (ZiZjZt)

i<j i<j<k

ex

+ 24 £  E (Z, Zj Zt Zt)
i<j<k<l

(2.33)

Except for the last expected value, all the terms in the last formula can be calculated
ex

using equations (2.30), (2.21) and (2.19). In order to obtain ^  E (Z,-Z; Z* Z/), we
i<j<k<l

have to consider 11 forms of combining 4 different edges within a graph (Cliff and 

Ord, 1981); these are:

Si S3
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'10

Next, we need to calculate

ex

&>

• --------- •

• --------- •

'11

11
£  E [ZiZjZtZ,] = £ > „ ,P r \ZsZ,ZuZv = l | f m]

i<j<k<l
(2.34)

m= 1

for any four edges s, t, u and v in Qx- The coefficients rm are the observed numbers of 

four edges arranged as configurations Sm appearing within Qx- We now proceeed using 

the same notation as used for the third moment.

nj (rtj -  1) (nj -  2) (nj -  3) (nj -  4)
Pr[Z,Z,Z,Z,  = l |5 i ]  = J=l

X] Cx,nj («/ -  3) (tlj -  4)
P r i Z s Z ' Z u Z v  =  l \ S 2 ] = j= i
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Pr [ Zs Zt Zu Zv = 1| £3 ] =

K  (  K

| ^2 e(nk - 2 Sjk)
j= 1 I k=l

K  /  K

^ e { m - 2 8 j i - 2 8 k i )  ( ^ 2 £ (.n m - 2 8 j m - 2 8 k m - 2 S i m)
1=1 \  m= 1

Z/Cn-2 ^£n-6

K

(« ;-2 ) (rij -  3)
Pr [ Zj Z, Zw Ẑ  = 11 £ 4  ] = 7=1

e ^ i N - 2 ) ( N - 3 )

Pr [ Zj Zt Zu Zv = l \ S 5] =

Pr [ Zj Zt Zu Zv = 1|£6] =

t c ^ i n j - 3 )
M ____________
C z A N -  3)

nJ (nJ ~ !) (nJ ~ 2) (nJ ~ 3) (w; -  4)
________________________________
iV(N- l ) ( N - 2 ) ( N - 3 ) ( N - 4 )

K  K

J 2 £(nj) J ^£ (nk - 2 Sjk) (nk -  2 - 2 8jk){nk - 3 - 2 8jk)
Pr [ZJZ,Z„Z>, = 1| £■,] = t l -------- t l --------------  -----------------

etcN eicN-2 (N — A)(N — 5)

a: k

E c s £ c ^
Pr [ Zs Z, Z„ Zv = 11 £s ] = ^  ^  *!!----------

C/C* C^_3
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Pr [ Zs Zt Zu Zv = 11 Eg ] =

Pr [ Zs Zt Zu Zy = 11 £ 1 0  ] —

K  K

J 2 £(nj ) lL ,£ “  2 $*) (nk- 2 - 2  Sjk) (nk - 3 - 2  Sjk)
j=1 *=1

^ ^ _ 2(A^-4)(iV-5)

! > ( « ; )  £ 0 ^
7=1 Jt=l

&ICn Ck.n-2

K  K  K

E  c s  (** - :3 3*) E X * *  -  5  3 * -  2  &)
Pr[ZsZ,Z„Zv, = 1 | £„ ]  = ^ ----- --------- 1!-----------------------

3 &ICn-5

So the fourth central moment can be written as:

/*4 (ri?|<?x,<?y, {/?m}, {tfm} {rm}) = fh  +  14/4 + 36/4 -  4 //3 / / 1  + 6/4/4  “ 3/4
11

+24 Pr[ZsZ,Z„Zv = l \£ m\. (2.35)
m

The skewness and kurtosis measures are defined as:

A= 4 A = ^/4  /4
(2.36)

7 i = vW % = fh  ~  3

Unfortunately, the computation of the coefficients {#m} and {rm}, which are needed 

to obtain the third and fourth central moments can be very expensive. There is no 

way of calculating these coefficients as a simple function of the degree sequence of 

Qx, as it was done for the configurations involving only one or two edges. The only 

possibility is to enumerate the different configurations encountered within Qx. This 

task can be easily achieved for sparse graphs with relatively few nodes, or graphs, as 

the first MST and the first NNG, with a maximum degree D*p depending only on p and
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bounded independently of N, such that D* <c N. The number of operations involved in 

the enumeration procedure is at most proportional to the fourth power of the maximum 

degree of Qx. As this quantity can be, in many cases, of almost the same order of 

magnitude as N/2, the computational burden of these calculations may be too heavy. 

Another consequence of this fact is that it makes impossible to produce general 

expressions that allow us to evaluate how fast do pi and p2 converge to 0 and 3, 

respectively. However, the values of these measures for any particular case may still 

be regarded as useful summaries of how close the corresponding null distribution is to 

its limiting distribution.

Semyaticki (1978) studied a similar problem for the Mantel-Valand space-time 

clustering statistics. For these clustering procedures (as well as for MRPP-type 

statististics) it is necessary to perform rN 3 operations in order to calculate the moment 

of order r. Semyaticki presents a technique to break down the expressions involved in 

the straightforward calculation of the higher moments into a series of patterns, each of 

which can be calculated relatively quickly. However, the number of operations needed 

in order to calculate the first four moments is still 0(N3). In a similar line of work, 

Mielke, Berry and Wong (1986) presented an algorithm to obtain the first four moments 

of MRPP-type statistics using Semyaticki’s technique.

In order to construct approximations to the null distribution of T*, we followed two 

approaches, discussed in the next section. One involves generating a sample of random 

permutations of the sample identities over the nodes of Qx in order to calculate the value 

of T* for each permutation: this procedure approximates the null distribution, as under 

the null hypothesis all the permutations of sample identities have the same probability. 

The other uses the values of the third and fourth moments obtained in this section. 

The latter method gives a better insight of the null distribution of TR; however, its 

computational cost may be too expensive for graphs which have nodes with relatively 

high degrees.
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2.6 Approximations to the Null Distribution of r*

In this section we describe two approximations to the null distribution of TR. These 

procedures should be used whenever the sample sizes are large enough to make the 

computation of the complete exact permutational distribution virtually impossible 

and small enough to cast doubts about the adequacy of using the asymptotic null 

distribution. The first method simply computes the values of Tr for a large number of 

permutations of sample labels and obtains the significance level of the test by ranking 

the observed value of the statistic amongst its values calculated for the permutations. 

Another approach consists of fitting Pearson distributions based on the first three or 

four moments calculated under the null hypothesis. We now describe both procedures.

2.6.1 Sampling from the Exact Permutational Distribution of TR

It is always possible to obtain the exact permutational distribution of a GCC-based 

statistic. For TR, this is calculated with the permutations of the sample labels over the 

observed spanning graph Qx . If there are K samples, rij denotes the sample size for the 

j-th sample, and N  = Yl%\ nj, then the number of permutations of these values is given 

by the multinomial coefficient

and so, unless the total sample sizes are rather small, it is not feasible to enumerate 

all the possible permutations of the sample labels. An example showing two of all the 

possible sample labels permutations over an MST appears in Figure 2-1.

For every assignment of the sample identities we obtain a value of TR. The significance 

level a  is equal to the proportion of these values which are less or equal to the observed 

value of Tr .

Berry (1982) presented an algorithm that generates all the possible permutations of N 

objects considered n\, n2, ... ,nK ata time. It is based on the following result:
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Figure 2-1: Two sample label permutations over Qx

K—2

N 'N- £
« i« 2 ... nK 7=1 

UK-1

The ordered list of computed values of TR, and thus, the exact distribution of T* 

for all permutations over Qy, depends only on the available data, avoiding any other 

assumptions. Some applications of Berry’s algorithm can be seen in the papers by 

Mielke et al. (1982) and Zimmerman et al. (1985).

Figure 2-2 shows two examples of complete exact permutational distributions of T*. 

The graphs used here were the first and the third MSTs calculated on two bivariate 

standard normal samples, each of size 6; the multinomial coefficient is 924. The 

skewness and kurtosis measures and /? 2  are 0.002 and 2.771 for the first distribution 

and 1.027 and 4.588 for the second one. It is possible to appreciate that even for such 

small sample sizes, the normal distribution seems to be an acceptable approximation 

for the first MST.

Unfortunately, unless the sample sizes are very small, it is not feasible to compute the 

value of the statistic for all the possible sample labels permutations. For example, if 

N = 15, K = 3, and nj = 5(j = 1,2,3), we have M  = 756756; for N  = 20, K  = 5 and 

nj = 4 (j = 1,..., 5), M is 3.055 x 1011, that is, about 400000 times the value for the 

previous sample sizes.
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Figure 2-2: Exact Permutational Distributions; 1-MST and 3-MST 

In such cases, we have to generate permutations of the integers

n\ n 2 rig

To generate a sample of permutations of the samite identities over Qx, we used the 

following algorithm, due to Moses and Oakford (1963):

For t = N  down to 1 do

1. Generate s uniform in {1,..., t);

2. Swap the sample identities of the 5-th and t-th objects.

Some properties of this algorithm have been studied by Ripley (1987).

In the following discussion we shall assume that the null hypothesis is rejected for 

relatively large values of the test statistic. If the null distribution of interest is 

continuous, then an unbiased estimator, pa of the true significance level is calculated 

with the proportion of values of the statistic produced by the sample of permutations 

which are less than the observed value of the statistic. The variance of this estimator 

is controlled by the number of permutations considered.



If the null distribution is discrete, so that ties may occur, a conservative procedure is 

given by computing the nominal significance level using the proportion of sampled 

values which are less than the observed value of the statistic. This ranking produces an 

upper bound to the real Significance level and has been used by Diggle (1983).

We adopt a policy that attempts to make some adjustment for the ties that occur due to 

the discrete nature of T*. Hope (1968) suggested the following correction. Let pi be 

the p- value produced by the ranking described in the previous paragraph. If there are a 

number, say m, of the M sampled permutations which produced the same value of TR 

as the one observed, then the corrected p  value would be

m -  1
P a = P i + u r

2.6.2 Pearson Distributions

The coefficients pi and p2 are needed to fit a Pearson type curve to the distribution 

of I*. A complete study of these curves is the subject of the book by Elderton and 

Johnson (1969). An abridged discussion, followed by some examples appears in 

the texts by Johnson and Kotz (1970) and by Kendall, et al. (1987, v.I). As these 

authors recall, the fitting of Pearson distributions is based on the estimation method 

of moments. This can lead to serious drawbacks if the observed data are a random 

sample from a population, as the method of moments does not yield, in general, efficient 

estimators of the population parameters. However, if the purpose is to obtain an 

expression which approximates a sampling distribution whose first four moments are 

known, as in this case, the method is usually satisfactory.

The authors mentioned in the previous paragraph discuss other possibilities to construct 

approximations to theoretical sampling distributions. For instance, one could represent 

a density function as a series in the derivatives of the normal density function, as 

in the Gram-Charlier and Edgeworth expansions. Another alternative is to seek for 

a transformation of the distribution of the variate into a known form (e.g. Johnson 

distributions). Although both approaches may be more flexible than using Pearson’s 

curves given the first four moments, they certainly are more cumbersome to obtain and
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use. In addition, we found three recent references (Berry, Mielke and Wang (1986), 

Tracy and Tajuddin (1986), and Tracy and Khan (1987)) in which Pearson curves were 

fitted to a nonparametric multivariate test statistic CMRPP, as defined by Mielke et 

al. (1976)) similar to TR with excellent results. We decided to follow this approach 

to approximate the sampling distribution of T/?. A brief description of the Pearson 

distributions used follows.

Any pdf /  which belongs to the Pearsonian system of distributions satisfies a differential 

equation of the form

d f  = f(x)(x-a)
dx bo + bix  + b2 X2

The shape of f  depends on the parameters a, bo, b\, and &2 - The above equation suggests

that as its derivative vanishes at some point (x = a), f  has a single mode, although

there are particular solutions to equation (2.37) that lead to /-shaped or I/-shaped 

distributions.

On the other hand, we also see that df/dx tends to 0 when f  does so. The denominator 

of the r.h.s. of equation (2.37) is the second order MacLaurin’s expansion of the 

corresponding distribution function. Considering this expansion, and assuming, 

without loss of generality, that }i\ -  0, it is possible to write the following system:

a + bi = 0  

bo + 3 1^2 — "7̂ 2

a/j.2 + 3 b\ fa  + 4 &2 /*3 = ~U3

af l2  + 3 &o //2 + 4 £ i //3 + 5 £ 2/*4 =~M4

Using the solution to the previous equations it is possible to construct an expression in
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terms of p\ and /?2 that reflects the type of distribution which corresponds to the first 

four moments. This quantity, known as the c r i t e r i o n , and denoted by **can be written

as

4 ( 2 / f e - 3 A - 6 ) ( 4 & - 3 A )  ^  '

If the roots of the quadratic bo + b\x  + ^ jc2 = 0 are both real with different signs, 

then k  < 0, and the type I curve is obtained. For complex roots, we have 0 < k  < 1, 

corresponding to the type IV. Finally, for real roots of the same sign, k  > 1, and we get 

the type VI curve. These density functions are called the main Pearsonian types. Karl 

Pearson distinguished 12 types: some of them are trivial, some are no longer of interest. 

The other 9 functions, called transition types, correspond to the limiting situations when 

one of the main types changes into another. When |xj is large (theoretically, <»), one 

root is °o (type III). If k  -  1, then both roots are equal (type V), and when k  = 0, the 

roots are equal in magnitude but with opposite signs (type II). For the case k  -  0 and 

bi = &2 = 0, we obtain a curve which depends only on the first two moments: it is the 

Normal distribution; if &2 = 0. Finally, if k  = b  i = 0, the curve is Pearson’s type VII, 

also known as Student’s t  distribution. The following diagram illustrates these points.

K <  0 0 < K <  1 K >  1

type I type IV type VI

type III types II & VII; Normal type V type HI
P2 < 3, p2 > 3; /?2 = 3

Another possibility for choosing the type of Pearson’s curve needed is to locate the 

values of y\ and /?2 in the Johnson chart shown in Figure 2-3.
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The y 1 ,p2 chart for the Pearson system

1

ll(U)

2

l(U)
3

(yiL
4

5

6

7

8

0.5 1.0 1.5 1.80.0

Yl 

 ►

Figure 2-3: Johnson yi, / ? 2  chart

If g is the observed value of T/?, /  is the chosen standarized Pearson density, and 

go = (g -p)lo), then the approximate p -value is given by

/ go
f(x) dx

00

Davis and Stephens (1983) presented an algorithm to approximate the quantiles for 

eleven significance levels of a Pearson curve. For any given value of the statistic, the 

significance level can be easily approximated by interpolation. We used this algorithm 

to check the significance levels calculated via numerical integration, obtaining very 

good agreements. Berry et al. (1986), did not consider the transition curves types II 

and VII. In the cases in which these functions may be suited, they considered a normal 

distribution. However, we found some examples in which the types II and VII produced
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slightly better fits to the exact permutational distribution than those obtained with the 

normal distribution, and accordingly, decided to work with them. We also found it 

useful to calculate significance levels based on type IV curves, thus leaving aside only 

the type V distribution.

The criterion k  should be used with caution to select a Pearson distribution, as it 

can vary quite drastically for values of fii and which are very near 0 and 3. We 

fitted a type IV curve only when 0.1 < k  < 0.9. The choice of these bounds for k  

was determined after having difficulties with the numerical integration routines almost 

always when k  was outside this interval; this situation is briefly mentioned by Elderton 

and Johnson (1969).

Figure 2-4 shows several examples of Pearson curves. The Normal density appears in 

the dotted lines in all the graphs.
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Figure 2-4: Pearson curves
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2.7 Examples of the Approximations

In this section we discuss some examples of the approximations constructed using the 

methods of the last section. As it was noted, the calculation of Pearson curves can be 

computationally infeasible for certain graphs, as the number of operations to enumerate 

the number of configurations involving three and four edges is approximately 

proportional to the fourth power of the maximum degree found in Qx. This is 

particularly critical while considering GGs for points in very high dimensional spaces 

or higher order RNGs or GGs. However, it is not a great problem for n-NNGs or n- 

MSTs if the value of n is not very large. In other words, these approximations are 

a sensible option for runs tests based on a wide variety of graphs even for relatively 

large sample sizes. Thus, we aim to explore how well the approximations described in 

Section 2.6 perform for small sample sizes and to study how much may be gained in 

accuracy by using approximations based in the first four moments or in large samples 

from the permutational distribution instead of the Normal approximation for moderate 

sample sizes.

Problems with the asymptotic normality for the null distribution have been reported 

to appear in some MRPP-type statistics (Mielke et al. 1976). The choice of the 

weights used for defining the test statistic seems to be a crucial factor for the speed 

of convergence. Indeed, Mielke (1979) constructed a non-degenerate example in 

which the asymptotic distribution for an MRPP statistic is non-normal. Mantel 

and Valand (1970) and Semyaticki, (1978) also pointed out that the space-time 

clustering statistic proposed by Mantel (1967) needs very large sample sizes in order 

to regard the normal approximation as satisfactory. Constanzo et al. (1983) mentioned 

similar problems with respect to spatial autocorrelation statistics. The results of 

Subsection 2.5.2 allow us to assume the asymptotic normality of the null distribution 

ofT*. Of course, the choice of Qx and the sample structure do affect the validity of this 

approximation for any given total sample size.

In this section, we analyze these effects. In all the examples presented, we used 

the Euclidean distance calculated always on samples of p  standarized independent
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variables to construct Qx. In several cases, we constructed the complete permutational 

distribution and calculated several descriptive statistics for samples of permutations 

of the sample identity over Qx with sizes between 10000 and 100000. An unbiased 

estimator, pa, of the true significance level, is obtained by substracting the proportion 

of values of the statistic produced by the sample of permutations which are less than the 

observed value of the statistic from unity. The variance of pa decreases proportionally 

to the number of permutations considered (Scholz and Stephens, 1987).

Our first example considers relatively large sample sizes. We used the same sample 

sizes as Friedman and Rafsky (1979). We worked with two samples, each of 100 

standard multivariate normal deviates in several dimensions, In Friedman and Rafsky’s 

example, their runs statistic was calculated with the first three orthogonal MSTs. It is 

virtually impossible to compute the whole exact permutational distribution for these 

examples, as the multinomial coefficient is of order 1029, but, given the moderately 

large sample sizes, we might expect the normal approximation to perform reasonably. 

We generated two samples of size 100 from a bivariate standard normal distribution 

and calculated the value of Tj? for 50000 random permutations of the sample identities 

over the first three MSTs based on Euclidean distances. We did so using the method 

described in Subsection 2.6.1. The results for the l-MST and the 3-MST appear in 

Figures 2-5 and 2-6, respectively.

The values of the skewness and kurtosis coefficients fii and fc, calculated with the exact 

method of Subsection 2.5.3 conditional on the observed MSTs, were (0.0003, 2.979) 

for l-MST and (0.0067,3.031) for 3-MST, which closely resemble those corresponding 

to a normal distribution.
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Figure 2-5: 1 -MST: Permutational and Normal approximations
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Figure 2-6: 3-MST: Permutational and Normal approximations
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A further confirmation of our claim of normality for this distribution results from 

the significance levels of the goodness of fit statistics Zi, Z2 and K2 proposed by 

D ’Agostino et al. (1990).

Thus, Friedman and Rafsky were right in using the normal approximation for their 

example. However, this is not always the case, and a word of caution should be 

said here. For instance, Figure 2-7 shows the distribution of YR over 50000 random 

permutations of the sample identities on the 6-MST  for the same bivariate data. 

The Type IV approximation appears as the dotted line; the Normal approximation 

is the continuous line. As it can be seen, the percentage levels calculated with the 

Pearsonian curve (indicated as P in the figure) correspond much more closely to those 

of the sampled permutational distribution than the ones obtained with the Normal 

approximation. The difference is more substantial for higher quantiles.

6-MST; N=200; K=2; p=2

o
o

aoo P(0.90)

N(0 90)

P(0.95)
—  NORMAL
—  TYPE IV N(0.! >5)

oo
d

P(0.99)

N(0.99

o
d

539 547 555 563 571 579 587 595 603 611 619 627 635 643 651 659 667 675

r.

Figure 2-7: 6-MST: Permutational, Normal and Type IV approximations

For this distribution we have that p\ = 0.0221 and /?2 = 3.068, calculated with the 

exact method. Although these values seem close enough to the corresponding values 

of the Normal distribution, the criterion k  equals 0.2396, clearly pointing towards a
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Type IV approximation. This example shows that the Normal approximation should 

not be taken for granted even for total sample sizes as large as 200 for higher order 

orthogonal spanning graphs.

Table 2.1 shows the values of (fi\, P2) corresponding to data in 5,10, and 20 dimensions 

for several graphs calculated over two standard multivariate Normal samples, each of 

size 100.

The entries corresponding to the GGs which are marked with an asterisk were estimated 

from a sample of 100000 permutations of the sample identities, instead of using the 

exact method. This is so because the GG has a very high degree of connectedness, and, 

as a result, it is virtually impossible to enumerate the edge configurations required to 

calculate the exact third and fourth moments of the null distribution of 1*.

For our next example, we generated two samples, each of size 10, of bivariate 

independent normal random variables. For this sample structure there are 184756 

possible permutations of the sample labels on the observed graph. We obtained several 

graphs based on Euclidean distances for this sample and calculated the first four 

moments; we also constructed the complete permutational distribution. The descriptive 

statistics calculated for this distribution are, of course, the same as those obtained using 

the method described in Subsection 2.5.3. The resets appear in Table 2.2.
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Table 
2.1: {J3\,p

2) values; N
=200; rt\ = 

«2 
= 

100, under//0

Graph P i

p  =  2

P 2 l inks P i

p  —  5

P 2 l inks P i

p  =  10

P 2 l inks P i

p  =  20

P 2 l inks

1 -  M S T 0.00001 2.95938 199 -0.00002 2.99588 199 0.00000 2.98313 199 0.00003 3.02676 199

2 - M S T 0.02219 3.03135 298 0.00953 2.99728 298 0.00136 3.00957 298 0.00369 3.02803 298

3 -  M S T 0.06315 3.15054 397 0.02906 3.00284 397 0.00676 3.03185 397 0.00647 3.03030 397

A - M S T 0.09411 3.19569 496 0.04241 3.04352 496 0.01360 3.04135 496 0.00853 3.04112 496

5 -  M S T 0.12996 3.251/6 595 0.06549 3.09287 595 0.01836 3.05428 595 0.01183 3.04493 595

6 - M S T 0.16565 3.31791 694 0.08882 3.17209 694 0.02225 3.06839 694 0.01604 3.05147 694

l - N N G 0.00000 2.98551 138 0.00000 2.98549 138 0.00000 2.98655 148 0.00000 2.98741 158

2 - N N G 0.00804 3.00026 255 0.00301 2.99707 272 0.00193 2.99748 292 0.00015 2.99604 300

3 -  N N G 0.02254 3.02891 375 0.00679 3.01041 399 0.00449 3.00678 4243 0.00082 2.99916 432

4 - N N G 0.04156 3.06495 495 0.01358 3.02724 522 0.00720 3.01702 555 0.00234 3.00352 567

b - N N G 0.05673 3.09609 600 0.02395 3.05038 647 0.01139 3.02740 691 0.00425 3.00986 706

6 -  N N G 0.07559 3.13331 715 0.03477 3.07470 772 0.01567 3.03867 824 0.00595 3.01560 840

1 -  R N G 0.00000 2.99272 241 -0.00001 2.99748 320 -0.00006 2.99858 437 -0.00016 2.99896 530

2 - R N G 0.04022 3.06797 612 0.05782 3.11555 1189 0.05654 3.11472 2123 0.05757 3.11181 3189

1 - G G 0.00484 3.00911 364 0.05107 3.16583 1436 5175 14720

2 - G G 0.10083 3.19837 1055 0.27382* 3.78745* 8295 19584 19900



Parameter values
Graph M <7 P i P2 K

1 -M S T 9.000 2.126 0.000 2.893 0.000
2 - MST 18.000 2.790 0.158 3.330 0.667
3 -M S T 27.000 3.157 0.449 3.998 0.578
4 -M ST 36.000 3.254 0.568 4.162 0.787
5 -M ST 45.000 3.244 0.412 4.073 0.376
6 -M ST 54.000 3.108 0.479 4.075 0.564
I -N N G 7.579 1.987 0.001 2.884 -0.002
2 - NNG 13.263 2.527 0.241 3.238 -0.776
3 -NNG 20.368 2.977 0.344 3.527 11.588
4 -NNG 24.632 3.183 0.459 3.776 2.198
5 -NNG 31.263 3.372 0.683 4.193 1.784
6 -NNG 36.474 3.412 0.828 4.541 1.256
I -R N G 9.000 2.126 0.000 2.893 0.000
2 -RNG 20.842 2.880 0.459 3.683 -32.042
3 -RNG 48.316 3.141 1.104 5.093 1.214
4 -RNG 84.789 1.476 0.266 4.760 0.081
1 -G G 16.105 2.708 0.044 3.111 0.365
2 -  GG 41.684 3.378 0.728 4.612 0.623
3 -  GG 79.105 2.028 0.340 4.036 0.264

Table 2.2: N=20, ri\ = n2 = 10, p = 2, under Ho

For the first order graphs, the values of Pi and p2 are close to 0 and 3, respectively, 

and thus, indicate that normal approximation would be adequate, even for such small 

sample sizes. This does not happen for higher order graphs, where an approximation 

based in four moments should be used. A different picture emerges from keeping 

everything but the number of dimensions constant. Table 2.3 shows the results obtained 

by considering 10 dimensions instead of 2.

It does seem that the normal approximations work better for higher dimensional data 

for almost all the graphs considered.

This pattern was consistently observed for several configurations with unequal sample 

sizes for N  = 10,20 and number of variables between 2 and 20. The RNG and the GG 

for orders higher than 3 and 1, respectively, were the complete graph, with 190 links. 

In this case, the variance of 17? equals 0, and thus, it is not possible to calculate the 

exact pi and p2.
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Parameter values
Graph <7 P i P i K

1 -M ST 9.000 2.059 0.001 2.869 -0.003
2 -M ST 18.000 2.633 0.017 2.939 -0.074
3 -M ST 27.000 3.048 0.032 2.965 -0.147
A -M ST 36.000 3.254 0.059 2.949 -0.161
5 -M ST 45.000 3.301 0.069 3.137 0.796
6 -M S T 54.000 3.187 0.104 3.035 -0.330
1 -  NNG 7.105 1.861 0.001 2.891 -0.005
2 - NNG 14.211 2.497 0.009 2.947 -0.164
3 -NNG 20.368 2.888 0.030 2.976 -0.164
A-NNG 26.526 3.138 0.056 2.945 -0.153
5 -NNG 30.316 3.290 0.088 3.015 -0.287
6 -NNG 37.895 3.319 0.062 2.971 -0.194
1 -RNG 13.263 2.382 -0.012 2.978 1.293
2 -RNG 45.000 3.063 0.412 3.789 0.998
3 -RNG 87.158 1.039 0.000 2.826 0.001
1 -G G 72.947 2.635 0.000 3.015 -0.005

Table 2.3: jV=20, rti = «2 = 10,/? = 10, under//o

Tables 2.4 and 2.5 show the results obtained for 50 multivariate standard normal 

variates, divided in 5 samples, with the following sizes n\ = 8, ti2 = 8, ti3 = 15,7 1 4 = 

10, /15 =9, and considering p = 2 and/? = 20. In this case, the multinomial coefficient is 

1.08x 1031, so we obtained 100000 permutations of the sample labels over the observed 

graph and calculated the value of TR in each case. These tables show the values of the 

mean, standard deviation, and /?2 calculated as in Subsection 2.5.3 and those that we 

got from the sampled permutational distribution.

As it can be seen, the agreement is, in general, very good. This was also the case for 

similar data in dimensions 5 and 10.

As a further illustration of some of the approximations, we now present the results 

obtained for one of the series of 10000 permutations from the exact distribution for 6- 

NNG in 2 and 20 dimensions. Again, we have N  = 50 points sampled from a standard 

multivariate normal distribution, classified in 5 samples, with sizes rii = 8, tz2 = 8, n3 = 

15, ti4 = 10,7 2 5 = 9.
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Parameter values
1 - MST 1 - NNG 1 - RNG 1 - GG

theor. perm. theor. perm. theor. perm. theor. perm.
9.680 9.700 6.914 6.889 11.260 11.252 16.989 16.999

0 2.726 2.740 2.317 2.350 2.936 2.934 3.555 3.559
Pi 0.042 0.048 0.067 0.085 0.035 0.033 0.055 0.040
P2 3.002 3.104 3.010 3.055 3.001 3.027 3.087 3.028

6 - MST 6 - NNG 2 - RNG 2 - GG
H 58.080 58.119 38.127 37.069 27.855 27.863 44.054 44.089
a 5.951 6.011 5.071 5.057 4.450 4.420 5.380 5.371

Pi 0.203 0.186 0.152 0.188 0.094 0.089 0.125 0.106
P i 3.422 3.361 3.327 3.451 3.195 3.152 3.268 3.283

Table 2.4: Af = 50;«i = 8, n2 = 8, «3 = 15, «4 = 10, «5 = 9 \p = 2, under H0

Parameter values
1 - MST 1 - NNG 1 - RNG 1 - GG

theor. perm. theor. perm. theor. perm. theor. perm.
9.680 9.651 7.902 7.915 20.743 20.764 222.245 222.234

<7 2.729 2.737 2.478 2.452 3.902 3.911 3.831 3.778
Pi 0.039 0.035 0.049 0.037 0.008 0.009 -0.011 -0.013
P i 2.992 2.959 2.992 2.923 2.969 3.008 2.986 2.934

6 - MST 6 - NNG 2 - RNG 2 - GG
V 58.080 58.049 41.486 40.856 92.256 92.288 242 242
a 5.992 5.983 5.265 5.255 6.826 6.874 0 0

Pi 0.027 0.015 0.031 0.034 0.030 0.019 0 0
P i 3.048 2.954 3.053 3.029 3.046 3.078 0 0

Table 2.5: N = 50; n\ = 8, n2 = 8, n2 = 15, n4 = 10, ns = 9;p = 20, under Ho
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In Figure 2-8 we show the results for bivariate standard normal data. The normal and 

the type IV approximations, together with their (0.90, 0.95 0.99) quantiles appear in 

the figure.

The type IV approximation follows the sampled permutational distribution slightly 

better than the normal one, particularly in the tails. The theoretical values of p\ and pi 

were 0.152 and 3.327, respectively, giving a value of 0.598 for k, thus confirming the 

adequacy of a Pearson type IV fit for the null distribution of T* in this case.

Figure 2-9 shows the analogous situation for 20-dimensional normal observations. 

Although in rigour a Type VI distribution should be used, as the value of k  was 

1.802, the advantages of doing so are negligible as the corresponding standard type VI 

distribution for the observed values off3\ and fc, (0.031 and 3.053) is undistinguishable 

for all practical purposes from the standard normal distribution.
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Figure 2-8: 100000 permutations and Normal and Type IV approximations
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Figure 2-9: 100000 permutations and Normal and Type VI approximations
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In our final example, we worked with three samples, each of size 9, of p-dimensional 

uniform distributions. Tables 2.6 and 2.7 show part of the results obtained for the exact 

four moments and the estimators calculated with the 100000 permutations of sample 

identities. The agreement between both approximations is, again, very good.

Parameter values
1 - MST 1 - NNG 1 - RNG 1 - GG

theor. perm. theor. perm. theor. perm. theor. perm.
8.000 7.997 5.538 5.527 8.923 8.919 12.308 12.306

a 2.330 2.333 1.971 1.968 2.449 2.452 2.813 2.814
Pi 0.023 0.022 0.042 0.041 0.019 0.017 0.028 0.029
p2 2.937 2.942 2.929 2.937 2.953 2.961 3.016 3.020

6 - MST 6 - NNG 2 - RNG 2 - GG
48.000 47.994 31.692 30.436 20.923 20.914 32.923 32.918

<7 4.225 4.215 4.011 3.929 3.488 3.488 3.893 3.895
A 0.594 0.597 0.425 0.447 0.193 0.197 0.183 0.185
P2 4.144 4.179 3.808 3.886 3.339 3.318 3.354 3.359

Table 2.6: N  = 27; rt\ = 9, « 2  = 9, rc3 = 9\p = 2, under H0

Parameter values
\ - M S T 1 -NNG 1 - RNG 1 - GG

theor. perm. theor. perm. theor. perm. theor. perm.
8.000 8.001 6.462 6.462 12.615 12.609 100.00 100.001

a 2.237 2.240 2.098 2.102 2.815 2.825 2.153 2.148
Pi 0.014 0.017 0.032 0.032 0.002 0.002 0.008 0.006
P2 2.962 2.968 2.941 2.959 2.901 2.884 2.942 2.943

6 -M ST 6 -NN G 2 - RNG 2 - GG
M 48.000 47.996 32.000 31.454 43.692 43.682 0 0
a 4.065 4.074 4.040 3.939 3.828 3.834 0 0

Pi 0.029 0.029 0.050 0.057 0.063 0.059 0 0
P2 3.072 3.067 3.119 3.114 3.110 3.107 0 0

Table 2.7: N = 27; ni = 9, n2 = 9, n-i = 9;p = 20, under H0

The examples in this section show that the normal approximation should be used 

carefully, and, if possible, avoided, except for lower order graphs and fairly large 

sample sizes. The approximations calculated fitting Pearson curves with the first four
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moments or via a sample of random permutations are, in general, computationally 

feasible and produce good results.

The only pattern which is possible to extract from these tables is that the normal 

approximation has a better performance as the dimensionality of the data increases 

and that it works well for moderately small sample sizes.
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Chapter 3

Multivariate Rank Tests

3.1 Introduction

We now turn to the second kind of tests of hypothesis outlined in the papers by Friedman 

and Rafsky. The basic idea is to obtain multivariate analogues of ranks in order to use 

them as input for univariate nonparametric procedures based on ranks. These ranks 

are the order in which the nodes in the 1 -MST are visited when it is rooted at some 

particular node and then traversed. In the univariate case, to improve the power of the 

runs test against scale alternatives, one could rank the data with respect to the median 

of the pooled observations. For shift alternatives, one would use just the ordered list of 

observations. In the same way, for the multivariate ranking procedures the alternative 

hypothesis determines the root of the 1 -MST as well as the traversing algorithm. 

Friedman and Rafsky (1979) used two multivariate ranking procedures in conjunction 

with the univariate Smirnov two-sample test. They also suggested that their ranking 

methods could be used to generalize other nonparametric univariate rank tests. We 

investigate such generalizations and some of their applications in this section.

The context we are interested in is the construction of nonparametric tests for K samples 

of /?-dimensional observations. Therefore we do not assume any parametric model for 

the distribution of the observations; we only assume that, under the null hypothesis, 

the K samples have the same distribution, say, F, and that F e T,  where T  is a class 

of distribution functions. The price we pay for this generality is a reduction of the
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information used, achieved via multivariate rankings. An important point is to assess 

how well these ranking procedures reflect the relationships of closeness within the 

data distance matrix. Later in this chapter we address this problem and discuss some 

examples.

We begin this chapter with a thorough description of Friedman and Rafsky’s ranking 

methods. We also give some examples in which we evaluate the performance of 

these methods for extracting the nearness relationships from the interpoint distances 

matrix. Next, we review the univariate versions of some nonparametric tests based 

on ranks that will be used together with the multivariate ranking procedures. These 

tests are the Smirnov (1939) two-sample test, the Kruskal-Wallis nonparametric 

ANOVA, a K-sample version of the normal scores test (Lehmann, 1975), one of 

Kiefer’s (1959) K-sample tests, Conover’s (1965) K-sample generalization of the 

Kolmogorov-Smirnov test and the Scholz-Stephens (1987) K-sample generalization 

of the Anderson-Darling goodness-of-fit test. We chose them among many univariate 

nonparametric multisample tests available from the literature because they have a 

distribution function, or an approximation to it, which is relatively easy to calculate. 

Finally, we discuss three multivariate nonparametric K-sample rank tests studied by 

Puri and Sen (1971). They are based on the ranks of the observations for each of the 

p-variables, thus differing from the approach suggested by Friedman and Rafsky.

3.2 Multivariate Analogues of Ranks

The main difficulty encountered for constructing multivariate generalizations of some 

well known univariate nonparametric tests lies in how to extend the concept of a sorted 

list of observations for multivariate data. To overcome this problem, it is possible to 

assign ranks to multivariate observations following the order in which the nodes of the 

1 -MST of the sampling points are visited in accordance to some traversing algorithm. 

For multivariate data, it is possible to construct nonparametric tests by conditioning 

on the observed interpoint distance graph. This is a situation analogous to that in the 

univariate case, when one conditions on the order statistics to obtain distribution free
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test statistics.

We now describe two multivariate ranking methods proposed by Friedman and 

Rafsky (1979) and present some examples of their performance n inducing nearness 

relations on multivariate observations.

3.2.1 Diameter Ordering

The first ranking methods begins by constructing the l-MST of the pooled sample and 

rooting it at a node with largest eccentricity, which is an end of a diameter of the 1- 

MST. The ranks of the points are then obtained as the order in which they are visited 

in a height directed preorder traversal (HDPT) of the l-MST.

The HDPT algorithm for any tree can be defined recursively as:

1. visit the root;

2. HDPT in ascending order of height the subtrees rooted at the daughters of the 

root. (Resolve ties by visiting first subtrees with roots closer, in the distance 

measure used to construct the MST, to the node visited in step 1.)

DIAMETER ORDERING

Figure 3-1: Multivariate diameter ranking based on l-MST
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An example of this ranking applied to 50 bivariate points appears in Figure 3-1. For 

univariate data, the l-MST is equivalent to the sorted list. Therefore, this ranking 

may be seen as analogous to starting off the sorted list at one extreme of a univariate 

sample and ranking the observations according to their distances to that extreme. For K 

samples, location shifts in the multivariate space will be represented by concentrations 

within the ordered sequence of ranks of points of those samples which have a shift. 

Scale shifts for some samples should also appear in this sequence as scale shifts for the 

ranks corresponding to points from such samples.

3.2.2 Radial Ordering

The second ranking, called by Friedman and Rafsky radial, can be obtained as follows:

1. root the MST at the centre;

2. assign ranks such that nodes with larger depth receive higher ranks than those 

with smaller depth. Nodes with the same depth can be ordered in terms of their 

interpoint distance from the centre node.

RADIAL ORDERING

Figure 3-2: Multivariate radial ranking based on 1 -MST 

Figure 3-2 shows an example of this method for 50 points on the plane.
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The node with largest eccentricity is not unique: there are at least two such nodes. 

Thus, there may be one or two centres of the MST. Friedman and Rafsky observed that 

the value of the Smirnov two sample statistic derived from this ranking does not change 

much by choosing any of the two possible centres.

The ranking produced with this method is analogous to ranking univariate observations 

with respect to their distances to the median of the observations, and so we would 

expect it to provide better power than the diameter ranking for alternatives based in 

differences in scale, rather than in location. Furthermore, as Zahn (1971) and Friedman 

and Rafsky (1981) pointed out, the edges of an MST tend to be directed along density 

gradients. Then, for spherically symmetric distributions (and their transformations), 

depth (rooting the tree at one centre) might be interpreted as the number of points 

on a steepest density descent path from the centre, and is an estimator of a quantity 

analogous to a weighted distance to the mode. Points located at portions of the radial 

ranks represent concentrations located at a given weighted distance from the centre, 

and so location differences appearing in this ranking correspond to scale differences in 

the multidimensional space.

3.2.3 Discussion

We now address the question of how well these multivariate ordering procedures reflect 

the nearness relationships which are present in the interpoint distance matrix. First we 

highlight some of the difficulties that such rankings have, considered as analogous to 

their univariate counterparts.

In the univariate case, the diameter ranking follows the data from one extreme of the 

pooled sample to the other. Analogously, we could think of assigning the lowest and 

highest ranks for points located in the extremes of the observations, while the ranks 

in the middle of the sequence {1,2,. . . ,N}  would correspond to points closer to the 

centroid of the observations. For multivariate observations the two most extreme points 

in the periphery are not uniquely determined. Besides, the l-MST diameter could be 

followed by the diameter ranking from one of the outermost regions of the data, to a 

central part; from there, to another peripheral region and then again to somewhere near
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the centre of the data and so on, as illustrated in Figure 3-1.

The radial ranks for univariate data would begin with the median of the observations 

and, as it orders the observations according to their distances to the median, it may 

move towards any of the two extremes of the data. For multivariate observations, the 

lowest ranks should be assigned to points near the centre of the l-MST, which is a 

plausible equivalent to the median of the data; the highest ranks should correspond to 

points in the periphery of the observations. This seems an easier task to achieve than 

the one specified for the diameter ranking, because it does not matter which one of the 

regions of the data are visited first, as long as we do so going from the inner towards the 

outmost parts, as it happens when we traverse the 1 -MST radially. Figure 3-2 illustrates 

this point.

However, we cannot expect these analogies to perform in the same way as the univariate 

ordering. The two examples presented in Subsections 3.2.1 and 3.2.2 illustrate this. 

For higher dimensional data, the correspondence with the univariate rankings becomes 

weaker.

One way of evaluating how close these methods follow the rationale of univariate 

rankings involves the convex hull of the data. The convex hull of a set of observations 

is the minimal convex set that contains all the data. We can think of a sequence of 

convex hulls if we exclude the points forming the boundaries of previous convex hulls 

and construct the convex hull of the remaining observations. If we define the convex 

hull depth of each sample point by the number of convex hulls surrounding it, outermost 

points have depth 1, and interior points have relatively large depth values. Thus, if we 

plot the depth of each point against the ordered ranks, we should ideally expect to 

observe a sequence of curves going up (for points in the periphery of the data) and 

down (for points near the centroid of the observations) for the diameter ranking and a 

straight line with negative slope for the radial ranking.

There are several efficient algorithms to construct the convex hull for bivariate 

observations, e.g. Green and Silverman (1978), but, unfortunately, the convex hull 

is very complicated to obtain for higher dimensional points. As Bowyer (1981) and 

Watson (1981) noted, this is a dual problem to the p-dimensional Dirichlet tessellation
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problem. Algorithms like the one presented by Jozkis (1983) are suitable only for 

multivariate points satisfying certain geometrical conditions. Smith and Jain (1984) 

presented an heuristic procedure to decide if a point is or is not inside the convex 

hull generated by a given set of points. Although this technique may be adequate 

to approximate convex hulls, is not possible to use it in a straightforward manner to 

construct convex hulls.

We now present some examples of using the convex hull in order to assess the 

performance of the Friedman-Rafsky rankings for bivariate distributions.

N= 100 ; BIVARIATE t (df= 8 )  N= 100 ; BIVARIATE t N= 100 ; BIVARIATE t

II
§
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<  /
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Figure 3-3: Convex hull depths: Bivariate t(8)

Figure 3-3 shows the sequence of convex hulls and the plots of convex hull depths 

against the two classes of ranks for two bivariate data drawn from two independent 

Student’s t distributions with 8 degrees of freedom. A local scatterplot smoother 

(Cleveland, (1979)) has been added to the plots, as a continuous curve. It may be 

seen that the diameter ranking begins and ends with points located in the first layer 

of the convex hulls. In this case, the ranking behaves in accordance with the pattern 

mentioned before: it goes from outside points to inner points and from there to outer 

points, several times, with one large gap between two points in the first layer. The 

radial ranking follows the strata of convex hulls as we should expected.

However, this procedure of appraising the effectiveness of the rankings would not be
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Figure 3-4: Convex hull depths: Bivariate uniform

very informative for distributions whose convex hulls layers are not sensitive enough 

to the position of a point in relation to the centroid of the observations. For example, 

Figure 3-4 shows the results for the bivariate uniform distribution.

N= 100 . BIVARIATE NORMAL (r=xxxxxxx) N= 100 . BIVARIATE NORMAL N= 100 ; BIVARIATE NORMAL
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iiv

I

I
?I
I
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Figure 3-5: Convex hull depths: Bivariate normal

As another example, we show the corresponding plots for a bivariate normal 

distribution in Figure 3-5.

We should expect that as the dimension of the observations is increased the nearness
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relations become more complicated, and thus the efficacy of the multivariate ranking 

methods decreases. Some possible criteria to evaluate to what extent the proposed 

rankings reflect the nearness structure of the data are:

• Diameter ranking:

1. there should be a direct relationship between these ranks and the ranks of 

the distances of each point to one end of the 1 -MST

2. the majority of the distances between consecutive ranked points should be 

kept relatively small for all the ranks

• Radial ranking:

1. there should be positive correlation between these ranks and the ranks of 

the distances of each point to the centre of the l-MST

2. the distances between consecutive ranked points should have an increasing 

trend.

We now present some examples. In them, the top two plots represent the ranks of the

distances of each point to the end and to the centre of the l-MST against the diameter

and radial rankings, respectively. Scatterplot smoothers (continuous curves), as well as

regression lines (dash-dotted lines) were added to these plots. The third plot is a density

estimate of the places that the ( N - 1) distances between consecutively diameter-ranked
[N\

points occupy among all the ordered distances, divided by I I .  Finally, on the right- 

hand lower comer, we plotted, as a dotted curve, the position that each of the (N -  1) 

distances between consecutively radial-ranked points occupy, divided by , against 

the ordered radial ranks; a scatterplot smoother also appears on the plot, as a continuous 

curve.

Figure 3-6 shows a case in which the criteria outlined above are satisfied. The 

correlation coefficients between both multivariate rankings and the ranks of the 

distances to the end and to the centre of the MST are highly significant. The first plot 

shows that the highest ranks are assigned to the points which are furthermost from the
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Figure 3-6: Multivariate rankings; Bivariate Normal

end, as it happens in the one-dimensional ranking situation. However, some of the 

points which are closer to the end of the diameter were assigned ranks between 50 and

60.

The correlation is even stronger for the radial ranking, with only a few points deviating 

from the general behaviour. Most (72%) of the distances between consecutive ranked 

points are among the 5% smallest elements of the distance matrix, and those distances 

do not increase for higher diameter ranks. Finally we see a very clear trend in the fourth 

plot, indicating that the radial ranks are assigned to points (or small clusters of points) 

in such a way that the point with the next rank is, in general, far away from the previous 

point.
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Figure 3-7: Multivariate rankings; Multivariate Normal, (p=20)
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The situation changes drastically for a 20-dimensional normal distribution (Figure 3- 

7), as the ‘curse of dimensionality’ takes its toll. For the diameter ranking, we see that 

the association between the ranks and the distance to the end of the 1 -MST follows a 

rather chaotic pattern, though the correlation is still non negligible. The radial ranks are 

associated with the distances to the centre in a stronger way. Five well defined branches 

of the MST are clearly marked in the plot, indicating the presence of directions which 

the data tend to follow.

The proportion of distances between consecutively diameter-ranked points which are 

among the 5% smallest distances was about a third, while for bivariate data such 

proportion was almost 90% of such small distances. However, still the vast majority 

of those distances are within the first 20% smallest distances. Again, a clear increasing 

trend is found in the relative positions of the distances between consecutive radial- 

ranked points in the sorted list of all the distances.

An example of these plots for a sample of size 200 of 30 independent Lognormal 

random variables appears in Figure 3-8. The same features observed for the 20- 

dimensional normal distribution appear in this example, perhaps even more clearly. 

Again we observe a high correlation between the diameter ranks and the distances to the 

end of the 1 -MST, as well as between the radial ranks and the distances to the centre of 

the 1 -MST. Almost a third of the distances between consecutive diameter-ranked points 

were among the 5% smallest distances. There is a clear direct relationship between the 

radial ranks and the distances between consecutive radial-ranked points.

Again, several branches of the l-MST appear in the plot of the distances to the centre 

against the radial ranks; they are also marked in the consecutive radial ranks plot. 

Another way of evaluating how well a multivariate diameter ranking mirrors its 

univariate analogue is looking at the distribution of the order of the distances that appear 

between consecutive ranked points. We carried out several simulations comparing 

the performance in this respect of the diameter ranking with the projections of the 

data points into the first principal component, which may be seen as another kind of 

multivariate ranking procedure, albeit a rather coarse one.

Table 3.1 gives an idea of the distribution of the distances between consecutively ranked
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points.

In this case, we generated 100 samples of several combinations of dimensions, total

sample size and data distribution. The results presented here are the averages, for the

100 samples, of the proportions of the N - 1 distances obtained between consecutively
fN \

ranked points which were among the smaller q percent of all the I I  distances. The 

numbers in parentheses are the corresponding proportion of distances generated by 

ordering the observations projected into the first principal component.

These examples point out how, as the dimension of the data increases, both ranking 

procedures compared become more and more indadequate to produce an ordering of 

multivariate observations which preserves the nearness between contiguously ranked 

points. However, the diameter ranking consistently produces better results (in terms 

of the number of the smallest distances preserved for contiguous ranks) than the 

ranking obtained by projecting the multivariate observations into their first principal 

component. The figures presented in Table 3.1 are similar to those obtained for other 

sample sizes.

Both rankings induced using the l-MST may be used as input for any univariate 

nonparametric rank test. Obviously, the power of the resulting tests would depend 

on the size of the discrepancy between the nearness relations induced by the resulting 

ranks and those present in the complete interpoint distance matrix. As Friedman and 

Rafsky (1979) pointed out, for tests against location alternatives, the diameter ordering 

would provide the best choice of ranks for higher power tests; the radial ordering being 

more suitable for scale alternatives. We discuss the power of the tests that result from 

applying these ranking methods to univariate nonparametric rank tests in Chapter 5.

In the next section we review the univariate tests used.

3.3 Univariate Rank Tests

3.3.1 Smirnov Test

The Smirnov (1939) test, also known as the two-sample Kolmogorov-Smimov test, is 

based on the discrepancy between the two sample empirical distribution functions. Let
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Distances between consecutive ranked points 
diameter ranking and first principal components (N=100)

Normal Lognormal

q 2 5 10 20 2 5 10 20
0.05 0.742 0.568 0.458 0.385 0.644 0.337 0.248 0.163

(0.245) (0.126) (0.096) (0.084) (0.256) (0.125) (0.089) (0.074)
0.10 0.849 0.698 0.588 0.505 0.771 0.433 0.338 0.246

(0.360) (0.212) (0.174) (0.164) (0.373) (0.213) (0.164) (0.138)
0.25 0.931 0.847 0.753 0.665 0.888 0.590 0.507 0.424

(0.569) (0.435) (0.363) (0.349) (0.562) (0.416) (0.349) (0.318)
0.50 0.971 0.946 0.897 0.827 0.950 0.748 0.699 0.640

(0.776) (0.691) (0.639) (0.612) (0.769) (0.662) (0.606) (0.587)
0.75 0.992 0.988 0.972 0.947 0.978 0.876 0.853 0.825

(0.921) (0.875) (0.855) (0.832) (0.908) (0.856) (0.823) (0.809)
0.90 0.999 0.998 0.995 0.986 0.988 0.947 0.939 0.927

(0.979) (0.963) (0.949) (0.946) (0.971) (0.952) (0.943) (0.932)
0.95 1.000 1.000 0.999 0.995 0.994 0.974 0.971 0.961

(0.991) (0.984) (0.979) (0.977) (0.987) (0.975) (0.980) (0.969)

Exponential Uniform

q 2 5 10 20 2 5 10 20
0.05 0.697 0.538 0.422 0.309 0.849 0.715 0.605 0.523

(0.269) (0.133) (0.101) (0.081) (0.288) (0.149) (0.113) (0.098)
0.10 0.819 0.676 0.552 0.433 0.929 0.815 0.704 0.615

(0.383) (0.223) (0.185) (0.146) (0.408) (0.236) (0.194) (0.174)
0.25 0.922 0.825 0.730 0.627 0.975 0.916 0.926 0.738

(0.589) (0.423) (0.371) (0.334) (0.621) (0.448) (0.396) (0.375)
0.50 0.969 0.916 0.871 0.810 0.993 0.992 0.980 0.956

(0.792) (0.674) (0.636) (0.598) (0.811) (0.702) (0.659) (0.627)
0.75 0.988 0.962 0.943 0.928 0.999 0.998 0.996 0.986

(0.924) (0.871) (0.843) (0.826) (0.929) (0.881) (0.858) (0.839)
0.90 0.995 0.984 0.981 0.978 1.000 0.998 0.996 0.986

(0.976) (0.961) (0.949) (0.936) (0.974) (0.965) (0.952) (0.946)
0.95 0.997 0.993 0.991 0.991 1.000 1.000 0.999 0.994

(0.991) (0.986) (0.977) (0.972) (0.992) (0.983) (0.978) (0.977)

Table 3.1: Contiguously ranked distances
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Xji denote the i-th value of the j-th sample; then, the edf of the rij observations in the 

7 -th sample evaluated at any point x is simply the number of sample values of X},• which 

are less than or to x divided by the corresponding sample size, ny.

Fxj(x) = — • # {i\(Xji <x, 1 < i < nj)}
Jtjlj

(3.1)

The Smirnov two-sample test statistic is defined as follows:

D = sup | FXx (x) -  FXl(x) (3.2)
JC

and Ho is rejected for large values of D. Smirnov showed that under Ho, for large 

sample sizes n\ and «2 , D follows the distribution that bears his name:

The test is consistent for the same conditions as those mentioned for the runs test, and 

the statistic D follows the Smirnov distribution for any assignment of integer ranks of 

the N  observations, as long as the ranking used does not involve the sample identities.

The Wald-Wolfowitz univariate runs test (reviewed in Chapter 2) and the Smirnov test 

were designed as general alternatives tests. Another possibility is to construct tests 

for specific alternative hypotheses. The Kruskal-Wallis (1954) nonparametric analysis 

of variance is an adequate test if one is interested in contrasting the hypothesis of 

homogeneity against alternatives based on differences in the locations of the samples. 

It is a ^-sample generalization of the Wilcoxon rank test.

An indication of the position of each sample is given by its average rank, calculated 

as the mean value of the ranks received by the sample individuals in the pooled sorted 

list. Let Rp 1 < 7  < K; 1 < i < rij be the rank (in the list of pooled ranks) of the i-th

,rt-l -2 n V (3.3)

3.3.2 Kruskal-Wallis Test
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element from the j-th  sample. Then,

1
ni  i= i

R j =  -  E  Rji (3-4)n} ^

is the average rank for the y-th sample and

(Ru + • • • + RuJ  + • • • + (Rki + • • • + Rktik) N  + 1
R = --------------------------- a -----------------------------= —

is the overall average.

The Kruskal-Wallis statistic is defined as

12 N + l \ 2
~ N(N+ 1) (  J' ~ ~ T )  ( )

and H0 is rejected for large values of KW. Its exact distribution under Ho is determined, 

as for all the rank-based methods, by the general permutational distribution

Pr(/?n  =  rn, . . . , / ? i ni =  rini; . . .  ;R k i  =  tk\> • •• ,Rkhk -  rKn^) -  (3.7)

Asymptotically, the null distribution of KW is X k-i  l^is distribution is typically 

adequate for this statistic when either K =  3 and the three sample sizes are greater than 

5 or when K >  3 and rij >  4 , for all j  (Lehmann, 1975).

3.3.3 Normal Scores Test

An alternative for the Kruskal-Wallis test based on the normal scores of the ranks was 

proposed by Puri (1964). The basic idea is to transform the ranks to the expected values 

of the order statistics from a standard normal sample of size N.

Let the data from the K samples and the order statistics for the pooled sample be 

denoted by X\ x, . . . ,  Xini, . . . ,  XKi, . . .  Xk„k and Z(i ) , ..., , respectively. Assuming,
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for a moment, that the random variables {Z(,•>}, (1 < i < N) are independently normally 

distributed random variables, and that only their ranks, not the ralized values, are 

known, how could we reconstruct the sample values? Z(s) has rank s, and it is the 5-th 

smallest value of a sample of size N  from a standard normal distribution. A natural 

estimate for its expected value is:

c in (s ) = E$(Z(j)), (3.8)

where d> is the standard normal distribution. These expectations are known as normal 

scores. The values for equation (3.8), as a function of N  and s may be calculated using 

subroutine G01DAF of the NAg library.

A two sample test that resembles the ^-statistic, but depends only on the observed ranks 

of the pooled sample, has been studied by Klotz (1964). The resulting test rejects the 

null hypothesis F*, = Fx2 when

Tn2 > c (3.9)

where

«2
Tm = (3.10)

0=1

The distribution of this statistic is asymptotically normal. It has the property of having 

asymptotic efficiency relative to the t test greater than or equal to one for the shifted 

model case, f t ,  (x) = Fx2 (x-A), for all jc, and for all continuous distributions (Lehmann, 

1975); in this situation, this test is at least as powerful as the t test.

For a K  sample univariate generalization, consider the following test statistic proposed 

by Puri (1964):

NS =
N -  1

E  kv(<)]
i=l

E -
2 2=1 nJ «=1

(3.11)
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where the a^ii) were defined in equation (3.8). The null distribution of 

expression (3.11) tends to the^_ j) distribution as the sample sizes tend to infinity. The 

^-approximation works well even for relatively small total sample sizes (Lehmann,

Kiefer (1959) constructed several ^-sample analogues of the Kolmogorov-Smimov 

test. This author, as Kolmogorov and Smirnov did, based his tests on some distance 

measures between the samples edfs . These tests have not been extensively used. 

This is probably due to the fact that their small sample properties, as well as their 

rates of convergence to the corresponding limiting distributions, remain unstudied. 

We consulted many papers whose references included Kiefer’s paper. The majority 

of those works were connected with some theoretical results that Kiefer obtained in

order to prove the limiting distributions of some of his statistics. We now discuss one

of Kiefer’s test statistics.

Kiefer’s T statistic based on the edfs FXj, and may be written as

T = sup 'jh Cj[FXj(x) -  Fx(x)]2 (3.12)
* J= 1

where the Qs are positive constants and

Fx{x) = i  ' t n , F Xj(x) (3.13)
N U

is the sample edf of the pooled K  samples.

Kiefer obtained the limiting distribution for T ,  with Cy = rij, when the rij —> <*>. Consider 

the function

where h > 1; T(jc) is the Gamma function (x > 0), Jv(x) is the Bessel function of the

1975).

3.3.4 Kiefer Tests

(3.14)
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first kind, (v e R), and yv>n, (n= 1,2,...) are the positive zeros of Jv. Now, if

<t>K (X) =  <
Ak (x? )  if x > 0 

0 otherwise

then <Pk- i , is the limiting d.f. of the random variable y / f .  Kiefer (1959) tabulated this 

distribution for the values K = 2,... ,6. No small sample tables are available for the 

null distribution of this test statistic, and, as Lehmann (1975) remarked, because of the 

slow convergence of the null distribution of the Smirnov test, it seems advisable to use 

the approximation </>K-\ only when the sample sizes are fairly large. For very small 

sample sizes, however, one could always calculate the exact permutational distribution 

over the edf.

3.3.5 Birnbaum and Hall Test

Some K-sample tests were developed by Birnbaum and Hall (1960) which are direct 

generalizations of the Kolmogorov-Smimov two-sample test. They assume that the 

distributions of the K  samples are continuous; the sample sizes may not be necessarily 

equal. The Birnbaum and Hall statistics are written as

D(ni ...,«*) = sup [Fi(z) -  Fj(z)]
Z.i,j
i*j

and

D+(ni ..., nk) = sup [F,(z) -  Fj(z)l
Z,i,j
i<j

Birnbaum and Hall (1960) obtained the null distribution functions for these statistics 

using a system of difference equation concerning the number of paths which exist 

from the origin of the K-dimensional unit cube and the point (k i /n i , ..., fa /  n k), with 

0 < ki < ni. They also calculated the corresponding tables for two and three samples 

of equal sizes, for 2 < nj < 40. The derivation of the distribution functions is a 

straightforward matter using their system. However, very little else is known about

105



the distribution of the Birnbaum and Hall statistics or any other of their properties. 

Conover (1971, p. 320) mentioned an unproven conjecture of his own concerning 

the asymptotic null distribution for the three sample case with equal sample sizes. 

Although it is possible to obtain the distribution function for any case using Birnbaum 

and Hall’s difference equations but the computations, particularly for unequal sample 

sizes, become rapidly too awkward to compensate the effort. In addition, we found 

only very few references to this paper in the literature consulted, and so we did not use 

it in further chapters.

3.3.6 Conover Tests

Conover (1965) discussed several K-sample Kolmogorov-Smimov tests. All of them 

assume that the K samples are of equal size, say «, and that they come from a continuous 

distribution. Conover’s approach was to reduce the AT-sample case to different two- 

sample problems. This is achieved by first ranking the samples in order to use those 

ranks to select pairs of samples and then comparing the chosen samples pairwise. For 

univariate observations, this ranking is done by ordering the K samples in accordance 

with the extreme (minimum) value of each sample. In the multivariate case we would 

proceed analogously, ordering the K  samples using their minimum ranks obtained with 

the diameter ranking of the l-MST.

We now describe Conover’s statistics and their exact null distributions. First, we order 

the samples within themselves according to their rankings. Let the ranks of the l-th 

ordered sample among the pooled sample’s ranks be denoted by Zi/, < Z21 < ... < Zni. 

Then Z,/ is, in the univariate case, the i-th order statistic of the l-th sample; Zu will be 

referred to as the extreme of the l-th sample.

Next, we order the samples among themselves in accordances with their extremes. Let 

Fn < T12 < ... < YiK denote the ordered extremes and let Yy be the i-th order statistic 

of the sample whose extreme is Y\j.

Within this set up, Conover presented the following extensions of the Kolmogorov- 

Smimov two sample test
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D h ,h ^ n^= sup l s h ( y )  -
h <72

(3.15)

D l h {K,n) = sup [Sj2(y)-Sh (y)] (3.16)
h <h

where Sjk is the edf of the jk-th ordered sample. Several variations of these statistics 

might be proposed, always comparing the empirical distribution functions of pairs of 

samples, according to the alternative hypothesis of interest. For instance, to test the 

hypothesis of homogeneity against the alternative that at least one of the populations 

differs in location, one could use D\k{K, n). To divide the K  samples into groups 

having similar location parameters, one could use Djj+i, with 1 < j  < K -  1. If the 

alternative hypothesis is that the populations differ by a scale parameter only, then 

D~ik (K, n) would be a suitable test statistic.

Conover obtained the following formulae for the distribution functions of Djhj2(K, n) 

and D l j2(K,n)

= ( 2 n ~ A  /  f K ~ j i - ( c + l ) / n \  ( 2 n - 2 '
n )  \J2 - j 1)  \ n  + c I /  I j i - j i  ) \ n -  \ .P r | DTih( K ,n ) < - )  = 1 -

, J2̂ ‘ ( n - l)c(c+ 1 ) ( K - j l)h-n (-1 - i -  1) . .

"  H (/2 ~ji -  \ -  i ) \ { n K - n j i + n - \ - n i ) c
• (K - j i  -  i) (n K -  nji -  c -  1 -  n i)

-  -  (f:{) f c V { " ' Z r ' )  (2;:,2)

(3.18)
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where (ri)c = n(r t -  1) •••(« - c + 1)

Conover showed that both Djl j2( K , n ) and Djuj2( K , n ) have, asymptotically, the same
c

distribution, and that it is independent of K.  If we write X = thenyTl

This approximation seems to work very well for sample sizes larger than 50.

3.3.7 Scholz-Stephens Test

The motivation of the paper by Scholz and Stephens (1987) was to extend the goodness 

of fit test statistic of Anderson and Darling (1954) to a AT-sample nonparametric test of 

homogeneity against general alternatives.

The Anderson-Darling (1954) goodness of fit statistic was proposed in order to test 

the hypothesis Fx  = Fq, where F0 is a specified distribution function, for a sample of 

size n. It can be written as:

where F„{x) is the edf of the sample. A two-sample version of Aj is given by

is the pooled sample edf. This statistic is used to test the hypothesis F = G, without 

specifying the common distribution. Scholz and Stephens (1987) generalized this 

statistic for the AT-sample case as:

F o ( j c ) ( 1 - F 0 ( j c ) )

dHN(x)
H n (x ) ( 1 - H n (x ))

where

H N(x ) =  { « !  Fm (x) +  722 Gn2( x ) } / N
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A2
KN

-  V ' [  { Fj n , ( x ) - H N { X ) Y  JTJ , N 
^  " J Jb„ H n (x)  {1 -  H n ( x ) }

where Fjnj and HN(x) denote the edf of the 7 -th sample and of the pooled sample, 

respectively, and = {* e R | H^(x) < 1}. If the pooled order sample is denoted 

by Z(i) < • • • < Zw, then, assuming no ties, a computational formula for A|^ is given 

by

a 2 _ 1 ^  inf)2 n
i i n - y ) (3'21)

where M# is the number of observations from the y'-th sample that are not greater than 

Z(i). Under H0, Scholz and Stephens proved that E (A\ = K -  1 and

_ 2  .  . 2  aN3 + brf2 + cN + d(fifj = var (Aixr) = --------------------------- (3.22)”k,n \ kn) ( N - \ ) ( N - 2 ) ( N - 3 )  k j

where

a = ( 4 s - 6 ) ( £ - l )  + (lO + 6g)H

b = (2g - 4 ) K2 + 8 hK + (2g - \ 4 h - 4 ) H  -  Sh + 4g -  6

c = (6h + 2 g -2 )K 2 + (4h -4 g  + 6)K + (2h - 6 ) H  + 4K

d = (2h + 6)K2 -  4hK2

1 — f l [ l dxdy _ 1?
8 i iM ? i ( N - i ) j  N̂ °  Jo Jy x ( l - y )  6
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The effect of the individual sample sizes is reflected through H, and is not negligible 

to order 1/N. The null hypothesis is rejected for large values of A|^.

Because of the definition of the Myis, it is plain that A^  depends only on the ranks of 

the pooled sample. For small samples, Scholz and Stephens recommended estimating 

the exact significance level by the relative frequency p  with which the realized value 

aw  of Ajw is matched or exceeded when computing the test statistic for a large number 

M  of random ranks permutations, p  is an unbiased estimator of the true p  value of the 

realized value of the test statistic and its variance can be controlled by the choice of M. 

The asymptotic null distribution of Aj^  is:

7 m r‘ ° 23)

where the {T,}s are independent random variables identically distributed x\-\  • This 

distribution is the (AT — l)-fold convolution of the limiting distribution of the Anderson- 

Darling statistic, A*. For Aj, the approximation works remarkably well, even for very 

small sample sizes, and Scholz and Stephens pointed out that this also happens for the 

^-sample version. They also remarked, the formulae for the mean and the variance of 

Agx are given in order to allow us to standarize the test statistic. The standarization was 

carried out as an attempt to remove any dependence due to the sample sizes that can 

affect the null distribution. This procedure worked satisfactorily, as some simulation 

experiments confirmed.

The standarized test statistic is written as

r „  = (3.24)
&K.N

thus the null hypothesis of homogeneity is rejected for large values of Tkn• The first 

four cumulants of expression (3.23) can be easily obtained, and, with them, Scholz and
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Stephens fitted Pearson curves to this distribution and calculated asymptotic quantiles 

of the random variable TKoo = tm, with m = K — 1. It should be noted that as the number 

of samples increases, the distribution of tm tends to the standard normal distribution. 

Scholz and Stephens (1987) gave some tables and expressions necessary to interpolate 

the quantiles of the null distribution for small sample sizes. These quantiles were 

reported to produce very accurate results even for sample sizes as small as n, = 5, 

for K > 3.

For discrete distributions, or for when ties are present in the data, these authors gave 

two corrections to their statistic, based on changing the edf to the average of the left 

and the right limits of the ordinary edf. The same quantiles obtained for the continuous 

case can be applied for the modified statistic. These approximations produce very good 

results, as Scholz and Stephens observed in several simulation examples.

These authors also proved that this test is consistent for any alternative to Ho, provided 

that the ratio rtilN is greater than 0 as N  —» <» for each sample size

3.4 Puri and Sen Multivariate Rank Tests

Puri and Sen (1971:§5) presented a class of linear rank order statistics which is 

asymptotically equivalent to the Lawley-Hotelling’s generalized T1 statistic.

Three examples of the tests constructed using Puri and Sen’s method are the 

multivariate multisample ranks sum test (MMRST), the multivariate multisample 

median test (MMMT) and the multivariate multisample normal scores test (MMNST). 

The MMRST statistic is based on the differences between the samples’ average ranks 

and the average rank of the pooled sample. The MMMT statistic uses the differences 

in the proportion of individuals with values less than or equal to the median for 

each sample and the corresponding proportion for the pooled sample. Finally, the 

MMNST works with linear combinations of the normal scores values calculated for 

the ranks obtained from the pooled observations on each variable which correspond 

to the observations in every sample The weights in the linear combinations for these 

functions of ranks in the Puri and Sen general statistic are given by the inverse of the
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dispersion matrix corresponding to the values of the functions of the ranks.

The two first statistics mentioned are analogous to the corresponding likelihood ratio 

tests and are based on a quadratic form of the differences between the vectors of mean 

ranks of each sample and the vector of mean ranks for the pooled sample. The MMNST 

has been briefly mentioned by Friedman and Rafsky (1979) as a competitor for the 

parametric test when the observations come from a non normal distribution.

Puri and Sen (1971) showed that their class of statistics, asymptotically have a x 2 

distribution with p(K  -  1 ) degrees of freedom and are equivalent to the likelihood 

ratio test based on Hotelling’s T1 statistic. We now review their general procedure and 

then describe the three tests based on it that will be used in further chapters.

3.4.1 Permutation Rank Order Tests

We begin by stating the basic rank permutation principle. This is used to obtain 

tests which depend only on the observed ranks of the pooled observations from the 

K samples for each of the p variates.

For each i, let us rank the N  pooled observations from the i-th variable i = 1,... ,p; 

a = I , ... ,rij\j = \ , ... ,K /m  ascending order of magnitude, and denote the rank 

by Rf^. Then, the p-variate vector produces the rank vector

R ?  =  ( •  • •.  ) a = l . . . , n j , j = l  K

The N  rank vectors arising from the N  pooled observations can be put together in the 

(p x  N) rank matrix

R v -

\  Kp i

R( i )i«i

pn\
n (£ )  
Kp 1

A 1 nK

f?(K) 
P*K /

(3.25)
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Each row of this matrix is a permutation of the integers 1,2, . . . ,N  and thus R# is 

a random matrix which can have (N\y  possible realizations. We say that two rank 

matrices are permutationally equivalent if one can be obtained from the other by a 

rearrangement of its columns. Then, RN is permutationally equivalent to the random 

matrix

contains the elements of R# permuted within each column, and can have (N\y~l 

possible realizations. As thep  variates X*a i = 1,...,/?, are, in general, stochastically 

dependent, the joint distribution of the elements of R# (or RJ) will depend on the 

unknown distribution F e T ,  even under the hypothesis of homogeneity. Let 1Z*N 

denote the set of all the possible realizations of RĴ ; then the unconditional distribution 

of R ; over this set depends on the distributions Fi, . . .F k , even under the null 

hypothesis. However, if H0 holds, then the vectors X^, a = 1,... rij, j  -  1 ,..., K  are 

independent and identically distributed random vectors. Hence, their joint distribution 

is invariant under any permutation of the vectors. This implies that the conditional 

distribution of R# over the set of N\ possible permutations on S(R*N), which can be 

obtained by all the permutations of the columns of R^ is uniform under H0.

This can be written as:

for all rN e S(R^). This null distribution is independent of the parent edf F e T. 

Next, for each entry in the rank matrix, we associate a rank score value, defined by

(3.26)

l* ;>  r u  ■■■

(3.27)
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£$« = J m  ( ^ 7 j )  1 Z a Z N , i = l , . . . ,p .  (3.28)

1 N
where Jnu) is a function defined at the points —— ..., ——N+  1 N + 1
The form of J N^  would depend on the class of alternative we are interested in. For 

location alternatives, two choices would be

a  \  a

j v + i y  n +  i

or taking Ef$a as the expected value of the a-th smallest observation of a sample of a 

size N  from a standard normal distribution.

For the scale problem, two plausible functions are

J m  liv T T 1 = <
1 if \a - (N +  1 )/2 1 >b 

0  otherwise

J m  ( iv T l)  - ( a s t - 1 ) -

where b = \  N + 1.

Another possibility for the scale problem is to make E$a equal to the square of the 

value of the corresponding normal score.

Replacing the ranks R ®  in R# by ^w/) for all / = 1,.../?, a  = 1,..., rij and j  -  1, . . . K ,
' ia

we obtain the corresponding (p x  N) matrix E# of general scores:
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E m —

( p(i) 
NR{

eO)
N R^l

pd)
NR{

eO)
"  **£

jA p ) /7O) jA p ) jA p)E* m • •• ZS up) ••• tL_(jn . . .  ZS„.NRpn\ NR.(*) JN  7 ? ^  J"pi /v I^K f

The average rank scores for variate i of the K samples is defined as

n . —  NR' nj oc= 1

and the pooled rank average can be written as

N

We have that, under the null hypothesis,

cov a t ,  7 $ )  = v« (r;>

where Sjk is the Kronecker delta, and

K »>

v«<*;>=-:e e c  o  -m
y = l  op=1

(3.29)

Puri and Sen (1971, §5.4) proposed the following statistic which is an analogue of the 

Lawley-Hotelling’s generalized T2:

K

Cn = Y ,  n> [ (T® -  E„) V- 1 (RJ,) (T® -  E„)'
7=1

(3.30)

They also proved that, under very general conditions for the functions i = 1 

the permutation distribution of £ n is, asymptotically, x^K-iy

The final subsections of this chapter describe three multivariate multisample tests 

which are particular cases of the statistic (3.30)
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3.4.2 Multivariate Multisample Ranks Sum Test

The MMRST statistic is given by

K

(3.31)

where ry is the vector (of length p) of average ranks for the j-th sample, f  is the vector 

of average ranks for the pooled sample and V is the dispersion matrix for the vector of 

ranks. The i-th element of ry is

J  c c =  1

where rjia is the rank of the z-th variable for the a-th individual from the j-th sample. 

The z-th element of f  is

The (z, /) element of the variance-covariance matrix V is given by

I  K rij

vil = ^  y  rjiarjla ~ Ẑ (3.34)
™  7 =1 ce= 1

3.4.3 Multivariate Multisample Median Test

For the MMMT statistic, the necessary definitions are analogous to those presented for 

the MMRST. The MMMT statistic is given by

K

Cm m m t =  J 2 nJ (P1 ~  P) V  (P1 ~  P)* <3-35)
7=1

where py is the vector (of length p) of proportions from the 7 -th sample which are less 

than or equal to the median of the pooled sample; its z-th element is expressed as

(3.32)

~ H riia
i y  7=1 0=1

(3.33)
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1 nj
-  — J 2 Xjia, where Xji<* = <

n J a = l

1 if rjia < \  N  

0  otherwise

p is the vector of proportions of observations from the pooled sample that less than or 

equal to the pooled sample median; its i-th element is

P. = I  E  X>;« (3-36)
j= 1 0=1

Finally, the {i, I) element of the dispersion matrix V0  is given by

V(u] = ^XjiaXjla ~ PiPl (3.37)
** j=l oc=l

A FORTRAN subroutine, published by Schwertman (1982), is available to calculate the 

MMRST and A/A/A/7statisties.

3.4.4 Multivariate Multisample Normal Scores Test

Using the normal scores of each variable, as calculated in Subsection 3.3.3, in order 

to define the functions Jn(d appearing in equation (3.28), the MMNST statistic may be 

written as

£ mmnst -  ^2  nj (sj -  s) Vi1 (Sj -  s) (3.38)
J=l

where s;- is the vector (of length p) of averages for the normal scores calculated for the 

pooled sample corresponding to observations from the j-th sample, that is

1 nj 
Sji = “  ^2  Sj11* 

ni a=i

where sjia is the normal score corresponding to the a-th individual on the i-th variable 

of the j-th sample; their average is
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* '= 4  E X V  (3-39)
i y  j =  1 «=1

The average of the normal scores over the K  samples and the dispersion matrix Vi from 

equation (3.38) are calculated exactly as for the other two multivariate multisample 

rank tests described before. Thus, the (i, 1) element of the dispersion matrix for jCmmnst, 

Vi, is given by

v" ’ 4  E  -  s,-s, (3.40)
j =  l 0=1

We include these tests in our work as they are the most common nonparametric 

procedures used in multivariate analysis. As we saw, they require that the observations 

can be ranked within each variable and so their application is restricted to a class of 

data smaller than for the multivariate runs tests.
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Chapter 4

Tests Based on Contingency Tables

4.1 Introduction

Friedman and Rafsky (1979) described another class of tests based on dividing 

the nodes of the 1 -MST into two mutually exclusive categories using any criterion 

independent of the sample labelling. In the two sample case, they suggested 

considering the degree sequence of the 1 -MST as the partition criterion. If rt\ and n2 

are the sample sizes, and d\ and d2 are the number of nodes with degree 1 and degree 

greater than 1 in the spanning tree, it is possible to form the following contingency 

table

As we are conditioning on the observed spanning tree, the row and column totals of the 

table can be regarded as fixed and so, under the null hypothesis of homogeneity, On 

follows the usual hypergeometric distribution, so

Xi X2

deg = 1 O ii Oi2 di

deg ^ 2  0 2i 0 22 d2

n\ n2 N

(4.1)
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where 02 = n \ -o i .

Friedman and Rafsky’s motivation for using the degree 1 nodes as a partitioning 

criterion was the supposition that these nodes ‘tend to be found at the edges of the 

point scatter so that one might expect this test to be sensitive to scale alternatives’. We 

call degree 1 nodes the leaves of the graph. However, the results presented by Steele 

et al. (1987) cast some doubts on the validity of this assumption. These authors proved 

that, if Vk,n is the number of nodes of degree k in the 1 -MST generated by n points 

independently and identically distributed with a density /  in R̂ , then, with probability 1

lim n~l Vk,n -  cck,p for all k>  1 , and p>  2

for some positive constant cck,p. As Steele et al. (1987) noted, it seems impossible to try 

to find an analytic approach that will determine the values of the coefficients One 

has to rely on estimating them via computer simulation or on establishing bounds for 

these constants. The outcome of some simulations performed by Steele et al. (1987) 

indicates that the limit for the number of leaves for the 1 -MST in two dimensions, a it2, 

is near 2/9, and not 0, as one might think, in accordance with the one-dimensional 

case, where the 1 -MST coincides with the sorted list of observations. Steele et al.’s 

calculations show that there is a substantial amount of leaves located relatively near 

the centre of the observations, at least for 1-MSTs in the plane. Nothing else is known 

about the values of a*>/7, for p > 2 .

However, Friedman and Rafsky (1979) gave evidence that a two-sample test based on 

the number of nodes with degree 1 from the first sample achieved quite good power 

results, particularly for higher dimensional data (p > 10) and scale alternatives. We 

considered that it would be worthwhile to study a A'-sample generalization of this test, 

and we do this in the next section.

Later in this chapter, we discuss a technique outlined by Robinson (1987) in order to 

highlight differences among pairs of samples. The idea is to examine the number of 

edges in the graph defined by points from different pairs of samples. The observed 

frequencies of such edges for every pair of samples may be used to construct a test 

analogous to a z 2 goodness of fit test.
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4.2 Degree 1 Tests

4.2.1 Extensions to the AT-sample Case

Extending the degree 1 test of Friedman and Rafsky to the ^f-sample situation is a 

straightforward matter. Consider the 2 x K  contingency table

Xi X2 XK

deg 1 On 0 1 2 0\K dx
deg > 2 0 2\ 0 2 2 0 2K d2

Hi n2 nK N

di rii
Under H0, the expected frequencies for each cell may be written as Ey = and, 

asymptotically, the statistic

= i0,J E'i f
i= 1 y=l Eij

(4.2)

follows &X2 distribution with ( K -  1) degrees of freedom.

We also applied this test using the degree 1 nodes of the 1 -RNG. As we mentioned 

in Chapter 1, the number of leaves for this graph is much less than such number 

for the l-MST. Because the I-RNG has an edge density greater than or equal to that 

corresponding to the 1 -MST, we would expect its leaves to be located more towards 

the edges of the point cloud than for the l-M ST . Thus, a test based on the leaf counts 

for the 1 -RNG should perform well under scale alternatives, provided that we observe 

a large enough number of leaves. One problem with this test is that it is not possible to 

apply the x 2 approximation for T\ if there are samples which have very few degree 1 

nodes.

We exclude higher order minimum spanning trees or relative neighbourhood graphs 

as the number of leaves would be too small to convey enough information about 

the differences between the samples. On the other hand, we did not consider the 

frequencies of degree 1 nodes for graphs as sparse as l-NNG  or some of Urquhart’s 

relative neighbourhood graphs because the leaves of these graphs might correspond

121



mainly to extremes of fragments rather than to points located in the peripheries of the 

pooled sample.

4.2.2 Differences in the Number of Leaves

As a way of gaining some knowledge about the variation of the number of leaves we 

performed some simulations. Some relating results have been already mentioned in 

Chapter 1. We now study the proportions of leaves in the 1 -MST and I-RNG for 

different multivariate distributions. The data were generated using p independent 

random variables identically distributed as Uniform (U), Cauchy (C), t(2) (t) Normal 

(N), Lognormal (L) and Exponential (E); the number of nodes considered were 20,50, 

100, 200, and 500. For every combination of N  and /?, we simulated 100 samples. The 

results presented correspond to the median of the number of leaves in those samples. 

Figure 4-1 shows the proportion of leaves found in the l-MST and the I-RNG for the 

above numbers of nodes in 2 and 20 dimensions. For the bivariate case, the number of 

degree 1 nodes in the 1 -MST seems to tend rather quickly to a\t2 . The convergence to 

alp becomes slower for higher dimensions, as it is apparent from the larger spread of 

the number of leaves observed in these cases.

This fact is illustrated in the r.h.s. part of Figure 4-1. It is possible to spot a pattern 

concerning the different distributions. For all the dimensions considered, the number 

of leaves for the l-MST induces the following ordering in the distributions:

C, L, E, t, U, N,

while the corresponding ordering for the 1 -RNG is

U, N, E, L, t, C.

It is clear that tests based on the 1 -RNG may not be generally adequate due to the small 

proportion of leaves usually observed for this graph.

For symmetric distributions, the l-MST yields a larger proportion of leaves, while this 

does not seems to happen for the 1 -RNG. It can be seen, from Figure 4-1 that the 

convergence to a ip is much slower for higher dimensional configurations.
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Figure 4-1: Number of leaves for fixed dimensions

Figure 4-2 shows the variation of the number of leaves for two fixed values of the 

number of nodes. Similar orderings to those mentioned may be observed in that figure. 

To explore with more detail how the shape of the underlying multivariate distribution 

affects the number of leaves, we may use the three following multivariate indices. First, 

the total variation, defined as

7Y = tr(S) 

where S is the variance covariance matrix.

(4.3)
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Further insight might be obtained from the measures of multivariate skewness and 

kurtosis proposed by Mardia (1970)

■*v r,s

b(2,p) =
iy r=l

1 A (4.4)

(4.5)

where

grs = (X r  -  x)' S 1 (x* -  x)

Mardia (1970) showed that the asymptotic distributions of b{l,p) and b(2,p), under 

the null hypothesis that the underlying population is multivariate normal, are

Mardia (1970) also gave some approximate distributions for small sample sizes.

We don’t show it here, but it can be seen that there is a relation between orderings 

mentioned before and these measures. Broadly speaking, the more “compact” (i.e. with 

small tr (S)) symmetric and flat a distribution is, the more and less leaves it will have 

in 1 -MST and 1 -RNG, respectively. This should be taken into account when applying 

these tests to a particular data set.

Although Steele et al.’s result is valid for the l-MST obtained for points from any 

distribution, the convergence rate to a\tP slows down as p increases, and so, even 

for patterns with a moderately large number of points the proportion of leaves varies 

considerably for different densities.

We also attempted to evaluate to what extent we should expect the leaves of a graph 

to be located in places corresponding to the outer layers of the data convex hull.

Ib\ = ^b(l ,p )  ~Xdf where d f  = ^ p (p + l) (p  + 2) (4.6)

(4.7)
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To do so, we first calculated the mediancentre of the observations, using Bedall and 

Zimmermann’s (1979) algorithm. The mediancentre is an analogue of the univariate 

median, and thus, is a robust estimate of the centre of a distribution. It may be defined, 

for a set S of n points in R?, as the point m such that

f ( m)  =  Y , \ \ x ~ m h - Y l \ \ x - y h = f ( y )  f o r a l l y e
xeS xeS

where || • ||2 is the Euclidean distance. The mean of S would be obtained similarly 

by considering the sum of squares of the distances in the previous expressions. Some

Normal N= 50 MST= 12 RNG= 5 Uniform N= 50 MST= 12 RNG= 7
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Figure 4-3: Degree 1 nodes; Normal and Uniform distributions

alternatives to the mediancentre as a measure of multivariate location have been studied 

by Green (1981). A recent survey of multivariate medians has been compiled by 

Small (1990).

Four examples for bivariate distributions appear in Figures 4-3 and 4-4. The 

mediancentre is indicated in those figures by a black square. The number of leaves 

for the \-M ST  is close to 2 N / 9, in accordance with a conjecture of Steele et al. (1987), 

even for the small values of N  that we considered for the examples. These figures 

illustrate the fact that, for bivariate distributions, although the majority of the leaves
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Figure 4-4: Degree 1 nodes; Exponential and Lognormal distributions

appear in the outer layers of the convex hull sequence, it is possible to find a number 

of them quite near to the centre of the data.

In order to examine the variations of the proportion of leaves located in the extremes 

of the data, we compared the ranks of the distances to the mediancentre for leaves 

and non-leaves using a one-sided Wilcoxon test (Lehmann, 1975). This nonparametric 

two-sample test was used as the distribution of the distances is usually far from being 

Normal; it can be written as

W x y  =  W x  -  -  n \  { t l \  +  1 ) ,

where Wx is the sum of the ranks from the pooled sorted observation list corresponding 

to the first sample.

It can be shown that E ( W x y )  = \  «i «2 and var(Wxy) = ^ n\ n i  {N  + 1), and that the 

asymptotic distribution of the quantity

^  _  Wxy ~ E  (Wxy)

** \ /v a r  (Wxy)
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is standard normal.

The alternative hypothesis is that the ranks of the distances to the mediancentre 

corresponding to the degree 1 nodes were larger than those for nodes with higher 

degrees. We generated 100 samples of several combinations of dimension, number 

of nodes and distribution and calculated the Wilcoxon statistic for the ranks of the 

distances to the mediancentre. Table 4.1 presents the results for those combinations. 

This table shows that these tests should perform better for higher dimensional data as 

the number of leaves and the number of times in which such nodes are located in the 

periphery of the data increases with the number of dimensions for all the distributions 

for both, the 1 -MST and the I-RNG.
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p - 2
1-MST  1 -RNG

N  =  20 TV =  100 TV =  20 TV =  100
signif deg 1 signif deg 1 signif deg 1 signif deg 1

u 4 6 1 23 18 3 11 8
c 81 6 39 22 81 5 97 10
x \ 32 6 22 22.5 41 4 80 8
L 35 5 7 22 56 4 79 10
N 72 6 93 24 76 4 95 9
t (  2) 78 6 78 23 80 4 96 10
E 28 5 20 22 38 4 71 9

p =  5
1 -M ST  1-RNG

TV = 20 TV = 100 TV = 20 TV = 100
signif deg 1 signif deg 1 signif deg 1 signif deg 1

U 13 8 22 36 22 3 21 7
C 94 8 94 32 94 7 100 20
x \ 30 8 33 33 54 5 89 11
L 47 7 19 33 58 6 91 14
N 88 9 100 39 62 5 100 12
t (  2) 92 9 100 36 89 7 100 18
E 38 8 30 34 52 5 86 12

p =  20
l-M ST  1-iJTVG

TV = 20 TV = 100 TV = 20 TV = 100
signif deg 1 signif deg 1 signif deg 1 signif deg 1

U 21 9 38 48 15 2 13 3
C 99 11 100 42 98 11 100 37
x l 35 10 87 48 47 7 95 22
L 74 10 81 10 96 4 99 27
N 93 11 100 54.5 79 5 100 13.5
* (2 ) 99 11 100 51 97 9 100 35
E 40 10 84 48 41 7 97 21

signif =  # { W x y  >  0̂ .95);
deg 1 =  median of #(degree 1 node)

Table 4.1: 100 samples; distances to the mediancentre for degree 1 nodes
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4.3 Sample Pairwise Comparisons

Robinson (1987) suggested the use of the number of links between each possible 

combination of sample identities as a follow-up analysis for the ^-sample multivariate 

runs test. Let C,* be the observed number of edges in Qx defined by points from 

samples j  and k, with j  < k; these counts may be compared with their expected values 

calculated under H0. If, for a particular pair of different samples, the observed count is 

much smaller than Ejk, then we would have an indication of existing differences in the 

distributions of the respective populations.

The expected values of Cjk under the hypothesis of homogeneity were obtained by 

Robinson (1987) in the following way. As the probability that any edge of the 1 -MST 

links points from samples j  and k is

p* =

2 nj rik
N ( N -  1)

nj (n j  -  1)
N ( N -  1)

if j *  k

if j  - k

(4.8)

then the expected number of edges of the l-MST joining points with sample labels j  

and k, say, Ejk, is obtained by summing over the edges of the 1 -MST and is given by

Ejk =

2 rijUk if j *  k
(4.9)

In general, if the spanning graph Qx used to link the observations has m links, then Ejk 

can be written as

Ejk = mPjk. (4.10)

Robinson (1987) also mentioned the possibility of considering a^2-type test using these 

expressions. We can construct the following table
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sample pairs ( 1  ,K) (K -1 ,K )

# (edges g  Qx ) c 1K . . . C(k-i)k m

where the Ejks are the corresponding expected values, obtained using expression (4.10). 

This table is a useful aid for suggesting hypotheses regarding pairs of samples.
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Chapter 5

Power of the Tests

5.1 Introduction

In this chapter we present some results concerning the performance of the tests 

previously described for different alternatives. For the two-sample case, if the 

alternative against the hypothesis of homogeneity is the shift model F\ (x) = F2 (x+A) 

then the power of a test is the probability to detect the location shift A between the two 

populations. Whaley and Quade (1985) mentioned that this probability depends on five 

factors:

1. The type I error.

2. The sample sizes.

3. The distribution of each population.

4. The magnitude and the direction of the shift.

5. The test statistic used.

Hotelling’s two-sample T1 test is known to have optimal properties regarding its 

power against shift alternatives. However, attaining those properties depends on 

the assumptions of multivariate normality and homogeneity of variance-covariance 

matrices. Several authors (e.g. Chase and Bulgren (1971), Everitt (1979)) have studied
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the robustness of the one and two samples T1 test with respect to departures from 

normality. These works point out that for the two samples case, this test is fairly robust 

in the presence of a non normal distribution. Nevertheless, this is not the case for 

departures from the assumption of the homogeneity of variance-covariance matrices. 

Davis (1980) emphasized the very important point that if the multivariate kurtosis 

coefficient is greater than the one corresponding to a multivariate normal distribution, 

(e.g. for a uniform distribution) then the significance levels produced by the Likelihood 

Ratio Tests (LRT) would be substantially reduced. Thus, in this case, the use of this 

test can be rather dangerous.

Simaika (1941) proved that Hotelling’s t 1 two-sample test is uniformly most powerful 

for multivariate normal observations only when the power depends on the noncentrality 

parameter alone. This means that if the power of some test depends on more than just 

the location shift, then the T2 test is not necessarily more powerful than such a test, 

even for normal data.

Whaley and Quade (1985), showed that some multivariate runs tests based on graphs 

constructed by linking points located within a certain distance to each other smaller 

than a pre-established threshold can have a better performance than the T1 two- 

sample test for multivariate normal data. This is due to the fact that the power of 

the multivariate runs test employed by them does not depend on the noncentrality 

parameter alone. As the test statistic is based on a threshold distance, the power 

of the test may vary according to the covariance structures of the samples and to 

the direction of the shift. For instance, assuming that the shift is positive and that 

the variables are positively correlated, if the shift is of the same direction form: 

(Ai, A2, ..., Ap) or (-Ai, — A2, ..., - Ap), then we would expect the power of the runs 

tests to be inferior to the one corresponding to an opposite direction shift, i.e. one of 

the form (Ai, -A2, A3, ..., Ap_i, -Ap).

Whaley and Quade (1985) also pointed out that, for the two-sample case, the power 

of multivariate runs tests is likely to be increased if graphs like the n-MST were used 

instead of those generated by threshold distances. For this reason, and also in view 

of the degree of arbitrariness implied by choosing a threshold, we did not use graphs
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based on that approach.

As a first example, we now discuss an experiment similar to those published by 

Friedman and Rafsky (1979) and Schilling (1986). We used these examples in order to 

“calibrate” our programs by contrasting our results with published ones. We generated 

100 replications of two samples of standard multivariate normal random variables. The 

dimensions considered were p = 1 , 2 ,5 , 1 0 , 2 0 ; the sample sizes used in this example 

were n\ =n2 = 100, so the normal approximation to the null distribution of TR should 

be expected to work very well.

In the first part of this example, we examine the performance of I*  using several graphs 

based on Euclidean distances as Qx for testing the hypothesis of homogeneity against 

location alternatives.

Table 5.1 shows the power of the runs test based on r s for several graphs. The 

separations, in Euclidean distance, between the mean vectors of the two samples for 

several dimensions are equal to those used by Friedman and Rafsky (1979) as well as 

by Schilling (1986); we worked with them in order to have a point of comparison with 

the only published results obtained for some graphs. They are (0.3, 0.5, 0.75, 1.0, 1.2) 

corresponding to /?=( 1, 2, 5, 10, 20). Throughout this chapter we used 100 simulations 

to estimate the power of the tests, so the conclusions should be taken with some caution. 

The significance level used in all the examples was 5%; the tables show the number 

of times which the test statistics exceeded the corresponding critical value for that 

significance level.

The LRT results reported in Table 5.1 were obtained with the Bartlett-Nanda-Pillai trace 

criterion; we used the approximation suggested in Mijares (1990). For this sample size, 

the use of other parametric test statistics (e.g. Wilk’s A) makes no substantial difference 

on the estimated power.
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Tests p
1 2 5 1 0 2 0

LRT 45 77 91 92 84
i -Msr 13 19 36 64 70
2-MST 14 30 52 73 98
3-MST 15 33 6 6 85 90
1-MST 2 2 43 79 96 99
%-MST 19 46 85 97 99
l-NNG 1 2 18 37 57 6 6

rlN(Q 5 7 41 47

K m ( Q 71 1 0 0 99 1 0 0

2-NNG 1 2 27 51 72 8 8

9 2 2 57 67

VW (C) 6 8 1 0 0 99 1 0 0

3-NNG 13 32 65 87 89

1 2 27 74 76

VJm(C) 72 1 0 0 97 1 0 0

l-NNG 2 0 41 82 97 97
S-NNG 18 42 83 98 99
l-RNG 13 25 76 90 1 0 0

2-RNG 16 49 97 91 98
l-GG 13 25 90 1 0 0 1 0 0

2-GG 16 49 97 98 1 0 0

Table 5.1: Power against location alternatives for two samples

The rows marked as T*nN and are Schilling (1986) two-sample n- nearest 

neighbour statistics, defined as:

n iV ,=1 r= 1

and

K™ = E E ̂ (Z.) E'.w.n ' iy 0=1 ie£la T= 1
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where represents the a-th sample and I ,(r) is an indicator random variable which 

takes the values 1 if the point i and its r-th nearest neighbour share the same sample 

label and 0 otherwise. wa(Z,) are the optimal weights defined by Schilling (1986). 

The first statistic corresponds to the unweighted proportion of all pairs of n nearest 

neighbours which come from the same sample. The second is one of its weighted 

versions proposed by Schilling (1986). Although Schilling’s tests seem very powerful 

indeed, it is not clear how to generalize the optimal weights defined by this author 

to the i^-sample case. Also, this test might prove to be not as powerful against scale 

alternatives.

The results presented in Table 5.1 closely resemble those obtained by Friedman and 

Rafsky (1979). There is a marked effect of the number of orthogonal graphs on the 

power of the runs tests. Also, it can be seen that the tests based on the RNG s and 

the GG s have a more parsimonious performance than those based on MST s and 

NNG s, in the sense that they attain comparable power levels using less edges. Another 

remark concerns the dimensionality of the data: the power of the runs tests seems to 

improve for higher dimensions; this is contrary to the performance of the parametric 

tests (Kshirsagar (1972)).

So far we have only given an example of the comparisons we are interested in. In the 

next sections we cover a wider range of tests and multisample multivariate situations. 

We must rely on simulation studies which will be very limited, due to the many factors 

that affect the behaviour of the nonparametric multivariate tests.

5.2 Shift Alternatives

Our first example involves 8  samples, each of size 25. The shift A was applied to only 

one variable in one sample; the rest of the samples had the same mean. All the samples 

were generated with the p x p identity as their variance-covariance matrix. We must 

stress that we did not consider the power of the likelihood ratio tests as a benchmark 

to make the comparisons between the parametric and nonparametric tests. In order to 

do so, we would have had to obtain the power of the nonparametric tests using the A
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value which prescribes a determinate power level for a LRT. However, as the power 

of the multivariate runs and ranks tests does vary in accordance with the direction of 

the location shift, this would have lead to consider many complicated patterns in the 

generation of the shifts. Thus, we worked in a situation which might be thought to be 

somehow disadvantageous for the nonparametric tests.

The LRT column presents the results for the LRT criterion which achieved the largest 

power. The criteria used were the Bartlett-Nanda-Pillai trace criterion using the 

approximation suggested by Mijares (1990) and Wilk’s A, using Bartlett’s x 2 and 

Box’s F approximations as described by Anderson (1984). For normal data, all these 

approximations are reported to be remarkably accurate, even for small sample sizes. 

The column marked as P-S holds the results for the three Puri-Sen multivariate rank 

tests that we considered for location alternatives. They are MMRST, MMMT, and 

MMNST, and were described in Section 3.4. Similarly to the LRT case, we chose the 

test that yielded the largest power amongst these three tests.

The three columns under Runs show the power estimates obtained for l-MST, 10- 

MST and 15-MST. The corresponding NNGs produced very similar results. The largest 

difference in power was usually observed between the 1 -MST and the 5-MST. Using 

l-RNGs or 1-GGs produced results comparable to those obtained using between 5 and 

10 orthogonal MSTs.

Using higher order RNGs or GGs does increase the power. However, it is always 

possible to obtain similar or better results by adding orthogonal MSTs, and so we do not 

report the results obtained with those graphs. Clearly, we could go on until we had a 

complete or almost complete graph. This would happen particularly for n-RNGs or n- 

GGs for points in higher dimensions or for a relatively large number of orthogonal 

MSTs or NNGs for small samples. Considering the complete graph as a basis for 

the runs statistics does not necessarily lead to an improvement in their power. This 

is because the runs test rejects the hypothesis of homogeneity whenever the number 

of links defined by points from different samples is significantly small. For instance, 

consider two samples, each of size 4 differing only in location. There are 28 links in the 

complete graph -which is equivalent to A-MST. In this graph there would be 16 links

137



from different samples against 12 from the equal sample, and thus the null hypothesis 

would never be rejected.

The last column of this table refers to the estimated power of the nonparametric 

rank tests based on the Friedman-Rafsky multivariate ranking procedures. Again, we 

present the largest power attained amongst all the tests. The performance of these tests 

is very poor and, in general, it decreases as the number of dimensions grows.

The power levels attained with the tests based on degree 1 nodes were so low in this 

example that we do not report them.

From Table 5.2 we can see that the Puri-Sen tests are a safe option, attaining power 

levels similar or even higher than those corresponding to the LRT for almost all the 

cases reviewed. For normal data it is clear that the LRT is the best procedure to use, 

as we would expect. The high power levels achieved by the LRT for the uniform 

distribution should be considered bearing in mind Davis’ remarks. For the lognormal 

distribution, the runs tests with a large enough number of orthogonal MSTs have the 

best performance.

We cannot affirm whether or not the multisample nonparametric tests increase 

their power levels with the dimensionality of the observations, as Friedman and 

Rafsky (1979) noted for their two-sample tests. It is obvious that the number of samples 

has an effect on their performance, but it does not seem easy to describe it.

We now turn our attention to smaller sample sizes. The tests based on the Friedman- 

Rafsky multivariate ranks performed very poorly indeed in these examples and so we 

do not include them in the following tables.

Table 5.3 has a similar pattern to that of Table 5.2. Again, the LRT is the best option 

for normal data, the Puri-Sen tests produce reasonably high power levels and the runs 

tests perform much better only for lognormal data,

In Table 5.4 we show an example with N=50 and four samples. We present the results 

obtained for 10-dimensional data, which exhibit the same behaviour observed before. 

We would regard suspiciously the high power levels attained by the LRT for uniform 

data. It seems that the Puri-Sen tests’ performance deteriorates for higher dimensions, 

while the runs tests steadily achieve good levels for large numbers of orthogonal graphs.
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Normal data; N=200, K=8, m=(25, 25, 25, 25, 25,25, 25, 25)
p A L R T P - S R u n s F - R P A L R T P - S R u n s F - R

2 0.4 2 1 18 8 1 2 16 1 2 5 0.4 14 10 5 5 9 1 2

1.2 9 6 95 29 5 9 72 2 1 1.2 87 82 20 35 41 18
10 0.4 10 9 5 3 7 17 20 0.4 10 12 6 5 2 17

1.2 64 59 19 27 32 11 1.2 49 43 14 23 33 13

Uniform data; N = 200, K = 8, /ij==(25, 25, 25, 25,25, 25, 25,25)
P A L R T P - S R u n s F - R P A L R T P - S R u n s F - R

2 0.2 58 67 14 2 2 22 2 1 5 0.2 33 36 9 9 15 6
0.4 97 95 17 43 50 16 0.4 100 100 45 56 62 25

10 0.2 23 27 4 8 14 8 20 0.2 9 10 6 8 12 6
0.4 85 79 20 32 38 14 0.6 95 88 28 68 93 16

Exponential data; N=200, K = 8, w,=(25,25, 25, 25, 25, 25,25 ,25)
P A L R T P - S R u n s F - R P A L R T P - S R u n s F - R

2 0.4 23 34 9 14 19 15 5 0.4 14 18 9 17 15 9

1.2 99 100 40 94 99 45 1.2 85 100 25 70 89 2 1

10 0.4 8 15 5 9 9 12 20 0.4 7 10 5 9 8 9

1.2 60 80 19 53 57 20 1.2 43 54 17 31 34 11

Lognormal data; N = 200, a:=8, w,=(25, 25, 25,25, 25, 25, 25, 25)
P A L R T P - S R u n s F - R P A L R T P - S R u n s F - R

2 0.4 28 36 9 1 1 25 20 5 0.4 11 19 8 16 14 14
1.2 99 100 51 94 99 71 1.2 91 99 54 98 99 54

10 0.4 15 20 9 14 11 9 20 0.4 11 14 10 12 8 7
1.2 86 94 62 90 95 29 1.2 58 80 40 87 93 20

Table 5.2: Power against location alternatives for eight samples
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Normal data; N=30. K=4, rc,=(7, 7, 8, 8)
p A L R T P - S R u n s P A L R T P-S R u n s

2 0.9 22 2 2 9 23 33 5 0.9 21 13 14 15 26
2.0 87 74 38 77 82 2.0 73 40 36 68 69

Uniform data;; N=30, ^=4, n,=(7, 7, 8, 8)
P A L R T P S R u n s P A L R T P-S R u n s

2 0.4 59 43 21 40 46 5 0.4 34 19 13 34 40
0.9 100 100 64 100 100 0.9 97 73 60 98 99

Exponential data; shift alternative; N=30, K = 4, w,=(7,7, 8, 8)
P A LPT P-S R u n s P A L R T P-S R u n s

2 0.4 16 18 12 14 25 5 0.4 11 10 6 15 16
2.0 90 79 52 98 99 2.0 71 69 42 68 77

Lognormal data; shift alternative; N = 3 0 ,  K - 4, w,=(7,7, 8, 8)

P A L R T P-S R u n s P A L R T P-S R u n s

2 1.3 6 0 81 42 92 90 5 1.3 34 31 39 77 71
2.0 81 98 59 99 100 2.0 45 67 58 100 100

Table 5.3: Power against location alternatives for four samples

N=50, tf=4, «,•=(! 3,13, 12, 12)
distribution P A L R T P-S R u n s

Normal 10 0.9 16 10 5 13 21
1.7 69 43 27 66 69

Uniform 10 0.1 12 10 6 9 11
0.4 58 23 14 29 42

Exponential 10 0.9 21 . 37 12 15 16
1.7 63 69 34 76 73

Lognormal 10 0.9 20 26 16 49 58
1.3 29 48 46 90 97

Table 5.4: Power against location alternatives for four samples
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As we said in the introduction to this chapter, the power of the nonparametric tests 

that we are considering depend on a collection of causes. In our last example for 

location alternatives, we present an example of the impact of some of these factors 

on the performance of the tests. The results appear in Table 5.5 

We divide 100 data sets of size 30 into 5 subsamples. For p = 2 we consider two 

possible partitions: (6, 6, 6, 6, 6) and (6, 5, 7, 5, 7); they appear in the table under “eq” 

and “uneq” sample sizes, respectively. We consider two possibilities with respect to 

the variances of the samples; they are (1, 1, 1, 1,1) and (1, 2, 3,2, 1) and are indicated 

in the table as “eq” and “uneq”, respectively.

We assume that A=0.6 for p = 2 and p = 5.

Normal data; p=2, N=30, K=5
sizes <7* LRT P-S 1 -MST 10-MST 15-MST RNG GG F-R

eq eq 20 16 9 19 20 9 8 6
eq uneq 14 15 11 17 10 23 24 11

uneq eq 23 12 8 22 30 13 15 12
uneq uneq 15 16 21 27 18 22 38 26

Normal data; p=5, N=30, K=5
sizes <j2 LRT P-S l-MST 10-MST 15-MST RNG GG F-R
eq eq 23 13 12 25 29 15 15 4
eq uneq 8 6 31 2 3 39 61 52

Table 5.5: Power against location alternatives for five samples

No clear pattern emerges from this table for the LRT or the Puri-Sen tests. However, we 

may notice that, in general, the nonparametric tests perform better than those tests in the 

absence of equal variances. Also, there are some results which show that one should be 

careful with the number of orthogonal graphs used to construct the runs test statistic. If 

this number is too large with respect to the sample sizes, then too many edges from the 

same sample would be included and as a result the hypothesis of homogeneity will be 

incorrectly accepted. To correct this we suggest to use the RNG or GG, as shown here. 

Although these graphs produce test statistics which seem to have slightly lower power 

than those obtained with a large numbers of NNGs or MSTs, they comprise a more
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robust possibility against picking up too many redundant edges. Of course, for higher 

dimensions, the G G  might be very similar to the complete graph. Thus, we recommend 

the R N G  as a good compromise between power and generality of application.

We can also note that the multivariate rank tests (in particular Kiefer’s one) seem 

to have good power. However, as we are using the approximation discussed in 

Subsection 3.3.4 assuming that it would be good enough for the present sample 

structure, these results should be taken with due caution.

5.3 Scale Alternatives

We now present a few experiments for tests concerning the variance-covariance matrix. 

For our first example, we change the scale of only one sample and use normal data in 

2, 5, 10 and 20 dimensions. The total number of observations is 200, partitioned in 8 

samples, each of size 25. The results appear in Table 5.6.

Normal data 
N = 200, *=8, r i i= (2 5 , 25, 25, 25, 25, 25, 25,25)
p C72 LRT P-S deg 1 Runs F-R
2 1.2 51 52 9 20 29

1.4 99 100 14 72 83
5 1.2 66 84 58 41 44

1.4 100 100 90 89 88
10 1.1 14 42 36 14 20

1.2 74 99 82 59 51
20 1.08 13 53 66 18 22

1.15 37 97 94 54 51

Table 5.6: Power against scale alternatives for eight samples

The L R T  column corresponds to Box’s test for homogeneity of variance-covariance 

matrices. We used the F  approximation described by Anderson (1984). The P - S  

column holds the results obtained with the (M M N S T )2. We include the power levels 

concerning the degree 1 test. As we remarked in Chapter 4, this test seems to be an 

adequate choice to test scale differences.
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The results presented in the Runs column were obtained using 5-MST. The last column 

refers to the rank test which achieved the largest power level in each particular case with 

the Friedman-Rafsky radial ranking. We should remark that Kiefer’s test performed 

slightly better than the rest of the tests.

It is clear that Box’s is not the best choice for higher dimensional data. The Puri-Sen 

test has a steady response in all dimensions, even for small scale differences. It is also 

worth noting that the performance of the multivariate ranks tests based on the l-MST 

is worse for higher dimensions, as the representation of the distance structure obtained 

with the radial ranking becomes less accurate.

The runs tests are geared more towards detecting shift differences. Nevertheless, they 

performed well enough for p < 10 in this case.

For our next example, we considered N  = 30, and K = 4. The sample sizes were 7, 

7, 8, and 8; we generated points in 2, 5, and 10 dimensions. The results appear in 

Table 5.7. The Runs columns correspond to 1, 10 and 15 MSTs. The latter graph is, 

in this case, the complete graph. The very low power levels obtained with it illustrate 

a point which we have mentioned before: that merely increasing the number of edges 

does not necessarily lead to a more effective test statistic.

Normal data; scale alternative; N  = 30; /i,=(7,7, 8, 8); K-4

p <7 Box P-S deg 1 Runs F-R
2 2.2 64 52 11 7 25 8 29

3.4 92 84 9 17 44 6 34
5 2.2 62 55 16 14 34 7 27

3.4 97 85 21 15 47 4 50
10 1.8 23 10 25 3 25

2.2 31 15 28 5 35

Table 5.7: Power against scale alternative for four samples

In actual fact, this situation was observed in several cases, even when the n-MST 

considered did not coincide with the complete graph. For p  = 10, we see that the 

degree-1 and the F-R radial ranking tests attain better power levels than the runs tests. 

The effect of using the complete graph in the latter tests is patent.
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We performed other experiments to study scale alternatives with other distributions, 

but the the best results, were obtained either with the Box test or with the (MMNST)2. 

As the latter seems to be a very powerful and robust test, we would recommend using 

another nonparametric test for scale alternatives only when the sample structure is such 

that does not allow to use this Puri-Sen type test with confidence. In those cases we 

would have to insure that the distribution used is adequate. In general, using four- 

moments approximations or sampling from the exact permutational distribution should 

guarantee that.
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Chapter 6

Association and Prediction Measures

6.1 Introduction

Friedman and Rafsky (1983) outlined another application of graph theoretic concepts 

in multivariate data analysis. They proposed a measure of association and one of 

prediction taking advantage of the theory of generalized correlation coefficients (GCC); 

some aspects of this theoretical framework have been already discussed in Section 2.3. 

In this chapter we explore the possibilities of such measures.

Let us consider a sample of size N  of ordered pairs (x„ y,) from (possibly multivariate) 

random variables X and Y. If ay denotes a score measured for the i-th and y'-th 

observations over the X-values, and by is another score for these observations over 

the random variable Y, then a statistic of the form T = ay by is a GCC. The

exact and asymptotic distributions for this class of statistics have been discussed in 

Section 2.3. It was shown there that, under the null hypothesis of no correlation for X 

and Y, T is asymptotically normally distributed for a wide variety of score functions 

ay and by . We considered in detail a particular case of T: the one which arises by 

considering one of the scores to be directly related to sample identity and the other to 

be based on the edges of an interpoint distance graph. We studied this situation in the 

context of testing if K multivariate samples had the same underlying distribution. If we 

can reject the hypothesis of no correlation for these score functions, then we conclude 

that the samples are not homogeneous.
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We now turn our attention to the general problem of determining to what extent points 

which have similar values in the X space correspond to observations which are near in 

the Y space, based on a sample of N  ordered pairs (x„ y,). We follow the two approaches 

presented by Friedman and Rafsky (1983). In the next two sections, we describe their 

multivariate measures of association and prediction.

6.2 A Measure of Association

Let Gx and Gy be any two spanning graphs constructed over X and Y. If ay and by 

are indicator variables taking the value of unity if the i-th and j -th points form an edge 

in Qx and Gy, respectively, then

i N N

(6.D
Z  i j

is the number of edges in the intersection of both graphs. If Gx and Gy are graphs 

like those discussed in Chapter 1, i.e. graphs whose edges correspond to pairs of 

points which are somehow near, then we should reject the hypothesis of no correlation 

between X and Y whenever the observed value of Ti is too large or too small; the former 

case indicates the presence of a strong positive relation between X and Y and the latter, 

a negative one. From the previous chapters we have that for the X'-sample case it only 

makes sense to reject the null hypothesis if the value of Ti is too small, implying that 

the number of pairs of points having the same sample identities and forming an edge 

in the interpoint distance graph is significantly smaller than it would be expected if the 

sample identities would be assigned by random labelling.

The null distribution for T i can be approximated with a sample from the permutational 

distribution or with a Normal approximation. We did not attempt to construct 

approximations based on the first four moments. The work presented in Chapter 2 

for the ^-sample multivariate runs statistic was considerably eased by the fact that Gy 

was considered to be u ^ lKnj; we do not have this advantage for the general case.

Let n  be and indicator variable taking the value of 1 if the i-th edge of Gx is also an 

edge of Gy-
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Therefore Ti = Y S \ Zi, and the first moment of T i is:

E(r,) = £ P r f e  = !]=<*/> = (6.2)

-1
where p = Pr [z, = l] = eY i . From equation (6.2) we have that the expected value

of the number of edges in the intersection of both graphs is the number of edges in Qx 

times the probability that any edge of Qx appears also in QY.

Then var (Ti) is calculated exactly as in equation (2.28) in Chapter 2:

Lefkovitch (1984, 1985) worked with a statistic based on the intersection of two 

RNGs. He discussed several interesting analysis for problems involving establishing 

association between two distance matrices. For instance, he was concerned with 

assessing the correlation between the geographical distribution and some attributes 

measured over plants in a region. This author follows a 2x2 contingency table approach 

similar to that developed by Barton and Davis (1966). Given two dissimilarity matrices 

constructed for N  observations, Dv and D*,, and their RNGs, let |EV| and |EW| denote 

the cardinality of their respective edge sets. Then, Lefkovitch forms the following 

contingency table

where |K| denotes the cardinality of the complete graph with N  points. If there is no

var (TO = var ] cov (n, zj)

so we can write

var (T1 1 ex, eY> Cx, CY)

4
+ N (N  -  1 )(AT -  2)

• CxCy +
{ex (ex -  1) -  2 Cx} {eY{eY -  1) -  2 CYj 

N -  3
(6.3)

|E V n  E w| |E V \  E w|

| EW \  E v| | K \  (E v n  E h,)|
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association between Dv and Dw, then the relative neighbours in of each of the objects 

in Ev would tend to be independent of those in Ew. On the other hand, if |EV n  E J 

is greater than its expectation under the null hypothesis, then there would be evidence 

that the relative neighbours tend to be alike, which would indicate that Dv and Dw 

have some common information. This hypothesis may be tested using an ordinary log- 

likelihood test for marginal independence, whose test statistic, G2 has, asymptotically, 

a %2 distribution with 1 df. We do not pursue this approach here.

Friedman and Rafsky (1983) mentioned that it is the lack of regard for large distances 

in the computation of T i that gives rise to its good power characteristics against general 

alternatives.

Although Ti is a useful statistic which should have good performance against a great 

variety of alternatives, these authors mentioned that if the relationship between X and 

Y is not one-one, this generality could mean some loss of power. If a many-one 

relationship constitutes the alternative hypothesis, then it is important to measure to 

what extent the observed values of X can be used to predict values of Y, without any 

consideration about how well could values of X be predicted from Y.

A more powerful test for those situations should make use of the hypothesized 

relationship between X and Y, and thus would involve only small interpoint distances 

from X while including both small and large distances from Y. We discuss such a test 

in the following section.

6.3 A Measure of Prediction

Let us assume that Qx links points which are somewhow close to each other. We now 

define the score Ri(j) to be the position of the j-th observation in the list resulting from 

increasingly ordering the sample points according to their Y-distances from the i-th 

observation. We take R,(i) = 0 and so 1 < /?,•(/) < N  -  1 for all i and j.

Considering = 1 if (i,j) e Qx and = 0 otherwise, and by = /?,(/) » the Friedman-
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Rafsky measure of prediction can be written as

N N

r* = E E a« h  = E «.(/)■ (6.4)
*=i ;=1 (i.y)e gx

We have that if two nodes, i and j, define an edge in Qx the corresponding /?,•(/) should 

take a small value and then, rejection of the null hypothesis of no correlation is indicated 

by small values of r 2.

If bij = Ri(j) , then the degrees of the spanning graph associated with these scores are 

di = N (N - I ) ,  for all the nodes. This assures that Daniels’ condition is satisfied, as

This implies that the asymptotic normality of T2 depends entirely on Qx satisfying the 

conditions established in equation (2.18).

Friedman and Rafsky (1983) obtained the first two moments of the null distribution 

of T2. We now present their formulae.

From equation (6.4),

Obtaining an expression for the second moment is more complicated. We first have

the numerator being O (TV14) and the denominator O (N15).

E(T2)=  £  E[R,(/')] = 2«xE [«,(/')] (6.5)
(* j )e  Qx

From these two equations, we have that

E(T2) = Nex (6.7)

149



that

var (T2) = Y  var [ R*d) ] + E  cov t Rid) > RkV) ]
(i,j) 6 Gx

(6.8)
Ujl (k.i>£ gx(i

and

var [/?,(/)] = E R:{j)2 - { F. [«,(/')]}

- i  £r  4N

N  ( 2 N  — 1) N 2 N ( N - 2 )

6 T "

The second sum in equation (6.8) can be written as

12

N 2

(6.9)

cov [Ri(j), Rk(l) ] = E [Ri(j) Ric(t) ] -  — (6.10)

In order to calculate the expectation of [/?,•(/) /?*(/)], we have to consider 6 cases of 

ordered edge pairs defined by nodes ( ij)  and (k, 1); these are:

Case 1: R id ) Ri(k) i ^ j & k

Case 2: Rid) Rkd) i ^ j ^ k

Case 3: Ri d ) Rj(k) i ^ j & k

Case 4: Rid) Rkd) i ^ j ^ k

Case 5: Rid) Rjd) i ^ j ^ k

Case 6: Rid) Rkd) i ^ j  ^  I

Friedman and Rafsky defined the following two parameters of the matrix R = [ /?,(/) ] 

which are needed to calculate the expressions involved in some of these cases:

and £* = > : I > : Ri(i) I (6.11)= Ri(j) Rjd)
i= i j= i

N I  N

br = Y  £ * « ( /)
i= 1 \j=\

The expressions required for each case appear in an appendix to the paper by Friedman
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and Rafsky (1983). The expression for the variance of T2 may be written as:

^  4  fJV(3AT+l), 4 (Ar - B k) \
var (T2\ex, Cx,AR,BR) -  —  j   -+ NQf_ l)(ff_ 2) J

[ 2(N-l)(A^-4)A/? + 4 ^  _ N , ( N - l ) ( N - 2 ) )
N - 3 {  N ( N -  l ) ( N - 2 )  3 J

+ ( N - 2 ) ( N - 3 )  ' (6' 12)

{ (N + 1 ) B r - 2 ( N -  l)i4* TV, (3iV — 4 ) (JV2 — 1)|
\  N ( N - l ) 12 J

The extent to which a normal approximation based on the first two moments follows 

the null distribution of T2 was not discussed by Friedman and Rafsky (1983). However, 

they gave an example in which that approximation seems to work adequately for 

N=100. For small sample sizes, one could follow the two approaches outlined in 

Chapter 2. The easiest alternative seems to be sampling from the permutational 

distribution of T2 conditional on Qx. It is possible to construct the expressions for 

the third and fourth moments of this distribution. However, this approach seems 

rather cumbersome, as the number of cases that is necessary to consider increases 

considerably for the higher moments, so we did n i pursue it. In the next section we 

explore the adequacy of using a Normal approximation for Ti and T2.

6.4 Approximations to the Null Distributions of

r  i and r2

We are interested in assessing the performance of the Normal approximations described 

in the previous sections for relatively small sample sizes and for a variety of graphs. 

To do so, we compare this approximations with results produced by sampling from 

the exact permutational distribution. The mean and the variance of the normal 

approximations are calculated with expressions (6.2) and (6.3) for T\ and (6.7) 

and (6.13) for T2, respectively.

We start with some examples for Ti. We constructed two independent samples of
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multivariate normal values and calculated their Euclidean distance matrices. Table 6.1 

presents the results for several combinations of graphs, sample size and dimension. 

The columns p and cr correspond to the mean and standard deviation of the normal 

approximation, whilex, s, b\, b2 and **are the mean, standard deviation, the coefficients 

of skewness and kurtosis and the Pearson criterion estimated from samples of size 

1000 from the exact permutational distribution. Figure 6-1 shows an example of an 

apparently nonnormal exact distribution with the density estimate obtained with 1000 

realizations from the exact permutational distribution of T 1 and the corresponding 

normal approximation. The density estimate was obtained with a Gaussian kernel using 

the optimal smoothing parameter proposed by Silverman (1986, §3.4). The normal 

approximation is shown in the solid line. From Table 6.1 and Figure 6-1 we can see

Graphs N P P <7 X s b 1 b2 K
l-MST- l-MST 50 2 1.960 1.359 1.964 0.966 0.279 3.483 1.763
l-MST- l-MST 50 20 1.960 1.344 1.909 0.936 0.192 3.061 -0.330
l-MST- l-MST 200 2 1.990 1.400 1.943 0.998 0.266 3.304 -1.131
l-MST- l-MST 200 20 1.990 1.396 1.963 1.002 0.398 3.705 1.518
l-MST- l-MST 500 2 1.996 1.409 1.996 1.022 1.263 5.521 0.988
l-MST- l-MST 500 20 1.996 1.407 1.9876 0.9683 0.019 2.253 -0.009
l-MST- l-GG 50 2 3.640 1.817 3.526 1.242 0.131 3.208 4.866
l-MST- l-GG 50 20 38.400 2.817 39.030 1.895 -0.017 2.854 0.005

Table 6.1: T\ approximations: parameter values

that if one of the graphs considered is a sparse one then the normal approximation does 

not fit well the null permutational distribution of T1 even for sample sizes as large as 

500. We obtained better results considering denser graphs. For instance, the GGs used 

with N=50 have 91 and 960 edges for 2 and 20 dimensions, respectively. The l-MST 

has always 49 edges. Thus, the corresponding proportions of edges from the complete 

graph are 0.04,0.0743 and 0.78 for the l-MST and the two GGs, respectively. The RNG 

or a moderate number of orthogonal MSTs or NNGs are sensible choices to calculate 

Ti, as has been suggested by Lefkovitch (1984).

Table 6.1 shows that the variance calculated with expression (6.3) is always larger 

than the one estimated from the permutational null distribution. Thus, the normal
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approximation suggested by Friedman and Rafsky (1983) would yield a conservative 

test. However, we would recommend using a large enough sample from the exact 

distribution in order to obtain better approximations to the true significance level. It

1-MST & 1-MST ; N=500, p=2

CO©

o

oo
T T T T 1

-0.95 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
r,

Figure 6-1: Approximations

is not surprising that the normal approximation works better for T2 than for Ti, as the 

former statistic has a wider range.

For r 2, we have that even for sparse graphs like \-MST  and sample sizes as small as 20 

we always observe that the exact permutational distribution closely resembles a normal 

distribution. Table 6.2 and Figures 6-2 and 6-3 show some examples of this fact. We 

find that the variance of T2 calculated using equation (6.8) is always larger than the 

variance estimated from the samples from the permutational distribution. This leads, as 

for T i, to a conservative test if we apply the normal approximation directly. Friedman 

and Rafsky (1983) pointed out that Ti considers only some selected, relatively small 

distances without regard for the larger distances, while T2 makes a fuller use of the 

distance matrix. So, as tests based on Ti are appropiate in a wide variety of cases, the 

price paid for this generality is less power in those situations in which large distances
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Graphs N p p  a  x s b i fr2 k

1 -MST 50 20 2450 179.37 2449.6 137.92 0.013 3.201 0.021
5-MST 50 20 12250 390.65 12259 270.71 -0.002 2.987 0.067
1 -MST 20 20 380 37.75 380 31.93 -0.001 2.774 0.003
l-GG 20 5 1580 64.61 1580.5 50.98 -0.000 2.966 0.001

Table 6.2: T2 Approximations: Parameter Values

play a significant role in defining the common information shared by both distance 

matrices. We think that using one or two sufficiently dense graphs in T 1 would provide 

an adequate compromise between generality and power.

5-MST; N=50, p=20

O
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Figure 6-2: T2 Approximations
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Chapter 7

Case Studies

7.1 Introduction

We now illustrate the usefulness of the procedures studied in the previous chapters; we 

do so by analyzing three data sets. The purpose of these exercises is twofold. First, we 

demonstrate the tests in action in situations where it may not be entirely appropriate to 

use a parametric procedure. We also show the use of some of the graphs considered as 

a tool for exploratory data analysis, specifically as an aid to generate hypotheses.

We tested the multivariate normality hypothesis using the procedures developed by 

Mardia (1970). Mardia proposed the multivariate measures of skewness and kurtosis 

presented in the previous chapter and exploited the insights of two aspects of possible 

deviations from the multivariate normal distribution that may be gained from their use. 

We followed the algorithm given by Mardia and Zemroch (1975).

We should also point out that the overall performance of the tests, for shifts alternatives, 

can be improved if we transform the data in order to remove differences between the 

samples which may be caused by anything but the alternative hypothesis.

The example shown in Figure 7-1 should help to elucidate this. First suppose we have 

three samples from univariate distributions which differ only in location, as shown in 

Figure 7-1. The ranks based on the distances to the median should correspond to a 

batch of points from the middle sample and then to an almost alternate sequence of 

elements from the samples located at the extreme of the pooled data. This may cause
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Figure 7-1: A situation in which rank tests may fail

the tests based on such ranks to reject, incorrectly, the hypothesis of equal variances. 

In order to correct the effect of different locations in tests based on radial ranks, 

we transform the data by substracting from each observation either the mean or the 

mediancentre of its sample.

In the next sections we analyze three data sets using the procedures studied in the 

previous chapters.

7.2 Reeve’s Anteater Skulls Data

In this section we analyze the data originally published by Reeve (1941). The aim of his 

work was to assess the relevance of a classification of four subspecies of of the genus 

Tamandua tetradactyla (also known as anteaters bears) proposed by Allen in 1904. 

This taxonomy was based on differences in some lengths of parts of skulls. The data 

used with this purpose were measured on specimens procedent from samples collected 

all over America. Reeve considered the following three variables:

1. basal length, excluding the premaxilla
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2. occipito-nasal length

3. greatest length of the nasals

All the measurements were made in milimeters. The skulls studied in Reeve’s paper 

are from the subspecies instabilis, chapadensis, chiriquensis, and mexicana. Allen’s 

hypothesis was that the skull measurements divided the four subspecies into two 

groups: (instabilis, chapadensis) and (chiriquensis, mexicana).

Parts of Reeve’s data have been analyzed by Seal (1967), to illustrate the use of 

canonical correlation in multivariate analysis and by Mardia (1971) in the context of 

tests for multivariate normality and multivariate measures of skewness and kurtosis. 

Seber (1984) uses a subset of these data to illustrate the computations required by 

MANOVA tests. Gabriel (1968) also analyzed these data in an example of the use of 

his simultaneous tests procedure in multivariate analysis of variance. They are also 

briefly mentioned by Blackith and Reyment (1971) as an example of a data analysis 

in which two researchers (Seal and Reeve) did reach opposite conclusions analyzing 

the same data. We begin by presenting a summary of the data. Table 7.1 shows 

the descriptive statistics corresponding to these six samples. We worked with the 

logarithms to base 10 of these data in order to reduce them to a common order of 

magnitude. This transformation was performed by all the authors which have analyzed 

Reeve’s data. An first inspection of Table 7.1 might suggest no differences for the mean 

vectors, and the opposite for the variance-covariance matrices.

A two dimensional representation of the complete data set appears in Figure 7-2. It 

was obtained using the first two principal components, which account for the (83% 

+ 16%) of the total variation. It should be noted that the scales of the axes in the 

figure are different in order to show more clearly the differences among the samples. 

Table 7.2 contains the values of those statistics and the significance levels associated 

with Mardia’s approximations. The significance values obtained support the hypothesis 

of multivariate normality for all the samples. Of course, working with the logarithms 

of the data might be responsible for this agreement with the multivariate normal 

distribution. Nevertheless, for such small sample sizes the use of nonparametric 

procedures should be preferred whenever there is no additional information in favour
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sample n mean mediancentre variance-covariance matrix

instabilis 21 2.0539467
2.0655858
1.6208802

2.0553654
2.0677169
1.6221515

0.0002091 0.0001916
0.0001902

0.0003106
0.0003106
0.0008108

chapadensis 1 6 2.0967229
2.0996730
1.6252351

2.0899051
2.0899051 
1.6127839

0.0007920 0.0008347
0.0008961

0.0010458
0.0011404
0.0014915

chapadensis 2 9 2.0905827
2.0950380
1.6244080

2.0935212
2.0975828
1.6333794

0.0004916 0.0004271
0.0003973

0.0003486
0.0003239
0.0005544

chapadensis 3 3 2.0991987
2.1015060
1.6432248

2.0995421
2.1003879
1.6501732

n — 1 < p

chiriquensis 4 2.0924709
2.1100612
1.7025567

2.0969902
2.1106829
1.7025498

0.0000865 0.0000745
0.0001249

0.0001418
0.0002962
0.0008450

mexicana 5 2.0990497
2.1070358
1.6709639

2.1022776
2.1113439
1.6671054

0.0003103 0.0002738
0.0002637

0.0004547
0.0004653
0.0012275

All 48 2.0769000
2.0856381
1.6355063

2.0756833
2.0838041
1.6333162

0.0003245 0.0003040
0.0003077

0.0003914
0.0004080
0.0008608

Table 7.1: Reeve’s data; descriptive statistics
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Figure 7-2: Reeve’s data: two first principal components

of the claim of multivariate normality. Furthermore, Mardia’s tests use approximations 

to their null distribution that may not be completely adequate for small sample sizes. 

Table 7.3 has the results obtained with the generalized runs tests. In order to obtain the 

corresponding significance value we fitted Pearson curves using the first four moments 

following the procedures described in a previous chapter. For all the graphs, the value 

of Ti led to rejection of the hypothesis of homogeneity, with p-values smaller than 

10-6. As we mentioned, the runs tests are more sensitive to differences in location, so

sample TV Hhp) pv i b{%p) pv2

instabilis 0.00115 3.09 0.37 14.43 0.40
chapadensis 1 0.00265 5.48 0.85 10.59 0.16
chapadensis 2 0.00128 4.37 0.77 11.93 0.20
chapadensis 3 n -  1 <p
chiriquensis 0.00079 6.00 0.95 9.00 0.14
mexicana 0.00144 4.12 0.97 9.38 0.13
ALL 0.00269 1.85 0.14 15.59 0.65

Table 7.2: Reeve’s data; generalized variance and multivariate skewness and kurtosis
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graph Ti #(links) a P i P i
l-MST 23 47 11.6667 2.6715 0.1168 2.9736
2-MST 49 94 23.3333 3.6711 0.2566 3.0679
3-MST 74 141 35.0000 4.5309 0.3412 3.1319
4-MST 95 188 46.6667 5.2035 0.3847 3.1234
5-MST 112 235 58.3333 5.8638 0.4200 3.0833
6-MST 130 282 70.0000 6.4101 0.4576 3.0068
\-NNG 18 36 8.9362 2.3383 0.1343 2.9810
2-NNG 34 65 16.1348 3.0275 0.2380 3.0607
3-NNG 45 93 23.0851 3.5526 0.2740 3.0884
4-NNG 60 120 29.7872 4.0122 0.3377 3.1177
5-NNG 74 148 36.7376 4.3987 0.3626 3.1144
6-NNG 90 182 45.1773 4.8499 0.3802 3.0840
1 -RNG 27 56 13.9007 2.8557 0.1132 2.9774
2-RNG 62 145 35.9929 4.6104 0.3160 3.1242
l-GG 44 90 22.3404 3.6513 0.2062 3.0294
2-GG 108 249 61.8085 6.0623 0.5012 3.0072

Table 7.3: Reeve’s data: multivariate runs tests results

these results should be interpreted accordingly to this fact. More information about the 

samples’ distributions is obtained using multivariate ranks tests. Table 7.4 shows the 

significance values obtained with several parametric and multivariate ranks tests. The 

results have been arranged showing the location and scale alternatives versions of the 

tests. The first row corresponds to the LRT (Anderson (1984), Mardia etal. (1977)). As 

they are based on the assumptions of normality, we may feel confident in using them, 

given the results of Table 7.2. The numbers in parenthesis for the degree-1 tests are 

the number of leaves observed in each graph. All the tests lead to reject the equality 

of locations and to accept the hypothesis of homogeneity for the variance-covariance 

matrices.

So far we have rejected the hypothesis of homogeneous location for the six samples; 

however, it may be the case that all differ in location from one another, or there may 

exist homogeneous groupings of subsets of samples.

Gabriel (1968) devised a parametric procedure to construct simultaneous tests for 

the multivariate analysis of variance. As he points out, for this data set there are 

26 -  6 -  1 = 57 groups of samples and 23 -  1 = 7 subsets of variables, which leads
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location tests scale tests
p-value /7-value

LRT 0.000000 LRT 0.544241
MMRST 0.000051
MMMT 0.000001
MMNST 0.000003 (MMNST)2 0.135004

degl MST (16) 0.307263
degl RNG (7) 0.232719

K-W (diam) 0.000026 K-W (radial) 0.282186
NS (diam) 0.000047 NS (radial) 0.518769
Kiefer (diam) 0.000000 Kiefer (radial) 0.289722
S-S (diam) 0.003229 S-S (radial) 0.208869

Table 7.4: Reeve’s data: parametric and multivariate ranks tests

to 399 null hypothesis that may be considered, plus hypotheses on linear combinations 

of subsets of variables and contrasts in 3 or more samples. Instead of following this 

rather cumbersome approach, which is based in asymptotic results and multivariate 

normality, we use the methods to examine relations between sample pairs outlined in 

Section 4.3. This is done in order to suggest further hypotheses to be tested. One 

possibility consists in comparing the observed and expected numbers of links between 

different samples. For example, Table 7.5 shows those numbers for the l-MST and for 

the l-GG.

The values of the x 2 statistic were 89.14 and 158.73, which are higly significant for 14 

degrees of freedom. It is apparent from Table 7.5 that instabilis is the most isolated 

sample, while mexicana might be suspected of being too near to chapadensis and 

chiriquensis. This table also suggests that chiriquensis does differ from all the other 

samples, except possibly from mexicana. At this stage, some questions may arise.

• Are the three samples of chapadensis homogeneous?

Considering only these samples, we used all the tests, except the LRT ones. 

With the runs tests, we overwhelmingly accepted the null hypothesis; all the 

significance values were larger than 0.25. The same happened for the rank tests, 

with two exceptions: the Kruskal-Wallis location test and the Normal Scores
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1 -MST l-GG
samples OBS EXP OBS EXP

insta - chapl 1 4.80 4 10.16
insta - chap2 4 7.20 6 15.24
insta - chap3 0 2.40 1 5.08
insta - chiri 2 3.20 2 6.77
insta - mexic 1 4.00 2 8.47

chapl - chap2 3 2.05 4 4.35
chapl - chap3 1 0.68 1 1.45
chapl - chiri 0 0.91 0 1.93
chapl - mexic 1 1.14 5 2.42
chap2 - chap3 1 1.02 9 2.17
chap2 - chiri 0 1.37 0 2.90
chap2 - mexic 4 1.71 6 3.63
chap3 - chiri 1 0.45 1 0.96
chap3 - mexic 1 0.57 1 1.21

chiri - mexic 2 0.76 4 1.61

Table 7.5: Reeve’s data: number of links from different samples

location test yielded the significance values 0.018 and 0.021, respectively. Both 

tests also produced the smallest p-values for the scale alternative (0.177 and

0.181, respectively). On the other hand, all the test statistics whose distributions 

were approximated by matching the first four moments or with a large number of 

sample identities permutations (Scholz-Stephens test and runs tests) consistently 

accepted the null hypotheses of equal locations and scales. The Kruskal-Wallis 

and the Normal Scores tests p- values are based on an asymptotic approximation, 

and we may think that the relatively small total sample size (N = 18) was not 

enough to produce good results for those two statistics or that averaging the 

within-sample ranks is not the most efficient procedure for analyzing very small 

sample sizes. A similar example can be seen in Scholz and Stephens (1987). We 

also tested the homogeneity of the four subspecies, joining the three samples of 

chapadensis. All the nonparametric tests led to accept the equality of variance- 

covariance matrices and to reject the homogeneity of locations.
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• Does instabilis differ from the other three samples?

The answer is yes. We tested instabilis pairwise against the other three subspecies 

always resulting in rejection of the homogeneity of locations hypothesis and 

accepting the equality of variance-covariance matrices.

• Do chapadensis and chiriquensis have different locations?

Yes. All the tests categorically rejected the hypothesis of homogeneity of 

locations, while accepting the equality of variance-covariance matrices. This 

result was advanced by the comparisons observed in Table 7.2.

• Does mexicana significantly differ from chapadensis and chiriquensis?

The answer is no and no. It is worth noting that when comparing mexicana 

and chapadensis (with /i=18), the parametric tests for location produced p- 

values of about 0.02, while the significance levels corresponding to most of the 

nonparametric tests were around 0.20. An exception was the runs test based 

on the l-NNG which yielded a significance value of 0.046 calculated using all 

the possible permutations (126) of sample labels over the pooled data. All the 

corresponding tests accepted unequivocally the homogeneity of the variance- 

covariance matrices. For the comparison between mexicana and chiriquensis, 

all the tests indicated that the data from both subspecies were homogeneous 

in an even clearer way than the one observed when comparing mexicana and 

chapadensis.

Seal (1967) concluded that the six subspecies were different from one another. She 

based this claim on a a graph of the projection of the sample means and a rough 

estimate of their confidence intervals on the first two canonical variates. However, as 

Gabriel (1968) noted, this conclusion is not based on any statistical significance level 

and should not be taken as a confirmatory result. Reeve (1941) concluded that Allen’s 

classification of the four subspecies into two groups was erroneous. He stated that 

“only chapadensis and mexicana have any claim to be considered distinct subspecies 

on the basis of skull proportions”. We have seen that this is not correct, as chiriquensis 

and instabilis are different from each other and also from the first two subspecies.
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As we noted, mexicana could be joined with either chiriquensis or chapadensis. Only 

an analysis with more data would clear up this point

7.3 Lubischew’s Beetle Data

Lubischew (1962) applied discriminant analysis to a total of 74 specimens from three 

different species of male flea-beetles of the genus Chaetocnema; the species were 

concinna {n\ = 21), heikertingeri («2 = 31) and heptapotamica (n?, = 22). The variables 

considered by Lubischew were

1. width of the first joint of the first tarsus, in microns (sum for both tarsi)

2. width of the second joint of the first tarsus, in microns (sum for both tarsi)

3. the maximal width of the head between the external edges of the eyes, in units 

of 0.01mm

4. the maximal width of the aedeagus in the fore part, in microns

5. the from angle of the aedeagus, in units of 7.5°

6. the aedeagus width from side in microns

This data set has also been analyzed by Jones and Sibson (1987) and by Taylor (1987). 

These authors have noted that the samples are well differentiated and proposed several 

classification rules in order to provide easier ways of distinguishing the procedence of 

new data from the three species.

We begin by showing some descriptive statistics of the data. From Table 7.6, one might 

think that the samples differ in location and in variance-covariance matrix.

The data exhibit some evidence of departures from a multivariate normal distribution, 

as the values for b(2,p) seem to be significant for the first and the pooled samples, 

and so, it may be appropriate to use nonparametric procedures. It is worth noting that 

Table 7.7 shows that the two observed significant values of b{2, p) were due to an excess 

of “flatness” in the distribution. An asterisk indicates that the value is significant in that 

direction.
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sample n mean medcen variance-covariance matrix
conc. 21 183.09 183.31 147.49 66.63 18.52 15.08 -5.21 14.21

129.61 130.36 51.24 11.54 2.47 -1.81 3.09
51.23 51.299 4.99 5.85 -0.52 5.48

146.19 146.69 31.66 -0.97 15.62
14.09 14.029 0.79 -1.98

104.85 105.29 38.22

heike. 31 201.00 199.92 222.13 63.40 22.60 30.36 4.36 29.46
119.32 119.41 44.15 7.91 11.81 0.33 11.46
48.87 48.67 5.51 5.68 0.01 4.23

124.64 124.59 21.36 -0.32 11.70
14.29 14.18 1.21 1.26
81.00 81.10 79.73

heptap. 22 138.22 137.55 87.32 44.55 20.52 19.17 -0.73 15.28
125.09 124.24 73.03 15.70 14.02 -0.38 21.22
51.59 51.61 8.06 8.21 -0.29 4.96

138.27 138.14 17.16 -0.50 7.92
10.09 10.21 0.94 0.27

106.59 105.96 34.25

ALL 74 177.25 180.34 865.09 6.57 -7.74 -101.97 49.22 -240.53
123.95 124.46 71.92 15.71 49.29 -2.21 59.23
50.35 50.20 7.57 16.88 -1.84 20.31

134.81 135.61 107.14 -5.56 116.16
12.98 13.45 4.58 -14.66
95.37 95.64 204.62

Table 7.6: Lubischew’s data; descriptive statistics
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We also transformed this data using their natural logarithms, in an attempt of having 

measurements of the same order of magnitude for each variable. This transformation 

did not correct the lack of normality; moreover, it had the opposite effect, producing 

a significantly skewed distribution for the pooled data and distributions differing from 

the multivariate normal by both skewness and kurtosis for samples 1 and 2. A two-

sample TV K h p ) pv i b(2,p) pv2

concinna
heikertingeri
heptapotamica

261.344
362.052
210.750

11.1546
9.6985

13.5231

0.9587
0.5963
0.7148

40.8396
43.4283
43.3478

0.9638 *
0.9141
0.8783

ALL 1243.914 4.7106 0.3979 43.6899 0.9824 *

Table 7.7: Lubischew’s data; generalized variance and multivariate skewness and 
kurtosis

dimensional representation of the standarized data obtained using the planing method 

of Friedman and Rafksy (1981) appears in Figure 7-3. We obtained the corresponding 

1-MST with the Euclidean distance matrix calculated over the standarized data.
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Figure 7-3: Lubischew’s data: planing representation

Table 7.8 has the p- values for these data. All the tests coincide in rejecting the equality
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location tests scale tests
p-v alue p-v alue

LRT 0.000000 LRT 0.103509
MMRST 0.000000
MMMT 0.000000
MMNST 0.000000 (MMNST)2 0.002013

degl MST (29) 0.663810
degl RNG (16) 0.204100

K-W (diam) 0.000000 K-W (radial) 0.000005
NS (diam) 0.000000 NS (radial) 0.000005
Kiefer (diam) 0.001130 Kiefer (radial) 0.001418
S-S (diam) 0.010000 S-S (radial) 0.001000

Table 7.8: Lubischew’s data: parametric and multivariate ranks tests

1 -MST l-GG
samples OBS EXP OBS EXP

concinna - heikertingeri 1 17.59 19 81.96
concinna - heptapotamica 1 12.48 29 57.81

heikertingeri - heptapotamica 0 18.42 21 85.34

Table 7.9: Lubischew’s data: number of links from different samples

of locations. For the homogeneity of variance-covariance matrices, the parametric and 

the degree-1 tests accept the null hypothesis, while the rest of the nonparametric tests 

reject it. All the multivariate runs based tests 1 rejected the hypothesis of homogeneity 

with significant levels smaller than 10-6. All the graphs were obtained using Euclidean 

distances calculated over the standarized . Table 7.9 gives the observed and expected 

numbers of links from different samples; it shows the pairwise gaps existing between 

the three species.

As we saw, there is some evidence of non normality indicated by a significant value 

of the multivariate kurtosis coefficient b(2,p). Mardia (1970) has shown that the LRT 

for equality of variance-covariance matrices are sensitive to non normality and that 

such sensitivity is indicated by b(2,p), while the LRT for location alternatives are 

sensitive to significant values of the multivariate skewness coefficient. This means 

that we cannot rely strongly on the acceptance of the equality of variance covariance
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location tests scale tests
mean medcentre mean medcentre

LRT 0.995470 0.992678 LRT 0.103509 0.103509
MMRST 1.000000 1.000000
MMMT 0.998719 0.999059
MMNST 0.999988 0.999987 (MMNST)2 0.012551 0.023505

degl MST 0.095022 0.291839
degl RNG 0.250073 0.411946

K-W (diam) 0.090070 0.735333 K-W (radial) 0.986385 0.796501
NS (diam) 0.102158 0.825375 NS (radial) 0.985027 0.796501
Kiefer (diam) 0.498543 0.605994 Kiefer (radial) 0.105374 0.194204
S-S (diam) 0.250000 0.250000 S-S (radial) 0.215323 0.250000

Table 7.10: Lubischew’s data: tests with centered samples

matrices pointed out by the LRT. On the other hand, it appears that the degree-1 tests 

have a better performance for distributions with values of the kurtosis coefficient which 

are significantly above the mean of the null distribution of b(2,p) (e.g. lognormal or 

Cauchy).

As these data might be an instance of the situation exemplified in Figure 7-1 a, we 

calculated the statistics based on the radial rankings for the 1 -MST and the 1-RNG 

obtained by substracting the corresponding sample mean or mediancentre from the 

data points. The results are presented in Table 7.10. We now have that, except for 

(MMNST)2, all the tests support the hypothesis of equality of variance covariance 

matrix. The numbers of leaves for the 1-MSTs for the substracted mean and the 

mediancentre were 27 and 28; the corresponding numbers for the 1-RNGs were 11 

and 9. It should also be noted that without any exception, the tests based on runs 

accepted by far the null hypothesis for the data centered by the means and by the 

mediancentres. As these tests are conceived as tests for complete homogeneity and 

the variation due to different locations have been removed, we can conclude that 

these results also point towards accepting the null hypothesis against the alternative 

of different scales.
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NORTHERN UTOAZTECAN SOUTHERN UTOAZTECAN

TEPIMAN Papago
Northern Tepehuan

NUMIC Mono Southern Tepehuan

Comanche 
Southern Paiute TARACAHITAN Tarahumara

Guarijio

TAKIC Luiseno
Cahuilla
Serrano

Tubar
Yaqui
Mayo

Hopi CORACHOL Cora
Huichol

Tiibatulabal AZTECAN Nahuatl of 
Zacapoaxtla

Table 7.11: Utoaztecan languages

7.4 Utoaztecan Languages

In this section we give an example of the use of the correlation coefficients studied in 

Chapter 6.

The Utoaztecan (UA) languages are still spoken from Utah to El Salvador and form 

a major family of the Amerindian languages of North and Central America. UA 

languages have been an important research area in American linguistics since the arrival 

of the Spaniards. However, not much is known about the internal relationships within 

the family.

The data analyzed in this section were initially collected from a great variety of 

sources by Professor Leopoldo Valinas Coalla, of the Institute de Investigaciones 

Antropologicas in Mexico City. They consist of lexical and phonological evidence 

for 19 UA languages, whose names, groups, and subgroups appear in Table 7.11 The 

data appear in the papers by Cortina and Valinas (1989,1990). Hopi and Tiibatulabal 

are thought to be isolated languages.
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The lexical data consisted of Swadesh’s list of 100 words for each language. These 

words represent basic vocabulary which is regarded as being resistant to changes 

induced by time or cultural contacts. Some examples are I, you, woman, man, 

one, two, blood, nose, and eye. A density table, considering the cognated and non- 

cognated forms for pairs of languages was constructed from these words. The lexical 

dissimilarity between any two languages was defined as one minus their cognate 

density. This insures that the more similar in lexicon are two languages, the smaller 

their lexical dissimilarity is.

A measure of phonological dissimilarity was constructed from two tables which 

contained the reflexes of the actual phonological systems for each language into some 

of the protophonems reconstructed for the UA languages. The methodology for 

constructing such protophonems is thoroughly discussed by Arlotto (1972).

Those tables registered the changes in the observed phonems in the beginning of words 

(for 17 protophonems) and in between vowels (for 13 protophonems) found for each 

language. Our interest in this section is to examine how close the relations of similarity 

found for the phonological data resemble those observed within the lexical data for the 

same languages.

We can use cluster analysis, A'-means, multidimensional scaling and other methods 

which are adequate tools for analyzing distance matrices. However, they do not directly 

provide us with results which are susceptible of statistical inference. Also, a better 

understanding of the data might be achieved by working at a more basic level. This 

means carefully examining the pairs of languages that lie nearby each other without 

the structural interference inherent to clustering methods and also without having the 

more global vision imposed by multidimensional scaling plots.

In Figures 7-4 and 7-5 we present the configurations obtained with the planing 

algorithm for the 1 -MST of Friedman and Rafsky (1981), together with the 

corresponding 1-RNGs. These graphs reveal some features present in the dissimilarity 

matrices which may be of interest for the linguist.

Following the arguments of Lefkovitch (1984), we worked with the 1 -RNG, as it is 

the graph which would be more robust to possible deviations from non-Euclidean
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0.0 0.2

Figure 7-4: UA data: RNG for lexical data

distances. Another point in favour of this graph is that, as Toussaint (1980) remarked, 

the 1 -RNG shows a more “rounded” vision of the important distances than those 

obtained with the l-NNG or the l-MST.

We found 11 common edges in the RNGs for the phonological (25 edges) and the lexical 

(21 edges) data. Thus, Ti = 11. Using expressions (6.2) and (6.3), we found that the 

mean and standard deviation of the null distribution of T i conditioned on the observed 

RNGs were 3.07 and 1.49, respectively. So the normal approximation overwhelmingly 

signaled towards rejecting the hypothesis of no correlation.

The significance of this results lies in the fact that the phonological data were gathered 

from many sources, and thus, if there were wide divergences between them and the 

lexical evidence, we would treat them suspiciously.

We calculated Ti for 10000 permutations over the edges of the RNG corresponding 

to the phonological data. The result was identical to that obtained with the normal 

approximation. A density estimate of the permutational distribution and the normal 

approximation appear in Figure 7-6. We used a Gaussian kernel and chose the 

smoothing parameter using the optimum value proposed by Silverman (1986; §3.4). 

The prediction coefficient T2 also lead unequivocally to reject the null hypothesis.
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-0.5 0.5

Figure 7-5: UA data: RNG for phonological data

We had T2 = 223. The mean and the standard deviation, calculated according to 

expressions (6.7) and (6.8) are 399 and 37.82, respectively, thus producing a highly 

significant result. This result was the same when comparing the observed value of 

T2 with its permutational null distribution, approximated by 10000 values. A density 

estimate of this distribution and the normal approximation are shown in Figure 7-7. 

Table 7.12 presents the descriptive statistics for the permutational approximations of 

Ti and T2 based on 10000 simulations. The permutational distribution of V2 seems to 

be very close to a normal distribution, while the one of Ti could be represented better 

by a Pearson Type VI distribution.

X s b i b2 K
T i 3.0701 1.4908 0.0545 3.0946 1.5997
r 2 399.59 32.0243 0.0009 3.0191 -0.0166

Table 7.12: UA data: Skewness and Kurtosis measures for Ti and T2
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Figure 7-6: UA data: Permutational and Normal approximations for T i
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Figure 7-7: UA data: Permutational and Normal approximations for V2
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Chapter 8

Final Remarks

8.1 Conclusion

The original aim of this thesis was to provide a battery of procedures to analyze 

multivariate observations. Our motivation was based on practical situations in which 

the sample sizes are too small for the researcher to decide if the assumptions required 

by parametric tests of hypothesis hold. Therefore, the investigation started off focusing 

on the areas of nonparametric tests and their small samples approximations. We noticed 

that the mathematical machinery employed to construct test statistics has a use of its 

own in initial analysis of multivariate observations. The examples presented in the 

previous chapter illustrate this point.

Making inferences in multivariate analysis is not an easy task. Even when we could 

establish in a direct manner the validity of the procedures used, we usually would 

have to choose amongst several statistics for a particular situation. Guidelines are, 

when available, rather vague. We fully agree with Krzanowski (1988, §8.4) when he 

affirms that hypothesis testing in the multivariate case should be used in the “informal 

inference” sense also advocated by Chatfield (1985). By this we understand that 

the significance levels obtained for any practical application involving multivariate 

observations should be considered as markers of the presence of particular features 

of the data, rather than in a rigid decision-making framework.

As Sibson (1984) pointed out, multivariate procedures which are strongly based on
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normal theory and which mainly take into account the analysis of mean vectors and 

variance-covariance matrices are not always successful for describing the complex 

relations within the observations. We have surveyed a variety of strategies which 

attempt to extract information from the data in a more flexible way. We hope that 

this work will draw attention towards procedures which might be a useful alternative 

to those of classical multivariate analysis and which are a substantive addition to the 

expanding field of exploratory multivariate data analysis techniques.

In the next sections we briefly address some research lines which are related to the main 

topics covered in the previous chapters. We have already done some work in several 

of these areas, which should be continued in due course.

8.2 Planing

As we mentioned in the first chapter, planing is a mapping technique based on 

preserving a few key distances from the original configuration. It is based on a 

triangulation method due to Lee et al. (1977) and attempts to preserve the distances 

corresponding to the edges of the 1 -MST. Friedman and Rafsky (1981) introduced this 

technique and gave some examples of its performance on several multivariate data sets. 

It is easy to construct versions of the original planing procedure in order to obtain 

configurations in 1 and 3 dimensions. For the latter case, there are many arbitrary 

decisions to be made, and, as a result, the number of possible configurations increases. 

More work is necessary with these ideas in order to provide flexible algorithms. 

Siedlecki et al. (1988a) reviewed a great number of mapping techniques. The same 

authors (1988b) discussed several examples of these techniques applied to problems in 

pattern recognition. It would be interesting to compare some versions of planing with 

the mapping techniques presented by those authors.

Planing is a very fast method indeed. Friedman and Rafsky (1981) reported 

experiments which successfully dealt with thousands of multivariate points. It can 

be very useful as a tool geared towards providing a reasonable first approximation for 

projection methods which require an initial configuration.
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Another interesting possibility is to use the ET instead of the 1 -MST in order to 

construct low dimensional representations of multivariate data. This enables us to 

construct configurations which would emphasize the ordered list of distances from the 

particular individual chosen as the root of the ET.

8.3 Nonparametric Tests

While searching for nonparametric tests which could be used jointly with the 

multivariate ranking procedures we noticed that although a great variety of tests are 

available from the literature, very little is known about the small sample properties 

of many of them. For instance, for Kiefer (1959) or Scholz-Stephens (1987) K- 

sample tests some elegant asymptotic approximations are available. However, virtually 

nothing is known about their power and efficiency properties or the way they would 

react with different ranks. Whaley and Quade (1987) proposed to work with links 

defined by a threshold distance and found that the power of the runs test was improved 

by that procedure. It would be interesting to proceed in a similar way using the 

relative neighbourhood graphs presented by Urquhart (1980,1982) in order to construct 

generalizations of the univariate runs test.

We also noted that the multivariate rank procedures studied by Puri and Sen (1971) 

seem to have good power properties. For location alternatives, we observed that 

MMNST is apparently better than the MMRST and MMMT.

For scale alternatives, we only considered a test based on the squares of the normal 

scores. Of course, there are many other possibilities for constructing multivariate rank 

tests which may be more suitable in different situations. It would be useful to obtain 

more detailed guidelines in order to select amongst these tests and other possibilities 

based on Puri and Sen’s approach.
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8.4 Multivariate Ranks

In Chapter 3 we performed a very limited study comparing one of the Friedman- 

Rafsky multivariate ranking procedures with the ordering obtained by mapping the 

multivariate observations along their first principal component. We could observe that, 

although both procedures’ performance deteriorated as the dimensionality of the data 

increased, the diameter ranking based on the 1 -MST did a better job in terms of ranking 

together points which were near to each other in the multivariate space. It would be 

interesting to compare in depth the MST-based ranking procedures with other methods. 

Barnett (1976) presented a review of procedures for ordering multivariate data which 

could be used as a starting point for such a task.

8.5 Computational Geometry

Another line of work suggested by this research is in computational geometry. Three 

questions which one might think of are:

1. How well does a sequence of orthogonal minimum spanning trees approximate 

a Dirichlet Tessellation in the plane? For instance, to what extent would such an 

approximation satisfy some properties enjoyed by the DT, e.g. equiangularity as 

studied by Sibson (1978)?

2. Is it possible to approximate a /7-dimensional DT using sequences of MSTs, 

RNGs or GGs?

3. How can we extend Supowit’s (1983) fast algorithms for planar RNGs to higher 

dimensions?
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8.6 Geometrical Probability

A very interesting field which has not received much attention is the characterization 

of some statistical properties of graphs for random patterns.

Some questions of interest would concern the distributions of the number of circuits 

(or any other pattern that might be formed with a few edges), of the node degrees, and 

of the total edge length. Several papers (e.g. Bearwood et al. (1959), Roberts (1968, 

1969), Steele (1980, 1988), Bertsimas and van Ryzin (1990)) have been devoted to 

establishing estimates and bounds for the expected length of the l-MST of a set of 

N  points in p dimensions and for the asymptotic distribution of the number of leaves 

in the same graph. However, there is still much to be done about these problems. 

For instance, it would be useful to conduct an investigation about the values of the 

asymptotic constants depending only on p needed to calculate the expected length of 

the graphs. Such values could be used later as a basis for constructing uniformity tests 

for point patterns.

It is easy to obtain the moments of the distribution of the total lengths for the ETs, 

NNGs, RNGs and GGs constructed for randomly distributed points. As the formulae 

necessary to do so are based on the corresponding region of influence that defines 

each graph, it seems that generalizing these results for graphs in Urquhart’s families of 

relative neighbourhood graphs is a straightforward problem.

8.7 Spatial Statistics

Another possibility of research arising from the thesis is in using orthogonal MSTs 

or generalized relative neighbourhood graphs in order to construct tests for spatial 

randomness as those studied by Ripley (1979,1981).

Mead (1966), Sibson (1981) and Upton and Fingleton (1985, §5.4), amongst others, 

have developed some statistics for testing spatial randomness using the DT for points 

in the plane. The idea is to calculate the values of several characteristics of the DT for 

a spatial pattern and to compare them with the distributions presented by Hinde and 

Miles (1980) and Quine and Watson (1984) for planar Poisson processes.
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It would be very interesting to find out more about the distributions of similar 

characteristics for other graphs and to compare their performances with tests based 

on the DT.

8.8 Multivariate Outliers

Rohlf (1975) introduced a test for identifying multivariate outliers based on the longest 

edge of the 1 -MST constructed on the Euclidean distance of the data point. This test 

generalizes the one proposed by Dixon (1950) for the univariate case. Rohlf (1975) 

discussed an approximation to the distribution of the longest edge of the l-MST for 

multivariate Normal data. It would be interesting to enhance his results for other 

multivariate distributions, perhaps using different graphs to do so.
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