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Sum m ary

In this thesis, we develop a number of mathematical models which describe the various 

stages of solid tum our growth prior to metastasis, from the initial appearance of the 

small avascular tum our nodule, to the vascularization of the tumour via angiogenesis, 

and the subsequent vascular tum our growth. From these continuum models, we wish to 

obtain an insight into the complex mechanisms behind tumour development. In the first 

chapter, we detail the biological background and highlight the link between tumour an­

giogenesis, tum our invasion and the dissemination of the disease. Our first model looks 

a t how the growth of an avascular tum our can be modulated by the immune response 

of the host. In chapter (3), we look a t the early stages of tumour angiogenesis, and 

we present two simple models for the formation of capillary buds and the formation of 

secondary branches. In the following chapter, we examine the growth of a vascularized 

tumour, and the interaction between the invasive tumour and the newly-formed capil­

lary network. An alternative model is given in chapter (5), where a density-dependent 

diffusion equation is used as a qualitative description of solid tumour growth. We show 

the existence of travelling wave solutions with semi-infinite support for this equation. In 

chapter (6), we present a two-dimensional model of the growth of a tumour in heteroge­

neous host tissue and we analyse the numerical simulations from a surgical viewpoint. 

Finally, we present a two-dimensional model of tum our angiogenesis. By manipulating 

the model parameters, we simulate a variety of anti-angiogenesis strategies and analyse 

the effect on the pattern of capillary growth.
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Chapter 1

Introduction

Any one cell in the body, which is capable of cell division, has the potential to  become 

malignant [Ruddon, (1987)] and to proceed through various stages to  eventually form 

a neoplasm or tumour. Neoplasia is the name used to describe a collection of diseases 

characterised by the uncontrolled, uncoordinated and excessive proliferation of cells.

Broadly speaking, tumours fall into two categories, benign or malignant. It is impor­

tan t to distinguish between these two types when deciding upon appropriate treatm ent. 

Table (1.1) summarises the basic differences between benign and malignant tumours 

[Ruddon, (1987)].

B en ig n  T u m o u rs M alig n an t T u m o u rs

Grow by expansion, do not invade. Invade and destroy adjacent normal tissue.

Usually resemble normal tissue. Anaplastic/Undifferentiated.

Grow slowly over several years. Grow rapidly over weeks/months.

Remain localised. Metastasise through blood/lymph system.

Table 1.1: Differences between benign and malignant tumours.

Whilst benign tumours can be life threatening if the growth is particularly large 

or near to essential organs, it is malignant tumours (or cancers) th a t pose the most 

serious threat to health. The most common type of malignant tumours are carcinomas 

(cancer of the epithelia), which are solid tumours of the internal and external surfaces 

of tissues and organs. Lung cancer, colorectal cancer, prostate cancer and breast cancer 

account for over 50% of all reported cancers in England and Wales [OPCS, (1989)].
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In the majority of patients suffering from carcinomas, the disease has already spread 

(metastasised) before detection, resulting in multiple secondary tumours (metastases) 

which may occur in sites far removed from the primary cancer. Hence the disease cannot 

be cured by treating the primary tumour alone. Wide-spread metastases can be difficult 

to treat, can cause a number of unpleasant symptoms and often prove to be fatal. (The 

estimated annual death rate is 1 in 341 for men and 1 in 387 for women [OPCS, (1993)]). 

Thus, it is highly desirable to prevent metastasis from occurring and so it is im portant 

to  investigate the mechanisms by which the cancer spreads before the secondary tumours 

have developed. In the first instance, this means understanding the different stages of 

solid tum our growth, from the initial appearance of the neoplasm, up to the point of 

metastases formation, and secondly, to identify the different ways by which the tum our 

growth can be, a t the very least, contained, or ideally, removed altogether.

1.1 The stages of solid tumour growth

1 .1 .1  E a r ly  tu m o u r  grow th  and  th e  re sp o n se  o f  th e  im m u n e  s y s te m

The growth of most solid tumours takes place in two stages [Folkman, (1985)]. In the 

first stage, the tum our is avascular, tha t is, it does not have a network of capillary 

blood vessels supplying it with nutrients. During this avascular stage, the tum our may 

be considered as being roughly spherical in shape and consists of a central necrotic core 

surrounded by a layer of quiescent cells which in turn is surrounded by a thin layer of 

proliferating cells [Sutherland, (1988)]. At this stage, the tum our is likely to be too 

small (l-3mm in diameter) to be detectable or may not produce any symptoms in the 

host. Thus, if left to grow unimpeded, the tum our may pass into the the next stage 

of growth (the vascular phase), and may subsequently metastasise. If, however, the 

immune system of the host recognises the abnormality in the nascent tumour, then the 

growth may be regulated by the immune response. This response may be sufficient to 

eradicate the tum our completely.

The immune cells, B-lymphocytes and T-lymphocytes (or B-cells and T-cells), are 

the key players in the immune response of invertebrate animals [Marrack & Kappler, 

(1986)]. Both B-cells and T-cells are derived from the bone marrow, but the T-cells 

undergo further development in the thymus gland. B-cells and T-cells circulate in the 

blood and lymph system but are usually concentrated in the lymph nodes (and also

1.1. THE STAGES OF SOLID TUMOUR GROWTH 2
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the spleen in humans). These lymphocytes can recognise certain cell surface or free 

antigens, which are the molecules associated with foreign material (such as a virus or 

bacteria) or are produced by defective cells. Different viruses, for example, will produce 

different antigens and the ability of the host to  defend against a virus depends upon the 

ability of the lymphocytes to  recognise specific antigens. The lymphocytes also have 

the ability to distinguish between self and non-self, i.e. between cells evolving from the 

host or from an external source.

The response of the immune system to a virus or a malignant cell is initiated by the 

appearance of antigen in the host. The response of the B-cells is known as the Clonal 

Selection Theory. The antigen binds to a specific receptor on the B-cell membrane, 

which Marrack & Kappler, (1986) describe as analogous to a key fitting a lock. The 

B-cells start to produce clones which secrete antibodies, molecules similar in structure 

to the B-cell receptors to which the antigen was originally bound. This is known as a 

humoral immune response, and the B-cells and the antibodies are collectively known 

as immunoglobulins. The antibodies bind to  the antigens and mark it for destruction 

by'other immune cells such as macrophages or natural killer cells.

T-cells also respond to antigen by clonally dividing but will then differentiate into 

several kinds of T-cell.

• C y to to x ic  T -cells. These cells bind to antigen on the surface of an infected cell 

or virus, and kill it by disrupting the cell membrane (lysis).

• S u p p re sso r T -cells. These have the im portant role of regulating the immune 

response by inhibiting excessive immune reactions.

• H e lp e r  T -cells. These cells bind to antigen on the surface of the B-cells and 

release hormones which help the B-cells to proliferate.

• M em o ry  T -cells. Cytotoxic T-cells can become memory cells, which continue 

to  circulate in the blood and lymph system, long after the immune reaction has 

taken place. They can rapidly respond to any further appearance of antigen of 

the same kind. Therefore, after exposure to a small amount of antigen, the body 

can build up immunity to specific antigens, and hence, the use of vaccinations.

T-cells do not differentiate into cells tha t produce antibodies and so are only involved 

in the cell-mediated immune responses as described above.

1.1. THE STAGES OF SOLID TUMOUR GROWTH 3
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R E C E P T O R

VIRUS

B-CELL T-CELL

A N T IG E N  V /
J I

C L O N IN G  CELLS

H E L P E R  T-CELLS

A N T IB O D IE S

S U P P R E S S O R  T-CELL,

C Y T O T O X IC  T-C ELL

M E M O R Y  T-CELLM E M O R Y  B-CELL

NA TU R A L  KILLER CELLS

Figure 1-1: Schematic diagram o f the interactions o f the T-lymphocytes and Id­

ly mphocytes in response to an infection by a virus.
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The proteins th a t mark every cell as ‘foreign’ or ‘self’ are called MHC-encoded 

proteins (Major Histocompatibility Complex encoded proteins). These are encoded by 

genes in a specific region of the host DNA. There are millions of variants for the MHC 

encoding, such tha t two unrelated individuals are highly unlikely to have the same MHC- 

encoded proteins, (hence the occurrence of donor transplant rejections). Presumably, 

it is more difficult for the immune system to defend against neoplastic growth than 

external foreign invaders such as viruses or bacteria, since the tumour cells and the 

adjacent normal cells will have the same or similar proteins [Klein, (1980)]. Hence, the 

immune cells may not recognise the potential abnormality in the developing tum our and 

so the immune response may not be sufficient to produce an effect on the subsequent 

growth of the tumour. Tumours th a t induce a strong immune response are said to  be 

immunogenic. Such tumours tend to  be induced (by a carcinogenic virus, for example) 

rather than occur spontaneously [MacSween h  Whaley, (1992)], [Prehn, (1994)].

During the avascular stage of growth, the tumour is small enough (l-3mm in diame­

ter) to  take in nutrients and expel waste products by diffusion alone. However diffusion 

is not sufficient to support any continued growth of the tumour. This is because the 

tum our consumes nutrients a t a rate proportional to its volume whereas the supply of 

nutrients is delivered at a rate proportional to  its surface area. The avascular tum our 

can sometimes become dormant and there is an indefinite period for which growth stops.

The inadequacy of diffusion as a means of transportation of vital nutrients has been 

dem onstrated, for example, by LaBarbera h  Vogel, (1982) and Edelstein-Keshet, (1988). 

By applying Fick’s first law of diffusion across a wall (e.g of a cell) of thickness d x , the 

diffusive flux of nutrient across the surface is given by

dC
J  = D 7 7 'ax

where C  is the concentration of nutrient, D  is the diffusion coefficient and S  is the 

surface area [Jones h  Sleeman, (1983)], [LaBarbera & Vogel, (1982)]. Suppose then we 

have a spherical tumour, with radius r, volume V  =  47rr3/3  and surface area S  — A ' k t 2 . 

Suppose further th a t the concentration of a given substance (e.g. oxygen) at the tum our 

surface is c0 and th a t the tum our uses up the substance completely so th a t at r =  0, 

c(0,f) =  0 (cf. Greenspan, (1976)), where c is the concentration of the substance. The

1.1. THE STAGES OF SOLID TUMOUR GROWTH 5
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to tal diffusive flux across the tumour surface will be approximately,

J  =  D S — =  4 irDc0r, 
r

where the gradient of the nutrient has been approximated by c0/ r ,  i.e. the concentration 

difference per unit distance [Edelstein-Keshet, (1988)]. The rate at which the substance 

is depleted will be proportional to the tum our’s volume. If r  is a fixed constant repre­

senting the time it takes for the substance to be used up completely then

47rr3
rate a t which substance used = ------ .

3r

Hence,
rate of supply 3Dc0r

rate used r 2

In order to meet the demands of the tum our the rate of supply of the substance must 

be greater or equal to the rate at which the substance is used, i.e. the ratio must be 

greater than 1. Thus a minimum requirement is approximately

r 2
C° =  JD t '

So the external substance concentration must be, a t the very least, proportional to 

the radius of the tumour squared. This is unrealistic if the radius of the tum our is 

large. Hence, as the tumour grows, cells a t the centre of the tum our become starved 

of nutrients and begin to die [Durand, (1990)], [Greenspan, (1976)]. Dormancy will 

occur when the necrosis a t the centre of the tumour and the proliferation of the outer 

layer is in equilibrium, and the tumour may remain in this dormant state for months or 

even years [Paweletz & Knierim, (1989)]. The tumour can overcome this deficiency by 

acquiring a blood supply which can deliver nutrients directly into the tum our and can 

transport waste products away.

1 .1 .2  T h e  p ro cess  o f  a n g io g en es is

During the second stage of growth, the tumour becomes vascular, th a t is, it is penetrated 

by capillary blood vessels. A vascularized tumour can grow exponentially and there 

is the possibility of both invasion and metastasis [Folkman, (1985)], [Gimbrone et al.,

1.1. THE STAGES OF SOLID TUMOUR GROWTH 6
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(1974)], [Muthukkaruppan et al., (1982)]. Vascularization is realized by a process known 

as angiogenesis, tha t is, the formation of blood vessels. Angiogenesis occurs during 

physiological processes such as embryonic development, or during pathological processes 

such as wound healing, rheumatoid disease and of course tumour growth (see references 

in Paweletz & Knierim, (1989)).

The lining of many vessels such as veins and small lymphatic vessels is formed from 

a regular monolayer of endothelial cells (EC). The EC lie upon a continuous basement 

membrane (or basal lamina) and are in close contact with their neighbours. Studies 

have shown th a t EC play a crucial role in angiogenesis, and in fact it has been shown 

in vitro, th a t EC can construct capillary networks unaided by other cell types [Folkman 

& Haudenschild, (1980)].

Angiogenesis is initiated by the release of diffusible chemicals from the tumour, 

collectively known as tum our angiogenic factors (TAF), though it is not known what 

triggers this activity. There are two types of angiogenic factors, those th a t act directly 

on the EC and those th a t induce other cells into producing factors which act on the EC 

[Folkman & Haudenschild, (1980)], [Folkman & Klagsbrun, (1987)]. Angiogenic factors 

induce one or more of the following activities in the EC:

1. the secretion of proteases and collagenases by the EC which degrade the basal 

lamina and the extracellular matrix.

2. the migration of EC towards the chemotactic stimulus.

3. the proliferation of EC.

For successful tum our vascularization, all three events must be carefully orchestrated. 

In recent years several angiogenic factors have been identified. A summary of these 

factors can be found in Folkman k, Klagsbrun, (1987). The suggestion is th a t several 

angiogenic factors act together, either directly or indirectly, to promote angiogenesis. 

We now describe the above activities in more detail.

The tum our releases tum our angiogenic factors which diffuse into the surrounding 

tissue. The first reaction to this stimulus is tha t the EC in the neighbouring blood vessels 

and nearest to the chemical source start to alter their structure. The cells thicken and 

finger-like protrusions can be observed on the abluminal surface [Ausprunk & Folkman, 

(1977)] , [Paweletz & Knierim, (1989)]. Cell-associated proteases degrade the basement

1.1. THE STAGES OF SOLID TUMOUR GROWTH 7
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membrane so tha t the EC loosen their contacts with their neighbours. Stimulated by the 

TAF the EC begin to migrate [Zetter, (1980)]. The EC accumulate in the region where 

the concentration of angiogenic factors has first reached a threshold level [Paweletz & 

Knierim, (1989)]. The vessel wall begins to bulge as EC pile up to  form sprouts. The 

basement membrane does not contain gaps large enough to allow EC passage into the 

extracellular matrix beyond the vessel wall. Therefore the EC secrete proteases and 

collagenases which dissolve the basal lamina and the surrounding extracellular m atrix 

enabling the capillary sprout to grow towards the tumour [Kalebic et al.y (1983)].

The capillary sprouts begin to grow in length by recruiting EC from the parent 

vessel. At some distance from the tip of the sprout EC begin to proliferate. There is 

evidence th a t migration and mitosis are independent events and th a t separate angiogenic 

factors are required to stimulate these activities of EC [Fenselau & Mello, (1976)], 

[Paweletz &; Knierim, (1989)], [Zetter, (1980)]. The first stages of angiogenesis can be 

performed without cell proliferation [Sholley et al., (1984)], with mitosis occurring after 

the capillary sprouts have started to  grow. However, proliferation is essential for the 

completion of angiogenesis as gaps will develop in the parent vessel resulting in abnormal 

permeability [Ausprunk & Folkman, (1977)].

The EC in the outgrowing sprouts then s ta rt to reassociate with each other. The de­

velopment of intracellular lumen, where vacuoles appear within the EC, and intercellular 

lumen, where vacuoles appear between the outgrowing sprouts, leads to the formation of 

tube-like structures [Konerding et al., (1992)]. Branches form in a similar way whereby 

an intracellular vacuole becomes Y or T shaped before fusing with the primary lumen 

[Folkman & Haudenschild, (1980)]. Initially the sprouts are parallel with each other 

but tend towards each other as they elongate. Neighbouring sprouts will eventually 

fuse together a t their tips to form loops (anastomoses). This signals the beginning of 

circulation of blood. It is essential tha t there is a flow of blood through the tum our 

since an effective system for transporting waste products away from the tum our is vital. 

As the vessels mature, the EC resynthesize a basal lamina in order to restore continuity. 

The looped vessels may bud or loops may fuse with other loops until a complex network 

of vessels develops. Finally, this network penetrates the tumour, providing it with the 

circulatory system and the supply of nutrients tha t it requires for growth. In order to 

support continued growth, the tum our’s vascular system persistently remodels itself. 

Hence angiogenesis is an on-going process, continuing indefinitely until the tum our is

1.1. THE STAGES OF SOLID TUMOUR GROWTH 8
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removed or killed, or until the host dies.

1 .1 .3  T h e  v a scu lar  p h a se  o f  tu m o u r  grow th: T h e  co n seq u en ces  o f  tu ­

m o u r  a n g io g e n e s is

If the angiogenic process is successful, the tumour will then enter the vascular phase 

of growth. The neovasculature will penetrate the tumour and the necrotic core may 

temporarily disappear [Paweletz & Knierim, (1989)]. The sudden rise in metabolites 

throughout the tum our gives rise to an increase in tum our cell proliferation and a rapid 

increase in tum our volume [Muthukkaruppan et al., (1982)], [Ruddon, (1987)]. This 

in itself could prove to be life threatening by compromising the function of adjacent 

organs. An avascular tum our can take months or years to grow a few millimetres in 

diameter, while a vascular tum our can achieve a diameter of a few centimetres in a 

m atter of weeks.

The tum our vasculature is inferior to other capillary networks [Denekamp, (1984)], 

[Jain, (1994)], and tha t, coupled with the enormous build up of pressure caused by 

the unregulated tum our growth, leads to the collapse of the vasculature a t the centre 

of the tum our. If oxygen levels fall, a tumour cell can become hypoxic, whereby the 

cell is no longer active [Denekamp, (1984)]. A hypoxic cell can be reactivated and 

function normally if the nutrient levels increase, but will eventually die if deprived of 

oxygen for long periods. Unfortunately, the internal architecture of the tumour and its 

inferior vasculature can lead to  the failure of current forms of cancer therapy. After a 

dose of radiotherapy, only the outer proliferating layer of tumour cells is destroyed, and 

the inner layer of hypoxic cells (which is radioresistant), can become re-oxygenated, 

resulting in the regrowth of the tum our [Brown &; Giaccia, (1994)], [Kennedy et al., 

(1980)]. Furthermore, the poor circulation of blood through the tumour may lead 

to  an inadequate distribution of chemotherapeutic drugs [Denekamp, (1984)], [Jain, 

(1994)]. In general, hypoxia has been regarded as a major problem in cancer therapy. 

However, recent research has suggested th a t the hypoxic portion of the tumour should 

be increased by attacking the highly vulnerable vasculature [Denekamp, (1984)], [Harris 

et al., (1996)], and then preferentially killing the hypoxic cells by the use of bioreductive 

cytotoxic drugs [Brown & Giaccia, (1994)], [Harris et al., (1996)], [Kennedy et al., 

(1980)]. (These are drugs which are harmless in regions of high oxygen concentration,

1.1. THE STAGES OF SOLID TUMOUR GROWTH 9
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but become activated in hypoxic areas). Such a strategy could be used in conjunction 

with conventional therapies, or on its own where destruction of normal healthy tissue 

must be kept at a minimum.

As well as the rapid increase in tumour growth and the appearance of hypoxic 

regions, the vascularization of a tumour can have other serious consequences. It has 

been suggested th a t angiogenesis is a precursor to a more malignant phase of the tumour 

growth [Blood & Zetter, (1990)], [Folkman, (1985)], [Gimbrone et al., (1974)], [Paweletz 

&: Knierim, (1989)] in tha t the vascularization of a tum our promotes the propagation of 

the more aggressively growing tumour cells [Ruddon, (1987)]. These malignant tumour 

cells actively invade and destroy the adjacent host tissue. At this stage, the malignant 

carcinoma loses its quasi-spherical shape and the outer edge of the tumour is covered 

with finger-like protrusions, resulting from the local invasion of the host tissue [Darling 

& Tarin, (1990)], [MacSween & Whaley, (1992)]. The irregular shape of such a tumour 

can cause complications during surgical excision of a cancer, since the tumour may only 

be partially visible and the surgeon is required to remove tissue beyond the observed 

tum our boundary in order to prevent regrowth.

Finally, the most im portant and somewhat devastating consequence of tum our vas­

cularization is the increase in the risk of metastasis [Ellis & Fidler, (1995)], [McCulloch 

et al., (1995)], [Norton, (1995)]. The immature tumour vasculature is easily invaded by 

the actively mobile tum our cells, and hence the disease can be spread around the body 

via the blood system. The outcome of the metastatic process varies extensively, since 

the formation of metastases is dependent upon a variety of different properties of the 

host and the tum our [Fidler, (1978)], [Nicolson, (1988)] as well as the potential of the 

tum our cells to  survive in the circulation. However, there is a direct correlation between 

the intensity of the tum our vasculature and the metastatic potential of the tum our [Ellis 

& Fidler, (1995)], [McCulloch et al., (1995)], [Norton, (1995)]. Indeed, the density of 

the tum our vasculature can now be used as a prognostic factor [Frank et a l, (1995)].

1.2 Experim ental models of tum our growth and 

angiogenesis

Various techniques have been developed in order to examine the cascade of events tha t 

lead to neovascularization and the subsequent growth of the tumour. In this section,
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we will briefly describe some of the main techniques.

M u ltic e llu la r  sp h ero id s

The simplest experimental model of solid tumours are multicellular spheroids (MCS). 

These are three dimensional, multicellular aggregates, which are grown in tissue culture 

(for a review see Durand, (1990)). Multicellular spheroid models are used to study the 

growth kinetics of small populations of cells and the regrowth kinetics of the population 

in response to cytotoxic treatm ents. MCS models have similar growth kinetics to  tum our 

nodules and they develop microregions of quiescent cells in much the same way as solid 

tum ours do. Furthermore, they have simple geometry and are easy to manipulate. 

However, it is difficult to compare MCS models directly with in vivo tum ours, since 

they do not incorporate the influence of the host on the tum our growth.

In  vitro  b io a ssa y s

It is known th a t angiogenesis is initiated by the release of tum our angiogenic factors by 

the tum our [Paweletz & Knierim, (1989)]. In order to identify these angiogenic factors, 

and to  study their action, in vitro bioassays were developed which could examine EC 

migration [Zetter, (1980)], EC proliferation [Fenselau & Mello, (1976)] and degradation 

of the basement membrane by EC [Kalebic et al., (1983)]. Typically, these assays 

involved cloning EC in a culture containing the test substance. To test for cell motility, 

the EC are put onto coverslips coated with gold, which is ingested as the EC migrate, 

leaving measurable tracks [Weiss, (1992)], [Zetter, (1980)]. Cell proliferation can be 

assessed by culturing the cells in the presence of test material and counting the cells at 

a fixed time [Fenselau & Mello, (1976)]. The Boyden chamber is a system which is widely 

used to examine chemotaxis, where two compartments, containing the culture medium, 

are separated by a filter with the test material added to the lower compartment [Weiss, 

(1992)]. The migration of the cells is assessed by counting the number of cells on the 

underside of the filter. Kalebic et a l, (1983) used a similar method, where collagen was 

placed in the top compartment with a chemotactic substance in the lower com partm ent, 

in order to examine the degradation of basement membrane collagen by migrating EC.

The use of these assays has led to several angiogenic factors being identified [Folkman 

& Klagsbrun, (1987)]. For example, EC react chemotactically to fibronectin [Bowersox
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&; Sorgente, (1982)], [Ungari et al., (1985)] or heparin [Terranova et al., (1985)], [Ungari 

et al., (1985)], and display an increased growth rate in response to fibroblast growth 

factors (FGF) [Folkman k  Klagsbrun, (1987)].

The cloning of EC in culture can additionally be used as a model for angiogenesis 

in vitro. Folkman k  Haudenschild, (1980) reported tha t cloned capillary EC cultured 

in tumour-conditioned medium formed networks in vitro, which resembled capillaries 

observed in vivo. Such a method is useful for investigating the formation of capillary 

branches and anastomoses.

In  vivo an d  a n im a l m o d e ls

W hilst in vitro experiments are relatively easy to deploy, they cannot simulate the 

situation within a whole organism. Studies on human tumours have previously been 

hampered by a lack of in vivo systems [Folkman, (1985)], [Schirrmacher, (1985)]. One 

of the earliest in vivo assays was the transparent chamber, developed by Sandison in 

1928 (see references in Folkman, (1985)). This consisted of two metal plates fitted over 

each other to  create a chamber, into which a tum our is implanted [Folkman, (1985)], 

[Weiss, (1992)]. Originally, the chamber was used in the ear of a rabbit, though later it 

was adapted for use in the hamster cheek pouch [Goodall et al., (1965)].

Another useful method for the study of tum our angiogenesis is the corneal pocket 

test system [Gimbrone et al., (1974)]. This method involves the implantation of a tu ­

mour fragment into the eye, (for example, a rabbit eye [Ausprunk k  Folkman, (1977)], 

[Gimbrone et al., (1974)], or a mouse eye [Muthukkaruppan et al., (1982)]), a few mil­

limetres from the edge of the cornea and the vascular bed. New capillaries grow towards 

the tum our implant and are examined with a slit lamp stereoscope.

One of the most simple and commonly used assay is the chick chorioallantoic mem­

brane or CAM system [Folkman, (1985)], [Weiss, (1992)]. The CAM is separated from 

the egg shell membrane and exposed through a small window made in the shell. Test 

material is placed on the CAM, and examined a few days later for angiogenic activity. 

Using this system, a large number of samples can be tested relatively quickly.

Whilst the above test systems can be used to study tum our angiogenesis, cancer 

metastasis can be investigated using animal models such as the human tum our xeno- 

graph model (where human tumour cells are implanted into an immunosuppressed ani­

mal), or rodent tumours transplanted into a syngenic host [Schirrmacher, (1985)]. Both
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models have the advantage of being more holistic methods to study tum our growth, but 

the disadvantage of not truly reflecting the growth of a spontaneous human tum our.

1.3 The use o f m athem atical models to  study tum our 

growth

In this thesis, the mathematical models are derived with two key aims in mind. Firstly, 

we wish to obtain a better understanding into the complex mechanisms behind solid 

tum our development. Secondly, we wish to identify the potential mechanisms by which 

the tumour growth can be impeded with a view to preventing metastases.

In chapter (2), we develop a simple model of the early stages of solid tum our growth 

and how it is modulated by a cell-mediated immune response, and we determine several 

factors which influence the growth (or demise) of the tumour, such as the maximum 

avascular size and the immunogenicity of the tumour. In the subsequent chapters, we 

concentrate on what we consider to be the two key areas of tum our development;

1. The vascularization of the tumour via angiogenesis.

2. The invasion of the local tissue by the tumour.

A primary tum our is often vascularized, tha t is, it has its own blood supply and mi­

crocirculation. A vascularized tumour has two im portant advantages over an avascular 

tumour:

• The direct supply of nutrients into the tumour results in a rapid increase in growth, 

which compromises adjacent tissue.

•  The tumour can shed cells into the blood stream which may consequently lead to 

metastases.

In chapter (3), we look at the very early stages of angiogenesis, and, in particular, the 

formation of capillary buds and secondary branches. Both of these processes are not 

widely understood and hence, this is an area worthy of further investigation. In chapter 

(7), we develop a two dimensional model of tumour angiogenesis, which captures the 

process of anastomosis (loop formation). Again, it is not known exactly how anastomosis 

occurs, but the formation of capillary loops is essential if blood is to circulate through the

1.3. MATHEMATICAL MODELS 13



C h a p t e r  1

tumour. Folkman, (1995) has proposed anti-angiogenesis as a potential strategy for the 

treatm ent of cancer. M athematical models can help us to understand the mechanisms 

behind angiogenesis and to identify the different ways by which the angiogenic process 

can be interrupted. Hence, we use the model of chapter (7) to test a variety of anti- 

angiogenesis strategies by suitable manipulation of the model parameters and we analyse 

the effect on the resultant solution.

Tumour invasion is also a major problem in the treatm ent of cancer for several 

reasons.

• As the tum our cells invade they destroy normal tissue, which can cause complica­

tions for the patient, particularly if the tum our is adjacent to vital organs.

• A highly invasive tum our has no distinct edge which makes it difficult to remove 

surgically. Again, this is particularly serious if the tum our has infiltrated vital 

tissue, e.g. the brain.

• An invasive tum our can actively invade blood vessels and/or the lymph system 

and consequently metastasise.

M athematical models can be used to explore the different ways in which the invasive 

properties of a tum our can be manipulated with a view to preventing metastasis.

In chapter (4), we develop a simple model for the growth of a vascularized tumour, 

with an emphasis on the interactions between the nascent invasive tum our and its 

vasculature. From this model, we estimate the speed a t which the tum our invades the 

surrounding tissue. An alternative model of vascular tum our growth is given in chapter 

(5). In this chapter, we assume th a t tumour cell motility, tum our cell proliferation and 

tum our cell death are all events which are dependent upon the density of the tumour 

cell population, and changes in the model parameters related to these events correspond 

to  changes in the behaviour of a tumour as it transforms from an in situ carcinoma to  a 

more malignant invasive phenotype. In chapter (6), we present a two dimensional model 

of a solid tum our growing in heterogeneous host tissue and show how the structure of 

the host tissue affects the ability of the tum our to invade, and thus also affects the 

m etastatic potential of the tumour. Finally, in chapter (8), we make various concluding 

remarks, suggest ways by which the models could be improved and highlight the key 

areas of solid tum our growth which have potential for future research for mathematicians 

and oncologists alike.
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Chapter 2

Early avascular tum our growth  

and cell-m ediated immune 

response

There are several mechanisms by which normal cell growth is regulated (e.g. apoptosis, 

contact inhibition, cell cycle control). Neoplastic tissue growth is, in general, described 

as uncontrolled and uncoordinated with adjacent normal tissue. A tumour can arise 

from a single cell which has escaped normal genetic control mechanisms after being 

exposed to some carcinogenic agent (e.g. a virus, radiation), and transformed into a 

malignant phenotype. After proliferation has occurred, the mutation will be reproduced 

in the daughter cells, resulting in the growth of a small cancerous nodule. If left to 

grow unimpeded, the tum our may eventually become vascularized and even metastasise. 

If, however, at an early stage, the host recognises the tum our cells as abnormal, the 

subsequent immune response can contain the growth or even eradicate the tum our 

altogether. A typical immune response is cell-mediated, whereby so-called effector cells 

(e.g. T-lymphocytes, natural killer cells, macrophages) bind with the tumour cells and 

subsequently kill them.

In this chapter, we develop a simple model of the early stage of solid avascular 

tum our growth and examine how it may be modulated by the reaction of the immune 

system. We identify several factors which determine whether the immune response is 

sufficient to produce a cancer free state, such as the maximum potential size of the 

avascular tum our, the extent to  which the effector cells successfully induce lysis in the
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tum our cells and the immunogenicity of the tumour. In the next section, we will derive 

the model equation and look at the stability of the cancer free steady state. In section 

(2.2), we briefly describe the numerical scheme used throughout this thesis, and present 

some numerical simulations for different values of the parameters relating to the immune 

response to  the tumour.

2.1 The m athem atical model

This model examines the development of a small avascular tumour and the simultaneous 

cell-mediated immune response. It is an extension of the model of growth mediated 

immune response in one space dimension by Adam, (1993). During the early stages of 

growth, the tum our may be considered roughly spherical in shape, so we take our model 

tum our to be radially symmetric. Let r be the distance from the centre of the tum our 

and w(r, t) be the tumour cell density per unit volume. Conservation of mass gives us

£  +  V J  =  /(„ ) ,

where J  is the flux of tumour cells and f ( u ) is the net production or loss term. At this 

early stage of growth, we assume the flux is simply given by

r\
J  = - D V u =  - D ^ e r, 

or

where e r is the outward unit normal in the radial direction and D  is the constant 

diffusion coefficient. f(u )  will contain terms describing the proliferation of the tum our 

cells and the reaction of the immune system to the tumour. We assume logistic type 

growth and hence our model equation, in spherical polar coordinates, is

du D d (  0d u \  ,97 = ̂ ( r^J+s“(1-«) + 5W’ ^
where S (u ) is a function describing the reaction of the immune system to the tum our 

(to be defined later), s is the mitotic growth rate and k is the carrying capacity of

the environment. To close the system, we impose the following boundary and initial

conditions:
A

r e [ 0 ,T ] ,  ^ ( 0 , 0  =  u (L ,t) = 0, u (r,0) =  u0(r), (2.1.2)
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where u0(r) is a sufficiently smooth monotonic decreasing function which models a tu ­

mour tha t has not developed a necrotic core at this stage. The boundary condition a t 

r =  0 arises naturally from the geometry and symmetry assumption of the system. In 

Adam, (1993), the reference length L  represented the typical organ size. The boundary 

condition, u (L ,t)  =  0, is biologically incorrect for this interpretation of L , as it implies 

th a t the boundary o f the organ is hostile to the tumour such th a t no tum our cells can 

survive a t the periphery. Tumours may sometimes be contained within an organ when­

ever adjacent anatomical structures are impermeable or resistant to compression (for 

example, cartilage), in which case a zero flux boundary condition is more appropriate. 

However, it is well known tha t, during the avascular stage, the growth of the tum our is 

self-limiting because the nutrient supply is not sufficient to  support continued growth 

of the tum our [Paweletz & Knierim, (1989)]. Hence, we take L to be the maximum 

avascular tum our size where there is an equilibrium at the boundary between tum our 

proliferation and ischaemic death, i.e. u (L ,t)  =  0. An avascular tum our can become 

dorm ant when it is a few millimetres in diameter (L = 0(m m )) though the critical size 

will depend upon the distance of the tum our from the nearest nutrient supply.

We will now derive the function iS'(w) from first principles. Let E 0 denote free effector 

cells, U tum our cells, E  effector cell-tumour cell complex and P  dead tum our cells. The 

cell-mediated immune reaction is governed by two processes;

1. the binding of a tum our cell with an effector cell to form a complex, and

2. the cytotoxic action of the effector cell which induces lysis in the tum our cell. 

Schematically, these processes can be represented as follows;

k2

(1) E 0 +  U ^  E , (2) E  -  E 0 +  P. (2.1.3)

k - i

Note tha t here, process (1) is reversible since the effector cells can sometimes release 

the tum our cells without killing them (cf. Adam, (1993) where it is assumed th a t the 

formation of a tum our cell-effector cell complex always results in a kill). Furthermore, 

the binding rate will depend upon the effector cells’ ability to recognise the tum our 

cells as abnormal. Using the Law of Mass Action, which states th a t when two or more
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(2.1.4)

-*,[£o][tf] +  * -![£ ] +  **[£], (2.1.5)

-  k-i[E] -  * j[£], (2 .1.6)

H E ] , (2.1.7)

reactants are involved in a reaction step, the rate of reaction is proportional to the 

product of their densities, we obtain the following system of ODEs:

m
dt 

d[E0] 
dt

rf[£] 
dt

d[p] 
dt

where [ ] denotes the density per unit volume and k_i, k i, k2 are proportionality 

constants. We can uncouple equation (2.1.7) from the rest of the system since P  does 

not appear in the other equations. Note that

d[Eo\ ^  d[£] _  Q _|_ jjgij — Et , E t  a constant.
dt dt

This comes from the assumption tha t no effector cells are lost during this process. 

Hence, we have

=  - k i E r f f l  +  (**[#] +  * - ,)[£ ] . (2.1.8)

If we assume th a t lysis occurs much faster than the other processes [Adam, (1993)], 

[Lefever & Horsthemke, (1979)], [Prigogine & Lefever, (1980)], then the quasi-steady 

state assumption is [E] =  0. Using this to eliminate E  from equation (2.1.8), we obtain

d[U] - k ^ E r l U ]
dt (&_ i +  k2

Let A = k2E r, which is the maximum working rate, (i.e. all effector cells working at 
A/

rate k 2) and B  =   , which is the ratio between the rate a t which the effector
k i

cells become free and the rate of binding. Then

Au
S(u) =

B + u

This term is qualitatively the same as in Adam, (1993) but is interpreted differently. 

Note tha t a large value of the parameter A  indicates tha t the effector cells are more 

effective in killing the tumour cells and if B  is small (ki large), then the effector cells are 

reacting quickly to the tumour cells (i.e. they are quick to recognise the abnormality
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A

A
2 B = b B = b-

B = b.

620

Figure 2-1: Plot o f the immune reaction term —S(u) =
Au

for fixed A and different
B -F u

values o f B. When u = B, the immune reaction is at half its maximum rate, so that the 

smaller the value o f B, the quicker the effector cells are in recognising the tumour cells 

as abnormal. Hence B is a reciprocal measure o f the immunogenicity o f the tumour.

and bind to the tumour cells). A tumour that produces a strong immune reaction is said 

to be immunogenic. Most immunogenic tumours are induced rather than spontaneous 

and are more common in animal models, but comparatively rare in human tumours 

[MacSween & Whaley, (1992)], [Prehn, (1994)]. We can interpret B  as a reciprocal 

measure of the immunogenicity of the tumour, such that a small value of B  indicates 

a highly immunogenic tumour. Figure (2-1) shows how the behaviour of S(u) changes 

for different values of B.

We now introduce dimensionless parameters into the system by making the following 

substitutions;

a =  —  b = —
SK ’ K

(2.1.9)

This change in parameters allows us to focus upon the model parameters relating to
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the immune reaction (c.f. Adam, (1993)). Dropping the *’s for notational convenience, 

(2.1.1) and (2.1.2) become

du d d (  0d u \  . au .
~di “  r* V d r )  + U  ̂ b + u ' (2.1.10)

r € [ 0,l] ,  =  « (1,<) =  0, u ( r ,0) =  u0(r), (2.1.11)

The spatially homogeneous steady state solutions are given by

f(u )  = u( 1 - u ) -  — — =  0.
0 -+- u

We note th a t the trivial solution u = 0 is a solution for all positive a, 6. We will 

henceforth refer to this steady state as the cancer free state.

The non-trivial or cancerous steady state solution is given by

i.e. solutions of the quadratic equation

u2 +  (6 -  l)u  +  (a -  b) = 0. (2.1.12)

For b > 1, equation (2.1.12) has one positive real solution,

u, =  +  1 ^ / ( 6 - l ) a - 4(0 - 6), (2.1.13)

provided a < b, (see figure (2-2)). Given the non-dimensionalization (2.1.9) , b > 1

implies tha t the effector cells are working a t half their maximum rate when u is a t the 

carrying capacity of the environment. Hence, the effector cells have difficultly in recog­

nising the tum our cells as abnormal even if the population is large (a non-immunogenic 

tumour).

For b < 1, if a E (6, ac) where ac = ^  > there are two non-trivial real solutions

of (2.1.12). For a < b, we have one solution of (2.1.12) and for a > a c, there are no real 

solutions. Note tha t, the larger the value of a, the more efficient the effector cells are 

in inducing lysis in the tum our cells. A summary of the different solutions of (2.1.12)
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1

o. b0
a

Figure 2-2: When b > 1 (i.e. the tumour cell population needs to be large in order to 

provoke an effective response by the effector cells) and a < b, equation (2.1.12) has one 

positive real solution. These parameter values represent a weakly immunogenic tumour.

for b < 1 is shown in figure (2-3).

Now consider the general problem,

du d d (  2d u \
(2-L i4)

d VL
r e  [0,1], ^ ( 0 , i )  =  w(l,*) =  0, u(r,0) =  u0(r), (2.1.15)

possessing the trivial steady state solution u* =  0. Linearising about this trivial steady 

state, we obtain the system

£  =  K  (2.1.16)dt r2 dr V dr
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1

0 bo
a

Figure 2-3: When 6 < 1 (i.e. the effector cells respond at low tumour cell populations), 

equation (2.1.12) has one positive real solution when a < b and two positive real solution
,  ^ . . ( l + b)2for a € (o,ac), where ac =  -   — .

r\

r e [ 0 , l ) ,  - ^ ( 0 , t) = u ( l ,t)  = 0, u(r,0) =  u0{r). (2.1.17)

The spatially-dependent steady states of the linear problem are given implicitly by 
Ou

setting —  =  0 in (2.1.16) and the spatially-dependent steady state solutions are linear
C/1

combinations of the eigenfunctions  ̂sin(ra7rr), n = 1 ,2 ,3 ,.... which also satisfy the 

boundary conditions. The general solution is of the form

/ x /x xsin(n7rr)
m(M ) =  z .  an exp(A„t)-----------L ' Tn

where an can be determined by Fourier series expansion. Substituting this into equation
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(2.1.16), we find tha t the An are given by

An =  / ' ( i f )  — d(n7r)2.

The dominant mode and largest An is given by n = 1. So u* =  0 is stable provided 

Ai < 0, i.e.

4  =  < d.
7r2

(I'll
Now consider f (u )  = u (l — u) —   with a, b such th a t f(u )  = 0 has one positive

b +  u
solution us, i.e. b > a. Then /'(()) > 0 and the cancer free state is unstable provided

b — a
d < dc =

a7T"

Recall tha t, d =  -^rr. Hence there is a critical domain size sL l

_ I Da L c = ir
s(b — a) ’

such th a t when L > L c the cancer free state is unstable and hence the system evolves to 

a non homogeneous cancerous state. (Note that, if the domain size was fixed, then the 

cancer free state would be destabilised by a decrease in the diffusion coefficient below 

the critical level D c =  sL?dc or by a decrease in the tum our cell doubling time such 

tha t s > sc = D /d cL 2).
(I'll

Now consider f { u ) =  u( 1 — u) — j-— with a, b such th a t f(u )  = 0 has two positive

solutions,

«i,J =  =F \ \ l ( l  + b y - A a ,

i.e. b < 1 and a £ (6,a c). Thus, / '(0 )  < 0, / '( ^ i )  > 0, / ' ( u2) < 0. From the 

linear analysis, we see the spatially homogeneous steady states u = 0 and u2 are stable 

provided b < 1 and a £ (6, ac). Hence, we have bistability in the parameter region 

a £ (6,a c). Bistability has been observed in other models of tum our immunity [Adam, 

(1993)], [Lefever & Horsthemke, (1979)] and other ecological systems such as the spruce 

budworm models of [Ben-Yu et al., (1986)], [Ben-Yu et al., (1991)] and [Ludwig et al., 

(1978)]. We can draw a further analogy between tum our cell-effector cell interaction 

models and predator prey models. In the spruce budworm models cited above, a critical
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domain size L c, could be obtained, such th a t a domain of size L > L c would support 

an outbreak of the insect population and for L < L c the budworm population was 

eradicated. Lefever & Horsthemke, (1979) highlighted the importance of fluctuating 

environmental factors in the growth or extinction of populations. In the next section, 

we will identify the factors im portant for a tumour ’outbreak’.

2.2 Num erical simulations

We solved equation (2.1.10) with boundary conditions (2.1.11) using a parabolic PDE 

solver available from the n a g  library which integrates using the method of lines and 

G ear’s method.

N o te  on  n u m er ica l m e th o d

The method of lines approximates a system of partial differential equations with a system 

of time dependent ordinary differential equations by replacing the spatial derivatives 

with finite differences.

Suppose we have N P D E  PD E’s. Discretise the space interval into J  + 1 mesh 

points, for example [0,1] can be discretised as follows;

x = ( x 0, x 1 ,...., x j) , X j = j Ax, j  =  0 ,1 ,.., J, Ax =  i .

Then replace the spatial derivatives with finite differences (e.g. three point differences) 

to obtain («/+ 1) x (N P D E )  coupled ODEs.

Now consider the heat equation

du d 2u 
dt d x 2’

Using the method of lines, we obtain the ODE system

2.2. NUMERICAL SIMULATIONS 24



C h a p t e r  2

where

A =
1 to 1 0 0 .. 0

1 - 2 1 0 .. 0

1 0 1 - 2 1 .. 0
(Ax)2 •• ••

0 0 0 1 - 2

It can be shown th a t A  has eigenvalues between 0 and
- 4

(A x)‘
■oo, as Ax 0

(stiffness). If the ODE system is solved using Euler’s method (forward difference in 

time), we have
,i»+i _  ,i"

=  A u n, t = n A t,
A t

with the stability condition

A t <
(A x):

where un is the vector u evaluated at the nth time step. Thus, by trying to increase 

the accuracy of the solution, i.e. by refining the mesh, we require a very small time step 

in order to maintain stability. If, however the ODE system is solved using backward 

Euler, for example, i.e.

un+1 -  A M u"+1 =  un,

then stability is unconditional. Hence, when using the method of lines to approximate a 

reaction-diffusion system, it is advisable to use an implicit method (e.g. G ear’s method) 

to  solve the ODE system, in order to avoid problems with stability.

In all simulations, we took the initial conditions to be

u0{r) =  <
' exp(—r 2) — exp(—0.01)

1 — exp(—0.01)

I o,

for 0 < r < 0 .1, 

otherwise,

and fixed D  and s such tha t the maximum avascular size, X, is determined by our 

choice of d. We estimated D  to be in the range 10-9 — 10- 1°cm2s-1 [Chaplain h  S tuart, 

(1993)], [Sherratt & Murray, (1990)], [Stokes et a l, (1991)] and s to be in the range

0.04 —0.056h-1 [Sherratt & Murray, (1990)], [Stokes & Lauffenburger, (1991)], such tha t

2.2. NUMERICAL SIMULATIONS 25



C h a p t e r  2

0.5

0.45

0.4

0.35

0.3

3 0.25

|  t increasing-0.2

0.15

0.1

0.05

0.6 0.7 0.80.1 0.2 0.3 0.4 0.5
r

0.9

Figure 2-4: Numerical solution o f (2.1.10) with a = 0.5, b =  1.5 and d = 0.04 (with 

D /s  = 10~4cm2) such that L > Lc. Linear analysis predicts that the cancer free state 

is unstable, so that the system evolves to an inhomogeneous (cancerous) steady state. 

Plots taken at time t = 10 — 50. The equilibrium state, which is 5mm in radius, is 

reached in about 52 days.

in each simulation we took — =  10- 4cm2.
s

We ran the simulations with different values of a and b to see whether the persistence 

or rejection of the tumour was dependent upon the immune reaction rates as well as the 

size of the domain. First, we considered values of a ,6 as in figure (2-2), i.e. b > 1 and 

a < b. The scenario here is that the effector cells are not very successful in identifying 

the tumour cells as abnormal, i.e. we have a tumour with a low immunogenicity. With 

a =  0.5 and b =  1.5, the critical domain size is Lc =  0.0385cm. Choosing d = 0.04, we 

have L c < L = 0.05cm and hence the linear analysis predicts that the cancer free state 

is unstable. The numerical solution of the equation (2.1.10) for these parameters shows 

that the system evolves to a cancerous state (figure (2-4)). Hence, the immune response 

was insufficient to contain the tumour. Using the non-dimensionalization (2.1.9), the
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Figure 2-5: Numerical solution o f (2.1.10) with a =  0.5, 6 =  1.5 and d =  1 (with 

D /s  =  10~4cm2) such that L < Lc. Linear analysis predicts that the cancer free state 

is stable and hence the tumour regresses within a couple o f hours under the influence 

of the host defence system. Plots taken at time t = 0.02 — 0.08.

tumour reaches an equilibrium state of 5mm in radius in about 52 days. However, if we 

choose d = 1, then we have Lc > L =  0.01cm. In this case, the linear analysis predicts 

the cancer free state to be stable. Figure (2-5) shows that, by reducing the size of the 

domain in this way, (i.e. by reducing the maximum potential tumour equilibrium size), 

the effector cells are able to eradicate the tumour. In dimensional terms, the immune 

reaction takes a few hours.

Next, we ran the simulations with parameters a and b as in figure (2-3) but with 

a < b, i.e. there is one positive solution to equation (2.1.12). In this case, the effector 

cells react and bind quickly to the tumour cells but the maximum working rate is quite 

low. With a =  0.25 and b = 0.5, the critical domain size is L c =  0.0444cm. Choosing 

d = 0.02, we have L c < L = 0.07cm. Again, the cancer free steady state is predicted to 

be unstable and figure (2-6) shows that the tumour evolves to a cancerous steady state 

despite the intervention of the effector cells. Using the non-dimensionalization (2.1.9),
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Figure 2-6: Numerical solution o f (2.1.10) with a = 0.25, b = 0.5 and d = 0.02 (with 

D /s  = 10~4cm2) such that L > Lc. Linear analysis predicts that the cancer free state 

is unstable. The immune reaction is not sufficient to eradicate the tumour and so the 

growth persists. Plots taken at time t = 20 — 32. An equilibrium size o f 7mm is reached 

within 33 days.

the tumour reaches a size of 7mm in radius in about 33 days. Taking d = 1, we obtain

Lc > L = 0.01cm so that the cancer free state is expected to be stable. The numerical

solution of the system with these parameters shows that the tumour is eliminated within

a few hours by the immune response (see figure (2-7)).

Finally, we choose parameters a and 6 to be as in figure (2-3), but with a £ {b,ac),

ac =  i j - t j l  . in this case, the effector cells quickly interact with the tumour cells and 
4

induce lysis at an effective rate. This is the best case scenario. Linear analysis predicts 

that the system has multiple spatially homogeneous steady states such that the cancer 

free state and the cancerous state u2 are both stable, with an intermediate unstable 

state u\. Taking a = 0.53 and b = 0.5 and solving (2.1.10) with d =  0.02 such tha t 

L =  0.07cm, we obtain the solution as shown in figure (2-8). Here, the immune response 

is successful in removing the tumour. If however we increase L further, i.e. reduce d
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Figure 2-7: Numerical solution o f (2.1.10) with a = 0.25, b = 0.5 and d =  1 (with 

D /s = 10~4cm2) such that L < Lc. Linear analysis predicts that the cancer free state 

is stable and hence the tumour is removed by the immune system. Plots taken at time 

t = 0.01 — 0.05. The immune reaction takes just a few hours.

such that d = 10-4 , L =  1, then the system evolves to a cancerous state as seen in figure 

(2-9). So despite the increased efficiency of the immune reaction, there is still the risk 

of a tumour outbreak if the size of the domain is sufficiently large to sustain the tumour 

outbreak.

Comparing the numerical simulations where there is bistability with the case where 

there is only one spatially homogeneous stable state, we notice several differences. The 

steady state solution obtained in figure (2-9), is more compact than the other cancerous 

states obtained in figures (2-4) and (2-6), and the nascent tumour has not reached its 

maximum avascular size (i.e. it has not reached the right-hand boundary). Furthermore, 

the time scales on which the tumour regresses (or grows to equilibrium) are different. In 

the bistability case, the tumour has reached an equilibrium of l-2mm in radius in about 

50 hours, whereas in the other cases where there is a tumour outbreak, the tumours 

take one or two months to reach 5-7mm in radius. Additionally, in the simulation shown
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Figure 2-8: Numerical solution o f (2.1.10) with a =  0.53, 6 =  0.5 and d = 0.02 (with 

D /s  = 10~4cm2). Linear analysis predicts that the (spatially homogeneous) cancer free 

state and the cancerous state u2 are both stable. In this case, the system evolves to the 

cancer free state within 1 or 2 days. Plots taken at time t = 1.2 — 1.6.

in figure (2-8), the immune reaction takes days to eliminate the tumour, compared to a 

few hours in the other simulations. This difference could be due to the two competing 

effects, i.e. the domain size is large enough to support a tumour outgrowth but the 

immune reaction is also sufficient to eradicate the tumour.

2.3 D iscussion

The numerical simulations given here indicate that the growth of a tumour during the 

early stages of development is dependent upon a number of important factors. Of pri­

mary importance is the maximum avascular size of tumour (L ) that can be supported 

by the environment. Any change in the supply of nutrients into the neighbourhood of 

the tumour can change this maximal size and can make the difference between whether 

the tumour grows to its avascular equilibrium or whether it is eradicated by the effector
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Figure 2-9: Numerical solution o f (2.1.10) with a =  0.53, 6 =  0.5 and d =  10-4 (with 

D /s = 10~4cm2) such that L > Lc- Linear analysis predicts that the (spatially ho­

mogeneous) cancer free state and the cancerous state u2 are both stable. In this case, 

the system evolves to a cancerous state. Note that the tumour is more compact which 

is indicative o f a less malignant tumour or that the immune system has contained the 

tumour more efficiently. Plots taken at time t = 1.4 — 2. The tumour has taken 50 

hours to establish an equilibrium size o f about l-2mm in radius.

cells. Equivalently, a change in the motility or proliferation rate of the tumour can 

also affect whether or not a tumour persists or dies. These factors can change as the 

tumour grows and becomes increasingly malignant. Furthermore, the host’s defence 

system must react quickly and effectively if the tumour is to be contained. This in­

volves recognising the abnormality in the neoplastic tissue and successfully inducing 

lysis in the tumour cells. In experimental animal models, tumours induced by the use 

of carcinogenic agents are highly immunogenic and produce an immune response when 

transplanted into another host. Furthermore, the host will be protected from any sub­

sequent challenge with the same tumour type [Prehn, (1994)], [Ruddon, (1987)]. On the 

other hand, tumours arising spontaneously in animals appear to be non-immunogenic
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and do not immunise syngenic hosts. Whilst it is difficult to extrapolate the results ob­

tained from transplanted tumours to  spontaneous human cancers, there is some evidence 

th a t virally induced tumours can be used to vaccinate against some tum our growths (for 

example, individuals infected with Epstein-Barr virus do not get lymphoma [Ruddon, 

(1987)]). However, the immune system may fail to modulate the growth of many un­

transplanted tumours. This may be because spontaneously arising tumours are initially 

slow growing, so tha t only a very small quantity of antigen is produced [Prehn, (1994)] 

or evolve in such a way as to avoid the host’s immune response [Ruddon, (1987)]. Nev­

ertheless, advances are being made in the development of cancer ’vaccines’ [Lineham 

et al., (1996)].

We also note that, the maximum avascular size of the tum our in this model varies 

between l-7mm, which is in good agreement with experimental observations [Gimbrone 

et al., (1974)], [Paweletz & Knierim, (1989)]. Such a small tum our could persist unde­

tected for many months or even years before passing on to the next stage of growth.
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Chapter 3

Capillary sprout formation and 

secondary branching in tum our  

angiogenesis

Angiogenesis is a precursor to a more malignant phase of tum our growth, wherein the 

tum our cells are aggressively invading the surrounding tissue. The result of angiogenesis 

is the rapid, uncontrolled growth of the tum our and an increased risk of the disease 

spreading via the blood system. In this chapter, we look a t the early stages of the 

angiogenic process, namely, the formation of capillary buds and secondary branches. 

In particular, we focus upon the potential role th a t haptotaxis, i.e motion directed by 

gradients of adhesion, may play in the early stages of angiogenesis.

Initially the EC are uniformly distributed along the walls of the parent vessel (e.g 

limbus). The release of diffusible substances from the tumour triggers an angiogenic 

response in the EC. The EC become mobile and form clusters of cells which are the 

beginning of the capillary buds. These buds will eventually sprout and will form the 

primary capillary vessels in the tum our’s vascular system. There is clear experimental 

evidence tha t the mechanism by which the cells move involves haptotaxis, i.e. the cells 

move up an adhesive gradient, especially in the early stages. Studies have shown tha t 

compounds such as fibronectin are secreted by the EC during the angiogenic process 

[Clark et al., (1982)a], [Paweletz Sz Knierim, (1989)] and it is known th a t fibronectin 

increases cell to  cell and cell to matrix adhesiveness [Clark et al., (1982)b] , [Yamada &; 

Olden, (1978)] . It can be reasonably supposed therefore, tha t fibronectin aids angio-

3 3
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genesis by directing migration [Clark et al., (1982)a], [Clark et al., (1982)b], [Paweletz 

& Knierim, (1989)], [Ungari et al., (1985)] . Chemotaxis is also certainly involved in 

angiogenesis [Chaplain & Stuart, (1993)], but in this chapter, we will focus our attention 

on the potential role of haptotaxis.

The TAF which diffuse from the tum our create a chemical gradient. In this model, 

we assume th a t initially the EC secrete fibronectin in response to the TAF and hence 

move up an adhesive gradient of their own creation. Carter, (1965) suggested tha t 

a chemotactic substance may act indirectly by altering the surface of a cell and so 

increasing its adhesiveness. Fibronectin can bind to cell membranes by means of a 

specific fibronectin receptor thereby anchoring the cell to  the ECM [Ruddon, (1987)]. 

An adhesive gradient will be created since the surface nearest the chemical stimulus will 

be altered.

In the following section we develop a mathematical model for the initial formation 

of capillary sprouts, i.e. the budding process mentioned previously, and present the 

results of numerical simulations. In the second half of this chapter, the modelling of the 

branching process is considered and numerical simulations are presented.

3.1 A m athem atical m odel o f initial bud form ation

We initially focus on the early stages of angiogenesis and consider the EC within the 

parent vessel, e.g. the limbus. Let n (x ,f) be the endothelial cell density per unit 

area and c(x, t) the concentration of fibronectin. We assume th a t there are only two 

contributions to cell flux at this early stage of the angiogenic process—random motion 

and haptotaxis. Thus the total cell flux J n is given by

— ^diffusion ^hapto taxis’

where Jdiffusiori =  —dn(n)V n  and Jhaptotaxis =  a{c)nV c, and where dn, a are the 

diffusion and haptotaxis coefficients respectively. For simplicity we will assume tha t 

these are both constant. If N  is the measure of the total number of cells per unit area 

and rN  is the linear mitotic growth rate, then the net cell production can be modelled 

using a logistic-type growth rate and is given by rn (N  — n ).

We assume th a t the fibronectin is simply secreted by the EC and diffuses locally
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into the surrounding area. The flux of the chemical fibronectin is given by J c =  —dcVc, 

where dc is the diffusion coefficient of the chemical, again assumed to be constant. It is

assumed th a t the production of fibronectin by the cells is given by the Michaelis-Menten
S Tl

production term —y an(  ̂ decay term is —7 c, where S, j3, 7 are positive

constants.

Angiogenic activity is confined to a small localised region of the parent vessel wall 

nearest the tum our [Paweletz & Knierim, (1989)] . Initially, the vessel wall simply 

consists of a monolayer of EC. After the release of the TAF, some of the EC loosen 

their contacts with their neighbours and try to penetrate the basement membrane. 

Subsequently several EC follow the primary EC and pile up behind each other, creating 

a bulge in the wall of the capillary. Hence we need only consider the model in one spatial 

dimension in order to focus attention on clusters of cells rather than the overall shape 

of the buds. We assume tha t a region of increased cell density indicates the initiation

of a cell cluster leading to a capillary bud. Figure (3-1) is a schematic representation of

the capillary budding and branching processes.

Conservation of mass gives us

nt -I- V .Jn =  f ( n ,  c), 

ct +  V .JC =  g(n ,c),

where f ,g  contain the appropriate source and sink terms as detailed in the previous 

paragraphs. Hence the system of equations in one spatial dimension is

nt =  drJim -  a{ncx)x +  rre(iV -  n); (3.1.1)

diffusion haptotaxis mitosis

Sn
Ci — dccxx -(- — ------ - —

(fi + n)
diffusion ' *—^  decay

production

During angiogenesis, EC in the parent vessel actively move towards the tum our 

[Ausprunk Sz Folkman, (1977)]. Experimental evidence [Muthukkaruppan et al., (1982)] 

clearly shows th a t only a finite region of the parent vessel is involved in producing buds 

and hence we will take our spatial domain D  to be finite. Given this geometry it is not 

unreasonable to trea t the system as closed and impose zero flux boundary conditions

7  c (3.1.2)
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Figure 3-1: A schematic diagram showing the initiation o f a capillary bud, the formation 

o f a capillary sprout and the growth o f a secondary branch.
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as follows:

dnnx — ancx = 0 , cx =  0 on x 6 d D ,

i.e. nx = cx =  0 on x  6 dD.

We introduce dimensionless variables into the model in the following manner:

drs
„ _  7* . _  n * _  7£
X) t — ,71 — /o’ c ’s p b

N_
(3

dn _ aS r/3 
1 '4 ’ idc

where s is a scale factor with reference to the size of the domain [Myerscough &; Murray, 

(1992)]. After non-dimensionalizing and dropping the asterisks for notational conve­

nience, the equations become

nt =  dnxx -  a(ncx)x +  srn (N  -  n), (3.1.3)

.71+1
— c (3.1.4)

nx — cx = 0, x = 0, 1. (3.1.5)

These equations model the initial response of EC to the angiogenic stimulus, i.e. the 

secretion of fibronectin, proliferation and clustering.

3 .1 .1  L in ear s ta b ility  a n a ly sis

The following analysis is standard, but we include it here for completeness. We now 

look for spatially homogeneous steady states of the above system which are easily seen 

to be

(71, c) =  (0,0) and (n,c) = (N , -).
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The trivial state is not biologically relevant. We thus linearize about the non-triviai 

steady state in the usual manner by substituting

n = N  -f u and c N
N  + 1

where | u |, | v | are small, into the above equations to obtain the linearized system:

ut = duxx — aN vxx — s rN u , 

vt =  vxx + s

JX X

U
[{n  4- i y

—  V

We look for solutions of the form (u ,v ) a  exp(<r< +  ikx), and hence we obtain tl|e 

quadratic dispersion relation

<r2 +  cr[k2(l 4* d) +  s +  s rN ] 4- k2 Jd(k2 4- 5) 4- srN  —
saN

(N  4- 1 )2J
+  s2rN  =  0. (3.1.

The dispersion relation will have two roots and these will either be real or complex 

conjugates.

In the absence of any spatial variation, we insist th a t the homogeneous steady sta1e 

be linearly stable, so tha t any instability will be diffusion driven. So by putting k 2 = 0  

in the dispersion relation and solving for <7, we obtain

<7! =  —r N s , <72 =  —s.

Since all parameters are positive, and <72 < 0 and so the spatially homogeneoi^ 

steady state is linearly stable. We require R e(a(k2)) > 0, for some fc, for instability an} 

spatial heterogeneity. When cr =  0, we have

dk4 +  k 2 ds +  rN s  —
aN s

(N  4- 1)2J
4- rns~ — 0,

giving

2 aN s  — (ds 4- rN s)(N  +  l ) 2 1
=  2d(N  +  l ) 2 2d

ds 4* r N s  —
aN s

( iV + 1 )2
— A drN s2

(3.1.9

Experimental studies have shown that there is no significant increase in the ra t

3.1. A MATHEMATICAL MODEL OF INITIAL BUD FORMATION 3;



C h a p t e r  3

of EC mitosis during the first stages of angiogenesis [Ausprunk & Folkman, (1977)]. 

Mitosis occurs only after the first sprouts have formed. It has been postulated tha t 

mitosis is a secondary reaction to angiogenesis resulting from abnormal permeability of 

the host vessels. Normal EC have a long half life and cell division is rare, occurring only 

when repair and remodelling of large wounds is essential [Paweletz &; Knierim, (1989)]. 

It has also been shown tha t fibronectin even inhibits cell proliferation to some extent 

[Bowersox h  Sorgente, (1982)]. We will therefore consider the case where there is no 

mitosis and where there is mitosis (at some low background level) separately.

N o m itosis (r = 0 )

Consider the case where there is no mitosis i.e. r =  0, then the system is similar to  the 

model as examined in Myerscough h  Murray, (1992). Then from equation (3.1.9) we 

have the two roots
'  0

k2 = aN s  , o
-  s = ki.

I <2(iV+l)2 ” '“2'

Hence the dispersion relation passes through the origin, which is to be expected when 

there is no proliferation of cells. By differentiating the dispersion relation with respect 

to k 2 and with r = 0 we obtain

^ p r(^ 2(l +  d) +  s 4- 2a) -f <r(l +  d) +  2dk2 + ds — ^  =  0.

Setting a  =  0,
da aN s ds +  2 dk2
dk2 (5 +  P ( d + l ) ) ( A  +  l )2 S +  fc2( d + l ) ’

So, —— > 0 a t the origin provided a^ s _  5 > q \ e £2 ^  q maximum 
dk2 ^ d(N  + 1)2 2

occurs a t —— =  0, i.e. at k2M where 
dk2

an N
aM( 1 +  d) +  2dk2M +  ds -  =  0-

But if the maximum value is a = 0 then k 2M =  0 as the dispersion relation passes 

through the origin as shown in figure (3-2). Hence ac =  ^  " ls the critical value

of a. So provided a > ac we will have instability.
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Figure 3-2: A typical dispersion relation where' r = 0 and a > ac so that there is 

instability for 0 < k 2 < k\.

M itosis included  (r  > 0)

In this model we will include some mitosis, but ;at a reduced rate in order to account 

for the effect of fibronectin on the proliferation oof EC [Bowersox & Sorgente, (1982)]. 

With r > 0, the critical value of k2, k2c, occurs whien equation (3.1.9) has only one root,

i.e.
/  r, N  o \  2

(3 . 1 . 10)ds +  rN s  — t t t — — 4 d rN s2 =  0,
(A +  l )2

k2 = —. —  ds
2d \ ( N  +  l ) 2 dS

(3.1.11)

So the critical value of a, ac, is given by equation i(3.1.10). A typical dispersion is shown

in figure (3-3). Again when a > ac the system wiill be unstable for sufficiently small r.
d(N  + l ) 2Also as r —► 0, k2 —*• 0 and ac ———— — whiclh agrees with our earlier observations.
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Figure 3-3: A typical dispersion relation with r > 0 and a = ac so that o has only one 

root krc. In this case we are on the border o f stability/instability.

3 .1 .2  E st im a tio n  o f  param eters

Wherever possible experimental data was used to estimate the parameter values d, a, s, 

r and N . For simplicity we took 5, N  =  1.

M ichae lis-M en ten  p a ra m e te r  /3

We assume that the secretion of fibronectin by the EC is governed by Michaelis-Menten 

kinetics. Fibronectin molecules inside the EC form a complex by combining with recep­

tors on the cell membrane. They are then carried across the membrane and deposited
Sn

outside the cell. Upon derivation of the Michaelis-Menten term — , we observe that
p +  n

/3 represents the ratio between the rate at which the receptors become empty and the 

rate at which the receptors become occupied (see chapter 2 section (2.1)). Hence a 

reasonable estimate is /3 = 1.
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D iffusion  coefficient d

Sherratt k  Murray, (1990) used estimated diffusion coefficients in their model of epi­

dermal wound healing. For the diffusion of the cells they gave values of 3 x 10- 9cm2s-1 , 

3.5 x  10-locm2s_1 and 6.9 x 10- 11cm2s-1 , and for the diffusion of the chemical in question 

they had 3.1 x 10- 7cm2s-1 and 5.9 x 10- 6cm2s-1 . This gives a range for d of 9.6 x 10_1 

to 1.2 x 10“5. In their study of individual endothelial cells, Stokes et al., (1991) cal­

culated a random motility coefficient of (7.1 ±  2.7) x 10- 9cm2s-1 for endothelial cells 

migrating in a culture containing an angiogenic factor aFG F  [Folkman k  Klagsbrun, 

(1987)], heparin and fetal calf serum. Taking the diffusion of the chemical as above, 

we obtain the range 1.4 x 10-2 to 7.5 x 10-4 for d. In the numerical simulations which 

follow, we chose a value for d of 10~3, which lies in the middle of the range.

R a te  o f  M ito sis  r

For the rate of mitosis we took the range 0.04h_1 (estimated in Sherratt & Murray, 

(1990)) to 0.056h-1 (estimated in Stokes k  Lauffenburger, (1991) ). However according 

to Bowersox k  Sorgente, (1982) fibronectin inhibits cell proliferation by 23%. Hence we 

have a range of 0.0308h_1 to 0.043h_1 for cell mitosis. We chose a value of 0.034, again 

in the middle of the range. Yamada k  Olden, (1978) reported on the turnover rate of cell 

surface fibronectin. Fibronectin has a generation time of 18 hours with half remaining 

after 36 hours. This gives a half life of 18 hours and so the rate of decay is given by 

7 =  jgln2 ~  0.0385/i-1. Hence we took the mitotic parameter r =  0°00384g ^  0.88.

H a p to ta x is  coefficient a

The Boyden chamber can be used to analyse cell migration. Using this method, Ungari 

et al., (1985) found tha t fibronectin mobilized EC at a dose between 5fig/m l to 20^ / m l .  

Bowersox k  Sorgente, (1982) found tha t the maximum response by EC was a t 100/zg/ml 

and Terranova et al., (1985) found tha t doses of fibronectin between 10-8M and 10-1°M 

stimulated cell migration. However, the data  from this method fails to give complete 

information about the haptotaxis coefficient. Therefore we ran several numerical simu­

lations and found th a t the best results were obtained with a value of a = 3.8. Hence, 

using the values of 7 and dc which we found previously, this leads to a dimensional value 

of 1.46 x 10_7cm2s“ 1M" 1 for the haptotactic coefficient.
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Size o f  d o m a in  s

The param eter value s represents the finite region of the capillary vessel th a t is affected 

by the TAF. s will depend on the distance between the tumour and the capillary. As a 

scale reference, we will take s =  1 when the tumour is at a maximum distance from the 

capillary but still close enough for angiogenesis to take place [Gimbrone et al., (1974)]. 

From the summary of corneal implants as reported in Balding &; McElwain, (1985), 

the distance between the tum our and the host vessel should be in the range 0.8mm to 

2.5mm in order to achieve an angiogenic response. Gimbrone et al., (1974) observed th a t 

capillary sprouts did not grow until the tumour implant was placed within 2.5±0.5mm 

from the limbal vessels. Therefore we estimate our domain size param eter s to be in 

the range 1 to 3. By increasing the size of the domain we can obtain a larger variety of 

pattern.

3 .1 .3  N u m e r ic a l s im u la tio n s

The non-dimensionalized system of equations was solved using a routine available from 

the n a g  library which integrates parabolic partial differential equations via the method 

of lines and G ear’s method. The parameter values used were as specified in the previous 

section and we imposed zero flux boundary conditions. Initial conditions were taken 

to be small random perturbations about the steady state (1,0.5). As predicted by the 

linear stability analysis the system evolved into a spatially inhomogeneous solution (see 

figures (3-4) and (3-5)). The peaks in the cell density show th a t the cells have moved 

from their evenly distributed positions and have clustered together to form buds. These 

buds are assumed to sprout towards the tumour and become the primary capillary 

vessels in the vasculature of the tumour. Our simulation shows th a t two clusters form 

initially, which is consistent with observations made by M uthukkaruppan et aL, (1982) 

in their experiments with mouse cornea. The distribution of the chemical fibronectin 

and the distribution of the cells are similar. Thus the cells have moved towards areas 

of high chemical concentration. As fibronectin is closely associated with cell adhesion, 

we assume th a t the main mechanism by which the cells move is via haptotaxis. The 

maxima in the chemical concentration coincide with the intensity of the TAF diffusing 

from the tum our i.e. the point of initial contact between the parent vessel and the TAF 

is the area where the first sprouts will be observed.

3.1. A MATHEMATICAL MODEL OF INITIAL BUD FORMATION 4 3



C h a p t e r  3

1.06

1.04

1.02

c

0.98

0.96
0.1 0.2 0.3 0.7 0.8 0.90.4 0.5

x
0.6

Figure 3-4: The density pattern o f the endothelial cells after being perturbed from an 

initially homogeneous steady state. Two peaks appear indicating that two buds have 

formed. Parameter values are d =  10-3, a =  3.8, s =  3, r =  0.88 and N  =  1.

This model illustrates the principle of local activation and lateral inhibition [Oster 

& Murray, (1989)] . Once a peak in fibronectin concentration has been established, EC 

will actively move up the adhesive gradient and hence the concentration of chemical 

in th a t area will increase. Even more cells will move into tha t particular area and so 

on. Zones of inhibition will be created as cells move away from areas of low chemical 

concentration. These are indicated by the minima in figures (3-4) and (3-5). This 

highlights the importance of domain size in producing a pattern. If the domain were 

too small, the cells would become saturated with fibronectin and would not be able to 

detect gradients in the chemical/adhesive sites. Hence the zones of inhibition would 

disappear and so would the pattern.

In the next section we focus upon EC within the capillary sprout in order to investi­

gate the secondary branching process. Once again the role of haptotaxis in this process 

is focussed upon.
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Figure 3-5: The distribution of fibronectin after being perturbed about an initially 

homogeneous steady state. The pattern matches that o f the endothelial cells, indicating 

that the cells have moved towards the areas o f high fibronectin concentration. Parameter 

values are d =  10-3, a =  3.8, s =  3, r = 0.88 and N  =  1.

3.2 T he branching o f capillary sprouts

We now consider events concerned with the EC after the formation of capillary buds. 

Having broken through the basement membrane, the buds elongate and form sprouts 

by recruiting EC from the parent vessel. As the sprouts grow towards the tumour, sec­

ondary side branching occurs, whereby the sprouts themselves bud in a similar manner 

to those which developed from the parent vessel (see figure (3-1)).

There are two separate processes involved in the creation of branching structures 

such as capillary networks, namely

1. the growth of branches,

2. the splitting of one branch into two.

As the resultant patterns depend upon the timing and the location of a splitting branch,
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there are often significant differences between branching structures so th a t each one 

is distinct. Balding & McElwain, (1985) observed several similarities between fungal 

growth and neovascularization and subsequently based their model for capillary growth 

on the model of fungal colonies by Edelstein, (1982).

Similar structures to those observed in angiogenesis are known to  arise during the 

growth and development of bryozoans and fungi. Growth in bryozoans occurs a t the 

tips of the branches and the cells lying inside a growing tip secrete cuticle as the branch 

grows. The new cuticle is inserted directly into the existing cuticle, which spreads out 

carrying cells and adhesive sites with it. The older cuticle is pushed outwards and 

calcifies forming the outer layer of the branch. The direction of branch growth depends 

upon the location of the cells within the tip and the splitting of a cell cluster into two 

coincides with the splitting of one branch into two. Hence the splitting of a cell cluster 

is the initial event which determines branching.

The model of bryozoan growth proposed by Goldwasser et al., (1989) may be adapted 

to describe other branching structures, in particular as the basis for a model mechanism 

describing the branching of capillary sprouts during angiogenesis. The growing capillary 

sprout tip is analogous to the growing tip of a bryozoan in th a t branching occurs when 

a cell cluster splits into two [Konerding et al., (1992)]. From experimental observations 

it is known tha t during angiogenesis the EC secrete a matrix consisting of fibronectin, 

laminin and collagen IV [Paweletz & Knierim, (1989)] and the movement of tie  EC is 

determined, at least in part, by the distribution of adhesive sites on this matrix. We 

can attribute the loss of matrix to the reformation of a basement membrane during the 

m aturation of the newly formed capillary sprouts. It is known th a t EC move up and 

down the new capillary sprout [Paweletz & Knierim, (1989)] and this motion cannot 

be explained either by directed cell motion alone, such as chemotaxis, or by random 

motility. However, it is known th a t convection plays a major role in the transport of 

tissue [Murray, (1989)] and we assume tha t as the matrix spreads out the EC are to 

some extent passively carried with it. As proliferation occurs near the tip of the capillary 

sprout [Ausprunk & Folkman, (1977)], [Paweletz & Knierim, (1989)], we do not need to 

include mitosis in the model, since we focus attention on the latter part of the sprout.
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3 .2 .1  M a th e m a t ic a l  m o d e l o f  s e c o n d a ry  b r a n c h  f o r m a t io n

Once again the model is constructed in a one-dimensional domain in order to focus 

attention on the endothelial cell clusters, rather than the emerging shape of the capillary 

sprout tip. Let p(x ,t)  be the density per unit length of the matrix, a(x ,t)  the density 

per unit length of the adhesive sites and n (x ,t)  the density per unit length of the EC.

Mathematical models of tumour angiogenesis certainly rely on chemotaxis as the 

principal mechanism governing the motion of the capillary network [Chaplain h  S tuart, 

(1993)], [Stokes & Lauffenburger, (1991)]. However chemotaxis alone is insufficient to 

account for all the events associated with angiogenesis especially those such as secondary 

side branching and anastomosis. Chemotaxis is implicit in this model in th a t all the 

events of angiogenesis occur after the release of TAF by the tum our, and the cells a t the 

tips of the sprouts are assumed to react to  the chemotactic stimulus through migration 

and proliferation. It is these cells at the tips which primarily orientate the direction 

of the sprouts. In this section we focus attention on EC behind the proliferating cells 

which are located near the sprout tip and as far back as the parent vessel (e.g. limbus) 

and hence it can be assumed, based on experimental evidence cited previously, th a t the 

movement of the EC (within the region of the sprout under consideration) in this case 

is governed by a combination of diffusion, haptotaxis and convection.

The model is based on two processes [Paweletz & Knierim, (1989)]:

1. The spreading of the matrix with the convection of EC and adhesive sites with it.

2. The secretion of matrix and adhesive sites by the EC.

The convection of cells and adhesive sites will be at the same rate at which the 

m atrix spreads out. Assuming th a t the matrix spreads out a t a constant rate, c say, 

and th a t the velocity is - px, then the convective flux is proportional to — cpx, i.e. flux 

of the adhesive sites is J a =  —capxn, where n is a unit vector. For the source and sink 

terms, we assume a linear production by the EC and linear decay of the m atrix and 

adhesive sites, but as proliferation of EC occurs near the tip, we omit a cell production 

term for the reasons cited above. Hence the model equations are

P t = dip** + C n ^  ~  , (3.2.12)

diffusion production decay
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at =  ^ 2 +  c{apx)x +  ~  » (3.2.13)
diffusion convection production decay

nt = ^ r r  -  h(nax)x +  c(npx)x , (3.2.14)

diffusion haptotaxis convection

where c is the rate a t which the matrix spreads, £ is the rate of secretion of matrix per 

cell, A is the loss of matrix per unit matrix, 6 is the rate of secretion of adhesive sites 

per cell, p  is the decay of adhesive sites, d1? d2, d3 are the diffusion constants, and h is 

the rate a t which cells move up an adhesive gradient.

Let N be the mean endothelial cell density throughout the capillary sprout, L 0 the 

original length of the domain, i.e. the length of the initial sprout bud, and L the current 

sprout length. The above system of equations can be non-dimensionalized by making 

the following substitutions:

* n  * x  * ah  * Pcn =  — , x — —, t =  ■* , a* =  — T, p  =
N ' V  L 2 p L V  r  p L V

m ’ 1 l i '  c  f L i '  u n y  ‘ pLi’

Dropping the asterisks for notational convenience, the system of equations becomes,

rt =  dxpxx +  7 (C n - Ap), (3.2.15)

at =  d2axx + (apx)x + i { b n -  a), (3.2.16)

Uf — d3nxx (7iGx)x d- (npx)x. (3.2.17)

To close the system we impose non-zero flux boundary conditions for the m atrix and the 

adhesive sites, but zero flux boundary conditions for the cells. The reasoning behind 

these conditions is tha t the endothelial cells stay entirely within the domain of the 

capillary sprout [Paweletz & Knierim, (1989)] whereas the matrix and the adhesive 

sites spread out beyond the domain, (i.e. sprout), so there is a certain amount of 

leakage at the boundaries. We therefore take boundary conditions as follows:

dipx = ^fk a t x =  0 and x =  1 respectively, 

d2ax +  apx = a t x  =  0 and x =  1 respectively, (3.2.18)

dnx — nax +  npx = 0 a t x = 0 and x =  1 respectively,
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where k and I are positive constants representing the rate of loss of matrix and adhesive 

sites respectively. In section (3.2.4), we will discuss the significance of the parameters 

k and I

3 .2 .2  L in ear s ta b ility  a n a ly s is

Assuming th a t the number of cells in the domain remains constant, i.e. there is no pro­

liferation in the region tha t we are considering, then we choose n =  1 as an appropriate 

scaled steady state. The non-trivial spatially homogeneous steady state is therefore 

1)- After linearizing about this steady state , we look for solutions of the form

r =
' - 5
a — b 

n — 1

oc exp (crt -f ik x ),

where k is the wave number of the perturbation and a  is the rate of growth of the 

perturbation with wave number k , as per previous section.

The linearized system of equations takes the form err =  Ar where A is a 3 x 3 matrix. 

The dispersion relation between a  and k is given by det[a l — A] =  0 which is:

<r3 +  (j2\k2{di 4- <̂2 4~ ^3) 4~ t ( ^  A 1)]

4- <j[k4(di(d,2 +  ds) d2d$) +  7 k 2(d\ 4- Xd2 +  (1 +  A)g?3 — b 4- £) -f- 7 "A]

4- k'2\k4d\d2d$ +  7 fc2(£(6 d^) 4“ Ac/2^3 4" (^3 — ^)^i)

4“ 7 2(C 4- A(^3 — 6))] =  0. (3.2.19)

If Re(cr) ^  0 then exp(crt 4~ ikx^ —̂ 0 as t>  ̂ 00, so the system v îll be stable to small 

perturbations. If Re(<r) > 0 the perturbations will grow. The imaginary part of a  gives 

rise to  periodic solutions. When k — 0, the system is spatially homogeneous, and the 

dispersion relation becomes

cr3 4- 7 (A +  1 )a2 4- 7 2Aa — 0, (3.2.20)

which has the solution a =  0 and two negative roots. Hence the system is stable to 

spatially homogeneous solutions. When k ^  0 the dispersion relation will either have
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three real roots or one real root and two complex conjugate roots. The root whose real 

part is the greatest in magnitude will determine the pattern which is formed. If this 

root is real and positive for a range of fc, the initially uniform cell distribution will evolve 

into a spatially heterogeneous one. If this root is complex and its real part is positive 

then the perturbation will be oscillatory in nature.

In the following analysis, the theory used is standard for coefficients of polynomials, 

such as Descartes rule of signs (see Murray (1989)). We will have a change in stability 

when a  =  0, i.e. p(k2) =  0 where p(k2) =  axk4 +  a2k 2 +  a3, and

ai =  d\d2d3.

02 — 7 ((^3 — b)di +  C(6 +  d2) -+■ d2d3X) ,

a3 =  7 2(C +  X(d3 — b)).

If a2 > 0 and a3 > 0, then p(k2) has no positive solutions for k 2. Consider a3 < 0,

i.e. b > d3 +  then p(k2) has one positive root. If a3 > 0 but a 2 < 0, then p{k2) has

two positive roots, i.e. if 6 < d3 +  ^  and
A

We will have exponential growth provided p(k2) < 0 .  So if b > d3 +  ^ , we will have
A

instability for k2 in the range 0 < k 2 < k2B and if

0 < b < d3 +  di <

or if
did3 -f d2C +  d2d3 X , , . C i . »

< b < d3 +  T , d i > C,
d\ — C ^

then we have instability for k \  < k2 < k2B where k \  B are the roots of p(k2).

Returning to the dispersion relation, we now consider the signs of the coefficients of 

the cubic equation (3.2.19), i.e. the signs of

Ai =  k 2{d\ +  d2 -f- d3) +  7(^ "b
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A 2 — k4{d\{d2 4" d3) +  d2d3) +  lk~{di 4* 4~ (1 4~ A)c?3 —  ̂4“ C) 4* 7 2A,

A 3 =  A;2p(fc2).

If A 3 < 0 then (3.2.19) has only one positive root which will be real. If A3 > 0 

and A 2 > 0, the dispersion relation will have no positive roots. However if A 3 > 0 and 

A 2 < 0 then the dispersion relation has two positive roots. So consider q(k2) = 0  where 

q(k2) =  bik4 4- b2k2 4- b3 and

61 =  d\{d2 4~ ^3) 4“ d2d3^

b2 =  7(^1 4- Ac?2 4* (1 4* A)c?3 — b 4- C)> 

b3 =  7 2A.

If 62 ^  0 then j hcis no positive roots* If &2 ^  0 then ) h3s  two positive roots* 

So when

b > d\ 4“ ^ d 2 4- (1 4~ ^)d3 ^  4* C?

q(k2) < 0 for k \ < k2 < k\, where k \ 2 are the roots of q{k2).

There exists another bifurcation point at which two of the real roots become complex. 

This point k 2c say, is given by solving

101 =  2a 3' 2,

for k 2 where

A summary of the changes in the roots of the dispersion relation as b increases are 

as follows.

• For 0 < 6 < c?3 4- y  (provided di < £), the dispersion relation has only one positive

root and hence we have instability for k \  < kr < k2B.

• For d3 4- y  < b < dr 4- Ad2 4- (1 4- A)d3 4- y  4" C the dispersion relation has only one
A A

positive root and hence instability for 0 < k 2 < k2B.

3.2. THE BRANCHING OF CAPILLARY SPROUTS 51



C h a p t e r  3

For b > rfi +  Ad2 +  (l +  A)rf3 + y  +  C the changes in the dispersion relation as k 2 increases 

are as follows:

• For 0 < k 2 < k2B the dispersion relation has one positive and two negative real 

roots.

• For k g < k 2 < k2c  all the roots are real and negative.

• For k c < k 2 < k\ two roots are complex with negative real parts and one root is 

real and negative .

• For k \ < k2 < k2 the dispersion relation has one negative real root and two 

complex roots with positive real parts.

• For k\ < k2 the two complex roots have negative real parts.

For example, if we choose parameters di =  1, d2 =  1, d3 =  10, A =  20, 7 =  

15, C — 10 an(l let 10.5 < 6 < 241.5, we would expect the system to evolve into a 

spatially heterogeneous state. We obtain the dispersion relation as shown in figure (3-6) 

with b =  155. So for 0 < k < 5.15, we will have exponential growth of perturbations 

(according to linear stability analysis).

Another example is if we take b =  300. For this param eter set we obtain the disper­

sion relation as shown in figure (3-7) where two of the roots of the dispersion relation 

have become complex with positive real part. In this case we would expect oscillat­

ing solutions, which correspond to EC migrating up and down the sprout [Paweletz & 

Knierim, (1989)].

3 .2 .3  E s t im a tio n  o f  p a ra m eters

Wherever possible parameters were estimated from experimental papers. When this 

proved difficult, the parameters which yielded the best numerical results, were chosen.

From Balding and McElwain (1985) and Gimbrone et al. (1974), the tum our must 

be placed at a distance of 0.08-0.3cm from the limbal vessel. Hence, we will take the 

initial length L 0 = 0.001cm and let L vary between 0.003-0.015cm so th a t 9 < 7 < 225.

Using the results from Yamada and Olden (1978), we estimate the decay of the 

m atrix to be 0.0385h_I. If we take A =  20 then the decay of the adhesive sites fi is 

1.925 x 10- 3h-1 . The choice of A was arbitrary due to  the lack of empirical data.
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Figure 3-6: A dispersion relation where o is real and positive for 0 < k2 < 5.15 and 

hence we have instability for this range. Parameter values are dx =  1, d2 =  1, d3 = 

1 0 , 6 =  155, A =  20, C =  1 0 , 7  =  15.

Yamada and Olden (1978) also reported that fibronectin is relatively immobile, 

with a diffusion coefficient < 5 x 10- 12cm2s-1. So taking the diffusion coefficient of the 

matrix and the diffusion coefficient of the adhesive sites to be 5.35 x 1 0 - I 3cm2s - 1  and 

the diffusion coefficient of the cells to be ten times higher, we have dx =  d2 =  1 an<l 

d3 =  10. By making the diffusion of the cells lower than in the previous section, we are 

able to emphasise and focus upon the other transport mechanisms which we believe to 

be more important.

Terranova et al. (1985) found that doses of fibronectin between 10~ 8 ----- 10"10M

stimulated cell migration and Yamada and Olden (1978) gave the generation time of

fibronectin to be 18 hours. Assuming that 1 0 -8M of fibronectin is produced by N  cells

in 18 hours, where N  is the mean cell density, we estimate the rate of the secretion 
10-8

of the matrix as ———iV- 1h_ 1M. Again choosing £ arbitrarily to be 10, we find that 
18

c =  1.854738 X 10- 5cm2s- 1M-1, which seems a reasonable estimate for the convection 

rate. Assuming that the secretion of the adhesive sites is ten times higher than that
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Figure 3-7: A dispersion relation where a is complex with positive real part. Parameter 

values are dx =  1, d2 =  1, d3 =  10, 6 =  300, A =  20, 7 =  15, C =  10.

of the matrix and choosing 6 =  155 (example 1) and b = 300 (example 2), we obtain 

h ~  2.87 x 10-5cm2s_1M_1 and h ~  5.56 x 10-5cm2s-1M-1, respectively.

In theory the values for k and I could be determined experimentally. However, in the 

absence of reliable empirical data, we will discuss the significance of these parameters 

in the next section.

3 .2 .4  N u m er ica l s im u la tion s

We used the numerical scheme available from the NAG library (as described in chapter(2), 

section (2.2)), to solve the non-dimensionalized system of equations (3.2.15)-(3.2.17). 

In principle, the model should display a variety of solutions, as predicted by the linear 

analysis. In practice, some of the solutions predicted by the linear stability analysis 

proved difficult to obtain.
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The initial conditions we used were perturbations about the steady st;ate

p — y ,  a = b and n — 1. (3.2.21)

We experimented with small random perturbations of 0(0.01) as veil as a  sine wave 

with small amplitude. This did not affect the resulting solution but th e  numerical 

scheme ran best with random initial conditions. However, some of the solutions could 

only be obtained using initial conditions which were far away from the steady state. 

As stated earlier, we impose non-zero flux boundary conditions for the m atrix  and the 

adhesive sites, but zero flux boundary conditions for the cells. This seems reasonable as 

we are only considering the splitting of an EC cluster rather than the actual formation 

and elongation of the branches. To model the formation of the branches t hemselves we 

would need to consider a moving domain.

The boundary conditions (3.2.18) can be written as follows,

d\Px ~

did2ax = ^ (d ^ l — ak), (3.2.22)

d1d2d3nx = ^ ( d j  -  (d2 +  a)fc).

When written in this form, it is clear tha t our choice of k and I can affect the value of 

the solution for n a t each boundary. We assume th a t we must choose k and I such tha t

d j  — (d2 +  a)k > 0, (3.2.23)

so th a t the sign of nx is consistent with the signs of px and ax at each boundary. 

Furthermore, the initial choice of a, i.e. our choice of the param eter 6, can also affect the 

value of nx. In the examples that follow, we took di =  d2 = 1. Hence our assumption is 

/ > ak a t x = 0,1. In each of the numerical simulations th a t follow, we took k =  0.0001 

and / =  1, since initially a = 6, where 155 < b < 300. We found th a t if we fixed 1 = 1

and varied k such tha t k < 0.001, i.e. (3.2.23) is satisfied, then the numerical solution

for n did not change significantly. However if we let k vary so th a t k > 0.001, then the 

numerical simulations broke down. Therefore, the solutions were sensitive to changes in 

the flux parameters. We conclude from this tha t the boundary conditions are important
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Figure 3-8: Endothelial cell density profile obtained using parameter values dx = 0 , d2 = 

0, d3 = 10, b =  169, A =  20, £ =  10, 7 =  13. Figure illustrates formation o f one EC  

cluster towards x = 0. x =  0 corresponds to a location close to sprout tip, but behind 

proliferation compartment, x = 1 corresponds to location o f parent vessel, e.g. limbus.

in the formation of the patterns obtained here.

By using the parameter values dx =  1 , d2 = 1, d3 = 10, b = 155, A =  20, 7  =  

15, (  = 10 in the numerical scheme, we obtain figure (3-8) where the density o>f the 

cells is greater at one end of the domain indicating the formation of one EC cluister. 

We can increase the number of EC clusters formed by increasing our value of 7 , which 

is representative of the size of the domain. If we take 7  = 60 we obtain two cell 

clusters (figure (3-9)). Throughout our numerical investigation, solutions of this type 

were typical. It has been observed experimentally [Folkman & Haudenschild, (11980)], 

[Paweletz & Knierim, (1989)] that the most common form of branching in capillar ies is 

Y or T shaped. According to the linear analysis, if we choose 7  = 200, we should oibtain 

three cell clusters. However this solution was hard to capture and appeared transient. 

We obtained the solution in figure (3-10) using initial conditions for a away fronn the 

steady state a = 6 , i.e. initially we took a =  200. Hence as the domain increases,
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Figure 3-9: Endothelial cell density profile obtained using parameter values d\ =  0, d2 =

0, d3 = 10, b =  169, A =  20, C =  10, 7  =  52. Figure illustrates formation o f two EC 

clusters corresponding to side branches. By increasing 7 , we model an increase in domain 

size, i.e. an increase in capillary sprout length, x =  0 corresponds to a location close 

to sprout tip, but behind proliferation compartment, x = 1 corresponds to location of 

parent vessel, e.g. limbus.

1.e. the capillary sprout grows, the more side branches there are. Thus the number 

of side branches appearing depends on the size of the sprout, which is consistent with 

experimental observations.

By using the parameter values di = 1, d2 =  1, d3 = 10, 6 =  300, A = 20, 7  =  

15, =  10 we would expect oscillatory solutions from the linear stability analysis.

However by using the initial conditions (3.2.21), we obtained a solution similar to that 

shown in figure (3-9). Oscillating solutions could be obtained by using initial conditions 

far away from the steady state, i.e. large perturbations. In the examples that follow we 

took initial conditions for a and p to be a =  200 and p = 0.5. One oscillating solution, 

whereby peaks of cells form from the initial conditions and momentarily merge before
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Figure 3-10: Endothelial cell density profile obtained using parameter values dx =  

0, d2 =  0, d3 = 10, 6 =  169, A =  20, £ =  10, 7 =  108. Figure illustrates forma­

tion o f three EC clusters corresponding to three side branches. By increasing 7 further, 

we model an increase in domain size, i.e. an increase in capillary sprout length, x  =  0 

corresponds to a location close to sprout tip, but behind proliferation compartment, 

x =  1 corresponds to location o f parent vessel, e.g. limbus.

splitting again, is illustrated in figure (3-11). This models the observation tha t the 

EC are continually rearranging themselves, moving up and down the capillary sprout 

[Paweletz & Knierim, (1989)]. This also reflects the transient behaviour of branching 

structures. Each time a cell cluster is produced there is the possibility of a daughter 

branch forming and hence no two branching structures are exactly alike.

The linear stability analysis has shown that there is a critical value of the param­

eter h above which the solutions oscillate. Furthermore, by increasing the value of 7 , 

we increase the number of cell clusters formed. It is interesting to note that similar 

effects can be obtained by varying parameters £ and A. For example, an increase in £ 

has the same effect on the dispersion relation as an increase in b and a decrease in 7 

simultaneously. An increase in A has the exact opposite effect on the dispersion rela-
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1.01

Figure 3-11: A simulation showing cell clusters merging and then splitting again. Pa­

rameter values are di = 1, d2 =  1, d3 = 10, 6 =  300, A =  20, 7 =  15, C =  10- This 

models the observation o f EC migration within the capillary sprout, x = 0 corresponds 

to a location behind proliferating cells (near tip), x = 1 corresponds to parent vessel 

e.g. limb us.
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Figure 3-12: A dispersion relation where the complex mode dominates. Parameter 

values are di = 1, d2 =  1, d3 =  10, b =  300, A =  20, 7  =  15, £ =  30.

tion as an increase in (. If we use the same parameters as in the last example but set 

£ =  30. then the dispersion relation is as in figure (3-12). From this we infer an increase 

in oscillatory behaviour. The numerical solution using these parameter values (figure 

(3-13)) has clusters of cells travelling to the right in a wave-like manner. Again, this 

demonstrates the persistent remodelling of the capillary network.

The difficulty in obtaining some of the predicted solutions in the numerical simula­

tions indicates tha t the boundary conditions and initial conditions are very important in 

this model. Furthermore, the parameter values must be chosen very carefully. [Saunders 

& Ho, (1995)] also found this to be true of a simple reaction-diffusion system modelling 

segmentation and they concluded that this is a disadvantage of prepattern models in 

general, which do not have a mechanism for self-correction. A more robust model, such 

as a mechanochemical model where pattern formation occurs sequentially, would allow 

more freedom in the choice of parameters and would be less sensitive to the boundary 

and initial conditions. However, we would expect any model of branching to display 

transient behaviour in order to capture the uniqueness of each branching structure.
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1

Figure 3-13: A simulation showing increased oscillatory EC behaviour when the complex 

eigenvalue has a positive real part. Parameter values are dx = 1, d2 = 1, d3 = 10, b = 

300, A =  20, 7 = 15, C =  30. Here we have three clusters o f cells moving to the right

in waves.
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3.3 Discussion

The mathematical models for capillary bud and capillary side-branch formation in this 

have been developed using empirical data  wherever possible and the numerical solu­

tions of the models are in good agreement with experimental observations of tumour 

angiogenesis.

It is our belief th a t all of the events associated with angiogenesis cannot be fully 

explained by chemotaxis alone. We have shown tha t haptotaxis is a potentially impor­

tan t mechanism in at least two of the stages of angiogenesis and is worthy of further 

study. Schor & Schor, (1983) found th a t components of the ECM, such as fibronectin, 

increased the ability of EC to react to angiogenic factors positively. Furthermore, they 

discovered th a t EC did not react to  an angiogenic stimulus when grown on denatured 

collagen or plastic material. Haptotaxis has also been implicated in the formation of 

anastomoses [Paweletz & Knierim, (1989)]. Though this im portant event in angiogenesis 

is well documented and it is known th a t capillary sprouts fuse together a t their tips, the 

precise reason for this remains unexplained. Perhaps some mechanism which induces 

cell-cell adhesion may be involved. The role tha t haptotaxis may play may also suggest 

a potential anti-angiogenesis strategy by developing drugs which reduce the adhesive 

properties of EC to the matrix. We will explore this possibility in chapter (7).

We note th a t a one dimensional model of the early stages of angiogenesis is not 

particularly descriptive of the overall form of the capillary network. We only look at 

the formation and splitting of cell clusters and not the overall shape of the developing 

sprout and side branches. Finally we note th a t the mathematical models tha t we have 

considered are minimal in th a t they include the most basic of equations concerning the 

chemical and cell distribution. We could elaborate the models further to  include other 

factors such as the effect of traction forces on the matrix (see for example Maini, (1989)). 

It may be possible to gain some useful information on lumen formation and anastomosis 

by producing two dimensional simulations of these models. We could also consider 

non-constant diffusion/haptotactic coefficients. Nevertheless, these simple models have 

produced the desired results by encapsulating the formation of capillary buds and the 

side branching of capillary sprouts, and have demonstrated the im portant potential role 

haptotaxis may play in the angiogenic process.
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Chapter 4

Vascular tum our growth and 

invasion

In this chapter, we develop a simple mathematical model of the vascularization and 

subsequent invasive growth of a solid spherical tumour.

A vascularized tum our rapidly increases in mass [Paweletz Sz Knierim, (1989)]. This 

enormous growth in tumour volume results in the collapse of the vasculature at the 

centre of the tum our and a necrotic core will develop surrounded by a peripheral zone of 

live cells or ’tum our vascular envelope’ [Paweletz & Knierim, (1989)]. Furthermore, the 

growth of the tum our during this stage is accompanied by the invasion of the surrounding 

tissue. Invasion is closely linked to metastasis, whereby tum our cells enter the blood or 

lymph system and hence secondary tumours or metastases may arise at distant sites in 

the body. Hence it is desirable to prevent a tum our from reaching the vascular phase of 

growth [Blood & Zetter, (1990)], [Folkman, (1985)], [Folkman Sz Haudenschild, (1980)], 

[Langer et al., (1976)].

The key elements tha t are encapsulated in this model are the development of a 

central necrotic core due to the collapse of blood vessels at the centre of the tum our 

and a peak of proliferating tumour cells advancing towards the main blood vessels 

together with the regression of newly-formed capillaries. In the second part of the 

chapter, we conduct a travelling wave analysis on a simplified version of the model and 

obtain bounds on the parameters such tha t the solutions are non-negative and hence 

biologically relevant. Furthermore, we obtain an estimate for the speed of invasion of 

the host tissue by the tumour cells.
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4.1 The m athem atical m odel

This model examines the development of the tumour vascular envelope from the on­

set of vascularization to the eventual invasion of the (parent) blood vessel which may 

consequently lead to metastasis. We assume tha t the tumour has successfully induced 

angiogenesis, th a t is, a network of capillary vessels has just reached the tum our bound­

ary. We do not explicitly model the concentration of TAF, though this is implicitly 

incorporated into the model by presuming th a t the TAF indirectly influences vessel 

proliferation.

Following Liotta et a/., (1977), let n ^ x ,  f) be the tumour cell density per unit vol­

ume and n2(x,<) be the density or surface area of capillary vessels per unit volume. 

Conservation of mass gives us

=  / ( « i ,n 2), (4.1.1)

=  s ( n i ,n 2), (4.1.2)

where J , ,  i =  1,2, is the cell flux and / ( n 1?n2) and ^(nx ,n2) are functions describing 

interactions between tumour cells and capillary vessels. These also contain source and 

sink term s which will be made explicit below. We assume tha t there is a small amount 

of random motion of both tumour cells and capillary vessels which can be modelled by 

a diffusion term with constant diffusion coefficient, i.e. J , =  —Z?, V n,, i =  1,2. Many 

mathematical models of prevascular tumours rely solely on diffusion as a mechanism 

for tum our growth [Adam & Maggelakis, (1990)], [Greenspan, (1972)]. In a malignant 

invasive tumour, there is clearly a movement of tumour cells into the capillary mass. 

Indeed, the appearance of metastases is a clear indication tha t tum our cells have invaded 

the blood system [Darling & Tarin, (1990)]. We assume tha t tum our cells react to blood 

vessels in a similar manner to tha t of ‘taxis4, th a t is, the tumour cells move up a gradient 

of capillary vessels. Hence the flux of tumour cells is given by

J i =  J diffusion +  J taxis =  ~ D lV n l +  x rh V n ,, (4.1.3)

where, for simplicity, we assume x  1S a constant.

The functions /  and g are carefully chosen to describe the particular behaviour and 

interaction of the tumour cells and blood vessels.

drii
dt

+  V .J ,

dn-2 _  ,  
~St +
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For the tumour proliferation rate, we assume tha t during its avascular stage the 

tum our has reached its maximum size and has become dormant. Folkman (1985) reports 

th a t tum our cells lying nearest to a capillary have the highest [3H]thymidine labelling 

index and tha t the index decreases as the distance from the capillary increases. Hence 

we assume tha t the proliferation rate is dependent on the surface area of capillary vessels 

n2. We also assume that, given an adequate supply of nutrients, the proliferation of 

tum our cells is very rapid since tumour-induced angiogenesis can continue indefinitely 

until the tum our is eradicated or the host dies [Folkman, (1985)]. Hence we model the 

tum our cell proliferation rate by rriin2.

The vascular proliferation rate is assumed to be of a Michaelis-Menten form which

saturates as n2 increases, so th a t there is a finite limit to the proliferation rate. The

normal turnover rate of endothelial cells is quite low on the time-scale th a t we are

considering [Paweletz & Knierim, (1989)]. In normal endothelium, the labelling index

was found to be as low as 0.01% per hour in some cases [Denekamp, (1984)]. The

proliferation of capillary vessels is initiated by the release of TAF and so is dependent

on the density of tum our cells ni. We therefore take the vessel proliferation term to be 
Srtin2 
/? +  n2’

In this model we assume th a t the main cause of tum our cell death is nutrient defi­

ciency [Denekamp, (1984)]. Capillary vessels may fail to  reach some parts of the tumour 

or tum our cell overcrowding and high internal pressure may cause the vessels to  collapse 

[Denekamp, (1984)], [Jain, (1994)]. If the oxygen concentration in a  tum our cell is in­

adequate for normal cell functions, the cell becomes hypoxic which leads to a reduction 

in cell activity. A hypoxic cell can return to normal if nutrient levels increase but will 

eventually die if deprived of oxygen for too long. In this model we assume tha t once 

a cell has become hypoxic it will subsequently die. In the discussion section we will 

suggest a way of incorporating temporarily hypoxic tum our cells into a model. Let N 2 

be some reference vessel surface area such as the surface area per unit volume at the 

point of vascularization. We choose cm i(l — tanh((n2 — N 2)/N 2)) as our tum our cell 

death term as this gives us a smooth switch from high to low death as n2 increases, 

which is qualitatively what is desired. Furthermore, there is a finite limit to  tum our cell 

death as n2 —> 0, which suggests tha t the tumour becomes increasingly necrotic as the 

nutrients in its environment decrease (figure(4-la)).

The death of vasculature is mainly due to the overcrowding of vessels and tum our
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Figure 4-1: The qualitative forms o f the two cell death terms. Figure (a) is a typical 

tumour cell death term a ( l  — tanh((n2 — N2)/N 2)) while figure (b) shows the vessel 

death term A n \/B  +  n\.

cells, and hence we would expect a sharp increase in vessel death as n2 increases and also
A tI\ 71?

a term which depends on n ,. We therefore chose —----- \  as our vessel death term. This
B + nl

term has previously been used to describe spruce budworm death due to overcrowding 

and predation [Ludwig et al., (1978)]. In a similar manner, tumour cells invade the blood 

vessels which collapse due to the massive increase in tumour volume (figure(4-lb)). 

Hence, the reaction terms /  and g are

f ( n i , n 2) =  rn in2 — curii ^1 — tanh

Snin2 Ariin\

(n2 -  N 2)
No.

g(ri i ,n2) — + u2 B + nl

(4.1.4)

(4.1.5)

As stated in the introduction, we assume that the tumour is a solid spherical mass 

and tha t all growth is in the radial direction only, i.e. we have radial symmetry. If
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R  is the distance from the centre of the tumour, under the assumptions made on /  

and g. and from equations (4.1.1) and (4.1.2), we therefore have the following partial 

differential equation model for vascular tumour growth and invasion:

drii _  £>! d f  2d n A  1 d f  2 dn 2\
dt R 2 d R  \  d R J  R? dR  \  XUl O R )

+  rn xn2 -  an i ^1 -  tanh > (4.1.6)

d n 2 =  P 2 d /  2d n 2\  S n xn 2 _  A n xn\
dt R2 d R \  d R J  + (3 + n2 B  + n2' 1 }

We now non-dimensionalize the above system in the usual way. Let L be some reference 

length such as the distance from the tum our boundary to the parent vessel, let r  =  

L 2/ D2 be our reference time and N x a reference tum our cell density. By making the 

following substitutions;

-  712 v* -  R  i* -  IN i < »2 -  N i , R  -  v  -  T ,

D = ^ - , x ' = ^ 1 , r '  = tN 2t , a ' = a r ,
JJ2 ^2

a *  _  f>+ -  B  a * -  A N ' T  C* _  S N ' T

p n 2' i v r  n 2 ' n 2 ’

and dropping the asterisks for notational convenience, we obtain the dimensionless sys­

tem

dni D d f  j,2d n i \  1 & ( 1 ,2  9nA
dt ~  IP d R  V d R J  K2 d R  V Xn' d R )

4- rn \n 2 — an i (1 — tanh(n2 — 1)), (4.1.8)

dn 2 1 d ( n2d n2\  , S n \n 2 A n xn\
dt + w U - s t n I  ^

To close the system we impose the following boundary conditions;

dfi\ „ dn2 „ n dni  „ ,
M  = 0’ M  = °’atfl = 0’ j R = 0 , n 2 =  l ^ t R  =  0.
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The first set of boundary conditions arises naturally from the symmetry of the system. 

The position R  =  1 corresponds to the location of the parent vessels (e.g. limbus). 

Once the tumour cells reach the right-hand boundary the assumptions of the model will 

no longer hold, since other interactions become im portant (e.g. the active invasion of 

the limbus by the tum our cells). Various initial conditions will be considered in section 

4.1.2.

4 .1 .1  E s t im a tio n  o f  p a ra m eters

Whenever possible experimental data  was used to estim ate our param eter values. Where 

this was difficult, we chose parameters th a t gave the correct qualitative behaviour of 

the tum our cells and the blood vessels.

A summary of da ta  on corneal implants was given by Balding & McElwain, (1985). 

A tum our will successfully induce angiogenesis if placed a t a distance between 0.8mm 

[Muthukkaruppan et al., (1982)] and 3mm [Gimbrone et al., (1974)] from the limbal 

vessels. The time for vascularization is approximately 8 to 12 days [Ausprunk & Folk- 

man, (1977)], [Gimbrone et al., (1974)], [Muthukkaruppan et al., (1982)]. This gives a 

value for D 2 — 10- 7cm2s_1, for r  ~  10 days and L ~  0.3cm. Sherratt &, Murray, (1990) 

estimated the diffusion coefficient of cells in their model of epidermal wound healing and 

used diffusion coefficients ranging from 3 x l0 - 9cm2s_1 — 6 .9x10"u cm2s-1 . In their study 

of individual endothelial cells, Stokes et al., (1991) measured the motility parameters for 

endothelial cells. The mean random motility coefficient for endothelial cells, migrating 

in a medium containing the angiogenic factor qFG F, was 7.1 ±  2.7 x 10_9cm2s " 1. A 

reasonable estimate of the diffusion coefficient of tum our cells would be in the range 

10-9 to 10- 11cm2s-1 . This would give a range for D  of 10-4 to 10-2 . We would expect 

the diffusion of tum our cells to be small in comparison with the directed movement of 

the tum our cells in response to a gradient of blood vessels, which is clear from exper­

imental studies. We therefore chose the taxis coefficient to be ten times that of the 

tum our cell diffusion, so that, with N 2 = 103, an approxim ate range for x is 1 to  100. 

The param eter r corresponds to the tum our proliferation rate which we would expect 

to be fairly high since we are modelling aggressive invasion. If tum our cell proliferation 

was about 0.1% per hour then r ~  O (102). a  represents the maximum death rate in the 

absence of capillary vessels. Denekamp, (1984) stated  th a t the lifespan of a nutrient- 

deprived hypoxic cell is 5 to 10 hours. The proportion of hypoxic cells in a tum our can
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be up to 80% . Hence a reasonable range for a  is 1-20. For the capillary vessels, the 

param eters S  and A  represent the maximum proliferation and death rates respectively, 

whereas /3 and B  are measures of the critical value at which proliferation or death is 

switched on. A low value of 0  or B  means a low threshold. The tum our’s vasculature is 

highly vulnerable [Paweletz & Knierim, (1989)], [Denekamp, (1984)] and hence we chose 

a low death threshold value, B  =  0.01, and a high maximum death rate, A = 100, in 

comparison to the proliferation threshold, 0 = 1, and the maximum proliferation rate 

S  = 10.

4 .1 .2  N u m e r ic a l s im u la tio n s

The system of equations was solved using a routine available from the n a g  library which 

integrates the system using the method of lines and G ear’s method. Three different sets 

of initial conditions were used and these are shown in figure (4-2).

In the first case, we tried similar initial conditions to those used by Liotta et al., 

(1977) in their model of tum our vascular growth, i.e. unit step functions (figure (4- 

2a)). Assuming tha t the tum our is placed a t a distance of 3mm from the parent vessel 

and tha t its radius is about 1mm, we take the tum our boundary to be situated at 

R  =  0.25. The results are given in figure (4-3). Figure (4-3a) shows a peak of tum our 

cells moving across the domain towards the parent vessel and there is a decline in tum our 

cell density at the centre, indicating tha t a necrotic core is beginning to develop. Figure 

(4-3b) shows tha t the capillary vessels have infiltrated the tum our mass and they have 

slightly regressed from the advancing front of tum our cells. However, the vessels have 

not, as would be expected, degenerated a t the centre of the tumour.

In the second case, a more realistic initial profile for the tum our cells was chosen with 

a Gaussian distribution of cells centred at R = 0.2 (figure (4-2b)). This corresponds to 

a newly vascularized tumour nodule with central necrosis surrounded by a layer of live 

proliferating and highly mobile tumour cells. Again, the results show (figure (4-4a)) a 

peak of advancing tumour cells penetrated by capillaries. Figure (4-4b) shows th a t the 

regression of vessels is slightly more pronounced and after time t = 0.03 the density of 

vessels at the centre of the tum our begins to decrease, which is an improvement on the 

simulations shown in figure (4-3b).

Finally, we took an initial profile of capillary vessels from a model of angiogenesis 

by Chaplain & Stuart, (1993) (figure (4-2c)). The taxis coefficient x  is reduced in
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Figure 4-2: The three different initial conditions used to test the model. The solid line 

represents the tumour cell distribution and the dashed line represents the vessel density. 

In figure (a) we have a block distribution of tumour cells and vessels. In figure (b) we 

have a Gaussian distribution of tumour cells centred at 0 .2 . In figure (c) we have the 

same Gaussian distribution for the tumour cells but for the vessels we have taken a 

profile from the model o f angiogenesis by Chaplain & Stuart, (1993).

order to allow more time for the overcrowding to take effect and also the tumour cell 

proliferation rate r was increased. Figure (4-5a) shows an advancing peak of tumour 

cells and a substantial increase in tumour cell density with time. Figure (4-5b) shows 

tha t the capillaries have penetrated the tumour mass but have collapsed at the centre 

and the vasculature within the tumour has regressed considerably.

We note that the qualitative form of the numerical solutions are wave-like. We can 

estimate the speed of the wave by examining the numerical solutions. For the first 

two simulations (figures (4-3) and (4-4)), we estimate that the dimensionless wavespeed 

varies between 11-15. With L =  0.3cm as a reference length and r  =  10 days as a refer­

ence time, this gives a speed of invasion in the range of 3.3-4.5mm/day, which is quite 

high. In the last simulation (figure 4-5), which has the most realistic initial conditions
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Figure 4-3: With block initial conditions for the tumour cells and the vessels the system  

evolves as shown above. Figure (a) shows the tumour cells distribution and figure (b) 

the vessels. Plots were taken at times t =  0.01, 0.02, 0.03 and 0.04. Parameters values 

were D =  0.01, x  =  1 0 , r =  100, a  =  10, S =  10, (3 =  1, A =  100, B  =  0.01.

and which best captures the key behaviour of the nascent tumour, the dimensionless 

wavespeed is approximately 4.5-5. This corresponds to an invasion speed of 1.4mm/day- 

1.5mm/day. This is not unreasonable given the simplicity of the model, though slightly 

overestimated in comparison to experimental observations of 0.2-0.5mm/day [Gimbrone 

et al., (1974)] and 0.4-0.7mm/day [Shymko & Glass, (1976)]. We will suggest ways of 

reducing the wavespeed in the discussion section. In the next section we will investigate 

the possibility of travelling wave solutions with constant speed and profile.

4.2 Travelling wave analysis

In this section, we conduct a travelling wave analysis of the system of partial differential 

equations (4.1.8)-(4.1.9). We modify the original model by replacing the proliferation
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Figure 4-4: With a Gaussian distribution o f tumour cells and block initial conditions 

for the vessels the system evolves as shown. Figure (a) shows the tumour cell density 

while figure (b) shows the vessel distribution. Plots were taken at times t = 0.01, 0.02, 

0.03, 0.04 and 0.05. Parameters values were D =  0.01, x  — 5, r  =  100, a  =  10, S = 

10, 0 =  1, A =  100, B =  0.01.

term for the blood vessels by the logistic growth term 5ra2(l — n2), where, once again 

the parameter S  is dimensionless. The use of this term can be justified by assuming 

that the blood vessels have been saturated by TAF and hence the proliferation of vessels 

is independent of tumour cell density. Given that the rate of growth of the vascularized 

tumour is rapid, the tumour mass quickly increases in size [Gimbrone et al., (1974)], 

[Muthukkaruppan et al., (1982)]. We therefore conduct the travelling wave analysis 

using Cartesian coordinates as follows:

■** rn !n2 -  a n i( l  ~ tanh(n2 -  1)), (4.2.10) 

dni d 2 n-> _ . An^nl_  =  _  +  W 1 _ n2)_ _ | .  (4.2.11)
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Figure 4-5: With an initial profile for the vessels taken from Chaplain <£: Stuart, (1993) 

the system will evolve as shown. Figure (a) shows the tumour cell density while figure 

(h) shows the vessel distribution. Plots were taken at times t =  0.1, 0.12, 0.14 and 

0.16. Parameters values were D =  0.01, \7 =  1, r =  200, a  =  7, S  =  10, /3 =  1, A  =  

100, B  =  0.01.

Numerical simulations of the above system do not vary significantly from the numerical 

simulations of the original system (see figure (4-6)).

The spatially homogeneous steady states are given by (0,0), (0,1) and (n*, n£) where

n\ = 5 ( 1 (4. 2. 12)
ATI*}

and n 2 uniquely satisfies

rn 2 — a ( l  — tanh(nj — 1)) =  0. (4.2.13)

We look for solutions of the form Ni(z) =  n l (x ,t) , N-2 (z) = n2(x,f), where z = x — ct,
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Figure 4-6: A numerical simulation o f the system (4.2.10)-(4.2.11) with initial profile 

for the vessels taken from Chaplain & Stuart, (1993). The solution compares well with 

figure (4-5). Figure (a) shows the tumour cell density while figure (b) shows the vessel 

distribution. Plots were taken at times t =  0.1, 0 .1 2 , 0.14 and 0.16. Parameters values 

were D = 0.01, * =  1, r =  200, a  =  7, S  =  10, /? =  1, A =  100, B  =  0.01.

c being a constant positive wave speed, so that the waves travel from the left to the

right along the x axis. Using the notation ' to denote differentiation with respect to z, 

we obtain a fourth order system of ordinary differential equations

-cN [  =  DN'( -  X{NiN'2)' +  rNiN? -  a N ^ l  -  tanh(iV2 -  1)), (4.2.14)

A  N , N 2
-cN' ,  =  iV" +  SAr2( l - A r 2) _ _ l _ | .  (4.2.15)

The appropriate boundary conditions are given below, i.e. non-negative solutions
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satisfying

N i(-o o ) — n* , TV^+oo) =  0,

N 2 ( - oo) =  n 2 , iV2(+oo) =  1, (4.2.16)

A((dtoo) =  0 , A '(±oo) =  0.

Waves satisfying (4.2.16) can be described as ’waves of invasion’ [Dunbar, (1983)]. In 

this case, we have one population at its carrying capacity. Introducing a small amount 

of another species, the system evolves to a new steady state of co-existence where the 

original population has decreased and the new species has increased. From this descrip­

tion of invasion, we infer n 2 < 1. In the biological situation tha t we are considering, 

tum our cells invade a population of endothelial cells.

We analyse the system (4.2.14) and (4.2.15) by considering two cases. F irst, we

will simplify the system by setting D =  0, which is the limiting case of D  small. In

this case the vessels are diffusing much faster than the tumour cells. This implies tha t

there is little random motion of tumour cells, therefore the emphasis is on the directed

movement of tumour cells into the capillary vessels. Secondly, we consider D non zero.

Dunbar, (1983) gave a formal proof of the existence of travelling wave solutions for 

a predator-prey system with D =  0. Using a similar technique (a shooting argument), 

Dunbar went on to show a heteroclinic connection in R 4, between the unstable steady 

state  and the stable co-existence state for the case when 0 < D < 1 [Dunbar, (1984)].

4 .2 .1  C a s e  1 : D  =  0.

Letting W  = N 2, we obtain the following system of 3 first-order ordinary differential

equations:

iV( =  ( -  ̂ [rNiNt  — a N i ( l  — tanh(JV2 — 1))
\Xvv ~ c j

A  AL N 2
+XN l ( SN7(l -  N 2) -  +  cW)] ,  (4.2.17)

N 2 = W,  (4.2.18)
A  AL N 2

w ' = Y + J ^ ~ S N 2 { l ~ N 2 ) ~~cW' (4-2*19)
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To remove the singularity a t W  =  —, let (XW  — c)—  = — . Hence we obtain the
X dz  d£

following system:

=  rJV,AT2 -a J V i( l- ta n h (J V 2 - l ) )

AN* N 2
+ XiVi(5iV2(l -  N 2) -  +  cW),  (4.2.20)

^  =  W ( XW - c )  (4.2.21)

dW  A N *N 2
~di =  ( b ^ J T 2 - S N ^ - ^ ) - c W ) ( XW - c ) .  (4.2.22)

We carry out a phase plane analysis in the usual way by linearizing about each critical 

point to obtain a system of the form

j y
—  =  AX,  where X =  ( N i , N i , W ) t
of

and A  is a 3 X 3 Jacobian matrix which has been evaluated at the critical point. The

eigenvalues are then given by det(A — A/)=0. Using the notation Aij to  denote the

element in the ith row and j th column of the matrix A , we obtain

A3 —A2 (A ll+ A 33)+A( An A33 — J413i431-A23^32)+  ̂ 11^23^32 —̂ 12^23^31 =  0. (4.2.23)

since A2i and A22 are always zero when evaluated at any of the critical points. The 

analysis of this phase space is given in appendix (A). A summary of the results are as 

follows.

• The critical point (0,0,0) is a stable node if c2 < a ( l  +  tanh 1) < 5 . Otherwise, 

the critical point is a saddle point.

• For non-negative solutions passing through (0,0,0), the parameters must satisfy 

equations (A.1.4) and (A.1.5) as given in the appendix.

• Since r > a  from equation (4.2.13), the critical point (0,1,0) is a saddle.

• For non-negative solutions passing through (0,1,0), the parameters must satisfy 

equations (A.1.7) and (A.1.8).
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Figure 4-7: Profile o f tumour cells invading capillary network. Profile obtained from 

numerical solution to (4.2.20)-(4.2.22) .

• The critical point ( n ^ n ^O )  is a stable node if c2 < — n2)> otherwise it is

a saddle.

We solved the system of equations (4.2.20)-(4.2.22) using an ODE solver imple­

mented in m a t l a b  with the parameters D = 0, x  =  10, r — a  =  10, S =  10, /3 =  

1, A = 100, B = 0.01 and the wavespeed c =  16.9 which was derived from conditions 

(A. 1.7) and (A. 1.8). Figures (4-7) and (4-8) show the profiles of the wave front for the 

tumour cell density and the vessel density respectively. Qualitatively, they illustrate the 

advance of the region of proliferating tumour cells with the collapse of the vasculature 

in its wake.

4 .2 .2  C ase  2 : D > 0

Letting U =  N[ and V  =  iVJ, we obtain the following system of 4 ODE’s:

A; =  U, (4.2.24)
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Figure 4-8: Profile o f vessel density being invaded by tumour cells. Profile obtained 

from numerical solution to (4.2.20)-(4.2.22) .

N '2 = V, (4.2.25)

1 A  /V, N 2
V  =  p lx iU V  + N ^ j - ^ - S N ^ l - N J

+aiV ,(l — tanh(jV2 — 1)) — riV,iV2 — (4.2.26)

A  N , N 2
v  =  -N(4.2.27)

We carry out a phase plane analysis in the usual way by linearizing about each 

critical point to obtain a system of the form

~  = AX, where X =
dz

and A is a 4 X 4 Jacobian matrix which has been evaluated at the critical point. The 

eigenvalues are then given by det(A — A/)=0. Using the notation Aij to denote the
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Figure 4-9: Profile o f tumour cells invading capillary network. Profile obtained from 

numerical solution to (4.2.24)-(4.2.27).

element in the ith row and j th column of the matrix A, we obtain

A4 +  A3(c — A 3 3 ) — A2 (A42 +  A 3 1  +  CA3 3 )

+  ^{A33A42 — cA3\ — A3aA^\) +  A31A42 — A32A 4i = 0. (4.2.28)

The analysis of this phase space is given in appendix (A). A summary of the results are 

as follows.

• The condition S < a ( l  +  tanh 1 ) is sufficient to ensure that the critical point 

(0,0,0,0) has an unstable manifold.

• The critical point (0,1,0,0) is a saddle since r > a.

• The critical point (n * ,^ ,  0,0) is a stable node if ^  > B > 0 and c2 < x 'S n ^ l —nt,),

otherwise it is a saddle.

Again, we solved the system of equations (4.2.24)-(4.2.27) using MA T LA B with the
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Figure 4-10: Profile o f capillary vessel density which is invaded by tumour cells. Profile 

obtained from numerical solution to (4.2.24)-(4.2.27).

parameters D =  0.01, \  — 10, r =  100, a  =  10, S  =  10, (3 =  1, A =  100, B  =  0.01 

and the wavespeed c =  15 which was measured from the original numerical solutions of 

the PD E’s. Figures (4-9) and (4-10) show the profiles of the wave front for the tumour 

cell density and the vessel density respectively. Once again the figures illustrate the 

advancing front of invading tumour cells leaving behind a compressed vasculature in its 

wake.

4.3 D iscussion

We have developed a simple (minimal) mathematical model which has captured the key 

initial events of vascular invasive tumour growth such as the migrating front of tumour 

cells, central necrosis and the regression of blood vessels. The advance of tumour cells 

across the host tissue field is attributed to a combination of diffusion, active migration 

and proliferation of tumour cells. Liotta et al., (1977) explains central necrosis as a 

failure of new blood vessels to reach the centre of the tumour fast enough. However,
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shortly after vascularization, the whole of the tumour is criss-crossed by capillaries 

[Paweletz &; Knierim, (1989)], with necrosis reappearing later. Hence, in this model the 

development of a necrotic core is due to overcrowding and the eventual collapse of the 

blood vessels at the centre of the tumour.

We note tha t the model is (necessarily) a simple one and neglects several features 

of tum our growth. For example, we do not consider the effect of extravascular pressure 

or the compression of host tissue which can obstruct the flow of blood to the tumour 

cells [Folkman, (1985)]. [Denekamp, (1984)] reports on the possibility of cyclic hypoxia, 

th a t is the temporary opening and closing of vessels for a few seconds or even for a 

few hours. We could include temporarily and permanently hypoxic cells by developing 

an age-structured model. This would involve two age classes for the tum our cells with 

’young’ proliferating cells in one class and ’old’ reduced activity cells in the other, with 

cells switching from class to class whenever nutrient levels were above or below some 

threshold value.

Alternatively, we could develop a mechanical model which focuses on cell-matrix 

interactions [Murray, (1989)]. In the numerical simulations, the wavespeed was slightly 

larger than th a t observed experimentally [Gimbrone et al., (1974)], [Shymko & Glass, 

(1976)]. No doubt this is due to the fact tha t the model is simple and does not consider 

other factors which may moderate the movement of the tumour cells. The extracellular 

m atrix has an im portant role to play in tumour growth, especially invasive growth, since 

it can influence cell adhesion and motility [Blood & Zetter, (1990)], [Carter, (1965)], 

[Darling Sz Tarin, (1990)], [Schor & Schor, (1983)].

The model also assumes radial symmetry. It is unusual for tum ours to grow outward 

to an equal extent in all directions except when grown in a homogeneous environment, 

e.g. in the liver. Studies on multicellular spheroids [Durand, (1990)], [Sutherland,

(1988)] have shown tha t there is heterogeneity in both the spatial distribution of cells 

and the environment. A more realistic model should take this fact into account. We 

will look at a model of tumour growth in a heterogeneous environment in chapter (6).

Nevertheless, in spite of these simplifications, the model produces results which 

are in good qualitative agreement with in vivo observations, and gives a quantitative 

estimate of the invasive speed which is reasonable given the simplicity of the model. By 

improving the model as suggested above, no doubt, better results and predictions will 

be obtained.
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Chapter 5

Travelling waves for a 

density-dependent 

diffusion-reaction system  

m odelling tum our growth and 

invasion

Most cancers of epithelial origin are slow growing at first and can remain localised 

for many years before becoming invasive and metastatic [Ruddon, (1987)]. It can be 

supposed tha t the vascularization of a tumour promotes the propagation of the more 

aggressively growing tum our cells. In this chapter, we wish to develop a simple m ath­

ematical model which describes the growth of a solid tum our and its transition from a 

slowly growing in situ avascular carcinoma to a more aggressively growing phenotype 

which invades surrounding tissue and thus is assumed to metastasise. It provides an 

alternative to the model found in chapter (4) as a description of the interaction between 

the growing tum our mass and its vasculature. The main assumption of this model 

is th a t tumour cell proliferation, death and motility are all events which are depen­

dent upon the density of the tumour cell population, and we show th a t changes in the 

model parameters relating to these events represent changes in the malignancy of the 

tumour. The model presented here is intended to be qualitative, so th a t it is amenable
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to mathematical analysis. In section (5.2) we show some mathematical results for a 

density-dependent diffusion-reaction equation and in particular, we show the existence 

of travelling wave solutions with semi-infinite support. In section (5.3), we present 

some numerical simulations for a single density-dependent diffusion-reaction equation 

which describes the growth of the tumour, as well as some simulations of a PDE system 

representing the interaction of the nascent tumour with its vasculature.

5.1 The m athem atical m odel

This model examines the pattern of tum our growth subsequent to  vascularization, and 

how an increase in the malignancy of a tum our corresponds to a decrease in control over 

normal cellular functions. We make the assumption th a t angiogenesis has successfully 

occurred and model the growth of the tum our and its interplay with the newly formed 

vasculature.

Let u (x ,t)  be the dimensionless tum our cell density and v(x,£) be the dimensionless 

density of the capillary vessels which are composed of endothelial cells. The conservation 

equations are
du „  ,  v
—  +  V .J j =  /(« ,» ) ,

dv  .
—  +  V .J2 =  g(u,v) ,

where J 12 is the flux and f ( u , v ) ,  g ( u , v ) are functions containing the appropriate 

source/sink terms.

It is supposed tha t the transformation from an in situ avascular carcinoma to an in­

vasive vascularized tumour may be caused in part by the process of angiogenesis [Blood 

& Zetter, (1990)], [Folkman, (1985)], [Gimbrone et al., (1974)], [Paweletz & Knierim,

(1989)], [Ruddon, (1987)]. The sudden increase in the supply of nutrients to the tu ­

mour leads to a rapid increase in growth and the development of less well differentiated 

malignant cells which bear little resemblance to the tissue of origin. In culture, nor­

mal epithelial cells are self-regulated by density-dependent mechanisms, such as contact 

inhibition [Clark et al., (1982)b], [Ruddon, (1987)], [Stoker & Rubin, (1967)], th a t is, 

they cease movement at the point of contact with another cell and stop dividing once all 

available space is filled. However, malignant cells in vitro exhibit a decrease in density- 

dependent inhibition of growth [Stoker & Rubin, (1967)] and a loss of contact inhibition
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of movement [Ruddon, (1987)]. Hence, as a cell becomes increasingly malignant, it loses 

the ability to regulate its growth and additionally, it displays an increase in motility

A common characteristic of solid tumours is the development of large regions of 

hypoxic cells within the tumour core [Brown & Giaccia, (1994)], [Denekamp, (1984)]. 

These are regions where the cells are unable to function because of an inadequate nu­

trient supply and so become inactive. Hypoxia can also occur in other pathological 

conditions, for example in a stroke, where the blood vessels in the brain may become 

damaged or blocked so tha t brain cells are starved of oxygen. The vasculature of a 

tum our is often inferior to normal vasculature [Harris et al., (1996)], [Jain, (1994)], 

[Paweletz & Knierim, (1989)] and is insufficient in providing nutrients to the entire 

tumour, particularly if the growth is rapid. In normal tissue, the cells would prevent 

overcrowding by regulating growth and superfluous cells would be removed by pro­

grammed cell death (apoptosis) [Mirsky, (1995)], [Strano & Blandino, (1995)]. In a 

tum our there is no such control, so tha t the tumour outgrows its vasculature and hence 

a large number of tumour cells die or become hypoxic.

To summarise, cell motility, mitosis and programmed cell death are all cellular func­

tions which are regulated to some extent by the density of the surrounding cell popu­

lation. In other words, they are density-dependent events. The extent to which a cell 

population regulates these events varies inversely with the malignancy of the cells. In 

normal tissue, these functions are strictly controlled in order to prevent overcrowding 

and an excess of cells. Many models of population dynamics use density-dependent diffu­

sion where it is assumed that individuals disperse in order to avoid crowding [Grindrod, 

(1991)], [Hosono, (1986)], [Hosono, (1987)], [Murray, (1989)]. Hence, we take the flux 

of the tumour cells to be governed by density-dependent diffusion, i.e.

J j  =  - D lUmVu,  (5.1.1)

where > 0, m  > 0 are dimensionless parameters. For m =  0 we have the standard 

Fickian diffusion and for m > 1 we assume tha t the movement of the tumour cells is 

controlled to a certain extent by contact inhibition, i.e cells avoid compressing other 

cells by moving when intercellular spaces develop, but generally stay aggregated.

We assume th a t the proliferation of the tumour cells is also density dependent and 

tha t proliferation is increased in areas where the density of the vasculature is above a
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threshold level. Furthermore, we assume that the death of the tum our cells can either 

be due to a lack of intercellular space and hence low oxygen levels, i.e. hypoxia, or due 

to programmed cell death, depending on how much control the tum our cell exerts over 

its behaviour. Hence we take our reaction term /(u ,  v) to be given by

/ ( u ,  u) =  aup(( 1 +  v -  vQ)q -  uq), (5.1.2)

where a, p, q > 0, 1 > v0 > 0 are dimensionless parameters, a represents the net rate 

at which the tumour cells proliferate, p measures the dependence of the proliferation 

on the density of tumour cells and q is a measure of control exercised by the tumour

cells in order to prevent overcrowding. If q is decreased we assume th a t death is now

uncontrolled and mainly due to hypoxia. v0 is the threshold level of endothelial cell 

density above which the tumour cells have sufficient nutrients to proliferate above the 

normal level.

Though we do not model it directly, we suppose th a t the tum our has released TAF 

and this has an effect on the behaviour of the vasculature. We assume th a t the endothe­

lial cells are stimulated to move and do so by random motion, i.e J j  =  —D2Vu where 

.Do > 0. We also assume tha t there is a background level of proliferation in addition to 

proliferation due to the release of TAF by the tumour cells, and th a t the death of the 

vasculature is due to a combination of self population pressures and pressures due to 

the uncontrolled growth of the tumour. Hence we take our reaction term g(u,v)  to be 

given by

g(u,v)  = bv(l  -  u (l -  u0) -  v), (5.1.3)

where 6 > 0 is the net rate of proliferation of the endothelial cells.

For simplicity, we assume a one-dimensional Cartesian geometry, and hence our 

system is

W  =  ^ ( “m£ ) + a ^ ( ( l  +  , - , „ ) ’ -u < ) ,  (5.1.4)

~  +  6u(l -  u (l -  u0) -  v). (5.1.5)

This model is purely qualitative, since we do not attem pt to estimate the values of 

our parameters because of a lack of experimental data  concerning the decrease in self-
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regulation in tumour cells. As the tumour becomes increasingly malignant, the param­

eters m, p and q will change. In order to focus attention upon these more im portant 

parameters, we set Do = a =  b =  1, D\  <C D 2 and, for simplicity, we consider various 

integer values of m, p and q.

In the next section, we will look at a system of non-linear diffusion reaction equations 

and show th a t the system can be uncoupled to obtain the single equation describing the 

nascent tumour, i.e.

5=^(“m£)+uP(i-“,)’ (5-L6)
which has weak solutions for m > 1. Murray, (1989) discusses the equation (5.1.6) in 

some detail and gives some exact solutions for particular values of m, p, and q. Recently, 

there has been a lot of interest in non-linear diffusion equations of the form

du d , d u \  ,

and their applications in population dynamics. In particular, if D( u ) =  m um~l and 

f ( u )  =  0, we have the porous media equation which describes the flow of a  fluid through 

an absorbent media. Grindrod & Sleeman, (1987) showed the existence and the stability 

of weak travelling wave front solutions of the equation ut = (u 2 / 2 )xx -f- f (u )  where f (u)  

is a bistable function. Satsuma, (1987) derived some explicit solutions for the equation 

■ut = (u2)xx + f (u)  for a variety of f (u) .  More generally, the equation ut =  {um)xx + \ u n 

has been studied by de Pablo & Vazquez, (1991) for A > 0 and by Grundy, (1988) for

A =  — 1. It is well known tha t if D(u)  is such th a t D(u) = 0 for some u, then the

equation is degenerate at that point and discontinuities arise in the x and t derivatives. 

If the initial conditions for (5.1.7) have compact support, then the solution will have 

compact support for all time.

5.2 Travelling wave analysis o f a density-dependent 

diffusion-reaction equation

Firstly, we shall show some results regarding the following system of equations:

ut = e2 (umux)x +  / (u ,v ) ,  (5.2.8)

Vt = Vxx +  flf(«,v), (5.2.9)
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where m  > 1 and e > 0. Note th a t when u =  0, the nonlinear diffusion term vanishes and 

the equation (5.2.8) becomes a first order ODE. Solutions do not exist in the classical 

sense. Later in this section, we will define a weak solution for u.

We make the following assumptions on /  and g.

• f {u , v )  and g( u , v ) are continuously differentiable on

R ^ =  {(u, v) | u > 0, v > 0}, R =  (—00, 00),

where the bar denotes the closure of the set and f ( u , v )  = uf i (u ,  u), g(u,v)  =

• f ( u , v )  =  g(u,v)  =  0 has two solutions P±{u±,v±)  such th a t u+ =  0, v+ =

We look for travelling wave solutions of the form u(x, t )  =  U(z ), v(x, t )  =  V(z)  

where z =  x — cet. Then (5.2.8)-(5.2.9) becomes

D efin itio n  5.2.1 The bounded piecewise smooth functions ([/, V) with z = x — cet are 

said to be (weak) travelling wave solutions for (5.2.8)-(5.2.9) provided

(a) UmU' exists and is continuous.

(b) U satisfies

vgi(u,v).

• f ( u , v )  =  0 has a positive solution u =  h(v) on some closed interval J_ where 

J -  =  (/3i,/?2)> 0 ^  Pi < 02•

1, u_ =  /i(t>-), v-  £ J -  and 0 < v_ < v+.

c ^ U ' ) ' +  ceU'+ U h { U, V)  =  0, 

V" + ciV ' + V gi (U,V)  =  0,

(5.2.10)

(5.2.11)

with boundary conditions

U (—00) =  h(v_),  V  (—00) =  v_,

U (+ 00) =  0, V  (+ 00) =  1.

(5.2.12)

(5.2.13)

ccZ'U + £ U f1 (U,V))dz = Q,

where ^(2:) is any smooth function with compact support.
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(c) V  satisfies the equation (5.2.11)

(d) {U,V) satisfy the boundary conditions (5.2.12) and (5.2.13).

Following Hosono, (1986), Hosono, (1987) we will now construct an approximation 

to solutions of (5.2.10) and (5.2.11) with boundary conditions (5.2.12) and (5.2.13) using 

a standard singular perturbation technique.

5 .2 .1  F ir s t ord er a p p ro x im a tio n

First we will set e = 0 in (5.2.10) to obtain

Equation (5.2.14) has two solutions U =  0 and U = h(V).  W ithout loss of generality, 

we assume th a t we have a jum p discontinuity some point a t z — z* and we impose

subject to the boundary conditions W(±oo) =  0 and V(±oo) =  v±. We will have a 

unique solution for W{V)  provided gn{V) is a bounded Lipschitz continuous function

Ufi{U,V)  = 0,

v "  +  v gi ( u , v )  =  o, z e R .

(5.2.14)

(5.2.15)

V(z*) = /3 in order to remove the invariance of solutions under translation. Hence we 

have

V" + V 9 l % V )  =  0, z > z * ,  

V" + V 9 l ( h(V) ,V)  = 0, * < * * ,

(5.2.16)

(5.2.17)

with F(±oo) =  v±, V(z*) = (5. 

If we let V'  — W  and

g i(0,F ) ,  z > z-

gi (h(V) ,V) ,  z < z -
(5.2.18)

then we have the following system of two coupled nonlinear ODEs

W  + Vg 2 (V) =  0,

V' = w ,  z e  R,

(5.2.19)

(5.2.20)
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on R , i.e.

\g2 (a) — <72(6)1 < k \a — b\ , Va, 6 £ R , for some constant k > 0.

If we multiply (5.2.19) by W  and integrate once, we have

d(V+)
dz

d(V_)
dz

= -  f  * V 9 l (0 ,V)dV ,
h

=  -  f P v g/ : ' : r ] , v ) d v ,
j  V-

where V± are defined as the solutions to (5.2.16) and (5.2.17) respectively, and

Vo(z;0)  =
V+{z',(3), 2 > 2*,

V_(z;/?), 2 < 2*,

Then (5.2.17) and (5.2.16) has a unique solution V0 (z;j3) £ C X(R). Therefore, by setting

Uo(z;{3)={
h(V0 (z;P)),  z < z * ,

0 z > z*,

(Uq, Vo) is a solution to (5.2.10)-(5.2.11) outside the neighbourhood of z = z*.

We will now construct an approximate solution in the neighbourhood of z = z* using
z

matched asymptotic expansions. Consider the stretched variable (  = —, £ £ R . Then 

(5.2.10)-(5.2.11) becomes

{UmU')' + cU' + U h ( U, V)  = 0 ,  

F "  +  ce2F ' +  £2V</1(t/,F )  = 0 ,

(5.2.21)

(5.2.22)

where / now denotes differentiation with respect to £. By setting € =  0, we get V "  =  0, 

i.e. V  = C\(̂  +  c2, where cL and c2 are constants. By the matching principle we have

lim 17(C) =  lim Uq{z\(3) =  lim h0 (V),<—•±00 z —>z* V — p ±

where

hp(V) = {
0, (3 < V  < v+,

h(V), < V  < (3,

(5.2.23)

(5.2.24)
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and

c—lim V (0  =  lim V0 {z;(3) = (3. (5.2.25)

Hence V  = (3 and we must solve

( u mu y  + c u , + u f l ( u , v )  = o, (5.2.26)

subject to the boundary conditions

U(-oo)  = h(0),  U{+oo ) = 0 . (5.2.27)

Returning to our model, we have

U h { u , v )  = u*{{i + v  - v Qy  -U<) , (5.2.28)

V gi (U,V) = V ( l - U ( l - v 0 ) - V ) , (5.2.29)

so th a t /i(£/, V)  =  0 has a positive solution U — h ( V ) =  1 +  V  — v0 and u_ = h(v_)  =  1 

implies tha t =  v0. Furthermore, ^ (V -), as defined by (5.2.18) is Lipschitz continuous 

for all a, 6 in the domain of g2.

In the next section we will show the existence of travelling wave solutions to equations 

of the form (5.2.26) by following Sanchez-Garduno & Maini, (1994).

5 .2 .2  E x is te n c e  o f  a  t r a v e l l in g  w ave s o lu t io n  fo r  a  d e n s i ty  d e p e n d e n t  

d iffu s io n  e q u a t io n

Sanchez-Garduno & Maini, (1994) and Sanchez-Garduno & Maini, (1993) show the 

existence of travelling wave solutions, u(x, t )  = U(x — ct) for parabolic equations of the 

form

(5.2.30)

where D and /  are defined on [0,1] and satisfy

(1) /(0 ) =  / ( l )  =  0, f (u)  > 0 Vu <E (0,1),

(2) /  G Cfo^ with / ' ( 0) > 0, / ' ( l )  < 0,

(3) D{0) =  0, D{u) > 0 Vu e  (0,1],

(4) D € C(0<1] with D'{u) > 0, D"{u) ±  0, Vw G [0,1],
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with initial condition u (z ,0) =  Uo(z), where u 0 is any piecewise differentiable function 

such th a t 0 < u 0 (x) < 1, and with boundary conditions U(—oo) = 1 and U(+oo) =  

0. We will extend this further to show the existence of travelling wave solutions for 

equations of the above form for a particular D(u ) and f ( u ) but with condition (4) 

replaced by

(4') D G C[o(1] with D'(u)  > 0, Vu £ [0,1],

In particular we let D(u ) =  um and f (u)  =  up{ 1 — u9). Then if we look for travelling 

wave solutions for (5.2.30) of the form u(x, t )  = U(z),  where z = x — ct, we obtain

(iUmU')' +  cU' + UP{ I -  Uq) =  0, (5.2.31)

with boundary conditions U(—oo) =  1, U(+oo) = 0. By a suitable change of variables, 

we can write (5.2.26) in the form (5.2.31). If we let

/  TTm \  /
V  = ( -  — J = - U m~l U', (5.2.32)

and r = m  +  p — 1, then we have,

U> =  (5.2.33)

UmV ' =  - F ( c - y )  +  £/r ( l - C / 9), (5.2.34)

To remove the singularity we set Umd£ = dz, hence the system becomes

U = - U V  = F(U,V) ,  (5.2.35)

V  = - V ( c - V )  + Ur{ l - U q) = G{U,V),  (5.2.36)

where we have used ' to denote differentiation with respect to £. It is easily seen tha t

this system has three critical points,

Pa =  (0,0), Pi =  (1,0), Pc =  ( 0,c). (5,2.37)

A local stability analysis is given in Appendix B .l. Some of the results are included
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here for the convenience of the reader. The eigenvectors a t Pi are

1 1
Vi = , v 2 =

—Ai - a 2

where

Ai,2 =  A i > 0 , a2 < 0 ,

are the corresponding eigenvalues a t P i5 whereas Pc has eigenvalues A12 

associated eigenvectors

(5.2.38) 

i c  with

0 1
Vl =

1
» V2 = -A 'i(0 )

L 2c -1

where

K x( 0) =  Ur —1 1 0, if r  > 1,

1, if r =  1.
(5.2.39)

Hence, Pi and Pc are saddle points. P0 has a centre manifold (see Appendix (B .l)) 

and the behaviour of trajectories close to the origin is given in section (B.1.1). In 

general, if we have initial values (Uq,V q) such th a t \/U q -f Vq is sufficiently small and 

Uq > 0, then solutions will tend to P0 along the centre manifold.

5 .2 .3  E x is te n c e  o f  tra v e llin g  w ave so lu tio n s  for c2  > M  > 0

First, we introduce the following notation: Let VFcu(Pi) and W*(PC) be the left-unstable 

manifold of Pi and the right-stable manifold of Pc, respectively.

We have the following proposition:

P ro p o s itio n  5.2.2 No travelling wave solutions exist for c «  0.

Proof. Consider c =  0. Then (5.2.35) and (5.2.36) becomes

U = - U V  = F0 {U,V),

V  = V 2 + Ur{ l - U q) = Go(U,V).

(5.2.40)

(5.2.41)
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Now consider

u  =  - U 2V  = FZ(U,V),  (5.2.42)

V  =  U V 2 + Ur+' ( l - U ' l) = G*0 {U,V).  (5.2.43)

Since U > 0 and is well behaved, the trajectories of (5.2.40)—(5.2.41) and (5.2.42)— 

(5.2.43) coincide on the region

R  = {(U,V)  |0  <  J7 < 1, -o o  < V  < +oo}.

Now, (5.2.42)—(5.2.43) can be written in Hamiltonian form, i.e.

■ M  V = - 9 H
d V ’ dU ’

where

1 ru ~ -
H(U,V)  = - ~[ UV] 2 -  Ur+1(l  -  U9 )dU,  (5.2.44)

2 Juo

=  - \ [ V V ?  + H(U).  (5.2.45)

The trajectory of (5.2.42)-(5.2.43), (and also of (5.2.40)-(5.2.41)) passing through (1,0) 

is given by the level curve

- \ [ U V ] 2 + H( V)  = H(U0) ,

where

* ( . , • >  -  » :* •  -  J j j )  -  ( s t t t w t w )  ■

Hence, for trajectories in the first quadrant we have

V(U) =

Now for all U G (0,1], H ( U ) is strictly decreasing with its minimum at U = 1, where

(1) =  iT (l, 0). So H(U) — H (1,0) > 0 on (0,1] and hence V (U) is a well defined function 

on (0,1] and J i m+ V{U) = oo. Hence for c =  0 there are no trajectories connecting Pi 

to P0.
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Now consider c «  0. Since the vector field (5.2.35)-(5.2.36) depends continuously 

upon c, U and V,  for c sufficiently small, the path of the unstable manifold of P 1? 

W “(Pi),  is such tha t V( U ) —► oo as U —► 0+. Furthermore, the path of the stable 

manifold of Pc, W*(PC), will leave the region

U 2 =  {{U,V)  |0  < U < 1, 0 < V  < oo}.

a t some point U0 , 0 < U0 < 1, close to P0, since it cannot cross W^(Pi ) .  Hence, no 

travelling wave solutions exist for c «  0.

□

P ro p o s itio n  5.2.3 For each c2 > M , u;/iere

r
M  =  4 r \  ’ /  ?

q + r j  \q  + rq + r /  \q  + r

there exists a travelling wave solution, u(x, t )  = U(x — ct) of (5.2.30), which satisfies 

U (—oo) =  1 and U (+oo) =  0.

Proof. Consider the vertical nullclines V  =  0, i.e.

V 2 - c V + U r( l - U q) =  0,

W = : l S 3 .  (5.2.46)

So Vi(0) =  Vi(l) =  c, ^ (0 )  =  V2(l) =  0. Now consider P{U)  =  4Ur(l — Uq) which has

a maximum on [0,1] at Umax =  ( —-— ) given by
\ q  + t )

M  =  4
q + r j  \q  + r

Furthermore a t Umax, V\ attains its minimum and V2 attains its maximum.

Suppose tha t c2 > M . Then Vi(U) > V2 (U) for all U G [0,1] and the nullclines are 

as shown below in figure (5-1 a). Now suppose c2 =  M.  Then Vi(U) > V2 (U) for all 

U G [0,1] with equality at U = Umax. The nullclines are as shown in figure (5-1 b). 

Finally, suppose tha t c2 < M . Then there is a subinterval, (C/*,C/2) say» °f [0»1] f°r 

which Vi and V2 are imaginary, hence Vi and V2 are discontinuous a t Uf and U% where 

T(U( )  =  P(?72) =  c2. The nullclines are as shown below in figure (5-1 c).
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V

Pc

X

V

Pc

X

(b)Po

V

Pc

(c)Po P i

Figure 5-1: The vertical nullclines o f (5.2.35)-(5.2.36) for (a) c2 > M , (b) c2 =  M  and 

(c) c~ < M .
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Differentiating (5.2.46) with respect to £/, we obtain

VHO) =  v? ( i)  =  | ,  v m  =  ^ ,  VJ(1) =  - | ,

with JK\ as in (5.2.39). From our linear analysis (see Appendix (B .l)), we know tha t 

the slope of W "(P \) is

* ? ( * )  =

and the slope of W*(PC) is

« ( * ) -

Comparing VJ(1) with M “ (Pi) and VJ(0) with MC5(PC), we see tha t

M :(P 1 ) > V ' (  1), M l{P c) > V l (  0),

for all positive c.

Now consider nullclines as in figure (5-1 a). Then, the region

n 3 = {(P, v)  10 < u < 1,0 < v  < V(umax)},

is a positive invariant set of (5.2.35)-(5.2.36) and hence by the Poincare-Bendixson 

theorem, the unstable manifold of Pi connects with the stable manifold of Po. Further­

more, by examining the behaviour of V\ (U) and W*{PC) at Pc and the vector field, we 

see th a t the path of W‘(Pe) will only intersect with Vi(U) (in inverse time) at some 

point (Ui,V(Ui)) where U\ > Umax• Therefore, W£(PC) will leave (in inverse time) the 

region

n A =  {(U ,V ) |0  < U < 1, 0 < V  < oo},

somewhere on {(P, V) | U =  1, V  > 0}. Hence for each c2 > M , there exists a travelling 

wave solution, u (x , t ) =  U(x — ct), of (5.2.30) satisfying U (—oo) =  1 and U(+oo) =  0.

Now consider nullclines as in figure (5-1 b). The unstable manifold W ^{P\) will 

leave Px and will enter

1Z5 =  { (P ,F ) | 0 < P < 1, 0 < F <  F2(E7)},

and the vector field will push W “{Pi) towards V2* Suppose tha t W “(Pi) leaves 11$ a t
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some point (U2, V(U2)) such th a t Umax < U2. Then the vector field will push W ^(P i)  

back into IZ5 . If Umax > U2 then the vector field pushes W ?{Pi) towards P0. Fur­

thermore, we can show tha t the path of WCS(PC) leaves (in inverse time) the region IZ4  

somewhere on {(17, V) \ U =  1, V  > 0} by using the same argument as before. Hence for 

c2 =  M , there exists a travelling wave solution, u (x , t) = U (x — ct), of (5.2.30) satisfying 

U{—00) =  1 and U (-foo) =  0.

□

We have now shown the following theorem.

T h e o re m  5.2.4 1. For each c2 > M , there exists a travelling wave solution, u{x , t) -

U(x — ct), o f (5.2.30) satisfying U(—oo) =  1 and U(+oo) =  0.

2. There are no travelling wave solutions o f (5.2.30) for sufficiently small c.

5 .2 .4  E x is te n c e  o f  f in ite  tra v e llin g  w aves

In this section we consider the possibility of the existence of travelling wave solutions 

for c G [c0, VM],  where c0 is positive and sufficiently small.

D efin itio n  5.2.5 Suppose there exists a wave speed c =  c* > 0 and a point z = z* G 

(—00, + 00) such that u (x ,t)  =  U(z), z =  x — c*t, satisfies

(1) equation (5.2.31) V2 G (—00, z*),

(2) U (—00) =  1, U(z) = 0 Vz G (z*,+oo), U(z*±) = 0,

(3)

—c if m  = 1,

—00 if  m  > 1.

Then u (x ,t)  = U(z) is a finite travelling wave solution o f (5.2.30).

U'{z) =  0 Vz G (z*, + 00), lirn U'(z) =  <

Such a solution exists if there is a trajectory in the {U,V) phase plane (5.2.35)-(5.2.36) 

connecting (0,c) to (1,0).

P ro p o s itio n  5.2.6 Let c 1 and c2 be two arbitrary speeds such that c0 < C\ < c2 < \[M  

and define VCl(U) and VC7 (U) as the paths of W ^(P Cl) and W*2 (PC2) respectively in the 

region

=  {(U ,V)\0 < U < 1, 0 < V < 00}.
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Then,

V"(U ) < VCt(U) < VC,(U) < V ^ U ) ,  W  € [0,1].

Proof. First, note tha t the equilibrium Pc moves away from P0 along the vertical axis

as c increases. Consider the region

Uo = {(U ,V) | 0 < U < U0, 0 < V(U) < VC0 (U ) } ,

and a point (U, Veo(U)) on the boundary of 1Z0 and on the graph of VCo(U). By consider­

ing the vector field (5.2.35)-(5.2.36) with c =  Ci, we note tha t any trajectory th a t passes 

through the point (U ,VCo(U)) will enter 1Z0 and will reach P0 as t —*► oo. Furthermore, 

since FCl(0) =  cx > FCo(0) =  c0, then (0,^ )  is outside of the region 7£0 and W* {PCl) 

cannot enter 1Z0 in inverse time. Hence VCo(U) < VCl(U). By a similar argument we can 

show VCl(U) < VC2 (U) < Vsm{U).

□ .

P roposition  5.2.7 Let 0(U ,V,c) be the angle between the positive U axis and the 

line connecting the origin to the point {U,V) where (£/, V) is the solution to (5.2.35)- 

(5.2.36). Then 9(U,V,c) is an increasing function o f c.

Proof.
v x { cV -  V 2 -  Ur {1 -  U<) 0(U,V,c) = tan - 1 ' v '

so

UV

d0 U V 2
> 0 .

dc {UV ) 2  +  (cV -  V 2 -  Ur{ 1 -  U*))'

□ .

P ro p o s itio n  5.2.8 There exists a critical wavespeed c = c* such that the trajectory 

in the (U ,V) phase plane defined by (5.2.35)-(5.2.36) leaving (1,0) and the trajectory 

approaching (0,c) coincide. Furthermore, c* is unique.

Proof. The existence of c* follows from the continuity of solutions with respect to c and 

proposition (5.2.6).

Now suppose tha t c* and c\ are two such wavespeeds such tha t a connection between 

Pi and Pc+, and Pi and Pc+ both exist and, without loss of generality, let c* < c%. Recall
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th a t the slope of VFcu(Pi) a t Pi is given by

K ( P i )  = c ^  < o,

and M “(Pi) is an increasing function of c. Hence, a t P i, H ^i(Pi) > HP* (Pi). However, 

since c* < Cj, Pc* lies below Pc* on the positive V  axis. So HP*(Pi) and H^*(Pi) 

must intersect at some point, (u*,u*). This contradicts proposition (5.2.7). Hence c* is 

unique.

□ .

Hence we have shown the following theorem:

T h e o re m  5.2 .9  There exists a unique c =  c* such that u (x ,t)  = U(x — c*t) is a finite 

travelling wave solution o f (5.2.30).

We can obtain an upper bound on c* by following de Pablo & Vazquez, (1991). 

Given tha t
dV  c — V  Ur~l { l - U q)
dU U V

(5.2.47)

we have ^  — Ur ~  U9) for 0 < P  < 1. Integrating from U =  0 to U =  1

and V  = c* to  V =  0, we obtain

r(r  +  q ) '

Figure (5-2) shows the dependence of the bound of c* on the parameters p , q and m.

We solved the ODE system (5.2.35)-(5.2.36) using m a t l a b  for c > c* and m = p  =  

q = 1 (figure (5-3)). When c «  c* (in this case we took c =  \/0^5-f 0.001), the solution 

for U(z) has a sharp front and the solution for V(U ) is approximately a straight line 

passing through (1,0) and (0,c*). This can be exploited to find an exact solution for U 

(see Murray, (1989)). If we set

V  = c*(l -  U) 

and substitute for V  in (5.2.47), we obtain
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Figure 5-2: The effect o f varying p, q, and m on the bound C, where c* < C , C  =

( - --(-—-)1/ 2, with the other parameters held fixed at 1 . 
r(r + q)

and when m = p = q =  1 we have c* =  \/0^5- When m = 1, we have from (5.2.33)

U' =  - V  =  - (1 - U )  
\/2 ’

(5.2.49)

which integrates to give

U =
1 — exp ^ ■ ) for z < z*

0 for z > z*
(5.2.50)

Figure (5-4) compares the exact solution for U (5.2.50) with the numerical solution 

of (5.2.35)-(5.2.36) with m  =  p =  q =  1, c «  c*.
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Figure 5-3: A numerical solution o f the ODE system (5.2.35)- (5.2.36) for m  — p — q — 1 

as c is increased above c*. The top figure shows the solution for U as a function o f 

z — x — ct. The bottom figure shows the solution in the (U, — Um~1 U') plane. The 

dotted line is the solution for c «  c*, where c* < (0.5)1̂ 2. In this case, there is a 

heteroclinic connection between Pi and Pc and the travelling wave solution has semi­

infinite support.
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* exact solution0.9

—  numerical solution0.8

0.7

0.6

^  0.5

0.4

0.3

0.2
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Figure 5-4: The numerical solution for U o f the ODE system (5.2.35)- (5.2.36) for 

m = p = q = l ,c z ic *  (solid line) as compared with the exact solution for U ( * ’s) with 

z* «  6.3.
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5.3 Numerical simulations

We conducted our numerical simulations using a parabolic PDE solver available from

the N A G  library. We chose block initial conditions in all our simulations such th a t

if 0 < x < 0.25, w(x,0) =  l ,  v(:r,0) =  0,
V (5.3.51)

if x > 0.25, u(a;,0) =  0, u(a:,0) =  l,

In the simulations presented here, the boundary conditions were taken to be

n(0,t) =  » (£ ,() =  1, ^  =  ^  =  0, (5.3.52)

where the right hand boundary (i.e. the limbus) was taken to be a t x =  L and in

general we took L =  10. Other boundary conditions for u were considered such as 
d u

um~l —  =  0 a t both boundaries. This did affect the solution at the left hand boundary, 
ox

which is where the diffusion term degenerates and hence there is a loss of accuracy 

in the numerical scheme (see n a g  documentation). In simulations of the PDE system 

(5.2.8)-(5.2.9), u(0,<) ~  1, but for the simulations of the single PDE equation (5.2.30), 

«(0 ,t)  < 1. Fixing u a t the left hand boundary allowed for direct comparisons between 

the PDE and ODE solutions.

First, we compared the solution of the PDE (5.2.30) with m  = p = q = 1 with 

the exact solution of the ODE system given by (5.2.50). Figure (5-5) shows th a t the 

solution of the PDE system converges to a travelling wave front after finite time (see 

appendix (B.2)).

In the second set of simulations, we examined the effect of varying the parameters 

m, p and q on the single equation (5.2.30), which modelled solely the growth of the 

tumour. Figure (5-6) shows the effect of increasing m  whilst fixing p and q. When 

m  — 2 (bottom picture) the tumour has a distinct edge and expands slowly. For m  — 1 

(middle picture) the tumour is still encapsulated, but moves across the domain faster 

than before. The front of the tumour is less steep, indicating a more penetrative/invasive 

tumour. When m =  0 (top picture) we have Fisher’s equation and the solution is no 

longer has compact support. The tumour cells quickly reach the right hand boundary. 

There is a small amount of tumour cells moving ahead of the bulk of the tum our mass, 

suggesting tha t the tumour is highly invasive. Hence an increase in m  corresponds to a
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Figure 5-5: A numerical solution o f the PDE (5.2.30) for m = p =  q =  1, (solid line) at 

t = 10 as compared with the exact solution (5.2.50) for U ( * ’s) with z* «  8.4.

decrease in the invasion speed and an increase in the steepness of the tumour front (cf. 

figure (5-2)).

Figure (5-7) shows the effect of increasing p whilst keeping m and q fixed. Examina­

tion of the three solutions shows that whilst the steepness of the tumour front stays the 

same, the tumour moves across the domain more slowly as p increases. The opposite 

effect can be obtained (figure (5-8)) whereby the tumour moves faster across the domain 

as parameter q is increased (cf. figure (5-2)). This scenario has interesting biological 

implications which we discuss later.

To summarise, these simulations (figures (5-6)-(5-8)) have the following biological 

interpretation:

• A decrease in m corresponds to a gradual loss in contact inhibition of motility and 

hence a more invasive tumour.

• A decrease in p corresponds to a decrease in density-dependent inhibition of growth 

and hence the loss of growth regulation.
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Figure 5-6: A comparison of three numerical solutions o f the PDE (5.2.30) forp  =  q =  1, 

with m  =  0 ("top picture), m = 1 (middle picture) and m =  2 (bottom picture). Plots 

drawn at t = 1 ,2 ,3 ,4 ,5 . We conclude from this, that a decrease in m coincides with an 

increase in the invasive growth o f the tumour.

• A decrease in q corresponds to an decrease in density-dependent death (e.g. pro­

grammed cell death which prevents overcrowding) and hence a net increase in 

death due to population pressures which lead to a lack of oxygen (hypoxia).

In general, we conclude that a decrease in any of the parameters m, p , q is equivalent 

to an increase in the malignancy of a tumour. Many tumours grow slowly at first and 

become increasingly malignant over time. The suggestion is that as the tumour grows, 

it increasingly bears little resemblance to the tissue of origin and hence, gradually loses 

the ability to regulate its growth. We can model this by assuming tha t m  is a decreasing 

function of time, for example, m(t) = m ^ l  — tanh(f)). Figure (5-10) shows the numerical 

simulation of (5.2.30) with m  =  m (t) as in figure (5-9). However, because of difficulties 

with the numerical algorithm, we took integer values of m. Initially the tumour growth 

is compact, but gradually the tumour front becomes less steep, indicating that the 

tumour has developed into a more invasive phenotype as time progresses.
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Figure 5-7: A comparison of three numerical solutions o f the PDE (5.2.30) for m = q = 

1, with p = 1 ( top picture), p =  2 (middle picture) and p = 3 (bottom picture). Plots 

drawn at t = 1 ,2 ,3 ,4 ,5 . We infer from this simulation, that a decrease in p corresponds 

to an increase in expansive tumour growth.
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Figure 5-8: A comparison o f three numerical solutions o f the PDE (5.2.30) for m  =  

p = 1, with <7=1 (top picture), q = 2 (middle picture) and q =  3 (bottom picture). 

Plots drawn at t = 1 ,2 ,3 ,4 ,5 . The simulations suggest that a decrease in q, results in 

an increase in overcrowding and hence an increase in tumour cell death.
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Figure 5-9: An example o f m = m(t) as a decreasing function o f t. This models 

the decrease in contact inhibition of movement over a period o f time. We have m = 

77ii ( l  — tanh(i)) (dashed line) and m  =  INTEGER[mx( 1 -  tanh(£))] (solid line). We 

took m x =  3 in the following numerical simulation.
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Figure 5-10: A numerical solution o f with m  =  m (t), a decreasing function o f t, which 

models a decrease in contact inhibition of movement over time. The tumour loses 

its compactness and becomes more invasive, which simulates the transformation of an 

in situ carcinoma into a more invasive, malignant phenotype. Plots drawn at t = 

0.1,0.3,0.5,0.7,0.9,1.1,1.3.
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Figure 5-11: A numerical solution o f the PDE system (5.2.8) -(5.2.9) with m = p = 

q — 1, u_ =  0.5 and € =  0.1. The profile o f the tumour is compact as it moves across 

the domain, with the vasculature regressing from the advancing front o f tumour cells. 

Plots drawn at t =  2 ,4 ,6 ,8 ,10.

Finally, we conducted numerical simulations of the PDE system (5.2.8)-(5.2.9) in 

order to show the interaction between the growing tumour and its vasculature. The 

previous simulations can be used to represent both benign or malignant tumours. In 

the following simulations the tumours are vascularized and it is more likely that such 

tumours will metastasise.

Figure (5-11) with ra =  p =  <7 =  l i s a  typical simulation. We see that the capillaries 

have quickly penetrated the entire tumour and the density at the centre subsequently 

decreases to (in this case we arbitrarily took v_ — 0.5). The vessels regress as the 

tumour mass moves across the domain.

The simulations with m =  3, p = q = 1 (figure (5-12)) and with p = 3, m = q =  l 

(figure (5-13)) were similar. However in each case the tumour grew quite slowly and the 

regression of the vasculature was not very severe. Interestingly, from a pathological point 

of view, the tumour invaded best when q was chosen to be greater than m  and p (figure
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Figure 5-12: A numerical solution o f the PDE system (5.2.8) -(5.2.9) with m  =  3, 

p = q = 1, =  0.5 and e =  0.1. In this simulation, the tumour moves more slowly

across the domain, and the regression of the capillary vessels is less marked. Plots drawn 

at t =  2 ,4 ,6 ,8 ,10.

(5-14)). The tumour mass quickly invades the vasculature, the regression of which is 

quite acute. At first this case seemed to be counter-intuitive in that a large density- 

dependent death rate appears to benefit the tumour. It can be supposed however, that 

by selectively killing some cells, overcrowding can be prevented thus avoiding hypoxia. 

The increase in oxygen levels can help promote the proliferation of the remaining cells 

and hypoxia can be prevented further by the cells invading the vasculature where oxygen 

levels are high.
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Figure 5-13: A numerical solution of the PDE system (5.2.8) -(5.2.9) with p =  3, 

m  =  q =  1, i>_ =  0.5 and e =  0.1. This solution is similar to the simulation shown in 

figure (5-12). Plots drawn at t = 2 ,4 ,6 ,8 ,10.
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Figure 5-14: A numerical solution o f the PDE system (5.2.8) -(5.2.9) with q =  3, 

m =  p =  1, =  0.5 and e = 0.1. Here the speed o f the advancing tumour front has

noticeably increased and the regression of the vasculature is more pronounced. Plots 

drawn at t = 2,4 ,6, 8.
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Chapter 6

Two-dim ensional m odels o f  

tum our invasion in heterogeneous 

host tissue

One of the characteristics of a malignant tum our is the invasion of the neighbouring host 

tissue. Local dissemination of the tumour can have a number of serious consequences. 

Firstly, it can compromise the function of normal adjacent tissue. Secondly, it can 

result in an indistinct tumour boundary, which makes the carcinoma difficult to remove 

surgically. Furthermore, the invasive tumour cells can infiltrate local blood vessels and 

consequently metastasise.

In this chapter, we examine how the structure of the host tissue contributes to the 

m etastatic potential of the tumour by assisting or hindering the invasion process. Fur­

thermore, we show tha t the irregular shape, which is typical of an invading carcinoma, 

can be caused in part by the heterogeneities in the surrounding host tissue. We develop 

a two dimensional model of tumour invasion in heterogeneous host tissue, whereby a 

spatially dependent diffusion coefficient is used to model the variations in the tissue 

structure. In section (6.2), we present some two-dimensional numerical simulations of 

a tum our grown in four different domains, which capture the irregular and indistinct 

shape of the tumour. By estimating the speed at which the tum our cells reach the 

boundary, we show tha t some host tissue structures can impede or contribute to the 

invasion process. Furthermore, we show that, whilst the infiltration of some host tissue 

structures is limited when the proliferation of tum our cells is low, an increase in the
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proliferation rate can facilitate the invasion of the entire host tissue. In section (6.3), 

we present an informal travelling wave analysis of the model in one space dimension 

and show th a t the spatially dependent diffusion term is equivalent to a combination of 

diffusion and nonlinear convection.

6.1 A m athem atical model o f tum our invasion

The majority of models of solid tumour growth are based on the idealisation tha t growth 

is isotropic. Whilst benign tumours grow by expansion [Ruddon, (1987)] and many are 

quasi-spherical in shape, for example, leiomyoma of the uterus (fibroid) [MacSween & 

Whaley, (1992)], this is rarely true of malignant neoplasms which tend to be irregular 

in shape [Darling & Tarin, (1990)], [Eaves, (1973)], [Ruddon, (1987)]. [Gimbrone et aL, 

(1974)] observed th a t a prevascular tumour implanted into a rabbit cornea, grew as thin 

circular plates. On closer examination, the tumour appeared to have penetrated the 

corneal lamellae, resulting in a feathered edge. A common feature of liver cell carcino­

mas is the permeation of the surrounding vein branches resulting in an irregular shape 

[MacSween h  Whaley, (1992)]. Suh & Weiss, (1984) used cancer cell density maps to 

study the distribution of tumour cells a t the advancing edge of an invasive melanoma and 

found tha t the outline of the tumour was irregular with a gradual centrifugal diminu­

tion in cancer cell density towards the advancing edge. It can be supposed th a t the 

composition of the host tissue surrounding a tumour can determine the shape of the 

neoplasm.

Primary tumours originating in different anatomical sites exhibit wide variations 

in metastatic potential. For example, benign tumours of the liver are extremely rare 

[MacSween & Whaley, (1992)]. Tumours of smooth (involuntary) muscle can be be­

nign or, more infrequently, malignant, whereas striated (striped or voluntary) muscle 

tumours are nearly always highly malignant [MacSween & Whaley, (1992)]. (Note tha t 

smooth muscle lacks the highly organised structure found in striated muscle). It is also 

known tha t certain anatomical structures are relatively resistant to invasion by tumour 

cells [MacSween & Whaley, (1992)], [Nicolson, (1988)], [Ruddon, (1987)], for example, 

cartilage, aorta, cornea lens. It can therefore be hypothesised th a t the type of tissue 

surrounding a neoplasm can influence a tum our’s latent ability to metastasise.

The main assumption in this model is tha t the heterogeneity of the host tissue
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affects the ability of the tumour to invade and also contributes to the tum our’s irregular 

shape. We incorporate heterogeneity into the model by assuming th a t the diffusion of 

the tumour cells is spatially dependent, reflecting the fact tha t some areas of host tissue 

are easier to invade than others.

If u (x ,t)  is the density of the cancer cells at position x  and time t then, assuming 

tha t the tum our cells simply diffuse and proliferate, the equation modelling invasion of 

the local tissue by the cancer cells is given by

071 7L
—  =  V .(D (x)V u) +  au( 1 -  - ) ,  (6.1.1)

where D(x) is the spatially-dependent diffusion coefficient and a is the net rate of 

production of the tumour cells and U is the carrying capacity of the environment.

We assume tha t x  =  (x,t/) and x, y E [0,L], so th a t our model represents a two- 

dimensional cross-section of a tumour. We introduce dimensionless parameters into the 

system by making the following substitutions;

* x * V dt
X = V  y = V  t = L>

u* =  77, D*(x*,y*) =  D ^ y l y a * = aL
U ’ v '  d ’ d ’

where U is the maximum tum our cell density and d is the average diffusion rate over an 

area L 2. Hence, dropping the a ’s for notational convenience, equation (6.1.1) becomes

du
dt = i  (D { x ' y )£)+i  ( D { x ' y ] S ) +au(1 ■u) ■ (6-1-2)

In order to close the system, we choose zero flux boundary conditions. By this 

we assume th a t the host tissue is surrounded by some (semi)impermeable barrier (i.e. 

m ature vasculature) or is somehow contained in vitro, (e.g. within a square Petri dish). 

In the majority of the numerical simulations shown here, we choose initial conditions 

as follows;

1, if (x -  0.5)2 + (y — 0.5)2 < 0.1,
u ( x , y , 0 ) = < (6.1.3) 

0, otherwise.

This corresponds to a circular cross-section of a spherical tum our in the centre of the 

host tissue. In some of the numerical simulations shown here, we assume the initial
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distribution of tumour cells to be a rectangular strip of width 0.1 placed along the 

ar-axis. This represents a cross-section of a squamous cell carcinoma (of the skin, for 

example) a t the edge of the host tissue.

6.2 Num erical simulations

In the numerical simulations tha t follow, we used the method described in chapter (2), 

section (2.2) which was extended to two space dimensions by approximating the spatial 

derivatives using five point differencing. Note tha t, (using the notation of chapter (2), 

section (2.2)), we now obtain ( J - f l )2 x (N P D E ) coupled ODEs, which significantly in­

creases the time taken to solve the system. The numerical simulations are conducted for 

different D(x , y )  in order to model a variety of host micro-environments (i.e. randomly 

mixed tissue, cartilage, immature vasculature) and for different values of a. In this way 

a comparison between the importance of diffusion and proliferation for invasion can be 

made.

The four different functions of D(x, y )  th a t we used in this model, which represent 

four different host tissue domains, are shown in figure (6-1). Each domain was divided 

into 100 equal regions and the diffusion coefficient in each region was chosen at random 

from a set of diffusion coefficients which represents the type of tissue to be modelled in 

each simulation. The overall structure of the host tissue varies from a domain consist­

ing of randomly mixed, dissimilar tissue, to domains containing structures resistant or 

susceptible to invasion by the tumour cells.

In the first set of simulations, D(x,  y) is randomly generated such th a t the diffusion 

coefficients are uniformly distributed between 0 and 1. This corresponds to a domain 

consisting of a variety of dissimilar tissue. Initially the tum our is circular with radius 

0.1. Figure (6-2) shows how the growth of the tumour progresses in such a randomly 

mixed domain. The growth is evenly spread in all directions but the surface of the 

tum our is irregular and appears to be covered in small protrusions which is typical of 

an invading carcinoma. Figure (6-3) is a contour plot of the solution shown in figure 

(6-2). This represents the portion of the tumour visible to the eye, assuming tha t 

tum our cell densities below O.i cannot be detected. Comparison of figure (6-2) with 

figure (6-3) shows tha t surgical excision of the tumour is required beyond the observed 

tum our boundary in order to prevent regrowth. From the simulations, we estimate the
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Figure 6-1: Four different domains corresponding to the four different values o f D(x,y) 

used in the numerical simulations. The light colour indicates a region o f high permeabil­

ity. The first domain represents randomly mixed, dissimilar tissue. The second domain 

consists o f large areas o f high and low permeability, which represents large structures 

that are relatively resistant to invasion. In the third, the host environment is more po­

larised and contains small areas o f very low permeability, for example small fragments o f 

cartilage. Finally, the fourth contains a path o f high permeability such as an immature 

blood vessel.
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Figure 6-2: A colour surface plot showing the growth o f a circular tumour in a randomly 

mixed tissue after time t. =  0.06 with a =  0.5. The light colour indicates a region o f high 

tumour cell density. The periphery o f the tumour is covered in small protrusions, indi­

cating local invasion o f the host tissue, a characteristic typical o f malignant carcinomas.
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Figure 6-3: A contour plot showing the growth of a circular tumour in a randomly 

mixed domain after time t =  0.06 with a =  0.5. By comparing this simulation with the 

simulation shown in figure (6-2), we see that the perceived tumour boundary is within 

that actual tumour boundary. The (dimensionless) invasion speed is estimated to be 

6.7.

dimensionless invasion speed to be 6.7.

Next, we took D(x,  y) as in figure (6-lb), which corresponds to a domain containing 

large areas of high and low permeability. In the low areas the diffusion coefficients 

are uniformly distributed between 0 and 0.5 and in the high areas the distribution is 

between 0.5 and 1. Again, we took the tumour to be circular initially and figure (6-4) 

shows that the growth of the tumour in such a domain is biased in the direction of least 

resistance. It is interesting to note that the presence of large and relatively impenetrable 

areas seem to have assisted the invasion process since the edge of the tumour appears 

to have reached the boundary quicker than in the previous example. This time the 

dimensionless invasion speed is estimated to be 10.

From our third set of simulations, it became clear that the heterogeneity of the 

domain could also hamper the invasion process. This time D(x,y)  was more polarised
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Figure 6-4: The growth of a circular tumour in a domain consisting o f large areas o f 

high and low permeability. In this example, the structure o f the host tissue enables the 

tumour to reach the boundary quicker with an estimated invasion speed o f 10. Plot 

taken at time t =  0.04 with a = 0.5.

in the sense that the diffusion coefficients were randomly chosen to be 0.001, 0.3 or 0.6. 

This corresponds to a domain containing small regions of high, medium or very low 

permeability. In figure (6-5), we see that the tumour has taken a much longer time to 

reach the boundary. Here the dimensionless invasion speed is about 0.1. However, the 

invasion process can be assisted by increasing the proliferation rate. By doubling the 

proliferation rate, we obtained the solution as shown in figure (6-6). Here, the tumour 

has been more successful in invading the entire domain. The role of proliferation in 

the invasion process becomes more apparent if we take different initial conditions. For 

example, if initially we have a band of tumour cells of width 0.1, then the growth 

progresses as shown in figure (6-7). Even after time t = 10, the tumour has grown very 

little and invasion into the local tissue appears to have stopped completely. However, 

by increasing the proliferation rate, the tumour successfully invades the entire domain 

(figure (6-8)).
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Figure 6-5: The growth o f a circular tumour in a domain consisting o f small regions o f 

very low permeability (i.e. cartilage). In this case, the tumour takes much longer to 

reach the boundary. Plot taken at time t =  5 with a =  0.5.

In the final set of simulations, we took D (x ,y ) as in figure (6-ld), in which an 

area of high permeability represents a structure such as immature vessels in the host 

environment. The rest of the domain consists of tissue which is unfavourable to invasion. 

Figure (6-9) shows that the tumour growth, in general, is biased in the direction of the 

vasculature, parallel to the y-axis. However, one interesting occurrence was that there 

was a moderate amount of movement out of, and perpendicular to, the vasculature. The 

tumour cells have reached the boundary quite quickly with an estimated (dimensionless) 

invasion speed of about 5. The overall pattern of tumour growth was not affected by 

varying the proliferation rate.
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Figure 6-6: The growth of a circular tumour in a domain consisting o f small regions o f 

very low permeability but with increased proliferation rate. In this case, the invasion of 

the host tissue is noticeably more widespread. Plot taken at time t =  5 with a =  1.

6.3 Travelling wave analysis o f invasion in a 

heterogeneous dom ain

We will now consider a one-dimensional analogue of the two-dimensional model given 

in (6.1). Firstly, consider the equation

which can be expanded to

§7 = D(l)̂  + zr(x)S + ““(1-“)' (6'3'5)

When viewed in this form, we can see that the nonlinear diffusion term consists of two 

terms—diffusion, which attempts to smooth out the solution, and a nonlinear convective

0.2 0.3 0.4 0.5 0.60.1 0.7 0.8 0.9 1
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Figure 6-7: The growth o f a band o f tumour cells (for example, squamous cell carcinoma) 

in a domain consisting of small regions o f very low permeability (i.e. cartilage). The 

tumour fails to fully invade the local tissue and stops growing. Plot taken at time t = 10 

with a =  0.5.

term, which can lead to shocks in the absence of diffusion [Logan, (1994)], [Murray, 

(1989)]. Whether or not the convection process enhances the diffusion effect, or hinders 

it, depends on the sign and size of D'(x).

We assume block initial conditions as follows;

u(x,0) =
1, for 0 < x < 0.1, 

0, otherwise.

This could represent approximately a vertical cross-section of a circular tumour with 

centre at x =  0.

As previously, we assume that the tumour is growing in a mixture of tissue with 

different permeabilities. Within one tissue type, D (x) ~  constant, D'(x) ~  0. Hence, 

we assume that, in the interior of tissue i, the permeability corresponds to the constant
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Figure 6-8: The growth of a band o f tumour cells (for example, squamous cell carcinoma) 

in a domain consisting o f small regions o f very low permeability. By increasing the 

proliferation rate, the tumour has now successfully penetrated the entire host tissue. 

Plot taken at time t =  7 with a = 1.

diffusion coefficient D;, and thus, equation (6.3.5) can be approximated by

du d2u
m = D id ^  + au{1~ u)-(6-3'6)

Therefore, in the interior of tissue i , the equation (6.3.5) can be approximated by a 

travelling wave solution of the form u(x, t ) = U(z),  z — x — ct, where c =  2y/Dia (by 

standard analysis of Fisher’s equation [Murray, (1989)]).

During the transition from one tissue type to another, the non-linear convection 

term will come into play. Hence in this transition region, i.e. the transition from tissue 

i to tissue i +  1, we approximate equation (6.3.5) by

<6-3-7)
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Figure 6-9: The growth of a circular tumour in a domain consisting o f high areas o f 

permeability which simulates the path o f a blood vessel. Growth o f the tumour is biased 

in the direction parallel to the vessel, though there is some lateral movement. Plot taken 

at time t =  0.09 with a =  0.5

where sgn(fc,) =  sgn(A +i — A )- We seek a travelling wave solution to this equation, of 

the above form with c > 0 and hence, we have

-  cU' = DiU" +  kiU' +  aU(l  -  U). (6.3.8)

Let V = U' . It is easily seen that

dU D{V
dV -{c  + ki)V  - a U { l - U y  

has two critical solutions (0,0) and (1,0). At (0,0) the eigenvalues are given by

(6.3.9)

- ( c  +  D '(x))± J  fc,)2 -  4Di<t (6.3.10)

Since A  and a are positive, (0,0) is stable if A:, > — c and unstable otherwise. Further-
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more, the eigenvalues are real if (c+  ki) 2 > 4Did, i.e. if p(c) > 0 where

p(c) =  c2 +  2cki -f k 2 — 4Did.

We have three possibilities.

1. ki > 2y/Dia  > 0. Then p(c) =  0 has two negative solutions and p(0) > 0. Hence, 

c > 0 > —ki +  2y/Dia satisfies p(c) > 0 and > —c.

2. ki < —‘lyJDia  < 0. Then p(c) = 0 has two positive solutions and p(0) > 0. Hence,

c > — ki +  2y/Dia > 0 satisfies p(c) > 0 and fc, > — c.

3. —2y/Dia < ki < 2y/Dia < 0. Then p(c) =  0 has one positive and one negative

solution and p(0) < 0. Hence, c > —ki+2y/D ia  > 0 satisfies p(c) > 0 and k{ > —c. 

Therefore, the minimum wave speed c =  cmin is given by

Cmin — ^
—ki +  2y/Dia, for ki < 2y/Dia,

(6.3.11)
0, for ki > 2y/Dia.

Hence, we conclude that, if h  < 0, then the tumour invasion of the host tissue is assisted 

by the convective effect, but if > 0 then invasion is hindered. Furthermore, if ki is 

positive and sufficiently large, i.e. ki > 2y/Dia, then the growth can stop altogether 

(see figure (6-7)).

To illustrate how changes in the tissue type can effect the invasion process, we solved 

equation (6.3.4) numerically. We took D (x) =  D i(x), where D i(x) represents a tissue 

domain divided into ten subdomains, with the diffusion coefficient in each subdomain 

chosen at random from a uniform distribution (see figure (6-10)). Figure (6-11) shows 

th a t whilst the majority of the tumour is confined to the region below x = 0.3, where 

there is an abrupt increase in the diffusion coefficient, a very small density of tum our 

cells quickly invade the rest of the host tissue. From a surgical point of view, this 

tum our is deceptive, since it appears to have a distinct edge. By analysing the properties 

and composition of the host tissue at the perceived tumour boundary, a surgeon may 

anticipate th a t the tumour has invaded the host tissue beyond, and prevent tum our 

regrowth by adjusting the treatm ent strategy accordingly.
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Figure 6-10: A plot o f the spatially dependent diffusion coefficient D i{x). Note that, at 

x  =  0.3 there is an abrupt increase in the diffusion coefficient.

6.4  D iscussion

This model is a first attem pt at introducing heterogeneity into a mathematical model 

of tumour growth. The model is very simple, with no sophisticated mechanism required 

to produce the fingering effect which is typical of an invading carcinoma. The model 

highlights the problem faced by a surgeon during the excision of a locally invading 

carcinoma. The surgeon must be satisfied that the tumour is completely removed and 

at the same time must minimise the damage to normal healthy tissue.

In theory, the model is experimentally testable. For example, it should be possible 

to grow cancer cells in a petri-dish containing dissimilar tissue. This would be an exten­

sion of multicellular spheroid models [Adam & Maggelakis, (1990)], [Durand, (1990)], 

[Sutherland, (1988)], which are normally grown in homogeneous cultures. The numeri­

cal simulations allow us to estimate the speed at which the cancer ceils invade different 

tissue types and these suggest that there is a link between the metastatic potential of the 

tumour and the composition of the host tissue. Certain tissue combinations can provide
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Figure 6-11: A numerical simulation of equation (6.3.4) with D(x)  =  D i(x) as shown 

in figure (6-10).

paths of least resistance which are quickly and easily penetrated by the tumour. This 

can assist the invasion process and may eventually lead to metastases. On the other 

hand, some tissue structures can restrict the tumour growth or even stop it altogether.

One way the model can be improved is to introduce heterogeneous cell populations 

instead of (or as well as) a heterogeneous environment. It is known that a tumour 

consists of sub-populations of tumour cells of varying malignancies, and may even in­

corporate normal cells [Fidler, (1978)], [MacSween & Whaley, (1992)]. This could be 

reflected in a simple model where each sub-population had a different (and perhaps 

density dependent) diffusion coefficient and proliferation rate.

A vascularized tumour may not have an evenly distributed blood supply and may 

contain hot spots of dense vasculature [Ellis &: Fidler, (1995)] and hence there is an 

uneven distribution of metabolites throughout the tumour. This could lead to an ir­

regularly shaped tumour and may affect the tumour’s latent ability to metastasise. We 

could include active invasion mechanisms in the model, whereby the tumour cells react 

to blood vessels in a similar manner to that of ’taxis’ [Orme & Chaplain, (1996)b] in
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order to maintain their supply of nutrients.

Finally, an alternative approach would be to use a mechanochemical model [Oster & 

Murray, (1989)], with different constitutive equations representing different host tissue- 

tum our cell interactions. Byrne & Chaplain, (1996) showed tha t different constitutive 

equations led to different dispersion relations. Hence, the constitutive equation could 

be used as a way of classifying a tumour.
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Chapter 7

Two-dim ensional m odels o f  

tum our angiogenesis and 

anti-angiogenesis strategies

There is a very strong link between the vascularization of a tum our and the spread of the 

disease, both locally and to distant sites. The direct supply of nutrients into the tum our 

results in a rapid increase in growth [Ellis & Fidler, (1995)], [Gimbrone et al., (1974)], 

[Muthukkaruppan et al., (1982)]. Solid tumour growth is dependent on angiogenesis and 

any significant increase in tumour size must be preceded by an increase in the vasculature 

[Norton, (1995)], [Paweletz h  Knierim, (1989)]. Furthermore, vascularization increases 

the possibility of tumour cells entering the blood stream [Blood & Zetter, (1990)], [Ellis 

& Fidler, (1995)], [McCulloch et al., (1995)], which may consequently lead to metastases. 

It has been suggested tha t some measure of the intensity of the tum our vasculature could 

be used as a prognostic factor [Ellis & Fidler, (1995)], [Folkman, (1995)], [McCulloch 

et al., (1995)], [Norton, (1995)]. For example, Frank et al., (1995) have developed a 

technique for grading angiogenesis in order to determine whether increased angiogenesis 

correlates to higher recurrence and reduced survival in patients suffering from cancer of 

the colon.

It seems clear th a t anti-angiogenesis strategies could be used to augment existing 

treatm ent modalities [Folkman, (1985)], [Harris et al., (1996)]. M athematical models 

such as the one given here can help us to understand the mechanisms behind angiogenesis 

and to identify the different ways by which the angiogenic process can be interrupted.
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In this chapter we will develop a two-dimensional model of capillary vessel formation. 

As before in chapter (3), we examine the role tha t haptotaxis may play during the 

growth of the neovasculature. By suitable manipulation of the model parameters, we 

simulate a variety of anti-angiogenic strategies and examine the effect on the pattern 

of capillary growth. Finally, we suggest an alternative mechanism to capillary vessel 

formation which does not involve haptotaxis.

7.1 The m athem atical model

This mathematical model is based on the assumption tha t diffusible chemicals, generi- 

cally referred to as tumour angiogenesis factors (TAFs), are released by the tum our cells 

and th a t these chemicals stimulate the endothelial cells (EC) in nearby blood vessels to 

grow and migrate towards the tumour. It is known tha t different TAFs provoke different 

responses in the EC [Folkman & Klagsbrun, (1987)]. For example,

• Some TAFs act as a chem oattractant, whereby the EC move up the chemical 

gradient towards the tumour (chemotaxis).

• Some TAFs induce the EC into secreting adhesive substances (e.g. fibronectin, 

collagens) and this creates an adhesive gradient which the EC move up (haptotaxis 

[Carter, (1965)]).

If n(x, t) denotes the density of the EC, c(x,<) the concentration of TAF, p (x ,f) the 

density of an adhesive chemical, such as fibronectin, at position x  and time f, then the 

general conservation equations are

Qri
=  - V .J  +  i>1(n ,p ,c), (7.1.1)

^  =  D 2 V 2p + S 1 {n,p,c) + P 2 (n ,p ,c ), (7.1.2)

dc
—  = D3 V 2 c+  S 2 (n ,p ,c) + P3 {n ,p ,c), (7.1.3)

where J  is the flux of the EC, D*, (i =  2,3) are the (constant) diffusion coefficients, 

Pt , (i = 1,2,3) are net production/loss terms and 5,, i = 1 , 2  are sink terms modelling 

the uptake of the chem otactic/haptotactic chemical by the EC. These terms will be 

made explicit below.
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First, we assume tha t the flux of the EC is governed by diffusion, haptotactic and 

chemotactic movement, such tha t we have

J  =  —D i V n  +  x n ^ P  +

where Di is the diffusion coefficient, \  1S the haptotaxis coefficient and k is the cherno- 

taxis coefficient. For simplicity, we assume that D i , Xi K are aU constant. We further 

assume tha t the proliferation of the EC is governed by logistic type growth and tha t 

any cell loss is linear. Hence we assume tha t Pi takes the form

71
P i{n,p, c) =  pn( 1 ------ ) -  fin,

n 0

where p is the proliferation rate of the cells, n 0 is the maximum sustainable cell density 

and 3 is the rate of cell loss, fn their one dimensional model of tum our angiogenesis, 

Chaplain et al., (1995) considered the first order loss term —/5n to be a loss due to 

the formation of secondary capillary buds. In two or more dimensions however, such 

a term represents a loss due to cell death. Since EC have a long half life [Paweletz & 

Knierim, (1989)], we assume tha t any death occurs due to external intervention, i.e. the 

introduction of a cytotoxic drug. In this model, we suppose th a t the initial release of 

TAF induces the EC into secreting an adhesive (haptotactic) chemical p, which saturates 

as p increases. If B  is the threshold level of the haptotactic chemical above which the 

production of p by the EC is switched on and if a  is the maximum production rate per 

cell, then
_> anp
P2 =  —  decay.

B  +  p

Here, the chemical production term shows the response of the endothelial cells to changes 

in the adhesive chemical density and the term saturates as p increases, as required. We 

assume tha t any uptake of the haptotactic and chemotactic chemical by the EC to be 

of the form

Si =  —Sinp, S 2 = —s 2 nc,

where Si and s 2 are the rate of uptake of the haptotactic and chemotactic chemical, per 

cell. The decay of the two chemicals is assumed to be linear.
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Hence, the full model is

9 ti  Tt
—  =  D iV 2n — xV .(nVp) — kV.(tiVc) +  pn( 1 ------ ) — /?n, (7.1.4)
ot n 0

^  =  D 2 V 2p +  - s x n p -  Axp, (7.1.5)
a t B  +  p

dc
—  =  D3V 2c -  s2nc -  A2c, (7.1.6)

We assume a two-dimensional geometry such tha t the model equations hold on the 

square domain V  =  [0,1/] x [0,1/]. We assume tha t the tum our is located along the 

x-axis and th a t the parent capillary vessel lies along the line y — L so tha t L  is the 

perpendicular distance from the tum our to the parent vessel. By using the above two 

dimensional geometry, the model is, in theory, experimentally reproducible. For example, 

this model could represent an in vitro experiment, whereby tum our cells are placed in

a line along one edge of a square petri-dish with EC placed along the opposite edge.

Alternatively, we could focus upon the role of haptotaxis by suspending TAF in gel, so 

th a t the gradient of TAF is constant.

In order to normalize the equations, we define the following reference variables. Let 

n0 be a reference endothelial cell density, such as the carrying capacity of the system, p0  

be a typical density of the adhesive chemical during angiogenesis and c0 be the initial 

density of TAF concentration at the tumour boundary. Hence, we non-dimensionalize 

by making the following substitutions;

r t x y
t =  ® =  y ,  V = T 'r  L L

P  =  0 t , A  =  » =  1 ,2 ,3 , (7.1.7)

n p C
h  =

n o ’ P = Po’
C =

Co

P q T X C q T  K
X = L 2 ’ k  =

L 2 ’ A = /ir,

a  = a n 0 T 1
S~2 = s 2

Po
T  —

Si7l0’ S i

L 2

B
3 =  — , A i =  A,r, i =  1,2.

Po

Dropping the tildes for notational convenience, the full model equations are
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dn
~dt

d 2n d2n
+  TTTd x2 dy2

dp d n d p  f  d2p  d2p \ \  
d x ^ d y d y ^ 71 \d x 2 dy2) )

f d n d c  d n d c  
\ d x  dx  dy dy(

(7.1.10)

(7.1.9)

In it ia l an d  b o u n d a r y  c o n d itio n s

The initial conditions are as follows;

• If y > 0.9 and 0.11 < x < 0.17, or 0.35 < x < 0.41, or 0.59 < x < 0.65, or 

0.83 < x < 0.89, then n(x ,y ,  0) =  1. Otherwise, n (x ,y , 0) =  0.

• c (x , y ,  0) =  1 -  y.

Thus, we assume th a t there are initially four capillary sprouts and equivalently, four foci 

of fibronectin. For all the numerical simulations, we took zero flux boundary conditions, 

except for the endothelial cells at the boundary y = 1, for which we assumed tha t the 

capillary sprouts were fixed to the parent vessel, i.e. if 0.11 < x <  0.17, or 0.35 < 

x <  0.41, or 0.59 < x <  0.65, or 0.83 < x <  0.89, then n ( x , y  =  1,£) =  1. Otherwise, 

n ( x , y  =  1,*) =  0.

7 .1 .1  E s t im a t io n  o f  p a ra m eter  va lu es

Whenever possible, experimental data  was used to estimate the parameter values. If 

this was not possible, then the parameters were chosen in order to give the best quali­

tative results, provided those parameters did not correspond to unrealistic dimensional

quantities.
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E stim ation  o f  fibronectin uptake tim e r

Terranova et al., (1985) found that doses of fibronectin between 10_8M and 10-1°M 

stimulated cell migration and Yamada & Olden, (1978) gave the generation time of 

fibronectin to be 18 hours. Assuming tha t 10~8M of fibronectin is produced by n 0 cells
IQ-8

in 18 hours, we estimate the rate of the secretion of the fibronectin as  n ^ h ^ M
18 0

[Orme & Chaplain, (1996)a]. We would expect the secretion rate to be higher than the

uptake rate, say five times higher, i.e. a = 5. Hence taking p 0 in the range 10-8 — 10“ 10M

[Terranova et al., (1985)], we have r  =  ——  in the range 90—9000 h.
5l7l0

E stim ation  o f  diffusion coefficients D i , D2, D 3

In their model of epidermal wound healing, Sherratt & Murray, (1990) used values of 

3 x 10_9cm2s_1, 3.5 x 10- 1°cm2s-1 and 6.9 x 10- 11cm2s-1 for the diffusion of the cells. 

In their study of individual endothelial cells, Stokes et al., (1991) calculated a random 

motility coefficient of (7.1 ±2.7) x 10- 9cm2s-1 for endothelial cells migrating in a culture 

containing an angiogenic factor aFG F [Folkman k. Klagsbrun, (1987)], heparin and fetal 

calf serum. Assuming tha t the diffusion of the EC is in the range 10-9 — 10- 11cm2s-1 , 

then Di  is in the range 3.6 X IQ-5 — 5.06. Since we want to focus upon the roles of 

haptotaxis and chemotaxis in this model, we want the diffusion coefficient to be as small 

as possible without running into difficulties with the numerical simulations. Hence, we 

chose Di = 0.0025.

For the diffusion coefficient of the chemotactic chemical, Sherratt & Murray, (1990) 

took values of 3.1 x 10_7cm2s_1 and 5.9 x 10“6cm2s-1 and Chaplain et al., (1995) 

took 3.3 X 10- 8cm2s-1 . Assuming tha t the diffusion coefficient of the haptotactic and 

chemotactic chemical is in the range 10-6 — 10- 8cm2s-1 , we obtain D 2 and D 3  in the 

range 3.6 x 10-2 — 5.06. We chose D 2 = D 3  = 0.5, which is in the middle of the range 

and is 200 times larger than the diffusion coefficient of the tum our cells.

H aptotaxis coefficient and chem otaxis coefficient k

In the absence of reliable empirical data, we chose y =  0.5, which leads to a dimensional 

value of the haptotaxis coefficient in the range 10-2 — 1389cm2s-1M-1 . Stokes et al., 

(1991) estimated the chemotaxis coefficient of EC migrating in a culture containing 

aFG F, to be 2600cm2s-1M-1 . Choosing k =  0.65 the non-dimensionalization gives a
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value of c0 in the range 6.7 x 10 11 -  4.9 x 10 14M. From this, we infer tha t the TAF 

mobilizes EC a t a smaller concentration than tha t of the fibronectin.

P ro life ra tio n  r a te  p  an d  d e a th  ra te  (3

The proliferation rate of the EC is estimated to be in the range 0.04h-1 [Sherratt &

Murray, (1990)] to 0.056h-1 [Stokes & Lauffenburger, (1991)], assuming th a t all cells

undergo mitosis. However, fibronectin can inhibit EC proliferation by up to 23% [Bow-

ersox & Sorgente, (1982)]. Furthermore, during angiogenesis, proliferation is generally

confined to a region near the tips of the capillary sprouts. Hence, assuming tha t the

proliferation rate is 0.02h-1 [Chaplain et al., (1995)], [Stokes & Lauffenburger, (1991)],

we obtain p in the range 1.8 to 180.

Brooks et al., (1994) found tha t EC underwent apoptosis 48 hours after injecting

integrin a v(33  antagonists into the site. Taking -jrh -1 as the death rate, we have (3 in
48

the range 1.875-187.5.

F ib ro n e c tin  d e n s ity  ra tio  B

We would expect th a t the secretion of fibronectin to have been switched on by the initial 

release of TAF by the tumour, so tha t the typical threshold fibronectin density p0, is 

greater than the threshold level, i.e. B < 1. We take B  =  0.001.

D ecay  o f  h a p to ta c tic  an d  ch em o tac tic  chem icals A1? A2

If we take A* =  0.5, i = 1,2, then the dimensional estimate for the decay of the chemicals 

is 5.6 x 10-3 — 5.6 x lO ^ h " 1.

7 .1 .2  M o d e l s im p lif ic a tio n  w hich  fo cu ses  u p o n  th e  ro le  o f  h a p to ta x is

In order to focus attention upon the role of haptotaxis in angiogenesis, we simplify the 

profile of the chemotactic chemical. In Chaplain et a l, (1995), the TAF concentration 

profile does not vary drastically over time. They concluded th a t it is reasonable to 

assume tha t the TAF profile is in some kind of steady state, since the TAF diffuses much 

faster than the endothelial cells. Henceforth, we assume tha t the TAF has reached its 

steady state and we approximate the TAF profile by c(x, y) =  1 — y (cf. Chaplain et al., 

(1995)). Thus, in the next section, we solve numerically the simplified model,
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dn  _  / d2n d 2 n \  / dn dp d n d p  f  d 2p d 2 P \ \
dt l \ d x 2 ~̂  dy2)  ^  \ d x  dx dy dy ^  U \ d x 2 ^  dy2) )

dn
+ k —  +  p n (l  -  n) -  fin, (7.1.11)

dy

I  -"•(S+g)
7.2 Num erical simulations o f simplified m odel

The system of equations (7.1.11)-(7.1.12) was solved using a routine available from 

the NAG library, which integrates using the method of lines and G ear’s method. In 

our first numerical simulation, we solved the system (7.1.l l ) - (7 .1.12) with parameters 

k = 0.65, p = 5, (3 =  0, x =  0.5, =  0.5, a  =  5, B = 0.001, D x =  0.0025, D 2 = 0.5.

Figure (7-1) and figure (7-2) show the resultant growth of the capillary vessels through 

the host tissue. In figure (7-1), we can see the beginning of secondary branch formation 

at the tip of each capillary sprout, and these branches subsequently merge to form 

anastomoses (figure(7-2)) via branch-tip to branch-tip fusion [Konerding et al., (1992)]. 

Furthermore, the capillaries have a well defined structure (cf. figure (7-7)) which is 

necessary for blood to flow through the vessels. Note tha t there is a higher density of 

endothelial cells a t the front of the capillary vessel which is where the brush border 

effect is observed by Muthukkaruppan et al., (1982).

7 .2 .1  A n ti-a n g io g e n e s is  s tr a te g ie s

In the numerical simulations, we consider four different ways by which the angiogenic 

process can be disrupted. These four approaches represent viable anti-angiogenesis 

strategies, which can be used in conjunction with more established treatm ent modalities 

[Folkman, (1995)], [Norton, (1995)]. Furthermore, we explicitly target the endothelium 

in the neovasculature so that, in theory, the damage to normal tissue is minimised 

[Brooks et al., (1994)], [Folkman, (1995)].
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Figure 7-1: Numerical solution o f the system (7.1.11)-(7.1.12) with fixed TAF profile 

c = 1 — y and parameters k = 0.65, p =  5, /3 = 0, x  =  0*5, =  0.5, a  =  5, B  =

0.001, Di =  0.0025, .D2 =  0.5. This simulation shows the distribution of the EC at 

time t = 0.8. We can see the beginning of T  shaped branch formation at the tip o f each 

capillary sprout.
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Figure 7-2: Numerical solution o f the system (7.1.11)-(7.1.12) with fixed TAF profile 

c = 1 — y and parameters k = 0.65, p = 5, (3 = 0, x  — 0.5, Xi = 0.5, a  =  5, B = 

0.001, D x =  0.0025, D 2 = 0.5. A t tim et = 1.2, we can see the formation o f anastomoses 

via branch-tip to branch-tip fusion. Furthermore, the capillaries have a well-defined 

structure which correlates to a good flow o f blood.
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Figure 7-3: Numerical solution o f the system (7.1.11)-(7.1.12) with fixed TAF profile 

c =  1 — y and parameters k =  0.65, p =  5, (3 =  50, x =  0-5, Aj =  0.5, a  =  5, B — 

0.001, D i =  0.0025, D2 = 0.5. This models an anti-angiogenesis strategy whereby the 

angiogenic process is impeded by the use o f endothelial cell-specific drugs, i.e. cytotoxic 

agents which preferentially kill EC. A t time t =  0.1, the capillary sprouts have died 

away.

C ytotoxic targeting of endothelial cells

First, we consider the use of cytotoxic therapy which preferentially kills EC. Such a 

strategy is most beneficial if preexisting blood vessels can be left unaffected. For ex­

ample, Brooks et al., (1994) demonstrated that antagonists of integrin a„/33 disrupted 

tumour angiogenesis by selectively inducing apoptosis in EC during the proliferative 

phase of the cell cycle. Since only the EC in the neovasculature undergo mitosis on the 

time scale under consideration, the adjacent vessels are left intact. We model this by 

setting ft = 50. As expected such a strategy results in the complete regression of the 

capillary sprouts (see figure (7-3)).
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Figure 7-4: Numerical solution o f the system (7.1.11)-(7.1.12) with fixed TAF profile 

c =  1 — y and parameters k =  0.65, p =  0, (5 =  0, x  — 0-5, = 0.5, a  =  5, B  =

0.001, D i =  0.0025, D2 =  0.5. Another potential anti-angiogenesis strategy is the 

prevention o f EC mitosis, i.e. by irradiation or by use o f an inhibitor. A t time t = 0.1, 

the growth o f the capillary sprouts has been arrested.

In h ib itio n  o f cell m itosis

It has been demonstrated that proliferation of EC is vital for the successful completion 

of angiogenesis [Ausprunk & Folkman, (1977)], [Paweletz & Knierim, (1989)]. Recently, 

chemical agents, such as angiostatin [Folkman, (1995)], [O’Reilly et a/., (1994)] have 

been isolated, which specifically inhibit EC proliferation and thus inhibit angiogenesis. 

Since the cell doubling time of EC in the absence of TAF is long (months [Paweletz & 

Knierim, (1989)]) in comparison with the half life of angiostatin (2.5 days [Folkman, 

(1995)], only the newly formed vasculature would be affected. We model this by setting 

the cell proliferation rate p to zero. In the numerical simulation, the capillary sprouts 

stopped growing after a time t = 0.1 (figure (7-4)). O’Reilly et al., (1994) found that 

angiostatin inhibited angiogenesis 48 hours after implantation, which gives us a value 

of r  =  480, which is within our estimated range.
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Figure 7-5: Numerical solution o f the system (7.1.ll)-(7 .1.12) with fixed TAF profile 

c = 1 — y and parameters k =  0, p  =  5, /? =  0, x  — 0.5, =  0.5, a = 5, B —

0.001, Di =  0.0025, D2 =  0.5. Plot taken at time t =  0.2. This simulates an anti- 

angiogenesis strategy whereby the EC  are unable to react to the chemotactic stimulus,

1.e by disrupting the appropriate receptors on the surface o f the cell. The capillary 

vessels regress and angiogenesis fails.

Prevention o f cell migration: (1) A nti-chem otaxis

Cell migration has been identified as a key event in tumour angiogenesis. Cell migration 

can be disrupted by interfering with the cells’ ability to detect local chemical gradients. 

For example, endothelial cells are known to react chemotactically to hepatocyte growth 

factor (HGF) [Bussolino et al., (1992)]. It is possible to cultivate antibodies against 

the HGF receptor [Bussolino et al., (1992)] and hence prevent chemotaxis. We model 

this by setting our chemotaxis coefficient k to zero to obtain the numerical solution as 

shown in figure (7-5). This shows that in the absence of a detectable TAF gradient, 

angiogenesis fails.
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Figure 7-6: Numerical solution o f the system (7.1.11)-(7.1.12) with fixed TAF profile 

c =  1 — y and parameters k =  0.65, p  =  5, /3 = 0, x =  0? =  0.5, a = 5, B  =

0.001, D\ =  0.0025, D 2 =  0.5. Plot taken at time t = 0.6. The anti-angiogenesis 

strategy adopted here prevents the EC from reacting to the haptotactic chemical, i.e. 

by affecting the receptors on the cell surface. Though the capillary sprouts continue 

to grow under the influence o f chemotaxis, the sprouts are not as distinct as those in 

figures (7-1) and (7-2) .

Prevention o f cell migration: (2) Anti-haptotaxis

It is known that fibronectin increases cell-cell and cell-matrix adhesiveness. Yamada & 

Olden, (1978) showed that EC have a specific receptor for fibronectin. By blocking the 

fibronectin receptors, we prevent the EC from reacting haptotactically to fibronectin. 

We model this by setting the haptotaxis coefficient x f° zero. At first, this method 

does not seem to have impeded the growth of the capillary sprouts. At time t = 0.6 

there is some evidence of anastomoses (figure (7-6)), though the loops do not appear to 

have been formed by the fusion of branch tips. Furthermore, the capillary vessels are 

not as distinct in comparison with the vessels in figures (7-1) and (7-2). This becomes 

more evident in figure (7-7) where we can see that the endothelial cells have not formed
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Figure 7-7: Numerical solution o f the system (7.l.l l ) - (7 .1.12) with fixed TAF profile 

c = 1 — y and parameters k =  0.65, p =  5, /3 = 0, x =  Ai =  0.5, a  =  5, B = 

0.001, Di = 0.0025, J92 =  0.5. Plot taken at time t = 1.2. The anti-angiogenesis 

strategy adopted here prevents the EC from reacting to the haptotactic chemical, i.e. 

by affecting the receptors on the cell surface. Though the strategy has not prevented 

the outgrowth of endothelial cells, the EC have not formed well-defined structures, and 

hence there will be a poor circulation of blood.

well-defined structures. We would expect the circulation of blood through such inferior 

vessels to be poor and hence, the angiogenic process has failed to produce a viable 

network of capillaries. Hence, we conclude that the compactness of the vessels shown 

in in figures (7-1) and (7-2) as compared to figures (7-6) and (7-7) is due to haptotaxis.

Finally, we conducted a parameter sensitivity analysis on this model and found that 

the following parameter changes had an equivalent effect on the resultant solutions. In­

creasing the EC proliferation rate, increasing the diffusion coefficient of the haptotactic 

chemical or decreasing the haptotaxis coefficient all resulted in a loss of definition (com­

pactness) of the capillary sprouts (a similar result is shown in figure (7-7)). Furthermore, 

the same effect could be achieved by increasing or decreasing the secretion rate of the
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haptotactic chemical. This implies th a t there is some optimal level of (fibronectin) pro­

duction, such th a t the EC cannot respond to too little chemical or become saturated 

when there is too much. A summary of the different numerical simulations conducted 

and the param eter sensitivity analysis is given in table (7.1).

7.3 A lternative chem otaxis model

We will now briefly consider an alternative mechanism for the formation of capillary 

sprouts during angiogenesis, which does not involve haptotaxis. We assume tha t the 

TAF produced by the tum our does not induce the secretion of fibronectin (or other such 

adhesive material) by the EC. Hence, by setting p(x , y , t )  =  0 in the system (7.1.8)-

(7.1.10), we obtain the sub-model

dn _  f d 2n d 2n \  / d n d c  d n d c  /  d 2c
dt \ d x 2 ^  dy2)  K \ d x  dx ^  dy dy ^  71 \ d x 2 ^  dy2) )

+ lin (l — n) — fln, (7.3.13)

I  -*(£+ £)
Here, the capillary vessels act as sinks, which absorb the TAF and hence, create local

chemical gradients. This may provide an alternative mechanism for the formation of

capillary branches and anastomoses. This is investigated in a preliminary numerical 

simulation of the system (7.3.13)-(7.3.14) with parameter values k =  0.65, p  = 5, =

0, A2 =  0.5, s2 =  1, D i =  0.0025, D z =  0.5. The resultant pattern of capillary growth 

is shown in figure (7-8). We see the beginnings of capillary outgrowth towards the 

tum our located a t y = 0. However, in the absence of haptotaxis, the vessels are not as 

well-defined when compared with figure (7-1) and figure (7-2). After a time t = 0.8, 

the vessels are almost indistinguishable, and such poor definition would result in poor 

circulation of blood. In this case, the angiogenic process has failed to produce a viable 

capillary network.
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A nti-angiogenesis strategies

Action Change in parameter Effect on solution

Cytotoxic targeting of EC 

[Brooks et a/., (1994)]

/3 = 50 Complete regression of 

capillary sprouts

Inhibit EC mitosis 

[O’Reilly et al., (1994)]

/i =  0 Capillary sprouts stop 

growing

Anti-chemotaxis K, =  0 Capillary sprouts stop 

growing

Anti-haptotaxis X =  0 Loss of compactness

P aram eter sen sitiv ity  analysis

Action Change in parameter Effect on solution

Increase proliferation Increase p Loss of compactness

Increase diffusion of 

haptotactic chemical

Increase D 2 99 99

Increase secretion of 

haptotactic chemical

Increase a 99 99

Decrease secretion of 

haptotactic chemical

Decrease a 99 99

Table 7.1: A summary o f the different anti-angiogenesis strategies and a parameter 

sensitivity analysis and the effect on the solution as compared to figures (7-1) and (7-2).
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Figure 7-8: Numerical solution o f the chemotaxis sub-model (7.3.13)-(7.3.14) with model 

parameters k =  0.65, p  =  5, /3 = 0, A2 =  0.5, s2 =  1, =  0.0025, D3 =  0.5. Plot

taken at time t =  0.8. Though the capillary sprouts grow towards the tumour, the 

vessels are not well-defined and as a result the flow of blood through the vasculature 

would be poor. In this case, we consider angiogenesis to have failed
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7.4 Discussion

This model has captured key features of angiogenesis, namely, the outgrowth of capil­

lary sprouts, branching and loop formation (anastomoses). In this model, anastomoses 

is brought about as a result of the haptotactic movement of the EC in response to 

an adhesive chemical which the EC themselves secrete. This is considered to be an 

improvement on the model of Chaplain, (1995), where the steady-state profile of the 

TAF was assumed to be radially symmetric and hence, anastomosis occurs simply as a 

consequence of the geometry.

We have used two dimensional geometry in this model, so tha t, in theory, the results 

are experimentally testable. The initial and boundary conditions used in the model 

suggest an in vitro experiment, where a square petri-dish contains TAF suspended in 

gel and four clusters of EC located at the edge of the dish. Such an experiment has yet 

to be carried out.

The numerical simulations presented in the previous sections imply th a t both chemo­

taxis and haptotaxis are required for successful vascularization of the tumour, though 

they have different roles in the angiogenic process. Chemotaxis is the underlying mecha­

nism which drives the outgrowth of the complete capillary network, whereas haptotaxis 

controls the finer structure and continuity of the vasculature. Though it has been 

shown tha t the proliferation of the EC is not required for the initial stages of capillary 

sprout formation [Sholley et a i, (1984)], it is essential for the successful completion of 

angiogenesis [Ausprunk & Folkman, (1977)].

We have identified a number of ways by which the angiogenic process can be dis­

rupted. Anti-angiogenesis has a lot of potential as an adjunctive therapy, whereby it 

is used alongside conventional treatments, or on its own in circumstances where other 

methods result in unacceptable damage of normal host tissue [Folkman, (1995)], [Harris 

et al., (1996)]. One problem for pathologists is the variety of m etastatic patterns in 

patients with the same type of cancer [Frank et a/., (1995)], [Nicolson, (1988)]. By 

establishing a range of different therapies, treatment can be tailored to meet the in­

dividual requirements of each patient. Furthermore, anti-angiogenesis can be used to 

control the growth of the metastases as well as the primary tumour.
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Chapter 8

Conclusions and future work

In this final chapter, we will look at the models presented in this thesis in a more general 

context and highlight areas of research which are currently underway or which may be 

realised in the future. The focus in this thesis has been upon events prior to metastasis, 

as there is more potential for the development of viable treatm ent modalities in this area. 

In particular, we have looked at models of tumour angiogenesis and tum our invasion as 

these events have many serious consequences. It would be extremely difficult to model 

metastases formation using a continuum approach. The potential of each tum our to 

metastasise depends upon numerous factors, such as the tum our type, the site of the 

primary tum our relative to the circulatory system, and the probability of the tumour 

cells surviving in the blood stream. Once a secondary tumour has been initiated, it will 

develop in a similar manner to the primary tumour. Hence, the models in this thesis 

can also describe the progress of established tumour metastases.

In chapter (2), we presented a mathematical model which showed th a t the growth 

of an avascular tumour can be modulated by the immune response of the host as well 

as other host factors. In the future, we can expect the development of cancer ’vaccines’, 

whereby tum our antibodies are administered intravenously, which mark the tumour cells 

for destruction by the host’s immune cells [Lineham et a i, (1996)]. However, progress 

in this area may be hampered by a lack of suitable in vivo models which represent 

a spontaneously growing human tumours. Mathematical models of post vaccine host- 

tum our interactions may prove a useful tool to screen out invalid treatm ent modalities.

In chapter (3), we looked at the formation of capillary buds and secondary branching 

during the early stages of angiogenesis. We considered haptotaxis to be an im portant
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mechanism for the formation of capillary buds and sprouts. The model was very simple, 

which is an advantage from a mathematical perspective, but may not be entirely ap­

propriate from a biological point of view, since the early stages of angiogenesis involve 

many complex interactions between different cells and a number of chemicals with com­

peting effects. However, a highly detailed model may obscure the im portant features 

and would be difficult to analyse. One way to overcome this may be to use a stochastic 

model (for example [Dickinson & Tranquillo, (1993)], [Stokes & Lauffenburger, (1991)]), 

which can go some way towards modelling sources of variation which are too difficult 

to incorporate directly. In a stochastic model the same initial conditions can produce 

different end results. Hence, stochastic variation in a model of a capillary network 

formation may result in more realistic branching structures.

In chapter (4), we examined the vascularization and subsequent invasive growth of 

a solid tumour. We used this model to estimate the invasion speed of the tumour. 

One of the features captured by this model is the development of a necrotic/hypoxic 

core. The current thinking regarding hypoxia has changed recently [Brown Sz Giaccia,

(1994)]. Previously regarded as a problem, researchers now view hypoxia as a feature 

of the tum our which can be exploited. Hypoxia activated pro-drugs are currently in 

development and have a lot of potential, particularly when combined with conventional 

treatm ents [Harris et al., (1996)]. Mathematical models can be used to examine the 

growth kinetics of subpopulations of active and hypoxic tum our cells after hypoxic 

targeting, in much the same way tha t models can be used to optimise drug delivery 

during chemotherapy [Usher & Henderson, (1996)].

Chapter (5) was largely a mathematical exercise to show the existence of travel­

ling wave solutions with semi-infinite support for a density-dependent diffusion equa­

tion,although the model also acts as a qualitative description of solid tumour growth. 

The dilemma th a t faces the mathematical biologist is how to produce a model which 

is biologically realistic, yet mathematically tractable. The mathematical biologist must 

balance a number of disciplines in order to produce a useful model. This includes 

obtaining a thorough knowledge of the biological and experimental background, using 

techniques to analyse systems of ODEs and PDEs, and producing computer simulations 

of the modelled phenomena.

The numerical analysis of equations arising from complex biological systems th a t is 

also in need of further development, since the PDEs which arise are often non-standard
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(cf. Oster & Murray, (1989)). For example, a preliminary investigation into the nu­

merical solution of the mechanochemical model [Oster & Murray, (1989)], [Perelson 

et al., (1986)], revealed a number of problems, such as stability, accuracy of the solu­

tion and problems associated with the use of periodic boundary conditions. The proper 

numerical treatm ent of the mechanochemical model is certainly non-trivial and could 

be considered as a research project in its own right.

Detailed mathematical models of solid tumour growth can prove difficult and time- 

consuming to solve numerically, particularly if large numbers of param eters are involved. 

The models found in chapters (6) and (7) were simulated in two space dimensions. This 

considerably increased the number of computations required to produce a solution. A 

cellular automaton approach can offer an alternative, with a set of simple rules replacing 

the physical interactions and reactions of the cells (see Erm entrout h  Edelstein-Keshet,

(1993) for a review). They have the advantage of being quick and easy to compute for 

large da ta  sets, and involve discrete numbers of cells. The disadvantage is they are not 

accessible to mathematical analysis.

In chapter (6), we introduced heterogeneity into a mathematical model in a very 

simple way. This model demonstrated that heterogeneity in the tum our environment 

can directly affect the invasion process, in addition to highlighting the problems arising 

during surgical excision of a tumour. One improvement th a t could be made is to include 

heterogeneity in the model in a more sophisticated way. e.g. by having heterogeneous 

cell populations or a heterogeneous nutrient field. Cellular autom ata could be ideal for 

modelling heterogeneous populations of cells [Stott, (1996)].

Finally, in chapter (7), we produced a two-dimensional model of tum our angiogene­

sis, which we used to test a number of hypothetical anti-angiogenesis strategies. A very 

positive feature of this model is tha t it directly feeds back to the biology by suggesting 

a viable and potentially informative set of experiments. We have already seen a number 

of recent developments in anti-angiogenesis and anti-vascular treatm ents [Harris et al., 

(1996)]. Angiogenesis has been the focus of much attention for the past few decades, 

and no doubt will continue to be of importance in the future.
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A ppendix to chapter 4

A .l  Analysis o f the three-dimensional phase space 

A t t h e  cr it ica l  p o in t  (0 ,0 ,0 )

A n  — —o:(l +  tanh 1), A n  =  0, A 1 3  =  0, A 2 3  =  —c,

A 3 1  =  0, A 3 2  =  SC) A 3 3  =  c~.

Hence the eigenvalues are given by the roots of

p ( A )  =  A 3 - \ -  A “ c q  -f- A cio “I-  ( A . 1. 1)

where

di = a ( l  +  tanh 1) — c2,

a2 =  c2(S  — a ( l  +  tanh 1)),

d 3 =  +  tanh 1).

If c2 < a ( l  +  tanh 1) < S  then the origin is a stable node. Otherwise, the critical point 

is a saddle point.

For non-negative solutions, we require these roots to be real. We must impose the 

conditions a x > 0 and Pi = 0 [Murray, (1989)] where

=  ( f  V -  ( ! )  . (A .1.2)
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A = 2(f)3' T +°3- (A-1-3)
From the first condition we have

a 2(l +  tanh l )2 -f c4 — 3c2 5 +  c2 a{ 1 +  tanh 1) > 0. (A.1.4)

A sufficient condition to  satisfy > 0 is c2 > 35 or o ( l  +  tanh 1) > 35.

From the second condition =  0, we have

2 (a ( l + ta n h  l ))3 +  3 (a ( l +  tanh 1))2(3 — 2c2)

+ 3a ( l  +  tanh l ) ( 2c4 +  3(35 -  l)c2 -  35) +  c2(95 -  2c4) =  0. (A.1.5)

Since a  is real and positive, as a minimum requirement, we need the above polynomial

to have one positive root. By Descartes Rule of Signs we require

3 > 2c2, 2c4 +  3(35 -  l)c2 -  35 > 0, 2c4 >  95.

3 15c2 is real and positive for 5  > 0. Hence combining these conditions — > c2 > 3w — is 

sufficient for a  real and positive.

A t t h e  cr it ica l  p o in t  (0 ,1 ,0 )

A n  = r — a, A 1 2  =  0, A 1 3  = 0, A 2 3  = — c,

^ 31 =  B  +  1 ’ ^ 32 =  —̂ c’ ^ 33 =  ’

Hence the eigenvalues are given by solutions of

A3 +  A2(a — r — c2) +  Ac2(r — a — 5) +  5c2(r — a) =  0. (A.1.6)

i.e. the roots of p(A) =  A3 +  A2ai +  Aa2 +  a3, where

ai =  a  — r — c2,

a2 =  c2(r — a — 5),
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a3 =  Sc2(r — a).

(0,1,0) is a saddle point. If r > a, the polynomial p(A) will have two positive roots 

and one negative root. If a > r we will have one positive root and two negative roots.

n;£ < 1, we conclude tha t r > a.

Again we must impose conditions on our parameters so th a t the solutions are non­

negative, i.e. the eigenvalues must be real. From the condition > 0 where a! is given 

by (A .1.2) we obtain

r > 2a  is a sufficient but not necessary condition which satisfies (A. 1.7). From =  0 

where (3i is given by (A.1.3) we obtain

After some algebra this becomes

2(r — a )3 — 3c2(r — a )2 — c2(r — a)(185 +  6c2) -F c4(2c2 +  95) =  0. (A.1.8)

A t t h e  th ird  cr it ica l p o in t  W , n j , 0 )

Using equations (4.2.12) and (4.2.13), the eigenvalues are given by solving the cubic 

equation

However by examination of equation (4.2.13) combined with the condition for invasion

a 2 +  r2 +  c4 +  35c2 — 2ra  > 0. (A.1.7)

| - [ - { r - a ) -  c2]3 -  y [ - ( r  -  a) -  c2][{r -  a) -  5] +  5c2(r -  a) = 0. 

^ [ - ( r  -  a) -  c2]3 -  ~ [~ { r  -  a) -  c2][(r -  a) -  5] +  5c2(r -  a) =  0.

2712(1  —  71$ )

[7*2 -  X{B +  «22)] -  1,*2\2

+  C277o5 (l -  77o )[r-(-Q;sech2(77.2 — 1)] =  0 (A.1.9)

i.e. the roots of p(A) =  A3 +  A2ai +  Aa2 +  a3 where

a! =  — n?) ~ 6‘2’

2 r27i*(l -  n$) ao =  be — =---------—[74 -  X{B +  rif)] -  1 ,
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a3 =  c2n\S{  1 — n\)[r +  asech2^  — 1)].

There are four possible cases, all roots negative, one root positive and two negative, 

one negative and two positive and all roots positive.

Suppose all the roots are negative. By the Routh-Hurwitz conditions

ai, a2, a3 > 0.

The condition ri  ̂ < 1 is satisfied and we obtain a bound on the wavespeed,

i.e. c2 < x n \ S { l - n \ ) .

Consider the limiting case a3 =  0. Then the roots of p(A) are

A =  0, A12 =  ~~ai i  \ j ~  4g2,

The maximum AM and minimum Am are given by

—7— — 3A2 T  2Act 1 -f- do =  0, 
aX

Am,M ~  g  i  \J& 1 3<22) •

These are independent of a3. As a3 increases from zero, p(A) has three real negative 

roots. There is a critical value of a3, a3 say, for which two of the roots are equal where

. <4 =  ^  ( fll +  2\ / a i -  3o"2)  (« i ~ yjal ~  3a2)  . (A .1.10)

So for a3 > 03, we have only one real root and two complex roots. Hence the solutions 

approach the critical point in an oscillatory manner for a3 > a3 and for 0 < a3 < a\ 

they are monotonic (figure (A-l)).

Suppose tha t one of the roots of p(A) is positive and two roots are negative. This 

implies tha t a3 < 0 and so > 1 which contradicts our previous assumption. We 

dismiss this case on the grounds tha t this situation does not arise in the biological 

context tha t we are considering.

Now suppose tha t two of the roots are positive and one root is negative. Then a3 > 0.
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0

0

Figure A-l: The general form o f p(A) as a3 increases from zero, (a) a3 =  0, (h)

0 < a3 < a^, (c) a3 =  03 and (d) a3 > a^.

Either of or both of a\ and a2 must be negative. If ax < 0, then c2 > x n 2 ^ i^  ~ n 2 )- ^  

a2 < 0, then we obtain the inequality

(2X -  I K 4 -  -2(x +  l ) n f  +  2(1 +  - l))n?2 -

As before in the case where all the roots were negative, there is a critical value of a3. 

As a3 increases to this critical value, the two positive real roots become equal. So for 

a3 > <13 we have a trajectory which oscillates away from

Finally, if all the roots are positive we have a3 < 0. Again, we dismiss this case as 

it is not of biological relevance.
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A .2 Analysis o f the four-dimensional phase space 

A t t h e  cr it ica l p o in t  (0 ,0 ,0 ,0 )

A31 — ^ ( 1  +  tanh 1), A 32 = 0, A33 =  — —,

A41 =  0, A42 = —S.

Hence the eigenvalues are given by the roots of

p ( A )  =  A 4 -f- X^cii -j- A 2<z3 ”l~ A o 3 -f- £14,

where

a2 — — +  5* +  4  4  tanh 1),

cS olc . 
a3 =  —  -  — (1 +  tanh 1),

a S . . .
a4 =  — —  (1 4- tanh 1).

By examination of a3 we see tha t the origin is a saddle. In particular it has an unstable 

manifold if S  < o ( l  +  tanh 1) which agrees with the result found in appendix A.

A t t h e  cr it ica l p o in t  (0 ,1 ,0 ,0 )

A31 =  4*2 =  0, 4*3 =  - ^ ,

A 3 4  — 0, A41 =  - —, A42 =  s.
n  + 1

Hence the eigenvalues are given by the roots of

p{A) =  A4 +  A3a! +  A2a2 +  Aa3 -(- <14,

where
c

ai = c +  j j i

a2 =  ■“ (c2 +  r -  a -  DS) ,
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a3 =  -jj(r - a - S ) ,

S ( \«4 =  - ^ ( a - r ) .

Since r > a , we can see that (0,1,0,0) is always a saddle. 

A t t h e  cr it ica l p o in t  ("l, "2,0,0)

,  _  X,^ An*n*
31 ~  D ^ B  + n f  S n ?(X~ ni ) ) ’

A 3 2  = J\(xA ai -  rn \ + a < sc c h 2(n* -  1),

A33 = - | ,

_ Xcn*
^34 — ~

A41 —

D ’ 

An$
B  -I- n^

2An*,n* n t2 , ^
42 _  B +  n f ( “  J T W  ~  (1 “  2>'

Using equations (4.2.12) and (4.2.13), the eigenvalues are given by the roots of 

p(A) =  A4 +  A3<zi +  A2<z2 ~\~ A03 +  n4,

where

cS {2ri$2(l  -  rio) .
0,3 ~  ~D \  B  + n f  ' ’

a4 =  —571,(1 — 7̂2)(r +  osech (722 — 1).

Since n% < 1, a4 > 0. If either a2 < 0 and/or a3 < 0 then the critical point 

(n*, 7i2,0,0) ls a saddle. If both a2 > 0 and a3 > 0 then the critical point is a stable 

node, i.e. if

5  +  s ( ( b T ^ - ^ " 5, (1- b 5 ) - i ) > 0 ’ ( A - 2 ' n )
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and

2 n f { l  - n * ) >  B + n f . (A.2.12)

From (A.2.12), we have > B > 0. Consider the function /(n^) =  n^2 — 2ri23

for 0 < n 2 2 < 1. Then clearly ^  > B > 0. Hence if (A.2.12) is satisfied then c2 > 

x5,no2(l — nX) is sufficient to satisfy (A.2.11).
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A ppendix to chapter 5

B .l  Local stability analysis of a density-dependent diffu­

sion equation

The Jacobian for all points (£7, V) is 

J[FiG](u,v) =
- V  - U

rUr~1 -  (r +  q)Ur+<i - 1 - c  +  2V

B .1 .1  A t th e  cr it ica l p o in t  (0 ,0 )

At P0 =  (0,0) the Jacobian is,

J[F,G]{ o,0) =
0 0 

A'i(0) -c

where

A -,(0)= £/r- ' | „ =  <

1 0

tti(O)
C

, v 2 =
1

(B.1.1)

(B.1.2)

0, if r > 1,

1, if r =  1.

The eigenvalues are =  0, A2 =  —c, with corresponding eigenvectors

Vi =

We will use centre manifold theory in order to determine the behaviour of the trajectories 

around (0,0). We will consider two separate cases r < 2, r > 2.
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First consider r < 2. If we expand (5.2.35)-(5.2.36) about (0,0) up to second order, 

we have

U = - UV = F2{U ,V ), (B.1.3)

V  = K 1( 0 ) U - c V  + K 2 (Q)U2 + V 2 + h.o.t. = G3(V,V) ,  (B.1.4)

where
— 1, if r =  1 and q = 1,

Ar2(0) =  l, if r =  2, (B.1.5)

0, otherwise.

In our analysis, we will use the following theorems.

T h e o re m  B .1.1 Consider the system

x(<) =  Ax(t) + f ( x  (t),y{t)),

y(t) =  By(t) + g(x{t),y{t)),

(B.1.6)

x G R ", y G R m, A and B constant matrices such that all o f the eigenvalues o f A have 

zero real parts and all of the eigenvalues of B  have negative real parts, with f  and g, 

C 2 and / ( 0, 0) =  #(0, 0) =  / '(0 ,0 )  =  #'(0,0) =  0, where ' denotes the Jacobian matrix 

of the function.

Then, there exists a centre manifold

y =  h(x),  h(0) =  0, h'{0) =  0, |a:| < 6,

for (B.1.6), where h(x)  G C 2. Furthermore, the flow on the centre manifold is given by

w =  Aw  +  f (w,h(w)) .  (B.1.7)

We see tha t (B.1.7) contains all the information needed to determine the asymptotic 

behaviour of small solutions as seen by the next theorem.

T h e o re m  B .1.2 (a) Suppose the zero solution of (B.1.7) is stable,asymptotically sta­

ble or unstable. Then the zero solution of (B.1.6) is also stable, asymptotically stable
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or unstable respectively.

(b)  Suppose the zero solution of (B.1.7) is stable, then, if  (x( t ) ,y( t ))  is a solution of 

(B.1.6) with (ar(0),y(0)) sufficiently small, then there exist a solution u(t) o f (B.1.7) 

such that as t —► oo

x(t) =  u(t) +  0 (e“7), 

y(t) = h{u{t)) + 0 { e - 7), 7 > 0 some constant.

The next theorem tells us how to approximate the centre manifold.

T h e o re m  B .1 .3  For functions (j> : R n —► R m, which are C 1 in the neighbourhood of 

the origin, define

(M<f>)(x) = (j)'{x)[Ax + f(x,(f>{x))]~ B<f>(x) -  g(x,<f>(x)).

Suppose that as x —> 0, (M<f>)(x) = 0 ( |z |?), q > 1. Then as x —► 0, |h(x) — 4>{x)\ =

o(|* |* ).

Proof For the proofs of theorems (B.1.1) to (B.1.3) see Carr, (1981).

In order to apply the centre manifold theory, we need to re-w rite (B.1.3)—(B.1.4) in 

normal form. First we write (B.1.3)-(B.1.4) in the form

X  = J[F,G]{0,o)X + f ( X ) ,  (B.1.8)

U - u v
where X_ = , m q  =

V K 2{0)U2 + V 2
Let

1 0 0 0 u
, D = , y  =î(O) I

c 0 —c V

then X  =  P Y  is an orthogonal transformation such tha t P  1 J[F,G](0,o) P  = D,  he. 

(B.1.8) becomes

Y  = DY_ + P~ l f{PY_).

Hence

^ =  - - k m u 2 - u v ,
at, c

(B.1.9)
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dV_
dZ

= -c V  + 2sea+̂ (o)
By theorem (B.1.1), (B.1.9)-(B.1.10) has a centre manifold V  = h(U).  To approximate 

h (up to second order), we set

=  4>'(U) 

[2

- K ^ U 2 -U<f>{U)

- K f ( 0 )  + K 2(0) 
ci U2 --Ki(0)U4>{U)  + <l>2(U). (B.1.11)

If 4>(V) =  -  -jAr?(0) +  A',(0) 
c Lc

Hence by theorem (B.1.3)

U2 then (M4){U ) =  0 { U 3), and <£(0) =  <£'(0) =  0.

m  = - ? A'?(0) +  A-2(0) U2 + 0 ( U 3).

In term s of (U , V ), the centre manifold is given by

h(U) =  -
C

— K x (0) -f A 2(0) c£ U2 +  ~ Ii\(0)U  + 0 { U 3). (B.1.12)

By theorem (B.1.1), the flow on the centre manifold of (B.1.3)-(5.2.36) is given by

w
w =  — —A 2(0) +  Ao(0)^ w +  A i(0) + 0 { w A).

Recall tha t

A'i(0) =
0 if r > 1,

1 if r = 1,
A'2(0) =  <

— 1, if r =  1 and q =  1,

1, if r =  2, and r  =  m +  p -  1,

0 otherwise,

We have three possibilities;

1. r =  2. Then the flow on the centre manifold is

w = — w3 +  0 (w4), 
c

so w =  0 is stable.
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2. r = 1 and q = 1. The flow on the centre manifold is

ur
w = — ? - n ® + +  0 (u>4).

Hence the flow on the centre manifold varies with c. When c =  \/2> we have 

one equilibrium w =  0. When c /  \/2, we have two equilibria it; =  0 and w =  

c2/(c 2 — 2). In any case w = 0 is unstable, (c / [Sanchez-Garduno & Maini,

(1994)].)

3. r = 1 and q ^  1. In this case the flow is given by

w =  — w 
c

2w 
~  +  1 cl

4 -0  (in4),

so in =  0 is unstable.

Now consider r > 2. We need to obtain a better approximation to the centre 

manifold. Recall (5.2.35)-(5.2.36)

U = - U V  = F{U,V),  

V  = - V { c - V )  + Ur{ l - U q) = G{U,V).

For r > 2, we have eigenvalues Xx = 0 and A2 =  —c corresponding to eigenvectors 

Vi =  [ l , 0 f  and v 2 =  [0 ,1]T. We can approximate the centre manifold up to order r by 

setting

CM<t>){U) =  -U<f>{U)4>'(U) +  ccf>{U) -  (f>2{U) -  Ur{ 1 -  Uq).

Let <f>(U) =  - U \  then (M<j>)(V) =  0 (£ /r+1) and ^(0) =  ^ (0 )  =  0. Hence by theorem

(B.1.3)

h(U) =  - U r + 0{UT+i),
c

and by theorem (B.1.1), the flow on the centre manifold is

w = — w 
c

r+1

Hence, if r is odd it; =  0 is unstable and if r is even it; =  0 is stable.

In general, if we have initial values (Uq, Vo) such th a t \/U q +  V£ is sufficiently small
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and U0 > 0, then solutions will tend to P0 along the centre manifold.

B .1 .2  A t t h e  c r i t ic a l  p o in t  Pi

At P1 =  (1,0),

J[F,G]{li0) =

The eigenvalues are given by

0 - 1  

- q  - c

Eigenvectors are

1 1
Vi = , v 2 =

—Ai —A2

Hence Pi is a saddle.

B .1 .3  A t t h e  c r i t ic a l  p o in t  Pc

At Pc = (0, c)

- c  0 

A'i(O) c

This has eigenvalues Ai2 =  ± c with associated eigenvectors

0 1
Vi =

1
, v 2 = -AT(0)

L 2c J

Hence, Pc is also a saddle.

(B.1.15)
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